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Abstract

In this thesis, we construct the fundamental solutions of pseudo-differential operators
q(z,t, D) with time-dependent negative definite symbols ¢(z,t,€) which are discussed as
generators of Feller- and L2-sub-Markovian semigroups . The results are based on the Hille-
Yosida theorem, the standard results of analytic semigroups of operators and the fundamental
solutions of time-dependent parabolic equations.
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Part 1
Introduction & Notation

e Introduction

Pseudo-differential operators with negative definite symbols g(z,£) have since the last
ca. 20 years been investigated as generators of Feller- and L2-sub-Markovian semigroups,
hence they are also generators of Markov processes. Following first work of N.Jacob [9],[10]
and [11}, compare also the monograph [14]-[16], the most general results are due to W.Hoh
[6]-[8]. In [2] B.Bdittcher used a direct approach to construct a fundamental solution to
operators of type % —q(z, D),q(z, &) having a negative definite symbol. He extended in (3]
his considerations to some time dependent operators % — g(z,t; D). These operators are
related to symbols used by W.Hoh in [8], i.e. they allow a symbolic calculus and hence must
be smooth with respect to the co-variable £. We want also to mention the monograph [5]
by S. Eidelman et al. and the work of V. Kolokoltsov [17] and [18] where for more classical
symbols analogous results are discussed. Note that recently A. Potrykus in [21] and [22]
could improve the results obtained in [8] and [12], respectively.

In our approach we want to minimize in the time-dependent case regularity with respect to
¢ of the negative definite symbol g(z,t;£), in fact we assume no differentiability at all. For
this we carefully revise the estimates and results obtained in [11] where an approach by

O. Oleinik and E.Radkevic, see [19], was adopted for the time-independent case. We have
in mind more a case study, we do not aim to optimize conditions on ¢(z, t; £).

There are six parts in my thesis.

Part I  Introduction & Notation.

Part II  Fourier Analysis and Semigroups.

Part III One Parameter semigroups.

Part IV  Fundamental Solutions Of Time-Dependent Parabolic Equation.

Part V  Some Properties Of Pseudo-Differential Operators with Time Dependent Negative
Definite Symbols.

Part VI —q(z,to,D) as Generator Of A Feller Semigroup & Fundamental Solution For
8
5% — I (x L D )

Part II is an introduction to those definitions and theorems, we collect from [14], which
we have to use later on. We start with introducing the Fourier transform on the Schwartz
space S(R™) and the space of tempered distribution, S’(R™). Then we discuss the convolution
property of two functions such as

(u*v)"(€) = (2m)™?a() - 8(€) -

6



Starting with Section 3, we study the Fourier transform of bounded Borel measure, and show
that their Fourier transforms are positive definite functions by applying the fundamental
theorem, Bochner’s theorem. In the negative definite functions part, we show many lemmas
and examples. Most important is a Peetre inequality

1+ |9(8)]
—ar 20+ [w(E—n)) -
1+ [9(n)
In Part III, we will introduce the theory of one-parameter operator semigroups on
Banach spaces (X, || - ||x) and the standard results of analytic semigroups of operators. Our

aim is to study the theorems and properties of Feller and sub-Markovian semigroups. The
main results are the theorems around the Hille-Yosida theorem, Theorem 4.23 and Theorem
4.26.

In Part IV ,we will discuss the fundamental solutions of the time-dependent parabolic
equation :
du(t)

—dt—— + A(t)u(t) = f(t)’ 0<t<T.

u(0) = uo.

After constructing the fundamental solution U (¢, s) by applying many important assumptions
and inequalities, we finally arrive at the main results, Theorem 5.15 and Theorem 5.16,
showing that there exists a fundamental solution U(t,s) of the time-dependent parabolic
equation with certain conditions.

In Part V, we will study a large class of these pseudo-differential operators with co-
efficients depending on time which may for frozen time dependence extend to a generator
of a Feller semigroup or a sub-Markovian semigroup. Our special interest is proving esti-
mates for the operator ¢(z,t, D) in Sobolev spaces related to continuous negative definite
functions with time-dependent negative definite symbols, ¢(z,t,&), more precisely, in the
Hilbert space H¥*(R") . After decomposing the time dependent symbols into ¢;(t,£&) and
q2(z,8,€), i.e. q(z,t,€) = q(t, &) + q2(z, t, &), we discuss the assumptions and estimates of
the operator ¢;(t, D) and ¢y(z, t, D) separately. In the remaining of the part V, we introduce
the Friedrichs mollifier and discuss its properties . Then we focus on the main theorem,
Theorem 6.27, i.e. there exists a unique variational solution u(-,t) € H¥*2*2(R") to the
equation gy (z,t, D)u(z,t) = q(z,t, D)u(z,t) + Au(z,t) = f.

Part VI discusses in detail the construction of Feller and L2-sub-Markovian semigroups
with a pseudo-differential operator (with time-dependent negative definite symbols) as pre-
generator using the Hille-Yosida theorem, which we discuss in part III. After applying the

standard results of analytic semigroups of operators in part III and Part IV, we construct
the fundamental solution U(t, s) in a L2-context to the parabolic problem:

Ou(z,t)
ot

+ q(z,t, D)u(z,t) =0 and u(z,0) = f(z).
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

. N natural numbers

R real numbers

Ry ={z €R;z >0}

R™ euclidean vector space

C complex numbers

B(€?) Borel measurable function

By(2) bounded Borel measurable function
C(G) continuous functions

Co(G) continuous functions with compact support
Cw(G) continuous functions vanishing at infinity

Cy»(G) bounded continuous functions

C™(G) m-times continuously differentiable functions

C=(G) =Npen €™ (G)

HY*(R") = {u € §'(R"); |[ully,s < oo}

LP(Q, ) usual Lebesgue space over (€, A, p1)
M (©) bounded measures on 2

S(R™) Schwartz space of tempered functions
S'(R*) tempered distributions

CN((R") continuous negative definite functions
CP((R™) continuous positive definite functions
N((R™) negative definite functions

P((R™) positive definite functions

(X, - ||x) Banach space X with norm || - ||x

X — Y continuous embedding if X into ¥
(A,D(A)) linear operator with domain D(A)



26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

D(A) domain of an operator

R(A) range of an operator

I'(A) graph of an operator

p(A)  resolvent of an operator

(Rx)x>o0 resolvent of an operator

g(z,D) pseudo-differential operator with symbol g(z, &)
¥(D) pseudo-differential operator with symbol ¥(§)
(Ti)i>0 one parameter semigroup of operator
(Tt(°°))t20 semigroup on Co(R")

A generator of (T°)s0

(T{),5o  semigroup on I?(R"), 1 < p < 0o

A®  generator of (T;")es0

a A b= min(a,b)

aV b= maz(a,b)

0%u = 5?%

X4 characteristic function of the set A

Re f real part of a function

fog composition of functions

f*g convolution of functions (or distributions)
U1 * ug  convolution of the measures u; and po
supp v support of a function or distribution

supp p support of a measures y

(t)t>0  convolution semigroup of probabilities
|lul|x norm of u in the space of X

|lullo, (u,u)o norm and scalar product in L2(€2, p)
[ulloo = sup [u(z)| or ess sup [u(z)|

s norm 1in € Space !
ully, in th HY* (R



Part 11
Fourier Analysis and Semigroups

1 The Fourier Transform in S(R")

This chapter is devoted to introduce those theories which are necessary to explain why
certain pseudo-differential operators are generators of Feller and sub-Markovian semigroups.
We will study many definitions and theorems which we collect from [14]. We will start by
introducing the Fourier transform on the Schwartz space, and discuss its properties.

Definition 1.1. The Schwartz space S(R™) consists of all functions u € C®(R™) such
that for all my,ms € Ny

Pmsyma(t) = S0P (14 o)™/ 3 |u(@)]) < oo (1.1)

o) <m2
The family (Pm, ma)my,meen forms a family of separating seminorms.

Definition 1.2. Let u € S(R™). The Fourier transform of u is defined by

w(§) := (277)'"/2/ e "u(z)dz. (1.2)

Wi

Sometimes we will write Fy,¢(u)(§) or F(u)(§) for 4(§).

Definition 1.3. On S(R") we define the inverse Fourier transform by
(Fu)(m) = (2m) ™ [ emvuy)dy 13)
]Rﬂ

We also will use F, (u) for denoting (F~u)(y).

The following theorem summarizes some useful properties of the Fourier transform on

S(R™).

Theorem 1.4. The Fourier transform F is a linear bijective and continuous operator from
S(R™) into itself which has a continuous inverse given by (1.3).
Thus, on S(R™) we have Fo F~! = F~1o F = id.

Remark 1.5. Note that on S(R™) we have F* =id, or F~! = F3,
Theorem 1.6. For all u € S(R™),
lalleo < (27) 72 ]| 1 (1.4)

and
lullo = [|%lo (1.5)
hold.

10



Remark 1.7. From (1.5), we get immediately, for all u,v € S(R"),
(U, U)O = (ﬂ'v f))0 . (16)

Estimate (1.4) entails that we can extend the Fourier transform from S(R™) to a continu-
ous linear mapping from L1(R™) to Coo(R™), whereas (1.8) allows us to extend the Fourier

transform to an isometry on L?(R").
Thus, on L%(R"™) we have
lullez = [l (1.7)

and
(u,v)L2 = (4, 0)p2 - (1.8)

Furthermore, estimate (1.4) leads to the Lemmma of Riemann-Lebesgue:

Theorem 1.8. The Fourier transform is a continuous linear operator from L!'(R™) into
Cw(R™) and
lilloo < (27) 72 Jufjus (1.9)

holds for all u € L}(R™).

Definition 1.9. Let u,v € S(R"), their convolution is the function

z+— (u*v)(z) = »/l;" u(z — y)v(y)dy (1.10)

which is again an element in S(R™).

Definition 1.10. Let p; € M} (R™),1 < j < k, be measures. The image of
W ® ... Q uy under Ay is called the convolution of these measures and is denoted by

pr* ok = Ay @ ... @ p)- (1.11)
where Ag :R* x -+ x R* = R, (y,...,0%) — Ax(y?,...,¥") =y  + -+ 4~
Theorem 1.11. Let u,v € S(R™). Then we have
(u- ) (€) = (2m) (@ » 0)(€) (1.12)

and

(uxv) (€) = (2m)"a(€) - 9(€) - (1.13)

11



2 The Fourier Transform in S'(R")

In this section ,we will extend the Fourier transform from S(R™) to S’(R™) by duality.
On S'(R™), we will always consider the weak-x-topology in the following.

Definition 2.1. S'(R") is called the space of tempered distributions.
It consists of all distribution u € D'(R") having a continuous extension to S(R™),
i.e. S'(R*) ¢ D'(R™) , and D'(R™) is the space of distributions on R™.

Remark 2.2. The weakest topology on X* which makes all elements of X continuous, 1i.e.
for every u € X a continuous linear functional on X* is given by u(z*) = z*(u), is called
the weak-x-topology on X*.
For every neighbourhood U of 0 € S'(R"), there exists a neighbourhood V of 0 € S’(R") such
that

V={’U,€S,(Rn)l l< uaé] >|<1 f0r¢1v"' ,¢k€S(Rn)}

Moreover, a sequence (uy)yen, uy, € S'(R™) , converges in the weak-x-topology to u € S'(R")
of and only if
<U,p> — <u,¢>, foral ¢eSR").

Definition 2.3. Let u € S'(R™). The Fourier transform i of u is defined by
<8 ¢>:=<u¢> foral ¢€ S(R™). (2.1)
As usual, we use also the notation Fu for u.

Remark 2.4. For g € L}(R") C S'(R"), and ¢ € S(R™), we find
<§¢>=<g¢>= /R 9(2)d(x)dz = /R 9(z)¢(z)dz,
which shows that § in the sense of S'(R™) coincides with § as it is defined on L}(R™).

Furthermore, since convergence in L2(R") implies weak-*-convergence in S'(R"™), we may
deduce that the Fourier transform as defined on S’(R") also extends the Fourier transform
as defined on L%(R").

Theorem 2.5. The Fourier transform is a continuous linear operator from S'(R™) into itself
which is bijective and has a continuous inverse F~1.

Theorem 2.6. For u € S'(R") and ¢ € S(R"), the convolution ux* ¢ is defined and we have
(ux ) = 2r)"%¢ 0 (2.2)

and )
(¢-uw) "= (2n) " uxg . (2.3)

12



3 Positive Definite Functions and Negative Definite
Functions

In this section, we want to study the Fourier transform of Borel measures yu € M (R").

Since M (R") is a subset of S’(R™), the Fourier transform j of p is well defined and for
¢ € S(R"), we have

< f ¢ >=< p, ¢ >= /R ) B(&)u(de). (3.1)

From the definition of ¢, we get, using Fubini’s theorem,

<io> = @0 [ [ coa)dau(ag)

= o [ ( /. e-”fu(de)) H(a)ds
= (en™ [ eoua).0),

i(e) = m)y 2 [ = u(as) (32

hence we have

Definition 3.1. A function u : R® — C is called positive definite if for any choice of
k € N and vectors €1, , &% € R" the matriz (u(&? — €Y));1=12,. x is positive Hermitian, i.e.
for all Ay, --- , A\ € C, we have

k

> uE@ -\ o0 (3.3)

=1

Theorem 3.2. Let u € My (R™). Then {i is a positive definite function.

Proof. For k € Nand ¢!,--- &% € R™ we find with A;,--+ , A\ €C

k
Z NAE ~€) = (2m)™ / ZMze"“"f” (dz)

Jii=1

= (2m)™? / (ZA et x) : ((E A,e—ié'-w)) p(dz)
= eme | 3 dyeie

j=1

u(dx) >0.

13



Of fundamental importance is Bochner’s theorem:

Theorem 3.3. A function u: R® — C is the Fourier transform of a measure p € My (R")
with total mass ||u||, if and only if the following conditions are fulfilled

1. u is continuous,

2. w(0) = (0) = (2m)72||ull;

3. u s positive definite.

Definition 3.4. A family (u:)i>0 of bounded Borel measures on R" is called a
convolution semigroup on R", if the following conditions are fulfilled

w(R™) <1 forallt >0 (3.4)
[hs * e = iy, S, 6 > 0 and po = €, (3:5)
s — €o vaguely ast — 0 (3.6)

(Note that for a € 2 the Dirac measure at a is denoted by &q. In our case, 2 = R™ and
a = 0, we write ¢ instead of ¢,.)

Recall 3.5. Let (1,)ven be a sequence in M (R™) and po € M (R™). We say that (4, )ven
converges vaguely to o, if for all u € Co(R™;R) we have

lim u(z)py (dz) =/ u(z)uo (dz). (3.7)
R" R»

V—00

Theorem 3.6. Suppose that (u,)ven, 1y € My (R™), converges vaguely to p € M (R™) and
that lim, o 1, (R™) = p(R™). Then (u,)ven converges weakly to p.

Recall 3.7. Let (u,)ven be a sequence in My (R™) and puo € M} (R™). We say that (i)ven
converges weakly to p, if (3.7) holds for all u € Cy(R™; R).

Lemma 3.8. Let (u)i>0 be a convolution semigroup on R™. Then the mapping t — p
is continuous at t = 0 with respect to the Bernoulli topology, i.e. the topology of weak
convergence of measures.

Proof. For ¢ € Cp(R),0 < ¢ <1 and ¢(0) =1, we find by (3.4) and (3.6)
1= 9(0) =l [ ddue < liint po(RY) < imsup (R < 1,
hence
lim 4, (R™) = 1 = &o(R")
and by Theorem 3.6 the lemma is proved. O

14



Lemma 3.9. For any convolution semigroup (1:)1>0 on R™ the mapping t — p, is continuous
from [0,00) into Mj (R™) equipped with the Bernoulli topology.

