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A bstract

In this thesis, we construct the fundamental solutions of pseudo-differential operators 
q(x, t , D) with time-dependent negative definite symbols q(x, t, £) which are discussed as 
generators of Feller- and L2-sub-Markovian semigroups . The results are based on the Hille- 
Yosida theorem, the standard results of analytic semigroups of operators and the fundamental 
solutions of time-dependent parabolic equations.
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Part I

Introduction & N otation
• Introduction

Pseudo-differential operators with negative definite symbols q(x, £) have since the last 
ca. 20 years been investigated as generators of Feller- and L2-sub-Markovian semigroups, 
hence they are also generators of Markov processes. Following first work of N.Jacob [9],[10] 
and [11], compare also the monograph [14]-[16], the most general results are due to W.Hoh 
[6]-[8]. In [2] B.Bottcher used a direct approach to construct a fundamental solution to 
operators of type — q(x, D),q(x, £) having a negative definite symbol. He extended in [3] 
his considerations to some time dependent operators — q(x,t;D). These operators are 
related to symbols used by W.Hoh in [8], i.e. they allow a symbolic calculus and hence must 
be smooth with respect to the co-variable £. We want also to mention the monograph [5] 
by S. Eidelman et al. and the work of V. Kolokoltsov [17] and [18] where for more classical 
symbols analogous results are discussed. Note that recently A. Potrykus in [21] and [22] 
could improve the results obtained in [8] and [12], respectively.
In our approach we want to minimize in the time-dependent case regularity with respect to 
£ of the negative definite symbol q(x, t; £), in fact we assume no differentiability at all. For 
this we carefully revise the estimates and results obtained in [11] where an approach by
O. Oleinik and E.Radkevic, see [19], was adopted for the time-independent case. We have 
in mind more a case study, we do not aim to optimize conditions on q(x, £;£).

There are six parts in my thesis.

P a r t  I Introduction &; Notation.

P a r t  II Fourier Analysis and Semigroups.

P a r t  III One Parameter semigroups.

P a r t  IV Fundamental Solutions Of Time-Dependent Parabolic Equation.

P a r t  V Some Properties Of Pseudo-Differential Operators with Time Dependent Negative
Definite Symbols.

P a r t  V I —q(x,to,D) as Generator Of A Feller Semigroup & Fundamental Solution For
d
dt qx(x ,t,D )

P a r t  II is an introduction to those definitions and theorems, we collect from [14], which 
we have to use later on. We start with introducing the Fourier transform on the Schwartz 
space 5(Rn) and the space of tempered distribution, S'(Rn). Then we discuss the convolution 
property of two functions such as

(u * v)~({) = (2tt)n/2u(£) • ?)(£) .
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Starting with Section 3, we study the Fourier transform of bounded Borel measure, and show 
that their Fourier transforms are positive definite functions by applying the fundamental 
theorem, Bochner’s theorem. In the negative definite functions part, we show many lemmas 
and examples. Most important is a Peetre inequality

1 +  liKOl

In Part III, we will introduce the theory of one-parameter operator semigroups on 
Banach spaces (X, || • ||x) and the standard results of analytic semigroups of operators. Our 
aim is to study the theorems and properties of Feller and sub-Markovian semigroups. The 
main results are the theorems around the Hille-Yosida theorem, Theorem 4.23 and Theorem 
4.26.

In Part IV,we will discuss the fundamental solutions of the time-dependent parabolic 
equation :

+  A(t)u(t) = f ( t ), 0 < t < T. 

u{ 0) =  Uq.

After constructing the fundamental solution U(t, s) by applying many important assumptions 
and inequalities, we finally arrive at the main results, Theorem 5.15 and Theorem 5.16, 
showing that there exists a fundamental solution U(t,s) of the time-dependent parabolic 
equation with certain conditions.

In Part V, we will study a large class of these pseudo-differential operators with co­
efficients depending on time which may for frozen time dependence extend to a generator 
of a Feller semigroup or a sub-Markovian semigroup. Our special interest is proving esti­
mates for the operator q(x,t,D )  in Sobolev spaces related to continuous negative definite 
functions with time-dependent negative definite symbols, q(x,t,£), more precisely, in the 
Hilbert space H ^,s(IRn) . After decomposing the time dependent symbols into qi{t,£) and 
^2(^5 £>£)> i-e- ^>0 — 0i(^>O + 92(^1 we discuss the assumptions and estimates of 
the operator qi(t, D) and q2 (x , t , D ) separately. In the remaining of the part V, we introduce 
the Friedrichs modifier and discuss its properties . Then we focus on the main theorem, 
Theorem 6.27, i.e. there exists a unique variational solution u(-,t) G H ^,S2+2(M.n) to the 
equation q\(x, t , D)u(x, t) = q(x, t, D)u(x , t) + Au(x, t) = / .

Part VI discusses in detail the construction of Feller and L2-sub-Markovian semigroups 
with a pseudo-differential operator (with time-dependent negative definite symbols) as pre­
generator using the Hille-Yosida theorem, which we discuss in part III. After applying the 
standard results of analytic semigroups of operators in part III and Part IV, we construct 
the fundamental solution U(t, s) in a L2-context to the parabolic problem:

du(x , t )
dt + q{x,t, D )u(x,t) = 0 and u(x,0) = f(x ).

7



• N otation

1. N natural numbers

2. R  real numbers

3. R+ =  {x £ E ; x > 0}

4. Rn euclidean vector space

5. C complex numbers

6. i?(17) Borel measurable function

7. bounded Borel measurable function

8. C (G ) continuous functions

9. Co(G) continuous functions with compact support

10. C’oo(G) continuous functions vanishing at infinity

11. Cb{G) bounded continuous functions

12. C rn(G) m-times continuously differentiable functions

13. C°°(G) =  n msNC'm(G)

14. H*’\ Rn) =  {« € S'(Rn)\ ||u ||*. < oo}

15. 7/(17,//) usual Lebesgue space over (17, *4,//)

16. Mbt'(17) bounded measures on 17

17. S'(lRn) Schwartz space of tempered functions

18. S"(lRn) tempered distributions

19. C iV ((R n) continuous negative definite functions

20. CP((Rn) continuous positive definite functions

21. N((\Rn) negative definite functions

22. P((Rn) positive definite functions

23. (X, || • ||x) Banach space X  with norm || • ||*

24. A"c—> Y  continuous embedding if X  into Y

25. (A, D (A)) linear operator with domain D(A)



26. D{A) domain of an operator

27. R(A) range of an operator

28. r(vl) graph of an operator

29. p(A) resolvent of an operator

30. (R\)\>o resolvent of an operator

31. q(x,D) pseudo-differential operator with symbol q(x, £)

32. 'ip(D) pseudo-differential operator with symbol

33. {Tt)t>o one parameter semigroup of operator

34. (T<” >) t>o semigroup on C ^ R 71)

35. generator of (t /°°^> o

36. (rtw )t>o semigroup on L ^R 71), 1 < p < oo

37. A ^  generator of (T^ ) t>0

38. a A b = min(a , b)

39. a V b = max(a, b)
aiQi40. SPu =

41. xa characteristic function of the set A

42. Re f  real part of a function

43. f o g  composition of functions

44. /  * g convolution of functions (or distributions)

45. pi * p2 convolution of the measures p\ and p 2

46. supp u support of a function or distribution

47. supp p support of a measures p

48. {pt)t>o convolution semigroup of probabilities

49. |M|x norm of u in the space of X

50. |M|0> (u, u)o norm and scalar product in L2(fl, p)

51. IMloo =  sup |u(rr)| or ess sup |w(a;)|

52. IM I^ norm in the space i /^ ,s(Rn)

9



Part II

Fourier A nalysis and Semigroups

1 The Fourier Transform in S ( W l)

This chapter is devoted to introduce those theories which are necessary to explain why 
certain pseudo-differential operators are generators of Feller and sub-Markovian semigroups. 
We will study many definitions and theorems which we collect from [14]. We will start by 
introducing the Fourier transform on the Schwartz space, and discuss its properties.

We also will use FyJ+v(u) for denoting (F lu)(y).

The following theorem summarizes some useful properties of the Fourier transform on 
S(Rn).

Theorem  1.4. The Fourier transform F is a linear bijective and continuous operator from 
5(Rn) into itself which has a continuous inverse given by (1.3).
Thus, on S(M.n) we have F  o F _1 =  F _1 o F = id.

R em ark  1.5. Note that on SQRn) we have F4 =  id, or F _1 =  F 3.

Theorem  1.6. For all u G S(Rn),

D efinition 1.1. The Schw artz space 5(Rn) consists of all functions u G C°°(Wl) such 
that for all m i, m 2 G No

PmumAu) ’■= sup((l +  |a:|2)mi/2 |9°u(x)|) < 00 (1 .1)

The family (Pmi,m2)mi,m2eN forms a family of separating seminorms. 

Definition 1.2. Let u G 5(Rn). The F ourier tra n sfo rm  of u is defined by

Sometimes we will write Fx~z(u) (0  or F (u)(0  f° r fi(0-
D efinition 1.3. On 5(Rn) we define the inverse F ourier tra n sfo rm  by

( 1.2)

(1.3)



Remark 1.7. From (1.5), we get immediately, for all u, v G S(Rn),

(u,v) o =  (M )o- (1-6)

Estimate (1.4) entails that we can extend the Fourier transform from 5(Rn) to a continu­
ous linear mapping from L^R71) to C00(Rn), whereas (1.8) allows us to extend the Fourier 
transform to an isometry on L2(Rn).
Thus, on L2(Rn) we have

IM|L2 =  IH|L2 (1.7)

and
{u,v)L2 =  (u,v)L2. (1.8)

Furthermore, estimate (1.4) leads to the Lemma of Riemann-Lebesgue:

Theorem 1.8. The Fourier transform is a continuous linear operator from LJ(Rn) into 
Coo(Rn) and

IHIoc < (27r)“"/2||u||Li (1.9)

holds for all u G IL^R71).

Definition 1.9. Let u, v G S(Rn), their convolution is the function

x \~ ^ (u * v )(x )=  / u(x — y)v(y)dy (1-10)
J i n

which is again an element in 5(Rn).

Definition 1.10. Let pj G M^(Rn),l < j  < k, be measures. The image of
Pi <S> .. • 0  Pk under Ak is called the convolution of these measures and is denoted by

P i* . . .* P k : = A k( p i® . . .® p k). (1.11)

where A k : Rn x • • • x Rn —> Rn, (y1, . . . ,  yk) Ak(yx, . . . ,  yk) = y1 H 1- y k.

Theorem 1.11. Let m,uG S'(Rn). Then we have

(u • v) *(£) = (2?r)~n/2{u * v)(0  (1.12)

and
(u * v) = (27r)n/2u (0  • v(£) . (1.13)
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2 The Fourier Transform in S"(Mn)

In this section ,we will extend the Fourier transform from S(M.n) to S"(Rn) by duality. 
On 5"(Rn), we will always consider the weak-*-topology in the following.

Definition 2.1. S'(Rn) is called the space o f  tem pered distributions.
It consists of all distribution u G D'(Rn) having a continuous extension to S(M.n), 
i.e. 5 '(Rn) C D'(M.n) , and D'(M.n) is the space of distributions on Rn.

Remark 2.2. The weakest topology on X * which makes all elements of X  continuous, i.e. 
for every u G X  a continuous linear functional on X* is given by u(x*) = x*(u), is called 
the weak-*-topology on X*.
For every neighbourhood U of 0 G £"(Rn), there exists a neighbourhood V of 0 G S"(Rn) such 
that

V = {u G S'(Rn)| |< u, <j>j > |<  1 for 0i, • • • , € 5(Rn)}.

Moreover, a sequence (it„)„€n, u„ G S'(Rn) , converges in the weak-*-topology to u G S'(Rn)
if and only if

< u v,(f)> —► < u, 0 >, for all (p G S(M.n).

Definition 2.3. Let u G iS"(Rn ). The Fourier tra n sfo rm  u of u is defined by

< u, (f) > := < u, <j> >, for all 0  G S(W l). (2.1)

As usual, we use also the notation Fu for u.

Remark 2.4. For g G L 1(Mn) C S'(Rn), and 0  G S(M.n), we find

< p , 0 >  = < # , 0 >  =  / g(x)i>(x)dx= / g(x)<p(x)dx,
J Rn jRn

shows that g in the sense of S '(]Rn) coincides with g as it is defined on L1(Mn).

Furthermore, since convergence in L2(]Rn) implies weak-*-convergence in S'(Rn), we may
deduce that the Fourier transform as defined on S'(Rn) also extends the Fourier transform
as defined on L2(Rn).

Theorem 2.5. The Fourier transform is a continuous linear operator from S'(Rn) into itself 
which is bijective and has a continuous inverse F~l .

Theorem 2.6. Foru  G 5"(Rn) and 0  G S(Rn), the convolution u*<f> is defined and we have

(u * 0) * =  (2n)n/20 • u (2.2)

and
(0  • w ) " — (2tt)~nt2u * 0  . (2.3)

12



3 Positive Definite Functions and N egative D efinite 
Functions

In this section, we want to study the Fourier transform of Borel measures p G M^(Mn).

Since Mjj"(Rn) is a subset of S'(Mn), the Fourier transform p of p is well defined and for 
cj) G 5(Mn), we have

< p,, <f > = < p , 0 > =  f  (3.1)
j R n

From the definition of 0, we get, using Fubini’s theorem,

< /i, 0 > =  (27r)-n/2 f  (  e~lx  ̂<p(x)dxp(dtf)
J R n J Kn

(27r)-n/2 f  (  [  e - ^ , i ( d o )  4>{x)d. 
JR n \J R n /

(27r)"n/2 [  e -t{'^fi(d^), <f>\ ,
J R n /

hence we have
AK) = (2tt)-"/2 f  e - ^ t i d x )  (3.2)

JRn
Definition 3.1. A function u : Rn —> C zs called positive definite if for any choice of 
k G N and vectors £*,•• • , G Rn i/ie matrix (u(£j — f*))j,J=i,2,-,fc positive Hermitian, i.e. 
for all Ai, • • • , A*, G C, we have

k
(3.3)

J\l=l

Theorem 3.2. Lei p G MjJ’flR"). TTiera p is a positive definite function.

Proof. For k G N and £*, • • • , ^ G l n we find with Ai, • • • , A*, G C

k k
Y, XjXiiHe -  il) =  (2«-)-n /2 /  ^  A^Aje-<(£>- £,>'x/i(dx) 
*1=1 •/ r “ «=i

(2?r) n/2 ’p '1)  ■

I & 2
= (2tt)—/ 2 /  *

" I i=i
//(dw) > 0 .

13



Of fundamental importance is B ochner’s theorem :

Theorem  3.3. A function u : Rn —» C is the Fourier transform of a measure p G Mj" (Rn)

(Note that for a G Q the Dirac measure at a is denoted by e0. In our case, Q = Rn and 
a = 0, we write £o instead of ea.)

Recall 3.5. Let (pv)u£n be a sequence in M^(Rn) and p0 G M^(Rn). We say that (pu)^eN 
converges vaguely to po, if for all u G Co(Rn;R) we have

Theorem  3.6. Suppose that (p^)i/€N, Pv £ M^(Rn), converges vaguely to p G M f(Rn) and 
that lim^oo/z^(Rn) =  p(Rn). Then (pv)ven converges weakly to p.

Recall 3.7. Let {pu)uen be a sequence in M^(Rn) and po £ Mjj~(Rn). We say that {pv)u£n 
converges weakly to p0, if  (3.7) holds for all u G Ci,(Rn;R).

Lem m a 3.8. Let {pt)t>o be a convolution semigroup on Rn. Then the mapping t i—> pt 
is continuous at t = 0 with respect to the Bernoulli topology, i.e. the topology of weak 
convergence of measures.

with total mass \\p\\, if and only if the following conditions are fulfilled 

1. u is continuous;

3. u is positive definite.

Definition 3.4. A family (pt)t>o of bounded Borel measures on Rn is called a 
convolution sem igroup on Rn, if the following conditions are fulfilled

Ps * Pt — Pt+si Sj t ^  0 and po — £o 

pt —* £o vaguely as t —> 0

(3.4)

(3.5)

(3.6)

(3.7)

Proof. For 0 G Co(R),0 < 0 < 1 and 0(0) =  1, we find by (3.4) and (3.6) 

1 =  0(0) =  lim I  (frdpt < liminf /x*(Rn) < limsup/xf(Rn) < 1

hence

lim /Xf(Rn) =  1 =  e0(R")

and by Theorem 3.6 the lemma is proved. □

14



Lem m a 3.9. For any convolution semigroup (fit)t>o on Rn the mapping 1 1—> /it is continuous 
from [0, oo) into (Rn) equipped with the Bernoulli topology.

Proof. For t, to > 0 and £ E Rn we get

Let (y,t)t>o be a convolution semigroup on Rn. It follows that the family (fit)t>o of 
the Fourier transforms of pt,t > 0, consists of continuous positive definite functions on 
Rn satisfying |/ii(£)| < (27r)-Tl//2. Our aim is to show the existence of a unique function 
0  : Rn —► C such that /}*(£) := (27r)~n/2e ~ ^ ^  holds.

Theorem 3.10. Let (nt)t>o he a convolution semigroup on Rn. Then there exists a function 
0  : Rn —► C such that

M O  := (27r)-n/2e-*'«f> (3.9)

holds for all £ E Rn and t > 0.

Proof. For £ E Rn fixed we consider the mapping 0  ̂ : [0, oo) —► C defined by

but by Lemma 3.8 we conclude that /}|*_*0|(£) —»• (27r) n/2 uniformly on compact sets as
t —► to. Then

lim p,t = fjttot—*to (3.8)

in the Bernoulli topology.

