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ABSTRACT

The research titled “The effect of thermal heat treatment on the corrosion 

performance of some commercial and advanced magnesium alloys” deals with the 

use of heat treatment to change the characteristics of some commercial magnesium 

alloys. The alloys were first subjected to homogeneous solution treatment and 

quenched in cold water in order to retain the homogeneous state of the material. Then 

the samples were aged at temperatures as suggested in the literature for different time 

periods. Their corrosion performance was then assessed using Time lapse 

photography, Hydrogen evolution experiment and Scanning Vibrating Electrode 

Technique (SVET). The data obtained from the time lapse photography was assessed 

using Sigma plot to characterize the corroded rate in terms of area (m2) over a period 

of time. The bulk corrosion rates by the amount of hydrogen released was estimated 

volumetrically over a period of time. Finally the data obtained form the SVET 

analysis was assessed using Surfer to acquire the local current density rates due to 

corrosion. From the current density data, the approximate loss of material during 

SVET was estimated quantitatively. This thesis compares three different magnesium 

alloys, AZ31, AZ91 and Elektron 21 (E21). It was noticed that heat treatment 

changed the micro structural characteristics of the alloys which in turn affected the 

corrosion performance of those alloys. The results show that solution treatment was 

preferred for AZ31 and Elektron 21 alloy and age hardening for AZ91 alloy. It was 

also noticed that all the results obtained using various experimental techniques were 

similar to each other.
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Chapter 1

1. INTRODUCTION

Materials engineering has gained more importance in the last century with 

development of new range of materials including ceramic and refectory materials, 

high end light alloys, refined plastics, synthetic fibres and composite materials. 

Magnesium (Mg), being one of the lightest available metals, has found its place due 

to its low density and mechanical characteristics. [1] After Steel (127.5 million 

tonnes1) and Aluminium (Al) (80 million tonnes1), Magnesium (700,000 tonnes 

approx.1) is most commonly used in metal structures. It should be noted that 

magnesium is the seventh most abundant element on Earth’s crust (by mass). [2] 

However the greatest limitation to the use of magnesium is its reactivity with 

moisture and hence cannot be obtained in its pure form. It corrodes quite readily in 

certain types of water. With the development of different alloys, there has been 

tremendous improvement in the mechanical and corrosion properties of magnesium 

alloys.

1.1 HISTORY OF MAGNESIUM

In 1808 Sir Humphry Davy isolated Magnesium. He did electrolysis of a mixture of 

magnesia and mercuric oxide. It was in 1831 Antoine Bussy obtained magnesium in a 

coherent form. [3] It was only in 1857 that commercial production of magnesium was 

possible. It was first commercially produced near Paris by Rousseau. [1] The 

principle ores of magnesium are Dolomite, Magnesite, Brucite, and Camallite.

Magnesium is a strong reducing agent and has a very high affinity to oxygen. Hence 

magnesium cannot be extracted by chemical reduction method. Rather it is extracted 

by electrolysis. Some of the processes which were used to extract magnesium are,

[1][3]

• Electrolysis o f Magnesium chloride (MgCh) and Magnesium oxide (MgO) in 

salts

• Electrolysis of oxide in a solution form with molten fluorides

1 Source: w w w .s tee lo n th en e t.co m /p ro d u ctio n .h tm l, 

w w w .w o rld -a lu m in iu m .org /cach e/fl0000422 .p d f,

w w w .in d ex m u n d i.co m /en /co m m o d ities/m in era ls/m a g n esiu m /m a g n esiu m _ t8 .h tm l

1
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• Reduced directly from oxide form by carbon in an electric arc furnace with 

hydrogen (H2) atmosphere and redistilled in an inert atmosphere.

• Direct chlorination of Magnesium oxide

• The I. G. -  MEL Process developed at Magnesium Elektron Ltd. in 1936 -  an 

electrolytic process which reuses chlorine in the chlorination stage before 

electrolysis. The exhaust gas evolved during chlorination is then used to make 

magnesium chloride solution.

• The Dow Process -  another electrolytic process where the magnesium 

chloride solution is the precipitate obtained from agitating magnesium 

hydroxide with calcium oxide.

Furthering the advancement in technology over the years, there have been 

considerable changes in the extraction processes with different electrolysis and 

thermal reduction processes. [3]

Magnesium in the elemental form is highly reactive. It tarnishes quickly on exposure 

to air. However, it forms a thin oxide layer on its surface and prevents it from 

tarnishing the metal completely. It can also be noticed that when it is submerged in 

water, hydrogen bubbles are formed. In the powdered form it is even more reactive 

and the reaction is much faster with rising temperature. Due to its highly reactive 

nature both, magnesium and its alloys are highly flammable. [1][3] It burns easily in 

the powdered form and it becomes very difficult to extinguish the fire as it reacts with 

nitrogen (N) as well as with carbon di-oxide (CO2).

1.2 RECENT DEVELOPMENTS

The 21st century innovation and technologies have made way for material scientists 

across the globe to look into the properties of light weight magnesium alloys like 

AZ31, AZ9J, WE43, Elektron21 etc which contain aluminium, zinc, rare earth 

materials etc. These alloys are primarily used in the transport industry both 

automotive and aerospace industry due to their low density and light weight. Rare 

earth materials in small proportions have increased the performance characteristics of 

these light weight alloys. There has been considerable amount of work carried on a 

large scale to determine the adaptability of such high end light alloys. However there

2
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still seems to be limitations as these alloys seem to show poor mechanical and 

corrosion characteristics at higher working temperatures.

1.2.1 IMPACT OF ALLOYING ELEMENTS

Aluminium has been the principle alloying element in a majority of magnesium alloys 

produced. However the discovery and characterization of rare earth materials, there 

has been a tremendous change in the characteristics of magnesium alloys. Zirconium 

(Zr) acts as a very good grain refining element [3]. It can be seen that most of the 

aluminium based magnesium alloys have a few tenths in percentage of manganese 

(Mn). The presence of manganese in such a combination enhances the corrosion 

performance of the alloy itself. Zirconium on the other hand helps in maintaining the 

resistance to loss of tensile properties at room temperature. Cast alloys can be heat 

treated to obtain attractive tensile properties but show a tendency towards 

microporosity (small cavities of gases during casting). And the wrought forms are 

limited to cold formability but are readily hot worked in various ways.

1.2.2 NEW ASSESSMENT TECHNIQUES

Innovations like electron microscopy have helped materials scientist to study the 

properties of these alloys at microstructural level. Incorporating heat treatment 

techniques including solution treatment, precipitation hardening (ageing) etc., and 

comparing the changes in the microstructural properties together with corrosion 

performance of such alloys helps in studying the behaviour and performance of 

commercial magnesium alloys at different conditions. There has been considerable 

amount of work of late to prove that the mechanical and performance characteristics 

of light magnesium alloys have improved significantly. Kielbus [5-6] demonstrates 

the effect of heat treatment on the microstructure and corrosion properties of 

Elektron21. Similar works have been reported to bring refinement in other 

magnesium alloys. With the use of newer technologies like Scanning Vibrating 

Electrode Technique (SVET) (a new electrochemical scanning technique also known 

as current density scanning) the corrosion performance of these magnesium alloys 

with various treatments and can be studied further (Refer section 3.4). Thus any 

significant change due to heat treatment, microstructure and corrosion performance 

can be monitored more effectively.

3
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1.3 CHARACTERISTICS OF MAGNESIUM ALLOYS

Some interesting facts to be noticed as to why magnesium alloys are preferred to 

aluminium alloys are as follows

• The low strength to weight ratio of magnesium alloys

• Zirconium based cast/wrought alloys are more preferred in aircraft and missile 

parts

• Outstanding machinability is a characteristic of magnesium alloys and is 

welded by inert gas shielded Arc welding.

• With the presence of thorium (Th) and other rare earth materials, it is suitable 

in both short term working and long term working at temperatures exceeding 

300°C. This is why they are used in manufacturing aerospace and car engine 

parts. However care is taken when thorium is being used in the process as it is 

classified as a radioactive metallic element.

• It can also be noticed that at working temperatures exceeding 300°C and the 

presence of rare earth materials, the resistivity of the alloy to properties such 

as pressure, tightness and creep increases.

Thus characteristics such as light weight, higher strength, ductility and ability to be 

cast make Magnesium (Mg) a preferred engineering material in modern Aerospace 

and Automotive applications. Magnesium alloys with rare earth (RE) materials are 

specifically being developed for high temperature applications which possess creep 

resistance in special automotive applications such as powertrain equipments, engine 

blocks etc [9]. Literature shows the application of thorium rich alloys in the 

manufacture of missiles & spacecrafts [10]. Some of the direct applications of 

magnesium alloys in the automobile industry are gear boxes, engine blocks, 

transmission housing, car seat frames, clutch and brake pedals etc. [10]

1.4 CURRENT RESEARCH

The current research focuses on the corrosion performance of three magnesium 

alloys, AZ31, AZ91 & Elektron21 under various heat treatment conditions. It has 

been proved that heat treatment improves the mechanical properties of magnesium

4
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alloys and also helps in preparing the alloy for specific fabrication conditions. In this 

study, the corrosion performance of the above mentioned alloys is determined under 

three different conditions, as received, solution treated and aging treatment (See 

section 2.4). Solution treatment improves the strength of the material imparting 

maximum toughness and shock resistance. Aging, after solution treatment, increases 

the hardness & yield strength of the alloy and decreases the toughness acquired from 

solution treatment. The treatment regimes are dependent on the alloy composition of 

independent alloys. These heat treatments in turn change the microstructural 

characteristics and literature (refer section 2.4) suggests that this has an impact on the 

corrosion performance of the alloys.

There have been several studies relating to the corrosion performance due to the 

effects of heat treatment on magnesium alloys. Ravi Kumar et al [7] says that 

microstructural changes occur in the material when they are subjected to high 

temperature production processes such as extrusion in case of AZ91. These 

microstructural changes due to heat treatment refining the grain structure and thus the 

alloying elements (Aluminium in this case) precipitates at the grain boundary [8] 

thereby improving the corrosion performance of magnesium alloy.

Song [ 11 ] in his review says that magnesium alloys have an excellent strength -  to -  

weight ratio and have poor corrosion properties. This poor corrosion performance is 

the alloy’s major limitation. Song et al in their review paper [12] describe in detail the 

corrosion mechanisms which the magnesium alloys are likely to undergo. They say 

that when the alloy is exposed to corrosive environment, a thin oxide layer is formed 

initially which acts as a protective layer. For longer exposure times, the corrosion 

seems to be following a localized corrosion centres corroding the surface of the 

exposed alloy. The research further suggests that this corrosion behaviour is due to 

the presence of secondary phases and or impurities and the formation of an oxide rich 

surface film on exposure to corrosive environments. Research publication by Song et 

al [13] at a later date suggests a clear layout of the different activities that constitute 

magnesium corrosion. They suggest that there are various factors which influence the 

corrosion behaviour of magnesium alloys in general which results in localized 

corrosion, galvanic corrosion, stress corrosion cracking, negative difference effect etc 

of the alloy. It was also noticed that the alloying elements and impurities govern the

5
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corrosion activity of the alloy which can be understood from the results obtained in 

the research by Song et al.

Though magnesium alloys outweigh the mechanical properties of aluminium alloys, it 

is the problem of corrosion performance that limits the usage of magnesium alloys. 

This research primarily focuses on the performance of three magnesium rich alloys 

AZ31, AZ91 & Elektron21. Experimental techniques such as time lapse photography, 

hydrogen evolution and scanning vibrating electrode technique (SVET) etc are used 

to evaluate the corrosion properties of the above mentioned alloys under various heat 

treatment conditions to determine the optimum performance of those alloys. 

Subjective analysis, overall corrosion performance and localized corrosion behaviour 

of the alloys were carried out in this research to determine the corrosion performance 

of the alloys.

6
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2. LITERATURE REVIEW

2.1 PROPERTIES OF MAGNESIUM

Magnesium crystals are highly ductile and can be extruded up to three times its 

original length without fracture at 225°C. According to Schmid [1][3], deformation at 

or above 225°C is due to the slip on 12 planes (pyramidal) next to the basal planes. 

These planes have a very dense packing. And it was observed that at 300°C, the metal 

expanded 9 times its original length with reference to its basal plane due to slip. [1][3]

Oigonal oF

Figure 2.1 The basal plane of a magnesium crystal [1]

However deformation occurs in a single crystal of magnesium because of twinning, 

which is nothing but the interchange of atomic positions without appreciable change 

of lattice structure characteristics. Patterns from extruded materials reveal that at 

lower temperatures, the direction of flow of the material is parallel to the diagonal 

axis of the second kind. It is seen that the basal plane is parallel to the direction of 

flow but arranged in all possible orientations about its axis of rotation. It can be seen 

that the grain pattern appears to be different in extrusion when compared with forged 

material. This difference of grain structure is not because of the mechanism of glide 

but is based on the method of working. Again at higher temperatures, the direction of 

slip is parallel to the diagonal axis of the first kind and does not determine the plane 

of slip. Most of these tests were carried out on zinc (Zn) crystal which has a similar 

structure when compared to magnesium as they belong to the same family of alkali 

metals. [1]

It has been seen that the temperature at which a sheet of magnesium is rolled and or 

finished may exert a profound effect on its mechanical properties. Cold rolling done 

at temperatures ranging from 190°C to 300°C might actually decrease the ductility of

7
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the sheet. It is also quite hard to finish a sheet at such low temperatures and if the 

finishing temperature is even low then there is a huge risk of the material being 

ruined. A control on the finishing temperatures can actually aid in obtaining the exact 

degree of hardness.

2.2 MAGNESIUM ALLOYS

There are a lot of alloying elements which are commercially available. But before 

these elements are being studied, the following observations should be taken into 

considerations,

• Metals with hexagonal crystal structure undergo solid solution stage 

continuously. E.g., zinc, beryllium, cadmium, titanium, zirconium etc. [3]

• As magnesium has an electron ratio of 2, it can only combine with elements 

having a valency electron ratios of 3 : 2, 21 : 13, 7 : 4 etc.

• Compound formation of magnesium is only possible with less electropositive 

metals as magnesium itself is electropositive.

• There is restriction of atomic size of the alloying metal/element as it cannot be 

greater than 15 percent of that of magnesium. This is because of the fact that 

the extensive solid solution formation of Magnesium crystal is restricted by 

atomic size of the element. This is was illustrated by Carapella [3] in the 

following diagram.(Figure 2.2)

Figure 2.2 The hexagonal lattice structure of magnesium crystal [3]
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It can be shown by Figure 2.3 [3] that the maximum solid solution characteristic is 

restricted with increase in atomic number. This is because of the non-movement of 

the valency electron from 2 as the solute exhibits a stronger characteristic at lower 

valency states [3]. The Figure 2.3 [3] shows the various materials that have factors 

favourable for solubility in magnesium
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Figure 2.3 A plot of atomic diameter of elements with the zone of favourable size

factors [3]

The following periodic table1 (Figure 2.4) illustrates the general solubility of various 

elements/metals in liquid magnesium.

