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Summary

This thesis introduces the concept of autonomic visualisation, where principles of auto
nomic systems are brought to the field of visualisation infrastructure. Problems in visual
isation have a specific set of requirements which are not always met by existing systems.

The first half of this thesis explores a specific problem for large scale visualisation; that 
of data management. Visualisation algorithms have somewhat different requirements to 
other external memory problems, due to the fact that they often require access to all, or a 
large subset, of the data in a way that is highly dependent on the view. This thesis proposes 
a knowledge-based approach to pre-fetching in this context, and presents evidence that 
such an approach yields good performance.

The knowledge based approach is incorporated into a five-layer model, which provides a 
systematic way of categorising and designing out-of-core, or external memory, systems. 
This model is demonstrated with two example implementations, on in the local and one 
in the remote context.

The second half explores autonomic visualisation in the more general case. A simulation 
tool, created for the purpose of designing autonomic visualisation infrastructure is pre
sented. This tool, SimEAC, provides a way of facilitating the development of techniques 
for managing large-scale visualisation systems.

The abstract design of the simulation system, as well as details of the implementation are 
presented. The architecture of the simulator is explored, and then the system is evaluated 
in a number of case studies indicating some of the ways in which it can be used. The 
simulator provides a framework for experimentation and rapid prototyping of large scale 
autonomic systems.
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Chapter 1 

Aims and Objectives

Contents
1.1 Large Dataset Management................................. ...........................  2
1.2 System Simulation................................................ ...........................  4
1.3 Summary of A im s ................................................ ...........................  5
1.4 O utline................................................................. ...........................  5

Visualisation applications continue to require more and more computational power. Sci
entific datasets are now measured in gigabytes or terabytes, and show no sign of slowing 
their growth. The process of extracting meaningful information from datasets of this size 
through the process of visualisation can be computationally very expensive.

Current approaches to visualisation tend to follow a somewhat ad-hoc approach to the 
problem of very large scale deployments. Existing algorithms are applied to new prob
lems with some slight modifications for their new environment. Chapter 2 outlines the 
problems involved in deploying a large-scale visualisation infrastructure, and some at
tempts to address these problems.

The term Autonomic Computing was coined by IBM [144] to describe an evolution in 
management of complex systems. This thesis will describe a vision for applying this 
and related concepts to the problem of large scale visualisation, and will demonstrate the 
progress made in this endeavour.

Delivering a full autonomic environment for visualisation would be far beyond the scope 
of a single PhD thesis, and so two parts of the problem will be addressed directly.

1.1 Large Dataset Management

The rapid growth of data from both complex simulations and high-resolution scanning 
instruments has outstripped the rate of growth of the physical memory, and in some cases

2
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even local disk storage. This problem is exacerbated by the rise in mobile computing. A 
modem laptop has a significant amount of processing power [287, 213] - often including 
a relatively fast GPU - and so is up to the task of performing a number of forms of 
visualisation. In the coming years it appears likely that this trend will extend to handheld 
devices.

The growth in data size as well as the shrinking of the devices on which the data is likely 
to be displayed presents a range of problems when it comes to data management. Most 
operating systems provide some support for paged virtual memory. These typically work 
on two key assumptions:

1. The computer has almost enough physical memory, and should only spill over in to 
swap space occasionally.

2. The working environment is multitasking, and idle applications can be completely 
swapped out.

The first assumption comes from the fact that most applications have a relatively small 
working set, which changes infrequently. When this change occurs, it is mildly irritating 
to the user for their computer to pause briefly, but does not have a great deal of impact on 
overall performance.

Neither of these assumptions necessarily holds for a visualisation task. The dataset might 
be several times the size of RAM, and the rendering algorithm may need several passes 
over the entire dataset. This causes most operating systems to experience thrashing, the 
situation in which most of their time is spent swapping data between disk and RAM rather 
than performing useful computations.

One application for which this is a significant problem is discrete ray tracing of point 
sets. This application suffers from the fact that the access patterns through the data are 
highly dependent on the data itself, with the positions of both the points themselves and 
the light sources within the scene affecting the paths of the rays.

The discrete ray tracer application will be used as a test case for examining prefetching 
techniques. Since this application has serious memory usage problems, both in terms of 
size and access patterns, it makes an ideal study for evaluating pre-fetching strategies. The 
situation in which no pre-fetching occurs, demand paging, produces highly sub-optimal 
results, and it is anticipated that the addition of a more advanced data management strat
egy can provide significant performance benefits.

It should be possible to design such a strategy by first understanding the way in which 
the ray tracing algorithm works. W hile this is useful in and of itself, doing so does not 
require the use of autonomic concepts, nor is it likely to produce a solution that will be 
useful in other situations.

Such an algorithm could, however, be used as a base-line for evaluating other techniques. 
Of more use in the general case would be an algorithm that did not rely on understanding 
the nature of the rendering algorithm. This could, potentially, be adapted to other ren
dering techniques, eliminating the need for such things to be created on a per-problem
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basis. This thesis aims to evaluate the possibility of designing such an algorithm, and to 
compare the performance of a system-specific approach with an autonomic one.

1.2 System Simulation

Designing a fully autonomic infrastructure for visualisation is a massive task, and building 
one presents an even greater challenge. One of the biggest problems of such an endeavour 
relates to the problems (and opportunities) associated with emergent properties.

Emergent properties arise when relatively simple systems are assembled to form complex 
ones. The complex systems exhibit behaviours that are not always apparent from the 
simple designs. In some cases, these can be highly advantageous, and can allow simple 
designs to be used in complex roles. In others, they are problematic. If a systems is 
not designed with emergent properties in mind, then they can often cause pathological 
behaviour.

For this reason, it is necessary to test an autonomic infrastructure as early as possible 
in the design process and attempt to discover any emergent behaviours, then either take 
advantage of them or eliminate them. This, unfortunately, can not be done by techniques 
such as unit testing, since it requires the entire system to be tested simultaneously.

The proposed solution to this problem is simulation. A simulation environment matching 
the needs of autonomic computing would allow simplified models of individual compo
nents to have their interactions with other parts of the system tested, without the cost and 
effort of building the entire system.

This thesis aims to present a working system to address this need. Such a system must be 
easy to use and extend, and have the ability to work at varying levels of granularity. As a 
system is developed it will be possible to use prototypes and even final versions of com
ponents to provide more calibration data to the system. A good simulation environment 
must adapt to this growing amount of input data.

Scalability also extends in the other direction. It must also allow the user to perform 
highly detailed simulations of a subset of components, and more coarse simulations of 
the entire system distributed over a large grid.

Visualisation tasks are fairly similar to other tasks which could be performed by an auto
nomic grid environment, and so it is hoped that such a simulator would be usable for eval
uating systems that were not directly tied to visualisation. To this end, it should not make 
any assumptions about the nature of visualisation tasks. This is important even within the 
context of visualisation, since such assumptions become outdated rapidly. Visualisation 
used to be solely the province of supercomputers, and later high-end workstations. Now 
a large number of visualisations can be performed on modest commodity hardware, and 
even hand-held computers often come with some form of graphics co-processor.

The gradual move from thin-, or dumb-client through desktop and laptop and to ubiqui
tous computing shows that assumptions about the location and distributions of workloads
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within a computational system rarely last. Autonomic computing is somewhat orthogo
nal to the underlying distribution paradigm, but is often identified closely with ubiquitous 
computing. A fully autonomic grid infrastructure would be most likely to exist within 
the overall context of ubiquitous computing, but deployment of some components would 
almost certainly begin before such a setting existed. For this reason, a simulator must 
be able to handle both existing and proposed systems, and to allow the gradual transition 
from one to the other to be effective.

The usability of such a system can only be evaluated experimentally, and so it is aimed 
that the simulation should be used for some real-world tasks and evaluated.

1.3 Summary of Aims

The aims of this thesis can be summarised as follows:

1. Create an out-of-core prefetching strategy for the rendering problem outlined above.

2. Determine whether it is possible to achieve equivalent performance from a general, 
knowledge-based, prefetching algorithm.

3. Devise a systematic model for building out-of-core systems.

4. Demonstrate the model is feasible by providing at least one implementation of it.

5. Design a simulation system that can be used for developing an autonomic comput
ing infrastructure.

6. Implement and evaluate the system.

If this thesis meets the goals outlined here then it will provide a demonstration of the 
effectiveness of knowledge-based solutions and provide a systematic means for other 
researches to incorporate these ideas into their own specific problems. It is hoped that 
these will be able to augment, and even replace, existing application-specific strategies. 
The later goals relate more generally to the field of autonomic visualisation and, if met, 
will facilitate the development of this very young field to a significant degree by allowing 
rapid evaluation of algorithms aimed at this field.

1.4 Outline

The remainder of Part I describes the problem associated with visual supercomputing in 
general, and suggests how autonomic computing could be applied to give some possible 
solutions. The remainder of the thesis will then focus on some areas within this topic.

Part II describes the problem of managing large datasets, specifically those too big to 
fit in RAM and those too big to be stored locally. These are increasingly common in
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visualisation. Modern scientific instruments can generate data of a size limited only by 
the size of the disk arrays used to store them.

This part will describe a visualisation system for large data sets and a pre-fetching strategy 
tied to the Tenderer. It will then show how a self-optimising approach can be used to 
simplify the development of systems to handle them. An adaptive approach to data pre
fetching is proposed, as well as a systematic model for building out-of-core systems. Two 
example implementations of the model are discussed.

Part III describes a system for simulating the interactions between components running 
on a heterogeneous grid environment. This system was developed to aid the development 
of autonomic distributed visualisation systems, and some example uses are discussed.



Chapter 2 

The Problem of Visual Supercomputing

Contents
2.1 Introduction................................................................. ..................  7
2.2 Visual Supercomputing................................................ ..................  9
2.3 Trends in Visual Supercomputing.............................. ..................  13
2.4 Applications of Visual Supercomputing..................... ..................  26

2.1 Introduction

Today there is a variety of computational resources available to visualisation. While a 
huge number of users are contented with the visualisation capabilities provided through 
modern desktop computers and powerful 3D graphics accelerators, many are still relying 
on high performance computing facilities to visualize very large data sets or to achieve 
real-time performance in rendering a complex visualisation. In some areas, users have al
ready demanded visualisation capabilities to be provided through mobile computing sys
tems, such as PDAs (Personal Digital Assistants), most of which are yet to benefit from 
powerful 3D graphics accelerators. As the size of visualisation data (e.g., in visual data 
mining), the complexity of visualisation algorithms (e.g., with volumetric scene graphs), 
and demand for instant availability of visualisation (e.g., for virtual environments) con
tinues to grow, it is unlikely that visualisation users can be served adequately, at least in 
the coming years, by an infrastructure largely based on desktop computers.

This leads to a series of questions:

•  W hat would be an adequate infrastructure?

•  In what way do the computational requirements of visualisation differ from other 
software technologies?

7
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•  Is it desirable or feasible to bring a range of technologies under one management 
(not necessarily under one roof)?

•  If it were feasible to build such an infrastructure, what would be an appropriate 
virtual machine interface for the infrastructure?

In fact, the computer graphics and visualisation community has been seeking answers for 
these questions for the past few decades. The community has invested a huge amount 
of effort in developing specialized graphics hardware, has always been among the first 
to deploy the latest technologies for high performance computing, and has accumulated 
large volumes of research outputs in parallel, distributed, and web-based techniques for 
visualisation. Recently, the community has shown equally great enthusiasm to embrace 
the cluster, Grid and mobile technologies. However, in general, the community tended 
to address these questions mainly from the perspective of visualisation technology in 
isolation, rather than from the perspective of a coherent infrastructure design.

In this chapter, the historic route for deploying new technology in the context of visu
alisation is examined and a broad range of scientific and technological developments, 
including theories, algorithms, hardware, software and services, are described. The term 
Visual Supercomputing is used to encompass the concepts and technologies required to 
build a computing infrastructure for visualisation. An overview of the state of the art of 
technologies in hardware and software for visualisation are presented, and the impacts of 
the Internet, Grid and mobile technologies is discussed.

Those latest developments that are relevant, or potentially relevant, to visualisation in
frastructure are highlighted. A set of technical challenges in realising a visual supercom
puting infrastructure that manages visualisation tasks in complex networked computing 
environments, as well as manages users experience in accessing and interacting with vi
sualisation resources are proposed. Later chapters in this thesis discuss the application of 
principles from the field of autonomic computing to the solution of some of the challenges 
presented.

There is now a growing body of experience in adapting applications to a Grid environ
ment. W hat is emerging is a consensus that the original idea of a computational Grid that 
behaved like a utility Grid for computation is perhaps oversimplified. There may be sev
eral different structures for Grids depending on whether the resources aggregated in the 
Grid are to serve large-scale computation, large-scale data handling, complex data sources 
(e.g., bioinformatics databases) or perhaps to integrate business processes. In this, the vi
sual supercomputing paradigm presents novel challenges to the Grid concept. A number 
of pioneering projects, described in this chapter, have been testing the implications of a 
Grid for various visualisation applications and have raised many technical issues includ
ing real-time processing, synchronisation of resource allocation and interaction between 
clients and Grid services.

This chapter is organized into the following sections. In Section 2.2, the term Visual Su
percomputing is defined. In Section 2.3, major scientific and technological developments 
are reviewed by following the arrivals of different computing technologies, identify the 
state of the art technologies are identified that have are required for building an infras
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tructure for visual supercomputing. In Section 2.4, a collection of applications that would 
benefit enormously from such an infrastructure are examined, and their technical require
ments discussed.

2.2 Visual Supercomputing

In this section, the term ‘Visual Supercomputing’ is defined. Its relevance to the three 
semantic contexts of visualisation is examined. Finally, the technical scope of visual 
supercomputing from the perspectives of applications, users and systems respectively.

2.2.1 Definition

Definition 2.1 (Visual supercomputing). Visual supercomputing is concerned with the 
infrastructural technology fo r  supporting visual and interactive computing in general, 
and visualisation in particular, in complex networked computing environments.

This thesis is focussed on the subject domain of visualisation, although most of the dis
cussion in this chapter can be extrapolated to other subject domains involving visual and 
interactive computing, such as computer-aided design, computer animation, and computer 
vision.

As an infrastructural technology, visual supercomputing encompasses a large collec
tion of hardware technologies and software systems for supporting the computation and 
management of visualisation tasks. It focuses on generic technologies for managing the 
specification, execution and delivery of visualisation tasks. It addresses issues such the 
scheduling of visualisation tasks, hardware and software configurations, parallel and dis
tributed computation, data distribution, communications between different visualisation 
tasks, and communications between visualisation tasks and their couplings such as com
putation tasks or data collection tasks. In addition, it provides infrastructural support to 
users’ interaction with visualisation systems, and manages users’ experience in accessing 
and interacting with visualisation resources. Nevertheless, visual supercomputing does 
not concern a specific algorithm and technique for processing a specific type of data in 
order to generate visualisation results.

Explicit emphasis is given to complex networked computing environments, as this chapter 
is not intended as only a survey of the technologies that have been developed so far in the 
context of visual supercomputing, but as a report on technologies that are in place as well 
as that are desirable for a future infrastructure. No doubt such an infrastructure must take 
web computing, Grid computing and mobile computing into account. Hence it has to pro
vide comprehensive support to visualisation tasks in complex heterogeneous networked 
computing environments. As current trends in hardware design are increasingly driven 
by power consumption as well as raw speed, there is an increasing reliance on dedicated 
hardware. This trend makes it appear likely that heterogeneous environments will be the 
norm, rather than the exception, in the near future.
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The visual supercomputing environment is best considered as a global Grid infrastructure 
for visualisation. The above-mentioned technical features of visual supercomputing have 
clearly set it apart from the traditional subject domains such as hardware architectures 
fo r  visualisation, parallel and distributed computation fo r  visualisation, web-based visu
alisation, and collaborative visualisation. While the advances in these traditional subject 
domains will have significant influence in shaping the infrastructure of visual supercom
puting, building such an environment will require not only integrating these technical 
advances together in an environment, but also bringing in, and developing new, technolo
gies for significantly improving the quality of services (QoS) of such an infrastructure 
and users’ experience.

2.2.2 Semantic Contexts

The term ‘visualising’ refers to a process that extracts meaningful information from data, 
and constructs a visual representation of the information. In the field of visualisation, this 
process is commonly considered in three different but interrelated semantic contexts as 
illustrated in Figure 2.1.

Making visible to one's mind Mental
Images

User

Making visible , 
to one's eye \

Visual
Reps.

Data

Making displayable by a computer

ControlDisplay

Rendering

Figure 2.1: Three semantic contexts of visualisation.

M aking displayable by a com puter. This is concerned with the algorithmic and com
putational process of extracting information and rendering a visual representation 
of the information. In this semantic context, a visual supercomputing infrastructure 
should address issues such as allocating and scheduling computational resources 
for visualisation tasks, managing data distribution, and providing mechanisms for 
inter-process, and inter-task communications within an infrastructure.

M aking visible to one’s eyes. This is concerned with the process of specifying meaning
ful information, designing appropriate visual representations, and conveying visual 
representations to viewers. In this semantic context, a visual supercomputing in
frastructure should address issues related to the interaction between users and their 
visualisation tasks, which can be conducted in a variety of forms, including in
teractive virtual environments, Internet-based collaborative environments, mobile 
visualisation environments, and so on.
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Making visible to one’s mind. This is concerned with users’ thought process and cog
nitive experience of interpreting received information (not necessarily in a visual 
form) in one’s mind and converting the information to knowledge in pictorial rep
resentations. In this semantic context, it is neither desirable nor perhaps feasible 
for a visual supercomputing infrastructure to manage the thought process of a user.

This section presents further detailed discussions on how visual computing relates to the 
above three semantic contexts, and provides rationalisation for focusing infrastructural 
support on the processes of making displayable by a computer and making visible to 
one’s eye, with the state of the art technologies in visual supercomputing. It also argues 
for the necessity for introducing gradually new capabilities in a visual supercomputing 
environment, to support the process of making visible to one’s mind.

2.2.3 Application Perspective

The demands for visualisation multiply in every direction, and there is an increasing num
ber of new applications, resulting in new, and sometimes conflicting, requirements. For 
example:

•  In some applications (e.g., bioinformatics), the size of datasets to be processed 
continues to grow, while in others (e.g., mobile visualisation), a careful control 
of data size is absolutely necessary. Even in cases where the data is sufficiently 
small to fit on a single machine, collaboration and security concerns may make it 
advisable to store it centrally. This makes the ability to quickly access the required 
subset of data that is available.

•  In many applications (e.g., those involving 3D virtual environments), users still 
have plenty of appetite for photorealistic visualisation at an interactive speed, while 
in others (e.g., visual data mining), schematic visual representations and non-photo- 
realistically rendered images are often able to convey more information. A visual 
supercomputing environment must be able to handle both latency- and throughput- 
dependent tasks.

•  In many applications (e.g., virtual endoscopy), interactive visualisation can now 
be achieved with modem personal computers, hence small integrated systems pro
vide a high degree of independence to users who operate in various practical situ
ations. Meanwhile, other applications (e.g., those centralized around one or more 
data warehouses) require a substantial amount of computation for visualisation to 
be closely coupled with the source of data. Some applications, which have dis
tributed data sources or dynamic data sources, demand a more complex computa
tional model. A visual supercomputing environment must scale to all devices from 
hand-held machines up to supercomputers.

From the perspective of applications, an important requirement for a visual supercomput
ing infrastmcture is choice. It has to provide support for a large collection of platforms, 
methods, mechanisms and tools to serve different categories of application, as well as of
fer each individual application a diverse selection of means to accomplish a visualisation
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task.

Section 2.4 considers several major applications, which collectively characterize the main 
requirements for a visual supercomputing infrastructure.

2.2.4 User Perspective

Visualisation users are no longer limited to scientists and engineers. At the same time, a 
visualisation process often requires a high degree of domain knowledge about the appli
cation concerned. While the diversity of applications demands a visual supercomputing 
environment to provide a large collection of platforms, methods, mechanisms and tools, 
users require the service to be tailored to individual needs, and to be delivered in a seam
less manner. Many users, especially those less technically oriented, would very much 
hope for a secretary-like visualisation service, where they simply submit the data, give 
instructions and receive results. Although to get appropriate results may require a few 
feedback loops, many users certainly do not wish to get involved in choosing hardware, 
programming parallelism, organizing storage for input and output data, and so on. Further 
more, like a secretary, perhaps a visual supercomputing infrastructure should accumulate 
knowledge about various entities in the environments, profiling hardware capabilities, 
software usage, users’ preference, etc. and gradually improving its quality of services to 
individual users.

Recent developments in business computing, such as electronic customer relationship 
management (e-CRM) [241, 183], has shown that it is possible to provide users with bet
ter quality of services with appropriate technologies that are capable of collecting and 
processing users’ experience. The emergence of autonomic computing [165] is gather
ing further momentum in developing self-managed services in a complex infrastructure 
(see also Section 3.2). Therefore a visual supercomputing infrastructure should have the 
responsibility for managing:

•  visualisation resources,

•  visualisation processes,

•  source data and resultant data,

•  users’ interaction and communication,

•  users’ experience in accomplishing a visualisation tasks.

2.2.5 System Perspective

From the system perspective, a visualisation task is a kind of computation task, which 
exhibits a specific class of characteristics. The infrastructure of visual supercomputing is 
built upon a range of underlying technologies, including computer hardware, operating 
systems, programming languages, data warehouses, communications, world-wide-web, 
Grid computing and knowledge-based systems. It is neither sensible nor feasible for the
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visualisation community to attempt to provide solutions in all these aspects. However, it 
is necessary for the construction of such an infrastructure to bring in the latest advances 
in other fields of computing and communications, and moreover, to influence the devel
opments in these fields.

The following section, examines in detail the major advances and the state of the art in 
the relevant fields.

2.3 Trends in Visual Supercomputing

Visualisation is fundamentally an application of computing, and so trends in visual com
puting tend to follow overall trends in computing. The predominant trend in the industry 
since its inception has been towards miniaturisation. The one prediction that has always 
held in every aspect of computing has been ‘you will be able to do this with a smaller 
machine next year.’

This section will provide a description of some of the more important trends and mile
stones in the computing industry, and their impact on visualisation. As visualisation is 
such a computationally-demanding application, it has always been near the forefront of 
uses for new advances.

For more information, please see the relevant surveys [332, 135, 27, 321, 104, 161, 40] 
and some major publications [94, 304, 127] [331, 281, 171].

2.3.1 The Dinosaurs

The pre-history of computing is dominated by large machines taking several rooms worth 
of space. The Cray-1 was possibly the first supercomputer deserving the name, although 
its computational power was small by modem standards. Visualisation was not the only 
task performed on this model, but Elwald and M ass’s vector graphics library for this 
platform [103] represents some of the first efforts at directing supercomputing power 
towards visualisation.

Once the potential for computer visualisation began to be understood by the scientific 
community at large, the field began to get more attention. Supercomputers are difficult to 
define, as a breed. Some personal computers have been advertised as ‘supercomputers’ 
based solely on US export restrictions on processing power during the tail end of the 
cold war. This metric is not particularly meaningful, since the PDAs of one age are 
the supercomputers of an earlier one. M ost supercomputers are based around the idea 
of massively parallel computational engines with very fast interconnects between them. 
This broad scope will be used for the remainder of this section, which will thus include 
some techniques that post-date the widespread use of supercomputers for visualisation, 
but inherit some concepts from this age.
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Figure 2.2: The decomposition of a multiply-by-three operation using functional paral
lelism.

2.3.1.1 The Growth of Parallel Computation

Computers are never quite fast enough. In 1965, Gordon Moore noted the trend that 
the number of elements that can be placed on an integrated circuit, for a fixed invest
ment, doubles roughly every 18 months. This observation came to be known as M oore’s 
Law [221].

Although M oore’s Law says nothing about computational power, it has been a fairly ac
curate rule-of-thumb. If you double the number of transistors on a die, you can double 
the number of execution units, the amount of cache, etc. This is usually accomplished by 
a reduction in feature size, which comes with a corresponding increase in feasible clock 
speeds.

In spite of these gains, a single CPU is often still not fast enough. Or, more accurately, 
the cost of building a single CPU that is fast enough is prohibitive. A much cheaper 
alternative is to by two (or more) CPUs and join them together.

Most traditional programming models owe their heritage to very simple computers, and 
so have no concept of parallelism. New models were required, and two emerged. These 
were functional parallelism  and data parallelism.

Functional parallelism, also called pipelining, describes a model by which an operation 
is split up into a number of stages, each of which can be executed sequentially. Figure
2.2 shows a trivial example, in which the function f ( n )  = n  x  3 is decomposed into 
functionally parallel stages. Assuming that each block in the diagram can be executed on 
a separate execution unit, the right hand pipeline could run twice as fast as the left. This 
is exploited by modern CPUs at the instruction level, but in visualisation it is commonly 
done at a much coarse granularity giving rise to the term visualisation pipeline.

Data parallelism is conceptually simpler, but often harder to implement in practice. Data 
parallelism splits the data, rather than the algorithm. A data parallel version of the
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multiply-by-three example would simply add a second multiplier. You could then achieve 
double the throughput, assuming that you could keep both supplied with data. The diffi
culty in implementing data parallelism comes from the fact that, for many applications, 
the data is not independent. Most modern hardware incorporates some form of data par
allelism, from superscalar architectures in general purpose CPUs to multiple independent 
pipelines in GPUs.

In graphics, data parallelism is typically achieved using either image space or object space 
decomposition. Image space decomposition splits the workload up based on the pixels in 
the final image. Ray tracing is particularly suited to this approach, since each pixel in a 
ray-traced image is generated by a different ray, which is independent from the others. In 
rasterisation-based approaches, techniques such as scan line interleaving are common. In 
general, image space decomposition works better on shared memory architectures, since 
each thread needs access to all (or a large subset) of the source data for most techniques.

A final form of parallelism, known as farm  parallelism  is a hybrid of the two. In this, 
a problem is decomposed into computational tasks, encapsulating both a portion of data 
and some functional workload. These are typically independent, are are processed by 
whichever computational resources become free first. This form of parallelism is used by 
visualisation algorithms such as [242].

In terms of implementations, Flynn’s taxonomy [111] still works well to describe the pos
sible forms of parallel hardware in terms of the number of concurrent data and instruction 
streams. The simplest case, single instruction, single data (SISD ) refers to the absence of 
any parallelism. At the other extreme, multiple instruction, multiple data (MIMD ) refers 
to independent instructions working on multiple data streams, as is the case with indepen
dent processors. In the middle are single instruction, multiple data, (SIMD ) and multiple 
instruction, single data (.MISD ) systems. The first, also known as vector processors, are 
common in supercomputer chips and increasingly as extra instructions on general purpose 
CPUs.

SIMD machines allow individual instructions to operate on vector rather than scalar quan
tities. While an add instruction in a SISD machine would be defined as a dd(x , y) —> x + y ,  
the equivalent SIMD instruction might be defined as a dd((x i, x 2, x 3, x4), (?/i, y2, y3, y f))  -  
0&i +  2/i, x 2 +  2/2 , £ 3  +  2/3 , £ 4  +  2/4 )- Vector processors typically have a very large peak 
throughput, however it is difficult to keep them saturated. In the four-way vector example, 
adding two numbers together would take as long as adding four pairs of numbers together. 
Visualisation algorithms tend to be well suited to this kind of architecture, since a vector 
can be used to store each colour component (for example), and acted on independently.

The final approach, MISD, is perhaps the hardest to pin down. It is difficult to define 
a MISD machine, because most machines could be categorised as MISD. A multiply 
instruction could be considered to be a series of add and shift instructions, for example 
(and a shift instruction, itself, could be considered a series of add instructions). Very 
few machines, if any, have instructions so simple that they can not be considered to be 
combinations of simpler operations.
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2.3.1.2 Sharing Data

The simplest form of parallel computation is two completely independent computers, run
ning two independent tasks. This could be regarded as the most widely-deployed form 
of parallel computation, since every computer in the world, past and present, is part of 
a grid implementing this form of parallelism. It is not usually regarded as a model of 
parallel computation, however. Some form of communication between computational re
sources is typically regarded as the basic entry requirement for being classed as a parallel 
computer.

There are two main ways of sharing data between a pair of processors; shared memory and 
message passing. The Parallel Random Access Machine (PRAM) model [112] represents 
the first method. PRAM describes a MIMD architecture with a number of independent 
processors with a shared clock and an unbounded memory space; the MIMD equivalent 
of an unlimited register machine. PRAM architectures can be categorised according to 
the capability of the memory; whether each location can be read from or written to con
currently. In modern machines, most RAM has no capability for concurrency, although 
specialised Video RAM  (VRAM) has been designed to allow the DAC connected to the 
screen to read its contents while the CPU updated the contents, removing the need to lock 
the memory as the display was scanned. This has gone out of fashion in recent years as 
RAM prices have dropped enough to make double buffering the norm.

More recent models for parallel architectures have focussed on the layout of the mem
ory, describing architectures according to whether access to the memory has a uniform 
cost [280, 50]. Uniform Memory Architecture (UMA) machines are those for which it 
does. UMA designs are typically found in systems which do not exhibit a large degree of 
parallelism1. The reason for this is that maintaining a uniform access cost for large num
bers of processors to large amounts of memory requires either n  x m  interconnects, where 
n  is the number of processors and m  is the number of banks of memory, or a large con
stant cost. UMA systems where the processing units are heterogeneous are referred to as 
symmetric multiprocessing (SMP) systems, since a task can run as easily on any process
ing unit. Volume visualisation often relies on memory systems supplying conflict-free 
simultaneous access to multiple voxel values in a volume dataset [255].

Non-uniform memory architecture (NUMA) systems exhibit greater scalability [345]. In 
a NUM A architecture, there is some fast, local, memory for each processing resource. 
The speed of access to this memory is constant, irrespective of the number of nodes in 
the system. In contrast, adding one node to a UMA system either increases the cost 
of memory access to all nodes, or increases the cost of building the system (often by a 
large amount). The largest disadvantage of a NUMA system is that it requires locality 
of reference to be used effectively, delegating data distribution to the programmer. This 
makes NUMA machines more of a challenge to effectively utilise.

The other model for sharing data is message passing. A  message passing system partitions 
the address space so that each processor has its own private memory and explicitly sends 
and receives data from others. While these two models seem different, it is important to

1 What constitutes a ‘large degree’ depends largely on the year in which the system was designed.



2.3 Trends in Visual Supercomputing 17

note that it is relatively easy to implement one using the other. Shared memory can have 
message queues stored in it, and accesses to remote memory regions can be trapped and 
fetched using a message passing mechanism. It is important to distinguish between the 
underlying mechanism, and that exposed to the programmer.

A distributed memory system is one in which each processor has its own private memory, 
which is fast and not shared. A message passing mechanism is then used for non-local 
access. The Cray T3D is an archetypal example of this. A more modern implementation 
of this idea is found in the Cell microprocessor where each synergistic processing unit 
(iSPU ), of which there are eight on each die, has 256KB of very fast local memory and 
uses DMA transfers to access the system’s main memory. A similar low-level design is 
used on most modern processors, although the fast local memory is not directly accessibly 
by the programmer; instead it is used as cache for the main memory, and the contents are 
determined at run-time by the cache controller. Distributed memory systems are often 
regarded as difficult to program, since they do not map to conventional programming 
languages very easily. CSP-based languages, such as Erlang [23] and Termite [123], are 
well suited to targeting these architectures, since their semantics more closely match the 
underlying hardware. In spite of this, distributed memory systems are popular for very 
high-end systems due to their ability to scale to many thousands of processors [299]. 
Distributed memory systems can have their nodes arranged in a variety of configurations.

Most UMA systems are shared memory systems at the low level. These typically make 
use of a distributed memory hierarchy, where each processor has a local cache that is not 
accessible to others. Maintaining coherence between these caches requires a cache co
herence protocol. In the absence of cache coherence, a modification to a shared memory 
region might not be detected by one of the processors [299]. Some NUMA architec
tures also implement a cache coherency protocol. These are referred to as cache coherent 
NUMA  (ccNUMA). The one of the most widespread ccNUMA architectures currently 
is A M D’s Opteron, where each CPU has a memory controller and communicates with 
the others over a message-passing point-to-point HyperTransport interconnect. When a 
memory location is updated, the cache lines containing it in all of the connected proces
sors are flushed. This is a good example of the importance of distinguishing between the 
implementation and the programmer-visible design, since most operating systems expose 
Opteron machines as UMA systems to the programmer.

2.3.1.3 Programming Models

Conceptually, the simplest model for programming parallel systems is shared memory, 
where each thread of execution has access to the same memory resources. W hile this 
is conceptually simple, it has several limitations. The most obvious is that it places a 
significant burden on the programmer, in terms of synchronisation. The second is that 
is is not ideal for NUMA systems. A  shared memory system, where communication 
latencies are significantly under 1ms can present a shared memory view to a programmer 
using a structure such as a dynamic interconnection network [297] or a crossbar switch 
such as that found on the Cray Y-MP to keep latencies relatively constant. On NUMA
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systems, however, the cost of accessing memory can vary widely. This makes reasoning 
about performance very difficult [121].

Shared memory does not have to be exposed as an untyped melange of data. Linda [55] is 
a coordination system, which exposes a shared tuple space to developers. Linda supports 
C and Fortran. A similar model is available for Java in the form of JavaSpaces. The 
SR language [16] supports both shared-address-space paradigm and messaging passing 
paradigm.

Message passing as a programming model scales better than pure shared memory, and 
maps more cleanly to the underlying mechanisms of NUMA systems. Some languages, 
such as Erlang and Termite, have been designed around this model, but they require sig
nificant changes to the design of many existing algorithms. These languages are based on 
the communicating sequential processes formalism, where a problem is decomposed into 
independent parts, with no shared resources, that communicate by passing messages.

Message passing mechanisms have been attached to other languages at the library level. 
The most popular for high-performance visualisation, and computing in general, is M es
sage Passing Interface (M PI) [51]. This specification has been implemented for a variety 
of languages, including C/C++ and Fortran.

An alternative is the Parallel Virtual Machine (PVM), from Oak Ridge National Lab
oratories. This uses an abstract virtual machine as the target, and an emulator for this 
machine. Although this incurs some performance penalty, it provides good fault toller- 
ance and recovery, and so remains relatively popular [122]. A similar approach is taken 
by a derivative of the Plan 9 operating system, Inferno™  [99]. Inferno™  runs both as 
an operating system and in ‘hosted m ode’ as a process in other operating systems, and is 
designed to run distributed applications written in the Limbo programming language and 
just-in-time compiled for the native platform.

In the late 1970s, Alan Kay proposed a method of software development where programs 
would be described as running on ‘simple computers that communicate by message pass
ing.’ He termed this model object oriented programming. At the time, most computers 
had a single CPU and so the most efficient method for implementing message passing was 
synchronously, atop function calls. Languages such as Smalltalk built on this principle, 
however, present message passing as an abstraction and so allow different approaches to 
be used. Messages in Smalltalk-like languages can easily be replaced with trampolines 
which return a proxy object, which then blocks on access, implicitly extracting paral
lelism from synchronous algorithms2.

Other languages, such as Java and C++ adopt some aspects of object orientation, and 
replace function calls with method invocations as the basic primitive for controlling pro
gram flow. Function calls and method invocations are very similar, both in implementa
tion and use. A method invocation in these languages is basically a function call scoped 
to an instantiation of an abstract data type; a verb to the object’s noun.

2An implementation of this idea in Objective-C by the author of this thesis is available from http://etoile- 
project.org
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Function calls and method invocations are, at the local level, synchronous. Both have been 
extended to support parallel computation, however. Function calls have been extended as 
remote procedure calls (RPC). A number of implementations of these exist, with the 
most common being those of Sun and Microsoft. While the procedure calls themselves 
complete synchronously, it is common for them to be used to initiate a longer process 
which then completes asynchronously.

The concept of RPC was extended by NeXT Computers to give Portable Distributed 
Objects (PDO). The PDO system allowed both synchronous and asynchronous method 
calls to objects on remote machines. Since objects were passed as parameters, this gave 
more functionality than procedure calls. PDO was limited by the fact that it primarily 
worked on compiled languages, however which forced the classes to be distributed out- 
of-band before the system started.

The Java implementation, remote method invocation (RMI) overcame this limitation. Java 
classes are compiled as bytecode, which is machine-agnostic. This means that objects can 
be passed as parameters irrespective of whether their underling code had been distributed 
before hand. If they had not, then the bytecode could be distributed between nodes in the 
network and run.

Two PDO-like systems gained widespread adoption. The Common Object Request Broker 
Architecture (CORBA) [25] is a specification for method invocations across language and 
process boundaries. M icrosoft’s Distributed Common Object M odel (DCOM) goes a step 
further, and specifies a binary interface, allowing DCOM objects to interact independently 
of the object resource broker on which they are running (although, in practice, the only 
DCOM implementation that has seen any widespread use is M icrosoft’s own). CORBA 
and COM, like PDO, use the object as the ‘atom ’ —  the unsplitable component —  in 
the system. Globe [313] goes a step further, and permits a single object to be distributed 
amongst nodes.

In recent years, there has been a growth in distributed middleware, including coordination- 
based systems such as Jini [240], and document-based designs such as Globus [114]. 
Many of these use XML at the protocol level [43], especially those based on web, and 
later grid-service architectures.

The idea of dataflow computation [275, 276] is an alternate model for parallel program
ming, in which execution is driven by the dependencies within the data. The Polytypic 
Grid [100] provides a similar model, making use of the implicit parallelism that can be 
extracted from functional languages (moving from A-calculus to 7r-calculus for the under
lying formalism) in combination with lazy evaluation to perform on-demand execution of 
a parallel graphics pipeline.

Dataflow computation has seen a lot of use in the context of visualisation, as it maps 
well to the visualisation pipeline abstraction. Implementations including OpenDX [2], 
AVS [311], IRIS Explorer [117], SCIRun [243] and DDV [222] are all examples of 
dataflow environments aimed at visualisation. They treat the visualisation pipeline as 
a directed graph, where each node represents a computation. This provides support for 
dataflow parallelism [285], since each node can be executed in parallel. There are some
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limitations to most implementations of this approach, such as the inability to handle par
tial datasets [6], although this is a practical, rather than theoretical, limitation to the model.

One final model, that of stream-based computation provides an approach similar to data 
parallelism, but with some aspects of control parallelism. A stream-parallel system is 
composed of stream processing units, which take streams of commands and data and 
execute in parallel. This model is used by Chromium [149], which processes streams of 
OpenGL commands (which can be control or data, but are more often data). A set of 
extensions to VTK based on Chromium have also been proposed [223].

2.3.1.4 Measuring Performance

The main reason for moving to parallel computation is to achieve better performance, 
and so it is important to be able to measure the increase on performance derived from the 
addition of extra processing units.

One of the most popular metrics is speedup [154]. This measures the increase in speed 
per added processing resource. Speedup is calculated as the ratio of the serial and parallel 
runtimes, multiplied by the number of processors. In the parallel case, the total time of all 
processors is taken, so a task which takes two seconds on each of two processors would 
have a parallel run time of four seconds. In the ideal case, the speedup for an algorithm 
will be the number of processors (P ). Note that in many cases speedup is a function of 
P , rather than a constant. Some algorithms have a ‘natural’ degree of parallelism, and 
have a speedup of the order of P  up to this value, after which little benefit is gained from 
adding more processors. In theory, the speedup can not exceed P , however in practice, 
concurrent applications may incur some overhead from context switching on a single 
processor that is removed when they are run on more. This is often apparent on highly- 
concurrent applications written in languages such as Erlang. The upper bound on speedup 
is given by A m dahl’s Law [12]. Given a problem of size w  that has a sequential fraction 
of size w s and a parallel fraction of size wp = w — w s, the upper bound of speedup is 
w / w s, regardless the number of processors.

It is important to track the efficiency of a parallel approach. The efficiency of parallelisa- 
tion is defined as the speedup divided by the number of processors. In the ideal case, the 
efficiency will approach 1. In general (for most non-trivial algorithms), it tends towards 
0 as P  tends towards infinity. At some point, it ceases to be economical to keep adding 
processors to a problem. Another way of determining this is the cost metric. This is the 
total computation time needed (the run time multiplied by the number of processors). If 
the speedup is less than P  (i.e. the efficiency is less than one) then the cost will grow as 
P  grows.

The optimum value of P  can be determined by the scalability [173] metric. This measures 
the rate of change of speedup, in terms of P. The iso efficiency function  is an alternate 
metric based on the size of the problem required to maintain a constant efficiency, based 
on a known overhead. An isoefficiency function takes into account the structure of the 
parallel computational resources, including the communication speeds. A scalable paral-
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lei system is usually indicated by a small efficiency function [126].

For some applications, the time-constrained scalability [133] of the problem is a very 
important metric. This allows a fixed run-time to be defined, and reached by adjusting the 
size of the data. Similarly, memory-constrained scalability describes the way in which 
the memory usage of an algorithm can be adjusted in terms of its input data. This can be 
very important when running an algorithm on real hardware. In the case of visualisation, 
it is often possible to employ level o f  detail techniques to reduce the data size.

W hen describing parallel systems, it is important to be aware of the granularity of the 
parallelism. This describes the ratio of the number of processing units to the capacity of 
each. The smallest capacity is a single instruction, and most modem processors exhibit 
some degree of parallelism at this level, known as instruction level parallelism  (ILP). This 
is the finest-grained form of parallelism that is likely to be encountered.

2.3.1.5 Parallel Visualisation

So far, parallel programming has been discussed in the general case, rather than the con
text of visualisation. This section will attempt to discuss how some of the concepts have 
been applied by the visualisation community

W hen creating a parallel system of any form, it is necessary to decompose the problem 
into smaller parts. In the scope of visualisation, this is usually done using either image 
space or object space [127] decomposition. These relate to how the scene is distributed 
across rendering nodes, either partitioning the input (object space) or the output (image 
space).

Image space approaches are often called sort-first algorithms, since the primitives are 
sorted during the rendering of the sub-images. Sort-last algorithms [220] are usually 
object-space. Different sets of objects are rendered to produce simpler objects which 
must then be composited (depth-sorted) together to produce the final image.

A parallel rendering task typically faces a problem when it comes to data distribution. 
Object space decomposition allows parts of the scene to be placed logically close to the 
processing resources rendering them, which helps to reduce the communication overhead. 
This is more true of visualisation tasks than many more general computational tasks, since 
visualisation typically involves a large reduction in the data size (for example, turning a 
large volume dataset into a 2D image). Image space decomposition typically requires 
all of the nodes to be able to access the entire dataset, which can allow more efficient 
distribution of tasks at the cost of a greater communication overhead.

For systems that do not have shared memory at the hardware level, distributing the data 
efficiently is important to minimise the communication overhead used. It is often possible 
exploit some characteristics of the data being visualised in order to produce an efficient 
distribution strategy. Some partitioning strategies take advantage of spacial locality [203], 
others image and frame coherence [124], and overlapping and exchange of boundary 
data [227]. These strategies are not easy to generalise. Typically, a distribution strategy is
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tied to a particular data type, and often to the rendering algorithm and even the underlying 
architecture of the system. Such strategies can be classified according to the type of ren
dering they support; image-space [203], object-space [337], or hybrid approaches [178]. 
Alternatively, a taxonomy based on the method of splitting the data can be used.

The simplest form of distribution is complete data replication, where a copy of the entire 
dataset is placed on each rendering node. This is common for image-space decomposition 
and rendering of read-only images. The cost, however, scales linearly in terms of the 
number of nodes, which can be prohibitively expensive, particularly on cheap rendering 
nodes which generally have fairly modest local storage abilities.

The next form is block replications, where the data is split based on coarse-grained slices 
across the object space. Typically, the blocks overlap, so that each node has slightly more 
than 1 /p  of the data. The overlapping area is typically much smaller than the size of 
the block, however, and so adding more nodes reduces the amount of data on each node, 
meaning the total storage space required scales much better than linearly. For workloads 
where the distribution of data is non-uniform, an irregular block decomposition method 
can be used to make blocks which have roughly the same number of features inside, and 
so have roughly equivalent rendering times.

The most complex distribution strategies are structured or hierarchical partitioning meth
ods. These rely on an overlay structure used to organise the raw data. One of the simplest 
forms is an occupancy map [211, 159]. This makes use of an overlay structure which is a 
simple mapping from blocks to a boolean variable, indicating whether the block contains 
data that should be rendered. This can be used at a fairly coarse granularity to quickly 
eliminate empty regions.

The simplest forms of hierarchical partitioning are structures like octrees [97, 69]. These 
divide a region into a number (eight, for an octree) of equal-sized sub-regions. These are 
recursively re-divided until a threshold is reached, such as a minimum number of features 
(e.g. vertexes) in a leaf node. Kd-trees [31] provide a similar method of partitioning, 
although they split the data in such a way that the there is always an equal number of 
points in each node at a given depth, by placing the splitting plane on the median point. 
Hierarchical structures can be used to divide data on a variety of attributes, including 
spacial occupancy and rendering workload [316].

Structural partitioning is typically associated with object-space methods, although it is 
possible to make use of some image-space parallel rendering techniques with them, as 
they can be used to produce view-dependent information for efficient data access [194]. 
On generated data, the scene graph abstraction is often used to compose objects in 3D 
space. These can be used for managing sort-first, distributed memory parallel visualisa
tion [32] and have been used in the context of real-time virtual reality [228].

