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Abstract

The binding of glucagon like peptide-1 (GLP-1) to its receptor, the GLP-1 
receptor (GLP-1 R), results in insulin secretion from pancreatic (3-cells. This 
makes the receptor an im portan t drug target for type 2 diabetes. The GLP-1R is a 
family B G-protein coupled receptor (GPCR) and functions a t the cell surface by 
coupling to Gas and Gaq pathw ays and causing ERK phosphorylation. The 
objective of this study was to analyse trafficking, activity and internalisation of 
GLP-1R a t the cellular and molecular level.

The human GLP-1R (hGLP-lR) N-terminus is required for trafficking and 
m aturation. This study dem onstrated the im portance of signal peptide (SP) 
cleavage, AMinked glycosylation and the hydrophobic region after the SP 
(HRASP) within the N-terminus of the hGLP-lR for cell surface expression.

Due to difficulties in peptide drugs, orally active small molecule agonists of the 
GLP-1R are of high importance. Small molecule allosteric agonists, compounds 2 
and B, w ere found to cause cAMP production similar to orthosteric GLP-1, but 
not intracellular Ca2+ accumulation, ERK phosphorylation or internalisation of 
the receptor. Compounds 2 and B binding to the GLP-1R inhibits GLP-1 
internalisation, intracellular Ca2+ accumulation and ERK phosphorylation of the 
receptor.

Agonist induced hGLP-lR internalisation is im portant for insulin secretion. 
Inhibition of the Gaq pathw ay bu t not the Gas pathw ay reduced hGLP-lR 
internalisation. Consistent w ith this, the hGLP-lR T149M m utant and 
compounds 2 and B, which activate only the Gas pathway, failed to induce hGLP- 
1R internalisation. Chemical inhibitors of the Gaq pathw ay significantly reduced 
agonist induced hGLP-lR internalisation and suppressed ERK phosphorylation 
dem onstrating phosphorylated ERK acts dow nstream  of the Gaq pathw ay in 
hGLP-lR internalisation.

Finally, distinct regions w ithin the C-terminus of hGLP-lR required for its cell 
surface expression, activity and internalisation w ere identified. Residues 411- 
418, 419-430 and 431-450 are essential for hGLP-lR cell surface expression, 
activity and internalisation, respectively.
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1. General Introduction

1.1. Introduction

The actions of glucagon like peptide-1 (GLP-1) have been greatly examined over 

the last tw enty years, due to the horm ones effectiveness a t lowering blood 

glucose levels and increasing insulin secretion in type 2 diabetic patients (Doyle 

& Egan, 2007; Holz et al, 1999). GLP-1 exerts its actions through the GLP-1 

receptor (GLP-1R), a family B G-protein coupled receptor (GPCR), which 

m ediates its effects through the Gas subunit, which in tu rn  activates adenylyl 

cyclase (AC). The involvem ent of Gas and the subsequent accumulation of cyclic 

adenosine m onophosphate (cAMP) in glucose induced insulin secretion is well 

established (Drucker et al, 1987).

1.2. Type 2 diabetes

1.2.1. Background

The World Health Organization describes diabetes mellitus as a "metabolic 

d isorder of multiple aetiology characterised by chronic hyperglycaemia w ith 

disturbances of carbohydrate, fat and protein metabolism resulting from defects 

in insulin secretion, insulin action, or both" (Alberti & Zimmet, 1998; W orld 

Health Organisation, 1999). It was estim ated tha t 382 million people 

(approxim ately 9% of the w orld's adult population) lived w ith diabetes in 2013. 

This num ber will continue to rise and has been estim ated to reach 439 million 

by 2030 and 592 million by 2035 (Guariguata et al, 2014; W hiting et al, 2011). 

Diabetes rem ains the leading cause of blindness, end stage renal disease, lower 

limb am putation and cardiovascular disease (Schwarz et al, 2007; Zimmet e t al,
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2001]. Diabetes mellitus is classified into four categories, type 1, type 2, other 

specific types and gestational diabetes (Table 1.1], of which, type 2 is the m ost 

common form (Alberti & Zimmet, 1998; Kuzuya & Matsuda, 1997; World Health 

Organisation, 1999].

Table 1.1. A etiological classification o f disorders o f glycaem ia

Types Description and Subtypes

Type 1 p-cell destruction, usually leading to absolute insulin 

deficiency

Autoimmune

Idiopathic

Type 2 Ranging from predom inantly insulin resistan t with 

relative insulin deficiency to a predom inantly secretory 

defect w ith or w ithout insulin resistance

Other Specific Types Genetic defects of p-cell function

Genetic defects in insulin action

Diseases of the exocrine pancreas

Endocrinopathies

Drug or chemical induced

Infections

Uncommon form of immune m ediated diabetes 

Other genetic syndrom es som etim es associated 

w ith diabetes

Gestational Diabetes Carbohydrate intolerance resulting in hyperglycaemia of 

variable severity w ith onset or first recognition during 

pregnancy

Table showing description and subtype of type 1, type 2, o ther specific types 

and gestational diabetes. Adapted from (Alberti & Zimmet, 1998].
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1.2.2. Pathophysiology and causes

Insulin is a horm one tha t is secreted in response to food intake to m aintain 

glucose homeostasis. It is produced by the p-cells in the islets of Langerhans in 

the pancreas (Rhodes & White, 2002). Synthesis occurs on the rough 

endoplasmic reticulum  (ER) as preproinsulin, containing a signal peptide (SP) 

that is cleaved to form proinsulin (Figure 1.1). Proinsulin then traffics through 

the trans Golgi netw ork and is packaged into secretory vesicles until required 

(Nelson et al, 2008). The hydrolysis of dietary carbohydrates such as starch or 

sucrose within the small intestines results in the production of glucose, which is 

then absorbed into the blood. An increase in glucose concentrations in the blood 

stim ulates the release of insulin. Insulin has different effects depending on the 

target tissue; it either facilitates the entry of glucose into adipose and muscle 

tissue or stim ulates the liver to store glucose as glycogen. If insulin is absent or 

in low concentrations within the body, insulin sensitive cells are unable to 

absorb glucose and therefore use other fuel sources such as fatty acids for 

energy, which can lead to ketoacidosis. W hen blood glucose levels are low, 

insulin is not produced and instead glucagon is secreted, broken down and 

released as glucose (Berg et al, 2002; Sadava et al, 2006).

In normal individuals, glucose hom eostasis keeps glucose levels under control 

and within the norm al range of 80-120 m g/100 ml (4.4-6.7 mM). For patients 

with diabetes, insufficient insulin release results in hyperglycaemia and high 

blood glucose levels (Bansal & Wang, 2008; Berg et al, 2002). An absolute lack of 

insulin producing p-cells in the pancreas results in the developm ent of type 1 

diabetes (Alberti & Zimmet, 1998; World Health Organisation, 1999; Yoon & 

Jun, 2005). In contrast, type 2 diabetes is a result of insulin dependent cells not 

being able to respond to insulin effectively, also known as insulin resistance 

(Alberti & Zimmet, 1998; World Health Organisation, 1999). Individuals who 

are obese and have a genetic predisposition to both insulin resistance and p-cell 

dysfunction are a t high risk of developing type 2 diabetes. Overtime, the p-cell is 

unable to com pensate for insulin resistance and causes a decline in p-cell 

function (Prentki & Nolan, 2006).
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It is estim ated tha t 60-90%  of patients w ith type 2 diabetes are obese and 

obesity itself can cause insulin resistance (Muoio & Newgard, 2008). There is a 

greater than 90-fold possibility of developing type 2 diabetes if you are obese 

compared to non-obese individuals (Anderson et al, 2003). Body mass index 

(BMI) is defined as the individual's body w eight divided by the square of their 

height (kg/m 2). A BMI greater than 25 is overweight and above 30 is obese 

(Eknoyan, 2008). It is suggested tha t type 2 diabetic patients should aim for a 

BMI of 25 or below (Hollander, 2007). However, there is still a 2.4-fold 

increased risk of developing type 2 diabetes in those who are of norm al BMI 

(between 18.5 and 24.9) but have an increased percentage of body fat 

distributed in the abdom inal region (Cassano et al, 1992; Tuomilehto e t al, 

2011; Venables & Jeukendrup, 2009).

Diet, genetics and sedentary  lifestyle all play a role in the developm ent of type 2 

diabetes (Bazzano et al, 2005; Diabetes UK, 2014; Hu, 2011). The dietary intake 

of saturated fat, trans fatty acids and total fats w ere considered risk factors in 

the developm ent of type 2 diabetes. In contrast dietary fibres or non-starch 

polysaccharides w ere considered protective factors (Bazzano et al, 2005). Low- 

fat vegetarian and vegan diets have the potential to be used for the m anagem ent 

of type 2 diabetes because they are associated with w eight loss, improved 

cardiovascular health and increased insulin sensitivity (Barnard et al, 2009; 

Riserus et al, 2009). A cohort study evaluated the association of multiple 

lifestyle factors, including diet, physical activity, alcohol use, smoking habits and 

adiposity m easures, w ith the risk of developing type 2 diabetes. This risk was 

approxim ately 50% low er in individuals whose physical activity and dietary 

habits indicated low risk and approxim ately 80% lower in those w hose diet, 

physical activity, alcohol use and smoking habits all indicated low risk 

(Mozaffarian et al, 2009; Tuomilehto e t al, 2011). In addition, having relatives 

with type 2 diabetes substantially increases an individual's chance of 

developing type 2 diabetes. The insulin receptor substrate-1 (IRS-1) gene has 

been associated w ith type 2 diabetes, insulin resistance and hyperinsulinem ia in 

a large scale study, which studied 14,000 people all around the world (Rung et 

al, 2009).
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P r e p r o i n s u l i n  P r o i n s u l i n  M a t u r e  I n s u l i n

NH3+

I Signal 
Sequence

C C h a in
Proteolysis Proteolysis

C O O -C O O - C O O -

-O O CC hain

Signal
Sequence C peptide

Figure 1.1. P rocessing  of p re p ro in su lin . The SP sequence (23 amino acids) 

is removed from the N-terminus of preproinsulin by proteases. This forms 

three disulphide bonds producing proinsulin. Further proteolytic cleavage of 

proinsulin removes the C-peptide producing mature insulin. Redrawn from 

(Nelson et al, 2008).

1.2.3. Signs an d  sym ptom s

Type 2 diabetes often develops slowly from pre-diabetes and symptoms may 

not be obvious for years (Diabetes UK, 2014). The characteristic symptoms of 

type 2 diabetes include blurred vision, dehydration, excessive thirst, polydipsia 

(increased fluid intake) and polyuria (excessive urine production), which 

develop as a result of hyperglycaemia. In diabetes, insulin producing p-cells are 

either partially or completely unable to use glucose as a fuel and therefore 

switch to using fats, carbohydrates and protein metabolism as a fuel source 

instead. This requires more energy and leads to polyphagia (excessive eating), 

weight loss and lethargy (Alberti & Zimmet, 1998; Cooke & Plotnick, 2008;

5



World Health Organisation, 1999). Additionally, hyperglycaemia can lead to skin 

infection as a result of open and slow healing sores because it is m ore difficult 

for the body to heal itself (Alba-Loureiro et al, 2007).

Serious long-term complications of type 2 diabetes include nerve dysfunction, 

cardiovascular disease, microvascular damage, renal failure, blindness, 

im potence and poor healing, and are a resu lt of prolonged hyperglycaemia 

(Alberti & Zimmet, 1998; Blonde, 2009; W orld Health Organisation, 1999). 

These complications may also occur if the disease is not controlled correctly. 

Hypoglycaemia is caused by inaccurately adm inistered insulin. A shortage of 

insulin causes the body to switch to metabolising fatty acids and as a result 

produces ketone bodies. This response results in ketoacidosis and causes 

dehydration in addition to many of the sym ptom s and complications already 

described (Kitabchi & Nyenwe, 2006). Another metabolic complication is known 

as hyperglycaemia hyperosm olar state and is the end result of sustained 

osmotic diuresis. It is characterised by severe hyperglycaemia, hyperosm olarity 

and dehydration, but w ithout ketoacidosis (Kitabchi & Nyenwe, 2006; Stoner,

2005).

1.2.4. Diagnosis

Diabetes is diagnosed by recurren t or persisten t hyperglycaemia. This can be 

dem onstrated by any of the following criteria: a fasting plasma glucose level of 

7.0 mM; a single plasma glucose reading in excess of 11.1 mM; and an oral 

glucose tolerance test (OGTT) adm inistered 2 hours after 75 g oral glucose with 

fasting plasma glucose concentrations in excess of 11.1 mM (Alberti & Zimmet, 

1998; World Health Organisation, 1999).

Glycosylation of haemoglobin (HbAlc) is prim arily used as a treatm ent-tracking 

test and reflects average glucose levels over 8-12 weeks (Rahbar et al, 1969; 

World Health Organisation, 2011). M easurem ents can be perform ed at any tim e 

and there is no need for fasting. It is recom m ended tha t HbAlc be used to 

m easure blood glucose control in both pre-diabetics and patients w ith diabetes.
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A reading of 6.5% HbAlc or above is used to diagnose diabetes (World Health 

Organisation, 2011). OGTT or intravenous glucose tolerance tests are used to 

determine the pancreatic insulin response and degree of insulin resistance. 

However, it was noted that glucose administered orally promoted a significantly 

greater insulin response than glucose administered intravenously (Figure 1.2), 

although plasma glucose levels were the same (Creutzfeldt & Ebert, 1985; 

Nauck et al, 1986; Perley & Kipnis, 1967). Further, cross reactivity with partially 

degraded proinsulin and insulin may occur and as a result insulin measurement 

may be problematic. It is especially problematic in patients who have developed 

anti-insulin antibodies through administering animal insulin. As a result, C- 

peptide concentration has been used as a semi quantitative measure of (3-cell 

secretory activity instead of insulin itself. C-peptide has a half-life 2.5 times 

longer than insulin and therefore higher concentrations exist in the peripheral 

circulation and levels fluctuate less (Vezzosi et al, 2007).

Control Subjects Type 2 Diabetic Patients
0.8-1

|  0 .4 -
3
c
3
i/i

£  0 .2 -

60 120 180

0 .8-1

|  0 .4 -
3
c
3i/i
£  0 .2 -

120 18060

Time (minutes) Time (minutes)

 Oral Glucose --------Intravenous Glucose

Figure 1.2. The in c re tin  effect in h ea lth y  su b jec ts  an d  type 2 d iabetic  

p a tie n ts . Venous insulin levels after oral glucose load (50 g/400 ml, black) 

and during intravenous glucose (blue) in healthy subjects and type 2 

diabetic patients. Redrawn from (Nauck et al, 1986).
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1.2.5. Treatm ent

More intensive glucose control, mainly determ ined by HbAlc levels, can delay 

or prevent the developm ent and progression of serious complications in type 2 

diabetics (Blonde, 2009). Initial trea tm en t of type 2 diabetes generally begins 

with non-pharmacological interventions such as diet, lifestyle and exercise. 

These interventions combined with antihyperglycaemic agents (such as 

metformin) are used to im prove blood glucose control (Table 1.2). If a HbAlc 

level greater than 7% is not achieved within 2-3 months, then  the 

recom m ended second stage is the addition of hypoglycaemic agents (such as 

sulfonylureas) or insulin injections to the trea tm en t (Table 1.2). Hypoglycaemic 

agents reduce plasma glucose levels by increasing insulin secretion, reducing 

insulin resistance an d /o r delaying glucose absorption in the gut (Nathan et al, 

2008; Nathan et al, 2009; Wright, 2009).

In many cases trea tm en t with either antihyperglycaemic or hypoglycaemic 

agents is not usually enough to achieve adequate blood glucose control and 

therefore insulin therapy is intensified (Meneghini, 2009; Swinnen et al, 2009; 

Wright, 2009). However, insulin therapy has a num ber of risks associated with 

it including hypoglycaemia, w eight gain and increased risk of colorectal cancer 

(Chiasson, 2009). These risk factors, together w ith the route of adm inistration 

(usually subcutaneous injection), contribute to many patients being reluctant to 

m aintain intensive insulin therapy (Hamnvik & McMahon, 2009).

Consequently, these classic treatm ents are often unsatisfactory, which is why 

there is a crucial need for new  classes of glucose lowering agents. Recently, 

incretin-based therapies have been used in the trea tm en t of type 2 diabetes, 

namely Exenatide and Liraglutide (Table 1.2). These drugs have the ability to 

improve glycaemic control by preserving norm al physiological responses to 

food intake.
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Table 1.2. Summary of g lucose low ering drugs

Drug M echanism of Action A dverse Effects

Metformin Suppresses glucose 

produced by the liver

Gastrointestinal side effects, renal 

insufficiency

Insulin Lowers blood glucose 

levels

1-4 injections daily, monitoring, 

w eight gain, hypoglycaemia, 

colorectal cancer

Sulfonylurea Enhances insulin 

secretion

W eight gain, hypoglycaemia

Thiazolidine or 

glitazone

Increases sensitivity 

of muscles, fat and 

liver to insulin

Fluid retention, w eight gain, bone 

fractures, congestive heart failure, 

increase in myocardial infarction

GLP-1R agonists 

(Liraglutide and 

Exenatide)

Potentiates glucose 

stim ulated insulin 

secretion

2 injections daily, frequent 

gastrointestinal side effects, papillary 

thyroid cancer, pancreatitis, long­

term  safety not established

a-glucosidase

inhibitor

Prevent digestion of 

carbohydrates

3 tim es daily dosing, frequent 

gastrointestinal side effects, 

hypoglycaemia

Glinide Enhances insulin 

secretion

3 tim es daily dosing, hypoglycaemia, 

w eight gain

Amylin agonist Inhibits glucagon 

secretion

3 injections daily, frequent 

gastrointestinal side effects, long­

term  safety not established

DPP-4 inhibitor Enhances the effects 

of GLP-1 and GIP, 

increasing glucose 

m ediated insulin 

secretion

Long-term safety not established

Summary of currently available glucose lowering drugs, their m echanisms of 

action and adverse effects (Drucker e t al, 2010; Nathan et al, 2009).
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1.3. GLP-1 in type 2 diabetes

1.3.1. Incretin horm ones

Incretins are gastrointestinal horm ones tha t contribute to postprandial insulin 

release (Nauck et al, 2011; Perley & Kipnis, 1967). GLP-1 and glucose- 

dependent insulinotropic polypeptide (GIP) are two major incretins and are 

thought to be responsible for up to 70% of insulin secreted from the p-cells of 

the pancreas following food intake. This increase in insulin is called the 'incretin 

effect' and m aintains glucose concentrations a t low levels irrespective of the 

am ount of glucose ingested. This is achieved by increasing the sensitivity of p- 

cells to glucose (Holst e t al, 2008). The ‘incretin effect' is either reduced or 

absent in type 2 diabetic patients and is due to the loss of insulinotropic action 

of GLP-1 and GIP. However, m ore recently it has been suggested th a t the 

secretion of GIP and GLP-1 is norm al in type 2 diabetic patients (Meier & Nauck, 

2010). In opposition to this la tter suggestion, evidence strongly suggests a role 

for incretin horm ones or their actions in the treatm ent of type 2 diabetes 

(Haluzik, 2014; Knop et al, 2007; Nauck et al, 1986; Nauck et al, 1993; Toft- 

Nielsen, 2001; Zander e t al, 2002).

The GIP gene is mainly expressed in K-cells and enterochrom affin cells of the 

proximal small intestine. GIP secretion is stim ulated by enteral glucose, lipids 

and products of meal digestion in a concentration dependent m anner (Schirra et 

al, 1996). In patients w ith type 2 diabetes, GIP concentrations after food intake 

are either normal or slightly elevated. GIP infusion does not reduce plasm a 

glucose concentrations in type 2 diabetics. As a resu lt GIP has not been thought 

of as a suitable candidate for therapeutic developm ent (Holst & Gromada, 2004; 

Vilsboll et al, 2002). In contrast, type 2 diabetic patients have decreased GLP-1 

activity (Kjems et al, 2003; Knop et al, 2007; Toft-Nielsen, 2001). It is currently  

unknow n w hether reduced GLP-1 activity is a cause or consequence of diabetes. 

In response to glucose, norm al GLP-1 secretion is seen in first degree relatives 

of type 2 diabetic patients, which suggests tha t a reduction in GLP-1 secretion 

seen in type 2 diabetic patients is m ore likely acquired (Nauck et al, 2004;
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Nyholm et al, 1999). Additionally, glucose dependent insulin secretion is 

induced by GLP-1 in type 2 diabetic patients under hyperglycaemic conditions 

(Holst et al, 2009; Nauck et al, 1993; Salehi e t al, 2010). Furtherm ore, 

adm inistration of exogenous GLP-1 to type 2 diabetic patients causes near­

norm alisation of hyperglycaemic conditions (Nauck et al, 1993; Nauck et al, 

2009; Ratner e t al, 2010). As a result, GLP-1 based strategies appear a m ore 

suitable target for the trea tm en t of type 2 diabetes (Gallwitz, 2010).

The insulinotropic effects of GLP-1 and GIP is reduced or absent in patients with 

type 2 diabetes (Meier & Nauck, 2010). Glucotoxicity has been suggested as the 

cause for this diminished effect because norm alisation of blood glucose levels 

restores incretin levels and efficiency (Hojberg et al, 2009; Poitout, 2013). 

Interestingly, lipotoxicity has recently been dem onstrated to also have an effect 

on GLP-1 and GIP receptor expression and signalling (Kang et al, 2013). It was 

dem onstrated tha t GLP-1R expression was inhibited with prolonged exposure 

to palm itate in isolated mouse islets and insulin secreting cells, reducing glucose 

stim ulated insulin secretion and abolishing GLP-1 signalling. In db/db  mice 

islets, both GLP-1 and GIP receptor expression was inhibited and restored  with 

the addition of lipid lowering drug bezafibrate. Glucose tolerance, islet 

morphology and p-cell mass improved in db/db  mice w ith bezafibrate and 

dipeptidyl peptidase-IV (DPP-IV, see section 1.3.2) inhibitor des-fluoro- 

sitagliptin in combination. The adm inistration of bezafibrate with GLP-1 agonist 

exendin-4 enhanced these effects (Muscelli et al, 2008). This links obesity w ith a 

reduced incretin effect, independent of glucose tolerance. Additionally, GLP-1 

and GIP receptor expression is reduced in islets isolated from type 2 diabetic 

patients (Shu et al, 2009), suggesting the mechanism s observed in mice are also 

highly likely to occur in humans.

1.3.2. Synthesis and secretion  o f GLP-1

GLP-1 is 42 amino acids in length and is synthesised from the post-translational 

modification of proglucagon, by prohorm one convertase (PC) 1 w ithin the 

intestinal L-cells. PCI is specific to GLP-1 production in the L-cells (Dhanvantari
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et al, 2001; Mojsov et al, 1986). The proglucagon gene (Figure 1.3A) is 

expressed in both the pancreatic a-cells and in the intestinal L-cells, bu t post- 

translational processing differs in these two tissues (Holst, 2007; Orskov et al, 

1986; Orskov et al, 1987). In the pancreatic a-cells (Figure 1.3B), proglucagon is 

processed to glucagon, intervening peptide (IP)-l, m ajor proglucagon fragm ent 

(MPGF) and glicentin-related pancreatic peptide (GRPP) by PC2 (Mojsov et al, 

1986; Rouille et al, 1994). In the intestinal L-cells (Figure 1.3C), proglucagon is 

cleaved to GLP-1, glucagon like peptide-2 (GLP-2), IP-2, oxyntomodulin and 

glicentin by PCI (Baggio & Drucker, 2004; Orskov et al, 1989; Thomas et al, 

1991). However, it has been suggested tha t recom binant expression of PC2 can 

cause pancreatic a-cells to also produce GLP-1 (W ideman et al, 2007; W ideman 

et al, 2009; W ideman et al, 2006).

In secretory vesicles, the first six amino acids of GLP-1 are cleaved from the N- 

term inus forming the bioactive peptides. Approximately 80% of truncated GLP- 

1 forms the predom inantly secreted GLP-1 (7-36)-NH2 and the rem aining 20% 

is released as GLP-1 (7-37) (Figure 1.4) (Vahl et al, 2003). Both GLP-1 (7-36)- 

NH2 and GLP-1 (7-37) bind to the GLP-1R with similar affinity and show similar 

potency (Orskov et al, 1993). GLP-1 is produced in response to food intake, in 

particular glucose and triacylglycerols, and lowers blood glucose levels (Nauck 

et al, 2011; Nystrom, 2008). In tim es of fasting, GLP-1 plasma concentrations 

are very low and can be low ered even further w ith the adm inistration of 

som atostatin in humans, suggesting there  are some basal rates of secretion 

(Holst, 2007). Typically, 'to tal' GLP-1 concentrations are about 5-15 pmol/1 in 

basal state, rising to about 20-60 pmol/1 after food intake (Nauck et al, 2011). 

The secretion of GLP-1 from L-cells increases w ithin about 10 m inutes of food 

intake, which is la ter than the 'cephalic phase' stim ulation of insulin secretion. 

This suggests th a t neuronal signals generating insulin release does not influence 

GLP-1 secretion. Evidence suggests th a t the presence of nutrients in the gut and 

the interaction w ith the microvilli of L-cells are responsible for GLP-1 secretion 

(Holst, 2007).
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In vivo, GLP-1 has a very short half-life of ~1.5 minutes due to the rapid 

proteolytic degradation of GLP-1 by enzyme DPP-IV (Hansen et al, 1999; Larsen 

et al, 2001; Mentlein, 2009; Vilsboll et al, 2003). This enzyme cleaves the active 

GLP-1 (7-36)-NH2/(7-37) to its inactive GLP-1 (9-36)-NH2/(9-37) form by 

removing two amino acids at the N-terminus of the peptide (Kieffer et al, 1995; 

Lopez de Maturana & Donnelly, 2002; Montrose-Rafizadeh et al, 1997). GLP-1 

(9-36)-NH2 and GLP-1 (9-37) (Figure 1.4) have both been identified as products 

of GLP-1 cleavage by DPP-IV action in vitro and in vivo (Mentlein, 2009). The 

degradation occurs so quickly that  less than 25% of the active GLP-1 secreted 

enters the portal vein prior to reaching the liver (Reimann, 2010). As a result, it 

is estimated that approximately 85% of circulating postprandial GLP-1 is either 

GLP-1 (9-36)-NH2 or GLP-1 (9-37) (Abu-Hamdah et al, 2009).

A Proglucagon

B Pancreas

C Intestinal L-cells

Proglucagon

GRPP Glucagon IP-1 Major Proglucagon Fragment
30 33 61 64 69 72 158

Glicentin GLP-1 IP-2 GLP-2
78 107NHJ ' m  12/ 126 158

GRPP Oxyntomodulin

Figure 1.3. The p o s t-tra n s la tio n a l p ro cess in g  of p roglucagon. In the

pancreas, proglucagon (A) is cleaved to glucagon, GRPP, IP1 and MPGF by 

PC2, respectively (B). (C) In the intestinal L-cells proglucagon is processed by 

PCI to GLP-1, GLP-2, IP2, oxyntomodulin and glicentin, respectively.
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Figure 1.4. The post-translational processing of GLP-1. DPP-IV cleaves the 

active GLP-1 (7-36)-NH2/(7-37) to its inactive GLP-1 (9-36)-NH2/(9-37) form. 

The cleavage site is indicated by the arrow.

1.3.3. Biological activities o f GLP-1

GLP-1 has several actions in various tissues and exerts its effects through its cell 

surface receptor, the GLP-1R (Figure 1.5). Other m em bers of the glucagon 

family of peptides such as GLP-2, glucagon and GIP do not bind the GLP-1R at 

physiologically relevant concentrations (Holst, 2007). The hum an GLP-1R 

(hGLP-lR) gene is transcribed in pancreatic islet, brain, heart, intestine, kidney, 

liver, lung and stomach. However, the actions of GLP-1 in fat and muscle m ost 

likely occur through indirect m echanisms and do not occur in many species 

(Bullock et al, 1996; De Leon et al, 2006; Gupta e t al, 2010; Wei & Mojsov, 1995). 

The expression of the GLP-1R is consistent w ith the roles of GLP-1 in glucose 

hom eostasis, p-cell proliferation, heart rate, food intake and appetite and even 

learning (De Leon et al, 2006).

In the pancreas, GLP-1 increases insulin secretion from islet p-cells and 

suppresses glucagon secretion from islet a-cells, in a glucose dependent m anner 

(De Marinis e t al, 2010; Rayner et al, 2001). Additionally, GLP-1 has been shown
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to prom ote p-cell proliferation and prevent apoptosis (Cunha et al, 2009; Li et 

al, 2005; Quoyer et al, 2010). Additionally, GLP-1 delays gastric emptying in the 

gastro intestinal tract and also plays a role in supressing appetite by acting as a 

postprandial satiety signal to the brain (Kim et al, 2009; Schirra e t al, 1996). 

Furtherm ore, GLP-1 plays an im portant role in the enteric and central nervous 

system. The release of GLP-1 is tightly regulated and involves the gut-to-brain 

and the brain-to-periphery axis (Burcelin et al, 2009; Hayes, 2012; Hayes e t al, 

2009; van Bloemendaal et al, 2014). Pharmacological applications of GLP-1 have 

dem onstrated a num ber of positive effects in the cardiovascular system, 

suggesting GLP-1 may play an im portant role in tha t system (Angeli & Shannon, 

2014; Grieve et al, 2009). Additionally, evidence suggests GLP-1 and its receptor 

may m odulate com ponents of the insulin signalling pathw ay and decrease 

hepatic steatosis in vitro (Gupta et al, 2010).

Interestingly, evidence is emerging to suggest GLP-1 (9-36)-NH2 and GLP-1 (9- 

37), the inactive forms of GLP-1, strongly reduce GLP-1R activity w ithin 

pancreatic p-cells and have insulin-like actions on heart, liver and vasculature. It 

has therefore been proposed tha t they may act through a novel signalling 

pathw ay by binding to a different cell surface receptor (Tomas & Habener, 

2010).
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Figure 1.5. Biological ac tiv ities  of GLP-1. GLP-1 increases insulin 

sensitivity, decreases appetite, slows gastric emptying, increases p-cell 

proliferation, increases cardiac function as well as other physiological 

actions as indicated in the diagram. Redrawn from (Baggio & Drucker, 

2007; De Leon et al, 2006).
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1.3.4. GLP-1 based therapies in the treatm ent o f type 2 d iabetes

The binding of GLP-1 to the GLP-1R results in insulin secretion from pancreatic 

p-cells, making them  im portant targets in the trea tm ent of type 2 diabetes. The 

biological and pharmacological activities of GLP-1 have been the basis for two 

type 2 diabetic therapies. The first therapy is based on using DPP-IV inhibitors 

to prevent the breakdow n of GLP-1 from its active to inactive form (Gallwitz, 

2010). The second therapy is based on using DPP-IV resistan t GLP-1 mimetics, 

which replicate the physiological actions of the GLP-1 peptide but with a longer 

half-life.

DPP-IV, also named adenosine deam inase complexin G-protein or cluster of 

differentiation 26 (CD26), is an antigenic enzyme. It is associated with signal 

transduction, immune regulation and apoptosis and therefore is expressed on 

the surface of m ost cell types. DPP-IV is highly specific and cleaves betw een X- 

proline and X-alanine dipeptides (w here X is any amino acid) a t the N-terminus, 

but is unable to cleave peptides with a third proline (for example glycine- 

proline-proline) (Mentlein, 2009). DPP-IV inhibitors increase GLP-1 levels by 2- 

3-fold over 24 hours by inhibiting 90% of plasma DPP-IV activity in vivo. They 

also have an additional advantage of oral adm inistration (Charbonnel et al,

2006). There are currently three  DPP-IV inhibitors, saxagliptin, sitagliptin and 

vildagliptin, used in the trea tm ent of type 2 diabetes in Europe (Khunti & 

Davies, 2010). These inhibitors significantly decrease postprandial glucose 

levels and HbAlc by 0.5-1.0% (Gallwitz, 2010; Gilbert & Pratley, 2009). 

Sitagliptin and vildagliptin have been shown to im prove (3-cell function and 

reduce systolic blood pressure (Deacon & Holst, 2006). However, the long-term 

inhibition of DPP-IV may have adverse effects as this enzyme is expressed in 

many types of tissues and has m any functions (Lamont & Andrikopoulos, 2014; 

Yu et al, 2010). Experimental evidence has dem onstrated an increase in 

infection and some tum ours, supporting adverse immunological and oncological 

effects after prolonged use of DPP-IV inhibitors (Stulc & Sedo, 2010).

The main limitation of GLP-1 is its very short half-life (~1.5 m inutes) due to the 

rapid proteolytic degradation of GLP-1 by DPP-IV, cleaving the active GLP-1 (7-
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36)-NH2 to the inactive GLP-1 (9-36)-NH2 form (Hansen et al, 1999; Larsen et al, 

2001; Vilsboll et al, 2003). DPP-IV cleaves GLP-1 betw een alanine and glutamic 

acid a t positions 8 and 9. A substitution a t position 8 from alanine to valine 

(Ala8Val) stabilises the peptide w ithout affecting its activity and prevents 

peptide degradation. However, the half-life of the modified peptide is still too 

short (~4-5 m inutes) to be used as a drug (Deacon et al, 1998). As a result, 

therapeutic strategies tha t activate GLP-1R and improve GLP-1 actions have 

been extensively studied and developed because of its short half life. This has 

lead to the developm ent of two DPP-IV resistan t GLP-1R agonists, Liraglutide 

and Exenatide. Liraglutide is a long-acting GLP-1 analogue w ith 97% sequence 

homology to hum an GLP-1 (hGLP-1) (Edavalath & Stephens, 2010). It is 

chemically similar to hGLP-1 but w ith structural modifications resulting in 

resistance to GLP-1 inactivation by DPP-IV and prolonged duration of action 

(Gonzalez et al, 2006). Liraglutide has a half-life of approxim ately 11-13 hours 

and is adm inistered once a day irrespective of meal tim es (Pinkney et al, 2010). 

Exenatide is a peptide found w ithin the salivary glands of the Gila m onster 

lizard and has 52% sequence homology to hGLP-1 (Eng et al, 1992). It is also not 

enzymatically degraded by DPP-IV and therefore has a prolonged in vivo half- 

life of 3.4-4 hours com pared with hGLP-1. As a result it is adm inistered twice 

daily within 60 m inutes of a meal (Gallwitz, 2006). Both GLP-1R agonists are 

currently in use as drugs for the trea tm en t of patients w ith type 2 diabetes, as 

they are effective insulinotropic agents, regulating blood glucose levels by 

increasing insulin secretion and supressing glucagon secretion in a glucose 

dependent m anner (Bond, 2006; Kim Chung le e t al, 2009). Liraglutide and 

Exenatide significantly reduce both fasting and postprandial glucose levels and 

HbAlc levels by 0.8-1.5% (Edavalath & Stephens, 2010). The m ost common side 

effects of GLP-1 strategies are dyspepsia or nausea, which may lead to delayed 

gastric emptying. However, the effects seem to subside w ith continuous 

adm inistration (Buse et al, 2009; Gallwitz, 2010). Acute pancreatitis and 

papillary thyroid cancer has been reported  in a few rare  cases but their clinical 

significance rem ains unclear (Drucker et al, 2010). The side effects associated 

with the long-term adm inistration of these peptides have necessitated the 

search for orally active small molecule agonists of the GLP-1R (Coopman et al,
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2010). Interestingly, GLP-1 mimetics have recently been shown to cross the 

blood-brain barrier and have im pressive neuroprotective effects in 

neurodegenerative disorders such as strokes, Parkinson's disease and 

Alzheimer's disease (Campbell & Drucker, 2013; Holscher, 2014; Hunter & 

Holscher, 2012).

A series of eleven-amino acid peptide agonists of the GLP-1R, have been 

reported  to have excellent potency and in vivo activity in ob/ob  mouse models of 

diabetes (Haque et al, 2010; Mapelli et al, 2009). These peptides are closely 

related structurally to nine C-terminal residues of GLP-1 but are substituted 

with several unnatural amino acids a t position 11, such as 

homohomophenylalanine. This gives rise to the opportunity  of increasing 

stability against proteolytic degradation by DPP-IV. However, the activity of 

these peptides can be blocked with inactive exendin (9-39) (exendin antagonist) 

(Mapelli et al, 2009).

1.4. G-protein coupled receptors (GPCRs)

1.4.1. GPCRs in drug discovery

GPCRs, also named seven transm em brane receptors, are the largest family of 

cell surface receptors. GPCRs are the m ost common target for medical 

therapeutics due to their involvement in many physiological and pathological 

processes. Over 50% of drugs available on the m arket act on GPCRs (Millar & 

Newton, 2010). Therefore, a need for a greater understanding of these targets 

and interaction w ith drugs is required to allow for novel drug discovery.

1.4.2. Classification and structure

All GPCRs are m ade up of a single polypeptide chain of up to 1100 amino acids, 

which pass through the plasma m em brane seven times. This m em brane 

topology results in an extracellular N-terminal domain, seven transm em brane
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(TM) a-helices joined by three extracellular loops (ECL) and th ree  intracellular 

loops [ICL) followed by an intracellular C-terminal domain tha t interacts w ith G- 

proteins (Figure 1.6). GPCRs are classically divided into three  families: A, B and 

C based on their sequence homology and functional similarities (Kristiansen, 

2004).

Family A GPCRs, also called the rhodopsin-like family, is the largest subfamily 

(Figure 1.6A). It consists of 672 m em bers and accounts for approxim ately 85% 

of all GPCR genes (Heilker e t al, 2009; Millar & Newton, 2010). A short N- 

term inal domain and a disulphide bridge, which join ECL1 and ECL2 is 

characteristic to this family. Additionally, highly conserved residues in the 

transm em brane bundle and a C-terminal palm itoylated cysteine residue is 

p resen t (Jacoby et al, 2006). The crystal structure of rhodopsin dem onstrated 

the transm em brane domains of family A GPCRs 'kink' and 'tilt' (Palczewski, 

2000). This was further supported by solving the crystal structures of the p2- 

and pi-adrenergic receptors (AR) and the A2A-adenosine receptor (Millar & 

Newton, 2010). Comparisons betw een these structures revealed the 

transm em brane domains to be extrem ely similar and small molecule agonists 

would occupy the same space w ithin the transm em brane pocket (Hanson & 

Stevens, 2009).

Family B GPCRs, also known as the secretin receptor family, is a small family 

m ade up of only 15 m em bers (Kristiansen, 2004; Parth ier e t al, 2009). This 

family is distinguishable from the o ther two families by the large N-terminal 

extracellular domain, which is 100-160 amino acids in length and has an 

im portant role in agonist binding (Figure 1.6B). Additionally, this family 

contains several conserved disulphide bonds in the N-terminus of the receptor, 

which stabilises the large N-terminal structure  (Parthier e t al, 2009). This study 

has concentrated on the GLP-1 R w ithin this family.

Family C GPCRs, also named the glutam ate family, form another small family 

consisting of 24 m embers. It is characterised by large N-terminal and C-terminal 

domains. Furtherm ore, a conserved disulphide bridge links ECL1 to ECL2, in
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addition to a short and highly conserved ICL3 (Figure 1.6C). The N-terminal 

domain of family C GPCRs is usually described as a Venus fly trap ' (Kristiansen, 

2004; Urwyler, 2011). This agonist binding site is a characteristic of all family C 

GPCRs except the GABAb receptor which contains nine conserved cysteine 

residues linking the Venus fly trap ' to the transm em brane bundle (Brauner- 

Osborne et al, 2007).
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Figure 1.6. S tru c tu re  o f GPCRs. All GPCRs share a common membrane 

topology consisting of a NH2-terminal extracellular domain, seven 

transmembrane  a  helices joined by three ECL and ICL and an intracellular 

COOH-terminal domain. Red circles denotes conserved residues. (A) Family A 

GPCRs contain a disulphide bridge, which connects ECL1 and ECL2 causing 

the receptor to 'kink' and 'tilt'. The C-terminal domain contains a conserved 

palmitoylated cysteine residue. (B) Family B GPCRs are characterised by a 

long N-terminal tail consisting of many conserved disulphide bonds. (C) 

Family C GPCRs have very large N- and C-terminal domains with an agonist 

binding domain described as a 'venus fly trap' located at the N-terminus. 

Additionally, a conserved disulphide bridge connects ECL1 and ECL2 and a 

short  and conserved 1CL3 also define family C GPCRs. Redrawn from (George 

et al, 2002).
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1.4.3. The N-terminal signal peptide (SP)

Approximately 15% of GPCRs show evidence of a signal peptide (SP) sequence, 

which is often critical for synthesis and processing of the receptor (Kochi e t al, 

2002). This SP sequence is usually located in the N-terminal domain of the 

protein and is highly structured. It is about 20 amino acids in length and 

contains a run of hydrophobic residues (Huang et al, 2010). The first stage of 

protein targeting is insertion into the ER by binding to the signal recognition 

particle (SRP). This is usually m ediated by a SP sequence within the N-terminal 

domain of the protein (Hegde & Lingappa, 1997). Two types of SP sequences 

can be observed. One group contains a SP sequence, which is cleaved by a signal 

peptidase and is required for ER targeting and insertion. The second group 

possess a non-cleavable anchor sequence within the first transm em brane 

domain for ER targeting and insertion. Interestingly, the ER targeting and 

insertion of GPCRs can occur in either m anner but the m ajority have a non- 

cleavable anchor sequence. Subsequently, the m ature receptor is subjected to 

further post-translational modifications in the Golgi prior to translocation and 

insertion to the plasma m em brane (Wallin & Vonheijne, 1995).

It is unclear why some GPCRs require a cleavable signal sequence and other do 

not. It has been suggested* tha t the SP may be required for cell surface 

expression. Enhanced translocation was dem onstrated w ith the addition of the 

influenza SP sequence to the (k-AR, which ordinarily contains a non-cleavable 

anchor sequence (Guan et al, 1992). Additionally, the SP of the vasoactive 

intestinal peptide (VPAC) 1 receptor was found to play a critical role in receptor 

expression and functionality. It was suggested tha t the SP was cleaved during 

translocation to the plasma membrane, m ost likely in the ER (Couvineau et al,

2004). Statistical analysis suggests tha t the length of the N-terminal domain and 

the num ber of positively charged residues it contains denotes the presence of a 

cleavable SP sequence (Wallin & Vonheijne, 1995). Cleavage of the SP sequence 

is not essential for all GPCRs tha t contain them. Deleting the SP sequence of the 

thyrotropin receptor (TR) abolished functionality (Akamizu et al, 1990; Ban et 

al, 1992). However, the SP of the corticotropin-releasing factor (CRF) receptor 

2a (also known as the corticotropin-releasing horm one receptor), although
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present, was found to be incapable of mediating ER targeting (Rutz et al, 2006; 

Schulz et al, 2010). Further, the SP of the CRFi receptor was required for its 

expression but not its function (Aiken et al, 2005).

The m echanisms for the initial steps of cleavable SP and ER targeting and 

insertion are based on secretory proteins, which m ust be translocated across 

the ER m em brane. Proteins are usually integrated (m em brane proteins) into or 

translocated (secretory proteins) across the ER by ribosomes. This process 

begins by synthesising the N-terminal domain of the protein in the cytosol. 

Translation continues until the cleavable SP sequence is synthesised after which 

the SRP binds and translation halts. The SRP-protein complex is targeted to the 

SRP receptor on the ER m embrane. Translation continues w hen the SRP-protein 

complex is transferred to the translocase complex. M embrane proteins are 

integrated in the ER bilayer and secretory proteins are translocated across the 

ER m em brane (Brodsky, 1998; Hegde & Lingappa, 1997). However, this 

mechanism contains differences betw een GPCRs, which contain a cleavable SP 

sequence or a non-cleavable anchor sequence. For receptors with a non- 

cleavable anchor sequence, translation halts once the anchor sequence appears 

(usually in TM1) and therefore the N-terminal dom ain is synthesised in the 

cytoplasm. As a result, the N-terminal domain is post-translationally 

translocated across the ER m em brane through the translocase complex (Figure 

1.7) (Brodsky, 1998; Kochi e ta l, 2002).

It is difficult to experim entally verify w hether the SP sequence of some GPCRs is 

cleaved or not and as a result their presence is usually predicted. A total of 270 

secreted proteins, which had previously been experim entally shown to have 

the ir SP sequence cleaved w ere predicted w ith less than  80% accuracy (Zhang 

& Henzel, 2004). This difficulty in predicting w hether a SP is cleaved is shown 

by the CRFi and CRF2a receptors. Both receptors w ere predicted to have a 

greater than 98% probability of a cleavable N-terminal SP. However, only the 

type 1 receptor indicated this experim entally (Aiken et al, 2005). However, the 

CRF2a receptor dem onstrated a pseudo SP, which forms p art of the m ature 

protein. A m utation a t position Asn13 resulted in a fully functioning SP, which is
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cleaved (Rutz et al, 2006). Although this result was unexpected, it highlights the 

importance of experimental verification to assess the role of the SP for GPCR 

synthesis, trafficking and function.

Signal Peptide/A nchor Sequence

n e \
STOP

SRP Q  1

f
\

Translocon SRP Receptor

ER M em brane
/

START

Figure 1.7. T arge ting  an d  in se r tio n  o f GPCRs to  th e  ER. The translation of 

the N-terminal tail is stopped once the signal anchor sequence appears and 

SRP binds. The SRP-protein complex is targeted to the SRP receptor on the ER 

membrane. The SRP-protein complex is transferred to the translocase 

complex and translation starts once more.
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1.4.4. AMinked glycosylation o f GPCRs

GPCRs are synthesised in the ER and require translocation to the Golgi. In this 

trafficking process, GPCRs undergo post- or co-translational modifications 

including glycosylation, methylation, phosphorylation, sulfation and lipid 

addition. It is likely tha t glycosylation plays an im portant role in cell surface 

trafficking and m aturation of the receptor (Achour e t al, 2008; Duvernay et al,

2005).

AMinked glycosylation usually occurs in the ER, which adds a glycan core unit 

(glucose3-m annose9-N-acetylglucosamine2) to an asparagine residue w ithin a 

sequence of asparagine-X -serine/threonine, w here X can be any amino acid but 

proline (Balzarini, 2007; Elbein, 1987; Marshall, 1974). Terminal glucose 

residues are cleaved by glucosidases and oligomannoses are formed (Figure 

1.8A) (Helenius & Aebi, 2001). During trafficking of glycoproteins from the ER 

to the Golgi, glycans can be extensively modified to form either complex or 

hybrid N-glycans (Figure 1.8B-C) (Balzarini, 2007; Varki et al, 2009). Hybrid N- 

glycans are formed in the medial Golgi and are due to the incomplete actions of 

a-m annosidase II. Hybrid N-glycans are unable to be processed to complex N- 

glycans (Varki et al, 2009). O-linked glycosylation tha t occurs w ithin the Golgi is 

not very well understood. This process involves the addition of N-acetyl- 

galactosamine to serine or threonine residues and may occur a t any residue 

w ith no sequence protein (An et al, 2009; Brooks, 2009). Glycans can be cleaved 

w ith the use of enzymes. PNGase F cleaves betw een asparagine and N- 

acetylglucosamine residues on oligomannoses and both hybrid and complex N- 

glycans. Endo H cleaves betw een Af-acetylglucosamine residues on 

oligomannoses and some hybrid glycans (Figure 1.8) (Maley et al, 1989).

O-linked glycosylation has been shown to occur in the V2 vasopressin receptor 

(Sadeghi & Birnbaumer, 1999) and 5-opioid receptor (Petaja-Repo et al, 2000). 

However, most GPCRs undergo AMinked glycosylation but the role varies 

betw een receptors. AMinked glycosylation is im portant for cell surface 

expression of angiotensin II receptor subtype I (Deslauriers et al, 1999), follicle- 

stim ulating horm one receptor (Davis et al, 1995), gastrin-releasing peptide
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receptor (GRPR) (Benya et al, 2000), GLP-1R (Chen et al, 2010; W hitaker e t al, 

2012), m elanocortin 2 receptor (Roy et al, 2010), relaxin receptor (Kern et al,

2007), VPAC1 (Couvineau et al, 1994) and p-opioid receptor (Ge et al, 2009). 

However, AMinked glycosylation is not essential for cell surface expression in 

neuropeptide S receptor (Clark e t al, 2010), histam ine H2 receptor (Fukushima 

et al, 1995) and the m uscarinic M2 acetylcholine receptor (van Koppen & 

Nathanson, 1990). Therefore, the role of AMinked glycosylation on m ature 

GPCRs is varied and unpredictable.
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Figure 1.8. S tru c tu re  of com m on N-glycans. AMinked glycosylation at the 

ER involves the addition of oligosaccharides to asparagine residues within a 

sequence of asparagine-X-serine/threonine. (A) Terminal glucose residues 

are cleaved by glucosidases and oligomannoses are generated. During 

trafficking of glycoproteins from the ER to the Golgi, glycans can be 

extensively modified to form either hybrid [B] or complex (C) N-glycans. The 

cleavage sites of glycosidase enzymes PNGase F and Endo H are indicated. 

Asn, asparagine; Fuc, fructose; Gal, galactose; GlcNAc, /V-acetylglucosamine; 

Man, mannose; Ser, serine; Thr, threonine; X, any amino acid except proline.

28



1.4.5. The C-terminal dom ain

The C-terminal dom ain of GPCRs is known to interact w ith intracellular proteins 

involved in the internalisation desensitisation, down regulation and arrestin  

signalling of the receptor (McArdle et al, 2002). There are three regions 

involved, which include: a region just dow nstream  of TM7; the very end of the 

C-terminus; and the region in betw een (Figure 1.9) (Kuramasu et al, 2006).

The region located just dow nstream  of TM7 is called the helix-8. It is an a-helix, 

which term inates w ith palm itoylated cysteine residues and associates w ith a 

num ber of proteins (Figure 1.9) (Kuramasu et al, 2006). In the m etabotropic 

glutam ate receptor (mGluR) type 7a and 7b, the (3y subunit of the G-protein and 

calcium (Ca2+)/calm odulin bind to this domain and regulate P and Q type Ca2+ 

channels (O'Connor e t al, 1999). Further, the dopam ine receptor interacting 

protein 78 binds to a conserved sequence located in the helix-8 domain of the 

dopam ine D1 receptor and is responsible for receptor trafficking to the plasm a 

m em brane (Bermak et al, 2001). At the very end of the C-terminal domain, 

many GPCRs possess a PDZ binding domain, which plays a role in targeting, 

internalisation, recycling and signalling of the receptor (Figure 1.9) (Bockaert et 

al, 2003). The PDZ binding domains are grouped into three classes based on 

their amino acid sequences (Table 1.3) (Harris & Lim, 2001; Hung & Sheng,

2002). GPCRs w ithout a PDZ binding domain have been shown to interact w ith 

o ther proteins through the very end of the C-terminus. For example, Tctex-1 

interacts with the C-terminal end of the rhodopsin receptor. A m utation a t the 

C-terminal end of the receptor inhibited this interaction and prevented the 

transpo rt of rhodopsin in vesicles to the rod (Tai e t al, 1999). The C-terminus of 

the rhodopsin receptor was also reported to in teract w ith ADP-ribosylation 

factor (ARF) 4 (Deretic et al, 2005). The region betw een helix-8 and the very 

end of the C-terminus is referred to as 'binding sites w ith GPCR interacting 

proteins' (Figure 1.9) (Kuramasu et al, 2006). The mGluR (types la , 5a and 5b) 

contains a PPXXFR motif, which is known as the hom er ligand or enabled/VASP 

homology (EVH)-binding domain. This region interacts w ith EVH-like dom ain of 

hom er proteins 1, 2 and 3. This interaction plays a role in targeting and 

regulating the mGluR to dendritic synapse sites (Ango et al, 2000; Ango et al,
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2001; Ango et al, 2002). The (k-AR is another example of protein interactions in 

this region. A PXXP m otif interacts with the Src homology 3 domain of Src and 

results in the activation of extracellular signal-regulated kinase (ERK) (Cao et al, 

2000). In addition, the extrem e of TM7 close to the C-terminal domain is also 

known to interact with other proteins. A NPXXY m otif w ithin the serotonin 5- 

hydroxytryptam ine receptor 2a (5-HT2a) interacts w ith ARF1 and couples to 

phospholipase D (PLD) in a G-protein independent m anner (Robertson et al,

2003).

GPCRs regulate intracellular effector proteins such as phospholipase C (PLC) 

and AC via heterotrim eric G-proteins (see section 1.4.6). Upon high levels or 

sustained levels of agonist stimulation, G-protein m ediated responses typically 

desensitise (Ferguson, 2001). Desensitisation occurs by either an agonist 

specific response (homologous desensitisation) or activation of a different 

receptor (heterologous desensitisation) (see section 1.4.7). GPCR 

phosphorylation and arrestins m ediate the receptor's desensitisation and cause 

uncoupling from G-proteins (Bohm et al, 1997a). Typically, GPCRs are 

phosphorylated at regions of the C-terminal dom ain in response to agonist 

binding (Tobin, 2008). For many GPCRs, phosphorylation facilitates interaction 

with arrestin. This sterically hinders G-protein association and prevents 

activation of the receptor (Ferguson, 2001; Zhang et al, 1997). Arrestin is also 

involved in targeting desensitised GPCRs for internalisation via activating 

protein (AP)-2, clathrin, Src and mitogen-activated protein kinase (MAPK) 

(Ferguson, 2001; Goodman et al, 1996). This is interesting because it now 

appears tha t GPCRs desensitised by G-protein activation may instead be due to 

arrestin  m ediated MAPK activation. It is the C-terminal domain of the receptor, 

which is phosphorylated to bind and activate arrestin  (McArdle et al, 2002).

GPCRs are internalised via both clathrin-coated pits and caveolae m ediated 

endocytosis (Vazquez et al, 2005a). Clathrin interacts w ith motifs p resen t a t the 

C-terminal domain of the receptor (Clague, 1998; Trowbridge et al, 1993). The 

C-terminal domain of GPCRs is also required for targeting to endosomes, Golgi 

and the plasma m em brane. These motifs are four to six amino acids in length
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and contain a critical tyrosine residue and follow a general consensus of YXX<t>, 

w here Y is a tyrosine residue, X denotes any amino acid and O is a hydrophobic 

residue (Ohno et al, 1995; Sandoval & Bakke, 1994; Trowbridge et al, 1993). 

