

 Swansea University E-Theses ___

Supporting user selection of digital libraries.

Dodd, Helen Margaret

 How to cite: ___
Dodd, Helen Margaret (2013) Supporting user selection of digital libraries.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42656

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42656
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Supporting User Selection of Digital Libraries

Helen Margaret Dodd

Subm itted to Swansea University in fulfilm ent
of th e requirem ents for th e Degree o f D octor of Philosophy

Swansea University
Prifysgol Abertawe

Department of Computer Science
Swansea University

2013

ProQuest Number: 10805432

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10805432

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration
This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed (candidate)

Date

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap
pended.

Signed .. (candidate)

Date//g /.& R 'S

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside organisa
tions.

Signed (candidate)

Date

Abstract

Subject specialists and researchers often face the problem of identifying authoritative col
lections: those directly about their topic of interest, to which they regularly return to satisfy
related information needs or monitor for new material. Discovery of such collections is
often incidental or relies on suggestions from domain experts. Services such as general pur
pose search engines and repository directories offer limited support for this search task. As
such, there is a clear need for a search service specifically to assist users in finding collec
tions that can serve both their current and future information needs; we refer to this task
herein as collection suggestion.

However, developing an effective search service of this kind requires fundamental re
search. There are several preconditions that should be addressed; it is these that form the
focus of this thesis. We summarise these areas as follows.

An effective search service calls for an appropriate algorithm; in this instance, an algo
rithm for ranking collections with respect to the user’s query. To this end, we investigate the
applicability of existing algorithms, from relevant domains (collection selection and query
performance prediction), to collection suggestion. In addition, towards identifying an opti
mal algorithm for a collection suggestion search service, we specify and test a new algorithm
(and several alternative variants), designed specifically for this task.

The requirement of an appropriate algorithm presents the question of how we evaluate
the effectiveness of an algorithm. We have formulated a methodology (comprising eval
uation strategies and performance measures) and developed apparatus for evaluating al
gorithms, with respect to collection suggestion. As far as possible, we have drawn on and
extended established algorithm evaluation techniques, to ensure our work follows the ex
pectations of information retrieval research.

Our empirical work is conducted over several synthetic and realistic test data sets: we
use established data sets built from the TREC document corpus, in addition to data sets of
our own compilation, comprising data from real repositories. This combination of test data
types ensures a rigorous test environment for algorithms.

Over our test environment, we have found three algorithms to be potentially suitable
for application in a collection suggestion search service. One collection selection algorithm
(CORI), and two variants of our own algorithm were shown to have strong and consistent
performance, across the range of test data sets and performance measures used.

Acknowledgements

I would first like to express my gratitude towards my supervisors, Matt Jones and George
Buchanan, for their support and encouragement over the course of my PhD studies. In
addition, I owe thanks to them for reading and commenting on the copious quantity of
material I have written, and for challenging and questioning me in discussions; my thesis is
much stronger as a result.

Many thanks also to my examiners Stefan Riiger and Mark Jones for their valuable feed
back, and for making the viva examination an intellectually stimulating (and genuinely en
joyable) experience.

The support of family and friends has been invaluable to me. In particular, I would like
to thank my fiance, Mark, for going through the experience first, enabling him to empathise
and give me useful advice, as well as the usual encouragement and proof reading. Thanks
also to my parents, for encouragement and assistance throughout my education.

I am grateful for the friendship of my fellow Computer Science PhD students at Swansea
University. In particular, special thanks to Liam O’Reilly for assistance with BTjX, proof read
ing, and providing me with frequent distractions from my work!

Finally, I would like to acknowledge that my PhD studies have been funded by a Doctoral
Training Grant, courtesy of the Engineering and Physical Sciences Research Council.

Table of Contents

1 Introduction 1
1.1 State of the A r t ... 2
1.2 C on trib u tio n s ... 4
1.3 Chapter O u tlin e .. 5

2 Literature Review 7
2.1 An Overview of Collection S e le c tio n ... 8
2.2 Overview of Retrieval System Evaluation.. 9
2.3 Collection Selection E valuation .. 11
2.4 Collection Selection Algorithm s.. 18
2.5 Query Performance Predictors... 37
2.6 S um m ary .. 44

3 Collection Suggestion Evaluation Methodology and Toolkit 47
3.1 Overview of Evaluation Methodology.. 48
3.2 Testing Against Ranking Baselines .. 49
3.3 Performance M easures... 51
3.4 Scenario-Based Testing... 56
3.5 Test Execution Tools.. 58
3.6 S um m ary . . . 62

4 Test Data Sets 63
4.1 TREC Test Data S e ts .. 64
4.2 Building Realistic Test Data from Open Access R eposito ries........................... 75
4.3 S um m ary .. 85

5 An Algorithm for Collection Suggestion 89
5.1 O verview .. 89
5.2 Algorithm Origin.. 90
5.3 Algorithm Specification.. 92

ix

5.4 Algorithm Perform ance.. 93
5.5 Evaluation of Algorithm C o m p o n e n ts ... 101
5.6 S u m m ary .. 110

6 Evaluation of Algorithms: Scenarios and TREC 113
6.1 Scenario-Based Test R esu lts .. 114
6.2 SYM-236 .. 116
6.3 UDC-236 ... 123
6.4 UBC-100 ... 131
6.5 2LDB-60COL.. 138
6.6 AP-WSJ-60COL... 144
6.7 FR-DOE-81COL.. 151
6.8 S u m m ary .. 157

7 Evaluation of Algorithms: Open Access Repository Data 161
7.1 O verv iew .. 161
7.2 RTD Results... 162
7.3 S u m m ary ... 169

8 Conclusions 171
8.1 Contributions ... 171
8.2 Discussion of Empirical R esu lts .. 176
8.3 L im itations... 180
8.4 Future Work .. 180

A Abstract Test Scenarios 185
A.1 O verv iew ... 185
A.2 Scenario C haracteristics... 185
A.3 Specification of S c e n a rio s .. 187

B Test Data 195
B.l Initial Test Data (ITD)... 195
B.2 Refined Test Data (RTD) ... 198
B.3 TREC Test D ata .. 206

C Surrogate Relevance Judgements for Open Access Repository Test Data Sets 211
C.l Experiment Set-up .. 211
C.2 R esults.. 212
C.3 S u m m ary ... 213

D Algorithm Performance Scores 215
D.l Initial Test Data (ITD)... 216
D.2 Refined Test Data (RTD) ... 234
D.3 SYM-236 ... 257
D.4 UDC-236 ... 275

D.5 UBC-100 .. 293
D.6 2LDB-60COL..305
D.7 AP-WSJ-60COL.. 317
D.8 FR-DOE-81COL..329

Chapter 1

Introduction

Subject specialists and researchers often utilise several domain-specific resources, such as
journals, digital libraries and institutional repositories. They periodically return to these
sources to satisfy related information needs, and keep abreast of new developments: brows
ing and monitoring for, and extracting new material [14].

Recent studies on information seeking in digital resources, such as Buchanan et al. [4]
and Xie and Cool [60], suggest that people have difficulty identifying relevant resources and
collections. Indeed, familiarity with authoritative collections develops through persever
ance and time: traditionally, by consulting colleagues for recommendations, and by exam
ining and following citations in order to identify sources containing material of interest [14].

Alternatively, some users may begin their pursuit of authoritative collections by using
a general purpose search engine (such as Google or Bing). However, while the user will be
given links to many relevant documents and web pages, there is little indication of whether
a given document is representative of its collection [2, p. 267]. That is, without browsing the
website, the user will not know if the collection is relevant as a whole, or if they have only
found an isolated relevant document.

The task of supporting users in finding relevant resources has received some recent at
tention. For example, Song et al. [53] and Seo and Croft [46] have focused on relevant web
site and blog recommendation, respectively.

Song et al. also discuss the potential advantages of a user visiting a domain-specific re
source, over performing traditional document search on a general purpose search engine.
For instance, as the resource contains documents on a specific topic, the user is less likely
to have to filter through completely unrelated search results (consider, for example, the pol
ysemy problem). In addition, the user may benefit from additional material not indexed by
a general purpose search engine, such as proprietary or pay-for content. Finally, a domain-
specific resource may present results in a more appropriate format or interface for the con
tent, with greater flexibility in how to rank the results [53].

In view of the difficulties faced by users in locating relevant domain-specific collections,
and the potential benefits of using such resources, there is a clear need for a search service
to assist users with this search task. For example, a search service for collections could take

1

1. Introduction

a user’s query (formed from keywords related to their topic of interest), and return a ranked
list of resource collections. The collections ranked highest are those that are most relevant,
as a whole, to the user’s query. The user can then search and browse these resources them
selves, and return to them for related information needs.

While such a search service may be intended to operate over digital collections, it could
also have value for identifying authoritative physical collections. For example, there are
many museums and archives scattered around the country, each containing collections of
various types of historical and cultural artefacts. A person who wishes to study a particular
type of artefact may like to visit the few places with the most extensive and complete col
lection of such artefacts. As physically travelling to a location can be expensive, in terms of
time and money, it is imperative that the person choose the most relevant and useful collec
tion. Visiting a location containing only one or two interesting artefacts is costly, and may
cause frustration. Indeed, this scenario further emphasises the importance and advantage
of successfully identifying authoritative collections, whether digital or physical.

Developing an effective search service for collections requires fundamental research.
As such, the remainder of this chapter provides an overview of recent tools and research
relevant to the task of identifying relevant collections. In addition, we highlight the contri
butions, method and scope of our work. Finally, we give a detailed chapter outline for this
thesis.

1.1 State of the Art

In this section we examine the current state of support for users wishing to find domain-
specific collections, and introduce relevant research domains.

1.1.1 Collection Finding Tools

Currently, potential starting points for users wishing to find domain-specific collections are
repository and resource directories such as OpenDOAR1, Intute2 and IMLS DCC3 (Institute
of Library Services Digital Collections and Content). However, these services are of limited
value.

OpenDOAR provides a list of around 2000 collections, such as digital libraries and uni
versity repositories, which may be filtered by their general subject areas. Alternatively, the
user can search for a collection, if they already know its name.

Intute (which as of July 2011 is no longer maintained or updated) comprises a database
of research and education web resources that have been manually selected and evaluated
by subject specialists. Again, the user can browse resources by subject area, or they can
submit a query to search for relevant resources. However, searches on Intute are executed
over human-compiled descriptions and keywords, which may not be sufficient to represent
the full scope and coverage of the resource.

1http://www.opendoar.org/
2http://www.intute.ac.uk/
3http://imlsdcc.grainger.uiuc.edu/

2

1.1. State o f the Art

The IMLS DCC service offers similar functionality to OpenDOAR and Intute: browse for
collections by subject, and search based on collection titles and descriptions.

These services are reminiscent of the original website directory services, such as Yahoo!.
However, such services were superseded by search engines such as Google. As such, there
is scope for a similar transition within collection finding tools.

1.1.2 C ollection Selection and Federated Search

The problem of ranking collections and resources according to their relevance to a query
is not a new one: often referred to as collection selection, it is traditionally thought of as a
sub-problem of federated search.

A federated search service operates in the domain of traditional document retrieval,
aiming to extend the coverage of a search by dispatching a user’s query to multiple search
engines and resources.4 Search results are returned to the federated search service, which
aggregates them into a single result list, ordered by relevance [38].

In federated search, collection selection is the process of identifying a subset of re
sources most likely to contain or index relevant material. The motivation for this is straight
forward: submitting a query to only potentially useful resources reduces network traffic and
consumption of system resources [38].

There is a large body of research investigating collection ranking algorithms for collec
tion selection, and evaluating the effectiveness of those algorithms. Collection selection is
highly relevant to our work; as such, we provide a detailed discussion of the domain and its
practices in Chapter 2 of this thesis.

However, we note here that there are differences between collection selection and the
task of recommending domain-specific collections. In the federated search paradigm, col
lection selection supports document retrieval. The goal is to maximise the number of highly
relevant documents in the final results list, while minimising the number of resources the
query is sent to. Therefore, collection selection algorithms aim to order collections by the
number of relevant documents they are likely to contain.

In contrast, our goal, as described at the start of this chapter, is not to find collections
merely containing some number of relevant documents, but to identify authoritative col
lections: those that are directly about the user’s query. We suggest that such collections
should have a high quantity of documents relevant to the query, which amount to a signifi
cant proportion of the collection. As such, in this thesis we essentially reformulate collection
selection as an independent search task.

Given the context of current support for users seeking domain-specific collections, and
existing relevant research, in the following section we highlight the contributions and scope
of our work.

4Gulli and Signorini [24] found there is only a small overlap in the pages a search engine indexes, and thus
a user could benefit from utilising several search engines.

3

1. Introduction

1.2 Contributions

Through the evaluation of existing literature, we have identified a potential user need that
is not currently addressed by existing search services. That is, support for identifying collec
tions that are authorities on a particular topic, that the user can visit to satisfy both current
and future information needs.

As such, the motivating aim of this work is to develop a search service for identifying
collections that are relevant to a user’s query. Such a service would rank resource collec
tions according to a user’s query. In the remainder of this thesis we will refer to this task as
collection suggestion.

Developing an effective search service of this kind demands fundamental research. For
example, the first question that comes to mind is: how do we rank collections according to a
user’s query? We require an effective algorithm for this. Consequently, how do we determine
whether an algorithm is optimal for the collection suggestion task? For this, we require an
evaluation methodology, and appropriate test data. It is these elements that we deal with in
this thesis. In addressing these areas, a logical starting point is to draw from existing work
from relevant domains (such as collection selection), and make reasoned alterations and
additions where required.

We specify our fundamental contributions towards collection suggestion, as follows:

Evaluate the effectiveness of collection selection and query performance prediction algo
rithms, for collection suggestion: To implement a collection suggestion search ser
vice, we require a suitable algorithm for ranking collections with respect to a user’s
query.

In identifying such an algorithm, a logical starting point is to investigate whether any
existing algorithms may effectively be applied to the task. To this end, we empirically
evaluate the suitability of algorithms from two relevant domains: collection selection
(discussed previously in Section 1.1.2), and query performance prediction (where al
gorithms are designed to estimate the quality of retrieval results for a query executed
on a single collection). We discuss the motivation behind these choices in Chapter 2.

Specify and evaluate a new algorithm for collection suggestion: We develop a new collec
tion ranking algorithm, specifically for the collection suggestion task. We evaluate its
performance against that of the algorithms from other domains; our objective is to
develop an algorithm that exceeds the performance achieved by existing algorithms.

Develop a robust methodology, apparatus and test data for evaluating algorithms for col
lection suggestion: To evaluate the effectiveness of algorithms for collection sugges
tion, we require a methodology and apparatus. As the related collection selection do
main has an established methodology, we will use this as a basis for our experiments,
adapting and extending it to reflect the specific objectives of collection suggestion. In
addition, we develop an extensive testing apparatus to support the execution of our
experiments.
We utilise multiple test data sets (made up of document collections and test queries)
for our algorithm evaluations. In addition to using established TREC-based data sets

4

1.3. Chapter Outline

from the collection selection domain, we also develop and use our own test data sets,
comprising real data from open access repositories. In this way, we can test algo
rithms on both controlled and realistic test data, providing a rigorous test environ
ment.

We note here that our empirical work is focussed solely on the effectiveness of po
tential collection ranking algorithms for collection suggestion. We do not undertake
subjective user-based evaluation of the value of a collection suggestion service, and
its effectiveness from a user’s standpoint, at this time. Our rationale for this is straight
forward: such an evaluation can only occur on a mature prototype. As we have dis
cussed, there are several prerequisites for achieving such a prototype.

The above contributions are addressed in this thesis, according to the chapter structure
given in the next section.

1.3 Chapter Outline

The remainder of the thesis is organised as follows:

Chapter 2: Here we provide a comprehensive discussion of literature relevant to this re
search; in particular we consider the current evaluation techniques used in collection
selection, and traditional information retrieval. We look to draw on these established
techniques for our evaluation of algorithms for collection suggestion. As such, we
identify aspects of the methodologies that we must adapt to better reflect the objec
tives of the collection suggestion task.

In addition, this chapter also summarises the existing collection selection algorithms
(and some algorithms from another similar domain: query performance predictors),
which we later test for applicability to collection suggestion.

Chapter 3: Given our review of current evaluation techniques (in Chapter 2), we introduce
our methodology for evaluating the effectiveness of algorithms for ranking collec
tions, with respect to collection suggestion.

Our primary strategy follows that used to evaluate collection selection algorithms:
utilising several performance measures to assess how closely an algorithm-produced
collection ranking matches an optimal ranking of collections. We use statistical meth
ods to reflect on the significance of the performance scores; something often over
looked in collection selection algorithm evaluations.

In addition, we develop and use a scenario-based evaluation technique. This acts
as a preliminary stage to algorithm evaluation, in order to identify and filter out any
algorithms that are clearly unsuitable for collection suggestion.

Chapter 4: In this chapter we discuss the test data sets used in our algorithm evaluations.
We utilise several test data sets: some comprise TREC data (following previous con
vention), while others are built from real repositories.

5

1. Introduction

Chapter 5: A key contribution of this thesis is to develop a new collection ranking algo
rithm, designed with the specific goals of collection suggestion in mind. Thus, this
chapter provides the initial specification of our algorithm. To ensure we have an ef
fective algorithm, we use our test data sets and evaluation methodology to examine
various formulations of the algorithm. In this way, we can continue our experiments
(comparing its performance to existing algorithms) with the most effective algorithm
formulation.

Chapter 6: In this chapter we undertake the first part of our comprehensive evaluation of
algorithms, with respect to the collection suggestion task. Here, we conduct experi
ments using controlled TREC-based test data sets.

Chapter 7: Continuing our evaluation of the effectiveness of algorithms for collection sug
gestion, here we use test data sets formulated from real repository data. Thus, we test
algorithms in conditions that are representative of the intended operational environ
ment.

Chapter 8: Finally, in Chapter 8 we conclude: we summarise our findings and contribu
tions, and reflect on possible future directions of work in this domain.

6

Chapter 2

Literature Review

In the previous chapter, we identified the need for a search service to provide support for
users wishing to identify collections, such as digital libraries, that are relevant as a whole to
their topic of interest. We have dubbed this task as collection suggestion.

The focus of this work is to address the prerequisites associated with developing an ef
fective collection suggestion search service. First and foremost, we require an algorithm
that can effectively rank collections according to the user's query. Consequently, we require
a methodology and test data to evaluate the effectiveness of potential algorithms for this
task.

To this end, there are several existing areas of research that are relevant to us, that we
can utilise, experiment with, and draw inspiration from. This chapter provides a detailed
discussion of these topics. Specifically, in Section 2.1 we begin by introducing the domain of
collection selection, which is of primary interest to us. Collection selection is a sub-problem
of federated search; federated search services improve coverage of document retrieval by
simultaneously submitting a user’s query to multiple other search services. Thus, collection
selection is a precursor to document retrieval, used to identify resources that are likely to
contain many relevant documents, to which the user's query can be sent.

Following this, in Section 2.2 we provide an overview and critique of the established
techniques for retrieval system evaluation; we will follow accepted evaluation procedures
where appropriate, to ensure our work meets the expectations of information retrieval re
search.

Given the wider context of information retrieval evaluation practices, in Section 2.3 we
discuss techniques commonly used to evaluate collection selection algorithms: we draw on
and amend these for our evaluation of algorithms for collection suggestion. In Section 2.4
we give a detailed discussion of the state of the art collection selection algorithms: we will
later evaluate a selection of these, to investigate their suitability for the collection suggestion
task.

In Section 2.5 we discuss an additional class of algorithm that we will evaluate for appli
cability to collection suggestion: namely, query performance predictors. These algorithms
are normally used to evaluate the quality of results likely to be achieved at a search engine
(so that methods to boost retrieval performance, such as query term expansion, can be ap

7

2. Literature Review

plied to queries predicted to return poor results). We speculate that a collection ranking
based on the predicted quality of retrieval results within each collection may be suitable for
the collection suggestion task.

Finally, in Section 2.6 we summarise our discussion of relevant literature, and reflect on
its application in our own work.

2.1 An Overview of Collection Selection

The focus of this work is to conduct fundamental research towards providing support for
a user wishing to find collections, such as digital libraries, that will have long term value:
collections that can satisfy their current and future information needs. One body of research
that is highly relevant to this task is that of collection selection (sometimes referred to as
database selection [23,38], server selection [56], or resource selection [50]): one of the sub
problems associated with federated search. There are three sub-problems associated with
federated search: collection representation, collection selection, and results merging [48].
We touch on each of these in this section.

Federated search systems, such as metasearch engines, support a user performing tra
ditional document retrieval. The aim of such systems is to maximise the number of relevant
documents returned to the user.

The scale of the web is vast [36, 24], with a plethora of search services, such as general
purpose search engines and specialist repositories [38,29,48], each indexing different con
tent. Federated search extends search coverage by providing unified access to these search
engines and collections [38,48]. Given a user’s query, the federated search service (the bro
ker) passes it to other search engines and collections. Thus, multiple resources are searched
simultaneously. The search results from the various resources are returned to the broker,
which aggregates them into a list, ordered by global relevance (results merging).

A federated search service can potentially forward a user’s query to hundreds or thou
sands of resources. However, doing so would incur unnecessary network traffic and waste
system resources both at the broker and the resource: inevitably, resources that indexed
little or no relevant documents would be queried [38, 48]. Thus, collection selection is the
process of deciding which resources index potentially relevant material, by ranking the re
sources according to the user’s query (similar to the way in which documents are ranked in
document retrieval).

To choose suitable collections, a summary or representation of each collection is re
quired (collection representation); these are often statistics such as term and document
frequencies and collection size. However, their comprehensiveness depends on the level of
cooperation offered by the resource. A cooperative resource will allow the broker access to
complete lexicon statistics, derived from access to the full collection contents. However, an
uncooperative resource will not make these statistics available to the broker, and so they
must be estimated through other techniques, such as document sampling [48].

In the domain of federated search, collection selection acts as a precursor to document
retrieval; the goal of federated search is to maximise the number of relevant documents
retrieved, while minimising the number of resources that are queried. This goal is reflected

8

2.2. Overview o f Retrieval System Evaluation

in the operation of the many collection selection algorithms documented in the literature:
they aim to emulate a collection ranking that favours collections containing a large number
of relevant documents.

Our goal differs from that of collection selection: we do not intend to perform docu
ment retrieval, but rather identify collections the user may browse themselves. As such, we
are exposing the entire collection to the user. In this instance, a collection ranking based
solely on the quantity of relevant documents is not appropriate: there may be many doc
uments in the collection that are not relevant to the user’s topic of interest. Instead, the
collection ranking should take into account both the number and concentration of relevant
documents likely to be in the collection.

As discussed above, collection selection is traditionally considered as a sub-problem of
federated search, used to identify collections likely to contain relevant documents. In our
work however, we treat ‘collection selection’ as a search task in its own right, where the goal
is to identify collections that are relevant as a whole to a user’s query. To avoid confusion,
we refer to this task as collection suggestion.

A variety of algorithms have been developed for traditional collection selection; as such,
a primary contribution of this work is to evaluate whether they are suitable for the alterna
tive collection suggestion scenario, where our criteria for choosing highly ranked collections
differs from that of collection selection.

To this end, we present and discuss several collection selection algorithms in Section 2.4.
Prior to this, in the following section we offer an overview of established information re
trieval evaluation techniques. This provides context for our discussion and critique of ac
cepted collection selection algorithm evaluation techniques, given in Section 2.3.

2.2 Overview of Retrieval System Evaluation

The central focus of our work is the evaluation of algorithms with respect to the collection
suggestion task. For this, we require an evaluation methodology.

To ensure our work meets the expectations of information retrieval research, we follow
and draw from established and accepted evaluation techniques. This section gives a gen
eral overview of the standard practices of retrieval system evaluation, and reflects on any
associated limitations.

2.2.1 Perform ance

There are two aspects of performance to consider when evaluating an information retrieval
system: efficiency and effectiveness. When examining the efficiency of a retrieval system, we
are concerned with the cost and time associated with executing a search. In contrast, the
effectiveness of a system indicates the precision of the result set. For example, in document
retrieval, effectiveness measures the ability of the system to retrieve relevant documents,
while ensuring non-relevant documents are not returned [58, p. 10,145] [45, p. 158].

A complete evaluation of a retrieval system should examine both its efficiency and effec
tiveness. However, many evaluations of retrieval systems focus primarily on effectiveness;

9

2. Literature Review

while efficiency is important, if a system is not effective, its efficiency is somewhat irrele
vant.

Depending on the scenario, a variety of performance measures can be used to deter
mine the effectiveness of a retrieval system. Different metrics investigate different aspects
of performance, and therefore selection of evaluation metrics should be based on the fea
ture of retrieval behaviour that is of interest [5, p. 73].

Two of the most fundamental metrics used in document retrieval system evaluation are
recall (the fraction of all possible relevant documents that have been retrieved) and preci
sion (the fraction of retrieved documents that are actually relevant) [2]. The aim is to max
imise both of these metrics; however there is often a trade-off between the two. High recall
may come at the expense of several non-relevant documents within the result set, while
high precision can mean some relevant documents are missed.

2.2.2 Format o f Evaluations

In document retrieval, the established methodology for evaluating the effectiveness of re
trieval systems follows that used in the Cranfield tests [7], Here, three components were
utilised: a collection of documents, a set of queries to execute against the documents, and
a set of relevance judgements indicating which documents are relevant to each query. The
relevance judgements are used to calculate performance scores, such as recall and preci
sion.

This format is not just applicable to evaluating traditional document retrieval systems,
it can also be applied to evaluate systems in other scenarios, such as collection selection
(see Section 2.3).

2.2.3 Analysis o f Results

Two categories of analysis may be used to understand and scrutinise the results produced
by the various performance metrics used in a retrieval system evaluation: descriptive and
deductive [33].

Descriptive analysis presents results diagrammatically, to show general trends in the
data. Deductive analysis is more concrete, and examines the statistical significance of re
sults. For example, statistical tests such as t-test [33] and the sign test [58] help determine
the importance of a result, and whether there are any real differences between two systems.

Ideally, to provide a robust evaluation, both descriptive and deductive analysis should
be used in combination; however, as we see in Section 2.2.4 (and Section 2.3, where we
discuss techniques for the evaluation of collection selection algorithms), deductive analysis
is generally neglected [30].

2.2.4 TREC

One of the most important developments in document retrieval evaluation was the intro
duction of the Text REtrieval Conference (TREC). Prior to TREC, the evaluation of retrieval
systems was chaotic, with no agreement on how to evaluate results. Although evaluations

10

2.3. Collection Selection Evaluation

tended to follow the Cranfield method, different test collections and performance measures
were used. As such, the findings from different experiments were often not comparable [59].
The purpose of TREC was to provide a consistent and robust testbed for evaluation.

Like the Cranfield tests, TREC utilises three components: a set of documents, query
topics, and relevance judgements. The TREC document collections consists of several gi
gabytes of newspaper and government data: amounting to over a million documents. The
query topics, created by domain experts, describe an information need, indicating what
makes a document relevant. The relevance judgements are compiled using the pooling
method, whereby retrieval systems participating in TREC submit their top n relevant doc
uments for each query into a pool. Human assessors then evaluate the documents in this
pool, to determine their relevance to the query topic [25].

In TREC, the evaluation of retrieval systems is supported by the tre c _ e v a l program,
which computes scores for a variety of performance measures. These scores are used to
produce a performance report for each retrieval system, which includes: precision at doc
um ent cutoff values, precision at recall points, eleven point average, R-precision, Mean-
Average Precision (MAP), and a recall-precision curve [5].

Rather than decide on an outright winning retrieval system, TREC aims to identify tech
niques that work well for information retrieval [55]. To facilitate this, the participating sys
tems are ranked by MAP scores, and the best performing systems are presented together on
a recall-precision graph, to allow comparison of their performances.

With the advent of TREC, many researchers use the TREC document corpus when con
ducting their own evaluations. Thus, findings from different studies can be compared. In
general, evaluations of document retrieval systems tend to use recall-precision graphs and
MAP.

However, decisions on which systems perform best are often made based on observa
tions over recall-precision graphs, and by which scores the highest MAP. This a descriptive
analysis; the deductive, statistical analysis of scores is often overlooked. As such, there is lit
tle evidence as to whether differences in scores are significant; or indeed, if the 'best' system
is actually good enough.

We continue our discussion of existing retrieval evaluation procedures in the following
section, where we consider the practices used to evaluate collection selection algorithms.

2.3 Collection Selection Evaluation

In Section 2.2.2, we described how evaluations of document retrieval systems follow the
Cranfield method: involving test documents and queries, and a set of document relevance
judgements. Evaluations of collection selection algorithms are also based on this method,
but with some differences. Rather than a single collection of documents, multiple docu
ment collections are required; instead of relevance judgements, baseline rankings are used.
These often represent the ‘right answer': the optimal ordering of collections.

Since the goals of collection selection and document retrieval differ (ranking collections
instead of documents), the performance measures used in document retrieval evaluations
are not applicable to collection selection evaluations. As such, a combination of new and

11

2. Literature Review

existing metrics are employed to measure the key aspects of collection selection algorithm
performance.

In the following sections we discuss the elements of collection selection algorithm eval
uation: baselines, performance measures, and test data.

2.3.1 Baselines

In collection selection, every collection has a degree of merit associated with it, with respect
to a query. Merit can be defined in a variety of ways, depending on the goal. For example,
the merit of a collection could be given by the number or proportion of relevant documents
it contains, or the total number of documents in the collection [16]. A collection selection
algorithm should aim to order collections by decreasing merit.

The established technique for evaluating algorithms for collection selection is centred
around merit, from which we can derive baselines for algorithm performance. A variety of
performance measures (discussed in Section 2.3.2) are used to compare how well an esti
mated collection ranking (produced by a collection selection algorithm) matches a baseline
ranking. Several baselines have been used in the literature, most notably:

Count-Based Ranking (CBR): Collections are ranked in decreasing order of the number of
documents they contain, that satisfy a boolean predicate. For example, a document
is counted if it contains all terms in the query [22].

Ideal: Collections are ranked by a goodness score; the goodness of a collection is the similar
ity between the query and each document in the collection. Documents with a simi
larity greater than a user-defined threshold contribute to the goodness score. There
fore, goodness is an accumulation of document-query similarity scores [23].

Relevance-Based Ranking (RBR): Collections are ranked in decreasing order of the num
ber of relevant documents they contain [6]. This baseline requires access to relevance
judgements for the documents in each collection, for each test query.

Size-Based Ranking (SBR): Collections are ranked in decreasing order of the total num
ber of documents they contain [17]. This is a fixed baseline, constant for all possible
queries.

The most frequendy used baselines are Relevance-Based Ranking (RBR), and Size-Based
Ranking (SBR). The RBR baseline, like the majority of collection selection baselines, repre
sents an optimal collection ranking; it is the performance to which algorithms should as
pire. In contrast, the SBR baseline is often used to represent a lower bound on performance;
a collection selection algorithm should aim to do no worse than the SBR baseline. Different
baselines may be used in an evaluation, depending on what collection properties we are
interested in.

In the following section we discuss the performance measures commonly used to ex
amine the relationship between algorithm-produced collection rankings (for collection se
lection), and baseline collection rankings.

12

2.3. Collection Selection Evaluation

2.3.2 Perform ance Measures

In the previous section we saw that the evaluation of the effectiveness of collection selection
algorithms is based around a baseline ranking. This often represents an optimal ordering
of collections, based on some desirable collection property. However, a baseline can also
represent a lower bound on performance.

Given a baseline ranking, and a collection ranking produced by a collection selection
algorithm, the question remains: what is an appropriate measure for comparing the two
rankings?

A variety of performance measures have been presented in the collection selection liter
ature, some of which have been developed specifically for the task, while others are drawn
from other domains. In general, each metric examines different aspects of performance,
and thus when used in combination, the strengths and weaknesses of an algorithm can be
determined.

We present the most commonly used of these metrics below, and describe how their
results are presented and interpreted. Note that, in each metric, a baseline ranking is de
noted by B, while E represents the ranking produced by a collection selection algorithm.
This follows the convention of French et al. [18].

Mean-Squared Error (MSE)

Mean-Squared Error (MSE) was first used in a collection selection evaluation by Callan et
al. [6], and later by French et al. [18, 16]; it measures the dispersion between a baseline
collection ranking, and a collection ranking produced by an algorithm. That is, the metric
indicates how much the two collection rankings differ. For a single query, MSE is calculated
by:

MSE(E,B) = - - £ d(Bi - E i)2,
n fri

where:

Bi is the rank of collection i, in the baseline ranking;

Ef is the rank of collection i, according to the collection selection algorithm; and

n is the number of collections being ranked.

An optimal MSE is 0: there is no variation between the two rankings. The MSE scores
achieved by a particular algorithm over every query are often presented on a scatter graph.
In addition, a summary MSE is given by averaging the scores over all queries.

To help derive meaning from, and quantify a MSE score, French and Powell [16] calcu
lated an upper bound on MSE, by considering the reverse of the baseline ranking: the worst
case behaviour. Thus, the maximum MSE, MSEmax, may be calculated by:

where n is the number of collections being ranked [16]. With this, average MSE scores for
an algorithm can also be presented as a percentage of the maximum MSE.

13

2. Literature Review

Spearman Rank Correlation

The Spearman rank correlation coefficient has primarily been used in collection selection
algorithm evaluations by French et al. [17, 16, 44]. It measures the correlation between a
baseline collection ranking, and the collection ranking produced by an algorithm. The cor
relation, p, is calculated by:

. . 6-Ef.iP?
n(n2 -1)

where:

Di is the difference between the ith paired ranks in the baseline and algorithm collection
rankings; and

n is the number of collections being ranked [16].

The Spearman rank correlation is similar to Mean-Squared Error, in that both look at the
relationship between two rankings. However, Spearman rank correlation maybe considered
to be more meaningful. The metric produces values between 1 and -1: a positive score in
dicates a positive relationship between the two rankings, with 1 indicating total agreement.
In contrast, a negative score shows a negative relationship, with a score o f-1 showing that
the two rankings are the exact opposite of each other.

In the literature, Spearman rank correlation is used to compare algorithm performance
to the SBR fixed baseline, rather than an optimal ranking such as RBR. As such, those eval
uations have investigated whether algorithms show a tendency to favour large collections
over smaller, possibly more relevant, collections.

The Spearman rank correlation results are presented similarly to MSE scores: a scat
ter graph plots the correlation achieved on each query, with a summary score averaging
the correlations over every query also being given. Unfortunately, the analysis and inter
pretation of Spearman scores tends to be informal, with casual statements made. For ex
ample, one evaluation states that an algorithm “exhibits a very strong positive correlation
with SBR” [44]. Such statements are open to interpretation. To properly qualify correlation
scores, statistical tests such as t-test should be applied, to provide a clear indication of the
significance of the correlations, and to show that the similarity of the two rankings is unlikely
to have occurred by coincidence.

Defined by Gravano et al. [23], 7Zn is analogous to the recall metric used in document re
trieval. 7Zn measures the fraction of the available merit from the top n ranked collections of
the baseline, that has been accumulated by the top n collections in the algorithm-produced
collection ranking [23,17]. That is, it measures how well an algorithm selects the best col
lections, according to an optimal baseline ranking. 7Zn is calculated by:

Y n E ■

where:

14

2.3. Collection Selection Evaluation

Ei is the merit associated with the /th ranked collection in the collection ranking produced
by an algorithm;

Bi is the merit associated with the /th ranked collection in the baseline ranking; and

n is the rank position at which we wish to calculate the score [16].

The 7Zn values are averaged over all test queries, and plotted on a graph as a curve, for
each possible value of n (one, to the number of collections being ordered). To help interpret
the results, the optimal performance (the optimal baseline against itself) is also plotted on
the graph. Thus, we can observe how far from the optimal performance an algorithm is.

The TZn metric is perhaps the most established of those used in collection selection
algorithm evaluations: recent work, such as that of Si and Callan [49, 50], Shokouhi and
Thomas [47,57], uses the measure exclusively.

An alternative to the metric described above, 7t„ was proposed by French et al. [18];
rather than measure the available merit accumulated, TZn measures the accumulation of
the total merit by the top n collections in a ranking produced by an algorithm. 7Zn is defined
as follows:

I ? - ! Ei
1Zn{E,B) = —-^r— ,

i - / = i B l

where:

Ei is the merit associated with the zth ranked collection in the collection ranking produced
by an algorithm;

Bi is the merit associated with the /th ranked collection in the baseline ranking;

n is the rank position at which we wish to calculate the score; and

n* = k such that B ^^O and B^+i = 0. That is, n* is the rank position of the last collection
with non-zero merit [16].

The Tin scores are presented in the same way as those of 'R,n' scores for all possible
values of n are calculated, and averaged over all queries. These are plotted as a line graph,
with the optimal performance also plotted for comparison.

V n

In addition to their recall-like metric, Gravano et al. [23] also specified a metric analogous
to precision. The V n metric gives the fraction of the top n collections in an algorithm-
produced collection ranking that have non-zero merit, according to the baseline. That is,
at each value of n, it shows the proportion of selected collections that have some merit. V n
is calculated by:

\{ceTopnm B c >0}\
V n(E,B) = ------------------- .-------- >

\Topn(E)\

15

2. Literature Review

where:

c is a collection;

Topn(E) is the set of collections in the top n rank positions of a ranking produced by an
algorithm;

Bc is the merit associated with collection c, according to the baseline ranking; and

n is the rank position at which we wish to calculate the score [23,16].

Like the lZn and 1Zn metrics, a V n score is calculated for all possible values of n, and
averaged over all queries. The scores achieved by each algorithm being tested are plotted
on a line graph, with the optimal baseline also being shown, to represent the benchmark
the algorithms are trying to achieve.

2.3.3 Test Data

An essential component in the evaluation of any type of retrieval system, is the test data;
this includes test queries, and a sample of the type of item the retrieval system is intended
to operate over.

Whereas a document retrieval system is evaluated using a single collection of docu
ments, collection selection evaluation requires multiple collections of documents. To con
duct a robust evaluation, an appropriate number of collections is required, and these collec
tions should be representative of the intended operational environment [10]. For example,
the collections should be of varied sizes and subjects, but the content of an individual col
lection should follow a single theme or topic [10].

There are two strategies for compiling test data for collection selection algorithm evalu
ations: create artificial collections using the TREC document corpus, or use real collections.
Both techniques have advantages and disadvantages; we discuss these in this section.

The most frequently used and favoured strategy for compiling test data for evaluating
collection selection algorithms is to use the TREC corpus, in particular discs 1-3 (for exam
ple, French and Powell [18,44], Si [49], Shokouhi [47] and Thomas [57] have all used similar
TREC-based corpora). This TREC material consists of over a million documents from sev
eral (primarily news and government) sources.

In an attempt to create a realistic test environment, the documents in the corpus are
grouped to create synthetic collections. Grouping may be performed in a number of ways,
but the most common strategies are to group the documents by original source and then
date, or such that collections are of similar size [44] (specific details of the formulation of
these test collections are given later in Chapter 4).

One reason for researchers using the TREC corpus to create test collections, is that test
queries are also supplied with the data. However, the primary reason is the provision of
relevance judgements [56]. Most collection selection evaluations focus on testing how well
an algorithm produces the optimal Relevance-Based Ranking baseline, described in Sec
tion 2.3.1; this baseline requires document relevance judgements.

16

2.3. Collection Selection Evaluation

However, some [10, 47] consider these synthetic TREC-based test collections to be un
suitable for collection selection evaluations. Real collections are large and diverse, whereas
the TREC documents stem from a small set of sources, mostly news articles. Given that these
documents are often grouped by source and date, the contents of the individual collections
may be fairly heterogeneous.

D’Souza et al. [10] suggest that a grouping by author would help create topic-centric
collections (an author tends to write about only a small set of subjects), but Shokouhi [47]
disagrees: such a grouping is equally unsuitable. In addition, Shokouhi also comments that
the synthetic TREC collections are often much smaller than real collections, and thus do not
provide a realistic test environment.

An alternative to using artificial test collections compiled from the TREC corpus, is to
use real collection data; the benefit being that the data accurately reflects the intended op
erational environment. While several collection selection evaluations have been conducted
over real data, such as those of Gravano et al. [22] (databases accessible via Stanford Univer
sity's information retrieval system), Yuwono and Lee [63] (real text collections), and more
recently Thomas and Hawking [56] (public mailing list archives, calendar data, personal
email, and a crawl of US government websites), the experiments have been modest. For
example, each used only a handful of domain-specific collections; and as such producing a
collection ranking may have been unchallenging for the algorithms tested.

Using real collections as test data presents several difficulties; the first being that suit
able test queries must also be produced. Gravano et al. and Yuwono and Lee were fortunate
to have access to the query logs associated with their test collections. However, Thomas
and Hawking used programmatic methods to extract queries from key fields in their data.
This raises a second complication in using real collections: the production of document
relevance judgements.

As discussed above, many collection selection evaluations employ the Relevance-Based
Ranking baseline, for which document relevance judgements are a necessity. For their gen
erated test queries, Thomas and Hawking followed the TREC pooling method (see Sec
tion 2.2.4), by using a document ranking algorithm to determine the top n relevant docu
ments, before manually assessing them for relevance. Depending on the number of queries
and documents used, this manual process can be onerous.

As is evidenced by the myriad of collection selection algorithm evaluations, over nu
merous different data sets, the performance of a particular algorithm can vary significantly
between different data sets [47]. As such, a robust evaluation should test algorithms over a
variety of data sets. For example, Thomas and Hawking [56] use real collections to conduct
an initial evaluation, and use synthetic collections built from TREC documents, to confirm
trends observed on their own data.

Further details of test data sets used in collection selection algorithm evaluations are
given in Section 2.4, alongside discussion of the algorithms they were used to test. Prior to
this, in the following section we summarise the common techniques for evaluating collec
tion selection algorithms, and their associated merits.

17

2. Literature Review

2.3.4 Sum mary o f C ollection Selection Evaluation Techniques

To date, many collection selection algorithm evaluations have been disparate, making com
parison of different evaluation findings difficult. Most notably, several different perfor
mance measures and test data sets have been used. Some agreement may be observed
in the evaluations: recent work tends to favour the lZn, recall-like, performance measure;
however this metric considers just one aspect of algorithm performance.

Many researchers tend to agree on the origin of their test data, with most preferring to
use synthetic test collections built from the TREC document corpus. However, many differ
ent configurations of this data have been used, and there are questions over its suitability.
The TREC corpus is drawn mostly from news articles, which are not representative of the
diverse material present in real digital collections. In addition, the test collections created
from these documents are small by comparison to real collections, and tend to be hetero
geneous in content. Real collections may be expected to have some general topic or theme.

In contrast, some evaluations have used real collection data to test algorithms. However,
these evaluations also have inadequacies. For example, most use only a handful of distinct
collections. As such, the test environment may not be particularly challenging.

A robust evaluation should use a variety of appropriate performance measures. This
allows an algorithm to be scrutinised from different angles, and therefore we can identify its
strengths and weaknesses. Algorithms have been shown to perform differently on different
configurations of test data, and so it is beneficial to use a range of test data sets, exhibiting
different properties. For example, a mixture of synthetic TREC-based test data, and real
collection data.

An additional short-coming of previous collection selection algorithm evaluations is a
lack of rigour in analysing the results of the performance measures. Like document re
trieval evaluations, the analysis of results is largely descriptive. Conclusions are generally
drawn from observations made on graphs. While this descriptive analysis is itself an impor
tant and informative part of evaluating data, some deductive analysis would support and
strengthen observations. For example, examining the exact degree of difference between
algorithm-produced collection rankings and the baseline ranking, and the significance of
the difference: quantification of the results. Naturally, we want to know if one algorithm
performs better than another, but if both are so far away from the optimal, the fact that one
is better is irrelevant: they are both ultimately not good enough for the task.

Given the context of common techniques for conducting evaluations of collection se
lection algorithms, in the following section we give an overview of the state of the art algo
rithms in this domain. We will later examine the applicability of a selection of these to the
collection suggestion task (Chapters 6 and 7).

2.4 Collection Selection Algorithms

Recall from the previous sections that collection selection is concerned with identifying re
sources (such as digital libraries or search engines) that are likely to contain or index rele
vant documents. Traditionally, collection selection algorithms are evaluated based on their
ability to rank collections in decreasing order of the number of relevant documents they ac

18

2.4. Collection Selection Algorithms

tually contain (called the Relevance-Based Ranking), using a variety of performance mea
sures.

A primary contribution of our research is to examine whether traditional collection se
lection algorithms may be used effectively for the alternative task of collection suggestion:
identifying collections likely to contain a large number and concentration of relevant doc
uments. As such, in this section we provide a discussion of the various algorithms designed
for collection selection, and consider their performance over the collection selection task,
as documented in the literature. In addition, we speculate on their suitability for collection
suggestion.

2.4.1 GIOSS

Among the earliest work on collection selection, is that relating to the Glossary of Servers
Server (GIOSS), undertaken by Gravano et al. [22, 23]. Here we discuss the two versions of
GIOSS: bGlOSS, which is designed to evaluate boolean AND queries, and vGlOSS, which
works over the vector space retrieval model.

bGlOSS

The initial implementation of GIOSS, namely bGlOSS [22], differs from subsequent collec
tion selection algorithms in that it uses the boolean retrieval model, rather than the vector
space model. As such, a collection must contain all query terms to be considered relevant.

The bGlOSS algorithm has very low storage and computational requirements: for each
collection it requires only the document frequencies for each term, and the total number
of documents within the collection. With this data, bGlOSS aims to predict the number of
documents in each collection that contain all query terms. Thus, for a query q, of the form
t i , . . . , tn, the number of relevant documents in a collection is estimated by:

n?_i freq{ti,c)
bGlOSS(q,c) = ColSize{C)n~y '

where:

freq{ti, c) is the number of documents in collection c that contain term f*, and

ColSize(c) is the number of documents in collection c [22].

Given an estimate of the number of relevant documents in each collection, bGlOSS
chooses only the collection(s) containing the highest number of relevant documents.

The evaluation of bGlOSS was carried out using a set of six real collections, and nearly
7000 user queries, extracted from the associated query logs. This evaluation differs from
most later experiments, where the use of the TREC document corpus, split into synthetic
collections, is preferred over real data.

One of the difficulties in using real collection data to evaluate algorithms lies in the pro
duction of an optimal collection ranking. As discussed in Section 2.3.1, this optimal is tra
ditionally a Relevance-Based Ranking (RBR), where collections are ordered by the number

19

2. Literature Review

of relevant documents they contain. As such, RBR normally requires relevance judgements
for each document.

Gravano et al. use RBR to evaluate bGlOSS, however as they are working within the
boolean retrieval model, generating the RBR does not have the usual complexities. By sim
ply executing each boolean query over all documents from the collections, they find the
exact subset of relevant documents: those that contain all query terms. The optimal RBR
can then be produced accordingly.

As described above, once the bGlOSS algorithm has estimated the number of relevant
documents in each collection, the best collection(s) are chosen. As such, the evaluation by
Gravano et al. does not check that the ranking as a whole is accurate (there is not a ranking
as such produced), but that the ‘best’ collection(s) is correct. Results are reported as the
percentage of queries where the algorithm produced the correct set of ‘best’ collections.

TWo experiments were conducted: the first used only two collections, while the sec
ond used all six collections. In the first experiment, bGlOSS chose the best collection(s) for
91.75% of the queries; for the second the best collection(s) were correctly chosen for 82.06%
of the queries.

Gravano et al. found these results encouraging, however we note here that the six collec
tions were fairly discrete in their subject areas: psychology, geology/geophysics, business
periodical literature, educational materials, engineering and physics/electrical engineer
ing/computer science. As such, questions arise over the scalability of the algorithm: would
similar performances be achieved when there are hundreds of collections to distinguish be
tween, with several collections exhibiting similarity?

The bGlOSS algorithm has received little attention in large-scale evaluations. However,
it has featured in additional small-scale evaluations, where the accuracy of the collection
ranking as a whole was considered. The results were mixed: in Yuwono and Lee’s experi
ment [63], bGlOSS was found to perform worse than the other algorithms tested. However,
in Thomas and Hawking’s experiment [56] (in the context of resource selection for personal
metasearch), bGlOSS performed moderately well in relation to the other algorithms tested.
Clearly there is scope to further test bGlOSS.

In the following section we consider the alternative specification of GIOSS, which oper
ates over the vector space retrieval model.

2.4.2 vGlOSS

The bGlOSS implementation of GIOSS described above operates over the boolean retrieval
model. Gravano et al. also developed an implementation of GIOSS to work within the vector
space model: vGlOSS [23]. Whereas bGlOSS aims to identify the collections with the most
documents that feature all query terms, vGlOSS assumes the user is interested in documents
that are similar to their query. As such, an optimal collection ranking would put collections
in decreasing order of the sum of their documents’ similarity to the query.

Gravano et al. [23] specify two algorithms to estimate the total document-query simi
larity for a collection: Max(l) and Sum(l). Here, / is a user defined threshold which states
the minimum level of similarity to the query a document should have, to be considered
interesting.

20

2.4. Collection Selection Algorithms

Max(l) and Sum(l) have low storage requirements, needing only two vectors of infor
mation: one containing the number of documents in each collection that feature the query
terms, and one containing the sum of the weight of each term (for example, calculated by
tf-idj) over all documents, within each collection. To estimate the total document-query
similarity for a collection, Max(l) and Sum(l) make assumptions about the co-occurrence of
query terms: Max(l) assumes query terms occur together in a collection’s documents, while
Sum(l) takes the opposite view. The reader is referred to Gravano et al. [23] for a compre
hensive specification of the two estimators.

To facilitate the evaluation of the two estimators, Max(l) and Sum(l), Gravano et al.
present their notion of an optimal collection ranking, called Ideal(l). This optimal rank
ing represents the principle of vGlOSS, that collections should be ranked according to the
similarity of their documents to the user's query. Ideal(l) relies on a goodness metric, which
calculates a score for the collections. The goodness of a collection c, for the query q, with a
similarity threshold / is calculated as follows:

Goodness(l,q,c) = £ sim{q,d)
d€Rank{l,q,c)

Rankil, q ,c) = { d e c \ simiq, d) > 1}
n

simiq, d) = £ qt • Wi
i=i

where:

qt is the weight of a given query term, in the query; and

Wi is the weight of a given query term, in the document (calculated by tf-idj) [23].

That is, the goodness of a collection is the sum of the similarities between its documents
and the query. Document-query similarity is defined as the inner product of the weight of
the terms in the query, and the weight of the terms in the document. A similarity score is
used in the calculation only if it is above the threshold /.

In their work, Gravano et al. [23] use the 1ln and V n metrics (described in Section 2.3.2)
to evaluate how closely Max(l) and Sum(l) estimate their Idealil) ranking; their findings sug
gest that the two algorithms are reasonable estimators of Idealil). Indeed, when the thresh
old I - 0 is used (where we consider a document with any degree of similarity to the query to
be relevant), Max(l) and Sum(l) are equivalent to Idealil): they produce identical rankings.

Given this equivalence, many subsequent studies of vGlOSS, such as those of French et
al. [18, 17, 44], Thomas and Hawking [56] and Yuwono and Lee [63], have used Idealil) to
represent a vGlOSS implementation. Powell and French [44] indicate that from an imple
mentation perspective, using Idealil) over Max (I) or Sum (I) is simpler, suggesting it may be
easier to acquire term weights, than the vectors needed for the two estimators.

The subsequent evaluations of vGlOSS have primarily been undertaken by French et
al. [18, 17, 44], and have investigated how closely Idealil) estimates the Relevance-Based
Ranking (RBR) baseline. In addition, they also examined the performance of vGlOSS in re
lation to the Size-Based Ranking (SBR) lower bound baseline. The experiments were con
ducted over three test data sets constructed from discs 1-3 of the TREC document corpus

21

2. Literature Review

(see Sections 4.1.1, 4.1.2 and 4.1.3 in Chapter 4 for specific details of the composition of
these data sets).

The empirical findings suggest that vGlOSS is not a good predictor of RBR: while it does
rank good collections highly, those collections are not necessarily the best [18,44]. In addi
tion, using Spearman rank correlation, vGlOSS was shown to be highly correlated to SBR: it
has a tendency to favour large collections [17, 44]. The reason for this lies in the composi
tion of the algorithm: a collection score is calculated as the sum of its documents’ similarity
to the query. As such, a very large collection with many documents of marginal similarity
may appear overall to be more useful than a collection with a few documents that are highly
similar to the query [18].

A significant drawback of vGlOSS, is that it utilises term weights. These are generally
calculated using tf-idf, but are local to each collection. As such, terms that are common in a
collection (suggesting the collection may be about that concept), will receive a low weight
ing. However, another collection with fewer occurrences of that term will associate a larger
weight to the term, as they have more discriminatory power. Therefore, a collection with
many documents about the query term may be ranked lower than one with only a few doc
uments. French et al. [18] note that for this reason, “similarity scores across heterogeneous
document collections are essentially noncomparable.”

The two collection ranking algorithms specified by Gravano et al. [23] are amongst the
earliest work in the collection selection domain. In the following section we discuss the
seminal work of Callan et al. [6].

2.4.3 CORI

One of the earliest algorithms for ranking collections is the Collection Retrieval Inference
Network (CORI), attributed to Callan et al. [6]. CORI is based on the document ranking
algorithm tf-idf. it treats each collection as a large document, and can be summarised as
df-icf, where the document frequency d f is the number of documents containing a query
term, and the inverse collection frequency icf is the inverse of the number of collections
containing the query term. The advantage of such an approach is that ranking collections
has the same computational complexity as traditional document ranking, and similar stor
age requirements [6].

More specifically, CORI ranks collections based on their similarity to the query. Thus,
the similarity of a collection c to the query q is calculated by:

CORl{q, c)
Y.teq(db + (1 - d b) ' T - D

\q\
T

lo g (iK ^ p)(ICI+0.5)

log(|C| + 1)
K = b) + b-cw/cw)

where:

22

2.4. Collection Selection Algorithms

db is the minimum belief component when term t occurs in collection c, set as 0.4;

d t is the minimum term frequency component when term t occurs in collection c, set as
0.4;

d f is the number of documents in collection c containing term t;

|C| is the number of collections;

c/is the number of collections containing term t;

k controls the magnitude of K. Callan et al. found k = 200 to be best for their test data;

b is a constant: varying its value between 0 and 1 increases the sensitivity of K to the size
of the collection. Callan et al. found b = 0.75 to be best for their test data;

cw is the number of terms in collection c; and

cw is the mean cw of the collections being ranked [6].

Callan et al. evaluated the effectiveness of CORI for ranking collections with the TREC
Volume 1 document collection. The documents were grouped by source and year, to give
seven heterogeneous collections. The evaluation used 50 queries, formed from TREC topics
51 to 100.

The TREC document collection comes with relevance judgements, specifying for each
topic, which documents are relevant. Thus, for each query, the collection ranking produced
by the CORI algorithm is compared to an optimal ranking generated by ordering the col
lections by the number of relevant documents they contain (determined by the relevance
judgements). The Mean-Squared Error (MSE) metric is used to determine the variation be
tween a collection ranking generated by CORI, and the optimal ranking, and is averaged
over the 50 queries to give a single value representing performance.

CORI showed promising performance in this test environment, achieving an average
MSE of 1.4586 [6]. However, we note that the number of collections used was very small, and
unrealistic of an operational environment. In addition, the heterogeneity of the collections
suggests distinguishing between them is not difficult; ordinarily we may expect a few very
similar collections to be present, and as such ranking these correctly is more difficult.

Despite the limitations of the test environment used to evaluate CORI, the algorithm
has frequently been used as a benchmark for comparison, when testing new collection se
lection techniques (for example, Yuwono and Lee [63] and Srinivasa et al. [54] have eval
uated their own algorithms against CORI). Several other evaluations have shown CORI to
have the most accurate and consistent performance (for example those of French and Pow
ell [16, 44]). More recently, evaluations such as those of Si and Callan [49] and Thomas and
Shokouhi [57] have still found CORI to perform well.

However, D’Souza et al. [13] suggest that the use of CORI as a benchmark collection se
lection algorithm is not justified. This stems from the use of the k, b, db and d t parameters.
When developing CORI, Callan et al. experimented with different values of k and b, report
ing values they found gave the best (MSE) results for their test data set.

23

2. Literature Review

D’Souza et al. tested CORI using 11 test data sets, each partitioning the TREC document
collection in different ways. They explored the effect of different values for the parameters,
in total testing 546 combinations of values for each test data set, and associated queries.

The findings of the experiment can be summarised as follows: “it appears that parame
ters cannot reliably be chosen for CORI: not only do the optimal choices vary between data
sets, but they also vary between query types and indeed, vary wildly within query sets.” [13]
Most notably, when testing the standard CORI values of k = 200 and b = 0.75, performance
was poor. This is of concern, as these parameters are often used in work where CORI is used
as a benchmark.

In the following section we consider a series of algorithms that utilise a variety of lexicon
and collection statistics, to rank collections.

2.4.4 Lexicon Inspection

Zobel's work on collection selection techniques [66] examines four algorithms that use var
ious term and collection statistics to produce a collection score, namely: Cosine Measure,
Inner Product, Skew and Highest-available Similarity. Like the CORI algorithm discussed
in the previous section, these algorithms are inspired by traditional document retrieval al
gorithms. We present the four algorithms below, before discussing their respective perfor
mances.

Cosine Measure: A similarity measure originally found to be effective for document re
trieval. The algorithm has been modified for collection ranking, and for this purpose has
been defined as follows:

C{q,c)
E*teq tVqtt ’ Wc,t

w q,t

Wc,t

Wc
wr log(fqit + l)

log ifc.t + 1)
, N log(— + 1)

where:

fq tt is the number of occurrences of the term t in the query q;

f c>t is the number of documents in collection c containing term t;

N is the number of documents (across all collections); and

f t is the number of documents (across all collections) containing term t [66].

24

2.4. Collection Selection Algorithms

Inner Product: This algorithm calculates the similarity between a query and a collection
by summing the products of query term and collection weights; Inner Product is similar to
vGlOSS, discussed in Section 2.4.2, and is defined as follows:

= Y . W4>t‘ wc,t
teq

Wq,t = W f l 0 g (f q,t + 1)

WCtt = W rl0g(/C,f + 1)
, N w t = log(— + 1)

f t

where:

f q t t is the number of occurrences of the term t in the query q;

f C) t is the number of documents in collection c containing term t ;

N is the number of documents (across all collections); and

f t is the number of documents (across all collections) containing term t [66].

Skew: This algorithm is designed to estimate whether the query terms are uncommonly
frequent in the collection, therefore it may indicate whether a collection is about the query.
For a collection c and a query q, Skew is defined as follows:

S(q,c) = Z f y - - U f w t
t eq f t

wt = log(— + 1)
f t

where:

f q > t is the number of occurrences of the term t in the query q;

f C) t is the number of documents in collection c containing term t ;

N is the number of documents (across all collections); and

f t is the number of documents (across all collections) containing term t [66].

25

2. Literature Review

Highest-available Similarity: Here, the Cosine Measure is used to estimate the highest-
available similarity for a typical length document in a collection. The algorithm is defined
as follows:

-teq Wq,t ’ tVC)t

wc
W q , t = W f \ 0 g (f q t t + 1)

wc,t = M^-logCFc^ + 1)
, N

IV t = log(— + 1)

Wr =

T f____

'L tecF c ,t

Nr

where:

f q>t is the number of occurrences of the term t in the query q;

f Ctt is the number of documents in collection c containing term t;

N is the number of documents (across all collections);

f t is the number of documents (across all collections) containing term t ;

FCit is the number of occurrences of term t in collection c; and

N c is the number of documents in collection c [66].

In evaluating these four algorithms, Zobel used two test data sets built from the TREC
corpus. The first data set used disc 2 of the TREC data, with documents partitioned by
source and date to form 43 collections of between 1600 and 7500 documents each. The
query topics 51 to 150 were utilised [66]. This first data set was used during the development
of the algorithms; as such, a second data set was used to independently confirm findings.

The second data set was built from the TREC disc 3:91 collections were formed by break
ing the data at random points. These collections are more varied in size than the previous:
between 14 and almost 23000 documents, with an average of 5000. Query topics 202 to 250
were used on this occasion [66].

In his experiments, Zobel used a Relevance-Based Ranking to represent the optimal col
lection ranking (collections are ordered by the number of relevant documents they contain,
where document relevance is determined by TREC relevance judgements). To evaluate per
formance, Zobel counts the number of relevant documents occurring in the highest n col
lections of each algorithm's collection ranking, and plots these values on a graph. This is
similar to the 7Zn metric discussed in Section 2.3.2, however it specifically measures recall,
rather than merit: “it measures how many of the relevant documents the user will have an
opportunity to see” [66]. Zobel also used the fixed, Sized-Based Ranking (SBR), as a lower
bound on performance.

26

2.4. Collection Selection Algorithms

On the first data set described above, results showed all four algorithms to perform bet
ter than the SBR. Highest-available Similarity and Inner Product performed best and simi
larly, closely followed by Skew. The Cosine Measure was clearly the weakest of the four.

The results on the second data set were slightly different, with Inner Product performing
best, followed by Skew. Highest-available Similarity was marginally better than the Cosine
Measure, which tracked SBR. Zobel concludes that while some of these simple similarity
measures exhibit satisfactory performance, there is still room for improvement.

There have been very few independent evaluations of these four algorithms, or com
parisons with other collection selection algorithms. Indeed, other research featuring these
algorithms has had an alternative agenda (rather than simply investigating collection selec
tion algorithm performance).

For example, D'Souza et al. [12] compare Inner Product and C W (see Section 2.4.5) to
a variety of algorithms that use only a partial term index to describe collections (referred
to as n-term indexing; see Section 2.4.7). Using the same test environment employed by
Zobel [66] (data sets, queries, performance measure and baselines), they find Inner Product
to be the most effective algorithm of those tested. In addition, the performance of Inner
Product is identical to that shown in Zobel’s original tests, therefore confirming his findings.
However, the primary conclusions of the work is that lexicon based algorithms outperform
those using a partial term index [12].

D’Souza et al. [10] also conducted further experiments, this time looking at the perfor
mances of Inner Product, Highest-available Similarity and Skew, in addition to CORI, and
several n-term indexing algorithms. However, the primary aim of this work was to inves
tigate the effect of different formulations of test data set on the performances of the algo
rithms. To this end, D’Souza et al. created a managed test data set, where the documents
from TREC discs 1 and 2 were grouped into collections, such that they have some common
topic. One strategy for this was to group documents by author. For comparison, additional
test data sets with documents ordered by source and date were created.

Using the recall performance measure employed by Zobel, and the RBR and SBR base
lines, the results of D’Souza et al. showed the Highest-available Similarity algorithm to out
perform Inner Product. Skew was shown to be the weakest of Zobel’s algorithms. However,
all three tended to perform better than CORI.

The most important observation of this work however was the effect of the different
test data formulations: in the data sets where documents were split by source and date,
the algorithm performances were very close, making it difficult to distinguish between the
algorithms. However, on the managed test data sets, differences were more pronounced,
with a wider range of algorithm effectiveness observed.

In addition to the work of D’Souza et al., Thomas and Hawking [56] investigated the suit
ability of Inner Product for use in a personal metasearch environment, along with bGlOSS,
vGlOSS, CORI and CW. Personal metasearch includes smaller collections such as calendar,
email and mailing lists, in addition to web collections [56]. Inner Product was found (using
the 7Zn metric) to perform poorly in this application, with CORI and bGlOSS performing
well.

Thomas and Hawking also conducted experiments over more traditional TREC corpus
based data sets. Performances were varied over the different data set configurations; on

27

2. Literature Review

some data sets Inner Product performed better than CORI and bGlOSS, while on others it
was worse. vGlOSS was consistently poor.

It is evidenced here that algorithm performance can vary, depending on the context
in which they are tested. We see further evidence of this in the following sections, as we
continue to discuss developments in collection selection algorithms.

2.4.5 C W

The Cue Validity Variance (CW) algorithm was developed by Yuwono and Lee [63], as part
of the Distributed WWW Index Servers and Search Engine (D-WISE) project, which aimed
to develop an Internet resource discovery system. Like bGlOSS (discussed in Section 2.4.1),
CW uses only document frequency data to produce a collection ranking. Rather than pre
dicting the number of relevant documents in a collection, or estimating the relevance of a
collection’s documents, C W uses the document frequencies to measure the distribution of
query terms in the collections, and the usefulness of query terms for distinguishing between
collections [63,12].

Using C W the goodness score for a collection c with respect to a query q is calculated as

Zcw,-dfCtt
teq

Ec=i(cvc>t-cvt)2
l ci

dfc,
Nc

dfc.t , dfk.t
N‘ e E U . *

Z g i cvc,t
I ci

where:

dfc t is the number of documents in collection c containing term t;

|C| is the number of collections; and

Nc is the number of documents in collection c [63].

In these calculations CVc,t is the cue validity of term t in collection c; this measures the
degree to which term t distinguishes documents in collection c from those in other collec
tions. It follows that CVt is the average cue validity of term t over all collections. The C W
component is the population variance of the cue validity, measuring the skewness of distri
bution of term t across the collections. As such, the larger the variance, the more useful the
term for distinguishing between the collections [63].

Yuwono and Lee evaluated the C W algorithm using their own ‘accuracy’ metric. To cal
culate the accuracy of a collection ranking for a given query, the top n documents within

G(q,c) =

C W t =

CVc,t =

CVt =

28

2.4. Collection Selection Algorithms

each collection are determined, using tf-idf. The tf-idf scores for the documents are added
together to give an ‘actual goodness’ score for each collection. The collection scores gen
erated by a collection selection algorithm are ‘estimated goodness’ scores. The accuracy
of the algorithm is calculated as the cosine similarity between the actual goodness and the
estimated goodness over all collections [63].

In their evaluation, Yuwono and Lee compared the performance of C W in terms of ac
curacy, to bGlOSS, vGlOSS and CORI. The accuracy scores for each algorithm were averaged
over all queries and plotted on a graph.

For their test data sets, Yuwono and Lee used four real collections, and queries from
their associated query logs. The collections comprised a total of 7097 documents, which
were used to form five different test data sets. For example, one data set used documents
split into distinct groups of related documents, while in another, documents were randomly
distributed, and therefore could be diverse in content.

In this test environment, C W was shown to outperform bGlOSS, vGlOSS and CORI:
it had accuracy scores that were frequently higher than those achieved by the algorithms.
However, these findings are contrasted in subsequent, independent research, conducted
using the established 1Zn performance measure.

For example, in their evaluation of the CORI, vGlOSS and C W algorithms, using col
lections built from the TREC corpus, Powell and French [44] found the C W algorithm to
frequently perform the worst. In addition, its performance varied greatly (more so than
CORI), on different test data sets. As discussed in Section 2.4.4, CW was also found to per
form worse than the Inner Product algorithm. In addition, studies by Sogrine and Patel [52]
and Thomas and Hawking [56] found C W to be inferior to CORI and the GIOSS algorithms,
using their respective test environments.

In the following section we present another collection selection algorithm that utilises
only document frequency data to rank collections.

2.4.6 DFPROP

So far we have examined two algorithms, bGlOSS (Section 2.4.1) and CW (Section 2.4.5),
that use only document frequency statistics to produce a score for a given collection. An
other such algorithm is DFPROP, developed by Srinivasa et al. [54].

In their work, Srinivasa et al. describe the development of DFPROP, which is driven
by a series of experiments. Their starting point is two simple metrics, dfproportion and
ctfproportion, defined as follows:1

dfproportion(

ctfproportiont
ctfCl

where:

1We change the notation from that originally given by Srinivasa et al. [54], to follow notation previously
used in this chapter.

29

2. Literature Review

dfc t is the number of documents in collection c containing term t;

ctfct is the number of occurrences of term t in collection c; and

|C| is the number of collections [54].

As such, these metrics measure the fraction of documents containing a query term each
collection has (dfproportion), and the fraction of all query term occurrences each collec
tion has (ctfproportion) [54]. The larger the values, the more related to the query term the
collection is.

For their initial algorithms, Srinivasa et al. combine these metrics to give two algorithms:
SUM and PROD. Given a query q, the score for a collection c may be calculated as follows:

SUM(q,c) = ^ f q<t • (dfproportion ct + ctfproportion ct)
teq

PROD(q,c) = £ f q t - (dfproportionct • ctfproportionc t)
teq

where:

f q t t is the number of occurrences of term t in the query q [54].

These algorithms were evaluated using three test data sets formulated from the TREC cor
pus, specified by Powell [43]. The RBR and SBR baselines were used, and comparisons were
made with the performances of CORI and vGlOSS, using the 7Zn, H n and V n performance
measures. The empirical findings showed SUM and PROD to be superior to vGlOSS, with
SUM being the stronger of the two. CORI performed best overall.

To investigate the effects of the dfproportion and ctfproportion components, two new
algorithms were specified; DFPROP and CTFPROP use each of the components in isolation:

DFPROP(q,c) = £ f q>t • dfproportionct
teq

CTFPROP(q,c) = £ fq<t' ctfproportionc t
teq

where:

f q) t is the number of occurrences of term t in the query q [54].

Over the same test environments as before, these two algorithms were tested against CORI,
SUM and PROD. CORI again came out on top, however DFPROP was shown to be better
than SUM, while CTFPROP and PROD produced similar results. As such, the dfproportion
component is the more effective of the two.

A further experiment modified the SUM algorithm, by weighting the two components:
dfproportion with 0.8, and ctfproportion with 0.2. The results were mixed: at some rank
positions the weighted algorithm performed better than DFPROR while at others DFPROP
was superior.

30

2.4. Collection Selection Algorithms

Therefore, Srinivasa et al. conclude that DFPROP is the most effective of their algorithm
formulations, however it is not able to match the performance of CORI. No independent
evaluations of these algorithms have been carried out to date. However, the algorithms may
have applicability to the collection suggestion task.

2.4.7 rc-Term Indexing Based Techniques

The majority of the collection selection algorithms we have examined thus far have used
data such as term and document frequencies, and general collection statistics to generate
a score for a collection, with respect to a query. As such, a collection is often treated as if
it were a large document, and collection ranking follows a similar approach to traditional
document ranking.

D'Souza et al. [12] investigate a range of collection ranking techniques that use the rank
ings of the documents (with respect to the query) within a collection, to produce a score for
the collection. That is, the documents in each collection are ranked (together) for the query,
and the document rankings are used to calculate a collection score. D’Souza et al. specify
five methods for calculating collection scores in this way:

Naive: The score for a collection c is equal to the similarity score of its highest ranked
document:

naive(q,c) = maxsim (q,d)
dec

Sumsim: The score for a collection c is equal to the sum of its documents’ similarity scores:

sumsim(q, c) = £ sim{q, d)
dec

Invrank: The score for a collection c is equal to the sum of the inverse document ordinals:

invrank{q,c) = £ — ,
dec r d + K

where:

rd is the rank position of document d; and

K is a constant, set to 10 [12].

Sumsimsqr: The score for a collection c is equal to the sum of the squared document
similarity scores:

sumsimsqtiq, c) = £ d)2
dec

31

2. Literature Review

Simdivrank: The score for a collection c is equal to the sum of the similarity score of each
document, divided by its rank position:

. .. f , , v" sim{q,d)simdwrank{q,c) = 2̂ ------------»
dec rd

where:

ra is the rank position of document d [12].

In the above algorithms, sim(q, c) is the similarity of a document d and the query q; how
ever, it is not specified by D’Souza et al. specifically how this similarity is calculated.

As an additional element to their research, D’Souza et al. produce the document rank
ings using a partial term index, whereby a sample of n terms is used to represent each doc
ument in a collection. This allows additional information and statistics for each term to be
stored, using no more space than that required for a complete index [11]. This concept,
also referred to as rc-Term Indexing was first investigated by D’Souza and Thom [11]. They
suggested four methods for choosing a sample of n terms to index:

1. Take the first n unique terms in each document;

2. Take the rarest n unique terms in each document;

3. Take n /s unique terms from each of s structural components (such as title, abstract
and first paragraph) of each document; and

4. Take n /s rarest terms from each of s structural components of each document [11].

D’Souza and Thom evaluated only the ‘first n unique terms’ approach, by comparing
precision and recall scores achieved, against those of a full term index. Using the docu
ments on the TREC disc 3 corpus, and queries 202 to 205, they found that retrieval effec
tiveness over the full index was superior to the partial index. However, they speculated that
selection of better quality terms (such as those from the structural components) may lead
to improvements in retrieval performance [11]. Despite these findings, the ‘first n unique
terms’ approach was used to build the partial term index used in the experiments of D’Souza
etal. [12].

D’Souza et al. [12] first compare their five collection ranking algorithms against each
other. They used the TREC disc 3 based data set used by Zobel [66]. The recall-based eval
uation metric used by Zobel is also utilised, as are the RBR and SBR baselines. Of the five
algorithms, simdivrank was found to have performed best in this test environment.

To investigate how the partial index document rank based collection selection algo
rithms compare to other, full index collection statistic based approaches, a further exper
iment tested simdivrank against Inner Product and CW. The results showed Inner Product
to perform best, with simdivrank and C W exhibiting similar results.

These findings suggest that the partial indexing document rank based approaches are
inferior to the more traditional techniques that use collection statistics derived from full
term indexes. However, only one strategy for building the partial term index was used; there

32

2.4. Collection Selection Algorithms

has been no further investigation of the other proposed techniques. It is possible that selec
tion of stronger index terms would improve the performance of the document rank based
algorithms (the ‘first n unique terms’ technique was shown by D’Souza and Thom [11] to be
inferior to a full term index).

A notable drawback to basing collection scores on document rankings is the fact you
must rank every document, across all collections, for each query. Regardless of whether the
underlying term index is a full or partial one, this will be an expensive task overall; the col
lection statistics approaches of algorithms such as CORI, Inner Product and C W are much
less computationally expensive.

2.4.8 Decision-Theoretic Framework

The collection selection algorithms we have discussed so far use statistical data (such as
term and document frequencies) derived from the content of the collections to produce a
collection ranking.

The Decision-Theoretic Framework (DTF) [19, 20, 21, 39] takes a different approach to
collection selection: given a specific number n of relevant documents a user wants to re
trieve, DTF computes an optimum collection selection strategy, such that the costs of re
trieving documents from multiple collections are minimised [20].

Cost can be defined in a variety of ways, such as: charges per document, connection
time and computation time [19,21]. The primary cost discussed in the relevant literature is
that of retrieval quality; that is, the cost of a user being shown irrelevant documents.

The user can specify their own cost model, by specifying the importance of different
costs. For example, they may be willing to pay to ensure high quality results, or alternatively
they may want results returned very quickly, at the expense of retrieval quality. The costs
associated with retrieving documents from a particular collection can be summed, to give
an overall cost for that collection [39].

Specifically, DTF is specified as follows:

|C|
DTF(n, q) = min\s\=n £ Q (Si, q),

i=1

where:

n is the number of documents the user wants to retrieve, for the query q;

|C| is the number of collections;

s is a vector (si,..., S|q) where s,- is the number of documents to retrieve from collection
ct;

|s| is defined as s,-, which is equal to n; and

Ci (Sf, q) is the total cost associated with retrieving s/ documents from collection c;, for the
query q [39].

33

2. Literature Review

The Ci(Si,q) component is the total cost associated with retrieving documents from
a collection. The primary example in the literature is that of the cost of retrieval quality
(though Nottelmann and Fuhr [411 also specify time costs). This may be defined as follows:

C™l(st, q) = rt(sif q)-C+ + [st - rt (sit q)] • C~,

where:

ri(Si, q) is the number of relevant documents in the result set when Sj documents are re
trieved from collection cf,

C+ is the cost (for example, 0) of viewing a relevant document; and

C~ is the cost (for example, 1) of viewing an irrelevant document [39].

One advantage of DTF over other collection selection algorithms is that the optimal so
lution indicates how many collections to forward the query to, and how many documents
to retrieve from each, in order to ensure costs are kept to a minimum. The more tradi
tional collection selection algorithms only give an ordering of collections; the decision of
how many of those to query and how many documents to retrieve is an additional step,
requiring further algorithms.

There has been limited evaluation of DTF, and certainly no independent testing. Not
telmann and Fuhr [40] evaluated DTF against CORI on a TREC-based test data set of 100
collections, derived by grouping documents by source and date. Due to the nature of DTF,
the evaluation examined the overall retrieval quality of the final list of returned documents
(rather than on the quality of the collection ranking). A range of short and long TREC queries
were used; the findings showed DTF to be comparable to CORI on long queries, however it
suffered on short queries.

The issue of cost consideration in collection selection is an important and interesting
one; however, to implement the framework it is necessary to have details of each cost, for
each collection: an arduous task.

The essence of DTF is highly relevant to our collection suggestion problem: costs such
as document charges, and impact and reputation of a collection could be important to the
user. Despite this however, it is unclear whether DTF could be applied to collection sug
gestion: it is very much embedded in document retrieval, as collections are chosen based
on their costs for retrieving a given number of documents. A collection suggestion search
service will not retrieve documents for the user, but rather direct them to a few collections
they may wish to browse themselves.

2.4.9 C ollection Selection in Uncooperative Environments

The collection selection algorithms we have discussed thus far are intended for use in co
operative environments, where it is assumed we have access to collection statistics: such
as term and document frequencies, and collection sizes. Such statistics may have been ex
ported by the collections, or are derived from access to the full collection contents.

34

2.4. Collection Selection Algorithms

More recent collection selection research has focused on algorithms that can operate in
uncooperative environments, where the collection statistics are not readily available: they
are not exported by the collections. In an uncooperative environment, the algorithms must
generate a collection ranking based on only a small sample of documents from each collec
tion.

A representative document sample is gained by issuing queries to the collections, and
retrieving the resulting documents [48]. These documents are used to produce an estimate
of term and document frequencies within a collection, and the total size of a collection. In
effect, each document in the sample represents some number of documents in the collec
tion from which it originates.

Collection selection algorithms designed for use in uncooperative environments are of
ten based on the same underlying principle, but with differences in implementation. We
provide a brief summary of four collection selection algorithms for uncooperative environ
ments, followed by a discussion of their effectiveness.

Relevant Document D istribution Estimation (ReDDE)

To generate a collection ranking for a given query, ReDDE [49] first requires the sample doc
uments from all collections to be ranked for the query. The first n ranked documents are
used to count (estimate) the number of relevant documents in each collection. The collec
tions are then ranked by the percentage of the relevant documents they are estimated to
contain.

In addition to the uncooperative environment, ReDDE may also be used in cooperative
environments. Here, calculations are performed on accurate figures rather than estimates.
However, as a ranking of documents is required, execution in an environment where access
to all documents is available would be time consuming.

Central-Rank-Based Collection Selection (CRCS)

Like ReDDE, the CRCS [47] algorithm first ranks sampled documents for the given query.
However, rather than count the number of relevant documents within each collection, CRCS
uses the ranks of the documents to calculate a weighting for each collection. Thus, a collec
tion with highly relevant documents will feature highly in the collection ranking.

The CRCS algorithm can also be applied to a cooperative setting. However like ReDDE it
would suffer from cost and performance issues: ranking every document for a given query,
prior to ordering the collections, is time intensive when we have hundreds of large collec
tions.

Unified Utility Maximization (UUM)

The UUM algorithm [50] can be used to support two variations of collection selection: a
high-recall focused task, where the goal is to find collections with as many relevant docu
ments as possible, and a high-precision task, where the aim is to identify collections con
taining highly relevant documents.

35

2. Literature Review

The implementation of UUM is complex, first using training queries (for which rele
vance judgements are required) to learn how to infer the probabilities of relevance of all
(mostly unseen) documents across the collections. Collections are ranked using the inferred
probabilities of document relevance.

Scoring Scaled Samples (SUSHI)

The SUSHI algorithm [57] uses sampled documents to extrapolate scores for unseen doc
uments within the collections. As for ReDDE and CRCS, SUSHI first requires the sampled
documents to be ranked for the query. The ranks of the sample documents are then ad
justed, to reflect the property that each sampled document is representative of several doc
uments in its original collection.

Following this, the scores of documents not sampled are estimated by fitting a curve to
the rank-adjusted documents: linear, logarithmic and exponential curves are tried at query
time, with the best fit chosen. Given the interpolated document scores, collections can be
ordered by the sum of the document scores.

Thus, the algorithm is optimised for precision: favouring collections with highly rele
vant documents. However, the algorithm may also be optimised for recall, where collections
are ordered by the number of relevant documents each is estimated to contain.

Algorithm Performance

These four algorithms have been evaluated over several, varied test data sets, though pri
marily these have stemmed from the original TREC document corpus.

Of the algorithms, ReDDE is perhaps considered the benchmark for comparison: in
their initial evaluation, Si and Callan [49] found it to perform at least as good as CORI (using
the 1Zn metric). ReDDE and CORI have been used as benchmarks in the evaluations of the
UUM, CRCS and SUSHI algorithms.

Si and Callan’s [50] evaluation of UUM found it to always outperform CORI, and on av
erage to perform better than ReDDE. However, possibly due to the complexity of the algo
rithm, no comparison between UUM and the other two algorithms has been made.

The SUSHI algorithm appears to be the weakest of the four, often exhibiting perfor
mance below that of CORI. CRCS showed similar performance to ReDDE, in evaluations
in which it features [47, 57].

Summary of Collection Selection Algorithms for Uncooperative Environments

The four algorithms described above have been designed for use in uncooperative environ
ments, where collection statistics are not readily available. As such, collection orderings are
produced on the basis of a sample of documents, taken from each collection. The imple
mentations of the algorithm vary, but in essence the techniques used aim to either estimate
the number of relevant documents in each collection (recall focused), or estimate which
collections feature the highly relevant documents (precision focused).

The two strongest algorithms, ReDDE and CRCS, may also be applied to a cooperative
environment, where document statistics are available. However, execution of these algo

36

2.5. Query Performance Predictors

rithms in such an environment would be expensive. It is essentially a brute force approach,
ranking the thousands or millions of documents first, before calculating which collections
contain the most or best documents.

2.5 Query Performance Predictors

In this section we present an additional class of algorithm that may be applicable to the
collection suggestion problem: namely, query performance predictors. We give an overview
of this domain in the following section, followed by details of evaluation techniques and
discussion of the algorithms.

2.5.1 Overview o f Query Perform ance Prediction

The aim of query performance prediction (also know as query difficulty estimation [26]) is
to estimate the retrieval effectiveness of a query, on the search system to which it was sub
mitted [26]. That is, the quality of the results the system returns for the query, for example
in terms of precision [61,27]. If a query is estimated to perform poorly at the search engine,
attempts can be made to improve the retrieval performance: for example, by performing
query term expansion, requesting that the user reformulate the query, or submitting the
query to specialist collections [27, 64].

In the collection suggestion scenario, query performance predictors could be used to
rank collections, based on the estimated quality of the returned results. Indeed, it has pre
viously been suggested that query performance prediction techniques could be applied
to both the collection selection and results merging problems associated with federated
search [61, 65,62].

There are two categories of query performance predictors, namely, pre-retrieval and
post-retrieval. Pre-retrieval predictors use query term and collection statistics to estimate
the performance of the query, before the search is executed. Conversely, post-retrieval pre
dictors operate on the returned result list, and thus more accurately measure the perfor
mance of the query. However, if the results are found to be poor by post-retrieval prediction,
the search must be performed again with the reformulated query [27].

For application to collection suggestion, post-retrieval predictors are not suitable: if we
were to evaluate a query against all collections and their documents, we would waste com
putation resources (similar to the problems associated with federated search), particularly
if we were to amend and resubmit the query. As such, the statistic-based pre-retrieval pre
dictors are favourable for collection suggestion; it is algorithms of this type that we evaluate
for suitability for collection suggestion.

Hauff [26] discusses and evaluates a great variety of query performance prediction al
gorithms. Here, we discuss a sample of algorithms that may be applicable to collection
suggestion and choose a smaller number to evaluate with respect to this task. We cover two
groups of predictor: those that operate using term and collection statistics, and those that
measure query-collection similarity and query term distribution. Prior to discussing these
algorithms, in the following section we give a brief overview of the evaluation practices for
query performance prediction.

