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ABSTRACT

In this thesis I will study noncommutative differcntial geometry, after the style of
Connes and Woronowicz. In particular two examples of differential calculi on Hopf
algebras are considered, and their associated covariant derivatives and Riemannian
geometry. These are on the Heisenberg group, and on the finite group A4. I consider
bimodule connections after the work of Madore. In the last chapter noncommutative
fibrations are considerd, with an application to the Leray spectral sequence.

NOTATION.

In this thesis equations are numbered as round brackets (), where (a.b) denotes
equation b in chapter a, and references are indicated by square brackets [].

This thesis has been typeset using Latex, and some figures using the Visio program.
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Introduction

Differential geometry may be dated to the work of Riemann [42], though much of
the formalism was used previously in “flat space”. This was later used by Einstein
to write the general theory of relativity [19], and then in gauge theories of parti-
cle physics. Noncommutative differential geometry dates back to the work of Alain
Connes on the Dirac operator [13], and was given a major boost with the work of
Woronowicz [46] on differential calculi on quantum groups.

This led to considerable interest in noncommutative differential geometry from the
physics community, based on the idea that combining quantum theory and gravity
should lead to noncommutative space time. For example:

Moyal product[39][38] [47]this corresponds to one of the simplest possible noncom-
mutative structure on space time, which is often used by physicists: it is similar to

a noncommutative torus, but in more dimensions, eg.

; 2
frg=fo+ D S TI@N00) ~ ¢ 3 TI(00.)(0,0n9) + -

1,] i.j.k.m

where I1;; is a number valued matrix. Here f and g are smooth functions on R", and
h is a parameter.

Fuzzy spheres: this is a deformation of the algebra of functions on R? given by

[Xi, XJ] = iaeiijk



where « is a parameter, and

0  ijk has a repeat
€ijk = § 1  ijk no repeat and is 123 in cyclic order

—1 otherwise.

eg. €122 =0 €3 =e€12=1 e€130=-1

This, and the physical motivations behind it, is discussed in [45] [29] and [7].
Connes Standard Model: Connes and Marcoli gave an application of noncommu-
tative differential geometry to give an alternative derivation of the standard model
of particle physics. [14] [15]

Cosmology which in recently some predictions of a possible noncommutative struc-
ture of space time have become testable on a possible dependence of the velocity of

light on frequency- so for measurements have been negative [32].

From the point of view of differential forms, the principle of noncommutative geom-
etry is quite simple: make the forms into bimodules over a noncommutative algebra.
However, this is not so simple in practice. But some examples which do work well
are the calculi on quantum groups [46] (and their quotients, eg the quantum sphere)
and on finite groups [34].

In this thesis we shall take two examples of differential calculi, one on the finite group
A4 and one on the Heisenberg group. We shall then apply methods of noncommu-
tative differential geometry to these examples, and see how similar the results are
to those of "classical” differential geometry. We shall see that there are substantial
differences to the classical case, where there is a unique Levi-Civita connection.

In chapters 1 and 2 we will review some background material, and in chapters 3 and

4 we deal with the A; and Heisenberg example, respectively. In chapter 5 we look



at an application of the Leray spectral sequence to a noncommutative fibration. In

chapter 6 we give some general comments and possible directions for future work.
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Chapter 1

Algebras, Hopf algebras and

categories

Here we will give a brief introduction to the existing material on algebras, Hopf

algebras and categories which we shall use later on.

1.1 Hopf algebra

Definition 1 [36] An algebra (with unit)over a field K is a vector space, A, together
with two linear maps, a multiplication p: A® A — A, and a unit mapn K — A

such that the following diagrams commute:

ARARALEL L Ag A (1.1)
idQu 13
A® A

11



KoA—"21, A A2 AQK (1.2)
7

A
where the lower left and right maps are simply scalar multiplication.

An algebra A is a star or x-algebra if there is a conjugate linear operation a — a*

from A to A so that (ab)* = b*a* , 1* =1.

Definition 2 [36/ A coalgebra is a vector space C' together with two linear maps,
comultiplication A : C — C ® C and counit € : C — K , such that the following two
diagrams commute.

The two upper maps in 1.4 are given by c +1®candc —c®1 foranyce C. C

is cocomutative if T o A = /\, where T is the twist map T(z @ y) =y .

C 2 _.C®C (1.3)
A A®id
C®C——2CR®CBC
K®C~——2 C . ,Cc®K (1.4)
e®id a 1d®e
CeC

Definition 3 /36] A K-vector space B is a bialgebra if (B, u,n) is an algebra,
(B, A ¢€) 1s a coalgebra and either of the equivalent conditions holds :

1) A and € are algebra morphisms .

2) u and n are coalgebra morphisms .

This bialgebra structure is often denoted by (B, D, €, u,7) .

12



Definition 4 [31] A Hopf algebra H is

1) A bialgebra H , A ;e ,p,n.

2) Amap S: H— H ( the antipode ) such that ) (Sha))he) = €(h) = Y hq)She)
forallh e H .

S®id

AH®H H®Hﬂ (1.5)
H<‘ K ">H

Here A is the comultiplication of the bialgebra, 1 its multiplication, 7 its unit and €

its counit.

Proposition 5 [33] Let H be a Hopf algebra with antipode S . Then

1) S is an anti-algebra morphism, that is S(hK) = S(K)S(h), all h, K € H and
S(1) =1.

2) S is an anti-coalgebra morphism, that is Ao S =70(S®S)oA andeo S =¢€.

Two Hopf algebras H, H' are dually paired by amap (,) : ' @ H — K if

(¢, k) = (6 ®@ ¥, AR, (1,h) = e(h)

(Ap,h® g) = (¢, hg), (@) = (¢,1)
(S¢,h) = (¢, Sh)

for all ¢ , ¢ € H and h,g € H. Here (,) extends to tensor product pairwise, i.e.

(pRY,a@b) = (¢,a) (¥, b)

13



1.1.1 Actions and coactions

The definition of an action of an algebra extends the idea of matrices acting on a

vector space. The idea of coaction is then dual to an action.

Definition 6 [31] A left action (or representation) of an algebra H is a pair (o, V),
where V is a vector space and « 1s a linear map HQV — V, say a(h ® v) = ap(v),
such that agn(v) = ap(ay(v)), a(l ® v) = v. Instead of constantly writing o, we
often simply denote it by > (or simply by a period ).Thus, h>v = ay(v) € V,
(hg)>v=hp(gpv), 1lpv="0.

[31] An algebra A is an H-module algebra if A is a left H-module (i.e. H acts on it
form the left ) and

he (ab) = > (k)b a)(he>b), Abl=c(h)l.
and coalgebra C is a left H-module coalgebra if

A(hbc) = Z hy > c@) ® hpyb ey, e(h>c) = e(h)e(c).

Example 7 [31] The left regular action L of a bialgebra or Hopf algebra H on itself
is Ly(g) = hg, and makes H into an H-module coalgebra.

Proof: For the complete proof of this example see [31]. O

Definition 8 [81] A right coaction (or corepresentation) of a coalgebra H is a pair
(B, V), where V is a vector space and f is a linear map V' — V ® H, such that
(BRid)of=(ld®A)oB andid = (id®¢€)of .

14



We shall now define modules and comodules for an algebra A and a coalgebra C
respectively. We shall only consider the case where the modules and comodules are

vector spaces over a field K, not some more general picture.

Definition 9 V is a right module over the algebra A if there is a linear map
G VRA—0V

which is an action, i.e. (v<a)<b=va(ab).

Similarly V' is a left module over the algebra A if there is a linear map
ARV —V

which is an action, i.e. a> (b>v) = (ab) > v.

For a unital algebra we shall assume that 1>bv =vand v<1l =w.

Definition 10 V is a right comodule over the coalgebra C' if there is a linear map
0.V —o-VxC

which is a coaction, i.e. (0 ®id)o = (id® A)p.

V is a left comodule over the coalgebra C' if there is a linear map
AV —CRV

which is a coaction, i.e. (id @ M)\ = (A Qid)A.

15



We shall assume that the counit coactions as the identity, i.e. (id ® €)p = id and

(e ®id)A = id

Example 11 [81] The right regular coaction of a bialgebra or Hopf algebra H on
itself is given by the coproduct of R = A : H - H ® H, and makes H into H
-comodule algebra.

Proof : For the complete proof of this example see [31]. O

The following definition comes in different left-right forms, we only give the one we

will use later.

Definition 12 A (right- right ) Yetter-Drinfeld module V' for a Hopf algebra H
has a right coaction ¢ : V. — V ® H (written v — v ® vpy) and a right action
<Q:V®H—=V for which

p(v < h.) = 7o) < h(g) ® S(h(l))v[l]h(:i)» YveV,Vhe H

Proposition 13 In the category of Yetter-Drinfeld modules see ([31], with module

and comodule maps as morphism ) there is a braiding
V: VW -WgV

(v ®w) = wp ®v < wy

If S invertible, there is an inverse ¥~} (w ® v) = v <4 57 (wy)) ® wy

16



1.1.2 Star algebras and coalgebras

If A is a x algebra , then there is a conjugate-linar operator a — a* and (ab)* = b*a’

Definition 14 [31] A Hopf *-algebra is a *-algebra H which also a Hopf algebra
such that

AH* = (AR)*®*, e(h*) =¢€(h), (Sox)?=id

If A, H are two x-Hopf algebra, they are dually paired if they are dually paired as
Hopf algebra and, in addition,

(%, h) = (&, (Sh)")

for all h € H and ¢ € A. If we take nodules over a star algebra, it makes sense to
consider their conjugate modules. We begin with the case of a vector space.
If E is vector space, then its conjugate E is defined to be E as a set, but with vector

space operators ( using € € F to denote the element e )

e+ f=e+f

ce=a¢c ,aeC

If £ is an A-bimodule, then the conjugate bimodule E is E as a vector space, and

has actions

There is a bimodule map



given by

1.2 Categories

Definition 15 [24] A Category C consists

1) of a class Ob (C) whose elements are called the objects of the category,

2) of a class Hom(C') whose elements are called the morphisms of the category , and
3) of maps

identity id : Ob(C) — Hom(C),

source s: Hom(C) — Ob(C),

target  b: Hom(C) — Ob(C),

composition o : Hom(C) x Hom(C) — Ob(C),

such that

a) for any object V € Ob(C), we have s(id,) = b(id,) =V,

b) for any morphism f € Hom(C), we have idyyo f = foidyy = f

¢) for any morphisms f, g, h satisfying b(f) = s(g) and b(g) = s(h), we have (ho
g)of=ho(gof)

Here Hom(C) xo Homn(C) is {(g, f) € Hom(C) x Hom(C)|b(S) = s(T)}

Example 16 Vector spaces (object ) and linear maps (morphism) V = W where o

15 a linear map from V to W

A subcategory C of a category D consists of a subclass Ob(C) of Ob(D) and of a
subclass Hom(C) of Hom(D) which form a category with the identity, source, target

and composition map in D.

18




Definition 17 [24] A functor F : C — C’ from the category C to the category C’
consists of map F : Ob(C) — Ob(C") and of a map F : Hom(C) — Hom(C") such
that

a) for any object V € Ob(C), we have F(id,) = idj(),

b) for any morphism f € Hom(C), we have

s(F(f)) = F(s(f)) and b(F(f)) = F(b(f)),

c) if f,g are composable morphisms in the category C, we have

F(go f) = F(g)o F(f).

Example 18 As an example of functor, consider a functor V' from the category of
finite sets (with functions as morphisms) to finite 2.dimensional vector space (with
linear maps). Let V(z) be the vector space with basis labelled by elements of x, so
V({a,b}) is the vector space with basis a and b. So 4a—3b is an element of V ({a, b}).

A functor f : x — y in finite sets gives a linear map
V(f):V(z) = V(y)

V(IO oez) =) e f(z)

reX

e.g. f:{a,b} — {p,q,7} and f(a) =p, f(b) =¢.
Then V (f)(4a — 3b) = 4p — 3q.

Definition 19 [2/] Let F', G be functors from the category C to the category C'. A
natural transformation n from F to G we write n: F' — G is a family of morphisms

n(V): F(V) = G(V) in C’ indezed by the objects V of C such that, for any morphism

19



F:V =W inC, the square

Fv)—Y g(v) (1.6)
JF(f) G(f)
Fw) " qw)

commautes.

n(V) is an isomorphism of C’ for any object V in C, we say That n: F — G is a
natural isomorphism.

Let C be a category and ® be a functor from C' x C to C. This means that

a) we have an object V ® W associated to any pair (V, W) of object of the category,
b) we have a morphism f & g associated to any pair (f, g) of morphisms of C' such
that s(f ® ) = s(f) ® s(g) and b(f ® g) = b(f) ® b(g),

c) if f and g’ are morphisms such that s(f') = b(f) and s(g') = b(g), then

(ff®d)(fog)=(fof)®(doyg) (1.7)

d) and tdygw = itdy ® idy .
Relation (1.7) implies that f®g = (f ®idyy))o (ids5) @ g) = (idy sy ®g) o (f ®1ids(g)).
Any functor ® : C x C — C obeying these conditions will be called a tensor

product .

Definition 20 [81] A monoidal category (or tensor category) is (C,®,1,®,1,7),
where C is a category and @ : C x C — C is a functor which is associative in

the sense that there is a natural equivalence @ : (®)® — ®(®), i.e. there are given

20



functorial isomorphisms
Sywz: (VW) Z=2VeeWeZ), VYVWWZeC

obeying the pentagon condition in (1.8). In many cases @(VOW)Q® Z) =V ®
(W ® Z), and in these cases the category can be called “ trivially associated” or
“strictly monoidal”, and ® is often ommitted. We shall only be concered which such
cases. We also require a unit object 1 and natural equivalences between the functors
() x1,1® () and the identity functor C — C, i.e. there should be given functorial
isomorphisms ly : V=2V ®&1andry : V=21V obeying (1.9).

VeW)®(ZeU) (1.8)
(VOW)® Z)® Ve (W ((ZeU))
PRid 1d@P
VeWeZz)eU - V(W ® Z) @ U)
Vel oW 2 Ve (leWw) (1.9)

Vew

1.3 A braided category
The function V ®°? W is defined in terms of @ by VQPW =W V.
Definition 21 [31] A braided monoidal or quasitensor category (C,®, V) is a

21



monoidal category (C, ®) which is commutative in the sense that is a natural equiv-
alence between the two functors ®,®°" : C x C — C, i.e. there are given functorial

1somorphisms

\IJV,W1V®W—+W®V,VV,W€C,

obeying the hexagon conditions in the following diagram :

Ve We2) (1.10)
y \
VeZeWw) Vew)®Zz
- :
VezZ)ye W (VW)
MA /
(ZV)eW
VeWw) e (1.11)
/ m
Ve(WeZz) WeV)®Z
WeZ)® We((lVeZ)
\ %
WeZeV)

If we omit ® ( we have already stated that we are only interested in the trivially

associative case )

Uyewz = (Vyz®id)(id @ Uwz), Vvwez = (id® Uy 2)(Vyw ® id)

22



It is not necessarily true that. ¥ = U~ but if it does we call the monoidal category
symmetric.
Simple example: vector spaces form a braided category in which the braiding is

just transposition, i.e.
VVRW)=WweV.

There is a diagrammatic notation often used for monoidal category, for example see
[31] ,[24]. The tensor product is written by placing names next to each other, and

the identity map by unbroken lines. So

14 1% (1.12)

%4 w

denotes the identity from V@ W to V@ W.
If wehaveamapT:V —» U, thenT®id: VW — U ®W would be writing

A\ w
U w
Figure 1.1

Now for a pair (V,W) we can denote lIJVW and its inverse \Il;vl,v respectively by
figure 1.2.
One of the hexagon conditions can be represented by the following diagram (see

figure 1.3)

23



w

SN
ANIA

Figure 1.2
z Vv w {-/ v w
Figure 1.3

As a consequence we have the braid relation, represented by the following diagram

J/ /)
~N (T
(2 S

Figure 1.4

1.3.1 Vector bundles

We begin by a general definition. A submersion f : E — B is a differentiable map
so that, for all e € F, and all vector z at e, the set f'(e;z) at f(z) span all of the

tangent space at f(e).

24




Definition 22 [27] Let B be a smooth manifold. A manifold E together with a
smooth submersion m: E — B, onto B, is called a vector bundle of rank k over
B if the following holds:

1) there is a k-dimensional vector space V , called typical fibre of E, such that for
any point p € B the fibre E, = 771 (p) of m over p is a vector space isomorphic to V

2)any point p € B has a neighbourhood U, such that there is a diffeomorphism

oy

1 (U) UxV (1.13)

and the diagram commutes, which means that every fibre E, is mapped top x V. &y
is called a local trivialization of E over U and U 1is a trivializing neighbourhood for
E.

8) ®ulg, : E, = V is an isomorphism of vector spaces.

B is called the base and E the total space of this vector bundle. m : E — B is a real
or complex vector bundle corresponding to the typical fibre being a real or complex

vector space.

Example 23 [22] (1) The product or trivial bundle E = B xR™ with p the projection
onto the first factor.

(2) The tangent bundle of the unit sphere S™ in R™*! | a vector bundle p : E — S™
where E = {(z,v) € S x R"*!|z L v} and we think of v as a tangent vector to S™
by translating it so that its tail is at the head of x, on S™. The mapp: E — S"

sends (z,v) to x.

Definition 24 [27] Any smooth map s : B — E such that m o s = idp is called a

25



section of E. If s is only defined over a neighbourhood in B it is called a local section

We denote the sections of the vector bundle 7 : E — B by I'E, then I'E is a bimodule

over C(B), the continuous functors on B, given by the

(f.5)(b) = f(b)s(b)

for f € C(B) and s € TE. (In the commutative case we can set f.s = s.f, but in
the noncommutative case we will need separate left and right actions.)

The K-theory of a topological space X is formed by taking an abelian group Ko(X)
generated from the vector bundles on X, up to equivalence [8], with group operation
direct sum.

An element of Ky(X) is given by E — F, where E and F' are vector bundles, and

E — F is the “formal” difference of bundles. This is done so that we have inverses

for the abelian group.

1.3.2 Tensor product of vector bundles

Let V and W be any two vector spaces over a field K.Then V ® W is the space of
objects

VI QW + UV Qwy + ... + v @ wy

where

v, eV,uw, e W

and with the following bilinear relations

al(vl (0% w) + ag(vg X w) = (alvl + az'Ug) X w
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and

a1 (v®@w;) + az(v ®wy) = v ® (ayw; + agwsy)

where a; € K, v,v; € V and w,w; € W [?].

If we have two vector bundles over X, their tensor product is given locally by (for

an open subset of X, U and V, W are vector spaces)
UxV)QUxW)=U x (VQW),

we have the picture in figure 1.5

U <XV U xXwW Ux(V® W)

Figure 1.5

soif s: U — V and t:U — W give sections of the two bundles, then

(s ® 1) (u) = s(u) @ t(u)
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gives a section of the tensor product bundle.

If f:U — R is any function, then

((s.f) ®t)(u) = s(u)f(uv)®(u)
= s(u) ® f(u)t(u)
= (s® ft)(u),

SO
sfRt=s® [t (1.14)

for any real function f.

1.3.3 Tensor product of modules

The tensor product ®,4 over an algebra A is defined as follows. If R is a right A-
module, and L is a lift A-module, then R ® 4 L is the usual vector space. Tensor

product R ® L, with the additional relation
rd4a®@l=r®avl

For a vector bundle E over X, we have seen that the sections I'E of E is a C(X)

module.
Then we want I'(E ® F) to be given in terms of [(E) and I'(F). But I'(E) @ I'(F)

is too big. We use equation 1.14 to see that we should have

['(E) ®cx) T'(F).
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This is designed to follow the equation 1.14, i.e. so that for vector bundles E and F
over X

[NEQ®F)=T(E) ®cx) I'(F)

If R and L are bimodules, then R ®4 L is also a bimodule, with
ab (r®l)=(apr)®I

(r®l)da=rQ® (l<a).

1.4 The Hopf fibration

The group SU, acts on C? by matrix multiplication :

a b U au + bv
= (1.15)
c d v cu+ dv

If we consider non zero vectors in C?, there is a map to the Riemann sphere C,, =

CU{oo} given by

Where if 2 # 0 we get hd € C, and if 2z = 0 we set % = 00 (see figure 1.6).
z
This is the same as the construction of the projective space P'C. Then SU, acts on

projective space using 1.15 by putting u = z and v = 1 to get z € C,, mapping to

au + bv _ az+b
cu+dv cz+d
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plane

Figure 1.6

This is a Mobius transformation.
Now consider all the matrices A € SU, for which A(0) = 0 € C. (the stabiliser of

0)
}__)Oa—l-b_b
Oc+d d

then we have b = 0, so

But A € SUQ, so AA* = [2

ca* cc* + dd*

so, aa* =1, and ¢ =0, and dd* = 1 since detA =ad =1,d = %

So the subgroup of points which fix 0 € C, is

T = where |a| = 1.

Q=
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We have a fibration SU, — C,, sending A to A(0) with fiber 7. This is the Hopf
fibration.
Note that topologically T is a circle S, SUs, is S3 and C, is S, so we get a fibration

S3 — S, with fiber S1.

1.5 Fiber bundles

Definition 25 [27] A fibre bundle is a collection (E, B, F,m), where E, B, F are
topological spaces and w : E — B is continuous surjection. E called total space, B
called base space and F is fibre and m 1is the projection map (or bundle projection).

The fibers of the map are the part of R? which are mapped to the same point of R.

Example 26 We can have E = R? and B = R, with m(z,y) = z. Then the fiber at
a point x € R is {(z,y)|y € R}, so F =R. See figure 1.7.

Example 27 S' x S' — S! given by (r,y) —> r. Note that S* x S! is torus.

(x,y)

111111

Figure 1.7

These example 26 and 27 are both trivial fiber bundles, where £ = B x F. We will

now give some non trivial examples.
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Example 28 The Mobius bundle.

Take a strip of paper, and glue the ends together two different ways, see figuer 1.8.

Mobiusbundle > s

Figure 1.8

Now map the resulting spaces to the S1 factor. The first glueing gives the trivial

bundle, [0. 1] x S1— >S§] (see figure 1.9), The second gives a noil-trivial bundle, the

Figure 1.9

Mobius bundle, which is pictured in figurel.10

Example 29 The Hopffibration. This is a bundle S3 —» S2, with fiber S 1.
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twist

circle

Figure 1.10

For these last two examples, the fibration is locally trivial, i.e. B - UUV a union of
two open sets, (in general we can have more than two), where the part of £ mapping
to U is of the form U x F, and the part of £ mapping to V is of the form V x F.

Figure 1.11 shows the two subsets which can be glued together to from either [0,1] x

S 1] on the Mobius band.

Figure 1.11

1.6 Exact sequences and flat modules

The maps of vector spaces

s

4 w-U u

33



is “exact at W ” if the kernel of T: W — U is equal to the image of S: V — W,

For example
S 3 T

R SR ——SR
given by
s
T vy =z—y
z
x
z
S =| =z
z
z
is exact.

A sequence of linear maps
LN T3 Ty
Vi— Vo, = Vi Voo — VW,

is exact if it is exact at every entry with an incoming and an outcoming arrow i.e.
exact at Vo and V3 and . . . . and V,_;.

Note this sequnce may be infinite “A short exact sequence” is one of the form
0— Vi 5V, 251, —0

More general, we can make exactly the same definition for modules over an algebra
A, and A-module maps.

We have the following definition (modified to include left and right) see [6] [12] [25].
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Definition 30 A right A-module E is flat if every short exact sequence of left A-
modules

0O—L—M-—N—70

gives an exact sequence
0 —E®4L—FE4,M —E®4 N — 0.

Likewise, if E is a left A-module, it is called flat if for every short exact sequnce of
right A-modules

0—>L—M-—N—-——70

we have a short exact sequence
00— LR F—> MR EFE— N, E— Q.
Lemma 31 Give two exact sequences
0—U-5v-Lw-—o

0—U-5V-23X-—0

There is an isomorphism h : W — X given by h(w) = g(v), where f(v) = w.
Proof: We need to check that two choices v,v' € V with f(v) = f(v') = w give
g(v) = g(). If f(v) = f(V), thenv —v' € kerf =im t. But ker g = im t also, so
g(v) = g(v').

To see that h is 1-1 (injective), suppose h(w) = 0. Then g(v) =0, sov € kerg =
kerf, so f(v) =0=w, sow=0.
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To see that h is onto, for every x € X there is a v € V with g(v) = z. Now set

w = f(v), and h(w) = z. Then h is an isomorphism. O

1.7 Finitely generated projective modules

For a left A module E, define E° =4 Hom(E, A) i.e. the left module maps from E

to A. If E is also a bimodule, then E° is a bimodule, with the following actions of

A(ae A, e€FE, a€k°)
(a.cx)(e) = ale.a),

a(e).a

(cv.a)(e)

Definition 32 E is finitely generated projective as a left A module if there are
el-..e"€ F ande,---e, € E° (this is called a dual basis ), so that for alle € F,

e= Zei(e).ei.
i
If E is also a bimodule, we can write the evaluation and coevaluation maps
ev: E®y E° — A, e®ar— ale)

coev: A — E°®Q4 FE, a— a.e Qe

Proposition 33 The matriz P;; = ev(e' Q@ e;) = ej(e') obeys P> = P (it is an
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idempotent).
Proof:

> PP =D es(eex(e)

J

using the fact that e is a left module map [a.a(e) = a(a.€)], this is
D PiPi=) exles(€)e).
J J

and by the dual basis property,

Z P Pj = ei(€') = Pi.
J
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Chapter 2

Differential calculi and covariant

derivatives

Begining with the work by Connes [13] and Woronwicz [46], there has been consider-
able interest in applying the methods of differential geometry to algebras. There has
also been interest from the point of view of mathematical physics[34], as differential
geometry is used to describe space - time, but quantum theory seems to force non

commutativity on space time, at least at very small distances (the “Planck length”).

2.1 Differential calculi on algebras

First consider the differential calculis on R”. Given coordinate functions x1, ....... I,
we have 1-forms ) fidz;, where f; : R® — R is a smooth function.

The smooth functions are those which can be differentiated arbitrarily many times .
For example f(z) = z|z| from R to R can be differentiated once, but not twice, so it

is not smooth.
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A 2-form is of type ) fi;dz; A dx;, where f;; is a smooth function, etc.

The n forms Q" form a differential graded algebra, i.e. we have
AQTROQ™ — QT

d: Q" — Q!

with the following properties.
1) For £ € Q" and n € Q™, then E An = (=1)""n A€ ( graded commutativity)
2)Q0 = C°(R™).
3)d(EAN) =dE AN+ (—1)"€ Adn (signed derivation property) .
)

4) d? = 0 5) For R® we define A to be bilinear and d to be linear, and
(fdry, Ao Ndr, ) A (gdry, AL Ndz; ) = fgdrg, A ANdx, Ndry AL Adz;,
d(fdry A...Ndz;)) = %dmk Adziy, A ..o Adzy,.
k

If we replace C*°(R™), the smooth functions on R", by a noncommutative algebra A,

we slightly modify the definition of Q" A.

Definition 34 A differential graded algebra consists vector spaces Q™A with opera-
tors A\ and d so that

DA SUTAQRQ™A — Q'T™A is associative (we do not assume any graded commu-
tative property)

2) QA = A (this is really just notation )

3)d:Q"A— Q"M A withd? =0

4) d(EAm) = dE A+ (~1)E Adn for § € U A

5)UVANQPA = Q1A .

6) AdA=Q'A
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Note that many differential graded algebras do not obey (5), but those in classical

differential geometry do, and it will be true in all our examples. Also aspecial case

of At AR MMA=AROA — (A

If A is a star algebra, we can suppose that the star operation extends to ™A, so
that
(a.db)* = db*.a”

(d6)” = d(¢”)
(ENnn) = (= 1)kl A g

Note: We will often use |€| for the degree of €, if £ € ™A, then || = n.

2.2 Differential calculi on Hopf algebras

The Hopf algebra H has a left coaction on itself by A: H — A & H. A 1-form in
Q' H should be written as a sum of h.dg for h.g € H. We would like this to give a

left coaction of H on Q'H by
h.dg — h(1)g(1) &K h(z).dg(z) (21)

However there are, in general, relations between the h.dg s, i.e. sums of these which
give zero. It is necessary that these sums get sent to zero under ®, and this is a
non-trivial condition. We shall assume that this left coaction is well defined. i.e.
that we have a left covariant calculus. In this case, we can look at the left invariant

1-forms L' H, ie for those n € Q'H for which

n— 1y ®n.
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We use § — £[_1) ® {|g) for the left coaction

There are lots of forms in L'H, as for any & € Q'(H) we have
S(&-1))€0 € L'H.

to see this, we do the following calculation : Applying the left coaction to S(§-1))&

gives
S(E-)m€o-1 ® S(€-1) @0 (2.2)
as S reverses the coproduct, this gives
S(&-n@)o-1 @ S(E-1w)Epoio)
as we have a left coaction, we write P = @ in figure 2.1, or
§-um) @ §-n@ ® pi-11 @ € = -1 B E-ue@) @@ @ (2:3)

Then, applying S to the second term of 2.3 and multiplying the second and third

terms together,

-1 ® S(E-1@)&o1-11 ® oy} = €-11) ® S(E-1@1)&-12)2) B &[o)

but as S(h(l))h(z) = E(h).].]—], we get

-y ® SE-1@)o-1 ® ooy = &-111) ® €(€-1(2)) 11 B {[o)-
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S

® @

é-ﬂ 6{0] - 5[-1] é 1]

Figure 2.1
But now, using h(ye(he)) = h, we get
€11 ® S(€-n@)éo-1 @ o) = -1 © 1o ® o).

Now 2.2 gives 15 ® S(£-1))jo) as required,
Note that f[—z]S(E[—l])f[o] = £, as we have

S E=)é0 = E-ymSE-ye)éo
= e(§-1)¢o
= ¢

and also §-25(§-1)€o = §-1SEa-u)épne € H-L'H as S(&oy-1)&oo € L'H.

This proves the following proposition :

Proposition 35 Q'H = H.L'H.
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If we take L' H to be the left invariant 1-form on the Hopf algebra H, we can give a

right coaction by
EQh = S(h(l)).g.h(z)

If the differential calculus is also right covariant, this right action and coaction make
a Yetter-Drinfeld module. There is map w : H — L'H given by

w(h) = S(h(l))dh(g). (24)
By right covariant, we mean that

h.dg — hq1y.dgay ® hayge)

extends to a well defined coaction on Q'H. In Woronowicz’s paper on differential
calculus on Hopf algebra [46] proposition(3.1) defines a braiding (we use ¥ instead
of 0 ) with ¥(w ®n) =17 ®w, if n is right invariant and w is left invariant

This is just the braiding in proposition 13 .

Woronowicz then defines the symmetric tensor product S? = ker(id—¥) : Q' ®Q! —
Q' ® Q! and the 2-forms as

VHQ40H

VH =

2.3 Example: The function algebra of a finite group

To represent G, a finite group, we need to use the Hopf algebra C(G), using J, as a

basis for z € G (the function taking value 1 at = and zero elsewhere). This has the

43



following operations which make it into a Hopf algebra.

008y =0oybay DNp= D 8,86, 1= b e(0)=0se, S(0:)= o,

y,2€G:yz=z zeG

Here e € G represents the identity element, and §,, represents the Kroneker delta.
For f € C(G), it will be convenient to define the right translation Ry(f) € C(G) by
Ry(f)(z) = f(zg) so that Ry(6;) = d,,-1. The star operation on C(G) is given by

*6x=(_5;

We give C(G) a differential calculus as the following [34]: Here C is a subset of G,
but does not include the identity. Then take the left invariant 1-forms to have basis

&€ for ¢ € C. The bimodule commutation relations and the exterior derivative are

€.f =(Ref)€, df =) (Ref = f)€ (2.5)

ceC

We can invert this to give

=" b1y (2.6)

ueG

The calculus is bicovariant only when C is Ad-stable (i.e. g € C = zgr~! € C for all
z € G). The right action and the right coaction induced braiding(in the bicovariant

case) (see section 2.2) are given by

€48y = bogf® ARE=) &V ®4,, V()= @ (27)

yeG
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We also have see (2.4)

w((sg) = Z S(dx)d(éy) = Z(ag.c - 6g.e)-€z

zYy=g ceC

Thus w has kernel with basis consisting of the elements ) .. d. + 6. and §; for
g€ G\ (CU{e}).

If C' is closed under inverse, we define £2* = —£2". Then we have (df)* = df*, as

(d8,)" = S (61 =60)-£)" = = 3 €7 (Gpe1—8) = 3 (60e—0,)-6" = dB, = .

ceC ceC ceC

A basis of A'C(G))° is given by &, for ¢ € C, where we define ev(£2 ® &) = d.,. The
action and coaction are represented by standard results on the dual Yetter-Drinfeld

modules as

60. < (Sb = 5a.b'1€aa AR(EG) = Zé.gag‘l ® 6g~
g

Further were the calculus is inner when 6 = }~__~ €% in the sense that d is given by

a graded commutator d = [f, —]. Then the exterior derivative on 1-forms is given by
de =) (ENE+ENE) = D Geab NE (2.8)
b,aeC b,aeC

2.4 Left covariant derivative

Historically covariant derivatives arose from trying to differential vector fields in
differential gecometry. E.g. suppose that we have the vector field of wind velocity on
the earth. How to differentiate V' (X) in a direction at z? If we take a coordinate

patch, a subset of R", then we could take the partial derivative with respect to these
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Figure 2.2

( Vz(X.,Xz))
/ (X, X3)

Figure 2.3

coordinates (as figure 2.2 and 2.3) to get

8’Ui

();L'j

(2.9)

However this is not well behaved on changing to different coordinates! The fix was
to add Christoffel symbols to the formula 2.9, giving the idea of covariant derivative.

We write Vi V' to be the derivative of V in the direction of the vector W.
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Since we are dealing mostly with forms rather than vector fields, it will be convenient

to write the covariant derivative using forms. We write
VwV = (W ®id)VV
where VV = £ ® K € QX'®ce(x) ” Vector fields” and
(We®id)((® K)=W(¢).K.

Here we use the fact that vector fields are dual to forms to define W ().
Using coordinates Ve = dz' ® V;e where V,e in the covariant derivative in the z
direction.

In more generality we get the following definition for a left A-module E.

Definition 36 [{] Given a left A-module E , a left A-covariant derivative is a map
V:E — QA®a E which obeys the condition V(a.e) = da® e+ a.Ve foralle € E
anda € A

This is called the left Liebnitz rule.

Definition 37 [{] The torsion of a left A-covariant derivative V on Q'A is the left
A-module map Tor = AV —d : Q' A — Q24 .

That it 1s a left module map follows easily from the definition of a covariant derivative
Tor(a.£) = ANa.VE&) + AN(da® &) — a.dé +da A€ =a.Tor(€)

forallé € QA andac A .
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2.5 The curvature

Curvature measure how “bent” the surface or manifold is purely by making mea-
surements within it.

The standard measure of curvature. This can be given in terms of forms by the
following calculation. Let A be an algebra and F be an A-module. A covariant

derivative on F is

V:E—QARLE

obeying V(a.e) =da®e+a.Ve forallac€ Aande € E.

Define the curvature

R:E— DAQLE

by using
v 04 R E— 02A Q4 F

Vi e)=dEé we ~ €N Ve,

Proposition 38 [4] The curvature of a left A-covariant derivative V is defined by
R=(dQid—idANV)V:E — QA®4E

and is a left A-module map .
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proof: To proof that this is well defined on £.a Qe =& Ra.e,

Vil(ta®e) = d(€.a)@e—EAaVe
= dfa®e—ENda®e—ENaVe
= déRae—EN(da®e+ a.Ve)
= df®ae—EAV(ae)
= V(¢ ®a.e).

Thus R=VIUV:E — Q2A®,4 E. is a left module map.

2.6 Bimodule covariant derivative

In classical differential geometry much use is mode of tensoring bundles together.
To have a working ideal of covariant derivative, we use the following idea, which was

introduced by [16][17][20][30][37]

Definition 39 A bimodule covariant derivative on an A-bimodule E is a triple (E,V, o),
where V : E — Q'A®4 E is a left A-covariant derivative, and 0 + E @4 Q1A —
Q'A®4 E is a bimodule map obeying

V(e.a) =V(e)a+o(e®da), Ve€ E,ac A

The reason for making this definition that we can apply V to tensor products .

Proposition 40 [10/[18] Given (E,Vg,0g) a bimodule covariant derivative on the

bimodule E and Vi a left covariant derivative on the left module F, there is a left
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A-covariant derivative on E ® 4 F given by
Vegr = VE® idp + (0 ® idp)(idg ® Vr)

Further if F is also an A-bimodule with a bimodule covariant deriative (Vp,oF),

then there is a bimodule covariant derivative (Vgsg, r, 0pg,r) on E ®4 F with
opgr = (0p ®1d)(id ® oF)

Proposition 41 [4] The torsion of a bimodule covariant derivative (2'A,V, o) is a

bimodule map if and only if
image(id + o) C Ker(A: Q' A®4 QA — QA).

We say in this case that V is torsion-compatible .

Definition 42 [4] The category 4€a consists of objects A-bimodule covariant deriva-
tives (E,V,0) where 0 : E 4 Q'A — Q' A®4 E is invertible . The morphisms are

bimodule maps 0 : E — F which are preserved by the covariant derivatives , i.e.
Vol=>G(d®0)V:E— QAR F.

Then proposition(40) makes 4€4 into a monoidal category . The identity for the
tensor product is the bimodule A withVo=d: A — Q' A®, A= Q'A ,and o, the
is identity map A®4 QLA to V' A ®4 A where both sides are identified with Q' A

Theorem 43 [/] Suppose that A is a star algebra which has a differential structure
(Q'A,d) so that QA is a star object and xd = dx: A — QA . Then 4&4 described
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in definition (42 ) is a bar category (see [3]) with (E,Vg,0g) = (E,Vg,05) given
by
V(@) = (x' ®id)To;' ' Vi(e),
op = (x ' @id) Yo T~ (id ® *).

If E itself has a star operation % : E — E, then the covariant derivative is said to be

star compatible if (see [4])

op= (1@« Yo T (x® *).

2.7 Hermitian structures and Riemannian geom-
etry

On the surface of the earth there is an idea of length. But this idea of length seems
to depend on the coordinates taken. For example sailors measure position in latitude
and longitude.

One degree of longitude at the equator has a greater length than near the poles. To
allow for this variation in length with coordinates we define a Riemannian metric to

be an inner product
(, ) : Tangent space ® Tangent space — R

0

where the coordinate directions X, = g have (X,, Xp) = gap and ggp is a function
x

on the space.

1) This is non degenerate, i.e. for every X # 0 in the Tangent space there is a Y so

that (X,Y) # 0.
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S pole
Figure 2.4

2) It is positive, for every A"~ 0 we have (X, X) > 0.

3) It is symmetric, ie (X, Y) = (Y. X) .

We can use the nondegeneracy rule to get an inner product on the 1-forms, and this
is what we will use in noncommutative geometry. As our forms will be complex

valued, we replace the symmetry rule by

(Cv) = (2VE)* o

Here f e 1H/4, see subsection 1.1.2.
Finally, the inner product of two 1-forms gives a function as we vary the point where
the product takes place.
We get
(C):UKA®RAWA —>4,
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where A is the smooth functions on the space.
This is similar to the definition of a Hilbert C* module [26], but we not require the
completeness or the norms.