Previous studies have show n this tyrosine based m otif associates with clathrin, 

however, a common binding m otif has not yet been identified (Chang et al, 

1993; Glickman et al, 1989; Pearse, 1988; Sorkin & Carpenter, 1993; Sorkin et 

al, 1995). For some GPCRs such as the p2-AR, GRPR and the GLP-1R, serine and 

threonine rich amino acid sequences are required in TM3 or the cytoplasmic 

dom ain for internalisation of the receptor (Benya et al, 1993; Hausdorff et al, 

1991; W idmann, 1997). Some o ther GPCRs require arom atic residues, for 

example the neurokinin 1 recep tor or the angiotensin II receptor (Bohm et al, 

1997b; Thomas et al, 1995). Dileucine sequences have also been shown to 

prom ote GPCR internalisation by binding to adap ter proteins (Ferguson, 2001).

Table 1.3. Classification o f PDZ dom ains

Class Harris & Lim (2001) Hung & Sheng (2002)

I -S/T-X-O -X-S/T-X-O

II -0-X-<D -X-(D-X-<P

III -X-X-C -X-D/E-X-O

The PDZ domains are classified by the ir amino acid sequence into three classes 

by two research groups (Harris & Lim, 2001; Hung & Sheng, 2002). X denotes an 

unspecified amino acid and d> denotes a hydrophobic amino acid.
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Figure 1.9. In te rac tin g  p ro te in s  of th e  C -term inus of GPCRs. Diagram 

representing the three regions of the C-terminal domain known to interact 

with intracellular proteins. The first region is called the helix-8, which is an oc- 

helix that  terminates with palmitoylated cysteine residues. The second 

includes the PDZ domain and is located at the very end of the C-terminal 

domain. The region in between is known as ‘binding sites with GPCR 

interacting proteins'. Redrawn from (Kuramasu et al, 2006).

1.4.6. H e te ro tr im e ric  G -pro tein  ac tiv a tio n  an d  reg u la tio n

Upon agonist binding, GPCRs undergo a conformational change and transmits 

extracellular signals through heterotrimeric G-proteins. The a and (3y subunits 

of the activated G-protein promote the actions of a series of membrane-bound
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or cytosolic signalling molecules, triggering signalling cascades and producing 

specific cellular responses. However, more G-protein independent signalling 

pathw ays have been described. GPCRs may activate signalling pathways by 

adap tor molecules or direct signalling (Claing et al, 2002; Hall & Lefkowitz, 

2002; Tuteja, 2009]. The G-proteins are so called because they in teract with 

guanosine diphosphate (GDP] and guanosine triphosphate (GTP]. There are two 

main types of G-proteins, m onomeric or heterotrim eric, both of which are 

involved in signal transduction pathways. Monomeric G-proteins include ARF, 

Rab, Ran, Ras and Rho families. Heterotrim eric G-proteins are of m ost in terest 

due to the ir involvem ent in physical interactions w ith GPCRs (Cabrera-Vera et 

al, 2003].

H eterotrim eric G-proteins are made up of a, (3 and y subunits. The a  subunit 

(Ga) consists of an a-helical domain, which binds guanine nucleotides and a 

GTPase domain, which binds and hydrolyses GTP. The Ga subunit has been 

categorised into four families based on sim ilarities w ithin their prim ary 

sequence: Gas, Gai/0, Gaq/n  and Gai2/ i 3. The p and y subunits are bound in a 

complex (Gpy) through an N-terminal coil on the Gy subunit to the base of the 

Gp subunit. The Gpy subunit binds to the hydrophobic pocket in the Ga subunit 

in the inactive state  (Cabrera-Vera et al, 2003]. The Ga subunit is bound to the 

Gpy subunit w hen GDP is bound, to form an inactive apy  trim er (Figure 1.10A). 

Upon agonist binding, the receptor becomes active and undergoes a 

conformational change. This conformational change increases the receptor's 

affinity for the G-protein. The receptor functions as a guanine nucleotide 

exchange factor (GEF] once bound to Ga-GDP, exchanging GDP for GTP. The 

binding of GTP leads to a reduced affinity of the Ga subunit for the Gpy complex 

and the dissociation of the heterotrim er. Ga-GTP is released from the 

heterotrim er, activating the G-protein and initiating signal transduction events 

(Figure 1.10B). After signal transduction, the Ga subunit is hydrolysed from GTP 

to GDP by Ga-GTPase and as a resu lt the Ga subunit associates with the Gpy 

complex and is inactivated (Figure 1.10C) (Cabrera-Vera et al, 2003; Tuteja, 

2009].
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The activated heterotrim eric G-protein can activate or inhibit a num ber of 

effectors. Members of the Gas family activate AC, increasing cAMP levels and in 

tu rn  activate both exchange protein activated by cAMP (EPAC) and protein 

kinase A (PKA) (Bos, 2003]. Activating m em bers of the Gcti/0 family inhibit AC 

activity and regulate inward rectifier potassium  channels (Vilardaga et al, 

2009). Gotq/ii family m em bers activates PLC, which in tu rn  hydrolyses 

phosphatidylinositol-4,5-bisphophate (PIP2) to inositol-1,4,5-triphosphate 

(Ins(l,4,5)P3; IP3) and diacylglycerol (DAG). DAG activates protein kinase C 

(PKC) and IP3 activates Ca2+ signalling (W erry e t al, 2003). GCX12/13 family 

m em bers regulate intracellular actin through Rho GTPase activity (Heasman & 

Ridley, 2008). The Gpy complex can also activate a num ber of intracellular 

signalling molecules and pathways including phospholipases, 

phosphatidylinositol 3-kinase, Ras, Raf, ERK and ion channels (Jacoby et al,

2006). The specific function of the G(3y complex in various receptors is not fully 

known but these complexes often play a significant role in Goti/o coupled GPCRs 

(Vilardaga et al, 2009).
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Figure 1.10. A ctivation and  in activ a tio n  of h e te ro tr im e r ic  G -Proteins 

th ro u g h  GPCRs. (A) Prior to agonist binding, the Gcx(3y complex are associated 

with each other. GDP is bound to the Ga subunit rendering it inactive. (B) Upon 

agonist binding, the Ga subunit dissociates from the G(3y complex and GTP 

binds the Ga subunit, initiating signalling events. (C) After signal transduction, 

GTP is hydrolysed back to GDP by Ga-GTPase and the Ga subunit associates 

with the G(3y complex.
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1.4.7. GPCR internalisation and d esen sitisa tion

After stim ulation with agonist, m ost GPCRs internalise from the cell surface to 

dam pen the biological response, for resensitisation of the system or 

propagation of the signal through novel transduction pathways. Agonist 

induced GPCR internalisation typically occurs in a clathrin dependent fashion 

via GPCR kinases (GRKs), (3-arrestins and ARF proteins (Figure 1.11) 

(Kanam arlapudi et al, 2012; Luttrell & Lefkowitz, 2002). Agonist stimulation 

causes the receptor to undergo a conform ational change, prom oting GRKs to 

translocate to the plasma m em brane and to  phosphorylate the receptor 

(Prem ont et al, 1995). GRKs interact w ith phosphoinositide-3 kinase (PI3K) and 

GPCR interacting (GIT) proteins (Claing, 2004). At the plasm a m em brane they 

in teract w ith the Py subunits of the activated G-protein (Daaka et al, 1997). 

W hen GRKs are in proximity to the  recep tor they phosphorylate specific 

residues on the C-terminal dom ain and ICL of the GPCR. Additionally, 

phosphorylation can occur by protein  kinases, and the nature of 

phosphorylation (GRK or protein kinases) can characterise which endocytic 

pathw ay the GPCR uses (Claing, 2004; Rapacciuolo et al, 2003). Phosphorylation 

creates a binding site for arrestin  p ro teins on the  receptor. Arrestin interacts 

w ith ARF nucleotide-binding site opener (ARNO) prom oting the activation of 

ARF6. The activation of ARF6 may prom ote actin organisation, clathrin and AP- 

2 recruitm ent. Inactivation of ARF6 by GIT proteins or ARF GTPase-activating 

proteins (GAPs) allows the assem bly of clathrin-coated pits (Claing, 2004). 

Dynamin then polymerises around the neck of the vesicle, is phosphorylated 

and a conformational change causes the  vesicle to 'pinch off from the plasma 

m em brane and traffic to intracellular com partm ents (Doherty & McMahon, 

2009).

After targeting to endosomal com partm ents, adap ter proteins and clathrin 

dissociate from the receptor. GPCRs are desensitised in a num ber of different 

ways including rapid phosphorylation, targeted  to  lysosomes for degradation or 

recycled back to the m em brane (Gray & Roth, 2002). Agonist induced receptor 

phosphorylation is the m ost rapid and com m on type of desensitisation. Here, 

conformational changes lead to phosphorylation of serine or threonine residues
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by GRKs (Tobin, 2008). Phosphorylation prom otes arrestin  binding and 

inactivation of heterotrim eric G-proteins (Jalink & Moolenaar, 2010; M archese 

et al, 2008; Moore et al, 2007). Additionally, desensitisation can also occur in a 

GRK independent mechanism by phosphorylating different serine or threonine 

residues by protein kinases (Benovic e t al, 1985; Ferguson, 2001). Therefore, 

GPCR internalisation controls the num ber of receptors a t the cell surface, signal 

activation and term ination, in addition to resensitisation (Wolfe & Trejo, 2007).

However, some receptors localise and internalise via clathrin independent 

endocytosis pathways, for example via caveolin-1 (Figure 1.12)(Pelkmans et al, 

2001). GPCRs tha t internalise in a caveolae dependent m anner include the 

endothelin A, som atostatin and angiotensin II type 1 receptors (Chini & Parenti, 

2004). Several factors m ust control the pathw ay by which the receptor is 

internalised because the role and interaction of the receptor with caveolin 

varies. For example, the endothelin A receptor resides in lipid rafts and en ters 

the cell via caveolae (Chun et al, 1994). Interestingly, cholesterol depletion of 

the endothelin A receptor can switch caveolae m ediated endocytosis to clathrin 

m ediated endocytosis (Okamoto et al, 2000). In contrast, the p2-AR leave lipid 

rafts and internalise via clathrin-coated pits after agonist binding (Rybin et al, 

2000; Schwencke et al, 1999).

A feature of GPCRs tha t are endocytosed via caveolae is their ability to bind 

caveolin-1, a protein weighing approxim ately 21-24 kDa. Caveolin-1 is the 

principle com ponent of caveolae and can in teract w ith a num ber of signalling 

molecules including receptor tyrosine kinases, G-proteins and GPCRs. This 

occurs via a common caveolin-binding motif, OXOXXXXO and d>XXXX<t>XXO, 

w here <t> is an arom atic residue and X is any amino acid (Couet et al, 1997; 

Okamoto et al, 1998). Caveolae are cholesterol rich, flasked shaped vesicles w ith 

a d iam eter of approxim ately 55-56 nm and contain a num ber of different 

signalling molecules (Nabi & Le, 2003; Parton & Richards, 2003). Endocytosis in 

this m anner can lead to fission of caveolae enriched vesicles and then  fusion 

w ith caveosomes, large interm ediate intracellular organelles (Pelkmans e t al,

2001).
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Clathrin

Figure 1.11. C lathrin  d e p e n d e n t in te rn a lisa tio n  of GPCRs. The proposed 

model for GPCR internalisation is based on the P2 -AR. Upon agonist binding, 

GPCRs are phosphorylated by GRKs, this leads to the recruitment of arrestin 

and subsequent ARF6 activation. The activation of ARF6 results in the 

promotion of clathrin, AP-2 and Src to form clathrin-coated pits. Finally, 

dynamin causes the 'pinching off of vesicles from the plasma membrane into 

the cytosol.
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Figure 1.12. Caveolae d e p e n d e n t in te rn a lisa tio n  of GPCRs. The proposed 

model for caveolae mediated endocytosis. Upon agonist binding a number of 

signalling pathways are activated. This results in the recruitment of caveolin, 

forming a flask-shaped vesicle from the plasma membrane, which enters into 

the cytosol.

1.4.8. A llosteric m od u la tio n  o f GPCRs

Many GPCRs have been shown to have allosteric binding sites (Figure 1.13B), 

which are spatially and often functionally distinct to the primary agonist 

(orthosteric) binding site (Figure 1.13A) (Schwartz & Holst, 2007; Wang et al,

2009). Small molecule allosteric agonists can either increase or decrease the 

binding efficiency of an orthosteric agonist. Such agonists are generally termed 

positive allosteric modulators or negative allosteric modulators depending on 

what effects they have on the receptor (De Amici et al, 2010). Allosteric sites 

may provide novel therapeutic targets as well as a number of advantages
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com pared to classical orthosteric agonists. This is beneficial w here selective 

orthosteric therapy has been difficult, for example, w here the orthosteric  site is 

highly conserved. Targeting the allosteric site allows for greater selectivity to be 

obtained (Kenakin, 2009; Urban et al, 2007). Additionally, allosteric agonists 

may provide a second advantage in tha t they can be selectively regulated by 

endogenous agonists (Kenakin, 2009). Finally, low molecular w eight agonists 

th a t have the potential for oral adm inistration can be used to target allosteric 

binding sites (Schwartz & Holst, 2007).

Some small molecule agonists, named ago-allosteric agonists, can bind to GPCRs 

and act as both agonists and allosteric m odulators in the absence of orthosteric 

agonists. It is unknown how these agonists affect the binding or efficiency of 

com pounds acting at the orthosteric site. Compounds w ith allosteric or ago- 

allosteric properties increase the potential for GPCR subtype selectivity. This 

allows for more improved, targeted and novel therapeutics (Bridges & Lindsley, 

2008). GPCR internalisation and signalling m ediated by ago-allosteric agonism 

may provide further information into the activation and regulation of the 

receptor.
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Figure 1.13. B inding m odels o f o rth o s te ric  an d  a llo s te ric  agon ists  of 

fam ily B GPCRs. (A) The general peptide (orthosteric) binding model for 

family B GPCRs is shown. The C-terminal region of the orthosteric peptide 

binds to the N-terminal region of the GPCR. This results in a weak interaction 

and consequently causes the formation of a bi-tethered confirmation. (B) 

Non-peptide (allosteric) binding and antagonist model for family B GPCRs. 

Non-peptide/antagonist (blue circle) binds the receptor and causes a 

conformational change, which prevents peptide binding. This non-peptide 

interaction can either block peptide stimulated receptor signalling or may not 

affect peptide binding to the N-terminal domain of the GPCR. Redrawn from 

(Hoare, 2005).

1.4.9. An a lte rn a tiv e  m odel fo r ag o n ist induced  ac tiv a tio n

An alternative model for agonist induced activation of family B GPCRs has been 

proposed. It has been suggested that  upon binding of an orthosteric agonist to 

the receptor, the N-terminal domain of the receptor undergoes a conformational 

change and interacts with another region of the receptor, which results in GPCR 

activation (agonism) (Beinborn, 2006). This hypothesis originally arose from
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observations w ith the CRF2b receptor, another family B GPCR. Nuclear magnetic 

resonance analysis of the CRF2b receptor showed agonist induced 

conform ational changes w here the C-terminal region of the agonist binds the N- 

term inal dom ain of the receptor, which in tu rn  causes the N-terminus to dock 

w ith the transm em brane bundle (Grace et al, 2004). Additionally, similar 

conform ational changes w ere noticed with the secretin receptor w here secretin 

peptides w ith m inor modifications to the N-terminus w ere no longer able to 

in teract w ith the receptor, bu t still resulted in full agonism (Dong et al, 2005). 

These findings could not be explained by curren t agonist binding models of 

family B GPCRs. Further, it was shown tha t the synthetic peptide corresponding 

to a conserved sequence in the N-terminal region of the secretin receptor, Trp48- 

Asp49-Asn50 (WDN), acts as a full agonist and docks w here the top of TM6 

continued onto ICL3 in the secretin receptor (Dong et al, 2006). This suggests 

th a t the N-terminal dom ain of the secretin receptor folded to allow a 'built in 

agonist' to in teract w ith the transm em brane bundle (Gether, 2000). More 

recently, a synthetic peptide encoding an N-terminal sequence of the GLP-1R, 

Asn63-Arg64-Thr65-Phe66-Asp67 (NRTFD), was shown to have full agonist activity. 

Further, this peptide was also able to activate the secretin and VPAC1 receptors 

because it was able to form an intradom ain salt bridge betw een side chains of 

arginine and asparta te  in ECL3 above TM6 like the WDN peptide. Moreover, 

GLP-1 (9-37) antagonist failed to block the actions of the NRTFD peptide, 

confirming th a t the site of action of NRTFD peptide is different from tha t of 

endogenous GLP-1 agonist (Dong et al, 2008).

1.4.10. D im erisation o f GPCRs

Recently, there  has been increasing in terest in the stoichiom etry of GPCRs and 

how this im pacts the receptor's function (Casado et al, 2009; Milligan, 2009). 

For family B GPCRs, hom odim erisation has been shown to occur w ith the 

calcitonin receptor (Harikum ar e t al, 2010), secretin receptor (Harikum ar et al, 

2007), GLP-1R (Harikum ar et al, 2012) and parathyroid receptor (Pioszak et al,

2010). There has also been in terest in the developm ent of allosteric agonists 

and w hether they in teract w ith a single receptor (in cis) or across dim ers (in
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trans). Currently, m ost drug developm ent is dependent on an in cis 

conformation and mechanism of action (Harikumar et al, 2012; Hoare, 2007). 

Heterodim erisation of GPCRs, such as GLP-1R dim erisation with GLP-1, also has 

physiological significance (see section 1.5.3) (Harikum ar et al, 2012).

1.5. The GLP-1R

1.5.1. Characterisation o f the GLP-1R

The gene encoding the GLP-1R is located on the short arm  of chrom osom e 6 

(6p21) and encodes a 463 amino acid long protein (Figure 1.14) (Brubaker & 

Drucker, 2002; Stoffel et al, 1993; van Eyll et al, 1994). The GLP-1R contains a 

large hydrophilic N-terminal domain (122 amino acids in length) w ith a 

putative SP, seven hydrophobic transm em brane domains (TM1-TM7) joined by 

three  hydrophilic ICL (ICL1, ICL2, ICL3) and three ECL (ECL1, ECL2, ECL3), 

ending in an intracellular C-terminal dom ain (Table 1.4) (Palczewski, 2000). 

The GLP-1R is a family B GPCR, characterised by a large N-terminal extracellular 

domain, which contains betw een 100 and 150 amino acids (Doyle & Egan,

2007).

The GLP-1R has been shown to contain a cleavable N-terminal SP, which is 

essential for processing and trafficking of the receptor to the cell surface (Figure

1.14). A m utation to the SP cleavage site (Ala21Arg) still allowed GLP-1R 

synthesis but prevented cleavage and resulted in retention of the receptor 

within the ER (Huang et al, 2010). The ra t GLP-1R has previously been 

dem onstrated to undergo AMinked glycosylation (Goke et al, 1994; W idmann et 

al, 1995). Further, the N-terminal domain of the hGLP-lR contains three N- 

linked glycosylation sites at positions Asn63, Asn82 and Asn115. Tunicamycin, an 

inhibitor of AMinked glycosylation interfered w ith GLP-1R biosynthesis and 

trafficking, abolishing agonist binding. Individual m utations to Asn63, Asn82 and 

Asn115 with leucine did not affect cell surface expression of the receptor and
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agonist binding. However, combination m utations of two or th ree residues 

resulted in com plete loss of GLP-1 binding. Im m unofluorescence staining of 

cells transfected w ith the m utant receptors dem onstrated tha t these m utant 

receptors w ere still synthesised but w ere localised to the ER or Golgi (Chen et 

al, 2010; W hitaker e t al, 2012).

The ICLs of GPCRs are known to interact w ith G-proteins and play a role in the 

activation of the receptor (S trader et al, 1995). For the GLP-1R, ICL3 has been 

shown to m ediate signalling via G-proteins. However, ICL1 and ICL2 have 

dem onstrated  an im portance in discrim inating betw een different types of G- 

proteins. ICL1 and ICL3 specifically m ediates Gas, w hereas ICL2 activates Gas, 

Goti/o and Gaq/n  (Bavec, 2003). Additionally, different domains of ICL3 have 

been shown to be responsible for the Gas and Goci/0 activation in the GLP-1R. The 

entire ICL3 (amino acids 329-351) has been shown to prefer Gas over Gai/0. 

However, the C-terminal end of ICL3 (amino acids 329-341) stim ulated both Gas 

and Gcxi/o subtypes. Further, the N-terminal end of ICL3 (amino acids 341-351) 

stim ulated both subtypes w ith higher ECso but also favours Gas over Goci/0 

(Hallbrink et al, 2001).

The ECLs of GPCRs have shown im portance in agonist binding and trafficking of 

the receptor. A disulphide bridge betw een ECL1 and ECL2 is conserved across 

all GPCRs, which has been suggested to be involved in stabilising the receptor 

during agonist binding (Knudsen et al, 2007). Residues w ithin TM2 and ECL1 

appear to be m ore im portant in GLP-1 binding than exendin-4 binding (Lopez 

de M aturana & Donnelly, 2002; Lopez de M aturana e t al, 2004). M utations 

w ithin ECL1 of the receptor have been shown to decrease agonist binding (see 

section 1.5.3) (Lopez de M aturana & Donnelly, 2002; Lopez de M aturana e t al, 

2004; Xiao e t al, 2000). ECL2 of the GLP-1R has been shown to play a critical 

role in agonist binding and activation of the receptor. Alanine substitutions 

within ECL2 have been shown to affect GLP-1 binding and efficacy but had 

varying effects on the receptor's function depending on the signalling pathway, 

agonist and m utations position. This indicates th a t ECL2 plays an im portant role 

in GLP-1R activation as some m utations resulted in a distinct signal bias of
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pathw ay responses (see section 1.5.4) (Koole et al, 2012a). Further, ECL2 was 

also found to be critical for GLP-1 peptide m ediated signalling but not allosteric 

agonist signalling. For example, an alanine substitution a t positions Asp293, 

Arg299, Try305 and Leu307 abolished exendin-4 m ediated Ca2+ response, w hereas 

GLP-1 signalling was reduced bu t still m easurable, highlighting the subtle 

differences these peptides have on activation of the receptor. However, 

stim ulation with small molecule agonist, compound 2, showed very little effect 

on GLP-1R signalling, providing further evidence tha t this agonist signals 

through a distinct m echanism (see section 1.5.3) (Koole et al, 2012b). ECL3 of 

the GLP-1R was originally hypothesised to act as an endogenous agonist (Dong 

et al, 2006). However, this was disproven w hen it was recognised that ECL3 

could not establish the necessary spatial approxim ation w ith the agonist 

binding region of the GLP-1R (Dong et al, 2010). The GLP-1R has recently been 

shown to bind an agonist peptide (NRTFD), corresponding to the sequence of 

the GLP-1R, Asn63-Asp67, a t the N-terminal region of ECL3 (see section 1.4.9) 

(Dong et al, 2012; Dong et al, 2008). Furtherm ore, ECL3 has been shown to be 

im portan t for endogenous agonist action of several m em bers of family B GPCRs, 

suggesting tha t this region is likely to be im portant for drug binding (Bisello et 

al, 1998; Dong et al, 2004a; Dong et al, 2004b).

The C-terminal domain of GPCRs is known to in teract with intracellular proteins 

involved in the internalisation desensitisation, down regulation and arrestin  

signalling of the receptor (McArdle e t al, 2002). GPCRs, including the GLP-1R, 

regulate intracellular effector proteins such as PLC and AC via heterotrim eric G- 

proteins, a t the C-terminus.
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Figure 1.14. Am ino acid  seq u en ce  of th e  hGLP-lR. The SP is highlighted in 

red circles (1-23). Residues in yellow highlight conserved cysteine residues, 

which form disulphide bonds. Residues in blue show amino acids important in 

agonist binding. Amino acids that have a structural role are highlighted in 

orange. Glycosylation sites are shown in grey. Residues important in receptor 

internalisation are shown in purple and for activation and function are in green. 

Adapted from (Doyle & Egan, 2007).

46



Table 1.4. The am ino acid sequence o f the GLP-1R dom ains

Amino Acids 

Length (from -to)

Description Amino Acids 

Length (from -to)

D escription

23 (1-23) Putative SP 122 (24-145) NT

23 (146-168) TM1 8 (169-176) ICL1

20 (177-196) TM2 31 (197-227) ECL1

25 (228-252) TM3 12 (253-264) ICL2

24 (265-288) TM4 15 (289-303) ECL2

26 (304-329) TM5 22 (330-351) ICL3

21 (352-372) TM6 15 (373-387) ECL3

21 (388-408) TM7 55 (409-463) CT

SP, signal peptide; TM, transm em brane domain; NT, N-terminal domain; CT, C- 

term inal domain; ICL, intracellular loop; ECL, extracellular loop (Uniprot).

1.5.2. A llosteric m odulation o f the GLP-1R

A small molecule GLP-1R agonist, compound 1 (2-(2'm ethyl)

thiadiazolylsulfanyl-3-trifluoromethyl-6,7-dichloroquinoxaline) (Figure 1.15A), 

has dem onstrated  low affinity, low potency allosteric agonism to the GLP-1R. In 

an effort to produce a m ore potent agonist, compound 2 (6,7-dichloro-2- 

methylsulfonyl-3-N-tert-butylaminoquinoxaline) was developed (Figure 1.15B). 

Compound 2 is an ago-allosteric agonist, which not only increased the affinity of 

GLP-1 for its receptor, bu t also acted as an agonist. Additionally, exendin (9-39) 

antagonist did not inhibit compound 2 binding, showing a second binding site 

on the GLP-1R distinct from the orthosteric binding site (Knudsen et al, 2007). 

The effectiveness of compound 2 to stim ulate insulin secretion has also been 

assessed in vivo. Although, compound 2 was able to stim ulate insulin secretion it 

was unable to do so as effectively as GLP-1, Liraglutide or Exenatide. Further, 

combining com pound 2 w ith either GLP-1, Liraglutide or Exenatide did not
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show a substantial improvement in insulin secretion response in mice (Irwin et 

al, 2010).

Two additional small molecule agonists of the GLP-1R, compound A (4-(3,4- 

dichlorophenyl)-2-(ethanesulfonyl)-6-(trifluoromethyl)pyrimidine) and

compound B (4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)), 

have also demonstrated ago-allosteric properties (Figure 1.15C-D). Like 

compound 2, these compounds induced cAMP signalling and increased insulin 

secretion in rodent islets and animal studies. Further studies showed treatment 

with compound B to near-normalise insulin secretion in human islets isolated 

from a donor with type 2 diabetes (Sloop et al, 2010). These small molecule 

agonists indicate a useful starting point for the identification and design of 

orally active allosteric GLP-1R compounds.

C o m p o u n d  1 C om p ou n d  2

C o m p o u n d  A C o m p o u n d  B

Figure 1.15. Sm all m olecule a llo s te ric  ag o n ists  of th e  GLP-1R. The

chemical structures of compound 1 (A), compound 2 (B), compound A (C) and 

compound B (D) are depicted.
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1.5.3. R esidues im portant for GLP-1R structure and agonist binding

The GLP-1R has six highly conserved cysteine residues at the N-terminal region, 

highlighting the ir structural importance. These cysteine residues form 

disulphide bonds betw een Cys46 and Cys71, Cys62 and Cys104, and betw een Cys85 

and Cys126 (Bazarsuren et al, 2002) (Figure 1.14). Additionally, Asp67, Trp72, 

Pro86, Arg102, Gly108 and T rp110 are six o ther residues, which are highly 

conserved across family B GPCRs, of which Trp72 and T rp110 have been shown to 

be im portan t in agonist binding (Doyle & Egan, 2007; Wilmen et al, 1997; Xiao 

et al, 2000). The crystal s truc tu re  of the GLP-1R extracellular domain has shown 

these conserved residues to be positioned centrally. For example, Asp67 is 

centrally located and form s interm olecular interactions directly w ith Trp72 and 

Arg121 and indirectly in teracts w ith Arg102 via a w ater molecule. Asp67 interacts 

w ith Tyr69 and Ala70. Arg102 is sandwiched betw een the side chains of Trp72 and 

T rp110. These interactions and Gly108, stabilise the receptor's N-terminal domain. 

Pro86 plays a critical role in forming the agonist binding site (Figure 1.14) 

(Runge et al, 2008). Additionally, an alanine m utation to Val36 significantly 

reduced GLP-1 binding, dem onstrating a vital role within the GLP-1R agonist 

binding site (Underwood et al, 2010).

In addition to the highly conserved tryptophan residues, Trp72 and Trp110, 

already m entioned. Substitution of Trp39, Trp72, Trp91, T rp110, or T rp120 by 

alanine in the full-length ra t GLP-1R abolished GLP-1 binding. W hereas, 

substitution of T rp87 had no effect on agonist binding (Wilmen et al, 1997). The 

role of T rp33 still rem ains unclear. Trp120 has no role in agonist binding but 

instead plays a structural role by forming a hydrophobic cluster w ith Phe80, 

Tyr101, Phe103 and Leu111 (Figure 1.14) (Runge et al, 2008).

Residues Thr29-Val30-Ser31-Lys32 have been shown to confer peptide specificity. 

A m utation to this region of the  GLP-1R resulted in a 7-fold decrease in GLP-1 

affinity showing its im portance in agonist binding (Figure 1.14) (Graziano et al, 

1993). The NRTFD, corresponding to the sequence of GLP-1R (Asn63-Asp67), was 

shown to have full agonist activity when com pared to GLP-1. Moreover, GLP-1 

(9-37) antagonist failed to block the NRTFD action, confirming th a t the site of
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action of the NRTFD peptide is different from tha t of the endogenous GLP-1 

agonist. As a resu lt this sequence may also be involved in agonist binding (Dong 

e t al, 2008).

In addition to the N-terminal domain, residues of TM1 through to TM3 are also 

im portan t for agonist binding. For example, a m issense m utation of Thr149 in 

TM1 of the GLP-1R reduced agonist binding (Beinborn et al, 2005). Additionally, 

Lys197, Asp198, Lys202, Met204, Tyr205, Asp215 or Arg227 m utations within ECL1 of 

the receptor also decreased agonist binding affinity (Lopez de M aturana & 

Donnelly, 2002; Lopez de M aturana et al, 2004; Xiao et al, 2000).

The GLP-1R has been shown to form a hom odim er through an interface along 

TM4 and is required for signalling of the receptor. Alanine substitutions to 

Leu256, Val259 or Gly252, Leu256, Val259 abolished GLP-1 binding, reduced cAMP 

and ERK signalling and abolished Ca2+ signalling. Dimerisation of the GLP-1R 

was im portan t for signal bias and discrim inated betw een peptide and non­

peptide activation. Additionally, dim erisation was not required for allosteric 

m odulation by com pound 2 (see section 1.5.2) dem onstrating tha t this small 

molecule agonist acted in cis (Harikumar et al, 2012).

A positively charged Lys288 in TM4 is highly conserved in all family B GPCRs and 

has been dem onstrated  to be im portant for the interaction of GLP-1 to its 

receptor (Figure 1.14). Substitution of Lys288 by neutral leucine or alanine 

reduced the affinity of GLP-1 for its receptor. However, substitution w ith a 

positively charged arginine had very little effect, dem onstrating a positive 

charge was essential a t this particular location (Al-Sabah, 2003). Additionally, 

m utating at Lys288 resulted  in a reduced binding affinity of GLP-1 com pared to 

exendin-4 (Al-Sabah, 2003; Koole e t al, 2012b).

Scanning alanine substitutions w ere made on ECL2 of the GLP-1R and the effect 

of GLP-1, exendin-4 and oxyntomodulin was assessed (Figure 1.14). M utations 

a t positions Glu292, Cys296 and Asn300 resulted in a greater potency of exendin-4 

but reduced oxyntom odulin efficacy, possibly because the receptor was unable
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to form an active te rn a ry  complex. Met303 appeared to play a role in cAMP 

signalling and w as m ore im portant for exendin-4 and oxyntomodulin than GLP-

1. W hen positions Lys290, Tyr291 and Glu294 w ere m utated, a significant loss in 

GLP-1 Ca2+ signalling w as w itnessed but no effect was seen w hen stim ulated 

w ith oxyntomodulin. In cAMP stimulation, Arg299 and Lys307 m utations had a 

reduced potency for GLP-1 com pared to exendin-4 suggesting exendin-4 cAMP 

signalling required  the distal portion of ECL2. Exendin-4 m ediated Ca2+ 

responses w ere abolished in m utations a t Asp293, Arg299, Tyr305 and Lys307 yet 

reduced bu t m easurable responses w ere observed with GLP-1 suggesting subtle 

differences in Ca2+ signalling mechanisms. Cys296, Arg299 and Tyr305 m utants 

dem onstrated  no detectable Ca2+ signalling and increased ERK signalling. 

Collectively, these m utations have suggested tha t GLP-1, exendin-4 and 

oxyntomodulin activate the GLP-1R using different mechanisms (Koole e t al, 

2012b).

1.5.4. R esidues im portant in GLP-1R activation and internalisation

Residues im portan t in coupling to heterotrim eric G-proteins are mainly located 

in ICL3 and w here TM5 m eets ICL3 (Takhar et al, 1996). Alanine substitutions 

to Val327, lie328 or Val331, w here TM5 m eets ICL3, caused significantly lowered 

cAMP production bu t had no effect on cell surface expression of the GLP-1 R 

(Figure 1.14). These residues and Lys334 (Figure 1.14) form a hydrophobic face, 

which interacts directly with the G-protein (Mathi, 1997). Additionally, different 

regions of ICL3 are responsible for specific G-protein interactions. For example, 

half of ICL3 closest to the N-terminal end of the receptor couples and stim ulates 

Gas G-proteins, to generate  cAMP (Hallbrink et al, 2001). A single block deletion 

of Lys334-Leu335-Lys336 within the N-terminal half of ICL3 caused a significant 

decrease in cAMP production in response to GLP-1, of which Lys334 showed 

m ost significance w ith no effect on the expression of the receptor (Figure 1.14). 

This indicated th a t this region was required to couple Gas and stim ulate AC 

(Takhar e t al, 1996). The second half of ICL3 closest to the C-terminal end of the 

receptor couples and stim ulates Gai/Ga0 G-proteins (Hallbrink et al, 2001). A 

glycine substitu tion to Arg348, near the C-terminal end of ICL3, nearly abolished
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cAMP production and decreased the affinity of the receptor in response to GLP- 

1 (Figure 1.14) (Heller e ta l, 1996).

The GLP-1R has a num ber of conserved amino acids within ECL2 including 

Lys288, Asp293, Cys296, Trp297 and Trp306. These residues have been dem onstrated 

to be essential for the receptor's function because alanine m utations resulted in 

a significant loss of GLP-1 binding and attenuation of the receptor's signalling 

(Koole e t al, 2012a; Koole et al, 2012b). M utations w ithin ECL2 have been 

shown to affect GLP-1 binding and efficiency, indicating an im portant role in 

GLP-1R activation. Interestingly, some m utations resulted in distinct changes in 

pathw ay responses. For example alanine substitutions to Cys296, Trp297, Arg299, 

Asn300, Asn302, Tyr305 and Leu307 resulted in increased signal bias tow ards ERK 

activation. However, an alanine m utation at Trp306 abolished all biological 

activity. Further, a m utation to Lys288 has been hypothesised to be im portant in 

stabilising the top of TM4 (Figure 1.14) (Koole et al, 2012a).

An alanine substitu tion a t Arg176 within ICL1, caused a reduction in GLP-1 

m ediated stim ulation of cAMP but had no effect on the internalisation of the 

receptor (Figure 1.14) (Mathi, 1997). Additionally, substitution of His180 by 

arginine w ithin TM2 of the GLP-1R resulted in a reduction in both the potency 

of cAMP production and affinity of the receptor for GLP-1 (Figure 1.14) (Heller 

e ta l, 1996).

Currently, there  is some confusion over which pathw ay is used for GLP-1 R 

internalisation. It has been reported  tha t clathrin-coated vesicles m ediate GLP- 

1R in ternalisation and three PKC phosphorylation sites play an im portant role 

for this to occur. Removal of these phosphorylation sites (Ser441'442, Ser444-445 

and Ser451*452) prevented phosphorylation and inhibited internalisation of the 

receptor (Figure 1.14) (Widmann, 1997). In addition, deletion of the last 33 

amino acids from the C-terminal domain containing these phosphorylation sites, 

w ere required for efficient GLP-1R activation and therefore internalisation 

(W idmann et al, 1996a). Interestingly, internalisation of the receptor was m ore 

rapid w hen amino acids 408gyQ4io w ere substituted w ith alanine a t the C-
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term inal domain of the GLP-1R (Vazquez et al, 2005a). However, m ore recently 

it has been shown tha t the GLP-1R is internalised by caveolae m ediated 

endocytosis upon agonist stimulation. The GLP-1R was reported to contain a 

classical caveolin-1 binding motif, 247EGVYLYTLLAFSVF260, w ithin ICL2 (Figure

1.14) (Syme et al, 2006).

Three W-linked glycosylation sites, Asn63, Asn82 and Asn115, are p resen t within 

the N-terminal dom ain of the GLP-1R (Figure 1.14). Inhibition of these 

glycosylation sites in RINm5F cells resulted in a concentration dependent 

reduction in the association of the cells with GLP-1 due to a decrease in GLP-1 

binding sites a t the m em brane (Goke et al, 1994). Substitution of the putative N- 

glycosylation sites with glutam ine reduced cell surface expression of the 

receptor (W hitaker et al, 2012).

1.5.5. GLP-1R signal transduction in pancreatic (3-cells

In (3-cells, the main action of GLP-1 through the GLP-1R is the formation of 

cAMP and its insulinotropic activity (Holst, 2007). Upon agonist binding, the Gas 

subunit dissociates from the receptor, couples to AC and generates cAMP 

(Coopman et al, 2010; Thorens, 1992). W hen blood glucose levels rise, glucose 

en ters the (3-cell through GLUT1 and GLUT2 transporters (Figure 1.16). Glucose 

is phosphorylated by glucokinase to glucose-6-phosphate, which results in the 

ATP/ADP ratio in the cytosol increasing and the plasm a m em brane depolarising 

by closing K a t p  channels. The closure of K a t p  channels, in tu rn  opens Ca2+ 

channels, releasing intracellular stores of Ca2+. The increase of cytosolic Ca2+ 

causes secretory vesicles containing insulin to fuse to the plasma m em brane 

and insulin is exocytosed (De Vos et al, 1995; Holz, 2004). There is a strong 

likelihood tha t hum an glucokinase activity is m ore im portant in glucose-induce 

insulin secretion than the ra te  a t which glucose enters the (3-cell (Matschinsky,

2002).

GLP-1 has been shown to increase the quantity of insulin secreted per cell and 

cause (3-cells to become m ore sensitive to increased glucose levels by GLP-1
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m odulated K a t p  channels (Holz et al, 1993; M ontrose-Rafizadeh et al, 1994). 

Activation of GLP-1 can also increase Ca2+ concentration by partial activation of 

L-type voltage dependent Ca2+ channel an d /o r increase Ca2+-induced Ca2+ 

release from intracellular stores and is m ediated by PKA phosphorylation in an 

ADP-dependent m anner (Holst, 2007). The release of intracellular stores of Ca2+ 

is achieved by either PKA activation or EPAC activation (Kashima et al, 2001; 

Ozaki e t al, 2000). It has been suggested tha t GLP-1 induced PKA activation 

results in Ca2+ release through the IP3 receptor (IP3R, PKA dependent) and EPAC 

activation results in Ca2+ release through ryanodine receptors (PKA 

independent) (Kang et al, 2003; Tsuboi et al, 2003).

The increase in Ca2+ levels cause an exocytotic response and is potentiated  by 

elevated cAMP levels due to an increase in the am ount of vesicles available for 

release (Holst & Gromada, 2004). In pancreatic (3-cells, there  are th ree  different 

pools of insulin secretory vesicles (Figure 1.16). A reserve pool is situated in the 

cytoplasm; a readily release pool and an im m ediate release pool are situated 

close to the m em brane. GLP-1 increases the am ount of insulin secretory vesicles 

in the readily release pool. GLP-1 depolarises the cell m em brane closing K a t p  

channels and therefore the curren t is inactivated before the cell can begin 

repolarising. Consequently, the cell does not reach its resting m em brane 

potential and starts  to depolarise before it has recovered from inactivation 

(Bratanova-Tochkova et al, 2002; Kasai, 2005).

Additionally, a sustained increase in cAMP induced nuclear translocation leads 

to the activation of cAMP response elem ent binding-protein (CREB) and cell 

proliferation. The phosphorylation of PKA is said to activate CREB, in teract w ith 

transducer of regulated CREB activity (TORC2), increase insulin receptor 

substrate-1 expression and cause activation of a serine-threonine protein  

kinase, Akt (Jhala et al, 2003). Akt has been described to link GLP-1 signalling to 

(3-cell grow th and survival (Wang et al, 2004). Furtherm ore, the activation of 

ribosomal protein S6 (rbS6) in animal models has been reported as a key 

regulator of glucose hom eostasis and (3-cell mass (Ruvinsky et al, 2005).
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Two m utations w ithin the GLP-1R have been shown to alter insulin secretion. In 

a Japanese study, one patient diagnosed w ith type 2 diabetes had a missense 

m utation, which resulted in the substitution of Thr149 with m ethionine 

(Tokuyama et al, 2004). The patien t exhibited im paired glucose tolerance, 

insulin secretion and sensitivity. The m utated receptor had reduced affinity in 

vitro for GLP-1 and peptide specificity (Beinborn e t al, 2005). A second m utation 

deleting Lys334-Leu335-Lys336 of ICL3 in the HIT-T15 insulinoma cell line showed 

an absence of GLP-1 induced cAMP production, Ca2+ channel activation and 

insulin secretion (Salapatek, 1999).
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Figure 1.16. G lucose d e p e n d e n t in su lin  sec re tio n  in th e  (3-cell. Glucose 

enters the cell through GLUT1 and 2 transporters.  Glucose is phosphorylated 

to glucose-6-phosphate, which increases the cytosolic ATP/ADP ratio and in 

turn closes K a t p  channels. The closure of K a t p  channels depolarises the 

membrane and opens voltage dependent Ca2+ channels, releasing 

intracellular Ca2+ stores. The increase in intracellular Ca2+ causes the 

transport  of insulin granules to the membrane and insulin is exocytosed. The 

opening of K+ channels terminates Ca2+ influx by repolarising the membrane.  

GLP-1 potentiates insulin secretion by effecting glucose dependent ATP 

production, K a t p  channels, voltage dependent Ca2+ channels, intracellular 

Ca2+ release and the transport  of insulin granule (Bratanova-Tochkova et al, 

2002; Holz, 2004).
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1 .6 . A im s  a n d  o b je c t iv e s

The ability of GLP-1 to lower postprandial hyperglycaemia by increasing insulin 

secretion and inhibiting glucagon secretion makes this peptide an ideal 

candidate for the treatm ent of type 2 diabetes. Additionally, as GLP-1 is able to 

retain  its glucose lowering activity in patients w ith type 2 diabetes, it is also of 

significant clinical relevance (Haluzik, 2014). The main lim itation of GLP-1 is its 

very short half-life and as a result therapeutic strategies, which activate the 

GLP-1R and improve GLP-1 actions have been extensively studied and 

developed.

GLP-1R activation by GLP-1 has many beneficial effects, m ost likely due to the 

activation of a num ber of signalling pathw ays upon agonist binding. But, the 

precise signalling pathway, which is activated and is critical for GLP-1 to  exert 

its effects on the (3-cell it still unknown. Therefore, agonists tha t act through the 

GLP-1R would be ideal for the treatm ent of type 2 diabetes, bu t only Liraglutide 

and Exenatide are currently available. These drugs are injectable and their long­

term  use may lead to a num ber of side effects including pancreatitis and 

papillary thyroid cancer. As a result, there is a need for small molecule agonists, 

which have a longer half-life and are orally active. It is also im portant to note 

tha t receptor-agonist interactions are m ore complex than was previously 

believed. Some GPCRs do not function as m onom ers and can be regulated by 

m ore than  one agonist and can also 'self activate'. This knowledge is im portant 

for further agonist developm ent of GPCRs.

After activation by agonist, m ost GPCRs internalise from the cell surface to 

dam pen the biological response, to resensitise the desensitised receptor by 

recycling, or to propagate signals through novel transduction pathw ays 

(Hanyaloglu & von Zastrow, 2008). In agonist stim ulated pancreatic (3-cells, the 

internalised GLP-1R colocalises w ith AC w ithin endosom es and stim ulates 

insulin secretion (Kuna et al, 2013). Therefore, a be tte r understanding of the 

GLP-1R internalisation pathw ay is essential for introducing novel agonists tha t 

activate the GLP-1R in the trea tm ent of type 2 diabetes.
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The GLP-1R is a m ajor therapeutic  target in the trea tm en t of type 2 diabetes, but 

little is known about its plasm a m em brane trafficking. A be tte r understanding 

of its m em brane trafficking is of high im portance because there  is evidence 

dem onstrating tha t reduced GLP-1R expression in (3-cells contributes to the 

im paired incretin effect in type 2 diabetes (Shu e t al, 2009; Xu et al, 2007). This 

is consistent w ith observations of reduced GLP-1 responses on (3-cells in type 2 

diabetes (Fritsche e t al, 2000; Kjems et al, 2003). The N-terminal domain of 

family B GPCRs has been show n to be im portant for m em brane trafficking and 

m aturation of the recep tor (Doyle & Egan, 2007; Thom pson & Kanamarlapudi, 

2013). However, the im portance of specific regions and residues within the N- 

term inal dom ain of the  GLP-1R has yet to be studied.

The C-terminal dom ain of GPCRs plays a critical role in agonist induced 

internalisation, desensitisation, down regulation and arrestin  signalling 

(Kuramasu et al, 2006; McArdle e t al, 2002). Further, the C-terminal region is 

also required  for GPCR trafficking to the plasma m em brane (Ohno et al, 1995; 

Sandoval & Bakke, 1994; Trow bridge et al, 1993). Unlike other GPCRs, the GLP- 

1R does not contain motifs w ithin the C-terminal dom ain for trafficking, 

interactions w ith intracellular proteins and internalisation of the receptor. 

Therefore, the im portance of the C-terminal dom ain for cell surface expression, 

activity and in ternalisation is unknown.

Overall, a lot still rem ains to  be determ ined in GLP-1R plasm a m em brane 

trafficking, cell surface expression, internalisation and drug developm ent for the 

trea tm en t of type 2 diabetes. The focus of this study is to assess cellular 

trafficking and functional characterisation of the hGLP-lR.

The objectives of this study are to:

1. Assess the im portance of the N-terminal domain for cell surface 

expression of the hGLP-lR.

2. Examine the effect of two small molecule agonists on hGLP-lR 

in ternalisation and activation.
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3. Determ ine the dow nstream  signalling pathw ay for internalisation of the 

hGLP-lR after agonist activation.

4. Identify distinct regions w ithin the C-terminal dom ain required for 

hGLP-lR cell surface expression, agonist induced cAMP production and 

internalisation.



2. Materials and Methods

2 .1 . M a te r ia ls

2.1.1. W ater

W ater used to make solutions was double distilled (ddLhC)) w ith purity of 18 

MD.cm and obtained through the Milli-Q® Synthesis System (Millipore (U.K.) 

Ltd, Nottingham, UK).

2.1.2. Standard laboratory chem icals, reagents and consum ables

All chemicals and mammalian cell culture reagents w ere purchased from Sigma 

Aldrich (Dorset, UK) unless otherw ise stated. Glass coverslips (13 mm, 1.5 mm), 

cell culture universals and plasticware w ere purchased from VWR International 

(Leistershire, UK) unless m entioned specifically. Cell culture plates, bacterial 

culture plates and cAMP 1x8 flat well strips w ere obtained from Greiner-Bio 

One (Gloucestershire, UK).

2.1.3. Peptides, chem ical inhibitors, antibodies, prim ers and enzym es

Peptide agonists and antagonists of the hGLP-lR, GLP-1 (7-36) amide and 

Exendin (9-39) w ere supplied by Tocris (Bristol, UK). The small molecule 

agonists, compound 2 and compound B, w ere purchased from Calbiochem 

(Nottingham, UK). Antagonist JANT-4 was obtained from Prof. Richard 

DiMarchi, Indiana University (IN, USA). GLP-1 (Liraglutide) and Exendin-4 

(Exenatide) w ere from Novo Nordisk (Sussex, UK) and Eli Lilly and Company 

Limited (Liverpool, UK), respectively.

Chemical inhibitors 2-APB (2-am inoethoxydiphenylborane), BAPTA-AM (1,2- 

fr/s(2-aminophenoxy)ethane-N,A/,N'N'-tetraacetic acid tetrakis (acetoxymethyl 

ester)), chlorprom azine hydrochloride (2-chloro-10-(3-
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dim ethylam inopropyl)phenothiazine hydrochloride), filipin complex 

(streptomyces filipinensis, C 3 5 H 5 8 O 1 1 ) ,  genistein (5,7-dihydroxy-3-(4-

hydroxyphenyl)-4//-l-benzopyran-4-one), m onodansylcadaverine (MDC, N-[5- 

am inopentyl) -5-dimethylaminonaphthalene-l-sulfonamide,Af- (dimethylamino- 

naphthalenesulfonyl)-l,5-pentanediam ine), and tunicamycin (n=10, 

C39H64N4O16) w ere purchased from Sigma Aldrich (Dorset, UK). Dynasore (3- 

hydroxy-naphthalene-2-carboxylic acid (3,4-dihydroxy-benzylidene)-hydrazide 

hydrate) was purchased from Abeam Biochemicals (Cambridge, UK). Go6976 

(5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo [2,3-a] pyrrolo [3,4-c] 

carbazole-12-propanenitrile), PD98059 (2-(2-am ino-3-m ethoxyphenyl)-4//-l- 

benzopyran-4-one), Ro318820 (3-[3-[2,5-Dihydro-4-(l-m ethyl-l//-indol-3-yl)- 

2 ,5-dioxo-l//-pyrrol-3-yl]-l//-indol-l-yl]propyl carbam im idothioic acid ester 

mesylate), U73122 (l-[6-[[(17p)-3-m ethoxyestra-l,3 ,5(10)-trien-17-

yl]am ino]hexyl]-l//-pyrrole-2,5-dione, and U73343 (l-[6-[[(17P)-3-

m ethoxyestra-l,3,5(10)-trien-17-yl]am ino]hexyl]-2,5-pyrrolidinedione) w ere 

all obtained from Tocris (Bristol, UK). PBP10 (Rhodamine B-Gln-Arg-Leu-Phe- 

Gln-Val-Lys-Gly-Arg-Arg) was from Millipore (U.K.) Ltd (Nottingham, UK) and 

penetratin  peptide w as from Thermo Scientific (Northum berland, UK).

Endoglycosidase enzym es PNGase F and Endo H w ere bought from New 

England Biolabs (Hertfordshire, UK). The antibiotics, ampicillin and kanamycin 

w ere both obtained from Sigma Aldrich (Poole, UK).

Monoclonal m ouse anti-hGLP-lR antibody (MAB2814) for enzyme linked 

im m unosorbent assay ELISA, immunofluorescence and flow cytom etry was 

purchased from R&D Systems (Abington, UK). Monoclonal m ouse anti-hGLP-lR 

antibody (sc390774) for im m unoblotting and monoclonal m ouse anti-CAV-1 

antibody (sc894) for coim m unoprecipitation was obtained from Santa Cruz 

Biotechnology (Heidelberg, Germany). Cy™3-conjugated AffiniPure anti-m ouse 

immunoglobulin (IgG) (from donkey) secondary antibody (715-165-150) for 

im m unofluorescence experim ents was purchased from Jackson 

Imm unoResearch (Suffolk, UK). Polyclonal rabbit anti-phospho p44 /42  MAPK 

(m itogen-activated protein  kinase) (Thr202/T ry 204) antibody (9101) and anti-
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p4 4 /4 2  MAPK antibody (9102) for im m unoblotting w ere obtained from New 

England Biolabs (H ertfordshire, UK). Polyclonal rabbit anti-vesicular stom atitis 

virus glycoprotein (VSVG) tag (Biotin) antibody (ab34774) for im m unoblotting 

and polyclonal rabb it anti-red fluorescent protein  (RFP) tag (Biotin) antibody 

(ab34771) w as purchased from Abeam Biochemicals (Cambridge, UK). 

Monoclonal m ouse anti-green fluorescent protein (GFP) antibody 

(11814460001) for im m unoblotting was purchased from Roche (W est Sussex, 

UK). ECL™ (enhanced chemiluminescence) anti-rabbit IgG, horseradish 

peroxidase (HRP)-linked whole antibody (from donkey, NA934) and ECL™ anti­

m ouse IgG, HRP-linked whole antibody (from sheep, NA933) was supplied by 

GE Healthcare (H ertfordshire, UK). DAPI (4',6-diam idino-2-phenylindole 

dihydrochloride, 1 m g/m l, D8417) to stain nuclei in im m unofluorescence was 

also obtained from Sigma Aldrich (Dorset, UK).

Standard cAMP w as purchased from Sigma Aldrich (Dorset, UK). 1 m g/m l 

unconjugated goat-anti rabbit (A00131) for coating cAMP plates, cAMP 

polyclonal antibody (A00614) and cAMP-HRP antibody (M01059) w ere both 

from Genscript (N), USA).

Prim ers used to produce the hGLP-lR constructs w ere supplied by Sigma 

(Dorset, UK) and sequenced by Dundee University DNA sequencing services 

(Scotland, UK). High fidelity Taq Polymerase, dNTPs and lOx high fidelity buffer 

with 15 pM m agnesium  chloride (MgCh) for cloning by polym erase chain 

reaction (PCR) w ere  purchased from Roche (W est Sussex, UK). Restriction 

enzymes (RE) including the  relevant buffers for restriction digestion w ere also 

obtained from Roche (W est Sussex, UK). T4 deoxyribonucleic (DNA) ligase and 

2x ligation buffer (for ligation of hGLP-lR to pEGFP-Nl [plasmid enhanced 

green fluorescent p ro tein-N l]) was obtained from Promega (Southampton, UK).
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2.1.4. Specific reagents and kits

5Ox Tris/acetic  acid/ethylenediam inetetraacetic acid (EDTA) (TAE) buffer was 

purchased from BioRad (Herts, UK). Agarose tablets and HyperLadder™  I 

molecular weight m arker was obtained from Bioline (London, UK).

