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A B ST R A C T

In this thesis I will study noncommutative differential geometry, after the style of 
Connes and Woronowicz. In particular two examples of differential calculi on Hopf 
algebras are considered, and their associated covariant derivatives and Riemannian 
geometry. These are on the Heisenberg group, and on the finite group A 4. I consider 
bimodule connections after the work of Madore. In the last chapter noncommutative 
fibrations are considerd, with an application to the Leray spectral sequence.

NOTATION.

In this thesis equations are numbered as round brackets () , where (a.b) denotes 

equation b in chapter a, and references are indicated by square brackets [ ].

This thesis has been typeset using Latex, and some figures using the Visio program.
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Introduction

Differential geometry may be dated to the work of Riemann [42], though much of 

the formalism was used previously in “flat space'1. This was later used by Einstein 

to write the general theory of relativity [19], and then in gauge theories of parti­

cle physics. Noncommutative differential geometry dates back to the work of Alain 

Connes on the Dirac operator [13], and was given a major boost with the work of 

Woronowicz [46] on differential calculi on quantum  groups.

This led to considerable interest in noncommutative differential geometry from the 

physics community, based on the idea th a t combining quantum  theory and gravity 

should lead to noncommutative space time. For example:

M oyal product [39] [38] [47]this corresponds to one of the simplest possible noncom­

m utative structure on space time, which is often used by physicists: it is similar to 

a noncommutative torus, bu t in more dimensions, eg.

/  * a =  f g  + f  E  f  E  nijn km(didkf ) (d }dmg) + ■■■
i j  i . j . k j r i

where 11* j is a number valued matrix. Here f and g are smooth functions on Rn, and 

h is a parameter.

Fuzzy spheres: this is a deformation of the algebra of functions on R 3 given by

[Aj, Aj] iotCijkXk



where a  is a param eter, and

0 ijk has a repeat

1 ijk no repeat and is 123 in cyclic order 

— 1 otherwise.

eg. £122 — 0  ̂123 — 3̂12 — 1 1̂32 — ~1-

This, and the physical motivations behind it, is discussed in [45] [29] and [7]. 

Connes Standard M odel: Connes and Marcoli gave an application of noncommu­

tative differential geometry to give an alternative derivation of the standard model 

of particle physics. [14] [15]

Cosm ology which in recently some predictions of a possible noncommutative struc­

ture of space time have become testable on a possible dependence of the velocity of 

light on frequency- so for measurements have been negative [32].

From the point of view of differential forms, the principle of noncommutative geom­

etry is quite simple: make the forms into bimodules over a noncommutative algebra. 

However, this is not so simple in practice. But some examples which do work well 

are the calculi on quantum  groups [46] (and their quotients, eg the quantum  sphere) 

and on finite groups [34].

In this thesis we shall take two examples of differential calculi, one on the finite group 

A 4 and one on the Heisenberg group. We shall then apply methods of noncommu­

tative differential geometry to these examples, and see how similar the results are 

to those of ” classical” differential geometry. We shall see th a t there are substantial 

differences to the classical case, where there is a unique Levi-Civita connection.

In chapters 1 and 2 we will review some background material, and in chapters 3 and 

4 we deal with the A 4 and Heisenberg example, respectively. In chapter 5 we look
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at an application of the Leray spectral sequence to a noncommutative fibration. In 

chapter 6 we give some general comments and possible directions for future work.
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Chapter 1 

Algebras, H opf algebras and 

categories

Here we will give a brief introduction to the existing material on algebras, Hopf 

algebras and categories which we shall use later on.

1.1 Hopf algebra

D efin itio n  1 [36] An algebra (with unit)over a field K  is a vector space, A, together 

with two linear maps, a multiplication p, : A  (g> A —> A, and a unit map rj : K —> A 

such that the following diagrams commute:

A ®  A ®  A — ~ A ® A (1.1)

id<8>n

A  (8) A A

11



where the lower left and right maps are simply scalar multiplication.

An algebra A is a star or *-algebra if there is a conjugate linear operation a t-> a* 

from A to A so th a t (ab)* =  b*a* , 1* — 1 .

D e fin itio n  2 [36] A coalgebra is a vector space C together with two linear maps, 

comultiplication A : C  —» C  <8> C and counit e : C —> K , such that the following two 

diagrams commute.

The two upper maps in 1.4 are given by c I ® c and c —»• c C§> 1 for any c G C . C 

is cocomutative i f  t  o A  =  A ,  where r  is the twist map t (x  ® y) = y ® x.

C

c®c id(&A

c®c
A(

c ® c ® c

(1.3)

C ®  K (1.4)

c®c

D e fin itio n  3 [36] A K-vector space B is a bialgebra i f  (B,fi,r[) is an algebra, 

(B, A, 6) is a coalgebra and either of the equivalent conditions holds :

1) A  and e are algebra morphisms .

2) fj, and g are coalgebra morphisms .

This bialgebra structure is often denoted by (B, A , e, //, g) .
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D e fin itio n  4 [31] A H o p f  algebra H  is

1) A bialgebra H  , A , e , fi , 77 .

2) A map S  : H  —» H  ( the antipode )  such that ^ ( S h ^ h p )  — e(h) — 53 ^(1) ^ ( 2) 

/o r  all h € H  .

H ® H  — - - - •■> H  ® H  (1.5)
A ^

ff  — - s ------- » K  2—
\ A  Vy*

H ® H — »e + H & H
id ® S

Here A is the comultiplication of the bialgebra, // its multiplication, 77 its unit and e 

its counit.

P ro p o s it io n  5 [33] Let H  be a Hopf algebra with antipode S  . Then

1) S  is an anti-algebra morphism, that is S ( h K )  = S ( K) S ( h ) ,  all h, K  G H  and 

5(1) =  1.

2) S  is an anti-coalgebra morphism, that is A o S  = t o ( S ( $ S ) o A  and e o S  = e . 

Two Hopf algebras H , H'  are d u a lly  p a ire d  by a map (,) : H'  <g> H  —> K  if

(<fif, h) = ((f)® if, Ah ) , (1, h) =  e(h)

(A 0 , h ® g )  = (cf, hg) , e(</>) =  (0 , 1)

(S<f,h) = (cf,Sh)

for all (f , if G H'  and h,g  G H.  Here (,) extends to tensor product pairwise, i.e.

(0 <g> if, a 0  6) =  (0 , a) (7/ ,  6)

13



1.1.1 A ctions and coactions

The definition of an action of an algebra extends the idea of matrices acting on a 

vector space. The idea of coaction is then dual to an action.

D efinition 6 [31] A left action (or representation) of an algebra H  is a pair (a , V), 

where V  is a vector space and a is a linear map H  —> V, say a (h  8  v) = cth{v), 

such that OLgh(u) = ah{ot.g{v)), a ( l  8  v) =  v. Instead of constantly writing a, we 

often simply denote it by > (or simply by a period ).Thus, h > v = a n(v) E V,  

{hg) > v = h o  (g > v), l > v  = v .

[31] An algebra A  is an H-module algebra if A is a left H-module (i.e. H  acts on it

form the left ) and

h > (ab) =  2) >b), h > 1 =  e(h) 1.

and coalgebra C  is a left H-module coalgebra if

A (h t> c) =  ^  h(i) > C(2) 8  h{2 ) > C(2), e(h > c) = e(h)e(c).

E x a m p le  7 [31] The left regular action L of a bialgebra or Hopf algebra H  on itself

is L h(g) — hg, and makes H  into an H-module coalgebra.

P roo f:  For the complete proof of this example see [31]. □

D efinition 8 [31] A right coaction (or corepresentation) of a coalgebra H  is a pair 

{ft, V), where V  is a vector space and ft is a linear map V  —> V  8  H , such that 

{ft 8  id) o ft — {id 8  A) o ft and i d — {id®e) oft  .

14



We shall now define modules and comodules for an algebra A  and a coalgebra C  

respectively. We shall only consider the case where the modules and comodules are 

vector spaces over a field K, not some more general picture.

D e fin itio n  9 V  is a right module over the algebra A if  there is a linear map

<\ : V  ® A  — > V  

which is an action, i.e. (v < a) < b = v < (ab).

Similarly V  is a left module over the algebra A if there is a linear map

t > - . A ® V — * V  

which is an action, i.e. a\>(b>v) = (ab)>v.

For a unital algebra we shall assume th a t 1 > v =  v and v < 1 =  v.

D e fin itio n  10 V  is a right comodule over the coalgebra C i f  there is a linear map

q : V  — v V  &) C

which is a coaction, i.e. (g 0  id)g =  (id 0  A )g.

V  is a left comodule over the coalgebra C  if there is a linear map

\ : V

which is a coaction, i.e. (id 0  A)A =  (A 0  id)A.

15



We shall assume th a t the counit coactions as the identity, i.e. (id <8> e)g = id  and

(e (8) id) X = id

E x a m p le  11 [31] The right regular coaction of a bialgebra or Hopf algebra H  on 

itself is given by the coproduct of R  = A : H  —»■ H  8  H , and makes H into H  

-comodule algebra.

P r o o f  : For the complete proof of this example see [31]. □

The following definition comes in different left-right forms, we only give the one we 

will use later.

D e fin itio n  12 A (right- right ) Yetter-Drinfeld module V for a Hopf algebra H

has a right coaction g : V —> V  8  H  (written v >—>• ^ 0] 8  v ^ )  and a right action

< : V  8  H  —> V  for which

p(v <3 h) = 77[o] <3 h{2 ) 8> 5,(fyi))y[i]h(3), V r G V, V/i G / /

P ro p o s it io n  13 In the category of Yetter-Drinfeld modules see ([31], with module

and comodule maps as morphism ) there is a braiding

'Ii : V  & W  -> W  (3 V

* ( v  8> w)  =  ?̂ [0] 8) v <1 W[i]

I f  S  invertible, there is an inverse fy~l (w 8  v) =  v <1 S ~ l (w[i]) 8  ^[o]

16



1.1.2 Star algebras and coalgebras

If A is a * algebra , then there is a conjugate-linar operator a h-» a* and (ab)* = b*a

D e fin itio n  14 [31] A Hopf *-algebra is a *-algebra H  which also a Hopf algebra 

such that

A H* = (Ah)*®*, e(h*) =  7(k), (S  o *)2 -  id.

If A, H  are two *-Hopf algebra, they are dually paired if they are dually paired as 

Hopf algebra and, in addition,

(d>\h) =  (cf>,(Shy)

for all h G H  and 4> G A.  If we take nodules over a star algebra, it makes sense to 

consider their conjugate modules. We begin with the case of a vector space.

If E is vector space, then its conjugate E  is defined to be E  as a set, bu t with vector 

space operators ( using e G E  to denote the element e )

e +  /  =  e +  /

ae = a*e , q g C

If E  is an A-bimodule, then the conjugate bimodule E  is E  as a vector space, and 

has actions

a.e =  e.a*, e.a -- a*.e

There is a bimodule map

T  : E  (3) A F  — > F  (Xu E

17



given by

T  (e <S> / )  =  / ® e .

1.2 Categories

D e fin itio n  15 [24] A Category C consists

1) of a class Ob (C ) whose elements are called the objects of the category,

2) of a class Hom(C) whose elements are called the morphisms of the category , and

3) of maps

identity id : Ob(C) —> Hom(C) ,

source s : Hom(C)  -» 06(C ),

target b : Hom (C)  -* 06(C ),

composition o : Hom(C)  x ob Hom(C)  —» 06(C ),

such that

a) for any object V  G 06(C ), we have s(idv) =  6(idv) =  V,

b) for any morphism f  G Hom(C) ,  we have idb̂  o f  = f  o idS(f) = f

c) for any morphisms f, g, h satisfying 6( /)  =  s(g) and b(g) =  s(h), we have (h o

g)  o f  =  h o  { g o  f ) .

Here Hom(C)  x ob Hom(C)  is { (# ,/)  G Hom(C) x Hom(C)\b(S)  =  s(T)}

E x a m p le  16 Vector spaces (object ) and linear maps (morphism) V  A  W  where a  

is a linear map from V to W

A subcategory C  of a category D  consists of a subclass 06(C ) of 0 6 (0 )  and of a 

subclass Hom(C)  of Hom(D)  which form a category with the identity, source, target 

and composition map in D.

18



D e fin itio n  IT  [24] A functor F  : C  —» C' from the category C  to the category C' 

consists of map F  : Ob(C) —> Ob(C') and of a map F  : Hom(C)  —> Hom(C') such 

that

a) for any object V  G Ob(C),  we have F{idv) = idj^v),

b) for  any morphism f  G Hom{C) ,  we have

s (F( f ) )  = F(s( f ) )  and b(F{f))  = F(b(f )) ,

c) if  f , 9  are composable morphisms in the category C, we have

n g o f )  = F ( g ) o F( f ) .

E x a m p le  18 As an example of functor, consider a functor V  from the category of 

finite sets (with functions as morphisms) to finite 2. dimensional vector space (with 

linear maps). Let V( x)  be the vector space with basis labelled by elements of x, so 

V({a,  6}) is the vector space with basis a and b. So 4a — 36 is an element o fV({a ,  b}). 

A functor f  : x  —»• y in finite sets gives a linear map

V{ f )  : V(x)  -> V(y)

v  ( f ) ( F ax%} =
xex

e.g. f  : {a, 6} — > {p, q, r} and f (a)  =  p , f (b)  = q.

Then V( f ) ( 4a  — 3b) — 4p — 3q.

D e fin itio n  19 [24] Let F  , G be functors from the category C  to the category C ' . A 

natural transformation 77 from F  to G we write rj : F  —>■ G is a family of morphisms 

7](V) : F( V)  —> G{V) in C' indexed by the objects V  of C such that, for  any morphism

19



F  : V  -» W  in C,  the square

F(V)  - ”(v> > C(K) ( 1.6)

F(/) C(/)

commutes.

tj(V)  is an isomorphism of C'  for any object V  in C , we say T hat 77 : F  —» G is a 

natural isomorphism.

Let C  be a category and 0  be a functor from C  x C to C. This means tha t

a) we have an object V  g W  associated to any pair (V, W) of object of the category,

b) we have a morphism /  £>3 g associated to any pair ( /, g) of morphisms of C  such 

th a t s ( f  ®g)  = s( f )  g s(g) and b(f  g g) =  b(f )  g 6(#),

c) if / '  and are morphisms such th a t s ( f )  — b(f)  and s(g') =  b(g), then

( / '  ® g' ) ( f  ®g)  = ( / '  o f ) ®  {g' o #), (1.7)

d) and i d y t g w  ~  i d y  g i d y / .

Relation (1.7) implies th a t f ® g  = {f  ®idb̂g))o(ids^ ® g )  =  {idb̂ ) ® g ) o { f ® i d s{g)). 

Any functor g \ C x C —> C obeying these conditions will be called a tensor 

product .

D efinition 20 [31] A monoidal category (or tensor category) is (C, g, 1, <L,/, r), 

where C  is a category and g : C  x C  —» C is a functor which is associative in 

the sense that there is a natural equivalence <f> : (g)g —» g(g), i.e. there are given

20



functorial isomorphisms

$v,w,z : (V  ® W )  <g> Z 9* V  <8 [W  <8 Z \  W , W , Z  e C

obeying the pentagon condition in (1.8). In many cases $ ((V  <8 W )  <8 Z) = V  (8 

(W  (8 Z), and in these cases the category can be called “ trivially associated” or 

(<strictly monoidal”, and $  is often ommitted. We shall only be concered which such 

cases. We also require a unit object 1 and natural equivalences between the functors 

()  x h  100( )  and the identity functor C  —» C , i.e. there should be given functorial 

isomorphisms lv : V  = V  (8 1 and r y  : V  =  1 0  V  obeying (1.9).

(V ® W ) ® ( Z ® U ) ( 1 .8 )

( (V ® W)  ® Z)  ® u
<£<g>id

( V  ® ( W ® Z) )  0 u V{{®W  <8> Z)  ® U)

(K ®  1) V  ® (1 ® W ) (1.9)

V

1.3 A braided category

The function V <8>op W  is defined in terms of 0  by V  8 op W  =  W  8  V .

D e fin itio n  21 [31] A braided m onoidal or quasitensor category (C, 8, * )  is a
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monoidal category (C, <8>) which is commutative in the sense that is a natural equiv­

alence between the two functors : C x C  -» C , i.e. there are given functorial

isomorphisms

y v<w : V ® W W <g> V, W , W e C,

obeying the hexagon conditions in the following diagram :

V ® ( W ® Z )
i d ® ' ! ' < J >_1

V ® ( Z ® W )  

( V ® Z ) ® W

( V ® W ) ® Z

Z ® ( V ®  W)

<1
( Z ® V ) ®  w  

(V  ® W)  ® z
4> \ ^ ^ S i d

V ® ( W  ®Z)

( W ® Z ) ® V

(W ® V ) ® Z  

$ 

W ® ( V ® Z )

( 1.10)

( 1. 11)

W ® ( Z® V)

If we omit $  ( we have already stated  that we are only interested in the trivially 

associative case )

^v®wtz  — (^v,z ® id)(id ® $ w tz),  ^v,w®,z — {id ® *1fv,z){^v,w ® id)
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It is not necessarily true that. 'I' =  'I '-1 , but if it does we call the monoidal category 

symmetric.

Simple exam ple: vector spaces form a braided category in which the braiding is 

just transposition, i.e.

V ( V ® W )  = W ® V .

There is a diagram m atic notation often used for monoidal category, for example see 

[31] ,[24]. The tensor product is w ritten by placing names next to each other, and 

the identity map by unbroken lines. So

V

V

W

w

(1.12)

denotes the identity from V <S> W  to V  0  W .

If we have a map T  : V  —> £/, then T<S>id:V<S>W^U<S)W  would be writing

©

u w

Figure 1.1

Now for a pair {V,W)  we can denote and its inverse respectively by

figure 1.2.

One of the hexagon conditions can be represented by the following diagram (see 

figure 1.3)
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\
Vw wV

Figure 1.2

V W Z V w z

/
Z  V  W  Z  V  w

Figure 1.3

As a consequence we have the braid relation, represented by the following diagram

V  W  Z  V  w  z

Z  w  V  Z  W  V

Figure 1.4

1.3.1 Vector bundles

We begin by a general definition. A submersion /  : E  —> B  is a differentiable map 

so tha t, for all e G E,  and all vector x  at e, the set }'{e\x)  at f ( x )  span all of the 

tangent space at /(e ) .
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D e fin itio n  22 [27] Let B  be a smooth manifold. A manifold E  together with a 

smooth submersion n : E  —» B, onto B , is called a vector  bundle o f  rank k over 

B  if  the following holds:

1) there is a k-dimensional vector space V  , called typical fibre of E, such that for  

any point p E B  the fibre Ep = 7r~l (p) of n over p is a vector space isomorphic to V

2)any point p E B has a neighbourhood U , such that there is a diffeomorphism

7r—1 (£ /)----------- ^ ----------- - U x V  (1.13)

U

and the diagram commutes, which means that every fibre Ep is mapped to p x V . $u  

is called a local trivialization of E  over U and U is a trivializing neighbourhood for  

E.

3) $ ij\ep : E p —» V  is an isomorphism of vector spaces.

B  is called the base and E  the total space of this vector bundle, n : E  B  is a real 

or complex vector bundle corresponding to the typical fibre being a real or complex 

vector space.

E x a m p le  23 [22] (1) The product or trivial bundle E  = B x ] Rn with p the projection 

onto the first factor.

(2) The tangent bundle of the unit sphere S n in R n+1 ; a vector bundle p : E  —» S n 

where E  =  {(x,v) E S n x Rn+1|x _L u} and we think of v as a tangent vector to S n 

by translating it so that its tail is at the head of x, on S n. The map p : E  —>• S n 

sends (x, v) to x.

D e fin itio n  24 [27] Any smooth map s : B  —> E  such that n o  s = idu is called a
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section of E . I f  s is only defined over a neighbourhood in B  it is called a local section

We denote the sections of the vector bundle it : E  —> B  by TE,  then T E  is a bimodule 

over C ( B ), the continuous functors on B,  given by the

(/•«)(*) = f(b)s(b)

for /  E C(B)  and s E TE.  (In the commutative case we can set f . s  = s . f , but in 

the noncommutative case we will need separate left and right actions.)

The K -theory of a topological space X  is formed by taking an abelian group K q(X)  

generated from the vector bundles on X ,  up to equivalence [8], with group operation 

direct sum.

An element of K 0(X)  is given by E  -  F, where E  and F  are vector bundles, and 

E  — F  is the “formal” difference of bundles. This is done so th a t we have inverses 

for the abelian group.

1.3.2 Tensor product of vector bundles

Let V  and W  be any two vector spaces over a field K.Then V  <8> W  is the space of 

objects

v\ +  v 2 <8> w 2 + ............+  Vk <8> Wk

where

v t E V, u \  E W  

and with the following bilinear relations

a i (v i  (8) w)  +  a2{v2 0$ w) — (aiVi +  a2v2) &> w
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and

a\{v 8  W\) +  a2{v (8) w2) =  v 8  (e^itfi +  a2w2)

where at e K  , v , v l e  V  and w , w t £ W  [?].

If we have two vector bundles over X , their tensor product is given locally by (for 

an open subset of X ,  U and V, W  are vector spaces)

(17 x V)  8  (U x W )  = U x (V 8  W),

we have the picture in figure 1.5

u x  v u x  w u X ( V <g> w )

<8>

u u u

Figure 1.5

so if s : U —> V  and t : U —> W  give sections of the two bundles, then

(s 8  t)(u) =  s(u) 8  t(u)
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gives a section of the tensor product bundle. 

If /  : U —» R is any function, then

((s . f ) ® t ) ( u ) =  s (u) f (u)  ®t (u)  

=  s(u) ® f (u) t{u)  

= (s ® f . t ) ( u ),

so

s . /  = s ®  f . t  (1-14)

for any real function / .

1.3.3 Tensor product of modules

The tensor product &a over an algebra A is defined as follows. If R  is a right A- 

module, and L  is a lift A-module, then R <8>a L is the usual vector space. Tensor 

product R<S> L, with the additional relation

r < i a ® l  = r<gia>l

For a vector bundle E  over X , we have seen th a t the sections TE  of E  is a C{X)  

module.

Then we want T( E 00 F)  to be given in terms of T(E)  and T(F).  But T(E)  00 T(F)  

is too big. We use equation 1.14 to see th a t we should have

T(E) <8>c(x) r(F) .
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This is designed to follow the equation 1.14, i.e. so th a t for vector bundles E  and F  

over X

T( E®F)  = r(E) ^ C(x)T(F)

If R  and L  are bimodules, then R  <8>a L is also a bimodule, with

a t> (r <g> /) =  (a t> r) ® /

(r (g> /) < a =  r <8> (/ < a).

1.4 The Hopf flbration

The group SU 2 acts on C2 by m atrix multiplication :

hi) \
(1.15)

If we consider non zero vectors in C 2, there is a map to the Riemann sphere =  

C U {00} given by

u \  u

w w
Where if z ^  0 we get — G C, and if z =  0 we set — =  00 (see figure 1.6).

2 2
This is the same as the construction of the projective space P XC. Then SU 2 acts on 

projective space using 1.15 by putting u =  2 and v = 1 to get 2 G mapping to

au +  bv az-\-b
cu +  dv cz + d

au +  bv

cu +  dv
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OQ

/ p l a n e  /    ̂ f  \

° Aadd oo0

Figure 1.6

This is a Mobius transformation.

Now consider all the matrices A G SU2 for which >4(0) =  0 £ Cc 

0)
0a + b b
0c +  d d

then we have b = 0 , so

But A £ SU2, so A A* — I2

a 0 \ / a* c* \ j  aa* ac*

c d J  y 0 d* J  y ca* cc* +  dd*

so, aa* =  1, and c =  0, and dd* =  1 since detA — ad =  1, d == f .

So the subgroup of points which fix 0 £ is

a 0
T  = I I where \a\ = 1.

0 i

. (the stabiliser of
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We have a fibration SU 2 — > Cqo sending A  to -<4(0) with fiber T. This is the Hopf 

fibration.

Note th a t topologically T  is a circle S'1, SU 2 is S3 and is S 2, so we get a fibration 

S 3 — > S2, with fiber S 1.

1.5 Fiber bundles

D efinition 25 [27] A fibre bundle is a collection ( E , B , F ,  n), where E , B , F  are 

topological spaces and 7t : E  B  is continuous surjection. E  called total space, B  

called base space and F  is fibre and 7r is the projection map (or bundle projection). 

The fibers of the m,a,p are the part 0/M 2 which are mapped to the same point o/M.

Exam ple 26 We can have E  = M2 and B  =  M, with n(x , y )  = x. Then the fiber at 

a point x E M is {(x, y)\y E M}, so F  =  M. See figure 1.7.

Exam ple 27 S 1 x S 1 1— > S 1 given by (x,y)  1— ► x. Note that S 1 x S 1 is torus.

( X , y  )

x

Figure 1.7

These example 26 and 27 are both trivial fiber bundles, where E  = B  x F. We will 

now give some non trivial examples.
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E xam ple 28 The Mobius bundle.

Take a strip of paper, and glue the ends together two different ways, see figuer 1.8.

M o b i u s  b u n d l e  __________________► s '

Figure 1.8

Now map the resulting spaces to the S 1 factor. The first glueing gives the trivial 

bundle, [0. 1] x S 1 — > S ] (see figure 1.9), The second gives a noil-trivial bundle, the

Figure 1.9

Mobius bundle, which is pictured in figurel.10

E xam ple 29 The Hopf fibration. This is a bundle S 3 —» S 2, with fiber S 1.
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twist

circle

Figure 1.10

For these last two examples, the fibration is locally trivial, i.e. B - U U V  a union of 

two open sets, (in general we can have more than two), where the part of E  mapping 

to U is of the form U x F , and the part of E  mapping to V is of the form V  x F.  

Figure 1.11 shows the two subsets which can be glued together to from either [0,1] x 

S 1] on the Mobius band.

Figure 1.11

1.6 E xact sequences and flat m odules

The maps of vector spaces
S’ TV w - U  u
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is “exact a t W  ” if the kernel of T  : W  — > U is equal to the image of S  : V  — > W. 

For example

given by

T

S

' x '

y

\  z  J

X

= x - y

\ z  J
is exact.

A sequence of linear maps

V, v2 XL, v/3 v-„_, '^ 4  Vn

is exact if it is exact at every entry with an incoming and an outcoming arrow i.e. 

exact at V2 and V3 and . . . .  and Kl_i.

Note this sequnce may be infinite “A short exact sequence” is one of the form

0 — > VI v2 Xh, v3 — ► o

More general, we can make exactly the same definition for modules over an algebra 

A, and A-module maps.

We have the following definition (modified to include left and right) see [G] [12] [25].
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D e fin itio n  30 A right A-module E  is flat i f  every short exact sequence of left A- 

modules

0 — > L — > M  — > N  — >0

gives an exact sequence

0 — > E  ®A L — > E ® a M  — > E ® a N  — > 0.

Likewise, if  E  is a left A-module, it is called flat if  for  every short exact sequnce of 

right A-modules

0 — > L — > M  — > N  — >— > 0 

we have a short exact sequence

0 — > L ( $ a E  — > M  (S)A E  — > N  ®A E  — > 0.

L em m a  31 Give two exact sequences

0 — >U - ^ V  - ^ - W  — > 0

0 — > U - ^ V  X  — >0

There is an isomorphism h : \V  — > X  given by h(w)  =  g(y),  where f ( v )  = w. 

Proof: We need to check that two choices v ,v '  G V  with f ( v )  =  f{v' )  =  w give

g(v) = g(v'). I f  f ( v )  = f{y' ) ,  then v — v' G k e r f  — im  t . But ker g = im t also, so

g{v) = g{v').

To see that h is 1-1 (injective), suppose h(w)  =  0. Then g(u) = 0, so v G kerg  =  

k e r f , so f ( v )  =  0 = w, so w = 0 .
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To see that h is onto, for  every x  £ X  there is a v G V with g(v ) =  x. Now set 

w = f (v ) ,  and h(w)  =  x. Then h is an isomorphism. □

1.7 Finitely generated projective modules

For a left A module E, define E° = a H o m ( E , A) i.e. the left module maps from E  

to A. If £7 is also a bimodule, then E° is a bimodule, with the following actions of 

A (a e A, e e  E,  a  € E°)

(a.a)(e) = a(e.a),

(a.a)(e) = a(e).a

D efin itio n  32 E  is finitely generated projective as a left A module if there are 

e1 • • • en G E  and e\ • • • en 6 E° (this is called a dual basis ), so that for all e E E,

e = Y l e^ - el-
i

If E  is also a bimodule, we can write the evaluation and coevaluation maps

ev : E  E° — > A , e®  a \— > a (e )

coev : A  — > E° <S>a E, a i— ► a.e, 0  e%

P ro p o s it io n  33 The matrix = ev(el 0  ef) — ej(el) obeys P 2 = P  (it is an
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idempotent).

Proof:

X  PijPjk = ' ^ e j (e ' )ek (e3)
i j

using the fact that ek is a left module map [a.a(e) = a(a.e)\, this is

X P v P i k  =  ' ^ 2 e k ( e j ( e ' ) e J ) .
3 3

and by the dual basis property,

r ,  PijPjk = ek(el) = Pik,
3
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Chapter 2

Differential calculi and covariant 

derivatives

Begining with the work by Connes [13] and Woronwicz [46], there has been consider­

able interest in applying the methods of differential geometry to algebras. There has 

also been interest from the point of view of mathematical physics[34], as differential 

geometry is used to describe space - time, but quantum theory seems to force non 

com m utativity on space time, at least at very small distances (the “Planck length”).

2.1 Differential calculi on algebras

First consider the differential calculis on Rn. Given coordinate functions x \ , ........, x n)

we have 1-forms Si^x i> where fi : IRn -» R is a smooth function.

The smooth functions are those which can be differentiated arbitrarily many times . 

For example f ( x )  = x\x\ from R to R  can be differentiated once, but not twice, so it 

is not smooth.
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A 2-form is of type f i jdxi  A d x j , where f y  is a smooth function, etc.

The n forms n n form a differential graded algebra, i.e. we have

A : ® — > n n+m

d : — ► ftn+1

with the following properties.

1) For £ G ST and 77 G f2m, then £ A 77 =  (—l ) rmr) A f  ( graded commutativity)

2)H° =  C°°(lRn).

3)d(£ A rj) = d£ A 77 +  (—l) r£ A dr] (signed derivation property) .

4) d2 =  0 5) For Rn we define A to be bilinear and d to be linear, and

( / d.xix A  A dx ir) A (g dxh  A ....A dxjm) = f  g dxu A .... A dxir A d x n A  A
 ̂fd ( /  A .... A dxlr) =  —— d x k / \ d x i } A  A d x ir.

ox  k

If we replace C°°(IRn), the smooth functions on Rn, by a noncommutative algebra A, 

we slightly modify the definition of QnA.

D efin itio n  34 A differential graded algebra consists vector spaces VtnA with opera­

tors A and d so that

1) A : Vtr A ®  Vlm A  — > t tr+mA is associative (we do not assume any graded commu­

tative property)

2) S7°A — A (this is really just notation )

3) d : VTA —> fT +1A with d2 = 0

4) d(£ A rj) =  A r) +  (—l ) r£ A dg for  f  G ST A

5) U M a H M  =  ftn+1A .

6) A.dA = f t1 A
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Note that many differential graded algebras do not obey (5), but those in classical 

differential geometry do, and it will be true in all our examples. Also aspecial case 

of A : Q°A U M  = A ®  QnA  —> Q M

If A  is a star algebra, we can suppose that the star operation extends to QnA, so 

th a t

(.a.db)* =  db*.a*

W  = d ( c )

(£ A 77)* =  (-1)I€IIV  A C  

N o te : We will often use |£| for the degree of £, if £ G fTM, then |£| =  n.

2.2 Differential calculi on Hopf algebras

The Hopf algebra H  has a left coaction on itself by A : H  — >• H & H. A 1-form in 

Q1/ /  should be w ritten as a sum of h.dg for h.g  G H. We would like this to give a 

left coaction of H  on Q} H  by

h.dg i— > h{1)g{l) ® h{2).dg{2) (2.1)

However there are, in general, relations between the h.dg s, i.e. sums of these which 

give zero. It is necessary th a t these sums get sent to zero under ®, and this is a 

non-trivial condition. We shall assume that this left coaction is well defined, i.e. 

th a t we have a left covariant calculus. In this case, we can look at the left invariant 

1-forms L l H , ie for those r\ G Cl1 H  for which

771— > 1H ® 77.
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We use £ i— > 0  £[o] for the left coaction

There are lots of forms in L l H , as for any £ G we have

S ft- ilK p ] G L1//.

to see this, we do the following calculation : Applying the left coaction to 5(£[_i])£[o] 

gives

S(£[-]])(1)£[0][-]] ® *S'(£[_i])(2)£[o][o] (2-2)

as S  reverses the coproduct, this gives

*S'(£[-i](2 ))£[o][-i] ®  *s '(C[-i](i))€[o][o] 

as we have a left coaction, we write P  = Q in figure 2.1, or

£[-l](l) 0  £[-l](2) ® £[0][-l] ® £[0][0] =  £[-l](l) ® £[-l](2)(l) ® £[-]](2)(2) ® £[0] (2 -3)

Then, applying S  to the second term  of 2.3 and multiplying the second and third 

terms together,

£[-i](i) ®  5 (£ [_ i] (2))£[o][-i] ®  £[0][0] =  £[-i](i)  ®  5 ,(£[-i](2)(i))£[-i](2)(2) ®  £[o] 

but as S {h{1))hi2) = e (h ).l//, we get

£[-i](i)  <8> 5 (£[_ i ](2))£[o] [ - i ] £[o][o] =  £[-i](i)  8) e(£[_i](2) ) l / /  0  £[0]-
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Ml1-1] [0]

Figure 2.1 

But now, using h(i)e(/i(2)) — h, we get

£[-l](l) ® *S'(£[-1](2))£[0][-1] f[0][0] =  £[-1] ® Iff ® f[0].

Now 2.2 gives 1// 0  5'(f[_i])£[0] as required,

Note th a t £[_2]S'(£[_1])£[0] =  £, as we have

£[_2]S(£[-l])f[0] =  £[-l](l)S(£[-l](2))£[0]

=  e(S[-i])f[o]

=  «

and also £[_2]5(£[-i])£[0] =  £[-i]£(£[o][-i])£[o][o] € H . L l H  as S'(f[o][-i])f[o][o] £ L l H . 

This proves the following proposition :

P ro p o s it io n  35 Ql H  =  H . L l H.
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If we take L lH  to be the left invariant 1-form on the Hopf algebra H , we can give a 

right coaction by

£ < h  = S ( h {l)) . ( .h{2)

If the differential calculus is also right covariant, this right action and coaction make 

a Yetter-Drinfeld module. There is map w  : H  — > L l H  given by

w(h)  =  S(/i(i))d/i(2). (2.4)

By right covariant, we mean tha t

h.dg i— > h {l).dg{]) <8 h(2 )9 (2 )

extends to a well defined coaction on Q]H.  In Woronowicz’s paper on differential 

calculus on Hopf algebra [46] proposition(3.1) defines a braiding (we use ^  instead 

of a ) with T(cj ® 77) — g if 77 is right invariant and to is left invariant 

This is just the braiding in proposition 13 .

Woronowicz then defines the symmetric tensor product S 2 =  ker(id — 4/) : —>

Ql ® 1 and the 2-forms as

2 f i1/ /  8,4 Q}H
a H  =  — ^ —

2.3 Example: The function algebra of a finite group

To represent G, a finite group, we need to use the Hopf algebra C(G),  using 5X as a 

basis for x  G G (the function taking value 1 a t 1 and zero elsewhere). This has the
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following operations which make it into a Hopf algebra.

f ix- f i y  — f t x , y ’&X) Sy & Sz, 1 — y y  5X, e(5x) — JX)e, S(SX) —

y , z e G : y z —x x e G

Here e E G represents the identity element, and 5x ŷ represents the Kroneker delta. 

For /  E C(G),  it will be convenient to define the right translation Rg(f )  E C(G)  by 

R g( f ) (x )  = f ( x g ) so th a t R g(Sx) = 5xg- 1. The star operation on C(G)  is given by

*5X = Sx

We give C(G)  a differential calculus as the following [34]: Here C  is a subset of G, 

but does not include the identity. Then take the left invariant 1-forms to have basis 

£c for c E C.  The bimodule commutation relations and the exterior derivative are

e . f  = ( R c f ) . e ,  df =  -  m c (2.5)
c £ C

We can invert this to give

f c =  Y ^ 5uc-'-ddu.
XlE.(jr

The calculus is bicovariant only when C  is Ad-stable (i.e. 

x  E G). The right action and the right coaction induced 

case) (see section 2.2) are given by

= A Re  = ' £ , ? JC,r' ® sy'  =  (2.7)
y e a

(2 .6)

<7 e C ^  xgx~l E C  for all 

braiding(in the bicovariant
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We also have see (2.4)

w(Sg) = S(6x)d(6y) = £ (< 5 g,c -  S9,e) . e
x y ~ g  c e C

Thus w  has kernel with basis consisting of the elements ^2ceC Sc 4- Se and Sg for 

, 9 € G \ ( C U { e } ) .

If C  is closed under inverse, we define £a* =  — Then we have (df)* = d f , as

(dsxy  = =  £ > x C- < y . . r 1 =  dsx = dd*.
c e C  c e C  c e C

A basis of A1C(G))° is given by £c for c £  C, where we define eu(£° <8>fc) — $c,a• The 

action and coaction are represented by standard results on the dual Yetter-Drinfeld 

modules as

^ ^a.6-1£a? ^/?(£a) ^   ̂£gag~ 1 ® ĝ*
9

Further were the calculus is inner when 0 =  Y la tc  *n the sense th a t d is given by 

a graded com m utator d = [0, —]. Then the exterior derivative on 1-forms is given by

d ic = E  (£“ A ^ A ? )  -  E  < w °  A (2-8)
b , a e C  b,a&C

2.4 Left covariant derivative

Historically covariant derivatives arose from trying to differential vector fields in 

differential geometry. E.g. suppose tha t we have the vector field of wind velocity on 

the earth. How to differentiate V ( X )  in a direction at x l  If we take a coordinate 

patch, a subset of Rn, then we could take the partial derivative with respect to these
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Figure 2.2

Figure 2.3

coordinates (as figure 2.2 and 2.3) to get

dv,
■ (2-9)Ox,

However this is not well behaved on changing to different coordinates! The fix was 

to add Christoffel symbols to the formula 2.9, giving the idea of covariant derivative. 

We write VwV’ to be the derivative of V  in the direction of the vector W .
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Since we are dealing mostly with forms rather than vector fields, it will be convenient 

to write the covariant derivative using forms. We write

S7WV  =  ( W ® i d ) V V

where W  =  £ 0  K  E ” Vector fields” and

(H /0 z d )(£ ®  K)  =  W (£).K .

Here we use the fact th a t vector fields are dual to forms to define W (f).

Using coordinates Ve =  dxl ® V ze where V*e in the covariant derivative in the x l 

direction.

In more generality we get the following definition for a left A-module E.

D efin itio n  36 [4] Given a left A-module E , a left A-covariant derivative is a map 

V : E  -» Q}A E  which obeys the condition V (a.e) =  da ® e +  a.Ve for all e £ E  

and a e  A

This is called the left Liebnitz rule.

D e fin itio n  37 [4] The torsion of a left A-covariant derivative V on is the left

A-module map Tor  =  AV — d : D M  -* Cl2A  .

That it is a left module map follows easily from the definition of a covariant derivative 

Tor(a. f )  =  A(a.V£) +  A (da ® f) — a.d£ +  da A £ =  a.Tor(f)  

for all £ G Q1A and a G A  .
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2.5 The curvature

Curvature measure how “bent” the surface or manifold is purely by making mea­

surements within it.

The standard measure of curvature. This can be given in terms of forms by the 

following calculation. Let A be an algebra and E  be an A-module. A covariant 

derivative on E  is

V : E  — > D1 A ®A E

obeying V(a.e) =  da 0  e +  a.Ve for all a £ A and e E E.

Define the curvature

R \  E  — >tl2A ® A E

by using

V [l1 : El1 A ®a E  — > n2A ®A E

V ^ (£  (ri e) = dt; (A e -  £ A Ve.

P ro p o s it io n  38 [4] The curvature of a left A-covariant derivative V is defined by 

R  = (d id — id A V) V : E  — > El2A E  

and is a left A-module map .
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proof: To proof th a t this is well defined on £.a 0  e =  £ 0  a.e ,

(£.a 0  e) =  d(£.a) 0  e — £ A aVe

=  d£.a 0 e  — (  A <ia 0  e -  £ A aVe

=  d£ 0  a.e — £ A (da 0  e +  a.Ve)

=  d£ 0  a.e — £ A V(a.e)

=  V ^ ( £ 0 a .e ) .

Thus =  V ^ V  : E  — > 0 ^  E. is a left module map.

2.6 Bim odule covariant derivative

In classical differential geometry much use is mode of tensoring bundles together.

To have a working ideal of covariant derivative, we use the following idea, which was 

introduced by [16] [17] [20] [30] [37]

D efin itio n  39 A bimodule covariant derivative on an A-bimodule E  is a triple (E, V, cr), 

where V : E  -> Ql A  0 ^ E  is a left A-covariant derivative, and a : E  0 ^ fi}A —>

Q} A  0,4 E  is a bimodule map obeying

V(e.a) =  V (e).a +  a(e 0  da), \ / e ^ E , a ^ A

The reason for making this definition tha t we can apply V to tensor products .

P ro p o s it io n  40 [10][18] Given ( E , V e ,&e ) & bimodule covariant derivative on the 

bimodule E  and V f  a, left covariant derivative on the left module F, there is a left
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A-covariant derivative on E  <S>a E  given by

V e®f — V # <S> idp +  [op 0  idp)(idp 0  V  p)

Further i f  F  is also an A-bimodule with a bimodule covariant derivative (V p , a p ), 

then there is a bimodule covariant derivative (Vp%Ap, cte®af ) on E  (S>a F  with

&e®f =  (&e 0 id)(id 0 op)

P ro p o s it io n  41 [4] The torsion of a bimodule covariant derivative (fiM , V,cr) zs a 

bimodule map if  and only if

image(id  +  a) C Ker(f \  : QlA  —> Q,2A).

We say in this case that V is torsion-compatible .

D e fin itio n  42 [4j The category aSa consists of objects A-bimodule covariant deriva­

tives (E,V,cr)  where o : E  Ql A —> iV A 0^ E is invertible . The morphisms are

bimodule maps 6 : E  —> F  which are preserved by the covariant derivatives , i.e.

V o  0 = (i d®  0)V : E  —> QlA ®a F.

Then proposition(40) makes a&a into a monoidal category . The identity for the 

tensor product is the bimodule A with V  A = d : A  -» t t1 A <S>a A = H1 A ,and a a the 

is identity map A  0 ^  to Q} A <S>a A where both sides are identified with Q} A

T h e o re m  43 [4] Suppose that A  is a star algebra which has a differential structure 

(ftM , d) so that Q}A is a star object and *d =  d* : A —> i l 1 A . Then a&a described
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in definition (42 ) is a bar category (see [3]) with (E, V#, cr^) =  (E, V ^, opf) given 

by

V ^(e) =  (*_1 ®id)Ta-ElV  E(e),

=  (*-1 0  zd)Tcr^1T -1(zd (8) *).

If E  itself has a star operation * : E  —» E,  then the covariant derivative is said to be 

star compatible if (see [4])

cte = (*_1 0  *_1) Ycr^1 Y -1 (* 0  *).

2.7 Hermitian structures and Riemannian geom­

etry

On the surface of the earth there is an idea of length. But this idea of length seems 

to depend on the coordinates taken. For example sailors measure position in latitude 

and longitude.

One degree of longitude at the equator has a greater length than near the poles. To 

allow for this variation in length with coordinates we define a Riemannian metric to 

be an inner product

(, ) : Tangent space 0  Tangent space — > R 

d
where the coordinate directions X a = —— have ( X a, Xf )  — ga and gab is a function

o x a
on the space.

1) This is non degenerate, i.e. for every X  7̂  0 in the Tangent space there is a Y  so 

tha t (X , Y)  7̂  0.
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S pole

Figure 2.4

2) It is positive, for every A" ^  0 we have (X,  X)  > 0.

3) It is symmetric, ie ( X, Y)  =  (Y. X)  .

We can use the nondegeneracy rule to get an inner product on the 1-forms, and this 

is what we will use in noncommutativc geometry. As our forms will be complex 

valued, we replace the symmetry rule by

(Cv)  = (??•£)* •

Here f  e  1H/4, see subsection 1.1.2.

Finally, the inner product of two 1-forms gives a function as we vary the point where 

the product takes place.

We get

(. ) : U1A ® a W A  — > A,
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where A  is the smooth functions on the space.

This is similar to the definition of a Hilbert C* module [26], but we not require the 

completeness or the norms.

In general a Hermitian structure on a bimodule E  will be taken to be

(, ) : E  ®A ~E — > A

with the properties

1) ( e J )  =  (/.e>*.

2 ) (, ) is nondegenerate1.

In the case where A  is a c* algebra, we normally have a positivity condition

3)e 7̂  0 ==> (e, e) > 0.

T The easiest way to explain non-degeneracy is to say th a t there is an invertible 

bimodule map G : E  — > E°, where E° = AHom(E,  A),  i.e. the left module maps 

from E  to A,  and tha t

(, ) =  evaluation (id 0  G) : E  <S>a E  — > A.

Here 0  G a H otu (E, F) (the left module maps) between E  and F  obey

0(a  > e) =  a t> 0(e)

A  is a A-module by using multiplication, a\>b = ab. The pairing between E° and E  

can be written

evaluation  : E  <g> E° — > A  e ® a  =  a(e).
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Note th a t we can correspondingly define E' = H o m ^iE , A) (the right module maps 

from E to A) and in th a t case we get an evaluation

evaluation : E' Cg> E  — > A.

E° is always a right A-module, with

eval(e (g> a  <3 a) =  eval(e ® a).a  

Also, if E  is a bimodule, then E° also has a left A-action by

eval(e (g> a > a) =  eval(e <\a ® a)

and then we can write

eval : E  E° —  ̂ A.

