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SUMMARY

The primary aim of this work is to develop a tool to predict the lifetime performance of a tidal 
stream turbine. This involves the experimental validation of Blade Element Momentum Theory 
(BEMT) and implementation of an extended model to optimise blade design and predict 
performance over the operating range.

Time varying non-linear upstream flows, such as wave action and velocity gradients are 
considered and the model is extended into the time domain to obtain the dynamic response of 
the rotor. In addition, to rationalise the environmental conditions that a device will encounter in 
its lifetime, representative sea-states and occurrences must be defined.

A 1m diameter turbine is tow tested in the River Tawe. It is monitored and controlled such that 
the performance can be analysed over the operating range. An automated electrical control 
system is also tested. The results are compared to BEMT.

The BEMT is numerically implemented and examined to determine its limitations. Off- 
optimum performance is considered. The model is extended to incorporate a time dependent 
flow field with additional velocity and acceleration terms to allow the consideration of wave 
kinematics. Resultant forces are defined and calculated for particular environmental 
conditions. Finally the results are interpreted to allow the estimation of lifetime loadings 
including peak loads and fatigue.

The model is validated and a good correlation is found relative to standard BEMT. It is 
concluded that both a velocity gradient and a wave action may significantly reduce power 
output whilst increasing the loads on a system. It is also concluded that a 3 bladed rotor 
encounters far lower loadings than a 2 bladed equivalent over the device lifetime.

It is also the intention of this study to compare and contrast various tidal stream turbine 
support structure concepts in terms of the suitability of each to withstand the lifetime loadings 
at reasonable cost. A number of support structure concepts are investigated from an impartial 
perspective. In conclusion there is not one concept which clearly surpasses the others in all 
areas.
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NOMENCLATURE

1/n Velocity gradient characteristic

a Axial interference factor

a Angle of attack (degrees)

A Swept area of the rotor (m2)

b Rotational interference factor

P Chord inclination angle p  = </> + a

c Chord variation with radius (m)

C Wave speed (ms'1)

Caa Axial coefficient of added mass

Cd Aerofoil drag coefficient

Ce Rotor overall coefficient of power

Cf Rotor axial force coefficient

Cl Aerofoil lift coefficient

cm Coefficient of inertia

Cm A Axial coefficient of inertia

CmV Vertical coefficient of inertia

Cp Rotor power coefficient

CT Rotor torque coefficient

Cts Starting torque coefficient

D Depth of water (m)

d D Drag force on a blade element (N)

d F A Axial force on a blade element (N)

d F Ain Axial force for a blade element owing to inertial forces (N)

d F j Torque force on a blade element (Nm)

D h Depth of hub (m)

d L Lift force on a blade element (N)

dr Radial thickness of a blade element (m)

d T Torque on a blade element (Nm)

d T in Torque generated by a blade element owing to inertial forces assuming vertical

acceleration is normal to blade (Nm)

d T ,nS Torque generated by a blade element owing to inertial forces including sine 

correction (Nm)

/  Velocity gradient friction factor

vi



(j> Twist variation with radius (deg)

Fa Rotor axial force (N)

Faso) Axial force generated by blade (i) including the effects of wave action and

velocity gradient (N)

Far Axial force generated by rotor including the effects of wave action and velocity

gradient (N)

Y Rotor blade angular displacement for the vertical position (rad)

Jo Rotor blade start angle (rad)

Js Anglestep (rad)

Y Flow inclination angle (in section 4.3.1.1)

h Hub radius (m)

Hm Heave force generated by blade (i) including the effects of wave action and

velocity gradient (Nm)

Hr Heave force generated by rotor including the effects of wave action and velocity 

gradient (Nm)

IR Rotor inertia (kgm2) 

k Keulegan Carpenter number 

L Wave interval (m)

La The frontal length of the aerofoil for use with axial acceleration (m)

Lv The frontal length of the aerofoil for use with vertical acceleration (m)

MaA Axial added mass coefficient per unit length

N  Number of blades

v(a,b) Objective function

P3(i) Power generated by blade (i) including the effects of wave action and velocity 

gradient (W)

PR Power generated by rotor including the effects of wave action and velocity 

gradient (W)

Ps Shaft power (W)

Q Total constant head for a particular wave (m)

6 Effective angle of attack 0 -  p ~ y  (degrees)

r Radial position (m)

R Radius (m)

S Cross sectional area of the aerofoil section (m2)

T Rotor torque (Nm)

T3(i) Torque generated by blade (i) including the effects of wave action and velocity

gradient (Nm)



Te3(i) Teeter force generated by blade (i) including the effects of wave action and 

velocity gradient (Nm)

TeR Teeter force generated by rotor including the effects of wave action and velocity 

gradient (Nm)

Tms Torque generated by a blade element owing to inertial forces including sine 

adjustment (Nm)

Tr Torque generated by rotor including the effects of wave action and velocity 

gradient (Nm) 

ts Timestep (s)

TSRd Design tip speed ratio

Tw Wave period (s)

u Axial velcotiy in the plane of the rotor (m/s)

Ud Flow velocity at a particular depth d (m/s)

UL Upstream velocity local to the blade element (m/s)

Ur a t e d  Rated flow speed for a turbine 

USf  Surface velocity (m/s)

V Local flow velocity (m/s)

VL Sine adjusted local velocity of the fluid in the vertical direction at the plane of the 

rotor disc due to wave action (m/s)

a) Rotational speed of the flow well downstream of the turbine rotor (rads'1)

Q  Rotational speed of the rotor (rads'1)

W Wave number

W0 Start wave number

Ws Wave step

jc Local speed ratio

xL Local speed ratio including the effect of wave action.

x/X Wave position as a fraction of wavelength

x/X0 Initial wave position

Stream function 

y Surface elevation under wave action (m)

Ym Yaw force generated by blade (i) including the effects of wave action and velocity

gradient (Nm)

Yr Yaw force generated by rotor including the effects of wave action and velocity 

gradient (Nm)



1.0 INTRODUCTION

The rapidly expanding tidal stream energy industry is receiving a great deal of attention from 

many sectors. There is interest around the world from governments, investment groups, 

engineering firms and academic institutions. The climate change issue is becoming ever more 

prominent and renewable energy is high on the global agenda. The most recent estimates 

predict that tidal stream energy is set to become a £4bn industry in the UK alone with world 

market estimates between £115bn and £444bn [1]. The rising price of fossil fuels and 

increasingly serious issues of national security mean that alternative energy sources are 

becoming attractive. Electricity prices rose by 9.4% in real terms over the past 12 months in 

2004 [2], which, in combination with Renewables Obligation Certificates (ROCs) boosts the 

price of wholesale electricity to 6.5p/kWh. With fossil fuels declining and the national appetite 

for renewables steadily increasing, the price of energy appears set to rise for the foreseeable 

future.

Tidal stream energy has the potential to produce 3% of UK electricity in a predictable, 

invisible, economic manner [3]. The Carbon Trust estimates 3000MW of installed capacity in 

Europe by 2020 [3]. Worldwide, in parallel to the sustained demand for electricity, the 

population is increasingly concentrated on the coast, with the United Nations acknowledging 

that about 3.2 billion people in the world were living within 100km of the sea, of which nearly

2.1 billion live in Asia [1]. In the United States, the Department of State forecasts that 75% of 

the population will live on the coast by 2030 whilst about 60% of the Chinese will have 

concentrated on the shoreline as a result of internal migration. This represents a massive 

potential for further industry growth.

At present the industry is still in a fledgling form. In reality only two tidal stream turbines of a 

meaningful size have been deployed for any length of time. These have been installed by two 

independent companies, Marine Current Turbines Ltd in Lynmouth, North Devon, and 

Hammerfest Strom AS in Hammerfest, Norway. The testing has been successful and has led 

to many developers emerging into the industry. The Swanturbines device is one of these 

under development by a company exploiting the research done at Swansea University.

Research into turbines began at Swansea University in the late 1970s when Griffiths 

developed the basis for wind turbine rotor design and performance prediction theory [4]. 

Woollard continued this work with an experimental investigation of a wind turbine in 1980 [5]. 

Some work was carried out by Al-bier around the same time involving the testing of wind 

turbine rotors in a water test tank [6]. Building on this research, Orme, Masters and Griffiths 

undertook an investigation into biofouling and tidal stream turbines in 2000 [7], This led to an
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opportunity to build and test a small-scale tidal turbine funded by the Welsh Assembly 

Government Knowledge Exploitation Fund (KEF) in 2001.

Further funding has been obtained through KEF to undertake the design and costing of a 

medium scale commercial demonstrator. This is a 300kW direct drive device and is intended 

to be installed in 2008. Further fund raising is ongoing to provide resources to build, deploy 

and monitor the demonstration device. Swanturbines Ltd is a company that has been set up 

as the vehicle for this development.

The following chapters start with a brief review of the literature relevant to the development of 

a tidal stream turbine performance model. This includes a historical overview of the 

technology in the tidal stream industry and the factors affecting the design of the devices. 

Blade Element Momentum theory (BEMT) is also discussed as a method used to predict the 

performance of axial flow rotors.

In chapter 3 an experimental test rig is then designed and tested to verify the validity of BEMT 

as a rotor design and performance prediction technique. A 1 metre diameter prototype is 

towed behind a research vessel to obtain torque and power coefficients over the operating 

range. A brake is used to maintain constant tip speed ratio. It is found that BEMT predicts the 

performance well, although Reynolds number and other effects introduce complexities which 

are not thoroughly understood. An investigation into the effect of varying solidity through 

blade number is also undertaken. It is found that lowering the solidity reduces power capture 

but enables the turbine to operate at a higher tip speed ratio.

In chapter 4, the numerical model is adapted such that it will analyse the performance of the 

device at off design conditions. This is to enable power and load prediction at various tip 

speed ratios. The lift and drag coefficients for the aerofoil used along the blade are estimated 

over 180 degrees so that start up behaviour and overspeed conditions can be accurately 

predicted. The results are consistent with other blade element models over most of the 

operating range, but at very low and high tip speed ratios some anomalies are identified.

In chapter 5, the model is then extended to incorporate non-uniform flow effects, specifically a 

2 dimensional velocity gradient and wave effects. This necessitates the introduction of a 

dynamic, time depended model which facilitates the prediction of loads over the lifetime of the 

device. The variation in flow field requires the definition of extra loads; these are defined as 

yaw and teeter moments and heave load. These are described in terms of dimensionless 

coefficients. Results are generated which quantify the effects of waves on device loadings 

and it is shown that wave action will cause a significant variation in loads over time. This is 

then extended to incorporate real wave climate data and lifetime loads and frequencies are
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found. A lifetime comparison of the loads on 2 and 3 bladed rotors shows that a 3 bladed rotor 

encounters significantly lower loads and hence will perform better in terms of fatigue.

Finally, chapter 6 details an analysis of various supporting structure concepts and a 

commentary on the salient issues involved in design and deployment is given. It is found that 

there are various factors affecting the cost of support structures which may vary from site to 

site. These include depth, distance to port and frequency of minor maintenance. It is 

concluded that no single device concept will perform best in all situations and hence it is likely 

that more than one device will succeed in the tidal stream energy market.

1.1 Achievements

As a result of the work presented here, the author and the Swanturbines consortium have had 

a number of significant successes:

1.) A journal paper entitled 'Design and testing of a direct drive tidal stream generator, is 

published in the Journal of Marine Design and Operations, Proceedings of the Institute of 

Marine Engineering, Science and Technology No. B9, 2005/6.

2.) A conference paper entitled ‘Analysis and comparison of support structure concepts for 

TSTs' is published in the Proceedings of the 4th International Conference on Marine 

Renewable Energy, 2006

3.) A conference paper entitled 'Design and testing of a direct drive tidal stream generator1 is 

published in the Proceedings of the 3rd International Conference on Marine Renewable 

Energy, 2004

4.) A conference paper entitled 'Aspects of the performance prediction of tidal stream turbines 

in yawed flow’ is published in the Proceedings of the NAFEMS World Congress, Vancouver, 

2007.

5.) Significant funding has been accessed by Swansea University and Swanturbines Ltd using 

this work as the basis for application. This consists of:

• Welsh Assembly Government, KEF funding for the development of a small scale 

prototype, 2001. (£50k)

• Welsh Assembly Government, KEF CIRP funding for the design and development 

of a medium scale technology demonstrator, 2004. (£360K)
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• Welsh Energy Research Centre, WERC CIRP funding for the design and 

development of a medium scale technology demonstrator, 2006. (£300K)

• Department of Trade and Industry, Technology Programme funding for CYGNET 

Stage 1, technology demonstrator deployment, 2006. (£800k)

6.) The author gave evidence on tidal stream energy at the House of Commons Welsh Affairs 

Select Committee - ‘Energy in Wales’ consultation in March 2006.

7.) Three patents have been filed as a result of this work:

Two of these were filed recently in April 2006. One discloses an arrangement of the whole 

device and the other specifically protects details of a support and installation system. The 

first, filed in 2004, patent number W0 2005/057006, discloses the direct-drive arrangement in 

two separate configurations, telescopic and river bank mounted.

1.2 References

1. Douglas Westwood Ltd, Tidal Stream Industry Market Research -  A report to 
Swansea University. 2006.

2. Royal Academy of Engineering, The Costs of Generating Electricity. ISBN 1-903496- 
11-X, 2004.

3. Callaghan J, R. Boud, Future Marine Energy. Carbon Trust, UK, Jan 2006.
4. Griffiths RT, Woollard MG, Performance of the optimal wind turbine. Applied Energy 

4, Applied Science Publishers Ltd, 1978.
5. Woollard MG, PhD Thesis: 'A design study for and experimental horizontal axis wind 

turbine'. 1980.
6. Al-Bier MY, Towing tank tests on model wind turbines. University of Wales Swansea 

internal report, 1978.
7. Orme JAC, Masters I. Griffiths RT, Investigation of the effect of biofouling on the 

efficiency of marine current turbines. Proceedings of the 1st International Conference 
on Marine Renewable Energy, 2002.
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2.0 LITERATURE REVIEW

2.1 Introduction

Tidal power has been used to power machinery for nearly a thousand years and some 

examples of original systems still exist [1]. But the relatively recent idea of using the 

motion of the water without restricting the flow with a barrage [2] is under development. 

Tidal stream energy uses the currents found around the coastline to generate electricity, 

much in the same way that a wind turbine uses wind [3].

The potential of tidal stream energy is the focus of extensive investigations[4-14]. World 

estimates of the total resource range from 22PWh/y to 29PWh/y, but it is only possible 

to extract a fraction of this and the recoverable world resource is estimated at between 

620TWhpa and 1,775TWhpa [15]. Although more recent estimates are lower at 

120TWhpa [6] and there is a large variation in resource estimations, the consistently 

high figures show that it is significant.

In 1996, the potential in the UK and Europe was estimated as 48TWhpa [12]. Owing to 

the recent interest in the UK, a report commissioned by the Carbon Trust has estimated 

the economically extractable resource as 18TWhpa which would provide 3% of UK 

electricity[9].

Owing to the great potential for a growth industry in the UK and the export market, 

political support for tidal stream energy is growing rapidly. The recent UK Energy 

Review [16] gives support to the industry, and the Scottish Executive [17] is very keen to 

encourage commercial deployment in terms of increased Renewables Obligation 

subsidy. Following the ROS consultation 2006, the Welsh Assembly Government has 

also issued a statement of strong support in the Welsh Affairs Select Committee Energy 

in Wales report [18].

This same excitement is being felt by the emerging industry with numerous tidal 

developers coming forward with technology. The World Wave and Tidal Database [19] 

contains records of 26 tidal developers, and at least another 10 which are not included 

have devices planned. In the UK the current market leaders are Swanturbines [20], 

Marine Current Turbines [21], Lunar Energy [22], and SMD Hydrovision [23]. The
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concepts are quite diverse and the main variations are in the areas of support structure, 

deployment method and power conversion format.

It is thought that the technology in the tidal stream industry will converge to a particular 

design [9] and this will provide economic advantages in terms of rationalisation of 

components in a similar way to the wind industry. The present leading devices are all 

axial flow turbines and it might be suggested that this is an indicator of what form the 

converged design may take. Thus an accurate performance model for this type of 

turbine will be extremely valuable.

The review of literature will present an overview of the technology under development to 

date with a focus on design drivers and key components. The technical solutions that 

have been tested or are under testing are explained along with some of the proposals 

for future developments. Finally an introduction to blade element momentum theory is 

given with the origins and applications to date.

2.2 Technology Overview

2.2.1 Historical Context

Tidal stream and river current generation is designed to extract energy with minimum 

environmental impact and low initial investment. It was first considered on a commercial 

scale in the early 1970s at the 1974 MacArthur Workshop [24] where an initial feasibility 

is undertaken. In 1976 Wyman [25]concluded that the principle deserves consideration 

as an insurance technology. The first experiments appear to have been conducted 

between 1976 and 1984 by IT Power in Egypt [26] in which a turbine was placed in a 

river for 2 years, and it was realised that there was potential for large scale generation. 

And in the 1970s Ampair [27] released a small turbine to provide power for river craft. In 

the US Congress 1978 [28] a theoretical evaluation from MacArthur was presented 

focussing on larger schemes planned for the Florida current.

The main focus of the research to date has been to develop the technology in terms of 

deployment strategy and other practicalities such as survivability. Thus far, the literature 

available regarding detailed performance and load modelling is relatively sparse.
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Substantial work is being undertaken in terms of array modelling and resource 

evaluation, but the theory used to predict individual turbine performance is limited.

2.2.2 Design Factors 

2.2.2.1 Resource

In 1979 Musgrove and Fraenkel [29] undertook an evaluation of the UK potential. They 

conclude that tidal stream is a high density power source that could provide 6% of the 

UK’s energy needs.

In Macnaughton et al [30], a number of locations to site a prototype system were 

investigated and ranked in order of preference. The site requirements are convenient 

access and a maximum flow rate of 2m/s in a depth of 12-20m. There also needs to be 

sufficient flow speed without interfering with shipping. If it is visible from the land is an 

advantage as telemetry can then be transmitted to shore. The site that was chosen is 

Corran Narrows which is a constriction in Loch Linnhe in Scotland. It is particularly 

suited and has a line of sight telemetry link to a lighthouse.

Around this time, a European Commission initiative called JOULE supported research 

and development into renewable energy projects. The section designated to Tidal and 

Marine Currents Energy Exploitation is CENEX [31]and is authored by Technomare SpA 

and IT Power Ltd. It examines the resource, economics and technology of extracting 

this energy and some detail with regard to the theory of turbine operation and the design 

of a conceptual 1MW unit is presented. Paish summarises the EU JOULE research 

programme [32]. It concludes that the European resource is 48TW/year at 106 locations 

and that the best way for the industry to proceed is to build a prototype at a meaningful 

scale.

The assessment of the potential of the European tidal resource has become a matter of 

much further work with two primary methods being used. These are the farm and flux 

methods and are described by Black and Veatch[6]. Essentially the difference between 

the methods arises from the lack of information concerning the effect of energy 

extraction on the flow. The farm approach assumes that the power output of a particular 

site is dependent on the device size, efficiency and packing density. Black and Veatch 

[6] find that this method is not accurate and has the tendency to over estimate the 

resource as it does not take account of the energy extracted from the flow. A new
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approach is developed by Black and Veatch and Robert Gordon University (RGU) which 

incorporates a Significant Impact Factor (SIF). The SIF is factored in to the total energy 

to give the extractable resource as a proportion of the total. This development is based 

on modelling by Bryden [33] which suggests that the amount of energy extractable will 

depend on the type of site. Sites governed by a head difference that is not dependent on 

the flow through the site, such as the Orkney Channels will have a much lower SIF than 

those sites where the head is dependent on the flow of water such as the flow at the 

entry to a sea loch. In this study an initial estimate is made for a general SIF of 20% to 

be applied for all sites. Phase I and Phase II of these reports do vary slightly owing to a 

number of refinements in Phase II. In Phase i the technically extractable resource is 

estimated at 22TWhpa and in Phase II this is reduced to 18TWhpa.

The most recent report has been published by the Carbon Trust [9] and utilises a 

predictive model to estimate the rate or exploitation of the resource. It estimates that the 

installed capacity of tidal stream turbines will be between 1000MW and 2500MW by 

2020. If a utilisation factor of 0.4 is applied to this, it represents an annual power output 

of 3.5TWh and 8.8TWh.

Work headed by Ian Bryden at Edinburgh University is the most advanced in terms of 

array modelling and the effect that energy extraction has on the flow itself. In partnership 

with Professor Peter Fraenkel of Marine Current Turbines Ltd, Robert Gordon University 

and Heriot-Watt University, Bryden has developed shallow water equations to 

incorporate energy extraction in terms of a retarding force. No attention is given to the 

local hydrodynamics as the intention is to investigate the physics of large scale energy 

extraction from tidal flows. The most relevant paper; Couch and Bryden [34], were briefly 

examined and conclude that only in the most extreme cases will blockage owing to the 

installation of a tidal array be as severe as to substantially reduce the power output of 

the array. Bryden’s work assumes that the power extraction characteristics are simple in 

terms of power extracted from a particular cell of the model and no attempt is made to 

estimate detailed time-dependent loadings or power outputs with flow fluctuations.

2.2.2.1.1 Velocity profile

CENEX [31], considers the effect of the surface to seabed velocity profile on current 

flow. A standard 1/7th power law is used to estimate the variation of velocity with depth.

8



It is concluded that the vertical velocity profile is critical to determining the size of a 

marine rotor and that over 75% of the energy is in the upper 50% of the flow.

It is stated that in tidal areas there is often a variation in water depth and the velocity 

profile is not constant. In some places, the variation is amplified by marine topography 

and in others is it cancelled out. This is considered to be another site specific variable 

and must be taken into account when determining rotor diameter. To avoid extreme 

forces and the risk of collision, the rotor must remain submerged during the lowest tides 

and beneath the draught of any shipping in the area.

2.2.2.1.2 Wave Action

Wave action is said to be important in CENEX [31] as surface and subsurface waves 

can generate extreme loadings on the structure. The guidelines supplied by the UK 

Department of Energy [35] on the design of offshore structures are implemented here. 

The change in depth caused by wave action is recommended to be considered when 

deciding upon the size of the rotor, so that it does not pierce the surface in the lowest 

wave troughs. Wave action is not considered in any more detail.

2.2.2.1.3 Other Factors

In CENEX [31] it is stated that the condition and strength properties of the seabed are 

very important when considering mooring methods. It is thought that owing to the rapid 

currents present in areas suitable for marine current extraction, the majority of softer 

materials such as silt and clay will be eroded away. This implies that the seabed in these 

places is likely to be rock and gravel.

Marine growth is discussed in a general form. Typical fouling species are listed and it is 

stated that the abundance of such species is dependent on the supply of oxygen and 

food. For this reason it is thought that the splash and intertidal zones are particularly 

vulnerable to fouling. It is thought that the fouling rate will be low owing to the velocity of 

the current. However, species such as barnacles and hydroids will increase the surface 

roughness of the structure and it is stated here that this will increase the drag force in 

the structure and the efficiency of the blades will be particularly affected. This is 

discussed further by Orme and Masters [36].
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The final environmental consideration mentioned is hazard to shipping. This also 

includes similar activities such as leisure and fishing. It is important that these devices 

do not cause danger to other marine users. Either they should be deployed in an area 

where no hazards are present, or they should be designed to mitigate the risks to other 

such activities, or alternatively, an exclusion zone can be placed around the installation.

2.2.3 Rotor design

The design of a tidal turbine rotor can be considered in much the same way as a wind 

turbine. However there are a few important differences resulting from the environmental 

conditions. There is a significant amount of literature concerning the differences and 

similarities and a review of the issues is presented here.

Firstly rotor performance characteristics must be defined. They are assessed using 

dimensionless coefficients of torque, axial force and power. This enables different rotors 

to be compared under different conditions. The primary performance coefficients are 

defined therefore defined as:
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Also , tip speed ratio (TSR) is a quantity that allows the assessment of a flow regime 

regardless of the flow speed and rotational velocity. This is defined as:
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In Macnaughton et al [30], the design of the rotor is undertaken using the same 

approach as wind turbines. Some differences are noted including the magnitude of 

structural forces on the rotor. In wind turbines the primary forces are due to centripetal 

forces and gravity. In tidal stream turbines the rotor blades are smaller and the gravity is 

reduced by the effects of buoyancy. Hence the dominating forces are hydrodynamic 

forces caused by lift and drag on the rotor. To obtain the required 10kW, the diameter of 

the turbine is designed to be 3.5m. To avoid cavitation, the tip speed must be limited to 

8m/s. This theoretically avoids the risk of cavitation and in a flow speed of 2m/s, limits 

the tip speed ratio to 4. A 2-bladed configuration was selected as this gives a low blade 

aspect ratio, i.e. short, fat blades. These are intended to be easier to handle and more 

robust than greater blade number configurations. They are constructed from 2 piece 

aluminium castings.

The reference rotor used in CENEX [31] is fixed pitch, coupled to a constant speed 

generator. This can then be either an axial or vertical axis machine, and allows a 

reasonable comparison of both. The fixed pitch of the blades results in a theoretical 

efficiency curve as shown in Figure 2.01. This shows how the Power Coefficient Cp 

varies with the flow speed relative to the design flow speed. With a constant speed 

device such as this, UIUrated is inversely proportional to relative tip speed ratio.

0.4

0.2

0
210

U /U  rated

Figure 2.01 - Power coefficient for CENEX reference rotor

In this curve, there is a peak just before the design speed followed by a sharp decrease 

in performance. U rated is defined here as the flow velocity at a particular site with an 

exceedence of 20%. This means that the velocity at the site exceeds this value for 20% 

of the time. A Load Factor is also defined here as being the ratio between the average 

annual power and the rated power. This value is greatly affected by the exceedence 

curve which is specific to the site.
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The technical factors affecting the design of the turbine are considered, the first being 

the operating range of current velocities. The relationship between diameter, power and 

thrust is discussed. It is stated that for a specified power output, a higher velocity and 

hence a smaller diameter, results in lower thrust forces on the structure and hence is 

more economical. It is concluded here that a peak flow of between 2 and 3 m/s is a good 

design speed as locations with speeds like this are common, they have a high energy 

density and higher speeds make it difficult to avoid cavitation.

To qualify the previous discussions on depth of water and rotor size, two approaches 

are presented to determine the maximum allowable rotor size. The first is a pessimistic 

approach taken from the DTI Tidal Stream Energy Review [14] that assumes that 

shipping is allowed into the area containing the turbines. Because of this the uppermost 

tip of the rotor must be at least 9m below the LAT, (Lowest Astronomical Tide). A more 

optimistic approach suggests that if an exclusion zone is enforced around the turbines, 

an alternative rule can be implied in which the rotor diameter is half the depth, and the 

rotor centre is positioned at half depth.

Extreme loading conditions come from various environmental factors and they are 

discussed briefly here. It is recommended that the criteria developed for designing 

offshore structures be applied.

At the Sustainable Energy Research Group Marine Energy Project in Southampton, 

Bahaj [37] has undertaken substantial work in the area of tidal turbines, array studies 

and some work on performance experimentation.

An initial analysis on the issues which will affect the operation of TSTs is presented by 

Bahaj and Myers [38]. In addition to qualifying the potential of these devices for 

baseload supply, areas for future investigation are cited including the validation of 

practical rotor designs, loadings with yaw misalignment and the electrical performance 

of scale turbines.

An overview of the current state of research into turbine performance modelling, 

resource modelling and cavitation is given by Bahaj [4]. It is stated that Blade Element 

Momentum Theory BEMT and cavitation analysis can be used to predict the 

performance of blades for TSTs but current limitations include the effect of turbulence, 

fixings and moorings of the structure. The performance characteristics are predicted in 

more detail in Batten [39], where a clear account of the design and performance 

validation of a marine rotor is given. Various aerofoil sections are applied to a notional
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blade shape and the performance of the rotor is then predicted over the operational 

range. Power characteristics are predicted for two angles of attack and over a velocity 

range. It is concluded that BEMT is suitable for modelling TSTs owing to the narrow 

blades and near 2D flow. However the acceptable level of cavitation and adjustment for 

non-linear flow such as wave action has not been specified.

2.2.3.1 Horizontal or vertical axis rotors

A theme in the early development of wind turbines was the debate concerning whether 

vertical or horizontal axis turbine rotors are more suitable for commercial use. It is clear 

that in the wind industry, horizontal axis wind turbines (HAWTs) dominate the market. 

However, it is possible that in tidal stream the advantages offered by a vertical axis 

device may favour its use.

Musgrove & Fraenkel [29] suggest that the Darrieus type rotor provides a simple and 

efficient means to collect that energy although no detailed performance evaluation is 

presented.

Paish [40] reports on the Scottish Nuclear project in a separate paper in which work to 

date on tidal flow energy extraction is summarised. Some of the reasons that an axial 

flow propeller turbine was chosen for the Scottish Nuclear experiment are stated. The 

first is that an axial flow turbine is fully self starting whereas Darrieus type turbines 

require assistance. Axial flow turbines are also efficient over a wide range of tip speed 

ratios enabling them to operate at fixed speed in different flow speeds. Additionally, they 

are already well understood from wind turbine applications. They are also less sensitive 

to lift drag ratio than the vertical axis type and hence are less sensitive to marine growth 

and surface finish. The final advantage mentioned is also very important; the cavitation 

encountered by aerofoils in underwater applications first occurs only at the tip in axial 

flow turbines implying that most of the blade remains unaffected. In Darrieus type 

cavitation occurs simultaneously along the blade meaning that there is a severe and 

instantaneous loss of efficiency.

The reference rotor in CENEX [31] is a fixed blade pitch constant speed generator type. 