In general a Hermitian structure on a bimodule E will be taken to be
< , ) ' E Xa E — A

with the properties

1) (e.F) = (£.2)".

2) (, ) isnondegenerateT.

In the case where A is a c* algebra, we normally have a positivity condition

3)e # 0= (e,e) > 0.

T The easiest way to explain non-degeneracy is to say that there is an invertible
bimodule map G : E — E°, where E° = aHom(E, A), i.e. the left module maps
from F to A, and that

(,) = evaluation (id®G) : EQs E — A.
Here © € 4Hom (E, F) (the left module maps) between E and F obey
Oare) =ar O(e)

A is a A-module by using multiplication, a> b = ab. The pairing between E° and F
can be written

evaluation : EQ E° — A e® a = afe).
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Note that we can correspondingly define £’ = Hom(FE, A) (the right niodule maps

from E to A) and in that case we get an evaluation
evaluation : E'Q E — A.
E° is always a right A-module, with
eval(e ® @ <a) = eval(e ® a).a
Also, if F is a bimodule, then E° also has a left A-action by
evalle ® a> a) = eval(e<da ® )

and then we can write

eval : E®4 E° — A.

For finitely generated projective modules (see section 1.7) we also have

coevaluation : A — E° Q4 F

and

coevaluation : A — E®4 F'
The dual property can be written as a digram figure 2.5

Proposition 44 [/] In the case of a finite group (see section 2.3), a left invariant
Hermitian structure can be written as G : A'C(G) — (A'C(G))° given by G(£%) =
.9 , where g>* € C . Then :

1) If G is a right module map , then ¢g*° € 0 only ifa = b, i.e. the metric is diagonal
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E coev

= identity

ev

Figure 2.5

i our basis .

2) If G is a right comodule map , then for everya € C andz € G , g*o*~ ' #az™! = gaa

Proof : For the complete proof of this proposition see [4]

Proposition 45 [{] Suppose that E is finitely generated projective as a left module,
with dual basis e; €' € E° ® E, and let G be a non-degenerate Hermitian structure
on E. Suppose that we set g'* = <e",E7>, so it is automatic that gv* = ¢’*. Then
we have G(e') = e;.g7" (summation convention applies). We define G™'(e;) = g;;.€7,
where without loss of generality we can assume that g;j.ev(e’ ® eF) = gy Then:
8)g g5k = ev(e' @ ex)

b)gi;i g’ = ev(ek ® e;) .

C) ;‘q = gqi .

To give a definition to the Christoffel symbols we begin with a left covariant derivative
V on a right A-module E. We suppose that £ is finitely generated projective as a
left A-module, with dual basis e € FE and e; € E°. Then we define the Christoffel
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symbol

PZ = —(Zd X €'U)(V€j &® 61') € QIA (210)

(We choose the minus sign to fit with the standard convention for the covariant
derivative of 1-forms, and the reader should remember that the basis of the 1-forms
written with upper indices if the coeflicients of a 1-form have lower indices, as is

standard.[4] ) We make the Christoffel symbols into a matrix by defining
(D) =T}

We use ¢° as shorthand for the matrix g” and g, as shorthand for the matrix g;;.

Proposition 46 [/] The condition for a connection to preserve the Hermitian metric
5

g.‘rk = %P*dg.P -+ Qb,

where ¢ € M,(Q'A) with ¢* = —¢, P*¢ = ¢ and ¢P = ¢. Form this we can deduce
that

1
['=32¢"-dg. - P+g"-¢—dP P.

Proposition 47 [4] Contuning with our finite group example, the left invariant co-

variant derivative on C(G) given by
vL(ga) — _f\gcé-b ®§c,
is a bimodule covariant derivative if and only if

a"tbc¢ CUe=TE =0.
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In this case o is given by (summing over b,c € C)
U(gd ® gk) = 5bc,dk(f‘gc + 5d,c)€b ® €C

Proposition 48 [/] The condition for V to preserve the metric is that the matriz
9asl? (summation over b ) is antiHermitian . If g, is diagonal , with all enteries on

the diagonal equal (and necessarily real ) , then this reduces to f“;ﬂc = (fg—l,a)* .

Proposition 49 [}/ For (V, o) a bimodule covariant derivative as in proposition 47,

V s torsion comatible if and only if for all b,c,d € C

d_le € C = Fl(ic — FZ‘C_le = 6cd,bc — 5b,d

Definition 50 [4] If E is a star-object ingM, , we say that V is star compatible if
(id®*)og = 05(*®id) : E®@a VA — QAR E

Proposition 51 /4] The condition for star compatibility see definition (50) to hold

is , suming over b’ ,

c_lab €C = (f((;,bb/“],b’ + 60,0’)((f2:_1]a‘1c,c‘1)* + 50’_],6']) = 611,0'

2.8 Symplectic forms

The study of symplectic forms began with Hamiltonian dynamics. A symplectic form

w on a smooth mainfold X is a closed non-degenerate 2-form, i.e. w € Q?X with
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dw = 0. And for all x # 0 on the tangent space to z, there is a y in the tangent
space, so that w(z,y) # 0.

In noncommutative differential geometry, it is standard to see what w € Q?A with
dw = 0 means.

The non-degeneracy condition is more of a problem, as there is no general way known
to pair 2-forms and vector fields. However, in the cases we consider, taking invariant
forms to Hopf algebra coactions results in finite dimensional vector spaces, and here
we just ask for w to be non-degenerate on the vector space, i.e. it has non-degenerate
matrix.

Additionally, in classical geometry, w is introduced at various stages in calculations.
To just make w “appear” in the non commutative case requiers that the map A —
%A sending 1 € A to w € Q%A is a bimodule map, i.e that w is central, a.w = w.a

all a € A.

2.9 Cohomology

Definition 52 A cochain complez is a sequence of objects

where the composition of any two maps is zero, i.e.
1 d d
Cn 1 s Cn CTH—I

gives zero.
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(We take abelian groups or vector spaces as examples of the objects here.) Then
image(d : C*~! — C™) is subset of kernel (d : C" — C™*?)

Then we defined the cohomology of the cochain complex as

kernel(d : C™ — C™1)

H™(C;d) = image(d : C*1 — C™)’

2.10 De Rham cohomology

A sheaf is another case of 7 : Y — B, where B in a base space, which is more gen-
eral than a tiber bundle. It also has an algebraic structure - each fiber is an abelian

group, but that does not concern us here .

Each e € Y has an open neighbourhood U so that 7 : U — tmageU is homeo-

S
>

Z/ele [ > U

Figure 2.6

mophism of U onto a neighbourhood of z = (e).
This allows us - by assuming a little differentialilty (we do not make this precise) to

lift a vector at x uniquely to a vector at e .
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Note that a sheaf is often defined in terms of a presheaf, which can be thought of
assigning to an open set U in B the set of continuous section s : U — Y (with
7o s being the identity ). This is not quite precise, but we are not going to construct
an exact correspondence with sheaf theory in non commutative geometry, just an
analogue.

If we take the functions on Y to be F, then E is an A = C*°(X) bimodule, and the

lifting of the vectors gives a flat covariant derivative
V E— QX e (X) E.

We can now make this into a definition of a noncommutative sheaf [2]

In the differential graded (2”4, A, d), we have d? = 0.This means that

imaged : Q" 'A — Q"A C kerd: Q"A — Q"1 A

. Then we define
" kerd: Q"A — Q”“i

R = imaged : Q1A S OnA

( a quotient of vector spaces ).This is the de Rham cohomology , first defined for

smooth manifolds.

This can be generalised to give a version of sheaf cohomology in the non-commutative

case [2]

Definition 53 [2] Given an algebra A with differential calculus (d,2*A), we define
the category o€ to consist of left A-modules E with connection V : E — Q'A®,4 E.
A morphism ¢ : (E,V) — (F, V) in the category is a left A-module map ¢ : E = F
which preserves the covariant derivative , i.e. Vod = (idR¢)oV : E — QAR F.
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Definition 54 [2] Given (E,V) € 4&, define
VR QAR E - Q"MARLE, w®e— dw®e+ (—1)"wA Ve.

Then the curvature is defined as R = VUV E - O?A® E, and is a left A-module
map The covariant derivative is called flat if the curvature is zero . We write s F

for the full subcategory of A€ consisting of left A-modules with flat connections .
Proposition 55 [2/ Foralln >0, V"oVl = idAR: Q"AR4E — Q"2 ARQAE.

Proof : By explicit calculation,
V(v (w @ e)) = VI (dw @ e + (—1)"w A Ve).
Put Ve = & ® e; (summation implicit), and then

vyl @e) = VPldo@e+ (-1)"wA & ®e)
= (-D)"dwAVe+ (-1)"dwvA&Rei+wAdé ®ey
= —wWA &' A V@i

= wA(d§;®e; — & AVe) =wA R(e). O

Definition 56 [2] Given (E,V) € 4F, define H*(A; E, V) to be the cohomology of

the cochain complex

ESQA,ED QA ED ..
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Note that H(E,V) =TE = {e € E : Ve = 0}, the flat section of E. We will often

write H*(A; E) where there is no danger of confusing the covariant derivative .

2.11 Spectral sequences

We use [35] as a basis reference for spectral sequences.
A spectral sequences consists of series of pages (indexed by r) and objects EP (e.g.
vector spaces ). We take r > 1 and p,g >0, and set EP9 =0if p<Oorg<0.

There is a differential

. P9 p+7,g+1-1
d,: EP9 — EF

such that d,d, =0
e.g. when r = 1 ( page 1) we have the picture in figure2.7

when r = 2 we have the picture in figure2.8

Figure 2.7: page 1
As d.d, = 0, we have imaged, : EP"9*""! — EP is contained in

kerneld, : EP9 — EPTHOt1ITT,
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.K\‘.

Figure 2.8: page 2

Now take the quotient (in our case,quotient of vector spaces)

. , +r.g+1-r
kerneld, : EP9 — EPTT4 _ ypa

: e : r
imaged, : EP"19TTTL 5 EPRA

Then the rule for going from page 7 to page r + 1 is EFJ, = HP

The maps d,,; are given by a detailed formula on H?9.
The idea in that eventually, the EP? will become fixed for r large enough. The
spectral sequences is said to converge to these limiting cases as r increases. Spectral
sequences are frequently used in algebraic topology and algebraic geometry. the use
of a spectral sequences is summed up

input data — first or second page of spectral sequence — work out limit of the
spectral sequence — read off results.
As an example of working out the limit, when r = 2 ( page 2) we have the picture
in figure 2.9
The are only two possible maps d; which are non zero, which are 6, ¢. (because all

maps 0 — 0,0 — v and v — 0 must be zero ).
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01 1 21 31
Ezm Ez Ezm Ez 0

N

00 10 30
E 2 Ez E:?” E 2 0

Figure 2.9: page 2

Construct next page

(1) 0 B E2 image =0

E? B0 kerel = E2
EZ]

21 _ _ker _ By __ 21
E3 ~ image ~ 0 _E2 )

(2) dy : 0 = EJ' image =0
dy: E' % E2 kereld

Egl — 4kerdg — keré __ kerf .
imageds 0

(3) dy : E' 5 E2 imaged

dy : E2° — 0 kerel = E2°
Ego — kerdy Eﬁ _ E§°

imagedz  im@  imd
Every ds : EP? — EPt3972
Now every page after this is the same. The spectral sequences has converged at

page 3 in figure 2.10 .
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Ker 9(2) Ker ¢ Ez(“ E;I 0

00

Figure 2.10: page 3

2.11.1 The Serre spectral sequence

The Serre spectral sequence is a machine for relating the cohomology of the total
space E of the fiber bundle £ — B to the cohomology of the base B with coefficients
in the cohomology of the fiber F'.

There is a spectral sequence with second page H?(B; HY(F)) which has limit H*(E).
We should note that the cohomology H?(F) may be twisted, in the same way that
the fibration itself may be non trivial. The best way to describe this is by sheaf

theory.

About the simplest example is the torus S' x S' — S!. We use complex coefficients.
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In this case the bundle is trivial, and there is no problem with twisting.

B=S' F=8,6E=58"xS§"

C =0,1
HI(F,C) = K
0 otherwise
SO
HP(S', C =0,1 C =0,1)and(q=0,1
i er ey < | O =01 _[€ (p=0mandig=0.)
0 otherwise 0 otherwise
The second page is
q
0 0 0
1¢ C C 0
\
op C C 0
0 1 2 p
Figure 2.11

Every d, either maps to 0 on form 0, so the third page is the same as the second. In
fact all the pages after are the same, the spectral sequences has converged.

We get H™(S' x §') = @, =, BB

o0
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(Ew is the limit page )

HO(S'x SY,C)=C

HI(S'x 8, C)=CaC=C

H*(S'x S1,C)=C

H*"(S'x S, C)=0alln>3

Note that the direct sum given is specific for vector spaces, and that a more compli-
cated procedure might have to be used for other coefficients (e.g. Z).

In [2] a noncommutative generalisation of the Serre spectral sequence was given for
de Rham cohomology. To state it we need the idea of a non commutative fibration,
t: B = E. We now take B and E to be algebras, and the map between them has

been reversed.
Definition 57 [2/Define the cochain complezes

LOAMBAQPX

=0 v — = —
EnX =uQ"BX , ELX = LOMHIB A Qr1X

(n>0),

with differential d : 2 X — Z1 X defined by d[w]m = [dw]m, where w € L,.2™B A
Q"X and []n, is the corresponding quotient map .

The maps O, : Q™B g E0X — Zr X defined by Op(w ® [€]o) = [taw A E]m are
cochain maps if Q™ B ®p 25X is given the differential (—1)™id ® d.

Proposition 58 [2/Suppose that ©,: Q' BR®pZ5X — Z1X (as defined in Definition
57 ) is invertible. Then is a left B-covariant derwative V : H*(Z3X) — Q' B ®p
H™(Z3X) defined by [w] — (id ® [])O; ' [dw)]; .

Definition 59 [2/ The differential algebra map « : B — X 1is called a differential
fibration if O, : Q™B ®p Z¢ X — =5, X (as given in Definition 57) is invertible for

allm > 0.
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Theorem 60 [2] Suppose that v : B — X s a differential fibration. Then there is a

sepctral sequence converging to H;p(X) with

EP9 = HP(B; HI(Z}X), V)
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Chapter 3

The group Ay

3.1 Introduction

Classically the discrete group A; does not have a non-trivial differential structure.
However it is well known that there are non-trivial noncommutative differential struc-
ture on finite groups [34], these have no “analytic” content as it is usually thought

of, but are of interest algebraically.

3.2 The group Ay

This consists of all even permutations of 4 objects. It has 12 elements which we can
write as disjointed cycles. If we permute the objects 0,1,2,3, then the following are
elements of A, (123), (12)(03). The cycle (123) sends the elements 0 — 0, 1 — 2,
2—-53,3->1.

There is an adjoint action of S; (the set of all permutations of 0, 1, 2, 3 ) on A4

given by a — gag~! for g € S,
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There is a representation of A, on C* given in terms of a standard basis

1 0 0 0

0 1 0 0
€0 = y €1 = y By = €3 =

0 0 1 0

0 0 0 1

by Ty(ei) = eqiy when g € Ay.
For example T(123)(€0) = €9, T(123)(€1) = €9, T(123)(€2) = €3, T(123)(63) =€

giving the follwing matrix for T{;23)

1000
0001
T3y = (3.1)
0100
0010
3.3 A differential calculus
A4 has conjugacy classes
C={7r0,7r0“1,7r1,7r]'1,7r2,7r2“1,7r3,7r§]} (3.2)
where
mo = (123) wy!=(132) m =(023) =’ = (032)
m = (013) my;! = (031) w3 =(012) m3'=(021). (3.3)




We use C to construct a differential calculus for A4, as in section (2.3) the left
invariant forms will have basis £* for a € C. To make it easier to read, instead of
f"'i: we write £, (n € 0,1,2,3) or use ¥ = €% |

The Woronowicz braiding ¥ is given by the formula from (2.3)
VE e =6 9

and so ¥ acts separately on the subspace with basis £* ® £° where ab = z, a fixed

element of A;. We can list these basis elements in the following table

Result Cases for ab
e VPR PR S
-1 -1 -1 -1 -1
™ TOT T 2Ty Ty 3 T2, T 1 Ty 3
1.1 -1 -1 o
T T T T 1T oy T 0T 3, T34

-1 -1 _-1_-1 _-1 “1_-1 _-1
(03)(12) | momy, mymy ~, Moy, M3y, My Ty Ty Moy Ty Mo Mg M2

~1_-1 ~1_-1 -1 -1 _—1_-1
(02)(13) | wamo, Ty Mg, WaTy, Wy Mg, MM3, Ty Mg Mg Ty, Mo

-1 _-1_-1 -1 -1 _-1_-1 -1
(01)(23) | momy ",y Ty, W Mg, Wy W3, MWy, Ty T, M3Mp, Ty M1

Total 8+16+16+8+8+8 =64

It is helpful to note the following special case :

V(£ ®E) = £* ® £* eigenvalue +1
and we include these in the cases below
Caselz=e

€& 4+ £ @ £ eigenvalue +1
e — &7 @& eigenvalue —1.
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Case 2z = 7;!

P(eme @ 5";11) — §"F+13 ® Em2

W (EmHs ® EM42) = €M @ EMiva

("1 @ £7) = €02 @ £,

We get eigenvectors

£mivr @ gﬂ'i_+11 + wéﬂi_-%-l"i ® Emi+2 4 w25§"{+11 & 5";33

with eigenvalue w?, where w3 = 1 (three complex roots)
Case 3z =m;

GRETEDES SIS

U(Em+ @ ) = ETive @ €™

W (EMve ® ET43) = £+l ® EMivs

We get eigenvectors

M1 @ E"i_+]2 + wEM* @ M1 + w2€”1_+12 ® M3

with eigenvalue w? , where w3 = 1 (three complex roots)
Case 4 r = (03)(12)

We split it into two parts :

First part :

U(E™ ®EM) =€ @M

Y(E ®E™) =€ @ g

UES @) = @ET

U(Em @E™) =€ ®E,

We get eigenvectors

£m @ £m +w£7r2_1 ® €m0 _,_wz{ngl ® 571'2_] +wBem ®§7r3_1,
with eigenvalue w®, where w* = 1 (four complex roots).
Second part :

U(E™ ©E™) = €70 w L
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Y(ET ®E™) =€ @

U(ET L) =En LT

VEP QL) =" @E™.

We get eigenvectors

£ @ E™ + wE™ @ E™ + W™ ®ET 4 WS QEM
with eigenvalue w? , where w? = 1 (four complex roots).
Case 5 r = (02)(13)

We split it into two parts :

First part :
U(E™ ®E™) =P @E™
PE™RE™) =M ®E™
Y™ ®@L™) =Lm L™

P(E™@EM) =Em ®Em.

We get eigenvectors

™ @ E™ + wE™ @ E™ + W™ B E™ + W™ @ EM,

with eigenvalue w® , where w* = 1 (four complex roots).
Second part :

P(EM @ET ) =€ Q€T

U(E™ e ) = €M @E™

G TEDET T

Y(ED @ET) = @€

We get eigenvectors

€5 ®EM +wE™ ®EW +wiT ®ET + Wl QEM
with eigenvalue w?, where w* = 1 (four complex roots).
Case 6 z = (01)(23)

We split it into two parts :
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First part :

G R T

V(E™@E™) =€ @Em

Y(ET ®E™) =€ @Lm

Ve @Em) =gm e

We get eigenvectors

gmo ®£7r2'1 + WE™ ® £ 4 w2£7r]_] ® E™ + w3£n2"1 ®€n;’
with eigenvalue w3, where w! = 1 (four complex roots)
Second part :

Y(Em QEM ) =Em @M
Y(E™@ED ) =M @ L™
Y(Em ®E™) =€ @ Em
Y(E @E™) =€ ®ET
We get eigenvectors

£1r0"1 ® §1r3_1 + wE™ R §7r0_1 + W™ R Em +w3€7r3_1 ®Em

with eigenvalue w?, where w* = 1 (four complex roots).

1

According to the paper by Woronowicz [46], the left invariant 2 forms on a Hopf
algebra with differential structure are given in terms of Yetter-Drinfeld braiding ¥

by the following, where I is the left invariant 1-forms:

'l

PAT = —

5% = kernel(id — V) : T®T — I'®T

i.e. S%is the +1 eigenspace of W.

This gives the following relations on the wedge product:
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1) €9A €9 =0
2) EPAET 467 AL =0

3) £m+2 A gffﬁl + g";’a A EM+2 4 g”illl A §”f+ls =0

4) £ A €2 4 ET A €M1 4 £T2 A T = ()

B) ETAE™ 4 E™ AET 4 £ AET 4 EM AL =0

6) €™ AE™ 4 ET0 AE™ 4 LM AET 4 EBALT =0

T) £ AE™ 4 £ AET 4 £M AL 4 £ A LT = ()

8) €75 NET LT AL 4T ANET €T AT =0
9) €™ AL + € AL €T AT HET AL =0

10) €70 AL +E™ AL 4 EM AL HET AEM =0

3.4 Covariant derivative on A,

For connections on this calculus, we refer to section 2.4. These are given by Christoffel
symbols I'y, for a,b,c€ C .
) $1
We write l"’fi]gkﬂ for F:‘i'n,f’ for short. We suppose that the connection is invariant
’ J

to the S; action, that is

Fgrg“

gyg9~',gzg!

yz?

for all ge S, (3.5)

We can use this symmetry to reduce the number of possibilities for the Christoffel

symbols.
Y . 3 1
We consider all possible cases of F}i, 1 below. There are two useful values of g € S,

to use in (3.5): We have 6; € Sy ,i = 1,2,3 defined by 6;(j) = ¢+ j mod 4. Then

O;m 0 = mE (3.6)
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For i # j € Zy, take the transposition (or 2 cycle ) o;; = (4, 7). Then

-1 . .
T 1—] =2
0'1'_7' my O'i;l - J J
m; otherwise
Tij Tk ai;l = m;' 4,7,k all different (3.7)

. . =
Now consider the various cases "1} .+,

Case 1 If j = k = ¢, using 6_;,

Tih ey = D00 oss (3.8)
and using o, if necessary,
Fl:tz its = ngzi, o3ty - (3.9)
We reduce to 4 values,
oo Too »Tow Too

Case 2 If j = k # i, using 0_;,

T s = D0 oiyts (3.10)
Using a,, with {p, g} = Z4 \ {0, — 4}, if necessary,

Fl:tg ]is = F(()] z)iz:t] (] z)tSi] (3'11)
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We will show that these all reduce to
ng =Fo'2 ,Fg2/ »Fg'z'

If j —i =2 we already have the result. However if j — i # 2 we apply o3 ;- to get

S RN (3.12)

and applying ;3 gives
Tiiy sty = T9mtgt, potyty - (3.13)

We summarise this by
Tih by = Patrnianysy 7 —1=2 (3.14)

l—‘g~ﬂ:2i1 2—*3%) .7 - Z # 2
Case 3 If i = j # k, using 6_;,

3 +
F;i; ks = ng; (k—i)%3 " (3.15)
Using op, with {p,q} = Z4 \ {0,j — i}, if necessary,
v kts =T (3.16)
it2 kE3 = 1 oFeEl (k—i)Estr- :

We will show that these all reduce to

0 0 0 0
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If £ — 1 =2 we already have the result. However if k — i # 2 we apply o,x_; to get

i+ -1
i+1 10
Fiiz kts — Fo—izil PERESTR

and applying o3 gives

i1 — 10
it2 3 — 1 oEet1 -3t -

We summarise this by

0 -
1—1111 _ Foizil 2%3+) k—i=2
it2 k¥ T

0 .
FOiZil 9-+3%] k‘ —1 ?é 2.

Case 4 If j # ¢ = k, using 6_;,

;x ot1
iz s = Doy oyeo
Using op, with {p,q} = Z4\ {0, j — i}, if necessary,
o o
ias ivs = Dimpsats oytats-

We will show that these all reduce to

0 0 0 0
FZO ’FIO ,I_‘20/ ,F2lol
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If j — i =2 we already have the result. However if j — i # 2 we apply 0, ;-; to get

,L':i: —1%1
]-—‘Jilz 1:1:3 = Pgig 0—&3 y (3.22)
and applying o3 give
it
F]ilz iE3 = Fg‘-igil of3+; - (3-23)

We summarise this by

. Y | —1 =2
*1 _ ot2%) gt3t;  J
Do =4 o o, (3.24)
g-%a;gtax; J T 7é

Case 5 If 1, j, k all have different values, using 6_;

it1 0f1

Pin kts = F(j—i)iz (k—i)*3 (3'25)
We reduce these to represented by 8 cases
9% e (3.26)

If we have j —i # 2 and k — i # 2, then we have either j —¢ =1and k — ¢ = 3,
which is the case we want, or we have j —i = 3 and k —¢ = 1, in the case we use o3

to get

+ + -+
i%1 _ 10*1 _ 0%
Fjiz ks — I“3i2 13 — Friz 3—*3- (3-27)
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If j—i=2and kK — 7 =1, we use oy3 to get

it1

_ 0% _ 170~ *1 __ ot
Fji2 ks — inz 1£3 — Fsiz 1-%3 = Friz 3%3-

If j—i=1and k —i =2, we use ogg3 to get

+ + -1
7Ll _ 0F1 — 0 1
Fjiz ks — Pliz 23 — F1-iz 3%3

If j—i=2and k —1i =3, we use gy to get

i+ + -+
1+1 __ 170*1 170 *1
Fji2 k3 — inz 33 — rliz 3—%3

If j—i=3and k—¢ =2, we use oy to get

i+ + -+ *
it __ 10*1 _ o~ *1 _ 1ot
Fji2 k¥3s — Psiz 2%3 — Fg-i2 13 — 1—‘1i2 3-%3

3.4.1 Bimodule connections

(3.28)

(3.29)

(3.30)

(3.31)

The condition to have a bimodule connection is (see proposition 47 in section 2.7)

albc¢ CU{e} =17, =0

(3.32)

We consider the various cases in turn ,and assign the letters to the Christoftel symbols

that we will use later.

Case 1

a=T), gives a 'bc=m

b=TYy, gives a 'bc=m;"
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Case 2

Case 3

Case 4

Caseb

c=T3y gives a 'bc=m;!

d=T), gives a‘bc=e.

e=TI9, gives a 'bc=m3!

_ 0 : “1p. -1
f=T%, gives a  bc=m,

g=T%, gives a 'bc=m;"

%, gives a™'be=(03)(12) ¢ CU{e} ,s0 [%, =0.

h =T, gives a ‘bc=m,
L _ 10 : “1p. _
1=y, gives a 'bc=m

j=T3y gives a 'bc=m;!

I9, gives a~'be= (01)(23) ¢ CU{e} ,s0l%, =0.

k=T, gives a 'bc=mn"
m="T%, gives a ‘bc=m
n="I9, gives a 'bc=m,"

Iy gives a~'bc=(02)(13) ¢ CU{e} ,s0I%, = 0.

Y, gives a 'bc=(03)(12) ¢ CU{e} ,s0 %, =0
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p=TI%, gives a 'bc=m;"

q=T19%, gives a'bc=m

r=T%, gives a 'bc=m;"
/ . L

s=1TI7, gives a 'bc= ¢,
! . _— —_

t=T%, gives a 'bc=m;"
/ . —

u="T7; gives a'bc=m

/ . —
v = I"(l), y gives albc=e.

(3.37)

in the rest of this chapter, we always assume that V is a bimodule connection, and

that these letters and used.

3.4.2 Torsion compatible

We have given the Christoffel symbols short variable names, which we will use later.

The condition for the connection to be torsion compatible is (see proposition (49) in

section (2.7)):
d'bce C = T¢, ~ T . = Seape — Opa.

We now apply this to our specific S; invariant connection on Ay.
For example

90 — 9000 = do0,00 — do0

givesa—a =0

~ o

0/
Iy = 13 a1s = Syo vy — S0

alrey] N’

F(l)’,3' - Pg’,Z = O
~n/ ~n'

F?’,3’ - F?’,a’ = O
givesp—p=20
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and the same cacaulation with the other cases. Then with a small calculation we
get:
s=r=i1=n=0 b=c f=g

h=v—-1=k j=t—-1l=m=gq-1

3.4.3 Implementing the S; symmetry on Christoffel symbols

using Mathematica

This differential calculus was sufficiently large that we used Mathematica to do cal-
culations with it.

We use the following Mathematica notation

gam[{i, T}, {7, s}, {k.t}] = I’;Zkl, where 4,7,k € 0,1,2,3 and 7,5,t € +1, -1

and gamOlr, j, s, k, t|] = T?:kt

Using 6,0 = (i + j)*!, we can convert every Christoffel symbol, so that there is
a zero in the top position.

gam[{i_,s1.}, {j-,s2_}, {k-,s3-}}:=gamO[s1, Mod[j — ¢, 4],s2, Mod[k — ¢, 4],s3].

We will now implement the symmetry in section 3.4, cases 1- 4. We use endgamO|r, j, s, k,t] =
F;-’.:,C, to be one of the representative cases given . These statement are used to make
the assignment:

gam0[sl_,j_,s2_k_,s3.] := Which]|

(j==0) && (k==0) , endgamO[+1,0,s1 s2 ,0,s1 s3], (* case 1 *)

j==k , Which[j==2, endgam0[+1,2,s1 s2 ,2,s1 s3], True , endgam0[+1,2,-s1 s2 ,2,-s1
s3] |, (* case 2 *)

j==0, Which[k==2, endgam0[+1,0,s1 s2 ,2,s1 s3], True , endgam0[+1,0,s1 s2 ,2,-s1
s3] ] , (* case 3%)

k==0, Which[j==2, endgam0[+1,2,s1 s2 ,0,s1 s3], True , endgam0[+1,2,-s1 s2 ,0,s1
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s3] ] , (* case 4%)
(* case 5 *) True, Which|
(j==2) && (k==1) , endgam0[s1,1,-s2,3,s3],

(j==1) && (k==2) , endgam0]-s1,1,-s2,3,s3],
(j==2) && (k==3) , endgam0]-s1,1,s2,3,-s3],
(j==3) && (k==2) , endgam0]s1,1,52,3,-s3],
(j==1) && (k==3) , endgam0][s1,1,s2,3,s3],
(j==3) && (k==1) , endgam0[-s1,1,-s2,3,-s3]]]

3.5 The Metric

The condition for the covariant dervative to preserve a diagonal metric (see proposi-

tion (48) in section (2.7)) is
ic=(Taq) (3.39)
Separating this into cases gives Case 1 :

a=Tgo=(Tg o) ="b’
c=T% = (T%,) = (I%,)", soTy, is real
=

d=T%, = ([%)" = (I%,)", so Y, is real (3.40)
Case 2 :

e=T9,=(T%)" = ([fy) = ([yy) =i
f= Fofz = (Fgo)* = (Fg;w)* = (ng)* =h*
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Case 3 :

Case 4 :

Case 5 :

g= I‘22' = (ngo)* = (ng')* =j*

I, = (TZ)* = (I'%,)* =0, no more information

h = ng = (Fofz)* =f*
i=Tg,=(T3,) =¢
j=Toy =([3,) =¢'

%, = (I'%,,)* = 0,n0 more information

k=T30=([30) =m'
m =Ty, = (I3) =k
n=TI% =(@%,)" = (%) ,soTlY, is real

% = ([Y,)* = (I'%,)" = 0,no0 more information

Y, = (I3,,)* = (['%;)* =0, no more information
p=T%, = ([T%) = @%)" ,soT%,, is real
g=T0;=(I7,)" = (T13)" ,s0 Yy is real
r=TY% = T%,) = (9)* soTl%, isreal
s=T%; = ([{p)" = (M) = v’

t=T95 = ([T = I¥3)" =’

u=T%y = ([{p)" = (%) ="
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v=T% = (T%,) = (%) =t (3.45)

This can be summarised as ( where % denotes a complex conjugate )

r=r" s=u" t=v" u=s wv=t" (3.46)

We state these results as a proposition.

Proposition 61 The condition for the bimodule covariant derivative V to preserve
a diagonal metric is:

K

¢, d,n,p,qandr are real and a =b* b=a* e=1

f=h" g=j" h=f" i=¢ j=¢

*

k=m* m=k* s=u" t=v* u=s" v=t*

Proposition 62 There are torsion covariant derivatives which satisfy the diagonal
metricwithu=e=s=r=i=n=0,a=b=c, f=h=v—-1=k=g=j=
t—1=m=q—1 and all them are real and also d.p are real.

Proof: Using section 3.4.2 and proposition 61. U
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3.6 The generalised braiding o

We give a convention for writing tensor products of matrices as single matrices,

consistent with the Mathematica Kronecker product:

a b aM WM
XM =
c d cM dM
We have 0 : Q' @ Q! — Q' ® Q!, and we have 8 generators of Q! |, so we need a

64 x 64 matrix for o.

We use the formula (proposition (47) in section (2.7))
(&1 ® €°) = Gear(The + 00)€" ®E°

To calculate this in Mathematica, we use the following functions

We consider the conjugacy class C, and enumerate it from 1 to 8 as

1]

f2]={0,-1} = ="
f[3]={1,1} = =]
fl4]={1,-1} = ;!
f5]={21} = m;"
fl6]={2,-1} = ;"
f7]={3,1} = w3’
f8]={3,-1} = 75"

This corresponds to the representing matrices (as 3.1) )

rep[1] ={{1,0,0,0},{0,0,0,1},{0,1,0,0},{0,0,1,0}}
rep[2]={{1,0,0,0},{0,0,1,0},{0,0,0,1},{0,1,0,0} }
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rep[3]={{0,0,0,1},{0,1,0,0},{1,0,0,0},{0,0,1,0}}
rep[4]={{0,0,1,0},{0,1,0,0},{0,0,0,1},{1,0,0,0}}
rep[5]={{0,0,0,1},{1,0,0,0},{0,0,1,0},{0,1,0,0}}
rep[6]={{0,1,0,0},{0,0,0,1},{0,0,1,0},{1,0,0,0}}
rep[7]={{0,0,1,0},{1,0,0,0},{0,1,0,0},{0,0,0,1}}
rep[8]={{0,1,0,0},{0,0,1,0},{1,0,0,0},{0,0,0,1}}

The Kroneker ¢;; is implemeted as

delta[ppp-,qqq-] := Which[ ppp==qqq ,1,True, 0]

and the Chistoffe]l symbols are enumecrated by the

symbol[i-,j_k-]:=gam|f[i]f[j],{[k]]

The tensor product is converted to a single matrix (o is a 64 by 64 matrix) by
using
sizeclass=8
pairtonumber({i_,j_}] := j+(i-1) sizeclass

numbertopair[n_] := { IntegerPart[(n-1)/sizeclass]+1,n- sizeclass IntegerPart[(n-1)/sizeclass]

Now the following formula give the entries of ¢
newsigmaentry[n_,m_| := delta[rep[numbertopair|[m][[1]]].rep[numbertopair[m]j{[2]]],
rep[numbertopair[n][[1]]].rep[numbertopair(n][[2]]] ] (
symbol[numbertopair[m][[1]],numbertopair[n][[1]] , numbertopair[n][[2]] ] +
delta|numbertopair[m][[1]], numbertopair|n][[2]] ])

Now we make this into a matrix using the table command

MatrixForm[sigmamatrix=Tablenewsigmaentry[n,m|,{n,1,64},{m,1,64}]]
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and convert to our single letter names of the Christoffel symbols using
MatrixForm[newsigma = sigmamatrix//.{endgam0[1,0, 1,0, 1] — a,endgam0][1,0,-1,0,1] —
b,endgam0[1,0,1,0,-1] — c¢,endgam0[1,0, —1,0, —1] — d,endgam0[1,2,1,2,1] —
e,endgam0[1,2,—1,2,1] — f,endgam0[1,2, 1,2, —1] — g,endgam0[1,2,-1,2, 1] —
0,endgam0][1,0,1,2,1] — h,endgam0[1,0,—1,2,1] — %, endgam0[1,0,1,2,—-1] —
J,endgam0[1,0,—1,2, —1] — 0,endgam0[1,2,1,0,1] — k, endgam0[1,2,-1,0,1] —
m, endgam0(1,2,1,0, —1] — n,endgam0[1,2,-1,0, —1] — 0,endgam0[1,1,1,3,1] —
0,endgam0[-1,1,-1,3, —1] — p,endgam0[1,1, -1, 3,1] = ¢,endgam0[-1,1,1,3, -1] =
r,endgam0[—1,1,-1,3,1] — s,endgam0|[1, 1, 1,3, —1] — ¢,endgam0][1, 1, -1,3, -1] —
u,endgam0[-1,1,1, 3,1] — v}]
Note that o does not depend on p or d.

3.7 The Braid Relations

The braid relations for o are defined using
0= : VRN — A RO N
093 :Ig®0'1 Q1®Q] ®Ql — Q! ®Q1®Ql

o satisfies the braid relation if 015093012 — 093012023 =0

We implement this on mathematica by

sigma23=KroneckerProduct[IdentityMatrix[8],newsigmal;

sigmal2=KroneckerProduct[newsigma,ldentityMatrix[8]]
MatrixForm|test=sigmal2.sigma23.sigmal2-sigma23.sigmal2.sigma23]
We look at the entries of "test” above, which are formulae in the valuesa ,b , c,....,

V.
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Note : that ¢ does not depend on p or d.

The following 71 cases list all the values of a, .......... ,v which satisfy the braid rela-
tions.

This list was produced by taking the matrix oiy093012 — 093012023 in Mathematica
(called test above), and examining the enteries to see when they were zero. Solving
these equations using mathematical software. Seemed not to be an option - it was
certainly beyond my (and my supervisor’s) knowledge of how to get the software
to work on such a big problem. We resorted to a partially manual and partially
computer assisted approach.

This involved taking the simplest entries in the matrix, factorising them, and pro-
ducing a tree as assumptions were made at various stages. The tree is written in
Appendix A.

