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Abstract
This thesis investigates the use of Synchronous Concurrent Algorithms (SCAs) in the 

development of safety related software, where a stricter adherence to mathematical 

correctness is required. The original model of SCAs is extended to produce abstract 

and concrete dynamic SCAs (dSCAs) that allow dynamic, but predictable, SCAs to 

be produced whose wiring maybe different at different values of a program counter. 

A relaxed implementation of the Generalised Railroad Crossing Problem is used to 

demonstrate each of the SCA models.

SCAs were originally defined by Tucker and Thompson and were restricted to 

unit-delays between modules. Hobley investigated the introduction of non-unit delay 

SCAs and how non-unit delay SCAs may be represented as unit delay SCAs. Poole, 

Tucker and Thompson introduced the concept of hierarchies of Spatially Expanded 

Systems, of which SCAs are a form. All of these tools are used and expanded upon in 

this thesis to provide a mechanism enabling an SCA representation of an algorithm 

to be transformed into an SCA representation of a computing device that implements 

that algorithm, and to be able to demonstrate correctness.

As each SCA model can be represented algebraically, this thesis provides the 

transformations as meta-algebras, i.e. algebras that can transfrom one algebra to 

another algebra.
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Developm ent
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Chapter 1 

Introduction

Software is being used in systems where a high-level of confidence in the correct 

operation of the system is required. Accidents, such as the radiation overdosing of 

patients using the Therac-25 cancer treating system ([LT93]), the overshooting of an 

Airbus A3XX aircraft at Warsaw airport ([Com94]) and the Ariane 5 rocket incident 

([Lio96]) demonstrate that care is required in the construction of such systems and 

that there is perhaps still some way to go to achieve the high level of confidence 

expected by the general public. Informally these types of systems are referred to as 

safety related systems; and these in turn are one form of a class of systems called 

high-integrity systems.

This thesis will investigate the use of a simple mathematical model that can be 

used at different levels of abstraction in the development of Safety Related Systems; 

the aim being to develop processes that have the potential to reduce the cost of safety 

related software development and minimise the introduction of errors whilst crossing 

between different mathematical models currently used.

There are many (disparate) approaches proposed in the literature that allow the 

developer of a high integrity system to understand the (safety) requirements of these 

system and then to subsequently develop the software to be used in a controlled 

manner, producing the body of evidence necessary to demonstrate the system’s correct

2



INTRODUCTION 3

operation in a well defined environment.

Techniques, such as mathematical correctness and refinement, have been developed 

by others to increase confidence that an implemented system meets its specification, 

and confidence in the correctness of a specification can be increased by using math

ematical specification techniques. All of these techniques have generally been borne 

out of research into four streams of approaches to high integrity systems: depend

ability (e.g. see the work on Predictably Dependable Computer Systems ([RLKL95], 

and [ESP94])), safety engineering (e.g. the work of Leverson ([Lev8 6 ])), security(e.g. 

financial systems) and real time systems. Each approach tackles similar problems 

of integrity demonstration but from different domain perspectives. Rushby provides 

a useful taxonomy of high integrity systems ([Rus94]), by comparing and drawing 

together the terminology used in the four approaches above.

The techniques described in the literature generally cover particular aspects in 

the development lifecycle, e.g. specifications using formal specification techniques or 

hardware components using hardware description languages. The lack of a single 

formalism for all phases implies there is additional effort required to translate and 

maintain correctness across different models if a formal approach is to be adopted 

from “cradle to grave” . This potentially increases both development costs, due to 

different skill sets per development phase, and the opportunity for error introduction, 

during the transition between formalisms at the boundary of phases. It should be 

noted that it may not be necessary, appropriate or even commercially viable to apply 

formal techniques to all stages of the development, and as is often the case in safety 

related software development the risks to humans and/or environment needs to be 

ascertained before appropriate methods are used.

A problem with many of the techniques given in the literature is that they require 

the developer to become proficient in their specialised symbolism and are often based 

on mathematical concepts beyond those with a cursory mathematical background.
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A driving motivation for this work is for it to be done in a formal notation that is 

readily accessible to engineers. Our choice of SCA meets this since:

• SCA networks have a graphical representation that allows easy understanding, 

for example a three module SCA can be represented as:

Figure 1 .1: Simple SCA

• Values output by modules in an SCA can be specified using simple equations, 

for example the output of Module 1 can be represented by an equation such as:

V\(t + 1 , a, x) = add a, x), V3(t, a, a;))

• We will show that SCAs are applicable across a hierarchy of models of differing 

abstraction, reducing the need to be an expert in many different formalisms.

In 1961 McCarthy proposed that one of the goals of computational theory should

be

“....to represent computers as well as computations in a formalism that 

permits a treatment of the relation between a computation and the com

puter that carries out the computation.” ([McC63]))

In their work on Synchronous Concurrent Algorithms, the mathematical model 

used in this thesis, Poole, Holden and Tucker presented the Integrative Hierarchy 

Problem:
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“Develop a mathematical theory that is able to relate and integrate dif

ferent mathematical models at different levels of abstraction” [PHT98]

Poole, Holden and Tucker show that the construction of a hierarchy of Spatially 

Expanded Systems (SES) ([PHT98]), of which Synchronous Concurrent Algorithms 

are a form, is possible. They provide a mathematical framework that supports the 

demonstration of equivalence between SES’s in a hierarchy. This thesis investigates 

whether Synchronous Concurrent Algorithms (SCAs), originally introduced by Tucker 

and Thompson in [TT85] and Thompson’s PhD thesis, [Tho87] (but best described in 

the 1991 Technical Report from Swansea ([TT91]) which was subsequently updated 

as the 1994 Technical Report - [TT94]) and further expanded to handle non-unit 

delays by Hobley [Hob90] can be used in the development of safety related software 

and thus fulfill McCarthy’s goal /  the Integrative hierarchy problem.

The author’s motivation for the work comes from a) his formulative career years 

in the UK Ministry of Defence dealing with the practical implementation of safety 

related systems on a variety of UK only, UK/US and European projects, and b) 

his undergraduate project that considered the implementation of dataflow architec

tures as a grid of processing elements, notably the work of Rumbaugh ([Rum77]). 

Implementations could either be as a grid architecture (e.g. The Manchester Proto

type Dataflow Architecture, [GKW85]) or a token based architecture (e.g. Arvind’s 

dataflow architecture with tagged tokens, [AP80]) - more information on dataflow 

architectures can be found in Sharpe’s work, [Sha85]. Indeed, the initial thoughts of 

the for study after his bachelors degree was to determine how a grid architecture can 

be implemented as a single processor if all elements in the grid are executed under 

some form of sequential ordering.

The first part of the author’s career, in the UK Ministry of Defence, gave an 

added aspect to these initial thoughts. During this period, he worked in a section 

focussed on safety related systems, and together with his knowledge on Synchronous
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Concurrent Algorithms (SCAs) - which he was already aware could model hardware, 

and assumed could implement the dataflow graph in a formal manner - led to the 

pondering of whether the following development path for high integrity systems was 

valid:

• Formal specification of a system in a language such as Z, or B;

• Translation of the formal specification into a functional language;

• Animation of that specification to confirm correctness of specification;

• Creation of a dataflow graph of the functional language program;

• Implementation of the dataflow graph as a SCA;

• Implementation of the target architecture as a SCA; and

• Map implementation of the dataflow graph to implementation of the target 

architecture.

Informally, a SCA consists of a set of modules that calculate and communicate in 

parallel with respect to some external clock. Data is read into an SCA at a set of input 

modules, and can be read out of the SCA at a set of output modules. SCAs can be 

specified algebraically, and can therefore be algebraically manipulated. A refinement 

methodology is provided in this thesis under which a computation represented as a 

SCA can be transformed into a SCA modelling the computation device carrying out 

the computation.

The class of systems considered in this thesis is the sub-set of real-time systems 

known as reactive systems. The definition of a reactive system is given in Harel and 

Pnueli’s work “On the development of reactive systems” ([HP85]). To summarise, a 

reactive system is defined to be a system that controls a set of actuators based on
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the values read in from some set of sensors. Figure 1.2 shows an example reactive 

system.

C o n t r o l  S i g n a l s

Environmerr:

Contro
System

Figure 1 .2 : Example Reactive System

In such a system, there is a time delay between the reading in of values from the 

sensors, the performing of some processing on those signals and the resultant sending 

of control signals to the actuators. If it is stipulated that the reading in, processing, 

and sending of these signals are co-ordinated by some external clock, then reactive 

systems map to the notion of SCAs.

This thesis will present the usual model of SCAs and will then discuss a number 

of “limitations” identified in relation to this work. To address these limitations a 

number of syntactic extensions are introduced that support the notion of refinement 

steps in safety related software development. SCAs that use these extensions are 

known as Dynamic Synchronous Concurrent Algorithms (dSCAs) and it is useful to 

distinguish between two types of dSCAs: abstract dSCAs, which allow concepts such 

as the ability to look back over greater than one time unit; and concrete dSCA, which 

contain concrete implementations of the abstract concepts of an abstract dSCA, e.g. 

looking back greater than one time unit can be modelled as a finite tuple of memory 

values. We acknowledge the work of Hobley ([Hob90]) which first introduced the 

concept of non-unit delay SCAs, and how non-unit delay SCAs may be represented
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as unit-delay SCAs, on which we build.

Each dSCA is given a defining shape, V, described in detail later, which is a 

tuple indicating the number of modules and the number of operations each particular 

module can perform for a dynamic network. By default, the defining shape of a 

Dynamic SCA directly representing a SCA with n  modules would be V =  (n, 1) 

indicating there are n  modules, each capable of performing only 1 operation. Similarly, 

the defining shape of a simple computing device with one CPU executing a program 

with n  operations would be V =  (l,n ).

This thesis takes advantage of the property of dSCAs that allow a dSCA with a 

particular defining shape to be folded into a dSCA with a different defining shape. 

Consider an algorithm which has 20 separate functions to be implemented; it could 

be implemented on a dSCA where V =  (20,1) - the usual notion of an SCA - or some 

other valid defining shape, some of which are V =  (1 0 , 2 ),V =  (5,4), V =  (4, 5),V =  

(1,20) - the last defining shape perhaps representing a single processor machine. Each 

dSCA can be algebraically specified (since they are SCAs) and thus it is hypothesised 

that it is possible to construct algebraic methods to transform between dSCAs of 

differing defining shapes.

As concrete and abstract dSCAs are SCAs with syntactic extensions, it can be 

further hypothesised that it is possible to construct algebraic methods to transform 

between SCAs and both forms of dSCAs. The transformations investigated are shown 

in Table 1.1.

Transformation R esult R esult R epresents
Start SCA SCA representation of Algorithm

1 Abstract dSCA dSCA representation of SCA
2 Abstract dSCA Abstract hardware representation of dSCA
3 Concrete dSCA Hardware implementation

Table 1.1: Transformations
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Underlying each algebraic specification of SC As and transformations is an algebra 

specification the defines the operations each module can perform, this is referred to 

as the machine algebra, or MA-

The input into the transformation process shall be a (source) SC A representation 

of an algorithm it is wished to implement on a hardware system: the computation. 

Modules in this SCA must implement a single operation from M A and the initial 

transformation (or refinement step) will take this SCA and produces an equivalent 

dSCA with a defining shape of V =  (n, 1). The next refinement step/transformation 

shapes the resultant dSCA into a shape matching the defining shape of the target 

architecture, for example, a single processor machine with defining shape of V =  

(1 ,n). The final refinement step creates a concrete dSCA from an abstract dSCA. The 

resultant concrete dSCA represents the computer that carries out the computation.

To summarise, the main tools that this thesis uses from the literature are:

• Synchronous Concurrent Algorithms ([TT94])

• Non unit delay Synchronous Concurrent Algorithms ([Hob90])

• Hierarchy of Spatially Expanded Systems ([HTT89])

and the thesis provides:

• Dynamic Synchronous Concurrent Algorithms (abstract and concrete)

• Methods for the mechanical transformation between SCAs and abstract dSCAs, 

and further, abstract dSCAs to concrete dSCAs.

It is sensible to divide this thesis into three main sections. This section provides the 

introduction, and is followed by a section that introduces the original SCA model as
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well as the syntactic extensions used to create abstract and concrete dSCAs. The final 

section introduces the refinement steps/transformations mentioned above as three 

separate transformations. Throughout this thesis the techniques are exposed through 

the use of a case study: The Generalised Railroad Crossing Problem, introduced later.

The remainder of this introductory section establishes the context of safety related 

software development by detailing the mathematical preliminaries and introducing 

the case study. Chapter 2 introduces a number of issues relating to the development 

of safety related systems, and includes an explanation of the environment tha t such 

developments take place in and highlights the applicable legislation. This chapter 

also provides a discussion on mathematical specification, correctness and refinement. 

Chapter 3 discusses the class of reactive systems and introduces the case study. Con

cluding this section is chapter 4 which presents the thesis statement, the contribution 

it is making and then describes the structure and organisation of the remainder of 

the text.



Chapter 2 

Safety R elated Software 
D evelopm ent

The processes used in the development of Safety Related Software mark a return to 

the basic mathematical methods and techniques of decidability/computability from 

which computing initially emerged. Over the years development has diversified from a 

strict mathematical basis driven by the commercial reality of producing software in an 

environment where the target is the constant reduction in (development) costs. The 

risk of developing incorrectly functioning software, introduced by a non-mathematical 

approach, has been addressed, to some extent, by the emergence of the software 

engineering discipline.

In this chapter, key moments where a mathematical basis has been fundamental 

to the development of the computer field are discussed, from Church and Turing’s 

1930’s exposition of computability to the work of Spivey and others on the formal 

mathematical specification of programs. The approach taken is not intended to pro

vide a clearly recognisable path of developments or to single out individual “heroics” , 

but rather to look at where mathematics has been applied to various stages of de

velopment and indicate those contributions we see as significant. In summary the 

class of computable functions, the progression of the computer field to computers 

and assemblers, and the development of high level languages are considered. The

11
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correctness of programs and specifications is also considered.

2.1 M athem atical Evolution of Software 
development

Class of Com putable Functions

Modern day computing stemmed from the need to address the questions posed by 

the field of mathematics known as computability theory - a topic that is addressed by 

Cutland ([Cut89]). Church ([Chu36b, Chu36a]) and Turing ([Tur36]) both identified 

models that could demonstrate the falseness of the Entscheidungsproblem - one of a 

number of problems posed by Hillbert and Ackermann in their 1928 work, “Grundzuge 

der Theoritischen Logik” ([AH28]). Both Church and Turing arrived at their solutions 

independently, Turing by introducing his logical computing machines (now known as 

Turing machines) and Church by the application of lambda-calculus. The closeness 

of each solution was identified by Kleene who stated:

“So Turing’s and Church’s thesis are equivalent. We shall usually refer to 

them both as Church’s thesis, or ... as the Church-Turing thesis” [Kle67].

The modern day understanding of Church’s and Turing’s work is that whatever can 

be calculated by a machine can be calculated by a Turing Machine. Since the precise 

class of problems that are Turing computable are known, there can be confidence 

that the computational limits of what can be implemented on/by a modern processor 

are well understood. See “Introduction to Metamathematics” chapters 12 and 13 by 

Kleene ([Kle52]) for perhaps the fullest summary of Turing computable problems.

Onto C om puters and Assem blers

The 1940’s work of von Neumann and others on computing machines (Neumann’s 

original internal work has been published in many places, for example [Neu93]) led 

to the development of devices that could be successfully programmed and allowed
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to compute on inputs - effectively allowing the implementation of the set of Turing 

computable problems as stored programs. Von Neuman’s architecture is suited to 

the implementation of Turing machines. Later work on functional languages took 

Church’s lambda-calculus forward as the basis of a machine architecture, and led 

us to the development of dataflow architectures, see ‘A dataflow Architecture” by 

Rumbaugh ([Rum77]), amongst others. Backus had views on dataflow architectures 

which were given in his paper “Can programming be liberated from the von Neumann 

Style?” ([Bac78]).

In 1949 Wilkes ([Wil49]) showed that mnemonics codes, which had recently been 

used to design programs on paper before the process of hand translation into bit

wise machine code used by machines based on von Neuman’s architecture, could be 

“compiled” by the EDSAC computer system he was using. Soon Wilkes added an 

ability for symbolic addressing ([Wil52, Wil53]) to his mnemonics, creating what is 

now referred to as assembly languages, and the programs used for translation were 

to become known as assemblers. By 1954 Backus was directing the implementation 

of assembler for the IBM 701, the Speedcoding system ([Bac54]), and it wasn’t long 

before the development of high-level languages and compilers was being undertaken, 

notably Backus and others on FORTRAN ([BBB+57]) - Backus was later to play a 

major part in the development of mathematical formalisms for languages. In this 

period Bohm ([B54]) showed that a compiler for a language could be written in its 

own language thus providing the first seeds of a potential mechanism to demonstrate 

compiler correctness via a bootstrapping mechanism.

In 1961 McCarthy proposed 5 goals in his work “A Basis for the Mathematical 

Theory of Computation” ([McC63]); these are paraphrased below:

1. To develop a universal programming language.

2. To define a theory of equivalence of computation processes.
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3. To represent algorithms by symbolic expressions.

4. To represent computers as well as computations in a formalism that 

permits a treatment of the relation between a computation and the 

computer that carries out the computation.

5. To give a quantitative theory of computation.

It is the fourth of these goals that is specifically considered in this thesis.

The D evelopm ent of Formalisms for High-Level Languages

A mathematical basis to computing was still being applied as more abstract steps 

were taken away from bitwise machine code programs. Algol 60 ([Bac59], which 

was subsequently revised as [BBG+63]) was the first high-level language to have its 

syntax formally specified using Backus-Naur Form (BNF). BNF introduced the notion 

of grammars and formal semantics into high level language development and is closely 

linked to the work on context-free grammars performed by Chomsky in his research 

into the syntax of natural languages ([Cho56, Cho59]). In 1962 Floyd showed that 

ALGOL 60 was not a context-free language; and further, that any programming 

language where all programming variables must be declared before they are used, 

and where the names of these variables can be arbitrarily long, are not context-free 

either ([Flo62]). Floyd’s result showed that most modern day programming languages 

are not context-free. The reader is pointed to Stephenson’s work on “An Algebraic 

Approach to Syntax, Semantics and Compilation” ([Ste95]) for a good understanding 

of where the field has gone since Floyds work.

Correctness of Programs

Providing formalisms for programming languages led to questions being raised on 

how to demonstrate program correctness. Floyd continued his work on languages 

looking at the semantics of programs and trying to determine how meanings could be
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assigned to programs. In his work, “Assigning Meanings to Programs” , Floyd states 

that the paper:

“attem pts to provide an adequate basis for formal definition of the mean

ings of a programs in appropriately defined programming languages, in 

such a way that a rigorous standard is established for proofs about com

puter programs, including proofs of correctness, equivalence, and termi

nation” [Flo67].

Initially Floyd considers correctness, equivalence and termination of a flowchart 

language by considering verification conditions for each component of the flowchart. 

Similar techniques were then applied to a subset of the ALGOL language by con

sidering verification conditions for semantic units, i.e. ALGOL statements. The 

complexities of a high-level language begin to become clear during its exposition, 

and Floyd states that the introduction of “compound statements with bound local 

variables..causes some difficulties” [Flo67].

Interestingly, Floyd makes a passing remark on the use of the GOTO statement 

stating that:

“transfers out of a block by go-to statements cause local variables to the 

block to become undefined” [Flo67]

Floyd also notes that his paper:

“does not say that local variables loose their values upon leaving a block, 

but that preservation of their variables may not be assumed in proofs of 

programs.” [Flo67]

Dijkstra continued the debate with his paper that identified the GOTO statement 

as being considered harmful ([Dij6 8 ]). It is easy to understand not just from Dijkstra’s
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viewpoint of creating confusing unmanageable code, but also from Floyds statements 

on the status of local variables upon leaving blocks that this type of branching is not 

welcome, and not seen, in Safety Related Software. Indeed, the 2001 ISO technical 

report on the use of Ada within high integrity systems, of which the author was the 

co-project editor, states very strongly that the goto statement is not included in high 

integrity systems since the use of goto:

“is exceptional because its use is contrary to all principles of structured 

programming. There are no circumstances in which goto can be used 

where the use of some other construct is not preferable on grounds of 

good practice, readability, and aesthetics. Given this, the use of goto 

within high integrity systems is almost not an issue and the reasons for 

not using it   are almost irrelevant.” [ISOOO] (also published in [Wea99])

An argument may be made that careful use of GOTO can be used for exception 

handling, however, the ISO guidance discourages the use of exceptions since its use 

makes verification more difficult, particularly for symbolic and functional analysis.

In this period Hoare’s paper “An axiomatic basis for computer programming” 

([Hoa69]) argued that a set of axioms and rules of inference can be gained from 

studying computer programs, and that these axioms and rules of inference can be 

used in formal proofs of the properties of computer systems. Hoare’s work introduced 

the notion of pre and post conditions, where given a precondition P , a program Q 

and a description of the result of the programs execution P , then it could be written 

that:

P \Q \R

meaning that

“if the assertion P  is true before initiation of a program Q, then the 

assertion R  is true on its completion.” [Hoa69]
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Hoare provides axiomatic rules for the majority of procedural language constructs 

including assignment, consequence, composition and iteration, and agues that:

• “When the correctness of a program, its compiler, and the hardware 

of the computer have all been established with mathematical cer

tainty, it will be possible to place great reliance on the results of the 

program, and predict their properties with a confidence limited only 

by the reliability of the electronics...; and

• ...but the practical advantages of program proving will eventually 

outweigh the difficulties, in view of the increasing cost of program

ming error” [Hoa69]

Several years later Dijkstra ([Dij75, Dij76]) introduced the concept of weakest 

preconditions and guarded commands in order to formally derive proofs of program 

correctness. Dijkstra’s 1982 book “Selected Writings on Computing: A personal 

perspective” ([Dij82]) challenged the then growing perception that formal proofs are 

only usable for small toy programs.

The late 1960’s saw the emergence of the “software crisis” and this led to the 

emergence of the field of Software Engineering (identified in [NR69]). This software 

engineering field has undoubtedly added structure and control to the development 

of software, and techniques such as Rapid Application Development have enabled 

more complex systems to be developed with a reduced number of errors, but limited 

guarantees that it is absolutely free from errors. When it comes to safety related 

software, where absolute reliance on correct operation is required, it is the author’s 

view that formal methods must be applied, albeit with an appropriate amount of 

pragmatism.

NASA researchers Butler and Finelli, at the Langley research facilities, provide ev

idence in their report “The Infeasibility of Quantifying the Reliability of Life-Critical



SA F E T Y  RELATED SOFTW ARE DEVELOPM ENT 18

Real-Time Software” ([BF93]) that the use of statistical methods, e.g. testing, is not 

feasible to ensure the reliability of high integrity systems.

A study by Hetzel ([Het84]) found that the probability of making a correct change 

is less than 50%. Hetzel identifies two main reasons why changes fail:

• “unforeseen side effects: the change accomplishes what it was supposed to, but 

also affects something that was working before.

• partial change completion: a change is applied to most parts of a system, but 

one or more parts are overlooked.” [Het84]

Sommerville ([Som95]) indicates that removing X% of software faults does not 

imply that an X% increase in reliability will be observed. Indeed Sommerville notes 

that a particular study reported only a 3% increase in reliability after the removal of 

60% of software faults. In summation, Sommerville proposes that the emphasis must 

be upon removing faults with the most serious consequences.

Formal methods offer an opportunity to ensure that a developed system meets 

its specification and that specification has resolved anomalies and omissions. How

ever, as Sommerville points out, there is a risk that program proofs derived from the 

specification may be incorrect, or based upon assumptions on the system’s environ

ment which are incorrect. Additionally, it is the author’s experience that industry in 

general see formal methods as cumbersome and expensive.

The Arianne rocket incident ([Lio96]) is an apt example of demonstrating that 

although a component may work correctly in one environment, no assumptions can 

be made about its operation in another environment. Modern safety practises require 

a safety case including statements regarding the environment the system has been 

built for to be produced.

For the sake of cost, and sanity, the use of formal methods should be targeted to 

those parts of a system where the biggest benefits will be obtained. Modern safety
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related development methodologies require a system to be engineered to minimise, 

and compartmentalise, safety related software aspects.

Dijkstra’s pre and post conditions can be seen in current safety related software 

development techniques where it is not unusual to supplement the chosen development 

languages with defined annotations associated with program code to enable automatic 

static analysis to take place. Languages/approaches such as Anna ([LvKB087]) and 

SPARK Ada ([CG90, CGM92, Bar97]) are examples of where annotations are used 

to provide pre and post conditions for use in analysis by a static analysis tool.

Correctness of Specifications

The Software Project Managers Network (SPMN), an organisation established in 

the US in 1992 by the Assistant Secretary of the Navy to “identify proven industry 

and government software best practices and convey to .. Department of Defense 

system acquisition programs” , indicates that:

1. “Rework...” - the process of having to go back to a previous part of 

the development process correct an issue and then redevelop - “...is 

off the radar screen as a potential killer of cost and schedule.

2. First inspections are informal code walk-throughs despite the fact 

that metrics consistently show (i) impact of requirements and design 

defects is much greater than the impact of code defects and (ii) the 

cost of finding and fixing a defect grows very rapidly with the time 

between making and finding the defect.

3. The amount of rework done on the project is not tracked.” [SPM]

Boehms work, Software Engineering Economics ([Boe81]), defined the relative cost 

of fixing an error introduced in the requirements phase depending upon where in the 

development phase it is found in. This work demonstrates that finding an error in the
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maintenance phase is typically 100  times more expensive to fix than if it was found in 

requirements definition phase. In the safety context, any requirements error found in 

maintenance implies that an accident may already have occurred, and thus the cost 

would be many many more times higher, both in terms of human issues and potential 

litigation!

In “Analyzing Software Requirements Errors in Safety Critical, Embedded Sys

tems”, Lutz ([Lut93]) analysed the software errors found in the development of the 

Voyager and Galileo spacecraft software, and placed them within a framework based 

on Nakajo and Kume’s error classification scheme (see [NK91]). Lutz places his work 

in context with a large number of other studies into software errors, and indicates 

that his study is the only one to consider complex safety related embedded systems. 