□

:= (27T)"/2At(£)> t > 0. (3.10)

By Lemma 3.9 this mapping is continuous and the convolution theorem gives

M s + t) = M t ) M s) (3.11)

i—>u
It follows the existence of a unique complex number 0(£) such that

fc(t) = e~t m , t > 0.

lim dt(t) = 1 (3.12)

(3.13)

Note that the mapping £ h-> e Wit) must be positive definite and 0(0) > 0. 

D efinition 3.11. A function 0  : Rn —► C is called negative defin ite  if

□

0 (0) > 0 (3.14)

is positive definite for t > 0. (3.15)

15



Next we will introduce the classes 7V(Rn)and CN(M.n) to study negative definite functions 
more closely.

Definition 3.12. A function xp : Rn —* C belongs to the class N(W l) if for any choice of 
k £ N and vectors , . . . ,  £k £ Mn the matrix

m e ) +v > k ‘ ) -  we -  ?))u-i * (3.16)
is positive Hermitian. Further we set

CN{Rn) := N{Rn) n C (R n).

For xp £ N (Mn) we have obviously
m  > 0 , (3.i7)

and since for £ £ Rn the matrix

(  tf’(f) +  V’K) -  iHo) ^(£) +  ^ ( 0 ) -  i>(£) \
m + m - m  J  K ’ 1

is positive Hermitian we find

xp(£) +  ^ (0) -  xp(£) = xp(0) +  xp{£) -

i.e.
V>(0 =  ^ ( - 0  or ^ ( 0  =  ^ ( 0 .  (3-19)

w/iere we used the notation u(ff) = u(—£). Furthermore the determinant of the matrix (3.18) 
must be non-negative, implying that

Re xp(£) > ^(0) fo r  all £ £ Rn. (3.20)

Lemma 3.13. A. The set N(M.n) is a convex cone which is closed under pointwise con­
vergence. B. For xp £ 7V(Rn) it follows that xp and Re xp belong to N (Rn) too. C. Any
non-negative constant is an element of N(M.n). D. For xp £ N(M.n) and A > 0 the function
£ 1—► >̂(A£) belongs to N(M.n). E. The set CN (Rn) is a convex cone which is closed with
respect to uniform convergence on compact sets. F. Forxpj £ N(M.ni ) , j  =  1,2, it follows that 

:= ^ ( O  + xp2(r}) defines an element in N(M.ni+n2).

Lemma 3.14. A function xp : Mn —> C is an element in N(M.n) if and only if the following 
three conditions are fulfilled

m  > 0; (3.21)

xp = xp-, (3.22)

and for any k £ N and any choice of vectors £*, . . . ,  £ Mn and complex numbers ci, . . . ,  c*

k k
y ]  Cj = 0 implies that xpifii — £z)cfci < 0. (3.23)
j = 1 j,i= 1

16
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Corollary 3.15. Let u : Rn —> C be a positive definite function. Then the function 
£ i—> u(0) — u (£) is in N(M.n).

Theorem 3.16. A function ip : Rn —* C is an element of N (R n) if and only if it is negative 
definite.

Remark 3.17. From now on we will denote the set of all negative definite functions by
N(Wn), and CN(M.n) is the set of all continuous negative functions.

Theorem 3.18. (Schoenberg’s theorem) For any convolution semigroup (pt)t>o on Rn there 
exists a uniquely determined continuous negative definite function ip : Rn —> C such that

£,(£) =  {2ir)-n/2e -m ) , t > 0  and £ 6  R", (3.24)

holds. Conversely, given a continuous negative definite function ip : Rn —► C, then there
exists a unique convolution semigroup (pt)t>o on Rn such that (3.22) holds.

Corollary 3.19. A function ip : Rn —> C is continuous and negative definite if and only if

ip(0) > 0 (3.25)

and
£ t—> t > 0 is continuous and positive definite (3.26)

Lemma 3.20. For any ip G N (R n) we have

+ v)\ < VlVKOI + VWUiYl
(3.27)

V \^ (0 \ -  V W v )\

and

|ip{0 +  ip{rf) -  ip{£ 4- T7)| < 2(Re ip(£))1/2 • (Re ip(rj))l/2.

Lem m a 3.21. For any locally bounded negative definite function ip G N(M.n) there exists a 
constant c^>  0 such that for all £ G Rn

\ m \  < c*(l +  ICI2). (3-28)

Lemm a 3.22. (P eetre’s inequality) Let ip : Rn —> C be a negative definite function. Then 
we have

i i | | | < 2 ( .  + |* K - , ) | )  (3.29)
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Proof. For 77, £' € Rn, we find

2 (i +  w „)D  (i +  i^eo i)
=  2 + 2 \ ^ ) \ + 2 m ' ) \ + m V) m o \

=  (1 + \ m \  +  m ' ) \ )  +  Mn)\ + m ')\)  + (1 + 2M»M«')I) 
> 1 + \if>(t))\ + m ' ) \ +2%/h%wioi
=  1 +  (v'lV'Wi +  V khF)!)

where we used the estimate 2  16 1 6 2 1 < |&i| +  |fc>21 -

Using the subadditivity of rj —> y/\ip{r))\, it follows that

2  (1  +  | ^ W I )  (1  +  I V ' ( O I )  >  ( x +  x / W W ^ K ' ) | 2 )  =  1 +  +  C' )l

Taking £' =  £ — 77, we finally get

l +  M fll2(1 + \ip(£- 77)1) >
i + i ^ w r

□
Example 3.23. j4tit/ non-negative symmetric quadratic form q : RnxRn —> E is a continuous 
negative definite function. Note , that we do not assume q to have full rank. A convolution 
semigroup with q as corresponding continuous negative definite function is called a Gaussian 
semigroup.

Example 3.24. Let I : Rn —> E be a linear functional and define ip(£) := il(£). Then the 
function ip is a continuous negative definite function. Moreover, whenever ip(ff) = il(£), 
I :]Rn —»1R , is a continuous negative definite function, then I must be linear.

Combining the last two examples and Lemma 3.13 we find that for any c > 0 , / i £ l "  
and symmetric non-negative definite quadratic form q the function

(  *-*• q{ 0  +  i h ' £ +  c (3.30)

is an element of C N (R n). For the corresponding convolution semigroup (pt)t>0 on we 
find

(it(0  =  {2TtYnl2e -tqWe-ith<e -tc.

Denoting by {p\)t>o, (Pt )t>o and (pj)t>o the convolution semigroup associated with q, h and 
c , respectively, we find

£ t( f )  =  (27r)n£ K £ )£ ? (0 £ * (£ ) ,

and the convolution theorem yields

Pt =  Pt * Pt * Pt-

18



Exam ple 3.25. Since for h G Mn the function £ h-> e~l h is positive definite and e° =  1, it 
follows from Corollary 3.15 that £ i—► (1 — e~th'*) is a continuous negative definite function 
implying that £ »—> (1 — cos(h • £)) is an element in CN(M.n) too. For h G R, h > 0, and t > 0 
let us consider on R the measures

00 tk
li t = Y l e~ \ \ £hk' (3'31)

k = 0

Taking the Fourier transform of pt we get
0 0  - ik  0 0  4.k

MO = nihk = Y ^ e~tT \ ^ ~ 1/2̂ehk’e~i{'’k)'>
k = 0 ‘ k = 0

=  (27r)-1/2e - , V f Te-i^  
k 'k=0

{t ■ e~hZ)k

k=0

=  (2tt)

k\

implying that £ •—> 1 — e tĥ  is a continuous negative definite function and that (pt)t > 0 is 
a convolution semigroup on M, called the P oisson  semigroup.

Next we will focus on the Levy-Khinchin formula which states that every continuous 
negative definite function ip : Rn —► C has the representation:

V>(0 =  c +  i(d • £) +  g(£) + f  ( l -  e~lx'Z -  ™ ^ \  1 *  p{dx) (3.32)
JR"\{o} V i +  f I  /  f I

with a non-negative constant c > 0, a vector d G Rn, a symmetric positive semidefinite 
quadratic form g, and a finite Borel measure fi on Rn\{0}. The function ip is uniquely 
determined by (c, d, <7, //) and any such quadruple defines via (3.32) a continuous negative 
definite function. Note that by Example 3.24 and Example 3.25 for every i E R "  the function

(3'33)

is negative definite, and taking into (3.32),the Levy-Khinchin formula has the interpretation 
that every continuous negative definite function is a superposition of elementary continuous 
negative definite functions.

Definition 3.26. Let p be the measure in the Levy-Khinchin presentation of the continuous 
negative definite function ip : Rn —> C. The measure

v(dx) = - ! "■ p(dx) (3.34)
F r

defines on B(Rn\{0}) is called the Levy m easure associated with ip.
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R em ark 3.27. Note that the Levy measure satisfies JJjn^0}(k |2 A l)*'(da:) < oo.
A. Let ip : Rn —► C be a continuous negative definite function, then we have the following 
representation

V>(0 =  c +  i(d • 0  +  q(Q +  [  ( l -  e~lx< -  v{dx) (3.35)
J R ”\ { 0} V 1 + FI /

where v integrates x \—► (|a;|2 A 1).
B. Let ip : En —» R be a real-valued continuous negative definite function and denote by v its 
Levy measure. It follows that

[  M |2 v{dx) < oo, (3.36)
J R n\ { 0} 1 + Fl

and ip has the representation

VKO = c +  0(0 +  /  f l  “  cos(x  • £)V (ch). (3.37)
JR"\{0} V /

The following Table 3.28 is taken from the monograph [1] of Chr. Berg and G. Forst. It 
summaries some of the examples of continuous negative definite functions and the associated 
convolution semigroups.

Table 3.28
convolution semigroup negative definite function

Degenerate semigroup : pt =  e~at£o > a > 0 a
Translation semigroup with speed b € R : =  Ebt
Poisson semigroup with jumps of size s > 0  : pLt = '^2T=oe~tT\£sk 1 -  e~isZ
One-sided stable semigroup of order a  G [0,1): pt = 0? « ) a
T semigroup : p,t{dx) =  X(o,cx>)(x)Y^xt~1e~xXw (dx) log(l +  £2) +  i arctan£

'j,
Brownian semigroup : pt{dx) = p ^ q ^ e ~ ^ X ^ (d x )
Symmetric stable semigroup of order a  G (0,2) : p,t = p f /2 \t\a
Cauchy semigroup: pt(dx) = pt/2{dx) — L(t2 x2)^ X ^ (d x ) Ifl
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Part III

One Param eter Semigroup

4 One Param eter semigroup

We will introduce the theory of one-parameter operator semigroups on Banach spaces 
[X, || • ||x)- Our aim is to study Feller semigroups and sub-Markovian semigroups which play 
an important role in Part V.
(Note that our standard reference in this section is [14].)

D efinition 4.1. A. A one parameter family (Tt)t>o of bounded linear operators Tt : X  —*■ X  
is called a (one param eter) sem igroup of operators, i fT 0 = id and Ts+t = Ts oTt holds 
for all s, t > 0 .

B. We call (Tt)t>0 strongly continuous if

holds, i.e. if each of the operators Tt is a contraction. As usual, \\Tt \\ denotes the operator 
norm \\Tt \\x,x-

D efinition 4.2. Let {Tt)t>0 be a strongly continuous contraction semigroup on (Coo(Rn, E), ||* 
||oo) which is po sitiv ity  preserving, i.e. u > 0 implies Ttu > 0 for all t > 0. Then (Tt)t>o 
is called a Feller semigroup.

R em ark 4.3. A linear bounded operator S  : L ^E 71) —* L ^ E 71), 1 < p < oo is called positive  
preserving i f 0 < u  almost everywhere implies 0 < Su almost everywhere.

Exam ple 4.4. Let A  : X  —» X  be a bounded linear operator and define

lim ||Ttu -  u\\x  =  0 (4.1)

for all u E X .
C. The semigroup (Tt)t>0 is called a contraction semigroup, if for a llt>  0

n u n  <  i (4.2)

(4.3)

First we find for t > 0 that
LXJ .I W  i

e<An  ̂iieMn ^
OO OO

and as in the finite dimensional case we find now
e(s+t)A =  e.AetA and e0A 
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Furthermore, we have the uniform continuity of the family (Tt)t>0 as t tends to zero, i.e.

lim \\etA — id\\ =  0 ,t-*o

implying that\imt->o \\etAu —w||x =  0. Hence, (etA)t>0 is a strongly continuous one parameter 
semigroup on (X , || • IU).
Exam ple 4.5. Let (p,t)t>o be a convolution semigroup onRn. On the Banach space (C00(Mn), \ 
|loo) we define the operator

Ttu(x) := [  u(x -  y)(it(dy). (4.4)
J Rn

We claim that {Tt)t>o is a strongly continuous contraction semigroup. First, since u G 
Coo(Rn) is bounded we find

\Tt(x)\ < !  \u(x -  y)\nt(dy) < |M|oo/it(Rn).
J Rn

But /i*(Rn) < 1. which implies

sup \Ttu(s)\ < ||u||oo, (4.5)
a:€Kn

i.e. Tt is defined on C'00(En) and Ttu is a bounded function. But now it is easy to see that 
Ttu G CoofM”). In fact, for u G ^(R”) we find using the convolution theorem and Theorem 
3.17 that

(Ttu) -(£) =  (27r)n/2u(£)/i((£) =  u(£)e-*<« (4.6)

where 'ip : Rn —► C is a continuous negative definite function. But (4.6) implies that (Ttu) * G
L1(Rn) for u G S(Rn), and the Riemann-Lebesgue lemma, Theorem 1.8, implies Ttu G
(700( Rn). Thus, by (4.4) we find using the density o fS( Rn) in CooCR.71) thatTt is a contraction 
on Coo(Rn). From the definition of the convolution of measures, Definition 1.9, we find

Ts o Ttu(x) =  /  < / u{x z y)fit(dy) >/is{dz)
JKn L JRn J

u(x -  z)(m  * ps)(dz)/JRn

= u ( x -  z)fit+s(dz)
JRn
Tt+sU^x').

Since (j,q = e0, we have immediately To = id. Finally, we prove that (Tt)t>0 is strongly 
continuous for t —» 0. For this note that any function in ( ^ ( R 71) is uniformly continuous. 
Hence, for e > 0 there exists 8 > 0 such that

|u(a;) — u(x — y)\ < £ fo r  \y\ < 8.

22



The continuity of {fit)t>o in the Bernoulli topology implies that

hmpt{Bs(0)) =  £0(Bs(0)) =  1,

which gives
(4.7)

for 0 < t < to. Now we find

\Ttu(x) -  u(x)\ < [  {u(x -  y) -  u(x)}pt(dy) +  |u (a :) |( l  -  /it(En))
J | dsRn

J bs{ o) J b '( o)

< e +  2£||u ||00 +  e|M|oo =  £(1 +  3||ifc|[oo)?

implying that {Tt)t>o is strongly continuous as t ^  0. Note that Tt , t > 0, is positivity 
preserving, i. e. u > 0 yields Ttu > 0 .

Definition 4.6. A. Let {Tt)t>o be a strongly continuous contraction semigroup on LFiW1), 
1 < p < oo. We call (Tt)t>o o, sub-M arkovian semigroup on i / ( E n), 1 < p < oo, if 
for u G Z/(Rn) such that 0 < u < 1 almost everywhere if follows that 0 < Ttu < 1 almost 
everywhere.

B. Let {Tt)t>o be a strongly continuous contraction semigroup on LPiW1), 1 < p < oo 
or on Coo(En). We call (Tt)t>0 sym m etric if for all u ,v  e Z/(E) fl L2(En), or u ,v  G 
Cqo(E) fl L2(En), respectively, we have

Lem m a 4.7. Let (Tt)t>0 be a strongly continuous semigroup on (X , || •II*). Then there exist 
constants w > Q  and Mw > 1 such that

where once again || • || denotes the operator norm || • ||a:,x-

D efinition 4.8. Let (Tt)t>o be a strongly continuous semigroup. The type of (Tt)t>o is 
defined by

where ||T*|| < Mtwewt is to hold for some Mu > 1 and all t > 0.

C orollary 4.9. Let {Tt)t>o be a strongly continuous semigroup on (X, || • ||x). For any 
u G X , the mapping t Ttu is continuous from [0, oo) to X .

('Ttu , v)0 = (u , Ttv )o . (4.8)

,wt (4.9)
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Proof. For u G X, t >  0 and h > 0, we find using Example 4.5 that

||Tt+hu -  Ttu |U =  ||Tt{Thu -  u)|U < M ewt\\Thu -  u\\x

and for 0 < h < t it follow that

\\Tt-hU — Ti'wlU =  \\Tt-h{ThU — u ) | |x  <  M e wt\\ThU — u \\x

implying the corollary. □

D efinition 4.10. Let (Tt)t>0 be a strongly continuous semigroup of operators on Banach 
space (X, || • ||x). The generator A of (Tt)t>o is defined by

^ | H
Au := lim  ------- (strong limit) (4-10)

with domain

{ r j 1 ^
u e x  lim -i—  — exists as strong limit > . (4-11)

Obviously, D(A) is a linear subspace of X .