Within this category are a number of different configurations. A section is devoted to 

system concepts to explore these configurations. The primary variable is rotor type as 

this affects the entire system. Axial and Darrieus rotors are the only two to have a high 

enough efficiency to be considered. Both types of rotor can be arranged to have fixed or
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variable pitch blades and can be augmented to include a duct to increase the flow 

velocity through the rotor. It is assumed here that in the case of tidal flows the rotor is 

operating primarily in two directions at 180 degrees from one another. Consequently 

some method of enabling the rotor to operate in both directions must be employed. The 

Darrieus rotor generally rotates about a vertical axis and therefore can be utilised to 

generate from a flow from any direction. The axial rotor requires a mechanism to 

reorient it. Three possibilities are discussed here, in the form of yawing the rotor head 

about the vertical axis, pitching it about an axis perpendicular to the flow and pitching 

the blades around their centre of pressures to reverse the direction of operation.

The engineering study CENEX [31] includes information regarding rotor parameters and 

some theory is presented. The maximum practical coefficient of power for both axial and 

Darrieus is quoted as 0.4.

This figure is taken from the wind industry, and it is also stated that axial flow rotors may 

be slightly more efficient but no reasoning is included. An example Cp TSR curve is 

given although no details of the calculation are shown. It is also of note that this curve 

corresponds to the previously defined Cp and relative velocity curve. The two curves 

inversely represent the same thing and although neither is quantitative. They are clearly 

different shapes, the most obvious difference being that the maximum Cp is 0.34 on one 

curve and 0.4 on the other, implying that neither is presented as reliable.

It is stated that axial flow turbines can be designed to operate with an optimum TSR of 

1-10. The cross flow rotors are much more limited with the TSR in the range of 3-5. 

Varying the pitch of the blades can move the point at which Cp is optimum. Variable 

pitch is mentioned here for both types of turbine as a means of increasing the operating 

range.

A presentation of the basic theoretical performance calculations is given, with a 

theoretical dimensional graph of rotor speed against shaft power output. This is of a 

similar form to that given in Paish [40]. It is stated that this graph applies to a vertical 

axis turbine with the same swept area and it is only intended to provide typical values 

rather than a specific characteristic.

A proposal for a vertical axis turbine is presented by Salter [41]. The general 

arrangement of the moored floating design is shown in Figure 2.02. The primary 

conceptual advantages of a vertical axis rotor are stated by Salter [42] and are that:
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• A vertical axis rotor (VAR) allows a large diameter rotor in shallow water.

• VARs can generate energy from flows in any direction without a yawing mechanism.

• Generation plant can be above the surface and so is easily accessible.

• Blades can have a constant cross section which makes them inexpensive to 

manufacture.

The proposed idea has a toroidal floating ring on the diameter of the top of the rotor 

blades. This floats the device on the surface. The mooring is then taken from a central 

section which resists the torque loading. The power takeoff is proposed as a hydraulic 

ring cam system.

POWER TOROID

TENSION LEO MOOR INC? LINES 
PASS THROUGH CENTRE O r  

ROTOR AXIS TO AVOID 
PITCHING MOMENTS

Figure 2.02 -  Professor Salter’s proposed tidal stream device [41]

Salter [42] states that pitch controlled blades will be needed to ensure the efficient 

operation of the system and a method is proposed. It is worth noting that the proposed 

device is shown as having 12 blades and that any pitching mechanism will have 

significant complexity.

It seems from the information available that vertical or horizontal axis machines could be 

used for the extraction of tidal stream energy. It is likely that the market will decide which 

format will become the most common form in use.
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2.2.3.2 Yaw capability

Initial studies of tidal streams indicate that, unlike wind, the direction from which tidal 

streams originate is much more predictable. This offers a potential opportunity for cost 

saving with regard to the yawing system. This has not been validated by flow 

measurements at the time of writing.

A theoretical design of the 1MW unit is undertaken in CENEX [31] with regard to the 

environmental conditions. A qualitative study is undertaken with a comprehensive list of 

considerations. The first being the tidal ellipse and the effect on turbine design. In 

agreement with Paish [32], it is stated that the effect of the tidal velocity vector pattern is 

to determine the requirement for a yawing mechanism. It is stated that, in most cases, 

turbines can be designed to operate uni-directionally, with the flow directions 180 

degrees apart.

However, Bahaj [43] has undertaken 2D modelling of the tidal currents around Portland 

Bill which clearly shows a 90 degree variation in the tidal velocity. In this situation a 

yawing mechanism would offer clear advantages.

Further work needs to be undertaken to ascertain how much of the available resource 

has an appreciable variation in inflow angle and under what circumstances will yaw 

devices be viable in a cost benefit analysis.

2.2.3.3 Cavitation

One of the major differences between wind and tidal turbine rotor design is the issue of 

cavitation. Cavitation is a factor in any hydraulic power application to prolong the lifetime 

of a device and it must be controlled and mitigated. It also may play a part in reducing 

the efficiency of the device and hence has further economic ramifications.

Cavitation is mentioned in CENEX [31], and it is suggested that the first generation 

systems will limit their tip speeds to 7m/s in an attempt to avoid cavitation. However, it is 

noted that this limitation creates slower rotational speeds and hence higher torque and 

drive train costs. Ships’ propellers operate at speeds much higher than this, requiring 

special designs and advanced materials.
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The issue of cavitation,has been studied in some detail by Molland, Bahaj, Chaplin and 

Batten [44], An aerofoil section was tested in the cavitation tunnel to observe the 

pressure distribution and determine the cavitation inception point. The results of this test 

were used to validate results obtained from the predictive 2D aerofoil code XFoil [45] 

which uses the panel method to estimate the pressure distribution over the aerofoil 

surface. It was found that the experimental data matched the predicted data closely 

giving confidence in the code. Of some importance is the omission of 3D flow effects 

which greatly influence the behaviour of the fluid through an axial flow turbine.

So although further work is being undertaken to quantify the effects and energy lost in 

detail, it appears that cavitation will be able to be mitigated by limiting the tip speed of a 

device. Further work is required to ensure that rotor blades are not adversely affected by 

cavity impingement.

2.2.3.4 Power take-off options

As is found in the wind industry, there are various options for converting the energy of 

the fluid into electrical energy. At the time of writing there are even more varied options 

in tidal stream energy, presumably due to the earlier stage of industry development. 

Although there appears to be only one thorough account of an experimental system, 

many generation formats are described in outline.

The most unusual of these is the Engineering Business Stingray concept [46] with an 

oscillating hydrofoil and hydraulic power take-off. This uses the reciprocating action of a 

hydrofoil to drive a hydraulic pump. The power is transmitted hydraulically to a hydraulic 

motor which drives an electrical generator. This system is partially mirrored in the 

concept proposed by Tidal Hydraulic Generators Ltd [47] which uses rotary turbines to 

drive the hydraulic pumps. However, hydraulics aside, there are two primary issues 

concerning the generation format of tidal stream turbines, namely gears and electricity 

type. The challenge is to transfer the energy from the rotating shaft into electrical energy 

in the most cost effective manner. This involves efficiency, versatility of operating 

conditions and reliability.

The standard wind turbine format, which uses a constant speed system, a gearbox and 

a field coil type high speed generator, is used in MCT’s Seaflow concept [21]. However 

in the wind industry, persistent problems with gearboxes suggest that downtime could
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be reduced by 33% if a gearless solution is employed [48]. Enercon GMBH [49] have 

developed a gearless generator which now commands nearly half of the German 

market, the biggest in Europe. A gearless tidal system has been proposed by 

Swanturbines Ltd [20] and another by Open Hydro [50]. The Swanturbines device uses 

a permanent magnet, radial flux generator directly coupled to the shaft. The Open Hydro 

system uses a rim generator with the rotor blades in the centre. Cost benefit studies are 

currently being undertaken by the companies but no data on efficiency or cost is 

currently available. It is also known that power is generally transmitted from wind 

turbines at high voltage and alternating current, Grainger [51]. This may or may not be 

suitable for use in tidal stream systems. A high voltage DC link has been proposed for 

some systems which will reduce the need for offshore power electronics, Swanturbines 

Ltd [20].

Macnaughton et al [30] report on the Loch Linnhe project. The gearbox used is a 25:1 

two stage epicyclic with an external thrust bearing to absorb the axial force from the 

rotor. The electricity produced is dumped into heaters and consequently the generator 

was easily controlled to enable the rotor to run under different load cases. Some of the 

power was diverted to power the telemetry and monitoring equipment.

A standard 10kW, 415V, asynchronous alternator is used via a coupling as the main 

generator and a secondary belt-driven 24V marine alternator is used to maintain battery 

charge. The electrical system is simple. There is no grid connection and the alternator is 

directly attached to heaters that are capable of dissipating 18kW. The alternator is also 

capable of running in overspeed, it is of standard type but has had its normal voltage 

regulator removed and the field coils are excited by the batteries via a bespoke control 

system. The control adjusts the field coils to achieve the required level of power 

dissipation in the heaters. The battery is maintained by the secondary alternator; this is 

essential to run instrumentation and navigation lights in the event of turbine malfunction.
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2.2.4 Support Structures

In Macnaughton et al [30], various options for the technology are considered relating to 

all aspects of the system and a detailed description of the design solution is presented. 

The rotor is automatically orientated into the flow by trailing it downstream of the 

structure.

In CENEX [31] the authors also state that corrosion, installation methods and inspection 

maintenance and repair be considered early on in the design process. A similar analysis 

is undertaken by Orme and Masters [52]. The viability of the design is critically 

dependent upon the techniques used for installation and maintenance. A study is 

undertaken in CENEX [31] to analyse different techniques. Two basic categories are 

summarised; the seabed mounted and moored-buoyant configurations. Subcategories 

of the seabed mounted type are piled and gravity based structures. Piled versions 

require one or more piles to be drilled or sunk into the seabed to provide a firm anchor to 

resist bending and sliding forces. Gravity based systems are secured by means of self­

weight only. Pile mounted structures are less massive than the gravity base type, but the 

single pile type are limited to about 30m depth if they are to be surface piercing. The 

depth can be increased if triangular combination pilings are used; however this incurs 

considerable extra expense. Gravity bases are constructed of steel or concrete and can 

be floated into position then sunk and filled with rock. The existing gravity structures 

fabricated for huge platforms in the North Sea are not considered suitable, although 

smaller units could be investigated.

Buoyant moored structures are said to have greater flexibility with respect to water 

depth. The main element that changes with depth is the length and size of the mooring 

line. In very shallow water there may be lack of height to give the catenary weight. 

Conversely, in deep water the weight of the line may become excessive. It may be 

necessary to provide redundant lines to act in the event of line failure.

It is concluded that a pile mounted, surface piercing device is preferable in shallow water 

and a moored buoy type for deeper locations. Either an axial flow or Darrieus type 

turbine could be used.

An engineering study then is undertaken to design the structure and turbine. A detailed 

analysis of each of the above concepts is undertaken. For a depth of 20-30m, a 

monopile concept is used. A pile of 2m diameter and 50mm wall thickness is chosen 

from standard sizes. It is intended to be surface piercing for maintenance operations. It
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is likely that the seabed will be hard owing to the speed of the current and consequent 

erosion by scour. Because of this it is unlikely that a hammered pile will be possible, 

hence a drill and grout procedure would be necessary. Unlike a hammered pile which 

cannot be guaranteed to leave the seabed at a precisely vertical trajectory, a grouted 

pile can be levelled during installation. Because of this, the rotor can be affixed to the 

pile directly without any need for a levelling clamp or device.

For depths of 30-60m, a multiple pile system with a tripod tower can be used. It is not 

stated exactly why the tripod structure is required. However it does say that it is more 

suitable than the monopile for deeper waters with a hard seabed and it may be able to 

support a larger diameter rotor. However this concept requires much greater complexity 

of fabrication.

For deeper water, buoyant structures are recommended. This case study shows a 

moored barge with two rotors suspended on vertical columns at either end. The 

maximum trim displacement allowed is 10 degrees. The mooring could be either 

catenary or taught line and in either case 4 to 6 lines should be considered. Installation 

would occur in two stages. The moorings would be installed in advance, and then the 

barge, complete with turbines, can be towed out and the mooring can be picked up. The 

turbines would then be lowered into position.
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2.3 Technical Solutions

2.3.1 Research

In 1979 Musgrove and Fraenkel [29] undertook an evaluation of the technology. A 1m 

diameter vertical axis turbine was tested experimentally. Drag plates were used to load 

the rotor. These were mounted outboard of the blades and consequently interacted with 

the flow through the turbine. For this reason the results of the testing were pessimistic. 

The power coefficient was measured at a maximum of 0.4 although the onset of 

cavitation at higher flow speeds (3.5kts) reduces this dramatically to 0.2.

Macnaughton et al [30]report on what they believe to be the first serious attempt to 

develop a tidal stream power generator in 1993. Scottish Nuclear Ltd, IT Power and NEL 

(National Engineering Laboratory) initiated the design and manufacture and testing of a 

basic lOkW device. The specification was to produce 10kW in a current of 2m/s for a 

limited test period of 2-3 months.

The general system configuration is shown in the diagram below,

1 Rotor
2. Generator Nacelle
3. Buoy
4. Mooring cables

Side view

Figure 2.03 - System layout of IT Power’s Loch Linnhe test [30]

The rotor is mounted 5m beneath the surface, suspended from the buoy which is 

anchored to the seabed. The system consists of a twin hulled 5m length, 1m diameter 

buoy with twin gravity anchors and a semi-catenary mooring. All of the instrumentation 

and electronics are onboard the buoy. The tubular member attaching the nacelle to the 

mooring carries both the torque and thrust from the rotor. The torque capacity is 3kNm.
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The rotor and nacelle weigh 1.5 tonnes and are slightly positively buoyant to permit 

maintenance by floating the unit to the surface.

The nacelle consists of 3 parts; the upstream section is polystyrene filled, the mid 

section houses the generator and gearbox, which is then connected to the hub. A pair of 

PTFE radial lip seals on a stainless steel journal bearing are used as the primary 

rotating seal with grease packed between the seals. It is noted that alternative sealing 

methods maybe required for larger more permanent systems -  a bilge system and 

positive pressure inert gas are suggested.

The results of the experiment are published in Paish [40] in a simple form and 

experimentally determined performance curves are included. The primary results are 

10kW shaft power at the rated 2m/s and 17kW at 2.5m/s. This gives an average power 

coefficient at the rated speed of 0.26, decreasing to 0.23 at 2.5m/s. It can be inferred 

from their data that the efficiency of the electrical system is approximately 0.7.

Two institutions have published papers regarding testing of scale turbines, these are 

Swansea University and the University of Southampton. Orme and Masters at Swansea 

University have published a number of papers concerning the testing of a small scale 

turbine [53], and biofouling of marine rotors[36]. The results presented Orme [52] and 

Orme [53] are derived from the experiment described in this thesis.

An experimental investigation into marine rotors has been undertaken and is described 

by Myers and Bahaj at Southampton, [54] and [55]. A 0.4m diameter 1/30 scale turbine 

was tested in a recirculating water channel. The performance characteristics and wake 

effects were observed and although the effects may have been exaggerated by the 

effect of scale, it is concluded that similar observations will be made on full scale 

devices. The surface elevation was found to increase at a point just upstream of the 

rotor plane owing to blockage effect. It is concluded that further work needs to be 

undertaken to explore the effects and to determine if they are caused by the limitations 

of the laboratory test section. Myers and Bahaj infer that the rise in surface elevation 

could lead to a reduction in the required rotor / surface clearance, consequently allowing 

a larger rotor to be used for a particular depth of channel.

Myers [55] undertakes further testing on the 1/30 scale rotor is presented at differing 

yaw angles and flow speeds. The hydrodynamic performance is predicted using the 

commercial wind turbine code, ‘Bladed’ [56] using two dimensional aerofoil data from 

‘Visualfoil’ [57], Pre stall data is generated using panel method boundary layer analysis.
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For post-stall data, three sets of equations are used to predict the lift and drag 

characteristics of the aerofoil in an attempt to compare different methods. The first is flat 

plate theory, where CL and CD, the lift and drag coefficients of the aerofoil respectively, 

are calculated in terms of a simple trigonometrical relationship with alpha. The second 

are Viterna-Corrigan [58] post stall equations which estimate CL and CD relative to alpha 

by combining CD at stall, with CD at a = 90 in a proportion relative to angle of attack. 

Thirdly, Tangier [59] determined a new value for CD which is more dependent on the 

aspect and thickness to chord ratios.

The results of the experimental testing are only presented in parts, focussing on the 

effect of low speed operation and hence partial rotor stall conditions. It is observed that 

when the blade is operating in the un-stalled condition, the panel method and flat plate 

equations match the performance extremely well. However under stalled conditions it 

appears that a phenomenon that they have described as over-power occurs, where the 

measured power output exceeds all three predicted values by up to around 100%. This 

is attributed to the three dimensional nature of the flow and a deiay in the onset of s ta ll. 

This is owing to radial flows and hence a different effective aerofoil shape resulting in 

the delay of flow separation. The results of this are not presented fully, but it is clear that 

at higher angles of yaw misalignment, the Viterna-Corrigan and Tangier methods appear 

to be more accurate as prediction of power output. It is recommended that more 

research into the delay of stall be undertaken to investigate these effects.

Further experimental research on the nature of the flow around the blades is undertaken 

by Robinson et al. [60]. A 10.1m diameter rotor is instrumented with four pressure 

transducer stations to measure pressure distributions over the blade surface. A data 

sample rate of 521 Hz was used to enable the capture of dynamic and transient pressure 

events. The inflow velocity was measured 12m upstream of the turbine with a variety of 

instrumentation and this enabled the results to be interpreted with regard to fluctuations 

in velocity.
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2.3.2 Proof of concept

At the proof of concept stage the level of publicised information decreases as the level 

of commercial interest increases. For this reason, only generic information is available. 

There are a number of proofs of concept that have been tested but only the most 

advanced will be summarised here.

SMD Hydrovision Ltd are developing the TidEI concept, which is novel in that it is a 

submerged buoyant system which relies upon chains to affix it to the seabed, not unlike 

the Loch Linnhe device. A 10th scale system partly funded by the DTI has successfully 

completed a seven week trial programme at the New and Renewable Energy Centre 

(NaREC) in Blyth. The system was tested in the dry dock, which was partitioned by a 

central section. A bow thruster from a ship was used to accelerate the water around the 

dock hence simulating controlled tidal conditions. The tests have reputedly been 

successful, though limited clearance between the turbine rotor and the test section have 

raised some concerns about the validity of the results.

Figure 2.04 - The SMD TidEI 1/10,h scale concept under test at NaREC

Lunar Energy have independently begun to develop a design for a shrouded rotor This 

is reputed to have the advantage that it removes the need for a yawing mechanism and 

accepts misaligned flow with no loss in efficiency. A 0.8m diameter device was tested in 

a tow-tank as shown in Figure 2.05. The test results have been stated as a success but 

no data is available. Interestingly, it is claimed that the rotor obtains greater efficiency 

when the flow is misaligned.
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Figure 2.05 - The Lunar energy towing tank test with rotor under-slung
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2.3.3 Demonstrations

More recently, with the successful deployment and testing of the Marine Current 

Turbines Ltd ‘Seaflow’ project many papers have been presented. In Fraenkel [61] the 

issues experienced in deploying and operating a prototype tidal stream turbine are 

discussed. Three key areas are identified; structural and fixing, access and installation. 

The monopile approach is discussed and the advantages stated. The commercial focus 

appears to have taken hold in this document and very little useful information can be 

gleaned A graph is presented illustrating that the actual power output is 27% greater 

than predicted. Unfortunately no flow speeds are included. Costings and the commercial 

development plan are discussed.

Figure 2.06 - Marine Current Turbines ‘Seaflow’ demonstrator raised for maintenance

Hammerfest Strom AS are based in Hammerfest, Norway and they installed the first 

grid-connected system in 2002. The system is a 3 bladed, bottom mounted system and 

has been running successfully since installation. It is shown during installation in Figure 

2.07. It reverses flow direction by pitch control of the blades in the same way as the 

MCT device The status of the company’s development plan is unclear and there is no 

information available regarding the performance of the device.
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Figure 2.07 - Hammerfest Strom device being transported to the installation site.



2.3.4 Proposed full scale system

The Seagen concept is a development of the Seaflow as pictured in Figure 2.08. The 

technology consists of twin axial flow rotors of 15m to 20m in diameter, each driving a 

generator via a gearbox. The twin power units of each system are mounted on wing-like 

extensions either side of a tubular steel monopile some 3m in diameter which is set into 

a hole drilled into the seabed as shown in Figure 2.08. The power units are able to be 

raised up the pile for maintenance.

Figure 2.08 - An artists impression of MCT’s 1MW ‘Seagen’ concept.

It is anticipated that Seagen will be installed in 2007 in Strangford Loch in Northern 

Ireland.
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2.4 Blade Element Momentum Theory

Investigations into using tidal stream energy for electricity generation have only been 

undertaken for a period of approximately 20 years. During this period the main focus has 

been to develop the technology in terms of deployment strategy and other practicalities 

such as survivability. Thus far, the literature available regarding detailed performance 

and load modelling is relatively sparse. Substantial work is being undertaken on array 

modelling and resource evaluation, but the theory used to predict individual turbine 

performance is limited and Blade Element Momentum Theory (BEMT) remains the most 

practical method. However very little is published on BEMT applied to tidal turbines.

2.4.1 Origins of BEMT

Blade Element Theory was originally developed to increase the understanding of ship 

and aircraft propellers. Its conception can be attributed to William Froude in the 1870s, 

although it was not fully explored until the early 1900s. It involves discretising the blade 

radially and analysing each element in turn with regard to the aerodynamic forces it will 

experience. When combined with Momentum Theory, BET becomes BEMT which has 

become the leading computational analysis theory of light-loaded free-stream rotors. 

Momentum theory was developed by Rankine and Froude and then Betz who 

introduced rotation of the slipstream in 1920. Momentum theory is also known as 

Actuator Disk Theory and cannot be used as a stand alone tool to analyse rotors, but in 

combination with BET brings useful results. Momentum theory concludes that for 

propellers, the down wash is twice as fast as the inflow, the ideal power is a simple 

function of the thrust, and if the down wash is uniform, the ideal efficiency is maximized. 

These results are combined with BET and become BEMT which has the capability to 

analyse the design and performance of wind turbines and tidal stream turbines, with 

adequate accuracy.

2.4.2 BEMT applied to wind turbines

Griffiths [62] developed a method to design an optimised wind turbine using BEMT. The 

paper describes the development of the method from Actuator Disc Theory in three
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stages. The initial approach models the turbine as a disc that extracts energy from the 

fluid. It assumes that fluid is inviscid, incompressible and that there is no rotation of the 

flow downstream of the disc. It is shown that the effect of the energy extraction is to 

reduce the flow velocity and hence expand the streamtube. This approach gives an 

exact solution, but the effect of the assumptions made is to decrease the accuracy, 

hence the theory is developed further by Griffiths. Firstly, the rotor is modelled as a real 

rotor in a perfect fluid. As described by Betz [63], the fluid is assumed to acquire a 

downstream rotational velocity in the opposite direction to that of the rotor. The 

magnitude of this rotational velocity in the plane of the rotor disc is assumed to be half 

that of the magnitude well downstream of the device. On this basis, the relative axial and 

rotational velocities at the plane of the rotor can be described in terms of the 

interference factors that are introduced. These interference factors vary along the blade 

length and hence are calculated individually for each radial element. The performance of 

the rotor can be expressed in terms of torque and power from the interference factors. 

Finally, the analysis is developed to incorporate real fluid properties by describing the 

performance in terms of the lift and drag forces on each blade element. This 

combination of the momentum equations and energy equations results in a method to 

optimise the design and assess the performance of rotor blades. This takes into account 

the complex nature of the flow and the fluid dynamic drag experienced by the rotor.

In a subsequent paper, Griffiths and Woollard [64], present an arrangement of the above 

method which allows the performance of the rotor to be estimated using iteration of the 

interference factors. The approach also adds a tip loss correction factor as used by 

Prandtl [65]. This shows that given the geometry and characteristics of a rotor, the 

method can be used to assess the performance over the operating range.

2.4.3 Experimental validation of BEMT

Kishinami et al [66] compare a BEMT approach similar to that of Griffiths with 

experimental data from a small wind turbine. The fundamental theory is identical and 

although the way in which the equations are derived uses a thrust / energy method 

rather than a thrust / torque method, the result is identical. The main difference in 

employing the thrust /energy method is that it enables the wake effect to be examined 

more easily. A term is introduced which describes the energy dissipated by the blade 

and this is interesting when considering wake effects. The other difference to the BEMT 

used by Griffiths is the method of tip loss correction. It is stated that the effective radius
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of the rotor, for any r  greater than 0.97R0 the rotor, is taken as R0 (the radius at the tip). 

This should only reduce the lift coefficient and not affect the drag coefficient. This is 

presumably because the effective angle of attack is reduced, but no explanation of this 

is given. Some comparisons of different aerofoils and blade pitch are given and the 

experimental data is found to have some good correlation with predicted performance. 

There is some discussion of the lift and drag coefficients used and how this will affect 

the output dramatically.

2.4.4 Limitations of BEMT

Badreddine [67], comments on the limitations of BEMT, specifically that in the standard 

form, no account is made of the complex nature of the flow through the disc. All 3D 

effects such as radial flow between the concentric stream tubes, wake effects and tip 

losses are ignored in the basic assumptions. However the BEMT used for comparison in 

this paper does not take the energy equations and hence viscous drag effects into 

account, unlike the BEMT used by Griffiths. Badrreddine goes on to develop a vortex 

wake model using lifting line theory as described in the paper. It is said to model the 

wake more realistically than BEMT, although it does limit the angle of attack that can be 

analysed. Lifting line theory is presented as being superior to BEMT although a direct 

comparison is not made. It is stated that the Navier-Stokes approach is more accurate 

than either as it fully captures the viscous and compressible flow effects, but the high 

computational demand limits its application at the present time.

Mikkelsen also undertakes an investigation into the lifting line approach in [68]. A wind 

turbine system was modelled using this theory and Navier-Stokes to analyse the 

assumptions made in BEMT. The assumptions considered are that;

Each annular streamtube can be considered independently and there is no interaction 

between them,

■ The pressure in the wake well downstream is equal to the pressure well 

upstream

■ The induced velocity in the rotor plane is half that of the induced velocity in the 

far wake

■ Axial momentum theory can be applied in the differential form neglecting the 

resulting axial force of pressure acting on lateral boundaries of the stream tube

31



■ Conservation of circulation may be ignored

Although it is found that these assumptions do cause an inherent inaccuracy in BEMT, 

the results indicate that the maximum error caused by this is 3%. This error is said to be 

negligible under most operating conditions.

Mikkelson also describes tip correction factors for real rotors. The approach developed 

by Prandtl [69] and used by Griffiths [64] corrects the aerodynamic force components. 

The correction is applied to the momentum equations as implemented by Glauert [70] 

which gives revised interference factors. It is stated that although this method is widely 

used, it does suffer from some limitations. For example, as the radius is approaching the 

tip, the axial interference factor approaches unity, implying that the axial velocity 

becomes zero and hence the axial force becomes zero. Both Wilson and Lissaman [71] 

and De Vries [72] have made refinements, but both are said to lack rigorous consistency 

at the tip. Shen, Mikkelsen et al [73] have introduced a mathematically rigorous system 

which considers the balance of momentum for a real rotor with finite blade number and 

real aerodynamic forces. Although this appears to be an improvement, it does not model 

the real tip effects exactly and must be calibrated using model testing.

Maalawi and Badawy [74] also implement Prandtl’s tip loss factor in combination with 

BEMT equations to predict the performance of a turbine system. They conclude that 

they are able to solve the equation system directly and hence lower the computational 

demand compared to standard iterative techniques.

Robinson et al. [60] state that BEMT is not able to capture the three dimensional effects 

of the flow in their entirety, but the low computational demand associated with BEMT still 

makes it a very useful tool for both the design and analysis of axial flow rotors, 

especially in the unstalled flow region of operation. It is stated that most wind turbine 

structural design codes using BEMT are unable to capture the full flow regime, even with 

the use of empirically derived stall models. It also states that there is a lack of empirical 

information regarding the flow owing to the difficulties associated with making localised 

flow measurements around the rotor.

2.4.5 Stall delay

The most interesting aspect of Robinson et al. [60] is the focus on stalled conditions, 

where transient flow and 3d effects are greatly dependent on variations in the inflow
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velocity in the form of turbulence and other fluctuations. It may be possible that the 

levels of turbulence experienced by tidal stream turbines are less than the 

corresponding levels in wind devices; nevertheless in the area of wave rotor interactions 

they may be of great interest. The paper focuses on stall delay which is a phenomenon 

where forces experienced on the blade at high angles of attack are far higher than 

predicted. It seems that the stall point is somehow delayed until a higher angle of attack, 

and it is postulated that this is the result of a radial flow along the blade owing to the 

rotation of the system. Fine thread tufts are used to visualise the initiation of flow 

separation. In the regions of flow separation, the flow is immediately seen to acquire 

velocity from the hub to the tip, and once established seems to be stable. However, the 

most important point is that loads may be increased by the phenomenon of stall delay.

Danmei Hu et al [75] have also studied the issue of stall delay in wind turbine rotors. 

Over-power production at low speed ratios has been observed in turbines, propellers 

and helicopter rotors and this condition is referred to as stall delay. BEMT is cited as 

being incapable of predicting forces and power under these conditions because of the 

lack of information regarding the inception and characteristics of stall delay. A basic 

attempt has been made by Viterna and Corrigan [76], which involves introducing a 

correction factor based on the aspect ratio. Myers [55], has examined and compared 

other methods and other theories in which the phenomenon is said to be caused by the 

effect of solidity and the influence of one blade on another. However, this paper uses 

Fluent which is a full Navier Stokes equation solver with viscous, incompressible, steady 

flow. Flow separation inception was analysed in both 2D and 3D, and the 3D case 

showed delayed separation under rotating conditions. It was also found that as 

Reynolds number increases toward the blade tips, this increasingly drives the degree of 

separation as opposed to the radial velocity effects meaning that there is greater 

correlation between 2D and 3D predictions near the tip.