One of the conclusions of his work is the need to use formal specifications techniques 

in addition to natural language specifications in order to reduce number of errors. 

This conclusion is based on the fact that primary cause of functional faults was due 

to errors in understanding the requirements (62% on Voyager and 79% on Galileo).

Formal development is often thought of by industry as being expensive due to 

the need to have suitably qualified resources. The ConForm project, an application 

experiment under the European Commission’s European Systems and Software Ini

tiative (Grant 10670), demonstrated that the cost of using formal methods, across the 

whole lifecycle was close to that of conventional development - noting that additional 

effort required in the system design phase was recuperated in the reduction of effort 

for the other phases ([TBL96]).

Lightweight Formal Methods ([JW96, Jon96, DKLM98, ELC+98]) is an approach 

that brings the benefits of formal methods to the early stages of development, but 

acknowledges that the cost of completing the development in a formal manner may 

be disproportionate to the benefits gained. The ConForm project concluded that the
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best use of formal methods was to target them at appropriate areas rather than have 

a blanket use (in the conclusions of [FBGL94]). Other authors have attem pted to in

clude formal methods within the traditional approaches such as SSADM, HOOD and 

Yourdon. For example Draper’s work on integrating Z into the SSADM methodology 

“Practical Experiences of Z and SSADM” ([Dra92]); Giovanni and Iachini’s work on 

HOOD and Z “HOOD and Z for the Development of Complex Systems” ([DI90]); 

and the work on Yourdon and Z by Semmens and Allen “Using Yourdon and Z: An 

Approach to Formal Specification” ([SA90]).

A useful survey on the industrial use of formal methods is given in the work 

conducted on behalf of the Canada’s Atomic Energy Control Board, US National 

Institute of Science and Technology and the US Naval Research Laboratory entitled 

“International Survey of Industrial Applications of Formal Methods” ([CGR93]).

Leverson led a research group where one of the tasks has been looking at how to 

make formal methods more accessible to industry. Their paper, entitled “Investigat

ing the Readability of State Based Formal Requirements Specification Languages” 

([MZL02]) set out to understand one of the common complaints from industry that 

formal methods are difficult to read, and therefore require higher levels of training 

and more intelligent staff. Subjects taken from either a computer science or subject 

m atter background, were shown specifications in a textual, graphical, tabular, and 

logical expressions of a Traffic alert and Collision Avoidance System (TCAS). The 

results show that background is an influential factor in understanding specifications 

- a good background in the specification method being used is better than a good 

background in the subject matter. Graphical approaches were useful when trying 

to understand overviews and tabular methods when looking at details. The textual 

specification provided was found to be not that helpful.

For a list of criteria that can be used when comparing the use of different formal 

specification methods in reactive systems the reader should consult Ardis et al, “A
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Framework for Evaluating Specification Methods for Reactive Systems Experience 

Report” ([ACJ+96])

The reader is pointed to Jones and McCauley work entitled “Formal Methods 

- selected historical references” ([JM92]) for a considerable expansion on historical 

references than has been provided, including references to some of the technical and 

company reports that were later to lead to significant published efforts. Our intention 

has been to show the progression of development within a context of a mathematical 

basis, what is covered next are some of the current techniques used in the development 

of safety related software.

The result of this discussion could lead to the conclusion that the best return 

on effort would be from investigating the requirements phase, however this phase is 

adequately covered by other work, and the author is convinced that reducing the 

costs for other phases of development is beneficial.

2.2 Current Safety Related Software Developm ent 
Techniques

Following on from his original comments in his 1969 paper, “An axiomatic basis for 

computer programming” , ([Hoa69]) in which Hoare pointed out his thoughts that the 

advantages of program proof would eventually outweigh the difficulties, Hoare later 

reflects in his 1996 paper, “How did software get so reliable without proof?” ([Hoa96]) 

that the various predictions of doom and gloom given over the last 20  years regarding 

software safety have not materialised. Hoare’s justification of why these problems 

have not occurred in such a predicted magnitude is interleaved within the previous 

discussion: the worry of these predictions becoming true have led to the introduction 

of various engineering techniques which have contributed to the reduction in errors. 

The author’s view is that when it comes to human life, and safety related development, 

can we afford to take the risk of using ” rule of thumb” techniques as opposed to formal
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development?

To understand safety, the point at which a system becomes sufficiently important 

that confidence in its correct development and operation above that for other forms 

of software must be understand. Under UK law this point comes at the balance of 

risk: the developer of a system must show that the risk of an accident happening 

due to the system has been reduced to “as low as reasonably practical” . In the UK, 

the concept of safety is effectively embodied within the Health and Safety At Work 

Act 1974 ([Gov84]), which requires the risk of danger to be As Low As Reasonably 

Practicable (the ALARP principle); UK case law, notably Donoghue vv Stevens in 

1932, requires that a manufacturer owes a duty of care, not just to those at work, but 

to all persons to ensure that the systems they produce are safe and do not give rise 

to injury:

“You must take reasonable care to avoid acts or omissions which you can 

reasonably foresee would be likely to injure your neighbour (persons who 

are so closely and directly affected by my act that I ought reasonably to 

have them in my contemplation as being so affected when I am directing 

my mind to the acts or omissions which are called into question).” [Dav93]

An accident occurring within UK jurisdiction could lead to criminal charges be

ing brought under the Health and Safety At Work Act. However, it is increasingly 

common for civil charges to be brought as well, and there is a lower level of proof 

required for civil charges. Conviction of a civil charge usually results in the awarding 

of damages to the injured party and the attraction of bad publicity. For these reasons 

Davis states that:

“it is perceived that civil liability is the most important.” [Dav93]

Under civil law there are three areas of potential liability:
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• Liability under contract law,

• Liability under the law of negligence, and

• Liability under the new product liability legislation

The seller of a safety related system must also ensure that the goods a) comply 

with their description, b) are of merchantable quality, and c) are fit for purpose.

Davis suggests that a corporation can protect itself from civil claims if they:

1 . “ensure as a developer they have the necessary skills and knowledge 

to develop the system

2 . use best practice, e.g. standards

3. Include a reasonable limit of liability in the contract, including

(a) A requirement to comply with the instructions provided, and

(b) A description of the operating environment, perhaps with a warn

ing about other environments” [Dav93]

Burnett, ([Bur96]), gives a useful overview of the issues involved in developing 

safety related software as part of her work on the Rigorously Engineered Decisions 

(RED) project, a project forming part of the DTI/SERC Safety Critical Systems 

Research Initiative. Her views come from her position in a firm of solicitors dealing 

with IT and associated litigation.
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Standards

The best defence a developer can use in a criminal/civil claim is the use of best 

practise. To reduce the need to establish best practise in each case, and to provide 

support to developers, many industries/professional bodies have captured what they 

consider to be best practise in standards. The generic standard applicable to all 

areas is now IEC 61508 ([IEC99]) where part 3 of this standard deals specifically with 

software. Examples of sector and national specific standards are:

1 . European Space Agency: ESA Software Engineering Standards ([ESA91]);

2. US DoD: Military Standard 882B: System Safety Program Requirements 

([DoD84]);

3. Nuclear Industry: IEC880 Software for Computers in the Safety Systems of 

Nuclear Power Stations ([IEC8 6 ]);

4. Medical Industry: IEC60196 Medical Electrical Equipment - Part 1: General 

Requirements for Safety 4: Collateral Standard: Programmable Electrical Med

ical Systems ([IEC96]);

5. Pharmaceutical: Supplier Guide for Validation of Automated Systems in Phar

maceutical Manufacture ([GAM]);

6 . UK MoD: Defence Standard 00-55:The Procurement of Safety Related Soft

ware in Defence Equipment and Defence Standard 00-56: Safety Management 

Requirements for Defence Systems ([MOD89, MOD91] updated by [MOD97, 

MOD96]);

7. UK Railway Signalling: Safety Related Software for Railway Signalling ( [RIA91]);

8 . European Rail: Railway Applications: Software for Railway Control and Pro

tection Systems ([CEN97]);
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9. Airborne Civil Avionics: DO-178B/ED-12B : Software Considerations in Air

borne Systems and Equipment Certification ([RTC92]) Issued in USA by the 

Requirements and Technical Concepts for Aviation and jointly in Europe by 

the European Organisation for Civil Aviation Electronics;

10. Motor Industry ([MISRA94]).

All of these standards provide guidance that allow the merging of the commercial 

reality of making profit and the need to adhere to the ALARP principle (or equivalent 

in other countries). Many standards introduce the principle of safety integrity levels, 

where, in brief, functional aspects of a system are graded based on level of risk, 

probability of accident occuring and severity of that accident. Often a number of 

techniques are suggested dependent upon the safety integrity level being claimed for 

functions of the system in a particular environment.

The UK Ministry of Defence was one of the first organisations to generate a 

standard relating specifically to software safety with Interim Defence Standard 00-55 

([MOD89]), which was also a unique /  controversial standard in its mandating of the 

use of formal methods and formal development. It was quickly realised that it was 

not viable to have this standard sitting in isolation, as any requirement of its use 

left an ambiguous notion as to where the boundary of the use of formal methods 

would lie - in the worst case the whole development becomes safety related, and the 

cost of development is therefore probably very high. Interim Defence Standard 00-56 

([MOD91]) was introduced to provide project managers and developers a mechanism 

to identify what elements of a system are related critical. After a number of years of 

review and practical use (mainly studies) these standards achieved full Defence Stan

dard status (i.e. they are now legally applicable to all contracts) and are referenced 

as [MOD97] and [MOD96].

In some particular industries, e.g. the UK Nuclear Power Industry, values for



SA F E T Y  RELATED SOFTW ARE DEVELOPM ENT 27

acceptable accidents are laid down in an Act of Parliament. Two objectives are 

achieved by this: a) reassurances to the public that the executive of government 

believes that these values are correct, and b) provision of protection to the developers 

and safety auditors in what would be a very high profile case if something were to go 

wrong.

Some industries take other approaches, for example the UK railway industry has 

a formal licensing scheme introduced following the recommendations in the report 

into the UK Clapham Rail Disaster. See [WWG96] for an informal introduction to 

this scheme.

Language Choice

The most significant language in relation to safety related software development is 

Ada. Although the original language (Ada ’83, [IS087]) was not designed specifically 

for safety related development it’s mandated use for defence systems in UK and US 

until the year 2000 means it has been subject to the most study. Its most recent 

version (Ada ’95, [IS095]) specifically addresses issues relating to high integrity in 

an annex (Annex H). Ada originated from the US Department of Defense’s desire to 

standardise on one High Order Language for its software development programs. On 

the 28th January 1975 the Director of Defense Research and Engineering (DDRE) 

issued a memorandum requiring:

“Military Departments to immediately formulate a program to assure 

maximum DoD software compatibility...the advantages in...training, in

strumentation, module reutilization, program transportability, etc. are 

obvious” [Cur75]

Subsequently the Higher Order Language Working Group (HOLWG) was formed.

In the 1976 DDRE Memo covering the WOODENMAN version of the language 

requirements ([Cur76]) there is visibility of some of the issues relating to conflicting
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requirements that are now considered good principles in developing safety related 

software . Examples of these “conflicting requirements” are a) Programming Ease vs. 

Safety from Programming Errors, and b)Object Efficiency vs. Program Clarity and 

Correctness. WOODENMAN concludes these issues by stating:

“this tradeoff should be resolved in favor of error avoidance and against 

programming ease” and “...the major criteria in selecting a programming 

language should be clarity and correctness of programs within the con

straint of allowing generation of extremely efficient object code when nec

essary” . [Cur76]

An extensive evaluation took place of several languages and it was determined 

that no existing language met all the requirements the HOLWG was looking for, as 

recorded in [AWM+77]. A subsequent competition was held for a new language, and 

in May 1979 the US Secretary of Defense announced the winner of the competition to 

design and develop the new language ([Dun79]). Throughout the process the French, 

German and UK governments were involved, the UK providing substantial advice on 

language consolidation after previously performing its own similar exercise.

The reader is directed to Col. Whitaker USAF(Rtd)’s report in ACM SIGPLAN 

on the HOLWG for a personal view on the development of Ada and the details of the 

memos referred to above ([Whi93]). This work also indicates that Bell Laboratories, 

upon invitation to submit the C programming language ([ISO90, KR78]) for the 

evaluation, indicated that:

“there was no chance of C meeting the requirements for readability, safety, 

etc.” [Whi93]

Work in the UK, on behalf of the Motor Industry Research Association has tried 

to address the use of C in safety related systems. The use of C is wide spread through

out the commercial software development world, and therefore the cost of resource is
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cheaper. H atten’s book, Safer C ([Hat95]), shows that there are a large number of 

constraints that must be placed on language constructs and a number of additional 

tools required before C can be used. In Germany, the TUV has issued a set of “Rules 

for Programming in ’C’” ([FKPW96]). The related programming language C + +  has 

also been considered in some areas, Binkley provides a technical report on the use 

of C + +  from the US Government’s National Institute for Standards and Technology 

Software, High Integrity Software Systems Assurance department ([Bin97]). In re

cent years other programming paradigms have been considered including functional 

languages under the UK Department of Trade and Industry (DTI) study SADLI 

([CBB+96]).

In the 2004 British Computer Society Intelligent Catalogue (available on-line to 

members of the British Computer Society), of which the author of this thesis authored 

the Safety Engineering and Safety Assessment chapters, it is suggested that:

“Language Choice - subsets of Ada, for example SPARK Ada, are the 

prime candidates for development of safety systems for good engineering 

reasons; however, this does not preclude the use of other languages. There 

are systems written in C, and functional languages, such as ML, have been 

used in research projects. However, the choice of language is guided by 

requirements given in the standard relevant for the field, the amount of 

tool support available, and the ability to demonstrate to peers why the 

developed system is safe. It is for these reasons subsets of Ada are usually 

used.” [Tac04]

Even though it is often used, the programming language Ada itself is not fully 

suited to safety related software development, e.g. it includes the GOTO command. 

To address concerns, the safety field created subsets of Ada and several of these 

implementations include the ability to use annotations within a program to enable
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static code examination. Two examples of this approach are Anna - A Language 

for Annotating Ada Programs ([LvKB087]) - and SPARK - a safety related subset 

([CG90, CGM92, Bar97]).

The applicability of Ada in the development of safety related software increased 

when the original Ada standard ([IS087]) was updated, under ISO rules, and be

came Ada’95  ([IS095]). This new standard became the first ISO language standard 

to specifically address issues relating to safety; detailed in Annex H of the standard. 

Despite this, the high integrity community decided that whilst Annex H addressed a 

number of issues, a clarification and re-emphasis document was required, and subse

quently an ISO technical report was produced. The report is entitled “Guide for the 

Use of the Ada Programming Language in High Integrity Systems” ([ISOOO],[ISOOO]) 

[also published in draft as “The Use of Ada in High Integrity Systems” ([Wea99])]. 

The technical report identified the techniques shown Table 2.1 as being in current use 

in the development of high integrity software development to understand program 

correctness.

The technical report then goes on to consider all of Ada’s language features, and 

applies one of the following tags to each feature against the techniques above:

• “Included: A feature is included if it is directly amenable to the des

ignated verification technique....Included features enable the analy

sis to be undertaken and directly support the production of high 

integrity code.

• Allowed: A feature is allowed if the designated verification step is 

not straightforward, but is still achievable; or if the use of the feature 

is necessary and the use of a problematic verification technique can 

be effectively circumvented.

• E xcluded: A feature is excluded if there is no current cost effective
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Approach Group Name Technique
Analysis Symbolic Analysis Formal Code Verification 

Symbolic Execution
Flow Analysis Control Flow 

Data Flow 
Information Flow

Stack Usage Stack Usage
Timing Analysis Timing Analysis
Range Checking Range Checking
Other Memory Usage Other Memory Usage
Object Code Analysis Object Code Analysis

Testing Structure-based Testing MCDC
Branch Coverage 
Structure Coverage

Requirement-based Testing Equivalence Class 
Boundary Value

Table 2.1: Techniques

way of undertaking the designated verification technique. Assurance 

of exclusion requires some form of verification” [ISOOO]

The ISO technical report clearly describes how it’s approach should be used,

1 . “the set of verification techniques should be determined from stan

dards and guidelines the development is to take place under,

2 . identify and understand the objectives to be satisfied by those tech

niques,

3. use the tables provided to determine what language features the tech

nical report includes, allows or excludes and then finally

4. confirm the resulting subset and additional verification steps for any 

allowed features can actually satisfy the programming and verifica

tion requirements.” [ISOOO]
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It is the author’s view that any language considered for use in high integrity 

environment should go through a similar exercise.

Towards Safe System s

The author’s experience shows that Safety Related Software developments can use 

a disjoint set of tools, specialised to particular design phases, that means a consistent 

view of safety may be distorted when transitioning from one tool to another. In 

Heisel’s Six Steps Towards Provably Safe Software, shown in Table 2.2 (([Hei95]), it 

can be seen that a major boundary comes when crossing from step 4 to step 5, and 

that these steps miss out the final part of a safety system, that of the hardware used 

to execute the software.

No Step Proof Obligations
1 Define the legal states of the sys

tem.
Show that the initial state is legal.

2 Define the actions the system can 
perform.

Analyze the conditions under which the 
actions transform legal states into legal 
states.

3 Define the interfaces of the sys
tem to the outside world.

Show that the internal system operations 
are only involved if their preconditions are 
satisfied. Show that for each combination 
of sensor values exactly only one internal 
operation is invoked. Show that - if the 
sensors work correctly - the system faith
fully represents its environment.

4 Refine the data and operations of 
the specification until data and 
control structures of the target 
programming language can be 
used.

Show the correctness of the refinements.

5 Transform the specification in 
Step 4 into a form suitable for a 
program synthesis system.

Show the correctness of the algorithm per
forming this task.

6 Use the synthesis system to ob
tain a proven correct implemen
tation of the system.

Proof obligations are generated by the 
synthesis system.

Table 2 .2 : Heisel’s Six Steps Towards Provably Safe Software
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Adding an additional seventh step, shown in Table 2.3, to Hiesel’s 6 steps provides 

a path of development that would meet McCarthy’s vision.

No Step Proof Obligations
7 Map the provably correct sys

tem from step 6 to the mathe
matical model of the hardware 
under consideration

Proof obligations are generated by the 
system that maps software implemen
tation to hardware implementation

Table 2.3: Additional step to Heisel’s Six Steps

2.3 Other Development Techniques

Standards, such as Defence Standard 00-56 ([MOD96]), require a developer to justify 

the safety integrity level particular functions in a system acquire. Once a particular 

level of integrity is identified for a function, the hardware and software elements that 

implement that function inherit that same level of integrity. It is possible, by design, 

to implement lower level integrity systems together to produce a complete system of 

higher integrity.

As a simplified example, consider a pipe in which molten metal will pass when 

required, but when it is not required to flow, people are likely to be standing under

neath the pipe performing maintenance or other functions whilst the molten metal is 

held back (thus if the metal was to flow whist people were maintaining there could 

be casualties). It would be easy to understand that the system that prevents the 

molten metal flowing would have the highest integrity possible. Suppose this sys

tem is a simple valve, then there would have to be very stringent requirements on 

its construction. Perhaps it is even impossible to create a valve with such integrity. 

These requirements can be reduced by proposing two valves in series. Now both valve 

must fail before an possible accident could happen, and so it could be argued that 

each valve can now have less integrity because the two in series meet the integrity
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requirement of the system.

For software compnets, one of a number of fault tolerance techniques could be 

applied - these techniques are amply addressed by the reports from the Predictably 

Dependable Computer Systems (PDCS) project, [RLKL95] and [ESP94]). As an 

example of a technique, consider n-version programming, introduced by Chen and 

Avizienis in [CA78]. In this technique multiple versions of the software are created 

independently, and are subsequently executed with their outputs being collected and 

examined by an external entity This external entity then chooses which result it will 

use - perhaps on a majority voting algorithm or similar functionality. Leverson and 

Knight performed a much discussed experiment in n-version programming ([KL8 6 ]) 

in which they concluded that whilst a valuable technique, the assumption of indepen

dence of errors did not hold in their experiment and that the levels of improvement 

in reliability given by models was not achieved. An updated paper, ([KL90]), refutes 

many allegations made against this experiment - particularly those by Avizienis and 

his students. The Ariane 5 incident demonstrates that simply using copies of the 

same software/hardware running in parallel is not sufficient.

The use of fault tolerant techniques and sound engineering principles will continue 

to provide a reduction in failure rates below what could be expected. However, 

as systems get more complicated and is it less easy to partition off safety related 

aspects into distinct bounded parts of a system, the need to push forward with formal 

techniques increases. Hoare concluded [Hoa96] by suggesting that it was the push for 

formal methods that led to some of their principles being adopted by industry and that 

there is still much research that has not yet crossed into the commercial world. The 

work in this thesis is intended to be another step on the road of reducing complexity 

of mathematical models for developers and reducing costs. Isaksen, Bowen, and 

Nissanke ([IBN96]) provide a very comprehensive overview and bibliography of the 

techniques used in developing safety related software.



Chapter 3 

R eactive System s

3.1 Introduction

The system investigated in this thesis is one of a type of systems collectively known as 

reactive systems (Harel and Pnueli are credited as identifying this class of systems in 

their 1985 work “On the development of reactive systems” ([HP85])). In “Models for 

Reactivity” ([MP93]), Pnueli and Manna put reactive systems in context with more 

commonly talked about real-time systems by defining a hierarchy of models (where 

each subsequent model builds upon the previous model):

• “A reactive systems model that captures the qualitative (non quan

titative) temporal precedence aspect of time. This model can only 

identify that one event precedes another but not by how much.

• A real-time systems model that captures the metric aspect of time in 

a reactive system. This model can measure the time elapsing between 

two events.

• A hybrid systems model that allows the inclusion of continuous com

ponents in a reactive real-time system. Such continuous components 

may cause continuous change in the values of some state variables 

according to some physical or control law” . [MP93]

35
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Correctness of Pnueli’s reactive systems is addressed in Ketsen, Manno and Pnueli’s 

work “Verification of Clocked and Hybrid Systems” ([KMP98]) where reactive systems 

are described as a clocked transition system.

This thesis will consider the class of reactive systems, and so the example is 

restricted to one where only the fact that one event precedes another can be identified, 

but not by how much.

It is useful to place this restriction so the thesis can concentrate on understanding 

transformations in the simplest form - one where there is no state information required 

to be handled by the system, and leave as the task for future work the application 

and potential modification of our techniques to real-time and hybrid systems.

The example selected for this thesis is the Generalised Railroad Crossing prob

lem introduced in “A Benchmark for comparing different approaches for specifying 

and verifying real-time systems” ([HJL93]). Choosing such an example is aimed at 

showing that the processes defined in this thesis are applicable to real-life examples.

The common example found during literature surveys on safety related systems 

is that of a gas burner. The seminal definition of this problem is found in Ravi, 

Rischel and Hansen’s work, “Specifying and Verifying Requirements of Real-Time 

Systems” ([RRH93]) delivered as part of the Provably Correct Systems I project. It 

was adopted by the Provably Correct Systems II (ProCos II) project as its case study, 

(see [HLOR93] for an overview of ProCos II and [BHL+96] for the ProCos II Final 

Report), and has been studied, amongst others by, Lamport in “Hybrid Systems in 

TLA +” ([Lam92]), using Temporal Logic of Actions (TLA+) (see [Lam91] for more 

on TLA+). Lano et al introduce a similar gas burner example in their paper “Design 

of Real-Time Control Systems for Event Driven Operations” ([LS97]). Both Bowen, 

in his work “Hardware Compilation of the ProCoS Gas Burner Case Study using 

Logic Programming” ([Bow96]), and Muller-Olm, in “Compiling the Gas Burner Case 

Study” ([M095]) have looked at the compilation of the gas burner problem.
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In contrast to the work on implementations, when considering a comparison of 

the specification, design and analysis of different formal verification techniques for 

real-time systems, Hietmeyer’s Generalised Railroad Crossing (GRC) problem is the 

benchmark problem found in the literature. This problem is defined in “A Benchmark 

for comparing different approaches for specifying and verifying real-time systems”

([HJL93]). Hietmeyer and Lynch study this example in their MIT technical memo 

“The Generalized Railroad Crossing: A Case study in Formal Verification of Real- 

Time Systems” ([HL94a], which is also summarised in [HL94b]). Pnueli has studied 

the Generalized Railroad Problem, with details available in “Deductive Verification 

of Real-Time system using STeP” ([BMSU98]). Puchol has provided an ESTEREL 

solution described in “A Solution to the Generalized Railroad Crossing Problem in 

ESTEREL” ([Puc95]).Piveropoulos and Wellings cover the Requirements Engineering 

aspects of the GRC problem using the E-notation in “Requirements Engineering for 

Hard Real-Time Systems: the E Notation and a Case Study” ([PW99]).

Thus, both examples are well established in their relevant fields. The choice to 

progress with Heitmeyer and Lynch’s GRC problem as the GRC problem was made 

since it is a reactive system that provides a sensibly sized example. This allows the 

proposed transformations to be exposed rather than worrying about a large state 

space (that the real-time gas burner problem introduces) and an overly complicated 

specification. Steggles has considered such a problem and demonstrated that (Second- 

order) algebraic approaches can be used to describe he problem and also discussed 

a form of functional refinement within his algebraic method (see either [SteOOa] and 

[SteOOb]).
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3.2 Case Study - The Generalised Railroad 
Crossing Problem

The generalized railroad crossing (GRC) was introduced by Heitmeyer and Lynch to 

allow the comparison of the increasing number of formal methods being invented to 

specify, design and the analysis real-time systems. The problem is produced in its 

entirety below:

“The system to be developed operates a gate at a railroad crossing. The 

railroad crossing I  lies in a region of interest 72, i.e. 7 C R. A set of 

trains travel through R  on multiple tracks in both directions. A sensor 

system determines when each train enters and exits region R. To describe 

the system formally, a gate function is defined as g (t) £ [0,90], where 

g (t) =  0 means the gate is down and g (t ) =  90 means the gate is up. 