Note : Here x = £1 ,y = +1 and z = £1

1) a=-1, b=Db, ¢=0, e=0, f=f, g=0, h=0, i=0, j=0,k=-1, m=m, n=0,

q=0, r=0, s=0, t=t, u=0, v=0

2) a=a, b=-1-f, c=0, e=0, f=f, g=0, h=1+a, i=0, =0 , k=-1, m=m,

n=0, q=0, r=0, s=0, t=t, u=0, v=0

3) a=a, b=b, ¢=0, e=0, f=0, g=0, h=1+a, i=0, j=0, k=-1, m=m, n=0,

q=0, r=0, s=0, t=t, u=0, v=0

4) a=k, b=m, c¢=0, e=0, {=0, g=0, h=0, i=0, j=0, k=k, m=m, n=0,

q=0, r=0, s=0, t=0, u=0, v=0

5) a=-1, b=Db, ¢=0, e=0, f=f, g=0, h=0, i=0, j=0, k=-1, m=m, n=0,

q=0, r=0, s=0, t=0, u=0, v=0

6) a=-1, b=b, ¢=0, e=0, {=0, g=0, h=0, i=0, j=0, k=-1, m=-1, n=0,

q=0, r=0, s=0, t=t, u=0, v=0

7) a=a, b=Db, c¢=0, e=0, =0, g=0, h=0, i=0, j=0, k=-1, m=-1, n=0,
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q=0, r=0, s=0, t=1+4b, u=0, v=1+a

8) a=-1, b=b, ¢=0, e=0, f=f, g=0, h=0, i=0, j=0, k=-1, m=-1, n=0,
q=0, r=0, s=0, t=t, u=0, v=0

9) a=-1, b=-1, c=c, e=0, f=0, g=0, h=0, i=0, j=0, k=-1, m=-1, n=n,
q=q, r=r, s=0 , t=0, u=0, v=0, at least twoof n, q, r =0

10) a=-1, b=-1, ¢=0, e=0, f=0, g=g, h=0, i=0, j=0, k=-1, m=-1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

11)a=-14h, b=-1, c=h, e=0, =0, g=0, h=h, i=0, j=h, k=-1, m=-1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

12) a=-14j, b=-1, c=j, e=0, {=0, g=0, h=j, i=0, j=j, k=-1, m=-1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

13)a=-1+c, b=-1, c=c¢, e=0, f=0, g=0, h=c, i=0, j=c, k=-1, m=-1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

14)a=a, b=-1, c=1+a, e=0, =0, g=0, h=1+a, i=0, j=1+a, k=-1,
m=-1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

15) a=-1, b=-1, ¢=0, e=0, f=0, g=j, h=0, i=0, j=j, k=-1, m=-1,
n=n, q=0, r=r, s=0, t=0, u=0, v=0

16) a=-1, b=-1, ¢=0, e=0, f=0, g=j, h=0, i=0, j=j, k=-1, m=-1,
n=0, q=q, r=r, s=0, t=0, u=0, v=0

17) a=-1, b=-1, ¢=0, e=0, f=0, g=j, h=0, i=0, j=j, k=-1, m=-1,
n=n, q=q, r=0, s=0, t=0, u=0, v=0

18) a=—1,b=—-1, c=—’;%’l, e=0, =0, g=7, h=0, i=0, j # 0, k= -1,
m= — 1, n=n, q=q, r=r, s=0, -t=0, u=0, v=0

19)a= — 1, b= —1, c=%, e=0, =0, g=j, h=0, i=0, 7 # 0, k= — 1,
m= — 1, n=n, q=¢q, r=r, s=0, t=0, u=0, v=0

20)a= — 1, b= — 1, c=2¢, e=0, =0, g=j, h=0, i=0, j # 0, k= — 1,
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m= — 1, n=n, q=g¢, r=r, s=0, t=0, u=0, v=0

21)a= — 1, b= — 1, c=z, e=0, f=0, g=x, h=0, i=0, j=z, k= — 1,

m= — 1, n= -z, q=z, r= — 1, s=0, t=0, u=0, v=0

22)a= — 1, b= —1, c=z, e=0, {=0, g=z, h=0, i=0, j=r, k= — 1,

m= — 1, n=x, q=z, r=x, s=0, t=0, u=0, v=0

23)a= — 1, b= — 1, c=z, =0, f=0, g=z, h=0, i=0, j=z, k= — 1, m= — 1,
n= -z, q= — z, r=x, s=0, t=0, u=0, v=0

24)a= — 1, b= — 1, c=z, e=0, =0, g=z, h=0, i=0, j=z, k= — 1, m= — 1,
n=z, q= — z, r= — z, s=0, t=0, u=0, v=0

25)a= — 1 —4g, b= — 1, c= — 3g, e=0, f=0, g=g, h= — 4g, i=0, j= — 3g,
k= —1, m= — 1, n=gzy, q=gy, r=gz, s=0, t=0, u=0, v=0

26)a= — 1+ 4g, b= —1, c=g, e=0, {=0, g=g, h=4yg, i=0, j=g, k= — 1,
m= — 1, n=gzy, q=gy, r=gz, s=0, t=0, u=0, v=0

27)a=k, b= — 1, ¢=0, e=0, f=0, g=0, h=0, i=0, j=0, k=k, m= — 1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

28)a= — 14+ v, b= —1, ¢=0, e=0, =0, g=0, h=0, i=0, j=0, k= -1,

m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=v

29)a= — 1, b= — 1, c¢=c, e=0, =0, g=0, h=0, i=0, j=0, k= -1,

m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

30)a= — 1+ ¢, b= —1, c=¢, e=0, =0, g=0, h=0, i=0, j=0, k= —1,

m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

31)a=a, b= —1, ¢=0, e=0, f=0, g=0, h=0, i=0, j=0, k= -1, m= -1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

32)a= — 1, b= — 1, ¢=0, e=0, =0, g=0, h=j, i=0, j=j, k= — 1, m= -1,
n=0, q=0, r=0, s=0, t=0, u=0, v=0

33)a=a, b= — 1, ¢=0, e=0, =0, g=0, h=1 + q, i=0, j=1 + a, k= — 1,
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m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

34)a= — 1, b= —1, c=7, e=0, {=0, g=0, h=j, i=0, j=7, k=—1, m= — 1,

n=0, q=0, r=0, s=0, t=0, u=0, v=0

35)a=a, b= — 1, c=1 + a, e=0, =0, g=0, h=1 + q, i=0, j=1 + a, k= — 1,

m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

36)a=a, b=b, c=0, e=0, f=0, g=0, h=0, i=0, j=0, k= — 1, m= — 1, n=0,

q=0, r=0, s=0, t=0, u=0, v=1+a

37)a= — 1, b=b, ¢=0, e=0, f=f, g=g, h=0, i=0, j=0, k= — 1, m= — 1, n=0,

q=0, r=0, s=0, t=0, u=0, v=0

38)a= — 1, b=b, ¢c=0, e=0, f=f, g=0, h=0, i=i, j=0, k= — 1, m=m, n=0,

q=0, r=0, s=s, t=t, u=0, v=0

39)a=a, b= —1— f, c=0, e=0, f=f, g=0, h=1 + q, i=¢, j=0, k= — 1,

m= — 1 —t, n=0, q=0, r=0, s=s, t=t, u=0, v=0

40)a= — 1 — 3uy, b= —1, ¢=0, e=u, f=0, g=0, h= — 3uy, i=0, j=0, k= — 1 + uy,
m= — 1, n=0, q=0, r=0, s=0, t=0, u=u, v=uy

41)a= — 1 4+ uy, b= — 1, ¢=0, e=u, f=0, g=0, h=uy, i=0, j=0, k= — 1 + uy,

m= — 1, n=0, q=0, r=0, s=0, t=0, u=u, v=uy

42)a= — 1 4 u, b= — 1, c=u, e=u, f=0, g=u, h=u, i=0, j=u, k= -1+ u, m= — 1,
n=u, q=u, r=u, s=0, t=0, u=u, v=u

43)a= — 1 — 3uy, b= — 1, c=uy (-5 + 2y?), e=u, =0, g=uy, h= — 3uy, i=0,

j= — 3uy, k= — 1 4+ uy, m= — 1, n=u, q=uy, r=u, s=0, t=0, u=u, v=uy

44)a= — 1 4+ uy, b= -1+ f, ¢=0, e=u, f=f, g=0, h=uy, i=fy, j=0, k= — 1 + uy,
m=— 1+ f, n=0, q=0, r=0, s=fy, t=f, u=u, v=uy

45)a=—14+v, b=—1—f, c=0,e=—u, f=f, g=0, h=—v, i=—s, j=0, k=— 1+,
m=—1-—f, n=0; q=0, r=0, s=s, t=— f, u=u, v=v

46)a= — 1 + h, b= — 1, c=0, e= — u, =0, g=0, h=h, i=0, j=0, k= -1 — v,
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m= — 1, n=0, q=0, r=0, s=0, t=0, u=u, v=v

47)a= — 1+ h, b=—1— f, c=0, e= —u, f=f, g=0, h=h, i= — s, j=0, k= — 1 — v,
m= — 1 — f, n=0, q=0, r=0, s=s, t=— f, u=u, v=v

48)a=—1, b=b, c=0, e=0, f=f, g=0, h=0, i=i, j=0, k=—1, m=m, n=0, q=0, r=0,
s=1iy, t=t, u=0, v=0

49)a= — 1 + h, b=b, c=0, e=0, {=0, g=0, h=h, i=i, j=0, k= — 1, m=b — ¢,

n=0, q=0, r=0, s= — 7, t=¢, u=0, v=0

50)a= — 1 + h, b=b, c=0, e=0, {=0, g=0, h=h, i=i, j=0, k= — 1,

m=— 2 —b—t, n=0, q=0, r=0, s= — 1, t=t, u=0, v=0

51)a= — 1 + h, b= — 1 + 2, ¢=0, e=0, {=0, g=0, h=h, i=1, j=0, k= -1,

m= — 1 — ¢, n=0, q=0, r=0, s=1, t=t, u=0, v=0

52)a= — 1+ h, b= — 1 — 2, ¢=0, e=0, {=0, g=0, h=nh, i=i, j=0, k= -1,

m= — 1 — ¢, n=0, q=0, r=0, s=1, t=t, u=0, v=0

53)a= — 1+ h, b=—1— f, c=0, e=0, f=f, g=0, h=h, i=i, j=0, k= -1,

m=— 1+ 2f —t, n=0, q=0, r=0, s= — ¢, t=t, u=0, v=0

54)a= — 1+ h, b=—1~— f, c=0, e=0, f=f, g=0, h=h, i=1, j=0, k= — 1,
m=—1-2f —t, n=0, q=0, r=0, s= — ¢, t=t, u=0, v=0

55)a= — 1, b= — 1, c= — 3q, e=0, f=0, g= — 3¢, h=0, i=7, j=q, k= —1,

m= — 1+ iz, n=qz, q=q, r=qz, s=t, t=iz, u=0, v=0

56)a= — 1, b= — 1 + f, c= — 3rz, e=0, f=f, g= — 3rz, h=0, i=i, j=rz,

k= —1, m=—1+1iz, n=r, q=rz, r=r, s=1, t=iz, u=0, v=0

57)a=k, b= — 1 + iyz, ¢=0, e=0, f=iz, g=0, h=0, i=t, j=0, k=k, m= — 1 + iyz,
n=0, q=0, r=0, s=1y, t=iyz, u=0, v=0

58)a=k, b= — 1 + iyz, c=0, e=0, f=iz, g=0, h=0, i=i, j=0, k=k, m= — 1 + 1yz,
n=0, q=0, r=0, s=1y, t=iyz, u=0, v=0

59)a= — 1 + v, b= — 1 + iz, ¢=0, e=0, f=iyz, g=0, h=0, i=¢, j=0, k=1,
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m= — 1 + 1z, n=0, q=0, r=0, s=iy, t=iz, u=0, v=v

60)a=a, b=b, c=0, e=0, =0, g=0, h=1 + a, i=(1 + b)z, j=0, k= — 1, m= — 1,

n=0, q=0, r=0, s=0, t=0, u=0, v=0

61)a=a, b= — 1 — LT 4 o =0, e=0, f=0, g=0, h=1+ g, i= — L™ =0,

k= — 1, m=m, n=0, q=0, r=0, s=s, t= — 1 — m, u=0, v=0

62)a= — 1 4+ u, b= — 1, c=4u, e=u, f=0, g=0, h=u, i=0, j=4u, k= — 1+,

m= — 1, n=0, q=0, r=0, s=0, t=0, u=u, v=u

63)a= — 1 — 3uy, b= — 1, c= — 4uy, e=u, =0, g=0, h= — 3uy, i=0, j= — 4uy,

k= — 1+ uy, m= — 1, n=0, q=0, r=0, s=0, t=0, u=u, v=uy

64)a=—1— (—4+/15) f,b=—1+ f, c=— (=3 +V/15) f, e=0, f=f, g= — f,
h=—(-4+15) f, =0, j=-—- (-4 + V/15) f, k=—1, m=— 1, n=0, q=0, =0, s=0,
t=0, u=0, v=0

65)a=—1+(4 4+ V15) f, b=—1+f, c= (3 + V15) f, e=0, f=f, g=—f, h= (4 + V15) f,
i=0, j= (4 + v15) f, k= — 1, m= — 1, n=0, g=0, r=0, s=0, t=0, u=0, v=0
66)a=—1+(—4 + V15) f, b=—14f, c= (-3 + V15) f, e=0, f=f, g=f, h= (-4 + V15) f,
i=0, j= (-4 +V15) f, k= — 1, m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0
67)a=—1—(4+ V15) f, b=—1+f, c=—(3 + V15) £, e=0, f=f, g=f, h=—(4 + V/15) f,
i=0, j=— (4+ V15) f, k=— 1, m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

68)a= — 1 + uy, b= — 1, c=uy?, e=u, =0, g=uy, h=uy, i=0, j=uy, k= — 1 + uy,
m= — 1, n=u, q=uy, r=u, s=0, t=0, u=u, v=uy

69)a= — 1 — 3uy, b= — 1, c= — uy3, e=u, f=0, g= — uy, h= — 3uy, i=0, j= — uy,
k=—-14uy, m= -1, n=—u, qg= — uy, r= — u, s=0, t=0, u=u, v=uy
70)a=—1,b=—1, c=— (1 + v/3) g, e=0, f=0, g=g, h=0, i=0, j=— (2+ V3) g,

k= —1, m= -1, n=0, q=0, r=0, s=0, t=0, u=0, v=0

7l)a=—1,b=—1, c=(-1+V3) g, e=0, {=0, g=g, h=0, i=0, j= (-2 + V3) g,

k= — 1, m= — 1, n=0, q=0, r=0, s=0, t=0, u=0, v=0
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Proposition 63 The only cases where ¢ satisfies the braid relations and is torsion
compatible are :

11)a=—1+4h, b=—1, c=h, e=0, f=0, g=0, h=h, i=0, j=h, k=—1, m=—1, n=0,
q=0, r=0, s=0, t=0, u=0, v=0

12) a=—1+j, b=—1, c=j, e=0, f=0, g=0, h=j, i=0, j=j, k=—1, m=—1, n=0,
q=0, r=0, s=0, {=0, u=0, v=0

18)a=—1+¢, b=—1, c=c, e=0, f=0, g=0, h=c, i=0, j=c, k=—1, m=—-1, n=0,
g=0, r=0, s=0, t=0, u=0, v=0

14)a=a, b=—1, c=1+a, e=0, f=0, ¢=0, h=1+a, 1=0, j=1+a, k=—1, m=—1, n=0,
g=0, r=0, s=0, t=0, u=0, v=0

34) a=—2,b=—1, c=—1, e=0, f=0, g=0, h=—1, =0, yj=—1, k=—1,
m=—1, n=0, ¢=0, r=0, s=0, t=0, u=0, v=0

35)a=-1, b=—1, c=—1, e=0, f=0, g=0, h=1+a, 1=0, j=—1, k=-1, m=—1, n=0,
g=0, r=0, s=0, t=0, u=0, v=0

Proposition 64 The only cases where o satisfies the braid relations and preserves

a diagonal metric are :
All cases work except 2, 11,12, 18, 14,15, 839, 47

The others are listed with additional restriction if necessary

I)m=»b=-1
3m=a=b=-1andt=0
4Jh=m=a=k

5)f=0andm=>b= -1
6)b=—-1andt=0

7 a=1b

8)b=—-1land f=t=0
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9) Ok
10) g =0
11)h=0
12)j =0
13)¢=0
4a=-1
16) Ok
17) Ok
18) Ok
19) Ok
20) Ok
21) Ok
22) Ok
23) Ok
24) Ok
25)g=0
26) g =0
27) k = —1
28) v=20
29) Ok
90) c =0
31)j =0
32)j=0
33)a= -1
84)j=0
35)a=—1
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36)a=b=-1

37 j=f=0and b= -1
38)s=f=0andm=0b= -1
40)u=0

41)u=0

42)u=0

48)u=10

44)u=s=fy

45)t=—f
46)h=v=u=0

48) f=i=t=0andb=m= -1
49)s=t=t=0and b= -1
50)i=h=t=0andb=-1
51)i=h=1t=s=0
52)i=h=t=s=0

53) Ok

54) Ok

55)i=q=0

56)i=r=0
57)i=0and k = -1
58)i=0and k=-1
59)i=v=0
60)a=b= -1
61)s=0ands=a=-1
62) u =0

63) u=0
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64) f=0

65) f =0
66) f =0
67) f =0
68) u =0
69)u=0
70) g =0
71) g =0

3.8 Star compatibility

The condition for the covariant derivatives to be star compatibile is that (see propo-

sition(51 in section 2.7)
clab€ C =Y ([ at 0ad) ([ igm0t) + 8amrem) = oo (347)
d

To calculate this in Mathematica, we use the following statements:
The Kronecker delta is
delta[ppp-, qqq-]:=Which|[ppp == qqq, 1, True, 0]

The following function assigns the number (see section 3.6) in the class C to the
representing matrix, with 0 returned if the matrix is not a representive of C.
numberfrommatrix[m_]:=Which[m == repl[1], 1, m == rep[2], 2,

m == rep|3], 3, m == rep[4], 4, m == rep[5], 5. m == rep[6},6.m == rep[7].7,m ==
rep[8]. 8, True, 0]
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The next function takes these numbers, and finds the corresponding Christoffel
symbol which will be 0 if we use 'y, with a, b, c not in C.
newgaml|a., b_, c_]:=Which[a == 0,0,b == 0,0, ¢ == 0, 0, True, symbol|a, b, c]]
Now we implent (3.47), using y[—] as conjugate
Sum|
(newgam/aaa, numberfrommatrix(rep[aaa).rep[bbb].Inverse[rep[ddd]]
],ddd] + delta[aaa, ddd))
(v[newgam|
numberfrommatrix[Inverse[rep[ddd]]],
numberfrommatrix[Inverse[rep[bbb]].Inverse[rep|aaal].rep|ccc]],

numberfrommatrix[Inverse[rep[ccc]]]

1] + deltalddd, ccc]

)

— deltalaaa, ccc], {ddd, 1,8}] //.{~[0] — 0}

Now we use the letters for the Christoffel symbols

formulafaaa_, bbb_, ccc_]:=Sum]|

(newgam|[aaa, numberfrommatrix[rep[aaa).rep[bbb].Inverse[rep[ddd]]

], ddd] + delta[aaa, ddd])

(y[newgam|

numberfrommatrix[Inverse[rep[ddd]]],
numberfrommatrix[Inverse[rep[bbb]].Inverse[rep|aaa]].rep[ccc]],
numberfrommatrix[Inverse[rep|ccc]]]

]] + deltalddd, ccc]

),{ddd, 1, 8}]—deltaaaa, ccc]//. {endgam0[1,0,1,0,1] = a,endgam0[1,0,—1,0,1] —
b,endgam0][1,0,1,0,—1] —» ¢, endgam0[1,0,-1,0,-1] — d,

endgamO[1, 2, 1,2,1] — e,endgam0][1, 2, —-1,2,1] — f,endgam0[1,2, 1,2, —1] — g, endgam0
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0,endgam0(1,0, 1,2, 1] — A,

endgam0[1,0,—1,2,1] — %,endgam0[1,0,1,2,—-1] — j,endgam0[1,0,-1,2,—1] —
0,endgam0[1,2,1,0,1) — k,endgam0[1, 2, —1,0, 1] — m,

endgam0[1,2,1,0,—1] — n,endgam0[1,2,—1,0,—1] — 0,endgam0[1,1,1,3,1] —
0,endgam0[—1,1, -1, 3, —1] — p,endgam0][1,1, —1,3,1] — g,
endgam0[—1,1,1,3,—1] — r,endgam0[—1,1,—-1,3,1] — s,endgam0[1,1,1,3, -1} —
t,endgam0[1, 1, —1,3, —1] — u,endgam0[—1,1,1,3,1] — v,

(0] — 0}

And finally implement the conjugates, according to (section 3.5). This means that
we restrict to the case of preserving a diagonal metric .
MatrixForm[Table[formula[3, y, z], {z, 1,8}, {y, 1,8}]] //.{7[a] = b,

b = a,v[c] = ¢,v[d] = d,v[e] = i,v[f] = h,Y[g] = 7,7[h] = 1,

i) = e,v[5] = g,v[k] = m,v[m] = k. v[n] = n,v[pl = p.vld] = g,

3lr] = 7 118] = 1418 = 5] = 5,900] = 1)

This comes from the summary of section(3.5), given in equation (3.46)
c¢,d,n,p,qgand r arereal and a =b* b=a* e=1"

f=h" g=j" h=f" i=¢ j=g"

k=m* m=k* s=u* t=v" u=s" v=t"

In equation (3.47) we have three parameters each taking values 1, . . . . 8. In the
Nathematica code formula [ x, y,z ] we also have three parameters. The easiest way

to look at this is to print 8 matrices, each 8 by 8. For example, here is formula (3, y,

x| (as in the Mathematica above ).

101




The result is that the following matrix needs to vanish :

(14 &4 14 m)g4 erd ird ns4dgt+nudqv 0
el +m) 4 gn+jnd 2qr-f A+ k)s +tudiv h(14 m) +es + (I + k)t +f

—lagid4d Qa4 A)lam)+n24 24 r2a4esdiudtv -14fh4 Q4 Kk)(Tm)4 esj

gid A Tkfnd (14 TfifnTeqTqgs 4ft TjuTtv 0
g(ldm)dendind 1+ /c)gdrsdqgtdrudjv 0
z14 /)4 2ngd grdjr+e4 (14 mwd su /(14 f)4es4 ht4 (14 mi
eid ggdjqgd2nrd 14 k)t4dsud 1+ m)v (14 bet hid z(1+ k) 4n
ej4ig4 14 k)ra(14 m)r 4gs 4 ntd qv 4nv 0
0 cf 414 a)gdch 42gh4 (14 Db)j4 2fj
A+n)s4 fv4QQ+T07T4 tu (14e) 4egd'14bh442/h4cj4d2gf
—14 (14 a)(14 6)4 3m —14 (14 a.)( 4 6)4 c24 3//z 4 3gj
0 (14 a)cd (14 &c4 3#i4d 3fj
0 cf 414 a)AN42eh4 (14 74 2fj

14 a)s4 fud A4 mitd tu (14a)fdchd (14 6/id2h4cjds g
(14a)sd4 fvd Q4 mudru (14 a)/ 4 /4 (14 Oh4 2fh 4 cj 4 29
0 cf 4 (14 a)gdchd2gha(14 b)j 4 2f)
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ej+ig+(1+k)r+(1+m)r+gs+nt+qu+nv 0

ei +gq+jqg+2nr+ (1 4+ k)t +su+ (1+mv (1 +b)e+ hi+i(l+k)+w
—14+gi+Q+k)Q1+m)+n®+¢®+rP+es+iut+tv =1+ fh+(1+k)(1+m)+es+tv
g+ Q+kEn+(1+mn+eqg+gs+rt+ju+ry 0
J1+k)+ (14+m)g+er+ir+ns+gt+nu+qu 0
e(l+m)+gn+jn+2qr+ (1+k)s+ tu+iv h(1+m)+es+ (1+k)t+ fo
i(l1+k)+2ng+gr+jr+et+ (1+m)u-+sv fA4+k)+es+ht+(1+mv
gl+m)+en+in+ (1+k)g+rs+qt+ru+ju 0
0 gll+m)+en+in+ (1+k)g+rs+qt+ru+ jvu
f(A+k)+es+ht+(1+mv W1+ k)+2ng+gr+jr+et+ (1+m)u+ sv
1+ fh+(Q+k)(1+m)+es+tv —1+gi+(1+k)(1+m)+n’+¢@+r’+es+iu+ty
0 gi+(1+kn+(1+mn+eqg+gs+rt+jut+rv
0 ej+ig+ (1+k)r+ (1 +m)r+gs+nt+qu+nv
(1+b)e+ hi+i(l+k)+iv ei+gq+jq+2nr+ (1+ k)t +su+(1+mv
h(l14+m)+es+ (1 + k)t + fu e(l+m)+gn+jn+2qr+ (1+k)s+tu+iv
0 Jl+k)+ 1+ m)g+er+ir+ns+gt+nu+qu

The tree for solving these equations is given in Appendix B. For the note on the
approach taken to solve the problem, see the note in section 3.7. The result of these

methods using Mathematica is given in the following proposition.

Proposition 65 The covariant derivative V in proposition 61 (V assumed to pre-
serve a diagonal metric) is is star compatible if and only if one of the following cases
apply :

1)a=—1+z, b=—1+ %, c=0, e=0, f=0, g=0, h=0, =0, j=0,

k=—1, m=—1, n=0, ¢=0, r=0, s=0, t=1, u=0,0 # 0,

w=0,z # 0, —z—=1, —v—=1 and d , p are real.
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2) a=—1+1x, b=—1+ 2, =0, e=0, f=0, g=0, h=0, i=0, j=0,
k=—14w, m=—1+ 21, n=0, ¢=0, r=0, s=0, t=0, u=0, v=0,

w?’

w#0,2#0, —z—=1, —w—=1 and d , p are real.
Combining this with the long list in section(3.7) gives

Proposition 66 The covariant derivative V in proposition 65 additionally gives o
satisfying the braid relations in the following cases :

1) case 1 in proposition (65), is the same as case 7 in the list in section(3.7), with
an extra condition t = 2 , v =1z , giving:

a=—1+z, b=—1+1, c=0, e=0, f=0, g=0, h=0, i=0, j=0,

k=—1, m=—1, n=0, ¢=0, r=0, s=0, tzi, u=0,0 = 1,

w=0,z # 0, y=1, 2=0

2) case 2 in proposition (65), is the same as case 4 in the list in section(3.7), with
an extra condition x = w giving :

a=—14z, b=—1+41, ¢=0, e=0, f=0, g=0, h=0, i=0, j=0,

k=-14+w, m=—-1+21 n=0, ¢=0, r=0, s=0, t=0, u=0, v=0,

w#0,y==, 2=+

Proposition 67 There are no cases which satisfy the conditions of proposition 65,

and are additionally star compatible and torsion compatible.

proof : Use proposition 65, and section 3.4.2. (J

Classically for a Riemannian metric there is a unique torsion zero covariant derivative
which preserves the metric, called the Levi-Civita connection. We see that this is
not the case here. There are two ways of looking at this result. The first is that
in a noncommutative context the existence of such covariant derivatives is just not
expected. The second would be to find weaker conditions for which a weaker idea of

” Levi-Civita connection” existed.
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3.9 Calculating the Torsion

Using the single letter labels for the Christoffel symbols (3.4), the condition for
torsion compatibility (3.4.2) is

s=r=i=n=0 b=c f=g

h=v—-1=k j=t—-1=m=q—1

Assuming that we have torsion compatibility, we have

—VE =l @ +b(E0 QY+ ®E0) +dE” ®EY +e(6V @V +E2 Q€2 +6¥ V) +
IR+ QE + 2RV +E7 R+ R+ RE) +E(E R+ 00 +£°®
E+EREO+EOQVE + ) +m(ERE +0QEF +E°R63 4+ R0 +£7 L +E°®
€)+p' @+ +E )+ (m+1)(§' 0 +£ 86" +67 @€+ €%+
R +ERE)+(k+1)(ERE+E QT+ Q) +u(¥ @€+ RV +E20¢Y)
Now apply A to —VE° to get

—AVE® = gONEO+B(EONEY +EYNEO) +dEV NEY +e(EV AEY +E2NE2+E NEY) +
GENEY +EVAE +ENEY +E N+ ENE +EAE) +R(EONE +E N +E0A
E+ENLHEONE +ENE)+m(ENE +EONET +ENE+ENEL+ETNEL+EA
E)V+p(EVNE+ENE +ENE)+(m+1)(ENE +ENE +E¥ N +ENE+
EXNEY +ENE) + (k+1)(ENE+ENEY +EXNE)+u(E AE +EV AT +E2NEP)

From the list in section( 3.3), we have

1) E*NE*=0

2) EENET 4 £ AET =0, s0 we get

—AVE = k(N +E AL HEONEHENE+EONE +ENE) +m(EAE +
EONE +EONEHENLHE AL HENEL) +p(E"NE+ENE +E5NEY) + (m+
DEAE + SN+ N +ENEHEENE +ENE) + (E+1)(ENE +E A
NS +ulE A +ENE +ENEY)
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From (2.8)
A=) (E*NEHENE) - Y G AE.

aeC b,acC
We get
dEO — (él/\€0+£0/\£1+£2’/\§0+§0/\£2’+€3/\€O+£0/\£3)_(£1A§2’+£2’/\€3+€3/\§1)
hence
dE0 — AVE = k(EONEY + €V N+ EONE + N+ EONEY + 5 ANEY) + (m +
DEONE+EONE HEONEHENE+ENEHENE) +p(E"AE+ENE +
ENE)+(mA1)(ENE +ENE HE N HENE+ENE +ENE) +E(EA
EHENET +ENE)+uE A +E N +ENE)
Use relations (3-10) in the list in the section (3.3) to substitute
3) €M1 A EMiHs = —£TH2 A EMn — EMirs A €72 (not used)
4) When i =0 we get 3 NE = —ELAEY — €2 A€
Wheni=1weget OAE2=—2AEY —¢¥ AL
When ¢ = 3 we get E2A €0 = —€O A€V — €V N €2
5) EXNEY = O NE — N~ AEY
6) €V NEY = —ENE+EY NE — & AETV (not used)
TENE=-ENE - AL - NE
8) €Y NEY = —€¥ NEY — €2 A €Y — €V A €Y (not used)
9) ¥ NEV = - NE¥ —ENE €V NE
10) €Y A€ = —€2 N €Y — €L A E% — €8 A €!(not used)
Now use these relations to get rid of all cases
dE® — AVE = k(EVNE —ENEY — €V NE +ENEY) + (m+1)(EAE +E NP+
ENE+ENE —ENE +ENEHENE —PNE) +p(E AEHENE - A
51 _52’ /\50 _ 51 /\53') +u(£3' /\51 +§1' /\52’ _+_£2 /\53)

The condition for the torsion to vanish is that k =p =4 =0and m = —1.
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From section 3.5 we have the condition for V to preserve a diagonal metric, which

includes k = m*, so we can not have torsion zero for such a metric preserving V.

Proposition 68 Torsion zero is given by covariant derivatives with h = s = r =

t=n=k=p=u=q=t=0,5=m=-1,v=1,b=c, f=g.

Corollary 69 There are no zero torsion covariant derivatives which satisfy the braid

relations.

proof : Use proposition 63, and proposition 68. [J

Proposition 70 There are no zero torsion covariant derivatives which preserve a

diagonal metric.

proof : Use proposition 61, and proposition 68. [J

3.10 Summary for chapter 3

We summarise the properties of "covariant derivatives” on A4 for the given calculus

which are S; invariant:

M Preserves a diagonal metric  from Proposition 61
S Preserves the star operation note *

T Torsion compatible from section 3.4.2

TO0 Zero torsion from Proposition 68

B Braid relations from section 3.7

x Note : We did not consider S by itself, but only M N.S, because of the complexity

of the equations.
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Property

result

MNnS Proposition 65
MnSNB Proposition 66
TON B | 0§ (see corollary 69)
BNnT Proposition 63
BNM Proposition 64
MNSNT | @ (see proposition 67)
mMnT Proposition 62
M NTO | @ (see proposition 70)
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Chapter 4

The Heisenberg group

Here we will study a rather different case, to the previus chapter, we now take an
infinite discrete group. This was recently taken as an example of a noncommutative

fibering with a classical base space by [43] and [44]

4.1 The Heisenberg group

The Heisenberg group H is defined to be following subgroup of M;(R) under multi-

plication.
1 n k
{ 01 m :n,m,kEZ}
0 0 1
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We can take generators for the group u, v, w , where w is central and there is one

more relation uv = wvu . The generators correspond to the matrices

110 1 00 1 01
3= 0101}, v= 0 1 1 , W= 010
0 01 0 01 0 01

There is an isomorophism ¢ : H — H , for every matrix

€ SL(2,27),

c

given by the formla (u) = u® , 8(v) = uv? , 6(w) = w.

To check this,

O(w)b(v) = uvlucr?
= qbegateybtd
Hw)d(v)8(u) = wuviute®
o plmadyctagdt (4.1)

so the relation uv = wvu implies 1 = ad — bc.

From vu = w™'uv and w central we can prove by induction that v"u™ = w™""umv™.

4.2 Differential calculus on the Heisenberg group

We assume that there is a differential calculus on the group algebra KH of H . For

T € {u,v,w} , we write e = r~! . dz, a left invariant element of Q'KH (see section
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2.2)

We suppose that Q'KH is free as left KH module, with generators {e*,e”,e“}. This
means that every element of Q'KH can be written uniquely as a“.e* +a.e’ +a¥.e¥,
for a%, a¥,a" € KH.

We assume that each z commutes with ¢*, and that w commutes with all of them.
We assume that e’ -u = u- (e’ + A), and e* v = v - (e* + B), and furthermore that

A commutes with u and B commutes with v. By induction

u"e'u" =e"+nA , v e =e"+nB (4.2)

As w is central, we get

UW = WU
du.w + u.dw = w.du + dw.u.

We assumed that w commutes with each e*. So,

u.dw = dw.u,

i.e. u commutes with e”. Likewise we see that v commutes with e, so e” is central.

From the relation on the group uv = wvu , we apply d to get

v et utet = e +u eute (4.3)

e+ B+e’ = e+e"+A+e" (4.4)
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So, the relation on the group implies
B—-A=¢".

We want 6 to preserve the relations of the differential calculus, so
6(e") = O(u)'df(u),

0(e*) = v=lu=(d(u®) - v° + u? - d(v*)).

As we assume that u commutes with du and v commutes with duv,

ud(u") = ne* , v "d(v™) = ne’. So,

B(e*) = av e v’ + be’
= ae*+ abB + be’ Similarly,
0(e®) = 6(v) 'db(v)
= v %u7(d(u) - v+ ul - d(v?))
= %" 4 de’
= ce" + cdB +de’ and

f(e¥) = e".
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In the calculus ue*u™! = e* so if we apply 6 to both sides we get 6(u)f(e*)8(u™?) =

6(e"), and this must be true, and gives another condition on 6.

O(u)f(e")f(ut)
u®b0(e*)v~tu°

u®v®(ae® 4 abB + be”)v Pu"
v°(ae* 4 abB + be¥)v™?

vae v + abB + be’

= ae" + abB + be’
= u *(ae* + abB + be”)u®

= ae“ 4+ u *abBu®* + u “be’u*

If we also assume that B commutes with u, then we get

ae“ — abB + abB + be" = ae" + abB + be' + abA

ae* +be’ = ae" + be' + ab(B + A).

So ab(A + B) = 0. But this should be true for all matrices in SLy(Z), so A+ B = 0.

We now apply 6 to ve'v™! = e”

f(v)8(e)0(v™") =

u (e v =

v¥(ce + cdB + de’)v™¢ =
vice"v ™" + cdB + de’ =
ce* —cdB + cdB + de* =

ce’lL + de’l) —

u~¢(ce” 4+ cdB + de”)u’
ce” +u"cdBu’ + ude"u’
ce* + cdB + de’ + cdA

ce" + de’ + cd(B + A)
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Then cd(A+ B) =0,s0 B+ A =0, and we find B = —A.

So A = Fle”, B = zev from (4.5), and e commutes with u, and v and w.

We summarise this in the following proposition

Proposition 71 There is a differential calculus on KH with (left invariant) gener-

ators e* = z7dx for z € {u,v,w}, and relations.

z-e* =¢e*-z for all z € {u,v,w}

v_n
2

w

€

vTetu" = e¥ + Zev.

Further the map 6 in section 4.1 induced by the matrix
€ SL(2,2),

extends to a map of 1-forms given by
H(e’(l)) — eTU’

ab
f(e") = ae" + be" + —2—€“’,

f(e’) = ce* 4 de” + %dew.

Proposition 72 The left invariant 1-forms are just sums of numbers times €* .

Proof : Suppose a.e® is invariant and apply A, to get
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an) ®ape’ =e® ae”,

50, as we have free generators, ag) ® ap) = e ® a. Then apply € to the second factor

aqye(aq)) = e.€(a), so a = e.c(a) is a multiple of the identity. I

This proposition means that where we do calculations on left invariant forms, we do
not have to worry about y.e* where y is an algebra element, we just have a numerical

cocfficient. L. the forms e* are a vector space basis for the left invariant forms.

4.2.1 Star operation

The group algebra KH has a star operator z* = z7!, for all z € H. For this to

extend to the 1-forms we need (e*)* = (z7'dr)* = dz* - 7!, s0

(*)* = dz'-x
= —x ldrx
= _e(t

Here we have used d(zx~!) = 0, using the product rule
dz-z'+z-dz ') =0

and rearranging to get

diz™)=—-z7t.dor-z7.
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4.2.2 The higher forms

On a Hopf algebra H we have a coproduct which is compatible with the product,
Ah = h(]) X h(z),

A(hg) = hayga) ® h2)ge)-

This coproduct may extend to a left coaction on the one forms on H (see section

2.2): This coaction has the formula

/\(h . dg) = h(l)g(l) & h(g) 'dg(z) ceA® QIH

and there may be a right coaction

o(h - dg) = h(l) . dg(]) N h(g)g(g) cNVH®H

for = in the group, Ar =r®x , e* = 7! - dr, and then
MeP)=zlz@x ! dr

o(e®) =z ' dr@r 'z

so AM(e®) = e® e” and p(e*) = e* ® e, and so e are both left and right invariant.

This means that Woronowicz braiding (see proposition 13 and section 2.2) is just
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transposition.

U(e"®e¥)=¢e'®e".

This means that the kernel of wedge is the symmetric tensors. i.e. e* ® e® and

e ®e¥ + e¥ ® e, this is because U(e* @ e¥ + ¥ ® €*) = eV ® e + ¥ ® ev.

Proposition 73 de* =0
Proof :

de® = d(a:'ld:c)
= dr ' Adr
= —r Yz Az ldz

= —eT AT = 0, (46)

as e” ® e” is in the kernel of A . [.

4.3 Covariant derivatives on the Heisenberg group

We consider a bimodule covariant derivative V on E = Q' A (see section 2.6), where
A is the group algebra of the Heisenberg group. We suppose that V is left invariant
to the coaction of A, so each V(e*) is a sum of numbers times e ® e?.

We suppose V to be a bimodule connection, i.e. that there is a bimodule map,

o UARN A — QAR Q' A, defined by o(e® @ dy) = V(e® - y) — V(e%) - y (see
definition 39).

The definition of a left covariant, derivative is

V(y-e*) =dy®e® +y- V() (4.7)
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Suppose y = w, and remember that w is central and use 4.7

o(e*®@dw) = V(e* w)—-V(e*) w
= V(w.e®)—w-V(e)
= dw®e®+wV(e®) —w. V(e

= dw® e’

Suppose r = w, remember that w commutes with A,
o(e*®@dy) =dy®e¥ +y-V(er)— Vi{eY) y
and the other cases are :
ole*®@du) =du®e*+u-Vie*) - Vie*) -u
ole*®dv) =dv®e’+v-V(e')—V(e) v
o(e” ®du) =du®e’ —iuV(e?) — 2du®ce? +u-V(e’) - V(e') - u
o(e*®@dv) =dv®e*+v-V(e¥) — V(e*) v+ 30V(e¥) + 5dv ® e¥.
As o is a right module map
o(e* @dw)w™ ! =oc(e* Qe¥) =e* Q €*
cle"®e¥) =e! ®e” +yV(e")y ' — V(e¥)
cle*®e*) =e* ®e* + uV(e*)u ! — V(e¥)
ole*®e’) =e’®e’ +vV(eV)v™! — V(e?)
oe” ®we*) =c* We’ — suV(e*)ut +uV(eV)u™" - V(e”)
)

o(e* ®e’) = e’ ® e* + tuV(e¥)v™ + vV (e o7l — V(e¥).