QIAquick® Gel Extraction Kit and QIAprep Spin M iniprep Kit purchased from 

QIAGEN (W est Sussex, UK) w ere used for plasmid DNA preparation. GenElute™ 

HP Plasmid Midiprep Kit purchased from Sigma Aldrich (Dorset, UK) was used 

for large scale plasmid preparation. The QuikChange Site-Directed Mutagenesis 

kit w as obtained from Stratagene (Leicestershire, UK). The Q5® Site-Directed 

M utagenesis Kit was obtained from Thermo Scientific (N orthum berland, UK).

Polyplus JetPrime® transfection reagent was obtained from VWR International 

(Leistershire, UK) or Source Bioscience (Nottingham, UK). 1-Step™ Ultra TMB 

ELISA substra te  was from Thermo Scientific (Northum berland, UK). ONE-Glo™ 

lysis buffer to detect luminescence activity was purchased from Promega 

(Southam pton, UK).

Precision Plus Protein All Blue Standard was obtained from BioRad (Herts, UK). 

Acrylamide stock solution (30%, w /v ) was purchased from National Diagnostics 

(Hull, UK). Polyvinylidene fluoride (PVDF) transfer m em brane was purchased 

from Millipore (U.K.) Ltd (Nottingham, UK). Low sensitivity Pierce® ECL 

W estern Blotting Substrate and normal sensitivity Supersignal® W est Pico 

Chemiluminescence Substrate w ere obtained from Thermo Scientific 

(Northum berland, UK). High sensitivity Amersham ECL Select im m unoblotting 

Detection Reagent was purchased from GE Healthcare Ltd (Buckinghamshire, 

UK) or VWR International (Leistershire, UK) for the visualisation of proteins by 

immunoblotting.

2.1.5. Bacterial strains

Escherichia coli (E. coli) strain  XLl-Blue was used as a host to amplify plasmid 

DNA and for gene cloning. XLl-Blue ultracom petent cells w ere used for plasmid
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DNA transform ation in the generation of hGLP-lR constructs. XLl-Blue 

com petent cells w ere used for routine plasmid DNA transform ation. NEB 5- 

alpha E. coli (supplied by Q5® Site-Directed Mutagenesis Kit) was used for 

deletion m utation plasmid DNA transform ation.

2.1.6. Plasm id DNA constructs

A series of plasmid DNA constructs w ere used in this study, which included both 

vectors and constructs. See Table 2.1, Table 2.2 and Table 2.3.
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Table 2.1. Series of plasmid DNA constructs used in this study.

Construct
Epi­

tope
Vector

Antibiotic

R esistance
Source

SP-VSVG-hGLP-lRAN23-

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lR-pEGFP-

N1
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lR VSVG pEGFP-Nl Kanamycin Made in Lab

hGLP-lR-pEGFP-N 1 - pEGFP-Nl Kanamycin Made in Lab

hGLP-lR - pEGFP-Nl Kanamycin Made in Lab

hGLP-lRAN23 - pEGFP-Nl Kanamycin Made in Lab

VSVG-VSP-hGLP-lR

AN23-pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lRAN23-

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lRAN24-

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lRAN30-

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lRAN35-

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lRAN40-

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

VSVG-hGLP-lRAN 145- 

pEGFP-Nl
VSVG pEGFP-Nl Kanamycin Made in Lab

SP-VSVG-hGLP-lRAN23

A450
VSVG pEGFP-Nl Kanamycin Made in Lab

SP-VSVG-hGLP-lRAN23

A443
VSVG pEGFP-Nl Kanamycin Made in Lab
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SP-VSVG-hGLP-lRAN23

A440
VSVG pEGFP-Nl Kanamycin Made in Lab

SP-VSVG-hGLP-lRAN23

A430
VSVG pEGFP-Nl Kanamycin Made in Lab

SP-VSVG-hGLP-lRAN23

A410
VSVG pEGFP-Nl Kanamycin Made in Lab

pEGFP-Nl - pEGFP-Nl Kanamycin Available in Lab

pGL4.29 CRE Luc - pGL4.27 Ampicillin
Bought from 

Promega

pGL4.30 NFAT Luc - pGL4.27 Ampicillin
Bought from 

Promega

pGL4.33 SRE Luc - pGL4.27 Ampicillin Made in Lab

PCDNA3 - PCDNA3 Ampicillin Available in Lab

(3-Arrestinl (319-418) 

Dominant Negative (DN)
- PCDNA3 Ampicillin Available in Lab

EPS15A DN - pEGFP-Cl Kanamycin Available in Lab

Dynamin (K44A) DN - PCDNA3 Ampicillin Available in Lab

CAV-1-P132L-Cherry DN -

pmCherry

-N1
Kanamycin

Addgene 

(MA, USA)

Gctq G188S pcDNAs DN - PCDNA3 Ampicillin

Prof. Karnam S. 

M urthy (Virginia 

Commonwealth 

University, USA)

The table shows the construct, epitope tag, vector and source of all plasm id DNA 

constructs used in this study. Constructs "made in lab" w ere w ith the help of 

Prof. Venkateswarlu Kanamarlapudi.

66



Table 2.2. Primer for generating mutated hGLP-lR constructs.

Muta­

tion

DNA Se

W ild

Type

quence

Mutant
Prim er (from 5'to 3')

E63L,

N82L,

N115L

AAC

AAT

AAC

CTA

CTA

CTA

5': CTGCCACAGACTTGTTCTGCCTACGGACCTTCGATGAATAC 

5’: CCAGGCTCGTTCGTGCTAGTCAGCTGCCCCTGG 

5': CTGGCTGCAGAAGGACCTATCCAGCCTGCCCTGGA

A21R GCC CGC
5': GGTGGGCAGGCGCGGCCCCCGC 

3': GCGGGGGCCGCGCCTGCCCACC

E34K GAG AAG
5’: CACTGTGTCCCTCTGGAAGACGGTGCAGAAATG 

3': CATTTCTGCACCGTCTTCCAGAGGGACACAGTG

V36A GTG GCG
5’: CCTCTGGGAGACGGCGCAGAAATGGCGAGAATACCG 

3’: CTCGCCATTTCTGCGCCGTCTCCCAGAGGGACAC

W39A TGG GCG
5’: TCTGGGAGACGGTGCAGAAAGCGCGAGAATACCG 

3': CGGTATTCTCGCGCTTTCTGCACCGTCTCCCAGA

Y69A TAC GCC
5’: TGCAACCGGACCTTCGATGAAGCCGCCTGCTGGC 

3': GCCAGCAGGCGGCTTCATCGAAGGTCCGGTTGCA

Y8 8 A TAC GCC
5': GGCCCAGGGCAGGGCCCAGGGGCAGCTG 

3’: CAGCTGCCCCTGGGCCCTGCCCTGGGCC

T149M ACG ATG
5 ’: CCTGTTCCTCTACATCATCTACATGGTGGGCTACGC 

3’: GCGTAGCCCACCATGTAGATGATGTAGAGGAACAGG

K334A AAA GCA
5’: CATCTGCATCGTGGTATCCGCACTGAAGGCCAATCTCATG 

3': CATGAGATTGGCCTTCAGTGCGGATACCACGATGCAGATG

E408A,

V409A,

Q410A

GAG

GTC

CAG

GCG

GCC

GCG

5': TTATACTGCTTTGTCAACAATGCGGCCGCGCTGGAATTTCGG 

AAGAGC

3': CAGCTCTTCCGAAATTCCAGCGCGGCCGCATTGTTGACAAAG 

CAGTATAA

The table shows the m utations used in this study and the prim er required to 

make these m utations. Constructs w ere generated w ith the help of Prof. 

V enkateswarlu Kanamarlapudi.
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Table 2.3. Primers for generating hGLP-lR deletion mutation constructs.

D eletion Primer (from 5’to 3')

hGLPIR

A31-40

5’: CACAGTGGCACCCTGGGG

3': GAATACCGACGCCAGTGCCAGCGC

hGLP-lR

A411-418

5': CTGGACCTCATTGTTGACAAAGCAG 

3': CGCTGGCGCCTTGAGCACTTG

hGLP-lR

A419-430

5’: CTCCCAGCTCTTCCGAAATTC 

3': AGCAGCATGAAGCCCCTC

hGLP-lR

A431-450

5’: GTCCCTCTGGATGTGCAAGTG 

3’: AGCAGCATGTACACAGCCAC

The table shows the deletions used in this study and the prim ers required to 

make these deletions. Constructs w ere generated w ith the help of Prof. 

Venkateswarlu Kanamarlapudi.

2.1.7. Mammalian cell line

Human embryonic kidney 293 (HEK293) cells obtained from ATCC® (CRL-1573, 

Middlesex, UK) w ere used for transien t expression of plasmid DNA betw een 

passages 15 and 30. HEK293 cells are relatively easy to both culture and 

transfect and have been used extensively as a model cell line to study GPCR 

function and trafficking.

2.2. Bacterial cell culture

2.2.1. E. coli stock

To make glycerol stocks of E. coli, 1 ml of fresh overnight culture and 0.5 ml of 

50% glycerol (VWR International, Leistershire, UK) in ddHzO (v/v) w ere added
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to sterile 2 ml cryovials (Greiner-Bio One, Gloucestershire, UK) and vortexed 

using a vortex genie 2 (Scientific Industries, NY, USA). Vials w ere then stored at 

-80°C. To grow  cells from frozen, cells w ere scraped from the cryovial using a 

sterile p ipette  tip and streaked onto a fresh 10 cm Luria-Bertani (LB) agar plate 

(Greiner-Bio One, Gloucestershire, UK) containing the appropriate  antibiotic for 

selection. The plate was then incubated inverted a t 37°C (Genlab incubator, 

Cheshire, UK) overnight for approxim ately 16 hours (h).

2.2.2. Preparation o f XLl-Blue com petent cells

XLl-Blue com petent cells w ere prepared by soaking the cells in cold calcium 

chloride (CaCh) (Salehi et al, 2010). Using aseptic techniques, 5 ml of LB 

m edium  w as inoculated w ith a single colony of E. coli and incubated overnight 

a t 37°C/250 rpm  in an orbital incubator SI500 (Stuart, Staffordshire, UK). 1 ml 

of overnight culture was then grown up at 37°C/250 rpm  in 100 ml of fresh LB 

m edium  until the A6oo (absorbance a t 600 nm) reached 0.5 (—2.5-3 h). The 

bacterial culture was then centrifuged at 6000 xg using a Beckman Coulter 

Avanti J-26 XP centrifuge (High Wycombe, UK) for 20 m inutes (min) a t 4°C. The 

supernatan t was rem oved and the pellet resuspended in 20 ml ice cold 0.1 M 

CaCh and incubated on ice for 10 min. This was again centrifuged (6000 xg, 10 

min, 4°C) and the supernatan t decanted. This tim e the pellet was resuspended 

in 2 ml ice cold 0.1 M CaCh and 70 pi dimethyl sulfoxide (DMSO) was added to 

the resuspended cells and mixed gently prior to incubation on ice for 15 min. An 

additional 70 pi DMSO was added, mixed and im m ediately dispensed into 50 pi 

aliquots. Aliquots w ere quickly snap frozen in liquid nitrogen and stored at - 

80°C.

2.2.3. Preparation o f XLl-Blue ultracom petent cells

Using aseptic techniques, 1 ml of LB medium containing 12.5 pg/m l tetracycline 

was inoculated w ith a single colony of E. coli and incubated overnight at 

37°C/250 rpm  in an orbital incubator. 0.1 ml of this culture w as added to 60 ml 

LB containing 12.5 pg/m l tetracycline and again grown overnight a t 37°C/250 

rpm. 5% inoculation was made by adding 25 ml of culture to 2x 500 ml of super
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optim al bro th  (SOB, 2% [w/v] bacto tryptone, 0.5% [w/v] yeast extract, 10 mM 

sodium  chloride [NaCl], 2.5 mM potassium  chloride [KC1], 10 mM MgCh, 10 mM 

m agnesium  sulphate [MgSCU], pH 6 .7-7.0) in a 2 L conical flask and incubated at 

18°C/250 rpm  (m ultitron standard incubator, Infor HT, Surrey, UK) until the 

A6oo reached 0.6 (~18  h). Cultures w ere then left on ice for 10 min and 

centrifuged a t 6000 xg using a Beckman Coulter Avanti J-26 XP centrifuge 

(Beckman JLA-8.1 ro tor) for 10 min a t 4°C. The bacterial pellet was then gently 

resuspended  in 380 ml of ice cold transform ation buffer (TB; 10 mM pipes, 55 

mM m anganese chloride [MnCh], 15 mM CaCh, 250 mM KC1, pH 6.7) and 

incubated on ice for 10 min. This was again centrifuged (6000 xg, 10 min, 4°C) 

and the bacterial pellet resuspended in 10 ml of ice cold TB. 700 pi of DMSO was 

added to a final concentration of 7% and then placed on ice for a further 10 min. 

This w as then  dispensed into 100 pi aliquots, snap frozen in liquid nitrogen and 

then  stored a t -80°C.

2.3. Transformation and purification of plasmid DNA

2.3.1. Transform ation o f plasm id DNA

A 50-100 pi aliquot of XLl-Blue or NEB 5-alpha E. coli was thaw ed on ice. 1 pg 

plasm id DNA or 5 pi of ligation mixture (see section 2.8) was added to the E. coli 

cells and then  incubated on ice for 30 min. The E. coli cells/plasm id DNA 

m ixture w as then  heat shocked a t 42°C for 45 seconds (s) in a Grant GD100 

w ater bath  (Cambridgeshire, UK) and then im m ediately placed on ice for 2 min. 

0.5-1 ml of LB m edium  was added to the transform ed cells and incubated at 

37°C/250 rpm  in an orbital incubator. The cells transform ed with ligation 

m ixture w as centrifuged at 16000 xg for 1 min, 0.4-0.9 ml medium 

(supernatant) was rem oved and the cell pellet resuspended in the rem aining 

100 pi of medium. 100 pi of transform ed cells w as spread onto an LB agar plate 

containing the appropria te  antibiotic for selection and incubated inverted 

overnight a t 37°C in a Genlab incubator. The plates w ere then  sealed with 

parafilm and stored inverted at 4°C.
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2.3.2. Purification o f plasm id DNA

Plasmid DNA for transfection was purified from bacteria using either the 

m iniprep kit for 5 ml volumes or the m idiprep kit for 100 ml volumes. 

M anufacturer's protocols w ere followed w hen using plasm id mini or m idiprep 

kits.

QIAprep Spin Miniprep Kit was used to produce small volumes of plasmid DNA 

and was sufficient to select for DNA clones containing an expected insert. Here, 

a single colony of bacteria transform ed with plasmid DNA was grown up 

overnight in 5 ml LB medium containing antibiotic in a 30 ml universal, at 

37°C/250 rpm  in an orbital incubator, and harvested for plasmid DNA 

purification. Just before harvesting, a small volume of culture was streaked on 

LB agar plates containing the appropriate antibiotic for selection and incubated 

inverted overnight at 37°C in a Genlab incubator. The plates w ere then sealed 

with parafilm and stored inverted at 4°C, so bacteria could be used for plasmid 

m idipreps if required. Briefly, 5 ml of overnight culture was harvested by 

centrifugation at 3000 xg for 5 min using an Eppendorf 5810R centrifuge. The 

bacterial pellet was resuspended in 250 pi buffer P I and transferred  to a 

m icrocentrifuge tube. 250 pi buffer P2 w as added and inverted to lyse bacteria. 

The solution was then neutralised with the addition of 350 pi buffer N3 by 

inversion. The supernatant was applied to a QIAprep spin column, centrifuged 

for 1 min at 16000 xg in a table top Eppendorf 5415D centrifuge (Stevenage, 

UK) and the flow through discarded. 750 pi buffer PE was added to w ash the 

QIAprep spin column, centrifuged (16000 xg, 1 min) and the flow through 

discarded. The QIAprep spin column was centrifuged (16000 xg) for an 

additional 1  min and transferred  to a clean 1.5 ml m icrocentrifuge tube. 100 pi 

(kanamycin resistance vectors) or 50 pi (ampicillin resistance vectors) of buffer 

EB (100 mM Tris hydrogen chloride (Tris HC1), pH 8.5) w as placed in the centre 

of each QIAprep spin column, left to stand for 1 min and then centrifuged for 1 

min (16000 xg).

In addition to this, GenElute™ HP Plasmid Midiprep Kit was used to purify 

plasmid DNA for transfection from larger volumes of bacterial culture. A single
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colony of transform ed plasmid DNA was first grown up overnight in 1.5 ml LB 

m edium  containing antibiotic a t 37°C/250 rpm. 1 ml of bacterial culture was 

then grow n up in 100 ml LB medium containing antibiotic, overnight at 

37°C/250 rpm  m ultitron standard  incubator. Prior to harvesting, glycerol stocks 

w ere m ade by adding 1  ml of overnight culture and 0.5 ml 50% glycerol (v/v) in 

ddLhO to sterile 2 ml cryovials. Cryovials w ere vortexed and stored a t -80°C. 

The rem aining culture was harvested by centrifugation at 3000 xg using an 

Eppendorf 5810R centrifuge for 20 min and the supernatan t discarded. 4 ml of 

resuspension/RN A ase A solution was added to the bacterial pellet and 

resuspended. Cells w ere lysed w ith the addition of 4 ml lysis solution, 

im m ediately mixed by inversion and left to sit for 3-5 min until the solution was 

clear and viscose. 4 ml chilled neutralisation solution was added to neutralise 

the solution and mixed by inversion. 3 ml of binding solution was added to the 

neutralised lysate and inverted 1-2 times. This was imm ediately poured into the 

barrel of the  filter syringe and allowed to sit for 5 min. As the lysate was left to 

sit, 4 ml of column preparation solution was added to the column, centrifuged at 

3000 xg for 2 min in a ro tanta 460R centrifuge (Buckinghamshire, UK) and the 

flow through discarded. The clear lysate was passed through the filter syringe 

into the column, centrifuged (3000 xg, 2 min) and the flow through discarded. 

The column w as w ashed w ith 4 ml wash solution 1, centrifuged (3000 xg, 2 

min) and the flow through discarded. The column was washed again with 4 ml 

wash solution 2 and centrifuged (3000 xg, 5 min). The column was transferred 

to a new  collection tube, 1 ml elution buffer added and then centrifuged at 3000 

xg for 5 min.

After plasm id DNA preparations, the concentration and quality of DNA was 

determ ined by m easuring absorbance at 260 nm using a BioPhotometer 

(Eppendorf, Stevenage, UK). Here, 10 pi of plasmid DNA was diluted in 1 ml 

ddHzO. The ratio  of the absorbance a t 260/280 nm and 260 /230  nm was also 

noted and the ratio  of the absorbance at 260/280  nm greater than 1.5 was 

assum ed to be satisfactory for use in transfection experim ents. The 

concentration (m g/m l) was calculated using the equation below and the 

plasmid DNA was stored at -20°C.
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Concentration (m g/m l) = A?sn reading x dilution factor

20

2.4. Generating hGLP-lR constructs

2.4.1. D esign o f prim ers

The prim ers used to produce the SP-VSVG-hGLP-lRAN23-GFP plasmid, are 

shown in Figure 2.1. HGLP-1RAN23 cDNA was amplified from m ammalian gene 

collection (MGC) clone 142053 (Source Bioscience) by PCR using High Fidelity 

Taq DNA polym erase (Roche Applied Science) and sequence specific prim ers 

containing EcoRl RE site and VSVG-tag coding sequence (5' prim er), and Sail 

restriction site and no stop codon (3' prim er). The full length SP-VSVG-hGLP- 

1RAN23 cDNA w as amplified by overlap PCR using VSVG-hGLP-lRAN23 cDNA 

as the tem plate, the sense prim er, containing EcoRl restriction site, the SP (1-23 

amino acids) coding sequence followed by VSVG coding sequence and 3' prim er. 

The cDNA w as digested w ith EcoRl and Sail, and cloned in frame into the same 

sites of pEGFP-Nl vector (Clontech) for expression as the N-terminus VSVG- 

tagged and the C-terminus GFP-tagged fusion protein in m am m alian cells (SP- 

VSVG-hGLP-lRAN23-GFP). The SP-VSVG-hGLP-lRAN23 with no GFP-tag and its 

C-terminal deletion constructs w ere generated by PCR using sequence specific 

prim ers containing EcoRl restriction site (5' prim er), Sail restriction site and 

stop codon (3' prim er), which prevents GFP-tagging at the C-terminus and SP- 

VSVG-hGLP-lRAN23-GFP plasmid as the tem plate.

The VSVG tag sequence w as included in each prim er used for generating the N- 

term inal deletion constructs of the hGLP-lR. The sequence prim ers included 

EcoRl RE site and the s ta rt codon (ATG) in the 5' prim er and Sail RE site and no 

stop codon (TAG) in the 3' prim er. A Kozak sequence (GCCACC) was also
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inserted  before the s ta rt codon to increase the translation efficiency and 

expression of the DNA product (Nauck et al, 2009).

A. 5' p rim er

EcoRl Kozak Start hGLP-lR -  Signal Peptide

5'- CGC GAA TTC GCC ACC ATG GCC GGC GCC CCC GGC CCG CTG CGC CTT GCG CTG CTG 

CTG CTC GGG GTG GGC AGG GCC GGC CCC ATG TAC ACC GAT ATA GAG ATG AAC -3’ 

hGLP-lR -  Signal Peptide VSVG

B. 3' p rim er

Sail hGLP-lR (1389-1365)

5'- CG CGT CGA CTG ,G.CXGCA.GGA.GGC..CXG.G.CA.AGX.G.GC. -3'

Figure 2.1. Prim ers for cloning the SP-VSVG-hGLP-lRAN23-GFP plasm id.

Bases underlined once show the RE digest sites. Bases in italics rep resen t the 

Kodak sequence and in bold is the s ta rt codon. The coding sequence of the 

hGLP-lR is on a w aved underline. The double underline highlights the VSVG tag.

2.4.2. A m plification o f DNA by PCR

A 100 pi PCR m ixture w as made up in a PCR tube, which contained 86.5 pi 

ddHzO, 10 pi high fidelity buffer (lOx) w ith 15 pM MgCh, 1 pi 100 mM dNTPs,

1.5 pi high fidelity Taq polym erase (3.5 U/pl), 0.5 pi of 100 pM 5' prim er and 0.5 

pi of 100 pM 3' prim ers and a tem plate DNA. However, a 20 pi reaction m ixture
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containing Red Taq polym erase (Sigma) and bacterial colony as a tem plate w as 

used for colony PCR, which was useful in identifying bacterial colonies 

harbouring recom binant plasmids w ith gene inserts.

PCR amplification for cloning proceeded with initial denaturation, 30 cycles of 

denaturation, annealing and elongation, and a final extension using the therm al 

cycler (GeneAmp PCR System 2400, Perkin Elmer, Cambridgeshire, UK). Initial 

denaturation was carried out a t 95°C for 2 min. The denaturation in each cycle 

was a t 95°C for 30 s. The annealing was perform ed at 60°C for 30 s in each cycle. 

The elongation tem perature  was for 1 min per kilo base pair (kbp) a t 72°C for 

each cycle. The final extension was for 5 min a t 72°C. Following the  final 

extension the reaction tubes w ere cooled a t 20°C for 5 min or until the  PCR 

tubes w ere removed from the therm al cycler. Reaction m ixtures not required 

straight away w ere stored at -20°C.

2.5. Restriction digestion

Restriction digest cuts DNA into sm aller pieces w ith RE tha t recognise RE sites 

in the DNA. In this study, restriction digests w ere perform ed to either confirm 

the presence of a known insert w ithin the plasmid DNA or to release DNA 

inserts for religation.

To confirm the presence of the insert in a recom binant plasmid, 1 pg of plasm id 

DNA was digested in a 10 pi reaction m ixture containing 1 pi lOx reaction 

enzyme specific buffer and 0.5 pi of each RE (10 U/pl). The m ixture w as 

incubated at 37°C for 2-3 h in a Grant GD100 w ater bath. After digestion, if not 

required straight away, the reaction mixture was stored a t -20°C.

To prepare an insert or vector for ligation (plasmid or purified PCR product) the 

same conditions w ere used as above w ith the exception tha t the total reaction 

volume was 100 pi. The reaction m ixture contained 50 pi plasmid DNA, 10 pi
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lOx reaction enzyme specific buffer, 10 pi of each RE and 30 pi ddHzO. After 

digestion, if not required straight away, the reaction mixture was stored a t - 

20°C.

2.6. Agarose gel electrophoresis

Agarose gel electrophoresis was used to either separate or identify original PCR 

products and digested plasmids. Here, 2x 0.5 g of agarose tablets w ere added to 

100 ml TAE buffer (0.4 M Tris acetate, 0.01 M EDTA, pH 8.3), left for 10-15 min 

at room tem peratu re  (RT) to disperse the tablets and heated in a m icrowave 

oven until the agarose had completely dissolved to produce a 1 % gel. 1 0  pi of 

ethidium  brom ide ( 1 0  m g/m l) was added to the solution and mixed by swirling. 

The gel w as then poured into the casting tray  (Whatman, Maidstone, UK) with a 

comb to form the sample wells and allowed to solidify a t RT. Once the gel had 

solidified, the comb was removed and TAE buffer was added to the tank to cover 

the gel. 5 pi or 100 pi of DNA sample w ere mixed with 6 x DNA loading buffer 

(0.25% [v/v] brom ophenol blue, 30% [v/v] glycerol) and then pipetted into the 

wells of the gel. A 1.0 kb HyperLadder™  was used to estim ate the size of the 

DNA fragments. Using a PowerPac 200 (BioRad, Herts, UK) the gel was run at 

100 volts (V) for 15-30 min, then removed from the tank, placed on the GelDoc 

machine (BioRad, Herts, UK) and viewed under Trans UV light.

2.7. DNA extraction and purification

The QIAquick gel extraction kit was used to extract and purify DNA from 

agarose gel or solution (e.g. after restriction digestion of excised DNA to  be used 

for ligation [see section 2.8]), as directed by the m anufacturer. This rem oves 

enzymes, dNTPs, nucleotides, prim ers, salts, agarose, ethidium brom ide and 

other im purities from the DNA samples.
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Using a clean scalpel under trans-UV light, the band of in terest was excised from 

the agarose gel and weighed in a 2  ml m icrocentrifuge tube of known weight. 

The gel band was heated a t 50°C in a volume of QG buffer (pi) equivalent to 3 

tim es the gel weight (pg) using a Grant heating block (Cambridgeshire, UK) with 

periodic mixing to dissolve the gel piece. A volume of isopropanol (pi) 

equivalent to the gel weight (pg) was added, the sample was then  mixed and 

added to a QIAquick spin column. This was centrifuged in a table top Eppendorf 

5415D centrifuge for 1 min at 16000 xg and the flow through discarded. If 

necessary, the centrifugation was repeated to add more sample to the spin 

column. The column was washed with 750 pi of buffer PE, centrifuged (1 min, 

16000 xg) and the flow through was discarded. The column was further 

centrifuged (1 min, 16000 xg) to completely rem ove any residual ethanol. The 

column was then transferred  to a clean 1.5 ml m icrocentrifuge tube and 50 pi of 

buffer EB (10 mM Tris, pH 8.5) added to the column and left to sit for 1 min 

before centrifugation for 1 min a t 16000 xg to elute DNA.

To purify DNA after RE digestion, the above protocol was followed. However, 

450 pi of buffer QG was added directly to 100 pi digested product and the 

solution was not heated. 150 pi of isopropanol was added and the m ixture 

applied to the QIAquick spin column as described above. Additionally, DNA was 

eluted with 30 pi of buffer EB.

2.8. DNA ligation

Ligation was used to join DNA fragm ents by covalent bonds. To generate  the 

GFP epitope tagged hGLP-lR constructs and other fluorescently tagged 

constructs, inserts released from existing constructs by RE or isolated by PCR 

amplification and digested with RE and an em pty vector digested w ith the  same 

RE or ligation compatible RE w ere ligated. The insert and vector w ere p repared  

by RE digest as described (section 2.5). The total reaction volume of the  ligation 

mixture was 10 pi and contained 5 pi 2x ligation buffer, 1 pi T4 DNA Ligase, 1 pi
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vector, 3 pi insert o r w ater (for the negative control). The ligation m ixture was 

mixed and centrifuged briefly in a table top Eppendorf 5415D centrifuge to 

collect a t the bottom  of the m icrocentrifuge tube. The reaction was carried out 

a t 4°C for a m inim um  of 24 h. 5 pi of the ligation m ixture was used to transform  

into 100 pi of u ltracom petent XLl-Blue cells followed by selection w ith the 

appropriate  antibiotic conferred by the vector for purification of plasm id DNA 

(see section 2.3).

2.9. Site-directed mutagenesis

2.9.1. Point m utations

Point m utations w ithin the hGLP-lR construct w ere generated using the 

QuikChange II XL Site-Directed Mutagenesis Kit as directed by the 

m anufacturer. Point m utations w ere introduced using PCR prim ers (Table 2.2). 

The DNA tem plate used was either the SP-VSVG-hGLP-lRAN23-GFP, VSVG- 

hGLP-lR-GFP or VSVG-hGLP-lRAN23-GFP construct. A reaction m ixture was 

made w ith the addition of 1 pi lOx reaction buffer, 50 ng DNA tem plate, 0.125 pi 

of 100 pM 5' prim er and 0.125 pi of 100 pM 3' prim er, 0.2 pi dNTP mix, 0.6 pi of 

QuikSolution and 7.5 pi of ddFhO to a total reaction volume of 10 pi. To this 0.2 

pi of PfuUltra HF DNA polym erase (2.5 U/pl) was added to the reaction mixture.

PCR for generating m utated PCR products was proceeded w ith initial 

denaturation, 18 cycles of denaturation, annealing and elongation, and final 

extension using the GeneAmp PCR System 2400. The initial denaturation  was 

carried out a t 95°C for 2 min. The denaturation in each was a t 95°C for 1 min. 

Annealing was perform ed a t 60°C for 50 s in each cycle. The elongation 

tem peratu re  w as for 7 m in (1 min per kbp DNA) a t 6 8 °C for each cycle. The final 

extension w as for 7 min at 6 8 °C. Following the final elongation, the reaction 

tubes w ere cooled at 20°C for 5 min or until the PCR tubes w ere rem oved from 

the GeneAmp PCR System 2400.
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The PCR product w as then  digested with 0.4 pi of Dpn\ RE (10 U/pl) a t 37°C for 

2 h. 2 pi of product was then  transform ed into 50 pi of XL1 Blue ultracom petent 

cells for purification of plasm id DNA (see section 2.3).

2.9.2. D eletion m utations

Deletions w ithin the hGLP-lR was generated using the Q5® Site-Directed 

M utagenesis Kit as directed by the m anufacturer. Deletions w ere introduced 

using PCR prim ers (Table 2.3). The DNA tem plate used was the SP-VSVG-hGLP- 

1RAN23-GFP construct. A reaction mixture was made w ith the addition of 5 pi 

Q5 hot s ta rt fidelity 2x m aster mix, 10 ng tem plate, 0.5 pi of 10 pM 5' prim er and 

0.5 pi of 10 pM 3' p rim er and 3 pi of ddfhO to a total volume of 10 pi.

PCR for generating m utated PCR products was proceeded with initial 

denaturation, 25 cycles of denaturation, annealing and elongation, and final 

extension using the GeneAmp PCR System 2400. The initial denaturation was 

carried out at 98°C for 30 s. The denaturation in each was a t 98°C for 10 s. 

Annealing was perform ed a t 60°C for 30 s in each cycle. The elongation 

tem peratu re  was for 3.5 min (30 s per kbp DNA) at 72°C for each cycle. The final 

extension was for 2 min a t 72°C. Following the final elongation, the reaction 

tubes w ere cooled a t 4°C for 5 min or until the PCR tubes w ere removed from 

the GeneAmp PCR System 2400.

The PCR product w as then  subjected to KLD (oligonucleotide kinase, T4 DNA 

ligase and DpnY) reaction. A reaction m ixture w as made up of 0.5 pi of PCR 

product, 2.5 pi 2x KLD reaction buffer, 0.5 pi lOx KLD enzyme mix and 1.5 pi 

ddH20 and incubated a t RT for 1 h. 5 pi of product was then transform ed into 50 

pi of NEB 5-alpha com petent E. coli or XL1 Blue ultracom petent cells for 

purification of plasm id DNA (see section 2.3).
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2.10. DNA sequencing

The mutations, deletions and right reading frames w ere confirmed by 

autom ated sequencing (DNA Sequencing Services ™, w ithin the of Life Sciences, 

University of Dundee, Scotland, UK). For each sequencing, 600 ng of plasmid and 

3.2 pM of prim er was m ade up to 30 pi with ddLhO was supplied.

2.11. Mammalian cell culture

2.11.1. Growth and m aintenance

HEK293 cell w ere m aintained at 37°C in a 5% CO2 humidified environm ent in 

Dulbecco's modified Eagle medium (DMEM; serum  free medium [SFM], LM- 

D1110, Biosera, East Sussex, UK) containing 4500 mg glucose/L, L-glutamine, 

sodium bicarbonate and pyridoxine HC1, supplem ented with 10% (v/v) fetal calf 

serum  (FCS), 2 mM (v/v) glutamine, 100 U/ml (v/v) penicillin and 0.1 m g/m l 

(v/v) streptom ycin (full serum  medium [FSM]; Invitrogen, Paisley, UK) in a 

Galaxy S Incubator (Wolf Laboratories, York, UK). Once cells had reached 

approxim ately 90-100%  confluency, cells w ere subcultured.

To subculture, the FSM was aspirated  (Integra Biosciences, NH, USA) and cells 

washed gently with 1.5 ml Dulbecco's PBS (w ithout CaCh or MgCh). This was 

aspirated and 1.0 ml trypsin-EDTA (0.05% [w/v] trypsin, 0.04% [w/v] EDTA in 

PBS) gently added to cells. After being left for 2 min at 37°C, cells w ere 

resuspended in 10 ml FSM. The cell suspension was vortexed to prevent cells 

from clumping together and the appropriate  volume of cells w ere transferred 

into a new cell culture dish. Cells w ere passaged every 3-4 days depending on 

grow th rate.
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2.11.2. Cell counting and viability determ ination

Following trypsinisation of adheren t cells (see section 2.11.1), cells in 

suspension w ere counted using the Countess® autom ated cell counter 

(Invitrogen, Paisley, UK) to determ ine cell num ber and viability. 10 pi of 0.2% 

(v/v) trypan blue stain was mixed with 10 pi of cells in suspension in 

m icrocentrifuge tube. This was immediately added to the counter cham ber slide 

and placed inside the Countess®. The inform ation given by the Countess® 

included the total num ber of cells, the num ber of live and dead cells, percentage 

viability and the average size of the cell population.

2.11.3. Resuscitation o f frozen cells

Frozen cells w ere removed from liquid nitrogen and quickly thaw ed to 

minimise any damage to the cell m em branes. The cells w ere added into 15 ml of 

prew arm ed (37°C) FSM in a 50 ml universal and then vortexed to avoid 

clumping. The cells w ere then transferred  into a 10 cm tissue culture plate and 

cultured under normal grow th conditions after 24 h incubation (section 2.11.1).

2.11.4. Freezing cells for storage

HEK293 cells grown to 100% confluency w ere resuspended in 10 ml FSM 

following trypsinisation as described in section 2.11.1 Cells w ere then 

centrifuged at 500 xg for 5 min a t RT using a Heraeus Biofuge Primo R 

centrifuge (DJB LAbcare Ltd, Buckinghamshire, UK). The cell pellet was 

resuspended in 1 ml of cryopreservation m edium (65% [v/v] SFM, 25% [v/v] 

FCS, 10% [v/v] DMSO) and transferred  to a sterile 2 ml cryovial. These cryovials 

w ere placed in a Nalgene™ Cyro 1°C freezing container (Thermo Scientific, 

Northum berland, UK), filled w ith isopropanol and placed at -80°C overnight, 

which reduced the tem perature  by 1°C per min. The cryovials w ere transferred  

and stored in liquid nitrogen (section 2.11.3).
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2.12. Transient transfection of plasmid DNA

Transfection is the process of introducing DNA into mammalian cells using non- 

viral m ethods. HEK293 cells grown in the appropriate  cell culture dish w ere 

transfected using Polyplus JetPRIME® transfection reagent, following 

m anufacturer's instructions. The cells w ere plated 24 h before transfection and 

allowed to adhere overnight. Briefly, the appropriate  volume of plasmid DNA 

was diluted in the appropria te  volume of JetPRIME® buffer (see Table 2.4). The 

appropria te  volume of JetPRIME ® transfection reagent (2 pi per 1 pg plasmid 

DNA) w as added. These m ixtures w ere incubated at RT for 15 min. The DNA- 

JetPrime® m ixture w as added dropw ise to the cells followed by gently rocking 

to mix. 24 h after transfection, the medium was changed. Cells w ere used for 

experim entation 48 h post transfection.

Table 2.4. JetPRIME® transfection gu idelines depending on culture plate.

Culture

Plate

Concentration  

of DNA (pg)

Volume o f JetPRIME® 

buffer (pi)

Volume o f JetPRIME® 

reagent (pi)

24-well 0.25 50 0.5

12-well 0.5 75 1

6-w ell/3

cm
1 200 2

6 cm 2 200 4

10 cm 5 500 10

The table shows the concentration of DNA, volum e of JetPRIME® buffer and 

reagent used depending on culture plate.
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2.13. Enzyme linked immunosorbent assay (ELISA)

Cell surface receptor expression, in the absence and presence of agonists, was 

assessed by ELISA (Daunt et al, 1997; Kanamarlapudi et al, 2012). Transiently 

transfected HEK293 cells expressing the hGLP-lR plasmid construct from 10 cm 

or 6 cm plates w ere  replated (as described in section 2.11.1) in duplicate using 

FSM into wells of a 48-well plate coated w ith poly-L-lysine (0.1 m g/m l in PBS, 

10 mM phosphate buffer, 2.7 mM KC1 and 137 mM sodium hydroxide [NaOH], 

pH 7.4) and incubated at 37°C/5%  CO2 for 24 h.

Following overnight incubation, cells w ere serum  starved. The medium was 

aspirated, w ashed 3 tim es w ith SFM and then incubated w ith 100 pi of SFM per 

well for 1 h a t 37°C/5%C02. Cells w ere then left un treated  or treated  w ith an 

appropriate  concentration of agonist in 0.5% (w /v) fat free bovine serum  

album in (BSA)/SFM and incubated at 37°C/5% CO2 for the required length of 

time. Cells w ere fixed im m ediately w ith 4% (w /v) paraform aldehyde (PFA) in 

PBS for no longer than  5 min on a SSL4 see-saw  rocker (Stuart, Staffordshire, 

UK). If the PFA was left for longer than 5 min it would perforate the cell 

m em brane, which was not desirable. The PFA was removed and the wells 

w ashed 3 tim es w ith tris-buffered saline (TBS, 10 mM Tris HC1, 150 mM NaCl, 

pH 7.4) and non-specific binding blocked in 1% (w /v) BSA/TBS for 45 min with 

rocking. The cells w ere then  incubated w ith 100 pi per well of anti-hGLP-lR 

antibody or anti-VSVG antibody diluted 1:15000 in 1% (w /v) BSA/TBS for 1 h 

at RT w ith rocking. After incubation w ith prim ary antibody, cells w ere w ashed 3 

tim es w ith TBS and then  incubated w ith 100 pi per well of HRP-linked anti­

mouse IgG diluted 1:5000 in 1% (w /v) BSA/TBS for 1 h w ith rocking a t RT. 

Again the w ashes w ere repeated  and then developed by adding 100 pi per well 

of 1-stepTM Ultra TMB-ELISA substrate  for 15 min at RT with rocking. 30 pi of 

the developing solution w as transferred  in triplicate to a 96-well plate and the 

reaction stopped by adding an equal volume of 2 M sulphuric acid (H2SO4). The 

optical density was read at 450 nm using a Biotek plate reader (N orthstar 

Scientific Ltd, Leeds, UK). The data obtained was analysed to show either 

receptor cell surface expression or percentage cell surface receptor loss.
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To examine the concentration dependency of receptor internalisation by ELISA, 

cells w ere stim ulated w ith a range of concentrations for 60 min. To investigate 

the tim e dependent effect of agonists on receptor internalisation by ELISA, cells 

w ere stim ulated with a single concentration of agonist (100 nM GLP-1, 10 pi 

compound 2 and compound B) for 0-240 min. W here indicated, cells w ere 

preincubated with antagonists or inhibitors for the indicated tim e at 37°C/5% 

CO2 prior to agonist stim ulation and during agonist stimulation. The rest of the 

protocol was followed as detailed above.

2.14. Immunofluorescence

Intracellular localisation of hGLP-lR expression in response to agonist 

stim ulation was assessed by immunofluorescence as previously described 

(Kanamarlapudi et al, 2012). Cells transiently  transfected with hGLP-lR plasmid 

DNA w ere seeded (see section 2.11.1) onto poly-L-lysine coated 13 mm 

coverslips in a 24-well plate using FSM and incubated at 37°C/5% CO2 for a 

further 24 h. After 24 h, cells w ere serum  starved for 1 h a t 37°C/5% CO2 in 200 

pi SFM per well. The medium was removed and cells w ere incubated with either 

the anti-hGLP-lR or anti-VSVG antibody diluted 1:5000 in 1% (w /v) BSA/SFM 

for 1 h a t 4°C on a see-saw  rocker. The cells w ere w ashed twice w ith ice cold 

PBS and either left un treated  or treated  with an appropriate  concentration of 

agonist in 0.5% (w /v) fat free BSA/SFM and incubated at 37°C/5% CO2 for the 

required length of time. Cells w ere then fixed im m ediately w ith 4% (w /v) PFA 

in PBS for 30 min with rocking. The PFA was rem oved and the wells washed 3 

tim es with PBS, perm eabilised w ith 0.2% (v/v) Triton-XlOO in PBS for 10 min 

and non-specific binding sites blocked w ith 1% (w /v) BSA/PBS-T (PBS-0.1% 

(v/v) Triton-XlOO) for 30 min w ith rocking. Cells w ere then incubated with 200 

pi of Cy™3-conjugated anti-m ouse IgG secondary antibody, diluted 1:200 in 1% 

(w /v) BSA/PBS-T, in the dark for 1 h w ith rocking. Cells w ere washed 3 times in 

PBS and incubated w ith DAPI (1 m g/m l), diluted 1:2000 in PBS, in the dark for 5
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min w ith rocking to stain nuclei. Lastly, the coverslips w ere m ounted onto glass 

slides using 10 pi of m ounting solution (0.1 M Tris HC1 pH 8.5, 10% [w/v] 

Mowiol, 50% [v/v] glycerol) containing 2.5% (v/v) 1,4 diazabicyclo (2.2.2) 

octane (DABCO, anti-fading reagent) and kept in the dark  a t 4°C until slides 

w ere ready to be imaged.

Slides w ere examined and imaged using a confocal m icroscope (Carl Zeiss, 

LSM710) w ith a 63x oil-immersion objective lens and a 488 nm Kr/Ar laser. 

Emission w avelengths used w ere 405 nm for DAPI, 488 nm for GFP and 543 nm 

for Cy™3-conjugated anti-m ouse IgG secondary antibody. Scale bar in confocal 

images represen ts 10 pm. The confocal images shown in figures are 

representative of 3 independent cell preparations.

To examine the concentration dependency of hGLP-lR internalisation by 

immunofluorescence, cells w ere stim ulated w ith a range of concentrations for 

60 min. To investigate the tim e dependent effect of agonists on hGLP-lR 

in ternalisation by immunofluorescence, cells w ere stim ulated with a single 

concentration of agonist (100 nM GLP-1, 10 pi compound 2 and compound B) 

for 0-240 min. W here indicated, cells w ere preincubated with antagonist or 

inhibitors for the indicated time at 37°C/5% CO2 prior to agonist stimulation, 

during antibody incubations and agonist stimulation. The rest of the protocol 

was followed as detailed above.

2.15. Live cell imaging

For live cell imaging, transiently  transfected HEK293 cells w ere plated into 8- 

cham ber glass bottom  slides (Thermo Scientific, Northum berland, UK) pre­

coated w ith poly-L-lysine and incubated at 37°C/5%  CO2 in FSM. After 24 h, 

cells w ere w ashed 3 tim es and serum  starved w ith 200 pi per well of SFM for 1 

h at 37°C/5%  CO2. Cells w ere then imaged twice (0 and 3 min) w ith no agonist 

added and for every 3 min after stim ulating w ith agonist (diluted in 0.5% (w /v)
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fat-free BSA/SFM) a t 37°C for 60 min. Cells w ere imaged using a confocal 

m icroscope (Carl Zeiss, LSM710) with a 63x oil-immersion objective lens and a 

488 nm Kr/Ar laser. Emission wavelengths used w ere 405 nm for DAPI, 488 nm 

for GFP and 543 nm for Cy™3-conjugated anti-m ouse IgG secondary antibody. 

Scale bar in confocal images represents 10 pm. The confocal images shown in 

figures are representative  of 3 independent cell preparations.

W here indicated cells w ere preincubated with antagonist for the indicated tim e 

a t 37°C/5%  CO2 p rior to agonist stimulation, during antibody incubations and 

agonist stim ulation. The res t of the protocol was followed as detailed above.

2.16. Methylthiazol tetrazolium (MTT) assay

The m ethylthiazol tetrazolium  (3-(4,5-dimethlthiazol-2-yl)-2,5- 

diphenyltetrazolium  bromide, MTT) assay was perform ed to assess the 

cytotoxicity of GLP-1, com pound 2 and compound B on cells (Bromberg & 

Alakhov, 2003). HEK293 cells w ere seeded into poly-L-lysine coated 96-well 

plates a t a density of 2 .75x l04 cells per well. PBS was added to  wells 

surrounding the cell to prevent dehydration. After 24 h of plating, cells w ere 

w ashed and serum  starved for 1 h in SFM at 37°C/5% CO2. Cells w ere either left 

un treated  or incubated w ith varying concentrations of agonist in 0.5% (w /v) 

fat-free BSA/SFM for a further 1 h a t 37°C/5% CO2. MTT stock reagent (5 m g/m l 

in PBS) diluted 1:5 in 0.5% (w /v) fat-free BSA/SFM was then added to the cells 

and incubated for 5 h a t 37°C/5% CO2 in the dark. After 5 h, the MTT reagent 

was rem oved and the reaction product accum ulated in cells was solubilised in 

DMSO for 30 min. The solubilised product was quantified a t 550 nm using a 

FLUOstar OPTIMA (BMG Labtech, Buckinghamshire, UK) plate reader. Each 

concentration was perform ed in triplicate w ith 3 independent cell preparations.
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2.17. Luciferase assay

HEK293 cells cotransfected with the hGLP-lR plasmid and luciferase reporter 

plasm id for cAMP (pGL4.29-Luc-CRE) or intracellular Ca2+ (pGL4.30-Luc-NFAT) 

or ERK phosphorylation (pGL4.33-Luc-SRE) w ere plated in a poly-L-lysine 

coated 96-well half area w hite opaque w ith clear bottom  plates and incubated 

for 24 h a t 37°C/5%  CO2. Cells w ere trea ted  with 25 pi increasing 

concentrations of agonists for 4 h (cAMP and ERK) or 8 h (Ca2+) in 0.5% (w /v) 

BSA/SFM at 37°C/5%  CO2. After incubation, plates w ere left to cool to RT for 15 

min and an equal volum e (25 pi) of 2x ONE-Glo™ lysis buffer containing 

luciferase substra te  was added to each well. The plate was left for 3 min on a 

Heidolph Tetram ax 100 shaker (Heidolph UK, Essex, UK) at 250 rpm. 

Luminescence (relative light units [RLU]) was im m ediately m easured using a 

FLUOstar OPTIMA plate reader. Each concentration was perform ed in triplicate 

w ith 3 independent cell preparations.

2.18. cAMP assay

2.18.1. Preparation o f hGLP-lR cAMP sam ples

HEK293 cells transien tly  transfected w ith hGLP-lR plasmid DNA w ere seeded 

into poly-L-lysine coated 12-well plates and incubated at 37°C/5% CO2 . After 24 

h, the FSM was asp irated  and serum  starved for 1 h a t 37°C/5% CO2. After 

serum  starvation, cells w ere incubated w ithout or w ith agonist in the presence 

of 250 pM Ro201724. The media was aspirated and 150 pi 0.1 M HC1 was added 

to each well. Cells w ere harvested using a rubber policeman and transferred  to a

1.5 ml m icrocentrifuge tube. The cell lysate was dissociated by vortexing until 

the suspension w as hom ogeneous and incubated a t RT for 20 min. The lysate 

w as centrifuged a t 16000 xg for 10 min in a table top Eppendorf 5415D 

centrifuge. The supernatan t was collected into a new microcentrifuge tube and 

if not required  straight away was stored at -80°C.
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2.18.2. Preparation of cAMP Standard Curve

cAMP standards w ere prepared by diluting 100 pM /pl cAMP stock in 0.1 M HC1 

to the concentrations of 100, 20, 4, 0.8, 0.16, 0.032, 0 and 0_B (0 with no 

antibody added) pM/pl. 50 pi of 0.2 M NaOH was added to 100 pi of cAMP 

standard  or sample (see section 2.18.1) to neutralise and m ade up to 1 ml with 

850 pi TBS-0.05% (v/v) Tween 20. Samples w ere ready for quantification.

2.18.3. Quantification of cAMP

24 h prior to quantification 1x8 flat well strips w ere coated w ith 50 pi/well of 1 

m g/m l unconjugated goat-anti rabbit diluted in coating buffer (sodium 

bicarbonate buffer, pH 9.5) and incubated overnight w ith gentle agitation using 

a Heidolph Tetram ax 100 shaker.

The coating buffer was removed and 100 pl/w ell 0.5% (w /v) BSA/TBS-0.05% 

(v/v) Tween 20 was added for 2 h a t RT to block non-specific binding sites. The 

blocking buffer was removed and the plate was w ashed twice w ith TBS-0.05% 

(v/v) Tween 20. 25 pl/well of standard  cAMP and sample was added to the 96- 

well plate in duplicate. 12.5 pl/well of cAMP polyclonal antibody diluted 1 in 

10000 in 0.5% (w /v) BSA/TBS-0.05% (v/v) Tween 20 was added to all wells 

except 0_B w here 25 pi of 0.5% (w /v) BSA/TBS-0.05% (v/v) Tween 20 was 

added. The plate was incubated a t RT for 1 h w ith gentle agitation, after which,

12.5 pl/w ell of cAMP-HRP antibody diluted 1 in 10000 in 0.5% (w /v) BSA/TBS- 

0.05% (v/v) Tween 20 was added to all wells. All wells w ere w ashed 5 tim es 

with 0.5% (w /v) BSA/TBS-0.05% (v/v) Tween 20 and 50 pl/w ell of 1-step Ultra 

TMB ELISA substrate  was added and left to incubate a t RT for 5 min w ith gentle 

agitation. The reaction was stopped with the addition of 50 pl/w ell 2 M H2SO4 . 

The optical density was read at 450 nm using a Biotek plate reader. The data 

obtained was analysed to show percentage cAMP production com pared to 

control.
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2.19. Flow cytometry

Flow cytom etry allows specific cell populations to be analysed by 

hydrodynamically focusing cells. Cells in tercept a laser beam resulting in a pulse 

of scattered light proportional to the size of the cell. The forw ard scatter is 

relative to the size of the cell and the side scatter is relative to the granularity of 

the cell. W hen fluorescent labelled cells in tercept the laser light, electrons are 

excited to a higher energy state and then em it fluorescent light w hen the 

electron re tu rns back down to its ground state (Radcliff & Jaroszeski, 1998). See 

Table 2.5 for the fluorochromes used with each antibody.

HEK293 cells plated in 10 cm plates w ere transiently  transfected w ith hGLP-lR 

plasmid DNA and incubated at 37°C/5% CO2. After 24 h, FSM was aspirated and 

cells w ere resuspended in 10 ml FSM. Cells w ere then counted and their 

viability determ ined (section 2.11.2), a minimum of lx lO 6 cells/m l w ere used. 

Cells w ere centrifuged at 500 xg for 5 min at 4°C using an Eppendorf 5810R 

centrifuge and the FSM aspirated off. Cells w ere w ashed in 2 ml ice cold PBS, 

centrifuged at 500 xg for 5 min a t 4°C and blocked in blocking buffer (0.2% 

[w/v] BSA/PBS) for 1 h a t 4°C. The blocking buffer was removed by 

centrifugation, cells w ere resuspended in 3 ml ice cold PBS and 1 ml of this 

added into 3x 1.5 ml microcentrifuge tubes. Cells w ere again centrifuged at 500 

xg for 5 min, the PBS was aspirated from the 3x 1.5 ml microcentrifuge tubes 

and replaced w ith either 200 pi of either no antibody (unstained), anti-VSVG 

antibody, or anti-hGLP-lR antibody diluted 1:100 in 0.2% (w /v) BSA/PBS for 1 

h a t 4°C. After the prim ary antibody incubation, cells w ere centrifuged (500 xg, 

5 min, 4°C) and the prim ary antibody removed. Cells w ere then w ashed 3 tim es 

in 1 ml ice cold PBS by centrifugation (500 xg, 5 min, 4°C) and finally 

resuspended in 200 pi of Cy™3-conjugated anti-m ouse IgG secondary antibody, 

diluted 1:100 in 0.2% (w /v) BSA/PBS for 1 h a t 4°C in the dark. The secondary 

antibody was removed and cells w ere washed 3 tim es in 1 ml ice cold PBS by 

centrifugation (500 xg, 5 min, 4°C), but on the final w ash cells w ere split into 2 

further 1.5 ml microcentrifuge tubes w ithout and with 7-aminoactinomycin D 

(7-AAD) staining prior to the final centrifugation. Cells w ere resuspended in 100
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pi 7-AAD (Invitrogen) diluted 1:100 in 0.2% (w /v) BSA/PBS for 5 min at 4°C in 

the dark. Cells w ere centrifuged (500 xg, 5 min, 4°C) to rem ove the 7-AAD stain, 

resuspended in 1 ml fluorescence activated cell sorting (FACS) buffer (0.2% 

[w/v] BSA, 0.05% [v/v] sodium azide in PBS) and transferred  to FACS tubes (BD 

Biosciences, Oxford, UK). FACS tubes w ere centrifuged (500 xg, 5 min, 4°C), the 

buffer asp irated  and cells w ere resuspended in a final volume of 200 pi FACS 

buffer.