After the data has been split, it is necessary to assign parts of the rendering task to dif
ferent nodes for parallel execution. There two approaches to this problem. Static task 
assignment [337, 201] maps tasks to nodes at the start of execution. This works well 
for rendering algorithms that have a fixed, or easily computable, cost for a given set of 
input data. A preprocessing step is required to generate the mapping, but then the task
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can run with no further intervention. The alternative is dynamic task assignment [178], 
where tasks are assigned to to nodes as the job runs. This is typically done by splitting the 
rendering job into (many) more components than there are processing nodes, and issuing 
new ones from a queue to idle nodes.

The former is more commonly associated with object-space approaches, where a known 
amount of data is rendered by each node. The later is better suited to image-space algo
rithms, where rendering times are not constant. Consider the extreme case of a parallel 
ray tracer, where each ray is an individual task. Some rays will pass directly through 
the image, and be very cheap to render. Some will interact with complex structures and 
spawn secondary and tertiary rays, possibly in large numbers. Assigning a group of rays 
to each processor at the start of rendering would almost certainly cause some to terminate 
and sit idle before others.

The final step in most parallel rendering tasks is image composition. This is the pro
cess of re-assembling the results of the parallel rendering tasks into a single image, and 
often presents a bottleneck. The simple direct send method, where the results are sent 
directly to a compositing node, can cause some significant bottlenecks by saturating 
the compositing node’s bandwidth. An alternative is to use a parallel composition al
gorithm [188, 337], where the image is gradually assembled in a hierarchical fashion. 
Another option is a scheduled linear image compositing algorithm, as a highly optimized 
direct send method [289], which offers better scaling to large numbers of processors. Fi
nally, dedicated stream-processing hardware can be used for compositing, although this 
typically increases the cost.

2.3.2 Towards Local Visualisation

It is axiomatic that computers get smaller over time. Early visualisation was performed 
on large mainframe or supercomputing resources. This started to change in the late 1970s, 
with the arrival of the graphics workstation. These machines had the processing resources 
required for simple (by todays standards) visualisation tasks in the same device as a dis
play. This reduced latency, and allowed more interactive visualisations. In the same time
frame, network-transparent graphics systems, such as NeWS and X I 1, were developed. 
These allowed similar interactivity to be gained over a fast network.

In the ’80s, graphical computing began to take off in the mainstream, with the widespread 
deployment of GUI-based operating environments. Even cheap home computers began 
to have framebuffers, and some had more complex graphics acceleration, such as sprite- 
rendering hardware and simple vector drawing accelerators. At the higher-end, 3D vi
sualisation became possible on workstation-class hardware. Volume rendering became 
practical using isosurface extraction techniques such as Marching Cubes [199] and direct 
volume rendering methods such as volume ray casting [191].

From the late 1980s to the early 1990s, a number of commercial products targetting vi
sualisation began to appear, such as AVS [311], aPE [102] and Khoros [254], later joined 
by IRIS Explorer [117] and TGS Amira [302]. These use a visual representation of a
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visualisation pipeline as a user interface. They generally support a variety of modules, 
including some supplied by third parties, leading to their being described as modular visu
alisation environments. By presenting a visual model, rather than a programatic one, they 
lowered the barrier to entry for users wishing to exploit the capabilities of a visualisation 
environment.

These visualisation tools were regarded as the ‘killer application’ for high-end worksta
tions for some time. Visualisation required large amounts of processing power, but the 
requirement for low latency made workstations much more appealing than thin-client 
solutions. M ost modular visualisation environments were developed around this time to 
fuel demand for visual workstations, and were given away with the workstations, or made 
available at a very low cost. AVS was developed by Ardent to sell their workstations, and 
IRIS Explorer to sell Silicon Graphics workstations3.

Just as graphics workstations took over from larger machines, their market began to be 
eroded by commodity hardware. This demand was largely driven by the gaming industry, 
which constantly demanded higher-quality visual effects than were possible with purely 
CPU-based graphics algorithms. Initially, 2D vector accelerators were introduced into 
commodity PCs. These accelerated simple line-drawing functions, and were often mar
keted as ‘windows accelerators,’ since they accelerated the drawing operations used by 
a GUI. Dedicated 3D hardware was introduced into the commodity market by manufac
turers such as PowerVR (now owned by Intel) and 3dfx (now owned by nVidia), who 
provided support for texturing in hardware. Later, nVidia added support for offloading 
transform and lighting calculations to the Graphics Processing Unit (GPU). This was 
later extended to provide fragment, vertex and finally geometry shader support in hard
ware. Modern GPUs have a completely programmable rasterisation pipeline, and are 
sufficiently flexible that they are now being used for non-visualisation tasks.

This has been compounded in the last few years with the incorporation of graphics hard
ware into PDA form factor devices. These tend to be significantly slower than their desk
top counterparts, however they are also typically limited by much lower bandwidth for 
transmitting images from a remote renderer, making the decision between local and re
mote rendering far less clear-cut.

2.3.3 Hardware for Visualisation

Visualisation tasks can often be offloaded effectively onto dedicated hardware. While 
dedicated silicon is generally more expensive than general purpose hardware, it can 
be significantly faster. W hen RAM was very expensive, dual-ported memory called 
VRAM  [252] was popular. This had a read-write port for the CPU and a read-only port for 
the DAC. This allowed the CPU to write to the frame buffer while the display hardware 
was scanning it for output, without requiring any locking. This was obsoleted when RAM 
prices dropped sufficiently that two frame buffers could be used, and switched between.

3 Silicon Graphics changed its name to SGI later, when the company began to focus more on the general 
HPC market than on visualisation
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The CPU would write to one, while the display hardware read the other, and then they 
would be flipped. This also helped reduce visual artefacts, since the current frame will 
not be updated while it is being displayed (as long as the switching is synchronoised with 
the flyback period).

One of the earliest processors used as a dedicated graphics processor was the Intel i860 [129]. 
The i860 was intended as a general purpose CPU for workstation use, and was intended 
to replace the 8086-compatible line. It could achieve a theoretical peak of 66MFLOPS, 
compared to the 33MFLOPS of the i486 at the time. In general purpose use, particu
larly with compiler-generated code, the i486 performed better, however. This, combined 
with the very high context-switching overhead of the i860 caused it to be abandoned as 
a general purpose CPU. The instruction set was based on VLIW principles. This made 
it very good for running jobs that included large groups of unrelated instructions (since 
the compiler had to arrange them into bundles that could be executed in parallel). This 
made it particularly well suited to a number of graphics tasks, such as vector drawing. 
The chip was included in the NeXTdimension expansion board for the NeXT Cube. In 
this configuration, it ran a Mach kernel with a PostScript interpreter. Display elements 
would be sent to it as PostScript programs, which executed very quickly. Some systems, 
such as the IRIS Power series from SGI [8] moved in the opposite direction, and included 
large numbers of general purpose chips in a parallel configuration.

Texture mapping hardware began to appear in consumer hardware in the early ’90s. This 
did not offload any of the geometry calculations from the main CPU, but did allow some 
more rendering techniques to be explored. Flow visualisation [259, 300, 192] took advan
tage of texture mapping to display flows on top of simple geometric primitives represent
ing the structure of the flow. Splatting [296] used textures representing a 2D projection of 
a sphere (i.e. a shaded circle) mapped onto square primitives to quickly render point data 
sets, and other point-based techniques also made use of texturing hardware [249]. Recent 
consumer cards (and older workstation hardware) also includes support for 3D textures. 
These take up large amounts of memory; a 512 voxel cube in 32-bit colour will require 
512MB of memory to store, without compression.

M odem GPUs are not exactly dedicated graphics hardware. They are highly parallel 
stream processors. They have some limitations over general-purpose hardware, such 
as the relatively high cost of branching. Early generations of GPU could not execute 
branches at all. Later ones did so by simply executing both parts and then throwing away 
the wrong result. The newer cards support branching natively, although their very long 
pipelines make them comparatively expensive. In spite of these limitations, a number of 
applications such as volume rendering and ray casting [212, 258, 264, 227, 89] have been 
ported to GPU architectures. Their shortcomings are largely made up for by the fact that 
they have very high throughput.

M odem GPUs have an interesting memory architecture. They generally have their own 
RAM and the ability to access the system RAM. Those connected via AGP are more able 
to quickly move data from main memory to their local storage, but moving in the other 
direction is much slower. PCI express addresses this by providing much more, symmetri-
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cal, bandwidth [333]. Roadmaps from both Intel and AMD4 indicate that future x86 chips 
will incorporate GPU-like functionality, giving the GPU the same memory bandwidth as 
the CPU. In the interim, some pre-processing approaches have been proposed that help 
alleviate this bottleneck [82].

Hardware acceleration is not limited to surface rasterisation. Dedicated hardware such as 
the TeraRecon VolumePro allow real-time direct rendering of volume datasets [247]. This 
is based on an earlier research project in the same area [248], and delivers up to 30fps on 
data sets up to 512 voxels along each side.

As discussed earlier, ‘more processors’ tends to be cheaper than ‘faster processors’ and 
GPUs are no exception. A number of approaches have been proposed to take advantage 
of multiple GPUs in a cluster configuration [343, 227]. This has lead to dedicated designs 
such as the WireGL [148], which evolved into Chromium [149], allowing an OpenGL 
command stream to be transparently distributed amongst nodes in a cluster. Additional 
work has been done by others on using multiple CPUs in a cluster [219] and commer
cial solutions are available. Visualisation toolkits such as OpenRM and VTK have been 
integrated with Chromium [32, 223] and other commercial visualisation products, such 
as Mod-viz [218] have been developed for cluster deployment. On the hardware side, 
Sun Fire Visual Grid [293] and IBM Deep View [167] provide similar strategies from a 
hardware perspective.

Trends towards dedicated and general purpose hardware tend to be cyclic. At the time of 
writing, it appears that the trend is about to start its swing back towards general purpose 
hardware, with the next generation CPUs including design elements taken from GPUs 
and extensions to their instruction sets aimed towards graphics applications.

2.4 Applications of Visual Supercomputing

Visualisation is, first and foremost, a practical discipline. Technology is only interesting 
in the context of applications. There have been a number of trends in recent years that 
lead to the conclusion that a large-scale visualisation infrastructure is needed.

2.4.1 Alternative Reality

Total immersion virtual reality environments have been a dream of the visualisation com
munity since the 1980s. This places a very large demand on computation [49, 281, 278]; 
either a very large display is required, or a smaller one with very frequent updates for 
movement (or some combination of the two).

Head mounted displays are fairly common for VR applications. They present a different 
screen to each eye, with a rendering from a slightly different viewpoint. The motion of 
the user’s head must be tracked to maintain the illusion of immersion. For multiple users,

4Who now own ATi
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projection-based approaches project the stereoscopic images onto a screen [283]. These 
can be projected at the same time, and filtered by coloured or polarised lenses, or protected 
alternately and split by shutter-glasses worn by the users. Since these displays do not track 
the motion of multiple users, there are only a small number of situations in which they are 
useful. Another alternative is to use a ‘true’ 3D display, where the individual pixels are 
drawn in a tank in 3D space, either using a holographic display [283], or some mechanism 
involving a rapidly rotating screen [36]. Since these draw an entire volume every frame, 
they require a huge amount of bandwidth, and are limited to the kind of 3D scene that 
can fit inside the tank. At the opposite extreme, it is possible to use very high resolution 
displays (for example, 63 million pixels [223]) to present large scenes in which there 
is little parallax. All of these approaches require a significant amount of computational 
power to maintain the illusion of presence.

The other half of the problem relates to input. Presenting a 3D world is only of use if it 
can be interacted with, and this helps maintain the illusion of physical immersion [290].
The simplest input devices are 3D mice, which track their position in three dimensions, or 
gloves. These work well in one direction —  the computer can track the user —  but do not 
work well in terms of feedback to the user [281]. Haptic systems, such as the phantom 
stylus [290], provide a better sense of interaction, since the computer and user can both 
affect the other.

The computational resources required to maintain a fully interactive visual and haptic 
environment are huge. The Cave Automatic Virtual Environment (CAVE) system provides 
a visually immersive environment by projecting a stereoscopic image onto each wall of a 
room, and tracking the head movements of the user. A typical CAVE is powered by a 12- 
CPU SGI Onyx and special purpose software such as DIVERSE [162] for management.

The issue of management is almost as important as that of processing cost. While pro
cessing power for a given investment doubles roughly every 18 months, the cost of a 
human managing the system does not. In fact, the converse is true; as system complexity 
grows the skills required to manage the system become rarer and thus more expensive. A 
self-managing system is highly prized.

Virtual environments are particularly attractive for collaboration, since they can present 
the illusion of physical proximity between remote collaborators. Examples of collabora
tive environments include DVIE [53], M ASSIVE [128], VRML-extension [44], COVEN [236], 
DEVRL [282], and VirtuOsi [30]. These tend to adopt the virtual world model. This 
places great demands on the infrastructure to ensure that the individual users see a consis
tent view of the world, both in terms of rendering at the edges and ensuring distributing 
the data between them.

In many situations, a complete artificial world is not required, just some slight modifica
tions to the existing one. The solution to this is augmented reality, where a virtual world 
is overlaid on the real one. AR typically uses a transparent display between the user and 
the real world [251] and a camera tracking objects in the real scene [182]. Examples of 
systems using this include th InfoTable [257] which detects objects and allows arbitrary 
metadata associated with them to be displayed. AR can also be used in a collaborative 
context, allowing users to see the same virtual object [271].
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The Grid is becoming more and more important in the field of visualisation, particularly 
when computational resources required for real time interaction in a virtual environment 
are not locally available. Also the popular component-based programming paradigm, 
which has been adopted by many visualisation systems such as VTK, AVS and OpenDX, 
can make use Grid resources. This allows different computation steps of a visualisation 
pipeline to be distributed around the globe [274]. Other visualisation systems such as 
EnSight Gold [1] and Visit [70, 318] also support parallel processing directly.

2.4.2 Distributed Visualisation

The biggest change to the computing landscape in the last decade has been the dramatic 
rise to prominence of the Internet, and more specifically the World Wide Web. The early 
web could display static images, and so presented a new mechanism for distributing the 
results of visualisation; a rendering could be generated on a large machine and then easily 
distributed to users without requiring them to install any specialised software.

The web has grown dramatically since the early days, both in size and capabilities. The 
ability of early browsers to launch ‘helper applications’ based on MIME types allowed 
custom applications for viewing visualisations to be triggered by visiting a web page [17]. 
The growth of plug-in architectures since then has allowed more complex visualisation 
tasks to be run from within the browser, using technologies such as VRML, X3D and 
Java.

The web gives rise to two conceptual structures for visualisation. The first, server-side 
visualisation, has been possible since the first web browsers; a user sends a request for a 
web page and receives a rendering as a result. This has been exploited by systems such as 
CGI interfaces to existing visualisation tools [342, 105]. The alternative is to delegate the 
rendering to the client side [215]. In this case, the web is used to distribute the data used 
for client-side visualisation. Both of these involve trade-offs. Server-side visualisations 
can be significantly more complicated, since the web server can be a front-end to a large 
rendering farm, while client-side renderings are limited both by the power of the client 
and the amount of data that can be sent over a network connection. The advantage of 
client-side visualisation is the low latency between the user and the Tenderer, giving much 
better interactivity.

These two approaches have, in combination, given rise to the web-services approach. This 
is similar to the server-side approach, but allows multiple servers. Data can be stored 
in one place and different stages in the visualisation pipeline can be run on different 
machines in a loosely-coupled environment.

Beyond the web, a number of other approaches for remote visualisation via the Internet 
have been developed. ORL’s Virtual Network Computer (VNC) [322] uses a screen- 
scraping mechanism to send a copy of the framebuffer to a remote user, and remotely 
send mouse and keyboard input to workstation.

VNC provides basic collaboration abilities, however it does not provide any means of 
mediating access to resources. Different levels of collaboration are possible within dis
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tributed systems. The simplest is data sharing, which is supported by environments such 
as CUMULVS [229] and pV3 [253], where multiple viewers can inspect the same data, 
or COVISE [83] where geometry is shared, but collaborators retain their own viewpoint. 
This is in contrast with something like VNC, which provides display sharing, since each 
collaborator shares the same view of the data.

There is a growing need for collaborative visualisation, as the next section will explain, 
and some of the tools for building the required infrastructure are beginning to become 
available. The current state of visualisation, however, is not ready for deployment on the 
grid [274], and further work is required.

2.4.3 Visual Data Mining and Large-scale Data Visualisation

Never before in history have we had such capability for generating, collecting and storing 
digital data. Data repositories at terabyte level are becoming a common place in many 
applications, including bioinformatics, medicine, remote sensing and nano-technology. 
In some applications, such as network traffic visualisation [172] and video visualisa
tion [87] (Figure 2.3), we are encountering the scenario that dynamic data streams are 
almost temporally unbounded. Many visualisation tasks are evolving into visual data 
mining processes [161].

These applications are placing a huge strain on the existing visualisation environments, 
and challenging the state of the art technologies in many ways. They demand a variety of 
infrastructural supports, such as,

•  for providing sufficient run-time storage space to active visualisation tasks;

•  managing complex data distribution mechanisms for parallel and distributed pro
cessing;

•  choosing the most efficient algorithm according to the size of the problem;

•  facilitating the search through a huge parameter space for the most effective visual 
representation.

Data management is the very first issue in handling large datasets. Many visualisation 
processes involve datasets that are much too large for the internal memory of a computer, 
and have to rely on external disk storage, usually under the virtual memory management 
of an operating system. The external disk access can become a serious bottleneck in 
terms of rendering speed. Out-of-core algorithms (also known as external memory al
gorithms) [321] are designed to solve a variety of batch and interactive computational 
problems by minimizing disk I/O overhead. Various out-of-core visualisation algorithms 
have been proposed to handle large structured and unstructured 3D datasets, for instance, 
in the context of (i) isosurface extraction [75, 67, 295], (ii) terrain rendering [194], (iii) 
streamline visualisation [308], (iv) mesh simplification [193], (v) rendering time-varying 
volume data [277], (vi) rendering unstructured volumetric grids [109], and (vii) ray trac
ing [250]. W hile some algorithms rely little on internal memory (e.g., [67, 109]), others 
utilize preprocessed data structures, such as octree [308] and indexing [277] to optimize
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disk I/O operations. Kurc et al. [175] recently reported their experience in visualizing 
large volume datasets using Active Data Repository, which is composed of a set of mod
ular services and a unified interface for supporting the management of, and mapping 
between, in-core and out-core data.

There has been a similar amount of research effort, if not more, for developing techniques 
that synthesize a visualisation image using less than the full dataset. Two commonly used 
approaches for determining a subset of data to be visualized are multi-resolution and 
view-dependent data organisation.

Multi-resolution data organisation makes use of various hierarchical spatial structures to 
manage levels-of-details (LODs) of a graphical model or scene. Such structures facili
tate real-time rendering by allowing an appropriate LOD to be selected according to the 
requirements of interactivity and the constraints of computational resources. In com
puter graphics and visualisation, there exists a large collection of works based on this 
approach. For example, octrees and min-max indexing were used for isosurface extrac
tion [334, 155,75]. Laur and Hanrahan [184] utilized an octree for progressive refinement 
in splatting. Wilhelms et al. [335] employed a k-D tree for direct rendering irregular and 
multiple volumetric grids.

View-dependent data organisation makes use of the concepts and algorithms of hidden 
surface removal, and prioritizes geometrical primitives according to their visibility to the 
viewer. For example, Livnat and Hansen [197] proposed a view-dependent isosurfac- 
ing algorithm. LaM ar et al. [179] prioritized volume data based on its proximity to the 
viewer. Other view-dependent works include visible set estimation [168], visibility-based 
prefetching [82], and view-dependent progressive rendering [238].

W hile it is necessary to deal with problems arising from very large datasets, it is equally 
important to improve our capability for managing inter-related datasets in order to gen
erate more meaningful visualisation. In computer graphics and computer aided design, 
scene graphs, built-upon the concept of constructive solid geometry, have played an indis
pensable role in combining simple objects into a complex object and bringing many ob
jects together into a scene. It is common for graphics systems to support scene graphs, for 
instance, in RenderMan, OpenGL, OpenRM, VRML, Java3D, POV-ray and Open Scene 
Graph. However, support for combinational modelling in visualisation systems [32, 228] 
is largely based on surface-based scene graphs, relying on image-space composition. 
Early research efforts for modelling complex visualisations involving multiple datasets 
were focused on voxelisation [327]. In order to address the problems associated with vox- 
elisation [156], such as excessive data size and data degeneration, Chen and Tucker [60] 
outlined the concept of constructive volume geometry for combining volumetric datasets 
and procedurally defined scalar fields, vlib [336], an open source volume graphics API, 
offers volumetric scene graphs as its fundamental data structure, and provides a discrete 
ray tracer for direct rendering volumetric scene graphs.

In large-scale data visualisation, high performance rendering techniques, such as mas
sively parallel rendering (e.g., [202]), progressive rendering (e.g., [184]) and stream- 
based rendering (e.g., [149]), are essential to the the process of making displayable by 
a computer (Figure 2.1). However, facing very large datasets, making meaningful in
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form ation visible to one’s eyes is often more critical in visualisation. With very large 
datasets, ‘meaningful information’ is often featured in a visualisation at a sub-pixel level, 
in a large amount or in four or higher dimensions. This challenges us to develop visuali
sation techniques into tools for visual data mining [161].

A popular approach to the handling of a huge amount of visual information is the use of 
focus and context techniques, which highlights a ‘focus’ in detail and depict its ‘context’ 
with less details to provide an overview. Focus and context techniques such as fisheye 
views [268], perspective wall [204], hyperbolic space [226] and rubber sheets [269], have 
been deployed extensively in information visualisation. This approach has also been em
ployed in scientific visualisation, deformation-based volume visualisation by Kurzion and 
Yagel [177], distortion viewing by Carpendale et al. [54], non-photorealistic rendering by 
Treavett and Chen [305], magnification lens by LaM ar et al. [180], two-level rendering 
by Hadwiger et al. [134], digital dissection in cardiac visualisation by Chen et al. [61].

Data mining should be closely coupled with visualisation [339]. Interactive visualisation 
is an indispensable tool in many data mining activities [139,142]. interactive visualisation 
of large datasets not only demands sufficient computational resources, but also requires 
effective interactive techniques for data exploration, view navigation, data segmentation, 
data filtering, data fusion and direct manipulation [161],

Perhaps one of the main challenges in the coming years is computer-assisted design 
o f visual representations. Many techniques in information visualisation enable auto
mated placement of information in a visualisation, for instance, treemap [279] and Sun
burst [288] in hierarchy visualisation, recursive pattern  [160] and circle segments [18] 
in time-series visualisation, and spring models [303] and Kohonen networks [170] for 
self-organisation and self-optimisation in the entire information space. In volume visuali
sation, initial attempts have been made to automate the specification of transfer functions. 
Marks et al. [206] proposed a design galleries approach to the problem, while Kindlmann 
and Durkin [166] developed a semi-automatic method for generating transfer functions.

The problems surrounding large scale data visualisation are collectively becoming an 
infrastructure issue, as it is unlikely an individual technique can provide a satisfactory 
solution alone. To process such large amounts of data at the speed required, it is necessary 
for a visual supercomputing infrastructure to provide dedicated computational resources 
and application software systems. It is no doubt useful for the infrastructure to select 
appropriate modelling, processing and rendering techniques according to the available 
resources and interaction requirements. It is also highly desirable for the infrastructure to 
offer a wide range of tools for visual data mining as such activities are often unplanned 
and the effectiveness of a particular tool cannot always be pre-determined.

2.4.4 Scientific Computation and Computational Steering

The scientific community is one of the largest consumers of visualisation. It is unusual 
to use visualisation in isolation. More typically, it is integrated with a simulation system 
or problem solving environment. Such an environment is usually designed in a domain-
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specific manner, targeting a particular class of problem [119]. Cactus is an example 
of an open source problem solving system used by physicists and engineers [10]. In 
scientific modelling, visualisation is one component in a feedback loop [311]. These 
feedback systems typically fit into one of the following categories, a taxonomy proposed 
by Marshall et al. [207].

Post-processing uses visualisation after the simulation has run, simply to display the 
results. The user has no control over the simulation, and can not abort it or modify 
the parameters as a result of the visualisation, without running the simulation again. 
Since these visualisations run offline, they may use expensive pre-processing steps 
to achieve interactive framerates during the visualisation.

Tracking refers to visualisations that run during the simulation, but have no direct feed
back mechanism. A user may use a tracking visualisation to check that a simulation 
is progressing adequately, but not as a control system.

Steering is the most complex of the three. In a steering environment, the visualisation 
component is part of the user interface, and decisions that affect the simulation can 
be made by the user at run-time based on the output of the visualisation. This can 
also be used to provide an audit trail [38], where checkpoints from various steering 
phases are stored. A steering environment using visualisation can be quite different 
to a conventional user interface. The parameters of the simulation can be modified 
by the environment based on very high-level responses to the visualisations made 
by the user, as in [346].

A steering environment that is flexible enough for all uses has been attempted [314, 312, 
225] by adding steering widgets to visualisation systems, allowing the same generic tools 
used for visualisation to be used for controlling simulations. SCIRun, from the Scientific 
Computation and Imaging Institute at the University of Utah is a visualisation environ
ment designed from the ground-up for steering tasks [243]. Other tools for this purpose 
include the Collaborative User Migration, User Library fo r  Visualisation and Steering 
(■CUMULVS) [229], which was developed to provide tools for scientific programmers. 
This framework is designed to allow steering and visualisation components to be inte
grated with large-scale simulations.

The RealityGrid project, as shown in Figure 2.4, is another project aimed at assisting 
steering applications. This has been used to build a number of different grid applications, 
including large scale Lattice-Boltzmann simulations [45] running on a large number of 
distributed machines.

The gViz project [340] has extended the IRIS Explorer application, described earlier, to 
allow components of the visualisation pipeline to run on different machines. In a grid 
environment, it is expected that communications between two machines are not necessar
ily private, and so a system like this is likely to require encryption, and a mechanism for 
authenticating trusted machines.

It is clear from the interaction between computation and visualisation that high-level inter
process communication mechanisms are required for the grid environment. These typi
cally involve moving very large amounts of data between parts of the pipeline, and so the
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current grid services architecture, built using XML and HTTP, might not be appropriate. 
Systems such as Kepler [11] integrate scientific workflows with visualisation.

Simulations have been the focus of much of this section, but they are not the only things 
that require visualisation, nor are they the sole recipients of steering activities. The same 
feedback mechanisms can be applied to control real systems, such as experimental appa
ratus, medical systems or industrial equipment. A nuclear power plant, for example, is 
too dangerous to directly observe, and so can only be controlled based on output from 
sensors and is a good target for visualisation driven steering.

W hile simulations can typically be paused, interrupted, or restarted, real systems can 
(usually) not. They require real-time processing of datasets that are often very large, 
and low-latency feedback. This category of mission critical visualisation does not solely 
encompass systems requiring immediate feedback, but such systems do usually have a 
fixed time window between availability of data and the need for a user to make a decision. 
An example of this would be a flight simulator used to train pilots [284]. The simulator 
throws situations at a pilot, which must be visualised in time for the pilot to control the 
simulated aircraft in a way that reacts to the simulated situation.

The medical community is likely to be another area in which this form of visualisation 
will be used extensively. Visualisations from patient scans are commonly used during the 
planing phase of surgical procedures [246], and it is not a great imaginative leap to think 
that they could be used for training and even remote operations conducted by specialists 
on a different continent in the near future.

Figure 2.5 shows a system for delivering interactive volume interrogation of patient data 
in the operating theatre [209]. In this example, visualisation tasks are carried out on a 
large, remote visualisation server and delivered over the network.

This form of visualisation is typically conducted using custom (expensive) hardware at 
the moment, which makes it an ideal target for a visualisation infrastructure. The com
puting power available to a large scale infrastructure is likely to be sufficient to perform 
many of these tasks, however the management of such a system, the allocation of re
sources, and the interaction of components are still very much open problems. Quality of 
service concerns are significant for mission critical situations. In a lot of existing applica
tions a few dropped frames are irritating. In a remote surgery application, a sudden drop 
in computing resource assignment or bandwidth allocation causing dropped frames or in
creased latency could potentially be fatal. Synchronisation and data distribution are also 
important problems [118], which must be addressed when designing an infrastructure for 
visualisation.
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Figure 2.3: Video visualisation needs to deal with data streams of an arbitrarily large size. 
Stream-based rendering can be effectively deployed to visualize video streams [87].
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Figure 2.4: A computational steering environment developed in the RealityGrid
project (45].

Figure 2.5: Visualisation-guided surgery is a typical application of mission-critical visu
alisation [209],



Chapter 3

Autonomic Computing and Visual 
Supercomputing

3.1 The Question of Scale

The Grid concept refers to a distributed computing infrastructure for ‘co-ordinated re
source sharing’ [116]. This extends the concept of the World Wide Web, which is a 
distributed computing infrastructure for sharing data. While a grid infrastructure allows 
sharing of data, it also allows sharing of storage space and computational resources.

The Grid is a large heterogeneous system in which different components with different 
resources and policies interact to further their own goals. Unlike cluster computing, the 
Grid idea does not include a single administrator responsible for the whole system, nor a 
single set of policies for use. A Grid infrastructure must provide a set of services [243], 
but the way in which these services are provided is not well defined. There are a number 
of standards, but many of them are incompatible. These are typically embodied by a Grid 
middleware, which should implement the following services:

•  networking quality of service (QoS),

•  resource co-scheduling,

•  load balancing,

•  message passing,

•  file transfer mechanisms,

•  data security, integrity and coherence.

•  authentication.

One widely-deployed middleware is that provided by the Globus Project [115], the Globus 
Meta-computing Toolkit [114]. This contains a range of tools, which can be used for 
building grid services. Globus makes a distinction between local and global services. 
The former are simple to deploy, and are not publicly visible. They are then exported
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via global services, which typically wrap a small group of local services. Local ser
vices can be tied to particular hardware resource, and more instances of the same service 
added without changing the public appearance of the global service. This also allows 
fault-tolerance; a global service could run a single job on two local services exported by 
different machines, and if one fails return the result from the one that didn’t, without the 
external user being aware of the failure.

Globus is not the only option for Grid middleware. Others include UNICORE [106], 
which allows legacy closed-source applications to be re-packaged as grid services, which 
was then extended to provide EUROGRID [107] and GRIP [130]. The Imperial College 
e-Science Networked Infrastructure is designed to allow software components to be de
ployed in a federated resource pool, as is Legion [58] which assembles the pool into a 
virtual supercomputer. Condor [79] could be classed as a Grid middleware application, 
although it predates the idea of the Grid, and is mainly focussed at numerical computa
tion tasks, while the Grid is typically regarded as a more general idea. Codine, which was 
designed for scheduling tasks across a distributed infrastructure, was developed into Sun 
Grid Engine [294].

Several Grid infrastructure projects have resulted in deployment to date. The UK e- 
Science Grid, NASA’s Information Power Grid (IPG) and the European Data Grid are 
all examples which are usable for research purposes, although not necessarily for general 
use. The AccessGrid [3] is a very specialised Grid environment, based around providing 
conferencing services, which has seen some use in visualisation since it is designed to 
share visual data for video conferencing, and can be extended further.

The plethora of Grid ‘standards’ is expected to converge at some point. The Open Grid 
Services Architecture [113] was formed by the Globus project and IBM. This aims to 
build standard interfaces for Grid services on top of existing Web Services. The first draft 
specification was released in 2003.

Current Grid systems are not ideally suited to running interactive tasks, they are better 
suited to batch-processing. Since most visualisation tasks require some form of inter
activity, this is less than ideal. Some attempts have been made to modify existing Grid 
middleware to fulfil these needs, such as the Interactive Access plug-in to the UNICORE 
client [106], which allows end-users to interact, via the UNICORE middleware, with 
simulation processes running at multiple locations.

The Grid is the embodiment of large scale computing. Many of the participants on the 
Grid (i.e. those offering Grid services) are likely to be clusters or supercomputing centers. 
Mobile devices occupy the other end of the scale, with very limited computing power and 
connectivity. The addition of mobile devices to the Grid brings us closer to the vision 
of ubiquitous computing, where computational resources are widely deployed, and con
sumer electronic devices participate in a Grid-like environment, along with mobile and 
even wearable computers [328]. This is particularly interesting from a visualisation per
spective, since it provides a number of new and exciting opportunities which are largely 
unexplored.

Some work has been done in this area already. The FUSE system has been proposed as a
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tool for developing collaborative systems that are to be deployed on multiple platforms. 
PDAs have been used for a variety of tasks, including as a remote display for visualisa
tions rendered on a graphics workstation [181], or a smart pointer [338]. Tweek [137] 
presents another alternative, a middleware system which displays a 2D GUI to a virtual 
environment on a variety of devices, including PDAs.

An alternative use is to use the on-board processing power of the PDA to create visualisa
tions. D ’ Amora and Bemardini [86] developed a PDA 3D viewer that can access a remote 
database of CAD models. Some current PDAs have quite powerful 3D accelerators, when 
taken in the context of their screen size.

Izadi et al. [151] proposed the FUSE system as a development tool for collaborative sys
tems across multiple platforms. Lamberti et al. [181] demonstrated a mobile graphical 
interactive rendering task running on a PDA which is provided by a remote graphics work
station. Wolf et al. [338] proposed the Smart Pointer as a role for PDA devices, where 
it either presents a subset of the visualisation when part of a larger visualisation environ
ment (such as a CAVE) or it aims to provide the same overall image as other (desktop) 
clients, both approaches using a remote visualisation server. Hartling et al. [137] pre
sented a middleware system, Tweek, which displays a 2D GUI to a virtual environment 
using a PDA. The user may interact with the virtual environment via the PDA. Apart 
from the technical aspect, human factor issues in using PDAs for visualisation need to be 
addressed [244].

We have categorized the demands upon both the mobile device and the visualisation ser
vice into the following classes ordered according to their communication requirements:

Remote scheduling —  A device, such as a PDA, can be used to monitor the account 
status of the user on a visualisation server. The user should be able to consult their 
account, see the current state of any jobs, and perform basic management tasks, 
such as start, stop, hold  and remove. This requires a low bandwidth duplex channel 
for textual communications.

Remote monitoring —  Higher level monitoring functions can take advantage of the 
colour displays on the device. Users may query their account to retrieve still im
ages which are visualisations of their data. They may (pre)select parameters for 
rendering (such as rendering method and transfer function), and be presented with 
the image. Such parameters may be used to assist with scheduling decisions. This 
class requires a duplex channel with a higher bandwidth downstreaming traffic.

Remote steering —  A remote user can be notified on job (or intermediate result) com
pletion, and may view a visualisation of the result. Some limited interaction with 
the visual representation is possible as the user’s feedback can be used to gener
ate modifications to the current job. This is most useful for checking intermediate 
results during batch mode without having to be tied down to one location. Some 
steering of the simulation is possible as jobs can be stopped and restarted from a 
recent state with new parameters. The bandwidth requirement is higher as the wait 
time for several images may be undesirable. The computational demands on the 
PDA are higher due to the need to zoom, pan, and interact with the data. At this
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stage, transmission and interaction with small 3D models may be desirable and 
possible.

Rem ote visualisation — The user interacts freely with the simulation, using the visuali
sation to explore all aspects of their data. This places a high demand on the PDA as 
well as the server. The visualisation could be in the form of a sequence of images 
generated by the server and transmitted compressed to the PDA, or the server could 
send a stream which could be processed by the limited graphics hardware available 
on the PDA. User interface widgets could be overlayed over the data, and the user 
will send interaction data back to the server in order to steer the simulation. Some 
frame loss, and some pauses in results are inconvenient but not critical.

Figure 3.1: Mobile technology has offered an exciting scope for developing new visuali
sation applications (image courtesy of Dr. Mark Jones).

Mobile visualisation (Figure 3.1) introduces an interesting design problem for a visual 
supercomputing environment. It reminds us of the desktop technology two decades ago 
when low resolution displays and limited computation resources were supported by main 
frame computers. However, it also exhibits a completely new scenario where the requests 
for visualisation, or managing visualisation tasks, can come from anywhere with often 
unreliable communication channels in terms of both bandwidth and security. The infras
tructural support to mobile visualisation may significantly broaden the application scope 
of visualisation, and transform this largely laboratory-based technology to a pervasive 
technology.

3.2 Autonomic Computing

A Grid infrastructure, or more generally, a pervasive infrastructure, will be considerably 
complex, and the difficulties in managing such an infrastructure raise a serious question 
as to whether it is adequate for it to be managed by human administrators, and whether 
it requires a much more system-level automation than what is currently implemented. 
Researchers and developers in many fields, such as distributed systems, data communi
cations, Internet technology, Grid computing, agent technology, database systems, expert 
systems and business management systems, are embracing the concept of autonomic com
puting in managing large and complex infrastructures and services.
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Autonomic computing [165] refers to computing systems which possess the capability 
of self-knowing and self-management. Such a system may feature one or more of the 
following attributes:

Self-configuring —  The system can integrate new and existing components without low- 
level intervention from an administrator.

Self-optimizing —  The system can continually try alternate configurations to determine 
if the current one is optimal.

Self-healing —  The system can detect, and recover from, failure of components, hard
ware or software.

Self-protecting —  The system can detect attempts to compromise it, perhaps from hack
ers or viruses, and react accordingly.

A noticeable amount of research effort in autonomic computing has been placed on the 
self-management of system infrastructure and business services. Examples of this include 
self-configuration in patching management [101] and in Grid service composition [4], 
self-optimisation in power management [158], business objectives management [7], and 
resource management in dealing with network traffic spikes [237], and self-healing in 
online service management [62] and distributed software systems [217].

Efforts have also been made to broaden the scope of autonomic computing, addressing 
a wide range of related research issues, such as economic models [108], physiological 
models [187], interaction law [216], preference specification [326], ontology [195, 307], 
human-computer interaction [14], and so forth.

Though the development of generic software environments for autonomic applications is 
still in its infancy, several attempts were made, which include projects such as QADPZ [80], 
AUTONOMIA [98] and Almaden OptimalGrid [88].

QADPZ (Quite Advanced Distributed Parallel Zystem ) [80] provides an open source 
framework for managing heterogeneous distributed computation in a network of desk
top computers using autonomic principles. In QADPZ, the system complexity is hidden 
in the middleware layer, facilitating self-knowledge, self-configuration, self-optimisation 
and self-healing.

AUTONOMIA [98] is a prototype software development environment that provides ap
plication developers with tools for specifying and implementing autonomic requirements 
in network applications and services. It features an application management editor for 
requirements specification, a mobile agent system  as a uniform execution interface to un
derlying hardware and operating systems, an autonomic middleware service for managing 
autonomic services, an application delegated manager as a broker between components 
and resources in the context of Jini lookup service [240], and a fau lt handler for self- 
healing.

OptimalGrid is a self-configuring, self-healing and self-optimizing grid middleware, us
ing a set of distributed whiteboards for communication between the different nodes. A 
computational problem is expressed using Original Problem Cells (OPCs), which de-
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scribe the connectivity of the cells with their neighbours and the calculations to be per
formed using the neighbours information. OPCs are aggregated in collections which are 
themselves part of Variable Problem Partitions (VPP), assigned to grid nodes. The Op
timalGrid system is then able to self-configure, using a list of available compute nodes 
with their characteristics, and can optimize the repartition of OPCs after each computa
tion cycle. As the communication history between nodes is saved in the whiteboards, 
if a node is lost the system is able to recover and catch up with the computation, rather 
than restarting the entire problem. The use of these different autonomic features permits 
to deliver a grid system more robust and easier to use. Future plans include integrating 
support for the Open Grid Services Architecture (OGSA) [113].

By mimicking the behaviour of the human autonomic system especially in dealing with 
homoeostasis, autonomic computing is believed to be a solution to the increasing ad
ministrative complexity of computing infrastructures. Hence, no visual supercomputing 
infrastructure can afford to ignore this emerging technology.

The above discussions have clearly indicated the need for encompassing a large collection 
of infrastructural issues related to the management of visualisation tasks in a common 
framework, for which we have introduced the subject domain of visual supercomputing. 
The requirements from applications, such as visual data mining, computational steering, 
mission-critical visualisation and mobile visualisation, have indicated a high research 
priority to the infrastructure of visual supercomputing. While such an infrastructure can 
benefit from the state of the art technologies in visualisation, we are still facing many new 
challenges in order to realize a well-designed, serviceable and cost-effective infrastructure 
for visual supercomputing.

Autonomic computing has provided some ideas which can be used for managing parts of 
this infrastructure, such as the Laundromat Model [136], however the field is still young 
and has far more ideas than concrete implementations at present.

Hoare outlined a set of criteria for a grand challenge in computer science [143]. Accord
ing to these criteria, building a visual supercomputing infrastructure can be considered as 
a grand challenge in the field of visualisation. It raises a series of scientific questions such 
as:

Architectural Design —  Would it be desirable or feasible to build an infrastructure for 
visual supercomputing based on that of the Grid? How would it accommodate the 
different needs for centralized, distributed or independent services from various 
applications? How would such an infrastructure provide generic support to the 
management of visualisation data, distributed visual data mining, very large scale 
data visualisation, mission-critical visualisation and mobile visualisation?

Technology Deployment —  Should special purpose graphics hardware form the central 
core of a visual supercomputing environment? If so, what would be the relation
ship between such central hardware and graphics hardware available on personal 
computers? W hat would different hardware attributes impact upon visualisation 
algorithms, and how would visualisation tasks are managed to take such attributes 
into account?
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Quality of Service —  How would a visual supercomputing infrastructure provide seam
less services to many users and for many applications, instead of just another ‘re
mote login’ service? W hat would be the role of the infrastructure in managing 
interaction, data and knowledge about users’ experience? In what way could users 
benefit from a knowledge-based infrastructure?

One emerging strategy for developing complex computing infrastructure is autonomic 
computing [165] (see also Section 3.2), which seeks inspiration in self-adaptive biological 
systems and self-governing social and economic systems.

Adapting the deployment model, proposed by IBM [150], for the gradual evolution of 
complex system-wide self-managing environments, one can envisage a similar five-level 
deployment model for visual supercomputing, which can be developed evolutionary .

Level 1: Basic —  At this level, a visual supercomputing infrastructure is an integrated 
system  platform that provides visualisation applications with necessary computa
tion and communication resources. Typically, users are fully involved in identifying 
appropriate tools, locating computation resources, and managing data distributions. 
It is often necessary for users to navigate themselves through complicated technical 
obstacles, such as networking, security, parallel computing, data replication, and so 
forth.

Level 2: Managed —  At this level, a visual supercomputing infrastructure will have a 
managed service layer between the user interface and the system platform. The ser
vice layer is aware of the availability and ontology of data and resources, and can 
provide services to various visualisation applications according to dynamic require
ments of users and applications as well as dynamic states of the system platform. To 
a large extent, the development of the Grid technology is aiming at the delivery of a 
general-purpose infrastructure. To managing visualisation applications effectively, 
it is necessary to incorporate more advanced service features into the Grid technol
ogy for supporting a variety of visualisation needs such as interactive, distributed, 
mobile, and mission-critical applications in a more transparent manner.

Level 3: Predictive —  At this level, a visual supercomputing infrastructure will have 
an information layer between the user interface and the service layer, which col
lects, monitors and correlates various user interaction data and system performance 
data. It provides users with analytical data, which may indicate the quality of vi
sualisation results, effectiveness of visualisation tools, and so on. In addition, this 
layer can enable faster and better task specification by reporting potential problems 
and recommending suitable tools and visual representations. It is at this level, the 
infrastructure starts to manage users’ experience in carrying out visualisation tasks.

Level 4: Adaptive —  At this level, a visual supercomputing infrastructure will have an 
adaptation layer between the information layer and the service layer. Based on the 
information collected, the adaptation layer has the functionality for self-configuring 
and self-optimizing the computational requirements of a visualisation task, as well 
as the functionality for self-managing the system platform and various visualisation 
services dynamically. It is at this level, visualisation users can be largely freed
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Figure 3.2: developing new visualisation applications.

from software management, and are able to focus on their core business, that is, 
visualisation.

Level 5: A utonom ic —  At this level, the traditional user interface in a visual supercom
puting infrastructure will be replaced by an intelligent user interface, for instance ‘a 
virtual secretary’, which is capable of transform information to knowledge and pro
vides users with a wide range assistance. Such assistance may include specifying 
visualisation tasks, scheduling inter-dependent jobs, organizing raw data and visu
alisation results, managing security, checking the quality of the service and results, 
and arranging the sharing of the data with other users.

Figure 3.2 illustrates evolutionary advance of the infrastructure through the five levels.
In this deployment model, each layer is merely a conceptual placeholder for a collection 
of functional components (e.g., services, tools, agents, databases, knowledge-bases, and 
so on). It is not necessary for the development and deployment of each level to follow 
a temporal order. Nor is it desirable to make each layer a centralized bottleneck in the 
process of visualisation. It is most likely that the infrastructure will be realised with a 
large number of autonomous, interacting, self-governing functional components.