Emley E. F., "Principles o f M agnesium  Technology", 1966, pg.229
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Figure 2.4 Solubility of Magnesium with various elements of a periodic table [3]
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2.2.1 CLASSIFICATION OF MAGNESIUM ALLOYS

Elements exhibiting considerable solubility in magnesium within the binary system 

can be grouped as follows [3],

a) “Continuous Solid Solution -  Cadmium (Cd) ”

b) “Peritectic System -  Indium (In), Manganese (Mn), Zirconium (Zr) ”

c) “Eutectic system (Solid solubility exceeding 1 percent) -  Lead (Pb), Thallium 

(Tl), Silver (Ag), Tin (Sn), Aluminium (Al), Bismuth (Bi), Zinc (Zn), Gallium 

(Ga), Lithium (Li), Osmium (Os), Thorium (Th), Mercury (Hg), Neodymium 

(Nd), Praseodymium (Pr) ’’

d) “Eutectic Systems (Solid solubility up to 1 percent)

Alloy Composition > 5 percent: Gold (Au), Antimony (Sb), Copper (Cu), 

Nickel (Ni), Cerium (Ce), Strontium (Sr), Calcium (Ca), Barium (Ba), 

Lanthanum (La)

A llov Composition < 5 percent: Cobalt (Co), Germanium (Ge), Iron (Fe), 
Silicon (Si) ”

e) “Eutectic system with liquid miscibility -  Sodium (Na) ”

2.2.2 EFFECTS OF COMMERCIALLY IMPORTANT ALLOYING ELEMENTS

It gives a good insight on the behaviour of the alloy systems based on the alloying 

element. The following are some of the commercially important alloys and their 

influence on magnesium,

Aluminium -

It is the base of age old heat treatable alloy systems. On superheating, the strength of 

the alloy increases and refmed the cast structure. However there is a tendency for 

microporosity to occur. [3]

Manganese -

Good for corrosion resistance but does not have much strength. It was the base for old 

Magnesium -  Manganese wrought alloys.[3]
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Zinc -

Addition of zinc helps in grain refinement of the alloy there by increasing the strength 

of the alloy itself. They are heat treatable alloys. However they exhibit some 

brittleness on heat treatment and an addition of zirconium could refine the alloy 

characteristics considerably. They also exhibit microporosity to some degree.[3]

Zirconium -

There is a very high degree of grain refinement observed in the alloy due to addition 

of Zirconium also increasing the ductility of the alloy. But there is no much increase 

in the strength of the alloy. It works like a scavenging element by removing elements 

like iron, aluminium, silicon etc., at very low levels resulting in the production of 

high purity alloys.[3]

Rare Earth Metals -

Long term creep resistance for temperatures less than 250°C, reduction in 

microporosity, reduces brittleness caused by the presence of zinc form the 

characteristics of rare earth metals. However, grain refinement is effective on addition 

of zirconium, and does not contribute to good ductility. In the absence of zirconium, 

these elements have weak tensile properties in cast alloy systems. Overall basis they 

exhibit good corrosion resistance for some combinations.[3]

Thorium -

The creep resistance is conferred to the alloy for temperatures up to 350°C. It is good 

in reducing microporosity and brittleness and there by increases ductility of the alloy 

system. [3]

Silver -

The presence of silver with other rare earth metals improves the response to heat 

treatment as they are completely treatable. However they form a decent heat treatable 

alloy system (eutectic) with good solid solubility.[3]
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2.2.3 EFEECTS OF SOME IMPURITIES

Presence of impurities such as iron, copper, sodium etc., adversely affects the 

mechanical properties of the alloy system making them totally unstable. Also there is 

deterioration in the corrosion resistivity of the alloy. Issues like microporosity also 

crop up.

Iron -

It affects the corrosion resistance of Magnesium -  Aluminium alloy system adversely. 

This can be controlled by addition of few tenths in percent of manganese.

Nickel and Cobalt -

It has adverse effect on corrosion property to a high degree.

Copper (Cu) -

It affects the corrosion resistivity of the magnesium alloy system when present in 

higher percentages.

Sodium (Na), Potassium (K) and Barium (Ba) -

Their presence leads to embrittlement of the alloy system but are highly unlikely to be 

present during the conventional process. However they could appear during salt 

reduction process during alloying element addition.

Hydrogen -

It reduces the ultimate tensile strength of the alloy system and the elongation values 

due to the induction of microporosity during the alloying process.

2.3 ALLOY SYSTEMS OF INTEREST

2.3.1 MAGNESIUM -  ALUMINIUM -  ZINC ALLOY SYSTEM

2.3.1.1 EFFECT OF ALUMINIUM

There has been considerable amount of study on the effect of aluminium on the 

tensile properties of the magnesium alloy system. These results were studies in the 

form of micrographs / micro structures obtained from microscopy techniques. Again
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the manufacturing techniques, i.e., wrought alloy or a cast alloy changed the tensile 

properties significantly. A number o f  studies on the binary Magnesium -  Aluminium 

system showed that depending on the particles o f  (3 -  phase formed as a result o f  

different cooling rates, about 2 percent o f  aluminium appeared in the structure and 

about 8 percent o f  aluminium was in the form o f  an incomplete / degenerative 

eutectic system around the grain boundaries [3] The (3 particles represent the alloying 

elements forming the secondary phase. Thus the presence o f  inter-dendrite like 

particles in the p -  phase with strong layering and or coring o f  aluminium was noticed 

which further suggested that refinement o f  the grain structure o f  the alloy was 

essential. It was also noticed that on completion o f  full heat treatment and quenched 

by water, the microstructure had “equiaxed structures with smooth grain boundaries"

[3]

Primary

Figure 2.5 Micro structure o f  chill cast A8 (Mg, A1 -  8%, Zn -0.5%, Mn -  0.25%)

(x250) [3]

2.3.1.2 EFFECT OF ZINC

It was seen that the Magnesium -  Aluminium alloy system had a higher percentage o f  

optimal aluminium content to be heat treated. And it was also noticed that the 

addition o f  zinc in all three states (as cast, solution treated, fully heat treated) resulted 

in an increase in proof stress (P.S.) o f  the alloy, and more significantly during full 

heat treatment. Figure 2.6 [3] given below shows the effect of different precipitation 

treatments on a fully solutionized alloy AZ91.
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Figure 2.6 The “effect of precipitation temperature on the tensile properties of AZ91 
solution treated and precipitation treated to maximum hardness (after Fox)” [3]

The following figures (Figure 2.7 (a) -  (c)) show the test results by Fox . [3] It was 

noticed that the values of proof stress increased from 6.5tsi3 (on cast alloy for a 10% 

A1 and 2% Zn) to 8tsi (for the same composition) on complete heat treatment. It was 

also inferred that this particular alloy did not perform well during the solution 

treatment as the proof stress reduced by about ltsi for the same composition.

64 8 102

Zinc, %

Figure 2.7 (a) ‘0.1%P.S., as cast’.[3]

2 F. A. Fox, J. Inst. Met.,  1945, 71 ,415 [3]

3 tsi or tonns force per square inch is a non-metric unit to  m easure  pressure applied on th e  material

15



Chapter 2

Mg

Z in c, %

Mg
C

Figure 2.7 (b) ‘0.1% P.S., solution heat Figure 2.7 (c) ‘0.1% P.S., fully heat 
treated’ treated’
Figure 2.7 (a) -  (c) The change in tensile properties of Mg-Al-Zn alloy systems due to 
alloy composition and heat treatment on British sand cast test bars (after Fox) [3]

It could be seen from the above (Figure 2.7 (a) -  (c)) that a 3 percent addition of zinc 

increased the proof stress by 1.5tsi with a 3 percent elongation. Thus addition of zinc 

improved the tensile properties of the alloy with a minimal loss in ductility of the 

alloy. It was also found that water quenching of such alloy system resulted in a 

“discontinuous precipitation” [3] increasing both the strength and ductility of the 

alloy. (Refer to Figure 2.8)

o

e
E

a +  M g Z i

cr
c.

UJ

CO

' m e ,

I* 0  1",, P S .  l ; I M S .  1 l - l i - n c i n i o n .

Figure 2.8 The change in tensile properties of Mg-Zn alloy systems due to alloy 
composition and heat treatment on British sand cast test bars (after Fox) [3]
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The addition of zinc also improved corrosion resistance of the alloy system especially 

after heat treatment. However, there is always limitation to the amount of zinc that 

can be added and or present in the Magnesium -  Aluminium system. It was seen that 

increase and improper addition of zinc during casting resulted in an increase in 

microporosity.

2.3.1.3 DISADVANTAGES OF Mg -  A1 -  Zn ALLOY SYSTEM

Even though the magnesium -  aluminium -  zinc alloy system exhibits better 

properties than its previous counterparts, it still has disadvantages.

• Tendency towards microporosity

• Low ductility on heat treatment for improvement of proof stress. [3]

2.3.2 MAGNESIUM -  RARE EARTH METAL -  ZIRCONIUM ALLOY SYSTEM

(Note: The work described under this sub-title is adapted from Emley’s “Principles of 

Magnesium Technology” [3] published in 1966. As the development in the 

magnesium -  rare earth metal zirconium alloy took place during later years; it has 

been elaborated in the recent advancements in section 2.7.4}

The characteristics of this alloy system haven’t been identified prior to 1966. There 

had been very little work carried out on alloys with rare earth metals as the maximum 

solubility was left unaffected due to zirconium addition. Murphy and Payne5, [3] the 

pioneer in this alloy system, proved that grain refinement by zirconium addition was 

possible and the alloy met the commercial standards. This was later demonstrated by 

Meier [3] using ASTM bars which were sand casted which can be inferred from the 

figure below. (Figure 2.9)

4
Refer to page number 25

5 A. J. Murphy and R. J. M. Payne, J. Inst. Met. 1947, 73, 105 [3]
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Figure 2.9 The change in tensile properties of sand cast Mg -  Re 3% - Zr alloy ASTM
bars (Meier) [3]

A low-zirconium alloy (EK30) (RE -  3%, Zn -  0.25%), which needed a high 

temperature solution treatment (565°C), was introduced in U. S. A. However failure 

to show acceptable tensile properties at room temperature led to the use of zinc based 

quaternary alloy ZER1 (EZ33) (Mg, RE -  2.75%, Zn -  2.25%,Zr -  0.7%).

It has been proved that, with full grain refinement the ‘inter-dendritic (3-phase’ does 

not appear, and at some period of time exhibits a true eutectic appearance^.

2.4 HEAT TREATMENT

Heat treatment is a process of alternate heating and cooling a material in its solid state 

in order to obtain the material with desirable properties [14][15][16][17]. 

Predominantly, there are three important methods in heat treatment.

a) Cold working -  processes where plastic deformation is caused on the material 

below its re-crystallization temperature. Some examples include, rolling, 

drawing, pressing etc [16].

b) Solution strengthening -  process where the material is heated close to re­

crystallization temperature so that the alloying elements of the material give a 

homogeneous phase. The sample is then rapidly cooled (or Quenching) in
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either water or oil in order to retain the homogeneous phase of the material 

[14][17].

c) Precipitation hardening -  process where the material is heated for at elevated 

temperatures much less than the re-crystallization temperature of the material 

over a period of time and then cooled rapidly in order to retain the precipitate 

of the alloying material [17].

Cold working and solution strengthening process have been carried out since ancient 

times. However, the process of Precipitation hardening or Age hardening was 

observed by Alfred Wilm [17] during his experiments (1906 -  1909) in Germany. 

The search for an aluminium alloy which could be hardened by heat treatment similar 

to that of steel is what made Wilm conduct experiments. Experiments on 

“Duralumin” (Copper -  4%, Magnesium -  0.5%, small amount of Manganese) 

revealed that the hardness of the alloy improved with heat treatment and quenching 

over a period of time. Though Wilm did not understand the fundamental principle of 

“Ageing”, it was Merica et al [17] who published a paper in 1919 demonstrating the 

decrease in copper solubility in aluminium with decrease in temperature over a period 

of time. They suggested that the precipitation of a second phase due to ageing and 

quenching is what increased the hardness of Duralumin and they referred the 

precipitate as “submicroscopic dispersion” [17]. From then on, age hardening of 

alloys has been carried out in most of the emerging and developed alloys either on its 

own or with a combination of solution treatment and precipitation hardening.

In order to understand the process of hardening more clearly, it is necessary to 

understand the thermodynamics and phase transformations of the material. According 

to Porter et al [18], a phase can be defined as a part of a system exhibiting 

homogenous properties and composition and are different from the rest of the system. 

The phase composition can be got from different amounts of elements or components 

constituting the system. Thus phase transformations deals with the change in the 

phases of the alloy system in order to acquire desired properties for the material. 

Porter et al [18] says that the reason behind transformation is because of the 

instability of the alloy from its initial to its final state. Thus the most fundamental 

concept which controls phase transformation is by diffusion of atoms.
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Precipitation predominantly occurs due to diffusion of atoms. This diffusion of atoms 

could either be

a) Substitutional atoms [18] which diffuse due to vacancies present in the crystal 

structure and

b) Interstitial atoms [18] which move by force making way between larger 

atoms.

The diffusion coefficient can be defined from Fick’s equation [17] [18] as,

J  = —D —  mol/sec 
dx

where J  -  is mass flowing per unit time (mol/sec)

D -  diffusion coefficient or diffusivity (m /sec) 

c -  concentration of the diffusing mass {mol/m3) 

x -  distance measured (m)

Now concentration 'c' of vacancies in the inter-atomic structure at a given 

temperature *7” can be written as

c = exp (Sf/  k) exp (- Ef7 kT) [16]

where S/ & Ef -  entropy and activation energy for vacancy formation

k -  Boltzmann’s constant

In the above equation the expression for entropy (exp ( S f / k)) is considered a constant 

between 1 and 10. This shows that with increase in temperature, equivalent number of 

vacancies are formed in order to obtain the equilibrium forcing the diffusion of atoms 

from higher energy to lower energy in accordance with Gibbs free energy (G) [17] 

[18] where,

G = U + PV -  TS

where U -  total internal energy of the system (Joules)

P -  pressure {Pascal)

V-  volume (m3)
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T -  absolute temperature of the system (K)

S -  entropy of the system (Joules /  K)

Thus it can be seen that movement of atoms create changes in the grain of the 

material giving it typical grain structure referred to as micro structure of the material. 

A general methodology for precipitation hardening or age hardening can be carried 

out in the following steps [14],

1. Heating the alloy close to its re-crystallization temperature to acquire a 

homogeneous solid solution. (Solution treatment)

2. Quenching the solution treated alloy in order to retain the solid solution 

structure at room temperature.

3. Heating the alloy to a slightly elevated temperature over a period of time to 

harden the material artificially.

It has been noticed in various studies that continuous ageing gives a precipitate. In 

other words, coarse grain particles of the second phase appear all over the alloy from 

the homogeneous state. This can be seen and understood from the following phase 

diagram showing Magnesium -  Aluminium {Mg -  Al) with all its phase 

concentrations over a range of temperatures.

Al, atomic %
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660*650*
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4 6 2 “

4 3 7 “
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70 90 Al30 40 50 60 8020Mg 10
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Figure 2.10 Phase diagram of Mg -  Al alloy system [ 19]

The Mg -  Al phase diagram (Figure 2.10) shows the composition of Magnesium and 

Aluminium in terms of atomic weight along the X axis and temperature along Y axis.
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The solid solution state which is Magnesium rich is represented by a followed by 

solute phases p, y, 5, and a [19]. The molten alloy state is represented by notation L. It 

should be noted that only single phase notations are used in the phase diagram for 

better understanding of the phase diagram. Thus for a typical AZ31 alloy, the typical 

solution treatment temperature will be under 437°C (refer Figure 2.10), the ageing 

treatment will be around 200°C at the boundary of the solidus curve.

2.5 METALLOGRAPHY

Cochran6 defines Metallography as “the study of the internal or surface structure of 

materials whether by optical, electron, x-ray, microprobe, field-ion or emission 

analysis” [20]. The image thus acquired showing the surface material structure is 

referred to as Micro structure. The scanning electron microscope (SEM) is probably 

the most exciting instrument used by metallurgists to determine the structure of new 

and existing materials [21].