Proof. For t,t; > 0 and £ € R™ we get

|6(€) = Ao (O] < (2m) 2| faeg ()| le—t01(€) — 27) ™| < lfip-01 () — (2m) ™7,

but by Lemma 3.8 we conclude that fij_s((§) — (27)~"/2 uniformly on compact sets as
t — tg. Then
lim g1y = g, (38)

t—tg

in the Bernoulli topology.
O

Let (ut):>0 be a convolution semigroup on R". It follows that the family (/)i>0 of
the Fourier transforms of u;,t > 0, consists of continuous positive definite functions on
R" satisfying |@:(€¢)] < (27)~™2. Our aim is to show the existence of a unique function
¥ : R® — C such that fi,(¢) := (27) /2~ holds.

Theorem 3.10. Let (u;):>0 be a convolution semigroup on R™. Then there exists a function
¥ : R* — C such that
Qu(€) = (2m) 27O (3.9)

holds for all £ € R™ and t > 0.

Proof. For £ € R™ fixed we consider the mapping ¢ : [0,00) — C defined by

Be(t) == (2m)204(€), >0, (3.10)
By Lemma 3.9 this mapping is continuous and the convolution theorem gives
be(s +1) = pe(t)ge(s) (3.11)
and
%i_rg Pe(t) = 1. (3.12)

It follows the existence of a unique complex number ¥(£) such that
de(t) = e O ¢ >0. (3.13)
Note that the mapping £ — e~*¥¢) must be positive definite and (0) > 0. O
Definition 3.11. A function i : R™ — C is called negative definite if
¥(0) >0 (3.14)

and
€ — e @ s positive definite for t > 0. (3.15)

15



Next we will introduce the classes N(R™)and CN(R") to study negative definite functions
more closely.

Definition 3.12. A function ¢ : R® — C belongs to the class N(R™) if for any choice of
k € N and vectors £, ...,6% € R" the matriz

(W(&) + (&) — (& - E)ja=1,..k (3.16)

is positive Hermitian. Further we set
CN(R"™) := N(R™) n C(R™).

For ¢ € N(R") we have obviously
¥(0) 2 0, (3.17)

and since for £ € R™ the matriz

( Y(E) +(€) — ¥(0)  »(€) +$(0) — ¥(¢) ) (3.18)
¥(0) +%(€) —¥(=€) ¥(0) +%(0) - %(0)

is positive Hermitian we find
(&) +%(0) — (&) = %(0) + (&) — ¥(-9),
i.e.
Y(€) =P(=€) or P(&) =4(8), (3.19)

where we used the notation 4(§) = u(—¢). Furthermore the determinant of the matriz (3.18)
must be non-negative, implying that

Re ¥(&) > ¥(0) for all € €R™ (3.20)

Lemma 3.13. A. The set N(R") is a convex cone which is closed under pointwise con-
vergence. B. For ¢ € N(R") it follows that ¢ and Re v belong to N(R"™) too. C. Any
non-negative constant is an element of N(R™). D. For ¢ € N(R") and A > 0 the function
& — P(AE) belongs to N(R"). E. The set CN(R") is a conver cone which is closed with
respect to uniform convergence on compact sets. F. For; € N(R™),j = 1,2, it follows that

Y(&,m) = ¥1(€) + ¥2(n) defines an element in N(R™*"2),

Lemma 3.14. A function ¢ : R® — C is an element in N(R™) if and only if the following
three conditions are fulfilled

¥(0) > 0; (3.21)
» =1 (3.22)
and for any k € N and any choice of vectors £, ...,&* € R™ and complex numbers cy, ..., ck
k k
> " ¢; =0 implies that Y _ (& — £)e;@ < 0. (3.23)
j=1 =1

16



Corollary 3.15. Let u : R® — C be a positive definite function. Then the function
& — u(0) — u(€) is in N(R™).

Theorem 3.16. A function i : R* — C is an element of N(R") if and only if it is negative
definite.

Remark 3.17. From now on we will denote the set of all negative definite functions by
N(R"), and CN(R") is the set of all continuous negative functions.

Theorem 3.18. (Schoenberg’s theorem) For any convolution semigroup (iu)i>0 on R™ there
exists a uniquely determined continuous negative definite function v : R® — C such that

f(€) = (21) "2~ ¢ >0 and £ € R™, (3.24)

holds. Conversely, given a continuous negative definite function ¥ : R* — C, then there
exists a unique convolution semigroup (u:)i>0 on R™ such that (3.22) holds.

Corollary 3.19. A function i : R® — C is continuous and negative definite if and only if
$(0) >0 (3.25)

and
£ e O >0 is continuous and positive definite (3.26)

Lemma 3.20. For any ¢ € N(R") we have

VIBE+mI < VIl + vVIvm)l,

(3.27)

VIV = VIvm)| < VIvE -l
and

[%(€) + ¥(n) — Y(€ +n)| < 2(Re ¥(€))"/* - (Re y(n))"/2.

Lemma 3.21. For any locally bounded negative definite function ¢ € N(R™) there exists a
constant cy, > 0 such that for all £ € R™

[W(E)] < cy(1+ [E%). (3.28)
Lemma 3.22. (Peetre’s inequality) Let ¢ : R® — C be a negative definite function. Then
we have 1+ 1 e)|
— < 2(1 4 — 3.29

17



Proof. For n,&’ € R™, we find

2(1+(m) (1 + BN

2+ 2[p(n)] + 20 ()] + 2| ()]

1+ (] + [ + (] + [$(E)) + (1 + 2/ ()% (£)])
1+ ()] + [9(&)] + 2V v (¥ (&)

1+ (V@ + VIREN)

where we used the estimate 24/|bibg| < |b1| + |b2].
Using the subadditivity of n — 1/|¢¥(n)], it follows that

2(1+ [p(m))) (1+ [BE)) > (1+ VIBWREN ) =1+ +¢)

Taking ¢’ = £ — 7, we finally get

v

B 1+ (91
200+ W€ =) = T

O

Example 3.23. Any non-negative symmetric quadratic form q : R*xR"™ — R is a continuous
negative definite function. Note , that we do not assume q to have full rank. A convolution
semigroup with ¢ as corresponding continuous negative definite function is called a Gaussian
Semigroup.

Example 3.24. Let l : R* — R be a linear functional and define ¢(€) := il(€). Then the
function ¢ is a continuous negative definite function. Moreover, whenever ¥(§) = il(§),
[:R™ - R, is a continuous negative definite function, then | must be linear.

Combining the last two examples and Lemma 3.13 we find that for any ¢ > 0,h € R*
and symmetric non-negative definite quadratic form ¢ the function

E—ql)+ih-E+c (3.30)

is an element of CN(R"). For the corresponding convolution semigroup (u:):>0 on R™ we
find

i (§) = (27r)""/ 2-14(€) p—ith-§ o —tc

Denoting by (11]):>0, (43)t>0 and (u$)s>o the convolution semigroup associated with g, h and
¢ , respectively, we find

(&) = (2m)" i (€)iag ()i (€),
and the convolution theorem yields

fe = pf % g * g
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Example 3.25. Since for h € R" the function & — e~*¢ is positive definite and e® = 1, it
follows from Corollary 8.15 that £ — (1 — e~™%) is a continuous negative definite function
implying that £ — (1 —cos(h-&)) is an element in CN(R™) too. Forh € R,h >0, andt >0
let us consider on R the measures

= Z e'tﬁehk. (3.31)
k=0
Taking the Fourier transform of u; we get

X [e ] ~ tkA (e 9] ~ tk ~ i
a(€) = Y eimén =) e 5(2m) " (en, e )
k=0 ’ k=0 ’

_ (27r)—l/26—t(l—e'“‘§) ,

implying that £ — 1 — e~ is a continuous negative definite function and that (u;); > 0 is
a convolution semigroup on R, called the Poisson semigroup.

Next we will focus on the Lévy-Khinchin formula which states that every continuous
negative definite function 1 : R® — C has the representation:

. . 1 2
Y(€) =c+i(d-&) +q(é) + /Rn\{o} (1 —eT - 1? |af|2) Tmllfl

u(dz) (3.32)

with a non-negative constant ¢ > 0, a vector d € R", a symmetric positive semidefinite
quadratic form ¢, and a finite Borel measure g on R"\{0}. The function ¢ is uniquely
determined by (c,d, g, u) and any such quadruple defines via (3.32) a continuous negative
definite function. Note that by Example 3.24 and Example 3.25 for every € R™ the function

£ (1 —e = lii |§|2) (3.33)

is negative definite, and taking into (3.32),the Lévy-Khinchin formula has the interpretation
that every continuous negative definite function is a superposition of elementary continuous
negative definite functions.

Definition 3.26. Let u be the measure in the Lévy-Khinchin presentation of the continuous
negative definite function v : R® — C. The measure

v(dz) = 1;:5 ® () (3.34)

defines on B(R™\{0}) is called the Lévy measure associated with 1.

19



Remark 3.27. Note that the Lévy measure satisfies fRn\{o}(IIP A l)v(dz) < oo.

A. Let ¢ : R® — C be a continuous negative definite function, then we have the following
representation

() =c+i(d-€) +q(§) + /R o (1 - - lij‘f ifp)v(dw) (3:35)

where v integrates T — (|z|> A 1).
B. Let ¢ : R® — R be a real-valued continuous negative definite function and denote by v its
Lévy measure. It follows that

|z
v(dz) < oo, (3.36)
/mn\{o} 1+ |x|? (

and ¢ has the representation

w(¢>=c+q(e>+/

(1 —cos(z - {)) v(dzx). (3.37)
R~\{0}

The following Table 3.28 is taken from the monograph [1] of Chr. Berg and G. Forst. It
summaries some of the examples of continuous negative definite functions and the associated
convolution semigroups.

Table 3.28

convolution semigroup negative definite function
Degenerate semigroup : u; = e %gy, a >0 a
Translation semigroup with speed b € R : py; = e b€
Poisson semigroup with jumps of size s > 0: p, = S o0 e tbey [ 1 —e ¢
One-sided stable semigroup of order a € [0, 1]: u; = o (i6)*
T semigroup : p:(dz) = X(0,00) (%) 2" e A (da) log(1 + &%) + iarctan &
Brownian semigroup : p;(dz) = mef‘% X (dx) &2
Symmetric stable semigroup of order a € (0,2) : pe = p/? |€]*
Cauchy semigroup: p,(dz) = p;’*(dz) = £(* + £2)~121)(dx) €]
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Part III
One Parameter Semigroup

4 One Parameter semigroup

We will introduce the theory of one-parameter operator semigroups on Banach spaces
(X,]|-llx)- Our aim is to study Feller semigroups and sub-Markovian semigroups which play
an important role in Part V.

(Note that our standard reference in this section is [14].)

Definition 4.1. A. A one parameter family (T;)i>0 of bounded linear operators Ty : X — X
is called a (one parameter) semigroup of operators, if Ty = id and T4+ = T o Ty holds
for all s,t > 0.

B. We call (T)t>0 strongly continuous if
lim [Ty — ullx = 0 (4.1)

forallu € X.

C. The semigroup (Ti)i>o is called a contraction semigroup, if for allt > 0
1T < 1 (4.2)

holds, i.e. if each of the operators Ty is a contraction. As usual, |T;|| denotes the operator
norm || Ti|lx x -

Definition 4.2. Let (T3);>0 be a strongly continuous contraction semigroup on (Coo(R™, R), ||-
lloo) which is positivity preserving, i.e. u > 0 implies Tyu > 0 for allt > 0. Then (T})t>0
is called a Feller semigroup.

Remark 4.3. A linear bounded operator S : LP(R™) — LP(R"™),1 < p < oo is called positive
preserving if 0 < u almost everywhere implies 0 < Su almost everywhere.

Example 4.4. Let A: X — X be a bounded linear operator and define

o 1
Tou:=e =) gt A% >0, (4.3)
k=0
First we find fort > 0 that
and as in the finite dimensional case we find now 1 1Ak = etlAl
H ” “ =€ )

e(SH)A = 34gt4 gnd 04 = id.

and as in the finite dimensional case we find now

e(s+t)A — CSAetA and eOA = id.
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Furthermore, we have the uniform continuity of the family (T});>0 as t tends to zero, i.e.
lim ||e** — id|| = 0,
t—0
implying that lim;_ ||le*Au—ul||x = 0. Hence, (e'4);> is a strongly continuous one parameter
semigroup on (X, | - ||x)-

Example 4.5. Let (u:)i>0 be a convolution semigroup on R™. On the Banach space (Coo(R™), ||-
lloo) we define the operator

Tou(z) = / u(z — y)puldy) (4.4)

We claim that (Ti)i>0 is a strongly continuous contraction semigroup. First, since u €
Cw(R™) is bounded we find

IT(2)] < / (@ — 1) le(dy) < ulloos (RY).
But u(R™) < 1. which implies

sup |Tu(s)| < ||ullo, (4.5)
TER?

i.e. Ty is defined on Coo(R™) and Tiu is a bounded function. But now it is easy to see that
Tiu € Coo(R™). In fact, for u € S(R"™) we find using the convolution theorem and Theorem
3.17 that

(Tew) "(€) = (2n)**a(&)a(€) = a(€)e™®, (4.6)

where ¢ : R*® — C is a continuous negative definite function. But (4.6) implies that (Tyu) " €
LY(R™) for u € S(R™), and the Riemann-Lebesque lemma, Theorem 1.8, implies T,u €
Co(R™). Thus, by (4.4) we find using the density of S(R™) in Co(R™) that T; is a contraction
on Co(R™). From the definition of the convolution of measures, Definition 1.9, we find

/R,. { / uz—z— y)#t(dy)}us(dz)

- / u(z ~ 2) (e * pe)(d2)

- / ulz = 2)pre(d2)
= Tiysu(z).

T, o Tyu(z)

Since po = €9, we have immediately Ty = id. Finally, we prove that (T3)i>o is strongly
continuous for t — 0. For this note that any function in Ce(R™) is uniformly continuous.
Hence, for € > 0 there exists 6 > 0 such that

|u(z) —u(z —y)| <e for |y| < 4.
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The continuity of (pt)e>0 in the Bernoulli topology implies that
lim 1 (By(0)) = eo(B(0)) = 1,

which gives
wm(B5(0)) <eand 1 — w(R™) <e (4.7)

for 0 <t <ty. Now we find

[Tru(z) —u(z)] <

.. {46 =) = o) + o)1 - )

IA

/ [uz — v) — u(@)|e(dy) + / lu(z — 3) — u(@) e(dy) + [ulloo (1 — e (R™)
B;(0) §(0)

B;

< e+ 2eulloo + ellulloo = £(1 + 3||ullo),

implying that (T;)i>o0 is strongly continuous as t — 0. Note that Ty, t > 0, is positivity
preserving, i.e. u > 0 yields Tiu > 0 .

Definition 4.6. A. Let (T})i>0 be a strongly continuous contraction semigroup on LP(R™),
1 <p<oo. We call (T)i>0 a sub-Markovian semigroup on LP(R"), 1 < p < oo, if
for u € LP(R™) such that 0 < u < 1 almost everywhere if follows that 0 < Tyu < 1 almost
everywhere.

B. Let (T;)i>0 be a strongly continuous contraction semigroup on LP(R™),1 < p < oo
or on Coo(R™). We call (Tt)i>0 symmetric if for all u,v € LP(R) N L*(R™), or u,v €
Coo(R) N L%(R™), respectively, we have

(Tyu,v)o = (u, Tiv)o - (4.8)

Lemma 4.7. Let (T})>0 be a strongly continuous semigroup on (X, || ||x). Then there exist
constants w > 0 and M, > 1 such that

T < Mye™ (4.9)
where once again || - || denotes the operator norm || - || x,x.

Definition 4.8. Let (T3):>0 be a strongly continuous semigroup. The type of (Tt)i>o is
defined by

Wwp = wy <(Tt)t20) := inf {w € R‘”Tt” < Mwewt}’

where ||T;|| < M,e“* is to hold for some M, > 1 and all t > 0.