3.3 e-Viz

Building a visual supercomputing infrastructure is no doubt an ambitious grand chal
lenge. However, a solid foothold already exists at Level 1, and developments are rapidly 
approaching Level 2. A noticeable amount of research effort is being made to develop 
system-level autonomic computing techniques in many fields, including distributed sys
tems, data communications, Internet technology, Grid computing, agent technology, database 
systems and business management systems. Some of such effort can be viewed as ‘hor
izontal’ deployment of autonomic computing at the system layer and serxice layer of a 
visual supercomputing infrastructure (Figure 3.2), while others can provide new concepts, 
methods and tools for the development of the intelligent user interface, information and 
knowledge layer and adaptation layer.

The e-Viz project [39, 260, 42], begun in 2005 intends to explore the needs of such an 
infrastructure and begin developing solutions. This project is a collaborative endeavour 
between four sites in the UK; Bangor, Leeds, Manchester and Swansea. This PhD was 
conducted as part of the e-Viz project and this thesis presents work performed towards
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this overall goal.

It is understood that a complete solution to the problem of designing an infrastructure 
for visual supercomputing is well beyond the scope of a single PhD. The work presented 
here intends to provide some of the framework for such a system. Figure 3.3 shows an 
overview of the e-Viz project. The project had three main components. The e-Viz system, 
a prototype for an autonomic visualisation system, a set of applications to be evaluated 
for deployment on this infrastructure, and a simulator for modelling the overall system.

Work on reactive user interfaces for this was system was conducted at Leeds and M anch
ester [42] and applications were tested at all sites. For example, work was conducted at 
Bangor on using an adaptive grid infrastructure for augmented reality tasks [146, 147].

One of the goals of the e-Viz project was to explore the application of autonomic concepts 
to visualisation problems. Part II of this thesis describes one such application. Rendering 
large datasets will be a problem that any visualisation infrastructure will have to address 
and out-of-core rendering is a necessity for this. This part of the thesis will explore 
an autonomic, knowledge-based, approach to data management in an external memory 
context. Approaches such as this would need to be built in at the lowest levels of a truly 
adaptive infrastructure for visualisation, such as that proposed by the e-Viz project and be 
part of the system pipeline described in the diagram.

Other work conducted at Swansea as part of the e-Viz project dealt with an agent-based 
system for defining this pipeline [262]. During the design phase, this work was simulated 
using the SimEAC simulator described in Part III.
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SimEAC was originally entered in the e-Viz proposal as SimuVis, a system for simulating 
a final e-Viz system. While working on the requirements for such a system, it became 
clear that any system which met the needs of e-Viz would be more generally useful. The 
final system, renamed to make this more apparent, is presented in detail in this thesis.

Once the pipeline is created, it is often important to interactively control the visualisation. 
Work on this was conducted at Leeds [341] and the pollution modeller application used 
was also simulated running on several different configurations by SimEAC.

The e-Viz project demonstrated the advantages of an autonomic infrastructure for visu
alisation. Ongoing work should make this a reality. Other contributions to the research 
community from this project include:

•  The five-level deployment model for autonomic visualisation from Swansea [39].

•  Interactive remote server-based visualization from Manchester [260].

•  Adaptive user interfaces for visualisation and computational steering from Leeds 
and Manchester [42].

•  Agent-based management of visualisation pipelines from Swansea [262].

•  Applications in augmented reality from Bangor [147, 146].

•  An application in volume visualisation from Swansea [262].
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4.1 Motivation

M oore’s law specifies that the number of transistors it is possible to fit on an integrated 
circuit for a fixed financial investment doubles roughly ever 18 months. Since the number 
of transistors gives a rough indication of performance, we can claim that the speed of 
commodity CPUs follows a similar trend.

Hard drive capacities have followed a similar pattern, however seek times have not. Hard 
drive seek times are limited by the angular movement of the platter and the linear move
ment of the head. The head speed has remained relatively constant for the last twenty 
years (although the platter size has shrunk somewhat, meaning that the longest possible 
movement has shrunk). Rotational speed has increased somewhat. The first graph in Fig
ure 4.1 shows the number of millions of instructions per second of commodity x86 chips 
over time along with the rotational speed of hard drives of equivalent eras.

47
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Figure 4.1: Disk and CPU speed over the last twenty years.

The maximum amount of time for a seek that doesn’t involve moving the head is given 
by the reciprocal of the rotational speed (i.e. the time for one complete rotation). The 
second graph in Figure 4.1 shows the number of instructions that a CPU can execute 
in one revolution of a hard disk of the same vintage. Note that this follows a roughly 
exponential curve. If an algorithm depends on data on the disk, then this gives an idea of 
how much time the CPU will spend idle instead of doing useful work.

The data used to produce this graph is shown in Table 4.1. The CPU MIPS numbers are 
taken from the speeds of commodity x86 chips. Within the same instruction set architec
ture, MIPS is a relatively accurate reflection of speed. The disk RPMs for the correspond
ing years are taken from a variety of sources, including manufacturer press releases and 
adverts dating from the relevant year. These figures are not to be considered completely 
reliable, however they give a good indication of the speed of consumer technology for a 
given year.

The seek time for any hard disk may be approximated by the following formula:

average seek time = m a x i    pivot time  +  settling time)
2 x rotational speed

The settling time and pivot time are closely related; the faster (and further) the pivot 
moves, the larger the settling time due to induced vibrations caused by sudden motions. 
The pivot time is also influenced. The graph in Figure 4.1 assumes some locality of data, 
and so that the pivot time will be negligible compared to the rotational latency. While this 
is not always valid, it gives a sufficiently good approximation for demonstration purposes.

In many cases, seek time is already a significant bottleneck, and this is likely to increase. 
Since the CPU is spending so much time waiting for data, a significant performance 
increase is possible by using some of this spare CPU time to load the data before it is 
needed. Note that sustained transfer rates of hard drives are proportional to the rotational 
speed and the data density. Since the density has increased at a faster rate than CPU
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Year CPU MIPS Hard Drive RPM
1988 Intel 386SX (25MHz) 8.5 3524
1992 Intel 486DX (66MHz) 54 3524
1996 Intel Pentium Pro (200MHz) 541 5400
1999 Intel Pentium III (500MHz) 1354 5400
2000 AMD Athlon (1.2GHz) 3561 7200
2002 AMD Athlon XP (2GHz) 5935 7200
2003 Pentium 4EE (3.2GHz) 9726 7200
2006 AMD Athlon FX (2.6GHz) 18938 10000
2007 Intel Core 2 (3.33GHz) 57063 10000

Table 4.1: Disk rotational speed and CPU speeds.

speeds, sustained transfers are much less of a bottleneck1.

This bottleneck is even more apparent when the data is stored on a remote server; in this 
case the latency can be 200ms or more, giving two orders of magnitude more wasted 
cycles.

The next three chapters describe some approaches to alleviating the problem of latency. 
An algorithm-specific approach is proposed for a specific rendering method, and then an 
attempt to apply autonomic concepts to the problem is discussed.

4.2 The Anatomy of an Out-of-Core Algorithm

An out-of-core algorithm is divided into three components. These each deal with a dif
ferent stage in the life cycle of cached data.

•  A data layout strategy

•  A prefetching strategy,

•  An eviction strategy

The data layout strategy relates to how data is stored out-of-core. On a hard disk, sequen
tial reads are significantly faster than random seeks. If data is organised in a way that 
preserves locality then the entire working set for an algorithmic step can be loaded into 
memory with a single contiguous read. Unfortunately, the inherent unstructured nature 
of some data, such as the point sets described later, make it very difficult to gain any 
performance benefit from layout.

Another problem with data layout strategies is that they rely on the user having access to 
something approaching the physical structure of the underlying hardware. A modem hard 
disk uses linear block addressing (LBA) giving the appearance of a sequential structure, 
hiding the details of the cylinder and track layout from the operating system. The OS

'Whether sustained transfer speeds are actually a bottleneck depends on the processing algorithm under 
discussion.
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will then split files for more efficient storage in different parts of the disk. Something that 
appears to a userspace application to be a linear write has to pass through two layers of 
abstraction and can end up being nothing like a sequential operation. This is ignoring the 
fact that disk accesses by competing processes may end up being interleaved, moving the 
disk head a significant distance in the middle of a large write. Any data layout strategy, 
to work properly, has to be aware that it might be fighting against the operating system. 
Research conducted at the University of Utah2 has attempted to build an adaptive data 
management strategy into the physical device, automatically re-ordering data based on 
access patterns, using the same principle as wear-leveling in Flash storage devices.

The next component of an out-of-core algorithm is the prefetching strategy. This deter
mines which data should be loaded speculatively. It is important for performance that 
this provides a good prediction accuracy, as discussed earlier. The average seek time 
of a modern disk is of the order of 9ms. This means that every time the required data 
is not pre-fetched the CPU has to stall for several thousand cycles waiting. As the size 
of this gap grows, more complicated prediction algorithms can be implemented without 
introducing a new bottleneck.

The final component is the eviction strategy. This defines which parts of the data should 
be evicted to make room for the newly loaded components. A perfect eviction strategy 
would evict the data that are not going to be used for the longest time. Usually, however, 
this information is not available, and so it is necessary to make some educated guesses. 
Common strategies for eviction include Not Recently Used (NRU), Least Recently Used 
(LRU), and Least Frequently Used (LFU). A hinted LRU strategy is used by the algo
rithms described herein. Each time our prediction algorithm is run, it provides a set of 
(node, confidence) pairs. These are then used by the eviction code so that it will not evict 
nodes that have been predicted with a high confidence value, and are not currently being 
used.

W hile not part of the data management strategy for an out-of-core algorithm, the pro
cessing algorithm used can also have an effect on the effectiveness of the approach. Some 
algorithms are designed to minimise the size of the working set at any given time interval. 
These tend to work better in an out-of-core context.

4.3 A Taxonomy of Approaches

A taxonomy of out-of-core approaches is proposed. This divides out-of-core algorithms 
into three categories:

•  Algorithm Based

•  Data structure Based

•  Knowledge Based

2Not yet published, at the time of writing.
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Knowledge Based Data Structure Based

Algorithm Based

Figure 4.2: The continuum of out-of-core approaches.

Definition 4.1 (Knowledge Based). Using no a priori information; learning everything 
required to make predictions from  previous interactions.

These categories refer to where the algorithm acquires the information required to make 
predictions, and are specific to the prefetching and eviction strategies of the algorithms.

An algorithm based strategy is one that is tied to a particular processing algorithm. These 
rely on the algorithm to be able to make predictions about their future access patterns. 
If the algorithm is able to make good predictions, then these will perform well. The 
disadvantage is that they are not portable between problem domains; each instance of a 
problem has to be extensively modified to work in an out-of-core setting.

A data structure based strategy is slightly more general. These are specific to the struc
ture of the data, but not to the algorithm used for processing. Usually these work by 
understanding some dataset-specific concept of locality, and prefetch data ’near’ the cur
rently processed blocks. An example of this might work on regular structured volumes 
and load every voxel adjacent to the ones being currently processed. Data structure based 
approaches are typically closely tied to a specific data layout strategy; data is stored on 
disk in a way that preserves the concept of locality specified by the prefetching strategy.

Knowledge based algorithms are the most general of the three. They do not require any 
knowledge of the data being processed. These learn access patterns through the data 
from previous interactions and use them for prediction. Most operating system virtual 
memory implementations fall loosely into this category, although they are very simple 
implementations. They have no knowledge of the structure of the data, or what is being 
done to it and apply simple heuristics, such as ‘Not Recently Used’ to handle eviction and 
linear read-ahead for pre-fetching.

In practice, most algorithms fit somewhere in the middle. This can be represented this 
using a continuum as shown in Figure 4.2. This depiction will be used in later sections to 
classify out-of-core strategies.
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4.4 Related Work

There is a close relationship among volume visualization, implicit modeling and point- 
based techniques. Points, as modeling primitives, are extensively featured in all three 
classes of techniques.

The advances in volume visualization have produced a collection of methods for render
ing volume datasets, including isosurfacing [199], ray casting [191] and forward pro
jection [329]. Though in most cases, point primitives, i.e., voxels, are organized into a 
grid or a mesh, in some cases, volume modeling with scattered data is necessary, (e.g., 
[230]), though existing approaches mostly involve the construction of a mesh structure 
connecting these points together.

Implicit modeling [34, 231, 344] facilitates the composition of complicated objects from 
elemental field functions, each of which is often defined on a point primitive. The octree 
method has been used for polygonizing implicit surfaces [35] and computing ray-surface 
intersections [157]. Due to the computational costs of polygonization and ray tracing, the 
emphasis has always been placed on the use of a small set of point primitives or elemental 
field functions.

One of the major advances in recent years is point-based modeling and rendering. The 
most significant examples of this development include Surf els [249] and QSplat [266]. 
Other important developments include [132, 9, 286, 347]. In addition to the splatting 
approach commonly adopted in point-based rendering, ray tracing point clouds through 
intersection has been examined [270].

Recently a number of researchers addressed the convergence of these techniques, for ex
ample, approximating volume datasets with implicit models [145], building implicit sur
faces upon point clouds, using the point-based approach for isosurfacing volume datasets 
[347,323,198], and combining point clouds and volume datasets in volume scene graphs [59].

Many visualization processes involve datasets that are much too large to fit into the in
ternal memory of a computer, and have to rely on external disk storage, usually under 
the virtual memory management of an operating system. The external disk access can 
become a serious bottleneck in terms of rendering speed. Out-of-core algorithms (also 
known as external memory algorithms) [321] are designed to solve a variety of batch and 
interactive computational problems by minimizing disk I/O overhead.

Various out-of-core visualization algorithms have been proposed to handle large struc
tured and unstructured 3D data-sets, for instance, in the context of (i) isosurface extrac
tion [75, 67, 68, 64, 295], (ii) terrain rendering [194], (iii) streamline visualization [308],
(iv) mesh simplification [193], (v) rendering time-varying volume data [277], (vi) ren
dering unstructured volumetric grids [190, 109, 64], (vii) ray tracing [250], and (viii) 
radiosity [301]. While some algorithms rely little on internal memory (e.g., [67, 109]), 
others utilize preprocessed data structures, such as octree [308] and indexing [277] to op
timize disk I/O operations. Use of Active Data Repository for visualizing large volume 
datasets was also reported [176].
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W hile point datasets are usually excessively large, there has been little existing work on 
out-of-core methods for handling point datasets [131]. This motivates us to investigate 
the feasibility of multiple large point sets in the context of discrete ray tracing.

4.4.1 Out-of-core

The concept of External Memory is not unique to visualisation applications. Operating 
systems have supported some form of virtual memory [92] for decades. The term virtual 
memory is used to refer to the combination of two concepts; protected memory and out- 
of-core storage. The term ‘out-of-core’ derives from the old systems which used ferrite 
core memory. In these systems, there were two places data could be stored; in the ferrite 
core, or out of it. Ferrite core memory was fast (for the time), but expensive. In a modem 
system, the ‘in-core’ storage is no longer ferrite core, but the term remains.

Since the late 1960s, the most common way of implementing the external memory portion 
of this has been through paging [81], a system whereby memory is divided into equal
sized regions which are swapped between in-core and out-of-core existence. These pages 
are loaded back into memory when they are accessed, using a process known as demand 
paging  [174].

Processes which exhibit a rapid change in the accessed memory can cause thrashing [91] 
on systems which employ demand paging. Thrashing involves the computer spending 
most of its time swapping data between internal and external memory, rather than doing 
useful work. This is not a problem for a lot of uses. Modern operating systems are 
typically designed on under the assumption that exhausting in-core storage is unusual, an 
argument made by Prof. A. Tanenbaum for omitting support for swapping from Minix 
3 [298]. While this is a valid assumption for general purpose computing, it does not hold 
for a number of visualisation tasks.

Proposed solutions to this problem include allowing the application to control the opera
tion of the demand paging system [84, 138]. This allows more intelligent decisions about 
which data to swap to be made.

Beyond minor modifications to paging systems, a number of problem-specific approaches 
have been proposed, including data structures designed for on-disk access [320, 110] and 
algorithms that promote efficient access paths through the data [319, 65, 19, 140]. Much 
of the literature in this area focusses on complete traversals of tree data structures. This is 
not particularly applicable to many rendering algorithms, which rely on a partial traversal 
of a tree in an order determined by the current viewport.

4.4.2 External Memory

Towards the end of the 1960s, it became clear that the larger storage capacity of out-of- 
core devices, such as tapes, could allow computers to work on much larger problems. 
Work from this era [90, 169] focussed largely on sorting problems. Research on sorting
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gives a number of streaming algorithms (such as [234]), based on a distribution sort, 
conceptually similar to a generalised radix sort. In these, each pass over the data places 
it into a number of bins on disk. Each of these is then read in, and further sub-divided, 
finally giving a completely sorted set of files. Much research in this area hinges on finding 
good partitioning mechanisms [95]. A number of merge-sort derivatives [120, 169, 235] 
have also been developed, mainly aimed at systems with multiple disks.

Many of these approaches generally make use of the Parallel D isk M odel [320], where 
multiple, independent, external memory stores are available, although some assume a 
single disk.

Beyond sorting, a number of areas such as matrix and grid computations [153, 233, 189], 
computational geometry [125, 20, 22], and graph traversal [310, 66, 21]. W hile most 
of this work deals with algorithms with low I/O complexity, some, particularly in the 
field of graph manipulation [5, 232] focusses on efficient on-disk storage structures for a 
particular form of access.

The work in this area measures algorithm performance using the traditional metrics of 
spacial and temporal complexity, but also in terms of the number of I/O operations re
quired. Much of the focus is on developing entirely new algorithms to solve existing 
problems, rather than attempting to allow existing algorithms to achieve good perfor
mance using external memory. This is not necessarily a good approach for visualisation, 
where a considerable amount of work has been done in designing in-core algorithms with 
good visual output.

4.5 The 5-Layer Model

A five tiered approach to out-of-core strategies is proposed, as shown in Figure 4.3. Each 
of the layers is conceptually independent and needs only to communicate with those di
rectly above and below it in the stack. For efficiency reasons, it is possible that some lay
ers may be omitted or combined. An out-of-core stack running on a single machine might 
not need the network layer, while many existing out-of-core systems lack the knowledge 
layer.

In the implementation described earlier, the lines between the knowledge and data struc
ture layers are often blurred. The block and record layers are discrete, and multiple im
plementations of each were evaluated. In ascending order, the layers are:

1. Block Layer

2. Record Layer

3. Knowledge Layer

4. Network Layer

5. Data Structure Layer
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Figure 4.3: The five layers in the model, in relation to the OS and application.

The remainder of this chapter will discuss the layers individually and the interactions 
between them, as well as presenting an example implementation.

4.5.1 The Block Layer

The very bottom of the stack is the block layer. This is responsible for moving data 
between in-core and out-of-core storage. This layer responds to messages from the next 
layer up instructing it to load byte ranges from the external memory device, and to evict 
(modified) data from the in-core cache.

It is advisable that the block layer operate asynchronously, even if the remainder of the 
stack is synchronous. If I/O operations are performed synchronously then the only effect 
is to move the delay from the usage phase to the prefetching phase; often increasing the 
total delay, since the lower bound for the amount of data prefetched is the amount of 
data used. The reference implementation described in 4.8 includes several block layers, 
including one built on POSIX asynchronous I/O facilities which generally provides the 
best performance. A synchronous version of the block layer is also provided for refer
ence. This serves two purposes; it is easy to understand, and so can be used as a base 
for building better ones, and it provides more deterministic results, making it useful for 
algorithm evaluation. In real-world use, one of the other back-ends is likely to give better 
performance.

The POSIX specifications provide a number of operating system facilities that can be used 
to implement this layer including, but not limited to, asynchronous I/O and memory- 
mapped files. Which provides the best performance can vary between platforms. For
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example, on Mac OS X, memory mapped file access is an order of magnitude slower 
than asynchronous I/O, while the difference between the two is negligible on FreeBSD. 
The role of the block layer is to provide an abstract interface to the underlying operating 
system functionality, allowing the most efficient implementation for a particular scenario 
to be used without modifying the higher-level code.

4.5.2 The Record Layer

The record layer is responsible for translating between abstract record number and byte- 
ranges. In the case of fixed record sized data this is a simple multiplication. For other 
data structures it may be more complicated. The record layer, in simple terms, can be 
described by the following function:

This maps a record, n, to an offset/length pair ({O, L }) within the out-of-core storage. 
Since this mapping can vary between data sets, the initialisation of this layer may involve 
the passing of a higher-order function. The distributed implementation discussed later 
uses this mechanism.

The record layer is also responsible for tracking which records are currently being used 
by maintaining a reference count. When notified that a record is no longer required, the 
record layer may retain a cached copy or evict it immediately.

4.5.3 Knowledge Layer

The knowledge layer is responsible for making predictions based on past actions. It re
ceives prediction information from the higher layers, but is free to disregard speculative 
prediction information; only non-speculative requests must be handled. This layer can be 
viewed as being represented by the following function:

In this, X 0 represents the first accessed record and X n is the current record. S  is a value 
representing the initial conditions of the accessing process. In a visualisation context, 
this may be the viewpoint position and direction, for example. The set of predictions, P, 
should be a set of pairs of the form { P X n+1 , C }, where P X n + 1 is the predicted value 
of X n+i from the higher layers, and C is a confidence value. The only stipulation on the 
nature of the implementation of this layer is that the following must hold:

r{n  E N) —> {O, L ) (4.1)

k { { X 0...X n} ,P ,S )  -> x n+1 (4.2)

k ( { X 0...X n}, { X p, Cmax}, S)  - (4.3)
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That is to say, any prediction passed into this layer with the maximum confidence value 
(Cmax) must be returned as the prediction by this layer. This provides a mechanism for 
a ‘pass through’ request; the client is totally sure of the record it requires (which always 
happens as the record is used, and may happen before) and informs the knowledge layer 
of this. In this case, the knowledge layer does not provide a prediction —  it simply passes 
on the existing prediction —  but it can update its internal state based on the incoming 
prediction.

In the existing implementation, C  E {0 ,1 ,..., 255}, and hence Cmax =  255. This was 
an implementation decision to allow small, byte-indexed, hash tables, and should not 
necessarily constrain future implementations.

The knowledge layer is situated below the network layer to enable it to take advantage 
of the knowledge acquired by multiple different users. In these cases, inferences can be 
made from similar values of C. If there is no network layer in a given implementation (i.e. 
the out-of-core store is local), the knowledge and data structure layers may be merged.

4.5.4 Network Layer

The network layer is an optional layer that is only required in distributed implementations. 
In cases where the data storage and processing are performed by different machines, the 
network layer mediates between the two.

The network layer is responsible for maintaining a local cache of nodes that have been 
received, the size of which is dependent on the amount of local storage space available. A 
cluster node, for example, might not have a local hard drive. In this case, the local storage 
would be limited by the amount of memory available. The same might hold for a PDA. A 
workstation, conversely, might have enough local storage to cache a significant fraction 
of the working set.

In addition to caching, the network layer is responsible for transferring data between 
the data server and the processing machine. Timely delivery of data is important for 
the network layer, since faults will cause a significant slow-down. Since more predicted 
records are typically sent than are needed, reliable delivery is not as important. For this 
reason, TCP is not a good match for the network protocol. On IP networks, UDP or 
SCTP provide a better match. Of the two, SCTP is likely to better solution in the long 
term. Unfortunately, support for SCTP is not at an ideal level in major operating systems 
at the time of writing; while support generally does exist, at least in add-on form, for most 
platforms, performance is not yet at a sufficiently high level for it to be usable.

4.5.5 Data Structure Layer

The data structure layer provides an abstract view of the data to the processing algorithm. 
In the example given in the previous chapter, this view was of an octree data structure and 
an indexed point set.
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This layer represents a concrete instance of an abstract compound data type. Each data 
structure should have its own implementation. This layer is able to make predictions 
based on an understanding of the structure of the data and the algorithm used to process 
it.

It is possible to further subdivide this layer, and provide predictions based solely on the 
processing algorithm or solely on the data structure. In the case of the ray tracing ex
ample, a pure data-structure prediction may come from the locality of nodes in a spacial 
partitioning system, while a pure algorithmic prediction might come from the point along 
a ray path, with no reference to the node containing this. In practice, it is sufficiently 
difficult to separate out these components that they are placed in the same layer.

4.6 Interaction Between Layers

Each layer in the hierarchy communicates with those directly above and below. Above 
the top layer is the application, which delivers requests to the data structure layer. These 
requests are often in an abstract form, such as ‘the voxels neighbouring coordinates x,y,z’ 
or ‘the octree node which is the parent of this one.’

The interface between the application and the data structure layer depends on the data 
structure. A simple example data structure might be an array with get and set element 
methods to set and get elements at a specified index. Listing 4.1 shows a C interface for 
such a data structure. This is taken directly from the reference implementation, and the 
line numbers reflect those in the source file ( A r r a y  . h).

Listing 4.1: Interface to an out-of-core array.
/ /C r e a te  a new o u t - o f - c o r e  a r ray  
o o c _ a r r a y _ t  o o c _ a r r a y  ( c h a r  * f i l e N a m e  ,

BOOL r e a d o n l y  ,
BOOL g rows  ,
u n s i g n e d  i n t  n o d e S i z e ,  
u n s i g n e d  i n t  s i z e  , 
u n s i g n e d  i n t  i n C o r e  ) ;

/ /A d d  a new node to the array
v o i d  * o o c _ a r r a y _ n e w_ n o d e  ( o o c _ a r r a y _ t  a r r a y ,  u n s i g n e d  i n t  * p o s i t i o n ) ;  
/ /P recache  a s p e c i f i c  e lement
v o i d  o o c ^ a r r a y . p r e c a c h e  ( o o c _ a r r a y  _t a r r a y ,  u n s i g n e d  i n t  p o s i t i o n ) ;
/ / G e t  the s p e c i f i e d  e lement from an a r ray  
v o i d  * o o c _ a r r a y _ g e t _ e l e m e n t  ( o o c _ a r r a y  _t a r r a y ,

u n s i g n e d  i n t  p o s i t i o n  ,
BOOL p r e d i c t )  ;

/ /Move the s p e c i f i e d  e lement out  o f  core 
v o i d  o o c _ a r r a y _ f  r e e . e l e m e n t  ( o o c _ a r r a y _ t  a r r a y ,

u n s i g n e d  i n t  p o s i t i o n ) ;
/ / F r e e  an a rray
v o i d  o o c _ a r r a y _ f  r ee  ( o o c ^ a r r a y  _t a r r a y ) ;
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4.6.1 Retaining an Element

In this example, the array appears to be a simple wrapper around the fixed-size record 
layer. In addition to this function, it also attempts to predict linear accesses.

A pplication

R etain  E lem en t E lem en t

D a ta  S tru c tu re  L ayer

R etain  R eco rd R eco rd

Netw ork L ayer

R etain  R eco rd R eco rd

R etain  R ecord R eco rd

L oad  Byte R a n g e s  J B ytes

R eco rd  L ayer

K now ledge L ayer

Block L ayer

R ea d  F rom  J
Block D evice  !

___________ I_

B ytes

O p era tin g  S y s te m

► M e s s a g e s  a lw ay s  s e n t

------------ -►  M e s s a g e s  s e n t  w h en  th e  reco rd  is no t in th e  local c a c h e

M e s s a g e s  s e n t  w h en  th e  rec o rd  is no t in th e  s e rv e r-s id e  c a c h e

Figure 4.4: Message flow retaining an element in an out-of-core data structure.

Figure 4.4 shows the flow of messages through the system when retaining an element in 
a data structure managed by an out-of-core system. The application sends a message3 to 
the data structure layer instructing it to retain a specified element. The data structure layer 
then translates this into a record request and passes it on to the network layer.

At the network layer, two outcomes are possible. If there is already a copy of the requested 
record in the local cache then some of the next steps can be skipped. If not, then it must 
be requested over the network.

3The term message is used here in the object oriented sense, and may be implemented by a function call 
or a method invocation.
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The server’s record layer receives the request for a record. It first checks to see if it is 
in the server’s cache. If it is not, then this layer maps the record number to a set of byte 
ranges and instructs the block layer to fetch them.

The block layer provides an abstract interface to the operating system’s disk I/O facilities. 
When it receives a request for a set of block ranges, it provides the data to the record layer. 
This then percolates up to the top of the stack and is read by the application.

It should be clear from this example that best performance is achieved when the network 
layer already has a cached copy of the requested record. As such, accurate predictors in 
the data structure and knowledge layers are important.
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Figure 4.5: Message flow between an out-of-core client and server.

Figure 4.5 shows an example message flow between an out-of-core client and server. 
This is a slightly simplified flow, omitting the data structure prediction mechanism and
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the caching.

The server in this example has access control features in its half of the network layer, 
and so the first step is authentication of the client. At each iteration through this flow, the 
client requests a group of records from the server. The server is then sends a set of records 
in response to this request.

4.6.2 Predicting Usage

Predictions occur at two levels: the data structure and knowledge layers. Figure 4.6 shows 
the flow of prediction-related messages between the layers in response to an application 
retaining an element in an out-of-core managed data structure.
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Figure 4.6: Message flow related to predictions when retaining an element in an out-of- 
core data structure.
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The first predictions are made at the data-structure layer. These are based on an un
derstanding of the structure of the data, and are then passed to the network layer. The 
network layer determines if the predicted records are cached locally, and if not then it 
requests them from the server.

W hen the server receives the caching request, it should then return some records. Note, 
however, that the server is not required to return the records that were requested. The 
knowledge layer takes these requests as input and uses them to predict which records the 
client is likely to need next.

The records predicted by the knowledge layer are then loaded from the disk (if they are 
not cached) and sent to the client.

4.7 Interface Specification for Layers

The algebras listed in this section depend on the String and Nat algebras which are omit
ted for the sake of conciseness. These should be taken to represent strings and natural 
numbers with their standard definitions. On some implementations, the range of natural 
numbers may be restricted to machine words (or multiples thereof) for efficiency.

4.7.1 Block Layer

The algebraic specifications in this section depend on the existence of List, Nat and Bool 
algebras (and associated sorts) corresponding to the standard definitions of lists, natural 
numbers and Boolean values respectively. The List algebra is expected to implement head 
and tail operations with their conventional meanings.

The block layer must conform to the specification shown in Algebra 4.2. The operations 
described here allow the reading and writing of ranges of bytes from files on permanent 
storage.

For efficiency reasons, a block layer implementation may provide the operations for 
batching loads and stores (loadRanges and storeRanges) in a way that is not built from 
the primitive operations, as long as they are semantically equivalent.

4.7.2 Record Layer

The record layer has two main functions; caching and mapping between records and byte 
ranges.

Note that a record must be cached immediately after caching, but at no other times. The 
semantics for evicting records from the cache are not defined, and the cache may be 
implemented in any way that the developer chooses.



4.7 Interface Specification fo r  Layers 63

Algebra 4.2: Interface specification for the block layer. 
Algebra BlockLayer is

including S t r i n g  N a t  T y p e L i s t

sorts S t r i n g  N a t  T y p e L i s t  B l o c k F i l e  B y t e R a n g e  B l o c k  D a t a

op o p e n F i l e  : S t r i n g  - *  B l o c k F i l e
op l o a d B y t e s  : B l o c k F i l e  B y t e R a n g e  ->  D a t a
op s t o r e B y t e s  : B l o c k F i l e  B y t e R a n g e  D a t a  ->  B l o c k F i l e
op l o a d R a n g e s  : B l o c k F i l e  L i s t  —► B l o c k
op s t o r e R a n g e s  : B l o c k F i l e  L i s t  B l o c k  —> B l o c k F i l e
op m a k e B l o c k  : L i s t  - *  B l o c k
op b l o c k D a t a  : B l o c k  -»  L i s t

var F B l o c k F i l e
var D D a t a
var B B l o c k
var R B y t e R a n g e
var L L i s t

eq l o a d B y t e s  ( s t o r e B y t e s  ( F , R , D )  , R )  =  D  
eq s t o r e B y t e s  ( B ,  R,  l o a d B y t e s  ( B ,  R ) ) = B 
eq l o a d R a n g e s ( s t o r e R a n g e s ( F ,  L ,  B)  , L )  = B 
eq s t o r e R a n g e s  ( F ,  L l o a d R a n g e s ( F ,  L ) ) = F  
eq l o a d R a n g e s ( s t o r e R a n g e s ( F ,  L ,  B)  , L )  = B

eq s t o r e R a n g e s ( F ,  e m p t y L i s t ( B y t e R a n g e )  , B )  = F
eq s t o r e R a n g e s  ( F ,  L ,  B )  =  s t o r e R a n g e s  ( s t o r e B y t e s  ( F ,  h e a d ( L )  , h e a d (  

b l o c k D a t a ( B ) ) )  , t a i l  ( L ) , t a i  I ( b l o c k D a t a ( B ) ) )

eq m a k e B l o c k ( b l o c k D a t a ( B ) ) =  B

end Algebra

4.7.3 Knowledge Layer

Algebra 4.4 shows the required semantics for the Knowledge Layer. Again, this specifi
cation only describes the interface, leaving the mechanism for making knowledge-based 
predictions up to the implementation. Some examples of algorithms that can be used at 
this layer are evaluated in Chapter 6. Due to the large number of potential ways in which 
this layer can be implemented, some of which were described in the last chapter, this is 
specification is very generalised.

In this specification, note that there are two functions which alter the state of the knowl
edge layer. The first is called whenever a record is accessed by the application, while 
the second is used as input when the data structure layer makes predictions. Note that all 
functions in this layer take a client as an argument. The type of the client is not specified, 
all that is required is that it be a unique value for each user or application connected to 
the system.
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Algebra 4.3: Interface specification for the record layer.
Algebra R e c o r d L a y e r  is

including B l o c k L a y e r  B o o l

sorts N a t  B l o c k F i l e  R e c o r d F i l e  L i s t  C a c h e  R e c o r d  B o o l

op m a k e R e c o r d F i l e  : B l o c k F i l e  —► R e c o r d F i l e  
op b l o c k F i l e  : R e c o r d F i l e  - *  B l o c k F i l e

op c a c h e R e c o r d  : R e c o r d F i l e  N a t  —*■ R e c o r d F i l e  
op i s C a c h e d  : R e c o r d F i l e  N a t  —► B o o l  
op r e c o r d D a t a  : R e c o r d F i l e  N a t  ->  R e c o r d  
op r e t a i n R e c o r d  : R e c o r d F i l e  N a t  —► R e c o r d F i l e  
op r e l e a s e R e c o r d  : R e c o r d F i l e  N a t  —>• R e c o r d F i l e

op r e c o r d R a n g e s  : R e c o r d F i l e  N a t  —> L i s t  
op m a k e R e c o r d  : R e c o r d F i l e  B l o c k  —► R e c o r d

var R : R e c o r d F i l e
var B : B l o c k F i l e
var I : N a t

eq b l o c k F i l e  ( m a k e R e c o r d F i l e  ( B ) ) =  B 
eq i s C a c h e d  ( c a c h e R e c o r d  ( R ,  N )  , N )  =  tt  
eq r e l e a s e R e c o r d  ( r e t a i n R e c o r d  ( R ,  N )  , N )  = R
eq r e t a i n R e c o r d  ( R ,  N )  = r e t a i n R e c o r d  ( c a c h e R e c o r d ( R ,  N )  , N )  i f  -■ 

i s C a c h e d  ( R ,  N)

eq r e c o r d D a t a ( R ,  N )  =  m a k e R e c o r d ( R ,  l o a d R a n g e s ( b l o c k F i l e  ( R )  , 
r e c o r d R a n g e s  ( R ,  N ) ) )

end Algebra

4.7.4 Network Layer

The interface to the network layer is very similar to that of the record layer. It is respon
sible for handling caching records on the local machine, as well as passing predictions 
between the data structure and knowledge layers. The interface specification is described 
in Algebra 4.5.

4.7.5 Data Structure Layer

The interface of the data structure layer depends on the data structure represented. It is 
recommended that the public (i.e. application-side) interface to the data structure layer be 
as abstract as possible to give the layer as much information as possible when performing 
deterministic predictions.
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Algebra 4.4: Interface specification for the knowledge layer. 
Algebra K n o w l e d g e L a y e r  is

includ ing R e c o r d L a y e r  K n o w l e d g e L a y e r

sorts N a t  R e c o r d F i l e  K n o w l e d g e L a y e r  C l i e n t

op n e w K n o w l e d g e L a y e r  : R e c o r d L a y e r  ->  K n o w l e d g e L a y e r  
op r e c o r d L a y e r  : K n o w l e d g e L a y e r  —> R e c o r d L a y e r

op p r e d i c t  : K n o w l e d g e L a y e r  C l i e n t  N a t  —► K n o w l e d g e L a y e r  N a t  
op a c c e s s e d  : K n o w l e d g e L a y e r  C l i e n t  N a t  —► K n o w l e d g e L a y e r
op p r e d i c t e d  : K n o w l e d g e L a y e r  C l i e n t  N a t  —> K n o w l e d g e L a y e r

op l o a d R e c o r d  : K n o w l e d g e L a y e r  N a t  —> R e c o r d
op s t o r e D a t a  : K n o w l e d g e L a y e r  N a t  R e c o r d  —> K n o w l e d g e L a y e r

var K : K n o w l e d g e L a y e r  
var R : R e c o r d L a y e r  
var N : N a t

eq l o a d R e c o r d  ( K ,  N )  ->  r e c o r d D a t a  ( r e c o r d L a y e r  ( K )  , N )  
end Algebra

A data structure layer representing a spacial partitioning system, for example, could be 
written so that the application requests individual nodes. A better solution would be for 
the application to request the node at a specific depth corresponding to a given location. 
This would allow the data structure layer to make predictions based on an understanding 
of the relationships between the nodes.

In general, more complex data structures will encode more semantic information and 
thus give better predictions. It would be possible to construct a data structure layer rep
resenting a resizable array, for example, and use this for a wide variety of applications. 
In practice, however, this would not be useful since accesses to an array either follow a 
simple pattern or are very difficult to predict (with the majority of cases being the lat
ter). It is, however, possible for an implementation to stack multiple data structure layer 
components.

In the case studies in the previous chapter, different data structure layer implementations 
were used for the point set and the spacial partitioning scheme. The point set was repre
sented by a simple array, however predictions for point accesses were generated from the 
octree rather than directly from the array.

4.8 Reference Implementation

Two implementations of the model have been constructed to date. The first omits the 
network layer, and is intended for local use. The second implements a client-server ar-
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Algebra 4.5: Interface specification for the network record layer.
Algebra N e t w o r k L a y e r  is

includ ing K n o w l e d g e L a y e r  K n o w l e d g e L a y e r

sorts N a t  R e c o r d  K n o w l e d g e L a y e r  N e t w o r k L a y e r

op c a c h e R e c o r d  : N a t  -► L o c a l C a c h e  
op

var N : N e t w o r k L a y e r  
var C : L o c a l C a c h e  
var I : N a t

op n e w N e t w o r k L a y e r  : K n o w l e d g e L a y e r  - »  N e t w o r k L a y e r  
op k n o w l e d g e L a y e r  : N e t w o r k L a y e r  —> K n o w l e d g e L a y e r

op n e t P r e d i c t  : N e t w o r k L a y e r  C l i e n t  N a t  —> N e t w o r k L a y e r  N a t  
op n e t A c c e s s e d  : N e t w o r k L a y e r  C l i e n t  N a t  ->  N e t w o r k L a y e r
op n e t P r e d i c t e d  : N e t w o r k L a y e r  C l i e n t  N a t  - >  N e t w o r k L a y e r

op n e t L o a d R e c o r d  : N e t w o r k L a y e r  N a t  —► R e c o r d  
op n e t S t o r e D a t a  : N e t w o r k L a y e r  N a t  R e c o r d  -► N e t w o r k L a y e r

var W  : N e t w o r k L a y e r
var K : K n o w l e d g e L a y e r
var C : C l i e n t
c a r  R : R e c o r d
var N,  M : N a t

eq k n o w l e d g e L a y e r ( n e w N e t w o r k L a y e r ( K )  =  K 
eq k n o w l e d g e L a y e r !  n e t P r e d i c t e d  (W, C ,  N ) ) = p r e d i c t e d !

k n o w l e d g e L a y e r  (W) , C ,  N) 
eq k n o w l e d g e L a y e r !  n e t A c c e s s e d  (W, C ,  N )) = a c c e s s e d ( k n o w l e d g e L a y e r ( 

W ), C, N)
eq k n o w l e d g e L a y e r !  n e t P r e d i c t  (W, C ,  N ) ) t i m e s  M =  p r e d i c t !  

k n o w l e d g e L a y e r  (W, C ,  N ) ) t i m e  M

eq n e t L o a d R e c o r d  (W, N)  =  l o a d R e c o r d  ( k n o w l e d g e L a y e r (W) , N )  
eq k n o w l e d g e L a y e r  ( n e t S t o r e D a t a  (W, N,  R ) ) = s t o r e D a t a (  

k n o w l e d g e L a y e r (W) , N ,  R)

end Algebra
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chitecture, with the server written in Erlang and the client code in C. The remainder of 
this chapter discusses the two implementations, and shows some results from the second 
implementations.

4.8.1 Local Implementation

The implementation described here was used for the evaluation of prefetching algorithms 
in the last two chapters of this part.

The API defines one scalar data type, BOOL, which can take values of YES or NO. This 
type follows the C conventions for Boolean values, and so can be used in if statements 
and similar. If compiling as C99, Objective-C, or C++ this will use the built-in boolean 
type (bool, BOOL or bool respectively).

4.8.1.1 Block Layer

The block layer is the lowest layer above the kernel, responsible for moving bytes to and 
from the disk. As described earlier, the role of this layer it to load and store ranges of 
bytes in an on-disk file. There are a number of possible ways of doing this, and so several 
implementations of the block layer were created. These all implement the same interface, 
and so can easily be swapped.

block_aio.c is a POSIX asynchronous I/O implementation. All file reads are performed 
asynchronously, and grouped together into a single system-call when possible. This 
is accomplished using the lioJistio system call, which permits multiple AIO oper
ations to be dispatched simultaneously. This implementation tends to provide the 
best performance.

block_fread.c uses the POSIX synchronous I/O calls. This may be faster than virtual 
memory, since it will probably not require as many small reads, however all pre
caching operations will block the calling process so it is not very efficient. This is 
included as a relatively simple implementation on which others can be based, rather 
than for production use.

block_null.c is based on the synchronous implementation, however it ignores all pre
caching requests. Using this is effectively the same as relying on virtual memory, 
and so can be used to test the efficiency of out-of-core algorithms.

block_mmap.c uses memory mapped I/O on files. This implementation provides hints to 
the virtual memory subsystem in the kernel, rather than explicitly loading the data 
itself. On 32-bit systems, this implementation is limited by the amount of address 
space available to the process, which will be under 4GB. On 64-bit systems, this 
should give high performance as long as the operating system respects the hints 
given by the madvise system call.

Two opaque data types were defined for this layer. The ooc_block_file_t type represents a 
file mapped at the block layer, while the ooc_cached_fragment_t type is used to represent a
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fragment which has been cached by the block layer. This is stored in the block layer, and 
contains some meta-data relating to the cached fragment (exactly what varies between 
implementations).

Listing 4.6: Two structures defined by the block layer, 
typedef s tru c t
{

o f f _ t  a d d r e s s ;  
in t l e n g t h ;  
in t c o u n t ;

} o o c . b l o c k ;

typedef s tru c t
{

o o c _ c a c h e d _ f r a g m e n t _ t *  l i s t ;  
unsigned in t f r a g m e n t s ;

} *  o o c _ f r a g m e n t _ l i s t _ t ;

Listing 4.6 shows the two structures defined by the block layer. The ooc_block structure 
contains a request for a set of contiguous, constant-sized, blocks to be read; these are 
specified by the address, length of a single block, and the number of blocks. This is used 
to reduce the overhead of reading contiguous blocks from the disk. The ooc_fragment_list_t 

structure is used to return a list of fragments that have been cached.

The following functions provide the interface to the block layer:
BOOL o o c _ b l o c k J n i t ( v o i d )

This function must be called before any other block layer functions, and performs any 
set-up required of the block layer. In general, this should only ever be called by imple
mentations of the record layer, and should only be called once.

This function returns YES on success and NO on failure.

o o c _ b l o c k _ f i l e _ t  o o c _ m a p _ b l o c k _ f i l e  ( c h a r  *  f i l e N a m e  , BOOL  
r e a d o n l y )  ;

This function maps the specified file to memory and returns a ooc_block_fi le_t. The re
turned value must be used with any subsequent calls to block-layer functions involving 
this file.

A return value of OOCJNVALID indicates that the call failed.

Parameters:

fileName The path to the file to be loaded.

readonly W hether the file should be modifiable. If it is marked as read only, then 
changes will not be flushed back to disk which can give higher performance.

v o i d  o o c _ u n m a p _ f i l e  ( o o c _ b l o c k _ f i  I e  _t f i l e )

This function is the inverse of ooc_map_block_file(). It takes a file identifier and frees the 
resources associated with it. Further calls to other functions using the same file are invalid.
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o o c _ f  r a g m e n t _ l i s t _ t  o o c _ c a c h e _ b y t e s ( o o c _ b l o c k _ f i l e _ t  f i l e ,  
o o c _ b l o c k  b y t e s [ ] ,  u n s i g n e d  i n t  b l o c k s )

Instruct the block layer to cache the specified blocks. The return value is a list of frag
ments, which must be freed using ooc_block_free_fragment_list (). The arguments taken by 
this function are:

file The relevant ooc_block_file_t created by a call to ooc_map_block_file(). 

bytes An array of ooc_block structures containing the fragments to be cached, 

blocks The number of elements in the array.