Exam ple 4.11. Let xp : IRn —> C be a continuous negative definite function with correspond­
ing convolution semigroup (pt)t>o , =  (2it) n/2e Moreover, let (Tt)t>o be the 
(Feller) semigroup defined by (4.4). Let u G S(M.n), note S(M.n) C Co^M71). It follows that

T t u - u  wn/, f=  (2tt) - " /2 /  e“ «----   «(£) d£.
J  ]]Jn It

Since u G <S,(Rn) and \tp(£)\ — +  l£|2) by Lemma 3.21, we can define the operator

ip(D)u(x) := (27r)-n/2 [  eix^ { i ) u ( 0  df. (4.12)

VFe claim that S(Rn) C D(A) and ^4n =  — xl)(D)u for u G S^M71) , where A is the generator 
of the (Feller) semigroup (Tt)t>o- We will use the estimates (4.13) and (4.14):

at < 1 +  e~at < at, a > 0, t > 0, (4.13)
1 at

and
e at — 1 +  a t ,  ̂ 1 2

t 1 “  2

Now we find

e- m )  _  i +  tip(£)

< - a t ,  a > 0, t > 0. (4.14)

t

which implies fo ru  G S,(Rn) that

2 \ 2< # « ) ! ' <  M i +  l f r )

lim — — -  =  —ip(D)u. «-o t '
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Lemm a 4.12. Let {Tt)t>0 be a strongly continuous semigroup on the Banach space (X, || • ||x) 
and denote by A its generator with domain D(A) C X .
A. For any u G X  and t > 0  it follows that Tsu ds G D(A) and

Ttu — u = A (  Tsu ds. (4-15)
Jo

B. For u G D(A) and t > 0 we have Ttu G D(A), i.e. D(A) is invariant under Tt, and

-j;Ttu = ATtu =  TtAu. (4.16)
at

C. For u G D(A) and t > 0 we always get

»t rt
Ttu — u =  (  ATsu ds = f  TsAu ds. (4.17)

J o  Jo

Corollary 4.13. Let A be the generator of a strongly continuous semigroup (Tt)t>0 on the 
Banach space (X , || • ||x). Then D(A) C X  is a dense subspace and A is a closed operator. 
Moreover, (Tt)t>0 is a strongly continuous semigroup on D(A) when D(A) is equipped with 
the graph norm IMU.x =  II^ IU  +  IMU-

Remark 4.14. Let (A , D(A)) be a linear operator from X  to Y , both being topological vector
spaces. A. We call A a closed operator, ifT(A), the graph of an operator, is closed in
X  x Y. B. The operator A is closable if it has a closed extension.

Definition 4.15. The resolvent se t p(A) of A consists of all X G C such that Xid — A is 
surjective and has a continuous inverse (Aid — A)~l defined on R(Xid — A) = X .  The set 
<j{A) := p(A)c is called the spectrum, of A.

Definition 4.16. Let A be a closed operator on the Banach space (X , II • llx) with domain 
D(A) C X . The resolvent of A is the family (R \)\€p(a), R \ '■= (A — A )_1. The operator 
R\ is called the resolvent of A at X.

Lemma 4.17. Let {Tt)t>o be a strongly continuous contraction semigroup on the Banach 
space (X , || • ||x) with generator (A, D(A)). Then {X G C\ReX > 0} C p(A) and we have

poo
R\u  =  (A — A)~lu = / e~xtTtu dt (4-18)

Jo

for all u G X  and ReX > 0.
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R em ark  4.18. Note that it is possible to define the resolvent (Rx)x>o (or A G p{A)) for a 
strongly continuous contraction semigroup directly by

poo
R\u  = / e~xtTtu dt,

Jo

i.e. without using its generator. For u G D(A) we find now for A > 0 that

II r°°
\\\u — \ 2R \u  + Au\\x =  /  e~xt\ 2(u — Ttu) dt +  Au

II J o x
f°° u — T±u 
/ e Ss(  ) d s A u

J o  A
u — T±u 

/ e ss(Au-\ ) ds
J o  A

x

X

< - fJo

u — T*u 
Au +  -----r--̂ — ds,

X

which implies that in the sense of the strong limit we have for all u G D(A)

lim (—Xu +  X2R\u) = Au.A—>oc

Lem m a 4 .1 9 .  Let A be a closed operator. For A ,/ iG  p(A) the resolvent equation

R\Rn  =  RfiRx =  (A — p) (Ry, — Rx)

holds.

Proof. Since (A — A)(p — A) = (p, — A)(A — 4̂) we find for A, p G p(A) that 

(p -  A)-1(A -  p ) -1 =  (A -  A)~l (p -  A)-1.

Furthermore, we have

Rx R» = RX(p A )Ry — RX(X A )Ry
— — R x A R y + p R x R y  + R x A R y  — X R x R y  

= (p -  \)RxRy,

which yields (4.20)

(4.19)

(4.20)

□
D efinition 4.20. A linear operator A , D(A) —> X , D(A) C X  is called dissipative , more 
precisely X-dissipative, if

\\Xu -  Au\\x  > X\\u\\x  (4.21)

holds for all A >  0 and u G D(A).
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Lem m a 4.21. Let (A, D(A)) be a dissipative operator on X  and A > 0. The operator A is 
closed if and only if the range R(A — A) is closed.

Theorem  4.22. Let A be a closed and dissipative operator which is densely defined on a 
Banach space (X , || • \\x). We assume that (0, oo) C p(A). The Yosida approxim ation of 
A is defined for A > 0 by

A \  = \ A { \  -  A ) -1 = XARx. (4.22)

It has the following properties

1. For all A > 0 the operator A \ is bounded on X  and the semigroup (etAx)t>o is a strongly 
continuous contraction semigroup.

2. For all X,p > 0 we have

A XA^ = A^Ax.

3. For u G D(A) it follows that

lim \\Axu — Au\\x = 0.A—►oo

Theorem  4.23 (Hille and Yosida). A linear operator (A,D(A)) on a Banach space (X , || • 
||x) is the generator of strongly continuous contraction semigroup (Tt)t>0 if and only if the 
following three conditions hold.

1. D(A) C X  is dense;
2. A is a dissipative operator;

3. R(X — A) = X  for some A > 0.

Theorem  4.24. A linear operator on a Banach space (X , || ■ \\x) is closable and its closure 
A is the generator of a strongly continuous semigroup on X  if and only if the following three 
conditions are satisfied

1. D(A) C X  is dense;

2. A is a dissipative operator;

3. R(X — A) is dense in X  for some A > 0.

D efinition 4.25. Let A : D(A) —► B(M.n) be a linear operator D(A) C B(Rn). We say that 
(A, D(A)) satisfies the positive m axim um  principle if for any u G D(A) such that for 
some xq G Rn the fact that u(xo) = sup u(x) > 0 implies that Au(xo) < 0.

For later purposes it is helpful to introduce the following version of the Hille-Yosida 
Theorem :
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Theorem  4.26 (Hille-Yosida-Ray Theorem ). A linear operator (A, D(A)), D(A) C 
Coo(Rn) on CUDT) is closable and its closure is the generator of a Feller semigroup ij 
and only if the three following conditions hold:

(i) D(A) C Coo(Rn;R) Is dense;
(ii) (A,D(A)) satisfies the positive maximum principle;

(Hi) R (A — A) is dense in Coo(Rn;R) for some A > 0.

Exam ple 4.27. Let ip : Rn —» C be a continuous negative definite function. On C0°(Rn,R) 
we define the operator

From Example 4-5 combined with Example 4-11 we know that (—ip(D), C'o°(Rn,R) has an 
extension generating a Feller semigroup, hence on Co°(Rn,R) the operator —ip(D) satisfies 
the positive maximum principle.

We may extend Example 4.27 to a more general situation.

Theorem  4.28. Let q : Rn x Rn —> C be a locally bounded function such that for any i € l n 
the function q(x, •) : Rn —► C is continuous and negative definite. Define on Co°(Rn) the

Then the operator (—q(x, D ), Co°(Rn;R)) satisfies the positive maximum principle, where we 
consider Co°(Rn;R) as a subspace of Co°(M.n).

Proof. First note that by Lemma 3.22 we have

for all x E Rn and £ E Rn, which implies that the operator q(x,D) is well defined on 
Co°(Rn;R). Now let u E Co°(Rn;R) and x$ E Rn such that u(xo) =  supl€Mn u(x) > 0 . 
We have to prove that —[q(x, D)u](xo) < 0 holds. Next we will consider the function 
ipxo : Rn —> C,ipXQ(£) = q(xo,£). By our assumptions ^ —► ipXQ{D) defined on Co°(Rn;R) by

operator
q(x,D)u(x) := — (27t) n/2 [  etx*q{x,Z)u{£) d£.

JRn
(4.23)

satisfies the positive maximum principle, thus we have

-ipX0{D)v{x0) < 0
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for f(rco) =  suPxgR" v ix ) > 0. But for any v G Co°(Rn) we have

~[q(x,D)v\(x0) =  -(27r)"n/2 [  elX0<q{xo,£)v(€) d£
J R n

=  -(27r)-"/2 [
J R n

= -ipX0(D)v(x0)

which implies the theorem. □

R em ark  4.29. Our arguments in Example 4-27 and Theorem 4-28 do not depend on the fact 
that the operator is defined on Cg°(Rn). In case of the operator —'ip(D) denote by (A , D(A)) 
the extension of —'ip(D) as a generator of a Feller semigroup. Then by Theorem 4-26, 
the H ille- Yosida-R ay Theorem, the positive maximum principle holds for all extensions 
(A, D(A)) of (-ip(D), C^°(]Rn)) with the property that D(A) C D(A).

Next we will introduce the analy tic  sem igroups which we collect from [14].

Let {Tt)t>o be a strongly continuous contraction semigroup in the Banach space (X, || • ||x) 
with generator (̂ 4, D(A)) and resolvent (Ra)a>o- The relation between {Tt)t>o and (Ra)a>o 
is given by poo

R xu =  /  e~MTtu d t.  (4.24)
Jo

We may try to invert (4.24) in order to express Ttu with the help of (R\)\>o• Thus, it is 
necessary to extend A —► R \u  to some sector in the complex plane. It will become important 
to discuss whether or whether not t —► Ttu has an analytic extension to some sector in C. 
Let w g K  and 6 G ( | , 7r). Then the sector SejU} C  C is defined by

•= | a  G C A ^  (j and \ arg(A — u;)| < 0J , (4.25)

where arg z G (n, 7r] is the argument of the complex number z.

Definition 4.30. Let A  : D(A) —► X , D(A) C X ,  be a densely defined linear operator in 
the complex Banach space (X , || • ||x)- We call A sectorial if there exist constants u  G R, 
9 G ( f , 7r) and M  > 0 such that

Se,u C p(A) (4.26)

and
l l f lx l l  <  a  6  ( 4 . 2 7 )|/\ — LJ |

hold.

Remark 4.31. A. Any sectorial operator is closed. B. Let (X , || • ||x) be a Hilbert space 
and (A ,D (A )) be a sectorial operator on H. Then —A is form sectorial with 

corresponding sector S$-s.-u .
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Suppose that (A,D(A)) is sectorial with u  G R, 6 G and M  > 0 as in Definition
4.30. Then the operator Au := A —u  is sectorial now with uj — 0, but 6 and M  the same as 
for A. For a sectorial operator A  with uj =  0 and M  — 1 it follows that (0, oo) C p(A), hence 
for all A > 0 the operator A — A  is surjective, i.e. for all /  E l  the equation Au — Au = f  
has a solution. Moreover, since M  = 1, we find for u G D(A) and A > 0 that

I M U  =  II#a(A — >4)u| |x <  — A ) u \ \ x ,

i.e. [A, D(A)) is a dissipative operator. Hence, by Theorem 4.26 , we have

C orollary 4.32. Let (A,D(A)) be a sectorial operator in (X , || • ||x) such that (4.27) holds 
with M  = 1. Taking uj G R as in (4.26), it follows that the operator A° := A — uj with 
domain D(A) is the generator of a strongly continuous contraction semigroup (Tt)t>0 on
X . Moreover, the operator (A ,D (A )) is the generator of the strongly continuous semigroup
(e^Tt)t> 0.

P roposition  4.33. Suppose that A is a sectorial operator with sector and denoted by 
(Tt)t>o the strongly continuous semigroup generated by A. It follows that for any u G X ,  
k G N and t > 0 we have Ttu G D(Ak), hence

Ttu e  P i D(Ak), (4.28)
fc€N

and we have for u G D(Ak)
AkTtu =  TtAku , t > 0, (4.29)

and for suitable constants Mit, k G N, we find for t > 0 that

\\tk(A -  ujid)kTt \\ < Mke“l. (4.30)

Moreover, the function t •—> T* is arbitrarily often differentiable and satisfies

j ^ T tu = A kTtu (4.31)

for all u G X .  Finally, the mapping t Tt has an analytic extension to the sector uj +  S,

where S  is given by S  := -|a  G C | arg A| < 6 — 1

D efinition 4.34. A strongly continuous semigroup (Tt)t>o is called an analytic semigroup  

of angle 6, if  the mapping t Tt has an analytic extension to the sector S  := G

C \ { 0 } arg,z| < 9 -  |
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Theorem  4.35. Let (Tt)t>0 be a strongly continuous semigroup on a Banach space (X, || • \\x) 
such that 11 Tt || < M  for all t > 0 and some M > 0. Further, let (A.D(A)) be its generator 
and assume that 0 E p(A). Then the following conditions are equivalent:

1. The semigroup {Tt)t>o has an analytic extension to a sector 9 E (§ ,tt) and
\\TZ\\ is uniformly bounded in every closed subsector 9' E (|,7r) and 9' < 9.

2. There exists a constant c such that for every a > 0 and r  ^  0

IK+irll < A  (4.32)|T|

holds.

3. There exists S E (0, | )  and M  > 0 such that

£  := < A E C

and

|  A E C | argz| < ^  +  £ jarg z\ < — +  6 > U {0} C p(A) (4.33)

\ \ R x \ \ < ^  /o rA E £ \{ 0 } . (4.34)

4. The mapping 1 1—> Tt is differentiable in (0, oo) and with some constant d we have

\\ATt\\ < j ,  t > 0. (4.35)
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Part IV

Fundamental Solutions Of 
Tim e-D ependent Parabolic 
Equations

5 Fundamental Solutions of Tim e-D ependent Parabolic 
Equations

In this part, we will discuss equations:

^  +  A(t)u(t) = f(t), 0 < t < T. (5.1)

u(0) =  uQ. (5.2)

where the operator A  depends on t. Our standard references are [23] and [20].

D efinition 5.1. We call (5.1) a parabolic equation if for each t G [0,T], the operator 
—A(t) generates an analytic semigroup on some Banach space (X , || • ||*).

Throughout this part (5.1) is always assumed to be a parabolic equation and D(A(t)) C X  
denotes the domain of A(t). We will assume that D(A(t)) is independent of t and write 
therefore only D(A). Then we may try to construct an operator U(t,s) with the following 
properties:
U(t,s) is a strongly continuous function, defined onO < s < t < T  with value in X  such 
that

U(t,r)U(r,s) = U(t:s) for  0 < s < r < t < T ,  (5.3)

f/(s, s) =  I  fo r  each s G [0, T] , (5.4)

(d/dt)U{t, s) = A(t)U{t, s), (5.5)

(d/ds)U(t,s) = —U(t,s)A(s). (5.6)

Here in (5.4) the operator I  denotes the identity on X.

Since,in general, the equations (5.5) and (5.6) involve unbounded operators on both sides, 
we assume that they hold in a dense subspace which is to be determined for each equation. 
Such an operator-valued function U(t,s) is called a fundam ental solution of (5.1). If

4̂(£) = A is independent of £, then U(t,s) = exp I (s — t)A  1 is the fundamental solution,
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and (5.5)and (5.6) hold on D(A). When the fundamental solution exists, one expects that 
the solution of (5.1),(5.2) can be written as

u(t) = U(t, 0)uo +  f  U(t,s)f(s) ds. (5.7)
Jo

A ssum ption 5.2. A(t) for each t G [0, T] is a closed operator defined densely in a Banach 
space X .  Its resolvent set p(A(t)) contains the half-plane Re A < 0, and (1 +  |A|)(A(£) — A)-1 
is uniformly bounded in 0 < t  < T  and Re A < 0.

Hence, there exists a certain number M  and an angle 6 G (0, n/2) such that p(A(t)) 
contains the closed sector E =  {A : | arg A| > 6} U {0} and the estimate

l l(^ W -A )-1| |< M / ( l  +  |A|) (5.8)

holds for 0 < t < T  and A G E.

A ssum ption 5.3. The domain D(A(t)) =  D of Aft) is independent o f t  and, accordingly, 
A(^)A(0)_1, being a bounded operator, is a Holder continuous function o f t  in the norm of 
B(X ), the algebra of bounded operators on X  . In other words, there exist positive numbers 
a < 1 and L such that

\\A(t)A{0)"1 -  ^ ( ^ ( O ) - 1!! < L\t -  s\a (5.9)

is satisfied for 0 < s < T  and 0 < t < T.

Assumption 5.3 means that A(t)A(0)-1 is a norm continuous function of t and that 
A(0)A(t)-1 =  (A(t)A(0)-1)-1. Thus, A(0)A(^)_1 is uniformly bounded. Therefore, we may 
suppose that

||A(t)Afr)~l — A(s)A(r)-1 || < L\t — s|Q (5.10)

holds for all t ,s ,r  G [0,T], if necessary, by substituting L by another number. Under
Assumptions 5.2 and 5.3, the fundamental solution U(t,s) is constructed as follows. Set

U(t, s) = exp ^ — (t — s)A(s)^ +  W(t,s), (5.11)

W (t , s) = J  exp ^ — (t — r)A (r)^ R(t , s) dr. (5.12)

where R(r, s) remains to be determined. A formal calculation gives

(d/dt)U(t , s) =  —A(s) exp ^ — (t — s)A(s) j  +  R(t, s)

— J  A{t ) exp  ̂— (t — t)A (t)^  R(t , s) dr,
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Aft)U(t,s) = A(t) exp ^ — (t — s)A(s)

+ J  Aft) exp ^ — ft — t)A (t)^  R(t , s) dr.