Lemma 74 For

9= > gne®c (4.8)

z,ye{u,v,w}
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we have

- -1 -1 -1
u lgu"_g = 6u®ew(—2‘guv)+ew®6u(79vu)+ew®ev(T9vv)
1 1

-1 1
+e, ® ew(Tgvv) + ey & ew(zgw - ing - ngv)

1 1
’U‘lg’“ — g = Cw ® e11.(§9uu) + €u ® ew(Eguu) + Cu ® ev(i.@uv)
1

1 1 1
+eu ® ew(§gvu) + €y ® ew(zguu + iguw + §gwu)

Proof: Use the commutaion relation in proposition 71.

As a consequence of this result, if we assume that V(e¥) commutes with all elements

of A, then for some numbers a, b , ¢ we have (putting g = V(e*) in lemma 74)
VieY)=ae’ ®e” +be"®e” —e” ®e’) +c(e" ®e” —e¥ ® e¥) (4.9)
We write the covariant derivatives of e* and e’ as

Ve =) ¢ ®e’ and Ve' = Z V€ ® v (4.10)

Proposition 75 To be torsion compatible (see proposition 41) the following condi-

tions on 'V in 4.9 and 4.10 must be satisfied, b=c =0, ¢pu = Oduv , Vor = Y-

Proof: The condition for V to be torsion compatible is Image (o + ¢d) C kernel A.
Now calculate

(c+id)(e?®e*) =e*Re¥ +e¥ ®e*

(0 +id)(e¥ ® e¥) = 2e* ® e¥

(c+id)(e*®e¥)=e"QRe* +e" Qe
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(c+id)(e'®e?) =e’®e” +e’" Qe
(0. + Zd)(ew ® ew) ev ® ew + ew ® ev
(0 +id)(e* ® e*) = 2e* ® e* + u(Ve* ) — Ve
(0 +id)(e*®e’) =2e" e’ +v(Ve')v™! — Ve
(0 +id)(e"®e’) =" ®e* + e* Qe + v(Ver)u™! — Ve¥ 4 1Ve¥
(c+id)(e?"®e*) =e* ®e’ + e’ Qe* +u(Ve')u™ — Ve’ — 2Ve¥
Then to be torsion compatible, we have the restriction that the following things are
symmetric
Du(Ve*)u ! — Vet
2)v(Ve')v™! — Ve!
1
v(Ve*)v™! — Ve* + QVew
1
HHu(Ve')u™! — Ve - EVB"’. (4.11)
Now we get
uy,, -1 u u 1 w 1 w 7 1 w v
"(ve )“‘ - VP, = —'¢uve ® (_56 ) - ¢1:u(—§e ) ® e + ¢m)(_(—’2‘e ) ® €
—e'® (—Ee )1+ (—56 ) ® ( 5€ )) — Guwl 7€ )®e
_¢wvew & (_Eew)

For the following to be zero we get b = "’—“;i“— to be symmetric as follows

1 1 1 1 1
uy,,—1 _ Uu - woo_ LU LWy (T w u S Lw s ow
v(Ve*)v Ve +2Ve buu(—e ®(ze ) (26 )®e +(2e )®(26 )

1
—Cbuv(%ew) X ev - ¢uw(%ew) ® ew - ¢vuev ® (éew)

1 1 b
—e”)+ zae’ ®e¥ + =

5° 5 2(6”@6“’—6“’@6”)

_¢wuew ® (
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+§(e” ®Re’—e’®e")

Now consider

Vel = waex ® e¥

giving the following which is symmetri, if 1y, = ¥y,

(Ve v —Ve! = —9,e’® (%e‘”) - wuu(%e“’) ®e’ + wuu(—(%e‘”) ® e
u ]' w 1 w 1 w _ 1 w w
—€ ®(§6 )+(§€ )®(§e )) wuw(Ze )®e

Finally,

1 -1 -1 -1 —1
, vy,,—1 v _ v, oV LWy (T Lw v _ T Lw T Lw
u(Ve')u™ — Ve’ — Ve bou(—€" @ (€)= (-¢*) @ " + (") @ (5-¢))

—w“w(Tew) ®e" — d}vu("é—ew) ®e" — wuven X (76"))
-1 1 b
—Yue” ® (Tew) - §ae“’ ® e — E(e” ®eY—-e"® ev)
c
_E(euOQ e’UJ _ ew ooeu)

For this to be symmetric, we need b = 0 .

4.4 The matrix for o

Write o as a matrix o(e*®e¥) = 3 To¥eP®e? and we write 7Y as a 9 by 9 matrix,
using the conventions
eRev =l et e’ = 22 et ®e¥ i 18

e’ ®et >zl e ®e’ — 5 e’ ®e? o zb
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e’ Re* =’ e¥ e’ — 18 e? ®e? — 10

We calculate the entries of ¥ using the convention from 4.9 and 4.10. We consider
the torsion compatible case only ( see proposition 75)

For example o(z!) = o(e* ® e*) = z! + uV(e*)u™' — V(e¥) = 2! + &2 (et @ ¥ +
ev ®ev) + L (¥ @e¥ + e’ eV + Lev @ e¥) + (2o 4 L) g v

We summarise the results as

U(‘Tl):m1+¢_sqm3_+_¢;_vm7+¢_;ux6+¢_;rs+(¢zu+¢);m ¢;w)mg
o(z?) = af — Sungd — SungT _ Guugb . Dungl 4 (Gun _ fuw y fun g 4340
o(x?) =27

o(z?) = 22 + Yougd 4 Ypugl 4 Puegh 4 Yagh (Yo 4 B 4 Y _ 4),9
o(z®) = 25 — 1/)‘?&:63_ %I-{— y:_;lxs _ _1.%:58 + (_% — Buu Ywu ) .9
o(z®) = =8

o(z’) =23

a(z?) = 2°

o(z®) = z°

Assuming that o is torsion compatible, we set

Guv = 2d = Py, Py =€, Puy = 4f

Bup + Pow = 29,  Puw + Gun = 2h

Yoo = 40, Youu = 47, UYuw = 2k = Py,

Yow + Vo = 2, Yyw + Yy = 2n. (4.12)
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As a result we can build the matrix as follows

(

1 0 0 0 0 000 0)
0 0 0 1 0 0000
d —2f 0 k -2 0100
0 1 0 0 0 0000
T = 0 0 0 0 1 0000 (4.13)

2e —d 0 2% —k 0010
d -2f 1 k -2 0000
2e —d 0 24 ~k 1000

\e+g ¢+f—-h 0 —E+i+tm j—n 00 0 1)

Note det ¥ = —1 , so ¢ is always invertible.

4.5 Star compatibility

The condition for the covariant derivatives to be * compatible (see section 2.6) is that

Y ' (x®*)og = T7H(x ® *). (4.14)
If we set
o(e®*weY) = Z YodeP el
P.g
then

(x®x)o(e ®e!) = > TWP Qe
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Now, using T as in subsection 1.1.2

T (x®@*)o(e*®e!) = Y LW el
Y M x@H)o(e®* @e¥) = Z Yodel ®eP
= ) THo(eI®eP)
— Z E:ryqu(ej ® k)

pg = jk
P, Jk

= Zz;;g(zf;z)*ej ® ek

pqjk

This must be equal to the RHS of (4.14) applied to e*®e¥ whichis RH S (e*®e¥) =
T'(xRx)(e"®e¥) =T (TR eV) =eV Qer.

So the condition for star compatibility becomes
> TIY(SR)T = 0y 60 (4.15)
Pq

However the summation in this equation is not quite matrix multiplication. To turn
it into matrix multiplication, we use a matrix T for which

T(e® ®e¥) = e ® e® which is 9 by 9, a matrix given by T3¥ = 1, i.e. Tf;:f_‘g =1,

124



and zeros elsewhere. i.e.

(100000000 )
000100000
000000100
010000000
T=|000010000
000000010
001000000
000001000
\ 000000001

Proposition 76 The condition for V to be torsion compatible and to preserve star
isthat all ofa,d, e, f,g,h,i,),k, m,n areimaginary.

Proof : If we solve STET — Iy = 0, this is equivalent to following matriz vanishing.

0 0 0 0 0
0 _ 0 0 0 _ 0
d+d k+k 0 —2f —2 -2j—2j
0 0 0 fO d ]0 g
0 0 0 0 _ 0 _
2e + 2 20 + 21 0 -d—d_ —k—k_
d+d k+k 0 —2f — 2f —2j—2j
2e +2¢ 2+ 2 0 - —d—d B -k—k
et+e+g+g —5—-S+i+i+m+m 0 §+5+f+f—-h—h j+j—-n—-"m

4.6 The Braid relations

Proposition 77 : The condition for V (from section 4.4) to be torsion compatible

and to have o obeying the braid relations is one of the following 3 cases :
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H)d=e=f=i=j=k=0

2 a=h+md=f=i=j=k=n=0
S)a=h+i—Ltmd= -2 f=25 g=chtomtin ;& j_ -2
Proof: We use Mathematica to find the matriz, using (4.13)
(LYY ERL)LERL) - (2 L) () (2® ;)

MatrizForm[test22=22.21.22-z1.22.21]

| E
E

2d? + 4ek —4df — 8ej

4de § 8ei —2d28— dek
0 —4e) + dk
0 —d® + def + 2di — 2ek

—2d? + 8ef —dej + dk
—3d? + 12ef + 2di — 2ek

0
\ —2e(2+/—h)+2 (-2 +i+m) 4f(e+g)+3d(2+/—h)+d(-2+i+m)+de
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—4df + 4fi — dej — 20k

—8ef — dek
4fi—dk

d? — def + 2di — 2ek
8fi+ 4ej — 3dk
d? — def + 2di — 2ek
~Af(e+g)—d(¢+f—h)—4(+f—h)i-2e+gk—d(-3+i+m

|
|

812+ 8dj — Afk

4df — 4fi + dej + 2dk
4dj — Afk

—4fi + 4ej
Ad) — 4fFk
8ej — 2dk
—2f (3+f—h)+4e+9)i+2(§+f—h) k—2f (-5 +i+m)—2d(j —n)
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g
0
i
0
0
0
0
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O OO OO O DT ITITTOD © OO

O OO OO OO0 DT O OO



—Afi + dej + 2dk + ik

—4di + 8i + 8ek
—4fi + 4ej

—4di + 4ek
8ej — 2dk
—A4di + 4ek

2(8+f—-h)i+2e+gk—2d(-¢+i+m)+2(-%+i+m)—4e(j—n)

—4dj — 8ij

—2dj — 4ij + 2fk + k*

Afi — dk
—2%7'—4z'j+2fk+k2
fi+4ej —"3dk
(8+f—-h)k+4af(-2+i+m)+k(-2+i+m)+2d(j —n)+4i(j —n)

Afi — dej — 2dk — 4ik B
0 0

0

0

0

0

0

0
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E

—4dj — 2k*

—8ej — 4ik

0

—2dj + 415 + 2fk — k?

—4ej + dk
—2dj + 1215 + 2fk — 3k?
—4dej + dk

~d(e+g)j— (&+f—h)k—3k(—2+i+m)—4i(j
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1

n

) -2
’\
/

87 + 4jk

4dj + 2k?

O OTOOTO

8ij — 2k2
(3+/—h)i+2 (=5 +i+m)



4.7 The matrix of Christoffel symbols

Here we assume that V is torsion compatible, and use proposition 75. refer to (4.12)

for the notation We use
Vel = - T @e
Yy

from (2.10), where I is a matrix of 1-forms. The minus corresponds to the convention
that differentiating forms gives minus Christoffel symbols. From(4.10) we have Iy =
— 25 Pzye”
Wheny=u, Tt == ¢e" = —4fe* — 2de’ — ¢ye®.
Wheny =v,T¥ = -3 ¢e° = —2de” — 4dee” — pyre®,
Wheny =w , Ty = — 3, ¢2we” = —Puu€" — dvuwe” — Pune”.
From (4.10) we have Ve’ = — 3 4ne® ® e¥, s0 I') = 37 tqye”.
When y = u ,—T% =3 9ue” = 4je" + 2ke” + yue®.
When y =v, =T =Y _1,,e" = 2ke" + 4ic” + ¢ype®.
Wheny =w , —I% =Y ¥56" = Yuwe” + Yywe’ + wyuwe®.
From (4.9) V(e¥) = ae” ® €™, so
0 Yy F#w

w

Yy =
—ae” y=w
Wheny=u, -I'Y =0, wheny=v, -I'y =0, wheny = w, -I'} = ac®

The end result is the matrix of Christoffel symbols for the torsion compatible case

4.feu + 2(16'0 + ¢"1er 2(16“ + 4681} + ¢'Tl)1l€w ¢1L’llleu + (bvulev + ¢'l“'“)ew
' = — | 4je* + 2ke¥ + Yyue® 2ke™ + 4ie” + Yype”  Yuwe® + Youe® + Yypwe®

O 0 ae'l”
(4.16)
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AVel = —Zl"i/\eyz
y

Ouwue® N e + dye” A e’ + dype® N e¥ + dype’ Ae¥
Viwu€® A €% + Vupe® A ¥ + Yywe® A e¥ + e’ Ae? | (4.17)
0

Proposition 78 The condition for the torsion vanishing are : ¢uy = Puw , Puv =

Gow 5 Ywu = Yuw and Yy = Yy
Proof : From 4.17 and the fact that de* = 0 (see proposition 73).

4.8 The curvature

Given that dI" = 0,the matrix for the curvature is given by —R=TAT =

4dk — 16ej 16fe — 4d® + 8di — 8ek  4fpyw — 2dduw2dVyy, — 4y
e“Ne” | 8jd — 8kf — 8di — 8ek 16je — 4kd 45 oy — 2kPuw + 2k — 4ithyy
0 0 0
+e' A e
2dYuy — 47 Owu 16fe — 4d® + 8di — 8ek 4f bow — 2dPuw2dyy — dePuy
4j¢ww - 4fd)wu + dewv - 2k¢wv ]-6]6 — dkd 4j¢‘uw - 2k¢uw + 2'If'd)vw - 4i¢uw
0 0 0
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+e¥ A e¥

4ewwu2k¢wv 4f¢wv - 2d¢wv + dewv - 2k¢wv
2k(r/)wu - 2dwwu - 2d"/}wu - 467/)101} - 4Z‘¢wu 2k¢wv - 46¢wu
0 0

4f¢ww — Guwubuw + 2d1)yy — Gwwuw

2k¢ww - wqubUw - 4iwww - d)wvwvw
0

The trace of the R matrix is zero, this is expected as the bundle Q'A is trivial

4.9 Connections which are invariant to the auto-
morphism ©

The covariant derivative, for H a Hopf algebra,
V:Q'H —- QHQH.

by our assumption of left invariance reduces to a linear map on the left invariant

1-forms
Vi.L'H - L'HQ L'H (4.18)
To see this, remember that H is a Hopf algebra and that

V:QH— QHQOH
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is defined in terms of V¥ : L'H — L'H by the Liebnitz rule fora € H ,n € L'H
by

V(an) =da®n+aV(n).

We use proposition 35 to see that this defines V on all of Q' H. We use the order of

basis (e*,e?, e¥) as (1,2,3) for Q' A, then can write 4.18 using the matrix

(4 4 0)

od 2% 0

| o Vuw O
2d 2% 0

k=| 4e 4i 0 (4.19)

Gvw Yyw 0O

Gwu Ywu O

Suv Dy 0

\ b Y 0 )

Where we use the labelling for the tensor product €' ® e/ in the 3(i — 1) + j position.

For the matrix

P9 e sn,2 2), (ps—rg=1) (4.20)

r s

We have met the map © : A — A given by

O(u) = uPv’
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O(v) = uipv®
O(w) =w

In proposition 71 the matrix giving 8 in terms of the basis (e*,e?, e®) of Q' A is

©)

Il
e
»wQ
o o

to'?l
o[
—

The connections which are invariant to @ are given by
[0 ®60).c—(k.0)=0 (4.21)

This matrix, from 4.21 , is

( _4fp+ 4fp? + 4dpq + deq? — 4jr
—2dp — 2kr + 4 fpr + 2dqr + 2dps + 4eqs
2/p%r + dpgr + dpgs + 2eq*s + qpuw — Ty
—2dp — 2kr + 4fpr + 2dqr + 2dps + 4egs
—dep — 4ir + 4fr? + 4drs + 4es*
2fpr? + dprs + dqrs + 2eqs® + rduw — PPuw + Shyw — Tyw
2fpr + dpgr + dpgs + 2¢qs + qduy — TVwn
2fpr? + dprs + dqrs + 2eqs® + réyu — PPwy + SOuy — Ty
\ —Lapr + fp?*r? + dpqrs + eq?s® + 1préuw + 3050w + 5PTGwu + 3950wy + Guw — Phww —
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>
;
:
‘
1

45p* — 4fq + dkpq + 4ig® — 4js
—2dq + 45pr + 2kqr — 2ks + 2kps + 4igs
2jp°r + kpar + kpgs + 2ig%s — q@uw + Puw — YPuw + G
—2dq + 4jpr + 2kqr — 2ks + 2kps + 4igs
—deq + 4jr? — 4is + 4krs + 4is?
2jpr? + kprs + kqrs + 2iqs? — qdyw + Tuw
2jp°r + kpar + kpgs + 2ig®s — q@wu + Plwu — SPwu + quv
2jpr® + kprs + kqrs + 2iqs® — qdwy + Twy
JpPr? — 22 4 kpgrs + ig25% — gdww + 3P 0uw + 345Uew + 3PTVwu + 55V + Yuw — SV
We require this to be true for all matrices in 4.20 . On the assumption r # 0 , we

find

: —[p+/p*+dpgteq®
j— =[p+Jp - ,

—ep+ fri+drs+es?
[d )
—dp+2 fpr+dgr+dps+2eqs
'

\ 2 fp?r+dpqr+dpgs+2eqs+qp
, Yuw — Ip prq q°s+qdvw

2 2
"/’wu - 2fp r+dpqr+dprqs+2eq S+qPwy ,

17—

k—

2fpri+dprs+dqrs+2eqs?+T¢uw —PPvw +5Ovw

T b

Vyw —

2 2 _
Yy — 2fpr +dpr3+dqr3+2¢ezs +7Pwu —PhwyvtSPwy ,

Ve — —apr+2/p?r2+2dpgrs+2eq®s?+préuw+95dvw +PTdwu+95Gwy +20ww ~2PPww
wWwW 2r !

These conditions make the whole first column of the matrix from (4.21) vanish .
The top 8 entries of the second column are linear equations inf, e, d whose
cofficients are long polynomials in p,q,7,s, and these equations must be true for

matrices in SL,7Z .
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We substitute in the numeral value of the matrices

10 2 1
and

11 5 3
and find that f=e=d=0.
Using these substitutions gives all entries of (4.21), except the last entry of the sec-

ond column zero, and & itself is (for r #0 ) .

0 0 0 )

0 0 0
Buw ( _1+:’25)¢vw 0

0 0 0

0 0 0
¢vw Thuw -pd:,w+s¢vw 0
Bus (*1+Tps)¢wv 0
¢wv Towu -—;Q¢va+sng 0
buw — apr? —pr2guw+sdvw —ps*dvw —pridwu+ sowy —ps’ dwy =27 Gww +2pT dww

]
N—

2r2
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Snce k must be independent of p, g, s, r , this gives ¢, = 0 and ¢, = 0 and & is

—

[ o 0 0

0 0 0

: Bun 0 0
| 0 0 0
0 0 0

0 Buw 0

o 0 0

0 o 0

\ ¢ _ apr —préuw —ProPwu —2¢ww +20pPww a )
WwW 2r

For this to be independent of {p, q, r, s} we read ¢y, = 0,8 = P+ Puu to summarise

Froposition 79 The torsion compatible connections invariant to the automorphism

|
|
|
il t1ls
|
| € are given by the matrix (see 4.19)
|
l

| 0 0 0 )
0 0 0
5 buw O 0
00 0
0 0 0
0 ¢w O
bun 0 0
0 w0

\ 0 0wt bus
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4.10 Riemannian metrics and 2-forms

We need to decide what we mean by a Riemannian metric on an algebra A. As we
shall see there is no single obvious choice. We only consider left invariant metrics.
A Riemannian metric ought to be a non degenerate symmetric inner product on

Q' A. However the condition that the inner product
() AR, A — A

is a bimodule map is very strong, and as we shall see in our case, no non degenerate
such metrics exist .

It will be convenient to look for central elements g € Q' A® Q' A, rather than looking
at the inner product. (If { ) was non-degenerate, this would be equivalent.)

We consider lemma (74) to find symmetric elements of Q'A ®4 ' A which commute
with A, and elements of Q24 which commute with A. If we assume that they are all
left invariant there is only one symmetric tensor which commutes with A, e¥ & e*
If we allow g to be central up to a multiple of e¥ & ¥ in which case

Guu = G = Guv = gvu = 0, and we have

uTlgu — g = -2 (g + Guy)

vTlgy — g = —2&eu (g, + guu). Thus

0 0 Guw
g= 0 0 Guw (4.22)
gwu ng gww

This is degenerate (i.e. the matrix for g;; is not invertible).

We come to the conclusion that A does not have a standard Riemannian structure .
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A symplectic form w is a 2 form which is closed (i.e. dw = 0). We restrict ourselves
to the left invariant case, where we only consider the finite dimensional vector spaces
I'A and their wedge products.

Ir that case

W = wyye® Ae¥

where wy, is taken to be antisymmetric, and we consider non-degenerate to mean
tlat the antisymmetric matrix w;, invertible. To be able to introduce the symplectic
fam into calculations, we require that it is central. This allows us to just write w in
aformula, without having it in the original formula.

or example, consider introducing w into the middle of the expression
(4 ®A a.f S E ®A F

If we introduce w here we get e ® 4 w ®4 a.f.

However e @4 a.f = e.a ®4 f, so introducing w here gives
ea®@aw®af and eRauwRaa.f
For these to be equal requires
e®alaw—wa)®4 f=0.

Ts just introduce w arbitrarily into a calculation, rather than having it at the begin-
ning, we should have a.w = w.a all a € A.
For 2 forms , ifw =} w.ye® AeY

viwn —w = %ew A ev(wm; - wu’u.)
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-1 _ 1, u w
UTwu — w = ze* A e (Wyy — Wyy).
Then we have wy, = wy, for w to be central, in which case the term e* A e” does not

appear in {2, so
wWype" A€’ + wyue” Ae = wy,(e* Ae’ +e” Ae*) = 0.

Now we check where such a left invariant central 2-form w is closed, i.e. dw = 0.
Form proposition (73) any such w is closed .

Then w, , is the matrix (with order u,v, w )

0 0 Waw
0 0 Wow
—Wyw  —Wow Wy
and the determinant is still zero !
Here we have used the antisymmetry of A in our example (e* A e¥ = —e¥ A €%) so

w = Qszye AeY+ = waye N e¥

= ISy e ne (4.23)

so without loss of generality we can take the matrix to be antisymmetric. Thus
we have not had much luck is getting either non-degenerate metrics or symplectic

2-forms on A. However this will change when we consider the fibration 4.26 later.
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4.10.1 Covariant derivatives preserving the degenerate met-
ric

Although the metric g, in (4.22) is degenerate (as the matrix for g is not invertible),

we shall look for connections preserving it.

The entries of the matrix g, are just numbers, so dg, = 0. From proposition(46), to

preserve this metric we require that gI" is antiHermitian
(gD)* = —gT (4.24)

[Note : A is Hermitian if A* = A and A is antihermitian it A* = —A]. We use the

form of I" in (4.16), so we assume that the connection is torsion compatible. Then

0
—gor = 0
61"(4fgwu + 4jng) + e“(zdgwu + zkng) + ew(gwud)wu + ngwwu)

0
0
e*(2dguwnu + 2kguy) + €¥(4eguu + 419uwv) + €° (GuuPuwy + Guo¥Pwy)

Guwace”
Gowae® (p-25)
eu (g’u)'ll. ¢’U,‘U) + .qym wuw ) + e'U (.(JUm ¢‘U‘UJ + .(va ¢1)1u ) + ew (gwu ¢ww + ng www + gww a’)

We use the fact that (e*)* = —e®, and get the following conditions for g, to be

antihermitian
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Proposition 80 The conditions for a torsion compatible connection to preserve the
degenerate metric (4.22) are, in the notation of (4.16),

f9wu+ guwe =0

9wy + kguwy =0

€Gwu + tGuwy = 0

Puwuguwu + Ywufuwy = Guul

P Gune + YuwJuw = Gunl

and the following are real

gwu¢uw + ngwuw ] gwu¢vw + ngwvw ) gwu¢ww + ng’l/)w'UJ + g’LU'UJa‘
Proof: From (4.24) and (4.25). O

Proposition 81 Suppose both g,. and g., are non zero and set Gy, = TGwy. 1he
condition that a star compatible covariant derivative is both torsion zero and preserves
the metric is (in the notation of 4.12)

Casel: When z isreal, and f = —jz,d= —kz,e = —iz,a= ~h—a1n=-m— £,
and Guu(Pww + TUww) + guua s real, and if a # 0, we get g,y is imaginary.
Case2: Whenz isnotreal, anda=j=f=d=k=e=i=h=n=m=g9=0,
and Guyu(Pww + TUwyw) s real.

Proof:From proposition 78, torsion zero implies ¢yu = buw , Puv = Pvw » Ywu = Yuw
and Yy = Yyw. Using this in the definition of the letters in (4.12), we get ¢y =
Puw = by Quv = Gy = g, Yuwu = Yuw =N, Yy = Yow = M.

Now we use proposition 80 to write, for guy = Tguwu, (S0 T # 0). Note that since both
Juwu@ and gy,xa are real, if a # 0 we have x is real. We split into two cases:
Casel: x is real, so f = —jz, d = —kz, e = —iz , gyu(h + zn) = guua and
Guwu(g + zm) = gyuxaare real, and also guu(Puww + TYww) + Guwa s real.

Case2: z is not real. From proposition 76, we have f and j both imaginary, so
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f = —jx implies that f = j = 0. Likewise we havea =j = f=d=k=e=1i =
h=n=m=g9g=0.0

The reader should note that this is not the classical result of a unique Levi Civita

connection (i.e. torsion zero and metric preserving). This is not surprising, since

the metric we started with was degenerate, so the classical result would not apply

anyway

Proposition 82 The condition that a star compatible covariant derivative is both
torsion zero and preserves the metric and, is the invariant to the automorphism ©

is (in the notation of 4.12) ¢y = Yy =a=j=f=d=k=e=i=h=n=g=

m=20

i.e. all Christoffel symbols vanish. In this the matrix for ¥ becomes

0\

| 10000000

E 000100000

000000100

010000000

‘ S=(000010000
000000010
001000000
000001000
00000000 1)

Proof: As ¢yw = Yuw = 0 from proposition 79, we see gya is Teal. Alson =g =10
and a = 2h. Putting this into guu(h + xn) = guua, guu(g + TM) = guuza and
Juu(Puw + Tuw) + Guwa to get guuh = guu@, and guuTm = gy, Ta, so h = @, now

a=2h=nh givesh=a=0.
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Proposition 83 The condition that a star compatible covariant derivative is torsion
zero and preserves the metric and satisfies the braid relation are
d=e=f=i=j=k=0,a=-h—2n=-m-2 and gyu(Puww + T%uww) + aGuww 18
real, if a # 0 we get gy 1S tmaginary.

Proof: Using proposition 77 and proposition 81, we can see all of case2 in propo-

sition 81 is contaned in casel in proposition 77. We now just have to look at casel

when x # 0 is real and i # 0, then with a small calculation we get e = —ix, d = —21,
—i . i 2i

f =—5 1= oo k=—
T T z

h= " (14 22m+2) and
2 . T
n=i+i—+(2+a:)m
-1 1 o1
9= —x(T(l + z)?(m + }—) it -+ 2m)
a=(1- %(1 Fr)(m+ o)+
case 2 in proposition 81 gives case 2 in proposition 77, and so satisfies the braid

relations. [

4.11 The noncommutative torus Tg

This has generators u, v and a complex number ¢ of norm 1 and relation uv = quu

uw*=u"v* = v i.eu, vareunitary).

There is a map from C(S!), the functions on the unit circle, to the group algebra
of the Heisenberg group given by q € S!(or the identity function :S' — C) maps to
wE H.

If we set w = ¢ in the relations for the Heisenberg group algebra, we get the non-

commutative torus. We can consider that the noncommutative torus is the fiber of
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the map

C(S" — A.

Here we take w to be a complex number of unit norm, the coordinate function on S?.
Then w* = w™!. The map sends w™ € C(S') to w™ € A. The differential structure
of the fiber space is |

QrA

np = 4.2
& QC(SH A Q1A (426)

ie. we put dw = 0 in Q"F (i.e. put e¥ =0 ). This is because in 4.26 we divide by
everything of the form e A€. To see that this gives a fibration, we note that a linear
basis for the left invariant n-forms in as follows:

QLA e¥ e, eV

QA e“Ae’,e" Ae* , eV Ae”

WA e’AetAe?

Then the invariant forms is =7, are :

01, Z0=(¥), =0 =0,m>1
(e*, e, e¥)

E(l) = (ew> = (eu’ ev>

_ (e* Ne’,e” Net e¥ Ae?)

:(2) = w u w v = <eu /\ ev)
(ew N e, e¥ Aev)

—3 _ {e¥ANe*Ae?) _0

YO (ew Aev Aev)
Er=0 n>4
e A (e%,e¥, e¥)
=l = L = (e Ae¥, Y Ae?
1 w <’ll0)> u w < v [ v >
Ef:e A (e /\e,<((3)>/\e,e'/\e)___<ew/\eu/\ev>

all others are zero. Then the map

QIC(SI) ®C(Sl) Eg — E?
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_ QA
T dwAQ1A

n

is one-to-one and onto. We have a basis of 1-forms e*, u¥ and relations

e*Ne* =e"ANe'' =0

e* ANe¥ = —e” A et

This gives a fibration in the sense of [2], and a spectral sequence.

We now go back to (4.10) and observe that although the metrics there were degen-
erate, we do get non-degenerate metrics on the fibers. Now, the map © sends w to
w, so we then have a map preserving the fibers.

We can restrict the covariant derivative in section 4.10 using basis order e¢*, e, to

get

c
o

0
1
0

[en R e R s
O O = O
= o o O

The torsion of a connection on Q'A is given in definition 37. In the case of matrix

(4.11) , we get Ve* =0, so
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Tor(e®) = de*
= d(z 'dz)
= —z 'dz Az ldx
| = AT

= 0.

4.11.1 © independent’ metrics and 2-forms on the torus

Now we see that our previous calculations of Riemannian metrice and symplectic
form work better on the fiber space.

If we set g, = e* ® e + e¥ ® €%, then g, is central in 4.26.

If we set w = e* A €, then w is central in 4.26.

We get e* and e’ commuting with all algebra elements . Look for © independent

Riemannian metric as follows

g = Zgabea b eb

(O ®0)g =1 guO(e") © O(e)

from ©(e%) = Z O,€¥
Y
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we get

(9 ® @)g = Z gab('_')attaez & @ybey

abz.y

= Z @ragab@ybex ® v

ab,z,y

so the matrix for (© ® ©)g is ©gO7 in terms of the matrix for g. and

a b
g ==
d e
For the noncommutative torus
0= P (withps — qr = 1),
T S

For invariant, we want GQGT —g=01e

—a+plap +dq) + qlbp +¢q) —b+ (ap + dg)r + (bp + eq)s 0 0
—d +p(ar + ds) + q(br + es) —e+r(ar + ds) + s(br + es) 00

to impose the determinant 1 rule we set » — (ps — 1)/q. Then (4.27) requires
SN alc—agzq—zbgg—dgg

2 Capls—
b —> apqr+dq r+ak12s ap*s—dpgs

For this to be true for all ©, we see that g is a multiple of

0 1
-1 0

(4.28)
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If we multiply this matrix by 7 we get

which is Hermitian (see proposition 45), and this would be the only (up to real
rcultiple) inner product does not preserve reality, as the inner product of ie* and
i€( which are both real ) is imaginary. but the antisymmetric matrix (4.28) does
give a reality preseving symplectic form w = e* A e”,which is preserved by ©.

This is form as dw = 0 (see section(2.8).

For any left invariant Riemannian metric on the noncommutative torus, the torsion

free connection with I' = 0 preserves the metric .
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Chapter 5

The Leray spectral sequence

Strictly speaking, we talk only about a specific case of the classical Leray spectral
sequence [9], that related to a sheaf over a fiber bundle. However it is hoped that this
will be suffciently general to give an interesting result. The material in this chapter
is joint work with my supervisor. We give further comments on the Leray spectral

sequence in section 5.7 and 6.3

5.1 Classical theory

The statement of the general Leray spectral sequence can be found in [9]. We shall
omit the supports and the subsets as we are only currently interested in a non

commutative analogue of the spectral sequence.

Then the statement reads that, given f: X — Y and § a sheaf on X, that there is

a spectral sequence
EY? = HP(Y, H'(f, fI5))
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converging to H**9(X,S).
Here H(f, f|S) is a sheaf on Y which is given by the presheaf for an open U C Y

U— Hq(f_lU;Slf—lu).

Here f~!'U is an open set of X, and S|;-1y is the sheaf S restricted to this open set.
We shall consider the special case of a differential fibration. This is the background
to the Serre spectral sequence, but we consider a sheaf on the total space.

The Leray spectral sequence of a fibration is a spectral sequence (see section 2.11)
whose input is the cohomology of the base space B with coefficients in the cohomology

of the fiber £, and converges to the cohomology of the total space E. Here
n:FE— B

is a fibration with fiber F'. The difference of this from the Serre spectral sequence is
that the cohomology above may have coeflicients in a sheaf on E.

We shall apply noncommutative sheaf cohomology (see definition 56) to the Leray
spectral sequence. To do this we use the same definition of fibration as that used for
the noncommutative Serre spectral sequence in [2], and we discuss this in the next

section.

5.2 Differential fibration

We have previously mentioned the idea of differential fibration (see definition 59),

but now it may be useful of spend a little time justifying it. Take a trivial fibration

R" x R™ - R"
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(Z1y ooy T Y1y oo Y ) > (X1, o, ).

Here the base space is B = R", the fiber is R™, and the total space is £ = R**™.
We can write a basis for the differential forms on the total space, putting the B terms
(the dz;) first. A form of degree p in the base and g in the fiber (total degree p + q)
Is

dlﬁ'il VANRPYAN dl'ip A dy]1 A A dyjq

e.g. dl’z A d.‘L’q A dy1 N dy7 A dyg

If we have the projection map 7 : E — B, we can write this as

W*(dlz A d.T4) A (dy] A dy7 A dyg)

so we have a form in 7*Q2B A Q3E. Another element of 7*Q22B A Q3E might be

w*(dxy A dzyg) A (dzs A dyr A dy,).

Note, we now just look at Q2F, not the forms in the fiber direction, as in the
noncommutative case we will not know (at least in the begining) what the fiber is.
We need to describe the forms on the fiber space more indirectly.

Now look at the vector space quotient

TP BAQE
BB A Q2E’

Consider our two elements of the top line,

a = w*(dzs A dzg) A (dyr A dy A dys)
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B = m*(dzs A dzy) A (dzs A dyy Ady,)

Here 3 is also an element of the bottom line, as we could write

B = n*(dzy A dzg Adzs) A (dyy Ady,)

so, denoting the quotient by square brackets, [3] = 0. On the other hand, « is not

in the bottom line, so [a] # 0. We can now use

T WPBASWE
T*WPHBAQITLE

to denote the forms on the total space which are of degree p in the base and degree

g in the fiber, without explicitly having any coordinates for the fiber.

5.3 The spectral sequence of filtration

We have already discussed spectral sequences in section 2.11, but it will be convenient
to go into a little more detail here, and to quote the result from [35] again.
A decreasing filtration of vector space V is a sequence of subspaces F™V for which

FmHly c pmy.
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For example, we could have (where we take all z; € R)

(131\

F™(R?) = { fom L g R”}

I I
FIRY) =| o, [, FARY)=| 0
0 0
0
FB(HRS) — 0 ; FO(RS) — RS
0

The reader should refer to [35] for the details of the homological algebra used to

construct the spectral sequence. We will merely quote the results.

Remark 84 [2/Start with a differential graded module C™ ( forn >0) andd : C™ —
C™! with d*> = 0. Suppose that C has a filtration F™C C C = @,5,C™ for m > 0
so that:

(1) dF™C C F™C for allm > 0 (i.e. the filtration is preserved by d);

(2) F™1C c F™C for all m > 0 (i.e. the filtration is decreasing);

(3) F°C = C and F™C™ = F"CNC™ = {0} for all m > n (a boundedness
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condition,).
Then there is a spectral sequence (E*,d,) for r > 1 (r counts the page of the spectral

sequence) with d, of bidegree (r,1 —r) and

kerd : FPCP+q/Fp+le+q — chp+q+1/Fp+ICp+q+1
lmd . chp+q—1/FP+ICp+q—l — FpCp+q/Fp+lcp+q

EPY = HPHI(FPC/FPHIC) = (5.1)

In more detail, we define

Zp9 = FPCPHINdTH(FPTTCTY)
vaq — chp+qﬂd(pp—rcp+q—l) ’
£ = Zp(Z 4 BIY)

The differential d,. : EP9 — EPTT7T+1 s the map induced on quotienting d : ZP? —

p+1.g—r+1
VA: .

The spectral sequence converges to H*(C,d) in the sense that

gna o _FPHP(C, Q)
= = Frrigr(C,d)

where FPH*(C, d) is the image of the map H*(FPC,d) — H*(C,d) induced by inclu-
sion FPC — C.

5.4 The filtration of the cochain complex

We suppose that £ is a left A module, with a left covariant derivative

V:E—QUVARE
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and that this covariant derivative is flat, i.e. that its curvature vanishes (see proposi-
tion 38). Then VI’ : Q"A®4 E — Q"' A®4 E is a cochain complex (see definition
56). If i : B — A is a fibration (see section 5.2) (we used = for a fibration of topo-

logical spaces, and we will use i for algebras). We can define a filtration of Q" A®4 E

by

WOATBAQ"TMAQ4FE 0<m<n;
FMO"A®, E) = A (5.2)
0 otherwise.

Proposition 85 The filtration in 5.2 satisfies the conditions of remark 84.
Proof: First F°(Q"A®4E)=1.0°BAQ"A®4E,
but 1 €4,0°B=4,B, 50 F(V"AQaE)=0"A®4E.

To show it is decreasing, (using condition 5 from definition 34)

FMU DPA®LE) = Q" BAQ ™ AR, E
= LOMBAGABAQ™IA) @4 E
C WQPBAQT™A® E

C FM"A®4 E).

To show that the filtration is preserved by d, take i, An®e € F™"(Q"A Q4 E)
where £ € Q" B, and n € Q" ™A. Then

di.EAn®e) =i déAn®e+ (-1)"{Ndn®e+ (-1)"i.E AnA Ve

This is in F™C, as the first term is in F™T'C C F™C, and the other two are in
F™C. O
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Now we have a spectral sequence which converges to Hjz(A; E). All we have to do
is to find the first and second pages of the spectral sequence, though this is quite

lengthy.

5.5 Calculation the first page of the spectral se-
quence

From section 5.3, to use the filtration in section 5.4 we need to work with

v - Frert B AQIA®NE
Pa T FrriCrte - [ PMBAQITTA®, E

Then we look, for p fixed (following (5.1)), at the sequence
d d d
R Mp,q—l — Mp,q — Mp,q+1 e (5_3)

as the cohomology of this sequence gives the first page of the spectral sequence.
Denote the quotient in M, , by [ 4, s0if z € 1, QP BAQIA® E, then [z],, € M,,.