2.6 CORROSION

Mattsson [22] defines as “a physicochemical reaction between the material and its 

environment and leads to changes in the properties of the material”. He further says 

that this “Corrosion Effect” is detrimental to the material and at times be useful as 

well. Thus corrosion is nothing but the disintegration of the material which in turn 

affects the reliability of the structure leading to the failure of the system.

2.6.1 MAGNESIUM’S ANODIC BEHAVIOUR

The standard electrode potential of Magnesium is -2.40 v [3][8][19][22]. Since the 

electrode potential is very low, Magnesium falls under the “base metal” category of 

the “noble metals” list [22], This is also one of the reasons why magnesium used as a 

sacrificial anode [8][19], It has been noticed by Roberts [19] that when magnesium 

alloy is exposed to an aqueous solution a thin film of magnesium hydroxide is 

formed. As the Mg(OH) 2  is strongly basic, it resists the reaction of alkaline regions.

6 Cochran F. L., Metallography 1, #1, (1968), p. vii [20]
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Thus corrosion of Magnesium in a aqueous solution is mainly a cathodic reaction in 

which hydrogen evolves [19]. With the supply of oxygen through electrolyte, the 

electrical resistance of the alloy is increased permitting local cathodic reaction. This 

oxygen reduction together with hydrogen evolution is termed as “negative difference 

effect” [11][12][13][19] and occurs primarily in base metals.

The corrosion reaction can be understood from the following equations [8],

Anodic Reaction:

Mg Mg2+ + 2 e~

Cathodic reaction:

2H20  + 2 e" 2H2 T + 2 OH

The total reaction:

Mg2+ + 2H20  = Mg(OH)2 + 2H2 t

2+
where Mg -  Magnesium ions

e' -  Electrons released 

H20  -  Water 

OH~ -  Hydroxide ions 

2H2 -  Hydrogen

Mg(OH)2 -  Magnesium hydroxide

It can be seen from the above equations that, Magnesium releases 2 electrons on 

reaction with water. These excess electrons split the water molecule into hydrogen 

and hydroxide ions. Now the hydroxide ions react with the electropositive magnesium 

ions to form magnesium hydroxide.

2.6.2 CORROSION EFFECT DUE TO ALLOYING ELEMENTS

During the early days of magnesium alloy development, it was noticed that the 

alloying materials and various heat treatments affected the corrosion properties of the 

alloy. It was Hanawalt et al [3][ 19] who demonstrated that addition of iron, copper 

and nickel in portions of 170, 1300 & 5 ppm, the corrosion rate of “pure” magnesium 

increased rapidly. It was later found that the iron had a huge influence on the
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corrosion characteristics of pure magnesium. Thus the amount of these three 

impurities or “tolerance limits” [19], as the researchers called it, controls the 

corrosion performance of the alloy. The following are some of the generalisation 

results seen by investigators over a period of time,

• Alloying element reduces electrode activity of pure magnesium alloy 

decreasing the rate of corrosion [19]

• The tolerance limits change with the introduction of metals like Aluminium 

reducing the impact of iron.

• Addition of Manganese and Zinc to Mg-Al alloy system reduced the corrosion 

rate considerably.

It has been seen that chloride solutions corrode magnesium readily. An immersion 

test in a chloride solution affects the corrosion performance of magnesium alloys 

considerably. It was noticed that when the alloy was heat treated, a fine “sub- 

microscopic” [3] structure was formed accompanied by an increase in corrosion rate.

Thus Zeng et al [8] in their review paper say that the poor corrosion performance of 

magnesium alloy is due to

• “The oxide films forming on the surface are not perfect and protective”

• “Galvanic or bi-metallic corrosion can be caused by impurities and second 

phases”

2.6.3 TYPES OF CORROSION

The following are the common types of corrosion mechanisms which magnesium 

alloys are susceptible. This section is from Zeng et aVs review paper [8] on corrosion 

of magnesium alloys.

1. Galvanic corrosion -  or bi-metallic corrosion occurs due to the presence of

different materials in an electrolyte. In case of magnesium alloys, this can be 

interpreted as material substrate and a secondary phase. It has been seen that 

magnesium behaves as an anode and the alloying elements behave as a 

cathode thereby completing the electrochemical process of corrosion.
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2. Pitting corrosion -  occurs in magnesium due to the presence of “chloride ions 

in a non-oxidizing medium”. It was noticed that pits were formed due to 

corrosion activity initiated due to flaws adjacent to the secondary phases.

3. Intergranular corrosion -  occurs predominantly due to the precipitates at the 

grain boundaries. Maker et al [8] said that the corrosion occurred next to the 

grains as the grains were supposed to be cathodic. However, recent studies 

showed that intergranular corrosion occurred at the grain boundary and not as 

suggested previously. It was also noticed that during the initial stages of 

corrosion, localized corrosion activity seemed to take place along the grain 

boundary at the interface of the cathodic precipitates. It was also noticed that 

ageing of AZ80 led to the decrease in the concentration of aluminium content 

in the a matrix [8]. This prevented the formation of protective oxide layer 

increasing the rate of corrosion.

4. Filiform corrosion -  occurs on the surface of the alloys by active galvanic 

cells. Investigations revealed that pitting and filiform characteristics were 

noticed in the early stages of corrosion activity on AZ91 alloy.

5. Crevice corrosion -  occurs due to the presence of moisture in narrow gaps of 

the material. Though initial investigations revealed that magnesium alloys do 

not undergo crevice corrosion, recent studies point out that there is possibility 

for this type of corrosion to occur as filiform corrosion does occur in 

magnesium. And filiform corrosion is special type of crevice corrosion.

6. Stress corrosion cracking -  occurs in heavy engineering equipments where a 

crack is formed leading to a continuous or discontinuous multiple cracks 

leading to the failure of the equipment. Air, distilled water and chloride 

solutions usually enhance this type of corrosion cracking in service 

equipments in engineering industries.

7. Corrosion fatigue -  occurs over a period of time and compliments to fatigue of 

the structure. It has been noticed over years that fatigue strength of the 

material increases with increase in grain size of the material. Studies also 

revealed that exposure of magnesium to chloride solutions affect the fatigue 

life of the structure significantly.
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2.7 RECENT ADVANCEMENTS

Though heat treatment processes have been around for a long time now, there have 

been various studies carried out on the effective heat treatment methodologies for 

existing and emerging magnesium alloys. Recent advancements can be found in this 

section which explains the need to identify a treatment process best suited for 

acquiring better corrosion performance characteristics.

There have been many studies relating heat treatment to change in microstructural 

features in turn leading to change in mechanical properties of the material. Caceres et 

al [23] investigated the effects of various solidification rates and heat treatments on 

the mechanical properties of AZ91 alloy. They measured the secondary dendritic arm 

spacing of the cast alloys with all treatments and saw that the spacing decreased with 

increase in solute. They tried to relate this change with the tensile properties of the 

material and concluded that these characteristics were a result of the secondary 

phase’s incomplete dissolution. Further the ageing treatment increased the hardness of 

the alloy. However, the important factors relating micro structure and mechanical 

properties were not completely understood.

Studies on the effect of heat treatment on corrosion performance of AZ91D material

[24] showed that solution treatment at 420°C dissolved the |3-phase completely and 

ageing at 200°C cause the precipitate to appear along the grain boundaries. It was 

noticed that homogeneous solution state had better corrosion performance in 

comparison with the aged alloy when the precipitates started appearing along the 

grain boundaries.

Ravi Kumar et al [7] processed AZ91 alloy thermo-mechanical extrusion to refine the 

alloys micro structure. They concluded that the secondary (3-phase did not affect the 

torsion behaviour corresponding to different grain sizes. Their study also supported 

the idea of fine-scale microstructures.

The superplastic condition of magnesium alloys was investigated by Vesling et al

[25]. It was seen that homogeneous solution treatment, quenching followed by 

artificial ageing lead to the formation of fine grains upon hot pressing. They 

established that the grain size depended on the ageing time and showed good
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superplastic characteristics due to the alloys fine grain structure obtained as a result of 

heat treatment.

Strengthening studies by Zhao et al [26] showed that homogenized annealing of 

AZ91 alloy at 683 K increased the strength of the alloy. It was noticed that there was 

no obvious loss of corrosion characteristics due to the single step homogenized 

annealing. Further it was noticed that the tensile strength and the elongation of the 

AZ91 alloy increased due to the heat treatment.

Bialobrzeski et al [27] suggested through his review paper that with the use of light 

weight alloys, the problems relating to the corrosion performance of those alloys need 

to be addressed. Problems relating to solubility of the alloying element, formation of 

intermetallic phases and segregation problems associated with alloy need to be 

studied in detail with respect to corrosion.

There have been various studies investigating the use of coatings as an option to 

prevent corrosion of magnesium alloys. Shigematsu et al [28] suggested a surface 

treatment process by diffusion coating on AZ91D alloy. Aluminium and Zirconia 

powder were used for the diffusion coating of the alloy. Though the thickness of the 

alloy increased, the hardness of the material remained the same.

Gray et al [29] discusses various surface coating methods such as electrochemical 

plating, conversion coating, anodizing, gas-phase coating, organic coating, etc., which 

are currently in use. He says that till date there is no single coating technology that 

has been developed to tackle the problems relating to magnesium corrosion.

It was seen by Fan et al [30] that heat treatment enhanced the mechanical properties 

of the alloy. The investigation involved comparison of as received AZ91D alloy and a 

Rheo-diecast AZ91 alloy which was developed for the production of alloys with high 

technical integrity. Various characteristics such as solidification processes, 

micro structural changes and heat treatment were considered in the research. It could 

be inferred that heat treatment did change the characteristics of the alloy there by 

suggesting that there is a possibility of corrosion characteristics of the alloy to change 

as well.

There have been reports that the influence of rare-earth materials changed the 

characteristics of the alloy. It was seen by Stanford et al [31] that the micro structural
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properties changed during the extrusion process of AZ31 and suggested that this was 

because of the alloying material. Moreover the influence of neodymium (Nd) resulted 

in the “Particle-stimulated nucleation (PSN) of recrystallization”. It was also noticed 

in the investigation that this PSN characteristic attributed to the larger particles in 

both AZ31 and ME 10 alloys and yet the texture of the alloys differed from each 

other.

Investigations were carried out by Dobrzanski et al [32] to determine the influence of 

characteristics such as chemical composition and precipitation on the micro structure 

and in turn the mechanical characteristics of magnesium alloys. It was noticed that 

there were changes in the microstructure in the as cast, solution treated and age 

hardened samples. They also estimated the chemical composition of the alloy under 

various heat treatment conditions using EDS. They reported that different heat 

treatment processes definitely changed the mechanical characteristics of the alloy.

Studies on solid mould casting of AZ91D alloy were carried out [33]. It was reported 

that casting and mould preheating temperatures had minor changes in the 

micro structural and mechanical properties of the cast alloy. It was noticed that the 

casting process in itself influenced the mechanical properties with the top fill showing 

tendency to the formation of microporosity where as the bottom fill showed better 

tensile and yield strengths.

In another investigation by Han et al [34], microstructural changes due to heat 

treatment were studied and was related to the mechanical properties. A nano-scale 

hardness evaluation was carried out using Berkovich’s nano-indentation technique. 

Both die-cast and permanent mold cast alloys were subjected to heat treatment and all 

the different secondary and ternary phases were studied and compared with the 

mechanical properties of those alloys. The results showed that age hardening 

increased the mechanical performance with increase in hardness of the alloy.

El-Amoush [35] assessed Mg-Al alloys with 5, 15 and 30% aluminium content by 

casting the alloys in the mentioned concentrations using a cold die cast injection 

moulding. It was reported that the increase in aluminium content in the alloy resulted 

in the increase in appearance of aluminium in the hydrogenation process which in 

turn resulted in increasing the hardness of the material.

28



Chapter 2

Lindemann et al [36] determined the density values for AZ91 and AM60 alloys at 

temperature range 30-500°C. Other thermo-mechanical properties were also evaluated 

and compared with the DSC signal curves for each of the alloys. The problems 

associated with the evaluation process were also discussed in the results.

Kubota et al [37] in their review paper suggest that small grain sizes were desirable as 

they produced alloys with high strength and ductility at room temperatures. They also 

suggest that with grain refinement, magnesium alloys exhibit a superplastic 

behaviour. It was reported that thermal treatments greatly influenced change in grain 

size and structure producing alloys with better mechanical properties.

Lyon et al [38] in their paper discuss the elemental composition of Elektron 21 alloy 

in detail and compare the characteristics with that of aluminium containing alloys. 

They were reports on the corrosion behaviour of E21 in comparison with AZ91D 

alloy and suggested that Nickel contributed significantly to the corrosion behaviour of 

E21 where as aluminium was the key element determining the corrosion behaviour of 

AZ91D alloy.

Kielbus [5][6] examined the effects of solution treatment and age hardening of 

Elektron 21. However primitive methods were used to analyse the amount of material 

loss by weighing the alloy before and after corrosion. This is the closest research 

found to date comparing the micro structural, mechanical and corrosion properties of 

E21 alloy.

There have however been DSC investigation studies of Elektron 21. Riontino et al 

[39] report that isothermal heat treatment at 300°C producing a hardening response 

had a strong correlation with the characteristics of the secondary phase obtained due 

to annealing. This case has been found similar to other alloys containing rare-earth 

metals. The DSC signal evolution from heat treated samples supported that there were 

changes in characteristics in of the material due to thermal treatment.

Guadarrama-Munoz et al [40] studies the electrochemical behaviour of magnesium 

anodic rods with different efficiencies by testing with two different aqueous 

soloutions, Sodium chloride (NaCl) and Calcium sulphate -  magnesium hydroxide 

(CaS0 4 -Mg(0 H)2 ) solutions. It was reported that the electrochemical behaviour of 

each of the samples differed due to their chemical composition. It was found that the
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anodic current density differed with each sample producing different electrode 

potentials suggesting that the composition of the sample played a major role in 

governing the characteristics of the magnesium samples. It was also reported that the 

main corrosion product formed as a result of the electrochemical reaction between the 

sample and 3% NaCl solution was identified as magnesium hydroxide (Mg(OH)2 ).

Studies indicate that the alloying elements play a major role in governing the 

corrosion process of magnesium alloys [41]. It has been reported that addition of rare 

earth materials improves the corrosion resistance of magnesium alloys. Heat 

treatment of such alloys with rare earth have helped in acquiring alloys with less 

corrosion activity thereby increasing the corrosion performance of magnesium.

Bobby Kannan et al [42] conducted “slow strain rate test method” (SSRT) in air, 

distilled water and 0.5wt.% NaCl solution on rare-earth magnesium alloys ZE41, 

QE22 and Elektron 21 to determine the stress corrosion cracking of the alloys. It was 

reported that of the three alloys Elektron 21 had a high corrosion cracking resistance 

in both distilled water and 0.5wt.% NaCl solution.

Investigation on ageing of AZ91D for ageing times exceeding 45 hours have been 

carried out by Song et al [43]. It has been noticed that the initial ageing at 160°C 

improved the corrosion resistance of the alloy. However when the ageing was carried 

out for over 45 hours, the corrosion rates increased suggesting that the presence of 

aluminium in the (3-phase appearing during early ageing prevented corrosion. As the 

ageing time increased, the aluminium content in the a-Mg matrix reduced 

considerable there by increasing the rate of corrosion of the alloy.