Cells w ere quantified by BD FACS Aria flow cytom eter (BD Bioscience) and 

analysed using BD FACS DIVA software. BD Cytometer Setup and Tracking (CST) 

settings w ere  used w ith 70 micron default, 3 laser, 9 colour (4-2-3) setup. Cells 

in suspension w ere topped up w ith FACS Flow (IsoFlow™ Sheath Fluid, 

Beckman Coulter Ltd, High Wycombe, UK) until a flow rate  of betw een 2000 and 

3000 cells/s was achieved. Firstly, cells w ere sorted by gating the forward and 

side scatter profiles (PI, Figure 2.2A). Cells w ere then  sorted into dead cells (P2, 

high 7-AAD PE-Texas red) and live cells (P3, low 7-AAD PE-Texas red) (Figure 

2.2B). The P3 population of cells (the cells of interest) w ere further analysed 

and sorted  into 2 populations. Cells w ith high FITC emission (pEGFP transfected 

cells) was selected for (P4, Figure 2.2C) and used for further analysis. A dot plot 

was used to select for low 7-AAD PE-Texas Red but w ith high FITC emission 

(Q l-1, Figure 2.2D). The Q l-1 population of cells w ere then further analysed to 

look for PE antibody staining (VSVG or hGLP-lR antibodies) by histogram s 

(Figure 2.2E) and dot plots to assess expression and cells of in terest w ere gated 

(Q2, Figure 2.2F). There is a high chance of spectral overlap because 3 

fluorochrom es w ere used. Therefore, using the unstained controls (w ithout GFP 

epitope tag, w ithout prim ary antibody and w ithout 7-AAD staining) 

com pensation w as used to correct for spectral overlap th a t could have occurred 

w hen 2 or m ore fluorochromes w ere used. This ensured tha t the fluorescence 

outpu t of each fluorochrome was representative of its designated channel 

(Alvarez e t al, 2010). The data obtained was analysed to show cell surface 

expression of GFP positive cells. Plots shown in figures are representative of 3 

independent cell preparations.
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Figure 2.2. Exam ple of ga ting  u sed  for flow cy to m etry  analysis. Example 

of SP-VSVG-hGLP-lRAN23-GFP transfected HEK293 cells analysed by flow 

cytometry. (A) A dot plot showing the PI population of cells sorted by 

forward scatter and side scatter. (B) A histogram representing the P2 

population with high 7-AAD staining (represents dead cells). P3 population 

representing live cells that have very low 7-AAD staining. This population 

(the cells of interest) was used for further analysis. (C) The P4 population 

representing cells expressing the GLP-tagged hGLP-lR and showing high 

FITC emission in a histogram. (D) A dot plot representing low 7-AAD and 

high FITC emission. The Ql-1 gated cells (the cells of interest) were used for 

further analysis. Cells from the Ql-1 population showing either VSVG or 

hGLP-lR antibody staining in a histogram (E) or dot plot (F).
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Table 2.5. Fluorochromes used in flow cytometry for hGLP-lR analysis.

Epitope T ag/ Antibody Fluorochrom e Em ission (nm )

GFP Flourescein (FITC) 519

Anti-VSVG Phycoerythrin (PE) 578

Anti-hGLP-lR Phycoerythrin (PE) 578

7-AAD PE-Texas red 616

The table shows the  fluorochrom es and emission wavelengths for the detection 

of the GFP epitope tag and the anti-VSVG, anti-hGLP-lR and 7-AAD antibodies 

used for flow cytom etry analysis.

2.20. Cell surface biotinylation

HEK293 cells transien tly  transfected w ith hGLP-lR constructs w ere grow n to 

90-100%  confluency in 6-well plates and subjected to cell surface biotinylation 

(Aiken et al, 2005; Schlondorff et al, 2009). Cells w ere w ashed and incubated at 

4°C for 10 min in ice cold PBS containing 1 mM CaCh and 1 mM MgCh. Cells 

w ere then  incubated a t 4°C for 1 h in 1 ml of ice cold PBS containing 1 mM CaCh 

and ImM  MgCh supplem ented w ith 0.5 m g/m l No-weigh™ Sulpho-NHS-LC- 

Biotin (Thermo Scientific, Northum berland, UK). The biotin solution was 

rem oved and cells w ere incubated for 10 min at 4°C w ith 100 mM glycine in TBS 

to quench any rem aining reactive biotin cross linker. Cells w ere then lysed in 

250 pi of ice cold modified radio-im m unoprecipitation assay (RIPA) lysis buffer 

(10 mM Tris HC1 pH 7.5, 10 mM EDTA pH 8.5, 1% [v/v] nonyl 

phenoxypolyethoxylethanol [NP40], 0.1% [v/v] sodium dodecyl sulphate [SDS], 

0.5% [w/v] sodium  deoxycholate, 150 mM NaCl, 1% [v/v] mammalian protease
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inhibitors), harvested using a rubber policeman and transferred  to a 1.5 ml 

m icrocentrifuge tube. The cell lysate was sheared using a 21-gauge needle and 

syringe and then  incubated on ice for 15 min. The lysate was centrifuged at 

22000 xg for 10 min a t 4°C and the supernatan t was collected into a new 

m icrocentrifuge tube. A 50 pi aliquot of supernatan t was collected and V2 

volume of 3x sam ple loading buffer (3% [w/v] SDS, 75 mM Tris HC1 pH 6.8, 30% 

[v/v] glycerol, 0.003%  [w/v] brom ophenol blue, 300 mM dithiothreitol [DTT]) 

was added, incubated a t RT for 1 h and was used to assess total hGLP-lR 

expression. The rem aining lysate was incubated w ith 50 pi of Dynabeads® 

MyOne™ Streptavidin T1 Magnetic Beads (Life technology, Paisley, UK) at 4°C 

for 2 h. The beads w ere  separated on a m agnet and w ashed 3 times with 1 ml 

lysis buffer. The bound receptor was eluted in 50 pi lx  sample loading buffer 

(1% [w/v] SDS, 25 mM Tris HC1 pH 6.8, 10% [v/v] glycerol, 0.001% [w/v] 

brom ophenol blue, 100 mM DTT) and left a t RT for 1 h. Samples tha t w ere not 

required  straight away w ere  stored a t -20°C. Total and biotinylated cell surface 

receptors w ere detected by im m unoblotting as described in section 2.23.

2.21. Coimmunoprecipitation

2.21.1. Preparation o f Dynabeads® and antibody binding

In a m icrocentrifuge tube, 25 pi (0.75 mg) of protein G Dynabeads® (Life 

technology, Paisley, UK) w as added. Dynabeads® w ere collected by placing the 

m icrocentrifuge tube on a m agnet and resuspended in 100 pi binding and wash 

buffer (PBS-0.02% [v/v] Tween 20, pH 7.4) containing 0.5 pg of antibody (2.5 pi 

anti-GFP, 2.5 pi anti-RFP and 5 pi anti-CAV-1). The microcentrifuge tube was 

rotated for 10 min a t RT. The beads w ere w ashed 3 tim es by gentle mixing w ith 

750 pi binding and w ashing buffer and placing the m icrocentrifuge tube on a 

magnet.
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2.21.2. C oim m unoprecipitation

Transiently transfected HEK293 cells grown to 90-100%  confluency in poly-L- 

lysine coated 10 cm plates w ere subjected to coim m unoprecipitation. After 48 h 

of transfection, the FSM w as aspirated from plates and the cells w ashed 3 times 

in ice cold PBS. Ice cold lysis buffer was added (1 mM CaCh, 1% [v/v] TritonX- 

100, 0.5% [w/v] SDS in PBS) and harvested as described in section 2.20. A 50 pi 

aliquot of supernatan t w as collected and Vi volume of 3x sample loading buffer 

(see section 2.20) w as added, incubated at RT for 1 h and was used to assess 

total hGLP-lR expression. The rem aining lysate was incubated w ith 25 pi of 

antibody coupled Protein G Dynabeads® at 4°C for 2 h. The beads w ere 

separated  on a m agnet and w ashed once w ith 1 ml lysis buffer and twice with 

binding and w ash buffer (see section 2.21.1). The bound receptor was eluted in 

50 pi lx  sam ple loading buffer (see section 2.20) and left a t RT for 1 h. Samples 

th a t w ere not required straight away w ere stored a t -20°C. Total and 

im m unoprecipitated hGLP-lR w ere detected by im m unoblotting as described in 

section 2.23.

2.22. Protein estimation (bicinchoninic acid (BCA) assay)

Protein standards w ere m ade by diluting 2 m g/m l BSA stock in ddFhO to the 

concentrations of 0, 0.2, 0.4, 0.6, 0.8, 1.0 m g/m l. 10 pi of protein standard was 

p ipetted  into wells of a 96-well flat bottom  plate, in duplicate. All protein 

sam ples w ere diluted (1:5 and 1:10) in ddl-hO and added to the plate, in 

duplicate. A reaction m ixture of copper sulphate and BCA solution (1:50, v /v) 

w as m ade up and 80 pi added to each well containing either the standard or 

samples. The plate w as then  incubated a t 37°C for 30 min in an Incucell 

incubator and the absorbance m easured a t 490 nm using the Biotek plate 

reader. Standard Curves w ere fitted using Microsoft Office Excel 2011 

(M icrosoft Corporation, WA, USA) and the unknow n protein concentrations 

w ere calculated by interpolation of the standard  curve.
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2.23. Immunoblotting

2.23.1 . Preparation o f hGLP-lR transfected w hole cell lysates

HEK293 cells transien tly  transfected w ith the hGLP-lR constructs w ere grown 

to 90-100%  confluency in 6-well plates. The medium was aspirated and cells 

w ere w ashed 3 tim es w ith ice cold PBS. Cells w ere lysed by the addition of 250 

pi ice cold modified RIPA lysis buffer and harvested as previously described in 

section 2.20. A 10 pi aliquot of each sample was retained for protein estim ation 

[see section 2.22). The supernatan t was collected and Vi volume of 3x sample 

loading buffer (see section 2.20) was added to the rem aining lysate and 

incubated a t RT for 1 h. Samples tha t w ere not required straight away w ere 

stored a t -20°C.

2.23.2. Preparation o f ERK1/2 phosphorylation cell lysates

Transiently transfected HEK293 cells w ere grown to 90-100%  confluency in 

poly-L-lysine coated 6-well plates. After 24 h the FSM was aspirated and cells 

serum  starved for 1 h a t 37°C/5%  CO2. W here indicated cells w ere preincubated 

w ith inhibitors for 30 min a t 37°C/5% CO2 prior to agonist stim ulation and then 

incubated w ithout or w ith agonist for 5 min at the required concentration. The 

m edia w as aspirated  and cells w ere lysed by the addition of 250 pi of ice cold 

modified RIPA lysis buffer for ERK phosphorylation (50 mM Tris HC1 pH 7.5, 0.2 

M NaCl, 10 mM MgCh, 0.1% [v/v] SDS, 0.5% [w/v] sodium deoxycholate, 1% 

[v/v] TritonX-100, 5% [v/v] glycerol, 1% [v/v] m ammalian protease inhibitors). 

Cells w ere harvested  as described in section 2.20. A 10 pi aliquot of each sample 

w as retained for protein  estim ation (see section 2.22). The supernatan t was 

collected and V4 volum e of 5x sample loading buffer (5% [w/v] SDS, 125 mM 

Tris HC1 pH 6.8; 50% [v/v] glycerol; 0.025% [w/v] brom ophenol blue; 20% 

[v/v] p-M ercaptoethanol) was added to the rem aining lysate, and the lysate 

boiled a t 100°C for 5 min using a Grant heating block. Samples th a t w ere not 

required straight away w ere stored at -20°C.
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2.23.3. SDS-Polyacrylamide Gel E lectrophoresis (SDS-PAGE)

The required percentage of running gel was made by adding 4x Tris SDS pH 8.8, 

30% (v/v) acrylamide, N, N, N', N '-tetram ethylethylenediam ine (TEMED) and 

ammonium persulphate (APS) (see Table 2.6 for recipes). The solution was 

mixed and poured betw een a spacer plate and short plate (BioRad, Herts, UK). 

W ater-saturated butanol was added to ensure a level edge. After polym erisation 

(~30 min), the w ater-saturated butanol was w ashed off with ddH20. The 

stacking gel (125 mM Tris HC1 pH 6.8, 0.1% [w/v] SDS, 5% [v/v] acrylamide, 

0.01% [v/v] TEMED, 0.01% [w/v] APS) was poured onto the running gel and a 

comb added to form loading wells. The gel was left to polymerise (~20 min), 

after which the comb was rem oved and the wells rinsed w ith ddHzO.

The gels w ere assembled into a clamping frame and placed in a mini tank 

(BioRad, Herts, UK). The central reservoir was completely filled and the tank 

half filled with running buffer (25 mM Tris HC1, 192 mM glycine, 0.1% [w/v] 

SDS, pH 8.3). Up to 25 pi of sample and 5 pi protein standard was loaded into 

each well. Electrophoresis was carried out a t 200 V until the loading dye front 

reached the bottom  of the gel (~40 min) using the PowerPac Basic (BioRad, 

Herts, UK).
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Table 2.6. Running gel recipes.

Reagent
7.5%

~37-250kD a

10%

~25-150kD a

12%

~15-100kD a

15%

~10-75kD a

W ater 5 ml 4.2 ml 3.5 ml 2.5 ml

4x  Tris SDS 

(pH 8.8)
2.5 ml 2.5 ml 2.5 ml 2.5 ml

30%

Acrylam ide
2.5 ml 3.3 ml 4 ml 5 ml

TEMED 10 pi 10 pi 10 pi 10 pi

APS
1 small 

spatula

1 small 

spatula

1 small 

spatula

1 small 

spatula

The table shows volumes required of w ater, 4x Tris SDS, 30% acrylamide, APS 

and TEMED to produce a 7.5%, 10%, 12% or 15% gel depending on the 

m olecular w eight of the protein of interest.

2.23.4. Semi-Dry Membrane Transfer

A ‘semi dry ' m ethod was used to transfer proteins from gels to polyvinylidene 

fluoride (PVDF) m em branes (pore size 0.45 pM). The filter paper and PDVF 

w ere precu t to the size of the gel. Here, PVDF m em brane w as soaked in 

m ethanol for 30 s, and then in transfer buffer (25 mM Tris HC1,192 mM glycine, 

20% [v/v] methanol, pH 8.3, chilled to 4°C) for 5 min. After electrophoresis, the 

gel was carefully removed from the casting plates, the stacking gel rem oved and 

the running gel soaked in transfer buffer for 5 min. Using a Trans-Blot® SD 

Semi-Dry Transfer Cell machine (BioRad, Herts, UK) a piece of presoaked PDVF 

m em brane w as placed on top of 3 layers of presoaked filter paper, the gel was 

placed on top of this and finally 3 m ore sheets of presoaked filter paper added.
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The transfer was perform ed at 15 V for 75 min using a PowerPac 200 (BioRad, 

Herts, UK).

2.23.5. Im m unoblotting

Once transfer w as completed, proteins w ere visualised w ith ponceau red stain 

(0.1% [w/v] ponceau S and 5% [w/v] acetic acid) to ensure good transfer had 

occurred. Once proteins had stained, the PDVF m em brane w as washed with 

TBS-Tween 20 (10 mM Tris HC1 pH 7.4, 150 mM NaCl, 0.05% [v/v] Tween 20) 

on a SSL4 see-saw  rocker, to remove the stain. The m em brane was then blocked 

in 5% (w /v) non-fat milk pow der (Marvel, Lincolnshire, UK) prepared in TBS- 

Tween 20 (5% [w/v] milk-TBS-Tween 20) on a rocker for 1 h at RT or overnight 

at 4°C. After blocking, the m em brane was sealed in a bag w ith 2 ml of 5% (w /v) 

milk-TBS-Tween 20 containing prim ary antibody at an appropriate  dilution 

(Table 2.7). The sealed bags w ere placed in TBS-Tween 20 for 1 h at RT or 

overnight a t 4°C w ith rocking. After incubating w ith the prim ary antibody, the 

m em brane w as w ashed 5 times for 5 min in TBS-Tween 20. Again the 

m em brane w as sealed in a bag with 2 ml of secondary antibody diluted 1:5000 

(Table 2.7) in 5% (w /v) milk-TBS-Tween 20 and incubated for 1 h a t RT with 

rocking. The m em brane was once again w ashed 5 tim es for 5 min in TBS-Tween 

20 .

Visualisation of bands on the m em brane was achieved using Amersham ECL 

Select im m unoblotting Detection Reagent. The detection reagent was made up 

by adding equal volumes of detection reagents 1 and 2. The m em brane was 

placed face dow n in the detection reagent for 1 min and then placed face up in 

the ChemiDoc™ XRS imaging machine (BioRad, Herts, UK). The m em brane was 

exposed for 1 ,10 , 30, 90 and 270 s using Quantity One software (BioRad, Herts, 

UK). M em branes w ere stored a t 4°C. Image-J softw are (Gallwitz, 2010) was used 

for densitom etry  analysis. The blots shown in figures are representative of 3 

independent cell preparations.
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Table 2.7. Series of antibodies used in immunoblotting.

Prim ary Antibody Secondary Antibody

Polyclonal anti-phospho p44 /42  MAPK 

(1:1000 dilution)

Donkey anti-rabbit IgG, HRP-linked 

(1:5000 dilution)

Polyclonal an ti-p44 /42  MAPK 

(1:1000 dilution)

Donkey anti-rabbit IgG, HRP-linked 

(1:5000 dilution)

Polyclonal anti-VSVG tag (Biotin) 

(1:1000 dilution)

Donkey anti-rabbit IgG, HRP-linked 

(1:5000 dilution)

Monoclonal anti-GFP 

(1:500 dilution)

Sheep anti-m ouse IgG, HRP-linked 

(1:5000 dilution)

Monoclonal anti-hGLP-lR 

(1:500 dilution)

Sheep anti-m ouse IgG, HRP-linked 

(1:5000 dilution)

The table shows the  prim ary and secondary antibody used for immunoblotting 

and the ir dilutions.

2.23.6. Stripping and reprobing

Previously probed m em branes w ere sealed in a bag w ith 2 ml im m unoblot 

stripping buffer (Therm o Scientific, Northum berland, UK) and left a t RT for ~15 

min w ith gentle rocking. Once m em branes w ere stripped, blots w ere washed 

twice w ith ddfhO  for 1 min and then once in TBS-Tween 20 for 5 min. The 

m em brane w as then  blocked, reprobed w ith the required prim ary and 

secondary antibody and finally visualised as described in section 2.23.5.
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2.24. Tunicamycin treatment

This assay w as carried out as described previously (W hitaker et al, 2012). 

HEK293 cells w ere either left un treated  (DMSO) or treated  w ith 5 pg/m l 

tunicam ycin in FSM at tim e of transfection. Cells w ere lysed and harvested for 

im m unoblotting 48 h post transfection as described in section 2.23.1.

2.25. Glycosidase treatment

2.2 5.1. Preparation o f post nuclear supernatant fractions

This assay w as carried out as described previously (Huang et al, 2010). HEK293 

cells transien tly  transfected with the hGLP-lR DNA plasmid was grown to 

confluency in a 10 cm plate. 48 h after transfection the medium was aspirated 

and cells w ere washed twice with ice cold PBS. Cells w ere harvested with a 

rubber policem an in 2 ml ice cold PBS. Cells w ere centrifuged at 200 xg for 2 

min at 4°C in an Eppendorf 5810R centrifuge. The supernatan t was removed 

and the pellet resuspended in 1 ml hom ogenisation buffer (1 mM EDTA, 10 mM 

Tris HC1 pH 7.5, 1 mM phenylm ethanesulfonylfluoride [PMSF], 1% [v/v] 

m am m alian protease inhibitors) and incubated on ice for 15 min. Cells w ere 

then  sonicated a t 80% am plitude for 3 x 10 s w ith 1 min intervals using a Sonics 

Vibra Cell VCX130 (Jencons-Pls, Bedfordshire, UK). The lysate was centrifuged 

a t 300 xg for 10 min at 4°C in an Eppendorf 5810R centrifuge to pellet nuclei 

and unbroken cells. The supernatant was collected into a new microcentrifuge 

tube and a 10 pi aliquot of each sample retained for protein estim ation (see 

section 2.22). The post-nuclear supernatant fraction was diluted w ith ice cold 

glycerol to 5 m g/m l and stored in aliquots a t -80°C.
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2.25.2. G lycosidase treatm ent

A 36 pi aliquot of 5 m g/m l post-nuclear supernatan t fraction was used for each 

trea tm en t following m anufacturer's instructions. Briefly, 4 pi of lOx 

glycoprotein denaturing buffer was added to the 36 pi aliquot of 5 m g/m l post- 

nuclear supernatan t fraction and incubated a t RT for 1 h. The sample was 

separated  into 3 microcentrifuge tubes and the proteins w ere either left 

un treated  or trea ted  w ith either 500 units of PNGase F or Endo H in a total 

reaction volume of 20 pi containing 1% (v/v) NP40 and either lx  G7 or G5 

reaction buffer, respectively for 1 h a t 37°C. Reactions w ere stopped with the 

addition of Vi volum e of 3x sample loading buffer (section 2.20) for 1 h at RT. 

Proteins w ere then  subjected to im m unoblotting as described in section 2.23.

2.26. Data analysis

Data w ere analysed using the GraphPad Prism program . All data are presented 

as m eans ± standard  e rro r of the m ean (SEM) of th ree  independent 

experim ents. Statistical com parisons betw een the control and te st value was 

m ade by a tw o-tailed unpaired studen t t-test. Statistical analysis betw een 

m ultiple groups w ere determ ined by the Bonferroni's post te st after one-way or 

tw o-w ay analysis of variance (ANOVA), w here p>0.05 was considered as 

statistically not significant (n.s.), and p<0.05, p<0.01 and p<0.001 shown as *, ** 

and *** respectively, w as considered statistically significant. Concentration 

response curves w ere  also fitted using Prism, according to a standard logistic 

equation. Scale bar in confocal images represen ts 10 pm. Confocal images 

shown in the figures are representative of 190-200 transfected cells from three 

different experim ents. Similarly, im m unoblotting data shown in the figures are 

representative  of th ree  independent experim ents. Cluster Omega (1.2.1) was 

used for m ultiple sequence alignm ent (Goujon et al, 2010; McWilliam et al, 

2013; Sievers e t al, 2011).
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3. The Region After the Signal Peptide is Critical for
Human Glucagon Like Peptide-1 Receptor Cell 

Surface Expression

3.1. Introduction

Glucagon like peptide-1 (GLP-1) is a polypeptide horm one secreted by the 

intestinal L-cells into the  blood in response to food intake (Drucker et al, 1987; 

Holst, 2007; Thom pson & Kanamarlapudi, 2013). It is an effective insulinotropic 

agent, which low ers blood glucose levels and increases insulin secretion (Doyle 

& Egan, 2007; Holz e t al, 1999; Thom pson & Kanamarlapudi, 2013). It acts as an 

agonist to the GLP-1 receptor (GLP-1 R), a family B G-protein coupled receptor 

(GPCR). The binding of GLP-1 to the GLP-1R results in insulin secretion from 

pancreatic (3-cells, making hum an GLP-1R (hGLP-lR) an im portant target in the 

trea tm en t of type 2 diabetes (Gallwitz, 2010; Thom pson & Kanamarlapudi, 

2013).

Family B GPCRs contain a N-terminal domain signal peptide (SP) sequence th a t 

is often critical for the synthesis and processing of the receptor (Kochi e t al, 

2002). The SP is about 20 amino acids (aa) long and contains a run  of 

hydrophobic residues. The first stage of protein targeting, during its synthesis, 

is insertion into the endoplasmic reticulum  (ER) by binding to the signal 

recognition particle (SRP), which is usually m ediated by the SP (Hegde & 

Lingappa, 1997). For example, deleting the SP sequence of the thyro tropin  

receptor (TR) abolished its functionality (Akamizu et al, 1990; Ban et al, 1992). 

However, the SP of the corticotropin-releasing factor (CRF) type 2a receptor 

although present, is incapable of mediating ER targeting (Rutz e t al, 2006; 

Schulz e t al, 2010). Further, the SP of the CRFi receptor is required for its 

expression bu t not for its function (Aiken et al, 2005). The GLP-1R contains a 

cleavable N-terminal SP (23aa long), its cleavage was not required for synthesis
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of the recep tor but was essential for cell surface expression of the receptor 

(Huang et al, 2010). M utation of the SP (Ala21Arg) to prevent its cleavage has 

been shown to result in retention of the GLP-1R within the ER. Further, a 

m utation of Glu34 was shown to facilitate GLP-1R cell surface expression when 

the SP w as deleted (Huang et al, 2010). The aa sequence following the SP in the 

GLP-1R, Gly27-Trp39, is relatively hydrophobic and it has previously been 

suggested tha t this region may be recognised by the SRP for synthesis of the 

recep tor (Hatsuzawa et al, 1997; Huang et al, 2010).

GPCRs synthesised in the ER translocate to the Golgi before being targeted to 

the cell surface. In this process, GPCRs undergo post- or co-translational 

modifications including glycosylation, m ethylation, phosphorylation, sulfation 

and lipid addition (Achour et al, 2008; Duvernay et al, 2005). The AMinked 

glycosylated GPCRs are processed further in the ER and Golgi before 

translocation and insertion into the plasma m em brane (Wallin & Vonheijne, 

1995). The GLP-1R has been shown to undergo AMinked glycosylation at 

positions Asn63, Asn82 and Asn115 within the ER (Chen et al, 2010; W hitaker e t al, 

2012).

The hGLP-lR has three residues, Trp39, Tyr69 and Tyr88, w ithin its N-terminal 

dom ain tha t are im portant for agonist binding (Runge et al, 2008; Underwood et 

al, 2010; Van Eyll et al, 1996). Trp39 has im portance in m aintaining the structure 

of the N-terminal domain of the GLP-1R by interacting w ith Tyr42, Phe66 and the 

adjacent disulphide bond (Cys46-Cys71) (Parthier e t al, 2007). It has been 

dem onstrated  tha t GLP-1 could not bind and activate the GLP-1 R w hen Trp39 

w as substitu ted  with Ala or Phe (Van Eyll e t al, 1996). Further, Phe22, lie23 and 

Leu26 of GLP-1 interacts w ith Trp39 in addition to Val36, Asp67, Tyr69, Arg121 and 

Leu123 of the GLP-1R (Underwood et al, 2010). Tyr69, which is centrally located 

w ithin the  N-terminal domain, interacts with Asp67 and has been shown to be 

involved in GLP-1 binding to its receptor (Runge et al, 2008). Tyr88 is involved 

in making the hydrophobic agonist binding site, which interacts w ith Leu32 of 

GLP-1 and Leu26 of Exendin-4 (Runge et al, 2008; Underwood et al, 2010). 

Although, T rp39, Tyr69 and Tyr88 residues w ithin the GLP-1R have been shown to

103



be required  for agonist binding, their role in hGLP-lR trafficking, function and 

AMinked glycosylation are currently unknown.

The GLP-1R is a major therapeutic target in the trea tm en t of type 2 diabetes, 

therefore  a be tter understanding of its m em brane trafficking is of high 

im portance. This study determ ined tha t the SP is cleaved in the m ature hGLP- 

1R. Cell surface expression was alm ost abolished w ith a m utation of the SP 

(A21R) to prevent its cleavage, dem onstrating tha t the cleavage of the SP was 

essential for cell surface expression of the hGLP-lR. Although the role of the SP 

in family B GPCR trafficking is well established, the significance of the 

hydrophobic region after the SP (HRASP) is unclear. Here, the HRASP was 

shown to be necessary for efficient hGLP-lR trafficking to the cell surface. 

Further, this study indicated tha t the hGLP-lR undergoes AMinked glycosylation 

and only the m ature fully glycosylated form is found at the cell surface. It was 

also dem onstrated  tha t preventing cleavage of the SP inhibited hGLP-lR cell 

surface expression by affecting AMinked glycosylation. Additionally, m utating 

T rp39, Tyr69 and Tyr88 w ithin the hGLP-lR abolished cell surface expression of 

the receptor w ithout affecting AMinked glycosylation and cleavage of the SP.

3.2. Materials and methods

3.2.1. M aterials

The prim ary  antibodies used w ere rabbit anti-vesicular stom atitis virus 

glycoprotein (VSVG) (Immunoblotting, Abeam Biochemicals), m ouse anti-VSVG 

(ELISA and immunofluorescence, Sigma), m ouse anti-green fluorescent protein 

(GFP) (Roche), mouse anti-hGLP-lR (ELISA and immunofluorescence, R&D 

Systems), m ouse anti-hGLP-lR (Immunoblotting, Santa Cruz). The Cy3- 

conjugated anti-m ouse immunoglobulin G (IgG) secondary antibody (Jackson 

Laboratories) was used for immunofluorescence. The horseradish peroxidase 

(HRP)-conjugated anti-m ouse and anti-rabbit IgG (GE Healthcare) secondary 

antibodies w ere used for immunoblotting. Enhanced chemiluminescence (ECL)
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select reagen t w as obtained from GE Healthcare. The cyclic m onophosphate 

(cAMP) polyclonal antibody and cAMP-HRP w ere obtained from Genscript. GLP- 

1 (Liraglutide) was from Novo Nordisk. All o ther chemicals w ere from Sigma 

unless o therw ise stated.

3.2.2. P lasm ids

The full-length hGLP-lRAN23 cDNA was amplified from mammalian gene 

collection (MGC) clone 142053 (Source Bioscience) by polym erase chain 

reaction (PCR) using High Fidelity Taq DNA polym erase (Roche Applied 

Science) and sequence specific prim ers containing EcoR\ restriction site and 

VSVG-tag coding sequence (5' prim er), and Sail restriction site and no stop 

codon (3' prim er). SP-VSVG-hGLP-lRAN23 cDNA w as amplified by overlap PCR 

using VSVG-hGLP-lRAN23 cDNA as the tem plate, the sense prim er, containing 

EcoRl restriction  site, the SP (l-23aa) coding sequence followed by VSVG coding 

sequence and 3' prim er. The cDNA was digested w ith EcoRl and Sail, and cloned 

in frame into the sam e sites of pEGFP-Nl vector (Clontech) for expression as the 

N -term inus VSVG-tagged (after the SP) and the C-terminus GFP-tagged fusion 

protein in m am m alian cells (SP-VSVG-hGLP-lRAN23-GFP). The point m utations 

w ithin the  hGLP-lR w ere generated using Quickchange II XL site-directed 

m utagenesis kit (Stratagene) and SP-VSVG-hGLP-lRAN23-GFP plasmid as the 

tem plate. The m utants w ith internal deletions (A) w ithin the N-terminus of 

hGLP-lR w ere  generated using Q5 site-directed m utagenesis kit (New England 

Biolabs) and SP-VSVG-hGLP-lRAN23-GFP plasmid as the tem plate. See Table 

3.1 for constructs used in this study.
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Table 3.1. Series of hGLP-lR constructs used in this study.

Construct Name Abbreviation Epitope Tags

1 SP-VSVG-hGLP-lRAN23-GFP SP-VSVG
VSVG

GFP

2 VSVG-hGLP-lR-GFP VSVG-SP
VSVG

GFP

3 VSVG-hGLP-lR VSVG-hGLP-lR VSVG

4 hGLP-lR-GFP hGLP-lR-GFP GFP

5 hGLP-lR hGLP-lR -

6 hGLP-lRAN23 hGLP-lRAN23 -

7 VSVG-hGLP-lRAN23-GFP ASP
VSVG

GFP

8 VSVG-VSP-hGLP-lRAN23-GFP VSP-ASP
VSVG

GFP

9 VSVG-hGLP-lR A21R-GFP A21R
VSVG

GFP

10 VSVG-hGLP-lRAN24-GFP AN24
VSVG

GFP

11 VSVG-hGLP-lRAN30-GFP AN30
VSVG

GFP

12 VSVG-hGLP-lRAN35-GFP AN35
VSVG

GFP

13 VSVG-hGLP-lRAN40-GFP AN40
VSVG

GFP

14
SP-VSVG-hGLP-lRAN23

A31-40-GFP
A31-40

VSVG

GFP
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15 VSVG-hGLP-lRAN145-GFP AN145
VSVG

GFP

16
SP-VSVG-hGLP-lRAN23

N63,82,115L-GFP
N63,82,115L

VSVG

GFP

17
SP-VSVG-hGLP-lRAN23 E34K- 

GFP
E34K

VSVG

GFP

18
SP-VSVG-hGLP-lRAN23 W39A- 

GFP
W39A

VSVG

GFP

19
SP-VSVG-hGLP-lRAN23 Y69A- 

GFP
Y69A

VSVG

GFP

20
SP-VSVG-hGLP-lRAN23 Y88A- 

GFP
Y88A

VSVG

GFP

The table shows the hGLP-lR constructs full name, abbreviated name and 

epitope tags.

3.2.3. Cell culture and transfection

Human em bryonic kidney 293 (HEK293) cells w ere m aintained a t 37°C in a 5% 

CO2 humidified environm ent in Dulbecco's modified Eagle m edium (DMEM; 

serum  free m edium  [SFM]) supplem ented w ith 10% fetal calf serum, 2 mM 

glutamine, 100 U/m l penicillin and 0.1 m g/m l streptom ycin (full serum  medium 

[FSM]). Cells w ere  transiently  transfected for 48 h using JetPrime transfection 

reagent (Polyplus; 2 p l/pg DNA) according to the m anufacturer's instructions.

3.2.4. Enzyme linked im m unosorbent assay (ELISA)

This is carried out as described previously w ith unperm eabilised cells to 

quantify cell surface expression (Kanamarlapudi e t al, 2012). Briefly, HEK293 

cells expressing the hGLP-lR w ere serum  starved for 1 h and then  stim ulated 

w ithout or w ith agonist a t 37°C/5% CO2. W here indicated, cells w ere incubated
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w ithout or w ith inhibitors for 30 min prior to stim ulation w ith agonist a t 

37°C/5%  CO2 . Cells w ere then  fixed with 4% paraform aldehyde (PFA) for 5 min 

and non-specific binding sites blocked with 1% bovine serum  album in (BSA) 

made in Tris buffered saline (TBS) (1% BSA/TBS) for 45 min. Cells w ere 

incubated w ith either the anti-hGLP-lR or anti-VSVG m ouse antibody (diluted 

1:15000) in 1% BSA/TBS for 1 h, washed with TBS and then incubated w ith the 

HRP-conjugated anti-m ouse IgG (diluted 1:5000) in 1% BSA/TBS for 1 h. Cells 

w ere w ashed and developed using 1-step Ultra TMB-ELISA substrate  (Bio-Rad) 

for 15 min and the reaction stopped by adding an equal volume of 2 M sulphuric 

acid. The optical density  w as read at 450 nm using a plate reader.

3.2.5. Im m unofluorescence

Intracellular localisation of hGLP-lR expression was assessed by 

im m unofluorescence as described previously (Kanamarlapudi et al, 2012). 

Briefly, cells w ere serum  starved for 1 h and w here indicated cells w ere 

preincubated w ithout or w ith inhibitors at the indicated concentration for 30 

min. Cells w ere then incubated with either the anti-hGLP-lR or anti-VSVG 

mouse antibody (diluted 1:5000) in 1% BSA/SFM for 1 h at 4°C and then 

stim ulated w ithout or w ith agonist in the presence of inhibitor a t 37°C/5%  CO2. 

Cells w ere then  fixed w ith 4% PFA for 30 min. Cells w ere perm eabilised with 

0.2% Triton X-100 m ade in phosphate buffered saline (PBS) for 10 min, blocked 

in blocking buffer (1% BSA made in wash buffer [0.1% Triton X-100 in PBS]) for 

30 min and then  incubated w ith the Cy3-conjugated anti-m ouse antibody 

(diluted 1:200 in blocking buffer) for 1 h. Cells w ere then w ashed 3 tim es with 

w ash buffer and incubated w ith DAPI (4',6-diam idino-2-phenylindole 

dihydrochloride, 1 m g/m l) diluted 1:2000 in PBS to stain nucleus. Coverslips 

w ere m ounted on glass microscopic slides using m ounting solution (0.1 M Tris- 

hydrochloric acid [HC1], pH 8.5, 10% Mowiol 50%  glycerol) containing 2.5% 

DABCO (1,4 diazabicyclo (2.2.2) octane). Imm unofluorescence staining was 

visualised using a Zeiss LSM710 confocal m icroscope fitted w ith a 63x oil 

im m ersion lens.
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3.2.6. cAMP assay

Cells w ere serum  starved for 1 h and then stim ulated w ithout or w ith 100 nM 

GLP-1 for 1 h a t 37°C/5%  CO2 in the presence of 0.25 mM phosphodiesterase 

inhibitor Ro201724. Cells w ere lysed and cAMP levels in the cell lysates w ere 

estim ated using the cAMP direct im m unoassay kit (Abeam).

3.2.7. Flow cytom etry

Cells in suspension w ere incubated in blocking buffer (0.2% BSA/PBS) for 1 h at 

4°C and then  w ith either the anti-hGLP-lR or anti-VSVG m ouse antibodies 

(diluted 1:100 in blocking buffer) for 1 h a t 4°C. Cells w ere w ashed 3 tim es with 

PBS and incubated w ith the Cy3-conjugated anti-m ouse antibody, diluted 1:100 

in blocking buffer for 1 h a t 4°C in the dark. Cells w ere w ashed 3 times and 

incubated w ith 7-AAD diluted 1:100 in blocking buffer for 5 min at 4°C in the 

dark. Cells w ere  resuspended in 1 ml fluorescence-activated cell sorting (FACS) 

buffer (0.2% BSA, 0.05% sodium azide in PBS) and analysed using BD FACS Aria 

flow cytom eter (BD Bioscience) and BD FACS DIVA software.

3.2.8. Cell lysates

To make cell lysates, HEK293 cells expressing the hGLP-lR w ere washed 3 

tim es w ith ice cold PBS and lysed in ice cold modified RIPA lysis buffer (10 mM 

Tris HC1, pH 7.5 containing 10 mM ethylenediam inetetraacetic acid [EDTA], 1% 

Nonidet P40 [NP40], 0.1% sodium dodecyl sulphate [SDS], 0.5% sodium 

deoxycholate and 150 mM sodium chloride [NaCl]) w ith 1% mammalian 

p ro tease inhibitors. Cell lysates w ere incubated a t 4°C for 15 min and then 

centrifuged a t 22000 xg for 10 min at 4°C. The supernatan t was collected and y2 

volume of 3x SDS-polyacrylamide gel electrophoresis (PAGE) sam ple loading 

buffer (75 mM Tris HC1, pH 6.8 containing 3% SDS, 30% glycerol, 0.003% 

brom ophenol blue and 0.3 M dithiothreitol [DTT]) was added and left at room 

tem peratu re  for 1 h. These cell lysates w ere used to detect hGLP-lR expression 

by im m unoblotting using the anti-GFP and anti-VSVG antibodies.
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3.2.9. Surface biotinylation

This was perform ed as described previously (Aiken et al, 2005). Cells w ere 

w ashed w ith ice cold containing 1 mM calcium chloride (CaCh) and 1 mM 

m agnesium  chloride (MgCh) and incubated at 4°C for 1 h w ith 0.5 m g/m l 

Sulpho-NHS-LC-Biotin (Thermo Scientific). Cells w ere then incubated for 10 min 

at 4°C w ith 100 mM glycine in TBS to quench any rem aining reactive biotin 

cross linker and lysed in ice cold modified RIPA lysis buffer w ith 1% 

m am m alian pro tease inhibitors. Cell lysates w ere incubated w ith Streptavidin 

Magnetic Beads (Invitrogen) a t 4°C for 2 h. Beads w ere w ashed 3 tim es with 

lysis buffer and the bound protein eluted in lx  SDS-PAGE sam ple loading buffer 

(25 mM Tris HC1, pH 6.8, containing 1% SDS, 10% glycerol, 0.001% 

brom ophenol blue and 0.1 M dithiothreitol [DTT]). The lysate not incubated 

w ith beads w as mixed with Vi volume of 3x SDS PAGE sample loading buffer and 

used to assess total hGLP-lR. Total and biotinylated cell surface receptors w ere 

detected by immunoblotting.

3.2.10. Im m unoblotting

Proteins w ere separated in a SDS-PAGE gel by electrophoresis and transferred  

onto polyvinylidene fluoride (PDVF) m em brane. M embranes w ere blocked with 

TBST (TBS w ith 0.1% tw een 20) containing 5% milk pow der (blocking buffer) 

for 1 h a t room  tem perature  or overnight a t 4°C. M embranes w ere 

im m unoblotted w ith the anti-GFP m ouse antibody (diluted 1:500 in blocking 

buffer) for 1 h a t room tem perature  or overnight a t 4°C. M embranes w ere 

w ashed and then  incubated w ith the HRP-conjugated anti-m ouse secondary 

antibody (diluted 1:2500 in blocking buffer) for 1 h a t room  tem perature. 

M em branes w ere  then incubated in ECL select substrate  and bands visualised 

using the ChemiDoc™ XRS system (Bio-Rad). Blots probed w ith the anti-GFP 

mouse antibody w ere stripped w ith w estern  blot stripping buffer (Thermo 

Scientific) and reprobed w ith the anti-VSVG rabbit antibody (diluted 1:1000 in 

blocking buffer) and the HRP-conjugated anti-rabbit secondary antibody 

(diluted 1:2500 in blocking buffer) as described above.
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3.2.11. Tunicam ycin treatm ent

This w as carried out as described previously (W hitaker et al, 2012). Briefly, 

cells w ere trea ted  w ith 5 pg/m l tunicamycin at the tim e of transfection. After 48 

h of transfection, cells w ere  lysed and subjected to immunoblotting.

3.2.12. G lycosidase treatm ent

This assay w as carried out as described previously (Huang et al, 2010). Cells 

harvested from a 10 cm plate by trypsinisation w ere resuspended in 1 ml 

hom ogenisation buffer (10 mM Tris HC1, pH 7.5, 1 mM EDTA, 1 mM 

phenylm ethanesulfonylfluoride [PMSF]) containing 1% mammalian protease 

inhibitors and incubated on ice for 15 min. Cells w ere then sonicated at 80% 

am plitude for 3x 10 s w ith 1 min intervals. The lysate was centrifuged at 300 xg 

for 10 min a t 4°C to pellet nuclei and unbroken cells. An aliquot of post-nuclear 

supernatan t fraction (50 pg of protein) was incubated w ith glycoprotein 

denaturing buffer a t room  tem perature  for 1 h and then treated  w ithout or with 

500 units of e ither PNGase F or Endo H for 1 h a t 37°C. Reactions w ere stopped 

with the addition of ¥z volume of 3x SDS-PAGE sample loading buffer and 

subjected to im m unoblotting.

3.2.13. Data analysis

Data w ere analysed using the GraphPad Prism program . All data are presented 

as m eans ± standard  e rro r of the m ean (SEM) of three independent 

experim ents. Statistical com parisons betw een the control and test value was 

m ade by a tw o-tailed unpaired student t-test. Statistical analysis betw een 

m ultiple groups w ere determ ined by the Bonferroni's post te st after one-way or 

tw o-w ay analysis of variance (ANOVA), w here p>0.05 was considered as 

statistically not significant (n.s.), and p<0.05, p<0.01 and p<0.001 shown as *, ** 

and *** respectively, w as considered statistically significant. Concentration 

response curves w ere also fitted using Prism, according to a standard  logistic 

equation. Scale bar in confocal images represents 10 pm. Confocal images 

shown in the  figures are representative of 190-200 transfected cells from three
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different experim ents. Similarly, im m unoblotting data shown in the figures are 

representative of th ree  independent experim ents.

3.3. Results

3.3.1. HGLP-lR expressing  at the cell surface show s no SP

It has been shown previously tha t the m ature hGLP-lR expressing at the cell 

surface is w ithout the SP (l-23aa) (Huang et al, 2010). To confirm w hether the 

SP is cleaved off from the m ature hGLP-lR that is targeted to the plasma 

m em brane, constructs containing a GFP-epitope at the C-terminus and VSVG- 

epitope a t the N-term inus before (SP-VSVG) or after the SP (VSVG-SP) w ere 

generated (Figure 3.1A). HEK293 cells transfected w ith these constructs w ere 

analysed for hGLP-lR cell surface expression by ELISA (Figure 3.ID), 

im m unofluorescence (Figure 3.IF) and flow cytom etry (Figure 3.1G) using the 

anti-hGLP-lR and anti-VSVG antibodies. HEK293 cells expressing the SP-VSVG 

construct show ed cell surface expression of the receptor with both antibodies. 

However, HEK293 cells expressing the VSVG-SP construct showed signal at the 

cell surface w ith the anti-hGLP-lR antibody bu t not w ith the VSVG antibody 

(100.0 ± 0.6% versus 0.0 ± 0.6% by ELISA and 93.8 ± 2.6% versus 1.8 ± 1.1% by 

flow cytom etry w ith the anti-hGLP-lR antibody [p<0.001] versus the anti-VSVG 

antibody [p>0.05], respectively). This result suggested tha t the SP is cleaved in 

the m em brane targeted  hGLP-lR.

Both the SP-VSVG and VSVG-SP constructs showed a doublet (~65 kDa and -8 5  

kDa in size) w hen the lysates of HEK293 cells transfected w ith these constructs 

w ere im m unoblotted w ith the anti-GFP antibody (Figure 3.1C). In addition, the 

SP-VSVG but not the VSVG-SP construct showed a doublet in the im m unoblot 

probed w ith the anti-VSVG antibody, indicating tha t the SP is cleaved off from 

the hGLP-lR before it is targeted to the cell surface. Further, w hen HEK293 cells 

expressing these constructs w ere subjected to  cell surface biotinylation, only a 

single band at ~85 kDa was observed in the  total lysate (Figure 3.IB). This
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dem onstrated  the ~85 kDa band represents the m ature form of the hGLP-lR 

th a t targeted to the cell surface.

The GLP-1R is a Gas coupled GPCR and therefore the activity of the recep tor w as 

assessed by m easuring cAMP produced in hGLP-lR expressing cells stim ulated 

w ith agonist (Figure 3.IE). The VSVG-SP construct had 99.6 ± 0.4% (p>0.05) 

cAMP accum ulation com pared to the SP-VSVG construct, confirming the VSVG- 

SP is functionally no different from the SP-VSVG construct. Furtherm ore, the 

cAMP activity of SP-VSVG (which contains both VSVG and GFP tags) is sim ilar to 

th a t of the hGLP-lR w ith no tag or either of the VSVG-tag or GFP-tag, indicating 

th a t the a ttachm ent of the VSVG and GFP tags to the hGLP-lR had no effect on 

the activity of the receptor (see Chapter 4, Figure 4.2A,C-D). For fu rther 

experim entation the  SP-VSVG construct was used as the wild type (WT) control.
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Figure 3.1. HGLP-lR ex p ress in g  a t th e  cell su rface  show s no SP. (A)

HEK293 cells transfected with SP-VSVG and VSVG-SP constructs. (B) Total and 

cell surface biotinylated hGLP-lR expression was assessed by immunoblotting 

using the anti-GFP antibody. (C) Total hGLP-lR expression was assessed by 

immunoblotting using the anti-VSVG and anti-GFP antibodies. (D) Cell surface 

expression was assessed by ELISA using the anti-VSVG and anti-hGLP-lR 

antibodies. (E) cAMP production was measured in cells stimulated with 100 nM 

GLP-1 for 60 min to assess hGLP-lR activity. (F) Immunofluorescence showing 

cell surface expression of hGLP-lR, EGFP (green) and the anti-hGLP-lR 

antibody (red) overlay shown in yellow and nuclear staining with DAPI in blue. 

(G) Cell surface expression of hGLP-lR constructs assessed by flow cytometry. 

Data are mean ± SEM, n=3. Data were analysed by two-tailed unpaired t-test; 

values differ from control, n.s. p>0.05, *** p<0.001.
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3.3.2. Cleavage o f the SP is necessary for targeting the hGLP-lR to the  

cell surface

Next, the im portance of the SP cleavage in hGLP-lR cell surface expression was 

determ ined. Cell surface expression of the hGLP-lR w ithout the SP (ASP), the 

hGLP-lR containing the SP replaced with viral SP (VSP-ASP) and the hGLP-lR 

defective in cleaving the SP (A21R) was com pared to the SP-VSVG WT control 

(Figure 3.2A). HEK293 cells transfected w ith these constructs w ere analysed for 

the ir effect on hGLP-lR cell surface expression (assessed by ELISA [Figure 3.2C], 

im m unofluorescence [Figure 3.2E] and flow cytom etry [Figure 3.2F] using the 

anti-hGLP-lR antibody) and activity (assessed by cAMP [Figure 3.2D]). The ASP 

construct showed cell surface expression (assessed by ELISA [97.4 ± 2.6%, 

p>0.05], im m unofluorescence and flow cytom etry [100.0 ± 0.6%, p>0.05]) 

sim ilar to th a t of the SP-VSVG WT control. Additionally, the ASP construct 

showed 95.2 ± 2.6% (p>0.05) agonist induced cAMP production, confirming the 

hGLP-lR w ithou t the SP is functionally similar to the control hGLP-lR. In 

contrast, VSP-ASP and A21R constructs showed very little cell surface 

expression (2.3 ± 0.6% and 7.8 ± 2.7% by ELISA, and 1.9 ± 1.7% and 4.4 ± 2.2% 

by flow cytometry, p<0.001, respectively), which was confirmed by 

im m unofluorescence. The cAMP activity of the VSP-ASP and A21R constructs in 

agonist stim ulated cells was also low (16.2 ± 1.3% and 24.1 ± 1.5%, p<0.001, 

respectively). Im m unoblotting of the cell lysates expressing the above 

m entioned constructs suggested th a t the SP of VSP-ASP and A21R was not 

cleaved and as a resu lt produced a single band a t the lower molecular weight of 

~65  kDa w ith both the anti-GFP and anti-VSVG antibodies (Figure 3.2B), 

confirming the expression of an im m ature receptor. This result dem onstrated 

th a t the SP is specific to  the hGLP-lR and m utating this sequence prevents 

cleavage of the SP and thereby targeting of the hGLP-lR to the cell surface.
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Figure 3.2. C leavage of th e  SP is re q u ire d  fo r hG LP-lR  cell su rface

ex p ress io n . (A) HEK293 cells transfected with VSVG-tagged hGLP-lR

constructs. (B) Total hGLP-lR expression was assessed by immunoblotting

using the anti-VSVG and anti-GFP antibodies. (C) Cell surface expression was

assessed by ELISA using the anti-hGLP-lR antibody. (D) cAMP production

was measured in cells stimulated with 100 nM GLP-1 for 60 min to assess

hGLP-lR activity. (E) Immunofluorescence showing cell surface expression of

hGLP-lR, EGFP (green) and the anti-hGLP-lR antibody (red) overlay shown

in yellow and nuclear staining with DAPI in blue. (F) Cell surface expression

of hGLP-lR constructs by flow cytometry. Data are mean ± SEM, n=3. Data

were analysed by Bonferroni's post test after one-way ANOVA; values differ

from control, n.s. p>0.05, *** p<0.001.
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3.3.3. The sequence after the SP is required for hGLP-lR cell surface 

expression

A num ber of deletions w ere m ade w ithin the HRASP of the hGLP-lR and 

analysed for the ir effect on cell surface expression and activity of the receptor 

(Figure 3.3A). For this purpose, cell surface expression of the N-terminal deleted 

hGLP-lR m utants in HEK293 cells was analysed by ELISA (Figure 3.3C). 

Removal of either 24aa (AN24) or 30aa (AN30) from the N-terminal domain had 

no effect on hGLP-lR cell surface expression (98.2 ± 2.1% and 94.4 ± 2.7%, 

p>0.05, respectively). However, deleting 35aa (AN35) from the N-terminus 

significantly reduced hGLP-lR cell surface expression and deleting 40aa (AN40) 

abolished cell surface expression altogether (17.8 ± 0.6% and 0.2 ± 0.2, p<0.001, 

respectively). These results w ere also confirmed by immunofluorescence 

(Figure 3.3E). Additionally, the cAMP production of the receptor in agonist 

stim ulated cells reflected cell surface expression of the receptor (Figure 3.3D). 

Agonist induced cAMP production of the AN24 and AN30 m utants (96.7 ± 3.3% 

and 98.2 ± 0.9%, p>0.05, respectively) w ere sim ilar to th a t produced by the WT. 

In contrast, hGLP-lR activity was significantly reduced w hen either 35aa 

(AN35) or 40aa (AN40) w ere deleted from the N-terminal domain (28.8 ± 6.3% 

and 17.5 ± 3.0%, p<0.001, respectively). Consequently, the region betw een 31- 

40aa was deleted (A31-40) from the hGLP-lR and analysed for the deletion's 

effect on hGLP-lR cell surface expression and cAMP production. Cell surface 

expression (1.2 ± 1.3%, p<0.001) and cAMP production (16.4 ± 0.2%, p<0.001) 

of the hGLP-lR w ere alm ost abolished in the A31-40 m utant w hen com pared to 

th a t of the WT, indicating the im portance of this region in trafficking the 

receptor to the cell surface. Im m unofluorescence confirmed these results and 

showed hGLP-lR expression to be intracellular. Im m unoblotting confirmed that 

the reduced cell surface expression of these deletion m utants was not due to 

alterations in their expression levels (Figure 3.3B).
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Figure 3.3. The seq u en ce  a f te r  th e  SP is e ssen tia l for hG LP-lR  cell 

su rface  exp ression . (A) HEK293 cells were transfected with the indicated N- 

terminal deleted constructs. (B) Total hGLP-lR expression was assessed by 

immunoblotting using the anti-VSVG and anti-GFP antibodies. (C) Cell surface 

expression using was assessed by ELISA using the anti-hGLP-lR antibody. 