Then we have a map of left B modules

PB®p Myg — My,

E® [Ylog — [1:€ A Ylpg.

Here y € YA ®4 E and the left action of b € B on y is i(b)y.
Dpq

Dp+l,qA1'
Proposition 86 If E is flat as a left A module, then N, , &4 E = M, , with iso-

For notation, set D, , = ¢*QPB A QIA, and N, , =

morphism [z] ® e — [2 ® €]y,

157



Proof: We have, by definition, a short exact sequence, where inc is inclusion and

[ ] is quotient

inc [

0— Dp+1,q—1 — -Dp,q -—]) va!.q — 0.
As E is flat, we get another short exact sequence,

7 1 i
0~ Dpr1g1 ®u E™E D, @1 EUSY N, @4 E — 0

but by definition we also have
0 — Dypy1gor ®4 B3 D, 04 EH2S M, , — 0.

and the result follows from lemma 31.
We can now restate definition 59 in terms of our current ot ation.

Definition 87 i: B — A is a differential fibration if the map
£ [z] — [I.£ A z]

gives an isomorphism from QPB ®pg Nog to Npg for all p,g.

Proposition 88 If E is flat a left A module, and i : B — A is a fibering in the
sense of definition 87, then

PBRpNyg®4 b= My,

via the map

£Q 2] ® e [LEAT R e,
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Proof: Definition 87 says that we have an isomorphism
B ®p Nog — Npg

gwen by £ ® [z] — [i.& A x]. Now use proposition 86. [

We now return to the problem of calculating the cohomology of the sequence 5.3.
Take £ ® [z] ®e € QB ®p Ny g ®4 E which maps to [i.§ Az ® €] € M, ,, and apply
d (in this case VIP*9 and z € Q9A4) to it to get

d(i.ENT) Qe+ (—1)P 0, ENTAVe = i dENz e+ (—1)Pi.lAdz®e+(—1)PT 9, EAzAVe

But d¢ € QP! B, and
WYPBAQUTTARQL E

Mpas1 = WWHBAWARLE

so the first term vanishes on applying [ ], 4+1. Then
di. ANz @€l =(—1)Pli.é A(dz Qe+ (—1)'2 A Ve)]pq41 (5.4)

Then, using proposition 88, we have an isomorphism
OVPB®p Myy = M,, (5.5)

@ [Ylog — (1€ A Ylpa)

and using this isomorphism, d on M, , can be writen as (see 5.4)

d(€ @ [ylog) = (~1)PE & [VHylo 41 (5.6)
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where y € 19A®,4 E. From 5.6 we see that we should study [VI] : My, — Mg 441,
defined by [y]oq = [V9ylog41-

Proposition 89 We show that
[V[q]] . M()'q — MO,q+l

is a left B module map. Remember that b [n®e] = [i(b)p®e], for b € B and
nRe€e VAR, E.
Proof: First,

V(oo [n @ elog) = [d(i(b)n) ® e+ (=1)%(b)n A Velogi
[i.(db) A ® e +i(b).dn® e+ (—1)%(b)n A Ve|o g1

Now
WA AN®e€ LA BAUVARLE

30 [1.(db) AN ® €loq+1 = 0 1n Mo g1. Then

[V[q]](b >[n&elog) = [i(b).dn®e+ (=1)%(b)n A Velogu
= boldn®e+ (—1)" A Velpgs1. O

Proposition 90 If OPB is flat as aright B module, the cohomology of the cochain
complex

d d d
v Mpgy — Mpg — Mpgy — -
is given by Q?PB®p H,, where H, is defined as the cohomology of the cochain complex

d d d
=5 Moy 5 Myyar =5 -
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Proof: As we now know that d = [VI] : My, — M4 is a left B module map,

we have an exact sequence of left B modules, where the first map is inclusion

0— K, 25 Myyg -2 Zgyy — 0 (5.7)
where
Z% = imaged: Myqa_1 — My,
K? = kerneld: My, — My gt (5.8)
Now we define
H,= %‘7 (5.9)

to be the cohomology of
[V[Q]] : MO,q — MO,q+1a

so we have a short exact sequence
0— Z, — K, — H, — 0. (5.10)

To calculate the cohomology of 5.3, we need to calculate both of

~

Zpq =1maged : P B ®p Moy-1 —> QPB ®p Mo,

~

Kp, = kerneld : QB @p Mog — QP B 9 My g41.
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If OF B is flat as a right B module, then we have another exact sequence from 5.7
id®d

0— PBes K, % 0PB®s My, “8 0PB ®p Z,1 — 0 (5.11)

But by 5.6 the last map id ® d is (—1)?d on M, 4, so we have

Z0e=PB®s 2,

and

K,, = W"B®s K,
Now apply ’B®p to (5.10) to get, using (I’ B flat as a right B module again,
0— PB®p Z, — VPB®p K, — WPB®g H, — 0.
But by our previous result, this is
0 — Zpg — Kpg — PPB®s H; — 0 (5.12)
so the cohomology of M, , is isomorphic to 2B ®p H,. By definition we have

0 — Zpy — Kpy — H(M, ) — 0

and this gives the isomophism by 31.
If we write (), for the equivalence class in cohomology (M), this isomophism is

given by
(i Az),, — E® (r)qu (5.13)
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forE e PB and x € QIAR4 E. O

5.6 Calculation the second page of the spectral

sequence

Now we need to move to the second page of the spectral sequence, in which we take

the cohomology of the previous cohomology, i.e. the cohomology of
d : cohomology (M, 4) — cohomology (Mpy1,4).
By the isomophism discussed in the last section 5.5, we can view this as

d: WPB®g H, — P*'Bgg H,.

Proposition 91 The differential d gives a left covariant derivative
V,:H,— Q'B®gH,.
If §®e), € I:[q, this is given by using (5.18)
(D€ —n® (W fg,

where

d e+ (-1)%AVe=i,nAw f.
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Proof: Take (z),, € ]:Iq, where z € K, (see (5.8)). Suppose x = £ ® e, where
£ € QA and e € E (summation implicit). As x € K, we have

[dCE]o,q+1 = [dé Ke+ (_1)(16 A Ve]o_q_H =0

n Moy g41, SO

dE® +(—1)EAVe €. QA'BAQIAR®, E.

We write (summation implicit), forn € Q' B,
d®e+ (-1)%AVe=inAw® f (5.14)

Under the isomorphism (5.5), this corresponds to n ® [w ® f], € V' B Rp My,

As the curvature of E vanishes, we have from VIa+U to (5.14),
WA Aw® f—iaAdw @ f+ (-1)" i AwAVSf =0. (5.15)

We take this as an element of M 4.1, so we apply [ 1441 to (5.15). Then as the

denominator of My q41 s

WVYPBAQAR,E,

we see that the first term of 5.15 vanishes on taking the quotient, giving
—[En A (dw® f+ (=1)wA V)41 =0.
Under the isomorphism (5.5) this corresponds to

—7®p [dw ® f + (=1)%w A V floge1 = 0. (5.16)
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This means that

n® [w® f]o,q e QB B Mo,q

is in the kernel of the map id ® d in (5.11), and as (5.11) is an ezact sequence we

have

N®w® flog € V'B®5 K,

s0 we can see take the cohomology class to get

n& <w®f>0,q S QlB XB Hq.

This completes showing that V, ezists, but we need to show that it is a left covariant

derivative. For b € B, we calculate V,(b.€ ® e) using the formula to get
dbl)®e+ (—1)bEAVe=dbANERe+ b(d ® e+ (—1)76 A Ve),

so we get

Ve (b&E®e)y,=db@(E®e)y, +bV(E®e),. O

Proposition 92 The curvature of the covariant derivative V, in proposition 91 is

Z€T0.

Proof: Using the notation of proposition 91, equation (5.14)

Vell®eE), =1 Ww® fg,-
If we apply V,[;” (see proposition 38), we get

RQ<€®6>O,q:dn®<w®f>0,q_n/\vq<w®f>0,q'
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To find Vy (w ® f>0,q’ refering to the proof of proposition 91, formula (5.16), we have
n@p(dw® f+ (1) WwAVS) € VBRp (1.2 BAQARLE).
Now we write (summation implicit). This comes for tensoring the exact sequence
0— i.UBAQARAE — Q™ AR E 25" Myoor — 0
on the left by Q'B, and use Q'B flat.
N®(dw® f+ (1) wAVf) =7 ® (e A{®g) (5.18)
forn',k € U'B, ( € Q%A and g € E. Then, from proposition 91,
NAVe(w® flg, =1 NER{(®G)o,
so from (5.17),
Ry (€@ ey, = dn & (W flo, ~1 AKS (C D g),. (5.19)
Now (5.18) implies that
WA (dw® f+ (—1)WwAVSf) =i Nk AN(® g,
and substituting this into (5.15) gives

Wdn AW f— i AN,k AN(®g =0,
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50 on taking equivalence classes in My, we find, using the isomophism (5.5),

AW flog—1A&®[(Rglog =0

and this shows that R =0 by 5.19. O

Theorem 93 Given
1) a map i : B — A which is a differential fibration (see definition 87)

2) A flat left A module E, with a zero-curvature left covariant derivative
Veg: F— QA ®a E

3) Each QP B is flat as a right B module.
Then there is a spectral sequence converging to H*(A, E, V ) with second page H*(B, H,, V)

where fIq is defined as the cohomology of the cochain complex

d d d
coro— My g — Moge1 — -

where
e VAR E
% T S QIBAQ AR, E

and

diz ®elog =[dz®e+ (—1)72 A Vge]o,.

The zero curvature left conariant derivative
V,: H, — QB wg H,

15 as defined in proposition 91.
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Proof: The first part of the proof is given in proposition 90. Now we need to calculate
the cohomology of
d: PPB®g H, — "' By H,

This is given for § @ (n®e), , (for £ € OB, n € QA and e € E) as follows : this

element corresponds to i,.£ An & e, and applying d to this gives
WAEAN®e+ (—1)Pi b ANdnp®e+ (—1)PT,E AnA Ve.
But we have calculated the effect of d on ﬁq in proposition 91, so we get
df®@ (n®e),) =dE®@N®e)y, + (-1)P6AV (nBe),.

The covariant derivative V, has zero curvature by proposition 92. [

We have the following examples of a noncommutative differential fibration:

Example 94 (see section 8.5 of [2] ) Given the left covariant calculus on the quan-
tum group SUy(2) given by Woronowicz [46], the corresponding differential calculus

on the quantum sphere Sg gives a differential fibration
7: Sg — SU,(2).

Here the algebra Squ is the invariants of SU,(2) under a circle action, and i is just

the inclusion.

Example 95 In section 4.11 it s shown that the noncommutative torus ’H‘Z is the

fiber of the map
C(S') — A,
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where A is the group algebra of the Heisenberg group.
In the paper [43] the authors discuss noncommutative tours bundles owr topologi-
cal spaces. In fact this paper was the motivation behind checking that the idea of

differential algebra fibration definition applied to the Heisenberg group aljebra.

5.7 Some comments on the Leray spectral sequence

In chapter 6, we discuss a possible application (as get very tentative) o the Leray
spectral sequence (in the version we give here) to the representation theay of quan-

tum groups.

|
r

In example 95 we have already mentioned the paper [43]. In a sequel to this, in [44],
the authors discuss the idea of C* algebra fibrations over topological spaes in more

generality. This is rather different to our point of view. We can have 1oncommu-

tative base algebras (example 94), but we also require the existence of adifferential
structure. However it is intersting that [44] includes a discussion of the Leray spec-
| tral sequence of the fibration with base a simplicial complex, and that ths forms an

important part of their theory.
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Chapter 6

Conclusion

6.1 Summary

We have looked at noncommutative differential geometry, stated in terms of dif-
ferential forms, and seen how it can be used in Riemannian geometry and sheaf
cohomology. The example of differential calculi which we considered in detail were
the Heisenberg group (chapter 4) and the group algebra of A, (chapter 3). What
was found supports the general trend of example in noncommutative geometry: some
ideas from classical geometry work in considerable generality (like K theory ), and
some work only in more special circumstances.

For example, in classical differential geometry, on a Riemannian manifold there is
always a unique Levi-Civita connection (which preserves the metric and is torsion
free). We have seen that this is not necessarily the case in noncommutative geome-
try.

Part of the problem with noncommutative geometry is that when a classical idea

does not work, it is not certain whether to say simply that it does not work, or
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whether to look for how the noncommutative construction might differ. For example
in the theory of geometric quantisation, it is not obvious to say that quantisation of
differential form does not work in the case of curvature, or whether we should allow
the possibility of non associative calculi (see [5] and [23]).

However some nonassociative structures arise as part of string theory (see [11]).
For example for the Riemannian metric on the Heisenberg group we found that the
only metric to commute with the algebra was degenerate. For the Levi-civita metric
we have tried to say that the metric is exactly preserved by the covariant derivative.
Maybe, for many examples, this is not natural condition. We might have VG # 0,
but set equal to another interesting quantity. In the past, mathematical physics has

been a good source of interesting generalisations.

6.2 Further work on differential geometry

To extend the work on general covariant derivatives to other cases would probably
require extensive use of computer algebra (for example the noncommutative algebra
packages for Mathematica or Sage). However, even then it is not at all obvious
that many polynomials in many variable could be solved (for example, the braid
relations). This problem of doing general calculations is well known in classical
differential geometry, for example solving the general case of Einstein’s equations in
general relativity is viewed as extremely different. There is no solution to the two
body problem in G. R.

Following the spirit of finding the black hole solution in general relatvity, it is likely
that symmetry will be needed to reduce the complexity. It is likely that more can
be said in general on quotients of Hopf algebra with differential calculi, such as the

quantum sphere. There is some work being done on higher dimensional examples in
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this direction(see [1] on a quantum S$4).
If a group G acts on a topological space X transitively (i.e. every point can be moved
to every other point), then we have a one to one correspondence % — X, given by
z € X and [g] — g z. Here H is a subgroup (the stabiliser of z € X) of G given
by

H={heG|hvz =1z}

An example of this is of the rotation group acting on a sphere. An example of a not

transitive action is R acting R?
2> (z,y) = (z+ 2,y)
Here is transitive action of R? on R
(u,v) > (z,9) = (+ u,y +v)

These spaces on which a group acts transitively are important in pure mathematics
and in physics (e.g. cosmology).

Those examples most studied in noncommutative geometry are given by a Hopf
algebra H, and a surjective Hopf algebra map = : H — K for another Hopf algebra
K. Then the algebra is

A=HK ={he H:(idom)Vh=h1}.

It might be possible to study more general quotient spaces than this. The fact that

A above is not completely general can be seen by the fact that there is an algebra
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map given by the counit,

e: A— C,

so A contains at least are “classical point”. It is not expected that a more general
quotient would have such an algebra map. It would be interesting to consider the

differential geometry of these more general quotients.

6.3 Further work on the Leray spectral sequence

One use for the Leray spectral sequence (in the fibration version we have given) is
given in [40]. The Borel-Weil-Bott theorem is about representations of Lie groups
[21] [28] [48]. We summarise a little detail for SU;. Then we can take the Hopf

fibration
SU,

— 5% =
SUz Diagonal matricesin SU,

We can take line bundles on S2, and give an action of SU, on it. Then we can classify
all irreducible representation of SU; as complex analytic sections of the line bundles
(one dimensional vector bundles).

One way of proving the result for more general groups is to use the Leray spectral
sequence, and this proof may well generalise to the noncommutative case. It would
be interesting to compare our result to the results and definitions in [44] in more

detail. The paper [44] is discussed in more detail in section 5.7.

173



Bibliography

[1] F. Andrea, L. Dabrowski, G. Landi, The Isospectral Dirac Operator on the 4-
dimensional Orthogonal Quantum Sphere. Commun. Math. Phys. 279, 77-116
(2008).

[2] E.J. Beggs, T. Brzezinski, The Serre spectral sequence of noncommutative fibra-

tion for de Rham cohomology. Acta Mathematica 195 (2005), p155-196

[3] E. J. Beggs, S. Majid, Bar categories and star operations, Algebra. Represent.
Theory 12 (2009),n0.2-5,103-152

[4] E.J. Beggs, S. Majid, *-Compatible Connections in noncommutative Riemannian

geometry. Journal of Geometry and Physics 61 (2011) pp. 95-124.

[5] E.J. Beggs, S. Majid, Quantisation by cochain twists and nonassociative differ-
entials.. J. Math. Phys. 51, 053522 (2010); doi:10.1063/1.3371677 (32 pages)

[6] A.J. Berrick, M.E. Keating, An Introduction to Ring and Modules with K-theory
in view. C.U.P. 2000.

[7) F.A. Berezin, General concept of quantization, Commun. Math. Phys. 40, 153-174
(1975).

174




[8] B. Blackadar, K-Theory for Operator algebra, 1986 by Springer-Verlag New York'

Inc.
9] G.E. Bredon, Sheaf Theory, 1967 by McGraw-Hill.

[10] K. Bresser, F. Muller-Hoissen, A. Dimakis, A. Sitarz, Noncommutative geome-

try of finite group. J. of Physics A (Math. and General), 29 :2705- 2735, 1996.

[11] P. Bouwknegt, K. Hannabuss, V. Mathai, Nonassociative Tori and Applications
to T-Duality. Commun. Math. Phys. 264, 41-69 (2006).

[12] T. Brzezinski, Lecture on rings, modules and categories. Swansea University

[13] A. Connes, Noncommutative geometry, Academic Press. San Diego; London:

1994.

[14] A. Connes, Gravity coupled with matter and the foundation of noncommutative

geometry, Comm. Math. Phys. 155: 109. 1996

[15] A. Connes, M. Marcolli, Noncommutative Geometry: Quantum Fields and Mo-
tives, American Mathematical Society (2007).

[16] M. Dubois-Violette, T. Masson, On the first-order operators in bimodules. Lett.
Math. Phys. 37, 467-474, 1996.

[17] M. Dubois-Violette, P.W. Michor, Connections on central bimodules in noncom-

mutative differential geometry. J.Geom. Phys. 20, 218-232, 1996

[18] M. Dubois-Violette, Lectures on graded differential algebras and noncommuta-
tive geometry. In Y. et al. Maeda, editor, Noncommutative Differential Geome-
try and its Applications to Physics, pages 245-306. Shonan, Japan, 1999, Kluwer
Academic Publishers, 2001.

175



[19] A. Einstein, Relativity: The Special and General Theory, New York: H. Holt
and Company, 1916

[20] G. Fiore ,J. Madore, Leibniz rules and reality conditions. Eur. Phys. J. C Part.
Fields 17 (2000), no. 2, 359-366.

[21] W. Fulton, J. Harris, Representation Theory. A First Course, Springer-Verlag
New York Inc, 1991.

[22] A. Hatcher, Vector Bundles and K-theory. Version 1.1, November 2000.
(http://www.math.cornell.edu/ hatcher/VBKT/VB.pdf)

[23] E. Hawkins, Noncommutative Rigidity. Commun. Math. Phys. 246, 211-235
(2004).

[24] C. Kassel, Quantum Groups. vol. 155 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

[25] W. Klingenberg, A Course in Differential Geometry. Springer-Verlag, New York
Inc, 1978.

[26] E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists. London
Mathematical Society Lecture Note Series 210. Cambridge University Press, 1995.

[27] J. Lepotier, Lectures on Vector Bundles. Cambridge studies in advanced math-

ematics. Cambridge University Press 1997

(28] J. Lurie, A Proof of the Borel-Weil-Bott Theorem, (http://www-
math.mit.edu/ lurie/papers/bwb.pdf), Retrieved on Dec. 14, 2007.

[29] J. Madore, The fuzzy sphere, Class. Quant. Grav. 9, 69-87 (1992).

176



(30} J. Madore, An introduction to noncommutative differential geometry and its
physical application. London Mathematical Society Lecture Note Series, 257,
CUP 1999.

[31] S. Majid, Foundations of Quantum Group Theory. Cambridge University Press,
1995.

[32] S. Majid, Waves on noncommutative spacetime and gamma-ray bursts,

Int.Jour,Mod.Phys.A15 4301-4323 (2000).
[33] S. Majid, Quantum Groups Primer. Cambridge University Press, 2002

[34] S. Majid, Riemannian geometry of quantum groups and finite groups with

nonuniversal differentials. Commun. Math. Phys 225, 131-170 (2002)

[35] J. McCleary, A User’s Guide to Spectral Sequences. 2nd ed., Cambridge Univer-
sity Press, Cambridge (2001).

[36] S. Montgomery, Hopf Algebras and Their Actions on Rings. American Mathe-
matical Society, 1993 .

[37) J. Mourad, Linear connections in noncommutative geometry. Class. Quantum

Grav. 12, 965-974, 1995.

[38] A. Moyal, Maverick Mathematician: The Life and Science of J.E. Moyal, ANU
E-press, 2006

[39] J.E. Moyal, Quantum mechanics as a statistical theory, Proceedings of the Cam-

bridge Philosophical Society, 45 (1949) pp. 99-124.

[40] A. Pressley , G. Segal, Loop Groups, Oxford University Press, 1988

177



[41] P. Petersen, Riemannian Geometry. Springer-Verlag, New York Inc, 1998 .

[42] B. Riemann, Ueber die Hypothesen, welche der Geometrie zu
Grunde liegen., Aus dem dreizehnten Bande der Abhandlun-
gen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen.

(http://www.emis.de/classics/Riemann/Geom.pdf).

[43] Siegfried Echterhoff, Ryszard Nest, and Herve Oyono-Oyono, Principal noncom-
mutative torus bundles, arXiv:0810.0111(October 2008)

[44] Siegfried Echterhoff, Ryszard Nest, and Herve Oyono-Oyono, Fibration with
noncommutative fibers, J. Noncommut. Geom. 3 (2009), no. 3, 377-417

[45] Ursula Carow-Watamura , S. Watamura, Noncommutative Geometry and Gauge
Theory on Fuzzy Sphere, Department of Physics Graduate School of Science To-
hoku University Aoba-ku, Sendai 980-8577, JAPAN

[46] S. L. Woronoeicz, Differential Calculus on Compact Matriz Pseudogroups
(Quantum Groups). Commun. Math. Phys. 122,125-170 (1989)

[47] http : //en.wikipedia.org/wiki/Moyal — product, on 10 — 8 — 2010.

[48] http : //en.wikipedia.org/wiki/Borel — Wei — Bott — theorem,on 9 — 8 — 2010

178




Appendix A

We have terms 3f(es — iu), —t(es — iu), —2(e — u)(e + u)v, —(1 + b)(es — iu)

Casel If es —iu # 0, we must have f =t = 0 and b = —1. Recalculate the matrix.
Substituting this into the matrix, we find *>u = 0, so iu = 0, and so e # 0, and
s # 0.

The matrix contains egs =0, so g = 0.

The matrix contains es? = 0, which is a contradiction.

Case2 es —iu = 0.

The matrix contains v(e? —u?) = 0 and (1+ k)(e? — u?) = 0. We split into two cases:
Case2a (e? — u? # 0) and Case2b (e? — u? = 0).

Case2a es — i1 = 0 and e? — u? # 0.

The matrix contains v(e? —u?) = 0 and (1+ k)(e? —u?) = 0, so we deduce that v = 0
and k = —1.

The matrix contains u® = 0, so u = 0 and we deduce that e # 0.

The matrix contains €3 = 0, so e = 0 - Contradiction. End of case 2a

Case2b es —iu = 0 and €? — u? = 0.

It splits to two cases:

Case2ba when © = e = 0 and Case2bb when u # 0 # e.

Case2ba We get a matrix entry (i+a—h)(s?>—4%) = (1+k)(s*—i?) = v(s*—1%) = 0.
Split into two cases

Case2baa whens? = i and Case2bab whens? # i2.
Case2baa u = ¢ = 0 and s? = 2.

Split into two cases

Case2baaa whens = i = 0 and Case2baab when s = yi # 0 where y = £1.

Case2baaa s=i=u=¢e=0.
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We get entry t*(1+ k) —v(1+m)2, v(1+k)(1+k+2), v(1+ k)1 +a—h—v),
v(l+k)la—h—k).

We begin by assuming that t>(1 + k) # 0. Then all of ¢, 1+ k, v, 1 + m are non zero.
Then the terms 2-4 listed above give 1+k+v=0,1+a—-h—-v=0,a—h—k =0,
and from this we deduce v = 0, a contradiction. So t*(1 + &) = v(1 + m) = 0.

Next we have terms f((1 + k)t + fv) and f(f(1+ k) + v(1 + m)), so we deduce
fo=f(1+k) =0,

We split into 4 cases:

Case2baaaa when (1 + m)t # 0 then from the entries t(1+ m)(1 + k +v), t(1 +
m)(1+a—h—v), t(1+m)(a—h—k), soif t(1+m) # 0 we deduce v = 0,k = —land
h=a+1.

For the next 3 cases we have (1 + m)t = v(1 + m)0, remembering that v(1 + k) = 0:
Case2baaab when m # —1,sot=0and v =0 and f(1+ k) =0.

Case2baaac where t #0 som =k = ~1 and fo=0.

Case2baaad where t =0 and m = —1,s0 fv = f(1+ k) =0.
Case2baaaas=i=u=e=v=0andk =~-land h=a+1and ¢(1+m)#0
We get entries gt%, nt?, rt? and gt?, sog=g=n=r=0.

We now get j2t, so j = 0.

We now get ¢(1 +m)t, so ¢ = 0.

We now get (1+a)f(1+b+f), (1+a)((1+m)2+2), (1+a)((1+b)>+3f*—2t(1+m)).
If a = —1 SOLUTION

If a # —1, then we split into two cases

f#0givesb=—1— fand f2 =¢t(1+m)/2 and t* = —(1 + m)? SOLUTION.
f=0and (1+0b)?=2t(1+m)and t’ = —(1+ m)* SOLUTION.
Case2baaabs=i=u=e=v=t=0and m# —1.

We get (1 +m)r?, (1+m)¢?, (1+m)j? sor=qg=j=0.
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Next we get (1 + m)g?, so g = 0.

Next we get (1 +m)h? and (a — k)(1 +m)?, so h =0 and a = k.

Get terms fn?, fc2, f2(1 + k).

Split into 2 cases:

Case2baaaba s =i=u=e=v=t=r=q=j=g=h=f=0and a=k and
m# —1.

Case2baaabb s =i=u=e=v=t=r=q=j=g=h=n=c=0and
a=k=-1and f #0and m # —1.
Case2baaabas=i=u=e=v=t=r=q=j=¢g=h=f=0anda =k and
m#—1.

We get (1 4+ m)%c and (1 +m)?n,soc=n=0.

We get (1 + k)(b—m)(1 4+ m).

We get 2 cases:

b =m SOLUTION

k = —-1SOLUTION

Case2baaabb s =i =u=¢e=v=t=r=q=j=g=h=n=c=0and
a=k=—1and f # 0 and m # —1 SOLUTION

Case2baaac s=i=u=e=0,t#0and k=m=-1.

We get n%t, ¢°t, j%t,son=¢g=j = 0.

Then we get ht? and gt2, so h = g = 0.

Then rt?, so r = 0.

Then ct?, so ¢ = 0.

We get (1 +a)f? and f2v, f((1+a)(1+0b) — tv).

Split into two cases:

Case2baaaca s =i=u=e=n=q=j=h=9g=r=c=f=0,t#0 and

k=m=-1.
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Case2baaacb s=i=u=e=n=q=j=h=g=r=c=v=0,f#0,t#0
anda=k=m=-1.

Case2baaaca s =i=u=e=n=qg=j=h=g=r=c=f=0,¢t#0and
k=m=—-1.

We get t*(1+a—wv)and v(l+b—t),sov=1+a.

Split into two cases:

a =—1 SOLUTION a # —1 and t = 1+ b SOLUTION.

Case2baaacb s=i=u=e=n=¢g=j=h=g=r=c=v=0,f#0,t#0
anda=k=m= -1

SOLUTION

Case2baaad s=t1=u=e=t=0and m = —1.

We get f2(1 + k) and fv.

Split into 2 cases:

Case2baaada when f = 0 and Case2baaadb when f # 0 so £ = —land v = 0.
Case2baaada s=i=u=e=t=f=0and m = 1.

We get (1 +b)c?, (1+b)n?, (1+b)g? and (1 4 b)r?

Split into two cases

Case2baaadaa when b = —1 and Case2baaadab when b # —1soc=n=gq =
r=0.

Case2baaadaas=i=u=e=t=f=0andb=m=-1.

We have entries g(r(1+ k) + nv), g(n(1+ k) +rv), g(r(1+ k) +nv), g(n(1+ k) +rv)
, (h=3)(r(1+ k) +nv), (h—7)(n(1+k)+rv), r(1 + k)n+q%v, ¢*(1 + k) + nrv and
v(1+ k)1 +k+v).

Split into four cases :

Case2baaadaa4 at least one of 7(1 + k) + nv or n(1 + k) + rv is non-zedro,
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so g =0,qg =0and h = j. Cases 2baaadaal42baaadaa2-+2baaadaa3
when 7(1 + k) + nv = n(1+k)+rv = 0, v(¢? —n?) = v(¢® —r?) = 0 and
(1+k)(g>—n?)=(1+k)(¢®*-7r?)=0 0

Case 1 whenv=14+k=0

Case 2+-3at least one of v, 1+ k#0 from r(1+ k) +nv=n(l+k)+rv=20

orn = —.

Deduce that n = 0 if and only if r = 0 (cas n = T

Case2baaadaa2 when g =n=r=10

Case2baaadaa3 when v = (1+k)2#0,s0k— —-1—-vandg? =n2=7r2#0
Case2baaadaal s=i=u=e=t=f=v=0and b=m =k = —1 We have
g*(1+a+2h)+c*h—ch?, g((c—h)(1+a)+ch+2gh) and g(g(1+a+h)+2ch — h?
Solve gives four cases :

case 2baaadaalA when g =0, ch(c —h) = 0.

case 2baaadaalB when ¢ #0, h=0and a = —1.

case 2baaadaalC when g #0,h#0,c=g+handa= —"(9+3§—h+h2).

case 2baaadaalD when g #0,c=g9,h=4g and a = —1 + 4g.
Case2baaadaalA s=i=u=e=t=f=v=g=0andb=m=k=-1.

We have entries 3ngr, (7 — c)gr + n(r? + ¢%), (j — c)nr + q(r* + n?) and (j — ¢)gn +
r(n®+¢%)

We get at least one of n, ¢, = 0 but then we deduce at least two of n,¢q,r =0
terms j(jn + 2qr), 7(jg + 2nr) and j(jr + 2qn).

Split into two cases : case 2baaadaalAl when j = 0, at least two of n,q,7 =0
and case 2baaadaalA2 when j #0son=q¢q=7r=0.

Case2baaadaalAl s=i=u=e=t=f=v=g=j=0andb=m=k=-1,
at least two of n,q,7 = 0 from the term h(n? + 2 + ¢2).

Deduce either n =7 =¢ =0 (Go to case 1A2) or h=10

Set h=0weget (1+a)n?=0,(1+a)g>=0and (1+a)r>=0,s0ifn=r=¢=0
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Go to case 1A2 or a = —1 SOLUTION.
Case2baaadaalA2 s =i =u=¢=t=f=v=g=n=¢q=r =0 and
b=m=k=—-1and j #0.

We have entries (14+a)(14+a—c)c, (1+a)(1+a—h)h,(1+a)(1+a—7j)j c(c—h)h
,c(c —7)7 and h(h — j)J.

Any non-zero available in the set 7,1 + a, A, ¢ must be equal. SOLUTION.
Case2baaadaalBs=i=u=e=t=f=v=h=v=0andb=m=k=a=
—1and g #0.

We have entry g(c® + 2gj — n? — ¢ — r?)

Split into 4 cases :

2baaadaalB1 whenn = ¢ = r = 0 and 2baaadaal B2+2baaadaalB3+2baaadaalB4
at least one of n, 7, ¢ are non zero ( two or three of n, ¢, 7 are non zero ).
2baaadaalBl s =i =u=¢e=t=f=v=h=v=n=¢q=r =0 and
b=m=k=a=-1and g#0.

We get c? + 29

Soj— ‘2—;2.

We get c(c + 29)(c* + 2cg — 2¢7).

We split into three cases :

When ¢ = 0 SOLUTION.

When ¢ = —2g , we get g8 CONTRADICTION.

When ¢ + 2cg — 292 =0, we get ¢ = —g — V/3g or ¢ = —g + v/39 SOLUTION.
2baaadaalB2s =i=u=e=t=f=v=h=v=0andb=m=Fk=a= -1
and g # 0, if exacitly one of n,r, g are non zero (eg )

We get g*r so r = 0 CONTRADICTION.

2baaadaalB3 s=it=u=e=t=f=v=h=v=0andb=m=k=a= -1

and g # 0, if exacitly two of n,r, ¢ are non zero (eg n,r)
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We get 2(g — j)nr , so g = j and also get nr(c+g—j)soc=0
Then we get (g% — n?) and n(g? —r?) , so g? = n? = r?

So we get three cases :

When g = 0 we get 72 = g% and n? = g2 SOLUTION.

When n = 0 we get 72 = g% and ¢ = g> SOLUTION.

When r = 0 we get ¢ = g% and n? = g2 SOLUTION.

2baaadaalB4s =i=u=e=t=f=v=h=v=0andb=m=k=a= -1
and g # 0 , when all n, ¢, r are non zero

We have entries (9—j)(n(g+7)+2qr) , (9—7)(q(9+7)+2n7) and (9—7)(r(9+7)+2qn)
Split into two cases:

2baaadaalB4a when g = 7 and2baaadaalB4b when g # j
2baaadaalB4as=i=u=¢e=t=f=v=h=v=0andb=m=k=a= -1
and g#0,andg=17 .

We get 3(cg® — ngr) ,s0 ¢ = =F

We get (g% —r?)(9* — n?), (¢° —7°)(¢* — ¢*) and (¢* — ¢*)(¢* — n?).

So g2 =12, g = n? and g2 = ¢, at least two of them are equal, so we have 12 cases:
Suppose g>? =n? =r?sor - gandn - gorr - —gandn — g or r — g and
n——gorr——gandn — —g

Suppose g> =n? =¢*soq—+gandn — gorq - —g and n = g or ¢ = g and
n-—+—-gorq——gand n— —g

Suppose ¢> = ¢> =r2sor - gandgq—> gorr — —gand ¢ — g or r — ¢ and
qg— —gorr — —gand g - —g SOLUTION.
2baaadaalB4bs=i=u=e=t=f=v=h=v=0andb=m=k=a= -1
and g # 0 and g # J

Theng+j#0,sog+j:2—21=3"1=2q—"=2x, (define z # 0)

n T

Soj— 2z —gand g — =
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Deduce 7% = r? = ¢% = n?
We get 8(9 —z)r3,s0g =1

We now get 3(—c+ z)z? soc==zx

n(r-z)(r+z)(r2+z?)
2

- , SO we have 4 cases:

We have entries 7(n — z)(n + z) and
n=—-zandr=—-zrzorn=zxandr=rorn=-zandr=zorn=zandr = -z
SOLUTION.

Case2baaadaalC s =i=u=e=t=f=0and h=m = ~1 and g # 0 and
h;éOandC*——g-l-handa:th—”ﬁ.

We get (3g+ h)(4g + h) and (29 + h)?(4g + h), can not have both 2g + h and 3g + h
as g # 0, so must have 4g + h =0 and so h = —4g

We get 495 + j2 + n? + ¢ + r? and 295 + 99° — n? — ¢ — r? adding these gives
997 + 694 + j* = (3g + 7)(3g+) = 0, 80 j = =3y

We get g® — ngr, so all of n, q ,r are non zero

We get 3g% — n? — ¢ — 12, gnlz qr, 99 = nr and gr = nq, so n = qr/g and
g*=r2=¢?>#0,50 T = zg and ¢ = yg ,when y? = 22 = 1 SOLUTION.
Case2baaadaald s=i=u=e=t=f=v=0andb=m=k=-1,9g#0,
c=¢g,h=4ganda=-1+4g

We get g(2g7 + g*> — n? — ¢> — r?) and 4g(4gj — j® — n? — g% — r?), subtracting these
gives g2 — 295+ j2=(9g—j)*=0,s0j=yg

We get g — ngr , so all of n, q ,r are non zero

We get 3g2 —n?2 —q> — 1% gn = qr , g¢g = nr and gr = nq, so n = qr/g and
g?=r2=¢q¢*+#0,s0 7 = zg and q = yg, when y? = z2 = 1 SOLUTION.
Case2baaadaa2 s=i=u=e=t=f=q=n=7r=0,b=m= -1 and at least
oneof v,1+k#0.

We get gv? and g(1+ k)% ,s0 g =0

We get h(1 + k)® + h?v and h(1 + k)® + h®v — (1 + k)v?, subtracting these gives
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(1+k)?=0

Split into cases:

Case2baaadaa2a when v = 0 and k£ # —1 and Case2baaadaa2b when v # 0 and
k=-1

Case2baaadaa2a s =i=u=e¢=t=f=gq=n=r=g=v=0,b=m= -1
and k£ # —1.

We get h(1+k)?, j(1+k)* and c(1+k)? ,soc=37=h=0

We get (a — k)(1 + k)? , so a = k SOLUTION.

Case2baaadaa2b s=i=u=e=t=f=¢gq=n=r=9g=0,b=m=k=-1
and v # 0.

We get h%v, jv?, cv?and (1+a—v)v?:, soc=h=j=0anda=v—1SOLUTION.
Case2baaadaa3 s =i=u=c¢=t=f=0andb=m= -1, 12 = (1 +k)? #0,
k=-1-vandg®=n?=71r2#0.

We have ¢> =n? =r?#0,s0 g =rn and r = yn when 22 =¢y? =1

We get nv(l —y) ,soy =1

We get v(2hj — j2 + cv + n?)and2hj — j2 + juv + n?, subtracting these gives v(c — j),
soc=j

We get —(1+a)v? + hv? —v® and —(1+a)v? + hv? + 13, subtracting these gives —2v°
CONTRADICTION.

Case2baaadaad s=i=u=e=t=f=g=¢g=0andb=m = —1and h = j.
We get 72n, j%r

Split into two cases:

Case2baaadaad4a when j = 0 and Case2baaadaa4b when j #0,son=r =0
Case2baaadaada s =i=u=e=t=f=g=¢q=j=0and b=m = —1 and
h=j.

We get (1+ k)r, (1+k)n, (1+k)g and (1 + k)%(a — k)
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split into two cases :

Case2baaadaa4aa when £ = —1 and Case2baaadaad4ab when k£ # —1 , so
n=r=v=0anda=k

Case2baaadaadaa s=i=u=e=t=f=g=¢q=7=0andb=m=k= -1
and h = j.

We get r?v and n?r

split into two cases :

Case2baaadaad4aaa when r = 0 and Case2baaadaa4aab when r # 0 , so n =
v=20
Case2baaadaa4aaa s = ¢t =u=¢e¢e =t =f =9 =¢q =37 =r = 0 and
b=m=k=—1and h =}.

We get nv? and (1 + a)n?

split into two cases :

Case2baaadaad4aaaa when n = 0 and Case2baaadaadaaab when n # 0, so v =0
and a = —1
Case2baaadaadaaaa s =i =u=¢=t=f=g=¢g=j=r=n=0and
b=m=k=-1and h =j.

We get cv? and (1 + a — v)v?

Split into two cases:

When v = 0 and when v # 0, when v = 0, we get (1 + a)(1 + a — ¢)¢, so split into
three cases:

When a = —1 SOLUTION.

When a = ¢ — 1 SOLUTION.