Corollary 4.9. Let (T;)i>0 be a strongly continuous semigroup on (X, || - ||x). For any
u € X, the mapping t — Tyu is continuous from [0,00) to X.
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Proof. For u € X,t > 0 and h > 0, we find using Example 4.5 that
I Tesnu — Toullx = | To(Thu — w)llx < Me"™ || Thu — ullx
and for 0 < h <t it follow that
I Te-nu = Tullx = |Ti-n(Thu — u)||x < Me**||Thu — ullx
implying the corollary. O

Definition 4.10. Let (T})i>0 be a strongly continuous semigroup of operators on Banach
space (X, || - ||x)- The generator A of (T;)i>o is defined by

Tou = (strong limit) (4.10)

Au :=lim
t—0

with domain
Tiu —

D(A) = {u eX = egists as strong limz’t} . (4.11)

lim
t—0
Obviously, D(A) is a linear subspace of X .

Example 4.11. Let ¢ : R® — C be a continuous negative definite function with correspond-
ing convolution semigroup (u¢)i>o , i-e. (€)= (2m) ™2~ ©). Moreover, let (T;)i>o be the
(Feller) semigroup defined by (4.4). Let u € S(R"™), note S(R") C Coo(R™). It follows that

Ty — e~ t(é)-1
tu_t_’lf = (2,”)—71/2/ ewée - a(€) de.

Since @ € S(R™) and [¢(€)| < cyp(1 + |€|?) by Lemma 8.21, we can define the operator
w(Dyu(o) i= 2m) " [ e=ue)ae) de. (4.12)

We claim that S(R™) C D(A) and Au = —¢(D)u for u € S(R™) , where A is the generator
of the (Feller) semigroup (T;)i>0. We will use the estimates (4.13) and (4.14):

at
< —at £ > > .
1+at—1+e <at, a2>0,t2>0, (4.13)
and et . )
1< — +a |<5a’  a20,t20. (4.14)
Now we find

e~ — 1+ tp(€)
i

< () < tey(1+ [€7)?,

which implies for u € S(R") that

lim Tu—u _ —(D)u.

t—0 t
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Lemma 4.12. Let (T3);>0 be a strongly continuous semigroup on the Banach space (X, ||-||x)
and denote by A its generator with domain D(A) C X.
A. For anyu € X and t > 0 it follows that f, Tyu ds € D(A) and

t
Tou—u= A/ Tyu ds. (4.15)
0

B. For u € D(A) and t > 0 we have Tyu € D(A), i.e. D(A) is invariant under T;, and

%Ttu = ATyu = T, Au. (4.16)

C. For u € D(A) and t > 0 we always get
t t
Twu—u= / ATgu ds = / T,Au ds. (4.17)
0 0

Corollary 4.13. Let A be the generator of a strongly continuous semigroup (T:);>o on the
Banach space (X, || - ||x). Then D(A) C X is a dense subspace and A is a closed operator.
Moreover, (T});>0 5 a strongly continuous semigroup on D(A) when D(A) is equipped with
the graph norm ||lul|la x = ||Aullx + ||u||x-

Remark 4.14. Let (A, D(A)) be a linear operator from X toY, both being topological vector
spaces. A. We call A a closed operator, if I'(A), the graph of an operator, is closed in
X xXY. B. The operator A is closable if it has a closed extension.

Definition 4.15. The resolvent set p(A) of A consists of all A € C such that Aid — A is
surjective and has a continuous inverse (\id — A)™! defined on R(A\id — A) = X. The set
o(A) := p(A)° is called the spectrum of A.

Definition 4.16. Let A be a closed operator on the Banach space (X, || - ||x) with domain
D(A) C X. The resolvent of A is the family (Rx)rep(a), Bx := (A — A)~'. The operator
R, is called the resolvent of A at .

Lemma 4.17. Let (T;)i>0 be a strongly continuous contraction semigroup on the Banach
space (X, || - ||x) with generator (A, D(A)). Then {\ € C|ReX > 0} C p(A) and we have

Rau=0\—-A)"lu= / e MTu dt (4.18)
0

for allu € X and ReX > 0.
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Remark 4.18. Note that it is possible to define the resolvent (Ry)xso (or A € p(A)) for a
strongly continuous contraction semigroup directly by

Ryu= / e MTwu dt, (4.19)
0
i.e. without using its generator. For u € D(A) we find now for A > 0 that

Mt — A2Ryu + Aullx = / e MM (u — Tyu) dt + Au
0

ol u—Tsu
= / e *s(—2—) ds+ Au
0 s

A
® u—"Tsu
= / e *s(Au + 2) ds
0

s
oo
< / e ’s
0

)
which implies that in the sense of the strong limit we have for all u € D(A)

u——Tzu
Au + —
X

ds,
X

Jim (—Xu + M Ryu) = Au.
Lemma 4.19. Let A be a closed operator. For A\, u € p(A) the resolvent equation
Ry\R, = R,R\= (A~ u)" (R, — R)) (4.20)
holds.
Proof. Since (A — A)(p — A) = (u — A)(A — A) we find for A, u € p(A) that
(b=NTTA=-p) T =(A=A) (w4
Furthermore, we have

Ry— R, = RAu—A)R,— R\A—- AR,
—R\AR, + pRy\R, + R\AR, — AR\R,,
= (p—A)R:\R,,

which yields (4.20)
O

Definition 4.20. A linear operator A, D(A) — X, D(A) C X is called dissipative, more
precisely X -dissipative, if
I — Aullx > Alullx (421)

holds for all A > 0 and u € D(A).
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Lemma 4.21. Let (A, D(A)) be a dissipative operator on X and A > 0. The operator A is
closed if and only if the range R(A — A) is closed.

Theorem 4.22. Let A be a closed and dissipative operator which is densely defined on a
Banach space (X, || ||x). We assume that (0,00) C p(A). The Yosida approximation of
A 1is defined for A > 0 by

Ay = /\A(/\ - A)_l = MR,. (422)

It has the following properties

1. For all X > 0 the operator A, is bounded on X and the semigroup (et4*);>o is a strongly
continuous contraction semigroup.

2. For all A\, > 0 we have
ArA, = A A,

3. Foru € D(A) it follows that
,\lim |Axu — Au||x = 0.

Theorem 4.23 (Hille and Yosida). A linear operator (A, D(A)) on a Banach space (X, || -
llx) is the generator of strongly continuous contraction semigroup (Ti);>o if and only if the
following three conditions hold.

1. D(A) C X is dense;
2. A is a dissipative operator;
3. R(A— A) = X for some X > 0.

Theorem 4.24. A linear operator on a Banach space (X, || - ||x) is closable and its closure
A 1is the generator of a strongly continuous semigroup on X if and only if the following three
conditions are satisfied

1. D(A) C X is dense;
2. A is a dissipative operator;
3. R(A— A) is dense in X for some A > 0.

Definition 4.25. Let A: D(A) — B(R") be a linear operator D(A) C B(R"). We say that
(A, D(A)) satisfies the positive mazimum principle if for any u € D(A) such that for

some xo € R™ the fact that u(zo) = sup u(z) > 0 implies that Au(zy) < 0.
TER™

For later purposes it is helpful to introduce the following version of the Hille-Yosida
Theorem:
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Theorem 4.26 (Hille-Yosida-Ray Theorem). A linear operator (A, D(A)),D(A) C
Coo(R™) on Coo(R™) is closable and its closure is the generator of a Feller semigroup if
and only if the three following conditions hold:

(i) D(A) C Cx(R™; R) is dense;
(11) (A, D(A)) satisfies the positive mazimum principle;
(11i) R(\ — A) is dense in Coo(R™;R) for some A > 0.

Example 4.27. Let ¢y : R® — C be a continuous negative definite function. On C$°(R",R)
we define the operator

—(Dyu(z) = —(2m)~"/? / €€ (£)(€) .

n

From Ezample 4.5 combined with Example 4.11 we know that (—¢(D), Cs°(R™,R) has an
ertension generating a Feller semigroup, hence on CP(R™, R) the operator —y(D) satisfies
the positive mazimum principle.

We may extend Example 4.27 to a more general situation.

Theorem 4.28. Let g : R* xR™® — C be a locally bounded function such that for any x € R"
the function g(z,-) : R® — C is continuous and negative definite. Define on C§°(R™) the
operator

~aa, Dyu(e) = ~(2) ™" | %q(a,)a(e) de. (4.23)

Then the operator (—q(z, D), C°(R™; R)) satisfies the positive mazimum principle, where we
consider C°(R™; R) as a subspace of C3°(R").

Proof. First note that by Lemma 3.22 we have

lg(z,€)] < &=)(1 + €%
for all z € R™ and £ € R", which implies that the operator g(z,D) is well defined on
C°(R™R). Now let u € C°(R™; R) and zo € R" such that u(zy) = sup,cg~ u(z) > 0.

We have to prove that —[g(z, D)u|(zo) < 0 holds. Next we will consider the function
Yao : R® = C,th, (€) = q(z0,&). By our assumptions £ — 9,,(D) defined on C§°(R™; R) by

e Dpoa) = —(2m) [ e, €)ole) de
—m [ e=tqan,)o(e) dg

satisfies the positive maximum principle, thus we have

_'wao(D)v(wO) S 0
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for v(zo) = sup,egn v(z) > 0. But for any v € C°(R™) we have
“lo(e, Diul(ao) = —(2m) ™ [ eq(an, )0le) dé

= —(m™” / L€ (£)0(8) d8
= Yo (D)v(o)
which implies the theorem. O

Remark 4.29. Our arguments in Example 4.27 and Theorem 4.28 do not depend on the fact
that the operator is defined on C§°(R™). In case of the operator —(D) denote by (A, D(A))
the extension of —y(D) as a generator of a Feller semigroup. Then by Theorem 4.26,
the Hille-Yosida-Ray Theorem, the positive maximum principle holds for all extensions
(A, D(A)) of (—(D), C(R™)) with the property that D(A) C D(A).

Next we will introduce the analytic semigroups which we collect from [14].

Let (Tt):>0 be a strongly continuous contraction semigroup in the Banach space (X, ||-||x)
with generator (A, D(A)) and resolvent (R»)x>o. The relation between (T});>0 and (Rx)xso0
is given by

Ryu =/ e MTu dt. (4.24)
0

We may try to invert (4.24) in order to express Tyu with the help of (Rx)x>o. Thus, it is
necessary to extend A — R)u to some sector in the complex plane. It will become important
to discuss whether or whether not ¢ — T;u has an analytic extension to some sector in C.
Let w € R and 6 € (3, 7). Then the sector Sp,, C C is defined by

S = {)\ € (C‘)\ # w and |arg(\ — w)| < 0}, (4.25)

where arg z € (m, 7] is the argument of the complex number z.

Definition 4.30. Let A : D(A) — X,D(A) C X, be a densely defined linear operator in
the complex Banach space (X, || - ||x). We call A sectorial if there exist constants w € R,
6 € (3,m) and M > 0 such that
St © p(4) (4.26)
and M
< 2 » 4.2
”R/\”— |/\—w|’ )‘630, ( 7)

hold.

Remark 4.31. A. Any sectorial operator is closed. B. Let (X,| - ||x) be a Hilbert space
(H,(-,-)r) and (A, D(A)) be a sectorial operator on H. Then —A is form sectorial with
corresponding sector Sp_z .
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Suppose that (A, D(A)) is sectorial with w € R, § € (§,7) and M > 0 as in Definition
4.30. Then the operator A¥ := A — w is sectorial now with w = 0, but # and M the same as
for A. For a sectorial operator A with w = 0 and M =1 it follows that (0, c0) C p(A), hence
for all A > 0 the operator A — A is surjective, i.e. for all f € X the equation \u — Au = f
has a solution. Moreover, since M = 1, we find for v € D(A) and A > 0 that

1
lullx = [IBA(A = AJullx < TI(A = Aullx,

i.e. (A, D(A)) is a dissipative operator. Hence, by Theorem 4.26 , we have

Corollary 4.32. Let (A, D(A)) be a sectorial operator in (X, || - ||x) such that (4.27) holds
with M = 1. Taking w € R as in (4.26), it follows that the operator AY := A — w with
domain D(A) is the generator of a strongly continuous contraction semigroup (13)i>o on
X. Moreover, the operator (A, D(A)) is the generator of the strongly continuous semigroup

(e“*T})t>0-

Proposition 4.33. Suppose that A is a sectorial operator with sector Sg,, and denoted by
(Tt)s>0 the strongly continuous semigroup generated by A. It follows that for any u € X,
k € N and t > 0 we have Tyu € D(A¥), hence

T € () D(4%), (4.28)
keN
and we have for u € D(A¥)
AT = Ty AFu, t >0, (4.29)

and for suitable constants My, k € N, we find for t > 0 that
|1tF(A — wid)*T;|| < Mye“t. (4.30)
Moreover, the function t — Ty is arbitrarily often differentiable and satisfies

dk
= AFTyu (4.31)
for alluw € X. Finally, the mapping t — T; has an analytic extension to the sector w + S,

where S is given by S := {)\ € C’|arg)\| <6- g}

Definition 4.34. A strongly continuous semigroup (T})¢>o is called an analytic semigroup

of angle 0, if the mapping t — T; has an analytic extension to the sector S = {z €

C\ {0}

|arg z| < 6 — %}
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Theorem 4.35. Let (T});>0 be a strongly continuous semigroup on a Banach space (X, ||-||x)
such that ||T|| < M for allt > 0 and some M > 0. Further, let (A.D(A)) be its generator
and assume that 0 € p(A). Then the following conditions are equivalent:

1. The semigroup (T;)i>0 has an analytic extension to a sector Se-z0, 0 € (5,m) and
| T.|| is uniformly bounded in every closed subsector S’gl_%‘g, ¢ € (5,m) and 0’ < 6.

2. There exists a constant c such that for every o >0 and 7 # 0
c
Royir|l £ = 4.32
“ +i H —= |T| ( )

holds.

3. There ezists 6 € (0,%) and M > 0 such that

= {)\GC | arg 2| <g+6}U{O}Cp(A) (4.33)
and M
IRl < i forx e £\ {0}. (4.34)

4. The mapping t — T, is differentiable in (0,00) and with some constant ¢ we have

lazi < S, >0 (4.35)
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Part IV

Fundamental Solutions Of
Time-Dependent Parabolic
Equations

5 Fundamental Solutions of Time-Dependent Parabolic
Equations

In this part, we will discuss equations:

MY | Awun) = 1), 0<t<T. (5.)

u(0) = uo. (5.2)
where the operator A depends on t. Our standard references are [23] and [20].

Definition 5.1. We call (5.1) a parabolic equation if for each t € [0,T), the operator
—A(t) generates an analytic semigroup on some Banach space (X, || - ||x)-

Throughout this part (5.1) is always assumed to be a parabolic equation and D(A(t)) C X
denotes the domain of A(t). We will assume that D(A(t)) is independent of ¢ and write
therefore only D(A). Then we may try to construct an operator U(t, s) with the following
properties:

U(t, s) is a strongly continuous function, defined on 0 < s < ¢t < T with value in X such
that

U(t,r)U(r,s) =U(t,s) for 0<s<r<t<T, (5.3)
U(s,s)=1 foreach s€[0,T] , (5.4)
(8/0t)U(t,s) = A[t)U (¢, s), (5.5)
(8/0s)U(t,s) = —U(t, s)A(s). (5.6)

Here in (5.4) the operator I denotes the identity on X.

Since,in general, the equations (5.5) and (5.6) involve unbounded operators on both sides,
we assume that they hold in a dense subspace which is to be determined for each equation.
Such an operator-valued function U(t, s) is called a fundamental solution of (5.1). If

A(t) = A is independent of ¢, then U(t,s) = exp ((s - t)A) is the fundamental solution,
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and (5.5)and (5.6) hold on D(A). When the fundamental solution exists, one expects that
the solution of (5.1),(5.2) can be written as

u(t) = U(t,0)uo + /(;t U(t,s)f(s) ds. (5.7)

Assumption 5.2. A(t) for each t € [0,T] is a closed operator defined densely in a Banach
space X . Its resolvent set p(A(t)) contains the half-plane ReX < 0, and (1+ |A|)(A(t) — X)~!
is uniformly bounded in 0 <t < T and ReX < 0.