This paper also outlines a scale wind turbine test that was used to validate the 

theoretical predictions. It was found that the 2D predictions underestimated the forces 

on the turbine in the stalled region whereas the 3D model increased the accuracy 

significantly. This again illustrates the limitations of BEMT when predicting loads and 

performance, and shows the advantages of the Navier-Stokes 3D method for verification 

work. It also shows that corrections can be made to BEMT to improve accuracy and take 

advantage of the lower computational demand.
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2.5 Conclusions

There are many demonstrations and tests of tidal stream devices anticipated in 2007/8 

with the fledgling industry beginning to expand. This may result in fewer details being 

published concerning the technical details of different concepts. Patents and DTI 

dissemination are likely to become the primary source of information.

The primary areas of interest appear to be rotor performance and structural 

considerations. There is currently limited discussion of the detailed power characteristics 

of prototypes. The results that are available are discussed in the next section.

It is apparent that BEMT is an extremely useful tool for estimating the loading and 

performance of horizontal axis rotors and is used in the industry because of the low 

computational resource required. However, owing to the assumptions made and the 

limitations imposed by two dimensional analysis, empirically derived factors of correction 

may be required to improve the accuracy. It also seems clear that Navier-Stokes 

analysis is a suitable tool for verification of BEMT and specific research applications 

such as stall delay. Stall delay is a condition that appears prevalent in horizontal rotors 

both in air and water and may become relevant in the introduction of fluctuations in 

inflow velocity owing to wave action.

It can be seen from the papers reviewed that the modelling of performance and loading 

characteristics of TSTs is an important area of research that will greatly influence the 

development of the marine renewables industry. Some initial work has been undertaken 

which explores some of the operational conditions which a device will experience over 

its lifetime. However, there is a great deal of work still to be done to fully understand the 

nature of the hydrodynamic flows and application of BEMT to modelling TST 

performance and loadings, especially under conditions away from the laminar flow in 

which BEMT was first developed.
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3.0 EXPERIMENTAL DESIGN AND INVESTIGATION

3.1 Introduction

This section describes the experimental validation of an existing BEMT model. A direct 

drive, permanent magnet generator (PMG) system with a 1m diameter rotor is built and 

tested. This provides an opportunity to undertake a study on the design of such a 

system and some of the challenges and issues are described. Particular attention is 

given to the design and optimization of the rotor blades for a particular generator. The 

practicalities of deployment and installation are also described. The system is tested 

under controlled conditions to obtain performance characteristics over the potential 

operating range. The results of the testing are presented and compared to existing 

BEMT.

3.2 Objective

The method of analysis described in Griffiths[1] applies to an axial flow rotor. This 

analysis is specifically intended for use in air for a wind turbine, however it is proposed 

that this analysis is also valid in water provided that cavitation does not occur, i.e. no 

region of the flow experiences a dynamic pressure lower than the cavitation pressure. 

The experiment is intended to verify this theory in a practical instance to provide 

confidence that it can be used in the design of axial flow turbines on a large scale.

The most important things to observe are the relationships between the operating tip 

speed ratio and the coefficients of power and torque. These will provide information 

regarding the performance of the rotor under varying operating conditions. The torque 

experienced by the rotor whilst stationary is also very important when compared to the 

torque required to start the system spinning. This will determine the flow speed at which 

generation will start to occur, ultimately affecting the utilisation factor achieved by the 

device.

A series of experiments is also undertaken to examine the effect of varying the number 

of blades on the performance and compare this with theory. There is a cost advantage 

offered by a lower number of blades, and the dynamic characteristics of the system will 

also vary.
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Additionally, the experiment is an investigation into the use of a direct drive alternator 

and the behavioural characteristics and efficiency of this combined with the marine rotor. 

An electrical control system based on a system of divert loads is employed to allow the 

system to run in automation. This method of control is adapted from a wind turbine 

application and is investigated in this experiment.

The system is monitored in some detail and the design and evaluation of the monitoring 

system is an investigation into methods that can be applied to an underwater electricity 

generating device.

3.3 Design of the System

This experiment, is the second phase of the KEF sponsored project ‘Development of a 

prototype River Current Turbine’. The first phase involved the design, fabrication and 

testing of a prototype. Although the results were qualitative, and it became clear that the 

technology was feasible, problems were encountered with alternator compatibility, 

support vibration and consequent rotational dynamic loads. This resulted in low 

electrical power generation, overspeed and buckling of parts of the structure.

The second phase and prototype aims to have rectified these problems. It incorporates 

an entirely new alternator with power storage and conversion system and a greatly 

strengthened structure. It also includes an improved monitoring system to provide more 

information about the rotor performance.

The primary design parameters and methods are discussed here.

3.3.1 Diameter

The primary design specification for a marine turbine rotor is the diameter [2]. The 

diameter is constrained by the location and the structure available to support the device. 

The limit of the diameter that can be safely installed at a site is discussed in detail in 

many papers. The most pessimistic approach is presented in [3] which suggests that the 

blade tip should be at a minimum of 9m beneath the surface. This accounts for wave 

action, storm surges and shipping. However if an exclusion zone were placed around
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the device then the proximity of the blades to the surface is less critical and it is 

suggested in [4] that a diameter of half the depth would be permitted. However the effect 

of the seabed boundary layer must also be taken into account as the water is slower 

here. In the case of this experimental device, the factors influencing the maximum 

allowable diameter do not involve clearances of this type. It is intended that the device 

be able to be installed in a small river. The depth available is approximately 1.5m. A 

diameter of 1m is used to allow for movement of sediment beneath the device and to 

ensure that the blade tips do not pierce the surface.

3.3.2 Generator

The diameter of the device and the flow velocity range at the intended site of installation 

are used to predict the approximate power characteristics of the turbine. A simple power 

coefficient is used to estimate the rotor power and speed. This power curve is then used 

to assess the suitability of generators for use in the system.

A number of generators were considered based on ‘off the shelf designs which could be 

used or modified slightly for this purpose. Three estimated power curves are shown in 

Figure 3.01. The alternator power curves are theoretical and are based on developing 

maximum power at 300rpm. The rated value is the electrical power out and a conversion 

efficiency of 0.5 has been added to calculate the required mechanical power input Ps.

Generator performance characteristics
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Figure 3.01 - A comparison of generator power I speed characteristics

40



The Proven Ltd 2.5kW permanent magnet generator is adapted from a wind turbine for 

this particular application. It is designed to output 1kW, at 48V at 180rpm. It is a 

standard 120V winding from a 2.5kW wind turbine but run at a lower speed. It produces 

a 3-phase A.C. output that is rectified to D.C. for battery charging. The Crow Electric 

data on Figure 3.01 is based upon measured data from the first turbine test. It is clear 

that the Crow alternator was not operating at the correct magnitude. The 600W line 

indicates the predicted performance, and a comparison shows the degree to which it 

underperformed.

The performance of the modified 2.5kW Proven generator is tested in the laboratory and 

the graph shown in Figure 3.02 is produced. The generator power and conversion 

efficiency characteristics can be clearly seen.

PMG Peformance Curves
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Figure 3.02 - Experimentally determined Proven 2.5kW generator performance

Figure 3.03. shows the comparison of the power curves for the rotor and various 

alternators to illustrate the different shapes of optimum rotor power and speed against 

generator optimum. The theoretical power output of the rotor is calculated using BEMT 

from [1] with a power coefficient, Cp, of 0.5. This is shown over a range of TSR from 2 to 

7.
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Rotor Performance Parameters assuming Cp = 0.5
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Figure 3.03- Rotor performance parameters

It is clearly seen that at constant TSR the rotor power increases with the cube of the 

speed, whereas the generator power increases with the square of the speed.

The theoretical 2.5kW curve shows that with an efficiency of 0.5, the power will be 

matched to the turbine whilst operating at a TSR of just under 5. This is the basis of the 

prediction that the turbine will run at TSR 4.5 under automated electrical load.

3.3.3 Blade Design

The blades have been designed using the theory described by Griffiths [1]. However the 

equations have been rearranged to enable them to be solved using the solver included 

in the Microsoft Excel package.

3.3.3.1 Design tip speed ratio (TSR)

Modern wind turbines generally use a blade pitching system to adjust the angle of attack 

of each individual blade and optimize performance at different speeds. This is especially 

important when the turbine is stationary, as the blades are pitched to increase the torque 

and enable the turbine to start. The turbine designed in this study uses a fixed pitch rotor 

to reduce complexity and cost. It is thought that rotors of this type will be most cost
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effective when installed in-situ owing to the reduced capital cost and maintenance 

requirement and similar peak performance. However the disadvantage is that the turbine 

will not overcome its own friction and start until a higher flow speed. The result is that 

power at low flow speed is lost.

To mitigate this effect, the blades are designed to be most efficient at a lower TSR. This 

has the effect that the blades are larger and have greater solidity. The greater chord 

length and lower angle of attack means that a greater proportion of the blade is stalled 

to a lesser degree when stationary. The effect is a higher starting torque and a lower 

starting velocity.

The disadvantages of this technique are reduced maximum power output owing to the 

slightly less efficient blade profile, and a tendency for the blades to run in overspeed 

owing to the power characteristics of the generator. The BEMT model described in 

Chapter 4 is used to analyse this situation and the relationship between maximum 

power coefficient Cp, Starting torque coefficient Cts and Design TSR (TSRD) is shown in 

Figure 3.04.
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Figure 3.04 - Variation of start up torque and efficiency with design TSR

Examination of the interaction between the Proven generator and the blades in Figure

3.03 shows that in the useful power range of 1000-3000W shaft power (corresponding to 

500-1500W electrical power) the predicted TSR of the rotor will be between 4.1 and 4.9. 

It can therefore be concluded that the machine has a notional operational state of TSR 

4.5.
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3.3.3.2 Aerofoil selection

The second stage in the design process is the selection of a suitable aerofoil section. 

Extracting power from the flow of water as opposed to air has a number of implications 

as far as aerofoil selection is concerned. Firstly the power density is increased. This is a 

measure of the rate of kinetic energy flowing through a particular area as defined by 

Betz [5]. Power density is dependent upon the velocity of the fluid and density and is 

given by:

1 ,
power density per unit area 'F  = — p U  (3.1)

To compare the power density available to wind and water turbines, values for the 

density of air and water of 1.23kgm'3 and 1014kgm‘3 respectively and typical values for 

the velocity of wind and water current of 12ms‘1 and 2.5ms‘1 are inserted into equation 

(3.1). This shows that the typical power density available to a water turbine is 

approximately 7.5 times higher than is available to the rotor of a wind turbine.

This increased power density has an effect on the design of the blades. There is more 

power available to blades of a smaller radius. Consequently the blades of a certain 

diameter will encounter much higher loadings in water than in air. The result is that 

shorter stronger blades are required. The effect of this is that an aerofoil section with a 

high thickness to chord ratio is preferred for structural reasons as this gives a high 

second moment of area and space to incorporate an adequate load bearing structure 

inside the blade. This is opposed to the hydrodynamic ideal which would use a thinner 

aerofoil to maximise the lift/drag ratio and hence the performance of the turbine[6]

However with regard to the design of a marine blade, stall characteristics and pressure 

gradient to avoid cavitation will play an important role in determining the optimum 

aerofoil profile.

3.3.3.3 Aerofoil detailed specification

The operation of a fixed pitch axial flow turbine requires the blade aerofoil to operate at 

variable angle of attack. When stationary, the angle of incidence is very high and hence 

the majority of the blade is stalled. To enable the turbine to start effectively the blade 

must create a torque when in the stationary and hence stalled position. The stall
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behaviour of an aerofoil is dependent upon its shape and particularly its thickness to 

chord ratio.

The smaller the thickness to chord ratio, among other factors, the sharper the stall tends 

to be. This implies that the lift coefficient drops very rapidly after the stall angle of attack 

is reached. Conversely, aerofoils with larger thickness to chord ratios stall less sharply 

and the lift coefficient is maintained to a greater degree after stall occurs. This is 

advantageous as the lift produced creates torque about the axis to start the turbine.

The NACA 4 digit aerofoils have gentle and predictable stall characteristics [7] and there 

is much information regarding their performance available. They also are tolerant to 

variation in surface roughness making them more resilient to marine growth than other 

aerofoil sections. The primary disadvantage is the low maximum lift coefficient.

The thickness to chord ratio of this series varies from between 6% to 24%. For structural 

strength and stall behaviour the thickest possible section should be used. Conversely 

the maximum available lift coefficient occurs with the thinner sections and the onset of 

cavitation occurs at higher speeds with thinner sections.

It is intended that the device will be designed for a low tip speed ratio for ease of 

starting, and to aid the efficiency of the generator it will operate in overspeed in normal 

operation. Overspeed is the condition in which the turbine is operating at a TSR higher 

than its design TSR. Operation in overspeed reduces effective angle of attack across 

the blade. The pressure differential across the blade is reduced and the pressure 

minima increase. This implies that the blades can withstand higher speeds before the 

onset of cavitation occurs.

The lift coefficient of a thick section can be increased by increasing the camber of the 

mean chord line. In the NACA 4 digit series, the first number concerns the maximum 

camber as a percentage of chord. The maximum in this series is 4.

As structural integrity and starting performance are of great value to a marine turbine, a 

thicker section will be used, but to maximise the lift, the section of greatest camber is 

also selected. For this reason the NACA4424 has been selected for use on the 

experimental device. This has a maximum camber of 4% of the chord which is located at 

a distance of 40% chord from the leading edge with a thickness to chord ratio of 24%.
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3.3.3.4 Aerofoil characteristics

The basic lift and drag curves for the NACA4424 section are presented in Figure 3.07 [8]

0?0c]

rrrrrr

i=:

Figure 3.07 - NACA4424 aerofoil properties [8]

Assuming a chord of 0.2m the Reynolds number across the blade will vary from 

approximately 4E5 to 2E6. These are quite low and the data here only covers Re 3E6 to

9E6.

In Figure 3.07, it can be seen that the maximum lift/drag ratio is around 76 at Re=3E6. It 

is known that the drag coefficient increases dramatically as Reynolds number falls. The 

‘Profili’ aerofoil analysis software [9] indicates that the drag coefficient increases 

negligibly as Re falls from 3E6 to 2E6, but increases by approximately 45% as Re 

decreases from 3E6 to 4E5. The lift coefficient also falls but only by -2% . This illustrated 

in Figure 3.08 where the C,/CD ratio falls by -40% .

For this reason a max lift/drag ratio of 50 is used in the design of the blades This is a 

simplification which assumes uniform maximum lift/drag ratio over the blade radius.

46



A graph to show the relationship between Reynolds num ber and lift/drag 
ratio with the NACA 4424 section as calculated by Profili V2.18a
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Figure 3.08 - The influence of Reynolds Number on aerofoil performance

3.3.3.5 Blade number

The number of blades used for wind turbines has been the subject of much debate 

throughout the industry’s history. It is generally considered that odd numbers provide 

better dynamic stability in bigger machines and lower numbers of blades are more 

economic, DWEA [10] The 3 bladed configuration is often used for these reasons. 

However in the case of the experiment, the TSR is very low and consequently the 

solidity is very high. This results in particularly large blades which would be very heavy 

and consequently present a disadvantage.

As the experimental device is small scale and the dynamic forces are expected to be 

low, it is considered that the requirement for an odd number of blades is reduced. At 

blade number 4 the chord size and hence blade mass is reduced and the manufacturing 

cost is still low, hence the 4 bladed configuration is used Blade numbers of 2,3 and 4 

will be tested on different hubs as part of this experiment.

3.3.3.6 Chord and twist distribution

Of critical importance to the operational characteristics of the rotor is the radial 

distribution of the aerofoil chord and twist. This determines the load distribution across
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the blade and the performance in terms of lift and drag. The following methodology used 

is taken directly from Griffiths [1] and is adapted to be calculated in Microsoft Excel. The 

implementation of the theory is presented in detail in Chapter 4.

A BEMT is developed based on propeller theory for the design of wind turbine blades. It 

takes some account of the complex nature of the flow and the aerodynamic drag on the 

blades. The forces are described in terms of torque and axial force and these equations 

can be solved to determine the optimum blade profile in terms of chord length and twist 

relative to the plane of rotation. Interference factors are defined as follows:

u , co
a = — b = -----

U  2Q

Where Q is the angular velocity of the rotor, co is the angular velocity of the fluid well 

down stream, u is the axial velocity in the plane of the rotor and U is the velocity 

upstream.

The system is solved by determining values for the interference factors a and b. The 

resulting solidity and inflow velocity is used to calculate chord length and blade angle. 

The optimum values for a and b are those that allow the aerofoil to operate at maximum 

efficiency over the blade radius, that is when torque is a maximum for each value of r. 

This is described in more detail in section 4.1.2.

The input variables are diameter, design TSR, and aerofoil maximum lift/drag ratio. The

blade is discretised along the radius and the profile is described for each section in 

terms of chord length and twist The resulting profile is described in Figure 3.09.

Blade profile - Chord length and twist 
Diameter = 1m, TSRD=2, Blade number-4
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Figure 3.09 - Blade geometry used in the experiment
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3.3.4 Blade construction

The method of transferring these parameters from data to a physical blade is essentially 

taken from Woollard [11]. A plug is made in the profile of the blade, from which female 

moulds are taken. Blade halves are created in these and joined together over a central 

spar.

The outputs of the design stage are a series of chord lengths and twists. The transfer to 

physical form involves dividing the blade into sections along the radius and making each 

section individually. To make the plug, the sections are then combined, in effect 

‘stacked’ and rotated to the correct position. Woollard [11] undertakes this using 

plywood sections and a lathe to rotate and combine them. In this experiment, computer 

aided design and rapid prototyping techniques are employed.

3.3.4.1 Computer Aided Design

A three dimensional model of an individual blade is generated on a computer from the 

outputs of the design stage. The CAD package ‘Autocad’ was used for this operation. To 

enable an accurate profile to be created, the blade is discretised into 5000 radial 

elements of 0.1mm thickness. Each element is defined by radial position, chord length, 

angular displacement and the NACA4424 aerofoil profile.

A script file was created to undertake the generation of each element automatically. This 

was created using the design data in Microsoft Excel and processed with Fortran to 

ensure the correct formatting.

The operation undertaken by the script file is described in Figure 3.10.
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START

Single NACA4424 polyline located in Cartesian coordinates in XV plane with 
centre of pressure at (0,0,0). Orientation 0 degrees, chord length 100mm.

Script file picks up aerofoil polyline at (0,0,0). Aerofoil is copied 5000 times 
and each time is displaced 0.1mm further in the radial (z) direction.

Each of the 5000 aerofoil polylines is picked up individually and scaled by an 
amount predetermined by radial (z) position about the centre of pressure (0,0,0). 

This determines the variation of chord length along the radius.

Each scaled aerofoil is picked up and twisted about (0,0,0) by an amount 
predetermined by radial (z) position. This determines the variation of blade twist

along the radius.

Each scaled and twisted aerofoil is picked up and extruded by 0.1mm in the radial 
(z) direction. It is tapered at an angle determined by the next element size. This 

creates a series of 5000 solid blade element sections.

All 5000 elements are selected and joined using the UNION command

The finished blade is subjected to a visual inspection of each element and
any errors are rectified.

Export to STL file format.

Figure 3.10 - Script file operation flow chart
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The resultant blade profile model is shown in Figure 3.11.

Figure 3.11 - Computer generated blade profile

3.3.4.2 Plug construction - Rapid prototyping

The Engineering Department at Swansea University has a rapid prototyping machine 

which operates like a 3D printer, differing in the way that it applies a polyester based 

plastic to the substrate rather than ink Objects are built up layer upon layer, each layer 

having a thickness of approximately 0.3mm. The object geometry is defined by the STL 

format, which is a triangular surface mesh.

The workspace available for use inside the printer is of dimensions 200 x 400 x 200mm. 

It is therefore clear that a 0.5m radius blade cannot be created in one piece. After 

extensive investigations into the method which the printer uses to create objects, it is 

concluded that the most effective orientation for the object is to have the radius in the Z 

plane. This is because the layers are applied sequentially in the XY piane. As the first 

layer is applied, the perimeter of the aerofoil shape is printed. The central section is then 

filled in using a tight zig-zag. To obtain a continuous external surface it is necessary to 

orientate the blade in this manner.

The blade plug is made in 5 sections. Section 2 can be seen under construction in 

Figure 3.12. Once complete, the sections are joined using polyester resin. The surface 

is then smoothed to eliminate surface imperfections, and a tip piece is added and 

smoothed. The resultant plug is complete and ready to cast the female moulds.
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Figure 3.12 - Rapid prototyping of the blade mould plug

3.3.4.3 Mould construction

The female mould is created in two halves and therefore the point at which the halves 

meet is defined by the centre of the leading edge and the trailing edge To create the 

first mould, the blade is embedded in modeling clay up to the mid point. Layers of GRP 

are placed over the blade plug and the clay. Release agent is used to stop the GRP 

adhering to the blade plug 1 layer of fine mat is used followed by 4 layers of chopped 

strand for rigidity.

The plug is released from the mould and then reinserted. Release agent is again used 

and the second half is laid up across blade plug and mould as shown in Figure 3.13

Figure 3.13 * The blade plug in one half of the mould

3.3.4.4 Stainless spar

To maintain the structural integrity of the blades under full load operation, it is 

determined that a steel spar is necessary. The dimensions and connections associated
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with this are designed using the applied loads calculated by the theory from [1]. This is 

inserted between the blade halves and aligned with the trailing edge. At the blade root, 

the spar is 20mm diameter. The spar is shown in Figure 3.14 being inserted into a blade 

half.

Figure 3.14 - Stainless spar inserted and aligned in finished blade half

3.3.4.5 Joining and finishing

To enable the blade haives to be joined securely, some glass fibres from each of the 

halves are left proud of the internal GRP surface. Additional chopped strand mat and 

polyester resin are pushed between the two halves before joining. The blade halves are 

joined within the two mould halves which are bolted together to ensure a correct and 

tight fit Any irregularities in the blade surface or joins are then removed by hand to 

ensure a waterproof seal. The finished blades are smoothed and polished

Figure 3 15 - Finished rotor blades on 3 bladed hub.
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3.3.5 Chassis and nacelle

The structure of the experimental device is designed using loads predicted by the 

methodology in [1]. However owing to dynamic effects including turbulence and 

imbalance, additional software was used to predict the rotordynamic characteristics of 

the system [12]. The fundamental theory behind this can be found in [13].

3.3.5.1 System Layout

The system layout is shown in Figure 3.16.

3.3.5.2 Shaft

The required shaft diameter is calculated using [12]. This takes into account the effects 

of imbalance and ensures that the frequencies of operation are well below the critical 

speeds of the device. The primary shaft diameter is 55mm. The material is stainless 

steel AISI Type 502.

3.3.5.3 Bearings

The bearings used in the front housing are both taper roller bearings. The thrust load is 

resisted by the front bearing. The bearings in the generator section are simple roller 

bearings as supplied by Proven Engineering.

3.3.5.4 Coupling and torque monitoring

A torque meter strain ring is mounted in a flexible coupling which serves as the main 

coupling from the shaft to the generator.

The torque meter is fitted between the rotor and the load to measure the torque 

transmitted to the load either braked or electrical. It is rated from 0-125Nm to cope with 

1500W at 120rpm. It maintains accuracy between 12.5Nm and 125Nm but is unreliable 

below this range.
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The shaft mounted strain ring includes a transmitter that sends a signal to a close 

mounted E60RX reciever. This is mounted on one of the pipes of the mid section 

structure. This signal is fed to the monitor screen and converted into a 0-1OV output to 

be recorded by the data logger.

3.3.5.5 Braking System

The braking system serves two functions, to stop the turbine and to control the speed 

during testing. A hydraulic car brake from a mk3 Ford Fiesta is used. This is over 

powerful so to desensitise it the pad area has been reduced by 2/3.

The brake is fitted inside the generator frame to save space, however this presents he 

difficulty that the shaft cannot be easily removed. For this reason the brake disc is made 

in two halves that are bolted together onto the shaft.

The caliper is supported by a mounting frame on the front plate of the alternator. The 

brake pipe is fed through the plate, protected by plastic sheath, through the midsection 

and out of a cable gland in the front housing plate.

The master cylinder actuator is designed to be hand operated. A simple screw thread is 

used to transform the rotation of the handle into a linear motion to force the master 

cylinder. A table top frame supports this mechanism. Return of the brake to the open 

position relies solely upon a slight misalignment of the disc to force the pads open and 

hence the master cylinder back.

3.3.5.6 Sealing system

• The shaft seal is a ceramic carbon bellows type face seal. This is located within 

the sealcap.

• The front plate seal is an O-ring type seal held between the mid section flange 

and the front plate.

• The rear plate seal is a circumferential O-ring type seal which is held between 

the generator housing and the rear plate.

• All cables are sealed using cable glands rated at 5 bar.
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3.3.5.7 Bilge system

In the event of water ingress a bilge pump is fitted. It is located below the generator 

which is the lowest point of the device. In the event that water needs to be pumped out 

of the system, atmospheric air must be allowed to replace it so that a vacuum is not 

formed. If a vacuum occurs, this would increase the pressure differential across the 

seals. For this reason an atmospheric air intake is provided.
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3.3.6 Electrical system

3.3.6.1 Proven Controller

The power utilisation system is sourced from Proven Engineering Products Ltd. It is 

matched to the alternator as a 2.5kW system. It is a voltage controlled divert system which 

will adjust the load on the system in accordance with the power being generated.

The first stage of the system is the controller box. This incorporates the system of divert 

loads which are switched in at increasing voltages. The 3 phase supply is rectified to 

produce DC. The DC voltage is measured by a circuit that controls the divert relays.

When the voltage exceeds the battery voltage the batteries begin to be charged. At 

specified additional voltages two DC divert relays are switched in, enabling the power to be 

dissipated in the load of the users choice. Three AC divert loads are switched in the same 

way.. These are loads that draw current through the inverter. The inverter automatically 

switches on when these are switched in.

Another feature is battery charging. If the controller senses that the battery voltage is below 

a certain threshold it switches a relay that supplies mains power to the inverter. This 

automatically switches the inverter on in battery charging mode. This is to protect the 

battery from being damaged by too deep a charging / powering cycling. All of the switched 

relays incorporate hysteresis to stop them switching in and out repeatedly.

On the front of the controller box there are voltage and current meters taken from the 

battery and a shunt respectively. These are crude indicators and although useful are 

intended for observation only.

3.3.6.2 Power box

Two separate boxes are used for the data acquisition system. The power box contains 

power supplies and larger currents and voltages. It was designed and built with the help of 

Mr Christian Hilario of the University of Reims. See Figure 3.17. Included features are:

1. Mains supply in -  a plug to connect the entire system to a mains power supply; 
protected by a emergency stop switch.
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2. Mains supply for the inverter charging function

3. Power supply transformer for the data logger -  a standard 13A plug socket to 
supply the 9V data logger adaptor.

4. Power supply transformer for the LEM current meter -  an integrated transformer 
providing -1 5 + 1 5  V.

5. Power supply transformer for the pump -  a 15V 6.7A capacity transformer

6. Power supply transformer for the Frequency Voltage converter -  a 24V transformer.

7. Frequency voltage converter signal transformer -  10:1 ratio transformer designed 
to bring the signal voltage down to an acceptable level.

8. Potential dividers for battery and rectifier voltage measurement -  2 potential 
dividers : The battery circuit is in the ratio 1/8.62 and the rectifier in the ratio 1/16.

9. Pump and battery charging relays -  two 24V actuated relays

10. Auxiliary mains power socket

Figure 3.17 - The power box layout
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3.3.6.3 Data box

The data box includes the data logger, the frequency voltage converter circuit and a visual 

display for rotor speed. The frequency voltage converter is separated form the power box 

as it is very sensitive to external signals i.e. mains frequency interference.

3.3.6.4 Data logger

• 8 Channel recording + 1 pulse count channel.

• Direct connection of thermocouples, voltage, 4 to 20mA current, and 

thermistors.

• Direct connection to laptop or PC for direct monitoring

• External triggers can start and stop the logger.

• Environmental operation: -30 to +65°C, 0 to 95%RH.

• External power supply: 9 to 14Vdc (9V internal battery included).

• Communications via RS232C with auto-baud detect.

• Rapid memory download at 19.2 kbit/s.

• Optional alarm features.

3.3.6.5 Frequency voltage converter

The F/V converter circuit is a method of determining the speed of the rotor. It measures the 

frequency of the AC signal across 2 phases of the generator output. This frequency is 

converted into an output voltage of between 0 and 5V volts. This is displayed on a 

voltmeter on the front of the data box and recorded by the data logger.

3.3.6.6 Batteries

The battery is an extremely important part of the system as this allows the user flexibility to 

use the power at the time and in the quantity required. However, it is also a major cost 

consideration. A compromise is selected from Proven Engineering Ltd who supply Hawker 

batteries. A 48V 460 Ah long life tubular plate battery has been acquired. However the size 

and weight of these cells is restrictive in using them for experimental testing. Hence 4
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standard 12V car batteries were used to simulate the battery for the experiment, this is 

48V, 30Ah.

3.3.6.7 Inverter

Supplied by Proven Engineering Ltd, the inverter is a standard Studer Solartechnik 

Sinewave Inverter and Battery charger, capacity 3.5kW. The primary functions of the 

device are:

1. Converting the 48V DC from the batteries into a useable 240V 50Hz AC power 

source.