When ¢ = 0 SOLUTION.

And when v #0 and ¢ =0 and a = v — 1 SOLUTION.

Case2baaadaa4aaab s =i =u=¢e=t=f=¢g=¢9q=jj=r=v =0 and
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b=m=k=a=-1,n%#0and h =3. SOLUTION.
Case2baaadaadaab s =t =u=¢e=t=f=g=¢q=j=n=v =0 and
b=m=k=-1,r#0and h=7.

We get (1 + a)r?, so a = —1 SOLUTION.

Case2baaadaadab s =i=u=e=t=f=g=q=j7j=n=r=v =0 and
b=m=—-1and h=7j and a = k.

We get ¢(1 + k)?, so ¢ = 0 SOLUTION.

Case2baaadaadb s=i=u=e=t=f=g=q=n=r=0and b=m = —1,
j#0and h=7j.

We get 25(1 + k)v, split into two cases: Case2baaadaadba when v = 0 and
Case2baaadaa4bb when v # 0, so k = —1

Case2baaadaadba s =i =u=e=t=f=g=q=n=r=wv =0 and
b=m=-1,j#0and h =j.

We get h%(1+ k), so k = —1 because j # 0 and h = j

We get (1+a)(l+a—c)cc(c—j)jand (1+a)(l+a—j)j

When ¢ = 0, we get (1 +a)(1+ a— j)j, split into cases: when a = —1 SOLUTION
and when j = a+ 1 SOLUTION.

When c#0,s0c=7, we get (1 +a)(1+a—j)7

Split into cases: when ¢ = —1 SOLUTION and when j = a + 1 SOLUTION.
Case2baaadaadbb s = i = u = e =t = f =g =qgq=n=1r = 0 and
b=m=k=-1,j#0,v#0and h=j.

We get jv CONTRADICTION.

Case2baaadab s =i=u=e=t=f=c=n=q=r=0and m = —1 and
b# —1.

We have entries g%h , g?j , v?g and g(1 + k)?

Split into two cases
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Case2baaadaba when g = 0 and Case2baaadabb when ¢ #0soh =j=v =0
and kK = —1.

Case2baaadaba s=i=u=e=t=f=c=n=gq=r=g =0and m= -1 and
b# —1.

We get (1+ b)%hso h =0

We now get j(1 + k)%,(1 + k)v? and (a — k)(1 + k)2 and j%v

Split into two cases:

Case2baaadabaa when kK = —1 and Case2baaadabab when k # —1s0j=v =0
and a = k # —1.

Case2baaadabaa s =i =u=e=t=f=c=n=¢g=r=¢g=h=0and
k=m=—1and b# —1.

We get (1+b)%js0oj=0

We now get (1 +a — v)v?

Split into two cases:

v = 0 SOLUTION.

v =14 a SOLUTION.

Case2baaadabab s=i=u=¢e=t=f=c=n=q=r=9g=h=j=v=0
andm=—-land b# —1anda =k # —1.

SOLUTION.

Case2baaadabb s =i=u=¢e=t=f=c=n=q¢q=r =h=j=v=0and
m=~k=—1and b# —1 and g # 0.

We get (1+a)g?soa=—1

SOLUTION.
Case2baaadbs=i=u=e=t=v=0and f#Oand m =k =—-1.

We have entry (1+b)f(1+a — h)

plit into two cases
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Case2baaadba when b = —1 and Case2baaadbb when b # —1so h=1+a.
Case2baaadba s=i=u=e=t=v=0andk=b=m=—1and f #0.

We have entry fg(h + j)

split into two cases:

Case2baaadbaa s=i=u=e¢e=t=v=¢g=0and k=b=m = —1and f #0.
We have entry f%j, fh and c®f,soc=h=3j=0

We get (1+a)f?, soa= —1

We get fnr and fgr and fqn

split into two cases

Case2baaadbaaa when r = 0 and Case2baaadbaab when r # 0, so ¢ =n = 0.
Case2baaadbaaa s = i =u=e=t=v=g9g=c=h=j=r =0 and
a=k=b=m=—-1land f #0.

We get fn? and fg?, son=q=0

SOLUTION.

Case2baaadbaab s = i = u = e =t =v =g =c¢c =h =35 = 0 and
a=k=b=m=-1and f #0and r #0.

We get fr? CONTRADICTION.

Case2baaadbab s =i=u=e=t=v=0,k=b=m= -1, f #0, g # 0 and
h = —j.

We have entries c2f, (1+a+c¢)fg,soc=0and a = -1

We get fj%, 507 =0

We get fnr and fqr and fgn

split into two cases

Case2baaadbaba when r = 0 and Case2baaadbabb when r #0so ¢ =n = 0.
Case2baaadbabas=i=u=e=t=v=c=j=r=0anda=k=b=m= -1

and f #0,9#0and h = —.
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We get fn? and fq?, son = ¢ =0 SOLUTION.

Case2baaadbabb s =i=u=e=t=v=c=j=0anda=k=b=m = —1
and f #0and r #0, g # 0 and h = —j.

We get fr? CONTRADICTION.

Case2baaadbb s =i =u=e=t=v=0,f#0, m=k=—-1,b# —1 and
h=1+a.

We have entries f(n(l+a—j) —2qr) —g(1+b)n, f(g(1+a—7)—2nr) —g(1+b)g
and f(r(14+a—j)—2qn) —g(1 + b)r

If exacitly one of n , q, r is zero ( suppose n=0), get —2¢r f = 0, which is a contra-
diction, as f # 0

Terms q(n?+r?2—g¥) +nr(j—g—c), n(r?+r*—g*)+qr(j —g—c) and r(n® + ¢* -
9*) +ng(j —g—c)

If exacitly two of n , q , T are zero ( suppose n=r=0), we get —qg> =0,s0 g =0
We have entry g(1 4 b)(1 +a — j) — f(n? +¢* +1?).

If g = 0 we deduce fq?> = 0 CONTRADICTION.

Split into two cases

Case2baaadbbl when n = r = ¢ = 0 and Case2baaadbb2 when n, ¢, r all
NON-ZEro.

Case Case2baaadbbl: whenn =r =¢ =20

We have entries (1 + b)g(1 +a — j), fg(1 +a — j), *(1 +b) + 3fg(l + a + j),
(1+a)(l+a—j)jand 2f(L+a+b+ab+ f+af)+ g(c®+ 2g7)

Split into two cases

Case2baaadbbla wheng = 0 and Case2baaadbblb when g # 0 and j = 1+ a.
Case2baaadbbla wheng = 0 We get c2f, so c =0

We get now f2j,s07=0

We get (L+a)f(1+b+ f), (1+a)((1+0)*+3f?)
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split into two cases

When a = —1 SOLUTION.

And whena #0and 14+ b= —f, so 4f =0 CONTRADICTION.
Case2baaadbblb s =i =u=e=t=v=n=7=¢=00and f # 0 and
m=k=—-landb#—-landh=1+4+a,g#0andj=1+a.

We have entries ¢*(1+b) +6fg(1+a), 2f(1+a)(1+b+ f) + g(c® +2g9(1 +a)) and
Af+291+a+b+a+2f+2af)

split into two cases:

When ¢ =0 and a = —1 SOLUTION.

When ¢ # 0 and a # -1, we get 1 + a + 2b+ 2ab + b? + ab® — ¢ — 2ac — a’c + % +
act +2f?+2af? +cf?* + 3g% + 3ag*and 1+ a + 2b + 2ab + b? + ab? — ¢ — 2ac — a’c +
¢+ act + 32 + 3af? + 29 + 2ag® + cg? subtract to get (1 +a —c)(f — 9)(f + 9)
Split into two cases:

Case2baaadbblba whena = ¢ — 1 and Case2baaadbblbb when ¢ #=1+a , so
g = fz ,then z°? = 1.

Case2baaadbblba s =i =u=e=t=v=n=7r =¢q =00and f # 0 and
m=k=—-landb# -landh=14a,g#0and j=1+aanda=c—1,c#0
and a # —1.

We get c(c+bc+6fg) ,so0b=—-1—-6fg/c

we get cf(c — 2g)(c + 6g), split into two cases:

When ¢ = 2¢g, we get 16¢%(f? — ¢%) and 12¢%(4f% + ¢?), subtracting these gives
—32¢%f? CONTRADICTION.

When c = —6g , we get —144¢%(f? — ¢°) and 36g¢%(4f* + 3g*) CONTRADICTION.
Case2baaadbblbbs=i=u=e=t=v=n=r=q¢q=00, f#0,m=k = —1,
b#-1,h=14a,g#0j=14+a,c#=1+aand g= fr,thenz?=1,c# 0 and
a#—1.
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We get ¢ + bc® + 6%z + 6af%z, so b = —1 — 6f22(1 +a)/c?

We get (2fz(1 + a) — ) (6fz(1 + a) + ¢?), so ¢® = 28fz(1 + a), then 3 = lor — 3
And we also get (14 a —¢)f22(6(1 + a)? — 6¢(1 +a) — ¢?), so we get 2(1 4+ a)(3(1 +
a)—3c—pBfzr)=0,s0c=1+a— Bfz/3

We put a = z — 1 when z = yf.

So we have four cases:

case 2baaadbblbb 1 when z =1 and = lwe can not find solution to (1 — 24y +
9y?)(1 + 48y + 9y%) = 0, so CONTRADICTION.

case 2baaadbblbb 2 when z = —1 and 8 = 1 also no solution CONTRADIC-
TION.

case 2baaadbblbb 3 when z =1 and 3 = —3 we get y = 4 + v/15 SOLUTION.
case 2baaadbblbb 4 when z = —1 and 8 = —3 we get y = —4++/15 SOLUTION.
Case2baaadbb2: when all of n, q , r non zero

We have entries g(14-b)(14+a—j3)— f(n?+¢*+7%), — fg(1+a—j)+ f(n*+¢*)+r%(1+b),
—fg(l+a—j)+ f(r* +¢*) +n?(1 +b) and —fg(1 +a —j) + f(n® +7%) + ¢*(1 + b)
Ifn®+¢®+r2=0,theng(l+a~-j)=0,s071%= %ﬂﬁ

put z = =& =0, so r? = —z(n® + ¢%)

Thenn2+q2+§ =0andn®’+¢*+r?=0,sorx=1and f=1+b
Ifn2+¢2+12#0

We have f(2(n? +¢®> +712)) + (r?+q* +71%)(1+b) =3fg(l +a—7)

M+ @+r)2f+1+b)= ﬂ(n_";:z_+_2)
2f + (1+b) = 2L 503/ —2f(1+b) — (1442 =0
(Bf + (1+0))(f — (1+ b)) =0, so split into cases Case Case2baaadbb2a When

b=f-1
Case Case2baaadbb2b when b = —3f — 1 and n2+ ¢>+r? =0 and g # 0 and
l+a—j#0.
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Case2baaadbb2a When b= f — 1

We have entries f(n(1+a—g—j) —2¢qr), f(r(l+a—g—3j)—2qn) and f(q(1+a—
g—1Jj)—2nr)

We deduce that there is z #0,s0 1+a—g—j=2rand ¢* =n? =r?=2°

Also we have f(g(1+a—j)— (n* + 1%+ ¢%))

So we deduce g(1 + a — j) = 3z% and from this and the defintion of x a have,
(9+3z)(g—7)=0

Sog#0and1+a—j7#0anda—2x+g+j5—1

From this entry ng(c+ g — j) + (g% — n? — ¢?), get z(c — j) = 2z* — gz — ¢*
When g =0 gives ¢ =)

And when g = =3z gives ¢ — —4x +j

Split into two cases:

Case2baaadbb2al wheng = z and Case2baaadbb2a2 wheng = —3z.
Case2baaadbb2al wheng = 0 and ¢ = j

We get f(j + 3z)2, 80 j — —3z

We get —12f2z CONTRADICTION.

Case2baaadbb2a2 wheng = —3z and ¢ = —4z + )

We get f(n? + g% +r? — 152?%) gives —12fx?=0 CONTRADICTION

Case Case2baaadbb2b when b = —3f ~1land n?+¢*+12=0,g#0,14+a—35 #0
we have entries f(3g(1 +a — j) + n® + ¢* +12), f(g(1 + a — 7 + 3g) — 2n7),
S(n(1+a—j+39)—2gr), f(r(1+a—j+3g) —2ng) and 3f(c* — g(1 + a +j))
Soc? = g(1+ a + j) and1+a—j+3g=2—:’”=ggf=2—:‘l=2x
Soa—2r—1+j—3gand 22 =n?=1r2=¢°

We also have f(g(1+a—3)+3n%—g¢*—r?) and g(1+a—j) = —z% and g(1+a—j+3g) =
2zg

—Z

So 3¢g? = 2zg +2? and get (39 +2)(g—z)=0sog=zorg= 2
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Also we have entry q(92 — n? — r?) + nr(c+ g — j) and using = = " get g% — 22% +
z(c+g—7)=0,s0 z(c—j) =22 —g* — 19

Split into two cases:

Case2baaadbb2bl wheng = z and Case2baaadbb2b2 wheng = =*.
Case2baaadbb2bl wheng = r and gives ¢ = j

We get f(j—1)%,s0j=z

We get —4f2z. CONTRADICTION.

Case2baaadbb2b2 wheng = Z*and givesc = 22 + j

We get 2f(3ng + 13rz) and using = =2, get 2f(3z + 13rz) = 0. CONTRADIC-
TION.

Case2bab u = e = 0 and s? # 2.

We get a matrix entry (i +a — h)(s? — i?) = (1 + k)(s? — i?) = v(s* —¢*) = 0 and
deduce h=1+a,v=0and k = —1

The matrix contains g(n+mn+iq—s—as+cs+rt), g(i+ai—ci—r —mr—qs—nt),
gll+a—c+m-+am—cm—ir—ns—qt), g(in+q+mq+rs—t—at+ct),
Split into two cases:

Case2baba wheng = 0 and Case2babb wheng # 0.
Case2babau=e=v=g=0and h=1+a, and k = —1 and s? # 2.

We have terms (1 + b)c¢? and ¢ f.

Split into two cases:

Case2babaa when ¢ = 0 and Case2babab whenc # 0 (implying that f = 0 and
b=-—1).

Case2babaau=e=v=g=c=0and h=1+a, and k = —1 and s* # .

We have terms f2j.

Split into two cases:

Case2babaaa when f = 0 and Case2babaab whenf # 0 (implying that j = 0).
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Case2babaaau=e=v=g=c=f=0and h=1+a, and k = —1 and s? # %
We have terms (1 + b)27, (14 b)q?, (1 + b)n? and (1 + b)r?

Split into two cases:

Case2babaaaa when b = —1 and Case2babaaab when b # —1 (implying that
j=g=n=1=0).
Case2babaaaau=e=v=g=c=f=0andh=1+4a, k=-1, b= -1 and
52 # 42,

We get entrys nrq, (14+a)rs, (1+a)ri, (14+a)ns, (L+a)ni, (14+a)gs and (1 +a)qgi.
Subtracting these gives n(a+1)(i—s) =0, r(a+1)(i—s) = 0 and g(a+1)(:—s) = 0,
so(1+an=0,(1+a)r=0and (14+a)g=0

Split into two cases:

Case2babab when a = —1 and ngr = 0 and Case2baba4b when a # —1 (implying
that g =n=1r=0).

Case2babab u=e=v=g=c=f=0and h=1+4+a,and k= —-1and b= -1
and a = —1 and s? # 2.

we have entries ngr, j(s? +2(1+m)t) and j7(:? + 2(1+m)t). Subtracting these gives
j(s2 =43 =0,s0j = 0.

Now we have entries 172 + ngt and —r%s — nqt, and on adding we have r%(i — s) = 0,
sor = 0.

Now we have entries iq? and sq?, and on subtracting we have ¢%(i — s) = 0, so ¢ = 0.
Now we have entries ns? and in? = 0, so likewise n = 0 SOLUTION.
Case2babadbu=e=v=g=c=f=gq=n=r=0and h=1+a,and k= -1
and b= —1 and s* # :? and a # —1.

We have terms (1 + a)ij and (1 + a)sj, so we deduce (1 +a)j =0,s0 5 =0.

We have terms (1 +a)(i +s)(1+m+t),sot =—1—m.

Now we have terms (1+m)?+is = 0 and 2+ s> —2(1+m)? = 0, so we get (i+s)? = 0.
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CONTRADICTION.
Case2babaaabu=e=v=g=c=f=j=qg=n=r=0and h=1+a, and
k= —1and s # 4% and b # —1.

We have terms (1 + a)(1+m +1t), (1 +a)((1 +m)? + 2is + t2), (1 + a)((1 + b)? -
2 — 52 = 2(1 +m)t),

Split into two cases

Case2babaaaba when a = —1 and Case2babaaabb when a # —1.
Case2babaaabau=e=v=g=c=f=j=q=n=r=0and h=1+4a, and
a=—1and k= -1 and s? # 4% and b # —1. SOLUTION.
Case2babaaabbu=e=v=9g=c=f=j=g=n=r=0and h =1+ a, and
a#—-landt=-1-—mand k= —1and s? # % and b # —1.

We get (14 b)? = (i + s)? and (1 + m)? + is = 0, split into two cases:

When s = 0, we get 2 = (1+ b)? and (1+m)? ,s0 ¢ = z(1 +b) and m = —1 when
r? =1 SOLUTION.

When s # 0, we get 1 = —(1 + m)?/s

We get b= z(i +s) — 1 and 2% = 1 SOLUTION.
Case2babaabu=e¢e=v=g=c=j=0,h=1+a, k= —1and s* # * and
f#0.

We have terms (1 + a)gi, (1+ a)gs, (1 + a)ri, (1 +a)rs, (1 + a)ni, (1 4+ a)ns.

We split into two cases: Case2babaaba a = —1 and Case2babaabb a # —1 and
sog=r=n=0.

Case2babaabau=e=v=g=c¢c=j=0and h=1+a,and a = k= -1 and
s2#4%and f #0.

We have terms fnr, frq, fnq, f(n?+¢*+r?). As f # 0 we have nr = ng=rq =
0 =n? +r? + ¢ The only solution to this is if g = 7 = n = 0. SOLUTION
Case2babaabbu=e=v=9g=c=j=¢q=n=r=0,h=14a, k= -1 and
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s?2#4i? and f # 0 and a # —1.

We have entries (1+a)f(1+b+f) and (1+a)(i+s)(1+m+t). Wededuceb = —-1—f
and m = —-1—1¢.

Now we get entries (1 + a)(is + t2) and (1 + a)(4f% — > — s? + 2t?), and deduce
£2 = —is and 4f2 = (i + s)>. SOLUTION
Case2bababu=e=v=g=f=0and h=1+a,and b =k = —1 and s? # i?
and ¢ # 0.

We have terms (1+a — ¢)ig, (1+a—c)sq, (1+a—c)ir, (1+a—c)sr, (1+a—c)in,
(1+a—c)sn, (1+a—c)(1+a)c, ngr. We deduce that (1+a—c)g=(1+a—c)n=
(I+a—-cr=Q1+4+a—-¢)(1+a)=0.

Split into two cases

Case2bababa when a = ¢ — 1 and Case2bababb whena # ¢ — 1 (implying that
n=r=q=0and a=-1).
Case2bababbu=¢e=v=g=f=n=r=qgq=h=0a,anda=b=k = -1 and
s?#i2andc# 0and a #c— 1.

We get j%s and j2%i,s0 j =0

We get cs? and ci?, so c = 0. CONTRADICTION
Case2bababau=¢e=v=g=f=0and h=1+a,and b=k = —1 and s? # 2
anda=c—1and c#0.

We have terms ing — qrs — nrt, ngs + irq + nrt, qi2 + (n + r)st, ¢s* + (n + r)it,
i*n 4+ qs(m + 1) + rt2, i%r + gs(m + 1) + nt?,

Split into two cases:

Case2bababaa when ¢ = 0 and Case2bababab when g # 0.
Case2bababaau=e¢e=v=9g=f=qgq=0and h=1+4+a,and b=k = -1 and
s°#i2anda=c—1and c#0.

Get r?s and 7%, so r = 0.
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Then get ns? and in?, so n = 0.

Then get 525 and 352, so j = 0.

Then get c?s and c%i, so ¢ = 0. CONTRADICTION.
Case2babababu=e=v=g=f=0andh=1+4aqa,and b=k = —1 and s? # i?
and a =c—1and ¢# 0. and ¢ # 0.

We have terms ing — grs — nrt, ngs + irq + nrt, qi* + (n + r)st, gs* + (n + r)it,
i’n + qs(m + 1) + 712, i*r 4 qs(m + 1) + nt?, ngr.

On subtracting terms, we get q(s? — %) + t(n +r)(i — s) = 0, and on dividing by
s—iwegetq(s+i) =t(n+7). As i+ s # 0 this means that ¢t # 0 and n + 7 # 0.
Now the equation gi® + (n + r)st = 0 gives, on substitution, g(i% + is + s?) = 0,
so i + is 4+ s> = 0. From this we must have both s # 0 and i # 0. We deduce
that 4 = sz, where z # 1 is a solution of z* = 1. Now we get nr = 0, and then
q(in —rs) = 0 and q(ir + ns) = 0. As g, s are nonzero and ¢ = st we get 7 = zn and
n=—-x’n,son=r=0.

On substituting this, we get entries ¢°t and (1 + m)?q,s0 t =0 and m = —1.

Then we get i2g = 0. CONTRADICTION
Case2babbu=e=v=0and a=h—1, and k = —1 and s # % and g # 0.

We have entries g((¢c — h)i + n(1+m) +gs +rt) , g((c = h)i+ r(1 +m) + gs + nt).
Subtract to get (n — 7)(1 4+ m —t).

Split into two cases:

2babba when 7 = n and 2babbb when m =t — 1 and r # n.
2babbau=e=v=0anda=h—-1landk=-1and s> # i and g#Oand r = n
We get i%q + 2ns(1 + m) + gt? and s%q + 2ni(1 + m) + gt2.

Subtract to get (i — s?)q + 2n(s —i)(1 +m) = 0 dividing by (i — s), get (i + s)g =
2n(1 +m) |

And we have also entries gi® + 2ns(1 + m) + qt?, gs* + 2ni(1 + m) + qt* gives
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g(s+i)=2n(l+m),ass+i#0,get g=gq

And from g(s + i) = 2n(1 + m), we deduce n # 0 and m # —1

We have n(g(c+ g —j) —n?),so glc+g—j) =n?

And we have n(3fg — (h —j)(1 + b)), s0 3fg = (h — j)(1 + b)

And we have n(g(1+b)+2fg— f(h—j)) so g(1+b)+2fg— f(h—35) =0

And we have 2gi(1+m) +n(s? +1%), 2gs(1+m) +n(i® +t2), so 2g(1+m) = n(s+1)
times g gives 29%(1 + m) = ng(s +14) = 2n%(1 + m) so g% = n?.

Fromg(c+ g — j) = n? get g(c—j) =0,s0 c = j.

We get 3fg(h + j) + 72(1 + b), and we have 3fg = (h — j)(1 + b), from them get
(1+b)h?

And we have h(g(1 +b) + f(2g+j)),s0if 1+b=0then f =0

split into two cases:

2babbaawhen b = —1 and f = 0 and 2babbab when b # —1 ,s0 h =0
2babbaau=e=v=f=0,a=h—-1,b=k=—-1,52#4i2 q=9g#0,7r=n,
n#0,m#—1,c=7and g2 =n? 29(1+m)=n(s+1) and g(s +1i) = 2n(l + m)
We have entries g(2gj + j2 — 3n?), but n? = g2 and g # 0, s0 (7 +39)(j —g) =0, so
j=gor(j=-3g).

We have g(g(1 + m) + n(i + s) + t(j — h)), use 29(1 + m) = n(s + i) to get
39(1+m)=t(h—7),0t#0andh #0.

We have (1 + m)%g + i + 2nst, (1 + m)2g + s* + 2nut

Deduce g(i +s) =2nt,sol+m =t, and m=1t—1

Now 3¢t =t(h—j),so h=3g+]

We get g(gi — 3gs + 2nt) and g(3gi — gs — 2nt) add to get g(4g: — 4gs) = 0, so
4g*(i — s) = 0 CONTRADICTION.
2babbabu=e=v=h=0,a=h—-1,k=-1,8#4i,qg=9g#0,r=n,n#0,
m# —1,c=4,¢9>=n?and b # —1.
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We have g(3g* — 297 — j%),s0 j = g or j = —3¢g ,and so j # 0.

And we have j(i + s)(1 + m +t), deduce m = —t — 1.

And we have j(3fg+j(1+0b)) and j((1+ b)* + 3/?) gives a cntradiction with either
j=gorj=-3g CONTRADICTION.

Case2babbb u =e¢e =v=0and a = h—1, and k = —1 and s% # 4?> and g # 0,
m=t—1andr #n.

We have ns?+ git+iqt+1t?, ins+git+qst+rt?, subtract to get ns(s—i)+qt(i—s) = 0,
dividing by (s — 7) to get ns — gt = 0.

We also have ins + git + gst + rt?, irs + git + gst + nt?, subtract to get is(n — r) +
(r —n)t? = 0, dividing by (n —7) to get is —t = 0.

We also have ns?+git+iqt+rt?, rs*+git+igt+nt*, subtract to get (i—s)rs+qt(s—i) =
0, dividing by (¢ — s) to get rs — gt = 0.
Sons=qt=rsbutn#r,sos=0andi#0

We gett? =0,s0t =0

We get gi? = 0 CONTRADICTION.

Case2bb When u # 0 # e, es —iu = 0 and € = u?/neq0, put e = ru and so i = zs,
where z = £1.

We have entry (1+a — h)u(l +k —v)

Split into two cases:

case 2bba when kK = v — 1 and 2bbb when k #v —1,s0a=h — 1.

case2bbae = ru,i=xsk=v—-1,u#0# e and r = £1.

We have entry (1+m —t)(1+b— fz)u

Split into two cases:

case 2bbaa when b = fr — 1 and 2bbab when b # fr—1,som =¢— 1.
case2bbaae=zu,i=zsk=v—-1,u#0#eandr==x1land b= fz — 1.

We have entries fgh— fgj — fn?— fxq? — fr* —gsux, fgh— fgj— fan?— f¢* — fr* —
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gsuz, fgh— fgj — fn?— fq* — fzr? — gsuz. Subtracting these gives f(1—z)(q?+n?)
VA =2)(r?+n?), f(1-2)(¢® +1?).

Split into three cases : case2bbaaa when f = 0 and case2bbaabwhen z = 1 and
f # 0 andcase2bbaac when f #0andz# 1sozxz=—-landg=n=r=0.
case2bbaaae =zu,t=zsk=v—-1l,u#0#eandz=xland b= fz—1, f =0.
We have entry gsu

Split into two cases:

case 2bbaaaa when s = 0 and 2bbaaab when s # 0, so g = 0.
case2bbaaaae=zu,i=zsk=v—-1,u#0#eandr =xland b= fz -1,
f=s=0.

We get (1 + m)?u and t?u ,s0t=0and m = —1

We get —(1+a)? + k(1 +a) — h* +u? — 2hv + 202 and —h(1 + a) + u?® — 2hv + 202
Subtracting these gives (1 +a)? —2h(1+a)+h*=(1+a—h)? =0,s0a=h—1
We get 2u3(u—v)(u+v),s0v=yuand y? =1

We also get u(h — uy)(h + 3uy), so h = ayu and o = lor — 3

We have entries (9—7)((9+7)r+2nq), (9—7)((9+7)n+2rq) and (g—7)((9+7)g+2nr)
Split into four cases:

case2bbaaaal when g = j .

case2bbaaaa2 when g # j, so ¢ = —j and at least two of n, ¢, r are zero .
case2bbaaaa3 when g2 # ;2 and all of n, g, are zero .

(_gjij)_2 2 2

case2bbaaaa4 when g2 # 7% and all of n, ¢, 7 are non- zero and =rl=¢q%=

n?,

case2bbaaaale = ru, i =zrsk=v -1, u# 0 # eand z = £land b = fzr — 1,
f=s5=0,t=0andm=-1l,a=h-1,v=yuandy’=1,¢9g=7.

We j(c? +2j2—n?—q*—1?), 3(cj2 —ngr), ¢q(n*+r2—52) —cnr, n(q® + 1% — j2) — cqr,

r(n? + ¢* — j%) — cng and ng + gr — cu + j2y + nry — ju — 2jua
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Split into two cases :

case 2bbaaaala when j = 0 and 2bbaaaal b when j # 0.
case2bbaaaalae=zu, i =zsk=v—-1,u#0#eandz ==+l and b= fr — 1,
f=s=0t=0andm=-l,a=h-1l,v=yuandy?>=1,g=jand j =0,
h=ayuand o« =lor — 3,z = 1.

We get cua, so c =0

And we get 3ngr, q¢(n? +12), n(¢* + r?) and r(n? + ¢?), so must have at least two of
n,q,r are zero.

But we get also ¢ + 7y + nya, so all n , q , r are zero SOLUTION.,
case2bbaaaalbe=zu,i=2zsk=v—-1,u#0#eand z = £1 and b = fzr — 1,
f=s=0,t=0andm=-1,a=h—1,v=yuandy?*=1,g=7jand j #0.

We have entry 3(cj? — ngr), so ¢ = %
Suppose n =7 = 0, we get ¢j2, so ¢ =0

Suppose ¢ = 0, get n(r? — j%) and r(n? — j%), so r* = n? = j2 # 0, so can not have
all n, q, r are zero, and so only one or all them are non - zero.

Split into four cases:

case2bbaaaalbl when n =0 and q,r # 0 ,c = 0.

case2bbaaaalb2 when r =0 and ¢,n # 0 ,c = 0.

case2bbaaaalb3 when ¢ =0 and n,7 # 0 ,¢c = 0.

case2bbaaaalb4 when all n , q ,r are non - zero.

case2bbaaaalbl when n =0 and ¢,7 # 0 ,c = 0 and 7? = ¢* = j2.

We get ju(—u + jya) , so u = jya.

We get j202(a? — 1), so a = 1, we get j2¢ CONTRADICTION.

case2bbaaaalb2 when r = 0 and n,q # 0 ,c = 0 and ¢*> = n? = ;2

We get ju(—u + jya), so u = jya

We get j2a?(a? — 1), so a = 1, we get j*qy CONTRADICTION.
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case2bbaaaalb3 when ¢ =0 and n,7 # 0 ,c = 0.

We get ju(—u + jya), so u = jyo

We get j2a?(a? — 1), so a = 1, we get j2ry CONTRADICTION.

case2bbaaaalb4 when alln ,q,rarenon-zeroande=zu,i=zsk=v-1,
u#O0#eandz=zxlandb=fzr—-1,f=s=0,t=0andm=-1,a=h-1,
v=yuandy? =1, ¢ =jand j # 0 and h = ayu.

We have entries g(72 — 12)(2 — n2), r(j? — ¢®)(7* — n2) and n(j? — r2)(7* - ), s0
must have at least two of j2 = ¢ ,j2 = r? and j? = n?

We get u3(z — 1) and u(h — uy)(h + 3uy), so ¢ = 1 and h = quy then a = lor — 3

We get cn + jr — qu + 7%y + jqu — ruy — jua — nuya and jn +cr — qu+ jiy + jqy —
nuy — jua — ruya subtracting these gives (n — r)(c — j + uy — uya)

And we get nu + juy + quy — 2nqya — 2jrya + ruce? and ru + juy + quy — 2jnya —
2qrya + nua? subtracting these gives (n — r)(—u — 2jya + 2qya + ua?)

Split into two cases :

case 2bbaaaalb4a when n = r and case 2bbaaaalb4b when n # r, so ¢ =
J+uy(l —a)and g = yu(l — a?)/2a+j

case2bbaaaalb4a when all n, q ,r are non - zero and e = zu, i = s k = v — 1,
u#0#eandz=2landb=fr—-1, f=s=0,t=0andm=-1,a=h-1,
v=yuandy?’=1,g=jand j #0and h = ayu and n =r.

We must have at least two of j2 = 72, j2 = n? and j2 = ¢°

When 52 = r2, we get ¢j2 = qr?, so j2(c—q) and j # 0, so ¢ = q and T = zj then
22=1

And we get cu + 2ju — j2ya — n?ya — ¢?ya — rlya + jua?, so ¢ = (—2ju + jlya +
*ya + 2r?ya — jua?)/u

We get 1/2u?(—1+ yz)(1 + a)?

Split into cases :

205



When z = —y, we get (j—q)uy, J = ¢, and we get —2juy(1+a) CONTRADICTION.
When z = y, we get 272+ 2jq— juy — quy — juyce and 252+ 25q — 2juy — juya — quya,
subtracting these gives (j — q)uy(a — 1)

Split into two cases:

When o =1 and when « = —3 and ¢ =)

When o = 1, we get 252 4- 2jq — 3juy — quy and 3ju + qu — 352y — g%y, subtracting
these gives (j — q)%y, so ¢ = j, we can see that if a = lor — 3 we get ¢ = j

We get 2u*(—1+41x),s0 z =1

We get zj — uy — uya, so j = uy(l + «)/2

We get —(1/2)uy(—1 + a)(1 + a)(3 + @) we have two possiple @ = 1 and @ = —3
SOLUTION in the both cases.

case2bbaaaalb4b when all n , q ,r are non - zero and ¢ = zu, i = s k = v — 1,
u#Z0#eandz=2xlandb=fzr—-1, f=s=0,t=0andm=-1,a=h-1,
v=yuandy? =1, g=jand j #0and h =ayu, n #r, ¢ =7+ uy(l — ) and
g=yu(l-a®)/2a+]. '

We get 2(n — r)u(a—1),s0 a =1

We get u(n+r — 2jy), son =2jy —r

We get 45(j —uy) and (j — )%, sor=j and j = uy

We get 2u’(y — 1), s0y = 1

We get u®(z — 1), so z = 1 SOLUTION.

case2bbaaaa2 e=zru,i=rsk=v—-1,u#0#eand r =+x1land b= fr—1,
f=s=0,t=0andm=-1l,a=h—-1,v=yuandy*=1,g# j, g = —j and at
least two of n, q,r are zero .

When ¢ =n =0 and r # 0, we get u?(j —7y),s0 j =71y

We get r?uy CONTRADICTION.

When r = ¢ = 0 and n # 0, we get u?(j — ny), so j = ny.
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We get nuy CONTRADICTION.

When r =n =0 and g # 0, we get (j — q)uy,so j =gq

We get q*uy CONTRADICTION.

When n = ¢ =r =0, we get ju?,so j =0, but g # j and g = —j CONTRADIC-
TION.

case2bbaaaal3 e =zu, i =zsk=v—-1l,u#0#ecandz=+1and b= fzx—1,
f=s=0,t=0andm=-1,a=h~—1,v=yuand 4> =1, g% # 52 and all of
n,q,T are zero.

We get gu?, so g =0

We get u(h — uy)(h + 3uy), so h = ayu when a = lor — 3

We get ud(z —1),s0z =1

We get c(c —j)j

Split in two cases :

When ¢ = 0, we get 3u2j CONTRADICTION.

When ¢ = j, we get ju(j — 2uy — 2uya) and ju(—3u+ jya —ua?), so split into cases:
When o = 1, we get ju(j — 4uy), so j = duy, we get 16u3(y — 1), so y = 1 SOLU-
TION.

When o = -3, we get ju(j + 4uy), so j = —4uy, SOLUTION when y = lor — 1
case2bbaaaad e = zu, i =rsk=v—1l,u#0#eand zr =+l and b= fr—1,
f=s8=0,t=0andm=-1,a=h-1,v=yuand > = 1, g% # 52 and all of
n,q,T are non- zero and % =12 =¢g%=n?

We get u(h — uy)(h + 3uy), so h = ayu and o = lor — 3

We get ud(z —1),s0x =1

We get gn + jn+2gr =0, s0 5 = —g—%qf #9g

We have 12 = ¢?> =n? weletr = znand g =Bnand B2 =22 =1,s0 g # —20n

We get (z — 1)(u — gy — ue + 3nyf) and (z — 1)(c ~— g + uy — uyc)
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Split into two cases :

case 2bbaaaa4a when z = 1 and case 2bbaaaa4b when z # 1 s0o z = —1,
g9 =c+uy —uya and g = uy — uye + 3nf, when subtracting these gives ¢ = 3nf
case2bbaaaadae=zru, i =zsk=v—1l,u#0#candz=4land b= fzr —1,
f=s=0,t=0andm=-1,a=h—1,v=yuand y? = 1, g2 # 52 and all of
n,q,T are non- zero and (g:—”z =r’=¢*=n2 h=oayuand a = lor — 3,2 = 1,
j:—g—znﬂyé_q,r=znandq=ﬁnandﬁzzzzzlandzzl.

We get—cn — gn + g%y + nuy + gua + nuya + nuf + gnyB, so ¢ = (—gn + ¢’y +
nuy + gua + nuya + nuf + gnypB)/n.

We get ua(B — y)(ny + g).

Split into two cases :

case 2bbaaaad4aa when 8 = y and case 2bbaaaadab when 8 # y, so § = —y and
g=-ny

case2bbaaaadaa ¢ = zu, i = s k = v -1, u # 0 # ¢ and r = +land
b=fr—1, f=s=0,t=0andm=-1,a=h-1v=yuandy* = 1,
g%> # 7% and all of n,q,r are non- zero and Q%j)i =712 =¢>=n% h = ayu and
a=1lor—3z=1j=-g- 2 £gr=znandg=pnand 2 =2>=1,2=1,
c = (—gn + g*y + nuy + gua + nuya + nuf + gnyB)/n and B =y.

We get n(a — 1)(29 + 2ny — uy + uya)

Split into two cases :

case 2bbaaaadaaa when o = 1 and case 2bbaaaad4aab when o # 1, so « = =3
and g = y(2u — n)

case2bbaaaadaaa ¢ = zu, ¢t = s k = v -1, u # 0 # e and ¢ = *land
b=fr—1, f=s=0t=0andm=-1,a=h-1,v=yuand y? =1,
g? # j% and all of n,q,r are non- zero and (—914—]'2 =r?=¢*=n? h = ayu and

a=107'—3,x=1,j=—g—2%#g,'r':znandq=ﬁnand[52=z2=l,zzl
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= (—gn+ g%y + nuy + gua + nuya + nuf + gnyB)/n and B =y and a = 1.

We get 2gn + gu + 2n%y + 3nuy and 2n? + 3nu + 2gny + guy subtracting these gives
2(g—n)(g+n),s0g=2ynand y? =1

We get 2ny + 3uy + 2ny + uy= 2n(y + ) + u(3y + )

When v = ~y, we get 2uy CONTRADICTION.

When v = y, we get 2uy CONTRADICTION.

case2bbaaaadaabe = ru, i = zs k = v—1, u # 0 # e and r = £1 and
b=fzr—-1,f=s=0,t=0andm = —-1,a=h~-1,v=yuandy? = 1,
g* # 7% and all of n,q,r are non- zero and @—:—jﬁ =712 =¢% =n? h = ayu and
a=10r—3,:c=1,j=—g—¥#g,r=znandq=5nand62=z2=1,z=1,
¢ = (—gn + g%y + nuy + gua + nuya + nufB + gnyB(/n and B = y, @ = —3 and
g =1y(2u —n).

We get n(n — u)u?y, so n = u SOLUTION.
case2bbaaaadabe=zu,i=rsk=v—1,u#0#eand r = £land b = fr —1,
f=s=0,t=0andm=-1,a=h~-1,v=yuand y?2 =1, g2 # j2 and
all of n, q,r are non- zero and (11:112 =72 =¢>=n% h =ayuand a = lor — 3,
z=17j=-g-—% #£g r=znandg=pfnand f? =2 =1and z = 1
¢ = (—gn + g%y + nuy + gua + nuye + nuf + gnyB)/n, f = —y and g = —ny.