Additionally, a set {A*} of occupancy intervals is defined, where each oc

cupancy interval is a time interval during which one or more of the trains 

are in 7. The ith occupancy interval is represented as A* =  where

Ti is the ith time of entry of a train into the crossing when no other train 

is in the crossing and Vi is the first time since t* that no trains are in the 

crossing (i.e. the train that entered at Ti has exited as have any trains 

that entered the crossing since r*)

Given two constants ^  and f2> where £i > 0 and £2 > 0, the problem is 

to develop a system to operate the gate that satisfies the following two 

properties:

Safety Property: t £ A* ==> g (t) =  0 (The gate is down during 

all occupancy intervals)
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U tility  Property:* ^ (Ji [r* _  fi> vt +  6 ] 9 (t) =  90 (The gate is up

when no train is in the crossing)” [HJL93]

The system allows for there to be multiple trains in R  at the same time. 

Im plem entation of the GRC Problem

We will now consider an implementation of the GRC Problem, though it should be 

noted that we are not overly concerned with this being a complete and formally correct 

implementation. Rather, we wish to propose a solution that we can semantically 

reason is correct in order to focus on demonstrating our methods and techniques.

It is proposed to implement a solution to the sensor system described above for a 

region of interest, R, in which there are 2 tracks, tk\ and Each track will have 

two sensors sub-systems on it, one to the left of the gates and the other to the right of 

the gates, and each sensor sub-system is constructed from two sensors, each capable 

of counting how many trains have passed in a particular direction, with the intention 

being that one sensor captures trains moving into R  and the other trains moving out 

of R  (that is to say that they have cleared I).

There are two assumptions made about the property of trains travelling through

R:

1 . a train must continue through R  in the same direction in which it entered, and

2. a train cannot cross between tracks whilst in R.

and there are two assumptions made about the system overall:

1 . the length of a train is no greater than the distance between the boundaries of 

R  and 7, and

2. the time it takes a train to pass from the boundary of R  to the boundary of I

is such that the barriers can be fully lowered or raised.
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Figure 3.1: Simple Crossing System

Note that if one of the sensors fails then the system fails into a safe situation of 

the barriers down.

In order to identify whether there is a train in R  for a particular track, the 

difference between the values held by the sensors is calculated. If this difference 

is zero, then there is no train in i?, for that track.

Consider that track Tk\  has sensors si and S2 in the sensor system on the left 

hand side of R , and sensors 53 and 54 in the sensor system to the right hand side of 

R. A train going left to right will first trip sensor si on entering R  and then s3 on 

leaving; similarly a train going right to left will trip sensor s4 on entering R  and then 

S2 on leaving R. To identify if a train is in R  the following logical test is performed:

inR(t) = (si(i) — s3(t) > 0) V (s4(t) — s2(t) > 0)
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Where there is more than one track, sensor numbers will be annotated with the 

track number, thus a two track system will identify if a train is in R  by performing 

the following logical test:

( ( s u W  -  S1,3W >  o) V {siA{t) -  sh2(t) > 0))V
inR(t)  =

( ( s 2, iW  “  S2,3 (*) >  0) V (s2A(t) ~  s2,2(t) > 0))

and generically, for tracks T k i , . . . ,  T k n the logic will be:

(  ( ( s i . iW  “  s i,3W  >  0) V {s1A(t) -  sh2(t) > 0))V \

inR(t) =

\  V { ( sn, l(t)  ~  Sn,3(t) >  0) V (s„,4(t) ~  S„)2(t) >  0))

For a practical implementation, the counter value will keep increasing to large 

values, however for our discussions this is not really an issue.

Let us assume that a train takes 2 time units to cross between sensors in R  and 

that one enters at time 2. Tables 3.1 and 3.2 show the values of sensors and the logic 

above in this situation.

t s i,i(£) 1̂,2 (t) s l,3(t) s l,4(t)
(a)

s ia(t) — s i,3p)
(b)

SmO) -  Si,2(t)
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 1 0 0 0 1 0
3 1 0 0 0 1 0
4 1 0 1 0 0 0
5 0 0 0 0 0 0

Table 3.1: One Train Passing Through R  (Sensors)

Similarly, if the same train passes on Tki  entering at time 2 and another train 

passes on T k 2 entering at time 3 then sensors si and S3 will trip for the train going 

left to right and sensors sg and s6 for the train from right to left. Table 3.3 shows the 

values of sensors in this situation, and Tables 3.4 and 3.5 show the logic determining 

whether a train is in R.
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t (<0 
a > 0

(d)
6 > 0

(e) 
c V d

0 False False False
1 False False False
2 True False True
3 True False True
4 False False False
5 False False False

Table 3.2: One Train Passing Through R  (Logic)

t si,i(t) *1,2 (t) *1,3^) *1,4 (t) *2,1 (t) *2,2(0 *2,3 (0 *2,4(0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 1
4 1 0 1 0 0 0 0 1
5 1 0 1 0 0 1 0 1
6 1 0 1 0 0 1 0 1

Table 3.3: Two Trains Passing Through R  On Different Tracks

To meet the Safety property of the problem the sensors identifying the arrival 

of a train in I  (sn,i and sn>4) must be placed at the boundary of R  in order to give 

the gate time to close. Similarly the sensors identifying the departure from I  (snj2 

and sn>3) must be placed on the boundary of R  (assuming no train is longer than the 

distance between boundaries of R  and I). The values of and £2 identified in the 

U tility  Property are therefore directly related to the distance between boundaries 

of R  and / ,  the maximum speed of trains travelling through R  and the speed of the 

gate movement.

Determining whether a train is in R  is not the final step in our implementation; 

the gates need to be implement. Recall that the definition of the problem introduced 

the gate function, g (t ) € [0,90], where gif)  = 0 means the gate is down and g (t ) =  90 

means it is up. This is implemented as a sensor on the gate that provides an output 

in the required range.
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t (a)
sl,l(t) ~ 1̂,3(t)

(*>)
SlA*) ~ Sl,2(t)

(c)
-52,1 P) — 2̂,3 (t)

(d)
$2,4 (£) — -̂ 2,2 (t)

0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 1 0 0 1
4 0 0 0 1
5 0 0 0 0
6 0 0 0 0

Table 3.4: Two Trains Passing Through R  On Different Tracks

t (e)
a > 0

(/) 
b > 0

0 ) 
c > 0

(h) 
d>  0

(i)
((e V / )  V (3 V h))

0 False False False False False
1 False False False False False
2 True False False False True
3 True False False True True
4 False False False True True
5 False False False False False
6 False False False False False

Table 3.5: Two Trains Passing Through R  On Different Tracks

In addition a gate operation function is provided that will take the values from 

g(t) and inR( t) to determine if the gate motor should be sent the command up, down 

or stay according to the logic shown in Table 3.6.

inR(t) g(t) Command
False — 90 stay
True > 0 down
True =  0 stay
False < 90 up

Table 3.6: Gate Control Logic
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We define motor (t) as: 

(

motor (t) =

i f

V

((inR(t ) =  False A g(t) = 90) V 

(■inR(t) =  True  A g(t) = 0) 

else i f  (inR( t) = True  A g(t) > 0) 

then down 

else up

The correctness of this solution is discussed in chapter 8.2.

^ then stay



Chapter 4 

Thesis Overview

In this chapter the scope of the remainder of this thesis is proposed by identifying 

the key elements discussed in the previous chapters and indicating the motivation for 

the technical work contained in the following chapters.

So far the notion of high integrity software/systems has been discussed, as have 

some details on the legal and professional pressures that drive the need for certain 

approaches to be taken when building such a high integrity system. It has been indi

cated that the author’s view is that a formal approach is required, rather than reliance 

on extensive testing and that even in the US, where the author has some experience, 

the reliance on testing is being questioned by researchers in key institutions, such as 

NASA.

From these early chapters it can be seen that there are a number of differing 

techniques that can be used at differing life-cycle phases, but there is not really one 

technique that can traverse all levels. The discussion on language choice, sets the 

scene for future work on investigations on whether functional languages are suitable, 

and demonstrates that some research has been performed on translating Z to ML, and 

the use of functional languages in safety related systems, namely the SALDI project.

By introducing the GRC Problem as a case study a problem, and a solution, have 

been presented that will be returned to throughout this thesis to demonstrate the

45
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necessary extensions to the existing Synchronous Concurrent Algorithms model, and 

how an implementation in one of the extended models may be transformed into an 

implementation in another of the extension models.

4.1 Thesis Statem ent

4.1.1 Scope

Within this thesis we shall focus on developing a method to support a number of 

transformations of an algorithm described as a Synchronous Concurrent Algorithm 

to its implementation on a piece of hardware, also described as a SCA. A formal 

basis is given to the methods by performing the transformations on the algebraic 

specification of SCAs, and having the transformations themselves defined as algebra 

specifications. For ease of discussion a pseudo algebraic format, that can trivially be 

converted to descriptions that may be used an algebraic specification tool, is used.

4.1.2 Contribution

The core contribution of this thesis are the:

• introduction of syntactic extensions to SCA theory ([TT94] and [HTT90]), 

named as dynamic SCAs (dSCAs), to solve the problem of being able to rep

resent both the computation and the computing device that implements the 

computation in the same notation. Two forms of dSCAs are introduced:

— Abstract dSCA;

— Concrete dSCA.

• algebraic methods necessary to translate between a number of SCA models:

— SCA to Abstract dSCA;
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— Abstract dSCA to Abstract dSCA (with differing defining shapes); and

— Abstract dSCA to Concrete dSCA.

4.2 Thesis Structure

The work in this thesis falls naturally into four areas:

1. Introduction of SCAs and our extensions to this model (Chapters 5-8);

2 . Transformations between various SCA models defined (Chapter 9-12); and

3. Summary and suggestions for future work (Chapter 13).

This chapter concludes Part I.

Part II commences with Chapter 5 which gives an overview and definition of 

Tucker and Thompson’s SCAs and a short comparison of other applicable models. 

As well as an informal and formal definition of SCAs, it is discussed what it meant 

by saying a SCA is correct and how an SCA is specified algebraically. The final part 

of Chapter 5 looks at the use of SCAs in the literature and discusses some limitations 

of the original definition relating to the purposes of this thesis.

Next the extensions to SCA theory are introduced. These extensions address the 

limitations identified in Chapter 5. In Chapters 6 and 7 abstract and concrete dSCAs 

are introduced, respectively, in a similar style to that of Chapter 5. A return is then 

made to the case study and it is demonstrated in Chapter 8 how each SCA model 

can be used to provide an implementation.

In part III of this thesis three transformations used in the transformation (or 

refinement) of an SCA to a concrete dSCA are introduced. Firstly, Chapter 9 will 

introduce the concept of correct transformation, and discusses a number of funda

mental specifications necessary for transformations. The first transformations, SCA 

to abstract dSCA, is defined in Chapter 10, with chapter 11 covering the abstract to
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abstract dSCA (a process that allows the “reshaping” of the dSCA structure), and 

12 covers the abstract dSCA to concrete dSCA transformations.

This thesis concludes in Chapter 13 with a discussion on proposed further work.



Part II

Synchronous Concurrent 
Algorithm s
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Chapter 5 

Synchronous Concurrent 
Algorithm s

5.1 Introduction

Synchronous Concurrent Algorithms are defined by Tucker and Thompson in their 

work “Equational Specifications of Synchronous Concurrent Algorithms” [TT91] and 

[TT94]. SCAs were introduced as a means of modelling the behaviour of a number 

of discrete processing elements, that communicate and process in parallel with re

spect to a single clock. This chapter introduces Tucker and Thompson’s Synchronous 

Concurrent Algorithms in an informal and formal manner. Following the exposition 

of SCAs some other models from the literature are discussed, followed by how SCAs 

are currently used. The chapter concludes by a) demonstrating how SCAs can be 

specified algebraically, b) how the GRC problem can be implemented as an SCA and 

finally c) what limitations have been found with the SCA original model during the 

investigations for this thesis.
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5.2 Informal Definition of SCAs

A Synchronous Concurrent Algorithm is a parallel algorithm consisting of a network 

of M  modules connected by channels. The network communicates and computes in 

parallel over a data set A, with the communication and computation synchronised 

with respect to a clock, T  =  {0 ,1 ,2 ,...}  which measures discrete time. Input and 

output to the network occurs at modules that are connected to sources and sinks, 

respectively. A representative network is shown in Figure 5.1 consisting of 3 modules, 

4  sources - <2i , . . . ,  <24 - and one sink - the output of module 1 .

Throughout this thesis it is implied that in the diagrams representing SCAs com

munication between modules will always travel in a downwards direction. For example 

in Figure 5.1 module 1 will receive its inputs from modules 2 and 3. This notion is 

clearly obvious when looking at an SCAs associated wiring function definition.

5.2.1 SCA Com ponents

D a ta  a n d  T im e: The algorithm processes data from a set A, at times t from a clock

C hannels: Modules within a SCA communicate via the channels of the network. 

Each channel has unit bandwidth, with respect to the carrier set A and each channel 

is uni-directionary, that is to say, a channel may only transmit a single datum  a € A  

at any one time, in one direction. A channel may branch infinitely, with the intention

a, a. a,

Figure 5.1: A Generalised SCA Network
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that the datum being transmitted along the channel is “copied” and transm itted 

along each of the new branches, but channels may never merge, since it would be 

difficult to determine which datum would be used on the merged channel.

M odules: Each module in the network is capable of subsuming and processing its 

inputs and producing one output. Consider the module m* £ M, which has n(i) £ 

N  input channels, the processing performed by this module is defined by the total 

function fa : A n^  —*■ A. The intent is that if the values 61, . . .  bn^  £ A  arrive on m 's 

input channels, then rrii computes /*(& !,..., &„(*)).

Source M odules (In p u t): Data is read into the network at sources, also known as 

input modules. Sources have no input channels and a single output channel, which 

as with other channels, may branch. A network with n  sources will process n  input 

streams, a1}. . . ,  an £ [T —>► A] with the convention that a,i(t) is supplied as input by 

source % £ at time t £ T.

S ink  M odules (O u tp u t) : Data is read out of the network by sink modules; by 

definition, sink modules have a single input channel and no output channels.

5.3 Formal Definition of SCA

Let N  be a synchronous network over data set A  with clock T. If N  has n > 0 sources 

then the input to N  is represented as a stream a1}. . . ,  an £ [T —> A]. It is also assumed 

that N  has k > 0 modules, m i , . . .  m*, (where N* =  {1,2, . . . ,  k}). Further, any vector 

Xi) .. . x k £ Ak serves to specify the networks initial values, with the intention that 

module rrii initially holds the value Xi. The te rm in a tio n  assu m p tio n  is defined as 

follows:

“At each time t £ T  a value is produced from each module. This value 

can always by determined uniquely from the time t , the set of inputs a,
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and the set of initial values x.n [TT91]

To support the termination assumption the value held by module m*, at time £, 

can be determined by introducing functions Vi, . . . ,  Vk where for i ENj t  the following 

definition holds:

Vi : T  x [T -► A]n x A k -► A

These functions are called the network’s Value Functions. By exploiting the ter

mination assumption and the synchronous nature of the network, the output of every 

module in the network is either specified initially, or is specified in terms of the values 

held at previous time cycles. Value Functions for a module are defined in two phases 

- the Initial State phase, where t =  0, and the State Transition phase, where t > 0,

i.e. for module rrii the following is defined:

Vf(0,a,x)

Vi(t+ l ,a,  x)

To complete the definition of Value Functions, it is necessary to define how the 

modules are wired together, and what length of delay is required when selecting the 

appropriate value from previous time cycles. This is achieved by the introduction of 

wiring functions, 7(2, j )  and (3{i,j), and a delay function a, x).

W iring Functions

Given the network N  with k > 0 modules, n  > 0 sources and modules m i , . . .  ,rrik, 

then rrii (where i € N*) will have an associated function, /*, that requires n(i) > 0 

arguments and is defined as fi : A —► A. Each argument will arrive on m 's 

input channels and will be filled with data from the set A  from either a source, or 

an adjacent module. Two operations, 7 (i, j)  and (3(i,j) are introduced to identify 

whether module rrii s j th input is from a source or an adjacent module, and the index 

of that source or module (where j  = 1 , . . .  n(i)).
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The operation 7 (z,j), which indicates whether the input is from a source or a 

module, is defined as follows:

7  : N* x N -> {S, M }

where S  indicates a source module and M  indicates a module. The operation P ( i , j ), 

which identifies the index of the source or module, is defined as:

P : N* x N -  Nfc

For wiring functions the following three conditions always hold for i € N& and 

1 < j  <n(i):

1- f i ih j )  I A7 (i , j)  |  i.e. for all inputs j  = 1 , . . .  ,n(z) of all modules i € N*, the 

wiring functions /3(z, j )  and 7 (2, j )  are defined.

2 . 7 (i, j)  — S  ^  P(h j)  ^  n ) with the intended meaning that if the j th input

channel of module rrii comes from a source, then the index of tha t source, 

provided by the ^-wiring function, must be within the valid source indices 

1, .  . . , n .

3. 7 (i , j) = M  => 1 < j3(i,j) < k with the intended meaning that if the j th input

channel of module rrii comes from a module, then the index of tha t source,

provided by the /3-wiring function, must be within the valid module indices 

1

D elay Functions

For each input channel j  of module rrii data, calculated at some previous time cycle, 

is selected. The delay function 5*j(£, u, x) identifies how many clock cycles ago the 

input was calculated, or was available at the source. The delay function is defined as:

5id : T  x [T -► A f  x Ak ^ T
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The value of the delay is deliberately set so that it takes account of the current 

time, the current values of the input streams and the initial values of the network. 

To preclude the construction of predictive circuits, i.e. where the value of Sij is such 

that it looks forward in time, a temporal condition is introduced such th a t for any 

time t 6  T, inputs a £ [T —► A]T\  and initial values x  G A k, the delay must be less 

that t:

5ij(t, a,x) < t

Early work on SCAs introduced the Unit Delay Assumption ([TT91]), which said 

that all delays would be of unit length. Hobley ([Hob90]) showed that this restriction 

was not necessary, and that a SCA with non-unit delay could be represented as a unit 

delay SCA if constructed, for example, using buffering in channels.

Value Function Initial S tate Phase

The Initial State phase for Value Functions defines the state of modules in N  at time 

t = 0. Since Xi, the ith element of the set of initial values x, is intentionally the value 

held by module rrii at time t = 0, it is appropriate to define, for i 6  N*,:

Vi(0 , a , z )  =  Xi 

Value Function State Transition Phase

The intention behind the module specification : An® —► A  of module rrii is that if 

bi, • • •, &n (0 are the values selected by means of its delay functions c^i , . . . ,  <5iin(») from 

past data along its input channels, then /*(&!,...,&«(*)) the value held at time t. 

However, for j  =  1 , . . . ,  n(z), the j th input is either supplied by some source at some 

previous time, in which case, bj = aq(Sitj(t, a, x)), or it is supplied by some other 

module in the network at some previous time, in which case bj = Vq(5ij(t, a, x), a, x). 

Accordingly, Vi(t,a,x)  is defined as:

Vi{t,a,x) = fi(bu  . . .  A (i))
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where for j  = 1 , . . . ,  n(i):

6 f  ag(<M*>a ,aO) i f 7 (b j )  =  S A p { i , j )  = q
3 \  yq^ i , j{^a ,x) ,a ,x )  if = M  A (3(i,j) = q

N etw ork O utput

Vout is defined as the vector representing the output from network N , consider that

N  has m  > 0 sinks, then Vout would be constructed as Vout — (HSl, . . . ,  V̂ m), where

Si, . . . ,  sm G Nfc.

Note that, in terms of specification, Vout may be reformulated as the stream trans

former Vout, such that the initial values can be considered as system parameters. In 

this case the stream transformer Vout is defined as:

Vout : [T -* A]n x A k - ^ [ T ^  A]m

where:

Vout{fl, -V)(^) Voutit, &, Y)

for any time t G T, set of inputs a G [T —> A]n, and initial values x  G A k. 

However, it should also be noted that whilst Vout may be a useful alternative 

form of specification to the Cartesian form originally given, there is a subtle problem 

associated with the implicit A-abstraction on Vout used in the definition of Vout • Tucker 

and Thompson state the following theorem:

“For any SCA over a set A  and module functions / i , . . . , / * ,  the local 

state functions Vi, . . . ,  14, global state function, Vn , and output function 

Vout are primitive recursive over A n . However, if A  contains two or more 

elements, then Vout £ PR {A n ) ” [TT94]

Thus, although the definition of a Synchronous Concurrent Algorithm can be 

classed as primitive recursive, if the definition of Vout contains more than one element,
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then it itself is not (the reader is referred to [TT94] for a proof of this). The result has 

no impact on the proof of correctness of Synchronous Concurrent Algorithms, rather 

Tucker and Thompson imply it is better to deal with SCAs using the Cartesian form.

5.3.1 Exam ple SCA

The following small SCA is introduced as a running example that will be referred to 

during the next few chapters before we consider the GRCP in full. Consider the 3 

module SCA network N  shown in Figure 5.2.

Figure 5.2: Example SCA 

It is simple to define the delay functions for 2 =  {1,2,3} and j  = {1 , 2} as follows:

a, x) = t — 1

with the wiring functions for N  being defined as

7(1,1) = M 0(1,1) = 1 
7 (1, 2) =  M  0 ( 1, 2) =  2 
7(2,1) =  5 0(2,1) = 1
7(2,2) =  5 0(2,2) = 2
7(3,1) = 5 0(3,1) = 3
7(3,2) = 5 0(3,2) = 4

with the initial state vector being defined as x  =  (1 , 2 ,3) the Value Functions can be 

defined in their two phases as:
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Vi(0, a, x ) =  xi  
V2(0, a,x) =  x 2 
V3(0,a,x) =  x 3

However, we will always write the definition of Value Functions out as the simpli

fied equations:

Vi(0,a,x) =  1 
V2(0,a,x)  =  2 
1/3 (0 , a, :r) =  3
V\ (t +  1 , a, x) ~  add (V2(t , a, rc), V3 (t, a, x))
V2( t +  1, a, x) =  sub (ai (t ) ,a2(t))
I/3 ( t +  1 , a, x) =  su6 (a3 (t),a4 (t))

5.4 Correctness

Thomson and Tucker introduce two types of correctness, Type I and Type II. Type 

I correctness focuses on the behaviour of a network’s modules at particular times of 

the system clock T. The second type of correctness, Type II, focuses on the loading 

of input data and recovery of output data from an external environment. Type I 

correctness is analogous to traditional glass box testing, whereas Type II correctness 

is analogous to black box testing. Type II correctness is now considered in more detail 

as future correctness discussions in this thesis will be based on the ideas presented.

In Type II correctness, it is assumed that the user specification is based on another 

external clock C = {0 , 1 , 2 , . . .} that is running slower than the system clock T  of the 

network under consideration. If this is the case, then it is necessary to provide some 

form of scheduling of input streams - and possibly output streams.

It is assumed that the relation:

Vi(t +  1, a, x) =  add 

V2(t +  1, a, x) — sub 

Vs(t +  1 , a, x) =  sub

V/3(i,i) (<$1,1 (t +  1 , a, x ) , a, x ) , 
F/3(i,2) (<*1,1 (t +  1 , a, x ) , a, x) 
a/3(2,l)(^l,l (I +  ai X))» 
a/3(2,2)(<*2,2 {t +  1, a, IE)) 
ayS(3,l)(^3,l {t +  1, a, £)),
ap(3,2) (<*3,2 (t +  l ,a ,x ))
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specifies the computational task, or behaviour, such that for any set of inputs, 

a £ [C —> A]n, and set of outputs, b E [C —> A]m:

U{a,b)

means that b is an acceptable stream of outputs for the stream of inputs a. We 

call U a type II system task relation. To meet this specification there must be a 

function that maps inputs to outputs. Let this function be $, and be defined as:

$  : [C -► A]n -► [C -h. A]m

such that for any inputs a 6  [C —► 4̂]n, it can be said that:

The design of a network that meets this specification is given by choosing a new 

clock T, with modules m i , , m * and functional specifications / i , . . . ,  /*,, so that a 

n-source, k-module, m-sink network AT can be constructed . This network is generally 

running with respect to a faster clock than the specification, and thus some scheduling 

of the inputs and outputs is needed to make the relation U still make sense. Scheduling 

can be modelled by the introduction of stream transformers 9\ and 02, which are 

defined as:
6>! : [C -> ,4]™ —► [T —► A]m 

# 2 : [T —► -* [C -+  A]n

The following should be noted:

• 9i and 6 2  need not be related

• 6 1  and 6 2  are part of the design that implements <!>.

There are no restrictions on the definition of 9i and 9 2 , apart from insisting that 

they are primitive recursive over the appropriate algebra, and that they can perform 

copying of data and other useful tasks.
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A special case is when 6 1  and 6 2 are determined by the clocks T  and C - this arises 

when there is a deterministic relationship between the two clocks. This special case 

is also known as re tim ing , not to be confused with the retiming of Leiserson and 

Saxe ([LS91]), and is further discussed in Chapter 9.

To show correctness between the specification and design consideration needs to 

be given to 0i, 02, and Vout. There is also a need to load the initial values into the 

specification (since they do not exist). For convenience, this can be incorporated 

within some initialisation operation within 0 i by defining for a given initial state 

x  E A k:
Qinit . _  A yn x ^  A]m X A k

by:

0™it( a , x )  =  (Q1( a) , x )

To further increase convenience of the notation, 02, and Vout can be combined 

into one stream transformer specification, 'I', defined as:

: [C A]m x A k -► [C -► A}n

defined for each x  E A k as:

*  =  o2(vout(e[nit))

that is for each a E [C —► A]n and x  E A k:

* ( a 1x)  =  O2(Vout(0? it (a) 1x) )

^  is known as the external specification.

5.5 Use in Literature

SCAs have been used widely in the literature, but mainly stemming from the research 

carried out from the research groups originally in Leeds, and subsequently, Swansea.
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Stephens provides a wide ranging summary of the use of Stream Transformers in the 

literature in the paper “Survey of Stream Transformers” ([Ste97]), which covers the 

use of SCAs. It is not intended to repeat this already accomplished work in this 

thesis, and will restrict this section to a short summary to demonstrate tha t SCAs 

are in actual use and not just a limited use tool.