Recent developments in the corrosion studies of magnesium alloys have been 

reviewed by Song [11]. Various special corrosion phenomena such as “‘spacer 

effect’, ‘passivation effect’, alkalization effect, ‘poisoning effect’, ‘short-circuit 

effect’, ‘galvanic NDE’ [11] have been addressed in his review. Recent concepts such 

as “anodic dissolution of magnesium”, “negative difference effect (NDE)” have also 

been reviewed. Factors such as rate of corrosion, the general corrosion behaviour of 

magnesium alloys, effect of alloy composition and micro structure, etc have been 

discussed by Song [11]. The review suggests that the hydrogen evolved during 

corrosion process behaves strangely and this is due to the anodic dissolution. This is 

primarily responsible for the negative difference effect as suggested by Song. Further
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the author suggests that a suitable method should employed to measure the amount of 

hydrogen evolved in order to estimate the rate of corrosion of the alloy, as the 

corrosion process primarily involves hydrogen evolution.

In a previous publication by Song et al [12], the authors discuss the corrosion process, 

corrosion mechanisms and corrosion thermodynamics of magnesium and its alloys. 

They also introduce the NDE phenomena [11][12][13][19] due to the irregular anodic 

dissolution of hydrogen during corrosion of magnesium alloys. They predict that the 

corrosion mechanism follows four different models. The 1st model [12] is based on 

the formation of a protective film on the surface of the alloy due to NDE. As the 

current density increases, the protective film breaks down increasing the rate of 

corrosion. The 2nd model is the actual break down of magnesium into the “mono­

valent magnesium ions”. The 3rd model is the “particle undermining model” where in 

the magnesium matrix particles fall out due to the reactivity of the secondary phases 

resulting in loss of the alloy. The 4th model deals with the formation of magnesium 

hydride on the surface of the alloy. The so formed magnesium hydride formed due to 

corrosion process readily decomposes in water forming magnesium ions and 

hydrogen [12].

The research further suggests that the alloy composition, alloy phases and 

micro structure are other factors which influence the rate of corrosion of magnesium 

and its alloys. Song et al conclude that only on complete understanding of the above 

factors and electrochemical behaviour of the secondary phases can be predicted which 

in turn will lead to the development of a new generation of magnesium alloy systems 

which are corrosion resistant.

In a later publication, Song et al [13] establish various corrosion mechanisms 

supporting the previous models. They establish concepts of NDE, localised corrosion, 

influence of alloy composition, galvanic corrosion and stress corrosion cracking. 

They further suggest a way of measuring the amount of hydrogen evolved during the 

corrosion process estimating the loss of material due to corrosion. The effect of 

secondary phases in the alloying structure has also been discussed.

Atrens et al [44] says that there is a lot of interest in the “negative difference effect 

for magnesium corrosion”. The author tries to establish the concept of ‘uni-positive 

Mg+ ion’ and tries to seek evidence for the possible lifetime of Mg+ which might exist
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between metallic Mg and Mg^. Atrens et al [44] suggests that it will be useful to 

carry out various experiments to determine the anodic corrosion of magnesium alloy 

in different aqueous solutions measuring characteristics such as loss of magnesium 

alloy, amount of hydrogen evolved and the quantity of Mg*4- ions present in the solute 

at the end of the experiment.

Ghali et al [45][46] discusses in detail about the various magnesium alloy systems, 

their compositions, micro structural properties, casting processes, and corrosion 

mechanisms. He discusses the impact of the above mentioned factors on the general 

and localised corrosion mechanisms. They support previous researches suggesting 

that the poor corrosion performance of magnesium alloys resulted in galvanic 

corrosion which may have caused due to the secondary phases and impurities present 

in the alloy. Further factors such as environmental conditions, pH, agitation, 

oxygenation etc have been discussed in detail and appropriate electrochemical 

reactions have been suggested. Finally corrosion testing and the impact of 

measurement in order to design a corrosion resistant magnesium alloy have also been 

suggested.

A research carried out by Zanotto [10] focussed on the corrosion behaviour and 

methods to prevent corrosion & surface treatments in AZ31 magnesium alloys. The 

research describes in detail the corrosion behaviour of AZ31 alloy. The research 

explored the factors influencing corrosion, various corrosion mechanisms, effect of 

micro structure and protective coatings. The author concluded that the corrosion 

resistance of the alloy depended on the casting method as each method resulted in a 

different distribution and composition of phases. The corrosion reaction, the cathodic 

behaviour, the anodic behaviour, effects such as the ‘Negative Difference Effect 

(NDE)’ [10][11] have been defined in detail to establish the corrosion mechanism of 

AZ31 alloy. The author speculates that the corrosion behaviour of the AZ31 alloy is 

dependent on the characteristics of the oxide film layer formed on the surface of the 

alloy which behaves as a passive layer there by generating localised corrosion 

centres when exposed to corrosive environment. It was also noticed that when the 

aluminium content reaches 8% (by mass), the corrosion performance of the alloy 

improves. It is also highly likely that this presence of aluminium has a strong 

tendency to form the passive film. As literature suggests, magnesium is a passive 

metal and hence pitting corrosion is evident. However the presence of secondary
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phase is what governs the corrosion behaviour of the alloy. This proves the fact that 

the principle alloying elements have a huge impact on the corrosion behaviour of 

AZ31 alloy.

It has been reported that the (3-phase of AZ91 alloy acts as a corrosion barrier in one 

literature [10] where as the contrast also exists. This is dependent on the distribution 

of the P-phase particles present in the alloy (AZ91). On measurement of the current 

density of both the a & p phases, the corrosion current density was much lower for 

the p-phase in comparison with the a-phase. Thus it was noticed that the P-phase 

acted as a galvanic cathode accelerating the corrosion process when the 

concentration of the alloying elements in the P-phase was low and acted as an anodic 

barrier when the concentration of the alloying elements in the P-phase was higher.

Song et al [47] conducted a study on the effect of various treatments including heat 

treatment on the corrosion characteristics of magnesium alloy AZ31 sheets. As 

received the AZ31 sheets were found to have poor corrosion characteristics which 

improved on surface grinding and acid cleaning. However sandblasting deteriorated 

the corrosion performance. The authors suggest that this could be because of the 

ferrous impurities present on the surface. Further when the alloy was subjected to 

heat treatment, the rate of corrosion increased. This performance was influenced by 

the change in grain size and the presence of inter-metallic particles along the grain 

boundary.

Research on the effect of solution treatment and ageing of Mg-3Zn magnesium alloy 

was published by Liu at al [48]. During the solution treatment of Mg-3Zn, the zinc 

elements completely dissolved in the a-Magnesium matrix and started to reappear as 

fine layers along the grain boundaries during ageing. Corrosion analysis showed that 

the solution treatment improved corrosion resistance of the alloy where as the rate of 

corrosion increased due to ageing. The authors suggest that this deterioration in 

corrosion performance during ageing is due to the reappearance of zinc particles in 

the precipitate along the grain boundaries.

In a previous study by Lunder et al [49], corrosion performance of mold-cast AZ91 

magnesium alloy was monitored for as received, solution treated and age hardened 

condition. A standard corrosion analysis by immersing the samples in 5% NaCl 

solution for 24 hours and then determining the weight loss of material was carried
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out. It was seen that the rate of corrosion was slow in the case of artificially aged 

sample in comparison to the as received and solution treated samples. It was noticed 

that the aluminium rich cores in the P-precipitate was highly anodic thereby 

preventing corrosion in those areas. This meant that the magnesium rich a-matrix 

behaves as a cathode there by corroding readily. This would possibly explain the 

slow corrosion rate of aged sample in comparison with its counterparts where the p- 

particles were unevenly distributed in the as received condition and the absence of 

aluminium rich cores in the homogeneous solution treated condition. The authors 

concluded that the corrosion resistance seen in the alloy as a result of heat treatment 

was dependent on the p-phase and magnesium acted as a strong cathode in the 

presence of aluminium which also added to the poor corrosion resistance of the 

alloy.

Corrosion studies on magnesium alloy AZ91 were carried out using corrosion maps 

which represented the ‘electrode potential’ and ‘chlorine concentration’ [50], Wang 

et al [50] carried out the investigation on the behaviour of AZ91 in dilute NaCl 

solutions. It was noticed that the corrosion was dominant in the a-phase which was 

magnesium rich and the intact boundary was composed of P-phase particles. This is 

because of the more ‘negative free corrosion potential’ of the primary a-phase 

particles. It was noted that the corrosion rate could be influenced by the micro- 

galvanic coupling between the primary and secondary phases. It was also noticed 

that chlorine ion (Cl ) had a great tendency to penetrate the hydroxyl film layer 

thereby influencing the rate of corrosion in turn resulting in the formation of a 

passivation zone. There was formation of surface films in these passivation zones, 

which later became local centres of corrosion thereby increasing the overall rate of 

corrosion. The surface morphology patterns confirmed the presence of various 

corrosion products in the surface film in the corroded area.

The above literature clearly indicates the need to carry out corrosion studies on light 

weight alloys to understand the performance characteristics of these modem, light­

weight magnesium alloys with the help of modern techniques such as Scanning 

vibrating electrode technique (SVET) which in turn will help aid effective utilization 

of these alloys. Reduction in weight will in turn save energy and reduce emissions in 

the transport industry.
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3. EXPERIMENTAL TECHNIQUES

The current research deals with different experimental techniques to study and induce 

changes in characteristics o f  commercially available magnesium alloys and monitor 

the changes effectively by various tools. Similar experimental techniques have been 

used for the characterization o f  magnesium alloys AZ31, AZ91 and ELEKTRON 21.

The chemical composition o f  AZ31 alloy as described by Zhang et al [51] is as 

follows. (Table 3.1)

Table 3.1 Chemical composition o f  AZ31 magnesium alloy (wt %) [51]

Al Zn Mn Si Fe Cu Ni Mg

3.2 0.11 0.30 0.014 0.0015 0.0021 0.0009 Balance

The chemical composition o f  AZ91 alloy as obtained by Lunder et al [49] is as 

follows (Table 3.2)

Table 3.2 Chemical composition o f  AZ91 alloy as obtained by spectrographic
analysis (wt %) [49]

Al Zn Mn Si Fe Cu Ni Mg

8.6 0.73 0.17 0.02 0.009 0.001 0.001 Balance

The chemical composition o f  Elektron21 alloy is as follows (Table 3.3) [5]

Table 3.3 Chemical composition o f  Elektron 21 alloy (wt %) [5]

Gd Nd Zr Zn Mn Fe Ag TRE Mg

1.2 2.7 0.49 0.4 0.001 0.003 0.01 4.2 Balance

Where

Al -  Aluminium 

Zn -  Zinc 

Mn -  Manganese 

Si -  Silicon
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Fe -  Ferrous 

Cu -  Copper 

Ni -  Nickel 

Mg -  Magnesium 

Gd -  Gadolinium 

Nd -  Neodymium 

Zr -  Zirconium 

Ag -  Silver

TRE -  Traces of other rare earth materials

These experimental evaluation techniques have been described in the current chapter.

3.1 M ICRO STRUCTURAL EVALUATION

Micro structural evaluation or Metallography forms the first step in the 

characterization of the alloys. There are two stages involved in evaluating the 

microstructure of the specimen. They are surface preparation and microscopy 

analysis.

3.1.1 SURFACE PREPARATION

This research involved the use of samples cut from alloy ingots. The process involved 

use of sand papers of various grit sizes (265pm, 100pm, 20pm) for coarse to fine 

grinding of the sample surface. Then the sample was subjected to polishing using 

polishing wheels. Initially a 5 micron (pm) paste was used to polish until most of the 

visible scratches disappeared. It was then polished with a 1 micron (pm) paste to get a 

high quality polish / mirror finish to the surface. Care was taken to use different 

polishing wheels in order to prevent further scratching on the sample due to particle 

size of the polishing paste and lubricating oil was used during polishing. The finished 

sample surface was washed with a detergent to remove any particles which were still 

stuck to the specimen and was cleaned with ethanol / acetone immediately to remove 

any water / moisture being left on the surface of the sample. The sample was dried 

immediately by a blower. This ethanol / acetone wash was done to prevent tarnishing 

patters appearing on the polished surface as magnesium has a high affinity to 

moisture and starts tarnishing at a rapid pace. Care was taken not to touch the
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polished surface of the sample as fingerprint impression could easily appear on the 

surface of the sample.

3.1.2 MICORSCOPY

The finished sample was then used to determine the micro structure mainly using 

Reichert Jung MeF3 optical microscope with Olympus E330 camera. The sample is 

placed in the aperture of the microscope table with the polished surface facing 

downwards. This is a unique microscope which used a fine light beam to focus onto 

the polished surface of the specimen. The Reichert MeF3 microscope has a very low 

magnification (x2) and also has option to look at the micrograph / micro structure at 

different viewing modes. The images were captures using an Olympus E330 camera.

3.2 TIME LAPSE PHOTOGRAPHY EXPERIMENT

The time lapse photography gave a good estimation of the corroded area there by 

giving an insight to the amount of metal loss. A sample with a known, exposed area 

was immersed in 5 percent Sodium chloride (NaCl) solution1. A camera was set 

above the immersion and photographs were taken on a continuous basis at regular 

intervals.

The sample was polished as per the details mention in the previous section. (Refer 

Section 3.1) The sample was then covered with a PVB tape exposing only a small 

section of 5mm x 5mm (25 mm2). The sample was firmly attached to a Petri dish and 

was filled to the top with the 5 percent sodium chloride solution. The Petri dish with 

sample was placed under a Nikon D70S SLR camera (Figure 3.1). The camera was 

set to a time lapse mode controlled by the computer and magnified pictures were 

taken at intervals less than 5 minutes (Figure 3.2).

1 A 5 percent sodium chloride (NaCl) solution is prepared by dissolving 50 grams o f NaCl in 1 litre
o f distilled water.
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Figure 3.1 Experimental setup o f  time lapse photography with the Petri-dish in the 
bottom and the camera lens directly over it.

The images obtained from the camera were analysed using Sigma Plot software. The 

corroded area was highlighted using Photoshop and the highlighted area was 

calculated using Sigma Plot.

Figure 3.2 The experimental setup o f  time lapse photography
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3.3 HYDROGEN EVOLUTION EXPERIM ENT

The hydrogen evolution techniques helped to quantify the amount o f  hydrogen 

evolved which in turn was used to estimate the loss o f  metal. The sample was 

polished as per section 3.1 and was taped up with the PVB tape. An area o f  30mm x 

30mm was exposed and the sample was taped in a 250ml beaker. A funnel was placed 

on top o f  the sample inside the beaker with the wide mouth o f  the funnel covering the 

exposed area and the beaker was filled with 5 percent sodium chloride solution 

(Figure 3.2). A burette filled with the sodium chloride solution was inverted and 

placed such that the stem o f  the funnel was inside the burette opening and was 

clamped to a stand. An initial reading on the burette was noted. As the surface o f  the 

sample broke down, hydrogen evolved in the form o f  small bubbles. These bubbles 

rose along the inner walls o f  the funnel through the stem o f  the funnel and into the 

burette. The volume o f  hydrogen was measures as cubic centimetre over a period o f  

24 hours. For ELEKTRON 21, since the corrosion rates were slow, a time lapse 

camera was used to take pictures o f  the burette reading. The readings were tabulated 

with respect to time and estimated accordingly.