2. Charging the batteries from mains power to protect them from low charge damage.

3. To supply any loads using the inverter with power from the mains in the event of 

low battery condition.

The inverter input is connected directly to the batteries. The 240V output is sent back to the 

proven controller where there it is outputted to the AC load and AC divert loads by the 

control circuit. The low battery detector in the controller switches on the mains power in to 

the inverter and this automatically starts mains battery charging.

3.3.6.8 Divert loads

The controller sets the rate at which generated power is fed into the batteries. It does this 

by controlling the voltage differential between the batteries rated voltage and the input 

voltage from the generator. If this difference is too great then the controller switches in 

divert loads in parallel with the battery to increase the load and hence slow the turbine and 

reduce the voltage.

There are two types of divert loads, two D.C and three A.C. These can be set to cut in at 

particular voltages using variable resistors on the control circuit. The DC divert loads are 

connected in parallel with the battery charging DC from the generator. DC1 is used in the 

experiment, it is a 50 Ohm heating element. The A.C. loads are connected to the battery 

via the inverter. They are designed so that any power that has to be dissipated is dissipated 

in a useful and not wasteful manner, for example as heat to heat a building. In the 

experiment, two 500W flood lights are used to absorb power. The trigger voltages for these 

loads are shown in table 3.1 below.
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Divert Dissipation On Voltage Off Voltage

load capacity (W)

DC1 50 56 51.7

DC2 100 56.2 52.6

AC1 300 56.6 53.0

AC2 500 57 53.4

AC3 500 57.4 54.0

Dl Disconnect 58.2 50.0

Table 3.1 -  Details of divert loads used in the experiment



3.4 Experimental procedure

3.4.1 Overview

The object of the experiment is to evaluate the performance of the rotor blades, the 

generator and the control system. It is the intention that the theory used to design the rotor 

and predict the performance of the system will be evaluated against experimentally derived 

data. A secondary objective is to evaluate the design and functionality of the system 

components such as the generator, shaft, seals and structure.

To test the performance of the device over the operating range a controlled set of 

experiments is undertaken. The primary variables are flow speed, TSR and blade number. 

The turbine unit is towed behind the University Research Vessel ‘Noctiluca’, a twin hulled, 

twin propeller craft as shown in Figure 3.18. The testing is undertaken in the River Tawe in 

Swansea, UK.

The RV Noctiluca is a 12.5m catamaran with a hull length of 12.5m and a distance of 1.1m 

between the hulls at the surface. It is equipped with an A-Frame with a winch capable of 

lifting 1.5 Tonnes. The structure and superstructure are constructed of aluminium and has 

an unloaded draught of 0.5m. It has twin 140kW diesel engines in each hull and a 

maximum cruising speed of 15knots.

3.4.2 Vessel and test conditions

3.4.2.1 RV Noctiluca

Figure 3.18 - The RV Nociluca
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The RV Noctiluca is based at Swansea Marina and is ideally suited to the turbine test 

programme owing to the versatility of the vessel and the crew.

3.4.2.2 River Tawe

At the time of the experiment, the River Tawe at Swansea, grid reference 51° 36’.43N, 03° 

55’.67W, has an uninterrupted stretch of water approximately 600m in length and 3m 

depth. Although the depth varies according to the state of the tide and river flow, it is 

consistently around 3m with a variation of 0.5m owing to local bathymetry.

The summer months see a significantly reduced rainfall and the weir at the barrage 

maintains the depth of water. The flow rate is considered to be negligible for two reasons, 

the first is that there is very little current, in the region of 0.05 knots and secondly the 

velocity is measured between the vessel and the water meaning that any river flow speed is 

negated.

3.4.3 Installation

The total weight of the turbine system is approximately 250kg and it is therefore necessary 

to use the marina hoist to install the system into place. The bulk of the structure is set up on 

the vessel so that when the turbine and frame are lowered it can be connected simply. The 

lowering procedure can be seen in Figure 3.19.
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Figure 3.19 Turbine being installed by marina crane

The turbine is arranged in such a manner that it can be raised and lowered by the A-frame 

and winch. Its lowest position is the operational position and the highest position brings it 

totally out of the water.

The diagram in Figure 3.20 illustrates the relative positions of the system.
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Figure 3.20 - Turbine in position at the stern of the RV Noctiluca, raised (top) and lowered

3.4.4 Dunk test

A dunk test is undertaken to evaluate the integrity of the primary seals and to ensure that 

the sub-systems function effectively underwater. This involves submerging the device 

momentarily in order to test the seals without a severe risk to the equipment. The turbine is 

removed from the water after a period of 15mins to ascertain the level of water ingress All 

electronic systems are checked for functionality and to ensure there are no earth problems 

associated with submersion

3.4.5 Flow measurement

The measurement of the flow speed is of critical importance to the results of the testing as 

the power output is proportional to the cube of the velocity. This implies that even small 

errors in flow measurement will result in significant error magnitude. For this reason a 

system was developed which adapted an Ott meter for electronic measurement. The Ott 

meter is an impeller flow meter designed to undertake flow velocity measurements in rivers 

and streams. For use in this experiment it is placed in front of the rotor blades at a distance 

of about 0.5m upstream. Each revolution of the impeller is recorded by the data logger and 

the flow speed is calculated from this using a calibrated scale.
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3.4.6 Experimental runs

The experiments undertaken were controlled by flow speed and rotational speed. The 

vessel started from stationary and was accelerated to speed before beginning the test. The 

turbine begins to rotate at the cut-in speed and continues to accelerate. At this point, the 

boat may slow down in reaction to the increased axial force on the turbine and hence extra 

throttle is provided to maintain the hull speed. The brake is used to control the rotational 

speed of the turbine and this is adjusted until it is running at the desired tip speed ratio. By 

this method, the performance at different constant TSRs is investigated. By releasing the 

brake altogether, the overspeed characteristics can be observed.

Alternatively, to examine the characteristics of the electrical control system, the brake is 

released and the turbine is controlled automatically by the divert loads. In addition, blade 

numbers are varied to investigate off-design conditions. The full range of experiments is 

included in table 3.2 below. A run classified with RPM -  ‘free’ is a run where no additional 

torque loading is applied to the shaft. The only load applied is the friction in the bearings 

and seal. This effectively allows the turbine to operate close to the propeller brake state. A 

run classified with RPM -  ‘auto’ is a run under automated electrical control.
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Table 3.2- Experimental runs

Run

no.

Blade

no.

Boat

speed

kts

Rpm Elec

status

Run

no.

Blade

no.

Boat

speed

kts

Rpm Elec

status

1 4 4 0 None 24 4 4 125 None

2 4 4 75 None 25 2 4 0 None

3 4 4 100 None 26 2 4 free None

4 4 4 150 None 27 2 4 200 None

5 4 4 200 None 28 2 4 150 None

6 4 3.5 0 None 29 2 4 100 None

7 4 3.5 75 None 30 2 3 free None

8 4 3.5 100 None 31 2 4 150 None

9 4 3.5 150 None 32 2 3.5 150 None

10 4 3.5 200 None 33 3 4 - Auto

11 4 3-4 - Auto 34 3 4 200 None

12 4 3 - Auto 35 3 4 150 None

13 4 3.5 - Auto 36 3 4 100 None

14 4 4 - Auto 37 3 3.5 200 None

15 4 4.5 - Auto 38 3 3.5 150 None

16 4 3 free None 39 3 3.5 100 None

17 4 4.5 - Auto 40 3 3.5 0 None

18 4 4.5 - Auto 41 3 4 free None

19 4 5 - Auto 42 3 3 free None

20 4 2.5 150 None 43 3 4 125 None

21 4 2.5 125 None 44 3 3.5 125 None

22 4 3 125 None 45 3 3 125 None

23 4 3.5 125 None
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3.5 Experimental results

3.5.1 Analysis

The Squirrelview 800 data logger exports to an Excel spreadsheet in the form of 

engineering units or voltages. These values are processed using conversion equations to 

output the required units. The measured parameters are listed in table 3.3.

Symbol Parameter Method Issues

U Upstream flow 

velocity (m/s)

Ott meter Interference from environmental AC 

signals causes problems unless 

insulation and shielding is undertaken 

thoroughly.

T Shaft Torque (Nm) Strain ring Strain ring mounted in shaft coupling very 

effective however limited minimum range 

left 2 runs with incomplete data. Straight 

line approximation to voltage scale 

extrapolated to acquire values.

CO Shaft angular 

velocity (rad/s)

Frequency

Voltage

converter

F/V calibrated in lab. Incurred lag of 2-3 

seconds resulting in smoothed signal, No 

problem at ^constant speed.

vr Rectifier Voltage 

(V)

Resistor

bridge

None

vb Battery Voltage (V) Resistor

bridge

None

I Charging current 

(A)

Current

transducer

Solid core CT worked correctly

T Temperature (C) Thermocouple 

on generator 

coils

Interference from generator AC meant 

that temperature could only be measured 

when turbine was stationary

wa Water ingress Resistance

monitoring

System worked well with alarm fuctioning 

on ingress.

Table 3.3 - Measured parameters
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3.5.2 Sampling Frequency

The sampling frequency of 1Hz was adequate for measuring average values and general 

performance characteristics. This system was originally selected for its ability to measure 

the performance of the turbine in long-term deployment. However to allow investigation of 

the dynamic characteristics of the system a frequency of abput 10Hz would be required.

3.5.3 Statistical Analysis

Owing to the limited sampling frequency, it is not possible to investigate the dynamic 

performance of the system. The results from each experimental run were averaged to 

obtain a meaningful comparison. Figure 3.21 shows a typical example of the averaging of a 

power data signal over a 2 minute run. The average is marked as the solid straight line.

Power signal over 2 minute run

1400

1200

1000  - - -  

?  800 -

O 600

400

200

12010040
time (secs)

Figure 3.21 - Typical averaging of power values
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3.5.4 Performance analysis

3.5.4.1 Electrical performance

Mechanical and electrical power output versus blade element theory 
under automated electrical load

•  Shaft Power Ps 

■  Electrical power PE

 Theory Cp=0.5

p 0jy (Electrical power PE)

”  Poly. (Shaft Power P s ) ___

1.5 1 7  1 .3  2 .1  2 .3  2 .5  2 .7

U m/s

Figure 3.22 - Power output with respect to flow velocity

Figure 3.22 shows the relationship between the flow velocity and the power output of the 

rotor and the generator. The predicted rotor power output is shown as the line of Cp = 0.5. It 

can be seen that the experimentally determined rotor power is fractionally lower than the 

predicted output and this is reflected in Figure 3.23 where the power coefficients are slightly 

lower than 0.5. The trend is very similar to the theory in [1] and it is thought that the 

difference is mostly owing to mechanical losses in the drive train.

The scatter is thought to be owing to the automatic control of the way in which divert loads 

are switched in to the system. Hysteresis in the control system has the effect that there is 

more than one operating state for a given flow and this introduces scatter. This is most 

clearly seen in the two leadings close to a flow speed of 2m/s in Figure 3.22

The electrical power points show a similar scatter but to a lesser extent and a very clear 

trend is discerned with regard to the flow velocity. The higher values appear to be 

somewhat reduced and this is thought to be owing to the reduction in PMG efficiency at 

higher speeds. At higher speeds the PMG encounters an electrical current slightly above its 

design rating. This increases resistive losses owing to the build up of excess heat in the 

winding. The efficiency may be improved by increased cooling

g  15 00  

a!ioa. 1000

/ / . .-.——a
■ HP**......-■■a

■
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3.5.4.2 Rotor power and torque coefficients Cp and Ct

Cp and TSR under mechanical and electrical control

0.6

0.5

0.4

0 3

 Poly.
(mech)0 2

TSR

Figure 3.23 Experimental variation of power coefficient with TSR

Figure 3.23 shows the variation of Cp with TSR on mechanically loaded and electrically 

automated runs. Although the level of scatter is quite high, a clear pattern is discernable 

and this is indicated by the trend line. As predicted by blade element theory [1], there is a 

distinctive peak in the efficiency and then it drops off steadily into higher degrees of 

overspeed A main point of interest is that the peak efficiency occurs at a TSR of just over

4. Note this is the power peak, while the blades are designed to the torque peak. The 

electrically controlled system also uses a TSR of around 4. Both are operating above the 

design speed of the blades but achieving good efficiencies of 0.4 to 0 5

It is clearly seen and stated in Paish [14] that the rotor operates faster than the design 

point. This is desirable because if the design point is close to the stall point of the aerofoil, 

then any small reduction in speed results in a collapse of the efficiency as the rotor stalls. 

However, in this experiment, there is considerable scope for improvement by slowing the 

rotor by extracting more power. The generator would have been capable of this as a large 

generator was used to provide robustness, however the dump load did not have the 

capacity to load the generator further

Figure 3.24 shows the variation of C, with TSR on mechanically loaded and electrically 

automated runs. It can be seen that although the level of scatter is again significant, the 

general trend is distinctive and almost a linear decrease with TSR. It is also clear that no 

runs were undertaken in the stalled region of operation at very low TSR as the rotor is very
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unstable in this region of operation and is prone to complete stoppage as stall occurs 

across the blade.

Ct with TSR under mechanical and electrical control

0.16

0.14

x  elec

0 08

 Poly. (4)0.06 --

0.04 -

0.02

TSR

Figure 3.24 Experimental variation of torque coefficient with TSR

3.5.4.3 Blade number

Figures 3.25 and 3.26 show the effect of changing the blade number on the power and 

torque performance Firstly it is important to state that it is not only blade number that is 

varied, but also solidity. This is because the same blades are used in different numbers and 

if the blades were designed for 2 or 3 bladed operation the chords would be larger to obtain 

the same solidity and operating TSR

It is clear that the 4 blade configuration operates with the greatest efficiency over the 

greatest range of TSR This is the result as expected. At a TSR of 4.25 the number of 

blades appears to make the least difference although there is still scatter at this point. For 

example at TSR 4.4 the three bladed configuration has a CP that varies from 0.44 to 0.31. 

Here the velocity U varies from 1,95 to 1 58, the RPM from 161 to 134 and the CT from

0.095 to 0.07 When Cp -  0.31 the rotor is operating at a less powerful level at the same 

TSR and there is proportionally less power output to the shaft. This is the result of the 

variation in Reynolds number at different operating conditions as shown in figure 3.25b. 

The lift and drag characteristics of the aerofoil vary with Reynolds number as shown in 

section 3.3.3.4. This will certainly result in various power coefficients at the same TSR 

which goes some way to describing the lack of consistency in figure 3.25.
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Cp with TSR for various blade numbers
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Figure 3.25 Cp with respect to TSR for various blade numbers
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Figure 3.25b Variation of Reynolds number with operating condition

Figure 3.25 shows that 2 blades operate more effectively at higher TSR. This is owing to 

the lower solidity of this configuration The fewer blades interacting with the flow, the less 

the axial interference factor. This means that the rotor can operate at higher TSRs before 

the overspeed condition is reached and the flow is diverted around the rotor. It is worth 

noting here that the runs on which no load was applied have still not reached propeller 

brake state i.e. Cp = 0. This is owing to the residual friction load in the bearings and seal, 

and to a small degree the air resistance on the generator flywheel.
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Figure 3.26 shows the variation in torque coefficient owing to differing blade number. For 

the designed operating TSR of between 2 and 5 the 4 bladed configuration is clearly the 

most effective design. However it appears that 2 blades begin to supply more torque above 

TSR 5.5. This coincides with variation in CF shown in Figure 3.25 and is again likely owing 

to the reduced solidity. It is not clear why this effect is not observed so clearly with the 3 

bladed rotor and further more detailed experimentation is recommended.

Ct with TSR for various blade numbers
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Figure 3.26 C, with respect to TSR for various blade numbers
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3.6 Conclusions

A 1m diameter, direct drive device has been designed, built and tested. The testing has 

concluded that competitive efficiencies can be achieved with a direct drive fixed pitch 

device.

The average rotor power coefficient under electrical operation is 0.46. This compares well 

to blade element theory.

• If an overall power coefficient Ce is defined as:

Where PE -  electrical power output,

the average Ce for this turbine is 0.24. This incorporates the blade efficiency, PMG 

efficiency, rectifier efficiency and mechanical and electrical losses up to the controller.

• In effect this means that the average electrical power that can be expected from a 

similar turbine for a particular flow rate is given by:

PE = 0.24 ̂ - U 3 (3.3)

• There is a complex relationship between power and efficiency in overspeed conditions. 

However, intentional operation at overspeed appears to be an effective design strategy 

to allow a compromise between starting torque and PMG efficiency.

• At a particular TSR, the rotor can operate with different power characteristics. This is 

due to the effect of variations Reynolds number.

• A reduction in solidity by reducing the number of blades allows the rotor to operate at 

higher TSR before reaching propeller brake state.

• Rotors designed for a low TSR can be operated in overspeed and achieve this 

efficiency. This also allows the turbine to start at flow speeds down to 1,53m/s.
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• A PMG is a suitable generator for a tidal stream or river turbine as it allows generation 

at varying rotational and flow speeds.

• The electrical divert-based control system is very effective, allowing the turbine to 

achieve high efficiencies under different conditions.

• The data capture and monitoring system worked well and can be transferred to other 

renewable systems for analysis of operating parameters.
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4.0 DETAILED BLADE MODELLING

4.1 Blade element momentum theory

As described in Chapter 3, the turbine is initially modeled with a large number of blades 

so that it is effectively a circular disc where energy is extracted from the fluid. This 

approach was first used by Rankine and Froude and is commonly referred to as 

Actuator Disc Theory. The fluid is assumed to be perfect in that it is incompressible and 

inviscid. It is also assumed that there is no rotation of the flow downstream of the disc.

This analysis is taken directly from Griffiths [1]. For completeness the derivation is given 

here:

It can be shown [2] that the velocity in the plane of the disc is the mean of the velocities 

well upstream and well downstream of the device. As energy is absorbed from the flow 

by the rotor, the fluid slows and hence the streamtube bounded by the disc expands as 

shown in Figure 4.01:

- --------------------------------
— ►--------------- - /\

U -u
u ---- ► U - 2u

Figure 4.01 - Illustration of the assumptions made by Rankine and Froude

For an ideal rotor the power output on the shaft can then be described as the rate of loss 

of kinetic energy of the fluid. Assuming there is no rotational velocity well down stream 

of the rotor, this can be expressed as:

P ^ p Q ^ - i U - l u f ]

where p  is the fluid density, Q is the volume flow rate though the disc, U is the velocity 

well upstream of the rotor and u is the reduction in axial flow velocity at the plane of the 

disc. This can be expressed as
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P = ^  pA(U  -  «)[c/2 -  (U  -  2 u f  ]

where A is the area of the disc. This is a maximum when

u = - U  
3

and hence:

To define the efficiency of the energy conversion a power coefficient Cp is defined as:

C  =  p

- p A U ■ 
2

And therefore the maximum power coefficient is:

16
C B_  _  niax _  _ _ _  _  0 , 5 9 3  

2

P max 1 —

- p A U 3 27

This demonstrates that under artificially perfect conditions the theoretical maximum 

efficiency of the turbine is 59.3%. This is known as the Betz limit.

4.1.1 Addition of flow rotation

According to Newton’s 3rd law of motion, for the fluid to cause a rotation of the turbine 

blades an opposite rotation will be imparted on the fluid. It is shown by Houghton [3] that 

the angular velocity of the fluid in the plane of the disc is half that of the angular velocity 

well downstream. Hence axial and rotational interference factors can be defined as 

follows:

_ u _ co
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Where Q is the angular velocity of the rotor blades and co is the angular velocity of the 

fluid well downstream.

The axial and rotational speeds of the water as it passes through the turbine are 

therefore U ( j - a )  and bQ. respectively and hence the rotational speed relative to the 

blade is Q (l + Z>). However owing to difference in tangential velocity and local speed 

ratio it is not necessary that the interference factors be equal over the blade radius. For 

this reason the blade is discretised across the radius R and a blade element of radius r, 

width dr and chord c is considered as shown in Figure 4.02.

Figure 4.02 • Discretisation of the rotor

Each element experiences forces owing to the fluid and these can be broken down into 

to axial and tangential components as shown in Figure 4.03. The axial force 

components from each element combine to become the thrust or axial force 

experienced by the rotor. The tangential components combine to form the torque. For 

each radial annulus, the combined axial force and torque from all the blades are 

expressed as dFA and dT  respectively. The lift and drag for each element, dL and dD  

are defined by the angle of attack a of the blade element aerofoil section and the local 

velocity V. The blade twist angle <j> is given by the direction of V relative to the axis of 

rotation when operating at the design point.

cfl'

rQ

dF.

U (l-a )

Figure 4.03 • Resolution of lift and drag forces
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To obtain expressions for the annular axial force and torque, the momentum equation is 

applied between stations well upstream and downstream of the device where the 

pressures are assumed atmospheric and equal. The changes in angular velocity and 

axial velocity are co and 2u respectively and the resultant expressions are:

dFA = p27ir.dr.ifJ -  u)2u 

dT  = p27ir.dr.ifJ -u )co r2

which may be written:

dF
— iL = 4 xp rU 2( \ - a ) a  (4.1)
dr

—  = 47rpr3U Q (l-a )b  (4.2)
dr

The fluid is assumed to be inviscid and the rotational flow of the fluid is in the opposite 

direction to that of the rotor and hence the energy equation for the annular element is:

(Q + co)dT = (U -u )d F A 

or n(l + b ) -  = u ( \ -  a ) ^ -
dr dr

rCl
Substituting from equations (4.1) and (4.2) and calling —  the speed ratio x  gives:

x 2bif + b) = a i f - a )  (4.3)

Also, the power generated by the rotor is given by:
R

P =  \c idT
0

Substituting dT from equation (4.2) gives,
R

P = 4 !tp U a2 \ { \ - a ) b r \ d r
0

Therefore:

o x
CP = — j  f ( l - a)bx3.dx (4.4)

^  o

RQ
where X  =  the Tip Speed Ratio

U
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4.1.2 Optimisation of blade design

Cp will be a maximum when (l-a )b  is a maximum for each value of x. That is to say 

when:

db b

da ( l -  a)
(4.5)

db
Differentiating equation (4.3) and combining this with equation (4.5) to eliminate —

da

gives:

0 - 3 a )
b - ( 4 a - i )

(4.6)

An inviscid analysis of the forces on a blade element gives only one force perpendicular 

to the local flow velocity, the lift force dL\

dFA = dL sin (f) 

dFT -  —  = dL cos (/)

where dFp is the tangential component of the lift force for the blade element and;

rQ(l + b)
= tan

le.

(f> = tan

Lt/(l-a )J

x(l + b) 
( l - a ) _

(4.7)

(4.8)

Nc
Comparing (4.8) with (4.1) and ca lling the local solidity c r;

2 tit

oCL =
4acos2 ^ 

(l -  a) sin ̂
(4.9)

Where N  is the number of blades and Cl is the lift coefficient for the aerofoil at optimum 

angle of attack.
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This, with equation (4.7) gives the blade geometry for each blade element as the chord 

length and twist can be determined once the interference factors are known.

4.1.3 Real fluid effects

A real fluid has viscosity which means that tangential or shear forces are present. To 

accurately describe the effect of these forces, experimentally derived relationships are 

used. For a real fluid, the momentum equations (4.1) and (4.2) will still hold, but the 

energy equation (4.3) will not. A loss of energy will occur and a drag force dD  will be 

experienced by the aerofoil. The axial and tangential components of the forces on the 

blade element are now:

dFA = dL sin <f> + dD cos </>

dFT = —  = dL cos </>-dD sin </>
r

For the rotor, these are written in terms of the lift and drag coefficients as:

dF
— -  = N \ p V 2c(CL sin</> + CD cos</>)
dr

= N \ p V 2c(CL sin^ + CD cos^) (4.10)

—  = N j p V 2cr(CL cos<p-CD sin<£)
dr

(4.11)

Where:

dD  = C Dj  p V 2c.dr 

d L - C L \  p V 2c.dr

and where CD and CL are experimentally derived functions of a.

Comparing (4.10) with (4.1) and noting that

( i - « )

there is an expression for local solidity:

g  =
4a(l -  a)

(4.12)
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Similarly a comparison of (4.11) and (4.2) yields:

4x(l -  a)b
a  = - \ Z ------------------------  (4.13)

[(1 -  a f  + x 1 (1 + b f  f  [Q ( l  -  a ) -  CDx(l + b)\

Eliminating cr between (4.12) and (4.13) gives and expression for the lift/drag ratio of 

the aerofoil:

CL _ x(a + b)

CD [ f l ( l - f l ) - ; t 2Z>(l + 6)] ^

Calling R the maximum value of the lift/drag ratio for the aerofoil chosen, and 

differentiating equation 4.14;

\r x2 ( lb  + \ )+ x \—  = R ( \ -2 a )+ x  (4.15)
da

I db_ 

da

Substituting the requirement for maximum efficiency into equation (4.15) gives;

[Rx2( lb  + \)+  jc]& = ( \ - a )f [R ( \-2 a )+ x ]  (4.16)

Combining (4.15) and (4.16) gives an expression for b:

For given values of the speed ratio x  and the lift/drag ratio R, a and b can be determined 

from equations (4.14) and (4.17). The values of the interference factors can then be 

substituted into equation (4.4) to give the efficiency or into (4.7) and (4.8) to determine 

the optimum blade geometry.

4.1.4 Estimation of performance characteristics

To predict the power and loads on a rotor of a given geometry over the operating range, 

equations (4.1), (4.2), (4.10) and (4.11) are rearranged and given subscripts 1 and 2 to 

give equations (4.18) -  (4.21). To solve this set, values of a and b are found which 

minimise v, the residual difference between the torque and axial force terms as in
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equation (4.22). (4.23) is used to find the value of V required in (4.19) and (4.21) and Cl 

and Cd are found from a lookup table from <|> which is given by (4.24)

dFM = 4 n p rU 2 (l -  a)a.dr (4.18)

dFA2 = N j  p V 2c(CL s in ^  + CD cos fy d r (4.19)

dTx = 4ftp r3UQ(l -  a)b.dr (4.20)

dT2 = N j  p V 2cr(CL cos^ -  CD s in^ )d r (4.21)

v = (dFA l- d F A2)2 +(dT l - d T 2)2 (4.22)

F = (y [( i-a )2 + jc2( i+ & )2f (4.23)

$ = tan'
x (l + 6)

(4.24)

By this method it is possible to estimate the performance of the blade at various tip 

speed ratios over the operating range.

4.1.5 Estimation of aerofoil characteristics

To enable the performance of the rotor to be estimated in conditions that are far away 

from optimum, aerofoil performance must be understood at a wide range of angles of 

attack. In it simplest form this is obvious at turbine start up, where the majority, if not the 

entire blade, is stalled at an angle of attack of 40 degrees and above.

Data concerning angles of attack of this magnitude is not readily accessible owing to the 

vast majority of data being acquired for aeronautic use. Readily available data is 

normally limited to about 20 degrees either side of zero and consequently a different 

approach is required to estimate CL and CD outside this range. It is likely that an axial 

flow rotor will experience no angles of attack outside the range of -20° to 90°, but it is 

estimated over 360° for completeness.
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4.1.5.1 Lift coefficient

The variation of lift coefficient with angle of attack for the NACA4424 aerofoil section can 

be found in Abbott [4], Many aerofoils are tested in a wind tunnel and experimentally 

determined data is presented. The experimentally determined lift coefficient for the 

NACA4424 is shown in Figure 4.04:

NACA4424 360 degree lift coefficient (ABBOT)

0.5

-10

alpha (degrees)

Figure 4.04 - Experimentally determined lift drag characteristics of the NACA4424 aerofoil

Where possible, experimental data is used to estimate CL for a particular angle of attack 

and this is supplemented by a combination of approximated and theoretically 

determined data from Profili aerofoil performance prediction software [5] and inclined 

plate theory, Massey [6]. This is used for angles of incidence outside those shown in 

Figure 4.04

To explain the method used to estimate the lift characteristics, it is beneficial to explain 

how a typical aerofoil lift coefficient varies with angle of attack a. In Figure 4.05, 

Sheldahl [7], the experimentally determined lift curve for the NACA0015 aerofoil is 

shown At a=0°, Cl increases sharply and linearly until the onset of stall at a=12.5°.
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0.3b * iO& NAC A-OO I S Airfoil Secti

a He -  0.68 x 1 06

Figure 4.05 - Example of a full range aerofoil lift coefficient of a NACA-0015 aerofoil

At this point, the lift falls away sharply at the fluid separates from the top surface and 

becomes highly turbulent. This continues to occur until a=20° where the aerofoil begins 

to behave like a flat plate [8], The flow becomes entirely separated and the boundary 

layer is so thick that the profile of the aerofoil has very little effect on the behaviour in 

this region. Flat plate theory predicts that Q  reaches a maximum of 1.2 at 45° before 

decreasing to 0.0 at 90°. This is mirrored quite closely by the experimentally determined 

data in Figure 4.05 It can also be seen that as the aerofoil inverts, a negative lift is 

experienced with sharper stall properties owing to the now very acute leading edge A 

double negative peak is seen where the flat plate peak is of equal magnitude and the 

stalled region peak is approximately 0.85 of the positive value.

No data detailing the performance of the NACA4424 has been found to cover the 

complete 180° angle of attack range Therefore, in this study, is estimated by combining 

the experimental data from Abbott [4] with a flat plat theory model and then is verified by 

using the Profili software.

In Figure 4 06, the results can be seen The experimental data runs between -12° and 

19.5°. This is then supplemented with the flat plate data, peaking at about Cl-  1.1 as in 

Figure 4.05 above. The flate plate theory approximation bring CL down to zero at 90° 

and then is mirrored in the negative angles of attack. The stall peak in the negative is 

calculated as 0 85 of the positive peak, again as in Figure 4.05. The two sections are 

then joined up using curves of best fit from the end of the experimental data to the flat
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plat theory, ensuring that the curves are smooth so as to aid solving computationally. 