(D) cAMP production was measured in cells stimulated with 100 nM GLP-1 

for 60 min to assess hGLP-lR activity. (E) Immunofluorescence showing cell 

surface expression of hGLP-lR, EGFP (green) and the anti-hGLP-lR antibody 

(red) overlay shown in yellow and nuclear staining with DAPI in blue. Data 

are mean ± SEM, n=3. Data were analysed by Bonferroni's post test after one­

way ANOVA; values differ from control, n.s p>0.05, *** p<0.001.
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3.3.4. AMinked glycosylation is essentia l for hGLP-lR cell surface 

expression

The hGLP-lR has been shown to be AMinked glycosylated at positions Asn63, 

Asn82 and Asn115 within the ER (Chen et al, 2010; W hitaker et al, 2012). 

Therefore, HEK293 cells transfected with either the WT SP-VSVG, AN145 or 

N63,82,115L constructs (Figure 3.4A) w ere used to assess the im portance of N- 

linked glycosylation in hGLP-lR cell surface expression. Imm unoblotting of the 

SP-VSVG WT control showed the doublet a t ~65 kDa and -8 5  kDa (Figure 3.4B). 

Treatm ent of SP-VSVG with a AMinked glycosylation inhibitor, tunicamycin, 

shifted this doublet to ~60 kDa and 65 kDa. This shift is used as a readout assay 

to assess hGLP-lR AMinked glycosylation and showed th a t the hGLP-lR is N- 

linked glycosylated. The hGLP-lR with the N-terminal domain removed 

(AN145) showed only a single band at ~50 kDa in immunoblotting. As the 

glycosylation sites w ere rem oved in the AN 145 m utant, no change in mobility 

was seen w hen treated  with tunicamycin. Additionally, the N63,82,115L mutant, 

w ith all th ree  AMinked glycosylation sites m utated, of the hGLP-lR showed a 

single band at ~60 kDa, which was also unaltered by trea tm en t with 

tunicamycin.

HGLP-lR glycosylation can be removed by trea tm ent w ith both PNGase F and 

Endo H enzymes, indicating the receptor is AMinked glycosylated (Maley et al, 

1989). PNGase F cleaves oligomannoses and both hybrid and complex N-glycans 

w hereas Endo H cleaves oligomannoses and some hybrid glycans. Therefore, 

the WT SP-VSVG, AN145 or N63,82,115L constructs w ere digested w ith Endo H 

or PNGase F enzymes and analysed for their band pattern  by immunoblotting 

(Figure 3.4C). T reatm ent of the SP-VSVG WT control lysate w ith Endo H caused 

a shift in the lower band mobility only from ~65 kDa to ~60 kDa. However, 

trea tm en t with PNGase F shifted both bands to ~60 kDa and 65 kDa, which 

mimicked the effect of tunicamycin and thereby confirmed tha t the hGLP-lR is 

AMinked glycosylated by oligomannoses and both hybrid and complex N- 

glycans in the m ature form. In contrast, the lysates of HEK293 cells expressing 

either the AN145 or N63,82,115L m utants showed no shift in band pattern
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w hen treated  with either Endo H or PNGase F, confirming tha t they are not 

glycosylated.

The deleted (AN145) and m utated (N63,82,115L) hGLP-lR constructs w ere 

used to assess the im portance of AMinked glycosylation for cell surface 

expression of the receptor by ELISA (Figure 3.4E) and im munofluorescence 

(Figure 3.4G). HGLP-lR cell surface expression was abolished in both m utations 

w hen com pared to the WT (0.5 ± 0.5% and 0.1 ± 0.1%, p<0.001, respectively). 

Further, w hen cells expressing the SP-VSVG control construct w ere treated  with 

tunicamycin, cell surface expression was abolished (1.9 ± 0.6%, p<0.001). This 

was confirmed further by im m unofluorescence w here cell surface expression 

was seen for the SP-VSVG construct w ith good colocalisation betw een GFP-tag 

and cell surface staining with the anti-hGLP-lR antibody. However, the AN145 

and N63,82,115L m utants and the SP-VSVG construct treated  w ith tunicamycin, 

only showed intracellular expression of GFP and no cell surface expression with 

the anti-hGLP-lR antibody. Imm unoblotting dem onstrated tha t the reduction in 

cell surface expression of the m utants was not a result of reduced protein 

expression (Figure 3.4D). Consistent with the reduced cell surface expression, 

the AN145 and N63,82,115L m utants and the SP-VSVG construct treated  with 

tunicamycin caused reduced cAMP production in agonist stim ulated cells (14.3 

± 0.3%, 13.6 ± 0.9% and 11.1 ± 1.6%, p<0.001, respectively, Figure 3.4F). 

Therefore, preventing hGLP-lR glycosylation by either deleting the N-terminal 

dom ain or m utating the glycosylation sites w ithin the N-terminal domain 

drastically reduced cell surface expression of the receptor.
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Figure 3.4. AMinked g lycosylation  is e ssen tia l fo r hG LP-lR  cell su rface

ex p ress io n . (A) HEK293 cells were transfected with either SP-VSVG, AN 145 or

N63,82,115L plasmid DNA. (B) Cells were treated without or with 5 pg/ml

tunicamycin for 48 h. The cells were lysed and the cell lysates were

immunoblotted with the anti-GFP antibody. (C) Post nuclear supernatant

fractions of HEK293 cells were treated with either no enzyme, Endo H or

PNGase F for 60 min at 37°C and immunoblotted with the anti-GFP antibody.

(D) Total hGLP-lR expression was assessed by immunoblotting using the anti-

GFP antibody. (E) Cell surface expression was assessed by ELISA using the anti-

hGLP-lR antibody. (F) cAMP production was measured in cells stimulated with

100 nM GLP-1 for 60 min to assess hGLP-lR activity. (G) Immunofluorescence

showing cell surface expression of hGLP-lR, EGFP (green) and the anti-hGLP-

lR  antibody (red) overlay shown in yellow and nuclear staining with DAPI in

blue. Data are mean ± SEM, n=3. Data were analysed by Bonferroni's post test

after one-way ANOVA; values differ from control, *** p<0.001.
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3.3.5. Effect o f point m utations w ithin the N-terminal dom ain on cell 

surface expression  of the hGLP-lR

A num ber of N-terminal residues conserved across the family B GPCRs w ere 

m utated w ithin the hGLP-lR to assess their effect on cell surface expression of 

the recep tor (estim ated by ELISA [Figure 3.5B] and immunofluorescence 

[Figure 3.5D]) and activity (assessed by cAMP accumulation [Figure 3.5C]). The 

total protein  expression of the m utants was determ ined by im m unoblotting 

using both the anti-GFP and anti-VSVG antibodies (Figure 3.5A). Substitution of 

the negatively charged Glu34 with a positively charged Lys residue (E34K) had 

no significant effect on cell surface expression (101.6 ± 1.6%, p>0.05) or activity 

(98.5 ± 0.3%, p>0.05) of the receptor. Total protein expression levels of the 

E34K m utan t w ere similar to tha t of the SP-VSVG control construct. The W39A 

m utation significantly reduced hGLP-lR cell surface expression (25.1 ± 2.4%, 

p<0.001) and agonist stim ulated cAMP production (21.7 ± 2.4%, p<0.001). 

Additionally, the Y69A m utant of the hGLP-lR showed very low cell surface 

expression (3.7 ± 0.8%, p<0.001) and reduced agonist induced cAMP 

production (18.9 ± 2.3%, p<0.001). Further, the Y88A m utation w ithin the N- 

term inal dom ain of the hGLP-lR alm ost abolished cell surface expression of the 

recep tor (2.3 ± 1.1%, p<0.001) and showed an even further reduction in cAMP 

production (16.4 ± 3.7%, p<0.001). Imm unoblot analysis confirmed th a t the 

reduction in cell surface expression of these m utants was not due to alterations 

in the m utants protein expression. Consistent w ith the reduction in cell surface 

expression and cAMP producing activity of the receptor, only a single band was 

seen at ~65 kDa for these three mutations, indicating the im m ature receptor. 

Im m unofluorescence also supported the ELISA results as intracellular 

expression w as seen w ith GFP but no cell surface staining was observed with 

the  anti-hGLP-lR antibody.
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Figure 3.5. The effect of v a rio u s  p o in t m u ta tio n s  w ith in  th e  N -term inal 

d o m ain  of th e  hG LP-lR  on cell su rface  ex p ress io n  of th e  recep to r. (A)

HEK293 cells were transfected with the indicated N-terminal mutated 

constructs. Total hGLP-lR expression was assessed by immunoblotting using 

the anti-VSVG and anti-GFP antibodies. (B) Cell surface expression was 

assessed by ELISA using the anti-hGLP-lR antibody. (C) cAMP production 

was measured in cells stimulated with 100 nM GLP-1 for 60 min to assess 

hGLP-lR activity. (D) Immunofluorescence showing cell surface expression 

of hGLP-lR, EGFP (green) and the anti-hGLP-lR antibody (red) overlay 

shown in yellow and nuclear staining with DAPI in blue. Data are mean ± 

SEM, n=3. Data were analysed by Bonferroni's post test after one-way 

ANOVA; values differ from control, n.s p>0.05, *** p<0.001.
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3.3.6. Effect o f SP, HRASP and conserved residue m utants on hGLP-lR N- 

linked glycosylation

The im portance of the SP, the HRASP and conserved residues (Glu34, Trp39, Tyr69 

and Tyr88) within the hGLP-lR N-terminus on its AMinked glycosylation was 

determ ined. For this purpose, cells expressing the constructs w ere treated  

w ithout or w ith tunicamycin and the cell lysates analysed by immunoblotting 

using the anti-GFP antibody. Like the SP-VSVG WT control construct, the SP 

deleted construct (ASP) showed a doublet in im m unoblotting and the doublet 

mobility was altered with tunicamycin treatm ent. This suggested the ASP 

m utant was AMinked glycosylated in the same way as the WT. The hGLP-lR 

m utants tha t prevented cleavage of the SP (VSP-ASP and A21R) only showed a 

single band at ~65 kDa and the band mobility was unaltered w hen treated  w ith 

tunicamycin, indicating tha t these m utants w ere not AMinked glycosylated 

(Figure 3.6A). This is m ost likely because the SP prevents access to the AMinked 

glycosylation sites, as it is not cleaved in these m utants. Additionally, the 

m utants with deletions w ithin the HRASP of the N-terminus (AN35, AN40 and 

A31-40) showed a single band at ~65 kDa and a shift in the doublet mobility 

was seen w hen treated  w ith tunicamycin, which suggests th a t these m utants are 

still glycosylated (Figure 3.6B).

W hen the W39A, Y69A and Y88A m utants w ere left un treated  w ith tunicamycin, 

a single band at ~65 kDa was observed indicating the im m ature form of the 

receptor. However, w hen treated  w ith tunicamycin there  was a shift in the 

doublet mobility to ~60 kDa and 65 kDa dem onstrating these m utations still 

allowed the receptor to be AMinked glycosylated (Figure 3.6C). Additionally, the 

E34K m utant showed a doublet similar to th a t of the WT control in 

im m unoblotting and the doublet mobility also altered with tunicamycin 

treatm ent. These results suggest th a t AMinked glycosylation of the receptor is 

unaltered w ith the E34K mutation.

124



SP-VSVG VSVG-SP ASP V S P -A SP  A 2 1 R

l O O k D a —

7 5 k D a —

5 | ig /m l  T unicam ycin

* * 1 . A m
Anti-
G FP

SP-VSVG A N 2 4  A N 3 0  A N 3 5  A N 4 0  A 3 1 - 4 0

lO O k D a  —  

7 5 k D a —
m

Anti-
G FP

i  —i------- 1—  — i---- 1— ‘— i-------- 1 I I i r
5 g g /m l  Tunicam ycin  _ + _ +  + _ + _  + _ +

5 g g /m l

Figure 3.6. The effect of th e  SP, HRASP an d  co n serv ed  re s id u e  m u ta tio n s  

on hG LP-lR  glycosylation. HEK293 cells transfected with SP (A), HRASP (B) 

or the conserved residue (C) mutant constructs treated without or with 5 

tig/ml tunicamycin for 48 h. The cells were lysed and the cell lysates were 

immunoblotted with the anti-GFP antibody.

SP-VSVG E 3 4 K  W 3 9 A  Y 6 9 A  Y 8 8 A

7 5 k D a Anti-
G FP

l O O k D a —

T unicam ycin  + _ + +

125



3.3.7. The W39A, Y69A and Y88A m utations do not affect cleavage o f the  

SP

The W39A, Y69A and Y88A m utants in the SP-VSVG, VSVG-SP and ASP 

constructs w ere used to determ ine w hether these m utations affect cleavage of 

the SP. The lysates of HEK293 cells expressing these m utants w ere subjected to 

im m unoblotting with both the anti-GFP and anti-VSVG antibodies to assess total 

hGLP-lR expression and their effect on its SP cleavage (Figure 3.7A). The W39A, 

Y69A and Y88A m utations did not prevent cleavage of the SP w hen expressed in 

the SP-VSVG construct. This and expression of these m utants in the ASP 

construct showed expression w ith both the anti-GFP and anti-VSVG antibodies. 

However, expression of the VSVG-SP construct w ith these m utations only 

showed signal with the anti-GFP antibody but not w ith the VSVG antibody, 

suggesting the SP is still cleaved. If the m utations had affected cleavage of the 

SP, then the m utation would have abolished expression of the VSVG-SP 

construct and allowed expression of the ASP construct a t the cell surface. This is 

because there would be no SP to be cleaved in the ASP construct. In 

immunofluorescence, hGLP-lR cell surface expression was seen with good 

colocalisation of GFP and the anti-hGLP-lR antibody in all constructs (SP-VSVG, 

VSVG-SP and ASP) w ithout the m utations. W hereas, only intracellular 

expression was seen w ith GFP and no cell surface staining w ith the anti-hGLP- 

1R antibody for all constructs w ith the N-terminal m utations (Figure 3.7B). 

Taken together, these results suggest th a t the W39A, Y69A and Y88A m utations 

did not affect hGLP-lR cell surface expression by preventing cleavage of the SP.
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Figure 3.7. W39A, Y69A and  Y88A m u ta tio n s  do n o t affect cleavage of 

the  SP w ith in  th e  hGLP-lR. (A) Total hGLP-lR expression of W39A, Y69A 

and Y88A mutants in SP-VSVG, VSVG-SP or ASP constructs was assessed by 

immunoblotting using the anti-VSVG and anti-GFP antibodies. (B) 

Immunofluorescence showing cell surface expression of hGLP-lR, EGFP 

(green) and the anti-hGLP-lR antibody (red) overlay shown in yellow and 

nuclear staining with DAPI in blue.
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3.4. Discussion

The hGLP-lR construct containing the VSVG-epitope tag a t the N-terminal 

dom ain before the SP sequence (VSVG-SP) showed signal with the anti-hGLP-lR 

antibody but not w ith the anti-VSVG antibody, which indicated th a t the m ature 

receptor expressed at the cell surface is w ithout its SP. Further, stim ulation of 

cells expressing the VSVG-SP with GLP-1 still stim ulated cAMP production, 

confirming tha t the receptor w ithout the SP is functionally active. These results 

are in agreem ent w ith a previous study, which showed the m ature hGLP-lR 

expressed a t the cell surface is w ithout the SP (Huang et al, 2010). These 

findings are also consistent with tha t of o ther family B GPCRs including the 

vasoactive intestinal peptide (VPAC1) receptor (Couvineau et al, 2004) and 

CRFi receptor (Aiken et al, 2005) w here the SP is cleaved during synthesis. 

However, the SP of VPAC1 was found to play a critical role in targeting the 

receptor, as deletion of the SP respited in the synthesis but prevented trafficking 

of the receptor to the cell surface. It was suggested tha t the SP of the VPAC1 

receptor is cleaved during trafficking to the plasm a m em brane, m ost likely in 

the ER (Couvineau et al, 2004). Additionally, the SP is of the CRFi receptor 

reduced cell surface expression but still retained its functionality (Aiken et al,

2005). The hGLP-lR with the SP deletion (ASP), was shown in this study to 

function exactly like the receptor w ith the SP present. This contradicts a 

previous study, which showed the SP deleted hGLP-lR is synthesised but does 

not express a t the cell surface (Huang et al, 2010). The reason for the variation 

in results is unclear. In this study, the hGLP-lRASP was expressed w ith the 

VSVG-epitope tag a t the N-terminus w hereas Huang et al (2010) expressed the 

sam e deletion construct with a HA-epitope tag. However, it was observed that 

the hGLP-lRASP w ithout any epitope tag a t the N-terminus also targets to the 

cell surface, indicating tha t the difference in the N-terminal tag betw een studies 

may not be the reason for variation in the results (see Chapter 4). W ithin this 

study, the hGLP-lR showed specificity to its SP sequence because replacing it 

w ith the viral SP (VSP-ASP) allowed protein synthesis but cell surface 

expression of the receptor was reduced. The A21R m utation (-3 position of the 

SP cleavage site) allowed synthesis of the hGLP-lR but prevented cleavage of
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the SP and therefore cell surface expression was reduced, which is consistent 

w ith a previous study (Huang et al, 2010). Taken together, this study 

dem onstrates th a t cleavage of the SP is required for hGLP-lR cell surface 

expression and the SP sequence is specific to the hGLP-lR. This is similar to the 

specificity dem onstrated  for the CRFi, as replacem ent of the CRFi SP with the 

CRF2a SP abolished expression of the receptor (Schulz et al, 2010).

The aa sequence following the SP, Gly27-Trp39, is relatively hydrophobic 

(HRASP) and it has previously been suggested tha t this region may be 

recognised by the SRP and allow for subsequent synthesis of the receptor 

(Hatsuzawa et al, 1997; Huang et al, 2010). A similar region w ithin the 

endothelin B receptor (ETbR), Gln28-Trp34, was shown to be im portant in 

receptor trafficking to cell surface by facilitating translocation across the ER 

m em brane (Aiken et al, 2009). To examine the role of the HRASP in hGLP-lR 

trafficking, deletions w ere made w ithin the HRASP region and assessed for their 

effect on hGLP-lR cell surface expression. Deleting up to 30aa of the N-terminal 

dom ain of the hGLP-lR had no effect on cell surface expression of the receptor, 

w hereas deletion of up to 40aa or 31-40aa abolished hGLP-lR cell surface 

expression. Therefore, these results suggest th a t residues 31-40 within the 

HRASP are im portan t for hGLP-lR cell surface expression and cAMP production. 

However, the 31-40aa deletion w ithin the hGLP-lR had no effect on the 

cleavage of the SP or W-linked glycosylation, indicating tha t the HRASP is not 

required for either cleavage of the SP or N-linked glycosylation of the receptor. 

It is possible that, like in the ETbR, this region may be im portant in hGLP-lR 

translocation across the ER m em brane, but requires further studies to confirm 

this possibility.

The GLP-1R expressed in CCL39 fibroblasts (W idmann et al, 1995) and 

transfected  HEK293 (Huang et al, 2010) and CHO cells (W hitaker e t al, 2012) 

has previously been shown to produce a two band pattern  in immunoblotting, 

represen ting  different N-linked glycosylation states. Consistent w ith this, the 

hGLP-lR expressed in HEK293 cells in this study showed a doublet in 

im m unoblotting. Further, trea tm en t with tunicamycin, an N-linked
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glycosylation inhibitor (Varki et al, 2009), or deletion of the N-terminus 

(AN145) or m utating the glycosylation sites (N63,82,115L) prevented 

glycosylation of the hGLP-lR, confirming the hGLP-lR is glycosylated in the N- 

term inus. Moreover, hGLP-lR glycosylation can be rem oved by trea tm en t w ith 

both PNGase F and Endo H, indicating the receptor is AMinked glycosylated. The 

lysates of cell surface biotinylated hGLP-lR expressing cells showed only the 

top band of the characteristic two band pa tte rn  in immunoblotting, 

dem onstrating it as the fully glycosylated and m ature receptor presen t a t the 

cell surface. This is consistent w ith a previous study, which showed tha t only 

the high molecular w eight band of the ra t GLP-1R binds the GLP-1 agonist 

(W idmann et al, 1995). Taken together, the data in this study confirmed that 

only the fully glycosylated and m ature receptor is found at the cell surface and 

th a t m utations and deletions of the glycosylation sites prevented cell surface 

expression and activity of the receptor. Additionally, tunicamycin inhibited 

glycosylation of the SP deleted (ASP) m utant confirming it also underw ent N- 

linked glycosylation. This study dem onstrated th a t preventing cleavage of the 

SP (A21R or VSP) also inhibits AMinked glycosylation, suggesting the SP may 

prevent access to the glycosylation sites required for hGLP-lR cell surface 

expression.

In addition to conserved glycosylation sites, the hGLP-lR contains a num ber of 

aa within the N-terminal domain tha t are highly conserved among family B 

GPCRs. A substitution of Glu34 to a positively charged residue has previously 

been shown to partially com pensate for the lack of the SP, w here no GLP-1R 

expression was dem onstrated (Huang et al, 2010). However, in this study the 

E34K m utation within the hGLP-lR showed no significant effect on the cell 

surface expression of the receptor. This is expected since the SP deleted (ASP) 

m utant showed no effect on hGLP-lR cell surface expression. It has previously 

been shown tha t a m utation of Trp39 abolished GLP-1 binding to the GLP-1R, as 

the  imidazole ring structure in this position is im portant for agonist binding 

(Runge et al, 2008; Van Eyll et al, 1996). In this study, the W39A m utation 

abolished hGLP-lR cell surface expression, dem onstrating tha t the imidazole 

ring structure a t this position is also required for cell surface expression of the
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receptor. Tyr69 and Tyr88 within the hGLP-lR have also been shown to be 

im portan t in binding to the agonist, Exenatide, but the reason for this was 

undeterm ined (Runge et al, 2008; Underwood et al, 2010). In this study, the 

Tyr69 and Tyr88 m utations caused a significant loss in hGLP-lR cell surface 

expression. The Trp39, Tyr69 and Tyr88 m utants interfered w ith neither cleavage 

of the SP nor AMinked glycosylation of the receptor and therefore it is unlikely 

th a t these m utations had any effect on the stability of the receptor. The exact 

reason for these m utations affecting hGLP-lR m aturation and thereby its cell 

surface expression is still unclear. However, it is possible tha t these m utations 

may affect trafficking of the AMinked glycosylated hGLP-lR to the Golgi or 

interfere w ith further processing within the ER and Golgi. This is an area 

requiring further investigation.

In summary, this study revealed tha t the SP sequence of the hGLP-lR is cleaved 

during processing of the receptor. Cleavage of the SP is not essential for hGLP- 

1R synthesis but is required for glycosylation and trafficking of the receptor to 

the cell surface. Moreover, the SP is specific to the hGLP-lR. The hGLP-lR is N- 

linked glycosylated and only a fully glycosylated receptor is p resen t a t the cell 

surface. Furtherm ore, the sequence within the HRASP, 31-40, was found to be 

critical for hGLP-lR cell surface expression bu t not for cleavage of the SP or 

glycosylation of the receptor. The conserved residues, T rp39, Tyr69 and Tyr88, 

w ithin the N-terminal domain w ere required for cell surface expression of the 

hGLP-lR as m utating these residues abolished cell surface expression while not 

in terfering w ith cleavage of the SP or glycosylation of the receptor. Overall, the 

results presented in this study suggest tha t the SP may prevent access to Asn63, 

Asn82 and Asn115 glycosylation sites w ithin hGLP-lR. With cleavage of the SP, the 

glycosylation sites are exposed and the receptor undergoes AMinked 

glycosylation. The glycosylated receptor traffics to the Golgi and then onto the 

plasm a m em brane. The HRASP (31-40aa) and Trp39, Tyr69 and Tyr88 residues 

are critical for hGLP-lR cell surface expression and m ost likely play a role in 

trafficking the receptor from the ER or interfere w ith further processing w ithin 

the ER and Golgi (Figure 3.8).
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4. Characterisation of Two Small Molecule Agonists
of the Human Glucagon Like Peptide-1 Receptor

4.1. Introduction

The actions of glucagon like peptide-1 (GLP-1) have been well studied over the 

last tw enty  years due to its effectiveness in lowering blood glucose levels by 

increasing insulin secretion in type 2 diabetic patients (Doyle & Egan, 2007; 

Holz e t al, 1999; Thom pson & Kanamarlapudi, 2013). GLP-1 exerts its actions 

through the GLP-1 receptor (GLP-1R). The agonist occupied GLP-1R activates 

the Gas subunit, which in tu rn  activates adenylyl cyclase (AC). AC produces 

cyclic adenosine m onophosphate (cAMP), which potentiates insulin secretion in 

(3-cells (Drucker et al, 1987; Thompson & Kanamarlapudi, 2013; Willard & 

Sloop, 2012).

GLP-1 is produced from the breakdow n of proglucagon w ithin the intestinal L- 

cells by prohorm one convertase 1 (PCI) (Dhanvantari et al, 2001). In secretory 

vesicles, the first six amino acids of GLP-1 are cleaved from the N-terminus to 

form the bioactive peptides, GLP-1 (7-36)-NH2 and GLP-1 (7-37). Approximately 

80%  of secreted GLP-1 is in the GLP-1 (7-36)-NH2 form, w hereas the remaining 

20% is released as GLP-1 (7-37) (Vahl et al, 2003). Both GLP-1 (7-37) and GLP-1 

(7-36)-NH2 bind to the GLP-1R with similar affinity and show similar potency 

(Orskov e t al, 1993). In vivo, both bioactive types of GLP-1 have a very short 

half-life (~1.5 m inutes) due to their rapid proteolytic degradation by dipeptidyl 

peptidase-IV (DPP-IV) (Hansen et al, 1999; Larsen et al, 2001; Mentlein, 2009; 

Vilsboll e t al, 2003). This enzyme cleaves the active GLP-1 (7-36)-NH2/(7-37) to 

its inactive GLP-1 (9-36)-NH2/(9-37) form by rem oving tw o amino acids a t the 

N -term inus of the peptide (Kieffer e t al, 1995; Lopez de M aturana & Donnelly, 

2002; Mentlein, 2009; Montrose-Rafizadeh et al, 1997).
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Exendin-4 also acts as an agonist to the GLP-1R, which is found in the saliva of 

the Gila m onster lizard (Heloderma suspectum ) (Goke et al, 1993; Thorens et al, 

1993). It shares approxim ately 53% homology to GLP-1 (7-36)-NH2 and 

contains an additional nine amino acids a t the C-terminus (Goke et al, 1993; Kim 

& Egan, 2008; Young et al, 1999). In contrast to the active forms of GLP-1, 

exendin-4 does not contain an alanine as the second amino acid, which makes it 

resistan t to proteolytic degradation by DPP-IV (Green et al, 2006). Truncated 

versions of GLP-1 (GLP-1 [9-36]-NH2/[9-37]) and exendin-4 (exendin-3, Ex[9- 

39]) also bind to the GLP-1R but function as antagonists (Goke et al, 1993; 

Lopez de M aturana & Donnelly, 2002; Serre e t al, 1998; Thorens et al, 1993). 

Exendin-4 can be truncated by two amino acids a t the N-terminus (Ex[9-39]) 

w ithout loss of affinity to the receptor, w hereas GLP-1 (9-36)-NH2 is highly 

sensitive to N-terminal cleavage rendering it inactive in binding to the receptor 

(Kieffer et al, 1995; M ontrose-Rafizadeh et al, 1997; Serre et al, 1998).

The main limitation of using GLP-1 as an agonist is the very short half-life (~1.5 

m inutes) of the native bioactive peptide as a resu lt of the rapid proteolytic 

degradation by DPP-IV (Hansen et al, 1999; Larsen et al, 2001; Vilsboll et al, 

2003). Therefore, therapeutic strategies tha t im prove GLP-1 stability have been 

extensively studied, which has led to the developm ent of a DPP-IV resistant 

GLP-1R agonist, Liraglutide, w ith prolonged duration of action (Gonzalez e t al,

2006). Exenatide, a synthetic version of exendin-4, has also been developed 

(Eng et al, 1992). Both GLP-1R agonists, Liraglutide and Exenatide, are currently 

in use as drugs for the trea tm en t of type 2 diabetes. They are effective 

insulinotropic agents tha t regulate blood glucose levels by increasing insulin 

secretion and supressing glucagon secretion in a glucose dependent m anner 

(Bond, 2006; Edavalath & Stephens, 2010; Kim Chung le e t al, 2009). The long­

term  requirem ent to adm inister these injectable drugs has necessitated the 

search for orally active agonists of the GLP-1R, a m em ber of the family B G- 

protein  coupled receptors (GPCR) (Coopman et al, 2010). Small molecule 

agonists are being sought after because they have the potential of oral 

adm inistration (Cheong et al, 2012; Irwin et al, 2010). However, the discovery 

of small molecule orally active agonists th a t bind to the orthosteric site and
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mimic the effects of the natural agonist has been difficult because they do not 

have the  physiochemical properties to be orally active (Sloop et al, 2010; 

W ootten et al, 2013). Therefore, the discovery of non-peptide small molecule 

agonists th a t bind to a site distinct from the orthosteric site and act as positive 

allosteric agonists is advantageous for the developm ent of orally active small 

molecule agonists in the trea tm en t of type 2 diabetes.

Many GPCRs have been shown to have allosteric binding sites tha t are spatially 

and often functionally distinct from the prim ary agonist (orthosteric) binding 

site (Schwartz & Holst, 2007; Wang et al, 2009). Small molecule allosteric 

agonists can either increase or decrease the binding efficiency of an orthosteric 

agonist (De Amici e t al, 2010). Allosteric agonists may provide novel therapeutic 

drugs as well as have a num ber of advantages com pared to the classical 

orthosteric  agonist. They are beneficial w here selective orthosteric agonist 

based therapy  has been difficult (for example, w here the orthosteric site is 

highly conserved). Targeting the allosteric site allows for greater selectivity to 

be obtained and may be selectively regulated by endogenous agonists (Kenakin, 

2009; Urban et al, 2007). Finally, low molecular weight agonists tha t have the 

potential for oral adm inistration can be used to target allosteric binding sites 

(Schwartz & Holst, 2007). Some small molecule agonists, nam ed ago-allosteric 

agonists, can bind to GPCRs and act as both agonists and allosteric m odulators 

in the absence of orthosteric agonists. It is unknown how these agonists affect 

the binding or efficiency of compounds acting a t the orthosteric site. 

Compounds w ith allosteric or ago-allosteric properties increase the potential 

for GPCR subtype selectivity. This allows for improved, targeted and novel 

therapeutics (Bridges & Lindsley, 2008).

A small molecule agonist of the GLP-1R, compound 1 (2- [2' methyl] 

thiadiazolylsulfanyl-3-trifluoromethyl-6,7-dichloroquinoxaline), has been 

identified as dem onstrating low affinity, low potency allosteric agonism to the 

GLP-1R. In an effort to produce a m ore potent agonist, compound 2 (6,7- 

dichloro-2-methylsulfonyl-3-yV-tert-butylaminoquinoxaline) has been 

developed. Compound 2 is an ago-allosteric m odulator of GLP-1R, which also
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acts as an agonist. Additionally, Ex(9-39) antagonist did not inhibit compound 2 

binding, suggesting a second binding site on the GLP-1R distinct from the 

orthosteric binding site (Knudsen et al, 2007). The effectiveness of compound 2 

to stim ulate insulin secretion has also been assessed in vivo. Although 

com pound 2 stim ulates insulin secretion, it is not as effective in doing so as GLP- 

1 (7-36)-NH2, Liraglutide or Exenatide. Further, combining compound 2 with 

either GLP-1, Liraglutide or Exenatide does not im prove insulin secretion 

response in mice (Irwin et al, 2010). However, com pound 2 has been shown to 

near-norm alise insulin secretion in hum an islets isolated from a donor with 

type 2 diabetes (Sloop et al, 2010). Two additional small molecule agonists of 

the GLP-1R, compound A (4-(3,4-dichlorophenyl)-2-(ethanesulfonyl)-6- 

(trifluorom ethyl) pyrim idine) and compound B (4-(3-(benzyloxy)phenyl)-2- 

(ethylsulfinyl)-6-(trifluoromethyl)), have also dem onstrated ago-allosteric 

properties. Like compound 2, these compounds increase GLP-1R activity and 

insulin secretion from rodent islets and in animal studies.

The agonist occupied GLP-1R signals through both the Gas and Gaq coupled 

pathw ays to stim ulate insulin secretion (Drucker et al, 1987; Thom pson & 

Kanamarlapudi, 2013; Willard & Sloop, 2012). Coupling to the Gas pathw ay 

results in cyclic adenosine m onophosphate (cAMP) production w hereas 

coupling to the Gaq pathw ay leads to intracellular calcium (Ca2+) accumulation. 

Upon agonist binding, GLP-1R signals through the phosphorylation of 

extracellular signal-regulated kinase (ERK). In this study, the effect of small 

molecule agonists, compound 2 and compound B w ere assessed for their effects 

on cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and 

hGLP-lR internalisation. Compounds 2 and B caused cAMP production similar 

to tha t of GLP-1 but did not induce intracellular Ca2+ accumulation, ERK 

phosphorylation or agonist induced hGLP-lR internalisation. Using antagonists 

Ex(9-39) (Goke et al, 1993; Thorens et al, 1993) and JANT-4 (Patterson et al, 

2011), compounds 2 and B w ere shown to be allosteric m odulators of GLP-1R, 

which bind to a site different from tha t of GLP-1 on the receptor. Consistent 

with this, a m utation to the orthosteric binding site (V36A) abolished GLP-1 

induced cAMP production but had no effect on cAMP production stim ulated by
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com pound 2 and com pound B. However, the m utation of K334, which is 

required for efficient coupling of the receptor to the Gas subunit, to alanine 

(K334A) in the hGLP-lR, inhibited cAMP production induced by GLP-1, 

com pound 2 and com pound B. These results dem onstrated tha t both small 

molecule agonists and GLP-1 induce similar conformational changes in the GLP- 

1R for Gets coupling, although they bind at different sites on the GLP-1R. Further, 

preincubation of the receptor with small molecule agonists inhibited GLP-1 

induced hGLP-lR internalisation, intracellular Ca2+ accumulation and ERK 

phosphorylation.

4.2. Materials and methods

4.2.1. M aterials

The prim ary antibodies used w ere rabbit anti-vesicular stom atitis virus 

glycoprotein (VSVG) (Immunoblotting, Abeam Biochemicals), m ouse anti-VSVG 

(ELISA, Sigma), m ouse anti-green fluorescent protein (GFP) (Roche) mouse 

anti-hGLP-lR (R&D Systems), rabbit anti-phospho ERK1/2 (pERK l/2) and 

rabbit anti-E R K l/2 (New England Biolabs). The Cy3-conjugated anti-m ouse 

immunoglobulin G (IgG) secondary antibody (Jackson Laboratories) was used 

for immunofluorescence. The horseradish peroxidase (HRP)-conjugated anti­

m ouse and anti-rabbit IgG (GE Healthcare) secondary antibodies w ere used for 

im m unoblotting. Enhanced chem iluminescence (ECL) select reagent was 

obtained from GE Healthcare. The cAMP polyclonal antibody and cAMP-HRP 

w ere obtained from Genscript. GLP-1 (7-37) (Liraglutide) was from Novo 

Nordisk and GLP-1 (7-36)-NH2 w as from Tocris. Exendin-4 (Exenatide) was 

from Eli Lilly and Company Limited. Compound 2, compound B and Ex(9-39) 

w ere purchased from Calbiochem. Antagonist JANT-4 was from Prof. Richard 

DiMarchi, Indiana University (IN, USA) (Patterson e t al, 2011). All other 

chemicals w ere from Sigma unless otherw ise stated.
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4.2.2. Plasm ids

The full-length hGLP-lRAN23 cDNA was amplified from mammalian gene 

collection (MGC) clone 142053 (Source Bioscience) by polym erase chain 

reaction (PCR) using High Fidelity Taq DNA polym erase (Roche Applied 

Science) and sequence specific prim ers containing EcoRl restriction site and 

VSVG-tag coding sequence (5' prim er), and Sail restriction site and no stop 

codon (3' prim er). SP-VSVG-hGLP-lRAN23 cDNA was amplified by overlap PCR 

using VSVG-hGLP-lRAN23 cDNA as the tem plate, the sense prim er, containing 

EcoRl restriction site, the signal peptide (SP, 1-23 amino acids) coding sequence 

followed by VSVG coding sequence and 3' prim er. The cDNA was digested with 

EcoRl and Sa/I, and cloned in frame into the sam e sites of pEGFP-Nl vector 

(Clontech) for expression as the N-terminus VSVG-tagged (after the SP) and the 

C-terminus GFP-tagged fusion protein in mammalian cells (SP-VSVG-hGLP- 

1RAN23-GFP). The V36A (SP-VSVG-hGLP-lRAN23 V36A-GFP) and K334A (SP- 

VSVG-hGLP-lRAN23 K334A-GFP) point m utations w ithin the hGLP-lR was 

generated using Quickchange II XL site-directed m utagenesis kit (Stratagene) 

and SP-VSVG-hGLP-lRAN23-GFP plasmid as the tem plate. Luciferase pGL4.29- 

Luc-CRE, pGL4.30-Luc-NFAT and pGL4.33-Luc-SRE repo rte r plasmids w ere 

from Promega.

4.2.3. Cell culture and transfection

Human embryonic kidney 293 (HEK293) cells w ere m aintained a t 37°C in a 5% 

CO2 humidified environm ent in Dulbecco's modified Eagle medium (DMEM; 

serum  free medium [SFM]) supplem ented w ith 10% fetal calf serum, 2 mM 

glutamine, 100 U/ml penicillin and 0.1 m g/m l streptom ycin (full serum  medium 

[FSM]). Cells w ere transiently  transfected for 48 h using JetPrime transfection 

reagent (Polyplus; 2 p l/pg DNA) according to the m anufacturer's instructions.

4.2.4. M ethylthiazol tetrazolium  (MTT) assay

Perform ed to assess the cytotoxicity of GLP-1, compound 2 and compound B on 

cells (Bromberg & Alakhov, 2003). HEK293 cells w ere seeded at a density of 

2 .75x l04 cells per well. After 24 h of plating, cells w ere w ashed and serum
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starved for 1 h in SFM at 37°C/5% CO2. Cells w ere either left untreated  or 

incubated w ith varying concentrations of agonist for 1 h a t 37°C/5% CO2. Then 

MTT reagent (5 m g/m l made in PBS) diluted 1:5 in SFM was added to the cells 

and the plate incubated for 5 h a t 37°C/5% CO2 in the dark. After 5 h, the MTT 

reagent was removed and the reaction product accumulated in cells was 

solubilised in DMSO for 30 min. The solubilised product was quantified at 550 

nm using a plate reader. Each concentration was perform ed in triplicate w ith 3 

independent cell preparations.

4.2.5. Enzyme linked im m unosorbent assay (ELISA)

This is carried out as described previously with unperm eabilised cells to 

quantify cell surface expression (Kanamarlapudi e t al, 2012). Briefly, HEK293 

cells expressing the hGLP-lR w ere serum  starved for 1 h and then stim ulated 

w ithout or with agonist a t 37°C/5% CO2. W here indicated, cells w ere incubated 

w ithout or w ith antagonist for 30 min or small molecule agonists for 60 min 

prior and during stim ulation with agonist a t 37°C/5% CO2. Cells w ere then fixed 

w ith 4% paraform aldehyde (PFA) for 5 min and non-specific binding sites 

blocked with 1% bovine serum  albumin (BSA) made in Tris buffered saline 

(TBS) (1% BSA/TBS) for 45 min. Cells w ere incubated w ith the anti-hGLP-lR or 

anti-VSVG mouse antibody (diluted 1:15000) in 1% BSA/TBS for 1 h, washed 

w ith TBS and then incubated w ith the HRP-conjugated anti-m ouse IgG (diluted 

1:5000) in 1% BSA/TBS for 1 h. Cells w ere w ashed and developed using 1-step 

Ultra TMB-ELISA substrate  (Bio-Rad) for 15 min and the reaction stopped by 

adding an equal volume of 2 M sulphuric acid. The optical density was read at 

450 nm using a plate reader.

4.2.6. Im m unofluorescence

Intracellular localisation of hGLP-lR expression was assessed by 

immunofluorescence as described previously (Kanamarlapudi e t al, 2012). 

Briefly, cells w ere serum  starved for 1 h and w here indicated cells w ere 

preincubated w ithout or with antagonist for 30 min or small molecule agonists 

for 60 min. Cells w ere then incubated w ith the anti-hGLP-lR m ouse antibody
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(diluted 1:5000) in 1% BSA/SFM for 1 h a t 4°C and then stim ulated w ithout or 

w ith agonist in the absence or presence of antagonist or small molecule agonists 

at 37°C/5%  CO2. Cells w ere then fixed with 4% PFA for 30 min. Cells w ere 

perm eabilised with 0.2% Triton X-100 m ade in phosphate buffered saline (PBS) 

for 10 min, blocked in blocking buffer (1% BSA made in wash buffer [0.1% 

Triton X-100 in PBS]) for 30 min and then incubated w ith the Cy3-conjugated 

anti-m ouse antibody (diluted 1:200 in blocking buffer) for 1 h. Cells w ere then 

w ashed 3 tim es with wash buffer and incubated w ith DAPI (4',6-diamidino-2- 

phenylindole dihydrochloride, 1 m g/m l) diluted 1:2000 in PBS to stain nucleus. 

Coverslips w ere m ounted on glass microscopic slides using m ounting solution 

(0.1 M Tris-hydrochloric acid [HC1], pH 8.5, 10% Mowiol 50% glycerol) 

containing 2.5% DABCO (1,4 diazabicyclo (2.2.2) octane). Im m unofluorescence 

staining was visualised using a Zeiss LSM710 confocal microscope fitted with a 

63x oil im m ersion lens.

4.2.7. Live cell im aging

For live cell imaging, transiently  transfected HEK293 cells w ere plated into 8- 

cham ber glass bottom  slides (Thermo Scientific, N orthum berland, UK) p re­

coated w ith poly-L-lysine and incubated at 37°C/5% CO2 in FSM. After 24 h, 

cells w ere w ashed 3 tim es with and incubated in 250 pi per well of SFM for 1 h 

a t 37°C/5% CO2 for serum  starvation. Cells w ere then imaged by live cell 

imaging, using a Zeiss LSM710 confocal microscope fitted w ith a 63x oil 

im m ersion lens. Cells w ere imaged twice (0 and 3 min) w ith no agonist added 

and for every 3 min after stim ulating with agonist (diluted in 0.5% fat-free 

BSA/SFM) at 37°C for 60 min.

4.2.8. cAMP, Ca2+ and ERK luciferase assay

HEK293 cells cotransfected with the hGLP-lR plasm id and luciferase reporter 

plasm id for cAMP (pGL4.29-Luc-CRE) or intracellular Ca2+ (pGL4.30-Luc-NFAT) 

or ERK phosphorylation (pGL4.33-Luc-SRE) w ere treated  w ith increasing 

concentrations of agonist for 4 h (cAMP and ERK) or 8 h (Ca2+) a t 37°C/5% CO2. 

After incubation, an equal volume of ONE-Glo™ lysis buffer containing
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luciferase substrate (Promega) was then  added to each well and luminescence 

(relative light units [RLU]) m easured using a plate reader in accordance w ith 

the m anufacturer's instructions.

4.2.9. Cell lysates

To make cell lysates, HEK293 cells expressing the hGLP-lR w ere washed 3 

tim es w ith ice cold PBS and lysed in ice cold modified RIPA lysis buffer (10 mM 

Tris HC1, pH 7.5 containing 10 mM ethylenediam inetetraacetic acid [EDTA], 1% 

nonyl phenoxypolyethoxylethanol [NP40], 0.1% sodium dodecyl sulphate [SDS], 

0.5% sodium deoxycholate and 150 mM sodium chloride [NaCl]) with 1% 

mammalian protease inhibitors. Cell lysates w ere incubated at 4°C for 15 min 

and then centrifuged at 22000 xg for 10 min at 4°C. The supernatant was 

collected and % volume of 3x SDS-polyacrylamide gel electrophoresis (PAGE) 

sample loading buffer (75 mM Tris HC1, pH 6.8 containing 3% SDS, 30% 

glycerol, 0.003% brom ophenol blue and 0.3 M dithiothreitol [DTT]) was added 

and left a t room tem perature for 1 h. The cell lysates w ere used to detect hGLP- 

1R expression by immunoblotting using the anti-GFP and anti-VSVG antibodies.

For assessing ERK1/2 phosphorylation, HEK293 cells expressing the hGLP-lR 

w ere lysed in ice cold modified RIPA lysis buffer (50 mM Tris HC1, pH 7.5, 

containing 0.2 M NaCl; 10 mM MgCh; 0.1% SDS; 0.5% sodium deoxycholate; 1% 

TritonX-100; 5% Glycerol) with 1% mammalian protease inhibitors. Cell lysates 

w ere incubated a t 4°C for 15 min and centrifuged at 22000 xg for 10 min at 4°C. 

The supernatan t was collected and % volume of 5x SDS-PAGE sample loading 

buffer (125 mM Tris HC1, pH 6.8 containing 5% SDS, 50% glycerol, 0.005% 

brom ophenol blue and 5% p-m ercaptoethanol) was added and heated at 100°C 

for 5 min. These cell lysates w ere used to detect phosphorylated ERK and total 

ERK by immunoblotting using the anti-pERK l/2 and anti-ERK l/2 antibodies.

4.2.10. Im m unoblotting

Proteins w ere separated in a SDS-PAGE gel by electrophoresis and transferred 

onto polyvinylidene fluoride (PDVF) m em brane. M embranes w ere blocked with
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TBST (TBS with 0.1% tw een 20) containing 5% milk pow der (blocking buffer) 

for 1 h a t room tem perature or overnight a t 4°C. M embranes w ere 

im m unoblotted with the anti-GFP m ouse antibody (diluted 1:500 in blocking 

buffer) to assess protein expression levels or the anti-pERK l/2 rabbit antibody 

(diluted 1:1000 in blocking buffer) to assess ERK1/2 phosphorylation for 1 h at 

room  tem perature or overnight a t 4°C. M embranes w ere w ashed and then 

incubated with the HRP-conjugated anti-m ouse or anti-rabbit secondary 

antibody (diluted 1:2500 in blocking buffer) for 1 h a t room tem perature. 

M embranes w ere then incubated in ECL select substrate  and bands visualised 

using the ChemiDoc™ XRS system (Bio-Rad). Blots probed with the anti-GFP 

m ouse antibody w ere stripped w ith w estern  blot stripping buffer (Thermo 

Scientific) and reprobed with the anti-VSVG rabbit antibody (diluted 1:1000 in 

blocking buffer) to assess protein expression levels. Blots probed w ith the anti- 

pER K l/2 rabbit antibody w ere stripped and reprobed w ith the anti-ERK l/2 

rabbit antibody (diluted 1:1000 in blocking buffer) to assess ERK1/2 

phosphorylation. The HRP-conjugated anti-rabbit secondary antibody (diluted 

1:2500 in blocking buffer) was used as described above.

4.2.11. Data analysis

Data w ere analysed using the GraphPad Prism program . All data are presented 

as means ± standard e rro r of the m ean (SEM) of three independent 

experim ents. Statistical com parisons betw een the control and te st value was 

m ade by a two-tailed unpaired studen t t-test. Statistical analysis betw een 

multiple groups w ere determ ined by the Bonferroni's post te st after one-way or 

two-way analysis of variance (ANOVA), w here p>0.05 was considered as 

statistically not significant (n.s.), and p<0.05, p<0.01 and p<0.001 shown as *, ** 

and *** respectively, was considered statistically significant. Concentration 

response curves w ere also fitted using Prism, according to a standard logistic 

equation. Scale bar in confocal images represents 10 pm. Confocal images 

shown in the figures are representative of 190-200 transfected cells from three 

different experiments. Similarly, im m unoblotting data shown in the figures are 

representative of three independent experim ents.
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4.3. Results

4.3.1. Initial characterisation o f the hGLP-lR

Agonist induced internalisation of the hGLP-lR into intracellular com partm ents 

of the cell is im portan t for regulation of the receptor's activity (Bhaskaran & 

Ascoli, 2005; Kanam arlapudi e t al, 2012). Therefore, the effect of agonists GLP-1 

(7-36)-NH2 (Tocris), GLP-1 (7-37) (Novo Nordisk) and exendin-4 (Eli Lilly) on 

hGLP-lR internalisation was assessed by ELISA (Figure 4.1A) and 

im m unofluorescence (Figure 4.1B). The addition of 100 nM GLP-1 (7-36)-NH2 to 

cells had a maximal internalisation effect of 66.3 ± 2.7% (p<0.001). 100 nM GLP- 

1 (7-37) and Exendin-4 internalised 65.6 ± 2.9% (p<0.001) and 66.5 ± 5.4% 

(p<0.001) of cell surface receptors, respectively. Immunofluorescence imaging 

of cells confirm ed agonist induced internalisation of the hGLP-lR and showed 

good correlation betw een loss of the cell surface receptors detected by ELISA 

and in ternalisation of the receptor's identified by immunofluorescence (Figure 

4.1B). All agonists showed very little variation in the internalisation effect and 

therefore GLP-1 (7-37) (m entioned as GLP-1) was used for further 

experim entation, as it w as m ore readily available.

Further, the kinetics of agonist induced internalisation of the hGLP-lR with the 

N-terminal VSVG-tag (before and after the signal peptide [SP]) and C-terminal 

GFP-tag either p resen t or absent (Figure 4.2A) was assessed for agonist induced 

in ternalisation (by ELISA [Figure 4.2B] and immunofluorescence [Figure 4.2D]) 

and cAMP activity (Figure 4.2C). All constructs showed similar kinetics (see 

Table 4.1) to th a t of the untagged hGLP-lR dem onstrating tha t the N-terminal 

VSVG-tag and C-terminal GFP-tag had no effect on cell surface expression, 

agonist induced internalisation or cAMP production of the receptor. The hGLP- 

1R with the N-terminal VSVG-tag after the SP and C-terminal GFP-tag (SP-VSVG- 

hGLP-lRAN23-GFP) w as used in further experiments.
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Figure 4.1. A gonist m ed ia ted  in te rn a lisa tio n  o f th e  hGLP-lR. HEK293 

cells expressing the hGLP-lR were treated without or with 100 nM GLP-1 (7- 

36)-NH2, GLP-1 (7-37) or Exendin-4 for 60 min to assess hGLP-lR 

internalisation by ELISA (A) and immunofluorescence (B) using the anti- 

hGLP-lR antibody. In immunofluorescence, EGFP (green) and the anti-GLP- 

1R antibody (red) overlay shown in yellow and nuclear staining with DAPI in 

blue. Data are percentage of total cell surface receptors and are mean ± SEM, 

n=3. Data were analysed by Bonferroni's post test after one-way ANOVA; 

values differ from control, *** p<0.001.
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Figure 4.2. The effect of v a rio u s  ep ito p e  tags on hGLP-lR  activity.

HEK293 cells expressing various hGLP-lR epitope tagged constructs (A) 

were stimulated for 60 min with 100 nM GLP-1 and assessed for hGLP-lR 

internalisation by ELISA (B) using the anti-hGLP-lR antibody. (C) Agonist 

stimulated cAMP production was measured for 4 h to assess hGLP-lR 

activity by cotransfecting with a pGL4.29-Luc-CRE reporter plasmid. Data 

are mean ± SEM, n=3.
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Figure 4.2 cont. The effect of v a rio u s  ep ito p e  tags on hG LP-lR  activity.

(D) Immunofluorescence showing expression of hGLP-lR, EGFP (green) and 

the anti-hGLP-lR antibody (red) overlay shown in yellow and nuclear 

staining with DAPI in blue. Data are mean ± SEM, n=3.
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Table 4.1. EC50 values for the various ep itope tagged hGLP-lR constructs 

stim ulated w ith GLP-1

ELISA (nM) cAMP (pM)

SP-VSVG-hGLP-lRAN23-GFP 29.34 ± 0.09 1.2 ± 0.09

VSVG-hGLP-lR-GFP 28.31 ±0.07 1.23 ± 0.08

VSVG-hGLP-lR 28.64 ± 0.06 1.29 ± 0.09

hGLP-lR-GFP 29 ± 0.08 1.02 ±0.15

hGLP-lR 30.34 ± 0.06 1.51 ± 0.09

hGLP-lRAN23 27.29 ± 0.06 1.23 ± 0.08

The data shows no significant difference in the  potency of GLP-1 to internalise 

the hGLP-lR or stim ulate cAMP production in the various epitope tagged hGLP­

IR  constructs.

4.3.2. Characterisation o f tw o sm all m olecule agonists of the hGLP-lR

Two small molecule agonists of the hGLP-lR, compound 2 and compound B, 

w ere examined for their effects on hGLP-lR activity (using cAMP production, 

intracellular Ca2+ accumulation and ERK phosphorylation as readouts) and 

internalisation, and com pared to tha t of GLP-1. Initially, com pounds 2 and B 

w ere assessed for w hether they affect the viability of HEK293 cells using the 

MTT assay. These compounds had no effect on HEK293 cell viability up to 33 

pM. At 100 pM concentration, compound 2 and compound B reduced HEK293 

cell viability to 71.7 ± 2.1% and 72.5 ± 1.6% respectively, dem onstrating a small 

am ount of cytotoxicity by these com pounds at this concentration (Figure 4.3).

Compounds 2 and B w ere then assessed for their effects on agonist induced 

cAMP production (Figure 4.4A), intracellular Ca2+ accumulation (Figure 4.4B) 

and ERK phosphorylation (Figure 4.4C-D), and com pared to tha t of GLP-1. GLP- 

1 stim ulated a concentration dependent increase in cAMP production in 

HEK293 cells expressing the hGLP-lR w ith an EC50 of 3.6 ± 0.1 pM. Compound 2
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and compound B also induced the sam e levels of cAMP production w ith an EC50 

of 2.5 ± 0.2 pM and 4.4 ± 0.1 pM respectively, dem onstrating compounds 2 and 

B both stim ulate cAMP production w ith similar maximal cAMP responses to tha t 

of GLP-1. GLP-1 increased intracellular Ca2+ accumulation (EC50 of 53.7 ± 0.1 

nM) and ERK phosphorylation (EC50 of 55.7 ± 0.1 nM) in a concentration 

dependent m anner in hGLP-lR expressing cells. However, com pounds 2 and B 

had no effect on intracellular Ca2+ accumulation (Figure 4.4B) and ERK 

phosphorylation (Figure 4.4C-D). Taken together, these results dem onstrate 

com pounds 2 and B induce cAMP production w ith similar maximal cAMP 

response to GLP-1 but do not activate intracellular Ca2+ accumulation or ERK 

phosphorylation.