Hence, there exists a certain number M and an angle 8 € (0,7/2) such that p(A(t))
contains the closed sector ¥ = {\ : |arg A\| > 6} U {0} and the estimate

1(A@t) = )7 < M/(1+|A]) (5.8)
holdsfor 0 <t<T and XA € X.

Assumption 5.3. The domain D(A(t)) = D of A(t) is independent of t and, accordingly,
A(t)A(0)71, being a bounded operator, is a Holder continuous function of t in the norm of
B(X), the algebra of bounded operators on X . In other words, there exist positive numbers
a <1 and L such that

IA®)A0)~" — A(s)A(0) 7| < LIt — 5| (5.9)

1s satisfied for 0 < s <T and 0 <t <T.
Assumption 5.3 means that A(t)A(0)~! is a norm continuous function of ¢ and that
A(0)A(t)™! = (A(t)A(0)~1)~. Thus, A(0)A(t)™! is uniformly bounded. Therefore, we may

suppose that
IA@)A(r)™ — A(s)A(r) 7| < Lt — 5| (5.10)

holds for all ¢,s,7 € [0,T], if necessary, by substituting L by another number. Under
Assumptions 5.2 and 5.3, the fundamental solution U(t, s) is constructed as follows. Set

U(t,s) = exp (— (t— s)A(s)) + Wi(t,s), (5.11)

Wi(t,s) = /st exp ( —(t- T)A(T))R(T, s) dr. (5.12)

where R(7, s) remains to be determined. A formal calculation gives
(8/0t)U(t,s) = —A(s)exp ( —(t- s)A(s)) + R(t, s)

- / A(r)exp ( — (- T)A(T)>R(T, 5) dr,
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A@)U(t,s) = A(t)exp ( —(t— 5)A(s))
+/ A(t) exp ( —(t- T)A(T)) R(7,s) dr.
Summing these two equalities ,we obtain

(8/0)U(t, s) + A()U(t, s) = —Ra(t, ) + R(t, s) — / t Ri(t, 7)R(r,s) dr, (5.13)

8

e Ry(t,s) = — (A(t) - A(s)) exp ( —(t- s)A(s)) . (5.14)

Since we assume that A(s) generates an analytic semigroup on X, there exists a constant
Cy such that
|| exp(—tA(s))]| < Co, (5.15)

IA(s) exp(—tA(s))|| < Cot ™. (5.16)

Thus, by(5.10) and (5.16) using the uniform boundedness of A(s)A(0)7!, we can estimate
the norm of R;(t,s) for s <t as

[Ri(t, )| < [I(A(t) — A(s)A(s) " [[[| A(s) exp(—(t — s)A(s))]
< LGCo(t —s)* L. (5.17)

Since the right-hand side of (5.13) vanishes if ¢ > s, we find R(t,s) as a solution of the
integral equation

R(t,s) — / t Ry(t,7)R(7,8) dr = Ri(t, s). (5.18)

It is easy to ascertain that exp(—(¢ — s)A(s)) and R;(t,s) for 0 < s < t < T are
continuous in the norm of B(X). Because of (5.17), the integral equation (5.18) can be
solved by successive iteration:

R(t,s) = i R(t,s), (5.19)

t
Rn(t,s) =/ Ry(t,7)Rpm_1(T, 8) dT. (5.20)
By induction, it is not difficult to see that
[Bm(t, $)l| < (LCOT(a))™(t — 5)™*7" /T(mav).

Thus, we have

IR, s)| < Y _(LCoT(@))™(t — 8)™"/T(ma)

i(LC’OF(a))mT(m‘l)O‘F(ma)‘l(t —s5) 1 =C(t-s)*t, (5.21)

m=1

IA
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Wt )]l < C(t - 5, (5.22)

1U(t, )]l < C. (5.23)

Lemma 5.4. Let 8 be an arbitrary positive number satisfying 0 < 8 < a. Then there exists
a constant C such that the inequality

IR(t,5) — R(r, s)|| < Cp(t — 5)°(r — 5)>~7~" (5.24)

holds for0 <s<7<t<T.

Proof. Let us begin with the estimation of

Ry(t,s) = Ra(1,8) = —(A(t) — A(7)) exp(—(t — 5)A(s))
—(A(r) — A(s)){exp(—(t — 5)A(s))
—exp(—(7 — 8)A(s))}. (5.25)

The norm of the first term on the right-hand side does not exceed

I(A@®) — A(T)A(s) I A(s) exp(—(t — s)A(s)Il < Ct—7)*(t—s)7"
< Ct—-n)*r-s)

The norm of the second term does not exceed

(A(r) — A(s)) / (d/dr) exp(~(r — 5)A(s))dr

”(A(r) — AENAE™ [ AP expl(r = ) A()dr

IA

t
C(r - 5)° / (r — 8)"2dr = C(t — 7)(t — 5)™} (7 — 5)°"*
< Clt—1)(1—8)*72,
but it can also be estimated as

I(A(T) = A(s)) exp(=(t — $)A(s))I| + [(A(T) — A(s)) exp(—(7 — s)A(s))
< Clr—s)*(t—9)7 +C(r—9)* <C(r—s)*

thus, it does not exceed
C{it =)= s)* 2} {(r—s)* < Clt = )% (1 —5)7".
In this way, we have

|Ri(t,s) — Ri(r,s)|| < C(t —7)*(r —s)~". (5.26)
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On the other hand, it follows (5.17) that

[Ri(t,s) = Ra(m,8)ll < [[Ru(t, s)|| + [|[Ra(7, s)|
< Ct—9)* '+ C(r—8)* ' <C(r—s)*. (5.27)

The combination of (5.26) and (5.27) gives

[Ri(t,s) — Ra(m,s)|| < C{(t —7)%(r — 8)"1}F/e{(r — 521} (e-P)a
C(t—1)(r — )77, (5.28)

By the help of the relations

R(t,s) — R(t —s) = Ri(t,s) — Ri(7,8) + /t Ry (t,0)R(0,s) do

T

+/T(R1 (t,0) — Ry(7,0))R(0, s) do,

/Tt Ri(t,0)R(o,s) do|| < C/Tt(t -0)* Yo —-5)*'do

IA

t
C/ (t—0)* ! do(T — s)*!
= C(t—1)*(1 —8)*",
which are obtained from (5.17) ,(5.18),(5.21) , the inequalities (5.21) and (5.28) lead imme-
diately to the inequality (5.24) .
a

Next, we will introduce quadratic forms which will be used to construct the fundamen-
tal solutions. Let X be a complex Hilbert space; its inner product and norm will be denoted
by (-,-) and | - |, respectively. Let V be another Hilbert space with inner product and norm
denoted by ((-,-)) and || - ||, respectively. We assume that V is (linearly) embedded in X as
a dense subspace and that V' has a stronger topology than X. Therefore, there exists an M,
such that |u| < My||u|| for all u € V. Let a(u,v) be a quadratic form defined on V x V.
That is, to each u,v € V there corresponds a complex number a(u,v) and a(u,v) is linear
in u and antilinear in v:

a(uj + ug,v) = a(uy,v) + a(ug, v),

a(u, vy + v9) = a(u,v) + a(u, vs),

a(Mu,v) = da(y,v), a(u, W) = Aa(u,v).

In this section, the space of all continuous antilinear functionals defined on V and X are
denoted by V* and X*, respectively.
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In our case, we will add time dependence for the quadratic form. We assume that a(t; u, v)
is bounded, i.e., there exists a constant M such that

la(t; u, v)] < MlJu]|[v] (5.29)

holds for all u,v» € V and 0 <t < T. Assume also that there exists a positive number é > 0
and a real number k such that

Re a(t;u,v) > 8||ul|® — k|u|? (5.30)

is satisfied for all ¢t € [0,T) and u € V. Furthermore, a(t;u,v) is assumed to be Holder
continuous in ¢ in the following sense: there exists a certain number a € (0, 1] such that

la(t; v, v) — a(s;u,v)| < Kt — s|*||u]l||v] (5.31)

for all t € [0,T] and u,v € V. Denote by A(t) the operator determined by a(t; u,v),
i.e., we set

a(t;u,v) = (A(t)u,v).

Then we have the following theorem.

Theorem 5.5. For all t € [0,T] and u,v € V, we have a(t;u,v) = (A(t)u,v). Then —A
generates an analytic semigroup in both X and V*.

By Theorem 5.5, — A(t) generates an analytic semigroup both in X and in V*, and when
it is regarded as an operator in V*, its domain coincides with V' and, hence, is independent of
t. Thus, if (5.1) and (5.2) are considered as equations in V*, we can construct its fundamental
solution U(t, s). Next, if @ > 1/2, the restriction of U(t, s) to X is found to be the desired
fundamental solution of (5.1) and (5.2). We first make (5.30) valid for k¥ = 0. Then, by
(5.29), the inequality '

Sllull < [A#)ull. < Mlul (5.32)
holds for all ¢ € [0.7] and v € V. Now (5.31) immediately implies that
[A®)u — A(s)ull. < KTt — s[*[|u]. (5.33)
From this and (5.32) it follows that
IA()A0)" — A(s)A(0) 7|l < CJt — s (5.34)

Therefore, it is possible to construct the fundamental solution of (5.1), regarded as an
equation in V*, by using (5.11),(5.12),(5.14),(5.19) and (5.20). It follows that U(t, s) is a
bounded operator in V*. Next, we will discuss its restriction to X.

Using these previous inequalities and Lemma 5.4, we can get

|Ri(t,8)||. < C(t—8)*, 0<s<t<T (5.35)
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and
|Ry(t,8) — Ri(7,8)|l« S Cs(t = T)P(1 —5)* P71, 0<s<7<t<T (5.36)
hold, where ( is an arbitrary positive number smaller than a.
Next, we will discuss more inequalities with f € X.

Lemma 5.6. For Re A < 0 and A(s) as above, the following estimates hold with the constant
C independent of f :

[(A(s) = )7 I < CIAII A, (5.37)
I(A(s) = N7 < CIN2 £, (5.38)
I(A(s) = )71 < CIAY2| £, (5.39)

I(A(s) = N7 11 < CllAlls, (5.40)
I(A(s) = N7 flle < CINH I D (5.41)

Lemma 5.7. There ezists a constant C such that the following inequalities hold for allt > 0
and C independent of the function f:

lexp(—tA(s))| < 1, (5.42)

|| exp(—tA(s)|l. < C, (5.43)

| exp(—tA(s))f| < Ct™2||f]., (5.44)
lexp(—tA(s)fIl < Ct2|f], (5.45)
lexp(~tA(s))fI| < Ct7|| £l (5.46)

| A(s) exp(=tA(s))f| < Ct=*7||f]., (5.47)
1A(s) exp(—tA(s) fI| < Ct=*2|f]. (5.48)

Moreover, from (5.33) and (5.45), we have
IRu(t, 8)fll« < C(t = 8)*"12|f]. (5.49)
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Lemma 5.8. If fe X and0<s<t<T, then
IR, 8)fll. < C(t - 8)*2|f]. (5.50)

Proof. By induction, it can be shown that there exists some constants C and C; such that
the following inequalities holds for all m:

1R (t, 8)fll« < Col'(p+ 1/2)CT T (o)™ (¢ — 8)™~/*| f|/T(mp + 1/2),
from which (5.50) follows immediately.

O
Lemma 5.9. Foreach f € X,0<s<7<t<T and 0 < B < a, we have
(. 9)f = Rl 9. < Caf (£ = = 5)73
t
+/ (t—71) Y r =) V2 dr+ (t —7)P(r - 3)2“‘5‘1/2}|f|. (5.51)

Proof. By the definition (5.14) of R,(t, s), we have
I1B1(2,8)f — Ra(7,9)fll« < [(A(t) — A(7)) exp(—(t — 5)A(5)) f I
+I(A(T) — A(s))
x{exp(—(t — 5)A(s)) — exp((—7 — 5)A(5))} f|.- (5.52)

Because of (5.45) and (5.33), the first term on the right-hand side does not exceed C(t —
7)%(t — 5)~1/2|f|. The inequality (5.48) provides

||{e)§p(—(t — 8)A(s)) — exp(—(7 — 5)A(s)) } |
= ‘ / A(s)exp(—(r — 8)A(s))f dr

c / (= 52\ f| dr
C{(r— sy 2 = (t — 5y} ]
Cr — sy V2{1 = (v — 5)2(t — 5) /2| f|

C(r =) 2 {1~ (1 = 9)/(t = )}
Clt =)t~ )7 (1~ 8)2If| < Ot — 7)(7 — )|,

IA

A

which,combining with (5.33),shows that the second term on the right-hand side does not
exceed C(t — 7)(T — 5)*=3/?|f|. On the other hand, by (5.33) and (5.45), the same term does
not exceed

I(A(T) — A(s)) exp(—(t — s)A(s)) f I+
+[|(A(T) — A(s)) exp(—(T — 5)A(s)) I«
< O(t=8)*(t =)/ f| + C(r = 5)* V2| f| < O(7 — 5)* /7| f|.
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Thus, it is bounded by
C{(t —)(r — )2 {(r — )21 f] = C(t = 1) (7 ~ 5) VAU
Therefore, we have
IR:(t,8)f = Ra(7,8)fll« < C(t —7)%(r — 8)7/%|f]. (5.53)
The estimate (5.51) is easily obtained by the use of (5.18),(5.35),(5.36),(5.50) and (5.53).
O
Lemma 5.10. Define

Y (t,s) = exp(—(t — s)A(s)) — exp(—(t — s)A(?))
for 0 < s <t <T. It satisfies the estimate

1Y (t,s)fll < Ct = s)* 1]l (5.54)
Proof. Y (t,s) can be expressed as

Y(t,s) = % /F =M= (A(s) — X)L (A(E) — A())(A(t) — A)~" dA.

By (5.33) and (5.40), we have
I(A(s) = X) 7 (A(s) — A (A®E) = NI < C(t = 8)*[f .,

from which (5.54) follows immediately. O
Lemma 5.11.

|W(tv s)fl < C(t - 'S)a|f|a (555)

IW(t,8)fIl < C(t—5)*72|f]. (5.56)

forfeX and0<s<t<T.

Proof. (5.55) is a direct consequence of Lemma 5.8 and (5.44). Next, (5.56) is obtained by
representing W (t, s) as

Wit,s) = / Yt 7)R(r, ) dr + / exp(—(t — T)A(1))
x(R(r,s) — R(t,s)) dr
FA(E) {1 — exp(—(t — s)A(E))}R(t, 5)

and by applying Lemma 5.8 and 5.10 to the first term on the right-hand side, (5.46) and
Lemma 5.9 to the second term, and (5.32),(5.43) and Lemma 5.8 to the third term, respec-
tively.

O
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Theorem 5.12. For 0 < s <t < T, the function (s,t) — U(s,t) is a strongly continuous
function with values in B(X) and satisfies

U, s)f] < Clfl (5.57)
and
U s)fll < Ct =) ], (5.58)
where f € X and 0 < s <t <T. Moreover, for f € V*, it satisfies

U, s)f1 < C(t~ )| f]l.. (5.59)

Proof. (5.57) and (5.58) are evident from Lemma 5.11 and (5.11). (5.59) follows from (5.35)
and (5.44).

a
This theorem implies that

t
u(t) = U(t,0)uo +/ U(t,s)f(s) ds (5.60)
0
belongs to C([0.7]; X) if uo € X and f € C([0,T]; X). Moreover, the following theorem
ensures that (5.60) forms a solution of the equations (5.1) and (5.2) in V*.

Theorem 5.13. Under Assumptions 5.2 and 5.3, a fundamental solution of (5.1) and (5.2)
exists. For 0 < s <t < T, the range R(U(t,s)) C D, the operator (3/0t)U(t, s) exists as an
element of B(X), and the following inequalities hold:
1(8/31)U (¢, s)ll = AU (¢, s)l| < C(t — )7,
IA@)U (¢, 8)A(s)M| < C.