This covers the angles 19.5° to 27° and -12° to -27°.

NACA4424 360 degree lift coefficient model

0:5

-180 -150 -120 -90 -60 -30 120 150

alpha (degrees)

Figure 4.06 - The NACA4424 lift coefficient model

A comparison of the prediction made by the Profili software at Re = 700,000 gives the 

graph shown in Figure 4.07. This is a typical Reynolds Number found over the blade 

over the range of operation. It can be clearly seen that the experimental data yields lift 

values that are substantially higher in the critical region of operation. It is also clear that 

the oscillations present in the Profili prediction are absent. However, there is a high level 

of correlation between the two methods and it is considered that the experimentally 

determined data is more accurate in the critical region. Hence the lift curve shown in 

Figure 4.06 above is used.

Comparison of Profili Cl prediction with experimental and flat 
plate combination Cl

 Profili
——E xperie me n ta I

*-> 1 . 7c / ^0) /
O P
i t  I

I
8 f -----------
g  -180 -140

— V

140100 -60 -20

alpha (degrees)

Figure 4.07 - Comparison of lift coefficient with Profili software data
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4.1.5.2 Drag coefficient

The variation of drag coefficient with angle of attack for the NACA4424 aerofoil section 

can be determined by interpretation of Abbott [4], The data presented links drag 

coefficient to lift coefficient and then the second set links lift coefficient to angle of attack. 

From this, the relationship between drag and angle of attack can be determined. It is 

presented in Figure 4.08 between the angles of -12° and 19.5°.

NACA4424 360 degree drag coefficient model

1 4 - 

H . - 2 —  

1

0.8 -  

- 0 6 —

r O . 4 —

360
experimental x 5

Q

-120 -80 -40 0 40 80 120

alpha (degrees)

Figure 4.08 - The NACA4424 drag coefficient model

Outside the angles covered by the experimental data a flat plate model is used to 

approximate the behaviour. In the same manner as the lift coefficient this peaks at the 

flat plate value of nearly 1.8 at 90°. This sinusoidal relationship is validated using the 

Profili software as shown below in Figure 4.09.
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NACA4424 360 degree Profili drag coefficient model

 Experimental
 Profili

-0.8

-180 -140 -100 -60 -20 20 

alpha (degrees)
100 140 180

Figure 4.09 - Comparison of drag coefficient with Profili software data

The correlation is very strong and although there are slight differences in the rate of 

change in the stall region the experimental data is much smoother in the critical region 

around 0°. For this reason the experimental data is considered most suitable for use 

with the blade element model.
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4.2 Optimisation of blade geometry

As described in section 4.1.2, equations (4.7) and (4.9) can be used together to 

determine the optimum blade geometry in terms of chord and twist. However this is only 

possible once the interference factors are known. To obtain values for a and b 

equations, (4.14) and (4.17) are solved for each blade element. The chord and the twist 

of each element can then be found. The optimisation process describes the blade 

geometry which offers the most efficient operation for each blade element. When 

combined, this offers the most efficient blade performance for the rotor as a whole at a 

specific TSR.

4.2.1 Implementation

Microsoft Excel is used to solve the equations for each station of the blade. The blade is 

split into a number of discrete radial segments, the number of which is limited only by 

computational time. For the purpose of this investigation the blade is split into 25 

sections.

The expression for b (4.17) is substituted into (4.14) giving equation (4.25).

The maximum lift / drag ratio, R is known for the aerofoil used, the rotational speed, 

radius and hence speed ratio are also known for each blade element. The goalseek 

function in Microsoft Excel is then used to set the value of Cl / Cd equal to R by 

changing a. Once this value of a is determined it can be substituted into (4.17) to give a 

value for b. At this stage both the interference factors are known and the chord and twist 

can be found from equations (4.8) and (4.9).

f l (4g-lXl-a)+s(l-3q)'  
+1)

(4.25)
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4.2.2 Issues with the method

The goalseek function in Excel is a simple solver which will set the product of an 

equation to a specified answer by changing one variable in the equation. The primary 

limitation is the fact that only one cell can be varied at a time, but also that it has no 

method for constraining the results. The solver function in Excel is more advanced but is 

unnecessary at this stage to undertake this task successfully and in a reasonable time 

frame.

One of the difficulties with this set of equations is that they have multiple solutions. 

Some of these can be very close together and others are extreme. Using the goalseek 

function works well if the input variable is close to the solution. Otherwise it can tend to 

zero or infinity which results in an erroneous or no solution. To avoid this problem 

approximate values of a are taken from [1]. A starting value of a = 0.25 is used for the 

element with the smallest radius. After the solution has been found it is substituted and 

used for the successive radius starting value. By this method the output results are 

reliable and consistent.

The other issue is that if a and b are linked directly to products other than (4.25), all 

values are changed during each iteration step. This causes a significant reduction in 

calculation speed which is rectified by calculating the values before inserting them in the 

dependent equations. This splitting up of the two stages results in a vastly decreased 

calculation time.
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4.2.3 Results

The method provides a reliable system to create the optimum geometry for a particular 

design TSR. The variation of chord and twist angle are shown in Figures 4.10 and 4.11. 

This defines the shape of the blades.

4.2.3.1 Blade twist

The basis of the twist is that the further toward the blade tip an element is located, the 

more twist it has. This clearly reflects the fluid vector that is anticipated from the 

combination of rotation of the blades and the oncoming fluid. Figure 4.10 shows the 

variation of blade twist with design tip speed ratio, TSRD.

Variation of twist angle with radial position for increasing TSR

------8

40

20

0.2 0.4 0.6 0.8
r/R

Figure 4.10 - Blade twist with radius and design TSR

It can be seen in Figure 4.10 that at any design TSR, the blade twist at zero radius 

converges to 29.6°. In addition, the twist at the blade tip tends toward 90° as the design 

TSR increases. This implies that as design TSR increases, the total twist over the radius 

increases. Finally, it is clear that as design TSR increases, more of the twist occurs at 

the hub end, for example at TSR 8, the blade elements are at over 80° for over 50% of 

the blade towards the tip.
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4.2.3.2 Blade chord

In Figure 4.11 the blade chord distribution is shown for a 1 m diameter blade.

Variation of chord with radial position for increasing TSR 
(1m diameter rotor, 3 bladed)

0.45 7

0.4

0.35
-  - 2
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~  0.25

0.15 -

0.05

0 0 2 0.4 0.6 0.8 1
r/R

Figure 4.11 • Blade chord with radius and TSR

The general trend is that the chord increases from zero at the centre up to a maximum 

fairly quickly and then tapers off towards the blade tip. At the tip end, the chord tends 

towards zero as speed ratio increases. At very low TSR, the chord maximum is much 

nearer the blade tip and it does not converge before reaching the tip It can be clearly 

seen that for higher TSR the chord decreases to an impracticall size which would create 

manufacturing difficulties.

94



4.2.3.3 Solidity

Figure 4.12 below shows the variation of solidity with radius. This is closely linked to

Figure 4.11 (chord) as a    and this gives the equations in a dimensionless form.
2tjt

Variation of local solidity with radial position for increasing
TSR
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Figure 4.12 - Solidity with radius and TSR

4.2.3.4 Interference factors a & b

Figure 4 13 shows the variation of axial interference factor with radius and tip speed 

ratio. It is clearly seen from the scale of the y-axis that the variation is small in 

magnitude. However, it is significant in that at low design TSR, it can be inferred that the 

fluid is losing more axial velocity towards the tip of the blades and hence a greater 

proportion of the power is being developed by the rotor in this region. This is true 

because the design sets d F j constant for all blade elements and because 7= F Tr  more 

power is developed closer to the tip. Also of interest is the way that this distribution 

changes with design TSR. As this increases the peak of axial interference moves 

towards the hub and towards the tip it decreases significantly. It may be inferred from 

this that hub effects are of more importance to rotors designed for higher tip speed 

ratios.
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Variation of axial interference factor a with radial position for 
increasing TSR
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Figure 4.13 - Axial interference factor with radius and TSR

Figure 4.14 shows the variations of the rotational interference factor b. It is clear that b 

tends towards very high values at the hub. As design TSR increases this tendency to 

high value moves towards the tip. It can be inferred from this that lower TSR give rise to 

a much greater rotation of the wake and are hence likely to offer more torque. It is also 

inferred that a reduction in efficiency will occur owing to the rotation imparted on the 

fluid. The rotation of the fluid represents energy that is not being harnessed by the rotor. 

As the TSR increases the rotation imparted on the flow decreases and tends toward 

zero at the blade tip It also appears that at high design TSR the curve tends to zero 

along the blade length.

Variation of rotational interference factor b with radial position 
for increasing TSR
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0.2 0.4 0.6 0.8
r/R

Figure 4.14 - Rotational interference factor with radius and TSR
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4.2.3.5 Design operation performance

Equation (4.4) can be used to estimate the performance of the rotor at its design

conditions using the calculated values o f  a and b.

8 Xr
CP = — -  J(l -  a)bx\dx  (4.4)

o

Figure 4.15 shows the variation in theoretical maximum efficiency of rotors designed for 

increasing TSR whilst operating at their design conditions. It is clear that the achievable

efficiency of the rotor increases dramatically from design TSR=1 to a maximum at

design TSR = 4 before it starts to decline. Of note here is that a maximum lift /drag ratio 

of 50 is used.

Theoretical efficiency of rotors w ith varying design TSR under
design conditions
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Figure 4.15 • Theoretical rotor efficiency variation with TSR0
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4.2.4. Conclusions

This system offers a simple and computationally efficient method of optimising a set of 

turbine blades for performance at various tip speed ratios. Microsoft Excel is a suitable 

software vehicle for this method, although it would also work well and would possibly be 

more efficient with a more advanced package such as Matlab.

The results generated by this method enabled the design and development of the 

blades for the prototype in Chapter 3. Much can also be learned about the geometry of 

rotors designed for different tip speed ratios and it can be clearly seen that the design 

TSR has great influence on the method of construction.

The distribution of the interference factors can be used to infer the behaviour of the fluid 

and hence some performance characteristics of rotors designed for different tip speeds. 

This includes hub effects and high torque applications.

Finally the design tip speed ratio has an effect on the maximum achievable efficiency of 

the rotor and a design TSR of 4 appears to yield the best performance. Practically the 

design TSR will be a function of the starting torque required, the generator power curve 

and gearing used. The optimum design TSR will be specific to the system.
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4.3 Performance prediction

To predict the performance of rotors over the operating range, an additional level of 

analysis is required. The method described in section 4.2 only applies to a rotor which is 

operating on its design point. To calculate values of a and b over various operational tip 

speed ratios the method outlined in section 4.14 is required.

4.3.1 Implementation

The method is inputted to an Excel spreadsheet. The blade is again split into a number 

of discrete radial segments. For the purpose of this investigation the number of discrete 

elements is 25. The built in Excel solver package is used to output the performance of 

each blade element and these are summed over the blade to determine the total outputs 

in terms of power and torque.

4.3.1.1 Method description

The chord inclination angle p is the angle between the chord and the axis of rotation as 

shown in Figure 4.16. It is defined by:

P = </) + a

The flow inclination angle y is also shown in Figure 4.16. It is defined from equation 

(4.24) in terms of local speed ratio and values of a and b for each blade element:

y = tan -i x(l + b)

M J

The difference between the chord and flow inclination angles is the effective angle of 

attack:

e = p - y
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Figure 4.16 Chord inclination angle, flow inclination angle and effective angle of attack

Depending on the operating conditions, 0 can be positive or negative. This value is 

inserted in look up tables as described in section 4.3.1.5 and the CL and CD for the 

aerofoil under the particular operating condition is found.

Equations (4.18) to (4.21) are calculated and the Microsoft Excel solver is employed to 

find values of a and b which minimises v in (4.22).

4.3.1.2 Hub Effects

The equations break down at r  -  0. However, this is unimportant as there is usually a 

rotor hub or centre body to consider. Although the effects of the flow pattern around the 

hub have been considered in various studies [9], it is common that the hub area is 

considered dead space [10]. This is because the torque at low radii is considered 

negligible.

It is possible to consider the effect of the hub in terms of acceleration of flow around it 

and hence more flow directed through the rotor. However, for simplicity this analysis is 

not undertaken in the method used. For blade elements with values of r  below the hub 

radius h, the torque and axial force are set to zero. This effectively reduces the swept 

area of the rotor and the power output.

In practice this is implemented by using an IF THEN statement:

IF(r<h), THEN Tr = 0 and FAt = 0
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4.3.1.3 Tip Effects

BEMT assumes that the rotor has an infinite number of blades. In practice, there is a 

circulation of flow around each individual blade which gives rise to the lift forces. There 

is also a radial velocity which is especially pronounced around the tip. The radial velocity 

disrupts the circulation and for this reason a circulation reduction factor is sometimes 

introduced, which can also be called a tip loss correction. A detailed comparison of 

circulation reduction factors developed by Prandtl, Goldstein and Theodorsen is shown 

by Woollard [9]. However, it is also shown that for the most sophisticated correction, 

which is presented as the Theodorsen corrected Goldstein, the reductions in power, 

torque and axial force coefficients are less than 5%. Hence for the purposes of this 

investigation, tip loss correction has been neglected at this stage.

4.3.1.4 Overspeed

The rotor is analysed over the operating range, from stationary to overspeed and 

‘propeller brake state’. In the stopped condition the rotor can be considered as a series 

of stationary aerofoils in a linear flow. Whereas at ‘propeller brake state’ or the ‘runaway 

condition’ the rotor has accelerated to such an extent that towards the tip, the rotor is 

acting like a propeller such that the overall power of the rotor is reduced to zero.

As the rotor goes into an overspeed condition, i.e. at TSRs greater than its design TSR, 

it experiences a greater proportion of flow from the tangential direction and hence the 

flow inclination angle y tends towards 90°. This is true along the radius but is particularly 

significant at the blade tips as these are most affected by the increase in tangential 

velocity. As this occurs, the effective angle of attack 0 for each blade element decreases 

and may even become negative leading to a significant decrease in the lift generated by 

the section and in extreme cases a propeller effect.

The problem in terms of computation is that the functions for interference factors are 

complex in the region of propeller brake state.

When propeller brake state occurs, the rotor torque theoretically equals zero and hence 

there is no resultant rotation of the flow well downstream. If the rotor speed was to be 

increased further, it would start to act as a propeller and the rotation of the flow would 

now be in the same direction as the blades. In terms of the rotational interference factor



b, this implies that during turbine operation b > 0. As the turbine increases TSR b tends 

to zero as it reaches brake state and as the rotor accelerates into propeller condition b 

will become negative.

In terms of the axial interference factor a, during normal operation it fulfills 0 < a < 0.5 

as stated by Griffiths [11]. Additionally, by definition if a -  0.5 all the flow is diverted 

around the rotor as the velocity downstream of the device would be zero. However as 

the rotor approaches propeller brake state the axial interference factor tends towards 

zero. Again, if the rotor operates as a propeller, the axial interference factor will become 

negative.

4.3.1.5 Look up of lift and drag data

As the effective angle of attack for each blade element changes, the values of lift and 

drag coefficients also change. The values used for the lift and drag curves are presented 

in section 4.15.

In the absence of a mathematical expression which would give CL and CD as a function 

of 0, an automated lookup method is required. The values are stored in a table with 3 

columns; 0, CL and CD with 1140 rows. It runs between -180° and 180° in steps of 0.25 

of a degree. Values of CL and CD for all angles of attack are obtained from this table by 

linear interpolation.
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4.3.1.6 Optimisation of the objective function

It is observed that with different starting values a multitude of near optimum solutions 

can be found for a particular operating condition. As the system is solved numerically, 

the problem lies in finding a consistent and accurate solution.

An example of a multiple solution is shown in Figure 4.17. This shows the results of a 

parametric study to investigate the relationship between interference factors a and b and 

the objective function v(a,b) [12]. The rotor is operating at design TSR = 2 and Figure 

4.17 shows v(a,b) of the blade element at r/R =0.32.

A graphical representation of the minimisation of the objective function v(a,b)

Figure 4.17 - Minimisation of the objective function [12]

Although one solution is noticeably closer to zero than the other two, it is likely that a 

standard solver package, such as the Microsoft Excel solver will encounter difficulties in 

differentiating between these points as feasible solutions

In effect, a difference of this magnitude will not drastically alter the outputs. However 

without management it may result in an irregular set of results. To ensure that consistent 

results are obtained as far as possible, a system is used to obtain starting values for a 

and b. For the first element from the hub a value of 0.25 is used for a , and a value of 10 

for b This element is then solved and the resulting values of a and b are transferred as
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the starting values for the second element. This method stabilises the system in the 

majority of cases.

4.3.1.7 Outputs

The solver is used to find values of a and b for each blade element and minimise v(a,b) 

in (4.22). The corresponding products of equations (4.18) -  (4.22) are then summed 

over the radius and then averaged to give values for axial force, torque and power as 

given by:

FA = ^ ± ( d F M + dFA2 ) (4.23)
4  o

T = ^ f j (dT] +dT 1) (4.24)
4  o

P = U 'ljj[d T ] +dT , ) (4.25)
2  o

To enable the comparison of different rotors, these quantities are non-dimensionalised 

by Griffiths [11] and given by the force, torque and power coefficients:

4.3.1.8 Generation o f results

To solve each of the blade elements independently in Excel would require a prohibitive 

amount of user interaction. The VBA macro feature is employed to automate the 

generation of results. The primary macro entitled ‘Solverzero’ automatically sets the

104



starting values for a and b and then executes the series of optimisations to find a and b 

across the blade radius. Various other macros are used to generate different forms of 

results. Essentially these set the operating conditions, either blade number, flow speed 

or tip speed ratio and then initiate Solverzero. When Solverzero has completed, the 

desired selection of the results is stored in a particular location and the next set of 

operating conditions are inputted until the results set is complete.
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4.4 Results

To illustrate the function of the model, a 3-bladed test rotor with design tip speed ratio 

TSRd = 2 is used. This has a significant effect on the values of performance coefficients 

but does not effect the overall model characteristics. The test rotor has a diameter of 1m 

and is tested at a flow speed of 3m/s.

The model is run over the operating range using the test rotor. The operational TSR is 

varied from 0 to 8 in steps of 0.05. Additionally, this demonstrates the capability of the 

model in the start-up and overspeed range.
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4.4.1 Torque

Figure 4.18 shows the variation of torque coefficient CY with operational TSR. The 

starting torque coefficient is around 0.05 and this quickly increases as the rotor starts to 

spin. It decreases rapidly until TSR ~ 1.3 where there is a sharp change of direction and 

it increases dramatically as the rotor becomes unstalled. CT reaches a maximum of

0.227 at the design TSR of 2. Angle of attack is discussed below and shown in Figure 

4.23. At the point of peak torque the entire blade is at optimum angle of attack.

As the TSR increases and the rotor begins to operate in overspeed, CT begins to decline 

steadily in a near straight line. This continues though vortex ring flow until the rotor 

reaches propeller brake state at TSR « 6. The model continues to operate into an 

unnatural operation condition which would involve inputting energy and the rotor 

operating as a propeller.

It is clearly demonstrated that the model is less robust in the start up region with a 

visible reduction in smoothness below TSR=1

CT with TSR  for a 3 bladed rotor w ith design TSR = 2

0.25 - I -

0.2

0.05 -

-0.05

- 0.1
TSR

Figure 4.18 - Torque coefficient over the operating range
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4.4.2 Power

The relationship between power coefficient and TSR is shown in Figure 4.19. Unlike the 

CT curve, CP begins from zero as the rotational speed is zero. The section between 

start-up and TSR=1.3 does not mirror the torque curve as the speed is steadily 

increasing. It remains level at approximately CP = 0.05 until the sharp increase in power 

as the blades become unstalled. The power then starts to level off before reaching a 

maximum 0.493 at TSR=2.70. This is noticeably later than the peak in the torque curve. 

Cp then decreases gradually with increasing gradient until reaching the CP= 0 at TSR = 

6 .

C P w ith  TSR for a 3 bladed rotor w ith design TSR  = 2

0.6

0.5

0.4

0.3

O 0.2

- 0.2
TSR

Figure 4.19 - Power coefficient over the operating range
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4.4.3 Axial force

It is clear in Figure 4.20 that the axial force coefficient Cp varies in much the same way 

at the power coefficient. When the rotor is stationary there is an axial force on the rotor 

which equates to approximately half of the operational maximum. It continues at 

approximately 0.4 until TSR=1.3, when it increases steadily and peaks at 0.79 earlier 

than the power curve at TSR = 2.55. Interestingly it then decreases steadily but does not 

cross the zero line at the same time as power and torque. The propeller brake state 

condition has been reached, but an axial force remains until TSR = 7. At propeller brake 

state:

F  » 0 375Fr  A '  J r  Apeak

Op w ith  TSR  fo r a 3 bladed rotor w ith design TSR  = 2

0 8

0 6

0 4

0 2

- 0.2

-0.4
TSR

Figure 4.20 - Axial force coefficient over the operating range
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4.4.4 Interference factors a & b

More can be learned about the nature of the flow across the blade from the interference 

factors. Figures 4.21 and 4.22 show the radial distribution of a and b over a range of tip 

speed ratios. Firstly, considering the design case, TSR = 2, it is clear that the axial 

interference factor remains relatively constant across the blade at around 0.25, but with 

a slight increase in the mid-range. Differently, the variation of b at the design condition is 

very distinctive. The rotation imparted on the flow near the hub is much greater than that 

at the tip. In higher tip speeds ratios as the blades go into overspeed, the axial 

interference factor falls dramatically in the mid section. As propeller brake state is 

reached at TSR = 6, a reaches zero, and beyond this becomes negative in the mid 

blade. It is also clear that b follows a similar pattern in reducing considerably as TSR is 

increases, again becoming negative after propeller brake state is reached.

In the startup region, at TSR=0, b appears constant across the whole blade. In contrast, 

a gradually decreases across the radius toward the tip owing to the chord distribution. At 

TSR=1, the line in a appears to reflect the static condition at the tip and the design 

operating condition at the hub. These values do not meet smoothly and there is a step at 

r/R =0.35. This is mirrored in the b values which also step at this point. However it is 

clear that the values of both a and b are lower than those at the design TSR over most 

of the blade.
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Variation of axial interference fac to r with radial position over 
operational TSR  range

0.4

0.3

0.2

n

-0.2
0 0.1 0.2 0.3 0.6 0.7 0.8 0.9 10.4 0.5

r/R

Figure 4.21 - Variation of axial interference factor over the operating range

Variation of rotational in terference factor w ith radial position over 
operational TSR  range

0.6

0.5

0.4

0.2

0.6 0.7 0.90.30.2 0 4 0.5
r/R

Figure 4.22 - Variation of rotational interference factor over the operating range
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4.4.5 Effective angle of attack

The angle of attack at which the flow approaches the blade during operation is shown in 

Figure 4.23. The stationary position represents the geometry of the blade in that the flow 

approaches it from the axial direction. It is then shown at TSR = 1 that there are steps in 

the angle of attack where the model appears to breakdown, these mirror the steps as 

observed in a and b in Figures 4.21 and 4.22. The model may be switching between 

local minima on the objective function.

At TSR = 2, the angle of attack is at optimum across the entire blade with no significant 

variation, this is the designed operating condition and maximum ratio of lift to drag. As 

the TSR increases the effective angle of attack reduces from the tip inward owing to the 

relative effect of the tangential velocity. This becomes more pronounced as the rotor 

approaches propeller brake state with the first negative angle of attack seen at TSR = 4 

in the mid-section. After propeller brake state, the entire radius of the blade has a 

negative angle of attack, with the area at the hub more severely affected owing to the tip 

being oriented in a more tangential direction.

Variation of effective angle of attack with radial position over 
operational TSR range
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Figure 4.23 - Variation of rotational interference over the operating range
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4.4.6. Torque and Axial force

The effect of the characteristics observed in a, b and 0 manifests as a distribution of 

forces along the blade. These are presented in Figures 4.24 and 4.25.

At TSR = 0, the rotor behaves as a set of aerofoils with both the axial force and the 

torque following a similar pattern related to the geometry of the blade. At TSR = 1, the 

step as found in Figures 4.21 - 4.23 is clearly seen in the torque and axial force graphs. 

At the design condition, TSR = 2, the torque and axial force are linear and this clearly 

indicates that the blade tips are providing more power than the hub. This is an 

intentional result of the design methodology. The torque distribution remains close to 

linear across the blade until TSR = 5 where the mid-section torque begins to decrease. 

This pattern continues into the higher overspeed conditions, where eventually the entire 

blade experiences negative torque. Interestingly, at propeller brake state, the middle half 

of the blade is experiencing negative torque and the other parts are positive. This is not 

mirrored in the axial force graph where the entire blade remains in a positive force 

condition until after TSR = 6.

However, it is clear that axial force first begins to become negative in the mid section of 

the blade and the tips of the rotor retain a positive force into the highest tip speed ratios.

Variation of to rque with radial position over operational TSR  range

30 -

----0
20 —

-  -7

0.6 0.7 0.8 0.90.2 0,3 0.5

-10

-20
r/R

Figure 4.24 - Variation of torque with radius over the operating range
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V ariation  o f axial force w ith radial position over operational TSR
range

300
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100

-150
r/R

Figure 4.25 - Variation of axial force with radius over the operating range
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4.5 Discussion

The model has produced a set of outputs that enable the performance characteristics of 

an axial flow turbine to be predicted and analysed. This illustrates the operational 

maximums in terms of torque and force which allow the structural design of the blade to 

be undertaken. The model also predicts the start-up and runaway characteristics of the 

rotor.

4.5.1 Assumption and limitations

The primary limitation of blade element momentum theory is that it does not include 

secondary effects such as 3 dimensional flow effects. The significant flow regimes that 

are neglected are tip loss effects and radial flow along the blade. It is also known [13] 

that the flow assumptions break down when the blade is in deep stall and high 

overspeed.

Tip loss effects have been investigated by Glauert and Prandtl and a comparison of the 

two methods is given by Woollard [9]. The theory concerning circulation of the flow 

owing to the finite number of blades is developed and a tip loss correction factor is 

introduced. This has been neglected in the analysis presented here because it is 

considered to be a superfluous addition for the purpose of developing a system to 

investigate wave loadings. This is a suitable subject for further research.

The lift drag curve used in this investigation neglects the influence of Reynolds number 

on the characteristics of the aerofoil. In practice, the Reynolds number will change with 

each blade element and operational condition. A more complex lookup function would 

be required to make this addition.

The other factor to be neglected is the recent work concerning the effect of a free 

surface on the performance of a marine rotor. In a wind turbine, the rotor is located in a 

fluid with a theoretically infinite depth. In a marine rotor this is possibly not the case, 

depending on the depth of the water relative to the diameter of the device. The work of 

Ian Bryden [14] focuses primarily on the effect of tidal devices on the tidal flow. 

However, the central theme is that a tidal flow will experience a change in head as it 

passes a turbine and consequently the flow velocity must increase to compensate for 

this. No account of this phenomenon has been built into the analysis presented here.
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4.5.2 Rotor performance

The rotor torque, power and axial force have been successfully predicted across the 

operating range. In comparison to other studies [11] and [9], the values of predicted 

power output appear quite high. This is likely owing to the absence of a circulation 

reduction factor as the model appears robust in these areas.

Interestingly, the propeller brake state condition occurs at TSR = 6, where CT and CP 

cross the zero line. However, the axial force does not reduce to zero at the same point 

and CF crosses zero at TSR = 7.1. This is to be expected as the rotor is not designed as 

a propeller and consequently once a negative torque is applied there is a delay until a 

thrust is produced.

Figures 4.24 and 4.25 show the distribution of torque and force across the blade. These 

values can be used to design the structure of the blades and ensure that they are 

capable of withstanding the required operational loads. This is particularly important in 

the runaway condition in which large negative forces are applied to parts of the blade. 

The addition of a geometrical dynamic response to these loads in terms of blade 

geometry would be a suitable area for extension of this investigation.

4.5.3 Irregularities

The model and implementation have limitations and these have manifested in a number 

of the results.

The first is that in Figure 4.22, the value of b is shown as constant across the radius at 

TSR = 0. When the rotor is stationary, b is zero as there is no rotation of the flow. This 

anomaly occurs because to run the model at TSR = 0 encounters calculations requiring 

a divide by zero. In these situations a value of 1E-10 is substituted to allow the model to 

operate.

Secondly, the irregularities that occur in the region between TSR = 0 and TSR = 1.3 are 

owing to the phenomenon of multiple solutions as discussed in section 4.3.1.6. In this 

region, the blade is heavily stalled and the lift and drag coefficients are changing rapidly. 

The double peak in the lift coefficient increases the relative variation in the multiple
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solutions in the stalled region. Additionally, the values of torque and axial force are low 

in comparison to the variation in lift and drag. This reduces the accuracy of the solver in 

these regions and although convergence is still obtained, it is comparatively less 

precise.

Finally, the most significant error in the model is the step observed across the radius at 

low TSR. This is apparent in Figures 4.21 - 4.25 and is owing to a lack of convergence 

in torque values at some blade elements. This implies that the residual function in 

equation (4.22) cannot be reduced to zero. The non-converged values of T-, and T2 from 

equations (4.20) and (4.21) are shown in Figure 4.26.

Divergance of torque with radial position at TSR = 1

z  10

0 2 0.70 0.1 0 3 0.4 0 5 0.6 0 8 0 9 1

Figure 4.26 - Divergence of torque solutions at TSR = 1

A thorough investigation is undertaken of this characteristic and it is observed that using 

the objective function defined by equation (4.22), at TSR = 1 the torque values are small 

compared to the force values. For this reason the optimisation tends to optimise for 

force as a priority over torque. It is for this reason that a less significant step appears in 

the TSR = 1 curve shown in Figure 4.25.