Note that the fragments returned in the fragment list by this function are likely to be 
futures, rather than real instances of the fragments. This function should begin an asyn
chronous operation to cache the data, and return immediately4. The ooc_get_bytes function 
will block if the read operation has not completed by the time the data is actually required.

v o i d  o o c _ b l o c k _ f  r e e _ f r a g m e n t  J i s t  ( o o c _ f r a g m e n t _ l i s t _ t  l i s t ) ;

Free an ooc_fragment_list_t returned by ooc_cache_bytes() .  This function must be called 
to free these structures, they may not be freed manually. This function exists purely for 
efficiency reasons, allowing the block layer to re-use ooc_fragmentJist_t s. Since one of 
these is created every time a caching request is issued, re-using them eliminates a large 
number of malloc() and f ree () calls.

v o i d  o o c _ g r o w _ b l o c k _ f i l e  ( o o c _ b l o c k _ f  i I e  _t f i l e ,  s i z e _ t  b y t e s ) ;

Increases the size of a mapped file. This will silently fail if the file was marked as read 
only when it was mapped, as write to a read-only fail are invalid operations.

Arguments:

file The relevant ooc_block_file_t created by a call to ooc_map_block_file().

bytes The number of bytes by which the file size should be increased.

v o i d  *  o o c _ g e t _ b y t e s  ( o o c _ b l o c k _ f  i I e  _t f i l e ,  
o o c _ c a c h e d _ f r a g m e n t _ t  f r a g m e n t ) ;

Retrieves the data associated with a fragment. This function will block if the underlying 
caching operation on the fragment (e.g., a io_read( ) )  has not yet completed. In the case of 
the null implementation, the caching operation is a no-op, and this function will perform 
a synchronous load.

Arguments:

file The relevant ooc_block_file_t created by a call to ooc_map_block_file(). 

fragment The fragment, created with a call to ooc_cache_bytes().

4This is not the case in the synchronous and null implementations of this layer.
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v o i d  o o c _ u n c a c h e _ b y t e s  ( o o c _ b l o c k _ f  i I e  _t f i l e ,
o o c _ c a c h e d _ f r a g m e n t _ t  f r a g m e n t s [ ] ,  u n s i g n e d  i n t  
f r a g m e n t C o u n t )  ;

Uncaches an array of fragments, freeing the memory associated with them and flushing 
the changes back to disk if required. The exact operation of this function depends on 
whether the file was opened read-only. If so, the in-core copy will be discarded. If not, 
the data will be flushed back to disk. Note that some block-layer implementations use 
memory protection mechanisms to prevent modification of data loaded from read-only 
files, so the ability to modify data should not be assumed.

Arguments:

file The relevant ooc_block_file_t created by a call to ooc_map_block_file(). 

fragments The array of fragments to be flushed. 

fragmentCount The number of fragments in the array.

4.8.1.2 Record Layer

Currently, a single implementation of the record layer is included. This is designed to be 
efficient, and makes extensive use of object pools to eliminate overhead of allocating and 
de-allocating memory (around twenty percent of run time in profiling).

One opaque data type is defined by the record layer. ooc_record_file_t represents an in
stance of the record layer, and is used to identify the file to the system. A small set of 
functions provided to interface with this layer:

BOOL o o c  J n i t  ( v o i d  )

This function must be called before any other record layer functions and performs any 
initialisation required. A return value of YES. This is responsible for calling the matching 
function in the block layer.

o o c _ r e c o r d _ f i I e _ t  o o c _ m a p _ f i l e ( c h a r  *  f i l e N a m e ,  u n s i g n e d  i n t  
r e c o r d S i z e ,  BOOL r e a d o n l y , u n s i g n e d  i n t  m e m o r y S i z e )

Designates a file used as out-of-core storage by the record layer. This function will create 
a block layer instance corresponding to the specified file, and associate it with a new 
instance of the block layer.

fileName The name of the file to open.

recordSize The size of a single record. Note that records at this layer are fixed size in 
the current implementation.

readonly A flag indicating whether this file should be read only. Read only out-of-core 
files have significantly higher performance than read-write files, and so should be 
used whenever possible.
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memorySize The amount of memory to allocate in-core as a cache for this file. Note that 
this does not include the size of control structures.

v o i d  o o c _ g r o w _ r e c o r d _ f i l e  ( o o c _ r e c o r d _ f  i I e  _t f i l e ,  u n s i g n e d  i n t  
g r o w B y )

Increase the size of a previously mapped file. Note that in most implementations this is a 
relatively expensive operation and so should be called as infrequently as possible.

The new part of the file is initialised with zeros.

file The file to increase in size.

growBy The number of bytes by which to increase the size of this file.

BOOL o o c _ p r e c a c h e _ r e c o r d  ( o o c _ r e c o r d _ f i l e _ t  f i l e  , u n s i g n e d  i n t  
r e c o r d N u m b e r , u n s i g n e d  c h a r  p r i o r i t y )

Caches a single record with a specified priority. This is a convenience method for occa
sions when a single record is required. Since caching a single record is not a very efficient 
thing to do (assuming the out-of-core storage device is mechanical), it should be avoided 
for performance reasons.

file The file containing the record.

recordNumber The index of the record to be cached.

priority The priority with which the record should be cached.

This is a convenience method, and is implemented as an inline function using 
ooc_precache_records. Future implementations may use this to provide an optimised 
method for caching a single record.

v o i d  o o c _ p r e c a c h e _ r e c o r d s ( o o c _ r e c o r d _ f i I e _ t  f i l e  , u n s i g n e d  i n t  
r e c o r d s ,  u n s i g n e d  i n t  r e c o r d N u m b e r s  [ ] ,  u n s i g n e d  c h a r  
priori ty)

Caches a group of records. For highest performance, the records should be sorted, al
though this is not required. Adjacent records will be fetched with a single disk read, 
allowing for more efficient use of disk bandwidth.

file The file containing the records.

records The number of records to be cached.

recordNumbers The indexes of the records to be cached.

priority The priority of the cached records.

BOOL o o c _ i n _ c o r e  ( o o c _ r e c o r d _ f i I e _t f i l e  , u n s i g n e d  i n t  r e c o r d )

Determines whether a particular record is in-core. Note that this only actually indicates 
whether the block layer has been instructed to load a record, not whether the loading 
actually succeeded in the current implementation.

file The file containing the record.
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record The index of the record to be inspected.
v o i d  *  o o c _ r e t a i n _ r e c o r d  ( o o c _ r e c o r d _ f i l e _ t  f i l e ,  u n s i g n e d  i n t  

r e c o r d N u m b e r )

Increments the reference count of the indicated record and returns a pointer to the record’s 
data. A record whose reference count its non-zero will not be evicted from main memory, 
so it is important that no more records are retained than fit in the memory allocated as a 
cache for any given file. Records with a reference count of zero will gradually have their 
priorities decayed until they are evicted.

The return value is a pointer to the data represented by this record.

Arguments:

file The file containing the record.

recordNumber The index of the record to be retained.
v o i d  o o c _ r e l e a s e _ r e c o r d  ( o o c _ r e c o r d _ f i l e _ t  f i l e ,  u n s i g n e d  i n t  

r e c o r d N u m b e r )

Decrement the reference count of a record. Once the reference count reaches zero, a 
record may be evicted from main memory (although this typically does not happen im
mediately).

Arguments:

file The file containing the record.

recordNumber The record to be released.
v o i d  o o c _ f  r e e _ r e c o r d _ f i l e  ( o o c _ r e c o r d _ f  i I e  _t  f i l e )

De-allocates a record-layer file and flushes all cached data back to disk. This must be 
called after operations on a file are completed to ensure that resources are freed correctly 
and data is written back to the disk. This function also frees the associated block layer 
instance.

file The record-layer file to free.

4.8.1.3 Data Structure Layer

This layer presents higher level abstractions of data structures to the user, and must be 
easily extensible by third party developers. Currently, an out-of-corearray implementation 
is provided, which either generates predictions based on linear accesses, or takes them 
from an external source. An octree implementation is also provided for point clouds. The 
points are stored in an out-of-corearray, and hinting is provided based on which nodes are 
loaded.

Four versions of the octree are provided, one for each of the prediction algorithms de
scribed in the previous chapter.
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4.8.2 Client-Server Implementation

The client-server implementation consists of two components, a server written in Erlang 
and a client interface written in C. The server component provides a mechanism for im
plementing hierarchical structures of agents which generate predictions.

Location Memory Hard Disk Network
Latency 5ns 10ms 1-3000ms

Throughput 2GB/s 50MB/s 8KB/s-128MB/s

Table 4.2: Approximate timings for different storage locations

Considering the relative speeds of disk and network access (as shown in Table 4.2), a 
significant speed benefit can potentially be obtained by using the hard disk as an interme
diate cache of data, between the network and main memory. Disk accesses, however, are 
much faster when sequential, so it is important to lay the data out on the disk sensibly, 
and to minimise the amount of memory used to store translations between in-core and 
disk addresses.

The protocol defined for this implementation uses UDP. The reason for this is that UDP 
does not guarantee delivery or delivery order. This means that latency, the primary cause 
of slow-down in out-of-core algorithms, will be kept to a minimum. Using TCP, or an
other protocol which guarantees delivery order, would potentially increase latency dra
matically since a single dropped packet would result in every subsequent packet being 
delayed until the original packet had been re-sent. There are two possible cases for a 
dropped packet. It is either speculatively transmitted based on predictions from either the 
client or the server, or it is required immediately. If it is immediately required then the 
dropped packet will cause the client to stall until it can be retransmitted. TCP will perform 
this retransmission automatically, while UDP requires the retransmission to be performed 
higher up the protocol stack. If the packet contains data that is not immediately required, 
then TCP will buffer all subsequent packets until the retransmission has occurred. In this 
case, the packet containing the data which is required immediately could be left waiting 
in the client’s receive buffer until some speculatively requested data is received.

All strings in the following sections are encoded as UTF-8, and all integers encoded in 
network byte order.

4.8.2.1 Message Types and Flow

Four types of message can be sent by a client:

1. A request for access to a file.

2. A request for a group of records.

3. A notification of use of records.

4. A notification that the file is no longer required
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Similarly, a server may send two messages in response to these requests:

1. An acknowledgement of a request for access to a file, either granting or denying 
access.

2. A group of records from a file.

No data may be sent to a client which has not yet registered for access to a file, however 
data may be sent as soon as a client has been authorised. For an out-of-core octree, for 
example, it is certain that the first node any client would wish to access would be the root 
node, and it is probably that the next node would be one of the children. If the knowledge 
layer in the server has determined these trends then it is at liberty to pre-emptively send 
un-requested data to a client.

4.8.2.2 Message Detail

This section includes detailed description of the internal layout of each of the message 
types described in the previous section.

The first byte of each message shall be an identifier indicating the type of the message. 
Since we are only defining 6 message types, this gives a significant amount of room for 
expansion of the system.

Several message types apparently permit an arbitrary number of values. In these cases 
that the total message size should always be less than 536 bytes. This, added to the 40- 
bytes required for an IP header gives 576 bytes, the minimum packet size defined by 
RFC 894 which all Internet nodes must be able to transmit without fragmentation. On 
other networks, this size can be increased, for example a system deployed entirely over 
ethemet should be aware that the MTU for ethernet is 1500 bytes and adjust the message 
size accordingly.

Client Messages Upon initialisation, a client should send a message of the type defined 
in Table 4.3 requesting access to a particular file. The user is identified by a combination 
of their IP address and a 128-bit integer which is negotiated out of band. Each user ID is 
only valid for a single connection, eliminating the possibility of replay attacks.

bytes value meaning
0 1 Message type
1 1 —>read, 2 —>write Values anded together to produce re

quested access permissions.
2-17 User ID User ID negotiated out-of-band.
2-3 Length Length of the file identifier.
4- File ID UTF-8 encoded file identifier.

Table 4.3: A request for access to a file.
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A client requests records from a file by sending messages of the type defined in Table 4.4. 
The server must transmit all records requested with a priority of 255. It may, at its own 
discretion, ignore all others or use them as input for its own prediction mechanisms.

bytes value meaning
0 2 Message type

1-4 File ID A unique identifier returned when the 
file is opened.

5 1-255 Priority of records.
6 1-255 Number of records requested.
7- Array of 32-bit values Indexes of the records requested.

Table 4.4: A request for a group of records.

Once the client actually makes use of a record, as opposed to speculatively caching it, 
then it is required to send a notification to this effect of the form described in Table 4.5. 
For efficiency reasons, it is recommended that the client batch these notifications. The 
current implementation maintains a buffer of used records, and sends a notification of all 
of them as soon as it has enough to efficiently fill a packet. The size of a packet is defined 
by the MTUSIZE constant, which is tunable at compile time. Typical values of this would 
be 576 bytes for the Internet, or 1500bytes for an ethernet network.

bytes value meaning
0 3 Message type

1-4 File ID A unique identifier returned when the 
file is opened.

5 1-255 Number of records used.
6- Array of 32-bit values Indexes of the records used.

Table 4.5: A notification of use of records.

Once a client has finished with a particular file, it should send a notification to this effect, 
in the form of a message of the type defined in Table 4.6. The server is then able to free 
all resources associated with this client.

bytes value meaning
0 4 Message type

1-4 File ID A unique identifier returned when the 
file is opened.

Table 4.6: A notification that the file is no longer required

S erver M essages The server should return a client-unique, non-zero identifier for each 
request where access is granted as shown in Table 4.7. A response with the identifier set 
to 0 indicates that access was denied.
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bytes value meaning
0 5 Message type.

1-4 File ID A client-unique identifier.
5-8 File Size The number of records in this file

9-12 Record Size The size of a single record
13-16 Fragment Size The size of each transmitted fragment. 

Equal to record size if
17-20 Record Fragments The number of fragments a record is 

divided into for sending.
21-24 Last Fragment Size The size of the last fragment in a 

record. This allows for record sizes 
that are not divisible by the fragment 
size.

Table 4.7: An acknowledgement of a request for access to a file, either granting or denying 
access.

Records are sent to the client should be in the form described in Table 4.8. If the record 
size is greater than the MTU size, then the Split Format value from the acknowledgement 
packet will have been set. If this is the case, then the record count indicates the ordered 
fragment of the message within the record, rather than the number of records (which will 
always be less than one in these cases).

bytes value meaning
0 6 Message type

1-4 File ID A unique identifier returned when the 
file is opened.

5-8 Record Count The number of records included in this 
message

9-12 Record ID Index of first record.
13- Record The first record in raw format.
n- Records Subsequent records in the same format 

as the first.

Table 4.8: A group of records from a file.

Security Message-level security is beyond the scope of this document. If it is required 
then the connection should go via IPSec [163], which provides packet-level security.

4.8.2.3 Cache File Layout

In order to facilitate the efficient and fast use the local hard disk as an out-of-core cache, it 
is important that the data is laid out in a way that closely mirrors the layout of the remote
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file. It is also important that the local file be smaller than the remote file, for obvious 
reasons.

For this reason, the chosen approach is adapted from CPU caching strategies. A file is 
created on disk of a fixed size that is r  x 2° bytes, where r  is the number of records and 
a is an arbitrary value defined by the amount of on-disk space allocated. Record indexes 
are split into two sections, the most significant n  and the least significant m  bits, n  is used 
as an index in a hash table to look up lines of the file, while m  is the index within a line.

A count of all retained records within a line should be maintained at all times, and a line 
only replaced with a different start index when this count is zero.

4.8.2.4 Client Interface

The client interface consists of the following functions:

Listing 4.7: Client interface to remote out-of-coreserver
v o i d  o o c _ s e n d _ p a c k e t ( s t r u c t  o o c . f i l e  *  f i l e  , s t r u c t  o o c _ p a c k e t  *  

p a c k e t ) ;
s t r u c t  o o c _ r e c o r d _ r e q u e s t _ p a c k e t  *  o o c _ r e q u e s t _ g e t _ r e q u e s t  ( s t r u c t  

o o c . f i l e  *  f i l e ,  u n s i g n e d  c h a r  p r i o r i t y ,  u n s i g n e d  i n t  e l e m e n t s ) ;  
v o i d  *  o o c _ r e t a i n _ r e c o r d  ( s t r u c t  o o c . f i l e  *  f i l e ,  u i n 13 2  _t i n d e x ) ;  
v o i d  o o c _ r e l e a s e _ r e c o r d  ( s t r u c t  o o c . f i l e  *  f i l e ,  u i n t 3 2 _ t  i n d e x ) ;  
s t r u c t  o o c . f i l e  *  o o c . c o n n e c t ( c h a r  *  s e r v e r ,  u i n 1 1 6 _t p o r t ,  c h a r  *  

f i l e n a m e ) ;
v o i d  o o c . c l o s e  ( s t r u c t  o o c . f i l e  *  f i l e ) ;

These are similar to the record layer in the local implementation, and correspond to the 
top half of the network layer in the five layer model. There is no standard function for 
requesting records defined, for efficiency reasons. Instead, the functions for creating 
and sending request packets are exposed directly to data structure layer developers. The 
SET.RECORD.INDEX macro can be used to easily create these packets. Listing 4.8 shows 
an example of a series of 100 records being requested from record i to record i+99.

Listing 4.8: Example showing 100 records being requested
stru c t o o c . r e c o r d . r e q u e s t . p a c k e t  *  r e q u e s t  =

o o c . r e q u e s t . g e t . r e q u e s t  ( f i l e  , 2 0 0 ,  p r e c a c h e S i z e ) ; 
for(unsigned in t j=0 ; j <100 ; j ++)
{

SET.RECORD.INDEX( r e q u e s t , j , j + i ) ;
}
o o c _ s e n d _ p a c k e t (  f i l e  , (s tru c t o o c . p a c k e t * )  r e q u e s t ) ;

The retain and release functions work exactly as their local counterparts (in terms of 
interface). Note that notifications of use do not have to be explicitly generated by devel
opers using this interface. Instead, they are automatically created and set when the retain 
function is invoked.
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4.8.2.5 Agent Interface

Agents are defined in the server by a set of four higher-order functions. The first take no 
arguments and returns an value representing the initial state of the agent. For complex 
agents, this will be the pid of a running (Erlang) process.

The next two functions change the state of the agent. These are called to update the state 
when a message indicating that records have been used or requested is received. Both 
take the state and a tuple containing the client, file and list of records as arguments, and 
return a new state.

The final function is used to generate predictions. It takes the state and a tuple containing 
the client, file and last set of records to be requested as arguments, and returns a tuple 
containing a list of records and a confidence. This allows the agents to be combined into 
trees using maximum or threshold operators; the combining agent will either return the 
best prediction, or all predictions with a confidence over a certain threshold.

Agents are loaded from a configuration file when the server is started. When a new 
connection occurs, agents in three categories are started:

Global Agents contain simple logic that can apply to any file (e.g., linear predictions). 
These are shared between all files shared by the server.

File Agents predict file-related behaviour. Some of these might contain a priori informa
tion about the structure of the file, others might be general knowledge-based agents 
that learn access patterns based on previous uses.

File-User Agents are similar to File Agents, but are unique to the file and user pair. This 
allows for user-specific knowledge to be used for prediction.

Note that agents in different roles are able to share a knowledge base. A knowledge base 
implementation is provided that permits concurrent access to a persistent tuple store.

4.8.2.6 Preliminary Results

The distributed implementation is the subject for future work and is not yet ready for 
detailed evaluation, however preliminary results indicate that this approach has potential.

Linear access to a data set is fairly common in a number of applications. It is also trivial 
to write a predictor which accurately predicts linear access, providing some calibration. 
The results from this preliminary testing show the benefit of prefetching when applied to 
a remote data server.

The linear access test program read each record in a remote data set in order. For each 
record, the client process slept for one ps  to simulate some computation before going on 
to read the next. It performed two passes through the data set.

Three different tests were performed using sequential, linear accesses:

1. No prediction; records are requested as they are used.
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RTT (ms) Predictor Time (s) Cache Hit Rate
100 None 6136.59 0.005%
100 Knowledge-based 4864.29 21.17%
100 Perfect 4864.29 21.17%

Table 4.9: Results from linear read tests.

2. Knowledge-based prediction using an algorithm which attempts to predict linear 
accesses.

3. Perfect prediction; records are requested by the client in blocks of 200 before they 
are used.

The difference between the two prediction strategies is which end of the system performs 
the prediction. In the 5-layer model, both the data structure layer and the knowledge layer 
are allowed to perform predictions. In our second test (the ‘perfect’ predictor) the data 
structure layer, on the client side, performs the prediction. In this case, it is guaranteed to 
be accurate since our test program is purely deterministic.

In the third test, the client makes no predictions. The knowledge layer on the server 
detects the presence of a sequential access pattern and begins sending data speculatively. 
This has two advantages over performing predictions in the data structure layer. The first 
is that, in the distributed setting, the knowledge layer can build a detailed knowledge base 
from multiple users, enabling predictions to be refined more accurately. The second is that 
moving the predictions to the server frees up the client to devote all of its processing power 
to actually processing the data. The last point is particularly important when systems such 
as PDAs are considered on the client side.

It can be seen from the results in Table 4.9 that the knowledge-based approach works well 
on predictable data accesses and that accurate prediction provides a significant perfor
mance increase on remote accesses. The results from both timings were identical in this 
simple test since the access pattern was predicted with equal accuracy by the predictors at 
both ends. In a more complex example, the knowledge-based implementation would be 
expected to perform less well than a perfect predictor, however writing a perfect predictor 
for more complex access patterns is less likely to be feasible. Future work on this system 
will involve adding prediction agents which work on less obviously predictable access 
patterns.

These results were collected over a 100Mbit network with an average round trip time 
(RTT) of 100ms.

4.9 Conclusions

This chapter has presented a 5-layered model for out-of-core data management systems. 
Two implementations of this model were described, indicating that it is a feasible model 
for real-world use.
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The model incorporates network transparency as well as both algorithmic and knowledge- 
based prediction. The self-optimising component required for an autonomic system is 
provided in the knowledge layer.
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This chapter describes a sample problem where external memory is important, and dis
cusses a prefetching strategy. The prefectching strategy described here fits predominantly 
into the algorithm category, but has some data structure-specific elements. Work de
scribed here was originally presented in The Visual Computer [74].

5.1 Introduction

Point-based modeling and rendering is a collection of techniques that enable direct pro
cessing of complex geometric objects represented by large discretely sampled point 
clouds [249, 266]. Point clouds are usually rendered directly, using forward projection 
and image-space composition of point splats [329, 85, 224], In terms of computational 
costs, this approach is highly attractive, facilitating the use of graphics hardware and 
stream-based data processing. However, by minimizing the interaction between points in 
the object space, it does not easily permit the generation of some visual effects, such as 
shadows, reflection and refraction, especially when considering a complex and arbitrary 
scene composed of multiple point-based objects.

An alternative direct rendering approach is to organize point-based objects in a volume 
screen graph and synthesize images using discrete ray tracing [59]. Not only does this ap
proach address some of the shortcomings of splatting, but it also facilitates combinational 
and comparative visualization of volume and point datasets by allowing both to co-exist in

81
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the same volume scene graph. For example, in Figure 5.1, a translucent bunny, built from 
a digitized point set, is combined with a heart captured as a volume dataset. In Figure 5.2, 
four dragons, also built from a digitized point set, are immersed in artificial clouds that 
are modeled as a volume dataset. Despite these benefits, the approach is yet to deliver 
a real-time solution. Nevertheless, it can no doubt bring benefits to some visualization 
and graphics applications; and with the rapid advances in both hardware technology and 
distributed computing, its usability will be further enhanced in the coming years.

The fundamental bottleneck of ray tracing a volume scene graph with multiple point 
clouds is that it demands an overwhelming amount of memory to accommodate all point 
datasets and their associate control structures such as octrees. Let {P ^  P2, . . . .  Pn} be 
a set of point clouds contained in a volume scene graph, and {C \, C2, • • •, C n)  be their 
corresponding control structures. To address the scalability of this approach, one needs 
to consider the following issues:

•  The size o f each individual point cloud , |P;| —  With modern digitization technol
ogy, Pi may easily contain millions, or even billions of points.

•  The size o f  the control structure fo r  each point cloud , \C{ \ —  A discrete ray tracer 
benefits particularly from a spatial partitioning scheme, such as an octree. However, 
to achieve optimal speed efficiency, it is not uncommon that the control structure 
for partitioning a point cloud may consume more space than the corresponding raw 
dataset, i.e., \Ct \ > \Pr\.

• The number o f point clouds in a volume scene graph, n —  The growth of n has 
a profound impact on the total space requirement for both point datasets and their 
control structures.

•  The complexity o f ray path predication —  For a simple ray-casting algorithm, it 
is possible to preprocess a volume scene graph and predetermine a static data pre
fetching strategy. The more visual effects the ray tracer incorporates, the more 
difficult the ray path predication will be. With some complex visual effects, it is 
likely that static preprocessing would not yield much benefit.

Figure 5.1: Combining the Stanford Bunny point set with a conventional volume dataset 
(San Diego rabbit heart) in a volume scene graph. (Image courtesy of Prof. Min Chen)
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Figure 5.2: A volume scene graph consisting of four dragons modeled using a point- 
set (Stanford Dragon) and artificial clouds represented by a volume dataset (Erlangen 
Clouds). (Image courtesy of Prof. Min Chen)

This section describes an out-of-core approach for ray tracing volume scene graphs in a 
scalable manner. A technique based on a dynamic, in-core working sets, is introduced, 
which addresses the combined difficulties in pre-determining data mixing patterns and 
ray paths, and hence data access patterns. It is assumed that the number of points in 
each individual point cloud is much larger than the number of point datasets in a scene,
i.e., \Pi\ >> n. Hence octrees are utilised to partition individual point datasets, and 
use the bounding boxes of scene graph nodes to partition the scene. During ray tracing, 
the point datasets and their octrees are stored out-of-core, and the required octree nodes 
and point data are pre-fetched automatically according to access patterns predicted based 
on captured knowledge of ray-data intersection. Testing results have shown that this 
technique is scalable, and enables volume scene graphs composed multiple point clouds 
to be rendered directly on desktop computers.

The remainder of this chapter is organized as follows. A brief review of point-based 
modeling and rendering techniques, and out-of-core techniques, is given in Section 4.4. 
In Section 5.2, the basic in-core method for modeling and rendering volume scene graphs 
with multiple point clouds is outlined, and highlight the correlation between modeling 
quality and memory consumption. In Section 5.3, a ray-driven technique for predicting 
the working set automatically is presented, and the dynamic algorithms for predicting 
octree access and for pre-caching octree nodes and the corresponding point data are out
lined. In Section 5.4, experiments on the scalability of the technique are demonstrated 
using working sets and datasets of different sizes, and qualitative and quantitative analy
ses are presented. This is followed by concluding remarks in Section 5.5.

5.2 Modeling and Rendering Multiple Point Sets

5.2.1 Point-based Volume Object (PBVO)

Volume objects can be defined procedurally as well as built from discretely sampled 
datasets such as CT and MRI scans. In particular, they can be defined on point clouds 
using appropriate radial basis functions [59], and can therefore be integrated into a vol
ume scene graph as elemental volume objects at terminal nodes. For example, consider a 
discretely sampled point cloud P  = { p h P 2, where each p t is associated with a
confidence value and an intensity value. We can map the confidence value to a radius r*,
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and the intensity value to an opacity value, g*. The former defines the radius o f influence 
of pi, and the latter contributes to the visibility of points within its radius of influence.

Consider a radial basis function, u(q,pi , r i ) ,  such that,

v(q,Pi , r i )  = 0, Vg, \\ q - P i  \\> n

where || q — Pi || denotes the Euclidean distance between q and pi. For a collection of 
opacity values, o i , o2, . . . ,  om, associated with p i , p 2, . . . ,  pm respectively, a scalar field O 
is therefore defined using a blending function  as:

U(q>P^r i)Vi' (5 '1)
l< i< m

Several blending functions were considered in [59]. Images in this chapter were rendered 
using either the function proposed by Wyvill et al. [344]:

uW{q,Pi,ri) =

or that proposed by Chen [59]:

' 1  4it<? -1 7 td + 2 2 u ?  ii n
1 — 2— 9 — L r f \ \ q - P i \ \ < r i
0 if || q ~ P i ||>  Ti

wc (q,Pi,ri), = | ( i - ? s r
if II q - P i  ||>  n

In both functions, Ui = || q — Pi || /r*.

0 (q )  in Eq. (5.1) in effect defines the opacity of every point in a 3D volumetric domain 
which is the union of the spherical bounding volumes of all points in P . Hence, O(q) 
defines the essential component of a volume object and can be rendered using discrete 
ray tracing. Such a volume object is called a point-based volume object (PBVO). We 
can specify luminance properties of a PBVO using transfer functions, or by building the 
relevant scalar fields in a similar manner to O(q). Figure 5.3 shows a PBVO defined on a 
very large point cloud of over 14 million points. Its opacity field was constructed using a 
radial basis function with r-j =  2, Oi =  1, i =  1 , 2 , . . . ,  m .

5.2.2 Volume Scene Graphs

In the theoretic framework of Constructive Volume Geometry (CVG) [60], a volume scene 
graph is an algebraic expression, called a CVG term, which involves a class of spatial ob
jects and a family of constructive operations. In practice, a CVG term can be represented 
by a tree, where constructive operations are defined at non-terminal nodes, and elemental 
volume objects are defined at terminal nodes of the tree. Each subtree defines a composite 
volume object, while the root represents the final composite volume object, or the scene. 
To facilitate the sharing of low level object data, we allow a CVG term to be realized
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Figure 5.3: A point-based volume object defined on the the Stanford Lucy dataset of 
14,027,872 points.

using a directed acyclic graph with a single root, hence resulting in a volume scene graph. 
Geometrical transformations and transfer functions can be applied at each graph node.

Figure 5.4 shows the results of applying CVG operations to a PBVO, r, built from the 
Stanford bunny point set, and a procedurally defined cylindrical object, c. The example 
shown in Figure 5.1 involves the use of a union operation and a difference operation. 
The latter is used, in conjunction with a cylindrical object, to remove part of bunny for 
exposing the heart. The example in Figure 5.2 demonstrates that multiple PBVOs in a 
volume scene graph can share the same point set.

5.2.3 Discrete Ray Tracing

So far, discrete ray tracing is still the most appropriate means for directly rendering a 
volume scene graph which features multiple volume objects, solid or translucent. The 
basic ray tracing mechanism is to sample at regular intervals along each ray cast from the 
view position. At each sampling position s, we recursively determine if s is inside the 
bounding box of the current CVG subtree, until we reach a terminal node. If s is inside 
the bounding box of the terminal node which contains an elemental volume object, we 
evaluate its opacity field O(s) and possible other luminance attributes.

When an opacity field is defined on a point cloud P  = {pi:p 2, . . .  , pm}, it is necessary to 
identify a subset of points, P'  C P,  such that
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intersection D (r. c)

difference — (r, c) difference — (c. r)

Figure 5.4: Applying three basic CVG operations to a PBVO r and a procedurally defined 
cylindrical object c.

Given such a subset, we can sample the radial basis function of each p\ G P', and obtain 
a scalar value by using the above-mentioned blending function.

5.2.4 The Benefits and Costs of Using Octrees

For a large point cloud, the most expensive cost in rendering a point cloud P  is the iden
tification of the subset P', as it involves a distance calculation against every point p t e  P , 
thereby limiting the scalability when \ P\ increases.

For each large point cloud P  in the volume scene graph, we therefore utilize an octree 
structure for partitioning the points in the local data coordinate system of P. In each 
level of the hierarchy, a subtree contains only those points, which have some influence in 
the bounding box of the subtree. It is important to note that due to the non-zero radius 
of influence of each point, and the likely overlaps among the ‘volumes of influence’ of 
different points, a point element can belong to more than one leaf nodes. We therefore 
store only indices, rather than the records of points, in the leaf nodes of an octree.

In comparison with a brute force ray tracer, an octree-based ray tracer can have almost lin
ear speedup in relation to the sizes of point clouds, if there is sufficient space for an octree 
that provides a sufficiently fine partition of a point cloud. Table 5.2.4 shows the speedup 
pattern in rendering three point sets different sizes, where points are placed randomly on 
a spherical surface.

However, Table 5.2.4 also shows that, for large point clouds, the amount of space con-

union U (r, c)
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height ▼ # points ► 1000 10000 100000

speedup 23.75 36.62 26.92
H = 3 space 20 MB 155 MB 1499 MB

Vmax 45 411 3895

speedup 49.91 318.84 446.81
H = 5 space 196 MB 741 MB 5708 MB

'Hmax 15 89 739

speedup 46.61 429.01 1122.27
H = 7 space 901 MB 12189 MB 63634 MB

Vmax 9 48 348

Table 5.1: Testing results for ray casting three randomly generated point clouds. The 
octree height is limited to 3, 5 and 7 respectively. rjmax is the highest number of points 
that occupy a leaf node in the octree.

sumed by an octree can be quite noticeable, especially when points are densely placed, 
the radius of influence is set to a relatively large value, or the limit for octree height is 
generously set.

Note that the size of the octree can grow significantly faster than the point set. This is due 
to the fact that each point must be present in every octree leaf node in which there exists a 
point where its radial basis function evaluates to a number greater than zero. Depending 
on the radial basis function, the point value, and threshold value used, a single point may 
have a radius of effect spanning a large number of octree leaf nodes.

Figure 5.5 illustrates the effect of varying the radius of the radial basis function. It shows 
a zoomed-in section from the neck of the statue shown in Figure 5.3. As the radius is 
increased, the points blend together more smoothly to form the appearance of an iso
surface, and at the same time, the octree structure consumes more space for dealing with 
the increasing ‘volume of influence’ of each point. In fact, when we ran our in-core ray 
tracer on a desktop computer with 1GB memory, any setting with r  >  6 encountered 
some difficulties, resulting in excessive virtual memory swapping and an unreasonable 
amount of system time overhead. Additionally, the octrees used in this set of examples 
are limited to only six levels, no where near the optimal depth for such a large dataset. 
Often some leaf nodes of the octree contained over 100,000 indices to points.

It has often been suggested that a fcD-tree [186] could be deployed instead of an octree 
in this application as it has been successfully used in conjunction with many rendering 
algorithms such as ray tracing (e.g., [324, 325]). We found that this application is not 
able to take advantage of the /cD-tree technique as easily as surface-based approaches, 
for several reasons. Firstly a /cD-tree is most effective when points are considered to be 
unrelated or have the same small radius. Neither condition holds in this application, as it is 
assumed that points may have different radii (see Section 5.2.1 and [59]). Secondly, a kD- 
tree, like a BSP tree, focuses the precise order of primitives in relation to a given viewing 
(or ray) direction. It relies on search to identify neighboring primitives, for instance,
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r =  0.25, m: 343MB r =  0.5, m: 350MB r = 1, m: 363MB

r  =  2, m: 512MB r = 4, m: 676MB r  = 6, m: 889MB

Figure 5.5: Rendering of Lucy’s neck with varying radii for the radial basis function, 
from 0.25 to 6. One can observe the improvement of image fidelity proportionally to the 
increase of the radius (r), which also leads to the additional consumption of memory (m).

in rendering point-based implicit surfaces [325]. Hence, the fast detection of an opaque 
surface closest to the viewing position minimizes the need for the search, the cost of which 
depends on the radius of points. In volume rendering, translucent objects are a common 
feature, which do not benefit from the precise ordering as much as opaque surfaces. On 
the other hand, minimal search requirement at each sampling point is better suited for 
rendering point-based volume objects.

If a AD-tree, or similar structure, were to be designed to accommodate overlapping radial 
basis functions, it would encounter the same space issue as an octree. Hence, this study 
of out-of-core methods is also applicable to other spacial partitioning strategies.

5.3 Out-of-core Rendering

The problem of insufficient memory has been around for almost as long as stored-program 
computers. Most operating systems provide some form of virtual memory [92] to help 
alleviate this problem. Unfortunately, visualisation tasks where the working set [91] 
changes rapidly do not mix well with the demand paging strategy used by most oper
ating systems.

Cox and Elleworth [84] proposed a method by which the application could control the 
demand paging strategy, allowing data to be evicted in an intelligent way. The authors 
discovered in their analysis of demand paging systems in existing operating systems that 
a significant performance increase could be gained by using smaller page sizes than are 
common, increasing the granularity of their strategy.

An effective out-of-core, or external memory [321 ] strategy requires an efficient prefetch
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ing algorithm such as that proposed by Varadhan and M anocha [315] in order to prevent 
disk latency being the limiting factor in rendering. Traditionally such algorithms are de
signed based heavily on a priori knowledge of access patterns. It is theorised that this is 
not required for an efficient prefetching strategy.

All of the caching algorithms tested interact with the renderer by the same simple inter
face. They sit between the rendering code and an abstract out-of-core file controller. The 
renderer requests an octree node containing a specified point in 3D space. This request is 
processed by the caching algorithm, which requests individual nodes from the controller. 
The caching algorithm may also provide pre-caching hints to the controller, with an asso
ciated priority. If there is enough cache space to fulfill these requests, then the requested 
nodes will be loaded, with lower priority nodes being evicted to make space for higher 
priority ones. The priority of loaded nodes is gradually decayed over time. This gives 
slightly less-than-optimal performance, since there is a clear separation (preventing some 
compiler optimisations such as aggressive inlining) between layers, but it allows for fair 
evaluation of the different algorithms. Figure 5.6 shows how the various layers of the test 
system interact.

The asynchronous I/O controller in this system implements the block layer, as described 
in the previous chapter. The cache implements the record layer. The data structure layer 
is implemented in the prediction algorithm component. This system does not implement 
the knowledge or network layers from the five-layer model.

The LRU algorithm is the simplest of all. Every octree node that is requested is loaded if 
not cached, and stored at the head of a queue. If the cache is full, then the oldest node is 
evicted to make room.

The intelligent algorithm works on the assumption that access is going to be along the 
path of a ray. Each pair of points accessed sequentially are used to extrapolate the line 
of which the ray is a segment. The algorithm then determines a point on this line which 
falls just outside of the current octree node. It then attempts to navigate the octree until 
it reaches the required node. If, at any point on this navigation, it would need to enter a 
node which is not already in the cache, it instructs the lower layer to cache it. The next 
time a point is requested, it tries again to reach the next node.

This provides good cache hit rates, but often at the cost of a significant overhead in terms 
of disk usage.

5.3.1 Algorithm Overview

The concept of working set was first introduced in the context of memory management in 
operating systems [91]. The concept used in this work as an approach to the out-of-core 
management in some way resembles many typical methods found in operating systems, 
such as anticipatory paging.

Consider the running of an algorithm as a series of algorithmic steps {Ai, A2, . . . ,  A*,. . .} ,  
and each step is merely a functional group of an arbitrary number of instructions. A work-
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Figure 5.6: The architecture of the test system.
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ing set of an algorithm in execution is the subset of the associated data structures being 
accessed during an algorithmic step A*. Note that unlike the definition commonly used in 
the context of operating systems, here the duration of a working set is not a constant time 
window. In general, different algorithmic steps may require different execution time. If 
an algorithmic step is taken to be the processing of a single octree leaf node, then the 
running time will be 0 ( n )  in terms of the number of points contained within the node.

In the case of the discrete ray tracer, the primary algorithmic steps are sampling individual 
volume objects in a volume scene graph. For an octree defined on a point-based volume 
object (PBVO), the working set of a sampling operation is basically the leaf node of 
the octree that contains the sampling point, and the points referenced by the leaf node. 
Assuming that it is not possible to have all parts of the octree and the entire point set in- 
core at all times, the aim of the data management strategy is therefore to ensure that the 
working set for an algorithmic step A* is located in-core, before and during A*. Without 
such a data management strategy, the renderer will quickly encounter a situation that the 
working set for an incoming step A j is out-of-core, stalling the renderer until it can be 
swapped in.

Figure 5.7 gives an overview of the data environment of a volume scene graph to be 
rendered by the out-of-core ray tracer. For each individual point cloud, there is a complete 
out-of-core copy of the entire point dataset and the corresponding octree. Each out-of- 
core point cloud has an in-core memory cache. The amount of in-core memory available 
for each point cloud is set when an out-of-core copy is created, and can be modified by the 
user. This allows the algorithm to be easily scaled down in highly constrained memory 
situations.

Since it is assumed that the number of points in each individual point cloud is much 
larger than the number of point datasets in a scene, comparatively the actual memory 
requirement for storing a volume scene graph (without the actual data for its elemental 
objects) is negligible. We thereby maintain the data structure for the volume scene graph 
in-core. Note that it is possible for different PB VOs to share the same point clouds.

The implementation consists of three main functional components, namely the discrete 
ray tracer, an out-of-core octree controller, and an out-of-core point set controller, con
nected as shown in Figure 5.8. The ray tracer sends requests for discrete sampling points 
to the octree controller. This then determines whether the node containing the requested 
point is currently cached in-core. If it is, then it simply returns it, and attempts to predict 
the next one to be accessed. The prediction strategy will be detailed in 5.3.3.

Once the octree controller has determined the next node or subtree most likely to be 
accessed, it attempts to pre-emptively fetch it from disk. At the same time, it informs the 
point set controller of the point list from the accessed leaf node. On receipt of the point 
list, the point set controller checks that these are cached in-core, and if not attempts to 
load them asynchronously.

The ray tracer then attempts to retrieve points identified by the octree node from the point 
set. By this time, they should already be cached in-core. Hence, it is the octree controller 
and point set controller that try to make sure the working set related to each sampling
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Figure 5.7: The data environment of a volume scene graph.

point is cached in-core before the ray tracer progresses to the sampling point.

5.3.2 I/O Management during Rendering

Most modern hard disks have a sufficiently high sustained transfer rate to keep the ray 
tracer fed with data, if it could be read in a linear fashion. Consider a single point cloud. 
In the described implementation, each octree node is composed of 244 bytes on disk1, 
and references a set of points which are 24 bytes each. The maximum transfer rates for 
hard disks usually rely on reads of consecutive blocks of 512 or more bytes, making the 
required reads fairly inefficient.

The layout of the octree on disk is such that the child nodes of a single node are con
tiguous, allowing them all to be read with a single disk read. Unfortunately, this does

1This space is required to store the bounds and extents of the node, as well as the addresses of the 
parent, children and/or the points in each node, as well as some pre-computed values to speed up rendering 
calculations. It also includes the indexes of the points referenced by the octree node.
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Figure 5.8: The main components of the out-of-core renderer.

not give a significant benefit since navigation of an octree is performed by ascending and 
descending the tree, rather than large lateral movements. Ordering the nodes on the disk 
to allow linear reads to load paths to the leaf nodes is not feasible, since there are eight 
possible paths down from each node.

In order to permit the fast traversal of the octree, the access of any non-leaf node causes 
all of that node’s children to be pre-emptively swapped in. Additionally, the path between 
a currently accessed node and the root node is locked in-core, allowing movement up 
the tree to occur without requiring any disk accesses. The disadvantage of this approach 
is that it locks more nodes into in-core memory than are strictly required, however for 
discrete ray tracing applications, where adjacent octree nodes are frequently required, the 
benefit is worthwhile.

Individual nodes in the octree are accessed using a reference counted retain-release mech
anism. Retained nodes are locked in-core. Once a node is released, and its reference count 
becomes zero, it is not immediately swapped out. Instead, its priority is decayed. No node 
is evicted until the allocated in-core space is exhausted. Since the point set and octree data 
are not modified during rendering, and hence does not need to be written back to disk, it 
costs little to free in-core nodes individually.

Unfortunately, it is not possible to group the points together on disk for linear reads with
out incurring a significant space penalty. The reason for this is that each individual point 
can be referenced by several octree nodes, the number varying with the radius of the radial 
basis function associated with each point.
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Figure 5.9: A performance comparison between the in-core only rendering and the out- 
of-core approach with prefeching.

Various parts of the discrete ray tracer, such as opacity sampling and shadow sampling, 
trigger the pre-caching of out-of-core data. Each of these assigns a priority value between 
0 and 255 to the record, representing the confidence of its prediction algorithm. When the 
allocated in-core space has been exhausted, records are swapped out based on priority, 
with the least recently used record of the lowest priority being accessed first.

The method provides two major benefits over the built-in paging strategy in a conventional 
operating system:

• Fine grained access —  The operating system relies on the granularity of the paged 
memory system, and will only swap entire pages in and out of main memory. This 
means that, in order to load a single byte, an entire page (typically around 4KB) 
must be swapped out to make room for it. We are able to swap out only the relevant 
working sets actually needed.

•  Lower latency — The operating system will typically wait until a page is accessed 
which is currently out-of-core before acting. It will then issue a page fault, evict the 
least recently used page, and then load the required page. The problems with this 
are that the evicted page may be the one needed next, and that the process accessing 
the page is stalled while it waits for the page to be loaded.

Figure 5.9 shows a comparison of the time taken to render a randomly generated point set 
using both in-core and out-of-core approaches. The octree size is expressed as a multiple 
of the amount of RAM space available to the rendering process. For example, from Table
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5.2.4, we can observe that with 100,000 points, a 7-level octree tree would require 60 
times more space than typical RAM space available on a PC.