Figure 3.3 The experimental setup for a hydrogen evolution experiment
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3.4 SCANNING VIBRATING ELECTRODE TECHNIQUE

As the name suggests the scanning vibrating electrode technique consists of a probe 

vibrating mechanically moving at a set frequency, height and amplitude over a sample 

immersed in an electrolyte. The probe senses the current density over the sample 

surface along the direction of vibration which is generated due to the current flowing 

in the electrolyte. Thus the amplitude of the vibrating head is directly proportional to 

the current density in the solution. The SVET has the ability to detect cathodic and 

anodic currents. The change in current density due to corrosion is picked up by the 

probe and its comparison with the natural vibrating frequency of the probe gives the 

actual current density of the corrosion process. This is represented by surface plots in 

the Surfer 8™ software.

Due to its robust nature SVET has found specific uses including steel, power and 

aerospace industries for corrosion investigations. Extensive corrosion investigations 

have been carried out to link micro structural changes [52][53], steels that are coated 

organically [54][55] with corrosion.

The scanning vibrating electrode technique apparatus consists of the following parts,

1. Motor stage -  controlling the movement of the SVET head in all the 3 
directions, X, Y and Z. The motor moves at steps of 2.5pm. A trip switch is in 
place if the motor stage moves to the end of their travelling limit. Care should 
be taken so that ample travelling distance is provided for the stage head to 
move.

2. Motor box -  is the main source of power to the motor stage and integrates 
computer control to the motor stage.

3. SVET head -  houses the platinum vibrating probe and the speaker. There are 
two connectors that pass signals to the probe, a 3 way panel plug from the top 
controlled by the height scan box and tip and SMC converter to the side 
sending data to the data scan box. A reference electrode is attached to the 
body of the head and this electrode must be in the electrolyte at all times 
during the test.

4. SVET tip -  is housed in the SVET head and is attached to the push rod from 
the speaker by a Teflon holder.

5. Amplifier -  provides signal from the lockin inorder to vibrate the tip.

6. Data scan box -  receives signals from the SVET tip from the SMC connector.
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7. Height scan box -  is used primarily to do height scans

8. Lockin amplifier controls the vibration o f  the SVET tip. It also receives and 
processes signals from the SVET tip.

The SVET uses a specific software called SVET 3D to operate the apparatus. The 

sample to be tested is polished as per section 3.1.1. An area o f  10 mm x 10 mm is 

exposed and the remaining sample is taped. This sample is set on to a sample table 

and is placed in the bath. Now, the sample is levelled and a height scan is performed 

to check the level o f  the sample. The software is used to input all the necessary 

dimensions and number o f  scans needed in order to cany  out the test. Then the 

prepared 5% NaCl salt solution is introduced into the bath and the experiment is 

started. As the 

electrochemical reaction 

starts, the electrode 

potential difference at 

each point on the 

exposed area o f  the alloy 

is measured and stored 

in the computer in the 

form o f  grid files. These 

grid files are then 

processed using the 

calibration data obtained

prior to the test.

The sample calibration graph was obtained by running the apparatus with a 

galvanometer prior to introducing the sample to be tested. This processed data in grid 

form gives the relative current data plot o f  the sample. The data is now assessed using 

Surfer to calculate the anodic summary thereby determining the approximate loss o f  

material in gm/m2.

The following graph is the calibration graph used to process the SVET data obtained 

as Grid note files from SVET 3D software.

* Sou rce: w w w .s w a n .a c .u k  e n g in e e r in g  m a ter ia ls  rese a r c h  c o ir o s io n a n d c o a t in g s 'sc a n n in g e le c tr o c h e m ic a lte c h n iq u e s

Figure 3.4 The experimental setup o f  Scanning Vibrating
. • *

Electrode Technique. Source Swansea University website .
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Figure 3.5 Calibration plot for SVET analysis -  SVET Tip Frequency : 0.04V RMS

For the analysis of SVET data, the instrument must be calibrated periodically in order 

to monitor the change in measured voltage before the sample is introduced for testing. 

In order to check the voltage response of the equipment, controlled applied current 

densities are compared with the help of a tea pot cell. When there is a flow of current 

in the electrolyte, a voltage density is picked up by the vibrating tip. Now the positive 

electrode is connected to the galvanostat and the introduced into the tea pot cell in the 

elctrolyte bath. The negative electrode is intrduced into the bulk electrolyte. The 

SVET tip is lowered into the orifice of the spout of the tea pot cell and the tip is made 

to vibrate at 0.04V RMS. Now the galvanostat is used to increase the current and the 

voltage response is recorded from the lockin amplifier. The process is repeated after 

reversing the cathode anode electrode in the electrolyte and tea pot cell and recorded. 

The obtained is represented in the form of the above graph. The slope of the plot 

gives the calibration factor which is used to process the data obtained from the SVET 

analysis with test sample.

The SVET system however has limitations [56]. It should be noted that the data 
obtained from the SVET is semi-quatitative due to the following assumptions

• The mass loss data is not a directly associated with the sample weight loss as a
number of assumptions were made during the integration process[56].

• The corrosion activity is considered to be constant between scans though it is
not the case in reality[56],

• The resolution is 1.5 times the scan height of 100pm [56] and will not detect
cathodes and anodes less than this stated distance.
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3.5 HEAT TREATMENT

Heat treatment both solution treatment and age hardening were performed on all the 3 

alloys viz., AZ31, AZ91, ELEKTRON 21. Heat treatment was performed in a high 

temperature furnace. The samples to be treated were cut into smaller pieces and were 

placed in a ceramic crucible at the centre of the furnace. As the solution treatment 

temperatures were high, the samples were covered with carbon black powder in order 

to prevent oxidation tracks and pits appearing on the surface of the metal. The AZ31 

and AZ91 were subjected to solution treatment at 395°C (as per ASTM handbook) 

[57] for about 20 hours until the p-phase completed disappeared. This was checked 

using the Reichert Jung MeF3 imaging microscope after polishing the sample as 

described in earlier sections. The corrosion tests, viz., Time lapse photography, 

Hydrogen evolution experiment and SVET surface maps were performed on the 

solution treated alloys. Then the solutionized samples were aged for about 48 hours at 

a temperature of about 175°C. The micro structural investigation and corrosion 

analysis was repeated on the aged alloys as mentioned in the previous sections.

ELEKTRON 21, due to its rare earth -  zirconium combination was solutionized at 

about 520°C [6][7] for about 12 hours to dissolve the eutectic phase of the alloy 

structure (P-phase). And the age hardening process was carried out at about 200°C at 

two different time periods. One was continuous ageing for 16 hours to attain peak 

ageing condition and the second was a continuous ageing for 48 hours for attaining 

over-aged condition [6][7]. Both the ageing processes are carried out so that the 

precipitates reappear in the grain structure and then allowed to grow. Rapid 

quenching thus helps in restricting the scarcely distributed precipitates along the grain 

boundaries which will help identify an appropriate treatment process for better 

corrosion properties of the alloy. The treated alloys were subjected to both 

Micro structural evaluation and corrosion investigation similar to the AZ31 and AZ91 

alloys.

It should be noted that all the alloys after different heat treatments were quenched in 

cold water immediately in order to retain the micro structural features at respective 

temperatures preventing the appearance of P-phase.
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4 .  R E S U L T S  A N D  A N A L Y S I S

This chapter deals with the results obtained as a result o f  various experiments 

performed on magnesium alloys AZ31, AZ91 and ELEKTRON 21

4.1 MAGNESIUM ALLOY AZ31

Magnesium alloy AZ31 is made up o f  4.52% Al, 0.24% Zn, and the remaining being 

magnesium. This data was obtained from Energy Dispersive X-ray spectroscopy 

analysis to determine the composition o f  the alloy. The following spectrum (Figure 

4.1) obtained from EDX spectroscopy using JOEL 35C SEM

*. Zoom ..............

^  Start) LabtoofcdVgeneialsaclVj |  ~Giaphcs Swva_________ J JJjX-R^Analyse j |p |Z o o a  I j)  15.43

Figure 4 .1 EDX Spectrum o f  AZ31 alloy (as received) at a magnification o f  x 1000
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The EDX spectrum shows the peaks in accordance with the composition with 

maximum peak as Magnesium (Mg). It can also be seen that Aluminium and Zinc are 

present in smaller portions thus confirming the composition of AZ31 alloy. The 

following is the data generated from the EDX system,

SEMQuant results. Listed at 15:04:20 on 04/02/10
Operator: Peter Davies
Client: EDX analysis
Job: Job number 47 - Dec09
Spectrum label: AZ31 xlkma medium area
System resolution = 61 eV
Quantitative method: ZAF ( 3 iterations).

Analysed all elements and normalised results. 3 peaks possibly omitted: 0.00, 0.26,
0.52 keV

Standards :

Mg K MgO 01/12/93
AIK A1203 23/11/93
ZnK Zn 01/12/93

Elmt Element Atomic

% %

Mg K 94.38 95.23

AIK 4.97 4.52

ZnK 0.65 0.24

Total 100.00 100.00

* = <2 Sigma

It should be noted that the data obtained from the EDX is in comparison with the 

element with the highest atomic number and is merely a qualitative representation of 

the elemental configuration. It does not give the exact chemical composition of the 

material under study.

4.1.1 MICROSTRUCTURAL EVALUTION

Fig. 4.2 shows the micrograph of AZ31 obtained by Watanabe et al [58]. The 

micro structure of AZ31 is made up of recrystallized grains with equal axial length of 

the crystals.
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Figure 4.2 The micrograph o f  as received AZ31 without hteat treatment.

Source: Watanabe cl al  [58]

It was noticed that the (3-phase particles were distributed along tlhe grain boundaries. 

This meant that the lower performance o f  the alloy, the mechaanical characteristics 

would be poor. This could be because o f  such inter-dendritiic accum ulation of the (3- 

phase along the grain boundaries o f  the alloy.

4.1.2 TIM E LA PSE P H O T O G R A P H Y  E X P E R I M E N T

The time lapse photography for AZ31 alloy without any heat treaatment was initiated. 

The following are the pictures (Figure 4.3 (a) -  (f)) o f  AZ3U without any heat 

treatment. The sample with an exposed area o f  25 mm (5m m  x 5imm) was placed in a 

Petri-dish and filled with 5% NaCl salt solution.

Figure 4.3 (a) At Time = 0 minutes Figure 4.3 (b) At Time = 5 minutes
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Figure 4.3 (c) At Time = 30 minutes Figure 4.3 (d) At Time = 1 hour

Figure 4.3 (e) At Time = 2 hours Figure 4.3 (0  At Time = 3 hours

Figure 4.3 (a) -  (f) Time lapse experimental data o f  as received AZ31 alloy.

Figure 4.3 (a) is the picture taken at the start o f  the time lapse experiment. It can be 

inferred from the figure 4.3 (b) that a thin white oxide layer has been formed. A 

magnified picture o f  figure 4.3 (b) revealed that there was a distinctive pattern o f  the 

white layer which could be interpreted as oxide layer formed due to the 

electrochemical reaction. It was also noticed that the appearance o f  the oxide layer 

was instantaneous within 5 minutes from the stall o f  the experiment.
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Figure 4.4 The magnified picture o f  Figure 4.3 (b)

Further it was noticed that the surface breakdown was instant and the rate o f  corrosion 

was rapid within the first 30 minutes o f  the start o f  the experiment. This was inferred 

from Figure 4.3 (c). From then onwards, there was formation o f  localized corrosion 

centres which followed the pattern along the surface area o f  the exposed sample. 

These localized corrosion centres could be seen in the form o f  big bubbles formed as 

a result o f  a stream o f  small bubbles on the surface o f  the alloy. These bubbles are due 

to the electrochemical reaction o f  the salt solution and the alloy. It was noticed that 

the coiToded part stayed dormant for a while and then started corroding again on 

further formation o f  oxide layer. (Refer to Figure 4.3 (e) and Figure 4.3 (0).

The time lapse experiment was repeated for solution treated and a fully aged AZ31 

alloy. The following are the images obtained for the solution treated and age hardened 

samples o f  A Z31 alloy.

48



Chapter 4

SOLUTION TREATED A Z31 AGE HARDENED A Z31

Figure 4.5 (a) At Time = 0 minutes Figure 4.6 (a) At Time = 0 minutes

Figure 4.5 (b) At Time = 2 minutes Figure 4.6 (b) At Time = 10 minutes

Figure 4.5 (c) At Time = 1 hour Figure 4.6 (c) At Time = 1 hour
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Figure 4.5 (d) At Time = 2 hours

Figure 4.5 (e) AT Time = 3 hours Figure 4.6 (e) At Time = 3 hours

Figure 4.5 (a) -  (e) Time lapse images o f  Solution treated AZ31 alloy 
Figure 4.6 (a) (e) Time lapse images o f  Fully aged AZ31 alloy

It can be seen in Figure 4.5 (a) the electrochemical reaction between the AZ31 

solution treated sample and 5% NaCl solution is initiated immediately. The first 

visible surface breakdown occurs within 2 minutes o f  start o f  the experiment (Fig. 4.5 

(b)). On the other side, it takes about 10 minutes for the age hardened AZ31 sample 

for the surface to breakdown. It should be noted that the solution treated sample reacts 

quickly and corrodes the area completely within a few hours (Figure 4.5 (a) -  (e)). 

And on the other hand, the age hardened sample corrodes steadily and takes a bit 

longer to corrode completely (Figure 4.6 (a) -  (e)). In both case, it can be seen that 

formation o f  localized corrosion spots appear at various parts o f  the exposed area.

Figure 4.6 (d) At Time = 2 hours
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4.1.2.1 SIGMAPLOT ANALYSIS

The images obtained from the time lapse photography was used in determining the 

approximate corroded area. As mentioned in section 3.2, the corroded area was 

highlighted using Photoshop. The corroded area of the sample at various time 

intervals was determined using Sigma plot. The following is the data obtained from 

Sigma plot.

Table 4.1 The corroded area of AZ31 under different heat treatment conditions over a 
period of 5 hours evaluated using Sigma plot

Time in hours
Corroded area in x 1 O'5 m2

AZ31 as received AZ31 Solution treated AZ31 Age Hardened

0 0 0 0

0.033 0.137

0.05 0.0021

0.25 0.22

1 0.41 1.85 1.68

2 1.22 2.15 2.19

3 1.49 2.01 2.38

4 1.83 2.2 2.36

5 2.05 2.27 2.4
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Figure 4.7 -  Graph showing rate o f  corrosion expressed in terms o f  corroded area
evaluated using Sigma Plot

The above graph (Figure 4.7) shows the rate o f  corrosion for AZ31 alloy with and 

without heat treatment. It can be seen that the rate o f  corrosion is quite steady in case 

o f  AZ31 without any heat treatment where as the solution treated and the age 

hardened samples o f  A Z 31 corrode quite quickly.

4.1.3 H Y D R O G E N  E V O L U T IO N  E X P E R I M E N T

The A Z 3 1 sample was subject to hydrogen evolution experiment. The experiment was 

set up as per section 3.3 from the previous chapter. An area o f  30mm x 30mm was 

exposed to the 5% NaCl salt solution. The data obtained is in cubic centimetres and is 

converted into number o f  moles o f  hydrogen evolved using the ideal gas law formula.

According to ideal gas law,

P x V  1.01325 x 105 x V  x 10 6 „ , ^  5 „
n = --------= ----------------------------------- = 4.1592 x 10 x E mol

R x T  8 .314472x293

Where

n -  Number o f  moles o f  hydrogen evolved (mol)

P  -  Pressure (x 105 N/m~)

V -  Volume o f  hydrogen collected in the burette (cm ’)
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R -  Gas constant (J/K/mol)

T -  Temperature (K)

On substituting the value of V in cubic centimetres, we get the number of moles of 

hydrogen evolved. The following table gives the data obtained during the experiment 

in terms of number of moles of hydrogen evolved.