37

2. Literature Review

2.5.2 Overview o f Query Performance Prediction Evaluation Techniques

For query performance prediction, algorithms are evaluated based on their ability to pro
duce scores (for a search system or collection) that correlate to actual retrieval quality at
that resource [28].

As such, the evaluation strategy in this domain is as follows. For the test queries and a set
of documents, document ranking algorithms such as tf-idf and BM25 are used to rank the
documents. This represents the actual performance of a search system. This performance
is quantified using traditional document retrieval performance measures, such as average
precision, or precision at document cut-off values (P@10, for example) [28,64].

Given a score (estimate of retrieval performance) for the test collection, produced by
a query performance predictor, the correlation between the query performance predictor
and the measure of actual retrieval effectiveness is calculated [28,64]. That is, we are exam
ining whether the query performance prediction score accurately estimates actual retrieval
effectiveness.

Given this overview of evaluation practices for query performance prediction, in the fol
lowing sections we discuss the state of the art algorithms in this domain, and their reported
effectiveness................................... ..

2.5.3 Term and Collection Statistic-Based Predictors

In their work on pre-retrieval query performance predictors, He and Ounis [28] present and
test six algorithms they believe may be useful for indicting the retrieval performance of a
query. The algorithms, which use basic term and collection data, are specified as follows;

Query Length: The query length (qt) is the number of non-stop words in the query [28].

Distribution of Informative Amount (1): The Distribution of Informative Amount (y 1) for
a given query is represented as:

7 1 = a idf

idf,t) = ~ N‘
log2(N + l)

where:

a idf is the standard deviation of the inverse document frequency (idf) of the query terms;

N t is the number of documents the query term t appears in; and

N is the number of documents in the whole collection [28].

38

2.5. Query Performance Predictors

Distribution of Informative Amount (2): A second definition for the Distribution of In
formation Amount (y2) may be specified as follows:

^2 - *^max
inin

^ log2(JV+l)

where:

idfmax ’1 S the maximum id/among the terms in the query q;

idfmin *s minimum id f among the terms in the query q ;

N t is the number of documents the query term t appears in; and

N is the number of documents in the whole collection [28].

Query Scope: This predictor measures the generality of a query, and is defined as follows:

n Q
a = - log ^) >

where:

nq is the number of documents containing at least one of the query terms; and

N is the number of documents in the whole collection [28].

Simplified Clarity Score: The clarity of a query is inversely proportional to its ambiguity.
The Simplified Clarity Score (SCS) for a query is given by:

SCS = £ P m,(u/|4)-log2 i>m!("'l'7)

q if
Pml(w\q) =

ql

Pcoll(w) =

t PCOttW
f

tfcoll
tokenco ̂ i

where:

q if is the number of occurrences of a query term in the query;

ql is the number of terms in the query;

tfcotl is the number of occurrences of a query term in the whole collection; and

tokencou is the number of terms in the collection [28].

39

2. Literature Review

Average Inverse Collection Term Frequency: According to Kwok [34], the inverse collec
tion term frequency can be seen as a replacement for idf. This predictor uses the average
inverse collection term frequency of the query terms (AvICTF) to infer query performance,
and is given by:

log
AvICTF = ---------------- ' ,

ql

where:

ql is the number of terms in the query;

tfcou is the number of occurrences of a query term in the whole collection; and

tokencou is the number of terms in the collection [28].

The effectiveness of these predictors was evaluated by He and Ounis, using data from
discs 4 and 5 of the TREC document corpus. The documents within were combined into
a single collection. A total of 249 associated test queries were executed, divided into three
types: short queries (2.62 terms on average), normal queries (7.94 terms on average) and long
queries (21.75 terms on average) [28]. As such, the effect of query length on the performance
of the predictors could be investigated.

To assess the performance of the predictors, He and Ounis measured the correlation
between the scores produced by the predictors, and the average precision of the actual re
trieval effectiveness, which was simulated using both BM25 and PL2. Average precision
scores from both document ranking algorithms yielded similar correlation values; we sum
marise the findings as follows:

- Query length (ql) as a predictor is weakly correlated with average precision.

- Distribution of Informative Amount (1) (yl) has strong correlation with average pre
cision in all test cases. It is most effective over normal and long queries.

- Distribution of Informative Amount (2) (y2) is not as effective as y l; the correlation
with average precision is not statistically significant in all test cases.

- Query Scope (w) has significant correlation with average precision for short and nor
mal length queries. However, the effectiveness of the predictor decreases as query
length increases.

- Simplified Clarity Score (SCS) has strong correlation with average precision in all test
cases, however there is some decrease in effectiveness as query length increases.

- Average Inverse Collection Term Frequency (AvICTF) shows similar performance to
SCS, and is the most effective predictor over short queries [28].

40

2.5. Query Performance Predictors

As such, He and Ounis [28] state that AvICTF and SCS were the most effective predictors
for short queries, and yl, AvICTF and SCS were the most effective for normal to long queries.
Therefore, these three predictors maybe suitable for practical applications [28]. In addition,
He and Ounis note that, although query length can affect retrieval performance (as observed
in the findings above), query length on its own is not an effective performance predictor.

In the following section we consider additional query performance predictors, that con
sider query-collection similarity and distribution of query terms.

2.5.4 Similarity and Variability Evidence-Based Predictors

Zhao et al. [64] specify and investigate pre-retrieval query performance predictors that may
be classified into two groups: algorithms that measure the similarity of a query to the col
lection as a whole, and algorithms that measure the distribution of query terms among the
documents in the collection. Both of these strategies have been used in the collection selec
tion domain, and thus they may be of interest for the collection suggestion problem.

We discuss the similarity- and distribution-based algorithms in the following sections,
followed by an overview of Zhao et al.'s empirical findings.

Similarity-Based Measures

There are three similarity-based measures, defined by Zhao et al. as follows:

SCQ: Given a query q consisting of terms tn, the similarity score between the collec
tion and query may be defined as:

N is the number of documents in the collection c;

fc,t is the number of occurrences of term t in the collection c; and

f t is the number of documents that contain term t [64].

Since this metric accumulates the contributions of the collection term frequencies and in
verse document frequencies of all query terms, Zhao et al. state that it will be biased towards
longer queries. As such, they suggest a normalised metric, given below.

NSCQ: This metric is the SCQ score divided by the number of query terms that occur in
the collection:

where:

V is the vocabulary of the collection [64].

SCQ

where:

41

2. Literature Review

MaxSCQ: This predictor assumes that the performance of a query is determined by the
query term that has the highest SCQ score [64]:

where:

N is the number of documents in the collection c;

f Ctt is the number of occurrences of term t in the collection c; and

f t is the number of documents that contain term t [64].

Distribution-Based Measures

In addition to the three similarity-based measures given above, three distribution-based
measures (following a similar format) are also defined by Zhao et al.; we repeat them here,
as follows:

o i: Given a query q consisting of terms t\ , ..., tn, the basic distribution score is defined as
the sum of the deviations:

where:

N is the number of documents in the collection c;

fd,t is the frequency of term t in document d;

f t is the number of documents that contain term t\ and

<2)t is the set of documents that contain query term t [64].

o 2'. Here, we normalise o \ by the number of query terms that occur in the collection:

MaxSCQ max
teq

(l + ln(/d,f)) xln(l + ^)

'Lde®t w d,t

\® t\

\<j\ t e r

42

2.5. Query Performance Predictors

a 3: This predictor estimates the performance of a query based on the maximum deviation
from the mean, that is observed for any one query term [64]:

N is the number of documents in the collection c;

fa t is the frequency of term t in document d;

f t is the number of documents that contain term t; and

@t is the set of documents that contain query term t [64].

Combination Measure

Finally, Zhao et al. give a seventh predictor, which combines the attributes of the two groups
of algorithm. This is specified as follows:

joint: For each query term t in query q, this predictor combines both the MaxSCQ and o\
scores:

a is a parameter that specifies the weight given to the SCQ and distribution score compo
nents; Zhao et al. [64] suggest values between 0.7 and 0.85.

Sum m ary of Predictor Performance

Zhao et al. evaluate their query performance predictors using a number of document and
query sets, so that the performance over different types of data can be examined.

The data sets used are: TREC GOV2 (consisting of HTML documents, and text from PDF
and Word documents), WTlOg (a crawl of the web in 1998), and the 2005 Robust Track col
lection (newswire data). Each data set has queries and relevance judgements associated
with it.

As in Section 2.5.3, with the work of He and Ounis [28], the correlation between the pre
dictor scores and the actual performance (average precision) is measured. In this instance,
AvICTF and SCS are also tested, to serve as baselines for the new predictors.

where:

joint = a • MaxSCQ + (1 - a) • o \ ,

where:

43

2. Literature Review

Zhao et al. conclude from their results that both similarity between the query and the
collection, and the distribution of terms are important in the prediction of query perfor
mance, over their test collections. The jo in t predictor is evaluated as the most effective; it
strongly outperformed AvICTF and SCS on web data, and gave comparable performance to
those over newswire data. Zhao et al. also state that “the new predictors offer a significant
advantage over previously proposed pre-retrieval predictors, because the performance of
the latter varies drastically between data types.”

2.6 Summary

In this chapter we have provided a comprehensive discussion of existing literature, relevant
to addressing the collection suggestion problem specified in Chapter 1. Specifically, rele
vant material addresses work in the domains of traditional document retrieval evaluation,
collection selection algorithms and their associated evaluation techniques, and query per
formance prediction algorithms.

An effective collection suggestion search service (for identifying authoritative collec
tions) requires an effective algorithm for ranking collections with respect to a user’s query.
As we have discussed in this chapter, there are a large range of existing collection ranking
algorithms (from the domain of collection selection), and algorithms that could legitimately
be applied to the task of ranking collections (query performance predictors).

As such, in Chapters 6 and 7, we examine whether these existing algorithms may be ef
fectively applied to the collection suggestion task. To this end, we select a sample of those
algorithms discussed in this chapter: bGlOSS, CORI, Zobel’s four lexicon inspection algo
rithms, cvy DFPROP, Distribution of Informative Amount (1), SCS, AvICTF and NSCQ. We
have selected the algorithms found to be effective in their original applications, and those
whose underlying theories relate to the objectives of collection suggestion.

Notably, we omit from evaluation the n-term indexing based techniques (Section 2.4.7),
Decision-Theoretic Framework (Section 2.4.8), and the algorithms for uncooperative envi
ronments (Section 2.4.9). The n-term indexing and uncooperative environments based al
gorithms require all documents across all collections to be ranked for each query. As such,
these algorithms are expensive to execute on large collections (more so than algorithms us
ing summary collection statistics). We omit the Decision-Theoretic Framework due to its
requirement of cost data (monetary and access time, for example) for the collections, and
its emphasis on retrieving documents from the best collection.

In addition to investigating the performance of existing algorithms, with respect to the
collection suggestion task, we also develop our own algorithm, with the view of achieving
superior performance.

In conducting an evaluation of algorithms for collection suggestion, we look to follow
accepted and established evaluation techniques where possible. In instances where these
techniques are not entirely suitable, or are deficient, we amend them to suit the require
ments of the collection suggestion problem, and ensure that our work draws from previous
practices.

44

2.6. Summary

For example, as discussed in this chapter, the majority of collection selection algorithm
evaluations have utilised synthetic test data collections formed from the TREC document
corpus. These collections offer a controlled environment in which to test algorithms. How
ever, previous work has also highlighted that these collections may be unsuitable for eval
uation purposes, as they are not representative of a realistic operational environment (see
Section 2.3.3).

As such, for our experiments we will utilise the commonly used TREC-based test data
sets (in order to observe the strengths and weaknesses of algorithms in a controlled setting).
However, we will also develop and use a large test data set, formed from real collection data.
While previous work has utilised real collection test data, such data sets have been small,
featuring only a handful of collections. We discuss our choice of test data and its justification
further in Chapter 4.

We have seen throughout this chapter that information retrieval system evaluations
(both traditional document-based, and collection selection) tend to take a descriptive ap
proach to analysis of results. Deductive analysis, which quantifies the significance of results
and differences between results, is often neglected. As such, in our evaluation of algorithms
we will perform statistical testing on performance scores, where appropriate. Thus, we can
indicate the quality of scores achieved: whether an algorithm is good enough, as well as
whether it is better than another algorithm. We discuss our evaluation approach in detail in
the following chapter.

45

Chapter 3

Collection Suggestion Evaluation
Methodology and Toolkit

As discussed in Chapter 1 of this thesis, our work is motivated towards the development of a
search service operating over digital collections. Such a service is intended to support users
looking to find domain-specific, authoritative collections (we refer to this task as collection
suggestion). However, there are several prerequisites for any such effective service to be
developed; it is these prerequisites that we address in our work.

We suggest that a collection suggestion service should take a similar form to a traditional
document search service: a search interface allows the user to enter their query, comprising
keywords from their topic of interest. The user will then be presented with a ranked results
list of collections, with those deemed most suitable by the service appearing at the top of the
list. The user may then follow links to the recommended collections, to search and browse
for material of interest.

However, in order to effectively rank collections with respect to the user’s query, we re
quire a suitable algorithm; this is one precondition of developing a collection suggestion
service. In the previous chapter we discussed a variety of algorithms, from the domains
of collection selection and query performance prediction, that may be applicable to the
collection suggestion task. Investigating the suitability of these algorithms for collection
suggestion (and identifying an optimal algorithm for the task) calls for a methodical and
rigorous evaluation methodology. Ideally, this should be consistent with the expectations
of information retrieval research. Therefore, developing an appropriate algorithm evalua
tion methodology is another precondition of developing an effective collection suggestion
search service.

As such, in this chapter we discuss our approach to evaluating the suitability and perfor
mance of algorithms, with respect to the collection suggestion task. We begin, in Section 3.1,
with a brief overview of the methodology, and follow with in-depth descriptions of the var
ious components, in Sections 3.2 to 3.4. In addition, in Section 3.5 we discuss the various
tools we have developed to support our empirical work.

We note here that in our empirical work, we are solely interested in the effectiveness

47

3. Collection Suggestion Evaluation Methodology and Toolkit

of algorithms at ranking collections. We do not conduct any user-based evaluations to in
vestigate the value or effectiveness of a collection suggestion search service from a user’s
standpoint. Such evaluations require a mature prototype (implementing a suitable ranking
algorithm) to produce useful and reputable results; as we have discussed, development of
such a prototype first requires fundamental research.

3.1 Overview of Evaluation Methodology

In order to conduct a rigorous evaluation of the effectiveness of algorithms, with respect to
the collection suggestion task, we employ two methods.

Our principal method follows the evaluation strategy used in the related domain of col
lection selection: as discussed in Chapter 2, a variety of performance measures are used to
measure how closely an algorithm produces an ordering of collections that matches a base
line ranking of collections. This baseline often represents the ideal ordering of collections
for a given query. However, lower bound baselines are also utilised to help put performance
scores into context.

The objectives of collection suggestion differ from those of collection selection. In col
lection selection, the aim is to maximise relevant documents returned to the user, while
minimising the number of collections to search; as such, collections are ranked by their
likelihood of containing many relevant documents. Collection suggestion however, aims
to recommend collections about the query to the user; we propose that such collections
should have a large quantity of relevant documents, which account for a large proportion of
the whole collection.

Given these differences, we make adjustments to the original collection selection evalu
ation methodology, to suit the specific needs of collection suggestion. As such, in Section 3.2
we begin to discuss our approach to evaluating against baselines; this includes the specifi
cation of a new baseline ranking. In Section 3.3 we continue by presenting the performance
measures we use to evaluate the algorithm-produced collection rankings, with respect to
the baseline rankings.

The approach of testing against baselines is key to determining the performance of algo
rithms. However, as shown in Chapter 2, scores associated with the performance measures
are often averaged over a set of test queries. As a result, this approach could be said to take
a broad view of algorithm performance: how an algorithm reacts in special or interesting
cases is hidden.

Therefore, as an initial step in our algorithm evaluation methodology, we have devel
oped a set of abstract scenarios where we model hypothetical situations, involving only
a few collections. By performing this scenario-based testing, we can essentially put algo
rithms under a microscope: identifying their strengths and weaknesses, and determining
whether they rank collections in accordance with the specific goals of collection suggestion.
We discuss this technique and its motivation further in Section 3.4.

The scenario-based testing and testing against baselines approaches are complemen
tary: the former allows us to closely scrutinise the suitability of algorithms, and therefore
discard those that are clearly poor. The latter considers more general algorithm perfor-

48

3.2. Testing Against Ranking Baselines

mance, with regard to a variety of measures, and with findings averaged over a large set
of test queries.

The execution of scenario-based and baseline evaluations of a large number of algo
rithms presents the need for apparatus to support experimental work. As such, we have
developed programmatic tools to support evaluation of algorithms; we give an overview of
these in Section 3.5.

3.2 Testing Against Ranking Baselines

Our primary approach to evaluating the performance of algorithms, with respect to the col
lection suggestion task, is based on the established technique for evaluating collection se
lection algorithms. As discussed in Chapter 2, a ranking of collections produced by an al
gorithm (where collections are ordered by decreasing score, according to the algorithm) is
compared to a baseline ranking.

To perform testing against baselines, we require suitable test data. For collection sug
gestion this comprises a set of collections (groups of documents), a set of test queries, and
a set of document relevance judgements, indicating which documents are relevant to each
query. This follows established practices from document retrieval and collection selection
evaluation. We cover our choice of test data in detail in Chapter 4. However, we note here
that document relevance judgements are required for the generation of some baseline rank
ings.

A baseline ranking can take many forms, depending on the specific goals and focus of
the research. For example, in the related domain of collection selection, two baselines are
commonly used. The first, Relevance-Based Ranking (RBR), orders collections by the num
ber of relevant documents they contain (determined by document relevance judgements)
for the given query. This is considered an optimal baseline: the best performance, which an
algorithm should aspire to match, such that the higher ranked collections are most useful
to the user. The RBR baseline represents the goals of collection selection: to choose a small
num ber of collections to which the user’s query can be submitted. As such, it is prudent to
choose those collections likely to contain many relevant documents.

The second baseline often used in collection selection experiments is Size-Based Rank
ing (SBR). Here, collections are ranked in decreasing order of the number of documents
they contain. It is considered to be a lower bound on performance, and as such algorithms
should aim to perform better than this baseline.

For our collection suggestion evaluation, we will also use two baseline rankings. Like
collection selection, we will use the SBR baseline to represent a lower bound on perfor
mance. Algorithms that score worse than this baseline, according to the various perfor
mance measures, are unlikely to be suited to our task. As such, those algorithms can be
omitted from further evaluation.

Naturally, we want to identify the most effective algorithm; therefore our second base
line is an optimal one. We specify and use a new baseline, that represents the specific goals
of collection suggestion: we aim to recommend useful collections to the user, such that they
may search and browse them themselves. For this reason, a collection should be relevant,

49

3. Collection Suggestion Evaluation Methodology and Toolkit

as a whole, to the user's query; we do not want to user to have to wade through irrelevant
material.

Given this, for collection suggestion, a highly ranked collection should contain a large
number of relevant documents, but these documents should also constitute a significant
proportion of the collection (indicating the collection is about the query, or relevant as a
whole). It is these ideas from which we formulate an appropriate optimal baseline, for col
lection suggestion evaluations.

We specify two metrics: for a collection c, RSC is the share of all relevant documents the
collection has, while RPC is the proportion of documents in the collection that are relevant.
We formulate these as follows:

BSc = m BPr J RDA
R I I Del

where:

| R | is the number of relevant documents for a given query;

| Dc I is the number of documents in a collection c; and

| RDC | is the number of relevant documents in collection c.

The RSC and RPC metrics are essentially equivalent to the recall and precision measures of
traditional document retrieval. RSC is basically the recall score for the collection as a whole,
while RPC can be interpreted as within-collection precision.

To generate an optimal collection ranking for a given query, we utilise a technique used
(in document retrieval performance evaluation) to combine recall and precision into a sin
gle measure of performance. This measure is called the F-score [2], and is produced by
calculating the harmonic mean of recall and precision. The F-score has a value of between
0 and 1, and is highest when both components score highly [2]. Therefore, given the RSC
and RPC scores for each collection, we calculate their F-score by:

Fr = —1—|—L_
RSC ^ RPC

Our decision to combine RSC and RPC in this way was influenced by their similarity
to recall and precision, and the equal importance of each of the two metrics (we wish to
maximise both).1

In the context of collection suggestion, an F-score of 0 shows that there are no relevant
documents in the collection, while a score of 1 shows that a collection contains all available
relevant documents, and these make up the entire collection. Therefore, the higher the F-
score, the more relevant the collection as a whole, relative to the other collections.

1 An alternative approach to generating an optimal collection ranking, using the RSC and RPC metrics, could
be to calculate their weighted harmonic mean, where one component is assigned more importance than the
other. For example, giving more weight to the RPC component would emphasise the importance of the overall
relevance of a collection.

50

3.3. Performance Measures

We order the collections in decreasing order of their F-score; we refer to this optimal
ranking as the F-score Based Ranking (FsBR). The FsBR baseline is used to evaluate the per
formance of algorithms, using a variety of performance measures, discussed in the following
section.

3.3 Performance Measures

In this section we discuss the range of performance measures we will use to evaluate algo
rithms with respect to collection suggestion. Each measure considers a different aspect of
performance, allowing us to determine any particular strengths or weaknesses an algorithm
has.

Several of the performance measures presented have previously been used in evalua
tions of algorithms for collection selection (see Chapter 2), and are applicable to collection
suggestion. However, we also utilise additional measures, that reflect the specific objectives
of collection suggestion.

We first discuss a series of rank correlation coefficients, which allow us to examine the
similarity of two collection rankings. Following this we look at measures analogous to recall
and precision. Finally, we introduce new measures that look closely at algorithm effective
ness within the top rank positions.

3.3.1 Rank Correlation Coefficients

A rank correlation coefficient measures the similarity between two different orderings of a
set of objects. As such, we can use rank correlation coefficients to examine how closely an
algorithm produces an ordering of collections that matches a baseline ranking.

For our evaluation, we use three rank collection coefficients. The first, Spearman, is a
traditional and well-known rank correlation coefficient, and has previously been used in
evaluations for collection selection, by the likes of French et al. [16,17, 44]. The other two,
Blest and Da Costa, are examples of weighted rank correlation coefficients. That is, they
place importance on similarity within the top portions of the rankings.

The Blest and Da Costa weighted rank correlation coefficients are particularly useful for
measuring algorithm effectiveness for collection suggestion. Since we are recommending a
small num ber of collections to the user (those that score highest), correctly identifying and
ordering the best collections is important.

Each of these correlation coefficients produces a score between 1 and -1 . A positive
score indicates a positive similarity between the two rankings, with 1 indicating total agree
ment. In contrast, a negative score shows an inverse relationship, with a score of -1 showing
that the two rankings are the exact opposite of each other.

We describe the three correlation measures in the following sections. We note here that
a correlation score between a baseline ranking and an algorithm-produced collection rank
ing is calculated for each test query. The scores over all test queries are then averaged, to
give a single estimate of algorithm performance (this follows the convention of work in the
collection selection domain). As discussed later in this section, we perform statistical sig

51

3. Collection Suggestion Evaluation Methodology and Toolkit

nificance testing on these average correlations, to help interpret the strength of the scores
achieved.

Spearman Rank Correlation

As described previously in Chapter 2, some evaluations for collection selection (such as
those by French et al. [16, 17, 44]) have used the Spearman rank correlation coefficient to
measure the similarity between the lower bound Size-Based Ranking (SBR), and the collec
tion rankings produced by the algorithms under test. In this instance, a positive correlation
score suggests that an algorithm has a tendency to favour large collections, over smaller
(possibly more suitable) ones. Given this previous practice, we will also utilise Spearman in
this way.

However, the primary focus of our evaluation of algorithms for collection suggestion, is
to examine how closely the algorithm performances match that of our optimal baseline: the
FsBR baseline, described in Section 3.2.

As such, in contrast to collection selection studies, we also use Spearman rank correla
tion to examine the similarity between an algorithm-produced ordering of collections, and
our FsBR baseline.2 ..

In our calculation of the Spearman rank correlation coefficient, we use an alternative
equation to that specified in Chapter 2 . Given below, the equation, specified accounts for
the presence of tied ranks: that is, where collections are given the same score by an algo
rithm. Accounting for tied ranks is necessary, as all test collections are included in the rank
ings, regardless of whether they are deemed by the algorithm to have any relevance. As such,
several collections within the rankings (both baseline and algorithm-produced) may have a
score of zero.

Therefore, we calculate the Spearman rank correlation coefficient, rs between two col
lection orderings X (the baseline) and Y (the algorithm-produced ranking), as follows [37]:

r —
L ^ + L f - L d 2

r s —
2 V (L x 2H L y 2)

I *2 = (n3- n) / 12- £ r *

i y = («3 - n) / i 2 - £ Ti
T x = ff3 — r)/i2
Ty = Cr3 — r)/i2

I *2 = £ (X i - Y 0 2
i=1

where:

n is the number of collections we are ranking;

2We note here that other rank correlation coefficients, such as Kendall Tau, could also be used for this task.
Our choice of Spearman simply follows from its previous use in collection selection literature, as discussed in
Chapter 2.

52

3.3. Performance Measures

Tx and 7> are calculated for each group of tied rankings, in rankings X and Y;

t is the number of items within a particular group of tied ranks;

£ d2 is the sum of the squared rank differences of the collections, between the baseline
ranking and algorithm-produced ranking; and

Xi and Yi are the ranks of collection i, according to the X and Y rankings.

Weighted Rank Correlation

In addition to the Spearman rank correlation coefficient, we also utilise two weighted rank
correlation coefficients; we refer to these as Blest weighted rank correlation [3] and Da Costa
weighted rank correlation [8].

These two correlation measures place an importance on agreement between rankings
within the top rank positions. This is particularly relevant to the collection suggestion task:
the ultimate goal is to recommend to the user a small number of collections they would find
most useful, that they can search and browse themselves. As such, correctly identifying the
top few collections is very important: it is costly to the user (for example, in terms of time)
if they are sent to a sub-par collection.

As these two metrics are fairly new, and their application in this instance is novel, we use
both in our evaluation: agreement or similarity between the correlation scores produced by
each measure suggests reliability.

The Blest weighted rank correlation coefficient v, between two rankings, is calculated as
follows [31:

24 W
v = 1 ----------------------

n{n + l)2(n - l)
, . 2 n(n + l)z (n + 2)

w = 2 L (W + 1_I) ^ -----------24--------

where:

n is the number of collections we are ranking;

i is the current rank position, in the baseline ranking; and

<7i is the rank position within the algorithm-produced ranking, of the zth item in the base
line ranking.

The Da Costa weighted rank correlation coefficient rw, between two rankings, is calcu
lated as follows [81:

6 1 ^ (f t - QOHin - f t + !) + (« - Q, +1))
Tw n4 + n3 - n2 - n

where:

n is the number of collections we are ranking;

53

3. Collection Suggestion Evaluation Methodology and Toolkit

Ri is the rank position of the current collection, within the baseline ranking; and

Qi is the rank position within the algorithm-produced ranking, of the ith item in the base
line ranking.

For these two weighted rank correlation measures, we only calculate the correlation be
tween the optimal FsBR baseline and the collection rankings produced by the algorithms.
Since the measures focus on correct ranking at the top positions, it makes little sense to
perform analysis in this way against SBR: it is a lower bound, rather than the output we are
trying to achieve.

Statistical Significance

So far, we have discussed the rank correlation measures we will use to determine how closely
an algorithm-produced collection ranking matches a baseline ranking. As described, the
scores fall between -1 and 1, with a negative score indicating two ranks have an inverse
correlation, and a positive score indicating similarity.

However, as we touched upon in Chapter 2, simply stating a correlation score is not
enough, and it is inaccurate to use terms such as ‘strong’ or ‘weak’ to describe a correlation
score: they are open to interpretation. As such, how do we interpret what is a ‘good’ score,
and whether a score achieved by one algorithm is actually better than another?

The answer is statistical significance: a correlation score is statistically significant if it is
unlikely to have occurred by chance. The closer the correlation score is to one (either in the
positive or negative direction), the less likely it is to have occurred by accident (though the
likelihood also depends on how many items we are ranking).

In our evaluation, we will apply two tests of statistical significance. The first, (one-tailed)
t-test [37, p. 350], simply indicates whether a particular correlation score is significant (un
likely to have occurred by chance).

The second test, (two-tailed) Z-test [32, p. 35], is used to determine whether two cor
relations, for example from two different algorithms, are statistically significantly different.
That is, is one algorithm better than another.

When presenting our results from these tests (in Chapters 5, 6 and 7), we will state
whether the correlations are statistically significant at a 5% significance level (p < 0.05).

3.3.2 Recall and Precision Analogues

We recall from Chapter 2 that three performance measures that are analogous to recall and
precision have previously been used in collection selection evaluations. We summarise
these measures as follows:

- 7Zn is analogous to recall, and measures the fraction of the available merit from the
top n collections in the baseline ranking, that has been accumulated by the top n
collections in the algorithm-produced ranking. That is, with respect to the optimal
baseline, lZn measures how well an algorithm selects the best collections.

54

3.3. Performance Measures

- 1Zn is a slight adaption of 7Zn, and shows how much of the total merit (from all collec
tions, with respect to the baseline) has been accumulated by the first n collections in
the algorithm-produced collection ranking.

- V n is analogous to precision, and gives the fraction of the top n collections in the
algorithm-produced ranking that have non-zero merit. That is, the num ber of collec
tions that have some relevance to the query.

Despite a recent trend in collection selection literature to present performance results
using only the lZn measure, we will use all three measures in our evaluation of algorithms for
collection suggestion. This approach allows a thorough analysis of algorithm performance
from different angles. As such, we are better able to understand the collection suggestion
problem, and learn which performance measures are most useful.

For each measure, we present the results in the form of tables (showing scores achieved
at particular values of n) and graphs (plotting scores for all values of n). For each measure
we average the scores for each value of n, over all test queries. This gives a single measure
of performance at each value of n.

To support the interpretation of the scores, when producing graphs, in addition to the
algorithm scores, we also plot the optimal performance (the FsBR baseline against itself),
and the performance of the Size-Based Ranking (SBR) in relation to FsBR. Therefore, we can
observe the upper and lower bounds of performance.

Note that for these performance measures, we do not evaluate algorithms against SBR
directly: SBR is merely a lower bound, not a ranking we aspire to achieve.

3.3.3 Evaluation in Top Rank Positions

The performance measures we have presented so far are generally concerned with how
closely an algorithm produces a ranking of collections that emulates an optimal baseline
ranking. That is, we are aiming to rank every collection correctly.

However, for collection suggestion, the aim is to recommend a small number of collec
tions to the user, so that they may search and browse them themselves. As such, it is highly
important to correctly identify and rank the top few collections; since the user will likely not
be interested in the less suitable collections, accurately ranking those beyond the top few
positions is secondary.

We introduce and use two performance measures, Precision@5 and Correct@l, that al
low us to closely examine algorithm performance at the top of the collection ranking, rather
than over the ranking as a whole. While an algorithm may perform well overall, it may not
perform well enough at the top end of the ranking. We describe these two measures below:

Precision@5: For the top five collections in the algorithm-produced collection ranking, we
calculate the fraction of collections that should be ranked within the top five, accord
ing to the FsBR baseline. Specifically, for a given query, Precision@5 is calculated as
follows:

|Top 5 collections in baseline ranking n Top 5 collections in algorithm rankingl _ -

55

3. Collection Suggestion Evaluation Methodology and Toolkit

We average this measure over all test queries, to give a single representation of al
gorithm performance. An optimal score is 1: for all queries, the algorithm correctly
includes the best five collections within the first five rank positions (regardless of or
der).

Correct@l: Here, we calculate the number and percentage of test queries for which an al
gorithm correctly ranked the first collection: this is the first (and possibly only) col
lection a user will visit, and therefore it is important to get it correct.

3.4 Scenario-Based Testing

In Sections 3.2 and 3.3 we discussed our main technique for evaluating the performance
of algorithms with respect to the collection suggestion task: using a range of performance
measures to compare an algorithm-produced collection ranking to upper and lower bound
baseline rankings.

While basket-of-averages testing against a baseline via different performance metrics
gives a comprehensive view of algorithm performance, it lacks an ability to discriminate
specific cases. By examining specific searches, we may better understand the detailed ef
fects of different algorithms, and we can then seek to improve them in a systematic manner.

Therefore, as a preliminary stage in our evaluation of algorithms, we perform scenario-
based testing. Here, we specify a series of hypothetical situations, involving only a small
number of collections. This enables us to easily reason about the best ordering of the col
lections, according to the specific objectives of collection suggestion.

The scenario-based testing essentially provides a ‘health-check’ for algorithms. Due to
their simplicity, execution of these tests is cheap, enabling us to quickly determine which
algorithms are likely to be suitable for the collection suggestion task. As a result, we can rule
out poor performers, prior to executing the more comprehensive and expensive baseline
testing.

We provide further details of our scenario-based testing approach in the following sec
tions: in Section 3.4.1 we describe the format of the scenarios. Section 3.4.2 gives a summary
of the scenarios we model; a comprehensive specification of each scenario is given in Ap
pendix A. Finally, in Section 3.4.3 we give an overview of apparatus we have developed to
support the creation and management of test scenarios.

3.4.1 Format o f a Scenario

The scenarios we develop to support our evaluation of algorithms for collection suggestion
comprise two main components: a query, and a set of collections. This is similar to the stan
dard TREC model, where we have a search problem statement (query topic) and matching
documents (a set of documents and relevance judgements).

The query represents the information need of the user. In a scenario, the query is speci
fied in abstract terms, in the form t\ ... tn.

For each scenario, we model only three collections; we refer to these as Ca , Cb and Cc-
For each collection we specify the statistics that are likely to be used by the algorithms we

56

3.4. Scenario-Based Testing

are testing: the number of documents it contains, the total number of terms it contains, and
the term and document frequencies of each of the query terms.

By varying the quantities and ratios of the collection statistics, in addition to the query
length and number of query terms matched, we can create different test cases. As such, we
can identify any strengths and weaknesses of the algorithms, and determine whether they
rank collections in accordance with the goals of the collection suggestion task.

Due to the small number of collections modelled, it is easy to reason about the optimal
ordering of collections within a scenario. For collection suggestion, a highly ranked collec
tion should contain a large number of relevant documents, and these documents should
comprise a large proportion of the collection; this suggests the collection is about the query
topic.

These properties are expressed in criteria for highly ranked collections, specified by Zo-
bel [66]. They state that a collection should be ranked highly if for each query term:

1. The term occurs in the collection;

2. The term is common in the collection (relative to the other collections);

3. The collection contains a relatively high proportion of documents featuring the term;
and

4. There are likely to be documents in the collection in which the term is relatively fre
quent [66].

We use these criteria to reason about the best ordering of collections within a scenario.
However, in the interests of simplicity and consistency, we specify the attributes of the col
lections within a scenario such that the best ordering is always Ca ,Cb ,C c• That is, Ca is
always the best collection to match the query. Cb is considered a ‘runner up', while Cc is
always distinctly worse than the other two.

We note here that in the scenario-based tests, the aim of an algorithm is to produce a
collection ordering that exactly matches the optimal ordering. As such, for each scenario,
an algorithm may either ‘pass’ or ‘fail’ the test: it either produces an exactly correct ranking,
or it does not.

We provide comprehensive specifications of our set of scenarios in Appendix A; a sum
mary of each of the scenarios is given in the following section.

3.4.2 Sum m ary o f Scenarios

In Appendix A we provide complete specifications for our set of scenarios. However, a de
scriptive summary of the attributes of each scenario is provided below:

Si: Collections are equal in size. We vary the number of documents that contain the query
terms.

S2: Collections differ in size, but the proportion of documents that contain the query terms
(in Ca and Cb) is the same.

57

3. Collection Suggestion Evaluation Methodology and Toolkit

S3: Collections differ in size, but the quantity of documents that contain the query terms
(in Ca and Cb) is the same.

S4: Collections are equal in size. A single-term query is used. We vary the number of
documents that contain the query term.

S5: Collections are equal in size. Cb has the same term occurrences as Ca for some query
terms, but does not match all query terms.

S6: Collections are equal in size. Cb has higher occurrences of some query terms than Ca ,
but does not match all query terms.

S7: Collections differ in size. Cb is larger than Ca , with a higher quantity (but smaller
proportion) of matched documents. This scenario is intended to represent polysemy.

We note that these scenarios are not intended to be comprehensive or cover all possible
situations. They are a sample of situations (where we vary different collection attributes),
that are useful for ‘ruling out’ weak algorithms early on.

3.4.3 Scenario Adm inistration Tool

To support the creation and management of test scenarios, we have developed a Java ap
plication (which interfaces with a MySQL database) The interface for the tool is shown in
Figure 3.1.

The functionality implemented allows the display of all data associated with the scenar
ios. In addition, the user can add or remove a scenario, or append or remove collection and
term statistics from an existing scenario.

In the following section we given an overview of additional apparatus we have devel
oped, to support the execution of our evaluation experiments.

3.5 Test Execution Tools

Given the evaluation techniques we have discussed in this chapter, in Chapters 5, 6 and 7
of this thesis we undertake a large-scale evaluation of the suitability and effectiveness of
existing algorithms (alongside our own algorithm), for the collection suggestion task. Such
an undertaking presents the need for tool support: to enable us to easily execute tests on
different test data sets, and produce and analyse performance results.

Therefore, to facilitate the execution of our algorithm evaluation (via scenario tests and
test queries) we have developed two applications. The first application is a web service,
dubbed Doddle, and implemented using Java Server Pages. As shown in Figure 3.2, we have
developed a search interface which allows the execution of a query against a test data set,
using one or more of the algorithms implemented. The total execution time of a single test
query, using all implemented algorithms, is approximately two seconds.

58

3.5. Test Execution Tools

Scenarios

NAME
Scenario One
Scenario Two

Scenario Seven
Scenario Five
Scenario Six
Scenario Four

Repositories

DESCRIPTION
Three repositories; one specialised collection; one more general, one very general.
T h re e r e p o s i to r ie s tw o r e p o s i to r ie s c o n ta in s im ila r p r o p o r t io n o f te rm o c c u r r e n c e s w ith in th e d

Three repositories, one specialist collection, one collection containing same documents as first.
Three repositories similar sizes. one specialist collection: one general collection that does not
Three repositories: similar size: one general repository matches all query terms one general r
Three repositories, each matching only one query term.

...j

 I
DOCS NOM TERMS

18000

OCCURRENCES

53
NUM_DOCS r:d

Figure 3.1: Interface for tool to support the m anagem ent of test scenarios.

Upon execution of the query, a results page (see Figure 3.3) shows the collection ranking
produced by each algorithm, the scores associated with each collection, and the contribu
tions of each query term to a collection score. With these, we can gain insight into how a
particular ordering of collections has been achieved on a given query.

The web service also includes functionality to execute the scenario-based tests (see Fig
ure 3.4). A results page (Figure 3.5) shows the collection rankings produced by the algorithm,
collection scores, and whether the rank is correct. The execution time of a single scenario,
over all im plem ented algorithms, is less than half a second.

The second application is a (Java) com m and-line tool, which allows the batch execution
of a set of test queries, for all algorithms under test, over a chosen data set. In addition to
executing a set of test queries, the tool produces reports (CSV files) giving the performance
scores according to the various measures discussed previously in this chapter. The report
files can then be used to generate graphs (for example, using KTeX and the pgfplots3 pack
age) and tables, such as those given in Chapters 5, 6 and 7 of this docum ent, to support the
analysis of results and trends. Where appropriate, the application also calculates whether
perform ance scores are statistically significant. The total execution time for a batch of test
queries (including the generation of report files) ranges from between 20 m inutes and three
hours, depending on which data set (see Chapter 4) we are using.

ĥ ttp://sourceforge.net/projects/pgfplots/

59

D odd le - T est In te rface (H arvested R e p e r to r ie s)

* h ttp / / lo c a l hos t : SO 80 /D odd l«_Web_ App_F ront f i ndex .jsp

Doddle
Select algorithms to run:

a bGIOSS
I? COR I
0 C osine Measure
Q Inner Product
0 Skew
0 Highest-Available Similarity
a C ue Validity Variance
0 DFPROP
0 Distribution of Informative Amount
Q Simplified Clarity Score
0 Average Inverse Colection Term Frequency
0 N S C Q
0 S ize-B ased Ranking

Select index to search:

□ Title Index

Enter a query:

srt Doddle
0 Doddle_RC
G Doddte_RP
L Doddte_RF
B Doddle_RC+RP
8 Dodc#e_RC+RF
0 Doddie_RP+RF
O Doddie_x
0 Doddte_RCxRP
f Doddte_RCxRF
B Doddle_RPxRF
0 D oddle.W

0 Title and Description Index

Query: hidden mvfcov models (Execute!

Figure 3.2: Test interface allowing the execution of a query, with multiple ranking algo
rithms.

D odd le - T e s t In te rface (R esults)

* ► + fr* h ttp // lo c a lh o s t 80B0/Do«dle_W eb_App_From /Results.Jsp?algorlthm —C o riea ljo rith m -O o d : C |» A * Bingfi

Query: hidden martov models
Index Table: REPOSITORIES TITLE. ABSTRACT

• CWI

• Deep Blue al the University pt Michigan

- Enlighten (Glasgow!

• PubMed Central

• Durham Research Online

- BfjflPt. RqpQSI.tofY,a f,̂ ho jany .E firn ts ,[ROSE)

• Cardiff eP dflfegfiagygd

- Oxford Epnms

> Wolverhampton Intellectual Repository ar>d S-Theses

- Caltecn Computer Science Technical Reports

• University of C hester Digital Repository

- .Thg..U.n»y»rsa: Raeosfory
» p gM I Proof ings

DoddtoAlgo V1

0.43 713272001815853

0.4331018992653481

0.4311! 662365156

0.4302042037182154

0 42633980461000287

0.425155859901532

0 42479568219846925

0.4247578433372185

0 42379743884851294

0.42330550593841093

0.42318997105850257

0.2770304297889279

0 27647344926898837

0.276214953709899

0 13632342835572106

15874525882137944

1 0049023983192602

09820893170220064

0.8417303849220688

08811436607376153

Figure 3.3: A results page from executing a single test query, using two algorithms.

60

D odd le - T e s t in te rfa c e {A bstract S cen ario s)

H h ttp / /lo ca lh o s t 8080/D oddle_W eb_A pp_From /A bstractScenaries.jsp Q,- Sin̂

Select algorithm s to run:

O bO O SS
0 com
n Cosine Measure
Q Inner Product
9 Skew
Q Highest-Available Similarity
53 Cue Validity Variance
0 DFPROP
53 Distribution ot Inlormaiive Amount
q Simplified Clabty Score
53 Average Inverse Collection Term frequency
B N S C Q
Q Si re-B ased Hanking

Select abstract scenarios:

5* Doddle
0 Doddle _RC
53 Doddle RP
B D oddle, RF
0 Doddle RC+RP
O D oddle. RCvRF
Q Ooddle,.RP+RF
n Doddle _x
0 Doddle RCxRP
0 Doddle,.RCxRF
B Doddle RPxRF
n Doddle, W

0 Scenario One
"ttree repositories, one specialised co llec to r one more general: one very general,

0 Scenario Two
Three repositories; two repoaiiones oontain sim lar proportion ot » rm occurrences within Tie documents, but one Is significantly larger
that then other; thud repository is general

0 Scenario Three
Three repositories; orte specialist collection; one larger ooliecoort contains sam e documents as (1st collection; one general ooMection

0 Scenario Seven
Three repositories ono specialist collection: one collection containing sem e docum ents a s Itrst plus other docum ents mot share
vocabulary (polysemy problem); one general collection

0 Scenario Five
Three repositories: sim lar sixes; one specialist collection; one general collection that does net masch all query loin s one more
general collection matching only one query term

r Scenario Six
Three repositnne*; similar s a e . one general repository m atches all query » rrm : one general repository m atches som e query terms,
with higher occurrences; one general repository m atches only one quety term,

r Scenario Four
th roe repositories, each matching only one query term

Enter ■ query:

Figure 3.4:
algorithms

Query: tl t2 tl t$ ~!(twam) /A

Test interface allowing the execution of scenario tests, with multiple ranking

0 0 D o d d le - T e s t In te rface (R esu lts)

j <Shttp //localho5 t:8080 /D odd le_W eb_A pp , Front/TestToolResults .jsp ’scenarioType-ABSTRAC: C Q .' Bing

Doddle
Harvested Repositories Test Tool

S3 36 goc, ? duct; ccHftrto * 0.428
t# t3 ottc; 6 <kK*. o o m to « 0.427ft
M 63<xx; 14 t*xs; cnrftriR * <5 4293
t4 3 ccc; 3 docs cortfrfc « 0.4273
tS 6 ccc; 5 docs: contrfe * 0.4277

0.4280283712035735

0 4273135635250681

0 4268862479526153

Ranking C orrect
(A .B .C)

t3 36 occ. 7 skc* comnb * 2.0801
t2 13 occ: 6doca. cortoto * 1.476
tl: 53occ; 14 docs.co n ra t« 1.7136
t4: 5 cioc: 3 docs; contrfe « 1 3333
tS: 8cidc;5<*k*; coflfrto** 1 9667

8 500810320932272

4.618259638991346

1 8809300400763815

Ranking Correct
(A .B .C)

A
Figure 3.5: A results page from executing a scenario test, using two algorithms.

61

3. Collection Suggestion Evaluation Methodology and Toolkit

3.6 Summary

A primary contribution of this work is to conduct a large-scale evaluation of the effective
ness of a range of algorithms, with respect to collection suggestion. The motivation behind
this is to identify an optimal collection ranking algorithm that could be employed in a search
service for identifying authoritative collections.

To conduct such an evaluation, we require a rigorous and methodical evaluation strat
egy. For this, we will employ two complementary methods, as discussed in this chapter, and
summarised here.

As an initial stage of our evaluation, we have developed a scenario-based testing ap
proach. With this, we can examine algorithm behaviour on a small set of test cases, using
only a few collections. In this way, we can look closely at whether an algorithm seems to rank
collections in-line with the objectives of collection suggestion. In addition, we can observe
any interesting algorithm characteristics. As these scenario tests are cheap to perform, we
can use them to identify algorithms that are clearly unsuitable for the collection suggestion
task.

The second stage of our evaluation methodology supports a comprehensive study of al
gorithm performance. For this, we adapt and extend the established evaluation methodol
ogy used to evaluate collection selection algorithms, whereby a range of performance mea
sures are used to evaluate an algorithm-produced collection ranking, with respect to one or
more baseline rankings. With this technique findings are averaged over a set of test queries,
and the different performance measures used allow us to identify strong or weak aspects of
algorithm performance.

For the baseline testing, we use several performance measures previously used in col
lection selection evaluations: Spearman rank correlation, 1Zn, lZn and V n- However, of par
ticular interest to us for collection suggestion is algorithm performance within the top rank
positions: these are the collections the user is most likely to visit, so they must be correct.
To reflect this, we use two weighted rank correlation coefficients to measure performance;
these have not previously been applied to experiments involving ranking of collections. In
addition, we have specified two new performance measures, Precision@5 and Correct@l,
to further scrutinise performance within the top rank positions.

In the following chapter we continue to discuss our approach to evaluating algorithms
for collection suggestion, by exploring the test data we will utilise in the testing with base
lines portion of our evaluation.

62

Chapter 4

Test Data Sets

In the previous chapter we discussed our methodology for evaluating algorithms for the
collection suggestion task. Our principal strategy, testing against ranking baselines, follows
the approach traditionally used for evaluating collection selection algorithms: a variety of
metrics are used to determine how well an algorithm estimates an optimal ranking of collec
tions. To conduct a rigorous and robust evaluation of algorithms with baseline-based test
ing, we require appropriate test data. There are several key properties the test data should
exhibit: it should be reproducible, and consistent with both the intended operational envi
ronment, and the expectations of information retrieval research [25].

In document retrieval, evaluations of algorithms typically follow the Cranfield strat
egy [71. Here, a set of test queries is executed over a single set of documents. Relevance
judgements, indicating which documents are relevant to each query, are used to calculate
performance scores such as precision and recall. As such, test data sets comprise a set of
documents, queries, and associated relevance judgements.

In the domain of collection selection, an area highly relevant to collection suggestion,
evaluations also follow the Cranfield strategy. However, there are two differences in the ap
plication of the strategy, compared to document retrieval. First, test queries are executed
over multiple groupings (that is, collections) of documents. Secondly, the document rel
evance judgements are instead used to produce the optimal baseline ranking: in this in
stance, by ranking collections by the number of relevant documents they contain.

For our evaluation of algorithms for collection suggestion, we follow the composition of
test data sets used in collection selection experiments: collections of documents, queries,
and document relevance judgements. As such, the format of our test data sets will be con
sistent with commonly accepted practice. However, the question remains, how do we make
sure our test data is also realistic?

Ensuring a test data set is representative of the operational environment is a significant
challenge. In experiments involving ranking collections, a good data set would include a
number of different collections of varying size and subject matter. In addition, the content
of a given collection should, in general, follow a single topic or theme [10]. In collection
selection, there are two approaches to compiling test data sets. As discussed in Chapter 2,

63

4. Test Data Sets

the favoured and conventional approach is to create synthetic collections, typically using
discs 1-3 of the TREC document corpus. Here, documents are often grouped by date, and
the source from which they originated. An advantage of this approach is that queries and
relevance judgements are provided with the TREC corpus, making experiments easily repro
ducible. However, the TREC corpus comprises mostly news articles, and collections created
from the corpus tend to be small and heterogeneous. Such collections are representative
of neither the diverse material present in real digital collections, nor their size and subject
scope.

An alternative to synthetic TREC-based collections is to use real collection data, which
provides a more realistic sample of collection sizes and content. However, this presents
complexities: in addition to gathering collection content, queries and document relevance
judgements must be produced. It is likely for these reasons that the few evaluations of col
lection selection algorithms using real collection data (for example, Gravano et al. [22], Yu-
wono and Lee [63] and Thomas and Hawking [56]), have used only a handful of collections:
a number too small to represent the operational environment.

It is clear, from empirical work in the collection selection domain, that it is difficult to
create a test data set that: is consistent with the expectations of the intended operational
environment, conforms to accepted information retrieval practices, and enables others to
reproduce experiments. Indeed, achieving this in a single test data set is impractical.

As such, to fulfil the above criteria, we use a two-pronged approach in our evaluation
of algorithms for the collection suggestion task: both established TREC-based data sets,
and new data sets comprising real collection data. To follow established practice we will
use several existing TREC-based data sets; these offer a controlled setting in which we can
scrutinise algorithms on collections exhibiting particular properties. More importantly, we
will also construct and use a realistic test data set, to form a critical part of our evaluation.

The remainder of this chapter discusses the test data sets we use. In Section 4.1 we sys
tematically review the previously used TREC data approaches. In Section 4.2 we present our
realistic data sets, and discuss their selection and construction in fine detail; given the lack
of established good practice in the area, this will be studied in depth. Finally, in Section 4.3
we summarise.

4.1 TREC Test Data Sets

The primary strategy for evaluating algorithms for collection selection is to use test data sets
(collections of documents and queries) that are derived from discs 1-3 of the TREC corpus.
An advantage of this approach is the provision of relevance judgements for each query topic.

However, as discussed in Chapter 2, such test data sets have limitations. For example,
the TREC corpus used contains documents from only seven sources (Wall Street Journal,
Federal Register, Associated Press, Department of Energy abstracts, Computer Select discs,
San Jose Mercury News and U.S. Patents), three of which contain exclusively news articles.
As such, the overall topic diversity of the documents is likely to be limited. In addition, the
partitioning techniques used to create the artificial collections within the data sets tend to
result in collections containing documents on several different topics. These factors suggest

64

4.1. TREC Test Data Sets

that TREC-based test data sets are not entirely realistic of the collection suggestion opera
tional environment, in which we expect there to be a mix of both specialist and generalist
collections, covering a diverse range of topics.

Despite this, using TREC-based data for our collection suggestion evaluation does have
value: it allows us to test algorithms in a more controlled environment than that offered by
real collection data sets (such as those we present in Section 4.2), and to mirror experiments
in the related collection selection domain.

During our evaluation of algorithms for collection suggestion, we will utilise six estab
lished test data sets, built from the TREC corpus. Each test data set exhibits different proper
ties, such as differences in document groupings, collection sizes and distribution of relevant
documents. As such, we can examine the performance of algorithms over different condi
tions (recall from Chapter 2 that collection selection algorithms have been found to perform
differently on different data sets).

We discuss these TREC-based test data sets in the following sections, with summary
statistics given in Table 4.1: the first three data sets are from the work of French and Pow
ell [18,43]1, while the remaining data sets are attributed to Si and Callan [49], and are used
in several studies [50, 47, 56]. In addition, in Section 4.1.7 we provide details of the queries
associated with these TREC-based test data sets.

Table 4.1: Summary statistics for the TREC-based test data sets.

Documents Per Collection

Test Set Collections Total Min. Avg. Max. Avg. Doc. Length

SYM-236 236 691058 1 2928 8303 322.7
UDC-236 236 691058 2891 2928 3356 322.7
UBC-100 100 1078166 752 10782 39723 244.5’
2LDB-60COL 62 1078166 752 17390 232031 244.5
AP-WSJ-60COL 62 1078166 752 17390 242918 244.5
FR-DOE-60COL 83 1078166 752 12990 226087 244.5

4.1.1 SYM-236 (Source-Year-Month)

When developing the SYM-236 test data set, French et al. specified several requirements:
the data set should contain at least 100 collections, and documents should be grouped into
collections of related material [18]. It was felt that these requirements would produce a
suitably large and realistic test environment.

As such, SYM-236 was formed by partitioning the TREC corpus (discs 1 -3) first by source,
then by year, and finally by month. This resulted in 236 document collections of varying size,
containing documents related by source and time of publication.

1 Files mapping documents to each collection in French and Powell’s data sets can be found at: h ttp : / /
www. c s . V irg in ia . edu/~cyberia/testbed. html [43].

65

4. Test Data Sets

The SYM-236 data set contains a range of different size collections, as shown in Fig
ure 4.1. However, the collections may be considered to be fairly small overall, with an aver
age of just under 3000 documents per collection (see Table 4.1), and the largest collection
containing only 8303 documents.

In Figure 4.2 we see the distribution of relevant documents (according to the relevance
judgements) within the data set, and the number of queries for which each collection con
tains some num ber of relevant documents. When looking at the distribution of relevant
documents, we see that the larger collections tend to contain the most relevant documents,
and therefore match the most queries. As such, the SYM-236 test data set may favour an
algorithm correlated to the Size-Based Ranking baseline.

4.1.2 UDC-236 (Uniform-Document-Count)

The UDC-236 test set was developed in conjunction with SYM-236, and follows the same re
quirements. However, UDC-236 also has the additional requirement that collections should
be of roughly equal size (in terms of number of documents). By controlling the collection
sizes, performance differences relating to an algorithm’s preference of larger collections are
factored out, and thus we can identify other biases in the algorithms [43]..............................

Figure 4.3 shows the distribution of relevant documents for the UDC-236 test data set.2
We see that the relevant documents are more evenly distributed amongst the collections
than in SYM-236; however, the queries tend to be biased towards the collections whose doc
uments originate from the Associated Press and Wall Street Journal sources.

Due to the even distribution of documents and relevant documents, algorithms may
find this test data set more difficult than SYM-236, as differentiating between collections
may be more challenging: although there are over 200 collections, they stem from only
seven sources, and thus collections originating from the same source may appear similar.

4.1.3 UBC-100 (Uniform-Byte-Count)

The UBC-100 test data set was developed independently from SYM-236 and UDC-236, and
therefore was not influenced by the same requirements. Here, documents were split into
100 collections of roughly equal size (approximately 30MB each), with a given collection
containing documents from only one source [43].

As shown in Figure 4.4, like SYM-236, the collections in this data set vary in size. While
the largest collections in SYM-236 tend to contain most of the relevant documents, this is
not the case for UBC-100. As shown in Figure 4.5, some very large collections contain very
few relevant documents. Given this, algorithms that correlate with the Size-Based Ranking
baseline may struggle on this test data set.

Finally, we note that collections in this test data set are on average, over three times
larger (in terms of number of documents) than those in SYM-236, and there is greater vari
ation in the sizes of the collections.

2We omit a graph showing collection sizes in the UDC-236 data set as in this instance collection sizes are
uniform.

66

OOO'OI

ZIFF.90.12

ZIFF.90.01

ZIFF.89.01
WSJ.92.01

WSJ.91.01

WSJ.90.04
WSJ.89.07

WSJ.88.01

WSJ.87.01

SJM.91.01

PATN.92.01

PATN.91.01

PATN.90.01 5

PATN.89.01

PATN.88.01

PATN.87.01

PATN.86.03
PATN.85.07
PATN.84.02
PATN.82.06

FR.89.01

FR.88.01

AR90.01

AR89.01

AP.88.02
0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 O
(75 00' CO 1 0 CO CM r-H

O
V

00

6o
<4—1
T3<UU
P"POi-i
Cl,
<v

<L>co
oJ
4-J
03-p

CO
CO
CM

to
0Jx

u .a

sjuauinaoQ jo jaquinfyj

c_o
4—1uJU
o
V
c

X

cOJspo
o

"P
<4-1o
c
’4—>
p

X

■p
<vx

H

03
Pbp
E

67

11158

^403141519440926

Figure
4.2:

The
distribution

of relevant docum
ents, and

the
num

ber
of queries

for which
each

collection
contains

relevant docu
m

ents, in
the

SYM
-236

test data
set (reproduced

from
[43]).

Number of Queries/Documents

CT>O o
C£>O

*
*

X v
x x

X

• X
o z
5 Io a-SC n>(D£>
rt> -O
2. S=
rt> n>

no=
8do
3

X
X

10’68’dV

TO’OG'dV

I0'88dd

I0'68Hd

90'Z8'NXVd
Z0'fr8‘NXVd
Z0'S8’NXVd
£0'98NXVd

107.8‘NXVd

T0'88’NXVd

I0'68'NXVd

10‘06'NXVd

T0'Z8'ISM

TO'88'ISM

Z0'68‘tSM
fr0'06'lSM

10‘16'ISM

2I'06HdIZ

1016'NXVd

TOZG'NXVd

10'16‘WfS

mm
I0'06ddIZ

o

68

100

X
Nu

m
be

r
of

qu
er

ies
 f

or
wh

ich

co
lle

ct
io

n
co

nt
ai

ns

at
lea

st
on

e
re

le
va

nt
 d

oc
um

en
t.

•
Of

 t
ho

se

qu
er

ie
s,

m
ea

n
nu

m
be

r
of

re
le

va
nt

 d
oc

um
en

ts
 i

n
th

is
co

lle
ct

io
n,

 +
/-1

sta

nd
ar

d
de

vi
at

io
n.

£

X s/ X
x

x ? X
X

v * X v x Xx 0 x
X v X X X v ^ X X

y) T X

$ X8x x f

x x x ^ X
X * X

Xxvx
V X X X X Xx

* ’ x

x Sx .
**x

X
X 2 XX x v

x:>s<
»

v x x

%
m $ h i
FR.10

FR.01
AR80

co•a
8=aou

X X

X X
x * x

' >#*
v x x

 22k

X

X

AR01
o
o o<T> o

00
ot'- o

CD
oLO oro

sjuauinDOQ/sauan^) jo jaquniM

69

Fi
gu

re

4.
3:

 T
he

di

st
rib

ut
io

n
of

re
le

va
nt

do

cu
m

en
ts

,
an

d
the

nu

m
be

r
of

qu
er

ie
s

for
 w

hi
ch

ea

ch

co
lle

ct
io

n
co

nt
ai

ns

re
le

va
nt

 d
oc

u
m

en
ts

,
in

the

U
D

C-
23

6
te

st
da

ta
se

t
(r

ep
ro

du
ce

d
fro

m
[4

3]
).

Figure
4.4: The

distribution
of docum

ents w
ithin

collections
in

Figure
4.5:

The
distribution

of
relevant

docum
ents,

and
the

the
U

BC-100
test data

set (reproduced
from

[43J).
num

ber
of

queries
for

which
each

collection
contains

rele
vant

docum
ents,

in
the

U
BC-100

test
data

set
(reproduced

from
[43]).

Number of Documents
I—. H-I to to w OJU1 o cn o cn o Ol

o o o o o o oo o o o o o oo o o o o o o
I~88dV

T68dV

T06dV

raoa
T~88Hd

I_68Hd
n _o i eNivd =
o ITGWfS
o'
3 rZ8(SM

I_88fSM

m m
rtddiz

rzduz
reddiz

ireddiz

Number o f Queries/Documents

I 88dV

I 68dV

O I SNIVd

O I 16WfS

TZ8ISM
I 88ISM

I IddIZ

70

Num
ber

of queries
for

which
collection

contains
at least

4
0

,0
0

0
1

„„
one

relevant docum
ent.

4088

4.1. TREC Test Data Sets

4.1.4 2LDB-60COL ("Representative”)

The 2LDB-60COL test data set was specified by Si and Callan [49], and was used in the evalu
ation of their ReDDE collection selection algorithm. They also specified two additional test
data sets, that we use for our experiments, discussed in the following sections. These test
data sets have been used in many subsequent, independent studies [50,47,56].

The motivation of the 2LDB-60COL, and the following test data sets, was to investigate
the effect of environments containing many "small” and a few “very large” collections [49].
The three test data sets investigate the effect of different types of very large collections; each
data set is formulated from the UBC-100 data set, described in Section 4.1.3.

The first data set, also referred to as “Representative”, is built by first sorting the collec
tions in UBC-100 by alphabetical order. Two large databases (called LDB1 and LDB2) are
then formed by grouping together every fifth collection, starting with the first collection,
and every fifth collection, starting with the second collection. The remaining 60 collections
remain as they were.

From Figure 4.6 (showing the number of documents in each collection), we observe
that the test data set contains many small collections of similar size, and the two very large
collections are around five times larger than the other collections.

Figure 4.7 gives the distribution of relevant documents within the collections. The two
large collections contain at least one relevant document for every query; indeed, on average
these collections have over 90 relevant documents per query: a much larger num ber than
any of the smaller collections. As such, an optimal ranking of collections in this test data
set may mimic the Size-Based Ranking baseline: on this test data set, ranking the larger
collections highly may be a good strategy.

4.1.5 AP-WSJ-60COL ("Relevant”)

The AP-WSJ-60COL test data set contains two very large collections called APALL and WS-
JALL. These collections were formulated by respectively combining the documents from all
of the Associated Press collections, and all of the Wall Street Journal collections (from UBC-
100) . The remaining 60 collections from UBC-100 remain unchanged [49]. The sizes of each
collection in this data set are displayed in Figure 4.8.

Since the Associated Press and Wall Street Journal collections contain a high concentra
tion of relevant documents, this is also the case for the APALL and WSJALL collections, as
shown in Figure 4.9. In addition, the majority of the query topics target these collections. As
is the case for the 2LDB_60COL test data set, an algorithm that tends to rank large collec
tions highly may perform well on this test data set.

4.1.6 FR-DOE-81 COL ("Non-Relevant”)

Following the same strategy used to produce the AP-WSJ-60COL test data set, FR-DOE-
81COL contains two large collections called FRALL and DOEALL. These collections com
prise all of the Federal Register and Department of Energy collections, respectively, from
the UBC-100 test data set. The other 81 collections from UBC-100 remain unchanged [49].

71

250,000

200,000

g 150,000

z 100,000

50,000

0
>"O N tro

XC

Collection

Figure 4.6: The distribution of documents
within collections in the 2LDB-60COL test
data set.

180

Number of queries for which -T
x collection contains at least

one relevant docum ent.

160 Of those queries, mean
number of relevant docu
m ents in this collection, +/-1
standard deviation.

100

XXXX

c
£
3uo
Q
.Si*cOJ
3O'

XX

tT1"

OBJ

Collection

Figure 4.7: The distribution of relevant
documents, and the num ber of queries
for which each collection contains relevant
documents, in the 2LDB-60COL test data
set.

72

250,000 460

200,000

2 150,000
ca>
B
35O
Q

V•A|
Z 100,000

50,000

o "n o 33 .W 00 5 sZ to
Iw c
Collection

S

Figure 4.8: The distribution of docum ents
within collections in the AP-WSJ-60COL
test data set.

440

420

240

220

200

180

160

140

05 ■Mcii
B
Bu o
O
V
| 120
a
o
a>Xi
£
3
z

100

80

60

40

20

Number o f queries for which
X collection contains at least

one relevant docum ent.

Of those queries, m ean
number of relevant docu
m ents in this collection, +/-1
standard deviation.

x
x * * x
x x x

x x>xTt
X^Xx*

m oo i i

T3 CD
I ^Z C£>
|W I

N

s
Collection

Figure 4.9: The distribution of relevant
documents, and the num ber of queries
for which each collection contains relevant
documents, in the AP-WSJ-60COL test data
set.

73

79

Figure
4.10:

The
distribution

of docum
ents

w
ithin

collections
Figure

4.11:
The

distribution
of

relevant
docum

ents, and
the

in
the

FR-D
O

E-81CO
L

test data
set.

num
ber

of queries
for w

hich
each

collection
contains

relevant
docum

ents, in
the

FR-D
O

E-81CO
L

test data
set.

Number of Documents

CJ1o
oo
o

oo
o
oo

o
oo

I 88dV

I ENlVd

n ri6WfS
ot=
$ I Z8ISM
ao

I TddIZ

toU1o
o
oo

Number of Queries/Documents

o
COO

I 88dV

I eNivd
n riGwis o

I Z8ISM

I TddIZ

X

y<

X y X

A

too

a a. o

c
5‘ 2
g S _
n 5 o S
n 32 3o I
3 3 * cr+ <T>

p 2 . D 0) a . <
2 g

S. r*fD ^ -

74

46^44207

4.2. Building Realistic Test Data from Open Access Repositories

While FRALL and DOEALL are larger than the other collections in this data set (observed
in Figure 4.10), they have a fairly low density of relevant documents, as shown in Figure 4.11.
As such, an algorithm that tends to select larger collections over smaller ones may perform
poorly on this data set.

4.1.7 Queries

In selecting the query topics to use with the TREC-based data sets, we follow the work of
Powell [43]: due to the coverage of relevance judgements across the three TREC discs, top
ics 51-150 are used in experiments; other topics do not have relevance judgements for all
collections used in our test data sets.

Again, following Powell [43], the chosen topics are formulated into two query sets: short
(Q5) and long (Q/). Short queries range in length from one to six terms, with an average of
3.35 terms; they are built from the Title field of the TREC topics. The Concepts field of the
TREC topics is used to form the long queries, which range in length from three to 103 terms,
with an average length of 23.63 terms. In this way, we can investigate the effect of query
length on the performance of the algorithms being tested.

For reference, Figure B.7 in Appendix B shows the number of relevant documents asso
ciated with each of the TREC topics used. We note that, from the previous graphs showing
distribution of relevant documents amongst collections, the queries are generally biased
towards the Associated Press, Wall Street Journal and San Jose Mercury News sources. This
may be because they are the largest original sources, and tend to be fairly generalist.

4.2 Building Realistic Test Data from Open Access Repositories

As discussed in the previous section, in the domain of collection selection, the conventional
approach to algorithm evaluation is to utilise TREC-based test data sets, which include syn
thetic groupings (collections) of documents. These provide a controlled environment in
which the specific attributes of algorithms can be investigated; however, they are not con
sistent with the intended operational environment. Investigating the performance of algo
rithms on realistic test data is important and valuable: it enables us to be confident that the
performance and behaviour observed in tests transfers to the operational environment.

Using real collection data instead of TREC-based collections for testing presents some
challenges, such as: gathering document data, compiling test queries, and arriving at docu
ment relevance judgements. Indeed, such is the difficulty of compiling an appropriate test
data set from real data, previous attempts [22, 63, 56] have resulted in data sets compris
ing only a few collections. Consequently, although the collection data itself is realistic, the
number of collections used is not. As such, there is evidently scope for improvement.

As part of our evaluation of algorithms for collection suggestion, our focal interest is on
the construction and development of a large-scale test data set, built from real collection
data. To this end, we present two test data sets, built from open access repository data: Ini
tial Test Data (ITD) and Refined Test Data (RTD). The ITD set is a preliminary test set, created
as a proof of concept, and to support the development of our own algorithm for collection

75

4. Test Data Sets

suggestion. The RTD set is a much larger data set, built following a more systematic ap
proach, and drawing on previous and accepted practice where appropriate; with this, we
can verify our findings from the ITD set.

In the following sections, we discuss our technical approach to gathering and managing
data from real collections, and present specific details of the composition of each of the test
data sets.

4.2.1 Gathering and Processing Repository Data

In experiments involving ranking collections, a test data set that is consistent with the in
tended operational environment should contain a suitably large number of collections of
varying size. In addition, there should be both specialist and generalist collections, cover
ing a range of subject areas.

The obvious strategy for compiling such a large and diverse test data set for collection
suggestion experiments is to use a sample of real digital collections. Thus, our test data will
incorporate precisely the type of collections we aim to serve, and is therefore both realistic
and representative of the operational environment.

However, gathering data from real collections presents a challenge: there are few pro
tocols that facilitate the systematic retrieval of material from a given collection. For exam
ple, the Z39.50 [1] protocol supports search and (metadata) record retrieval from remote
databases. However, using this protocol to gather collection contents is impractical. Since
it facilitates search, probe queries would be required to obtain the records within each col
lection. Fortunately, a viable alternative does exist: the Open Archives Initiative's Protocol
for Metadata Harvesting (OAI-PMH) [35].

OAI-PMH was developed specifically to enable digital repositories to expose metadata
records for the resources they contain, and therefore support the dissemination of scholarly
work. A client can access the metadata at a repository by submitting HTTP GET requests.
Responses to the requests are given as well formed XML documents, making it easy to pro
cess the data returned.

The protocol is widely implemented by institutional repositories and digital collections:
precisely the types of collections that a collection suggestion search service would aim to
target. Two primary suppliers of digital repository software, DSpace3 and EPrints4, have
implemented support for OAI-PMH. Locating repositories that implement the protocol is
straightforward, as there are many lists of registered data providers; for example, the Open
Archives Registered Data Providers list5, and OpenDOAR6. For these reasons, we used OAI-
PMH to harvest collection data for our realistic test data sets.

A consequence of using OAI-PMH, is that rather than retrieving full document text from
repositories, we are only able to access metadata (however, this would also be true of the
Z39.50 protocol, were it otherwise suited to our requirements). However, this is no bad

3http://www.dspace.org/
4http://www.eprints.org/
5http://www.openarchives.org/Register/BrowseSites
6http://www.opendoar.org/

76

4.2. Building Realistic Test Data from Open Access Repositories

thing: harvesting metadata offers smaller time and storage costs than gathering full doc
um ent texts, making the building of a large-scale operationally realistic test data set more
practical. In addition, accessing full document texts for indexing purposes may not always
be possible anyway: some repositories do not allow free access to full document content,
but do export metadata, to enable users to find the documents, in case they wish to pay
for them. For example, documents within the ACM Digital Library may be found via a gen
eral purpose search engine, but many can only be downloaded with a subscription to the
service.

Repositories that implement OAI-PMH are required (as a minimum) to return records
in the Dublin Core metadata format [35]. This offers a basic description of objects, and in
cludes fields such as: Title, Description, Subject and Type [31]. However, repositories may
also implement additional metadata formats, if they require more complex resource de
scriptions.

Since OAI-PMH repositories are guaranteed to implement Dublin Core, we harvest doc
uments in this format to construct our ITD and RTD sets. As such, we can be sure which
fields are available to use for indexing purposes. An interesting side effect of representing
collections with document metadata is that, as well as testing algorithms, we can also inves
tigate the optimal and minimal metadata required to accurately rank collections.

To facilitate this investigation we construct two term indexes from the metadata: one
containing terms from the Title metadata field, and one containing terms from both the Ti
tle and Description fields. We expect these fields to be present in the majority of records in a
repository, and anticipate them to provide descriptive terms that accurately reflect the topic
of the actual resource. Finally, when indexing the metadata we remove stop words, remove
punctuation, and stem terms with the Snowball English stemmer:7 processing terms in this
way is common information retrieval practice [2].

In the following sections we provide further discussion of the construction of the Initial
and Refined Test Data sets, and consider the properties of each. Section 4.2.4 discusses our
strategy for generating document relevance judgements for these data sets.

4.2.2 Initial Test Data (ITD)

The Initial Test Data (ITD) set is a preliminary test set, created to investigate the feasibility
of using OAI-PMH and metadata to form a test data set, and to conduct pilot experiments.

To create a realistic test environment, a suitable sample of collections of different types
is desirable. Digital collections vary in their scope and subject coverage: some are specialist
and cover only a single topic, while others are more generalist, and address several subjects
(for example, institutional repositories).

To select a representative sample of collections for the ITD set, we browsed the Open
Archives Initiative’s list of Registered Data Providers.8 This enabled us to select collections
with varying topic coverage and size.

Table 4.2 lists the repositories that were harvested for this data set, and the number of
documents they contained at the time (October 2010) they were harvested. Although the

7http://snowball.tartarus.org/
8http://www.openarchives.org/Register/BrowseSites

77

4. Test Data Sets

Table 4.2: Initial Test Data set collections.

Repository Name Number of Documents

1 DCMI Proceedings 16
2 Annals of Genealogical Research 20
3 The University of Brighton Repository 381
4 Caltech Computer Science Technical Reports 441
5 Oxford Eprints 555
6 University of Chester Digital Repository 816
7 Bristol Repository of Scholarly Eprints (ROSE) 1504
8 Digital Repository of the University of Wolverhampton 1644
9 University of Exeter 1685
10 Cardiff ePrints Caerdydd 4878
11 Durham Research Online 6556
12 CWI 11936
13 Enlighten (Glasgow) 32438
14 Deep Blue at the University of Michigan 61258
15 DSpace at Cambridge 206271
16 PubMed Central 1970516

Table 4.3: Summary statistics for the open access repository test data sets.

Documents Per Collection Avg. Doc. Length

Test Set Collections Total Min. Avg. Max. Titles Titles and Desc.

ITD 16 2300915 16 143807 1970516 7.40 53.96
RTD 100 1204048 7 12040 196224 6.72 45.62

number of collections is small, 16 in total, they do vary considerably in size: the smallest
has only 16 documents, while the largest contains nearly two million documents.

Table 4.3 provides a summary of the statistics associated with the data set. We note that
the length of documents in this data set are shorter on average than those in the TREC-based
data sets discussed in Section 4.1. This is because in this instance, the documents comprise
metadata, rather than full document text.

In a test data set, the test queries are just as important as the documents: they should
be relevant to the documents in the data set, as there is little benefit to testing a system on
queries that are unlikely to match any relevant material. For evaluation in the collection
suggestion scenario we require queries that challenge the algorithms: queries that aim to
target specialised collections, as well as queries that are much broader, and could match
several collections.

The ITD set contains a set of 50 test queries (listed in Section B.1.1 of Appendix B), a
quantity commonly used in collection selection experiments [6, 66]. The queries are in-

78

4.2. Building Realistic Test Data from Open Access Repositories

uo
Q

oua) J3

2,200 200
Number of queries for
which collection contains
at least one relevant doc
ument.

2,000 180

Of those queries, mean
number of relevant doc
uments in this collection,
+/-1 standard deviation.

1,800 160

1,600
140

1,400
120

1,200
100

1,000

800

600

400 xx

200 ■

*
T 1 H
14 16 2 4 6 8 10 12 14 16

Collection Collection

Figure 4.12: The distribution of relevant documents, and the number of queries for which
a collection contains relevant documents, for the ITD test data set, on the Title metadata.
The graph on the right is a magnification of the lower portion of the graph on the left.

formed by the harvested repositories: some queries consist of document titles (for example,
“fluorescence imaging endoscope for early detection of gastrointestinal malignancy”), and
are therefore intended to target specific collections. Other queries were assembled by ob
serving terms present in the Set and Keyword metadata fields, across all collections, and
devising general descriptions of a wide subject area (for example, “paediatric dentistry” or
“culture in tudor england”).

The queries range in length from one to ten terms, with an average length of 3.86 terms.
Although short, it is not unreasonable: Silverstein [51] has shown that web queries often
consist of three terms or less.

For reference, Figures B.l and B.2 in Appendix B show the number of relevant docu
ments associated with each query, depending on whether we are using only document ti
tles, or both titles and descriptions. The graphs in Figures 4.12 and 4.13 show how relevant
documents are distributed between the collections, and for each collection, the number of

79

4. Test Data Sets

2,200

2,000

1,800

1,600

1,400
wo§ 1,200
•80>
O' 1,000
ouQtXi 800

600

400

200

200
Number of queries for
which collection contains
at least one relevant doc
ument. 180

Of those queries, mean
number of relevant doc
uments in this collection,
+/-1 standard deviation.

160

140

120

100

i■

14 16 2 4 6 8 10 12 14 16
Collection Collection

Figure 4.13: The distribution of relevant documents, and the number of queries for which a
collection contains relevant documents, for the ITD test data set, on the Title and Descrip
tion metadata. The graph on the right is a magnification of the lower portion of the graph
on the left.

queries for which it has some relevance. These graphs allow us to observe the properties of
the data sets: specifically, the spread of relevant documents and scope of the queries.

We observe that the larger collections tend to be relevant to more queries, and they also
contain more relevant documents. The largest collection, PubMed Central, has on aver
age considerably more relevant documents than the others. This may be a side effect of
our technique for automatically generating relevance judgements (discussed later in Sec
tion 4.2.3), as few of our queries are specifically targeted at this collection. Due to the size
of PubMed Central, it may have more documents that have partial relevance to the query,
causing it to monopolise the relevant documents.

The presence of the PubMed Central repository may make the ITD set a challenging
environment for algorithms: while it is a large collection and may show some relevance to
most queries, it will often not be the most appropriate collection. As such, algorithms that

80

4.2. Building Realistic Test Data from Open Access Repositories

favour large collections with many moderately relevant documents may perform worse than
those that choose smaller collections, with documents of higher relevance.

In the following section we present our second open access repository test data set,
which contains a more balanced range of collection sizes.

4.2.3 Refined Test Data (RTD)

Our second set of test data built from open access repositories is the Refined Test Data (RTD)
set. Its construction followed a more methodical approach than that used for compiling the
Initial Test Data set. We will later use the RTD set to verify the results from the ITD set.

To select collections for the RTD set, we utilise the OpenDOAR9 repository directory,
which provides an API to programmatically retrieve data about the (approximately 2000)
collections it lists. Using the API we identified English language collections that implement
OAI-PMH. After processing the list of collections to remove any we found to be inaccessible,
we selected every n th collection, to give a sample of 100 collections. The selected collections
range in size from 7 to 196224 documents; full summary statistics are given in Table 4.3,
while the complete list of collections and their sizes is given in Table B.l, in Appendix B.

As with the ITD set, the test queries are formed from the contents of the test collections,
as this ensures our queries are relevant to the collections. Such an approach is taken by
TREC, where experts peruse documents in the test data in order to build query topics [25].
However, rather than manually writing queries, we use an automated approach.

Using the Kea10 key phrase extraction tool, we identify key phrases in each metadata
record (which consist of Title and Description metadata fields). We construct a term index
from the key phrases, and select the second quartile of most frequent terms as seed terms.
We use the second quartile of terms as they are likely to be common, but discriminatory;
terms from the first quartile are likely to occur in most collections, while terms from the
third and fourth quartile may be too specialist. Each seed term is submitted to the Yahoo!
Related Suggestions11 web service to generate query suggestions. From these query sug
gestions we take two random samples: one set of 50 queries, and another of 200 (see Sec
tion B.2.2 in Appendix B for lists of these queries). The chosen queries are between one and
seven terms in length, with an average of 2.39 terms. Again, this is short, but these are based
on real user queries, submitted to the Yahoo! search engine.

The graphs in Figures 4.14, 4.15, 4.16 and 4.17 show the distribution of relevant doc
uments amongst the collections, and the number of queries for which a collection is rele
vant, for both sets of queries and both term indexes. As with the ITD set in the previous
section, we see that as collection size increases, so does the number of queries for which the
collection is relevant, and the number of relevant documents it contains. This is not sur
prising: a large collection has the opportunity for a more varied vocabulary, and therefore
can match more query terms. In contrast to ITD, the distribution of documents, while not
even amongst collections, is much more balanced: there is no single collection that has a
considerably larger share of relevant documents.

9http://www.opendoar.org/
10http://nzdl.org/Kea
1Jhttp://developer.yahoo.com/search/web/Vl/relatedSuggestion.html

81

Figure
4.14:

The
distribution

of
relevant

docum
ents, and

the
Figure

4.15:
The

distribution
of

relevant
docum

ents, and
the

num
ber of queries for which

a
collection

contains relevant doc-
num

ber of queries for which
a

collection
contains relevant doc

um
ents, for

the
RTD

test data
set, on

the
set of 50

queries
and

um
ents, for

the
RTD

test data
set, on

the
set of 50

queries
and

Title
m

etadata.
Title

and
D

escription
m

etadata.

Number of Queries/Documents

U1
o

o
o

cn
o

ro
o
o

a a o
e. o-

00

Number of Queries/Documents

o
o

Ol
o

Ol
o oo

cn
oo

8- S
NOO

4̂O

<X>
o

CO
o

o

n©e=no
o’3

82

2
5

0
|

3
0

0

200

|
 ̂

Nu
m

be
r

of
qu

er
ies

for

wh

ich

co
lle

ct
io

n
200

|

v
Nu

m
be

r
of

qu
er

ies

for

wh
ich

co

lle
ct

io
n

02
-g

X
c
cd

uo
X
■4—1
c
cd

- >
C/2 O) ■4-4 -GG cu
QJ >-4

£ C
G Xu 5
o ^

■a o4-4 CJ
£ c > .2

.2 £

t4_l "o o U
G *5
O -C_o

I
co O

cu
-GH

sjuauinooQ/sauanf) jo joquinjvj

XG
cd

0/
Gcr
oo
CM

cu •
c/ 2 cd
Cd
cd 2

X 5
-!-> <U
C/2 (-4
<U G

n c
6 a
cg
o *n

-G <->
4-4 c/2

c2 Q
- -a

C/5 r - '■*“* id G ^ CU (U
£ s
G H

CM O 00 CO

sjuauitiDOQ/sauanf) jo aaqumfvi

<u
-C

X
G
cd

o
o

X!
G
cd

- >
c 13gj *-4
I IO GO
■a O
4-4 CJ

£ c > .2
.2 £
2 «

C4-4 OO cu
G «J
2" 3 cj 3 2

€ 54-4 >-l
C/2 O • ̂ cG

(U
-C
H

cb

cu
2 £

E G

X
G
cd
C/2

.2'G
<u
G
cr

o
o
CM
«4-i
O
4—4
<uCO
cu

J34— 4

G
O

4 - 4
0)c/ 2

cd
cd

X
4— 4
C/2
0)■4—4

Q
H
CG
0)

JG4-*
cd■4— 4
cdu*

a X
cd

C/5 £
e £
D 0)
£
G H

83

4. Test Data Sets

For reference, Figures B.3, B.4, B.5 and B.6 in Appendix B show the number of relevant
documents associated with the queries in the two query sets for the RTD set. The number of
relevant documents varies between queries, although on average there appear to be fewer
relevant documents per query than in the ITD set. This may be because of a bias towards
partially relevant documents in the PubMed Central collection in ITD.

For each of our open access repository data sets, we require document relevance judge
ments for each query: these enable us to produce an optimal ranking of collections, with
respect to the goals of collection suggestion. We discuss the production of the document
relevance judgements in the following section.

4.2.4 Relevance Judgements

In order to facilitate the evaluation of algorithms over our open access repository test data
sets, we require a set of relevance judgements (the documents that are relevant) for each
query. These relevance judgements are used to generate an optimal ordering of collections,
which the algorithms should aspire to match. We discuss the generation of the optimal
ranking in Section 3.2 of Chapter 3.