For finitely generated projective modules (see section 1.7) we also have

coevaluation : A — > E° <g>4 E

and

coevaluation : A — > E  (Km E'

The dual property can be written as a digram figure 2.5

P ro p o s it io n  44 [4] In the case of a finite group (see section 2.3), a left invariant

Hermitian structure can be written as G : A]C(G) —> (Al C(G))° given by G(£,a) = 

£b-9b'a > where gb,a E C . Then :

1) I f  G is a right module map , then ga,b E 0 only if  a = b , i.e. the metric is diagonal
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Figure 2.5

in our basis .

2) I f  G is a right comodule map , then for every a G C and x  G G , gxax 1,xax 1 =  ga,a 

P roof : For the complete proof of this proposition see [4]

P ro p o s it io n  45 [4] Suppose that E  is finitely generated projective as a left module, 

with dual basis e* <8> el G E° 0  E, and let G be a non-degenerate Hermitian structure 

on E. Suppose that we set gjl =  l ^ e \ e ^ ,  so it is automatic that gli* = gj l . Then 

we have G(e') = £j-g^1 (summation convention applies). We define G~l {ei) =  gij.ei, 

where without loss of generality we can assume that gij.ev(eJ & ek) = g T h e n :

a)glj9jk =  ev(el 0  ek) .

b)gijgjk = ev(ek ® e») .

C)  iq =  9qi •

To give a definition to the Christoffel symbols we begin with a left covariant derivative 

V on a right A-module E. We suppose th a t E  is finitely generated projective as a 

left A-module, with dual basis el G E  and e* G E°. Then we define the Christoffel
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symbol

r f  =  — {id ® ev)(Vej <8> e*) G fi1 A  (2.10)

(We choose the minus sign to fit with the standard convention for the covariant 

derivative of 1-forms, and the reader should remember tha t the basis of the 1-forms 

w ritten with upper indices if the coefficients of a 1-form have lower indices, as is 

s tandard .[4] ) We make the Christoffel symbols into a matrix by defining

(r t i  =  r j

We use g* as shorthand for the m atrix  gxi and g, as shorthand for the m atrix gij.

P ro p o s it io n  46 [4] The condition for a connection to preserve the Hermitian metric 

is

g. - r  =  ^P*.dg..P-\- <t>,

where (p G M n{FllA) with (p* =  —(/), P*0 =  and (pP =  (p. Form this we can deduce 

that

r =  l- g ' - d g . - P  + g ' - < t> - d P .P .

P ro p o s it io n  47 [4] Contumng with our finite group example, the left invariant co­

variant derivative on C(G) given by

v L( e )  = - i ' u b ®e<

is a bimodule covariant derivative i f  and only if

a - lb c £ C U e = > f abc = 0.
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In this case a is given by (summing over b,c G C)

a(id ® i k) =  i6c,d*(il +  5d,c)ib ® f

Proposition 48 [4] The condition for  V to preserve the metric is that the matrix 

9a,bThc (summation over b ) is antiHermitian . I f  g% is diagonal, with all enteries on 

the diagonal equal (and necessarily real) , then this reduces to T%c = (f^ -i a)* .

Proposition 49 [4] For (V, a) a bimodule covariant derivative as in proposition 47, 

V is torsion comatible i f  and only if  for all b ,c ,d  G C

d l bc e  C = >  Tbc -  f ^ c_i6c =  6cd'bc -  Sb>d

Definition 50 [4] I f  E  is a star-object inj\MA , we say that V is star compatible if

(id 0  *)crE — <j e (* ® i d ) \ E  0,4 El1 A  — > El1 A  0,4 E

Proposition 51 [4] The condition for star compatibility see definition (50) to hold 

is , suming over b' ,

c lab € C ==> =  &a,c-

2.8 Sym plectic forms

The study of symplectic forms began with Hamiltonian dynamics. A symplectic form 

w on a smooth mainfold A  is a closed non-degenerate 2-form, i.e. u  € El2X  with
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duj — 0. And for all x ^  0 on the tangent space to x, there is a y in the tangent 

space, so th a t cv (x ,y )  ^  0.

In noncommutative differential geometry, it is standard to see what u  G f t2A  with 

duj = 0 means.

The non-degeneracy condition is more of a problem, as there is no general way known 

to pair 2-forms and vector fields. However, in the cases we consider, taking invariant 

forms to Hopf algebra coactions results in finite dimensional vector spaces, and here 

we just ask for uj to be non-degenerate on the vector space, i.e. it has non-degenerate 

matrix.

Additionally, in classical geometry, u  is introduced at various stages in calculations. 

To just make oj “appear” in the non commutative case requiers tha t the map A  — ► 

fI2A  sending 1 E A to u  6 fI2A is a bimodule map, i.e tha t u  is central, a.uj =  u.a  

all a E A.

2.9 Cohomology

D efin itio n  52 A cochain complex is a sequence of objects

where the composition of any two maps is zero, i.e.

( j n — 1 d  ̂ d ^

gives zero.
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(We take abelian groups or vector spaces as examples of the objects here.) Then 

image(d : C n~l — > C n) is subset of kernel (d : C n — > C n+1)

Then we defined the cohomology of the cochain complex as

f j n t r - d )  = kernel(d '■ C "  > Cln+1)
im,a.ge(d, : C n~l — > C n)

2.10 De Rham cohomology

A sheaf is another case of 7t : Y  —> B, where B  in a base space, which is more gen­

eral than a tiber bundle. It also has an algebraic structure - each fiber is an abelian 

group, but th a t does not concern us here .

Each e e  Y  has an open neighbourhood U so th a t n : U — > imageU  is homeo-

CZ 7  e/. / 7 U

Figure 2.6

mophism of U onto a neighbourhood of x  =  7r(e).

This allows us - by assuming a little differentialilty (we do not make this precise) to 

lift a vector at x  uniquely to a vector at e .
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Note th a t a sheaf is often defined in terms of a presheaf, which can be thought of 

assigning to an open set U in B  the set of continuous section s : U — > Y  (with 

7ros being the identity ). This is not quite precise, but we are not going to construct 

an exact correspondence with sheaf theory in non commutative geometry, just an 

analogue.

If we take the functions on Y  to be E , then E  is an A = C°°(X)  bimodule, and the 

lifting of the vectors gives a flat covariant derivative

V : E  — > 5>>c'oo(X) E.

We can now make this into a definition of a noncommutative sheaf [2]

In the differential graded A, d), we have d2 = O.This means that

im aged  : Qn~l A — > QnA C ker d : QnA — > ftn+l A 

. Then we define
_  k e r d : Q nA — > n n+]A_ 

dR ~  Image d : Qn- lA ~ > UnA

( a quotient of vector spaces ).This is the de Rham cohomology , first defined for

smooth manifolds.

This can be generalised to give a version of sheaf cohomology in the non-commutative 

case [2]

D efinition 53 [2] Given an algebra A with differential calculus (d,Q*A), we define 

the category aE to consist of left A-modules E  with connection V : E  —» fT A E.

A morphism f  : (E ,V )  —> (F, V) in the category is a left A-module map <f> : E  —> F

which preserves the covariant derivative , i.e. V o 0 =  (zd& 0)oV  : E  — >
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Definition 54 [2] Given (E, V) G AS, define

: TEA E  —> Qn+lA  0 ^  E , w 0 e ( - > d u ;0 e - f  (—1 )nco A Ve.

Then the curvature is defined as R  = V : E  —> Tt2A  0  E, and is a left A-module

map The covariant derivative is called flat i f  the curvature is zero . We write AT

for the full subcategory of AS consisting of left A-modules with flat connections .

P ro p o s it io n  55 [2] For all n > 0, Vln+1^o V ^ =  id A R  : TlnA ® AE  Tln+2A ® AE.

P r o o f  : By explicit calculation,

Vln+1l(V Inl(w 0  e)) =  V [n+l\dco 0  e +  ( - l ) nu; A Ve).

P u t Ve =  & 0 e* (summation implicit), and then

V [n+11(V N (u ;0 e ))  =  V [n+1](d c J0 e  +  ( - l ) nu; A & 0  e»)

— (—1 )n+1dco A Ve 4- (—l ) ndco A & 0  e* +  co A 0  e*

- —co A & A Ve*

=  co A (dfi 0  ei — & A Ve*) =  uo A R(e). □

D efin itio n  56 [2] Given (E, V) G AE , define H * (A \E ,V )  to be the cohomology of 

the cochain complex
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Note that H ° ( E ,V )  = T E  = {e £ E  : Ve = 0}, the flat section of E. We will often 

write H*(A] E) where there is no danger of confusing the covariant derivative .

2.11 Spectral sequences

We use [35] as a basis reference for spectral sequences.

A spectral sequences consists of series of pages (indexed by r) and objects E™ (e.g. 

vector spaces ). We take r  > 1 and p,q > 0 , and set E?'q =  0 i f p < 0 o r g < 0 .  

There is a differential

dr : E™ — > EP+r'q+]~r

such th a t drdr = 0

e.g. when r =  1 ( page 1) we have the picture in figure2.7 

when r = 2 we have the picture in figure2.8

d i

Figure 2.7: page 1 

As drdr =  0, we have image dr : E*!~r'q+r~1 -» E?'q is contained in

kernel dr : E™ E vr+r'q+l~r.
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q

p

Figure 2.8: page 2

Now take the quotient (in our case,quotient of vector spaces)

kernel dr : E f*  -> E ^ q+l~r _  
image dr : Er~r'q+r~l —► E?'q r

Then the rule for going from page r to page r +  1 is E^'qx = H™

The maps dr+\ are given by a detailed formula on H*'q.

The idea in th a t eventually, the E?'q will become fixed for r  large enough. The

spectral sequences is said to converge to these limiting cases as r increases. Spectral

sequences are frequently used in algebraic topology and algebraic geometry, the use 

of a spectral sequences is summed up

input data  —»• first or second page of spectral sequence —> work out limit of the 

spectral sequence —> read off results.

As an example of working out the limit, when r =  2 ( page 2) we have the picture 

in figure 2.9

The are only two possible maps d2 which are non zero, which are 9,0 . (because all 

maps 0 —> 0,0 —> v and ? ;—►() must be zero ).
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q

00

p

Figure 2.9: page 2

Construct next page

(1) 0 E$l image = 0 

E f  4  0 kerel = E f
_  k er  _  _  ^21

3 im a g e  0 2

(2) c?2 : 0 —>• ZTj1 image = 0 

rf2 : E f  A  fcere/0
£01 =  _kerd^ _  =  kegO =  k  g

j  im a g e d  2 0

(3) 0(2 : E^1 A  is2° imaged

d2 : £ 220 -> 0 fcerei =  £ f°
^ 2 0  __ kerd2    &2° _  ^2°

3 im a g e d 2 im 0  im.0

Every dz : E p2 q -> E j+3',_2

Now every page after this is the same. The spectral sequences has converged at 

page 3 in figure 2.10 .
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2 ( 1)

e  ; o)
im $im 9

P

Figure 2.10: page 3

2.11.1 The Serre spectral sequence

The Serre spectral sequence is a machine for relating the cohomology of the to tal 

space E  of the fiber bundle E  —> B  to the cohomology of the base B  with coefficients 

in the cohomology of the fiber F.

There is a spectral sequence with second page H P( B ; H q(F)) which has limit H*(E). 

We should note th a t the cohomology H q(E) may be twisted, in the same way th a t 

the fibration itself may be non trivial. The best way to describe this is by sheaf 

theory.

About the simplest example is the torus S l x S l —» S 1. We use complex coefficients.

65



In this case the bundle is trivial, and there is no problem with twisting. 

B  = S l , F  = S l , E  = S l x S 1.

so

H P(B, H q(F, C)) = 

The second page is

Hq{FX)  =
C 9 =  0,1

0 otherwise

H p( S \  C) 9 =  0,1 

0 otherwise

C (p =  0, l)a n d (9 =  0,1) 

0 otherwise

0 ►

Figure 2.11

Every d2 either maps to 0 on form 0, so the third page is the same as the second. In 

fact all the pages after are the same, the spectral sequences has converged.

We get H n(S l x S 1) =  0
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(E qo is the limit page )

H ° (S l x S \ C )  =  C

H 1(S l x S \ C )  = C © C  =  C

H 2( S l x S \ C )  =  C

//" (S '1 x S 1, C) =  0 all n >  3

Note tha t the direct sum given is specific for vector spaces, and th a t a more compli­

cated procedure might have to be used for other coefficients (e.g. Z).

In [2] a noncommutative generalisation of the Serre spectral sequence was given for 

de Rham cohomology. To state  it we need the idea of a non commutative fibration, 

l : B  —> E. We now take B  and E  to be algebras, and the map between them  has 

been reversed.

D e fin itio n  57 [2]Define the cochain complexes

EamX  =  u Q T B .X  , EnmX  = 5 -[T* y  (n > 0),
m m t*f2m+1£? A Vtn~lX

with differential d : EfnX  -» E f f ' X  defined by d[cj]m = [duj\m, where uj E u Q mB  A

DnX  and []m is the corresponding quotient map .

The maps ©m : DmB  0  s  EqX  —► E 'fX  defined by Qm(u) 0  [£]0) =  [l*u  A f]m are

cochain maps i f  QmB  0 /j EqX i s  given the differential ( — l ) mid 0  d.

P ro p o s it io n  58 [2]Suppose thatQ] : B ® b EqX  —» E \ X  (as defined in Definition

57 ) is invertible. Then is a left B-covariant derivative V : H h(EqX )  —> fT /? 0 #  

H h(EqX )  defined by [u] (id 0 [ ])©f1 [ d u f .

D efin itio n  59 [2] The differential algebra map t : B  —> X  is called a differential 

fibration if  ©m : f tmB  0 #  HJX —» E*mX  ( as given in Definition 57) is invertible for  

all m  > 0.
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T h e o re m  60 [2] Suppose that l : B  -» X  is a differential fibration. Then there is a 

sepctral sequence converging to H^R(X ) with

E™ *  H p(B ]H q(Z * X ),V )
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Chapter 3

The group A4

3.1 Introduction

Classically the discrete group A 4 does not have a non-trivial differential structure. 

However it is well known th a t there are non-trivial noncommutative differential struc­

ture on finite groups [34], these have no “analytic” content as it is usually thought 

of, but are of interest algebraically.

3.2 The group A4

This consists of all even perm utations of 4 objects. It has 12 elements which we can 

write as disjointed cycles. If we perm ute the objects 0,1,2,3, then the following are 

elements of A 4 (123), (12)(03). The cycle (123) sends the elements 0 —> 0, 1 —» 2, 

2 —̂ 3, 3 —y 1.

There is an adjoint action of S4 (the set of all perm utations of 0, 1, 2, 3 ) on A 4 

given by a gag-1 for g G S4
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There is a representation of A 4 on C4 given in terms of a standard basis

0 

0

\ 0 /

ei
1 

0

V0 /

e2
0 

1

\ 0 /

0 

0

V1 /

by Tg(ei) = eg{i) when g G A 4.

For example T(123)(e0) =  e0, TJi23)(ei) =  e2, T(i23)(e2) =  e3, T(i23)(e3) =  ex 

giving the follwing m atrix for T(]23)

T(123) —

^ 1 0 0 0 ^ 

0 0 0 1 

0 1 0  0 

^ 0 0 1 0

3.3 A differential calculus

A 4 has conjugacy classes

C  — f 7Tq , TTq , 7Ti, 7Tj ,7r2,7T2 )7T3i7T3 }

(3-1)

(3.2)

where

7To =  (123) TTo” 1 =  (132) TTi = (023) TTf1 =  (032)

tt2 =  (013) 7T2- '  =  (031) 7r3 =  (012) t̂ 1 =  (021). (3.3)
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We use C  to construct a differential calculus for A 4, as in section (2.3) the left 

invariant forms will have basis £a for a E C. To make it easier to read, instead of 

£71" we write £n±, (n 6 0,1, 2, 3) or use £n/ =  £n_1 .

The Woronowicz braiding 4/ is given by the formula from (2.3)

tf ( f0 ® f 6) = C ba~' 8>f°,

and so 4/ acts separately on the subspace with basis £a ® where ab = x, a fixed 

element of A 4. We can list these basis elements in the following table

Result x Cases  for ab

e z z » z z

1 TTzTTz, 7rz + 2 7I’i + i  i 7ri + 3 7rz+2>

7Tl 1 ^’z + l^ ’x-j-2’ ^"z+2^"i+3) ^"z+37Tz+1

(03)(12) TToTT 1 , 7 1 ^ 3  J , 7T27T3, 7T37TJ 1 , 7T3 17T2 1 , 7T2 17T0 , 7Tj 17T0 1 , 7T0 17T2

(02)(13) 7I’3 7J’2 ) 71_3 7T0 > ; + 2  + 3  ) 7^07^ 3 i^ ’i ^ 2  ’ ^ " 0  ^ 1

(01)(23) ^ 0 + 2  ’ ^ 0  ^ 3  5 7I’l 7,’2 i 7,’i 7I’3 ) 7I’2 7r0 ’ ^ 2  ^ 1  > ^

Total 8 + 1 6  +  16 +  8 +  8 +  8 — 64

It is helpful to note the following special case :

^ ( f 0 ® £a) = £a <S> £a eigenvalue +1 

and we include these in the cases below 

C ase  1 x  =  e

f 0 ® f 0 1 +  £a 1 ® £a eigenvalue +1 

£a ^  £a 1 _  £a 1 g  £a eigenvalue — 1.
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Case 2 x  = ,ni x

'F(£7rt+2 0  £n^ ' ) = C * 3 ® <Tl+2

$ (£ * 7 + 3  (g) ^*+2) =  £*7+\ 0  £*7+3 

^ ( f ^ i+ I  g  £*7+3^ =  ^ l+2 g  f i + l .

We get eigenvectors

£ffi+2 0  £ ” 7+1 +  CJ^r+S 0  £ * i  +2 - f  ^ I ^ + l  0  £*7+3

with eigenvalue w 2, where w3 =  1 (three complex roots)

Case 3 x = ni

^ ( ^ i+1 g  £,n'+2) = £*l+3 ® ^ l+1 
\ f /(£ * i+ 3  0  £*»+!) =  £*7+2 0  £ * i + 3

$ (£ * 7 + 2 0 £** + 3) = £**+> g £*7+2 

We get eigenvectors

£**+1 g £*7+2 + ̂ 7ri+3 g ̂ l+1 + tj 2 £ ir'+* g £ n'+3

with eigenvalue w2 , where w3 =  1 (three complex roots)

Case 4 x — (03)(12)

We split it into two parts :

First part :

4 l ( £ * 0 ® C 1) = C * 1 ®
^ (^ 2  1 g  £*„) =  1 0  £^2 1

$ ( £ * ^  0 £ * 2  ^ 0

^  ( C 1 ® C 31) =  £*° g  C l ■

We get eigenvectors

£*° g £** + u j £ * * X g f*0 + u 2£ 7r3_1 g £ * 2 * + cjŜrn 0 £7^

with eigenvalue w3, where w4 — 1 (four complex roots). 

Second part :

'F(£7f2 g C 3) = ^ 0 1 g C 2
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(̂{*0 <&£**)  = £ * 1  g£7T0

'F^71’! 1 g ̂ o *) =z ^  g ̂ 7rx 1

^ ( ^ 3 ® f 771-1) -  <T2 g f 73-

We get eigenvectors
g  +  ^ T T o 1 g  £7T2 +  ^ T T f 1 g  £ 7 ^  1 +  ^ £ 7 ^  g  £ 7 r f  1 ?

with eigenvalue w 3 , where w4 =  1 (four complex roots). 

Case 5 j  = (02)(13)

We split it into two parts :

First part :

\F(^3 = f*0 g

f y { C °  g  C 3 ) =  C 1 g  c °  

g C0) = C 2 g C 1 

V { C 2 g f 71) = g f 72-

We get eigenvectors
£7T3 g £7T2 + w£7r0 g £7T3 + ̂ TT, g £7T0 + ̂ 3̂ 2 g £7Tl ?

with eigenvalue w3 , where w4 — 1 (four complex roots). 

Second part :

'F (î 31 g 471"01) — £7721 g £773 1

iF (^ 21 g  £7731) — C771 1 g  1

'F (£71’11 g 1) — £ 77° 1 g C7711

'F ( £ n0 1 g 1̂ 1 ) = g n3 1 g ̂ O) 1 .

We get eigenvectors

£̂3 1 g f *0 ' + Cj£n2 1 g £̂3 1 -|- CJ2g nl 1 g £*2 1 + U 3̂ 0 1 g 1 ,

with eigenvalue w 3, where w 4 — 1 (four complex roots). 

Case 6 x =  (01)(23)

We split it into two parts  :
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First part :

& C * 1) = C 3 

^ ( f 71’3 0  c ° )  = ^ 1 ® C 3

^ ( ^ r 1 g ^ 3) =  ^7r2_1 g ^ r 1 

^ ( C 2_I ® =  C °  ® f*2' 1

We get eigenvectors

£7T0 g ̂ tt-1 + u ^ 3 g £7T0 + u 2^ '  g <Ĉ3 + w3^2-‘ g ̂ r1

with eigenvalue ic3, where w4 =  1 (four complex roots)

Second part :

g £*3 *) =  ^ 2  g £ V 1

^ ( ^ 2 g>C0_1) =  C 1 ® f*2

^(^1 g ̂ 2) = (Ĉ"1 g 

'F(£7r3 1 g £7rl1) = £*0 1 g £*3 1

We get eigenvectors

0̂_1 g ̂ 3_1 + g fV + CJ2̂ 1 g £*2 + g

with eigenvalue ic3, where w4 — 1 (four complex roots).

According to the paper by Woronowicz [46], the left invariant 2 forms on a Hopf 

algebra with differential structure are given in terms of Yetter-Drinfeld braiding 4/ 

by the following, where Y is the left invariant 1-forms:

S 2 =  kernel(id  — VP) : T g  Y — > Y g  Y

i.e. S 2 is the +1 eigenspace of \F

This gives the following relations on the wedge product:
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1) A £“ =  0

2) C  A C " 1 +  C ~ ‘ A =  0

3) £ ’',t2 A f'i+'l +  £’ •+3 A ^’r,+2 +  f^+'l A £*1+3 =  0

4) £ ’'*+' A {"*~+2 +  £*i+3 f\ £*.+ ! -|_ £<+2 /\ £*i+3 _  Q

5) A C71 +  f 77*”1 A C ° +  C 3 ' A C * 1 +  ^  A ^3_1 =  0

6) C 2 A C 3 +  C°~2 A f 772 +  C 1' 1 A ^o"1 +  C 3 A C r ' =  0

7) C 3 A C 2 +  C° A f 773 +  f 771 A C° +  A C 1 =  0

8) ^a"' A C ° 1 +  r 2"1 A C 3 ' +  { " f 1 A f^ " 1 +  1 a  f 77!-1 =  0

9) C °  A T 2"1 +  T 3 A f 770 +  C ' 2 A f 773 +  C * 1 A T 1’ 1 =  0

10) ^o"1 A C 3 ' +  C 2 A C ° 2 +  C 1 A C 2 +  T 3 1 A C 1 =  0

3.4 Covariant derivative on A4

For connections on this calculus, we refer to section 2.4. These are given by Christoffel 

symbols T£c for a, 6, c E C  .

±1 TT*1We write r 7±2fc±3 for r ^ , ^ ,  for short. We suppose th a t the connection is invariant 

to the 54 action, th a t is

We can use this symmetry to reduce the number of possibilities for the Christoffel 

symbols.

We consider all possible cases of k±1 below. There are two useful values of g G 54 

to use in (3.5): We have 9i 6 54 ,i =  1, 2, 3 defined by 6t(j) = i +  j  mod 4. Then

r S : U 5-  =  r ^  M  a e s . (3.5)

(3.6)
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For i 7  ̂ j  G Z 4 , take the transposition (or 2 cycle ) cr  ̂ =  Then

-1 1 nj 1 * -  J =  2fry 7Ti CTy =  '
7Tj otherwise

(Jy TTfc (Tij1 = nk 1 i, j, & all different (3.7)

Now consider the various cases Tlj±\ k±3 

C ase  1 If j  = k = z, using

' S , * 3 = r ^ o ±3 ,  (3-8)

and using <t12 if necessary,

r £ ‘ ±, = r°±2±1 n±3±1 . (3.9)

We reduce to 4 values,
■pO pO pO pO
1 0 0 ’ 1 O' 0 ’ 1 0 0' ’ 1 0' O' ■

C ase  2 If j  = k ±  i, using 0_i,

r & j±3 =  r £ v , o - o * »  (3 -10)

Using cjvq with {p, q) =  Z 4 \  {0,.; -  7 }, if necessary,

T ; ± 2  j ± 3  ~  ^ ( j - i ) ± 2 ± l ( j - i ) ± 3 ± l  ( 3 - 1 1 )
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We will show th a t these all reduce to

pO pO pO pO
1 22 i 1 2' 2 ’ 1 22' ’ 1 2' 2'

If j  — i = 2 we already have the result. However if j  — i ^  2 we apply a2,j-i to get

= r “±2±12±3±1 , (3.12)

and applying cri3 gives

r%  ,±3 = r “-±2±12-±3±, . (3.13)

We summarise this by

^ '2±2±1 2±3± ] J1  ̂ 2

■>02- ± 2± l 2_ ±3±1

n ±l  J 2±2± i 2±3±i
7±2 7 ±3

r 9-±2±, o - ± 3 ± ,  j  — i ^  2.

C ase  3 If z =  j  ^  k, using 0.

(3.14)

^±2 jfc±3 ^ 0±2 (/c-i)±3 ’ (3.15)

Using apq with {p, q} = Z 4 \  {0 , j  — z}, if necessary,

r.±2 k±3 =  ro±2±i (jfc_i)±3±i • (3.16)

We will show th a t these all reduce to

pO pO pO pO
1 0 2 ’ 1 0' 2 ’ 1 02' 5 1 O' 2'
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If k — i =  2 we already have the result. However if k — i ^  2  we apply c 2,fc-i to get

p jii    pO 1
1*2 k±3 ~~ 1 0_±2±1 2±3±1 (3.17)

and applying cr13 gives

p U i   pO
1 i±2 fc±3 1 0±2±1 2_±3±1 (3.18)

We summarise this by

'̂o±2±] 2±3±i k i 2

■̂'o±2±i 2-±3±i k — i ̂  2.
(3.19)

C ase  4 If j  ^  z =  /c, using 0_,

i*!
j±2 i-,̂±2 r±3 =  r Oil

(J i)i2 (0)i3 (3.20)

Using apq with {p, q} =  Z 4 \  {0, j  — i}, if necessary,

p * i l    p U
1 j±2 i±3 ~  1 (j-i)i2±1 (0)i3i 1 (3.21)

We will show th a t these all reduce to

pO pO pO pO
1 2 0  ’ 1 2 ' 0  ’ 2 0 '  > 1 2 ' 0 '
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If j  — i =  2 we already have the result. However if j  — i ^  2 we apply a 2,j~i to get

r (3.22)

and applying <7i3 give

p i1*11 =  r °A Q —±2 i±3 1 2-±2±l 0±3±1 (3.23)

We summarise this by

11*1
j ± 2 i±3

r °2±2±l0±3±1 j  -  i = 2

r2-±2±l0±3±1 j  1 ^ 2

(3.24)

C ase  5 If /, j ,  k all have different values, using Q_i

pi*i _ pû i
1 j±2 k± 3 — 1 (j-z)±2 (A:-z)±3

0±1 (3.25)

We reduce these to represented by 8 cases

r? ±
1± 3± (3.26)

If we have j  — i ^  2 and k — i ^  2 , then we have either j  — i = 1 and k — i =  3, 

which is the case we want, or we have j  — i = 3 and A: — z =  1, in the case we use cri3 

to get

pz-*-i   pO î   pO "̂1
J±2 3 — 3±2 1*3 — l-±2 3-±3 • (3.27)
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If J — z =  2  and k — i =  1 , we use a 2 3 to get

r i±J — r 0±1 — r 0_±1 — r 0±1 (r> oo\
j ± '2 /c±3 1 2±2 1*3 1 3±2 1“±3 i l-±2 3±3' Ô.Zoj

If j  — i =  1 and k — % — 2, we use <r23 to get

r & * ± ,  = r & 2±J =  r ° : £ s±a (3.29)

If j  — z =  2 and k — i = 3, we use cr21 to get

r£ i* ± »  =  r & 3±. = r ^ ' _ ±3 (3.30)

If j  — i =  3 and A: — z =  2 , we use cr2i to get

pi^i_____ _ pO-̂ i   pO- *1 _ pO î f n  o i \
1 jf±2 fc±3 1 3*2 2±3 ~ i 3_±2 1±3 ~ 1 1±2 3-:t3 Ô.Olj

3.4.1 B im odule connections

The condition to have a bimodule connection is (see proposition 47 in section 2.7)

a~xb c $ C  U {e} => f f c = 0 (3.32)

We consider the various cases in turn  ,and assign the letters to the Christoffel symbols

th a t we will use later.

Case 1

a = Tqo gives a~lbc = no

b =  Tq/o gives a~lbc — nQl
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Case 2

Case 3

Case 4

Case5

c ~  Too/ gives a 1bc =  7r0 1

d = r[)/(y gives a~1bc — e. (3.33)

e =  T°22 gives a~lbc = ir̂ "1 

/  — ^ 2 ' 2  gives a _16c =  7Tq 1 

g = T22, gives a~lbc = ir^ 1

r^/ 21 gives a~l bc = (03) (12) ^ C  U {e} , so f 2,2, =  0. (3.34)

^ ~  ^02 gives a~lbc =  n2 

i = Fo'2 gives a~]bc =  7Ti 

j  =  To2, gives a~1bc = tt̂ 1

T°0,2, gives a~lbc = (01) (23) ^ C  U {e} , so fo ,2, =  0. (3.35)

k =  r 20 gives a~l bc = 

m  ~  r^'o gives a~1bc = 7Ti 

n = r 20/ gives a~1bc = tt2 1

r 2/0, gives a~lbc =  (02) (13) ^  C  U {e} , so f 2,0, =  0. (3.36)

T°13 gives a lbc = (03) (12) ^ C  U {e} , so f j , 3, =  0
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p = r?<3 gives a~l bc = 7r21
<? =  r?3- gives a~l bc = 7Ti
r  =  r% gives a~lbc = V
s -  r0'13 gives a~1bc == 0i
t = r?:3 gives a~1bc -=

u =  rf3, gives a-1 be = 7T2
v =  r?: 3< gives a-1 be = e. (3.37)

in the rest of this chapter, we always assume tha t V is a bimodule connection, and 

th a t these letters and used.

3.4.2 Torsion com patible

We have given the Christoffel symbols short variable names, which we will use later. 

The condition for the connection to be torsion compatible is (see proposition (49) in 

section (2.7)):

d-'bc  € C  = ) .  f t  -  f t - . *  =  < W  -  (3.38)

We now apply this to our specific 54 invariant connection on A 4.

For example

rg ,0 — !o,o'oo =  <Woo — ^o,o 

gives a — a — 0

M',3' — fa',31'3' =  ^3'0',1'3' ~
fO' _ f O' _ n 
1 l',3' 1 3',2 — u

po' _  fyy _  q 
1 r.3' 1 i',3' — u

gives p — p = 0
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and the same cacaulation with the other cases. Then with a small calculation we 

get:

s = r — i = n = 0 b = c f  — g 

h = v — 1 = k j  = t — \ — m  = q — 1

3.4.3 Im plem enting the S 4 sym m etry on Christoffel symbols 

using M athem atica

This differential calculus was sufficiently large th a t we used M athem atica to do cal­

culations with it.

We use the following M athem atica notation

gam[{i, r}, {j, s}, {k, £}] =  T ^ ,  where i, j, k e  0,1, 2, 3 and r, s, t G 4-1, - 1  

and gamQ[r,j, s, fc, t] =

Using 6 ij±9 ^1 =  (z -T.;)*1, we can convert every Christoffel symbol, so th a t there is 

a zero in the top position.

gam[{i_, sl_}, {j_, s2_}, {k_, s3_}]:=gam0[sl, M od[j — i, 4], s2, Mod [A: — i, 4], s3].

We will now implement the symmetry in section 3.4, cases 1- 4. We use endgam0[r, j, s, k, t] — 

to be one of the representative cases given . These statem ent are used to make 

the assignment:

gam0[sl_,j_,s2_,k_,s3_] := Which[

(j= = 0) &&; (k==0) , endgam 0[+l,0 ,sl s2 ,0,sl s3], (* case 1 *)

j= = k  , W hich[j==2, endgam 0[+l,2,sl s2 ,2,s i s3], True , endgam 0[+l,2,-sl s2 ,2,-si

s3] ] , (* case 2 *)

j= = 0 , W hich[k==2, endgam 0[+l,0,sl s2 ,2,s i  s3], True , endgam 0[+l,0 ,sl s2 ,2,-si 

s3] ] , (* case 3*)

k= = 0 , W hich[j==2, endgam 0[+l,2,sl s2 ,0,sl s3], True , endgam 0[+l,2,-sl s2 ,0,sl
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s3] ] , (* case 4*)

(* case 5 *) True, Which[

(j= = 2) &&; (k = = l)  , endgam0[sl,l,-s2,3,s3],

( j= = l)  && (k= = 2) , endgam0[-sl,l,-s2,3,s3],

(j= = 2) &&; (k= = 3) , endgam0[-sl,l,s2,3,-s3],

( j= —3) && (k= = 2) , endgam0[sl,l,s2,3,-s3],

( j= = l)  && (k= = 3) , endgam0[sl,l,s2,3,s3],

(j= = 3) h h  (k = = l)  , endgam0[-sl,l,-s2,3,-s3]]]

3.5 The M etric

The condition for the covariant dervative to preserve a diagonal metric (see proposi­

tion (48) in section (2.7)) is

r s c =  ( r  cd,ay  (3.39)

Separating this into cases gives Case 1 :

a = rSo = (rS-0)* = 6*
6 = r“,0 = (r“0)* = a* 

c = r°0, =  (r0°:0)* = (rg0,)*. 

d = r°,0, = (r°'„)* = (r“ o,)*,

Case 2 :

e = r “2 = (r^0)* = (r“'2,)* = ( r ° 2)* = **

/  = rS.2 = (i10)* = (rg:2.)* = (rgJ), = />*

so Tqq is real

so r[],0/ is real (3.40)
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<? = r °2, =  ( i i:0)* = (r“2,)* = j*

r°2,2, = ( l f 0)* = (rg,2,)* — O, no more information (3-41)

Case 3 :

h = T°02 = (T°2l2y  = r  

i = r°QI2 = (r °22y = e*

3 = *02' = (**22,)* =9'
^ 0̂ 2' ~  (^ 2̂ 2/)* ~  3, no more information

Case 4 :

fc = rg„ = (rj, „)• =  « •  

m =  rS ,0 =  (rSo)* =  A:*

n =  r “0, =  (r°:0)* = (r°0,)‘ ,so r “0, is real 

r",0, =  (rg'o)* =  (r“,0,)* =  0,no more information

Case 5 :

T ij = (rf,0)* = (r?3)* =  0, no more information 

p = r?:3, = (rf0,)* = (r?:3,)* ,so r?:3„ is real 

9 =  r i ' 3  = (r?o)* = (r“ 3)* , s o r ° 3 isrea l

r  = r ; 3, =  (r?;0,)* = (r"'3,)*, SO r f3, is real

* = r?:3 = (r?o0* = (r?'3')’ = «*
i =  r?3' =  (r?:0)* = (r ;3)* = i;*

u = r?,3, = (r f0)* = ( r? :3)- = s*

(3.42)

(3.43)

(3.44)
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« = r?3 = (r?-0-)* = (r?3-r = f (3.45)

This can be summarised as ( where * denotes a complex conjugate )

a = b* b = a* c — c* d = d* e = i*

f  = h* g = j* h = f* i = e* j  = g*

k = m* m  = k* n = n* p = p* g — q*

r — r* s =  u* t = v* u — s* v =  t*. (3.46)

We state  these results as a proposition.

P ro p o s it io n  61 The condition for the bimodule covariant derivative V to preserve 

a diagonal metric is:

c, d,, n, p, q and r are real and a = b* b = a* e =  i*

}  = h* g = f  h = r  i = 3 = 9 *

k = m* m  = k* s = u* t = v* u =  s* v = t*

P ro p o s it io n  62 There are torsion covariant derivatives which satisfy the diagonal

metric with u = e = s = r = i = n = 0, a = b = ^ c , f  = h = v — l = k = g = j  =

t — 1 = m  = q — 1 and all them are real and also d. p are real.

Proof: Using section 3.4-2 and proposition 61. □
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3.6 The generalised braiding a

We give a convention for writing tensor products of matrices as single matrices, 

consistent with the M athem atica Kronecker product:

a b \ I a M  bM
<8> AT =  

c d  \ cM  dM

We have a  : fT ® f i1 — > fT (g> and we have 8 generators of fT , so we need a 

64 x 64 m atrix for a.

We use the formula (proposition (47) in section (2.7))

= tbc,dk( i t . + Sic)?  ® e

To calculate this in M athem atica, we use the following functions 

We consider the conjugacy class C, and enumerate it from 1 to 8 as

f[l]={0,l} =  V 1

f[2] =  {0,-l} =  TTo 1 

1-1} =  *+>

1,-1} =  7Tf1

f[3] =

f[4]=

f[5]= 

f[6]= 

f[7] =  

f[8] =

2 ,1} = n+12

-12,-1} =  7r2-

3,1} tt? 1 

"3,-1} =  W3-1

This corresponds to  the representing matrices (as 3.1) )

rep[l] = { { 1,0 ,0 ,0},{0 ,0 ,0,1},{0 ,1,0,0},{0,0,1,0}} 

rep[2]= { { l,0 ,0 ,0},{0,0,1,0},{0,0,0 ,1},{0,1,0,0}}
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rep[3]={{0,0,0,1}, {0,1,0,0}, {1,0,0,0}, {0,0,1,0}} 

rep[4]={{0,0,1,0},{0,1,0,0},{0,0,0,1},{1,0,0,0}} 

rep[5]={{0,0,0,1}, {1,0,0,0}, {0,0,1,0}, {0,1,0,0}} 

rep[6]={{0,1,0,0},{0,0,0,1},{0,0,1,0},{1,0,0,0}} 

rep[7]={{0,0,1,0},{1,0,0,0},{0,1,0,0},{0,0,0,1}} 

rep[8] = {{0,1,0,0}, {0,0,1,0}, {1,0,0,0}, {0,0,0,1}}

The Kroneker is implemeted as

delta[ppp_,qqq_] := Which[ ppp==qqq ,l,True, 0] 

and the Chistoffel symbols are enumerated by the

symbol [i_,j k_] :=gam[f[i] ,f[j] ,f[k]]

The tensor product is converted to a single matrix (cr is a 64 by 64 matrix) by 

using

sizeclass=8

pairtonumber[{i_,j_}] := j+ (i- l)  sizeclass

numbertopair[n_] : =  { IntegerPart[(n-l)/sizeclass] +  l,n- sizeclass IntegerPart[(n-l)/sizeclass]

Now the following formula give the entries of a 

newsigmaentry[n_,m_] := delta[rep[numbertopair[m][[l]]].rep[numbertopair[m][[2]]], 

rep[numbertopair[n][[l]]].rep[numbertopair[n][[2]]] ] (

symbol[numbertopair[m][[l]],numbertopair[n][[l]] , numbertopair[n][[2]] ] +  

delta[numbertopair[m][[l]], numbertopair[n][[2]] ])

Now we make this into a m atrix using the table command 

M atrixForm [sigmamatrix=Table [newsigmaentry [n,m], {n, 1,64}, {m, 1,64}]]
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and convert to our single letter names of the Christoffel symbols using 

MatrixForm[newsigma =  sigm am atrix//.{endgam O[l, 0,1, 0,1] —> a , endgam0[l, 0, —1, 0,1] —>■ 

6, endgam0[l, 0 ,1 ,0 ,-1 ]  —> c, endgam0[l, 0, —1,0, —1] -» d, endgam0[l, 2 ,1 ,2 ,1] —> 

e , endgam0[l, 2, —1, 2,1] —> / ,  endgam0[l, 2,1, 2, —1] —» g, endgam0[l, 2, —1, 2 ,-1 ]  —»•

0, endgam0[l, 0 ,1 ,2 ,1] —» h, endgam0[l, 0, — 1,2,1] —» z, endgam0[l, 0,1, 2, — 1] —>

j,  endgam0[l, 0, — 1,2, — 1] —» 0, endgam0[l, 2 ,1 ,0 ,1] —> A;, endgam0[l, 2, — 1,0,1] —>

m, endgam0[l, 2 ,1 ,0 , —1] —> n, endgam0[l, 2, —1 ,0 ,-1 ]  —► 0, endgam0[l, 1 ,1,3,1] —>

0, endgam0[—1,1, —1, 3, —1] —> p, endgam0[l, 1, —1, 3,1] -> q, endgam0[—1,1 ,1 ,3 , —1] —>

r, endgam0[—1,1, —1,3,1] —¥ s, endgam0[l, 1,1,3, —1] —> £, endgam0[l, 1, —1,3, —1] —» 

u, endgam 0[--l, 1,1,3,1] —> u}]

Note th a t a does not depend on p or d.

3.7 The Braid Relations

The braid relations for a are defined using

a ]2 =  a I 8 : fP <S> fT <g) fT — > f21 ® fT (g> fT 

cr23 =  Is ® o  : fT 0  f t 1 <g> fT — > fT & f t 1 (8) f t 1 

cr satisfies the braid relation if — ^ 23̂ 12̂ 23 — 0

We implement this on m athem atica by 

sigma23=KroneckerProduct [IdentityMatrix[8],newsigma];

sigmal2=KroneckerProduct[newsigma,IdentityM atrix[8]]

M atrixForm[test=sigmal2.sigma23.sigmal2-sigma23.sigmal2.sigma23]

We look at the entries of ’’te st” above, which are formulae in the values a ,b , c 

v.
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Note : th a t a does not depend on p or d.

The following 71 cases list all the values of a,  ,v which satisfy the braid rela­

tions.

This list was produced by taking the matrix cr]2cr2 3 a 12 — 0 -2 3 ^ 1 2 ^ 2 3  in M athem atica 

(called test above), and examining the enteries to see when they were zero. Solving 

these equations using m athem atical software. Seemed not to be an option - it was 

certainly beyond my (and my supervisor’s) knowledge of how to get the software 

to work on such a big problem. We resorted to a partially manual and partially 

computer assisted approach.

This involved taking the simplest entries in the matrix, factorising them, and pro­

ducing a tree as assumptions were made at various stages. The tree is written in 

Appendix A.