Table 4.2 Data obtained from hydrogen evolution experiment conducted on AZ31 
alloy with and without heat treatment

Time in Hours
Hydrogen Evolved in x 10"̂  moles

AZ31 as received AZ31 Solution treated AZ31 Age hardened

0 0 0 0

1 1.25 5.4

1.58 4.98

2 4.15 12.04

2.78 11.21

3 8.72 18.69

3.47 13.29

4 12.04 22.84

4.75 14.95

5 14.54 25.75

5.42 15.78

6 16.4 27.82

6.5 17.03

7 18.27 30.73

7.58 18.27

8 19.93 32.81

8.85 19.93

9 22.01 34.88
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Figure 4.8 A graphical plot representing the number o f  moles o f  hydrogen evolved
from an A Z 31 sample

The tabular column (Table 4.2) and graphical plot (Figure 4.8) represents the amount 

o f  hydrogen evolved over a period o f  9 hours. It can be seen from the above graph 

that an age hardened sample evolves more hydrogen than the sample without heat 

treatment and the sample with solution treatment.

4 .1.4 SVET A N A L Y S IS

As per section 3.1.1. the surface o f  the sample was polished. A 10mm * 10mm area 

was exposed to 5 % NaCl solution in the salt bath as described in 3.5. The SVET 

apparatus was calibrated before the sample was subjected to testing. The experiment 

is initiated after the height scans were checked as per section 3.5.

Using the grid volume calculator in Surfer, the negative (cut) value was found from 

the data generated from SVET. This negative value represents the anodic current (in 

micro amps. pA) picked up by the SVET probe as the scan was initiated.

The loss o f  magnesium metal over the period o f  the experiment can be determined as 

follows,

1. The current per unit area is first determined.
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J  x 1 x 10-6 ,
MeanJ a = —------------Aim

Area

Where Ja -  is the anodic current value obtained from Surfer (pA)

Area -  Area exposed in During the SVET (m2)

2. Then the average scan time Tavg of the experiment is determined using the 

following formula,

T°'*= ^ x60sec

Where T -  Total time taken to finish the experiment (in minutes)

A -  Total no. of scans

3. Now the anodic current is multiplied with the average scan time and divided 

by Faraday’s constant to get loss of metal alloy in mol/m2,

MeanJa x T ,
Loss of material = -----------------  mol/m

F

Where Mean Ja -  Anodic current obtained in (A/m2)

Tavg -  is Avg. Scan time (sec)

F -  Faraday constant (F= 96,500 Coul/mol)

4. Now the loss of magnesium can be determined in g/m2 by multiplying the loss 

of material data obtained previously with the relative atomic mass of 

Magnesium (= 24.3 g/mol). It should also be noted that when the alloy 

corrodes it produces a Mg2+ and hence the value has to be divided by 2.

2 2 Loss of material in g/m = Loss of material in mol/m x (24.3 / 2)
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Figure 4.9 A bar chart showing the amount o f  A Z 3 1 in g/m ' 

Table 4.3 The loss o f  AZ31 under all heat treatment conditions

Heat treatment condition Loss o f  A Z 31 in g/m '

No heat treatment 2.68

Solution treatment 1.73

Age hardened 6.56

The above data (Table 4.3) was obtained on processing the data from the SVET 

experiment. It can be seen that corrosion accelerates on age hardening as the amount 

o f  loss o f  AZ31 is high in comparison with its counterparts. Also the anodic current 

data from Figure 4.10 shows that the intensity o f  current generated during the 

electrochemical reaction is quite high in comparison with its counter pails. This 

corresponds to the loss o f  material data and the data from the hydrogen evolution 

experiment as mentioned in section 4.1.3.
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Figure 4.10 A graphical representation o f  the anodic obtained from SVET data using
Surfer for AZ31

The data obtained from SVET can be represented in the form o f  surface maps.

Figure 4.10 (a) At Time = 0 minutes
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Figure 4 .10(c) At Time = 2 hours Figure 4.10 (d) At Time = 3hours
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D ista n ce  (n u n )

Figure 4.10 (e) At Time = 4 hours Figure 4.10 (f) At Time = 5 hours
Figure 4.10 (a) -  (0  Surface map images o f  A Z 31 from SVET analysis

Figure 4.10 (a) -  (f) show surface maps o f  AZ31 without heat treatment. It can be 

seen that there are anodic peaks which represent the localized corrosion centres. 

These peaks are scattered all over the area. The image is colour coded. The peaks with 

red colour show the anodic reaction and the blue surface represents cathodic reaction. 

The SVET experiment was conducted on the samples with solution treatment and age 

hardening and the following images were obtained.

SOLUTION TREATED A Z 31 AGE HARDENED A Z 31

I)istan ce  (m m

Figure 4.11 (a) At Time = 0 minutes Figure 4.12 (a) At Time = 0 minutes

Figure 4.11 (b) At Time = 1 hour Figure 4.12 (b) At Time = 1 hour
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Figure 4.11 (c) At Time = 2 hours Figure 4.12 (c) At Time = 2 hours
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Figure 4.11 (d) At Time = 3 hours Figure 4.12 (d) At Time = 3 hours

Distance (mm)D ista n ce  (m m ) D istan ce  (m m )D ista n ce  (m in i
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D istance (mm)

Figure 4.11 (f) At Time = 5 hours Figure 4.12 (0  At Time = 5 hours

Figure 4.11 (a) -  (0  Surface map images o f  Solution treated A Z 31 from SVET data. 
Figure 4.12 (a) -  (0  Surface map images o f  Age hardened A Z31 from SVET data.

It can be seen in the SVET images above that there is a huge difference in current 

intensities due to the heat treatment. It can also be inferred that in the age hardened 

sample, the electrochemical reaction is prominent and thus corresponds with a higher 

value o f  loss o f  the alloy material.
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4.2 MAGNESIUM ALLOY AZ91

Magnesium alloy AZ91 is made up o f  10.34% Al, 0.31% Zn. and the remaining being 

magnesium. This can be seen represented in the form o f  a spectrum (Figure 4.13) 

obtained from Energy Dispersive X-ray spectroscopy (EDX) using JOEL 35C SEM

pS ta rtj  .'j L a b t o o t . l i V  j biapiciSgva________| H>'fi^Afalyai_________| j f a r i l  nltoama Pari ([jjjzooB |gj 1S45

Figure 4.13 EDX Spectrum o f  AZ91 alloy (as received) at a magnification o f  x 1000

The above spectrum (Figure 4.13) shows the elemental composition o f  as received 

AZ91 alloy taken over an area o f  40 /uni x 30 uni at a magnification o f  x 1000. The 

maximum peak is the Magnesium composition. It can be seen that the amount o f  

aluminium present is about 9% and higher in the spectral image in comparison with
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that of AZ31. (See Figure 4.1) The following is the data generated from the EDX 

system,

SEMQuant results. Listed at 15:21:29 on 04/02/10
Operator: Peter Davies
Client: EDX analysis
Job: Job number 47 - Dec09
Spectrum label: AZ91 xlkma medium area
System resolution = 61 eV
Quantitative method: ZAF ( 3 iterations).

Analysed all elements and normalised results.

4 peaks possibly omitted: 0.00, 0.26, 0.52, 2.54 keV

Standards :

Mg K MgO 01/12/93

AIK A1203 23/11/93

ZnK Zn 01/12/93 

Elmt Element Atomic 

% %

Mg K 87.89 89.35 

AIK 11.28 10.34 

ZnK 0.82 0.31

Total 100.00 100.00 

* = <2 Sigma

4.2.1 MICROSTRUCTURAL EVALUTION

Fig. 4.14 shows the micrograph of AZ91 obtained by Lii et al [59]. It can be inferred 

from the microstructure that the AZ91 alloy is made up of a-magnesium matrix and 

distributed P-precipitation forming the secondary phase along the grain boundary.

62



:_*r

0. a -  pbasfc
• \  , « > B

'  X  \  ‘ - X  ' r * '
|> - phase ^ H r  • V  v  .

tf4 ffc o’̂ «  v.
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Figure 4.14 Micrograph o f  AZ91. Source: Lit et al [59]

The microstructure for AZ91 shows the distribution o f  the different phases in the 

alloy. This distribution governs the mechanical and corrosion characteristics o f  this 

alloy.

4.2.2 TIME LAPSE PHOTOGRAPHY

The time lapse photography for AZ91 alloy without any heat treatment was initiated. 

The following are the pictures (Figure 4.15 (a) -  (e)) o f  AZ91 without any heat 

treatment. As mentioned in the previous sections (Section 3.2 & 4.1.2) the sample 

with an exposed area o f  25 mm2 (5mm x 5mm) was placed in a Petri-dish and filled 

with 5% NaCl salt solution and the camera was stalled in the time lapse mode. The 

follow'ing are the images obtained at various time intervals.

Figure 4.15 (a) At Time = 0 minutes Figure 4.15 (b) At Time = 3 minutes
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Figure 4.15 (e) At Time = 10 hours 
Figure 4.3 (a) -  (e) Time lapse experimental data o f  AZ91 alloy with no heat

treatment

It can be seen in the above images that the surface breakdown occurs within 3 minutes 

o f  initiating the experiment. However, the rate o f  corrosion is quite slow which can be 

interpreted from the corroded area. The time lapse experiment was repeated for the 

solution treated and frilly aged AZ91 alloy and the following images were obtained.

SOLUTION TREATED AZ91 AGE HARDENED AZ91

a*. *•

Figure 4.16 (a) At Time = 0 minutes Figure 4.17 (a) At Time = 0 minutes
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Figure 4.16 (b) At Time = 7 minutes Figure 4.17 (b) At Time = 10 minutes

Figure 4.16 (c) At Time = 3 hours

Figure 4.16 (d) At Time = 6 hours Figure 4.17 (d) At Time = 6 hours

Figure 4.17 (c) At Time = 3 hours
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Figure 4.16 (e) At Time = 10 hours Figure 4.17 (e) At Time = 10 hours

Figure 4.16 (a) -  (e) Time lapse images o f  Solution treated AZ91 alloy 

Figure 4.17 (a) -  (e) Time lapse images o f  Fully aged AZ91 alloy

The electrochemical reaction between the 5% NaCl solution and the heat treated 

alloys starts immediately as soon as the salt solution comes in contact with the alloy 

samples (Figure 4.16 (a) & Figure 4.17 (a)). The surface breakdown in both the 

solution treated and the age hardened samples is about 7 minutes (Figure 4.16 (b)) to 

10 minutes (Figure 4.17 (b)). It can be seen that in case o f  the solutionized AZ91 alloy 

(Figure 4.16 (c) -  (e)), the corrosion is quite rapid with the formation o f  multiple 

localized corrosion centres whereas the fully aged sample the corrosion rate is very 

slow.

4.2.2.1 SIGMA PLOT EVALUATION OF AZ91 ALLOY

A sigma plot evaluation o f  all the AZ91 sample images both with and without heat 

treatment can be represented graphically as follows,
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Table 4.4 The corroded area of AZ 91 with different heat treatments over a period of
10 hours evaluated using Sigma plot

Time in hours
1 ' "" " ... .................. ■2T'"' ' T""' "

Corroded area m x 10’ m

AZ91 as received AZ91 Solution treated AZ91 Age hardened

0 0 0 0

0.05 0.09

0.12 0.2

0.17 0.05

1 1.15 1.13 0.57

2 2.54 3.52 1.63

3 4.24 4.15 2.11

4 5.04 4.96 2.68

5 6.1 5.74 2.87

6 6.87 6.57 3.22

7 7.45 8.72 3.51

8 9.59 9.72 3.79

9 10.86 1.11 3.96

10 13.49 1.27 4.29
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Figure 4.18 -  Graph showing rate o f  corrosion expressed in terms o f  corroded area o f  
AZ 91 alloy under different heat treatment conditions evaluated using Sigma plot.

It can be seen from the above graph (Figure 4.18) that the area o f  AZ91 alloy 

corroded is less in case o f  fully aged sample where as the sample without any heat 

treatment and the sample with solution treatment behave in a similar way and were 

found to be much higher that the fully ages AZ91 alloy sample.

4.2.3 H Y D R O G E N  E V O L U T IO N  E X P E R I M E N T

A hydrogen evolution experiment was conducted on all samples o f  AZ91 alloy. The 

experiment was set up as per section 3.3 from the previous chapter and assessed as 

mentioned in section 4.1.3. An area o f  30mm x 30mm was exposed to the 5% NaCl 

salt solution. The data obtained is in cubic centimetres and is converted into number 

o f  moles o f  hydrogen evolved using the ideal gas law formula. The following is the 

data obtained from the experiment which represents the number o f  moles o f  hydrogen 

evolved.
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Table 4.5 Data obtained from hydrogen evolution experiment conducted on AZ91 
alloy with and without heat treatment

Time in Hours
Hydrogen evolved in x 1 O'5 moles

AZ91 as received AZ91 Solution treated AZ91 Age hardened

0 0 0 0

1 0.42 3.12 0.83

2 1.04 5.40 1.45

3 1.66 7.48 1.87

4 2.49 10.8 2.49

5 3.32 14.95 3.32

6 4.15 19.1 3.74

7 4.78 23.26 4.36

8 5.4 27.82 4.57

9 6.23 32.81 4.98

10 6.85 37.38 5.4

11 7.48 42.98 5.81

12 8.31 48.17 6.02

13 9.14 53.57 6.23

14 9.97 58.14 6.44

15 10.59 63.12 6.65

16 11.21 68.32 7.06

17 12.04 73.1 7.28

18 12.87 78.08 7.48

19 13.5 83.06 7.89

20 14.33 92.4 8.72
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Figure 4.19 A graphical plot representing the number o f  moles o f  hydrogen evolved
from anAZ91 sample

The above graph clearly shows that the amount of hydrogen evolved from the solution 

treated AZ91 is high in comparison with the fully aged sample. This shows that the 

corrosion performance o f  aged AZ91 sample is better than its counterparts. The time 

lapse experiment images also show that the reaction rate o f  salt solution and the 

solutionized AZ91 sample is much faster than the fully aged sample.

4 .2.4 SV ET A N A LY SIS

As per section 3.1.1 and 4.1.4, the surface o f  the sample was polished and a 10mm * 

10mm area was exposed to 5 % NaCl solution. Using the grid volume calculator in 

Surfer, the cut value was found tfom the data generated from SVET. The loss o f  

magnesium metal over the period o f  the experiment was determined as mentioned in 

section 4.1.4 and following are the results obtained from the experiment for all heat 

treatment and non-treatment conditions o f  AZ91 sample.
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It can be inferred from the following data (Figure 4.20 & Table 4.6) that the 

electrochemical reaction is quite slow and o f  lower intensity in case o f  a fully aged 

sample o f  AZ91.

30

N o Heat treatment Solution tieatinent A «e hardened

Various heat treatment conditions

Figure 4.20 A bar chart showing the amount o f  AZ91 in g/n f  

Table 4.6 The loss o f  AZ91 under all heat treatment conditions

Heat treatment condition
- —;1 " - T

Loss oi AZ91 in g /n f

No heat treatment 15.05

Solution treatment 26.55

Age hardened 5.11

It can also be seen that the solution treatment increases the corrosion activity o f  the 

AZ91 alloy. The characteristics o f  the non-heat treated alloy remains in between the 

solution treated and age hardened sample. The anodic activity o f  the alloy under 

different heat treatment conditions was also evaluated using Surfer and the following 

result was obtained. (Figure 4.21).
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Figure 4.21 A graphical data o f  the anodic summary o f  AZ91 alloy under various heat 
treatment conditions obtained from SVET data evaluated using Surfer

o
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■Solution treated 

Aae hardened

The data obtained from SVET can be represented in the form o f  surface colour maps 

showing the anodic and cathodic activity using Surfer.