Test data sets comprising TREC documents have relevance judgements associated with
them. However, the two open access repository data sets are built from real repositories,
and as such we do not have relevance judgements linking documents to queries. For the ITD
and RTD sets, we apply a novel, programmatic approach, to produce surrogate document
relevance judgements.

As we are developing a test environment that is a realistic reflection of the likely opera
tional setting, we are dealing with sets of test collections that total millions of documents.
Assessing each document for relevance to every test query is impractical: not only for our
work, but also for the original TREC experiments [25]. As discussed in Chapter 2, to pro
duce relevance judgements TREC used the pooling method, whereby for each topic, each
participating document retrieval system submits its top n ranked documents into a topic
results pool. After duplicate documents are removed, the pool of results is passed to human
assessors, who decide which of the documents are actually relevant to the topic [25]. We
draw on this technique to create relevance judgements for our data. However, we forgo the
human assessor element, and instead opt for a fully automated strategy; given the size of
our data sets, assessing even a pooled sample of documents for every query would be very
labour intensive, and impractical within the scope of this work.

Using the Apache Lucene12 search engine library, we build a document index for each
open access repository data set. For each query the documents are ranked using two algo
rithms (facilitated by the Apache Lucene library): BM25 [42] and the Lucene search algo
rithm [15]. Each returns the top n relevant documents (where n is 0.1% of the total number
of documents harvested for the data set). The final set of relevant documents for each query
is produced by taking the intersect of the documents returned by the two algorithms. Thus,
a document is classed as relevant if both algorithms agree it is relevant.

12http://lucene.apache.org/

84

4.3. Summary

A comprehensive description of how we arrived at this technique, through empirical
means, is given in Appendix C. We note here that while we have taken a considered ap
proach to programmatically generating document relevance judgements, the technique has
limitations. We rely on the effectiveness of two document ranking algorithms; while these
algorithms are well established, their effectiveness is not optimal, as is evidenced in Ap
pendix C.

4.2.5 Repository Adm inistration Tool

The use of test data sets built from open access repositories requires apparatus to facilitate
the collection and management of this data. We have constructed such apparatus using
the Java programming language, and a MySQL database. Figure 4.18 shows the primary
interface for this tool, which provides the following functionality:

Add repository: add the details (such as name and URL) of a repository to the database, so
that it may be harvested in the future.

Delete repository: remove a repository, and all its associated data, from the database.

Full harvest: contact the repository via OAI-PMH, and retrieve the metadata (titles and de
scriptions) for every document currently held in the collection. Upon completion of
harvesting, the metadata is processed to produce a term index.

Update harvest: contact the repository via OAI-PMH, and retrieve metadata for documents
added, updated or removed since the last harvest of data. The associated term index
is rebuilt to reflect changes.

4.3 Summary

In seeking an effective algorithm for the collection suggestion task, we require a suitable
methodology and appropriate test data, to support the evaluation of algorithms with re
spect to the task.

As we have discussed in this chapter, a good test data set should be reproducible, rep
resentative of the operational environment, and consistent with the expectations of infor
mation retrieval research. It is clear, from previous work in the related domain of collection
selection, that it is difficult to produce a single test data set that exhibits these properties.

For example, the common approach of creating synthetic document collections from
the TREC document corpus offers a controlled test environment, where experiments are
easily reproducible by others. However, the synthetic collections built from TREC data are
generally not representative of a realistic operational environment: the TREC corpus con
tains primarily news articles, and so the collections generated tend to be small, with many
containing documents on a mix of unrelated topics.

Previous work in developing test data sets from real collection data has also been de
ficient: only a small number of real collections have been used. This is likely due to the

85

4. Test Data Sets

~ ^ _ „.,. ..
......... -

?
NAME URL OAI URL TOTAL DOCS LAST HARVEST
Caltech Graduate Aeronautical Lab http //caltechgalcitsm.library.calte /perl/oai2 7 2 0 1 1 -0 9 -2 1

2 Edinburgh Data Share http //datashare.is.ed.ac.uk /dspace-oal/request
13

2 0 1 1 -0 9 -2 1
3 Latin American Development Archi http //ladark.lib.utsa.edu /perl/oai2 2 0 1 1 -0 9 -2 1
4 CaltechMALN http //caltechmaln.library.caltech. /perl/oai2 72 2 0 1 1 -0 9 -2 1
s Caltech Graduate Aeronautical Lab http //caltechgakitfm.library.calte /perl/oai2 28 2 0 1 1 -0 9 -2 1
6 Caltech Large-Eddy Simulation an http //caltechlessgs.library.caltech /perl/oai2 29 2 0 1 1 -0 9 -2 1
7 ECS Student Portfolio (University of. http //portfolio.ecs.soton.ac.uk / cgi/oai2 37 2 0 1 1 -0 9 -2 1
8 Caltech Control and Dynamical Sys. http //caltechcdsir.llbrary.caltech. /perl/oai2 147 2 0 1 1 -0 9 -2 1
9 Nottingham Modern Languages Pu hnp //m lpa.nottmgham.ac.uk /per!/oai2 63 2 0 1 1 -0 9 -2 1
10 Te Tumu Eprints Repository (Unive . http //eprintstetumu.otago.ac.nz 7perf/oai2 69 2 0 1 1 -0 9 -2 1
U Caltech Archives Oral Histories Onl. http //oralhistories.library.caltech. /perl/oai2 110 2 0 1 1 -0 9 -2 1
12 Roehampion University Research R http //roehampton.openrepository /roehampton-oai/requ 1204 2 0 1 1 -0 9 -2 1
13 Glamorgan Dspace h tfp .//d sp acel.isd.gtam.ac.uk /dspace-oai/request 49 2 0 1 1 -0 9 -2 1
14 OpenDEPOT org http / / www.opendepot.org /cgl/oai2 132 2 0 1 1 -0 9 -2 1
IS Digit a ICommons#8ryant University http //digitakommons.bryant.edu /cgi/oai2.cgi 3281 2 0 1 1 -0 9 -2 1
16
17

CAV2001: Fourth International Sy . http //ca v 2 0 0 1 .Iibrary.cahech.edu /perl/oai2 111 2 0 1 1 -0 9 -2 1
Open Repositories 2 008 Publicatio hnp //pu b s.or08.ecs.soton.ac.uk /cgl/oai2 143 2 0 1 1 -0 9 -2 1

18 University of Birmingham Research hnp //eprints.bham.ac.uk /cgi/oai2 496 2 0 1 1 -0 9 -2 1
19 Glasgow Theses Service hnp://theses.gla.ac.uk /perl/oai2 20B1 2 0 1 1 -0 9 -2 1
20 Anglia Ruskm Research Online imp //angliaruskm.openrepository /arro/oai/request S39 2 0 1 1 -0 9 -2 1
21 University of Limerick Institutional http://ulir.ul.le /oai/request 948 2 0 1 1 -0 9 -2 1
22 CEDA Repository hnp://cedadocs. badc.rl.ac.uk /cgl/oai2 776 2 0 1 1 -0 9 -2 1
23 British History Online /oai/oal.aspx SSI 2 0 1 1 -0 9 -2 1
24 Otago University Research Archive hnp //otago.0 urarch1ve.ac.n2 /oai/request 1S47 2 0 1 1 -0 9 -2 1
25 University of Chester Digital Reposi. hnp.V/chesterrep.openrepository. /cdr-oal/request 994 2 0 1 1 -0 9 -2 1
26 MIMS EPrints (University of Manche hnp //ep rints.ma.man.ac.uk /perl/oai2 1240 2 0 1 1 -0 9 -2 1
27 RADAR (Oxford Brookes University) http //radar.brookes.ac.uk /radar/oai 1S22 2 0 1 1 -0 9 -2 1
28 Researchist Andrews hnp //research-repository.st-and. /dspace-oal/request 1111 2 0 1 1 -0 9 -2 1
29 Nature Precedings hnp //precedings.nature com /oai2 3011 2 0 1 1 -0 9 -2 1
30 DSpace at New York University hnp //archive.nyu.edu //request 32 70 2 0 1 1 -1 0 -0 7 *1

Figure 4.18: Interface for tool to support the m anagem ent of an open access repository data
set.

difficulties associated with gathering collection content, and producing test queries and
relevance judgements.

Given these difficulties, to provide a robust and diverse test environment (comprising
collections of documents, test queries and associated relevance judgements) for investigat
ing algorithms for collection suggestion, we use a com bination of several data sets. Specifi
cally, we use six existing TREC-based data sets (attributed to French and Powell [18, 43] and
Si and Callan [49]). Collection attributes varied in these data sets include collection sizes,
and distribution of relevant docum ents amongst the collections.

In addition to using the TREC-based data sets, we have developed two test data sets for
m ulated from data harvested from real digital repositories. While the first of these (the Ini
tial Test Data set) contains only a few collections and is considered as a proof of concept, the
second (Refined Test Data) is a large-scale data set (containing both general and domain-
specific collections), constructed in a methodical manner. We draw on previous practices
and techniques to select collections, and address the challenges of producing queries and
associated docum ent relevance judgements.

As such, with this com bination of data sets, we evaluate algorithms in both a controlled
setting (in which we can identify specific strengths and weaknesses of algorithms) and a
realistic setting. Such an approach is prudent: previous work in the collection selection do
main has shown algorithm perform ances can vary greatly over different data sets exhibiting
different properties.

86

4.3. Summary

In Chapters 6 and 7 we utilise the test data sets discussed here, to conduct a large-scale
evaluation of the effectiveness of a variety of algorithms, with respect to collection sugges
tion. Prior to this, in the following chapter, we discuss the development of our own algo
rithms for collection suggestion, and measure their performance.

87

Chapter 5

An Algorithm for Collection
Suggestion

In this chapter, we develop a new algorithm, designed specifically for the collection sugges
tion task. In addition, we test the performance of this algorithm, and that of its component
parts and alternative configurations.

5.1 Overview

In Chapter 1, we identified the need for a search service to assist users seeking domain-
specific digital collections. Given this need, our work focuses on addressing the fundamen
tal research required, towards developing a search service for collections. Of particular im
portance for such a service is an effective algorithm that can rank collections with respect
to a user’s query (in much the same way a traditional search algorithm ranks documents).

As demonstrated in Chapter 2, many algorithms have been developed for other do
mains, such as collection selection and query performance prediction, that may be effec
tively applied to collection ranking for the collection suggestion task. As such, towards iden
tifying an optimal algorithm, we thoroughly examine the suitability of these algorithms for
collection suggestion, in Chapters 6 and 7.

However, the algorithms within these domains were designed with objectives different
to those of collection suggestion in mind. For example, collection selection algorithms aim
to emulate a collection ranking in which collections are placed in decreasing order of the
number of relevant documents they contain. In query performance prediction, algorithms
aim to estimate the quality of document search results: that is, how easy it is to discriminate
between the documents in the collection.

The goal of collection suggestion is to identify authoritative collections: those that are
about the query topic. As such, a highly ranked collection should contain a large number
of relevant documents, and these documents should make up a significant proportion of
the collection. These criteria are not necessarily represented in the design of the algorithms

89

5. An Algorithm for Collection Suggestion

discussed in Chapter 2 (however the underlying theories of some algorithms suggest they
may be promising candidates for collection suggestion).

To ensure we have an optimal collection ranking algorithm for a collection suggestion
search service, a key contribution of this research is to develop a new algorithm, geared
specifically towards the objectives of collection suggestion. Thus, we aim to develop an
algorithm that exhibits performance superior to that achieved by the existing collection se
lection and query performance prediction algorithms.

To this end, in this chapter we discuss the development of our algorithm. Specifically,
in Section 5.2 we explore the foundations and theories underpinning the algorithm. In Sec
tion 5.3 we present the specification of the algorithm ,1 and conduct an initial test of its per
formance, in Section 5.4. In addition, in Section 5.5, we investigate the performances of the
individual components of the algorithm, and experiment with alternative configurations. In
this way, we can compare the performance of our algorithm to that of the collection selec
tion and query performance prediction algorithms, with respect to the collection suggestion
task, using the strongest variants.

5.2 Algorithm Origin

The algorithm we develop specifically for the collection suggestion task is inspired by and
based upon Zobel’s criteria for highly ranked collections [66]. While Zobel’s work falls into
the collection selection domain, the criteria provide a strong representation of the objective
of collection suggestion. The criteria state that a collection should be highly ranked, if for
each query term:

1. The term occurs in the collection;

2. The term is common in the collection (relative to the other collections);

3. The collection contains a relatively high proportion of documents featuring the term;
and

4. There are likely to be documents in the collection in which the term is relatively fre
quent [66].

In his work, Zobel specifies four algorithms for collection selection (discussed in Chap
ter 2). Only one of these algorithms appears to embody the criteria: the Skew algorithm
represents an implementation of criterion 3. The other algorithms (Cosine Measure, Inner
Product and Highest-available Similarity) are similarity-based.

As such, we utilise all four criteria to formulate a new algorithm, and therefore test the
underlying theories. We begin by representing the criteria mathematically as follows:

1. The term occurs in the collection:
A term that does not occur in the collection will simply not contribute to the collec
tion’s score. Therefore, no metric is assigned to this criteria.

1 We have previously published a specification of the algorithm, together with early experimental results, in
Doddetal. [9].

90

5.2. Algorithm Origin

2. The term is common in the collection (relative to the other collections):
Mathematically, we represent the commonness of a term t in collection c by:

r — f c,t^ t,C — tokensc ’

where:

f Cit is the number of occurrences of term t in collection c; and

tokensc is the number of terms in collection c.

It follows that the commonness of a query term in a collection, relative to its com
monness in the other collections (relative commonness) can be represented by:

Cf c
RC, , c = ‘ ,

where:

|C| is the number of collections.

3. The collection contains a relatively high proportion o f docum entsfeaturing the term:
Mathematically, we represent the proportion of documents in collection c containing
a term t by:

* t,c — j >
UOCSq

where:

dfc t is the number of documents in collection c containing term t; and

docsc is the number of documents in collection c.

It follows that the proportion of documents in a collection that contain the query
term, relative to the other collections (relative proportion) can be represented by:

R P t , c = . a ' C .

where:

|C| is the number of collections.

4. There are likely to be documents in the collection in which the term is relatively fre
quent.
Mathematically, we represent the average occurrences of term t in documents in col
lection c by:

n — f c,tt,c ~ ~Tp »
dfc,t

where:

91

5. An Algorithm for Collection Suggestion

f c>t is the number of occurrences of term t in collection c; and

dfc t is the number of documents in collection c containing term t.

It follows that the frequency of a query term within documents in a collection, relative
to the other collections (relative frequency) can be represented by:

where:

|C| is the number of collections.

Given these mathematical representations of Zobel’s criteria, in the following section we
present the specification of our collection suggestion algorithm, which is composed from
these components.

5.3 Algorithm Specification

Our algorithm for collection suggestion is formulated from mathematical representations
of Zobel's criteria for highly ranked collections [66], Therefore, for a query q, our algorithm
(henceforth referred to as the Doddle algorithm) calculates a score for a collection c by:

where fq tt is the number of occurrences of a term t in the query. The more occurrences of a
term in the query, the larger its contribution to the collection score.

We summarise the algorithm components (the origin of which was discussed in the pre
vious section) as follows. The RCt)C and RPt,c components of the algorithm are collection
level statistics: RCt,c (relative commonness) is derived from Zobel’s second criterion, and
represents how common a term is in a collection, relative to the other collections. The RPt,c
(relative proportion) component is derived from Zobel’s third criterion, and looks at the
proportion of documents in a collection that contain the query term, relative to the other
collections.

In contrast, RFt>c (relative frequency) is a document level statistic, derived from Zobel’s
fourth criterion. It looks at how frequently terms occur within the documents of a collection,
relative to the other collections.

Specifically, the three main components of the algorithm are defined as follows:

Relative Commonness: Relative Proportion: Relative Frequency:

DoddHq, c) = £ f q<t • (RCtyC + RPt,c + RFt)C),
teq

(derived from 2 .) (derived from 3.) (derived from 4.)

where:

92

5.4. Algorithm Performance

f
Ct,c = totenjc (commonness of term t in collection c);

Pt,c = (proportion of documents in collection c containing term t);

Ft c = (average occurrences of term t in documents in collection c);
’ a J c ,t

f C)t is the number of occurrences of term t in collection c;

tokensc is the number of terms in collection c;

dfc t is the number of documents in collection c containing term t;

docsc is the number of documents in collection c; and

|C| is the number of collections.

In the following section we conduct initial investigations into the performance of this
algorithm.

5.4 Algorithm Performance

In this section we provide an initial evaluation of the performance of the Doddle algorithm;
we will later compare its performance to that of existing algorithms from the collection se
lection and query performance prediction domains.

We begin by testing the Doddle algorithm against the test scenarios introduced in Chap
ter 3. Following this, we conduct a more rigorous investigation of the algorithm's perfor
mance. For this we utilise the baseline testing strategy and performance measures, also dis
cussed in Chapter 3, and the two open access repository test data sets, described in Chap
ter 4.

5.4.1 Scenario-based Test Results

We first examine the suitability of our Doddle algorithm for the collection suggestion task,
by testing it on our abstract scenarios. Recall from Chapter 3 that the scenarios offer basic
test cases with controlled data, where we can reason clearly about the optimal ordering of
collections. They act as a “health check" for algorithms; those producing incorrect rankings
are unlikely to follow the collection suggestion notion of how collections should be ordered.

The results of the scenario tests for the Doddle algorithm are given in Table 5.1. For each
scenario, we give either a tick (/) or a cross (X), showing that an algorithm has produced
the correct ordering of collections for the given scenario, or conversely, that an incorrect
ordering was produced. For comparison, the results achieved when ordering collections
according to the Size-Based Ranking (SBR) lower bound baseline are also given in the table.
The SBR performance gives a frame of reference, from which we can interpret how well
Doddle performs.

93

5. An Algorithm for Collection Suggestion

Table 5.1: The performance of the Doddle algorithm over scenario-based tests. For compar
ison, the results of the SBR baseline are also given.

Scenarios

Algorithms Si S2 S3 S4 S5 s 6 S7

Doddle / / / / / / / (7 correct)
SBR / / / / / / X (5 correct)

We observe that the Doddle algorithm produces the desired ordering of collections for
all seven scenarios. However, the SBR baseline, which merely orders collections by the num
ber of documents they contain, fails on two scenarios: S3, where collection sizes vary, but
the quantity of relevant documents is static; and S7, where the best collection, while smaller
than the second-placed collection, has a higher concentration (proportion) of relevant doc
uments.

As such, these initial results suggest that the Doddle algorithm may be well suited to
ranking collections for collection suggestion. However, the scenario-based testing tech
nique is not comprehensive. Therefore, in the following sections we investigate the per
formance of the algorithm more closely, using test data sets built from open access reposi
tories, and a variety of performance measures.

5.4.2 Baseline Testing Results - Initial Test Data Set

In this section we present and discuss the results achieved by the Doddle algorithm, on our
open access repository Initial Test Data (ITD) set. Recall from Chapter 4 that this is a prelim
inary data set, used to investigate and test our approach to gathering real repository data,
and to conduct initial tests on our collection suggestion algorithm. As such, this data set
is small, comprising only 16 collections and 50 test queries. Within this data set, we utilise
two separate term indexes: one comprising terms from Title metadata, the other compris
ing terms from both Title and Description metadata.

We address the algorithm's performance (over each term index) with respect to each
class of performance measure in turn.

Rank Correlation

Recall from Chapter 3 that for each of the three rank correlation coefficients (Spearman,
Blest and Da Costa) we use, correlation scores between the algorithm-produced collection
ranking and a baseline ranking are averaged over all test queries.

We first consider the performance of Doddle according to the Spearman rank correla
tion coefficient (the results are shown in Table 5.2). Over both Title only, and the Title and
Description metadata term indexes, there is statistically significant correlation between the
collection rankings produced by Doddle, and the optimal FsBR baseline: r5(14) = 0.82, p <
0.05 for Titles, and rs(14) = 0.72, p < 0.05 for Titles and Descriptions.

94

5.4. Algorithm Performance

Table 5.2: The average Spearman rank correlations (over 50 test queries and the ITD set)
for the Doddle algorithm, comparing against both the FsBR and SBR baselines. Statistically
significant correlations are given in bold.

FsBR SBR

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.82 0.72 0.42 0.29
SBR 0.51 0.48 — —

Table 5.3: The average Blest and Da Costa weighted rank correlations (over 50 test queries
and the ITD set) for the Doddle algorithm, comparing estimate rankings to FsBR. Statisti
cally significant correlations are given in bold.

Blest Da Costa

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle
SBR

0.84
0.50

0.75
0.46

0.81
0.48

0.72
0.44

However, we find there is no significant correlation between the Doddle algorithm and
a size-based ranking: rs{ 14) = 0.42, p > 0.05 for Titles, and rs(14) = 0.29, p > 0.05 for Titles
and Descriptions. This result suggests that Doddle does not tend to favour large collections
over (possibly more useful) smaller ones.

The Blest and Da Costa correlation coefficients (given in Table 5.3) are weighted rank
correlation coefficients: they place an emphasis on similarity within the top portions of
the rankings. The Doddle algorithm also exhibits strong performance according to these
two measures, showing statistically significant correlation with FsBR. For Blest: v(14) =
0.84, p < 0.05 for Titles, and v(l4) = 0.75, p < 0.05 for Titles and Descriptions; and for Da
Costa: rw{ 14) = 0.81, p < 0.05 for Titles, and ru,(14) = 0.72, p < 0.05 for Titles and Descrip
tions.

We observe that for the three coefficients, correlation scores between Doddle and the
optimal FsBR baseline tend to be lower over Title and Description data, than on the Tide
data alone. However, the differences are not statistically significant.

Recall and Precision Analogues

In this section we discuss the performance of the Doddle algorithm in terms of the perfor
mance measures analogous to precision and recall: 1Zn, H n and TV For each of these mea
sures, the score achieved by Doddle at each value of n (where n is a rank position) is plotted
on a graph; scores are averaged over the whole set of test queries. To put Doddle scores into
context, we also plot the optimal performance (the FsBR baseline evaluated against itself),
and the performance of the lower bound SBR baseline in relation to FsBR.

95

5. An Algorithm for Collection Suggestion

1

0.8

0.6

0.4 — FsBR
— - Doddle
— SBR0.2

0.8

0.6
C

Pi
0.4 FsBR

 Doddle
 SBR0.2

n
(a) Title data. (b) Title and Description data.

Figure 5.1: The !Zn values achieved by the Doddle algorithm, on the ITD set.

0.80.8

0.60.6

0.40.4 FsBR
 Doddle
 SBR

 FsBR
 Doddle
 SBR0.2 0.2

n n
(a) Title data. (b) Title and Description data.

Figure 5.2: The 'Rn values achieved by the Doddle algorithm, on the ITD set.

The performance of Doddle, according to the lZn measure, is shown in Figure 5.1; specif
ically, Figure 5.1a shows performance when Tide metadata is used to rank collections, and
Figure 5.1b shows performance when Tide and Description metadata is used. Recall from
Chapter 3 that 7Zn indicates how well an algorithm selects the best collection available at
each rank position (those collections with the most merit, according to the optimal rank
ing).

We observe that Doddle exhibits encouraging performance: while it does not always
select the best collections at the early rank positions, its performance is notably stronger
than that of the SBR baseline.

Doddle also shows strong performance according to the 1Zn measure, which indicates
how much of the total merit (from till collections) has been accumulated by the collection

96

5.4. Algorithm Performance

0.6

0.4 FsBR
 Doddle
 SBR0.2

n

0.8

0.6

0.4 FsBR
 Doddle
 SBR0.2

n

(a) Title data. (b) Title and Description data.

Figure 5.3: The V n values achieved by the Doddle algorithm, on the ITD set.

selected at each stage. Figure 5.2 shows the scores achieved on this metric: on the Title
data, Doddle is only 8 percentage points behind the optimal performance, and 10 percent
age points behind on Title and Description data. By comparison, the SBR baseline visibly
performs much worse.

Figure 5.3 plots the scores achieved by Doddle with respect to the V n measure, which
indicates the fraction of useful collections that are currently in the ranking. Note that as we
get further down the optimal ranking, we start to include collections that have little or no
relevance to the query, and as such the V n score gradually declines.

On the V n measure, Doddle performs well; however there is room for improvement.
At the first rank position, a score of 1 is desirable, meaning the algorithm always selects a
collection with some merit (though note this does not necessarily mean it selects the best
available collection). Doddle does not always achieve this, suggesting it sometimes chooses
a collection that FsBR has deemed unsuitable. On the Title data, the performance of Doddle
is generally better than that of SBR. However, on the Title and Description data its perfor
mance drops, and is only roughly on-par with SBR.

We observe that, like the rank correlation coefficients, the performance of Doddle drops
slightly on Title and Description data, over all three of these performance measures.

Top Rank Performance

A key aspect of our evaluation of algorithms with respect to the collection suggestion task,
is to examine the performance within the top rank positions. As we are recommending
collections to the user, it is important to get the collections within the top rank positions
correct.

In Table 5.4 we provide the scores for our two metrics that examine performance within
the top rank positions: Precision@5 and Correct@l (described in Chapter 3). According to

97

5. An Algorithm for Collection Suggestion

Table 5.4: The Precision@5 and Correct@l scores achieved by the Doddle algorithm, on the
ITD set. Scores achieved by SBR are also given for comparison.

Precision@5 Precision@5

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.73 0.68 27 (54%) 25 (50%)
SBR 0.43 0.42 7 (14%) 7 (14%)

the Precision@5 measure, the Doddle algorithm does well at including the best collections
(regardless of order) within the top five rank positions.

The Correct@l measure shows the percentage of queries for which the algorithm cor
rectly predicts the collection in the first rank position. On the Tide data, Doddle correcdy
identifies the best collection on 54% of the queries, and 50% of the queries for Title and De
scription data. As such, there is room for improvement here; however, the algorithm does
perform much better than the SBR lower bound baseline, which succeeds on predicting the
top ranked collection on only 7% of the queries, over both sets of data..................................

5.4.3 Baseline Testing Results - Refined Test Data Set

In this section we summarise the results achieved by the Doddle algorithm, on our open
access repository Refined Test Data (RTD) set. The results are generally similar to those from
the Initial Test Data (ITD) set in the previous section, however there are some differences.

The RTD set is much larger than the ITD set used in the previous section, containing
100 collections. The approach to constructing this data set followed a methodical process
to select repositories to include (see Chapter 4). In this evaluation, we use the set of 50 test
queries associated with the RTD set, to test the performance of Doddle.

The Spearman, Blest and Da Costa correlation coefficients achieved by Doddle are given
in Tables 5.5 and 5.6; Doddle again shows significant correlation to the optimal FsBR base
line. However, in this instance the difference between the correlation scores achieved on
the Title metadata, and the Title and Description metadata, is statistically significant.

Table 5.5: The average Spearman rank correlations (over 50 test queries and the RTD set)
for the Doddle algorithm, comparing against both the FsBR and SBR baselines. Statistically
significant correlations are given in bold.

FsBR SBR

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.92 0.76 0.40 0.35
SBR 0.42 0.45 — —

98

5.4. Algorithm Performance

Table 5.6: The average Blest and Da Costa weighted rank correlations (over 50 test queries
and the RTD set) for the Doddle algorithm, comparing estimate rankings to FsBR. Statisti
cally significant correlations are given in bold.

Blest Da Costa

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle
SBR

0.85
0.05

0.63
0.17

0.86
0.48

0.66
0.49

Also in contrast to the findings from the ITD set, Doddle shows a statistically significant
correlation to the Size-Based Ranking on this data set.

In Figures 5.4, 5.5 and 5.6 we present the graphs for the recall and precision analogous
measures. On 7Zn, we observe that Doddle appears to get off to a poor start, suggesting it
does not tend to select the best collections at the early rank positions. However, in com
parison, the SBR lower bound baseline performs particularly poorly (suggesting the largest
collections have little merit, according to the optimal baseline).

The performance of Doddle is more encouraging according to the 1Zn measure. Look
ing at the graphs in Figure 5.5, we see that at rank position one, Doddle is only 4 percentage
points behind the optimal on Title metadata, and 7 percentage points on Title and Descrip
tion metadata. By comparison, SBR again performs poorly.

Figure 5.6 gives the graphs for the scores achieved on the V n measure. Like on the ITD
set, Doddle fails to choose a useful collection at rank position one for all queries. On the Title
metadata, Doddle is consistently stronger than SBR. However, on Titles and Description
metadata, despite a good start, it drops below the level of the SBR lower bound baseline.

Finally, Table 5.7 gives Precision@5 and Correct@l scores; these are noticeably lower

0.8

0.6

0.4 FsBR
 Doddle
 SBR0.2

100
n

0.8

0.6

0.4 FsBR
 Doddle
 SBR0.2

100
n

(a) Title data. (b) Title and Description data.

Figure 5.4: The 7Zn values achieved by the Doddle algorithm, on the RTD set.

99

0.8

0.6

0.4 FsBR
 Doddle
 SBR0.2

100
n

0.8

0.6

0.4 FsBR
 Doddle
 SBR0.2

100
n

(a) Title data. (b) Title and Description data.

Figure 5.5: The 1Zn values achieved by the Doddle algorithm, on the RTD set.

0.8

0.6

0.4

 FsBR
 Doddle
 SBR

0.2

100
n

0.8

0.6

0.4

 FsBR
 Doddle
 SBR

0.2

100
n

(a) Title data. (b) Title and Description data.

Figure 5.6: The V n values achieved by the Doddle algorithm, on the RTD set.

Table 5.7: The Precision@5 and Correct@l scores achieved by the Doddle algorithm, on the
RTD set. Scores achieved by SBR are also given for comparison.

Precision@5 Correct@l

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.53 0.38 13 (26%) 11 (22%)
SBR 0.07 0.09 0 (0%) 1 (2%)

100

5.5. Evaluation o f Algorithm Components

than those achieved on the ITD set.
These results suggests that emulating an optimal collection ranking may be more chal

lenging on a larger data set: several collections may appear to be similar.
In the following section we continue to develop our algorithm, by testing its component

parts.

5.5 Evaluation of Algorithm Components

In the previous section, we tested the initial specification of our algorithm for collection
suggestion. Performance of the algorithm varied according to different measures, however
the results were generally encouraging.

In this section, we investigate the contributions of the individual components of the
Doddle algorithm (and therefore each of Zobel’s criteria discussed in Section 5.2), by using
each as an independent ranking algorithm. In addition, we combine these components in
different ways, to examine the performance of different configurations of the algorithm. As
such, we can use the strongest formulations of the Doddle algorithm to evaluate against
existing algorithms, in Chapters 6 and 7.

To this end, we present the configurations of the Doddle algorithm we will test in Sec
tion 5.5.1. Following this, the results of the scenario-based testing are discussed in Sec
tion 5.5.2, before examining the baseline testing results in Section 5.5.3.

5.5.1 Specification o f Alternative Algorithm Configurations

In this section we present the additional configurations of the Doddle algorithm we will test.
These include using the individual components of the algorithm as independent ranking
algorithms, and combining the components in alternative ways. We summarise the config
urations as follows:

Doddle_RC{q, c) = £ f q<t • (RCt,c)
teq

Only the relative commonness
component is used.

Doddle_RP{q, c) = J ^ f qit- (RPt)C)
teq

Only the relative proportion
component is used.

Doddle_RF{q, c) = Y ,fq ,t ' (RFt,c) Only the relative frequency
component is used.

Doddle_RC+ RP(q, c) — ^ f q>t • (RCtlC + RPt.c)
teq

The relative commonness and
relative proportion compo
nents are used.

Doddle_RC+ RF{ q, c) — ^ f q>t • {RCt<c + RF(>C)
teq

The relative commonness and
relative frequency components
are used.

101

5. An Algorithm for Collection Suggestion

The relative proportion and
relative frequency components
are used.

All three of the main compo
nents are used, but multiplied
together.

The relative commonness and
relative proportion compo
nents are used, multiplied
together.

The relative commonness and
relative frequency components
are used, multiplied together.

The relative proportion and
relative frequency components
are used, multiplied together:

We calculate the weighted
arithmetic mean of the three

Doddle_W[q, c) = £ / „ , , ■ g ' RC,c + 2 ' R ?tc + RF,'c) main components. The RCt,c
teq ’ 5 and RPt,c components are

given a higher weighting than
RFt,c-

We test and discuss the performance of these algorithm configurations, along with the
original configuration of Doddle, in the following sections.

5.5.2 Scenario-based Test Results

The results achieved by the various configurations of the Doddle algorithm on the scenario-
based tests are presented in Table 5.9. For comparison, the results of the original configura
tion of Doddle, and the SBR lower bound baseline are also given.

From the table we see that all configurations of the algorithm perform well on these
tests. One exception is Doddle_RF, which uses only the ‘relative frequency' component.
This configuration fails to correctly rank the collections on S7, by ordering collection C b

above Ca- The reason for this is straightforward: Doddle_RF is a document level metric,
using the frequency of query terms within documents to produce a collection ranking; in
S7, documents in C b are more likely to contain the query terms than those in C a -

At this stage, the performances of the configurations of the Doddle algorithm appear
fairly similar. In the following section, we conduct a more rigorous evaluation of the algo
rithm configurations, enabling us to more closely distinguish between their performances,
and identify any strengths and weaknesses.

Doddle_RP+RF(q,c) = £ f q<t- (RPt>c + RFt)C)
teq

Doddle_* (q , c) = £ f q>t • (RCt,c • RPt.c • RFt)C)
teq

Doddle_RC* RP(q, c) = £ f q>t • (RCt)C • RPt,c)
teq

Doddle_RC*RF(q, c) = Y^fq ,t' (RCt,c • RFt,c)
teq

Doddle_RP* RF{q, c) = Y J fq , f (RPt,c • RFt.c)
teq

102

5.5. Evaluation o f Algorithm Components

Table 5.9: The performance of the various configurations of the Doddle algorithm, over
scenario-based tests. For comparison, the results of the SBR baseline are also given.

Algorithms

Scenarios

Si S2 s 3 S4 S5 S6 S7

Doddle / / / / / / s (7 correct)
Doddle_RC / / / / / / / (7 correct)
Doddle_RP / / / / / / / (7 correct)
Doddle_RF / / / / / / X (6 correct)
Doddle_RC+RP / / / / / / / (7 correct)
Doddle_RC+RF / / / / / / / (7 correct)
Doddle_RP+RF / / / / / / / (7 correct)
Doddle_x / / / / / / / (7 correct)
Doddle_RCxRP / / / / / / / (7 correct)
Doddle_RCxRF / / / / / / / (7 correct)
Doddle_RPxRF / / / / / / / (7 correct)
Doddle_W / / / / / / / (7 correct)
SBR / / X / / / X (5 correct)

5.5.3 Baseline Test Results

In this section we present and discuss the results of the baseline testing, for the various
configurations of the Doddle algorithm. We primarily present the results from the Refined
Test Data (RTD) set, and simply provide a summary of findings from the Initial Test Data
(ITD) set as follows: over all measures, the performances of the algorithm configurations is
generally close. The exception to this is Doddle_RF, which is notably poorer than the other
algorithms. Some algorithm configurations (Doddle_RC, Doddle_RP, Doddle_RC-i-RF, and
Doddle_RP+RF) score marginally higher than others, but this varies from measure to m ea
sure; the differences between the algorithms are not statistically significant. Complete per
formance scores from the ITD set can be found in Appendix D.

We discuss the results from the RTD set in depth in the following sections.

Rank Correlation

Here we present and discuss the scores achieved by the configurations of the Doddle algo
rithm, according to the rank correlation measures.

Table 5.10 gives the Spearman rank correlation scores achieved by measuring the sim
ilarity between the algorithm-produced collection rankings, and both the FsBR optimal
baseline and the SBR lower bound baseline; statistically significant scores (p < 0.05) are
marked in bold.

From the table, we see that all configurations of the Doddle algorithm show significant
correlation to the optimal FsBR baseline, on both the Title metadata and the Title and De-

103

5. An Algorithm for Collection Suggestion

Table 5.10: The average Spearman rank correlations (over 50 test queries) for the various
configurations of Doddle, comparing against both the FsBR and SBR baselines. Statistically
significant correlations are given in bold.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.86 0.65 0.38 0.30
Doddle_RC 0.87 0.72 0.37 0.34
Doddle_RP 0.86 0.60 0.36 0.23
Doddle_RF 0.80 0.64 0.53 0.44
Doddle_RC+RP 0.86 0.66 0.37 0.28
Doddle_RC+RF 0.86 0.70 0.39 0.37
Doddle_RP+RF 0.85 0.60 0.39 0.29
Doddle_x 0.86 0.65 0.36 0.28
Doddle_RCxRP 0.86 0.65 0.36 0.27
Doddle_RCxRF 0.86 0.71 0.37 0.35
Doddle_RPxRF , 0.85 0.61 0.37 0.36
Doddle_W 0.86 0.66 0.37 0.29
SBR 0.42 0.46 — —

scription metadata.
On the Title data, the Doddle_RC configuration achieves the highest correlation score,

while Doddle_RF scores lowest. However, there is little variation between the scores of the
different configurations, and there is no statistically significant difference between any of
the configurations of the Doddle algorithm. However, all configurations exhibit perfor
mance that is significantly different from that achieved by the SBR baseline.

The correlation scores achieved on the Title and Description data are varied, with Dod-
dle_RC again scoring highest. However, there is no statistically significant difference be
tween the performance of any of the configurations. The majority of the algorithms show
performance that is significantly different from that of the SBR baseline, with the exception
ofDoddle_RP, Doddle_RF, Doddle_RP+RF and Doddle_RPxRF.

On the Title and Description data, the correlation scores achieved are lower than those
on the Title data alone. Indeed, on this occasion the differences between correlation scores
on the two data sets are statistically significant.

Turning to the correlation scores between the algorithm-produced rankings and the SBR
baseline, we see that all algorithm configurations show statistically significant correlation
with SBR. This suggests that on this test data set, there is some tendency to select large
collections over smaller ones. However, since SBR itself shows significant correlation with
FsBR, it is expected that there should be some agreement between SBR, and the rankings
produced by the algorithms.

In Table 5.11 we present the Blest and Da Costa weighted rank correlation scores the
algorithms achieved, measuring the similarity between the algorithm-produced collection

104

5.5. Evaluation o f Algorithm Components

Table 5.11: The average Blest and Da Costa weighted rank correlations (over 50 test queries)
for the various configurations of Doddle, comparing algorithm-produced rankings to FsBR.
Statistically significant correlations are given in bold.

Algorithms

Blest Da Costa

Tides Tides & Desc. Tides Tides & Desc.

Doddle 0.85 0.63 0.86 0.66
Doddle_RC 0.86 0.70 0.87 0.73
Doddle_RP 0.85 0.59 0.85 0.61
Doddle_RF 0.75 0.58 0.79 0.63
Doddle_RC+RP 0.85 0.65 0.86 0.67
Doddle_RC+RF 0.85 0.67 0.86 0.71
Doddle_RP+RF 0.84 0.58 0.85 0.61
Doddle_x 0.85 0.63 0.85 0.66
Doddle_RCxRP 0.85 0.64 0.86 0.66
Doddle_RCxRF 0.85 0.68 0.86 0.71
Doddle_RPxRF 0.84 0.58 0.85 0.61
DoddleJW 0.85 0.64 0.86 0.66
SBR 0.05 0.17 0.48 0.49

rankings, and the FsBR baseline. The observations here are similar to those from the Spear
man scores: performance of the algorithms is better over the Title data alone, with Dod-
dle_RC performing strongest over both term indexes. The Doddle_RF configuration per
forms worst on the Title data, but is generally competitive on Title and Description data.

Recall and Precision Analogues

In this section, we examine the performances of the configurations of the Doddle algorithm
according to the lZn, 1Zn and V n measures. The algorithm performances are presented
as graphs, given in Figures 5.7, 5.8 and 5.9. In the interests of readability, the graphs only
present the scores achieved within the first 10 rank positions; scores achieved at additional
rank positions are provided in Tables D.33, D.35, D.41, D.43, D.49 and D.51 in Appendix D.

Figure 5.7 shows the results from the lZn measure. We first consider Figure 5.7a, which
represents the performance achieved on the Title metadata. Here, all configurations of the
algorithm perform similarly, with the exception of Doddle_RF, which is clearly below the
other configurations. Overall, it appears that Doddle_RC and Doddle_RC+RP tend to rep
resent the strongest performance.

The findings are much the same in Figure 5.7b, which shows the performance achieved
on the Title and Description metadata. However, we observe that there is more variation
between the algorithms, and overall the 7Zn scores are lower than those from the Tide data.

We observe similar trends in Figures 5.8a and 5.8b, which present the performance ac
cording the the 1Zn measure. Again, Doddle_RC and Doddle_RC+RP show the strongest

105

1

0.8

0.6
c

£

0.4

FsBR
Doddle
Doddle_RC
Doddle_RP
Doddle_RF
Doddle_RC+RP
Doddle_RC+RF
Doddle_RP+RF
Doddle_x
Doddle_RCxRP
Doddle RCxRF
Doddle_RPxRF
Doddle_W
SBR

0.2

n
(a) Title data.

0.8

0.6
e

&

0.4

0.2

n

FsBR
Doddle
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
SBR

RC
RP
RF
JRC+RP
RC+RF
RP+RF
X

RCxRP
RCxRF
RP x RF
W

(b) Title and Description data.

Figure 5.7: The 1Zn values (up to n - 10) achieved by the various configurations of the Dod
dle algorithm, on the RTD set.

106

0.8

0.6
c

0.4

0.2

n

 FsBR
- - Doddle

—— Doddle.
 Doddle.
- a — Doddle.

Doddle.
 Doddle.
 Doddle.

Doddle.
— - Doddle.
-I— Doddle.
-«►— Doddle.
 Doddle.
 SBR

RC
RP
RF
RC+RP
RC+RF
RP+RF
X

.RCxRP
RCxRF
RPxRF
W

(a) Title data.

0.8

0.6

0.4

0.2

n

— FsBR
- - Doddle

Doddle.
 Doddle.
-a— Doddle.

Doddle.
 Doddle.
 Doddle.

Doddle.
- - Doddle.

-4— Doddle.
Doddle.

 Doddle.
— SBR

RC
.RP
.RF
RC+RP
RC+RF
.RP+RF
X

RCxRP
RCxRF
RPxRF
W

(b) Tide and Description data.

Figure 5.8: The Tin values (up to n = 10) achieved by the various configurations of the Dod
dle algorithm, on the RTD set.

107

0.8

0.6
c

0.4

0.2

n

FsBR
Doddle
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
SBR

RC
RP
RF
RC+RP
RC+RF
RP+RF
X

RCxRP
RCxRF
.RPxRF
W

(a) Title data.

! * • A -

0.8

0.6
c

0.4

0.2

n

FsBR
Doddle
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
Doddle.
SBR

RC
RP
RF
RC+RP
RC+RF
RP+RF
X

RCxRP
RCxRF
RPxRF
W

(b) Title and Description data.

Figure 5 .9: The V n values (up to n = 10) achieved by the various configurations of the Doddle
algorithm, on the RTD set.

108

5.5. Evaluation o f Algorithm Components

performance, with Doddle_RF scoring poorly. Scores over Title and Description data are
lower, and more varied.

In Figure 5.9 we present the scores achieved on V n> which measures how well an algo
rithm selects collections that have some value to the query. As we see in Figure 5.9a, on the
Title metadata, Doddle_RC is the only algorithm to achieve the optimal score of 1, at the
first rank position: meaning that the first collection always has some relevance to the query.
Aside from this, the performance of the various configurations is generally close, with Dod-
dle_RF making the weakest start.

However, in Figure 5.9b we see the performances of the algorithms on the Title and De
scription metadata. Here, the algorithm performances are more varied, and are lower than
those achieved on the Title data alone. Indeed, the scores are only roughly on-par with those
of the SBR lower bound baseline.

Top Rank Performance

In Table 5.12 we present the average precision within the top five collections (Precision@5),
and the number of queries (out of 50) for which the first ranked collection is correct (Cor
r e c t^) . The scores here are lower than those on the ITD set, however this is not unexpected:
the RTD set is much larger, and as there are more collections to choose between, ranking is
more difficult.

Looking at the Precision@5 scores on the Title data, we see that the Doddle_RP and
Doddle_RC+RP configurations score highest, however the majority of the algorithms score
very closely. The exception of this is Doddle_RF, which scores much lower than the other

Table 5.12: The Precision@5 and Correct@l scores achieved by the various configurations
of the Doddle algorithm, on the RTD set.

Algorithms

Precision@5 Correct@l

Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.53 0.38 13 (26%) 11 (22%)
Doddle_RC 0.56 0.43 14 (28%) 11 (22%)
Doddle_RP 0.57 0.46 13 (26%) 13 (26%)
Doddle_RF 0.26 0.21 7 (14%) 2 (4%)
Doddle_RC+RP 0.57 0.44 13 (26%) 13 (26%)
Doddle_RC+RF 0.51 0.34 14 (28%) 8 (16%)
Doddle_RP+RF 0.50 0.36 12 (24%) 9 (18%)
Doddle_x 0.55 0.38 12 (24%) 9 (18%)
Doddle_RCxRP 0.56 0.44 13 (26%) 11 (22%)
Doddle_RCxRF 0.53 0.34 13 (26%) 8 (16%)
DoddleJRPxRF 0.52 0.38 12 (24%) 7 (14%)
Doddle_W 0.56 0.41 13 (26%) 13 (26%)
SBR 0.07 0.09 0 (0%) 1 (2%)

109

5. An Algorithm for Collection Suggestion

algorithms. On the Title and Description data, the scores achieved by the algorithms are
lower and more varied; Doddle_RP again scores best, while Doddle_RF is worst.

A similar picture is seen according to the Correct@l measure: on the Title metadata,
the performance of the algorithms are fairly similar, with Doddle_RF performing notably
worse. On Title and Description data, there is more variation between the algorithms, but
Doddle_RF still performs poorly. We note that the highest number of queries for which any
algorithm correcdy predicts the top ranked collection, is 14 (28%) on the Title data, and 13
(26%) on the Title and Description data: around half the number achieved on the ITD set.
While a larger data set is likely to be more difficult, we would like to see improvement on
these scores.

5.6 Summary

The development of a search service for finding domain-specific collections warrants an
optimal algorithm for ranking collections according to a user’s query; our work is motivated
towards identifying such an algorithm. As we have discussed in Chapter 3 of this thesis, it
is desirable that in this domain, highly ranked collections should contain a large number of
relevant documents, with these relevant documents amounting to a high proportion of the
whole collection.

There are a variety of existing algorithms that have been developed for the task of rank
ing collections (collection selection), or that may be applied to the task (query performance
predictors); we discussed these in Chapter 2. We will later examine the suitability of these
algorithms, for the collection suggestion task. However, in the interest of finding the most
effective algorithm to use in a collection suggestion search service, we have developed our
own algorithm.

In this chapter we have presented and tested the initial specification of the Doddle algo
rithm, designed specifically for the collection suggestion task. The algorithm is based upon
Zobel’s criteria for highly ranked collections, which strongly represent the collection sug
gestion objectives. In addition, to ensure we have a competitive implementation, we have
investigated the performances of the individual components of the algorithm, and com
bined these in alternative ways, to create new algorithm variants.

Our evaluation has used a variety of performance measures, and our two test data sets
comprising real repository data. Across the different test environments, the performance
of Doddle and its components and configurations was encouraging. Indeed, no statistically
significant differences in performance (between any configuration) were found.

Despite this, some patterns and observations have emerged. Most notably, the Dod-
dle_RF configuration, which uses only the document-level ‘relative frequency’ metric, often
performed worse than the other configurations. This suggests that Zobel’s fourth criterion,
regarding average frequency of query terms within documents, is not particularly useful for
ranking collections.

Some algorithm configurations were observed to perform marginally better than oth
ers (but not statistically significantly so), depending on the performance measure. For ex
ample, the Doddle_RC, Doddle_RP, Doddle_RC+RP, Doddle_RC+RF and Doddle_RP+RF

110

5.6. Summary

configurations all scored ‘best’, and some stage of the evaluation. As such, we test these
configurations, in addition to the original algorithm specification, alongside existing algo
rithms, in Chapters 6 and 7. While we omit the other configurations (DoddleJRF, Doddle_x,
Doddle_RCxRP, Doddle_RCxRF, Doddle_RPxRF and Doddle_W) from further discussion,
complete performance scores for these can be found in Appendix D.

Finally, we observed in this portion of our evaluation, that the algorithms experienced
a drop in performance when tested on Title and Description metadata, compared to that
exhibited on Title metadata alone. To ensure this is not a property of our algorithm, we
investigate this further in the following chapters, with existing algorithms.

I l l

Chapter 6

Evaluation of Algorithms: Scenarios
and TREC

In the previous chapter, we presented our own algorithm for ranking collections for the
collection suggestion task. We measured the performance of the algorithm over two test
data sets, comprising data from real open access repositories, and using a variety of perfor
mance measures. In addition, we tested the performance of the individual components of
the algorithm, and alternative configurations of those components. Some configurations of
the algorithm showed strong and promising results, most notably: Doddle_RC, Doddle_RP,
Doddle_RC+RP, Doddle_RC+RF and Doddle_RP+RF (see Chapter 5 for details of the for
mulation of these algorithms), in addition to the original Doddle algorithm.

However, we are interested in identifying an optimal algorithm to rank collections (with
respect to a user’s query) in a collection suggestion search service. As such, in this chapter
we begin to conduct an extensive evaluation of the suitability and performance of a selec
tion of existing algorithms, with respect to the collection suggestion task. As discussed at
the end of Chapter 2, we test algorithms that were found to be effective in their original
domains, and those whose underlying theories relate to the objectives of collection sugges
tion: bGlOSS, CORI, Zobel’s four lexicon inspection algorithms, CVy DFPROP, Distribution
of Informative Amount (1), SCS, AvICTF and NSCQ. We compare these algorithms to the
strongest configurations of our own algorithm, in order to find the best algorithm for the
job.

Our evaluation follows the methodology discussed in Chapter 3: we first examine algo
rithm performance using a set of scenario-based tests (see Section 3.4 in Chapter 3). This
enables us to quickly identify algorithms that may be suitable for collection suggestion; we
present our findings of this stage of our evaluation in Section 6.1.

For the second stage of our evaluation, we use the baseline testing technique (see Sec
tion 3.2 of Chapter 3) to closely examine the performance of those algorithms found by the
scenario-based tests to be potentially suitable for collection suggestion. In this chapter we
present and discuss (in Sections 6.2 to 6.7, with a summary in Section 6.8) baseline test
ing results conducted on the six TREC-based test data sets specified in Chapter 4. Further

113

6. Evaluation o f Algorithms: Scenarios and TREC

experiments, using the open access repository data sets, follow in Chapter 7.

6.1 Scenario-Based Test Results

In this section, we begin to examine the suitability of a selection of existing algorithms (from
the collection selection and query performance prediction domains) for the collection sug
gestion task, using the scenario-based testing strategy from Chapter 3. Recall that the sce
narios act as a ‘health check': algorithms that fail to produce correct collection rankings for
the scenarios are unlikely to be suited to collection suggestion, as they do not rank collec
tions in accordance with its ideals.

We present the results of the scenario tests in Table 6.1, where a tick (/) represents that
the algorithm has produced the correct collection ranking for a particular scenario, and a
cross (X) represents that the algorithm has produced an incorrect collection ranking. We
discuss these results, and reflect on situations on which the algorithms fail.

From Table 6.1, we see that bGlOSS and CORI are the two most consistent algorithms,
as they produce correct collection rankings for all scenarios. As such, these algorithms may
be suited to collection suggestion, and should be tested further.

The group of lexicon inspection algorithms perform well overall: Inner Product, Skew
and Highest-available Similarity produce correct collection rankings on six of the scenar
ios, failing only on the more difficult S7, which represents polysemy. However, the Cosine
Measure is an exception, only succeeding in producing correct rankings on S5 and Sq.

Table 6.1: The performance of existing algorithms, over scenario-based tests. For compari
son, the results of the SBR baseline are also given.

Algorithms Si S2

Scenarios

S3 S4 S5 S6 S7

bGlOSS / / / / / / / (7 correct)
CORI / / / / / / / (7 correct)
Cosine Measure X X X X / / X (2 correct)
Inner Product / / / / / / X (6 correct)
Skew / / / / / / X (6 correct)
Highest-available Similarity / / / / / ✓ X (6 correct)
C W / / / / / X X (5 correct)
DFPROP / / / / / / X (6 correct)
Distribution of Informative Amount X X X X X X X (0 correct)
SCS X X X X / / X (2 correct)
AvICTF X X X X / / X (2 correct)
NSCQ / / X / / / X (5 correct)
SBR / / X / / / X (5 correct)

114

6.1. Scenario-Based Test Results

The Cosine Measure operates by calculating the similarity between the query and each
collection. For those scenarios on which it fails, the algorithm ranks the Cc collection first,
which contains only one occurrence of each query term; the Cosine Measure sees this as
being the most similar to the query. For the scenarios for which the Cosine Measure pro
duces a correct ranking, the best collection (C^) is the only one that contains all query terms,
making it most similar to the query.

Similar to the Cosine Measure, the NSCQ query performance prediction algorithm also
calculates the similarity between the query and collections, with the addition of normalisa
tion by query length. Although this algorithm fairs better than the Cosine Measure, it still
fails on two scenarios: S3 and S7, the same scenarios on which the SBR lower bound base
line fails. Due to the poor performances of the Cosine Measure and NSCQ at this stage, we
will omit them from further evaluation.

The C W and DFPROP algorithms both utilise only document frequency statistics to
produce collection rankings. However, their performances in the scenario tests differ slightly.
DFPROP performs well, only failing on S7. The CW algorithm fairs slightly worse, failing to
produce a correct collection ranking on S6 and S7.

The weakest group of algorithms in the scenario tests are He and Ounis’s query perfor
mance predictors [28]: Distribution of Informative Amount, AvICTF and SCS. While AvICTF
and SCS produce correct collection rankings on two scenarios (S5 and S q), Distribution of
Informative Amount fails on all scenarios.

We note particularly that Distribution of Informative Amount fails on S4, which uses a
single-term query. This failure is due to the specification of the algorithm: Distribution of
Informative Amount calculates the standard deviation of the inverse document frequency
of the query terms. As such, when there is only one query term, each collection will receive
a score of zero. Since this algorithm cannot process single-term queries (in addition to its
failure on the other scenarios), it is clearly unsuitable for collection suggestion.

The overall failure of this group of query performance prediction algorithms can be at
tributed to their intended application. Query performance predictors are used to measure
the quality of search results at a single search engine, and rely on the discriminatory power
of query terms. Query terms that are common in a collection have little discriminatory
power, as they do not help the search engine choose between documents. Conversely, query
terms that are rare in a collection make particular documents stand out as being useful.

As such, in these algorithms, query terms occurring in a small number of documents
within a collection are given a larger weight within the overall collection score. This results
in the algorithms producing collection rankings that are contrary to the objectives of collec
tion suggestion, where the intention is to identify collections about the query, and therefore
where the query terms are common.

In the remainder of this chapter, we provide closer evaluations of the algorithms (us
ing the six TREC-based test data sets, discussed in Chapter 4) found to perform well in the
scenario-based tests: bGlOSS, CORI, Inner Product, Skew, Highest-available Similarity and
DFPROP. We also consider the performance of our own collection suggestion algorithm,
Doddle, and its most consistent alternative configurations (see Chapter 5).

We will omit from further evaluation and discussion those algorithms that have not ex
ceeded the performance of the SBR lower bound baseline, in the scenario-based tests. How-

115

6. Evaluation o f Algorithms: Scenarios and TREC

ever, full performance scores for omitted algorithms are provided in Appendix D for refer
ence.

6.2 SYM-236

The SYM-236 test data set, as described in Chapter 4, comprises collections formulated from
documents in discs 1-3 of the TREC corpus. The documents are grouped by original source
and publication date, to give 236 collections of varying size.

Using this TREC-based test data set, we examine the effectiveness of a selection of exist
ing (collection selection) algorithms, and the configurations of our own collection sugges
tion algorithm that we found to be most consistent in Chapter 5. We present the findings
from each type of performance measure (rank correlation, recall and precision analogues,
and top rank performance) individually, in the remainder of this section.

Rank Correlation

We. first consider the . effectiveness of the algorithms under test, according to Spearman
rank correlation. Correlation scores between an algorithm-produced collection ranking and
both the FsBR and SBR baselines are given in Table 6.2.

Looking first at the correlations with the FsBR baseline, we see from the table that all
algorithms show a statistically significant (p < 0.05) correlation to FsBR, over both short
and long queries.

Over the short queries, the correlation scores achieved by the collection selection algo
rithms are very close: while CORI scores highest, there is no significant difference between
those algorithms. The configurations of the Doddle algorithm however, perform signifi
cantly worse than the collection selection algorithms. The exception to this is Doddle_RC,
which is only significantly worse than the best scoring algorithm (CORI).

Over the long queries, we notice the correlation scores achieved by the algorithms tends
to be higher than on short queries, though generally not significantly so. The exception here
is bGlOSS, which does perform significantly worse on long queries than it does on short.
This is likely due to how the algorithm works: using only document frequencies, it aims to
estimate the number of documents likely to contain all query terms. The longer the query,
the less likely it is that a document contains all query terms.

Overall, the trends observed on the long queries are similar to those on the short queries:
the collection selection algorithms perform similarly (aside from bGlOSS), and are signifi
cantly better than all but the Doddle_RC configuration of the Doddle algorithm. Doddle_RC
performs significantly better than bGlOSS, Doddle_RP and Doddle_RP+RF. Complete re
sults showing whether differences between correlation scores are significant are given in
Tables D.63 and D.64 in Appendix D.

All of the algorithms show significant correlation to the SBR baseline; the correlation
scores of the collection selection algorithms (bGlOSS excluded) are notably high. The best
performing configuration of Doddle, Doddle_RC, has the highest correlation with SBR, out
of the configurations tested here. These results support our suggestion in Chapter 4 that the

116

Table 6.2: The average Spearman rank correlations (over 100 test queries and the SYM-
236 test data set) for selected existing algorithms and configurations of Doddle, comparing
against both the FsBR and SBR baselines. Statistically significant correlations are given in
bold.

FsBR SBR

Algorithms Qs Qi Qs Qi

bGlOSS 0.58 0.35 0.67 0.33
CORI 0.65 0.65 0.85 0.85
Inner Product 0.63 0.65 0.89 0.89
Skew 0.61 0.62 0.89 0.89
Highest-available Similarity 0.64 0.66 0.91 0.92
DFPROP 0.61 0.62 0.89 0.91
Doddle 0.39 0.46 0.33 0.41
Doddle_RC 0.53 0.57 0.56 0.59
Doddle_RP 0.32 0.40 0.20 0.24
Doddle_RC+RP 0.44 0.50 0.36 0.42
Doddle_RC+RF 0.43 0.49 0.44 0.50
Doddle_RP+RF 0.28 0.36 0.20 0.30
SBR 0.53 0.53 — —

Table 6.3: The average Blest and Da Costa weighted rank correlations (over 100 test queries
and the SYM-236 test data set) for selected existing algorithms and configurations of Dod
dle, comparing estimate rankings to FsBR. Statistically significant correlations are given in
bold.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.63 0.53 0.66 0.63
CORI 0.65 0.63 0.70 0.70
Inner Product 0.63 0.63 0.68 0.70
Skew 0.61 0.60 0.66 0.67
Highest-available Similarity 0.65 0.65 0.69 0.71
DFPROP 0.61 0.60 0.66 0.67
Doddle 0.37 0.43 0.44 0.52
Doddle_RC 0.52 0.55 0.58 0.63
Doddle_RP 0.31 0.37 0.39 0.46
Doddle_RC+RP 0.42 0.48 0.49 0.56
Doddle_RC+RF 0.41 0.45 0.48 0.54
Doddle_RP+RF 0.25 0.32 0.34 0.42
SBR 0.53 0.53 0.58 0.58

117

6. Evaluation o f Algorithms: Scenarios and TREC

data set favours a size-based ranking: the larger collections tend to match the most queries,
and contain many of the relevant documents.

The findings from the Spearman rank correlation scores are generally supported by the
correlation scores according to the Blest and Da Costa weighted rank correlation measures,
given in Table 6.3. All algorithms show significant correlation with the FsBR optimal rank
ing, with CORI and Highest-available Similarity scoring highest. The best configuration of
Doddle is Doddle_RC, but it does not quite match the performance of the existing collection
ranking algorithms.

Recall and Precision Analogues

The three performance measures analogous to recall and precision 1tn and V n) look at
how well the algorithms select the best collections, and how useful the selected collections
are, at each rank position.

The results achieved by the algorithms according to the 1Zn measure are given in Fig
ure 6.1. We plot only scores up to rank position ten; scores achieved at selected other rank
positions are given in tables in Appendix D.

Figure 6.1a shows, the scores from executing the short test queries. Here, CORI per
forms best overall, followed by bGlOSS. The Skew, Inner Product, Highest-available Similar
ity and DFPROP algorithms are close, and perform similarly. However, the scores achieved
are much lower than the desired optimal.

The performances of the various configurations of the Doddle algorithm are disappoint
ing: Doddle_RC is the strongest configuration, but it lags behind the existing algorithms.
The other configurations of Doddle tend to do little better than the SBR lower bound.

The scores achieved on the long queries, shown in Figure 6.1b, tend to be slightly higher
than those from the short queries. CORI still shows strong performance, but with Inner
Product and Highest-available Similarity being more competitive; indeed, those two algo
rithms do start stronger than CORI.

The configurations of Doddle perform better on the long queries, staying above the per
formance of SBR. The strongest configuration of Doddle is again Doddle_RC. Despite a slow
start, it does become more competitive as we move down the rank positions.

Figure 6.2 shows the 7Zn performance measure scores, for both short and long queries.
The performances of all the algorithms is very close, with CORI showing the strongest per
formance overall. The configurations of the Doddle algorithm appear to perform slightly
worse than the collection selection algorithms, but are better than the SBR lower bound.
The Doddle_RC algorithm is the best configuration of Doddle, and is competitive.

However, on the i t n measure, the performance curves are much lower than the desired
optimal. This suggests that the algorithms are not accurately selecting the most suitable
coRections at the given rank positions.

The scores achieved by the algorithms according to the V n measure are given in Fig
ure 6.3; V n indicates the proportion of collections at a given rank position (averaged over
all queries) that have some relevance to the query. As such, an algorithm could score highly
here, but it does not necessarily mean that the collections chosen are the best available at
that rank position.

118

1

0.8

0.6

£
0.4

0.2

0 X

 FsBR
bGlOSS
CORI

— Inner Product
H— Skew

Highest-available Similarity
 DFPROP
— Doddle
—— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
— SBR

(a) Short queries.

0.8

0.6

0.4

0.2

n

 FsBR
bGlOSS

— CORI
 Inner Product
—1— Skew
—®— Highest-available Similarity
 DFPROP
 Doddle
—— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.1: The 7Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the SYM-236 test data set.

119

0.5

0.4

0.3

0.2

0.1

n

 FsBR
+ bGlOSS
-■—CORI
— Inner Product
—I— Skew
— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP
-K - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Short queries.

0.5

0.4

0.3

0.2

0.1

n

 FsBR
bGlOSS
CORI

 Inner Product
—I— Skew
— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.2: The 1Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the SYM-236 test data set.

120

6.2. SYM-236

In Figure 6.3a we see the results from the execution of the short test queries. No algo
rithm achieves the best score of 1 at the first rank position. As such, on some occasions, the
first ranked collection has no relevance to the query, according to the optimal ranking.

Overall, CORI scores best on the short queries, but the performances of all the collection
selection algorithms are fairly close, and above that of the SBR lower bound. The perfor
mances of the various configurations of the Doddle algorithm are much poorer than those
of the existing algorithms however, and fall below SBR. Of the Doddle configurations, Dod-
dle_RC does best.

The V n results from the execution of the long test queries are given in Figure 6.3b. Again,
no algorithm achieves the best score of 1 at the first rank position. The best performers
are CORI, Inner Product and Highest-available Similarity, which are very closely matched.
The bGlOSS algorithm sees a large drop in performance, below the SBR lower bound. The
configurations of the Doddle algorithm are again below SBR, with Doddle_RC the strongest
of these.

Over these three performance measures, we have found CORI to be the most consistent
algorithm, with Inner Product and Highest-available Similarity also performing well. Fol
lowing the form shown on the rank correlation measures, the configurations of the Doddle
algorithm have lagged behind the collection selection algorithms. Of these, Doddle_RC has
been the strongest.

In the following section, we look closely at the performances of the algorithms within
the top rank positions: correctly choosing the best collections in these positions is highly
im portant for collection suggestion.

Top Rank Perform ance

In this section, we consider the performance of the selected collection selection algorithms
and configurations of the Doddle algorithm, in terms of our Precision@5 and Correct@l per
formance measures. These measures allow us to scrutinise algorithm performance within
the top rank positions, where it is particularly important that algorithms choose the best
collections.

The scores achieved by the algorithms on these two measures are given in Table 6.4.
Looking first at the Precision@5 scores, we see the scores are low for all algorithms. On the
short queries, bGlOSS and CORI score highest. The scores of many of the configurations of
the Doddle algorithm are lower than those of the collection selection algorithms. However,
the best configuration (Doddle_RC) is competitive, and matches the likes of Inner Product
and Highest-available Similarity.

On the long queries, the Precision@5 scores are slightly higher, but still poor overall.
CORI scores highest, but Inner Product, Highest-available Similarity and Doddle_RC are
also strong performers.

The scores achieved by the algorithms are also poor according to the Correct@l mea
sure, which shows the number of queries for which the algorithm correctly identified the
first ranked collection. On short queries, CORI scores best, correctly identifying the top col
lection on only nine queries. Performance of the other collection selection algorithms is

121

1

0.6

0.4

0.2

J i I L.

Y1 2 3 4 5 6 7 8 9 10
n

 FsBR
bGlOSS

— CORI
 Inner Product
—I— Skew
— Highest-available Similarity
 DFPROP
 Doddle
—1*— Doddle_RC
 Doddle_RP
- x - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Short queries.

0 .8‘

0.6

0.4

0.2

n

— FsBR
^ bGlOSS
i-CORI
— Inner Product

— Skew
*— Highest-available Similarity
 DFPROP
— Doddle

— Doddle_RC
■■■ Doddle_RP
<- Doddle_RC+RP
 Doddle_RC+RF
••■Doddle_RP+RF
— SBR

(b) Long queries.

Figure 6.3 : The V n values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the SYM-236 test data se t

122

6.3. UDC-236

Table 6.4: The Precision@5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the SYM-236 test data set.

Algorithms

Precision@5 Correct@l

Qs Ql Qs Ql

bGlOSS 0.18 0.11 8 (8%) 2 (2%)
CORI 0.17 0.18 9 (9%) 12 (12%)
Inner Product 0.14 0.17 8 (8%) 13 (13%)
Skew 0.14 0.16 8 (8%) 9 (9%)
Highest-available Similarity 0.14 0.17 6 (6%) 15 (15%)
DFPROP 0.15 0.16 8 (8%) 9 (9%)
Doddle 0.10 0.12 2 (2%) 6 (6%)
Doddle_RC 0.14 0.17 7 (7%) 12 (12%)
Doddle_RP 0.09 0.10 1 (1%) 6 (6%)
Doddle_RC+RP 0.11 0.13 3 (3%) 11 (11%)
Doddle_RC+RF 0.10 0.12 3 (3%) 5 (5%)
Doddle_RP+RF 0.07 0.10 0 (0%) 5 (5%)
SBR 0.03 0.03 2 (2%) 2 (2%)

also similar, and Doddle_RC is not far behind, with seven correct first collections. The other
configurations of Doddle perform poorly however.

Again, on long queries, there is an improvement in performance all-round. On this oc
casion, Highest-available Similarity scores best, with Inner Product, CORI and Doddle_RC
close behind.

It is evident from these results that the SYM-236 data set is a challenging one. This may
be due to the variety of content within individual collections, and therefore several collec
tions appear to be very similar. This is an artefact of using the TREC document corpus to
create synthetic collections.

There is much room for improvement in the top rank performance of these algorithms:
the scores are much lower than we would like to see. A maximum of correctly identifying
the top collection on only 15% of queries is not adequate.

We continue our evaluation using TREC-based test data in the following section.

6.3 UDC-236

Like the previous test data set, UDC-236 is also constructed from discs 1-3 of the TREC
document corpus. Here, collections are grouped by original source and publication date
into collections containing roughly the same number of documents. The spread of relevant
documents within the collections is fairly even, however the collections may appear very
similar in content (see Chapter 4).

123

6. Evaluation o f Algorithms: Scenarios and TREC

We present the results achieved by the selected algorithms on this test data set, accord
ing to our choice of performance measures, in the following sections.

Rank Correlation

In Table 6.5, we present the Spearman rank correlation scores achieved by the tested algo
rithms. The scores show correlation between both the FsBR and SBR baselines, averaged
over the set of 100 test queries.

We first look at the degree of correlation between the algorithm-produced collection
ranking and the optimal FsBR collection ranking. All algorithms have a statistically signifi
cant correlation (p < 0.05) to FsBR, on both short and long queries. However, evaluating the
Size-Based Ranking against FsBR does not give a significant correlation. This is due to the
collections in this test data set being roughly equal in size, and thus ordering collections by
size is ineffective.

On the short queries, CORI has the highest correlation score, while on long queries,
Highest-available Similarity scores best. The configurations of the Doddle algorithm tend
to score lower than the collection selection algorithms. However the differences are not sta
tistically significant. Doddle_RC arid Doddle_RC+RP are the strongest configurations of the
Doddle algorithm here, and are fairly competitive with the collection selection algorithms.

As in the previous test data set (SYM-236) correlation scores over long queries are slightly
higher than those over short queries, though the difference is not statistically significant.
However, bGlOSS is an exception, which again performs significantly worse on long queries.

Looking at the SBR columns of Table 6.5, we see that none of the algorithms have a
significant positive correlation to SBR; this is expected, due to the size attribute of this test
data set.

In Table 6.6, we provide the average Blest and Da Costa weighted rank correlation scores
for the algorithms, evaluated against the FsBR baseline. Here, the performances of the al
gorithms vary based on the performance measure and query length. For example, bGlOSS,
Inner Product, CORI and Highest-available Similarity all have the highest correlation scores
in a particular column.

Based on the Blest and Da Costa measures, the configurations of the Doddle algorithm
are fairly competitive overall; several of the configurations such as Doddle_RC, Doddle_RP
and Doddle_RC+RP score highly.

In the following section we further examine the performances of the selected algorithms
with the recall and precision analogous measures.

Recall and Precision Analogues

In this section we discuss the effectiveness of the algorithms under test, in terms of the
three performance measures analogous to precision and recall. For each of the measures,
results are presented in the form of graphs, showing average scores, up to rank position
ten. For reference, tables presenting scores at additional selected rank positions are given
in Appendix D.

124

Table 6.5: The average Spearman rank correlations (over 100 test queries and the UDC-
236 test data set) for selected existing algorithms and configurations of Doddle, comparing
against both the FsBR and SBR baselines. Statistically significant correlations are given in
bold.

Algorithms

FsBR SBR

Qs Ql Qs Qi

bGlOSS 0.43 0.24 -0.16 -0.07
CORI 0.48 0.47 -0.30 - 0.20
Inner Product 0.46 0.51 - 0.21 -0.23
Skew 0.42 0.45 -0.15 -0.17
Highest-available Similarity 0.47 0.53 -0.23 -0.28
DFPROP 0.40 0.44 -0.13 -0.17
Doddle 0.39 0.43 -0.04 -0.07
Doddle_RC 0.42 0.48 - 0.12 -0.16
Doddle_RP 0.41 0.45 -0.15 -0.18
Doddle_RC+RP 0.42 0.47 -0.13 -0.17
Doddle_RC+RF 0.36 0.42 0.04 0.01
Doddle_RP+RF 0.36 0.41 - 0.02 -0.04
SBR - 0.21 - 0.21 — —

Table 6.6: The average Blest and Da Costa weighted rank correlations (over 100 test queries
and the UDC-236 test data set) for selected existing algorithms and configurations of Dod
dle, comparing estimate rankings to FsBR. Statistically significant correlations are given in
bold.

Blest Da Costa

Algorithms Qs Ql Qs Qi

bGlOSS 0.54 0.47 0.50 0.52
CORI 0.52 0.50 0.52 0.51
Inner Product 0.52 0.57 0.50 0.55
Skew 0.49 0.52 0.46 0.49
Highest-available Similarity 0.46 0.53 0.50 0.57
DFPROP 0.47 0.51 0.44 0.48
Doddle 0.45 0.50 0.43 0.47
Doddle_RC 0.46 0.52 0.46 0.52
Doddle_RP 0.48 0.52 0.45 0.49
Doddle_RC+RP 0.48 0.52 0.46 0.51
Doddle_RC+RF 0.42 0.48 0.40 0.45
Doddle_RP+RF 0.44 0.48 0.40 0.44
SBR -0.17 -0.17 - 0.12 - 0.12

125

6. Evaluation o f Algorithms: Scenarios and TREC

The performances of the algorithms according to the 7Zn measure, which indicates how
well the best available collections are chosen, are shown in Figure 6.4. We first consider
the algorithm performances over short queries, given in Figure 6.4a. Here, the Doddle_RC
formulation of the Doddle algorithm starts highest, and stays strong. The CORI, Highest-
available Similarity and Doddle_RC+RP algorithms also perform well.

Considering the performance of the algorithms on long queries (Figure 6.4b), we see
that the scores are slightly higher than those achieved on the short queries. Here, Highest-
available Similarity and Inner Product stand out as the strongest algorithms. However, the
best configurations of Doddle, Doddle_RC and Doddle_RC+RP, are competitive and tend
to match the performance of CORI.

We note here that although the algorithm performances stay above the performance of
the SBR lower bound baseline, they are very distant from the optimal performance. As such,
there is evidently much room for improvement.

Figure 6.5 shows the H n scores for the algorithms under test; Figure 6.5a gives the scores
achieved on short queries, and Figure 6.5b gives the scores on long queries. In both graphs,
there is litde to choose between the algorithms.
. . On the short queries,DoddleJRC and Doddle^RC+RP just have the edge over the collec
tion selection algorithms and other formulations of Doddle. These two algorithms are also
strong on the long queries; however on this occasion, Inner Product and Highest-available
Similarity appear slightly better overall.

As with the 7Zn measure, the 7Zn scores for the algorithms are much lower than the de
sired optimal, supporting the view that the algorithms are not satisfactorily choosing the
most suitable collections at a given rank position.

Finally in this section, we examine the performances of the algorithms with respect to
the V n measure. The graphs in Figure 6.6 show the V n scores achieved by the algorithms.
In Figure 6.6a we see the results from executing the short test queries. Note that, just as on
the SYM-236 test data set in the previous section, no algorithm achieves the optimal score
of 1 at the first rank position. As such, on some queries, the algorithms choose as their first
ranked collection, a collection that FsBR has deemed to have no relevance to the query. The
same is true of executing the long queries, shown in Figure 6.6b.

On short queries, all algorithms perform better than a size-based collection ranking.
However, the stand-out algorithms are Highest-available Similarity, CORI and Doddle_RC,
which tend to score higher than the other algorithms.

On long queries, performance scores tend to be higher overall, and Highest-available
Similarity and CORI are still the stronger algorithms. The best configuration of Doddle is
Doddle_RC, which starts a little slower than the top two algorithms. However, as we move
down the rank positions, it does catch up (see Appendix D).

Over these three performance measures, we have found Highest-available Similarity,
CORI, Inner Product and Doddle_RC to be the stronger algorithms. However, their perfor
mances are still distant from the desired optimal.

In the follow section we focus on performance within the top rank positions, where the
correct ordering of collections takes priority.

126

1

0.8

0.6

0.2

- J = »

1 2 3 4 5 6 7 8 9 10
n

(a) Short queries.

■FsBR
- bGlOSS
CORI
Inner Product

■ Skew
Highest-available Similarity

•DFPROP
Doddle
Doddle_RC

• Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

0.8

0.6
C

£
0.4

0.2

n

■FsBR
-bGlOSS
CORI
Inner Product

■ Skew
- Highest-available Similarity
■DFPROP
Doddle
Doddle_RC

• Doddle_RP
Doddle_RC+RP

• Doddle_RC+RF
■ Doddle_RP+RF
SBR

(b) Long queries.

Figure 6.4: The 7Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the UDC-236 test data set.

127

 FsBR
bGlOSS

-•-CORI
— Inner Product
—I— Skew
— Highest-available Similarity
 DFPROP
 Doddle
—— Doddle_RC
 Doddle_RP
-K - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Short queries.

0.5

0.4

0.3
C

0.2

0.1

n

 FsBR
bGlOSS
CORI

 Inner Product
—I—Skew
— Highest-available Similarity
 DFPROP
 Doddle
—— Doddle_RC
■ Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.5: The 7Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the UDC-236 test data set.

128

1

0.4

0.2

 FsBR
bGlOSS

—•— CORI
 Inner Product

SkewI i j I;..................... 1..... '.rr ~ “ tew
 -----------------Highest-available Similarity

- - 'DFPROP

5 6
n

7 8 9

(a) Short queries.

10

0.8

0 . 6'

0.4

0.2

n

DFPROP
 Doddle
—— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

 FsBR
bGlOSS

- • —CORI
 Inner Product
—I—Skew
—®— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP
- x - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.6: The Vn values (up to n - 10) achieved by selected existing algorithms and con
figurations of Doddle, on the UDC-236 test data set.

129

6. Evaluation o f Algorithms: Scenarios and TREC

Top Rank Perform ance

In Table 6.7 we present the average Precision@5 and Correct@l scores for the algorithms we
are testing.

We first consider the Precision@5 scores, showing the proportion of collections within
the top five rank positions of an algorithm-produced ranking, that should be there accord
ing to the optimal ranking. On short queries, the Precision@5 scores of the collection selec
tion algorithms are very similar. However, Doddle_RC and Doddle_RC+RP score highest.

On long queries, the Doddle_RC and Doddle_RC+RP algorithms are still the best formu
lations of Doddle. However, Inner Product and Highest-available Similarity score highest
overall.

We note however that we consider the Precision@5 scores, for all algorithms, to be low.
For the algorithms to be effective, and consistently recommend suitable collections to the
user, we would expect much higher precision within the top rank positions.

The Correct@l scores are also very low. On short queries, bGlOSS, Doddle_RC and
Doddle_RC+RP are the highest scorers, but only select the correct collection at the first rank
position on 15% of the queries. On long queries, Inner Product manages to correctly iden
tify the top collection on 16% of the queries. However, here the performance of the Doddle
configurations drops from what it was on short queries.

Table 6.7: The Precision@5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the UDC-236 test data set.

Algorithms

Precision@5 Correct@l

Qs Ql Qs Ql

bGlOSS 0.15 0.09 15 (15%) 7 (7%)
CORI 0.16 0.15 10 (10%) 10 (10%)
Inner Product 0.16 0.17 11 (11%) 16 (16%)
Skew 0.14 0.13 10 (10%) 7 (7%)
Highest-available Similarity 0.16 0.17 11 (11%) 13 (13%)
DFPROP 0.13 0.14 10 (10%) 8 (8%)
Doddle 0.12 0.12 11 (11%) 5 (5%)
Doddle_RC 0.17 0.16 15 (15%) 8 (8%)
Doddle_RP 0.14 0.14 11 (11%) 8 (8%)
Doddle_RC+RP 0.17 0.15 15 (15%) 8 (8%)
Doddle_RC+RF 0.12 0.10 9 (9%) 2 (2%)
Doddle_RP+RF 0.09 0.09 4 (4%) 2 (2 %)
SBR 0.02 0.02 3 (3%) 3 (3%)

130

6.4. UBC-100

6.4 UBC-100

The UBC-100 test data set contains 100 collections of roughly equal data size, with each
collection containing documents from one source. This results in collections containing
various numbers of documents, and collections that are larger (in terms of number of doc
uments) than the SYM-236 and UDC-236 data sets.

As discussed in Chapter 4, in the UBC-100 data set, some of the larger collections have
only a small share of the relevant documents. As such, an algorithm that tends towards a
size-based ranking may perform poorly here.

We present the algorithm results over this test data set, according to each of our perfor
mance measures, in the following sections.

Rank Correlation

The Spearman rank correlation scores for the algorithms under test are given in Table 6 .8;
the ‘FsBR’ column shows the degree of correlation with the optimal baseline, while the ‘SBR’
column shows the degree of correlation with the lower bound baseline.

On both short and long queries, all algorithms show statistically significant positive cor
relation (p < 0.05) to the FsBR baseline, as does SBR. Two collection selection algorithms,
CORI and Inner Product, show the highest correlation with FsBR, and are significantly better
than Doddle_RC+RF and Doddle_RP+RF. The strongest configuration of Doddle is Dod-

Table 6.8: The average Spearman rank correlations (over 100 test queries and the UBC-
100 test data set) for selected existing algorithms and configurations of Doddle, comparing
against both the FsBR and SBR baselines. Statistically significant correlations are given in
bold.

Algorithms

FsBR SBR

Qs Qi Qs Qi

bGlOSS 0.56 0.35 0.12 0.06
CORI 0.62 0.61 0.39 0.32
Inner Product 0.61 0.65 0.44 0.41
Skew 0.56 0.59 0.47 0.46
Highest-available Similarity 0.47 0.52 0.65 0.66
DFPROP 0.55 0.59 0.50 0.51
Doddle 0.42 0.47 -0.15 -0.16
Doddle_RC 0.52 0.59 0.16 0.15
Doddle_RP 0.45 0.51 -0.17 -0.18
Doddle_RC+RP 0.50 0.56 - 0.02 -0.04
Doddle_RC+RF 0.38 0.45 - 0.12 -0.14
Doddle_RP+RF 0.34 0.40 -0.30 -0.30
SBR 0.18 0.18 — —

131

6. Evaluation o f Algorithms: Scenarios and TREC

dle_RC; it does not score as highly as CORI and Inner Product, but it is not significantly
poorer.

As with the SYM-236 and UDC-236 data sets, correlation scores with FsBR tend to be
slightly higher on long queries than on short queries (bGlOSS excluded). However, the dif
ferences in scores are not statistically significant.

Looking at the ‘SBR’ column of Table 6.8, we see that most of the collection selection
algorithms are significantly correlated to SBR, while the configurations of Doddle are not.
Since the collection selection algorithms tend to match the optimal FsBR baseline a little
closer than the Doddle configurations, it is likely there is some bias towards larger collec
tions within the test data set. Although the largest collections contain few relevant docu
ments, the collections with the most relevant documents and matching the most queries
tend to be larger than those with less relevant documents and matching less queries.

The Blest and Da Costa weighted rank correlation scores (to FsBR), shown in Table 6.9,
tell a similar story to the Spearman correlation scores. That is, all algorithms exhibit a signif
icant correlation to FsBR, with CORI and Inner Product having the best scores. Doddle_RC
is the strongest configuration of Doddle, but in general it scores lower than the collection
selection algorithms..

In the following section we consider the performances of the algorithms in terms of the
recall and precision based measures.

Table 6.9: The average Blest and Da Costa weighted rank correlations (over 100 test queries
and the UBC-100 test data set) for selected existing algorithms and configurations of Dod
dle, comparing estimate rankings to FsBR. Statistically significant correlations are given in
bold.