A modification is made to the objective function as follows:

{dF „ - d F A2f  + (Z(dTt -d T 2) f  = f ( m )

Where Z is the modification factor. If an analysis is undertaken using this modified form 

with Z=100, it is found that the torque is now optimised as a priority and the step occurs
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in the force values and not in the torque values. It is therefore concluded that this is an 

error in the underlying model and no exact solutions exist for this region of operation.

4.6 Conclusions

• A computational analysis has been undertaken of the hydrodynamic 

performance of a marine rotor.

• Blade element theory has been implemented in a Microsoft Excel spreadsheet, 

making use of the goal seek, solver and VBA macro features.

• The limitations of the model and implementation method have been identified 

and considered. The model appears to work very well in the normal region of 

operation when TSR = 1.5 to 5. In the stalled region at TSR =1 there is some 

instability which causes a step in values across the radius. At lower TSR there is 

significant noise in the results owing to the solver not being able to distinguish 

between the various local minima in the objective function. At TSR = 0, the 

mode! brakes down and a numerical value of 1E-10 must be substituted to avoid 

errors caused by dividing by zero.

• The performance characteristics for a rotor designed for peak torque at TSR = 2 

have been determined and presented. It is concluded that a rotor of this design 

will obtain a maximum power coefficient of 0.49 at TSR = 2.7. The maximum 

axial force coefficient is predicted to be 0.79 and this occurs slightly before 

maximum power at TSR = 2.55. The maximum torque coefficient is 0.23 at TSRd 

=  2 .0 .

The rotor continues to develop torque until TSR = 6 at which point the propeller 

brake state is reached and the rotor is in full overspeed. At this point the axial 

force coefficient is 0.32

• The model is effective over the operating range with only 25 blade elements. It is 

therefore shown that a model of this type is suitable for use in the development of 

a system to estimate loads on a marine rotor with dynamic environmental 

conditions. It is effective and demands a relatively low computational effort.
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5.0 EXTENSION OF BLADE MODEL FOR DYNAMIC 
LOAD ESTIMATION

5.1 Introduction
The blade element theory and stream tube analysis used here is presented in Chapter

4. This is the basis on which the dynamic load estimation model is built. In its 

fundamental form the hydrodynamic loads on each blade can be calculated as a 

combination of the velocity of the fluid, the blade geometry, the operational tip speed 

ratio and the properties of the aerofoil used in the construction of the blade.

If the flow through the turbine is uniform, the velocity of the oncoming fluid is constant at 

any point in a stream tube. This implies that the force on a blade operating at constant 

TSR is the same regardless of where in the rotation the blade is. A model using a 

uniform flow can therefore calculate the force generated on one blade of the rotor and 

multiply this by the number of blades to obtain total force on the rotor.

In reality, phenomena occur that drastically alter the velocity profile from its uniform state 

[1]. The effect of the seabed and free surface, waves, convection, salinity and 

turbulence contribute to the irregularity, some of which can be accurately predicted [2]. 

The effect of this non-uniform flow is that parts of the rotor will see a different flow 

condition to others at the same time. This has the effect that the forces on the blade vary 

greatly within each revolution and give rise to oscillatory forces about the hub.

With the addition of a depth and time varying velocity, the flow conditions are different 

for each blade. Each blade must be analysed separately with respect to its angular 

displacement and then the loads from each are resolved about the hub to determine the 

total rotor load. This requires a dynamic model which considers the rotor in quasi-static 

states throughout each revolution.

5.2 Background

There are essentially three steps involved in the application of wave action to a 

submerged body. The first is determination of the wave characteristics which involves 

the wave period, height and water depth. The second is the generation of the wave 

kinematics which describes the fluid motion throughout the wave in terms of velocities 

and accelerations. Finally, the forces on the structure are calculated locally before 

summing to obtain global structural forces. In the case of a concurrent velocity profile,
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this is added to the wave kinematics before the forces are calculated. The procedure for 

the calculation of wave plus current forces is described by the American Petroleum 

Institute [2], The flow chart in Figure 5.01 summarises this process:

Drag and inertia 
coefficients 
Cd and CmWave height, 

period and 
water depth

Wave
Kinematics

Wave + Current 
Kinematics

Associated
Current

Local Forces

Global
Forces

Vector Sum

2-D 
Wave Theory 

(including 
Doppler effect)

Local Member 
Wave Plus 

Current Forces 
(Based on 
Morison’s 
Equation)

Figure 5.01 -  Calculation of forces owing to velocity and wave effects [2]

Of note is the Doppler effect in which a current combined with a wave direction tends to 

increase the apparent wave period whereas a current opposing the wave direction tends 

to shorten the period as seen by a stationary object. In the case of calculating the loads 

on a structure at a particular site, it is likely that the wave period measured by the wave 

buoy or similar, will not take the current velocity into account and consequently the 

measured values are in fact apparent values and it is assumed that this step can be 

neglected If the waves are generated from an estimated extreme wave, such as a 50 

year return wave, this may not be the case.

5.2.1 Wave kinematics

To determine the two dimensional characteristics of a wave over its length a wave 

theory must be employed. A comprehensive comparison of different approaches with 

varying complexity is presented by Sarpkaya [3]. A similar comparison is beyond the 

scope of this study as only the results of such an analysis are used here.
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The API make a comparison of different theories and the suitability of each to different 

wave conditions [2], The graph is reproduced below in Figure 5.02. It is clearly seen that

d
different theories are better suited to waves depending on the values of  — and

z J©  app

H
— j - . The wave types considered for a typical tidal stream turbine application in

g Tapp

section 5.4.1.2 have values as shown in table 5.1. These values are plotted as far as 

possible on Figure 5. 02.

Wave Type 1 2 3 4 5 6 7 8 9 10
H/gTaoo2 0.0110 0.0060 0.0045 0.0038 0.0032 0.0026 0.0017 0.0013 0.0020 0.0052

d/gTapP’ 0.6371 0.2832 0.1593 0.1019 0.0708 0.0520 0.0398 0.0315 0.0255 0.0211

Table 5.1 -  Comparison of the typical wave types

0.05 Deep Water 
Breaking Limit 
H/L =  0.14

0.02

0.01

0 005 Stokes 5 3<
or Stream Functiom(3)

Shallow Water 
Breaking Limit 
H/d =  0.78

0 002

9^app ‘
0.001 (>11)

0.0005

Linear/Airy
or Stream Function (3)Stream Function

0.0002

Deep
Water
Waves

0.0001 — Shallow—  
Water Waves Intermediate Depth Waves

0.00005
0.20.050.005 0.01 0.020.001 0002

app

d: Mean water depth 
Tapp: Wave period

g: Acceleration of gravity

H/gTapp2: Dimensionless wave steepness 
d/gTapp2: Dimensionless relative depth 

H: Wave height 
Hb: Breaking wave height

Figure 5.02 - Regions of applicability of various wave theories. Source - [2]
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It is clear that the Stream Function is suited to all operating conditions and a 3rd order 

approximation would most likely prove adequate. However with computing facilities 

available, the order is able to be varied automatically to find the optimal solution for 

steeper waves. This gives the capability to solve steeper waves or waves in shallower 

water.

5.2.2 Stream function theory

The application of the stream function to wave kinematics is discussed in detail by 

Chaplin [4]. It is stated that the problem under consideration is one of two dimensional, 

irrotational periodic wave of permanent form. The wave can be defined in terms of mean 

water depth D, wave height Hw and wave period T. The aim of wave theory is to relate 

the wave kinematics to these parameters. The basis for the application of stream 

function theory is presented here for completeness and is taken from Chaplin [4].

The problem can be reduced to one of steady flow by observing a frame of reference 

moving at the same speed as the wave. The system is defined in Figure 5.03.

Direction of wave travel

MWL

Moving reference frame
7 7 7777 777 7

Figure 5.03 • Definition of wave parameters

The Stream Function yfay) is constant along any streamline. Consequently the partial 

derivative of y^x,y) with respect to any direction gives the component of velocity 

perpendicular to that direction [5]. At the frame of reference, the velocity components of 

the stream function are defined by:
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V  - C = ^ -  V = ^ -*  ~ > Y w ~oy ox

Where Uw and Vw are horizontal and vertical components velocities in the x and y  axes 

respectively and C is the wave speed.

The following conditions must be satisfied by the stream function [4]:

i) For the condition of irrotationality V  y/ = 0

ii) The vertical velocity component at the seabed is zero = 0 when y  = -d
dx

iii) The free surface is defined by y  -  rj(x) and is a flow boundary. The local

8tj V
velocity vector must be tangential to it —-  = w

dx (uw- c )  

(u - c ) 2 + v 21
iv) Since the pressure is zero on the surface: ^  + rj = Q where

2g

Q is the total head, a constant for a given wave,

v) The wave is periodic in x with interval L and is symmetrical about a vertical 

plane through the crest or trough.

Except for (iii) and (iv), all of these conditions can be satisfied by choosing a stream 

function such that:

L  ^  , 2m (d  + y )  2m x
y/ = — y  + 2 ^ m„$  m h------1 -cos  (5.1

T „ L L

Where N  is the solution order.

The moving reference frame is accounted for by the first term and the wave induced 

effects are represented in the second term.

It is also possible to satisfy requirement (iii) by considering the free surface as a 

streamline on which ^x ,y ) is constant. It follows from the above equation (5.1) that the 

stream function equals -dL!T  along the seabed. However on the surface the value of the
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stream function y/  ̂ is unknown and it differs by an amount that is proportional to the 

overall mass transport of fluid caused by the wave.

The solution of the wave theory is therefore numerical and requires finding values o f mh 

m2, mN, L and i//n so that condition (iv), the dynamic free surface boundary condition, is 

satisfied as accurately as possible.

5.2.3 Solution of the stream function

Open source code to automatically optimise stream function theory has been developed 

by The Department of Civil and Environmental Engineering Hydraulics Group at 

Southampton University. This is available online [6].

The code selected as most suitable for this application is ‘CW623’. This can be compiled 

in Fortran to generate an executable file. The main advantage of this code is that it 

automatically increases the order of the stream function expansion for steep waves. It 

also will incorporate a uniform current flow if required. Non-uniform currents are not 

included in the capabilities. The results can be post processed using a separate code 

‘CW6T which will output wave kinematics at any point in the wave or depth including the 

free surface.

A modification is made which enables the output to be generated as a matrix in the 

horizontal and vertical planes over the wave length. Discretised velocities Uw and Vw and

dU  dV
accelerations — -  and — — can be therefore be stored as a matrix as shown in

dt dt

Figure 5.04.
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Wavelength fraction x/X ---------------------------------------------------------------- ►

Depth d 

▼

Figure 5.04 -  The matrix used to store wave kinematics data

5.2.4 Morison's equation

In [7], Moe states that Morison’s equation would be better expressed as Morison’s 

formula as it is effectively an experimentally calibrated approximation rather than a 

rigorously derived mathematical expression. However the use of the equation is 

widespread in offshore engineering [2] and the experimentally determined parameters 

are analysed and presented by Sarpkaya [3].

Morison’s equation considers the forces on a submerged cylinder in terms of form drag 

and inertial force. When the ratio of the wave length to the submerged member diameter 

is large (>5), this is expressed as:

f  = f d + f ,

Where:

F  = hydrodynamic force vector per unit length acting normal to the axis of the 

member.

Fd = Drag force vector per unit length acting normal to the axis of the member in 

the plane of the member axis and U.

Fj = Inertial force vector per unit length acting normal to the axis of the member 

in the plane of the member axis and •
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When the fluid motion is large in comparison with the diameter of the cylinder, drag 

forces dominate and the flow can be considered as steady. In this case the standard 

form drag equation can be used with the necessary drag coefficient for the cylinder 

concerned. Hence:

FD= y 2CDpD\u\U

Where:

D  = Cylinder diameter

CD = Drag coefficient for the cylinder

U = Fluid velocity normal to the cylinder axis

|t/| = Absolute value of U

When the motion of the fluid is small in comparison to the cylinder, inertial forces 

dominate which gives a force equal to twice the displaced mass times the fluid 

acceleration in the absence of the cylinder [3]. Hence:

F ,= C mpS ^  
dt

Where:

S = Displaced volume of cylinder per unit length 

Cm = Inertia coefficient for the cylinder 

JJ = Fluid velocity normal to the cylinder axis 

|t/| = Absolute value of U

Morison’s equation in this form neglects any convective acceleration in the inertia 

calculation. It also ignores lift forces, slam forces and axial forces.

The values CD and Cm must be determined experimentally and can vary over the 

wavelength. General approximations can be used for better accuracy and the 

coefficients can be expressed in terms of surface roughness, Reynolds number, 

Keulegan Carpenter number, current/wave velocity ratio and member orientation.

Values of CD are available for many engineering applications but values for Cm are less 

common. Sarpkaya [3] presents the added mass of various bodies. From this, the added 

mass coefficient and hence Cm can be calculated for different bodies.
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It is given by:

and:

Cm = '  + C am A

C,  = M >
A pS

Where:

CA = Added mass coefficient 

Ma = Added mass per unit length

By this method forces on submerged structures subject to wave action can be estimated 

from wave kinematics data.
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5.3 Formulation of a dynamic model

5.3.1 Addition of time dependent vector flow field

Using a non-uniform flow requires a method to describe the flow characteristics at any 

point in the swept area of the blade, at a particular time. The velocity of the oncoming 

fluid is now expressed as a function of depth. The depth is taken as the depth of the 

centre of pressure of the element aerofoil section. Although the diameter of the stream 

tube increases as the flow passes the plane of the rotor, it is assumed that the flow 

experienced by a section of the rotor at a certain depth corresponds to the fluid at the 

same depth in the flow well upstream of the rotor. This assumption is reasonable for a 

first iteration as the variation in streamtube diameter is small.

5.3.2 Dynamic time step

One significant effect of using a non-uniform flow is that there is now an acceleration of 

the rotor depending upon its angular displacement. This is caused by the variation in 

torque as each blade undertakes a revolution. The acceleration is counteracted by the 

inertia of the rotating components of the system and the added mass of the rotor. 

However, the acceleration adds to the complexity of the dynamic model as the rotor 

experiences changes in rotational velocity. This is added to the model so that with each 

step the rotor speed is updated due to the net torque on the system. The most 

significant contribution is due to the reaction of the generator against the rotor.

5.3.2.1 Generator torque reaction

In a tidal stream turbine, the majority of the torque applied to the rotor is transformed 

into electrical energy by the generator. The torque which the generator absorbs, TG is a 

function of the rotor speed. Shown in Figure 5.05, is the assumed relationship between 

speed and torque for a typical low-speed generator, which is also the generator model 

used in this investigation.
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The effect of rotational speed on torque reaction of a typical low speed 
generator rated at 380kW

140

120

100

40

RPM

Figure 5.05: The relationship between torque and speed for a 380kW PMG

A particular generator will have specific torque characteristics. As an approximation to 

enable the generator performance to be estimated for any sized rotor, the relationship is 

given by:

Cp(max)P7zA
(  C1R ^

Ta =
TSRdj

2 n

5.3.2.2 Rotor inertia
The inertia of the rotor system is a summation of the various components. This varies 

with the power and design TSR of the rotor and also with the number of blades. The 

various components and their inertias for the test rotor are shown in Figure 5.06 and 

table 5.2. The main contributors are the rotor blades and it is found that owing to the 

relative volumes of different blade numbers, the inertia of the system also varies with 

blade number.

A model of the blades is generated in a computer aided design package which can then 

be used to determine the moment of inertia though the ‘Enquiry’ function. The 

dimensions and values required to estimate the remaining components are taken from a 

design report [8].
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Figure 5.06 -  The components comprising rotor inertia [8]

Moment of Inertia by Component Value (kgm2)

2 bladed impeller 93528

3 bladed impeller 62352

4 bladed impeller 46764

Hub 611

Generator rotor 1721

Shaft 194

Seal 7

Brake disc 45

Total (2 bladed) 96106

Total (3 bladed) 64930

Total (4 bladed) 49342

Table 5.2 -  Values of inertia for the various system components



5.3.2.3 Rotor speed

The acceleration of the rotor is governed by:

IQ  = T - T rn Gn

Where n is the timestep number, the timestep is considered to be so small that the 

relationships between torque and acceleration can be approximated to linear within it.
•

Therefore taking a linear discretisation of Q in time, the rotor speed for step n+1 is 

therefore given by:

Q =  Q +  ~  T Gn X fn + i ~ 0
n+l n j

Where:

Q = Rotational speed of the rotor (Rad/s) 

n = number of time step 

T= Rotor torque (Nm)

TG = Absorbed generator torque (Nm)

IR = Rotor inertia (kgm2) (comprises rotor, generator, shaft and associated 

components) 

t = time (s)

5.3.3 Addition of depth characteristics

5.3.3.1 Location of blade element

The conditions experienced by a particular blade element must be able to be found 

relative to the depth of the aerofoil centre of pressure. This is achieved using the angular 

displacement of the rotor relative to the vertical position. The depth of the axis of rotation
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is known as the hub depth and this is used in conjunction with the radial position of the 

blade element to calculate the depth.

The depth of the blade element is given by:

DBE= D „-rc o s (y )

Where:

Dbe = Depth of blade element centre of pressure (m)

Dh -  Depth of rotor axis (hub depth) (m) 

y = Angular displacement of rotor from vertical (rads)

The horizontal location is immaterial as there is no variation in flow conditions parallel to 

the primary flow axis.

5.3.3.2 Summary of assumptions

It is assumed that:

• There is no variation in flow velocity or acceleration in the direction 

perpendicular to the flow.

• There is no rotation of the flow in the upstream vector flow field.

• The depth of the water remains constant at all times and there is no variation 

caused by tidal effect.

• The variation in diameter of stream tube has no effect on the relationship 

between the depth of the blade element and the velocities corresponding to that 

depth.

5.3.3.3 Velocity gradient

A theoretical analysis of a boundary layer makes the assumption that the velocity at the 

seabed is zero. Using a power law approximation as described in [5], the velocity profile 

over the depth is given by:
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^ = U ma( l - D BE/D ) ^

where; Y  = , for f < 0.1.

In turbulent pipes, the friction facto r/is  generally such that n -  7 and this is called the 7th 

power law. However for tidal stream currents it is assumed that the 1710th power law can 

be used [9]. This can be seen graphically in Figure 5.07.

1/10th power law velocity distribution
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0.3

0.4
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0.2 0.6 0.80.4
u/U

Figure 5.07 - A graphical representation of variation of velocity with depth

If a 2 bladed rotor is considered, it is apparent that whilst the one blade is nearest the 

surface and hence the faster fluid, the other blade is directly opposite in the slowest 

flow. Both the blades are rotating together and hence the TSR is effectively different on 

each blade.

The uniform flow of a real fluid will cause the rotation of the turbine blade at a constant

TSR depending upon the load placed on the shaft. If the load is such that the turbine is

operating at its design condition, the flow though the blades will be uniform in that at

every position along the radius the aerofoil at that position will see the oncoming fluid at

its optimum angle of attack as seen in section 4.25. If at this same flow speed the TSR

increases, the angle of attack will move off optimum and a loss in efficiency will occur as

the blade element moves into overspeed. The performance of the blade can be

assessed in this manner at any combination of flow speed and TSR. In the case of the
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seabed induced velocity gradient the local TSR varies across the radius, and some parts 

will experience optimum angle of attack whereas others will be off optimum. Because of 

the variations in velocity and hence local TSR and efficiency, the forces experienced by 

the blades differ and resultant forces are experienced by the hub and shaft.

5.3.4 Addition of wave characteristics

Including velocity gradient in the flow field results in a fluctuation in the loads generated 

on the rotor throughout each rotation. However, the fluid velocity remains constant over 

time. The addition of wave effects introduces a flow variation which is characterised by 

changes in velocity and acceleration in the axial and vertical directions over time. As 

described in section 5.2.4, Morison’s equation describes the force of wave action on 

submerged structures as consisting of two parts; drag and inertia forces. The wave 

velocity generates the drag forces, whereas the accelerations develop the inertia forces.

5.3.4.1 Typical wave characteristics

Wave kinematics software developed at the University of Southampton by John Chaplin 

[6] uses stream function theory as described in section 5.2.2 to obtain velocities and 

accelerations over the wavelength and depth of a wave. These outputs are defined by 

the depth of water, wave height, wave period and current flow in the axial and vertical 

planes at discrete points in the wave.

A wave modeled in two dimensions moves the fluid through which it is passing in a 

circular motion. There are therefore velocities and accelerations in the axial and vertical 

directions as follows:

U w - Velocity of the fluid in the axial direction at the plane of the rotor disc due to wave 

action.

Vw -  Velocity of the fluid in the vertical direction at the plane of the rotor disc due to 

wave action.

dU
— — - Acceleration of the fluid in the axial direction at the plane of the rotor disc due to

dt

wave action.
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— — - Acceleration of the fluid in the vertical direction at the plane of the rotor disc due
dt

to wave action.

Illustrations of the typical variation in the parameters over the wavelength and depth are 

shown in Figures 5.08 to 5.11.

It can be seen that the variation in flow speed and acceleration decreases with depth 

throughout the graphs and that the effect of the waves is generally more pronounced at 

the surface. The circular motion of the wave action is also clear when comparing the 

velocities and accelerations in both planes.

Figure 5.08 Variation of axial wave velocity in m/s with depth and wavelength

Figure 5.09 - Variation of vertical wave velocity in m/s with depth and wavelength
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Figure 5.10 - Variation of axial particle acceleration in m/s with depth and wavelength

Figure 5.11 - Variation of vertical particle acceleration in m/s with depth and wavelength
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5.3.4.2 Vector flow field applied to each element

The vector flow field in the plane of the rotor disc is given in a 2D sense as shown in 

Figure 5.12. Both velocities and accelerations in the axial and vertical plane are 

included.

Axis of rotation

dU,

Figure 5 12 - The vector flow field as applied to each blade element

dU 6V
The quantities, Uw, — -  , Vw and — — are found with respect to the depth of the centre

dt dt

of pressure for the blade element.

5.3.4.3 Effect of wave flow effects

The wave velocity fluctuations and accelerations are input to the rotor model in different 

ways. All are a function of depth and the position of the blade element in the wavelength 

xlX  as shown in Figures 5.08 to 5.11. In addition to changing the inflow velocity, the 

variation in velocity changes the flow regime differently depending on the angular
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displacement of the rotor blade. The accelerations also expose the rotor to inertia 

forces, the effect of which again depends on the position of the blade. These inertial 

forces result from the displacement of the fluid by the blade. This is commonly modelled 

in offshore structures and is an integral part of Morison’s equation which indicates that 

forces on submerged structures are composed of drag forces and inertial forces. Drag 

forces result from wave induced velocity whereas inertia forces are the result of induced 

accelerations. The predominance of these forces is governed by the Keulegan- 

Carpenter number. This gives a measure of the magnitude of the fluid motions relative 

to the structure [3] and in this case is expressed as:

k = UwT J D

Where Tw is the wave period and D  is the effective diameter of the submerged member.

When k > 40 drag forces are dominant, and when k < 10 inertia forces dominate. The 

range of operation for a typical tidal stream turbine rotor varies from 0 when stationary in 

calm conditions up to approximately 200 at full current and wave state operation. This 

implies that wave induced drag forces are dominant over most of the operational range.

dU
This means Uw and Vw have more effect than the corresponding accelerations -------

dt

dV
and — —. However, the inertial effects will still be significant and consequently are

dt

factored in.

5.3.4.4 Axial velocity

The axial wave velocity Uw is added to the velocity of the oncoming fluid for each blade 

element. The equation for the local upstream velocity UL becomes:

u L = u „ + u w

There are two primary effects, the first being a change in local speed ratio, and secondly

a change in axial force and torque. The relationship is complicated by the local speed

ratio, as this affects the local angle of attack. It is possible that with a very sharp rise in

the velocity of the oncoming fluid the blade will stall. Conversely, with a negative Uw, the
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blade is likely to overspeed and hence may begin to act as a propeller over some of the 

radius as described in section 4.3.1.4.

5.3.4.5 Vertical velocity

The vertical wave velocity Vw is added to the tangential velocity of the blade element 

when the blade is moving in the vertical plane. For one half of a rotation this velocity is 

positive and for the other it is negative depending on whether the motion of the fluid is 

with or against the tangential velocity of the rotor. When a rotor blade is at the top or 

bottom of its cycle, Vw has no effect on the relative tangential velocity of the blade 

element and the fluid. Conversely when the rotor blade is horizontal the effect is 

maximized. For this reason a sine function is used to factor in the effect of Vw throughout 

the rotation. The expression for the local vertical velocity VL is therefore given by:

VL =Vwsin(r)

The local speed ratio is therefore now given by:

r C i - V

5.3.4.6 Axial acceleration

The acceleration of the fluid is a quantity that is not considered in BEMT and 

consequently is not easily added to the system of equations. However, it is clear from 

Morison’s equation that the drag and inertia effects can be added to obtain the total 

value for wave force and the same approach is used here. For the axial acceleration

dU„

dt
, the inertia effects are made as an addition to the solved BEMT system, such that

equation (4.23) for axial force becomes:

Fa 3 = E ~ { d F M +dFA2)+dF

Where dFAi„ is the axial inertia force for the blade element which is defined by:
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dFMn = C mApS— ^ J r  
dt

Where:

CmA = Axial coefficient of inertia 

S = cross sectional area of the aerofoil section

The aerofoil cross sectional area for the NACA4424 section is given in terms of chord 

by:

S = 01658c2

The axial coefficient of inertia for the aerofoil section of the blade CmA can be estimated 

using the Inertia coefficient of an ellipse with the same diameter as the aerofoil frontal 

length. This coefficient is calculated in the same way for an ellipse with the same 

significant diameter [3]. It is given by:

C = 1+ CmA l ^ k-'AA

and:

r  M °*
"  p S

Where:

Caa = Added mass coefficient 

MaA = Added mass per unit length

The added mass per unit length is calculated in the same way as an ellipse and is given 

by Figure 5.13 and:

M aA(ellipse) ~  P 7^  ~  P ^ A

Where LA is the effective radius of the aerofoil as shown in Figure 5.13 and is given as a 

function of blade inclination angle p:
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L a = / ( A )

Figure 5.13 - The elliptical approximation for added mass

The assumption made here is that the inertial impact of the wave on the blade element 

is in the direction of the wave, and the frontal length of the aerofoil is given by LA for the 

axial acceleration and Lv for the vertical accelerations. This assumes the acceleration 

impacts the blade as if the blade is stationary and no rotational acceleration of the rotor 

occurs within the timestep.

5.3.4.7 Vertical acceleration

The acceleration in a vertical direction is considered in much the same way as the axial

dV
acceleration. However, the effect is different as the vertical acceleration — -  impacts

dt

upon the torque rather than the axial force. An upward acceleration will increase the 

torque on a blade travelling upward and a negative torque on a blade travelling 

downward. The torque equation therefore becomes:
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Where an acceleration in the same direction as blade travel is positive.

Consequently the expression for power becomes:

3 = nX  ^ ( d T ^ d T 2) + dT„

The vertical inertia force for a horizontal blade element is defined by:

dV
dTin = CmVp S -—̂ -r.d rin mv • >-».dt

However, the effect of the inertia force on the torque is dependent on the blade angular 

displacement. When the blade is directly vertical there is no effect on the torque. In 

Seigerstetter [10], wave forces are considered to be acting on vertical cylinders and only 

the horizontal components are considered to be of importance when considering vertical 

constructions. The same approach is taken here. As the blade rotates about the rotor 

axis, the vertical positions occur once at the revolution top and one at the bottom. To 

incorporate this effect into the torque, a sine function is used. The effect of this is two 

fold, firstly at the revolution top and bottom, the effect of the vertical acceleration on the 

torque is zero, whereas when the blade is horizontal it has maximum effect. Secondly 

during the first half of the revolution the effect is positive and as the blade passes the 

180° position the effect becomes negative. The sine adjusted torque effect is therefore 

expressed by:

^,„s  = CmvPS Sin(y)r.rfr
dt

Where CmV is the vertical coefficient of inertia and is calculated in much the same way as 

the axial equivalent but using the corresponding frontal length L v as shown in Figure 

5.13:

c  = 1 + mL'/^  mV 1 ~  o

This assumes the acceleration impacts the blade as if the blade is stationary.
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5.3.5 Outputs

The addition of a non-uniform flow field creates a variation in blade forces over the 

rotation. For this reason it is no longer possible to consider a single blade and multiply 

the forces by the blade number to obtain the forces on the hub. Each blade must be 

considered separately and the forces resolved about the hub centre to determine the 

total loads. The rotor model considered in Chapter 4 considers one blade as if it is a part 

of a rotor with uniform conditions. The case considered here is a 3-bladed rotor where 

each blade is given a subscript i, ii, or iii.

5.3.5.1 Torque and Axial Force

The torque of the rotor is given by summing the torque from each blade. The expression 

for rotor torque is therefore:

N

1=0

Similarly the axial force is given by

N

i=0

This gives rise to the performance coefficients CTand CF :

i pA R U 2



And similarly the power coefficient CP is given by:

T Q
^P ~ 1

~PAU>

5.3.5.2 Yaw, Teeter and Heave

As the forces on the blades are no longer constant, moments and vertical forces are 

exerted on the hub. The directions of these forces are shown in Figure 5.14. They are 

resolved about the centre of the rotor at the point where the lines of blade centre of 

pressure meet.