Summing these two equalities ,we obtain

fd /d t)U (t,s) +  A(t)Uft,s) = —Ri(t,s)  4- R(t,s) — J  Rift,r)R(T, s) dr, (5.13)

where
R if t , s) = — ( Aft) — A (s)) exp (  — ft — s )A (s ) ) . (5.14)

Since we assume that A(s) generates an analytic semigroup on X , there exists a constant 
Co such that

II exp(—L4(s))|| < C0, (5.15)
\\A(s) exp(—L4(s))|| < Cot-1. (5.16)

Thus, by(5.10) and (5.16) using the uniform boundedness of j 4 ( s ) A ( 0 ) _1 , we can estimate 
the norm of R\{t, s) for s < t as

\\Ri(t,s)\\ < ||(A W -A (S))A(s) - 1||||A(s) e x p ( - ( ^ - 5)A(5))||
< L C o i t - s ) 01- 1. (5.17)

Since the right-hand side of (5.13) vanishes if t > s, we find R(t,s) as a solution of the 
integral equation

R(t,s) — J  Ri(t,r)R(T,s) dr = Ri(t,s). (5.18)

It is easy to ascertain that exp (—ft — s)A(s)) and R\(t, s) for 0 < s < t < T  are
continuous in the norm of B(X).  Because of (5.17), the integral equation (5.18) can be
solved by successive iteration:

oo
=  (5.19)

771=1

Rm( t,s )=  f  Ri{t,T)Rm-i(T,s) dr. (5.20)
J s

By induction, it is not difficult to see that

||iU M )ll < (LC0T{ct))m(t -  s )™ -1/T(ma).

Thus, we have
oo

l | f l ( * , s ) l l  <  ^ ( L C 0 r ( a ) ) m ( t  -  s ) ” “ - 7 r ( m a )
771=1

OO

<  ^ ( i C 0 r ( o ) ) m r (m- 1)“ r ( m a ) - 1( t - s ) “ - 1 = C ,( / - s ) a - 1 , (5 .21)
771=1
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(5.22)

(5.23)

Lem m a 5.4. Let 0 be an arbitrary positive number satisfying 0 < 0 < a. Then there exists 
a constant Cg such that the inequality

||i?(£, s) -  R(t , s) || < Cpft -  s)0(t -  s)a_/?_1 (5.24)

holds for 0 < s < r < t < T .

Proof. Let us begin with the estimation of

Ri(t,s)  -  R i (t , s) = ~{A(t) -  A (r))exp(-( t  -  s)A(s))
~{A{t ) -  A(s)){exp(-(t -  s)A(s))
— exp(—(r — s)A(s))}. (5.25)

The norm of the first term on the right-hand side does not exceed

||(A (0-A (T ))j4(s)_1||||.A (s)exp(-(i-s)j4(s))|| < C(t -  r)a(t -  s)_1
<  C ( t - r ) a ( T - s ) - \

The norm of the second term does not exceed

(A(t ) — A(s)) J  (d/dr) exp(—(r — s)A(s))dr

(A(r) — A(s))A(s)-1 J  A(s)2 exp(—(r — s)A(s))dr

< C(t — s)a J  (r — s)~2dr = C(t — r)(t — s)-1(r — s)a_1

<  C ( t - T ) ( T - S ) a ~ 2 ,

but it can also be estimated as

| | ( j4 ( t )  -  A(s)) exp( - ( t  -  s)A(s))|| +  ||(A(r) -  A(s)) ex p (-(r  -  s)A(s))||
< C(t — s)a(t — s)_1 +  C(t — s)a_1 < C(t — s)a_1;

thus, it does not exceed

C{(t — t ) ( t  — s)a—2}q{(t — s)Q-1}1-Q < C(t — r ) a(r — s)-1.

In this way, we have

||/2i(t,s) -  R i {t , s)|| < C(t -  t ) q( t  -  s)_1.
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On the other hand, it follows (5.17) that

| | i l i ( M )  -  H i ( t , s )| |  <  | | i i i ( i , s ) | |  +  | | f l i ( r , s ) | |

< C(t -  s)“- ] +  C(t -  s )° -’ < C(t  -  s )" -1. (5.27)

The combination of (5.26) and (5.27) gives

||i?i(£,s) -  / * i ( t , s )| |  < C{(t — r )a (r — 5 ) _ 1 } /3/q { ( t  — s)a_1}(Q-^)/a
=  C(t — r) /3(r — s)a_/3_1. (5.28)

By the help of the relations

R(t,s) — R ( t  — s) = Ri(t, s) — Ri{t ,  s ) 4- J  Ri(t,a)R(a,s) da

+  /  (Ri{t, a) — R i {t , a))R(a, s) da,

| J  Ri(t,a)R(a,s) da < C J  (t — a)a~l (a — s)a~l da

< C J  (t — cr)Q_1 da(r — s)Q_1

a—1= C(t -  r ) “ (r -  s)

which are obtained from (5.17) ,(5.18),(5.21) , the inequalities (5.21) and (5.28) lead imme­
diately to the inequality (5.24) .

Next, we will introduce quadratic  form s which will be used to construct the fundamen­
tal solutions. Let X  be a complex Hilbert space; its inner product and norm will be denoted
by (*, •) and | • |, respectively. Let V  be another Hilbert space with inner product and norm
denoted by ((•,•)) an<̂  11 • II- respectively. We assume that V  is (linearly) embedded in X  as 
a dense subspace and that V  has a stronger topology than X .  Therefore, there exists an Mo 
such that |u| < Mo||it|| for all u G V. Let a(u,v) be a quadra tic  form defined on V  x V. 
That is, to each u, v G V  there corresponds a complex number a(u, v) and a(u, v) is linear 
in u and antilinear in v:

a(ux +  u2, v) =  a(iti, v) +  a(u2, v), 

a(u, vi +  v2) = a(u, Vi) +  a(tt, v2),

a(Xu, v) = Aa(u, v), a(u, \v)  = Aa(u, v).

In this section, the space of all continuous antilinear functionals defined on V  and X  are 
denoted by V* and A"*, respectively.
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In our case, we will add time dependence for the quadratic form. We assume that a(t] u , v) 
is bounded, i.e., there exists a constant M  such that

\a(t]u,v)\ < M||w||||u|| (5.29)

holds for all u, v G V  and 0 < t < T. Assume also that there exists a positive number 5 > 0 
and a real number k such that

Re a(t’,u,v) > 5\\u\\2 — k\u\2 (5.30)

is satisfied for all t G [0, T] and u G V. Furthermore, a(t]u,v) is assumed to be Holder 
continuous in t in the following sense: there exists a certain number a G (0,1] such that

|a(t; u , v) — o(s; u, u)| < K\t — s|Q||u ||\\v\\ (5.31)

for all t G [0, T] and u, v G V. Denote by A(t) the operator determined by a(t;u,v), 
i.e., we set

a(t;u,v) =  (A(t)u, v).

Then we have the following theorem.

Theorem  5.5. For all t G [0, T] and u, v G V, we have a(t;u,v) = (A(t)u,v). Then —A 
generates an analytic semigroup in both X  and V*.

By Theorem 5.5, —A(t) generates an analytic semigroup both in X  and in V*, and when 
it is regarded as an operator in V*, its domain coincides with V  and, hence, is independent of 
t. Thus, if (5.1) and (5.2) are considered as equations in V*, we can construct its fundamental 
solution U(t, s). Next, if a > 1/2, the restriction of U(t, s) to X  is found to be the desired 
fundamental solution of (5.1) and (5.2). We first make (5.30) valid for k = 0. Then, by 
(5.29), the inequality

S\\u\\ < ||j4(f)u||* < M\\u\\ (5.32)

holds for all t G [0.T] and u G V. Now (5.31) immediately implies that

||A(t)u — A(s)u||* < K\t — s|a ||it||. (5.33)

From this and (5.32) it follows that

||A(t)A(O)"1 -  AMAfO)-11|* < C\t -  s|a . (5.34)

Therefore, it is possible to construct the fundamental solution of (5.1), regarded as an 
equation in V *, by using (5.11),(5.12),(5.14),(5.19) and (5.20). It follows that U(t,s) is a 
bounded operator in V*. Next, we will discuss its restriction to X.

Using these previous inequalities and Lemma 5.4, we can get

||# i(M )||*  < C(t -  s)a_1, 0 < s < t < T  (5.35)
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and

||i?i(t, s) — Ri{t, s)||* < Cp(t — t)/?(t — s)a_/3_1, 0 < s < r < t < T  (5.36)

hold, where j3 is an arbitrary positive number smaller than a.

Next, we will discuss more inequalities with /  G X.

Lemma 5.6. For Re A < 0 and j4(s) as above, the following estimates hold with the constant 
C independent of f  :

I W * ) - A ) - 7 | < C | A n / l ,  (5.37)

P ( S) -  A)-1/! < C \X \-^ \\f \ \„  ( 5 . 3 8 )

IP(s)--M“7ll < C|A|-1/2|/|, ( 5 . 3 9 )

H M f s )  -  A ) " 1/ ! !  <  C 1 I / I U ,  ( 5 - 4 0 )

H M ( S ) -  A ) - V I | .  <  O I A I - 1 ! ! / ! ! . ,  ( 5 . 4 1 )

Lemma 5.7. There exists a constant C such that the following inequalities hold for allt > 0 
and C independent of the function f :

| exp(— L4(s))| < 1, (5.42)

II exp(—tA(s))||. < C, (5.43)

| exp (-M (s))/| <  C r 1/2||/||„ (5.44)

|| exp(-L4(s))/|| < C r 1/2|/|, (5.45)

|| exp (-M (s))/|| < C t- 11| / | |„ (5.46)

|i4(s)exp(-M (s))/| < C T 3/2| |/ | |„ (5.47)

||A (s)exp(-L4(s))/|| < C r 3/2|/|. (5.48)

Moreover, from (5.33) and (5.45), we have

p i( t ,s ) / l | .  < C(« -  s)“- 1/2|/|. (5.49)
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Lemma 5.8. I f f  G X  and 0 < s < t < T, then

\ \ R ( t , s ) f \ \ , < C ( t - s r - i/2\f\. (5.50)

Proof. By induction, it can be shown that there exists some constants Cq and C\ such that 
the following inequalities holds for all m:

l|flm (t,s)/l|. < C<iT { p + l/2 )C ^ - iT(p)m- l {t -  s)m>’- 1/2\f\/T(mp + 1/2), 

from which (5.50) follows immediately.

□
Lem m a 5.9. For each f  £ X ,  0 < s < r < t < T  and 0 < 0 < a, we have 

> s)f  -  R ( t , s ) / ||.  < C(j| (i -  t ) ° ( t  -  s)~1/2

+ j \ t  -  -  s)“- 1/2 dT + ( t -  t ) b { t  -  s)2“- '5- 1/2| | / | . (5.51)

Proof. By the definition (5.14) of Ri(t,s), we have

||jRi(*, s ) f  -  i?i(r, s)/||* < ||(i4(t) -  A(t )) exp( - ( t  -  s)-4(s))/|U 
+  ||(i4(r) -A ( s ) )
x{exp( - ( t  -  s)A(s)) -  exp((—r  -  s ) j 4 ( s ) ) } / | | * .  (5.52)

Because of (5.45) and (5.33), the first term on the right-hand side does not exceed C(t — 
r)a(t — s)-1/2|/ |.  The inequality (5.48) provides

l|{exp(—(£ -  s)4(s)) -  exp(—(r -  s)A[

= | J  ̂4(s) exp(—(r — s)A(s))f dr

< C J  ( r -  s)~3/2\f\ dr

= C { { r - s ) - ^ - ( t - s ) - ^ } \ f \
= C(t -  s ) - ^ 2{l -  (t -  s)~1/2(t -  s)"1/2} |/ |
< C ( T - s ) - 1/2{ l - ( T - s ) / ( t - s ) ~ 1}\f\
= c ( f  ~  r )(* “  5)_1(r  “  s )-1/2|/ | < C ( t  -  t ) ( t  -  s)"3/2|/ |,

which,combining with (5.33),shows that the second term on the right-hand side does not 
exceed C(t — r ) ( r  — s)a-3//2|/ |.  On the other hand, by (5.33) and (5.45), the same term does 
not exceed

| | ( ,4 ( t )  -  A(s))exp(—(t -  s).4(s))/||,
+||(>l(r) -  A(s)) e x p (-(r  -  s)i4(s))/||.
< C(t -  s)a(t -  s ) -1/2| / |  +  C (t -  s)“- 1/2| / |  < C ( t  -  s)“- 1/2|/ |.
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Thus, it is bounded by

c { ( t  -  t ) ( t  -  s)Q- 3/2}“{(r -  s)a- 1/2y - a\f\ = C(t -  r ) “ (r -  s ) -1/2|/ |.

Therefore, we have

11̂ 1 {t, s ) f  -  Ri(t,  s)/||* < C(t -  t)q(t -  s)_1/2|/ |.  (5-53)

The estimate (5.51) is easily obtained by the use of (5.18),(5.35),(5.36),(5.50) and (5.53).

□
Lemma 5.10. Define

Y(t, s) = exp(—(t — s)yl(s)) — exp(—(t — s)A(t)) 

for 0 < s < t < T. It satisfies the estimate

| | y ( M ) / | |< C ( i - s M l / l l , .  (5.54)

Proof. Y(t,s)  can be expressed as

y (M ) =  2Vi i e~Kt~S){A{s] ~ _ A(-SWAM ~ A)_I dX■
By (5.33) and (5.40), we have

IK^W -  \)-'(A (s) -  A(t))(A(t) -  A)-1/!! < C(t -  *)“||/||., 

from which (5.54) follows immediately. □

Lemma 5.11.

\ W ( t , s ) f \ < C ( t - s r \ f l  (5.55)

\ \W ( t , s ) f \ \< C ( t - s ) a- ^ 2\f\. (5.56)

for f  G X  and 0 < s < t < T.

Proof (5.55) is a direct consequence of Lemma 5.8 and (5.44). Next, (5.56) is obtained by
representing W(t, s) as

W (t,s) = (  Y(t,T)R(r,s) dr + j  exp(—{t — r)A(t))
J  S J  8
x (R(t , s) — R (t , s)) dr
+.A(t)-1{l — exp(—(t — s)A(t))}R(t, s)

and by applying Lemma 5.8 and 5.10 to the first term on the right-hand side, (5.46) and 
Lemma 5.9 to the second term, and (5.32),(5.43) and Lemma 5.8 to the third term, respec­
tively.
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Theorem  5.12. For 0 < s < t < T  , the function (s , £)•—►£/(5, t) is a strongly continuous 
function with values in B (X ) and satisfies

\U(t,s)f\ < C\f\ (5.57)

and

\ \U ( t , s ) f \ \< C ( t - s ) - 1' 2\f\, (5.58)

where f  G X  and 0 < s < t < T. Moreover, for f  G V*, it satisfies

|t^(<>s)/| < C(t — •s)-1̂ 2||/ ||.-  (5.59)

Proof (5.57) and (5.58) are evident from Lemma 5.11 and (5.11). (5.59) follows from (5.35) 
and (5.44).

□
This theorem implies that

u(t) = U(t,0)uo +  f  U(t,s)f(s) ds (5.60)
Jo

belongs to C([0.T];X) if uq £ X  and /  G C([0, T\;X).  Moreover, the following theorem 
ensures that (5.60) forms a solution of the equations (5.1) and (5.2) in V*.

Theorem  5.13. Under Assumptions 5.2 and 5.3, a fundamental solution of (5.1) and (5.2)
exists. For 0 < s < t < T, the range R(U(t, s)) C D, the operator (d/dt)U(t, s) exists as an
element of B (X ), and the following inequalities hold:

\\{d/dt)U(t,s)\\ = \\A{t)U{t,s)\\ < C ( t - s ) ~ \
||^4(t)l7(t, s)-A(s)-11| < C.

U(t , s)u for each t G (0, T ) and each u G D is differentiable with respect to s in 0 < s < t 
and satisfies

(d/ds)U(t,s)u = U(t, s)A(s)u. (5.61)

By this theorem if u0 is an arbitrary element of X , then u(t) = U(t,0)uo is continuous 
in 0 <  t < T, differentiable in 0 < t < T, and is a solution of the homogeneous equation 
du(t)/dt +  A(t)u(t) = 0, which coincides with u0 at t = 0.
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Theorem  5.14. Let u0 G X  and f  G C([0, T]; X). I f  u is a solution of (5.1) and (5.2), 
then it is expressible as (5.60), so that the solution of (5.1) and (5.2) is unique.

Proof. Assume 0 < e < s < t. Then, from (5.61), it follows that

(d/ds)(U  (t , s)u(s)) = U (t , s)u'(s) +  U (t , s)A(s)u(s) = U (t , s)f(s). (5.62)

By integrating this equation from e to t and letting t —» 0, we obtain (5.60) immediately.

□
Theorem  5.15. Let uq be an arbitrary element of X  and f  an arbitrary function Holder- 
continuous in [0,T]. Then the function u defined by (5.60) is the unique solution of (5.1) 
and (5.2).

Proof. Define

S(t , s) = A(t) exp(—(t — s)A(t)) — A(s) exp(—(f — s)A(s)) (5.63)

for 0 < s < t < T, and put

We(t,s) = J  exp (—(t — T)A(T))R(r,s)dT

for 0 < e < t — s.W£(t, s) —> W (t, s) as e —> 0. By differentiation, we have 

(d/dt)We(t, s) = exp(—eA(t — e))R(t — e, s)
pt—e

— j  A(t ) exp(—(t — t )A(t ))R(t , s) dr.