Blest Da Costa

Algorithms Qs Qi Qs Ql

bGlOSS 0.53 0.25 0.60 0.55
CORI 0.59 0.59 0.63 0.63
Inner Product 0.58 0.63 0.62 0.67
Skew 0.54 0.56 0.58 0.61
Highest-available Similarity 0.44 0.49 0.46 0.52
DFPROP 0.53 0.56 0.57 0.60
Doddle 0.39 0.43 0.44 0.49
Doddle_RC 0.50 0.56 0.54 0.61
Doddle_RP 0.42 0.46 0.48 0.53
Doddle_RC+RP 0.47 0.52 0.52 0.58
Doddle_RC+RF 0.36 0.41 0.40 0.46
Doddle_RP+RF 0.31 0.36 0.35 0.41
SBR 0.17 0.17 0.16 0.16

132

6.4. UBC-100

Recall and Precision Analogues

In this section we discuss the performances of the algorithms, according to the recall and
precision analogues. We focus exclusively on performance within the top ten rank posi
tions: correctly identifying the most suitable collections for the user’s query is important; as
such, performance outside the first few collections is irrelevant. For reference however, we
provide scores achieved at selected other rank positions, for these measures, in Appendix D.

We first consider the algorithm performances according to the 1Zn measure, which indi
cates how closely an algorithm selects the best available collection, at a given rank position.
Scores achieved by the selected algorithms on this measure are given in Figure 6.7.

The performances of the algorithms vary depending on whether we are utilising short
or long test queries. For example, on short queries (see Figure 6.7a) bGlOSS performs best
overall; Inner Product starts well, and remains competitive. The strongest configuration of
Doddle is Doddle_RC, which competes well with CORI and DFPROP.

On long queries however (see Figure 6.7b), Inner Product shows a much stronger per
formance, and tends to lead the other algorithms. Doddle_RC and Doddle_RC+RP score
lower than Inner Product initially, but become very competitive as we move down the rank
positions.

We note that all algorithms show much stronger performance than the Size-Based Rank
ing, which performs particularly poorly on this data set and performance measure.

We next look at the algorithm scores for the 1Zn measure, which shows how much of
the merit associated with the collections has been accumulated at each rank position: an
alternative measure of whether the best collections are being chosen by the algorithms. Fig
ure 6.8 shows the scores achieved by the algorithms for this measure.

We notice that for both short and long queries, the algorithm performances are fairly
close. However, the graphs tell a similar story as those for the 1Zn results. That is, on short
queries, bGlOSS performs best overall, and Doddle_RC is competitive with algorithms such
as CORI, but slightly behind bGlOSS. On long queries however, the performance of bGlOSS
drops, and Doddle_RC, Doddle_RC+RP and Inner Product come to the fore. SBR is again
very poor.

Finally, the algorithm performances according to the V n performance measure are given
in the graphs in Figure 6.9. This measure is analogous to precision, and indicates the pro
portion of collections at each rank position that have relevance to the query (averaged over
all test queries), according to the optimal ranking.

Here, at the first rank position, an optimal V n score is 1; however, none of the algorithms
achieved this, suggesting they sometimes rank first a collection the optimal ranking has
deemed to have no relevance.

The performances of the algorithms again vary: some perform better on short queries
than long queries. On the short queries, Inner Product and CORI score highest, and are fairly
evenly matched, followed by DFPROP. The best configuration of Doddle is Doddle_RC, but
it tends to perform worse than the best collection selection algorithms.

On long queries, Inner Product is clearly the stronger algorithm. Below Inner Product
are CORI, DFPROR Skew and Doddle_RC, which all perform similarly.

We look more closely at performance in the top rank positions, in the following sections.

133

1

0.8

0.6

0.4

0.2

n

FsBR
bGlOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC
Doddle_RP
Doddle_RC+RP
Doddle_RC+RF
Doddle_RP+RF
SBR

(a) Short queries.

0.8

0.6
£

&
0.4

0.2

n

■ FsBR
bGlOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC
Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(b) Long queries.

Figure 6.7: The 7Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the UBC-100 test data set.

134

0.6

0.5

0.4

0.3

0.2

0.1

n

 FsBR
-^bGlOSS
-•—CORI
— Inner Product
-I— Skew

Highest-available Similarity
 DFPROP
— Doddle

Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Short queries.

0.6

0.5

0.4

<£ 0.3

0.2

0.1

n

 FsBR
bGlOSS

-•— CORI
— Inner Product
-H— Skew

Highest-available Similarity
 DFPROP
— Doddle

Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.8: The 1tn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the UBC-100 test data set.

135

i

0.8

0.6

0.4

0.2

n

•FsBR
bGIOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC

■ Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(a) Short queries.

0.8

0.6

0.4

0.2

n

•FsBR
bGIOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC

■ Doddle_RP
Doddle_RC+RP
Doddle_RC+RF
Doddle_RP+RF
SBR

(b) Long queries.

Figure 6.9: The Vn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the UBC-100 test data se t

136

6.4. UBC-100

Top Rank Perform ance

The scores achieved by the tested algorithms, on the Precision@5 and Correct@l perfor
mance measures, are given in Table 6.10. We first consider the Precision@5 scores.

Precision@5 indicates the proportion of collections within the top five rank positions,
that should be present, according to the optimal ranking (averaged over all test queries).
On short queries, bGIOSS scores highest, with Doddle_RC being the most competitive of
the Doddle configurations. However, on long queries the configurations of Doddle perform
particularly well: Doddle_RC+RP scores highest, followed by Doddle_RC and Inner Product.

The Correct@l measure shows the number and percentage of queries for which the al
gorithms correctly identified the first-ranked collection. On short queries, bGIOSS again
scores best. However it predicts the top collection on only 15% of the queries. Inner Prod
uct and Doddle_RP follow, with 13% and 12% respectively. On the long test queries, Inner
Product has the highest score (14%); the most competitive configurations of Doddle are
Doddle_RC and Doddle_RC+RP, with 10%.

We observe here that the performance of Highest-available Similarity has been particu
larly poor on this test data set, often showing some of the lowest scores for the performance
measures. In contrast, it was one of the stronger algorithms on the previous two data sets
(SYM-236 and UDC-236).

Table 6.10: The Precision<§>5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the UBC-100 test data set.

Algorithms

Precision@5 Correct@l

Qs Ql Qs Ql

bGIOSS 0.26 0.16 15 (15%) 7 (7%)
CORI 0.23 0.21 11 (11%) 8 (8 %)
Inner Product 0.21 0.25 13 (13%) 14 (14%)
Skew 0.19 0.20 9 (9%) 7 (7%)
Highest-available Similarity 0.07 0.13 2 (2 %) 5 (5%)
DFPROP 0.19 0.22 9 (9%) 10 (10%)
Doddle 0.18 0.22 5 (5%) 6 (6 %)
Doddle_RC 0.23 0.26 8 (8 %) 10 (10%)
Doddle_RP 0.19 0.24 12 (12%) 8 (8 %)
Doddle_RC+RP 0.21 0.27 10 (10%) 10 (1 0 %)
Doddle_RC+RF 0.16 0.20 3 (3%) 3 (3%)
Doddle_RP+RF 0.12 0.17 4 (4%) 2 (2 %)
SBR 0.00 0.00 0 (0 %) 0 (0 %)

137

6. Evaluation o f Algorithms: Scenarios and TREC

6.5 2LDB-60COL

The 2LDB-60COL test data set is formulated from the UDC-100 data set, by combining a
selection of collections to form two very large collections. As such, as discussed in Chapter 4,
the data set contains many small collections of similar size, and the two large collections.
The distribution of relevant documents is such that a size-based ranking of collections may
be an adequate ranking strategy here.

We discuss algorithm performances over this data set in the following sections.

Rank Correlation

In this section we discuss the performances of the algorithms, in terms of the rank cor
relation measures. These measures indicate the similarity between a baseline collection
ranking, and a collection ranking produced by an algorithm.

We first look at similarity scores according to the Spearman rank correlation coefficient,
given in Table 6.11. The ‘FsBR’ column gives algorithm correlation with the optimal base-
line, while the ‘SBR’ column gives algorithm correlation with the lower bound baseline.

From Table 6.11, we see that all algorithms tested (including SBR) have significant posi
tive correlation (p < 0.05) with FsBR, on both short and long queries. The algorithms show
ing the strongest correlation with FsBR are CORI and Inner Product. The best configuration

Table 6.11: The average Spearman rank correlations (over 100 test queries and the 2LDB-
60COL test data set) for selected existing algorithms and configurations of Doddle, compar
ing against both the FsBR and SBR baselines. Statistically significant correlations are given
in bold.

Algorithms

FsBR SBR

Qs Qi Qs Qi

bGlOSS 0.56 0.37 0.25 0.15
CORI 0.63 0.63 0.48 0.43
Inner Product 0.61 0.65 0.55 0.53
Skew 0.57 0.60 0.59 0.58
Highest-available Similarity 0.51 0.56 0.67 0.68
DFPROP 0.56 0.59 0.61 0.62
Doddle 0.43 0.49 -0.09 -0.08
Doddle_RC 0.54 0.60 0.21 0.22
Doddle_RP 0.45 0.51 -0.13 -0.13
Doddle_RC+RP 0.51 0.57 0.04 0.03
Doddle_RC+RF 0.40 0.47 -0.05 -0.04
Doddle_RP+RF 0.34 0.41 -0.23 - 0.21
SBR 0.24 0.24 — —

138

6.5. 2LDB-60COL

Table 6.12: The average Blest and Da Costa weighted rank correlations (over 100 test queries
and the 2LDB-60COL test data set) for selected existing algorithms and configurations of
Doddle, comparing estimate rankings to FsBR. Statistically significant correlations are given
in bold.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.50 0.22 0.60 0.55
CORI 0.58 0.58 0.64 0.64
Inner Product 0.56 0.61 0.61 0.66
Skew 0.53 0.56 0.58 0.60
Highest-available Similarity 0.47 0.52 0.50 0.55
DFPROP 0.52 0.55 0.57 0.60
Doddle 0.38 0.43 0.45 0.51
Doddle_RC 0.50 0.55 0.56 0.62
Doddle_RP 0.41 0.45 0.47 0.53
Doddle_RC+RP 0.47 0.52 0.53 0.59
Doddle_RC+RF 0.36 0.41 0.42 0.48
Doddle_RP+RF 0.30 0.35 0.36 0.42
SBR 0.25 0.25 0.22 0.22

of Doddle is Doddle_RC; although its correlation with FsBR is lower than the top collection
selection algorithms, there is no statistically significant difference.

Looking at the ‘SBR’ column of Table 6.11, we see that the collection selection algorithms
also show significant correlation to a size-based ranking. This is also true of Doddle_RC, the
only configuration of Doddle to do so. However, its correlation with SBR is lower than those
of the collection selection algorithms. The correlations with the Size-Based Ranking support
the view that the data set has a bias towards the larger collections.

The observations made on the Spearman rank correlation results are supported by the
Blest and Da Costa weighted rank correlation scores, given in Table 6.12. All algorithms
are again significantly correlated to FsBR, with CORI and Inner Product scoring highest.
Once again, Doddle_RC is the strongest configuration of the Doddle algorithm, and is fairly
competitive.

We investigate the performance of the algorithms on the 2LDB-60COL test data set fur
ther in the following section, with the recall and precision analogous measures.

Recall and Precision Analogues

In Figure 6.10, we present the 7Zn scores achieved within the first ten rank positions, by
the algorithms under test. Recall that lZn indicates how well an algorithm selects the best
available collection at a given rank position.

139

&

FsBR
bGlOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC
Doddle_RP
Doddle_RC+RP
Doddle_RC+RF
Doddle_RP+RF
SBR

(a) Short queries.

0.8

0.6
e

&
0.4

0.2

n

■FsBR
bGlOSS
CORI
Inner Product

• Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC

■ Doddle_RP
• Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(b) Long queries.

Figure 6.10: The 7Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the 2LDB-60COL test data set.

140

6.5. 2LDB-60COL

On the short test queries (see Figure 6.10a), CORI scores best at the first rank position;
however, Doddle_RC and Doddle_RC+RP appear to be the strongest algorithms overall.
These two algorithms are also best overall on the long test queries (see Figure 6.10b), and
are noticeably stronger than CORI.

Notably, while Inner Product scored highly on the rank correlation measures, its perfor
mance according to the H n measure is poor, although it does exceed the lower bound SBR
baseline.

The 7Zn measure is an alternative indicator of how accurately an algorithm selects the
best collections. The results of this measure are given as graphs in Figure 6.11, and tell a
similar story to the 1Zn graphs. On short queries, Doddle_RC, Doddle_RC+RP and CORI
perform best, and are closely matched. However on long queries, the performance of CORI
drops slightly, relative to that of the two best Doddle configurations. Inner Product is again
sub-par, based on its previous rank correlation scores.

In Figure 6.12 we present the performances of the algorithms according to the V n mea
sure. V n indicates whether the collections an algorithm has selected, at a given rank posi
tion, are relevant to the query, according to the optimal. The findings here differ from those
of the IZn and 1Zn measures.

Here, Inner Product performs best overall, followed by DFPROP and Skew; while CORI
starts slower, it does match these two algorithms as we move down the rank positions. How
ever, Doddle_RC and Doddle_RC+RP lag behind these.

On this data set, several algorithms (Inner Product, Skew, DFPROP and SBR) achieve the
optimal score of 1, at the first rank position. This shows that the first ranked collection al
ways has some relevance to the query (although it may not be the most relevant collection).
We note that as SBR achieves this optimal score, this suggests that the largest collection al
ways has relevance to the test queries. However, based on its poor performance according
to 7 ln and lZn> the largest collection is rarely the best. Indeed, this is also true of Inner Prod
uct on this data set: while it chooses collections that have some relevance, they are not the
most relevant.

We investigate the performance of these algorithms further in the following section, with
our Precision@5 and Correct@l measures.

Top Rank Perform ance

In this section, we consider the effectiveness of the algorithms at the top five, and first rank
positions. That is, with our Precision@5 measure we investigate how accurately the algo
rithms identify collections that belong in the first five rank positions. In addition, Correct@l
checks how often the algorithms correctly identify the best collection. The scores achieved
by the algorithms for these measures are given in Table 6.13.

Looking first at the Precision@5 scores, we see that the various Doddle configurations
tend to score highest overall, with Doddle_RC and Doddle_RC+RP achieving the best scores.
The strongest collection selection algorithm is CORI, however it does not quite match the
two Doddle configurations.

On the Correct@l measure, the collection selection algorithms perform poorly overall:
m any fail to identify the top ranked collection on even a single query. On short queries,

141

0.7

0.6

0.5

0.4
c

‘f*
0.3

0.2

0.1

n

 FsBR
bGlOSS

— CORI
 Inner Product
—I— Skew
— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Short queries.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n

 FsBR
bGlOSS

— CORI
 Inner Product
—I— Skew
—1e— Highest-available Similarity
 DFPROP
 Doddle
—1*— Doddle_RC
 Doddle_RP
- x - Doddle_RC+RP

Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.11: The 1tn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the 2LDB-60COL test data set.

142

1

0.8

0.6

0.4

0.2

0 21 3 4 5 6 7 8 9 10

-FsBR
- bGlOSS
CORI
Inner Product

- Skew
Highest-available Similarity

■ DFPROP
Doddle

- Doddle_RC
• Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(a) Short queries.

1

0.8

0.6

0.4

0.2

0 21 3 4 5 6 7 8 9 10

-FsBR
- bGlOSS
CORI
Inner Product

- Skew
Highest-available Similarity

•DFPROP
Doddle
Doddle_RC

• Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
■SBR

(b) Long queries.

Figure 6.12: The Vn values (up to n - 10) achieved by selected existing algorithms and con
figurations of Doddle, on the 2LDB-60COL test data set.

143

6. Evaluation o f Algorithms: Scenarios and TREC

Table 6.13: The Precision@5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the 2LDB-60COL test data set.

Algorithms

Precision@5 Correct@l

Qs Ql Qs Qi

bGlOSS 0.23 0.21 10 (10%) 14 (14%)
CORI 0.27 0.26 11 (11%) 6 (6%)
Inner Product 0.18 0.22 0 (0%) 0 (0%)
Skew 0.18 0.19 0 (0%) 0 (0%)
Highest-available Similarity 0.08 0.12 0 (0%) 0 (0%)
DFPROP 0.17 0.20 0 (0%) 0 (0%)
Doddle 0.22 0.29 8 (8%) 9 (9%)
Doddle_RC 0.31 0.32 10 (10%) 11 (11%)
Doddle_RP 0.26 0.31 15 (15%) 12 (12%)
Doddle_RC+RP 0.30 0.33 14 (14%) 13 (13%)
Doddle_RC+RF 0.21 0.23 7 (7%) 8 (8%)
Doddle_RP+RF 0.16 0.22 . . 6 . (6%) . . 7. . (7%)
SBR 0.01 0.01 0 (0%) 0 (0%)

the best collection selection algorithm is CORI, which correctly identifies the top collection
on 11% of the test queries. However, Doddle_RP exceeds this, with 15%. On long queries,
bGlOSS performs best, identifying the best collection on 14% of queries; Doddle_RC+RP
follows with 13%.

As with the previous TREC-based test data sets, we consider the Precision@5 and Cor-
rect@l scores to be fairly low: improvement is required to be effective in an operational
environment.

6.6 AP-WSJ-60COL

In this section, we examine the effectiveness of the selected algorithms over the AP-WSJ-
60COL test data set. Like 2LDB-60COL in the previous section, AP-WSJ-60COL is formulated
from the collections in the UBC-100 data set. We again have two very large collections,
however on this occasion the large collections comprise all documents from the original
Associated Press and Wall Street Journal sources. As such, in this test data set, the large
collections contain a significant share of the relevant documents. Therefore, the SBR lower
bound baseline may perform fairly well on this data set.

In the following sections, we discuss the algorithm performances on this test data set
using a variety of performance measures.

144

6.6. AP WSJ-60COL

Rank Correlation

In this section we present the Spearman rank correlation, and Blest and Da Costa weighted
rank correlation scores achieved by the algorithms on the AP-WSJ-60COL data se t

The Spearman rank correlation scores between the algorithm-produced collection rank
ings and both the FsBR optimal and SBR lower bound baselines are given in Table 6.14.
All algorithms are significantly correlated to FsBR (p < 0.05), with CORI and Inner Prod
uct scoring highest overall. The strongest configuration of Doddle is Doddle_RC; although
it achieves lower correlation scores than CORI and Inner Product, the differences are not
statistically significant (p > 0.05).

We note that when comparing SBR to the optimal baseline, there is no significant corre
lation; this is contrary to our speculation at the start of this section, that SBR may perform
well on this test data set. We reflect on this further as we consider the other performance
measures.

Table 6.14 also shows algorithm correlation scores with the size-based ranking. The m a
jority of the collection selection algorithms exhibit significant positive correlation with SBR,
while Doddle_RC and the other Doddle configurations do not. This suggests there is some
bias in the test data set towards the larger collections. In contrast, the SBR correlation scores
of some configurations of Doddle indicate a bias against larger collections. While our collec
tion suggestion objectives may encourage the selection of smaller collections over equally
relevant larger collections, we do not wish to discriminate against the larger collections if
they most appropriately address the user’s query.

In Table 6.15 we provide the Blest and Da Costa weighted rank correlation scores, be
tween the algorithm-produced rankings and the FsBR optimal ranking. These two measures
emphasise the importance of correctly ranking the top collections.

In the ‘Blest’ column of the table, we see that all collection selection algorithms have
significant correlation to FsBR, with CORI and Inner Product again scoring highest. Dod-
dle_RC is again the best configuration of Doddle; however, some Doddle configurations are
not significantly correlated to FsBR, again suggesting a bias against larger collections.

In the ‘Da Costa’ column however, all algorithms are significantly correlated to FsBR,
and the Doddle configurations compete well with the collection selection algorithms.

On the Blest and Da Costa measures, SBR is significandy correlated to FsBR. This sug
gests that it may perform well within the top few rank positions, matching the optimal rank
ing. However, as we move down the rank positions, it becomes less effective and thus its
overall performance is reduced.

In the following section we investigate the algorithms further, with the recall and pre
cision analogous measures; these may provide additional insight into the results we have
observed thus far.

Recall and Precision Analogues

In this section we consider the performances of the selected algorithms, according to the
three performance measures analogous to recall and precision; 1Znt 1 tn and V n• The scores

145

Table 6.14: The average Spearman rank correlations (over 100 test queries and the AP-WSJ-
60COL test data set) for selected existing algorithms and configurations of Doddle, compar
ing against both the FsBR and SBR baselines. Statistically significant correlations are given
in bold.

Algorithms

FsBR SBR

Qs Qi Qs Qi

bGlOSS 0.44 0.35 - 0.02 0.04
CORI 0.50 0.53 0.43 0.32
Inner Product 0.48 0.54 0.42 0.37
Skew 0.41 0.46 0.46 0.45
Highest-available Similarity 0.36 0.38 0.80 0.81
DFPROP 0.39 0.45 0.48 0.49
Doddle 0.35 0.41 -0.33 -0.36
Doddle_RC 0.45 0.52 0.12 0.09
Doddle_RP 0.35 0.41 -0.43 -0.46
Doddle_RC+RP 0.42 0.48 -0.19 -0.24
Doddle_RC+RF 0.34 0.41 -0.23 -0.25
Doddle_RP+RF 0.25 0.33 -0.53 -0.53
SBR 0.13 0.13 — —

Table 6.15: The average Blest and Da Costa weighted rank correlations (over 100 test queries
and the AP-WSJ-60COL test data set) for selected existing algorithms and configurations of
Doddle, comparing estimate rankings to FsBR. Statistically significant correlations are given
in bold.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.39 0.35 0.54 0.61
CORI 0.50 0.52 0.58 0.61
Inner Product 0.49 0.54 0.56 0.62
Skew 0.43 0.47 0.49 0.54
Highest-available Similarity 0.37 0.40 0.42 0.45
DFPROP 0.40 0.47 0.47 0.52
Doddle 0.21 0.24 0.45 0.50
Doddle_RC 0.36 0.39 0.54 0.60
Doddle_RP 0.23 0.24 0.44 0.50
Doddle_RC+RP 0.30 0.32 0.51 0.57
Doddle_RC+RF 0.20 0.24 0.43 0.49
Doddle_RP+RF 0.11 0.16 0.34 0.41
SBR 0.27 0.27 0.21 0.21

146

6.6. AP-WSJ-60COL

achieved by the algorithms, within the first ten rank positions, are presented as graphs. For
reference, scores at additional selected rank positions are provided in tables in Appendix D.

Figure 6.13 presents the scores achieved, according to the recall-analogous lZn measure,
for both short and long test queries. On short queries, we see that bGlOSS scores highest at
the first rank position. However, it is overtaken by CORI, which appears to be the most con
sistent overall. The strongest configurations of Doddle are Doddle_RC and Doddle_RC+RP,
however they are a little behind CORI.

On the long test queries, bGlOSS is one of the weakest algorithms. Several algorithms
perform similarly well: Inner Product, CORI, Doddle_RC and Doddle_RC+RP.

On both short and long queries, we observe that the SBR baseline scores highly within
the first two rank positions, before its performance drops off. This suggests that the two
largest collections are often highly relevant to the test queries (as is evidenced in Chapter 4).

The i t n measure is an alternative recall-analogous measure; scores achieved by the al
gorithms according to 1Zn are given as graphs in Figure 6.14. The observations on the short
and long test queries are the same: CORI, Inner Product, Doddle_RC and Doddle_RC+RP
all show similar performances, and tend to lead the other algorithms. As with 1Zn, the SBR
baseline starts strongly on H n, matching the top performing algorithms. This provides fur
ther evidence that the top two collections are highly relevant to many of the test queries.

The scores achieved by the algorithms according to the precision-analogous V n mea
sure are given in Figure 6.15. Again, we observe similar trends on both sets of test queries.
No algorithm achieves the optimal score of 1 at the first rank position. As such, although
SBR again scores highly early on, the largest collections are not relevant to every query in
this data set.

According to V n, CORI and Inner Product appear to be the most consistent algorithms,
followed by Skew and DFPROP. The most consistent configurations of the Doddle algorithm
are Doddle_RC and Doddle_RC+RP, however they do not score as highly as some of the col
lection selection algorithms. As such, at a given rank position, they are more likely to choose
a collection that has no relevance to the user’s query, according to the optimal ranking.

Additional discussion of the algorithm performances follows in the next section, where
we look more closely at performance within the top few rank positions.

Top Rank Perform ance

In Table 6.16 we provide the scores achieved by the algorithms according to our top rank
performance measures: Precision@5 indicates how accurately an algorithm includes rele
vant collections within the top rank positions; while Correct@l gives the number of queries
for which an algorithm correctly identifies the top-ranked collection.

Our initial observation over these results is that the scores achieved by the algorithms
are noticeably higher than those on the previous TREC-based data sets. It is possible that
this data set is ‘easier’ than the others, due to its two large collections containing many of
the documents relevant to each query.

Looking at the Precision@5 scores, we see similar trends to those on the previous perfor
mance measures discussed in this section: CORI and Inner Product are the strongest of the
collection selection algorithms. On the short queries, Doddle_RC is the best configuration

147

1

0.8

0.6
c

£
0.4

0.2

yl ■ • 2 ' 3 -4 - -5 - 6 7 - 8 - 9 - 1 0
n

(a) Short queries.

 FsBR
bGlOSS

-■—CORI
— Inner Product
-I—Skew

Highest-available Similarity
 DFPROP
— Doddle
—~ Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

0.8

0.6
c

&
0.4

0.2

n

 FsBR
—a— bGlOSS
—■—CORI
 Inner Product
—I— Skew
—e— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.13: The 7Zn values (up to n - 10) achieved by selected existing algorithms and con
figurations of Doddle, on the AP-WSJ-60COL test data set.

148

0.9

0.8

0.7

0.6

0.5e
0.4

0.3

0.2

n

 FsBR
bGlOSS

-•-CORI
 Inner Product
—I— Skew
—e— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Short queries.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n

 FsBR
bGlOSS
CORI

 Inner Product
—I— Skew
—e— Highest-available Similarity
 DFPROP
 Doddle
—— Doddle_RC
 Doddle_RP
-K - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.14: The 1Zn values (up to n - 10) achieved by selected existing algorithms and con
figurations of Doddle, on the AP-WSJ-60COL test data set.

149

— FsBR
^ bGlOSS
•-CORI
— Inner Product

I— Skew
>— Highest-available Similarity
 DFPROP
— Doddle
— Doddle_RC
■■■ Doddle_RP
«- Doddle_RC+RP
 Doddle_RC+RF
•■•Doddle_RP+RF
— SBR

(a) Short queries.

0 . 8 '

0.6

0.4

0.2

n

 FsBR
bGlOSS
CORI

 Inner Product
—I—Skew
— Highest-available Similarity
 DFPROP
 Doddle
—— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.15: The Vn values (up to n= 10) achieved by selected existing algorithms and con
figurations of Doddle, on the AP-WSJ-60COL test data set.

150

6.7. FR-DOE-81COL

Table 6.16: The Precision@5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the AP-WSJ-60COL test data set.

Algorithms

Precision@5 Correct@l

Qs Ql Qs Qi

bGlOSS 0.35 0.22 25 (25%) 22 (22%)
CORI 0.36 0.36 22 (22%) 23 (23%)
Inner Product 0.34 0.36 21 (21%) 24 (24%)
Skew 0.32 0.33 20 (20%) 23 (23%)
Highest-available Similarity 0.18 0.25 9 (9%) 20 (20%)
DFPROP 0.31 0.32 19 (19%) 22 (22%)
Doddle 0.28 0.34 19 (19%) 25 (25%)
Doddle_RC 0.34 0.38 25 (25%) 28 (28%)
Doddle_RP 0.28 0.34 22 (22%) 23 (23%)
Doddle_RC+RP 0.33 0.39 26 (26%) 25 (25%)
Doddle_RC+RF 0.25 0.32 17 (17%) 25 (25%)
Doddle_RP+RF 0.21 0.26 13 (13%) 19 (19%)
SBR 0.22 0.22 19 (19%) 19 (19%)

of Doddle; however, Doddle_RC+RP narrowly scores higher than Doddle_RC on the long
queries, also beating CORI and Inner Product.

On the Correct@l measure, the algorithms are fairly evenly matched. Here, the Doddle
configurations perform best, with Doddle_RC+RP and Doddle_RC the highest scorers on
short and long queries respectively.

In the following section we discuss the performances of the algorithms on the final
TREC-based test data set; following this we provide a discussion and summary of our find
ings.

6.7 FR-DOE-81COL

The final TREC-based test data set we use to evaluate the selected algorithms is FR-DOE-
81 COL. Formulated from the collections in the UBC-100 data set, FR-DOE-81COL contains
two very large collections, comprising all the documents from the original Federal Register
and Department of Energy sources.

In contrast to AP-WSJ-60COL, the large collections in this data set contain few of the
relevant documents. As such the SBR baseline, and any algorithm that mimics it, is unlikely
to perform well on this data set.

Using a range of performance measures, we present and discuss the performances of
the algorithms on the FR-DOE-81COL data set in the following sections.

151

6. Evaluation o f Algorithms: Scenarios and TREC

Rank Correlation

In this section we consider the performances of the algorithms in terms of three rank cor
relation coefficients, which measure the similarity between two rankings of objects; collec
tions in this case. Specifically, Spearman rank correlation is a standard correlation measure.
We also use two weighted rank correlation measures, which place an importance on simi
larity within the top rank positions.

In Table 6.17 we present the Spearman rank correlation scores between the algorithm-
produced collection rankings, and both the optimal baseline, and a size-based ranking. We
first consider the correlation with the optimal FsBR baseline.

As we have seen on several of the TREC-based test data sets thus far, CORI and Inner
Product show the highest correlation with FSBR, with Doddle_RC the strongest of the Dod
dle configurations.

On both short and long queries, all algorithms have statistically significant correlation
(p < 0.05) with FsBR, and there are no statistically significant differences between the al
gorithms. However, SBR is an exception: it is not significantly correlated to FsBR, and is
significandy poorer than the other algorithms tested.

Comparing the similarity of algqrithm-produced collection rankings and the size-based
ranking indicates whether the algorithms tend to favour large collections. Table 6.17 also
shows the correlation scores between the algorithms and SBR. The collection selection al
gorithms are significantly correlated to SBR, as is Doddle_RC (though its score is lower than

Table 6.17: The average Spearman rank correlations (over 100 test queries and the FR-DOE-
81 COL test data set) for selected existing algorithms and configurations of Doddle, compar
ing against both the FsBR and SBR baselines. Statistically significant correlations are given
in bold.

FsBR SBR

Algorithms Qs Qi Qs Qi

bGlOSS 0.57 0.45 0.25 0.12
CORI 0.63 0.61 0.31 0.29
Inner Product 0.59 0.63 0.45 0.43
Skew 0.55 0.57 0.48 0.47
Highest-available Similarity 0.51 0.57 0.42 0.44
DFPROP 0.53 0.56 0.51 0.51
Doddle 0.49 0.54 0.05 0.05
Doddle_RC 0.54 0.61 0.20 0.19
Doddle_RP 0.49 0.54 0.00 --0.01
Doddle_RC+RP 0.53 0.58 0.09 0.08
Doddle_RC+RF 0.46 0.53 0.09 0.08
Doddle_RP+RF 0.44 0.49 - 0.01 --0.01
SBR 0.13 0.13 — —

152

6.7. FR-DOE-81COL

Table 6.18: The average Blest and Da Costa weighted rank correlations (over 100 test queries
and the FR-DOE-81COL test data set) for selected existing algorithms and confijgurations of
Doddle, comparing estimate rankings to FsBR. Statistically significant correlations are given
in bold.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.52 0.20 0.60 0.56
CORI 0.57 0.57 0.63 0.61
Inner Product 0.55 0.58 0.59 0.63
Skew 0.51 0.54 0.55 0.57
Highest-available Similarity 0.45 0.51 0.50 0.56
DFPROP 0.50 0.53 0.53 0.56
Doddle 0.47 0.51 0.50 0.54
Doddle_RC 0.51 0.58 0.55 0.62
Doddle_RP 0.47 0.51 0.50 0.55
Doddle_RC+RP 0.51 0.55 0.54 0.59
Doddle_RC+RF 0.45 0.50 0.47 0.53
Doddle_RP+RF 0.43 0.47 0.45 0.49
SBR 0.11 0.11 0.11 0.11

other algorithms).
From Table 6.18, giving the Blest and Da Costa weighted rank correlation scores, we can

make similar observations about similarity with FsBR, as with the Spearman correlation
scores. That is, CORI and Inner Product achieve the highest correlation scores overall. The
strongest configuration of Doddle is Doddle_RC, with Doddle_RC+RP also scoring highly.
We note that these two algorithms are competitive, particularly on long queries.

Recall and Precision Analogues

In this section we provide performance scores for the selected algorithms, on the measures
analogous to recall and precision: 7Zn, 1Zn and V n- Scores for the first ten rank positions
are given as graphs. For reference, scores achieved at additional rank positions are given in
tables in Appendix D.

We first look at the lZn scores, given in Figure 6.16. 7Zn shows how well an algorithm
selects the best collections at a given rank position. On the short test queries (Figure 6.16a),
CORI is the most consistent overall. However, bGlOSS, Doddle_RC and Doddle_RC+RP also
perform well, and are competitive with CORI.

On the long test queries (Figure 6.16b) the results are slightly different. Here, CORI starts
with the highest score at the first rank position. However, Doddle_RC and Doddle_RC+RP
score highest at the second rank position, and remain highest overall. In contrast to the
short queries, bGlOSS performs poorly on long queries.

153

1

0.8

0.6
c

£
0.4

0.2

n

— FsBR
bGlOSS

*— CORI
- Inner Product

— Skew
>— Highest-available Similarity
 DFPROP
- Doddle

>— Doddle_RC
Doddle_RP

f- Doddle_RC+RP
 Doddle_RC+RF
■■■ Doddle_RP+RF
-SBR

(a) Short queries.

0.8

0.6

&
0.4

0.2

n

 FsBR
bGlOSS

— CORI
 Inner Product
—I— Skew
— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP
-H - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Long queries.

Figure 6.16: The lZn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the FR-DOE-81COL test data set.

154

0.6

0.5

0.4

0.3

0.2

0.1

n

■FsBR
■ bGlOSS
CORI
Inner Product

■ Skew
Highest-available Similarity

• DFPROP
Doddle

■ Doddle_RC
• Doddle_RP
■ Doddle_RC+RP
• Doddle_RC+RF
• Doddle_RP+RF
-SBR

(a) Short queries.

0.6

0.5

0.4

0.3

0.2

0.1

n

■FsBR
■ bGlOSS
COW
Iriner Product

- Skew
Highest-available Similarity

■ DFPROP
Doddle

- Doddle_RC
■ Doddle_RP
■ Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
-SBR

(b) Long queries.

Figure 6.17: The 1Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the FR-DOE-81COL test data set.

155

1

2 3

0.8

0 .6"

c

0.4

0.2

4 5 6 7 8
n

9 10

(a) Short queries.

FsBR
bGlOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC
Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

0.6
C

0.4

0.2

n

FsBR
bGIOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC
Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(b) Long queries.

Figure 6.18: The Vn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the FR-DOE-81COL test data set.

156

6.8. Summary

The i t n measure is an alternative indicator of how well an algorithm chooses the best
collection; the results are given as graphs in Figure 6.17. The graphs here support the find
ings from 7Zn: on short queries CORI scores best overall, with bGlOSS, Doddle_RC and
Doddle_RC+RP also competitive. On long queries, Doddle_RC and Doddle_RC+RP are the
most consistent overall.

In Figure 6.18, we give the scores achieved by the algorithms on the V n measure; this
shows how well an algorithm chooses a collection with some relevance to the query, at a
given rank position.

On the short test queries (see Figure 6.18a), CORI is clearly the strongest algorithm.
However, it does not achieve the optimal score at the first rank position. As such, on some
queries it ranks a collection top that the optimal ranking has deemed not to be relevant to
the query. In collection suggestion, where we are directing the user to useful collections,
this is undesirable.

The strongest configuration of the Doddle algorithm on short queries is Doddle_RC;
however, it does lag behind CORI. On long queries, Doddle_RC is more competitive with
CORI, which again appears to be the most consistent algorithm overall.

Top Rank Perform ance

In this section, we look more closely at the performance of the algorithms within the top
few rank positions; here, it is important that the best possible collections are included, and
ranked correctly.

In Table 6.19 we provide the Precision@5 and Correct@l scores achieved by the algo
rithms. Recall that Precision@5 measures the proportion of collections within the top five
rank positions of an algorithm-produced collection ranking, that should be there according
to the optimal baseline. Correct@l gives the number of queries for which the top ranked
collection was exactly correct.

According the the Precision@5 measure, bGlOSS scores highest on short test queries,
but this is very closely followed by CORI and Doddle_RC. On long test queries however,
Doddle_RC and Doddle_RC+RP score highest.

The Correct@l scores achieved by the algorithms seem generally low; this is a trend
we have observed on the majority of the other TREC-based test data sets. On the short
test queries in this data set, bGlOSS and Doddle_RP both score highest, predicting the top
collection on 12% of the test queries. On long queries, bGlOSS, Doddle_RC, Doddle_RP and
Doddle_RC+RP all exhibit the same performance, with scores of 9%.

6.8 Summary

A prerequisite for an effective search service for finding authoritative collections, is an op
timal algorithm for ranking collections according to the user’s query. In order to support
a large-scale evaluation of potential algorithms for the task, in Chapter 3 we developed a
comprehensive and rigorous evaluation methodology.

There are several aspects to our evaluation methodology. The scenario-based test com
ponent allows us to scrutinise algorithm performance on a set of specific test cases; their

157

6. Evaluation o f Algorithms: Scenarios and TREC

Table 6.19: The Precision@5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the FR-DOE-81COL test data set.

Algorithms

Precision@5 Correct @1

Qs Ql Qs Ql

bGlOSS 0.25 0.18 12 (12%) 9 (9%)
CORI 0.24 0.22 10 (10%) 8 (8%)
Inner Product 0.19 0.23 8 (8%) 5 (5%)
Skew 0.17 0.19 4 (4%) 2 (2%)
Highest-available Similarity 0.13 0.18 0 (0%) 2 (2%)
DFPROP 0.16 0.20 2 (2%) 3 (3%)
Doddle 0.21 0.26 6 (6%) 7 (7%)
Doddle_RC 0.24 0.29 7 (7%) 9 (9%)
Doddle_RP 0.20 0.26 12 (12%) 9 (9%)
Doddle_RC+RP 0.23 0.29 10 (10%) 9 (9%)
Doddle_RC+RF 0.21 0.24 4 (4%) 6 (6%)
Doddle_RP+RF 0.16 0,20- 6 (6%) . .4 . (4%) .
SBR 0.01 0.01 0 (0%) 0 (0%)

simplicity means we can quickly make judgements on whether a particular algorithm is
likely to be suitable for collection suggestion.

In contrast, the baseline testing component of our methodology takes a broader view of
algorithm performance. We use a variety of performance measures to consider average per
formance, over sets of test queries. Each type of performance measure considers a different
aspect of algorithm performance. The rank correlation coefficients measure the similarity
between an optimal ranking of collections, and an algorithm-produced collection ranking.
Within this class of performance measure, the two weighted rank correlation coefficients
place an emphasis on similarity within the top rank positions. This reflects the objectives of
collection suggestion, where we want to recommend the best collections to the user.

The recall and precision analogous measures respectively look at how well an algorithm
chooses the best collection at a given rank position (11 n and 1Zn)t and whether chosen col
lections are useful ('Pn). Note that an algorithm may do well at choosing a ‘useful' collection
at each rank position, but it may not select the best collection.

Perhaps the most important indicators of algorithm performance are Precision@5 and
Correct@l. These focus specifically on precision within the top five rank positions, and
whether the first ranked collection is correctly identified by an algorithm. As a collection
suggestion search service would recommend collections for the user to visit, correctly iden
tifying the best collection (s) is vital; correctly ordering the collections further down the rank
ing is somewhat irrelevant.

To ensure we test algorithms thoroughly during baseline testing, we utilise several test
data sets: a range of controlled TREC-based data sets enable us to consider performance
on data sets exhibiting specific attributes (different ranges of collection sizes, and distribu

158

6.8. Summary

tion of relevant documents, for example). In addition, two data sets comprising data from
real open access repositories, provide a test environment that is realistic of the intended
operational setting.

Therefore, while previous evaluations of algorithms for ranking collections (in the re
lated domain of collection selection) have used only one type of test data (TREC-based or
realistic), we use both. This ensures that we can identify a strong and consistent algorithm,
whose effectiveness will transfer to an operational environment.

In the previous chapter, we developed and tested our own collection ranking algorithm
(Doddle) for collection suggestion. Using the scenario-based testing technique and base
line testing on real repository data sets, we found our algorithm to exhibit promising perfor
mance, as did several alternative configurations of the algorithm: Doddle_RC, Doddle_RP,
Doddle_RC+RP, Doddle_RC+RF, and Doddle_RP+RF.

In this chapter, we have continued to work towards finding an optimal algorithm for col
lection suggestion. With scenario-based testing, we found that several collection selection
algorithms may be suitable for collection suggestion: bGlOSS, CORI, Inner Product, Skew,
Highest-available Similarity and DFPROP. Given this, the majority of this chapter evaluates
these algorithms further, in addition to the most effective configurations of our Doddle al
gorithm, on the six TREC-based data sets. We summarise our findings as follows.

Our findings over the TREC-based data sets have been varied, with different algorithms
appearing to be the most effective, depending on the data set, performance measure, and
query set (short or long queries). This is not unexpected, as it is a trend that has emerged in
previous evaluations in the collection selection domain (see Chapter 2).

Of the configurations of the Doddle algorithm, Doddle_RC and Doddle_RC+RP are the
most competitive and consistent. These algorithms perform best when evaluated using
the recall-analogous measures, 1Zn and 1Zn, which examine whether an algorithm chooses
the best available collection at each rank position. For these measures, Doddle_RC and
Doddle_RC+RP are the strongest algorithms on the UBC-100 data set, and its derivatives
(2IDB-60COL, AP-WSI-60COL and FR-DOE-81COL). These two algorithms are also often
amongst the strongest algorithms according to the Precision@5 and Correct@l measures.

However, a notable weakness of the Doddle configurations is their performance accord
ing to the V n measure (showing whether an algorithm chooses a useful collection at a given
rank position). Even the Doddle_RC and Doddle_RC+RP algorithms tend to lag behind sev
eral collection selection algorithms, and are prone to choosing collections that the optimal
ranking has determined to have no relevance to a query.

The weakest configurations of Doddle tend to be Doddle_RC+RF and Doddle_RP+RF:
those featuring the ‘relative frequency' component that we found to be ineffective in our ex
periments in Chapter 5. As such, it is becoming evident that this component is detrimental
to algorithm performance.

Of the selection of collection selection algorithms tested, CORI has been the most con
sistent throughout. While it frequently scores highest, across the various performance mea
sures (particularly on the correlation coefficients), it is not always best. For example, Inner
Product (which is also generally strong and consistent), Doddle_RC and Doddle_RC+RP
have scored better on multiple occasions.

159

6. Evaluation o f Algorithms: Scenarios and TREC

The Highest-available Similarity algorithm was strong across all performance measures
on the SYM-236 and UDC-236 test data sets. However, it is one of the weakest algorithms
on the other test data sets (all of which are derived from UBC-100).

The bGlOSS algorithm also has variable performance. Although it is often competitive
on the set of short queries, it performs poorly on the set of long queries. bGlOSS aims to
estimate the number of documents in each collection that contain all query terms. The
longer the query, the less likely it is for documents to match all query terms; this explains
its reduced effectiveness on long queries. However, the performance drop of bGlOSS on the
long test queries is in contrast to the other algorithms, which tend to achieve slightly higher
performance scores on long queries.

At this stage of our evaluation of algorithms, with respect to collection suggestion, CORI,
Inner Product, Doddle_RC and Doddle_RC+RP are the strongest and most consistent algo
rithms. However, the performance scores achieved by all algorithms are generally lower
than we might expect (and some distance from optimal performance), for them to effec
tively recommend suitable collections to the user. However, the performances shown by
the collection selection algorithms are generally on par with those found in original evalua
tions of those algorithms. There is particular room for improvement on the Precision@5 and
Correct@l measures; correctly identifying the best few collections is especially important in
collection suggestion.

In the following chapter we continue our large-scale evaluation of algorithms, for col
lection suggestion. We use a large data set built from open access repository data (see Chap
ter 4). As such, we conduct tests on an environment representative of an operational setting:
realistic data, and collections of a range of sizes, some of varied subject matter, and others
specialising on a specific topic.

160

Chapter 7

Evaluation of Algorithms: Open Access
Repository Data

In the previous chapter we began our large-scale evaluation of the suitability and perfor
mance of a selection of algorithms (various configurations of our own algorithm, and several
collection selection algorithms), for the collection suggestion task. We tested the algorithms
in controlled settings (on data exhibiting particular attributes); first with scenario-based
testing, followed by baseline testing using a set of six TREC-based data sets. These gave an
insight into strengths and weakness of the algorithms. From these tests, we found four algo
rithms to be strong and consistent: CORI, Inner Product, Doddle_RC and Doddle_RC+RP.

In this chapter, we continue our evaluation of algorithms for collection suggestion. Here,
we use a large open access repository test data set (presented in Chapter 4), which repre
sents a realistic operational environment. With this, we can examine whether algorithm
performances transfer to an operational setting. The combination of scenario-based test
ing, and baseline testing on both TREC-based and open access repository (realistic) data
sets, provides a rigorous and thorough test environment for algorithms.

This chapter is organised as follows: in Section 7.1 we provide an overview of the ex
perimental environment used here, with the results over this environment reported in Sec
tion 7.2. We discuss and summarise our findings in Section 7.3.

7.1 Overview

For this portion of our evaluation of algorithms for collection suggestion, we utilise our
large-scale open access repository data set: RTD (Refined Test Data). As discussed previ
ously in Chapter 4, the RTD set includes metadata (titles and descriptions) documents from
100 real digital repositories. As such, this data is realistic of the intended operational envi
ronment.

On this data set, we utilise two term indexes: one containing data from the Title m eta
data field alone, and one containing data from both the Title and Description metadata
fields of documents. As mentioned in Chapter 4, this allows us to identify which metadata

161

7. Evaluation o f Algorithms: Open Access Repository Data

is most useful for collection suggestion, by observing which produces the highest algorithm
performance scores. Therefore, in this chapter we present results from both term indexes.
For our experiments in this chapter, we use the large set of200 queries (listed in Appendix B).

In the following section we present the performance results of a selection of algorithms
from the collection selection domain, and several configurations of the Doddle algorithm
(developed and tested in Chapter 5). Specifically, we test the following algorithms: bGlOSS,
CORI, Inner Product, Skew, Highest-available Similarity, DFPROR Doddle, Doddle_RC, Dod-
dle_RP, Doddle_RC+RP, Doddle_RC+RF and Doddle_RP+RF. These are the same selection
of algorithms as those tested in Sections 6.2 to 6.7 of the previous chapter. However, for ref
erence, performance scores of all implemented algorithms (all Doddle configurations and
the collection selection and query performance prediction algorithms used in the scenario-
based testing in Chapter 6), over this test data set, are given in Appendix D.

7.2 RTD Results

In this section we present the performance scores achieved by the tested algorithms, on the
RTP set., A variety of performance measures are used, including: rank correlation, recall
and precision analogues, and measures focussing on performance within the top few rank
positions. We discuss the performances with respect to each class of measure, in turn.

Rank Correlation

We first consider the performances of the algorithms under test, in terms of three rank cor
relation measures: Spearman, Blest and Da Costa. These measure the similarity between
an algorithm-produced collection ordering, and a baseline (optimal or lower bound) col
lection ordering. While Spearman is a standard correlation measure, Blest and Da Costa are
weighted rank correlation measures. That is, they place an emphasis on similarity within the
top rank positions. Correcdy identifying and ordering the top collections is particularly im
portant for collection suggestion: recommending sub-par collections to the user will waste
their time.

We first consider the algorithm performances according to Spearman; scores achieved
by the algorithms are given in Table 7.1. The ‘FsBR’ column shows the similarity between
the optimal FsBR baseline, while the ‘SBR’ column indicates algorithm similarity to a size-
based ranking.

All algorithms tested here show a statistically significant (p < 0.05) correlation to the
optimal baseline; including SBR. Indeed, there is little to choose between the majority of the
algorithms. The exceptions are bGlOSS and SBR, which score significantly lower (p < 0.05)
than the other algorithms, on both the Titles and Titles and Descriptions term indexes. The
highest scoring algorithms are CORI and Doddle_RC. On this data set, there is significant
difference between correlations scores achieved on the two term indexes.

In addition to being correlated to the optimal ranking, the majority of the algorithms
are also significantly correlated to a size-based ranking. Since the algorithms perform well
in relation to the optimal, this suggests there is some tendency within the data set for the

162

Table 7.1: The average Spearman rank correlations (over 200 test queries and the RTD test
data set) for selected existing algorithms and configurations of Doddle, comparing against
both the FsBR and SBR baselines. Statistically significant correlations are given in bold.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.19 0.25 0.14 0.20
CORI 0.93 0.84 0.50 0.54
Inner Product 0.90 0.81 0.57 0.62
Skew 0.90 0.81 0.57 0.62
Highest-available Similarity 0.90 0.83 0.57 0.65
DFPROP 0.90 0.81 0.57 0.62
Doddle 0.92 0.76 0.40 0.35
Doddle_RC 0.93 0.80 0.39 0.38
Doddle_RP 0.92 0.73 0.39 0.29
Doddle_RC+RP 0.93 0.77 0.39 0.33
DoddleJRC+RF 0.92 0.78 0.41 0.41
Doddle_RP+RF 0.92 0.73 0.41 0.34
SBR 0.42 0.45 — —

Table 7.2: The average Blest and Da Costa weighted rank correlations (over 200 test queries
and the RTD test data set) for selected existing algorithms and configurations of Doddle,
comparing estimate rankings to FsBR. Statistically significant correlations are given in bold.

Blest Da Costa

Algorithms Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.17 0.10 0.66 0.61
CORI 0.91 0.80 0.92 0.84
Inner Product 0.88 0.77 0.88 0.81
Skew 0.88 0.77 0.88 0.81
Highest-available Similarity 0.87 0.78 0.88 0.82
DFPROP 0.88 0.77 0.88 0.80
Doddle 0.92 0.75 0.92 0.76
Doddle_RC 0.92 0.79 0.92 0.80
Doddle_RP 0.92 0.72 0.92 0.73
Doddle_RC+RP 0.92 0.76 0.92 0.77
Doddle_RC+RF 0.91 0.77 0.92 0.78
Doddle_RP+RF 0.91 0.71 0.91 0.72
SBR 0.02 0.14 0.49 0.49

163

7. Evaluation o f Algorithms: Open Access Repository Data

larger collections to contain larger shares of the relevant documents, or have some relevance
to more queries.

Table 7.2 gives the Blest and Da Costa weighted rank correlation scores between the
algorithm-produced collection rankings and the optimal rankings. The findings here are
similar to those from Spearman. All algorithms are significantly correlated to FsBR, and
the scores are generally close. The strongest algorithms are Doddle_RC and CORI; however,
other configurations of Doddle, such as Doddle_RP, Doddle_RC+RP, and the original for
mulation of the algorithm, also do well.

We notice that correlation scores are much higher on this data set than those observed
on the TREC test data sets, in Chapter 6. This may be because we are utilising real reposito
ries, with many dealing with only a few topics. As such, it may be clearer which collections
best match each query, than in the TREC data sets, where the collections may appear very
similar, and deal with many topics. Alternatively, this may be an artefact of our technique
for generating relevance judgements: as this is an automated approach, the techniques for
choosing relevant documents use the same statistics as those used to rank collections. There
is no human input or additional information, as is the case with the TREC data sets.

In the following section we consider the performances of the algorithms in terms of the
recall and precision analogues. These consider how well the algorithms chopse the best
collections, and collections that have some value to the query.

Recall and Precision Analogues

In this section, we consider the performances of the tested algorithms, with respect to the
recall and precision analogous measures: 7Zn, 1Zn and V n• The scores achieved by the algo
rithms at each rank position, up to the tenth rank position, are given as graphs. For refer
ence, scores achieved at additional selected rank positions are given in tables in Appendix D.

The 1Zn measure indicates how well the algorithms select the best collections, at a given
rank position. Figure 7.1 shows the algorithm scores for this measure. Here, three configu
rations of the Doddle algorithm stand out as being superior over the collection selection al
gorithms: Doddle_RC, Doddle_RP and Doddle_RC+RP. As with the rank correlation scores
in the previous section, the 7ln scores tend to be higher when queries are executed over the
Titles term index, than on the Titles and Descriptions term index.

The 1Zn measure shows the merit associated with collections gathered up to each rank
position. As such, it is an alternative measure of how well the algorithms select the best
collections. Figure 7.2 gives the scores achieved by the algorithms, according to this mea
sure. The observations here are similar to those from 7Zn. That is, Doddle_RC, Doddle_RP
and Doddle_RC+RP tend to be the strongest algorithms overall. Again, the Titles term index
yields the highest scores.

Finally, the V n measure shows how well the algorithms select collections that have some
relevance to the query (at a given rank position, while an algorithm may choose a collection
that is relevant, it may not be the best collection available). The scores achieved according
to V n are given in Figure 7.3.

Here, the collection selection algorithms tend to perform better than the Doddle con
figurations; in particular, Highest-available Similarity, CORI and Inner Product appear to

164

1

0.8

0.6
c

&
0.4'

FsBR
bGlOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC

■ Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(a) Titles.

0.8

0.6

0.2

n

FsBR
bGlOSS
CORI
Inner Product
Skew
Highest-available Similarity
DFPROP
Doddle
Doddle_RC
Doddle_RP
Doddle_RC+RP
Doddle_RC+RF

■ Doddle_RP+RF
SBR

(b) Tides and Descriptions.

Figure 7.1: The 7Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the RTD test data set.

165

0.8

0.7

0.6

0.5

0.3

0.2

0.1

n

 FsBR
bGlOSS
CORI

 Inner Product
—h- Skew
—®— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Titles.

0.8

0.7

0.6

0.5

0.3

0.2

0.1

n

 FsBR
bGlOSS

— CORI
 Inner Product
—I— Skew
—e— Highest-available Similarity
 DFPROP
 Doddle
— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Titles and Descriptions.

Figure 7.2: The 1Zn values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the RTD test data set.

166

0.8

0.6

0.4

0.2

n

 FsBR
bGlOSS

—•— CORI
 Inner Product
—I— Skew
-®— Highest-available Similarity
 DFPROP
 Doddle
—1»— Doddle_RC
 Doddle_RP

Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(a) Titles.

0.8

0.6
C

0.4

0.2

n

 FsBR
bGlOSS
CORI

 Inner Product
—I— Skew
—®— Highest-available Similarity
 DFPROP
 Doddle
—— Doddle_RC
 Doddle_RP
- x - Doddle_RC+RP
 Doddle_RC+RF
 Doddle_RP+RF
 SBR

(b) Titles and Descriptions.

Figure 7.3: The V n values (up to n = 10) achieved by selected existing algorithms and con
figurations of Doddle, on the RTD test data se t

167

7. Evaluation o f Algorithms: Open Access Repository Data

perform best overall. While algorithm performances are fairly close, when using the Titles
and Descriptions term index, there are more pronounced differences between the collec
tion selection algorithms and the configurations of Doddle. The strongest configuration of
Doddle overall, on the V n measure, is Doddle_RC.

Over all three of these performance measures, bGlOSS again performs very poorly, fre
quently scoring worse than the lower bound baseline, SBR.

In the following section we focus more closely on the performance of the algorithms
within the top few rank positions.

Top Rank Perform ance

For the collection suggestion task, the goal is to recommend relevant collections to the user,
so they may search and browse them themselves, and return to satisfy future related infor
mation needs. As such, correctly ranking the top few collections is of primary importance.

To evaluate algorithm performance within the top rank positions we utilise two m ea
sures: Precision@5 and Correct@l. As discussed in Chapter 3, Precision@5 shows the pro
portion of collections within the top five rank positions that should be present, according
to the optimal ranking. Correct@l gives the number,and percentage of queries for which an
algorithm correctly identifies the top ranked collection. Table 7.3 gives the scores achieved
by the algorithms for these measures.

We first consider the Precision@5 scores; our first observation is that the Precision@5
scores achieved by the algorithms on this test data set are much higher than those on the
TREC-based test data sets (see Chapter 6). The highest scoring algorithm overall is Dod-

Table 7.3: The Precision@5 and Correct@l scores achieved by selected existing algorithms
and configurations of Doddle, on the RTD test data set.

Algorithms

Precision@5 Correct@l

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.11 0.15 17 (8.5%) 19 (9.5%)
CORI 0.58 0.42 53 (26.5%) 39 (19.5%)
Inner Product 0.45 0.34 52 (26.0%) 34 (17.0%)
Skew 0.43 0.33 44 (22.0%) 35 (17.5%)
Highest-available Similarity 0.44 0.32 48 (24.0%) 27 (13.5%)
DFPROP 0.44 0.34 45 (22.5%) 40 (20.0%)
Doddle 0.61 0.43 59 (29.5%) 38 (19.0%)
Doddle_RC 0.64 0.48 61 (30.5%) 47 (23.5%)
Doddle_RP 0.66 0.49 68 (34.0%) 44 (22.0%)
Doddle_RC+RP 0.65 0.48 64 (32.0%) 47 (23.5%)
Doddle_RC+RF 0.59 0.41 55 (27.5%) 34 (17.0%)
Doddle_RP+RF 0.60 0.41 62 (31.0%) 35 (17.5%)
SBR 0.07 0.07 0 (0.0%) 1 (0.5%)

168

7.3. Summary

dle_RP; however all configurations of the Doddle algorithm tested here achieve scores that
are superior to those of the collection selection algorithms.

Turning to the Correct@l scores, we see that the configurations of Doddle again tend
to score better than the collection selection algorithms: the Doddle_RC, DoddleJRP and
Doddle_RC+RP performing best overall. We again note that these scores tend to be higher
than those achieved over several of the TREC-based data sets; however there is still room for
improvement.

Finally, we note that SBR scores poorly according to these two metrics. In particular, the
highest Correct@l score it achieves is using the Titles and Descriptions term index, correctly
ranking the top collection on only one query. This suggests that on this test data set, the
largest collection is rarely the most relevant.

7.3 Summary

In this chapter we have continued our work to identify an optimal algorithm to rank col
lections in a collection suggestion search service. While in the previous chapter we looked
at algorithm performance in controlled settings (where different attributes of the data were
varied), in this chapter we tested algorithms on a large-scale data set comprising metadata
from real open access repositories. This data set is intended to be representative of the
collection suggestion operational environment, and as such provides a real indication of
algorithm performance.

Algorithm performances have varied on this data set, depending on which performance
measure we are looking at. However, some trends have emerged.

Here, all configurations of the Doddle algorithm have shown strong and consistent per
formance across the performance measures. There is little difference between this group
of algorithms, however Doddle_RC, Doddle_RP and Doddle_RC+RP often have the highest
scores of all the algorithms tested. This shows that algorithms utilising simple calculations
can be at least as, if not more so, effective for collection suggestion as more complex algo
rithms.

As we saw in the previous chapter with results on the TREC-based data sets, the Dod
dle algorithms do not perform as well according to the V n metric as they do on the other
measures. However, on this data set they do remain competitive.

The performances of Zobel's lexicon inspection algorithms (Inner Product, Skew and
Highest-available Similarity) are mixed. On the rank correlation measures the three algo
rithms are amongst the strongest algorithms, on the Tide and Description metadata. They
also perform well according to the V n metric. However, on 7Zn, H n and the top rank per
formance measures, these algorithms are off the pace of the Doddle algorithms. Of these,
Highest-available Similarity tends to be the weakest, as we saw in Chapter 6.

Of the other algorithms, CORI is again strong and consistent (as we saw in Chapter 6),
however it is often beaten by the strongest formulations of Doddle (on 7Zn, 1Zn, Precision@5
and Correct@l). DFPROP is consistent but unexceptional, and bGlOSS consistently per
forms very poorly on this data set. Indeed, it has fallen below the lower bound baseline
performance of SBR on some measures (Spearman and V n)•

169

7. Evaluation o f Algorithms: Open Access Repository Data

In this chapter we have tested algorithms using two separate term indexes; one contain
ing terms from the Title metadata field alone, and the other containing terms from both the
Title and Description fields. This enables us to determine optimal metadata to represent
collections.

On this data set we have found that most algorithms (with bGlOSS being the only excep
tion) achieved significantly higher performance scores on the Titles term index. We spec
ulate that the Title metadata provides keywords that precisely describe the contents of a
collection, whereas the Description field contains some noise.

A final observation from this part of our evaluation of algorithms, is that the scores from
the various performance measures are higher on the RTD set than those achieved on the
TREC-based data sets. This may be a result of the presence of real collections, rather than
artificial ones: individual collections in the TREC data sets are diverse in content, while the
real repositories may have more defined coverage of a few specific topics. As such, choosing
suitable collections for a query may be easier. However, this does not diminish the value of
the RTD set: testing on realistic data is essential to ensure performance will transfer to a real
operational setting.

In the following chapter we give a summary and discussion of our empirical findings
from the last three chapters. In addition, we recapitulate the contributions of our work. ,

170

Chapter 8

Conclusions

Subject specialists and researchers often face the problem of identifying domain-specific
authoritative collections: those directly about their topic of interest, to which they regularly
return to satisfy related information needs, or monitor for new material. Discovery of such
collections is often incidental, or relies on recommendations from domain experts. Existing
search services, such as general purpose search engines and repository directories, offer
poor support for this collection finding task.

Therefore, there is a clear need for a search service to assist users in finding authoritative
collections, that can serve both their current and future information needs. However, there
are several prerequisites for developing an effective search service of this kind; it is these
prerequisites that we have addressed in this thesis, and summarise as follows.

At the heart of a search service for collections, we require an effective algorithm for rank
ing collections with respect to the user’s query. Additional tasks and challenges then follow
from this requirement. For example, to objectively evaluate the effectiveness (how accu
rately they rank collections) of potential algorithms for the task, we require appropriate per
formance measures and test data. In addition, it follows that we need tools to facilitate the
management of test data, and execution of algorithm evaluation experiments.

In the remainder of this chapter, we first summarise our contributions with respect to
the prerequisites for a search service for collections, and their associated challenges (Sec
tion 8.1). Following this, we discuss our empirical findings regarding suitable collection
ranking algorithms (Section 8.2), and consider the limitations of our work (Section 8.3). Fi
nally, we reflect on possibilities for future work in this domain (Section 8.4).

8.1 Contributions

As mentioned in the introduction of this chapter, there are several preconditions to devel
oping a search service for authoritative collections. The contributions of our work address
these preconditions; the eventual development of an effective collection search service re
quires fundamental research.

171

8. Conclusions

An effective search service for collections needs an optimal algorithm for ranking col
lections with respect to a user’s query; other challenges and tasks emerge from this require
ment. As discussed in Chapter 1 of this thesis, there is a large body of research relating to
ranking resource collections according to their relevance to a user’s query: namely, the do
main of collection selection.

Collection selection is traditionally considered to be a sub-problem of federated search;1
as such, it is a precursor to document retrieval. Collection selection algorithms aim to rank
collections by their likelihood of containing relevant documents.

However, the focus of a search service specifically to recommend authoritative collec
tions to a user, differs from collection selection in the context of federated search. Here,
while it is important for a ‘relevant’ collection to contain a large number of documents, for
it to be an authority we consider that these relevant documents should constitute a large
proportion of the collection as a whole.

As such, in our work we essentially reformulate the collection selection problem: treat
ing it as an independent search task, with the goal of recommending authoritative collec
tions to the user. We refer to this task as collection suggestion.

Towards identifying an optimal algorithm for collection suggestion, a logical starting
point is to examine whether existing algorithms can be effectively applied to the task; As
such, a significant contribution of this work is a large scale evaluation of the suitability and
performance of collection selection algorithms, when applied to collection suggestion.

In addition, we also consider the suitability of another class of algorithm: query per
formance predictors. These algorithms were originally intended to estimate the quality of
search results at a single search engine, such that action (for example, query term expan
sion) can be taken for queries predicted to perform poorly.

Given that we want to evaluate algorithms with respect to collection suggestion, we
require a rigorous evaluation methodology that meets the expectations of information re
trieval research. Again, a logical starting point is to draw from existing work where possible.
As such, we use established evaluation techniques, from the related domain of collection
selection, as a basis for our evaluation methodology. However, we amend and extend these
techniques where necessary, to develop a methodology that represents the specific objec
tives of collection suggestion.

Therefore, as in Chapter 1, we specify our contributions towards collection suggestion
as follows:

- Evaluate the effectiveness of collection selection and query performance prediction
algorithms, for collection suggestion;

- Specify and evaluate a new algorithm for collection suggestion; and

- Develop a robust methodology, apparatus and test data for evaluating algorithms for
collection suggestion.

1 Recall, in federated search, the user’s query is forwarded to several resources, and the returned results are
merged into one results list.

172

8.1. Contributions

We have addressed these contributions and their respective challenges in detail through
out this thesis. We summarise our work in the remainder of this section: we focus first on
our methodological process, prior to discussing algorithms and performance findings.

Evaluation M ethodology

As mentioned previously, the collection suggestion task requires a suitable algorithm for
ranking collections according to the user’s query. However, how do we assess what is the
best algorithm for the job? We require a methodology to evaluate the effectiveness (how
accurately collections are ranked) of potential algorithms. We do not undertake a subjective,
user-based evaluation at this stage, as we first require an effective and mature system before
we can evaluate effect on user performance.

Our evaluation strategy for collection suggestion is based on traditional information re
trieval evaluations of the Cranfield format (see Section 2.2.2 of Chapter 2). Such evaluations
are replicable and, ideally, test algorithms in a realistic environment.

Several of the techniques we have employed to evaluate algorithms for collection sug
gestion are drawn from those used in collection selection evaluations. However, we make
reasoned adjustments and additions where appropriate, to suit the requirements of the col
lection suggestion task.

As we discussed in Chapter 2, collection selection evaluations are traditionally based
around testing against baseline rankings. Here, collection rankings produced by an algo
rithm are compared to baseline collection rankings. Two baselines commonly used are
Relevance-Based Ranking (RBR), where collections are ranked in descending order of the
number of relevant documents they actually contain; and Size-Based Ranking (SBR), where
collections are ranked in descending order of the number of documents they contain. RBR
is considered an optimal baseline, whereas SBR is a lower bound baseline.

For our collection suggestion evaluation, we follow the baseline approach; however, we
specify an alternative optimal baseline, that reflects the specific goals of collection sugges
tion. As discussed in Chapter 3, our optimal baseline, F-score Based Ranking (FsBR), takes
into account the quantity of relevant documents in a collection, and the proportion of the
total collection size these relevant documents comprise.

Algorithm evaluations in the related domain of collection selection have used a variety
of performance measures. For example, Spearman rank correlation, and measures analo
gous to recall and precision. We employ these measures in our collection suggestion evalu
ation. However, we also use weighted rank correlation coefficients, and introduce two new
measures (Precision@5 and Correct@l) which focus on performance within the top rank
positions. These additional performance measures reflect the importance within collection
suggestion to accurately identify and rank the best collections. As we are recommending
collections for the user to visit themselves, identifying the best collection is vital: recom
mending sub-par collections wastes the user’s time, and may cause frustration. We dis
cussed our selection of performance measures and their merits in Section 3.3 of Chapter 3.

The baseline-testing approach is at the heart of our evaluation strategy. However, as an
additional element to our evaluation, we have also developed and used a scenario-based
approach. As described in Section 3.4 of Chapter 3, this is intended as a first step in an al

173

8. Conclusions

gorithm evaluation. It allows us to quickly determine whether an algorithm may be suitable
for the collection suggestion task, prior to executing the more rigorous baseline-based test
ing. In each scenario, we model a hypothetical situation, involving only a small number of
collections. This enables us to easily reason about the optimal ordering of the collections,
according to the specific objectives of collection suggestion. As is evident in Section 8.2, the
findings from these tests correlate with findings from baseline-testing.

To summarise, towards a rigorous methodology for evaluating algorithms with respect
to collection suggestion, we have made the following four contributions: first, we have for
mulated a two-tiered evaluation strategy. Second, within this evaluation strategy, as an ini
tial evaluation step, we have developed a set of scenario tests, to identify potentially suitable
algorithms.

The second, and main, stage of our evaluation methodology is based around baseline
testing from collection selection evaluations. For this, we have developed a new optimal
baseline (our third contribution), which reflects the objectives of collection suggestion. Fi
nally, we have applied and developed additional performance measures (for baseline test
ing), which reflect the objectives of collection suggestion.

In the following section we discuss the test data used in baseline testing, and how this
contributes to collection suggestion research..

Test Data

Appropriate test data is a key factor in any information retrieval evaluation, as it enables us
to justify the quality of results, and helps to understand the research problem. As collection
suggestion falls into the category of information retrieval, we should therefore follow its
standards, and ensure our test data meets the expectations of information retrieval research.

In the context of collection suggestion, test data comprises collections of documents,
queries and relevance judgements. The latter are necessary to generate optimal collection
rankings, against which we evaluate algorithm-produced collection rankings.

As discussed in Chapter 2, in the related domain of collection selection, from which
we draw inspiration, it is common to utilise test data formulated from the TREC document
corpus (for example, by grouping documents by source and publication date). Such data
sets offer a controlled environment, in which algorithm performance can be examined un
der various conditions (such as varying collection sizes and distribution of relevant docu
ments). As such, for part of the evaluation of algorithms for collection suggestion, we utilise
these established test data sets.

However, as also discussed in Chapter 2, there are drawbacks of the TREC-based data
sets; in particular, they are not representative of a realistic operational environment, which
is likely to contain many collections of varying size, with diverse topic coverage. The syn
thetic TREC-based document collections however, are heterogeneous in content (each cov
ering several subjects), and the documents within ultimately stem from only a small num
ber of sources: Wall Street Journal, Federal Register, Associated Press, Department of Energy
abstracts, Computer Select discs, San Jose Mercury News and U.S. Patents.

Therefore, to ensure a rigorous and realistic test environment, we have developed our
own test data set: comprising metadata from real open access repositories.

174

8.1. Contributions

Developing a test data set from real repository data presents challenges: we require test
queries and document relevance judgements. In Chapter 4 we discussed our methodical
approach to solving these challenges; we summarise our solutions as follows.

To produce test queries for the data, we select ‘seed terms’ from the term index; these are
then submitted to the Yahoo! Related Suggestions service, which returns query suggestions
based on reed user queries. We take a sample of these queries to form a set of test queries.

Generating relevance judgements for a test data set is a laborious task. For TREC, human
assessors are used to judge the relevance of documents. However, this task is made easier by
generating a pool of documents to assess, from the retrieval results of participating systems
(see Section 2.2.4 in Chapter 2). As such, the human assessors do not need to examine every
document.

We draw on this practice to generate surrogate relevance judgements for documents
within our realistic test data set, using an entirely programmatic approach (assessing even a
pool of documents for such a large data set is impractical within the scope of this work). For
each test query, we use two document ranking algorithms (Lucene and BM25) to rank all
the documents within the collections. The documents deemed to be relevant to the query
are those that both algorithms agree are relevant (see Section 4.2.4 in Chapter 4 for further
details).

To summarise, for our collection suggestion algorithm evaluation we use a combination
of synthetic and realistic test data collections. This provides both a controlled test environ
m ent in which we can understand how the algorithms work, and a test environment that is
realistic of the intended operational setting.

This strategy differs from evaluations in the related domain of collection selection, in
which test data sets are often of one type or another. Indeed, utilising realistic test data is
often overlooked in algorithm evaluations. This is due in part to the challenges associated
with producing queries, and generating document relevance judgements for these. In our
work, we have developed programmatic solutions to these issues, which reduce the work
load associated with compiling a data set from real data.

Specification o f a C ollection Suggestion Algorithm

The work we have undertaken in this thesis is driven by the objective of identifying an op
timal algorithm for the collection suggestion task. As such, while we have investigated the
applicability of algorithms from other domains to this task, we have also developed a new
algorithm. Our collection ranking algorithm is geared specifically towards collection sug
gestion. Therefore with this, we aimed to achieve stronger performance scores than those
of the algorithms from relevant domains.

The initial specification of our algorithm, as documented in Chapter 5, is based upon
Zobel’s criteria for highly ranked collections [66], which embody the objectives of collection
suggestion. To rank collections, our algorithm considers: the proportion of documents in a
collection that contain the query terms; the commonness of query terms in the collections;
and the frequency of query terms within documents in a collection. Each component of our
algorithm is a mathematical representation of a single criterion.

175

8. Conclusions

As we will discuss in Section 8.2, we evaluate the performance of our algorithm, in addi
tion to its individual component parts, and alternative combinations of those components.
Therefore, by evaluating this algorithm, we are essentially systematically testing Zobel’s cri
teria; despite specifying the criteria, Zobel did not explicitly formulate an algorithm from
these himself.

Evaluation o f Algorithms for Collection Suggestion

As mentioned in the previous section, we are working towards finding an optimal algorithm
for collection suggestion. Therefore, we use the evaluation methodology and test data sets
we have specified to conduct a large-scale evaluation of the suitability and performance of
algorithms, with respect to collection suggestion.

In addition to developing our own algorithm, a logical avenue of enquiry is to examine
whether any existing algorithms, from other domains, may be effectively applied to the task.
As such, we also test a variety of performance measures from other domains: collection
selection and query performance prediction.

While this empirical work is a contribution to collection suggestion (in terms of iden
tifying an appropriate algorithm, and learning what algorithm attributes are successful for
collection suggestion), its value reaches wider: evaluation of such a large range of algo
rithms of this type, over both synthetic and realistic test data sets, has not previously been
undertaken.

The results of our evaluation are presented in Chapters 6 and 7, however we summarise
and discuss our findings in Section 8.2.

8.2 Discussion of Empirical Results

In order to identify an optimal algorithm for the collection suggestion task, we have con
ducted a large-scale evaluation of a variety of algorithms, on several test environments. The
results of this evaluation are presented in Chapters 6 and 7 of this document. Of the al
gorithms tested, some were borrowed from other domains, to examine their applicability
to this problem. Others were developed specifically for the collection suggestion task, as
discussed in Chapter 5.

In this section we provide a discussion of the results given in Chapters 6 and 7. We
consider each class of algorithm separately, before summarising our findings.

8.2.1 D oddle Algorithm Configurations

As mentioned above, and in Section 8.1, one contribution of our work was the development
of a collection ranking algorithm (Doddle) designed specifically for collection suggestion. In
Chapter 5 we presented the initial specification of our algorithm and discussed its deriva
tion. In addition, we conducted an initial evaluation (on the realistic test data sets) of the
algorithm, its individual components and alternative configurations of the components.

There are several observations that we can make about the performance of the variants
of the Doddle algorithm. Over all test data sets (TREC-based and realistic), two configura

176

8.2. Discussion o f Empirical Results

tions of the algorithm tended to score better than the others: Doddle_RC and Doddle_RC+RP,
This applies across all performance measures.

In our initial evaluation of the Doddle algorithms, we found Doddle_RF consistently
performed poorly. Recall that Doddle_RF uses only the ‘Relative Frequency’ metric, which
looks at the average occurrences of query terms per document.

Due to its poor performance at that early stage, we omitted the algorithm from further
evaluation against other algorithms. However, complete performance scores for this al
gorithm are given in Appendix D. They support our earlier findings, and indicate that the
‘Relative Frequency’ component is ineffective for collection suggestion. Indeed, the com
ponent appears to be detrimental to the performance of algorithm configurations in which
it features; such configurations tend to exhibit lower performance scores across the mea
sures and data sets. Consequently, this result suggests that Zobel’s fourth criterion (“There
is likely to be documents in the collection in which the term is relatively frequent”) is not
relevant to the collection suggestion setting.

The performances of the Doddle algorithms (relative to other algorithms tested) vary
between test data sets and performance measures. For example, on the RTD set (comprising
real repository data), the strongest configurations of the Doddle algorithm (Doddle_RC and
Doddle_RC+RP) are either the best algorithms (for example, according to the lZn, 1Zn and
top rank performance measures), or are competitive with the top algorithms.

The results on the TREC-based data sets are a little more variable. On the SYM-236 and
UDC-236 data sets, the Doddle algorithms perform quite poorly compared to the other algo
rithms tested. However, on the data sets derived from the UBC-100 data set, the Doddle_RC
and Doddle_RC+RP algorithms are highly competitive, and often score best according the
1Zn, top rank performance measures.

Across the data sets, we notice that the best configurations of Doddle often score highly
on the H n, lk,n and top rank performance measures. This suggests that the algorithms
are relatively good at identifying the most suitable collections within the top rank posi
tions. However, the Doddle configurations often suffer on the V n measure, which examines
whether collections chosen at a given rank position have some relevance to the query (not
necessarily the best collection). As such, the Doddle algorithms m aybe prone to choosing
collections that have no relevance to a query.

Finally, on the three rank correlation measures (Spearman, Blest and Da Costa), despite
producing lower scores, Doddle_RC and Doddle_RC+RP are no less effective than any other
algorithm (across the data sets): there are no statistically significant differences between
their scores (SYM-236 is the only exception to this), and those of whichever algorithm scores
highest.

8.2.2 Collection Selection Algorithms

In addition to evaluating the performance of our algorithm, in this thesis we also test the
suitability of a variety of existing algorithms, for collection suggestion. Many of these algo
rithms are from the domain of collection selection.

In Chapter 6, we began our evaluation of collection selection algorithms by conducting
scenario-based testing. From this, we quickly identified that two of these algorithms (Co-

177

8. Conclusions

sine Measure and CW) were unlikely to be suited to collection suggestion. We omitted these
from further evaluation. However, the complete performance results listings in Appendix D
confirm our findings; these algorithms frequently have amongst the lowest performance
scores, some of which are statistically significantly worse than the best performing algo
rithms.

Of all the collection selection algorithms tested, CORI was shown to be the most con
sistent, and was frequently one of the highest scoring algorithms, in particular according to
the rank correlation and V n measures. However, while CORI tended to perform best across
the TREC-based data sets, on the RTD set it was often second to Doddle_RC.

Three of Zobel’s lexicon inspection-based algorithms (Inner Product, Skew and Highest-
available Similarity) were shown to have variable performance across the data sets. The
Highest-available Similarity algorithm was one of the stronger algorithms, across all perfor
mance measures, on the TREC-based SYM-236 and UDC-236 data sets. However, in con
trast, on the data sets derived from the UBC-100 data set, it was one of the weakest algo
rithms. The algorithm also performs poorly on the RTD set.

The strongest and most consistent of Zobel’s algorithms is Inner Product, which is often
amongst the highest scoring algorithms, on all data sets and performance measures. How
ever, the best performances of Zobel’s algorithms (Inner Product in particular) are generally
seen on the rank correlation measures, and V n. This suggests they are generally good at
choosing collections with some relevance, but the best collections are not necessarily iden
tified at the correct rank positions.

Of the remaining collection selection algorithms, DFPROP is unspectacular; it does not
have any noticeably weak performance scores. However, equally, it does not shine through
as a particularly strong algorithm.

In contrast, bGlOSS has mixed performance scores. On the TREC-based data sets, it
performs competitively on short queries. However, due to the nature of the algorithm it
suffers significantly on long queries. In addition, bGlOSS performs poorly overall on the
realistic RTD set.

To summarise, we found that the collection selection algorithms tended to perform bet
ter on the synthetic TREC-based test data and the V n and rank correlation measures, than
they did on the realistic test data, and other performance measures. The strongest of these
algorithms was CORI, which had performance scores comparable with Doddle_RC.

8.2.3 Query Perform ance Predictors

An additional class of algorithm we tested for suitability for collection suggestion was query
performance predictors, specifically: Distribution of Informative Amount, SCS, AvICTF and
NSCQ (see Chapter 2 for details of these algorithms). However, as a result of scenario-based
testing in Section 6.1 in Chapter 6, we found these algorithms to be unsuitable very early on.

These algorithms tended to favour collections in which query terms were rare, and thus
have more discriminatory power than common terms (this is useful for distinguishing be
tween documents, in traditional document ranking). However, in collection suggestion we
want query terms to be common in the highly ranked collections. As such, query perfor
mance predictors are counter to the objectives of collection suggestion.

178

8.2. Discussion o f Empirical Results

Perusal of the complete performance scores for all implemented algorithms, in Ap
pendix D, confirms the findings from the scenario-based tests, as these achieve the lowest
performance scores overall.

8.2.4 Summary

Over the course of our evaluation of the suitability and effectiveness of a variety of algo
rithms for collection suggestion, we have found that the performances of individual algo
rithms have often varied over the different test data sets and performance measures. How
ever, this was not unexpected, as previous research in the collection selection domain has
often reported on this result. This makes clear the need to thoroughly test algorithms on a
variety of test data, in order to identify the strongest and most consistent algorithm; we can
not make reliable judgements from one data set, or indeed on one type of data set (synthetic
or realistic) alone.

In our work, we have made a significant contribution towards identifying an appro
priate algorithm for ranking collections in a collection suggestion search service. Of all
the algorithms we tested in Chapters 6 and 7, we found CORI and the Doddle_RC and
Doddle_RC+RP algorithms to show the strongest and most consistent performances, across
the test data sets and performance measures. As such, these algorithms are potential can
didates for implementation in a collection suggestion search service.

However, while we have identified during our experiments that CORI, Doddle_RC and
Doddle_RC+RP perform noticeably and significantly better than other algorithms, it is clear
that these algorithms are not perfect, and there is still scope for performance gains. For ex
ample, when observing the graphs for the 7ln, Itn and V n measures, we see that the perfor
mance curves for the best algorithms are some way below the optimal performance base
line.

Of particular importance for collection suggestion is to correctly identify the best col
lection to answer a user’s query. This is represented by the Correct@l measure (giving the
percentage of queries for which an algorithm correcdy identifies the top ranked collection).
However, the algorithm scores on this measure are much lower than we may expect for
an algorithm to be effective for this task. On the TREC-based data, the highest Correct@l
scores were 26% on short queries (Doddle_RC+RP), and 28% on long queries (Doddle_RC).
The scores are slightly better on the RTD set: 32% on the Titles metadata (Doddle_RC), and
23.5% on the Titles and Descriptions metadata (Doddle_RC and Doddle_RC+RP). There is
clear scope for improvement on these.

An additional issue is present with the CORI algorithm. CORI is a mature algorithm, that
has frequently been used as a benchmark in collection selection experiments. However, as
discussed in Chapter 2 (Section 2.4.3), CORI uses parameters, the values of which should
ideally be customised for each data set and query, to achieve optimal performance [13].
While we employed commonly used parameter values in our implementation of CORI (those
suggested by Callan et al. [6] in the original specification of the algorithm), we cannot be
sure that these values would be sufficient for an operational environment in which the data
set would regularly be updated. Indeed, we certainly could not change those values for each

179

8. Conclusions

query. As such, the suitability of CORI for implementation in a search service for collections
is still in question.

Despite this, given that CORI is considered an established collection selection bench
mark (that has performed admirably in our experiments), developing new algorithms (Dod-
dle_RC and Doddle_RC+RP) that are similarly, or more, effective than CORI is a notable
achievement. In addition, we have learnt that two collection-level statistics (how common
a query term is in a collection, and proportion of documents in a collection containing a
query term) are important and useful for ranking collections for collection suggestion. In
contrast, the document-level statistic (in-document term frequency) is not helpful in this
particular setting.

8.3 Limitations

The work presented in this document does have some limitations. In particular, we do
not provide a complete solution to the collection suggestion problem; rather, we have con
ducted fundamental research (the development of a methodology for evaluating the effec
tiveness of collection ranking algorithms, compilation of test data and an initial evaluation
of a range of algorithms) that provides a strong foundation for further work in the area.
While we have conducted an initial evaluation of a range of collection ranking algorithms,
and found some algorithms to perform satisfactorily, there is scope for the development of
a more effective algorithm.