Note : Here x  =  ±1 , y =  ±1 and z — ±1

1) a = -l, b= b , c=0, e=0, f=f, g=0, h=0, i=0 , j= 0 ,k = -l, m=m , n=0, 

q=0, r=0, s=0, t= t ,  u=0, v=0

2) a= a, b = -l-f, c=0, e=0, f=f, g=0, h = l+ a , i=0, j= 0  , k = -l, m =m , 

n=0, q=0, r —0, s=0, t= t ,  u=0, v=0

3) a= a, b= b , c=0, e=0, f=0, g=0, h = l+ a , i=0, j= 0  , k = -l, m=m , n=0, 

q=0 , r=0, s=0, t= t ,  u=0, v=0

4) a=k, b=m , c=0, e=0, f=0, g=0, h=0, i=0, j=0, k=k, m=m , n=0, 

q—0, r=0, s=0, t= 0 , u=0, v=0

5) a = -l, b= b , c=0, e=0, f=f, g=0, h=0, i=0, j=0, k = -l, m=m , n=0, 

q=0, r=0, s=0, t= 0 , u=0, v=0

6) a = -l, b= b , c=0, e=0, f=0, g=0, h=0, i=0, j=0, k = -l, m = -l, n=0, 

q=0, r=0, s=0, t= t ,  u=0, v=0

7) a= a, b= b , c=0, e=0, f=0, g=0, h=0, i=0, j=0, k = -l, m = -l, n=0,
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q=0, r=0, s=0, t= l+ b ,  u=0, v = l+ a

8) a = -l, b=b, c=0, e=0, f=f, g=0, h=0, i=0, j= 0 , k = -l, m = -l, n=0, 

q=0, r=0, s=0, t= t ,  u=0, v=0

9) a = -l, b = -l, c=c, e=0, f=0, g=0, h=0, i=0, j= 0 , k = -l, m = -l, n=n, 

q=q, r= r, s—0 , t= 0 , u=0, v=0 , at least two of n , q , r =0

10) a = - l ,  b = -l, c=0, e=0, f—0, g=g, h=0, i=0, j= 0 , k = -l, m = -l, 

n=0, q=0, r=0, s=0, t —0, u=0, v=0

11)a= -l+ h , b = -l, c=h, e=0, f=0, g=0, h=h, i=0, j= h , k = -l, m = -l, 

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

12) a = - l+ j, b = - l, c=j, e=0, f=0, g=0, h= j, i=0, j= j, k = -l, m = -l, 

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

13)a= -l+ c, b = -l, c=c, e=0, f=0, g=0, h=c, i=0, j= c , k = -l, m = -l, 

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

14)a=a, b = -l, c = l+ a , e=0, f=0, g=0, h = l+ a ,  i=0, j= l+ a ,  k = -l,

m = -l, n=0, q=0, r—0, s—0, t= 0 , u=0, v=0

15) a = -l, b = -l, c=0, e=0, f=0, g=j, h=0, i=0, j= j, k = -l, m = -l, 

n=n, q=0, r= r, s=0, t= 0 , u—0, v=0

16) a = - l, b = -l, c=0, e=0, f=0, g=j, h=0, i=0, j= j, k = -l, m = -l, 

n=0, q=q, r —r, s=0, t= 0 , u=0, v=0

17) a = - l, b = -l, c=0, e=0, f=0, g=j, h=0, i=0, j= j, k = -l, m = -l, 

n=n, q=q, r=0, s=0, t= 0 , u=0, v=0

18) a=  -  1, b =  -  1, c = ^ F , e=0, f=0, g= j,  h=0, i=0, j  ^  0, k=  -  1,

m = — 1, n= n , q=q, r= r , s—0, t= 0 , u=0, v=0

19)a= — 1, b=  — 1, c = ^ f , e=0, f=0, g= j,  h=0, i=0, j  ^ 0 , k = -  1, 

m = — 1, n= n , q=g, r= r , s=0, t= 0 , u=0, v=0

20)a= -  1, b =  -  1, c = 2 f , e=0, f=0, g= j,  h=0, i=0, j  + 0, k=  -  1,
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m = -  1, n = n , q=q, r=r, s=0, t= 0 , u=0, v=0

21)a= — 1, b=  — 1, c=x, e=0, f=0, g=x, h=0, i=0, j=x, k=  -  1, 

m = -  1, n =  -  x , q=x, r=  -  x, s=0, t= 0 , u=0, v=0

22)a= — 1, b =  — 1, c=x, e=0, f=0, g=x, h=0, i=0, j=x,  k=  -  1, 

m = — 1, n—x, q=x, r=x, s=0, t= 0 , u=0, v=0

23)a= — 1, b=  — 1, c~ x ,  e=0, f=0, g=x, h=0, i=0, j=x, k=  -  1, m = -  1, 

n =  — x, q=  -  x , r=.T, s=0, t= 0 , u=0, v=0

24)a= — 1, b =  — 1, c=x, e=0, f=0, g=x, h=0, i==0, j= x, k=  — 1, m =  — 1,

n=rr, q=  — x, r= — x, s=0, t= 0 , u=0, v=0

25)a— -  1 -  4g, b=  -  1, c=  -  3g, e=0, f=0, g=g, h=  -  4g, i=0, j=  -  3g, 

k=  — 1, m =  — 1, n =gxy, q=gy, r=gx, s=0, t —0, u=0, v=0

26)a= -  1 +  4g, b =  -  1, c=g, e=0, f=0, g=g, h= 4g, i=0, j = g} k=  -  1,

m = -  1, n =gxy, q=gy, r=gx, s=0, t= 0 , u=0, v=0

27)a—A:, b=  — 1, c=0, e=0, f—0, g=0, h=0, i=0, j= 0 , k=A:, m = — 1, 

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

28)a= — 1 +  u, b=  — 1, c=0, e=0, f=0, g=0, h—0, i=0, j= 0 , k= -  1, 

m = — 1, n=0, q=0, r=0, s=0, t =0, u=0, v=v

29)a= — 1, b=  — 1, c<=c, e=0, f=0, g=0, h=0, i=0, j= 0 , k=  — 1, 

m =  -  1, n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

30)a= — 1 +  c, b— — 1, c=c, e=0, f=0, g=0, h=0, i=0, j= 0 , k=  — 1, 

m =  — 1, n=0, q—0, r—0, s=0, t= 0 , u=0, v=0

31)a—a, b=  — 1, c=0, e=0, f=0, g=0, h=0, i=0, j= 0 , k=  — 1, m = — 1, 

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

32)a= -  1, b=  -  1, c=0, e=0, f=0, g=0, h = j, i=0, j =j, k=  -  1, m = -  1, 

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

33)a—a, b=  -  1, c=0, e=0, f=0, g=0, h = l  +  a, i=0, j =  l +  a, k=  — 1,
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m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

34)a= -  1, b=  -  1, c = j , e=0, f=0, g=0, h= j,  i=0, j = j,  k=  -  1, m =  -  1,

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

35)a=a, b=  — 1, c = l +  a, e=0, f=0, g=0, h = l  +  a, i=0, j = l  +  a, k=  — 1, 

m — — 1, n=0, q=0, r—0, s=0, t= 0 , u=0, v=0

36)a=a, b=b, c=0, e=0, f=0, g=0, h=0, i=0, j= 0 , k=  — 1, m = -  1, n=0,

q=0, r —0, s=0, t= 0 , u=0, v = l  +  a

37)a= — 1, b =b, c—0, e=0, f = / ,  g=g, h=0, i=0, j —0, k=  — 1, m =  — 1, n=0, 

q=0, r=0, s=0, t= 0 , u=0, v=0

38)a= — 1, b =b, c=0, e=0, f = / ,  g=0, h=0, i=z, j= 0 , k=  — 1, m = m ,  n=0, 

q=0, r=0, s=s, t=t, u=0, v=0

39)a=a, b=  — 1 — / ,  c=0, e=0, f= / ,  g=0, h = l  +  a, i—i, j= 0 , k=  — 1, 

m =  — 1 — t, n=0, q=0, r=0, s=s, t=t, u=0, v=0

40)a= — 1 — 3uy, b=  — 1, c=0, e—u, f=0, g=0, h=  — 3uy, i=0, j= 0 , k=  — 1 +  uy,

m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=u, v=u y

41)a= — 1 +  uy, b=  — 1, c=0, e=u,  f=0, g=0, h=uy,  i—0, j= 0 , k=  — 1 +  uy,

m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=u, v=u y

42)a= — 1 +  u, b=  — 1, c=u, e=u,  f=0, g=u,  h=u,  i=0, j=w, k=  — 1 +  u, m = — 1, 

n— u, q—u, t=u,  s=0, t=0, u = u ) v=u

43)a= — 1 — 3uy, b=  — 1, c—uy  (—5 +  2y2) , e=u, f=0, g—uy, h=  — 3uy, i=0, 

j=  — 3uy, k=  — 1 +  uy, m = — 1, n =u, q=uy, r =u, s=0, t= 0 , u=?/, v=uy

44)a= -  1 +  uy, b=  -  1 +  / ,  c=0, e=u, f = / ,  g=0, h=uy, i= fy ,  j= 0 , k=  -  1 +  uy, 

m =  — 1 +  / ,  n=0, q=0, r=0, s= fy ,  t = / ,  u =u, v=uy

45)a= — 1 q-v, b=  — 1 — / ,  c=0, e=  — u, f = / ,  g=0, h=  — v, i=  — s, j= 0 , k=  — 1 +  v,

m = — 1 — / ,  n=0, q=0, r —0, s= s, t=  — / ,  u=u, v=v

46)a— — 1 +  /i, b=  — 1, c=0, e— — u, f=0, g=0, h =h, i=0, j =0, k=  — 1 — v,
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m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=w, v=v

47)a= — 1 -t- h, b =  — 1 -  / ,  c=0, e=  -  u, f= / ,  g=0, h=h, i=  -  s, j= 0 , k=  — 1 — u,

m — -  1 -  / ,  n=0, q=0, r=0, s= s, t=  -  / ,  u=zz, v=z>

48)a= —1, b=b, c=0, e=0, f = / ,  g=0, h=0, i=z, j= 0 , k=  —1, m =m , n=0, q=0, r=0, 

s=zy, t=£, u=0, v=0

49)a= — 1 + h, h —b, c=0, e=0, f=0, g=0, h—h, i—i, j= 0 , k=  — 1, m =6 — t, 

n=0, q=0, r=0, s=  — z, t =t., u=0, v=0

50)a= — 1 + h, b=b, c=0, e=0, f=0, g=0, h=/i, i=z, j= 0 , k=  — 1, 

m =  — 2 — b — t, n=0, q=0, r=0, s=  — z, t =t, u=0, v=0

51)a= — 1 +  h, b =  — 1 +  2z, c=0, e=0, f=0, g=0, h=h, i=z, j= 0 , k=  — 1, 

m = — 1 — t, n=0, q=0, r=0, s=i, t =t, u=0, v=0

52)a= — 1 +  /i, b =  — 1 — 2z, c=0, e=0, f=0, g=0, h=/i, i=z, j =0, k=  — 1, 

m =  — 1 — t, n=0, q=0, r=0, s—i, t =t, u=0, v=0

53)a= — 1 +  /z, b =  — 1 — f ,  c=0, e=0, f= f ,  g=0, h=/z, i=z, j= 0 , k=  -  1, 

m =  — 1 +  2f  — t, n=0, q=0, r=0, s=  — i, t=£, u=0, v=0

54)a= -  1 +  h, b =  -  1 -  / ,  c=0, e=0, f= / ,  g=0, h=/i, i=z, j= 0 , k=  -  1,

m = — 1 — 2f  — t, n=0, q=0, r=0, s=  — z, t =t, u=0, v=0

55)a= — 1, b=  — 1, c=  — 3q, e=0, f=0, g= -  3q, h=0, i=z, j —q, k=  — 1, 

m = -  1 +  iz, n=qz, q=q, i= q z , s=z, t —iz, u=0, v=0

56)a= — 1, b=  — 1 +  / ,  c=  — 3rz, e=0, f = / ,  g= -  3rz, h=0, i=z, j =rz, 

k=  — 1, m = — 1 +  iz, n=r, q=rz, r= r , s=z, t= iz, u=0, v=0

57)a=/c, b=  -  1 +  zz/2, c=0, e=0, f=iz, g=0, h=0, i=z, j= 0 , k—k, m = -  1 +  iyz, 

n=0, q=0, r=0, s=iy, t= iyz ,  u=0, v=0

58)a—k, b=  — 1 +  iyz,  c=0, e=0, i=iz, g—0, h=0, i=z, j=0 , k=k, m =  -  1 +  iyz, 

n=0, q=0, r=0, s—iy, t= iy z , u=0, v=0

59)a= — 1 +  v, b=  — 1 +  iz, c=0, e=0, I—iy z , g=0, h—0, i=z, j= 0 , k=  — 1,
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m = — 1 +  iz, n=0, q=0, r=0, s—iy, t =iz, u=0, v —v

60)a=a, b=b, c=0, e=0, f=0, g=0, h = l  +  a, i= ( l  +  b)x, j= 0 , k=  -  1, m = -  1,

n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

61)a=a, b=  — 1 — — x +  sx, c=0, e—0, f=0, g=0, h = l  +  a, i=  — ■-1-+gm'2, j= 0 ,

k=  -  1, m =m , n=0, q=0, r=0, s=s, t=  — 1 — m, u=0, v=0

62)a= — 1 +  u, b =  — 1, c=4u, e=u, f=0, g=0, h=u, i=0, j= 4 u, k=  — I + u, 

m =  — 1, n=0, q=0, r=0, s=0, t= 0 , u=u, v=u

63)a= — 1 — 3uy, b =  — 1, c=  — 4uy, e=u, f=0, g=0, h=  — 3uy, i=0, j=  — Auy, 

k=  — 1 +  uy, m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=u, v —uy

64)a= -  1 -  ( - 4  +  +15) / ,  b=  -  1 +  / ,  c=  -  ( - 3  +  v ^ )  / ,  e=0, f = / ,  g=  -  / ,  

h=  — ( - 4  +  •/15) / ,  i=0, j = - - ( - 4  +  \ / l5 )  / ,  k = - l ,  m = - l ,  n=0, q=0, r=0, s=0, 

t =0, u=0, v=0

6 5 ) a = - l+ ( 4  +  y/lb) f ,  b = - 1 + /,  c= (3 +  VYE) f ,  e=0, f = / ,  g =  - / ,  h=  (4 +  y/lE) f ,  

i=0, j=  (4 +  VYE) ./, k— — 1, m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

6 6 ) a = - l + ( - 4  +  VYE) f ,  b = - l + / ,  c= ( - 3  +  VYE) f ,  e=0, f = / ,  g= / ,  h=  ( - 4  +  VYE) f ,  

i=0, j=  (—4 +  VYE) f ,  k=  — 1, m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

67)a= —1 — (4 +  VY E )  f ,  b = - l + / ,  c = - ( 3  +  VYE)  f ,  e=0, f = / ,  g= / ,  h = - ( 4  +  VYE) f ,  

i=0, j=  — (4 +  \ / l5 )  f ,  k= — 1, m = — 1, n=0, q=0, r=0, s=0, t= 0 , u=0, v=0

68)a— — 1 +  uy, b =  — 1, c—uy3, e—u, f=0, g —uy, h=uy, i=0, j — uy, k=  — 1 +  uy, 

m — — 1, n=u, q=uy, r=u, s=0, t= 0 , u=u, v=uy

69)a= — 1 — 3uy, b =  — 1, c=  — uy3, e=u, f=0, g=  — uy, h =  — 3uy, i=0, j=  — uy, 

k=  — 1 +  uy, m = — 1, n =  — u, q=  — uy, r=  — u, s=0, t= 0 , u=u, v=uy

70)a= — 1, b=  — 1, c=  -  ( l  +  y/3) g, e=0, f=0, g=g, h=0, i=0, j=  -  (2 +  VE) g, 

k=  — 1, m = — 1, n=0, q=0, r=0, s—0, t= 0 , u=0, v=0

71)a= — 1, b=  — 1, c=  ( - 1  +  y/3) g, e=0, f=0, g=g, h=0, i=0, j=  ( - 2  +  y/3) g, 

k=  -  1, m =  -  1, n=0, q=0, r=0, s=0, t= 0 , u=0, v=0
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P ro p o s it io n  63 The only cases where o satisfies the braid relations and is torsion 

compatible are :

11 ) a -  — 1 + h, b— — 1, c=h, e=0, /= 0 , g=0, h=h, 2= 0, j=h, k= — 1, m = — 1, 77= 0, 

<7= 0, r=0, 5= 0 , t=0, 22=  0, t;=0

12) a = — 1 +  j ,  b = -  1, c - j ,  e=0, / = 0, g= 0, h=j, 2= 0, j= j ,  k = -  1, m = -  1, n=  0, 

q=0, r=0, 5= 0, t=0, u=  0, v=0

13)a— — 1 4- c, b= — 1, c=c, e=0, /= 0 , g=0, h=c, i= 0, j= c , /c= — 1, m = — 1, n = 0, 

<7= 0, r= 0, s= 0, £=0, 27=0, t;=0

1 4 )a=a, b=— 1, c = l+ a , e=0, /= 0 , g=0 , /i= l+ a , 2=0, j= l+ a ,  A;=— 1, m = — 1, n = 0, 

<7=0, r=0, 5= 0 , £=0, 27=0, 77=0

34) a= — 2, b= — 1, c=  — 1, e=0, /= 0 , g=0, h= — 1, 2= 0, j/= — 1, £;= — 1,

771= — 1, 77=0, 7=0, r=0, 5= 0, £=0, 77= 0, 77=0

35) a = —1, 6= —1, c = — 1, e=0, /= 0 , 7= 0 , h=l+a, 2=0, j '= — 1, /c = - l ,  777= - 1 ,  77=0,

7=0, r=0, 5=0, £=0, 27=0, t;=0

P ro p o s it io n  64 The only cases where a satisfies the braid relations and preserves 

a diagonal metric are :

All cases work except 2 , 11 ,12 , 13 , 15 , 39 , 47

The others are listed with additional restriction if necessary 

1) m  = b = — 1 

^777 =  a =  6 =  — 1 and t — 0

4)b =  777 =  a =  k

5) f  =  0 and m  = b =  —1

6)b = —1 and £ =  0 

7; a =  b

8) b =  —1 cmd /  =  £ =  0
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9) Ok

10) g = 0

11) h =  0

12) j  = 0

13) c =  0 

1 4  a = - 1

Ok

17) Ok

18) Ok

19) Ok

20) Ok

21) Ok

22) Ok

23) Ok

24) Ok

25) g = 0

26) g =  0

27) k =  - 1

28) v =  0

29) Ok

30) c = 0

31) j  = 0

32) j  = 0

33) a =  - 1  

3^; j  =  0

35) a = - 1
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36) a = b = — 1

3T) j  = f  = 0 and b =  — 1

38) s = /  — 0 and m  = b =  — 1

4 0 ) u = 0

4 1 ) u = 0 

u =  0 

u =  0

44) u = s = f y

45) t = - f

46) h — v = u = 0

48) f  = i = t = 0 and b = m  =  — 1

s =  £ =  t =  0 and b = — 1

50) i — h ■=■ t — 0 and b = — 1

51) i. = h. = t. = s = 0

52) i = h = t — s — 0

55; Ok

54) Ok

55) i = q — 0

5#,) 2 =  r  =  0

57) z =  0 and k =  — 1

58) 2 =  0 and /c =  —1

2 =  n =  0

a =  b = — 1 

d i j  5 =  0 and s = a =  — 1 

n =  0 

a  =  0

98



6 4 )1  = 0

65) f  =  0

66) /  =  0

67) f  = 0

68) u =  0 

u =  0

70) .9 =  0 

77) 3 =  0

3.8 Star com patibility

The condition for the covariant derivatives to be star compatibile is th a t (see propo­

s i t i o n ^  in section 2.7)

c-'ab  €  C  = >  ■) =  Sa,c. (3.47)
d

To calculate this in M athem atica, we use the following statements:

The Kronecker delta is

delta[ppp_, qqq_]:=Which[ppp = =  qqq, l,T rue, 0]

The following function assigns the number (see section 3.6) in the class C  to the 

representing m atrix, with 0 returned if the matrix is not a representive of C. 

numberfrommatrix[m_]:=Which[m = =  rep[l], 1, m = =  rep[2], 2, 

m  —= rep[3], 3, m  = =  rep [4], 4, m, = =  rep[5], 5. m  = =  rep[6], 6, m  = =  rep[7], 7, m  = =  

rep[8], 8, True, 0]
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The next function takes these numbers, and finds the corresponding Christoffel 

symbol which will be 0 if we use r j c with a, 6, c not in C. 

newgam[a_, b_, c_]:=Which[a = =  0, 0, b -- -- 0, 0, c - =  0, 0, True, symbol[a, 6, c]]

Now we implent (3.47), using y[—] as conjugate 

Sum[

(newgam[aaa, numberfrommatrix[rep[aaa].rep[bbb].Inverse[rep[ddd]]

], ddd] T  delta[aaa, ddd])

(7 [newgam [

numberfrommatrix[Inverse[rep[ddd]]],

numberfrommatrix [Inverse [rep [bbb]]. Inverse [rep [aaa] ]. rep [ccc] ], 

numberfrommatrix [Inverse [rep [ccc] ]]

]] +  delta[ddd, ccc]

)

— delta[aaa, ccc], {ddd, 1, 8}] / / . [ 0] —> 0}

Now we use the letters for the Christoffel symbols 

formula[aaa_, bbb_, ccc_]:=Sum[

(newgam [aaa, numberfrommatrix [rep [aaa]. rep [bbb]. Inverse [rep [ddd] ]

], ddd] +  delta[aaa, ddd])

(7 [newgam [

numberfrommatrix [Inverse [rep [ddd]] ],

numberfrommatrix [Inverse [rep [bbb] ]. Inverse [rep [aaa] ]. rep [ccc] ], 

numberfrommatrix [Inverse [rep [ccc] ] ]

]] -f delta[ddd, ccc]

), {ddd, 1, 8}]—delta[aaa, ccc]//. {endgam0[l, 0, 1, 0, 1] —> a, endgam0[l, 0, — 1, 0, 1] —> 

b, endgam0[l, 0, 1, 0, - 1] —> c, endgam0[l, 0, - 1, 0, - 1] —» d,

endgam0[l, 2 ,1 ,2 ,1] —> e , endgam0[l, 2, - 1, 2 ,1] -» / ,  endgam0[l, 2 ,1, 2, —1] —» g , endgamO
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0, endgam0[l, 0,1, 2,1] —> h,

endgam0[l, 0, — 1, 2,1] —> z, endgam0[l, 0,1, 2, — 1] —> j,  endgam0[l, 0, — 1, 2, — 1] —> 

0, endgam0[l, 2 ,1 ,0 ,1] —> k, endgam0[l, 2, —1, 0,1] —» m,

endgam0[l, 2,1, 0, —1] —> n, endgam0[l, 2, — 1, 0, — 1] —> 0, endgam0[l, 1,1, 3,1] —> 

0, endgam0[—1,1, —1, 3, —1] —> p , endgam0[l, 1, —1, 3,1] -* q,

endgam0[—1,1,1, 3, —1] —> r, endgam0[—1,1, —1, 3,1] —> s, endgam0[l, 1,1, 3, —1]

t , endgam0[l, 1, —1 ,3 , —1] —> u, endgam0[—1 ,1 ,1 ,3, 1] —> v ,

7[0] -> 0}

And finally implement the conjugates, according to  (section 3.5). This means tha t 

we restrict to the case of preserving a diagonal metric . 

MatrixForm[Table[formula[3, y , x], {x, 1,8}, {y, 1, 8}]] / / .{ 7 [a] —> 5,

7 [6] -» a, 7 [c] -> c, 7 [rf] ->• d, 7 [e] -> z, 7[/] -> ^  7^] A 7 ^ ]  f ,

7 W e, 7[j] -> p, 7[fc] -> m, 7[m] -> /c, 7[n] n, 7W P, 7 fa] -> 9,

7[r] —> r, 7 [.s] —> iL'y[t] —>• u,7[?/.] —» .s,7[?;] —* £}

This comes from the summary of section(3.5), given in equation (3.46) 

c, d, n, p, q and r  are real and a = b* b = a* e =  i* 

f  = h* g = j* h = f* i = e* j  = g* 

k = m* m  = k* s = u* t = v* u =  s* v = t*

In equation (3.47) we have three parameters each taking values 1, . . . .  ,8. In the

N athem atica code formula [ x, y,z ] we also have three parameters. The easiest way 

to look at this is to print 8 matrices, each 8 by 8. For example, here is formula [3, y, 

x] (as in the M athem atica above ).
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The result is th a t  the following m atrix needs to vanish :

;(1 4  &) 4  (1 4  m)q  4  er 4  ir 4  ns  4- gt +  nu  4  qv 0
I

e(l +  m)  4  gn + j n  4  2qr -f (1 +  k)s  + tu 4  iv h( 1 4  m) + es + (I + k) t  + f

— 1 4 gj  4  (1 4 A;)(l 4 m)  +  n 2 4  q2 4  r2 4 es 4  iu 4  tv -1  4  f h  4  (1 4  k)( l  T m)  4  esj 

gi 4  (1 T k fn  4 ( 1 4  Tfifn T eq T qs  -4 f t  T j u  T t v  0

g(l  4  m)  4  en 4  in 4  (1 +  /c)g 4  rs  4  qt 4  ru 4  j v  0

z(l 4  /c) 4  2ng 4  gr 4  j r  +  et 4  (1 4  m)w 4  su / ( l  4  fc) 4  es 4  ht 4  (1 4  m i

ei 4  gq 4  j q  4  2nr  4  (1 4  k)t 4  su 4  (1 + m)v  (1 4  b)e + hi 4  z(l +  k) 4  n

ej  4  iq 4  (1 4  k)r  4 ( 1 4  m)r  -4 gs 4  nt 4  qv, -4 nv  0

0 c f  4  (1 4  a)g 4  ch, 4  2gh 4  (1 4  b)j 4  2f j

(1 + n)s 4  .f v -4 (1 +  7T?)7/ 4  tu (1 4  e ) /  4  eg 4  '1 4  b)h 4  2/ h 4  cj 4  2gj  

— 1 4 ( 1 4  a) ( 1 4  6) 4  3m —1 4  (1 4  a.)(l 4  6) 4 c2 4  3//z 4  3gj  

0 (1 4  a)c 4  (1 4  &)c 4  3#/i 4  3 f j

0 c f  4  (1 4  a) <7 4  ch, 4  2gh 4  (1 4  6)7 4  2 f j

(1 4  a)s 4  f u  4  (1 4  m)it 4  tu  (1 4  a ) f  4  c# 4  (1 4  6)/i 4  2f h  4  cj 4  2gj  

(1 4  a)s 4  f  v 4  (1 4  m)u 4  tu  ( 1 4  a ) /  4  cc/ 4  ( 1 4  6)h 4  2f h  4  cj  4  2</j 

0 c f  4  (1 4  a)g 4  ch 4  2 gh 4 ( 1 4  b)j 4  2 f j
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ej +  iq 4  (1 +  k)r  4 ( 1 4  m )r  4  gs 4  nt  4  qu 4  nv  0

ei 4  gq 4  jq  4  2nr  4 ( 1 4  k)t 4  su  4  (1 4  m )v  (1 4  b)e 4  hi 4  z( 1 4  k) 4  iv

- 1  4  gj  4  (1 4  k)( 1 4  m)  4  n 2 4  q2 4  r2 4  es 4  iu 4  tv - 1  4  f h  4  (1 4  fc)(l 4  m) 4  es 4  tv 

gi 4  (1 4  k)n  4 ( 1 4  m )n  4  eq 4  qs 4 ^ 4  j u  4  rv  0

j(  1 4  fc) 4  (1 4  m)q  4  er 4  zr 4  ns 4  gi 4  nu 4  gu 0

e(l  4  m) 4  gn 4  j n  4  2gr 4 ( 1 4  /c)s 4 iu 4 zu h( 1 4  m) 4  es 4  (1 4  k)t 4  f v

z(l 4  k) 4  2nq 4  gr 4 j r  4  ei 4  (1 4  m)u 4  su / ( I  4 A:) 4  es 4 ht 4 ( 1 4  m )v

g( 1 4  ra) 4  en 4  in  4  (1 4  k)q 4  rs  4  qt 4  ru  4  j v  0

0 g( 1 4  m) 4  en 4  in  4  (1 4  k)q 4  rs 4  gi 4  ru 4  ju

/ ( I  4  /c) 4  es 4  ht 4  (1 4  m )v  i( 1 4  /c) 4  2nq 4  gr 4  jr  4  ei 4  (1 4  rn)u 4  su

— 1 4  f h  4  (1 4  k) ( l  4  m)  4  es 4  tv  - 1  4  ^j 4 ( 1 4  A)(l 4  m) 4  n2 4  4  r2 4  es 4  m 4  iu

0 gi 4 ( 1 4  /c)n 4 ( 1 4  m )n  4  eg 4  gs 4  ri 4  ju  4  ru

0 ej 4  iq 4  (1 4  fc)r 4  (1 4  m )r  4  gs 4  nt 4  gu 4  nv

(1 4  b)e 4  hi 4  z(l 4  k) 4  iv ei 4  gq 4  jg  4  2nr 4 ( 1 4  k)t  4  su  4 ( 1 4  m )v

h( 1 4  m)  4  es 4  (1 4  k)t  4  f v  e(l  4  m)  4  gn 4  j n  4  2gr 4  (1 4  /c)s 4 iu 4 zu

0 j ( l  4  fc) 4  (1 4  m)g 4  er 4  zr 4  ns  4  gi 4  nu  4  gu

The tree for solving these equations is given in Appendix B. For the note on the 

approach taken to solve the problem, see the note in section 3.7. The result of these 

methods using M athem atica is given in the following proposition.

P ro p o s it io n  65 The covariant derivative V in proposition 61 (V assumed to pre­

serve a diagonal metric) is is star compatible i f  and only i f  one of the following cases 

apply :

1) a= — 1 + x, b= — 1 4 ^ ,  c= 0, e=0, f=0, g= 0, h= 0, z=0, j=0,

k= — 1, m= — 1, n=0 , q=0, r=0, s=0, t=^, u=0,v ^  0,

w=Q,x ^  0, —x —=1, — v —=1 and d , p are real.

103



%) a~ — 1 +  x, b= — 1 +  c=0, e=0, /=0, g= 0, h=0, 7= 0, j=0,

k = - l  + w,  m= -  1 +  n=0, q=0, r=0, 5=0, t=0, u=0, v=0,

w ■=/=■ 0, x  ^  0, —x —=1, —w —=1 and d , p are real.

Combining this with the long list in section(3.7) gives

P ro p o s it io n  66 The covariant derivative V in proposition 65 additionally gives a 

satisfying the braid relations in the following cases :

1) case 1 in proposition (65), is the same as case 1 in the list in section(S.l), with 

an extra condition t = ^ , v = x , giving:

a= -  1 -f x, b= — 1 +  c=0, e=0, f=0, g=0, h=0, i=Q, j= 0,

k= — 1, m= — 1, n=  0, q= 0, r=0, 5= 0, t=^, u=0,v = x, 

w=Q, x ±  0, y = \ ,  2=0

2) case 2 in proposition (65), is the same as case 4 in the list in section(3.7), with 

an extra condition x = w giving :

a=  -  1 +  x, 6= -  1 +  I ,  c=  0, e=0, f=Q, g=0, h= 0, z=0, j=  0, 

k= — 1 +  w, m — — 1 +  n=0, q=0, r=0, 5=0, t=0, u= 0, v=0,

w 7̂  0 , y = - ,  z = -/ 1 O yj 7 yj

P ro p o s it io n  67 There are no cases which satisfy the conditions of proposition 65, 

and are additionally star compatible and torsion compatible.

p ro o f  : Use proposition 65, and section 3.4.2. □

Classically for a Riemannian metric there is a unique torsion zero covariant derivative 

which preserves the metric, called the Levi-Civita connection. We see tha t this is 

not the case here. There are two ways of looking at this result. The first is tha t 

in a noncommutative context the existence of such covariant derivatives is just not 

expected. The second would be to find weaker conditions for which a weaker idea of 

” Levi-Civita connection” existed.

104



3.9 Calculating the Torsion

Using the single letter labels for the Christoffel symbols (3.4), the condition for 

torsion compatibility (3.4.2) is 

s = r = i — n = 0 b = c f  = g 

h = v — 1 — k j  = t — 1 = m  = q — 1 

Assuming th a t we have torsion compatibility, we have

V£° =  a£° 8  £° +  b(£° 8  f°' +  £0' 8  f  °) +  d£0' 8  f°' +  e ^ 1' 8  f x' +  £2 8  £2 +  £3' 8  £3' ) +  

<?(£18 £ 1'+ £ 1/8 £ 1+ £ 28 ^ / +  £2'8 £ 2 +  £38 £ 3'+ £ 3/8 £ 3) +  A:(£08 £ 1/+ £ 1'8 £ 0 +  £08  

(2 + (28̂ ° + (°8̂ 3/+(3/ 8£°) + m(£°8£1 + £°8£2/ + £° 8£3 + £] 8£°-f £2' 8£° + £3 8 

f°) +  p(?1# 8  £3 +  £2 8  f 1 +  £3' 8  £2' ) +  (m +  1)(C1 8  £3' +  £3 8  f 1# +  £2' 8  f 1# +  f 1 8  £2 +  

£2'8 £ 3'+ £ 38 £ 2) +  (/c +  l)(£ 38 £ 1+ £ 18 £ 2' +  £2'8 £ 3) +  u(£3' 8 £ 1+ £ 1'8 £ 2/+ £ 28 £ 3) 

Now apply A to — V £ °  to get

— A V £ °  =  a£° A £° +  6(£° A £0' +  £0' A £°) +  d£0' A £0' +  e ( f1# A f J/ +  £2 A £2 +  £3' A f 3#) +

A ^ ' + f 1' A ^ + ^ A ^ '  +  f 2' A £ 2 +  £3 A £ 3' + £ 3' A £ 3) +  /c(£° A ^ ' + f 1' A£° +  £ ° A

£ 2 +  £ 2 A£ °  +  £ ° A £ 3' + £ 3' A £ 0) +  m ( £ ° A £ 1 + £ 0 A £ 2' + £ ° A £ 3 + £ 1 A£°  +  £ 2' A £ °  +  £ 3 A 

f ° )  +  P ( C  A £3 +  £2 A +  £3' A £ 2') +  (m  +  l ) ( f 1 A £3' +  £3 A f 1# +  f 2# A £ 1' +  £* A <£2 +

^  a  + ^3 a  e2) + ( k + 1)(?3 a  e + f 1 a  ^2/+ e '  a  e3) + u(e3/ a  e 1+ e 1' a  e2/+ £2 a  e )

From the list in section( 3.3), we have

1) £a A £a = 0

2) £a A £a 1 +  £a 1 A £a =  0, so we get

— A V £ °  =  k ( ( °  A +  f 1' A £° +  £° A £2 +  £ 2 A £° +  £° A £3' +  f 3' A f ° )  +  m(£°  A f 1 +  

£° A £2' + ^ ° A ( 3 + ( 1 A ( °  +  £2' A £° +  £3 A f°) +  p ( (1' A £3 +  £2 A f 1 +  f 3' A £2') +  (m +  

l ) ( f 1 A £3' +  £3 A f 1# +  £2' A £]' +  C1 A £ 2 +  £2' A £3' +  £3 A f 2) +  (A; +  l ) ( f 3 A f 1 +  f 1 A

^2' + e2/ a ^3) + ix(c3' a e1 + e ' a c2/ + e2 a a
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Prom (2.8 )

d r  =  A f  +  r  A f )  -  £  5c, a„e A A
a e C  b ,a e C

We get

a r  =  ( r  A r + r A r + r ' A r + r A r ' + r A r + f ° A r ) - ( r A r ' + f 2' A r + r A r )

hence

d£° -  AV(° -  k ( e  a  f 1# +  f 1# A (° +  ( 0 A ( 2 + ( 2 A ^ 0 +  ( ° A  £3' +  £3' A f°) +  (m +

l)(f°  A C1 +  £° A £2' +  (° A ( 3 +  ( J A (° +  £2' A £° +  £3 A f°) +  p ( f1# A £3 +  £2 A C  +

^ A ^ ' j  +  fm +  l ) ^ 1 Ae3/+ e 3 A ^ 1/4-e2/AC1' + ^ 1 Ae2 +  ^2' A e 3/+ e 3 Ae2) +  A:(̂ 3 A 

f 1 +  f 1 A f 2' +  £2' A £3) +  u(£3' A f 1 +  f  *' A £2' +  £2 A £3)

Use relations (3-10) in the list in the section (3.3) to substitute

3) £7r*+1 A — —£^+2 a  f^+i — £*<+3 A ^7Fl+2(not used)

4) W hen i =  0 we get £3 A f 1 A £2' — t;2' A £3 

W hen 2 =  1 we get (° A ( 2 =  — £2 A £3' — £3' A £°

W hen i = 3 we get £2 A £° =  —f° A ^  A £2

5) C3#A f 2# =  —̂ A ^ - ^ A ^ - f 1 A ? 3'

6) Z1' A £Q/ =  —£2 A £3 +  £Q/ A £2 — £3 A f -1/(not used)

7) £3 A £ 2 =  _ £ 0  A ^3 _  f  i a  £° -  £2 A f 1

8) £Q/ A f 1’ =  —£3' A £Q/ — £2' A £3' — Z1' A £2/(not used)
9) ^  A £i' =  — A ^2' _  ^3 A _  ^i' A £3

10) £Q/ A £3' =  — £2 A £0' — f 1 A £2 — £3’ A £!(not used)

Now use these relations to get rid of all cases

d£° -  A V £ °  =  k ( e '  A £° -  £2 A £3' -  f 1' A £2 +  £0 A £3') +  (m +  1)(?° A f 1 +  £2' A £° +

£ 3 A C1' +  f 1 A £3' -  C1' A £ 3' +  f 1 A £2 +  £ 2' A £3' -  £2 A ^ ) +  p ^ 1' A £3 +  £2 A -  £° A

f  1 _  ^  A  ^ 0  _  £1 A  f 3 ' )  +  u ( £ 3 '  A  £ l  +  £ l '  A  £2' +  £2 A  £ 3 )

The condition for the torsion to vanish is tha t k = p = u = 0 and m  = — 1.
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From section 3.5 we have the condition for V to preserve a diagonal metric, which 

includes k = m*, so we can not have torsion zero for such a metric preserving V.

P ro p o s it io n  68 Torsion zero is given by covariant derivatives with h = s = r =  

i = n = k =  p = u = q = t = Q , j  = m  = — 1 , v — 1 , b = c , f  = g .

C o ro lla ry  69 There are no zero torsion covariant derivatives which satisfy the braid 

relations.

p ro o f  : Use proposition 63, and proposition 68. □

P ro p o s it io n  70 There are no zero torsion covariant derivatives which preserve a 

diagonal metric.

p ro o f  : Use proposition 61, and proposition 68. □

3.10 Summary for chapter 3

We summarise the properties of ’’covariant derivatives” on A 4 for the given calculus 

which are £4 invariant:

M  Preserves a diagonal metric from Proposition 61 

S  Preserves the star operation note *

T  Torsion compatible from section 3.4.2

TO Zero torsion from Proposition 68

B  Braid relations from section 3.7

* N o te  : We did not consider S  by itself, but only M f l 5 ,  because of the complexity 

of the equations.
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Property result

M n s Proposition 65

M n S n B Proposition 66

T O D B 0 (see corollary 69)

B n T Proposition 63

b h m Proposition 64

M n s n T 0 (see proposition 67)

M n T Proposition 62

M  n  TO 0 (see proposition 70)

(3.48)
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Chapter 4 

The Heisenberg group

Here we will study a rather different case, to the previus chapter, we now take an 

infinite discrete group. This was recently taken as an example of a noncommutative 

fibering with a classical base space by [43] and [44]

4.1 The Heisenberg group

The Heisenberg group H  is defined to be following subgroup of M3(M) under multi­

plication.
/ 1 n k

0 1 m

0 0 1

\
: n, m, k G z j
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We can take generators for the group u, v , w , where w is central and there is one 

more relation uv  =  wvu  . The generators correspond to the matrices

u

I 1 1 0 

0 1 0 

0 0 1

\
v =

( 1 0 0 

0 1 1 

0 0 1

\
w =

( 1 0 1 

0 1 0 

0 0 1

\

There is an isomorophism 6 : H  — > H  , for every matrix

a c

h d
G 5L (2 ,Z ),

given by the formla 9{u) — uavh , 9(v) = ucvd , 6(w) = w. 

To check this,

6(u)6(v) 

6(w)6(y)6(u)

uavbucvd

w ' bcua+cvb+d

wucvduavb

=  w ]- aduc+avd+b (4.1)

so the relation uv = wvu  implies 1 = ad ~  be.

From vu = w~1uv  and w central we can prove by induction th a t vnu m = w~nrnumvn.

4.2 Differential calculus on the Heisenberg group

We assume th a t there is a differential calculus on the group algebra K H  of H  . For 

x  G {?/, u, w} , we write ex = x ~ l • d,x, a left invariant clement of 1K H  (see section
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2.2)

We suppose tha t QlK H  is free as left K H  module, with generators {eM, ev, ew}. This 

means th a t every element of Q1K H  can be w ritten uniquely as au.eu + av.ev + aw.ew, 

for au, av,a w G KH.

We assume th a t each x  commutes with ex, and th a t w commutes with all of them. 

We assume th a t ev • u = u • (ev 4  A), and eu • v =  v • (eu +  B),  and furthermore tha t 

A commutes with u and B  commutes with v. By induction

u~nevun = ev +  nA  , v~neuvn = eu 4- n B  (4.2)

As w is central, we get

uw = wu 

du.w +  u.dw = w.du +  dw.u.

We assumed tha t w commutes with each ex . So,

u.dw = dw.u ,

i.e. u commutes with ew. Likewise we see tha t v commutes with ew, so ew is central. 

From the relation on the group uv = wvu  , we apply d to get

■1 -1v ‘ • eu - v + eu =  e 4  u~levu 4  e“ 

eu + B  + ev =  e“ 4 e , ;4 / l 4 e u

(4.3)

(4.4)
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So, the relation on the group implies

B -  A = ew. (4.5)

We want 6 to preserve the relations of the differential calculus, so 

9{eu) =  9(u)~1dQ(u),

0(eu) = v~bu~a(d(ua) - vb +  ua • d(vb)).

As we assume th a t u commutes with du and v commutes with dv, 

u~nd(un) = neu , v~nd(vn) = nev. So,

e{eu) = a v - t‘euv b+ bev

=  aeu +  abB + bev Similarly ,

6{ev) =  d(v)- 'd0(v)

= v~du~c(d(uc) ■ vd -+ uc ■ d(vd))

=  c v - de uv d +  d e v 
=  ceu +  cdB +  dev and 

0(ew) = ew.
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In the calculus ueuu 1 =  eu so if we apply 9 to both sides we get 9(u)9(eu)9(u *) 

9(eu), and this must be true, and gives another condition on 6.

e{u)9(eu)0{u-1) = 9{eu)

uavb9(eu) v - bu~a = 9(eu)

uav b(aen +  abB +  bev)v~hu~a =  aeu +  abB +  bev

vb(aeu + abB + bev)v~b = u~a(aeu +  abB +  bev)ua

v baeuv~b +  abB  +  bev = a,eu +  u~aabBua +  u~abevua

If we also assume th a t B  commutes with ?/, then we get

aeu — abB -f abB +  bev = aeu +  abB +  bev 4- abA 

aeu + bev =  aeu +  bev +  ab(B +  A).

So ab(A +  B)  =  0. But this should be true for all matrices in S,L2(Z), so A  +  B — 

We now apply 6 to vevv~ l = ev

6(v)9(ev)6(v l ) 

ucvd6{ev)v~du - c 

vd(ceu +  cdB  +  dev)v~d 

vdceuv~b +  cdB  +  dev 

ceu — cdB  +  cdB  +  dev 

cen +  dev

=  6{ev)

=  6(ev )

= u~c(ceu +  cdB +  dev)uc 

= ceu +  u~ccdBuc +  u~cdevuc 

=  ceu +  cdB +  dev +  cdA 

=  ceu +  dev +  cd{B + A)
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Then cd(A +  B) = 0, so B  T  A  =  0, and we find B = —A.

So A = B  =  \ e w from  (4.5), and ew commutes with u , and v and w.

We summarise this in the following proposition

Proposition  71 There is a differential calculus on K H  with (left invariant) gener­

ators ex = x ~ l dx for x  G { u ^ v ,w } ,  and relations,

x • ex = ex • x for  all x  G { u, v, w}

x  • ew — ew • x

w ■ ex — ex - w

u n

Further the map 0 in section 4.1 induced by the matrix

extends to a map of 1-forms given by

6(ew) = ew

0(eu) = aeu + bev + — ew, 

d(ev) =  ceu +  dev +
£

P ro p o s it io n  72 The left invariant 1-forms are just sums of numbers times ex 

P ro o f  : Suppose a.ex is invariant and apply X, to get
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a(i) <S> a(2 )ex =  e (8> aex,

so, as we have free generators, a^) 8  a^2) — e<S> a. Then apply e to the second factor 

a (i)e(a (2)) — e.e(a), so a = e.e(a) is a multiple of the identity. □

This proposition means th a t where we do calculations on left invariant forms, we do 

not have to worry about y.ex where y is an algebra element, we just have a numerical 

coefficient. I.e. the forms ex are a vector space basis for the left invariant forms.

4.2.1 Star operation

The group algebra K H  has a star operator x* 

extend to the 1-forms we need (ex)* = (x~l dx)*

(exy  — dx~l • x 

— —x ~ 1dx 

= —ex

Here we have used d{xx~l ) = 0, using the product rule

dx • x ~ l +  x  • d(x~1) = 0

and rearranging to get

d(x~l ) = —x ~ l ' dx • x ~ l .

=  x  2, for all x  G H. For this to 

=  dx* • £*-1 , so
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4.2.2 The higher forms

On a Hop)f algebra H  we have a coproduct which is compatible with the product,

A h  = h {l) (g> h(2),

A(hg) = h {l)g{l) <g)/i(2)p(2).

This coproduct may extend to a left coaction on the one forms on H  (see section 

2.2): Thiis coaction has the formula

A(h • dg) = fyi)p(i) ® h{2 ) • dg^2) G H ® $l l H

and thene may be a right coaction

g(h • dg) = • dgq) a) h^) 9 {2) £ H1/ /  (X) H

for .t in tthe group, A x  = x 0  x  , ex =  x ~ l • dx, and then

A(ex) =  x~ lx eg) x ^  • dx

g(ex) = x ~ l • d,x <S> x~ lx

so A(ex) =  e ® ex and g(ex) =  ex ® e, and so ex are both left and right invariant. 

This m eans th a t Woronowicz braiding (see proposition 13 and section 2.2) is just
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transposition.

$ ( e x ® e y) = ey ® e x.

This means th a t the kernel of wedge is the symmetric tensors, i.e. ex 0  ex and

ex 0  ey +  ey 0  ex, this is because ty(ex 0  ey -f ey 0  ex) = ey 0  ex +  ex 0  ey.

P ro p o s it io n  73 dex = 0 

P r o o f  :

dex =  d(x~ldx)

=  d.r-1 A dx 

— — x ~ ld x A x ~ ldx

= - ex A e ^ O ,  (4.6)

as ex 0  eT Z5 m the kernel of A . □ .

4.3 Covariant derivatives on the Heisenberg group

We consider a bimodule covariant derivative V on E  = Q}A (see section 2.6), where 

A  is the group algebra of the Heisenberg group. We suppose th a t V is left invariant 

to the coaction of A, so each V (e;E) is a sum of numbers times ey 0  ez .

We suppose V to be a bimodule connection, i.e. tha t there is a bimodule map,

a : Q1 A <S>a — > Q}A 0.4 fiM , defined by o{ex 0  dy) =  V (ex • y) — V (ex) • y (see

definition 39).

The definition of a left eovariant derivative is

V(y • ex) — dy 0  ex +  y • V (ex) (4.7)
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Suppose y  =  w,  and remember tha t w  is central and use 4.7

cr(ex 8  diu) = V (ex • w) -  V(ex) • w 

=  V(w .ex) — w • V(ex)

=  dw 8  ex +  w.V(ex) — ic.V(ex)

=  dw 8  ex.

Suppose x =  ?u, remember th a t w commutes with A, 

a(ew 8  dy) = dy <g> ew + y • W(ew) — V ( e w) • y 

and the other cases are : 

cr(eu (8) du) = du (8) eu -I- u • V (eu) — V (eu) • u 

<j(ev 8  du) =  dv 8  eu +  u • V (ev) — V (eu) • u

cr(eu (X) du) =  du 8  ev -  \uFJ(ew) -  \du  00 e™ +  u • V(eu) -  V(ew) • u 

cr(eu (8> du) =  du 8  eu +  u • V (eu) -  V (eu) • u -f ^ u V ^ )  -I- |d u  8  ew.

As er is a right module map

cr(ex 8  dw)w~l =  (j(ex 8  ew) =  e™ 8  ex

cr(e™ 8  ey) = ey 8  ew +  yV (e1")y_1 — V (e1<;)

a(eu 8  eu) =  eu 8  eu +  uV (en)u_1 — V (eu)

cr(eu 8  eu) =  ev 8  eu +  u V fe ^ u -1 — V (ev)

crfe^ 8  eu) =  eu 8  — |u V (e u’)u _1 +  uV (eu)u_1 -  V fe1')

cr(eu 8  eu) =  ev 8  cu +  (ew)v~l +  uV(eu)u_1 — V(eu).

Lemma 74 For

9 =  9xveX ® ^  4̂ ‘8^
z,y€{u>v,iv}
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we have

u lgu — g 

v~1gv — g

Proof: Use the commutaion relation in proposition 71.