U(t, s)u for each t € (0,T) and each u € D 1is differentiable with respect to s in 0 < s <t
and satisfies

(0/0s)U(t, s)u = U(t, s)A(s)u. (5.61)

By this theorem if v is an arbitrary element of X, then u(t) = U(t,0)uq is continuous
in 0 < t < T, differentiable in 0 < t < T, and is a solution of the homogeneous equation
du(t)/dt + A(t)u(t) = 0, which coincides with ugy at t = 0.
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Theorem 5.14. Let ug € X and f € C([0,T); X). If u is a solution of (5.1) and (5.2),
then it is expressible as (5.60), so that the solution of (5.1) and (5.2) is unique.

Proof. Assume 0 < £ < s < t. Then, from (5.61), it follows that
(0/0s)(U(t, s)u(s)) = U(t, s)u'(s) + U(t, s)A(s)u(s) = U(¢, s) f(s). (5.62)

By integrating this equation from ¢ to ¢ and letting ¢ — 0, we obtain (5.60) immediately.
O

Theorem 5.15. Let ug be an arbitrary element of X and f an arbitrary function Holder-
continuous in [0,T]. Then the function u defined by (5.60) is the unique solution of (5.1)
and (5.2).

Proof. Define
S(t,s) = A(t) exp(—(t — s)A(t)) — A(s) exp(—(t — s)A(s)) (5.63)

for 0<s<t<T,and put

t—e
We(t,s) = / exp(—(t — 7)A(7))R(r, s) dr
for 0 < e <t—s.Wc(ts) — W(ts) as € — 0. By differentiation, we have
(8/0t)W,(t,s) = exp(—eA(t—e))R(t—¢,s)

t—e

- A(1) exp(—(t — 7)A(7))R(T, s) dr.
Upon observing the relation
A(t) exp(—(t — T)A(t)) = (8/07) exp(—(t — T)A(t)),

the right-hand side can be rewritten as
t—e
(0/0t)W(t,s) = exp(—eA(t—¢))R(t—c¢,s)+ / S(t,7)R(t,s) dr

_ / ~ exp(=(t = NA®)(R(r,5) — R(t,)) dr
—{exp(—€A(t)) — exp(—(t — s)A(t))} R(t, s). (5.64)

By (5.15), (5.16), (5.21) , (5.63) and Lemma 5.4, it is found that the norm of (8/0t)W,(t, s)
satisfies

1(8/0t)W(t, 8)|| < C(t — s — €)*7 1, (5.65)
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where C is a constant independent of € as well. It is easy to see, each term on the right-hand
side of (5.64) converges strongly as ¢ — 0. Putting W'(t,s) = lim._,o(0/0t)W,(t, s), we
obtain from (5.64) and (5.65) that

W'(t,s) = /t S(t,7)R(r,s) dr
- [ A e~ - AW R(r,5) - Rt,) dr
+exp(—(t — s)A(t))R(¢, s), (5.66)
[W'(t,9)]| < C(t — )" (5.67)
Letting € — 0 in
W.(t', s) — Wc(t,s) = /tl(a/ar)We(r,s) dr
with ¢’ > t > s + €, we have, owing to (5.65),
W(t,s)—W(t,s) = /tl W'(r,s) dr.

Since W'(t, s) is strongly continuous in 0 < s < t < T,W(t,s) is strongly continuous
differentiable with respect to ¢, and, hence, it is found that

(8/8t)W (t,s) = W'(t, s). (5.68)
Therefore, the derivative
(8/0t)U(t,s) = —A(s)exp(—(t — s)A(s)) + (8/dt)W (¢, s) (5.69)
exists and satisfies
1(8/08)U ¢, sll < C(t —5)7".
The relations (5.67) and (5.68)implies that
(0/0¢) /t W(t,s)f(s)ds = /t Wi(t,s)f(s)ds. (5.70)
0 0

Also, as in the proof of (5.66), we have
(3/5%)/0 (—(t—s)A(s))f(s)ds = /0 S(t,s)f(s)ds

- / A(t) exp(—(t — $)A())(f(5) — F())ds
+exp(—tA(t))f(¢). (5.71)

43



From these equations, and noting that

t—e

(0/0t) A U(t,s)f(s)ds —A(t)/0 - U(t,s)f(s)ds — f(t)
= U(t,t—e)f(t—e)— f(t) — 0,

as € — +0,we obtains the conclusion of the theorem.

Lemma 5.16. The following inequality holds for 0 < s <t < T':
|(8/0t)W (t,s)| < C(t — s)*7. (5.72)
Lemma 5.16 implies that U(t, s) is differentiable with respect to ¢ in B(X) and that,

for 0 < s <t < T, the following results hold: R(U(t,s)) C D(A(t)), (8/dt)U(t,s) +
A(t)U(t,s) =0, and

[(0/08)U (2, 5)] = |[A@BU(t, s)| < C(t — 5)7". (5.73)
A quadratic form adjoint to a(t;u,v) is denoted by a*(t;u,v), that is , a*(¢;u,v) =

a(t;v,u). Let A*(t) be the operator determined by a*(¢; u,v). Then, as in the above, we can
construct an operator-valued function V'(¢,s) (0 < s < t < T') satisfying

—(0/9s)V (t,s) + A*(s)V(t,s) =0, 0<s<t<T,

Vit,t)=1, 0<t<T.
For f,g € X, and s < r < t, we have

(0/0r)(U(r,8)f,V(t,7)9)
= —(A(M)U(r,8)f,V(t,7)g) + (U(r,5)f, A" (r)V (¢, 7)g)
= —a(r;U(r,s)f,V(t,r)g) +a(r;U(r,s)f,V(t,r)g) =0,

so that (U(r,s)f,V(t,r)g) is independent of r in the open interval (s,t). Therefore, by
letting r — s and r — t, we get

U(t,s) = V*(t,s). (5.74)
As in (5.73), V(¢, s) is differentiable with respect to s and satisfies
(8/05)V (¢, 8)| = |A*(s)V (2, 8) < C(t =), (5.75)

which combining with (5.74), implies that U(t, s) is also differentiable with respect to s in
the interval 0 < s < t and that (8/9s)U(t, s) is a bounded extension of U(t, s)A(s) in X,
and

(8/0s)U(t,s)| < C(t — s)7. (5.76)
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Theorem 5.17. If the inequalities (5.29),(5.30) and (5.31) with o > 1/2 are satisfied, there
exists a fundamental solution U(t, s) of the equation (5.1) in X. U(t, s) is differentiable with
respect tot,s in0 < s <t < T, its range R(U(t, s)) C D(A(T)), (U(t,s)A(s)) has a bounded
extension in X, and we have (5.73) and (5.76).

Theorem 5.18. Suppose that the assumptions of the above theorem hold. Let ug € X and

let f be a Holder continuous function with values in X. Then (5.60) is the unique solution
of (5.1) and (5.2).

The proof is similar to that of Theorem 5.15.
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Part V

Some Properties of
Pseudo-Differential Operators with
Time Dependent Negative Definite
Symbols

6 Some Properties of Pseudo-Differential Operators with
Time Dependent Negative Definite Symbols

In this part, we will study a large class of these pseudo-differential operators with coeffi-
cients depending on time which may for frozen time dependence extend to a generator of a
Feller semigroup or a sub-Markovian semigroup. Our standard reference in this part is [15].

We will starting with the estimates for these operators which will be used in a later
section.

Thus, we will consider operators of the following form
q(z,t, D)u(z,t) = (2r) ™" / e*q(x,t, )a(€, t)d¢ (6.1)
Rn

and we assume that ¢ : R® x R, x R® — C is a locally bounded function such that for every
z € R™ and t € R,, the function ¢(z,t, ) : R® — C is a negative definite and continuous.

Definition 6.1. We call a function q : R* xR, x R® — C a time dependent continuous
negative definite symbol if q is continuous and for each x € R", t € R, the function
q(z,t,-) : R* x Ry — C is negative definite.

In the following we will always assume q to be continuous and use the short hand time
dependent negative definite symbol, taking the continuity for granted.

Note that for a time dependent negative definite symbol ¢ for every compact set K C R",
there exists a constant Ck(t) such that

la(z,t,€)| < Cx(t)(1 + €%
holds for all z € K, and £ € R". In fact, we may take

Ck(t) = 2 sup |q(z, t,n)|-

zeK
Inl<1
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We will add the additional assumption that we can find a bound for Ck(t) independent
of t, i.e. we will require for all £ € R™

lg(z,t,€)| < Cx (1 +[€[) (6.2)

with Ck independent of t > 0 and z € K.

A pseudo-differential operator corresponding to a time dependent negative definite sym-
bol is called a pseudo-differential operator with time dependent negative definite symbol.

A pseudo-differential operator with time dependent negative definite symbol has also the
representation as integro-differential operator which we obtain by using the Lévy-Khinchin
formula:

k=1 j=1 J

+c(z, t)u(z, t) — /n\ } (u(y, u(z,t) + Z 1 +y]y|2 auaj t)> N(z,t,dy).

R™\{0

Here c¢: R®" xR, — R,c¢(z,t) 20,d = (dy,...,d,) : R* x Ry — R" are continuous
functions, and ax; : R® x R, — R,1 <k, l < n, are Borel functions such that
an(z,t) = an(z,1).

Forallz e R ,t € R, and £ = (&, ...,&) € R™, it holds Y aw(z,t)&& = 0

Furthermore, for ¢t € R, and z € R" fixed N(z,t,-) is a measure integrating the function
y— (1AJy]?), ie [(1Ay*)N(z,t,dy) < oo. We note that for t € R™ fixed g(z,t, D)
maps function u : R* x Ry — C such that u(-,t) € C§°(R™) to Borel measurable function,
i.e. (g(z,t, D)u)(-,t) is Borel measurable.

Furthermore, for ¢ty € R, fixed ¢(z, ty, D) satisfies the positive maximum principle,
i.e. it holds

Zf sup U(IOa tO) Z 07 then (Q(-'L', tO) D)u)(xo, tO) S 0.
zER™

We are interested in proving estimates for the operator ¢(z, ¢, D) in Sobolev spaces related
to continuous negative definite functions, more precisely, in the Hilbert space H¥*(R") for
a fixed continuous negative definite function ¥ and s € R.

The Hilbert space H¥*(R™) with a continuous negative definite function ¢ : R® — R is
defined by
HY(R") = {u € L*(R"), ||lu|lys <0}, s=0

and

Il = [ @+ v©ylaerdE s>o (69
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We want to extend these spaces in order to handle t-dependent functions and operators.
For the moment it is sufficient to note that for u : R® x R, — C, such that u(-,t) € L%(R"),
we can define

It Ol = [ 1+ v ale O <o

In some estimates we need a more precise control on constants. For this, we note that
7Tn/2l" (k - n)
2\—k/2 2 -
(14 |z|*)~"*dz = =Chk, k>n (6.4)

k
|l
(5)
and ¥, , is the smallest constant such that
m/2 ~ o
(L+1ER)™ < T Y, 167 (65)

lajsm

holds. An upper bound for ¥, is (n + 1)™2. Finally, for a continuous negative definite
function 9 : R® — R the constant Cy, is defined as the smallest constant such that

»(€) < Cy(1+[€) (6.6)
holds. For a (negative definite) symbol ¢(z,t,€), we set

dnte) = @0 [ e 6)da
= Fx—»n(q(x’ t, 'f))(n) (67)
whenever this Fourier transform exists.

Lemma 6.2. Let ¢ : R" xR, x R — C be a measurable function and further let ¢ : R® - R
be a continuous negative definite function. In addition assume that q(-,t,€) : R* — C is
m-times continuously differentiable.

A. If for every multiindez a € N}, |a| < m, the estimate

|67q(z,8,€)| < Ca(l +¥(£)) (6.8)
holds with C, independent of = and t , then we find for all p € C§°(R™)
|(pa) "(m,t, )] < Cp1 + nl?)™2(1 + %(€))- (6.9)
B. Suppose that there are functions p, € L'(R"), |a] < m such that
|07q(, 1, §)| < pa(2)(1 4+ 9(£)) (6.10)

holds. Note that the right hand side is again independent of t. Then we have for all k €
No, |k| < m, the estimate

1@(1,8,6)] < Fem Y lallr (1 + )21 +9(€)) (6.11)

lal<k
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Proof. Compare [15] for the time independent case.
A. For 3 € N3, |8| < m, we have

? [ oot ois

-| [ @t
[ =@ etz €)do
< T (O)ea+ven el

v<B

< Cpu(L+9(8))
which leads to

(1+1n%)™ |(a)"(n,, €)1 < @m)™/2C(1+ 9(€))
i.e. (6.9) is proved.
B. We may use the calculation of part A to obtain
[ o] = | [ emotan e
n ]Rn
< sl (1 +9(8))

which gives for k < m
L+ [nl)*21@(m, 6, €)] < Fkn Y, llosllor (1 +%(€))
1BI<k
and (6.11) is proved. O
In order to prove a first consequence of Lemma 6.2 we need

Lemma 6.3. Let k € L'(R"). Then we have for allu,v : R* x Ry — C such thatu(-,t),v(-,t) €
L2(R")

/ X k(€ — n)U(n,t)v(E,t)dndﬁ‘ < 1kllz flul O llollv (s D)llo (6.12)
Proof. Using the Cauchy-Schwarz inequality, we find

/Rn /R k(€ — mu(n, t)v(§, t)dnd§’

/| (( [ ke —nien) " ([ e mimaran) Iv(£,t)|) P

1/2
< Wtiiolo ([ [ tite =l Panac )
< Ml et Dl Bl

where in the last step Young’s inequality was used. O

N
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Proposition 6.4. Suppose that g : R" xR, xR" — C satisfies the assumptions of Lemma
6.2.A for m 2 n+ 1.Then for every ¢ € C(R™) and for all u : R® x Ry — C such that
u(-,t) € HY2(R"™) it holds

lle(g(z,t, D))ul, t)llo < Gollul, E)lly,2 (6.13)
with ¢, independent of t > 0.
Proof.  We will prove (6.13) for all ¢ € C°(R") and all u : R* x Ry — C such that

u(-,t) € S(R™). Note that for u,v : R®™ x R, — C, such that u(,t),v(-,t) € S(R™) we have
by (6.9) and Lemma 6.3

|((‘P(Q(x7 t, D)u)('v t),’l)(', t))0| =

/ / (00)" (€ — m,t, 7Y, O3E, Bdnde
R~ JR"

<o [ [ rle =Py A+ vl . Ol Oldnds
< Cngn,n+l”(1+'d}('))'&(')t)”O”i)(')t)”O
< BluCBllpallvC )l
. l(p(g(z, t, DYu)(-,£), v(-, ))o]
Y\, i, u)-,t), v, 0 ~ .
S S TeK s Sl Ol

which implies the proposition by the density of the Schwartz in the space HY*(R").

a
The proof of Proposition 6.4 shows already a principal problem when estimating a pseudo-
differential operator with negative definite symbol in some of the spaces H¥>*(R™). In order
to improve (6.13) to a global estimate. i.e. to

llg(z, ¢, D)u(:,t)llo < cllul- 8)llv.2

additional assumptions on ¢(z,t, D) are necessary.
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We will consider time dependent symbols which decompose as follows
Q(x,taﬁ) = Q1(t,€) +q2(.’5,t,§) . (614)

Of course, we have still to assume that ¢(z,¢,-) : R® — C is for all z € R" a continuous
negative definite function. In addition, we assume that ¢;(-,t) : R® — C is also a continuous
negative definite function. The operator ¢; (¢, D) and g(z, t, D) will be estimated separately.

Note that decomposition (6.14) may arise when freezing the coefficients, i.e.
q(m’ t7 5) = (1(330, t, 6) + (q(.’L', tv é) - (I(-'L'o, ta 6))

Next we will need some general assumptions on ¢; and gs.