For our empirical work, we have used a variety of test data sets; this ensures that algo
rithms are tested in a range of environments. However, each of the data sets we use have
associated weaknesses. For example, while the synthetic TREC-based data sets are easily re
producible, and have human-assessed relevance judgements, they are not representative of
the intended operational environment (as discussed in Chapter 2). To ensure that we do test
algorithms on realistic test data, we compiled data sets from real digital repositories. How
ever, due to the impracticalities of producing human-assessed document relevance judge
ments, we opted to programmatically generate synthetic relevance judgements, using doc
ument ranking algorithms. This approach is itself not ideal, due to the limited effectiveness
of the two algorithms used. Therefore, within our test data there is a clear trade-off between
synthetic test collections using reliable human-assessed relevance judgements, and realis
tic test collections with synthetic relevance judgements. This is unlikely to be something
that can be overcome without significant investment of time and resources.

In the following section we reflect on possible avenues for future work, with respect to
progressing towards an effective search service for domain-specific collections.

8.4 Future Work

The task of supporting a user in identifying resources that are relevant to their current and
future interests is a valuable one. We have made several fundamental contributions towards
this task, which lay the foundations for future, systematic development and evaluation of an
optimal collection ranking algorithm for the task.

180

8.4. Future Work

Specifically, we have developed a rigorous methodology and compiled varied test data,
for evaluating the suitability and performance of algorithms for the collection suggestion
task. Without these, extensive evaluation of algorithms for collection suggestion could not
take place. In addition, we have specified a new collection ranking algorithm, designed
specifically for collection suggestion; and have conducted an initial evaluation of both our
own algorithm (and its alternative variants), and a large range of existing algorithms from
relevant domains.

Through our empirical work, we have highlighted approaches and algorithms that are
not effective for collection suggestion. We have also identified some algorithms, such as
CORI and our own Doddle_RC and Doddle_RC+RP algorithms, that appear to be adequate
for recommending collections. However, there is still scope for performance gains.

Given this, future work in this domain could involve a systematic process of combining
effective algorithms tested herein, or their component parts, to seek out improvements in
performance. Alternatively, there may be other appropriate and valuable metrics that have
not been identified here. While the apparatus we have developed to support our empirical
work would make this task more manageable, such a systematic and in-depth evaluation of
algorithms is a substantial piece of work in its own right.

As discussed in Chapter 2, previous research [13] has found that the performance of
CORI varies greatly based on the values used in its parameters. As such, future work in
the collection suggestion domain could investigate whether the performance of CORI could
be improved by adjusting these values. However, as the effectiveness of these values also
changes based on the data set used and query to be executed, finding optimal values for
these parameters within an operational environment seems impracticable.

A further potential direction for future algorithmic work is to investigate the use of alter
native collection attributes; for example, the reputation of a collection, or the freshness of a
collection (how frequently new material is added). This is along a similar vein to the work of
Fuhr [19,20,21,39], which looks at the costs associated with visiting a collection. However,
while interesting, such work would require amendments to the evaluation methodology we
have developed (specifically, the optimal ranking), to reflect the importance of these new
characteristics to ranking collections. Again, this approach represents a significant body of
work in its own right, and therefore is beyond the scope of this thesis.

Our empirical work presented herein has taken a purely objective approach to experi
mentation; looking at the effectiveness of algorithms with various performance measures,
over a robust and reproducible test environment. Such an approach has significant value;
only after a suitable collection ranking algorithm is identified for this task, can user-based
evaluation (subjectively measuring the value of a collection suggestion service, and the sys
tem’s effectiveness from a user’s standpoint) occur on a mature prototype. Empirical work
of this type is left as future work.

181

Appendices

This part of the thesis provides appendices to accompany our main discussions in the pre
vious chapters. We summarise the contents of the appendices, and the chapters to which
they are relevant, as follows:

Appendix A (Abstract Test Scenarios): This appendix accompanies Chapter 3 (specifically,
Section 3.4), in which we introduce the scenario-based testing component of our
strategy for evaluating algorithms for collection suggestion. Appendix A provides an
overview of the scenario-based testing strategy and its motivation. In addition, com
plete specifications of each test scenario are given.

Appendix B (Test Data): This appendix accompanies Chapter 4, in which we present and
discuss our choice of test data for our empirical work. Appendix B includes data not
appropriate to include within Chapter 4: lists of test queries, the list of collections
within our open access repository Refined Test Data (RTD) set, and graphs showing
the number of relevant documents for each query.

Appendix C (Surrogate Relevance Judgements for Open Access Repository Test Data Sets):
This appendix accompanies Chapter 4, Section 4.2.4 in particular, in which we intro
duce our technique for generating surrogate document relevance judgements for our
open access repository test data sets. The relevance judgements are necessary for
generating an ‘optimal’ ranking of collections. Appendix C describes how we arrived
at our technique for generating surrogate relevance judgements.

Appendix D (Algorithm Performance Scores): This appendix accompanies Chapters 5, 6
and 7, in which we conduct a large-scale evaluation of our own collection suggestion
algorithm, in addition to testing the suitability of algorithms from the domains of col
lection selection and query performance prediction. Appendix D includes complete
performance scores for all implemented algorithms, over all test data sets.

183

Appendix A

Abstract Test Scenarios

This appendix provides details of the test scenarios we employ as part of our algorithm eval
uation strategy, described in Chapter 3. In Section A. 1 we begin by providing a brief overview
of the scenario-based testing strategy, and its motivation. Following this, in Section A.2 we
recap the format of the scenarios, and discuss our choice of values for term and collection
statistics. Finally, in Section A.3 we provide detailed specifications of each test scenario.

A.1 Overview

As discussed in Chapter 3, scenario-based testing is an initial stage in our evaluation of algo
rithms, with respect to the collection suggestion task. In scenario-based testing, we specify
a series of hypothetical situations, involving only a small number of collections. This en
ables us to easily reason about the best ordering of the collections, according to the specific
objectives of collection suggestion.

The scenario-based testing essentially provides a ‘health-check’ for algorithms. Due to
their simplicity, execution of these tests is cheap, enabling us to quickly determine which
algorithms are likely to be suitable for the collection suggestion task. As a result, we can rule
out poor performers, prior to executing the more comprehensive and expensive baseline-
based testing (see Section 3.2 in Chapter 3).

A.2 Scenario Characteristics

In this section we recap the format of a test scenario, and discuss how we reason about
the optimal ordering of collections within a scenario. In addition, we also describe how we
arrived at values for the various term and collection statistics.

A .2.1 Format o f a Scenario

In each test scenario, we specify a query in abstract terms, in the form t \ . . . t n. This repre
sents the information need of the user.

185

A Abstract Test Scenarios

In addition, in each scenario we model three collections, which we reference as Ca , Cb
and Q> For each collection we specify the statistics that are likely to be used by the algo
rithms we are testing: the number of documents it contains, the total number of terms it
contains, and the term and document frequencies of each of the query terms.

By varying the quantities and ratios of the collection statistics, in addition to the query
length and number of query terms matched, we create different test cases. As such, we can
identify any strengths and weaknesses of the algorithms, and determine whether they rank
collections in accordance with the goals of the collection suggestion task.

A.2.2 Justification o f Optimal Ranking

Due to the small number of collections modelled, it is easy to reason about the optimal
ordering of collections within a scenario. For collection suggestion, a highly ranked collec
tion should contain a large number of relevant documents, and these documents should
comprise a large proportion of the collection; this suggests the collection is about the query
topic.

These properties are expressed in criteria for highly ranked collections, specified by Zo-
bel [66] . They state that a collection should be ranked highly if for each query term:

1. The term occurs in the collection;

2. The term is common in the collection (relative to the other collections);

3. The collection contains a relatively high proportion of documents featuring the term;
and

4. There are likely to be documents in the collection in which the term is relatively fre
quent [66].

We use these criteria to reason about the best ordering of collections within a scenario.
However, in the interests of simplicity and consistency, we specify the attributes of the col
lections within a scenario such that the best ordering is always Ca ,Cb ,Cc• That is, Ca is
always the best collection to match the query. Cb is considered a ‘runner up', while Cq is
always distinctly worse than the other two.

A.2.3 Term and Collection Statistics

In each test scenario specified in Section A.3, we specify collection statistics (the number of
documents and terms), and term statistics (term and document frequencies) for each query
term. To keep calculations simple, these values are generally small, most notably in terms
of collection size.

However, we do attempt to make the scenario statistic values realistic of an operational
environment. As such, total terms, and term and document frequencies are based on values
observed in real collection data.

Prior to the development of our open access repository data sets (see Section 4.2 in
Chapter 4), we harvested metadata from a small sample of collections. In this data, we

186

A3. Specification o f Scenarios

found metadata documents (using only Title and Description metadata fields) to contain
an average of 90 terms. We used this figure to calculate the total terms in each collection in
the scenarios, given the number of documents each collection contains. In addition, pairs
of term and document frequencies were randomly selected from this harvested data, to pro
vide realistic statistics for query terms.

A.3 Specification of Scenarios

In the following sections we give specifications of each scenario used in our scenario-based
testing approach. For each we provide: a description of the hypothetical situation we are
modelling; the specification of the collection statistics; and a justification of the choice of
the optimal ordering of the collections, with reference to the criteria given in Section A.2.2.

A.3.1 Scenario 1

Summary: Collections are equal in size. We vary the number of documents that contain
the query terms.

Scenario Description: Consider the situation where we have three repositories of a similar
size. One collection is a specialist collection, where all of its documents are concerned
with a specific topic; for example, Java programming. The second collection is a more
general collection, with documents covering a range of topics, such as a computer
science collection. The third collection is more general still, containing documents
on a variety of subjects.

A user poses a query, such as “Java GUI programming Swing JFrame”. We would expect
the specific collection, which contains material on Java programming, to be the most
suitable to answer this query; and indeed be a useful source of information for future
queries on this topic.

Scenario Specification: To model this scenario we have three collections: C a , C b and Cc.
Each contains 100 documents, and comprises a total of9000 terms. We consider Ca to
be the specialist Java programming collection. Cb is the computer science collection,
and Cc is the more general collection. The term statistics for the query, which is of the
form t\ t2 h U h, are given in Table A. 1.

Optimal Collection Ordering: Ca , C b , Q> Our justification for this is as follows:

1. Each collection contains all terms in the query;

2. Each query term is most common in Ca ',

3. Ca has the highest proportion of documents that feature each query term; and
4. In general, Ca is most likely to contain documents in which the query terms are

relatively frequent.

As such, we identify Ca as the best candidate to meet the information need.

187

A Abstract Test Scenarios

Table A. 1: Collection and query term statistics for Scenario 1; f c,t and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

CA
(100 docs; 9000 terms)

Cb

(100 docs; 9000 terms)
Cc

(100 docs; 9000 terms)

fc,t dfc,t fc,t d fc t fc,t d fc t

h 53 14 28 7 1 1
h 13 6 10 3 1 1
h 36 7 8 3 1 1
k 3 3 2 2 1 1
*5 8 5 1 1 1 1

A.3.2 Scenario 2

Summary: Collections differ in size, however the proportion of documents that contain the
query terms (in Ca and Cb) is the same.

Scenario Description: In this scenario, two of our collections specialise in the same sub
ject, astronomy for example. The two collections contain a similar proportion of term
occurrences within the documents, but one collection is much larger than the other.
The third collection is a general collection, containing documents on a wide range of
different topics.

For an astronomy related query, it is not explicitly clear which of the first two col
lections would suit the information need best, as they appear to be roughly equal.
However, in this instance it is likely that the first, larger, collection would offer better
long term value to the user.

Scenario Specification: For our model, Ca is the larger astronomy collection, containing
200 documents and a total of 18000 terms. The second astronomy collection, Cb, is
half the size of Ca, with 100 documents and 9000 terms. Collection Cc also contains
100 documents and 9000 terms. The term statistics for the query, which is of the form
t\ t2 h U h , are given in Table A.2.

Optimal Collection Ordering: Ca, Cb, Cc. Our justification for this is as follows:

1. Each collection contains all terms in the query;

2. Each query term is equally common in Ca and Cb ;

3. Ca and Cb have an equal proportion of documents featuring the query terms;
and

4. Ca and Cb are equally likely to contain documents in which the query terms are
relatively frequent.

188

A3. Specification o f Scenarios

As we can see, distinguishing between repositories Ca and Cb is difficult, as they are
considered equal based on the criteria above. However, we suggest that Ca is the bet
ter candidate to meet the information need as it has more documents about the sub
ject. It is a larger collection, and thus may have more content with future relevance.

Table A.2: Collection and query term statistics for Scenario 2; f c,t and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

Ca
(200 docs; 18000 terms)

CB
(100 docs; 9000 terms)

Cc
(100 docs; 9000 terms)

fc,t dfc,t fc,t dfc,t fc,t d fc t

106 28 53 14 1 1
*2 26 12 13 6 1 1
*3 72 14 36 7 1 1
U 6 6 3 3 1 1
*5 16 10 8 5 1 1

A.3.3 Scenario 3

Summary: Collections differ in size, but the quantity of documents that contain the query
terms (in Ca and Cb) is the same.

Scenario Description: One collection in this scenario is a specialist collection, containing
documents on just one topic, World War II for example. A second collection is one
that collates documents from other sources. As such it contains the same documents
as the first, plus some additional content on an unrelated subject, such as the Black
Death. As the two subjects are disjoint, there is no overlap in their vocabularies. The
third collection is a general collection, containing documents on a wide array of sub
jects.

A user submits a query relating to World War II. In this instance we can argue that ei
ther of the first two repositories would be a suitable candidate to browse. However, we
suggest that the smaller, specialist collection would be more appropriate: it is specif
ically concerned with the query topic, and it is not diluted with irrelevant material.

Scenario Specification: Our model collections are as follows: Ca is the specialist collection,
containing 100 documents and a total of 9000 terms. Cb has 200 documents (100 of
which are also in Ca), and 18000 terms. Cc is the general collection, containing 100
documents and 9000 terms. The term statistics for the query, t\ t2 % t4 t5, are given
in Table A.3. We note that since there is no overlap in the subject vocabularies for
collections Ca and Cb, the values are identical.

Optimal Collection Ordering: Ca, Cb, Cc- Our justification for this is as follows:

189

A Abstract Test Scenarios

1. Each collection contains all terms in the query;
2. Each query term is more common in C a ',

3. Ca has the highest proportion of documents featuring the query terms; and
4. Ca and Cb are equally likely to contain documents in which the query terms are

relatively frequent.

From this, we gain support that the specialist collection (Ca) should be ranked first.

Table A.3: Collection and query term statistics for Scenario 3; f c,t and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

Ca
(100 docs; 9000 terms)

Cb
(200 docs; 18000 terms)

Cc
(100 docs; 9000 terms)

fc,t d fc t fc,t d fc t fc,t dfc t

h 53 14 53 14 1 1
h 13 6 13 6 1 1
*3 36 7 36 7 1 1
h 3 3 3 3 1 1
*5 8 5 8 5

A.3.4 Scenario 4

Summary: Collections are equal in size. A single-term query is used. We vary the number
of documents that contain the query term.

Scenario Description: This is a simplistic scenario, where we aim only to check that an
algorithm can produce a suitable ranking when a query consists of only one term.
That is, the algorithm does not depend on there being more than one query term.

Scenario Specification: We model this scenario with three collections of equal size: Ca, Cb
and Cc- Each contains 100 documents, and comprises a total of 9000 terms. The term
statistics for the query consisting of term t\ are given in Table A.4.

Optimal Collection Ordering: C a , Cb , Cc. Our justification for this is as follows:

1. Each collection contains all the terms in the query;
2. The query term is more common in C a ',

3. Ca has the highest proportion of documents featuring the query term; and
4. Cb is most likely to contain documents in which the query term is relatively fre

quent.

As such, it seems reasonable that Ca should be ranked first, followed by Cb.

190

A3. Specification o f Scenarios

Table A.4: Collection and query term statistics for Scenario 4; f Cit and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

Ca
(100 docs; 9000 terms)

CB
(100 docs; 9000 terms)

Cc
(100 docs; 9000 terms)

fc,t d fc t fc,t d fc t fc.t dfc,t

t\ 53 14 13 6 1 1

A.3.5 Scenario 5

Summary: Collections are equal in size. Cb has the same term occurrences as Ca for some
query terms, but does not match all query terms.

Scenario Description: In this scenario, we have three collections of similar size. The first
collection is a specialist collection, dealing with material on Java programming. The
second collection is a more general collection, but contains material related to that
in the first, for example a computer science collection. The third collection is very
general, and has small numbers of documents about many different subjects.

We issue the query “Java GUI programming Swing JFrame”. The specialist collection
is able to match all query terms, and thus is seen as the most suitable collection to
browse. The second collection matches some query terms, but cannot match the
more subject specific terms, such as “Swing” and “JFrame”, for example. Finally, the
third collection, due to its generality, can match only one term.

Scenario Specification: We model this scenario with collections: Ca, Cb and Cc- Ca is the
specialist collection, C b is the general computer science collection, and Cc is the very
general collection. Table A.5 shows the term statistics for the query, t\ t2 h h t$.

Optimal Collection Ordering: Ca, Cb,Cc. Our justification for this is as follows:

1. is the only collection containing all the query terms;

2. In general, query terms are more common in Ca ',

3. In general, Ca has a higher proportion of documents featuring query terms; and

4. In general, Ca is most likely to contain documents in which the terms are rela
tively frequent.

This suggests that C a should be ranked highest.

A.3.6 Scenario 6

Summary: Collections are equal in size. C b has higher occurrences of some query terms
than C a , but does not match all query terms.

191

A Abstract Test Scenarios

Table A.5: Collection and query term statistics for Scenario 5; f Cit and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

CA
(100 docs; 9000 terms)

CB
(100 docs; 9000 terms)

Cc
(100 docs; 9000 terms)

fc ,t dfc,t fc ,t d fc t fc ,t d f c t

h 53 14 53 14 1 1
h 13 6 13 6 0 0
h 36 7 36 7 0 0
k 3 3 0 0 0 0
h 8 5 0 0 0 0

Scenario Description: In this scenario we again consider three collections of similar size.
The first two collections cover multiple topics within a broad subject area, for exam
ple a computer science collection. The third collection has documents from many
different subject areas.

We issue a query relating to computer science, and find that the first collection has
moderate occurrences of all query terms. The second collection however matches
only some of the query terms, but the number of occurrences of these terms are much
higher than the first. The third collection matches only one term. The question is,
should we favour the collection with moderate numbers of all query terms, or that
with higher occurrences of some query terms? Our view is that the first collection is a
better match, as all query terms are present.

Scenario Specification: Collections Ca, Cb and Cc are used to model this scenario, each
containing 100 documents and 9000 terms. Ca represents the computer science col
lection containing moderate occurrences of all query terms. Cb models the second
computer science collection and Cc the general collection. The term statistics for the
query, t\ tz h k t5, are given in Table A. 6.

Optimal Collection Ordering: C a , C b , C c . Our justification for this is as follows:

1. is the only collection containing all the query terms;

2. Terms present in C b are more common than those in C a ',

3. Terms present in Cb occur in a higher proportion of documents than those in
Ca; and

4. In general, Ca is most likely to contain documents in which the terms are rela
tively frequent.

As such, it is difficult to determine which collection should rank highest. However, in
this instance, a collection that matches all query terms (Ca) is favourable.

192

A3. Specification o f Scenarios

Table A.6: Collection and query term statistics for Scenario 6; f c,t and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

CA
(100 docs; 9000 terms)

Cb

(100 docs; 9000 terms)
Cc

(100 docs; 9000 terms)

fc,t dfc,t fc,t d fc t fc,t dfc,t

h 28 7 60 21 1 1
k 10 3 0 0 0 0
k 8 3 53 7 0 0
k 2 2 0 0 0 0
k 1 1 3 3 0 0

A.3.7 Scenario 7

Summary: Collections differ in size. Cb is larger than Ca , with a higher quantity (but a
smaller proportion) of relevant documents. This represents polysemy.

Scenario Description: Here, we have a situation similar to Scenario 3: we again have a spe
cialist collection containing documents on World War II. The second collection also
contains these documents, along with some additional content. However, on this oc
casion the additional content is on a similar subject, World War I for example. As
such, there is an overlap in the vocabularies of the two topics (this is an example of
polysemy; where words may have multiple meanings). The third collection is as be
fore, a general collection with documents covering a range of subjects.

As in Scenario 3, the query is related to World War II, and as such we would prefer the
specialist collection to be ranked highest. Our reasoning in this instance is that if the
user conducted a search at the second collection, they would likely be shown docu
ments that were not relevant to their information need, as a result of the polysemy
problem.

Scenario Specification: To model the scenario, Ca is the specialist collection, containing
100 documents with 9000 terms. C b , with the additional content, has 200 documents,
with 18000 terms in total. Finally, Cc is the general collection and has 100 documents,
containing a total of 9000 terms. Table A.7 shows the term statistics for the query,
which is of the form t\ t2 k k k- We see that in this scenario, Cb has additional
occurrences of some of the query terms to represent the overlap in vocabularies.

Optimal Collection Ordering: C a , C b , C c . Our justification for this is as follows:

1. Each collection contains all terms in the query;

2. In general, the query terms are more common in C b ',

3. Ca has the highest proportion of documents featuring each query term; and

193

A Abstract Test Scenarios

4. In general, Cb is most likely to contain documents in which the query terms are
relatively frequent.

Here, the criteria lean towards suggesting Cb as the best collection. However, we have
determined from the scenario description that Ca would be the most effective col
lection to answer the user’s information need. This demonstrates that polysemy is a
challenging problem to overcome.

Table A.7: Collection and query term statistics for Scenario 7; f c,t and dfc t give the number
of occurrences and document frequency of term t in collection c, respectively.

CA
(100 docs; 9000 terms)

CB
(200 docs; 18000 terms)

Cc
(100 docs; 9000 terms)

fc ,t dfc.t fc ,t d f c t fc ,t d f c t

h 53 14 82 21 1 1
h 13 6 26 9 1 1
h 36 7 36 7 1 1
U 3 3 3 3 1
*5 8 5 12 9 1 1

194

Appendix B

Test Data

In this appendix we present additional data (such as lists collections within the data sets,
lists of test queries, and graphs indicating the number of relevant documents per test query)
associated with the test data sets we use in our evaluation of algorithms for collection sug
gestion.

The majority of this information is associated with our open access repository test data
sets. As such, Sections B.l and B.2 provide data associated with the Initial and Refined Test
Data sets respectively, while Section B.3 deals with the TREC-based test data sets.

B. 1 Initial Test Data (ITD)

In this section we specify the test queries (Section B.1.1) associated with our Initial Test
Data open access repository data set, and present the number of relevant documents as
sociated with each query (Section B.l.2), according to our surrogate document relevance
judgements.

B.1.1 Q ueries

The set of 50 test queries associated with the ITD set is as follows:

1. preventing transmission of infectious 6. paediatric dentistry
disease

7. 3d archaeological reconstruction and
2. techniques for diagnosis of mental ill- visualisation

n0SS 8. glass blowing
3. fluorescence imaging endoscope for 9 el ar

early detection of gastrointestinal m a
lignancy 10. lorenz manifold

4. hadron collider 11. dublin core metadata

5. orthodontics 12. mass spectrometry

195

B. Test Data

13. standards of secondary school educa
tion in the UK

14. solar flares

15. contamination of soil from depleted
uranium

16. ancient egyptian pharaohs

17. culture in tudor england

18. glaucoma

19. macular dystrophy

20. common causes of heart disease

21. human rights act 1998

22. capabilities and limitations of long
wavelength observations from space

23. effect of breast feeding on intelligence
in children

24. Chinese exports

25. causes and prevention of mrsa in hos
pitals

26. the rise and fall of adolf hitler and nazi
germany

27. mummification process and burial
customs in ancient egypt

28. theology

29. development coordination disorder in
children

30. schwarzschild black holes

B. 1.2 R elevant D ocum ents P er Q uery

31. operation overlord normandy land
ings 1944

32. structural operational semantics

33. semantic web

34. hidden markov models

35. psoriasis

36. tantric buddhism

37. game theory

38. economic management health

39. parkinson disease senility

40. medieval culture

41. distribution of sediment on the seabed

42. extensional plate tectonics

43. coastal erosion

44. diagnosis of pancreatic cancer

45. managing menopause with hormone
replacement therapy

46. late antique and medieval mosaics in
italy

47. economics of taxation

48. situation-aware wireless networks

49. agricultural soil properties

50. higgs boson

The graphs in Figures B.l and B.2 show the number of relevant documents associated with
each test query, for the Title metadata and Title and Description metadata respectively, ac
cording to our surrogate document relevance judgements.

We observe that the number of relevant documents ranges drastically between different

196

2,
40

0,

2,
40

0 o o o o o o o o o o o o
o o o o o o o o o o oCM o 00 CO CM o 00 co CM
CM CM l-H l-H Ĥ ^ H

sjuaumooQ jireAapjj

o o o o o o o © o o © o
o o o o o o o o o o oCM o 00 co CM o 00 CO CM
cm“ CM f-H f-H Ĥ i—H f-H

sjuaumaoQ juBAapn

197

B. Test Data

queries: some match over 2000 documents, while others return only a handful of relevant
documents. While a similar picture can be observed in similar graphs in Sections B.2 and B.3
for the RTD and TREC-based data sets, the ITD set seems to have a larger number of relevant
documents per query, on average. This may be a side effect of the presence of the very large
PubMed database, which may include many documents with low relevance to the queries.
In addition, the presence of this collection in ITD means the data set contains many more
documents than the other test collections.

B.2 Refined Test Data (RTD)

In this section we provide data associated with the Refined Test Data set: a list of all har
vested repositories and the number of collections they contain (Section B.2.1), test queries
(Section B.2.2), and graphs showing the number of relevant documents per query (Sec
tion B.2.3).

B.2.1 Collections

Table B.l lists the 100 real repositories we harvested for the RTD set,, and the number of
documents each contains.

Table B.l: Collections in the Refined Test Data set.

Repository Name Number of Documents

1 Caltech Graduate Aeronautical Laboratories Solid Me
chanics Technical Reports

7

2 Edinburgh DataShare 12
3 Latin American Development Archive (LADARK) 13
4 Caltech Graduate Aeronautical Laboratories Fluid Me

chanics Technical Reports
28

5 Caltech Large-Eddy Simulation and Subgrid-Scale Mod
eling for Turbulent Mixing and Reactive Flows

29

6 ECS Student Portfolio (University of Southampton) 37
7 Glamorgan Dspace 49
8 Nottingham Modern Languages Publications Archive 63
9 Te Tumu Eprints Repository (University of Otago) 69
10 CaltechMALN 72
11 Caltech Archives Oral Histories Online 110
12 CAV2001: Fourth International Symposium on Cavita

tion
111

13 OpenDEPOT.org 132
14 Open Repositories 2008 Publications 143
15 Caltech Control and Dynamical Systems Technical Re

ports
147

198

B.2. Refined Test Data (RTD)

Table B.l: Collections in the Refined Test Data set (continued).

Repository Name Number of Documents

16 Analytical Sciences Digital Library 451
17 University of Birmingham Research Archive E-prints

Repository
496

18 eCrystals - University of Southampton 496
19 Open Access Institutional Repository at Robert Gordon

University
530

20 Anglia Ruskin Research Online 539
21 British History Online 551
22 University of Liverpool Research Archive 722
23 University of Birmingham Research Archive E-papers

Repository
759

24 CEDA Repository 776
25 Digital Resource Commons - University of Toledo 933
26 University of Limerick Institutional Repository 948
27 Virginia Tech Computer Science Technical Reports 983
28 University of Chester Digital Repository 994
29 Research@St Andrews 1111
30 Harvard Smithsonian Digital Video Library 1197
31 Roehampton University Research Repository 1204
32 Georgetown Law Scholarly Commons 1220
33 MIMS EPrints (University of Manchester) 1240
34 Nottingham eTheses 1294
35 ETSU Electronic Thesis and Dissertation Archive 1324
36 Scholarly Commons @ AUT University 1411
37 Solent Electronic Archive 1429
38 RADAR (Oxford Brookes University) 1522
39 Otago University Research Archive 1547
40 University of Birmingham Research Archive E-theses

Repository
1605

41 Sussex Research Online 1607
42 ResearchArchive at Victoria University of Wellington 1694
43 Wolverhampton Intellectual Repository and E-theses 1737
44 Pharmacy Eprints 1928
45 Glasgow Theses Service 208-1
46 Colorado State University Libraries Digital Repository 2282
47 Digital Commons@Becker 2284
48 NECTAR 2758
49 Shocker Open Access Repository 2778
50 DSpace at Drexel University Library 3007
51 Nature Preceedings 3011

199

B. Test Data

Table B.l: Collections in the Refined Test Data set (continued).

Repository Name Number of Documents

52 bepress Legal Repository 3139
53 Bowling Green State University Digital Resource Com

mons
3191

54 Documenting the American South 3206
55 University of Lincoln Institutional Repository 3249
56 DSpace at New York University 3270
57 DigitalCommons@Bryant University 3281
58 Sheffield Hallam University Research Archive 3315
59 Goldsmiths Research Online 3567
60 DigitalCommons@Pace 3673
61 Woods Hole Open Access Server 4631
62 Murdoch University Research Repository 5052
63 Brunei University Research Archive 5120
64 Aquatic Commons 5661
65 ResearchSpace@Auckland 6064
66 KU ScholarWorks 6150
67 Institute of Education EPrints 6322
68 Leicester Research Archive 6464
69 Center for Jewish History Digital Collections 7049
70 IUScholarWorks 7615
71 Durham Research Online 7877
72 Research Online @ ECU 7927
73 Irish Health Repository 8495
74 DLynx - Rhodes College Archives Digital Collection 9542
75 University of Tasmania Eprints Repository 9886
76 Kingston University Research Repository 11342
77 Digital Repository at the University of Maryland 11393
78 Jorum Open 12350
79 Macquarie University Research Online 14523
80 DigitalCommons@ILR 14640
81 Minds @ UNiversity of Wisconsin 14985
82 Digital Library for Earth System Education 15291
83 Archive of European Integration 15985
84 Flinders Academic Commons 17173
85 eCommons@Cornell 17817
86 Connexions 18108
87 Caltech Authors 23140
88 La Trobe University Research Repository 24180
89 LSE Research Online 27509
90 PEAK Digital 30855

200

B.2. Refined Test Data (RTD)

Table B.l: Collections in the Refined Test Data set (continued).

Repository Name Number of Documents

91 JScholarship 32418
92 Warwick Research Archives Portal Repository 37058
93 Enlighten (Glasgow) 43277
94 Texas A&M Repository 45276
95 Leodis - A photographic archive of Leeds 56852
96 Adelaide Research & Scholarship 60109
97 e-Prints Soton 63654
98 FSU Libraries Digital Library Center Institutional Repos

itory
70464

99 University of Queensland eSpace 144208
100 DSpace @ Cambridge 196224

B.2.2 Queries

In this section we list the queries used in the RTD set, as generated using the programmatic
approach discussed in Section 4.2.3 of Chapter 4. We first provide a set of 50 test queries,
followed by a set of 200.

Set of 50 Queries

The set of 50 test queries associated with the RTD set is as follows:

1. pseudostratified columnar epithelium 12. gideons international

2. darlingtonia state natural site 13. hemotropic mycoplasma

3. db file multiblock read count 14. battle of Stalingrad

4. biochemical activity of weel 15. ten rillington place

5. baldock health care center 16. dr dino creationists

6. how to preadsorb antibody 17. methyl cyclopentane

7. john grisham latest novel 18. flagman of america

8. que tipo de cuerpo tengo 19. Portland indymedia

9. crocodylia alligatoridae 20. how to make cocito

10. definition of exopolymer 21. cheech and chong

11. immeasurably long time 22. fty720 treatment

201

B. Test Data

23. vayda’s seafood 37. egon schiele

24. farmscapes game 38. schlink haus

25. captopril drug 39. mark mcguinn

26. figurative art 40. piazza honda

27. hauptm ann voss 41. unurban cafe

28. solace meaning 42. flsa status

29. baywood greens 43. mark straka

30. elena semenova 44. expert tire

31. mayra veronica 45. john breen

32. akhri chataan 46. huh7 cells

33. peter motley 47. purdin mo

34. trf auctions 48. thesaurus

35. pindolol isa 49. d4xrpm

36. owenhumpage 50. ptld

Set o f200 Queries

The set of 200 test queries associated with the RTD set is as follows:

1. new t-mobile sidekick 4 cell phone 10. acemoglu johnson and robinson
shuriken

11. emmeline pankhurst biography
2 . regular panelist wait wait don’t tell me 12. cataclastic metamorphic rock
3. bultmann new testament and mythol 13. chaser lounge jubblies forum

ogy
14. whanaungatanga relationships

4. nonseminomatous testicular cancer
15. san gimignano italy tuscany

5. lampbrush and polytene chromosome
16. function of dithiothreitol

6. union de naciones suramericanas 17. golden state water company

7. macroalbuminuria and definition 18. arnhold and s bleichroeder

8. mission hospital mission viejo 19. ubat kuatkan tenaga batin

9. legatta a un granello di sabia 20. delosperma table mountain

202

B.2. Refined Test Data (RTD)

21. schizophreniform disorder 48. ichthyosis congenita

22 . pinellia ternata rhizome 49. trilayer endometrium

23. march militaire schubert 50. phrenic nerve damage

24. macrodermabrasion munich 51. autostereoscopic led

25. acamprosate side effects 52. arundinaria auricoma

26. benedetto's land o lakes 53. reserve at bankside

27. sphaerodactylus elegans 54. nanoclay properties

28. reese koffler Stanfield 55. eurycoma longifolia

29. polycythemia rubra vera 56. lippmann collection

30. chilopsis desert willow
57. city of herculaneum

scedosporium sinusitis
58. halatuju pendidikan

31.

trichonympha sphaerica
59. untersuchung kinder

scytalidium species
32.

60.
33. harry papaconstantinou

61. folsom lake college
34. acer negundo box elder

62. club shaped bacilli
35. pedilanthus variegatus

westat rockville md63.
36. remsenburg speonk ufsd

64. veer tejaji maharaj
37. american unilateralism

65. arockv klang valley
38. gibsonia Pennsylvania

66. ecomuseum montreal
39. macroeconomist salary 67. la cucina italiana
40. changbaishan mountain 68. tolson real estate
41. colonocytes wikipedia 69. biffarius arenosus

42. fenbendazole for cats 70. collonil nanospray

43. bernadette of lourdes 71. nhprc funding 2008

44. sw franciszek z asyzu 72. steven windmueller

45. image of a xenosaurus 73. familien stammbaum

46. unembedded journalist 74. skyglobe for vista

47. steam turbogenerator 75. geith attachments

203

B. Test Data

76. tychonoff theorem

77. huitzuco guerrero

78. kahanamoku lagoon

79. ailanthus control

80. trackless trolley

81. 6x9 speaker boxes

82. hk celebrity news

83. plotosus lineatus

84. kingship of jesus

85. photo restoration

86. thorn vollenweider

87. shepparton cinema

88. model and acting

89. ouray chalet inn

90. oedipus composer

91. guitar strumming

92. cornelia day spa

93. heslops michigan

94. prenzlauer allee

95. jasper maskelyne

96. jennifer lothrop

97. microgram symbol

98. rumex sanguineus

99. canicula summary

100. javelina hunting

101. drisdale lakeway

102. pro cycling gear

204

103. yonder gillihan

104. waneeta beckley

105. maidana vs khan

106. brisket recipes

107. cooking brisket

108. robert sturcken

109. pinnacle studio

110. joe morgenstern

111. johndarerblog

112. vesid rochester

113. leonidas sparta

114. pridamiral pack

115. giovanna wheels

116. puyallup nissan

117. using a router

118. velveting beef

119. mamounia hotel

120. eric kapitulik

121. enterocytozoon

122. hiroshi nohara

123. scott sargeant

124. define pyrexia

125. rueben recipes

126. merkur beograd

127. dysplastic hip

128. long underslip

129. spurdog shark

130. creemers 1994

B.2. Refined Test Data (RTD)

131. acbc anoka mn 158. ephim video

132. tony hoagland 159. batata cafe

133. molokai ferry 160. fukuda test

134. gemma anscomb 161. lovie smith

135. sony d sc p l20 162. linuron red

136. osteoma cutis 163. quin turn cms

137. dave tolleris 164. interaction

138. rueben carter 165. bbfc search

139. zoltan takacs 166. john spratt

140. vyapam bhopal
167. tek systems

metal metroid
168. vasa previa

141.

that darn cat
169. normal jvp

deoxo unit
142.

170.
143. coltman idaho

171. mike judge
144. skincell 29a

172. hymap 2011
145. nalini singh

173. rtdc india
146. cyplbl helix

174. dr axelrod
147. pilbara iron

mtp player175.
148. volusia mall

lila downs176.
149. hanger opnet

177. john horan
150. mike culotta 178. tpx triton
151. gobbledygook 179. alpha 3000

152. craig drezek 180. la fortuna

153. tukey method 181. dr sisodia

154. bremner duke 182. 124e patch

155. artist kahlo 183. sweat pea3

156. sfds houston 184. bti group

157. fishcode stf 185. doris day

205

B. Test Data

186. tupm anca 194. merzrv

187. palm m l30 195. Oin cdc

188. rcn email
196. my sace

189. m am am ias
197. veitch

190. cseindia
198. brca2

191. meinhardt

192. parousia 199. efta

193. m etttc 200. ibm

B.2.3 Relevant D ocum ents Per Query

The graphs in Figures B.3 and B.4 show the number of relevant documents per query in the
set of 50 test queries (as determined by surrogate document relevance judgements), for the
Title metadata and Tide and Description metadata, respectively Figures B.5 and B.6 show
the same information, for the set of 200 test queries.

B.3 TREC Test Data

In this section we provide additional data associated with the TREC-based test data sets,
discussed in Chapter 4.

B.3.1 Relevant D ocum ents Per Query

Figure B.7 shows the number of relevant documents per query for the TREC-based test data
sets. We observe that on average, the number of relevant documents per query is lower than
that of the ITD and RTD sets. For the TREC-based data sets, document relevance judge
ments are made by human assessors, who may be more discerning than a programmatic
approach.

206

1,
40

0,

1,4
00

oin

o

o
CO

o
CM

ooCM
Ooo

ooco
ooCO

oo
ooCM

sjuaumooQ jn n a p g

oin

©

©co

o
CM

oo
CM

OO©
©
o00

o
oCO

o
o

ooCM

sjuauxnooQ jireAapy

207

Fi
gu

re

B.
3:

N
um

be
r

of
re

le
va

nt
 d

oc
um

en
ts

(b

as
ed

on

Ti
tle

on

ly
Fi

gu
re

B.

4:
N

um
be

r
of

re
le

va
nt

 d
oc

um
en

ts

(b
as

ed

on
Ti

tle

an
d

da
ta

)
for

 e
ac

h
RT

D
qu

er
y,

 in

the

se
t

of
50

qu
er

ie
s.

D
es

cr
ip

tio
n

da
ta

)
for

 e
ac

h
RT

D
qu

er
y,

 in

the

se
t

of
50

qu
er

ie
s.

o o © © © © © ©
© © © © © © ©Tf CM © CO © Tt CM
l-H f-H l-H

8)U9Um30Q J1TBA3|3JJ

Figure B.5: Number of relevant documents (based on Title only data) for each RTD query, in
the set of 200 queries.

208

sjuauimoQ jireAapn

Figure B.6: Number of relevant documents (based on Title and Description data) for each
RTD query, in the set of 200 queries.

2,
20

0
oin

o

inCO

oCO

inCM

oCM

ina

in<r>

o
CD

inco

o
00

ini-'-

oi>

inco

oCO

inm

o o o o o o o o o o o o o o o o o o o o
O O O i q ^ t C M O O O C O T f C M
CM i“H ,-H i"H i"H i“H

siuaamsoQ)ucAa|ag

Figure B.7: Number of relevant documents for each TREC topic used.

oin

210

To
pic

 N
um

be
r

Appendix C

Surrogate Relevance Judgements for
Open Access Repository Test Data Sets

In Section 2.3.1 of Chapter 2, we described how collection selection algorithms can be eval
uated in terms of how well they estimate an optimal ordering of collections. To generate an
optimal collection ordering for a given query, we require knowledge of the documents rele
vant to that query: the document relevance judgements. When testing algorithms using the
several TREC test data sets discussed in Section 4.1, generating the optimal collection rank
ing is straightforward: the TREC corpus comes with relevance judgements for each query.
However, the open access repository data sets, described in Section 4.2, are built from real,
operational repositories; as such, we do not have relevance judgements for the documents
and queries within these data sets.

One method for creating relevance judgements for a set of documents and queries is
to have a human assessor evaluate the relevance of every document, for every query. This
is impractical for our open access repository data sets, due to their magnitude. We there
fore investigate several strategies for programmatically generating surrogate document rel
evance judgements for the open access repository data sets. The following sections describe
these strategies and discuss our empirical results.

C.l Experiment Set-up

We present and investigate several possible strategies for generating surrogate relevance
judgements for our open access repository data sets, some of which draw on the TREC ap
proach to compiling relevance judgements, known as pooling.

In the pooling approach, the document ranking systems participating in TREC submit
their top n relevant documents for each query, into a pool. A human assessor then judges
each document in the pool for relevance to the query [25]. This technique is less intensive
for the human assessors than evaluating every document for every query.

However, we pursue an entirely automated approach to producing relevance judge
ments for our test data sets: given the size of our data sets, assessing even a pooled sample

211

C. Surrogate Relevance Judgements for Open Access Repository Test Data Sets

of documents for every query would still be very labour intensive.
For our experiment to find an optimal programmatic method for generating document

relevance judgements, we utilise three document ranking algorithms - the Lucene search
algorithm [15], BM25 [42] and t f - id f- in seven different configurations, described below:

Algorithm agreement: A document is classed as relevant if all three algorithms agree it is
relevant.

Majority voting: A document is classed as relevant if two or more algorithms agree it is
relevant.

Pool all: All documents returned by each algorithm are classed as relevant.

Lucene only: Relevant documents are determined by the Lucene algorithm only.

BM25 only: Relevant documents are determined by the BM25 algorithm only.

t f- id f only: Relevant documents are determined by the tf-idf sdgonthm only.

Lucene and BM25 (Agreement): A document is classed as relevant if both the Lucene and
BM25 algorithms agree it is relevant.

Lucene and BM25 (Pool): All documents returned by the Lucene and BM25 algorithms are
classed as relevant.

To evaluate the suitability of these configurations for producing document relevance
judgements, we test their ability to generate the relevance judgements associated with the
TREC corpus. We execute TREC topics 51-150, as these topics include relevance judgements
for all documents in the corpus. We formulate the topics as both short and long queries
(refer back to Section 4.1.7 in Chapter 4 for details).

We use the Apache Lucene1 search engine library to build a document index for the
TREC corpus. When executing a search, each algorithm returns the top n relevant docu
ments; where n is 0.1% of the total number of documents in the corpus (for a collection
containing one million documents, up to one thousand relevant documents would be re
turned).

C.2 Results

For each strategy for generating surrogate relevance judgements, we calculate the precision
and recall achieved on each query. The precision value shows the proportion of documents
classified by the strategy as relevant, that are also relevant according to TREC. The recall
value represents the proportion of documents deemed relevant by TREC, that were classi
fied as relevant by the given configuration. To give a summary of performance, we average
the precision and recall values over all queries; Table C.l presents our results.

•̂h t tp :/ / lu c e n e . apache. org/

212

C.3. Summary

Table C.l: Precision and recall values for each strategy for generating surrogate relevance
judgements, averaged over all queries.

Short Queries Long Queries

Precision Recall Precision Recall

Algorithm agreement 0.27 0.19 0.33 0.22
Majority voting 0.17 0.32 0.23 0.45
Pool all 0.10 0.40 0.14 0.55
Lucene only 0.15 0.32 0.21 0.47
BM25 only 0.15 0.33 0.21 0.47
TF-IDF only 0.12 0.26 0.13 0.28
Lucene and BM25 (Agreement) 0.17 0.29 0.24 0:43
Lucene and BM25 (Pool) 0.13 0.36 0.19 0.51

We observe that the algorithm agreement strategy exhibits the highest average preci
sion, but also the lowest average recall. In contrast, pooling all documents gives the highest
average recall, but with very poor precision. The majority voting method sits in the middle
of these two. Thus, it appears that by using more document ranking algorithms to scruti
nise the relevance of document, we become more certain of its relevance; however, this also
leads us to sacrifice some relevant documents.

Looking at the performance of the three algorithms individually, we see that Lucene
and BM25 perform similarly, with tf-idf performing much worse. Indeed, if we compare
the performance of algorithm agreement with Lucene and BM25 (Agreement), we see that
algorithm agreement has better precision, but worse recall than Lucene and BM25 (Agree
ment). This suggests that while tf-idf helps to confirm the relevance of some documents,
it may result in some relevant documents being thrown away. The reverse is the case when
comparing pool all with Lucene and BM25 (Pool); pooling all relevant documents from each
algorithm has worse precision, but better recall than Lucene and BM25 (Pool). This suggests
that while tf-idf offers some relevant documents that Lucene and BM25 did not, some of
these documents are not actually relevant according to TREC.

The most balanced configurations, in terms of the trade-off between precision and re
call, are majority voting, and Lucene andBM25 (Agreement). Since tf-idf shows poor perfor
mance, it is unlikely to add much to the majority voting configuration. We therefore suggest
that Lucene and BM25 (Agreement) is the most appropriate strategy to use to generate sur
rogate document relevance judgements, for our two open access repository test data sets.

C.3 Summary

Following our experiments to investigate the performance of several programmatic strate
gies for generating surrogate relevance judgements, we produce such relevance judgements
for our open access repository test data sets in the following way: a document index for the

213

C. Surrogate Relevance Judgements for Open Access Repository Test Data Sets

harvested metadata is built using the Apache Lucene search engine library. For each query,
all documents in a test data set are ranked using BM25, and the Lucene search algorithm;
each returning the top n relevant documents (where n is 0.1% of the total number of har
vested documents). A list of surrogate relevance judgements is generated by taking the in
tersect of the relevant documents from the two algorithms. Thus, a document is deemed
relevant if both algorithms agree it is relevant.

From this list, we can determine the number of relevant documents in each collection,
and thus generate an optimal ranking as per the method described in Section 3.2.

214

Appendix D

Algorithm Performance Scores

In this chapter we provide tables of complete performance scores for all implemented algo
rithms, on all test data sets. Therefore, performance scores not discussed in the main body
of this thesis can be found here.

For each data set, we provide the following tables:

- Spearman rank correlation scores (giving correlation with both FsBR and SBR);

- Z-Test results, indicating whether any algorithm shows a performance significantly
different from any other;

- Blest and Da Costa weighted rank correlation scores (giving correlation with FsBR);

- 7ln scores at selected values of n;

- K n scores at selected values of n;

- V n scores at selected values of n; and

- Precision@5 and Correct@l scores.

215

D. Algorithm Performance Scores

D. 1 Initial Test Data (ITD)

Table D.l: ITD average Spearman rank correlations, for the various configurations of the
Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.82 0.72 0.42 0.29
Doddle_RC 0.80 0.72 0.32 0.23
Doddle_RP 0.80 0.62 0.33 0.10
Doddle_RF 0.77 0.69 0.70 0.54
Doddle_RC+RP 0.80 0.68 0.33 0.16
Doddle_RC+RF 0.82 0.75 0.46 0.38
Doddle_RP+RF 0.82 0.69 0.47 0.31
Doddle_x 0.77 0.64 0.30 0.12
Doddle_RCxRP 0.77 0.64 0.29 0.10
Doddle_RCxRF 0.80 0.71 0.35 0.26
Doddle_RPxRF 0.80 0.65 0.35 0.14
Doddle_W 0.81 0.71 0.39 0.23
SBR 0.51 0.48 — —

216

Table D.2: ITD average Spearman rank correlations, for existing algorithms and Doddle,
comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.69 0.70 0.58 0.53
CORI 0.81 0.78 0.72 0.73
Cosine Measure 0.76 0.73 0.70 0.64
Inner Product 0.79 0.75 0.78 0.78
Skew 0.80 0.74 0.77 0.78
Highest-available Similarity 0.78 0.67 0.80 0.85
C W 0.79 0.72 0.78 0.80
DFPROP 0.80 0.74 0.77 0.79
Distribution of Informative Amt 0.21 -0.02 0.17 -0.04
SCS 0.59 0.45 0.79 0.70
AvICTF 0.60 0.46 0.79 0.70
NSCQ 0.72 0.64 0.85 0.88
Doddle 0.82 0.72 0.42 0.29
SBR 0.51 0.48 — —

217

A
lg

or
ith

m
s

Table D.3: ITD Z-Test results, showing whether the differences between Spearman corre
lations are significant (a / shows there is significant difference in performance), executed
over Title data.

HfiS

m"9ipp°a
dHxdH“9IPP°a
dHx3H~9IPP°Q
dH x 3H_9IPP°G

x_3jppoa
HH+dH^IPPoa
dH+DH_9IPP°G
dH+DH'9lPPoa

JH"9IPPoa
dH"9ippoa
DH"9IPP0a

gippoa

Odsn

H13IAV

SDS
ju ry 'j u i jo j s j a

dO H ddd

AA3

•uns |TBAB-jsaq3iH

M95JS

p n p o id la u u j

9inSB3]^ 9UTSC0

MOD

ssoioq

s s s s s s s s s s s s s s s s s s s

£> U U

a
fe & &
+ + + y y oh go go k xI i i i .1

a sx x
y y
<A GO I I a> a>
*3 =3

a) a)
*3 *3

n_, d o o' jj1 qj' a>' a)' a>'
H O '!3 !3 !3 !3 !3 !3 !3 !3 _______

r / j U U ’O ' O ’a ' O ’O ' a ' O ’a ' a x i ’d T)M ^ l / D O O O O O O O O O O O O
^ Z Q Q Q Q O D Q Q Q Q Q P

218

A
lg

or
ith

m
s

Table D.4: ITD Z-Test results, showing whether the differences between Spearman corre
lations are significant (a / shows there is significant difference in performance), executed
over Tide and Description data.

H9S
M- sippoa

tiHxdH_9ipp°a

dHxDH_9IPP0Q
dHxDH_9IPP°a

x_9ipp°a
tiH+HH_9IPP0a
tiH+DH_9TPP0a
dH+DH_9IPP°a

jH_9ippoa
HH_9IPP0a
DH_9IPP0a

9iPpoa

bD SN
HIDIAV

SDS
Juiy -JUIJO jsia

dOHdaa
AAD

•uiTS ireAB-jsaqSjH
M 9>is

jonpoij J9UUJ

9inSB 9p\[9 U IS 0 3

IHOD
SSOIDfi

S W S S S S S s s s s s s s s s s s s

c/5C/5
o
o
X)

<u
& 4« COO o U U

■8

O h

sOhOhQ

O h

Ha.

O h O h
O h 2
+ +y y
O h. 03.

a a s s

0)
O' xl U TJ C/5 O
2 Q

i .1 ..I .1 . i

a
X X

HH a * .

219

Table D.5: ITD average Blest and Da Costa weighted rank correlations, for the various con
figurations of the Doddle algorithm, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Tides Tides & Desc. Tides Tides & Desc.

Doddle 0.84 0.75 0.81 0.72
Doddle_RC 0.82 0.76 0.79 0.73
Doddle_RP 0.83 0.67 0.80 0.64
Doddle_RF 0.77 0.71 0.75 0.68
Doddle_RC+RP 0.83 0.73 0.80 0.69
Doddle_RC+RF 0.84 0.77 0.82 0.75
Doddle_RP+RF 0.84 0.72 0.82 0.70
Doddle_x 0.80 0.68 0.77 0.65
Doddle_RCxRP 0.80 0.68 0.77 0.65
Doddle_RCxRF 0.83 0.75 0.80 0.72
Doddle_RPxRF 0.83 0.69 0.80 0.66
Doddle_W 0.84 0.75 0.81 0.72
SBR 0.50 0.46 0.48 0.44

Table D.6: ITD average Blest and Da Costa weighted rank correlations, for existing algo
rithms and Doddle, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Tides Tides & Desc. Tides Tides & Desc.

bGlOSS 0.70 0.74 0.73 0.73
CORI 0.81 0.78 0.80 0.77
Cosine Measure 0.75 0.73 0.74 0.72
Inner Product 0.78 0.74 0.77 0.72
Skew 0.79 0.74 0.78 0.72
Highest-available Similarity 0.77 0.66 0.75 0.63
C W 0.78 0.71 0.76 0.69
DFPROP 0.79 0.74 0.78 0.72
Distribution of Informative Amt 0.25 0.02 0.24 0.02
SCS 0.56 0.42 0.54 0.39
AvICTF 0.57 0.43 0.55 0.40
NSCQ 0.70 0.62 0.68 0.60
Doddle 0.84 0.75 0.81 0.72
SBR 0.50 0.46 0.48 0.44

220

Table D.7: ITD average 1Zn scores, for the various configurations of the Doddle algorithm,
executed over Title data.

Algorithms

a a a a a a+ + + X X X+ + + X X Xu y U O j U UPS1 *i *1 X
1 s

CD 0) 0) 0) CD CD CD CD ID a> CD1 CD
'S *3 a *3 a =3 =3 =3XI x -d ■a T3 X) X J XJ T3 - d ■ d ■ do o o o O o O O O o o o

n Q Q Q Q Q Q Q Q Q Q Q Q
1 0.75 0.76 0.76 0.50 0.77 0.78 0.76 0.73 0.71 0.75 0.76 0.75 0.33
2 0.79 0.80 0.80 0.59 0.80 0.80 0.81 0.77 0.75 0.77 0.76 0.80 0.20
3 0.82 0.83 0.82 0.68 0.83 0.83 0.82 0.80 0.81 0.82 0.80 0.82 0.31
4 0.86 0.86 0.85 0.77 0.85 0.87 0.86 0.86 0.86 0.86 0.85 0.86 0.45
5 0.89 0.89 0.88 0.82 0.89 0.89 0.88 0.87 0.87 0.89 0.88 0.89 0.52
6 0.91 0.90 0.90 0.86 0.90 0.91 0.91 0.89 0.89 0.91 0.90 0.91 0.66
7 0.93 0.93 0.93 0.89 0.93 0.93 0.93 0.91 0.92 0.93 0.93 0.93 0.75
8 0.95 0.95 0.94 0.91 0.95 0.94 0.95 0.93 0.93 0.94 0.95 0.94 0.80
9 0.96 0.96 0.96 0.93 0.97 0.96 0.96 0.95 0.95 0.97 0.97 0.96 0.88 ■

10 0.97 0.98 0.98 0.95 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.91
11 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.93
12 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96
13 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

221

Table D.8: ITD average lZn scores, for existing algorithms and Doddle, executed over Title
data.

Algorithms

1 0.66 0.68 0.50 0.40 0.40 0.38 0.41 0.40 0.11 0.10 0.10 0.35 0.75 0.33
2 0.71 0.69 0.57 0.57 0.59 0.57 0.54 0.58 0.16 0.19 0.20 0.41 0.79 0.20
3 0.77 0.75 0.66 0.68 0.68 0.68 0.62 0.68 0.24 0.32 0.33 0.53 0.82 0.31
4 0.81 0.82 0.77 0.77 0.77 0.75 0.77 0.77 0.29 0.45 0.49 0.61 0.86 0.45
5 0.84 0.86 0.81 0.84 0.85 0.83 0.84 0.86 0.39 0.56 0.57 0.74 0.89 0.52
6 0.86 0.88 0.84 0.88 0.90 0.86 0.90 0.90 0.46 0.65 0.65 0.77 0.91 0.66
7 0.85 0.91 0.88 0.92 0.93 0.90 0.93 0.93 0.51 0.74 0.75 0.86 0.93 0.75
8 0.87 0.93 0.89 0.95 0.94 0.92 0.95 0.94 0.57 0.81 0.81 0.90 0.95 0.80
9 0.89 0.95 0.93 0.96 0.96 0.95 0.96 0.96 0.62 0.87 0.87 0.93 0.96 0.88

10 0.91 0.96 0.95 0.97 0.98 0.98 0.98 0.98 0.69 0.92 0.93 0.96 0.97 0.91
11 0.93 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.77 0.94 0.95 0.98 0.98 0.93
12 0.93 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.84 0.96 0.96 0.99 0.99 0.96
13 0.94 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.93 0.99 0.99 0.99 1.00 0.98
14 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
15 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

222

Table D.9: ITD average H n scores, for the various configurations of the Doddle algorithm,
executed over Title and Description data.

Algorithms

a a a a a a+ + + X X X
u U U U U

*1 X *1 «. 2
<D 0) <D CU 0) CD <u Qi1 (U aj a)1 a>
3 3 =3 =3 3 3 =3 =3 3 3 3 3"d X) T3 ■d X) T3 ■a *d T3 T3 tjo o O o o O o O O o O o

n a Q Q Q Q Q Q Q Q Q Q Q

1 0.71 0.77 0.68 0.45 0.71 0.75 0.68 0.66 0.71 0.69 0.69 0.71 0.32
2 0.75 0.78 0.68 0.55 0.74 0.81 0.72 0.73 0.69 0.77 0.70 0.76 0.20
3 0.81 0.82 0.74 0.63 0.77 0.82 0.74 0.76 0.75 0.81 0.76 0.79 0.27
4 0.83 0.85 0.77 0.71 0.83 0.84 0.77 0.81 0.82 0.82 0.78 0.83 0.40
5 0.85 0.87 0.82 0.76 0.85 0.86 0.83 0.83 0.83 0.85 0.81 0.85 0.47
6 0.87 0.87 0.84 0.81 0.86 0.88 0.86 0.83 0.83 0.86 0.83 0.88 0.64
7 0.89 0.91 0.84 0.85 0.88 0.90 0.88 0.86 0.85 0.90 0.86 0.89 0.73
8 0.91 0.92 0.86 0.88 0.90 0.92 0.89 0.88 0.89 0.92 0.87 0.91 0.79
9 0.93 0.94 0.89 0.92 0.92 0.94 0.91 0.90 0.91 0.94 0.89 0.92 0.88

10 0.95 0.95 0.91 0.93 0.95 0.96 0.93 0.94 0.93 0.95 0.92 0.95 0.91
11 0.97 0.97 0.94 0.96 0.96 0.97 0.96 0.95 0.95 0.98 0.93 0.97 0.93
12 0.98 0.98 0.96 0.98 0.98 0.99 0.97 0.97 0.97 0.98 0.97 0.98 0.97
13 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.97
14 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

223

Table D.10: ITD average 1Zn scores, for existing algorithms and Doddle, executed over Title
and Description data.

Algorithms

1 0.69 0.72 0.54 0.40 0.40 0.30 0.39 0.40 0.10 0.08 0.09 0.34 0.71 0.32
2 0.69 0.68 0.63 0.51 0.53 0.41 0.42 0.53 0.13 0.16 0.17 0.32 0.75 0.20
3 0.78 0.74 0.70 0.65 0.65 0.53 0.54 0.65 0.17 0.27 0.28 0.41 0.81 0.27
4 0.82 0.81 0.76 0.75 0.74 0.61 0.72 0.74 0.21 0.37 0.38 0.51 0.83 0.40
5 0.85 0.84 0.82 0.83 0.81 0.70 0.81 0.82 0.24 0.49 0.49 0.69 0.85 0.47
6 0.88 0.87 0.85 0.88 0.87 0.75 0.85 0.87 0.31 0.56 0.56 0.75 0.87 0.64
7 0.89 0.90 0.88 0.90 0.89 0.85 0.89 0.90 0.38 0.61 0.61 0.83 0.89 0.73
8 0.91 0.93 0.88 0.94 0.92 0.91 0.91 0.92 0.45 0.65 0.66 0.88 0.91 0.79
9 0.92 0.95 0.92 0.95 0.95 0.94 0.94 0.95 0.52 0.71 0.71 0.91 0.93 0.88

10 0.95 0.97 0.95 0.97 0.97 0.97 0.96 0.97 0.58 0.79 0.79 0.93 0.95 0.91
11 0.96 0.97 0.97 0.98 0.98 0.98 0.97 0.98 0.65 0.89 0.89 0.96 0.97 0.93
12 0.97 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.75 0.92 0.92 0.98 0.98 0.97
13 0.98 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.85 0.99 0.99 0.99 0.99 0.97
14 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.99 1.00 0.99
15 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.99
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

224

Table D .ll: ITD average 1Zn scores, for the various configurations of the Doddle algorithm,
executed over Tide data.

Algorithms

n D
od

dl
e

u
<D
=3
O
Q D

od
dl

e_
R

P

D
od

dl
e_

R
F

+

*0)
*3T3O
Q

+

*CD

*3T3O
Q

+

CD
*3-oo
Q D

od
dl

e_
x

X

*
CD

t3T3
O
Q

X
U
O)
=3"T3O
Q

X

a ,
CD
=3
T3O
Q D

od
dl

e_
W

SB
R

1 0.30 0.30 0.30 0.19 0.30 0.32 0.30 0.29 0.28 0.30 0.30 0.30 0.12
2 0.48 0.48 0.48 0.36 0.48 0.48 0.49 0.46 0.46 0.47 0.46 0.48 0.12
3 0.60 0.60 0.60 0.49 0.60 0.60 0.60 0.58 0.59 0.60 0.58 0.60 0.22
4 0.70 0.69 0.69 0.62 0.69 0.70 0.70 0.69 0.69 0.69 0.69 0.69 0.37
5 0.77 0.77 0.77 0.72 0.77 0.77 0.77 0.75 0.76 0.77 0.77 0.78 0.45
6 0.83 0.83 0.83 0.79 0.83 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.61
7 0.88 0.88 0.88 0.84 0.88 0.88 0.89 0.87 0.87 0.88 0.88 0.88 0.71
8 0.92 0.92 0.92 0.88 0.92 0.91 0.92 0.90 0.90 0.91 0.92 0.92 0.77
9 0.95 0.95 0.95 0.92 0.95 0.94 0.94 0.94 0.93 0.95 0.95 0.95 0.86

10 0.96 0.97 0.97 0.94 0.97 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.90
11 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.93
12 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96
13 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 LOO 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

225

Table D.12: ITD average Ttn scores, for existing algorithms and Doddle, executed over Title
data.

Algorithms

1 0.26 0.27 0.20 0.17 0.17 0.16 0.17 0.17 0.04 0.03 0.03 0.14 0.30 0.12
2 0.42 0.42 0.35 0.36 0.37 0.36 0.33 0.36 0.08 0.12 0.12 0.24 0.48 0.12
3 0.56 0.56 0.48 0.50 0.50 0.50 0.46 0.50 0.17 0.23 0.24 0.39 0.60 0.22
4 0.66 0.67 0.63 0.63 0.63 0.61 0.63 0.63 0.23 0.36 0.40 0.50 0.70 0.37
5 0.73 0.75 0.71 0.73 0.74 0.72 0.73 0.75 0.34 0.50 0.50 0.65 0.77 0.45
6 0.79 0.80 0.77 0.81 0.82 0.79 0.82 0.82 0.43 0.60 0.60 0.71 0.83 0.61
7 0.81 0.86 0.83 0.87 0.88 0.85 0.88 0.88 0.49 0.71 0.72 0.82 0.88 0.71
8 0.85 0.90 0.87 0.92 0.91 0.90 0.92 0.91 0.56 0.79 0.79 0.87 0.92 0.77
9 0.87 0.94 0.92 0.95 0.95 0.94 0.95 0.95 0.61 0.86 0.86 0.92 0.95 0.86

10 0.91 0.95 0.94 0.96 0.97 0.97 0.97 0.97 0.69 0.92 0.92 0.96 0.96 0.90
11 0.92 0.97 0.96 0.98 0.98 0.99 0.99 0.98 0.77 0.94 0.95 0.98 0.98 0.93
12 0.93 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.84 0.96 0.96 0.98 0.99 0.96
13 0.94 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.93 0.99 0.99 0.99 1.00 0.98
14 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
15 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

226

Table D.13: ITD average 7Zn scores, for the various configurations of the Doddle algorithm,
executed over Tide and Description data.

Algorithms

a a a

n D
od

dl
e

U
0)

3Tio
Q D

od
dl

e_
R

P

D
od

dl
e_

R
F

+
U
<u
=3
7 3O
Q

+

*
CD

=3
7 3o
Q

+

CD

=3
7 3O
Q D

od
dl

e_
x

X
U
*1
CD

=3
7 3O
Q

X

CD

*3
7 3O
Q

X

a,
QJ

3
7 3O
Q D

od
dl

e_
W

SB
R

1 0.28 0.31 0.27 0.17 0.28 0.30 0.26 0.26 0.28 0.28 0.27 0.28 0.12
2 0.46 0.48 0.41 0.32 0.45 0.49 0.44 0.45 0.43 0.47 0.42 0.46 0.12
3 0.60 0.61 0.55 0.46 0.57 0.60 0.54 0.57 0.56 0.60 0.56 0.58 0.20
4 0.68 0.69 0.63 0.58 0.68 0.68 0.63 0.67 0.67 0.67 0.64 0.68 0.33
5 0.74 0.76 0.72 0.67 0.75 0.76 0.73 0.73 0.73 0.75 0.71 0.75 0.41
6 0.80 0.80 0.77 0.75 0.79 0.81 0.79 0.77 0.76 0.79 0.77 0.81 0.59
7 0.85 0.86 0.80 0.81 0.84 0.85 0.83 0.81 0.81 0.86 0.82 0.84 0.69
8 0.88 0.89 0.83 0.85 0.87 0.89 0.86 0.85 0.86 0.89 0.84 0.88 0.76
9 0.91 0.92 0.88 0.90 0.90 0.92 0.90 0.89 0.90 0.92 0.88 0.91 0.86

10 0.94 0.95 0.90 0.92 0.94 0.95 0.92 0.93 0.92 0.95 0.91 0.94 0.90
11 0.96 0.97 0.93 0.96 0.96 0.97 0.96 0.95 0.95 0.97 0.93 0.97 0.93
12 0.98 0.98 0.96 0.98 0.98 0.99 0.97 0.97 0.97 0.98 0.97 0.98 0.96
13 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.97
14 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 LOO 1.00 1.00 1.00 0.99
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

227

Table D.14: ITD average 1Zn scores, for existing algorithms and Doddle, executed over Title
and Description data.

Algorithms

C/3

n bG
lO

SS

co
rn

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

C/3

1
1

C/3
a>

a C
W

DF
PR

OP

Di
st.

 o
f I

nf
. A

mi

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.27 0.28 0.20 0.16 0.16 0.12 0.15 0.16 0.03 0.03 0.03 0.14 0.28 0.12
2 0.41 0.41 0.39 0.32 0.33 0.26 0.26 0.33 0.07 0.10 0.11 0.20 0.46 0.12
3 0.57 0.55 0.52 0.48 0.48 0.39 0.40 0.48 0.12 0.20 0.21 0.31 0.60 0.20
4 0.67 0.66 0.62 0.62 0.61 0.51 0.60 0.60 0.17 0.31 0.31 0.43 0.68 0.33
5 0.75 0.74 0.73 0.73 0.72 0.62 0.71 0.72 0.21 0.44 0.44 0.61 0.74 0.41
6 0.81 0.80 0.79 0.81 0.80 0.69 0.79 0.80 0.28 0.51 0.51 0.70 0.80 0.59
7 0.84 0.85 0.83 0.86 0.85 0.81 0.84 0.85 0.36 0.58 0.58 0.79 0.85 0.69
8 0.88 0.90 0.86 0.91 0.90 0.89 0.88 0.90 0.44 0.64 0.64 0.85 0.88 0.76
9 0.90 0.94 0.90 0.93 0.94 0.93 0.92 0.93 0.52 0.70 0.70 0.90 0.91 0.86

10 0.94 0.96 0.94 0.96 0.96 0.96 0.95 0.96 0.57 0.78 0.78 0.93 0.94 0.90
11 0.96 0.97 0.96 0.98 0.98 0.98 0.97 0.98 0.65 0.89 0.89 0.95 0.96 0.93
12 0.97 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.74 0.92 0.92 0.98 0.98 0.96
13 0.98 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.85 0.99 0.99 0.99 0.99 0.97
14 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.99 1.00 0.99
15 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.99
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

228

Table D.15: ITD average V n scores, for the various configurations of the Doddle algorithm,
executed over Title data.

Algorithms

a s a & & a+ + + X X X
u U u U U0H1 2 ■ 1 *1 X1 S lcu 0) 0) <D 0) CU 0) cu cu cu cu CU

=3 =3 =3 =3 =3 *3 =3 =3 =3T3 T3 T3 ns T3 -a -a x> -a T) T)O O o O O o O o o o o O
n Q Q Q Q Q Q Q Q Q Q Q Q

1 0.98 0.94 0.98 1.00 0.98 0.98 0.98 0.94 0.92 0.96 0.98 0.98 0.98
2 0.96 0.95 0.95 1.00 0.95 0.97 0.98 0.91 0.90 0.95 0.94 0.95 0.82
3 0.93 0.91 0.93 0.99 0.91 0.95 0.96 0.90 0.90 0.93 0.93 0.93 0.87
4 0.92 0.90 0.90 0.97 0.90 0.94 0.95 0.90 0.90 0.91 0.92 0.91 0.91
5 0.90 0.89 0.90 0.94 0.89 0.92 0.92 0.88 0.88 0.90 0.90 0.90 0.85
6 0.89 0.88 0.87 0.92 0.88 0.90 0.90 0.85 0.85 0.89 0.88 0.88 0.86
7 0.86 0.84 0.85 0.89 0.85 0.87 0.87 0.83 0.83 0.85 0.86 0.85 0.85
8 0.84 0.81 0.82 0.86 0.82 0.84 0.84 0.80 0.80 0.82 0.83 0.83 0.83 •
9 0.81 0.78 0.79 0.82 0.79 0.81 0.81 0.77 0.77 0.79 0.80 0.80 0.81

10 0.77 0.76 0.75 0.79 0.75 0.78 0.78 0.75 0.75 0.76 0.76 0.77 0.76
11 0.74 0.72 0.72 0.75 0.72 0.74 0.74 0.72 0.72 0.72 0.73 0.73 0.73
12 0.70 0.70 0.70 0.72 0.70 0.71 0.71 0.70 0.69 0.70 0.69 0.70 0.70
13 0.67 0.67 0.67 0.68 0.67 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.66
14 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
15 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
16 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

229

Table D.16: ITD average V n scores, for existing algorithms and Doddle, executed over Title
data.

Algorithms

1 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.64 0.92 0.92 1.00 0.98 0.98
2 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.67 0.92 0.93 1.00 0.96 0.82
3 0.97 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.67 0.93 0.93 0.99 0.93 0.87
4 0.94 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.67 0.93 0.94 0.97 0.92 0.91
5 0.90 0.95 0.95 0.96 0.95 0.94 0.95 0.95 0.70 0.92 0.92 0.94 0.90 0.85
6 0.86 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.70 0.90 0.90 0.91 0.89 0.86
7 0.83 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.69 0.88 0.88 0.88 0.86 0.85
8 0.81 0.86 0.86 0.87 0.86 0.86 0.86 0.86 0.69 0.85 0.85 0.86 0.84 0.83
9 0.77 0.83 0.82 0.84 0.83 0.83 0.82 0.83 0.67 0.82 0.82 0.83 0.81 0.81

10 0.75 0.79 0.79 0.80 0.80 0.80 0.80 0.80 0.66 0.78 0.78 0.80 0.77 0.76
11 0.72 0.75 0.75 0.76 0.76 0.76 0.76 0.76 0.66 0.75 0.75 0.76 0.74 0.73
12 0.68 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.66 0.71 0.71 0.72 0.70 0.70
13 0.64 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.65 0.68 0.68 0.68 0.67 0.66
14 0.60 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.63 0.64 0.64 0.64 0.64 0.64
15 0.57 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
16 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

230

Table D.17: ITD average Vn scores, for the various configurations of the Doddle algorithm,
executed over Tide and Description data.

Algorithms

& & a s a g
+ + + X X X

U Vi U U Pj u uPh 2 I 2 2 | X1 2 |o> 0> <u <U <D <U 0) 0> 0) 0) (U cu
*3 =3 t3 t3 =3 *3 =3 =3 *3T3 T3 T3 X) XJ x) T3 T3 T3 X) XJ X)o O O o o o O O o o o ■ o
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.92 0.92 0.90 0.94 0.90 0.94 0.92 0.88 0.92 0.90 0.92 0.92 0.98
2 0.93 0.93 0.88 0.91 0.91 0.95 0.94 0.92 0.86 0.93 0.93 0.93 0.81
3 0.90 0.91 0.85 0.91 0.88 0.93 0.91 0.87 0.85 0.90 0.90 0.89 0.87
4 0.89 0.89 0.85 0.92 0.88 0.92 0.88 0.85 0.86 0.88 0.87 0.88 0.90
5 0.87 0.86 0.83 0.91 0.86 0.90 0.89 0.84 0.83 0.87 0.86 0.87 0.85
6 0.87 0.84 0.81 0.89 0.83 0.88 0.87 0.80 0.79 0.84 0.83 0.86 0.85
7 0.83 0.82 0.78 0.86 0.79 0.85 0.84 0.77 0.77 0.83 0.80 0.81 0.85
8 0.81 0.79 0.75 0.84 0.77 0.82 0.80 0.75 0.75 0.80 0.76 0.78 0.83
9 0.77 0.76 0.73 0.82 0.74 0.80 0.78 0.73 0.73 0.77 0.74 0.76 0.82

10 0.75 0.74 0.70 0.79 0.73 0.78 0.75 0.72 0.71 0.75 0.72 0.74 0.77
11 0.73 0.73 0.69 0.76 0.71 0.76 0.73 0.70 0.70 0.73 0.69 0.72 0.72
12 0.70 0.69 0.67 0.73 0.69 0.72 0.70 0.68 0.68 0.70 0.67 0.70 0.70
13 0.67 0.67 0.65 0.69 0.66 0.68 0.68 0.65 0.65 0.67 0.65 0.67 0.66
14 0.64 0.64 0.63 0.65 0.64 0.65 0.64 0.63 0.63 0.64 0.63 0.64 0.65
15 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
16 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

231

Table D.18: ITD average Vn scores, for existing algorithms and Doddle, executed over Title
and Description data.

Algorithms

1 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.48 0.82 0.82 1.00 0.92 0.98
2 0.98 1.00 0.99 1.00 1.00 0.95 1.00 1.00 0.52 0.84 0.85 0.96 0.93 0.81
3 0.97 0.99 0.98 0.99 0.99 0.96 0.99 0.99 0.57 0.85 0.86 0.97 0.90 0.87
4 0.95 0.98 0.96 0.97 0.96 0.95 0.96 0.96 0.57 0.85 0.86 0.94 0.89 0.90
5 0.92 0.95 0.94 0.95 0.94 0.92 0.94 0.94 0.57 0.86 0.86 0.93 0.87 0.85
6 0.89 0.93 0.92 0.92 0.92 0.91 0.92 0.92 0.59 0.83 0.84 0.91 0.87 0.85
7 0.84 0.89 0.88 0.90 0.89 0.89 0.89 0.89 0.59 0.82 0.83 0.88 0.83 0.85
8 0.83 0.86 0.84 0.87 0.87 0.87 0.85 0.87 0.60 0.79 0.80 0.86 0.81 0.83
9 0.79 0.83 0.81 0.83 0.84 0.84 0.84 0.84 0.59 0.78 0.78 0.83 0.77 0.82

10 0.76 0.80 0.79 0.80 0.81 0.80 0.80 0.80 0.60 0.76 0.76 0.79 0.75 0.77
11 0.73 0.77 0.76 0.77 0.77 0.77 0.76 0.77 0.60 0.74 0.74 0.76 0.73 0.72
12 0.69 0.73 0.73 0.73 0.73 0.74 0.73 0.73 0.60 0.71 0.71 0.73 0.70 0.70
13 0.65 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.61 0.69 0.69 0.68 0.67 0.66
14 0.61 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.61 0.65 0.65 0.65 0.64 0.65
15 0.58 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.60 0.61 0.61 0.61 0.61 0.61
16 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

232

Table D.19: ITD average precision within the top 5 collections, and the number of queries
(out of 50) for which the first ranked collection is correct, for the various configurations of
the Doddle algorithm.

Precision @ 5 Correct @ Pos. 1

Algorithms Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.73 0.68 27 (54%) 25 (50%)
Doddle_RC 0.76 0.72 29 (58%) 30 (60%)
Doddle_RP 0.76 0.65 28 (56%) 23 (46%)
Doddle_RF 0.67 0.64 12 (24%) 11 (22%)
Doddle_RC+RP 0.76 0.69 28 (56%) 26 (52%)
Doddle_RC+RF 0.72 0.69 30 (60%) 29 (58%)
Doddle_RP+RF 0.72 0.66 28 (56%) 23 (46%)
Doddle_x 0.73 0.67 27 (54%) 24 (48%)
Doddle_RC x RP 0.75 0.67 27 (54%) 26 (52%)
Doddle_RCxRF 0.75 0.69 28 (56%) 25 (50%)
Doddle_RPxRF 0.75 0.66 28 (56%) 24 (48%)
Doddle_W 0.75 0.69 27 (54%) 25 (50%)
SBR 0.43 0.42 7 (14%) 7 (14%)

Table D.20: ITD average precision within the top 5 collections, and the number of queries
(out of 50) for which the first ranked collection is correct, for existing algorithms and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.63 0.67 23 (46%) 23 (46%)
CORI 0.71 0.70 22 (44%) 22 (44%)
Cosine Measure 0.66 0.69 14 (28%) 14 (28%)
Inner Product 0.69 0.68 10 (20%) 9 (18%)
Skew 0.68 0.66 10 (20%) 9 (18%)
Highest-available Similarity 0.67 0.58 9 (18%) 8 (16%)
CW 0.67 0.65 11 (22%) 9 (18%)
DFPROP 0.68 0.66 10 (20%) 9 (18%)
Distribution of Informative Amt 0.31 0.18 2 (4%) 2 (4%)
SCS 0.51 0.43 0 (0%) 0 (0%)
AvICTF 0.51 0.43 0 (0%) 0 (0%)
NSCQ 0.61 0.57 8 (16%) 8 (16%)
Doddle 0.73 0.68 27 . (54%) 25 (50%)
SBR 0.43 0.42 7 (14%) 7 (14%)

233

D. Algorithm Performance Scores

D.2 Refined Test Data (RTD)

Table D.21: RTD average Spearman rank correlations (50 queries), for the various configura
tions of the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Titles Tides & Desc. Tides Tides & Desc.

Doddle 0.86 0.65 0.38 0.30
Doddle_RC 0.87 0.72 0.37 0.34
Doddle_RP 0.86 0.60 0.36 0.23
Doddle_RF 0.80 0.64 0.53 0.44
Doddle_RC+RP 0.86 0.66 0.37 0.28
Doddle_RC+RF 0.86 0.70 0.39 0.37
Doddle_RP+RF 0.85 0.60 0.39 0.29
Doddle_x 0.86 0.65 0.36 0.28
Doddle_RCxRP 0.86 0.65 0.36 0.27
Doddle_RCxRF 0.86 0.71 0.37 0.35
Doddle_RPxRF 0.85 0.61 0.37 0.26
Doddle.W 0.86 0.66 0.37 0.29
SBR 0.42 0.46 — —

234

Table D.22: RTD average Spearman rank correlations (50 queries), for existing algorithms
and Doddle, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.19 0.27 0.15 0.22
CORI 0.89 0.77 0.53 0.57
Cosine Measure 0.80 0.63 0.52 0.47
Inner Product 0.85 0.75 0.61 0.65
Skew 0.85 0.75 0.61 0.65
Highest-available Similarity 0.85 0.79 0.61 0.69
CW 0.85 0.75 0.61 0.66
DFPROP 0.85 0.75 0.61 0.66
Distribution of Informative Amt 0.55 0.35 0.27 0.10
SCS 0.62 0.47 0.53 0.46
AvICTF 0.62 0.47 0.53 0.46
NSCQ 0.81 0.72 0.65 0.71
Doddle 0.86 0.65 0.38 0.30
SBR 0.42 0.46 — —

235

A
lg

or
ith

m
s

Table D.23: RTD Z-Test results (50 queries), showing whether the differences between Spear
man correlations are significant (a / shows there is significant difference in performance),
executed over Title data.

H9S

m ~9ipp°a
dH*dH-9iPP°a
dHxDH_9IPP°Q
dHxDH_9IPP°a

x_9TPPoa
dH+dH_9IPP°CI
dH+DH_9IPP°G
dH+DH_9IPP°G

jH 'sippoa
dH_9iPP°a
DH"9IPP°CI

aippoa

toSN
dlDIAV

SDS
JUIV 'JUIJO ;sia

dOHdda
AAD

•uns jreAB-isgqSiH
M9>[S

p n p o i d J9U IIJ

9 in S B 9 p J 9U TS03

IHOD
ssoioq

s s s s s s s s s s s s s s s s s s s s

s

s
s s s s s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s s

s

s s

u u

*
& s s
+ + + u u
Ph. P h

P h P h U U Ph2. 2. Ph. Ph. 2.
p., a> aj a> a>
h O' "9 *3 *3 ”3

0) <u
*6 ^

i i 0) <u

= 2
X X
u u
2. 2.

<u a) a>
=3 =3 *3(A U U T 3 ’d ' 0 ’d ’0 ’a ,d ’dT3T3’dC J ' S C ^ O O O O O O O O O O O

^ Z Q Q Q P O Q Q Q P O Q

236

A
lg

or
ith

m
s

Table D.24: RTD Z-Test results (50 queries), showing whether the differences between Spear
man correlations are significant (a / shows there is significant difference in performance),
executed over Title and Description data.

H9S

M“ sippoa
JHxdH~9IPP°G
dHx3H_9IPP°G
dHxDH_9IPP°G

x~9ippoa

dH+dH_9IPPoa
dH+DH_9lPP°G
dH+3H~9IPP°G

dH~9IPPoa
dH_9IPPoa
DH_9lPPoa

9Ippoa

bDSN.

dXDIAV
SDS

j u i y -JUIJO j s iq

dOHddd
AAD

u n s ireAB-jsaqSjH
M9>[S

j o n p o i j i9 u u j

9jnSB9IAJ 9UIS03

m o D

SSOlDfi

s s s s s s s s s s s s s s s
s

s s

s
s

s s

s
s s

s

s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s

237

Table D.25: RTD average Spearman rank correlations (200 queries), for the various configu
rations of the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.92 0.76 0.40 0.35
Doddle_RC 0.93 0.80 0.39 0.38
Doddle_RP 0.92 0.73 0.39 0.29
Doddle_RF 0.87 0.72 0.51 0.46
Doddle_RC+RP 0.93 0.77 0.39 0.33
Doddle_RC+RF 0.92 0.78 0.41 0.41
Doddle_RP+RF 0.92 0.73 0.41 0.34
Doddle_x 0.92 0.76 0.39 0.33
Doddle_RCxRP 0.92 0.76 0.39 0.32
Doddle_RCxRF 0.92 0.79 0.40 0.39
Doddle_RPxRF 0.92 0.73 0.39 0.32
Doddle_W 0.92 0.76 0.40 0.34
SBR 0.42 0.45 — —

Table D.26: RTD average Spearman rank correlations (200 queries), for existing algorithms
and Doddle, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.19 0.25 0.14 0.20
CORI 0.93 0.84 0.50 0.54
Cosine Measure 0.86 0.73 0.49 0.49
Inner Product 0.90 0.81 0.57 0.62
Skew 0.90 0.81 0.57 0.62
Highest-available Similarity 0.90 0.83 0.57 0.65
C W 0.90 0.81 0.57 0.63
DFPROP 0.90 0.81 0.57 0.62
Distribution of Informative Amt 0.68 0.45 0.33 0.20
SCS 0.74 0.56 0.52 0.48
AvICTF 0.74 0.56 0.52 0.48
NSCQ 0.86 0.78 0.60 0.67
Doddle 0.92 0.76 0.40 0.35
SBR 0.42 0.45 — —

238

A
lg

or
ith

m
s

Table D.27: RTD Z-Test results (200 queries), showing whether the differences between
Spearman correlations are significant (a / shows there is significant difference in perfor
mance), executed over Title data.