As a consequence of this result, if we assume th a t Vfe™) commutes with all elements 

of A, then for some numbers a, b , c we have (putting g =  V (et") in lemma 74)

V (ew) =  aew 0  e" +  b(ev ® ew -  ew ® ev) +  c(eu ® ew -  ew 0  eu) (4.9)

We write the covariant derivatives of eu and ev as

V e“ =  <t>xyez ® ey and V e v =  ^  <8 ev. (4.10)

P ro p o s it io n  75 To be torsion compatible (see proposition 41) the following condi­

tions on V in 4-9 and 4-10 must be satisfied, b = c = 0 , <fvu =  <j>uv , ipvu = fi>Uv

P ro o f: The condition for V to be torsion compatible is Image (cr +  id) C kernel A. 

Now calculate

( 0  +  id)(ew 0  eu) =  eu 0  ew +  ew 0  eu

{a + id)(ew ® ew) = 2ew ® ew

(cr +  id)(eu 0  e™) =  ew 0  eu +  eu 0  ew

ou 0  euj( ^ Pun) T Cu; 0  Cu( 2 9vu) T Cur 0  ev( pun)

/ - !  N 1 1 XT ev 0  £u;( ^ gw) T Sly 0  CuX^Puu gvw ^9wv)
1 1 1

ew; 0  eu(—guu) T  eu 0  ew(—guu) T  ew 0  ^("Puu)

A  N / 1 1 1 \TCu 0  6id( f^gvu) T  Cu; 0  Cu;( , Puu T  n 9uW T  ^ 9wu) •
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(cr 4- id)(ev 0  ew) = ew 0  ev 4- ev 0  ew

(a 4- id)(ew 0  ew) =  e,; 0  e™ 4- e™ 0  ev

(a +  id)(eu 0  eu) = 2eu 0  eu 4- u (V e u)u~l — Veu

(cr 4- id)(ev 0  ev) =  2eu 0  e11 4- — V e v

(a 4- id)(ev 0  ev) =  ew 0  eu 4- eu 0  ev 4- v{Veu)v~l — Veu 4-

(cr 4- id)(ew 0  eu) = eu 0  ev 4- ev 0  eu 4- u('Vev)u~l — Wev —

Then to be torsion compatible, we have the restriction th a t the following things are 

symmetric

1 )u{Veu)u~l -  Veu

2)v(Vev)v~l -  Ver’

3)vCVeu)v~' -  V e“ +  ^V e“

4))/(Ve”)? / '1 -  Ve" -  ^ V e w. (4.11)

Now we get

-  Vfiu =  ® ( - i e ” ) -  0 „ „ ( - |e w) ® e“ +  <t>vv( - ( .- \e w) ® e”

- e ” ® [ ~ \ e w) + ( - \ e w) <S> ( - ^ “ )) -  ^ ( - 56*) ® e* 

-<Pwvew ® (“ J 6'")

For the following to be zero we get b =  —’ to be symmetric as follows

t) ( V e > - 1 -  Ve“ +  i v e 1" =  ® ( ie 1") -  ® e“ +  ( ie 1") ® ( i e” ))

- 0 ud( ^ O  ® e” -  ® ew -  0„ue” <8> (^e“ )

<X> ( i e” ) +  ^  «  e” +  ^  »  e" -  e” ® ev)
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+ ^(e“ ® ew -  ew ® e")

Now consider

V e v = 'ipxyex ® ey 

giving the following which is symmetri, if ij)uv = iJjvu,

v ( V e v)v~l — V e” =  ® ( I e“ ) _  ^ ( I ^ )  ® e” +  ^ ttu( - ( i e"') ® e“

- e “ gi ( l e “ ) +  ( l e “ ) ® ( | e “ )) -  ® e“

- f c u e ” ® (^e” )

Finally,

u{Vev)u~l — V e” — ^Ve*" =  ^ ( - e ” ® ( ^ e * )  -  ( ^ e ” ) ® e” +  ( ^ e “ ) ® ( ^ e “ ))

- ip v w i^ e '" )  ® e” -  tl>vu(-£-ew) ® e” -  0„„e“ ® (-^-e” ) 

- ^ e ” ® ( - y e’") “  5 ae"' ® eW -  ^  ® e” -  e” ® e”)

- ^ ( e “ « e w - e u’ M e“)

For this to be symmetric, we need b — 0 □.

4.4 The matrix for a

Write cr as a m atrix cr(ex ®ev) =  q T,xyep®eq and we write as a 9 by 9 matrix, 

using the conventions 

eu ® eu i-> x 1, eu <8> ev i-> x2, eu (8) e™ i-> x3 

ev 00 eu h-> x4, ev 00 eu i—» x5, ev 00 i-> x6
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ew <8> eu i—> x7, x8, ew ® e™ h-» j:9

We calculate the entries of E using the convention from 4.9 and 4.10. We consider

the torsion compatible case only ( see proposition 75)

For example cr(xl ) = cr(eu 0  eu) = x 1 +  u V ( e u)u~l — V ( e u) = x 1 +  ^ ( e u ® e w +

e™ 0  eu) +  0  ev +  eu 0  ew +  \ e w 0  e™) 4- { ^ f -  -f- ^ ) e u' 0  e™

We summarise the results as
  ^ .1  _ |_  <fiu v  J . 3  j <fiu v  J ,7  | 4>VV ^ . 6  | <fivV ^ .8  j ^4>VV_ _ |_  (p w v  j 0UW  ^ 9

  ~ ,4  __  <fiuu ™ 3   0  u u  ~ ,7    0 u u  t 6    0 m ;  ^ 8  | /  0 u u    0 m u  i 0 u m  i \  ~>9X q ‘f' r) w rt X a X I \  ̂ Q 1 n I 0 /

=  X7

  ,̂2 _ |_ ifiu v  J .3  j Ip vu  j j  j ty v v  jrX> | lAtnj ^ , 8  | /  Ipvv  j ^ v u )  j ifiw v    — W 9
2 2 2 2 4 2 2 2

  ~ ,5  ___  'tpuu  ~ 3  _ 0 U U  ~ 7  _ 0 K U  ^>6 ___ V u u  t 8  I Z V ^ru  _ 'Ipuw   "tpwu \
— X 2 2 2 2 ' 4 2 2 ^

^ (x 1 

cr(x 

<j(x 

cr(x 

cr(x 

cr(x6 

cj(x7  

(t(x 8  

cr(x9

Assuming th a t cr is torsion compatible, we set

—  x 

=  x3 

=  x6 

=  x9

*'Puv 2d *Pvui $vv 4e, 0uu 4 /

0iU1> 4” 0i>u; 2 p , 0utt> 4” ^ W U  2 / l

ipw  4i, ipuu 4y, tJ-̂uv 2/c

0vio 4~ ijjwv 2m, ipuw 4” 0ivu 2n. (4-12)
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As a result we can build the m atrix as follows 

/

E =

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

d - 2 / 0 k - 2  j 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

2e —d 0 2i - k 0 0 1 0

d - 2 / 1 k - 2  j 0 0 0 0

2e - d 0 2 i - k 1 0 0 0

+  9 f + f  -  h 0 +  i +  m j  - n 0 0 0 1

(4.13)

N o te  det E =  — 1 , so a is always invertible.

4.5 Star com patibility

The condition for the covariant derivatives to be * compatible (see section 2.6) is tha t

If we set

then

crY (* 0  *)<j£ =  Y (* ® *)

cr(ex <X> ey) = ]T
P,<?

(* 0  *)cr(ex <g> ey) = ^ pq&p ® e<?

(4.14)
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Now, using T  as in subsection 1.1.2

T  *(* ® *)cr(ex (8> ey) = ^  ^pqeP ® e<?

f7T_1(* 0  *)rr(ex (8> ey) = ^  ® e?

= X ]  s p"t7(e<’ ® e?)

=  £  ® «*)
p,q,j,k

pqjk

This must be equal to the RHS of (4.14) applied to ex ®ey which is R H S (ex ®ey) =  

T _1 (* ® *)(ex <S) ey) — T _1(ex ® ey) = ey 0  ex .

So the condition for star compatibility becomes

£ S ? » ( S  % y = S VJ5x,k (4.15)
pq

However the summation in this equation is not quite m atrix multiplication. To turn 

it into m atrix multiplication, we use a matrix T  for which

T(ex <g> ey) = ey <g) ex which is 9 by 9, a matrix given by T xy =  1 , i.e. T ^ ^ Z l  =  1,
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and zeros elsewhere, i.e.

1 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 l )

P ro p o s it io n  76 The condition for  V to be torsion cow.patible and to preserve star 

is that all of a , d , e , f , g , h , i , j , k , m , n  are imaginary.

P r o o f  : I f  we solve E T E T  — / 9 =  0, this is equivalent to following matrix vanishing.

( 0 0 0 
0 _ 0 _ 0

d +  d k + h 0
0 0 0
0 0 0

2e +  2e 2i +  2i 0
d d k k 0

2e +  2e 21 +  21 0

0 0 0 0 0 0
0 0 0 0 0 0

- 2 /  -  2 / 1 to 1- 2  j 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

- d  — d —k -- k 0 0 0 0
- 2 /  -  2 / - 2  j - - 2 7 0 0 0 0

- d - d - k - - k 0 0 0 0

+ + •-s
i 1 >• 1 j + j - n — n 0 0 0 0

4.6 The Braid relations

P ro p o s it io n  77 : The condition for  V (from section 4-4) 1° be torsion compatible 

and to have o obeying the braid relations is one of the following 3 cases :
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1 ) d  = e = f  = i =  j  = k = 0

2) a = h + m , d  = f  = i = j  =  k = n = 0

S ) a  =  h +  i - i t  +  m , d =  - 2 i ,  f  =  j , g  =  e( -M+|r +m), j  =  g . k =  

Proof:  We use Mathematica to find the matrix, using (4.13)

(/4 0  E )(E  0  / 3) ( /3 0  E) -  (E  (8) / 3) ( /3 0  E)(E 0  h )  

MatrixForm[test22=z2. z l . z2-z 1. z2. z l  ]

(

-2 i 2

2d2 +  Aek

Ade 4- 8ezf
0

0
- 2 d 2 +  8 e f  

0

- 4 d /  -  8ej

—2d2 — Aek

8 ,—Aej +  dk

d2 +  Aef  -f 2 di — 2ek 
—Aej 4- dk 

- 3 d 2 + I 2 e f +  2 d i - 2 e k
-2 e  (f  +  /  -  h) + 2e ( - §  +  i + m) 4 f (e  + g) +  U  ( f  +  /  -  h) + d ( - §  +  i +  m)  +  4e
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o 
o 

o 
o

o
o

o
o

o
o

*

0 —4 df  +  4 / i  — 4 ej  — 2 dk

8 e f  — 4 ek

Af i  — dk

d2 — 4 e / +  2di — 2e/c 
8 / i  +  4 ej — 3d/c

f _1_  Orji   Opb
■4/(e +  c/) -  d ( |  +  /  -  /i) -  4 ( |  +  /  -  /i) i -  2(e +  g)fe -  d ( - §  +  i +  m)

8 / 2 +  8d? -  4f k

Adf — 4 / i  +  4e/ +  2dk 

4dj -  4f k

0 0 0 0

0 0 0 0

0 0 0 0

—4 / i  +  4 ej  
Adj — A fk  
8 ej — 2 dk

0 0 0 0 
0 0 0 0 
0 0 0 0

- 2 / ( f  + f - h ) + 4 ( e  + g) j  + 2 ( l  + f - h ) k - 2 f { - %  + i + m )  -  2d(j -  n) 0 0 0 0
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—A f i  +  4 e j  +  2 dk +  Aik

—Adi +  8z2 +  8e/c 
8

- i f  i +  i e j

—Adi +  Aek 
8ej — 2 dk 

—Adi +  Aek
2 ( |  +  /  -  /i) z +  2(e +  g)A: -  2d (—§ +  z +  m)  +  2z ( - |  +  i +  to) -  4e(j -  n)

-4 d j  -  8tj

Af i  — Aej — 2 dk — Aik 

8
—2dj — Aij + 2f k  A- k

Af i  — dk 0
—2 dj — Aij +  2 f k  + k2 0

8f i  A- Aej — 3dk 0
( f  +  /  -  h) k +  4 /  ( - f  +  i +  to) +  A: +  i +  to) +  2d(j  -  n) 4- 4?;(j -  n) 0
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! ~ 4(e +  <l)j ~  (i NI

■A dj — 2 k2 8 / j  +  4j k

—8ej — 4ik 

8
■2 dj +  +  2 f k  — k

—Aej +  dk 
-2 d j  +  12zj +  2f k  -  3k 2 

—Aej +  dk

Adj +  2 k2
8
0

0 
0

8 i j  — 2 k2
f  + f  - h )  k - 3 k  ( - §  +  i +  ra) -  4?;(j -  77.) - 2  (f  +  /  -  ft) j  +  2 j  ( - §  +  ?: +  m)

\
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4.7 The m atrix of Christoffel symbols

Here we assume th a t V is torsion compatible, and use proposition 75. refer to (4.12) 

for the notation We use

VeJ' = -  rj 8 ey
y

from (2.10), where T is a m atrix of 1-forms. The minus corresponds to the convention 

th a t differentiating forms gives minus Christoffel symbols. Froin(4.10) we have TJ =

— X^x 4>xy£'T

When y = u , TJ =  -  E x  ^  =  - 4 f e u -  2dev -  <pwuew.

W hen U = v , = - J 2 X 4>xvex =  - 2 deu -  4eev -  (pwvew.

W hen y = w , 4>xwZx — —<t>uweu -  4>vwev -  (j)wwew.

From (4.10) we have V ev =  — ^ x^ ^ x y ^ x ® ey, so T vy = ^2x 'il’xy^x-

W hen y = u -T "  = £ a ^ xuex =  4j e u +  2kev -f iPwuew.

W hen y = v , - r vv = Y l x *l>xVex = 2keu +  4ze" 4- 

W hen y = w , —T” =  ^ x w ^  = 4-

From (4.9) V (e7H) =  ae1/; 0  eu’, so

{ 0 y 7̂  w

—aew y — w

W hen y = u , -T™ =  0, when y — v , — TJJ' =  0, when y = w , -T™ = aeu’

The end result is the m atrix of Christoffel symbols for the torsion compatible case

1 4 /e “ +  2dev + <t>wuew 2deu +  4eev + <pw„ew <t>uweu + <j>vwev + '

T =  -  4jeu +  2kev +  ipwuew 2keu 4- 4iev +  ipwvew ^uw^u +  +  t /w e 1"

0 0 aew )
(4.16)
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A V e J =  -Y^Ti AeV==
^ 4>wUew A eu +  4>wvew Ae" +  0uu,e“ A ew +  </>vtueu A ew ^ 

'ijjwuew A eu +  ipwvew Ae" +  ^ uweu A ew +  Tjjvwev A e™

0

(4.17)

P ro p o s it io n  78 The condition for the torsion vanishing are : 4>wu = 4>uw , $wv =

(puw > Tpwu ^uw Qrid Tpiuv "0vw

P r o o f  : From 1^.11 and the fact that dex — 0 (see proposition 73).

4.8 The curvature

Given th a t dT =  0,the m atrix for the curvature is given by — R = T A T  =

 ̂ 4dk — I6ej  16/e — 4c?2 +  8di — 8ek 4}(j)vw ~  2d(fiuw2d'ipvw — 4eifuw ^

euAeu 8jd  -  8 k f  — 8di -  8ek 16j e  -  4kd 4j(pvw — 2kcf)uw +  2kipvw -  4i\jjuw

 ̂ 0 0 0 y

+ e 7/ A e1"

2dijjwu 4jcj)wv 16/e 4d “I- 8di 8ek 4f(f)yW 2d(j)Uyj2diJ}yyj 4eijjuu

4j<pww -  4fipwu +  2dipwv -  2k(f)wv 16j e  -  4kd 4j<fvw -  2k(j>uw +  2kipvw -  4z^t

0 0 0
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+ e v A ex

46'ijjwu<2k(pWv 4/ (fiwv d̂cfowv 4“ <̂d'ipwv 2k(pl

2 k(j)wu 2dipwu 2dtJjwu 4eiJjwv Atcpyjy 2 k(f)wv 4 cijjwu

0 0

&WVJ $ w u * fiu w  T  2 d l f ) w w  (fiww'tpuw  ^

2 h ( j ) WW ^Pwu^pvw ^ ‘i'lPwiD 'tpwv'&i 

0

The trace of the R  m atrix is zero, this is expected as the bundle is trivial

4.9 Connections which are invariant to the auto­

morphism ©

The covariant derivative, for H a Hopf algebra,

V : Q'H — > VLlH ® n lH.

by our assumption of left invariance reduces to a linear map on the left invariant 

1-forms

V L : L l H  — > L lH  <g> L XH  (4.18)

To see this, remember th a t H  is a Hopf algebra and that

v : n l H  — » n l H ®  n l H
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is defined in terms of V L : L l H  — > L l H  by the Liebnitz rule for a € H  , 77 £ L l H  

by

V(a.rj) + a.V(rj).

We use proposition 35 to see th a t this defines V on all of Q1/ / .  We use the order of 

basis (eu, ev, ew) as (1, 2, 3) for flM , then can write 4.18 using the matrix

f  4 / 4j 0 ^

2d 2k 0

<£uw 0

2d 2k 0

4e 4 i 0

<t>v w VW 0

0WU Tp-WU 0

ŵv 4> wv 0

\  </>ww ŵw a /

Where we use the labelling for the tensor product el ® eJ in the 3 (i — 1 ) + j  position. 

For the matrix

v q j 6 S L 2(2. Z), (ps -  rq =  1) (4.20)
r s J

We have met the map 0  : A  — > A  given by

0 (u ) =  upvr
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0 (v ) =  uqpvs

Q(w)  — w

In proposition 71 the m atrix giving 9 in terms of the basis (eu, evy ew) of fiM  is

0 =

^ p q 0 ^

r s 0

EL HL 1\  2 2 1

The connections which are invariant to 0  are given by

[0<»0].k -  («.0) =  0 (4.21)

This matrix, from 4.21 , is

 ̂ —4f p  4- 4 /p 2 4- 4dpg 4- 4eg2 — 4 jr

— 2dp — 2kr  -f 4 /p r  4- 2dqr 4- 2dp.s 4- 4e<7.s 

2 /p 2r 4- dp<?r H- dpqs 4- 2e^2s +  g0vw -  ripUVJ 

—2dp — 2kr 4- 4f p r  4- 2dgr 4- 2dps 4- 4egs 

—4ep — 4ir 4- 4 / r 2 4- Adrs 4- 4es2 

2f p r 2 4- cfprs 4- dqrs 4- 2eqs2 +  r0 uw — p0vw +  50vw — ripVVJ

2 /p 2r 4- c/pgr 4- dpqs 4- 2eq2s +  qcj)wv — r</\vU

2f p r 2 4-  dprs 4-  dqrs 4 -  2egs2 4-  r</>wu —  p0wv +  s0wv —  ripwv

^ - | a p r  +  / p 2r 2 4b rfpgr.s 4- eq2s2 +  |p r 0 uw 4- |<7-^vw +  +  |<7S0WV +  </>ww -  P^ww
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4 j p 2 — 4 fq  +  4 kpq +  4 iq2 — 4 j s  0

—2dq +  4jpr  +  2kqr -  2ks +  2kps +  4iqs 0

2j p 2r +  kpqr +  /cp<?s +  2zg2s -  g0uw +  p ^ uw -  s t/w  +  # vw 0

—2dq +  4 jp r +  2 /^ r  — 2ks +  2kps +  4?<ps 0

—4eg +  4 / r 2 — 4 25 +  4fcrs +  4zs2 0

2 /p r2 +  kprs  4- kqrs  +  22<?s2 -  qcf)vw +  r ^ uw 0

2jp2r +  kpqr +  /cpq's +  2ig2s -  <?0WU -f p'0wu -  s'0wu +  Qipw 0

2 jp r2 +  /cprs +  +  2zgs2 — <?0WV +  r ^ wu 0

j p 2 r 2 -  ^  +  A : p g r s  +  z g 2 s 2 -  g 0 w w  +  | p r ^ uw  +  | < 7S ^ VW +  | p r ^ w u  +  | < ? s ^ w v  +  VAvw -  s ^ w  0

We require this to be true for all matrices in 4.20 . On the assumption r ^  0 , we 

find
• . - f p + f p 2 +  d p q + e q 2

J 7 T J
■  ^ - e p + / r 2 + d r s + e s 2

r  ’

 ̂— r f p + 2 / p r + r t g r + t ip s + 2 e g .s
r

/ . 2 / p 2 r + d p q 7 - + d p g s + 2 e q 2s + g ^ v w> ruw ' r

/ . 2 / p 2 r + d p g r + d p g 3 + 2 e ( ? 2 s+<?(^>wv
v w u  '  r  )

I . 2 / p r 2 + d p r s + d q r s + 2 e ( ? 5 2 +r<ftuw - p 0 v w + s 0 vw
V v w  * r  )

/ . 2 / p r 2 + r f p r , s + ( i q T S + 2 e g s 2 +r<ftwu - p 0 w v + s 0 WvV̂WV ' r )
/ - g p r + 2 / p 2 r 2 +  2 i ip q r s + 2 e ( ? 2 s 2 +pr'<?!>nw +  (750vW+ p r 0 Wu + q |g 0 w v + 2 0 w w - 2 p 0 ww .

y w w  * 2 r  ’

These conditions make the whole first column of the m atrix from (4.21) vanish .

The top 8 entries of the second column are linear equations in /, e, d whose 

cofficients are long polynomials in p, q, r, s, and these equations must be true for 

matrices in S L 2Z  .
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We substitute in the numeral value of the matrices

1 0 

1 1
and

2 1 

5 3

and find th a t f  — e = d = 0 .

Using these substitutions gives all entries of (4.21), except the last entry of the sec­

ond column zero, and k itself is (for r ^  0 ) .

( 0

0i

0v 

0v 

0v 

^  0v

0

0
(-1 +ps)4> vw 

r 2

0

0
7* 0uw — P0vw S0vw

(-l+ps)0 wv

P0WV ~f~ ’̂0WV
T

apr2 - p r 20iJW +  s0vw -ps20vw-pr20wn + s0wv - p s 24>wv - 2 r 0 ww-+2pr0ww
2r2

\
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Snce k must be independent of p , q , s , r  , this gives (pvw =  0 and <pwv =  0 and k is

0 0 0

0 0 0

0UW 0 0

0 0 0

0 0 0

0 0UW 0

0WU 0 0

0 0WU 0

0 w w
ap r  pr</>U\v pp0wu 2</>ww 2p0ww  

2r a

lor this to be independent of {p, q, r, s} we read (f>ww =  0 ,a =  0u-u, +  0u;u to summarise 

tiis

F ro p o sitio n  79 The torsion compatible connections invariant to the automorphism 

G are pruen by the matrix (see 4-19)

0 0 0

0 0 0

0 u w 0 0

0 0 0

0 0 0

0 0 u w 0

0WU 0 0

0 0WU 0

0 0 0UW +  0WU
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4.10 Riemannian metrics and 2-forms

We need to decide what we mean by a Riemannian metric on an algebra A. As we 

shall see there is no single obvious choice. We only consider left invariant m etrics.

A Riemannian metric ought to be a non degenerate symmetric inner product on 

fiM . However the condition th a t the inner product

is a bimodule map is very strong, and as we shall see in our case, no non degenerate 

such metrics exist .

It will be convenient to look for central elements g  € rather than looking

at the inner product. (If ( ) was non-degenerate, this would be equivalent.)

We consider lemma (74) to find symmetric elements of fiM  <g)̂  fiM  which commute 

with A, and elements of Q2A  which commute with A. If we assume that they are all 

left invariant there is only one symmetric tensor which commutes with A, ew e w 

If we allow g  to be central up to a multiple of e w e w in which case

9uu — Qw — 9uv Qvu 0, and we have 

2 {9vw 4“ 9wv), - i

V l g v  — g — -S M |e m (g uw - f  9wuy  Thus

9  =

^  0 0 guw ^

0 0 9vw

y 9wu 9wv 9ww J

(4.22)

This is degenerate (i.e. the m atrix for is not invertible).

We come to the conclusion th a t A  does not have a  standard Riemannian structure .
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A symplectic form co is a 2 form which is closed (i.e. duj = 0). We restrict ourselves 

t« the left invariant case, where we only consider the finite dimensional vector spaces 

1} A and their wedge products.

Ii tha t case

uj = ujxyex A ey

vhere ujxy is taken to be antisymmetric, and we consider non-degenerate to mean 

tla t the antisymmetric m atrix ujxy invertible. To be able to introduce the symplectic 

fcrm into calculations, we require th a t it is central. This allows us to just write uj in 

a formula, without having it in the original formula.

For example, consider introducing uj into the middle of the expression

e <Su a . f  e E ® A F

IIwe introduce uj here we get e 0 /j uj 0 ^  a.f.

However e 0,4 a . f  — e.a /> so introducing uj here gives

e.a <S>a w f  and e 0 ^  uj 0,4 a . f

For these to be equal requires

e 0,4 (a.uj — cu.a) 0,4 /  =  0.

To just introduce uj arbitrarily into a calculation, rather than having it at the begin­

ning, we should have a.uj =  uj.a all a £ A.

For 2 forms , if uj =  Yhx y ujxyex A ey 

v ^ujv — uj = ^ew A ev(ujuv — ujvu)
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u  l uou — uo =  \ e u A ew (uovu — couv).

Then we have uouv =  uovu for uj to be central, in which case the term eu A ev does not 

appear in Q, so

uouveu A ev +- w vuev A eu — w uv(eu A ev +  ev A eu) — 0.

Now we check where such a left invariant central 2-form uj is closed, i.e. duo = 0.

Form proposition (73) any such uo is closed .

Then uoXiV is the m atrix (w ith order u, v, w )

(  0 0 uouw ^

0 0 00yw

y i oovw bJww j

and the determ inant is still zero !

Here we have used the antisym m etry of A in our example (ex A ev =  — ey A ex ) so

00 =  i  E  u xy^x A ey +  ^  E  A ey

=  — ^   ̂uoxye A ey — -  ^  ^ uoxyev A e
 ̂  ̂ 2  >

=  2 ^  v QQxye A e7 — — ^   ̂uoyxev A e

so without loss of generality we can take the matrix to be antisymmetric. Thus 

we have not had much luck is getting either non-degenerate metrics or symplectic 

2-forms on A. However this will change when we consider the fibration 4.26 later.
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4.10.1 Covariant derivatives preserving the degenerate m et­

ric

Although the metric gab in (4.22) is degenerate (as the matrix for g is not invertible), 

we shall look for connections preserving it.

The entries of the m atrix gab are just numbers, so dg, =  0. From proposition(46), to 

preserve this metric we require th a t gT is antiHerm itian

( g r y  = - g T (4.24)

[Note : A  is Hermitian if A* = A  and A  is antihermitian it A * = —A]. We use the 

form of T in (4.16), so we assume that the connection is torsion compatible. Then

-g. r =

(

y  ̂ ( 1 / 9wu T  4jgWv) T  ̂ (ĉdgwu T 2hgwv) T e (gwutfiwu T  Qwy^wu)

0

0

e (2dgwu T 2kgwv) T e i^^gwu T  4:2Qwv) T  e {g-wû Pwv T  gwv'ipwv)

guwttc

gvui&c

^ (ffwufaiw +  gwvlpuw) T  e (/?um 0i>?w T  9vw'lPvw') T ^ (gwu$ww T gwv^Pwv) T g w w J

1.25)

We use the fact th a t (ex)* =  —ex, and get the following conditions for g. to be 

antiherm itian

141



P ro p o s it io n  80 The conditions for  a torsion compatible connection to preserve the 

degenerate metric (4 -2 2 ) are, in the notation of (4 .16), 

f  9wu “i- j  Qwv 0

dgwu “I- kgwv — 0

^ 9 w u  4” I 'Q u w  —  0

4 * w u 9 w u  “ 1 “  f ^ w u Q u i v    Q w u O '

( P w i ) 9 w U  T  I p w v f j w v  =  g w v O '

and the following are real

g w u 4 >  u w  “ i -  d w v ' i p  U W  ! 9 w u < t>  v w  ~ t ”  9 w v f j  VW  } 9 w u f  w w  +  9 w v f j  W W  4 " ~  9 w w O '

P ro o f:  From (4-24) and (4-25). □

P ro p o s it io n  81 Suppose both gwu and gwv are non zero and set gwv = xgwu. The 

condition that a star compatible covariant derivative is both torsion zero and preserves 

the metric is (in the notation of 4 -1 2 )

C a se l :  When x is real, and f  = —jx ,  d =  ~ kx , e = ~ ix ,  a =  —h — xn  =  - m  -  J , 

and gwu(<f>ww +  +  9 wu& is real, and if a ^  0 , we get gwu is imaginary.

Case2: When x is not real, and a. = j  — f  =  d = k = e =  i =  h =  n =  m =  g =  0,

and gwu(<j)Ww 4~ xxhwu.1) ^  real.

P r o o f  :From proposition 18, torsion zero implies <pwu =  (puw , 4>wv — <pvw , il)wu — 'f’uw 

and 'ijjwv = x]jvw. Using this in the definition of the letters in (4-12), we get <pwu = 

&Uw — hf $wv — (pvw 9 > P̂wu P̂ uw XL, Ipuuv P̂vw Xn.

Now we use proposition 80 to write, for gwv = xgwu, (so x ^  0). Note that since both 

gwua and gwuxa are real, i f  a ^  0 we have x is real. We split into two cases:

C a s e l :  x is real, so f  = —jx ,  d = —kx, e =  — ix , gwu{h +  xn)  =  gwua and

9 wu( 9  +  xm ) = gwuxaare real, and also gwu{Pww +  xipww) +  gwwa is real.

Case2:  x is not real. From proposition 76, we have f  and j  both imaginary, so
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/  — — j x  implies that f  — j  =  0. Likewise we have a = j  = f  = d = k = e = i = 

h = n = m  — g = 0. □

The reader should note th a t this is not the classical result of a unique Levi Civita 

connection (i.e. torsion zero and metric preserving). This is not surprising, since 

the metric we started  with was degenerate, so the classical result would not apply

anyway

Proposition 82 The condition that a star compatible covariant derivative is both 

torsion zero and preserves the metric and, is the invariant to the automorphism 0  

is (in the notation of 4-12) (pww = V-W = a = j  = f  = d = k = e = i = h = n = g = 

m = 0

i.e. all Christoffel symbols vanish. In this the matrix for  £  becomes

E =

(

\

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

\

/
P ro o f:  As 4)ww = ipww =  0 from proposition 79, we see gwwa is real. Also n — g — 0 

and a =  2h. Putting this into gwu(h +  xn) — gwua, gWu(9 +  xm ) = gwuxa and 

9u)u^0vjw 4~ xipyuvj) 4~ 9wŵ x to get gyjuh 9wu^ j and gwuxxn — guiuXOj so h a, now 

a =  2h = h gives h = a = 0.
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P ro p o s it io n  83 The condition that a star compatible covariant derivative is torsion 

zero and preserves the metric and satisfies the braid relation are 

d e f  i j  k 0, a h x n  m   ̂ and gwv.i.&ww 4" rnpww) “I- agww is 

real, i f  a ^  0 we get gww is imaginary.

P ro o f:  Using proposition 77 and proposition 81, we can see all of case2 in propo­

sition 81 is contaned in casel in proposition 77. We now just have to look at casel

when , t ^ 0  is real and i ^  0, then with a small calculation we get e = —ix, d — —2i, 
, - i  i . 2 i

f  = — , J = ~ z } k = —
X X1 X

— 1 i
h = — (1 4- x )2(m  H— ) and 

2 , x
n = i H 1-(2 +  x )m

x
g = —x(  —  (1 4- x )2(m  4- —) 4- i 4- — 4- 2m)

2 x x
a =  (1 -  + x )2)(m,+ V) + i

case 2 in proposition 81 gives case 2 in proposition 77, and so satisfies the braid 

relations. □

4.11 The noncom m utative torus

This has generators u , v and a complex number q of norm 1 and relation uv = qvu

u* = u~l ,v* = v~1(i.e.u,v are unitary).

There is a map from C ( S l ), the functions on the unit circle, to the group algebra 

of the Heisenberg group given by q E S 1 (or the identity function :Sl —* C) maps to 

w G H .

If we set w = q in the relations for the Heisenberg group algebra, we get the non­

commutative torus. We can consider th a t the noncommutative torus is the fiber of
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Here we take w to be a complex number of unit norm, the coordinate function on S l . 

Then w* — w~l . The map sends wn £ C ( S l ) to wn £ A. The differential structure 

of the fiber space is

Q F  = Q IC (S ')  4̂ '26^

i.e. we put dw = 0 in QnF  (i.e. put ew =  0 ). This is because in 4.26 we divide by 

everything of the form ew A f . To see tha t this gives a fibration, we note tha t a linear 

basis for the left invariant n-forms in as follows:

QlA eu,ev,e w

fI2 A eu A e7;, ew A eu , ew A ev

Q3A ev A eu A ew

Then the invariant forms is are :

=0 = 1. =? = (e“). = m = ° . m > l
=  (eu , ev)

=  ( e W " )
“ ° (ew)
_ 2 (e“ A ev, ew A e“ , e“  A e”)

“ ° ( e » A e “ , e " A e " )
_ 3 (ew A eu A ev )

_  (ew A eu A ev ) ~
= 0 n > 4

=  (eu A ev)

^  _ e w A (ew , e u , e v)

(0)
_ 2 ew A (ew A eu, e'" A e \  e“ A e”>

=1 <0)
all others are zero. Then the map

=  (ew A e u , e w A ev)

=  (ew A eu A ev)



QnF =
ttnA

dw A

is one-to-one and onto. We have a basis of 1-forms eu, uv and relations

eu A eu — ev A ev — 0

eu A ev = —ev A eu.

This gives a fibration in  the sense of [2], and a spectral sequence.

We now go back to (4.10) and observe that although the metrics there were degen­

erate, we do get non-degenerate metrics on the fibers. Now, the map 0  sends w to 

ic, so we then have a m ap preserving the fibers.

We can restrict the covariant derivative in section 4.10 using basis order eu,ev, to 

get

r  =

( \1 0  0 0 

0 0 1 0  

0 1 0  0 

0 0 0 1

The torsion of a connection on {}l A is given in definition 37. In the case of matrix 

(4.11) , we get V ex =  0, so

V /
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Tor(ex) = dex

= d(x~1dx)

= —x ~ 1dx A x~ ldx 

=  - e x A ex 

=  0 .

4.11.1 0  independent metrics and 2-forms on the torus

Now we see th a t our previous calculations of Riemannian metrice and symplectic

form work better on the fiber space.

If we set g ,  = eu <S> ev +  ev <8> e7', then g9 is central in 4.26.

If we set uj = eu A ev, then uj is central in 4.26.

We get eu and ev commuting with all algebra elements . Look for 0  independent

Riemannian metric as follows

9 = ^ 2  9ab£a <*> eb

(0 00 0)g -  Y ,  9ab&(ea) 00 0 ( e b)

f r o m  0 (e x) =  Qyxey 
v
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we get

( e ® 0 ) f f  =  £  gal>Oxaex ®
ab , x }y

=  ^ 2  ®™yab&ybeX 0  ey
ab,x,y

so the m atrix for (0  0  Q)g is QgQT in terms of the m atrix for g. and

(  a b
g =

\  d e

For the noncommutative torus

0 = | ^ ^ |  (w ithps — qr =  1). 
r s

For invariant, we want 0 g O T — g — 0, i.e.

- a  +  p(ap +  dq) +  q(bp +  eq) - b  +  (ap + dq)r Hb (bp +  eq)s \  I  0 0

—d + p(ar + ds) + q(br + es) — e -f r(ar 4- ds) +  s(br +  es) I \ 0 0
(4.27)

to impose the determ inant 1 rule we set r  -> (ps — 1 )/q. Then (4.27) requires 

e —* a k - a p 2 - b p q - d p q

^  ̂ a p q r +  dq r  +  a k s  — a p 2s  — dpqs
kq

For this to be true for all 0 , we see th a t g is a multiple of

/ 0 1 .
(4.28)

- 1  0
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II we multiply this m atrix by i we get

which is Hermitian (see proposition 45), and this would be the only (up to real 

multiple) inner product does not preserve reality, as the inner product of ieu and 

u v{ which are both real ) is imaginary, but the antisymmetric m atrix (4.28) does 

give a reality preseving symplectic form u  — eu A ev,which is preserved by 0 .

This is form as du  =  0 (see section(2.8).

For any left invariant Riemannian metric on the noncommutative torus, the torsion 

free connection with T =  0 preserves the metric .
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Chapter 5 

The Leray spectral sequence

Strictly speaking, we talk only about a  specific case of the classical Leray spectral 

sequence [9], th a t related to a sheaf over a fiber bundle. However it is hoped that this 

will be suffciently general to give an interesting result. The material in this chapter 

is joint work with my supervisor. We give further comments on the Leray spectral 

sequence in section 5.7 and 6.3

5.1 Classical theory

The statem ent of the general Leray spectral sequence can be found in [9]. We shall 

omit the supports and the subsets as we are only currently interested in a non 

commutative analogue of the spectral sequence.

Then the statem ent reads tha t, given /  : X  —> Y  and S  a  sheaf on X , that there is 

a spectral sequence

f i f  = W(Y,H"(fJ\S))
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converging to H p+q{ X ,S ) .

Here H q(f,  /|<S) is a sheaf on Y  which is given by the presheaf for an open U C Y

u ^ H'u-'u ŝy-w)-

Here f ~ l U is an open set of X , and S \ / - iu  is the sheaf S  restricted to this open set. 

We shall consider the special case of a differential fibration. This is the background 

to the Serre spectral sequence, but we consider a sheaf on the to tal space.

The Leray spectral sequence of a fibration is a spectral sequence (see section 2.11) 

whose input is the cohomology of the base space B  with coefficients in the cohomology 

of the fiber F , and converges to the cohomology of the to tal space E. Here

7r : E  —> B

is a fibration with fiber F. The difference of this from the Serre spectral sequence is 

tha t the cohomology above may have coefficients in a sheaf on E.

We shall apply noncommutative sheaf cohomology (see definition 56) to the Leray 

spectral sequence. To do this we use the same definition of fibration as tha t used for 

the noncommutative Serre spectral sequence in [2], and we discuss this in the next 

section.

5.2 Differential fibration

We have previously mentioned the idea of differential fibration (see definition 59), 

but now it may be useful of spend a little time justifying it. Take a trivial fibration

K" x Rm W 1
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(*^ 1 ’ ------' ̂ n  i V \ i  —  i V m  ) *  ̂ ( ^ l  i —  > ) •

Here the base space is B  =  R n, the fiber is Rm, and the total space is E  = Rn+m. 

We can write a basis for the  differential forms on the total space, putting the B  terms 

(the dxi) first. A form of degTee p in the base and q in the fiber (total degree p +  q) 

is

dx i j A .... A dx ip A dyjl A .... A dyjq 

e.g. dx2 A dx4 A dyi A dy-j A dyg

If we have the projection m ap  n : E  — > B , we can write this as

Tv*{dx2 A dx4) A (dyi A dy7 A dy9)

so we have a form in n*Q2B  A f23£ . Another element of n*Q2B A £l3E  might be

n*(dx 2 A dx4) A (d x 3 A dy^ A dy7).

Note, we now just look a t Cl3E, not the forms in the fiber direction, as in the

noncommutative case we will not know (at least in the begining) what the fiber is.

We need to describe the forms on the fiber space more indirectly.

Now look at the vector space quotient

n*Q2B A Q 3E  
t t ' W B a W E '

Consider our two elements of the top line,

a  =  7r*(dx2 A dx4) A (dyi A dy7 A dy9)
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P — n*(dx2 A dx4) A (dx3 A dyi A dy7)

Here ft is also an element of the bottom  line, as we could write

/3 = 7j*(dx2 A dx4 A dx3) A (dyi A dy7)

so, denoting the quotient by square brackets, [(5\ =  0. On the other hand, a  is not 

in the bottom  line, so [a] ^  0. We can now use

7 A W E

7T*np+1B A

to denote the forms on the total space which are of degree p in the base and degree 

q in the fiber, w ithout explicitly having any coordinates for the fiber.

5.3 The spectral sequence of filtration

We have already discussed spectral sequences in section 2.11, but it will be convenient 

to go into a little more detail here, and to quote the result from [35] again.

A decreasing filtration of vector space V  is a sequence of subspaces F mV  for which
p m + l y  c  f m y
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For e x a m p le ,  we could h av e  (w h e re  we tak e  all Xi E

F r ') =

(  _  \X \

F*(R ) =

( x F

X2 

\  0 /

F 2(R3) =

(  x  NXi 

0

0 /

F 3(R 3) = 0

\ 0 /

, F°(R 3) =

The reader should refer to [35] for the details of the homological algebra used to 

construct the spectral sequence. We will merely quote the results.

R e m a rk  84 [2]Start with a differential graded module C n ( for n > 0 )  and d : C n —» 

C n+1 with d2 = 0. Suppose that C  has a filtration F mC  C C — (Bn>oCn for m  > 0 

so that:

(1) d F mC  C F mC for all m  > 0 (i.e. the filtration is preserved by d);

(2) F m+1C  C F mC for all m  > 0 (i.e. the filtration is decreasing);

(3) F°C  = C and F mC n =  F mC  D Cn =  {0} for all m  > n (a boundedness
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condition).

Then there is a spectral sequence (£*’*, dr) for r > 1 (r counts the page of the spectral 

sequence) with dr of bidegree (r, 1 — r) and

£ p* = H r+q(F rC / FP+XC) = keTd : F pC ™ / F » 10»<  -» f v c ^ / F p^ C ^
1 \ / ) -m d ; f p Cp+(]~1 / FP+1Cp̂ q~1 —i► F pCp+q/ F p+lCp+q ’

In more detail, we define

ZP,q =  F pCp+<?nrf_1(Fp+rC?+9+1) ,

B p'q = F pC p+q n d ( F p~rC p+q~l ) ,

£ V A  =  Z ^ K Z ^ l  ^ 1 +  B £ ? i)  •

T/if' differential dT : —t £‘p+r ^_r+1 the map induced on quotienting d : —>
^p+r.g-r+l

The spectral sequence converges to H*(C,d) in the sense that

F pH p+q(C, d)
F p+1H p+q{C,d) ’

where F PH*(C , d) zs £/ze image of the map H*(FPC , d) —> H*(C, d.) induced by inclu­

sion F PC —> C .

5.4 The filtration of the cochain complex

We suppose th a t E  is a left A module, with a left covariant derivative

V : E  — > Cl1 A E
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and tha t this covariant derivative is flat, i.e. tha t its curvature vanishes (see proposi­

tion 38). Then : VlnA ® A E  — > Qn+lA ® A E  is a cochain complex (see definition 

56). If z : B  — > A  is a fibration (see section 5.2) (we used ir for a fibration of topo­

logical spaces, and we will use i for algebras). We can define a filtration of FtnA <8u E  

by

, i*FLmB  A fin mA E  0 < m  < n;
F m(ClnA ®a E ) = {  ~  ~  (5.2)

0 otherwise.

P ro p o s it io n  85 The filtration in 5.2 satisfies the conditions of remark 84- 

P r o o f :  First F°(QnA E) = i*Q°B A £lnA 0 /i E, 

but 1 E u Q °B  = U B  , 50 F °{n nA E) =  f iM  0/1 E.

To show it is decreasing, (using condition 5 from definition 34)

F m+l(QnA ® A E) = i*nm+lB  A 0 ^  E

=  u n mB  A ( i J } l B  f \ n n- m ~l A ) ® A E

C i*QmB  A i in~mA 0 /i E  

C F m(QnA  0 /i E).

To show that the filtration is preserved by d, take z*£ A 77 0  e E F m(£lnA 0 ^  E) 

where £ E QrnB, and 77 E Ftn~mA. Then

d(i*£ A 77 0 e) =  z*d£ A 77 0 e +  (—l ) mz*£ A dp 0 e -1- (—l ) nz*£ A 77 A Ve

77ms Z5 m  E mC, as the first term is in F m+lC C F mC , and the other two are in 

F mC. □
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Now we have a spectral sequence which converges to H*[R(A; E). All we have to do 

is to find the first and second pages of the spectral sequence, though this is quite 

lengthy.

5.5 Calculation the first page of the spectral se­

quence

From section 5.3, to use the filtration in section 5.4 we need to work with

F PC V+q _  A n qA 0 /, E
p'q ~ Fp+'Cp+v ~ i*Qp+lB A SI*-1 A 0>1 E

Then we look, for p fixed (following (5.1)), at the sequence

- A  M m  - A  1 - A  ••• (5.3)

as the cohomology of this sequence gives the first page of the spectral sequence. 

Denote the quotient in MPi9 by [ ]Pt9, so if x  E i+DPB AQ qA ($a E, then [x]Piq E MP)(/.

Then we have a map of left B  modules

npB ®B M0tq — > Mva 

C ® [y]o.q — > [AC A y]pq.

Here y E DqA ®A E  and the left action of b E B  on y is i(b)y.
Dr, n

For notation, set Dp,q =  i*Q,pB  A QqA, and N Piq = ———— .
Dp+ i )9_i

P ro p o s it io n  86 I f  E  is flat as a left A module, then Np q̂ 0 ^  E  =  M Ptq with iso­

morphism  [z ] 0 e >— > [z 0 e]P)9.
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P ro o f:  We have, by definition, a short exact sequence, where me is inclusion and 

[ ] is quotient

0 — > £>p+ll, _ i  - A  D p,, - A  iVp,, — * 0.

As E  is flat, we get another short exact sequence,

0 — > Dp+i.,-, ®A E in̂ H d Dp,, « u  E  ‘A ?  Np,, <Xu E  — ► 0

but by definition we also have

0 — > D p+1,,_! <Su E  ‘"-A" Dp,, D Mp,, — > 0.

and the result follows from lemma 31. □

We can now restate definition 59 in term s of our current notation.

D efinition 87 i : B  — > A is a differential fibration if the map

£ 0  [z] — > [AC A x] 

gives an isomorphism from  f1PB  0 #  N ^ q to Np>q for all p,q.