Six useful papers are:

• Synchronous Concurrent Algorithms [TT85];

• Non-unit delay SCAs [Hob90];

• Algebraic specification of Synchronous Concurrent Algorithms and Architec

tures [TT91];

• Equational Specifications of Synchronous Concurrent Algorithms [TT94];

• Scope and limits of synchronous concurrent computations [MT8 8 ]; and

• Clocks, retimings, and the transformation of synchronous concurrent algorithms 

[HT94].

Hardware

There are a number of papers in the published literature relating to the application 

of SCAs to hardware specification and design issues:

• Formal specification and the design of verifiable computers[HT8 8 ];

• Specification and verification of synchronous concurrent algorithms: a case 

study of the Pixel Planes architecture [ET89a];

• Formal specification of a digital correlation ([HT90]);
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• Specification and verification of synchronous concurrent algorithms: a case 

study of a convolution algorithm [HTT89];

• Clocks, retimings, and the formal specification of a UART ([HT89]);

• Consistent refinements of specifications for digital systems [HT91];

• Infinite synchronous concurrent algorithms: the specification and verification of 

a hardware stack [MT93].

Language

The literature contains several articles relating to synchronous languages and re

active systems, the following is a list of those specific to SCAs:

• A parallel deterministic language and its application to synchronous concurrent 

algorithms [TT8 8 ].

Biological

The SCA model has successfully been applied to entities outside the direct field 

of computing:

• Computational structure of neural systems [HTT90]; and

• An algorithmic model of the mammalian heart: propagation, vulnerability, re

entry and fibrillation [HPT96].

Other

• Specification, derivation and verification of concurrent line drawing algorithms 

and architectures ([ET88]);

• Tools for the development of a rasteration algorithm [ET89b];
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• Theoretical Considerations in algorithm design ([TT85]);

• Concurrent Assignment representation of synchronous systems ([MT87]) revised 

in ([MT89]); and

• Verification of synchronous concurrent algorithms using OBJ3. A case study of 

the Pixel Planes architecture ([EST91]).

The author has not been able to identify any source in the literature referring to 

the use of SCAs in Safety Related Software development.

5.6 Other Relevant Models

SCAs are not the only mathematical approach that could have been the basis for 

investigation in this thesis. The literature has many models that could have applied, a 

comprehensive overview of these models can be found written by Astesiano, Broy and 

Reggio (contained in Chapter 13 of [ABR99]). In this work, algebraic specification 

techniques are divided into (at least) four different approaches, and a simple case 

study is used to examine how the techniques are used. Techniques identified in that 

work and some others techniques are:

• Milner’s Calculus of Communicating Systems (CCS) [Mil80];

• Hoare’s Communicating Sequential Processes (CSP) [Hoa85];

• Baeten and Weijland’s Algebra of Communicating Processes (ACP) - which is 

built up from a Basic Process Algebra [BW90];

• The International Organisation for Standardisation’s Language of Temporal 

Ordering Systems (LOTOS) [IS089];
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• Process Specification Formalism (PSF) [MV89] and [MV90], which incorporates 

the Algebraic Specification Formalism (ASF) of Bergstra, Heering and Klint 

([BHK89]);

• Petri Nets (original model defined in [Pet81]. Reisig ([Rei91]) considers Petri 

nets and algebraic specifications and in [Rei98] their use in specifying concurrent 

systems is considered; and

• Iterated Maps (see [FH98] for an example)

The author has chosen to use SCAs for their simplistic and readily accessible 

mathematical notation.

5.7 Algebraic Specification of SCAs

Synchronous Concurrent Algorithms will be specified in an algebraic style, based on 

the work of Ehrig and Mahr’s “Fundamentals of Algebraic Specification” ([EM92]) 

and Wirsing’s “Algebraic Specification” ([Wir90]). To understand the mathematical 

background to algebraic specifications the following elements need to be introduced:

1. Signatures;

2 . Algebras;

3. Terms;

4. Equations; and

5. Specifications.
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5.7.1 M athem atical Entities 
Signatures

Informally by an algebra we mean a collection of sets A i , . . . , A n, a collection of 

constants, q  £ A, for i £ / ,  and a collection of operations (or functions):

f i  • A i l x • • • x A i n > A in+\

To describe, compare and reason about such algebras syntactic names are given to 

each of these three kinds of objects. These names are collected together and organised 

into a many sorted signature.

For any non empty set s 6  S  of sort names, an S-Sorted signature (E) is the 

S* x S  indexed collection of sets:

E =  =  s i , . . . ,  sn € 5*, s € S}

where

• for the empty word A € S*, and each s £ 5, the element c € is called a 

constant symbols of sort name S.

• for each non-empty word w = s1}. . . ,  sn £ *S'+, and each s € 5, the element 

/  £ ^u;,s is called a function name of domain type w, range type s, and arity n.

By a signature we mean a pair (5, E) consisting of the sort name set S, and the 

S-sorted signature E. We can write a signature in a more human readable way, such 

as:

Begin
Signature A
Sorts
Constant Symbols . . . ,  c*, . . .  
Function Nam es ■■ ■ , f i  ■ As(i) x

End
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Algebras

Where a signature defines the syntactic objects, an algebra provides the semantics. If 

S is an S-Sorted signature, then an S-Sorted E — Algebra is the ordered pair (A, T,A) 

where A = (A s|s E S'} is an s-indexed collection of sets.

For each sort name s E S

• the set A s is termed the carrier set of the algebra of sort names s

• Ea is an S* x S-indexed collection of sets:

s A = {Y,tJw = su . . . <Sne S \ s e S }

where

•  for each sort name s E S  and the empty word A the following is defined:

£ a , .  =  { c a \c e  £ v }

where 6 A  is termed a constant of sort name s E S which interprets the 

constant name c E Ea,s in the algebra.

• for each non-empty word w = s i , ...., sn € S+, and each 5 E S, the following is 

defined:

K s  = { / a I /  e  s . , }

where : A w —> A s is termed an operation with domain A Sl x . . .  x A Sn , range 

A s and arity n  which interprets the function name /  E HWt8 in the algebra.

We can write an algebra out in a more human readable manner, such as:

Begin
Algerba A
Carriers , A i , . . .
Constant M  > A> s(i) 5 • • •
Operations . . . 1 fi  • As(i) x . . .  x A s(n  ̂ > A s . . .

End
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Terms

Let S be a non void S-Sorted signature and X  =  {a;fl|s € S'} be a family of sets of 

variables, then the term algebra is defined as:

T(T,,X) =  (T(E,X),  E t ( s 'x ) )

to be the E — algebra with S-indexed family of carrier sets:

r(s, x) = = Sll, € 5*, s e 5}
as follows:

1. for any sort s £ S  and any constant symbol c € Ea,s, the following term  can be 

defined:

CT ( E , X )  ~  Cs

2. for any sort s E S, any non-empty word w = s i , . . . ,  sn € 5 +, functional name 

/  € E^s, and any terms L 6 T (E ,X )S, for 1 < i < n, the following term can 

be defined:

• • • 5 ^ n )  — / s ( * l ,  • • • > t n )

This definition of terms allows the complex definition of new terms, e.g.

fa (fb (fc (a ) , b) , d, e, / )

Equations

Let E be a non void S-Sorted signature and X  =  (x s|s € S'} be a family of sets of 

variables and let s € S' be any sort name. We define an equation , of sort name s, to 

be an expression of the form:

t \  =  t 2

where t \ , t 2 £ T (E ,X )S are terms of sort s.
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Specifications

Finally we can introduce the notion of an algebraic specification. An algebraic spec

ification is the pair (E, E)  where E is a signature and E  a set of equations defining 

the exact behaviour of the function names within the signature. We define that the 

specification:
( A • cA

A =

\

f i  ‘ X  • ■ •  X  A s ( n )

\  f i  i a s(  1 )  5 •  •  •  5 a s (n )  —  •  •  •

can be written in a more human readable way as

A, (0 >

Begin
Specification A
Sorts
Constant Symbols . . . ,  Ci, . . .
Function Nam es : Aa(i) x . . .  x A a(n) -> A s )̂
Equations . . . ,  , as(n) =  ■■■

End

To further aid readability the notion of importing one specification into another is 

introduced; by importing specifications the ability to define a specification A  in terms 

of another specification B  is possible. Consider the specification B  which is defined 

as:
Begin

Specification B
Sorts . . . ,  B j , . . .
Constant Symbols . . . ,  cj 5.. .
Function Nam es £ s(1) x . . .  x B s{n) -> £ s(i), . . .
Equations . . . ,  f j { a s{1), a s{n) =  . . .

End
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then the specification given as:

69

Begin
Specification
Import

A
B

Sorts , A i , . . .
Constant Symbols j Cj, . . .
Function Nam es j fi ■ X . . .  X Ag ĵ  ̂ > • j

> f j  ' Rs( 1) x  . . .  x  J5s (n ) —> B s^ , . . . ,

End

Equations > fiifls{ 1) 1 • • • 1 &s(n) • • •
> f j { as( 1) 7 • ■ ■ } as(n) • • ■

is an informal way of writing:

A =

A ■ R. . . , . . . , Uj , . . . ,

• • • J C j , . . . , Cj  , . . . ,

• • • i  f i  • A s ( l )  X  . . .  X
• • • 5 f  j  • Ba(1) X  . . .  X  Es(Tn) * J D a ( j ) , . . . ,

^  • • • , f i i p s (  1) ;  • • • > ^ s ( n ) )  =  • • • j . . . . . . . . 5 f j { a s (  1)5 • • • 5 a s ( m )  =  • • • j

A s ( i ) ,

5.7.2 Algebraic Specification of SCAs

SCAs will be described in this thesis using a specific form of the algebraic specification 

just introduced. Firstly all equations used in the specification of an SCA are special 

cases of equations in that they are explicit definitions. Secondly, we introduce into our 

specification notation additional divisions of the signature and equation components. 

Our algebraic specification of an SCA will be:
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Begin
Specification
Import
Sorts
Constant Symbols 
VF Function Nam es 
7  Function Names 
P Function Names 
5 Function Nam es 
7  Equations 
P Equations 
5 Equations 
IV Equations 
ST Equations

End

S C A
T , A

Vi - . T x [ T  -> A]n x A k A  
7  : Nfc x TV —>■ {S,  M }
P : x N  -> N
Si j  : T  x [T -> A]n x A k - ^ T
7 (hj )  = •••
Pihj) = ■■■
5 i j ( t , a , x )  =  . . .
Vi (0,a,x)  =  . . .
V i ( t +  1 , a , x )  =  . . .

Where we import 2 specifications, a clock specification (T) and a specification, A, 

that defines the data that goes over the SCA channels and the operations that Value 

Functions can implement.

It is a trivial task to turn the above algebra specification into an algebra specifi

cation able to be executed in an algebraic specification tool, e.g. Maude ([CDE+99]) 

by removing elements such as the InitialValueEqs section, and collapsing the indi

vidual operation and equation sections. Both of these are in the definition to aid 

construction and decomposition of SCA algebras. An example algebraic specification 

produced by the removal of the proposed syntax is as follows:
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B egin
Specification  SCA
Im port T, A
Sorts
C onstant Sym bols
Function  N am es Vi : T  x [T —*■ A\n x A k —>• A

7  : Njt x iV -> {S,  M }
/ 3:Nk x N ^ N  
Sij  : T  x [ T  ^  A]n x A k 

E quations l { h j )  =  • • ■
R h j )  =  ■■■
S i j ( t , a , x )  =  . . .
Vi(0,a,x)  =  . . .
V i ( t  + 1 , cl, x ) =  . . .

End

Algebraic Specification of the Exam ple SCA

Recall the simple SCA that was introduced in Chapter 5.3.1, as an algebraic specifi

cation in our style it would become (with appropriate specifications for A  and T):
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B egin

End

Specification
Im port
Sorts
C onstant Sym bols 
V F  Function  N am es  
7  Function  N am es  
(3 Function  N am es  
5 Function  N am es  
7  E quations

(3 E quations

S E quations

IV  E quations

ST  Equations

SCA
T, A

Vi . T  x [ T  -> A]n x A k - 
7  : Nfc x AT —>■ {S, M }
(3 : Nfc x N  -> N  
Siyj : T x [ T ^ A ] n x A k

7(1,1
7(1,2
7(2,1
7(2,2
7(3,1
7(3,2

0 (1,1
0 (1,2
0 (2,1
0 (2,2
0(3,1
0(3,2

=  M  
=  M  
=  S  
=  S
= s 
= s
= 1 
=  2 
=  1 
=  2 
= 3 
= 4

a, x) =  t  — 
S^2(t ,a,x) =  t — 
S2, i{t ,a,x) =  t -  
$2, 2 (f, a, x) =  t -  
<53,i(t ,a ,x ) = t -  

a, x) =  t -

Vi(0, a, x) =  1 

V2 (0, a, x) =  2  

l/3 (0, a, x) =  3

Vi(f +  l ,a , x) =  add(V2( t ,a,x) ,V3( t ,a,x))  
V2{t +  1, a, x) =  sub (aRt ) , a2(t))
V3(t +  1, a, x) =  sub (a3 (t),a 4 (t))

In the work performed to generate this thesis the author had no consistent access 

to an algebraic specification tool, the use of which would be useful in demonstrating 

the ease of modelling systems and the implementation of the transformations defined
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later in this thesis. It is proposed that these definitions and transformations are 

placed into an algebraic specification tool as the first part of future work.

For the reader interested in a real life example, Appendix B contains an algebraic 

SCA specification of the Generalised Railroad Crossing Problem that is used as the 

case study.

5.8 Limitations of the Standard SCA M odel

The simple translation of an SCA to hardware would require one “processor” per 

module. This is achievable if it were to be implemented using a technology such as 

Field Programmable Gate Arrays (FPGA), however this would not sit comfortably 

with safety related software standards. This is because development of a new FPGA 

is new hardware and would therefore introduce an untested and untried element to 

the solution. Additionally, use of a FPGA potentially drives a large through life 

cost as any upgrades/alterations would require new hardware. Ideally the solution 

would be implemented on a generic microprocessor that is in wide spread use so that 

a) known issues can be avoided, e.g. floating point problem with the Intel pentium 

processor ([Int94]) and b) there is a reduced cost of upgrade and ownership. Note 

that in recent years steps have been made to apply formal methods to hardware, 

e.g. Hunt’s work on formally verifying the FM8501 microprocessor ([Hun94]), and 

Harman and Tucker’s application of algebraic methods to correctness and verification 

of microprocessors ([HT93], [HT96] and [HT97]) and also the work of UK Ministry of 

Defence research establishment on the VIPER microprocessor ([Coh8 8] and [Coh89]).

The challenge addressed in this thesis is how to create an SCA that executes on 

one processor from an SCA that requires a processor for each module, or put another 

way, how is a single module SCA created that can alter its computation, wiring, and 

delay operations depending upon the current execution time? It is contended that 

this can be done using the existing model of SCAs, however the introduction of some
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syntactic sugar makes the process cleaner and easier to understand. Since an SCA 

can be specified algebraically, then it is possible to create algebraic transformations 

that can be applied to manipulate a multi-module SCA into a single module SCA, 

through a hierarchy of such models. This hierarchy allows correctness proofs between 

each layer of abstraction in a style resembling refinement.

Consider again our simple example SCA, shown in Figure 5.3, representing a 

computation. It is intended to execute this computation on a single SCA module 

(which is how the computing device will later be represented).

a l  a2 a3 a4

Figure 5.3: Sample SCA Network

In the simple example SCA network in Figure 5.3 each module performs a simple 

mathematical operation. If this network is implemented by a single module then there 

is the implication that each original network module is executed in sequence, e.g. at 

time t  =  x  the function from module 1 is executed, at time t =  x  +  1 the function 

from module 2 is executed and then at time t  =  x  +  2 the function for the third 

module, module 3, is executed; to make semantic sense the computation would wrap 

around to execute module 1 at time t  =  x  +  3 etc. To summarise, module 1 should 

execute at t  mod 3 =  0, module 2 at t  mod 3 =  1 and module 3 at t mod 3 =  2. 

Since the output of module 1 relies on the outputs of modules 2 and 3 in the original 

network, it must be possible to access data produced at times greater than the unit 

delay associated with the initial definition of SCAs, in this case at times t  — 1 and
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t — 2 . To summarise, what is required is an SCA that allows:

• Execution different functions at different times;

• Introduction of delays greater than the unit delay; and

• Alteration of the wiring of a module depending upon the time.

A new module is introduced into the network, a program counter, that starts at 

0 when t — 0 and is incremented at each clock cycle. This program counter can be 

implemented either at each module or centrally, supplying values to all modules in 

the network. Forms of SCAs that act in such a way are referred to as dynamic SCAs 

(dSCAs).

Two forms of dynamic SCAs will soon be introduced - abstract and concrete. 

Abstract dSCAs are a simple syntactical extension to Tucker and Thompson’s original 

definition, which will support:

1. a functional specification for each module in TV, except the program counter, 

that contains a number of specific component operations, executing only one at 

a time, dependent upon the value of a counter;

2 . variations in the delay function between modules of N  dependent upon the 

value of a counter; and

3. variations in the wiring functions between modules in N  dependent upon the 

value of a counter.

Concrete dSCAs implement the abstract principles modelled by an abstract dSCA. 

To achieve this requires the ability to store previously calculated values in tuples as 

outputs on the SCA channels - in a manner similar to that proposed in Hobley 

([Hob90]). In a concrete dSCA functions to manage tuples are provided that allow
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a consistent method for adding and retrieving values from the tuple. For this thesis, 

two of the more interesting tuple management techniques, queues and indexed arrays, 

will be considered.

5.9 Concluding Comments

Synchronous Concurrent Algorithms have been introduced, both informally and for

mally, and it has been shown that they currently have practical uses. In addition, it 

has been shown how a SCA can be specified algebraically.

To conclude, a number of limitations have been identified that need to be overcome 

in order for SCAs to be used in a refinement structure for taking an SCA representing 

a computation and producing an SCA that represents the computing device.

5.10 Sources

The initial work on Synchronous Concurrent Algorithms is an exposition of Tucker 

and Thompson’s original work on SCAs, including some reference to the work of 

Hobley who showed that SCAs did not need to be restricted to unit delay. The 

author’s first ideas for this thesis were inspired by his work for his undergraduate 

degree on dataflow architectures, and the subsequent desire to understand how SCAs 

could represent dataflow machines. It was further inspired by the author’s initial 

career in the Ministry of Defence related to safety related systems.



Chapter 6

A bstract Dynam ic Synchronous 
Concurrent Algorithm s

A bstract dynamic SCA

To provide a model in which transformation o f  algorithm shape 

can take place with an understanding on impact o f  t im e , 

and, input and output streams.

6.1 Introduction

Abstract Dynamic Synchronous Concurrent Algorithms (referred to as abstract dSCAs) 

are introduced to overcome those limitations that have been identified with SCAs and 

to support transformations of the shape of a SCA. Next the elements of an abstract 

dSCA are informally described and then progression to a formal description is made. 

The chapter concludes with an introduction to the concepts of Defining Shape and 

Defining Size of an abstract dSCA and how to specify an abstract dSCA algebraically.

77
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6.2 Informal Definition of Abstract dSCAs

Informally, an abstract dSCA module will execute a component specification where 

the component executed is selected based on the value of a program counter supplied 

to that module. Inputs to the component specification will be selected from the 

dSCA channels and inputs as indicated by the wiring functions, and values will be 

selected from previous calculations based on the delay function. Both the wiring and 

delay functions will also be bound to the value of the program counter, enabling a 

predictable but dynamically shaped SCA to be defined.

Before examining abstract dSCA components this thesis will consider the three 

(syntactic) differences introduced for abstract dSCAs that address the limitations 

identified with SCAs, namely:

1. Increasing number of functional specifications per module.

2. Relaxing unit delay assumption.

3. Variable wiring functions.

6.2.1 Increasing Num ber of Functional Specifications per 
M odule

A SCA computes values using on a single functional specification per module. In 

the dSCA framework it is intended to choose a functional specification based upon 

a particular value of a program counter, allowing one module to implement many 

functions. To achieve this using simple syntactic extensions, a module’s specification 

will be constructed from a number of component functional specifications with the 

correct component selected by means of referring to an externally provided program 

counter. This program counter value will be supplied to modules as the first argument. 

Each module has the same finite number of component functional specifications,
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f i , o> • • • ->f i , MaxN - 1- This finite number is defined as M a x and this fact has three 

implications:

1 . At some values of the program counter the module may be performing some 

null calculation.

2 . At some values of the program counter the functional specification may not use 

all the arguments in the overall module specification.

3. In the traditional SCA model there is a single equation defining the Value 

Functions Initial State phase and a single equation defining the State Transition 

phase of the Value Function. In the dSCA model, a Value Functions initial state 

phase must be provided for each component functional specification, i.e. there 

are Maxjq initial state equations representing the value for program counter 

values pc = 0 ,1 , 2 , . . . ,  M a x n  — 1 at times t = 0 , 1 ,2 , . . . ,  M a x n  — 1 .

The program counter value could be generated in three different ways:

1 . a program counter per module (our investigations have shown that this approach 

presents clumsy manual transformations and required additional proofs that all 

program counters are set to zero at the start of execution and that they all 

increase in step)

2 . include the program counter value as part of the output such that the module 

has 2 outputs, one containing the functional output and the other the updated 

clock value. Again, proofs need to be shown that all values are set properly and 

are suitably incremented.

3. a single globalised program counter that provides its output to all modules.
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Since this thesis will look at manual transformations the author has decided to 

minimise the burden of transformation by generating the program counter using the 

third option - the global program counter.

Allowing multiple functions on a module introduces a problem of cycle consistency, 

where results required were calculated more then M a x n cycles ago. The notion of 

cycle consistency is discussed in detail in chapter 6.2.3, since to make a sensible 

discussion required the introduction of non-unit delays.

6.2.2 Relaxing U nit Delay Assum ption

The delay function in an SCA allowed the retrieval of data calculated at previous 

times - the original convention was the SCAs adhered to the unit delay assumption. 

In a SCA with unit time delay, the definition of one Initial State phase and one State 

Transition phase for Value Functions prevents the lookup of values where t < 0; since 

at time t = 0 the Initial State phase determines the exact value output by the module 

and at times t > 0 the State Transition phase dictates the restriction by using inputs 

calculated at most t — 1 time units ago).

Hobley ([Hob90]) identified that restricting SCAs to unit delay was not necessary, 

and further that a non-unit SCA could be represented as a unit delay if an appropriate 

buffering of data was instigated (either in the channels or in the modules). Our work, 

for the relaxing of the unit delay assumptions, draws heavily from Hobley’s work, but 

notably:

• constrains the implementation to meet the needs of future transformations;

• introduces the notion of cycle consistency and cycle inconsistency; and

• generalises Hobley’s implementation, to produce a more flexible management of 

buffering and a simplified syntax.
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If the unit delay assumption is relaxed then it cannot be guaranteed that values 

from times t < 0 are not requested if there are only definitions for t = 0 and t +  1. In 

chapter 6.2.1 the value M a x n  was introduced to indicate the number of components in 

the functional specification. It is therefore defined that if there are Maxjq components 

in the specification then there must be M a x n initial values, for times 0 , 1 , . . . ,  M a x n ~  

1.

It is immediately tempting to bound the delays allowed to be no greater than 

M a xx ,  however the concept of cyclic consistency needs to be considered. This concept 

is discussed in the next section, but has the following implication: let pcjnow be the 

current value of the program counter, and pcjresi, . . .  ,pc_resn(q represent the values 

of the program counter when the functions that produce results that m* uses, then:

1. if pcjnow < pcjresi, . . .  ,pc.resn(q < M a x ^  then the delay required is within 

the range:

1 , . . . ,  M ax  at

2. Otherwise the delay required is in the range:

M a x ^  +  1 , . . . ,  2 x 2 * Maxjq

6.2.3 Cycle Consistency

Allowing multiple functions per module implies that there is an execution order for 

those functions. The investigations carried out in the author’s work has ascertained 

that certain execution orders can introduce potential temporal issues.

Consider a module that executes 5 modules, thus M a x ^  =  5, then a cycle can 

be defined to be any consecutive time period [ti, £2 , £3 , £4, £5] where j  = 0  and 1 5 =  

£4 +  1, £4 =  £3 +  1, £3 =  ^2 T I 5 ^2 — ti T 1.

If any time pcjnow within the range [t: , . . . , t 5] is chosen then the component 

functional specification executing at module m* at that point in time will select its
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inputs from the channels (or inputs) of the network calculated at some previous time, 

as indicated by the delay functions. The following lemma is introduced:

Lem m a 6.2.1. The execution order chosen for the modules will have a direct affect 
on the period of delay functions required.

In any execution order the component specifications providing results required for 

the functional specification operating at pcjnow will be executed on some module at 

values of the program counter corresponding to pcjresi, . . .  ,pcjresn^ .

Let us consider the case where:

pc.resi, . . . ,  pcjresn(i) > pcjnow 

then there are three cases that need considering:

1 . If pcjnow is at the start of a cycle, for example when t = M a x n , then since the 

functions that will create values for its inputs will not have executed yet, then 

it is the case that the values it requires (from the initial state) are within the 

range 0 < t < M ax

2. If pcjnow is at the last point in the cycle it can be for its inputs to be calculated 

after it, e.g. t = M a x ^ T ^ M a x ^ —2 ) for a functional specification with 2 inputs, 

then its inputs must be found at times t = M a x ^  — 2 and t = M a x ^  — 1; and

3. If pc.now is after the last point in the cycle it can be for its inputs to be 

calculated after it then the system includes a loop - which is not allowed.

If for all values of the program counter it can be shown that functions that calculate 

inputs happen at program counter values higher than the one under consideration, 

then the abstract is defined to be a cycle consistent abstract dSCA.

A cycle inconsistent abstract dSCA is one where for some values of the program 

counter on some modules, the component specification for any result is executed
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earlier in the execution order. In such a case, the delay will always be greater than 

MaxN  for that particular input.

Further, a totally cycle inconsistent abstract dSCA is one where for all values of 

the program counter, and all modules, the component specification for any result is 

executed earlier in the execution order.

The effort required to show that a cycle inconsistent abstract dSCA is not totally 

cycle inconsistent may be too great and thus any cycle inconsistent abstract dSCA 

can be treated as totally cycle inconsistent. The implication of this is immaterial 

for abstract dSCAs but has space implications for concrete dSCAs, this is discussed 

later.