Has
M“ aippoa

dH*dH_9IPP°a
dHxDH_3lPP°a
dHxDH_9IPP°Q

x_9jppoa

dH+dH"3ipp°a
dH+DH_9IPP°G
dH+DH_9IPP°a

HH“9IPPoa
dH_9ippoa
DH_9IPP0a

9ipp°a
to sN

dlDIAV
SOS

juiy j u i j o JSIQ

dOHddCI
AA3

•u i j s ireA^ -JS 9q 2jH

p n p o i j J 9 u u i

9iriSB9]AI 9UTS03

MOD
ssoioq

s s

s s s s s

s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s s,
s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s

s s

O S - S
a o o
X) u u

ml, <u
H O ' ^ y u -a ^ w o
< Z, Q

*<u
TJo
Q

a a„l „l

a a a
u u j
PP. Pp.

a a a
X X
u u pp. pp.

I J - I I - 1 - 1 I
a. s.

239

A
lg

or
ith

m
s

Table D.28: RTD Z-Test results (200 queries), showing whether the differences between
Spearman correlations are significant (a / shows there is significant difference in perfor
mance), executed over Tide and Description data.

m s
M"9IPP°Q

dH><dH_9IPPoa
tiHxDH_3rpp°a
dHx3H_9IPP°G

x~9ippoa

jH+<m~9Tppoa
dH+3H_9TPP°G
dH+3H_9IPP°G

jH“aippoa
dH“9TPP°a
3H_9IPP0a

aippoa
Ddsn

dlDIAV
S3S

t u i y -j u i j o u s i a

dOHdxa
AA3

"u it§ p B A B -r sa q S iH

M95JS
p n p o i j J 9 u u j

9inSB 9p\[9 U IS 0 3

raoo
ssoioq

s s s s s s s s s s s s s s s s s s s s

s

s
s

s s s s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s s s s s s s s

s s s s s s s . s s s s s s s s s s s s s s s

240

Table D.29: RTD average Blest and Da Costa weighted rank correlations (50 queries), for the
various configurations of the Doddle algorithm, comparing algorithm-produced rankings
to FsBR.

Algorithms

Blest Da Costa

Titles Titles & Desc. Titles Tides & Desc.

Doddle 0.85 0.63 0.86 0.66
Doddle_RC 0.86 0.70 0.87 0.73
Doddle_RP 0.85 0.59 0.85 0.61
Doddle_RF 0.75 0.58 0.79 0.63
Doddle_RC+RP 0.85 0.65 0.86 0.67
Doddle_RC+RF 0.85 0.67 0.86 0.71
Doddle_RP+RF 0.84 0.58 0.85 0.61
Doddle_x 0.85 0.63 0.85 0.66
Doddle_RC*RP 0.85 0.64 0.86 0.66
Doddle_RCxRF 0.85 0.68 0.86 0.71
Doddle_RPxRF 0.84 0.58 0.85 0.61
Doddle_W 0.85 0.64 0.86 0.66
SBR 0.05 0.17 0.48 0.49

Table D.30: RTD average Blest and Da Costa weighted rank correlations (50 queries), for
existing algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Tides Tides & Desc. Tides Tides & Desc.

bGlOSS 0.13 0.09 0.65 0.61
CORI 0.86 0.72 0.88 0.78
Cosine Measure 0.73 0.51 0.80 0.68
Inner Product 0.82 0.68 0.84 0.74
Skew 0.82 0.68 0.83 0.74
Highest-available Similarity 0.82 0.72 0.84 0.79
C W 0.82 0.68 0.84 0.75
DFPROP 0.82 0.68 0.83 0.75
Distribution of Informative Amt 0.54 0.35 0.55 0.38
SCS 0.55 0.39 0.58 0.45
AvICTF 0.55 0.39 0.58 0.45
NSCQ 0.76 0.64 0.78 0.71
Doddle 0.85 0.63 0.86 0.66
SBR 0.05 0.17 0.48 0.49

241

Table D.31: RTD average Blest and Da Costa weighted rank correlations (200 queries), for the
various configurations of the Doddle algorithm, comparing algorithm-produced rankings
to FsBR.

Algorithms

Blest Da Costa

Titles Titles & Desc. Titles Tides & Desc.

Doddle 0.92 0.75 0.92 0.76
Doddle_RC 0.92 0.79 0.92 0.80
Doddle_RP 0.92 0.72 0.92 0.73
Doddle_RF 0.84 0.68 0.85 0.70
Doddle_RC+RP 0.92 0.76 0.92 0.77
Doddle_RC+RF 0.91 0.77 0.92 0.78
Doddle_RP+RF 0.91 0.71 0.91 0.72
Doddle_x 0.92 0.75 0.92 0.76
Doddle_RCxRP 0.92 0.76 0.92 0.76
Doddle_RCxRF 0.92 0.77 0.92 0.79
Doddle_RPxRF 0.91 0.72 0.92 0.73
Doddle_W 0.92 0.75 0.92 0.76
SBR 0.02 0.14 0.49 0.49

Table D.32: RTD average Blest and Da Costa weighted rank correlations (200 queries), for
existing algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Titles Titles & Desc. Titles Titles & Desc.

bGlOSS 0.17 0.10 0.66 0.61
CORI 0.91 0.80 0.92 0.84
Cosine Measure 0.81 0.63 0.85 0.76
Inner Product 0.88 0.77 0.88 0.81
Skew 0.88 0.77 0.88 0.81
Highest-available Similarity 0.87 0.78 0.88 0.82
CW 0.88 0.77 0.89 0.80
DFPROP 0.88 0.77 0.88 0.80
Distribution of Informative Amt 0.68 0.44 0.69 0.46
SCS 0.68 0.49 0.69 0.53
AvICTF 0.68 0.49 0.69 0.53
NSCQ 0.83 0.72 0.84 0.76
Doddle 0.92 0.75 0.92 0.76
SBR 0.02 0.14 0.49 0.49

242

Table D.33: RTD average 7ln scores (50 queries), for the various configurations of the Doddle
algorithm, executed over Title data.

Algorithms

E E E & 3+ + + X X X
U u u U U a,Ph 2 X *1 od

0) 0) a> a> a> <U a)1 a)1 a> a> O)
t) =3 =3 *3 'S =3 =3 =3 =3
XJ X XJ x X X X X X X) T3 T3O O O o O O o O o o o o
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.39 0.43 0.38 0.30 0.39 0.41 0.37 0.36 0.39 0.40 0.37 0.39 0.0110 0.82 0.86 0.83 0.63 0.85 0.83 0.81 0.83 0.84 0.83 0.80 0.84 0.2720 0.90 0.92 0.90 0.73 0.91 0.90 0.89 0.90 0.91 0.91 0.89 0.91 0.4230 0.93 0.94 0.93 0.82 0.93 0.93 0.93 0.93 0.94 0.93 0.92 0.93 0.5340 0.95 0.95 0.94 0.86 0.95 0.95 0.94 0.95 0.95 0.95 0.94 0.94 0.6650 0.96 0.97 0.97 0.91 0.97 0.97 0.96 0.97 0.97 0.97 0.96 0.97 0.7560 0.98 0.98 0.98 0.94 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.8370 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.8980 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9690 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.34: RTD average 7Zn scores (50 queries), for existing algorithms and Doddle, exe
cuted over Title data.

Algorithms

I
o

- - 1od

n bG
lO

SS

co
rn

O)
.3

c aOU

Oh

Sk
ew

C/50)
•Sbs I DF

PR
OI <4-1O

+-3
C/5

Q SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.23 0.43 0.31 0.46 0.38 0.42 0.51 0.41 0.07 0.21 0.21 0.33 0.39 0.0110 0.14 0.83 0.61 0.73 0.73 0.73 0.76 0.73 0.33 0.39 0.39 0.54 0.82 0.2720 0.17 0.91 0.70 0.83 0.83 0.82 0.84 0.83 0.42 0.47 0.47 0.69 0.90 0.4230 0.23 0.93 0.77 0.88 0.88 0.89 0.89 0.88 0.53 0.57 0.57 0.78 0.93 0.5340 0.34 0.94 0.82 0.92 0.93 0.93 0.93 0.93 0.64 0.66 0.66 0.86 0.95 0.6650 0.41 0.96 0.90 0.95 0.95 0.95 0.95 0.95 0.71 0.75 0.75 0.93 0.96 0.7560 0.51 0.98 0.95 0.97 0.97 0.97 0.97 0.97 0.79 0.82 0.82 0.96 0.98 0.8370 0.67 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.89 0.91 0.91 0.99 0.99 0.8980 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99 0.99 1.00 1.00 0.9690 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

243

Table D.35: RTD average 7Zn scores (50 queries), for the various configurations of the Doddle
algorithm, executed over Title and Description data.

Algorithms

s & S s+ + + X X X

U Pi u u Pj u U 32
r t l

PS X PS
<u 0)1 a> 0) 0) 0)1 0)1 a) a)1 0) O)

*9 =3 53 *3 3 3 3 3 3 3
T 3 T» T 3 T 3 *T3 T3 T 3 1 3 1 3 1 3

O O O O O O o o O O O O
Q Q Q Q Q Q Q Q a Q Q Q

1 0.36 0.40 0.39 0.17 0.39 0.33 0.30 0.34 0.37 0.31 0.26 0.39 0.02
10 0.69 0.75 0.66 0.41 0.72 0.69 0.63 0.71 0.72 0.72 0.64 0.70 0.26
20 0.76 0.81 0.73 0.58 0.78 0.78 0.69 0.76 0.76 0.78 0.70 0.76 0.37
30 0.81 0.86 0.77 0.67 0.82 0.84 0.76 0.80 0.81 0.85 0.77 0.81 0.47
40 0.85 0.90 0.81 0.75 0.86 0.88 0.81 0.85 0.85 0.88 0.81 0.86 0.61
50 0.89 0.93 0.86 0.80 0.90 0.92 0.85 0.89 0.89 0.92 0.86 0.89 0.70
60 0.94 0.96 0.90 0.88 0.94 0.96 0.90 0.93 0.93 0.95 0.90 0.93 0.81
70 0.97 0.98 0.94 0.94 0.97 0.97 0.94 0.96 0.96 0.97 0.94 0.97 0.88
80 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.97 0.99 0.95
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.36: RTD average 1Zn scores (50 queries), for existing algorithms and Doddle, exe
cuted over Title and Description data.

Algorithms

3 -g — •c/5 y *3^ §<L> T3 2
YX < u P h to O V , V* ^ £

Z * s» 2 H O' =3
O O o o cqX) U U 2 $ U Q Q on < £ Q 53

1 0.31 0.45 0.25 0.39 0.31 0.35 0.54 0.36 0.07 0.13 0.13 0.26 0.36 0.02
10 0.23 0.72 0.48 0.61 0.61 0.59 0.64 0.62 0.19 0.28 0.28 0.40 0.69 0.26
20 0.24 0.82 0.56 0.74 0.74 0.75 0.74 0.74 0.35 0.39 0.39 0.59 0.76 0.37
30 0.29 0.85 0.63 0.81 0.81 0.84 0.82 0.81 0.44 0.49 0.49 0.70 0.81 0.47
40 0.39 0.88 0.70 0.85 0.85 0.91 0.85 0.85 0.54 0.56 0.56 0.80 0.85 0.61
50 0.47 0.92 0.77 0.89 0.89 0.94 0.89 0.89 0.62 0.64 0.64 0.87 0.89 0.70
60 0.57 0.95 0.84 0.93 0.94 0.97 0.93 0.93 0.74 0.73 0.73 0.92 0.94 0.81
70 0.69 0.98 0.92 0.97 0.97 0.98 0.97 0.97 0.81 0.81 0.81 0.96 0.97 0.88
80 0.80 0.99 0.97 0.99 0.99 1.00 0.99 0.99 0.90 0.90 0.91 0.99 0.99 0.95
90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.99

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

244

Table D.37: RTD average 1Zn scores (200 queries), for the various configurations of the Dod
dle algorithm, executed over Title data.

Algorithms

a a a a a a+ + + X X X+ + + X X X

u U u Oj U U
S l S | «l 2 t X

1 *1 S l<D 0) CD 0) 0) 0) 0) 0) <u cu a> a)
33 =3 =3 t3 =3 =3 *3 =3 =3 =3T3 T3 ■a T3 T3 "C* •a T3 T3O O O o o O O O o o O O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.47 0.49 0.49 0.31 0.49 0.46 0.46 0.46 0.48 0.44 0.43 0.48 0.01
10 0.89 0.90 0.89 0.66 0.90 0.87 0.87 0.89 0.90 0.87 0.87 0.89 0.26
20 0.94 0.95 0.95 0.78 0.95 0.93 0.93 0.94 0.95 0.94 0.94 0.95 0.40.
30 0.96 0.97 0.96 0.86 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.51
40 0.97 0.98 0.97 0.91 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.65
50 0.98 0.98 0.98 0.94 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.75
60 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.85
70 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93
80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.38: RTD average 7Zn scores (200 queries), for existing algorithms and Doddle, exe
cuted over Title data.

Algorithms

a> m
3 tj -d
<U T3 >
S 8 * cu *3M <u CLh to O *s pH ^ ^5̂ H-j C >H > 2h pj H O ^O S *5 92 ^ ^ CL c/n U f_} 'rt

O O o o oq.q <J U ,5 $ £ U Q G % < Z Q $

1 0.22 0.47 0.30 0.45 0.41 0.45 0.54 0.42 0.08 0.19 0.19 0.30 0.47 0.01
10 0.16 0.85 0.62 0.75 0.75 0.71 0.77 0.76 0.34 0.38 0.38 0.58 0.89 0.26
20 0.19 0.91 0.72 0.85 0.86 0.84 0.87 0.86 0.49 0.52 0.52 0.74 0.94 0.40
30 0.25 0.94 0.80 0.91 0.91 0.91 0.92 0.91 0.62 0.64 0.64 0.83 0.96 0.51
40 0.32 0.96 0.87 0.95 0.95 0.95 0.95 0.95 0.71 0.73 0.73 0.91 0.97 0.65
50 0.39 0.97 0.92 0.97 0.97 0.97 0.97 0.97 0.78 0.81 0.81 0.94 0.98 0.75
60 0.49 0.99 0.95 0.99 0.99 0.99 0.99 0.99 0.86 0.89 0.89 0.97 0.99 0.85
70 0.64 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.92 0.95 0.95 0.99 1.00 0.93
80 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.97
90 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

245

Table D.39: RTD average 1Zn scores (200 queries), for the various configurations of the Dod
dle algorithm, executed over Title and Description data.

n

Algorithms

D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF

D
od

dl
e_

RC
+R

P

D
od

dl
e_

RC
+R

F

D
od

dl
e_

RP
+R

F

D
od

dl
e_

x

a
X

g
(U1
=3T3O
Q

a
X

*<D
*3
T JO
Q D

od
dl

e_
RP

xR
F

D
od

dl
e_

W

SB
R

1 0.35 0.41 0.37 0.20 0.40 0.33 0.33 0.34 0.39 0.31 0.33 0.38 0.01
10 0.73 0.78 0.74 0.47 0.77 0.72 0.69 0.74 0.78 0.71 0.69 0.74 0.25
20 0.82 0.86 0.81 0.61 0.84 0.82 0.79 0.83 0.84 0.82 0.80 0.83 0.37
30 0.86 0.90 0.85 0.72 0.87 0.88 0.83 0.87 0.87 0.88 0.84 0.87 0.48
40 0.90 0.93 0.87 0.79 0.91 0.91 0.87 0.90 0.90 0.92 0.87 0.90 0.62
50 0.93 0.95 0.91 0.85 0.93 0.94 0.90 0.93 0.93 0.94 0.90 0.93 0.71
60 0.96 0.97 0.94 0.92 0.96 0.97 0.93 0.96 0.96 0.97 0.94 0.96 0.81
70 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.98 0.98 0.99 0.97 0.98 0.90
80 0.99 1.00 0.99 0.99 1.00 1,00 0.99 0.99 - 0.99 1.00 . 0.99. 0.99 0.96
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.40: RTD average 7Zn scores (200 queries), for existing algorithms and Doddle, exe
cuted over Title and Description data.

n

Algorithms

bG
lO

SS

CO
RI

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

H
ig

he
st-

av
ai

l.
Si

m
.

c
w

DF
PR

OP

Di
st.

 o
f I

nf
. A

m
t

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.26 0.39 0.21 0.35 0.34 0.27 0.50 0.36 0.05 0.13 0.13 0.23 0.35 0.01
10 0.21 0.75 0.50 0.66 0.65 0.60 0.69 0.66 0.23 0.31 0.31 0.46 0.73 0.25
20 0.24 0.84 0.61 0.78 0.78 0.76 0.79 0.78 0.36 0.40 0.40 0.63 0.82 0.37
30 0.30 0.89 0.69 0.85 0.85 0.85 0.85 0.85 0.46 0.49 0.49 0.74 0.86 0.48
40 0.37 0.92 0.75 0.90 0.90 0.91 0.90 0.90 0.56 0.58 0.59 0.83 0.90 0.62
50 0.45 0.95 0.81 0.93 0.93 0.96 0.93 0.93 0.64 0.67 0.67 0.88 0.93 0.71
60 0.53 0.97 0.88 0.96 0.96 0.98 0.96 0.96 0.72 0.76 0.76 0.94 0.96 0.81
70 0.66 0.99 0.94 0.99 0.99 0.99 0.98 0.99 0.82 0.85 0.85 0.98 0.98 0.90
80 0.76 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.93 0.94 0.94 1.00 0.99 0.96
90 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

246

Table D.41: RTD average 7Zn scores (50 queries), for the various configurations of the Doddle
algorithm, executed over Title data.

Algorithms

a a
+ ++ +u Oh u u

*1 *1 tf.<D 0) (U 0) 0) <U
3 =3 =3 =3 3 3X) T3 TJ T> T3O O O o o o
Q Q Q Q Q Q

a a a a+ X X X+ X X X
P h U U P h

* 1
X 10) a ; 0) 0) a> QJ

=3 =3 =3 =3 =3 3
T 3 T3 T3 - a T3
O O O o o O

Q Q Q Q Q Q

1 0.16 0.17 0.16 0.13 0.16 0.16 0.15 0.15 0.16 0.16 0.15 0.16 0.01
10 0.62 0.64 0.62 0.50 0.63 0.62 0.61 0.62 0.63 0.62 0.61 0.63 0.20
20 0.77 0.78 0.77 0.64 0.77 0.77 0.76 0.77 0.77 0.77 0.76 0.77 0.36
30 0.85 0.85 0.85 0.76 0.85 0.85 0.84 0.85 0.85 0.85 0.84 0.85 0.48
40 0.90 0.91 0.90 0.83 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.63
50 0.94 0.95 0.94 0.89 0.95 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.73
60 0.98 0.98 0.98 0.94 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.82
70 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.89
80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.42: RTD average 7£n scores (50 queries), for existing algorithms and Doddle, exe
cuted over Tide data.

Algorithms

s a * eu g
I a I M . ! g ° S O' =3

.a U U 5 c/5 S U Q Q 00 < 2 Q co

1 0.07 0.17 0.13 0.18 0.15 0.15 0.19 0.16 0.05 0.09 0.09 0.12 0.16 0.01
10 0.11 0.63 0.49 0.58 0.57 0.57 0.59 0.57 0.29 0.34 0.34 0.43 0.62 0.20
20 0.14 0.77 0.61 0.72 0.72 0.72 0.72 0.72 0.39 0.44 0.44 0.61 0.77 0.36
30 0.20 0.85 0.71 0.81 0.81 0.81 0.81 0.81 0.50 0.54 D.54 0.72 0.85 0.48
40 0.32 0.89 0.79 0.88 0.88 0.88 0.88 0.88 0.61 0.64 0.64 0.82 0.90 0.63
50 0.40 0.94 0.88 0.93 0.93 0.93 0.93 0.93 0.70 0.74 0.74 0.91 0.94 0.73
60 0.50 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.79 0.82 0.82 0.95 0.98 0.82
70 0.67 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.89 0.91 0.91 0.99 0.99 0.89
80 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99 0.99 1.00 1.00 0.96
90 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

247

Table D.43: RTD average i t n scores (50 queries), for the various configurations of the Doddle
algorithm, executed over Title and Description data.

Algorithms

n D
od

dl
e

D
od

dl
e_

R
C

D
od

dl
e_

R
P

D
od

dl
e_

R
F

+

%<D
X)o
Q

+U
0)
=3X)o
Q

+

o
=3
73O
Q D

od
dl

e_
x

X

<u
=3xso
Q

X

<u
XJo
Q

X

<D
=3
X)o
Q D

od
dl

e_
W

SB
R

1 0.13 0.14 0.15 0.05 0.14 0.12 0.11 0.13 0.14 0.11 0.10 0.14 0.01
10 0.53 0.56 0.51 0.32 0.55 0.52 0.49 0.54 0.55 0.54 0.49 0.54 0.18
20 0.67 0.72 0.65 0.52 0.69 0.69 0.62 0.68 0.68 0.69 0.62 0.68 0.32
30 0.76 0.81 0.73 0.64 0.78 0.79 0.72 0.76 0.77 0.80 0.73 0.77 0.43
40 0.84 0.88 0.79 0.73 0.84 0.86 0.79 0.83 0.83 0.86 0.80 0.84 0.59
50 0.89 0.92 0.86 0.79 0.89 0.91 0.85 0.88 0.89 0.91 0.85 0.89 0.69
60 0.94 0.96 0.90 0.88 0.94 0.95 0.90 0.93 0.93 0.95 0.90 0.93 0.81
70 0.97 0.98 0.94 0.94 0.97 0.97 0.94 0.96 0.96 0.97 0.94 0.97 0.88
80 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.97 - 0.99 0.95
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.44: RTD average 7ln scores (50 queries), for existing algorithms and Doddle, exe
cuted over Title and Description data.

Algorithms

1 0.08 0.15 0.09 0.14 0.11 0.14 0.18 0.13 0.04 0.04 0.04 0.08 0.13 0.01
10 0.17 0.54 0.38 0.46 0.46 0.45 0.48 0.46 0.15 0.23 0.23 0.32 0.53 0.18
20 0.21 0.72 0.51 0.66 0.66 0.66 0.66 0.66 0.32 0.35 0.35 0.53 0.67 0.32
30 0.27 0.80 0.60 0.77 0.77 0.80 0.77 0.77 0.43 0.47 0.47 0.67 0.76 0.43
40 0.38 0.86 0.69 0.83 0.83 0.89 0.83 0.83 0.53 0.55 0.55 0.79 0.84 0.59
50 0.47 0.91 0.76 0.88 0.88 0.93 0.89 0.88 0.62 0.64 0.64 0.86 0.89 0.69
60 0.57 0.95 0.84 0.93 0.93 0.97 0.93 0.93 0.73 0.73 0.73 0.92 0.94 0.81
70 0.68 0.98 0.92 0.97 0.97 0.98 0.97 0.97 0.81 0.81 0.81 0.96 0.97 0.88
80 0.80 0.99 0.97 0.99 0.99 1.00 0.99 0.99 0.90 0.90 0.91 0.99 0.99 0.95
90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.99

100 1.00 LOO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

248

Table D.45: RTD average 1tn scores (200 queries), for the various configurations of the Dod
dle algorithm, executed over Title data.

Algorithms

& a a a a &+ + + X X X++ + X X X

U O h U U O h U U
“ l *1 X

1 *1
<0 0) CD a> 0) 0) 05 a> 0) <u 0)
=3 =3 =3 =3 *3 =3 =3 =3 *3T3 TJ "O T3 T3 T3 T5 T3 X) -3 T3O o O o O O o o O o o O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.21 0.21 0.21 0.14 0.21 0.20 0.21 0.20 0.21 0.20 0.20 0.21 0.00
10 0.68 0.69 0.69 0.54 0.69 0.67 0.67 0.68 0.69 0.67 0.67 0.69 0.19'
20 0.83 0.83 0.83 0.71 0.83 0.82 0.82 0.83 0.83 0.82 0.82 0.83 0.35
30 0.90 0.90 0.90 0.81 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90 0.48
40 0.94 0.94 0.94 0.88 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.63
50 0.97 0.97 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.74
60 0.99 0.99 0.99 0.97 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.84
70 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93
80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.46: RTD average 7Zn scores (200 queries), for existing algorithms and Doddle, exe
cuted over Title data.

Algorithms

coC/5
o
-Q

sou

1
c§0)
2
CD
.3t/3oU

o3TJO
Oh
<D £

C/5

C/5

£
I

+ -)
C/5

•Sb
a

CL,
O05
0-iOh
Q

C/5UC/5

Oh
CJ
1

O'uC/5
£

05
=3
O
Q

1 0.08 0.20 0.13 0.19 0.18 0.18 0.21 0.18 0.05 0.09 0.09 0.14 0.21 0.00
10 0.13 0.66 0.51 0.60 0.60 0.57 0.62 0.60 0.30 0.34 0.34 0.48 0.68 0.19
20 0.16 0.81 0.66 0.76 0.77 0.75 0.77 0.77 0.46 0.49 0.49 0.67 0.83 0.35
30 0.23 0.88 0.76 0.86 0.86 0.85 0.86 0.86 0.59 0.62 0.62 0.79 0.90 0.48
40 0.30 0.93 0.84 0.92 0.92 0.92 0.92 0.92 0.69 0.72 0.72 0.88 0.94 0.63
50 0.38 0.96 0.91 0.96 0.96 0.96 0.96 0.96 0.77 0.81 0.81 0.93 0.97 0.74
60 0.49 0.98 0.95 0.98 0.98 0.98 0.98 0.98 0.86 0.89 0.89 0.97 0.99 0.84
70 0.64 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.92 0.95 0.95 0.99 1.00 0.93
80 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.97
90 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

249

Table D.47: RTD average 1Zn scores (200 queries), for the various configurations of the Dod
dle algorithm, executed over Title and Description data.

Algorithms

+ + + X X X
U CL, U U Ph U U

*1 *1 *1
Xi

0) 0) 05 0) 0) <L> 0) 0) a> 0) 0)
=3 =3 =3 =3 =3 3 3 3 3
T) T3 13 13 13 -O 13 13 13 13O O O O O O O O O O O O
Q P Q P P P P P P P P P

1 0.14 0.15 0.15 0.08 0.16 0.12 0.13 0.13 0.15 0.12 0.13 0.15 0.00
10 0.55 0.58 0.56 0.37 0.58 0.54 0.53 0.56 0.58 0.54 0.53 0.56 0.18
20 0.72 0.75 0.71 0.54 0.73 0.72 0.69 0.72 0.73 0.72 0.70 0.72 0.31
30 0.81 0.84 0.79 0.68 0.82 0.82 0.78 0.81 0.82 0.82 0.79 0.82 0.44
40 0.87 0.90 0.85 0.77 0.88 0.89 0.85 0.88 0.88 0.89 0.85 0.88 0.61
50 0.92 0.95 0.90 0.85 0.92 0.93 0.90 0.92 0.92 0.94 0.90 0.92 0.70
60 0.96 0.97 0.94 0.92 0.96 0.97 0.93 0.95 0.96 0.97 0.94 0.96 0.81
70 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.98 0.98 0.99 0.97 0.98 0.90
80 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.96
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.48: RTD average 1Zn scores (200 queries), for existing algorithms and Doddle, exe
cuted over Title and Description data.

Algorithms

u373O

C/5

1
n bG

lO
SS

CO
RI

a>
.5
COO
U

M
P h>Ha>

Sk
ew

CO
0)

-Sb
2 C

W

D
FP

RO
I

VMO

P SC
S

A
vI

CT
F

N
SC

Q

D
od

dl
e

SB
R

1 0.09 0.13 0.09 0.14 0.14 0.11 0.19 0.14 0.03 0.06 0.06 0.10 0.14 0.00
10 0.16 0.56 0.39 0.50 0.50 0.46 0.52 0.50 0.20 0.26 0.26 0.36 0.55 0.18
20 0.21 0.73 0.55 0.68 0.68 0.66 0.69 0.68 0.33 0.37 0.37 0.55 0.72 0.31
30 0.28 0.83 0.65 0.80 0.80 0.80 0.80 0.80 0.44 0.47 0.47 0.70 0.81 0.44
40 0.36 0.90 0.73 0.88 0.88 0.88 0.87 0.88 0.55 0.57 0.58 0.81 0.87 0.61
50 0.45 0.94 0.81 0.92 0.92 0.95 0.92 0.92 0.64 0.67 0.67 0.88 0.92 0.70
60 0.53 0.96 0.88 0.96 0.96 0.98 0.96 0.96 0.72 0.76 0.76 0.93 0.96 0.81
70 0.66 0.99 0.94 0.99 0.99 0.99 0.98 0.99 0.82 0.85 0.85 0.98 0.98 0.90
80 0.76 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.93 0.94 0.94 1.00 0.99 0.96
90 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

250

Table D.49: RTD average Vn scores (50 queries), for the various configurations of the Doddle
algorithm, executed over Title data.

Algorithms

a a a a a a+ + + X X X+ + + X X X
u Pi Pi U U Oh U u Oh
«l s 1 S | X1 *1 *10) <L> <U CD CD <U 0) 0> CD (U <u a)

=3 *3 3 3 3 3 3 =3 3 3 3
T3 73 TJ 73 7d 73 73 73 73 73O O O O O o O O O O O O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.96 1.00 0.96 0.90 0.96 0.98 0.96 0.94 0.94 0.98 0.96 0.96 0.62
10 0.82 0.84 0.83 0.82 0.83 0.82 0.82 0.83 0.82 0.83 0.82 0.83 0.73
20 0.74 0.74 0.73 0.74 0.74 0.74 0.73 0.73 0.73 0.74 0.73 0.74 0.66
30 0.69 0.69 0.68 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.64
40 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.63 0.63 0.63 0.63 0.63 0.61
50 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.56
60 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.53
70 0.53 0.52 0.52 0.52 0.52 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.51
80 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.46
90 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.42.

100 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38

Table D.50: RTD average V n scores (50 queries), for existing algorithms and Doddle, exe
cuted over Title data.

Algorithms

1 0.70 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.72 0.98 0.98 1.00 0.96 0.62
10 0.20 0.90 0.82 0.90 0.90 0.90 0.90 0.90 0.67 0.79 0.79 0.89 0.82 0.73
20 0.19 0.78 0.72 0.79 0.79 0.80 0.79 0.79 0.60 0.68 0.68 0.78 0.74 0.66
30 0.20 0.73 0.67 0.73 0.72 0.73 0.72 0.72 0.58 0.64 0.64 0.71 0.69 0.64
40 0.23 0.67 0.62 0.67 0.66 0.67 0.66 0.66 0.55 0.60 0.60 0.66 0.63 0.61
50 0.25 0.62 0.58 0.62 0.62 0.62 0.62 0.62 0.53 0.57 0.57 0.61 0.60 0.56
60 0.28 0.57 0.55 0.58 0.58 0.58 0.57 0.58 0.52 0.55 0.55 0.57 0.56 0.53
70 0.31 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.50 0.52 0.52 0.53 0.53 0.51
80 0.34 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.47 0.48 0.48 0.48 0.48 0.46
90 0.36 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.42

100 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38

251

Table D.51: RTD average V n scores (50 queries), for the various configurations of the Doddle
algorithm, executed over Title and Description data.

Algorithms

£ E & E E
+ + + X X X

U U u Ph U U Ph
*1 2 *1 *1 *1

X Ph *1a> OJ cu 0) CD <U 0) 0J* <U CU (U
=3 9 =3 =3 t3 =3 :3 x3X X X X X X X X) X -a X Xo o o O o o O o O o o o
Q Q Q Q Q Q Q Q a Q Q Q

1 0.94 0.94 0.84 0.80 0.86 0.92 0.88 0.90 0.86 0.92 0.84 0.92 0.70
10 0.76 0.82 0.72 0.76 0.76 0.80 0.73 0.76 0.76 0.80 0.74 0.75 0.79
20 0.71 0.75 0.68 0.72 0.71 0.74 0.68 0.71 0.70 0.74 0.68 0.71 0.73
30 0.66 0.70 0.63 0.68 0.66 0.70 0.63 0.66 0.66 0.70 0.64 0.66 0.70
40 0.62 0.66 0.60 0.64 0.63 0.66 0.60 0.63 0.63 0.66 0.60 0.62 0.66
50 0.59 0.62 0.57 0.60 0.59 0.61 0.57 0.59 0.58 0.62 0.57 0.59 0.61
60 0.55 0.57 0.53 0.56 0.55 0.57 0.53 0.54 0.54 0.57 0.53 0.55 0.56
70 0.51 0.52 0.49 0.52 0.51 0.52 0.50 0.50 0.50 0.52 0.49 0.51 0.52
80 0.47 0.48 0.46 0.48 0.47 0.48 0.47 0.47 0.47. 0.48 .0.47 0,47 0.48
90 0.44 0.43 0.43 0.44 0.43 0.44 0.43 0.43 0.43 0.44 0.43 0.43 0.43

100 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

Table D.52: RTD average V n scores (50 queries), for existing algorithms and Doddle, exe
cuted over Title and Description data.

Algorithms

1 0.82 1.00 0.94 1.00 1.00 0.96 1.00 1.00 0.56 0.90 0.90 0.96 0.94 0.70
10 0.39 0.90 0.77 0.91 0.91 0.92 0.91 0.91 0.57 0.73 0.73 0.86 0.76 0.79
20 0.30 0.84 0.69 0.84 0.84 0.88 0.84 0.84 0.55 0.65 0.65 0.83 0.71 0.73
30 0.26 0.78 0.62 0.79 0.79 0.81 0.79 0.79 0.52 0.61 0.61 0.78 0.66 0.70
40 0.27 0.72 0.57 0.72 0.72 0.75 0.72 0.72 0.49 0.58 0.58 0.73 0.62 0.66
50 0.27 0.66 0.54 0.66 0.66 0.69 0.66 0.66 0.48 0.55 0.55 0.66 0.59 0.61
60 0.28 0.60 0.51 0.59 0.59 0.61 0.59 0.59 0.46 0.52 0.52 0.60 0.55 0.56
70 0.32 0.54 0.49 0.54 0.54 0.55 0.54 0.54 0.45 0.49 0.49 0.54 0.51 0.52
80 0.34 0.49 0.47 0.49 0.49 0.49 0.49 0.49 0.44 0.47 0.47 0.49 0.47 0.48
90 0.37 0.44 0.43 0.44 0.44 0.44 0.44 0.44 0.43 0.44 0.44 0.44 0.44 0.43

100 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

252

Table D.53: RTD average Vn scores (200 queries), for the various configurations of the Dod
dle algorithm, executed over Title data.

Algorithms

+ + + X X XU u U Oh u u

* 1 i S | X1 <&1
CU 0) cu CD cu CD CU CU d) <u lU <U
=3 2 2 =3 =3 2 =3 =3 =3TJ T3 TJ T3 T3 T3 13 13 13 13
O O O O o O O o o o O O
Q Q Q Q Q Q Q Q p Q Q P

1 0.98 1.00 0.99 0.92 0.99 0.98 0.98 0.98 0.99 0.97 0.97 0.99 0.61.
10 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.70
20 0.75 0.75 0.75 0.76 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.64
30 0.69 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.60
40 0.64 0.64 0.63 0.64 0.63 0.64 0.64 0.63 0.63 0.64 0.63 0.63 0.57
50 0.58 0.58 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.53
60 0.54 0.54 0.53 0.53 0.54 0.54 0.54 0.53 0.53 0.54 0.53 0.54 0.50
70 0.49 0.49 0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.49 0.47
80 0.44 0.43 0.43 0.43 0.43 0.44 0.44 0.43 0.43 0.43 0.43 0.44 0.43
90 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

100 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Table D.54: RTD average V n scores (200 queries), for existing algorithms and Doddle, exe
cuted over Title data.

Algorithms

cn cn
O

1
COc«a>
20)
.5

COOU

1
. cu£<y> (JO
C/5 a

CL,

sOh
PUQ

CO
U
CO

PL,
H O'U O

CO
< z

CU

=3T3O
Q §co

1 0.67 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.81 0.98 0.98 0.99 0.98 0.61
10 0.19 0.85 0.81 0.85 0.85 0.85 0.85 0.85 0.71 0.80 0.80 0.84 0.82 0.70
20 0.17 0.77 0.73 0.78 0.78 0.78 0.77 0.78 0.67 0.72 0.72 0.77 0.75 0.64
30 0.19 0.71 0.67 0.71 0.71 0.71 0.71 0.71 0.62 0.67 0.67 0.71 0.69 0.60
40 0.20 0.65 0.62 0.65 0.65 0.65 0.65 0.65 0.58 0.61 0.61 0.65 0.64 0.57
50 0.22 0.60 0.57 0.60 0.60 0.60 0.60 0.60 0.54 0.57 0.57 0.59 0.58 0.53
60 0.24 0.54 0.53 0.54 0.54 0.55 0.54 0.54 0.51 0.52 0.52 0.54 0.54 0.50
70 0.27 0.49 0.48 0.49 0.49 0.49 0.49 0.49 0.47 0.48 0.48 0.49 0.49 0.47
80 0.30 0.44 0.43 0.44 0.44 0.44 0.44 0.44 0.43 0.43 0.43 0.44 0.44 0.43
90 0.33 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

100 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 .0.35 0.35

253

Table D.55: RTD average V n scores (200 queries), for the various configurations of the Dod
dle algorithm, executed over Title and Description data.

Algorithms

a a a a a a

n D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF q(!)
=3T3
O
Q

q0)
*3
O
Q

q<D
=3
T3
O
Q D

od
dl

e_
x

=3
T3
O
Q

qCD

O
Q

CL,

O)
*3TJ
O
Q D

od
dl

e_
W

SB
R

1 0.90 0.96 0.89 0.81 0.92 0.91 0.86 0.90 0.91 0.91 0.89 0.92 0.70
10 0.79 0.82 0.77 0.79 0.80 0.81 0.77 0.79 0.79 0.81 0.77 0.78 0.78
20 0.74 0.76 0.71 0.74 0.73 0.76 0.72 0.73 0.73 0.76 0.72 0.73 0.72
30 0.69 0.72 0.67 0.70 0.69 0.72 0.68 0.69 0.69 0.72 0.67 0.69 0.69
40 0.65 0.68 0.63 0.66 0.65 0.68 0.64 0.65 0.65 0.68 0.64 0.65 0.65
50 0.61 0.63 0.59 0.62 0.61 0.63 0.60 0.61 0.61 0.63 0.60 0.61 0.60
60 0.57 0.58 0.55 0.58 0.57 0.59 0.56 0.57 0.57 0.58 0.56 0.57 0.56
70 0.53 0.53 0.52 0.53 0.53 0.54 0.52 0.52 0.52 0.54 0.52 0.53 0.53
80 0.48 0.48 0.48 G.48 0.48 0.49 0.48 0.48 0.48. 0.48 0.48 0,48 0.48
90 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

100 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

Table D.56: RTD average V n scores (200 queries), for existing algorithms and Doddle, exe
cuted over Title and Description data.

Algorithms

n bG
lO

SS

co
rn

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

H
ig

he
st-

av
ai

l.
Si

C
W

DF
PR

OP

Di
st.

 o
f

In
f.

A
m

t

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.79 1.00 0.94 1.00 0.99 1.00 0.99 0.99 0.70 0.94 0.94 0.97 0.90 0.70
10 0.34 0.89 0.78 0.90 0.89 0.90 0.90 0.89 0.62 0.75 0.75 0.87 0.79 0.78
20 0.27 0.82 0.70 0.83 0.83 0.85 0.83 0.83 0.59 0.68 0.68 0.82 0.74 0.72
30 0.26 0.77 0.65 0.78 0.78 0.80 0.78 0.78 0.56 0.65 0.65 0.77 0.69 0.69
40 0.26 0.72 0.61 0.72 0.72 0.74 0.72 0.72 0.54 0.61 0.61 0.72 0.65 0.65
50 0.27 0.66 0.58 0.66 0.66 0.69 0.66 0.66 0.52 0.58 0.58 0.67 0.61 0.60
60 0.28 0.60 0.55 0.61 0.61 0.62 0.60 0.61 0.50 0.55 0.55 0.61 0.57 0.56
70 0.32 0.55 0.51 0.55 0.55 0.55 0.55 0.55 0.48 0.52 0.52 0.55 0.53 0.53
80 0.34 0.49 0.48 0.49 0.49 0.49 0.49 0.49 0.46 0.48 0.48 0.49 0.48 0.48
90 0.37 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43 0.44 0.44 0.44 0.44 0.44

100 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

254

Table D.57: RTD average precision within the top 5 collections, and the number of queries
(out of 50) for which the first ranked collection is correct, for the various configurations of
the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.53 0.38 13 (26%) 11 (22%)
Doddle_RC 0.56 0.43 14 (28%) 11 (22%)
Doddle_RP 0.57 0.46 13 (26%) 13 (26%)
DoddleJRF 0.26 0.21 7 (14%) 2 (4%)
Doddle_RC+RP 0.57 0.44 13 (26%) 13 (26%)
Doddle_RC+RF 0.51 0.34 14 (28%) 8 (16%)
Doddle_RP+RF 0.50 0.36 12 (24%) 9 (18%)
Doddle_x 0.55 0.38 12 (24%) 9 (18%)
Doddle_RCxRP 0.56 0.44 13 (26%) 11 (22%)
Doddle_RCxRF 0.53 0.34 13 (26%) 8 (16%)
Doddle_RPxRF 0.52 0.38 12 (24%) 7 (14%)
Doddle_W 0.56 0.41 13 (26%) 13 (26%)
SBR 0.07 0.09 0 (0%) 1 (2%)

Table D.58: RTD average precision within the top 5 collections, and the number of queries
(out of 50) for which the first ranked collection is correct, for existing algorithms and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Tides Tides & Desc. Tides Tides & Desc.

bGlOSS 0.12 0.17 5 (10%) 4 (8%)
CORI 0.52 0.38 13 (26%) 10 (20%)
Cosine Measure 0.26 0.18 7 (14%) 5 (10%)
Inner Product 0.37 0.29 16 (32%) 10 (20%)
Skew 0.36 0.29 11 (22%) 7 (14%)
Highest-available Similarity 0.39 0.30 12 (24%) 10 (20%)
C W 0.39 0.30 16 (32%) 18 (36%)
DFPROP 0.36 0.29 13 (26%) 10 (20%)
Distribution of Informative Amt 0.18 0.09 2 (4%) 2 (4%)
SCS 0.18 0.14 5 (10%) 2 (4%)
AvICTF 0.18 0.15 5 (10%) 2 (4%)
NSCQ 0.28 0.18 10 (20%) 6 (12%)
Doddle 0.53 0.38 13 (26%) 11 (22%)
SBR 0.07 0.09 0 (0%) 1 (2%)

255

Table D.59: RTD average precision within the top 5 collections, and the number of queries
(out of 200) for which the first ranked collection is correct, for the various configurations of
the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos . 1
Titles Titles & Desc. Titles Titles & Desc.

Doddle 0.61 0.43 59 (29.5%) 38 (19.0%)
Doddle_RC 0.64 0.48 61 (30.5%) 47 (23.5%)
Doddle_RP 0.66 0.49 68 (34.0%) 44 (22.0%)
Doddle_RF 0.32 0.25 32 (16.0%) 17 (8.5%)
Doddle_RC+RP 0.65 0.48 64 (32.0%) 47 (23.5%)
Doddle_RC+RF 0.59 0.41 55 (27.5%) 34 (17.0%)
Doddle_RP+RF 0.60 0.41 62 (31.0%) 35 (17.5%)
Doddle_x 0.62 0.44 58 (29.0%) 36 (18.0%)
Doddle_RCxRP 0.66 0.49 63 (31.5%) 44 (22.0%)
Doddle_RCxRF 0.60 0.39 52 (26.0%) 30 (15.0%)
Doddle_RPxRF 0.60 0.41 57 (28.5%) 36 (18.0%)
Doddle_W 0.63 0.45 62 (31.0%) 41 (20.5%)
SBR 0.07 0.07 0 (0.0%) 1 (0.5%)

Table D.60: RTD average precision within the top 5 collections, and the number of queries
(out of 200) for which the first ranked collection is correct, for existing algorithms and Dod
dle.

Algorithms

Precision @ 5 Correct @ Pos . 1
Titles Titles & Desc. Titles Tides & Desc.

bGlOSS 0.11 0.15 17 (8.5%) 19 (9.5%)
CORI 0.58 0.42 53 (26.5%) 39 (19.5%)
Cosine Measure 0.29 0.23 29 (14.5%) 19 (9.5%)
Inner Product 0.45 0.34 52 (26.0%) 34 (17.0%)
Skew 0.43 0.33 44 (22.0%) 35 (17.5%)
Highest-available Similarity 0.44 0.32 48 (24.0%) 27 (13.5%)
CW 0.46 0.38 66 (33.0%) 65 (32.5%)
DFPROP 0.44 0.34 45 (22.5%) 40 (20.0%)
Distribution of Informative Amt 0.18 0.11 9 4.5%) 5 (2.5%)
SCS 0.24 0.19 16 8.0%) 9 (4.5%)
AvICTF 0.24 0.19 16 8.0%) 9 (4.5%)
NSCQ 0.35 0.24 28 (14.0%) 19 (9.5%)
Doddle 0.61 0.43 59 (29.5%) 38 (19.0%)
SBR 0.07 0.07 0 (0.0%) 1 (0.5%)

256

D.3. SYM-236

D.3 SYM-236

Table D.61: SYM-236 average Spearman rank correlations, for the various configurations of
the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Qs Qi Qs Qi

Doddle 0.39 0.46 0.33 0.41
Doddle_RC 0.53 0.57 0.56 0.59
Doddle_RP 0.32 0.40 0.20 0.24
Doddle_RF 0.24 0.32 0.29 0.36
Doddle_RC+RP 0.44 0.50 0.36 0.42
Doddle_RC+RF 0.43 0.49 0.44 0.50
Doddle_RP+RF 0.28 0.36 0.20 0.30
Doddle_x 0.36 0.33 0.28 0.18
Doddle_RCxRP 0.41 0.42 0.34 0.28
Doddle_RCxRF 0.41 0.39 0.39 0.32
Doddle_RPxRF 0.26 0.29 0.14 0.13
Doddle_W 0.41 0.48 0.34 0.41
SBR 0.53 0.53 — —

257

Table D.62: SYM-236 average Spearman rank correlations, for existing algorithms and Dod
dle, comparing algorithm-produced rankings to FsBR and SBR.

FsBR SBR

Algorithms Qs Qi Qs Qi

bGlOSS 0.58 0.35 0.67 0.33
CORI 0.65 0.65 0.85 0.85
Cosine Measure 0.53 0.64 0.75 0.82
Inner Product 0.63 0.65 0.89 0.89
Skew 0.61 0.62 0.89 0.89
Highest-available Similarity 0.64 0.66 0.91 0.92
CW 0.59 0.59 0.90 0.92
DFPROP 0.61 0.62 0.89 0.91
Distribution of Informative Amt -0.24 -0.32 -0.18 --0.25
SCS 0.18 0.32 0.61 0.75
AvICTF 0.19 0.39 0.62 0.78
NSCQ 0.50 0.58 0.91 0.93
Doddle 0.39 0.46 0.33 0.41
SBR 0.53 0.53 — —

258

Table D.63: SYM-236 Z-Test results, showing whether the differences between Spearman
correlations are significant (a shows there is significant difference in performance), exe
cuted over Short queries.

H9S

m t 3ipp°a
dH*dH- 3ipp°a
dHxDH_9lPP°G
dHxDH_9IPP°G

x~3|ppoa

ira+dH~3ippoa
JH+3H_9IPP°Q
dH+DH_9IPP°a

jH"9iPPoa

dH_9lPPoa
3H_9Ippoa

gippoa

6 dsn
dXDIAV

SDS
ju iy j u y o -jsiQ

dOHdda
AAD

'uns [TBAB-rsaqSiH
M9>IS

p n p o i j I3UUJ

9UIS03

MOD
ssoioq

•c
§0
3

s
S. s s s s s s
s s s s s s s s s s s s s
s s s s s s s
s s s s s s s
s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s
s s s s s s s
s s s s s s s s s s s s s s s
s s s s s s s s s s

s
s s s s s s s s s

s s s
s s s s s s s s s s s s s s s s s
s. s s s s s s s s s s s s s s s s s
s s

09

e
•s•c
So
3

s

O)

,3
<L> T 3 ■5 O

c/o<u
1

!
$ ao £ to

a o o g ̂ §xi u u p w £

I
S

o
o

Ph
O jo

a s a & a a
+ + +

i i i i irjLi D D g j g j g j y g j D g j g j g j])
H O ’9 ’3 ’9 5 ’9 ^ ’9 ' 9 ' 3 ’3 ’3 ’3

S. p2
X X X

^ ■ S o o y U ’P ’P ’P ’P ’O ' P ’P ' P ’P ’P ’P ’P t ef c . J S u ^ ^ o o o o o o o o o o o o SP P t o ^ Q P P Q Q Q Q Q Q Q Q Q t ^

259

Table D.64: SYM-236 Z-Test results, showing whether the differences between Spearman
correlations are significant (a / shows there is significant difference in performance), exe
cuted over Long queries.

hia

m s
m~9ipp°a

dHxdH_9IPP°(I
JH*DH_9IPP°a
JHxDH_9lPP°a

x_ayppoa

dH+dH“9IPP°a
dH+DH_9IPP0Q
dH+3H_9TPP°G

jH“9Ippoa

dH_9ippoa
DH_9lPP0a

dOHdja
AAD

unS jreAis-rsaqSiH

pnpoij jauuj
9jnsB9pi amso3

raoD
ssoioq

•e
a
3

s
s s s s s s
s s s s s s s s s s s s s s
s s s s s s s s s
s s s s s s s s s
s s s s s s s s s s s s
s s s s s s s s s s
s s s s s
s s s s
s s s s s s s s s s s s s
s s s s s s s s s

9TPP0Q s %s s s s
Odsn

dlDIAV s s \ s s s s s s
S3S s s s s s s s s s s s s s

JUiyjUIJO 1STQ s s s s s s s s s s s s s s s s s s s s s s s s

s s s w s s s s

a)
3 -
3 I0) T3
S 20)

g - i IO o 5 u u £

&
’S

C/3<D
I

0)
•1

I

a a
Uh 0)
H 0=3

u o
3 < 2 Q

3 =33 T3
3 O
5 Q

s a g
+ + +

s, a, a a
0) 0)
x! ^ T3 "O O O
Q Q

a a aX X X
x| S.
0) 0)

=3 *3
T 3 T 3 O O
Q Q

260

Table D.65: SYM-236 average Blest and Da Costa weighted rank correlations, for the various
configurations of the Doddle algorithm, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Qs Qi Qs Qi

Doddle 0.37 0.43 0.44 0.52
Doddle_RC 0.52 0.55 0.58 0.63
Doddle_RP 0.31 0.37 0.39 0.46
Doddle_RF 0.21 0.27 0.29 0.37
Doddle JRC+RP 0.42 0.48 0.49 0.56
Doddle_RC+RF 0.41 0.45 0.48 0.54
Doddle_RP+RF 0.25 0.32 0.34 0.42
Doddle_x 0.33 0.30 0.42 0.40
Doddle_RCxRP 0.39 0.40 0.47 0.48
Doddle_RCxRF 0.38 0.36 0.46 0.45
Doddle_RPxRF 0.22 0.25 0.32 0.35
Doddle_W 0.39 0.45 0.47 0.54
SBR 0.53 0.53 0.58 0.58

Table D.66: SYM-236 average Blest and Da Costa weighted rank correlations, for existing
algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.63 0.53 0.66 0.63
CORI 0.65 0.63 0.70 0.70
Cosine Measure 0.53 0.62 0.58 0.70
Inner Product 0.63 0.63 0.68 0.70
Skew 0.61 0.60 0.66 0.67
Highest-available Similarity 0.65 0.65 0.69 0.71
CW 0.58 0.56 0.63 0.63
DFPROP 0.61 0.60 0.66 0.67
Distribution of Informative Amt -0.23 -0.34 - 0.11 -0.19
SCS 0.18 0.30 0.22 0.35
AvICTF 0.19 0.38 0.23 0.43
NSCQ 0.51 0.56 0.54 0.62
Doddle 0.37 0.43 0.44 0.52
SBR 0.53 0.53 0.58 0.58

261

Table D.67: SYM-236 average lZn scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms
£3 & PL, & & Phs 2 2 Ph
+ + + X X X

u u u a. U u
«1 S l rtl

X1 *1 *1 2
<u <u 0) (U <u D 0) 0) CD a>* V

=3 *3 'S 3 9 =3 =3 =3T3 TJ ”d T3 T3 T3 T3 T3 TJ ■a -d "dO o O O 0 0 0 O O 0 0 0Q Q Q Q Q Q Q Q Q Q Q Q
1 0.07 0.18 0.06 0.06 0.09 0.12 0.03 0.09 0.11 0.14 0.08 0.08 0.14

10 0.25 0.37 0.21 0.10 0.29 0.25 0.17 0.24 0.27 0.22 0.18 0.27 0.21
20 0.33 0.47 0.29 0.15 0.40 0.33 0.24 0.31 0.37 0.31 0.25 0.37 0.26
30 0.41 0.55 0.37 0.19 0.48 0.41 0.30 0.39 0.45 0.38 0.30 0.44 0.34
40 0.47 0.60 0.43 0.24 0.54 0.48 0.35 0.46 0.52 0.46 0.36 0.51 0.44
50 0.53 0.64 0.48 0.29 0.59 0.55 0.41 0.51 0.57 0.52 0.41 0.56 0.52
60 0.57 0.69 0.53 0.35 0.63 0.60 0.46 0.56 0.61 0.57 0.46 0.60 0.55
70 0.62 0.73 0.58 0.42 0.67 0.65 0.51 0.61 0.65 0.63 0.51 0.65 0.56
80 0.67 0.77 0.63 0.49 0.71 0.69 0.56 0.65 0.69 0.68 0.55 0.70 0.62
90 0.72 0.81 0.68 0.57 0.76 0.74 0.62 0.70 0.74 0.73 0.61 0.74 0.69

100 0.76 0.85 0.73 0.65 0.79 0.79 0.68 0.75 0.77 0.77 0.67 0.78 0.77
110 0.80 0.87 0.77 0.71 0.83 0.82 0.74 0.79 0.81 0.82 0.73 0.82 0.83
120 0.84 0.90 0.81 0.76 0.86 0.86 0.79 0.82 0.85 0.86 0.78 0.85 0.89
130 0.87 0.92 0.84 0.81 0.89 0.90 0.83 0.86 0.88 0.89 0.81 0.88 0.92
140 0.90 0.93 0.87 0.85 0.91 0.92 0.86 0.89 0.90 0.91 0.85 0.91 0.94
150 0.92 0.95 0.90 0.89 0.93 0.94 0.90 0.91 0.92 0.94 0.88 0.92 0.97
160 0.94 0.96 0.92 0.93 0.94 0.96 0.92 0.93 0.93 0.95 0.91 0.94 0.98
170 0.95 0.97 0.94 0.95 0.96 0.97 0.95 0.95 0.95 0.97 0.93 0.95 0.99
180 0.97 0.98 0.96 0.97 0.97 0.98 0.96 0.96 0.96 0.98 0.95 0.97 1.00
190 0.98 0.99 0.97 0.98 0.98 0.99 0.98 0.97 0.97 0.99 0.97 0.98 1.00
200 0.99 1.00 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.98 0.99 1.00
210 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 1.00
220 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

262

Table D.68: SYM-236 average 1Zn scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

1 0.35 0.37 0.18 0.32 0.32 0.30 0.23 0.31 0.02 0.01 0.01 0.13 0.07 0.14
10 0.42 0.47 0.29 0.43 0.42 0.40 0.35 0.42 0.03 0.03 0.03 0.20 0.25 0.21
20 0.50 0.55 0.37 0.51 0.50 0.49 0.44 0.50 0.04 0.05 0.05 0.25 0.33 0.26
30 0.56 0.61 0.44 0.57 0.56 0.56 0.50 0.56 0.05 0.07 0.07 0.31 0.41 0.34
40 0.61 0.66 0.50 0.63 0.61 0.62 0.56 0.61 0.05 0.09 0.09 0.37 0.47 0.44
50 0.66 0.71 0.56 0.68 0.66 0.68 0.61 0.66 0.06 0.13 0.13 0.44 0.53 0.52
60 0.71 0.75 0.61 0.73 0.70 0.73 0.65 0.70 0.08 0.17 0.17 0.50 0.57 0.55
70 0.75 0.79 0.66 0.77 0.74 0.77 0.70 0.73 0.10 0.22 0.23 0.55 0.62 0.56
80 0.79 0.83 0.71 0.81 0.78 0.81 0.75 0.77 0.12 0.28 0.29 0.60 0.67 0.62
90 0.82 0.86 0.75 0.84 0.82 0.85 0.79 0.81 0.16 0.35 0.36 0.66 0.72 0.69

100 0.85 0.89 0.80 0.87 0.85 0.87 0.83 0.85 0.20 0.42 0.43 0.72 0.76 0.77
110 0.88 0.91 0.84 0.89 0.88 0.89 0.87 0.88 0.24 0.50 0.51 0.78 0.80 0.83
120 0.90 0.93 0.88 0.92 0.90 0.92 0.90 0.90 0.29 0.58 0.59 0.84 0.84 0.89
130 0.92 0.94 0.91 0.93 0.92 0.94 0.92 0.92 0.35 0.66 0.67 0.90 0.87 0.92
140 0.94 0.96 0.94 0.95 0.94 0.96 0.94 0.94 0.41 0.75 0.75 0.94 0.90 0.94
150 0.95 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.48 0.81 0.82 0.97 0.92 0.97
160 0.96 0.98 0.97 0.98 0.98 0.99 0.98 0.98 0.55 0.87 0.88 0.98 0.94 0.98
170 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.63 0.92 0.93 0.99 0.95 0.99
180 0.98 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.70 0.97 0.97 0.99 0.97 1.00
190 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.99 0.99 1.00 0.98 1.00
200 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 0.99 1.00
210 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00
220 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
230 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

263

Table D.69: SYM-236 average lZn scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms
V* P h P j p j pLjS S pp 2 2 2

i i i i i i i i i i
^ t3 t3 ' 3 ’3 ' 3 ’t3 t3 t3 t3 ’3
o o o o o o o o o o o n Q Q Q Q Q Q Q Q Q Q Q

1 0.17 0.27 0.14 0.10 0.21 0.19 0.16 0.10 0.12 0.10 0.13 0.18 0.14
10 0.31 0.43 0.25 0.14 0.36 0.31 0.24 0.22 0.26 0.21 0.21 0.35 0.21
20 0.40 0.53 0.37 0.20 0.47 0.39 0.31 0.31 . 0.38 0.30 .0.29 0.44 0.26
30 0.47 0.58 0.46 0.24 0.54 0.47 0.37 0.39 0.47 0.37 0.35 0.51 0.34
40 0.55 0.63 0.52 0.30 0.59 0.55 0.44 0.44 0.53 0.45 0.41 0.58 0.44
50 0.60 0.67 0.56 0.36 0.64 0.60 0.50 0.50 0.57 0.52 0.47 0.62 0.52
60 0.65 0.71 0.61 0.43 0.67 0.66 0.56 0.55 0.61 0.58 0.53 0.66 0.55
70 0.69 0.76 0.66 0.50 0.72 0.71 0.61 0.60 0.66 0.63 0.57 0.71 0.56
80 0.73 0.80 0.70 0.58 0.76 0.75 0.66 0.65 0.70 0.69 0.62 0.74 0.62
90 0.77 0.84 0.74 0.65 0.80 0.79 0.71 0.69 0.75 0.74 0.66 0.79 0.69

100 0.81 0.87 0.78 0.72 0.84 0.83 0.75 0.74 0.79 0.78 0.70 0.82 0.77
110 0.85 0.90 0.82 0.78 0.87 0.86 0.80 0.78 0.83 0.82 0.75 0.86 0.83
120 0.88 0.92 0.85 0.83 0.90 0.89 0.84 0.81 0.86 0.86 0.79 0.89 0.89
130 0.90 0.94 0.87 0.87 0.92 0.92 0.87 0.85 0.89 0.89 0.83 0.91 0.92
140 0.93 0.96 0.90 0.90 0.94 0.94 0.90 0.88 0.91 0.91 0.86 0.93 0.94
150 0.95 0.97 0.92 0.93 0.95 0.96 0.92 0.91 0.93 0.94 0.89 0.95 0.97
160 0.96 0.98 0.94 0.95 0.96 0.97 0.95 0.93 0.95 0.96 0.91 0.96 0.98
170 0.97 0.99 0.95 0.97 0.97 0.98 0.96 0.94 0.96 0.97 0.94 0.97 0.99
180 0.98 0.99 0.97 0.98 0.98 0.99 0.97 0.96 0.97 0.98 0.96 0.98 1.00
190 0.99 1.00 0.98 0.99 0.99 1.00 0.98 0.97 0.98 0.99 0.97 0.99 1.00
200 0.99 1.00 0.98 1.00 0.99 1.00 0.99 0.98 0.99 0.99 0.98 0.99 1.00
210 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00
220 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

264

Table D.70: SYM-236 average 7Zn scores, for existing algorithms and Doddle, on long queries
(Q z) .

Algorithms

s o s s . S s 3 > & 3 0 ’s a 5 3U U >5 $ E U Q Q oo < £ Q co

1 0.24 0.38 0.38 0.39 0.33 0.40 0.27 0.33 0.01 0.03 0.06 0.22 0.17 0.14
10 0.35 0.48 0.46 0.47 0.43 0.46 0.36 0.44 0.03 0.07 0.09 0.27 0.31 0.21
20 0.39 0.55 0.54 0.54 0.52 0.54 0.44 0.51 0.05 0.10 0.15 0.36 0.40 0.26
30 0.44 0.60 0.60 0.60 0.57 0.60 0.51 0.56 0.05 0.14 0.20 0.43 0.47 0.34
40 0.47 0.65 0.65 0.65 0.62 0.65 0.56 0.61 0.07 0.18 0.25 0.50 0.55 0.44
50 0.49 0.69 0.70 0.69 0.67 0.70 0.60 0.66 0.08 0.23 0.31 0.57 0.60 0.52
60 0.52 0.74 0.75 0.74 0.71 0.75 0.65 0.70 0.10 0.28 0.37 0.62 0.65 0.55
70 0.55 0.77 0.79 0.78 0.75 0.79 0.69 0.74 0.12 0.34 0.42 0.66 0.69 0.56
80 0.57 0.81 0.83 0.82 0.79 0.82 0.74 0.78 0.14 0.41 0.49 0.71 0.73 0.62
90 0.62 0.85 0.86 0.85 0.83 0.86 0.78 0.82 0.17 0.48 0.56 0.77 0.77 0.69

100 0.65 0.89 0.89 0.88 0.86 0.88 0.83 0.86 0.20 0.55 0.63 0.81 0.81 0.77
110 0.67 0.91 0.91 0.90 0.89 0.90 0.87 0.89 0.24 0.62 0.69 0.85 0.85 0.83
120 0.69 0.93 0.93 0.92 0.91 0.91 0.90 0.91 0.28 0.69 0.76 0.89 0.88 0.89
130 0.72 0.95 0.95 0.93 0.93 0.94 0.92 0.93 0.32 0.77 0.82 0.92 0.90 0.92
140 0.74 0.96 0.97 0.95 0.94 0.96 0.94 0.94 0.36 0.83 0.87 0.94 0.93 0.94
150 0.77 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.41 0.88 0.92 0.97 0.95 0.97
160 0.79 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.47 0.93 0.96 0.98 0.96 0.98
170 0.80 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.53 0.97 0.98 0.99 0.97 0.99
180 0.83 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.60 0.99 1.00 0.99 0.98 1.00
190 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.99 1.00
200 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.99 1.00
210 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00 1.00 1.00 1.00
220 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00
230 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

265

Table D.71: SYM-236 average i t n scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms

g g S g g g+ + + X X X
u U u U U
X, S l S i *1

X 1 *10) <u 0) <u a> 0) 0) CD a> <D <U <u
*3 =3 *3 =3 =3 =3 =3 =3T3 T3 *d ~a T3 d ■d •d *d "d ■dO o o o o o o o o o o o
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
10 0.10 0.15 0.08 0.04 0.12 0.10 0.07 0.09 0.11 0.09 0.07 0.11 0.08
20 0.20 0.28 0.17 0.09 0.24 0.20 0.14 0.19 0.22 0.19 0.15 0.22 0.15
30 0.30 0.40 0.27 0.14 0.35 0.30 0.22 0.29 0.33 0.28 0.22 0.32 0.25
40 0.39 0.50 0.35 0.20 0.44 0.40 0.29 0.38 0.43 0.38 0.30 0.42 0.36
50 0.47 0.57 0.42 0.26 0.52 0.49 0.37 0.46 0.51 0.46 0.37 0.50 0.46
60 0.54 0.64 0.49 0.32 0.59 0.56 0.43 0.53 0.57 0.53 0.43 0.56 0.51
70 0.60 0.70 0.56 0.40 0.64 0.62 0.49 0.58 0.63 0.61 0.49 0.62 0.54
80 0.66 0.75 0.62 0.47 0.70 0.68 0.55 0.64 0.68 0.67 0.54 0.68 0.61
90 0.71 0.80 0.68 0.56 0.75 0.73 0.61 0.69 0.73 0.72 0.60 0.73 0.69

100 0.76 0.84 0.73 0.65 0.79 0.78 0.68 0.74 0.77 0.77 0.67 0.77 0.76
110 0.80 0.87 0.77 0.71 0.83 0.82 0.74 0.78 0.81 0.82 0.73 0.81 0.83
120 0.84 0.90 0.81 0.76 0.86 0.86 0.79 0.82 0.84 0.85 0.78 0.85 0.89
130 0.87 0.92 0.84 0.81 0.89 0.89 0.83 0.86 0.88 0.89 0.81 0.88 0.92
140 0.90 0.93 0.87 0.85 0.91 0.92 0.86 0.89 0.90 0.91 0.85 0.91 0.94
150 0.92 0.95 0.90 0.89 0.93 0.94 0.90 0.91 0.92 0.94 0.88 0.92 0.97
160 0.94 0.96 0.92 0.93 0.94 0.96 0.92 0.93 0.93 0.95 0.91 0.94 0.98
170 0.95 0.97 0.94 0.95 0.96 0.97 0.95 0.95 0.95 0.97 0.93 0.95 0.99
180 0.97 0.98 0.96 0.97 0.97 0.98 0.96 0.96 0.96 0.98 0.95 0.97 1.00
190 0.98 0.99 0.97 0.98 0.98 0.99 0.98 0.97 0.97 0.99 0.97 0.98 1.00
200 0.99 1.00 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.98 0.99 1.00
210 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 1.00
220 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

266

Table D.72: SYM-236 average i t n scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

o>

1 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.01
10 0.16 0.18 0.11 0.17 0.16 0.16 0.14 0.16 0.01 0.01 0.01 0.08 0.10 0.08
20 0.30 0.33 0.21 0.31 0.30 0.29 0.26 0.30 0.02 0.03 0.03 0.14 0.20 0.15
30 0.41 0.44 0.31 0.42 0.41 0.41 0.37 0.41 0.04 0.05 0.05 0.23 0.30 0.25
40 0.50 0.54 0.41 0.52 0.50 0.50 0.46 0.50 0.04 0.07 0.07 0.31 0.39 0.36
50 0.58 0.62 0.49 0.60 0.58 0.60 0.54 0.58 0.06 0.11 0.11 0.39 0.47 0.46
60 0.66 0.70 0.57 0.67 0.65 0.68 0.61 0.65 0.07 0.15 0.16 0.46 0.54 0.51
70 0.72 0.76 0.63 0.73 0.71 0.74 0.67 0.70 0.10 0.21 0.21 0.53 0.60 0.54
80 0.77 0.81 0.70 0.79 0.77 0.79 0.73 0.76 0.12 0.27 0.28 0.59 0.66 0.61
90 0.81 0.85 0.74 0.83 0.81 0.84 0.78 0.80 0.16 0.35 0.35 0.65 0.71 0.69

100 0.84 0.88 0.80 0.86 0.85 0.87 0.83 0.84 0.20 0.42 0.43 0.72 0.76 0.76
110 0.88 0.91 0.84 0.89 0.88 0.89 0.86 0.88 0.24 0.49 0.51 0.78 0.80 0.83
120 0.90 0.93 0.88 0.91 0.90 0.92 0.90 0.90 0.29 0.58 0.59 0.84 0.84 0.89
130 0.92 0.94 0.91 0.93 0.92 0.94 0.92 0.92 0.35 0.66 0.67 0.90 0.87 0.92
140 0.94 0.96 0.94 0.95 0.94 0.96 0.94 0.94 0.41 0.75 0.75 0.94 0.90 0.94
150 0.95 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.48 0.81 0.82 0.97 0.92 0.97
160 0.96 0.98 0.97 0.98 0.98 0.99 0.98 0.98 0.55 0.87 0.88 0.98 0.94 0.98
170 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.63 0.92 0.93 0.99 0.95 0.99
180 0.98 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.70 0.97 0.97 0.99 0.97 1.00
190 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.99 0.99 1.00 0.98 1.00
200 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 0.99 1.00
210 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 LOO 1.00 1.00 1.00
220 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
230 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

267

Table D.73: SYM-236 average 'R,n scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms

& & a a s+ + + X X X
U Vi u u U U Oh

n *1 s 1 X 1 *1 Cc5
CD cu <d CD CD a> CD 0) CD a} 0) CD

*3 =3 *3 =3 *3 =3 =3 =3 =3
T3 "O T> T3 T3 T3 T3 TJ T3 T3 T3O o O O O O O O O O O O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10 0.13 0.17 0.10 0.06 0.15 0.12 0.10 0.09 0.11 0.09 0.09 0.14 0.08
20 0.25 0.32 0.23 0.12 0.28 0.24 0.19 0.19 0.23 0.18 0.18 0.26 0.15
30 0.35 0.43 0.34 0.18 0.40 0.35 0.28 0.29 0.35 0.28 0.26 0.38 0.25
40 0.45 0.51 0.43 0.25 0.49 0.45 0.37 0.37 0.44 0.38 0.35 0.48 0.36
50 0.53 0.59 0.50 0.32 0.56 0.53 0.45 0.45 0.51 0.47 0.42 0.55 0.46
60 0.60 0.66 0.57 0.40 0.63 0.61 0.52 0.52 0.57 0.55 0.49 0.62 0.51
70 0.67 0.73 0.63 0.48 0.69 0.68 0.59 0.58 0.63 0.61 0.55 0.68 0.54
80 0.72 0.78 0.68 0.56 0.74 0.73 0.65 0.64 0.69 0.67 0.60 0.73 0.61
90 0.76 0.83 0.73 0.64 0.79 0.78 0.70 0.69 0.74 0.73 0.65 0.78 0.69

100 0.81 0.87 0.78 0.72 0.83 0.82 0.75 0.74 0.79 0.78 0.70 0.82 0.76
110 0.84 0.90 0.82 0.78 0.86 0.86 0.80 0.78 0.83 0.82 0.75 0.86 0.83
120 0.88 0.92 0.85 0.83 0.90 0.89 0.84 0.81 0.86 0.86 0.79 0.89 0.89
130 0.90 0.94 0.87 0.87 0.92 0.92 0.87 0.85 0.89 0.89 0.83 0.91 0.92
140 0.93 0.96 0.90 0.90 0.94 0.94 0.90 0.88 0.91 0.91 0.86 0.93 0.94
150 0.95 0.97 0.92 0.93 0.95 0.96 0.92 0.91 0.93 0.94 0.89 0.95 0.97
160 0.96 0.98 0.94 0.95 0.96 0.97 0.95 0.93 0.95 0.96 0.91 0.96 0.98
170 0.97 0.99 0.95 0.97 0.97 0.98 0.96 0.94 0.96 0.97 0.94 0.97 0.99
180 0.98 0.99 0.97 0.98 0.98 0.99 0.97 0.96 0.97 0.98 0.96 0.98 1.00
190 0.99 1.00 0.98 0.99 0.99 1.00 0.98 0.97 0.98 0.99 0.97 0.99 1.00
200 0.99 1.00 0.98 1.00 0.99 1.00 0.99 0.98 0.99 0.99 0.98 0.99 1.00
210 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00
220 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

268

Table D.74: SYM-236 average TLn scores, for existing algorithms and Doddle, on long queries
(Q z) .

Algorithms

coCO
O
3X

saou
0)
.5(A
oU

u3T3O

lCO

.§CO

1
l b
2

Oh

§OhOh
Q

COUCO

Oh ^
h a =3y u -3> CO o
•3 2 Q §CO

1 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.00 0.00 0.00 0.02 0.01 0.01
10 0.13 0.19 0.18 0.19 0.17 0.18 0.14 0.18 0.01 0.02 0.04 0.11 0.13 0.08
20 0.23 0.32 0.32 0.32 0.31 0.33 0.26 0.30 0.03 0.06 0.09 0.21 0.25 0.15
30 0.32 0.44 0.44 0.44 0.42 0.43 0.38 0.41 0.04 0.10 0.15 0.31 0.35 0.25
40 0.38 0.53 0.54 0.53 0.51 0.53 0.46 0.50 0.05 0.15 0.20 0.41 0.45 0.36
50 0.43 0.61 0.62 0.61 0.59 0.62 0.54 0.58 0.07 0.20 0.27 0.50 0.53 0.46
60 0.48 0.69 0.69 0.69 0.66 0.70 0.60 0.65 0.09 0.26 0.34 0.57 0.60 0.51
70 0.53 0.74 0.76 0.75 0.72 0.75 0.67 0.71 0.11 0.33 0.40 0.64 0.67 0.54
80 0.56 0.80 0.81 0.80 0.77 0.80 0.73 0.76 0.14 0.40 0.47 0.70 0.72 0.61
90 0.61 0.84 0.85 0.84 0.82 0.85 0.77 0.81 0.17 0.47 0.55 0.76 0.76 0.69

100 0.65 0.88 0.88 0.88 0.86 0.88 0.82 0.85 0.20 0.54 0.63 0.81 0.81 0.76
110 0.67 0.91 0.91 0.90 0.89 0.90 0.86 0.89 0.24 0.62 0.69 0.85 0.84 0.83
120 0.69 0.93 0.93 0.92 0.91 0.91 0.90 0.91 0.28 0.69 0.76 0.89 0.88 0.89
130 0.72 0.95 0.95 0.93 0.92 0.94 0.92 0.93 0.32 0.77 0.82 0.92 0.90 0.92
140 0.74 0.96 0.97 0.95 0.94 0.96 0.94 0.94 0.36 0.83 0.87 0.94 0.93 0.94
150 0.77 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.41 0.88 0.92 0.97 0.95 0.97
160 0.79 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.47 0.93 0.96 0.98 0.96 0.98
170 0.80 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.53 0.97 0.98 0.99 0.97 0.99
180 0.83 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.60 0.99 1.00 0.99 0.98 1.00
190 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.99 1.00
200 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.99 1.00
210 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00 1.00 1.00 1.00
220 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00
230 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

269

Table D.75: SYM-236 average Vn scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms
03 03 0! 03 03 Ph3 3 2 2 Pi+ + + X X XU 0! u u Qh U U Pj

Sl X1 1̂ *1ID cu aj a> a> 0) a> a) <D 0) 0) 0)t3 =3 =3 t3 =3 =3 *3 3 3 3 3X X X x X) X X X X X X Xo o O o o O o o o o o o
Q Q Q Q P Q a D Q Q Q Q

1 0.21 0.39 0.15 0.21 0.25 0.29 0.12 0.25 0.27 0.31 0.20 0.23 0.78
10 0.40 0.59 0.34 0.21 0.46 0.41 0.28 0.38 0.44 0.35 0.29 0.43 0.73
20 0.45 0.65 0.40 0.23 0.54 0.45 0.32 0.42 0.51 0.42 0.33 0.50 0.72
30 0.49 0.66 0.45 0.25 0.57 0.49 0.35 0.46 0.55 0.46 0.35 0.53 0.71
40 0.50 0.66 0.47 0.28 0.58 0.52 0.38 0.48 0.56 0.49 0.38 0.54 0.72
50 0.51 0.64 0.47 0.30 0.57 0.53 0.39 0.49 0.55 0.50 0.38 0.54 0.69
60 0.50 0.63 0.47 0.32 0.56 0.52 0.40 0.49 0.54 0.51 0.39 0.53 0.63
70 0.50 0.61 0.46 0.34 0.54 0.52 0.40 0.48 0.53 0.51 0.39 0.52 0.57
80 0.49 0.60 0.46 0.36 0.53 0.52 0.41 0.47 0.52 0.51 0.40 0.51 0.58
90 0.49 0.59 0.45 0.39 0.52 0.51 0.41 0.47 0.50 0.50 0.40 0.50 0.59

100 0.48 0.57 0.45 0.41 0.51 0.51 0.42 0.46 0.50 0.50 0.40 0.50 0.59
110 0.47 0.56 0.45 0.42 0.50 0.50 0.42 0.46 0.49 0.50 0.41 0.49 0.59
120 0.47 0.54 0.44 0.43 0.49 0.49 0.43 0.45 0.48 0.49 0.41 0.48 0.59
130 0.46 0.52 0.43 0.43 0.47 0.48 0.42 0.44 0.46 0.48 0.41 0.47 0.56
140 0.45 0.49 0.43 0.43 0.46 0.47 0.42 0.44 0.45 0.46 0.41 0.45 0.53
150 0.44 0.47 0.42 0.43 0.44 0.46 0.42 0.43 0.44 0.45 0.40 0.44 0.50
160 0.42 0.45 0.41 0.42 0.43 0.44 0.41 0.42 0.42 0.44 0.40 0.43 0.47
170 0.41 0.43 0.40 0.42 0.41 0.42 0.40 0.41 0.41 0.42 0.39 0.41 0.45
180 0.40 0.41 0.39 0.40 0.40 0.41 0.39 0.40 0.40 0.41 0.39 0.40 0.42
190 0.39 0.40 0.38 0.39 0.39 0.39 0.38 0.38 0.38 0.39 0.38 0.39 0.40
200 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.37 0.37 0.38 0.37 0.37 0.38
210 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.37
220 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
230 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
236 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

270

Table D.76: SYM-236 average V n scores, for existing algorithms and Doddle, on short
queries (Q5).

Algorithms

n bG
lO

SS

co
rn

Co
sin

e
M

ea
su

r

In
ne

r
Pr

od
uc

t

Sk
ew

!
i

• w
CO0)
•fib
a C

W

D
FP

R
O

P

D
ist

.
of

In
f.

A
m

SC
S

A
vI

CT
F

N
SC

Q

D
od

dl
e

SB
R

1 0.79 0.90 0.50 0.85 0.85 0.85 0.81 0.85 0.09 0.07 0.07 0.55 0.21 0.78
10 0.76 0.83 0.56 0.83 0.81 0.82 0.76 0.82 0.10 0.11 0.11 0.61 0.40 0.73
20 0.76 0.83 0.59 0.83 0.81 0.81 0.76 0.81 0.09 0.15 0.15 0.59 0.45 0.72
30 0.74 0.81 0.62 0.81 0.79 0.81 0.75 0.79 0.09 0.18 0.18 0.60 0.49 0.71
40 0.73 0.79 0.63 0.78 0.76 0.79 0.73 0.76 0.09 0.21 0.21 0.60 0.50 0.72
50 0.70 0.78 0.63 0.76 0.74 0.78 0.70 0.74 0.10 0.25 0.25 0.61 0.51 0.69
60 0.68 0.76 0.63 0.74 0.71 0.76 0.68 0.71 0.11 0.28 0.29 0.60 0.50 0.63
70 0.67 0.74 0.62 0.72 0.69 0.74 0.66 0.68 0.12 0.32 0.32 0.59 0.50 0.57
80 0.65 0.72 0.61 0.69 0.67 0.71 0.65 0.66 0.13 0.35 0.35 0.58 0.49 0.58
90 0.63 0.69 0.60 0.67 0.65 0.69 0.64 0.65 0.15 0.37 0.38 0.58 0.49 0.59

100 0.61 0.66 0.59 0.64 0.63 0.66 0.62 0.63 0.17 0.40 0.40 0.57 0.48 0.59
110 0.58 0.63 0.57 0.62 0.61 0.63 0.60 0.61 0.19 0.41 0.42 0.57 0.47 0.59
120 0.56 0.60 0.55 0.59 0.58 0.60 0.58 0.58 0.21 0.43 0.44 0.56 0.47 0.59
130 0.53 0.56 0.53 0.56 0.56 0.56 0.55 0.56 0.23 0.44 0.45 0.55 0.46 0.56
140 0.51 0.53 0.51 0.53 0.53 0.53 0.53 0.53 0.25 0.45 0.45 0.53 0.45 0.53
150 0.48 0.50 0.49 0.50 0.50 0.50 0.50 0.50 0.27 0.45 0.45 0.50 0.44 0.50
160 0.46 0.47 0.47 0.47 0.47 0.48 0.47 0.47 0.29 0.44 0.44 0.48 0.42 0.47
170 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.30 0.43 0.43 0.45 0.41 0.45
180 0.42 0.43 0.42 0.43 0.43 0.43 0.43 0.43 0.32 0.42 0.42 0.43 .0.40 0.42
190 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.33 0.40 0.40 0.40 0.39 0.40
200 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.34 0.38 0.38 0.38 0.37 0.38
210 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.34 0.37 0.37 0.37 0.36 0.37
220 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.35
230 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
236 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

271

Table D.77: SYM-236 average V n scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms
03 03 ®3 03 tLj3 3 p3 3 3 3

^ g g
„ j j j j j

3̂ 3̂ 3̂ 3̂ T3 qh
O O O O O O O O O O O O S n Q Q Q Q Q Q Q Q Q Q Q Q $

1 0.37 0.55 0.29 0.34 0.39 0.46 0.36 0.29 0.28 0.35 0.34 0.37 0.78
10 0.49 0.66 0.40 0.29 0.54 0.50 0.40 0.37 0.42 0.37 0.37 0.53 0.73
20 0.53 0.71 0.49 0.32 0.61 0.53 0.42 0.42 0.50 0.41 0.40 0.57 0.72
30 0.56 0.71 0.53 0.32 0.64 0.55 0.43 0.44 0.54 0.44 0.41 0.60 0.71
40 0.57 0.69 0.54 0.34 0.63 0.57 0.46 0.45 0.55 0.47 0.42 0.61 0.72
50 0.57 0.68 0.53 0.36 0.62 0.58 0.46 0.46 0.54 0.48 0.43 0.60 0.69
60 0.57 0.67 0.53 0.38 0.61 0.58 0.47 0.46 0.53 0.49 0.43 0.59 0.63
70 0.56 0.65 0.53 0.40 0.60 0.58 0.47 0.46 0.53 0.50 0.42 0.58 0.57
80 0.55 0.64 0.52 0.42 0.59 0.56 0.47 0.46 0.53 0.50 0.42 0.57 0.58
90 0.54 0.62 0.51 0.44 0.57 0.55 0.47 0.46 0.52 0.49 0.42 0.55 0.59

100 0.53 0.61 0.50 0.45 0.56 0.55 0.47 0.45 0.51 0.49 0.42 0.54 0.59
110 0.52 0.58 0.49 0.46 0.54 0.53 0.47 0.45 0.50 0.49 0.42 0.53 0.59
120 0.50 0.56 0.48 0.46 0.52 0.52 0.46 0.45 0.49 0.48 0.42 0.51 0.59
130 0.49 0.53 0.46 0.46 0.50 0.50 0.46 0.44 0.48 0.47 0.42 0.49 0.56
140 0.47 0.51 0.45 0.46 0.48 0.49 0.45 0.43 0.46 0.46 0.41 0.47 0.53
150 0.45 0.48 0.43 0.45 0.46 0.47 0.44 0.42 0.44 0.45 0.41 0.46 0.50
160 0.44 0.46 0.42 0.44 0.44 0.45 0.43 0.41 0.43 0.43 0.40 0.44 0.47
170 0.42 0.44 0.41 0.42 0.42 0.43 0.41 0.40 0.41 0.42 0.40 0.42 0.45
180 0.41 0.42 0.39 0.41 0.41 0.42 0.40 0.39 0.40 0.41 0.39 0.41 0.42
190 0.39 0.40 0.38 0.40 0.39 0.40 0.39 0.38 0.39 0.39 0.38 0.39 0.40
200 0.38 0.38 0.37 0.38 0.38 0.38 0.37 0.37 0.37 0.38 0.37 0.38 0.38
210 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.37
220 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
230 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
236 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

272

Table D.78: SYM-236 average Vn scores, for existing algorithms and Doddle, on long queries
(Q z) .