Proposition 88 I f  E  is flat a left A module, and i : B  — > A is a fibering in the 

sense of definition 87, then

n pB ® B N 0<q E  = Mm

via the map

C 0  [x] 0  e i— » [AC A x 0  e]pw.
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Proof: Definition 81  says that we have an isomorphism

DPB <S>b A/q,, N

given by £ ® [x] \— > [z*£ A x\. Now use proposition 86. □

We now return to the problem of calculating the cohomology of the sequence 5.3. 

Take £ Cg) [x] (g> e G D PB  ® b  N 0>q <S>a E  which maps to [z*£ A i ® e ]  G and apply 

d  (in this case and x  G D qA )  to it to get

d ( z * £ A x ) ® e + ( —l ) p+9z* £ A x A V e =  z * d £ A x ® e + ( —l ) pz*£A dx(g>e+(—l ) p+<7z*£AxA V e  

But dl; G Dp+lB ,  and
i*DpB  A D q+1A  (8)  ̂ EJ\ f  _     1

p',+ 1 i.Qp+'B a QiA®a E ’ 

so the first term  vanishes on applying [ ]p,g+i. Then

d[z*£ A x ®  e]Ptq =  ( - l ) p [z*<£ A ( d x  ® e +  ( ~ l ) qx  A V e ) ]p.9+1 (5.4)

Then, using proposition 88, we have an isomorphism

DPB ® B M 0tq =  M Ptq (5.5)

f ®  [ ? / ] 0,<7 ^  A  Z / ] p , g )

and using this isomorphism, d on MP)9 can be writen as (see 5.4)

d(t  03 [v\o,9) = ( - ! ) P̂  0<0 [V[<7lz/]ol(/+i (5.6)

159



where y G VXqA ® a E. From 5.6 we see th a t we should study [V^] : M0i(7 — > Mo<q+\, 

defined by [y]0)(? i— > [V[9]2/]0,,+i-

P ro p o s it io n  89 We show that

[Vl’l] : Mo,, — >• Mo.,+1

is a left B  module map. Remember that b > [77 0  e] =  [i(b)r] 0  e], for b G B and 

77 0  e G VBA 0,4  E.

P ro o f:  First,

[VM](6t> [77 0  e]0,9) =  [d(i(b)rj) 0  e 4- ( ~ l ) qi(b)rj A Ve]0)9+i

— [i*(d&) A 77 0 e +  i(b).drj 0 e + (—l) Qi(b)g A V ejo^+i

Now

i*(db) A 77 0 e G i*Vl]B  A fiM  0 ^  £

50 [i*(db) A 77 0  e]0i9+i =  0 in M0i(?+i. Then

[ V ^ ] ( 6  > [77 0  e]0i9) =  [z(6).d77 0  e +  ( - 1 ) 9z(6)t7 A Ve]0i(?+i 

=  b > [dp 0  e -f ( — l )qr) A Ve]0i?+i. □

P ro p o s it io n  90 I f  VlpB  is flat as aright B module, the cohomology of the cochain

complex

■ ■ • Mp,,_! - A  Mp<q - A  m p,,+1 - A  ■ • ■

7S gwen by QPB  0 #  Hq, where Hq is defined as the cohomology of the cochain complex



P ro o f: As we now know th a t d = [V^] : M0i9 — > M0ig+1 is a left B module map, 

we have an exact sequence of left B  modules, where the first map is inclusion

0 — > K q M 0,q Zq+l — > 0 (5.7)

where

Z q =  im aged  : Mo,g_i — > M 0tq,

K q =  kernel d : M, (5.8)

Now we define

H - * 1
q ~  Z <1

(5.9)

to be the cohomology of

so we have a short exact sequence

0 — > Zq — > K q — > Hq — > 0. (5.10)

To calculate the cohomology of 5.3, we need to calculate both of

Zp>q — image d : Qp B  00# <X>£

K pq̂ — kernel d : ilp B  00# Mq,9 — > QpB  X)# M0.9+i
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If QPB  is flat as a right B  module, then we have another exact sequence from 5.7 

0 — > a pB  ® B K q id̂ c QPB  ®B Mo,, ^  n PB  ®B Z ,+1 — > 0 (5.11)

But by 5.6 the last map id ®  d is (—1 )pd on MPiQ so we have

Zp,q — Q P B  ® B  Z q

and

k PA =  n PB  ®B Kq.

Now apply QpB ® b to (5.10) to get, using QPB  flat as a right B module again,

0 — > V P B  ® B  Zq  — > Q PB  ® B  Kq  — > Q pB  ®B  Hq — -> 0.

But by our previous result, this is

0 — > Zp,q Kp q — > QpB ®B Hq y 0 (5.12)

so the cohomology of M p>q is isomorphic to f1PB  ®b H q. By definition we have

0 ----► Z p>q ----► K p,q --- ► H { M p,q) — > 0

and this gives the isomophism by 31.

If we write ( ) for the equivalence class in cohomology ( M Piq) } this isomophism is

given by



for £ E Qp£  and x E flM  (g)̂  E. □

5.6 Calculation the second page of the spectral 

sequence

Now we need to move to the second page of the spectral sequence, in which we take 

the cohomology of the previous cohomology, i.e. the cohomology of

d : cohomology (Mpq̂) — > cohomology (Mp+ii9).

By the isomophism discussed in the last section 5.5, we can view this as

d : QPB  ®B Hq — y n p+lB ® B Hq.

P ro p o s it io n  91 The differential d gives a left covariant derivative

: H q — y fl l B  ®B Hq.

I f  ( f  ® e)Qq E Hq, this is given by using (5.13)

(S 8  e)o., 1— > ri® (ui® f ) 0 q

where

<8> e -f (—1)9£ A Ve =  i*r] A uj ® f .
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P roo f:  Take (x)0tQ E Hq, where x  E K q (see (5.8)). Suppose x = £ g  e,

£ E one? e £ E  (summation implicit). As x E K q we have

[dx\0,q+i =  [d£ <g> e +  ( - 1)9£ A V e ]0)9+i =  0

in M0i9+i, so

g?£ g> +  (—1)9£ A V e  E i*UtlB  A (g)  ̂ £ .

VKe write (summation implicit), for  p E Q}B,

g?£ g> e +  ( —1)9£ A V e  = i*p A w & /

Under the isomorphism (5.5), this corresponds to p ® [u  ® f] q E B ®b 

As £Ae curvature of E  vanishes, we have from  V ^+1' to (5.14),

i*drj A u j  ® f  — i*7] A d u  ® f  -f (— 1 )<7+1 ^77 A cj A V /  — 0.

ITe take this as an element o / M 1)V+], so we apply [ ] i l9+i to (5.15). Then

denominator of M iy(}+i is

i M 2B  A QqA ®A E, 

we see that the first term of 5.15 vanishes on taking the quotient, giving

- \ i * r 1 A (duj ® f  +  ( - l ) 9u; A V / ) ] i , 9+i =  0.

Under the isomorphism (5.5) this corresponds to

-  T) ®B [dto ® /  4- { ~ l ) qw  A V/]o,9+i =  0.
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This means that

77 g  [tu® f]o,q e t t l B ®B m0](7

is in the kernel of the map id ®  d in (5.11), and as (5.11) is an exact sequence we 

have

77 g  [t0 ®  / ] o,g G Q ) B  ® B  K q , 

so tee ctm see take the cohomology class to get

77 g  (uj® f ) 0q G Ql B  ®B Hq.

This completes showing that V q exists, but we need to show that it is a left covariant

derivative. For b G B, we calculate Vq(6.£ g  e) using the formula to get

d(b.£) ® e +  (—1 )qb.£ AVe = G?6A£ge + 6.(c?£ g  e +  ( - 1 ) 9£ A Ve),

so we get

(&.£ g  e)Q q = d b ® ( £ ®  e)0<q +  b.Vq (£ g  e)0 q . □

P ro p o s it io n  92 The curvature of the covariant derivative Wq in proposition 91 is

zero.

P ro o f:  Using the notation of proposition 91, equation (5.14)

(f <8> e)0q = r j ®(uj ® f ) 0 q .

I f  we apply V ^ (see proposition 38), we get

R q (f ® e)Qq = d g ® ( u ®  f ) Qq -  77 A V q (u ® f ) 0q . (5.17)
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To find V q (w g  f ) 0q, refering to the proof of proposition 91, formula (5.16), we have

77 ®b {du g  /  +  (—l ) quj A V /)  G Ql B  g b {i*Fll B  A UtqA ®A E).

Now we write (summation implicit). This comes for tensoring the exact sequence

0 — + i . n l B a  nqA &A e  — > ®A e  m 0,,+1 — > 0

on the left by Q}B, and use Ql B  flat.

77 g  (dco g  /  +  ( - l)V ;  A V /)  =  r\ g  (Uk A (  g  g) (5.18)

for 7f,K G n 1 B,  £ G QqA and g G E. Then, from proposition 91,

7) A V 9 (co g  / ) 0i9 =  7?' A k, g  (£ g  p)oi(7

so from (5.17),

R q (C ® e )0 (? =  dp g  (oj g  -  77' A n g  (£ g  p )0i9. (5.19)

Now (5.18) implies that

Up A (a?co g  /  +  (—l ) 9co A V /)  =  7*7/  A i*n A (  ® g, 

and substituting this into (5.15) gives

i*dp A co g  /  — 7*77' A « A £ g  g =  0,
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so on taking equivalence classes in M 2,q we find, using the isomophism (5.5),

dp®[uj®  / ] 0,g -  rj A n g [C g  g\o,q =  0.

and this shows that R  =  0 by 5.19. □

T h e o re m  93 Given

1) a map i : B  — > A which is a differential fibration (see definition 87)

2) A flat left A module E, with a zero-curvature left covariant derivative

V e : E  — y Uf A  g ^  E

3) Each QPB is flat as a right B module.

Then there is a spectral sequence converging to H*{A, E , We ) with second page H *(B , Hq, Wq) 

where Hq is defined as the cohomology of the cochain complex

■ ■ ■ - A  M0,q - A  M0i,+1 -A • • •

where
_ n  m  e

0<J

and

d[x g e]0,9 =  [dx g e +  {—l ) qx  A V^ejo,,.

The zero curvature left conariant derivative

V , : Hq ^ i l ' B ® BHq

is as defined in proposition 91.
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P r o o f :  The first part of the proof is given in proposition 90. Now we need to calculate 

the cohomology of

d : QpB  ®B H q — > Qp+lB  ®B Hq

This is given for  £ <8> (77 0  e)0q (for £ e ftpB, g e QqA and e e E) as follows : this 

element corresponds to i*£ A 77 <g) e, and applying d to this gives

i*d£ A g ® e +  ( —l) pi*f A drj 0  e +  ( - l ) p+<7h£ A g A Ve.

But we have calculated the effect of d on Hq in proposition 91, so we get

d{£ ® (r? (g> e)0 q) = d£ <g> (g <8> e)0 q +  ( - l ) p£ A Vq (g ® e)0 q .

The covariant derivative V 9 has zero curvature by proposition 92. □

We have the  following examples of a noncommutative differential fibration:

Exam ple 9 4  (see section 8.5 of [2] )  Given the left covariant calculus on the quan­

tum group SUq{2) given by Woronowicz [4 6 ], the corresponding differential calculus 

on the quantum sphere S q gives a differential fibration

i : S 2 — > SUq(2).

Here the algebra S U 2 is the invariants of  SUq(2) under a circle action, and i is just  

the inclusion.

Exam ple 95 In section 4-11 it is shown that the noncommutative torus is the 

fiber of the map

C ( S l) A ,
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where A is the group algebra of the Heisenberg group.

In the paper [43] the authors discuss noncommutative tours bundles owr topologi­

cal spaces. In fact this paper was the motivation behind checking that the idea of  

differential algebra fibration definition applied to the Heisenberg group atjebra.

5.7 Some comments on the Leray spectral sequence

In chapter 6, we discuss a possible application (as get very tentative) o’ the Leray 

spectral sequence (in the version we give here) to the representation thecry of quan­

tum  groups.

In example 95 we have already mentioned the paper [43]. In a sequel to this, in [44], 

the authors discuss the idea of C* algebra fibrations over topological spaces in more 

generality. This is rather different to our point of view. We can have loncommu- 

tative base algebras (example 94), but we also require the existence of a differential 

structure. However it is intersting th a t [44] includes a discussion of the 1/eray spec­

tral sequence of the fibration with base a simplicial complex, and tha t this forms an 

im portant part of their theory.
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Chapter 6

Conclusion

6.1 Summary

We have looked at noncommutative differential geometry, stated in terms of dif­

ferential forms, and seen how it can be used in Riemannian geometry and sheaf 

cohomology. The example of differential calculi which we considered in detail were 

the Heisenberg group (chapter 4) and the group algebra of A4 (chapter 3). W hat 

was found supports the general trend of example in noncommutative geometry: some 

ideas from classical geometry work in considerable generality (like K  theory ), and 

some work only in more special circumstances.

For example, in classical differential geometry, on a Riemannian manifold there is 

always a unique Levi-Civita connection (which preserves the metric and is torsion 

free). We have seen th a t this is not necessarily the case in noncommutative geome­

try.

Part of the problem with noncommutative geometry is tha t when a classical idea 

does not work, it is not certain whether to say simply tha t it does not work, or
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whether to look for how the noncommutative construction might differ. For example 

in the theory of geometric quantisation, it is not obvious to say th a t quantisation of 

differential form does not work in the case of curvature, or whether we should allow 

the possibility of non associative calculi (see [5] and [23]).

However some nonassociative structures arise as part of string theory (see [11]).

For example for the Riemannian metric on the Heisenberg group we found th a t the 

only metric to commute with the algebra was degenerate. For the Levi-civita metric 

we have tried to say th a t the metric is exactly preserved by the covariant derivative. 

Maybe, for many examples, this is not natural condition. We might have VG ^  0, 

but set equal to another interesting quantity. In the past, m athem atical physics has 

been a good source of interesting generalisations.

6.2 Further work on differential geom etry

To extend the work on general covariant derivatives to other cases would probably 

require extensive use of computer algebra (for example the noncommutative algebra 

packages for M athem atica or Sage). However, even then it is not a t all obvious 

th a t many polynomials in many variable could be solved (for example, the braid 

relations). This problem of doing general calculations is well known in classical 

differential geometry, for example solving the general case of Einstein’s equations in 

general relativity is viewed as extremely different. There is no solution to the two 

body problem in G. R.

Following the spirit of finding the black hole solution in general relatvity, it is likely 

th a t symmetry will be needed to reduce the complexity. It is likely th a t more can 

be said in general on quotients of Hopf algebra with differential calculi, such as the 

quantum  sphere. There is some work being done on higher dimensional examples in
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this direction(see [1] on a quantum  S'4).

If a group G  acts on a topological space X  transitively (i.e. every point can be moved
Q

to every other point), then we have a one to one correspondence------- > X , given by
H

x  G X  and [<7] 1— > g > x. Here H  is a subgroup (the stabiliser of x e  X )  of G given 

by

H  = { h e G \ h > x  — x}.

An example of this is of the rotation group acting on a sphere. An example of a not 

transitive action is R acting M2

z> (x, y)  = (x +  z , y)

Here is transitive action of K2 on R

(1 4 , v) > (x, y) = (x +  u, y +  v)

These spaces on which a group acts transitively are im portant in pure mathematics 

and in physics (e.g. cosmology).

Those examples most studied in noncommutative geometry are given by a Hopf 

algebra H, and a surjective Hopf algebra map 7r : H  — > K  for another Hopf algebra 

K . Then the algebra is

A =  H coK = { h e  H  : (id 00 tt) V/i = h ®  1}.

It might be possible to study more general quotient spaces than this. The fact tha t 

A  above is not completely general can be seen by the fact tha t there is an algebra
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map given by the counit,

e : > l — ><C,

so A  contains at least are “classical point” . It is not expected th a t a more general 

quotient would have such an algebra map. It would be interesting to consider the 

differential geometry of these more general quotients.

6.3 Further work on the Leray spectral sequence

One use for the Leray spectral sequence (in the fibration version we have given) is 

given in [40]. The Borel-Weil-Bott theorem is about representations of Lie groups

[21] [28] [48]. We summarise a little detail for SIJ2 . Then we can take the Hopf 

fibration

S K - S * -  s u ’Diagonal matrices in SU 2 

We can take line bundles on S 2, and give an action of SU 2 on it. Then we can classify 

all irreducible representation of SU 2 as complex analytic sections of the line bundles 

(one dimensional vector bundles).

One way of proving the result for more general groups is to use the Leray spectral 

sequence, and this proof may well generalise to the noncommutative case. It would 

be interesting to compare our result to the results and definitions in [44] in more 

detail. The paper [44] is discussed in more detail in section 5.7.
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A ppendix A
We have terms 3f ( e s  — iu), —t(es — iu), — 2(e — u)(e +  u)v, —(1 +  b)(es — iu )

C a s e l  If es — iu ^  0 , we must have f  = t = 0 and b = — 1. Recalculate the matrix. 

Substituting this into the matrix, we find i2u, = 0, so iu = 0, and so e ^  0, and 

s ^  0.

The m atrix contains egs = 0 , so g = 0.

The m atrix contains es2 =  0, which is a contradiction.

C ase2  es — iu =  0.

The m atrix contains v(e2 — u2) =  0 and (1 +  k)(e2 — u2) = 0. We split into two cases: 

C ase2 a  (e2 — u2 ^  0) and C ase2 b  (e2 — u2 =  0).

C ase2 a  es — iu  — 0 and e2 — u2 ^  0.

The m atrix contains v(e2 — u2) = 0 and (1 +  k)(e2 — u2) = 0, so we deduce th a t v — 0 

and k = — 1.

The m atrix contains u3 =  0, so u = 0 and we deduce th a t e ^  0.

The m atrix contains e3 =  0, so e = 0 - Contradiction. End of case 2a 

C ase2 b  es — iu = 0 and e2 — u2 = 0.

It splits to two cases:

C ase 2 b a  when u = e = 0 and C ase 2 b b  when u ^  0 ^  e.

C ase 2 b a  We get a m atrix entry (i +  a — h)(s2 — i2) = (l +  /c)(s2 — i2) =  v(s2 — i2) = 0. 

Split into two cases

C a se 2 b a a  whens2 =  i2 and C ase 2 b ab  whens2 ^  i2.

C a se 2 b a a  u = e = 0 and s2 — i2.

Split into two cases

C ase 2 b aa a  whens — i = 0 and C a se 2 b a a b  when s =  yi ^  0 where y = ±1.  

C ase 2 b aa a  s =  i = u = e — 0.
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We get entry t2( 1 +  k) -  v ( l  +  m )2, v{l  +  k)( 1 +  k +  v), v(l  +  k)(l  + a - h - v ) ,  

v ( l  +  k)(a — h — k) .

We begin by assuming th a t t2{l +  k) ^ 0 .  Then all of t, 1 +  k, v, 1 +  m  are non zero.

Then the term s 2-4 listed above give 1 +  fc +  u =  0, l +  a -  / i - i ;  =  0, a -  h -  k = 0,

and from this we deduce v =  0, a contradiction. So t2(l +  ft) = v(l  + m) = 0.

Next we have terms / ( ( l  +  &:)£ -I- f v )  and / ( / ( l  +  k) +  v{\  + m)), so we deduce 

f v  = f  (I + k) = 0.

We split into 4 cases:

C a se 2b a a a a  when (1 +  m)t  7̂  0 then from the entries t(l  +  m )(l +  k + v), t( 1 +  

m ) ( l  + a — h — v), t ( l  + m)(a — h — k), so if £(l +  m) 7̂  0 we deduce v = 0,/c =  - l a n d  

/i =  a +  1.

For the next 3 cases we have (1 +  m )t  =  v (l +  m)0, remembering that v(l  +  k) =  0: 

C a se 2 b a a a b  when m 7̂  — 1, so £ =  0 and v = 0 and / ( I  +  k) =  0.

C ase 2 b aa a c  where t 7̂  0 ,so m, = k = —I and f v  =  0.

C a se 2 b a a a d  where t =  0 and m =  — 1, so f v  = / ( I  -f A:) =  0.

Case2baaaa s — i — u = e — v — 0 andk = — 1 and h ~ a + 1 and £(1 T ra) 7  ̂ 0 

We get entries qt2, n t2, r t 2 and gt2, so g =  9 =  n =  r = 0.

We now get j 2t, so j  =  0.

We now get c(l +  m )t, so c = 0.

We now get (l + a) f ( l  + b+f ) ,  (l +  a )(( l +  m )24-£2), (l + a )((l +  6)2 +  3/ 2 — 2t(l + m)).

If a =  - 1  SOLUTION

If a 7̂  — 1, then we split into two cases

/  7̂  0 gives b = —1 — f  and f 2 = t( 1 +  m ) / 2 and t2 = —(1 -I- m )2 SOLUTION.

/  =  0 and (1 +  b)2 = 2t(l  +  m)  and t2 = - ( 1  T  m ) 2 SOLUTION.

C a se 2 b a a a b  s = i = u = e — v = t = 0 and m / - l  .

We get (1 -I- ra )r2, (1 +  rn)q2, (1 +  m ) j 2, so r =  q =  j  =  0.
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Next we get (1 + m )g2, so g — 0.

Next we get (1 +  m ) h 2 and (a — k)( 1 +  m )2, so h = 0 and a =  k.

Get terms / n 2, / c 2, / 2(1 +  k).

Split into 2 cases:

C ase2 baaaba s = i = u = e = v = t = r = q = j = g = h = f =  0 and a = k and 

m  7̂  —1.

C a se 2 b a a a b b  s = i = u = e = v = t = r = q = j  = g = h = n = c = 0 and 

a =  /c =  — 1 and f  ^  0 and m  ^  — 1.

Case2 baaaba s = i = u = e = v = t = r — q — j  = g = h = /  =  0 and a = k and

m ^ - 1  .

We get (1 +  m ) 2c and (1 +  m )2n, so c = n  =  0.

We get (1 +  A;)(6 — ra )(l +  m).

We get 2 cases: 

b = m. SOLUTION 

k = - 1  SOLUTION

C a se 2 b a a a b b  s = i = u = e = v = t = r = q = j  = g = h = n = c = 0 and 

a = k = — 1 and f  ^  0 and m /  - 1  SOLUTION 

C ase 2 b aa a c  s = i = u = e = Q) t y^Q and k =  m  =  — 1 .

We get n 2U g2£, j 2t, so n — q =  j  =  0.

Then we get ht2 and g£2, so h = g = 0.

Then r t2, so r  =  0.

Then c£2, so c =  0.

We get (1 -f a ) f 2 and f 2v, / ( ( l  +  a)( 1 +  b) -  tv).

Split into two cases:

C ase2 baaaca s = i = u = e = n  = q = j  = h = g = r = c =  f  = 0, t ^  0 and

k — m  — —1.
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C a se 2 b a a a c b  s = i = u = e = n = q =  j  = h = g = r = c = v = Q) f ^ O ,  t ^ O  

and a = k = m  = — 1.

C ase2 baaaca s = i = u = e = n = q = j  = h = g = r = c = f  = 0, t ^ Q  and 

k = m  = — 1.

We get t2(\  + a — v) and v ( l  +  b — t), so v — 1 +  a.

Split into two cases:

a = - 1  SOLUTION a ±  - 1  and t = 1 +  b SOLUTION.

C a se 2b a a a c b  s = i = u = e = n = q = j  = h = g = r = c = v = 0 , f ^ 0 ) t ^ 0  

and a — k — m  = —1.

SOLUTION

C a se 2 b a a a d  s =  z =  u =  e =  / =  0 and m = — 1.

We get / 2(1 +  /c) and / 2u.

Split into 2 cases:

Case2baaada when /  = 0 and Case2 baaadb when /  ^ 0 so k = —land u = 0 . 

Case2 baaada s = i = u = e = t = /  = 0 and ra = — 1.

We get (1 +  b)c2, (1 +  b)n2 , (1 -f fr)<72 and (1 +  6)r2 

Split into two cases

C a se 2 b a a a d a a  when b = — 1 and C ase 2 b aa a d ab  when b ^  — 1 so c = n = q = 

r = 0.

C a se 2 b a a a d a a  s = i = u = e = t =  /  =  0 and b =  m  =  — 1 .

We have entries <?(r(l +  /c) +  nu), <?(n(l +  A;) +  7'c), ^ (r f l +  k) +  nc), g(n(l +  /c) 4- ru)

, (h — j) ( r (  1 +  &) +  nu), (h — j) (n (  1 +  £:) -f ri>), r ( l  4- /c)n -f <?2u, g2(l +  k) +  nrv  and 

u(l +  k)( 1 +  k, +  v).

Split into four cases :

C a se 2 b a a a d a a 4  at least one of r( 1 +  k) +  nv or n( 1 +  A;) +  rv  is non-zedro,
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so g = 0 , q = 0 and h =  j .  C ases  2 b a a a d a a l+ 2 b a a a d a a 2 + 2 b a a a d a a 3

when r( 1 4- k) +  nv = n(  1 + k) + rv = 0 , v(q2 — n2) =  u(g2 — r 2) = 0  and 

(1 4- k){q2 — n 2) =  (1 4- k)(q2 — r2) =  0 ,so 

C ase  1 when w =  1 4- k = 0

C ase  2 -f 3at least one of v, 1 4- k ^  0 from r(  1 4- k) 4- nv = n ( l  4- k) 4- rv  =  0 

Deduce th a t n =  0 if and only if r  =  0 (oas n =  ~r0+fc) or n =

C a se 2 b a a a d a a 2  when q = n = r = 0

C a se 2 b a a a d a a 3  when u2 =  (1 4- k)2 ^  0 , so k —» — 1 — v and q2 = n 2 = r2 ^  0

C a s e 2 b a a a d a a l  s = i = u = e = t — f  — v — 0 and b — m  — k — We have

g2(l  4- a +  2h) 4- c2h — ch2 , g((c — h )( l +  a) 4- ch 4- 2gh) and g(#(l 4- a 4- h) 4- 2ch — h2 

Solve gives four cases :

case  2 b a a a d a a lA  when g =  0, ch(c — h) =  0. 

case  2 b a a a d a a lB  when g ^  0 , h =  0 and a = — 1.

case  2 b a a a d a a lC  when g ^  0 , h, ^  0 ,c =  g +  h and a = ~^+39^+h ) _

case  2 b a a a d a a lD  when g ^ 0 , c  =  p , / i  =  4g and a =  — 1 4- ig.

C a s e 2 b a a a d a a l  A s = i = u = e = t = f  = v =  g = 0 and b = m  — k — —1.

We have entries 3nqr, (j — c)qr 4- n (r2 4- q2), (j — c)nr 4- q(r2 4- n 2) and (j  — c)qn 4- 

r(n2 4- q2)

We get at least one of n, q, r =  0 but then we deduce at least two of n ,q , r  = 0

terms j ( j n  4- 2qr), j ( j q  4- 2n r) and j ( j r  4- 2gn).

Split into two cases : case  2 b a a a d a a lA l  when j  — 0 , at least two of n ,q , r  =  0 

and case  2 b a a a d a a lA 2  when j  ^  0 so n = q = r = 0.

C a s e 2 b a a a d a a lA l s = i = u = e = t = f  = v = g = j  = 0 and b = m  = k = — 1 ,

at least two of n, q, r = 0 from the term  h(n2 4- r2 4- q2).

Deduce either n = r = q = 0 (Go to case 1A2) or h = 0

Set h =  0 we get (1 4- a)n2 =  0 , (1 4 -  a)q2 — 0 and (1 4- a)r2 =  0 , s o i f n  =  r  =  g, =  0
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Go to case 1A2 or a = — 1 SOLUTION.

C ase2 baaad aa lA 2  s = i = u = e = t = J  = v = g = n = q = r = 0 and 

b = m  = k = — 1 and j  ^  0.

We have entries (l +  a )( l  +  a - c ) c  , (1 + a ) (1 -\-a — h)h , (l +  a)(l + a - j ) j  , c ( c -h )h  

»c(c- j ) j  and h ( h - j ) j .

Any non-zero available in the set j , 1 + a ,h ,c  must be equal. SOLUTION. 

C ase2baaadaalB  s = i = u = e = t = f  = v = h = v = 0 and b = m = k = a =

— 1 and g ^  0.

We have entry g(c2 +  — n 2 — q2 — r2)

Split into 4 cases :

2 b aaad aa lB l when n = q = r = 0 and 2baaadaalB2-|-2baaadaalB3+2baaadaalB4

at least one of n, r, q are non zero ( two or three of n, g, r are non zero ).

2 b a a a d a a lB l s = i = u = e — t — f  = v ~  h = v = n = q = r = Q and 

b = m  = k = a = — 1 and g ^  0.

We get c2 +  2gj

So j
We get c(c -f 2g)(c2 +  2cg — 2g2).

We split into three cases :

W hen c =  0 SOLUTION.

W hen c =  - 2 g  , we get g3 CONTRADICTION.

W hen c2 +  2eg — 2g2 =  0 , we get c = —g — %/3g or c = —g -f \/3.g SOLUTION. 

2 b a aa d a a lB 2 ,s  = i = u = e = t = f  = v = h = v = 0 and b = m = k = a = —l 

and g ^  0 , if exacitly one of n, r, q are non zero (eg r  )

We get g2r so r  =  0 CONTRADICTION.

2 b a a a d a a lB 3  s = i = u = e = t = f  = v = h = v = 0 and b = m = k — a = — 1 

and g ^  0 , if exacitly two of n, r, g are non zero (eg n, r)
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We get 2(g — j ) n r  , so g — j  and also get nr(c  +  g — j )  so c =  0 

Then we get r(g2 — n 2) and n(g2 — r2) , so g2 = n 2 = r2 

So we get three cases :

W hen q = 0 we get r 2 = g2 and n 2 = g2 SOLUTION.

W hen n = 0 we get r 2 — g2 and q2 =  g2 SOLUTION.

W hen r = 0 we get q2 =  g2 and n2 =  g2 SOLUTION.

2baaadaalB 4s = i = u = e = t = f  = v = h = v = Q and b = m  = k = a =  — 1

and g ^  0 , when all n, g, r  are non zero

We have entries ( g - j ) ( n ( g + j )  + 2qr) , (g - j ) ( q ( g + j )  + 2nr) and ( g - j ) ( r ( g + j )  + 2qn) 

Split into two cases:

2 b a a a d a a lB 4 a  when g =  j  a n d 2 b a a a d a a lB 4 b  when g ±  j

2baaadaalB 4a s = i = u = e = t = f  = u = h = v = 0 and b = m = k = a =  — 1

and g ^  0 , and g = j  .

We get 3(cg2 — ngr) ,so c =  ^

We get (g2 -  r 2)(g2 -  n 2), (g2 -  r 2)(g2 -  g2) and (g2 -  g2)(g2 -  n2).

So g2 =  r 2, g2 =  n 2 and g2 =  g2, at least two of them are equal, so we have 12 cases: 

Suppose g2 =  n 2 =  r 2 so r —» g and n —> g or r  —» —g and n —> g or r  —> g and 

n —> —g or r —> — g and n —> — g

Suppose g2 =  ri2 =  g2 so g —> g and n —> g or g —> — g and n —> g or g —> g and

n —> — g or g —» —g and n —> —g

Suppose g2 =  g2 =  r 2 so r —» g and g —> g or r —» —g and g —» g or r —> g and

g —> — g or r  —» — g and g —> —g SOLUTION.

2 b a a a d a a lB 4 b  s ~ i  — u — e — t ~  f  = v = h = v = 0 and b — m  = k = a — — 1 

and g 7̂  0 and g ^  j

Then g +  j  ^  0, so g +  j  =  ^  ^  ^  -  2z, (define x ^  0)

So j  —> 2x — g and g —> ^
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Deduce x2 — r 2 = q2 = n 2 

We get 8(g — x ) x 3, so g — x 

We now get 3 (—c +  x ) x 2 ,so c = x

We have entries r(n  -  x )(n  +  x) and nLr~xHr+x)(r2+x2) ; so we have 4 cases:

n = —x  and r = —x  or n = x  and r =  x or n = —x  and r = x or n =  x  and r = —x

SOLUTION.

C a s e 2 b a a a d a a lC  s =  i = n = e — t. = f  = 0 and b = m, = — 1 and g ^  0 and 

h ^  0 and c =  g +  h and a = ^.

We get (3g +  h)(4g +  h) and (2g +  h)2(4g -f h), can not have both 2g + h and 3g + h 

as g 7̂  0 , so must have 4g +  h = 0 and so h = —4g

We get 4gj  +  j 2 +  n 2 +  q2 +  r 2 and 2gj  +  9g2 — n2 — q2 — r2 adding these gives 

9g2 +  6gj  +  j 2 =  (3g +  j)(3g+)  =  0, so j  =  - 3 g 

We get g3 — nqr , so all of n, q ,r are non zero

We get 3#2 — n 2 — q2 — r 2, gn = qr , <7̂  =  nr and =  ng, so n = qr/g and

g2 =  r 2 =  q2 7̂  0, so r  =  x# and q — yg ,when y2 = x 2 =  1 SOLUTION.

C a s e 2 b a a a d a a ld  s — i = u = e = t ~  f  v = 0 and b = m  = k = ~ l  , g ^  0 , 

c = g , h = 4g and a =  — 1 +  4g

We get g(2<7j +  g2 — n 2 — q2 — r2) and 4g(4gj — j 2 — n2 — q2 — r 2), subtracting these 

gives g2 -  2gj  +  j 2 =  (p -  j ) 2 -  0 , so j  =  g 

We get p3 — nqr , so all of n, q ,r are non zero

We get 3g2 — n 2 — q2 — r 2, gn = qr , gq =  nr and gr = nq , so n =  qr/g and

g2 = r 2 = q2 7̂  0, so r = xg and q = yg , when y2 =  x2 =  1 SOLUTION.

C a se 2b a a a d a a 2 s = i = u = e — t = f  = q = n = r = 0 , b  = m =  —l and at least 

one of v, 1 +  k ^  0 .

We get gv2 and g( l  +  k)2 , so g — 0

We get h ( l -f- A;)2 +  h2v and h( 1 +  A:)2 +  h2v -  (1 +  k)v2, subtracting these gives
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(1 +  k)v2 = 0 

Split into cases:

C a se 2b a a a d a a 2a  when v = 0 and k ^  —I and C a se 2b a a a d a a 2b  when v ^  0 and

k = - 1

C a se 2 b a a a d a a 2 a  s = i = u = e = t = f  = q = n = r = g = v = 0 , b = m  = —I 

and k ^  — 1.

We get h( 1 +  k)2 , j (  1 +  A;)2 and c(l +  A;)2 , so c — j  — h = 0

We get (a -  fc)(l +  A:)2 , so a =  k SOLUTION.

C a se 2b a a a d a a 2b  s = i = u = e = t = f  = q = n = r = g = 0 , b  = m  = k = — 1 

and

We get h2v, j v 2, cv2 and (1 +  a — v)v2, so c = h =  j  — 0 and a — v — 1 SOLUTION.

Case2baaadaa3 s = i = u = e = t = f  = 0 and b = m = — 1, u2 =  (l +  A:)2 7  ̂ 0,

k = —1 — v and q2 — n 2 = r2 ^  0.

We have q2 = n 2 = r2 ^  0, so q = xn  and r =  yn  when x 2 = y2 =  1 

We get n 2v( 1 — 2/) , so y =  1

We get u(2hj — j 2 +  cv +  n 2)and2/ij — j 2 +  j v  +  n 2, subtracting these gives v(c — j ) ,  

so c — j

We get — (1 +  a)v2 +  hv2 — v3 and — (1 -f a)v2 +  hv2 +  u3, subtracting these gives — 2u3 

CONTRADICTION.

C a se 2 b a a a d a a 4  s = i = u = e = t = f  = g = q = 0 and b = m  — — 1 and h — j.  

We get j 2n , j 2r 

Split into two cases:

Case2baaadaa4a when j  = 0 and Case2baaadaa4b when j  ^  0, so n = r = 0

Case2baaadaa4a s = i = u = e = t = f  = g = q = ] = 0 and b = m  = —1 and 

h = j .

We get (1 +  h)r, (1 +  k)n, (1 +  k)q and (1 +  k)2(a -  k)
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split into two cases :

Case2baaadaa4aa when k = —I and Case2baaadaa4ab when k ^  — 1 , so

n = r = v =  0 and a = k

Case2baaadaa4aa s = i = u = e = t = f  — g = q = j  = 0 and b = m  = k = — 1 

and h = j .

We get r 2v and n 2r 

split into two cases :

Case2baaadaa4aaa when r = 0 and Case2baaadaa4aab when r ^  0 , so n =

v = 0

Case2baaadaa4aaa s = i = u = e = t = f  = g = q = j  — r = 0 and 

b = m  = k = —1 and h = j.

We get n v 2 and (1 +  a)n2 

split into two cases :

Case2baaadaa4aaaa when n — 0 and Case2baaadaa4aaab when n ^  0, so v =  0

and a =  — 1

C a s e 2 b a a a d a a 4 a a a a  s = i = u = c ~ t  — f  = g = q = j  = r = n = 0 and 

b — m  = k = —1 and h = j .

We get cv2 and (1 +  a — v)v2 

Split into two cases:

W hen v = 0 and when v ^  0, when v — 0, we get (l +  a )(l +  a — c)c, so split into 

three cases:

W hen a =  - 1  SOLUTION.

W hen a =  c — 1 SOLUTION.

W hen c =  0 SOLUTION.

And when v ^  0 and c = 0 and a = v — 1 SOLUTION.

Case2baaadaa4aaab s = i = u — e — t = f  = g = q — j  = r = v = 0 and

188



b = m  = k = a =  —1, n ^ O  and h = j .  SOLUTION.

Case2baaadaa4aab s — i — u — e — t — f  = g = q = j  = n = v = 0  and

b = m  = k — — l , r ^ 0  and h = j.

We get (1 +  a ) r2, so a =  - 1  SOLUTION.

C a se 2 b a a a d a a 4 a b  s = i = u = e = t = f  = g = q = j  = n = r = v = 0 and 

b =  m  = — 1 and h =  j  and a — k.

We get c(l +  A:)2, so c =  0 SOLUTION.

Case2baaadaa4b s = i = u = e = t = f  = g = q = n = r = 0 and b = m — — 1 , 

j  7̂  0 and h = j .

We get 2 j( l  -f k)v, split into two cases: C a se 2 b a a a d a a 4 b a  when v =  0 and

C a s e 2 b a a a d a a 4 b b  when v ^  0, so k = — 1

C a se 2 b a a a d a a 4 b a  s = i = u = e = t = f  = g = q = n = r = v = 0 and

b = m  = — 1, j  t^O and h = j .

We get h2(l +  A:), so A: =  —1 because j  ^  0 and h, = j

We get (1 +  a )( l +  a — c)c c(c — j ) j  and (1 +  a )( l  +  a — j ) j

W hen c =  0, we get (1 +  a )(l +  a — j ) j ,  split into cases: when a = — 1 SOLUTION

and when j  = a +  1 SOLUTION.

When c ^  0, so c = j , we get (1 +  a)(I +  a — j ) j

Split into cases: when a =  - 1  SOLUTION and when j  = a +  1 SOLUTION. 

Case2baaadaa4bb s = i = u = e = t = f  = g = q = n = r = 0 and

b = m  =  A: =  — 1 j  ^  0 , i) ^  0 and h =  j .

We get j v  CONTRADICTION.

C a se 2 b a a a d a b  s = i = u = e = t = f  = c = n = q = r = 0 and m =  — 1 and 

6 ^ - 1-

We have entries g2h , g2j  , v2g and g (l +  A;)2 

Split into two cases
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C ase2 baaadaba when g =  0 and C ase 2 baaadabb when g ^ O s o h  = j  = v = 0 

and k =  — 1.

C ase2 baaadaba s = i = u = e = t  = f  = c = n = q = r = g' = 0 and rn — — 1 and

M - l .

We get (1 +  b)2h so h = 0

We now get j ( l  +  /c)2,(l +  k)v2 and  (a — k)( l  +  k )2 and j 2v  

Split into two cases:

C ase2 baaadabaa when k = — 1 and Case2 baaadabab w hen k ^ —l s o j  = v = 0 

and a — k —1.

C a s e 2 b a a a d a b a a  s = i = u = e =  t = f  = c ~  n = q =  r = g = h = 0 and 

k = m  = — 1 and b ^  —1.

We get (1 +  b)2j  so j  = 0 

We now get (1 +  a — v)v2 

Split into two cases: 

v =  0 SOLUTION. 

v = 1 +  a SOLUTION.

Case2baaadabab s = i = u = e — t = f ~ c  — n = q =  r =  g = h = j  — v — 0 

and m =  — 1 and 6 ^ —1 and a = k  ^  — 1.

SOLUTION.

C ase2 baaadabb s = i = u = e = t = f = c = n = q = r  = h — j  = v = 0 and 

ra =  k = — 1 and b ^  —I and g ^  0.

We get (1 +  a)g2 so a = — 1 

SOLUTION.

C ase2 baaadb s =  z =  u =  e =  ^==u =  0 and /  ^  0 and m  — k — — 1.

We have entry (1 +  fc)/(l + a — h) 

plit into two cases
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C ase2 baaadba when b = — 1 and C ase2 baaadbb when b ^  — 1 so /i =  1 +  a. 

C ase2 baaadba s = i — u = e = t = v — 0 and k — b — m — —1 and f  ^  0.

We have entry f g(h  +  j)  

split into two cases:

C ase2 baaadbaa s = i — u = e = t = v = g = 0 and k = b = m  = — 1 and /  ^  0. 

We have entry / 2j ,  f 2h and c2/ ,  so c =  h — j  = 0 

We get (1 +  a ) / 2, so a — —1 

We get f n r  and f q r  and f q n  

split into two cases

C ase2 baaadbaaa when r  =  0 and C ase2 baaadbaab when r ^  0, so q =  n =  0.

C ase2 baaadbaaa s = i = u = e = t = v = g = c = h = j  = r = 0 and 

a =  k = b = m — — 1 and f  ^  0.

We get / n 2 and f q 2, so n  = q — 0 

SOLUTION.

C a s e 2 b a a a d b a a b  s ~ i  = u = e = t = v = g = c = h — j = 0  and 

a = k = b = m  = — 1 and /  ^  0 and r  ^  0.

We get / r 2 CONTRADICTION.

C ase2 baaadbab s = i = n = e = t = v = 0, k = b = m = —1 , f  ^  0, g ^  0 and

/ i  -  — j .

We have entries c2/ ,  (1 -b a +  c )/p , so c =  0 and a = — 1 

We get / j 2, so j  =  0 

We get f nr  and /g r  and f qn  

split into two cases

C a s e 2 b a a a d b a b a  when r  =  0 and C a s e 2 b a a a d b a b b  when r ^ 0 s o g  =  n =  0. 

C a s e 2 b a a a d b a b a  s = i = u = e = t = v = c — j  = r = 0 and a = k = b = m  = — 1 

and f  ^  0, g ^  0 and h =  — j .
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We get f n 2 and f q 2, so n  =  q = 0 SOLUTION.

C ase2baaadbabb s = i = u = e = t = v = c = j  = 0 and a = k = b = m  = - 1 

and /  7̂  0 and r ^  0, g ^  0 and h = —j.

We get / r 2 CONTRADICTION.

Case2baaadbb s = i = u = e = t = v = Q, /  ^ 0 ,  m =  =  and

h =  1 T  ci.

We have entries / ( n ( l  +  a — j )  — 2qr) — g{\  +  fe)n, /(<7(1 +  o, — j )  — 2nr) — <7(1 +  6)9 

and / ( r ( l  +  a — j )  — 2qn) — g{ 1 +  6)r

If exacitly one of n , q , r is zero ( suppose n=0), get —2q r f  = 0, which is a contra­

diction, as /  /  0

Terms q(ri2 +  r 2 — #2) -I- nr{j  — g — c), n ( r2 +  r 2 — g2) +  qr(j  — g — c) and r (n 2 +  q2 — 

g2) +  nq(j  -  g -  c)

If exacitly two of n , q , r are zero ( suppose n= r= 0), we get — qg2 =  0, so g = 0

We have entry g( 1 + 6)(1 +  a — j )  — f ( n 2 -\- q2 + r2).

If g = 0 we deduce f q 2 = 0 CONTRADICTION.

Split into two cases

C ase2baaadbbl when n =  r = q =  0 and Case2baaadbb2 when n, q, r all 

non-zero.

Case C ase2 baaadbbl: whenn — r = q =  0

We have entries (1 -f b)g( 1 +  a — j) ,  /# (1  - f a  — j) ,  c2(l -f 6) +  3 /g ( l  +  a +  j) ,

(1 +  a )( l  +  a -  j ) j  and 2 /(1  +  a +  ft +  afr +  /  +  a f )  +  /?(c2 +  2gj)

Split into two cases

C ase2baaadbbla when# =  0 and Case2 baaadbblb  when g ^  0 and j  = 1 + a. 

C ase2 baaadbbla when# =  0 We get c2/ ,  so c =  0 

We get now / 2j ,  so j  = 0

We get (1 +  a ) f (  1 +  b +  / ) ,  (1 +  a)({ 1 +  6)2 +  3 / 2)
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split into two cases 

W hen a — —1 SOLUTION.

And when a ±  0 and 1 +  b = - / ,  so 4 /  =  0 CONTRADICTION. 

C a se 2b a a a d b b lb  s = i = u = e = t = v = n = r = q — GO and /  7̂  0 and

m  — k = — 1 and 6 ^ —1 and /i =  1 +  a, 0 7̂  0 and j  =  1 +  a .

We have entries c2(l +  6) +  6/ 0(1 +  a) , 2 /(1  +  a )( l  +  b +  / )  +  g(c2 +  2g(l  +  a)) and 

c2 f  4- 2/7(1 -f- a -T 6 +  a +  2 /  -f- 2 a /)  

split into two cases:

W hen c — 0 and a — — 1 SOLUTION.

W hen c /  0 and a /  - 1  , we get 1 +  a +  2b +  2a6 T  b2 +  ab2 — c — 2ac — a2c +  c2 +  

ac2 +  2/ 2 +  2a/ 2 +  c/ 2 -f 302 +  3ap2and 1 +  a +  26 +  2a6 +  b2 +  ab2 — c — 2 ac — a2c +  

c2 -f ac2 +  3f 2 +  3 a f 2 +  2g2 +  2a02 +  eg2 subtract to get (1 +  a — c ) ( f  — g ) ( f  +  g) 

Split into two cases:

C a se 2b a a a d b b lb a  whena =  c — 1 and C a se 2b a a a d b b lb b  when c 7̂ = 1 +  a , so

g =  / z  , then z 2 =  1.