In the pure in-core case, once this value of multiples exceeded one, the demand-paging 
subsytem in the operating system is automatically invoked to handle swapping. In fact, 
most everyday systems are configured with the size of the swapping space set to between 
50% and 100% of the RAM space. This means, when the value of multiples reaches 
about 1.5 ~  2, the allocatable physical address space of the operating system will be 
exceeded and rendering will be aborted. Thus relying on the demand-paging subsytem is 
not scalable.

In order to observe the effectiveness of the prefetching strategy described in this paper 
in comparison with the demand-paging subsytem, we reconfigured an operating system 
by allowing significantly more swapping space than a typical configuration. It can be 
clearly seen that the out-of-core approach performs better in terms of raw speed. The 
in-core approach, using the operating system for paging takes more than twice as long to 
complete in all cases.

5.3.3 Prediction Scheme

The prediction algorithm  developed for the ray tracer requires two out-of-core data struc
tures, one representing the octree and the other representing an array of points. The algo
rithm detects octree access patterns based solely on its captured knowledge of previous 
accesses. The array of points has an internal predictor which predicts regular accesses, 
and additionally accepts hints from an external source. The first predictor is used when 
performing pre-processing —  the point set is streamed into in-core memory and each 
point is processed in order. The second predictor is used during rendering, with the hints 
being generated from the octree.

Algorithm 1 Predict Octree Access 
Require: s: the new sampling point 
Require: sx and s2: the last two sampling points accessed 
Require: c: a Boolean value indicating if the next cell for st is cached 

N  <— the leaf node containing s 
if Si and s2 are set then

if s, si and s2 are not on the same line then
st <— the next sampling point on the ray (s, s2) but not in N  
M  <— the node containing st {navigating from N to M} 
c <— conditional test if M  is now in-core? 

end if
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Algorithm 1 shows the basic outline of the prediction algorithm. Accesses to nodes in the 
octree from a discrete ray tracing algorithm are along the paths of rays. The algorithm 
makes use of this fact, along with the fact that only two points are required to uniquely 
identify a line.

Every time a point is accessed, the algorithm first determines whether it is on the same 
line as a previous access. If this is the case, then it checks whether the last attempt to 
pre-cache the node was successful. If not, then it tries again. The attempted pre-caching 
is performed by Algorithm 2.

If the new point is not on the same line as previous ones, then it attempts to predict a new 
line based on the last accesses. This works for a secondary ray from a point, but fails for 
a new initial ray after the previous one terminates.

It is not difficult to extend this algorithm to record the start positions of rays and generate 
new predictions based on rays originating at these points. However doing so with current 
hardware results in performance degradation. The computation is relatively expensive, 
and the special case covered is infrequent. If processing speeds continue to increase at 
a rate faster than disk access times, then this may become a more attractive proposition 
within a few years.

Algorithm 2 handles the pre-caching. It attempts to navigate to the required node, without 
accessing any nodes stored out-of-core. First, it navigates up the tree until it finds a node 
which contains the point. This is guaranteed not to require accessing any out-of-core 
nodes, since the path between the root node and a currently retained leaf node is always 
locked in-core.

Algorithm 2 Pre-cache an Octree Node 
Require: s : the new sample point 
Require: N: the starting node 

while s is not in N  do 
N  <— the parent of N  

end while
while N  is not a leaf node do 

M  «— the child of N  containing s 
if M  is in-core then 

N  <- M  
else 

pre-cache M  
return NO 

end if 
end while 
return YES

The second phase navigates down the tree towards the node as far as it can without ac
cessing a node that is not stored in-core. If it reaches an out-of-core node, then it stops, 
and pre-caches the node.
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Figure 5.10 illustrates this pre-caching mechanism. The node marked as A is the original 
node, containing s, and the node marked as B is the one containing the point st. In other 
words, the last search within the octree returned A, and the next search along the same 
line which does not return A, will return B. This diagram indicates how the prefetching 
algorithm will attempt to navigate from node A to node B. Nodes which are not accessed 
in this navigation are omitted, or summarised with an ellipsis.

If no pre-caching were accomplished, this access would require three disk reads. To 
make matters worse, there is no way of determining where each node is on disk until its 
parent node has been read, and so none of these reads could be initiated until the previous 
one has been completed. Given common hard drive seek times of 8ms, this would stall 
the algorithm for 24ms —  24,000,000 clock cycles2 on a 1GHz CPU —  when leaving 
an octree node in this way. Even adjacent octree nodes would incur an 8,000,000 cycle 
penalty.

The first time a point inside A is accessed, the prefetching algorithm will navigate along 
the branches indicated by the number ‘1’. Once it reaches the first node that is not cached 
in-core, it will issue a request that this node be pre-cached, and then return. The rendering 
algorithm can then perform processing on the points in A while the node is loaded. The 
second time a point in A is accessed, this node should be in-core, and so it will get two 
levels down the tree, to the end of the arrow indicated by a ‘2 ’, before encountering an 
out-of-core node. Again, this node will be marked for fetching and the predictor will 
return. The third time, indicated by a ‘3 ’, it will get to node B and cache this.

5.3.4 Prefetching Scheme

Prefetching data efficiently is very important to the overall performance of the rendering. 
Moving from a pure in-core implementation to an out-of-core approach caused a signifi
cant, yet unavoidable, performance hit. Previously, moving to the next node in an octree 
was as simple as de-referencing a pointer, something which can be accomplished in a very 
small amount of time. In order to perform the same operation in an out-of-core setting, 
the following steps are required:

1. Translate the record index to a disk location.

2. Calculate the hash of the location.

3. Determine whether the node is in-core.

4. Fetch it, if not.

The hashing technique is adapted from hardware cache implementations —  the lowest 
n  bits of the record index (not the disk address) are taken and used as the hash. This 
has the advantage that it is very computationally cheap to perform, and allows sequential 
accesses to fill the in-core hash table without collisions.

2Note that modem CPUs complete more than one instruction per clock cycle
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With a fast and efficient hashing algorithm, the time taken to determine whether a record 
is in-core is not high, however the access process still potentially takes several function 
calls —  each of which has a cost associated with it —  making it far slower than a simple 
pointer access.

If the prediction algorithm fails, then the cost is very high, since the data must be syn
chronously accessed from disk. This may stall the process for several hundred clock 
cycles while it waits for the disk access to return. In the case of the pure in-core imple
mentation, this is the situation encountered whenever the required memory exceeds the 
available physical memory —  each access to out-of-core virtual memory creates a page 
fault which stalls the process until a page is read from disk.

The prefetching process makes use of the operating system’s asynchronous I/O capa
bilities. When a record is identified as requiring loading in-core, an asynchronous read 
request is dispatched, and the rendering process continues. W hen the record is accessed, 
or when the asynchronous I/O buffers have all been used, the request is completed. In 
most cases, the prefetch requests are dispatched sufficiently far in advance that the asyn
chronous read has completed by the time it is required.

In order to alleviate some of the system call overhead incurred from large number of 
small reads, the POSIX lioJist system call is used, which allows up to 163 asynchronous 
reads to be initiated with a single system call. In many cases, this allows all of the points 
contained within a single octree leaf node to be loaded with a single system call. An 
additional benefit of this is that it allows the kernel to re-order the disk reads to reduce 
seek time on the disk.

Both the point set and octree make use of the same underlying code for shifting data in 
and out of core. This code receives the pre-caching requests and priority information from 
the high level code, and evicts low-priority records when their space is needed.

5.4 Experimental Results

5.4.1 Scene Graph Complexity

We have run a number of tests on different desktop computers, including a legacy 
Alhlon 1.4 PC (1.4GHz, 70MB), a Pentium 4 PC (3GHz, 1GB), a Pentium M 770 lap
top (2.13GHz, 0.5GB), an PowerMac G5 (2 x2.5GHz, 2GB) and an Apple G4 laptop 
(1.5GHz, 0.5GB). The render used was a that presented in [59], modified to support out- 
of-core storage of data.

Figure 5.11 demonstrates that this technique can be used to synthesize images from com
plex volume scene graphs on a desktop computer. The volume scene graph is composed 
of six point-based volume objects, built from two point sets (Stanford Lucy of 14,027,872 
points, and Stanford Bunny of 35,947 points). They are partially immersed in artificial

3This number is implementation dependent, however 16 is common
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clouds represented by a volume dataset (Erlangen clouds of 5 1 2 x 512x32  voxels). The 
scene is lit by three point light sources, casting shadows in different directions. From 
Figure 5.11, we can observe hard shadows cast by the bunnies and the Lucy statue, soft 
shadows by the clouds, and self-shadows by Lucy’s arm. As the radial basis function 
used for the Lucy point set has a much smaller radius, it requires much finer sampling 
intervals.

5.4.2 Memory Usage

The memory usage of the algorithm is entirely configurable, with the only constraint 
being that there must be enough in-core space allocated to store the maximum number 
of nodes which need to be processed at once. As discussed in 5.3.2, the path between a 
current access node and the root node of each octree is locked, this maximum number is 
thus related to height of the octree h and the number of individual point sets n. In terms 
of space complexity, this is of Ospace(n • h) =  Ospoce(n • log m ), where m  is the average 
number of leaf nodes in each octree, which is related the average size of each point set.

For example, in a single PBVO test with the Bunny point set, the total memory used 
by the out-of-core ray tracer —  including the in-core data cache and all other memory 
allocated by the process —  was under 20MB. In contrast, the in-core implementation 
used around 300MB. For larger datasets, it is possible to keep the memory usage at a 
similar level, however this comes at the expense of speed. In the following section, the 
trade off between memory usage and performance is examined in more detail.

5.4.3 Performance

The performance of the algorithm is dependent on the amount of memory allocated to 
it. This can be controlled in two ways —  the amount allocated to each point set and the 
amount allocated to each octree can be varied independently. Table 5.4.3 shows how the 
performance varies as each of these is changed.

number of octree 
nodes in core

number of points in core 
32768 16384 8192 4096

131072 94.59 98.67 100.31 107.15
65536 90.67 96.25 96.62 101.63
32768 88.28 95.20 94.89 100.91
16384 88.78 96.58 95.84 103.38
8192 92.39 98.56 100.31 108.25

Table 5.2: Performance (in seconds) as memory is constrained while rendering the Stan
ford Bunny.

The timing data in Table 5.4.3 gives the time, in seconds, taken to render a scene con
taining a single PBVO (Stanford Bunny of 35,947 points). It includes both preprocessing
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Key:
O In-core node O Out-of-core node 
O Omitted nodes

Figure 5.10: Pre-caching nodes in an octree . Unused nodes omitted for brevity. Each 
step in the algorithm is shown numerically.

Figure 5.11: A volume scene graph composed of six PBVOs (built from two point sets, 
Stanford Bunny and Lucy), a volume dataset (Artificial Clouds from Erlangen) and a 
procedurally defined floor.
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Table 5.3: Performance for multiple point sets.
number of point sets 1 2 4 8 10

Preprocessing 57.0 114.8 230.9 470.7 589.0
Rendering 13.8 13.9 14.5 16.8 16.8

time and rendering. The preprocessing times vary between 55-65 seconds. The results 
were taken from a PowerMac G5 with 2 x2.5GHz CPUs. The current implementation 
currently only makes use of a single CPU directly, however the second CPU is used to 
process asynchronous I/O requests.

The results in Table 5.4.3 indicate that increasing the size of the point cache has a more 
noticeable impact on performance than increasing the size of the octree cache. This is 
due to the fact that the points required change dramatically over short octree traversals, 
meaning that a small increase in the point cache size can dramatically cut down the total 
amount of disk I/O required.

Increasing the amount of memory allocated to the octree cache does not always give a 
performance benefit. The pre-fetching algorithm requires very little space to ensure that 
all of the required nodes are in-core before they are accessed. Once the cache reaches 
this size, increasing it delivers no benefit —  the extra space is not required. Increasing 
this amount further increases the length of time required to find a single cache record, 
incurring a performance penalty. For larger cache sizes, this penalty is sufficient that 
increasing the allocated memory results in a performance penalty.

An in-core ray tracer would have a great difficulty in dealing with multiple point sets, 
such as the volume scene graph in Figure 5.11. The out-of-core ray tracer can easily 
handle such a volume scene graph in terms of memory allocation, without experiencing 
inefficient disk I/O managed by the operating system. The rendering process in this case 
involves the full data environment as shown in Figure 5.7.

To evaluate the performance under the condition of multiple point sets, the volume scene 
graph in Figure 5.12 was rendered by associating the twenty bunnies to different numbers 
of point sets. Though the same point set is being used, for the purpose of scalability test, 
repeated uses are treated as independent point sets. For example, in the first test, one point 
set is used for all bunnies. In the second, half use one point set, and half use another.

The evaluation was performed in this manner to reduce the number of variables affecting 
the results. For each test, the final scene was the same. The differences arise solely 
from the way in which the scene graph was created. The only difference between each 
rendering of the scene is how the points are accessed. In the simplest case, the scene 
graph contained twenty references to the same point set (and octree). Each subsequent 
test modified the scene graph to use new instances of the data set, increasing the memory 
usage without modifying the rendered scene.

Table 5.3 gives both preprocessing (i.e., octree building) and rendering times in seconds. 
The point set used to generate these results contains 35,947 points. The scene with 10 
instances of this dataset thus contains 359,470 points. The preprocessing time scales lin-
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Figure 5.12: A volume scene graph composed twenty point-based volume objects (Stan
ford bunny), ray traced with three light sources.

early as new point sets are added, but the actual rendering time changes little and remains 
almost constant in relation to the increasing number of point sets from 1 to 10. Note that 
the point sets are independent, and have separate octrees, and thus the preprocessing time 
is lower than it would be with a single, larger point set.

The results are also shown graphically in Figure 5.13. It can be seen here that the pre
processing time scales linearly as more points are added. The rendering time, however, 
remains almost constant. Recall that adding point sets to the scene increases the mem
ory requirements without modifying anything else in the rendering path. Increasing the 
number of points by a factor of ten increased the rendering time by approximately 20% 
without requiring an increase in in-core memory usage.
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Figure 5.13: Graph showing performance for multiple point sets.
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5.5 Conclusions

This chapter has presented an out-of-core solution to a difficult problem for rendering 
multiple point-based volume objects using discrete ray tracing. The I/O management 
involves a dynamic, in-core working set, and uses a ray-driven algorithm for predicting 
the working set automatically. The results have shown that the algorithm scales well to 
very low memory conditions. Performance increases can be gained by increasing the size 
of the point cache up to the size of the point dataset, and by increasing the size of the 
octree cache up to a limit dependant on the structure of the data and the number of in- 
core nodes required at any given time. We have demonstrated that this approach allows 
the rendering of multiple large PBVOs in a volume scene graph on common commodity 
desktop computers.

The following chapter will use the algorithm described here as a bench-mark to deter
mine whether it is possible to produce comparable results from a prefetching strategy that 
doesn’t incorporate knowledge of the rendering algorithm. The algorithm described in 
this chapter is evaluated in more detail and compared to other approaches.
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It is believed that it is possible (and practical) to design a generic knowledge-based 
prefetching algorithm that achieves performance commensurate with algorithms specific 
to the rendering method. This chapter attempts to demonstrate that a knowledge-based 
algorithm can perform as well as one which uses problem-specific information. Work 
described in this chapter was originally presented at Euro Vis 2006 [73].

6.1 Introduction

In this chapter, four caching algorithms are compared. The first is a naive approach 
employing no prefetching, the second uses domain-specific intelligence as described in 
the previous chapter, and the remaining two are knowledge based.

The first algorithm uses a simple demand paging strategy coupled with least recently used 
(LRU) eviction, and is used as a base-line for evaluation of all algorithms. The second, 
the ray driven predictor (RDP) was described in more detail in the previous chapter. It 
makes use of domain-specific intelligence to make predictions. The remaining two algo
rithms use a knowledge-based approach - both make predictions based on previous access 
patterns, and are described in the next section.

104
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(a) 5 x IK points (b) 5 x 1 OK points

(c) 5 x 100K points (d) 5 x 1M points

Figure 6.1: Five iso-surfaces of a hyperbolic field are visualized using point sets that are 
randomly placed on the surfaces with different resolutions. Each iso-surface is approxi
mated by (a) 1,000, (b) 10,000, (c) 10,0000 and (d) 1,000,000 points respectively.

This chapter aims to demonstrate that it is possible to achieve good performance in a spe
cific problem domain using an algorithm which does not exploit problem-domain specific 
logic.

6.2 A Knowledge-based Approach

A knowledge-based system is one which functions using inferred knowledge. As the 
system runs, it learns how to function efficiently, fulfilling the se lf optimising component 
of the definition of an autonomic system. In this case, the inferred knowledge relates to 
access patterns within the data. A good knowledge-based prefetching algorithm will learn 
the order in which data is accessed and automatically fetch data accessed next.

The two knowledge-based algorithms in this chapter are aware of the structure of the data 
to a limited degree. They (along with the other two predictors) make use of the fact that 
the octree can be decomposed into individual nodes. The algorithms are not of the process 
being used to render the data. They must infer knowledge of the access patterns within 
the data based on previous accesses.

Two knowledge-based approaches are evaluated, and their performance compared with 
two other algorithms. In this implementation, both knowledge-based algorithms work by 
storing some extra data in the unused child node pointers in leaf nodes in the tree. The 
advantage of this approach is that it does not change the data layout in RAM of the dataset
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Figure 6.2: Two Visible Human point sets, representing bones (1,218,973 points) and 
skin (267,303 points) respectively, are combined together using a volume scene graph. 
The point sets were part of the polygonal model provided by William E. Lorensen [200] 
and made available by Georgia Institute of Technology.
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(a) without shadows (b) with shadows

Figure 6.3: The David dataset (Stanford) contains 28,184,526 points, for which an octree 
with 10 levels takes about 64 GB space. The visualization with shadows gives extra visual 
cues about the spatial relationship between the object and its surrounding, and between 
different parts of the object.

Figure 6.4: A volume scene graph composed of twenty bunny objects, which is rendered 
with shadow effects. The bunny dataset (Stanford) contains 35,947 points.



6.2 A Knowledge-based Approach 108

between the different algorithms any more than is absolutely necessary, which helps to 
prevent differences in CPU cache accesses skewing the evaluation.

This design decision limits the available space to 8 addresses. If the algorithms were to 
be implemented in a purely general case, the extra data would be stored in a separate data 
structure associated with the page table. It is believed that eight addresses per node is 
an acceptable number for this situation, since the algorithm is required to search through 
them every access to update the prediction, and is not allowed to take more time to run 
than it saves by predicting accesses.

Algorithm 3 Knowledge-based access path predictor
Require: New sample point p, last two octree nodes Node,  LastNode

if p  is in Node  then {If the new point is in the old node, we don’t need to do anything.}
N ew N ode  <— Node

else if LastNode  previously visited before N ew N ode  then {Try to predict along an 
existing vector}

N ex tN ode  *— node visited after Node  previously, 
if p  in N extN ode  then 

N ew N ode  <— N extN ode  
end if 

end if
if N ew N ode  unset then 

if p  in any of the four nodes visited after Node  then {Use an historical next nodes 
as a next guess}

N ew N ode  <— next node from Node  containing p  
else {Fall back to octree navigation}

N ew N ode  <— node reached navigating the octree from Node  to p. 
end if 

end if
Replace oldest vector in Node  with LastNode  and N ex tN ode  {Update knowledge} 
if Node  previously visited before N ew N o d e  then

N ex tN ode  <— node visited after N ew N ode  previously.
Cache N ex tN ode  with a high priority 

else
Cache all four nodes visited after N ew N o d e  with a low priority, 

end if
return N ew N ode

W hen a node is requested, its associated knowledge is updated. In the case of the access 
path predictor, described in Algorithm 3, the knowledge stored is comprised of two parts 
describing a vector through the dataset. Note that this is a vector through the dataset itself, 
not a vector through the three dimensional space represented by the dataset.

The access path predictor divides the eight available child addresses into four pairs. When 
three nodes, a, b, and c, are accessed in sequence, node b is updated to contain the ad
dresses of a and c. The next time b is accessed, if a were the last node then it pre-caches 
c. If there is space in the cache, then the other nodes accessed afterward are also cached.
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Figure 6.5: First ray entering a node with access path predictor

The eight addresses allow for the storage of four (predecessor , successor) pairs (actu
ally, (predecessor , c u rre n t , successor) tuples, but the curren t node is implicit) for each 
node in the octree. The access path predictor orders these according to their most recent 
access, and discards the oldest one whenever a new one is found. If the new pair is already 
present, then it is simply promoted to the front of the queue.

Figure 6.5 shows a simplified version of the predictor in operation. Here, a two dimen
sional grid is used to represent a segment of the dataset. Nine leaf nodes are shown, along 
with a ray and the collected data at each point.

The ray is shown having past through nodes one and two and into node five. It then 
continues into node five (presumably having hit an object and being reflected, or being a 
secondary ray fired at a light source). Node one does not feature in this interaction, but 
due to having been recently accessed it is presumed to still be in the cache. Node two is 
the immediate predecessor and node four the immediate successor, so the tuple (2, 5,4) 
is stored for this node.

Figure 6.6 shows a second ray entering the same node. This one comes from node four, 
and so there is no existing relation that can be used for prediction. At this point, the 
algorithm would typically fall back to simply pre-fetching all of the successor nodes, 
however the only successor node it has stored here is node four.

This ray is not deflected, and passes straight through the node. As it passes, the tuple 
(4, 5, 6) is recorded into the node’s knowledge base for later predictions.

When the next ray enters, as shown in Figure 6.7, there is an existing tuple that can be 
used to make a prediction. This uses the (4, 5, 6) tuple to predict node six will be accessed 
next, and begins prefetching it.

The same mechanism would be used in every single node in the dataset, so once the ray
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Figure 6.6: Second ray entering a node with access path predictor
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Figure 6.7: Third ray entering a node with access path predictor .
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Figure 6.8: First ray entering a node with history access predictor

has entered node six, it would again have its next node predicted based on prior accesses. 
Since the last node in the example exited via node nine, this would probably be pre
cached, giving an two correct predictions in a row.

One important potential benefit of the access path predictor over the ray driven predictor is 
that it is able to predict access patterns caused by secondary rays trivially. Predictors tied 
to the ray tracing algorithm have some difficulty doing this, as the existence of secondary 
rays is dependent on the contents of a particular node in the spacial partitioning scheme 
(in this case, the octree). The access path predictor will miss the first secondary ray in 
each direction, but then has a good chance of predicting future ones.

The history access predictor is simpler. It was designed due to concerns that the com
putational cost of the access path predictor might be too high. Unlike the access path 
predictor , the history access predictor simply stores (cu rre n t , successor) pairs. Again, 
the curen t node is implicit, and so only the address of the eight successors are stored. 
Every time a ray enters a node, all potential successors are loaded.

An example of the history access predictor in operation is shown in Figures 6.8 and 6.9.

In the first diagram, a ray enters a node in a similar two dimensional arrangement to 
the last example. The ray enters from node two, having passed through node one. A 
secondary ray is then fired towards a light source. The ray exits into node four which, as 
before, has not been predicted and so causes a page (or, rather, node) fault and is loaded 
from the disk, unless it was already in the cache for some other reason.

The second ray enters from the same direction, and has a similar experience. Again, the 
secondary ray exists through node four, but this time it is pre-cached. A description of 
the use of the history access predictor algorithm in this context is given in Algorithm 4. 
Note that the mechanism used in history access predictor is also used as a fall-back in 
access path predictor for cases where no the predecessor does not match any in the node’s



6.2 A Knowledge-based Approach 112

knowledge base.

Algorithm 4 Knowledge-based history access predictor 
Require: New sample point p, last octree node Node,

if p  is in Node  then {If the new point is in the old node, we don’t need to do anything.} 
N ew N ode  Node  

end if
if p  in any of the eight nodes visited after Node  then 

N ew N ode  next node from Node  containing p  
else {Fall back to octree navigation}

N ew N ode  <— node reached navigating the octree from Node  to p. 
end if
Replace oldest successor in Node  with N ex tN ode  {Update knowledge}
Cache all eight nodes visited after N ew N ode  with a medium priority.
return N ew N ode

When looking at these examples, it is important to remember that they both represent 
small segments of a much larger data set. In between two rays entering node five, a large 
number of other nodes might be accessed. In the last example, two consecutive rays to 
enter node five exited through node four, so it might be assumed that node four would 
already be in the cache, and thus no prefetching would be needed. Unfortunately, these 
two rays are likely to have traversed other parts of the data set before reaching node five, 
and even more after leaving it. The two accesses to node five might be a long way apart, 
and thus the second may not benefit from caching at all.

It is also important to remember that, while these examples were described in terms of 
rays, this was to illustrate how the algorithms are used, not how they are designed. Neither 
algorithm has any awareness of the rays, just the accesses. From the perspective of the 
predictors, the rays are simply a sequence of node requests.

Both of these algorithms work solely by storing knowledge about leaf nodes. This means 
that in both cases it is frequently possible to hop from one leaf node to another. In the 
absence of this knowledge, it would frequently be necessary to navigate several nodes 
up and then back down the tree, and each of these nodes could potentially require a disk 
access.

The secondary advantage of the ability to move directly between leaf nodes in an octree 
is that it reduces the size of the working set. There is a lower probability that non-leaf 
nodes will be required, and so more cache space can be used to store the leaf nodes and 
points.
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Figure 6.9: Second ray entering a node with history access predictor

6.3 Algorithm Evaluation

The four algorithms evaluated are:

•  The least recently used (LRU) strategy —  This is a simple memory management 
algorithm discussed extensively in many textbooks on operating systems. This is 
the most generic among the four considered and contains a very limited amount of 
application-specific logic. It is used in this work as a base-line for evaluating all 
algorithms.

•  The ray driven predictor (RDP)  —  This is the least generic among the four con
sidered. It relies on a significant amount of hard-coded application-specific logic, 
including both the data structures and the rendering algorithm, to make predictions.

•  The access path preictor (APP)  —  This algorithm assumes that the most likely ac
cess pattern is a predecessor-current-successor pattern. Unlike RDP, it does not at
tempt to hard-code such logic mathematically, and instead makes predictions based 
on previous access patterns. Hence, it is a knowledge-based algorithm.

•  The history; access predictor (HAP)  —  This algorithm also adopts a knowledge- 
based approach, but is more generic than APP without the assumption about the 
likelihood of any access pattern. It maintains a relatively fuller record of access 
history.

All algorithms were evaluated with random point sets and with a small number of real 
datasets. The random datasets contained 100, 1,000, 10,000, 100,000 and 1,000,000 
points respectively. For each number of points, two different formations were generated; 
one in which all of the points were on the surface of a sphere and the other in which all 
points were in a volume.
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Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

Best 1 0.4 0.3 0.8
Average 1 1.8 0.8 1.9

Worst 1 5.1(38) 1.4 4.9
Rank 2 3 1 4

Table 6.1: Summary of normalised disk access results over algorithm tests.

Least Recently Ray Driven Access Path History Access
Used Predictor Predictor Predictor

Best 99.9% 100% 99.9% 99.9%
Average 98.9% 99.8% 99.8% 99.7%

Worst 91.1% 99.3% 99.2% 99.0%
Rank 4 1 2 3

Table 6.2: Summary of cache hit rates over algorithm tests.

The surface point sets results indicate the performance when rendering an object created 
by sampling a solid object, such as a statue. The volume point sets resemble the kind 
of data found in a CT scan, or similar. Between the two different types of data, they 
represent the majority of extant point data sets.

Tests were performed both with and without shadows for the point sets on the surface of 
a sphere. The shadow rendering involves firing secondary rays through the data set. This 
means that each octree node will have rays passing in multiple directions passing through 
it.

In assessing these algorithms we use two metrics; cache hit rate and total disk reads. 
Every time there is a cache miss, the renderer stalls while the data is fetched from disk. 
Thus, every cache miss slows the system down. The hit ratio gives an idea of the num
ber of false negatives generated by each algorithm; times when the algorithm failed to 
accurately predict the data that was required.

Disk reads give an indication of the number of false positives of each algorithm. Without 
an in-core cache or prefetching, the number of disk reads will equal the number of octree 
node accesses. Caching will reduce the number, since some nodes will already be in-core 
when they are needed. Prefetching is likely to increase the number of disk reads since data 
will be speculatively moved from the disk to the cache. If an algorithm is speculatively 
caching data that is not used, it will increase the number of disk reads.

A least recently used algorithm was used as a base-line. This is close to the strategy em 
ployed by modem operating systems, but finer grained. The least recently used strategy 
employed here has a granularity of a single octree node, while OS-level implementa
tions can be as course-grained as evicting entire process address spaces and then demand- 
paging in the part that is actually used - in the best case they will work on 4K pages, each 
of which can store around 16 octree nodes.
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Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

Best 1 0.88 0.87 0.96
Average 1 0.91 0.90 1.01

Worst 1 1.05 1.03 1.05
Rank 3 2 1 4

Table 6.3: Summary of timing results over algorithm test.

Detailed results can be found in the final section in this chapter. Tables 6.1 and 6.2 contain 
a summary of the information presented here.

Table 6.2 shows the cache hit ratios of the four algorithms on the random data sets (de
tailed data can be found in Tables 6.4, 6.6, 6.8, and 6.10. The least recently used algorithm 
falls short of the other three, while the ray driven predictor has the best results. Both of 
the knowledge-based algorithms perform better than the naive approach, and come close 
to the performance of the algorithm-specific approach in terms of hit ratios. Since hit ra
tios indicate false negatives, this shows that all three prediction algorithms have roughly 
the same number of accurate predictions. The average cases for the three are very similar, 
however the history access predictor has the lowest worst-case performance.

Note that the values in the summary here are all over 98%. It may seem that there is 
little variation between the algorithms. Keep in mind that each cache miss represents an 
algorithm stall. In the last chapter it was shown that a modem CPU can execute around 
350 million instructions in the time taken to process one in-core cache miss, and this 
number is climbing rapidly. Within a few years, increases in CPU speed will have a 
negligible impact on the performance of this kind of algorithm, since processing all in- 
core nodes will take less long than fetching one from out-of-core. At this point, a cache 
hit rate of 99% will (all other things being equal) equate to an overall performance of 
twice that of a hit rate of 98%.

Looking at the detailed results it can be seen that all of the algorithms often get bet
ter cache hit rates when a coarser sampling interval is used. This is quite apparent in 
the Stanford bunny and hyperboloid datasets (Table 6.4) where the cache hit rates at the 
coarsest sampling interval are significantly worse than at other times. This is due to the 
fact that as the sampling interval tends towards zero the probability of each step in the 
rendering process using the same data as the previous one tends towards one. In a coarse 
sampling, the distance between sampling points is greater and so the probability of new 
data required for each sample is larger.

Table 6.3 shows some summarised timing results from these test runs. These are not 
considered part of the evaluation since the test system was designed for fair evaluation 
rather than performance. In spite of this, an average 10% performance increase can be 
seen with the ray driven and access path predictors. An implementation designed for 
higher performance would perform the prefetching asynchronously on a separate CPU 
(or even a dedicated I/O controller) and would avoid a number of function calls in the 
data loading by removing some of the abstraction between the layers.
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The most impressive improvements in the knowledge-based approach are highlighted 
when looking at disk reads. These are summarised for the random datasets in Table
6.1 (detailed results can be found in Tables 6.5, 6.7, 6.9, and 6.11). The results are shown 
in a normalised form. The number of disk reads is heavily dependent on the number of 
points in the scene and the sampling interval. This means that the number of disk reads 
in a 100 point scene can not be directly compared against the number in a 1,000,000 
point scene in any meaningful way. To allow comparison, the number of disk reads 
required when prefetching is not performed is used as a baseline. The number of disk 
reads in each table gives the number required by each algorithm divided by the number 
required without prefetching. An algorithm which predicts nodes which are not used 
before being evicted from the cache (false negatives) will require more disk accesses than 
a run without prefetching. An algorithm which predicts accesses to nodes which are still 
in the cache, preventing them from being evicted just before they are used, can give much 
better performance.

The disk access results contain one pathological result for the ray driven predictor, re
quiring 38 times as many accesses as the uncached version in the smallest point set with 
the coarsest sampling. A similar pathological case is apparent on all of the 100-point sets 
with this algorithm. The result of 5.1 is the worst case discounting this pathological case. 
When this pathological case is discounted, the ray driven predictor performs slightly bet
ter than the history access predictor in terms of disk reads. The history access predictor 
has the best performance by this metric.

6.4 Conclusions and Future Work

These results show that a knowledge-based algorithm can provide cache hit rates com
mensurate with, and often exceeding an algorithm-specific one. In many cases, this im
proved hit rate does not come at the expense of increased disk access. On average, the 
access path predictor requires 20% fewer disk accesses than the LRU strategy while the 
algorithm-specific predictor required between 80-90% more.

This chapter has shown that applying autonomic principles to a particular facet of visu
alisation can have significant benefits. The knowledge-based algorithms described in this 
chapter were simpler —  both conceptually and in terms of implementation —  than that 
described in the last chapter. In spite of this, they achieved similar performance and had 
a greater potential for re-use.

While not part of the evaluation, Figure 6.10 gives some quite interesting results. This 
was generated by modifying the predictor slightly to log the outcome of each request. 
Some were incorrectly predicted, some were predicted as the result of a last to current 
to next relation, and some as a result of the fall-back mechanism that simply loaded the 
next nodes. The graph shows the number that were predicted by either mechanism, those 
predicted with the full mechanism, and those not predicted. It is interesting to note that 
the performance of both components of the predictor quickly improves (showing that this 
is a self-optimising algorithm), but also rapidly reaches a plateau. The plateau gives an
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Figure 6.10: Prediction percentages over a rendering run.

indication of the directions future work should take:

1. Attempting to reach the plateau faster, and

2. Attempting to raise the height of the plateau.

The rate at which the plateau is reached is a function of the rate at which knowledge 
is acquired. When these algorithms begin running, they have no knowledge, and must 
acquire it from the renderer as they run. Pre-seeding the knowledge base could provide 
some better results, and this is the aim of ongoing work related to the multi-user variation 
of this problem, since knowledge acquired from one user can be used by another.

The height of the plateau relates to the quality of the knowledge acquired. In a typical 
rendering run, it is likely that more than four paths through a particular node exist. In
creasing the size of the prediction cache is not (currently) feasible in the local setting, 
since the extra cost of using it has an adverse effect on performance. In the remote con
text, where latencies are typically one to two orders of magnitude larger, this is likely 
to give some beneficial results. Note that the hit rates achieved in testing were higher 
than the prediction peak on this graph. This is due to the fact that the graph only shows 
whether the requested octree node was predicted as the next one, not whether it was in 
the cache from a previous prediction.

These algorithms will also be used in the distributed system described in Chapter 4. In
this application, the predictors run on a data server and speculatively transmit information

t  i ' r~
Directionally Predicted 

Total Predicted 
Unpredicted

i i i i i
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to the clients. In this setting, the predictors will be able to store knowledge accumulated 
from multiple users. They will also be able to spend more processing time performing 
predictions, since the overhead of a cache miss in the distributed setting is one or two 
orders of magnitude more than in the local setting.

6.5 Detailed Results

This section contains the detailed results from the testing runs with the three predictors. 
All disk read figures are normalised against the least recently used (no prefetching) num
bers indicating relative performance for the specified data set.
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Dataset Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

Stanford Bunny O.l 91.272% 98.218% 95.473% 95.901%
Stanford Bunny 0 .0 1 97.579% 99.688% 97.795% 98.812%
Stanford Bunny 0 .0 0 1 99.723% 99.968% 99.733% 99.857%
Twenty Bunnies 0.1 91.272% 98.218% 94.222% 95.896%
Twenty Bunnies 0 .0 1 97.579% 99.688% 97.714% 98.813%
Twenty Bunnies 0.001 99.723% 99.968% 99.733% 99.857%

Hyperboloid 0.1 95.443% 98.865% 99.185% 99.302%
Hyperboloid 0.01 98.756% 99.880% 99.828% 99.855%
Hyperboloid 0.001 99.290% 99.910% 99.864% 99.890%

VH Bone 0.1 99.131% 99.967% 99.896% 99.904%
VH Bone 0.01 99.714% 99.997% 99.970% 99.974%
VH Bone 0.001 99.777% 99.995% 99.980% 99.983%
VH Skin 0.1 99.581% 99.986% 99.929% 99.941%
VH Skin 0.01 99.900% 99.999% 99.984% 99.988%
VH Skin 0.001 99.877% 99.997% 99.982% 99.987%

Mean 97.908% 99.623% 98.886% 99.197%
a 2.857 0.618 1.755 1.350

Table 6.4: Cache hit rates from rendering real data sets
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Figure 6 .11: Cache hit rates for different algorithms rendering various real datasets
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Dataset Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

Stanford Bunny 0.1 1 1.30 1.30 1.24
Stanford Bunny 0.01 1 1.46 1.20 1.64
Stanford Bunny 0.001 1 1.86 1.14 1.84
Twenty Bunnies 0.1 1 1.30 1.15 1.41
Twenty Bunnies 0.01 1 1.46 1.23 1.64
Twenty Bunnies 0.001 1 1.86 1.14 1.84

Hyperboloid 0.1 1 1.25 0.95 1.11
Hyperboloid 0.01 1 1.21 0.93 0.99
Hyperboloid 0.001 1 1.26 0.94 1.10

VH Bone 0.1 1 1.00 0.98 1.02
VH Bone 0.01 1 1.06 0.99 1.13
VH Bone 0.001 1 1.11 0.32 1.01
VH Skin 0.1 1 1.19 0.97 1.07
VH Skin 0.01 1 1.11 0.99 1.20
VH Skin 0.001 1 1.13 0.87 0.94

Mean: 1 1.30375 1.00635 1.28015
a 0 0.251 0.229 0.301

Table 6.5: Normalised disk read values from rendering real data sets
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Points Sampling 
Interval

Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

100 0.1 99.998% 99.996% 99.996% 99.997%
100 0.01 99.992% 99.999% 99.987% 99.992%
100 0.001 99.999% 100.000% 99.997% 99.997%

1000 0.1 99.528% 99.887% 99.967% 99.979%
1000 0.01 99.981% 100.000% 99.996% 99.997%
1000 0.001 99.961% 99.995% 99.971% 99.981%

10000 0.1 98.173% 99.362% 99.204% 99.374%
10000 0.01 99.663% 99.877% 99.589% 99.743%
10000 0.001 99.932% 99.934% 99.921% 99.950%

100000 0.1 98.173% 99.362% 99.204% 99.374%
100000 0.01 99.663% 99.877% 99.589% 99.743%
100000 0.001 99.932% 99.934% 99.921% 99.950%

1000000 0.1 91.056% 99.511% 99.166% 99.274%
1000000 0.01 98.215% 99.882% 99.859% 99.875%
1000000 0.001 99.644% 99.962% 99.969% 99.971%

Mean 98.927% 99.838% 99.756% 99.813%
a 2.209 0.220 0.310 0.002

Table 6.6: Cache hit rates for different algorithms rendering a dataset containing points 
on the surface of a sphere with shadows disabled
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Figure 6.13: Cache hit rates for different algorithms rendering a dataset containing points
in a volume with shadows enabled
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Points Sampling
Interval

Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

100 0.1 1 38 1.01 1.00
100 0.01 1 1.29 0.64 2.36
100 0.001 1 4.44 1.44 4.80

1000 0.1 1 1.61 0.20 0.47
1000 0.01 1 0.38 0.40 0.84
1000 0.001 1 0.73 1.40 4.89

10000 0.1 I 1.62 0.34 0.80
10000 0.01 1 1.68 1.04 2.82
10000 0.001 1 4.29 0.72 2.13

100000 0.1 1 1.62 0.34 0.80
100000 .01 1 1.68 1.04 2.82
100000 0.001 1 4.29 0.72 2.13

1000000 0.1 1 1.07 0.98 1.05
1000000 0.01 1 1.13 0.95 0.98
1000000 0.001 1 1.27 0.89 0.96

Mean 1 1.80630 .80900 1.92449
a 0 1.392 0.375 1.394

Table 6.7: Normalized disk read counts for different algorithms rendering a dataset con
taining points on the surface of a sphere with shadows disabled
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Figure 6.14: Normalized disk read rates for different algorithms rendering a dataset con
taining points on the surface of a sphere with shadows disabled
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Points Sampling 
Interval

Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

100 0.1 99.999% 99.994% 99.997% 99.997%
100 0.01 99.992% 99.999% 99.987% 99.992%
100 0.001 99.999% 100.000% 99.997% 99.997%

1000 0.1 99.570% 99.895% 99.967% 99.979%
1000 0.01 99.981% 100.000% 99.996% 99.997%
1000 0.001 99.962% 99.996% 99.972% 99.981%

10000 0.1 98.250% 99.385% 99.095% 99.268%
10000 0.01 99.687% 99.884% 99.656% 99.784%
10000 0.001 99.928% 99.934% 99.927% 99.952%

100000 0.1 98.250% 99.385% 99.095% 99.268%
100000 0.01 99.687% 99.884% 99.656% 99.268%
100000 0.001 99.928% 99.934% 99.927% 99.952%

1000000 0.1 91.124% 99.510% 99.181% 99.284%
1000000 0.01 98.232% 99.884% 99.863% 99.878%

Mean 98.899% 99.834% 99.737% 99.757%
G 2.229 0.219 0.389 0.312

Table 6.8: Cache hit for different algorithms rendering a dataset containing points on the 
surface of a sphere with shadows enabled
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Figure 6.15: Cache hit rates for different algorithms rendering a dataset containing points
on the surface of a sphere with shadows disabled
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Points Sampling
Interval

Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

100 0.1 1 38.0 1.00 1.00
100 0.01 1 1.29 0.70 2.40
100 0.001 1 5.11 1.46 4.83

1000 0.1 1 1.59 0.19 0.45
1000 0.01 1 0.38 0.40 0.82
1000 0.001 1 0.73 1.37 4.74

10000 0.1 1 1.58 0.43 1.28
10000 0.01 1 1.75 0.99 2.57
10000 0.001 1 4.13 0.66 1.85

100000 0.1 1 1.58 0.43 1.28
100000 .01 1 1.75 0.99 2.57
100000 0.001 1 4.13 0.66 1.85

1000000 0.1 1 1.07 0.98 1.05
1000000 0.01 1 1.13 0.95 0.98

Mean 1 1.87308 .80173 1.97597
a 0 1.452 0.357 1.313

Table 6.9: Normalized disk read counts for different algorithms rendering a dataset con
taining points on the surface of a sphere with shadows enabled

1  1 1------------------ 1—
Least Recently Used 
Ray Driven Predictor 

Access Path Predictor 
History Access Predictor

It iik
8 S §
°  oo o o o oo o oO T- O

Points / Sampling Interval

Figure 6.16: Normalized disk read rates for different algorithms rendering a dataset con
taining points on the surface of a sphere with shadows enabled
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Points Sampling 
Interval

Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

100 0.1 99.998% 99.996% 99.997% 99.997%
100 0.01 99.992% 99.999% 99.987% 99.992%
100 0.001 99.999% 100.00% 99.997% 99.997%

1000 0.1 99.528% 99.887% 99.967% 99.979%
1000 0.01 99.981% 100.00% 99.996% 99.997%
1000 0.001 99.961% 99.995% 99.971% 99.981%

10000 0.1 98.173% 99.362% 99.204% 99.374%
10000 0.01 99.663% 99.877% 99.589% 99.743%
10000 0.001 99.932% 99.934% 99.921% 99.950%

100000 0.1 99.190% 99.374% 99.653% 99.662%
100000 0.01 99.561% 99.873% 99.812% 99.842%
100000 0.001 99.924% 99.955% 99.975% 99.977%

Mean 99.6587% 99.8544% 99.8391% 99.8743%
a 0.511123 0.222618 0.233923 0.185261

Table 6.10: Cache hit for different algorithms rendering a dataset containing points in a 
spherical volume with shadows enabled
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Figure 6.17: Cache hit rates for different algorithms rendering a dataset containing points
on the surface of a sphere with shadows enabled
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Points Sampling
Interval

Least Recently 
Used

Ray Driven 
Predictor

Access Path 
Predictor

History Access 
Predictor

100 0.1 1 33.2 1.00 1.00
100 0.01 1 1.28 2.35 2.35
100 0.001 1 4.44 4.79 4.79

1000 0.1 1 1.60 0.47 0.47
1000 0.01 1 0.38 0.84 0.84
1000 0.001 1 0.72 4.88 4.88

10000 0.1 1 1.62 0.80 0.80
10000 0.01 1 1.67 2.82 2.82
10000 0.001 1 4.29 2.13 2.13

100000 0.1 1 4.23 1.04 1.04
100000 0.01 1 1.60 0.98 0.98
100000 0.001 1 2.52 0.79 0.79

Mean 1 4.79583 1.9075 1.9075
a 0 8.66716 1.48156 1.48156

Table 6.11: Normalized disk read counts for different algorithms rendering a dataset con
taining points in a spherical volume with shadows enabled
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Figure 6.18: Normalized disk read rates for different algorithms rendering a dataset con
taining points in a volume with shadows enabled
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The next three chapters discuss the motivation behind the development of the SimEAC 
system, the design and implementation of the simulator and some case studies of the 
simulator in action. Work described in these chapters was presented at the International 
Conference on Autonomic Computing 2006 [72].

SimEAC was originally conceived as part of the e-Viz project as a means of simulating 
parts of the system that could not feasibly be developed within the project and for refining 
the components that were built. In some e-Viz publications, SimEAC was described 
as SimuVis (a simulated e-Viz). The name was changed when it became clear that a 
simulator that met the requirements of the e-Viz project would also be applicable in a 
more general context.