Assumption 6.5. We assume that the function q : R* x Ry x R™ — C is a time dependent
continuous negative symbol having the decomposition q(z,t,&) = q1(t,€) + q2(z,t,€) into a
continuous function g, : Ry x R® — C such that q;(-,t) : R®™ — C is negative definite, and
a continuous function ¢z : R®™ x Ry x R® — C . Further let ¢ : R® — R be a fized negative
definite function. A.1. The function q, satisfies for t > 0 fixred with vy > 0 and v1,7, 2 0
all independent of t, the estimates

0¥(§) < Re qi(t,€) < my(§), forall[¢] > 1,t €Ry, (6.15)
and
IIm q1(¢,€)| < v2Re q1(¢,€), forall§ €R™,t€R, . (6.16)
Note that (6.15) and (6.16) implies
1+Re qi(t,€) < 1+]a(t, 8] < m(1+9¥(8)), (6.17)

for all§ € R™, allt > 0 with some v; > 0 independent of t.

A.2.m. For m € Ny, the function x — g¢(z,t,£) belongs to C™(R"™) and we have the
estimate

|02 ¢2(z, 8, €)| < palz)(1+ ¥(£)) (6.18)

for all @ € N3, |a| < m with function p, € L*(R™), i.e. the right hand side of (6.18) is
independent of t.

We start with estimates for the operator ¢ (¢, D).

Proposition 6.6. We assume A.1. For any s € R the operator q,(t, D) satisfies the esti-
mates

g1, D)u(-, ) |lp,s—2 < i llu(, ) ||w,s (6.19)
and
llgr(t, D)ul:, t)|ly,s—2 = Yollu(, )llg,s — Xollw(-s ) |ly,s—2 (6.20)

with a suitable constant g independent of t.
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Proof. It is sufficient to prove (6.19) and (6.20) for all v : R* x R, — C such that
u(-,t) € S(R™). For s € R, we find using (6.17) i.e.

that

14+ Re q1(t,€) <1+ g1, 8] < (1 + ()

”ql (t7 D)'LL(, t) ”3,3—2 =

<

/Rn(l +9(6))° 2lan (8, (€, t)Pdg
gl /Rn(l + (€)1 + 9(£))?|ale, 1)) de

Yellully,s

proving (6.19). To prove (6.20) observe that (6.15) , i.e.

Y¥(€) < Re q1(t,€) < mv(€)

holds for |£| > 1 and therefore we find

HQI (t’ D)u(', t) ||i,s—2

which implies (6.20).

\Y%

\Y%

A\

\Y

1

[, A+ v e OPfaE s

+ / (1+9(€) s (1, € PIa(e, £)Pde
B1(0)

/Bc(o) (1 +9(6))°*(Re q1(t,8))*[a(€, t)|*dE

2 / (1+ (€)X (B(©)ae, 1) 2de
B§(0)

2 S| 294 A2
2 /B o LV IEE O 3 /B

73““(’t)||12/:,s -

%

(0)(1 +9(€))**[a(¢, ¢)|*d¢

c
1

/ v o

By

2 / (1+$(0)°[a(c, B)de
Bi1(0)

’anu('yt)”ﬁ:,s -

"%

sup (1+9(€))*lu(, I} -2

£€B1(0)
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Corollary 6.7. Suppose that I£llim Y(§) = 0o. Then we have in the situation of Proposition
6.6 for everye >0 and s >0

llgr (¢, D)u(, O)llw,s—2 2 (Yo — E)llul; ) llp,s = Acllul; E)llo, (6.21)

for some A 2 0 independent of t.

Proof. Since I£llim Y (&) = oo, we find for € > 0 a suitable constant p. > 0 such that

1+ 9() < %(1 - 9(O)

holds for all £ € R", |£| > p.. Note that the case A\g = 0 is trivial. It follows that
B0l = X [ 1+ w() - ate e
= 8 [ ue) Tl P
B (0)

+32 / (1+ () 2[ae, o) Pde
By, (0)

N

& / (1+ p(©))1(E, 1) de
Bg (0)

+A3( sup (1+w(§))"2) / s, €)[2de

z€B,, (0) B, (0)
e¥llu(, )5, + Allul 1)IIG

N

Hence (6.20) implies
llga (¢, DYu(s )llgs-2 2 olluls B)llgs = Aolluls )llws—2 = (v0 = )l|ul D)llv,s = Acllu(:, )0
O

Remark 6.8. It is possible to get a smaller value for X\, but we do not need it later on.

Next we want to estimate the operator go(z,t, D) assuming that gs(z,t,£) fullfills A.2.m
with a suitable large m.

In the following [A,B] denotes as usual the commutator of two operators A and B, i.e.
[A,B] = AB — BA.

1
Theorem 6.9. Let s > 3 and assume that go(x, t,€) satisfies A.2.m with m > n+2s. Then
we have

“[(1 + w(D))sa(h(xvta D)]u(vt)llo < kn,m,s,tp Z Il‘pallLlllu("t)|I¢,23+1 (622)

la|<m

53



for all u : R® x R, — C such that u(-,t) € H¥?**1(R"), where
kn,mw‘?ﬂ/’ = (27T)_n/2228+3sc'¢/);?m,nzn,m-23 (6-23)

with Cum—2s, Ymn and ¢y as in (6.4)- (6.6), i.e.

a7 (———(m ) ”) i

2
/ (1 + |z>)~(m=29)/2gg = =: Chm-2sy M—28>N.
RP r m — 2s
(%)
Proof. For s > %, by Lemma 6.2. B, we have
~ ~ -m/2
@B =1t < Fm 3 Neall L+ 1€ =112 (1 +9(m)) - (6.24)

|| <m

Now for u,v : R* x R, — C such that u(-,t),v(-,t) € C§(R"), we find using (3.29) and
(6.24)

([ + (D))", ga(a: £, DYl ), 0 )|
= (2n) "2 / / B(€ — 1, t,m) (L+B(E))" — (1 +(m)*) A, 9L, £)dmde
R" JRn

(2m) 2250y Fmn D llallzr

lo|<m

8 / . / (1416 = n2) "% (1 + v(n) “F* [@(n, £)|[5(, )| dndé
< kn,m,s,¢ Z ”"/}a”Ll||u("t)||¢,2s+1l|v('at)”0a

le|<m

which implies (6.22) and (6.23). a

IN

1
Corollary 6.10. Let s; > 0, s5 > 3 and assume that gz2(z,t,€) satisfies A.2.m. with
m > n+ 28, + 2sy. Then we have with a suitable constant ¢,

I+ (D)), qale, t, DYul, t)lly 0y S € D Nallrllul, ) lg2ss 2001 (6.25)

o] <m

Proof. Since

12 +%(D))*, ga(z, ¢, D)]u(:, )l 24,
= [T+ 9(D)*[(1 +$(D))*, q2(z, ¢, D)Jul:, £)llg

and

(1 +9(D))?[(1 + (D)™, g2(=, 1, D)]u(z, 1)
= [(1 + ¢(D))81+82a Q2(x7 t D)]u(z’ t) - [(l + ¢(D))82, Q2(x7 2 D)](l + w(D))Slu(x’ t)

54



It follows from Theorem 6.9 that

(1 + (D)™, ga(=, t, D)]ul-, )|l 2,
||[(1 + (D)) 2 go(x, t, D)Ju(:, ||0
+ I[(1 + (D)), g2(z, t, D)J(1 + 9(D)) ™ u(-, )l

¢ Y llallrllul t)llvamszser + ¢ Y lallr (T + (D)) ul:, ) 20

laf<m laj<m

¢ D lleallallul, Dllvzarzen

|a|]<m

IA

IN

IA

O

Now we can show

Theorem 6.11. Let s > 1 and suppose that g2(x,t,&) satisfies A.2.m with m > n+ [s] + 1.
Then we have for all s; > 0 and u : R® x R, — C such that u(-,t) € HY*1*2(R"), the
estimate

||q2(a;,t, D)u(',t)ll¢,sx < En,mmﬂll“u(" t)||¢,81+2 (626)
where for s; = s, we have
E‘n,m,s,’t/) = (§n+1,na{n,n+1 + kn,m,%,l/)) Z ”(»Oa“lzl (627)
laj<m

where knm,2.y is defined as in (6.23), i.e.
kn,m,s,zp = (27r)_n/2228+3sc¢:)7m,n’cvn,m—28'

Proof. A. First note that for u(-,t),v(-,t) € S(R"), we have

/ a2(z,t, D)u(z, yo(z, t)dz = / / Go(E — 0, t,m)a(n, tYCE, Ddnde
Rn n JRr

since by Plancherel’s theorem

/ g2z, t, D)u(z, t)v(z,t)dz
Rn

(Q2(xa t D)u(? t)v ’U(', t))
((QQ(QI, 12 D)u) i (" t)v 6(7 t))) )

I

and

(@let, D)) (6,0 = 2y [ e ( / e"“”qz(fc,t,n)ﬂ(n,t)) dndé
n R"
= @n) / / €=~ go(z, 1, m)(n, £)dnde
= [ @ - ntmam e

%3]



We find
[ ala.t, Dyutz, oGz, e
= [ [ (e = m,tnyatn, 5 D,
Applying Lemma 6.2 B and Lemma 6.3, it follows that

|(g2(z, 8, D)u(:, 1), v(- t))ol

~ _ntl
o 3 lealls [ [ @+ le=nP)
R™ JR"

ja|<n+1

x (14 (n))[u(n, t)|[0(€, t)|dnd€

FarrnCanir D @allpllul, Ollp2llvC o
lal<n+1

IA

IA

which implies

”q2(x>t,D)u("t)”0S§n+l,n’cvn,n+l Z ||<Pa\|L1||U(',t)[|¢,2 (628)

lo]<n+1

i.e. (6.26) for s; = 0,and all constants are independent of ¢.
B. Next let s > 1 and observe that

lg2(2, 2, D)u(:, )y, = [|(1 + $(D))*? 0 go(z, t, DYul-, 1) ..
= [[((1 +%(D))*? 0 ga(x, t, D)u(-, 1)) + (g2(x, t, D) o (1 4 (D)) ?u(-, 1))
= (@(,t, D) o (1+$(D))**u(:, 1)) | 12
||q2(3:, t, D)(1 + ¥(D))*2u(-, t)“0 + || ((1 + (D))*? o gy(, t, D)u(., t))
~ (92,8, D) +%(D))"*u(-, 1)) |,

IA

||q2(x,t,D)u(-,t)||¢,s
< lga(=, t, DY+ (D) *u(:, t)llo + I[(1 + $(D))*/?, g2, t, D)]u(-, )0

Since (1 + (D))"’ maps H¥*(R™) bijectively and bicontinuously H¥*~"(R") with ¢t >
r > 0, then we find for u : R® x R, — C such that u(-,t) € H¥**2(R") that

1+ 9(D)*?u(-,t) = v(-,t) € H¥CHD=*(R™) = H¥*(R"),
and therefore

llga(z, ¢, D)(1 + (D)) ?u(-, 1),

< Fnttnuntr Y leallor [l )]y, (6.29)
ja|<n+1
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On the other hand, we may apply Theorem 6.9 with s replaced by s/2 to get
111+ 9(D)?, ga(z,t, DYu(, )|y < kagmgw D lpallnslluls t)llp,sen (6.30)

o] <m

which leads together with (6.29) to

laz(@, ¢, DYu(,t)lly,s € Fas1nantt + kamgw) D lealliallul, t)lvsrz

le|l<m
and the theorem is proved for s > 1 and m > [s] +n + 2. a
Remark 6.12. Note that our proof of Theorem 6.11 yields the estimate
”‘h(mvt’ D)u( )”d; sg = n,sz,w,m Z ”wa“L‘”u('vt)”V),sz+2 (631)

lo|<m

for all sy > 0 with m suitably large.

Note that in the following theorem the relations of the constants in (6.21) with s — 2
replaced by s, i.e.

g (&, D)u(, )lw,e-2 2 (Yo — E)llul, D)lly,or = Acllul- D)llo

and the constant ¢, m s, ¢ from (6.27), i.e.

En,m,s;,'n/) = (5n+l,nan,n+1 + k"n,m,izl,l,b) Z ”(Pa”[,l

laj<m

will become important.

For simplicity, let us restate (6.21) as

HQI(ta D)U(’,t)l|¢,31 2 7770”11'(" t)”¢,31+2 ~ Tn.s ||’U,(, t)“O (632)
which holds for all s; and 7,0 < < 1. Further recall the estimate (6.26)

||q2($,t, D)U('»t)ﬂw,sz < En,m,32,1/1||u(" t)||¢,82+2
and for sy > 1and m > n+ [s] + 1:

llg2(z,t, D)ul:, )l yp,s1 < CoimosywllPallirllw(; E)lly,s 42 (6.33)
where Cpm s, = (%H,nEan + kpom, 321,,,,). Combining (6.32) and (6.33), we get
”(J(m’tv D)u('vt)“w,sl > ”ql(t’D)u("t)“Vl,sl - |IQQ(III,t, D)u('vt)”d&sl
> myollul t)llpasz = MellC o = Enmans Y Noallzrult)lpers2
la|<m
= | m0—CGmaw P loaller | a0 lpsraz = T lul, )llo

la|<m

Thus we have proved
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Theorem 6.13. Suppose that q(z,t,&) = q(t,£) + g2z, t, &) satisfies A.1 and A.2.m with
m > n+ [s]+ 1 for some s > 1. Further assume that for some n € (0,1), we have

E:nvmvs:w Z ”(pa“L1 < 7770 ° (6'34)

laf<m

Then we have for all u : R* x Ry — C such that u(-,t) € H¥*(R"™), the lower estimate

llg(z, &, D)u(-, )llps = Sollul, t)llwsr2 = Ynsllul,)llo (6.35)
with
8o =10 — Cnmsy Y lPallr >0 . (6.36)
o] <m

Remark 6.14. Later on, we will see that often
(g(z,t, D)u(-,t),u(-,t))y =0 (6.37)

holds for all u : R™ x Ry — R such that u(-,t) € H¥?(R"). Taking in (6.35) s = 2, we find
then for all A > 0,

la(a, t, Dyu(-,t) + Mu(-, )3
= HQ(xa t D)u(’ t)llg + 2’\(‘]('737 t D)u('a t)a u('> t))O + )‘2”'“(" t)”g
> ||Q($,t,D)U(',t)||g + ’\2“u(vt)”g

or

”(I(x’ ta D)u(7 t) + Au(a t)”o 2 HQ(x’ t7 D)u(’ t)”o + A “’U.(, t)“O
2 o llul, )y — ymallul, t)llo + Miul, )llo

Thus for A > 7,2, we have under the assumption (6.37), i.e. (¢(z,t, D)u(-,t),u(-,t))o >0
lg(z, t, D)u(-, t) + Au(-, t)llo = dollu(-,t)lly.2 - (6.38)
In order to prove regularity results with respect to x € R™ for solutions of the equation
q(z,t, D)u(z,t) = f

we have to introduce the Friedrichs mollifier : The operator

n

Je(w)(2,8) = (o % w)(z, ) = / jelz — y)uly, H)dy

where j : R® — R is the function

i(a) = { coemp((leff = 1)), lel <1

and ' = ||

|lz|<1

exp((|z|* — 1)~1)dz, is called the Friedrichs mollifier.

58



For € > 0 set je(z) := "5 (£). It follows that j. € C°(R"), je(z) > 0, sup je = B:(0)
and [p. je(z)dz = 1.

Proposition 6.15. Let J. be defined as above, i.e.
Je(u)(z,t) :== /R Je(z — y)u(z, t)dy = (Je * u)(z,t)

For any s; > 0 and u : R® x Ry — C such that u(-,t) € H¥*'(R"), we have for t > 0 fized

J(w)(,t) € () HR™) [ C=(R™) (6.39)
and
(e (s ) llgss < N5 ) s (6.40)
as well as
lim [|Je(u) (- 8) = u(*, 8)|g,e = 0. (6.41)

In addstion, if for € € (0, p),p > 0, we have for some u : R* x Ry — C such that u(-,t) €
L%(R"),

1 Je(@) (s )lg,sr < Cupont (6.42)

with a constant independent of €, it follows that u(-,t) € H¥*1(R").