C a se 2b a a a d b b lb a  s = i = u = e — t = v = n = r = q = 00 and /  7̂  0 and

m  = k — — 1 and 6 ^ —1 and h =  1 +  a, p /  0 and j  =  1 +  a and a =  c — 1, c /  0

and a /  - 1.

We get c(c +  be +  6fg )  , so b = —I — 6/ 0/ c 

we get c f(c  — 2/7) (c +  60), split into two cases:

W hen c = 2g, we get 16/72( / 2 — g2) and 12g2( 4 f2 +  g2\  subtracting these gives 

- 3 2 02/ 2 CONTRADICTION.

W hen c =  -6 0  , we get - 14402( / 2 -  g2) and 36g2( 4 f 2 +  3g2) CONTRADICTION. 

C a se 2b a a a d b b lb b  s = i = u = e = t = v — n — r = q = 00, /  7̂  0 , m  = k = — 1, 

b ^  — 1, /1 =  1 -t- a, 0 ^ O j  =  l +  a , c  7̂ = 1 +  a and g =  / z ,  then z 2 =  1 , c 7̂  0 and 

a 7̂  —1.
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We get c2 +  be2 +  6 / 2x +  6 a /2x, so b = - 1  -  6 / 2x( 1 +  a )/c2 

We get (2 /x ( l  +  a) — c2) (6 /x ( l  H- a) -h c2), so c2 =  2(3fx(l  +  a), then p =  lor — 3 

And we also get (1 +  a -  c) f2x(6(1 +  a )2 -  6c(l +  a) -  c2), so we get 2(1 +  a)(3(l +  

a) — 3c — ^ /x )  =  0, s o c = l  +  a -  /3 /x /3  

We put a — z — 1 when z — y f .

So we have four cases:

case 2 baaadbblbb 1  when x = 1 and P = lwe can not find solution to (1 — 24y +  

V ) ( l  +  48y +  9y2) = 0 , so CONTRADICTION.

case 2 baaadbblbb 2  when x =  — 1 and P =  1 also no solution CONTRADIC­

TION.

case 2baaadbblbb 3 when x = 1 and ft = - 3  we get y = 4 ± \ / l5  SOLUTION, 

case 2baaadbblbb 4 when x =  — 1 and ft =  - 3  we get y = —4±  VT5 SOLUTION. 

Case2baaadbb2: when all of n, q , r non zero

We have entries 0 ( l + f t ) ( l + a - j ) - / ( n 2-f <?2+ r 2), - /< 7( l + a - j ) + / ( n 2+<72) + r 2(l+fr), 

- / p ( l  +  a -  / )  +  / ( r 2 +  </2) +  n 2(l +  6) and - / p ( l  +  a -  j)  +  f { n 2 +  r 2) +  <?2(1 +  6) 

If n 2 +  q2 +  r 2 =  0, then g(l  + a -  j )  =  0, so r 2 -  r~ ^ l ~  

put x = =  0, so r2 = —x ( n2 +  q2)

Then n 2 -I- q2 +  ^  =  0 and n 2 +  q2 +  r 2 =  0, so x — 1 and /  = 1 +  b 

If n 2 +  <?2 +  r 2 7̂  0

We have f ( 2 ( n 2 +  q2 +  r 2)) +  (n2 +  g2 -f r 2)(l +  6) =  3 /p (l +  a — j)
( n 2 +  ^2 +  r 2 ) ( 2 /  +  i  +  h)  =  3 / ! l n i t g.3± r ai

2/  +  (1 +  6) =  f^j;, so 3f 2 — 2/(1  +  b) — (1 +  b)2 = 0

(3 / +  (1 +  b))(f  -  (1 +  b)) = 0, so split into cases Case Case2baaadbb2a When 

b = f  — 1

Case C ase2 baaadbb 2 b when b = —3 / — 1 and n2 +  q2 +  r 2 =  0 and p /  0 and

1 +  a ~  j  0.
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C ase2 baaadbb2 a W hen b = f  — 1

We have entries / ( n ( l  +  a — g — j )  — 2qr), f ( r (  1 +  a — g — j )  — 2qn) and f (q(  1 +  a —

g -  j )  -  2nr)

We deduce th a t there is x  ^  0, so 1 +  a — g — j  = 2x and q2 =  n 2 = r2 = x 2

Also we have f (g(  1 +  a — j )  — (n2 +  r2 +  q2))

So we deduce g(l  + a — j )  = 3x2 and from this and the defintion of x a have, 

(g +  3x)(g — x) = 0

So g 7̂  0 and 1 +  a — j  7̂  0 and a -> 2x +  g +  j  — 1

From this entry nq(c +  g — j )  +  r{g2 — n 2 — g2), get x(c — j )  = 2x2 — gx — g2

W hen g = 0 gives c =  j

And when g — —3x gives c —> —4x + j

Split into two cases:

C ase2 baaadbb2 a l  wheng =  x  and C ase2 baaadbb2 a2  wheng =  —3x.

C ase2 baaadbb2 a l  wheng =  0 and c =  j

We get / ( j  +  3x)2, so j  —> —3x 

We get —12/ 2x CONTRADICTION.

C ase2 baaadbb2 a 2  wheng =  —3x and c =  —4x +  j

We get f { n 2 +  q2 +  r 2 -  15x2) gives - 1 2 / x 2=0 CONTRADICTION

Case Case2 baaadbb 2 b when b =  —3 / — 1 and n2 +  g2 +  r 2 =  0 , # 7  ̂ 0 , 1 +  a -  j  7  ̂ 0

we have entries /(3 g ( l  +  a — j )  +  n 2 +  q2 +  r 2), f (q(  1 +  a — 7 +  3p) — 2nr),

/ (n (l +  a — j  +  3g) — 2gr), / ( r ( l  +  a — j  +  3<7) -  277,(7) and 3 /(c 2 — <7(1 +  a +  j))

Soc2 =  p (l +  a +  j )  and l  + a -  j  + 3g = ^ : = ^ : = ' ^-  = 2x

So a —> 2x — 1 +  j  — 3g and x 2 = n 2 = r 2 = q2

We also have f ( g ( l + a —j ) + 3 n 2 — q2—r 2) and g ( l + a —j)  = —x 2 and g ( l + a —j+3g)  = 

2 xg

So 3g2 =  2xg +  x 2 and get (3g + x)(g — x) = 0 so g = x ov g = ^
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Also we have entry q(g2 — n2 — r 2) +  nr(c g — j)  and using x =  y ,  get g2 — 2x2 +

z(c +  g -  j )  =  0, so x(c -  j )  = 2x2 -  g2 -  xg 

Split into two cases:

C ase2 baaadbb 2 b l when# =  x  and Case2baaadbb2b2 wheng =

C ase2 baaadbb 2 b l when# =  x  and gives c = j  

We get f ( j  -  x ) 2, so j  = x  

We get —4 / 2.t. CONTRADICTION.

Case2baaadbb2b2 when# =  4pand givesc =  ^  +  j

We get | / ( 3n <7 -f- 13rx) and using x  =  get | / ( 3 x  +  13rx) =  0. CONTRADIC­

TION.

Case2bab u =  e =  0 and s2 ^  i2.

We get a m atrix entry (z +  a — h)(s2 — i2) = (1 +  k){s2 — i2) = v(s2 — i2) =  0 and 

deduce h = l  + a , v  = Q and k = -1

The m atrix contains g(n +  rrm +  iq — s — as +  cs + rt.), g(i +  at - c i  — r — mr  — qs -  nt), 

g (l +  a — c +  m -f  am  — cm — ir — ns — qt), giin 4- q +  mq + rs — t — at + ct),

Split into two cases:

C ase2 baba when# =  0 and C ase2 babb when# 7̂  0.

Case2baba u = e = v = g = 0 and h = 1 +  a, and /c =  — 1 and s2 7  ̂z2.

We have term s (1 +  b)c2 and c2/ .

Split into two cases:

C ase2 babaa when c =  0 and Case2babab whenc 7  ̂ 0 (implying th a t f  = 0 and 

6 = - l ) .

C ase2 babaa u = e = v = g = c = 0 and h = 1 +  a, and A; =  — 1 and s2 7̂  z2.

We have term s f 2j.

Split into two cases:

Case2babaaa when f  = 0 and Case2 babaab when/  7̂  0 (implying tha t j  = 0).
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C a se 2 b a b a a a  u = e = v = g = c = f  = 0 and h =  1 +  a, and k =  — 1 and s2 ^  i2. 

We have terms (1 +  6)2j ,  (1 +  b)q2, (1 +  b)n2 and (1 +  b)r2.

Split into two cases:

C a se 2 b a b a a a a  when b = — 1 and C a se 2 b a b a a a b  when b ^  — 1 (implying th a t 

j  = q = n = r = 0).

C a se 2 b a b a a a a  u — e — v = g — c — f  = 0 and h =  1 +  a, k = —1, b = — 1 and

■s2 ^  i 2.

We get entrys nrq , (1 +  a )rs , (1 +  a)ri  , (1 +  a)rzs, (1 +  a)ni  , (1 +  a)gs and (1 +  a)gz. 

Subtracting these gives n(a-t- l)(z — s) = 0 ,  r ( a +  l)(z — s) = 0 and q(a + l)(z — s) =  0, 

so (1 +  a)n =  0 , ( 1  +  a)r = 0 and (1 +  a)q =  0 

Split into two cases:

C ase 2 b ab a 5  when a = — 1 and nqr = 0 and C a se 2 b a b a 4 b  when a ^  — 1 (implying 

th a t q — n — r — 0).

Case2baba5 u, = e = v = g = c = f  = 0 and h =  1 +  a, and k = — 1 and 6 =  — 1 

and a — — 1 and s2 ^  i2.

we have entries n^r, j ( s 2 +  2(1 +  m )i) and j ( i 2 +  2(1 + m)t).  Subtracting these gives 

j ( s 2 — i2) = 0, so j  = 0.

Now we have entries i r2 +  nqt  and —r 2s — nqt, and on adding we have r2(i — s) = 0, 

so r — 0.

Now we have entries iq2 and sq2, and on subtracting we have q2(i — s) =  0, so q =  0. 

Now we have entries n s 2 and in2 = 0, so likewise n = 0 SOLUTION.

C ase 2 b ab a 4 b  u = e = v = g = c = f  = q = n = r = 0 and h =  1 +  a, and k = — 1 

and b =  — 1 and s2 ^  z2 and -1 .

We have terms (1 +  a)i j  and (1 +  a )s j, so we deduce (1 +  a)j  = 0, so j  = 0.

We have terms (1 +  a)(i +  s)( 1 +  m  +  £), so t = — 1 — m.

Now we have terms (1 +  m )2 +  zs =  0 and z2 +  s2 —2 ( l+ m )2 =  0, so we get (z +  s)2 =  0.
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CONTRADICTION.

C ase2 babaaab u = e = v = g = c = f  = j  = q = n = r = 0 and h =  1 -f a, and 

k — — 1 and s2 ^  i2 and b ^  — 1.

We have terms (1 +  a)( 1 +  ra +  £), (1 +  a )((l +  n?.)2 4- 2zs +  t 2), (1 +  a )(( l +  b)2 -  

i2 — s2 — 2(1 +  m )t),

Split into two cases

C a se 2 b a b a a a b a  when a =  — 1 and C ase 2 b ab a a ab b  when a ̂  — 1.

C a se 2 b a b a a a b a  u = e = v = g = c = f  = j  = q = n = r = 0 and h =  1 +  a, and

a =  - 1  and A; =  - 1  and s2 ^  z2 and b ^  -1 .  SOLUTION.

Case2babaaabb u = e = v = g = c = f  = j  = q = n = r = 0 and /i =  1 +  a, and

a — 1 and £ =  — 1 — m  and k = — 1 and s2 ^  r  and b ^  — 1.

We get (1 +  6)2 =  (z +  s)2 and (1 +  rri)2 +  is = 0, split into two cases:

When s = 0, we get z2 =  (1 +  b)2 and (1 +  m ) 2 , so z =  x ( l  +  b) and m  = —I when

.t2 =  1 SOLUTION.

When s ^  0, we get z =  — (1 -f m ) 2/ s

We get b = x(i  +  s) — 1 and x 2 = 1 SOLUTION.

C a se 2 b a b a a b  u — e = v = g = c = j  = 0, h = 1 +  a, k = — 1 and s2 ̂  i2 and

/  7^0.

We have terms (1 +  a)qi, (1 +  a)qs, (1 +  a)rz, (1 +  a)rs,  (1 +  a)m,  (1 +  a)ns.

We split into two cases: C a se 2 b a b a a b a  a = — 1 and C a se 2 b a b a a b b  a ^  - 1  and 

so q = r = n = 0.

C a se 2 b a b a a b a  u = e = v — g ^ c  — j  — 0 and h =  1 +  a, and a =  k = — 1 and 

s2 ^  i2 and /  ^  0.

We have terms / n r ,  f r q , f n q , f ( n 2 + q2 + r 2). As /  ^  0 we have nr = nq = rq = 

0 =  n 2 +  r 2 +  <72. The only solution to this is if q = r = n  =  0. SOLUTION 

C ase2 babaabb u = e = v = g — c = j = q = n = r =  0, /i =  1 +  a, fc =  — 1 and
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s2 ^  i2 and f  ^  0 and a /  -1 ,

We have entries (l +  a ) / ( l  +  6 + / )  and (l4-a)(z +  s )( l +  m +  £). We deduce b = — 1 — /  

and m =  — 1 — t.

Now we get entries (1 +  a)(is +  t2) and (1 +  a ) (4 /2 — i2 — s2 +  2£2), and deduce 

t2 =  - i s  and 4 / 2 =  (i +  s)2. SOLUTION

C a se 2 b a b a b  u = e = v — g — f  = 0 and h = 1 +  a, and b — k =  — 1 and s2 ^  i2 

and c /  0,

We have terms (1 +  a — c)iq, (1 +  a — c)sg, (1 +  a — c)zr, (1 +  a — c)sr, (1 +  a -  c)m,

(1 +  a — c)s?7, (1 +  a — c)(l +  a)c, ngr. We deduce th a t (1 + a — c)q = (1 +  a — c)n =

(1 +  a — c)r = (1 +  a — c)(l + a) = 0 .

Split into two cases

C a s e 2 b a b a b a  when a = c — 1 and C a se 2 b a b a b b  whena ^  c — 1 (implying tha t 

n =  r = q = 0 and a = — 1).

C a se 2 b a b a b b  u = e = v = g = f  = n = r = q = h = Qa,, and a = b — k — — 1 and

s2 ^  i2 and c /  0 and a ^  c — 1.

We get j 2s and j 2i, so j  =  0

We get cs2 and cz2, so c =  0. CONTRADICTION

C ase2 bababa u = e — v — g — f  = 0 and h =  1 +  a, and b = k = — 1 and s2 ^  i2 

and a = c — 1 and c ^  0..

We have terms inq — qrs — n r t , nqs +  irq +  nrt,  qi2 +  (77 +  r)s£, gs2 +  (77 +  r)it,

i2n +  <7,5(77?, +  1) +  r£2, i2r +  qs(m +  1) +  n t 2.

Split into two cases:

C a se 2 b a b a b a a  when q — 0 and C a se 2 b a b a b a b  when q ^  0.

C ase2 bababaa u = e = v = g = f  — q — 0 and h = I + a, and b = k — — 1 and 

s2 ^  i2 and a = c — 1 and c /  0,

Get r2s and r2i, so r =  0.
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Then get n s 2 and m 2, so n = 0.

Then get j 2s and i j 2, so j  =  0.

Then get c2s and c2z, so c =  0. CONTRADICTION.

C ase2 bababab u = e = v — g = /  =  0 and h =  1 +  a, and b =  /c =  — 1 and s2 ^  z2

and a =  c — 1 and c ^  0. and </ 7̂  0.

We have term s inq — qrs — n r t , nqs +  zr<? +  n rt, gz2 +  (n +  r)s£, gs2 +  (n +  r)z£, 

z2n +  <7.5(777 +  1) +  r£2, z2r  +  <7.5(77?, +  1) +  n£2, nqr.

On subtracting terms, we get q(s2 — i2) +  t(n +  r)(z -  s) =  0, and on dividing by 

s — i we get <7(5 +  z) =  t (n  -f- r). As z -f s 7̂  0 this means that t ^  0 and n + r  /  0 . 

Now the equation qi2 +  (n +  r)st  — 0 gives, on substitution, q(i2 + is + s2) =  0, 

so z2 T  zs T  s2 =  0. From this we must have both s /  0 and i /  0, We deduce 

th a t z =  sx,  where 1 ^  1 is a solution of x 3 = 1. Now we get nr = 0, and then

q(in — rs)  = 0  and q(ir +  ns) = 0. As <7, s are nonzero and z = sx we get r = xn  and

n = —x 2n, so n = r = 0.

On substituting this, we get entries q2t and (1 +  m) 2q, so t =  0 and m  =  — 1.

Then we get i2q =  0. CONTRADICTION

C a se 2 b a b b  u = e = v — 0 and a = h — 1, and /c =  —1 and s2 7̂  z2 and £ 7̂  0.

We have entries g((c — h)i  +  77.(1 -f m)  +  qs +  rt) , g((c -  h)i +  r ( l  -f 777) +  qs +  77t). 

Subtract to get (77 — r ) ( l  +  m  — t).

Split into two cases:

2 b a b b a  when r = n  and 2 b a b b b  when 777, =  t, — 1 and r ^  n.

2babba u =  e =  v = 0 and a =  h — 1 and fc = — 1 and s2 7̂  z2 and g 7̂  Oand r  =  n 

We get z2<7 +  277s ( l  +  777) +  gt2 and s 2q +  2 ?7z ( l  +  777) + gt2.

Subtract to get (z2 — s2)q +  2n(s  — z)(l +  777) =  0 dividing by (z — s), get (z +  s)q =  

2zz(l +  777)

And we have also entries gi2 +  2tzs(1 +  777) +  qt2, gs2 +  2rzz(l +  m)  +  qt2 gives
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g(s 4- i) =  2n(l 4- m), as s 4- i ^  0 , get g — q

And from g(s 4- i) = 2n (l +  m), we deduce and m / - l

We have n(g(c + g — j )  — u 2), so g(c 4- g — j )  = n2

And we have n ( 3 f g  — (h — j ) (  1 4- 6)), so 3f g  = (h — j ) (  1 4- 6)

And we have n (p (l +  &) 4- 2 f g  -  f ( h  -  j ) )  so p (l +  6) 4- 2 /#  -  f ( h  -  j )  =  0 

And we have 2g?(l 4- m) 4- n (s2 4-12), 2gs{\  4- m)  4- n( i2 4- £2), so 2g(l +  m) = n(s  4- i) 

times g gives 2g2(l  4- m) = ng(s  4- i) = 2n2(l 4- m) so g2 =  n 2.

Fromp(c +  g -  j )  =  n 2 get g(c -  j )  = 0, so c =  j.

We get 3f g ( h  4- j )  +  j 2( 1 +  b), and we have 3 fg  — (h — j ) ( l  4- b), from them get 

( l +  6)/i2

And we have /r(g(l 4- 6) 4- /(2 p  4- j) ) ,  so if 1 4- b = 0 then /  =  0 

split into two cases:

2 babbaawhen b = — 1 and /  =  0  and 2 babbab when 6 ^ — 1 , so /i =  0

2babbaa ?/, =  e =  ?; =  /  =  0, a =  h. — 1, b = k =  — 1 , .s2 ^  72, <7 =  g ^  0, r  =  n, 

n ^ 0 , m / - l , c  =  j  and g2 =  n 2, 2g(l 4- m)  =  n(s 4- i) and g(s 4- ?’) =  2n(l 4- m)  

We have entries g(2gj  4- j 2 — 3n 2), but n 2 = g2 and g ^  0, so (j 4- 3g)(j  — g) = 0, so 

j  =  g or (j =  - 3 g).

We have <7(0(1 4- m) 4- n(i  4- s) 4- t ( j  — h)), use 2g(l  4- m) = n(s  4- i) to get

3g(l  +  m) = t(h — j ) ,so t 7̂  0 andh 7̂  0-

We have (1 4- m ) 2g 4- i2 4- 2ns£, (1 4- m ) 2g 4- s2 4- 2nz£

Deduce ,<7(7 4- s) =  2nt,  so 1 4- m, — t, and m  =  t — 1 

Now 3g£ = t(h — j) ,  so /i =  3g 4- j

We get g(gz — 3gs 4- 2nt)  and 0(3gz — gs — 2nt) add to get g(Agi — 4gs) = 0, so 

4g2(i - s )  = 0 CONTRADICTION.

2 babbab u = e = v = h = Q, a = h — 1, k — —1, s2 7̂  z2, q = g 7̂  0, r  =  n, n  7̂  0, 

m / - l , c  =  j j 2 =  ?i2 and 6 ^ —1.
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We have g(3g2 -  2gj  -  j 2), so j  = g or j  = - 3 g ,and so j  ±  0.

And we have j ( i  +  s ) ( l  +  m  +  t), deduce m — - t  -  1.

And we have j ( 3 f  g +  j ( l  +  b)) and j ( ( l  +  b)2 +  3 / 2) gives a cntradiction with either

j  = g or j  = - 3 g CONTRADICTION.

C a se 2b a b b b  u — a — v =  0 and a =  h — 1, and k — — 1 and s2 7̂  z2 and g 7̂  0, 

m  =  t — 1 and r ^  n.

We have n s2+ 07f.+z0£+r£2,m<s+0z£+g.s£+742, subtract to get ns(s —i )+qt ( i—s) — 0, 

dividing by (s — i) to get ns — qt = 0.

We also have ins  +  git  +  qst +  r t2, irs  +  git +  qst +  nt2, subtract to get zs(n — r) +

(r — n) t2 =  0, dividing by (n — r) to get is — t = 0.

We also have n s 2+git-\-iqt+rt2, rs2+gi t+iqt+nt2, subtract to get ( i - s ) r s +q t { s - i )  =  

0, dividing by (z — s) to get vs — qt — 0.

So ns — qt = rs  but n  7̂  r, so s =  0 and z 7̂  0

We gett2 =  0, so t =  0

We get gi2 =  0 CONTRADICTION.

Case2bb W hen u 7̂  0 7̂  e, es -  iu =  0 and e2 =  u2/neqQ, put e =  xu  and so i =  zs, 

where z  =  ± 1.

We have entry (1 +  a — /i)zz(l +  /c — u)

Split into two cases:

case 2bba when A: =  u — 1 and 2bbb when k ^  v — 1, so a = /i -  1. 

case2 bbae = zzz, z =  .ts A; =  ?; — 1, ?/, 7̂  0 7̂  e and z =  ±1.

We have entry (1 +  m — t) ( l  +  6 — f x ) u  

Split into two cases:

case 2 bbaa when b =  f x  — 1 and 2 bbab when b 7̂  / z  — 1, so m =  < -  1.

case2 bbaa e = x u , i  = x s k  = v — 1 , iz 7̂  0 7̂  e and 2 =  ±1 and b — f x  — 1.

We have entries f g h  -  f  gj  -  f n 2 -  f x q 2 -  f r 2 -  g sux , f g h  -  -  f x n 2 -  f q 2 -  f r 2 -
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g su x , f g h  — f  gj  — f n 2 — f q 2 — f x r 2 — gsux.  Subtracting these gives / ( l  — x)(q2 + n 2) 

, / ( I  -  x ) ( r2 +  n 2) , / ( I  -  x)(<?2 +  r 2).

Split into three cases : c a se 2 b b a a a  when /  =  0 and case2bbaabw hen  x =  1 and 

/  0 an d case2 b b aac  when /  ^  0 and r  ^  1 so i  =  - 1  and g =  n =  r  =  0 .

c a se 2 b b a a a  e =  xu, i = xs  k = v — 1, u ^  0 ^  e and x =  ±1 and 6 =  f x  — 1, /  =  0.

We have entry psu 

Split into two cases:

case  2 b b a a a a  when s = 0 and 2 b b a a a b  when s 0, so g =  0.

c a se 2 b b a a a a  e =  x u , i  =  x s k  =  v — 1 , 0 ^  e and x =  ± la n d  b =  f x  — 1 ,

f  =  s =  0.

We get (1 +  m ) 2u and t2u , so t =  0 and m  = — 1

We get —(1 +  a)2 +  h( 1 +  a) — /i2 +  u2 — 2hv 4- 2u2 and —/i(l 4- a) 4- u2 — 2/ro 4- 2v2

Subtracting these gives (1 +  a)2 — 2h(l  4- a) 4- h2 =  (l -f a — h)2 =  0 ,  so a = h — 1

We get 2u3(u — v)(u +  v) , so v = yu, and y 2 — 1

We also get u{h — uy)(h  4- 3uy),  so h = ayu  and a = lo r  — 3

We have entries ( g - j ) ( ( g + j ) r  + 2nq), ( g - j ) ( ( g + j ) n + 2 r q )  and ( g - j ) ( { g+ j ) q+ 2 n r )

Split into four cases:

c a s e 2 b b a a a a l  when g — j  .

c a se 2 b b a a a a 2  when g ^  j ,  so g — — j  and at least two of n, q, r are zero . 

c a se 2 b b a a a a 3  when g2 ^  j 2 and all of n, q, r are zero .

c a se 2 b b a a a a 4  when g2 ^  j 2 and all of n, q, r are non- zero and =  r 2 =  q2 =
2

7 T .

c a s e 2 b b a a a a le  =  x u , i = xs  k = v — 1, u ^  0 ^  e and x =  ± la n d  b =  f x  — 1, 

f  = s = 0, t = 0 and m  = — I, a = h — 1 , v — yu  and y 2 = 1, g = j  .

We j(c 2 4- 2 j2 — n 2 — q2 — r 2), 3(cj2 — nqr ), ^(n2 +  r 2 — j 2) — cnr, n(<72 +  r 2 — j 2) — cqr, 

r ( n 2 4- q2 — j 2) — cnq and nq +  <7'r — cu + j 2y + wry — j u  — 2juct
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Split into two cases :

case  2 b b a a a a la  when j  = 0 and 2 b b a a a a l  b when j  ^  0.

case2 bbaaaala  e =  xu, i = x s k  = v — 1, u ^ Q ^ e  and x = ±1 and b = f x  — I, 

f  = s = 0, t = 0 and m  = —I, a ■= h — 1, v = yu and y2 = I, g = j  and j  =  0, 

h =  ayu  and a = 1 or — 3, x  =  1.

We get cua,  so c =  0

And we get 3nqr, q(n2 +  r 2), n{q2 +  r 2) and r (n 2 +  q2), so must have at least two of 

n, q, r are zero.

But we get also q + ry + nya,  so all n , q , r are zero SOLUTION. 

case2 bbaaaalb  e = xu, i = x s k  = v — I, u ^ O ^ e  and x = ±1 and b =  f x  — 1,

f  — s = 0, t = 0 and m  — —1, a = h — 1, v = yu and y 2 = 1, g = j  and j  ^  0.

We have entry 3[cj2 — nqr),  so c = ^

Suppose n = r = 0, we get qj2, so q = 0

Suppose q — 0, get n(r2 -  j 2) and r (n2 -  j 2), so r2 =  n 2 = j 2 ^  0, so can not have 

all n , q , r are zero, and so only one or all them are non - zero.

Split into four cases:

c a s e 2 b b a a a a lb l  when n = 0 and q, r ^  0 ,c = 0. 

c a s e 2 b b a a a a lb 2  when r = 0 and q, n ±  0 ,c =  0. 

c a s e 2 b b a a a a lb 3  when q — 0 and n, r ^  0 ,c = 0. 

c a s e 2 b b a a a a lb 4  when all n , q ,r are non - zero.

c a s e 2 b b a a a a lb l  when n = 0 and q,r ^  0 ,c = 0 and r2 — q2 = j 2.

We get j u ( —u +  j y a )  , so u = j ya .

We get j 2a 2(a2 -  1), so a  =  1, we get j 2q CONTRADICTION.

c a s e 2 b b a a a a lb 2  when r =  0 and n, q ^  0 ,c =  0 and q2 =  n 2 = j 2

We get j u ( —u +  j ya ) ,  so u = j y a

We get j 2a 2(a2 — 1), so a = 1, we get j 4qy CONTRADICTION.
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case2bbaaaalb3 when q = 0 and n, r ^  0 ,c =  0.

We get j u ( —u +  j ya) ,  so u =  j y a

We get j 2a 2(a2 — 1), so a  = 1, we get j 2ry CONTRADICTION. 

case2bbaaaalb4 when all n , q , r are non - zero and e = x u , i  = x s k  = v — 1 ,

u /  0 /  e and x = ±1 and b = f x  — 1 , /  = s = 0, £ = 0 and m = —1, a = h — 1 ,

v = yu and y2 — 1, g = j  and j  ^  0 and h = ayu.

We have entries q( j2 — r 2) ( j2 — n 2), r ( j 2 — q2) ( j2 — n 2) and n ( j 2 — r 2) ( j2 — q2), so

must have at least two of j 2 =  q2 , j2 = r2 and j 2 = n 2

We get u3(x — 1) and u(h — uy)(h  +  3m/), so x  = 1 and h = auy  then a  =  1 or — 3 

We get cn +  j r  — qu + j 2y +  jqy  — ruy — j u a  — nuya  and j n  +  cr — qu-\- j 2y + jqy  — 

nuy — j u a  — ruy a  subtracting these gives (n — r)(c — j  +  uy — uya)

And we get nu  +  j u y  +  qwy — 2nqya — 2 j rya  +  r u a2 and ru +  j u y  +  quy — 2 j nya  — 

2qrya  +  n u a 2 subtracting these gives (n — r) (—u — 2j y a  +  2qya +  u a 2)

Split into two cases :

case 2bbaaaalb4a when n  =  r and case 2bbaaaalb4b when n  ^  r, so c =

j  +  uy(  1 — a)  and q = yu(  1 — a 2) /2a  +  j

c a s e 2 b b a a a a lb 4 a  when all n , q ,r are non - zero and e — xu, i — xs  k = v — 1, 

u /  0 /  e and x = ±1 and b = f x  — 1, f  = s = 0, t = 0 and m  — —1, a = h — I, 

v = yu and y 2 =  1, g = j  and j  ^  0 and h = ayu  and n = r.

We must have at least two of j 2 = r 2, j 2 = n 2 and j 2 =  q2

W hen j 2 =  r2, we get c j2 — qr2, so j 2(c — q) and j  ^  0, so c =  q and r =  z j  then 

.z2 =  1

And we get cu +  2j u  — j 2y a  — n2y a  — q2y a  — r 2ya  +  j u a 2, so c = (—2j u  +  j 2ya  +  

q2y a  +  2 r 2y a  — j u a 2) /u  

We get l /2 u 2(—1 +  yz)(  1 +  a ) 2 

Split into cases :
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W hen z =  —y, we get (j  — q)uy, j  =  q, and we get — 2juy(l-\ -a)  CONTRADICTION. 

W hen z = y, we get 2 j 2 + 2jq — j u y  — quy — j u y a  and 2j2 -\-2jq — 2juy — j u y a  — quya,  

subtracting these gives (j  — q)uy{a — 1)

Split into two cases:

W hen a = 1 and when a  = — 3 and q =  j

W hen a  = 1, we get 2j 2 +  2j q  — 3juy — quy and 3j u  +  qu — 3j 2y — q2y , subtracting 

these gives (j — q)2y , so q — j , we can see tha t if a = lor  — 3 we get q = j  

We get 2u3(—1 +  x),  so x  =  1 

We get z j  — uy  — u y a , so j  =  uy(l +  a ) /2

We get — ( l / 2 ) u2y (—1 -f a ) ( l  +  a ) (3 +  a)  we have two possiple a  =  I and a  =  — 3 

SOLUTION in the both cases.

case2bbaaaalb4b when all n , q ,r are non - zero and e = xu, i = xs k = v — 1, 

u ^ O / e  and x = ±1 and b = f x  — 1, f  = s = 0 , t = 0 and m  = - 1, a = h — 1, 

v = yu and y 2 = 1, g = j  and j  7̂  0 and h = ayu, n ^  r, c = j  + uy( 1 — a) and 

q = yu( 1 — a 2)/ 2a +  j .

We get 2(n — r)u(a  — 1), so a  =  1

We get u(n  +  r  — 2j?/), so n =  2j y  — r

We get 4 j( j  — uy)  and (j  — r)2, so r  =  j  and j  =  uy

We get 2u2(</ — 1), so (/ =  1

We get u3(x — 1), so x — 1 SOLUTION.

case2 bbaaaa2  e =  .t?/, z =  xs  k = v — 1, u ^  0 i=- e and x =  ±1 and b = f x  — 1, 

f  = s — 0 , t  = 0 and m  = — 1, a — h — 1, v = yu  and y2 — 1, g ^  j ,  g = —j  and at 

least two of n , q , r  are zero .

W hen q = n =  0 and r  ^  0, we get u2(j -  ry),  so j  =  ry 

We get r 2m/ CONTRADICTION.

W hen r  =  q — 0 and n /  0, we get u2(j -  ny),  so j  =  ny.
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We get n 2uy  CONTRADICTION.

W hen r = n — 0 and 0, we get (j  — q)u2y , so j  — q 

We get q2uy  CONTRADICTION.

W hen n = q = r = 0, we get j u 2, so j  = 0, but g ^  j  and g =  — j  CONTRADIC­

TION.

case2bbaaaa3 e = xu,  i = xs  k = v — l , u / 0 / e  and x =  ±1 and b = f x  — 1, 

f  = s =  0, t = 0 and m  =  — 1, a = h, — 1, ?; =  ?/?/ and y2 = 1, g2 ^  j 2 and all of 

n, q, r are zero.

We get gu2, so g — 0

We get u(h — uy)(h  +  3uy),  so h = ayu  when a  — 1 or — 3 

We get u3(x — 1), so x = 1 

We get c ( c - j ) j  

Split in two cases :

W hen c =  0, we get 3u2j  CONTRADICTION.

W hen c = j ,  we get j u ( j  — 2uy — 2uya)  and j u ( —3u +  j y a  — u a 2), so split into cases: 

W hen a = 1, we get j u ( j  — 4uy),  so j  = 4uy,  we get 16u3(y — 1), so y = 1 SOLU­

TION.

When a — —3, we get j u ( j  +  4uy),  so j  = —4uy,  SOLUTION when y =  lo r — 1 

case2bbaaaa4 e = xu, i — xs  k = v — I, u ^  0 ^  e and x = ±1  and b = f x  — I,

f  = s = 0, t =  0 and m =  —1, a =  h — 1, v =  yu and y 2 = 1, g2 ^  j 2 and all of

n, q, r are non- zero and —~ ■ — r2 — q2 = n2.

We get u(h — uy)(h  +  3uy),  so h = ayu  and a  — 1 or — 3

We get u3(x — 1), so x = 1

We get gn +  j n  +  2qr = 0, so j  =  - g  -  ^  ^  g

We have r 2 — q2 = n 2, we let r = zn  and q = f3n and /32 =  z 2 = 1, so g ^  —z(5n

We get (z — 1 )(u — gy — ua  +  3ny/3) and (z — l)(c  — g +  uy — uya)
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Split into two cases :

case  2 b b a a a a 4 a  when z =  1 and case 2 b b aaaa4 b  when z ^ l s o z  =  —1, 

g = c + uy — u ya  and g =  uy — u ya  +  3nfi, when subtracting these gives c = 3nfi 

c a se 2 b b a a a a 4 a  e — xu, i — xs  k = v — 1, u ^  0 ^  e and x = ±1 and b = f x  — 1, 

f  = s = 0 , t  = 0 and m  = —1, a — h — 1, v = yu and y2 = 1, g2 ^  j 2 and all of 

n , q , r  are non- zero and =  r 2 = q2 = n2, h = ayu  and a = 1 or — 3,x =  1,

j  =  —g — ^  ^  g, r =  zn  and q = fin and fi2 =  z2 =  1 and z = 1.

We get—cn — gn  +  g2y +  nm/ +  gm* +  nuya  +  nufi  +  gnyfi, so c — (—gn +  g2y +  

nuy  +  gua  4- nuya  4- nufi  +  gnyf i ) /n.

We get ua(f i  — y){ny  4- g).

Split into two cases :

case  2 b b a a a a 4 a a  when fi — y and case 2 b b aaaa4 ab  when fi y, so fi = —y and

9 =  ~ n y

case2bbaaaa4aa e = xu, i = xs k = v — 1, u 0 ^  e. and x = ± land

b — f x  — 1, f  = s = 0 , £ = 0 and m  = -1 , a — h — 1, v = yu and y2 = 1,

g2 ^  j 2 and all of n ,q ,r  are non- zero and -  r2 -  q2 = n2, h = ayu  and

a = lor — 3 ,x = 1, j  = — g — ^  g, r = zn and q = fin and fi2 = z2 = 1, z = 1,

c = (—gn +  g2y 4- nuy  4- gua 4- nuya  4- nufi + gnyfi)/n and fi = y-

We get n(a — 1)(2g 4- 2ra/ — uy 4- uya)

Split into two cases :

case  2 b b a a a a 4 a a a  when a = 1 and case 2 b b aaaa4 aab  when a  ^  1, so a  = — 3

and g = y(2u — n)

c a se 2 b b a a a a 4 a a a  e =  xu, i = x s k  = v — I, u ^ O ^ e  and x = ± la n d  

b = f x  — 1, /  =  5  =  0, £ =  0 and m = —I, a = h — I , v = yu  and y2 — 1,

g2 ^  j 2 and all of n , q , r  are non- zero and = r 2 = q2 = n 2, h =  ayu  and

q =  lor1 — 3, x  = I, j  = —g — ^ ^ g , r  — zn  and q = fin and fi2 = z 2 = I, z = I
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,c =  (—gn  +  g2y +  nuy  +  gua  +  n uya  +  nufi  +  gnyf i ) /n  and fi = y and a  =  1.

We get 2yn +  gu -f 2n2y +  3nuy  and 2n 2 +  3nu  +  2gny  +  guy subtracting these gives

2(g — n)(g +  n), so g = y n  and 72 =  1

We get 2ny  4- 3uy  4- Zny  4- uy= 2n(y  4- 7 ) 4- u(3y 4- 7 )

When 7 =  - y ,  we get 2uy CONTRADICTION.

W hen 7 =  y, we get 2uy CONTRADICTION.

case2bbaaaa4aabe = xu, i = xs k = ?; — 1, u 7̂  0 ^  e and x = ±1  and

6 = / x — l , /  = s = 0, £ = 0 and m = —1, a = h — 1, v = yu and y2 = 1,

g2 ^  j 2 and all of n ,y ,r  are non- zero and — r2 = q2 = n2, h — ayu  and

a = 1 or — 3 ,x = 1, j  = —g — ^  ^  y, r — zn and q = fin and fi2 = z2 = 1, z = I, 

c — (—gn +  g2y 4- nuy 4- gua  4- nuya  + nufi +  gnyfi(/n and fi = y, a — — 3 and 

g = y(2u -  n).

We get n(n  — u )u2y, so n  — u SOLUTION.

case2bbaaaa4ab e =  xu, z =  xs /c =  v — 1, zz 7̂  0 7̂  e and x =  ± la n d  6 = f x  — 1, 

f  = s = 0, t = 0 and m  =  — 1, <2 =  /i — 1, v = yu  and y2 =  1, g2 ^  j 2 and 

all of n, q , r are non- zero and = r 2 = q2 — n2 ,h = ayu  and a  = 1 or — 3,

x = 1, j  — — g — 7^ 7̂  y, r  =  zn  and q — fin and fi2 — z2 = 1 and z = 1

,c — (—gn  -I- g2y 4- nuy  4- gua  4- n uya  4- nufi  4- gny f i ) / n , fi = —y and g = —ny.

We get 2n2uy(4n  +  u ( l — a)),  so n = —u( 1 — a ) / 4 and so a ^  - 1  because n  ^  0 

We get 4uA(a -  1)2(2 4- a)  CONTRADICTION.

c a se 2 b b a a a a 4 a  e =  x u , z  =  xs k = v — 1, u  7̂  0 7̂  e and x =  ±1 and b = f x  — 1, 

f  = s = 0, t = 0 and m =  — 1, a — h — 1, v = yu  and y2 =  1, g2 7̂  j 2 and all of 

n ,y ,r  are non- zero and =  r2 =  y2 =  rz2, h = ayu  and a  =  lo r — 3,x - 1,

j  = —g — ^ - ^ g , r  = zn  and q = f in , fi2 — z2 — z = — 1 and c =  3n/L 

We get uy(a  — l)(u y (l — a ) 4- 4n/3) and u(u(a — 1) -  4ny/?), when a  =  1, we get 

—4nyfiu,  so a  = —3
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We get 4u(u 4- nyfi), so u = —nyfi 

We get 4n2y (3 CONTRADICTION.

case2bbaaab e =  xu, i = x s k  = v — I, u ^ O j ^ e  and x -- ± la n d  b = f x  — 1, 

f  = g = 0 and s ^  0.

We get t2,u 4- 2sv 4- 2msv  and t2ux 4- 2sv + 2msv. Subtracting these gives t2u(x — 1) 

Split into two cases :

case 2 bbaaaba when x — 1 and 2 bbaaabb when x ^  1, so t = 0 and x = —1.

case2 bbaaaba e = xu,  i = xs  k = v — 1, and x =  ±1 and b = f x  — I,

f  = g = 0 and s ^  0 and x =  1.

We get s ( l  4- m — t)u so m =  £ — 1.

We get s£u, so t = 0

We get s2u CONTRADICTION.

case2bbaaabbe =  xu, i = xs k = v — l , u ^ 0 ^ e  and x =  ±1 and b = f x  — 1, 

f  = g — t = 0 and , s /  0 and x =  —1.

We get s2u CONTRADICTION.

case2bbaabe =  xu, i = x s k  = v - l , u ^ 0 ^ e  and x =  ±1 and b =  / x  -  1, /  ^  0 

and x =  1.

We get (—1 4- /  — m)(tu — vs)

Split into two cases :

case 2 bbaaba when m  — f  — 1 and 2 bbaabb when m /  /  — 1 and v = 

case2 bbaabae =  x?z, i — xs k = v — I, u ^  0 ^  e and x =  ±1 and b — f x  — 1,

/  /  0 and x =  1 and m  =  /  — 1.

We have entries f s - \ - a f s  — f h s  4- 2f 2u 4- f t u  — t2u — 2f s v  and f s  4- a fs  — f h s  4-

f 2u 4- s2u — 2 /su . Subtracting these gives u ( f 2 — s2 4- f t  — t2).

And we have also (2f 2 — s2 — f t ) u  Subtracting these gives ( f 2 -  2f t-\-t2)u, so (f  — t)2u 

and so t = f
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We get ( / 2 — s2)u, sos = y f  and y2 = 1

We get / 2(1 4- a — h — 2u 4- 2uy), so a  = - 1  4- /z 4- 2u — 2uy

We u(u — yu)2, so u = yu

We get u(/z — uy)(h 4- 3uy) = 0

Split into two cases :

case 2 bbaabaa when h = uy  and 2 bbaabab when h = —3uy  

case 2 bbaabaae = xu  , i — xs k — v — 1 , u 7  ̂ 0  ^  e and x = ± 1  and b = f x — 1 , /  7  ̂ 0

and x = 1 and m =  /  — 1 , t = / ,s  =  y f  and y2 = l ,a  — — 1 4- /z 4- 2u — 2uy,v = yu

and h = uy.

We get /(crz 4- j r  4- j 2y 4- jqy) and f ( j n  4- cr 4- j 2y 4- jyy) , subtracting these gives 

(c -  g)(n -  r) = 0.

We get f ( j n  4- gr 4- q2,y 4- nyy) and f (gn  4- j r  4- q2,y 4- nqy) , subtracting these gives 

( 9 -  j )(n ~ r) =  0 .

We also get f ( j n  4- nq + gqy 4- r2y) and f ( j r  + rq 4- gqy 4- n2y) , subtracting these 

gives (n — r)(j  4- q — (n + r)y) = 0 

Split into two cases :

case 2 bbaabaaa when rz = r and 2 bbaabaab when n / r  so, c = g = j  = 2ny — q 

case2 bbaabaaa e =  xu, i — xs  k = v — 1, u / 0 / e  and x =  ±1 and b =  /x  — 1, 

/  7̂  0 and x = 1 and m = / —l, t — / ,  s = y f  and y2 = l,a = — 14-/z4-2u—2uy,u = yu 

and h — uy and rz = r.

We have entries y2 4- r 2 4- gry 4- j ry  = 0 and jy  4- r2 4- gry 4- yry = 0, subtracting 

these gives (q — j)(q — ry) — 0 

Split into two cases :

case 2 bbaabaaaa when q = j  and 2 bbaabaaab when q 7  ̂j  so, q = 2ry 

case2 bbaabaaaae =  x u , i = xs, k = v — 1 , u / 0 ^ e  and x = ±1 and b = f x  — 1 

, /  7̂  0  and x =  1 and m =  /  — 1 , t = f , s  = y f  and y2 =  l,a  =  — 14-/z4-2u — 2uy,u =
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yu and h = uy and n — r and q = j.

We have entries f ( g j  + j 2 -f 2r"> and f (gj  + r 2 + 2jry),  subtracting these gives(j2 +

r 2 -  2jry)

And we have {j2 + r2 + gry + jry),  subtracting these gives gry + 3jry,  so r(g-\-3j) = 0 

Split into two cases :

case 2bbaabaaaaa  when r = 0 and 2bbaabaaaab  when r ^  0 so, g = 3g 

case2bbaabaaaaae = x u , i — xs  k =  v — 1, u, ^  0 7̂  e and x  = ±1 and b = f x  — 1 

, /  7̂  0 and a: = 1 and m  — f  — 1, t = f , s  — y f  and y2 = l,a = — 1 + /i + 2u — 2uy, 

v — yu and h = uy  and n = r and q = j  and r = 0.

We get f  j 2 = 0, so j  = 0

We get f g 2y = 0, sog = 0

We get f c 2 = 0, so c = 0 SOLUTION.

case2 bbaabaaaab e =  xu , i = xs k = v — l , u ^ 0 ^ e  and x = ±1 and b = f x  — 1 , 

f  ^  0  and x = 1 and m. = /  — l, t = f , s  = y f  and y2 = l,a = -\-\-h+2v—2uy,v = yu 

and h = uy and n = r and <7 = j,  r ^ 0  and g = 3g.