D em onstration Consider the 3 module SCA shown in Figure 6.1 which will be 

implemented as a one module abstract dSCA.

Figure 6 .1: Execution Order Example SCA

The Value Functions for the SCA are given as:

Vi(0, a, x) = 1 

1 4 (0 , a, x) =  2 

V3(0 ,a,x)  =  3

Vi(£ +  1 , a, =  add (V-2(t, a, x), V3 {t, a, x))

V2(t +  1 , a, x) =  sub (ai(£), a2 (t))

V3(t +  1 , a, x) = sub (a3(t), a4(t))

The detail of the wiring and delay functions for the SCA are not given here 

as they are not necessary for understanding (if the reader so wishes they may be
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easily constructed by examining the network structure of the Value Functions). Let 

Vout — Vi and given the input streams below:

a\ = (7 ,9 ,5 ,4 ,6 , 8 ,3 ,5 ,6 )

0,2 = (1 ,8 ,3 ,0 ,5 ,8 ,1 ,1 ,2)

03 =  (5 ,12 ,5 ,7 ,8 ,9 ,5 ,8 ,12)

04 =  (4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 )

then the execution of the SCA can be traced as shown in Table 6 .1 , where the value 

of Vout at every clock cycle is given in the last row of the table.

Time 0 1 2 3 4 5 6 7 8 9
Mod 1 Val 1 5 7 9 3 7 5 5 3 8
Mod 2 Val 2 6 1 2 4 1 0 2 4 4
Mod 3 Val 3 1 8 1 3 4 5 1 4 8
Vout ( t , (2, x) 1 5 7 9 3 7 5 5 3 8

Table 6.1: SCA Execution Trace 

C ycle C onsistent abstract dSCA

The creation of a cycle consistent abstract dSCA will produce an abstract dSCA 

where the functional specification that produces the results for any other functional 

specification occurs later in the execution order. This is easily achieved in this example 

by implementing the execution order of 1-2-3 (another viable alternative is the order 

1-3-2).

In order to provide consistent inputs to the network the input stream must be 

delayed by M a x n  clock cycles, to take account of an initialisation period, and then 

each input value must be held for M ax n  clock cycles i.e. for the length of a cycle. 

For this example, the input streams would be rescheduled as:

a i =  (u, u, u, 7 ,7 ,7 ,9 ,9 ,9 ,5)  

a2 = (u, u,u, 1 , 1 , 1 , 8 , 8 , 8 ,3) 

a3 =  (u, u , u, 5,5,5,12,12,12,5) 

u4 =  (u,u,u,  4,4,4,4,4,4,4)
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The value functions for the one module cycle consistent dSCA will be constructed

as:

Ki(0,a,x) =  (1,0,0)

Vi(l, u, x) = (1,2,0)
K(2,a , z )  =  (1,2,3)

I add(Vi(t — l ,a,  x), Vi(£,a, x)) if Vpc(t,a ,x )  = 0

sub (a^ t), a2W) if VJ,c(i, a, x) =  1

sub (a3 (i), a4(t)) if V̂ c(£, a, x) =  2

The program counter is defined as:

Vpc(0 , a,x)  =  0

VpC(t +  1, a, x) = mod (add (Vpc(t, a , re), 1) .M ax^)

By examining the value function definition for V\ it can be seen that the first 

component of the specification represents module 1 in the SCA, i.e. when the program 

counter value is 0, and the second and third components represent modules 2 and 3 

of the SCA respectively.

If Vout — hi then it is possible to trace the values output as time progresses. The

results of this tracing can be seen in Table 6.2.Time 0 1 2 3 4 5 6 7 8 9
PC Val 0 1 2 0 1 2 0 1 2 0

Module Val 1 2 3 5 6 1 7 1 8 9
hotit( ,̂ fl, 3j) 1 2 3 5 6 1 7 1 8 9

Table 6.2: 1-2-3-Execution Trace

As before, the results of Vout are shown on the last row of the table, but in this case 

only the results produced on every 3rd clock cycle from time t = 0 are of interest (the 

others results are intermediate results). The results that are of interest are shown in 

bold.
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Comparing Tables 6.2 with 6.1 it can be observed that the correct set of results 

are computed every 3rd clock cycle.

Cycle Inconsistent abstract dSCA

For a cycle inconsistent abstract dSCA the execution order of 2-3-1 is considered. The 

naive, and incorrect, implementation would produce something akin to the following 

dSCA:

Vi(0 , a, x) = 2 

Vi(l, a, x) = 3 

hi (2 , a, x) = 1

Isub(ai(t)1 a2 (t)) if Vpc(t, a, x) = 0

sub (a3(t), a4 (t)) if Vpc(t, a, x) = 1

add (Vi(t — 2 , a, x), Vi(t — 1 , a, x)) if Vpc( t,a , x) =  2

In this example the component specification representing module 1 in the SCA is

executed last in the execution order, and the implementation simply tries to match 

the delay function for its inputs to be in the same cycle as it. The result trace for 

such an execution (assuming a similar rescheduling of inputs) is shown in Table 6.3.Time 0 1 2 3 4 5 6 7 8 9
PC Val 0 1 2 0 1 2 0 1 2 0

Mod Val 2 3 1 6 1 7 1 8 9 2

Vout (L *e) 2 3 1 6 1 7 1 8 9 2

Table 6.3: Wrong 2-3-1-Execution Trace

Again the important results are highlighted in bold whereas the other results are 

intermediatory results. The first results is produced at time t =  2 which is fine, 

however the second result is 7 and not 5 as expected. Looking at the intermediate 

results it can be seen that the result required for the calculation are actually computed 

at times t — 5 and t — 4 (or put another way at t — 2 * M a x ^  — 1 and t — 2 * M a x ^  — 2 ).
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If the definition of the Value Function is given to reflect these timings, then the 

following abstract dSCA being defined:

Vi(0 , a,x) = 2 

Vi(l, a, x) = 3 

Vi(2, a, x) = 1

I sub (ai(t), a2(t)) ^  Vic(t, a, x) =  0

sub (a3(t), a4 (t)) if V ^ t ,  a,x) = 1

add (Vi(t — 5, a, z), Vi(i — 4, a, a;)) if a,x) = 2

This abstract dSCA results in the trace shown in Table 6.4.Time 0 1 2 3 4 5 6 7 8 9 10 11

PC Val 0 1 2 0 1 2 0 1 2 0 1 2

Mod Val 2 3 1 6 1 5 1 8 7 2 1 9
Vout (t , a, x) 2 3 1 6 1 5 1 8 7 2 1 9

Table 6.4: Correct 2-3-1-Execution Trace

It can now be seen that the correct set of results (shown in bold) are obtained 

every 3rd cycle after an initial delay of 3 clock cycles.

This difference in start time of correct results is easily managed using retimings if 

a formal syntactic proof of correctness were to be performed.

6.2.4 Variable W iring Functions

The introduction of a component based functional specification means that not all 

inputs must be wired to the same modules for all values of the program counter (it 

is also not necessarily true that all the inputs to a module are wired up for that 

particular value of the program counter). The SCA definition of wiring functions are 

extended to include the program counter as an index - 7pc (z, j )  and j3pc (z, j) .  Where 

the component of the functional specification at a particular value of the program 

counter does not wire up all inputs, a special value will be introduced to indicate 

this.



A B S T R A C T  DYNAMIC SCA 88

6.2.5 Abstract dSCA Components

D ata and Time: As with SCAs, the algorithm will process data from a set A  at 

times t from a global clock T  = {0,1,2, . . .}.

Channels: The modules in a abstract dynamic Synchronous Concurrent Algorithm 

communicate via the channels of a network. Each channel has unit bandwidth, with 

respect to the carrier set A, and, each channel is uni-directionary. Thus, a channel 

may only transmit a single datum a E A  at any one time, in one direction. Channels 

also have the properties that they may branch infinitely, but they may never merge. 

When a channel branches, the intent is that the datum being transmitted along the 

channel is “copied” and transmitted along each of the new branches.

M odules: Each module is capable of processing its inputs and producing one out

put. Processing occurs according to the functional specification. Consider module 

nrii E M, where i > 0 and which has n(i) +  1 6  N input channels. The processing 

performed by this module for the functional specification is defined by the total func

tion F i  : A  x An ^ +1 —► A. The intent being that if b0, 6X, . . .  bn^) E A  were to arrive 

on m 's input channels, then m* computes -Fj(60, 61}. . . ,  6n(*)), where F i  is made of 

M a xn  component specifications /*to, • • ■, f i , M a x N -  i and the appropriate component is 

selected based on the value of the program counter, bo, and for 0 <  pc < M ax nr — 1 , 

f i , Pc will select the appropriate arguments from &1}...  bn^  E A  for its calculation.

The notation that mo will be referred to as the program counter module will be 

adopted, and for ease of description this thesis will often refer to mo as mpc. The 

program counter module is similarly specified to have M axn  component specifica

tions, however each component will be the operation of adding 1 to its previous value 

modulo M axn-  Additionally, the program counter module will output 1 mod M axn
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at time t — 0 through to 0 at time Maxpj — 1. This slightly counter-intuitive def

inition is necessary as the rest of the network will always consider the value of the 

program counter at t — 1. Thus, in the simplest case where the first state transition 

value function is computed, the current time will be t = M a x ^  and it is intended to 

execute the 0 th component which requires Vpc(t — 1 , a, x) to be 0 , which is guaranteed 

by the above rule.

In an SCA the inputs to a module m i: where i > 0 were denoted as &i,. . . ,  bn{i). 

For an abstract dSCA the inputs will be denoted as 60 , 6i , . . . ,  6n(i) where &i,. . . ,  6n(i) 

correspond to the inputs in an SCA and bo is reserved for the value of the program 

counter.

Source M odules (Input): Data is read into the network at sources, also known as 

input modules. Sources have no input channels and a single output channel, which 

as with other channels, may branch. A network with n  sources will process n  input 

streams, cq, . . . ,  an E [T —► A] with the convention that a*(£) is supplied as input by 

source i E Iin at time t E T.

Sink M odules (Output): Data is read out of the network by sink modules; by 

definition, sink modules have a single input channel and no output channels. Data is 

read out of the network as values from A.

6.3 Formal Definition of Abstract dSCAs

Let A" be a synchronous network over data set A  with clock T. If N  has n > 0 

sources then the input to N  is represented as the streams a i , . . . , a n E [T —► A]. 

It is also assumed that N  has k > 0 modules, m0,.. .mfc and that each module 

rrii , where i E M*, has a maximum number, M a x at, of components in its functional 

specification, and that mpc is the usual denotation for the programme counter module 

m 0. Further, it is assumed that for any vector xq, . . .  Xk E A k , where i E N*, Xi is a



A B S T R A C T  DYNAMIC SCA 90

tuple of values, Xi =  • • • ^i,MaxN-i)  £ AMaXN will serve to specify the networks

initial M a x n  values, with the intention that module rrii holds the value x^pc at time 

t = pc and 0 < pc < M a x n  — 1. The initial value for module m pc is specified as 

the tuple xpc =  (1 , 2 , . . . ,  M a x m — 1 , 0 ). (the reason for the offset index of program 

counter values, rather than starting from 0 , is that a module at time t will consider 

the program counter at time t — 1, e.g. at time t = 36, the value from the program 

counter at time t = 35 should be 0 otherwise the wrong component specification will 

be selected!).

Further, the term ination assum ption from the definition of SCA applies such 

that:

“ We assume that at each time t E T  there is a value output from each module, and 

that this value can always by determined uniquely from the time t, the set of inputs 

a, and the set of initial values a:” ([TT94])

The value held by module mi at time t can be determined as required by using the 

termination assumption and the introduction of functions Vo,. ..  ,Vk where for i E N*, 

the following is defined:

Vi : T  x [T -> A f  x A k -+ A

These functions are called the network’s Value Functions.

The output of every module in the network can be determined by exploiting the 

termination assumption and the synchronous nature of the network. Every module’s 

output is either specified initially or is specified in terms of the values held at previous 

time cycles. Value Functions can be defined in two phases, in a similar manner to 

the definition of SCAs given earlier. For modules mo, . . .  , m*;, there are M a x ^  Initial
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State phases (where t =  0 , 1 , . . . ,  M a x ^  — 1), and a single State Transition phase:

Y  (0 , a, x ),

Vi (MaxN — 1 , a, x ) ,

Vi (t +  1 , a, x ) .

To provide the complete definition of Value Functions, it is necessary to introduce 

wiring functions, 7pc.vai(hj) and (3pc_vai{h j) ,  and delay functions, 8ij,pc_vai.

W iring Functions

Modules in a dSCA are wired together in different ways depending on the value 

of the program counter. Consider the network N  which has k > 0 modules and 

n > 0 sources, then a module m *, where 0 < z <  &, will have an associated function 

specification, iq , that requires n(i) +  1 > 0 arguments. These arguments will arrive 

on the input channels for rrii and will be filled with data from the set A  from either 

a source or an adjacent module. Two operations, 7 pc.vai{hj) and (3pc_vai{i,j)  are 

introduced that determine whether the j th input for module m*, at the program 

counter value pc_ua/, is from a source, an adjacent module or the undefined module, 

and what the index of that source or module is.

For a module rrii with inputs j  = 0 , . . .  n(i), the operation 7 pc_vai{ h j )  is defined as 

follows:

Ipc-val : Nfc x N —> {S, M, U}

where S  indicates a source module and M  indicates a module, and U indicates the 

input is not connected/needed for the pcth component functional specification of Fi. 

The value of 7 pc_Vai{h 0) will always be M  since it is always connected to the program 

counter.

We similarly define (3pc_vai ( h j ) as:

/%c.vai : Nfc x N —► Nfc U {u;}
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where u  represents a special value for an unconnected connection. The value of 

Ppc.vai(h 0 ) will always be pc, indicating that it is always connected to the program 

counter.

We require the following five conditions to always hold (where i € N*, j  6 

{0, . . . ,  n(i)} and pc.val 6  {0, . . . ,  M a x n — 1}:

1 - Ppc-vai{hj) I Ajpcjua-Xh j )  I with the intended meaning that for all values of 

the counter pc.val = 0 , . . .  M a x n  — 1 and inputs j  = 0 , . . . ,  n(i)  of all modules 

2 =  1 , . . . , / : ,  the wiring functions (3pc_vai{hj) and 7 pC_Vai{hj) are defined;

2. 7 Pc.vai(hj) = S  => 1 < (3pC_vai( i , j )  < n  with the intended meaning that if the j th 

input channel of module m* at counter value pc.val comes from a source, then 

the index of that source, provided by the /5-wiring function, must be within the 

valid source indices 1 , . . . ,  n;

3. 7 pC.vai{hj) = M  => 0 <  Ppc.vai{hj) < k with the intended meaning that if the 

j th input channel of module rrii at counter value pc.val comes from a module, 

then the index of that source, provided by the /5-wiring function, must be within 

the valid module indices 0 , . . . ,  k (recall that the program counter module is mo); 

and

4. 7 Pc.vai{hj) — U <=> P p d h j )  = v  with the intended meaning that if the j th input 

channel of module rrii at counter value pc.val is not connected, then the value 

of the /5-wiring function, must indicate the special non connected index u.

5- Ipc-vai(2, 0 ) =  M  A Ppc_vai(h 0) =  pc with the intended meaning that the zeroth 

input to a module would always be from a module, whose index is the program 

counter (and this includes the program counter module).

A consequence of the first condition is the need to define values of 7 p C. v a i ( h j )  and
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/3pc_Va i(h j) when the component of the functional specification under execution uses 

only a subset of the module’s inputs.

D elay Functions

For each input channel j  of module rrii at program counter value pc.val a delay is 

associated, Sij>pc_vai, that indicates from what time cycle the input was produced. It 

is defined as:

Si,jtPc.vai : T  x [T —> A]n x Aktup -> T

The delay function in a dSCA is deliberately set so that it can take account of 

the current time, the current values of the input streams and the initial values of 

the network, as per the SCA definition. It is additionally indexed to reflect the 

different values it may take at different values of the program counter the dSCA 

module is currently executing at. To preclude the construction of predictive circuits,

i.e. where the value of Sij^c_Vai is such that it looks forward in time, the

temporal condition is introduced that for any time t G T, inputs a G [T —► A]n, initial 

values x  G A MAXnxK, and values of the counter pc.val G {0,1,2, . . .  M a x ^  — 1} the 

value of delay must be less than t, i.e.: SijiPC(t,a ,x) < t.

For a cycle inconsistent dSCA the definition of the delay function is further bound 

so it cannot look at data calculated at times greater than 2 x M a x n — 1 clock cycles 

before the current time, i.e.:

t (2 X AdaXjy'j ^j *̂ ) I

and that it must never be allowed to refer to times less that 0 :

The general rules of the delay function are that for i € N*, j  G {0, . . . ,  n(i)} and 

pc.val G {0 , . . . ,  Maxjv — 1}:
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1* î)j)pcjv(ii *̂ ) j. "with the intended me^nin^ thfl»t fop &11 inputs j  = 0 , . . . ,  n(i) 

of all modules i € Njt, the delay function SitjtPC_vai (t ,a , x ) is defined;

2 . t — 2 x M aijv < SijtPC_vai( t ,a ,x ) < i with the intended meaning that for all 

inputs j  =  0 , . . . ,  n(i) of all modules i G N& and at all values of the program 

counter pc.val = 0 , ,  M a x the delay function SijjPC_vai (t , a, x) must be as a 

minimum the unit delay and as a maximum 2 x M a xN (for a cycle consistent 

dSCA this constraint would be appropriately amended to cope with tuple of 

length Maxjq)\

and specifically relating to the program counter:

1 . 5ifliPC_vai(t,a, x) =  t — 1 with the intended meaning that all program counter 

inputs to all modules are subject to a unit delay; and

2 - $pc,o,pc_vai(t>a, x) = t — 1 with the intended meaning that there is unit delay on 

the input of the program counter module to itself.

There will be times where the values of SijyPC_vai (£, a, x) are meaningless for the 

calculation; however, since the rules require a value to be provided for all modules at 

all values of the program counter the unit delay will be used in these cases.

V alue F u n c tio n  In itia l S ta te  P h ase

The initial state phase for Value Functions defines the state of modules in N  at 

times t = 0 , 1 , . . . ,  M a x N — 1 for modules 0 , . . . ,  k. For modules 0 , . . . ,  k and program 

counter values 0 , . . . ,  M a x n — 1 since xitPCi the pcth element of the ith vector of the set 

of initial values x, is intentionally the data value held by module rrii at time t = pc 

then it is appropriate to define:

Vi(pcjval,a,x) =  x^pc
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for i £ N*; and pc.val = 0 , . . . ,  M a x ^  — 1 .

For the program counter module, the values are specifically defined as:

(1 , 2 , . . . ,  Max^f — 1 , 0 )

with the intended meaning that:

Vpc{0 , a, x) = 1 

hpc(lj *̂ ) — 2

Vpc(Max]sr — 2, a, x) = M a x n  — 1 

Vpc(M axN — 1, a, x) = 0

Value Functions State Transition Phase

For modules 0 , . . . ,  k the intention behind the module specification Fi : A x  A n ^ + 1  —> 

A  is that if 60, 61}. . . ,  6n(i) are the values selected by means of its delay functions

&i,o,pcjuaij $i,i,pc.val, ■ • • 5 pc.val from past data along its input channels, then.

F{ (b0, b\ , . . . , &n(i))

is the value held at time t.

The definition of F{ for modules 1 , . . . ,  k consist of M a x n component specifica

tions, one for each value of pc, and may include producing the “undefined” constant; 

where the intention is that the module performs no processing at that value of the 

counter and simply outputs, u. The introduction of u is necessary to ensure that each 

module has a value to output for each of its M a x ^  component functional specifica

tions.
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M a x x  component specifications are defined for Fi as follows:

Fi

< bo, ^

bi,
* '  • 5

\  A(i) j

=  <

^  ^1 ,0? ^
h i . . . , if =  0

^  ^ n (z ,0 ) ,0  j

A . \
f i ,2 . . . , if 60 =  1

^  b n ( i ,  1) ,1 j

^  b \ , M a x x — l i  ^
f i , M a x p f if b0 — Maxpj — 1

y  b n ( i , M a x ^  — l ) , M a x ^  — l  J

where ^ i t0) • • • > ^n(i,i),0) ^2,1 ? • • • ? ^n(i,Max^ ) —15 M clxn') £ • • • 5 ^n(i) }5 he. arguments

in the component specification are selected from arguments in the functional definition 

of the SCA.

For j  = 0 , . . . , n (z ) ,  the j th input is either supplied by some source at some 

previous time, in which case, bj = aq (8 ij,pc_vai (t,a,x)),  or it is supplied by some 

other module in the network at some previous time, bj = Vq (5ij,pc_vai ( t,a ,x )  ,a ,x).  

Accordingly, V  (t, a, x) is defined as:

Vi (£, a, x) = Fi (6o,&i, • • • A(»))

where for j  = 0 , . . . ,  n  (i ):

ag(kj,b0 (*,a,z)) if 7&0 (i, j) =  SA

A 0  ( * > j )  =  Q

Vq (k jM  (*, a, x ) , a, x) if 7 bo (i, j )  =  M A

A 0  ( m )

^ if Tbo(hj) = UA

A 0  ( b j )

bj =
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it will always be the case that b0 = Vpc (£, a, x).

For the program counter module, mpc, the definition of component specification, 

Fi, is always:

N etw ork O utput

Vout is defined as the vector representing the output from network N. Consider that 

N  has m  > 0 sinks, then Vout would be constructed as Vout =  (V^, . . . ,  VSm), where

Si , . . . ,  sm £ i.e..

Vout is not allowed to change with the values of the program counter to ensure that

then a retiming is probably required on the values produced by Vout to ensure only 

relevant values are observed. The relevant values will be produced every M a x ^  clock 

cycles after an initial delay dependent upon the execution order chosen.

6.3.1 Defining Shape of an abstract dSCA

It is possible to implement the same algorithm on several dSCAs, differing only by 

the number of modules and values of M a x To distinguish between such dSCAs the 

pair V =  (/c, Max^r) is defined as the Defining Shape of a dSCA, where k > 0 is 

the number of modules in the dSCA network and M a x ^  is the number of component 

specifications each module in the dSCA network has.

An algorithm which has 20 separate functions to be implemented, can therefore 

be implemented on a dSCA where V =  (20,1) - the usual notion of an SCA - or some 

other valid combination, some examples of which are V =  (1 0 , 2 ), V =  (5 ,4 ), V =

mod (add (bo,1) M a x n ) if b0 = 0

mod (add (b0:1) M a x n ) if b0 = Max^r — 1

V out  ( k s i  3 • • • 5 K m )

only one set of outputs is considered. However, it should be noted that if M a x n  > 1
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(4,5), V =  (1,20) - the last defining shape perhaps representing a single processor 

machine.

It is possible for a dSCA to be defined where V can support more functions than 

are available, e.g. in the example we are using the value could be given as V =  (5,5). 

The only restriction placed on the defining shape is that there must be a sufficient 

number of modules/computations allowed (value of Maxiv) to handle all functions in 

the computation. To determine this, the defining size of the dSCA is introduced.

6.3.2 Defining Size of an abstract dSCA

The D efining Size of a dS C A  with a defining shape of V =  (k , M a x m) is defined to 

be A = (k x Max^i). The defining size provides a metric to understand if a particular 

algorithm will fit onto a particular dSCA defining shape. The example used in the 

defining shape section, section 6 .2 .1 , with 20 operations would clearly need a dSCA 

where A >  20 for it to be implemented on a dSCA.

6.4 Correctness

By inspection it can be seen that a dSCA is simply an SCA with some syntactic sugar 

around the modules functional definition. Therefore the same correctness approaches 

used for SCAs can be applied to abstract dSCAs.

Care must be taken to ensure that the same type of consistency is applied to 

all modules, i.e. an abstract dSCA should not have modules where some are cycle 

consistent and some are cycle inconsistent.

6.5 Algebraic Specification of abstract dSCAs

Since an abstract dSCA is really an SCA with some syntactic sugar, it can be specified 

algebraically in the same way as an SCA. An example algebraic specification of an
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abstract dSCA is given in Appendix C.

As with the SCA example given in chapter 5, this form can be readily translated 

into a format suitable for use within one of the algebraic tools available by collapsing 

the additional operation and equation definitions in the notation, as shown for SCAs.

6.6 Concluding Comments

The introduction of abstract dSCAs is fundamental to this thesis, as it supports the 

notion of transforming the defining shape of a dSCA, as will be demonstrated in 

Chapter 11. The author has specifically ensured that abstract dSCAs are just simple 

syntactic extensions of SCAs in order to provide a solid foundation for mathematical 

analysis. This is known since it is possible to construct an abstract dSCA using just 

the syntax of the normal definition of SCAs. In doing so, the indexing of the wiring 

and delay functions would have to be removed and codified into the definition of the 

function.

6.7 Sources

The work in this chapter on extending SCAs syntactically to cover the requirements 

for dynamic SCAs is all my own work except for that that deals with the introduction 

of non-unit delay SCAs which is based on the work of Hobley; however this thesis 

enhances the understanding of non-unit delay SCAs when used in a hierarchy, in 

particular the identification of cycle consistency and the need to provide equations 

to represent the Initial State for times t = 0 ,1 , . . . ,  MaxN — 1. The initial work 

investigated SCAs and what have now become concrete dSCAs - the author is grateful 

to his supervisor, Dr. N. Harman, who suggested introducing the abstract dSCA 

concept enabling the transformation of SCAs to be studied in a cleaner manner.



Chapter 7

Concrete Dynam ic Synchronous 
Concurrent Algorithm s

C oncrete dynam ic SCA

To approximate a model o f  physical hardware implementation  

with memory and a program counter.

7.1 Introduction

The previous chapter introduced abstract dSCAs allowing the limitations of SCAs, 

in the context of this thesis, to be addressed. Data was passed around the network 

as single datum from an underlying algebra A  and the delay function was responsible 

for selecting the correct data from previous time cycles, t — 1 , . . . ,  i — (2 x M ax  at — 1) 

(or t — 1 , . . . ,  t — MaxN  — 1 for cycle consistent abstract dSCAs). Current technology 

does not support a machine with these temporal look-ups without the look-ups being 

encoded in a more concrete manner. Concrete dSCAs are introduced to support the 

encoding of results by storing these results in a finite length tuple per module.