Proof. A. For s, > 0, we find

19Ol = [ (14 6(E)™ |G w) (€ 0P de

= o [ arver o] aeor e

Since j. € C(R™), it follows that j, € S(R™). Hence there is a constant c, ,  such that

(1+9(€)2[7(€)] < Copyone(1+ $(€)
which implies || J; (u)(-,1)]12 ,, < Cop sy ellu(, 1)II3 o, » hence we have Je(u)(-,t) € | HY*2(R)

s220
and (6.39) holds.

B. The lemma of Riemann-Lebesgue implies

35(5). = ’3(55)’ < 272§l = (2m) /2
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which yields

~ 2 9
3(6)| lae(e, 0 de

e DI, = @) / 1+ ()"
s
[ e e o e

= |lu(, I},

INA

C. In order to show (6.41), observe that
),8) = u D, = [ (19007 s 0(6,0) (e, O

= @y [ @+ ul©) o - o] ate opae

Since 7.(¢€) = j(e€) — 7(0) = (2m) ™/ and
dominated converges theorem yields

li-r-}(l) | Je(u)(-,t) — “("t)”?bm =0

35(€)| < (2n)™™2 for all ¢ € R* and € > 0 , the

It remains to prove that (6.42) implies u(-,t) € H¥*'(R"). From (6.42) it follows that
(J1/n(uw)(-,t))n>1 converges weakly for ¢t > 0 fixed in H¥*1(R™) to some element v(-,t) €
HY¥*1(R"). By the linearity of the continuous embedding of H¥*1(R") into L?(R"), it follows
that (J1/n(w)(+,t))n>1 converges also weakly in L*(R™) to v(, t).

But by (6.41) above we know that (Ji/,(u)(+,¢))a>1 converges strongly in L*(R") to u(-, t),
hence u(-,t) = v(-,t) and u(-,t) € H¥*1(R").

O

Theorem 6.16. Suppose that g2(z,t,&) satisfies A.2.m. Further let s; > 0 such that |s; —
1l+n+1 < m. Then we have for all € € (0,1] and all u : R* x Ry — C such that
u(.’t) = H¢,81+1(Rn)

IlJe, g2(, 2, D)l 1)y 6, < clluls B)llpsi41 (6.43)

with a constant ¢ independent of € € (0,1] andt >0 .

Proof. First observe that

(1o a2, D)z, ) (@)
= @0 [ @le—nt ) - Fen)an an (644)

Further we claim
(5(e€) = G(en)) (1 + )2 < (1 + |6 — n)/? (6.45)
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with ¢* independent of € € (0, 1].
In fact, since [j(€)| < (27)™2 for all £ € R", we have for |¢ — 7| > 21¢l,

7€) — F(em|(1 + |€[2)"/2
< 202m) (14 [€?)E < A+ | — n?)?

On the other hand, for |¢ — n| < 1|¢|, since j € S(R™) we have Vj(£) < &(1 + [¢[2)V/2,
the mean-value theorem yields for € < V2.

[7(e€) = lem)| (1 + e/
1/ 1/2
< leg-ane(1+[5]) T arm™

2N\ —1/2
< '1+¢€ -1 )”"’(E2 I€2|) (14 g% (6.46)

and (6.45) is proved.

Now we get using (6.43), Lemma 6.2 B, (6.45), Peetre’s inequality for continuous negative
definite functions , and the estimate

(1 +9(8) < cp(1+ €7

(14 9(E)*2(Uerga(e. 1, D)u(a, 0) )
= x| [ ae - ntn) (3(e0) ~ Flem) (1+ v aln, Odn
Rn

% / (L4 1€ = nP) ™21+ w(m) (1 + |E — n2)2

1/2
S (14 00 e e

IA

IA

[l =Py @ e - m) 7 0+ vl . Ol
/ (14 1€ — n2)~=255 (1 4 () ™ @, ©)dn

IA

with ¢ independent of € € (0,1] and ¢ >0 .
Now, we finally get by Young’s inequality

_ m+1+4|s
1196, aa(@t, DI, Olly,, < [0+ )75

< c||u("t)”¢,81+1

(L9 () a1

which is independent of ¢ € (0, 1]. O
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Theorem 6.17. Suppose that q(z,t,€) = q1(,€) + q(z,t,€) fullfills A.1 and A.2.m with
m > [s1] + n+ 2 for some s; > 0 and (6.34)

L€ Cnmsip Z lealler <my0  for 70> 0andn € (0,1) .

lof<m

Further suppose that for some A € R and t > 0 fizred f(-,t) € H¥**(R"). For a solution
u:R™ x Ry — C such that u(-,t) € H¥***(R") to the equation

gx(z,t, D)u(z,t) = q(z,t, D)u(z, t) + Au(z,t) = f (6.47)

Then it follows that u(-,t) € H¥*'+2(R").

Proof. Using Theorem 6.13, we find

8o [[Je(u) (-, )l 0142 = Tmsn (19 (@) (5 D)o = AT (w) (5 D)y,
lg(z, ¢, D)Je(w) (-, t)lly,0, — IATe(u)(, D)l o,

llg(z, ¢, D)Je(u) (- 2) + AJe(u) (-, Bl

1Je(g(z, 2, D)u(,t) + Au(, )y o, + 16, g2(2, 1, D) (w)(, D)l 0,
IJe(F) 3 )l 5 + N1e, g2(, 2, DY () (- D)l o,

Thus we get by Theorem 6.16
o (@)l gpaz < NN )y, + Jes 2(z, 8, D) )y,

FIMITe (@), )llp.or + Fnonll Je (@) (5 E) g0
< NG Dllwin +2llul, )llys + clluC, )lly,s

with ¢ independent of £ € (0,1],and ¢ > 0, therefore the theorem follows from Proposition
6.15 .

A A A

O

We introduce the t-dependent sesquilinear form
B(t;u,v) := (g(z,t, D)u(-, 1), v(:, 1)) (6.48)

which is associated to g(z, t, D) and defined for all u,v : R*xR, — C such that u(-,t),v(-,t) €
C§°(R™). Clearly we have the decomposition

B(t;u,v) = B (t;u,v) + B%(t; u,v) (6.49)

where B (t; u,v) := (q1(¢, D)u(:,t),v(-, 1)), and B2(t;u,v) := (g2(z, t, D)u(-,t), v(, 1)),
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Proposition 6.18. Suppose that q; satisfies A.1. The sesquilinear form B% satisfies
|B*(t;u,v)| < mlluC, Ollyallvl )y, (6.50)

for all u,v : R® x Ry — C such that u(-,t),v(-,t) € HY}(R™) with v, as in (6.17).

Furthermore we have with some Xo >0,

|B% (£ u,v)| = ReB% (t;u,v) 2 yollu(-, )5, — Xollul, 1)} - (6.51)

Proof. 1t is sufficient to prove (6.50) and (6.51) for all u,v : R® x Ry — C such that
u(-,t),v(-,t) € S(R*). From (6.17)

ie. 14+Req(t,&) <1+ |q(t, €| <md+v(E))

we deduce

|B® (t;u,v)] =

/ (6, ), 03CE D

< m [ A+ vl Dlds
Ml oo,

IA

which proves (6.50).
To see (6.51) observe that

|B(t;u,v)] > ReB(t;u,v)

- / Reqy (t, €)[a(€, t) Pde
]Rn
> 7 / B(E)[aE, 0)[2de + / Req (t, ) A€, £) Pde
B£(0) B1(0)
> olluC, Dl = ok, DI ~ sup Rear(t,6) = 10@)l ., Ol

and (6.51) is shown. a

Remark 6.19. Since ¢;(t, D) maps real-valued functions onto real-valued functions, it fol-
lows that for real-valued u(-,t) € H¥'(R"), we have

B (t;u,v) > Yollu(-, )12, — Nollu(, t)|[3. (6.52)

Next, we will estimate B
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Proposition 6.20. Suppose that A.2.m. holds for m > n+2. Then for all u,v: R*" xR, —
C such that u(-,t),v(-,t) € H¥(R"), the estimate

B2(tu,0) < ks Y leallsllul, OllgalloC, Ollv, (6.53)

o] <n+2

holds.

Proof.  As in the proof of Theorem 6.11, we find for u,v : R® x R, — C such that
’U,(',t),'v(-,t) € S(Rn),

|B%(t;u,v)| =

/R (e, t, D)l 0)o(a, s

:)'/n+2,n Z “"pa “L1

Ja|<n+2

< [ g =Py @+ v, olale, Dldnde

nt2 1/2
S 3 i | - (1228)

la|<n+2

IA

IA

x (1+ ()" [5(n, )] (1 + v (€))"/* [a(€, t)|dndé

< \/5"%+2,n(lvcw)l/2 Z ”‘F’m”L1
|al<n+2
x [ @l =y @ w0 + ()0, Ol ldndg
< ke Y el ol huallut, Ol (6:549)

|a|<n+2

with ky = \/5(1 \ C¢)1/2§n+2,n’5n,n+l-
O

Combining Proposition 6.18 and Proposition 6.20 , we obtain the following

Theorem 6.21. Suppose that g;(t,£) and g2z, t,&) satisfy A.1. and A.2.m. withm > n+2.
Then we have for all u,v : R® x Ry — C such that u(-,t),v(-,t) € H¥(R"),

|B(t; u, )| < cllul, )llwalloC,B)llvs (6.55)

Further we have

Theorem 6.22. Suppose that ¢1(t,€) and ga(x,t,&) satisfy A.1. and A.2.m. withm > n+2.
Assume further with ky from (6.54) that

Si=y—k Y llealr>0 (6.56)

laj<n+2
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Then we have for all u : R* x R, — C such that u(-,t) € H¥'(R")
1Bt u,0)] > ReB(tu,) > &yt )%, — Sollul, O3 (6.57)
where Ao is taken from (6.51).

Proof. Using Proposition 6.20 and Proposition 6.22, we get

|B(t; u,u)| Re B(t;u,u)
B%(t;u,u) — |B%(t; u, u)]
Yollu(, )15, = Aollul-, )3 — k2 Z lallzllu(, )2,

la|<n+2

AV AVARAY)

Sollu(:, £)113,1 = Nollul-, I3

O
Corollary 6.23. In the situation of Theorem 6.22, we have for all A > o
| Bx(t; u,u)] > ReBi(t;u,u)
= ReB(t;u,u) + Allu(, I}
> &lluC, 5, - (6.58)

Next, let us suppose that ¢1(t,€) and go(z, t,€) satisfy A.1. and A.2.m. and m > n + 2.
Further let f:R"™ x R, — C such that f(-,t) € L2(R").

Definition 6.24. We call u : R* x R, — C such that u(-,t) € H¥!(R") a variational
solution to the equation

ax(z,t, Dyu(z,t) = q(z,t, D)u(z,t) + Mu(z,t) = f (6.59)

B}\(t;u, ()0) = B(t;u’ (P) + /\(u(’ t)a @("t))o
= (f(-),0(8))o (6.60)

holds for all ¢ : R® x Ry — C such that ¢(-,t) € C(R™), or equivalently for all ¢(-,t) €
H¥1(R").

Note that by applying Theorem 6.11 with s; = 0 ,then we can see that a variational
solution of (6.59) with u(-,t) € H¥%(R") satisfies (6.59) already in the strong sense . i.e.
o (z,t, D)u(-,t) € L*(R™) and (6.59) is an equality in L?>(R™),¢ > 0 being fixed , compare
Theorem 6.11 which provides the regularity estimates for variational solutions needed for
this statement.
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Theorem 6.25. Let ¢i(t,&) and g2(z,t,€) satisfy A.1. and A.2.m. with m > n+ 2 and
take \g from (6.52). Moreover assume (6.56), i.e. & > 0. Then fort > 0 fized and every
A > )Xo, there erists a unique variational solution u : R* x Ry — C to equation (6.59), i.e.

Bi(t;u, ) = (o(-, 1), (-, 1))o

for all ¢ : R* x Ry — C such that ¢(-,t) € C*(R").

Proof. First note that by

[(o(,8), £ 8))ol < IFC Dol B)llo < (LA DT )l (6.61)

every f(-,t) € L*(R"), f : R® xR, — C defines a continuous linear functional on H¥1(R"),¢
being fixed. Moreover, Theorem 6.21 and Theorem 6.22 implies

|Ba(t;u, )| < 1w, O)llgallel t)llpa
and
| Ba(t; w, u)| > ReBy(t; u,u)) > (51||u(-,t)||,2,,,1, 61 >0

Thus, the Lax-Milgram theorem gives the existence of a unique element u(-,t) € H¥!(R")
such that

Bk(t; u, "p) = (‘P(a t)7 f(a t))O
holds for ¢ : R* x Ry — C with ¢(+,t) € C§°(R"), which proves the theorem.
O

We want to prove that the unique variational solution constructed in Theorem 6.25 has
more regularity properties.

Theorem 6.26. Let g(z,t, D) = ¢:(t, D)+q¢2(z,t, D) and u(-,t) € H¥*(R"), f(-,t) € L*(R™)
be as Theorem 6.25 and assume Theorem 6.17 with s; = 0. Then u(-,t) belongs to H¥2(R™).

Proof. Denote by Ji, e € (0,1], the Friedrichs mollifier and fixed ¢ > 0. Further let (ug)ken
be a sequence of function u; : R® x Ry — C such that ug(-,t) € C°(R"). Assume that
(uk(-, 1))k € N converges in H¥1(R") to u(,t). It follows that

B/\(t; JE(uk), (P) = (q(a:,t, D)Je(uk)("t) + ’\Je(uk)('?t)’ ‘P(‘,t))o
(Js((Q(x, L D) + /\)uk(" t))a ‘P('; t))o - ([Jev q(.’L’, t D)]uk('1 t), 90(', t))o
= BA (t; Uk, Je(‘P)) - ([‘]E’ Q2(xw t’ D)]uk(a t)v (P(', t))o

From Theorem 6.16, we obtain (for k large)

Ve, g2(2, t, D)]uk (-, D)llo < cllu(, t)llwa < uls )y

implying that [J,g(z,t, D)uk(-,t) — we(-,t) in L%(R") for some w,(-,t) € L*R") and
lwe (-, ) llo < €||u(:,t)||y,1 for € € (0,1] with € independent of .
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Thus for £ — oo, we obtain

B)\(t; Je(u)’ (P) = B/\(t; u, Je(‘P)) - (ws(" t)a ‘P)[)
= (Je(@)(, 1), F(31))o — (we (-5 1), (-, 8))o
(‘10('7 t)7 Je(f)(v t))O - (we(" t)7 ‘p('a t))O

It follows that

lax(z,t, D)Je(u)(,t)llo < I1Je(S)C ) llo + lwe (-, )llo < (5 8)llo + €llul, )l
llga(z,t, D)Je(w) (> t)llo < [Alllulst)llo + [1F (5 E)llo + €llul, )l

which implies by Theorem 6.13 that ||J.(u)(,t)|[y.2 < ¢ for all € € (0, 1] with ¢ independent
of € € (0,1]. Thus, we have u(-,t) € H¥?(R") by Proposition 6.15.

0
Combining the results for B(t,-,-) with Theorem 6.17, we get

Theorem 6.27. Suppose that q(t,§) and g2(z,¢,§) satisfy A.1. and A.2.m.withm > [s)] +
n+2, sy > 0. Moreover assume (6.34) as well as (6.56) (with s instead of s). If A > Ao, Ao

taken from (6.51), and f(-,t) € H¥*2(R™), then there erists a unique variational solution
u(-,t) € H¥*2+2(R") to (6.59).

Note that Theorem 6.27 tells that in particular every variational solution to (6.59) is
already a strong solution.
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Part VI

The Operator —q(z,ty, D) as
Generator of a Feller Semigroup
& Fundamental Solutions for

g_t T Q)\<$,t,D)

7 The Operator —q(z,ty, D) as Generator of a Feller
Semigroup

Let us assume that g(z,t,&) satisfies the conditions of Theorem 6.27 and fix
t =ty > 0. In this case, It follows from conditions in [15] , see also [11], that —q(z,t, D)
extends to a generator of a Feller semigroup. Note that in the following we let —g(z, to, D)
act only on functions depending on x. We will summarize the arguments leading to the
above mentioned result.