Upon observing the relation

A(t) exp(—(t — r)A(t)) = (d/dr)  exp(—(t — r)A(t)), 

the right-hand side can be rewritten as

(d/dt)W£(t,s) =  exp(—eA(t — e))R(t — e, s) +  J  S(t,T)R(r,s) dr

— J  exp(—(f — T)A(t))(R(r, s) -  R (t , s)) dr

—{exp(—eA(t)) — exp(—(£ — s)A(t))}R(t, s). (5.64)

By (5.15), (5.16), (5.21) , (5.63) and Lemma 5.4, it is found that the norm of (d/dt)W£(t, s) 
satisfies

\\(d/dt)W£(t,s)\\ < C(t -  s -  e)a~ \  (5.65)
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where C is a constant independent of e as well. It is easy to see, each term on the right-hand 
side of (5.64) converges strongly as e —> 0. Putting W'(t,s) = lim£̂ 0(d/dt)W£(t, s), we 
obtain from (5.64) and (5.65) that

W'(t, s) = J  S(t,r)R(T,s) dr

— J  A(t) exp(—(t — T)A(t))(R(r, s) — R(t , s)) dr 

+ exp (—(t — s)A(t))R(t, s), (5.66)

\ \ W ' ( t , s ) \ \ < C ( t - s r - \  (5.67)

Letting e —► 0 in

W£(t’, 5) -  We(t,s) = (d/dr)We(r, s) dr

with t' > t > s + e, we have, owing to (5.65),

W(t',s) — W (t,s) = J  ̂ W'(r,s) dr.

Since W'(t, s) is strongly continuous in 0 < s < t < T ,W (t,s)  is strongly continuous 
differentiable with respect to £, and, hence, it is found that

(d/dt)W(t, s) =  W \t ,  s). (5.68)

Therefore, the derivative

(d/dt)U(t,s) = —A(s)exp(—(t — s)A(s)) +  (d/dt)W(t, s) (5.69)

exists and satisfies

\\{d/dt)U{t,s\\ < C(t — s)~l .

The relations (5.67) and (5.68)implies that

(d/dt) [  W(t, s)f(s)ds  =  [  W{t,s)f{s)ds. (5.70)
Jo Jo

Also, as in the proof of (5.66), we have

(d/dt) f  ( - ( t -  s)A(s))f(s)ds = f  S(t,s)f(s)ds  
Jo Jo

-  [  A(t) exp( - ( t  -  s)A(s))(f(s) -  f(t))ds  
Jo

+ exp(-tA(t))f(t).  (5.71)
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From these equations, and noting that

(d/dt) [  U(t,s)f(s)ds -  A(t) [  U ( t ,s ) f ( s )d s -  f(t)
Jo Jo

= U(t,t — e)f(t - e ) ~  f( t)  -> 0,

as e —> +0,we obtains the conclusion of the theorem.

□
Lemm a 5.16. The following inequality holds for 0 < s < t < T:

|(d/dt)W(t, 5)| < C(t -  s)a~l . (5.72)

Lemma 5.16 implies that U(t,s) is differentiable with respect to t in B(X)  and that,
for 0 < s < t < T, the following results hold: R(U(t,s)) C D(A(t)), (d/dt)U (t,s) +
A(t)U(t, s) = 0, and

|(d/dt)U(t, 5)| =  |A(t)U(t, 5)| < C(t — s)-1. (5.73)

A quadratic form adjoint to a(t;u,v) is denoted by a*(t;u,v), that is , a*(t;u,v) = 
a(t; v, u). Let A*(t) be the operator determined by a*(t; u, v). Then, as in the above, we can 
construct an operator-valued function V(t,s)  (0 < s < t < T) satisfying

— (d/ds)V(t, s) +  A*(s)V(t, s) =  0, 0 < s < t < T,

V(t,t) = I, 0 < t < T .

For f ,g  € X ,  and 5 < r < £, we have

(d/dr)(U(r,s)f,V(t,r)g)
= —(A(r)U(r,s)f, V(t,r)g) +  (U(r,s)f,A*(r)V(t,r)g)
=  —a(r; U(r, 5)/, V(t, r)g) +  a(r; U(r, 5)/,  V (t: r)g) =  0,

so that (U(r,s)f,V(t,r)g)  is independent of r in the open interval (s,t). Therefore, by 
letting r —> 5 and r —> t, we get

U(t,s) = V*(t,s). (5.74)

As in (5.73), V(t, s) is differentiable with respect to s and satisfies

|(d/ds)V(£,s)| =  |A*(5)y(t,s)| < C ( t - s ) ~ \  (5.75)

which combining with (5.74), implies that U(t,s) is also differentiable with respect to s in 
the interval 0 < s < t and that (d/ds)U(t,s) is a bounded extension of U(t,s)A(s) in X , 
and

\(d/ds)U(t, 5)| < C(t — 5)-1. (5.76)
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Theorem  5.17. If the inequalities (5.29),(5.30) and (5.31) with a > 1/2 are satisfied, there 
exists a fundamental solution U(t,s) of the equation (5.1) in X .  U(t,s) is differentiable with 
respect to t, s in 0 < s < t < T , its range R(U(t, s)) C D(A(T)), (U(t, s)^4(s)) has a bounded 
extension in X ,  and we have (5.73) and (5.76).

Theorem  5.18. Suppose that the assumptions of the above theorem hold. Let uq G X  and 
let f  be a Holder continuous function with values in X .  Then (5.60) is the unique solution 
of (5.1) and (5.2).

The proof is similar to that of Theorem 5.15.
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Part V

Some Properties of 
Pseudo-Differential Operators w ith  
Tim e D ependent N egative Definite  
Symbols

6 Some Properties of Pseudo-Differential Operators w ith  
Tim e D ependent N egative Definite Sym bols

In this part, we will study a large class of these pseudo-differential operators with coeffi­
cients depending on time which may for frozen time dependence extend to a generator of a 
Feller semigroup or a sub-Markovian semigroup. Our standard reference in this part is [15].

We will starting with the estimates for these operators which will be used in a later 
section.

Thus, we will consider operators of the following form

q(x,t,D)u{x,t) = (27r)_n/2 [  elxiq {x , t^ )u (^ t)d ^  (6.1)
JRn

and we assume that q : Rn x R+ x Rn —> C is a locally bounded function such that for every 
i G l "  and t G R+, the function q(x, t, •) : Rn —» C is a negative definite and continuous.

Definition 6.1. We call a function g : t n x R + x E n -+ C  a tim e dependent continuous  
negative definite symbol if q is continuous and for each x  G Rn, t G R+, the function 
q(x,t , •) : Rn x R+ —> C is negative definite.

In the following we will always assume q to be continuous and use the short hand time 
dependent negative definite symbol, taking the continuity for granted.

Note that for a time dependent negative definite symbol q for every compact set K  C Rn, 
there exists a constant Cx(t) such that

\q{x,t, 01 < C * (t)( l +  |f |2) 

holds for all x  G K, and £ G Rn. In fact, we may take

CK(t) = 2sup\q(x,t,T])\.
xeK
MO
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We will add the additional assumption that we can find a bound for Cx{t) independent
of t, i.e. we will require for all £ E lRn

|g(M ,f)l < CW(1 + |£|2) (6.2)

with Ck independent of t ^  0 and x E K.

A pseudo-differential operator corresponding to a time dependent negative definite sym­
bol is called a pseudo-differential operator with time dependent negative definite symbol.

A pseudo-differential operator with time dependent negative definite symbol has also the 
representation as integro-differential operator which we obtain by using the Levy-Khinchin 
formula:

q(x, t, D)u(x, t) = -  aki(x, t )® Û  ^  ^  dj(x, t )du(f ^k i = i  a x ko x i  j = i  o x j

+c(x,t)u{x,t) -  f  ( u(y, t) -  u{x, t) + ^ 2  1 |2 d % ^  ) N (x > dv)-
\  j^i 1 + 'y ' dxi J

Here c : En x M+ —> M, c(x, t) ^  0 , d = (d1?...,dn) : Rn x M+ —> Mn are continuous 
functions, and aki : x R+ —> R, 1 < A:, / ^  n, are Borel functions such that
aki{x , t) =  aik(x ,t).

For all x E Mn , t E M+ and £ =  (£i, ...,£n) E IRn, it holds ^2aki(x,t)£k£i ^  0.
Furthermore, for t E R+ and a : E l "  fixed N(x, t, •) is a measure integrating the function 

y i—> (1 A \y\2), i.e. f (  1 A y2)N(x,t,dy)  < oo. We note that for t E Rn fixed q(x,t,D) 
maps function u : Rn x R+ —> C such that E CJ°(Rn) to Borel measurable function,
i.e. (q(x,t, D)u)(',t) is Borel measurable.

Furthermore, for to E R+ fixed g(x, to, D) satisfies the positive m axim um  principle, 
i.e. it holds

i f  sup u(x0,t0) > 0, then {q{x, t0, D)u)(x0, t0) < 0.

We are interested in proving estimates for the operator q(x,t, D) in Sobolev spaces related 
to continuous negative definite functions, more precisely, in the Hilbert space H^,s(Rn) for 
a fixed continuous negative definite function and s E R.

The Hilbert space H ^,s(Rn) with a continuous negative definite function ^  : Rn —> M is 
defined by

H ^ s{R") = { u e  L2(Kn), ||ti||0f5 < oo}, s ^  0

and
\ u \ L =  [  (! +  s > °- (6-3)JRn
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We want to extend these spaces in order to handle t-dependent functions and operators. 
For the moment it is sufficient to note that for u : Rn x R+ —> C, such that u(-,t) G L2(Mn), 
we can define

:=  [  (l+V >(0)S|“ (f>*)|2df < 00 •J Rn

In some estimates we need a more precise control on constants. For this, we note that

7r" / 2 r  ( ^ )
/  (1 +  |x|2) fc/2d:r = ---------------------=: c ^ ,  A; > n (6.4)

and 7m)n is the smallest constant such that

(1 +  |£|2)m/2 ^  7m,„ i r l  (6.5)
|a|^m

holds. An upper bound for 7m>n is (n +  l)m/2. Finally, for a continuous negative definite 
function xjj : Rn —> M the constant is defined as the smallest constant such that

w o  s; CV( 1 +  lei2) (6.6)

holds. For a (negative definite) symbol q(x,t,£), we set

=  (27r)_n/2 f  e~lxTlq(x,t,C)dx 
J Rn

=  Fx_»,(9(a:,i,fl)(?7) (6.7)

whenever this Fourier transform exists.

Lemm a 6.2. Let q : Rn x R+ x R  C be a measurable function and further let ip : Rn —> E
6e a continuous negative definite function. In addition assume that g(*,t,£) : Mn —► C is
m-times continuously differentiable.

A. If for every multiindex a  G Nq, |a| ^  m, the estimate

\d%q(x,t,£)\ < C Q( 1 +  ^ (0 ) (6 .8)

holds with Ca independent of x and t , then we find for all ip G Co°(Mn)

K ^ r M , £ ) l  ^ ^ ( i  +  h l2)~m/2(i +  ^K))- (6 -9)

B. Suppose that there are functions <pa G L 1(Mn), |a| ^  m such that

|d“?(M ,£)l ^ p a{x)(l +  ^ (0 ) (6 .10)

holds. Note that the right hand side is again independent o ft .  Then we have for all k G 
N0, |A;| ^  m, the estimate

^ 7 fc,n + |77|2)“ fc/2(1 H-1/>(0 ) (6-11)
|q |
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Proof. Compare [15] for the time independent case.

A. For (3 G NJ, \(3\ ^  m, we have

r f  f  e iXT)ip{x)q(x,t^)dx = I [  (d%(e lxrt))<p{x)q(x,t,£)d
J R n | J R n

[  e~lxrt(d^{cf{x)q{x,t,())dxI
J R n

7</3
^  c ^ ( i  +  ^ (0 )

L1

which leads to _
( 1 +  \v\2) m/ 2 \(<PQy('n,t,£)\ <  (27r)-n/2C¥,( l  +  ^ ( 0 )

i.e. (6.9) is proved.

B. We may use the calculation of part A to obtain

r f  f  e~lxriq{x,t,t)dx = I f  e~lxr,d^q{x,t,^)dx
J R n I JKn

^  i i^ iU i( i+ ^ ( 0 )

which gives for k ^  m

( i  +  M i,)* / a I S f o . « ) l  +
i/?ia

and (6.11) is proved. □
In order to prove a first consequence of Lemma 6.2 we need

Lem m a 6.3. Let k G L1(Mn). Then we have for allu, v : Rn x R+ —> C swc/i thatu(-,t), v(*, £) G 
L2(Rn)

I [  [  k(^~v)u{v,t)v(^t)drjd^  < ||fc||Li||ti(-,Ollo||u(-,i)llo (6.12)
I J R n J R n

Proof. Using the Cauchy-Schwarz inequality, we find 

[  [  k(£ -  r))u(r),t)v(Z:t)dr}d£
I J R n J R n

[  \ (  [  (  [  \k ( ^ - v ) \ H v , t ) \ 2dr]\ M £,*)l) df,
J R n \  \  J R n /  \  J R n /  )

^  M l i 2IMIo (  [  [  \k { £ - ,n)\\u(r),t)\2d'ndA
\  J R n J R n J

^  l|fcM K -,0||o |M *,f)||o 

where in the last step Young’s inequality was used. □
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P roposition  6.4. Suppose that q : Rn x R+ x Rn —► C satisfies the assumptions of Lemma 
6.2.A for m  ^  n +  1 .Then for every ip G Co°(Rn) and for all u : Rn x R. —► C such that 
u{-,t) e H ^ 2(Rn) it holds

II<p{q(x,t,D))u{-,t)\\0 < c ji t( - ,* ) lk 2 (6.13)

with independent of t >  0.

Proof We will prove (6.13) for all p  G C^°(Rn) and all w : Rn x R+ —> C such that 
u(-,t) G 5(Rn). Note that for « , D : l n x R + -^ C , such that u(-,t),v(-,t) G S(M.n) we have 
by (6.9) and Lemma 6.3

/  [  (wY(£-'n,t,r])u(r),t)v{£,t)dr)d(
JRn JRn

\({p(q(x,t,D)u)(-,t),v(-,t))0\ =

^  c<e f  [  ( x +  l̂ - v \ 2Y in+1)/2(^^^(v))\u{v^)\H^t)\dr]df>
J  R” J  Rn

^  C ^n+ ilK l + ^(-))* (,5Ollo||^(-,OI|o 
^  ^IW -,t)IU ,2H - ,t ) | |0,

or
\(v>{g(x,t,D)u)(-,t)t v{-,t))o\ 

sup II / ,\|| ^  Ĵllv’,2
i7€L2(R"), v̂ o llvv’> Mo

which implies the proposition by the density of the Schwartz in the space H ^,s(Rn).

□
The proof of Proposition 6.4 shows already a principal problem when estimating a pseudo­
differential operator with negative definite symbol in some of the spaces H ^,s(Rn). In order 
to improve (6.13) to a global estimate, i.e. to

\\q(x,t,D)u{-,t)\\0 ^  c||m(-,«)||^2

additional assumptions on q(x, t, D) are necessary.
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We will consider time dependent symbols which decompose as follows

q(xi t,£) = qi(t,£) + q2(x,t,Z) . (6.14)

Of course, we have still to assume that q(x,t, •) : Rn —> C is for all i 6 l n a continuous 
negative definite function. In addition, we assume that ft (•, t) : Rn —► C is also a continuous 
negative definite function. The operator f t (t, D) and q2(x, t, D ) will be estimated separately.

Note that decomposition (6.14) may arise when freezing the coefficients, i.e.

q(x, t, £) =  q(x0, t, £) +  (q(x, t, £) -  q(x0, t, £)) •

Next we will need some general assumptions on qi and q2.

A ssum ption 6.5. We assume that the function q : Rn x R+ x Rn —► C is a time dependent 
continuous negative symbol having the decomposition q(x,t,£) =  ft(£,£) + q2(x,t,£) into a 
continuous function ft : R+ x R " ^ C  such that ft(-,£) : Rn —> C is negative definite, and 
a continuous function q2 : Rn x R+ x Rn —> C . Further let 'ip : Rn —* R be a fixed negative 
definite function. A.I. The function qi satisfies for t > 0 fixed with 70 > 0 and 71,72 ^  0 
all independent o ft, the estimates

7o^(0 ^  Re ft(t,£) ^  7i^(0> for all |£| ^  l , t  G R+, (6.15)

and
|Im ft(t,£)l ^  72Re ft(t,£), for all £ € Rn,t  E R+ . (6.16)

Note that (6.15) and (6.16) implies

1 +  Re ft(t,£) ^  l +  |ft(£,£)l ^ 7 i ( l+ ^ ( 0 ) >  (6-17)

for all £ G Rn, a l l t>  0 with some 71 > 0 independent oft.
A.2.m. For m  G N0, the function x i-> q2(x,t,£) belongs to Cm(Rn) and we have the 

estimate
|<£g2( M ,0 l ^  + £)) (6.18)

for all a  G Ng, |o| ^  m  with function <pa G LJ(Rn), i.e. the right hand side of (6.18) is 
independent oft.

We start with estimates for the operator ft(t, D).

P roposition  6 .6 . We assume A.I. For any s G R the operator qi(t,D) satisfies the esti­
mates

lift(t, D)u(-, t ) |k a_2 ^  7 ilM -,t) |ka  (6.19)
and

\\qi(t,D)u(-,t)\\^s- 2 ^  7o||u(-,*)||iM “  A0 ||^(',^)|k,s-2 (6.20)
with a suitable constant A0 independent oft.
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Proof. It is sufficient to prove (6.19) and (6.20) for all u : Mn x R+ —► C such that
u(-,t) G S(Rn). For s G R, we find using (6.17) i.e.