As discussed in Chapter 6 a cycle inconsistent abstract dSCA can be either par

tially or completely cycle inconsistent. It was also mentioned that for abstract dSCAs

100
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this distinction was merely a classification but that there were implications for con

crete dSCAs. These implications relate to the size of the tuple needed for results.

Hobley, [Hob90], showed how non-unit delay SCAs may be represented as unit 

delay SCAs by the introduction of buffered channels or internal storage. Whereas 

Hobley’s work considers these buffers/storage as shift registers, we extend this and 

generalise with the introduction of tuple management functions allowing, if we wish, 

buffers to act as indexed arrays. Additionally, the concrete dSCAs that this thesis 

introduces implement the other attributes of dynamic SCAs given in the previous 

chapter.

7.2 Informal Definition of Concrete dSCAs

Recall that modules within an abstract dSCA network communicate via channels, 

and each channels is of unit bandwidth with respect to the underlying algebra A, 

and uni-directional. Concrete dSCAs, like abstract dSCAs, may be cycle consistent 

or inconsistent, and this thesis will consider both types of concrete dSCAs since both 

have differing requirements for storage.

In a concrete dSCA the size of the storage depends on the type of concrete dSCA 

under examination:

• Cycle consistent dSCA needs a storage size of only M a x n -

• A totally cycle inconsistent dSCA needs a storage size of 2 x M ax

• All other cycle inconsistent dSCA needs, as a minimum, a storage size of M a x ^  

plus a storage element for each result that is not cycle consistent.

Thus in the worst case it is necessary to store up to the last 2 x M a x ^  values 

calculated by the module so they are available to other modules.
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This storage will be implemented in concrete dSCAs using tuples, thus the carrier 

set A tup is constructed in such a way so that it includes the algebra A  and tuples 

made from A  of the necessary length. Using Atup it is now possible to maintain the 

unit bandwidth notion of SCAs.

There are many conceivable ways of placing data into the tuple and subsequently 

retrieving them. The complexity of these approaches is related to the type of cycle 

consistency under consideration. For a cycle consistent and totally cycle inconsistent 

concrete dSCA these tuple management functions can be relatively simple, for a 

non totally inconsistent concrete dSCA the functions are more complex requiring 

knowledge of which results are cycle consistent and those which are not. For reasons of 

simplicity this thesis will consider only cycle consistent and totally cycle inconsistent 

concrete dSCAs. Two of the more interesting tuple management approaches are:

1. Queue. This is the most obvious implementation; and

2. Indexed array. This would closely map to a von Neuman architecture.

The tuple management operations will need to:

1. Update the data in the tuple, which consists of:

(a) inserting newly calculated data into the tuple at the correct position for 

later extraction; and

(b) deleting old data from the tuple; and

2. Extract the required data

Updating the tuple values will be managed by the tuple update operation, T, 

which for a cycle inconsistent concrete dSCA will be given as:

T : A  x Ai x • • • x A 2xMaXN x A A 1 x • • • x A 2xMaXN
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For a cycle consistent concrete dSCA the definition of the tuple update operation 

is simplified to:

T : A  x A x x • • • x A MaXN x A  -► Ai x • • • x A M(lXN

The intention behind T is that the first argument will be program counter value, 

the next 2 x M a x ^  arguments are the tuple values from this module at the previous 

time, and the final argument is the result just calculated.

Selection for a cycle inconsistent dSCA is made by applying a projection operation, 

n l X̂ r " ,  on tuple to select the value at the index for the j th input of module 

i at program counter value pc, and is given as:

C '  = ^  *  ■ ■ ■ *  A l * M a r N  -  A

Again, a cycle consistent concrete dSCA will define the projection operation over 

the simplified tuple output as:

: A x  X •.. x AMaXN -  A  

The two chosen tuple management techniques are now discussed in more detail.

7.2.1 Tuple M anagement : Queue 

U pdating Data:

Managing the tuple as a first-in first-out queue requires new data, b, to be added to 

the left hand side of the tuple and the removal of the rightmost data.

Cycle Inconsistent Tuple Management Definitions

The tuple management definitions for a cycle inconsistent concrete dSCA are 

defined simultaneously. Where the value of the program counter is less than M a x ^  — 1 , 

then the values in the tuple at n  get shifted right to n +  1, for 0 <  n < M a x ^  — 1,
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and the new result added to the tuple at position 0 : 

/  pcjval, ^

A O ?  • • • j ^ M a x N - i  5T

\ J

6 ,  ( 1 q ,  • • • , & M a x  j v —25

1 )  • ■ • 5 ® ( 2 x M a x p j )  — 2

if the value of the program counter equals Max?] — 1 then the process above is 

performed and then the whole first half of the tuple is copied into the second half:

/ M a x ^  — 1, ^
6, G o ?  • • • j Q ' Ma x N — 2)

T
Qfl} • • • j ^Maxj^ — \i 

ClMaxNi • ■ • 5 &2x.MaxN — l

J

= copy
^ M a x j q  — l t  • • • j & ( 2 x M a x p j )  — 2

6, do? ■ • • j &Maxjv- 2) 

6, ao, • • • j Q'MaxN — 2

The value of programme counter is not used in the queue tuple management 

operations. It remains in the definition for ease of clarity across models.

Cycle Consistent Tuple Management Definitions

For a cycle consistent concrete dSCA there is no need to copy the data to higher 

levels of the tuple at pc — M a xn  — 1 s o  the definition of T is simplified as:

Y(pcjval, Go? ■ • • j ^Maxjv- 1> (^5 a0 , • • • j Q*MaxN—2)

Selecting Data:

Cycle Inconsistent Tuple Management Definitions

The value of dij^pcvai in the projection function, n^ x̂ a^ ,  is directly proportional 

to the time that the result was calculated. Consider the output of module rrii at time 

f - l e T ,  which is what other modules will be restricted to observe, it will consist of
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a tuple of results as follows:

f  Vh(t -  l,a ,a;), ^

Vh{t -  2 ,a ,x ),

. . . ,

Vh(t — M a x^ ,  a, z)

Vh(t -  (M axN +  1), a, x),

. . . ,

If it is intended to select the result calculated at time t-4 then it will have been 

shifted (t — 1 — (t — 4) indexes to the right of the start of the tuple, i.e. it will be 

at index 3 (assuming that M a x ^  is of course greater than 4) - note that indexing of 

tuple elements starts at 0 .

Cycle Consistent Tuple Management Definitions

The cycle consistent concrete dSCA will have the same definition, but is restricted 

to values up to M a x n  time cycles ago.

7.2.2 Tuple M anagem ent : Indexed Array 

U pdating Data:

Managing the tuple as an indexed array ensures that new data is entered into to 

a predetermined position in the array, whilst overwriting any existing data held in 

that position. Since the program counter value is available to modules and uniquely 

identifies values in the range of 0 , . . . ,  M a x ^  — 1 this value is chosen to indicate where 

in the tuple results will be placed.

Cycle Inconsistent Tuple Management Definitions

In a cycle inconsistent concrete dSCA if the value of the program counter is less 

than Maxj^r — 1 then the newly calculated value is entered into the array at position
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T
(2.(3 , • • • 5 Q'pc-.val—l'i b)  Q"pc-val-\-1 )  • • • ) ^ M a x j v — 1> 

^Maxjv ) • ■ • 5 ®(2xMaijv)- 1

indicated by the program counter as follows:

/  pc.val, ^

(2q, • • • , ^A/axjv—l ’

^Max^v; • • • 5 ^2xMaxjv —1

>6 /
When the program counter equals M a x ^  — 1 then the newly calculated vale is

entered at index Maxjy — 1 and subsequently the values with indexes 0 , . . . ,  M a x ^  — 1

are copied to indexes M a x n , . . .  ,2 x Maxj^ — 1 , as:

T

 ̂Maxiy — 1,

(2i, . . . , aMaxN j 

^ M a x ^ + l l  5 • • • j ^ 2 x M a x j v

V ’ 6

\

=  copy
(2o, • • • , UMaxjv- 2?

^Maxpj) • • • j Q'(2 xMclxn) — 1

(2q, . . . , 2? ^5

(2(), . • • , (2jV/ax̂ —2) ^

Cycle Consistent Tuple Management Definitions

For the cycle consistent concrete dSCA the definition would be:

T (pc.val, (2(3, • • • , a Max n — 15 (flo 5 • • ■ 5 ^pc.val—1; ^5 ^pcjuaJ+l > • • • ^Max^ — l) 

Selecting D ata

Cycle Inconsistent Tuple Management Definitions

Retrieval of the correct datum from the tuple, i.e. the identification of the correct 

value for dijiPC Vai in the projection function, relies on knowledge of the

program counter value when the result was calculated, and selecting the appropriate 

index value.

Cycle Consistent Tuple Management Definitions

The cycle consistent concrete dSCA has a similar definition but is limited to retrieval 

from a tuple of length M a x m-
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7.2.3 Cycle Consistency and Execution Order

Concrete dSCAs have the same properties as abstract dSCAs regarding execution 

order and cycle consistency, and has been shown, a cycle consistent dSCA requires a 

tuple of only M a x ^  length, whereas a cycle inconsistent concrete dSCA requires one 

with a length of 2 x M ax

7.2.4 Concrete dSCA Components

D a ta  an d  T im e: As with SCAs, a concrete dSCA will process data from a set A  

which is augmented with tuples of the length M a x n to form the set A tup, at times t 

from a global clock T  =  {0 ,1 ,2 ,...} .

C hannels: The modules in a concrete dSCA communicate via the channels of a 

network. Each channel has unit bandwidth, with respect to the carrier set A tup and 

each channel is uni-directional. A channel may only transmit a single datum a € A tup 

at any one time, in one direction, where the tuples will be of length tl between all 

modules except from the program counter, which is of length 1 , i.e. a single datum. 

Channels also have the properties that they may branch infinitely, but they may 

never merge. When a channel branches, the intent is that the datum being trans

mitted along the channel is “copied” and transmitted along each of the new branches.

M odules: Each module is capable of processing its inputs and producing one output, 

which in all cases apart from the program counter, will be a tuple. Take a module 

rrii € M, where i > 0 and which has n(i) +  2 € N input channels; then the first input 

channel is always from the program counter, the second from the module itself, and 

the remaining inputs from sources or other modules in the network, the processing
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performed by this module is defined as the total function:

F • A y A v An AL 2 • f*-tup ^tup tup f'-tup'

The intent being that if values 60, 61, 62, • • - 6n(*)+i € A tup were to arrive on mjs 

input channels, then m» computes F^(60 , 61} 62, . . . ,  6n(*)+1), where the Fi is made from 

M a x x  component specifications / ij0, . . . ,  fi,MaxN- i  and the appropriate component is 

selected by the value of the program counter, 60, and for 0 < pc_val < M a x ^  — 1 , 

fi,Pcjuai will select the appropriate arguments from 60, . . .  6n(*)+1 E A  for its calculation. 

Each component specification will follow the following form:

kAb0 , 6 1 . 6 2 , ,  6»w+i) =  T  ( 6°> 61, /S c  ( * ,  ( f c ) , • ■ ■, n ^ (i)_lipc (6„(.)+i)))

where T is the chosen tuple management operation, II the associated projection 

operation, f ^ c is the actual calculation performed by the module for tha t value of 

the program counter and tl is either 2 x M a x n  if the concrete dSCA is totally cycle 

inconsistent, or M a x ^  if it is cycle consistent.

Module m 0 is defined as the program counter module, and the notion that this 

module is referred to as mpc is adopted. The program counter module is always 

specified as:

(mod (add (Vpc(t, a, x), 1) M axn)  if V̂ c(£, a, x) = 0  

:

mod (add (Vpc(t) a, x ) ) 1) M a xN) if Vpc(t, a, x) = M a x N — 1

Source M odules (In p u t) : Data is read into the network at sources, also known as 

input modules. Sources have no input channels and a single output channel, which 

as with other channels, may branch. A network with n sources will process n input 

streams, a 1}. . . ,  an € [T —i► A\ (note that tuples are not allowed for inputs) with the 

convention that a^(t) is supplied as input by source i E Iin at time t 6  T.
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S ink M odules (O u tp u t) : Data is read out of the network by sink modules; by 

definition, sink modules have a single input channel and no output channels. Since 

the modules will be producing tuple outputs it is necessary to select the required 

value from the tuple output to obtain a sensible result.

7.3 Formal Definition of Concrete dSCAs

Let N  be a synchronous network over data set Atup, which is the data set A  augmented 

with tuples of length tl (where tl is M a x ^  if the dSCA is cycle consistent or 2 x M a x ^  

otherwise), with clock T. If N  has n > 0 sources then the input to N  is represented 

as the streams a1}. . . ,  an E [T —► A]. It is assumed that N  has k > 0 modules, 

mo, . . .  rrik, and that each module m*, where i E N, has a maximum number, Maxjy, 

of components in its functional specification, and that module mo is a special program 

counter module usually denoted as m pc.

It is further assumed that for any vector xq, . . .  Xk E A ^ p , where for i E N*, a 

vector of values, Xi, is defined for 1 <  i < k such that Xi = (xi$ , . . . ,  x^MaxN- i) € A\up. 

That is to say, that for each module m,, where 1 < i < k, there are M a x ^  initial 

states defined and that for each value of the program counter, 0 <  I < tl — 1 , the 

initial value tuple is of the form (xijt0, . . . ,  x*,/,ij-i), and that this will serve to specify 

the networks initial values. The intention is that module m* holds the value at 

time t E 0,/, M a x ^  — 1. Additionally, for the program counter module the initial 

values x 0 =  (^o,o5 • • •, xo,MaxN- i ) are defined where x0fPC_vai is a single value from A  

Further, the te rm in a tio n  assu m p tio n  from the original definition of SCA and 

abstract dSCAs is kept such that:

“We assume that at each time t E T  there is a value output from each 

module, and that this value can always by determined uniquely from the
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time £, the set of inputs a, and the set of initial values x." ([TT94])

The value held by module m*, at time £, can be determined, as required by the 

termination assumption, by introducing functions Vo,. . . ,  V* where for i = 0 , . . . ,  k 

the following is defined:

Vi : T x [T - A]n x A tp -» Atup

These functions are known as the network’s Value Functions. By exploiting the 

termination assumption and the synchronous nature of the network, the output of 

every module in the network is either specified initially, or is specified in terms of the 

values held at previous time cycles. Value Functions for a module can therefore be 

defined in distinct components - for the Initial State and one for the State Transition 

, i.e. for each module m* where i € N*. the following can be defined:

Vi (0, a, x ) ,

Vi {Maxn — 1, a, x ) ,

1, a, x ) .

The nature of the network is such that it is not until t = Maxjy — 1 that the initial 

value is meaningful, i.e. produces a tuple that is filled with all the correct values, 

thus it is only the value at t = M a x n  — 1 that is of interest; values before that could 

be filled with undefined or some other chosen values. However, to ease correctness 

proofs it is useful to have the state at time t = 0 being a well defined and known 

state.

An alternative approach would be to define one initial state phase for the value 

function, at time t = 0 which is equivalent to the previous approach at t  — M a x ^  

and then begin processing from that point.

This extension will use the first approach to allow easier comparison to the abstract 

dSCA which the concrete may be derived from.
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To provide the complete definition of Value Functions, it is necessary to consider 

the following

• Wiring Functions, 7 pc{hj)  and PPc(hj)\ and

• Delay Function, 8 ij(t,  a, x ) .

W iring Functions

Just like modules in an abstract dSCA, the modules in a concrete dSCA are wired 

together in different ways depending on the value of the program counter. Consider 

the network N  which has k > 0 modules and n > 0 sources, then a module rrii (i G N&) 

will have an associated function specification, Fi, that requires n(z) + 2 > 0 arguments. 

These arguments will arrive on m 's input channels and will be filled with data from 

the set A tup from either a source, an adjacent module or the program counter module. 

Two operations, 7 pc.Vai{hj) a^d (3pc_Vai{hj) are introduced that determine for module 

rrii s j th input whether it is from a source or an adjacent module, and what the index 

of that source or module is at the pc.valth cycle.

For a module rrii with inputs j  = 0 , . . .  n(i) +  2, the operation 7 pc.vai{hj) is defined 

as follows:

lpc.vai : x N —► {S, M, U)

where S  indicates a source module and M  indicates a module, and U indicates the 

input is not connected/needed for the pc..valth component functional specification of 

F .

Ppc_vai(hj) is similarly defined as:

P : Nfc x N Nk U M

where u  represents a special value for no connection.

The following six conditions always hold where i e  N*, pcjual GO, . . . ,  M a x # — 1 

and j  G 0 , . . . ,  n(i) +  1:
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1- Ppc.vaiihj) 1 j )  |  with the intended meaning tha t for all values of the

program counter and for all inputs of all modules the wiring functions /3pc_vai(i,j)  

and jpc.vaiihj) are defined;

2. 7 pc.vai(hj) — S  =>■ 1 <  /3pc-vai{hj) < n  with the intended meaning tha t if the j th 

input channel of module mi at counter value pc.val comes from a source, then 

the index of that source, provided by the /3-wiring function, must be within the 

valid source indices 1 , . . . ,  n;

3. 7 pc_vai(hj) = M  => 1 <  (3pC_vai{hj) <  & with the intended meaning that if the 

j th input channel of module at counter value pc comes from a module, then 

the index of that source, provided by the /3-wiring function, must be within the 

valid module indices 0 , . . . ,  k\

4. 7Pc.vai(hj) — U <=> Ppc.vai{hj) =  ^  with the intended meaning that if the j th 

input channel of module mi at counter value pc.val is not connected, then the 

value of the /3-wiring function, must indicate the special non connected value

U]

5. 7 pc_waZ(̂ 5 fi) = pc A (3pc_vai{h 0) =  M  with the intended meaning that the zeroth 

input of each module mi is wired to the program counter module; and

and for i € 1 , . . . ,  fc

1- lpc.vai{h 1) — i A Ppcjuaiih 1) =  M  with the intended meaning that the 1st input 

of each module m i , except the program counter module, is wired to tha t module 

(recall that the program counter only has only input, and this case is covered 

by the previous condition).

A consequence of the first condition is the need to define values of 7 pc(i,j)  and 

/3 Pc{iJ)  even for when the component of the functional specification under execution 

uses a subset of the modules inputs - hence the introduction of the values U and u.
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D elay Functions

For each input channel j  of module m*, where i E N*, a delay is associated,

5 itj ( t,a ,x ),  that indicates the delay between the time cycle the input was produced 

and the current time. It is defined as:

Sij : T  x [ T  —> A\n x Aktup -* T

To preclude the construction of predictive circuits - where the value of SijtPC (t , a , x ) 

is such that it looks forward in time, the temporal condition is introduced that for 

any time t 6  T, inputs a E [T —► A]n, initial values x E A^up, the value of delay must 

mean looking at times less that t:

Since the purpose of the introduction of concrete dSCAs is to remove the necessity 

to look back greater than the previous time unit, the delay function is restricted to be 

the unit delay introduced in the original SCA definition. Recall that values calculated 

at times t — 1,t — 2, . . . , £  — tl are preserved in the tuple produced at time t — 1 . The 

suffix of pc introduced in abstract dSCAs is no longer needed as the value of the delay 

function is no longer dependant upon values of the program counter.

The restrictions placed on Sij for concrete dSCAs, where i E and j  E 0 , . . . ,  n(i) +  1, 

are:

1 . 5ij ( t,a ,x )  |  with the intended meaning that for all inputs of all modules the 

delay function Sij ( t,a ,x)  is defined; and

2 . Sij (£, a, x) =  t — 1) with the intended meaning that for all inputs of all modules 

the delay function Sij (£, a, x) is the unit delay.

Initial S tate
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The Initial State defines the state of modules in then network N.  For module m*, 

where % € N*, the Initial State is defined for times t = 0 , 1 , ,  M a x ^  — 1.

Since ZjtPC, the pcth element of the ith vector of the set of initial values x , is 

intentionally the tuple of data values held by module rrii at time t =  pc.val, for 

0 < pcjval < MaxN — 1 , and pc.val is the value of the counter, then it is appropriate 

to define:

Vi(pCJVal, X) 3'i,pcjual

for i =  0 , . . . ,  k and pcjval =  0 , . . . ,  Maxjy — 1 .

The set of initial values is constructed in such a way that at time t = M a x ^  — 1 

the output tuple for module rrii is loaded with all necessary initial values in the order 

specified by the tuple management scheme under use. It is permissable for the values 

of the initial state prior to t = M axn  — 1 to be undefined since they do not partake 

in any of the computation.

For module m 0 the program counter (also written as mpc), the value of x 0 is always 

defined as:

=  ((1), (2 ) , . . . ,  (M a xN -  1), (0 ))

State Transition

For module m i: where i G Nfc, the intention behind the module specification:

F • A v A v An —► A1 i • ■ri-tup ■ri-tup ■ritup -̂ -tup

is that if bo, . . . ,  6n(i)+i are the values selected by means of its delay functions 

î,o> • • • j ^i,n(i)+i from past data along its input channels, then Fi (b0, 6i, b2, . . . ,  6n(*)+i)

is the value held at time t. The definition of Fi consists of M a x ^  component specifica

tions, one for each value of the programme counter, and may include the “undefined” 

operation u - where the intention is that the module performs no processing at that 

value of the counter and simply outputs, u (the introduction of the undefined value 

is required to ensure each module outputs a value for each of its M a x ^  component
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functional specifications). Maxjv component specifications are defined for Fi as fol

lows:

Fi

(  bo,
bi,
• • • >

\  ^ n ( i ) + l

f i ,  0

=  <
f i ,  1

(  bo,o, \  
bi,o,
2̂,0)

* ’ * ?
V ^ n ( i , 0 ) , 0  /  
(  0̂,1 > ^ 

&1,1>
&2,1j

\  n̂(i, 1),1 /

if 6q =  0

if 60 =  1

( bô Maxiy — 1) 
b \ ^ M a x j q —l  j 

2̂,Maxjv —1’ if 6q =  Maxfsf  — 1

\  ^n(i,MaXAr —l),Maa;jv —1 /

where values (bo,0 , ^1,0? • • • j n̂(i,l),05 ^2,1? • • • j n̂(i,Afaxjv) — 1) • j ^n(i)+l} 5

i.e. arguments in the component specification are selected from appropriate argu

ments in the functional definition of the SCA. Each fi,pc_vah where z G N*, will be 

defined as:

val

( bo> 

61, 

&2?

\

=  T

(

boAJZc.val

V

( n t . ^ ,  ( W . ) N

\  ^ , « ( i ) - i , p c . « a l  ( b n (i,p c -va l) )  /  7
y  bn(i,pcjval) J

where T is the appropriate tuple management operation for the tuple length, the 

projection functions IlJ. 2pcval, • • •,  ̂ ^ , select the appropriate data from the

tuples arriving on rajs input channels, and f°^c val is the actual calculation performed.

However, for j  =  0, . . . ,  n(i) +  1, the j th input is either supplied by some source at 

some previous time, in which case, bj = au($i,j(t, a,x)), or it is supplied by some other
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b j ,p c . v a l  <

module in the network at some previous time, in which case bj = Vu(5ij(t, a, x), a, x). 

Accordingly, V*(£, a, x) is defined for j  = 2 , . . . ,  n(i) as:

f Y (&0> frl) fi,0 (&2, &3, • • • 5 K(i,0))) if &o =  0
Vi(t,a,x) =  < :

 ̂ T 1̂? fi,MaxN — 1 (^2; 3̂? • • • 5 ^n(i,Max^ — 1))) ^  0̂ AdctXpj 1

where for j  = 2 , . . . ,  r(i):

aq (8 i j  {t,a,x))  if 7 bo(h j)  = S A

A J m )  =  Q

n L , pc.,ai M  (*> a > *)) if Iboihj) =
Pboihj) =  9x

For j=0, the definition of concrete dSCA dictates that the 0 th input comes from the 

program counter module, mpc. Thus it is appropriate to define:

^0 hpC((̂ jio(̂ '5 ‘̂ 0) *̂ )

  Fpc(̂ 5 ^5 37).

The 1st input to a module comes from itself, thus for j= l  it is appropriate to define:

&i =  Vi(8 i,i{ t,a ,x),a ,x)

= Vi(t,a,x)

For the program counter module, mpc, the following is defined:

I mod (add {Vpc(t, a, rr), 1), M a x^)  if Vpc(t, a, x) = 0 

:

mod (add (Vpc(t, a, x ) ) 1), M a xN) if V̂ c(£, a, x) =  M a x N — 1 

Network O utput

yout is defined as the vector representing the output from network N. Consider 

that N  has m  > 0 sinks, then Vout would be constructed as Vout = (Vai i . . . ,  VSm), 

where s l5. . . ,  sTn G {1, . . . ,  k}, i.e.:

Vout = (Fsx, . . . ,  VaJ  .
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Since Vout for a concrete dSCA is a vector of tuples, each tuple containing the last 

M a x x  results, any comparison of dSCA to other models requires the extraction of the 

necessary values from the tuples for comparison. Such a mapping will be dependant 

upon the tuple management scheme used, and whether the concrete dSCA is cycle 

consistent or not.

7.3.1 Defining Shape of an concrete dSCA

As with abstract dSCAs, it is possible to implement the same algorithm on several 

concrete dSCAs, differing only by the number of modules and values of M a x m-  T o  

distinguish between such concrete dSCAs the pair V =  (k^Maxj^) is defined as the 

D efining S hape of a  co n cre te  dSC A , as for abstract dSCAs, where k > 0 is the 

number of modules in the dSCA network and M a x n  is the number of component 

specifications each module in the dSCA network has.

7.3.2 Defining Size of an concrete dSCA

The D efining Size of a  co n cre te  dS C A  with a defining shape of V =  (/c, Max^r) 

is defined to be A =  (A; x Maxn).

7.4 Correctness

By inspection it can be seen that concrete dSCAs are simple syntactic extension to 

the original SCA model as such syntactic correctness of a concrete dSCA can be 

shown by applying the techniques given for the original SCA.

7.5 Algebraic Specification

Concrete dSCAs can be specified algebraically using a similar format to that used 

for SCAs and abstract dSCAs. An example of the Generalised Railroad Crossing



CONCRETE DYNAM IC SCA 118

Problem, described later in this thesis, represented as a concrete dSCA specification 

can be seen in Appendix E.