Our aim is to use the Hille-Yosida-Ray theorem to get the Feller semigroup generated by
—q(z,to, D), to > 0 being fixed.

The three conditions of the Hille-Yosida-Ray Theorem are the following (compare The-
orem 4.26) :

(1) The domain of —q(z, ty, D) is dense in C, (R™) when considered as operator in Co, (R™);

(ii) —g¢(z, to, D) satisfies the positive maximum principle on its domain;

(i) R(A + q(z,to, D)) is dense in Co(R™) .

As shown in [14] the operator —q(z,to, D) satisfies on C§°(R") the positive maximum
principle. However, solving (A + g(z,t9, D))u = f for a dense set in Coo(R™) such that
u € C§°(R") is hard to attack. In view of Theorem 6.27 we want to use as domain for
—q(z,to, D) same space H¥**?(R") with s such that H¥*(R") C C.(R"). This however

requires us to show that —q(z, ¢, D) satisfies the positive maximum principle also on this
larger domain. Here we just quote the corresponding results from [15] or [11] which we can

apply to —q(z, 9, D).

Theorem 7.1. Let D(A) C Co(R™R) and suppose that A : D(A) — Cw(R") is a linear
operator. In addition assume that Cg°(R™) C D(A) is an operator core of A in the sense
that to every u € D(A) there ezists a sequence (¢k)ken, Px € C°(R™), such that

lim [|¢x — ulleo = lim ||Apr — Aulloo = 0.
k—o0 k—oco

68



If Alcg satisfies the positive mazimum principle on Cg°(R™), then it satisfies the positive
mazimum principle also on D(A).

Now that let us come back to equation
gr(z,to, D)u(z, ) = q(z, to, D)u(z, ") + Au(z, ) = f (7.1)

For solving this we will not use the positive maximum principle, hence we may consider
complex-valued functions, i.e. we may work in spaces of complex-valued functions.

Let us suppose that we may extend gy(z,tp, D) to some space H¥*!(R") where ¢ is a
fixed real-valued continuous negative definite function.

In addition, suppose that 1 satisfies

P(§) = colé]™ (7.2)

for some ¢y > 0, 79 > 0 and all &.

Then it follows from the Sobolev embedding result that for s > rﬁ
0

H¥(R") = Co(R™) (7.3)
and

lulloo < Cs,ro,n“'u'”w,s (7.4)
holds.

Thus assuming (7.2), i.e. ¥(§) > ¢|¢|™ and having in mind some properties of the
operators considered in Part IV , we may consider operators gx(z,to, D) for to > 0
fixed on D(q(z,te, D)) = H¥**2(R")

ar(z,to, D) : H"“*"“(R”) — H'“(R”), (7.5)
and

||q,\(x, to, D)u(x’ ')”1/),3 < c“u”¢,s+2 (7'6)

Since now we have H¥**2(R") C H¥*(R™) C Co(R™), it follows that gx(z, to, D), i.e.
—qgx(z, tg, D) with domain H¥*+2(R") is a densely defined operator on Cy (R").

Moreover by Theorem 7.1 , the operator —gx(z, to, D) satisfies on H¥*+2(R") also the
positive maximum principle.

Thus by now,we have reduced an application of the Hille-Yosida-Ray Theorem to
solving the equation gx(z,to, D)u(z,-) = f, in the space H¥*+2(R") for (all) f €
HY*(R")
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We may now work in the scale of Hilbert space H¥*(R") and may consider first vari-
ational solution.

Suppose that for some A > 0 there exists for all f € L?(R"), a variational solution
u € H¥!(R™) to (7.1) , i.e. we may extend the sesquilinear form

B)\(tO’ u, 30) = (Q(J), to, D)’U(.'L', '), QD(l', ))0 + /\(U(il?, ')’ QO((E, ))0 (77)
to H¥!(R™) and that for any f € L*(R") there exists u € H¥!(R"™) such that
B/\(tO) u, 90) = (‘707 f)O (78)

holds for all p € H¥1(R™).

Thus in the scale H¥*(R"): we need to prove that f € H¥*(R") always implies for a
variational solution u € H¥!(R") that u € H¥**2(R").

We will consider the operator handled in Part IV . Let 9 : R® — R be a fixed continuous
negative definite function satisfying

P(€) = colé|™ (7.9)

for some ¢y > 0, 19 > 0 and all [£| > 1.
Further recall the definition of ¢, x, ¥ and ¢y given in (6.5)- (6.7).
We want to apply Theorem 6.27 with s; such that

HY*(R™) — Co(R™)

holds.

n
Thus, we have to take s > —, say
To

5= [3] +1. (7.10)

Assumption 7.2. We assume that the function q : R® x Ry x R® — C is a continuous
negative symbol having the decomposition

q(:c,t,&) = Q1(t,§) + q2($’t?£) (711)

and fiz t > 0 with ¢ as in (7.9), the following conditions are assumed: A.1. The function ¢
s assumed to be continuous and negative definite and to satisfy with ~y,y1 > 0

Y0¥(€) < Requ(t, &) < mw(€), forall |¢]>1 (7.12)
and |Imgq; (¢, )| < yoReqi(t,€), for all £ € R™.
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A.2mg Setmyg=s+n+2= rﬁ +n+ 3, note s > 1. We assume that x — go(z,t,£)
0

belongs to C™ (R™) for all £ € R™ and we have the estimate

|02q2(, 1, £)| < pa(z)(1 + ¢(£)) (7.13)

for all a € N7, |a| < mqy with function g, € L*(R™).
A.3mg. With ka from (6.54) and Come,3,4 from (6.27), we require

> II%IIUS%% (kiz/\ ! ) (7.14)

s
Ialsmo c111m07211/)

Note that A.8.mg. implies that (6.35) holds with §g = i’yo and (6.57) holds with §; = i%’
too.

Theorem 7.3. Suppose that Assumption 7.2 holds with s = [%] + 1. Then —q(z,to, D),
to > 0 fized, extends to a generator of a Feller semigroup.

Proof. Consider the operator (A, D(A)) on Co(R™) with domain D(A) = H¥**?(R™;) and
A = —q(z,t9, D). It follow by Proposition 6.6 and Theorem 6.11 that Au € H¥*(R") if u €
D(A), and therefore Au € Coo(R") a dense domain. Moreover, (—q(z,to, D), H¥*+%(R"))
satisfies the positive maximum principle.

Further we may apply Theorem 6.27, thus for A > Xo, Ao taken from (6.43), we find for
every f € H¥*(R") a unique u € H¥*+2(R") satisfying

(A - )\)'U,(Il?, ) = —q,\(m,tO,D)u(a:, ) = f

The theorem follows now by the Hille-Yosida-Ray Theorem.
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8 Fundamental Solution for % — qx(z,t, D).

In Part VI - Section 7 , we focus on pseudo-differential operators with time dependent
negative definite symbols and finally constructing Feller semigroups by extending the oper-
ator —q(z, to, D) to a generator of such a semigroup. The next step in this part is to use our
estimates in Part VI - Section 7 in order to prove that —gy(z, ¢, D), A is sufficiently large
and —qx(x, g, D) = A— X = —q(z, to, D) — ), extends to a generator of an L2-sub-Markovian
semigroup. Then applying Theorem 5.15, 5.16 and the results of Part IV , we may try to
construct a fundamental solution in a L?-context to the following parabolic problem:

@% +q(z,t,D)u(z,t) =0  and wu(z,0)= f(x). (8.1)
We will start by introducing the definitions and theorems of sub-Markovian semigroups on
L?(R™) which we collect from [14] . By definition, see Definition 4.6, a strongly continuous
contraction semigroup (7})s>0 on LP(R™) is called sub-Markovian if for all u € LP(R") such
that 0 < u < 1 almost everywhere it follows that 0 < T;u < 1 almost everywhere. In general
we give the following definition:

Definition 8.1. A. A linear bounded operator S : L*(R"*) — LP(R™), 1 < p < 00, 1is called
sub-Markovian, whenever

0<u<l1 a.e. implies 0<Su<1 a.e. (8.2)

B. A linear , bounded operator S : LP(R") — LP(R"), a < p < 0o, is called positivity
preserving, if

0<u a.e. implies 0< Su a.e. (8.3)

Remark 8.2. A strongly continuous contraction semigroup (T;)t>0 on LP(R™) is sub-Markovian
when each of the operators Ty, t > 0, is sub-Markovian. Moreover, we call a strongly contin-
uous contraction semigroup (T:)i>0 on LP(R™) positivity preserving if each of the operators
T;, t > 0 is positivity preserving.

Lemma 8.3. Let S : LP(R™) — LP(R") be a sub-Markovian operator. Then S is positivity
preserving.

Corollary 8.4. Any sub-Markovian semigroup on LP(R™) is also a positivity preserving
semigroup on LP(R™).
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Let (T;)t>0 be a sub-Markovian semigroup on L?(R") and consider its resolvent (R))x>o,
i.e., the family of operators

Ryu = /0 ” e MTu dt . (8.4)
Suppose that 0 < © < 1 a.e. The sub-Markovian character of T; gives
ongusfome-“ dt < % (8.5)
or
0<u<1 ae implies 0<ARu<1 ae. (8.6)

Moreover, (8.4) implies

o0
1
1Ryl < [ e Tl it < Slulon
0

i.e. AR, is a contraction on LP(R"™).

Definition 8.5. A resolvent (R)) >0 on LP(R™) corresponding to a strongly continuous con-
traction semigroup (Ti)i>0 on LP(R™) is called a sub-Markovian resolvent whenever (8.6)
holds. It is called positivity preserving whenever Ry is for all A > 0 a positivity preserving
operator.

Remark 8.6. The resolvent of a sub-Markovian semigroup is sub-Markovian and that of a
positivity preserving semigroup is positivity preserving too, which follows immediately from
(8.4).

Lemma 8.7. A strongly continuous contraction semigroup (T;):>0 on LP(R™) is sub-Markovian
if and only if its resolvent is sub-Markovian, and (T});>o s positivity preserving if and only
if its resolvent is positivity preserving.

Lemma 8.8. Let (Ti)i>0 be a sub-Markovian semigroup on LP(R™), 1 < p < oo, with
generator (A, D(A)). Then for all u € D(A) C LP(R™) we have
(Au)((u— 1) P! dz = yné% (T —w)((u—1)*P'dz<0.  (87)
R" - R™

Definition 8.9. A closed, densely defined linear operator A : D(A) — LP(R™), 1 < p < oo,
D(A) C LP(R™), is called a Dirichlet operator if for all u € D(A) the relation (8.7) holds.
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Remark 8.10. The notation of a Dirichlet operator was introduced by N.Bouleau and
F.Hirsch in [3] for self-adjoint operators on L?(R™).

Proposition 8.11. Suppose that a Dirchlet operator (A, D(A)) on LP(R") with 1 < p < oo,
generates a strongly continuous contraction semigroup (T;)i>0 on LP(R™) with corresponding
resolvent (Rx)a>0- Then (T3)i>0 and (Rx)x > 0 are sub-Markovian.

Theorem 8.12. Let A be a Dirichlet operator on LP(R™), 1 < p < oo, with the property
that R(Aid — A) = LP(R™) for some A > 0. Then A generates a sub-Markovian semigroup
on LP(R™).

Theorem 8.13. Let (A, D(A)) be a densely defined operator on LP(R™), 1 < p < oo, such
that (8.7) holds for all u € D(A) and assume that for some A > 0 we have R(Aid — A) =
L?(R"™). Then A is closable and its closure generates a sub-Markovian semigroup on LP(R™).

We want to investigate the relation between generators of Feller semigroups and gener-
ators of sub-Markovian semigroups. For this we note first that whenever (Tt(°°))t20, namely
the semigroups on Cy(R™), is a Feller semigroup, then for u € C(R™) () LP(R") such that
0 < u(z) < 1t follows that 0 < fl’t(°°)u(:c) <1 for all z € R™.

Theorem 8.14. Let A : D(A) — C(R"), D(A®™) C Cu(R"), be the generator of
a Feller semigroup (Tt(°°))t20. Moreover, suppose that U C D(A(™)) is a dense subspace
of I»(R™), 1 < p < oo. If A)|y extends to a generator AP of a strongly continuous
contraction semigroup (T")iso on LP(R™) for which V := (A — A®)~1U is an operator

core, then (AP, D(A®)) is a Dirichlet operator on LP(R"™) and the semigroup (Tt(p))tzo is
sub-Markovian.

The proof is given in [14].

Remark 8.15. A. Theorem 8.14 says in particular that operators defined on the space
Cs°(R™) satisfying the positive mazimum principle are also candidates for pre-generators
of sub-Markovian semigroups. B. In case that p = 2, Theorem 8.14 was proved in [12], the
general case in [13].

Now let us come back to —gx(z,ty, D). The main idea is to prove that —qy(z,to, D)
extends to a generator of an L?-contraction semigroup and then to apply Theorem 8.14.

Theorem 8.16. Under the assumption Theorem 6.25 and (6.35) with s = 2 the operator
—qx(z,t0, D) defined on H¥2(R™) is for A > Ag, Ao from (6.52), a generator of a strongly
continuous contraction semigroup on L%(R™).
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Proof. We will apply the Hille-Yosida theorem, Theorem 6.23. From Part IV we know
that (—qa(z, to, D), H¥?(R?)) is a densely defined closed operator on L2(R") and for A > X,
the equation gy (z, tg, D)u(z,-) = f is uniquely solvable for all f € L?(R") with a solution
u € H¥?(R") by Theorem 6.26. It remains to prove that —gx(z, to, D), A > Xo is dissipative.
But for all ¢ € C§°(R™) we have

(Q)\(-’L', tO) D)QO, 30)0 > 0

which extends to all u € H»2(R"). Now the dissipativity of —g(x,to, D), A > g, follows
from

lImu + gx(z, to, D)ullg = 72[[ullf + llgr(z, to, D)II§ + 27 (u, ga(z, to, D)u)o
and the theorem is proved.

O

Corollary 8.17. Under the assumption of Theorem 8.16 and Assumption 7.2 with ty =
[%] + 3 the operator (—qx(z,to, D), H¥2(R"™)) is for all A\ > Ao a Dirichlet operator and
generates an L?-sub-Markovian semigroup.

Proof. We only have to apply Theorem 8.14 for p = 2 with U = H¥?(R") C D(A®)) and
to note that [gx(z, to, D)| "1 (HV*+2(R2)) = H¥+4(R").

O

In the remaining of this section let us come back to the parabolic equation (8.1).

1. By Definition 4.30, 4.34 , Proposition 4.33 and Theorem 4.34, we can say that (T}):>0
is analytic on L?(R").

2. From Part V , we find the t-dependent sesquilinear form B, (t; u, v) satisfies (5.29) and
(5.30) .

3. —qx(z,ty, D) = A— X = —q(z,t9, D) — X extends to a generator of an L2?-sub-Markovian
semigroup.

Theorem 8.18. Suppose that all assumptions on gx(x,t,£) such that analogous inequalities
to (5.29) and (5.30) hold. Add (5.31) as extra assumption ,i.e.

| Bx(t; u, v) — Ba(s;u,v)| < K|t — s|*||ul]||v]| te0,T], a € (%, 1] . (8.8)
Then there ezists a fundamental solution U(t, s) to (8.1).
Remark 8.19. If for ¢, and g,
01 (2,€) — q1(s,6)| < Clt — s|*(1 +9(¢)) (8.9)

and

lang(x,t, 5) - 6:‘;‘12(1, 3’§)| < Clt - Sla(pa(.’l:)(l + ¢(§)) (810)

Then eztra assumption (8.8) holds, which is seen by look to the proof of Proposition 6.18
and Proposition 6.20.
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