1 +  R e g i ( * , 0  ^  l  +  |g i ( t ,O I  ^ 7 i ( l  +  ^ ( 0 )

that

lk i(t,£> M *,0 ll^ -2 = [  (i +  ^ ( 0 ) s~2ki(*»0“ (f»*)l2d£J Rn

^  7i [  (i +  ^ ( 0 ) a-2(1 +  ^ ( f l)2I^K^)l2c?7Rn 
=  7 ? l l « l l k

proving (6.19). To prove (6.20) observe that (6.15) , i.e.

7o^(0 ^  Re g i(f,0  < 7 i^ (0  ,

holds for |£| > 1 and therefore we find

\\qi(t, D ) u { t)|| J>s_2 =  [  (1 +  ^ ( 0 ) 3_2k i(^  0 | 2PK.
J b{{ o )

+  [  ( i + m ) 9- 2k i ( t , o m t ; , t ) \ 2dz
J B i  (0 )

^  [  (1 + ^ K ))5_2(Re ? i( f ,0 )2|£(f>*)|2d£

> 7o [  ( i + m y - 2m ) ) 2w u ) \ 2dt
J b -( o )

^  7o [  ( i + ^ ( 0 ) s i ^ k ^ ) i 2^ - 7 o  f  ( i + ' i p m s- 2m u ) M
J B f (  0) Ĵ3f(0)

=  7ollw( '^ ) l l l s -7 o  /  (1 +  ^ ( 0 ) S_2|^ K ^ )|2̂

- 7 o  /  ( i  +  ^ ( £ ) ) a | £ ( f > * ) l 2 d £
J B i i O )

> 7 o 2 I K ^ ) I I L - 7 o 2  s u p  ( i  +  ^ ( O ) 2 I K , 0 l l | l S - 2
€€Bi(0 )

which implies (6.20). □
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C orollary 6.7. Suppose that lim ^(£) =  oo. Then we have in the situation of Proposition|£|—oo
6.6 for every e > 0 and s ^  0

Wq^t, D)u(-,t)U,s - 2  ^ (7o -e)IM-,*)||^,a -  A£||u(.,£)||o, (6.21)

for some Xe ^  0 independent oft.

Proof. Since lim ^>(f) =  00, we find for e > 0 a suitable constant pe ^  0 such that 
KH°°

a + m y - 2 < C ( i + m y

holds for all £ G Kn, |£| ^  pe. Note that the case A0 =  0 is trivial. It follows that

( i + m r - 2m t ) \ 2d£
J Rn

=  ^0 [  ( i + ^ ( 0 ) a" 2i % t ) i 2de
J B ' e( 0)

+ ^ 0  [  ( i  +  ^ ( 0 ) s " 2 l“ K ^ ) l 2^
J b P£(0)

^  e2 [  (1 + 'ip{t)Y\u(£,t)\2dt,
J b *€( 0)

+Ag ( sup (l +  ^(£))s~2 ] [  |S (t,f l|2de
\ x e B Pe(o) J  J b -£{0)

< e2||u(.,t)||J)a +  A2||u(.,t)||g .

Hence (6-20) implies

|l^i(t, Z ))tt (* ,P)11*0,5—2 ^  7o | |w (* ,£ ) ||^,s A o | |u ( - ,P)11̂ />,s—2 ^  (70 £ ) ||^ (*jP)IItp,s A£ ||u(*, t )| |o

□
R em ark 6.8. It is possible to get a smaller value for X£, but we do not need it later on.

Next we want to estimate the operator g2(:r, t, D ) assuming that g2(£, t, £) fullfills A.2.m 
with a suitable large m.

In the following [A,B] denotes as usual the commutator of two operators A and B, i.e.

[A, B\ = AB  -  BA.

Theorem  6.9. Let s > ^ and assume that <72(a;,£, £) satisfies A.2.m with m > n +  2s. Then 
we have



for all u : Rn x R+ —► C such that G # ^ ,2s+1(lRn), where

kn,m,s,xp = (27r)_n/222s+35cv,7m,ncn)rn_2s (6.23)

withcnjTn- 2s, j m,n and c^ as in (6.4)- (6 .6), i.e.

v n/2V ( (m -  2a) -  n \

[  (1 +  |x|2)-<"*-2s>/2(fc = -L  L -  =:
7r" /  m — 25 \ — • Cn,m—2si nTL 2s ^  71 .

/  7 / / ,  ---- Z..S \

r

Proof. For s > 7-, by Lemma 6.2. B, we have

|?2 (c — 77, i,?7)| < 7 m,n ] T  ll^alk1 (1 +  |^ -77 |2) m/2(l +  ^ W ) .  (6.24)
|Q|<m

Now for u,v : M.n x R+ —> C such that u(’,t),v(-,t) G C'o°(Rn), we find using (3.29) and 
(6.24)

|([(1 +  'ip(D))3, ^(a:, t, D)\u(•, *), u(-, t))0|

=  (27r)"n / 2 | [  [  f t K -  77, * ,77) ((1 +  ^ ( 0 ) *  -  (1 + V ’W ) * ) % , ^ K d W
I «/Rn «/Rn

< (27r)_n/222s+3scv,7min ^  ||^a|Ui
|a |< m

x /  /  (1 +  K “ 77l2) ” T+a(1 + ^ ) ) 2̂ 1l ^ > t )II^K>i )ld^«/Rn JRn
^  kn,m,s,ip ^   ̂ H^a Hi1 | |^ ( ’j 0  ||v»,2s+l | |^ ( ’> ^) II0?

|a|<m

which implies (6.22) and (6.23). □

C orollary 6.10. Let Si > 0, s2 > 7̂  and assume that q2(x,t, £) satisfies A.2.m. with
77i > 7i +  2«i +  2s2. Then we have with a suitable constant c,

\\[{1 + i>(D))s\ q 2(x,t, D)]u{-,t)\\^2s2 < c J 2  \\(Pa\\LA\u( ^ t) h , 2s1+2s2+v (6.25)
|a| <m

Proof. Since

|| [(1 +  -4>{D))SI, q2(x, t, £>)]«(■, Ollw «
=  IK1 +  V’(£,))52[(1 +  i>(D)Y' , q2(x, t, D)]u(-, Olio

and

(1 + 'ip(D))S2[(l + if>(D))ai1q2(x,t,D)]u(x,t)
= [{l+'ip(D))sl+S2,q2{x,t,D)]u{x,t) -  [(1 + i/)(D))S2 ,q2(x,t,D)](l + ip{D))Slu{x,t)
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It follows from Theorem 6.9 that

|| [(1 +  ipiD))8' , ft (a;, f , D)]u{-, t ) \\^2s2 

<  || [(1 +  ip{D))Sl+S2, q2{x, t, D ) ] u ( t) ||Q

+  I I K 1 +  ^{D))S2,q2(x, t, D)]( 1 +  '0 ( ^ ) ) S l w ( - ,  t )  | | o

< C ^ 2  h<*\\L4U(',t )h,2s1+2s2+l+C1 ^  ll^a||Li||(l +  ^ (^ ) )Slw(-,t)||v,,2S2
|a|<m |a|<m

— a ^  ^ ll^a III/1 | |^ ( ' j  0  ||i/’,2si-|-2s 2-|-1
|a|<m

□
Now we can show

T heorem  6.11. Let s > 1 and suppose that q2{x,t,£) satisfies A.2.m with m > n +  [s] +  1.
Then we have for all Si > 0 and u : Rn x R+ —> C such that u(-,£) G H ^,Sl+2(Rn), the
estimate

||ft(*£j t, D)w(*, t)1 1 i ^  Cn,m,Si,ip||u(', t)||i/)jS1+2 (6.26)
where for S\ = s, we have

Cn,m,s,ip — (On+ljTiCrajn+l “I" ^ n , r ^  ] H^qHl1 (6.27)
|a|<m

where kniTn̂ ^  is defined as in (6.23), i.e.

kn,m,s,ip — (2tt)  ̂ 2 SĈ ,7m,nCn,m—2s*

Proof. A. First note that for u(-,t), ?;(•,£) G ^(R71), we have

/ q2{x,t,D )u(x,t)v(x ,t)dx=  /  q2(£ -  r},t,r))u(r),t)v(£,t)drjd£
J R " J R n J l n

since by Plancherel’s theorem

/ q2(x,t, D)u(x,t)v(x,t)dz 
J  R n

IX

= (q2(x1t,D)u{’1t)iv(-1t))
= ((q2(x ,t,D )uy{-,t) ,v (-:t))),

and

{q2{x,t,D)u)~{£,t) = (2tt) 71/2 [  e lx* (  [  e%XT]q2{x, t, rj)u(r],t)\ dqd^
JRn \  JRn /

(27r)_n/2 [  j  e~lx^~'n)q2(x,t,r])u{r},t)dr)df>
JRn JRn



We find

/ <72(2;, t, D)u(x, t)v(x, t)dx 
J R"

= (£-r],t,ri)u(r),t)v(Z),t)dr}d{>.
J Rn J Rn

Applying Lemma 6.2 B and Lemma 6.3, it follows that

|( f t (M ,D )u M ) ,u M ))0|

< 7n+l,n \ M L i  [  [  (l + IC-T?!2) -^
|a|<n+l ■/RB ^

x (1 +  ^ (77)) |u(??, t) | |v(f, t) |<Mf

^  7 t I + 1 ,71^71,71+1 E H^alU1 ||̂ (’j 11^,2II 5 Olio ?

|a|<7i+l

which implies

||ft((£,t, D)u(’, t)||o E 771+1,71̂71,71+1 E  IM z -> IK .i) lk 2 (6.28)
|a|<n+l

IL2

i.e. (6.26) for si =  0,and all constants are independent of t.
B. Next let s > 1 and observe that

||ft(:r, t, D)u(•, t) ||^ a =  ||(1 +  ip{D))s/2 o q2(x, t, D)u{-, t) ||
=  II ((! +  i>(D)Y/2 0 <l2 {x, t, D)u{•, t)) +  (ft(z, t, D) o (1 +  ^(£>))5/2u(., t))

-  (ft(z, f, £>) o (1 +  i(;(D))s/2u(-,t))\\l2
< ||q2(x, t, D){ 1 +  i/>(£>))s/2u(-, t) ||0 +  || ((1 +  ip(D))s/2 o ft (a;, £, D)it(-, *))

-  (ft(a;, t, D)( 1 +  ^(Z?))5/2u(-, *)) ||0 ,

i.e.

||ft(a;,t,D)iz(-,i)||^a 
< Ik2(^, t, D){ 1 +  7/>(D))s/27/(-, f) 110 +  || [(1 +  iIj(D))s/2, ft (a;,*, £>)M*, *) ||o •

Since (1 -f tfj(D))r/2 maps iiP^(Rn) bijectively and bicontinuously iP ^ - r (lRn) with t > 
r > 0, then we find for u : Mn x M+ —► C such that u(’,t) 6 i /^ ,s+2(Rn) that

(1 +  'ip(D))s/2u{-,t) := t/(., t) € ^ * ( a+2)-a(RB) =  ^ - 2(Rn),

and therefore

||ft(a:, t, D)( 1 +  ?/;(L>))5/2u(-, f)||Q

^  777+1,71^71,71+1 E || ||lx ||^(’j k) |lv,,s+2’ (6.29)
|a |< 7 i+ l
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On the other hand, we may apply Theorem 6.9 with 5 replaced by s/2 to get

||[(1 + ijj{D))s/2,q2 (x,t, D)]u{-,t)\\Q < kn,m^  E || ̂ Pa || L1 ||^(' 5 )̂ ||i/'jS+l (6.30)
|a |< m

which leads together with (6.29) to

\\q2 (x,t,D)u(',t)\\1p s < (7n+l,nCra,n+l “I- &n,rn,|,V>) ^   ̂ IÎ A* Hl1 ||̂ (*? 0  ||i/),s+2
|a |< m

and the theorem is proved for s > 1 and m > [s] +  n +  2. □

R em ark  6.12. Note that our proof of Theorem 6.11 yields the estimate

\\q2(x,t,D)u{-,t)\\^S2 <c*n,S2̂ m ^ 2  IW U 1llwM )lk « 2+2 (6.31)
|a |< m

for all s2 > 0 with m suitably large.

Note that in the following theorem the relations of the constants in (6.21) with s — 2 
replaced by s, i.e.

||gi(i,D)M(-,i)||^>ai_2 > (7o-e)IK *,t)||iM i -  Ae||u(-,i)||0

and the constant cn)TTl)Sl)̂  from (6.27), i.e.

Cn ,m,si,ip — '̂f(n+\,nCn,n+\ ^n, E ll<A*| W
|q| <m

will become important.

For simplicity, let us restate (6.21) as

||gi(*,D)u(-,*)lliMi > 777o||w(*,t)||^,Sl+2 — 7 t? ,s illw(’>̂ )llo (6.32)
which holds for all Si and 77,0 < rj < 1. Further recall the estimate (6.26)

\\q2 (x,t,D)u(-,t)\\^S2 < C7l)Tn)S2)̂ ,||,u(', t) ||^,)a2+2 

and for si > 1 and m > n +  [si] +  1:

11 ̂ 2 (*̂- j 5̂ ^ )^ ( 'j )̂ ||i/’, si ^  Cn,m,8i,ip || Tol || L1 II ̂ ('j )̂ lksi+2 (6.33)

where cn^ 8ljip = (yn+itnCn,n+i +  Combining (6.32) and (6.33), we get

||q(x,t,D)u{’,t)\\^Sl > ||gi(i,D)ii(*,t)||^>ai -  ||q2(x ,t:D)u(-,t)\\^Sl

— VToW'U'i' 1 t)\\ip,si+2 ~ rYr),8i\\u{’it)\\o ~ cn,m,si,ip ^  ] | |^ q Hi,1 |k ( ’> t) lksi+2
|a |< m

I VTO ~  Cn,m,si,%p ^  ^ H ^ a l l i 1 J lk (*5  ^) l k s i + 2  — 7t?,si | | ^ ( ’j 0  110 
\  |a|<m J

Thus we have proved
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Theorem  6.13. Suppose that q(x,t,£) = gi(£,£) + q2{x,t,f>) satisfies A .l  and A.2.m with 
m > n + [s] +  1 for some s > 1. Further assume that for some 7] G (0,1), we have

E II<a*||li < n  • (6.34)
|a|<m

Then we have for all u : Rn x R+ —► C such that it(-, t) G H ^,s(Rn), the lower estimate

\\q{x,t, D)u(-,t)\\^s > <50 ||u(-, ^H^ + 2  -  7r?,s||w(-,^)||0 (6.35)

with

^0 — VTO Cn,m,s,tp ^   ̂ 6 • (6.36)
|a|<m

R em ark  6.14. Later on, we will see that often

{q(x, t, D)u{•, t),u (-,t))0 > 0 (6.37)

holds for all u : Rn x R+ —> R such that u(-,t) G i /^ ’2(Rn). Taking in (6.35) s = 2, we find 
then for all A > 0,

\\q{x,t,D)u(-,t) +  Au(-,t)||o 
=  ||q{x, t, D)u{-, OllJ +  2\{q{x, t, D)u(•, t), u(-, *))0 +  A2||u(-, *) ||§
> \\q(x, t, D)u(-,t)\\20 +  A2||u(-, £)|lo

or

||q(x, t, D)u{•, t) +  Aw(-, i) ||0 > ||g(r, D)it(-, *) ||0 +  A ||m(-, *) ||0
>  ||^(*,^)ll^,2 - 7 » 7 ,2 |k ( - ,O l i o  +  A H - ,  t ) | | 0 .

Thus for A > 7^2, we have under the assumption (6.37), i.e. (q{x, t, D)u(-, t), u(-, t))o > 0 

\\q{x, t, D)u(-, t) +  Ait(-,t) ||0 > <$o|M*>*)lk2 • (6.38)

In order to prove regularity results with respect to x  G l "  for solutions of the equation

q(x,t,D )u(x,t) =  /  

we have to introduce the Friedrichs mollifier : The operator

J£(u){x, t) := (j£ * u)(x, t )=  j £(x -  y)u(y, t)dy
J  Rn

where j  : Rn —* R is the function

— f  coexp((|x|2 -  l ) - 1), |x| < 1
n  ’ 1 0, |x| > 1

and Cq 1 = exp((|x|2 — is called the Friedrichs mollifier.
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For e > 0 set j £(x) := e nj  ( |) .  It follows that j £ G Co°(Rn), j £(x) > 0, sup j £ = Be(0) 
and f Rnj £(x)dx = 1.

P roposition  6.15. Let J£ be defined as above, i.e.

J£(u)(x, t) := /  j e{x -  y)u(x, t)dy = (j£ * u)(x, t)
j R n

For any Si > 0 and u : Rn x R+ —* C such that u(-,t) G H ^,Si (Rn), we have for t > 0 fixed

(6.39)

and

as well as

j e(u)(-,t) e  p i  h *'32 (Rn) p i  c °° (Rn)
S2> 0

lim||J£(u)(-,t)-u(-,i)ll î = °-€—►O

(6.40)

(6.41)

In addition, if for e € (0, p), p > 0, we have for some « : R “ x K+ —* C such that u(-,t) € 
L2(M"),

| |^ ( ^ ( ^  t)||^,ai <Cu,sut (6-42)

with a constant independent of e, it follows that u(-,t) G H ^,Sl(]Rn).

Proof. A. For S2 > 0? we find

=  [  ( i + m Y 2 \uc * u y ( f , t ) \ 2df
J R n

=  (27r)n f  (1 +  ^ ( 0 )52 5 e (0  •
J R n

Since j £ G Cg°(Rn), it follows that j £ G 5(Rn). Hence there is a constant cS2)Sl)£ such that

(1  +  l H O ) ' J |? e ( f ) l  <  C . „ llE( l  +  ^ ( O ) ”1 

which implies ||J£(u)(-,t)||JiJJ < c„1<1,t ||u(-,i)||Ji, 1, hence we have Je(u)(-,t) 6 f |  H*'’2(Rn)
5 2  > 0

and (6.39) holds.