Since intracellular Ca2+ accumulation and ERK phosphorylation are required for 

GLP-1 stim ulated hGLP-lR internalisation (see Chapter 5}, the effect of 

com pounds 2 and B on hGLP-lR internalisation was assessed next. HEK293 

cells expressing the hGLP-lR w ere challenged w ith increasing concentrations of 

GLP-1, compound 2 and compound B for 60 min and internalisation of the 

receptor was analysed by ELISA using the anti-hGLP-lR antibody (Figure 4.5A) 

and anti-VSVG antibody (Figure 4.5B). The orthosteric agonist, GLP-1, induced a 

concentration dependent increase in hGLP-lR internalisation and had a 

maximal effect of 76.0 ± 4.4% at 100 nM (EC50 of 33.7 ± 0.1 nM). Interestingly, 

com pound 2 showed no induction of hGLP-lR internalisation up to 3.3 pM and 

a t its highest concentration (100 pM) only 16.6 ± 7.0% of cell surface receptors 

w ere internalised (EC50 of 2233.6 ± 6.6 pM was calculated). Additionally, 

com pound B showed no effect on internalisation of the receptor up to a 

concentration of 100 pM. W hen hGLP-lR internalisation was assessed by ELISA 

using the anti-VSVG antibody, the results obtained w ere similar to tha t obtained 

w ith the anti-hGLP-lR antibody (EC50 of 31.1 ± 0.1 nM for GLP-1, 2187.8 ± 8.4 

pM for compound 2 was calculated, and no EC50 was determ ined for compound 

B, Figure 4.5B). This indicated the anti-hGLP-lR antibody does not interfere 

w ith compound 2 and compound B binding to the receptor and therefore only 

the  anti-hGLP-lR antibody was used in further experim ents. These results w ere 

confirmed by im munofluorescence analysis (Figure 4.5C) w here intracellular
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punctate structures, indicative of hGLP-lR internalisation, were observed for 

cells treated with GLP-1, but were absent in cells treated with compound 2 and 

B.

Additionally, the time dependent effect of GLP-1, compound 2 and compound B 

on hGLP-lR internalisation was determined using ELISA (Figure 4.6A) and live 

cell imaging (Figure 4.6B). GLP-1 induced hGLP-lR internalisation in a time 

dependent manner, reaching maximum internalisation of the receptor after 

approximately 60 min of stimulation (73.6 ± 5.8%). In contrast, no 

internalisation of the receptor was observed for compound 2 and compound B. 

Live cell imaging showed the appearance of intracellular punctate structures 

when challenged with GLP-1 but not with compound 2 or compound B, 

supporting the ELISA results. Together, these results demonstrate that unlike 

GLP-1, the small molecule agonists do not internalise the hGLP-lR most likely 

because they are unable to induce intracellular Ca2+ accumulation or ERK 

phosphorylation.
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Figure 4.3. V iability of HEK293 cells tre a te d  w ith  in c reasin g  

c o n ce n tra tio n s  of GLP-1, com p o u n d  2 an d  co m pound  B. HEK293 cells 

were treated with the indicated concentrations of GLP-1, compound 2 and 

compound B for 60 min and assessed for their toxicity using a MTT assay. 

Data are mean ± SEM, n=3.
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Figure 4.4. Small m olecu le  ag o n ists  in d u ced  cAMP p ro d u c tio n  b u t n o t 

in tra c e llu la r  Ca2+ accum ula tion  o r ERK p h o sp h o ry la tio n . HEK293 cells 

cotransfected with the hGLP-lR plasmid and the luciferase reporter plasmid 

for cAMP (pGL4.29-Luc-CRE), intracellular Ca2+ (pGL4.30-Luc-NFAT) or ERK 

phosphorylation (pGL4.33-Luc-SRE) were stimulated with GLP-1, compound 

2 and compound B as indicated for 4 h (cAMP and ERK phosphorylation) or 8 

h (intracellular Ca2+ accumulation) to assess cAMP production (A), 

intracellular Ca2+ accumulation (B) and ERK phosphorylation (C). Data are 

mean ± SEM, n=3.
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Figure 4.4 cont. Small m olecule ag o n ists  in d u ced  cAMP p ro d u c tio n  b u t 

n o t in trac e llu la r  Ca2+ accum ula tion  o r  ERK p h o sp h o ry la tio n . (D)

HEK293 cells expressing the hGLP-lR were stimulated with agonist for the 

indicated time and ERK1/2 phosphorylation was measured by 

immunoblotting (i) and quantified by densitometry and normalised to total 

ERK1/2 levels (ii). Data normalised to percentage stimulation of GLP-1 and 

are shown as mean ± SEM, n=3. Data were analysed by Bonferroni's post test 

after two-way ANOVA; values differ from control, ***p<0.001.
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Figure 4.5. C oncen tra tion  d e p e n d e n t s tim u la tio n  of hGLP-lR 

in te rn a lisa tio n  by GLP-1, com pound  2 an d  com pound  B. HEK293 cells 

expressing the hGLP-lR were stimulated with GLP-1, compound 2 and 

compound B at the indicated concentrations for 60 min and hGLP-lR 

internalisation was assessed by ELISA using the anti-hGLP-lR antibody (A) 

and the VSVG-antibody (B). (C) In immunofluorescence, EGFP (green) and 

the anti-hGLP-lR antibody (red) overlay shown in yellow and nuclear 

staining with DAPI in blue. Data are percentage of total cell surface receptors 

and are mean ± SEM, n=3.
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F igure 4.6. T im e d e p e n d e n t s tim u la tio n  of hG LP-lR  in te rn a lisa tio n  by 

GLP-1, com pound  2 an d  com pound  B. HGLP-lR internalisation stimulated 

with 100 nM GLP-1, 10 pM compound 2 and 10 pM compound B for the 

indicated times was assessed by ELISA (A) using the anti-hGLP-lR antibody. 

(B) Live cell imaging showing agonist induced internalisation of the hGLP-lR, 

with EGFP in green. Data are percentage of total cell surface receptors and 

are mean ± SEM, n=3.
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4.3.3. Antagonists Ex(9-39) and JANT-4 inhibit the effects o f GLP-1 but 

not com pound 2 or com pound B

Ex(9-39) and JANT-4 are known antagonists of the GLP-1R tha t w ork by binding 

to the orthosteric binding site, competitively inhibiting GLP-1 binding to the 

receptor (Goke et al, 1993; Montrose-Rafizadeh et al, 1997; Patterson e t al, 

2011; Thorens et al, 1993). Compound 2 and compound B have been described 

as ago-allosteric agonists (Coopman et al, 2010; Irwin et al, 2010; Knudsen et al, 

2007; Sloop et al, 2010). To confirm this, the effect of antagonists Ex(9-39) and 

JANT-4 on these small molecule agonists was determ ined. The effects of Ex(9- 

39) and JANT-4 on GLP-1 (Figure 4.7A), compound 2 (Figure 4.7B) and 

com pound B (Figure 4.7C) induced cAMP production was determ ined. GLP-1 

stim ulated a concentration dependent increase in cAMP production in HEK293 

cells expressing the hGLP-lR with an ECso of 2.3 ± 0.2 pM. In the presence of 

Ex(9-39) and JANT-4, cAMP production was reduced (14.5 ± 0.3 pM and 7.4 ± 

0.5 pM, respectively). In contrast, Ex(9-39) and JANT-4 had no effect on 

compound 2 stim ulated cAMP production (EC50 of 1.7 ± 0.1 pM with Ex[9-39] 

and 1.8 ± 0.1 pM with JANT-4 versus 2.1 ± 0.1 pM with no antagonist). Similarly, 

antagonists Ex(9-39) and JANT-4 had no effect on the cAMP production 

stim ulated by compound B (EC50 of 4.2 ± 0.1 pM w ith Ex[9-39] and 4.0 ± 0.1 pM 

w ith JANT-4 versus 3.7 ± 0.1 pM w ith no antagonist). These results confirmed 

com pound 2 and compound B do not bind to the orthosteric agonist binding 

site.

Additionally, the antagonists, Ex(9-39) and JANT-4, inhibited hGLP-lR 

internalisation, assessed by ELISA (A) and immunofluorescence (B), induced by 

GLP-1 in a concentration (Figure 4.8) and tim e dependent m anner (Figure 4.9). 

GLP-1 increased hGLP-lR internalisation in a concentration dependent m anner 

(EC50 of 30.7 ± 0.1 nM, Figure 4.8A). However, the addition of either Ex(9-39) or 

JANT-4 significantly reduced GLP-1 induced hGLP-lR internalisation and 

increased the EC50 value to 86.1 ± 0.3 nM and 227.5 ± 0.3 nM respectively. 

Im m unofluorescence analysis supported these observations by dem onstrating 

the inhibition of GLP-1 induced hGLP-lR internalisation by Ex(9-39) and JANT- 

4 antagonists in a concentration dependent m anner (Figure 4.8B). Additionally,
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Ex(9-39) and JANT-4 inhibited hGLP-lR internalisation induced by GLP-1 over 

tim e (Figure 4.9A). Agonist induced hGLP-lR internalisation w as reduced to

60.3 ± 8.4% (p<0.001) by Ex(9-39) and 65.5 ± 6.5% (p<0.001) by JANT-4 a t 60 

min. These observations w ere confirmed by live cell imaging w here inhibition of 

agonist induced internalisation (lack of punctate structures) was evident 

(Figure 4.9B). Taken together, these results dem onstrate antagonists Ex(9-39) 

and JANT-4 non-competitively inhibit hGLP-lR activation by GLP-1 but not 

com pounds 2 or B, confirming they act through a binding site or sites distinct 

from the orthosteric site on the GLP-1R.

The idea tha t compound 2 and compound B act through a binding site th a t is 

distinct from the orthosteric site was further assessed using two hGLP-lR 

m utants (V36A and K334A). The V36A m utant of hGLP-lR prevents agonist 

binding to the orthosteric site (Underwood et al, 2010), w hereas the K334A 

m utant reduces cAMP production (Mathi, 1997; Takhar e t al, 1996). The V36A 

and K334A m utants w ere assessed for their expression at protein level 

(determ ined by im m unoblotting [Figure 4.10AJ), cell surface expression and 

GLP-1 induced internalisation (determ ined by ELISA [Figure 4.10B-C] and 

im m unofluorescence [Figure 4.10D]). The V36A and K334A total protein 

expression and cell surface expression was similar to tha t of the wild type (WT) 

control hGLP-lR (103.2 ± 9.6% and 108.9 ± 2.2%, p>0.05, respectively). As 

expected, GLP-1 induced hGLP-lR internalisation was alm ost abolished in the 

V36A m utant (12.4 ± 7.3%, p<0.001). In contrast, GLP-1 induced hGLP-lR 

in ternalisation in the K334A m utation was similar to tha t of the WT control 

(97.5 ± 3.7%, p>0.05). These results dem onstrate th a t the V36A m utation 

abolishes GLP-1 induced hGLP-lR internalisation as suggested previously 

(Underwood et al, 2010). However, the K334A m utation had no effect on hGLP- 

1R expression or GLP-1 induced internalisation, which also confirms previous 

findings (Mathi, 1997; Takhar e t al, 1996).

HEK293 cells expressing either the WT hGLP-lR, V36A m utant or K334A 

m utan t w ere treated  w ith increasing concentrations of GLP-1 (Figure 4.11A), 

com pound 2 (Figure 4.11B) and compound B (Figure 4.11C) and assessed for
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cAMP production. GLP-1 increased cAMP production in a concentration 

dependent m anner w ith an EC50 of 2.2 ± 0.1 pM in WT expressing cells but not 

in the V36A m utant (p<0.001) expressing cells. Compound 2 stim ulated cAMP 

production in a concentration dependent m anner in both the WT and V36A 

m utant expressing cells (EC50 of 2.5 ± 0.1 pM and 2.9 ± 0.1 pM, respectively). 

Compound B also showed similar cAMP production in the WT and V36A m utant 

expressing cells (EC50 of 3.0 ± 0.1 pM and 3.2 ± 0.1 pM respectively). These 

results confirmed tha t the V36A m utation affects the orthosteric binding site of 

the hGLP-lR. Stimulation of cAMP production in the K334A m utant expressing 

cells was significantly reduced with GLP-1, compound 2 and compound B (EC50 

of 7.9 ± 0.6 pM, 6.1 ± 0.1 pM, 4.7 ± 0.2 pM, p<0.001, respectively). This result 

confirmed tha t the K334A m utant inhibits cAMP production and suggests tha t 

although the small molecule agonists bind at a different site on the hGLP-lR, 

GLP-1, compound 2 and compound B alter the conformation of the receptor in a 

sim ilar way so tha t the receptor couples to the Gas pathw ay and induces cAMP 

production.
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Figure 4.7. A ntagonists Ex(9-39) an d  JANT-4 in h ib it cAMP p ro d u c tio n  

in d u ced  by GLP-1 b u t n o t com pound  2 o r  com pound  B. HEK293 cells 

cotransfected with the hGLP-lR plasmid and the luciferase reporter plasmid 

for cAMP (pGL4.29-Luc-CRE) were stimulated with GLP-1 (A), compound 2 

(B) and compound B (C) in the presence of 100 nM Ex(9-39) (left panel) and 

JANT-4 (right panel) as indicated for 4 h to assess cAMP production. Data are 

mean ± SEM, n=3. Data were analysed by Bonferroni's post test after two-way 

ANOVA; values differ from control, ***p<0.001.
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Figure 4.8. C oncen tra tion  d e p e n d e n t s tim u la tio n  of hGLP-lR 

in te rn a lisa tio n  by GLP-1 in th e  p re sen ce  o f an tag o n is ts  Ex(9-39) and  

JANT-4. HEK293 cells expressing the hGLP-lR were stimulated with GLP-1 at 

the indicated concentrations for 60 min in the presence of 100 nM Ex(9-39) 

(left panel) and ]ANT-4 (right panel) and hGLP-lR internalisation was 

assessed by ELISA (A) and immunofluorescence (B) using the anti-hGLP-lR 

antibody. In immunofluorescence, EGFP (green) and the anti-hGLP-lR 

antibody (red) overlay shown in yellow and nuclear staining with DAPI in 

blue. Data are mean ± SEM, n=3. Data were analysed by Bonferroni's post test 

after two-way ANOVA; values differ from control, ** p<0.01, ***p<0.001.

158



o  2  100-

'klc'k

(0

- Ex(9-39) 
+ Ex(9-39)

i

▼ - JANT-4 
+ JANT-4

Time (m inutes)
10 20

Time (minutes)

c
ocuo
<
oz

15

T im e  (m inu t e s )

Figure 4.9. Tim e d e p e n d e n t s tim u la tio n  of hG LP-lR  in te rn a lisa tio n  by 

GLP-1 in th e  p re sen ce  of an tag o n is ts  Ex(9-39) an d  JANT-4. HEK293 cells 

expressing the hGLP-lR were stimulated with 100 nM GLP-1 at the indicated 

times in the presence of 100 nM Ex(9-39) (left panel) and JANT-4 (right 

panel) and hGLP-lR internalisation was assessed by ELISA (A) using the anti- 

hGLP-lR antibody. (B) Live cell imaging showing GLP-1 induced 

internalisation of the hGLP-lR in the presence of 100 nM Ex(9-39) and JANT- 

4, with EGFP in green. Data are mean ± SEM, n=3. Data were analysed by 

Bonferroni's post test after two-way ANOVA; values differ from control, **

p<0.01, *** p<0.001.
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Figure 4.10. Effect of th e  V36A an d  K334A m u ta tio n s  on hG LP-lR  cell 

su rface  ex p ress io n  and  GLP-1 in d u ced  in te rn a lisa tio n . HEK293 cells 

were transfected with the WT hGLP-lR or the V36A or K334A mutants for 48 

h. (A) Total protein expression was assessed by immunoblotting using the 

anti-GFP and anti-VSVG antibodies. Cell surface expression (B) and 100 nM 

GLP-1 induced internalisation for 60 min (C) was assessed by ELISA using 

the anti-hGLP-lR antibody. (D) Immunofluorescence showing GLP-1 induced 

internalisation of the WT and mutant hGLP-lR, EGFP (green) and the anti- 

hGLP-lR antibody (red) overlay shown in yellow and nuclear staining with 

DAPI in blue. Data are mean ± SEM, n=3. Data were analysed by Bonferroni's 

post test after one-way ANOVA; values differ from control, n.s. p<0.05, ***

p<0.001.
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Figure 4.11. Effect of th e  V36A and  K334A m u ta tio n s  on cAMP 

p ro d u c tio n . HEK293 cells transfected with the V36A (left panel) and K334A 

(right panel) mutation plasmid and the luciferase reporter plasmid pGL4.29- 

Luc-CRE were stimulated with GLP-1 (A), compound 2 (B) and compound B 

(C) as indicated for 4 h to assess cAMP production. Data are mean ± SEM, 

n=3. Data were analysed by Bonferroni's post test after two-way ANOVA; 

values differ from control, * p<0.05, ** p<0.01, *** p<0.001.
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4.3.4. A ntagonist effects o f com pound 2 and com pound B

HEK293 cells expressing the hGLP-lR w ere  preincubated with 10 pM 

com pound 2 or compound B and then stim ulated w ith increasing 

concentrations of GLP-1 and internalisation of the receptor was investigated by 

ELISA (Figure 4.12A) and immunofluorescence (Figure 4.12B). Interestingly, 

com pound 2 and compound B reduced hGLP-lR internalisation with 10 nM 

GLP-1 from 31.3 ± 3.4% to just 6.3 ± 1.3% (p<0.001) and 8.4 ± 2.2% (p<0.001), 

respectively. The addition of 33 nM GLP-1 to cells challenged with 10 pM 

com pound 2 or compound B also resulted in significant inhibition of 

internalisation of the receptor (from 56.9 ± 1.5% w ith GLP-1 alone to 38.3 ± 

1.8% w hen preincubated w ith compound 2 and 37.9 ± 2.4% w hen preincubated 

w ith com pound B, p<0001). Even with the addition of 100 nM GLP-1, a 

significant decrease in hGLP-lR internalisation was observed w ith compound 2 

and com pound B preincubation (from 71.8 ± 2.4% w ith GLP-1 alone to 55.0 ± 

4.8% w hen preincubated w ith compound 2 and 47.0 ± 3.8% w hen preincubated 

w ith com pound B, p<0001). This was further confirmed by 

im m unofluorescence (Figure 4.12B).

As preincubation with compounds 2 and B showed reduced GLP-1 induced 

hGLP-lR internalisation, the effect of 10 pM compound 2 or compound B 

preincubation on GLP-1 induced cAMP production (Figure 4.13A), intracellular 

Ca2+ accum ulation (Figure 4.13B) and ERK phosphorylation (Figure 4.13C) was 

assessed. Both small molecule agonists showed no significant effect on GLP-1 

induced cAMP production. Interestingly, com pound 2 and compound B 

significantly reduced intracellular Ca2+ accum ulation w ith 10 nM GLP-1 from

921.3 ± 12.7 RLU to 335.3 ± 72.2 RLU (p<0.001) and 419.0 ± 114.6 RLU 

(p<0.01), respectively. The addition of 33 nM GLP-1 to cells challenged with 10 

pM com pound 2 or compound B also resulted  in significant inhibition of 

intracellular Ca2+ accumulation (from 1015.3 ± 103.7 RLU w ith GLP-1 alone to

443.3 ± 147.0 RLU w hen preincubated w ith com pound 2 and 420.0 ± 162.9 RLU 

w hen preincubated with compound B, p<0001). Even w ith the addition of 100 

nM GLP-1, a significant decrease in intracellular Ca2+ accumulation was 

observed w ith compound 2 and compound B preincubation (from 1121.0 ± 62.6
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RLU w ith GLP-1 alone to 555.3 ± 158.8 RLU and 545.3 ± 205.3 RLU, p<0001, 

w hen preincubated w ith compound 2 and compound B, respectively). 

Preincubation w ith either compound 2 or com pound B also significantly 

reduced GLP-1 induced ERK phosphorylation. Addition of 10 nM GLP-1 to cells 

induced 1907.7 ± 139.7 RLU ERK phosphorylation, but preincubation with 

e ither compound 2 or compound B induced only 1286.7 ± 95.3 RLU or 1135.3 ±

138.3 RLU (p<0001) respectively. The addition of 33 nM GLP-1 to cells 

preincubated with compounds 2 and B reduced ERK phosphorylation from 

2187.0 ± 170.6 RLU with GLP-1 alone to 1248.7 ± 72.1 RLU w hen preincubated 

w ith compound 2 and 1221.3 ± 68.5 RLU w hen preincubated w ith compound B 

(p<0001). ERK phosphorylation was still significantly reduced w hen induced by 

100 nM GLP-1 after preincubation w ith compound 2 or compound B (from

2512.3 ± 29.0 RLU with GLP-1 alone to 1429.0 ± 135.3 RLU w hen preincubated 

w ith compound 2 and 1340.3 ± 102.7 RLU when preincubated w ith compound 

B, p<0001). These results dem onstrate GLP-1 induced cAMP production was 

unaffected w hen preincubated w ith 10 pM com pounds 2 and B, m ost likely 

because both small molecule agonists generate alm ost maximal cAMP 

production themselves. However, compounds 2 and B inhibited GLP-1 induced 

hGLP-lR internalisation, intracellular Ca2+ accumulation and ERK 

phosphorylation.
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Figure 4.12. P re in cu b a tio n  of th e  hG LP-lR  w ith  com pound  2 o r 

com p o u n d  B red u ced  GLP-1 in d u ced  in te rn a lisa tio n . HEK293 cells were 

preincubated with either 10 pM compound 2 or compound B for 60 min. Cells 

were then stimulated with GLP-1 at the indicated concentrations for a further 

60 min in the presence of 10 pM compound 2 (left panel) or compound B 

(right panel) and hGLP-lR internalisation was assessed by ELISA (A) and 

immunofluorescence (B) using the anti-hGLP-lR antibody. In 

immunofluorescence, EGFP (green) and the anti-hGLP-lR antibody (red) 

overlay shown in yellow and nuclear staining with DAPI in blue. Data are 

percentage of total cell surface receptors and are mean ± SEM, n=3. Data 

were analysed by Bonferroni's post test after two-way ANOVA; values differ 

from control, *** p<0.001.
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Figure 4.13. P re in cu b a tio n  of th e  hG LP-lR  w ith  com pound  2 o r 

com pound  B red u ced  GLP-1 s tim u la ted  in tra c e llu la r  Ca2+ accum ula tion  

and  ERK p h o sp h o ry la tio n . HEK293 cells cotransfected with the hGLP-lR 

plasmid and the luciferase reporter plasmid for cAMP (pGL4.29-Luc-CRE), 

intracellular Ca2+ (pGL4.30-Luc-NFAT) or ERK phosphorylation (pGL4.33- 

Luc-SRE) were preincubated with either 10 pM compound 2 or compound B 

for 60 min. Cells were then stimulated with GLP-1 at the indicated 

concentrations in the presence of 10 pM compound 2 (left panel) or 

compound B (right panel) for 4 h (cAMP and ERK phosphorylation) or 8 h 

(intracellular Ca2+ accumulation) to assess cAMP production (A), intracellular 

Ca2+ accumulation (B) and ERK phosphorylation (C). Data are mean ± SEM, 

n=3. Data were analysed by Bonferroni's post test after two-way ANOVA; 

values differ from control, n.s. p>0.05, ** p<0.01, *** p<0.001.
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4.4. Discussion

Although the  commercially available drugs, Liraglutide and Exenatide, have 

therapeutic potential, they are very expensive and have difficulties associated 

w ith the long-term  adm inistration of these injectable drugs. This has driven the 

need to find relatively less expensive and orally active small molecule agonists 

of the GLP-1R. Allosteric small molecule drugs not only have the potential of 

oral bioactivity b u t also the potential benefit of binding to a site on the receptor 

tha t is distinct from th a t used by the orthosteric agonist. Therefore, allosteric 

agonists can act upon the receptor a t the sam e time as the endogenous 

orthosteric  agonist and increase affinity an d /o r efficiency of the orthosteric 

agonist, potentially providing m ore 'physiological' regulation (Bridges & 

Lindsley, 2008). Recently, two small molecule agonists, compound 2 and 

com pound B, have been described as ago-allosteric agonists of the GLP-1R, 

which act no t only as allosteric m odulators but also as agonists (Knudsen et al, 

2007; Sloop et al, 2010). This has provided optimism in the developm ent of high 

affinity, orally active compounds, which are clinically applicable for the 

trea tm en t of type 2 diabetes.

In this study, both small molecule agonists of the hGLP-lR induced cAMP 

production bu t not intracellular Ca2+ accumulation or ERK phosphorylation and 

as a resu lt did not induce hGLP-lR internalisation. Studying compound 2 and 

com pound B induced GLP-1R internalisation is useful in assessing the 

effectiveness of these compounds with longer half-life. This is because 

in ternalisation of the receptor can lead to dam pening of its biological response 

(Hanyaloglu & von Zastrow, 2008). Other allosteric agonists bind to GPCRs and 

activate different signalling pathw ays to tha t of the orthosteric agonist. For 

example, the  p-opioid receptor allosteric agonist, herkinorin, induces ERK1/2 

phosphorylation b u t no t internalisation of the receptor (Groer e t al, 2007). 

Additionally, allosteric agonist AC-42 (4-n-butyl-l-[4-(2-m ethylphenyl)-4-oxo- 

1-butyl] piperidine), binds to the Mi muscarinic acetylcholine receptor resulting 

in ERK phosphorylation and intracellular Ca2+ accumulation but not 

in ternalisation of the receptor (Ma et al, 2009; Thomas et al, 2009). This
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suggests orthosteric and allosteric agonists cause subtle differences in the 

conformation of the receptor, activating separate signalling pathways. 

Additionally, this further supports the idea tha t the GLP-1R does not require 

cAMP for internalisation of the receptor, bu t instead intracellular Ca2+ 

accumulation and ERK phosphorylation are essential.

In this study, antagonists Ex(9-39) (Goke et al, 1993; Thorens e t al, 1993) and 

JANT-4 (Patterson et al, 2011) inhibited GLP-1 induced GLP-1R internalisation 

and signalling. However, Ex(9-39) and JANT-4 did not inhibit compound 2 or 

compound B induced signalling, suggesting a second agonist binding site on the 

hGLP-lR tha t is distinct from the orthosteric binding site. These findings are 

consistent w ith results obtained in previous studies for compound 2 (Knudsen 

et al, 2007) and compound B (Knudsen et al, 2007; Sloop et al, 2010), which 

showed the antagonist, Ex(9-39), had no effect on cAMP signalling. This was 

further confirmed with the use of two m utants of the hGLP-lR (V36A and 

K334A). The V36A m utation in the GLP-1R has previously been shown to affect 

GLP-1 binding to the orthosteric binding site (Underwood et al, 2010). In this 

study, HEK293 cells expressing the V36A m utant did not show GLP-1 stim ulated 

cAMP. In contrast, the V36A m utant expressing cells did show compound 2 and 

compound B stim ulated cAMP production to the sam e levels produced in the 

hGLP-lR WT expressing cells. These results dem onstrated tha t the V36A 

m utation in the hGLP-lR only affects the orthosteric binding site and, 

compounds 2 and B in teract w ith the hGLP-lR a t a site different to the 

orthosteric binding site. Additionally, the K334A m utation in the GLP-1R has 

previously been shown to reduce coupling of the receptor to the Gas subunit 

(Mathi, 1997; Takhar e t al, 1996). In this study the K334A m utant reduced 

cAMP production stim ulated by GLP-1, compound 2 and compound B. This 

dem onstrates tha t these small molecule agonists and GLP-1 induce similar 

conformational changes in the hGLP-lR, which are required for Gas coupling, 

although they bind at different sites on the hGLP-lR. In future studies, it would 

be interesting to assess w here on the hGLP-lR com pounds 2 and B bind using 

internal deletions to the extracellular loops in the GLP-1R.
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In this study, preincubation of the hGLP-lR with small molecule agonists prior 

to GLP-1 addition inhibited hGLP-lR internalisation, intracellular Ca2+ 

accumulation and ERK phosphorylation. This is interesting because compounds 

2 and B reduced hGLP-lR internalisation induced by GLP-1, which would 

prevent dampening of the receptor's activity (Hanyaloglu & von Zastrow, 2008). 

Therefore, these small molecule agonists may strengthen GLP-1 potency by 

allowing the orthosteric agonist to act on the receptor for a prolonged period 

before it is desensitised. As a result, compounds based on this ability may 

provide insight into the mechanisms of agonist directed GLP-1R regulation and 

may represent a step further in the development of effective orally active 

insulinotropic agents with limited adverse effects. This result is in contrast to 

allosteric agonists of the cannabinoid CBi receptor, because their binding to the 

receptor results in a conformational change that increases the affinity of the 

orthosteric agonist to the receptor (Price et al, 2005). Similar to compounds 2 

and B, allosteric agonist alcuronium inhibits, in a concentration dependent 

manner, the actions of orthosteric agonist pilocarpine on the M2 muscarinic 

acetylcholine receptor (Zahn et al, 2002). It would be interesting to determine, 

for example using biotin conjugated GLP-1, whether compounds 2 and B cause a 

conformational change that reduces access of GLP-1 to the orthosteric binding 

site in a non-competitive manner or whether they prevent GLP-1 bound hGLP- 

1R coupling to the Gaq pathway, thereby inhibiting intracellular Ca2+ 

accumulation and ERK phosphorylation required for internalisation of the 

receptor.

The identification of allosteric modulators of the hGLP-lR that have a longer 

half-life and the potential to be orally active is highly beneficial in the treatm ent 

of type 2 diabetes. In this study, small molecule agonists, compound 2 and 

compound B, were analysed for their effects on hGLP-lR cAMP production, 

intracellular Ca2+ accumulation, ERK phosphorylation and internalisation. 

Although small molecule agonists induced cAMP production with a similar 

maximal response to GLP-1, unlike GLP-1 they did not induce intracellular Ca2+ 

accumulation and ERK phosphorylation, and as a result did not induce hGLP-lR 

internalisation. With the use of antagonists and the V36A mutant of the hGLP-
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1R, this study dem onstrated tha t compounds 2 and B act on a region of the 

hGLP-lR independent to the orthosteric agonist site. However, the use of the 

K334A m utant of the hGLP-lR dem onstrated tha t compounds 2 and B induce a 

conformational change in the GLP-1 R, which is required for Gas coupling, 

similar to th a t induced by the orthosteric agonist binding to the receptor. 

Additionally, compounds 2 and B inhibit GLP-1 induced hGLP-lR 

internalisation, intracellular Ca2+ accumulation and ERK phosphorylation. 

Therefore, although this data suggests a potential advantage in the selective 

activation of specific signalling pathways, allosteric agonists may cause GPCR 

conform ations tha t are less favourable to the internalisation of the receptor 

than orthosteric agonists.
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5. Agonist Induced Internalisation of the Human 

Glucagon Like Peptide-1 Receptor is Mediated by
the Gccq Pathway

5.1. Introduction

One of the main physiological roles of glucagon like peptide-1 (GLP-1) is to 

increase insulin secretion from pancreatic (3-cells in a glucose dependent 

m anner (Doyle & Egan, 2007; Holz et al, 1999; Thom pson & Kanamarlapudi, 

2013). This horm one is secreted by the intestinal L-cells after food intake 

(Thompson & Kanamarlapudi, 2013). GLP-1 exerts its physiological effects by 

binding to its G-protein coupled receptor (GPCR), the GLP-1 receptor (GLP-1R). 

Therefore, hum an GLP-1R (hGLP-lR) is an im portant target in the trea tm en t of 

type 2 diabetes (Gallwitz, 2010; Thom pson & Kanamarlapudi, 2013).

Upon agonist binding, GPCRs undergo a conformational change and transm it 

extracellular signals through heterotrim eric G-proteins, which consist of Ga and 

Gpy subunits (Cabrera-Vera et al, 2003). The agonist occupied GLP-1R activates 

both Gas and Gaq subunits (M ontrose-Rafizadeh et al, 1999). The Gas subunit 

activates adenylyl cyclase (AC), increasing cyclic adenosine m onophosphate 

(cAMP) levels, which in tu rn  activates protein kinase A (PKA) (Bos, 2003). The 

G(xq subunit activates phospholipase C (PLC), which in tu rn  hydrolyses 

phosphatidylinositol-4,5-bisphophate (PIP2) to inositol-1,4,5-triphosphate (IP3) 

and diacylglycerol (DAG). IP3 binds to its receptor, the IP3 receptor (IP3R), on 

the endoplasmic reticulum (ER), which causes cytosolic calcium (Ca2+) 

accum ulation (W erry e t al, 2003). DAG together w ith intracellular Ca2+ activates 

protein  kinase C (PKC), which then induces extracellular signal-regulated kinase 

(ERK) phosphorylation (Budd et al, 2001; Hawes et al, 1995). ERKs are one class 

of m itogen-activated protein kinases (MAPKs) and their activity is regulated by 

phosphorylation (Cobb & Goldsmith, 1995). The GLP-1R has previously been
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shown to activate ERK (Jolivalt et al, 2011; Koole et al, 2010; Quoyer et al, 2010; 

Syme et al, 2006). Further, the activation of ERK by a number of GPCRs 

including the M3-muscarinic receptor (Budd et al, 1999; Budd et al, 2001; Kim et 

al, 1999; Wylie et al, 1999), prostaglandin F2a receptor (Watanabe et al, 1995), 

angiotensin II receptor (Zou et al, 1996), cholecystokinin type A receptor (Tapia 

et al, 1999), chemokine CXCR-2 receptor (Venkatakrishnan et al, 2000) and 

purinergic P2Y2 receptor (Soltoff et al, 1998) has been shown to be mediated by 

PKC. These receptors mediated ERK phosphorylation which was either 

abolished or significantly reduced upon PKC inhibition, demonstrating PKC acts 

upstream of ERK and provides the primary signal that links activation of the 

receptor to ERK phosphorylation. The agonist bound GLP-1R has been shown to 

induce both cAMP production by coupling to the Gas pathway and intracellular 

Ca2+ accumulation by coupling to the Gaq pathway (Montrose-Rafizadeh et al, 

1999). In p-cells, the increase in intracellular Ca2+ through the Gaq pathway 

causes secretory vesicles containing insulin to fuse to the plasma membrane 

and thereby increases insulin exocytosis (De Vos et al, 1995; Holz, 2004). The 

exocytotic insulin response caused by increased intracellular Ca2+ accumulation 

is potentiated by elevated cAMP production by coupling to the Gas pathway 

(Holst & Gromada, 2004).

After activation by agonist, most GPCRs internalise from the cell surface to 

dampen the biological response, to resensitise the desensitised receptor by 

recycling, or to propagate signals through novel transduction pathways 

(Hanyaloglu & von Zastrow, 2008). For example, the 6-opioid receptor requires 

the activation of PKC to allow phosphorylation of the receptor for 

internalisation (Xiang et al, 2001). Here, the activation of ERK is required for the 

desensitisation and sequestration of the 6-opioid receptor (Daaka et al, 1998; 

Eisinger & Schulz, 2004). The importance of GPCR internalisation in switching 

off the signal has been shown by the discovery of acquired mutations in the G- 

CSF receptor (G-CSFR) in leukaemia patients. These mutations result in 

impaired agonist induced internalisation of the G-CSFR (Hunter & Avalos, 1999; 

Ward et al, 1999). The agonist bound serotonin 5-hydroxytryptamine 2a (5- 

HT2a) receptor undergoes desensitisation and internalisation. The 5-HT2a
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receptor recycles back to the plasm a m em brane after 5-HT stim ulated 

internalisation, suggesting tha t the desensitised 5-HT2a receptor undergoes 

internalisation for resensitisation (Bhattacharyya et al, 2002).

GPCR kinases (GRKs), arrestins and clathrin coated pits predom inantly regulate 

agonist induced GPCR internalisation. The agonist activated GPCR is 

phosphorylated by GRKs, which facilitates the recruitm ent of arrestin  and 

targets the GPCR to clathrin-coated pits for rapid internalisation (Gurevich & 

Gurevich, 2006). However, some GPCRs such as the endothelin A receptor, 

som atostatin  receptor and angiotensin II type 1 receptor internalise in a 

caveolae dependent m anner (Chini & Parenti, 2004). The dynam in family of 

GTPases play an im portant role in agonist induced GPCR internalisation, by 

fission of clathrin-coated vesicles or caveolae m em branes (Kanamarlapudi et al, 

2012). Currently, there  is some confusion w hether the GLP-1R uses clathrin or 

caveolin m ediated endocytosis for its agonist induced internalisation. It has 

been reported  tha t clathrin coated endocytosis m ediates GLP-1R internalisation 

and th ree  PKC phosphorylation sites w ithin the C-terminal domain are 

im portan t for this to occur (Widmann, 1997). However, the GLP-1R has also 

been shown to interact and co-localise w ith caveolin-1 for internalisation of the 

receptor by caveolae m ediated endocytosis (Syme et al, 2006; Williams & 

Lisanti, 2004).

In agonist stim ulated pancreatic (3-cells, the internalised GLP-1R colocalises 

w ith AC w ithin endosom es and stim ulates insulin secretion (Kuna et al, 2013). 

Therefore, a be tte r understanding of GLP-1R internalisation is essential for 

introducing novel agonists tha t activate the GLP-1R in the trea tm en t of type 2 

diabetes. Although, the GLP-1R is known to activate both Gas and Gaq coupled 

pathways, it is unknown which pathw ay is required for agonist induced 

internalisation of the hGLP-lR. Currently, it is suggested tha t the GLP-1R acts 

through the Gas pathw ay to potentiate insulin secretion in (3-cells (Willard & 

Sloop, 2012). Further, it has been suggested th a t agonist induced GLP-1R 

internalisation may be arrestin  dependent (Jorgensen et al, 2007; Sonoda et al, 

2008; Willard & Sloop, 2012). A pparent variations can be seen in these studies
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and at p resen t the m olecular mechanism regulating GLP-1R function rem ains 

unclear.

In this study, it w as determ ined tha t agonist induced hGLP-lR internalisation is 

caveolin-1 and dynam in dependent. Furtherm ore, this study revealed tha t the 

Gaq pathw ay m ediates agonist induced hGLP-lR internalisation. Consistent with 

this, the hGLP-lR T149M m utant and small molecule agonists (compounds 2 

and B) no t only failed to activate the Gaq pathw ay but also prevented agonist 

induced in ternalisation of the hGLP-lR. Additionally, the Gaq signalling pathw ay 

inhibitors PBP10 (a m em brane perm eable PIP2 sequestering peptide), U73122 

(a PLC inhibitor), 2-APB (an IP3R inhibitor), BAPTA-AM (a m em brane 

perm eable Ca2+ chelator), Go6976 and Ro318820 (PKC inhibitors) and PD98059 

(an inhibitor for ERK phosphorylation by MAPK) reduced agonist induced 

hGLP-lR internalisation. These inhibitors also suppressed ERK phosphorylation 

induced by hGLP-lR activation, dem onstrating th a t phosphorylated ERK acts 

dow nstream  of the Gaq pathw ay in hGLP-lR internalisation.

5.2. Materials and methods

5.2.1. M aterials

The prim ary antibodies used w ere rabbit anti-vesicular stom atitis virus 

glycoprotein (VSVG) and rabbit anti-red fluorescent protein (RFP) (Abeam 

Biochemicals), m ouse anti-green fluorescent protein (GFP) (Roche), mouse anti- 

hGLP-lR (R&D Systems), mouse anti-CAV-1 (Santa Cruz Biotechnology), rabbit 

anti-phospho ERK1/2 (pERK l/2) and rabbit anti-ERK l/2 (New England 

Biolabs). The Cy3-conjugated anti-m ouse immunoglobulin G (IgG) secondary 

antibody (Jackson Laboratories) was used for immunofluorescence. The 

horseradish  peroxidase (HRP)-conjugated anti-m ouse and anti-rabbit IgG (GE 

Healthcare) secondary antibodies w ere used for immunoblotting. Enhanced 

chem ilum inescence (ECL) select reagent was obtained from GE Healthcare. The 

cAMP polyclonal antibody and cAMP-HRP w ere obtained from Genscript. GLP-1 

(Liraglutide) was from Novo Nordisk. Compound 2 and com pound B w ere
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purchased from Calbiochem. The chemical inhibitors used w ere 2-APB, BAPTA- 

AM, chlorprom azine hydrochloride, filipin complex, genistein, 

m onodansylcadaverine (MDC), tunicamycin (Sigma), dynasore (Abeam 

Biochemicals), Go6976, PD98059, Ro318820, U73122, U73343 (Tocris), PBP10 

(Millipore) and pentratin  peptide (Thermo Scientific). All o ther chemicals w ere 

from Sigma unless otherw ise stated.

5.2.2. Plasm ids

The full-length hGLP-lRAN23 cDNA was amplified from mammalian gene 

collection (MGC) clone 142053 (Source Bioscience) by polym erase chain 

reaction (PCR) using High Fidelity Taq DNA polym erase (Roche Applied 

Science) and sequence specific prim ers containing EcoRI restriction site and 

VSVG-tag coding sequence (5' prim er), and Sail restriction site and no stop 

codon (3' prim er). SP-VSVG-hGLP-lRAN23 cDNA was amplified by overlap PCR 

using VSVG-hGLP-lRAN23 cDNA as the tem plate, the sense prim er, containing 

EcoRI restriction site, the signal peptide (SP, 1-23 amino acids) coding sequence 

followed by VSVG coding sequence and 3' prim er. The cDNA was digested with 

EcoRI and Sail, and cloned in frame into the same sites of pEGFP-Nl vector 

(Clontech) for expression as the N-terminus VSVG-tagged (after the SP) and the 

C-terminus GFP-tagged fusion protein in mammalian cells (SP-VSVG-hGLP- 

1RAN23-GFP). The T149M (SP-VSVG-hGLP-lRAN23 T149M-GFP) point 

m utation within the hGLP-lR was generated using Quickchange II XL site- 

directed m utagenesis kit (Stratagene) and SP-VSVG-hGLP-lRAN23-GFP plasmid 

as the tem plate. The dom inant negative (DN) m utant of dynamin K44A, p- 

a rre s tin l A319-418 and clathrin EPS15 A95-295 used in this study have been 

described previously (Kanamarlapudi e t al, 2012; Mundell et al, 2001). The 

caveolae DN (CAV-1-P132L) described previously (Holst e t al, 2009) was 

obtained from Addgene. The Gaq G188S DN plasm id was kindly provided by 

Prof. Karnam S. Murthy (Virginia Commonwealth University, USA) (Huang et al, 

2007). Luciferase pGL4.29-Luc-CRE, pGL4.30-Luc-NFAT and pGL4.33-Luc-SRE 

repo rte r plasmids w ere from Promega.
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5.2.3. Cell culture and transfection

Human embryonic kidney 293 (HEK293) cells were maintained at 37°C in a 5% 

CO2 humidified environment in Dulbecco's modified Eagle medium (DMEM; 

serum free medium [SFM]) supplemented with 10% fetal calf serum, 2 mM 

glutamine, 100 U/ml penicillin and 0.1 mg/ml streptomycin (full serum medium 

[FSM]). Cells were transiently transfected for 48 h using JetPrime transfection 

reagent (Polyplus; 2 |il/pg DNA) according to the manufacturer's instructions.

5.2.4. Enzyme linked im m unosorbent assay (ELISA)

This is carried out as described previously with unpermeabilised cells to 

quantify cell surface expression (Kanamarlapudi et al, 2012). Briefly, HEK293 

cells expressing the hGLP-lR were serum starved for 1 h and then stimulated 

without or with agonist at 37°C/5% CO2. Where indicated, cells were incubated 

without or with inhibitors for 30 min prior and during stimulation with agonist 

at 37°C/5% CO2. Cells were then fixed with 4% paraformaldehyde (PFA) for 5 

min and non-specific binding sites blocked with 1% bovine serum albumin 

(BSA) made in Tris buffered saline (TBS) (1% BSA/TBS) for 45 min. Cells were 

incubated with the anti-hGLP-lR mouse antibody (diluted 1:15000) in 1% 

BSA/TBS for 1 h, washed with TBS and then incubated with the HRP-conjugated 

anti-mouse IgG (diluted 1:5000) in 1% BSA/TBS for 1 h. Cells were washed and 

developed using 1-step Ultra TMB-ELISA substrate (Bio-Rad) for 15 min and the 

reaction stopped by adding an equal volume of 2 M sulphuric acid. The optical 

density was read at 450 nm using a plate reader.

5.2.5. Im m unofluorescence

Intracellular localisation of hGLP-lR expression was assessed by 

immunofluorescence as described previously (Kanamarlapudi et al, 2012). 

Briefly, cells were serum starved for 1 h and where indicated cells were 

preincubated without or with inhibitors at the indicated concentration for 30 

min. Cells were then incubated with the anti-hGLP-lR mouse antibody (diluted 

1:5000) in 1% BSA/SFM for 1 h at 4°C and then stimulated without or with 

agonist in the presence of inhibitor at 37°C/5% CO2. Cells were then fixed with
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4% PFA for 30 min. Cells were permeabilised with 0.2% Triton X-100 made in 

phosphate buffered saline (PBS] for 10 min, blocked in blocking buffer (1% BSA 

made in wash buffer [0.1% Triton X-100 in PBS]] for 30 min and then incubated 

with the Cy3-conjugated anti-mouse antibody (diluted 1:200 in blocking buffer] 

for 1 h. Cells were then washed 3 times with wash buffer and incubated with 

DAPI (4',6-diamidino-2-phenylindole dihydrochloride, 1 mg/ml) diluted 1:2000 

in PBS to stain nucleus. Coverslips were mounted on glass microscopic slides 

using mounting solution (0.1 M Tris-hydrochloric acid [HC1], pH 8.5, 10% 

Mowiol 50% glycerol) containing 2.5% DABCO (1,4 diazabicyclo (2.2.2) octane). 

Immunofluorescence staining was visualised using a Zeiss LSM710 confocal 

microscope fitted with a 63x oil immersion lens.

5.2.6. cAMP assay

Cells were serum starved for 1 h and then stimulated without or with 100 nM 

GLP-1 for 1 h at 37°C/5% CO2 in the presence of 0.25 mM phosphodiesterase 

inhibitor Ro201724. Cells were lysed and cAMP levels in the cell lysates were 

estimated using the cAMP direct immunoassay kit (Abeam).

5.2.7. cAMP, Ca2+ and ERK luciferase assay

HEK293 cells cotransfected with the hGLP-lR plasmid and luciferase reporter 

plasmid for cAMP (pGL4.29-Luc-CRE) or intracellular Ca2+ (pGL4.30-Luc-NFAT) 

or ERK phosphorylation (pGL4.33-Luc-SRE) were treated with increasing 

concentrations of agonist for 4 h (cAMP and ERK) or 8 h (Ca2+) at 37°C/5% CO2. 

After incubation, an equal volume of ONE-Glo™ lysis buffer containing 

luciferase substrate (Promega) was then added to each well and luminescence 

(relative light units [RLU]) measured using a plate reader in accordance with 

the manufacturer's instructions.

5.2.8. Cell lysates

To make cell lysates, HEK293 cells expressing the hGLP-lR were washed 3 

times with ice cold PBS and lysed in ice cold modified RIPA lysis buffer (10 mM
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Tris HC1, pH 7.5 containing 10 mM ethylenediam inetetraacetic acid [EDTA], 1% 

nonyl phenoxypolyethoxylethanol [NP40], 0.1% sodium dodecyl sulphate [SDS], 

0.5% sodium deoxycholate and 150 mM sodium chloride [NaCl]) with 1% 

m am m alian protease inhibitors. Cell lysates w ere incubated a t 4°C for 15 min 

and then centrifuged at 22000 xg for 10 min at 4°C. The supernatan t was 

collected and V2 volume of 3x SDS-polyacrylamide gel electrophoresis (PAGE) 

sam ple loading buffer (75 mM Tris HC1, pH 6.8 containing 3% SDS, 30% 

glycerol, 0.003% brom ophenol blue and 0.3 M dithiothreitol [DTT]) was added 

and left a t room tem perature  for 1 h. These cell lysates w ere used to detect 

hGLP-lR expression by im m unoblotting using the anti-GFP and anti-VSVG 

antibodies.

For assessing ERK1/2 phosphorylation, HEK293 cells expressing the hGLP-lR 

w ere lysed in ice cold modified RIPA lysis buffer (50 mM Tris HC1, pH 7.5, 

containing 0.2 M NaCl; 10 mM MgCh; 0.1% SDS; 0.5% sodium deoxycholate; 1% 

TritonX-100; 5% Glycerol) w ith 1% mammalian protease inhibitors. Cell lysates 

w ere incubated at 4°C for 15 min and centrifuged at 22000 xg for 10 min at 4°C. 

The supernatan t was collected and Va volume of 5x SDS-PAGE sample loading 

buffer (125 mM Tris HC1, pH 6.8 containing 5% SDS, 50% glycerol, 0.005% 

brom ophenol blue and 5% p-m ercaptoethanol) was added and heated a t 100°C 

for 5 min. These cell lysates w ere used to detect phosphorylated ERK and total 

ERK by im m unoblotting using the anti-pERK l/2 and anti-ERK l/2 antibodies.

5.2.9. Coim m unoprecipitation

This was perform ed as described previously (Syme et al, 2006). Cells w ere 

w ashed 3 tim es w ith ice cold PBS and lysed in ice cold lysis buffer containing 1 

mM CaCh, 1% TritonX-100, 0.5% SDS in PBS w ith 1% mammalian protease 

inhibitors. Cell lysates w ere incubated with protein G Dynabeads® (Life 

technology) bound to 0.5 pg of either the anti-GFP mouse, anti-RFP rabbit or 

anti-CAV-1 antibody at 4°C for 2 h. Beads w ere washed 3 tim es w ith lysis buffer 

and the bound protein eluted in lx  SDS-PAGE sample loading buffer (25 mM 

Tris HC1, pH 6.8, containing 1% SDS, 10% glycerol, 0.001% brom ophenol blue
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and 0.1 M DTT). The lysate not incubated with beads w as mixed w ith volume 

of 3x SDS PAGE sample loading buffer and used to assess total hGLP-lR. Total 

and coim m unoprecipitated receptors w ere detected by im m unoblotting using 

the anti-GFP mouse antibody.

5.2.10. Im m unoblotting

Proteins w ere separated in a SDS-PAGE gel by electrophoresis and transferred 

onto polyvinylidene fluoride (PDVF) membrane. M embranes w ere blocked with 

TBST (TBS with 0.1% tw een 20) containing 5% milk pow der (blocking buffer) 

for 1 h at room tem perature  or overnight a t 4°C. M embranes w ere 

im m unoblotted w ith the anti-GFP m ouse antibody (diluted 1:500 in blocking 

buffer) to assess protein expression levels or the anti-pERK l/2 rabbit antibody 

(diluted 1:1000 in blocking buffer) to assess ERK1/2 phosphorylation for 1 h at 

room  tem perature or overnight at 4°C. M embranes w ere w ashed and then 

incubated w ith the HRP-conjugated anti-m ouse or anti-rabbit secondary 

antibody (diluted 1:2500 in blocking buffer) for 1 h a t room tem perature. 

M embranes w ere then incubated in ECL select substrate  and bands visualised 

using the ChemiDoc™ XRS system (Bio-Rad). Blots probed with the anti-GFP 

m ouse antibody w ere stripped w ith w estern  blot stripping buffer (Thermo 

Scientific) and reprobed w ith the anti-VSVG rabbit antibody (diluted 1:1000 in 

blocking buffer) to assess protein expression levels. Blots probed with the anti- 

pER K l/2  rabbit antibody w ere stripped and reprobed with the anti-ERK l/2 

rabbit antibody (diluted 1:1000 in blocking buffer) to assess ERK1/2 

phosphorylation. The HRP-conjugated anti-rabbit secondary antibody (diluted 

1:2500 in blocking buffer) was used as described above.

5.2.11. Data analysis

Data w ere analysed using the GraphPad Prism program . All data are presented 

as m eans ± standard e rro r of the m ean (SEM) of th ree independent 

experim ents. Statistical com parisons betw een the control and te s t value was 

m ade by a two-tailed unpaired studen t t-test. Statistical analysis betw een 

multiple groups w ere determ ined by the Bonferroni's post te st after one-way or
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two-way analysis of variance (ANOVA), w here p>0.05 was considered as 

statistically not significant (n.s.), and p<0.05, p<0.01 and p<0.001 shown as *, ** 

and *** respectively, was considered statistically significant. Concentration 

response curves w ere also fitted using Prism, according to a standard  logistic 

equation. Scale bar in confocal images represents 10 pm. Confocal images 

shown in the figures are representative of 190-200 transfected cells from three 

different experim ents. Similarly, im m unoblotting data shown in the figures are 

representative of th ree  independent experiments.

5.3. Results

5.3.1. HGLP-lR internalises by caveolae m ediated endocytosis

Firstly, the role of clathrin, caveolin and dynamin in agonist induced 

internalisation of the hGLP-lR was analysed. Most GPCRs internalise in either a 

clathrin or caveolae dependent m anner (Chini & Parenti, 2004; Luttrell & 

Lefkowitz, 2002). Dynamin regulates both clathrin and caveolae m ediated 

endocytosis through fission of the endocytosed vesicles (Le & Nabi, 2003). To 

determ ine w hether agonist induced hGLP-lR internalisation is m ediated by 

clathrin or caveolae and dynamin, HEK293 cells expressing the hGLP-lR w ere 

either cotransfected w ith DN m utants (Figure 5.1A) or treated  w ith inhibitors 

(Figure 5.IB) of clathrin, caveolae or dynamin and stim ulated w ith agonist and 

analysed by ELISA and immunofluorescence. GLP-1R internalisation in the 

presence of inhibitors or DN m utants is shown as percentage of th a t in absence 

of the treatm ent.