We get / ( 2j 2 + r 2) so j  ^  0

And we get ( j2 + r2 + 2jry),  subtracting these givesj(j -  2ry), so j  = 2ry 

We get / r 2 CONTRADICTION.

case2 bbaabaaab e =  xu, I = xs k = v — 1 , u 7  ̂ 0  7  ̂ e and x = ± 1  and b = f  x — 1

, /  7  ̂ 0 and x — 1 and m = f - l , t  = f , s  = y f  and y2 =  1 ,a =  - l  +  h +  2 u - 2 uy,u =

yu and h = uy and n = r, q 7  ̂ j  and q = 2ry.

We getf (gj  + 3r 2) so gj = —3r 2

And we get /(c 2 + 3yj) so (c2 — 9r 2) = 0 and get c = 3zr

We get f {2j r+j2y + 3r2z) and f (2gr + g2y + 3r2z) subtracting these gives (j — y)(2r +

yg + yj) = o.
Split into two cases :
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case2 bbaabaaaba when j  =  g and case2 bbaabaaabb when j  7  ̂g so, g = —2 r y—j  

case2 bbaabaaaba e = xu, i = xs k — v — l , u ^ 0 ^ e  and x = ± 1  and b = f x  — 1 , 

/  0  and x = 1 and m — f  — 1 , t = / ,  s = y f  and y2 = l,a = —l + /i + 2 u — 2 uy ,u —

yu and h — uy and n = r, c = 3zr,q ^  j  and q = 2ry and j  = g.

We get 2f r ( r  + gy)

Split into two cases :

case2bbaabaaabaa when r = 0 and case2bbaabaaabab when r 7̂  0 so, r =  —gy

and g 7̂  0

case2bbaabaaabaa e = xu, i = x s k  = v — l , u ^ O j ^ e  and x = ±1 and b = f x  — 1 

, /  0 and x = 1 and m  = f  — l , t  = f , s  = y f  and y2 = l,a = — l- fh  + 2u — 2uy,u =

yu and h — uy and n = r, q ^  j  and y — 2ry, c — 3^r and j  — g and r — 0, soy =  0. 

We get f g 2 so g = 0 and so j  — 0 but q ^  j  CONTRADICTION. 

case2bbaabaaabab e = xu, i = xs k = v — 1, u 7̂  0 7̂  e and x = ±1 and b = /x  — 1, 

/  7̂  0 and x = 1 and m = f  — 1, t = / , s  = y /  and y2 =  l,a = — 1 + h, + 2?; — 2?/y, 

v — yu and h — uy and n = r, y 7̂  j  and y = 2ry, c = 3^r and j  = y, r 7̂  0, y 7̂  0 

and r = —gy.

We get /y 2 CONTRADICTION.

case2 bbaabaaabb e — x u , i  — x s k  = v — l , u ^ 0 ^ e  and x = ± 1  and 6  =  f x  — l 

, /  7̂  0 and x =  1 and m  = f  — 1 , t = f , s  — y f  and y2 =  l,a  =  - 1 +  /i +  2u -  2uy,u =  

yu  and h = uy  and n = r , y 7̂  j  and y = 2ry  ,c — 3zr , j  7̂  yand , y =  —2ry — j .  

We get / ( —c +  4; +  9ry), so c =  4; +  9ry 

We get 2 f 2(j  +  3ry), so j  -  - 3 r y

We get 3 f r 2yz  , so r = 0 but we have y 7̂  j  and y = 2ry and j  = — 3ry CONTRA­

DICTION.

case2 bbaabaab e = xu , z =  xs, k = v — 1 , u 7̂  0 ^  e and x = ±1 and b — f x — l 

, /  7̂  0 and x =  1 and m =  /  — 1 , t = / , s  =  y /  and y2 =  l ,a  =  — 1 +  h +  2u — 2uy,u =
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yu and h — uy , n 7̂  r and c = g = j  = 2ny — q.

We have entry c2 + 2gj  = 0 so 4c2 = 0 and so c = g = j  = 0 and q = 2ny 

We get 4y2/  , so g = 0 

We get u2y(n + r) , so n = —r

We get 2f 2r so r = 0 but we have n ^  r and n = —r CONTRADICTION. 

case2bbaaba e = x u , i  = x s k  = v — l , u ^ 0 ^ e  and x = ±1 and b — f x  — l j ^ 0  

and x = 1 and m — f  — 1 , t = / ,s  = y f  and y2 = l,a = — 1 + h + 2v — 2u,y,v = yu 

and h = —3uy.

We have entries f ( j n  + gr + q2 + nry + Anuy) , /(yn+,;'r + y2 + nry + 4ruy) subtracting 

these gives (n — r)(j  — g + Auy) Split into two cases :

case2bbaabaa when n = r and case2bbaabab when n ^  r so , j  = g — 4uy. 

case2bbaabaa e = xu  , i = xs k =  v — 1 , and x = ±1 and b = f x  -  1

,/  /  0 and x = 1 and m — f  — 1 , t = / ,s  = y f  and y2 = l,a = -1  + h+ 2x- 2uy,v = 

yu and h. = —3uy,n = r.

We get f ( j 2 + c q - u r  + 2j r y - 4q u y - 7ru) , f  ( j2 + jq -  ur + j ry  cry -  4quy -  7ru) 

subtracting these gives(c — j)(y — ry)

Split into two cases :

case2bbaabaaa when c = j  and case2bbaabaab when c j  so , q = ry.

case2bbaabaaa e = xu , i = xs k = v — 1 , u ^  0 /  e and x = ±1 and b = f x  — 1 

, /  7̂  0 and x = 1 and m  = f  —I , t = / ,s  = y / and y2 = l,a = — l + h + 2u — 2uy,u = 

y?/. and h = —3uy,n = r and c = j.

We get f ( j r  +  yr + yyy + r 2y -b 4ruy) and f (gr  -I- j r  + y2y + r 2y -f 4ruy) subtracting 

these gives(y — g)(r — yy)

Split into two cases :

case2bbaabaaaa when y = g and case2bbaabaaab when y 7̂  y so , r = yy

case2bbaabaaaa e = xu , z = xs k = v -  1 , u 7̂  0 7̂  e and x = ±1 and 6 = f x  -  1
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, /  7̂  0 and x  — 1 and m  =  / — 1 , t = f , s  — y f  and y 2 =  1 ,a =  — 1 +  h +  2u — 2uy,r =  

yu  and h — —3uy,n = r , c = j  and q = g.

We get f ( 2ru — 2guy) , so r = gy 

We get /y (4u + 3yy + jy)

When g = 0 , we get 16/ 2uy CONTRADICTION.

When j  = —Auy -  3y , we get 16/ u 2 CONTRADICTION.

case2 bbaabaaab e =  x?i , z — xs, k = v — I , u ̂  0 ^  e and x = ±1 and ft = f x  — 1

, /  7̂  0 and x =  1 and m  — f  — 1 , t = f , s  = y f  and y2 =  l, a = — 1 +  h +  2u — 2uy,

v = yu  and h = —3uy, n = r and c = j  , q 7̂  g and r =  yy.

We have entry }{3gu -f yu + gqy + jyy + 2yy), if y = 0 , then y = 0 , but y 7̂ , so y 7̂  0

And we get —4f 2j  + 12ju2 + yy2uy + 3j 2uy and —4/ 2j  + 12ju2 -f yy2uy + 3j 2uy,

subtracting these gives y(y — y)(y + y)uy, so y = — y 

We get - 4/y 2 CONTRADICTION.

case2 bbaabaab e = xu, i = xs, k = v — 1 , u 7  ̂ 0 7  ̂ e and x = ± 1  and b = / x  -  1 

, /  7  ̂ 0 and x =  1 and m =  /  — 1 , t = f ,s  = y f  and y2 =  l,a  = — l + h + 2 u — 2 uy,u =  

yu and h = —3uy,n — r , c 7  ̂ j and y =  ry.

We get f r ( j y  + 2r + 4u + yy)

Split into two cases :

case2bbaabaaba when r = 0 and case2bbaabaabb when r 7̂  0 so, r = — (yy -f

jy  + 4u )/2

c ase 2b b a a b a a b a  e =  x?z, z =  x.s, k =  — 1, u 7̂  0 7̂  c and x =  ±1 and b == f x  — 1,

/  7̂  0 and x =  1 and m  = f  — 1 , t = f , s  =  y /  and y2 =  l,a  =  — 1 +  h +  2u — 2uy, 

v =  yu and h =  —3uy,n  =  r, c 7̂  j  and r =  0, y =  ry.

We get / j 2y, so j  = 0

We get y2y, so y = 0

We get /c 2, so c =  0 but c 7̂  j  CONTRADICTION.
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case2bbaabaabb e = x u , i  = x s k  = v — 1 , u 7̂  0 7̂  e and x = ± 1  and b — f x  — 1 , 

/  i=- 0 and x — 1 and m  = / —I , t — / ,s  = y f  and y2 = 1 ,a = — l+ /i+ 2u—2uy,u = yu 

and h = —3uy,n = r , c /  j  and q — ry,r 7̂  0 and r = — (yy + j y  + 4u )/2 .

We get f u ( 2c + yy + j  + 12uy), so j  = —2c — yy — 12uy

We get /(c 2 + 6cy + 9y2) = (c + 3y)2 , so c = —3y We get f  u(8uy) CONTRADIC­

TION.

case2bbaabab c = xu , i = xs k = v — I , u 7̂  0 7̂  c and x = ±1 and b = f x  — 1 , 

/  7̂  0 and x = 1 and m = / —I , t = f , s  = y f  and y2 = l,a = —\+ h + 2v —2uy,v — yu 

and h = —3uy,n ^  r and j  = g — Auy.

We have entries 2u(4gny -t- 4yry + 8 /2 — 8nu) and 2u(4gny + 4yry + 8 /2 — 8nu) , 

subtracting these gives4y(y — y)(n — r) , soy = y

We also have n 2 -I- yy + gry -I- qry and r 2 + yy -I- yny + qny , subtracting these

gives(n — r)(n + r — gy — yy) , so r = gy + yy — n

We get n2 -f 3y2 — 2nqy and n 2 + 5y2 — 2nqy , subtracting these gives2y2 = 0 , so 

y — 0

We get n = 0 , so r 7̂  0 because n 7̂  r , but we get r 2 CONTRADICTION. 

case2bbaabb e = x u , i  = x s k  = v — I , u /  0 /  e and x = ±1 and b = f x — l 

, /  7̂  0 and x = l , m / / —1 and £ = ^f •

We have entry u2 + (1 + a)u — hv — u2, so u 7̂  0

And we have u2 + i>(l + a — h) — v2 and u2(l + a — h) + uu2 — v3 , put a  = 1 + a — h

We get ?/2 -f r a  — ?;2 and u2a  + ?m2 — u3 so u? = v2 — av

So u2a  +  vu2 — v3 = (v2 — av)a  + v(v2 — av) — v3 ——a 2v = 0 , so a = 0 and a — h — 1 

We get u2(u — v)v(u +  v), so v = yu when y2 = 1 

We get u3(h — uy)(h A- 3uy) , so h = fiuy and p = 1 or — 3 

We get u ( f  — sy)(/y -I- 3s), so /  = asy and a = lor — 3

We also get f  u( l  +  m — sy), so m = sy — 1 but ra 7̂  /  — 1, so sy 7̂  / ,  and s o q =  —3.
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We get (s — u)(s + 3u)

Split into two cases :

c a se 2 b b a a b b a  when s =  u and c a se 2 b b a a b b b  when s =  —3u. 

c a se 2 b b a a b b a  e =  xu  , i = x s , k — v — 1 0 ^  e and x =  ±1 and b = f x  — 1

, /  7̂  0 and x =  1, m  ^  f  — 1 and t = ^  , u =  h — 1 , v ^  0 , u =  yu  , y2 = 1 , 

h = (3uy and 0  = lor — 3 , /  =  asy  , a  =  — 3 , /  — asy  , m  = sy — 1 and s = u.

We get gn +  nq + qu. +  jyy + r 2y +  4rmy — qu(3 and —j n  — nq — qu — jqy — r2y — 

nuy + qu(3 + nuy [3 subtracting these gives n(y — j  + 3uy + uy(3)

We get —j n  — j r  — q2y — nry — nuy — ruy + nuy (3 + ruy(3 and —jn  — gr — q2y — 

nry — nuy — Aruy A- nuy(3 subtracting these gives r{g — j  +  3uy + uy/?)

We get —n2 — jq — ru — j ry  — qry — quy + ru /3 + quy(3 and n2 + gq + ru + j r y  + 

qry + Aquy — ruf3 adding these gives q{g — j  + 3uy +  uy/?)

Split into two cases :

c a se 2 b b a a b b a a  when j  = g + 3u,y-\-uy(3 and c a se 2 b b a a b b a b  when q =  r = n = 0. 

c a se 2 b b a a b b a a  e =  xu , z =  xs, k = v — I , u / 0 ^ e  and x =  ±1 and b = f x — l 

, /  7̂  0 and x =  1, ra ^  /  — 1 and t = , a = h — l , u ^ 0 , u  =  y u , y 2 =  l ,

h = (3uy and (3 — lo r — 3 , /  =  a sy  , a  =  — 3 , /  =  asy  , m  = sy — 1 , s =  u and

j  =  g +  3uy +  uy/?.

Split into two cases:

case2bbaabbaaa when /? = — 3 and case 2bbaabbaab when /? =  1 

case2bbaabbaaa e =  xit , z =  xs, k = v — 1 , u ^  0 ^  e and x =  ±1 and b =  f x  — 1 

, /  ^  0 and x =  1, m ^  /  — I and t = ^  , a = h — l , u ^ 0 , u  =  y u , y 2 =  l ,

h -- (3uy and [3 = I or — 3 , /  =  asy , a  =  — 3 , /  =  a s y  , m  = sy — I , s = u and

j  =  g +  3uy +  uy(3 and /? =  —3.

We get —cn — yr + 4yzz — y2y — yyy -I- 4ruy and —yn — cr + 4yu — y2y — gqy + 4nuy, 

subtracting these gives — (n -  r)(c — y + 4uy) Split into two cases:
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case2bbaabbaaaa when n = r and case 2bbaabbaaab when n 7̂  r, so g — c + Auy

case2bbaabbaaaa e = xu, i = xs, k — v — 1 , u 7̂  0 7̂  e and x = ±1 and b = f x  — l

, /  7̂  0 and x = 1, m ^  f  — 1 and i = ^ , a  = / i - l , u / 0 , u  = yu, y2 = 1 , 

h = puy  and P = lor — 3 , /  = asy , a  = — 3 , /  = asy , m = sy — 1 , s = u and 

j  = g 4- 3uy +  uyP and ft = — 3 and n = r.

Go to c a se 2b b a a b b a a b a

c a se 2 b b a a b b a a a b  e =  x?z , z =  xs, A: =  u — 1 , ?/, 7̂  0 ^  e and x =  ±1 and 6 — f x —l 

, /  7̂  0 and x =  1, m 7̂  /  — I and t = ^  , a = h — l , v ^ 0 , v  = y u , y 2 = l ,  

h = puy  and P = 1 or — 3 , /  =  asy , a  =  — 3 , /  =  asy , m  = sy — 1 , s =  u and 

j  =  g -f 3uy 4- uy/? and P — —3 , n 7̂  r  and y = c 4- 4uy.

We get 4cuy 4- c2 4- 4u2= (c  +  2uy)2 , so c =  — 2uy

We get u2(n 4- r  4- 14u 4- yy)and u2(—n — r 4- 2u — yy), adding these gives 16u CON­

TRADICTION.

c ase 2b b a a b b a a b  e = x u , i = xs,  k = v — 1 , u 7̂  0 7̂  e and x =  ±1 and 6 =  f x  — 1 

, /  7̂  0 and x = 1, m 7̂  /  — I and i = ^ , a  =  / i - l , u ^ 0 , u  = y u , y 2 =  l ,  

h =  Puy  and p  =  lo r — 3 , /  = asy  , a =  - 3  , f  — asy  , m ~ s y -  I , s  — u and 

j  =  y +  3uy 4- uy/? and P =  1.

We get 4 ru  4- 4u2 -I- 2nqy 4- 2yry and 4nu 4- 4u2 4- 2nyy 4- 2yry subtracting these gives 

2(n -  r)(2u  4- yy -  yy)

Split into two cases:

case2bbaabbaaba when 77, = r and case 2bbaabbaabb when n 7̂  r , so y = q—2uy 

case2bbaabbaaba e = xu, i = xs, k = v — 1 , u  ^  0 ^  e and x = ±1 and b — f x  — 1 

, f  7̂  0 and x = 1, m ^  f  — 1 and t = ^f , a — h — 1 , U 7 ^ 0 , u  = y u ,y 2 = l , 

h = Puy and P = lor — 3 , /  — asy , a  = —3 , /  = asy , m = sy — 1 , s = u and 

j  = g + Suy 4- uyP and P = 1 and n = r.

We have n  =  r  when both cases (/? =  1 andp =  — 3)
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Split into two cases:

case2bbaabbaabaa when r = 0 and case 2bbaabbaabab when r j  0 

case2bbaabbaabaa e = xu , i — xs, k = v — I , u P 0 P e and x = ±1 and 

b — f x  — 1 , /  7̂  0 and x = 1, m  ^  f  — 1 and t = ~f , a = h — 1 , v 0 , v = yu

, y2 = 1 , h — puy  and P = 1 or — 3 , /  = asy , a = —3 , f  — asy , m = sy — 1 ,

s = u and j  = g + 3uy + uyP and P = 1 and n = r and r = 0 .

We get (puy , so q — 0 

We get — g2u , so g — 0 

We get uc2 , so c = 0 

We get 4u3CONTRADICTION.

case2bbaabbaabab e = xu , i = xs k = v — I , u ^  0 ^  e and x = ± 1  and 

b = f x  — 1 , f  7̂  0 and x = 1, m p  f  — 1 and t = ^  , a = h — 1 , v ^  0 , v = yu

, y2 = 1 , h = puy  and P = lor — 3 , f  = asy , a — —3 , f  — asy , m  — sy — 1 ,

s = u and j  = g + 3uy -f uyP and P = 1 and n = r and r ^  0.

We get 3r 2 + 4ru + 4u2 (**)

And we also get 7r 4- 8u + 6qy , so q — (—7r — 8u ) /6

We get u(r + 8u)2(13r + 8u)y but it is not solution for (**) CONTRADICTION 

case2bbaabbaabb e = x u , i  = x s k  — v — l , u j ^ 0 ^ e  and x = ±1 and b = f x  — l 

, f  7̂  0 and x = 1, m 7̂  /  — 1 and t = ^  , a — h — 1 , v p  0 , v = yu , y2 = 1 , 

h = Puy and p = 1 or — 3 , f  = asy , a = —3 , f  = asy , m  — sy — 1 , s = u and 

j  = g +  3uy + uyP and P = 1 , n ^  r and g = q — 2uy.

We get 8cu + 12yu + c2y + 3q2y + 60u2y and —4qu — c2y — 3q2y + 20u2y subtracting

these gives q = —c — 10uy

We get —63nu — 59ru + 18u2 — 6cny — Qcry and —59nu — 63ru + 18u2 — 6cny — Qcry 

subtracting these gives —4 (n — r) CONTRADICTION.

case2bbaabbab e = xu , i = xs k = v — 1 , u ^  0 ^  e and x = ±1 and b = f x  — 1
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, /  ^  0 and x = 1, m j- f  -  1 and t = f  , a = h -  1 , u 7̂  0 , v = yu , y2 = 1 , 

h = Puy and P — lor — 3 , /  = asy , a  = —3 , /  = asy , m = sy — 1 and s = u and 

q — r = n = 0.

We get 16u3 CONTRADICTION.

case2bbaabbb e = x u , i  = x s k  = v -  l , u ^ 0 ^ e  and x = ±1 and b = f x  -  I 

, /  7̂  0 and x = 1, m ^  f  -  I and £ = ^ , u  = / i - l , u ^ 0 , u  = y u , y 2 = l ,  

h. — Puy and P =  1 or — 3 , /  = asy , a  = —3 , /  = asy , m = sy — 1 and s - —3?/. 

We get cn 4- j r  -qu-\-  j 2y 4- jqy — nuy — ruy 4- quP 4- n u y p 4- ruyP and jn-\- cr — qu-\- 

j 2y 4- jqy — nuy — ruy  4- quP 4- nuyp  4- ruyp , subtracting these gives (c — j ) (n  — r) 

Split into two cases:

case2bbaabbba when n = r and case 2bbaabbbb when n j r  and c = j

case2bbaabbba e = xu  , i = xs k = v — 1 , u 7̂  0 7̂  e and x = ±1 and b — f x  — I 

, /  7̂  0 and x — I, m  p  f  — 1 and i = ^ , a  = / i - l , r ^ 0 , u  = y i / , y 2 = l ,  

h. = Puy and P = lor — 3 , /  = asy , a  = —3 , /  = asy  , m = sy — 1 and s = - 3?z 

and n — r.

We get 2 jr — qu 4- j 2y 4- cyy -  2ruy + quP 4- 2ruyP and cr 4= j r  -  qu 4- j 2?/ + jqy ~ 

2ruy 4- quP 4- 2ruyP, subtracting these gives (c — j)(r  — yy)

Split into two cases:

case2bbaabbbaa when c = j  and case 2bbaabbbab when c 7̂  j  and r = yy

case2bbaabbbaa e = x u , i  = x s k  = v — 1 , u 7̂  0 7̂  e and x = ±1 and b = f x —l 

J  P  0 and x = 1, m  7̂  /  — 1 and t = ^  , a = h — 1 , v 7̂  0 , v = yu , y2 = 1 , 

h = Puy and P — 1 or — 3 , /  = asy , a  = —3 , /  = asy , m = sy — 1 and s = —3u 

and n = r and c = j .

We get —3yu 4- 3gj y  4- j 2y 4- 3yu/? and yu -  3gjy — j 2y 4- 2ruy — 3guP, adding these 

gives q = 3g — 2ry

We get - 33j u + l 2g r p - 9g2y P - j 2yp -& r 2yP+juP2 and - 33j u - 3g2y p - j 2yp+juP2,
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subtracting these gives g = ry

We get 3r +  u + j y  — u /3 and r + 17u -f j y  — u(3 , subtracting these gives ru{r — 8u) 

Split into two cases:

case2bbaabbbaaa when r = 0 and case 2bbaabbbaab when r /  0 and r = 8u

case2bbaabbbaaa e = xu  , z = xs k = v — 1 , u 7̂  0 7̂  e and x = ±1 and b = f x  — l 

J  7̂  0 and x = 1, m  p  f  — 1 and t = ^  , a = h — I , v ^ 0 , v  = y u , y 2 = l ,  

h = Puy and P =  I or — 3 , /  = asy  , a = — 3 , /  = asy , m = sy — 1 and s = —3?/ 

and n — r and c — j  , q = 3g — 2ry , y = ry and r = 0 .

We get 3u j 2u , so j  = 0

We get 3uq2u , so y = 0

We get 9yu2y , so y = 0

We get 36u3y (3 + /?) , so P = — 3

We get u3y CONTRADICTION.

c ase 2b b a a b b b a a b  e =  xu  , z =  xs, k =  u — 1 , u, 7̂  0 /  e and x =  ±1  and 

b =  / x  — 1 , /  7̂  0 and x =  1, m 7̂  /  — I and t = ^  , a = h — I , v ^  0 , v = yu , 

y2 = I , h = Puy  and P = I or — 3 , /  =  a sy  , a  =  — 3 , /  =  asy  , m =  sy — 1 and 

s =  —3u and n = r and c = j  , y =  3y — 2ry , y — ry  , r  7̂  0 and r  =  7u.

We get 16u2(—j  — 25uy + uy/3), so j  = —25uy +  uyP 

We get —4u3y(—33 + /?)(7 + 2/?) CONTRADICTION.

case2bbaabbbab e — xu , z = xs, k = v — 1 , u j  0 j  e and x = ±1 and b = f x  — l 

, /  7̂  0 and x = 1, m 7̂  /  — 1 and £ = ^  , 0 , = h — 1 , 7̂  0 , u = yu , y2 = 1 ,

h = /?uy and P = lo r  — 3 , /  = asy , a  = —3 , /  = asy , m = sy — I and s = —3u 

and n = r  , c 7̂  j  and r  = yy.

We get y(y -(- j  + 2y + uy -  uy/3) = 0 

Split into two cases:

case2bbaabbbaba when y = 0 and case 2bbaabbbabb when y ^  0 , so y =
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- { j  + u y -  uy{3 +  2q)

c a s e 2 b b a a b b b a b a  e = xu  , i = xs,  k = v - l , u ^ 0 ^ e  and x = ±1  and 

b = f x  -  1 , f  ^  0 and x =  1, m  ^  f  -  1 and t = ^ , a  = h -  l , v ^ O , v  = y u ,  

V2 =  1 , h = Puy  and P = lor  — 3 , /  =  asy  , a  = —3 , /  =  asy  , m  = sy  — 1 and 

s =  —3a and ri = r , c ^  j  and r = qy and <7 =  0.

We get 3ug2 , so g = 0

We get 3(c -  j > 2y CONTRADICTION.

c ase 2b b a a b b b a b b  e = xu , i = xs, k = v — 1 , u ^  0 ^  e and x =  ±1 and 

6 =  f x  — 1 , /  ^  0 and x = l , m ^ f — I and t = ^  , a = h — I , v ^  0 , v = yu , 

y2 = 1 , h = Puy  and P = 1 or — 3 , /  =  asy  , a  =  —3 , /  =  a sy  , m  = sy  — 1 and 

s =  —3a and n = r , c ^  j  and r — qy , q ^  0 and y =  — (j +  ay — uyp  +  2q).

We get uy(c — 4j  — 9q — 3ay -f 3ay/3) , so c = 4j  +  9y +  3ay — 3ay/5 

We get 3(j +  3y)2a, so j  =  —3y 

We get 3a3(—1 +  P), so p = 1

We get 4ya(y — 8ay)and 4ya(y +  28ay) and 12ya(4a +  qy) CONTRADICTION. 

c a se 2b b a a b b b b  e = xu , i =  xs, k = v — 1 , u ^  0 ^  e and x  =  ±1 and b =  f x  — l 

, f  ^  0 and x = I, m  ^  f  — 1 and t = ^  , a = h — I ,  v ^ 0 , v  = y u , y 2 = l ,  

h = Puy  and P — 1 or — 3 , /  =  a sy  , a  =  —3 , /  =  asy  , m =  sy — 1 and s =  —3a , 

n / r  and c =  j .

We have entries —y2 —yy —ra  —yny —jry  +  ra/3 and —g2 — gq — nu — gry — j n y  + nup  

, subtracting these gives (n — r ) (—u  -f yy — j y  +  a/3) , so y =  y +  a/?y — ?/y 

We get 3ya(n +  r -f qy +  yy)

Split into two cases :

case  2 b b a a b b b b a  when y =  0 and case 2 b b a a b b b b b  when y ^  0 , so y =

- q - n y  -  ry

c a s e 2 b b a a b b b b  e = xu , i = xs,  k = v -  1 , a  /  0 ^  e and x =  ±1 and b = f x  — 1
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, /  7̂  0 and x = 1, m  ^  /  — 1 and t =  ^  , a = h — 1 , ^ 7̂  0 , ^ =  i/w , y2 =  1 ,

h - (3uy and P = 1 or — 3 , /  =  asy  , a  = —3 , f  = asy  , m  = sy — 1 and s - — 3n ,

77, 7̂  r  and c = j  , j  = g + u(3y — uy  and g =  0.

We get 3u3(—i p ) 2, so P =  1

We get u2(q +  ny  +  ry), so y =  —ny — ry

We get 6nruy  and 3(n2 +  n r — r 2)uy , when r  — 0, we get n = 0 CONTRADICTION. 

And when n — 0, we get r = 0 CONTRADICTION.

c a se 2 b b a a b b b b  e = xu  , i = xs,  k — v — 1 , u 7̂  0 7̂  e and 2: =  ±1 and b = f x  — 1

, /  7̂  0 and x  — m  ^  f  — 1 and t — , a = h — 1 , v ^  0 , u =  yu, y2 — 1 ,

h =  puy  and /I =  lo r — 3 , /  =  as?/ , a  =  —3 , /  =  a sy  , m =  sy — 1 and s =  — 3w , 

72 7̂  r  and c = j  , j  = g + ufiy — u y , g 7̂  0 and g = —q — ny — ry.

We get 3?23(—1 +  /?) , so P =  1

We get 12ny(y +  72y +  ry )2, so q = —ry — ny

We get 2nruy  and 3(n2 — nr — r2)uy , when r =  0 , we get 77, =  0 CONTRADICTION. 

And when 72 =  0, we get r  =  0 CONTRADICTION.

case  2 b b aac  e = xu  , i = xs,  k = v — 1 , u 7̂  0 7̂  e and x = ±1 and b = f x  — 1

and 1 /  1 so 1 =  - 1  ., /  7̂  0 and n  =  r  =  <7 =  0 .

We have entries y(s2 +  w2) ,y2s , j 2s , j ( l  +  772) and j 2t

If s =  0 thenyu2 , so g = 0 and if s 7̂  0 then g — 0, so must have g = 0

Split into two cases :

case  2 b b a a c a  when j  =  0 and case 2 b b a a c b  when j  7̂  0 , so t. = s =  0 and

m  =  —1

case  2 b b a a c a  e = x u , i  = x s k  = v — 1 , u  7̂  0 7̂  e and x =  ±1 and b = f x  — 1

and x 7̂  1 so 1 =  - 1  ., /  7̂  0 and n = r — q — j  — g — 0 .

We get c f u  so c — 0

We get(l +  /  +  rn)( fv  +  su) =  0, (1 +  /  +  m ) ( f v  — su)  =  0 , ( /  +  t ) ( f  u — su) =  0 and
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( /  +  t ) { f v + su) = 0 .Subtracting these gives f v (  1 +  /  +  m)  =  0 and f v ( f  + t) = 0 

Split into two cases :

case  2b b a a c a a  when v = 0 and case 2b b a ac a b  when v 7̂  0 , so t = —f  and 

m  =  - 1  -  / .

case  2b b a a c a a  e =  xu, z =  xs, k = v — 1, u ^  0 7̂  e and x =  ±1 and b = f x  — 1

and x ^ l s o x  =  - l , / ^ 0  and n — r = q — j  = g = v = c = 0.

We get — hu2 so h, = 0

We get u2 CONTRADICTION.

case  2b b a a c a b  e = xu  , i = x s , k = v — l , u / 0 ^ e  and x =  ±1 and b = f x  — 1 

and x 7̂  1 so x =  - 1, /  7̂  0 and n = r = q = j  = g = c = 0 , t  = - f  and m  = —1 — f  

and r / 0.

We get / 2(1 +  a — h — 2v), so h = 1 +  a — 2v

We get ((1 +  a)2 +  u 2 -  2v2) , v(u2 -  v2) and ( / 2 -  s2)u, so u2 =  v2, / 2 =  s2 and

(1 +  a)2 = v2

We also have (l + a - v ) ( u 2- v - a v - \ - 2 v 2) and using u2 =  v2 get u (l +  a - u ) ( 3 u - 1 - a )  

so y =  1 +  a  or v =  L±“ bu£ we have f  =  1 -f a or f  =  — (1 T a), so r  =  1 +  a

and a = v — 1 SOLUTION.

case  2 b b a a c b  e = x u , i  — x s k  = v — 1 , tt /  0 /  e and x =  ±1 and b — f x  — 1 

and x 7̂  1 so x =  — 1, /  7̂  0 and n = r = q = y = t = s = ft and m =  — 1.

We get / 2u CONTRADICTION.

case 2b b a b  e =  xu. , z =  x.s, A: =  7; — 1 , u 7̂  0 7̂  e and x =  ±1 , b 7̂  f x  — 1 and 

m — t — 1.

We have entry u(/i +  a/i -f 2hv — 2v2x — u2x) and u(h +  ah +  av +  hv — v2 — 2v2x) 

subtracting these gives v(h  — a +  i>) =  u2x , so v 7̂  0 and v 7̂  a — h.

And we have su(x  — 1 ) ( /x  — 1 — b) so s(x — 1) =  0 

Split into two cases :
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case  2 b b a b a  when x = 1 and 2 b b a b b  when x  7̂  1, sox =  — 1 and s =  0.

c a se 2 b b a b a  e =  xu  , z =  xs, k — v — 1 , u /  0 /  e and x =  ±1 , b ^  f x  — 1 and 

m  = t — 1 and x =  l,a  7̂  0 and v ^  a — h.

We have entries —f g h  +  f g j  +  n 2 +  bn2 +  / g 2 +  f r 2 + gsu ,—f g h  +  / g j  +  r 2 +  br2 +

f q 2 +  f n 2 +  gsu and —f g h  +  / g j  +  g2 T- bq2 +  f n 2 +  f r 2 +  gsu subtracting these 

gives ( /  — 1 — b)(r2 — n 2), ( /  — 1 — 6)( r2 — q2) and ( /  — 1 — 6)(n2 — q2) and we know 

b 7̂  f x  — 1, so r?2 — q2 — r2

P u t q — yn ,r = zn  and y 2 — z 2 = 1 and we let 6 =  /  — 1 — w

We get —hu2 — h2v +  2u2v — v2 — av2 +  u3 and —u2 — au2 — h2v +  2u2v — hv2 +  u3,

subtracting these gives (1 +  a — h)(u~v2) =  0.

And we have a (u2 +  a ( l  +  a — h) — v2).

Split into two cases: when h = 1 +  a and when u 2 =  a2, but if h = 1 +  a , then we

get v(u~v2) =  0 , so u2 =  u2 in all cases and so a =  au  when a 2 = 1

And when u2 = a2 we get a 2(l +  a — /z) =  0, so a =  h — 1

We get u(—2sta  +  s2 +  t2) so u(s — t a )2 and s =  ta,  so we get s2 =  t2

We get tw = 0 , so t = 0 and so s =  0 because w ^  0

We get f 2u so /  =  0

We get w2u CONTRADICTION.

c a se 2 b b a b b  e = x u  , i =  xs, k = v — 1 , u / 0 ^ e  and x =  ±1 , b ^  f x  — 1 and

m  = t — l , x ^ l , x  =  — 1 and s =  0 , a ^  0 and a ^  a — h.

We get t2v so t = 0

We get u / 2 sO /  =  0 and we know 67^ / x  — 1 so 6 ^ —1 

We get (1 +  b)2u CONTRADICTION.

case  2 b b b  u 7̂  0 7̂  e, e =  xu and z =  xs, k ^  v — 1, a = h — 1 and x =  ± 1.

We have entry ( l +  /c — a )( l  -f- /c — ax), so x =  — 1, k = — 1 — a

We get u(u2 — a2), so a2 =  u2
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We get u(h2 -f u2 — 2a2), so h2 = u2 = a2 

We get (1 +  b +  f ) s u  

Split into two cases :

case  2 b b b a  when s =  0 and case  2 b b b b  when s ^ 0 , s o 6 = — /  — 1.

case 2 b b b a  u ^  0 ^  e, e =  xu  and i =  xs, k ^  v — 1, a = h — 1 and x  = —1,

h2 = u 2 = v 2 and k =  — 1 — a and s =  0.

We have entry ftu,

Split into two cases :

case  2 b b b a a  when /  =  0 and 2 b b b a b  when f  ^  0, so t =  0.

case  2 b b b a a  u ^ 0 ^ e , e  = xu  and i = xs, k ^  v — I, a = h — 1 and x =  — 1,

h2 — u 2 = v 2 and k =  —1 — a and s = f  = 0.

We have entries (1 +  b)c2 , (1 +  b)n2, (1 +  b)q2 and (1 +  b)r2.

Split into two cases :

case  2 b b b a a a  when b = — 1 and 2 b b b aab  when b ^  — 1, so r  =  g =  n =  c =  0. 

case  2 b b b a a a  u ^  0 /  e, e =  xu and i = xs, k ^  v — 1, a = h — 1 and x =  —1,

h2 = u 2 = v 2 and k = — 1 — a  and s = f  = 0 and b = — 1.

We have entries t2u and (1 +  m ) 2u, so t = 0, m  = — 1 

We get g(c2 +  2gj  — n 2 — q2 — r 2)

Split into two cases : caes 2 b b b a a a a  wheng =  0 and caes 2 b b b a a a b  wheng ^  0 

and c2 +  2gj  — n 2 — q2 — r2 = 0.

case  2 b b b a a a a  /  0 ^  e, e =  xu  and % — xs, k ^  a  — 1, a — h — 1 and x =  — 1,

h2 = u 2 = v 2 and k =  — 1 — a  and s = f  = t = g = 0 and b — m  — —1.

We get nqr so a t least one of n, q, r = 0 and we have terms j ( j r  +  2nq), j ( j q  +  2nr)

and j ( j n  +  2rg).

Split into two cases : case  2 b b b a a a a a  when j  = 0 and case  2 b b b a a a a b  when 

j  7̂  0 and at least two of n, q, r = 0
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case  2b b b a a a a a  u 7̂  0 7̂  e, e = xu  and i = xs,  k ̂  v — 1, a = h — 1 and x = —1 ,

h2 = u2 = v 2 and k — — 1 — v and s = f  = t — g = j  = 0 and b = m  = — 1.

We get chu.

Split into two cases: case  2 b b b a a a a a a  when c =  0 and case  2b b b a a a a a b  when 

c 7̂  0 and h = 0 .

case  2b b b a a a a a  when c = 0 we get r(q2 +  n 2), q(r2 +  n 2) and n(q2 +  r2), so a t least 

two of n, q, r  — 0

W hen n =  q = 0 ,we get u2r so r =  0 SOLUTION.

W hen r = q = 0 ,we get u 2n so n = 0 SOLUTION.

W hen n = r = 0 ,we get u2q so q =  0 SOLUTION.

case  2 b b b a a a a a b  when c 7̂  0 and h = 0, we get cu2 CONTRADICTION.

case  2b b b a a a a b  u 7̂  0 7̂  e, e =  xu  and i = xs,  k ^  v — 1, a = h — 1 and x = —1 ,

h2 = u2 — v 2 and k = —1 — v and s = f  = t = g = 0 and b = m  = —land  j  7̂  0 and

at least two of n, q, r = 0 When q = r = 0, we getu 2n, so n = 0

W hen q = n = 0, we getu2r, so r  =  0

When n = r =  0, we getu2q, so <7 =  0

We get c(c — j ) j  split into two cases : W hen c =  0 get j u 2, so j  = 0 CONTRADIC­

TION.

W hen c = j ,  we get uj (2h — j) ,  so j  =  2/i, we gethu2, so h = 0 but j/ 7̂  0 CONTRA­

DICTION.

case  2b b b a a a b  u 7̂  0 7̂  e, e. =  xu  and z — x.s, k ^  v — I, a = h — I and x =  — 1, 

h2 — u2 = v 2 and k = — 1 — v and s = f  — t — 0 and b = m  = — 1 ,g ^  0 and 

c2 +  2 gj  — n 2 — q2 — r2 = 0.

We have entries ( g - j ) { 2 qr  + {g + j )n)  , ( g - j ) ( 2 n r  + (g+j)q)  , { g - j ) ( 2 q n + ( g + j ) r )

We have three possibolties :

case  2b b b a a a b l  when g — j  7̂  0 and

227



case  2 b b b a a a b 4  when g ^  j  and g = — j  ^  0 and at least 2 of n, g, r are zero, 

case  2 b b b a a a b 2  when g ^  j  and g ^  —j  and n = q = r = 0

case  2 b b b a a a b 3  when g ^  j  and g ^  - j  , son2 = q2 = r 2 ±  0 and (g +  j ) 2 = 4n2 .

case  2 b b b a a a b l  u ^  0 ^  e,e = xu  and i — xs ,k ^  v — 1 , a = h — 1 and x =  — 1

, ti2 = u2 = v2 and k = — 1 — v and s =  f  = t = 0 and b = m  — —1 and

9 = J ±  0 .

We have c2 +  2g2 =  n 2 +  r 2 -f q2 and g2h +  h(n2 +  q2 +  r 2) +  cu2 -f gu2 ,so we get 

he2 +  3 hg2 +  (c +  g)u2

And we have he2 +  3hg2 +  (—c +  3g)u2 , subtract them to get (2c -  2g)u2 = 0 , so 

c = g ^  0)

We get 2g(2gh +  u2) , so /i =  and we get (g{3g2 -  n 2 -  q2 -  r2) and (g3 -  nqr ) 

deduce all of n ,q, r are non zero and 3g2 =  n2 +  r2 +  q2 .

And we have entries g2n - n ( q 2+ r 2)-\-gqr , g2r - r ( q 2-\-n2)-\-gqn , g2q — q{n2+r 2)+gnr

So g2 + ŝ ~ = q2-\-r2 , g2 + 33̂  =  q2jr n 2 , g2^ 3̂ -  = n 2-\-r2 and (from 3g2 = n2jr r 2 + q2 

) get

‘2g2 = n 2 + g ^ = q 2 + g ? f = r 2 + g f

And from g3 =  nqr  get ^  so gA — 2g2n2 +  n4 = 0 and so g2 = n2 =  q2 = r 2 

we get q =  yg , n = zg, r = yzg  and y =  ±1, z =  ±1

Now when we put h =  we get ^p-(u +  2^) (it — 2p), so u =  2gw when w2 = 1 

We get 6g +  2gy +  vwz(y  — 1), so vwz(y  — 1) ^  0, and so y = —1 and c ^  0 

We get v — Qgwz

But v(2g -  v){2g +  v) CONTRADICTION.

case  2 b b b a a a b 4  u ^  0 ^  e, e =  xu  and i = xs, k ^  v — 1, a = h — 1 and x = —1, 

h,2 =  u2 = v2 and k — — 1 — v and s = f  = t = 0 and b — m  — —I and g ^  0, g ^  j
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and g = —j  ^  0 and at least 2 of n , q , r  are zero.

We get g2n — g2q =  g2r = 0, so all of n, q, r =  0 

We get gu2 CONTRADICTION.

case  2 b b b a a a b 2  u ^  0 ^  e, e =  xu  and i — xs, k ^  v — 1, a = h — 1 and x =  —1, 

h2 =  u2 =  c 2 and k =  — 1 — v and s =  /  =  t =  0 and b = m  = —1 and g ^  0, p ^  j  

and # — j  and all three of n , q , r  are zero.

We get gu2 CONTRADICTION.

case 2bbbaaab3 u  ^  0 ^  e, e =  x u  a n d  i =  x s , k  ^  v  — 1, a =  h  — 1 a n d  x  — — 1, 

h 2 =  u 2 =  x 2 a n d  k  =  — 1 — u a n d  s =  /  =  t =  0 a n d  b — m  — —1 a n d  g ^  0, g ^  j  

a n d  g ^  — j ,  n 2 =  q2 =  r2 ^  0 a n d  (# +  j ) 2 =  4n2.

We put r — zn,q = yn  when y2 — 1 and z2 =  1

We get (g — j ) ( zg  +  z j  +  2ny)nand (g — j){g + j  +  2nyz)n.  Subtracting these 

gives(<7 +  j  ~  2ny)(z  -  1) =  0 

Split into two cases:

case  2 b b b a a a b 3 a  when z =  1 and case  2 b b b a a a b 3 b  when z 1 so ,z — - 1  and

j  =  2ny -  g.

case 2bbbaaab3a u ^  0 ^  e, e = xu  and i =  xs, k ^  v — 1, a = h — 1 and x =  — 1, 

h2 = u2 = v2 and k =  — 1 — v and s = f  = t = 0 and b = m  = —1 and g ^  0, g ^  j  

and g ^  — j  , n 2 =  q2 = r 2 ^  0 and (g +  j ) 2 =  4n2 and r =  zn, q — yn  when y2 — 1 

and z2 =  1 and z =  1.

We get u2(g +  ra/), so g = —ny  

We get hn{n  +  jy ) and hn(n — cy)

Split into two cases:

case  2 b b b a a a b 3 a a  when h =  0 and case  2 b b b a a a b 3 a b  when h ^  0 so, c ^  0 and

j  ±  0 and c =  - j .

case  2 b b b a a a b 3 a a  u /  0 ^  e, e =  xu and i = xs,  k ^  v — 1, a — h -  1 and x =  — 1,
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h2 = u2 = v 2 and k =  — 1 — v and s = f = t = h =  0 and b = m  — —1 and y 7̂  0 , 

g ^  j  and g ^  — j ,  n 2 = q2 =  r 2 ^  0 and (g +  j ) 2 =  4n2 and r  =  zn,y =  yn  when 

y 2 = 1 and z2 =  1 and z =  1.

We get u3 CONTRADICTION.

case 2bbbaaab3ab u 7̂  0 7̂  e, e =  xu  and i =  xs, k ^  v — I, a = h — 1 and x =  — 1, 

h2 = u2 = v 2 and k = — 1 — v and s =  /  =  t =  0 and b =  ra =  —1 and g ^  0, g ^  j  

and g 7̂  —j,  n2 = q2 — r2 7̂  0 and (<7 T j )2 =  4n2 and r  =  z n , q = yn  when y2 =  1 

and z2 =  1 and z =  l,/i 7̂  0, c 7̂  0, j  7̂  0 and c =  — j .

We get h j2(3 +  y4) CONTRADICTION.

case  2 b b b a a a b 3 b  u ^  0 ^  e, e = xu  and i = xs,  k ^  v — 1, a = h — 1 and x =  — 1, 

h2 — u2 = v 2 and k = — 1 — v and s =  /  =  t =  0 and b = m  = —1 and y 7̂  0 , y 7̂  j  

and g ^  —j  , n 2 = q2 = r 2 ^  0 and (y +  j )2 =  4n2 and r  - zn,y =  yn when y2 =  1 

and z2 =  1 and z ^ l ,  2 =  —1 and j  =  2ny — y.

We get (hn +  uv) (—g +  ny)

Split into two cases:

case 2bbbaaab3ba when g = ny  and case 2bbbaaab3bb when g 7̂  ny  so

case 2bbbaaab3ba u /  0 ^  e, e =  xu and i =  xs, k ^  v — I, a = h — 1 and x =  — 1, 

h2 = u2 = v 2 and k = — 1 — v and s =  /  =  t =  0 and b = rn = —1 and y 7̂  0, y 7̂  j  

and g ^  —j , n 2 = q2 — r2 ^  0 and (y +  j ) 2 = 4n2 and r =  zn, q — yn  when y2 =  1 

and z2 =  1 and z 7̂  1 ,z =  —1 and j  =  2ny — y and y =  ny.