Figure 4.22 (a) At Time = 0 minutes Figure 4.22 (b) At Time = 3 hours

D ista n ce  (n u n ) •» D istan ce (m m )
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Figure 4.22 (e) At Time = 14 hours 
Figure 4.22 (a) (e) Surface maps o f  AZ91 alloy without any heat treatment

evaluated from the data obtained from SVET experiment

The SVET experiment which was repeated for the AZ91 alloy samples with solution 

and ageing treatments can also be represented as surface maps as follows,

SOLUTION TREATED AZ91 AGE HARDENED AZ91

D istan ce

Figure 4.23 (a) At Time = 0 minutes Figure 4.24 (a) At Time = 0 minutes
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Figure 4.23 (e) At Time = 14 hours Figure 4.24 (e) At Time = 14 hours

Figure 4.23 (a) -  (e) Surface images o f  solution treated AZ91 alloy from SVET data 
Figure 4.24 (a) -  (e) Surface images o f  a fully aged AZ91 alloy from SVET data

It can be seen in the above images that the solution treated AZ91 alloy exhibits higher 

anodic activity in comparison with the age hardened one. Also the cathodic activity is 

very low in for the Fully aged sample in comparison with the solution treated alloy 

sample. Further analysis and discussion o f  the results is mentioned in the next chapter. 

(Chapter 5)
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4.3 MAGNESIUM ALLOY ELEKTRON 21

ELEKTRON 2 1' s composition obtained from JOEL 35C SEM consists o f  Mg 

96.68%, Zn -  0.30%, Nd -  2.30%, Gd -  0.71% and reserve o f  Zr. The following 

spectrum (Figure 4.25) is the data for the general alloy obtained from the EDX scan 

using a JOEL 35C SEM.

■ “151*1
Ful icje "1.78 I L-uuntj CUML6 5275 leV

>< I o  I

J f lS ta r l | j%Labbo(Ad\genciflls4c1V. | raphes S e v a | P|XflayAnatyct 1 Klkmarr.a-Paint | | j Z o o « 0  1552

Figure 4.25 EDX Spectrum o f  Elektron21 alloy (as received) at ><1000 magnification

In the above spectrum (Figure 4.25), the maximum peak represents the Magnesium 

(A/g) eontent. It can be inferred from the above composition that neodymium (Nd), 

gadolinium (Gd) and zinc (Zn) are present is smaller proportions. This EDX analysis 

spectrum was obtained from an area o f  40 um x 30 jum o f  the sample at a 

magnification o f  xlOOO. The following is the data obtained from the EDX system.
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SEMQuant results. Listed at 15:34:21 on 04/02/10
Operator: Peter Davies
Client: EDX analysis
Job: Job number 47 - Dec09
Spectrum label: elektron21 xlkma medium area
System resolution = 61 eV
Quantitative method: ZAF ( 4 iterations).

Analysed all elements and normalised results.
3 peaks possibly omitted: 0.00, 0.26, 0.50 keV

Standards :

Mg K MgO 01/12/93

ZnK Zn 01/12/93

ZrL Zr 01/12/93

NdL NdF3 01/12/93

Gd L GdF3 01/12/93

ThM ThQ2 01/12/93

Elmt Element Atomic

% %

Mg K 94.94 98.90

ZnK 0.62 0.24

ZrL 1.03 0.29

NdL 2.47 0.43

Gd L 0.79 0.13

ThM 0.16* 0.02*

Total 100.00 100.00

* = <2 Sigma

4.3.1 MICROSTRUCTURAL ANALYSIS

The following is the microstructure of Elektron 21 without any heat treatment. It can 

be seen that the alloying elements are concentrated at the grain boundary represented
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by the eutectic phase. This image is obtained following procedures as described in 

Section 3.1.1 and section 4.1.1.

P -  phase c=£>

Prim ary a  -  phase c=c>

25pim

Fig 4.26 The microstructure o f  Elektron 21 at ><500 magnification using a Reichert
.lung MeF3 microscope.

4.3.2 T IM E LAPSE P H O T O G R A P H Y

The time lapse photography experiment was conducted on a sample o f  Elecktron 21 

without any heat treatment in accordance with procedure mentioned in section 3.2 and 

the following images were obtained.

Figure 4.27 (a) At Time = 0 minutes Figure 4.27 (b) At Time = 30 minutes
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Figure 4.27 (c) At Time = 3 hours Figure 4.27 (d) At Time = 6 hours

Figure 4.27 (e) At Time = 10 hours

Figure 4.27 (a) -  (e) Time lapse photography images o f  Elektron 21 with no heat
treatment

It can be seen from Figure 4.27(b) that the surface breakdown occurs at about 30 

minutes from the stall o f  the experiment. From then on, the electrochemical reaction 

leads to the corrosion o f  the alloy in the form o f  a dendrite with corrosion following 

the microstructural pattern o f  the alloy. A thin oxide film is also seen in the image.

The Elektron 21 alloy was then subjected to heat treatment. First the samples were 

Solution treated as mentioned in section 3.5. Then the samples were aged for 16 hours 

and 48 hours to determine the corrosion performance o f  the alloy. The following is 

the data obtained from time lapse photography experiment.
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SOLUTION TREATED ELEKTRON 21

Figure 4.28 (a) At Time = 0 minutes Figure 4.28 (b) At Time - 3 . 6 7  hours

Figure 4.28 (c) At Time = 6 hours Figure 4.28 (d) At Time = 10 hours

Figure 4.28 (a) -  (d) Time lapse images o f  solution treated Elektron 21

It can be seen that as soon as the sample is exposed to 5% NaCl solution (Figure 

4.28(a)), a white oxide layer is formed which is much denser and visible to the sample 

without any heat treatment. The first surface breakdown occurs after about 3 hours 

and 40 minutes. (See Figure 4.28 (b)) From then on the corrosion o f  the sample 

occurs but at a much slower rate in comparison with the sample with no heat 

treatment. (See Figure 4.27 (a) -  (e))

The following is the data obtained from time lapse photography experiment for 16 

hours and 48 hours age hardened samples o f  Elektron 21
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16 HRS AGE HARDENED E21 48 HRS AGE HARDENED E21

Figure 4.29 (a) At Time = 0 minutes Figure 4.30 (a) At Time = 0 minutes

Figure 4.29 (b) At Time = 2 minutes Figure 4.30 (b) At Time = 50 minutes

Figure 4.29 (c) At Time = 3 hours Figure 4.30 (c) At Time = 3 hours
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Figure 4.29 (d) At Time = 6 hours Figure 4.30 (d) At Time = 6 hours

Figure 4.29 (e) At Time = 10 hours Figure 4.30 (e) At Time = 10 hours

Figure 4.29 (a) -  (e) Time lapse images o f  16 hours age hardened Elektron 21 alloy 
Figure 4.30 (a) -  (e) Time lapse images o f  48 hours age hardened Elektron 21 alloy

It can be seen in Figure 4.29 (a) that as soon as the salt solution comes in contact with 

the 16 hours aged exposed alloy surface, the reaction stalls with immediate surface 

breakdown. The next image taken within 2 minutes o f  initiation o f  the experiment 

shows various corroded spots all over the exposed surface. However, the surface 

breakdown o f  the 48 hours aged sample occurs around the 50lh minute o f  the start o f  

the experiment. This shows that the corrosion performance o f  the 16 hours aged 

sample is very low in comparison with the 48 hours aged sample.

4.3.2.1 S IG M A  PLO T E V A L U A T IO N  OF E L E K T R O N  21 A L L O Y

A sigma plot evaluation o f  all the Elektron 21 sample images both with and without 

heat treatment can be represented graphically as follows.
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Table 4.7 The corroded area of Elektron 21 with different heat treatments over a 
period of 10 hours evaluated using Sigma plot

Time in 

hours

Corroded area in x 10‘ m

E21 as 

received

E21 Solution 

treated

E21 16 hrs age 

hardened

E21 48 hrs age 

hardened

0 0 0 0.02 0

0.33 0.19

0.83 0.11

1 0.98 2.86 0.16

2 1.54 3.53 2.62

3 2.64 4.66 3.12

3.67 0.01

4 3.16 0.03 5.54 4.5

5 3.79 0.35 6.86 5.65

6 4.65 0.53 7.27 6.71

7 4.99 0.71 8.62 8.47

8 5.8 1.23 9.11 11.48

9 6.45 2.13 9.89 12.39

10 7.32 3.34 10.4 15.37
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Figure 4.31 -  Graph showing corroded area o f  Elektron 21 alloy under different heat 
treatment conditions in n r  evaluated using Sigma plot

It can be seen from the data obtained after Sigma plot analysis (Table 4.7) that the 

solution treated alloy’s corrosion performance is better than its counterparts.

4.3.3 HYDROGEN EVOLUTION EXPERIMENT

The hydrogen evolution experiment was carried out on all samples obtained with and 

without different heat treatment conditions. The following data was obtained from the 

experiment.
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Table 4.8 Data obtained from hydrogen evolution experiment conducted on Elektron 
21 alloy with and without heat treatment

Time in 

Hours

Hydrogen evolved in x 1 O’5 moles

E21 as 

received

E21 Solution 

treated

E21 16 hrs age 

hardened

E21 48 hrs age 

hardened

0 0 0 0 0

1 0.42 0.17 0.13 0

2 0.83 0.42 0.21 0.04

3 1.25 0.54 0.42 0.29

4 1.45 0.67 0.71 0.42

5 1.66 0.997 1.04 0.58

6 1.87 1.16 1.5 0.75

7 2.08 1.37 1.87 0.87

8 2.2 1.54 2.33 1.04

9 2.33 1.74 2.82 1.2

10 2.53 1.87 3.28 1.29

11 2.7 2.08 3.66 1.45

12 2.91 2.2 4.07 1.66

13 3.12 2.41 4.49 1.7

14 3.32 2.57 5.15 1.79

15 3.53 2.74 5.57 1.95

16 3.74 2.91 6.02 2.16

The data from hydrogen evolution experiment shows that the 16 hours age hardened 

Elektron 21 alloy evolves more hydrogen in comparison with other heat treatment
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conditions and the 48 hours age hardened data is the lowest. The following is the 

graphical representation o f  the tabulated results found above.

00 1

100

■No Heat treatment 

■Solution treated 

16 lir.s Aged 

48 his Aaed

Timt* in hours

Figure 4.32 A graphical plot representing the number o f  moles o f  hydrogen evolved 
from an Elektron 21 sample with different heat treatment conditions.

4.3.4 SVET A N A L Y S IS

As per section 3.1.1 and 4.1.4, the surfaces o f  all the samples were polished and a 

10mm x 10mm area was exposed to 5 % NaCI solution. Using the grid volume 

calculator in Surfer, the cut values were found from the data generated from SVET. 

The loss o f  magnesium metal over the period o f  the experiment was determined as 

mentioned in section 4.1.4 and following are the results obtained from the experiment 

for all heat treatment and non-treatment conditions o f  Elektron 21 sample.
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Figure 4.33 A bar chart showing the estimated loss o f  Elektron 21 in g/nf  

Table 4.9 The loss o f  Elektron 21 under all heat treatment conditions

Heat treatment condition Loss o f  Elektron 21 in g/n f

No Heat treatment 11.82

Solution treatment 0.55

16 hours Age hardened 13.88

48 hours Age hardened 16.8

It can be inferred from the above data (Figure 4.33 & Table 4.9) that the 

electrochemical reaction is quite slow and o f  lower intensity in case o f  solution 

treated Elektron 21 alloy. The 48 hours age hardened sample however yields the 

maximum loss o f  material suggesting that a Solution treatment is preferred for 

Elektron 21. The anodic activity o f  the alloy under different heat treatment conditions 

was also evaluated using Surfer and the following result was obtained, (Figure 4.34).
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Figure 4.34 A graphical data o f  the anodic summary o f  Elektron 21 alloy under 
various heat treatment conditions obtained from SVET data evaluated using Surfer

The data obtained from SVET can be represented in the form o f  surface colour maps 

showing the anodic and cathodic activity using Surfer.
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Figure 4.35 (a) At Time = 0 minutes Figure 4.35 (b) At Time = 4 hours
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Figure 4.35 (e) At Time = 16 hours Figure 4.35 (f) At Time = 20 hours

Figure 4.35 (a) -  (f) Surface plot images o f  Elektron 21 with no heat treatment.

The SVET analysis for Elektron 21 alloy with solution treatment and ageing was 

repeated and the data can be represented as surface maps as follows,

SOLUTION TREATED ELEKTRON 21 ALLOY

Figure 4.36 (a) At Time = 0 minutes Figure 4.36 (b) At Time = 8 hours
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Figure 4.36 (c) At Time = 16 hours Figure 4.36 (d) At Time = 20 hours

Figure 4.36 (a) (d) Surface images o f  Solution treated Elektron 21 obtained from
SVET data

In case o f  the solution treated Elektron 21 alloy, it can be seen that the anodic activity 

is almost zero which can be inferred from the anodic summary (Figure 4.34). This is 

also seen in the SVET surface maps with lower or no active anodic centres.

16 HRS AGE HARDENED E21 48 HRS AGE HARDENED E21

Figure 4.37 (a) At Time = 0 minutes Figure 4.38 (a) At Time = 0 minutes
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Figure 4.37 (b) At Time = 4 hours Figure 4.38 (b) At Time = 4 hours
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D ista n ce  (n u n ) |  5D ista n ce  (m m )

Figure 4.37 (f) At Time = 20 hours Figure 4.38 (f) At Time = 20 hours

Figure 4.37 (a) -  (0 Surface images of 16 hrs aged Elektron 21 alloy from SVET data 
Figure 4.38 (a) -  (f) Surface images o f  48 hrs aged Elektron 21 alloy from SVET data

It can be seen in the above images (Figure 4.37 & Figure 4.38) that the anodic activity 

is quite similar in both the aged samples. However it can be seen that the current 

density in case o f  16 hrs aged sample o f  Elektron 21 alloy is higher in comparison 

with the 48 hrs aged sample. This data is in accordance with the actual anodic 

summary (Figure 4.34).

Further analysis is described in the following chapter. (Chapter 5)
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5. DISCUSSION

The current research dealt with different heat treatment methods viz., homogeneous 

solution treatment and precipitation or age hardening treatment of some commercial 

and advanced magnesium alloys AZ31, AZ91 and ELEKTRON 21. The samples 

were first subjected to homogeneous solution heat treatment until the |3-phase 

dissolved completely. It was quenched in cold water to achieve quick cooling rates. 

The homogenized samples were then aged according to the ageing times mentioned in 

Chapter 3. All the samples, both as received and heat treated samples were subjected 

to Time lapse photography experiment, Hydrogen evolution experiment and SVET 

experiment. The results were assessed using Sigma plot, Excel and Surfer and the 

results were compiled in the previous chapter (Chapter 4).