We get 2n2uy(4n + u(l — «)), son = —u(l — «)/4 and so « # —1 because n # 0
We get 4u*(a — 1)?(2 + ) CONTRADICTION.
case2bbaaaadae=ru,i=rsk=v—1,u#0#eand r =21 and b= fr—1,
f=s=0,t=0andm=—-1,a=h—1,v=yuand y?> =1, g> # 52 and all of
n,q,T are non- zero and @2- =r’2=¢>=n% h=oayuand a = lor — 3,z = 1,
j:—g—%?#g,r:znandq=ﬁn,ﬁ2=zg=1,z=—1andc=3n,6’.

We get uy(a — 1)(uy(l — &) + 4nf8) and u(u(a — 1) — 4nyfB), when o = 1, we get
~4nypPu, so o« = —3
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We get 4u(u + nyf), so u = —nyp

We get 4n?y3 CONTRADICTION.

case2bbaaabe =zu,i=2sk=v—-1,u#0#eandz = Fland b = fz -1,
f=g=0and s#0.

We get t2u + 2sv + 2msv and t>ux + 2sv + 2msv. Subtracting these gives t?u(z — 1)
Split into two cases :

case 2bbaaaba when z = 1 and 2bbaaabb when z # 1,sot=0and r = —1.
case2bbaaabae=zu,i=zsk=v—-1,u#0#eandx==xland b= fr— 1,
f=9g=0ands#0and z = 1.

We get s(1+m —tjusom=1t—1.

We get stu,sot =0

We get s?u CONTRADICTION.
case2bbaaabbe = zu, i =zsk=v—-1, u #0#eand x = £l and b = fzr —1,
f=g=t=0and s# 0and z = —1.

We get s’u CONTRADICTION.

case2bbaabe = zu,i=zsk=v-1l,u#0#eandz=*land b= fr -1, f#0
and r = 1.

We get (=1 + f —m)(tu — vs)

Split into two cases :

case 2bbaaba when m = f — 1 and 2bbaabb when m # f — 1 and v = &,
case2bbaabae = ru,i =rsk=v—-1, u#0#eand r = £l and b = fr — 1,
f#0andz=1and m= f — 1.

We have entries fs +afs — fhs + 2f%u + ftu — t*u — 2fsv and fs+afs — fhs +
f?u + s?u — 2fsv. Subtracting these gives u(f? — s? + ft — t2).

And we have also (2f%—s? — ft)u Subtracting these gives (f2—2ft+t%)u, so (f—t)*u
andsot=f
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We get (f2? — s?)u, sos = yf and y? = 1

We get f2(1+a—h —2v+2uy),soa=—1+h-+2v— 2uy

We u(u — yv)?, so v = yu

We get u(h — uy)(h + 3uy) =0

Split into two cases :

case 2bbaabaa when A = uy and 2bbaabab when h = —3uy

case2bbaabaae =zru,i=12sk=v—-1,u#0#eandr=xlandb= fr—1,f #0
andr=1landm=f—-1,t=fs=yfandy? =1la=—-1+h+2v—2uy,v =yu
and h = uy.

We get f(cn + jr + j2y + jqy) and f(jn + cr + j%y + jqy) , subtracting these gives
(c—g)n—r)=0.

We get f(jn + gr + q®y + nqy) and f(gn + jr + q®y + nqy) , subtracting these gives
(9—Jj)n—r)=0.

We also get f(jn + nq + gqy + r*y) and f(jr + rq + gqy + n?y) , subtracting these
gives (n—r)(j+g—(n+r)y) =0

Split into two cases :

case 2bbaabaaa when n = r and 2bbaabaab whenn # rso,c=g=j =2ny —gq
case2bbaabaaa e =zu,i=2sk=v—-1,u#0#eand x = 1 and b = fxr — 1,
f#0andr=1landm=f-1,t=f,s=yfandy? =1,a = —1+h+2v—2uy,w = yu
and h =uy and n =r.

We have entries ¢* + 1% + gry + jry = 0 and jq + r% + gry + qry = 0, subtracting
these gives (¢ — j)(g—71y) =0

Split into two cases :

case 2bbaabaaaa when ¢ = 7 and 2bbaabaaab when g # j so, ¢ = 2ry
case2bbaabaaaaec = zu,i=zs, k=v—-1,u#0#eandr==xland b= fr—1

Jf#O0andz=1landm=f-1,t=fs=yfandy’=1la=-1+h+2v-2uy,v =
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yuand h=uy and n=r and g = 7.

We have entries f(gj + j2 + 2r) and f(gj + 72 + 2jry), subtracting these gives(j2 +
r? —2jry)

And we have (j2+7r%+ gry+ jry), subtracting these gives gry+3;ry, so r(g+35) = 0
Split into two cases :

case 2bbaabaaaaa when 7 = 0 and 2bbaabaaaab when r # 0 so, g = 3g
case2bbaabaaaaae =zru,i=zsk=v—-1l,u#0#eandr==xland b= fr—1
J#0andz=landm=f—-1,t=fs=yfand y> =1l,a= -1+ h+ 2v — 2uy,
v=yuand h=uyandn=randg=jand r =0.

We get fj2=0,507 =0

We get fg*y =0, s09=0

We get fc?2 =0, so ¢ =0 SOLUTION.
case2bbaabaaaabe=zu,i=zsk=v—-1,u#0#eandz=xland b= fr—1,
f#0andz=1landm = f-1,t = f,s =yfandy® = l,a = —1+h+2v—2uy,v = yu
andh=uyandn=rand qg=j,r#0and g =39

We get f(2j2+71r%)s0j#0

And we get (52 + r? + 2jry), subtracting these givesj(j — 2ry), so j = 2ry

We get fr2 CONTRADICTION.
case2bbaabaaabe=zu,i=azsk=v—-1,u#0#candz=xland b= fr -1
f#0andz=1landm=f—-1,t=f,s=yfandy’=1la=—-1+h+2v-2uyv =
yuand h=uyandn=r, q# j and q = 2ry.

We get f(gj + 3r?) so gj = —3r?

And we get f(c? + 3gj) so (¢ — 9r?) = 0 and get ¢ = 3zr

We get f(25r 4 j%y+3r%z) and f(2gr+ g%y +3r?z) subtracting these gives (j —g)(2r+
yg +yj) =0

Split into two cases :
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case2bbaabaaaba when j = g and case2bbaabaaabb when j # g so, g = —2ry—j
case2bbaabaaabaec=zru,i=zsk=v—-1,u#0#eandz=+x1land b= fxr—1,
f#0andz=landm=f-1,t=f,s=yfandy’=1l,a=—-1+h+2v—2uy,v =
yuand h=uyandn=r,c=3zr,gq# j and ¢ = 2ry-and j = g.

We get 2fr(r + gy)

Split into two cases :

case2bbaabaaabaa when r = 0 and case2bbaabaaabab when r # 0 so, r = —gy
and g #0

case2bbaabaaabaae =zu,i=zsk=v—-1,u#0#eandz==xland b= fr—1
J#0andz=1landm=f—-1,t=fs=yfandy’ =1a=—-1+h+2v—2uyv =
yuand h=uyandn=r7r,q 5 jand ¢ =2ry, c=3zr and j = g and r = 0, sog = 0.
We get fg? so g =0 and so j = 0 but ¢ # j CONTRADICTION.
case2bbaabaaababe=zu,i=zsk=v-1l,u#0#eandr=+land b= fr—1,
f#0andr=landm=f—-1,t=f,s=vyfand y> =1la=—1+h+2v—2uy,
v=yuand h=uyandn=r,g#jand gq=2ry,c=3z2rand j =9, 7#0,9g #0
and r = —gy.

We get fg? CONTRADICTION.

case2bbaabaaabbe =zu,i=zsk=v—-1,u#0#eandzx=+land b= fzr—1
f#0O0andz=1landm=f—-1,t=fs=yfandy?=1a=—-1+h+2v-2uy,v =
yuand h=uyandn=r,q#jand ¢=2ry ,c=32r,j#gand, g=—2ry—j.
We get f(—c+4j +9ry), so c =45+ 9ry

We get 2f%(5 + 3ry), so j = —3ry

We get 3fryz , sor = 0 but we have ¢ # j and ¢ = 2ry and j = —3ry CONTRA-
DICTION.
case2bbaabaabe=zu,i=zs,k=v—1,u#0#eandz=+xland b= fr—1
f#Oandz=landm=f-1,t=fs=yfandy’ =1a=—-1+h+20-2uy,v =

213



yuand h=uy ,n#randc=g=j =2ny —q.

We have entry ¢ +2gj =0s04c?> =0andsoc=g=3j =0and g = 2ny

We get 4g%f ,s0 g =0

We get u?y(n+r1),s0n=—r

We get 2f2r so r = 0 but we have n # r and n = —r CONTRADICTION.
case2bbaabae=zu,i=zsk=v-1,u#0#eandz=+xlandb= fz—1,f #0
andr=1landm=f-1,t=fs=yfandy’*=1la=—-14+h+2v-2uyv=1yu
and h = —3uy.

We have entries f(jn+gr+q¢*+nry+4nuy) , f(gn+jr+q*+nry+4ruy) subtracting
these gives (n — r)(j — g + 4uy) Split into two cases :

case2bbaabaa when n = r and case2bbaabab when n # r so , j = g — 4uy.
case2bbaabaae=zu ,i=zsk=v—-1,u#0#candz=dland b= fx -1
J#0andz=landm=f-1,t=fs=yfandy’*=la=-14+h+2v—2uy,v =
yu and h = —3uy,n =r.

We get f(j2+cq —ur+2jry — dquy — Tru) , f(j2+ jg—ur+ jry+cry — dquy — Tru)
subtracting these gives(c — j)(q — ry)

Split into two cases :

case2bbaabaaa when ¢ = j and case2bbaabaab when ¢ # j so, ¢ = ry.
case2bbaabaaae=zu,i=2sk=v—-1,u#0#candz=+land b= fr—1
f#0andz=1landm=f-1,t=fs=yfandy?’=1la=~1+h+2v-2uyv =
yu and h = —3uy,n =r and ¢ = 7.

We get f(jr +qr + gqy + r®y + 4ruy) and f(gr + jr + ¢*y + r?y + 4ruy) subtracting
these gives(q — g)(r — qy)

Split into two cases :

case2bbaabaaaa when ¢ = g and case2bbaabaaab when ¢ # g so , r = ygq

case2bbaabaaaac=zu,i=xzsk=v—-1,u#0#eandz=+land b= fr—1
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J#Oandz=1landm=f-1,t=fs=yfandy?’=1,a=—-1+h+2v0—2uyv =
yuand h = -3uy,n=r,c=7jand ¢ =g.

We get f(2ru — 2guy) ,sor = gy

We get fg(4u + 3gy + jy)

When g = 0, we get 16 f2uy CONTRADICTION.

When j = —4uy — 3g , we get 16 fu? CONTRADICTION.
case2bbaabaaabe=zu,i=1rs,k=v—-1,u#0#eandr=xland b= fr—1
J#0andz=1landm=f-1,t=fs=yfandy?=1,a=—-1+h+2v—2uy,
v=yuand h=—-3uy,n=randc=j,q+# gandr=yq.

We have entry f(3gu+ qu+ gqy + jqy +2¢¥), if g = 0, then g = 0, but g #,s0 ¢ # 0
And we get —4f%j + 12ju? + gg?uy + 3j%uy and —4f2j + 125u® + qq?uy + 3j%uy,
subtracting these gives ¢(g — ¢)(g9 + q)uy, so g = —q

We get —4fq> CONTRADICTION.
case2bbaabaabe=zru,i=zs,k=v—-1,u#0#eandr=xland b= fr—1
J#0O0andz=landm=f—-1,t=fs=yfandy?=1la=—-1+h+2v—2uy,v =
yuand h=—-3uyn=r,c# jand g =ry.

We get fr(jy + 2r + 4u + gy)

Split into two cases :

case2bbaabaaba when r = 0 and case2bbaabaabb when r # 0 so, r = —(yg +
Jy +4u)/2

case2bbaabaabae=ru,i=rs,k=v—-1,u#0#eandr==xland b= fr—1,
f#0andz=1landm=f—-1,t=fs=vyfandy?>=1a=—-1+h+ 2v — 2uy,
v=yuand h = -3uyn=r,c#jandr =0, q=ry.

We get fj%y,s0j =0

We get g%y, so g =0

We get fc?, so ¢ = 0 but ¢ # j CONTRADICTION.
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case2bbaabaabbe=zu,i=2zsk=v—-1,u#0#eandz==xland b= fxr—1,
f#0andz=1landm= f-1,t=f,s=yfandy? =1,a = —1+h+2v—2uy,v = yu
and h=-3uyn=r,c#jand g=ry,r #0and r = —(yg + jy + 4u)/2.

We get fu(2c+ qg + 7 + 12uy), so j = —2c — qg — 12uy

We get f(c? + 6cg + 99%) = (¢ + 39)? , so ¢ = —3g We get fu(8uy) CONTRADIC-
TION.
case2bbaababe=zu,i=rsk=v—-1,u#0#eandxz=+land b= fr -1,
f#0andz=1landm=f-1,t=fs=yfandy? = l,a = —1+h+2v—2uy,v = yu
and h = —=3uy,n # r and j = g — 4uy.

We have entries 2u(4gny + 4qry + 8f2? — 8nu) and 2u(4gny + 4qry + 8f% — 8nu) ,
subtracting these givesdy(g — ¢)(n —7) , sog = q

We also have n? + gq + gry + gqry and r% + gq + gny + gny , subtracting these
gives(n —r)(n+r—gy—qy),sor =gy +qy—n

We get n? + 3¢% — 2nqy and n? 4+ 5¢°> — 2nqy , subtracting these gives2¢®> = 0 , so
g=0

We get n =0, so r # 0 because n # r , but we get > CONTRADICTION.
case2bbaabbe=zu ,i=zsk=v—-1,u#0#eandzxz=xland b= fr—1
J#0andz=1,m# f—1landt=".
We have entry u? + (1 4 a)v — hv — v?, so v # 0

And we have u? +v(l+a—h) —v?and v’ (1+a—h)+vu?—v® ,puta=1+a—h

3 2

We get u? + va — v? and v2a + vu? —v® so u? = v? — av
So ula+vu?—v3 = (V¥ —av)a+v(v?—av)—1¥ =—a?v=0,s0a=0and a = h—1
We get u?(u — v)v(u + v), so v = yu when y? = 1

We get u3(h — uy)(h + 3uy) , so h = fuy and 8 = lor — 3

We get u(f — sy)(fy+3s),so f =asy and o = lor — 3

We also get fu(l+m—sy),som =sy—1but m# f—1,s0sy # f,and so a = —3.
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We get (s —u)(s + 3u)

Split into two cases :

case2bbaabba when s = u and case2bbaabbb when s = —3u.
case2bbaabbae=zu,i1=zs,k=v—-1,u#0#eandz==xland b= fr—1
J#Oandz =1, m# f-landt=% a=h-1,v#0,v=yu,y’ =1,
h=puyand f=1lor—3, f=asy,a=-3,f=asy,m=sy—1and s =u.
We get gn + ng + qu + jqy + r%y + 4nuy — quB and —jn — ng — qu — jqy — r’y —
nuy + quf + nuyf subtracting these gives n{g — j + 3uy + uypf)

We get —jn — jr — q*y — nry — nuy — ruy + nuyB + ruyB and —jn — gr — g*y —
nry — nuy — 4ruy + nuyf subtracting these gives r(g — j + 3uy + uyf)

We get —n? — jg — ru — jry — qry — quy + Tuf + quyB and n? + gq + ru + jry +
qry + 4quy — ruf adding these gives q(g — j + 3uy + uyB)

Split into two cases :

case2bbaabbaa when j = g+ 3uy+uypf and case2bbaabbab when g =7 =n = 0.
case2bbaabbaae=zu,t=2s,k=v—-—1,u#0#eandz==xland b= fr—1
J#Oandz=1m#f—-landt=% ,a=h—-1,v#0,v=yu,y’ =1,
h=puyand B=1lor—-3, f=asy,a=-3, f=asy, m=sy—1,s=uand
J =g+ 3uy + uypb.

Split into two cases:

case2bbaabbaaa when 8 = —3 and case 2bbaabbaab when 5 =1
case2bbaabbaaae=ru,i=1rs,k=v—1,u#0#eandr=xland b= fr—1
J#Oandz =1, m# f-landt=% a=h-1,v#0,v=yu,y? =1,
h=pfuyand f=1lor—-3, f=asy,a=-3,f=asy, m=sy—1,s=u and
Jj =g+ 3uy+uyB and § = -3.

We get —cn — gr + 4qu — g%y — gqy + 4ruy and —gn — cr + 4qu — g*y — gqy + 4nuy,

subtracting these gives —(n — r)(¢ — g + 4uy) Split into two cases:
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case2bbaabbaaaa when n = r and case 2bbaabbaaab when n # r, so g = c+4uy
case2bbaabbaaaae=zu,i=zs,k=v—-1,u#0#eandzx=+xland b= fr—1
J#Oandz=1,m# f—-landt=% a=h—-1,v#0,v=yu y* =1,
h=puyand B=1lor—-3,f=asy,a=-3,f=asy, m=sy—1,s=uand
j=g+3uy+uyf and f = -3 and n=r.

Go to case2bbaabbaaba
case2bbaabbaaabe=zu,i=zs,k=v—-1,u#0#eandr=xland b= fr—1
J#O0andz=1m# f—landt=% ,a=h—-1,v#0,v=yu,y*=1,
h=pfuyand =1lor—-3, f=asy,a=-3,f=asy, m=sy—1,s=uand
j=g+3uy+uyBf and = -3 ,n #rand g =c+ 4uy.

We get dcuy + ¢? + 4u?=(c + 2uy)? , so c = —2uy

We get u?(n +r + 14u + gy)and u®(—n — r + 2u — gy), adding these gives 16u CON-
TRADICTION.

case2bbaabbaabe =zu,i=1s,k=v—-1,u#0#eandzx=xland b= fr—1
J#Oandz=1m#f—-landt=% ,a=h-1,v#0,v=yu,y’ =1,
h=pfuyand f=1lor—3,f=asy,a=-3,f=asy, m=sy—1,8=uand
Jj =9+ 3uy+uyf and 8 = 1.

We get dru+ 4u? + 2nqy + 2gry and 4nu + 4u® + 2ngy + 2gry subtracting these gives
2(n —7)(2u+ gy — qy)

Split into two cases:

case2bbaabbaaba when n = r and case 2bbaabbaabb when n # r,s0 g = g—2uy
case2bbaabbaabae=zu,i =zs,k=v-1,u#0#eandzx=+land b= fr—1
J#Oandz=1m#f—-landt=% ,a=h—-1,v#0,v=yu,y’=1,
h=puyand f=1lor—3, f=asy,a=-3,f=asy, m=sy—1,s=muand
j=9g+3uy+uyfand B=1andn=r.

We have n = r when both cases (8 = landf = —3)
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Split into two cases:

case2bbaabbaabaa when r = 0 and case 2bbaabbaabab when r # 0
case2bbaabbaabaa e = zu , i = zs, k =v—1,u # 0 # eand z = £1 and
b=fz—-1,f#0andz=1,m# f-landt="",a=h—-1,v#0,v=yu
v y?=1, h=pPuyand B=1lor—3, f=asy,a=-3,f=asy, m=sy—1,
s=uand j=g+3uy+uyBand S=landn=randr=0.

We get q*uy , so q =0

We get —g%u ,s0 g =0

We get uc? ,soc=0

We get 4u3CONTRADICTION.

case2bbaabbaabab e = zu , i =zs k =v—-1,u # 0 # e and x = +1 and
b=fz—-1,f#0andz=1,m#f-landt=% ,a=h—-1,v#0,v=yu
=1, h=Puyand B=1lor—3, f=asy,a=-3,f=asy, m=sy—1,
s=uand =g+ 3uy+uyfand f=1andn=rand r # 0.

We get 3r? + 4ru + 4u? (**)

And we also get 7r + 8u + 6qy , so ¢ = (=7r — 8u)/6

We get u(r + 8u)?(13r + 8u)y but it is not solution for (**) CONTRADICTION
case2bbaabbaabbe=zu,i=zsk=v—-1,u#0#cecandz=+land b= fr—1
J#Oandz =1, m#f-landt=% ,a=h-1,v#0,v=yu,y* =1,
h=pfuyand f=1lor—3, f=asy,a=-3,f=asy, m=sy—1,s=wuand
J=g+3uy+uyBfand f=1,n%#rand g =q— 2uy.

We get 8cu + 12qu + c®y + 3¢%y + 60u?y and —4qu — c®y — 3q*y + 20u’y subtracting
these gives ¢ = —c — 10uy

We get —63nu — 59ru + 18u? — 6¢cny — 6cry and —59nu — 63ru + 18u? — 6eny — 6ery
subtracting these gives —4(n — r) CONTRADICTION.

case2bbaabbabe=zu ,i=2sk=v—-1,u#0#ceandzrz=+land b= fzr —1
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,f;éOandxzl,m%f—landtzl’uﬁ,a=h—l,U#O,v=yu,y2=1,
h=puyand B=1lor-3,f=asy,a=-3,f=asy,m=sy—1ands=uand
g=r=n=0.

We get 16u® CONTRADICTION.

case2bbaabbbe=zu ,i=zsk=v—-1,u#0#eandz=+land b= fzr—1
J#Oandz=1m#f—-landt=%L a=h-1,v#0,v=yu,y’=1,
h=pBuyand f=1lor—3, f=asy,a=-3, f=asy,m=sy—1and s =—3u.
We get cn+ jr — qu+ 7%y + jqy — nuy — ruy + quB + nuyB + ruyfB and jn+cr —qu+
72y + jqy — nuy — ruy + quB + nuyfB + ruyp, subtracting these gives (c — j)(n —r)
Split into two cases:

case2bbaabbba when n = r and case 2bbaabbbb when n # r and ¢ = j
case2bbaabbbae=zu ,i=rsk=v—-1,u#0#eandx=+land b= fr-1
J#Oandz=1m# f—-landt=% ,a=h-1,v#0,v=yu,y* =1,
h=fuyand B=1lor—-3, f=asy,a=-3,f=asy, m=sy—1and s=-3u
and n =r.

We get 2j7 — qu + j%y + cqy — 2ruy + quB + 2ruyf and cr + jr - qu + jy + jqy ~
2ruy + quf + 2ruyf, subtracting these gives (¢ — 7)(r — qu)

Split into two cases:

case2bbaabbbaa when ¢ = j and case 2bbaabbbab when ¢ # j and r = gy
case2bbaabbbaae=zu,i=zsk=v—-1,u#0#eandz=xland b= fr—1
,f;éOandx=1,m7éf—1andt=”f,a,=h,——1,2)7&0,v=yu,,y2=1,
h=pfuyand f=1lor—3,f=asy,a=-3,f=asy,m=sy—1and s=-3u
andn=randc=j.

We get —3gu + 3gjy + j2y + 3gufB and qu — 395y — j2y + 2ruy — 3guf, adding these
gives ¢ = 39 — 2ry

We get —33ju+12gr8—9g*yB - j2yB—6r?yB+juf? and —33;ju—3g*ys—j*yB+juf?,
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subtracting these gives g = ry

We get 3r +u + jy — uf and r + 17Tu + jy — uf, subtracting these gives ru(r — 8u)
Split into two cases:

case2bbaabbbaaa when 7 = 0 and case 2bbaabbbaab when r # 0 and r = 8u
case2bbaabbbaaae=zu,i=2sk=v—-1,u#0#eandzx=xland b= fz—-1
J#Oandz=1m#f—-landt=% ,a=h—-1,v#0,v=yu,y*=1,
h=puyand B=1lor—-3, f=asy,a=-3, f=asy, m=sy—1and s = —-3u
andn=randc=j,9q=3¢g—2ry,g=ryandr =0.

We get 3uj?u ,s0 j =0

We get 3ug?u ,s0 ¢ =0

We get 9gu?y ,s0 g =0

We get 36u’y(3+ ) , so 8 = -3

We get uby CONTRADICTION.

case2bbaabbbaab ¢ = zu , i =xs, k =v—-1, u # 0 # e and r = +1 and
b=fr—1,f#0andz=1m# f—landt=2,a=h-1,v#0,v=yu,
v?»=1,h=pFuyand f=1lor-3, f=asy,a=-3,f=asy, m=sy—1and
s=-3uandn=randc=j,q=39-2ry,g=ry,r#0and r = Tu.

We get 16u?(—j — 25uy + uypB), so j = —25uy + uypf

We get —4uy(—33 + 8)(7 + 268) CONTRADICTION.
case2bbaabbbabe=zu,i=zs,k=v—1,u#0#eandz=+land b= fr—1
J#O0andr=1m# f—landt=% a=h—-1,0v#0,v=yu,y*=1,
h=pBuyand 8=1or—3, f=asy,a=-3, f=asy,m=sy—1and s = —3u
and n =17 ,c3# Jjand r = qy.

We get q(g + 7+ 2g+uy —uyB) =0

Split into two cases:

case2bbaabbbaba when ¢ = 0 and case 2bbaabbbabb when ¢ # 0, so g =
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—(J + vy — uyB + 2q)

case2bbaabbbaba e = zu , i =25, k =v -1, u # 0 # e and z = +1 and
b=fr—1,f#0andz=1,m# f-landt=%% a=h—1,v#£0,v=yu,
y¥?=1,h=Puyand B=1lor-3,f=asy,a=-3,f=asy,m=sy—1and
s=-3uandn=r,c#jand r =gy and g =0.

We get 3ug? ,s0g=0

We get 3(c — j)u*y CONTRADICTION.,

case2bbaabbbabb ¢ = 2u , i =15, k =v—-1,u # 0 # ¢ and r = +1 and
b=fz-1,f#0andz=1m# f-landt=% ja=h—-1,v#0,v=yu,
v =1, h=pPuyand B=1lor -3, f=asy,a=-3,f=asy,m=sy—1and
s=-3uandn=r,c#jandr=qy,q#0and g = —(j +uy — uyB + 2q).

We get u¥(c — 45 — 99 — 3uy + 3uyf) , so ¢ = 45 + 9g + Suy — 3uyf

We get 3(j + 3q)%u, so j = =3¢

We get 3u3(—1+f),s0 =1

We get 4qu(q — 8uy)and 4qu(q + 28uy) and 12qu(4u + qy) CONTRADICTION.
case2bbaabbbbe=zu,i=zs,k=v-1, u#0#eandr==+land b= fr—1
J#Oandz=1,m# f—-landt=%2 a=h-1,v#0,v=yu,y* =1,
h=pfuyand f=1lor-3,f=asy,a=-3, f=asy, m=sy—1and s =—-3u,
n#randc=j.

We have entries —g% — gq —ru— gny — jry +ruf and —g? — gqg—nu— gry — jny +nuf
, subtracting these gives (n — 7)(—u+ gy — jy + uf) ,s0 j = g+ ufy — uy

We get 3gu(n + 7 + qy + gy)

Split into two cases :

case 2bbaabbbba when ¢ = 0 and case 2bbaabbbbb when g # 0, so g =

—q—ny—ry
case2bbaabbbbe=zu,i=2s, k=v—-1,u#0#candz=4land b= fr—-1
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J#Oandz=1m#f—-landt=% , a=h-1,v#0,v=yu,y* =1,
h=pBuyand B=1lor—-3, f=asy,a=-3, f=asy,m=sy—1and s=-3u,
n#randc=j,j=¢+uby—uyand g =0.

We get 3u®(—18)%,s0 8 =1

We get u?(g+ny +ry),s0g=—ny—ry

We get 6nruy and 3(n?+nr —r?)uy, when r = 0, we get n = 0 CONTRADICTION.
And when n = 0, we get r = 0 CONTRADICTION.
case2bbaabbbbe=zu,i=2zs,k=v—1,u#0#eandz==+land b= fzr—1
J#Oandz=1,m# f—-landt=% a=h-1,v#0,v=yu, 3 =1,
h=pPuyand f=1lor—-3,f=asy,a=-3,f=asy,m=sy—1and s=-3u,
n#randc=j ,j=g+uﬁy—uy,g7é0andg=—q—ny—ry.

We get 3u3(—1+ ) ,s0 8 =1

We get 12uy(q + ny + ry)?,s0 g = —ry — ny

We get 2nruy and 3(n? —nr —r?)uy, whenr = 0 , we get n = 0 CONTRADICTION.
And when n = 0, we get r = 0 CONTRADICTION.

case 2bbaace =zu ,i=zs,k=v—1,u#0#ceandz==xland b= fzr -1
andrx#1sox=-1., f#0andn=r=q=0.

We have entries g(s® + u?) ,9%s , 725, 7(1 +m) and j%t

If s =0 thengu? , so ¢ = 0 and if s # 0 then g = 0, so must have g =0

Split into two cases :

case 2bbaaca when j = 0 and case 2bbaacb when 7 # 0 ,s0t = s = 0 and
m=—1

case 2bbaacae=zu,i=zsk=v-1,u#0#eandz==xland b= fz -1
andr#1sox=-1., f#0andn=r=¢q=7=9g=0.

We get cfusoc=0

We get(1+ f+m)(fo+su) =0, (1+ f+m)(fv—su) =0 ,(f+t)(fv—su) =0and
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(f +t)(fv + su) = 0 .Subtracting these gives fv(1+ f +m) =0 and fo(f +1t) =0
Split into two cases :

case 2bbaacaa when v = 0 and case 2bbaacab when v # 0, so t = —f and
m=—-1—f.

case 2bbaacaae=zu,i=rs,k=v—1l,u#0#candz==*land b= fz -1
andz#1soxz=-1,f#0andn=r=q=j=g=v=c=0.

We get —hu? so h =0

We get u? CONTRADICTION.

case 2bbaacabe=zu,i=zs,k=v~1,u#0#¢eandz=*land b= fzx -1
andz #1soz=-1,f#0andn=r=q=j=g=c=0,t=—fandm=-1-f
and v # 0.

We get f2(1+a—h—2v),so h=1+4+a—2v

We get ((1 4+ a)? +u? — 20%) , v(u® — v?) and (f? — s*)u, so u? =%, f? = s* and
(1+a)? =0v?

We also have (1+a—v)(u? —v—av+2v?) and using u? = v* get v(1+a—v)(3v—1-a)
sov=1+aorv="but wealsohavev=14+ao0orv=—(l+a),sov=1+a
and a = v — 1 SOLUTION.

case 2bbaacbe=zu,i=zsk=v~1,u#0#candz==Fland b= fr -1
andz#1lsoz=-1, f#0andn=r=¢gq=g=t=s=0and m=-1.

We get f2u CONTRADICTION.

case2bbabe=zu,i=1s, k=v—-1,u#0#ceandz==+1,b+# fr—1and
m=1%t-—1.

We have entry u(h + ah + 2hv — 202z — v?z) and u(h + ah + av + hv — v? — 20%z)
subtracting these gives v(h —a +v) =u?z ,sov#0and v#a—h.

And we have su(z — 1)(fz —1—1b)so s(zx—1) =0

Split into two cases :
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case 2bbaba when z = 1 and 2bbabb when z #1,sor =—1and s =0.
case2bbabae=zu,i=zs,k=v—-1,u#0#eandrx==21,b+# fr—1 and
m=t—landzr=1v#0and v#a—h.

We have entries — fgh + fgj +n?+bn?+ f¢* + fr2 +gsu ,—fgh+ fgj + >+ br? +
fq? + fn? + gsu and —fgh + fgj + ¢* + bg* + fn? + fr? + gsu subtracting these
gives (f —1—-0)(r2—n?), (f —1-0)(r? — ¢?) and (f — 1 — b)(n® — ¢*) and we know
b# fr—1,son?=¢q?>=r?
Putg=yn,r=znandy’=22=1andweletb=f—-1-w

We get —hu? — h%v + 2u?v — v? — av? + v® and —u? — au? — h%v + 2u?v — hv? + 03,
subtracting these gives (1 + a — h)(u"v?) = 0.

And we have v(u? + v(1+a — h) — v?).

Split into two cases: when h = 1 + a and when u? = v?, but if h = 1+ a , then we
get v(u"v?) =0, so u? = v? in all cases and so v = au when a? =1

And when u? = v? we get v2(1+a—h)=0,s0a=h —1

We get u(—2sta + s + t2) so u(s — ta)? and s = ta, so we get s = t2

We get tw =0, s0t =0 and so s =0 because w # 0

We get f?uso f =0

We get w?u CONTRADICTION.

case2bbabbe=zu ,i=zs,k=v—-1,u#0#ecandz=+1,b# fr—1and
m=t—1,z#1,z=—-lands=0,v#0andv#a—h.

We get t2vsot =0

We get uf? s0 f =0 and we know b # fr —1sob# —1

We get (1 + b)?u CONTRADICTION.

case 2bbbu #0#e,e=zuandi=zs,k#v—1,a=h—1and z = £1.

We have entry (1+ k—v)(1+k—vzx),soz=-1,k=—-1—-v

We get u(u? — v?), so v? = u?

225



We get u(h? + u? — 2v?), so h? = u? =2

We get (1+b+ f)su

Split into two cases :

case 2bbba when s = 0 and case 2bbbb when s #0 ,s0 b= —f — 1.

case 2bbba u #0 #e¢,e=zxuand i =zxs, k #Fv—1,a=h—-1and z = —1,
h®=u?’=v?and k=—-1-wvand s =0.

We have entry ftu

Split into two cases :

case 2bbbaa when f = 0 and 2bbbab when f # 0, so ¢t = 0.

case 2bbbaa u #0 #e,e=2uandi=2s, k#v—1,a=h—-1and z = -1,
h?=u*=v?andk=-1—-vands=f=0.

We have entries (1 + b)c? , (1 +b)n?, (1+ b)g* and (1 + b)r2.

Split into two cases :

case 2bbbaaa when b = —1 and 2bbbaab when b# —1,sor=¢g=n=c=0.
case 2bbbaaa u #0#e¢,e=zuandi=zs,k#v—1,a=h—1and z = -1,
hP=u*=v*andk=—-1-vands=f=0and b= -1,

We have entries t*u and (14 m)?u, sot =0, m = —1

We get g(c® + 2g7 — n? — ¢* — 1?)

Split into two cases : caes 2bbbaaaa wheng = 0 and caes 2bbbaaab wheng # 0
and ¢ +2gj —n? —¢>—r? =0.

case 2bbbaaaa u # 0 #e,e=zuandi=1rs,k#v—-1,a=h—-1and v = -1,
hRP=u?=v?andk=-1-vands=f=t=g=0and b=m = —1.

We get ngr so at least one of n, q,r = 0 and we have terms j(jr + 2ng), j(jg + 2nr)
and j(jn + 2rq).

Split into two cases : case 2bbbaaaaa when j = 0 and case 2bbbaaaab when

j # 0 and at least two of n,q,7 =0
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case 2bbbaaaaau#0#e,e=zuandi=2x2s,k#4Av—1,a=h—1landz= -1,
h®=u’=1v?andk=-1-vands=f=t=g=j=0andb=m = —1.

We get chu.

Split into two cases: case 2bbbaaaaaa when ¢ = 0 and case 2bbbaaaaab when
c#0and h=0.

case 2bbbaaaaa when ¢ = 0 we get 7(g* +n?), ¢(r? +n?) and n(q® +r?), so at least
two of n,q,r =0

When n = ¢ = 0 ,we get u?r so r = 0 SOLUTION.

When r = g = 0 ,we get u?n so n = 0 SOLUTION.

When n =r = 0 ,we get u?q so ¢ = 0 SOLUTION.

case 2bbbaaaaab when ¢ # 0 and h = 0, we get cu? CONTRADICTION.

case 2bbbaaaabu #0#¢,e=zuandi=zs,k#v—1,a=h—1land z = -1,
h?=u?=v’andk=-1-vands=f=t=g=0and b=m = —land j # 0 and
at least two of n,q,7 = 0 When ¢ = r = 0, we getu?n,son =0

When ¢ = n = 0, we getu’r,sor =0

When n = r =0, we getu?q,soqg=0

We get c(c — j)j split into two cases : When ¢ = 0 get ju?, so j = 0 CONTRADIC-
TION.

When ¢ = j, we get uj(2h — j), so j = 2h, we gethu?, so h = 0 but j # 0 CONTRA-
DICTION.

case 2bbbaaab u #0# e, e =zuandi=1rs,k#v—1,a=h—-1and r = -1,
h? =u?=1v?andk=-1-vands=f=t=0andb=m=-1,9 # 0 and
A+29j—-nt—-qg*-r?=0.

We have entries (9—j)(2¢r+(g+7)n) , (9—35)2nr+(g9+7)q) , (9—7)(2qn+(g9+7)7)
We have three possibolties :

case 2bbbaaabl when g = j # 0 and

227



case 2bbbaaab4 when g # j and g = —j # 0 and at least 2 of n, q, 7 are zero.
case 2bbbaaab2 when g #jand g# —jandn=g=7r=0

case 2bbbaaab3 when g # jand g # —j ,son? =¢* =r?# 0 and (g + j)* = 4n? .
case 2bbbaaabl u #0#ee=zuandi=zs k#v—1,a=h—-1andz = -1

yh2=u?=v’andk=-1-vands=f=t=0andb=m=—1,5 #0 and
g=j#0.

We have ¢? + 2¢2 = n? 4+ r? + ¢% and g*h + h(n? + ¢® + 72) + cu® + gu® ,s0 we get
hc? + 3hg? + (c + g)u?

And we have hc? + 3hg? + (—c + 3g)u? , subtract them to get (2¢ — 2g)u® = 0, so
c=g+#0)

We get 29(2gh + u?) , so h = :2—1;3 and we get (g(3g2 — n? — ¢* — r?) and (g* — ngr)
deduce all of n ,q, r are non zero and 392 = n? + 12 +¢2 .

And we have entries g?n—n(q?+7?)+gqr , g°r—r(¢*+n?)+gqn , g*°q—q(n®*+r*)+gnr

So g+ = @412, g+ 4 = ¢’ +n? , g+ 5 = n?+r? and (from 3g? = n®+7r2+¢?
) get
2 .2 T _ 42 nr __ ,.2 n
20 =n’+gf =g’ + g7 =1’ +gT
And from g3 = nqr getgnfzr%,so g* —2¢°n*+n* =0andso g? =n?=¢? =r?

weget g =yg,n=29, 7 =yzgand y =+£1, z ==%1

Now when we put h = '21;2, we get ;—52—(11 +2¢g)(u — 2g), so u = 2gw when w? =1

We get 6g + 29y + vwz(y — 1), so vwz(y — 1) #0, and so y = —=1 and v # 0

We get v — 6gwz

But v(2g — v)(29 + v) CONTRADICTION.

case 2bbbaaab4 u #0#e,e=zuandi=2zs,k#v—1,a=h—-1andz = -1,
RP=u=v’andk=—-1-vands=f=t=0andb=m=-land g#0, g#J
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and g = —j # 0 and at least 2 of n, g, r are zero.

We get g?n = g?q = g?r =0,s0 allof n,q,7 =0

We get gu? CONTRADICTION.

case 2bbbaaab2 u #0#e,e=zuandi=zs,k#v—1,a=h—-1and z = -1,
h*=u?=v?andk=-1-vands=f=t=0andb=m=—-1landg#0,9#j
and g # —j and all three of n, q,r are zero.