B. The lemma of Riemann-Lebesgue implies

3,(0 = 3(*0 < (^)-n/2\\J\\ia = (2tt)-"/2
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which yields

l l ^ ( « ) ( ' . < ) l l l ai =  (2tT)n f  (1 +  1p{0Y' l e (0  |Se(C, t ) |2 d f
J Rn

<  [  (1 +  m Y 1 \ U e ( U ) \ 2 d t
J Rn

= H - .O I Ik -

C. In order to show (6.41), observe that

-  u (->1) 111,82 = [  (i +  ^K ))52\{ je* u y{ t ,t)  - u { ^ t ) \ 2d^
J Rn

=  (27r ) " /  (l + m ) n  5£(C)-(27T)-"/2 2 |2 « ,i) |2̂  .
J Rn

Since j £(f) = j(e£) —> j ( 0) =  (27r)_n/2 and j e(£) < (27r)-n/2, for all £ £ Mn and e > 0 , the 
dominated converges theorem yields

lim ||Je(u)(-,*) -u { - , t ) \ \ l>S2 =  0 .

It remains to prove that (6.42) implies u f , t )  £ H ^,Sl(Rn). Prom (6.42) it follows that 
(•^i/n(w)('>^))n>i converges weakly for t > 0 fixed in (Mn) to some element v(-,t) £ 

1 (Rn). By the linearity of the continuous embedding of H ^,S1 (]Rn) into L2(Mn), it follows 
that («/i/n(^)(', t))n>i converges also weakly in L2(Mn) to v(’,t).

But by (6.41) above we know that (Ji/n{u)(’i t ))n>i converges strongly in L2(Rn) to u(-, £), 
hence u(-,t) = v(-,t) and u(-,t) £ H ^,Sl(Rn).

Theorem  6.16. Suppose that q2(x,t,£) satisfies A.2.m. Further let Si > 0 such that |si — 
1| +  n +  1 < m. Then we have for all e £ (0,1] and all u : Rn x R+ —* C such that 
u(-,t) £ H ^,Sl+1(Rn)

1 1 1 < c||u(-,t)||^1+i

with a constant c independent of e £ (0,1] and t > 0 .

Proof First observe that

{\J£,q2{x,t,D)\u{x,t))  ~(£)

=  (27r)"n/2 [  q2{ £ -  V, t, r?)(J(eO -  ?(^))m(t/, t)drj .
JRn

Further we claim

(?(<*) -?(«?))(! + l«|2)1/2 < c*(l + 1C -  */|2)1/2

(6.43)

(6.44)

(6.45)
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with c* independent of £ £ (0 , 1].

In fact, since |j(£)| <  (27r)-n/2 for all £ £ Rn, we have for |£ — 771 >  ^|£|,

i ? ( ^ ) - I ( ^ ) K i + k i 2)1/2
<  2(2tt) - " / 2(1 +  | f  |2)* <  c*(l +  | f  -  jj|2) 1/2 .

On the other hand, for |£ — 77I < ||£ |, since j  £ S(Rn) we have Vj(£) < c(l +  |£|2)-1/2, 
the mean-value theorem yields for £ < y/2.

3 H ) ~ 3 { ^ v) (i + I£I2)1/2 

. - 1/2
< \e£ £T)\c ( 1 + f i

2 (1 + m

2 \  - 1/2

2X-1/2

< c"(l +  If -  r , \ Y 2 ( +  +  ^  (1 +  Ifl2)1/2 (6.46)

and (6.45) is proved.

Now we get using (6.43), Lemma 6.2 B, (6.45), Peetre’s inequality for continuous negative 
definite functions , and the estimate

(1 +  ^ (0 )  < +  |£|2)

|(1 +  i/>(£))ai/2(lJ£, taix, t, D)]u{x, t))(g) |

=  (27r)~n / 2 | f  q2{ Z - V , t , r i ) ( j ( £ £ ) - 3 { £ v ) ) { l  +  ^ ( 0 ) Sl/2u{'n,t)d'n 
| JR" V 7

< J" [  (1 +  |f _ ^ ) - W 2 (1 +  ^ ))(1 +  |^ _  ^2)1/2
j R n

x ^ 1 + { fp )v a (1 +  1"^’

< c" f  (l +  |f-» ? |2) - !!̂ 1(l +  ^ ( f -r ) ) ) Iil5J1(l +  i/>()j))£1f 1|fi(»),()|rf)j
J R n

J R n

with c independent of £ £ (0,1] and t > 0 .

Now, we finally get by Young’s inequality
si+i

||[J£,g2(x,t,-D)M-,<)||v,iS1 < c (1 +  | - | 2) m+1+2” 11 * (1 +  V'(')) 2” l“ (-,*)l

—  IIV’iSl + l

which is independent of £ £ (0,1].
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Theorem  6.17. Suppose that q (x , t^ )  = qi(t,£) +  q2{x, £,£) fullfills A .l and A.2.m with
m  > [5i] +  n + 2 /or some si > 0 and (6.34)

i.e. cn,m,SllTp II^IU1 < ™  /o r  70 > 0 and rj G (0,1) .
|a |< m

Further suppose that for some A G M and t > 0 fixed /(•,£) G H ^,Sl(Rn). For a solution
u : Rn x R+ —► C such that u(-,t) G i /^ ,Sl+1(IRn) to the equation

q\(x , £, D)u(x, t) =  g(x, £, D)u(x, t ) +  Au(x, t) = f  (6.47)

Then it follows that u(-,t) G if^ ,Sl+2(Rn).

Proof. Using Theorem 6.13, we find

< ^ 0  | | ‘ / r ( ' w ) ( , 5 ^ ) l l ^ , S l + 2  7 t 7 , s i  I I ‘ / e ( w ) ( * >  O l i o  l l ^ * ^ e ( W ) ( ’ 5 0  l i t / ) ,

< \\q(x,FD)J£(u)(^t)\\^Si -
< \\q(x,t,d )j £(u){-,t) +  \ j £(u)(’,t)\\^
< || Je(q(x, f, D ) u ( t )  +  Au(-, t)) +  ||[J£, q2(x, t, D)](u)(-, t) ||^
=  \ \ M f ) ( ' ^ ) \ \ r p , s i  +  \ \ [ J e , q 2 ( x , t , D ) ] ( u ) ( - , t ) \ \ ll,r

Si
Si

si
\.L.On(x.t.. n')](iA(..t.)\\ . s 1

Si

Si

Thus we get by Theorem 6.16

^olkeMO, 011^+2 < ||^ ( / ) ( - ,0 l l^ i  +  l! [^ 2 (M ,£ )]M (-,* )IU
~b|A|||«/£(w)(', Ollv’.si 4" 7f7,si ll^e^X'j Ollv’.si

— Il/(‘i llv’tSi 4~ c||u(’, £) ||^)Sl 4~ o||u(*, t ) ||i/>)S1+i

with c independent of e G (0, l],and t > 0, therefore the theorem follows from Proposition 
6.15 .

□
We introduce the t-dependent sesquilinear form

B{t; u, v) := (q(x, t, D)u(-,t), r(-, t)) (6.48)

which is associated to q(x, t, D) and defined for all u, v : En x l + —> C such that u(-,t), v (•, t) G
Co°(lRn). Clearly we have the decomposition

B{t; u , v) = B qi (t; w, r) +  i?92 (£; u , ?;) (6.49)

where B qi(t;u,v) := (qi{t, D)u(-, t), v(-, £))0 and B q2(t;u,v) := (q2(x1t iD)u('1t) iv(-1t))0.
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P roposition  6.18. Suppose that qi satisfies A.I. The sesquilinear form B qi satisfies

|B qi{t\u,v)\ < (6-50)

for all u,v :R n x R+ —> C such that u(-,t),v(-,t) G HÎ ’̂ R 71) with 71 as in (6.17). 

Furthermore we have with some A0 > 0,

\Bqi{t;u,v)\ > ReBqi{t-u,v) > 7oM *,£)|||,i ~ A0|M-,Olio • (6-51)

Proof. It is sufficient to prove (6.50) and (6.51) for all u,v : Rn x R+ —> C such that
u(-,t),v(-,t) G S(Rn). From (6.17)

i.e. 1 +  R e ^ ( t ,0  < l +  |gi(t,OI < 7 i( l  +  ^ (0 )

we deduce

\Bqi(t;u,v)\ = I [  qi(t,Z)u(£,t)v{£,t)dt
I J R n

< 7 1 /  (1 +  ^ ( 0 ) K £ > * ) l l % * M
J R n

<  7 i l k ( - , t ) | | v » , i l l v ( ' > 0 I U i

which proves (6.50).

To see (6.51) observe that

\B(t;u, u)| > R eB(t;u,v)

=  f  R e g i ( £ , 0 R £ , t ) | 2d£
j R n

> 7 o /  V >(£M f,0|2°^ +  [  Re9i(^OI“ K ,0 |2̂
J b'( 0) ^Si(o)

> 7olK -,t)||^ i -7o||w(-,t)||o ~ sup |Regi(t, 0  -  7o^(O IM '»i)llo
iei<i

and (6.51) is shown. □

R em ark  6.19. Since qi(t,D) maps real-valued functions onto real-valued functions, it fol­
lows that for real-valued u(-,t) G iP ^ R " ) ,  we have

B qi(t;u,v) > 7o|M-,*)||J,i -  A0||M(-,t)||o- (6.52)

Next, we will estimate B q2
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P roposition  6.20. Suppose that A.2.m. holds fo rm  > n +  2. Then for all u ,v : R71 x R+ —> 
C such that u(-,t),v(-,t) G the estimate

B Q2(t; u, v) < k2 E H^alU1 ||w(-, t) ||^ i ||v(-,0 IU,l (6‘53)
|a|<n+2

holds.

Proof. As in the proof of Theorem 6.11, we find for u,v : R71 x R+ —> C such that 
u(-,t),v{-,t) G S{Rn),

| B Q2(t;u,v)\ = / q2(x,t, D)u(x,t)v(x,t)dx
J R n

|a|<n+2

<

<

J R n J R n

7 „ „ ,  £ l f c l k . / . / >. ( , +  |£ - , |- ) - 'V
1/2

|a|<n+2
x (1 +  ijj(r}))1/2 \v{rj, t)| (1 +  ip(0)1/2 |u(£, t^drjdf,
\ / 2 7 n + 2, n ( l  V C^)1/2 H ^ a lU i

|a|<n+2
X [  [  (l + l£-*7|2) ^ { ^  + ^{v))1/2{  ̂+ ^ ^ ) ) 2W(v,t)\\u{^t)\dr]df>JRn JRn

(6.54)< k2 Y 2  I I ^ I M M - ^ l k i M - ^ l k
|a|<n+2

with k2 = y/2(l V c^)1/27n+2)nQi,n+i-

Combining Proposition 6.18 and Proposition 6.20 , we obtain the following
□

Theorem  6.21. Suppose that qi(t,£) and q2(x,t,£) satisfy A.I. and A.2.m. withm  > n+2. 
TTien we have for all u, v : Rn x R+ —► C such that u(-, £), ?;(•, t) G . / /^ (R 71),

(6.55)

Further we have

Theorem  6.22. Suppose that q\(t,ff) and q2(x,t,ff) satisfy A.I. and A.2.m. withm > n+2. 
Assume further with k2 from (6.54) that



Then we have for all u : Mn x R+ —► C such that u(-, t) G / / ^ ( R 71)

\B(t;u,u)\ > ReB(t\u,u)  > £i|M*,OII|,i — Ao||w(-,t)||o (6-57)

where A0 is taken from (6.51).

Proof. Using Proposition 6.20 and Proposition 6.22, we get

\B(t;u,u)\ > Re B(t;u, u)
> B qi(t;u,u) — \Bq2(t;u,u)\

> io\\u(-,t)\\lA -  \ 0\\u (- ,t) \ \ l-k2
|a|<n+2

□
C orollary 6.23. In the situation of Theorem 6.22, we have for all A > A0

\B\(t;u,u)\ > R eB\(t;u,u)
= ReB(t-,u,u) +  A||it(-,

> <*ilK'>*)IIJ,i • (6-58)

Next, let us suppose that qi{t,£) and <72(2̂ ,  0  satisfy A.I. and A.2.m. and m > n +  2. 
Further let /  : Rn x R+ —> C such that /(-,£) G L2(Rn).

D efinition 6.24. We call u : Rn x R+ —> C such that u(-,t) G I./’̂ ,1(Rn) a variational 
solution to the equation

q\(x , t, D)u(x , t) = q(x, t , D)u(x , t) +  Au(x, t) = f  (6.59)

if

Bx{t;u,<p) = B(t\u,cp) +  \{u(-,t),(p(',t))0
= (/M ),<pM ))o  (6.60)

holds for all p  : Rn x R+ —» C such that p(',t)  G Co°(Rn), or equivalently for all p(-,t) G

Note that by applying Theorem 6.11 with Si =  0 ,then we can see that a variational
solution of (6.59) with u(-,t) G H ^,2(M.n) satisfies (6.59) already in the strong sense . i.e. 
qx(x,t, D)u(-,t) G L2(Rn) and (6.59) is an equality in L2(M.n),t  > 0 being fixed , compare 
Theorem 6.11 which provides the regularity estimates for variational solutions needed for 
this statement.
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Theorem  6.25. Let qi(t,£) and q2(x,t,ff) satisfy A.I. and A.2.m. with m > n +  2 and 
take Ao from (6.52). Moreover assume (6.56), i.e. > 0. Then for t > 0 fixed and every 
A > Ao, there exists a unique variational solution u : Rn x R+ —» C to equation (6.59), i.e.

Bx(t\u,ip) = (ip(-,t),f(-,t)) o

for all <p : Rn x R+ —* C  such that p>(-,t) G C°°(Rn).

Proof. First note that by

I(<p M ) . / M ) ) o| < ll/M)llo||</>M)llo < l l /M ) l l lk M ) lk i  (6.61)

every /(•, t) G L2(Rn), /  : Rn x R+ —► C defines a continuous linear functional on 
being fixed. Moreover, Theorem 6.21 and Theorem 6.22 implies

\Bx(t;u,<p)\ < |k M ) |k i l k M ) l k i

and
\Bx(t;u,u)\ > ReBx(t-,u,u)) > £ i H '^ ) l k n  Si > 0 .

Thus, the Lax-Milgram theorem gives the existence of a unique element u(-,t) G 
such that

Bx(t;u,<p) = (y>(*, *),/(•,*)) o 
holds for <p : Rn x R+ —* C with <p(',t) G Co°(Rn), which proves the theorem.

□
We want to prove that the unique variational solution constructed in Theorem 6.25 has 

more regularity properties.

Theorem  6.26. Let q(x,t, D) =  q\(t, D)-\-q2(x, t, D) andu(',t) G i /^ ,:l(Rn), /(•, t) G L2(Rn) 
be as Theorem 6.25 and assume Theorem 6.17 with Si = 0. Then u(',t) belongs to H ^,2(Rn).

Proof. Denote by Je , £ G  (0,1], the Friedrichs mollifier and fixed t > 0. Further let (uk)k€^ 
be a sequence of function Uk : Rn x R+ —► C such that uk(-,t) G Co°(Rn). Assume that 
(uk(-,t))k G N  converges in f/’̂ ,1(Rn) to u(-,t). It follows that

Bx(t; J£(uk), cp) = (q(x, t , D)Je(uk)(-,t) +  A J£(uk)(-, t), p(-, t))0 
= (J£((q(x, t, D) +  A)tifc(., *)), <£>(*, t))0 -  ([Je, q(x, t, D)]uk(•, t), tp(-,t))0 
= Bx (t; uk, J£((p)) -  ([Je, q2(x, t, D)]uk(•, t), <p(’,t))0 .

From Theorem 6.16, we obtain (for k large)

\\[Je,q2(x,t, D)]uk(-,t)\\0 < c\\uk(-,t)\\^i < c||m(-, 4)11̂ 1

im plying th at [Je,q2(x,t, D)]uk(’,t) —> w£(-,t) in L2(Rn) for som e w£(-,t) G L2(Rn) and  
11vj£(*, f)11o < c||it(*,0lki f°r £ ^ (0» 1] w ith  c independent o f e.
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Thus for k —> oo, we obtain

B x(t\Je(u),y) = Bx{t;u,Je{(p)) -  (w£(-,t),(p)o
=  *),/(•,*))o ~ (w£{-,t),(p(-,t))o
=  (<£>(•, *), «/c(/)(*, *))o ~ *), <?(*, t))0

It follows that

| | < 7 a ( ^ , ^ , jO ) ^ ( i x ) ( * , ^ ) | | 0  <  | | J £ ( / ) ( - , * ) l l o  +  K M ) | | o  <  l l / ( * ^ ) l l o  +  c | | M ( ' , O l k i

or
\\qx{x,t,D )J£{u){-,t)\\0 < |A|||u(-,t)||0 +  ||/M ) ||o  +  c ||ti(-,t)|k i

which implies by Theorem 6.13 that || Je(u)(*, t)| |v>,2 < c for all £ G (0,1] with c independent 
of e G (0,1]. Thus, we have u(*,t) G i7^,2(lRn) by Proposition 6.15.

□
Combining the results for B (t , •, •) with Theorem 6.17, we get

Theorem  6.27. Suppose that qi{t,£) and q2(x, t,£) satisfy A.I. and A.2.m.with m  > [S2] +  
n + 2, s2 > 0. Moreover assume (6.34) as well as (6.56) (with s2 instead of s). I f  A > A0, A0 
taken from (6.51), and /(- ,t)  G H ^,S2(Rn), then there exists a unique variational solution 
u(-,t) G H ^’S2+2(Rn) to (6.59).