The development of an autonomic system will inevitably involve the design, test, verifi
cation, and optimization of a collection of autonomic elements. As pointed out by [164], 
there is a significant engineering challenge in the development of such elements for large- 
scale systems. It is hard to anticipate the combined effects of many autonomic elements 
when they interact with the system, users, and one another. It is difficult to create a va
riety of possible scenarios in which autonomic elements are expected to function, and to

7.1 Introduction

128
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recreate a particular condition for the purpose of testing and optimization. It is risky to 
install any autonomic element that has not been through an adequate engineering process. 
It is costly to provide a replica of the live system in order to engineer autonomic elements.

In computer science and applications of scientific computation, the common wisdom is to 
use simulation to aid the understanding and prediction of the behaviors of phenomena that 
exhibit non-deterministic characteristics, and are too complex to model algorithmically. 
This leads to the motivation for providing a simulation tool to support the engineering 
of autonomic elements. The core of an autonomic element usually consists of one or 
a few algorithms that encode strategies, methods and operations for self-management 
in response to the dynamic environment where it functions. The simulation of an au
tonomic system and its operational environment can thus feature different granularities, 
with relatively fine-grained simulation for the core autonomic algorithms and strategies, 
and coarse-grained simulation of the operational environment, including the various sys
tem components, user tasks, and dynamic events that influence the behaviors of the auto
nomic algorithms and strategies.

In this work, we focused on the provision of such software development support through 
a simulation system, SimEAC (Simulated Environment for Autonomic Computing). 
SimEAC enables a system designer to create a system infrastructure to be simulated 
by specifying a collection of hardware components and performance attributes, and it 
provides a degree of control over the operating systems and tasks, hence allowing new 
autonomic algorithms to be prototyped, tested and optimized on a virtual system infras
tructure. SimEAC supports modeling and simulation of a variety of system architectures, 
including large scale networked systems, in a relatively abstract manner. It provides a user 
interface for configuring a virtual system infrastructure to be simulated, and for specifying 
the statistical and stochastic behavior of the system and running tasks, including hardware 
and software failures, viruses and dynamic job loads. SimEAC allows an algorithm de
signer to conduct experimentation on different virtual architectures without the risks of 
bringing down a production system, and enables more scientific evaluation of autonomic 
algorithms in analyzing typical attributes o f an autonomic system such as scalability and 
problem localization.

SimEAC is specially designed for simulating autonomic systems. Differing from con
ventional system simulators, it places its emphasis on the fine-grained algorithmic spec
ification of the autonomic algorithms through program code, while providing support to 
modeling of the operational environment with different levels of granularities, includ
ing abstract models and XML-based specification, build-in procedural models, interac
tive parameterization, and programmable procedural models. It addresses the needs for 
testing various self-* features of an autonomic system by allowing the specification of 
dynamic behaviors, for instance, simulating system failures for testing self-healing, sim
ulating viruses for testing self-protection, and simulating stochastic system reconfigura
tion for testing self-optimization. In addition, it allows the core autonomic algorithms 
and strategies to change the configuration of the operational environment for testing self
reconfiguration. Nevertheless, SimEAC itself is not an autonomic system, because it is 
essential to maintain a high degree of deterministic and predicable behaviors of the sim
ulator, ensuring that the simulation results can be reproduced with the same parameter
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settings.

The chapter is organized as follows. Following a brief review of the related work in Sec
tion 2, we discuss the motivation and requirements of a simulation system for autonomic 
computing in Section 3. We present the abstract design model of SimEAC in Section 4. 
In Section 5, we outline the main features of an extensible markup language (XML) based 
Application Programming Interface (API) and the user interface for configuring a virtual 
system. This is followed by a description of our implementation of the simulation engine 
in Section 6. To demonstrate this feature, we present two case studies in Sections 7 and 
8 respectively. One case study involves a simulation of a self-organization algorithm for 
managing distributed computation in an ad hoc network. Another is a simulation of an 
agent-driven resource manager in a virtual cluster-based visualization environment. We 
give our concluding remarks and suggestions for future work in Section 9.

7.2 Related Work

Autonomic computing is a relatively new research area, and many of the tools required 
for designing and building a fully autonomic system do not yet exist. The pioneering 
attempts typically fall into the following categories:

Software development environments for agent-based systems Software agents are 
commonly used in implementing autonomic components. Toolkits such as, [239], [77], 
[152], [24], [33] have provided developers with tools for quickly developing agent sys
tems by allowing agents to be created and used in a generic fashion. For example, [78] 
describes an electronic marketplace system built atop ZEUS.

Generic software environments for autonomic applications Though the develop
ment of such development tools is still in its infancy, several attempts were made, 
which include projects such as QADPZ [80], AUTONOMLA [98] and Almaden Optimal- 
Grid [88]. QADPZ [80], provides an open source framework for managing heterogeneous 
distributed computation in a network of desktop computers using autonomic principles. 
AUTONOMLA [98] is a prototype software development environment that provides ap
plication developers with tools for specifying and implementing autonomic requirements 
in network applications and services. OptimalGrid is a self-configuring, self-healing and 
self-optimizing grid middleware, using a set of distributed whiteboards for communica
tion between the different nodes.

New programming languages for semantic rules There are new developments of on
tology languages for encoding knowledge and services on the Web, including RDF [28], 
RDFS [37], OWL [210], and OWL-S [208]. Although such languages do not themselves 
support directly the programming or evaluation of autonomic features of a system, they
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provided a means for encoding ontological representations of the rules that determin
ing certain types of autonomic behaviors. More recently, [47] proposed the W SM L rule 
languages, which uses logical formalisms to describe the semantics of a semantic web 
service.

Tools for protocol development Communication between autonomic components is 
difficult to manage and its correctness is usually assured through correct communication 
protocols. Examples of these include wireless testbeds [317, 306].

Other specialized development tools have also been designed for features such as secu
rity and trust [63], context awareness [291], performance analysis [196] and business 
support [7].

Dobson et al. [96] discussed the design and analysis of autonomic algorithms for com
munication, while providing a comprehensive survey of a number of design techniques. 
Their survey also highlighted the gap between the needs for testing and evaluating auto
nomic algorithms, in terms of their stability and reliability.

To address the needs for testing and evaluation of autonomic algorithms, which exhibit 
typically non-deterministic behaviors, simulation can play a vital part in the development 
process, as it enables us to determine how well they would work without devoting signif
icant time and effort to their creation.

Simulation is a vital part of the development process for these tools, as it enables us to 
determine how well they would work without devoting significant time and effort to their 
creation.

The majority of existing tools focus on emulating a particular kind of hardware. A l
pha [93], PowerPC [15] and Itanium [309] simulators are available allowing code for 
these platforms to be examined in great detail. Some systems, such as Bochs [185], 
QEMU [29], Simics [205] and Xen [26, 71], provide a complete simulated (or virtual
ized) system.

Outside the full-system simulation area are simulators such as the Emulab Network Em
ulation Testbed [330]. This provides a highly accurate way of simulating a variety of 
network conditions, and has been used in a number of activities related to Autonomic 
Computing, including [13] and [52]. W hile a useful tool, Emulab has a limited range 
of applicability; it focuses on simulating one aspect of a system —  the network —  very 
accurately.

Tools such as Emulab, OPNET [57] and ns2 [245] are very important to development of a 
large category of autonomic systems. They provide very accurate testbeds for analyzing 
the interactions between components in a network. This is useful for a large subset of 
autonomic computing research, for example routing strategies in mesh networks, but is of 
limited use elsewhere. These simulators are very useful in the prototyping stage, but less 
so in the design stage where only a high-level overview of the system is desired.

Such fine-grained systems are usually intended for the last stage in the development of
system-level software. This is not particularly relevant to Autonomic Computing in gen-
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eral, since a large number of autonomic systems involve the global behaviors of complex 
systems and are often affected by —  or rely on —  emergent properties of these systems.

At a slightly higher level of abstraction are systems like CSIM [272] and GridSim [292], 
CSIM is a relatively flexible simulation language based on C. It is designed to work at 
a very fine granularity, giving the ability to evolve the simulated design into a finished 
product. W hile a useful tool in a number of areas, it is not designed for testing the 
applicability of high-level autonomic concepts.

GridSim works well in the Grid arena, but makes certain assumptions on the design and 
structure of the underlying Grid infrastructure that may make it unsuitable for application 
to Autonomic Computing problems. GridSim runs each simulated object in a separate 
thread. The developers of M ICSim [48] discovered that this introduces a degree of non
determinism into the simulation due to scheduler interaction, which can make it difficult 
to reproduce results.

At the most abstract end of the spectrum are theoretical models such as Communicat
ing Sequential Processes (CSP) [46], [256] and systems such as CSP-CASL [265] and 
Maude [214], [76], which allow the simulation of mathematical specifications for com
plex systems. These are useful tools for evaluating algorithms in an abstract context, but 
they are less good at indicating real-world performance.

7.3 Motivation

In theory, it is possible to build a composite simulation system for autonomic algorithms 
and their operational environment by integrating a mixture of simulators into a single en
vironment, providing a testbed for a variety of configurations. In practice, the interfaces 
between different simulators will be costly to implement, and the granularity of different 
simulators will determine the granularity of the autonomic system to be simulated, giving 
little flexibility in varying the levels of granularity for different components of the auto
nomic system. The level of details provided by these simulators is often neither required 
nor beneficial in prototyping and testing autonomic systems, and the effort for specify
ing various components in such details would render such a composite simulation system 
totally cost-ineffective.

While [164] outlined the overall challenges in engineering autonomic systems, [273] ex
pressed unequivocally the need for a simulation system in the context of Grid research 
where autonomic computing has a great role to play. Such a simulation system, to be 
useful in an Autonomic Computing context needs to meet a number of requirements.

The system must allow for fine-grained specification of core autonomic algorithms and 
strategies to be simulated. It is the most natural way to provide a placeholder where 
algorithms in the form of computer programs can be run by the simulation system. Since 
the simulation system is designed to be used by designers and developers of autonomic 
components of a system, a programming interface is not a burden but a necessity for 
fine-grained simulation and tuning of autonomic algorithms and strategies.
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The system must enable the specification of the operational environment of an autonomic 
component at different levels of granularity. It is most unlikely that a designer and devel
oper of autonomic components is also a hardware architect, an operating system designer, 
and a system, network and security manager. It is usually difficult and often unnecessary 
to model the exact behaviors of the underlying system infrastructure, network traffic, job 
loads, user interactions, and other dynamic features of a real world environment where an 
autonomic component will operate. Hence, allowing some coarse-grained specification 
of the operational environment is highly desirable, while providing a means for medium 
to fine-grained specification whenever it is necessary. The simulation must support the 
analysis of a variety of performance attributes of an autonomic system, specially, scalabil
ity, stability, reliability, problem localization and efficiency. Hence, it should enable the 
modeling of large and complex configuration of a variety of computing and networking 
devices, without the burden of specifying every single component with the same level of 
granularity.

The system should ideally provide tools for specifying building blocks of the operational 
environment at an abstract level, allowing simulation of systems, which are highly the
oretical or futuristic. Autonomic systems are frequently intended to be deployed on top 
o f systems and middleware that are still experimental. Any assumptions made based on 
current system designs are likely to quickly become obsolete.

The system must provide support to testing and evaluation of various self-* features of 
autonomic algorithms. While it is for the users of the simulation system to provide auto
nomic solutions to various problems, it is for the simulation system to provide a platform 
where such problems can be easily modeled and simulated, and to provide an interface 
between the simulated problems and the solutions to be tested. Based the main self-* 
features outlined in [164] and the numerous instances given in [96], one may consider the 
following specific requirements for a simulation system.

To support self-configuration, the simulation system must allow the operational environ
ment to be reconfigured dynamically under the influence of the autonomic components 
being tested.

To support self-optimization, the simulation system must be easily re-configurable, 
through simple specification interfaces. It should also allow the operational environment 
to be reconfigured dynamically in response to various stochastic events beyond the in
fluence of the autonomic components being tested. Thus, autonomic algorithms can be 
tested in a variety of contexts against their capability of self-optimization. An autonomic 
system is usually most useful in environments where there is little prior knowledge about 
the structure of the operational environment available in advance (e.g., in ad hoc net
works). Being able to quickly test the autonomic algorithm in a large number of situations 
is important for robustness and reliability.

To support self-healing and self-protection, the simulation system much be able to create 
a variety of failures (including hardware, network, system and application software), and 
a variety of security threats and their impacts on system resources and running users tasks.

To support self-awareness, the simulation must provide an interface allowing the auto-
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nomic component to gather global and local information about the operational environ
ment to be simulated. If it can, highlight this feature in the text.) It must provide dynamic 
event (and message) capturing, and the event-driven (and message-driven) programming 
paradigm.

SimEAC has thus been designed to fulfill these requirements.

7.3.1 Emergent Properties

One of the key features of Autonomic Computing is the design of systems based on 
the concept of emergent behaviours. Autonomic systems are typically constructed from 
simple components with a simple set of interactions. Complex behaviours evolve from 
these simple rules, as with [267].

The problem comes from the fact that, while we have a plethora of theoretical models 
for reasoning about software on a small scale, we do not have theoretical tools available 
for designing systems to create a given emergent property. Ideally, we would like to be 
able to first state the desired emergent behaviour, and then work backwards and develop 
the simple rules that will allow create the desired outcome. The current state of the art, 
however, relies significantly on the intuition of system designers in order to be able to 
build such systems.

One of the goals of SimEAC is to create a system whereby designers can quickly imple
ment models of their ideas for simple behaviours, and then see how they interact on a 
large scale. W hile the system does not provide a theoretical model for designing the rules 
from the behaviours, it does allow the current trial-and-error approach to be performed 
much more quickly and easily.

7.4 An Abstract Model

SimEAC has been designed to meet the goals outlined above. The remainder of this 
chapter discusses the design choices from a high-level perspective. The next chapter 
covers some of the implementation detail, and how the system is used.

SimEAC is constructed in three layers as shown in Figure 7.1. The first layer describes 
the capabilities of the hardware, including connections between individual components.

The second layer contains resource managers, which allocate access to hardware re
sources from the first layer to tasks in the third layer. Resource managers can be ar
ranged hierarchically, and represent operating systems and autonomic middleware. The 
precise arrangement of resource managers is defined in a simulation specification, and 
hence modifiable by a user of SimEAC.

The third layer represents userspace components of the system. Unlike resource man
agers, these are not tied to a particular piece of hardware. This allows tasks to be mi-
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Figure 7.1: SimEAC architectural overview.

grated between hardware components, assuming the resource managers responsible for 
them support this.

7.4.1 Hardware Simulation

SimEAC, at the lowest level, provides a mechanism for describing hardware grids. The 
basic building blocks of these are:

•  Storage Units represent anything that holds data.

•  Processing Units represent anything that is capable of executing code, including 
general purpose CPUs, GPUs and DSPs.

•  Interconnects are used to join components together.

•  Containers provide a mechanism for grouping objects.

•  Routers allow multiple interconnects to be connected.

These are combined using an XML format described in Section 8.3.1. Each of the build
ing blocks is described by an algebraic specification (similar to the one shown in Algebra 
7.1) and a semantic definition.

The arrangement of these building blocks is hierarchical. All items, including other con
tainers, can be contained within containers giving a simple inductive definition of the 
entire system. Most of these building blocks can be configured in various ways. A pro
cessing unit has a specified instruction set and speed, etc. An an overall interconnect has 
a latency and a throughput as well as a maximum latency and throughput for each device. 
This allows asymmetric links to be added easily.
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Algebra 7.1: Interface specification of a processing unit 
Algebra I n s t r u c t i o n S e t  is

sort I n s t r u c t i o n S e t

ops GPU PPC  x 8 6  SPARC I A 6 4  M I P S  DSP : -»  I n s t r u c t i o n S e t  

end Algebra

Algebra P r o c e s s i n g U n i t  is

including N a t  
inc luding I n s t r u c t i o n S e t

sorts N a t  P r o c e s s i n g U n i t  I n s t r u c t i o n S e t

op n e w P r o c e s s i n g U n i t  : I n s t r u c t i o n S e t  N a t  N a t  N a t  —> P r o c e s s i n g U n i t  
op i n s t r u c t i o n S e t  : P r o c e s s i n g U n i t  —> I n s t r u c t i o n S e t  
op f l o a t S i z e  : P r o c e s s i n g U n i t  —► N a t  
op i n t S i z e  : P r o c e s s i n g U n i t  —► N a t  
op v e c t o r S i z e  : P r o c e s s i n g U n i t  —► N a t

end Algebra

The container node is an abstract grouping of hardware components. It allows a collection 
of hardware components to grouped at the granularity desired by the user of the system. 
An individual computer would typically be represented by a computer. Components in 
this computer might also be grouped in containers, for example a GPU and some VRAM 
might be aggregated into a container representing a graphics card. Any container may 
have a resource manager and an arbitrary number of tasks associated with it. Containers 
may also be used for higher-level groupings, such as clusters or entire grids. Containers 
used in this way provide a semantic grouping for the system’s user and allow resource 
managers representing grid middleware or distributed operating systems to be simulated.

7.4.2 Resource Managers

Resource managers sit between the hardware and executing tasks. Resource managers 
are generally divided into two categories, local and distributed. A distributed resource 
manager may have children, while a local one may not. A local resource manager is re
sponsible for scheduling tasks on the processing units under its control, while a distributed 
resource manager may be responsible for process migration between nodes.

The lines between the two categories of resource manager can be blurred in some cases. A 
resource manager for a computer containing some special purpose execution units might 
directly handle the general purpose hardware (as a local resource manager would) but del
egate the scheduling of tasks on the special-purpose hardware to another resource man
ager (as a distributed resource manager would).
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W hile an operating system is usually implemented as a local resource manager, this is not 
always the case. A system such as DragonFly BSD, which runs a kernel image on each 
processor would be best implemented by a local resource manager on each processing 
unit and a distributed resource manager mediating between them. As this example shows, 
the division or responsibilities among resource managers does not have to directly reflect 
the structure of the operating system in question.

The primary responsibility of a resource manager is to manage process scheduling; it 
assigns time on the processing units under its control to running tasks. Part of this re
sponsibility includes maintaining processor-affinity sets. W hen a scheduler determines 
that it is overloaded, it can notify its parent in the resource manager hierarchy that it has 
a set of under-scheduled processes which it wishes to migrate. Conversely, a distributed 
resource manager can request that a child resource manager accept responsibility for a 
migrated task.

Resource managers are responsible for mediating access to all hardware. This includes 
reserving space on storage units. Space is reserved by name, allowing different processes 
to request access to the same storage resource. Virtual memory is built on top of this 
mechanism. Tasks request space on a volatile storage device. The resource manager 
must then determine which device to allocate this space on, and optionally create some 
backing space on a slower device. The task can then detect its in-core size and schedule 
page faults. This mechanism also permits the creation of cache hierarchies.

All interaction between tasks, and between tasks and hardware, happens through a spec
ified interface, and many of the functions of this are delegated to the resource manager 
responsible for the task. As well as those already described, this functionality also in
clude routing; a resource manager can replace the system’s default algorithm for finding 
the path for messages, if required.

Any container may have a resource manager associated with it. As with other parts of the 
system, resource managers are required to conform to a formal algebraic specification, a 
reduced version of which is found in Algebra 7.2.

7.4.3 Tasks

Tasks can be created either when the system starts, or by other tasks as the system runs. 
They may:

•  Consume processing unit run time.

•  Increase or decrease their virtual memory size.

•  Issue page faults.

•  Create and resize files on long-term storage devices.

•  Read and write data from files.

•  Create new tasks or acquire handles to named tasks.
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Algebra 7.2: Abridged specification for a resource manager 
Algebra ResourceM anager is

including N a t  
including P r o c e s s i n g U n i t  
including T a s k

sorts N a t  B o o l  C o n t a i n e r  P r o c e s s i n g U n i t  . . .  R e s o u r c e M a n a g e r

op n e w R e s o u r c e M a n a g e r  : C o n t a i n e r  R e s o u r c e M a n a g e r  ->  
R e s o u r c e M a n a g e r  

op c a n R u n  : R e s o u r c e M a n a g e r  T a s k  —► Bo o l  
op a d d T a s k  : R e s o u r c e M a n a g e r  T a s k  —► R e s o u r c e M a n a g e r  
op r e m o v e T a s k  : R e s o u r c e M a n a g e r  T a s k  - *  R e s o u r c e M a n a g e r  
op p a r e n t  : R e s o u r c e M a n a g e r  —> R e s o u r c e M a n a g e r
op s e t V M S i z e F o r T a s k  : R e s o u r c e M a n a g e r  T a s k  N a t  ->  R e s o u r c e M a n a g e r  
op run  : R e s o u r c e M a n a g e r  N a t  —> R e s o u r c e M a n a g e r

var R : R e s o u r c e M a n a g e r  
var C  : C o n t a i n e r  
var T  : T a s k

eq p a r e n t  ( n e w R e s o u r c e M a n a g e r ( C . R ) ) = R 
eq r e m o v e T a s k ( a d d T a s k ( R ,  T ) , T )  = R

end Algebra
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•  Send and receive messages.

Algebra 7.3: Abridged specification for a task
Algebra T a s k  is

including N a t  
including T a s k  
including S t r i n g  
including M e s s a g e  
including T a s k D e l e g a t e

sorts N a t  B o o l  C o n t a i n e r  P r o c e s s i n g U n i t  . . .  R e s o u r c e M a n a g e r

op n u l l  -> T a s k
op n e w T a s k  : S t r i n g  - > T a s k
op s e t D e l e g a t e  : T a s k  D e l e g a t e  - > T a s k
op d e l e g a t e  : T a s k  ->  D e l e g a t e
op run  : T a s k  N a t  P r o c e s s i n g U n i t L i s t  N a t  - > T a s k
op t h r e a d s  : T a s k  ->  N a t
op r e t a i n  : T a s k  - > T a s k
op r e l e a s e  : T a s k  ->  T a s k

var S : S t r i n g  
var T  : T a s k  
var R : T a s k  
var M : M e s s a g e  
var D : D e l e g a t e

eq r e l e a s e  ( n e w T a s k ( S ) ) =  n u l l  
eq r e l e a s e ( r e t a i n ( T ) ) =  T  
eq d e l e g a t e  ( s e t D e l e g a t e  ( T , D ) ) = D

end Algebra

This small set of operations allows the user to model the interaction of any computational 
task with a wide variety of systems and gain feedback as to where bottlenecks might 
occur. An abridged specification of a task is given in Algebra 7.3. Tasks in SimEAC 
closely correspond to actors in the Actor M odel [141] of concurrent computation. From 
a certain perspective, SimEAC could be viewed as an implementation of this model with 
the hardware and resource manager components providing some extra syntactic sugar for 
mapping the results back on to real computational systems, but not affecting the expres
sive power of the system.
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7.5 Simulating Failure

One of the key components of an autonomic system is that it should be self-healing. In 
order for a system to heal, part of it must break. In general, any failure in a system can 
be categorised as either a hardware or a software failure. Simulating software failure is 
trivial; the simulated task simply terminates itself at a random (or specific, but undesired) 
point in time. Alternatively, a task can enter a failure mode, consuming all CPU time 
available to it, for example, or leaking memory, without doing any useful work.

Listing 7.4: Simulating failure in a task.
-  ( s i m _ t i m e _ t )  r u n F o r :(  s i m _ t i m e _ t ) n a n o s e c o n d s  

on P r o c e s s o r s  : ( N S A r r a y  * )  p r o c e s s o r s  
a t T i m e  : ( s i m _ t i m e _ t  ) n o w

{
switch ( f a i l  u re  M o d e )

{
case t e r m i n a t e :

[ d e l e g a t e  t e r m i n a t e  : s e lf  ]; 
return 0; 

case i n f i n i t e L o o p :
return n a n o s e c o n d s ;  

d e f a u l t :
return [super r u n F o r : n a n o s e c o n d s  

o n P r o c e s s o r s : p r o c e s s o r s  
a t T i m e  m o w ] ;

}
}

Listing 7.4 shows how a task could perform both of these forms of failure. This code 
assumes that the task’s class has an instance variable fai lureMode,  where terminate and 
infiniteLoop are valid values. This can be set by any message handlers, or at a given 
time, to either of the described failure modes. The first will result in the task terminating 
immediately (and uncleanly). The second will result in the task consuming all CPU time 
allocated to it and never performing any useful work. If no failure mode is set, the task 
will use the superclass’s implementation of the run method. If this task inherits from 
SimpleTask then this will use the dynamic dispatch mechanism to pass messages on to 
different handlers.

In order to simulate hardware failures, SimEAC provides a mechanism for disabling and 
re-enabling hardware components (software components can trivially disable and enable 
themselves by simply stopping responding). W hile SimEAC provides the mechanism, 
implementation of the policy is left up to users of the system. A task can cause individual 
components to fail either at a specified time or in response to stimuli from within the 
system. This allows failures to be configured as required.

Listing 7.5: Simulating hardware failure.
H a r d w a r e N o d e  *  n od e  = [ [ d e l e g a t e  c o n t a i n e r ]  c o m p o n e n t N a m e d  c o m p o n e n t ] ; 
[ n o d e  s e t E n a b l e d  : i s E n a b l e d  ] ;  
i s E n a b l e d  = ! i s E n a b l e d ;
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Listing 7.5 contains a snippet of code from the included DeterministicFailure task class. 
This task is started with the name of a component and a list of times as arguments. As 
each of the times is passed, it toggles the state of the named component. The first two 
lines of this get a reference to the named component in the container, and toggle its state. 
The final line updates an instance variable to the state of the piece of hardware after the 
next time interval is reached.

Since this is a task, it can only run whenever it has CPU time. If you are simulating fail
ure of a processing unit, then the easiest solution is likely to be run the task outside. For 
complicated situations, you may wish to simply add a failure controller node to your grid. 
Unlike every other interaction in the system, enabling and disabling hardware resources 
can be done without a path to the target. A failure controller can be set up as a single con
tainer with a single processing resource without the need for any interconnects between 
it and the rest of the grid. As such, it will have no impact on the simulation other than to 
enable and disable components.

Note that the setEnabled: method can be called from any piece of code that can get a 
reference to the named hardware, including a resource manager.

7.6 Simulation Engine

The concepts of discrete time and message passing are central to the simulation engine. 
The simulation system is a blend of two approaches, discrete time simulation and discrete 
event simulation. At the lowest level, the system is able to act as a nanosecond-granularity 
discrete time simulator. Time within the simulation elapses one nanosecond at a time. 
This is not quite smaller than the smallest length of time in which a complete event can 
happen on a modem computer; a 5GHz CPU will execute 5 cycles in this time, and a 
lG b/s network will transmit one bit. It is, however, a much finer granularity than is likely 
to be needed for simulating large-scale autonomic systems. If finer granularity is needed 
then it is more likely that an instruction-accurate CPU simulator would make sense as 
a simulation environment, since the inaccuracies introduced by the kind of high-level 
abstractions made by SimEAC are likely to introduce far more errors at this scale than the 
lack of temporal detail. At this level, the system will behave in a manner similar to a real 
time simulation.

On top of this system is built a discrete event system, where all independent components 
communicate via message passing. This approach has been designed to meet the goal 
of allowing the user to trade simulation accuracy for run time. The discrete time model 
allows for varying detail, simply by adjusting the size of the time interval. By mapping 
discrete events into discrete time slices, it is possible to use the same high-level simulation 
at different granularities. Discrete events within the system are generated at the finest 
temporal granularity, giving an approximation of a continuous-time model, but are then 
propagated and handled at the user-defined discrete time slice granularity.

Each component maintains an event queue, as in any parallel discrete event simulation.
Unlike pure discrete event simulations, where the events in the queue would be han-
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died individually, discrete time slices are allocated to them in which they may handle 
the events. These slices may be long enough to process multiple events, or too short to 
process an entire event. This may also vary depending on the size of the event. For exam
ple, an event encapsulating the transmission of some data over an interconnect might be 
completed in a single time slice if it represented a small packet, but take multiple slices 
for larger packets. It is up to the individual components to track the completion of partial 
events.

7.6.1 Messages

M ost interaction between components in the system takes place through a message pass
ing system. Accesses to storage devices and communication between tasks, for example, 
are both accomplished via the same message passing mechanism.

Each message has an associated size, used to determine how long it takes to travel along 
each interconnect on its path, and a set of properties. The properties are in the form of an 
associative array, and are interpreted by the recipient.

Messages are delivered along interconnects, handled at the hardware layer. The same 
mechanism is used both for interacting with hardware and for (distributed) IPC, allowing 
accurate modelling of data flow.

Messages are guaranteed delivery in most cases, although unreliable mechanisms can be 
implemented easily by randomly dropping messages. The delivery semantics guarantee 
sequence between two parties. This is not guaranteed between more than two processes, 
however. The exception to the rule of guaranteed delivery is the case in which no con
nection between two tasks (or other message-sending components) exists. Note that this 
disconnection may occur after the message is originally sent, if a hardware component 
failure is simulated between the message being sent and arriving.

Consider the situation of two producer tasks, A  and B , both send a sequence of messages 
(A i, A 2, . . .  and B \, B 2, . . . )  to a third task, C. In this case, A \  will always arrive before 
A 2, and B i will always arrive before B 2. The order in which A \  and B x will arrive, 
however, is undefined unless other factors come into play. If the connection between 
A  and C  has a higher latency than the connection between B  and C, for example, the 
messages from A  will arrive consistently later than those from B ,  assuming that they are 
sent at the same time.

For simulating packet-switched networks, the resource manager can split a message into 
a sequence of messages representing packets and then have them re-assembled by the 
receiving resource manager before being passed to the task.

The simulation engine also includes support for sending link-local broadcast messages. 
A broadcast message is delivered to every container on the network segment. The routing 
of these beyond that is handled by the resource manager associated with the container.

The combination of point to point transmission and broadcast allows multicast routing to
be implemented at the resource manager level if required. Since the simulator’s transmis
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sion mechanisms do not enforce strict layer separation at the OSI network layers, there is 
no semantic difference between having it implemented at the hardware and the resource 
manager layers. Adding support at the hardware layer for multicast was considered, how
ever it was decided that it was not possible to anticipate all possible routing strategies.

Optimal routing in a multicast network requires knowledge of the structure of the net
work. An autonomic routing algorithm would dynamically determine the structure of the 
network and determine the best paths to the various endpoints in the multicast group, 
while a simulation running on an existing multicast-capable network could assume that 
this knowledge had been gathered before the simulation ran. If this were implemented at 
the hardware level of the simulator, it would be harder for users to replace with their own 
behavior.

By moving it in to the resource manager, users can add their own multicast capability 
easily by adding secondary destinations in the message dictionary. This also makes it 
possible for more complex routing systems, such as a system which uses a different mul
ticast strategy depending on message types, which would be much harder on a simulation 
environment which supported multicast as a “native” ability.

Messages are defined by a pair of C structures and a set of C functions. These are shown 
in Listing 7.6. The M es s a g e  type represents a message in transit. The Q u e u e d M e s s a g e  

type is used for convenience when a message has arrived, and simply associates a time 
stamp with a message.

Listing 7.6: Structures representing messages
typedef struct
{

N S S t r i n g  *  t y p e ;
N S D i c t i o n a r y  *  b o d y ;  
double s i z e  ; 
id s e n d e r ;
BOOL i s B r o a d c a s t ;

}  M e s s a g e ;

M e s s a g e  *  n e w M e s s a g e (  vo id );
M e s s a g e  *  c o p y M e s s a g e (  M e s s a g e *  a M e s s a g e )  ; 
void f r e e M e s s a g e ( M e s s a g e *  a M e s s a g e ) ;

typedef struct
{

M e s s a g e  *  m e s s a g e ;  
s i m _ t i m e _ t  t i m e s t a m p ;

}
Q u e u e d M e s s a g e ;

Q u e u e d M e s s a g e *  n e w Q u e u e d M e s s a g e (  v o id ) ;
void f r e e Q u e u e d M e s s a g e ( Q u e u e d M e s s a g e *  q u e u e d M e s s a g e )  ;

The functions for creating and destroying these structures pool freed ones. Since they
typically have a relatively short lifespan, the overhead of calling malloc() and free () found
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to be a performance problem in earlier versions of the system.

Most of the fields in the Message structure should be self-explanatory. The isBroadcast 
attribute determines how the message is delivered when passed over an interconnect. If 
this is set, the interconnect will pass the message to all connected endpoints. This allows 
the implementation of multicast and broadcast networks on bus networks. Their imple
mentation on switched networks can be handled by using a custom resource manager at 
the switch to implement the required delivery strategy.

Task Task

Message
Components Message

MetaTaskMetaTask

Message Message

Resource
Manager

Resource
Manager

Message 
and Route Message

Interconnect Interconnect Interconnect

Message 
and Route

Message 
and Route

Figure 7.2: The lifecycle of a message in the SimEAC system.

Figure 7.2 shows the life of a typical messages in the system. The first actor is the task 
sending the message. This invokes a method in its delegate which assembles a message 
from its principle components — the type, body, size and origin —  and then begins the 
process of sending it.

The MetaTask class shown here is the glue layer which mediates interactions between the 
task layer and the resource manager layer of the system. It contains a default routing algo
rithm for cases when the resource manager chooses not to implement one. The existence 
of the MetaTask is transparent to users of the system.

The route and the message are then passed to the first interconnect in the sequence, and 
then on to each subsequent one until they arrive at their destination. By default, they are 
then added to the receiving task’s message queue. The message queue itself is imple
mented in the Task class from which it is suggested that new tasks inherit. This allows 
custom message queue implementations to be created if required.

For simulating packet-switched networks, the resource manager can split a message into 
a sequence of messages representing packets and then have them re-assembled by the 
receiving resource manager before being passed to the task.
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The simulation engine also includes support for sending link-local broadcast messages. 
A broadcast message is delivered to every container on the network segment. The routing 
of these beyond that is handled by the resource manager associated with the container.

The combination of point to point transmission and broadcast allows multicast routing to 
be implemented at the resource manager level if required. This decision was made since 
the relatively poor support for multicast on existing networks, particularly the Internet, 
means that multicast is generally implemented at the application level, if it is used at all.

7.6.2 Time

The simulation engine guarantees that all events that happen in tick n  will be processed 
before events in tick n - 1-1. The order of two events at times t i  and t 2 is not guaranteed if 
both 11 and t2 fall within the same tick.

Time is represented in the system by the sim_time_t scalar quantity. This stores a 64-bit 
value representing a number of nanoseconds, allowing a simulation to run for just under 
600 years of simulation time before an overflow occurs.

Every time-dependent event has an associated time stamp. W hen a task is run, for exam
ple, it is told the start time and the duration of the time slice. Any message it sends or 
receives will, likewise, have a time stamp.

While time stamps provide a mechanism for dealing with time on a fine-grained level, 
ticks exist at a coarser granularity. Each tick is an integer number of milliseconds. During 
each tick, every single component in the system is guaranteed to be run a minimum of 
once, unless disabled or not active for some other reason. Each resource manager will 
be run once, and should then allocate the time give to it amongst the tasks for which it 
is responsible. The tasks, in turn, should process any pending messages, or run their idle 
loop if required.

The simulation engine runs using discreet time intervals, known internally as ticks. The 
size of each tick is controlled by the user; shorter ticks produce a more accurate simulation 
at the expense of requiring more processor run time for the simulator. Every message in 
the system as a timestamp associated with it, as does each component. Incrementing of 
time passes down the grid via the -tick: method, which is implemented by all hardware 
nodes. Each container, including the root container, will call each child in turn.

The argument to this method is the time at the end of the next tick. For convenience, 
the - t i c k :  method in the HardwareNode class sets two instance variables, last and now, 
containing the start and end of the current tick respectively.

Three of the standard hardware components have special behaviour when they receive 
a tick: message; interconnects, containers, and storage units. Interconnects will pass as 
many of the messages that they have enqueued as possible across their connection in the 
available time. The container, as well forwarding the tick: message to all of its children, 
sends a runFor: message to its resource manager. The resource manager then shares time 
on processing units among running tasks.
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Storage units process their message queues when they receive the tick: message. All 
communication with storage units happens via the message passing interface, over the 
same interconnects as messages between tasks.

It is worth noting that increasing the tick time has only a minor effect on system through
put, and so a small interval is only required when measuring the latency of various com
ponents.

7.6.3 Output

As SimEAC runs, it displays summary usage for each component. This allows trouble 
spots —  places where resources are distributed unevenly —  to be identified relatively 
easily.

If more detailed analysis is required, it is possible to turn on logging for any hardware 
component or task. This produces a log file, with a usage entry for each tick. The log for
mat is compatible with gnuplot, allowing graphs such as those shown in the next chapter 
to be generated directly by the system.

Additionally, any task or resource manager has access to the full C and OpenStep standard 
libraries and so can perform extra logging independent of the main system, if this is 
required. This mechanism is used in our first case study to produce logs of the structure 
of the overlay grid at various time intervals.
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8.1 Introduction

This chapter describes the implementation of the SimEAC system, and gives an overview 
of how it can be used. The system is built in Objective-C, using the OpenStep frameworks, 
and familiarity with both the language and library are assumed.

SimEAC is split into three components, from a build perspective. The SimEAC frame
work contains classes that are used by the simulation engine and by externally developed 
resource manager and task classes; the public interface to SimEAC. The simulation en
gine is contained within the SimEAC application. Finally, a set of example resource 
managers and tasks are contained within a loadable bundle.

It is envisaged that users of the system will create additional bundles for their own com
ponents, and thus not need to recompile the system at any point. The example bundle 
should be used as an example for this. Additional bundles placed in the Application 
Support/SimEAC/Pluglns folder in any of the Library paths on the system will 
be detected and loaded. No additional glue code is required; all task and resource man
ager classes implemented within these bundles will be automatically exposed via the user 
interface and can be referenced by name from XML grid descriptions.

147
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8.2 Requirements and Implementation

In the last chapter, the requirements for SimEAC were enumerated. This section, de
scribes how they have been addressed and provides an overview of some of the specific 
features of the system.

8.2.1 Abstract Operation

The design of SimEAC is intended to allow simulations to be conducted at different levels 
of abstraction. At the highest level, a SimEAC simulation can be only slightly more 
concrete than a CSP specification; sequential processes communicating via an abstract 
message-passing mechanism.

Once a simulation at this level of abstraction has been shown to be functional, it is pos
sible to progressively refine it until it closely mirrors the operation of a real system. The 
messages being sent, for example, can be split into packets. These packets might then 
take different routes through a grid, giving a more accurate simulation of throughput.

Similarly, it is possible to begin by running each task on a separate execution unit, then 
gradually refine the model so that each will be pre-empted by other (unrelated) activities 
for varying amounts of time, or will have to contend for other resources.

8.2.2 Easy Re-Configuration

Once the tasks have been created, they are assembled into a grid by the simulator. The 
recipe for constructing the grid is an XML file. These files can be created from within the 
simulator, or by an external tool.

XM L was chosen because there already exist a large number of tools for manipulating 
it. W hen evaluating an algorithm in a wide variety of settings, it might be convenient 
to construct a set of building blocks (cluster nodes, workstations, etc.) in the SimEAC 
user interface, and then combine them into a wide variety of permutations using a custom 
program. XML allows this easily.

The schema (discussed in detail later) was designed to be human-readable and editable in 
order to facilitate the rapid creation of programs to manipulate it. The publication of the 
schema makes it possible for a schema validator to check the output of such a program 
without requiring the simulator to load it.

8.2.3 Support for Large Systems

There are no artificial limitations imposed on the simulator. The size of the grid which 
can be supported is limited only by the power of the machine running the simulation.
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In cases where the grid is particularly large, it is common that only a fairly coarse-grained 
simulation is required. To this end, the granularity of the system has been made ad
justable. Each tick represents a configurable number of nanoseconds. When the tick size 
is large, the speed of the simulation increases dramatically at the expense of some accu
racy. It is likely that many uses of the system will involve simulating a large grid with a 
large tick size, and then simulating smaller sub-grids with a smaller tick-size.

The system has been designed in such a way that the trade between the resource require
ments and the accuracy of the simulation can be tuned by the user.

8.2.4 Simple Development

Development of components for SimEAC is done according to the object oriented model. 
A set of base classes are provided which handle all of the book-keeping work required for 
interacting with the system transparently to the developer. By sub-classing one of these, 
it is possible to quickly implement the required functionality, without needing to imple
ment anything more. For example, implementing a task can be as simple as subclassing 
SimpleTask and implementing one method for each kind of message the task can process.

Objective-C was chosen as an implementation language since it is simple to learn for 
anyone familiar with C and provides a dynamic runtime framework well suited to fast 
development. The first commercial Rapid Application Development tool, developed by 
NeXT, used Objective-C, and the strengths of the language that made it appropriate for 
this also apply in a simulation environment.

8.2.5 Extensible Design

It is hoped that the core components of SimEAC will be sufficient for their task. It may be, 
however, that there at a future date some hardware that is not adequately representable will 
be developed. In this case, it is relatively easy to add components to the system simply 
by sub-classing the HardwareNode or InterconnectableNode class. This would, however, 
require a modification to the XM L schema used to describe grids.

More likely is the need to add new resource managers or tasks to the system. Both of these 
are possible using the plug-in interface, and so can be done without having to re-compile 
the simulator.

8.3 Application Programming Interfaces

This section describes the interfaces exposed to developers using the system and how they 
are implemented.
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8.3.1 Hardware Simulation
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Figure 8.1: SimEAC user interface

The layout of a simulated infrastructure, which can range from a large heterogeneous 
network of computers to a single device, is defined in XML. In SimEAC, such a layout 
is referred to as a grid. XML is particularly well suited to this task since it naturally 
represents hierarchical structures. These XML grids can either be created manually or 
via the SimEAC user interface.

Listing 8.1 shows a snippet of XML defining a handheld computer. The majority of 
the listing outlines the hardware; a moderate speed ARM CPU and a small amount of 
RAM and Flash storage. The container node specifies a PDA-oriented resource manager. 
This resource manager has a simple round-robin scheduler, and does not provide virtual 
memory. The PDAResourceManager is one of a small number included in SimEAC.

At the bottom of the listing is a task node. This instructs the simulator to create the 
specified task running in this container. Any arguments specified in by the args attribute 
would be processed by the task on start-up.

Each of the XML stanzas in this short snippet corresponds to an object in the system and 
will cause it to be instantiated when the file is loaded.

Figure 8.2 shows the inheritance hierarchy of the hardware related classes. These classes 
all inherit from the HardwareNode class, which defines the basic functionality of all hard-
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Listing 8.1: An XML description of a PDA
< c o n t a i n e r

R e s o u r c e M a n a g e r =  'PDAResourceManager ’ 
name= ’PDA ’>
< p r o c e s s o r

name = ’CPU’ 
t y p e =  ’ARM’ 
i n t =  ’3 2 ’ 
f 10  a  t =  ’3 2 ’ 
v e c t o r =  ’0 ’ 
s p e e d =  ’200 ’ / >

< s t o r a g e
name = ’RAM’ 
s i z e =  ’64MB’ 
a c c e s s =  ’5ns ’ 
p e r s i s t e n t =  ’N O ’ 
r a t e = ’ 6 .4 G B / s ’ />

< s t o r a g e
name = 'FLASH' 
s i z e =  ’64MB’ 
a c c e s s =  '5ms ’ 
p e r s i s t e n t =  'NO' 
r a t e =  ’40MB/s ’ / >  

c i n t e r c o n n e c t
t h r o u g h p u t ^  ’ 6.4GB/S ’ 
l a t e n c y =  ’Ons ’>

< n o d e > C P U < / n o d e >
< n o d e > R A I V k /  n o d e >

< /  i n t e r c o n n e c t  
< i n t e r c o n n e c t

t h r o u g h p u t =  '100MB/S ’ 
l a t e n c y =  ’4ms ’>

< n o d e > C P U < / n o d e >
< n o d e > F L A S h k /  n o d e >

< /  i n t e r c o n n e c t >
< t a s k

c l a s s =  ’RemoteDisplayTask ’ 
name = ’ d isp lay  ' 
a r g s =  ' '  / >

< /  c o n t a i n e r >
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▼ Operations
(void)receiveMessage:(Message)aMessage atTime:(sim_time_t)aTime

▼ Operations
(BOOL)isLogged
(void)log
(void)logStart:(logFile)aLog
(void)setLogged:(BOOL)flag

<Logging>

Figure 8.2: Abridged class hierarchy diagram for hardware nodes.

ware nodes. Classes are then specialised into nodes that can be connected together and 
interconnects. The full interfaces for these classes are given in Appendix B.

Only the leaf classes in this hierarchy should be instantiated. The various kinds of in- 
terconnectable nodes all implement the MessageReceiver protocol. This protocol is also 
implemented by all task classes, allowing the message delivery mechanism of the simu
lator to work without knowing the type of the receiver.

8.3.2 Software Simulation

Resource manager and tasks are implemented in Objective-C. Each one is implemented as 
a class conforming to a formal protocol. To aid implementation a number of classes have 
been provided which perform the basic functionality required for a number of common 
uses. These include:

•  SimpleTask is a task which does nothing in the context of the simulation and is 
intended for subclassing. This class places received messages in a queue which 
can be easily accessed by subclasses. When the task is allocated run time, methods 
of the class whose names correspond to the enqueued messages are invoked. This 
provides a simple way of implementing event-driven tasks.