Algorithms

I » 1 * k ! § ° e o- 3
x i U U ^ c ^ f i U Q Q on < £ Q co

1 0.66 0.89 0.84 0.90 0.81 0.89 0.83 0.84 0.06 0.22 0.32 0.78 0.37 0.78
10 0.67 0.84 0.80 0.86 0.81 0.86 0.79 0.83 0.07 0.25 0.33 0.75 0.49 0.73
20 0.64 0.82 0.79 0.84 0.81 0.85 0.78 0.82 0.09 0.30 0.39 0.75 0.53 0.72
30 0.65 0.81 0.78 0.82 0.79 0.84 0.77 0.80 0.09 0.33 0.43 0.73 0.56 0.71
40 0.62 0.79 0.77 0.80 0.77 0.81 0.74 0.77 0.10 0.36 0.45 0.72 0.57 0.72
50 0.58 0.77 0.76 0.78 0.75 0.79 0.71 0.75 0.11 0.39 0.48 0.71 0.57 0.69
60 0.57 0.75 0.74 0.76 0.73 0.78 0.68 0.72 0.12 0.42 0.49 0.69 0.57 0.63
70 0.55 0.73 0.72 0.74 0.71 0.75 0.66 0.70 0.12 0.44 0.50 0.67 0.56 0.57
80 0.52 0.71 0.70 0.71 0.69 0.73 0.65 0.68 0.13 0.46 0.51 0.65 0.55 0.58
90 0.52 0.68 0.68 0.69 0.67 0.71 0.63 0.66 0.15 0.47 0.52 0.64 0.54 0.59

100 0.50 0.66 0.65 0.66 0.65 0.67 0.62 0.64 0.16 0.48 0.52 0.62 0.53 0.59
110 0.48 0.63 0.62 0.63 0.62 0.63 0.60 0.62 0.18 0.49 0.52 0.60 0.52 0.59
120 0.46 0.60 0.59 0.60 0.59 0.60 0.58 0.59 0.19 0.49 0.52 0.58 0.50 0.59
130 0.44 0.57 0.56 0.56 0.56 0.56 0.55 0.56 0.21 0.49 0.51 0.56 0.49 0.56
140 0.43 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.22 0.49 0.50 0.53 0.47 0.53
150 0.41 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.24 0.48 0.49 0.50 0.45 0.50
160 0.39 0.47 0.47 0.47 0.47 0.48 0.47 0.47 0.25 0.46 0.47 0.48 0.44 0.47
170 0.38 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.26 0.44 0.45 0.45 0.42 0.45
180 0.37 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.27 0.42 0.43 0.43 0.41 0.42
190 0.35 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.29 0.40 0.40 0.40 0.39 0.40
200 0.35 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.30 0.38 0.38 0.38 0.38 0.38
210 0.33 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.31 0.37 0.37 0.37 0.36 0.37
220 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.32 0.35 0.35 0.35 0.35 0.35
230 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
236 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

273

Table D.79: SYM-236 average precision within the top 5 collections, and the number of
queries (out of 100) for which the first ranked collection is correct, for the various config
urations of the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

Doddle 0.10 0.12 2 (2%) 6 (6%)
Doddle_RC 0.14 0.17 7 (7%) 12 (12%)
Doddle_RP 0.09 0.10 1 (1%) 6 (6%)
Doddle_RF 0.04 0.05 0 (0%) 0 (0%)
Doddle_RC+RP 0.11 0.13 3 (3%) 11 (U%)
Doddle_RC+RF 0.10 0.12 3 (3%) 5 (5%)
Doddle_RP+RF 0.07 0.10 0 (0%) 5 (5%)
Doddle_x 0.09 0.08 4 (4%) 2 (2%)
Doddle_RCxRP 0.10 0.10 6 (6%) 5 (5%)
Doddle_RCxRF 0.08 0.07 4 (4%) 2 (2%)
Doddle_RPxRF 0.08 0.08 3 (3%) 3 (3%)
Doddle.W 0.11 0.13 2 (2%) 7 (7%)
SBR 0.03 0.03 2 (2%) 2 (2%)

Table D.80: SYM-236 average precision within the top 5 collections, and the number of
queries (out of 100) for which the first ranked collection is correct, for existing algorithms
and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

bGlOSS 0.18 0.11 8 (8%) 2 (2%)
CORI 0.17 0.18 9 (9%) 12 (12%)
Cosine Measure 0.09 0.17 3 (3%) 13 (13%)
Inner Product 0.14 0.17 8 (8%) 13 (13%)
Skew 0.14 0.16 8 (8%) 9 (9%)
Highest-available Similarity 0.14 0.17 6 (6%) 15 (15%)
CW 0.09 0.10 3 (3%) 7 (7%)
DFPROP 0.15 0.16 8 (8%) 9 (9%)
Distribution of Informative Amt 0.00 0.01 0 (0%) 0 (0%)
SCS 0.00 0.01 0 (0%) 0 (0%)
AvICTF 0.00 0.01 0 (0%) 1 (1%)
NSCQ 0.03 0.06 3 (3%) 5 (5%)
Doddle 0.10 0.12 2 (2%) 6 (6%)
SBR 0.03 0.03 2 (2%) 2 (2%)

274

D.4. UDC-236

D A UDC-236

Table D.81: UDC-236 average Spearman rank correlations, for the various configurations of
the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Qs Ql Qs Qi

Doddle 0.39 0.43 -0.04 -0.07
Doddle_RC 0.42 0.48 - 0.12 -0.16
Doddle_RP 0.41 0.45 -0.15 -0.18
Doddle_RF 0.21 0.31 0.24 0.20
Doddle_RC+RP 0.42 0.47 -0.13 -0.17
Doddle_RC+RF 0.36 0.42 0.04 0.01
Doddle_RP+RF 0.36 0.41 - 0.02 -0.04
Doddle_x 0.35 0.37 - 0.02 - 0.02
Doddle_RCxRP 0.38 0.41 - 0.11 - 0.12
Doddle_RCxRF 0.36 0.39 0.03 0.03
Doddle_RPxRF 0.35 0.39 - 0.01 - 0.02
Doddle_W 0.40 0.45 -0.07 - 0.11
SBR -0.21 -0.21 — —

275

Table D.82: UDC-236 average Spearman rank correlations, for existing algorithms and Dod
dle, comparing algorithm-produced rankings to FsBR and SBR.

FsBR SBR

Algorithms Qs Ql Qs Qi

bGlOSS 0.43 0.24 -0.16 -0.07
CORI 0.48 0.47 -0.30 - 0.20
Cosine Measure 0.32 0.51 -0.17 - 0.22
Inner Product 0.46 0.51 - 0.21 -0.23
Skew 0.42 0.45 -0.15 -0.17
Highest-available Similarity 0.47 0.53 -0.23 -0.28
CW 0.36 0.36 -0.14 -0.15
DFPROP 0.40 0.44 -0.13 -0.17
Distribution of Informative Amt -0.30 -0.26 0.19 0.11
SCS -0.33 -0.16 0.10 0.08
AvICTF -0.33 -0.03 0.10 0.01
NSCQ 0.04 0.31 0.16 0.05
Doddle 0.39 0.43 -0.04 -0.07
SBR -0.21 -0.21 — —

276

A
lg

or
ith

m
s

Table D.83: UDC-236 Z-Test results, showing whether the differences between Spearman
correlations are significant (a / shows there is significant difference in performance), exe
cuted over Short queries.

H9S

m ~3ipp°a
JHxdH~3IPP°a
dHxDH_3lPP°a
dHxDH_9IPP°Q

x- ajppoa

dH+dH"9IPP°a
dH+3H_9IPP<>a
dH+DH_9IPP°Q

TH_9ipp°a

dH~9IPPO(3

3H_9IPP°Q
ajppoa

Odsn

dlDIAV

SDS
juiy juijo JSTQ

dOHddd
AAD

uns jreAB-jsaqSiH
Ma ŝ

pnpo ij J3UUI
9inSB3pJ 9UTS03

MOD
ssoioq

s s

s s s s s s s s s s s s s

s s s s s s s s
s s s s s s s s
S S S S S S S S
s s s s s s s s

s s s s s s s s s s s
s s s s s s s s s s s s s
s s s s s s s s s s s s s
s s s s s s s s s s s s s

s

a s . a a oS
X Xa a

<D 03 <U <U
O' =3 =3 =3 =3

I I I I I I I I I<u <u a>
^ =3 =3

ed
X

0) 0)

w U u t) T 3 ' d ’0 ’0 ’d ' 0 T 3 T 3 ’a ,a T i
r j ^ C / 3 0 0 0 0 0 0 0 0 0 0 0 0 P ^ Z Q Q Q Q Q Q Q Q Q Q O Q

277

A
lg

or
ith

m
s

Table D.84: UDC-236 Z-Test results, showing whether the differences between Spearman
correlations are significant (a / shows there is significant difference in performance), exe
cuted over Long queries.

Has

M"9IPP°d

dHxdH_9IPP°d

dHxDH~9IPP°d

dHxDH_9IPP°d
x"9tppoa

dH+dH_9TPP°d

dH+3H_9IPP°d

dH+DH~9IPP°d
jH“aiPPoa

dH_9ippoa
DH_9IPP0a

9iPPoa

Odsn

dID W
SDS

ju iv j u i p js ia

dOHdaa
AAD

•mis jreAB-jsaqSiH
M95JS

p n p o ij i9uuj
9jnSB9J ̂9UIS03

raoD
SSOIDfi

S S S S S S S S s s s s s s s s s s s s s

s

s

s s s s s s

s s s s s s
s s
s s
s s s s s s s s s s s s s s s s s s s s s s

s s s

s s s s s s s s s s s s s s

Xn 22 3 ! o o o
S U U

a a
PL, 0)
y u -a w o
% £ Q

a s s
+ + + U U A
CP. PP. PP

§2
x
UPP

0) D OJ
T3 T3 ’O o o o
Q Q Q

278

SB
R

Table D.85: UDC-236 average Blest and Da Costa weighted rank correlations, for the various
configurations of the Doddle algorithm, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Qs Ql Qs Ql

Doddle 0.45 0.50 0.43 0.47
Doddle_RC 0.46 0.52 0.46 0.52
Doddle_RP 0.48 0.52 0.45 0.49
Doddle_RF 0.27 0.37 0.25 0.33
Doddle_RC+RP 0.48 0.52 0.46 0.51
Doddle_RC+RF 0.42 0.48 0.40 0.45
Doddle_RP+RF 0.44 0.48 0.40 0.44
Doddle_x 0.41 0.42 0.40 0.41
Doddle_RCxRP 0.43 0.46 0.43 0.45
Doddle_RCxRF 0.41 0.45 0.40 0.43
Doddle_RPxRF 0.43 0.46 0.39 0.42
Doddle_W 0.47 0.51 0.44 0.49
SBR -0 .17 -0 .17 -0 .12 -0.12

Table D.86: UDC-236 average Blest and Da Costa weighted rank correlations, for existing
algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Blest Da Costa

Algorithms Qs Ql Qs Qi

bGlOSS 0.54 0.47 0.50 0.52
CORI 0.52 0.50 0.52 0.51
Cosine Measure 0.34 0.55 0.36 0.55
Inner Product 0.52 0.57 0.50 0.55
Skew 0.49 0.52 0.46 0.49
Highest-available Similarity 0.46 0.53 0.50 0.57
CW 0.44 0.45 0.39 0.40
DFPROP 0.47 0.51 0.44 0.48
Distribution of Informative Amt -0.33 -0.28 - 0.22 -0.19
SCS -0.36 -0.17 -0.28 - 0.11
AvICTF -0.35 -0.03 -0.27 0.01
NSCQ 0.04 0.33 0.08 0.34
Doddle 0.45 0.50 0.43 0.47
SBR -0 .17 -0 .17 -0.12 -0 .12

279

Table D.87: UDC-236 average lZn scores, for the various configurations of the Doddle algo
rithm, on short queries (Q5).

Algorithms
Uj tU Ph Uh UhS 2 05 2 2 2+ + + X X X+ + + X X X

U u u O h U U
r t l * 1

X
1 * 1 *1 n<u <u O) <u ID <u a> a> a> a> 0) a>

=3 =3 =3 =3 3 3 3 3 3 3 3 3d d d d d d d d d d d do o o o o o o o o o o o CO
n Q Q Q Q Q Q Q Q Q Q Q Q CO

1 0.24 0.37 0.29 0.08 0.35 0.22 0.15 0.23 0.31 0.21 0.22 0.30 0.08
10 0.34 0.42 0.36 0.13 0.41 0.31 0.26 0.33 0.37 0.31 0.26 0.37 0.07
20 0.42 0.48 0.43 0.20 0.47 0.39 0.34 0.39 0.44 0.39 0.35 0.44 0.11
30 0.48 0.53 0.48 0.29 0.52 0.46 0.44 0.46 0.49 0.46 0.43 0.50 0.18
40 0.52 0.56 0.53 0.37 0.55 0.51 0.49 0.50 0.52 0.51 0.49 0.54 0.22
50 0.56 0.58 0.57 0.43 0.58 0.54 0.54 0.54 0.55 0.54 0.54 0.57 0.26
60 0.60 0.61 0.60 0.48 0.61 0.58 0.58 0.58 0.59 0.58 0.58 0.61 0.29
70 0.63 0.64 0.64 0.52 0.65 0.61 0.62 0.61 0.62 0.61 0.62 0.64 0.33
80 0.66 0.68 0.67 0.56 0.68 0.65 0.65 0.65 0.65 0.65 0.65 0.67 0.36
90 0.69 0.70 0.70 0.59 0.71 0.68 0.69 0.68 0.69 0.68 0.68 0.70 0.37

100 0.72 0.73 0.73 0.63 0.74 0.71 0.72 0.70 0.72 0.71 0.71 0.73 0.37
n o 0.75 0.76 0.76 0.67 0.76 0.74 0.75 0.73 0.75 0.74 0.74 0.76 0.39
120 0.78 0.79 0.79 0.70 0.79 0.77 0.77 0.77 0.78 0.77 0.77 0.78 0.41
130 0.80 0.81 0.81 0.74 0.82 0.79 0.80 0.79 0.80 0.79 0.80 0.81 0.44
140 0.83 0.84 0.84 0.77 0.84 0.82 0.83 0.82 0.83 0.82 0.83 0.83 0.47
150 0.86 0.86 0.87 0.80 0.87 0.85 0.86 0.85 0.85 0.85 0.85 0.86 0.50
160 0.88 0.89 0.89 0.83 0.89 0.88 0.88 0.87 0.88 0.87 0.88 0.89 0.58
170 0.91 0.91 0.91 0.86 0.92 0.90 0.90 0.89 0.91 0.89 0.90 0.91 0.66
180 0.93 0.93 0.93 0.89 0.94 0.92 0.93 0.92 0.93 0.92 0.92 0.93 0.71
190 0.95 0.95 0.95 0.92 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.95 0.76
200 0.96 0.97 0.96 0.94 0.97 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.80
210 0.97 0.98 0.97 0.96 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.85
220 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.90
230 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

280

Table D.88: UDC-236 average 7Zn scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

C/3
C/3
O
c3

§ ■(->

a
<u

s O
»H03 O h

2 .3CA
lH0)

o o s
u U IC/3

ID
W>

OhsĉPx
Q

C/3U
C/3

h O' =3y u
< £ Q I03

1 0.36 0.35 0.22 0.30 0.27 0.35 0.26 0.26 0.02 0.02 0.02 0.10 0.24 0.08
10 0.38 0.42 0.31 0.38 0.36 0.42 0.33 0.34 0.04 0.03 0.03 0.15 0.34 0.07
20 0.45 0.48 0.36 0.45 0.43 0.48 0.38 0.42 0.06 0.05 0.05 0.20 0.42 0.11
30 0.51 0.52 0.40 0.51 0.49 0.52 0.43 0.48 0.07 0.06 0.06 0.25 0.48 0.18
40 0.55 0.56 0.43 0.55 0.53 0.56 0.48 0.52 0.09 0.07 0.07 0.28 0.52 0.22
50 0.58 0.60 0.47 0.58 0.57 0.59 0.52 0.56 0.11 0.09 0.09 0.31 0.56 0.26
60 0.62 0.62 0.51 0.62 0.61 0.62 0.56 0.60 0.13 0.11 0.11 0.34 0.60 0.29
70 0.65 0.66 0.55 0.66 0.64 0.65 0.60 0.63 0.16 0.14 0.14 0.37 0.63 0.33
80 0.69 0.70 0.58 0.69 0.67 0.68 0.63 0.67 0.19 0.16 0.16 0.40 0.66 0.36
90 0.72 0.73 0.62 0.72 0.71 0.71 0.67 0.70 0.22 0.20 0.20 0.44 0.69 0.37

100 0.75 0.76 0.65 0.75 0.73 0.74 0.70 0.73 0.26 0.23 0.23 0.47 0.72 0.37
110 0.77 0.79 0.68 0.78 0.76 0.77 0.73 0.76 0.30 0.27 0.27 0.51 0.75 0.39
120 0.80 0.82 0.71 0.81 0.79 0.80 0.76 0.79 0.34 0.32 0.32 0.54 0.78 0.41
130 0.83 0.84 0.74 0.85 0.82 0.83 0.79 0.81 0.38 0.36 0.36 0.58 0.80 0.44
140 0.86 0.87 0.77 0.87 0.85 0.86 0.82 0.84 0.42 0.40 0.40 0.62 0.83 0.47
150 0.88 0.89 0.80 0.89 0.88 0.88 0.85 0.87 0.46 0.45 0.45 0.66 0.86 0.50
160 0.91 0.91 0.84 0.91 0.90 0.90 0.88 0.89 0.51 0.50 0.50 0.70 0.88 0.58
170 0.93 0.93 0.87 0.93 0.92 0.92 0.90 0.91 0.56 0.55 0.56 0.74 0.91 0.66
180 0.94 0.95 0.90 0.95 0.94 0.94 0.93 0.93 0.61 0.61 0.61 0.78 0.93 0.71
190 0.96 0.96 0.92 0.96 0.96 0.95 0.94 0.95 0.67 0.66 0.67 0.82 0.95 0.76
200 0.97 0.97 0.95 0.97 0.97 0.97 0.96 0.96 0.74 0.73 0.73 0.86 0.96 0.80
210 0.98 0.98 0.97 0.98 0.98 0.97 0.97 0.97 0.81 0.80 0.81 0.91 0.97 0.85
220 0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.99 0.89 0.88 0.88 0.95 0.99 0.90
230 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.95 0.95 0.96 0.98 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

281

Table D.89: UDC-236 average 7Zn scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

U
S l S ia> a> a>

=3 =3 =3 *3X X X Xo O O O
Q Q Q Q

Algorithms

—a a"+ + +
U U

r t l S | X ■
a> a> <u aj

* 3 * 3X X X XJO O o o
Q Q Q Q

6 a 3 S ps
X X X

a a a -S
0)' 011 1)' «'
xl *3 *3 *3X TJ X X CCO O O O SQ Q Q Q CO

1 0.24 0.32 0.27 0.09 0.31 0.18 0.17 0.19 0.26 0.17 0.17 0.28 0.08
10 0.36 0.44 0.40 0.15 0.42 0.32 0.29 0.31 0.37 0.29 0.27 0.40 0.07
20 0.43 0.50 0.48 0.21 0.50 0.41 0.37 0.39 0.44 0.38 0.35 0.47 0.11
30 0.50 0.55 0.53 0.31 0.54 0.48 0.45 0.45 0.50 0.45 0.43 0.53 0.18
40 0.55 0.58 0.56 0.39 0.58 0.53 0.51 0.49 0.55 0.51 0.49 0.57 0.22
50 0.59 0.62 0.60 0.46 0.61 0.57 0.56 0.54 0.58 0.55 0.54 0.60 0.26
60 0.62 0.64 0.63 0.51 0.64 0.61 0.61 0.59 0.61 0.59 0.59 0.63 0.29
70 0.65 0.68 0.66 0.56 0.67 0.64 0.64 0.62 0.64 0.63 0.63 0.66 0.33
80 0.69 0.71 0.69 0.61 0.70 0.67 0.68 0.65 0.67 0.66 0.66 0.70 0.36
90 0.72 0.74 0.72 0.65 0.73 0.71 0.71 0.68 0.70 0.70 0.70 0.73 0.37

100 0.75 0.77 0.75 0.69 0.76 0.74 0.74 0.72 0.74 0.73 0.74 0.76 0.37
110 0.78 0.80 0.78 0.72 0.79 0.77 0.77 0.75 0.77 0.76 0.77 0.79 0.39
120 0.81 0.83 0.81 0.76 0.82 0.80 0.80 0.78 0.79 0.79 0.80 0.81 0.41
130 0.83 0.85 0.83 0.79 0.84 0.83 0.83 0.81 0.82 0.82 0.82 0.84 0.44
140 0.86 0.87 0.86 0.82 0.87 0.86 0.85 0.84 0.85 0.85 0.85 0.86 0.47
150 0.88 0.90 0.88 0.86 0.89 0.88 0.88 0.86 0.87 0.87 0.87 0.89 0.50
160 0.91 0.92 0.90 0.88 0.92 0.90 0.90 0.88 0.90 0.89 0.90 0.91 0.58
170 0.93 0.94 0.92 0.91 0.93 0.92 0.92 0.91 0.92 0.92 0.92 0.93 0.66
180 0.95 0.96 0.94 0.93 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.95 0.71
190 0.96 0.97 0.96 0.95 0.97 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.76
200 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.80
210 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.85
220 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.90
230 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

282

Table D.90: UDC-236 average 7Zn scores, for existing algorithms and Doddle, on long queries
(Qi)-

Algorithms

1 0.27 0.35 0.38 0.41 0.26 0.39 0.30 0.27 0.04 0.03 0.06 0.15 0.24 0.08
10 0.33 0.43 0.44 0.45 0.38 0.46 0.32 0.39 0.07 0.06 0.09 0.24 0.36 0.07
20 0.37 0.47 0.49 0.52 0.46 0.52 0.39 0.47 0.09 0.08 0.13 0.31 0.43 0.11
30 0.40 0.52 0.54 0.56 0.52 0.56 0.45 0.52 0.11 0.11 0.17 0.36 0.50 0.18
40 0.45 0.55 0.58 0.60 0.57 0.60 0.49 0.56 0.13 0.14 0.20 0.40 0.55 0.22
50 0.48 0.59 0.62 0.63 0.60 0.64 0.52 0.59 0.15 0.17 0.24 0.45 0.59 0.26
60 0.51 0.62 0.65 0.66 0.63 0.67 0.55 0.63 0.17 0.20 0.27 0.50 0.62 0.29
70 0.55 0.66 0.69 0.69 0.66 0.70 0.59 0.66 0.20 0.23 0.30 0.53 0.65 0.33
80 0.58 0.69 0.72 0.72 0.69 0.73 0.63 0.69 0.22 0.26 0.34 0.57 0.69 0.36
90 0.62 0.72 0.76 0.75 0.72 0.76 0.67 0.72 0.26 0.30 0.37 0.61 0.72 0.37

100 0.65 0.75 0.79 0.78 0.76 0.79 0.70 0.75 0.29 0.34 0.41 0.64 0.75 0.37
110 0.68 0.77 0.81 0.80 0.78 0.81 0.73 0.78 0.33 0.38 0.45 0.68 0.78 0.39
120 0.72 0.80 0.83 0.83 0.81 0.84 0.77 0.81 0.37 0.42 0.50 0.72 0.81 0.41
130 0.76 0.83 0.86 0.86 0.84 0.87 0.80 0.83 0.40 0.46 0.54 0.75 0.83 0.44
140 0.78 0.86 0.88 0.88 0.86 0.89 0.82 0.86 0.44 0.50 0.58 0.79 0.86 0.47
150 0.81 0.88 0.90 0.91 0.89 0.91 0.85 0.88 0.49 0.55 0.62 0.82 0.88 0.50
160 0.85 0.91 0.92 0.93 0.91 0.92 0.88 0.90 0.53 0.59 0.66 0.85 0.91 0.58
170 0.87 0.93 0.94 0.94 0.93 0.94 0.91 0.92 0.58 0.64 0.71 0.88 0.93 0.66
180 0.89 0.95 0.95 0.96 0.95 0.96 0.93 0.94 0.63 0.69 0.74 0.90 0.95 0.71
190 0.91 0.96 0.97 0.97 0.96 0.97 0.95 0.96 0.68 0.74 0.79 0.92 0.96 0.76
200 0.93 0.97 0.98 0.98 0.97 0.98 0.96 0.97 0.74 0.79 0.83 0.94 0.97 0.80
210 0.94 0.98 0.98 0.99 0.98 0.98 0.97 0.98 0.81 0.85 0.88 0.96 0.98 0.85
220 0.96 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.88 0.91 0.94 0.98 0.99 0.90
230 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.95 0.96 0.98 0.99 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

283

Table D.91: UDC-236 average 1Zn scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms

a a
X X

U P h

P h P h >I I Icu <u a)
^ ^^ T3 cdo o o 3
Q Q P S

+ + + X

U u U P h U2 ■
r t l

PS
1 S| X

10) 0) 0) 0) a> aj CD a> <D
*3 =3 =3 =3 *3 3■o T3 73 73 73 73 73 73 73o O O O O O O o OQ P P P P Q Q Q Q

1 0.01 0.02 0.01 0.00 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.00
10 0.10 0.13 0.10 0.04 0.12 0.09 0.07 0.09 0.11 0.09 0.08 0.11 0.02
20 0.19 0.22 0.20 0.09 0.22 0.18 0.15 0.18 0.20 0.18 0.16 0.21 0.05
30 0.28 0.31 0.28 0.17 0.31 0.27 0.26 0.27 0.29 0.27 0.25 0.29 0.10
40 0.36 0.38 0.36 0.26 0.38 0.35 0.34 0.35 0.36 0.35 0.34 0.37 0.15
50 0.43 0.44 0.43 0.33 0.44 0.41 0.41 0.41 0.42 0.41 0.41 0.43 0.19
60 0.49 0.50 0.49 0.39 0.50 0.47 0.48 0.47 0.48 0.47 0.47 0.49 0.23
70 0.54 0.55 0.55 0.45 0.55 0.53 0.53 0.53 0.53 0.53 0.53 0.55 0.28
80 0.59 0.61 0.60 0.50 0.60 0.58 0.58 0.58 0.58 0.58 0.58 0.60 0.32
90 0.64 0.65 0.65 0.55 0.65 0.63 0.63 0.62 0.63 0.63 0.63 0.65 0.33

100 0.68 0.69 0.69 0.60 0.69 0.67 0.68 0.66 0.67 0.67 0.67 0.69 0.35
n o 0.72 0.73 0.73 0.65 0.73 0.71 0.72 0.70 0.72 0.71 0.71 0.73 0.37
120 0.76 0.77 0.77 0.69 0.77 0.75 0.75 0.75 0.76 0.75 0.75 0.76 0.40
130 0.79 0.80 0.80 0.72 0.80 0.78 0.79 0.78 0.79 0.78 0.78 0.79 0.43
140 0.82 0.83 0.84 0.76 0.83 0.81 0.82 0.81 0.82 0.81 0.82 0.83 0.47
150 0.85 0.86 0.87 0.80 0.86 0.85 0.85 0.84 0.85 0.84 0.85 0.86 0.50
160 0.88 0.89 0.89 0.83 0.89 0.87 0.88 0.87 0.88 0.87 0.88 0.88 0.58
170 0.91 0.91 0.91 0.86 0.92 0.90 0.90 0.89 0.91 0.89 0.90 0.91 0.66
180 0.93 0.93 0.93 0.89 0.94 0.92 0.93 0.92 0.93 0.92 0.92 0.93 0.71
190 0.95 0.95 0.95 0.92 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.95 0.76
200 0.96 0.97 0.96 0.94 0.97 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.80
210 0.97 0.98 0.97 0.96 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.85
220 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.90
230 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

284

Table D.92: UDC-236 average 7Zn scores, for existing algorithms and Doddle, on shoTt
queries (Qs).

Algorithms

C/5C/2
O
3X>

02
9
CO

02

s02
.3coOU

(J3
T3O

I
C/2

C/2

•a
2

Oh
sCIhUh
Q Q

C/2UC/2

Li. 02
h cy =3y u -§
^ C/2 O
-5 £ Q

SS
C/2

1 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00
10 0.11 0.12 0.09 0.11 0.10 0.12 0.10 0.10 0.01 0.01 0.01 0.04 0.10 0.02
20 0.21 0.22 0.17 0.21 0.20 0.22 0.18 0.19 0.03 0.02 0.02 0.09 0.19 0.05
30 0.29 0.31 0.23 0.30 0.28 0.31 0.25 0.28 0.04 0.03 0.03 0.15 0.28 0.10
40 0.37 0.38 0.29 0.37 0.36 0.38 0.33 0.35 0.06 0.05 0.05 0.19 0.36 0.15
50 0.44 0.45 0.35 0.44 0.43 0.45 0.39 0.43 0.08 0.06 0.06 0.24 0.43 0.19
60 0.50 0.51 0.41 0.51 0.49 0.51 0.45 0.49 0.11 0.09 ~ 0.09 0.27 0.49 0.23
70 0.56 0.57 0.47 0.56 0.55 0.56 0.51 0.54 0.13 0.11 0.12 0.31 0.54 0.28
80 0.61 0.62 0.52 0.61 0.60 0.61 0.56 0.60 0.16 0.14 0.15 0.36 0.59 0.32
90 0.66 0.67 0.57 0.66 0.65 0.65 0.61 0.64 0.20 0.18 0.18 0.40 0.64 0.33

100 0.70 0.71 0.61 0.71 0.69 0.70 0.66 0.69 0.24 0.22 0.22 0.44 0.68 0.35
110 0.74 0.76 0.65 0.75 0.73 0.74 0.70 0.73 0.28 0.26 0.26 0.49 0.72 0.37
120 0.78 0.80 0.69 0.79 0.77 0.78 0.74 0.77 0.33 0.31 0.31 0.53 0.76 0.40
130 0.82 0.83 0.73 0.83 0.81 0.82 0.77 0.80 0.37 0.35 0.35 0.57 0.79 0.43
140 0.85 0.86 0.76 0.86 0.84 0.85 0.81 0.83 0.41 0.40 0.40 0.61 0.82 0.47
150 0.88 0.89 0.80 0.89 0.87 0.88 0.84 0.86 0.46 0.45 0.45 0.65 0.85 0.50
160 0.90 0.91 0.84 0.91 0.90 0.90 0.87 0.89 0.51 0.50 0.50 0.69 0.88 0.58
170 0.93 0.93 0.87 0.93 0.92 0.92 0.90 0.91 0.56 0.55 0.56 0.74 0.91 0.66
180 0.94 0.95 0.90 0.95 0.94 0.94 0.93 0.93 0.61 0.61 0.61 0.78 0.93 0.71
190 0.96 0.96 0.92 0.96 0.96 0.95 0.94 0.95 0.67 0.66 0.67 0.82 0.95 0.76
200 0.97 0.97 0.95 0.97 0.97 0.97 0.96 0.96 0.74 0.73 0.73 0.86 0.96 0.80
210 0.98 0.98 0.97 0.98 0.98 0.97 0.97 0.97 0.81 0.80 0.81 0.91 0.97 0.85
220 0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.99 0.89 0.88 0.88 0.95 0.99 0.90
230 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.95 0.95 0.96 0.98 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

285

Table D.93: UDC-236 average 1Zn scores, for the various configurations of the Doddle algo
rithm, on long queries (Qi).

Algorithms

a a a a a a
+ + + X X X

u u U U U
S | *1 S |

X 1 *10) a> CD 0) 0) (D CD a> CD a> ID (D
t 3 53 t3 t3 =3 9T3 T3 na T3 T3 T3 TJ T3 T3 T3 T3O O O o O O O O O o O On Q Q Q Q Q Q Q Q Q Q Q Q

1 0.01 0.02 0.01 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00
10 0.11 0.13 0.12 0.04 0.12 0.10 0.09 0.09 0.11 0.08 0.08 0.12 0.02
20 0.20 0.23 0.22 0.10 0.23 0.19 0.17 0.18 0.20 0.18 0.17 0.22 0.05
30 0.29 0.32 0.31 0.19 0.32 0.28 0.27 0.26 0.29 0.27 0.25 0.31 0.10
40 0.38 0.40 0.38 0.26 0.40 0.36 0.35 0.34 0.37 0.35 0.34 0.39 0.15
50 0.45 0.47 0.45 0.35 0.46 0.44 0.43 0.41 0.44 0.42 0.41 0.46 0.19
60 0.50 0.52 0.51 0.42 0.52 0.50 0.49 0.48 0.49 0.48 0.48 0.51 0.23
70 0.56 0.58 0.56 0.48 0.58 0.55 0.55 0.53 0.55 0.54 0.54 0.57 0.28
80 0.62 0.63 0.62 0.54 0.63 0.60 0.61 0.58 0.60 0.59 0.60 0.62 0.32
90 0.66 0.68 0.67 0.60 0.68 0.65 0.66 0.63 0.65 0.64 0.65 0.67 0.33

100 0.71 0.73 0.71 0.65 0.72 0.70 0.70 0.68 0.70 0.69 0.69 0.72 0.35
n o 0.75 0.77 0.75 0.70 0.76 0.74 0.74 0.72 0.74 0.73 0.74 0.76 0.37
120 0.79 0.80 0.79 0.74 0.80 0.78 0.78 0.76 0.77 0.77 0.78 0.79 0.40
130 0.82 0.84 0.82 0.78 0.83 0.82 0.81 0.80 0.81 0.81 0.81 0.82 0.43
140 0.85 0.87 0.85 0.82 0.86 0.85 0.84 0.83 0.84 0.84 0.84 0.85 0.47
150 0.88 0.90 0.88 0.85 0.89 0.88 0.87 0.86 0.87 0.87 0.87 0.88 0.50
160 0.90 0.92 0.90 0.88 0.91 0.90 0.90 0.88 0.89 0.89 0.89 0.91 0.58
170 0.93 0.94 0.92 0.91 0.93 0.92 0.92 0.91 0.92 0.92 0.92 0.93 0.66
180 0.95 0.96 0.94 0.93 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.95 0.71
190 0.96 0.97 0.96 0.95 0.97 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.76
200 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.80
210 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.85
220 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.90
230 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

286

Table D.94: UDC-236 average 1Zn scores, for existing algorithms and Doddle, on long queries
(Q/)-

Algorithms

1 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.00
10 0.10 0.13 0.13 0.13 0.11 0.14 0.09 0.12 0.02 0.02 0.03 0.07 0.11 0.02
20 0.17 0.22 0.23 0.24 0.21 0.24 0.18 0.22 0.04 0.04 0.06 0.14 0.20 0.05
30 0.23 0.30 0.31 0.33 0.30 0.33 0.26 0.30 0.06 0.07 0.10 0.21 0.29 0.10
40 0.30 0.38 0.40 0.41 0.38 0.41 0.33 0.38 0.09 0.10 0.13 0.27 0.38 0.15
50 0.36 0.44 0.47 0.48 0.45 0.48 0.39 0.45 0.11 0.13 0.18 0.34 0.45 0.19
60 0.41 0.50 0.53 0.54 0.51 0.54 0.45 0.51 0.14 0.16 0.22 0.40 0.50 0.23
70 0.47 0.56 0.59 0.59 0.57 0.60 0.51 0.56 0.17 0.20 0.26 0.46 0.56 0.28
80 0.52 0.62 0.65 0.64 0.62 0.65 0.56 0.62 0.20 0.23 0.30 0.51 0.62 0.32
90 0.57 0.67 0.70 0.69 0.67 0.70 0.62 0.66 0.24 0.27 0.34 0.56 0.66 0.33

100 0.61 0.71 0.74 0.73 0.71 0.74 0.66 0.71 0.28 0.32 0.39 0.61 0.71 0.35
n o 0.66 0.74 0.78 0.77 0.75 0.78 0.71 0.75 0.31 0.36 0.43 0.65 0.75 0.37
120 0.70 0.78 0.81 0.81 0.79 0.82 0.75 0.78 0.36 0.41 0.49 0.70 0.79 0.40
130 0.74 0.82 0.84 0.84 0.82 0.85 0.78 0.82 0.39 0.46 0.53 0.74 0.82 0.43
140 0.78 0.85 0.87 0.87 0.86 0.88 0.81 0.85 0.44 0.50 0.58 0.78 0.85 0.47
150 0.81 0.88 0.90 0.90 0.88 0.90 0.85 0.88 0.48 0.54 0.62 0.81 0.88 0.50
160 0.84 0.91 0.92 0.92 0.91 0.92 0.88 0.90 0.53 0.59 0.66 0.85 0.90 0.58
170 0.87 0.93 0.94 0.94 0.93 0.94 0.91 0.92 0.58 0.64 0.71 0.88 0.93 0.66
180 0.89 0.95 0.95 0.96 0.95 0.96 0.93 0.94 0.63 0.69 0.74 0.90 0.95 0.71
190 0.91 0.96 0.97 0.97 0.96 0.97 0.95 0.96 0.68 0.74 0.79 0.92 0.96 0.76
200 0.93 0.97 0.98 0.98 0.97 0.98 0.96 0.97 0.74 0.79 0.83 0.94 0.97 0.80
210 0.94 0.98 0.98 0.99 0.98 0.98 0.97 0.98 0.81 0.85 0.88 0.96 0.98 0.85
220 0.96 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.88 0.91 0.94 0.98 0.99 0.90
230 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.95 0.96 0.98 0.99 1.00 0.96
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

287

Table D.95: UDC-236 average Vn scores, for the various configurations of the Doddle algo
rithm, on short queries (Q5).

Algorithms

& & & a & a+ + + X X X
U Pi Pi u u Ph U CJ

*1 *1 X 1 *1 *1 2 i
a> a> 0) a> D 0) 0) a; 0) <u 0) 0)

=3 *3 =3 x3 =3 3̂ =3 =3 =3 =3 *3 =3X X X X X) X x X X X X Xo O O o o O o o o o o o
Q Q Q Q Q P P Q Q Q Q Q

1 0.53 0.78 0.61 0.32 0.72 0.50 0.43 0.55 0.69 0.55 0.47 0.61 0.18
10 0.60 0.72 0.64 0.33 0.70 0.57 0.48 0.58 0.65 0.58 0.48 0.65 0.20
20 0.63 0.71 0.67 0.37 0.70 0.59 0.52 0.59 0.66 0.59 0.53 0.66 0.26
30 0.65 0.71 0.68 0.45 0.71 0.62 0.59 0.62 0.66 0.62 0.58 0.67 0.38
40 0.66 0.70 0.68 0.50 0.70 0.63 0.62 0.63 0.66 0.63 0.61 0.68 0.43
50 0.66 0.69 0.67 0.52 0.69 0.63 0.63 0.63 0.65 0.63 0.62 0.67 0.46
60 0.65 0.68 0.66 0.54 0.67 0.63 0.63 0.63 0.64 0.63 0.62 0.66 0.48
70 0.64 0.66 0.66 0.55 0.66 0.63 0.63 0.62 0.63 0.63 0.62 0.65 0.49
80 0.64 0.65 0.65 0.55 0.65 0.62 0.62 0.62 0.63 0.62 0.62 0.64 0.49
90 0.63 0.64 0.64 0.55 0.64 0.62 0.62 0.61 0.62 0.62 0.61 0.63 0.45

100 0.62 0.63 0.63 0.56 0.63 0.61 0.61 0.60 0.62 0.61 0.61 0.63 0.43
110 0.61 0.63 0.62 0.56 0.63 0.60 0.61 0.60 0.61 0.60 0.60 0.62 0.41
120 0.60 0.62 0.61 0.55 0.61 0.60 0.60 0.59 0.60 0.60 0.59 0.61 0.39
130 0.59 0.61 0.60 0.55 0.61 0.59 0.59 0.58 0.59 0.59 0.59 0.60 0.40
140 0.58 0.60 0.59 0.55 0.60 0.58 0.58 0.58 0.58 0.58 0.58 0.59 0.40
150 0.58 0.59 0.58 0.54 0.58 0.57 0.57 0.57 0.58 0.57 0.57 0.58 0.41
160 0.57 0.58 0.57 0.54 0.57 0.56 0.56 0.56 0.57 0.56 0.56 0.57 0.42
170 0.56 0.57 0.56 0.53 0.57 0.55 0.55 0.55 0.56 0.55 0.55 0.56 0.44
180 0.55 0.55 0.55 0.52 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.44
190 0.53 0.54 0.54 0.52 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.45
200 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.52 0.45
210 0.51 0.51 0.51 0.50 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.46
220 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.46
230 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.47
236 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

288

Table D.96: UDC-236 average V n scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

1 0.71 0.78 0.61 0.67 0.62 0.78 0.61 0.57 0.08 0.09 0.09 0.38 0.53 0.18
10 0.69 0.76 0.61 0.69 0.65 0.75 0.62 0.62 0.18 0.12 0.12 0.40 0.60 0.20
20 0.71 0.76 0.61 0.71 0.68 0.75 0.63 0.66 0.19 0.15 0.15 0.43 0.63 0.26
30 0.72 0.75 0.61 0.71 0.68 0.74 0.63 0.67 0.21 0.17 0.17 0.46 0.65 0.38
40 0.71 0.74 0.60 0.71 0.68 0.74 0.63 0.67 0.23 0.18 0.18 0.46 0.66 0.43
50 0.71 0.72 0.60 0.70 0.68 0.72 0.63 0.67 0.24 0.20 0.20 0.47 0.66 0.46
60 0.69 0.71 0.60 0.69 0.67 0.71 0.63 0.66 0.26 0.22 0.22 0.47 0.65 0.48
70 0.68 0.70 0.59 0.68 0.66 0.70 0.63 0.65 0.28 0.25 0.25 0.47 0.64 0.49
80 0.67 0.69 0.59 0.67 0.65 0.68 0.62 0.64 0.30 0.28 0.28 0.48 0.64 0.49
90 0.66 0.68 0.59 0.66 0.64 0.67 0.62 0.64 0.32 0.30 0.30 0.49 0.63 0.45

100 0.65 0.67 0.59 0.65 0.63 0.66 0.61 0.62 0.34 0.32 0.32 0.49 0.62 0.43
110 0.64 0.66 0.58 0.64 0.62 0.65 0.60 0.62 0.36 0.34 0.34 0.49 0.61 0.41
120 0.63 0.65 0.58 0.63 0.62 0.64 0.60 0.61 0.37 0.36 0.36 0.50 0.60 0.39
130 0.62 0.63 0.57 0.63 0.61 0.63 0.59 0.60 0.38 0.37 0.37 0.50 0.59 0.40
140 0.61 0.62 0.57 0.62 0.60 0.62 0.58 0.59 0.40 0.39 0.39 0.50 0.58 0.40
150 0.60 0.61 0.56 0.60 0.59 0.61 0.57 0.58 0.41 0.40 0.40 0.50 0.58 0.41
160 0.59 0.60 0.56 0.59 0.58 0.60 0.57 0.57 0.42 0.41 0.41 0.50 0.57 0.42
170 0.57 0.58 0.55 0.58 0.57 0.58 0.56 0.56 0.43 0.42 0.42 0.50 0.56 0.44
180 0.56 0.57 0.54 0.56 0.55 0.57 0.55 0.55 0.43 0.43 0.43 0.50 0.55 0.44
190 0.54 0.55 0.53 0.55 0.54 0.55 0.53 0.53 0.44 0.44 0.44 0.49 0.53 0.45
200 0.53 0.53 0.52 0.53 0.52 0.53 0.52 0.52 0.45 0.45 0.45 0.49 0.52 0.45
210 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.46 0.46 0.46 0.49 0.51 0.46
220 0.49 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.47 0.47 0.47 0.48 0.49 0.46
230 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.47 0.47 0.47 0.48 0.48 0.47
236 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

289

Table D.97: UDC-236 average V n scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms
& Ph Uh2 Pi 2 s+ + + X X XU u u U u

n ed■ 2 i X 1 *1 S l0) 0) 0) <U a) O) CD <u <D <D 0) (U
=3 =3 t3 =3 =3
T3 T3 T3 T3 T3 "O TJ T3O o O o O o O O O o O o
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.61 0.78 0.64 0.40 0.74 0.56 0.49 0.60 0.65 0.58 0.48 0.71 0.18
10 0.63 0.74 0.68 0.36 0.71 0.58 0.53 0.58 0.65 0.57 0.52 0.68 0.20
20 0.64 0.74 0.69 0.40 0.72 0.61 0,55 0.60 0.66 0.60 0.54 0.69 0.26
30 0.67 0.73 0.71 0.49 0.73 0.64 0.61 0.62 0.67 0.62 0.59 0.70 0.38
40 0.68 0.73 0.70 0.54 0.73 0.66 0.63 0.62 0.68 0.64 0.61 0.70 0.43
50 0.68 0.72 0.69 0.57 0.71 0.66 0.65 0.63 0.67 0.64 0.63 0.69 0.46
60 0.67 0.71 0.68 0.59 0.70 0.66 0.65 0.63 0.66 0.64 0.63 0.68 0.48
70 0.66 0.70 0.67 0.60 0.69 0.66 0.65 0.62 0.65 0.64 0.63 0.68 0.49
80 0.66 0.69 0.67 0.60 0.68 0.65 0.65 0.62 0.64 0.64 0.63 0.67 0.49
90 0.65 0.67 0.65 0.60 0.67 0.64 0.64 0.62 0.63 0.63 0.63 0.66 0.45

100 0.64 0.66 0.64 0.60 0.66 0.64 0.63 0.61 0.63 0.63 0.62 0.65 0.43
110 0.63 0.65 0.63 0.60 0.65 0.63 0.62 0.61 0.62 0.62 0.62 0.64 0.41
120 0.62 0.64 0.63 0.59 0.64 0.62 0.62 0.60 0.61 0.61 0.61 0.63 0.39
130 0.61 0.63 0.62 0.58 0.62 0.61 0.61 0.59 0.60 0.60 0.60 0.62 0.40
140 0.60 0.62 0.61 0.58 0.61 0.60 0.60 0.58 0.59 0.59 0.59 0.61 0.40
150 0.59 0.61 0.59 0.57 0.60 0.59 0.59 0.57 0.58 0.58 0.58 0.60 0.41
160 0.58 0.59 0.58 0.56 0.59 0.58 0.58 0.56 0.57 0.57 0.57 0.58 0.42
170 0.57 0.58 0.57 0.55 0.58 0.57 0.57 0.55 0.56 0.56 0.56 0.57 0.44
180 0.56 0.57 0.56 0.55 0.56 0.56 0.55 0.54 0.55 0.55 0.55 0.56 0.44
190 0.54 0.55 0.54 0.53 0.55 0.54 0.54 0.53 0.54 0.54 0.54 0.55 0.45
200 0.53 0.53 0.52 0.52 0.53 0.53 0.53 0.52 0.52 0.53 0.52 0.53 0.45
210 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.51 0.51 0.51 0.46
220 0.49 0.50 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.46
230 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.47
236 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

290

Table D.98: UDC-236 average V n scores, for existing algorithms and Doddle, on long queries
(Q z) .

Algorithms

coCO
2
O

§
c§

*->o
a<u

s O>HD Oh

a .sC/5
>H0)

o o cj
u u ►-H ICO

CO

1
<u*s>
S

Oh

sOhUh
Q

COUCO

Oh 0)
h o ' =3U U 3^ CO o< £ q §CO

1 0.64 0.85 0.83 0.81 0.62 0.85 0.61 0.60 0.21 0.15 0.26 0.46 0.61 0.18
10 0.66 0.79 0.77 0.76 0.67 0.82 0.59 0.68 0.24 0.24 0.31 0.55 0.63 0.20
20 0.64 0.76 0.76 0.76 0.68 0.80 0.60 0.68 0.25 0.26 0.35 0.58 0.64 0.26
30 0.63 0.76 0.75 0.76 0.70 0.79 0.63 0.70 0.27 0.29 0.39 0.60 0.67 0.38
40 0.64 0.74 0.75 0.75 0.71 0.78 0.63 0.70 0.28 0.31 0.40 0.61 0.68 0.43
50 0.63 0.73 0.74 0.74 0.70 0.76 0.62 0.69 0.30 0.33 0.42 0.61 0.68 0.46
60 0.62 0.71 0.73 0.72 0.68 0.75 0.62 0.68 0.31 0.35 0.43 0.62 0.67 0.48
70 0.62 0.70 0.72 0.71 0.68 0.73 0.62 0.67 0.33 0.37 0.44 0.62 0.66 0.49
80 0.61 0.69 0.70 0.69 0.67 0.72 0.62 0.66 0.34 0.38 0.45 0.61 0.66 0.49
90 0.61 0.68 0.69 0.68 0.66 0.71 0.61 0.65 0.35 0.40 0.46 0.61 0.65 0.45

100 0.60 0.67 0.68 0.67 0.65 0.69 0.61 0.64 0.37 0.41 0.46 0.60 0.64 0.43
110 0.60 0.65 0.67 0.66 0.64 0.68 0.60 0.63 0.38 0.42 0.47 0.60 0.63 0.41
120 0.60 0.64 0.65 0.65 0.63 0.66 0.60 0.62 0.39 0.42 0.47 0.60 0.62 0.39
130 0.59 0.63 0.64 0.64 0.62 0.65 0.59 0.61 0.39 0.43 0.47 0.59 0.61 0.40
140 0.58 0.62 0.63 0.63 0.61 0.64 0.58 0.60 0.40 0.44 0.48 0.58 0.60 0.40
150 0.57 0.61 0.62 0.62 0.60 0.62 0.57 0.59 0.41 0.44 0.48 0.58 0.59 0.41
160 0.56 0.59 0.60 0.60 0.59 0.61 0.56 0.58 0.41 0.45 0.48 0.57 0.58 0.42
170 0.56 0.58 0.59 0.59 0.57 0.59 0.55 0.57 0.42 0.45 0.48 0.56 0.57 0.44
180 0.54 0.57 0.57 0.57 0.56 0.58 0.55 0.56 0.43 0.46 0.48 0.55 0.56 0.44
190 0.53 0.55 0.55 0.55 0.55 0.56 0.53 0.54 0.44 0.46 0.48 0.54 0.54 0.45
200 0.52 0.53 0.54 0.53 0.53 0.54 0.52 0.52 0.44 0.47 0.48 0.52 0.53 0.45
210 0.50 0.51 0.52 0.52 0.51 0.52 0.50 0.51 0.45 0.47 0.48 0.51 0.51 0.46
220 0.48 0.50 0.50 0.50 0.49 0.50 0.49 0.49 0.46 0.47 0.48 0.49 0.49 0.46
230 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.47 0.47 0.47 0.48 0.48 0.47
236 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

291

Table D.99: UDC-236 average precision within the top 5 collections, and the number of
queries (out of 100) for which the first ranked collection is correct, for the various configu
rations of the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

Doddle 0.12 0.12 11 (11%) 5 (5%)
Doddle_RC 0.17 0.16 15 (15%) 8 (8%)
Doddle_RP 0.14 0.14 11 (11%) 8 (8%)
Doddle_RF 0.02 0.04 1 (1%) 0 (0%)
Doddle_RC+RP 0.17 0.15 15 (15%) 8 (8%)
Doddle_RC+RF 0.12 0.10 9 (9%) 2 (2%)
Doddle_RP+RF 0.09 0.09 4 (4%) 2 (2%)
Doddle_x 0.11 0.08 9 (9%) 2 (2%)
Doddle_RCxRP 0.15 0.12 12 (12%) 5 (5%)
Doddle_RCxRF 0.10 0.08 6 (6%) 2 (2%)
Doddle_RPxRF 0.09 0.08 10 (10%) 1 (1%)
Doddle_W 0.14 0.14 15 (15%) 6 (6%)
SBR 0.02 0.02 3 (3%) 3 (3%)

Table D.100: UDC-236 average precision within the top 5 collections, and the number of
queries (out of 100) for which the first ranked collection is correct, for existing algorithms
and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

bGlOSS 0.15 0.09 15 (15%) 7 (7%)
CORI 0.16 0.15 10 (10%) 10 (10%)
Cosine Measure 0.09 0.17 5 (5%) 11 (11%)
Inner Product 0.16 0.17 11 (11%) 16 (16%)
Skew 0.14 0.13 10 (10%) 7 (7%)
Highest-available Similarity 0.16 0.17 11 (11%) 13 (13%)
C W 0.14 0.12 10 (10%) 12 (12%)
DFPROP 0.13 0.14 10 (10%) 8 (8%)
Distribution of Informative Amt 0.00 0.01 0 (0%) 0 (0%)
SCS 0.00 0.00 0 (0%) 0 (0%)
AvICTF 0.00 0.01 0 (0%) 0 (0%)
NSCQ 0.02 0.06 2 (2%) 1 (1%)
Doddle 0.12 0.12 11 (11%) 5 (5%)
SBR 0.02 0.02 3 (3%) 3 (3%)

292

D.5. UBC-100

D.5 UBC-100

Table D.101: UBC-100 average Spearman rank correlations, for the various configurations
of the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Qs Qi Qs Qi

Doddle 0.42 0.47 -0.15 -0.16
Doddle_RC 0.52 0.59 0.16 0.15
Doddle_RP 0.45 0.51 -0.17 -0.18
Doddle_RF 0.14 0.22 -0.37 -0.37
Doddle_RC+RP 0.50 0.56 - 0.02 -0.04
Doddle_RC+RF 0.38 0.45 - 0.12 -0.14
Doddle_RP+RF 0.34 0.40 -0.30 -0.30
Doddle_x 0.38 0.38 -0.17 -0.23
Doddle_RC x RP 0.46 0.49 -0.04 -0.08
Doddle_RCxRF 0.39 0.41 - 0.11 -0.17
Doddle_RPxRF 0.32 0.35 -0.33 -0.35
Doddle_W 0.45 0.51 - 0.10 - 0.11
SBR 0.18 0.18 — —

293

Table D.102: UBC-100 average Spearman rank correlations, for existing algorithms and
Doddle, comparing algorithm-produced rankings to FsBR and SBR.

FsBR SBR

Algorithms Qs Qi Qs Qi

bGlOSS 0.56 0.35 0.12 0.06
CORI 0.62 0.61 0.39 0.32
Cosine Measure 0.40 0.63 0.18 0.25
Inner Product 0.61 0.65 0.44 0.41
Skew 0.56 0.59 0.47 0.46
Highest-available Similarity 0.47 0.52 0.65 0.66
C W 0.50 0.54 0.48 0.52
DFPROP 0.55 0.59 0.50 0.51
Distribution of Informative Amt -0.45 -0.43 -0.28 --0.19
SCS -0.40 -0.25 -0.09 0.04
AvICTF -0.39 -0.09 -0.08 0.10
NSCQ 0.09 0.35 0.55 0.61
Doddle 0.42 0.47 -0.15 --0.16
SBR 0.18 0.18 — —

294

A
lg

or
ith

m
s

Table D.103: UBC-100 Z-Test results, showing whether the differences between Spearman
correlations are significant (a S shows there is significant difference in performance), exe
cuted over Short queries.

ms
m-9ipp°a

dHxdH_9IPP0Q

JHX3H_9TPP°Q
dHxDH_9IPP°G

x~3tppoa

TH+dH_9lPP0a
JH+3H_9IPP°G

dH+3H_9IPP°Q

dH_9IPP°G

dH_9IPPoa
DH_9IPP0a

9ipp°a

&DSN

dXDIAV

SDS
juiy juijo is ia

dOHddd
AAD

•UIJS gBAB-JS9qSlH

M9>[S

pnpoj<j J9uuj
9mSB9]/\I 9UIS03

IHOD
sso io q

s s s s s s s s s s s s

s s s s s
s s

s s
s s s
s s

ss s s s s s s s s s s s

s s s s s s s s s s s s s s s s s
s s
s s
s s

s s

+ + y y
Ph. Oh

a a a aX X X
-s

»' J J o'
3 3 3 3

u u

PL| CJ O O' O O' Q)’ O’ D
h O'50 3 *3 3 3 3 3 3 vh « w «w U U x ! ' O T 3 ' ,OT)T3T3T3'd'dT3'dn ^ v j o o o o o o o o o o o ow ^ Q Q Q Q Q Q Q Q Q Q Q Q

295

A
lg

or
ith

m
s

Table D.104: UBC-100 Z-Test results, showing whether the differences between Spearman
correlations are significant (a / shows there is significant difference in performance), exe
cuted over Long queries.

nas

MTaippoa
dHxdH_9IPP°G

JHX3H_9TPP°G

dHxDH_9TPP°G
x~9[ppOQ

HH+dH_9TPP°a

dH+0H_9IPP°G

dH+DH_9IPP°G

HH_9IPP°a

dH_9IPPoa

DH_9IPPoa
gippoa

bD SN
HIDIAV

SDS

ruiy ju ijo JSTQ

dOHddd
AAD

•uiys pBAB-rsaqSiH

M9>tS
p n p o i j I9uuj

9mSB9J^ 9UIS03

raoD

ssoioq

s s s s s s s

s s s s s
s s

s s s
s s s

s

s s s s s s s

s s s s s s s

s

sss s s s

s s s s s s
s s
s s
s s

s s s s s s

02-2 55 COO O o x> u u

_ a>
O' =3 =3

a aI I
<U <L>
=3 *3

& s s
+ + +

I I
<D 03 <U
*3 *3

I I I <u a; a> a> a>
^ *3 ^ 'Sw U u ,0 T 3 ,0 ’0 T 3 ’a ’d ’a ,0 T (’0T(M ' S C f l O O O O O O O O O O O O^ Z Q Q Q Q Q Q Q Q Q Q Q Q

296

Table D. 105: UBC-100 average Blest and Da Costa weighted rank correlations, for the various
configurations of the Doddle algorithm, comparing algorithm-produced rankings to FsBR.

Algorithms

Blest Da Costa

Qs Qi Qs Ql

Doddle 0.39 0.43 0.44 0.49
Doddle_RC 0.50 0.56 0.54 0.61
Doddle_RP 0.42 0.46 0.48 0.53
Doddle_RF 0.13 0.20 0.14 0.22
Doddle_RC+RP 0.47 0.52 0.52 0.58
Doddle_RC+RF 0.36 0.41 0.40 0.46
Doddle_RP+RF 0.31 0.36 0.35 0.41
Doddle_x 0.36 0.35 0.40 0.40
Doddle_RCxRP 0.44 0.45 0.48 0.51
Doddle_RCxRF 0.37 0.37 0.40 0.42
Doddle_RPxRF 0.29 0.31 0.33 0.37
Doddle_W 0.43 0.47 0.48 0.53
SBR 0.17 0.17 0.16 0.16

Table D.106: UBC-100 average Blest and Da Costa weighted rank correlations, for existing
algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.53 0.25 0.60 0.55
CORI 0.59 0.59 0.63 0.63
Cosine Measure 0.38 0.60 0.41 0.64
Inner Product 0.58 0.63 0.62 0.67
Skew 0.54 0.56 0.58 0.61
Highest-available Similarity 0.44 0.49 0.46 0.52
CW 0.48 0.52 0.52 0.56
DFPROP 0.53 0.56 0.57 0.60
Distribution of Informative Amt -0.42 -0.41 -0.38 -0.38
SCS -0.37 -0.23 -0.37 -0.24
AvICTF -0.37 -0.08 -0.37 -0.09
NSCQ 0.09 0.33 0.08 0.33
Doddle 0.39 0.43 0.44 0.49
SBR 0.17 0.17 0.16 0.16

297

Table D.107: UBC-100 average 7Zn scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms

& s - g g+ + + X X XU P-. U U U U Eh
*i S i S | *1 rti « X *1 *10) 0) <u a> 0) a> CD 0) 0) a> a t <L)

*3 =3 x3 =3 t3 =3 =3 =3 =3 t3xs T3 XJ •a X) T3 XJ XI X) T3 XI XJ
o O O O O O O O o O o OQ Q Q Q Q Q Q Q Q Q Q Q

1 0.21 0.34 0.31 0.06 0.33 0.18 0.15 0.25 0.34 0.20 0.18 0.33 0.01
10 0.41 0.51 0.45 0.16 0.50 0.38 0.32 0.40 0.49 0.36 0.30 0.46 0.09
20 0.54 0.62 0.57 0.25 0.61 0.51 0.44 0.52 0.59 0.50 0.42 0.57 0.23
30 0.65 0.70 0.68 0.42 0.71 0.63 0.59 0.64 0.68 0.63 0.59 0.67 0.35
40 0.74 0.78 0.77 0.56 0.79 0.72 0.70 0.73 0.76 0.72 0.70 0.76 0.53
50 0.82 0.84 0.84 0.67 0.85 0.80 0.80 0.80 0.83 0.80 0.79 0.83 0.62
60 0.88 0.89 0.89 0.78 0.90 0.87 0.87 0.86 0.88 0.87 0.87 0.89 0.71
70 0.92 0.93 0.93 0.86 0.94 0.91 0.92 0.91 0.93 0.92 0.92 0.93 0.82
80 0.96 0.96 0.96 0.93 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.96 0.93
90 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.108: UBC-100 average H n scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

23 « -ac/3 y *3
<u x> £
2 8 * cu «

$ o j O h t o 0 ‘S ^
o X! S > 22 p g ° H O' =3
S S » C 8 ’ w j ^ S l t o ' o y y oqO O o o oqU Q Q oo < E q 55

1 0.41 0.36 0.21 0.41 0.35 0.09 0.31 0.35 0.03 0.02 0.02 0.06 0.21 0.01
10 0.53 0.52 0.35 0.50 0.50 0.27 0.44 0.49 0.05 0.05 0.05 0.15 0.41 0.09
20 0.63 0.65 0.46 0.64 0.63 0.48 0.57 0.63 0.09 0.07 0.07 0.23 0.54 0.23
30 0.71 0.75 0.57 0.74 0.72 0.63 0.67 0.72 0.12 0.11 0.11 0.31 0.65 0.35
40 0.79 0.83 0.66 0.82 0.79 0.73 0.75 0.79 0.16 0.15 0.15 0.40 0.74 0.53
50 0.84 0.88 0.74 0.87 0.85 0.81 0.81 0.84 0.23 0.23 0.23 0.51 0.82 0.62
60 0.89 0.91 0.82 0.91 0.89 0.88 0.87 0.88 0.32 0.34 0.35 0.61 0.88 0.71
70 0.93 0.94 0.89 0.94 0.92 0.91 0.91 0.92 0.45 0.49 0.50 0.72 0.92 0.82
80 0.95 0.95 0.94 0.96 0.95 0.94 0.95 0.95 0.61 0.65 0.66 0.85 0.96 0.93
90 0.98 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.80 0.84 0.84 0.95 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

298

Table D.109: UBC-100 average 7Zn scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms

& a a a a a+ + + X X X+ + + X X Xu u u Ph u U
■ r t l S l XI *l 2h1 S l(U a> 0) cu <U CD a> CD a> a; <D (U

=3 =3 =3 =3 =3 2 =3 =3 =3T3 T3 ■a ■a T3 T3 T3 T3
O O O O o O o O o O O O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.27 0.34 0.28 0.12 0.35 0.21 0.20 0.18 0.27 0.19 0.17 0.33 0.01
10 0.46 0.54 0.50 0.19 0.55 0.43 0.38 0.40 0.49 0.38 0.35 0.51 0.09
20 0.58 0.64 0.61 0.26 0.64 0.55 0.48 0.51 0.60 0.51 0.44 0.61 0.23
30 0.67 0.74 0.71 0.46 0.73 0.65 0.63 0.62 0.69 0.62 0.60 0.71 0.35
40 0.75 0.82 0.79 0.61 0.81 0.74 0.73 0.71 0.77 0.72 0.70 0.78 0.53
50 0.83 0.88 0.85 0.74 0.87 0.83 0.81 0.80 0.84 0.81 0.80 0.85 0.62
60 0.90 0.92 0.91 0.83 0.92 0.89 0.89 0.87 0.90 0.89 0.88 0.91 0.71
70 0.95 0.96 0.95 0.91 0.96 0.94 0.94 0.93 0.94 0.94 0.94 0.95 0.82
80 0.97 0.98 0.97 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.93
90 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.110: UBC-100 average 1Zn scores, for existing algorithms and Doddle, on long
queries (Q/).

Algorithms

3 3
<D T3 >,5 0

n bG
lO

SS

CO
RI

Qi

.5co Ou

Oh

j! Sk
ew

COcu

2 C
W

DF
PR

OI <4-1O
-4-2
CO

s SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.29 0.35 0.37 0.42 0.32 0.16 0.30 0.36 0.04 0.03 0.04 0.11 0.27 0.01
10 0.37 0.53 0.53 0.55 0.50 0.34 0.46 0.52 0.06 0.06 0.09 0.23 0.46 0.09
20 0.44 0.63 0.64 0.67 0.63 0.53 0.59 0.64 0.10 0.10 0.15 0.36 0.58 0.23
30 0.51 0.74 0.75 0.76 0.72 0.67 0.69 0.73 0.14 0.15 0.23 0.47 0.67 0.35
40 0.55 0.80 0.83 0.83 0.80 0.77 0.77 0.80 0.19 0.23 0.31 0.58 0.75 0.53
50 0.63 0.87 0.88 0.89 0.86 0.85 0.83 0.86 0.26 0.32 0.41 0.69 0.83 0.62
60 0.69 0.91 0.92 0.92 0.91 0.89 0.88 0.90 0.36 0.43 0.52 0.78 0.90 0.71
70 0.74 0.94 0.95 0.95 0.94 0.92 0.92 0.93 0.47 0.57 0.65 0.85 0.95 0.82
80 0.82 0.97 0.97 0.97 0.96 0.93 0.95 0.96 0.60 0.72 0.78 0.92 0.97 0.93
90 0.88 0.99 0.99 0.99 0.98 0.97 0.98 0.98 0.78 0.87 0.91 0.96 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 LOO 1.00 1.00 1.00 1.00 1.00 1.00 1.00

299

Table D .l l l: UBC-100 average 7Zn scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms

n D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF

+

*0)
*3T3O
Q

+

a>
=3
O
Q

+Ph

<D
=3T3O
Q D

od
dl

e_
x

X
U
<u
=3
T3O
Q

X
U
0)
=3T3O
Q

Xcu
o
=3T3O
Q D

od
dl

e_
W

SB
R

1 0.02 0.03 0.03 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.00
10 0.21 0.27 0.23 0.08 0.26 0.20 0.17 0.21 0.26 0.19 0.15 0.24 0.04
20 0.41 0.46 0.42 0.18 0.46 0.38 0.33 0.39 0.45 0.37 0.32 0.43 0.17
30 0.57 0.62 0.60 0.37 0.62 0.55 0.52 0.56 0.60 0.55 0.52 0.59 0.31
40 0.70 0.74 0.73 0.53 0.75 0.69 0.66 0.70 0.72 0.69 0.66 0.72 0.50
50 0.80 0.82 0.82 0.66 0.83 0.78 0.78 0.79 0.81 0.79 0.77 0.82 0.61
60 0.87 0.88 0.89 0.78 0.89 0.86 0.87 0.86 0.88 0.87 0.86 0.88 0.71
70 0.92 0.93 0.93 0.86 0.94 0.91 0.92 0.91 0.93 0.91 0.92 0.93 0.82
80 0.96 0.96 0.96 0.93 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.96 . 0,93
90 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.112: UBC-100 average 1Zn scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

gJ in
§ § ds ■§ I
S 2 * PU a

C/ 3 n i C L i t o O ' * - 1 tLi
g a § * * I § ° h cy =3
O O o o cq
xj U U 5 cn U Q Q on < Z Q $

1 0.04 0.03 0.02 0.04 0.03 0.01 0.03 0.03 0.00 0.00 0.00 0.01 0.02 0.00
10 0.28 0.27 0.18 0.26 0.26 0.14 0.23 0.26 0.03 0.02 0.02 0.08 0.21 0.04
20 0.47 0.49 0.34 0.49 0.48 0.37 0.43 0.48 0.06 0.05 0.05 0.17 0.41 0.17
30 0.63 0.66 0.49 0.65 0.64 0.56 0.59 0.63 0.10 0.09 0.09 0.27 0.57 0.31
40 0.75 0.78 0.62 0.77 0.75 0.69 0.71 0.75 0.15 0.14 0.14 0.38 0.70 0.50
50 0.83 0.86 0.72 0.85 0.83 0.80 0.80 0.82 0.22 0.22 0.23 0.50 0.80 0.61
60 0.89 0.90 0.81 0.90 0.88 0.87 0.86 0.87 0.31 0.34 0.34 0.61 0.87 0.71
70 0.92 0.93 0.88 0.94 0.92 0.91 0.91 0.91 0.44 0.49 0.50 0.72 0.92 0.82
80 0.95 0.95 0.94 0.96 0.95 0.94 0.95 0.95 0.61 0.65 0.66 0.85 0.96 0.93
90 0.98 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.80 0.84 0.84 0.95 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

300

Table D.l 13: UBC-100 average 1Zn scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms

£ a
+ +++

u b U U
«l *i *103 03 03 03 03 03

=3 =3 =3 t3 =3P X) P p P PO o O o o O
Q Q Q Q Q Q

£ £ £ a+ X X X+ X X X
Dh U U °-l
S | XI
03 CD 03 03 03 03
=3 =3 =3 =3 =3p p p P p po o o O o o
Q Q Q Q Q Q

1 0.03 0.03 0.03 0.01 0.04 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.00
10 0.24 0.28 0.26 0.10 0.28 0.22 0.20 0.21 0.25 0.20 0.18 0.26 0.04
20 0.43 0.48 0.46 0.20 0.48 0.41 0.36 0.39 0.45 0.38 0.33 0.46 0.17
30 0.59 0.65 0.62 0.40 0.64 0.57 0.55 0.54 0.61 0.55 0.52 0.62 0.31
40 0.71 0.77 0.74 0.58 0.77 0.70 0.69 0.67 0.73 0.68 0.66 0.74 0.50
50 0.82 0.86 0.83 0.72 0.86 0.81 0.79 0.78 0.83 0.79 0.78 0.83 0.61
60 0.89 0.92 0.90 0.83 0.92 0.89 0.88 0.87 0.89 0.88 0.87 0.90 0.71
70 0.95 0.96 0.95 0.90 0.95 0.94 0.94 0.93 0.94 0.94 0.94 0.95 0.82
80 0.97 0.98 0.97 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.93-
90 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.l 14: UBC-100 average i l n scores, for existing algorithms and Doddle, on long
queries {Qi).

Algorithms

£ ■£1 | | ^aj p so 03
__, Oh ^

YX 03 so o 'nr? P ^ > 22 « ° H O' ^
O O o § J z a ? • & ; = ? U l > £ Q o cq ,p U U £ c/5 £ U Q Q oo < £ Q oo

1 0.03 0.03 0.04 0.04 0.03 0.02 0.03 0.04 0.00 0.00^ 0.00 0.01 0.03 0.00
10 0.19 0.27 0.28 0.29 0.26 0.19 0.24 0.27 0.03 0.03 0.05 0.12 0.24 0.04
20 0.32 0.48 0.48 0.50 0.47 0.40 0.44 0.48 0.07 0.07 0.11 0.27 0.43 0.17
30 0.44 0.65 0.66 0.67 0.64 0.59 0.61 0.64 0.12 0.13 0.20 0.42 0.59 0.31
40 0.52 0.76 0.79 0.78 0.76 0.73 0.73 0.76 0.18 0.22 0.29 0.55 0.71 0.50
50 0.61 0.85 0.86 0.87 0.85 0.83 0.82 0.84 0.26 0.31 0.40 0.68 0.82 0.61
60 0.68 0.90 0.91 0.92 0.90 0.89 0.88 0.90 0.36 0.43 0.52 0.77 0.89 0.71
70 0.74 0.94 0.95 0.95 0.94 0.92 0.92 0.93 0.46 0.57 0.65 0.85 0.95 0.82
80 0.82 0.97 0.97 0.97 0.96 0.93 0.95 0.96 0.60 0.72 0.78 0.92 0.97 0.93
90 0.88 0.99 0.99 0.99 0.98 0.97 0.98 0.98 0.78 0.87 0.91 0.96 0.99 0.96

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

301

Table D .l 15: UBC-100 average V n scores, for the various configurations of the Doddle algo
rithm, on short queries (Qs).

Algorithms

n D
od

dl
e

D
od

dl
e_

R
C

D
od

dl
e_

R
P

D
od

dl
e_

R
F

+

0)
TJ
O
Q

+

*a)
=3
TJ
O
Q

+

cu
53
T3
O
Q D

od
dl

e_
x

X

cu
53
TJ
O
Q

X

*CU
=3
TJ
O
Q

XPh
*1
cu

TJ
O
Q D

od
dl

e_
W

S
B

R

1 0.54 0.77 0.63 0.26 0.69 0.49 0.41 0.57 0.68 0.53 0.45 0.66 0 .0 9

10 0.62 0.81 0.66 0.29 0.76 0.59 0.47 0.59 0.74 0.56 0.44 0.69 0 .3 6

20 0.66 0.79 0.70 0.35 0.76 0.63 0.53 0.63 0.73 0.62 0.50 0.71 0 .5 3

30 0.68 0.77 0.72 0.46 0.75 0.66 0.60 0.66 0.72 0.66 0.59 0.71 0 .5 9

40 0.68 0.74 0.70 0.52 0.73 0.66 0.62 0.66 0.70 0.67 0.61 0.70 0 .6 3

50 0.67 0.72 0.68 0.55 0.70 0.65 0.64 0.65 0.68 0.66 0.62 0.69 0 .6 1

60 0.65 0.68 0.65 0.57 0.67 0.64 0.63 0.63 0.65 0.65 0.63 0.66 0 .5 9

70 0.62 0.64 0.62 0.58 0.63 0.61 0.61 0.61 0.62 0.61 0.61 0.62 0 .6 0

80 0.58 0.59 0.58 0.57 0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0 .6 0

90 0.55 0.56 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .5 6

100 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0 .5 2

Table D.l 16: UBC-100 average V n scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

22 ^ 3 tj -dc/5 y *h
ccJ 3 r a0) -d >
S 8 * Oh *3W? Q i O l t o O pH ^
G > 2h pH H O' ^

O O o ° oq.o U U 5 c/o K U Q Q oo < Z Q

1 0.83 0.90 0.58 0.88 0.85 0.35 0.85 0.87 0.13 0.10 0.10 0.37 0.54 0 .0 9

10 0.83 0.88 0.63 0.88 0.87 0.54 0.84 0.87 0.17 0.16 0.16 0.46 0.62 0 .3 6

20 0.81 0.87 0.66 0.88 0.85 0.70 0.82 0.86 0.22 0.22 0.22 0.51 0.66 0 .5 3

30 0.80 0.86 0.67 0.85 0.83 0.74 0.80 0.83 0.25 0.26 0.26 0.53 0.68 0 .5 9

40 0.77 0.83 0.68 0.82 0.79 0.75 0.78 0.80 0.28 0.30 0.30 0.56 0.68 0 .6 3

50 0.74 0.79 0.68 0.78 0.75 0.74 0.74 0.75 0.32 0.36 0.36 0.58 0.67 0 .6 1

60 0.69 0.72 0.65 0.72 0.70 0.71 0.68 0.70 0.37 0.41 0.42 0.59 0.65 0 .5 9

70 0.64 0.67 0.62 0.66 0.65 0.66 0.64 0.65 0.42 0.46 0.46 0.58 0.62 0 .6 0

80 0.59 0.61 0.59 0.61 0.60 0.61 0.60 0.60 0.46 0.49 0.49 0.58 0.58 0 .6 0

90 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.49 0.51 0.51 0.56 0.55 0 .5 6

100 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0 .5 2

302

Table D.l 17: UBC-100 average V n scores, for the various configurations of the Doddle algo
rithm, on long queries (Q/).

Algorithms

—a s"

n D
od

dl
e

D
od

dl
e_

R
C

D
od

dl
e_

R
P

D
od

dl
e_

R
F

+U
0)
=3
O
Q

+

qcu
t3
o
Q

+

<u
XJO
Q D

od
dl

e_
x

X

cu
=3
o
Q

X

&
=3
XJo
Q

X

*Qi
T3O
Q D

od
dl

e_
W

SB
R

1 0.64 0.81 0.62 0.38 0.76 0.62 0.53 0.54 0.66 0.55 0.46 0.72 0.09
10 0.66 0.83 0.69 0.34 0.79 0.63 0.53 0.59 0.72 0.58 0.50 0.73 0.36
20 0.70 0.81 0.74 0.37 0.79 0.68 0.57 0.62 0.73 0.63 0.53 0.75 0.53
30 0.70 0.80 0.73 0.49 0.78 0.68 0.63 0.64 0.73 0.65 0.60 0.74 0.59
40 0.69 0.78 0.72 0.55 0.76 0.68 0.64 0.64 0.71 0.65 0.61 0.73 0.63
50 0.68 0.76 0.70 0.59 0.74 0.68 0.65 0.64 0.69 0.66 0.62 0.71 0.61
60 0.66 0.71 0.67 0.61 0.69 0.66 0.65 0.63 0.67 0.65 0.63 0.67 0.59
70 0.64 0.66 0.63 0.60 0.65 0.63 0.63 0.62 0.63 0.63 0.62 0.64 0.60
80 0.59 0.61 0.59 0.58 0.60 0.59 0.59 0.58 0.59 0.59 0.59 0.59 0.60
90 0.56 0.56 0.56 0.55 0.56 0.56 0.56 0.55 0.55 0.55 0.55 0.56 0.56

100 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Table D.l 18: UBC-100 average V n scores, for existing algorithms and Doddle, on long
queries {Qi).

Algorithms

1 0.66 0.87 0.87 0.94 0.85 0.48 0.91 0.88 0.20 0.26 0.31 0.56 0.64 0.09
10 0.61 0.87 0.85 0.91 0.85 0.62 0.86 0.87 0.22 0.26 0.33 0.61 0.66 0.36
20 0.60 0.85 0.84 0.89 0.85 0.74 0.84 0.86 0.26 0.30 0.39 0.68 0.70 0.53
30 0.61 0.84 0.83 0.87 0.83 0.77 0.83 0.85 0.29 0.34 0.43 0.70 0.70 0.59
40 0.58 0.82 0.81 0.84 0.81 0.78 0.79 0.81 0.31 0.39 0.47 0.71 0.69 0.63
50 0.58 0.78 0.78 0.80 0.78 0.77 0.75 0.77 0.35 0.43 0.50 0.69 0.68 0.61
60 0.58 0.72 0.72 0.73 0.72 0.72 0.69 0.71 0.39 0.47 0.52 0.67 0.66 0.59
70 0.54 0.67 0.67 0.67 0.66 0.66 0.65 0.66 0.42 0.50 0.54 0.63 0.64 0.60
80 0.53 0.62 0.61 0.62 0.61 0.61 0.60 0.61 0.45 0.51 0.54 0.60 .0.59 0.6Q
90 0.52 0.57 0.56 0.57 0.56 0.56 0.56 0.56 0.49 0.52 0.54 0.56 0.56 0.56

100 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

303

Table D.119: UBC-100 average precision within the top 5 collections, and the number of
queries (out of 100) for which the first ranked collection is correct, for the various configu
rations of the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

Doddle 0.18 0.22 5 (5%) 6 (6%)
Doddle_RC 0.23 0.26 8 (8%) 10 (10%)
Doddle_RP 0.19 0.24 12 (12%) 8 (8%)
Doddle_RF 0.05 0.08 0 (0%) 2 (2%)
Doddle_RC+RP 0.21 0.27 10 (10%) 10 (10%)
Doddle_RC+RF 0.16 0.20 3 (3%) 3 (3%)
Doddle_RP+RF 0.12 0.17 4 (4%) 2 (2%)
Doddle_x 0.16 0.17 8 (8%) 0 (0%)
Doddle_RCxRP 0.20 0.21 13 (13%) 6 (6%)
Doddle_RCxRF 0.14 0.18 4 (4%) 1 (1%)
Doddle_RPxRF 0.12 0.16 4 (4%) 2 (2%)
Doddle_W 0.19 0.24 12 (12%) 10 (10%)
SBR 0.00 0.00 0 (0%) 0 (0%)

Table D.120: UBC-100 average precision within the top 5 collections, and the num ber of
queries (out of 100) for which the first ranked collection is correct, for existing algorithms
and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Qi

bGlOSS 0.26 0.16 15 (15%) 7 (7%)
CORI 0.23 0.21 11 (11%) 8 (8%)
Cosine Measure 0.14 0.25 4 (4%) 11 (11%)
Inner Product 0.21 0.25 13 (13%) 14 (14%)
Skew 0.19 0.20 9 (9%) 7 (7%)
Highest-available Similarity 0.07 0.13 2 (2%) 5 (5%)
C W 0.16 0.16 9 (9%) 5 (5%)
DFPROP 0.19 0.22 9 (9%) 10 (10%)
Distribution of Informative Amt 0.02 0.01 0 (0%) 0 (0%)
SCS 0.02 0.01 0 (0%) 0 (0%)
AvICTF 0.01 0.02 0 (0%) 0 (0%)
NSCQ 0.03 0.06 1 (1%) 4 (4%)
Doddle 0.18 0.22 5 (5%) 6 (6%)
SBR 0.00 0.00 0 (0%) 0 (0%)

304

D.6. 2LDB-60COL

D.6 2LDB-60COL

Table D.121: 2LDB-60COL average Spearman rank correlations, for the various configura
tions of the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Qs Qi Qs Qi

Doddle 0.43 0.49 -0.09 -0.08
Doddle_RC 0.54 0.60 0.21 0.22
Doddle_RP 0.45 0.51 -0.13 -0.13
Doddle_RF 0.15 0.23 -0.28 -0.26
Doddle_RC+RP 0.51 0.57 0.04 0.03
Doddle_RC+RF 0.40 0.47 -0.05 -0.04
Doddle_RP+RF 0.34 0.41 -0.23 - 0.21
Doddle_x 0.38 0.38 - 0.11 -0.17
Doddle_RCxRP 0.46 0.49 0.01 -0.04
Doddle_RCxRF 0.40 0.42 -0.03 -0.09
Doddle_RPxRF 0.32 0.36 -0.27 -0.27
Doddle_W 0.46 0.52 -0.04 -0.04
SBR 0.24 0.24 — —

305

Table D.122: 2LDB-60COL average Spearman rank correlations, for existing algorithms and
Doddle, comparing algorithm-produced rankings to FsBR and SBR.

FsBR SBR

Algorithms Qs Qi Qs Qi

bGlOSS 0.56 0.37 0.25 0.15
CORI 0.63 0.63 0.48 0.43
Cosine Measure 0.40 0.63 0.27 0.37
Inner Product 0.61 0.65 0.55 0.53
Skew 0.57 0.60 0.59 0.58
Highest-available Similarity 0.51 0.56 0.67 0.68
C W 0.51 0.55 0.58 0.61
DFPROP 0.56 0.59 0.61 0.62
Distribution of Informative Amt -0.45 -0.43 -0.36 --0.27
SCS -0.41 -0.25 - 0.10 0.06
AvICTF -0.40 -0.09 - 0.10 0.15
NSCQ 0.13 0.37 0.60 0.67
Doddle 0.43 0.49 -0.09 --0.08
SBR 0.24 0.24 — —

306

A
lg

or
ith

m
s

Table D.123: 2LDB-60COL Z-Test results, showing whether the differences between Spear
man correlations are significant (a / shows there is significant difference in performance),
executed over Short queries.