Note that Theorem 6.27 tells that in particular every variational solution to (6.59) is 
already a strong solution.
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Part VI

The Operator — q ( x ,  t o ,  D )  as 
Generator of a Feller Semigroup  
& Fundamental Solutions for 
m  -  Q x ( x ,  t ,  D )

7 The Operator —q ( x , to , D )  as Generator of a Feller 
Semigroup

Let us assume that q(x,t,£) satisfies the conditions of Theorem 6.27 and fix 
t = to > 0. In this case, It follows from conditions in [15] , see also [11], that —q(x,to,D) 
extends to a generator of a Feller semigroup. Note that in the following we let —q(x, to, D) 
act only on functions depending on x. We will summarize the arguments leading to the 
above mentioned result.

Our aim is to use the Hille-Yosida-Ray theorem to get the Feller semigroup generated by 
—q(x, t0, D), to > 0 being fixed.

The three conditions of the Hille-Yosida-Ray Theorem are the following (compare The­
orem 4.26) :

(i) The domain of —q{x, t0, D) is dense in C^fR71) when considered as operator in C00(Wn);
(ii) — q(x, to, D) satisfies the positive maximum principle on its domain;

(iii) R(A + q(pc,to,D)) is dense in C00(Rn) .

As shown in [14] the operator —q(x,to,D) satisfies on Co°(Rn) the positive maximum 
principle. However, solving (A +  q(x,t0, D))u = f  for a dense set in C ^ R 71) such that 
u G CrQ°(Mn) is hard to attack. In view of Theorem 6.27 we want to use as domain for 
—q(x,to,D) same space H ^,s+2(M.n) with s such that Rn) C C ^ R 71). This however 
requires us to show that —q(x,to,D) satisfies the positive maximum principle also on this 
larger domain. Here we just quote the corresponding results from [15] or [11] which we can 
apply to -q{x,to,D).

Theorem  7.1. Let D(A) C ( ^ (R ^ R )  and suppose that A  : D(A) —» Coo(Rn) is a linear 
operator. In addition assume that Cq°(R71) C D(A) is an operator core of A  in the sense 
that to every u G D(A) there exists a sequence (ipk)k£H,<Pk £ such that

lim ||<pk -  itHoo =  lim \\A<pk -  Au\\oo = 0.
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/M l  C o °  satisfies the positive maximum principle on Cqd(W1), then it satisfies the positive 
maximum principle also on D(A).

Now that let us come back to equation

qx(x , t0, D)u(x , •) =  q(x, t0, D)u(x , •) +  Xu(x, •) =  /  (7.1)

For solving this we will not use the positive maximum principle, hence we may consider
complex-valued functions, i.e. we may work in spaces of complex-valued functions.

Let us suppose that we may extend qx(x,to,D) to some space i /^ ,sl(Rn) where ^  is a 
fixed real-valued continuous negative definite function.

In addition, suppose that xp satisfies

m  > co icr (7-2)

for some c0 > 0, r0 > 0 and all £.
71

Then it follows from the Sobolev embedding result that for s > —
r0

H ^ 3{Rn) ^  Coo(Mn) (7.3)

and

Ĥ Hoo ^  Cs,ro,n ||^||ip,s (7*4)

holds.

Thus assuming (7.2), i.e. xp(£) > Co|£|r° and having in mind some properties of the 
operators considered in Part IV , we may consider operators qx(x,to,D) for to > 0 
fixed on D(q(x,t0, D)) =  H ^,3+2(Rn)

qx{x, t0, D) : H ^ s+2(Rn) H ^ s{Rn), (7.5)

and

||qx(x, t0, D)u(x, -)lks < clluH^ + 2  (7.6)

Since now we have if^ ,s+2(Rn) C H ^,3(Rn) C C ^ R "), it follows that qx(x, to,D), i.e. 
—qx(x,to, D ) with domain H ^,3+2(Rn) is a densely defined operator on C ^ R ”).
Moreover by Theorem 7.1 , the operator —qx(x,to,D) satisfies on H ^,s+2(Rn) also the 
positive maximum principle.

Thus by now,we have reduced an application of the Hille-Yosida-Ray Theorem to 
solving the equation qx(x,to,D)u(x,-) = / ,  in the space iif^,s+2(Rn) for (all) /  E 
H+’8( Rn)
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We may now work in the scale of Hilbert space H ^,s(Rn) and may consider first vari­
ational solution.

Suppose that for some A > 0 there exists for all /  G L2(Rn), a variational solution
u G Rn) to (7.1) , i.e. we may extend the sesquilinear form

Bx(t0, u, <p) := (q(x, t0, D)u(x , •), <p(x, -))o +  A(u(x, •), ip(x, -))o (7.7)

to H ^,1(Mn) and that for any /  G L2(Rn) there exists u G such that

Bx{t0,u,(p) = (<pj) o (7.8)

holds for all ip G // ’̂ ,1(En).
Thus in the scale H ^,s(M.n): we need to prove that /  G i /^ ,s(Rn) always implies for a 
variational solution u G / / ^ ( R 71) that u G H ^,3+2(Rn).

We will consider the operator handled in Part IV . Let ip : 
negative definite function satisfying

be a fixed continuous

^ ( o  > coier°

for some Co > 0 , r0 > 0 and all |£| > 1.

Further recall the definition of Cn,k,lm,n and c^ given in (6.5)- (6.7). 

We want to apply Theorem 6.27 with s2 such that

(7.9)

H ^ ‘(Un) -» CoofR")

holds.
n

Thus, we have to take s > —, say
ro

s :=
n
r0

+  1.

A ssum ption 7.2. We assume that the function q : Rn x 
negative symbol having the decomposition

q(x, t, 0  =  qi (t, 0  +  q2(x, t, f )

x

(7.10)

C is a continuous

(7.11)

and fix t > 0 with ip as in (7.9), the following conditions are assumed: A.I. The function q\ 
is assumed to be continuous and negative definite and to satisfy with 70, 7i > 0

7o^(f) < R£fc(t,0 < 7i^(f), f ° r  al1 I f  I >  1 

and |Img!(t, ^)| < 70Regi(£,£), for all £ G Rn.

(7.12)

70



A.2.mQ Set mo = s + n + 2 = — +  n +  3, note s > 1. We assume that x » q2(x,t,£)
l ro\

belongs to Cm°(Mn) /or all ( 6 l n and we have the estimate

I3?02OM,OI ^  ^ W ( i  +  ^K)) (7.13)

/or all a  G Nq, |o;| < m0 with function (pa G L1(En).

^4.5.mo. VFzf/i k2 from (6.54) a n d c n ^ ^ ^  from (6.27), we require

( - )

Yo£e that A.S.mQ. implies that (6.35) Ao/ds with 5o =  ^70 and (6.57) holds with Si = ^ 70,
too.

Theorem  7.3. Suppose that Assumption 7.2 holds with s = 
to > 0 fixed, extends to a generator of a Feller semigroup.

r 0 + 1. Then —q(x,t0,D),

Proof. Consider the operator (A, D(A)) on C00(MTl) with domain D(A) = H ^,s+2(M.n; ) and 
A = —q(x, t0, D). It follow by Proposition 6.6 and Theorem 6.11 that Au  G H ^,s(Mn) if u G 
j0(A), and therefore Au G Coo(En) a dense domain. Moreover, (—q(x, t0, D), H ^,s+2(Rn)) 
satisfies the positive maximum principle.

Further we may apply Theorem 6.27, thus for A > Ao, Ao taken from (6.43), we find for 
every /  G i /^ ’s(Mn) a unique u G i /^ ’s+2(Rn) satisfying

(A -  A)u(x, •) =  -q \(x ,  t0, D)u(x, •) =  /

The theorem follows now by the Hille-Yosida-Ray Theorem.

□
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8 Fundam ental Solution for — q \ ( x , t , D ).

In Part VI - Section 7 , we focus on pseudo-differential operators with time dependent 
negative definite symbols and finally constructing Feller semigroups by extending the oper­
ator —q(x, t0, D) to a generator of such a semigroup. The next step in this part is to use our 
estimates in Part VI - Section 7 in order to prove that —q\(x,t0,D), X is sufficiently large 
and —q\{x, to, D) = A — X = —q(x, to, D) — X, extends to a generator of an L2-sub-Markovian 
semigroup. Then applying Theorem 5.15, 5.16 and the results of Part IV , we may try to 
construct a fundamental solution in a L2-context to the following parabolic problem:

du(x i}
—  h q(x, t, D)u(x, t) =  0 and u(x, 0) =  f(x ).  (8.1)

We will start by introducing the definitions and theorems of sub-Markovian semigroups on 
L ^R 71) which we collect from [14] . By definition, see Definition 4.6, a strongly continuous 
contraction semigroup {Tt)t>o on Lp(Mn) is called sub-Markovian if for all u G such
that 0 < u < 1 almost everywhere it follows that 0 < Ttu < 1 almost everywhere. In general 
we give the following definition:

D efinition 8.1. A. A linear bounded operator S  : / / (R 71) —► / /(R 71), 1 < p < oo, is called 
sub-M arkovian, whenever

0 < u < 1 a.e. implies 0 < Su < 1 a.e. (8.2)

B. A linear , bounded operator S  : I f iW 1) —» /^(R 71), a < p < oo, is called positiv ity  
preserving, if

0 < u a.e. implies 0 < Su a.e. (8.3)

R em ark  8.2. A strongly continuous contraction semigroup (Tt)t>o on L ^R 71) is sub-Markovian 
when each of the operators Tt, t > 0, is sub-Markovian. Moreover, we call a strongly contin­
uous contraction semigroup (Tt)t>0 on Z/(Rn) positivity preserving if each of the operators 
Tt, t > 0 is positivity preserving.

Lem m a 8.3. Let S  : D}(R71) —> /^(R 71) be a sub-Markovian operator. Then S  is positivity 
preserving.

Corollary 8.4. Any sub-Markovian semigroup on L ^R 71) is also a positivity preserving 
semigroup on L ^R 71).
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Let {Tt)t>o be a sub-Markovian semigroup on Z/(En) and consider its resolvent (R\)x>o, 
i.e., the family of operators

poo
R\u  = / e~xtTtu dt . (8.4)

Jo

Suppose that 0 < u < 1 a.e. The sub-Markovian character of Tt gives

0 < R \u  < / e~xt dt < — , (8.5)
Jo A

or

0 < u < 1 a.e. implies 0 < AR\u  < 1 a.e. (8.6)

Moreover, (8.4) implies

f°° 1
\\R\u\\Lp < J  e~xt\\Ttu\\LV dt < - | |u | |LP ,

i.e. XR\ is a contraction on Z/(Rn).

D efinition 8.5. A resolvent (R\)\>o on .//(R*1) corresponding to a strongly continuous con­
traction semigroup {Tt)t>0 on L ^R ”) is called a sub-Markovian resolvent whenever (8.6) 
holds. It is called positivity preserving whenever R \ is for all A > 0 a positivity preserving 
operator.

R em ark  8.6. The resolvent of a sub-Markovian semigroup is sub-Markovian and that of a 
positivity preserving semigroup is positivity preserving too, which follows immediately from 
(8.4).

Lem m a 8.7. A strongly continuous contraction semigroup (Tt)t>o on Z/(Rn) is sub-Markovian 
if and only if its resolvent is sub-Markovian, and {Tt)t>o is positivity preserving if and only 
if its resolvent is positivity preserving.

Lem m a 8.8. Let (Tt)t>o be a sub-Markovian semigroup on i / (R n), 1 < p < oo, with 
generator (A, D(A)). Then for all u £ D(A) C / / (R 71) we have

f  (Au)((u — l )+)p_1 dx =  lim - f  (Ttu — u)((u — l )+)p_1 dx < 0. (8.7)
Jrn t—l t J]fcn

D efinition 8.9. A closed, densely defined linear operator A  : D(A) —> i / (R n), 1 < p < oo, 
D(A) C i / ( R n), is called a D irichlet operator if for all u £ D(A) the relation (8.7) holds.

73



R em ark  8.10. The notation of a Dirichlet operator was introduced by N.Bouleau and 
F.Hirsch in [3] for self-adjoint operators on L2(Rn).

P roposition  8.11. Suppose that a Dirchlet operator (A ,D (A )) on L ^R 71) with 1 < p < oo, 
generates a strongly continuous contraction semigroup {Tt)t>o on L ^R 71) with corresponding 
resolvent (R\)x>o■ Then {Tt)t>o and (R\)\ > 0 are sub-Markovian.

Theorem  8.12. Let A be a Dirichlet operator on Rn), 1 < p < oo, with the property 
that R(Xid — A) = Z/(Rn) for some A > 0. Then A generates a sub-Markovian semigroup 
on Lp(Rn).

Theorem  8.13. Let (A,D(A)) be a densely defined operator on LFiW1), 1 < p < oo, such 
that (8.7) holds for all u G D(A) and assume that for some X > 0 we have R(Xid — A) = 
D}(Rn). Then A is closable and its closure generates a sub-Markovian semigroup on Lp(Rn).

We want to investigate the relation between generators of Feller semigroups and gener­
ators of sub-Markovian semigroups. For this we note first that whenever (t/°°^)*>0, namely 
the semigroups on C ^ R "), is a Feller semigroup, then for u G C00(Mn) p| Z/^R71) such that 
0 < u(x) < 1 it follows that 0 < T}°°^u(x ) < 1 for all x G R71.

Theorem  8.14. Let : D ( A —> (^^(R71), D ( A ^  C Coo(Rn), be the generator of 
a Feller semigroup (T}°° )̂t>0. Moreover, suppose that U C D ( A ^ )  is a dense subspace 
of Lp(Rn), 1 < p < oo. I f  A ^ \ u  extends to a generator of a strongly continuous 
contraction semigroup ( T ^  )t>o on /^ (R 71) for which V  := (A — A ^ )  1U is an operator 
core, then (A^P\ D ( A ^ ) )  is a Dirichlet operator on Lp(Mn) and the semigroup {T^ ) t>0 is 
sub-Markovian.

The proof is given in [14].

R em ark 8.15. A. Theorem 8.14 says in particular that operators defined on the space 
Co°(Rn) satisfying the positive maximum principle are also candidates for pre-generators 
of sub-Markovian semigroups. B. In case that p = 2, Theorem 8.14 was proved in [12], the 
general case in [13].

Now let us come back to —q\(x,t0,D). The main idea is to prove that —q\(x,t0,D) 
extends to a generator of an L2-contraction semigroup and then to apply Theorem 8.14.

Theorem  8.16. Under the assumption Theorem 6.25 and (6.35) with s = 2 the operator 
—q\(x,t0,D) defined on Rn) is for X > Ao, Ao from (6.52), a generator of a strongly 
continuous contraction semigroup on L2(Rn).
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Proof. We will apply the Hille-Yosida theorem, Theorem 6.23. From Part IV we know 
that (—qx(x, to, D ), i /^ ,2(R2)) is a densely defined closed operator on L2(Rn) and for A > Ao 
the equation qx(x, t0, D)u{x, •) =  /  is uniquely solvable for all /  G L2(Mn) with a solution 
u G H ^,2(Rn) by Theorem 6.26. It remains to prove that — qx(x, to, D), A > Ao is dissipative. 
But for all ip G Co°(Rn) we have

{qx(x ,t0,D)(p, <p)Q > 0

which extends to all u G H ^,2{\Rn). Now the dissipativity of —qx(x,to,D), A > Ao, follows 
from

\\TU + qx{x,t0,D)u\\l = r 2\\u\\l +  \\qx(x ,t0,D)\\l + 2r{u,qx(x ,t0, D)u)0 

and the theorem is proved.

□
C orollary 8.17. Under the assumption of Theorem 8.16 and Assumption 7.2 with t0 = 
[^] +  3 the operator (—qx(x,to ,D ),H ^,2(M.n)) is for all A > A0 a Dirichlet operator and 
generates an L2-sub-Markovian semigroup.

Proof. We only have to apply Theorem 8.14 for p =  2 with U =  iZ^,2(En) C D ( A ^ )  and 
to note that [qx(x, t0, Z?)]-1 (J^-*°+2(lR2)) =  H ^ to+4{Rn).

□
In the remaining of this section let us come back to the parabolic equation (8.1).

1. By Definition 4.30, 4.34 , Proposition 4.33 and Theorem 4.34, we can say that (T*)*>0 
is analytic on L2(Rn).

2. From Part V , we find the t-dependent sesquilinear form Bx(t; u, v) satisfies (5.29) and 
(5.30) .

3. — qx{x, to, D) = A —A =  — q(x, to, D) — A extends to a generator of an L2-sub-Markovian 
semigroup.

Theorem  8.18. Suppose that all assumptions on qx(x,t,£) such that analogous inequalities 
to (5.29) and (5.30) hold. Add (5.31) as extra assumption ,i.e.

\Bx{t-,u,v)~ Bx( s ; u , v ) \ < K \ t - s \ a\\u\\\\v\\ t e [0,7], a G ( ^ , l ] .  (8.8)

Then there exists a fundamental solution U(t,s) to (8.1).
R em ark 8.19. I f  for q\ and q2 ,

ki(*,0 -9 i(s ,f) l  < ^ - s r ( l  + ^(0) (8-9)
and

\d^q2 (x, t , 0  -  d*q2{x, s ,£)\<  C\t -  s\a(pQ(x){l +  ^ (0 ) . (8.10)

Then extra assumption (8.8) holds, which is seen by look to the proof of Proposition 6.18 
and Proposition 6.20.
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