The DN m utant of dynamin (dynam in K44A), which affects both clathrin and 

caveolae m ediated endocytosis, significantly reduced (33.7 ± 3.8%, p<0.001) 

agonist induced hGLP-lR internalisation (Figure 5.1A). However, clathrin DN 

m utants, (3-arrestinl A319-418 (93.1 ± 4.6%, p>0.05) and EPS15 A95-295 (90.3 

± 5.2%, p>0.05), had little effect on the internalisation of the receptor. In
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contrast, the DN m utant of caveolin-1 (CAV-1-P132L) completely abolished 

hGLP-lR internalisation (0.1 ± 0.0%, p<0.001). Immunofluorescence analysis 

confirmed the inhibition of hGLP-lR internalisation by dynamin and caveolin-1 

DN m utants (Figure 5.1A).

Inhibitors of clathrin m ediated endocytosis, chlorprom azine (95.5 ± 2.8%, 

p>0.05) and MDC (94.7 ± 3.4%, p>0.05), had no significant effect on hGLP-lR 

internalisation. However, inhibitors of dynamin, dynasore (40.6 ± 3.4%, 

p<0.001), and caveolae m ediated endocytosis, genistein (55.3 ± 1.8%, p<0.001) 

and filipin (29.7 ± 5.1%, p<0.001), inhibited agonist induced hGLP-lR 

internalisation (Figure 5.IB). These observations w ere supported by 

im m unofluorescence analysis w here a reduction in agonist induced intracellular 

accum ulation of hGLP-lR in endosom es was observed in cells treated  with 

caveolae inhibitors. The concentration dependent inhibition of agonist induced 

hGLP-lR internalisation by dynasore (Figure 5.2A), filipin (Figure 5.2B) and 

genistein (Figure 5.2C) was used to assess maximal inhibition of each inhibitor. 

These observations w ere confirmed by immunofluorescence w here inhibition of 

agonist induced internalisation was evident. Taken together, these results 

dem onstrate  tha t agonist induced hGLP-lR internalisation is caveolae and 

dynam in dependent.

Coim m unoprecipitation of hGLP-lR with caveolin-1 was perform ed to study 

w hether caveolin-1 regulated hGLP-lR internalisation by interacting w ith the 

receptor (Figure 5.3). HEK293 cells coexpressing GFP or hGLP-lR-GFP and RFP 

or CAV-1-RFP w ere im m unoprecipitated with the GFP, RFP and CAV-1 

antibodies and im m unoblotted w ith GFP antibody. As shown in Figure 5.3, 

hGLP-lR im m unoprecipitated w ith CAV-1-RFP by the anti-RFP and anti-CAV-1 

antibodies, indicating the in vivo interaction betw een hGLP-lR and caveolin-1. 

Additionally, a small fraction of the hGLP-lR was im m unoprecipitated w ith the 

anti-CAV-1 antibody from the cells coexpressing hGLP-lR-GFP and RFP, 

dem onstrating the interaction betw een endogenous caveolin-1 and exogenously 

expressed hGLP-lR-GFP.
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Figure 5.1. HGLP-lR is in te rn a lised  by caveo lae m ed ia ted  endocytosis.

HEK293 cells expressing the hGLP-lR were either cotransfected with DN 

mutants (A] or treated with inhibitors (B) as indicated. Cells were stimulated 

with 100 nM GLP-1 for 60 min and hGLP-lR internalisation assessed by 

ELISA (left panel) and immunofluorescence (right panel) using the anti- 

hGLP-lR antibody. In immunofluorescence, EGFP (green) and the anti-hGLP- 

lR  antibody (red) overlay shown in yellow and nuclear staining with DAPI in 

blue. Data are mean ± SEM, n=3. Data were analysed by Bonferroni's post test 

after one-way ANOVA; values differ from control, n.s. p>0.05, *** p<0.001.
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Figure 5.2. C oncen tra tion  d e p e n d e n t effect of caveolae in h ib ito rs  on 

ag o n ist induced  hG LP-lR  in te rn a lisa tio n . HGLP-lR internalisation in 

HEK293 cells treated with 100 nM GLP-1 for 60 min in the presence of 

various concentrations of dynasore (A), filipin (B) and genistein (C) was 

assessed by ELISA (left panel) and immunofluorescence (right panel) using 

the anti-hGLP-lR antibody. In immunofluorescence, EGFP (green) and the 

anti-hGLP-lR antibody (red) overlay shown in yellow and nuclear staining 

with DAPI in blue. Data are percentage of total cell surface receptors and are 

mean ± SEM, n=3. Data were analysed by Bonferroni's post test after two- 

way ANOVA; values differ from control, ** p<0.01, *** p<0.001.
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Figure 5.3. HGLP-lR coimmunoprecipitation with caveolin-1.

HEK293 cells cotransfected with GFP or hGLP-lR-GFP and RFP or CAV-1- 

RFP were lysed and immunoprecipitated (IP) with the anti-GFP, anti-RFP 

and anti-CAV-1 antibodies and immunoblotted (IB) with the anti-GFP 

antibody.

5.3.2. Agonist induced hGLP-lR internalisation is dependent on the Gaq 

pathway

Following agonist binding, the hGLP-lR acts through the Gas coupled pathway 

to stimulate cAMP production and the Gaq coupled pathway to increase 

intracellular Ca2+ levels (Montrose-Rafizadeh et al, 1999). However, the 

involvement of these two pathways in agonist induced hGLP-lR internalisation 

is unknown. Therefore, w hether agonist induced internalisation of the hGLP-lR 

was dependent on the Gas or Gaq pathway was determined using a number of 

activators and inhibitors of both pathways (Figure 5.4A). The Gcxs pathway
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activator forskolin (99.6 ± 1.0%, p>0.05) and inhibitors, SQ22536 (98.4 ± 2.9%, 

p>0.05) and H89 (104.3 ± 5.6%, p>0.05), had no effect on hGLP-lR agonist 

induced internalisation (Figure 5.4B). In contrast, the Gaq (G188S) DN m utant 

inhibited agonist induced hGLP-lR internalisation (66.0 ± 2.9%, p<0.001). This 

was further confirmed by immunofluorescence (Figure 5.4C). These results 

strongly suggest hGLP-lR internalisation requires the Gaq pathway.

The requirem ent of the Gaq pathw ay for agonist induced hGLP-lR 

internalisation was then further assessed using the hGLP-lR T149M m utant 

(Beinborn et al, 2005) and small molecule agonists (compounds 2 and B) of the 

hGLP-lR tha t are known to activate only the Gas pathw ay (Coopman et al, 2010; 

Irwin et al, 2010; Knudsen et al, 2007; Sloop et al, 2010; W ootten et al, 2013). 

The T149M m utants total protein expression (determ ined by im m unoblotting 

[Figure 5.5A]), cell surface expression (assessed by ELISA [Figure 5.5B; 106.9 ± 

4.3%, p>0.05] and immunofluorescence [Figure 5.5E]); receptor activity 

(assessed by cAMP response [Figure 5.5C; 107.5 ± 0.4%, p>0.05]) w ere similar to 

th a t of the hGLP-lR WT. However, agonist induced hGLP-lR internalisation was 

abolished by the T149M m utation (assessed by ELISA [Figure 5.5D; 1.5 ± 0.8%, 

p<0.001] and immunofluorescence [Figure 5.5E]). These results dem onstrate 

tha t the T149M m utation had no effect on expression of the receptor, which 

confirmed previous findings (Beinborn et al, 2005), bu t abolished agonist 

induced hGLP-lR internalisation. HEK293 cells expressing either the wild type 

(WT) or T149M m utation w ere treated  w ith increasing concentrations of GLP-1 

and assessed for the m utation 's effect on cAMP production (Figure 5.6A), 

intracellular Ca2+ accumulation (Figure 5.6B) and ERK phosphorylation (Figure 

5.6C). GLP-1 stim ulated a concentration dependent increase of cAMP production 

in HEK293 cells expressing the hGLP-lR WT and T149M constructs w ith an ECso 

of 1.7 ± 0.2 pM and 1.2 ± 0.6 pM respectively, dem onstrating both constructs act 

through the Gas with similar potency. GLP-1 also activated Ca2+ accumulation 

(ECso 79.6 ± 0.1 nM) and ERK phosphorylation (EC50 52.1 ± 0.3 nM) in a 

concentration dependent m anner in WT expressing cells. In contrast, 

intracellular Ca2+ accumulation (EC50 110.2 ± 0.6 nM) and ERK phosphorylation 

(EC50 75.9 ± 0.8 nM) in agonist stim ulated cells expressing the T149M m utant
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w ere significantly reduced. Taken together, these results suggest tha t the T149M 

m utation of hGLP-lR affects agonist induced internalisation of the receptor and 

the activation of the Gaq coupled pathway, indicating the im portance of the Gaq 

pathw ay for agonist induced hGLP-lR internalisation.

The small molecule agonists, compound 2 and compound B, w ere also assessed 

for their effects on agonist induced hGLP-lR internalisation (assessed by ELISA 

[Figure 5.7A] and immunofluorescence [Figure 5.7B]), cAMP production (Figure 

5.7C), intracellular Ca2+ accumulation (Figure 5.7D) and ERK phosphorylation 

(Figure 5.7E). No hGLP-lR internalisation was observed in cells stim ulated w ith 

compound 2 (0.3 ± 0.2%, p<0.001) or compound B (0.1 ± 0.0%, p<0.001). 

Immunofluorescence supported these observations by dem onstrating the 

reduction in hGLP-lR internalisation in cells trea ted  w ith the small molecule 

agonists, compounds 2 and B. As observed previously by other studies 

(Coopman et al, 2010; Irwin et al, 2010; Knudsen et al, 2007; Sloop et al, 2010; 

W ootten et al, 2013), both small molecule agonists have induced cAMP 

production but intracellular Ca2+ accumulation and ERK phosphorylation was 

not present. Stimulation w ith optimal concentrations of compound 2 resulted in 

only 7.3 ± 7.3% (p<0.001) intracellular Ca2+ accumulation and 20.0 ± 8.5% 

(p<0.001) ERK phosphorylation w hen com pared to tha t of GLP-1 stimulation. 

Compound B caused only 16.8 ± 9.0% (p<0.001) intracellular Ca2+ accumulation 

and 13.6 ± 7.8% (p<0.001) ERK phosphorylation. These results show tha t small 

molecule agonists, compounds 2 and B, are unable to internalise the hGLP-lR 

because of their inability to induce sufficient levels of intracellular Ca2+ 

accumulation and ERK phosphorylation, dem onstrating the im portance of the 

Gaq pathw ay and ERK phosphorylation for agonist induced hGLP-lR 

internalisation.
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Figure 5.4. HGLP-lR in te rn a lisa tio n  is d e p e n d e n t on th e  Gctq pathw ay.

(A) Simplified schematic representation of agonist bound activation of the 

Gas pathway to activate cAMP signalling or activation of Gaq. (B) HGLP-lR 

internalisation in HEK293 cells treated with the inhibitors as indicated and 

stimulated with 100 nM GLP-1 for 60 min was assessed using the anti-hGLP- 

lR  antibody by ELISA. (C) Immunofluorescence showing hGLP-lR 

internalisation, EGFP (green) and the anti-hGLP-lR antibody (red) overlay 

shown in yellow and nuclear staining with DAPI in blue. Data are mean ± 

SEM, n=3. Data were analysed by Bonferroni's post test after one-way 

ANOVA; values differ from control, n.s. p>0.05, *** p<0.001.
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Figure 5.5. The T149M  m u ta tio n  in h ib its  ag o n ist in d u ced  hGLP-lR 

in te rn a lisa tio n . HEK293 cells were transfected with the WT hGLP-lR or the 

T149M m utant for 48 h. (A) Total protein expression was assessed by 

immunoblotting using the anti-GFP and anti-VSVG antibodies. (B) Cell 

surface expression of the WT or mutant hGLP-lR was assessed by ELISA 

using the anti-hGLP-lR antibody. (C) cAMP production in the WT or mutant 

hGLP-lR stimulated with 100 nM GLP-1 for 60 min was measured to assess 

the activity of the receptor. (D) Internalisation of the WT or mutant hGLP-lR 

stimulated with 100 nM GLP-1 for 60 min was assessed by ELISA using the 

anti-hGLP-lR antibody. (E) Immunofluorescence showing hGLP-lR 

internalisation, EGFP (green) and the anti-hGLP-lR antibody (red) overlay 

shown in yellow and nuclear staining with DAPI in blue. Data are mean ± 

SEM, n=3. Data were analysed by two-tailed unpaired t-test; values differ 

from control, n.s. p>0.05, *** p<0.001.
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Figure 5.6. The T149M  m u ta tio n  in h ib its  ag o n is t induced  in trac e llu la r  

Ca2+ accum ula tion  an d  ERK p h o sp h o ry la tio n  b u t n o t cAMP p ro d u c tio n .

HEK293 cells cotransfected with the hGLP-lR plasmid and the luciferase 

reporter plasmid for cAMP (pGL4.29-Luc-CRE), intracellular Ca2+ (pGL4.30- 

Luc-NFAT) or ERK phosphorylation (pGL4.33-Luc-SRE) were stimulated 

with GLP-1 as indicated for 4 h (cAMP and ERK phosphorylation) or 8 h 

(intracellular Ca2+ accumulation) to assess cAMP production (A), 

intracellular Ca2+ accumulation (B) and ERK phosphorylation (C). Data are 

mean ± SEM, n=3. Data were analysed by Bonferroni's post test after two- 

way ANOVA; values differ from control, n.s. p>0.05, * p<0.05, ** p<0.01, ***

p<0.001.
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Figure 5.7. Small m olecule ag o n ists  ac tiv a te  th e  G as p a th w ay  an d  in h ib it 

hG LP-lR  in te rn a lisa tio n . HEK293 cells cotransfected with the hGLP-lR 

plasmid and the luciferase reporter plasmid for cAMP (pGL4.29-Luc-CRE), 

intracellular Ca2+ (pGL4.30-Luc-NFAT) or ERK phosphorylation (pGL4.33- 

Luc-SRE) were stimulated with GLP-1, compound 2 and compound B for 60 

min as indicated to assess hGLP-lR internalisation by ELISA (A) and 

immunofluorescence (B), for 4 h to assess cAMP production (C), for 8 h to 

assess intracellular Ca2+ accumulation (D) and for 4 h to assess ERK 

phosphorylation (E). In immunofluorescence, EGFP (green) and the anti- 

hGLP-lR antibody (red) overlay shown in yellow and nuclear staining with 

DAPI in blue. Data are mean ± SEM, n=3. Data were analysed by Bonferroni's 

post test after one-way ANOVA; values differ from control, n.s. p>0.05, ***



5.3.3. Inhibition o f the Gaq pathway prevents agonist induced hGLP-lR 

internalisation

The Gaq pathw ay causes intracellular Ca2+ accumulation by activating PLC, 

which hydrolyses PIP2 to IP3 and DAG. IP3 binds to the IP3R on the ER and 

increases cytosolic Ca2+ levels. An increase in intracellular Ca2+ levels leads to 

PKC activation, which then regulates m any signalling pathways including ERK 

phosphorylation (Cobb & Goldsmith, 1995; Hawes e t al, 1995; W erry e t al, 

2003). To study the im portance of the Gaq pathw ay in agonist stim ulated hGLP- 

1R internalisation, several activators and inhibitors w ere used to determ ine 

w hether the Gaq pathw ay is critical for agonist induced internalisation of the 

hGLP-lR or not (Figure 5.8A). A num ber of controls such as m em brane 

perm eable penetratin  (as a negative control to PBP10, a m em brane perm eable 

PIP2 sequestering peptide), U73343 (negative control to U73122, a PLC 

inhibitor) and BAPTA-AM saturated  w ith Ca2+ (BAPTA-AM+Ca2+, a negative 

control to BAPTA-AM-Ca2+, a m em brane perm eable chelator for intracellular 

calcium) was also used to authenticate the specificity of the Gaq pathw ay 

inhibitors. As expected all negative controls used in this study showed no effect 

on agonist induced hGLP-lR internalisation (penetratin  89.0 ± 9.0%, U73343 

93.9 ± 4.1% and BAPTA-AM+Ca2+ 91.7 ± 6.3%, p>0.05, to tha t of the untreated 

control, Figure 5.8B). In contrast agonist induced hGLP-lR internalisation was 

reduced to 21.2 ± 9.8% (p<0.001) by the PIP2 sequestering peptide, PBP10, and 

was alm ost abolished to 3.8 ± 3.8% (p<0.001) by the PLC inhibitor, U73122. The 

IP3R inhibitor, 2-APB, reduced agonist induced internalisation to 24.4 ± 3.8% 

(p<0.001) w hereas BAPTA-AM-Ca2+, a chelator of intracellular Ca2+, significantly 

reduced agonist induced internalisation of the hGLP-lR (9.9 ± 3.9%, p<0.001). 

The PKC inhibitors, Go6976 and Ro318820, also inhibited agonist induced 

hGLP-lR internalisation to 48.0 ± 5.5% (p<0.01) and 30.9 ± 5.6% (p<0.001) 

respectively. Lastly, the ERK inhibitor, PD98059, also prevented agonist induced 

hGLP-lR internalisation to 37.5 ± 4.3%, (p<0.001). Immunofluorescence 

analysis supported these observations by dem onstrating the inhibition of 

agonist induced hGLP-lR internalisation by PBP10, U73122, 2-APB, BAPTA-AM- 

Ca2+, Go6976, Ro318220 and PD98059 (Figure 5.8C). However, the negative

190



control inhibitors (penetratin  peptide, U73343 and BAPTA-AM+Ca2+) showed 

no effect on hGLP-lR internalisation.

The concentration dependent effect of various inhibitors on the Gaq pathw ay 

and ERK phosphorylation was also analysed (Figure 5.9A-G). PBP10 inhibited 

internalisation of the receptor in a concentration dependent m anner and 

maximal inhibition was observed in the presence of 30 pM PBP10 (8.1 ± 2.6%, 

p<0.001). U73122 trea tm ent also resulted in the concentration dependent 

inhibition of hGLP-lR internalisation w ith maximal inhibition at 100 pM (1.9 ± 

1.8%, p<0.001). In cells treated  with the IP3R inhibitor, 2-APB, the inhibition of 

internalisation was also concentration dependent and resulted in maximal 

inhibition at 4 mM (4.8 ± 1.2%, p<0.001). BAPTA-AM-Ca2+ also inhibited hGLP- 

1R internalisation in a concentration dependent m anner and had maximal 

inhibition at 1 mM (8.9 ± 2.4%, p<0.001). In cells treated  w ith either PKC 

inhibitors, Go6976 and Ro318220, ranging from 1 pM to 100 pM agonist 

induced internalisation was inhibited in a concentration dependent m anner, 

w ith maximal inhibition at 46.0 ± 4.3% and 24.1 ± 5.4% (p<0.001) respectively. 

The ERK inhibitor, PD98059, inhibited hGLP-lR internalisation in 

concentrations from 6.25 pM to 100 pM, with maximal inhibition at 100 pM (9.3 

± 2.9%, p<0.001). These observations w ere confirmed by im munofluorescence 

w here inhibition of agonist induced internalisation was evident. Taken together, 

these results dem onstrated tha t the Gaq pathw ay regulates agonist induced 

hGLP-lR internalisation.
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Figure 5.8. In h ib itin g  th e  Gaq p a th w ay  p re v e n ts  ag o n ist in d u ced  hGLP- 

1R in te rn a lis a tio n . (A) Schematic representation of the pathway of agonist 

induced hGLP-lR internalisation. (B) HGLP-lR internalisation in HEK293 cells 

treated with inhibitors of the Gaq pathway as indicated and stimulated with 

100 nM GLP-1 for 60 min was assessed by ELISA using the anti-hGLP-lR 

antibody. (C) Immunofluorescence showing hGLP-lR internalisation, EGFP 

(green) and the anti-hGLP-lR antibody (red) overlay shown in yellow and 

nuclear staining with DAPI in blue. Data are mean ± SEM, n=3. Data were 

analysed by Bonferroni's post test after one-way ANOVA; values differ from

control, n.s. p>0.05, ** p<0.01, *** p<0.001.
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Figure 5.9. C o n cen tra tio n  d e p e n d e n t effect of in h ib ito rs  of th e  Gaq 

p a th w ay  on a g o n is t induced  hG LP-lR  in te rn a lisa tio n . Agonist induced 

hGLP-lR internalisation in HEK293 cells treated with inhibitors PBP10 (A), 

U73122 (B), 2-APB (C), BAPTA-AM-Ca2+ (D), Go6976 (E), Ro318220 (F) and 

PD98059 (G) as indicated and stimulated with 100 nM GLP-1 for 60 min was 

assessed by ELISA (left panel) and immunofluorescence (right panel) using 

the anti-hGLP-lR antibody. In immunofluorescence, EGFP (green) and the 

anti-hGLP-lR antibody (red) overlay shown in yellow and nuclear staining 

with DAPI in blue. Data are mean ± SEM, n=3. Data were analysed by 

Bonferroni's post test after two-way AN OVA; values differ from control, * 

p<0.05, ** p<0.01, *** p<0.001.
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Figure 5.9 cont. C oncen tra tion  d e p e n d e n t effect of in h ib ito rs  of th e  Gaq 

pa thw ay  on ag o n ist induced  hG LP-lR  in te rn a lisa tio n . Agonist induced 

hGLP-lR internalisation in HEK293 cells treated with inhibitors PBP10 (A); 

U73122 (B), 2-APB (C), BAPTA-AM-Ca2+ (D), Go6976 (E), Ro318220 (F) and 

PD98059 (G) as indicated and stimulated with 100 nM GLP-1 for 60 min was 

assessed by ELISA (left panel) and immunofluorescence (right panel) using 

the anti-hGLP-lR antibody. In immunofluorescence, EGFP (green) and the 

anti-hGLP-lR antibody (red) overlay shown in yellow and nuclear staining 

with DAPI in blue. Data are mean ± SEM, n=3. Data were analysed by 

Bonferroni's post test after two-way ANOVA; values differ from control, * 

p<0.05, ** p<0.01, *** p<0.001.
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5.3.4. Effect o f the Gaq pathway inhibitors on GLP-1 induced ERK 

phosphorylation and cAMP production

Since the activation of Ca2+ dependent PKC and ERK is required for agonist 

induced hGLP-lR internalisation and the activation of the Gaq pathw ay leads to 

an increase in intracellular Ca2+ levels, it was determ ined w hether the Gaq 

pathw ay regulates internalisation of the receptor through ERK phosphorylation. 

For this purpose, the effect of inhibitors of the Gaq pathw ay on agonist induced 

ERK phosphorylation was assessed (Figure 5.10A-B). The negative controls, 

penetratin  (for PBP10), U73343 (for U73122) and BAPTA-AM+Ca2+ (for BAPTA- 

AM-Ca2+) showed no effect on ERK phosphorylation (107.9 ± 3.6%, 99.6 ± 9.9%, 

96.0 ± 12.7%, p>0.05, respectively). In contrast, the PIP2 inhibitor, PBP10, 

significantly reduced ERK phosphorylation to 36.8 ± 8.2% (p<0.001). U73122, 

the inhibitor of PLC, alm ost abolished ERK phosphorylation to 4.8 ± 0.7% 

(p<0.001). The IP3R inhibitor, 2-APB, significantly inhibited ERK 

phosphorylation (46.6 ± 8.0%, p<0.001). Only 22.3 ± 8.8% (p<0.001) ERK 

phosphorylation was shown in the presence of BAPTA-AM-Ca2+, the chelator of 

intracellular Ca2+. The PKC inhibitors, Go6976 and Ro318820, alm ost abolished 

agonist induced ERK phosphorylation to 9.3 ± 1.8% (p<0.001) and 14.9 ± 2.2% 

(p<0.001) respectively. Lastly, the MAPK inhibitor, PD98059, also inhibited ERK 

phosphorylation (16.0 ± 8.1%, p<0.001), as expected. Since the Gas pathw ay 

m ediates cAMP generation, the Gaq pathw ay specific inhibitors should not affect 

its production. As expected, the Gaq pathw ay inhibitors had no effect (p>0.05) 

on agonist induced cAMP production (Figure 5.11). Taking these results 

together w ith the effect of the inhibitors of the Gaq pathw ay on hGLP-lR 

internalisation further indicates that the Gaq pathw ay regulates agonist induced 

hGLP-lR internalisation via ERK phosphorylation.
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Figure 5.10. Effect of th e  Gaq p a th w ay  in h ib itio n  on ag o n ist s tim u la ted  

ERK p h o sp h o ry la tio n . HEK293 cells transfected with the hGLP-lR were 

stimulated with 100 nM GLP-1 for 5 min, lysed and ERK1/2 phosphorylation 

in the presence of Gaq pathway inhibitors was measured by immunoblotting

(A) and quantified by densitometry and normalised to total ERK1/2 levels

(B). The densitometry data is presented as percentage phosphorylation and 

are shown as mean ± SEM, n=3. Data were analysed by Bonferroni's post test 

after one-way ANOVA; values differ from control, n.s. p>0.05, *** p<0.001.
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Figure 5.11. Effect o f th e  Gctq p a th w ay  in h ib itio n  on ag o n ist s tim u la ted  

cAMP p roduction . HEK293 cells expressing the hGLP-lR were stimulated 

with 100 nM GLP-1 for 60 min in the presence of Gaq pathway inhibitors and 

measured cAMP production to assess hGLP-lR activity. Data are mean ± SEM, 

n=3. Data were analysed by Bonferroni's post test after one-way AN OVA; 

values differ from control, n.s. p>0.05.

5.4. Discussion

Upon activation by agonist binding, many GPCRs are internalised to reduce the 

activity of the receptor. The internalised GPCRs are subjected to one of two 

sorting fates. They are either recycled back to the plasma membrane resulting 

in resensitisation of the receptor or transported to lysosomes and proteolysed 

leading to long-term attenuation of signalling (down-regulation) (Marchese et 

al, 2003). Currently, it is unknown which pathway the GLP-1R undergoes and 

how cells respond to drugs after the initial internalisation phase. With the
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possibility of drugs being produced which are adm inistered once a week or 

once a m onth ra ther than once daily. The effects these drugs have on GLP-1R 

activity and cell surface expression needs to be understood for the half-life of 

these compounds to be prolonged further and for the effect of 'long-acting- 

release' drugs to be successful (Gedulin et al, 2005). In pancreatic (3-cells, an 

increase in cytosolic Ca2+ causes the release of insulin by exocytosis (De Vos et 

al, 1995; Holz, 2004). The increase in intracellular Ca2+ m ediated insulin 

secretion is potentiated by elevated cAMP levels (Holst & Gromada, 2004). Upon 

agonist stimulation, the internalised GLP-1R has been shown to colocalise w ith 

AC on endosom es and stim ulate insulin secretion from pancreatic (3-cells 

dem onstrating the im portance of hGLP-lR internalisation for insulin secretion 

(Kuna et al, 2013). Therefore, agonist induced internalisation of the hGLP-lR 

into intracellular com partm ents of the cell is im portant for regulation of the 

receptor's activity (Bhaskaran & Ascoli, 2005; Kanamarlapudi et al, 2012). This 

study systematically analysed the involvem ent of the Gaq pathw ay in agonist 

induced GLP-1R internalisation.

The trafficking of GPCRs in caveolae has several functions including: receptor 

signalling, internalisation and stability (Chini & Parenti, 2004). In this study, the 

hGLP-lR was dem onstrated by various approaches to internalise by caveolae 

m ediated endocytosis. Additionally, the hGLP-lR was found to interact w ith 

caveolin-1 and interference of this interaction by the DN m utant of caveolin-1 

abolished cell surface expression of the receptor. This is consistent w ith 

previous findings w here caveolin-1 has been shown to in teract w ith the hGLP- 

lR  and be im portant for targeting, internalisation and recycling of the receptor 

(Syme et al, 2006). These findings strongly suggest th a t caveolin-1 functions as 

a molecular chaperone for the hGLP-lR, which is consistent w ith it acting as a 

molecular chaperone for a num ber of o ther GPCRs, including the endothelin A 

receptor (Chini & Parenti, 2004).

The GLP-1 R has been shown to activate both the Gas coupled pathw ay to 

generate cAMP and the Gaq coupled pathw ay to cause accumulation of 

intracellular Ca2+ (M ontrose-Rafizadeh et al, 1999). In this study, inhibition of
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the Gaq, but not the Gots, signalling pathw ay m arkedly reduced agonist induced 

internalisation of the hGLP-lR, indicating a critical role for the Gaq pathw ay in 

hGLP-lR internalisation. The 5-H T2a receptor and the gonadotropin-releasing 

horm one receptor also couples and internalises through the Gaq pathw ay 

(Bhattacharyya et al, 2002; Kramer et al, 1997; McArdle et al, 2002; Nash et al, 

1997). The T149M m utation in the hGLP-lR, which was originally identified in a 

type 2 diabetic patient w ith im paired insulin secretion (Tokuyama et al, 2004), 

has been shown to reduce agonist responsiveness (Beinborn e t al, 2005). In this 

study, HEK293 cells expressing either the WT hGLP-lR or T149M m utant 

dem onstrated similar ECso values for cAMP generation w hen stim ulated w ith 

GLP-1, indicating the m utation had no effect on either agonist binding to the 

receptor or its activity. This study also dem onstrates tha t the mutation, instead, 

significantly reduces agonist induced hGLP-lR internalisation by affecting 

intracellular Ca2+ accumulation and ERK phosphorylation, which strongly 

suggests this as a possible cause for the patient's reduced insulin secretion 

found in the type 2 diabetic patient with the T149M m utation in the Tokuyama 

et al study. Like the T149M m utant, small molecule agonists, compounds 2 and 

B, neither activated the Gaq pathw ay nor induced hGLP-lR internalisation. This 

is consistent w ith previous studies tha t dem onstrated com pounds 2 and B 

activate only the Gas pathw ay (Coopman et al, 2010; Irwin e t al, 2010; Knudsen 

et al, 2007; Sloop et al, 2010; W ootten et al, 2013). Further, cAMP produced in 

response to hGLP-lR stim ulation is im portant for glucose stim ulated insulin 

secretion (Lee & Jun, 2014). It has recently been shown th a t pharmacological 

inhibition of GLP-1R internalisation attenuates agonist m ediated insulin 

secretion (Kuna et al, 2013). This is because the internalised GLP-1R associates 

w ith AC on endosom es to generate cAMP required for insulin secretion. It is 

therefore a possibility tha t the T149M m utation and small molecule agonists 

(com pounds 2 and B) affect insulin secretion by inhibiting GLP-1R 

internalisation and thereby endosomal cAMP generation. Future studies should 

be undertaken to assess w hether or not inhibition of GLP-1R internalisation 

alters agonist induced insulin secretion from (3-cells.
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In this study, inhibition of PLC activation and intracellular Ca2+ accumulation 

affected agonist induced internalisation of the hGLP-lR, further dem onstrating 

the GLP-1R couples and internalises through the Gaq pathw ay (W erry e t al, 

2003). Since the increase in intracellular Ca2+ levels dow nstream  of agonist 

stim ulated GLP-1R activates PKC (W erry et al, 2003), the effect of two PKC 

inhibitors, Go6976 and Ro318220, on the agonist induced internalisation of the 

GLP-1R was determ ined. The PKC family consists of several isoforms in hum ans 

tha t are activated in either a Ca2+ dependent or independent m anner. The 

inhibitor Go6976 is selective for Ca2+ dependent PKC isoforms (Martiny-Baron 

et al, 1993) w hereas Ro318220 is a broad spectrum  PKC inhibitor, which 

inhibits both Ca2+ dependent and Ca2+ independent PKC isoforms (Davies et al,

2000). The inhibition of agonist induced GLP-1R by both the PKC inhibitors 

dem onstrate the im portance of Ca2+ dependent PKC isoforms for internalisation 

of the hGLP-lR. It is also im portant to note th a t the GLP-1R contains three PKC 

phosphorylation sites w ithin the C-terminal domain, which are also im portant 

for internalisation (Widmann, 1997). Removal of these phosphorylation sites 

has been shown to prevent agonist induced GLP-1R internalisation 

dem onstrating the im portance of PKC phosphorylation of the receptor in GLP- 

1R internalisation. The 6-opioid receptor also requires the activation of PKC to 

allow phosphorylation of the receptor for internalisation (Xiang et al, 2001). In 

this study, the inhibition of PKC not only prevented agonist induced 

internalisation but also ERK phosphorylation, indicating th a t PKC may play a 

role in GLP-1R internalisation by phosphorylating the receptor as well as 

regulating the phosphorylation of ERK.

ERK is phosphorylated by receptor tyrosine kinases in Src and Ras dependent 

m anners (Budd et al, 2001; Crespo et al, 1994; Hawes e t al, 1995; Lopez-Ilasaca 

et al, 1997; Luttrell et al, 1996). However, GPCRs phosphorylate ERK through 

Gas, Gee* and Gaq pathw ays depending on receptor type and environm ent 

(Gutkind, 1998). ERK phosphorylation tha t occurs through the Gaq pathw ay is 

highly dependent on both intracellular Ca2+ accumulation and PKC activation 

(Budd et al, 2001). The inhibition of PKC in the aiB adrenergic receptor (Della 

Rocca e t al, 1997), bradykinin receptor, lysophospholipid receptors (Dikic et al,
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1996} and thyrotropin-releasing horm one receptor (Hinkle et al, 2012) either 

abolished or significantly reduced these receptors m ediated ERK 

phosphorylation, dem onstrating PKC acts upstream  of ERK. The results 

obtained in this study strongly suggest GLP-1 m ediated ERK phosphorylation 

occurs dow nstream  of PKC activation. This suggests th a t the accumulation of 

intracellular Ca2+ and thereby activation of PKC is able to induce ERK 

phosphorylation, linking activation of the receptor to ERK phosphorylation. ERK 

phosphorylation has also been shown to play an im portant role in the 

internalisation, desensitisation and sequestration of GPCRs such as the 8-opioid 

receptor, G-CSFR and 5-H T2a receptor (Bhattacharyya et al, 2002; Daaka et al, 

1998; Eisinger & Schulz, 2004; H unter & Avalos, 1999; W ard et al, 1999). It is 

possible tha t ERK phosphorylation may also play a role in receptor 

desensitisation and sequestration of the hGLP-lR bu t requires further 

investigation.

In conclusion, these results dem onstrate tha t caveolin-1 plays an im portant role 

in hGLP-lR trafficking to the cell surface and its internalisation. Upon agonist 

activation, the hGLP-lR signals through the Gaq pathw ay to hydrolyse PIP2 by 

PLC to generate IP3. IP3 binds the IP3R and increases cytosolic Ca2+ 

accumulation, which causes the activation of PKC. In turn, this leads to the 

phosphorylation of ERK via the MAPK pathw ay (W erry e t al, 2003). In this 

study, the inhibition of the Gaq pathw ay affected not only hGLP-lR 

internalisation but also ERK phosphorylation, indicating th a t together they play 

a vital role in the agonist induced internalisation of the receptor (Figure 5.8). In 

this study, the T149M mutation, which w as previously found in a Japanese 

patient with type 2 diabetes w ith im paired insulin secretion, and small molecule 

agonists (compound 2 and B) of the GLP-1R also inhibited agonist induced 

hGLP-lR internalisation. This suggests an im portant role for hGLP-lR 

internalisation in insulin secretion. These findings also suggest tha t new targets 

in the trea tm ent of type 2 diabetes should be assessed for the ir effects on GLP- 

1R internalisation.
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6. Identification of Distinct Regions Within the C- 
Terminal Domain Required for Human Glucagon 

Like Peptide-1 Receptor Cell Surface Expression, 

Activity and Internalisation

6.1. Introduction

Glucagon like peptide-1 (GLP-1) m ediates insulin secretion by acting on the 

GLP-1 receptor (GLP-1R), making the receptor an im portant target and of high 

therapeutic potential in the trea tm ent of type 2 diabetes (Gallwitz, 2010; 

Thompson & Kanamarlapudi, 2013). The GLP-1R is a m em ber of the family B G- 

protein coupled receptors (GPCRs) (Thompson & Kanamarlapudi, 2013; 

Thorens et al, 1993). The C-terminal domain of GPCRs plays a critical role in 

agonist induced internalisation, desensitisation, down regulation and arrestin  

signalling (Kuramasu et al, 2006; McArdle et al, 2002). Further, the C-terminal 

region is also required for GPCR trafficking to the plasm a m em brane (Ohno et 

al, 1995; Sandoval & Bakke, 1994; Trowbridge et al, 1993). The C-terminal 

domain of GPCRs is also known to in teract w ith intracellular proteins involved 

in the internalisation of the receptor to activate intracellular signalling 

pathways. Many GPCRs, including the GLP-1R, regulate the activity of 

intracellular effector proteins such as phospholipase C (PLC) and adenylyl 

cyclase (AC) via heterotrim eric G-proteins (Bohm et al, 1997a; Ferguson, 2001).

The C-terminal domain of GPCRs is required for targeting to endosomes, the 

Golgi and the plasm a m em brane (Ohno et al, 1995; Sandoval & Bakke, 1994; 

Trowbridge e t al, 1993). Using m utagenesis studies, motifs such as E(X)3LL, 

FN(X)2LL(X)3L and F(X)3F(X)3F within the C-terminus have been identified for 

GPCR targeting to the plasma m em brane (Dong et al, 2007). Additionally, motifs 

w ithin the C-terminus th a t are four to six amino acids (aa) long and contain a 

critical tyrosine residue and follow a general consensus of YXXO (w here Y is a
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tyrosine residue, X denotes any amino acid and <t> is a hydrophobic residue) 

have also been shown to be required for the trafficking of some GPCRs (Ohno et 

al, 1995; Sandoval & Bakke, 1994; Trowbridge et al, 1993). Some GPCRs possess 

a helix- 8  motif located just downstream of transmembrane (TM) 7 that 

associates with a number of intracellular proteins (Kuramasu et al, 2006). The 

dopamine receptor interacting protein 78 binds to a conserved sequence 

located in the helix- 8  domain of the dopamine D1 receptor (DIR) and is 

responsible for trafficking the receptor to the plasma membrane (Bermak et al, 

2001). Additionally, many GPCRs possess a PDZ binding site at the very end of 

the C-terminal domain that interacts with PDZ domain containing proteins 

required for trafficking of the receptor. For example, Tctex-1 interacts with the 

C-terminal end of the rhodopsin receptor through its PDZ domain. A mutation in 

the C-terminal domain of the receptor not only inhibits this interaction but also 

prevents the transport of rhodopsin within the rod cells (Tai et al, 1999). The 

region between helix- 8  and the very end of the C-terminus is referred to as 

'binding sites with GPCR interacting proteins' (Kuramasu et al, 2006). The 

metabotropic glutamate receptor (mGluR, types la, 5a and 5b) contains a 

PPXXFR motif within this region of the C-terminus that interacts with homer 

proteins 1, 2 and 3 to target and regulate the receptor's trafficking to dendritic 

synapse sites (Ango et al, 2000; Ango et al, 2001; Ango et al, 2002).

In addition to its role in targeting and trafficking of GPCRs, the C-terminal 

domain is known to interact with intracellular proteins involved in the 

internalisation of the receptor (Kuramasu et al, 2006). The tyrosine motif 

(YXX<h) within the C-terminus has also been shown to associate with clathrin 

(Chang et al, 1993; Glickman et al, 1989; Pearse, 1988; Sorkin & Carpenter, 

1993; Sorkin et al, 1995). However, a common binding motif within clathrin for 

the YXXd> motif has not yet been identified. In the mGluR7a and mGluR7b, the 

Py subunit of heterotrimeric G-proteins and calcium (Ca2+)/calmodulin bind to 

this domain and regulate P and Q type Ca2+ channels (O'Connor et al, 1999). The 

P3-adrenergic receptor (AR) contains a PXXP motif within the C-terminal 

domain that interacts with Src, which results in the activation of extracellular 

signal-regulated kinase (ERK) (Cao et al, 2000). Further, a NPXXY motif at the C-
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term inal domain closest to TM 7 within the serotonin 5-hydroxytryptam ine 2a 

(5-HTza) receptor interacts with ADP-ribosylation factor 1 (ARF1) and couples 

to phospholipase D (PLD) in a heterotrim eric G-protein independent m anner 

(Robertson e t al, 2003).

Single transm em brane receptors such as the epiderm al grow th factor receptor, 

insulin receptor and transferrin  receptor, contain a tyrosine residue within a 

tight-turn-form ing m otif in the C-terminal domain, which is required for their 

internalisation (Trowbridge et al, 1993). The dileucine (LL) m otif w ithin the C- 

term inal domain is required for internalisation of the T-lymphocyte cluster of 

differentiation 3 (CD3) and glucose transporter, GLUT4 (Letourneur & Klausner, 

1992; Verhey & Birnbaum, 1994). The LL m otif has also been shown to prom ote 

GPCRs internalisation by binding to adap ter proteins (Ferguson, 2001). 

Although, the m utation of specific amino acids within the LL m otif may prevent 

GPCR internalisation in some instances, this is not a common m otif required for 

GPCR internalisation (Widmann, 1997). GPCRs, such as the neurokinin 1 and the 

angiotensin II receptor (AT2R), require conserved arom atic residue tyrosine in 

the C-terminal domain for their internalisation (Bohm et al, 1997b; Thomas et 

al, 1995). The M3 muscarinic receptor (M3R) requires three tyrosine residues 

within the C-terminal domain for its internalisation (Yang et al, 1995). For some 

GPCRs such as the P2-AR, gastrin-releasing peptide receptor (GRPR) and the 

GLP-1R, serine and threonine rich amino acid sequences in TM3 and the C- 

term inal domain are required for their internalisation (Benya et al, 1993; 

Hausdorff et al, 1991; W idmann, 1997). Internalisation of the P2-AR is 

supressed w ith a m utation to Tyr326 (Barak e t al, 1994). A m utation of Ser344 

w ithin the C-terminal domain of the 5-opioid receptor prevents protein kinase C 

(PKC) phosphorylation required for internalisation of the receptor (Xiang et al,

2001). The GLP-1R contains th ree  serine doublets a t positions Ser441442, 

Ser444'445 and Ser451-452 and their phosphorylation is also im portant for 

in ternalisation of the receptor. Additionally, interm ediate rates of 

in ternalisation was dem onstrated w ith the GLP-1R m utants containing one or 

two of these phosphorylation sites (W idmann, 1997).
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GPCR internalisation occurs after agonist binding, which is required for 

receptor desensitisation (Harden, 1983; Lefkowitz et al, 1983). Typically, GPCRs 

are phosphorylated at specific sites within the C-terminal domain in response to 

agonist binding (Tobin, 2008). This sterically hinders heterotrimeric G-protein 

association and thereby prevents its activation (Ferguson, 2001; Zhang et al, 

1997). Interestingly, removing GPCR kinase (GRK) phosphorylation sites from 

the 0 2 -AR still allowed internalisation of the receptor but supressed 

desensitisation, demonstrating the importance of these phosphorylation sites 

for desensitisation (Bouvier et al, 1988; Strader et al, 1987). However, 

overexpression of GRK2 has been shown to induce internalisation of the 

internalisation resistant (32-AR mutant by phosphorylating the receptor 

(Ferguson et al, 1995). This demonstrated the importance of receptor 

phosphorylation for both GPCR internalisation and desensitisation. However, 

GLP-1 induced phosphorylation of serine doublets at positions Ser431-432, 

Ser44i,442# s er444,445 ancj ser45i,452 within the GLP-1R is important not only for 

internalisation but also desensitisation of the receptor (Widmann, 1997). 

Further, phosphorylation of some serine doublets within the C-terminal domain 

of the GLP-1R is mediated by PKC (Widmann et al, 1996a).

Most GPCRs, including the GLP-1R, contain a conserved cysteine residue within 

the C-terminal domain that is important for palmitoylation of the receptor 

(Bouvier et al, 1995a; Bouvier et al, 1995b; Morello & Bouvier, 1996; Vazquez et 

al, 2005b). This palmitoylation causes the C-terminal domain to anchor to the 

cell surface and therefore creates a fourth intracellular loop (Bouvier et al, 

1995a). A mutation to the palmitoylation site (Cys438) of the GLP-1R has 

previously been shown not to affect cell surface expression or internalisation of 

the receptor. However, a 3-fold decrease in the activity of the receptor (assessed 

by cyclic adenosine monophosphate [cAMP] production) has been 

demonstrated for the GLP-1R C438A mutant (Vazquez et al, 2005b). This 

decrease in the activity of the GLP-1R by mutating the palmitoylation site is also 

consistent with that shown for other GPCRs including the (32-AR (O'Dowd et al, 

1989) and DIR (Jensen et al, 1995). Further, mutation of Glu408, Val409, Gin410, 

which are conserved among family B GPCRs, showed reduced agonist binding
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and cAMP production (Vazquez et al, 2005a). However, it is unknown w hether 

this triple m utation affects agonist binding and cAMP production by altering cell 

surface expression of the GLP-1R.

Although some GPCRs require E(X)3LL, FN(X)2LL(X)3L, F(X)3F(X)3F, tyrosine 

YXXd>, PPXXFR, PXXP, NPXXY and LL motifs within the C-terminal domain for 

trafficking, interactions w ith intracellular proteins and internalisation of the 

receptor, these motifs are not p resen t w ithin the GLP-1R. Therefore this study 

established the im portance of other residues and regions w ithin the C-terminal 

dom ain of the hum an GLP-1R (hGLP-lR) for cell surface expression, activity and 

internalisation using a num ber of C-terminal deletions and site-directed 

m utants. It was determ ined tha t residues 411-418 of the hGLP-lR C-terminus 

are critical in targeting the receptor to the plasma m em brane. Residues 419-430 

w ithin the C-terminal domain are im portant for the activity of the receptor (as 

assessed by cAMP production), m ost likely for coupling to Gas. Further, residues 

431-450 within the C-terminus are essential for hGLP-lR internalisation.

6.2. Materials and methods

6.2.1. M aterials

The prim ary antibodies used w ere rabbit anti-vesicular stom atitis virus 

glycoprotein (VSVG) (Abeam Biochemicals), m ouse anti-green fluorescent 

protein  (GFP) (Roche), mouse anti-hGLP-lR (ELISA, R&D Systems), mouse anti- 

hGLP-lR (Immunoblotting, Santa Cruz), rabbit anti-phospho ERK1/2 

(pER K l/2) and rabbit anti-ERK l/2 (New England Biolabs). The Cy3-conjugated 

anti-m ouse immunoglobulin G (IgG) secondary antibody (Jackson Laboratories) 

was used for immunofluorescence. The horseradish peroxidase (HRP)- 

conjugated anti-mouse and anti-rabbit IgG (GE Healthcare) secondary 

antibodies w ere used for immunoblotting. Enhanced chemiluminescence (ECL) 

select reagent was obtained from GE Healthcare. The cAMP polyclonal antibody
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and cAMP-HRP w ere obtained from Genscript. GLP-1 (Liraglutide) was from 

Novo Nordisk. All o ther chemicals w ere from Sigma unless otherw ise stated.

6.2.2. Plasm ids

The full-length hGLP-lRAN23 cDNA was amplified from mammalian gene 

collection (MGC) clone 142053 (Source Bioscience) by polym erase chain 

reaction (PCR) using High Fidelity Taq DNA polym erase (Roche Applied 

Science) and sequence specific prim ers containing EcoRl restriction site and 

VSVG-tag coding sequence (5' prim er), and Sail restriction site and no stop 

codon (3' prim er). SP-VSVG-hGLP-lRAN23 cDNA was amplified by overlap PCR 

using VSVG-hGLP-lRAN23 cDNA as the tem plate, the sense prim er, containing 

EcoRl restriction site, the signal peptide (SP, l-23aa) coding sequence followed 

by VSVG coding sequence and 3' prim er. The cDNA was digested with EcoRl and 

Sail, and cloned in frame into the sam e sites of pEGFP-Nl vector (Clontech) for 

expression as the N-terminus VSVG-tagged (after the SP) and the C-terminus 

GFP-tagged fusion protein in mammalian cells (SP-VSVG-hGLP-lRAN23-GFP). 

The SP-VSVG-hGLP-lRAN23 with no GFP-tag and its C-terminal deletion 

constructs w ere generated by PCR using sequence specific prim ers containing 

EcoRl restriction site (5' prim er), Sail restriction site and stop codon (3' 

prim er), which prevents GFP-tagging at the C-terminus and SP-VSVG-hGLP- 

1RAN23-GFP plasmid as the tem plate. The E408A,V409A,Q410A m utation 

w ithin the hGLP-lR was generated using Quickchange II XL site-directed 

mutagenesis kit (Stratagene) and SP-VSVG-hGLP-lRAN23-GFP plasmid as the 

template. The m utants w ith internal deletions (A) w ithin the C-terminus of 

hGLP-lR w ere generated using Q5 site-directed m utagenesis kit (New England 

Biolabs) and SP-VSVG-hGLP-lRAN23-GFP plasmid as the tem plate. See Table 

6.1 for constructs used in this study.
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Table 6.1. Series of hGLP-lR constructs used in this study.

C onstruct Nam e A bbrev ia tion E pitope Tags

1 SP-VSVG-hGLP-lRAN23 SP-VSVG VSVG

2 SP-VSVG-hGLP-lRAN23 N450 N450 VSVG

3 SP-VSVG-hGLP-lRAN23 N443 N443 VSVG

4 SP-VSVG-hGLP-lRAN23 N440 N440 VSVG

5 SP-VSVG-hGLP-lRAN23 N430 N430 VSVG

6 SP-VSVG-hGLP-lRAN23 N410 N410 VSVG

7 SP-VSVG-hGLP-lRAN23-GFP SP-VSVG-GFP
VSVG

GFP

8
SP-VSVG-hGLP-lRAN23

E408A,V409A,Q410A-GFP
E408A,V409A,Q410A

VSVG

GFP

9
SP-VSVG-hGLP-lRAN23

A411-418-GFP
A411-418

VSVG

GFP

10
SP-VSVG-hGLP-lRAN23

A419-430-GFP
A419-430

VSVG

GFP

11
SP-VSVG-hGLP-lRAN23

A431-450-GFP
A431-450

VSVG

GFP

The table shows the hGLP-lR constructs full name, abbreviated nam e and 

epitope tags.

i
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6.2.3. Cell culture and transfection

Human embryonic kidney 293 (HEK293) cells w ere m aintained at 37°C in a 5% 

CO2 humidified environm ent in Dulbecco's modified Eagle medium (DMEM; 

serum  free medium [SFM]) supplem ented w ith 10% fetal calf serum, 2 mM 

glutamine, 100 U/ml penicillin and 0.1 m g/m l streptom ycin (full serum  medium 

[FSM]). Cells w ere transiently  transfected for 48 h using JetPrime transfection 

reagent (Polyplus; 2 p l/pg DNA) according to the m anufacturer's instructions.

6.2.4. Enzyme linked im m unosorbent assay (ELISA)

This is carried out as described previously w ith unperm eabilised cells to 

quantify cell surface expression (Kanamarlapudi et al, 2012). Briefly, HEK293 

cells expressing the hGLP-lR w ere serum  starved for 1 h and then stim ulated 

w ithout or with GLP-1 at 37°C/5% CO2. Cells w ere then  fixed with 4% 

paraform aldehyde (PFA) for 5 min and non-specific binding sites blocked w ith 

1% bovine serum  albumin (BSA) m ade in Tris buffered saline (TBS) (1% 

BSA/TBS) for 45 min. Cells w ere incubated w ith the anti-hGLP-lR mouse 

antibody (diluted 1:15000) in 1% BSA/TBS for 1 h, washed w ith TBS and then 

incubated with the HRP-conjugated anti-m ouse IgG (diluted 1:5000) in 1% 

BSA/TBS for 1 h. Cells w ere w ashed and developed using 1-step Ultra TMB- 

ELISA substrate  (Bio-Rad) for 15 min and the reaction stopped by adding an 

equal volume of 2 M sulphuric acid. The optical density was read a t 450 nm 

using a plate reader.

6.2.5. Im m unofluorescence

Intracellular localisation of hGLP-lR expression was assessed by 

im munofluorescence as described previously (Kanamarlapudi e t al, 2012). 

Briefly, cells w ere serum  starved for 1 h, incubated w ith the anti-hGLP-lR 

mouse antibody (diluted 1:5000) in 1% BSA/SFM for 1 h at 4°C and then 

stim ulated w ithout or w ith GLP-1 a t 37°C/5% CO2. Cells w ere then fixed w ith 

4% PFA for 30 min. Cells w ere perm eabilised w ith 0.2% Triton X-100 made in 

phosphate buffered saline (PBS) for 10 min, blocked in blocking buffer (1% BSA 

made in wash buffer [0.1% Triton X-100 in PBS]) for 30 min and then incubated
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with the Cy3-conjugated anti-m ouse antibody (diluted 1:200 in blocking buffer) 

for 1 h. Cells w ere then washed 3 tim es with wash buffer and incubated w ith 

DAPI (4',6-diamidino-2-phenylindole dihydrochloride, 1 m g/m l) diluted 1:2000 

in PBS to stain nucleus. Coverslips w ere m ounted on glass microscopic slides 

using m ounting solution (0.1 M Tris-hydrochloric acid [HC1], pH 8.5, 10% 

Mowiol 50% glycerol) containing 2.5% DABCO (1,4 diazabicyclo (2.2.2) octane). 

Immunofluorescence staining was visualised using a Zeiss LSM710 confocal 

microscope fitted with a 63x oil im m ersion lens.

6.2.6. cAMP assay

Cells w ere serum  starved for 1 h and then stim ulated w ithout or w ith 100 nM 

GLP-1 for 1 h a t 37°C/5% CO2 in the presence of 0.25 mM phosphodiesterase 

inhibitor Ro201724. Cells w ere lysed and cAMP levels in the cell lysates w ere 

estim ated using the cAMP direct im m unoassay kit (Abeam).

6.2.7. Cell lysates

To make cell lysates, HEK293 cells expressing the hGLP-lR w ere washed 3 

times with ice cold PBS and lysed in ice cold modified RIPA lysis buffer (10 mM 

Tris HC1, pH 7.5 containing 10 mM ethylenediam inetetraacetic acid [EDTA], 1% 

nonyl phenoxypolyethoxylethanol [NP40], 0.1% sodium dodecyl sulphate [SDS],

0.5% sodium deoxycholate and 150 mM sodium chloride [NaCl]) with 1% 

mammalian protease inhibitors. Cell lysates w ere incubated a t 4°C for 15 min 

and then centrifuged at 22000 xg for 10 min at 4°C. The supernatant was 

collected and V2. volume of 3x SDS-polyacrylamide gel electrophoresis (PAGE) 

sample loading buffer (75 mM Tris HC1, pH 6.8 containing 3% SDS, 30% 

glycerol, 0.003% brom ophenol blue and 0.3 M dithiothreitol [DTT]) was added 

and left a t room tem perature  for 1 h. These cell lysates w ere used to detect 

hGLP-lR expression by im m unoblotting using the anti-GFP and anti-VSVG 

antibodies.