Heave

Figure 5.14 -  The direction of the resolved forces and moments

Yaw and teeter are moments that are derived from the resolved axial force of the blade.
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Yaw and Teeter are given by:

/=0

Te„ = X  Te,
i=0

Where for each blade

A

4 = 1 r- ^ - [ U d F M + dFA1)+ d F  
N  ^2 Ain

Te „ = £ rcosW h dFM+dFA2) +dF i
N  12 Ain

Heave is a force that is derived from the vertical wave accelerations. It is generally 

smaller in magnitude than yaw and teeter but can be equally as important depending on 

the type of support structure used. Heave for the rotor is given by:

/=o

Where for each blade;

#  3, =  X
1 ( sin(r)
r l ,  2N

{dT, + dT2)+ d T mS

Note that the sine adjusted vertical inertia force dTinS is used. The assumption is that 

when the blade is vertical the heave force is zero and it increases only as it moves 

toward the horizontal.

146



This gives rise to performance coefficients which are expressed as CY, 

respectively:

r 1 , 
- pARU1

r  ='Tr, ----

2 

TeR

Te 1
pARU2

C„ =

2 

H R

H 1 
- p A V '

CTe and CH
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5.4 Implementation

The basis of the dynamic loading model is the performance prediction model as 

described in Chapter 4. The model is extended to include time steps, individual blade 

calculations, velocity gradient, wave forces and post processing. The overall aim of the 

model is to predict the performance and loading of the device under any operating 

conditions which may be experienced over the device lifetime. This requires the 

definition of environmental conditions including the tidal current and wave regime. These 

are defined in section 5.4.1.

The basis for the model operation is represented by Figure 5.15:

Export single blade results

Individual blade from 1 to N

Calculate individual elements 0 to R

Calculate single blade output

Combine single blades into rotor loads

Time (Wave and blade position) 0 to t,

Export results for tidal and wave condition

Tidal & Wave condition

c
o
t5c
oo
CD
>
03

$
*3
aj

T 3

Figure 5.15 -  A conceptual representation of the dynamic model with loops

For a particular operating condition, the outputs are generated over a finite time period. 

Each blade of the rotor is considered individually and the blade elements are solved 

over the radius. The results are summed to give single blade values and these are 

exported to file. The next blade values are calculated in the same way until all blade 

values are complete. The blade values are then combined to give rotor torque output 

and the other loads. The next time step occurs in which the wave position and rotor 

angular displacement are adjusted. The rotor speed may also be adjusted depending on 

the torque. Rotor loads are found in this way until the time limit is reached and the 

results are post processed to give all rotor values over the time period. A new operating 

condition can then be selected and the process is repeated.
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5.4.1 Input parameters

The loadings on a submerged tidal stream energy converter over its lifetime are a 

function of the environmental conditions that it encounters. These conditions are 

dominated by two factors; the tidal regime and the wave climate. These factors are 

particular to a specific location.

5.4.1.1 Tidal Velocity Regime

It is intended to use the model to create an understanding of realistic loads on a tidal 

turbine. The proposed location area for the Swanturbines demonstrator is in the Bristol 

Channel, South Wales, given by grid coordinates (NSI^S.O’.NSI^O.e1, W3°05.9\ 

W3°35.2’). This is illustrated in Figure 5.19. The environmental conditions at this site are 

used for this investigation.

The DTI report [1] gives tidal velocity estimates for this site in the form of Vmsp and Vmnp, 

which are the mean spring peak velocity and the mean neap peak velocity respectively. 

These values refer to the peak velocity of an average spring and an average neap tide 

respectively. Also given in the report is the ratio of flood to ebb tide velocities for the site.

To enable the tidal flow regime to be estimated from the DTI values an assumption is 

made concerning the relationship between Vmsp and Vmnp and the values surrounding it. 

The assumption can be visualized as in Figure 5.16.

V max spring peak

Vmean spring peak

Vmax neap peak “ Vmin spring peak

Vmean neap peak

Vmin neap peak

0

Figure 5.16 - Illustration of assumptions used to estimate peak flow speeds from the DTI report data.
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Fundamentally, spring tides occur when there is the greatest difference in the height of 

consecutive high and low tides. Neap tides conversely have the least difference in tidal 

range. By the same effect, springs will have greater flow speeds than neaps. By the 

nature of this descriptive method having only two categories, it omits the gradient 

between springs and neaps. However in reality there is a smooth transition between the 

two and hence there is a middle value. In Figure 5.16 this middle is shown as Vmax neap 

peak = Vmin spring peak- Assuming a sinusoidal ‘lunar’ variation, this value is midway between 

Vmsp and Vmnp and may be calculated as such. Similarly the maximum and minimum 

peak values Vmax spring peak and Vmjn neap peak may be calculated.

The values of tidal flow for the Barry site given in [1] are given in table 3. Values 

calculated using the method above are shown in italics.

Parameter Value

V max 3.15 m/s

V mean spring peak 2.57 m/s

V mean neap peak 1 41 m/s

V  min peak 0.83 m/s

Flood / Ebb factor 0 85

Table 3 - A summary of flow data for the Barry site from the DTI report.

To build a model of the yearly tidal flow regime from this data, a series of sinusoidal 

approximations can be applied around their respective cycles. In this study diurnal, 

synodic and equinoxal cycles have been applied with periods of 12.43 hours, 14.8 days 

and 182.5 days respectively. A graph of this variation is shown in Figure 5.17.
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Figure 5.17 : Yearly variation of tidal stream velocity at the Barry site

This method is an effective way to obtain an estimation of the tidal flow regime from the 

limited information given in the DTI report [11]. Although the sinusoidal approximation 

leads to some inaccuracy in the estimation of the flow velocity, this method is vastly less 

expensive than collecting site data or running a full model. However, in reality the flow 

data would be measured for an extended period to ascertain the true nature of the flow. 

It is not practical to undertake this task in the scope of this investigation.

To obtain mean current speeds for analysis, the occurrence of a series of flow velocities 

is determined. The velocity is grouped into bins of 0.5m/s and the occurrence is shown 

in Figure 5.18 and table 4.
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Figure 5.18 - The 8 representative velocities and occurrences
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U rep % occurrence

-2.5 0.017920329

-2 0.099760301

-1.5 0.145074763

0 0.429973747

1.5 0.113114941

2 0.114941217

2.5 0.069056044

3 0.010158658

Table 4 - The 8 representative velocities and occurrences

5.4.1.2 Wave Climate Analysis

The Barry site is located in an area of the Bristol Channel which experiences a 

significant wave climate. With a fetch that stretches across the Atlantic, the waves that 

occur in this region have great power. Information regarding these waves collected by 

the British Oceanographic Data Centre (BODC) has been obtained for the project on an 

academic license.

3 Wave Rider buoys have collected wave data in the region over a period of 2 -  3 years 

from April 1978 until April 1981. The exact location of the buoys is shown in Figure 5.19, 

where the line shows the boundary of the region under investigation. The buoys are 

marked A1, A2 and B. The data collected includes the parameters shown in table 5. This 

data is deemed extensive and enough to be an accurate representation of the wave 

climate in the region.
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Figure 5.19 - The locations of the Waverider buoys and the Barry site.

Parameter unit

Significant wave height m

Zero crossing period s

Maximum wave height m

Average Wave Height m

Root Mean Square Wave Displacement m

Waves Spectral Width

Number of zero crossing waves in record

Table 5 - Parameters included in the Waverider data from the BODC.

A frequency distribution method is used to discretise the wave climate for use in 

statistical analysis of the lifetime rotor loads. The most relevant factors in calculating 

loadings on offshore structures are wave frequency and amplitude. These affect the 

magnitude and occurrence of the forces on the structure which is important for the 

estimation of both extreme and fatigue loads The results of this for each of the 

Waverider locations are graphed in Figures 5 20 and 5.21. The significant wave height is 

separated into bins of 0.125m each. The period has bins of 0.25 seconds. The % 

occurrence of waves in each bin is displayed.
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Significant Wave Height frequency distribution at the 3 waverider sites
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Figure 5.20 - The frequency distribution of significant wave height

Wave period frequency distribution at the 3 waverider sites
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Figure 5.21 - The frequency distribution of wave period

The buoys are spread geographically across the region of interest and for this reason 

the data from all three is combined to obtain an average as shown in Figures 5.22 and 

5.23. This is achieved by averaging the percentage occurrence of each bin across the 

three buoys.
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Significant Wave Height frequency distribution fo r the 3 waverider sites
combined
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Figure 5.22 - Averaged frequency distribution of significant wave height

Wave period frequency distribution for the 3 waverider sites combined
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Figure 5.23 - Averaged frequency distribution of wave period

The combined data is analysed to create 10 distinct wave types. Each wave type

consists of a wave period and a corresponding wave height which occurs for a certain 

percentage of time. This enables a fatigue analysis to be undertaken as the number of 

occurrences of a particular load over the lifetime of the device can be estimated. The

characteristics of the wave types are given in Figure 5.24.
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Properties of the 10 representative waves found at the Barry site

■ occurance

Zero Crossing Period (Secs)

Figure 5.24 - The characteristics of the 10 representative wave states

A wave number W is given to each of the wave states from 1 to 10 such that the wave 

number equals the wave period minus 1. These wave states are then input to the wave 

kinematics software and the associated velocities and accelerations are determined.

The occurrence of the larger waves is clearly much lower than the smaller waves and 

this is a reflection on the storm conditions that cause them. The occurrences are used to 

determine lifetime loadings in section 5.54.

5.4.1.3 Wave data lookup

For a particular run of the model, a set of operating conditions is determined. One of the 

representative tidal velocities and one of the representative wave states is chosen. The 

velocity is input as a single number; however the wave state is input as a matrix as 

shown in section 5.23 and thus requires more detailed consideration.

The data is generated at a resolution of 125 points over the wave depth and 100 points

dU  dV
along the wave length. Each variable UWt Vw, --- --- and — — therefore has a matrix of

dt dt

12500 elements along the wavelength and depth. Although the wave action is therefore 

relatively well described, linear interpolation is used along both axes to increase the 

accuracy further.
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5.4.2 Timestep & inertia

The model is operated using a system of VBA macros. ‘Solverzero’ optimises the 

objective function as described in section 4.3.1.6. This method is again used here to 

calculate the optimal values of interference factors a and b. This uses wave and current 

profile adjusted velocities. The inertia forces are added to the outputs after optimisation.

A second macro ‘resultsgen’ is used to undertake the loop that describes the passing of 

time and hence rotation of the rotor and passing of the wave. The time step ts is defined 

before executing the macro, as is the end time tmax. These variables determine the 

accuracy and duration of the models operation. The timestep must be small enough to 

allow the variation in wave and torque characteristics to be considered as linear. For 

example a timestep of 0.0625 seconds and a total duration of 3 minutes will allow the 

model operate accurately and converge on a particular operating condition in most 

cases.

The angular displacement of a blade is expressed as an angle yfrom the vertical 

position . The start angle for each blade is given by:

The anglestep is then given by the speed of the rotor and the timestep:

r . = n t ,

The wave position is calculated as a fraction of the wavelength xlX. The wavestep is 

therefore given by:

Lastly, the rotor speed is adjusted for each timestep. After the complete rotor outputs 

are calculated for a particular timestep, the torque output is used and compared to the 

generator torque load to determine the effect on the rotor speed. The inertia of the 

system is defined before the execution of ‘resultsgen’. The angular acceleration is 

calculated at the end of each timestep to give a new rotor speed in the next timestep.
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5.4.3 Inputs
A summary of the inputs to the model is given table 6:

Rotor geometry:

INPUTS 

Initial conditions: Operating conditions:

R -  Radius xlX0 -  Initial wave position 
Q0 -  Initial rotor speed (rads' 1

U -  Upstream velocity (ms-1)
N -  Number of blades D  -  Depth of water (m)
TSRd -  Design tip speed Yo -  Initial blade angle (rad) Dh -  Depth of hub (m)
ratio T0 -  Initial rotor torque (Nm) W-W ave number
c -  Chord variation with Mn -  Velocity gradient
radius (m) Model characteristic
<|> -  Twist variation with parameters:
radius (deg)
IR -  Rotor inertia (kgm2) ts -  Timestep (s)

ys -  Anglestep (rad) 
Ws -  Wave step

Table 6 -  Parameters needed to initiate the dynamic model

5.4.4 Outputs

The output of ‘resultsgen’ is a series of the rotor loads TRi PR, FARi YR< TeRi and HR. Each 

timestep has a set of values that are recorded in an Excel sheet. A separate sheet is 

used to record values of a particular representative sea-state. There are 10 

representative wave steps used and 8  representative sea states. This gives a total of 80 

sea-states and hence sets of results. These can later be analysed for maximum and 

minimum values or dynamic loadings as described in section 5.5.4.1. ‘resultsgen’ is 

used to run the process and can be used to generate results for a series of sea states.
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Figure 5.25 - ‘Resultsgen’ VBA macro process to investigate 

rotor operation in different representative sea-states
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5.5 Results

An investigation is undertaken in three parts. Firstly to ascertain the validity of the 

dynamic model under uniform flow conditions. Th e second part is the application of the 

model to a flow with a velocity gradient and to observe the effect on the performance 

coefficients and any cyclical loadings which occur. Finally, wave kinematics for a 

particular regular wave are added to the velocity gradient resulting in a time varying flow 

field. Loads are calculated over time and a Fourier analysis is undertaken to ascertain 

the magnitude and frequency of oscillatory forces.

5.5.1 Uniform flow

Figure 5.26 shows the results of running the model under uniform flow conditions. 

Starting values are chosen for Q0 and T0 to approximate the expected results. The 

model then moves from these to converge on va lues at the particular settled operating 

condition. The converged values of CT, CP and CF are calculated as time averages to 

give the points at different TSRs in Figure 5.26>. The operating TSR is controlled by 

varying the torque/speed characteristics of the generator.

C om paris ion o f dynam ic  m od e l to s teady 
state m odel w ith u n ifo rm  flow
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□ Cf (DYN)

Ct

— Cp

■Cf

Figure 5.26 - Validation of model operation under uniform flow conditions

It is clear that the results from the dynamic mo'del correlate very well with the BEM f 

developed in section 4.3. The performance characteristics match previous data at all
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points in the operating range (TSR 1.5-6) The model becomes less stable in the stalled 

region and tends to indicate stopping of the rotor. Results in this region tend towards a 

very low TSR as indicated by the first point on the graph at TSR 0.87. When the 

dynamic model is used at much higher TSR, in particular, the region beyond propeller 

brake state, it does not match the previous data. In this condition the generator torque 

must be input as a negative value. This is not in the normal range of operation so has 

less significance, however this does represent an anomaly in the model.

5.5.2 Velocity gradient

A 1/10th power law velocity is applied to the oncoming flow. The axis of rotation (hub 

depth) is at dID = 0.452, and the rotor swept area is in the depth region dID 0.272-0.632. 

For completeness it is worth noting that the surface velocity used is 3m/s.

The results of the dynamic model are compared to the standard BEMT in Figure 5.27.

Effect o f a 1/10 law  ve loc ity  g rad ien t on the pow er coe ffic ien ts  o f a 2 b laded rotor 
over the operating range

0.8

0.6
►-ouTo
a.o

- 0.2
TSR

Figure 5.27 - The effect of a velocity gradient on the power coefficients

CT
— CP

CF
o Cf (1/10)
A Cp (1/10)
□ Ct (1/10)

It is clear that the general trends are similar in that the curves are the same shape. 

However, it is also apparent that the performance coefficients are generally lower for a 

particular TSR. The effect of the velocity gradient is to lower the average velocity seen 

by the rotor but the TSR and power coefficients are still calculated using the surface 

velocity. This has the effect that the apparent operating TSR is reduced as the turbine 

spins more slowly for a given flow speed. The performance characteristic curves are
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therefore brought forward in terms of TSR. The CT and CF curves appear to peak at the 

same values as the original model. However, peak CP is significantly reduced from 

around 0.49 to 0.46. This represents the power loss a rotor would experience under a 

1/10th power law when it occupies the depth region d!D 0.272-0.632. This equates to a 

6 % reduction in power output at the optimum operating condition. At higher TSRs the 

effect is more pronounced and propeller brake state is brought forward to TSR 5.5.

5.5.3 Wave action

In order to present a concise and complete set of results which illustrate the effect of 

wave action, one example wave type is selected. This wave is applied to a 1/10th power 

law velocity gradient in three cases with surface velocities JJsf of 3m/s, 2.25m/s and 

1,5m/s respectively. The wave selected for investigation is the type 7 wave as described 

in section 4.5.1.2. The essential characteristics are a wave of period Tw = 8  seconds and 

a wave height Hw =0.97m in a depth of 25m. The effects of the wave are observed in 

terms of variation in performance characteristics. These are calculated with reference to 

the constant surface velocity.

A Fourier analysis is undertaken for each of the results to clarify the frequency and 

magnitude of the oscillatory forces. Results for 2 and 3 bladed rotors are presented to 

illustrate the dynamic loading characteristics of different blade numbers. The results are 

presented in groups according to performance coefficient.

5.5.3.1 Torque coefficient

Figure 5.28 shows the variation in torque coefficient of a 2 bladed rotor. Figure 5.28a 

describes the effect in the time domain and Figure 5.28b illustrates the results of the 

Fourier analysis in the frequency domain. A normalised quantity is defined for 

comparison in the frequency domain. This is the ratio of frequency of the Fourier 

transform to the frequency of rotor rotation flQ.

It is clear that the major oscillation is at the wave frequency with a period of 8  seconds. 

There are also slight irregularities in the sine form, with a slight variation in gradient and 

maximum and minimum oyer each oscillation. It appears that this is illustrated in Figure 

5.28b as the very small peaks in the region above fJQ =1.1.
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The other clear pattern is the variation in magnitude of oscillation with surface velocity. 

The lower the tidal flow, the greater the effect the wave has on the variation in CT. For a 

flow velocity of 3m/s the variation from the mean is around 25%, whereas at U = 1.5m/s 

the variation is nearly 45%.

Torque coeffic ient variation with time for a 2 blade rotor at d ifferent 
flow speeds. W avetype W  = 7
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Figure 5.28a - C, variation for a 2 blade rotor
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Figure 5.28b - Fourier analysis of C, variation for a 2 blade rotor

Figure 5.29 shows the variation in torque coefficient of a 3 bladed rotor. Again, Figure 

5.29a describes the effect in the time domain and Figure 5.29b illustrates the results of 

the Fourier analysis in the frequency domain. The results are clearly very similar to the 2 

bladed configuration with the same primary frequency of oscillation with a very slightly 

reduced magnitude. The other visible difference is the reduced secondary oscillations as 

the sine form is now apparently undisturbed and the maximum and minimum values of 

each cycle are more regular. It is clear in Figure 5.29b that there are fewer peaks in the 

region above//Q  =1.1.
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Torque coeffic ient variation with time for a 3 blade rotor at d ifferent 
flow speeds. W avetype W  = 7
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Figure 5.29a - C T variation for a 3 blade rotor

Fourier analysis plot o f 3 blade rotor torque coeffic ient 
variation with wave action (8 second period)
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Figure 5.29b - Fourier analysis of C f  variation for a 3 blade rotor

5.5.3.2 Axial force coefficient

Figure 5.30 shows the variation of C,. with wave action. It is immediately apparent that 

the primary oscillation is again at the same frequency as the wave period. However 

there is more of a variation in the upward and downward gradients. The upward gradient 

is less steep than the downward This represents the difference in velocity fluctuation on 

the wave surge and ebb. This has the effect that in Figure 5.30b, the primary oscillation 

appears to have a slightly higher value of /IQ  than the torque graphs.

The proportionally greater changes with the lower flow speeds found in the torque 

results are similarly found here. At 3m/s, the variation in C, is around 3% whereas this 

increases to about 6% for a flow of 1 5m/s This is noticeably less percentage variation
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than in the torque results. There is also a small variation in the gradients and maximums 

and minimums form one cycle to another. This appears to be more so in the lower flow 

speeds where irregularities are highly visible. This is also mirrored in Figure 5.30b where 

there is a peak of magnitude 0.02 which is independent of flow speed. This occurs at 

flQ. -  2 which for a 2 bladed rotor is the blade pass frequency. Around this frequency it 

appears that there are harmonics at either side at plus and minus the frequency of 

primary oscillation.

Axial force coeffic ient variation with time for a 2 blade rotor at 
d ifferent flow speeds. W avetype W  = 7
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Figure 5.30a - C/r variation for a 2 blade rotor
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Figure 5.30b - Fourier analysis of C f  variation for a 2 blade rotor
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Figure 5.31 shows the variation of CF for a 3 bladed configuration. The primary 

oscillations are very similar to those for a 2 bladed rotor. This is shown in a comparison 

of Figures 5.30b and 5.31b where the magnitude and frequency of the first peak for 

each flow speed are almost identical. In Figure 5.31a, the magnitude of the secondary 

oscillations are significantly reduced resulting in a smoother and more regular cycle. 

This is reflected in Figure 5.31b where the secondary oscillations are reduced to about 

0.12 of the equivalent 2 bladed high frequency modes. Of interest is the equivalent 

blade pass frequency at fJQ = 3 of which the magnitude is dramatically reduced.

Axial force coeffic ient variation with time for a 3 blade rotor at 
different flow speeds. W avetype W  = 7
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Figure 5.31a - C F variation for a 3 blade rotor

Fourier analysis plot of 3 blade rotor axial force coeffic ient 
variation with wave action (8 second period)
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Figure 5.31b - Fourier analysis of Covariation for a 3 blade rotor

5.5.3.3 Yaw coefficient

The yaw coefficient variation is shown in Figure 5.32. Firstly, the magnitude of the yaw

torque is much lower than the rotor mean torque. The peak values are around 5% of the

mean rotor torque. In Figure 5 32a it is clear that the simple oscillation observed in both
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CT and CV are heavily obscured by the high frequency blade pass frequencies. As the 

rotor operates at nearly constant TSR, the blade pass frequency varies directly with flow 

speed. This effect can be observed by comparing the results of the different flow 

speeds.

In Figure 5.32b the primary wave period oscillations are visible and are still the most 

significant in terms of magnitude. However the blade pass frequency at j l Q = 2 is of 

nearly the same magnitude in the case of U -  2.25m/s and becomes dominant when U 

-  3m/s. As yaw force is driven by axial force it is unsurprising to find similar harmonics 

around the blade pass frequency.

Yaw coeffic ient variation with tim e for a 2 blade rotor at d ifferent 
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Figure 5.32a - variation for a 2 blade rotor
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Figure 5.32b • Fourier analysis o f C ) variation for a 2 blade rotor
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Another point of note is that yaw force does not have a zero mean. This is illustrated in 

Figure 5.33a which shows the variation in yaw force in comparison with the blade 

angular displacement. The peak values occur as one of the two blades reaches is 

approaching the azimuth. For a 2 bladed rotor, one blade is travelling downward and 

one is travelling upwards at the same time In conjunction with a vertical wave velocity 

component, this results in significantly different effective speed ratios on each blade. It 

effectively moves the blade into overspeed and under-speed, varying the axial force 

coefficient and hence the magnitude of forces generated over each cycle. It is clear from 

Figure 5.33a that when the top rotor blade is moving away from the azimuth and hence 

downward, the yaw force is greater than when the rotor is approaching the azimuth.
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Figure 5.33a - Yaw force of a 2 blade rotor with rotor angular displacement
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In Figure 5.33b, yaw loads are plotted against wave position x/X. Also plotted is the 

vertical velocity Vw. A positive yaw is associated with a positive Vw and vice versa. For 

this reason, it can be ascertained that although the yaw load varies with each revolution 

owing to the depth varying velocities, the affect of the vertical velocity on local speed 

ratio also has a significant effect on the magnitude of yaw experienced. The non -  zero 

mean is a combination of this and the interaction with the relationship between Q  and 

local TSR.
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The 3 bladed configuration shown in Figure 5.34a has a similar non-zero mean. The 

magnitude of oscillation is approximately the same as the 2 bladed rotor and it appears 

that the wave frequency is dominant to a greater degree. Interestingly the blade pass 

frequency appears more clearly at higher flow speeds, but as is shown in Figure 5.34b, 

this oscillation is significantly lower than its 2 bladed counterpart.

Yaw coeffic ient variation with tim e for a 3 blade rotor at d ifferent 
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Figure 5.34a - C y  variation for a 3 blade rotor
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Figure 5.34b - Fourier analysis of Cy variation for a 3 blade rotor

5.5.3.4 Teeter coefficient

The primary driver of teeter loads is the blade pass frequency. It can be seen in Figure

5.35 that a two bladed rotor experiences almost all of the oscillation at //Q = 2. Also the

variation is much less dependent on the flow speed and a variation of 0.0045 in the
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teeter coefficient is found in all three cases. The harmonics at a wave frequency away 

from the blade pass frequency remain significantly affected by flow speed. The 

magnitude of these forces is around 4% of the torque values for the rotor.

The general form of Figure 5.35a appears to be very varied and unlike the previous 

coefficients examined there appears to be no easily discernable regularity. However a 

peak occurs every 8 seconds which identifies the wave period. In this case the mean is 

very clearly non zero and the Teeter moment is almost always positive. This is because 

the wave action is most pronounced near the surface and hence the effect is most 

noticeable when the blade is in the top half of a rotation.

Teeter coeffic ient variation with time for a 2 blade rotor at d ifferent 
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The teeter loads experienced by the 3 bladed rotor are approximately a third of those on 

the 2 bladed configuration as can be seen in Figure 5.36. This is approximately 1.5% of 

the magnitude of the average torque. The teeter coefficient for a 3 bladed rotor always 

appears to be positive. The wave period provides the dominant frequency and the blade 

pass frequency is secondary. The upstream flow speed does not effect the magnitude of 

the blade pass oscillations, but does effect the magnitude of the forces driven by the 

wave period. There is a strong harmonic at double the wave frequency at nearly the 

same magnitude as the primary oscillation.
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5.5.3.5 Heave coefficient

The heave coefficient for a 2 bladed rotor is shown in Figure 5.37. It appears that this 

depends on the interaction between the wave period and the period of rotation. The 

oscillations are based primarily on the blade pass frequency but are affected greatly by 

the wave frequency. This results in a load pattern that does not clearly match either. 

There are clear peaks in Figure 5.37b at the blade pass frequency plus and minus the 

wave frequency relative to each flow speed.

The magnitude of oscillation ranges from about 1% of the axial force for 1.5m/s flow 

speed down to 0.3% of the axial force at U -  3m/s.
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The heave experienced by a 3 bladed rotor is very much smaller than the 2 bladed 

device. For a flow speed of U = 1.5m/s the variation is 0.025% of the axial force and for 

a flow of 3m/s this decreases to 0.01%.

The frequency of heave variation is similarly related to both wave and rotor frequency 

and this is reflected in Figure 5.38b. The primary force frequencies are the blade pass 

frequency plus or minus the wave frequency.
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5.5.4 Life time loadings

Of great importance in the design of offshore systems is the estimation of the loads that 

a particular component will encounter in its lifetime. Forces found by the method 

presented here can be mapped onto different components, for example the hub or the 

support structure. If the environmental conditions are known, this enables cyclic and 

fatigue loadings to be considered for a typical lifetime of a device.

The model is run over a series of operating conditions encompassing the representative 

wave and current conditions presented in section 5.4.1. The occurrences of these 

particular seastates is statistically known with respect to time, so the amount of time that 

each will occur over the lifetime of the device can be estimated. Each wave type is 

combined with each current speed to give a total of 80 representative seastates. Each 

sea state has an associated percentage occurrence with respect to time.

The occurrences of the various environmental conditions are described in table 7.

Occurences of the different environmental conditions

Lifetime 20 years

Current % time Wave type % time
Speed m/s

1 0.01
-2.5 0.02 2 0.16
-2 0.06 3 0.38

-1.5 0.12 4 0.29
0 0.56 5 0.11

1.5 0.10 6 0.03
2 0.09 7 0.01

2.5 0.04 8 0.002
3 0.01 9 0.0009

10 0.0002
Total 1 Total 1

Table 7 -  The percentage occurrence of the representative wave and current states

5.5.4.1 Maximum and minimum values

After the operating conditions and occurrences have been defined it is possible to 

calculate the maximum and minimum values for each force generated over the lifetime 

of the device. It is important to ensure that all wave and current loadings are included if
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this is to be used to define the design limits. In the case of a tidal turbine it is likely that 

this will take the form of a wave with a 50 year return period.

The maximum and minimum values from the environmental conditions defined in this 

study are presented in table 8 . The values for axial force represent the turbine being 

able to yaw into the flow direction and hence the minimum values are equal to zero.

2 blades MAX MIN
TORQUE 210 0 kNm

AXIAL 248 0 kN

YAW 24 -25 kNm

TEETER 16 -11 kNm

HEAVE 0.33 •0.33 kN

3 blades MAX MIN
TORQUE 210 0 kNm

AXIAL 245 0 kN

YAW 14 -13 kNm

TEETER 3 -4 kNm

HEAVE 0.01 -0.01 kN

Table 8 -  Max and min lifetime loadings

5.5.4.2 Fatigue loads

Using Fourier analysis as in section 5.5.3, the oscillatory loads are calculated for each 

representative operating condition. A mean value is also needed to be able to undertake 

fatigue calculations with Goodman lines used to translate the loads to an equivalent with 

zero mean.

The results of the analysis are too voluminous to be presented here in full. The number 

of occurrences for each magnitude of oscillation is shown in Figures 5.39 to 5.43. The 

mean values around which the loads are oscillating has been ignored.
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Figures 5.39a and 5.39b lifetime wave induced torque oscillations for 2 and 3 bladed rotors
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Figures 5.40a and 5.40b lifetime wave induced yaw oscillations for 2 and 3 bladed rotors
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Figures 5.41a and 5.41b lifetime wave induced teeter oscillations for 2 and 3 bladed rotors
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Figures Figures 5.42a and 5.42b lifetime wave induced axial force oscillations for 2 and 3 bladed rotors
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Number of occurences of heave oscillation 
for a 2 bladed rotor over a 20 year lifetime
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Figures 5.43a and 5.43b lifetime wave induced heave oscillations for 2 and 3 bladed rotors

The general trend over all the results is that there are large numbers of small oscillations 

and lower numbers of the forces of large magnitude. This is to be expected as this 

reflects the increased occurrence of the less extreme sea states.