We get gu? CONTRADICTION.

case 2bbbaaab3 u #0#e,e=zuandi=zs,k#v—1,a=h—1and z = —1,
h2=u*=1v’andk=—-1-vands=f=t=0andb=m=—1and g#0, g #j
and g# —j,n?=¢*=7r2+#0and (g+ ;) = 4n?.

We put r = zn,g =yn when y> = land 22 =1

We get (9 — j)(29 + zj + 2ny)nand (¢ — j)(g + j + 2nyz)n. Subtracting these
gives(g+j — 2ny)(z —1) =0

Split into two cases:

case 2bbbaaab3a when z = 1 and case 2bbbaaab3b when z # 1 so ,2 = —1 and
J=2ny—g.

case 2bbbaaab3au #0#e,e=zuandi=z2s,k#v—1,a=h—1and 2z = —1,
h?=u?=7v’andk=-1-vands=f=t=0andb=m=—-1landg#0,g#]
and g# —j,n?=¢> =r>#0and (¢ +j)>=4n? and r = 2n, ¢ =yn when y* =1
and z2=1and z = 1.

We get u*(g + ny), so g = —ny

We get hn(n + jy) and hn(n — cy)

Split into two cases:

case 2bbbaaab3aa when h = 0 and case 2bbbaaab3ab when A # 0 so, ¢ # 0 and
J#0and c=—j.

case 2bbbaaab3aau #0#¢,¢e=zuandi=zs,k#v—1,a=h—1and z = -1,
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h=v=v’andk=—-1-vands=f=t=h=0andb=m=—1and g #0,
g#jandg# —j,n?=¢ =r2#0and (g+75)* = 4n? and r = 2n,g = yn when
y?’=1and 22=1and z = 1.

We get v} CONTRADICTION.

case 2bbbaaab3abu #0#¢,e=zuandi=zs,k#v—1,a=h—-1landz = -1,
hRP=u?=1v?andk=-1-vands=f=t=0andb=m=—-landg#0,g#J
and g# —j,n*=¢*=r>#0and (g+j)? =4n®* and r = 2n, ¢ = yn when ¢? = 1
and 22=1land z2=1,h#0,c#0,j#0and c = —j.

We get hj?(3 + y*) CONTRADICTION.

case 2bbbaaab3bu #0#e,e=ruandi=zs,k#v—1,a=h—-1and z = -1,
h?=u?=v’andk=-1—-vands=f=t=0andb=m=—-1land g#0,g#)
andg# —j,n?2=¢*=r>#0and (g+j)* = 4n? and r = zn,q = yn when y? = 1
and 22 =1land 2 #1,z2=—1and j = 2ny — g.

We get (hn + uv)(~g + )

Split into two cases:

case 2bbbaaab3ba when ¢ = ny and case 2bbbaaab3bb when g # ny so
ho= e

case 2bbbaaab3bau #0#e,e=zuandi=xs,k#v—1l,a=h—1landz = -1,
h?=wu?=v’andk=-1-vands=f=t=0andb=m=—-1land g+#0,9#J
and g # —j,n*=¢*=r*#0and (g+ j)? =4n? and r = 2n, ¢ = yn when ¢ =1
and 22 =1land 2#1,z=—-1and j = 2ny — g and g = ny.

We get 2nu(—v + uy), n*(c + ny), so v =uy and ¢ = —ny

We get 4n?u CONTRADICTION.

case 2bbbaaab3bbu #0# ¢, e=zuandi=2zs,k #v—1,a=h—-1landz = —1,
h?=u?=7v?’andk=-1—-vands=f=t=0andb=m=—-1landg#0,g9g#J
and g # —j,n* =¢*=7r>#0and (g+ j)? = 4n? and r = zn,g = yn when y> =1

230




and 2> =land z2#1,2=—1and j =2ny —g, g #ny and h = ==,

Weget(i'“—)f:”“h)"ssonzwuwhenw2=l

Wegetm___yy_)sog:l"ﬂ

w w

u3(w-1)(1+3w+4w?)y
We get ”

sow=1

We get —4u®y CONTRADICTION.

case 2bbbaabu #0# e, k#v—-1,e=2zuandi=2s,a=h—-1and z = —1,
hRP=u?=v’andk=-1-vands=f=r=qg=n=c=0andb# —1.

We get gu?, s0 g =0

We get (1+b)ju,s0 j =0

We get t?u, sot =0

We get (1 + m)%u, som = —1

We get u(1 + b) COTADICTION.

case 2bbbabu #0# e,e=zuandi=2z2s, k#v—1,a=h—-1and z = -1,
h?=u*=v*andk=—-1—-vands=t=0and f #0.

We get f?u CONTRADICTION.

case 2bbbb u #0 #e,e =zruandi=2zs, k #v—1,a=h—-1and z = -1,
h?=u*=v?’andk=—-1-vands#0andb=—f—1.

We have entry (1+ f + m)(tu + sv)

Split into two cases:

case 2bbbba when m = —f — 1 and case 2bbbbb when m # —f — 1o, ¢
case 2bbbba u #0# e,e=zuvandi=2s ,k#v—-1,a=h—-1and z = —1,
hP=u*=v?’andk=-1-vands#0andb=—f—~landm=—f—1.

We have entries s(f + t)u and (f? — s®)u, so t = —f and f? = s?

We getg(c® + 295 — n? — ¢* — r?)
Split into two cases:

case 2bbbbaa when g = 0 and case 2bbbbab when ¢ # 0so0 ,c?+2gj—n?—¢?>—r? =
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0.

case 2bbbbaau#0#e,e=z2uandi=zs k#v—1,a=h—-1landz = —1,
R=u'=v'andk=-1-vands#0andb=—f—-landm=—f—-1t=—f
and f? = s% and g = 0.

We get 2 f

Split into two cases:

case 2bbbbaaa when f = 0 and case 2bbbbaab when f # 0so,c=0

case 2bbbbaaa u #0 #e,e=zuandi=1zs,k #v—1,a=h—1and z = —1,
RP=uv'=v’andk=-1-vands#0andb=—-f—-landm=—-f—-1t=—f
and f2=s?and g= f = 0.

We get s’u CONTRADICTION.

case 2bbbbaab u #0# e, e =zuand i =uzs, k #v—-1,a=h—1and z = —1,
RP=u?=v’andk=~-1-vands#0andb=—f—landm=—-f—-1t=—f
and f2=s%and f#0and g=c=0.

We have f(n?—q?+7?) and f(n? —¢*—r?). Subtracting these gives —2¢%f, so g = 0
We have also f(n? + ¢? +r?) and f(n? — ¢® — r?). Subtracting these gives 2n?f, so
n=0andsor =0

We get f?j, so 7 = 0 SOLUTION.

case 2bbbbab u #0 # ¢, e =zuandi=1zs,k #v—-1,a=h—-1and x = -1,
h*=u?=v’andk=~-1-vands#0andb=—f~1and m = —f — 1 and
m=—f—-1,t=—fand f2=s?and g # 0 and, ¢ +2gj —n? —¢> —r2 = 0.

Split into 4 cases :

case 2bbbaaabl when n = ¢ = r = 0 and case 2bbbaaab2 + case 2bbbaaab3
+ case 2bbbaaab4 at least one of n,r, g are non zero (two or three of n,r, g are

non zero)

case 2bbbbabl u #0# ¢, e =zuandi=zs, k#v—1,a=h—-1and z = -1,
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h*=u?*=v?andk=—-1-vands#0andb=~f—1and m = —f—1 and
m=—f—-1t=—fand f2=s?and g # 0 and ¢ + 297 —n® —¢> — 7?2 = 0 and
n=q=r=0.

We get g%s CONTRADICTION{.

case 2bbbbab2 u #0 #¢,e=zuandi=zs,k#v—1,a=h—1and z = -1,
h®=u?=v2andk=-1-vands#0andb=—-f—1landm=—f —1 and
m=—f—1t=—fand f2=5?and g #0 and, ¢ +2gj ~n? —¢* —r2 = 0.

If exacitly one of n , q ,r are non zero (eg r)

We get g*r, sor = 0 CONTRADICTION.

case 2bbbbab3 u #0#e,e=z2uandi=2zs,k#v—1,a=h—-1and z = -1,
h=u=v2andk=-1-vands#0andb=—f—1and m = —f —1 and
m=—f—1t=—fand f2=s?and g # 0 and, 2 +2gj —n? —¢?> —r2 = 0.

If exacitly two of n , q ,r are non zero (eg r , n)

We get2(g — j)nr, so g = j and also get nr(c+9g—j),s0c=0

Then we get n(g® — r?) and r(g? — r?), so g2 = r? = n?

We get g?s + fgn and g?s — fgr. Subtracting these gives fgn = —fgr,son = —r
We getg?’s CONTRADICTION.

case 2bbbbab4 u #0 #e,e=zuandi=zs,k#v—1,a=h—-1and z = —1,
h? =u?=1v?andk=~-1-vands#0andb=—f—1land m = —f — 1 and
m=-—f—1,t=—fand f2=s?andg#0and c®+297 —n® —¢*—1r?=0.
When all n , q ,r are non zero.

We have entries (9—7)(q(g9+7)+2nr) , (9—7)(n(g+7)+2qr) and (9—7)(r(9+7)+2nq)
Split into two cases :

case2bbbbab4a when g = j and case2bbbbab4b when g # j

case 2bbbbab4au #0#e,e=zuandi=zs,k#v—1,a=h—1and z = —1,
h?=u?=v?andk=—-1-vands#0andb=—-f—-landm=—-f—landt=—f
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and f2=s?and g #0and ,c®+2gj—n?—¢’—r?>=0and g=jandalln, q,rare
non zero.

We get s(gu+g*w— ghw+nw+q*w—r?w) and s(—gu+g*w— ghw+n’w+qg*w—rw).
Subtracting these gives 2sgu CONTADICTION.

case 2bbbbab4b u #0#¢,e =zuandi=zs ,k#v—1,a=h—-1and z = —1,
h’=u?=1v?andk=-1-vands#0andb=—f—-landm=—f—landt=—f
and f2=s?’andg#0and ,c2+2g9j—n®—q¢*~r’=0and g# jandalln, q,r are
non zero.

Wehave—%:%z%‘l%,sor2:qzznzandqzyn,'r":zn,y2=1andz2=1
—2nz
y )

We get g —j = S0 J =g+ 2nzy

We get 4n’yz(g + 2nzy), so g = —2nyz

We get 2nyz(—c? 4+ 3n?) , so ¢ = 3n? # 0 and we also get 4cn> CONTADICTION.
case 2bbbbbu #0#¢,e=zuandi=zs ,k#v—-—1,a=h—-landz= -1
,h2=u?=1v*andk=—-1-vands#0andb=—f—-1and m# —f—1 and

==
We have entries su + v(1 +m) and su — fv so we get v(f + 1+ m) ,andsov =10
We get s2u CONTRADICTION.

case 2baabu=¢e=0,s=yi #0and y? = 1.

We have entries iv(f — ty) and tw(1 +0 — ¢

Split into two cases :

case2baaba when v = 0 and case2baabb when v #0so f=tyandb=1t—-1
case 2baabau=e=v=0,s=yi#0andy*=1.

We get h(14+k)%, (f2—4%)(1+k) i(1+k)(b—m), (1+k)(1+m— fy),i(1+&)(f —ty)
and (1 +k)(1+b—1).

Split into two cases :

case2baabaa when k = —1 and case2baabab when k # —1so f =ty ,b=¢t-1,
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h=0,f=ziand 22 =1, m= fy—1and b=m.

case 2baabaau=e=v=0,s=yi #0and y*>=1and k = —1.

We get (1+a—h)i%2,soa=h~-1

We get fg+ fgm+ir+bir+ fgt+ finy , fg+ fgm+in+bin+ fgt+ firy. Subtracting
these gives i(1+ b — fy)(r —n)

Split into two cases :

case2baabaaa when n = r and case2baabaab when n # r sob = fy — 1

case 2baabaaau=e¢=v=0,s=yi#0andy’=1land k=-~landa=h-1,
n=r.

We have entries gi? + qt% + 2iry + 2imry and qi® + gt? + 2iry + 2imry , subtracting
these gives (i — t?)(g — q)

And we have iqg + big+ fr+ fmr+ frt+ fgiy and ig + big+ fr+ fmr+ fri+ fqiy
, subtracting these gives (1 +b — fy)(9 — q)

Split into two cases :

case2baabaaaa when ¢ = g and case2baabaaab when ¢ # g sob = fy — 1,t = 21
and 22 = 1.

case 2baabaaaau=ec=v=0,s=yi#0andy>=1landk=—-landa=h—1
,n=randg=g.

We have entries g?(1 +m) +ir(—h+ 5+ gy) + r’t = 0 and ¢*t + ir(—h+ 5+ gy) +
r2(1 +m) = 0, subtracting these gives(¢? — t2)(1+m —t) =0

Split into three cases :

case 2baabaaaal when g = 0 and case 2baabaaaa2 when g # 0 sog? = r? and
case 2baabaaaa3 when g #0, g? #r?and m =t —1

case 2baabaaaal u=e=v=9g=0,s=yi #0and y> =1 and k = —1 and
a=h—-1,n=randg=yg.

We get 73, ij%y and ¢i®y, s0r =c =35 =0
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And we get 2f(1+ b+ f)h

Split into three cases :

case 2baabaaaala when h = 0 and case 2baabaaaalb when A # 0 andf = 0
and case 2baabaaaalc when h#0, f #0and b= —f —1

case 2baabaaaalau=e=v=g=c=j=r=h=0,s=yi #0and 4> =1 and
k=—-landa=h—-1,n=randqg=g.

SOLUTION.

case 2baabaaaalbu=e=v=g=r=c=j=f=0,s=yi #0and y>=1 and
k=—-landa=h—-1,n=rand ¢g=gand h #0.

We get hi(l +m +t)(1 + y) Split into two cases :

case 2baabaaaalba when y = —1 and case2baabaaaalbb when y # —1 ,s0
m=—-1—tand y=1

case 2baabaaaalbau=e=v=g=r=c=j=f=0,s=yi #0and y? =1
and k=-landa=h—-1,n=randg=gand h#0and y = —1.

We get (1 +m)? +t2 —2i2 =0, s0 i? = ((1 + m)? + t?)/2

We get h(b—m —t)(2+b+m+1t)

When m =t — b SOLUTION.

When m = -2 — b —t SOLUTION.

case 2baabaaaalbbu=c=v=¢g=r=c=j=f=0,s=yi#0and y* =1
and k=—-landa=h—-1,n=randg=gand h#0,y # -1, m=—1—1tand
y# 1.

We get 2h(t? + i2), so t? = —i?

We get h(1 4+ b — 2)(1 + b+ 2i)

When b = 2i — 1 SOLUTION.

When b = 2i + 1 SOLUTION.

case 2baabaaaalcu =e=v=g=r=c=5=0,5s=yi#0and y* =1 and
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k=-landa=h—-1,n=randg=9g,h#0,f#0andb=—-f—1

We get 2h(2f? — 4% — t(1 + m)), so i = 2f% — t(1 + m)

We get hi(1+m +t)(1+y)

Split into two cases :

case 2baabaaaalca when y = —1 and case2baabaaaalcb when y # —1, so
m=—-1—-tandy=1.

case 2baabaaaalcau=e=v=9g=r=c=5=0,s=y # 0and 4> =1 and
k=—-landa=h—-1,n=randgq=9,h#0,f#0andb=—-f—1landy= -1
We get h(1 —2f + m+t)(1+2f +m+1t)

When m = 2f — ¢t — 1 SOLUTION.

When m = -2f — ¢t — 1 SOLUTION.

case 2baabaaaalcbu=e=v=g=r=c=35=0,s=1yi # 0and y? =1 and

k=—-landa=h—-1,n=randq=9g,h#0,f#0andb=—-f—-1,y# -1,
m=—-1—tandy=1

We get 2h(i? + t2) and 2h(2f? — > + %) , so f2 =i?/2 and t? = —4>

We get 2hi2 CONTRADICTION .

case 2baabaaaa2 u=e=v=0,s=yi#0andy’*=1landk=—-landa=h-1

,n=rand g=g, g # 0 and g =%

We have g2 = 2 so g = zr, when z? = 1

We get iry(c — j),s0 c =

We get r(t2 + 2iz(1+m) +14%) and r((:2 +t?)x + 2iy(1 +m)). Subtracting these gives
2(1 +m)(1 —y)

We get 7((1+ m)? + 2itz +4%) and 7(z(1 + m)? + 2it + zi?). Subtracting these gives
20t(1 —y) +i*(z - 1)

Split into two cases :
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case 2baabaaaa2a when m = —1 and case2baabaaaa2bwhen m # —1,s0y =1
and so z = 1.

case 2baabaaaa2a u = e =v=0,5 =1yi # 0and y> =1 and £ = -1 and
a=h—-1,n=randg=g,g9g#0and g ?=7%and m = —1.

We get i24+t2=0s0t# 0 and % = —¢

And we get i(2tz + 1) , 0s ¢ = —2tz and ? = 4t2 but i2 = —t> CONTRADICTION.
case 2baabaaaa2bu =e=v =0, s =yi # 0and > =1 and k = —1 and
a=h—-1,n=randg=g,g#0andg>=7r> m#-1l,y=1landz = 1.

We have t? + 2i(1 + m) + 4> = 0 and (1 + m)? + 2it + i®* = 0. Subtracting these
gives(t —1—m)(t+1+m—2i) =0

Split into two cases :

case2baabaaaa2ba when m =t — 1 and case2baabaaaa2bbwhen m # t — 1, so
m=2i—t—1.

1 and £ = -1 and

case 2baabaaaa2ba u = e =v =0, s = yi # 0 and y?
a=h—-1l,n=randg=g9, g#0andg?=r2,m# -1, y=1and z =1 and
m=t—1.

We get (t+14)2=0,s0t=—i

We get ir(1+b— f)andir(h—j+r),sob=f—1and h=
We get fr?so f =0.

We get 4i?r CONTRADICTION.

case 2baabaaaa2bb u = e =v =0, s =yi #0and > = 1 and kK = -1 and

<.
|
-

a=h—-1l,n=randq=g,g#0andg*=r’ , m# -1, y=landz=1,m#i-1
and m=21 —t— 1.

We get t2 — 2it + 5i2, we let t = 21, so we will have 2> — 22+ 5 = 0.

But we get 2°r(2 — 3)(1 + z) CONTRADICTION.

case 2baabaaaa3 u=c¢=v=0,s=yi#0andy?=1and k= —-1anda = h—1,
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n=randqg=9,0#0,¢°#r’andm=¢t-1

We get gi% + gt® + 2irty and gi® + g% +irt +irty. Subtracting these gives irt(y — 1).
Split into three cases :

case 2baabaaaada when r = 0 and case 2baabaaaa3bwhen r # 0, so y = —1
and case 2baabaaaa3cwhen 7 # 0, y # —1,soy =1 and t = 0.

case 2baabaaaa3au=c=v=r=0,s=yi #0and y> =1 and k = —1 and
a=h-1,n=randgq=¢9,9#0,¢°#r?andm=1-—1

We get g% CONTRADICTION.,

case 2baabaaaaldbu=e=0v =0,s5s =yi # 0and y> = 1 and k = —1 and
a=h-1,n=randg=g9,9#0,¢9°#r’andm=t—1,r#0and y = —1

We get gi? + 2irt + gt? and 7i% + 2igt + rt? | subtracting these gives (g — r)(i — t)? ,
sot =1

We get 2i%(g + 1), so g = —r but g% # r2 CONTRADICTION.

case 2baabaaaa3c u=e=v=t=0,s=1yi #0and y>=1and k = —1 and
a=h-1,n=randq=g,9#0,9°#r’andm=t—-17r#0,y# —landy= 1.
We get i?g CONTRADICTION.

case 2baabaaabu=¢=v=0,s=yi#0andy’=1landk=~1landa=h -1,
n=randq#g b=fy—1,¢t=ziand 22 = 1.

We have entries f(g(1 +m) + 2iry +igz) and f(g(1+ m) + 2iry + igz), subtracting
these gives f(1 +m —iz)(g9 — q)

Split into two cases :

case 2baabaaaba when f = 0 and case 2baabaaabb when f # 0 som =iz — 1
case 2baabaaabau=e=v=f=0,s=1yi #0and y>=1and k£ = —1 and
a=h-1,n=randqg#g,b=fy—1t=ziand 22=1.

We get i(giy + ry + mry + qz + mqgz + irz) and i(qiy + ry + mry + qz + mqz + irz)

, subtracting these gives (iy — 2 — mz)(g — q) , so m = iyz — 1
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We get i2(g+2rz+gq),s0 g=—2rz—q

And we get i(gh—gj —r?y—qrz—qryz) and i(gh—qj —r*y—grz—gryz). Subtracting
these gives (h — 7 + ryz)(g — q),s0o h =7 — ryz

We also get i(hr — jr —gry—q?z—r?yz) and i(hr — jr —qry—qgz —r?yz). Subtracting
these gives (¢z — ry)(g — q), so r = qzy

We get ig?2(—1+2 — 2y + 1)=i¢®2(1 —y) =0

Split into two cases :

case2baabaaabaa when y = 1 and case2baabaaabab when y # 1 sog =0

case 2baabaaabaau=e=v=f=0,s=9yi #0and y> =1and k = —1 and
a=h—-1,n=randqg#g,b=fy—1,t=ziand 22 =1,m =4dyz — 1,h = j — ryz,
g=—-2rz—qr=gqzyand y=1.

We get ig(c — j + 4q)

When ¢ =0, so r = g =0 but ¢ # ¢ CONTRADICTION.

When j = ¢ + 4q, we get 3g(c — 99)(c + 3q), split into two cases:

When ¢ = 9q, we get ig?2 CONTRADICTION.

When ¢ = —3¢ SOLUTION.

case 2baabaaababu=e=v=f=0,s=yi #0and y2 =1 and k = —1 and
a=h—-1,n=randqg#g,b=fy—1,t=2ziand 22 = 1l,m =iyz— 1,h = j —ryz,
g=-2rz—qr=qzyy#1,gq=0andy=—-1.

We get 52 and i%c so ¢ = j = 0 SOLUTION .

case 2baabaaabbu=e=v=0,s=yi#0andy’=landk=—-landa=h-1
,n=rand ,g#g, b= fy—1,t=ziand 22=1, f # 0 andm = iz — 1.

We get 2r + gz + gyz and 2r + gz + qz. Subtracting these gives g(1 — y)

And we get g + quy + 2rz and g + g + 2rz. Subtracting these gives ¢(1 —y),soy =1
because ¢ # g and ¢ # —q — 2rzy, so ¢ # —TY=z
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We get gq(c—h+q+2rz),soc=h—q—2rz

We get hq — jq + q*> + 2r2 + 2hrz — 2jrz and hq — jq + 2 + 2rqz + 2hrz — 2jrz.
Subtracting these gives (g — 2r)? ,so g =rzand g# 0 and 7 # 0 ‘
We get fr(h—j+rz),s0j=h+rz

We get hi(h + 8rz) and hf(h — 24rz), when h # 0. Subtracting these gives rz = 0
CONTRADICTION.

And when A~ = 0 SOLUTION.

case 2baabaabu=e=v=0,s=yi#0andy’*=land k=-landa=h -1,
n#randb= fy-—1.

We have entries f(r +mr +nt+ giy +iqy) , f(n+ mr+rt+ giy + iqy). Subtracting
these gives f(1+m —t)(n — )

Split into two cases :

case2baabaaba when f = 0 and case2baabaabb when f # 0som =t —1

case 2baabaaba u =e=v=f=0,s=vyi #0and y> =1 and k = ~1 and
a=h—-1n#randb= fy—1.

We get (1 + m)? + ity(g + ¢q) + i>n = 0 and n(1 + m)? + ity(g + q) + i*r = 0.
Subtracting these gives (1 +m)? =2, so m = zi — 1 when z? =1

We get i%r + nt? +i2zy(g + q) and i%n + rt? + i2zy(g + q). Subtracting these gives
(n—7)(i* —t?) sot =iz when 22 =1

We get i*((9+q)+2(n+71))=0,s0g=2(n+7r)—¢q

We get 2i%(n +7) =0, son = —r

We get ig(c — h —rz + qy +rz) // Split into two cases :

case 2baabaabaa when ¢ = 0 and case 2baabaabab when g # 0 soc = h +rz —
qy — T2

case 2baabaabaau=e=v=f=q=0,s=yi#0and y> =1 and k = —1 and
a=h—-1mn#randb=fy—1.
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We get ir’z,sor=0but n#randn=—r,son=—r =0 CONTRADICTION.
case 2baabaababu=e=v=f=0,s=yi #0and y> =1 and kK = —1 and
a=h—-1mn#r,b=fy—1,q#0andc=h+rz—qy—rz.

We have igr(z — z) and (¢®> +r?)(z — z), so when 7 = 0 we get z = z and when r # 0,
we get £ = 2, s0 z = z in all cases.

We get (rz+¢)(1 —y) =0

Split into two cases :

case 2baabaababa when y = 1 and case 2baabaababb when y # 1 soy = —1
and r = —qz

case 2baabaababau=e=v=f=0,s=yi #0and 4> =1 and k = —1 and
a=h-1,n#r,b=fy—1,qg#0andc=h+rz—qgqy—rz,x=zand y = 1.
We get h(h — 4q)g

Split into two cases :

case 2baabaababaa when A = 0 and case 2baabaababab when A # 0 soh = 4¢
case 2baabaababaau=e=v=f=h=0,s=yi#0andy*=1and &k = -1
anda=h—-1n#r,b=fy—-1,g#0andc=h+rz=qy-rz,z=zandy=1.
We get 12(3j — q)z, s0 ¢ = 3j

We get ij2 =0,s0 j =0

We get ir2 = 0 CONTRADICTION.

case 2baabaabababu=e=v=f=0,s=yi #0and y* =1 and k = —1 and
a=h—-1,n#r,b=fy—1,9g#0andc=h+rr—qy—rz,x=zandy=1,h#0
and h = 4q.

We get 8i(j — g)g, 50 j = ¢

We get —8ig? CONTRADICTION.,

case 2baabaababbu=¢e=v=f=0,s=yi #0and > =1 and k = —1 and
a=h-1,n#r,b=fy—1,q#0andc=h+rz—qy—rz,y# 1 x=2y=—1
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and r = —qz.

We get 2ig(1 + 2%) = 4ig = 0 CONTRADICTION.

case 2baabaabbu=e=v=0,s=yi#0andy’*=landk=—-landa=h—1
n#Frandb=fy—1,f#0and m=1t-1.

We get i?r + nt? + gity + iqty and i°n + 72 + gity + iqty. Subtracting these gives
(n —7)(t? —4?), sot? = 1%, t = 24 when 22 =1

We get g+ g+ 2n+zr and ¢+ g+ zny+ zry. Subtracting these gives (y—1)(n+r)z =0
Split into two cases :

case2baabaabba when y = 1 and case2baabaabbb when y #1 son = —r and
y=-—1

case 2baabaabbau=c¢=v=0,s=yi #0andy?=landk=-landa=h-1,
n#randb=fy—1, f#0andm=t—1,t=2zi,2z2=1and y= 1.

We have entry fi(g+q¢+nz+rz),sog=—qg—nz—rz

We getir(c —h+q+nz+rz),soh=c+q+nz+nr

We get i(c—2j—qg—nz—rz)(c+qg+nz+rz)

Split into two cases :

case2baabaabbaa when ¢ = 2j + ¢ + nz + rz and case2baabaabbab when
c=—-q¢—nz—rz.

case 2baabaabbaa u = e =v =0, s = yi # 0 and y2 = 1 and £k = —1 and
a=h—-1n#randb=fy—1,f#0andm=t—1,t=2i,22=1andy =1,
g=-q—nz—rz,h=c+q+nz+nrandc=25+q+nz+rz.

We get i(j+q+nz+72)(j+29+2nz+3rz) and i(j+ g+ nz+rz)(j+2q+3nz+2rz)
Split into two cases :

case2baabaabbaaa when j; = —g — nz — rz and case2baabaabbaab when
j+2¢+2nz+3rz=0and j+ 29+ 3nz+2rz = 0.

case 2baabaabbaaa u = e =v =0, s =yi # 0 and 4> = 1 and k = -1 and
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a=h—-1n#randb=fy—1,f#0andm=t—-1,t=2i,22=1landy=1,
g=—q—nz—rz,h=c+q+nz+nrandc=2j+qg+nz+rzand j = —q—nz—r=z.
We get i(n? — q®> — nr — r? — ngz — gqrz) and i(n? + ¢* + nr — r? + ngz + qrz) ,
subtracting these gives n? —r2=0,son = —r

We get 4f2¢ and i(g? — r?) and we have ,n # 7, so r # 0 CONTRADICTION.
case 2baabaabbaab u = e =v =0,s=1yi # 0 and y> = 1 and ¥k = —1 and
a=h—-1,n#randb=fy—1, f#0andm=t—-1,t=2i, 22 =1and y = 1,
g=—q—nz—rz,h=c+q+nz+nrandc=2j+qg+nz+rz.

We have entries j + 2g + 2nz + 3rz = 0 and j + 29 + 3nz + 2rz = 0. Subtracting
these gives z(n —r) = 0, son = r CONTRADICTION.

case 2baabaabbab u = e =v =0, s = yi # 0 and > = 1 and k£ = —1 and
a=h—-1,n#¢randb=fy—1,f#0andm=t—-1,t=2zi, 2°=1and y = 1,
g=—-qgq—nz—vrz,h=c+q+nz+nrandc=—-q—nz—rz.

We get i(n? — jq + nr — r?) and i(—n® — jq + nr + r?). Subtracting these gives
n?—r2=0,son=—r

We get f2(3j — q) ,s0 ¢ =3j

We get 8fjr = 0 and 2f(352 +r?) =0, s0 j = 0 butf # 0 and r #= 0 CONTRA-
DICTION.

case 2baabaabbbu=¢=v=0,s=yi#0andy’=1and k= -landa=h—-1,
n#randb=fy—1,f#0andm=t—-1t=2zi,22=1,n=—-rand y=—1.
We get fi(g+q),s0 g=—q

We get f(h—j+q)r,soj=h+gq

We get2f(q®> + r?) and 2f(q®> — r2). Subtracting these gives —2r> CONTRADIC-
TION.

case 2baababu=e=v=0,s=yi#0andy? =1, k# -1, f=ty, b=t -1,
h=0,f=ziand 22 =1, m= fy—1and b = m.
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We get i%(a — k)yz and i(1 + k)(—t + iyz), so a = k and t = 7yz

We get i(en + jry + 7%yz + jquz) and i(cr + jny + jyz + jqyz). Subtracting these
gives (r —n)(jy — c)

Split into two cases :

case2baababa when 7 = n and case2baababb when r # n so ¢ = jy.

case 2baababau=e=v=0,s=yi#0and y? =1,k # -1, f=ty b=t—-1
,h=0,f=ziand 22=1,m=fy—landb=m,r=n,a=kandt=1yz.

We get g% + ci® + 3i%j + g* and g® + ci® + i%j + ¢g* + 2i%jy Subtracting these gives
2i%5(1 — y).

Split into two cases :

case2baababaa when y = 1 and case2baababab when y # 1so y = —1 and
j=0.

case 2baababaau=e=v=0,s=yi#0andy’ =1, k# -1, f=ty,b=t—1

,h=0 f=ziand2?=1,m=fy—landb=m,r=n,a=k,t=1iyzandy =1

We getg? + ci? + 3i%j + g%k , n®+ci®*+3i%j +n%k and ¢? +ci® + 3i%j +¢2k. Subtracting
these gives(1 + k)(n? — ¢?) and (1 + k)(n? — g?), so g% = n? = ¢*

And we also have n(—g*n? — cqg — gq + jq + ¢*) andn(—j*n? — cq — gg + jq + ¢%).
Subtracting these gives n(j? — ¢2). Split into two cases :

case2baababaaa when n = 0 ,s0 ¢ =n = g = 0 and case2baababaab when
n#0soq=n*>=g*=j*#0.

case 2baababaaau=c¢=v=¢g=n=9g=0,s=yi#0andy’ =1, k # -1,
f=tyb=t—1,h=0,f=ziand2?°=1, m=fy—landb=m,r=n,a=k
,t =1yz andy = 1.

We get j%i and c%i so j = ¢ = 0 SOLUTION.

case 2baababaab u = e =v =0,s=yi #0andy? =1,k # -1, f =ty
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b=t—1,h=0,f=ziand2?=1,m=fy—landb=m,r=n,a=k,t=1yz
andy =1 ,n#0and ¢> =n? =g =352 #0.

We have entry i(gj +2n?+¢?)z and because ¢ = n? = g? = 52 # 0 we get ig(j+3g)2
, 80 j = —3g

We get gn(g — q) and g?(5¢ + 12g + 3q) so, ¢ = g and ¢ = —3g

We get gi(g — nz) so g =nz

We get g% + gk — 12i%nz and g2 + gk + 4i?nz Subtracting these gives 16i2nz CON-
TRADICTION.

case 2baabababu=¢e¢=v=0,s=yi#0andy?=1,k# -1, f=ty ,b=t-1
,h=0 f=ziand2?=1,m=fy—landb=m,r=n,a=k,t=1yz y#1,
y=—1and 7 =0.

2. s0c=0

We get ¢i
We get ¢*(14 k), ¢*(1 + k) and n?(1 + k) ,s0 g = ¢ = n = 0 SOLUTION. |

case 2baababbu=e=v=0,s=yi#0and y? =1 ,k# -1, f=ty b=t-1
,h=0,f=ziand 2°=1,m= fy—1and b=m,a =k and t = iyz, r # n and
c=Jy.

We get n? + jyi + 3i%j + n’k and r? + jyi® + 3i%j + r?k Subtracting these gives
(1+k)(n—7r)(n+r1),s07=—n

We get (1+k)(n? —j2) =0, gi® + j2 + j2k +4i%q and gi® + ¢ + g%k +i%q Subtracting
these gives (1 +k)(j2—¢*) =0 ,50 j2=¢* =n?.

We also get ij(j + ¢q) and i5(3g + jy)=

Split into two cases :

case2baababba when j = 0,s0 ¢ =n = 0 and case2baababbb when j # 0 so
¢*=n’=;2#0,=—3gy and ¢ = —j.

case 2baababbau=e=v=j=¢g=n=0,s=yi#0andy?* =1,k # -1,
f=tyb=t—1,h=0 f=ziand22=1,m = fy—1and b =m,a =k and
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t =1yz,r #nand c=jy, r = —n.

We get g% , so g = 0 SOLUTION.

case 2baababbbu=e=v=0,s=yi#0andy? =1, k# -1, f=ty b=t—1
,h=0 f=ziand22=1,m = fy—land b=m,a =k and t = iyz, r # n and
c=gyr=-n,j#0,¢"=n*=4>#0,j=—-3gy and ¢ = —j.

We get 2¢g°n , so g = 0 and j = 0 but we have ¢> = n? = 52 # 0 CONTRADICTION.
case 2baabbu=e=0,s=yi#0andy’=1landv#0, f =tyandb =1t — 1.
We have entries i(1 +m — t)v and vy(i* —t?) ,som=t—1 t=z2yandy®* =1
And we also have entries h?(1 + k) + v*h = 0 and h%(1 + k) — (1 + k)%v + v?h = 0.
Subtracting these gives (1 + k)%v , so k = —1

We get hv? ,so h =0

We get i*(1 +a—v)yzsoa=uv—1

We get gnv+i%ny +i%ry+ gi%z +1%qz and grv+i®ny +i°ry + gi*z +14%qz , subtracting
these gives gu(n —r) =0

Split into two cases :

case2baabba when g = 0 and case 2baabbb when g # 0 son =r7.

case 2baabbau=e=0,s=yi #0andy’=1andv #0, f =ty andb=1t— 1,
m=t—1t=z2yandy’*=1,k=-landh=g=0a=v-1.

We have entries invyz , irvyz, iquyzson=r=q =10

We get icyz ,s0c=0

We get (c — j)ivyz , so 7 = 0 SOLUTION.

case 2baabbbu=e=0,s=yi#0andy?=1landv#0, f=tyandb=t—1,
m=t—1t=zyandy?’=1,k=-landh=0,a=v—-1,9g#0andn=r.

We get ci? + 3i2j + g%v , ci® + 31?5 + ¢?v and ci?® + 3i%5 + r?v. Subtracting these gives
r2— g = g2 40

We get i%r + jrv +i2ry + gi®z + iqyz and ®r + grv + i%ry + gi’z + iqyz. Subtracting
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these gives vr(j —q),s0 j =g and j #0

We get ij(37 + cy) and i7(37 + gy). Subtracting these gives ¢ = g
We get ij(g + 3jy), so g = —3jy

We get 2j2(1 —y), soy =1

We get 520 CONTRADICTION.
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Appendix B

We assume 1+a=2z,1+b=y,l+m=zandl1+k=w,soa=z—-1,b=y—-1

m=z~landk=w-1

We get sz + u(f +t + 2)

Split into two cases:

case A when u = s =0 and case B when u=s*#0

case A whenu=s=0

We get zy = 1 and we have z =Fand y =1 ,soZ =1 , and sozl* = 1 andz # 0.
Split into two cases:

case A1 whenv =1t =0 and case A2 when v =t* # 0.

case Alu=s=t=v=0andy=1

We get fw and hz

Split into two cases:

case Ala when h = f =0, because f = h* and case B2b when h # Oandf # 0,
w = z = 0, because w = z*

case Alau=s=t=v=h=f=0

We get ¢ + 397 = 0, and we have cisrealandg = j* ,soc=g =7 =0

We get n2 +72+¢>=0,s0n =1 =g =0, because all them are real

We get wz =1 ,50 z = 1

We get ie , so i = e = 0 because i = ¢* SOLUTION.

case Albu=s=t=v=w=2z=0and h # Oandf # 0

We get fh =150 f =+

We get 3+ c2 + 3gj = 0 but c is real and g = j* CONTRADICTION.
1

case A2u=s=0andv=t*#0and y = -

xz

We get ¢ + 3fh + 397 = 0 and we have c is real and ¢ = j* and f = h*, so
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c=g=j=f=h=0

We get tw = 0andvz =0,s0 2 =w =0
We get tv =1,s0t =1

We get n2 +1r2+4¢2=0,s0n =r =g =0 because all them are real.

We get iv = Oand £ =0, so i = ¢ = 0 SOLUTION.

case Bu=3s*#0

We have entries

A=—-1+fh+es+tv+wz=0.
B=—-1+gj+n?+¢*+r’+es+iu+tv+wz=0.
D=-1+c*+3fh+3gj+zy=0.

E=-1+3tu+zy=0.

When we use [D — 3(A — B) — E] =0, we get ¢ +6gj +3n* +3¢*+3r> =0, so
c=n=r=q=n=g=J=0becausec,r,q, narereal and g = j*

We get —1 + es + tu + tv + wz and -1+ fh + es + tv + wz .Subtract these gives
—fh+iu=0

Split into two cases:

case B1 when f = h =0 and case B2 whenfh # 0.

case Blu=s*#0andc=n=r=q=n=g=j=f=h=0.
Wegeti=e=0

We get tw =0, vz =0 and su+tw+vz=0,so su =0 CONTRADICTION.
case B2u=s*"#0andc=n=r=q=n=9g=j=0and fh #0.

We get f = #0.

Wegetm+hy=0and%+w
—2¢ but z = y* CONTRADICTION .

= (0, when we solve them getz = 0,y =
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