H9S

mT9ipp°a
HH*dH_9IPP°G

dHxDH_9IPP°Q

dH x DH~9IPP°Q

x -aTp p oa

dH+dH~9IPP°G

dH+DH_9IPP°G

HH+3H~9IPP°a

dH_9ippoa
dH_9ippoa
DH_9lPP0a

9iPPoa

to S N
dlDIAV

SDS
juiy JUI JO jsia

dOHdda
A A D

uns jreAB-jsaqSiH
M95[S

pn p o id J9iiui
9inSB9J^ 9UTS 03

IHOD
ssoioq

s s s. s s

s s

s

s s s s s s s s s

s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s

s s s
s s s s s s s s s s s s s s
s s s s s s s s s s s s s s
s s s s s s s s s s s s s s

I ~
3 1<D TJ
S 2

3 2 *
2 2 % 5> O o o I

a s
5 5PS PS u u

307

A
lg

or
ith

m
s

Table D.124: 2LDB-60COL Z-Test results, showing whether the differences between Spear
man correlations are significant (a / shows there is significant difference in performance),
executed over Long queries.

aas

AOiPP°a
dH><da_3iPpoa
JHXDH_9IPP°G

dHxDH_9IPP°G
x_9ippoa

XH+dH-9IPP°G
dH+3H_9IPPoa
dH+DH_9IPP°G

JH~9IPP0Q

dH~9IPP°a
DH~9IPPOd

9iPPoa

Odsn

dXDIAV

S3S
juiy juijo jsiq

dOHdda
AA3

•uns ireAB-rsgqSiH
M95[S

pnpoid J9UUJ
9JnSB9J^[9UTS03

MOD
ssoioq

s s s s s s s

s

s s

s

s s s s s s s s s

s
s s s s s s s s
s s s s s s s s
s s s s s s s s

s s s s s
s s s s s s

s s s s s s s

s s s s s s s
s s s s s s s s
s s s s s s s s

s

<J3
2 Hiu o o
xj u u

aI I ■ I

a a a
+ + + X X

y y
X flj....................... I I I I[•t | Qj Qj Qj aj Qj oj Qj Qj aj aj

C ^ U U T l T l T l ’d T S ’d ' d ' O ' O T i ’dTJCl * 5 ^ 0 0 0 0 0 0 0 0 0 0 0 0
K ^ Q Q Q Q Q Q Q Q O Q Q P

X

63 0)
=3 =3

308

Table D.125: 2LDB-60COL average Blest and Da Costa weighted rank correlations, for the
various configurations of the Doddle algorithm, comparing algorithm-produced rankings
to FsBR.

Algorithms

Blest Da Costa

Qs Qi Qs Qi

Doddle 0.38 0.43 0.45 0.51
Doddle_RC 0.50 0.55 0.56 0.62
Doddle_RP 0.41 0.45 0.47 0.53
Doddle_RF 0.11 0.18 0.14 0.23
Doddle_RC+RP 0.47 0.52 0.53 0.59
Doddle_RC+RF 0.36 0.41 0.42 0.48
Doddle_RP+RF 0.30 0.35 0.36 0.42
Doddle_x 0.35 0.34 0.41 0.40
Doddle_RCxRP 0.43 0.44 0.48 0.51
Doddle_RCxRF 0.36 0.37 0.42 0.44
Doddle_RPxRF 0.28 0.31 0.34 0.37
Doddle_W 0.42 0.47 0.49 0.54
SBR 0.25 0.25 0.22 0.22

Table D.126: 2LDB-60COL average Blest and Da Costa weighted rank correlations, for exist
ing algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.50 0.22 0.60 0.55
CORI 0.58 0.58 0.64 0.64
Cosine Measure 0.38 0.58 0.41 0.64
Inner Product 0.56 0.61 0.61 0.66
Skew 0.53 0.56 0.58 0.60
Highest-available Similarity 0.47 0.52 0.50 0.55
C W 0.46 0.51 0.52 0.56
DFPROP 0.52 0.55 0.57 0.60
Distribution of Informative Amt -0.42 -0.40 -0.38 -0.38
SCS -0.38 - 0.22 -0.39 -0.24
AvICTF -0.37 -0.08 -0.38 -0.09
NSCQ 0.12 0.34 0.12 0.35
Doddle 0.38 0.43 0.45 0.51
SBR 0.25 0.25 0.22 0.22

309

Table D.127: 2LDB-60COL average lZn scores, for the various configurations of the Doddle
algorithm, on short queries (Qs).

Algorithms

s &

n D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF
U
cu
*3
O
Q

+

<u
=9
ndo
Q

+

cu
=9T3O
Q

X

CU1
9Tdo
Q

X

cu

Tdo
Q

X
U
cu
*9
ndo
Q

X

0)
9
TJO
Q D

od
dl

e_
W

SB
R

1 0.25 0.37 0.35 0.07 0.34 0.24 0.19 0.25 0.30 0.21 0.22 0.30 0.12
10 0.51 0.59 0.53 0.20 0.59 0.47 0.41 0.49 0.57 0.46 0.39 0.55 0.19
20 0.69 0.74 0.72 0.46 0.75 0.67 0.63 0.68 0.72 0.66 0.63 0.72 0.42
30 0.82 0.83 0.84 0.66 0.84 0.80 0.79 0.80 0.82 0.80 0.78 0.84 0.63
40 0.91 0.91 0.91 0.82 0.92 0.89 0.90 0.89 0.91 0.89 0.90 0.91 0.76
50 0.96 0.96 0.96 0.93 0.97 0.95 0.96 0.95 0.96 0.96 0.95 0.96 0.93
60 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 i.oo 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.128: 2LDB-60COL average 7ln scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

II P
CU T 3
^ P ?

%
Oh

8 » S * * I S ° H a l
n .Q U U £ c/3 £ U Q Q oo < £ Q to

1 0.25 0.39 0.20 0.13 0.13 0.09 0.12 0.13 0.03 0.02 0.02 0.12 0.25 0.12
10 0.55 0.60 0.40 0.53 0.52 0.40 0.48 0.53 0.08 0.06 0.06 0.20 0.51 0.19
20 0.73 0.77 0.58 0.75 0.74 0.66 0.69 0.73 0.13 0.12 0.12 0.32 0.69 0.42
30 0.83 0.87 0.72 0.86 0.84 0.81 0.80 0.83 0.22 0.21 0.22 0.48 0.82 0.63
40 0.91 0.92 0.85 0.92 0.90 0.90 0.89 0.90 0.37 0.40 0.40 0.66 0.91 0.76
50 0.95 0.95 0.94 0.96 0.95 0.94 0.95 0.95 0.63 0.66 0.66 0.86 0.96 0.93
60 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.95 0.95 0.99 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

310

Table D.129: 2LDB-60COL average 7£n scores, for the various configurations of the Doddle
algorithm, on long queries (Q/).

n

Algorithms

D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF

D
od

dl
e_

RC
+R

P

D
od

dl
e_

RC
+R

F

D
od

dl
e_

RP
+R

F

X
1

cu
*3X)o
Q

a
X

<u
*3X)o
Q

a
X

<u
x3x>o
Q D

od
dl

e_
RP

xR
F

D
od

dl
e_

W

SB
R

1 0.30 0.36 0.32 0.12 0.38 0.28 0.23 0.19 0.28 0.19 0.18 0.34 0.12
10 0.55 0.61 0.58 0.24 0.62 0.53 0.45 0.47 0.56 0.47 0.42 0.59 0.19
20 0.71 0.76 0.74 0.49 0.77 0.68 0.66 0.64 0.73 0.66 0.63 0.74 0.42
30 0.83 0.88 0.85 0.71 0.87 0.82 0.80 0.79 0.83 0.80 0.79 0.84 0.63
40 0.93 0.94 0.93 0.86 0.94 0.92 0.92 0.90 0.92 0.91 0.91 0.93 0.76
50 0.98 0.98 0.97 0.95 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.93
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.130: 2LDB-60COL average 7Zn scores, for existing algorithms and Doddle, on long
queries (Q/).

n

Algorithms

bG
lO

SS

CO
RI

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

H
ig

he
st-

av
ai

l.
Si

m
.

C
W

DF
PR

OP

Di
st.

 o
f

In
f.

A
m

t

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.35 0.34 0.17 0.13 0.13 0.12 0.13 0.13 0.03 0.03 0.04 0.12 0.30 0.12
10 0.42 0.57 0.56 0.58 0.54 0.44 0.49 0.54 0.10 0.09 0.12 0.29 0.55 0.19
20 0.51 0.76 0.77 0.77 0.73 0.71 0.71 0.75 0.14 0.17 0.25 0.50 0.71 0.42
30 0.59 0.86 0.87 0.88 0.85 0.84 0.82 0.85 0.26 0.31 0.39 0.67 0.83 0.63-
40 0.71 0.93 0.93 0.94 0.93 0.91 0.90 0.91 0.41 0.48 0.58 0.80 0.93 0.76
50 0.80 0.97 0.97 0.97 0.96 0.94 0.95 0.96 0.64 0.71 0.78 0.92 0.98 0.93
60 0.97 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.95 0.96 0.97 0.98 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

311

Table D.131: 2LDB-60COL average 1zn scores, for the various configurations of the Doddle
algorithm, on short queries (Q5).

Algorithms

+ + + X X XU u U Oh U y
Si S i S | X

1
a> (U O) 0) 0) a> 0) <u a) 0) <u
*3 *3 =3 'S =3 =3 i3 =3
T 3 T 3 T 3 1 3 1 3 1 3 1 3 i 3 TJ 1 3 1 3
O o o o O O o O O o O O

n Q Q Q Q Q Q Q Q Q Q Q Q

1 0.03 0.05 0.05 0.01 0.05 0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.02
10 0.34 0.40 0.36 0.13 0.40 0.32 0.28 0.33 0.38 0.31 0.27 0.37 0.13
20 0.62 0.66 0.64 0.41 0.67 0.60 0.56 0.60 0.64 0.59 0.56 0.64 0.37
30 0.80 0.81 0.82 0.65 0.82 0.78 0.77 0.78 0.80 0.78 0.76 0.82 0.62
40 0.90 0.91 0.91 0.81 0.92 0.89 0.90 0.89 0.90 0.89 0.89 0.91 0.76
50 0.96 0.96 0.96 0.93 0.97 0.95 0.96 0.95 0.96 0.96 0.95 0.96 0.93
60 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 L00 1.00 1.00 1.00 1.00 1.00

Table D.132: 2LDB-60COL average 1Zn scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

1 0.04 0.06 0.03 0.02 0.02 0.01 0.02 0.02 0.00 0.00 0.00 0.01 0.03 0.02
10 0.37 0.40 0.26 0.36 0.36 0.27 0.33 0.36 0.05 0.04 0.04 0.13 0.34 0.13
20 0.65 0.68 0.51 0.67 0.66 0.59 0.63 0.66 0.11 0.10 0.10 0.29 0.62 0.37
30 0.81 0.85 0.70 0.84 0.82 0.79 0.78 0.81 0.21 0.20 0.21 0.47 0.80 0.62
40 0.91 0.92 0.84 0.92 0.90 0.90 0.88 0.89 0.37 0.39 0.40 0.65 0.90 0.76
50 0.95 0.95 0.94 0.96 0.95 0.94 0.95 0.95 0.63 0.66 0.66 0.86 0.96 0.93
60 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.95 0.95 0.99 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

312

Table D.133: 2LDB-60COL average 1Zn scores, for the various configurations of the Doddle
algorithm, on long queries (Q/).

n

Algorithms

D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF

D
od

dl
e_

RC
+R

P

D
od

dl
e_

RC
+R

F

D
od

dl
e_

RP
+R

F

D
od

dl
e_

x

D
od

dl
e_

RC
xR

P PL,
Ph
X

*0)
=3-ao
Q D

od
dl

e_
RP

xR
F

D
od

dl
e_

W

SB
R

1 0.04 0.05 0.05 0.02 0.05 0.04 0.03 0.02 0.04 0.02 0.02 0.05 0.02
10 0.37 0.41 0.39 0.16 0.42 0.36 0.31 0.32 0.38 0.32 0.28 Q.39 0.13 .
20 0.63 0.68 0.66 0.44 0.69 0.61 0.59 0.57 0.65 0.59 0.56 0.66 0.37
30 0.81 0.85 0.83 0.69 0.84 0.80 0.78 0.77 0.81 0.78 0.77 0.82 0.62
40 0.93 0.94 0.93 0.86 0.94 0.92 0.91 0.90 0.92 0.91 0.91 0.93 0.76
50 0.97 0.98 0.97 0.95 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.93
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.134: 2LDB-60COL average 1Zn scores, for existing algorithms and Doddle, on long
queries (Q/).

n

Algorithms

bG
lO

SS

CO
RI

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

H
ig

he
st-

av
ai

l.
Si

m
.

C
W

DF
PR

OP

Di
st.

 o
f

Inf
. A

m
t

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.05 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.02 0.04 0.02
10 0.27 0.39 0.38 0.39 0.37 0.30 0.33 0.37 0.06 0.06 0.08 0.19 0.37 0.13
20 0.45 0.68 0.68 0.69 0.66 0.63 0.64 0.67 0.12 0.15 0.22 0.45 0.63 0.37
30 0.58 0.84 0.85 0.86 0.83 0.82 0.80 0.83 0.25 0.30 0.38 0.65 0.81 0.62
40 0.70 0.92 0.92 0.93 0.92 0.90 0.89 0.91 0.41 0.48 0.57 0.80 0.93 0.76
50 0.80 0.97 0.97 0.97 0.96 0.93 0.95 0.96 0.64 0.71 0.78 0.92 0.97 0.93
60 0.97 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.95 0.96 0.97 0.98 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

313

Table D.135: 2LDB-60COL average V n scores, for the various configurations of the Doddle
algorithm, on short queries (Qs).

Algorithms

n D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF
+U
<u
3T3O
Q

+

*CD

-ao
Q

+

<L>
=3
O
Q

X

=3-ao
Q

X

*CD
=3TJO
Q

X

*<D
=3T3O
P

X

0)
n3T3O
Q D

od
dl

e_
W

SB
R

1 0.56 0.80 0.64 0.28 0.72 0.55 0.45 0.58 0.67 0.55 0.47 0.68 1.00
10 0.65 0.80 0.68 0.33 0.77 0.62 0.51 0.61 0.73 0.60 0.48 0.71 0.60
20 0.69 0.78 0.71 0.50 0.75 0.67 0.61 0.66 0.72 0.68 0.59 0.72 0.67
30 0.68 0.74 0.68 0.57 0.72 0.68 0.64 0.66 0.69 0.68 0.63 0.70 0.65
40 0.65 0.67 0.65 0.58 0.66 0.64 0.64 0.64 0.65 0.65 0.63 0.65 0.61
50 0.59 0.60 0.59 0.57 0.59 0.59 0.59 0.58 0.59 0.59 0.58 0.59 0.61
60 0.53 0.54 0.53 0.54 0.54 0.54 0.54 0.53 0.54 0.54 0.54 0.54 0.54
62 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Table D.136: 2LDB-60COL average V n scores, for existing algorithms and Doddle, on short
queries (Q5).

Algorithms

on
. . - I<u "d >

£ a 2 " > £ 2 ° h O' =3
S S 'I S ”3 ft;O O o 5 ^ ^ U ^ 5̂ o qqn ,a U U J5 c/5 £ U Q Q cn < Z Q ĉ

1 0.89 0.95 0.61 1.00 1.00 0.76 1.00 1.00 0.14 0.11 0.12 0.95 0.56 1.00
10 0.85 0.89 0.67 0.90 0.88 0.75 0.86 0.88 0.22 0.20 0.20 0.60 0.65 0.60
20 0.81 0.87 0.69 0.86 0.84 0.79 0.82 0.84 0.26 0.27 0.27 0.58 0.69 0.67
30 0.75 0.81 0.69 0.80 0.78 0.77 0.76 0.77 0.32 0.35 0.35 0.60 0.68 0.65
40 0.67 0.71 0.65 0.70 0.69 0.70 0.67 0.69 0.39 0.44 0.44 0.60 0.65 0.61
50 0.60 0.62 0.60 0.61 0.61 0.61 0.61 0.61 0.46 0.50 0.50 0.59 0.59 0.61
60 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.51 0.53 0.53 0.54 0.53 0.54
62 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

314

Table D.137: 2LDB-60COL average V n scores, for the various configurations of the Doddle
algorithm, on long queries (Q/).

Algorithms

n D
od

dl
e

D
od

dl
e_

R
C

D
od

dl
e_

R
P

D
od

dl
e_

R
F

+

03
1 3O
Q

+

*03
*3
1 3O
Q

+

03
=3T3O
Q D

od
dl

e_
x

X

*03
*313O
Q

X
U
03
*3
1 3O
Q

X

03

1 3o
Q D

od
dl

e_
W

SB
R

1 0.66 0.80 0.62 0.44 0.76 0.65 0.52 0.51 0.63 0.53 0.48 0.70 1.00
10 0.70 0.83 0.73 0.39 0.80 0.69 0.57 0.61 0.73 0.62 0.52 0.75 0.60
20 0.72 0.81 0.74 0.54 0.79 0.71 0.65 0.64 0.73 0.67 0.61 0.75 0.67
30 0.70 0.78 0.71 0.60 0.75 0.70 0.66 0.65 0.70 0.67 0.63 0.72 0.65
40 0.67 0.69 0.66 0.61 0.68 0.66 0.65 0.64 0.66 0.66 0.64 0.67 0.61
50 0.60 0.61 0.59 0.59 0.60 0.60 0.60 0.59 0.59 0.60 0.59 0.60 0.61
60 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
62 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Table D.138: 2LDB-60COL average V n scores, for existing algorithms and Doddle, on long
queries (Q/).

Algorithms

C/5
C/3
O
O

2
ou

03
2<v
.a
COOU

CJ3
1 3O

IC/3

C/5

03

■§>

O-i
§OhUh
Q

C/3UCO

Oh
e O'u<73

£

03
"do
Q Ico

1 0.70 0.92 0.92 1.00
10 0.65 0.89 0.87 0.92
20 0.61 0.86 0.84 0.88
30 0.57 0.81 0.80 0.82
40 0.56 0.71 0.70 0.71
50 0.53 0.62 0.62 0.62
60 0.52 0.54 0.54 0.54
62 0.52 0.52 0.52 0.52

1.00 0.96 1.00 1.00 0.19
0.88 0.79 0.89 0.90 0.27
0.85 0.82 0.84 0.86 0.30
0.79 0.80 0.77 0.79 0.35
0.70 0.71 0.68 0.70 0.41
0.61 0.61 0.61 0.61 0.46
0.54 0.54 0.54 0.54 0.51
0.52 0.52 0.52 0.52 0.52

0.30 0.36 1.00 0.66 1.00
0.31 0.39 0.72 0.70 0.60
0.36 0.46 0.73 0.72 0 .6 /
0.44 0.50 0.71 0.70 0.65
0.49 0.54 0.67 0.67 0.61
0.52 0.55 0.61 0.60 0.61
0.53 0.53 0.54 0.54 0.54
0.52 0.52 0.52 0.52 0.52

315

Table D.139: 2LDB-60COL average precision within the top 5 collections, and the number
of queries (out of 100) for which the first ranked collection is correct, for the various config
urations of the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

Doddle 0.22 0.29 8 (8%) 9 (9%)
Doddle_RC 0.31 0.32 10 (10%) 11 (11%)
Doddle_RP 0.26 0.31 15 (15%) 12 (12%)
Doddle_RF 0.06 0.08 0 (0%) 3 (3%)
Doddle_RC+RP 0.30 0.33 14 (14%) 13 (13%)
Doddle_RC+RF 0.21 0.23 7 (7%) 8 (8%)
Doddle_RP+RF 0.16 0.22 6 (6%) 7 (7%)
Doddle_x 0.22 0.22 9 (9%) 3 (3%)
DoddleJRCxRP 0.30 0.28 12 (12%) 8 (8%)
Doddle_RCxRF 0.19 0.20 5 (5%) 3 (3%)
Doddle_RPxRF 0.15 0.18 9 (9%) 3 (3%)
Doddle_W 0.26 0.31 10 (10%) 11 (11%)
SBR 0.01 0.01 0 (0%) 0 (0%)

Table D.140: 2LDB-60COL average precision within the top 5 collections, and the number
of queries (out of 100) for which the first ranked collection is correct, for existing algorithms
and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

bGlOSS 0.23 0.21 10 (10%) 14 (14%)
CORI 0.27 0.26 11 (11%) 6 (6%)
Cosine Measure 0.16 0.22 5 (5%) 2 (2%)
Inner Product 0.18 0.22 0 (0%) 0 (0%)
Skew 0.18 0.19 0 (0%) 0 (0%)
Highest-available Similarity 0.08 0.12 0 (0%) 0 (0%)
CW 0.15 0.15 0 (0%) 0 (0%)
DFPROP 0.17 0.20 0 (0%) 0 (0%)
Distribution of Informative Amt 0.01 0.01 0 (0%) 0 (0%)
SCS 0.01 0.01 0 (0%) 0 (0%)
AvICTF 0.01 0.02 0 (0%) 0 (0%)
NSCQ 0.03 0.05 0 (0%) 0 (0%)
Doddle 0.22 0.29 8 (8%) 9 (9%)
SBR 0.01 0.01 0 (0%) 0 (0%)

316

D.7. AP-WSJ-60COL

D.7 AP-WSJ-60COL

Table D.141: AP-WSJ-60COL average Spearman rank correlations, for the various configura
tions of the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Qs Ql Qs Qi

Doddle 0.35 0.41 -0.33 -0.36
Doddle_RC 0.45 0.52 0.12 0.09
Doddle_RP 0.35 0.41 -0.43 -0.46
Doddle_RF 0.07 0.15 -0.55 -0.55
Doddle_RC+RP 0.42 0.48 -0.19 -0.24
Doddle_RC+RF 0.34 0.41 -0.23 -0.25
Doddle_RP+RF 0.25 0.33 -0.53 -0.53
Doddle_x 0.33 0.37 -0.36 -0.42
DoddleJRCxRP 0.41 0.45 -0.18 -0.27
Doddle_RCxRF 0.33 0.38 -0.24 -0.31
Doddle_RPxRF 0.23 0.29 -0.56 -0.59
Doddle_W 0.38 0.45 -0.28 -0.31
SBR 0.13 0.13 — —

317

Table D.142: AP-WSJ-60COL average Spearman rank correlations, for existing algorithms
and Doddle, comparing algorithm-produced rankings to FsBR and SBR.

FsBR SBR

Algorithms Qs Qi Qs Qi

bGlOSS 0.44 0.35 - 0.02 0.04
CORI 0.50 0.53 0.43 0.32
Cosine Measure 0.36 0.53 0.18 0.22
Inner Product 0.48 0.54 0.42 0.37
Skew 0.41 0.46 0.46 0.45
Highest-available Similarity 0.36 0.38 0.80 0.81
CW 0.34 0.36 0.46 0.49
DFPROP 0.39 0.45 0.48 0.49
Distribution of Informative Amt -0.36 -0.37 -0.25 --0.17
SCS -0.29 -0.15 - 0.01 0.14
AvICTF -0.28 -0.03 - 0.01 0.17
NSCQ 0.22 0.34 0.71 0.69
Doddle 0.35 0.41 -0.33 --0.36
SBR 0.13 0.13 — —

318

A
lg

or
ith

m
s

Table D. 143: AP-WSJ-60COL Z-Test results, showing whether the differences between Spear
man correlations are significant (a / shows there is significant difference in performance),
executed over Short queries.

ms S S S

m"3ipp°a
JH><dH“3lPPoa
dHxDH aIPP°a

dHxDH_9IPP°a
x_9jppoa

dH+dH_9IPPoa

dH+DH_9IPP°a

dH+DH~9IPP°G

jH"9Ippoa s s s s s s s
dH_9ippoa
3H_9IPPoa

aippoa
Odsn

dlDIAV s s s s s s s s s s s s s s s s s s s s s

dOHdda
AAD

uns ire^-tsaqSjH
M9>fS

pnpo jj i9uui
9jnSB9JAJ 9IITS03

IH 03

ssoioq

S3S S S S S S S S S s s s s s s s s s s s s s s
s s s s s s s s s s s s s sjuiy JUIJO rsia S S S S S S S S

319

A
lg

or
ith

m
s

Table D.144: AP-WSJ-60COL Z-Test results, showing whether the differences between Spear
man correlations are significant (a / shows there is significant difference in performance),
executed over Long queries.

H9S

AOippoa
dHxdH-9IPP°Q

dHx3H_9IPP°Q

dHxDH_9IPP°Q
x_atppoa

dH+dH_9IPP°G

dH+DH_9IPP°G

dH+DH_9IPP°a

dH_9IPP°G

dH_9iPpoa

DH_9IPP°G
9ipp°a

bD SN
HJLDIAV

SDS
juiv juijo jsta

dOHdaa
AAD

•unS gBAB-jsaqSiH

pnpoi(j J9UUI
amseapj arnsoo

IHOD
ssoioq

s s s s s

s s s s s

s s s s s s s
s s s s s s s
s s s s s s s

s s s s s s
s s s s s s
s s s s s s s

s s s s s
s s s s s s s
s s s s s s s s

320

Table D.145: AP-WSJ-60COL average Blest and Da Costa weighted rank correlations, for the
various configurations of the Doddle algorithm, comparing algorithm-produced rankings
to FsBR.

Algorithms

Blest Da Costa

Qs Qi Qs Qi

Doddle 0.21 0.24 0.45 0.50
Doddle_RC 0.36 0.39 0.54 0.60
Doddle_RP 0.23 0.24 0.44 0.50
Doddle_RF -0.04 0.01 0.18 0.24
Doddle_RC+RP 0.30 0.32 0.51 0.57
Doddle_RC+RF 0.20 0.24 0.43 0.49
Doddle_RP+RF 0.11 0.16 0.34 0.41
Doddle_x 0.19 0.19 0.42 0.45
Doddle_RC x RP 0.30 0.29 0.50 0.54
Doddle_RCxRF 0.20 0.20 0.42 0.46
Doddle_RPxRF 0.08 0.11 0.33 0.38
Doddle_W 0.25 0.28 0.47 0.53
SBR 0.27 0.27 0.21 0.21

Table D.146: AP-WSJ-60COL average Blest and Da Costa weighted rank correlations, for ex
isting algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Blest Da Costa

Algorithms Qs Qi Qs Qi

bGlOSS 0.39 0.35 0.54 0.61
CORI 0.50 0.52 0.58 0.61
Cosine Measure 0.36 0.50 0.46 0.61
Inner Product 0.49 0.54 0.56 0.62
Skew 0.43 0.47 0.49 0.54
Highest-available Similarity 0.37 0.40 0.42 0.45
CW 0.34 0.38 0.42 0.44
DFPROP 0.40 0.47 0.47 0.52
Distribution of Informative Amt -0.33 -0.32 -0.15 -0.18
SCS - 0.20 -0.04 -0.13 - 0.02
AvICTF - 0.20 0.05 - 0.12 0.08
NSCQ 0.27 0.37 0.30 0.41
Doddle 0.21 0.24 0.45 0.50
SBR 0.27 0.27 0.21 0.21

321

Table D.147: AP-WSJ-60COL average 7Zn scores, for the various configurations of the Doddle
algorithm, on short queries (Qs).

Algorithms

& a

n D
od

dl
e

D
od

dl
e_

R
C

D
od

dl
e_

R
P

D
od

dl
e_

R
F

+
u
0)
3"do
Q

+

*CD
*3
T3O
Q

+

0)
*3■do
Q D

od
dl

e_
x

X

CD
3
T3O
Q

X
U
0)
3T2o
Q

X

*CD
3~ao
Q D

od
dl

e_
W

SB
R

1 0.39 0.47 0.42 0.09 0.45 0.33 0.27 0.37 0.47 0.27 0.26 0.44 0.50
10 0.52 0.62 0.52 0.22 0.61 0.48 0.40 0.48 0.60 0.46 0.36 0.56 0.27
20 0.71 0.78 0.71 0.41 0.77 0.69 0.58 0.68 0.76 0.67 0.55 0.74 0.32
30 0.86 0.87 0.85 0.62 0.88 0.85 0.81 0.84 0.87 0.84 0.80 0.86 0.52
40 0.92 0.92 0.91 0.78 0.93 0.92 0.90 0.92 0.93 0.92 0.89 0.93 0.81
50 0.97 0.96 0.96 0.92 0.97 0.97 0.96 0.97 0.97 0.96 0.96 0.97 0.90
60 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.148: AP-WSJ-60COL average 7Zn scores, for existing algorithms and Doddle, on
short queries (Qs).

Algorithms

u3•do

CO

1
n bG

lO
SS

co
rn

0)
.3

C/5ou

cuu
CD

H H Sk
ew

COO)
’&>
a C

W

D
FP

R
O

I

14-HO
C/5

Q SC
S

A
vI

CT
F

N
SC

Q

D
od

dl
e

SB
R

1 0.55 0.52 0.28 0.52 0.51 0.20 0.52 0.52 0.04 0.02 0.02 0.31 0.39 0.50
10 0.58 0.64 0.46 0.58 0.52 0.39 0.47 0.50 0.07 0.07 0.07 0.37 0.52 0.27
20 0.74 0.78 0.62 0.75 0.69 0.70 0.62 0.67 0.14 0.13 0.13 0.51 0.71 0.32
30 0.83 0.86 0.78 0.86 0.81 0.79 0.73 0.78 0.20 0.25 0.25 0.62 0.86 0.52
40 0.90 0.91 0.88 0.91 0.89 0.84 0.84 0.88 0.32 0.38 0.39 0.78 0.92 0.81
50 0.95 0.94 0.95 0.95 0.94 0.92 0.93 0.93 0.51 0.64 0.65 0.91 0.97 0.90
60 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.82 0.92 0.93 0.99 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

322

Table D.149: AP-WSJ-60COL average 7Zn scores, for the various configurations of the Doddle
algorithm, on long queries (Q/).

Algorithms

& & 5 & & 2+ + + X X X
u U U Ph u u

S i * 1 n
X

* 1
<D <D a> O) at a> O) CD a> <U a> 0)

=3 =3 =3 =3 =3 =3 =3 =3 =3 =3
73 73 73 73 73 73 73 73 73 73 73 73
O O O O O O O O O o O O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.46 0.53 0.47 0.18 0.52 0.45 0.38 0.33 0.47 0.30 0.31 0.51 0.50
10 0.60 0.66 0.60 0.29 0.67 0.56 0.49 0.53 0.64 0.50 0.44 0.63 0.27
20 0.75 0.82 0.76 0.45 0.79 0.74 0.67 0.71 0.78 0.71 0.62 0.77 0.32
30 0.87 0.91 0.88 0.71 0.91 0.88 0.84 0.85 0.90 0.86 0.83 0.89 0.52
40 0.94 0.97 0.94 0.87 0.96 0.94 0.92 0.94 0.95 0.94 0.92 0.95 0.81
50 0.98 0.99 0.98 0.96 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.90
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.150: AP-WSJ-60COL average 7Zn scores, for existing algorithms and Doddle, on long
queries (Q/).

Algorithms

u373O 1
n bG

lO
SS

co
rn

0)
.3
COOu

IH

0)

Sk
ew

C/50)

a C
W

D
FP

RO
I

(-MO
C/5

Q SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.42 0.53 0.53 0.56 0.54 0.37 0.52 0.53 0.04 0.03 0.06 0.39 0.46 0.50
10 0.43 0.66 0.65 0.64 0.57 0.47 0.46 0.57 0.06 0.12 0.18 0.46 0.60 0.27
20 0.55 0.79 0.80 0.79 0.73 0.71 0.63 0.72 0.13 0.22 0.31 0.64 0.75 0.32
30 0.61 0.87 0.90 0.88 0.83 0.78 0.76 0.82 0.21 0.33 0.44 0.73 0.87 0.52
40 0.68 0.93 0.95 0.94 0.90 0.83 0.87 0.90 0.34 0.52 0.62 0.84 0.94 0.81.
50 0.72 0.97 0.97 0.98 0.97 0.92 0.94 0.96 0.52 0.76 0.82 0.92 0.98 0.90
60 0.95 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.82 0.95 0.97 0.99 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 LOO 1.00 1.00 1.00 1.00 1.00 1.00

323

Table D.151: AP-WSJ-60COL average 1Zn scores, for the various configurations of the Doddle
algorithm, on short queries (Q5).

Algorithms

a a a a a a
+ + + X X X

u Pi Pi u u Pj U U PiX

0) <u O) <L> <D 0) 0) (U 1 0) 0) <D

3 * 3 3 3 3 3 3 3 3 3 3 3XS XJ T3 X> XI T 3 XI T 3 T3 T3 73
O O O O O O O o O O O O

Q Q Q Q Q Q Q Q Q Q Q Q

1 0.09 0.12 0.09 0.02 0.11 0.08 0.07 0.09 0.11 0.07 0.06 0.11 0.13
10 0.44 0.53 0.44 0.18 0.51 0.41 0.33 0.40 0.51 0.39 0.30 0.47 0.24
20 0.68 0.75 0.68 0.39 0.73 0.66 0.56 0.65 0.73 0.65 0.53 0.71 0.31
30 0.85 0.86 0.84 0.61 0.88 0.84 0.80 0.83 0.86 0.83 0.79 0.85 0.51
40 0.92 0.92 0.91 0.78 0.93 0.92 0.90 0.92 0.93 0.92 0.89 0.93 0.81
50 0.97 0.96 0.96 0.92 0.97 0.97 0.96 0.97 0.97 0.96 0.96 0.97 0.90
60 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.152: AP-WSJ-60COL average 7Zn scores, for existing algorithms and Doddle, on
short queries (Qs).

Algorithms

co
^ +■*
<U XJ >> 3
S 2 * fc ^YX CD Cm to O *s ^ 2r? X1 S * > £ 2 ° H O' 3

§ § « § | 'So > gn £ co § U -a at;
n .o U U E £ U Q Q 00 < Z, Q co

1 0.13 0.12 0.06 0.12 0.13 0.05 0.13 0.13 0.00 0.00 0.00 0.08 0.09 0.13
10 0.49 0.54 0.39 0.50 0.45 0.35 0.40 0.43 0.05 0.05 0.05 0.33 0.44 0.24
20 0.70 0.75 0.59 0.72 0.67 0.67 0.59 0.65 0.12 0.12 0.12 0.49 0.68 0.31
30 0.82 0.85 0.77 0.85 0.80 0.78 0.72 0.77 0.19 0.24 0.25 0.62 0.85 0.51
40 0.90 0.90 0.88 0.91 0.89 0.84 0.84 0.88 0.32 0.38 0.38 0.78 0.92 0.81
50 0.95 0.94 0.95 0.95 0.94 0.92 0.93 0.93 0.51 0.64 0.65 0.91 0.97 0.90
60 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.82 0.92 0.93 0.99 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

324

Table D.153: AP-WSJ-60COL average 7 tn scores, for the various configurations of the Doddle
algorithm, on long queries (Q/).

n

Algorithms

D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF
1

D
od

dl
e_

RC
+R

P

D
od

dl
e_

RC
+R

F

D
od

dl
e_

RP
+R

F

X10)
=3
T3o
Q D

od
dl

e_
RC

xR
P Uh

pc;
X

*<D
*3
TJO
Q

£
X

%<u
*3
T3O
Q D

od
dl

e_
W

SB
R

1 0.12 0.13 0.11 0.04 0.12 0.11 0.09 0.08 0.11 0.08 0.08 0.13 0.13
10 0.51 0.56 0.51 0.24 0.56 0.48 0.41 0.45 0.54 0.42 0.36 0.53 0.24
20 0.72 0.78 0.73 0.43 0.76 0.71 0.65 0.69 0.75 0.68 0.60 0.74 0.31
30 0.86 0.90 0.87 0.71 0.90 0.87 0.83 0.84 0.89 0.85 0.82 0.88 0.51
40 0.94 0.96 0.93 0.87 0.96 0.94 0.92 0.94 0.95 0.94 0.92 0.94 0.81
50 0.98 0.99 0.98 0.96 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.90
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.154: AP-WSJ-60COL average 1Zn scores, for existing algorithms and Doddle, on long
queries (Q/).

n

Algorithms

bG
lO

SS

CO
RI

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

H
ig

he
st-

av
ai

l.
Si

m
.

C
W

DF
PR

O
P

Di
st.

 o
f

In
f.

A
m

t

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.09 0.12 0.13 0.13 0.13 0.10 0.13 0.13 0.01 0.01 0.01 0.11 0.12 0.13
10 0.35 0.56 0.55 0.55 0.49 0.42 0.39 0.49 0.05 0.10 0.15 0.41 0.51 0.24
20 0.52 0.76 0.77 0.76 0.70 0.69 0.60 0.69 0.12 0.21 0.30 0.62 0.72 0.31
30 0.60 0.86 0.89 0.87 0.82 0.78 0.75 0.81 0.21 0.32 0.43 0.73 0.86 0.51
40 0.67 0.93 0.95 0.93 0.90 0.83 0.86 0.90 0.33 0.52 0.62 0.84 0.94 0.81
50 0.72 0.97 0.97 0.98 0.97 0.92 0.94 0.96 0.52 0.76 0.82 0.92 0.98 0.90
60 0.95 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.82 0.95 0.97 0.99 1.00 0.98
62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

325

Table D.155: AP-WSJ-60COL average V n scores, for the various configurations of the Doddle
algorithm, on short queries (Qs).

Algorithms

& & & & s &+ + + X X XU U u Oh U U
*1 S | *1 S| X >,

0) a> <L> CD a> a> <U 0) CD <L> 0) 0)
t3 *3 3 3 3 3 3 =3 =3 =3-d 7 3 7 3 7 3 73 7 3 7 3 7 3 7 3 7 3 7 3 7 3o O O O o O O O O O O o

Q Q Q Q Q Q Q Q Q Q Q Q

1 0.65 0.81 0.63 0.26 0.74 0.53 0.44 0.63 0.73 0.51 0.45 0.70 0.99
10 0.53 0.68 0.52 0.26 0.63 0.51 0.39 0.49 0.62 0.48 0.37 0.57 0.39
20 0.48 0.58 0.48 0.29 0.54 0.48 0.38 0.46 0.53 0.47 0.36 0.51 0.34
30 0.45 0.49 0.45 0.34 0.48 0.45 0.42 0.45 0.47 0.46 0.41 0.46 0.37
40 0.41 0.43 0.40 0.36 0.42 0.41 0.39 0.41 0.41 0.41 0.39 0.41 0.42
50 0.37 0.38 0.37 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.39
60 0.35 0.35 0,35 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35
62 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 034 0.34 0.34

Table D.156: AP-WSJ-60COL average V n scores, for existing algorithms and Doddle, on short
queries (Qs).

Algorithms

u373O

00

1
n bG

lO
SS

co
rn

a>
’5)OU

Ph
a>

Sk
ew

C/D0)

2 C
W

D
FP

RO
I

<4-1O4-5
C/D

• fH

Q SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.91 0.94 0.59 0.99 0.99 0.44 0.99 0.99 0.12 0.12 0.12 0.81 0.65 0.99
10 0.65 0.75 0.57 0.71 0.64 0.51 0.62 0.63 0.16 0.17 0.17 0.51 0.53 0.39
20 0.55 0.61 0.50 0.60 0.56 0.57 0.52 0.55 0.19 0.21 0.21 0.46 0.48 0.34
30 0.48 0.52 0.47 0.51 0.49 0.49 0.46 0.48 0.21 0.24 0.24 0.42 0.45 0.37
40 0.42 0.45 0.42 0.44 0.44 0.43 0.42 0.43 0.24 0.27 0.27 0.40 0.41 0.42
50 0.38 0.39 0.39 0.39 0.39 0.39 0.38 0.38 0.27 0.31 0.31 0.39 0.37 0.39
60 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.32 0.34 0.34 0.35 0.35 0.35
62 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

326

Table D.157: AP-WSJ-60COL average V n scores, for the various configurations of the Doddle
algorithm, on long queries {Qi).

Algorithms

& & s & a £
+ + + X X X

U U u P h U U
*1 S l X *1<u 0) O) <u a> a> <u <U a; 0) <u 0)

*3 =3 =3 'S =3 =3 =3 =3 *3T3 TJ T3 T3 T3 T3O O O O O O O o O O O O
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.73 0.88 0.72 0.42 0.81 0.72 0.60 0.62 0.78 0.60 0.55 0.80 0.99
10 0.58 0.72 0.59 0.32 0.67 0.57 0.47 0.52 0.64 0.51 0.43 0.63 0.39
20 0.51 0.60 0.51 0.30 0.56 0.52 0.44 0.48 0.55 0.49 0.41 0.54 0.34
30 0.47 0.52 0.46 0.36 0.50 0.48 0.43 0.45 0.49 0.46 0.42 0.49 0.37
40 0.42 0.45 0.42 0.38 0.43 0.43 0.41 0.41 0.43 0.42 0.40 0.43 0.42
50 0.38 0.39 0.38 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.37 0.38 0.39
60 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
62 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

Table D.158: AP-WSJ-60COL average V n scores, for existing algorithms and Doddle, on long
queries (Q/).

Algorithms

1 0.67 0.95 0.92 1.00 1.00 0.68 0.99 0.99 0.15 0.28 0.38 0.97 0.73 0.99
10 0.50 0.76 0.73 0.77 0.69 0.56 0.60 0.68 0.16 0.24 0.29 0.58 0.58 0.39
20 0.45 0.62 0.61 0.63 0.58 0.58 0.52 0.58 0.20 0.26 0.31 0.53 0.51 0.34
30 0.40 0.53 0.52 0.53 0.51 0.49 0.46 0.50 0.21 0.28 0.33 0.47 .0.47 0.37.
40 0.35 0.46 0.46 0.46 0.44 0.43 0.42 0.44 0.24 0.31 0.34 0.43 0.42 0.42
50 0.32 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.28 0.33 0.35 0.39 0.38 0.39
60 0.33 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.32 0.34 0.34 0.35 0.35 0.35
62 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

327

Table D.159: AP-WSJ-60COL average precision within the top 5 collections, and the num
ber of queries (out of 100) for which the first ranked collection is correct, for the various
configurations of the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Qi

Doddle 0.28 0.34 19 (19%) 25 (25%)
Doddle_RC 0.34 0.38 25 (25%) 28 (28%)
Doddle_RP 0.28 0.34 22 (22%) 23 (23%)
Doddle_RF 0.09 0.15 3 (3%) 7 (7%)
Doddle_RC+RP 0.33 0.39 26 (26%) 25 (25%)
Doddle_RC+RF 0.25 0.32 17 (17%) 25 (25%)
Doddle_RP+RF 0.21 0.26 13 (13%) 19 (19%)
Doddle_x 0.25 0.30 16 (16%) 14 (14%)
Doddle_RCxRP 0.33 0.36 26 (26%) 24 (24%)
Doddle_RC x RF 0.23 0.29 12 (12%) 14 (14%)
Doddle_RPxRF 0.20 0.26 11 (11%) 16 (16%)
Doddle_W 0.31 0.36 24 (24%) 26 (26%)
SBR 0.22 0.22 19 (19%) 19 (19%)

Table D.160: AP-WSJ-60COL average precision within the top 5 collections, and the number
of queries (out of 100) for which the first ranked collection is correct, for existing algorithms
and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

bGlOSS 0.35 0.22 25 (25%) 22 (22%)
CORI 0.36 0.36 22 (22%) 23 (23%)
Cosine Measure 0.23 0.38 10 (10%) 24 (24%)
Inner Product 0.34 0.36 21 (21%) 24 (24%)
Skew 0.32 0.33 20 (20%) 23 (23%)
Highest-available Similarity 0.18 0.25 9 (9%) 20 (20%)
C W 0.29 0.28 21 (21%) 21 (21%)
DFPROP 0.31 0.32 19 (19%) 22 (22%)
Distribution of Informative Amt 0.02 0.01 0 (0%) 1 (1%)
SCS 0.02 0.05 0 (0%) 0 (0%)
AvICTF 0.02 0.08 0 (0%) 0 (0%)
NSCQ 0.18 0.27 8 (8%) 11 (11%)
Doddle 0.28 0.34 19 (19%) 25 (25%)
SBR 0.22 0.22 19 (19%) 19 (19%)

328

D.8. FR-DOE-81COL

D.8 FR-DOE-81COL

Table D.161: FR-DOE-81COL average Spearman rank correlations, for the various configu
rations of the Doddle algorithm, comparing algorithm-produced rankings to FsBR and SBR.

Algorithms

FsBR SBR

Qs Ql Qs Qi

Doddle 0.49 0.54 0.05 0.05
Doddle_RC 0.54 0.61 0.20 0.19
Doddle_RP 0.49 0.54 0.00 --0.01
Doddle_RF 0.24 0.35 -0.04 --0.02
Doddle_RC+RP 0.53 0.58 0.09 0.08
Doddle_RC+RF 0.46 0.53 0.09 0.08
Doddle_RP+RF 0.44 0.49 - 0.01 --0.01
Doddle_x 0.45 0.44 0.04 --0.03
Doddle_RCxRP 0.49 0.51 0.08 0.03
Doddle_RCxRF 0.46 0.49 0.10 0.04
Doddle_RPxRF 0.42 0.44 -0.04 --0.07
Doddle_W 0.51 0.56 0.07 0.06
SBR 0.13 0.13 — —

329

Table D.162: FR-DOE-81COL average Spearman rank correlations, for existing algorithms
and Doddle, comparing algorithm-produced rankings to FsBR and SBR.

FsBR SBR

Algorithms Qs Ql Qs Qi

bGlOSS 0.57 0.45 0.25 0.12
CORI 0.63 0.61 0.31 0.29
Cosine Measure 0.39 0.63 0.15 0.27
Inner Product 0.59 0.63 0.45 0.43
Skew 0.55 0.57 0.48 0.47
Highest-available Similarity 0.51 0.57 0.42 0.44
CW 0.48 0.51 0.52 0.54
DFPROP 0.53 0.56 0.51 0.51
Distribution of Informative Amt -0.44 -0.43 -0.27 --0.19
SCS -0.43 -0.28 - 0.10 0.04
AvICTF -0.42 -0.13 - 0.10 0.12
NSCQ 0.03 0.32 0.45 0.54
Doddle 0.49 0.54 0.05 0.05
SBR 0.13 0.13 — —

330

Table D.163: FR-D0E-81C0L Z-Test results, showing whether the differences between
Spearman correlations are significant (a S shows there is significant difference in perfor
mance), executed over Short queries.

•c
§b
53

H9S

M- 3ipp°a

dHxdH~9IPP°Q

dHx3H_9IPP°Q

dH><OH_3lPPoa
x~3{ppOQ

dH+dH_9IPP°Q

JH+DH~9IPP°G

dH+DH_9IPP°G

dH_9ippoa

dH_9ipp°a

DH_9IPP°G
9iPPoa

tosN
dXDIAV

SDS
Juiy ju ijo js ia

dOHddd
A A D

uns iTBAB-jsaqSiH
M95[S

p n p o ij I9UIIJ

9m SB 9J^ 9 U IS 0 3

MOD
ssoioq

•c
§b

s s s s s s s

s s s s s s

s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s

s

CJ
<D T 3

s . .0) Oh
S -sJ r coO o u u

*s
C/3a>
1

CD

•§b
S

O h

§
O h
O h

Q

I
g

I—I <+Ho
co

• pH

0
a
is
CO

s

s s s s s s s s's s s

s s s

S S S S S S S S'S s s
s s s s s s s s s s s s s s
s s s s s s s s s s s s s s
s s s s s s s s s s s s s s

% & £I I 0) 0) 0)
O ' =3 =3 =3T3 T3o o

Q Q

E E

y y05, 05,

& s a

U TJ c/3 o
fc Q

0)
*3T3
o
Q

X X

a a
0) 0)
=3 =3t3 -a
o o
Q O

J J
3 =3
3 T3 3 O
5 Q

331

Table D.164: FR-DOE-81COL Z-Test results, showing whether the differences between
Spearman correlations are significant (a S shows there is significant difference in perfor
mance), executed over Long queries.

In

8>
3

H9S
AOippoa

JHxdH_9IPP°CI
dHxDH_9IPP°G
dHxDH_9IPP°G

x_0n5poa
dH+dH_9TPP°G
dH+DH_9IPP°G
dH+DH_9IPP°G

dH_9TPP°G

dH_9IPP0a
DH_9IPP°a

9IPP0Q

&DSN
dIDIAV

SDS
ju r y j u i j o r s ia

dOHddd
AAD

•unS jreAB-jsaqSiH
M0̂ [S

p npo jj lauuj
0jnsB9jAj 0Uiso3

raoD
ssoioq

In

§>
3

s s s s s s s s sss s s s s s s s s

s s s s

s s s s s s s
s s
s s
s s

§ ~
* 1QJ T3
S 2<U Ph

2 'S S
O o Su u B

&
'S

CO
0)

!
<D
■§>
s

£

g

‘gHHVMo
Pio•a3XI
tl
C/3

s

CLi U V
H O' *g 'g w y u 3 -a t/i o o

S (S (^ §2
^ d oj
=3 3 =3 *3 *gTJ ^ "3 "3 "3 O O O O Oa Q O Q Q

a s s
X X

*gT3 -O
o o
Q Q

3 <U
3 *g
3 "3 3 O
5 Q

332

Table D.165: FR-DOE-81COL average Blest and Da Costa weighted rank correlations, for the
various configurations of the Doddle algorithm, comparing algorithm-produced rankings
to FsBR.

Algorithms

Blest Da Costa

Qs Qi Qs Qi

Doddle 0.47 0.51 0.50 0.54
Doddle_RC 0.51 0.58 0.55 0.62
Doddle_RP 0.47 0.51 0.50 0.55
Doddle_RF 0.25 0.35 0.23 0.34
Doddle_RC+RP 0.51 0.55 0.54 0.59
Doddle_RC+RF 0.45 0.50 0.47 0.53
Doddle_RP+RF 0.43 0.47 0.45 0.49
Doddle_x 0.44 0.43 0.46 0.45
Doddle_RCxRP 0.48 0.49 0.50 0.52
Doddle_RCxRF 0.45 0.47 0.48 0.49
Doddle_RPxRF 0.41 0.43 0.43 0.44
Doddle_W 0.49 0.53 0.52 0.57
SBR 0.11 0.11 0.11 0.11

Table D.166: FR-DOE-81COL average Blest and Da Costa weighted rank correlations, for
existing algorithms and Doddle, comparing algorithm-produced rankings to FsBR.

Blest Da Costa

Algorithms Qs Qi Qs Q i

bGlOSS 0.52 0.20 0.60 0.56
CORI 0.57 0.57 0.63 0.61
Cosine Measure 0.36 0.60 0.39 0.63
Inner Product 0.55 0.58 0.59 0.63
Skew 0.51 0.54 0.55 0.57
Highest-available Similarity 0.45 0.51 0.50 0.56
C W 0.44 0.47 0.47 0.51
DFPROP 0.50 0.53 0.53 0.56
Distribution of Informative Amt -0.41 -0.40 -0.39 -0.40
SCS -0.40 -0.26 -0.42 -0.29
AvICTF -0.40 -0.13 -0.41 -0.14
NSCQ 0.00 0.28 0.01 0.29
Doddle 0.47 0.51 0.50 0.54
SBR 0.11 0.11 0.11 0.11

333

Table D.167: FR-DOE-81COL average H n scores, for the various configurations of the Dod
dle algorithm, on short queries (Qs).

Algorithms

& & & & a a
+ + + X X X

u u u a. u U
S i S | *1 *1 S i X1 *1 *1 S |0) 0) 0) <D 0) 0) 0) 0) <D (U a> 0)

=3 =3 *3 =3 =3 t3 *3 3 3 3 3XJ XJ X) T 3 X> X) T 3 x> X) T 3 X)
O O O O o O o O o o O o

n Q Q Q Q Q Q Q Q Q Q Q Q

1 0.23 0.34 0.29 0.04 0.34 0.21 0.19 0.26 0.30 0.22 0.17 0.28 0.03
10 0.50 0.54 0.50 0.28 0.54 0.47 0.43 0.49 0.52 0.49 0.41 0.52 0.18
20 0.64 0.65 0.64 0.45 0.67 0.62 0.61 0.64 0.65 0.61 0.61 0.65 0.29
30 0.75 0.74 0.75 0.59 0.77 0.72 0.73 0.73 0.74 0.72 0.73 0.75 0.45
40 0.82 0.83 0.83 0.69 0.84 0.80 0.81 0.81 0.82 0.81 0.81 0.83 0.59
50 0.89 0.89 0.89 0.79 0.90 0.87 0.88 0.87 0.88 0.88 0.88 0.89 0.68
60 0.93 0.93 0.94 0.88 0.94 0.93 0.93 0.92 0.93 0.93 0.93 0.94 0.78
70 0.97 0.96 0.97 0.95 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.97 0.91
80 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.168: FR-DOE-81COL average 1Zn scores, for existing algorithms and Doddle, on
short queries (Qs).

Algorithms

<D ^
3

a*S 8 ^YX <U Oh to 0 ‘S
2̂ i—j c ih k, 2h h O' t32 2 ■§ y ^ ^ > &h to 2 ' O p c j

X3 U U 5 £ U Q Q oo < Z Q 2

1 0.33 0.34 0.20 0.18 0.12 0.06 0.07 0.09 0.03 0.02 0.02 0.03 0.23 0.03
10 0.55 0.56 0.38 0.50 0.49 0.41 0.43 0.48 0.07 0.06 0.06 0.18 0.50 0.18
20 0.65 0.67 0.50 0.65 0.64 0.58 0.57 0.64 0.12 0.10 0.10 0.26 0.64 0.29
30 0.75 0.78 0.61 0.76 0.75 0.70 0.69 0.73 0.16 0.15 0.15 0.35 0.75 0.45
40 0.84 0.86 0.71 0.85 0.82 0.79 0.79 0.82 0.25 0.23 0.23 0.46 0.82 0.59
50 0.89 0.91 0.80 0.90 0.88 0.88 0.86 0.87 0.37 0.36 0.36 0.58 0.89 0.68
60 0.93 0.94 0.88 0.93 0.92 0.92 0.90 0.91 0.52 0.53 0.54 0.71 0.93 0.78
70 0.97 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.72 0.74 0.74 0.87 0.97 0.91
80 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.95 0.95 0.98 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

334

Table D.169: FR-DOE-81COL average 1Zn scores, for the various configurations of the Dod
dle algorithm, on long queries (Q/).

Algorithms

+ + + X X X
U U u U U

S |
X I * 1 * 1

<L> O) a; <D <D (U CD 0) (U <D 0)
=3 =3 =3 =3 *3 =3 =3

T 3 T 3 T 3 -d T 3 T 3 ■d *d T J
O O O O O o O O O o o O

Q Q Q Q Q Q Q Q Q Q Q Q

1 0.26 0.32 0.29 0.12 0.33 0.23 0.20 0.19 0.26 0.18 0.17 0.30 0.03
10 0.53 0.59 0.56 0.29 0.60 0.50 0.46 0.43 0.53 0.46 0.40 0.56 0.18
20 0.65 0.69 0.67 0.50 0.69 0.64 0.62 0.59 0.65 0.61 0.59 0.67 0.29
30 0.76 0.79 0.76 0.65 0.78 0.75 0.74 0.70 0.74 0.73 0.72 0.77 0.45
40 0.84 0.86 0.84 0.77 0.86 0.83 0.83 0.81 0.83 0.82 0.81 0.85 0.59
50 0.91 0.93 0.91 0.86 0.92 0.91 0.90 0.89 0.90 0.90 0.89 0.92 0.68
60 0.96 0.96 0.96 0.92 0.96 0.96 0.95 0.94 0.95 0.95 0.95 0.96 0.78
70 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.98 0.97 0.98 0.91
80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ■

Table D.170: FR-DOE-81COL average TZn scores, for existing algorithms and Doddle, on long
queries (Qi).

Algorithms

1 0.32 0.36 0.34 0.23 0.15 0.12 0.06 0.14 0.03 0.03 0.04 0.03 0.26 0.03
10 0.41 0.54 0.55 0.54 0.49 0.46 0.43 0.50 0.08 0.07 0.10 0.27 0.53 0.18-
20 0.46 0.66 0.67 0.66 0.63 0.62 0.59 0.64 0.13 0.13 0.17 0.40 0.65 0.29
30 0.53 0.76 0.78 0.77 0.74 0.74 0.70 0.74 0.19 0.20 0.28 0.52 0.76 0.45
40 0.60 0.84 0.86 0.85 0.83 0.83 0.80 0.83 0.28 0.31 0.38 0.64 0.84 0.59
50 0.68 0.91 0.92 0.92 0.90 0.90 0.88 0.89 0.39 0.44 0.52 0.76 0.91 0.68
60 0.77 0.95 0.95 0.95 0.94 0.94 0.92 0.93 0.53 0.60 0.66 0.84 0.96 0.78
70 0.88 0.98 0.98 0.98 0.97 0.96 0.96 0.97 0.70 0.78 0.82 0.93 0.98 0.91
80 0.97 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.93 0.95 0.97 0.99 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

335

Table D.171: FR-DOE-81COL average 1Zn scores, for the various configurations of the Dod
dle algorithm, on short queries (Qs).

Algorithms

a a a a a a+ + + X X X
u U U U U Pd

Sl rti 2 X
1 1̂ S|0) CD CD 4> 0> 4) a)1 <D 0) cu 4) 4)

=3 =3 =3 =3 *3■d T3 "d *d •d T3 ■d -d *d ”d T3o o O o o O o o o o o O
n Q Q Q Q Q Q Q Q Q Q Q Q

1 0.02 0.03 0.03 0.00 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.00
10 0.27 0.29 0.26 0.15 0.29 0.26 0.23 0.26 0.28 0.27 0.22 0.28 0.10
20 0.49 0.50 0.49 0.35 0.51 0.48 0.47 0.49 0.50 0.48 0.47 0.50 0.23
30 0.67 0.67 0.67 0.53 0.69 0.65 0.65 0.66 0.66 0.65 0.65 0.68 0.41
40 0.79 0.80 0.80 0.67 0.81 0.77 0.78 0.78 0.79 0.78 0.78 0.80 0.57
50 0.88 0.88 0.88 0.79 0.89 0.86 0.87 0.86 0.87 0.87 0.87 0.88 0.68
60 0.93 0.93 0.93 0.87 0.94 0.92 0.93 0.92 0.93 0.93 0.93 0.93 0.78
70 0.97 0.96 0.97 0.95 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.91
80 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.172: FR-DOE-81COL average lZn scores, for existing algorithms and Doddle, on
short queries (Qs).

Algorithms

1 0.03 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00
10 0.29 0.30 0.20 0.27 0.26 0.22 0.23 0.26 0.04 0.03 0.03 0.10 0.27 0.10
20 0.50 0.52 0.38 0.50 0.50 0.45 0.44 0.49 0.08 0.07 0.07 0.20 0.49 0.23
30 0.68 0.70 0.54 0.68 0.67 0.63 0.62 0.66 0.14 0.13 0.13 0.31 0.67 0.41
40 0.80 0.83 0.68 0.81 0.79 0.76 0.76 0.79 0.23 0.21 0.21 0.44 0.79 0.57
50 0.88 0.90 0.79 0.89 0.87 0.87 0.85 0.87 0.36 0.35 0.36 0.58 0.88 0.68
60 0.92 0.93 0.88 0.93 0.92 0.92 0.90 0.91 0.52 0.53 0.53 0.71 0.93 0.78
70 0.97 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.72 0.74 0.74 0.87 0.97 0.91
80 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.95 0.95 0.98 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

336

Table D.173: FR-DOE-81COL average 1Zn scores, for the various configurations of the Dod
dle algorithm, on long queries (Q/).

Algorithms

& a a s a g+ + + X X X+ + + X X X
U f-i u u Oh u U

«l X
I r t l

PtH1 a lCD 0) 0) CD CD CD CD 0> CD 0) a> CD

=3 =3 =3 =3 =3 =3 =3 t3 =3T3 -o T3 -a T3 -a T3 T3 T3 TJo o O o O O o O O o O O
Q Q Q Q Q Q Q Q Q D Q Q

1 0.03 0.03 0.03 0.01 0.04 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.00
10 0.29 0.32 0.30 0.16 0.32 0.27 0.25 0.23 0.29 0.25 0.22 0.30 0.10
20 0.50 0.53 0.52 0.39 0.53 0.49 0.48 0.46 0.50 0.47 0.45 0.52 0.23
30 0.68 0.70 0.68 0.59 0.70 0.67 0.66 0.63 0.66 0.66 0.64 0.69 0.41
40 0.81 0.83 0.81 0.74 0.83 0.80 0.80 0.78 0.80 0.79 0.78 0.82 0.57
50 0.90 0.92 0.90 0.85 0.92 0.90 0.89 0.88 0.89 0.89 0.88 0.91 0.68
60 0.96 0.96 0.95 0.92 0.96 0.95 0.95 0.94 0.94 0.95 0.95 0.96 0.78
70 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.98 0.97 0.98 0.91
80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.174: FR-DOE-81COL average 1Zn scores, for existing algorithms and Doddle, on long
queries (Q/).

Algorithms

1 0.03 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.03 0.00
10 0.21 0.29 0.30 0.29 0.26 0.25 0.23 0.27 0.04 0.03 0.06 0.14 0.29 0.10
20 0.35 0.51 0.51 0.51 0.49 0.48 0.45 0.50 0.09 0.09 0.13 0.31 0.50 0.23
30 0.47 0.68 0.70 0.69 0.66 0.66 0.63 0.66 0.17 0.17 0.25 0.46 0.68 0.41
40 0.57 0.81 0.83 0.82 0.80 0.80 0.77 0.80 0.27 0.29 0.37 0.61 0.81 0.57
50 0.67 0.90 0.91 0.91 0.89 0.89 0.87 0.88 0.38 0.44 0.51 0.75 0.90 0.68
60 0.76 0.95 0.95 0.95 0.94 0.94 0.92 0.93 0.53 0.60 0.66 0.84 0.96 0.78
70 0.88 0.98 0.98 0.98 0.97 0.96 0.96 0.97 0.70 0.78 0.82 0.93 0.98 0.91
80 0.97 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.93 0.95 0.97 0.99 1.00 0.98
83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00.

337

Table D. 175: FR-D0E-81C0L average V n scores, for the various configurations of the Doddle
algorithm, on short queries (Qs).

n

Algorithms

D
od

dl
e

D
od

dl
e_

RC

D
od

dl
e_

RP

D
od

dl
e_

RF

D
od

dl
e_

RC
+R

P

D
od

dl
e_

RC
+R

F

D
od

dl
e_

RP
+R

F

X IO)
t3T3O
Q D

od
dl

eJ
RC

xR
P &

X

*CD
=3-ao
Q

a
X

%
CD

T3O
Q D

od
dl

e_
W

SB
R

1 0.58 0.78 0.62 0.27 0.71 0.55 0.49 0.61 0.66 0.62 0.45 0.66 0.42
10 0.72 0.82 0.70 0.46 0.77 0.71 0.60 0.69 0.75 0.72 0.56 0.74 0.59
20 0.77 0.82 0.78 0.58 0.81 0.76 0.71 0.75 0.78 0.76 0.70 0.79 0.64
30 0.78 0.81 0.78 0.64 0.81 0.76 0.75 0.75 0.77 0.76 0.73 0.79 0.68
40 0.76 0.79 0.76 0.66 0.78 0.75 0.74 0.74 0.76 0.75 0.74 0.77 0.67
50 0.73 0.76 0.74 0.66 0.75 0.73 0.72 0.72 0.73 0.73 0.72 0.74 0.64
60 0.69 0.70 0.69 0.65 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.69 0.62
70 0.64 0.65 0.64 0.63 0.64 0.64 0.64 0.63 0.64 0.64 0.63 0.64 0.63
80 0.59 0.60 0.60 0.60 0.59 0.59 0.60 0.60 0.59 0.59 0.60 0.59 0.60
83 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

Table D.176: FR-DOE-81COL average V n
short queries (Qs).

scores, for existing algorithms and Doddle, on

n

Algorithms

bG
lO

SS

CO
RI

Co
sin

e
M

ea
su

re

In
ne

r
Pr

od
uc

t

Sk
ew

H
ig

he
st-

av
ai

l.
Si

m
.

C
W

DF
PR

OP

Di
st.

 o
f I

nf
. A

m
t

SC
S

Av
IC

TF

NS
CQ

D
od

dl
e

SB
R

1 0.80 0.91 0.62 0.69 0.61 0.38 0.55 0.58 0.17 0.16 0.16 0.43 0.58 0.42
10 0.84 0.89 0.68 0.86 0.84 0.73 0.81 0.84 0.21 0.22 0.22 0.54 0.72 0.59
20 0.84 0.88 0.71 0.87 0.85 0.80 0.81 0.85 0.28 0.28 0.28 0.56 0.77 0.64
30 0.82 0.86 0.71 0.85 0.84 0.80 0.80 0.83 0.31 0.33 0.33 0.58 0.78 0.68
40 0.80 0.84 0.72 0.83 0.81 0.79 0.79 0.81 0.39 0.41 0.41 0.61 0.76 0.67
50 0.76 0.80 0.71 0.78 0.77 0.77 0.76 0.77 0.45 0.48 0.48 0.63 0.73 0.64
60 0.70 0.72 0.68 0.72 0.71 0.72 0.70 0.70 0.50 0.53 0.54 0.63 0.69 0.62
70 0.64 0.66 0.64 0.66 0.65 0.66 0.65 0.65 0.55 0.57 0.57 0.63 0.64 0.63
80 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.58 0.58 0.58 0.60 0.59 0.60
83 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

338

Table D.177: FR-D0E-81C0L average Vn scores, for the various configurations of the Doddle
algorithm, on long queries (Q/).

Algorithms

& a E s E
+ + + X X X

u u u U U
«l 2 I S i * 1 2 i X

* 1 * 1 S |<D 0) 0) 0) a> <u 0) 0) 0) <u 0) CD
2 2 =3 =3 2 =3 =3 =3 2T3 T3 -0 -a X) T3 T3 TJ T3 T3 "d T3O O o o O o O O O O o o
Q Q Q Q Q Q Q Q Q Q Q Q

1 0.68 0.85 0.67 0.46 0.79 0.67 0.58 0.63 0.70 0.60 0.52 0.74 0.42
10 0.74 0.85 0.75 0.48 0.82 0.73 0.64 0.63 0.75 0.69 0.57 0.79 0.59
20 0.78 0.85 0.79 0.64 0.83 0.77 0.73 0.71 0.77 0.74 0.69 0.80 0.64
30 0.78 0.83 0.79 0.69 0.81 0.78 0.75 0.72 0.77 0.76 0.72 0.80 0.68
40 0.78 0.81 0.78 0.71 0.80 0.77 0.76 0.73 0.76 0.75 0.73 0.79 0.67
50 0.76 0.79 0.75 0.70 0.77 0.76 0.74 0.72 0.74 0.75 0.73 0.76 0.64
60 0.71 0.72 0.70 0.68 0.71 0.71 0.70 0.69 0.69 0.70 0.69 0.71 0.62
70 0.65 0.65 0.64 0.64 0.65 0.65 0.64 0.64 0.64 0.64 0.64 0.65 0.63 .
80 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
83 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

Table D.178: FR-DOE-81COL average V n scores, for existing algorithms and Doddle, on long
queries (Q/).

Algorithms

c/ dCO
O
3

2ou

a>
CAC30)
s0)
.5
CAou

o3
OlHPh
0)

CO

1
I

+->

0)

2

OhsPh
PC,
Q

C/DUCO

p pHU
I

O'u
C/D
£

CD
t3T3O
Q sCO

1 0.73 0.89 0.90 0.76 0.68 0.52 0.55 0.64 0.19 0.30 0.36 0.44 0.68 0.42
10 0.65 0.88 0.88 0.89 0.83 0.76 0.82 0.83 0.25 0.30 0.37 0.70 0.74 0.59
20 0.64 0.86 0.86 0.88 0.85 0.82 0.83 0.86 0.31 0.36 0.44 0.73 0.78 0.64
30 0.60 0.85 0.85 0.86 0.83 0.82 0.82 0.84 0.36 0.42 0.51 0.74 0.78 0.68
40 0.60 0.83 0.83 0.84 0.82 0.82 0.80 0.82 0.42 0.49 0.55 0.74 0.78 0.67
50 0.61 0.79 0.80 0.81 0.79 0.79 0.77 0.78 0.46 0.53 0.58 0.73 0.76 0.64
60 0.60 0.73 0.73 0.73 0.72 0.73 0.70 0.72 0.50 0.57 0.60 0.69 0.71 0.62
70 0.59 0.67 0.66 0.66 0.66 0.66 0.65 0.66 0.54 0.59 0.61 0.65 0.65 0.63
80 0.58 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.57 0.59 0.59 0.60 0.60 0.60
83 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

339

Table D.179: FR-DOE-81COL average precision within the top 5 collections, and the num
ber of queries (out of 100) for which the first ranked collection is correct, for the various
configurations of the Doddle algorithm.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Ql

Doddle 0.21 0.26 6 (6%) 7 (7%)
Doddle_RC 0.24 0.29 7 (7%) 9 (9%)
Doddle_RP 0.20 0.26 12 (12%) 9 (9%)
Doddle_RF 0.07 0.10 0 (0%) 3 (3%)
Doddle_RC+RP 0.23 0.29 10 (10%) 9 (9%)
Doddle_RC+RF 0.21 0.24 4 (4%) 6 (6%)
Doddle_RP+RF 0.16 0.20 6 (6%) 4 (4%)
Doddle_x 0.18 0.17 8 (8%) 2 (2%)
Doddle_RCxRP 0.22 0.22 11 (11%) 5 (5%)
Doddle_RCxRF 0.20 0.20 4 (4%) 3 (3%)
Doddle_RPxRF 0.14 0.17 4 (4%) 2 (2%)
Doddle_W 0.22 0.28 8 (8%) 9 (9%)
SBR 0.01 0.01 0 (0%) 0 (0%)

Table D.180: FR-DOE-81COL average precision within the top 5 collections, and the number
of queries (out of 100) for which the first ranked collection is correct, for existing algorithms
and Doddle.

Algorithms

Precision @ 5 Correct @ Pos. 1

Qs Ql Qs Qi

bGlOSS 0.25 0.18 12 (12%) 9 (9%)
corn 0.24 0.22 10 (10%) 8 (8%)
Cosine Measure 0.14 0.26 3 (3%) 9 (9%)
Inner Product 0.19 0.23 8 (8%) 5 (5%)
Skew 0.17 0.19 4 (4%) 2 (2%)
Highest-available Similarity 0.13 0.18 0 (0%) 2 (2%)
CW 0.13 0.14 1 (1%) 0 (0%)
DFPROP 0.16 0.20 2 (2%) 3 (3%)
Distribution of Informative Amt 0.02 0.02 0 (0%) 0 (0%)
SCS 0.02 0.02 0 (0%) 0 (0%)
AvICTF 0.01 0.02 0 (0%) 0 (0%)
NSCQ 0.04 0.05 0 (0%) 0 (0%)
Doddle 0.21 0.26 6 (6%) 7 (7%)
SBR 0.01 0.01 0 (0%) 0 (0%)

340

Bibliography

[1] American National Standards Institute. Information Retrieval (Z39.50): Application
Service Definition and Protocol Specification, 2003.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modem Information Retrieval. Addi
son Wesley, 1999.

[3] David C. Blest. Rank correlation - an alternative measure. Australian & New Zealand
Journal o f Statistics, 42(1): 101-111,2000.

[4] George Buchanan, Sally Jo Cunningham, Ann Blandford, Jon Rimmer, and Claire War
wick. Information seeking by humanities scholars. In Proceedings o f the 9th European
Conference on Research and Advanced Technology for Digital Libraries (ECDL), volume
3652 of LNCS, pages 218-229. Springer, 2005.

[5] Chris Buckley and Ellen M. Voorhees. Retrieval system evaluation. In TREC: Experi
m ent and Evaluation in Information Retrieval, chapter 3, pages 53-75. MIT Press, 2005.

[6] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed collections
with inference networks. In Proceedings o f the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 21-28. ACM,
1995.

[7] C.W. Cleverdon. The Cranfield tests on index language devices. In Karen Sparck Jones
and Peter Willett, editors, Readings in Information Retrieval, pages 47-59. Morgan
Kaufmann Publishers Inc., 1997.

[8] Joaquim Pinto Da Costa and Carlos Soares. A weighted rank measure of correlation.
Australian & New Zealand Journal o f Statistics, 47(4):515-529, 2005.

[9] Helen Dodd, George Buchanan, and Matt Jones. A new perspective on collection se
lection. In Proceedings o f the 14th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL), volume 6273 of LNCS, pages 433-436. Springer,
2010 .

341

Bibliography

[10] Daryl D’Souza, James A. Thom, and Justin Zobel. Collection selection for managed
distributed document databases. Information Processing and Management, 40(3) :527-
546, 2004.

[11] Daryl J. D’Souza and James A. Thom. Collection selection using n-term indexing. In
Proceedings o f the Second International Symposium on Cooperative Database Systems
for Advanced Applications (CODAS), pages 52-63,1999.

[12] Daryl J. D'Souza, James A. Thom, and Justin Zobel. A comparison of techniques for
selecting text collections. In Proceedings o f the 2000Australasian Database Conference
(ADC), 2000.

[13] Daryl J. D’Souza, Justin Zobel, and James A. Thom. Is CORI effective for collection
selection? An exploration of parameters, queries, and data. In Proceedings o f the Ninth
Australasian Document Computing Symposium (ADCS), pages 41-46,2004.

[14] David Ellis. A behavioural approach to information retrieval system design. The Jour
nal o f Documentation, 45(3):171-212,1989.

[15] The Apache Software Foundation. Lucene search algorithm. Available at:
h t t p : / / lu c e n e . apache. o rg /co re /o ld _ v e rs io n ed _ d o cs/v ers io n s /3 _ 0 _ 0 /
a p i/c o re /o rg /a p a c h e /lu c e n e /s e a rc h /S im ila r i ty . html, November 2009.

[16] James C. French and Allison L. Powell. Metrics for evaluating database selection tech
niques. World Wide Web, 3(3):153-163,2000.

[17] James C. French, Allison L. Powell, Jamie Callan, Charles L. Viles, Travis Emmitt,
Kevin J. Prey, and Yun Mou. Comparing the performance of database selection al
gorithms. In Proceedings o f the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 238-245. ACM, 1999.

[18] James C. French, Allison L. Powell, Charles L. Viles, Travis Emmitt, and Kevin J. Prey.
Evaluating database selection techniques: a testbed and experiment. In Proceedings o f
the 21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 121-129. ACM, 1998.

[19] Norbert Fuhr. Optimum database selection in networked IR. In Proceedings o f the
SIGIR’96 Workshop on Networked Information Retrieval, volume 7 of CEUR Workshop
Proceedings. CEUR-WS.org, 1996.

[20] Norbert Fuhr. A decision-theoretic approach to database selection in networked IR.
ACM Transactions on Information Systems, 17(3):229-249,1999.

[21] Norbert Fuhr. Resource discovery in distributed digital libraries. In Proceedings o f the
1999 Russian Conference on Digital Libraries (RCDL), pages 35-45. St. Petersburg State
University, 1999.

342

Bibliography

[22] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. The effectiveness of GIOSS
for the text database discovery problem. In Proceedings o f the 1994 ACM SIGMOD Con
ference on Management o f Data, pages 126-137. ACM, 1994.

[23] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. GIOSS: text-source dis
covery over the internet. ACM Transactions on Database Systems, 24(2):229-264,1999.

[24] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In Pro
ceedings o f the 14th International World Wide Web Conferences (WWW), pages 902-903,
2005.

[25] Donna K. Harman. The TREC test collections. In Ellen M. Voorhees and Donna K. Har
man, editors, TREC: Experiment and Evaluation in Information Retrieval, chapter 2,
pages 21-52. MIT Press, 2005.

[26] Claudia Hauff. Predicting the Effectiveness o f Queries and Retrieval Systems. PhD thesis,
University of Twente, 2007.

[27] Claudia Hauff, Djoerd Hiemstra, and Franciska de long. A survey of pre-retrieval query
performance predictors. In Proceedings o f the 2008 ACM Conference on Information
and Knowledge Management (CIKM), pages 1419-1420. ACM, 2008.

[28] Ben He and Iadh Ounis. Query performance prediction. Information Systems,
31(7):585-594, 2006.

[29] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the deep
web. Communications o f the ACM, 50(5):94-101,2007.

[30] David Hull. Using statistical testing in the evaluation of retrieval experiments. In Pro
ceedings o f the 16th Annual International ACM SIGIR Conference on Research and De
velopment in Information Retrieval, pages 329-338. ACM, 1993.

[31] Dublin Core Metadata Initiative. Dublin core metadata element set, version 1.1. Avail
able at: h t t p : / /d u b lin c o re . o rg /docum ents/2012 /06 /14 /dces/, June 2012.

[32] GopalK. Kanji. 100 Statistical Tests. SAGE Publications, 1993.

[33] I. E. Kuralenok and I. S. Nekrestyanov. Evaluation of text retrieval systems. Program
ming and Computer Software, 28(4):226-242,2002.

[34] K. L. Kwok. A new method of weighting query terms for ad-hoc retrieval. In Proceedings
o f the 19th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 187-195. ACM, 1996.

[35] Carl Lagoze, Herbert Van de Sompel, Michael Nelson, and Simeon Warner, edi
tors. The Open Archives Initiative Protocol for Metadata Harvesting v2.0. Open
Archives Initiative, 2008. Available at http://www.open21rchives.org/OAI/
open2Lrchivesprotocol. html.

343

Bibliography

[36] Steve Lawrence and C. Lee Giles. Accessibility of information on the web. Nature,
400:107-109, July 1999.

[37] John Parry Lewis and Alasdair Traill. Statistics Explained. Addison Wesley 1999.

[38] Weiyi Meng, Clement Yu, and King-Lup Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys, 34(l):48-89, 2002.

[39] Henrik Nottelmann and Norbert Fuhr. Evaluating different methods of estimating re
trieval quality for resource selection. In Proceedings o f the 26th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
290-297. ACM, 2003.

[40] Henrik Nottelmann and Norbert Fuhr. Combining CORI and the decision-theoretic
approach for advanced resource selection. In Proceedings o f the 26th European Con
ference on IR Research (ECIR), volume 2997 of LNCS, pages 138-153. Springer, 2004.

[41] Henrik Nottelmann and Norbert Fuhr. A decision-theoretic model for decentralised
query routing in hierarchical peer-to-peer networks. In Proceedings o f the 29th Euro
pean Conference on IR Research (ECIR), volume 4425 of LNCS, pages 148-159. Springer,
2007.

[42] Joaquin P6rez-Iglesias, Jos6 R. Perez-Agiiera, Victor Fresno, and Yuval Z. Feinstein. In
tegrating the probabilistic models BM25/BM25F into Lucene. Computing Research
Repository, 2009.

[43] Allison L. Powell. Database Selection in Distributed Information Retrieval: A Study o f
Multi-Collection Information Retrieval PhD thesis, School of Engineering and Applied
Science, University of Virginia, 2001.

[44] Allison L. Powell and James C. French. Comparing the performance of collection se
lection algorithms. ACM Transactions on Information Systems, 21 (4) :412—456,2003.

[45] Gerard Salton and Michael J. McGill. Introduction to Modem Information Retrieval.
McGraw-Hill, 1983.

[46] Jangwon Seo and W. Bruce Croft. Blog site search using resource selection. In Proceed
ings o f the 2008ACM Conference on Information and Knowledge Management (CIKM),
pages 1053-1062. ACM, 2008.

[47] Milad Shokouhi. Central-rank-based collection selection in uncooperative distributed
information retrieval. In Proceedings o f the 29th European Conference on IR Research
(ECIR), volume 4425 of LNCS, pages 160-172. Springer, 2007.

[48] Milad Shokouhi and Luo Si. Federated search. Foundations and Trends in Information
Retrieval, 5(1):1—102,2011.

344

Bibliography

[49] Luo Si and Jamie Callan. Relevant document distribution estimation method for re
source selection. In Proceedings o f the 26th Annual International ACM SIGIR Con
ference on Research and Development in Information Retrieval, pages 298-305. ACM,
2003.

[50] Luo Si and Jamie Callan. Unified utility maximization framework for resource selec
tion. In Proceedings o f the 2004 ACM Conference on Information and Knowledge Man
agement (CIKM), pages 32-41. ACM, 2004.

[51] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Analysis of
a very large web search engine query log. SIGIR Forum, 33(1):6-12,1999.

[52] Mikhail Sogrine and Ahmed Patel. Evaluating database selection algorithms for dis
tributed search. In Proceedings o f the 2003 ACM Symposium on Applied Computing
(SAC), pages 817-822, 2003.

[53] Yang Song, Nam Nguyen, and Li wei He. Searchable web sites recommendations. In
Proceedings o f the Fourth International Conference on Web Search and Data Mining
(WSDM), pages 405-414. ACM, 2011.

[54] Rashmi Srinivasa, Tram Phan, Nisanti Mohanraj, Allison L. Powell, and Jim French.
Database selection using document and collection term frequencies. Technical Report
CS-2000-32, University of Virginia, May 2000.

[55] Jean Tague-Sutcliffe and James Blustein. A statistical analysis of the TREC-3 data. In
Overview o f the Third Text REtrieval Conference TREC-3, pages 385-398,1994.

[56] Paul Thomas and David Hawking. Server selection methods in personal metasearch: a
comparative empirical study. Information Retrieval, 12(5):581-604,2009.

[57] Paul Thomas and Milad Shokouhi. SUSHI: Scoring scaled samples for server selection.
In Proceedings o f the 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 419-426. ACM, 2009.

[58] C. J. van Rijsbergen. Information Retrieval Butterworths, second edition, 1979.

[59] Ellen M. Voorhees and Donna K. Harman. The text REtrieval conference. In Ellen M.
Voorhees and Donna K. Harman, editors, TREC: Experiment and Evaluation in Infor
mation Retrieval, chapter 1, pages 3-19. MIT Press, 2005.

[60] Iris Xie and Colleen Cool. Understanding help seeking within the context of searching
digital libraries. Journal o f the American Society for Information Science and Technol
ogy, 60(3):477-494, 2009.

[61] Elad Yom-Tov, Shai Fine, David Carmel, and Adam Darlow. Learning to estimate query
difficulty: including applications to missing content detection and distributed infor
mation retrieval. In Proceedings o f the 28th Annual International ACM SIGIR Con
ference on Research and Development in Information Retrieval, pages 512-519. ACM,
2005.

345

Bibliography

[62] Elad Yom-Tov, Shai Fine, David Carmel, and Adam Darlow. Metasearch and federa
tion using query difficulty prediction. In ACM SIGIR 2005 Workshop: Predicting Query
Difficulty - Methods and Applications. ACM, 2005.

[63] Budi Yuwono and Dik L. Lee. Server ranking for distributed text retrieval systems on
the internet. In Proceedings o f the Fifth International Conference on Database Systems
for Advanced Applications (DASFAA), pages 41-50. World Scientific Press, 1997.

[64] Ying Zhao, Falk Scholer, and Yohannes Tsegay. Effective pre-retrieval query perfor
mance prediction using similarity and variability evidence. In Proceedings o f the
30th European Conference on IR Research (ECIR), volume 4956 of LNCS, pages 52-64.
Springer, 2008.

[65] Yun Zhou and W. Bruce Croft. Query performance prediction in web search environ
ments. In Proceedings o f the 30th Annual International ACM SIGIR Conference on Re
search and Development in Information Retrieval, pages 543-550. ACM, 2007.

[66] lustin Zobel. Collection selection via lexicon inspection. In Proceedings o f the Second
Australasian Document Computing Symposium (ADCS), pages 74-80,1997.

346