7.6 Concluding Comments

Concrete dSCA are the final (syntactic) extension to the SCA model introduced, and 

are necessary to remove the abstract concepts of an abstract dSCA. Hobley showed 

that non unit delay SCAs could be represented as SCAs given a suitable mechanism 

for the buffering of values, what we have done is again demonstrate this, but in a 

cleaner and more general way, as well as implementing the dynamic rewiring that we 

require.

7.7 Sources

The work on Concrete dSCAs is all my own work. However, credit is given to Hobley 

for the initial discussion on relaxing unit-delay requirements of SCAs and suggestions 

on how these non-unit delays may be implemented as unit delay SCAs.



Chapter 8

Generalised Railroad Crossing 
Problem  Represented as various 
SCAs

8.1 Introduction

The GRCP case study can be represented in all of the SCA forms so far presented. 

In this chapter a solution to the problem is provided for the following three forms of 

SCAs:

• Synchronous Concurrent Algorithm;

• Abstract Dynamic Synchronous Concurrent Algorithm (2 forms with differing 

defining shapes are given); and

• Concrete Dynamic Synchronous Concurrent Algorithm.

As previously indicated, we are not going to claim that the solutions are formally 

correct, what is of more interest to us is that each of the models can be used to 

construct a representation of the solution to the problem. We semantically discuss 

the correctness of each model, and then in later chapters we discuss a convenient

119
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method of demonstrating correctness between models in a hierarchy, which it turns 

out each of our descriptions in this chapter are.

During the introduction of SCAs and dSCAs we used the carrier algebra A  to 

define which data and operations were possible within the SCA. For the remainder 

of this thesis we will deal with a specific instance of this algebra and will call this the 

machine algebra, or M a - M a is specified in Appendix A.

8.2 Case Study as an SCA

8.2.1 Informal Definition

Recall that the proposed solution to the GRCP with 2 tracks consisted of 8 sensors 

for the tracks, 2 sensors to indicate the gate positions, and the associated logic to 

move the gates in relation to the values held by the sensors.

It was proposed that the tracks in the region of interest, R, would be named tki 

and tk 2 . Each track would have two sensors sub-systems on it, one to the left of the 

gates and the other to the right of the gates, and each sensor sub-system would be 

constructed from two sensors, each capable of counting how many trains have passed 

in a particular direction, with the intention being that one sensor captures trains 

moving in to R  and the other trains moving out of R, as shown in Figure 8.1.

The solution identified 2 distinct pieces of logic, one that interpreted the sensors 

and another that controlled the actual gate.

To identify if a train is in R  the following logic test is performed:

inR(t) = (  “  Sl’3^  > °) V (Sl’4^  “  Sl'2^  > ° ^ V ^
\  ( (s 2,lW  -  32,3(*) >  o) V (s2,4(t) -  «2 ,2 (t) >  0)) /

Simplistically, this could be translated into a single SCA module that takes 8 input 

streams as its input, one for each sensor, and produces a single output. However, for 

the purpose of demonstrating the same example across SCAs and dSCAs an SCA
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Figure 8.1: Physical GRCP Solution

will be developed where the functional definitions of modules are unit elements from 

the machine algebra, M a (such an SCA is said to be atomic with respect to M^, or 

simply an atomic SCA). Such an SCA implementation is graphically shown in Figure 

8 . 2 .

Figure 8.2: SCA Implementation of Sensor Logic

The logic for controlling the gates introduced the gate function, g (t) G [0,90], 

where g (t) — 0 means the gate is down and g (t ) — 90 means it is up. This function 

will be implemented as a sensor on the gate providing an output in the required range,
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A motor(t) function was defined as:

(

motor (t) =

i f
((inR (t) =  False A  g(t) = 90) V

\

V

(inR(t) =  True  A  g(t) = 0) 

else i f  (inR (t) =  True  A  g(t) > 0) 

then down 

else up

then stay

An SCA that would represent this logic, as shown graphically in Figure 8.3.

inRinR

down

stajj

Figure 8.3: SCA Implementation of Motor Logic

In this implementation inR(t)  is the input from track sensors and g(t) will be an 

actual input. Recall that we defined a reactive system to be a system such as that 

depicted in Figure 8.4.

Environmen

System

Figure 8.4: Example Reactive System
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The overall SCA will be graphically represented as shown in Figure 8.5 which by 

showing one of the tracks and the gate sensor/controller sets the context of the SCA 

within the reactive system under consideration.

Sensor/Sensor ” Sensor

Figure 8.5: Complete SCA Implementation of GRCP

For future transformations the SCA implementation of the GRCP requires the 

modules in Figure 8.5 to be numbered in a breadth first and left to right manner 

from the bottom most module, which will be module 1, giving a total of 36 modules. 

For the purposes of defining the SCA the inputs are also renamed as shown in Table

8 . 1 .
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Diagram Name SCA Name Diagram Name SCA Name

Sl,l ai -51,3 06
51,3 a  2 sl,4 CLj

51,4 fl3 51,2 08
1̂,2 Q4 g Og

51,1

Table 8.1: Renaming Inputs

8.2.2 Formal Definition  

W iring Functions

The 7  wiring functions are defined by the following three definitions, where for 

i = 1 , . . . ,  15,22, . . . ,  28 and j  = 1,2:

7 (h j)

with:
7 ( 1 , 3  ) =  M  

7 (4 ,3 )  = M

and: _____________________________________
7(11,1) = S 7(31,1) =  5

toIIcTr-HCO

7(13,1) =  5 7(33,1) =  5 7(33,2) =  5

7(15,1) = S 7(35,1) =  5 7(35,2) =  5

7(29,1) =  S 7(29,2) =  5

The (3 wiring functions for the SCA solution to the GRCP are defined in Table

8 . 2 .

D elay Functions

The delay function will be the unit delay for all inputs to all modules, thus for 

% — 1 , 2 , . . . ,  35 and j  = 1,2, 3 as follows:
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0 (1, 1) =  2 0 (7, 1) =  14 0 (15, 1) =  9 0 (27, 1) =  33
0 (1, 2) =  3 0 (7, 2) =  15 0 (15, 2) =  21 0 (27, 2) =  34
0 (1, 3) =  4 0 (10, 1) =  22 0 (22, 1) =  23 0 (28, 1) =  35
0 (2, 1) =  5 0 (10, 2) =  16 0 (22, 2) =  24 0 (28, 2) =  36
0 (2, 2) =  6 0 (11, 1) =  9 0 (23, 1) =  25 0 (29, 1) =  1
0 (4, 1) =  7 0 (11, 2) =  17 0 (23, 2) =  26 0 (29, 2) =  2
0 (4, 2) =  8 0 (12, 1) =  22 0 (24, 1) =  27 0 (31, 1) =  3
0 (4 , 3) =  9 0 (12, 2) =  18 0 (24, 2) =  28 0 (31, 2) = 4
0 (5, 1) =  10 0 (13, 1) =  9 0 (25, 1) =  29 0 (33, 1) =  5
0 (5, 2) =  11 0 (13, 2) =  19 0 (25, 2) =  30 0 (33, 2) =  6
0 (6, 1) =  12 0 (14, 1) =  22 0 (26, 1) =  31 0 (35, 1) =  7
0 (6, 2) =  13 0 (14, 2) =  20 0 (26, 2) =  32 0 (35, 2) =  8

Table 8.2: j3— Wiring Functions for SCA

Value Functions: Initial S tate

The actual values in the initial state vector x  for the GRCP are not given in the 

original definition, however, the following assumptions are made:

• at initialisation there are no trains in i?;

• that the gates are fully up; and

• the initial output signal stay.

The other initial values in the system are provided in such a way that the stay 

signal will be issued until the first input signals have propagated their way through 

the system. Table 8.3 shows the initial state phase definition of the value functions 

for this network.

Value Functions: S tate Transition

The state transition phase definition of the value functions for the control system
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14(0, a, x) =  stay V2(0, a, x) =  true 1/3(0, a, x) =  stay 14(0, a, x) =  up
1/5(0, a, x) =  true V6(0, a, x) =  /a /s e 1/7(0, a, x) =  /a /s e 14(0, a, x) =  down
Vg(0, a, x) =  up l/io(0, a, x) =  true l/n (0 , a, x) =  true Vi2(0, a, x) =  false
VT3(0, a, x) =  false 1/14(0, a, x) =  false 1/15(0, a, x) =  true Vi6 (0, a, x) =  false
Vi?(0, a , x )  =  90 Vi8(0, a, x) =  true 1/19(0, a, x) =  0 l/20(0, a, x) =  true
V2i ( 0, a , x )  =  0 1/22(0 , a , x)  =  false V23(0, a, x) =  false 1/24(0, a, x) =  false
V25(0, a, x) =  false 1/26(0, a, x) =  false 1/27(0, a, x) =  false V2s(0, a, x) =  false
V29(0 , a , x )  =  0 V3o(0, a,x)  =  0 l/3i(0, a, x) =  0 1/32(0, a, x) =  0
1/33(0, a, x) =  0 1/34(0, a, x) =  0 1/35(0, a, x) =  0 1/36(0, a, x) =  0

Table 8.3: Initial State Values for SCA

are defined as follows:
V\(t + 1, a, x ) = cond (V2 {t, a, x ), Vs(t, a, x), V4(£, a, x)) 
V2 (t + 1, a, x) = or(V${t, a, x), Ve(t, a, x))
Vs(t + 1 , a, x) = start
V4(t + 1, a, x) = cond (VV(t, a, x), l/8(t, a, x), l/9(t, a, x)) 
Vs(t + 1, a, x) = and(Vio(t, a, x), Vii(t, a, x))
Vfc(t + l ,a,x) = and(Vi2 {t, a,x), Vi3(t, a,x))

+ 1, a, x) = and(Vi4 (t, a, x), Vi5(t, a, x))
Vs(Z + 1 , a, x) = down 
Vg(t + 1, a, x) = up
Vio(f + , a, x =  eq(V22 (t,a,x),V16(t,a, x))
Vh(f + , a, x = eq(ag(t), Vi7(£, a, x))
Vl2(t + , a, x' =  eqiy22 if'l a, x), Vi8 (t, a, x))
Vi 3(t + , a, x =  eq(a9{t),Vig{t,a,x))
VWt + , a, x = eq(V22 (t,a,x),V2o{t,a, x))
Vi5(t + , a, x = gt(a9(t), V2i(t, a, x))
Vi6(t + , a, x' — /aZse
Vi7(t + , a, x 90
Vi8(i + , a, x =  true
Vi9(t + , a, x = 0

V2o(t + , a, x — true
V2i(t  + , a, x = 0

V22(t + , a, x =  or(l/23(Z,a,x), V24(t,a x))
V23(t + , a, x =  or(V25(t,a,x),V26(t,a x))
V24 (t + , a, x = or(V27(t, a ,x), V28(t, a x))
V25(t + , a, x = ^(V29( t ,a ,x ) , l /3o(t,a, x))
1^6 (̂  + , a, x =  yt(l/3i ( t ,a ,x ) , l /32(t, a, x))
2̂7 (f + , a, x' =  ^ ( 1/33^, a,®), 1/34(4, a, x))

1̂ 28 (̂  + , a, x = gt(V35(t,a,x),V36(t,a, x))
V2${t + , a, x = sub(ai(t),a2(t))
V$o(t + , a, x = 0
V 31 (t + , a, x =  sub(a3(t),a4(t))
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V3 2(t + 1 ,CL,X
V33 (t +  1 , a , x  
T734(t + l , a , x 
V35(t + l , a,x 

+  l , a , a r

= 0
=  sub(a$(t), ag(t)) 
= 0
=  sub(a7(t),ag(t))  
= 0

The complete algebraic specification of the SCA is given in Annex B.

8.2.3 Correctness

There are two conditions that it are required to demonstrate as true according to 

the definition of the GRCP - namely the Safety P ro p e rty , where the gate is down 

during all occupancy intervals, and the U tility  P ro p e rty , where the gate is up when 

no train is in the crossing.

To demonstrate correctness, an appeal is made to a semantic argument, divided 

into two parts (a syntactic proof along the lines identified in Chapter 5 using retimings 

could be constructed, but this would require a more mathematical specification than 

provided). First it is shown that if there are any number of trains in i?, then they are 

correctly identified as being so. Secondly, depending on the identification of train(s) 

or not, the appropriate action is taken by the gate motor.

L em m a 8.2.1. The existence of trains in R  (therefore are either in the region of 
interest I  or are heading into it)are identified by the output of the sensor subsystem 
being greater than zero.

Figure 8.2 represents the sensor subsystem that is constructed from sets of similar 

logic. The basic unit is the subtraction of two values followed by a comparison with 

zero - the output being boolean.

Consider sensors s lfl and s ii3 whose intention is to count trains entering and exiting 

from R  from a left-right direction on the top track. As a train enters R  the value of 

is incremented and when the train leaves R  the value of s i)3 is incremented. As
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discussed previously, a train entering R  means the gates must be down before that 

train enters the region of interest I, and a train leaving R  implies that it is no longer 

in I.

It is clear that whilst there are trains in R  there will be a difference in the values 

of Siti and Si^. Logic is constructed to obtain the difference between the two sensor 

values and then compare this result with zero - a boolean true value indicating that 

a train or trains are in R  on the top track going in a left to right direction.

Similar logic is constructed for the top track in a right-left direction, using sensors 

Si54 and Si$- For the second track, sensors 52,1 and S2,3 are fed to similar logic for 

trains moving in a left-right direction and sensors S2,4 and S2,2 used for right-left 

direction on the second track.

The result of all four sensor logic elements will be four boolean values, which are 

then consecutively ”OR”-ed together, using the standard interpretation of boolean or 

operation, the result being a single boolean value of true, if there are any trains in 

i?, or false if there are no trains in R.

Note that the unit delay between modules will introduce a delay of 4 time units 

before signals from the sensors propagate into the network. Given the speed of modern 

processors this is unlikely to be an issue. The benefit of an SCA approach is that this 

value can be identified, and in larger examples may even be used to feedback to the 

design. It should certainly be used in this example to help identify the distance that 

the sensor detecting trains entering into R  are placed from R.

L em m a 8.2.2. I f  a train enters R  then the barrier is instructed to go down if it is 
not fully down, or stay down if  it is already so.

Figure 8.6 shows the motor logic and of particular interest are the two sections 

labelled A and B.

Consider logic block A, we are interested in the case where there is a train in R , 

in R  = T  and if the gate is down then the whole of block A, through the OR and
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down]

sta}

Figure 8 .6 : GRCP SCA Down Logic

AND operations, will result in a value of true. If this result is true, then the output 

module will pass the STAY result through. That is to say that if there is a train in 

R  and the gates are down then they will be requested to stay down.

Alternatively, the gate will not be fully down and so the logic in block A will be 

false meaning the output module will pass through the logic from block B. The top 

left logic of block B will be true since train is in R  and the gate not down, thus the 

DOWN signal will pass through the conditional gate in block B, and subsequently 

through the output module.

L em m a 8.2.3. I f  all trains have left R  then the barrier is instructed to go up if it is 
not fully up, or to stay up if  it is already so.

Figure 8.7 shows the motor logic and again of particular interest are the two 

sections labelled as A and B.

Looking at the logic in block A, if there are no trains in R  and the gate is fully 

up, then the output module is provided a true signal and thus passes the stay signal.

If the gate is not fully up, the logic block A results in a false signal going to the 

output module and thus the result of logic block B is passed. Block B itself will
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inRinR

dowrr

staj

Figure 8.7: GRCP SCA Up Logic

output the UP signal since there is no train in R  the conditional logic is false. 

Safety Property

It has been shown that the SCA can correctly identify whether a train is in R  

or not, and further, that the correct signal (either down or stay) is sent to the gate 

motor depending on whether there are trains in R  or not.

This does not fully address the safety property which is concerned with the region 

of interest I. For this property to be met, the gates must be fully down before the 

train reaches / ,  i.e. there is a defined delay between a identifying a train is in R  and 

the train reaching / ,  i.e. the gates being fully down. By considering the graph it 

can be seen that it takes a minimum of 8 clock cycles before the system can react to 

a change in sensor values. In addition there is a delay, dependent upon the motor 

speed, required whilst the gate lowers.

Thus, together with a knowledge of train speeds towards I  and the speed of closing 

a gate, it is possible to determine the appropriate distance from I  that the entry sensor 

must be placed (the boundary of R) so that the safety property will be upheld, such
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that for all times t in time intervals, A*: the gate is down:

t € (J Xi = >  g (t) = 0
i

U tility  Property

The utility property states that the gate is up for all time intervals where there 

are no trains in R. In a similar manner to the safety property, it has been shown that 

the SCA can correctly identify when the train passes the bounday of R  (i.e. there 

should be no trains in I) and that if this is the case then the gate motors are sent 

either the up or stay signal. Placing the exit sensor on the edge of R  means there 

is a slight delay whilst the gates are opening, but allows us to confirm there are no 

trains in I  - on the assumption that the distance between R  and I  is sufficient for a 

whole train to be held within.

The length of time required before a train enters R  and after a train leaves R, 

to allow a reaction to the sensors and time for the gates to lower and open are the 

values £1 and £2 in the formal definition of the utility property:

1 1  U  Vi +  ^  9 w  =  90
i

The SCA implementation of the GRCP is shown in Appendix B.

8.3 Case Study as an Abstract dSCA

Two abstract dSCA implementations of the GRCP will be constructed: the first, 

which will be referred to as the Form 1 abstract dSCA, will be where the defining 

shape represents a simple SCA arrangement, i.e. V =  (36,1); and the second one, 

referred to as the Form 2 abstract dSCA, will be where the defining shape represents 

a single processor machine, i.e. V =  (1,36).
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8.3.1 Form One Formal Definition

The first form for the abstract dSCA implementation is one where the defining shape 

is \7 =  (36,1), or simply it is an abstract dSCA that resembles the SCA. This first 

form can be diagrammatically seen in Figure 8 .8 , and differs from Figure 8.5 by the 

introduction of module m pc and the associated wirings.

pcj

Figure 8 .8 : Form One abstract dSCA GRCP Solution 

W irin g  F unctions

The definitions of the /3-wiring functions for the first form of abstract dSCA are given 

in Table 8.4. It should be noted that there is quite some similarity between the 

definition of /3-wiring for this abstract dSCA and those for the corresponding SCA. 

This similarity is intentional.

Table 8.5 shows the wirings to the co element.

The definition of the 7  wiring functions can be decribed using the following two 

definitions, where for i =  1, 2 ,3 , . . . ,  28 and j  = 0 , . . . ,  3:

j  U if/30{ i J ) = u  

M  otherwise



GRCP REPRESENTED A S SCAs 133

A>(i,o) — pc Ao 7 ,0) =  pc A>(14,1) =  22 A>(24,1) =  27 Ao(31,0) = p c
A>(1> 1) =  2 Ao 7,1) =  14 A>(14,2) =  20 Ao(24,2) =  28 A)(31,1) =  3
A(l> 2) =  3 Ao 7 ,2) =  15 A>(15) 0) =  pc /?o(25,0)=pc A)(31,2) =  4
A)(lj3) =  4 Ao 8, 0) =  pc A>(15,1) =  9 Ao(25,1) =  29 A>(32,0) = p c
A  (2,0) =  pc Ao 9 ,0) =  pc A)(15,2) =  21 /?o(25,2) =  30 A>(33,0) =pc

To II Or Ao 10,0) =  pc A>(16,0) = pc /?o(26,0) =  pc A  (33,1) =  5
A>(2,2) =  6 Ao 10,1) =  22 /?o(17,0) =pc /30(26,1) =  31 A>(33,2) =  6
A  (3,0) = pc Ao 10,2) =  16 /?o(18,0) =  pc A, (26,2) =  32 Ao (34,0) = p c
Ao (4,0) = pc Ao 11,0) = pc A>(19,0) =  pc A> (27,0) =  pc A(35,0) = p c
A>(4,1) =  7 Ao 11,1) =  9 /30{ 20,0) =  pc A) (27,1) =  33 A  (35,1) =  7
A)(4,2) = 8 Ao 11,2) =  17 A)(21,0) =  pc A>(27,2) =  34 A(35,2) =  8
A) (4,3) =  9 Ao 12,0 ) =  pc /?o(22,0) =  pc A>(28,0) =  pc A (36 ,0 ) =  pc
A) (3,0) = pc Ao 12,1) =  22 /?o(22,1) =  23 A)(28,l) =  35 A(pc, 1) =  pc
A)(5,1) =  10 Ao 12,2) =  18 /?o(22,2) =  24 A, (28,2) =  36
A)(5,2) =  11 Ao 13,0) =  pc /?o(23,0) =  pc Aj(29, 0) =  pc
A) (6,0) = pc Ao 13,1) =  9 /3o(23,1) =  25 A. (29,1) =  1
A)(6,1) =  12 Ao 13,2) = 19 A>(23,2) =  26 Aj(29,2) =  2
A>(6,2) =  13 Ao 14,0) =  pc A) (24,0) = pc Aj(30,0) =  pc

Table 8.4: j3— Wiring Functions for Form 1 adSCA

and the following:
7 0 ( 1 1 , 1  

7 0 ( 1 3 , 1  

7 0 ( 1 5 , 1  

7 0 ( 2 9 , 1  

7 0 ( 3 1 , 1  

7 o ( 3 3 , 1 

7 0 ( 3 5 , 1  

7 0 ( 2 9 , 2  

7 0 ( 3 1 , 2  

7 o ( 3 3 ,  2  

7 o ( 3 5 , 2

= S  
= S 
= S 
= S 
= S
=  s  
= s  
= s  
= s  
= s  
= s

D elay Functions

Since this abstract dSCA is supposed to be a representation of the original SCA, 

then it is correct to define the delay function to be the unit delay for all inputs to 

all modules. It is therefore possible to describe the delay functions using a single
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A>(2, 3) =  w A>(3,1) =  u> 3 o ( 3 ,2 ) = w ft (3 ,3  ) =u> f t ( 5 , 3 ) = w
A>(6,3) =  w 3o(7 ,3 )=ca 3o(8,1) =  w A  (8,2) =  w A  (8,3) =  a;
A>(9,1 ) = w /9o(9 ,2)=w 3o(9,3) =  m 3o(10,3) =  u A ( l l , 3 ) = u
/30(12,3) =  a) A(13,3) = a ; 3o(15,3) =u) ft (15,3) =  a; 3o(16,1) =  w
/5o(16,2) =  w /3b(16,3) =  w 3o(17,1) =  w 3o(17,2) =  w 3o(17,3) =  uj

f t ( 1 8 ,1) =  u /?o(18,2) =  u; 3o(18,3) =  ui f t ( 1 9 , 1) =  u; ft (19,2) =  u>
A>(19,3) =u> ^0(20,1) =  w 3o(20,2) =  ta ft(20,3)  =  u A ( 2 1 , 1) =  a;
/?o(21,2 )  = uj 3o(21,3) =  a> 3o(22,3) =  a; ft (23,3) =  a) ft(24,3) =ca
,3o(25,3) =  ^ 3o(26,3) =u> 3o(27,3) = w f t (2 8 ,3) =  a; ft (29,3) =
A)(30,1) =  w 3a(30,2) =  a) 3o(30,3) =  w f t (3 1 ,3) =  u) f t ( 3 2 , 1) =  u>
,30(32,2) = w 3o(32,3) = w f t  (33,3) = w f t ( 3 4 , 1) =  u; ft (34,2) =  u>
A) (34,3) =  a; 3o(35,3) =  w f t ( 3 6 ,1) =  u ft(36,2) =  uj ft (36,3) = c j

Table 8.5: /3— Wiring Functions to u  for Form 1 adSCA

equation for i = 1 ,2 , . . . ,  35 and j  = 0 ,1 ,2 ,3  as follows:

p̂c,0,0 (^5 * )̂  ̂ f

V alue F unction : In itia l S ta te

These are defined in Table 8 .6 .