For assessing ERK1/2 phosphorylation, HEK293 cells expressing the hGLP-lR 

w ere lysed in ice cold modified RIPA lysis buffer (50 mM Tris HC1, pH 7.5,
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containing 0.2 M NaCl; 10 mM MgCh; 0.1% SDS; 0.5% sodium deoxycholate; 1% 

TritonX-100; 5% Glycerol) w ith 1% mammalian protease inhibitors. Cell lysates 

w ere incubated at 4°C for 15 min and centrifuged at 22000 xg for 10 min at 4°C. 

The supernatan t was collected and % volume of 5x SDS-PAGE sample loading 

buffer (125 mM Tris HC1, pH 6.8 containing 5% SDS, 50% glycerol, 0.005% 

brom ophenol blue and 5% p-m ercaptoethanol) was added and heated at 100°C 

for 5 min. These cell lysates w ere used to detect phosphorylated ERK and total 

ERK by im m unoblotting using the anti-pERK l/2 and anti-ERK l/2 antibodies.

6.2.8. Im m unoblotting

Proteins w ere separated in a SDS-PAGE gel by electrophoresis and transferred 

onto polyvinylidene fluoride (PDVF) m em brane. M embranes w ere blocked with 

TBST (TBS w ith 0.1% tw een 20) containing 5% milk pow der (blocking buffer) 

for 1 h a t room tem perature  or overnight a t 4°C. M embranes w ere 

im m unoblotted with either the anti-hGLP-lR mouse antibody or anti-GFP 

mouse antibody (diluted 1:500 in blocking buffer) to assess protein expression 

levels or the anti-pERK l/2 rabbit antibody (diluted 1:1000 in blocking buffer) 

to assess ERK1/2 phosphorylation for 1 h a t room  tem perature  or overnight at 

4°C. M embranes w ere washed and then  incubated w ith the HRP-conjugated 

anti-mouse or anti-rabbit secondary antibody (diluted 1:2500 in blocking 

buffer) for 1 h a t room tem perature. M embranes w ere then incubated in ECL 

select substrate  and bands visualised using the ChemiDoc™ XRS system (Bio- 

Rad). Blots probed with either the anti-hGLP-lR mouse antibody or anti-GFP 

mouse antibody w ere stripped w ith w estern  blot stripping buffer (Thermo 

Scientific) and reprobed w ith the anti-VSVG rabbit antibody (diluted 1:1000 in 

blocking buffer) to assess protein expression levels. Blots probed with the anti- 

pERK l/2 rabb it antibody w ere stripped and reprobed w ith the anti-ERK l/2 

rabbit antibody (diluted 1:1000 in blocking buffer) to assess ERK1/2 

phosphorylation. The HRP-conjugated anti-rabbit secondary antibody (diluted 

1:2500 in blocking buffer) w as used as described above.

211



6.2.9. Tunicam ycin treatm ent

This was carried out as described previously (W hitaker e t al, 2012). Briefly, 

cells w ere treated  with 5 pg/m l tunicamycin a t the tim e of transfection. After 48 

h of transfection, cells w ere lysed and subjected to immunoblotting.

6.2.10. Data analysis

Data w ere analysed using the GraphPad Prism program . All data are presented 

as m eans ± standard  e rro r of the m ean (SEM) of three  independent 

experim ents. Statistical com parisons betw een the control and te s t value was 

made by a tw o-tailed unpaired studen t t-test. Statistical analysis between 

multiple groups w ere determ ined by the Bonferroni's post te s t after one-way or 

two-way analysis of variance (ANOVA), w here p>0.05 was considered as 

statistically not significant (n.s.), and p<0.05, p<0.01 and p<0.001 shown as *, ** 

and *** respectively, was considered statistically significant. Concentration 

response curves w ere also fitted using Prism, according to a standard logistic 

equation. Scale bar in confocal images represen ts 10 pm. Confocal images 

shown in the figures are representative of 190-200 transfected cells from three 

different experim ents. Similarly, im m unoblotting data shown in the figures are 

representative of th ree independent experim ents.

6.3. Results

6.3.1. Effect o f the C-terminal m utants on hGLP-lR cell surface 

expression  and A-linked glycosylation

The im portance of the C-terminus for hGLP-lR cell surface expression was 

determ ined using a num ber of C-terminal deletion constructs, which contained 

the VSVG-epitope tag at the N-terminus after the SP (Figure 6.1). The first 

deletion rem oved 13aa from the end of the C-terminal domain (N450). The 

second deletion removed the last 20aa from the C-terminus (N443). In the N440 

deletion, 23aa w ere removed from the end. The fourth deletion (N430) removed
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the last 33aa from the C-terminal domain. The final deletion (N410) removed 

the entire C-terminal domain (53aa). Three m ore deletion constructs w ere 

made by deleting different regions w ithin the C-terminal domain, A411-418, 

A419-430 and A431-450, which contained the GFP-tag a t the C-terminus in 

addition to the VSVG-tag at the N-terminus after the SP. These internal deletions 

w ere used to assess the effect of distinct regions w ithin the C-terminal domain 

on hGLP-lR cell surface expression. Lastly, the effect of the 

E408A,V409A,Q410A mutation, which has previously been shown to affect 

agonist binding to the hGLP-lR (Vazquez et al, 2005a), on cell surface 

expression of the receptor was also determ ined.

Lysates of HEK293 cells transfected w ith the C-terminal deleted constructs 

showed a doublet in immunoblotting (~55 kDa and ~35 kDa in size) with both 

the anti-hGLP-lR and anti-VSVG antibodies, dem onstrating similar protein 

expression levels. The high molecular weight band in the doublet has previously 

been shown as the m ature form of the receptor w hereas the low molecular 

weight band represents the im m ature form of the receptor (see Chapter 3, 

Figure 3.IB). However, the N410 construct only showed a single band at the 

lower m olecular w eight (~35 kDa) w ith both antibodies dem onstrating it 

existing as the im m ature form of the receptor (Figure 6.2). It is im portant to 

note tha t im m unoblotting w ith the anti-VSVG antibody produced a non-specific 

band a t ~37 kDa and the anti-hGLP-lR antibody produced a non-specific band 

a t ~55 kDa, which w ere also p resen t in lanes loaded w ith the lysate of 

untransfected HEK293 cells (Figure 6.2). Additionally, the SP-VSVG-GFP (wild 

type, WT), A419-430 and A431-450 constructs all showed a doublet (~65 kDa 

and -8 5  kDa in size) w hen the lysates of HEK293 cells transfected w ith these 

constructs w ere im m unoblotted w ith the anti-VSVG and anti-GFP antibodies 

(Figure 6.2). In contrast, the A411-419 and E408A,V409A,Q410A constructs 

only showed a single band a t the low er m olecular w eight (~65 kDa) w ith both 

the anti-VSVG and anti-GFP antibodies dem onstrating them  as the im m ature 

form of the receptor (Figure 6.2). All constructs showed sim ilar protein 

expression levels.
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To determ ine the effect of the C-terminal deleted and site-directed m utants on 

hGLP-lR cell surface expression, HEK293 cells transfected w ith the C-terminal 

deletion and m utation constructs w ere analysed for their cell surface expression 

by ELISA (Figure 6.3A) and im m unofluorescence (Figure 6.3B). The SP-VSVG 

full length (FL, 463aa) control construct and the N450, N443, N440 and N430 

deletion constructs all showed similar cell surface expression w hen assessed by 

ELISA (96.6 ± 2.2%, 97.1 ± 1.7%, 93.5 ± 3.7%, 97.0 ± 1.5%, p>0.05, respectively, 

Figure 6.3A). However, the m utant w ith the entire C-terminal domain deletion 

(N410) does not express a t the cell surface (0.1 ± 0.1%, p<0.001), 

dem onstrating tha t the C-terminal dom ain is required for hGLP-lR trafficking to 

the cell surface. These results dem onstrate th a t the last 33aa w ithin the C- 

term inus are not required for cell surface expression of the hGLP-lR, but 

residues 411-430 are m ost likely involved in the receptor's cell surface 

expression, possibly by binding to a chaperone protein. Next, the m utants with 

internal deletions w ithin the C-terminus, A411-418, A419-430 and A431-450, 

w ere used to assess the exact region within the C-terminus tha t is required for 

targeting the hGLP-lR to the cell surface. The A411-418 deletion abolished 

hGLP-lR cell surface expression (0.7 ± 0.7%, p<0.001). However, the A419-430 

and A431-450 deletion m utants cell surface expressions w ere similar to tha t of 

the SP-VSVG-GFP WT control (81.6 ± 6.1% and 97.9 ± 3.7%, p>0.05, 

respectively). These results dem onstrate th a t the 411-418 region of the hGLP- 

lR  is critical for cell surface expression of the receptor. The 

E408A,V409A,Q410A m utation also abolished hGLP-lR cell surface expression 

(9.7 ± 9.7%, p<0.001). The ELISA results w ere also confirmed by 

imm unofluorescence (Figure 6.3B) w here cell surface expression was seen for 

the N450, N443, N440, N430, A419-430 and A431-450 deletion m utants, which 

was assessed by colocalisation of GFP tagged to the receptor and cell surface 

staining of the receptor w ith the anti-hGLP-lR antibody. However, N410, A411- 

418 and E408A,V409A,Q410A m utants only showed intracellular expression of 

GFP and no cell surface expression w hen assessed w ith the anti-hGLP-lR 

antibody staining. (Figure 6.3B). Imm unofluorescence analysis also confirmed 

the im m unoblotting data (Figure 6.2), dem onstrating the reduction in cell
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surface expression of these m utants was not due to altered protein expression 

levels of the receptor.

The m ature hGLP-lR that is targeted to the cell surface is AMinked glycosylated 

(Chen et al, 2010; Huang et al, 2010; W hitaker e t al, 2012). To establish w hether 

the hGLP-lR C-terminal deletion or site-directed m utants w ere unable to target 

to the cell surface because they are not AMinked glycosylated, the deletion and 

site-directed m utants w ere assessed for their AMinked glycosylation. For this 

purpose, cells expressing the C-terminal deleted constructs or 

E408A,V409A,Q410A m utant w ere treated  w ithout or w ith tunicamycin, an N- 

linked glycosylation inhibitor, and their band pattern  analysed by 

im m unoblotting using either the anti-VSVG or anti-GFP antibodies. 

Imm unoblotting of the SP-VSVG FL control construct showed the characteristic 

doublet at - 5 5  kDa and - 3 5  kDa (Figure 6.4). T reatm ent w ith tunicamycin, 

altered this pattern  and instead a single band at - 3 0  kDa was seen instead. This 

shift is used as a readout assay to assess hGLP-lR AMinked glycosylation. The C- 

term inal deletion m utants (N450, N443, N440 and N430) of the hGLP-lR that 

express a t the cell surface also showed a shift in the band pattern  w hen treated  

with tunicamycin, dem onstrating these deletions w ere also glycosylated like the 

SP-VSVG FL control. However, the N410 deletion m utant th a t did not show cell 

surface expression ran as a single band a t - 3 5  kDa in im m unoblotting and a 

shift in the bands mobility was seen w hen treated  w ith tunicamycin. This 

suggested th a t the loss of this m utants cell surface expression is not due to 

im paired AMinked glycosylation. Im m unoblotting of the SP-VSVG-GFP WT 

control showed the doublet a t - 6 5  kDa and -8 5  kDa (Figure 6.4). T reatm ent 

w ith tunicam ycin altered this band pattern  and instead, two bands a t - 6 0  kDa 

and ~65 kDa w ere observed. Like the SP-VSVG-GFP WT control, the A419-430 

and A431-450 deletion constructs showed the double band pattern  tha t shifted 

to  - 6 0  kDa and - 6 5  kDa w hen trea ted  w ith tunicamycin, dem onstrating tha t 

the deletions have no effect on AMinked glycosylation. The E408A,V409A,Q410A 

and A411-418 m utants tha t did not target to the cell surface only showed a 

single band a t —65 kDa and a shift in the band mobility was seen w hen treated  

w ith tunicamycin, indicating that these m utants also have no effect on AMinked
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glycosylation of the receptor. Taken together, these results dem onstrate tha t all 

hGLP-lR C-terminal m utants are AMinked glycosylated and any reduction in cell 

surface expression is not a result of im paired AMinked glycosylation.
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Figure 6.1. HGLP-lR co n s tru c ts  used  to  c h a rac te rise  th e  C -term inal 

dom ain  fo r cell su rface  exp ress io n , in te rn a lisa tio n  an d  activ ity  of th e  

re c ep to r . A representation of the C-terminal domain showing deleted and 

site-directed mutants of the hGLP-lR used in this study.
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Figure 6.2. T otal p ro te in  ex p ress io n  of hGLP-lR  C -term inal dom ain  

m u tan ts . HEK293 cells were transfected with the C-terminal deleted and 

site-directed mutants and total protein expression was assessed by 

immunoblotting using the anti-VSVG and anti-GFP antibodies. * denotes 

the non-specific band.
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SP-VSVG-GFP A 4 1 1 -4 1 8  A 4 1 9 -4 3 0  A 4 3 1 -4 5 0  E408A.V 409A,
Q410A

Figure 6.3. Cell su rface  ex p ress io n  of hG LP-lR  C -term inal dom ain  

m u tan ts . Cell surface expression of hGLP-lR mutants in HEK293 cells was 

assessed by ELISA (A) and immunofluorescence (B) using the anti-hGLP-lR 

antibody. In immunofluorescence, EGFP (green) and the anti-hGLP-lR 

antibody (red) overlay shown in yellow and nuclear staining with DAPI in 

blue. Data are mean ± SEM, n=3. Data were analysed by Bonferroni's post test 

after one-way ANOVA; values differ from control, n.s. p>0.05, *** p<0.001.
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Figure 6.4. Effect of hG LP-lR  C -term inal dom ain  m u ta n ts  on AMinked 

glycosylation. HEK293 cells transfected with the C-terminal deletion and 

site-directed mutants were treated without or with 5 pg/ml tunicamycin for 

48 h. The cells were lysed and the cell lysates were immunoblotted with the 

anti-GFP or anti-VSVG antibodies. * denotes the non-specific band.

6.3.2. Effect of th e  C -term inal m u ta n ts  on hG LP-lR  activ ity

The GLP-1R is a Gas coupled GPCR and therefore the receptor's activity was 

assessed by measuring cAMP production in the hGLP-lR mutants stimulated 

with 100 nM GLP-1 (Figure 6.5). Deleting up to 33aa from the end of the C- 

terminal domain (450, N443, N440 and N430) of the hGLP-lR had no significant 

effect on cAMP production (100.7 ± 1.0%, 95.0 ± 5.0%, 99.2 ± 5.2% and 98.6 ± 

6.0%, p>0.05, respectively). However, deleting the entire C-terminal domain 

(N410) almost completely abolished agonist induced cAMP production (6.8 ± 

2.8%, p<0.001). This demonstrated that residues 411-430 are most likely 

involved in Gas coupling of the receptor. Further, the effect of internal deletions
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made in this region (A411-418 and A419-430) on agonist stimulated cAMP 

production was assessed. The hGLP-lR deletion construct A411-418 does not 

express at the cell surface and therefore as expected no agonist stimulated 

cAMP production was observed in cells transfected with this mutant (9.2 ± 

3.5%, p<0.001). However, the 419-430 deletion within the C-terminal domain of 

the hGLP-lR had also almost completely abolished cAMP production (8.6 ± 

5.3%, p<0.001) even though this deletion mutant still targeted to the cell 

surface. The A431-450 mutant showed cAMP production (97.7 ± 3.0%, p>0.05) 

similar to that of the SP-VSVG-GFP WT control. Additionally, the 

E408A,V409A,Q410A mutant of the hGLP-lR showed very low cAMP production 

(10.0 ± 4.3%, p<0.001), which is expected as this construct did not target to the 

cell surface. Taken together, these results indicate residues 419-430 of the 

hGLP-lR are involved in coupling the receptor to Gas to stimulate cAMP 

production.
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Figure 6.5. Effect of th e  C -term inal dom ain  m u ta n ts  on hG LP-lR  activity .

HEK293 cells expressing the C-terminal deletion and site-directed mutants 

were stimulated with 100 nM GLP-1 for 60 min and the agonist stimulated 

cAMP production measured to determine hGLP-lR activity. Data are mean ± 

SEM, n=3. Data were analysed by Bonferroni's post test after one-way 

ANOVA; values differ from control, n.s. p>0.05, *** p<0.001.
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6.3.3. Effect o f the C-terminal m utants on agonist induced hGLP-lR 

internalisation and ERK1/2 phosphorylation

The C-terminal deleted and site-directed m utants of the hGLP-lR th a t showed 

cell surface expression w ere assessed for their effect on agonist induced hGLP- 

1R internalisation by ELISA (Figure 6.6A) and immunofluorescence (Figure 

6.6B). Deleting 13aa (N450) from the end of the C-terminal domain had no 

effect on agonist induced internalisation (100.0 ± 1.0%, p>0.05). However, the 

N443, N440 and N430 m utants all showed a significant reduction in agonist 

induced internalisation com pared to the control (79.5 ± 4.7% [p<0.01], 57.1 ± 

2.4% and 31.5 ± 5.8% [p<0.001], respectively). This dem onstrated th a t residues 

430-450 are m ost likely to be involved in hGLP-lR internalisation. This was 

confirmed by using the hGLP-lR internal deletion m utants, A419-430 and A431- 

450. The A431-450 deletion m utant significantly reduced agonist induced 

internalisation of the hGLP-lR, as only 22.9 ± 5.3% (p<0.001) of the receptor, 

expressed at the cell surface was internalised. The A419-430 deletion m utant 

showed no significant change in agonist induced hGLP-lR internalisation (111.9 

± 7.1%, p>0.05). These results w ere confirmed by immunofluorescence (Figure 

6.6B).

Upon activation by agonist binding, the GLP-1R is known to cause ERK1/2 

phosphorylation (Jolivalt e t al, 2011; Koole et al, 2010; Quoyer e t al, 2010; Syme 

et al, 2006). Therefore, the C-terminal deletion m utants w ere assessed for their 

effect on ERK1/2 phosphorylation (Figure 6.7A-B). The N410, A411-418 and 

E408A,V409A,Q410A m utants, which show no cell surface expression, did not 

induce ERK1/2 phosphorylation (4.0 ± 1.5%, 6.7 ± 2.7% and 10.3 ± 0.6%, 

p<0.001, respectively). The hGLP-lR C-terminal deletion m utants, N450, N443, 

N440 and N430, showed ERK1/2 phosphorylation, which correlated with their 

agonist induced internalisation. The hGLP-lR m ediated ERK1/2 

phosphorylation was reduced, as internalisation of the receptor was also 

reduced, w ith these deletions (103.6 ± 2.4%, 90.0 ± 5.5% [p>0.05], 28.5 ± 8.6% 

and 8.5 ± 5.8% [p<0.001], respectively). Lastly, the A419-430 m utant showed 

no significant change in ERK1/2 phosphorylation com pared to the WT control 

(103.9 ± 7.5%, p>0.05). Further, as residues 431-450 of the hGLP-lR are
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essential for internalisation of the receptor, it is expected tha t ERK1/2 

phosphorylation m ediated by the hGLP-lR would also be reduced with this 

deletion. Indeed this was observed, only 20.7 ± 3.1% (p<0.001) agonist 

stim ulated ERK1/2 phosphorylation was produced in HEK293 cells transfected 

w ith the A431-450 hGLP-lR m utant. Taken together, these results dem onstrate 

th a t residues 431-450 are essential for hGLP-lR internalisation.
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Figure 6.6. Effect o f th e  C -term inal dom ain  m u ta n ts  on hGLP-lR  

in te rn a lisa tio n . HEK293 cells expressing the C-terminal deletion and site- 

directed mutants were stimulated with 100 nM GLP-1 for 60 min and 

assessed for hGLP-lR internalisation by ELISA (A) and immunofluorescence 

(B) using the anti-hGLP-lR antibody. In immunofluorescence, EGFP (green) 

and the anti-hGLP-lR antibody (red) overlay shown in yellow and nuclear 

staining with DAPI in blue. Data are mean ± SEM, n=3. Data were analysed by 

Bonferroni's post test after one-way ANOVA; values differ from control, n.s. 

p>0.05, *** p<0.001, ** p<0.01.
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Figure 6.7. Effect o f hG LP-lR  C -term inal dom ain  m u ta n ts  on ERK1/2 

p h o sp h o ry la tio n . HEK293 cells transfected with the C-terminal deletion and 

site-directed mutant constructs were stimulated with 100 nM GLP-1 for 5 

min, lysed and ERK1/2 phosphorylation was measured by immunoblotting

(A) and quantified by densitometry and normalised to total ERK1/2 levels

(B). The densitometry data is presented as percentage phosphorylation and 

are ± SEM, n=3. Data were analysed by Bonferroni's post test after one-way 

ANOVA; values differ from control, n.s. p>0.05, *** p<0.001.
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6.4. Discussion

The C-terminal domain of GPCRs play a critical role in trafficking, agonist 

induced internalisation, desensitisation, down regulation and arrestin signalling 

(Kuramasu et al, 2006; McArdle et al, 2002). In this study, several deletion and 

site-directed mutants of the hGLP-lR were generated to identify the distinct 

regions within the C-terminal domain required for hGLP-lR trafficking, its Gas 

coupled activity (cAMP producing activity) and internalisation. Additionally, an 

E408A,V409A,Q410A mutant was generated and assessed for its effect on hGLP- 

1R cell surface expression, as this mutation had previously been shown to 

inhibit internalisation and cAMP production of the hGLP-lR (Vazquez et al, 

2005a).

The expression of GPCRs at the cell surface is essential for the functional 

response of the receptor. Therefore, the mechanisms underlying GPCR targeting 

to the cell surface is of high importance. GPCRs are synthesised in the 

endoplasmic reticulum (ER) and transported to the Golgi before being trafficked 

to the plasma membrane, which is tightly regulated (Dong et al, 2007). Some 

GPCRs require specific motifs within the C-terminal domain to target to 

endosomes, the Golgi and plasma membrane, but this specificity is not clear for 

all GPCRs (Kuramasu et al, 2006; McArdle et al, 2002; Ohno et al, 1995; 

Sandoval & Bakke, 1994; Trowbridge et al, 1993). Using a number of C-terminal 

deletion mutants of the hGLP-lR, this study determined residues 411-418 are 

critical for hGLP-lR cell surface expression. The membrane proximal region of 

the C-terminal domain is important for the trafficking of many GPCRs (Li et al,

2012). This region is required by the 0C2B-AR (Duvernay et al, 2004; Gaborik et 

al, 1998), AT2R type 1A (Duvernay et al, 2004), bradykinin B2 receptor (Feierler 

et al, 2011), DIR (Bermak et al, 2001) and hydroxycarboxylic acid receptor 

(HCAR) (Li et al, 2012) for trafficking to the plasma membrane. Using deletion 

mutations and alanine scanning mutagenesis, residues within the membrane 

proximal region of the C-terminal domain of the 012B-AR, AT2R type 1A 

(Duvernay et al, 2004) and HCAR (Li et al, 2012) have been shown to be 

essential for exportation of the receptor from the ER. This study and others
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have shown that the AMinked glycosylation is critical for GLP-1R targeting to the 

cell surface (Chen et al, 2010; Huang et al, 2010; Whitaker et al, 2012). However, 

the hGLP-lR with the 411-418 deletion is still glycosylated but not targeted to 

the cell surface. It is therefore possible that this deletion prevents trafficking of 

the glycosylated hGLP-lR to the plasma membrane, which requires further 

investigation.

In this study, the mutation of Glu408, Val409, Gin410 to alanine within TM7 (closest 

to the C-terminal domain) of the GLP-1R has been shown to affect cell surface 

expression of the receptor. This triple mutation has previously been shown to 

abolish agonist binding and cAMP production (Vazquez et al, 2005a). This study 

demonstrates that the triple mutant did not bind the agonist or induce cAMP 

production because it is not expressed at the cell surface. Since Glu408, Val409 and 

Gin410 in hGLP-lR are adjacent to the membrane proximal region of the C- 

terminus their mutation most likely causes a conformational change within the 

C-terminus and thereby reduces access to residues 411-418, which are required 

for targeting of the receptor to the plasma membrane.

The C-terminal domain is also known to interact with intracellular proteins to 

activate intracellular signalling pathways (Bohm et al, 1997a; Ferguson, 2001). 

The C-terminal domain of the p3-AR interacts with Src, which results in the 

activation of ERK (Cao et al, 2000). Additionally, the (By subunit of the 

heterotrimeric G-protein and Ca2+/calmodulin bind to the C-terminal domain of 

the mGluR7a and 7b and regulate P and Q type Ca2+ channels (O'Connor et al, 

1999). In this study, residues 419-430 of the hGLP-lR have been shown to be 

important for agonist induced cAMP production. This is similar to a previous 

study, which showed deleting residues 419-435 of the hGLP-lR decreases the 

cAMP production (Vazquez et al, 2005a). Like the GLP-1R, a mutant of mGluRla 

lacking the C-terminus has been shown to be defective in stimulating cAMP 

production through the Gas pathway (Tateyama & Kubo, 2007).

The internalisation of GPCRs from the cell surface after agonist stimulation is 

required to dampen the biological response (Hanyaloglu & von Zastrow, 2008).
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The phosphorylation of serine/th reon ine  residues within the C-terminal 

dom ain is critical for the internalisation and desensitisation of many GPCRs 

(Benya et al, 1993; Hausdorff et al, 1991; W idmann, 1997). The hGLP-lR has 

previously been shown to require four serine phosphorylation sites a t positions 

Se r43i,432̂  s er44i,442̂  s er444,445 an(j s er45i,452 for internalisation and

desensitisation of the receptor (Widmann, 1997; W idmann et al, 1996a; 

W idmann et al, 1996b). Here, a series of deletion m utants w ere used to identify 

the distinct region required for hGLP-lR internalisation. This study showed, the 

region betw een 431-450, which contains serine doublets Ser431>432, Ser441-442 and 

Ser444-445 0f th e hGLP-lR are required for internalisation of the receptor. This is 

consistent with a previous report, which dem onstrated the m utation of the 

serine doublet, Ser451-452, had little effect on hGLP-lR internalisation (Widmann, 

1997). Additionally, a separate  study reported a m utation of the serine doublet, 

Ser431-432, had little effect on hGLP-lR internalisation (Vazquez et al, 2005b). 

Therefore, the phosphorylation of serine doublets Ser441-442 and Ser444445 are 

likely to be essential for hGLP-lR internalisation. The bradykinin B2 receptor 

w ith alanine m utations to serine/th reon ine  residues within the C-terminal 

dom ain has been shown to be deficient in arrestin  binding and internalisation of 

the receptor (Zimmerman et al, 2011). Further, m utations of Ser355, Ser356 and 

Ser366 to alanine w ithin the C-terminal domain of the P2-AR prevented GRK2 

phosphorylation and alm ost abolished internalisation of the receptor (Seibold 

e t al, 2000). Additionally, phosphorylation of Ser326, Thr327 and Ser328 by GRK2 

has shown to be required by the HCAR for its internalisation (Li e t al, 2012). In 

this study, ERK1/2 phosphorylation was also used as a readout assay to confirm 

hGLP-lR internalisation because the GLP-1R is known to phosphorylate 

ERK1/2 upon agonist activation and internalisation of the receptor (Jolivalt et 

al, 2011; Koole et al, 2010; Quoyer e t al, 2010; Syme et al, 2006). Interestingly, 

residues 419-430 of the hGLP-lR w ere im portant for stim ulation of cAMP 

production w ith no negative effect on its internalisation, which supports the 

idea th a t the GLP-1R does not require cAMP for internalisation of the receptor.

Overall, this study identified distinct regions w ithin the C-terminal domain of 

the hGLP-lR tha t are critical for cell surface expression (411-418), cAMP
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production (419-430) and agonist induced internalisation (431-450) of the 

receptor (Figure 6.8). These findings provide a better understanding of the C- 

terminal domains role in regulating hGLP-lR cell surface expression, activity 

and internalisation.

411-418: Cell 
surface expression

431-450: Internalisation

419-430: Gas 
coupling activity

Figure 6.8. O verview  of th e  hG LP-lR  show ing  th e  d is tin c t reg io n s  w ith in  

th e  C -term inal dom ain  re q u ire d  for hG LP-lR  cell su rface  exp ression , 

activ ity  an d  in te rn a lisa tio n  as d ed u ced  in th e  p re s e n t study. The hGLP- 

lR  with the distinct regions within the C-terminal domain identified for cell 

surface expression (411-418), activity (419-430) and internalisation (431- 

450) in this study.
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7. Final Discussion

The ability of glucagon like peptide-1 (GLP-1) to lower postprandial 

hyperglycaemia by increasing insulin secretion and thereby  reducing blood 

glucose levels makes this peptide an ideal candidate for the trea tm en t of type 2 

diabetes (Doyle & Egan, 2007; Holz e t al, 1999). Additionally, as GLP-1 is able to 

reduce blood glucose levels in patients w ith type 2 diabetes, it is also of 

significant clinical relevance (Haluzik, 2014; Thom pson & Kanamarlapudi,

2013). GLP-1 has a very short half-life, which is the main lim itation for its 

clinical use and as a result therapeutic strategies th a t activate the GLP-1 

receptor (GLP-1R) and improve GLP-1 stability have been extensively studied 

and developed. GLP-1R stim ulation by GLP-1 has many beneficial effects, which 

is most likely due to the activation of a num ber of dow nstream  signalling 

pathways upon agonist binding to the receptor. The GLP-1R is a m em ber of the 

family B G-protein coupled receptors (GPCRs). Studying GPCR agonist binding is 

im portant because it is an early signal transduction event (Bhaskaran & Ascoli, 

2005; Kanamarlapudi et al, 2012). GPCR internalisation as a result of agonist 

binding and subsequent desensitisation is vital for correct cell signalling, 

dampening of the biological response and re-sensitising the desensitised 

receptor (Hanyaloglu & von Zastrow, 2008). Although a generalised 

transduction pathw ay exists for GPCRs (Claing, 2004), it has become clear tha t 

the GLP-1R activated signalling pathw ays and the receptor agonist interactions 

are more complex than was previously thought. A clear understanding of GLP- 

1R activation and internalisation by agonist binding will lead to much better 

drug targeting of the receptor and its dow nstream  signalling transduction 

pathway. A better understanding of the internalisation pathw ay is also essential 

for introducing new strategies, such as small molecule agonists, which target the 

hum an GLP-1R (hGLP-lR) in the trea tm en t of type 2 diabetes. To further 

enhance this understanding, this study has:
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1. Assessed the im portance of the N-terminal domain for cell surface 

expression of the hGLP-lR.

2. Examined the effect of two small molecule agonists on hGLP-lR 

internalisation and activation.

3. Determined the dow nstream  signalling pathw ay for internalisation of the 

hGLP-lR after agonist activation.

4. Identified distinct regions w ithin the C-terminal domain required for 

hGLP-lR cell surface expression, agonist induced cyclic adenosine 

m onophosphate (cAMP) activity and internalisation.

Family B GPCRs contain a signal peptide (SP) sequence within the N-terminal 

domain, which is often critical for synthesis and processing of the receptor 

(Kochi et al, 2002). In addition, several GPCRs have been shown to require the 

hydrophobic region after the SP (HRASP) and post-translational modifications 

such as glycosylation for their cell surface expression (Aiken et al, 2009; 

Hatsuzawa et al, 1997; Huang et al, 2010; W hitaker et al, 2012; W idmann et al, 

1995). This study showed tha t the SP sequence of the hGLP-lR is cleaved during 

processing of the receptor. Additionally, cleavage of the receptor was essential 

for AMinked glycosylation and trafficking of the hGLP-lR to the cell surface, 

which is consistent w ith previous findings (Huang et al, 2010). In this study, the 

hGLP-lR w ith the SP deleted (ASP) functioned in exactly the same way as the 

receptor w ith the SP presen t and expressed at the cell surface. This contradicts 

a previous study, which showed the hGLP-lR with the SP deleted is synthesised 

but does not express a t the cell surface (Huang et al, 2010). The reason for the 

variation in results is unclear. In this study, the hGLP-lRASP was expressed 

with the VSVG-epitope tag a t the N-terminus w hereas Huang et al (2010) 

expressed the same deletion construct w ith a HA-epitope tag. However, it has 

been observed tha t the hGLP-lR wild type and hGLP-lRASP w ithout any 

epitope tag a t the N-terminus still targets to the cell surface (see Chapter 4), 

indicating th a t the difference in the N-terminal tag betw een studies may not be 

the reason for variation in the results. Interestingly, this study revealed tha t 

prevention of SP cleavage inhibited hGLP-lR cell surface expression by 

preventing access to the Asn63, Asn82 and Asn115 glycosylation sites. After the SP
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is cleaved, the receptor undergoes AMinked glycosylation. The glycosylated 

receptor translocates to the Golgi and then onto the plasm a membrane. 

Although the role of the SP in family B GPCR trafficking is well established 

(Huang et al, 2010), the significance of the HRASP in trafficking of the receptor 

is not well studied. This study dem onstrated tha t the HRASP (Ser31-Glu40) of the 

hGLP-lR is necessary for its efficient trafficking to the cell surface. Similar to the 

endothelin B receptor, it is likely tha t this region may be im portant for 

translocation of the hGLP-lR across the endoplasm ic reticulum  (ER) m em brane 

but requires further experim entation to confirm this. Extending on these 

findings, the im portance of Trp39, Tyr69 and Tyr88, th ree  conserved residues 

across family B GPCRs w ithin the N-terminal domain, which has previously been 

shown to be im portant for agonist binding, was studied (Runge et al, 2008; 

Underwood et al, 2010; Van Eyll et al, 1996). The Trp39, Tyr69 and Tyr88 

mutations caused a significant loss in hGLP-lR cell surface expression. The 

exact reason for these m utations affecting hGLP-lR cell surface expression is 

still unclear, but they did not interfere w ith either cleavage of the SP or AMinked 

glycosylation of the receptor and therefore it is unlikely th a t these m utations 

had any effect on the stability of the receptor. However, it is possible tha t these 

m utations may affect trafficking of the AMinked glycosylated hGLP-lR to the 

Golgi or interfere with further processing w ithin the ER and Golgi. This is an 

area requiring further investigation.

Some GPCRs, such as the gonadotropin-releasing horm one receptor, are not 

efficiently exported from the ER to the plasm a m em brane and a large 

proportion of the synthesised receptor is retained in the ER and then subjected 

to degradation (Armstrong et al, 2011; Conn & Ulloa-Aguirre, 2010). Therefore, 

pharm acoperone (chemical chaperone) drugs can be used to increase cell 

surface expression of the receptor and thereby its activity (Conn & Ulloa- 

Aguirre, 2010; Zhao et al, 2008). This study clearly shows the hGLP-lR is 

prim arily localised at the cell surface but w ith some intracellular expression. 

However, this study m ade use of the hGLP-lR overexpressed in the HEK293 

model cell line. Nevertheless, there  is evidence dem onstrating the down 

regulation of GLP-1R expression in (3-cells contributes to the im paired incretin
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effect in type 2 diabetes (Shu et al, 2009; Xu et al, 2007). This is consistent w ith 

observations of reduced GLP-1 responses on (3-cells in type 2 diabetes (Fritsche 

et al, 2000; Kjems et al, 2003). Therefore, there is a need to investigate the 

expression and localisation of the GLP-1R in the p-cells of type 2 diabetes. 

However, it is unknow n if pharm acoperone drugs may enhance GLP-1 based 

therapies for type 2 diabetes by increasing GLP-1R expression at the plasma 

membrane. To study the localisation of hGLP-lR and the effect of 

pharm acoperone drugs on the location, in vitro, hum an p-cell samples of type 2 

diabetic patients would be required.

Liraglutide and Exenatide are two commercially available injectable drugs 

currently used in the trea tm en t of type 2 diabetes but are very expensive and 

have difficulties associated w ith long-term  adm inistration including pancreatitis 

and papillary thyroid cancer (Drucker e t al, 2010). This has driven the need for 

relatively less expensive and orally active small molecule agonists of the GLP- 

1R. Allosteric small molecule drugs not only have oral bioactivity but also have 

the potential benefit of binding to a site on the receptor distinct from tha t used 

by the orthosteric agonist (Bridges & Lindsley, 2008). Compound 2 and 

compound B are two small molecule agonists tha t have been shown to stim ulate 

insulin secretion (Knudsen et al, 2007; Sloop et al, 2010). At the s ta rt of this 

study, very little was published about the effects of compound 2 and compound 

B on the hGLP-lR. This study confirmed tha t compound 2 and compound B are 

ago-allosteric m odulators because antagonists Ex(9-39) and JANT-4 inhibited 

GLP-1 induced GLP-1R internalisation and signalling but had no effect on 

compound 2 or com pound B signalling. Additionally, the V36A m utation of 

hGLP-lR, which has previously been shown to affect GLP-1 binding to the 

orthosteric binding site of the receptor (Underwood et al, 2010), abolished GLP- 

1 stimulated cAMP production but had no effect on cAMP production induced by 

compound 2 and B. However, the K334A m utation of hGLP-lR, which has 

previously been shown to prevent efficient coupling to adenylyl cyclase (AC) 

(Mathi, 1997), reduced cAMP production by GLP-1, compound 2 and compound 

B, dem onstrating GLP-1R couples to the Gas pathw ay in the same way w hen 

stim ulated with either the orthosteric or allosteric agonists. Unlike GLP-1, no
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hGLP-lR internalisation was dem onstrated w hen treated  with compound 2 and 

compound B. It is possible th a t the binding of these small molecule agonists to 

the GLP-1R causes a conformational change, which prevents internalisation of 

the receptor but not coupling to the Gas pathway, bu t this needs to be confirmed 

using molecular modelling. Both small molecule agonists induce cAMP 

production with a maximal response similar to GLP-1. However, unlike GLP-1, 

compound 2 and compound B are unable to induce intracellular calcium (Ca2+) 

accumulation and extracellular signal-regulated kinases (ERK) phosphorylation. 

Since intracellular Ca2+ accumulation and ERK phosphorylation are required for 

GLP-1 induced hGLP-lR internalisation (see Chapter 5), the reason why 

compounds 2 and B do not induce hGLP-lR internalisation is m ost likely linked 

to their inability to stim ulate intracellular Ca2+ accumulation and ERK 

phosphorylation. The exact location w here compound 2 and compound B 

interact and bind to the hGLP-lR has not been explored in this study but tha t 

information may help w ith the developm ent of new  small molecule agonists. In 

previous studies, compound 2 and compound B w ere unable to stim ulate insulin 

secretion as effectively as GLP-1 (Irwin et al, 2010; Knudsen et al, 2007; Sloop et 

al, 2010). This suggests th a t binding of the orthosteric and allosteric agonists to 

the hGLP-lR cause subtle differences in the receptor's conformation, thereby 

activating dow nstream  signalling pathways. This study suggests a potential 

advantage in the selectivity of specific signalling pathways activated by 

allosteric agonist binding. Interestingly, this study found, preincubation w ith 

either compounds 2 and B prior to GLP-1 stimulation, inhibited GLP-1 induced 

intracellular Ca2+ accumulation, ERK phosphorylation and internalisation of the 

receptor, bu t not cAMP production. It would be interesting to determ ine, for 

example using biotin conjugated GLP-1, w hether com pounds 2 and B cause a 

conformational change th a t reduces access of GLP-1 to the orthosteric binding 

site in a non-competitive m anner or w hether they prevent GLP-1 bound hGLP- 

1R coupling to the Gaq pathway, thereby inhibiting intracellular Ca2+ 

accumulation and ERK phosphorylation required for internalisation of the 

receptor. Therefore, allosteric agonists may cause GPCR conformations, which 

are less favourable in the internalisation of the receptor than orthosteric 

agonists. Although these small molecule agonists may resu lt in a longer half-life,
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the significance of this effect is unknow n and the adverse effects associated w ith 

increasing the half-life of drugs tha t target the hGLP-lR needs to be explored 

further. Overall, compounds based on this structure may provide insight into 

the mechanisms of agonist directed GLP-1R regulation and may rep resen t a step 

in the developm ent of effective insulinotropic agents with limited adverse 

effects.

This study determ ined the dow nstream  signalling pathw ay required for GLP-1 

induced hGLP-lR internalisation. After agonist stimulation, m ost GPCRs 

internalise in a clathrin dependent fashion via p-arrestins (Luttrell & Lefkowitz, 

2002). However, some GPCRs use alternative pathw ays such as the caveolin 

dependent pathw ay for endocytosis (Chini & Parenti, 2004). Using chemical 

inhibitors, dom inant negative m utants and coim m unoprecipitation, this study 

clearly showed the hGLP-lR to in teract w ith caveolin-1 for its internalisation. 

Although, the agonist occupied GLP-1R signals through the Gas and Gaq 

pathways, this study showed tha t the agonist induced hGLP-lR internalises 

through the Gaq pathw ay and not through the Gas pathway. Binding of the 

orthosteric agonist to the hGLP-lR results in the Gaq activation, which then 

leads to hydrolysis of phosphatidylinositol-4,5-bisphophate (PIP2) by 

phospholipase C (PLC) to inositol-1,4,5-triphosphate (IP3). IP3 activates the IP3 

receptor to increase cytosolic Ca2+ levels. The increase in cytosolic Ca2+ levels 

activates protein kinase C (PKC), which in tu rn  phosphorylates ERK (W erry et 

al, 2003). The involvem ent of the Gaq pathw ay in agonist induced 

internalisation has been deduced using chemical inhibitors. This study 

illustrates the im portance of analysing the dow nstream  signalling pathw ay in 

agonist induced GLP-1R internalisation. This is because orthosteric agonist 

stim ulation of the GLP-1R results in cAMP production, intracellular Ca2+ 

accumulation and ERK phosphorylation, but it is only intracellular Ca2+

accumulation and ERK phosphorylation tha t are linked directly with the

internalisation of the receptor. This suggests th a t new  targets for the trea tm ent 

of type 2 diabetes should be assessed for their effects on intracellular Ca2+

accumulation and ERK phosphorylation and not just cAMP activity. The

molecular pathways identified in this study are likely to be shared by other
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GPCRs and be of relevance to their trafficking and signalling. In future studies, it 

would be interesting to assess w hether or not inhibition of GLP-1R 

internalisation alters agonist induced insulin secretion from p-cells.

The T149M m utation w ithin the GLP-1R has been shown to reduce glucose 

effectiveness, insulin secretion and sensitivity w ithin a Japanese patient with 

type 2 diabetes (Tokuyama et al, 2004). Interestingly, in this study the T149M 

m utation was found to inhibit agonist induced hGLP-lR internalisation, 

intracellular Ca2+ accumulation and ERK phosphorylation w ith no effect on 

cAMP production. This suggests im paired hGLP-lR internalisation due to 

reduced intracellular Ca2+ accumulation and ERK phosphorylation may possibly 

be the cause for the patients reduced glucose effectiveness, insulin secretion 

and sensitivity. Therefore, the T149M m utation inhibits insulin secretion 

w ithout affecting cAMP production dem onstrating the im portance of hGLP-lR 

intracellular Ca2+ accumulation, ERK phosphorylation and internalisation for 

GLP-1 m ediated insulin secretion. Recently, the internalised GLP-1R in agonist 

stim ulated pancreatic p-cells has been shown to colocalise with AC within 

endosom es and stim ulate insulin secretion (Kuna et al, 2013). This also 

dem onstrates the im portance of hGLP-lR internalisation for insulin secretion 

because inhibiting internalisation would prevent the endosomal cAMP 

production required for insulin secretion. As the T149M m utant is defective in 

the internalisation of the receptor, it may prevent insulin secretion by affecting 

endosomal cAMP activity. It would be interesting to look at o ther point 

m utations w ithin type 2 diabetic patients and determ ine w hether they may also 

inhibit hGLP-lR internalisation.

Some GPCRs have been shown to require E(X)3LL, FN(X)2LL(X)3L, F(X)3F(X)3F 

(Dong et al, 2007), tyrosine YXXO (Ohno et al, 1995; Sandoval & Bakke, 1994; 

Trowbridge et al, 1993), PPXXFR (Ango et al, 2000; Ango et al, 2001; Ango et al, 

2002), PXXP (Cao et al, 2000), NPXXY (Robertson e t al, 2003) and LL (Ferguson, 

2001; Letourneur & Klausner, 1992; Verhey & Birnbaum, 1994) motifs w ithin 

the C-terminal dom ain for cell surface expression, interactions with intracellular 

proteins and internalisation of the receptor. However, these conserved motifs
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are not p resent w ithin the GLP-1R. Therefore, in this study, the regions 

im portant for hGLP-lR cell surface expression, its activity (using cAMP 

production as readout) and internalisation w ere determ ined using a num ber of 

C-terminal deletion and site-directed m utants. The m em brane proximal region 

of the C-terminal domain is im portant for the trafficking of m any GPCRs to the 

plasma m em brane (Li et al, 2012). Similar to o ther GPCRs, this study 

determ ined tha t residues 411-418 are critical for hGLP-lR cell surface 

expression. This region w ithin the C-terminus of the hGLP-lR is m ost likely 

im portant in exporting the receptor from the ER to the cell surface as the 

m utant w ith these residues deleted is still glycosylated w ithin the ER but not 

targeted to the cell surface. Additionally, the C-terminal dom ain of GPCRs is also 

known to interact w ith intracellular proteins to activate intracellular signalling 

pathways (Bohm et al, 1997a; Ferguson, 2001). This study showed residues 

419-430 w ithin the C-terminus of the hGLP-lR are im portant for cAMP 

production. It would be interesting to determ ine if the C-terminal domain of the 

hGLP-lR contains o ther regions im portan t for Ca2+ accumulation and ERK 

phosphorylation because the im portance of the Gaq pathw ay has already been 

dem onstrated in this study (see Chapter 5). Further, the phosphorylation of 

serine/threonine residues w ithin the C-terminal domain of GPCRs is critical for 

internalisation and desensitisation of the receptor (Benya e t al, 1993; Hausdorff 

et al, 1991; Widmann, 1997). Therefore, this study used a series of deletion 

m utants to identify the distinct region required for agonist induced 

internalisation of the hGLP-lR. The region betw een 431-450, which contains 

serine doublets, Ser431-432, Ser441-442 and Ser444-445, of the hGLP-lR is required for 

internalisation of the receptor. However, taking previous literature  into account, 

the phosphorylation of serine doublets, Ser441-442 and Ser444-445, are m ore likely 

to be essential for hGLP-lR internalisation (Vazquez e t al, 2005b; Widmann, 

1997). As residues 419-430 of the hGLP-lR are im portant for cAMP production 

w ith no negative effect on the internalisation of the receptor, this supports the 

idea tha t the GLP-1R does not require the production of cAMP for its 

internalisation. These findings dem onstrate a be tte r structural and m echanistic 

understanding of GPCR regulation w ithin the C-terminal domain.
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The C-terminal domain sequences of some GPCRs (m entioned in Chapter 6) 

including the GLP-1R, adenosine A2b receptor, angiotensin II receptor type 1, 

bradykinin B2 receptor, dopam ine D1 receptor, hydroxycarboxylic acid 

receptor and m etabotropic glutam ate receptor type 7 w ere aligned using 

Cluster Omega (Goujon et al, 2010; McWilliam et al, 2013; Sievers et al, 2011), 

but no conserved sequences w ere identified. Therefore, the C-terminal domain 

sequence of the family B GPCRs w ere aligned and showed some conservation in 

the region closest to transm em brane (TM) 7 (Figure 7.1). The 408£v q 4io m otif in 

the hGLP-lR is highly conserved across family B GPCRs, the alignm ent results 

showed E408 and V409 to be fully conserved (*) and the Q410 to be highly 

conserved (:). Additionally, residues F413, K415 and W417 w ithin the C-terminal 

domain of the hGLP-lR showed conservation w ith other family B GPCRs. The 

F413 is less conserved (.), w hereas K415 is highly conserved and W417 is fully 

conserved (*). These conserved residues w ere critical for hGLP-lR cell surface 

expression, therefore it would be interesting in future to determ ine if this 

region may be a common protein binding m otif and also required by the o ther 

family B GPCRs for cell surface expression of the receptor.

In conclusion, this study has provided a foundation to further expand the 

knowledge of cellular trafficking and functional characterisation of the hGLP-lR 

(sum m arised in Figure 7.2). All experim ents perform ed in this study w ere 

assessed in a model cell line expressing recom binant hGLP-lR. Therefore, 

further w ork should investigate w hether these results could be replicated in a 

hum an pancreatic (3-cell line or patien t samples. Overall, a lot rem ains to be 

determ ined in GLP-1R characterisation, pharmacology and drug developm ent in 

the treatm ent of type 2 diabetes.



CALCR — NEVQTTVKRQWAQFKIQWNQRWGRRPSNRSARAA---- A-AAAEAGDIPIYICHQ-EPR 53
CALCRL — GEVQAILRRNWNQYKIQFGNSFSNSEALRSASYT---- V-STISDGPGYSHDCPS-EHL 53
GLP-2R ANGEVKAELRKYWVRFLLARHSGCRACVLGKDFR-FLGKCPKKLSEGDGAEKLRKLQPSL 59
PTHRl — GEVQAEIKKSWSRWTLALDFKRKARSGSSSYS-YGPMVSHTSVTNVGP— RVGLGLPL 55
VIPR2  EVQCELKRKWRSRCPTPSASRDYRVCGSS--------------FSRNGS— EGALQFHR 43
PACAPR  EVQAEIKRKWRSWKVNRYFAVDFKHRHPS-------------- LASSGV— NGGTQLSI 43
VIPRl  E VQAE LRRKWRRWHLQGVLGWNPKYRH P S--------------GGSNGA— TCSTQVSM 43
CRHRl  EVRSAIRKRWHRWQDKHSIRARVA RAMS IP----------------- TSPTRVSF 38
CRHR2  EVRSAVRKRWBRWQDHHSLRVPMA RAMSIP----------------- TSPTRISF 38
PTHR2  EVQAEVKKMWSRWNLSVDWKRTPPCGSRRCGSVLTTVTHSTSSQSQV— AASTRMVL 55
SCTR — GEVQLEVQKKWQQWHLREFPL-HPVASFS-N STKASHL— EQSQG— TC— RTSI 47
GHRHR  EVRTEISRKWHGHDPELLPAWRTR----- AKW------- TTPSRSA-A— KV------ 37
GLP-1 R VNNE VQLE FRKSWE RWRLE HLHIQRDS SMKP--------------------- L— KCPT-SSL 39
GIPR ---EVQSEIRRGWHHCRLRRSLGEEQRQLPERAFR------ ALPSGSGPG— EVPTSRGL 49
GCGR LNKEVQSELRRRWHRWRLGKVLWEERNTSNHRAS-------------- SSPG— HGPPSKEL 46

CALCR NEP----- AN---------------------------------------------------NQGEES 64
CALCRL NGK----- SI---------------------------------------------------- HDIEN 63
GLP-2R NSGRLLHLAMRGLGELGAQPQQDHAR WPRGSSLSECSEGDVTMANT MEEI 109
PTHRl SPRLLPTATTNGH------ PQLPGHAKPG-TPALETLET-TPPAMA---------------- 93
VIPR2 GSR------ AQSF------ LQTETSVI-------------------------------------  58
PACAPR LSKSSSQIRMSGL------ PADNLAT--------------------------------------- 63
VIPRl LTRVSPGARRSSS------ FQAEVSLV-------------------------------------- 64
CRHRl HSIKQSTAV----------------------------------------------------------  47
CRHR2 HSIKQTAAV----------------------------------------------------------  47
PTHR2 ISGKAAKIASRQP------- DS-HITLPG-YVWSNSEQDCLPHSFHEETKEDSGRQGDDI 106
SCTR I-------------------------------------------------------------------  48
GHRHR --------------------------------------- LTSMC----------------------  42
GLP-1R SSGATAGSSMYTA-----------TC------------ QASCS---------------------  59
GIPR SSGTLPGPGNEAS---------------------- RELESYC----------------------  69
GCGR QFGRGGGSQDSSA-----------ETPLAGGLPRLAESPF-----------------------  75

CALCR
CALCRL
GLP-2R
PTHRl
VIPR2
PACAPR
VIPRl
CRHRl
CRHR2
PTHR2
SCTR
GHRHR
GLP-1R
GIPR
GCGR

AEIIPLNIIEQESSA-------------------------------
VLLKPENLYN-------------------------------------
LEESEI-----------------------------------------
------ APKDDGFLNGSCSGLDEEASGPERPPALLQEEWETVM

LMEKPSRPMESNPDTEGCQGETEDVL-

79
73
115
130
58
63
64 
47
47 
132
48 
42
59 
69 
75

Figure 7.1. Sequence alignm ent o f the C-terminal dom ain o f fam ily B GPCRs.

Multiple sequence alignm ent of family B GPCRs with num bering using Cluster 

Omega (1.2.1). An asterisk (*) indicates fully conserved residues; a colon (:) 

indicates high conservation; and a full stop (.) indicates low conservation. Amino 

acids are coloured according to their properties, w here red residues are small and 

hydrophobic excluding Y (AVFPMILW); blue residues are acidic (DE); magenta 

residues are basic excluding H (RK) and green are hydroxyl, sulfhydryl and amine 

residues including G (STYHCNGQ). Abbreviations of receptors are GLP-2R, 

glucagon-like peptide 2 receptor; PACAPR, pituitary adenylate cyclase-activating 

polypeptide receptor; CALCR, calcitonin receptor; CALCRL, calcitonin receptor­

like protein; CRHR, corticotropin-releasing horm one receptor; GIPR, glucose- 

dependent insulinotropic polypeptide receptor; GCGR, glucagon receptor; GHRHR, 

grow th horm one releasing horm one receptor; PTHR, parathyroid horm one 

receptor; SCTR, secretin receptor; VIPRl, vasoactive intestinal peptide receptor.
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