We get 2n u( —v +  uy), n 2(c +  ny), so v = uy  and c = —ny  

We get 4n2n CONTRADICTION.

case 2bbbaaab3bb u 7̂  0 7̂  e, e =  xu and i = xs,  k ^  v — 1, a = h — 1 and x =  —1, 

h2 =  u2 = v 2 and /c =  — 1 — v and s = f  = t = 0 and b = m  =  —1 and y 7̂  0, y 7̂  j  

and y 7̂  — y , n 2 — y2 =  r2 7̂  0 and (y +  j ) 2 = 4n 2 and r  =  zn,y =  yn  when y2 =  1
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and z 2 — 1 and z ^  1 ,z = —1 and j  = 2ny — g, g ±  ny  and h —

We get (”~u)(g+u)u go ti  = iuu when w2 = 1 

We get so g =  ^°  W J  W

We get "3(“>-')(i+3<"+4^)y s0 „  =  x 

We get —Av?y CONTRADICTION.

case 2 bbbaab u ^ O ^ e ,  k ^  v — 1, e = xu  and i =  xs, a = h — 1 and x =  — 1,

h2 =  v? = v 2 and k — — 1 — v and s — f  = r = q = n = c = 0 and b ^  — 1.

We get gu2, so g = 0

We get (1 +  b) ju, so j  — 0

We get t2u, so t = 0

We get (1 +  m ) 2u, so m  — —1

We get u(l  +  b) COTADICTION.

case  2 b b b a b  u ^  0 /  e, e =  xu and i = xs,  k ^  v — 1, a = h — 1 and x =  —1,

h2 — ?y,2 =  v2 and k =  — 1 — ?; and s =  t, = 0 and /  ^  0.

We get f 2u CONTRADICTION.

case 2 b b b b  u ^  0 7̂  e, e = xu  and i = xs,  k ^  v — 1, a = h — 1 and x =  — 1,

h2 — u2 — v 2 and k — —1 — v and s ^  0 and b =  — /  — 1.

We have entry (1 +  /  +  m)( tu  +  sv)

Split into two cases:

case 2b b b b a  when m  = — f  — 1 and case  2b b b b b  when m  ^  —/  — 1 so , t = p l ­

ease  2b b b b a  u, ^  0 e, e = xu  and i = xs  ,k ^  v — 1 , a = h — 1 and x =  — 1,

h2 = u2 = v 2 and k =  — 1 — v and s /  0 and b =  —/  — 1 and m  = —/  — 1.

We have entries s ( /  +  and ( / 2 — s2)u, so t — —/  and / 2 =  s2 

We getg(c2 +  2gj — n 2 — q2 — r2)

Split into two cases:

case  2b b b b a a  when g = 0 and case 2b b b b a b  when g ^  0 so ,c2+ 2 g j —n 2 — q2—r 2 =
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0 .

case  2b b b b a a  u ^ 0 ^ e , e  = xu  and i = xs  ,k ^  v — I, a = h — 1 and x — — 1,

h2 = u2 = v2 and k = - 1  -  v and s /  0 and b =  - /  -  1 and m  = - f  -  1 t = - }

and / 2 =  s2 and g — 0.

We get c2f  

Split into two cases:

case 2b b b b a a a  when f  = 0 and case  2b b b b a a b  when /  ^  0 so , c =  0 

case 2b b b b a a a  u ^  0 7̂  e, e = xu  and i =  xs, k ^  v — 1, a = h — 1 and x  =  —1,

h2 = u2 — v2 and k =  — 1 — v and s ^  0 and b =  —/  — 1 and m  = —f  — 1 t =  — /  

and / 2 =  s2 and g = f  = 0.

We get s2u CONTRADICTION.

case  2b b b b a a b  u ^  0 ^  e, e =  xu  and i = xs,  k v — 1, a = h — 1 and x = — 1, 

h2 = u 2 = v2 and k = —1 — v and s /  0 and b = —f  — 1 and m  = —/  — 1 £ =  — /  

and / 2 =  s2 and /  7̂  0 and g = c = 0 .

We have / ( n 2 — q2 +  r 2) and } { n 2 — q2 — r2). Subtracting these gives —2q2f ,  so q =  0 

We have also f ( n 2 + q2 + r 2) and f ( n 2 — q2 — r 2). Subtracting these gives 2n2f ,  so 

n =  0 and so r  =  0 

We get f 2j ,  so j  = 0 SOLUTION.

case  2 b b b b a b  u ^  0 7̂  e, e = xu  and i — xs,  k ^  v — 1, a = h — 1 and x = — 1, 

h2 — u2 = v 2 and k — — 1 — v and s 7̂  0 and b = —f  — 1 and m  = —f  — 1 and 

m  = —f  — 1, t = —f  and f 2 =- s2 and g 7̂  0 and, c2 +  2gj — n 2 — q2 — r 2 = 0.

Split into 4 cases :

case 2bbbaaabl when n = q = r = 0 and case 2bbbaaab2 +  case 2bbbaaab3 

+ case 2bbbaaab4 at least one of n, r, q are non zero (two or three of n, r , q are 

non zero)

case 2 bbbbabl u  7̂  0 7̂  e, e — xu  and i = xs,  k ^  v — 1, a = h — 1 and x — —1,
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h2 =  u 2 = v2 and k =  — 1 — v and ,s ^  0 and b =  —/  — 1 and ra = —/  — 1 and

ra =  —/  — 1 t =  —/  and / 2 =  s2 and g ^  0 and c2 +  2gj  — n 2 — q2 — r2 = 0 and

n = q =  r =  0.

We get s 2s CONTRADICTION.

case 2 bbbbab 2  u ^  0 ^  e, e =  xu and z =  xs, k ^  v — 1, a — h — 1 and x =  — 1,

h2 = u2 — v2 and k = —1 — v and s /  0 and b = —f  — 1 and ra =  —/  — 1 and

ra, =  —/  — 1 t = —f  and f 2 =  s2 and g ^  0 and, c2 +  2/7,; — n 2 — q2 — r 2 = 0.

If exacitly one of n , q ,r are non zero (eg r)

We get g2r , sor -  0 CONTRADICTION.

case  2 b b b b a b 3  u ^ 0 ^ e , e  =  xn, and i = x s , k ^  v — \, a — h — 1 and x =  — 1, 

h 2 — u2 = v2 and k = — 1 — v and s /  0 and b — —f  — 1 and ra =  —/  — 1 and 

ra =  — f  — 1 t = —f  and f 2 =  s2 and g ^  0 and, c2 +  2^j — n 2 — q2 — r 2 =  0.

If exacitly two of n , q ,r are non zero (eg r , n)

We get2(/7 — j ) n r , so g = j  and also get nr(c  +  g — j ) ,  so c = 0 

Then we get n(g2 — r2) and r(g2 — r 2), so g2 =  r 2 =  n 2

We get g2s +  /g n  and g2s — fgr .  Subtracting these gives f g n  = —fgr ,  so n = —r 

We getg2s CONTRADICTION.

case  2 b b b b a b 4  u ^  0 ^  e, e =  xu and z =  xs, k ^  v — I, a = h — 1 and x =  — 1, 

h2 =  u2 — z;2 and A: =  — 1 -  v and s /  0 and b =  —/  -  1 and ra =  —/  — 1 and 

ra — —/  — 1, t =  — /  and / 2 =  s2 and g i=- 0 and c2 +  2pj — n 2 — q2 — r 2 — 0.

W hen all n , q ,r are non zero.

We have entries (g - j ) {q{g+j )  + 2nr) , ( g - j ) ( n ( g + j )  + 2qr) and ( g - j ) { r ( g + j )  + 2nq) 

Split into two cases :

c a se 2 b b b b a b 4 a  when g =  j  and c a se 2 b b b b a b 4 b  when g ^  j

case  2 b b b b a b 4 a  u ^  0 ^  e, e =  xu and i = xs,  k ^  v — 1, a = h — 1 and x =  —1,

h2 =  u2 =  w2 and k =  — 1 — v and s ^  0 and b =  — /  — 1 and ra =  —/  — 1 and £ =  —/
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and f 2 = s2 and g ^  0 and ,c2 +  2gj  — n 2 — q2 — r 2 =  0 and g =  j  and all n , q ,r are 

non zero.

We get s (gu+g2w — g h w + n 2w-\-q2w — r 2w) and s (—gu-\-g2w — g h w + n 2w+q2w — r2w). 

Subtracting these gives 2sgu CONTADICTION.

case  2 b b b b a b 4 b  u ^  0 ^  e, e =  xu  and i = xs ,k ^  v — 1, a = h — 1 and x =  — 1, 

fi2 = u2 =  u2 and k = — 1 — v and s ^  0 and b = —f  — 1 and m  = —/  — 1 and £ =  —/  

and / 2 =  s2 and g ^  0 and ,c2 +  2<7j  — n 2 — q2 ~ r 2 = 0 and g ^  j  and all n , q ,r are 

non zero.

We have — , so r 2 = q2 = n 2 and q = yn ,r = zn  , y 2 = 1 andz2 =  1

We get g -  j  = so j  =  g +  2n 2?/

We get 4n 2yz(g  +  2nzy),  so g =  —2nyz

We get 2nyz(—c2 +  3n2) , so c2 =  3ri2 ^  0 and we also get 4cn2 CONTADICTION. 

case  2b b b b b  u ^ 0 ^ e , e  = xu  and i — xs  ,k ^  v — 1 , a = h — 1 and x =  — 1 

? h2 = u2 = v 2 and k =  —I — v and .s 7̂  0 and b — —f  — 1 and ra ^  —/  — 1 and

’ 74

We have entries su +  v{l  -t~ m) and su — f v  so we get v ( f  +  1 +  ra) , and so x =  0

We get s2u CONTRADICTION.

case  2b a a b  u = e = 0 , s  = y i ^ 0  and y2 =  1.

We have entries i v ( f  — ty) and iv{ \ + b — t 

Split into two cases :

c ase 2b a a b a  when v = 0 and c a se 2b a a b b  when v ^  0 so /  =  ty andb = t — 1 

case  2b a a b a  u = e = v = 0 , s  = y i ^ 0  and y2 = 1 .

We get /i(l +  £;)2 , ( / 2- z 2)( l +  £;) ,z(l +  /c)(&-ra) , (l + k) ( l  + m - f y ) , i ( l  + k ) ( f - t y )  

and i( l  +  k) ( l  + b — t) .

Split into two cases :

c a se 2 b a a b a a  when A: =  —1 and c a se 2 b a a b a b  when k ^  —1 so f  = ty ,b = t — 1 ,
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h =  0, /  =  zi and z 2 = 1 , m  — f y  — 1 and b =  m.

case  2b a a b a a  u = e = v = 0 , s  — y i ^ O  and y 2 = 1 and k =  — 1.

We get (1 +  a — h)i2, so a = h — 1

We get f  g + f  g m + i r  + bir + f g t  + f i n y  , f  g + f  g m + i n  + bin + f  gt + f i ry .  Subtracting 

these gives z(l +  b — f y ) ( r  — n )

Split into two cases :

c a se 2b a a b a a a  when n = r and c ase 2b a a b a a b  when n ^  r sob = f y  — 1 

case  2b a a b a a a  u = e = v = 0 , s  = y i ^ 0  and y 2 — 1 and k = —I and a = h — 1 , 

n  =  r.

We have entries gi2 +  qt2 +  2try  +  2imry  and qi2 +  gt2 +  2iry +  2imry  , subtracting 

these gives (z2 — t2){g — q)

And we have z</ +  biq +  f r  +  f rnr  +  f r t  +  f g i y  and ig +  big +  f r  +  f m r  +  f r t  +  fq i y  

, subtracting these gives z(l +  b — f y) ( g — q)

Split into two cases :

c a se 2b a a b a a a a  when q =  g and c a se 2b a a b a a a b  when q ^  g sob = f y  — 1,4 =  zi  

and z 2 = 1.

case  2b a a b a a a a  u = e = v = 0 ) s = y i ^ 0  and y2 =  1 and k = — 1 and a =  h — 1

, n = r and q =  g .

We have entries t/2(l +  ra) +  i r (—h + j  + gy) +  r2t =  0 and g2£ +  i r (—h +  j  +  gz/) +

r 2(l +  ra) =  0 , subtracting these gives(g2 — t2){ 1 +  m  — 4) =  0

Split into three cases :

case  2b a a b a a a a l  when g — 0 and case  2b a a b a a a a 2 when g ^  0 sog2 = r 2 and 

case  2 b a a b a a a a 3  when g ^  0, g2 ^  r2 and m  =  t — 1

case  2b a a b a a a a l  u = e = v = g = 0) s = y i = f 0  and y 2 — 1 and k = — 1 and

a — h — 1 ,rz =  r  and q = g.

We get r 3, z j2z/ and cz2z/, sO r =  c =  j  =  0
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And we get 2/(1  +  b +  f ) h  

Split into three cases :

case 2 baabaaaala when h — 0  and case 2 baabaaaalb when h ^  0  and/  =  0  

and case 2 baabaaaalc when h ^  0 , f  ^  0  and b = — f  — 1

case  2 b a a b a a a a la  u = e =  v = g = c — j  =  r =  h = 0, s = yi  ^  0 and y 2 = 1 and 

k = — 1 and a = h — 1, n = r and q — g.

SOLUTION.

case 2 baabaaaalb  u = e = v = g = r = c = j  = f  = 0, s = y i ^ 0  and y 2 = 1 and 

k = — 1 and a = h — 1, n — r and q — g and h ^  0.

We get hi( 1 +  ra +  £)(1 +  y) Split into two cases :

case 2 baabaaaalba when y = — 1 and case2 baabaaaalbb when y ^  — 1 ,so

ra =  — 1 — t and y = 1.

case 2 baabaaaalba u = e = v = g = r = c = j  = f  = Q, s  = y i ^ O  and y2 =  1 

and k, = — 1 and a = h. — 1 , n =  r  and q = g and h ̂  0 and y =  —1.

We get (1 +  m )2 + 12 — 2z2 =  0, so i2 = ((1 +  m ) 2 +  t2) / 2

We get h(6 — ra — £)(2 +  6 +  ra +  t)

W hen m  = t — b SOLUTION.

W hen ra =  —2 — b — t SOLUTION.

case 2 baabaaaalbb u = e — v =  g =  r = c =  j  =  /  =  0 , s =  yi ^  0  and y2 =  1 

and k = — 1 and a = h — I, n — r and q — g and y ^  — 1, ra =  — 1 — t and

V +  !•

We get 2h(t2 T z2), so t2 — — z2 

We get /i(l +  6 - 2 z ) ( l  +  & +  2i)

W hen b = 2 i - l  SOLUTION.

W hen b = 2i +  1 SOLUTION.

case 2 baabaaaalc u = e = u = y = r = c = j  = 0 , s = yi  ^ 0  and y2 =  1 and
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k = — 1 and a = h — 1 , n = r and q = g , h ^ Q , f ^ Q  and b = —f  — 1 

We get 2h( 2 f 2 — i2 — t( 1 +  m)), so i2 = 2 f 2 — t( 1 +  m)

We get hi( 1 +  m  +  t) ( l  +  g)

Split into two cases :

case  2b a a b a a a a lc a  when y = —I and c ase 2b a a b a a a a lc b  when y ^  —1, so

m  =  —I — t and y = 1.

case  2b a a b a a a a lc a  u — e =  v = g = r = c = j  = 0, s =  z/z ^  0 and g2 =  1 and 

k — — 1 and a = h — 1, n = r and q = g , h ^ 0 , f y ^ 0  and b = —f  — 1 and y = — 1 

We get h (1 — 2f  -I- m  1){\ 2f  -\- tyi -f- 1)

W hen m  =  2 /  — t -  1 SOLUTION.

W hen m  = —2 f  — t — 1 SOLUTION.

case  2b a a b a a a a lc b  u = e = v = g = r = c = j  = 0 , s  = y i ^ 0  and y 2 = 1 and

k =  —1 and a = h — 1 , n =  r  and q = g ) h j ^ 0 ) f ^ 0  and b = —f  — I , y ^  — 1 , 

m =  — 1 — t and g =  1

We get 2h(i2 4 -12) and 2 h(2 f 2 — i2 +  t2) , so / 2 =  z2/2  and t2 =  - z 2 

We get 2hi2 CONTRADICTION .

case  2b a a b a a a a 2 iz =  e =  u =  0 , s  =  g z ^ 0  and y2 = 1 and k =  — 1 and a =  h — 1

, n =  r  and q — g, g 7̂  0 and g2 =  r 2.

We have g2 = r2 so g = xr, when x2 =  1 

We get zrg(c — j ) ,  so c =  j

We get r( t2 +  2zx(l +  ra) +  z2) and r((z2 +  t2)x +  2zg(l -Tm)). Subtracting these gives 

2z(l +  m)( 1 -  y)

We get r ( ( l  +  m )2 +  2z£x +  z2) and r (x ( l  +  m )2 +  2it +  xz2). Subtracting these gives 

2zt(l — y) +  z2(x — 1)

Split into two cases :
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case  2b a a b a a a a 2a  when ra = — 1 and case2b a a b a a a a 2bwhen ra 7̂  — 1, sog = 1

and so x = 1.

case 2 baabaaaa 2 a u = e = v = 0 , s  = y i ^ 0  and y 2 -  1 and k = -1  and

a — h — 1 , n  =  r and q — g , g ^  0 and g2 — r 2 and ra — — 1.

We get z2 4- t 2 =  0 so t ^  0 and i2 = —t2

And we get i (2 tx  +  z) , os z =  —2tx  and z2 =  4£2 but z2 =  —t2 CONTRADICTION,

case 2 baabaaaa 2 b u — e = v = 0 ) s = yi ^  0 and y2 =  1 and k = — 1 and

a = h — l ) n = r and q = g, g ^  0 and g2 — r 2 , m  ^  -1 ,  y = I and x =  1.

We have t2 4- 2z(l 4- ra) 4- z2 =  0 and (1 4- ra )2 4- 2zt 4- i2 = 0. Subtracting these

gives(t — 1 — m) ( t  4- 1 +  ra — 2z) =  0 

Split into two cases :

c a se 2b a a b a a a a 2b a  when ra =  t -  1 and case 2b a a b a a a a 2bbwhen ra ^  t -  1, so

r a  =  2z — £ — 1.

case 2 baabaaaa 2 ba u = e = v = 0, .s =  yi ^  0 and y 2 = 1 and k = -1  and

a = h — 1, n  = r and q = g, g ^  0 and g2 =  r 2 , r a  ^  —1, y = 1 and x =  1 and

ra =  t — 1 .

We get (£ 4- z)2 =  0, so £ =  — z

We get z r(l 4- b — / )  and ir(h  — j  4- r), so b = /  — 1 and h = j  — r

We get f r 2 so /  =  0.

We get 4z2r CONTRADICTION.

case  2 b a a b a a a a 2 b b  u = e =  v = 0, .s =  yi ^  0 and y2 = 1 and k = -1  and

a = h — 1, n =  r  and q = g , g ^  0 and g2 =  r 2, m ^ - l , g  =  l and x =  1 , ra ^  1 — 1

and ra =  2z — £ — 1.

We get £2 — 2it 4- 5z2, we let £ =  2z, so we will have 22 — 2z 4- 5 =  0.

But we get i 2r ( z  — 3)(1 4- 2) CONTRADICTION.

case  2 b a a b a a a a 3  u = e =  v = 0 , s =  gz 7̂  0 and g2 =  1 and k = - 1  and u = h — 1,
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n — r and q =  g ,g 7̂  0 , g2 7  ̂ r2 and m  =  t — 1

We get gi2 +  gt2 +  2irty and gi2 +  gt2 +  irt  -f irty.  Subtracting these gives ir t (y  — 1).

Split into three cases :

case  2 b a ab a a aa 3 a  when r = 0 and case  2 b aab aaaa3 b w h en  r ±  0, so y — — 1

and case 2baabaaaa3cw hen r ^  0, y ^  — 1, so y = 1 and t =  0.

case  2 b a ab a a aa 3 a  u = e = v = r = 0, s = yi 0 and y 2 = I and k = — 1 and

a =  h, — 1 , n =  r  and q = g , g 7̂  0, g2 7̂  r 2 and m, = t. — 1 

We get g2i CONTRADICTION.

case  2 b aab aaaa3 b  u = e = v = Q , s  = y i j ^ 0  and y 2 — 1 and k = — 1 and 

a = h — 1 , n = r and q = g, g 7̂  0, g2 7̂  r 2 and m  — t — 1, r  ^  0 and g =  — 1 

We get gi2 +  2zr£ + g£2 and rz2 +  2igt +  r t 2 , subtracting these gives (g — r)(z — t ) 2 , 

so t = i

We get 2z2(g + r), so g = - r  but g2 7̂  r 2 CONTRADICTION, 

case  2 b aab aaaa3 c  u = e =  7; =  t =  0 , s — gz 7̂  0 and g2 =  1 and /c =  —1 and 

a =  /i -  1 , n = r and q = g ,g 7̂  0 , g2 7̂  r 2 and m  = t — 1 ,r ^  0, y i 1 — 1 and g =  1. 

We get z2g CONTRADICTION.

case  2b a a b a a a b  u = e =  u =  0, s =  g z ^ 0  and g2 =  1 and /c =  — 1 and a =  h — 1,

n =  r  and q ^ g , b  = f y — l , t  = zi  and 22 =  1.

We have entries / (g ( l  -f ra) +  2zrg +  iqz) and / ( g ( l  +  ra) +  2zrg +  igz),  subtracting 

these gives / ( I  +  m -  iz)(g — q)

Split into two cases :

case  2 b a ab a a ab a  when f  — 0 and case  2 b a a b a a a b b  when /  7̂  0 som =  iz  — 1 

case  2 b a ab a a ab a  u = e = v = f  =  0, s =  gz 7̂  0 and g2 — 1 and k = — 1 and

a = h -  I , n = r and q ^  g, b = f y  — l,t  = zi  and z2 =  1.

We get z(gzg +  ry + mry  -}- qz -\- mqz  +  irz)  and z(gzg +  ry  +  m r y  +  qz +  77ig2 +  zrz)

, subtracting these gives (zg — 2 — mz)(g — q) , so m  = iyz — 1
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We get i2(g +  2r z  +  y), so g = —2rz  — q

And we get i{gh — gj  — r 2y — qrz — qryz ) and i(qh — qj — r2y — grz — gryz).  Subtracting 

these gives (h — j  +  ryz){g  — y), so h = j  — ryz

We also get i (hr  — j r  — gry — q2z — r2yz)  and i ( h r —j r  — qry — qgz — r 2y z ) . Subtracting

these gives {qz — ry)[g — q), so r = qzy 

We get iq2z {—1 +  2 — 2y +  l )=iq2z( l  -  y) =  0 

Split into two cases :

c a s e 2 b a a b a a a b a a  when y — 1 and c a s e 2 b a a b a a a b a b  when y ^  1 soq = 0 

case  2 b a a b a a a b a a  u = e — v — f  — 0 , s  — y i ^ O  and y 2 = 1 and k = — 1 and 

a = h — 1, n = r and q ^  g, b = f y  — 1, t =  zi  and z 2 = 1 ,m =  iyz — 1,/i — j  — r y z , 

=  — 2rz — y,r =  qzy and y — 1.

We get iy(c — j  +  4y)

W hen y =  0, s o r  =  y =  0 but q ^  g CONTRADICTION.

W hen j  = c +  4y, we get 3y(c — 9q)(c +  3y), split into two cases:

When c =  9y, we get iq2 CONTRADICTION.

W hen c =  - 3 q SOLUTION.

case 2 b a a b a a a b a b  u = e = v = f  — 0, s = yi 0 and y 2 =  1 and k = — 1 and 

a = h — 1 , n =  r and q ^  g, b = f y  — \ , t  — zi and z 2 — 1 ,m =  iyz — l,/i =  j  — ryz, 

g = - 2 rz  -  y,r =  yzy,y ^  1 ,y =  0 and y =  - 1  .

We get i j 2 and i2c so c = j  = 0 SOLUTION .

case 2 b a a b a a a b b  u = e = v = 0, s — yi ^  0 and y2 =  1 and k — — 1 and a = h — 1

, n = r and ,y ^  y, b = f y  —  1, t = zi and z2 =  1, /  ^  0 andra —  i z — 1.

We get 2r +  yz +  yyz and 2r +  yz +  yz. Subtracting these gives y (l — y)

And we get y +  qy +  2rz and y +  y +  2rz. Subtracting these gives y(l — y), so y =  1 

because q ^  y and q ^  — q — 2rzy,  so q ^  —ryz
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We get q(c — h +  q +  2rz), so c — h — q — 2rz

We get /iy — jy  +  y2 +  2r 2 +  2hrz — 2 jrz  and hq — jq  -f r 2 +  2rqz +  2hrz — 2jrz .

Subtracting these gives (y — z r)2 , so y =  rz  and y ^  0 and r  ^  0 

We get f r ( h  — j  +  rz) , so j  — /i +  rz

We get hi(h +  8rz) and h f ( h  — 24rz), when h ^  0. Subtracting these gives rz  =  0

CONTRADICTION.

And when h = 0 SOLUTION.

case 2baabaab u = e — v = 0) s = y i ^ 0  and y2 — 1 and k = — 1 and a = h — 1, 

n / r  and b = f y  — I.

We have entries / ( r  +  m r  + nt + giy +  iqy) , f ( n  +  mr  +  rt  +  yzy +  iyy). Subtracting 

these gives / ( I  +  m — £)(n -  r)

Split into two cases :

c a se 2 b a a b a a b a  when /  =  0 and c a se 2 b a a b a a b b  when /  ^  0 sora — t — 1 

case  2 b a a b a a b a  u = e = v = f  = 0 , s =  yi ^  0 and y2 =  1 and k = — 1 and 

a = h — 1 , n ^ r  and b = f y  — 1 .

We get r ( l  +  m )2 +  i/y(y +  y) +  =  0 and n{ 1 +  m )2 +  i/y(y +  y) +  i2r  =  0.

Subtracting these gives (1 +  m ) 2 =  z2, so m  = xi  — 1 when x2 =  1

We get i2r +  n t2 +  i2xy(g  +  y) and z2n +  r t2 +  i2xy(g  +  y). Subtracting these gives

(n -  r)(i2 — t2) so t = iz when z2 =  1

We get i2{(g +  y) +  z(n  +  r)) =  0, so g = z(n  +  r) — y

We get 2z2(n +  r) =  0, son =  —r

We get zy(c — h — rx  +  yy +  rz) / /  Split into two cases :

case 2baabaabaa when y =  0 and case 2baabaabab when y ^  0 soc =  h +  rx —

qy — rz

case  2 b a a b a a b a a  u = e = v = /  =  y =  0 , s  =  y i ^ 0  and y2 =  1 and k — — 1 and 

a = h — 1 ,n r and b =  f  y — 1 .
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We get i r 2 z, so r — 0 but r and n = - r  , so n = - r  = 0 CONTRADICTION, 

case 2baabaabab u = e = v = /  =  0, s =  yz ^  0 and y2 =  1 and k = - 1  and

a = h — 1 ,n 7  ̂ r , b = f y  — 1 , y 7̂  0 and c = h + rx — qy — rz.

We have iqr(x — z)  and (y2 +  r 2)(x — z), so when r  =  0 we get x — z and when r  ^  0, 

we get x =  z, so x =  z in all cases.

We get (rz +  y)(l — y) =  0 

Split into two cases :

case  2 b a a b a a b a b a  when y =  1 and case 2 b a a b a a b a b b  when y ^  1 soy =  — 1

and r  =  —yz

case 2 baabaababa u = e = v = f  = 0, s = yi 7̂  0 and y2 =  1 and k = — 1 and

a = h — 1 , n 7  ̂ r, b = f y  — 1, y 7̂  0 and c = h rx — qy — rz, x  = z and y =  1.

We get /i(/i — 4y)y 

Split into two cases :

case  2 b a a b a a b a b a a  when h =  0 and case 2 b a a b a a b a b a b  when h 7  ̂ 0 soh = 4y 

case  2 b a a b a a b a b a a  u = e = v = f  = h = 0 , s  = y i y£Q and y2 =  1 and k = — 1 

and a = h — 1 ,n 7^ r , b = / y - l , y ^ 0  and c = h - ¥ r x - q y - r z , x  = z and y =  1. 

We get z2 (3j — q)z,  so y =  3j 

We get i j 2 =  0, so j  =  0 

We get i r2 =  0 CONTRADICTION.

case 2 baabaababab u = e = v = f  = 0 , s = yi 7  ̂ 0  and y2 =  1 and k =  — 1 and 

a =  h — 1 , n 7^ r, b —  f y  — 1, y 7̂  0 and c =  /?, +  rx  — qy — rz ,x =  z and y =  1, h 7̂  0 

and h = 4y.

We get 8z(j -  y)y, so j  = y 

We get —8zy2 CONTRADICTION.

case 2baabaababb  u = e = v = /  = 0, s = yz 7̂  0 and y2 = 1 and /c = — 1 and 

a =  h — 1, n  7̂  r, 6 =  f y  — 1, y 7̂  0 and c =  /i +  rx  — qy — rz, y 7̂  1 ,x =  z;y =  —1
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and r =  — qz.

We get 2zy(l +  z 2) = Mq =  0 CONTRADICTION.

case  2b a a b a a b b  u = e = v = Q) s = y i ^ 0  and y 2 =  1 and k = — 1 and a =  h — 1 

,n ^  r and b = f y  — 1, /  7̂  0 and m  = t — 1.

We get i2r +  n t 2 +  gity +  iqty and i2n  +  r t 2 +  gity +  iqty. Subtracting these gives 

(n — r)( t 2 — i2), sot 2 = i2, t =  zi  when z2 =  1

We get y + y + z n + z r  and q +g + z n y + z r y .  Subtracting these gives (y — l ) ( n+r )z  = 0 

Split into two cases :

c a se 2b a a b a a b b a  when y = 1 and c ase2b a a b a a b b b  when y ^  1 so n = — r and

y =  - 1 .

case  2b a a b a a b b a  u =  e =  u =  0, s =  y i ^ 0  and y2 = 1 and k = — 1 and a = h — 1, 

and b = f y  — 1, /  7̂  0 and m  = t — 1, t = zi, z 2 = 1 and y — 1.

We have entry /z(y +  y +  nz +  rz), so g = —q — nz  — rz  

We getir(c — h +  y +  nz +  rz), so/?. =  c +  y +  nz +  n r 

We get i(c — 2j — q — nz  — rz)(c  +  y +  nz +  rz)

Split into two cases :

c a se 2b a a b a a b b a a  when c =  2y +  y +  nz +  rz  and c ase 2b a a b a a b b a b  when 

c = —q — nz  — rz.

case  2b a a b a a b b a a  u = e = v = 0 , s = yi  7̂  0 and y 2 = 1 and k = -1  and

a = h — 1 ,n 7̂  r  and b = f y  — l , f  7̂  0 and ra =  / — 1, t = zi , z 2 = 1 and y =  1,

y =  —q — nz  — rz  , h = c + q + nz  + nr  and c =  2j  +  y +  nz  +  rz.

We get i ( j  +  y +  nz +  rz ) ( j  +  2y +  2nz +  3rz) and z(j +  y +  nz +  rz )( j +  2y +  3nz +  2rz) 

Split into two cases :

c a se 2b a a b a a b b a a a  when j  = —q — nz  — rz  and c a se 2b a a b a a b b a a b  when 

j  +  2y +  2nz  +  3rz — 0 and j  +  2y +  3nz +  2rz  =  0.

case  2 b a a b a a b b a a a  u =  e =  v =  0 , s =  yz 7̂  0 and y2 =  1 and A: =  — 1 and
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a = h — 1 ,n ^  r  and b = f y  — 1, /  7̂  0 and m  = t — \ , t — zi , z2 = \ and y = 1 , 

g — —q — nz  — r z  , h =  c +  <7 +  nz +  nr  and c =  2j  +  y +  nz +  rz  and j  = —q — nz  — rz.  

We get i{n2 — q2 — nr  — r 2 — nqz — qrz) and i (n2 +  y2 +  nr — r2 +  nyz +  yrz) ,

subtracting these gives n 2 — r 2 =  0 , so n =  — r

We get 4 / 2y and z(y2 — r 2) and we have /  r, so r  ̂  0 CONTRADICTION,

case  2b a a b a a b b a a b  u = e = v = 0, s =  yz ^  0 and y 2 =  1 and k = — 1 and

a =  /?, — 1, n  7̂  r  and b = f y  — 1 , f  7  ̂0  and m  =  t — 1, t = zi, z 2 = 1 and y =  1,

g = —q — nz  — rz ,  h = c-\ -q- \ -nz-{-nr  and c =  2j  +  y +  nz +  rz.

We have entries j  +  2y +  2nz +  3rz =  0 and j  +  2y +  3nz +  2rz  =  0. Subtracting 

these gives z(n — r) =  0, son =  r  CONTRADICTION.

case  2b a a b a a b b a b  u = e =  r  =  0, s =  yi 7̂  0 and y 2 =  1 and /c =  — 1 and

a = h — I, n 7  ̂ r and b = f y  — 1, /  /  0 and ra =  t — 1, t =  zz, z2 =  1 and y =  1,

g = —q — nz  — rz ,  h = c + q + nz nr  and c = —q — nz — rz.

We get z(n2 — j q  +  nr  — r 2) and z(—n2 — ;y +  nr  +  r 2). Subtracting these gives 

n 2 — r 2 — 0, so n =  —r 

We get / 2(3j -  y) , so y =  3/

We get 8/y ’r  =  0 and 2 / ( 3 j2 +  r 2) =  0, so j  =  0 b u t /  7̂  0 and r  7̂ = 0 CONTRA­

DICTION.

case  2b a a b a a b b b  u — e =  u =  0, s =  yi 7  ̂ 0 and y2 =  1 and k =  — 1 and a =  /z — 1, 

n / r  and b = f y  — 1 , f  7̂  0 and m  = t — 1, t = zi, z 2 = 1, n =  - r  and y =  —1.

We get f i ( g  +  <7), so <7 =  —y 

We get f ( h  — j  +  y)r, so j  = h +  y

We g e t2 /(y2 +  r 2) and 2 /(y 2 — r 2). Subtracting these gives —2r 2 CONTRADIC­

TION.

case  2b a a b a b  n =  e =  u =  0 , s  =  y z 7^0 and y 2 = 1 , k 7^ —1, /  =  ty, b = t — 1,

h = 0, f  = zi  and z2 =  1, ra =  f  y — 1 and 6 =  ra.
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We get z2(a — k)yz  and z(l +  k ) (—t +  iyz),  so a — k and t — iyz

We get i(cn +  j r y  -f j 2yz  +  jqyz)  and z(cr +  j n y  +  j 2yz  +  jqyz) .  Subtracting these

gives (r -  n) ( j y  -  c)

Split into two cases :

c a se 2 b a a b a b a  when r = n  and c a se 2 b a a b a b b  when r ^  n so c = jy.

case  2 b a a b a b a  u = e = v = Q , s  = y i ^ 0  and y2 =  1 , k ^  — 1 , f  = ty ,b = t — 1

, h. — 0, /  =  zi and z2 =  1 , m  — f y  — 1 and b =  ra , r  =  n ,a, = k and t = iyz.

We get g2 +  ci2 +  3z2j  +  gk and g2 +  cz2 +  i2j  +  gk +  2 i2j y  Subtracting these gives 

2z2j ( l  -  y).

Split into two cases :

c a se 2 b a a b a b a a  when y =  1 and c a se 2 b a a b a b a b  when y ^ l s o y  — - 1  and 

3 = 0.

case  2 b a a b a b a a  u — e — v = 0  , s = y i 7  ̂ 0  and y 2 — 1 , k ^  — 1 , f  = ty ,b = t — 1 

, h =  0, /  =  zi and z2 =  1 , m. — f y  — 1 and b = m. , r  = n , a  = k , t  = iyz  andy =  1

We gety2 +  cz2 +  3z2j  +  y2& , n 2 +  cz2-f-3z2j  + n 2k and y2 +  cz2 +  3z2j  +  <72/c. Subtracting 

these gives(l +  k){n 2 — q2) and (1 +  k)(n 2 — g2), so q2 — n 2 = g2 

And we also have n ( —g+n 2 — cq — gq +  j q  +  q2) andn ( —j +n 2 — cq — gq +  jy  +  y2).

Subtracting these gives n ( j 2 -  g2). Split into two cases :

c a se 2 b a a b a b a a a  when n =  0 , so y =  77. =  y =  0 and c a se 2 b a a b a b a a b  when 

n 7  ̂ 0  so q2 = n 2 = g2 = j 2 ^  0.

case  2 b a a b a b a a a  u = e = v = q = n = g — 0 , s  = y i 7 ^ 0  and y2 =  1 , k ^  — 1 , 

/  =  ty ,b = t — 1 , h =  0, /  =  zi. and z 2 =  1 , m  = f y  — 1 and b = m , r  = n , a  = k 

, t = iyz  andy =  1.

We get j 2z and c2i so j  = c = 0 SOLUTION.

case  2 b a a b a b a a b  u = e = v = 0  , s = yi 7  ̂ 0  and y2 =  1 , k ±  - 1  , /  =  ty
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,b = t — 1 , h = 0, /  =  zi and z 2 =  1 , m  = f y  — 1 and b = m , r  = n , a  = k , t  — iyz  

andy =  1 ,n /  0 and q2 = n 2 = g2 = j 2 ^  0.

We have entry i ( g j -f 2n2 Jrq2)z and because q2 = n 2 = g2 = j 2 /  0 we get ig{j + 3g)z 

, so j  =  —3y

We get yn(y — y) and y2(5c +  12y +  3y) so, y =  g and c = —3g 

We get gi(g — nz)  so g = nz

We get g2 +  gk — 1 2 i2nz  and g2 +  gk  +  4i2nz  Subtracting these gives 16z2rcz CON­

TRADICTION.

case  2 b a a b a b a b  u = e = v = 0 , s  = y i ^ 0  and y 2 — \ , k ^  — I , f  = ty ,b = t — 1 

, h = 0, /  =  zi  and z2 =  1 , m  = f y  — 1 and b = m , r  = n , a  = k , t  = iyz  ,y ^  1 , 

y — — 1 and j  =  0.

We get ci2 , so c = 0

We get y2(l +  k) , y2(l +  k) and n 2(l +  /c) , s o g  = q = n = 0 SOLUTION, 

case  2 b a a b a b b  u =  e =  v = 0 , .s =  yi ^  0 and y2 =  1 , k ^  — 1 , /  =  ty ,b = t — 1 

? h = 0, /  =  zi and z2 =  1 , m  = f y  — 1 and b = m,a  =  k and t = i y z , r  j n  and 

c =  jy.

We get n 2 +  j y i 2 +  3i2j  + n 2k and r 2 +  j y i 2 +  3i2j  + r2k Subtracting these gives 

(1 +  k)(n — r)(n  +  r), so r = —n

We get (1 4- k) (n 2 — j 2) = 0 , gi 2 +  j 2 +  j 2k +  i 2q and gi 2 +  y2 +  q2k +  i2q Subtracting 

these gives (1 +  k) ( j 2 — q2) =  0 ,so j 2 = q2 = n 2 .

We also get i j ( j  +  y) and zj(3.y +  j y ) z  

Split into two cases :

c a se 2 b a a b a b b a  when j  =  0 , s o y  =  n =  0 and c a se 2 b a a b a b b b  when j  ^  0 so 

q2 — n 2 — j 2 j  0 ,j =  - 3 gy and y =  - j .

case  2 b a a b a b b a  u = e — v — j  — q — n — 0 ) s = y i ^ 0  and y2 =  1 , k ^  — 1 , 

/  =  ty ,b = t — 1 , h — 0, /  =  zi  and z2 =  1 , m  = f  y — 1 and b = m, a = k and
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t =  i y z , r 7  ̂ n  and c — j y ,  r - —n.

We get g2i , so g =  0 SOLUTION.

case  2 b a a b a b b b  u =  e =  t> =  0 , s  =  y i ^ 0  and y 2 = 1 , k ^  — 1 , f  = ty ,b = t — 1 

, h = 0 , f  = zi and z2 =  1 , m  = f y  — 1 and b =  m,a = k and £ =  iyz, r ^  n  and 

C -  jy  ,r =  -71 , J/V 0 , y2 =  =  j 2 ^  0 J  =  -3 y y  and y =  - j .

We get 2y2n , so g =  0 and j  = 0 but we have y2 =  n 2 =  j 2 0 CONTRADICTION, 

case  2 b a ab b  u =  e =  0 , s =  yi ^  0 and y2 =  1 and v ^  0  , f  = ty and6 =  t — 1. 

We have entries i ( l  +  ra — and uy(i2 — t 2) , so m  = t — 1 ,t — zy  and y2 =  1 

And we also have entries h2(l +  k) +  v2h =  0 and h2(l +  /c) — (1 +  /c)2u +  v2h = 0.

Subtracting these gives (1 +  k)2v , so k = — 1 

We get hv 2 , so h = 0 

We get i2(l +  a — v)yz  so a = v — 1

We get gnv + i2ny + i2ry + gi2z + i2qz and grv + i2ny + i2ry + gi2z + i2qz , subtracting

these gives gv(n  — r) =  0 

Split into two cases :

c a se 2 b a a b b a  when g = 0 and case  2 b a a b b b  when g ^  0 so n = r.

case  2 b a a b b a  u =  e =  0, s =  y z ^ 0  and y2 =  1 and v 7  ̂ 0  , f  = ty and b = t — 1,

m  = t — 1 ,t — zy  and y2 =  1, k = — 1 and h = g = 0 ,a = v — 1.

We have entries invyz  , irvyz,  iqvyz so n = r = q = 0

We get icyz , so c =  0

We get (c — j ) i vy z  , so j  = 0 SOLUTION.

case 2 b a a b b b  u =  e =  0 , s  =  y i ^ 0  and y2 =  1 and v 7^ 0  , f  = ty and& =  t — 1 ,

ra =  t — 1 ,t = zy  and y2 =  1 , k = — 1 and h = 0 ,a = v — 1 ,g 7^ 0 and n =  r .

We get ci2 +  3i2j  +  g2v , ci2 +  3i2j  +  q2v and ci2 +  3i2j  +  r 2 v. Subtracting these gives 

r 2 = q2 — g2 7  ̂ 0

We get i2r +  j r v  +  i2ry  +  gi2z +  iqyz  and i2r +  qrv +  i2ry  +  gi2z +  iqyz.  Subtracting
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these gives vr ( j  — q), so j  =  q and j  ^  0

We get i j (3 j  +  cy) and i j ( Sj  +  gy). Subtracting these gives c =  g 

We get i j{g +  3j y ) ,  so g = - S j y  

We get 2 j2( l — y), so y — 1  

We  get j 2v CONTRADICTION.
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A ppendix B
We assume 1 -f a =  x , 1 + b = y , 1 + m  = z and 1 + k = w , so a — x — 1 , b = y — 1

ym — z — 1 and k = w — 1 

We get s.r +  u ( f  +  t +  z)

Split into two cases:

case  A  when u =  s =  0 and case  B when u — s* 0 

case  A when u — s =  0

We get xy  = I and we have x  = y and y = ^ , so T =  ^ , and so Ixl2 =  1 andx ^  0.

Split into two cases:

case  A1 when v — t — 0 and case  A 2 when v = t* ^  0. 

case  A1 u =  s — t — v = 0 and y — -X
We get f w  and hz  

Split into two cases:

case  A la  when h =  /  =  0 , because /  =  h* and case  B 2 b  when h ^  Oandf ^  0 ,

w =  z = 0, because w = z*

case  A la  u = s = t = v = h = f  = 0

We get c2 +  3gj = 0 , and we have cisrealandg — j* , so c = g = j  = 0 

We get n 2 +  r 2 +  q2 = 0 , so n — r = q =  0 , because all them are real 

We get wz  =  1 ,so 2 =

We get ie , so i = e =  0 because i = e* SOLUTION, 

case  A lb  u = s = t = v = w = z = 0 and h ^  Oandf ^  0 

We get f h  = 1 ,so /  =  £

We get 3 +  c2 +  3gj  =  0 but c is real and g =  j* CONTRADICTION, 

case  A 2 u =  s = 0 and v = t* ^  0 and y — \

We get c2 +  3f h  +  3gj  =  0 and we have c is real and g = j* and /  =  h*, so
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C =  g  =  j  =  f  =  h =  0

We get tw = Oandxz =  0, so z =  w = 0

We get tv = 1, so t = £

We get n 2 -t-r2 +  g2 =  0 , s o n  =  r  =  <7 =  0 because all them are real.

We get iv — Oand J =  0, so i =  e =  0 SOLUTION,

case  B u = s* ±  0 

We have entries

A — — 1 +  f h  +  es +  tv +  wz  =  0.

£  =  — 1 +  gj  +  n 2 +  q2 +  r2 +  es +  iu +  tv 4- wz  =  0.

D = — 1 +  c2 +  3 //i +  3#j +  xy =  0.

E  = — 1 +  3iu +  xy  = 0.

W hen we use [D — 3(A — £ )  — E\ =  0, we get c2 +  Qgj +  3n2 +  3q2 +  3r2 =  0 , so 

c = n = r = q = n = g = j  = 0 because c , r, q , n are real and g = j*

We get — 1 +  es -f iu -f tv +  wz  and — 1 -1- f h  +  es +  tv +  wz  .Subtract these gives 

— f h  4- iu = 0 

Split into two cases:

case  B1 when /  =  h = 0 and case B2 when f h  0.

case  B1 u — s* ^  0 and c = n = r = q = n = g  = j  — f  = h = 0.

We get i = e = 0

We get tw = 0 , vz = 0 and su +  tw +  vz = 0 , so su = 0 CONTRADICTION, 

case  B 2 u = s* ^  0 and c = n = r = q = n = g = j  = 0 and f h  ^  0.

We get /  =  f  ^  0.

We get lut2h-+xl -f hy =  o and ^  +  - h—j^ +- ~ =  0, when we solve them getx =  0, y =  

- f U  but x = y* CONTRADICTION .
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