5.1 MAGNESIUM ALLOY AZ31 ANALYSIS

5.1.1 TIME LAPSE PHOTOGRAPHY & SIGMA PLOT ANALYSIS

It was seen from the images obtained from time lapse photography that the surface 

breakdown was instantaneous for solution treated AZ31 alloy where as it was 5 

minutes and 10 minutes for the as received and fully aged sample of AZ31. (Refer 

Figures 4.3 (a) -  (e), 4.5 (a) -  (e) & 4.6 (a) -  (e)). However it was noticed that once 

the surface breakdown occurred, the rate of corrosion was almost similar in both the 

solution treated and the fully aged sample. This can be inferred from the data obtained 

from sigma plot analysis (Figure 4.7). It should be noted that the time lapse 

photographic technique is purely subjective and the data obtained using Sigma plot is 

purely approximate as the Sigma plot analysis is scientifically less accurate.

These results show that there is definitely a change in the micro structural 

characterisitics of the AZ31 alloy on heat treatment as suggested in the literature 

which has resulted in above corrosion characteristics of the alloy. The area calculation 

is an approximation obtained from Sigma plot analysis. It was noticed that the first 

image showed a darker image in comparison with the subsequent images. It can be 

seen in the latter images that there is a formation of a thin white flim oxide layer as 

suggested by Roberts [16]. It should also be noted that the oxide film layer is more 

visible in the as received and fully aged sample of the alloy suggesting that this 

change in characteristics could be because of the presence of inter-dendritic [3-phase.
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In other words, during solution treatment, the elemental aluminium is completely 

dissolved which leads to better oxidation resistance. However, during ageing process, 

the aluminium reappears in the 0-phase which intum leads to poor oxidation 

resistance.

5.1.2 HYDROGEN EVOLUTION ANALYSIS

It can be seen the hydrogen evolution graph (Figure 4.8) that the age hardened sample 

evolved more hydrogen than its counterparts suggesting that the corrosion rate for the 

age hardening process is much higher than suggested in the previous test. It was also 

seen that the solution treated AZ31 alloy showed better performance than the age 

hardened sample. Though the surface breakdown of the sample occurs 

instantaneously, the amount of hydrogen evolved over a period of 5 hours was found 

to be much lower for the solution treated sample in comparison with other heat 

treated samples. Oxide layer formation was also noticed during the experiment.

5.1.3 SVET ANALYSIS

The SVET analysis was carried out on AZ31 samples with and without heat 

treatment. The anodic summary data obatined as a result of the test are present in 

Section 4.1.4.

As seen from the hydrogen evolution experiment, the solution treated alloy had the 

lowest current density plot which can be inferred from the above graph (Figure 4.10). 

Further it was noticed that the age hardened alloy exhibited the highest electrode 

potential difference resulting in a higher current density plot suggesting that the 

precipitate formation increases the corrosion rate considerably in comparison with the 

homogeneous solution treated sample.

The surface map images of the fully aged alloy (Figure 4.12 (a) -  (e)) clearly show 

that the average current density over a period of time was found to be under 250 A/m2 

whereas the current density for the as received and solution treated alloy was well 

below 150 A/m2. The red peaks represent the anodic activity and the blue surface 

represents the cathodic activity. It can be seen in the fully aged AZ31 sample surface 

plot images, that the anodic peaks are formed in once the reaction progresses, it 

leaves the surface more highly cathodic. The colour contrast clearly shows that the 

corrosion reactivity is quite high in comparison with the non heat treated and solution
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treated sample. It was also noticed that localized corrosion centres were seen in all the 

samples of AZ31 except the age hardened sample.

On further evaluation of the data obtained from SVET experiment, it was found that 

the AZ31 alloy sample with age hardening treatment lost 6.56 g/m over a period of 

five and a half hours where as the sample with solution treatment only lost 1.73 g/m2 

over the same time period of five and a half hours. The amount of material lost is 

depicted in the form of a bar chart in Figure 4.9.

The results clearly indicate that there are significant changes in the alloy due to heat 

treatment. According to Zeng et al [8], ageing of the sample caused the precipitation 

of aluminium atoms (due to diffusion) along the grain boundary forming the p-phase. 

It could be possible that the fine distribution of aluminium in the a-magnesium matrix 

reduced the average concentration from 3% aluminium to a lower concentration 

around the grain boundary. This seems to have accelerated the corrosion process 

suggesting that age hardening of AZ31 alloy is not desirable. Though the solution 

treated alloy seemed to react quickly, it can be found from the hydrogen evolution 

and SVET data that this could be superficial corrosion. Further literature proves that 

the corrosion performance of the alloy AZ31 is totally dependent on the concentration 

of aluminium rich P-phase [10][49]. It is also being found in the literature that during 

the solution treatment the secondary P-phase completely dissolves and during ageing 

the p-phase starts to reappear in a distributed fashion behaving as a corrosion 

inhibitor in this case [10][50]. This probably explains the lower corrosion rate of the 

solution treated alloy in comparison with the aged alloy sample.

It was noticed that the time lapse photography was merely a photographic technique 

which was carried out over a distance equal to the focal length of the camera lens. 

This experiment however could not consider the depth of attack and could not include 

the microscopic corrosion area. It was also noticed that though the exposed area was 

taped, there was corrosion activity closed to the cut ends of the tape which could be 

inferred from the time lapse images and were not considered for corroded area 

calculations. This could be one of the reasons as to why the data obtained from sigma 

plot did not resemble the ones from hydrogen evolution and SVET.

The hydrogen evolution data is obtained from experiment where the overall corrosion 

characteristics were considered. In other words, the complete corrosion activity was
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considered to obtain the amount of hydrogen released. And in case of SVET only 

localized corrosion activity at height of 100pm is considered. This meant that any 

corrosion activity which occurs close to the alloy surface will not be picked up by the 

SVET probe and thus only localized corrosion centres were considered for analysing 

the results.

Thus the corrosion resistance in decreasing order can be written as:

AZ31 Solution treated > AZ31 as received > AZ31 Age hardened
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5.2 MAGNESIUM ALLOY AZ91 ANALYSIS

5.2.1 TIME LAPSE PHOTOGRAPHY & SIGMA PLOT ANALYSIS

It was noticed from the images obtained from the time lapse photography experiment 

that the surface breakdown for the solution treated alloy occured instantaneously 

followed by rapid increase in corrosion of the surface (Refer Figure 4.16 (a) -  (e)). 

Localized corrosion centres were formed which lead to rapid breakdown of the entire 

surface within hours of the start of the experiment. The surface breakdown for the as 

received and aged sample occured at 3 minutes and 10 minutes respectively from the 

start of the experiment. (Refer Figures 4.15 (a) -  (e) & 4.17 (a) -  (e)). It was also 

noticed that though the surface breakdown for the frilly aged AZ91 alloy occured in 

10 minutes, the rate of corrosion was much slower than it counterparts. This can be 

seen clearly in the following sigma plot analysis data (Figure 4.18).

It can be seen from Figure 4.18 that the solution treated and the as received AZ91 

alloy samples corroded at a similar rate. And the fully aged AZ91 shows a much 

lower corrosion rate in comparison with its counterparts. It was noted that though the 

initial image was darker and later a thin white oxide film layer was formed due to the 

electrochemical reaction of the salt solution and exposed sample which is nothing but 

the passive film as stated in the literature [50].

5.2.2 HYDROGEN EVOLUTION ANALYSIS

The data from Figure 4.19 was obtained from the hydrogen evolution experiment 

conducted on all the samples of AZ91 alloy with and without heat treatment.

Again it can be noticed that the amount of hydrogen evolved in case of solution 

treated AZ91 alloy is much higher than its counterparts. And the AZ91 aged sample 

evolved the lowest amount of hydrogen over a period of 20 hours. This clearly shows 

that age hardening treatment is a desirable treatment and corresponds with the data 

obtained from sigma plot analysis.

5.2.3 SVET ANALYSIS

Figure 4.21 is the anodic summary data obtained from the SVET experiment and 

assessed using Surfer. It can be seen that the solution treated AZ91 shows a high
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current density whereas the fully aged AZ91 sample shows the lowest. This data 

corresponds with the results obtained in the earlier tests, viz., Time lapse photography 

and Hydrogen evolution experiment.

Further surface images produced from SVET data using Surfer show that the 

maximum current density is under 400 A/m2 for the solution treated sample (Figure 

4.23 (a) -  (e)) which was found to be quite high in comparison with other heat 

treatment conditions. Also it can be inferred from the surface plot images for solution 

treated AZ91 alloy that once the anodic reaction was completed a highly reactive 

cathodic region was noticed. This can be inferred from the thick blue colour scale on 

the surface map image. This clearly shows that solution treatment influences an 

increase in corrosion rate of the alloy.

The bar chart (Figure 4.20) shows that the loss of magnesium in the solution treated 

alloy was about 26.55 g/m2 over a period of 20 hours where as the age hardened alloy 

only lost about 5.11 g/m2 over the same time period of 20 hours. This clearly proves 

that a homogeneous solution phase increase the rate of corrosion and hence is not a 

desirable treatment for AZ91 alloy.

The data from all the three analysis suggests that the age hardened AZ91 alloy shows 

better and desirable corrosion resistance than its counterparts. It has already been 

demonstrated by Zeng et al [8] that heat treatment definitely changes the 

characteristics of the Magnesium alloy with change in micro structure. In their 

example, they reviewed that aluminium concentration in the a-Mg matrix decreased 

from 9% to 3% in the precipitation phase of the heat treatment process. Further they 

found that continuous distribution of the precipitate in the P-phase yielded better 

corrosion resistance for the alloy with ageing which clearly is in accordance with the 

results discussed above. Wan et aVs [50] research clearly showed that the P-phase 

precipitate obtained in the micro structure due to ageing improved the corrosion 

performance of AZ91 alloy. It has been previously proven that this precipitate was 

found to be rich in aluminium which acted as corrosion barriers slowing down the 

rate of corrosion [10][49]. This clearly proves the corrosion behaviour of magnesium 

alloy AZ91 found by the experimental methods in this research.
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All the assumptions discussed in the previous section with reference to the 

discrepancies in the experimental techniques were considered.

Thus the corrosion resistance in decreasing order can be written as:

AZ91 Age hardened > AZ91 as received > AZ91 Solution treated
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5.3 MAGNESIUM ALLOY ELEKTRON 21 ANALYSIS

The magnesium alloy Elektron 21 was first solutionized at 520°C for 12 hours and 

then aged for two different contiuous ageing times. The first homogeneous solution 

sample was aged for 16 hours continuously at 200°C and the other solutionized 

sample was aged for 48 hours continuously at 200°C and then both the sample were 

quenched in cold water to retain the precipitates. Different techniques were used to 

characterize the corrosion rates of the alloy with and without heat treatments.

The presence of rare earth materials seems have controlled the corrosion behaviour of 

Elektron 21. When the as received alloy is immersed in the salt solution, a thin oxide 

film is formed which adheres to the surface preventing corrosion. When the electrode 

potential increases the surface break down occurs. In the solution treated condition, 

the eutectic phase dissolves completely there by increasing the corrosion resistance. 

This clearly explains the impact of the secondary eutectic phase present in the alloy 

structure. The reappearance of precipitate along the grain boundary during ageing 

reduces the corrosion resistance as the grain size increases.

5.3.1 TIME LAPSE PHOTOGRAPHY AND SIGMA PLOT ANALYSIS

It can be seen from the time lapse photography images from Chapter 4 that the 

surface breakdown for 16 hours age hardened sample (Figure 4.29 (a) -  (e)) is 

instantaneous where as the solution treated alloy (Figure 4.28 (a) -  (d)) takes about 

3.67 hours for the first surface breakdown. This clearly shows that the absence of (3- 

phase has improved the corrosion resistance of Elektron 21 alloy. It was also noticed 

that the solution treated alloy readily reacted with the salt solution forming a thick 

white oxide film as suggested in the previously. There is a possibility that this oxide 

film acted as a protective layer in order to prevent the corrosion of the alloy.

It can be inferred from the graph (Figure 4.31) that the rate at which corrosion took 

place in case of age hardening was quite high in comparison with the solution treated 

alloy. It was seen that once the surface breakdown occurred, the rate of corrosion in 

case of solution treated alloy was slow. The ageing process definitely contributed to 

the increase in corrosion rate. It could further be noticed that though the initial 

corrosion rate for the 48 hours aged sample was slow in comparison with the 16 hours
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aged sample, as time increased the corrosion activity seems to have accelerated due to 

the ageing process.

5.3.2 HYDROGEN EVOLUTION ANALYSIS

The data obtained from the hydrogen evolution experiment has been assesed and was 

represented in the form of a graph (Figure 4.32). It was noticed from the assessed data 

that 16 hours aged Elektron 21 sample released maximum amount of hydrogen in 

comparison with the 48 hours aged sample. This suggested that the corrosion process 

could be superficial in case of the 48 hours aged sample. It could also be noticed that 

the solution treated sample showed optimum corrosion performance with reduced 

corrosion rates.

5.3.3 SVET ANALYSIS

The following anodic summary data was obtained from the assessed SVET 

experiment using Surfer.

It can be seen from the data in Figure 4.34 that the solution treated alloy has the 

lowest average current density over a period of 20 hours. It can also be noticed that 

the 16 hours aged and the 48 hours aged sample showed similar current density 

profile. Further analysis showed that for a solution treated Elektron 21 alloy, a low 

anodic and cathodic activity was seen which could be interpreted in the form of 

surface images.

The bar chart (Figure 4.33) was obtained as a result of further analysis of the data 

obtained from the anodic summary. This data showed that the approximate amount of 

loss of hydrogen in case of a solution treated alloy was found to be 0.54689 g/m2 

where at the 16 hours and the 48 hours aged samples showed losses of 13.88 g/m2 and 

16.8 g/m respectively, suggesting that the solution treatment is more desirable for 

Elektron 21 alloy. This also can be confirmed from the low current density value of 

150 A/m2 from the surface plot images. (Refer Figure 4.36 (a) -  (d))

Thus it can be seen that heat treatment has definitely affected the corrosion

characteristics of Elektron 21. As suggested in the literature [8][10][ 16], it is quite

possible that the complete solubility of P-phase during solutionizing has improved the

corrosion performance of the alloy. Also from the corrosion rates from the above
s '.
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results, it is possible that the appearance of the P-phase precipitate during the age 

hardening process definitely increase the corrosion rate of the alloy[10]. And the 

more the ageing time, the more is the material loss which again can be inferred from 

the results obtained.

Thus the corrosion resistance in decreasing order can be written as:

E21 Solution treated > E21 as received > E21 16 hrs aged > E21 48 hrs aged
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6. CONCLUSION

The current research dealt with different heat treatment methods viz., homogeneous 

solution treatment and precipitation or age hardening treatment of some commercial and 

advanced magnesium alloys AZ31, AZ91 and ELEKTRON 21. It was noticed that all 

the experimental techniques had some limitations or factors which were not considered 

in preparing the results. The results can be summarised as follows

1. AZ31 alloy with solution heat treatment at 395°C showed better corrosion 

resistance as the age hardening process accelerated the rate of corrosion.

2. AZ91 alloy with age hardening treatment at 200°C on the contrary showed better 

corrosion resistance than the solution treated alloy due to the discontinuous 
precipitation producing fine lamellar precipiates along the grain boundary.

3. The Elektron 21 alloy with solution treatment at 520°C increased the corrosion 

resistance of the alloy possibly due to the development of a protective oxide film 
layer and the absence of P-phase precipitate.

6.1 FUTURE WORK

It is a huge challenge to assess the corrosion characteristics of these advanced 

magnesium alloys. There is a need to determine the suitable methodologies to 

characterize the corrosion characteristics of these advanced light weight magnesium 

alloys in specific Elektron 21. Studies have suggested that the influence of alloying 

material greatly influences changes in both the mechanical and corrosion characteristics 

of alloys. Further work in assessing the entire characterization of the material under 

various environmental conditions is suggested.
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