•  LocalResourceManager handles the book-keeping tasks required for a local resource 
manager.
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•  D is tr ibutedResourceManager  performs the equivalent functionality for a distributed 
resource manager.

•  Loca lResourceManagerWi thS implePaging  includes a simple virtual memory imple
mentation. Creating a functional local resource manager from this requires nothing 
more than implementing a process scheduling algorithm and (optionally) an I/O 
scheduler. A small number of concrete subclasses of this are included with various 
scheduling algorithms implemented.

Objective-C, being a dynamic language, allows these classes to be enumerated at run time 
and so no changes outside of the file in which a new task or resource manager is defined 
are necessary. Adding a new task to the system requires nothing more than writing and 
compiling the class - it can then be added to a grid description file either manually or 
via the SimEAC user interface (Figure 8.1). Since the resource managers and tasks are 
written in a well-supported existing language, a range of debugging tools are available for 
use during testing and calibration of simulated environments.

This process requires some calls to the underlying Objective-C runtime methods. The 
process for doing so is shown in Listing 8.2.

Listing 8.2: The process for enumerating all resource managers.
/ / F i n d  out how many classes are r e g is t e r e d  with the runtime system 
int  c l a s s e s  = o b j c _ g e t C l a s s L i s t  ( N U L L ,  0 ) ;
/ / A l l o c a t e  enough space fo r  the l i s t
C l a s s  *  c l a s s L i s t  = m a l l o c ( c l a s s e s  *  s i z e o f ( C l a s s ) )  ;
/ / C r e a t e  an a r ray  of  a l l  c lasses  
o b j c . g e t C l a s s L i s t  ( c l a s s L i s t  , c l a s s e s ) ;
/ / F i n d  the ones we want
N S M u t a b l e A r r a y  *  r e s o u r c e M a n a g e r s  = [ N S M u t a b l e A r r a y  

a r r a y  W i t h  C a p a c i t y  : c l a s s e s  ] ;  
f o r ( i n t  i = 0  ; i < c l a s s e s  ; i + + )

{
C l a s s  c l a s s  = c l a s s L i s t  [ i ] ;
i f  ( c l a s s . g e t l n s t a n c e M e t h o d  ( c l a s s  , @selector ( c o n f o r m s T o P r o t o c o l  

: ) )  != NULL)

{
NS_DURING

i f ( [  c l a s s  c o n f o r m s T o P r o t o c o l  :@protocol(R e s o u r c e M a n a g e r  

) ] )
{

[ r e s o u r c e M a n a g e r s  a d d O b j e c t :[  c l a s s  c l a s s N a m e ] ] ;

}
NSJHANDLER
NS-ENDHANDLER

}
}

This process involves requesting a list of all loaded classes from the runtime, then iterating 
through them to determine which conform to the correct protocol. The names of those 
that do are cached in an array for efficiency reasons. There are typically several thousand 
classes known to the runtime library while a program is executing, and enumerating them
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Figure 8.3: Class hierarchy for Pollution Simulator example tasks.

every time the list of loaded resource managers or tasks is required would be very time- 
consuming.

8.3.3 Tasks

Figure 8.3 shows the class hierarchy of the pollution simulator case study from the next 
chapter. All of the classes implemented for this example inherit from the SimpleTask class. 
This, in turn, inherits from the Task class.

The Task class implements the basic functionality for any task. Although any class that 
conform to the Task protocol can be used as a class, it is recommended that subclasses of 
the Task class be implemented, rather than duplicating existing functionality.

Listing 8.3: Two methods from the Task protocol
-  ( s i m _ t i m e _ t ) r u n F o r :( s i m _ t i m e _ t ) n a n ose con ds

on P r o c e s s o r s  : ( N S A rray  * )  p r o c e s s o r s  
a tT im e  : ( s im  J i m e _ t  )now;

-  (BOOL) runsO n :(C P U Type) a n l n s t r u c t i o n S e t ;
-  ( u n s i g n e d  i n t )  t h r e a d s ;
-  ( f l o a t )  us ag e ;

Listing 8.3 shows the most important methods that a task must implement. At the simplest 
level, a task is a consumer of CPU time. The first three of these methods all relate to this; 
the -th re a d s  method returns the degree of parallelism supported by the task. This is used 
by the underlying resource manager to decide how many processing units to assign to
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the task. The - r u n s O n :  method serves a similar process; it is used to determine what 
architectures the task supports.

When a resource manager assigns run time to a task, it does so using the -  
runFor:onProcessors:atTime:  method. This tells the task which processing units to run on, 
and for how long. The implementation of this method in the Task class does not consume 
any CPU time.

The Task class has fairly simple handling of received messages. It simply adds them to 
a queue, and allows subclasses to access them in a simple manner. The SimpleTask class 
makes use of these methods.

Listing 8.4: Message handling code from the SimpleTask class.
SE L  m e s s a g e S e l e c t o r  =  N S S e l e c t o r F r o m S t r i n g  ( [ a M e s s a g e - > m e s s a g e - > t y p e  

s t r i n g B y A p p e n d i n g S t r i n g  : ” ] )  ; 
if ( [ s e l f  r e s p o n d s T o S e l e c t o r : m e s s a g e S e l e c t o r ] )

{
s i m _ t i m e _ t  t i m e T a k e n  = ( ( m s g 6 4 ) o b j c _ m s g S e n d ) ( self  , m e s s a g e S e l e c t o r  

, a M e s s a g e ) ; 
i f  ( t i m e T a k e n  >  0 )

{
t i m e T a k e n  = M I N ( t i m e T a k e n  , s p a r e R u n t i m e ) ; 
c u r r e n t T i m e  + =  t i m e T a k e n ;  
s p a r e R u n t i m e  - =  t i m e T a k e n ;

}
}

Listing 8.4 shows part of the run loop from the SimpleTask class. The a M e s s a g e  variable 
is a C structure containing the enqueued message. This is used to store the message in a 
queue, and contains the message and the time of arrival. The message itself is another C 
structure, containing an Objective-C string as the type, and some other attributes, such as 
the sender, size and a dictionary of other arbitrary values.

The type of the received message is used to generate a selector with the same name as the 
message, and one parameter. This the message type @ ”foo”will be translated to (©selector  

(too:). If the class responds to this selector, then it is invoked with the message as the 
argument. The return value is taken to be the amount of time spent executing. The called 
method can check that it doesn’t exceed the amount of available run time by reading 
the spareRunt ime  instance variable. Several other instance variables of this nature are 
set by the run loop, including currentTime and currentProcessorSet .  If the called method 
completes handling the message, it should remove it from the queue.

8.3.3.1 A dding Tasks

The complexity of adding new tasks scales with the complexity of the task being imple
mented. It is intended that a simple task should be easy to implement. This is important 
in the context of Autonomic Computing, since many autonomic systems are comprised 
of simple autonomous components. These components would each be implemented as a 
task within the framework of the simulation.
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Listing 8.5: A simple task implementation 
(©interface E x a m p l e T a s k  : S i m p l e T a s k  {

}
@end

(©implementation E x a m p l e T a s k  
-  ( s i m _ t i m e _ t )  F r a m e : ( Q u e u e d M e s s a g e * ) a M e s s a g e

{
/ /W ork  out time to decode a frame on the cu rren t  processing unit  
s i m _ t i m e _ t  d e c o d e T i m e  = 1 0 0 0 0 0 0 0
d e c o d e T i m e  / =  [ [ c u r r e n t P r o c e s s o r S e t  o b j e c t A t l n d e x  : 0 ]  t h r o u g h p u t ] ;  
/ /Decode the frame
s i m _ t i m e _ t  t i m e T a k e n  = MIN  ( d e c o d e T i m e  , s p a r e R u n t i m e )  ; 
i f  ( t i m e T a k e n  = =  d e c o d e T i m e )

{
[ d e l e g a t e  s e n d M e s s a g e : n i I

w  i t h T  y p e " DecodedFrame ”
s i z e d  : 6 4 0 * 4 8 0 * 4

t o  : [ a M e s s a g e - > m e s s a g e - > b o d y  o b j e c t F o r K e y  :<g>" 
next  ”

a t T i m e : n o w  + t i m e T a k e n ] ;
/ /Remove the c u r re n t  message from the message queue 
[ s e l f  r e m o v e M e s s a g e A t l n d e x  : 0 ] ;

}
return t i m e T a k e n ;

}
@end

Listing 8.5 shows the full code required for implementing a simple task. This task under
stands one message type, “Frame.”1 W hen it receives a message of this type, it consumes 
some processing time and then passes on the decoded frame to the next task.

When a task receives a message, the - re ce iv eM es sa ge :a tT im e:  method is ca l le d .  The Task  

base class provides a default implementation of this, which places the message in to a 
queue. This can be overridden by subclasses if some other behaviour is required. Alterna
tively, the queue can be directly inspected. Most tasks, however, simply process messages 
in sequence. Since Objective-C inherits the Smalltalk object model, that of simplified 
computers communicating by message passing, it fits this model well. SimEAC mes
sages are mapped to Objective-C messages by the SimpleTask class, which inherits from 
Task.  Implementors thus create one message handler (method) for each kind of message 
they expect to receive.

A  subclass of SimpleTask may also implement a - h a n d l eU nr ec og n i se d M e ss ag e:  method. If 
it chooses to do so, then all messages not otherwise handled will be passed to this method, 
otherwise they will be ignored and a warning logged to the console.

The parameter passed to each of these methods is a Q u e u e d M e s s a g e  structure, which con
tains a M es sa ge  structure and a timestamp indicating when the message arrived. The 
message itself contains a dictionary (associative array), which can contain any informa-

lrThe superclass uses the dynamic dispatch capabilities of the Objective-C language to invoke the sub
class’s Frame: method when it receives a message with the type set to “Frame.”
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tion set by the sender, as well as some standard information such as the message type, 
size and the sender.

The task in Listing 8.5 is a very simple example. It consumes CPU time, but does not 
interact with the system in any other way (such as by using memory or disk space). Listing 
8.6 shows the interface through which a task interacts with the system.

Each of these methods is implemented by a proxy class which provides a default imple
mentation. This proxy delegates much of the functionality described here to a resource 
manager, as long as the underlying resource manager implements it. Several features of 
the resource manager, such as the ability to define a routing algorithm, are optional. In 
these cases, the system will test for the implementation of a method in a resource manager 
class, and substitute a default if one is not provided.

Listing 8.6: A task’s interface to the rest of the system
@ protocol TaskD elegate<NSO bject>
-  ( Storagel ln i t  *) newFileNamed : ( NSString *)f i leName

WithSize : (double)  byt es ;
-  (BOOL) r e s i z e F i l e  :( NSSt r ing*)f i leName

on : ( Storagel ln i t  *) s torage  
to : ( double)  bytes  ;

-  (BOOL) s t o r e  : ( double)  bytes
t oF i l e  : (NSSt r ing*)f i l eName 

on : ( S toragel ln i t  *) s to r age  
atTime :( sim_t ime_t  )now;

-  (BOOL) load : (double)  bytes
from File :( NSString *) f i leName

on : ( Storagel lni t  *) s t o r age  
atTime : ( sim_t ime_t  )now;

-  (void)  sendM essage :( NSDict ionary *)aMessage
withType : ( NSString *)aType 

sized : ( doub l e )by t e s
to : ( id<MessageReceiver>)process  

a t T i me:( sim_t ime_t  )now;
-  (BOOL) setVMSize: ( double)  by t e s ;
-  (double)  vmSize;
-  (double)  inCoreMemorySize;
-  (double)  p a g e F a u l t : ( double)  by t e s ;
-  (BOOL) isComponentEnabled :( NSString *)aComponent;
-  (void)  se tComponent :( NSString*)aComponent  i sEnabled : (BOOL)aFlag ;
-  ( i d )  reta inProcessNamed :( NSString*)name

ofType :( NSString *)className 
withArgs :( NSString *) args 

c r e a t e  : (BOOL) f lag ;
-  (void)  r e l e a s eP r o c e s s  : ( i d ) proces s  ;
-  (void)  t e rmina t e  : ( i dc Vi su a l i s a t i on Ta s k  >)process  ;
@end
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8.3.4 Creating New Resource Managers

Implementing a custom resource manager means creating a class which implements the 
R e so urc eM ana ger  protocol. This is similar to the TaskDe lega te  protocol outlined in the 
previous section, since it has similar functions. The principle difference is that each 
method described by this protocol has an extra argument specifying the task to which it 
applies.

Listing 8.7: Methods from the R es our ce Man age r  protocol related to process migration
-  (double) c a n R u n  : ( i d < V i s u a l i s a t i o n T a s k  > ) _ n e w T a s k ;
-  (void)  u n d e r s c h e d u l e d P r o c e s s e s  : (  N S A r r a y * * ) p r o c e s s e s

w e i g h t e d  : ( N S A r r a y  * * )  w e i g h t s  ;
-  (void)  a d d T a s k  : (  M e t a T a s k * ) t a s k  ;
-  (void)  r e m o v e T a s k  : (  M e t a T a s k * )  t a s k  ;

Listing 8.7 shows some of the additional methods that can be implemented, related to 
process migration. The first is called by its parent in the resource manager hierarchy to 
enquire whether it is able to accept a currently running task. The return value of this 
indicates how willing the resource manager is to accept it, and can be zero if it does not 
support process migration or if it is not responsible for any hardware on which the running 
task can execute.

The second method is the converse operation; it is used to retrieve a list of tasks that are 
not receiving enough runtime. These are processes that the resource manager would like 
to have migrated away from it. The weights argument should be used to return a pointer 
to a weight for each returned process.

A resource manager written be sub-classing one of the standard classes will have default 
implementations for these methods. The implementations of the last two methods add 
and remove tasks from an internal list and assign the correct proxy objects to them. This 
is the simplest way of creating a new resource manager, since the superclass will handle 
all of the book-keeping tasks and allow the developer to focus on the algorithms they wish 
to test.

In addition to its other roles, the proxy class stores some metadata about the task with 
which they are associated, such as the current set of processors on which the task is 
running. This metadata can be accessed and used by the resource manager, making im
plementing things like processor affinity easier.

The interface that must be implemented by all resource managers is given in full in 
Appendix B. In addition to this, resource managers may also implement a pathFrom:to:  

method. This takes two interconnectable nodes within the grid, and should return an ar
ray of the nodes on the path. Support for this method will be determined at runtime. If it 
does exist, then it will be called by the system to determine how to route messages. This 
can be used to override the simple shortest path routing that is normally performed, for 
example to provide some load balancing between links.
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8.3.5 Simulating Failure

One of the key components of an autonomic system is that it should be self-healing. In 
order for a system to heal, part of it must break. In general, any failure in a system can 
be categorised as either a hardware or a software failure. Simulating software failure is 
trivial; the simulated task simply terminates itself at a random (or specific, but undesired) 
point in time. Alternatively, a task can enter a failure mode, consuming all CPU time 
available to it, for example, or leaking memory, without doing any useful work.

In order to simulate hardware failures, SimEAC provides tasks with a pair of methods 
for determining whether a particular piece of hardware is enabled in the system and for 
enabling or disabling it. Any hardware component in the system can be disabled in this 
way.

To make life easier for users of the system, two special tasks are provided; 
Determinist icFai lure and NonDeterminist icFai lure.  The first of these allows the simulation 
of hardware failures at specific time intervals. It takes the name of a component and a list 
of times as arguments. At each time interval, it toggles the enabled state of a specified 
component.

The second class takes a name of a component and a probability of failure per second as 
arguments. It will randomly cause the named component to fail with the specified prob
ability. In general, this task is more useful for simulating highly unreliable components. 
When using this task, it is a good idea to log it. Each of the failure tasks will log a value 
of 1 while the component they are responsible for is active and a value of 0 when it is 
not. This makes it easier, when examining the simulation results, to determine whether 
a particular behaviour was correlated with (and thus likely to be caused by) a component 
failure.

Note that this mechanism can also be used for simulating power management scenarios, 
for example the shutting down and restarting of nodes in a datacenter or cluster at times of 
reduced load. It can also be used for simulating dynamic networks; individual intercon
nects can be enabled and disabled at run time allowing nodes to leave and join networks 
dynamically.

8.3.6 Output

As SimEAC runs, it displays summary usage for each component. This allows trouble 
spots —  places where resources are distributed unevenly —  to be identified relatively 
easily.

This is done via the - u s a g e  method. Classes that require logging should implement this 
method, returning a float. The system will call it periodically, expecting a value between 
0 and 1 indicating the load on a particular component.

The SimEAC user interface is updated periodically with load values for each component. 
Any component marked for logging will have the value returned at the end of every tick
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logged to a file, which can be used to generate graphs of system performance.

Since the - u s a g e  method can be called either as a result of logging or because the user 
interface requires updating, it should not modify the component’s internal state. The 
implementation in the SimpleTask class simply returns the usage  instance variable. The 
recommended way of using the logging facility from a custom task is to set this to a 
meaningful value when the class receives run time.

If more advanced logging is required, the OpenStep and C standard libraries are available. 
Mechanisms such as NSLog can be used to produce detailed output. In the Organic Grid 
case study, the structure of the overlay network was written to the console in this way.

The mechanism by which components report their output to the system is described in 
the previous chapter. Once the system has these results, it uses a C interface, described in 
Listing lst:logfile .

Listing 8.8: The log file interface
typedef s truct - L o g F i l e  L o g F i l e ;
/ /  SimEAC log f i l e  in t e r a c t i o n

L o g F i l e *  n e w L o g f  N S S t r i n g  *  f i l e N a m e ) ;
unsigned int  a d d L o g O b j e c t W i t h N a m e (  L o g F i l e  *  l o g  F i l e  , N S O b j e c t *  o b j e c t ,  

N S S t r i n g  *  Name)  ; 
void t i c k L o g  ( L o g F i l e  *  l o g F i l e  , s i m _ t i m e _ t  t i m e S t a m p ) ;  
void l o g V a l u e F o r O b j e c t  ( L o g F i l e  *  l o g F i l e ,  f l o a t  v a l u e ,  unsigned int  

o b j e c t ) ;
void e n d L o g g i n g  ( L o g F i l e  *  l o g F i l e ) ;

This interface can be used to implement new logging back-ends, if required. The current 
log file format is compatible with gnuplot, and allows quick generation of graphs in a 
variety of formats.

The newLog() and endLoggingf) functions are used to open and close log files. The 
addLogObjectWithName() function is called by an object that wishes to have its values 
logged. In the default implementation, it reserves a column for the logged object and 
prints its name in a comment at the top of the log file. The logValueForObject() function 
sets an object’s value for the current tick, while the tickLog () function begins a new tick.

8.4 SimEAC API Details

Listings 8.9 and 8.10 show the interfaces that must be implemented by Resource M an
agers and Tasks respectively. Classes providing implementations of these methods are 
included; implementing a new task or resource manager is usually a matter of subclassing 
one of these and overriding a subset of the listed methods to provide new functionality.

Listing 8.9: The interface for SimEAC resource managers
@protocol R e s o u r c e M a n a g e r < N S O b j e c t >
-  (double) c a n R u n  : ( i d < T a s k > ) _ n e w T a s k ;
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-  (void)  under schedul edProcesse s  :( NSArray**)processes
weighted : ( NSArray **) weights  ;

-  (void)  addTask : ( MetaTask*) task ;
-  (void)  removeTask:( MetaTask*) task ;
-  ( s im_t ime_t )  processingUnitTimeUsedBy : ( id<Task>) t ask  ;
-  (BOOL) i s D i s t r i b u t e d  ;
+ ( id)  r esourceManage rForCon t a ine r : ( i d ) aContainer

w i t h P a r e n t : ( id<ResourceManager>) 
aResourceManager ;

-  ( id)  i n i t F o r C o n t a i n e r : ( id ) aContainer
w i t h P a r e n t : ( id<ResourceManager>)aResourceManager ;

-  (BOOL) addChi ld : ( id<ResourceManager>)aChi ld ;
-  (void)  r u n F o r :( s im_t ime_ t ) nanoseconds ;

-  (BOOL) setVMSizeForProcess :( MetaTask*) t a sk  to : ( double)  bytes  ;
-  (void)  p a g e F a u l t : ( double)  bytes  forTask :( MetaTask*)aTask;
-  (Storage l ln i t *)  newFileNamed :( NSString *)f i leName

WithSize : ( double)  by t es ;
-  (BOOL) r e s i z e F i l e  :( NSString *)f i leName

on :( S toragel ln i t  *) s to rage  
t o : ( d o u b l e )  by t es ;

-  (BOOL) s to r e  : ( double)  bytes
toF i l e  :( NSString *) fi leName 

onDevice : s t o rage  
forTask : ( MetaTask*) t ask  

atTime :( sim_t ime_t  )now;
-  (BOOL) load : ( double)  bytes

fromFi le :( NSSt r ing*) fi leName 
onDevice : s t o rage  

forTask : ( MetaTask*) t ask  
atTime : ( sim_t ime_t  )now;

-  (void)  log ; 
@end

These functions can be grouped into a few broad categories:

Process m igration  m ethods let the resource manager decide whether it should accept 
a running task for migration, and whether it wishes to have any of its own tasks migrated 
away. The isDistributed: method falls into this category, since it is used to determine if 
the resource manager should treat resource managers associated with child containers as 
children, and thus permit migration between them. If a resource manager returns NO to 
this method, then it must also return NO to any call to its addChild: method.

S torage m anagem ent m ethods include writing to files and consuming memory. A 
simple model is used for the contents of storage devices; a task may create named files, 
which have a size and a location associated with them. W riting data simply causes some 
of the storage device’s transfer bandwidth to be used up. A task can not create a file on a 
specific device (although if it has received a filename and a pointer to the storage device 
by some other mechanism, it may right to the file). It is the responsibility of the resource 
manager to decide which devices are used for persistent storage.
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The top parts of the storage hierarchy contain main memory (and potentially caches, if 
they are being modeled). The task may set its virtual memory requirements using the -  
setVMSizeForProcess:to: method (indirectly, via its delegate). The resource manager must 
then attempt to allocate this much space in some storage units. If this changes the amount 
of in-core (processing-unit local) space allocated to the task, then the resource manager 
must call the task’s -setlnCoreMemorySize: method. The task may then issue page faults 
to the resource manager. W hen this occurs, the resource manager should not schedule the 
task again until the page fault has been handled.

Processing tim e allocation is handled by a single message; -runFor:, which tells the 
resource manager how many nanoseconds it should schedule tasks for.

Logging is handled by the -log method. This must pass a -log message to all tasks in 
a local resource manager. It may also use the logging interface to output its own usage in 
some way, if this is relevant.

Listing 8.10: The interface for SimEAC tasks 
@protocol Task<NSObject , MessageReceiver>
-  ( i d )  ini tWithArguments  :( NSSt r ing*)arguments  Name:( NSString*)aName;
-  (void)  se t De l ega t e  : ( i d ) aDelegate  ;
-  ( id ) de l ega t e  ;
-  ( s im_t ime_t )  r u nF or :( s im_t ime_t ) nanoseconds

on Processors  : ( NSArray *) proces sor s  
atTime : ( s im_t ime_t  )now;

-  (BOOL) runsOn :(CPUType) a n l n s t r u c t i o n S e t ;
-  (unsigned i n t )  t h r e a ds ;
-  (void)  r e t a i nTa sk ;
-  (void)  r e l eas eTask ;
-  ( f l o a t )  usage;
@end

Listing 8.10 shows the interface for tasks in the system. This is designed to be simple, 
since it is imagined that most uses for the system will require the development of several 
tasks. Most of the methods listed are handled by the Task class. The default implemen
tation, in several cases makes use of an instance variable that should be set by a custom
-  init method, if the default is not acceptable. Table 8.1 shows these values. The last one 
is implemented in the SimpleTask class, although this is generally more useful to subclass 
than Task. The defaults for these are all supported general purpose instruction sets, one 
and zero respectively.

If a task needs to parse its arguments, the -initWithArguments:Name: method should be 
overridden. Tasks wishing to implement their own message queues should override the 
methods in the <MessageReveiver> protocol.

Most of the task implementation is likely to be within the -runFor:onProcessors:atTime: 
method. This is adequate for trivial tasks, however for more complex tasks it is recom
mended that the dynamic dispatch provided by SimpleTask be used, as described in the 
previous chapter.
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Method Instance Variable Description
-runsOn: instructionSets Bitwise-OR’d set of instruction sets

supported by the task
-threads: threads Maximum number of processing

units the task can make use of.
-usage: usage Utilisation of the task, for logging

purposes.

Table 8.1: Variables used by convenience methods in the Task class.

The XML schema used for describing grids is given in Appendix B. This can be used 
to validate an XML grid file for use in SimEAC. It is not possibly to capture all of the 
required semantics for such a grid in XML Schema, however. Restrictions such as the fact 
that a task or resource manager name must correspond to a class implementing the correct 
interfaces that has been loaded into the system will not be checked when validating a grid 
file against the schema.
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One of the design goals of SimEAC was that it should be easy to use. The most com
mon use of SimEAC will involve creating one or more new tasks and running them in a 
simulated grid environment.

This last chapter gave a brief overview of how new tasks and resource managers can be 
added to the system. This chapter will describe two scenarios in which SimEAC has been 
used.

Part of the purpose of the case studies was to demonstrate the usability of the system. 
Table 9.1 gives an overview of the parts that were tested by each study.

Both made use of the core engine, including all of the different types of hardware node, in 
a variety of configurations. Both extended the standard task classes and used the standard 
resource managers. The second case study introduced a new resource manager, although 
this has since been moved into the core system.

Compnent Organic Grid Autonomic Visualisation
Core Engine V v

Standard Tasks v/ /
Standard Resource Managers s/ s!

Custom Tasks y V
Custom Resource Managers X v/
Matching Published Results s/ X

Matching Experimental Results X v/

Table 9.1: A summary of the components tested by each case study.

164
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The first case study was an implementation of a published algorithm. Attempts were made 
to match the published results as closely as possible. It was not possible to be entirely 
sure that this was successful, since the published description of the test system was quite 
vague, grouping CPU and network speeds into a small number of categories. Within these 
bounds, however, the simulation was judged to be a success.

The second case study involved the use of a the simulator in conjunction with a prototype 
system. Results from the prototype were used to callibrate the simulation, then modi
fications were made to both in an attempt to judge the accuracy of the simulation. In 
the evaluated cases, it was shown that the simulation was able to correctly model a real 
system.

9.1 Case Study: The “Organic Grid”

Our first case study demonstrates the implementation of an existing algorithm within the 
context of the simulator, and shows some results from this process.

The “Organic Grid” [56] describes an organizational system for distributed computation. 
The principle behind the design is an autonomic algorithm that allows a hierarchy of 
nodes to evolve as the system runs, allowing the easy distribution of a parallel computa
tion over a large number of nodes in an ad-hoc network.

The nodes are configured into an overlay network, a logical hierarchy used for task dis
tribution. This is an abstract layer on top of the physical hierarchy. The “Organic Grid” 
automatically promotes fast nodes to near the top of this tree, and demotes slow nodes 
towards the leaves.

We implemented a version of the described algorithm and evaluated its performance in 
a number of different initial configurations, two of which are described in the results 
section.

For this simulation a single additional task was written. The task took the name of another 
task as an argument, and used this as its initial parent in the overlay network. Work units 
are sent down the overlay network from the root node and distributed by branch nodes. 
Both branch and leaf nodes perform the computations.

Each node in the overlay network was a single instance of the newly created task class, 
assembled into a tree structure on initialization. On launch, each node acquires a handle 
to the parent node in the tree. This is done via the task delegate, which implements a basic 
name server for the simulator, allowing connections to be bootstrapped. It then sends an 
initial join message and a work request message to the parent.

W hen the parent node receives a work request message, it forwards it up the tree until 
it receives a block of data. This is then passed down to the original requesting node, 
which consumes CPU time until it is finished. The amount of CPU time to consume is 
determined by dividing a constant by the speed of the processing units available to the task 
(supplied by the simulator in an argument to the run loop method, as described earlier).
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The speed of a node was determined by the time taken for a job to be processed added to 
the time taken to transmit a single work unit from a parent to its child. Each node logs the 
time it sends a work unit to a child and the time at which it receives the processed reply. 
This means that the speed of a node is dependent on its position in the overlay network; 
moving a node to become a child of a node with a slow Internet connection will make it 
slower.

This task used the native message passing facilities of the simulator. Each received mes
sage was implemented as a separate method and called automatically by the code in the 
superclass.

Since only a single task, the “Organic Grid” task, was running on each hardware node, 
a simple resource manager was all that was required. We chose a simple round-robin 
scheduler without preemption, since this placed a light computational load on the simu
lator without compromising accuracy.

9.1.1 Configurations
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Figure 9.1: Physical topology of the first “Organic Grid” test

The results of testing the algorithm in two configurations will be presented in the next 
section. The first configuration is a simple WAN configuration, while the second is a 
more unusual topology.

The first physical configuration we will describe is shown in Figure 9.1. This is a fairly 
standard arrangement for a relatively small grid. Two small clusters are connected via 
relatively fast Internet connections, and two individual nodes are connected to compara
tively slow links. The controller is connected via a very high-speed link —  all of the data
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must flow from here originally, and so we can not effectively evaluate the algorithm if 
this causes a bottleneck.
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Figure 9.2: Physical topology of the second “Organic Grid” test

The second example we will demonstrate used a somewhat more unusual configuration. 
This example involves a hypothetical Autonomic Martian Explorer. Such a system would 
be required to take samples of the Martian surface and make decisions about the direction 
to explore based on the results. Since the analysis of these samples would require a 
considerable amount of processing power, the lander would be unlikely to be able to do 
this itself.

The main feature of interest in this configuration is the very high latency between the 
Mars Orbiter and the Terran resources. It is assumed that the orbiter will have some 
computational resources, and that mission control will have significantly more (including 
a cluster of high-speed machines). In addition, machines connected to the Internet are 
able to donate run-time to the program. The physical topology of this hardware grid is 
shown in Figure 9.2.

9.1.2 Results

Figs. 9.3 and 9.4 show the initial and final configurations of the networks. It is worth not
ing that the simulation task itself logs the tree structures in a form that can be rendered by 
a ETgXpackage, allowing easy visualization of the results. The overlay networks shown in 
this section were created by pasting the simulation output into the paper source. The code 
for generating this output was periodically invoked by the standard logging mechanism.

Agent 7 remains a leaf node in this configuration, in spite of the fact that it is running on
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Figure 9.3: Initial overlay network for the first “Organic Grid” test.
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Figure 9.4: Stable overlay network for the first “Organic Grid” test.

one of the fastest machine in the network. This is due to the fact that it has a comparatively 
slow Internet connection, which causes a bottleneck.

The initial and final configurations of the overlay network for this configuration are shown 
in Figs. 9.5 and 9.6. As can be seen from this example, the algorithm scales well to 
systems containing very high latencies. The smallest latency link in this configuration 
is a few milliseconds, while the largest is almost an hour; a difference of six orders of 
magnitude between the smallest and largest latency. In spite of this, the algorithm gives a 
sensible configuration.

Note in particular how the arrangement of the terrestrial nodes is heavily dependent on 
their CPU speed, since this becomes a limiting factor once the interplanetary bottleneck 
has been surpassed. This can be seen from the overlay network layout in the stable con
figuration, where the slowest resources are grouped below Agent 7 while the fast cluster 
nodes on the high-speed network have migrated up the tree.

This test highlights the advantage of using a simulator to test autonomic systems. Launch
ing a Mars mission simply to provide test data for an autonomic algorithm would most 
certainly not be economically feasible. Our system allowed simulated periods of several 
days to be run in a few minutes. The results could then be used to refine the algorithm 
before real-world deployment. Using the simulator as a refinement tool is covered more 
in Section 9.2.
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Figure 9.5: Initial overlay network for the second “Organic Grid” test.
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Figure 9.6: Stable overlay network for the second “Organic Grid” test.

9.2 Case Study: An Autonomic Visualization System

Our second case study was an agent-driven distributed visualization system. Autonomic 
computing has an important role in managing large-scale visualization systems [41]. 
Work on this simulation was conducted as part of the e-Viz project, which aims to develop 
a fully autonomic visualization environment. The e-Viz system [261, 263] is designed to 
be self-healing, self-optimizing, and self-configuring system for scientific visualization. 
SimEAC was used to simulate several components of the system. This section will de
scribe two of them.

The first component of the system was designed to transparently handle the creation of a 
visualization pipeline and allow a user to navigate a volume dataset. The system should 
automatically optimize itself by distributing the rendering tasks to the nodes with the
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highest performance. It should also be self-healing— if a renderer failed then the load 
should be shifted elsewhere. SimEAC was initially calibrated against a prototype of the 
system running on a small number of machines and then run on a larger, simulated, scale.

The second component of the system simulated was a tightly-coupled scientific computa
tion and visualization application. This application consists of three discrete components. 
The computation application feeds a 3D data structure to the renderer component, which 
feeds rendered frames to the client. Each component was implemented as a visualization 
task in SimEAC. The objective of the simulation was to determine how the system would 
function in different network configurations.

9.2.1 Simulated Tasks

A small number of custom tasks were written for these simulations, three for each. In 
the first simulation, one task represented a user of the system. This task would send 
messages to a controller requesting an image for a given viewpoint. The controller would, 
on receipt of this message, attempt to start Tenderers to fulfill the request. If Tenderers had 
already been created on all available cluster nodes then the requests were dispatched to 
the existing ones. Each cluster node would run an agent which could create a renderer, 
and the renderer itself. The agent was responsible for automatically restarting the renderer 
itself.

The three tasks in the second simulation represented the three components of the system. 
The computation task fed data to the renderer task, which fed frames to the client task. 
The latter two tasks also provided feedback messages telling the earlier stages in the 
pipeline when they had completed processing (either rendering or displaying) a step.

9.2.2 Resource Managers

No new resource managers needed to be written for this simulation. The existing GPU  
Resource M anager would, if given a task which could run on a GPU or a general purpose 
CPU, attempt to run it on the GPU. This allowed us to write a single task representing 
both the hardware and software Tenderers.

The same render task could be started on all cluster nodes, and would run on the GPU 
on those in which a GPU was present. This is a fairly reasonable choice to make in the 
general case, since a GPU processing path is usually only provided for algorithms that 
are well suited to running on large vector processors and will therefore run faster on the 
GPU than any CPU of equivalent age.

9.2.3 Hardware

We simulated a small rendering cluster of thirty two nodes, eight of which were equipped 
with GPUs. The cluster was internally connected with a switched gigabit Ethernet, and
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connected to the outside world via a lOOMbit/s uplink. This configuration was selected 
as a reasonable size for a departmental cluster.

Outside the cluster was a small network of six machines running the client task. Each 
client was connected by a lOOMbit/s network connection to a switch, which was con
nected to the visualization cluster.

For the second simulation, a variety of different network conditions between the three 
components were evaluated, modifying both the speed and latency of the link. The initial 
configuration, present in our lab setting (100Mbit networks between each component), 
was used as a base-line for calibration. Different combinations of fast and slow links 
between the pollution modeler, renderer, and client were tried.

9.2.4 Results
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Figure 9.7: Network and GPU usage for the first test run.

Figure 9.7 shows an obvious bottleneck in our original configuration for the first simu
lation. All rendered frames are assembled by the controller node, and this completely 
saturates the node’s network connection. As the graph shows, the GPU usage on the 
nodes spikes periodically as a frame is rendered, but this does not happen very often. 
The reason for this is that the messages requesting new frames are being delayed by the 
rendered frames being relayed through the controller node. This problem had not been 
exhibited by our small-scale real-world tests, since we had only a single client and fewer 
Tenderers.

A solution to this is to instruct each renderer to send the resulting image' directly to 

'N o te  that im ages in this context are sim p ly  m essa g es  w ith their type set to the string “im a g e” .

Cluster Node GPU 
Controller Node Ethernet
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the client to assemble. Doing this moved the bottleneck to the external network. Our 
next strategy was to compress the images and ‘upgrade’ the cluster’s external Ethernet 
connection to gigabit Ethernet. We determined that a compression ratio of approximately 
80:1 was required to prevent network congestion is causing dropped frames with our 
system. A fully autonomic system should automatically increase the compression ratio as 
congestion increases. This was noted for inclusion into our final system.
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Figure 9.8: Selected component usage for the final test run.

Figure 9.8 shows the results after the described modifications. It can be seen from these 
results that no single component causing a bottleneck. In the first plot, the controller node 
Ethernet connection is saturated at 100% for the entire run while the cluster node GPU 
is idle for most of the time. In the second plot, no single component is at full utilization 
for more than an instant. If any of the lines on this plot were the 100% mark, this would 
represent a bottleneck. As such, we can observe that no single component is providing a 
bottleneck and the controller is distributing the rendering work amongst the cluster nodes 
in such a way that none is overloaded.

Note that not all components are plotted. During the simulation run, the summary display 
in the simulator was observed to decide which to display in more detail. During the first 
run the level indicator next to the controller node Ethernet was displaying full usage (and 
colored red) indicating that it was the trouble spot, while all of the other components 
showed little or no use. The cluster node GPU was selected as an example of another 
component which we would expect to be doing some work. In the second test, no specific 
components showed a bottleneck and so a representative sample were chosen.

For the second simulation, we began by conducting a primary simulation running in near- 
optimal conditions. Figure 9.9 shows some results collected from this simulation. Each 
component of the system was run on a different (simulated) machine, connected with a
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lOOMbit/s network connection. It can be seen from this graph that the application is able 
to meet the target frame rate without saturating either network; something we already 
knew experimentally.

This test was used to calibrate the simulation model. Instrumentation was added to the 
application to determine the CPU load, simulation and rendering times, and network us
age in this configuration. Once these values had been collected, they were applied to 
the simulation, and validated by modifying other values such as the granularity of the 
simulation.
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Figure 9.9: Calibration run for the simulated scientific visualization system.

Based on the calibrated simulation model, we evaluated the performance of the system 
working under different conditions by modifying various parts of the specification, re
sulting in a performance profile for the distributed system. Figure 9.10 shows the result 
of one such simulation. In this example, the renderer and the client are separated by a 
comparatively low-bandwidth Internet link.

In this case, there is not enough bandwidth available to deliver the required frame rate. 
To overcome this problem, we added a new autonomic feature to the simulated model. 
The simulated renderer task detects a long delay between sending a frame and receiving 
an acknowledgment, and increases the amount of compression applied (indicated by the 
blue line on the graph). This autonomic feature is adaptive, and the compression ratio 
stabilizes relatively quickly to a value which allows both the desired frame rate and an 
effectively utilized network.
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Figure 9.10: Simulated scientific visualization system with an Internet link.

9.3 Summary and Conclusions

SimEAC is a versatile platform for simulating autonomic systems. It can be used to pro
totype and evaluate algorithms and designs for autonomic systems without the expense, 
in terms of both money and time, of developing a fully working system on real hardware.

The implemented technical features of SimEAC have addressed most of the requirements 
outlined in Section 3. In particular, the provision of multi-granularity specifications for 
simulation is a novel design feature of SimEAC and is critical for cost-effective modeling 
of autonomic components and their operational environments. The provision of a variety 
of specification methods (e.g., XML, programmatic, and user interface) and many built- 
features (e.g., reconfiguration, failures and viruses) also makes the simulation specifically 
suited for autonomic computing.

Through our case studies, we have shown that SimEAC is capable of simulating widely 
different systems within the same framework. The ease of use of our system is such 
that simulations of comparable or greater complexity than those demonstrated in the case 
studies could be constructed with very little effort.

The most important lesson that we have learned through the development of SimEAC is 
that one needs to constantly review the design decisions for a software system to address 
an emerging and changing topic such as Autonomic Computing. The system has been re
vised for many times since the commencing of its development in 2004 inspired by [164]. 
The case studies, the publication of [96] and the reviews of the original submission all 
made important contributions to the enhancement of SimEAC.

While the core simulator is stable, the current SimEAC is only the first chapter of its
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development. We have plans to add many important features in part of the future work. 
We would like to build a large collection of reusable tasks and resource managers in the 
form of domain-specific libraries (e.g., agents, networking, Grid, visualization). A con
siderable amount of work has been performed in recent years on scheduling techniques 
for large and heterogeneous systems. We would like to introduce a more sophisticated 
mechanism for programming tasks and resource managers, and integrating such programs 
through parameter passing. We would like to investigate into a more flexible mechanism 
for reconfiguration allowing the autonomic components to create arbitrary new configu
ration. We would like to introduce some basic optimization functions for easy calibration 
with real world data, and for supporting users’ needs for self-optimization.
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Chapter 10 

Conclusions

Contents_________________________________________________
10.1 Future W ork......................................................................................  179

Building a fully autonomic system for visualisation in a distributed environment is a chal
lenging proposition. Creating a fully autonomic infrastructure for visualisation is likely 
to take many years, if not decades, for large numbers of people. This thesis has begun the 
process, and it is hoped that others will continue to work towards this goal.

At the simplest level, it has been shown that an autonomic approach to problems can yield 
useful results. Part II discussed a specific visualisation problem, namely that of rendering 
point data. This application was chosen as a typical example of a problem for out-of-core 
rendering, since it had some fairly complex data access patterns.

It was shown that this rendering strategy benefited from a custom data management strat
egy for point sets whose octrees did not fit into memory, rather than relying on the op
erating system’s hardware. An algorithm-specific strategy was developed, giving better 
performance, and this was then evaluated in comparison with two adaptive strategies. 
Aim 1l , to create a prefetching strategy for this application, was met, and it was shown in 
Chapter 5 that this strategy provided a significant performance and scalability improve
ment over delegating the management of external memory to the operating system.

The two adaptive strategies were intended to exemplify the self-optimising part of auto
nomic computing. They both worked by acquiring data about the access patterns of a run, 
and then use this captured knowledge to make predictions. Aim 2 was to determine if 
such a strategy could achieve results commensurate with the algorithm-specific strategy. 
This was the first attempt to apply knowledge-based strategies to out-of-core prefetching, 
and showed the potential of autonomic data management strategies, as well as provid
ing algorithms that can be used now. The knowledge-based approach was evaluated and 
found to give equivalent or better performance than an algorithm-based approach with a 
smaller investment in development time. The results of this quantitative testing were pre-

'The aims were enumerated in Section 1.3.
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sented in Chapter 6, indicating that a knowledge-based approach is feasible and provides 
benefits over a more traditional approach.

Some preliminary work was presented in Chapter 4 on extending this concept to the 
distributed context, and further work in this area is expected to yield beneficial results.

A new framework for implementing out-of-core algorithms was presented. The frame
work allowed the evaluation of out-of-core algorithms in a fair setting. While the clean 
isolation between the layers meant that the framework did not give the best possible per
formance, it could still be used in real-world applications.

The results of testing within the framework showed that knowledge-based approaches 
could provide equivalent or superior performance to those relying on a priori information. 
This confirmed the hypothesis stated earlier. Future work will include expanding this to 
the multi-user context, where there is a much richer source of potential knowledge that 
can be acquired. Each user of a particular dataset can have their access patterns recorded, 
and used to infer patterns for others.

In addition to the framework for out-of-core applications, a remote data server and client 
interface was discussed. Both the local framework and client-server implementation act as 
examples of the proposed five-layer model for out-of-core applications (although the local 
implementation only includes a subset of the layers, since it does not support networked 
access).

The five-layer model for out-of-core applications is, itself, another contribution of this 
thesis. The five layers provide the first systematic model for designing out-of-core sys
tems, in accordance with Aim 3. This promotes code-reuse, since the boundaries between 
the layers are well-defined and different implementations of a given layer for a different 
application can be used. This was demonstrated in the case of the bottom (block) layer 
with the sample implementation, where a number of different (interchangeable) versions 
were provided. External memory systems to date have been developed in an ad hoc man
ner, designed to solve a specific problem. The new model proposed in this thesis will 
permit the re-use of concepts and algorithms from one implementation in another by pro
viding a clear layering that allows better reasoning about out-of-core systems.

Aim 4 was to demonstrate the feasibility o f this model by providing an implementation of 
it. This was done, and the results in Chapters 5 and 6 were collected by using this imple
mentation. The improvement in performance given over a pure in-core approach showed 
that this implementation, while intended purely for experimental purposes, achieved good 
performance in real data management tasks.

Data management is an important problem, but is only a small part of building an au
tonomic infrastructure for visualisation. In order to facilitate the development of these 
ideas further, the first simulation environment aimed at the rapid evaluation of autonomic 
algorithms was developed. This environment, SimEAC, is based on a hybrid discrete
time and discrete-event model designed for the needs of autonomic system simulation, 
and fulfills Aim 5.

The system makes it easy to model new tasks and resource managers in a variety of
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situations. Some case studies were presented in Chapter 9, highlighting the flexibility 
of the system. In addition to demonstrating the use of the system, and providing some 
results that were used in the development of the e-Viz system, these studies contributed 
to the evaluation of the system (Aim 6), and demonstrated that it met the stated design 
goals.