The trend concerning blade number in Figures 5.39 to 5.43 is that the 3 bladed rotor is 

subjected to more oscillations with a lower magnitude. This is especially true for yaw, 

teeter where the maximum magnitude is half than that of a 2 bladed rotor and for heave 

the reduction is closer to ten times.

The peak number of oscillations in the smaller forces varies from 20-50 million, which 

can be significant in a fatigue sense. The 3 bladed rotor appears to have more 

consistent loads in that the scatter in the plots is much less severe. This could be an 

advantage in the design of components for a system.

In summary, a 3 bladed rotor is subjected to less severe oscillatory loading than a 2 

bladed version when lifetime environmental conditions are applied
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5.6 Conclusions

• BEMT can be adapted for use with time dependent upstream flows including 

velocity gradient and wave action.

• The use of a sinusoidal approximation to incorporate vertical flow velocity gives 

reliable and consistent results.

• Morison’s equation can be used to input wave loadings into BEMT using wave 

kinematics data.

• The addition of a time dependent flow field results in additional system load types in 

the form of Yaw and Teeter moments and Heave force.

• Both a velocity gradient and a wave action result in the periodic variation in rotor 

speed and loads.

• The effect of a 1/10 power law velocity gradient is to reduce the maximum power 

coefficient from 0.49 to 0.46.

• When a Type 7 wave is applied to a either a 2 or 3 bladed rotor, the torque 

coefficient can vary from 025% to nearly 50% about the mean. This will result in a 

significant variation in terms of power output and the effect on grid connection.

• The same wave applied to a 2 bladed rotor results in a maximum yaw coefficient at 

the blade pass frequency of 0.0075, whereas when applied to a 3 bladed rotor the 

yaw coefficient at blade pass is reduced to 0.0005.

• Hydrographic data can be interpreted in terms of normalised sea states with 

occurrences to define operational maximums and fatigue loadings over a devices 

lifetime.

• A 3  bladed rotor is subjected to significantly lower oscillatory loading than a 2  

bladed rotor when lifetime environmental conditions are applied.

• The results of this model need to be verified against experimental field data to 

ascertain their validity.
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6.0 ANALYSIS AND COMPARISION OF SUPPORT 
STRUCTURE CONCEPTS

6.1 Introduction

In addition to reducing carbon emissions substantially, tidal stream energy offers 

considerable opportunity for job creation and wealth generation for the energy industry 

and local businesses alike. For this reason there is much interest in the development of 

tidal stream energy systems, with the majority of activity occurring in the UK. There are 

only a few companies who have large scale devices either deployed or under 

construction, but there are tens of other devices under development around the world.

In 2004 there were approximately 30 commercially available wind turbine models with 

an individual capacity of 2MW. The vast majority of these are horizontal axis turbines 

and employ a tower to support the rotor at a suitable height. This height is primarily 

governed by the diameter of the rotor and the avoidance of unfavourable boundary 

conditions on the ground. However, in the case of horizontal axis Tidal Stream Turbines 

(TSTs) other factors govern the design of the support structure.

Although capital cost has a significant role in the economic viability of TSTs, operation 

and maintenance costs are the drivers in the tidal stream business model owing to the 

difficulties experienced offshore. If tidal stream is to become competitive in the energy 

market the supporting structure and its strategy for reducing installation and O&M costs 

must be investigated thoroughly.

The nature of this technology is such that large plant must be transported from shore to 

the site during all installation, maintenance and decommissioning activities. It must be 

fixed in position and connected both mechanically and electrically. The costs incurred 

during these operations are largely owing to specialist offshore equipment requirements 

including vessels and the contingency needed for adverse weather conditions. The 

reduction of these costs can be achieved in the design of the supporting structure and 

method of installation and maintenance employed.

It has also become apparent that versatility of design is a key factor in reducing the 

costs of TSTs in large scale deployment. The tidal stream resource is located in regions 

around the coast which possess different characteristics in terms of depth, flow speed
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and geology. In addition these parameters will vary on a smaller scale across each 

region. When a particular site is identified, some typical characteristics can be specified 

to enable the design of a device that can be installed across the site. It has been 

proposed in previous literature [1] that a number of different sized turbines could be 

used across a site, and in this case each size would be installed within a smaller range 

of conditions. However the versatility of the design is still an important factor when 

developing the support structure. The more versatile the device, the fewer modifications 

need to be made when installing in farms and hence the greater the scope for mass 

production.

A number of support structure concepts are already under development. It is the 

intention of this chapter to approach the analysis of these and others from an impartial 

perspective. This involves considering the design and implementation of each concept 

and some general cost guidelines for construction, installation and maintenance.

6.2 Background

The author is involved in the Swanturbines tidal energy project. This is an industrial 

consortium led by Swansea University which is developing a direct-drive axial flow tidal 

stream system [2] The Swanturbines consortium consists of 8 partners including CB&I 

John Brown and Corns, each of which bring specialist expertise to the project. The 

design of a medium scale technology demonstrator is almost complete and this device is 

intended to be installed in the near future.

As part of the design process for the technology demonstrator, 6  support structure 

concepts were considered in two independent studies undertaken by Swansea 

University and CB&I John Brown. The results were combined and the support concepts 

ranked accordingly by estimated lifetime cost. An outline of the processes involved will 

be presented here.
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6.3 Methodology

6.3.1 Support Specification

The functional specification of a Tidal Stream Turbine (TST) support structure comprises 

three components; foundation, load transmission and connection. These are 

summarised as follows:

6.3.1.1 Foundation

The foundation must be designed to secure the turbine to the sea/estuary bed. It will 

provide the required resistance to the hydrodynamic loadings generated by the turbine, 

primarily bending (overturning) and shear forces. The base should be protected from 

scouring and should also resist abnormal hydrodynamic loads on the structure. It must 

be able to be installed and removed at reasonable cost.

6.3.1.2 Load transmission

The support structure shall be designed to transmit loads from the nacelle to the 

foundation. The loads comprise wave and current loadings on the rotor and nacelle 

including cyclical loadings generated by the rotating components. The structure must 

provide sufficient stiffness to minimise rotor dynamic forces.

6.3.1.3 Connection

Any system components which require maintenance over the lifetime of the device must 

be able to be removed and replaced with minimum cost. Offshore, this implies an 

operation with the smallest vessels possible and minimal intervention from divers. In 

areas suitable for tidal stream exploitation the operation is complicated by the strength 

of the tidal currents and the limited time window available between tides in which it is 

preferable to undertake such operations. In addition to a secure mechanical connection, 

the power takeoff must be considered, which may require a wet mateable 2MW 

connection and the control channels must be catered for.
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6.3.2 Comparators

The ultimate measure of good design is profitability. For this reason each of the 

comparators used to analyse each of the support concepts has been translated into a 

cost implication over the lifetime of the device. The costing is not presented here for 

commercial reasons but a detailed qualitative comparison is included.

It has been assumed that equivalent power conversion mechanisms can be attached to 

each of the systems and that these are equal in efficiency and cost. This is primarily in 

the form of an axial flow turbine with electrical generator, but in some cases vertical axis 

and oscillating systems could be substituted. The comparators are broken down into 

three main areas:

• Manufacture

-  Mass of steel required

Dependent on the global market, steel price is a major driver 

because the total used for each device can be 100-200 Tonnes.

-  Cost of other major components (locking mechanisms /  chain etc.)

Each device concept has specific components which comprise a 

significant proportion of the device cost.

• Installation

-  Seabed survey

Macro-siting, Micro-siting and pre-installation survey form the 

majority of the survey costs. Much of these are equal for the 

different concepts however the pre-installation survey can vary 

significantly with the size of the site required.

-  Seabed /  site preparation

Some concepts require a base which is level to varying degrees 

of accuracy and various sizes. The larger and more accurate the 

requirement the greater the cost implication. This is assumed to 

be achieved by rock dumping and leveling.

-  Install base & rotor/turbine unit
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One of the largest costs incurred during the lifetime of the device. 

Comprising mobilization, transportation, lifting and installation of 

the device on site, de-mob and safety vessels.

-  Completions

Scour protection, commissioning, confirmation surveys and 

removal of installation moorings.

• Maintenance

-  Remove and replace rotor/ turbine unit

Over the lifetime of the device maintenance costs are very 

significant. Effective design can be used to increase the time 

between maintenance but vessel and intervention costs, 

downtime and weather limitations still have implications.

-  Scheduled maintenance tasks

Some components will need to be inspected and maintained at 

regular intervals for reliability, for example seals, hydraulics and 

sacrificial materials.

-  Other considerations

Factors that affect the reliability of the device are also 

considered. Some are more likely such as bearing failure owing 

to vibration, or marine growth on essential equipment and other 

less likely such as damage from ships off-course or anchor 

fouling. Some concepts are more susceptible to these issues 

than others. Also some devices are able to be accessed on site 

for minor maintenance operations.

6.3.3 Cost estimations

The process of estimating the costs of the aforementioned comparators is outlined 

below. To enable the costing of each concept, a nominal 1MW system is designed. 

Much of the information has been derived from relevant experience in similar operations 

in the design, construction and commissioning of offshore installations.
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• Manufacture

-  Design

A simple analysis of the major areas of design is undertaken 

including configuration and essential components.

-  Load capacity

Loads are estimated for a 1 MW rotor and applied to the support 

concept. An axial force, torque, yaw, teeter moments and wave 

loadings are applied in the worst case scenario situation to give a 

support stiffness of 1E7 N/m. The required steel, chain or other 

components are specified and costed. See Table 6.1 for rates.

• Installation

-  Survey

Survey costs have been estimated for Macro, Micro and pre­

installation operations. This consists primarily of survey vessel 

costs, see Table 6.1.

-  Preparation

Rock dumping and leveling undertaken by a dredging vessel. 

Some cost for rock here but primarily vessel costs including 

loading, mobilisation and de-mobilisation.

-  Lifting and Installation

The is very much dependent on the final weight of the design, 

but it has been assumed in this study that a flat top barge with an 

appropriate crane can be used to undertake the installation task. 

The barge is moored in position during installation but the tugs 

remain on site for safety reasons.

-  Completions

Scour protection, commissioning, confirmation surveys and 

removal of installation moorings comprise vessel costs and 

material costs as estimated by the relevant supplier.

• Maintenance

-  Remove and replace rotor/  turbine unit

To enable the rapid replacement of the turbine nacelle units it is 

assumed that a spare will be available and consequently the
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removal of the existing unit and replacement with the spare can 

be undertaken in one operation. The costs associated with this 

are therefore primarily vessel costs and where necessary divers.

-  Scheduled maintenance

Each of the devices has an equivalent nacelle and rotor system 

and consequently the scheduled maintenance will be very 

similar. There are issues regarding bearing and seal replacement 

where support structure stiffness is lower which has associated 

increases in cost.

-  Other considerations

Costs of other considerations can be added when necessary. For 

the purpose of this study they have been eliminated owing to the 

difficulty in estimating the lifetime value of the cost. For example 

the ability to raise the rotor above water to remove any marine 

growth [3], or the reduction in insurance costs owing to the lower 

risk of collision if the device is well below the surface.

• General principles

-  Accuracy

Throughout the study the accuracy of the cost estimations is 

assessed. Each device concept is given a percentage accuracy 

which is then added to the total cost to allow for errors. This 

value ranges from 50%-100%.

-  Weather Contingency

Depending on the duration that various vessels are required to 

be at sea and the conditions in which they are required to 

operate effectively, a percentage contingency is added to the 

total cost. This value ranges from 25%-50% depending on the 

perceived sensitivity to adverse weather conditions.

-  Value of a Yawing Mechanism

Some of the concepts involve an implicit yaw misalignment 

tolerance characteristic. They can either turn themselves into the 

flow or do not need to make adjustments to accept flow from 

either direction. To value this against concepts which do not
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possess this capability information from the Renewable Energy 

Policy Project 2004 [4] has been extrapolated. This implies that a 

yaw system amounts to 1 .8 % of the manufacturing cost and a 

blade pitch mechanism amounts to 4%. Assuming a 

manufacturing cost of £1 m, this implies that a yaw mechanism is 

worth £18k and a blade pitch mechanism £40k.

Component/Item Cost

(£)

Materials

Steel per tonne 2500
Chain per shot (27.5m) 2800

Vessels incl. mob/de-mob

cost

Survey 1200
Dredger per day 2500
Anchor laying per day 3000
Flat top barge 5000
Tugs 6000

Divers

Team day rate 1500

Table 6.1 Costs and day rates for major components of the installed system at the time 

of writing. However these are highly variable owing to availability.
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6.4 Tidal turbine concepts

The support concepts chosen for analysis represent some of the market leaders in tidal 

stream at this time. Also included are some designs which provide a different approach 

to the installation and maintenance procedures. Some of the designs are similar to those 

in the market place and as such have intellectual property and patents associated with 

them. It is not the intention of this paper to rate them as devices as a whole, but the 

issues affecting the costs of manufacturing, installation and maintenance will be 

outlined. Performance characteristics are not included.

6.4.1 Sheath system

/ V  / / / / / / 7  /  /77

Figure 6.01- Schematic of the sheath system

The sheath concept in Figure 6.01 is based on the Marine Current Turbines design [5]. 

A tower is installed on the seabed so that it pierces the surface. The rotor and generator 

are moved up and down the tower mechanically. The electrical conditioning and 

monitoring equipment are located in the nacelle at the top of the tower. The installation 

involves floating the tower out to site, and then locating it on the seabed. Subsequently 

the sheath, rotor and nacelle are lifted into position. Minor maintenance operations are 

undertaken in the nacelle and with the rotor raised. More major operations involve the 

removal of the drive train to shore

189



6.4.2 Anchored system

Figure 6.02 - Schematic of the anchored system

The anchored-buoyant system is based on the proposed SMD TidEI design [6]. The 

operating condition is shown on the left of figure 6.02. The buoyancy of the nacelle gives 

tension to the anchor chain and the rotor is held in a downstream position. For 

maintenance the chain can be released, raising the nacelle to the surface where it is 

towed or transported to shore. During commissioning the chains can be installed on the 

seabed with a buoy to float one end. The nacelle is then attached to the chain and 

cable The chain is then retracted to submerge the nacelle and probably secured using 

chain clamps.

6.4.3 Guyed tower

/7777T 777 77

m

Figure 6.03 - Schematic of the guyed system
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The guyed tower design in figure 6.03 uses the buoyancy of the nacelle to tension 

multiple chains. Owing to the location of the chains they provide stability to the rotor 

during operation. For maintenance the chains can be released, raising the nacelle to the 

surface where it is towed or transported to shore. During commissioning the chains can 

be installed on the seabed with a buoy to float one end. The nacelle is then lowered 

using variable buoyancy and attached to the chains and cable. It is secured in position 

using chain clamps, probably operated by divers and finally the positive buoyancy is 

reinstated to tension the chains.

6.4.4 Top mounted nacelle

mm
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Figure 6.04 - Schematic of the top mounted system

The top mounted nacelle concept in figure 6.04 is similar to the Hammerfest Strom AS 

design [7], It employs a tower or structure to support the rotor at the required depth. The 

tower is installed on the seabed prior to the lowering and connection of the nacelle and 

cable. This is achieved using a mechanical locking device and probably divers. 

Maintenance is simply the reverse of the latter part of this operation, leaving the tower in 

place on the seabed. The nacelle is then towed to shore.
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6.4.5 Telescopic

/ / / / rn r/ / / / / / / / / / / / / /

Figure 6.05 - Schematic of the telescopic system

The telescopic concept in figure 6.05 is based on a design proposed by Swanturbines

[8]. A system of telescopic towers is used to maintain the nacelle at the required depth 

during operation. In operation the towers are in the contracted position and for 

maintenance the sections are extended using buoyancy leaving the nacelle accessible 

at the surface. The sections are clamped in the extended position to maintain stability. 

The installation procedure involves installing the lowest tower section and subsequently 

interlocking the upper sections and the nacelle. Minor maintenance operations are 

undertaken in the nacelle and with the rotor raised. More major operations involve the 

removal of the drive train to shore.
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6.4.6 Shroud concept

Figure 6.06 - Schematic of the shrouded system

The shrouded concept in figure 6.06 is based on a design as proposed by Lunar Energy

[9], A cylindrical shroud is located around the rotor. The middle section of this containing 

the nacelle can be separated and removed for maintenance leaving the shroud on the 

seabed. Installation requires the shroud and structure to be installed on the seabed and 

subsequently the nacelle section is lowered into place and secured. The cable is 

attached underwater.
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6.5 Results

Each of the concepts were considered in turn by a group of engineers, project mangers 

and academics with experience in offshore technology or other relevant fields. The 

comparators were analysed for each concept and the manufacturing, installation and 

maintenance procedures costed. The total costs for the lifetime of the device were 

estimated assuming a 20 year lifetime with a maintenance interval of 5 years. The 

devices were then ranked by order of lifetime costs and the results analysed.

Owing to the consistent fluctuations in the market place concerning the price of steel 

and offshore vessels, and the commercial sensitivity of some of the data used, it is not 

sensible to present the exact costing and ranking figures here. Hence the results are 

presented in Table 6.2 in qualitative form.

Table 6.2 The significant advantages and disadvantages associated with each of the device concepts

CONCEPT SIGNIFICANT ADVANTAGES SIGNIFICANT DISADVANTAGES

Sheath • Electrical components above water • Surface piercing
-  Easy access -  Visual impact
-  Low sealing requirements -  Shipping collision risk

r —] -  Dry connection -  Corrosion in splash zone
-  Structure subject to wave action

• Minor maintenance possible at site

i _ -  Inspection and access reduces • Tower length and handling

f5 costs if malfunction occurs -  High steel requirement
-  Cost increases significantly with

r • Stiff structure depth
/ ! / / / 7-r>7 /

-  Reduces bearing /structural loads
-  Rotordynamic stability • Accurate positioning of installation vessel

required

• No additional navigation markers required -  Surface lift

• Hoist mechanism
-  Exposed to marine growth and

corrosion

• Yawing or blade pitch mechanism required

-  Additional cost implication
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CONCEPT SIGNIFICANT ADVANTAGES SIGNIFICANT DISADVANTAGES

Anchored

h

/ n / n / r / n

• Low cost structure
-  Mainly chain

• Deep water tolerant
-  Chain length can be adjusted easily

• Self aligning to flow direction
-  No yaw mechanism required

• No accurate vessel positioning required

• Submerged
-  Not subject to wave action
-  No visual impact
-  No presence in splash zone
-  Low collision risk

• Minor maintenance requires complete 

removal of nacelle to shore

• Very flexible structure
-  Vulnerable to fatigue loads
-  Decreased component life

• No surface component
-  Additional navigational markers 

requ.
-  Submerged cable connection 

required

• 100% downstream operation
-  Rotor always passes through wake 

of structure giving rise to pulses in 

power and vibration.

• Loci of operation
-  Fewer devices can be installed in 

area
-  Higher collision risk

Guye

1

1

i

=>

• Low cost structure
-  Mainly chain

• Deep water tolerant
-  Chain length can be adjusted easily

• No accurate vessel positioning required

• Submerged
-  Not subject to wave action
-  No visual impact
-  No presence in splash zone
-  Low collision risk

•

• Minor maintenance requires complete 

removal of nacelle to shore

• Flexible structure
-  Vulnerable to fatigue loads
-  Decreased component life

• No surface component
-  Additional navigational markers 

requ.
-  Submerged cable connection 

required

• Yawing or blade pitch mechanism required
-  Additional cost implication

• Significant underwater work to attach 

chains

n  t u  t n  / }  t

195



CONCEPT SIGNIFICANT ADVANTAGES SIGNIFICANT DISADVANTAGES

Top • Stiff structure • Minor maintenance requires complete
Mounted -  Reduces bearing /structural loads removal of nacelle to shore

-  Rotordynamic stability

• No surface component
• Deep water tolerant -  Additional navigational markers

!P -  Tower length can be adjusted requ.
easily -  Submerged cable connection

r "1
required

n  11 n  / 1 u  / • Submerged
-  Not subject to wave action • Yawing or blade pitch mechanism required
-  No visual impact -  Additional cost implication
-  No presence in splash zone
-  Low collision risk • Accurate positioning of installation vessel

required
-  Submerged lift

Telescopic • Minor maintenance possible at site • High support cost
-  Inspection and access reduces -  High steel cost

costs if malfunction occurs -  Cost increase significantly with
depth

H f j
E.-----. -  Telescopic joint com plexity

!
• Stiff structure

-  Reduces bearing /structural loads • In raised position tower must withstand

(

I

-  Rotordynamic stability wave loadings.

/  /  / 7 / / y ) v / ;
• Submerged • No surface component

-  Not subject to wave action -  Additional navigational markers

-  No visual impact requ.
-  No presence in splash zone -  Submerged cable connection
-  Low collision risk required

• Yawing or blade pitch mechanism required
-  Additional cost implication

• Accurate positioning of installation vessel
required

-  Surface lift
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CONCEPT SIGNIFICANT ADVANTAGES SIGNIFICANT DISADVANTAGES

Shroud

Jr
t / a m r m

• No yawing mechanism required
- Shroud may act to direct flow into 

rotor

• Stiff structure
- Reduces bearing /structural loads
- Rotordynamic stability

• Deep water tolerant
- Tower length can be adjusted 

easily

• Submerged
- Not subject to wave action
- No visual impact
- No presence in splash zone
- Low collision risk

• Minor maintenance requires complete 

removal of nacelle to shore

• High support cost
- High steel cost and weight
- Large loads owing to surface area

• No surface component

- Additional navigational markers 

requ.
- Submerged cable connection 

required

• Vulnerable to marine fouling
- Shroud remains in place over 

lifetime, risk of marine growth / 
seaweed growth clogging duct and 

rotor

• Accurate positioning of installation vessel 
required

- Submerged lift
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6.6 Conclusions

It is clear that there are many factors influencing the cost of tidal stream systems. 

Particular systems will be preferable in certain locations whereas others will be more 

cost effective under different conditions. For example the challenges experienced in 

shallow or deep water differ and consequently the most effective technology for each will 

differ. Proximity to the nearest dockyard affects the economics of maintenance and in 

some situations it may become uneconomical to access a device at sea. Also the 

individual characteristics of the concepts make them more or less suited to different 

sites, for example sites with wave action favour submerged devices, and sites with 

turbulent flow and velocity gradient favour stiffer systems. The presence of fouling may 

eliminate the viability of certain designs at certain sites and the lower visual impact of 

submerged systems may be advantageous to obtain planning consent in some areas.

In terms of capital expenditure, the devices with greatest advantage are those that use 

chains in the support structure; the anchored and guyed concepts. However these may 

suffer with lack of stiffness and rotordynamic instability with associated operational 

costs. For the ability to conduct minor maintenance easily the most effective concepts 

are able to be boarded on site, hence the sheath and telescopic concepts have the 

advantage. However these will have to withstand wave action at the surface which can 

produce significant loads. For a stable, submerged system at reasonable cost the top 

mounted and shrouded concepts have the advantage. The ability to avoid wave loading 

and offer a stiff support for operation will reduce operational costs. However the capital 

cost increases as a result.

In conclusion there is not one concept which clearly surpasses the others in all areas. 

Different devices are suited to different financial models and environmental conditions. 

Consequently it is likely that a number of device concepts will succeed in the industry.
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7.0 Conclusions

7.1 Summary

Each chapter has an individual set of conclusions which can be consulted for further 

detail. A summary of the salient points is presented here.

It was predicted that BEMT would provide an effective and computationally efficient 

method of estimating the performance of tidal stream turbines. A version of BEMT was 

experimentally validated in parametric river testing of a small scale direct drive turbine. It 

is concluded that:

• BEMT can be adapted to predict the performance of tidal stream turbines.

• At a particular TSR, the rotor can operate with different power characteristics. 

This is due to the effect of variations Reynolds number.

• A direct drive, fixed pitch device can achieve a power coefficient of 0.46.

• A reduction in solidity by reducing the number of blades allows the rotor to 

operate at higher TSR before reaching propeller brake state.

• Rotors designed for a low TSR can be operated in overspeed and achieve this 

efficiency. This also allows the turbine to start at flow speeds down to 1.53m/s.

• A PMG is suitable for a tidal stream system as it allows generation at variable 

rotational and flow speeds.

• Basic performance modelling with BEMT requires a computational time of the 

magnitude of a few seconds per operating condition.

A computational analysis of the marine rotor has been undertaken using BEMT. It is 

used to estimate the performance characteristics over the operating range of a tidal 

stream turbine. It was predicted that the model would serve as a valuable tool to assess 

the performance of various blade configurations. In conclusion:

• Between TSR 1.5 to 5, which is the normal region of operation for the rotor, the 

BEMT model reliably produces results which are consistent with existing studies.

• Outside of this region, the model experiences instability causing a step in values 

across the radius. The addition of a modification factor indicates that this 

instability is present in the underlying theory and is not due to the method of 

implementation.
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• 25 blade elements proved to be a reasonable compromise between accuracy 

and computational time.

• A rotor designed for TSR = 2 using the method presented here is predicted to 

obtain a maximum power coefficient of 0.49 at TSR = 2.7. The maximum axial 

force coefficient is 0.79 and occurs slightly before maximum power at TSR = 

2.55.

• The overspeed condition at which zero torque is developed is reached at TSR =

6. At this point the axial force coefficient is 0.32.

• BEMT is suitable for use in the development of a model to estimate performance 

characteristics with dynamic environmental conditions owing to the low 

computational demand.

The BEMT is extended to incorporate a time dependent upstream flow field. This 

enables the consideration of the effects of velocity gradients and ocean waves. It was 

predicted that standard wave load estimation techniques could be applied to a tidal 

stream rotor to give loadings over the device lifetime. It was also postulated that ocean

waves could significantly increase the loadings on a tidal stream device and could

induce a fluctuation in power output. It is concluded that:

• BEMT can be adapted for use with time dependent upstream flows including 

velocity gradient and wave action.

• Morison’s equation can be used to input wave loadings into BEMT using wave 

kinematics data.

• The addition of a time dependent flow field results in additional system load 

types in the form of Yaw and Teeter moments and Heave force.

• Both a velocity gradient and a wave action result in the periodic variation in rotor 

speed and loads.

• The effect of a 1/10 power law velocity gradient is to reduce the maximum power 

coefficient from 0.49 to 0.46.

• When a Type 7 wave is applied to a either a 2 or 3 bladed rotor, the torque 

coefficient can vary from 25% to nearly 50% about the mean. This will result in a 

significant variation in terms of power output and the effect on grid connection.

• The same wave applied to a 2 bladed rotor results in a maximum yaw coefficient 

at the blade pass frequency of 0.0075, whereas when applied to a 3 bladed rotor 

the yaw coefficient at blade pass is reduced to 0.0005.
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• Hydrographic data can be interpreted in terms of normalised sea states with 

occurrences to define operational maximums and fatigue loadings over a 

devices lifetime.

• A 3  bladed rotor is subjected to significantly lower oscillatory loading than a 2 

bladed rotor when lifetime environmental conditions are applied.

• The results of this model need to be verified against experimental field data to 

ascertain their validity.

Finally, a number of support structure concepts are investigated from an impartial 

perspective. This involves considering the design and implementation of each concept 

and some general cost guidelines for construction, installation and maintenance. In 

conclusion:

• Different systems will be more suited to different locations depending on site 

depth and proximity to nearest port.

• Sites with significant wave action favour submerged devices.

• The lower visual impact of some devices may be advantageous to obtain 

planning consent.

• In terms of capital expenditure , the concepts which use chains as support have 

the greatest advantage.

• For conducting minor maintenance, the most effective concepts are able to be 

boarded on site.

• There is no concept that surpasses all other is all areas, therefore it is lilely that 

more than one concept will succeed in the industry.

7.2 Significance in an industrial context

The results of this work are extremely important for the tidal stream industry as they 

investigate an area which has so far received little attention. The variation in lifetime 

loadings with respect to blade number could become pivotal in device survivability and 

should be considered by device developers when specifying blade number. The power 

fluctuations experienced during wave action are a cause for concern for power 

electronics engineers and grid operators alike. Although there are technical solutions 

available, this is a problem that differs significantly from those in the wind industry.
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Possibly most importantly, the results give an insight into the likely maximum and fatigue 

loadings experienced by a device over its lifetime. This will be of great interest to blade 

and systems designers alike when creating designs that are suitable for prolonged 

operation in the often unpredictable environment ofthe ocean.

7.3 Recommendations

As is common in research, looking at a problem in detail tends to raise as many 

questions as it gives answers. The investigation presented here gives a good first 

approximation to the dynamic loadings experienced by tidal stream turbines and further 

work is required to extend and increase the accuracy and versatility ofthe model.

Firstly, one of the primary limitations of the model is that it does not accept flows with 

yaw-misalignment. This is a situation in which turbines will often be operating in and 

consequently is an area of prime importance for development of the model.

Secondly, the model could be refined in a number of ways by:

• The addition of tip and hub loss corrections

• Relating the aerofoil properties to Reynolds number

• Increasing the number of blade elements for improved accuracy

Thirdly, the theory behind the model could be developed to include the effects of the 

shallow water environment on the rotor performance, thus moving away from a rotor in a 

free stream to a rotor in a channel.

Fourthly, it is recommended that further work be undertaken into the phenomenon of 

stall delay in submerged and rotating aerofoils. There is currently very little information 

regarding this topic and the effect may be very significant in terms of performance.

Finally, the monitoring of large scale devices in offshore environments will ultimately be 

necessary to validate and refine the model.
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