In summary:

1. An out-of-core prefetching algorithm tailored to point-based volume ray tracing 
was designed, and shown to faster and more scalable than relying on the operating 
system. (Aim 1)

2. Two general knowledge-based out-of-core prefetching algorithms were created. 
(Aim 2)

3. The three prefetching algorithms were evaluated in comparison with each other and 
with a pure demand paging approach. The results showed that all three algorithms 
performed better than demand paging. (Aims 1 and 2)

4. A five-layer model for out-of-core systems was proposed. This is the first proposed 
model for systematic design and classification of external memory systems. (Aim 
3)

5. The five-layer model was shown to be feasible with two prototype implementations. 
(Aim 4)

6. It was shown that a knowledge-based approach can achieve equivalent performance 
to a tailored approach. These results indicate a significant amount of potential in 
knowledge-based algorithms for prefetching. (Aim 2)

7. The first simulation architecture tailored to the demands of autonomic computing 
was designed. (Aim 5)

8. The proposed simulation environment was developed. (Aim 6)

9. The simulation environment was evaluated in a variety of uses and shown to be 
sufficiently accurate and flexible to meet the requirements. (Aim 6)

10.1 Future Work

The field of autonomic computing in general is still very young, and very little work has 
been done at all in the context of visualisation applications. There is a great deal of scope 
for further work in this area.

Large scale remote visualisations are particularly important in the context of virtual 
worlds. The out-of-core techniques described in this thesis could be extended to the 
distributed context, and work has begun in this area. The five layer model includes sup
port for remote access, and a prototype client-server implementation has been developed. 
There is scope for future work adapting this to existing problem domains.
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Virtual worlds are an obvious example, since they already have the requirement that the 
rendering be performed on the client and the world stored on the server. To achieve 
interactive framerates, pre-fetching of data is required. A number of heuristics are applied 
to these in existing systems to perform this prefetching, but a self-optimising approach 
could benefit the development of such systems considerably.

On the simulation side, there is always room for further work. M odem operating sys
tems use some quite complicated strategies for scheduling (particularly in multiprocessor 
contexts), and memory management. The simulator could be improved by detailed re
implementation of some more of these algorithms in resource managers, allowing differ
ent operating systems to be simulated. This is less important in the context of autonomic 
computing in the setting of ubiquitous computing, since micro-scheduling concerns are 
much less important than macro-scheduling, but it would allow the simulator to be used 
in some other contexts.

Beyond this, the simulator should be used to design additional components of an auto
nomic visualisation infrastructure.
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Appendix A 

The SimEAC User Interface

Contents
A.l Loading Bundles............................................... .................................  182
A.2 User Interface Overview .................................................................  183
A.3 Running The S im ulation.................................................................  187

SimEAC is designed to be able to take advantage of existing development tools. Users 
can use their favourite text editor or IDE to write tasks and their favourite debugger to 
inspect their operation in detail. The SimEAC application is designed to run either in a 
debugger, for developing new tasks, or outside for performing simulations.

A .l Loading Bundles

W hile the core system comes with a number of tasks and resource managers, it is antic
ipated that any use of the system will involve writing more. In order to implement new 
tasks and resource managers, a user of the system will need access to the header files and 
object code used to define the interfaces. These are in the SimEAC framework, which is 
linked to by the application and should also be linked to by any bundles containing user 
code.

Bundles placed in the Application Support/SimEAC/Pluglns sub-folder of 
the any of the Library folders on the system will be automatically loaded when the 
system runs.

As mentioned previously, no glue code is required. The classes can be accessed by name 
once they have been loaded from the user interface, and will be used to populate various 
components in the system interface.

182
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A.2 User Interface Overview
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Figure A. 1: SimEAC grid construction view.

Figure A. 1 shows a grid being constructed. The main view shows the hierarchy of com
ponents. Each container in the system can hae children. Pressing the button with a +  
icon will add a new component within the currently selected container (if the currently 
selected object is not a container, the new component will be created in the parent con
tainer). Components can, similarly, be removed by selecting them and pressing the — 
button.

The start and stop buttons, and the speed control are used to control the simulation. The 
speed control alters the size of each tick, which controls the granularity of the simulation. 
Moving it to the right will make the simulation run faster at the expense of some accuracy.

Each component in the system can be further configured via its inspector. The inspector 
can be accessed by either selecting ’Get Info’ from the menu, or hitting meta-I. The 
inspectors for the various components will be discussed in the remainder of this section.
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A.2.1 Containers

O O O Container Inspector

Node 4

Resource Manager: [ RoundRobinLQcalResour... IT ]

Figure A.2: Container Inspector.

The container inspector, shown in Figure A.2 is used to set the resource manager associ
ated with a given container.

The drop-down list box in this inspector is populated with the resource manager classes 
found by the system. Any class which implements the correct protocol will be displayed 
in this list. If you have added a bundle which contains a resource manager then you can 
check it was loaded correctly by looking in this list.

Containers play an important role in the system, but they are not particularly customisable. 
Their job is simply to act as groupings of other objects.

A.2.2 Processing Units

0__0_0 Processing Unit Inspector ____

CPU

Type ; PPC I ;  1

Integer Size 164

Float Size ;64

Vector Size ; 128

Speed 12000

Figure A.3: Processing Unit Inspector.

Processing units are the components of the system which represent anything that can run 
tasks. Their run time is consumed by tasks and (optionally) resource managers. Figure 
A.3 shows the inspector displayed when one of these components is inspected.

The most fundamental attribute of a processing unit is the instruction set. The system 
understands PowerPC (PPC), Itanium (IA64), SPARC and x86 as general purpose CPU
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types, as well as DSPs and GPUs as more specialised functions. The primary purpose 
of these is processor-affinity; a process will not be migrated from one CPU architecture 
to another once it has been started by default (although individual tasks can override this 
behaviour).

The next three options define the register sizes of the processing resource. These are used 
by tasks to provide scaling factors allowing them to match the speed attribute to their 
specific workload.

A.2.3 Storage Units

Q  Q Q Storage Unit Inspector___________

Capacity 

Throughput 

Latency 

Initial Usage

Figure A.4: Storage Unit Inspector.

Storage units are repositories of data. They can represent anything that stores data, from 
high-speed RAM to tape drives. The primary attribute is their capacity, which defines the 
amount of data that can be stored on them.

The throughput and latency are used when passing messages to and from the storage 
units. Latency adds a delay to messages, while throughput gives a maximum amount of 
data that can be moved to and from the storage unit in a given time period. The discrete 
time simulation calculates available bandwidth every tick.

The final attribute is the amount of the storage unit that is being used when the system 
starts. It is common, for example, for a hard disk to have some data stored on it by 
system files. This can be configured here. This has no real effect on the system that could 
not be simulated by simply reducing the size of the storage unit, but it does allow more 
user-friendly output from a simulation to be generated.

A.2.4 Interconnects

Interconnects are used to join up components. Each interconnect is modelled as a bus, 
with the option of imposing an extra limit on the amount of data that can be transferred 
in each direction by each component.
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Figure A.5: Interconnect Inspector.

The inspector, shown in Figure A.5, provides two global parameters, throughput and 
latency. These affect the delivery of messages across the Interconnect, by imposing a 
delay (latency) and a limit on the amount of data that can be transferred in a single tick 
(calculated from the throughput).

The endpoints display contains a list of nodes that are connected to this Interconnect. 
They can be added and removed with the +  and — buttons at the bottom of the inspector. 
The node column contains the name of the endpoint, and if clicked will display a drop
down box of all possible endpoints1.

Each of these can have limits on the amount of data they transfer imposed in each direc
tion. In the example shown, the Interconnect is modelling a USB 2 bus. One device on 
this Interconnect only supports USB 1, and so is limited to 12Mb/s.

A.2.5 Tasks

Tasks can be added to the system in the same way as any other object; by adding a new 
node and selecting ‘Task’ as its type in the main view.

1 Recall that only nodes in the same container as the Interconnect can be connected
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Task Class OrganicGridNodeTask Q

Arguments Cluster 4

A

Figure A.6: Task Inspector.

When inspected, something like Figure A.6 will be displayed. As with the resource man
ager inspector, this gives a drop down list box which contains all tasks in the system, 
populated at run time.

In addition to this, arguments can be provided for each task running in the system. When 
the simulation runs, the string entered here will be passed to the task, and can be parsed 
in any way the class desires. This screen shot is from the Organic Grid case study, where 
each task of this class takes the name of a node as the argument. This node is then used 
as the parent node in the overlay network.

A.3 Running The Simulation

When the simulation is started (by pressing the start button), the display updates as shown 
in Figure A .l ,  to show the instantaneous usage of each component.
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Figure A.7: SimEAC running grid view.



Appendix B 

SimEAC Interface Summary

The XM L schema used to describe SimEAC grids is shown in Listing B . l . XML Schema 
is not expressive enough to describe all of the restrictions on a valid grid file. In addition 
to the syntax described here, the following conditions must be upheld:

•  Names of elements must be unique within their parent container.

•  Resource manager and task classes must reference classes available to the system.

Listing B .l: The XML schema used for describing SimEAC grids. 
< x s d : s c h e m a  x m l n s : x s d =  "h t tp :  //www. w3. o rg /2 001  /XMLSchema">

< x s d : a n n o t a t i o n >
< x s d  d o c u m e n t a t i o n  x m l : l a n g =  ”en ”>

G r i d  d e s c r i p t i o n  s c h e m a  f o r  S i mE AC .
< /  x s d : d o c u m e n t a t i o n >

< / x s d : a n n o t a t i o n >

< ! —  Root element must be a c o n t a i n e r . Only one al lowed.  — >  
< x s d : e l e m e n t  name=  ’’c o n ta in e r  ” t y p  e = ”containerType ” / >

< x s d : c o m p l e x T y p e  name =  "conta inerType ”>
< ! —
Any hardware node may be in a c o n t a i n e r , in c lu d in g  nested
c o n t a i n e r s . The order does not mat ter .
Tasks may also be found in c o n t a i n e r s .

— >

< x s d : s e q u e n c e  m i n O c c u r s =  ”0 ” m a x O c c u r s  = ”1 ’’ >
< x s d : s e q u e n c e  m i n O c c u r s =  ”0 ” m a x O c c u r s  = ”unbounded” >  

< x s d : e l e m e n t  n am e=  ’’co n ta in e r  ” t y p  e = ” c o n ta in e r T y p e ” 
m i n O c c u r s  = ”0 ” />

< x s d : e l e m e n t  nam e = ”p r o c e s s o r” t y p e =  "processorType " 
m i n O c c u r s =  ”0 ” />

< x s d : e l e m e n t  nam e= ”storage ” t y p e = ”s to rag eT yp e ” 
m i n O c c u r s =  " 0 ” />

< x s d : e l e m e n t  nam e = ” ro u t e r  ” t y p  e = ” routerType ” m i n O c c u r s  
= ”0" />
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< x s d : e l e m e n t  nam e=" r e f e r e n c e ” t y p e =  ’’reference Type ” 
m i n O c c u r s =  "0" />

< x s d : e l e m e n t  name = ”t a s k ” t y p e =  ’’t askT yp e” m i n O c c u r s =  ”0"
/>

< / x s d : s e q u e n c e >
< x s d : s e q u e n c e  m i n O c c u r s =  ”0 ” m a x O c c u r s =  ’’unbounded” >

< ! —

In te rco n n ec ts  must be dec la red  a f t e r  the elements they  
connect .

Tasks are dec la red  anywhere, but are usu a l ly  put  at  
the end for  c l a r i t y

— >

< x s d : e l e m e n t  nam e = ” in te r c o n n e c t  ” t y p e = "  
in te rconnectType  ” m i n O c c u r s =  ”0 ” />

< x s d : e l e m e n t  n am e=  ’’ t a s k ” t y p e = ” t askT yp e” m i n O c c u r s =  ”0 ”
/>

< / x s d : s e q u e n c e >
< / x s d : s e q u e n c e >
< x s d  [ a t t r i b u t e  name =  ’’name” t y p e = ”x s d : s t r in g  ” />
< !  —
The resource manager d e fa u l ts  to ResourceManager, a n u l l  

implementat ion
— >

< x s d : a t t r i b u t e  na me = ”ResourceManager"  t y p e = ”x s d :s t r in g  ” u s e =  " 
o p t i o n a l ” />

< / x s d : c o m p l e x T y p e >

< x s d : c o m p l e x T y p e  name=  ”processorType ">
< x s d  : a t t r i b u t e  name =  "name” t y p e = ” x s d : s t r in g  ” / >
< x s d  a t t r i b u t e  name =  "type ” t y p e =  "p ro cessor ln s t ru c t io n SetT yp e  ”

/>
< x s d  : a t t r i b u t e  name =  ”i n t ” \ y p e = " x s d :n o n N e g a t iv e ln te g e r  ” />  
< x s d  : a t t r i b u t e  nam e = ” f l o a t ” t y p e = ”x s d : n o n N e g a t iv e ln t e g e r ” />  
< x s d  a t t r i b u t e  name =  " v e c t o r " t y p e = " x s d m o n N e g a t iv e l n t e g e r ” />  
< x s d : a t t r i b u t e  name =  "speed” \ y p e = ”x s d : n o n N e g a t iv e ln t e g e r ” />  

< / x s d : c o m p l e x T y p e >

< x s d : c o m p l e x T y p e  name=  "storageType ”>
< x s d : a t t r i b u t e  name =  "name” t y p e = ”x s d : s t r in g  ” />
< x s d  : a t t r i b u t e  name =  "size " t y p e =  ”c a p a c i ty T y p e " l>
< x s d  : a t t r i b u t e  name =  "access ” t y p  e = ”t im eType” />
< x s d : a t t r i b u t e  name=  " r a t e ” t y p e = ”speedType” />
< x s d  [ a t t r i b u t e  name =  " p e r s i s t e n t  ” t y p  e = ”boolType” us e = ”op t io n a l  

” / >
< x s d [ a t t r i b u t e  name=  "usage” t y p e = ”perc entageType” u s e = "  

o p t i o n a l ” / >
< / x s d : c o m p l e x T y p e >

< x s d : c o m p i e x T y p e  name=  " in te rconnec tType ">
< x s d : c h o i c e >

< x s d [ e l e m e n t  name =  "node” t y p e = " interconnectNodeType ” 
m a x O c c u r s =  "unbounded” / >

< / x s d : c h o i c e >
< x s d [ a t t r i b u t e  name=  "name” t y p e = ”x s d : s t r in g  ” />
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< x s d  : a t t r i b u t e  n a m e = "  throughput ” t y p  e = ”speedType” />  
< x s d  : a t t r i b u t e  name = ”la tency  ” t y p e =  "timeType ” />  

< / x s d : c o m p l e x T y p e >

< x s d : c o m p l e x T y p e  name=  "routerType ”>
< x s d : a t t r i b u t e  name = ”name” t y p e =  ’’x s d i s t r in g  ” />  

< / x s d : c o m p l e x T y p e >

< x s d : c o m p l e x T y p e  name=  ’’taskType ”>
< !—
The class a t t r i b u t e  must correspond to the name of  a class  

which
implements the Task p r o to c o l .
— >
< x s d : a t t r i b u t e  name =  "name” t y p e = ”x s d : s t r i n g  ” />
< x s d : a t t r i b u t e  name =  ’’c l a s s ” t y p e =  " x s d is t r in g  ” / >
< x s d  : a t t r i b u t e  nam e = ”a r g s ” t y p e = ” x s d  ’.s t r in g  ” />  

< / x s d : c o m p l e x T y p e >

< x s d : c o m p l e x T y p e  name =  ”interconnectNodeType ”>
< ! —
Each node may have o p t io n a l  r e s t r i c t i o n s  p laced on i ts  

connect ion
speed in both d i r e c t i o n s . This is ignored i f  l a r g e r  than the 
i n t e r c o n n e c t ’s t o t a l  bandwidth.

— >

< x s d : s i m p l e C o n t e n t >
< x s d : e x t e n s i o n  b a s e =  ’’x s d i s t r in g  ”>

< x s d : a t t r i b u t e  name=  ’’name” t y p e = ”x s d i s t r in g  ” />
< x s d  : a t t r i b u t e  name=  ’’upstream ” t y p e = ”speedType” u s e =  " 

o p t i o n a l ” />
< x s d : a t t r i b u t e  name=  ’’downstream ” t y p  e = ”speedType” u s e =  

’’ o p t i o n a l ” />
< /  x s d : e x t e n s i o n >

< /  x s d : s i m p l e C o n t e n t >
< / x s d : c o m p l e x T y p e >

< x s d : c o m p l e x T y p e  name=  ”referenceType ”>
<!  —
Must r e f e r  to the name a t t r i b u t e  in a node in the curren t  

l e v e l
— >
< x s d : s i m p l e C o n t e n t >

< x s d : e x t e n s i o n  b a s e =  ’’x s d is t r i n g  ”>
< x s d : a t t r i b u t e  name=  "name” t y p e = ”x s d is t r i n g  ” / >

< /  x s d : e x t e n s i o n >
< / x s d : s i m p l e C o n t e n t >

< / x s d : c o m p l e x T y p e >

< x s d : s i m p l e T y p e  name=  "capacityType ”>
< x s d : r e s t r i c t i o n  b a s e =  ’’x s d i s t r in g  ”>

<\—

A c apac it y  in b i ts  or Bytes support ing  standard  SI  
p r e f ix e s
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— >
< x s d : p a t t e r n  v a l u e = ”\ d * ( \ \ o f * , )  ?(K\M\G\ T \P \E )  ?(B\b)  ”/ >

< /  x s d  : r e s t r i c t i o n >
< / x s d : s i m p l e T y p e >

< x s d : s i m p l e T y p e  name=  "timeType ”>
< x s d : r e s t r i c t i o n  b a s e =  ” xsd ' .st r ing ”>

< ! —
A time s p e c i f i e d  in nano- ,  m i l l i - ,  or Mega-seconds.
— >

< x s d : p a t t e r n  v a l u  e = ’’\ d *  ( . \ d * )  ?(n\m\M) ?s”/>
< /  x s d : r e s t r i c t i o n >

< / x s d : s i m p l e T y p e >

< x s d : s i m p l e T y p e  n a m e = "speedType ”>
< x s d : r e s t r i c t i o n  b a s e =  ”x s d :s t r in g  ”>

< ! —
Any speed of  the form 12.34B/S,  support ing both b ( i t s )  and 

B (ytes  )
and standard SI p r e f i x e s  and an a r b i t r a r y  numeric 

p rec is io n
— >

< x s d  : p a t t e r n  v a l u e =  ”\ d *  (. \  d * )  ?(K\M\ G\ T \P \E )  ? ( B \ b ) / ( n\m\M) ? 
s ”/>

< / x s d : r e s t r i c t i o n >
< / x s d : s i m p l e T y p e >

< x s d : s i m p l e T y p e  name =  "percentageType ”>
< x s d  r e s t r i c t i o n  b a s e = ” x s d is t r i n g  ”>

< ! —
Any number of  the form x.y%, with a r b i t r a r y  p re c is io n
— >

< x s d : p a t t e r n  v a l u e =  ”\ d *  (. \  d * )?%”/>
< /  x s d  : r e s t r i c t i o n >

< / x s d : s i m p l e T y p e >

< x s d : s i m p l e T y p e  name=  ”p ro c e s s o r ln s t ru c t io n S e tT y p e  ”>
< x s d r e s t r i c t i o n  b a s e =  ”x s d : s t r in g  ”>

< ! —

The curren t  implementat ion t r e a t s  these as being case 
i n s e n s i t i v e .

— >

< x s d r e m u n e r a t i o n  v a l u e =  ”x 8 6 ”/ >
< x s d : e n u m e r a t i o n  v a l u e =  ”gpu”/ >
< x s d : e n u m e r a t i o n  v a l u e =  ”p p c ”/>
< x s d : e n u m e r a t i o n  v a l u e =  ’’spare ”/>
< x s d : e n u m e r a t i o n  v a l u e =  ”dsp”/ >

< /  x s d  : r e s t r i c t i o n >
< / x s d : s i m p l e T y p e >

< x s d : s i m p l e T y p e  name=  "boolType ”>
< ! —
The standard xsdibooiean type was not used because this is 

more
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c o n s is te n t  with the O b je c t iv e - C  BOOL type,  which al lows values  
of YES

and NO, making i t  e a s ie r  for  users dea l ing  with both the XML 
and

O b je c t i v e - C  values.
— >

< x s d  r e s t r i c t i o n  b a s e =  ”x s d : s t r in g  ,l>
< x s d : e n u m e r a t i o n  v a l u e =  "YES’’/ >
< x s d : e n u m e r a t i o n  v a l u e =  " A D " / >

< /  x s d  : r e s t r i c t i o n >
< / x s d : s i m p l e T y p e >

< / x s d : s c h e m a >

T h e  in t e r fac es  th a t  m u s t  b e  i m p l e m e n t e d  b y  tas k  a n d  re so ur ce  m a n a g e r  classes a re  s h o w n  

in  L i s t i n g s  B . 3  a n d  B . 2  respect ive ly .  O n c e  classes tha t  i m p l e m e n t  these in t e r fac es  h a v e  

b e e n  l o a d e d  in t o  the  sy s tem,  t h e y  ca n  b e  r e f e r e n c e d  f r o m  X M L  g rid s .

L is t in g  B . 2 :  In te r fa c e  fo r  re s o u rc e  m a n a g e rs .

@ p r o t o c o l  r o u t i n g R e s o u r c e M a n a g e r
-  ( N S A r r a y * )  p a t h F r o m  :(  I n t e r c o n n e c t a b l e N o d e * ) s o u r c e  t o  :(

I n t e r c o n n e c t a b l e N o d e  * )  d e s t i n a t i o n  ;
@ end

© p r o t o c o l  R e s o u r c e M a n a g e r < N S O b j e c t >
-  ( d o u b l e )  c a n R u n  : ( i d < T a s k > ) _ n e w T a s k ;
-  ( v o i d )  u n d e r s c h e d u l e d P r o c e s s e s  : (  N S A r r a y * * ) p r o c e s s e s

w e i g h t e d  : ( N S A r r a y * * )  w e i g h t s  ;
-  ( v o i d )  a d d T a s k  : (  M e t a T a s k * ) t a s k  ;
-  ( v o i d )  r e m o v e T a s k  :(  M e t a T a s k * ) t a s k  ;
-  ( s i m _ t i m e _ t )  p r o c e s s i n g U n i t T i m e U s e d B y  : ( i d < T a s k > ) t a s k  ;
-  (B O O L) i s D i s t r i b u t e d  ;
+ ( i d )  r e s o u r c e M a n a g e r F o r C o n t a i n e r : ( i d  ) a C o n t a i n e r

w i t h P a r e n t : ( i d < R e s o u r c e M a n a g e r > )  
a R e s o u r c e M a n a g e r ;

-  ( i d )  i n i t F o r C o n t a i n e r : ( i d ) a C o n t a i n e r
w i t h P a r e n t : ( i d < R e s o u r c e M a n a g e r > ) a R e s o u r c e M a n a g e r ;

-  (B O O L) a d d C h i l d  : ( i d < R e s o u r c e M a n a g e r > ) a C h i l d  ;
-  ( v o i d )  r u n F o r : (  s i m _ t i m e _ t ) n a n o s e c o n d s ;

-  (B O O L) s e t V M S i z e F o r P r o c e s s  : ( M e t a T a s k * )  t a s k  to  : ( d o u b l e )  b y t e s  ;
-  ( v o i d )  p a g e F a u l t  : ( d o u b l e )  b y t e s  f o r T a s k : ( M e t a T a s k * ) a T a s k ;
-  ( S t o r a g e U n i t * )  n e w F i l e N a m e d : (  N S S t r i n g  * ) f i l e N a m e

W i t h S i z e  : ( d o u b l e )  b y t e s ;
-  (B O O L) r e s i z e F i l e  : (  N S S t r i n g * ) f i l e N a m e

o n : ( S t o r a g e U n i t * ) s t o r a g e  
t o : ( d o u b l e )  b y t e s ;

-  (B O O L) s t o r e  : ( d o u b l e ) b y t e s
t o  F i l e  : (  N S S t r i n g  * )  f i l e N a m e  

o n D e v i c e : s t o r a g e  
f o r T a s k  : (  M e t a T a s k * )  t a s k  

a t T i m e  : ( s i m _ t i m e _ t  ) n o w ;
-  (B O O L) l o a d  : ( d o u b l e ) b y t e s

f r o m  F i l e  : (  N S S t r i n g  * )  f i l e N a m e
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o n D e v i c e : s t o r a g e  
f o r T a s k  : ( M e t a T a s k * )  t a s k  

a t T i m e : (  s i m _ t i m e _ t  ) n o w ;  
-  (void)  l og  ;
@end

L is t in g  B . 3 :  In te r fa c e  to  b e  im p le m e n te d  b y  tasks .

(©protocol T a s k < N S O b j e c t , M e s s a g e R e c e i v e r >
-  ( i d )  i n i t W i t h A r g u m e n t s  : (  N S S t r i n g  * )  a r g u m e n t s  N am e: ( N S S t r i n g  * ) a N a m e ;
-  (void)  s e t D e l e g a t e  : ( id ) a D e l e g a t e  ;
-  ( i d )  d e l e g a t e ;
-  ( s i m _ t i m e _ t )  r u n F o r :(  s i m _ t i m e _ t ) n a n o s e c o n d s

on  P r o c e s s o r s  : ( N S A r r a y  * )  p r o c e s s o r s  
a t T i m e  : ( s i m _ t i m e _ t  ) n o w ;

-  (B O O L) ru n s O n  : ( C P U T y p e )  a n I n s t r u c t i o n S e t ;
-  (unsigned i n t )  t h r e a d s ;
-  (void)  r e t a i n T a s k ;
-  (void)  r e l e a s e T a s k ;
-  ( f l o a t )  u s a g e ;
@end

Listings B.4 to B.10 show the interfaces to the hardware components within the system.

Listing B.4: Interface to the HardwareNode class.
(© interface H a r d w a r e N o d e  : N S O b j e c t < E T X M L P a r s e r D e l e g a t e , L o g g i n g >  {  

s i m _ t i m e _ t  now;  
s i m _ t i m e _ t  l a s t ;
N S S t r i n g  *  n am e; 
id p a r e n t ;  
id p a r s e r ;
BOOL i s L o g g e d  ;
BOOL i s E n a b l e d  ; 
unsigned in t l o g l n d e x ;
L o g F i l e  *  l o g F i l e ;

}
-  ( i d )  i n i t W i t h X M L P a r s e r : ( i d  ) p a r s e r  p a r e n t : ( i d < N S O b j e c t , 

E T X M L P a r s e r D e l e g a t e > ) p a r e n t ;
id ) i n i t W i t h X M L  : ( E T X M L N o d e * ) _ x m l  w i t h P a r e n t :(  H a r d w a r e N o d e * )  . p a r e n t ; 
N S S t r i n g * )  nam e;  
void)  n a m e :(  N S S t r i n g * ) _ n a m e ;
E T X M L N o d e *) t o X M L ;
BOOL
void
id ) c o n t a i n e r ;
BOOL
void

c a n H a v e C h i l d r e n ; 
s e t C o n t a i n e r : ( i d ) - p a r e n t ;

i s V a l i d C h i l d  : ( id ) . c h i l d  ; 
t i c k  : (  s i m _ t i m e _ t ) . n e w T i m e ;

f l o a t )  u s a g e ;  
vo id ) s t a r t ;
BO O L) i s E n a b l e d  ; 
void)  s e t E n a b l e d  : ( B O O L ) a F l a g  ;
N S C o m p a r i s o n R e s u l t ) c o m p a re  : ( H a r d w a r e N o d e * )  a N o d e ; 

@end
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L is t in g  B . 5 :  In te r fa c e  to  th e  In te rc o n n e c ta b le N o d e  class.

@ interface I n t e r c o n n e c t a b l e N o d e  : H a r d w a r e N o d e < M e s s a g e R e c e i v e r >  {  
N S M u t a b l e A r r a y  *  c o n n e c t i o n s ;
N S M u t a b l e D i c t i o n a r y  *  k n o w n R o u t e s ;
N S M u t a b l e S e t  *  k n o w n A b s e n s e s O f R o u t e s ;

}
-  ( N S A r r a y * )  p a t h T o  : ( I n t e r c o n n e c t a b l e N o d e * )  d e s t i n a t i o n  a l o n g R o u t e : (

N S A r r a y  * )  p a t h  ;
-  ( N S A r r a y * )  p a t h T o  : ( I n t e r c o n n e c t a b l e N o d e * )  d e s t i n a t i o n  f r o m : (

I n t e r c o n n e c t a b l e N o d e * )  o r i g i n  a l o n g  R o u t e  : (  N S A r r a y  * )  p a t h  ;
-  (void)  a d d C o n n e c t i o n  : (  I n t e r c o n n e c t * ) p a t h  ;
-  (void)  r e m o v e C o n n e c t i o n  :(  I n t e r c o n n e c t * ) p a t h  ;
@end

L is t in g  B.6: In te r fa c e  to  th e  In te rc o n n e c t c lass.

@ i n t e r f a c e  I n t e r c o n n e c t  : H a r d w a r e N o d e  {  
d o u b l e  t h r o u g h p u t ;  
d o u b l e  l a t e n c y ;
d o u b l e  s p a r e B a n d w i d t h L a s t Q u a n t u m ; 
d o u b l e  s p a r e B a n d w i d t h T h i s Q u a n t u m ; 
d o u b l e  b a n d w i d t h T h i s Q u a n t u m  ; 
d o u b l e  b a n d w i d t h L a s t Q u a n t u m ; 
d o u b l e  p a r s e d U p s t r e a m  ; 
d o u b l e  p a r s e d D o w n s t r e a m ; 
d o u b l e  d a t a T r a n s f e r r e d S i n c e L o g  ; 
f l o a t  u s a g e ;  
s i m _ t i m e _ t  l a s t L o g  ;
N S M u t a b l e S e t  *  c o n n e c t e d O b j e c t s ;
N S A r r a y  *  s o r t e d E n d p o i n t s  ;
T R A r r a y  p a c k e t s ;

}

+ ( i d )  i n t e r c o n n e c t W i t h L a t e n c y  : ( d o u b l e )  . l a t e n c y  t h r o u g h p u t : ( d o u b l e )  
- t h r o u g h p u t ;

-  ( i d )  i n i t W i t h L a t e n c y  : ( d o u b l e )  - l a t e n c y  t h r o u g h p u t : ( d o u b l e ) - t h r o u g h p u t

j

( i d  ) i n t e r c o n n e c t  W i t h  L a t e n c y  F r o m  S t r i n g  : ( N S S t r i n g  * )  - l a t e n c y  
t h r o u g h p u t : ( N S S t r i n g  * )  - t h r o u g h p u t ;

( i d  ) i n i t W i t h L a t e n c y  F r o m  S t  r i n g  : ( N S S t r i n g  * ) -  l a t e n c y  t h r o u g h p u t :(  
N S S t r i n g  * )  - t h r o u g h p u t ;

( i d ) i n t e r c o n n e c t W i t h X M L  : ( E T X M L N o d e *) _x ml  w i t h P a r e n t : ( H a r d w a r e N o d e * )  
- c o n t a i n e r ;

(B O O L) c o n n e c t ;
( d o u b l e )  t h r o u g h p u t ;
( N S S t r i n g * )  t h r o u g h p u t S t r i n g  ;
( v o i d )  t h r o u g h p u t : ( d o u b l e )  . t h r o u g h p u t ;
( v o i d ) t h r o u g h p u t F r o m S t r i n g  : ( N S S t r i n g  * )  . t h r o u g h p u t ;
( d o u b l e )  l a t e n c y ;
( N S S t r i n g * )  l a t e n c y S t r i n g  ;
( v o i d )  l a t e n c y  : ( d o u b l e ) - l a t e n c y  ;
( v o i d )  l a t e n c y  F r o m  S t r i n g  : (  N S S t r i n g  * )  . l a t e n c y  ;
( v o i d ) a d d E n d P o i n t N a m e d  :(  N S S t r i n g  * ) a N a m e ;
( v o i d )  a d d E n d P o i n t : ( id  ) n o d e ;



-  ( v o i d )  a d d E n d P o i n t : ( id  ) n o d e  w i t h U p s t r e a m  : ( d o u b l e ) u p s t r e a m  d o w n s t r e a m
: ( d o u b l e ) d o w n s t r e a m  ;

-  ( v o i d )  r e m o v e E n d P o i n t : ( i d ) n o d e ;
-  ( v o i d )  s e n d  : ( M e s s a g e * ) a M e s s a g e  to  : ( i d < M e s s a g e R e c e i v e r > ) d e s t i n a t i o n

a l o n g R o u t e  : (  N S A r r a y * ) a R o u t e  a t T i m e  : (  s i m _ t i m e _ t ) s t a r t T i m e  ;
-  ( v o i d )  b r o a d c a s t M e s s a g e  : ( M e s s a g e * ) a M e s s a g e  f r o m  : (  H a r d w a r e N o d e * )

a n O r i g i n  a t T i m e  :(  s i m _ t i m e _ t ) s t a r t T i m e  ;
-  ( N S S e t * )  e n d P o i n t s ;

-  ( u n s i g n e d  i n t )  e n d P o i n t C o u n t ;
-  ( i d )  e n d p o i n t A t l n d e x  : ( u n s i g n e d  i n t )  i n d e x ;
@ end

L is t in g  B .7 :  In te r fa c e  to  th e  C o n ta in e r  c lass.

@ i n t e r f a c e  C o n t a i n e r  : I n t e r c o n n e c t a b l e N o d e  {
N S M u t a b l e D i c t i o n a r y  *  s t o r a g e l l n i t s ;
N S M u t a b l e D i c t i o n a r y  *  p r o c e s s i n g l l n i t s  ;
N S M u t a b l e D i c t i o n a r y  *  i n t e r c o n n e c t s ;
N S M u t a b l e D i c t i o n a r y  *  i n t e r c o n n e c t a b l e N o d e s  ;
N S M u t a b l e D i c t i o n a r y  *  c o n t a i n e r s ;
N S A r r a y  *  a l l l n t e r c o n n e c t a b l e N o d e s ;
N S A r r a y  *  a l l l n t e r c o n n e c t s  ;
N S M u t a b l e S e t  *  u p s t r e a m R o u t e r s ;
N S M u t a b l e S e t  *  n am e s;  
i d  r e s o u r c e M a n a g e r ;
N S S t r i n g  *  r e s o u r c e M a n a g e r N a m e ;
N S M u t a b l e A r r a y  *  t a s k s  ;
N S M u t a b l e D i c t i o n a r y  *  t a s k s B y N a m e ;

}
+ ( i d )  c o n t a i n e r F r o m F i l e  : (  N S S t r i n g  * )  _f i I e  ;
+ ( i d )  c o n t a i n e r W i t h X M L  : ( E T X M L N o d e * )  _xml  w i t h P a r e n t : ( i d  ) _g r i d  ;
-  ( I n t e r c o n n e c t a b l e N o d e * )  n od eN am ed  : (  N S S t r i n g  * ) _ n a m e ;
-  ( i d )  c h i l d A t l n d e x  : ( u n s i g n e d  i n t ) i n d e x ;
-  ( v o i d )  a d d P r o c e s s o r : ( i d  ) a P r o c e s s i n g U n i t ;
-  ( v o i d )  a d d S t o r a g e  : ( i d ) a S t o r a g e l l n i t ;
-  ( v o i d )  a d d C o n t a i n e r : ( i d  ) a C o n t a i n e r ;
-  ( v o i d )  a d d R o u t e r : ( i d  ) a R o u t e r ;
-  ( v o i d )  a d d l n t e r c o n n e c t : ( i d ) a n l n t e r c o n n e c t ;
-  ( v o i d )  r e m o v e C h i l d  : ( id  ) . c h i l d  ;
-  ( u n s i g n e d  i n t )  c h i l d C o u n t ;
-  ( u n s i g n e d  i n t )  i n t e r c o n n e c t C o u n t ;
-  ( u n s i g n e d  i n t )  t a s k C o u n t ;
-  ( N S S t r i n g * )  g e tU n u s e d N a m e ;
-  ( I n t e r c o n n e c t * )  i n t e r c o n n e c t A t l n d e x  : ( u n s i g n e d  i n t ) i n d e x ;
-  ( M e t a T a s k * )  t a s k A t l n d e x  : ( u n s i g n e d  i n t ) - i n d e x ;
-  (B O O L) a d d C h i l d  : ( i d  ) . c h i l d  ;
-  ( i d )  i n i t W i t h X M L  : ( E T X M L N o d e * )  _xml  w i t h P a r e n t :(  H a r d w a r e N o d e * )  . p a r e n t ;
-  ( H a r d w a r e N o d e * )  c o m p o n e n tN a m e d  : (  N S S t r i n g * ) a N a m e ;
-  ( v o i d )  a d d D e f a u l t C h i l d  ;
-  ( v o i d )  r u n F o r :(  s i m . t i m e . t ) n a n o s e c o n d s ;
-  (B O O L) c o n t a i n s l n t e r c o n n e c t a b l e N o d e  : ( l n t e r c o n n e c t a b l e N o d e * ) a N o d e ;
-  ( N S D i c t i o n a r y * )  p r o c e s s i n g U n i t s l n c l u d i n g C h i l d r e n  : (B O O L) f l a g  ;
-  ( N S D i c t i o n a r y * )  s t o r a g e U n i t s l n c l u d i n g C h i l d r e n  : (B O O L) f l a g  ;
-  ( H a r d w a r e N o d e * )  c o m p o n e n tN a m e d  : (  N S S t r i n g  * ) a N a m e ;
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-  ( v o i d ) s t a r t ;
-  (void)  a d d T a s k  : (  M e t a T a s k * )  t a s k  ;
-  (void)  r e m o v e T a s k  :(  M e t a T a s k * ) t a s k  ;
-  ( M e t a T a s k * )  ta s k N a m e d  : (  N S S t r i n g * ) t a s k N a m e  ;
-  ( id ) r e s o u r c e M a n a g e r ;
-  (void)  s e t R e s o u r c e M a n a g e r :(  N S S t r i n g * ) a R e s o u r c e M a n a g e r N a m e ;
-  ( N S S t r i n g  * )  r e s o u r c e M a n a g e r N a m e  ;
-  (B O O L) c o n t a i n s  : ( I n t e r c o n n e c t a b l e N o d e * ) n o d e ;
-  ( N S A r r a y * )  i n t e r c o n n e c t a b l e N o d e N a m e s ;
-  ( M e t a T a s k * )  g e tT a s k N a m e d  :(  N S S t r i n g  * ) t a s k N a m e ;
-  ( M e t a T a s k * )  g e t T a s k N a m e d :(  N S S t r i n g  * ) t a s k N a m e  c h e c k P a r e n t : (BOOL)  f l a g  ;
@end

L is t in g  B . 8 :  In te r fa c e  to  th e  P ro c e s s in g U n it  c lass.

@interface P r o c e s s i n g U n i t  : I n t e r c o n n e c t a b l e N o d e  {
C P U T y p e  i n s t r u c t i o n S e t ; 
int  i n t e g e r S i z e ;  
int  f l o a t S i z e  ; 
int  v e c t o r S i z e ;  
int  t h r o u g h p u t ;  
f l o a t  u s a g e ;

}
+ ( id ) p r o c e s s i n g  U n i t  W i t h  In s t  r u c t i o n s S e t : (C P U T y p e ) - i n s t r u c t i o n S e t

i n t e g e r S i z e  : ( i n t ) - i n t e g e r S i z e  f l o a t  S i z e  : ( i n t ) - f l o a t  S i z e  v e c t o r S i z e  
: (  i n t )  . v e c t o r S i z e  t h r o u g h p u t s  i n t ) - t h r o u g h p u t ;

-  ( i d )  i n i t U n i t W i t h l n s t r u c t i o n s S e t  : ( C P U T y p e )  . i n s t r u c t i o n S e t
i n t e g e r S i z e  : (  i n t )  . i n t e g e r S i z e  f l o a t  S i z e  : (  i n t  ) _ f  l o a t S i z e  v e c t o r S i z e  
: ( i n t ) . v e c t o r S i z e  t h r o u g h p u t : ( i n t )  . t h r o u g h p u t ;

+  ( i d )  p r o c e s s i n g U n i t W i t h X M L  : ( E T X M L N o d e * ) _ x m l  w i t h P a r e n t : (  H a rd w a re N o d e  
* ) . p a r e n t ;

-  (C P U T y p e ) i n s t r u c t i o n S e t ;
-  (void)  i n s t r u c t i o n S e t  : ( C P U T y p e )  . i n s t r u c t i o n S e t ;
-  ( i n t ) i n t e g e r S i z e  ;
-  (void)  i n t e g e r S i z e  : ( i n t ) . i n t e g e r S i z e  ;
-  ( i n t )  f l o a t S i z e ;
-  (void)  f l o a t S i z e  : ( i n t ) . f l o a t S i z e  ;
-  ( i n t )  v e c t o r S i z e ;
-  (void)  v e c t o r S i z e  : ( i n t ) . v e c t o r S i z e  ;
-  ( i n t )  t h r o u g h p u t ;
-  (void)  t h r o u g h p u t : ( i n t ) . t h r o u g h p u t ;
-  ( f l o a t )  u s a g e ;
-  (void)  s e t U s a g e  : ( f l oa t  ) n e w U s a g e ;
@end

L is t in g  B .9 :  In te r fa c e  to  th e  S to ra g e U n it  c lass.

@ interface S t o r a g e U n i t  : I n t e r c o n n e c t a b l e N o d e  {  
double s i z e  ; / / C a p a c i t y  in bytes 
double a c c e s s ; / /A ccess  time in ns 
double r a t e  ; / /  Transfer  ra te  in B/s  
double s p a r e C a p a c i t y ; / /Unused storage c ap ac it y  
double s p a r e B a n d w i d t h ; / /Unused  in t e r f a c e  bandwidth.  
double b y t e s O f C u r r e n t M e s s a g e S e n t ; 
double i n i t i a l U s a g e  ;
BOOL p e r s i s t e n t ;  / / i s  the storage  device v o l a t i l e ?
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N S M u t a b l e D i c t i o n a r y  *  f i l e s ;
T R A r r a y  m e s s a g e Q u e u e ;

}
+ ( S t o r a g e U n i t * )  s t o r a g e U n i t W i t h S i z e  : ( double) _ s i z e  a c c e s s  : ( double) 

- a c c e s s  r a t e  : ( double) _ r a t e  p e r s i s t e n t  :(B O O L ) f l a g  ;
-  ( i d )  i n i t W i t h S i z e  : ( double) . s i z e  a c c e s s  : ( d o u b le )- a c c e s s  r a t e  : ( double)

_ r a t e  p e r s i s t e n t  :(B O O L ) f l a g  ;
+  ( S t o r a g e U n i t * )  s t o r a g e U n i t W i t h S i z e F r o m S t r i n g  : (  N S S t r i n g  * )  _ s i z e  a c c e s s  

: ( N S S t r i n g  * )  . a c c e s s  r a t e  : ( N S S t r i n g  * )  _ r a t e  p e r s i s t e n t :  ( N S S t r i n g * )  
f l a g  ;

-  ( i d )  i n i t W i t h S i z e F r o m S t r i n g  : (  N S S t r i n g  * )  _ s i z e  a c c e s s  : (  N S S t r i n g  * )
- a c c e s s  r a t e  : (  N S S t r i n g * )  _ r a t e  p e r s i s t e n t  : (  N S S t r i n g * )  f l a g  ;

+ ( i d )  s t o r a g e U n i t W i t h X M L  : ( E T X M L N o d e *) . x m l  w i t h P a r e n t :(  H a r d w a r e N o d e * )  
. p a r e n t ;

-  ( v o i d ) s t a r t ;
-  (double) s i z e ;
-  ( N S S t r i n g * )  s i z e S t r i n g  ;
-  (void)  s i z e  : ( double) . s i z e  ;
-  (void)  s i z e F r o m S t r i n g  : (  N S S t r i n g * )  . s i z e  ;
-  (double) a c c e s s ;
-  ( N S S t r i n g * )  a c c e s s S t r i n g  ;
-  (void)  a c c e s s  : ( double) . a c c e s s  ;
-  (void)  a c c e s s F r o m S t r i n g  :(  N S S t r i n g * ) - a c c e s s  ;
-  (double) r a t e  ;
-  ( N S S t r i n g * )  r a t e S t r i n g  ;
-  (void)  r a t e  : ( double) _ r a t e  ;
-  (void)  r a t e F r o m S t r i n g  : (  N S S t r i n g * )  . r a t e  ;
-  (B O O L) i s P e r s i s t e n t ;
-  (void)  p e r s i s t e n t  : (B O O L) f l a g  ;
-  (void)  f r e e  : ( double) b y t e s  ;
-  (void)  s e t U s a g e F r o m S t r i n g  : (  N S S t r i n g  * )  u s a g e S t r i n g  ;
-  (B O O L) s e t S i z e  : ( double) b y t e s  f o r F i l e  : (  N S S t r i n g  * ) f i l e N a m e  ;
-  (double) s i z e O f F i l e  : (  N S S t r i n g * ) f i l e N a m e  ;
-  (double) i n i t i a l U s a g e  ;
-  (double) f r e e S p a c e ;
@end

L is t in g  B .1 0 :  In te r fa c e  to  th e  R o u te r  c lass.

}
+ ( R o u t e r * )  r o u t e r W i t h X M L  : ( E T X M L N o d e *) _xml  w i t h P a r e n t :(  H a r d w a r e N o d e * )  

- p a r e n t ;
-  (B O O L) i s U p l i n k ;
-  (void)  s e t U p l i n k  : (B O O L) f l a g  ;
@end
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