Vi(0,a, x) =  stay 1 4 (0 , a, x) = true 1/3 (0 , a, 1 ) =  stay 1/4 (0 , a, x) = up
Vs(0, a, i )  =  true VJ;(0, a, x) = fa lse 1/7(0 , a, x) = fa lse l/8 (0 , a, x) = down
l/9 (0 , a, x ) =  up Vio(0, a, x) =  true V11 (0 , a, x) = true 1/12(0 , a, x) =  fa lse
1/13(0 , a, x) = fa lse y14(0 , a, x) — false VifJO, a, x) = true Vi6 (0 , a, x) = fa lse
Vn(0,a ,x) = 90 Vi8(0, a, x) = true l/i9(0 ,a,a:) =  0 l 2o(0 , a, x) = true
V21(0 ,a ,x)  =  0 V22(0 ,a , x) = fa lse 1/23(0 , a, x) = fa lse l/24(0 , a, x) = fa lse
V̂ 5 (0, a, x) = fa lse V2e(0 ,a ,x )  = fa lse 1/27(0 , a, x) = fa lse 1^ 8(0 , a, x) =  fa lse
V29(0,a,x)  =  0 V3O(0,a,x) = 0 V3i(0 , a, x) = 0 1/32(0 , a, 1 ) =  0
V33 (0 ,a ,x )  =  0 1/34(0 , a, x)  =  0 1/35(0 , a, x) = 0 l/36 (0 ,a ,:r) =  0
Vpc(0,a,x) =  0

Table 8 .6 : Initial State Values for abstract dSCA (Form 1)
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V alue Functions: S ta te  T ran sitio n

The corresponding definition of the State Transition phase for Value Functions 

for the abstract dSCA solution to the GRCP are given as follows:

Vi(t +  1 a, x) =  cond(V2 (t, a, x), V^t, a, x), 14(t, a, a;)) if Vpcify & X =  0
V2(t + 1 a, x) =  or{V$(t, a, x), a, z)) if Vpc(t̂  a X =  0
V3(t+  1 a, x) =  start if Vpc{t, a X =  0
V4(t + 1 a, a:) =  cond(Vj(t, a, x), V8(t, a, 2;), Vg(t, a, 2;)) if Vpcifi ^ X =  0
v5(t + 1 a, x) = and(Vio(t, a, x), Vii(t, a, 2:)) if Vpc(t, a X =  0
V6(t + 1 a, 2 ) =  and(Vi2 (t, a, x), Vi3(t, a, 2;)) if l'pc(t) &X =  0
Vr(t +  1 a, 2:) =  and(Vi4 (t, a, x), Vis(t, a, x)) if Vpcifi & X =  0
Vs(t + 1 a, x) =  down if Vpc(t,a X =  0
V9(t +  1 a, x) — up if VpC(£, a X =  0
Vio(t + , a, x) =  eq(V22 (t, a, x), Vi6(t, a, x)) if Vpcifi ^ X =  0
Vn (t + , a, x) =  eq(a9(t), Vi7(t, a, x)) if lpc(t, a X =  0
Vi2(t + , a, x) =  eg(V22(t, a, x), Vi8(t, a, x)) if 14>c(t, a X =  0
Vi3(t + , a, x) =  eq(a9(t),Vig(t,a,x)) if Vpc(t,a X =  0
Vi4(t + , a, x) =  eq(V22 (t, a, a:), V2o(^ a, x)) if V̂ c (t, a X =  0
Vi5(t + , a, x) =  gt(a9(t), V2i(t, a, x)) if Vpc(t,a X =  0
Vie(t + , a, x) =  false if V^c(t, a X =  0
Vi7(t + , a, x) =: 90 if Vpc(t, a X =  0
Vis(i + , a, x) =  trae if V̂ c(t, a X =  0
Vi9(t + , a, x) =  0 if Vpc(t, a X =  0
V2 0 (t + , a, x) =  true if a X =  0
V21(t + , a, x) =  0 if Vpcifi & X =  0
V2 2 (t + , a, x) =  or(V23(t, a, z), a, a)) if Vpc(t, a X =  0
V2 3 (t + , a, x) =  or(V25(t, a, x), V26(t, a, x)) if Vpc(t, a X =  0
V24 {t + , a, x) =  or(V27(t, a, x), V28(t, a, x)) if Vpcifi ® X =  0
V25 (t + , a, x) =  pt(V29(t, a, x), V3o(t, a, x)) if Vpc{t, a X =  0
V2 6 (t + , a, x) =  flft(V3i(t, a, x), V32(t, a, x)) if Vpcifi &X =  0
V27(t + , a, x) =  gt(V33{t, a, x), V ^ t , a, x)) if Vpc(t, a X =  0

+ , a, x) =  0t(V35(t, a, x), V36(t, a, x)) if VpC{t, a X =  0
V2${t + ,a ,x )  =  sa6(ai(t), a2(t)) if Vpc(t, a X =  0
V30(t + , a, x) =  0 if Vpcifi &X =  0
v3i(t  + ,a ,x )  =  sub(as(t), a4 (t)) if Vpc(t, a X =  0
1^2 + , a, x) =  0 if Vpcifi ® X =  0
F3 3 + , a, x) =  sub(a$(t), ae(t)) if l^»c(t, a X =  0
V34(t + , a, x) =  0 if Vpc(t, a X =  0
v35(t + , a ,x)  =  sub(aj(t),a8(t)) if VpC(t, a X =  0
V36^ + , a, x) =  0 if Vpc(t, a X =  0
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W ith the program counter module defined as:

Vpc(t +  1 , a, x) = mod (add (Vpc(t, a , nr), 1), M a x n ) if Vpc(t, a,x) = 0 

The algebraic specification of the Form 1 abstract dSCA is provided in Appendix

C.

C o rrec tn ess

L em m a 8.3.1. The form 1 abstract dSCA solution to the GRCP is equivalent to the 
SCA implementation.

Correctness of this abstract dSCA is addressed by appealing to the structural 

similarities between the SCA and the Form 1 abstract dSCA, see Figure 8.5 for the 

SCA and Figure 8.8  for the Form 1 abstract dSCA.

Now consider the initial state values of the SCA, which are repeated in Table 8.7:

17(0, a, x ) =  s ta y 17(0, a, x) =  true 17(0, a, x) =  s ta y 17(0, a, 2;) =  up
V5(0, a, x)  =  t rue 17(0, a, x)  =  f a l s e V7(0, a, x) =  f a l s e 17(0, a, 2;) =  down
17(0, a, x) =  up lio (0 , a, x) =  t rue 171(0, a, x) =  true 172(0, a, x) =  f a l s e
Vl3(0, a, x) =  f a l s e li4 (0 , a, x)  =  f a l s e Vi5(0, a, x) =  t rue 176(0, a, 2;) =  f a l s e
Vi7(0, a, x) =  90 li8 (0 , a, x) =  t rue Vi9(0,a,a:) =  0 17o(0, a , 2;) =  t rue
17i(0 , a , x )  =  0 V22(0, a, x)  =  f a l s e V23(0, a, x) =  f a l s e 174(0, a, x) =  f a l s e
125(0, a, x) =  f a l s e V26(0, a, x) =  f a l s e 177(0, a, x) =  f a l s e 178(0, a, 2;) =  f a l s e
129(0, a, x) =  0 V3o(0,a,ar) =  0 17i (0, a, x) = 0 172 (0, a, 2;) =  0
133(0, a, x) =  0 ^34(0, a, x) =  0 175(0,0,2?) =  0 176(0,0,2;) =  0

Table 8.7: Initial State Values for SCA

A direct one-to-one mapping can be seen between these values and those given in 

Table 8 .6 .
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Similarly, the state transition definitions of the value functions of the SCA, re

peated here:

VRt + 1, a, x ) = cond (V2(£, a, x), V3(t, a, x), V4(t, a, x))
V2{t +  1, a, x) =  or(V5{t, a, x), V6(t, a, x))
V3(t + 1, a, x) =  start
V4 (t +  1 ,a,x) =  cond(V7(t,a,x),V$(t,a,x),V9(t,a,x))
V5(t +  1, a, x) =  an<i(Vio(£, a, x),  Vu(t , a, 2:))
Ves(i + 1, a, x) = and(Vi2(t, a, x),Vi3(t, a, re))

+ 1, a, a:) =  and(Vi4(t, a, x), V\s(t, a, 2;))
Vs(t +  1, a, 2:) = down 
Vg (t + l ,a,x)  =  up
v 10(t + , a x) = eq(y22( t ,a ,x) ,V16(t ,a,x))
Vu{t + , a x) = eq{a9{t),V17(t ,a,x))
v 12(t + , a X) = eq(V22{t, a, x), Vi8 (t, a, x))
Vis{t + , a X) = eq{a9{t),Vig{t,a,x))
Vu {t + , a x) = eq{V22{t, a, x), V20(t, a, x))
Vlbif + , a X) = gt{a9(t),V21(t ,a,x))
V16(t + , a x) = false
v 17(t + , a X) = 90
Vi 8(f + , a X) = true
Vi g(t + , a X) = 0
V2 0 (t + , a X) = true
v 21 (t + , a x) = 0
V22(t + , a X) = or{V23{t, a, 2;), V24{t, a, x))
V23(t + , a X) = or{V25(t, a, x), V26(t, a, x))
v24(t + , a 2:) = or(V27(t , a, x),V23{t, a, x))
V25 (t + , a x) = gt(V29( t ,a ,x),V30(t ,a,x))
V2 6(t + , a X) = gt{V3\(t, a, 2:), V32(t, a, x))
V27(t + , a x) = gt{V33( t ,a ,x) ,V34(t ,a,x))
V2s(t + , a x) = gt(V3b( t ,a,x),V36{t ,a,x))
V2g{t + , a X) = sub(ai(t),a2(t))
V30 (t + , a X) = 0
V31 [t + , a x) = sub{a3(t),a4(t))
V32(t + , a, X) = 0
V33(t + , a x ) = sub(a5(t),a6{t))
v 34(t + , a x ) = 0
V3 5 [t  + , a X) = sub(a7(t),a$(t))
V 36(t + , a 2:) = 0

demonstrate a one-to-one mapping to the state transition definitions of the value 

functions of the form 1 abstract dSCA, shown above (where the reference to the 

program counter is added).

Since Vpc(t,a ,x)  is the result of adding 1 to the previous value mod Maxjy = 1
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then the answer will always be 0 thus the Form 1 adSCA State Transition definitions 

for the Value Functions will directly equate to the SCA State Transition definitions.

It can therefore be seen by inspection that the SCA and Form 1 abstract dSCA 

are equivalent.

8.3.2 Form Two Formal Definition

The 2nd form abstract dSCA is a single module implementation, where the defining 

shape is given as V =  (35,1). In this case, the value of M a x ^  will be 36; and whilst 

it is difficult to diagrammatically show an abstract dSCA where Maxjq > 1 the shape 

is indicate in Figure 8.9.

Figure 8.9: Form Two abstract dSCA GRCP Solution

It is decided to implement a cycle consistent abstract dSCA and therefore the 

execution order needs to adhere to the principles of cycle consistency. This is achieved 

by deriving the execution order from the module numbers in the Form 1 abstract 

dSCA. Table 8.8  shows the proposed execution order:

A simple inspection of this execution order will demonstrate that the resulting 

abstract dSCA is cycle consistent.

W iring Functions

/3 wiring functions are defined in Table 8.9.

It is also the case that the 0th input for each module is wired to the program counter,
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Form 1 Form 2 Form 1 Form 2 Form 1 Form 2
Module Module PC Val Module Module PC Val Module Module PC Val

1 1 0 13 1 12 25 1 24
2 1 1 14 1 13 26 1 25
3 1 2 15 1 14 27 1 26
4 1 3 16 1 15 28 1 27
5 1 4 17 1 16 29 1 28
6 1 5 18 1 17 30 1 29
7 1 6 19 1 18 31 1 30
8 1 7 20 1 19 32 1 31
9 1 8 21 1 20 33 1 32
10 1 9 22 1 21 34 1 33
11 1 10 23 1 22 35 1 34
12 1 11 24 1 23 36 1 35

Table 8 .8 : Execution Order of Form 2 abstract dSCA

so that for pc.val — 0 , ,  M a x#  — 1:

$pc.val{\i 9) PC

and that for the program counter the definition is that for pc.val =  0 , . . . ,  M a x ^  — 1 :

Ppc-val^pCi 9) pC

The 7  wiring functions, indicating whether a module is linked to a module, source or 

unconnected are defined in Table 8.19.

It is also the case that the 0th input for each module is wired to the program 

counter, so that for pc.val =  9 , . . . ,  M a x ^  — 1:

Ppc.val( 1, 9) =  M

and that for the program counter the definition is that for pc.val = 0 , . . . ,  M a x ^  — 1:

ftpcjualijpC") 9) M
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$o( ,1 =  1 @7 ( h  1) =  ^ 0 u { ,1 =  9 0 2 1  ( ,1 = $28 1 1 =  1

$o( ,2 =  i /M l>  2) =  v $ u ( ,2 =  1 0 2 1  ( ,2 = $28 1 2 =  2

$o( ,3 =  1 P r { h  3) =  UJ M ,3 =  UJ $21 ( ,3 = $28 1 3 =  UJ

$ $ ,1 =  1 $ s ( l , 1) = v $15 ( ,1 =  UJ $22 ( ,1 = 0 2 9 1 1 =  UJ

$ i ( ,2 =  1 $ 8(1 ,2  ) = u > $15 ( ,2 =  UJ $22 ( ,2 = 0 2 9 1 2 =  a;

$ i ( ,3 =  UJ

3IICOt-H $15 ( ,3 =  UJ $22 ( ,3 = 0 2 9 1 3 =  UJ

f t ( ,1 =  UJ A ( i , i )  =  i 0 i o { ,1 =  UJ $23 ( ,1 = $30 1 1 =  3
,2 =  UJ A>(1,2) =  1 0 i o { ,2 =  UJ $23 ( ,2 = $30 1 2 =  4

$ 2( ,3 —  UJ / % ( l , 3 ) = w M ,3 —  UJ $23 ( ,3 = $30 1 3 =  a;

f t ( ,1 =  1 /3io(1, 1) =  9 M ,1 =  UJ $24 ( ,1 — $31 1 1 =  a;

$ 3( ,2 =  1 A o ( l , 2 )  =  l P l 7  ( ,2 =  a; $24 ( ,2 =z $31 1 2 =  a;

$ 3( ,3 -  1 $io(l> 3) =  uj $17 ( ,3 =  cj $24 ( ,3 = UJ $31 1 3 =  UJ

$4( ,1 =  1 $ 11( 1 , 1) =  i $is( ,1 =  UJ $25 ( ,1 =z $32 1 1 =  5
Pa{ , 2 =  1 $ n ( l , 2 ) =  l 0 i s ( , 2 - -  a; $ 2 5  ( , 2 = $32 1 2 =  6

0 a ( ,3 = UJ A i ( l , 3 ) = o ; A s ( ,3 —- u; $25 ( ,3 = UJ $32 1 3 =  UJ

0 b { ,1 == 1 A 2( l , l )  =  9 0 1 9 { ,1 =  a; $ 2 6  ( ,1 =
$ 3 3 1 1 =  UJ

0 b { ,2 =  1 >012(1,2) =  1 $ 1 9 ( ,2 =  t*; $ 2 6  ( , 2 = $ 3 3 1 2 —  UJ

0 b { ,3 =  UJ $ i 2( l ,  3) =  uj $ 1 9 ( ,3 =  UJ $ 2 6  ( ,3 = UJ $ 3 3 1 3 =  UJ

,1 =  1 As(l ,  1) =  1 $ 2 0  ( ,1 =  a; $27 ( ,1 = $34 1 1 =  7
0 o { , 2 =  1 A 3( l , 2 ) =  l 0 2 o ( , 2 = a; $27 ( , 2 = $34 1 2 =  8

0 o { ,3 =  UJ $13(1 ,3) =  uJ 0 2 o { ,3 =  a; 0 2 7  ( ,3 = UJ $34 1 3 =  UJ

$ 3 5  ( , 1 =  a; $35 ( , 2 = UJ $35 1 3 —  UJ

Table 8.9: 0 — Wiring Functions for Form 2 adSCA

D elay Functions

There is only one module within the 2 nd form of abstract dSCA, and the delay 

functions will need to reflect this, i.e. values required will have been calculated some 

time in the past (bounded by M a x a/-).

For complicated examples it will be difficult to do this by hand, and in Chapter 

11 this thesis provides a mechanical way of identifying these delays. It is defined that 

for an abstract dSCA all delays where the wiring is to an input are unit delays, as 

are the delays for the 0th argument (which goes to the program counter).

Consider the module that executes at pc =  36 in the Form 2 abstract dSCA, from 

Table 8.8  it is possible to identify that this was module 1 in the Form 1 dSCA. It is also
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7o 1 1 =  M 7 7 ( 1 ,1  ) =  U 7 u ( ,1 =  S 721 1 1 = M 728 1 1 = S
7o 1 2 = M 7 7 ( 1 , 2 )  =  U 7 u ( ,2 = M 721 1 2 = M 728 1 2 = S
7o 1 3 =  M IICOt-H

7 u ( , 3 = U 721 1 3 = U 728 1 3 = u
7 i 1 1 = M 7 8 ( 1 ) 1 )  =  U 715 ( ,1 = U 722 1 1 = M 729 1 1 = u
7 i 1 2 = M 7 8 ( 1 ,2 )  =  U 715 ( , 2 = U 722 1 2 —  M 729 1 2 = u
7 i 1 3 = U K-

1 
CO II c: 715 ( ,3 =  u 722 1 3 = U 729 1 3 = u

72 1 1 = U 7 9 ( 1 , 1 ) =  M 716 ( ,1 -  u 723 1 1 = M 730 1 1 =  S
72 1 2 = U 7 9 ( 1 ,2 )  =  M 716 ( , 2 = u 723 1 2 = M 730 1 2 = S
72 1 3 = U 7 9 ( 1 , 3 ) =  U 716 ( ,3 = u 723 1 3 =  U 730 1 3 = u
73 1 1 = M 7 io ( ,1  ) =  S 7 i? ( ,1 = u 724 1 1 = M 731 1 1 =  u
73 1 2 =  M 7 io ( , 2  ) =  M 7 i? ( ,2 = u 724 1 2 =  M 731 1 2 =  u
73 1 3 =  M 7 io ( ,3 ) =  U 7 i? ( ,3 =  u 724 1 3 =  U 731 1 3 = u
74 1 1 =  M 7 n  ( , 1  ) =  M 718 ( ,1 =  u 725 1 1 =  M 732 1 1 =  S
74 1 2 =  M 7 n ( , 2  ) =  M 718 ( , 2 -  u 725 1 2 =  M 732 1 2 =  S
74 1 3 =  U 7 n ( ,3 ) =  U 718 ( ,3 =  u 725 1 3 =  U 732 1 3 =  u
75 1 1 =  M 712 ( ,1  ) =  S 7 l9  ( ,1 =  u 726 1 1 = M 733 1 1 = u
75 1 2 =  M 712 ( , 2  ) =  M 7 i9 ( ,2 =  u 726 1 2 =  M 733 1 2 =  u
75 1 3 =  U 712 ( ,3 ) =  U 719 ( ,3 =  u 726 1 3 = U 733 1 3 = u
76 1 1 = M 713 ( ,1  ) =  M 720 ( ,1 = u 727 1 1 = M 734 1 1 =  S
76 1 2 =  M 7 l3 ( ,2 ) =  M 720 ( , 2 =  u 727 1 2 =  M 734 1 2 =  S
76 1 3 = U 713 ( ,3 ) =  U 720 ( ,3 =  u 727 1 3 =  U 734 1 3 =  u

735 ( ,1 =  u 735 1 2 = U 735 1 3 = u

Table 8.10: 7 — Wiring Functions for Form 2 acvSCA

known that the values used as inputs to module 1 in the Form 1 abstract dSCA come 

from modules 2 , 3 and 4. Again, using Table 8.8  it can be identified tha t modules 

2,3, and 4 are now executed on module 1 at values of pc = 1,2,3 respectively. It is 

therefore the case that the first input to Form 2 module 1 at pc = 36 was calculated at 

pc =  1 , or 35 clock cycles ago. Similar maths can be applied to the other arguments 

to obtain the value of the delays for those inputs. The inputs to module 1 at pc = 36 

will therefore be:
^ 1 , 1 ,0  — t — 34

^ 1 , 1 ,0  — t — 33
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A similar process can be applied to all the delay functions in Form 2 , and the 

resultant delay functions for all inputs which relate to the situation where 7 y(i>j) = M  

are shown in Table 8.12.

Ai,i,o (t, a, x)  = t — 35 <$1,1,6 (t, a,x) = t  -  29 <$1,2,21 (t> a, :r) =  t — 34
<$1,2,0 (t, a, x)  = t — 34 <$1,2,6 (t, a, x)  = t -  28 <$1,1,22 (t, a, x) =  t — 34
<$i,3,o(M,aO = t -  33 <$i,i,9 (f> a, x)  = t — 24 <$i,2,2 2 (t,a,ar) =  t -  33
<$1,1, i(t, a, x)  = t — 33 <$1,2,9(^1 a, x)  = t -  30 <$i,i,23(t,a,^) =  t -  33
<$1,2,1 (t, a, x)  = t — 32 <$i,2,io(t) a, x)  = t -  30 <$i,2,23(t, a ,x ) =  t -  32
<$1,1,3(^1 a, x)  = t — 33 <$i,i,ii(t>a,aO =  t -  26 <$i,i,2 4 (t, a, x )  = t — 32
<$i,2,3 (t, a, x)  = t -  32 <$1,2,11 a,ar) =  t — 30 <$i,2,24(t,a,z) =  t -  3 1

<$1,3,3( t , a , x)  = t -  3 1 <$i,2 ,i2 (t, a,x) =  t — 30 <$i,i,25(t,a>®) =  t ~  3 1

<$1,1,4 (t> a, x)  = t — 3 1 <$1,1,13(^5 a^x)  =  t -  28 <$1,2,25 (t? a, x) =  t — 30
<$i,2,4 (tj a, x)  = t — 30 <$1,2 ,13f t  a,ar) =  t -  30 <$i,i,26(tj a, x)  = t — 30
<$1,1,5 (t, a, x)  = t — 30 <$i,2,u (t, a, x)  = t — 30 <$i,2,2 6 (t, a, x)  = t — 29
<$1,2,5 ( t , d, x)  = t -  29 <$i,i,2i(f» c l , x )  = t -  35 <$1,1,27(^1 a, x)  = t -  29

<$1,1,27(^5 a, x)  =  t  -  28

Table 8 .1 2 : Non-unit Delay Functions for Form 2 acvSCA

Value Functions: Initial S tate

The Initial State definitions of the Value Functions for the 2nd form of the abstract 

dSCA solution are defined for both modules i = 0 ,1 . For the program counter, the 

initial states are defined, for values of program counter pc.val = 0 , . . . ,  3 5 , as:

V p c (p C .V a l,  fl, x'j — x pc,pc.val

with the initial values for the program counter defined for pc.val =  0 , . . . ,  35  as:

x pC,pc.vai — mod(add(pc.val +  1 ) ,M a x N)

Initial State value equation for module 1 are related closely to those in the Form 1 

abstract dSCA. The Form 2 values are given in Table 8.13.

Value Functions: S tate Transition
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Vi(0, a, x) = stay Vi (1 , a, x) = true Vi (2, a, x) = stay
Vi (3, a, x) — up Vi (4, a, x) = true Vi (5, a, x) = false
Vi (6 , a, x ) = false Vi (7, a, x) = down Vi(8 ,a,x) = up
Vi (9, a, x) = true Vi (10, a, x) = true Vi(ll, a, x) = false
Vi(12,a,x) = false Vi. (13, a, x) = false Vi (14, a, x) = true
Vi (15, a, x) = false Vi (16, a, x) = 90 Vi (17, a, x) = true
Vi(18, a, x) = 0 Vi (19, a, x) = true Vi (20, a, x) = 0
Vi(2 1 ,a,x) = false Vi(22, a, x) = false Vi (23, a, x) = false
Vi (24, a, x) = false Vi(25,a,x) = false Vi (26, a, x) = false
Vi (27, a, x) = false Vi (28, a, x) = 0 Vi (29, a, x) = 0
Vi (30, a, x) = 0 Vi (31, a, x) = 0 14 (32, a, x) = 0
Vi (33, a, x) = 0 Vi (34, a, x) = 0 14 (35, a, x) = 0

Table 8.13: Initial State Values for abstract dSCA (Form 2 )

The State Transition definition of the program counter Value Function is defined as 

follows:

(iadd(Vpc(t, a, x), l)mod36 if Vpc(t, a, x) = 0 

:

add(Vpc(t, a, x), l)mod36 if a, x) =  35

For module 1 the State Transition definition of the Value Function is constructed 

to take account of the Maxjq cases. The complete definition is as follows.
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V\(t, a, x) =

/  Vi(t  — 35, a, x), \
cone? | Vi(i — 34, a, x), I if Vpc(t — 1, a, x) =  0

\  Vi{t — 33, a, x) /
or(Vi(t — 33, a, x), 14 (£ — 32, a, a:)) if Vpc{t - a, x) = 1
start if VpC(t - a, x) =  2

/  V i( £ -33,a ,x), \
cone? 1 Vi(t — 32, a, x), J if Vpc{t - , a, x) = 3

\  Vi(t — 31, a,x) /
and{Vi(t  — 31, a, a;), Vi(£ — 30, a, a;)) if Vpc(t - , a, x) = 4
and(Vi(t — 30, a, x), Vi(£ — 29, a, a;)) if VpC(t - , a, x) = 5
and(Vi(t  — 29, a, a;), V\ (t — 28, a,x)) if VpC(t - , a, x) = 6
down if Vpc(t - ,a ,x) = 7
up if VpC(t - ,a ,x) = 8
eqiVRt  — 24, a, x),Vi(t — 30, a x)) if Vpc(t - ,a ,x) = 9
eq(ag(t), V\(t  — 30, a, a:)) if VpC{t - , a, x) =  10
eq{Vi(t — 26, a, a;), V\ (t — 30, a x)) if Vpcit - , a, x) =  11
eq{ad(t),Vi(t — 30 ,a,x)) if Vpc{t - , a, x) =  12
e(l i y i(^ — 28, a, x), Vi(t — 30, a X)) if Vpc(t — , a, x) =  13
gt(a9(t),Vi(t  -  30, a, a;)) if Vpc(t - , a, x) =  14
false if VpC{t - , a, x) =  15
90 if VpC{t - , a, x) =  16
true if VpC(t - , a, x) =  17
0 if VpC(t - , a, x) =  18
true if Vpc(t - , a, x) =  19
0 if VpC(t - , a, x) =  20
or(Vi(t — 35, a, a;), Vi(£ — 34, a x)) if VpC{t - , a, x) =  21
or(Vi(t — 34, a, a:), Vi(£ — 33, a x)) if Vpcit - , a, x) =  22
or{V\ (t — 33, a, x), Vi (t — 32, a x)) if VpC{t - , a, x) =  23
gt(Vi(t — 33, a, ar), Vi(i — 31, a x)) if Vpdt  - , a, x) =  24
gt{Vi(t — 31, a, x): V\(t — 30, a x)) if Vpdt - , a, x) =  25
gt(Vi (t — 30, a, x), V\(t — 29, a x)) if Vpdt - , a, x) =  26
gt{Vi(t — 29, a, a;), V\ (t — 28, a x)) if VPc{t - ,a ,x) =  27
sub(ai(t),a2{t)) if Vpdt - , a, x) =  28
0 if Vpdt - , a, x) =  29
5u6(a3(£),a4(£)) if Vpdt - , a, x) =  30
0 if Vpdt  - ,a ,x) =  31
sub(a5(t),a6(t ) ) if Vpdt - , a, x) — 32
0 if Vpdt - ,a ,x) =  33
sub(a7(t),a8{t)) if Vpdt - , a, x) =  34
0 if Vpdt - ,a ,x) =  35
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C o rrec tn ess

L em m a 8.3.2. The Form 2 abstract dSCA is a correct implementation of the Form 
1 abstract dSCA.

Consider any time t E T  then the value of the program counter will be t mod 

Max?;. By inspection, it can be shown that values and operations in the initial 

values and state transition functions in the Form 2 abstract dSCA map directly to 

the Form 2 abstract dSCA.

The algebraic specification of the Form 2 Abstract dSCA is shown in Appendix

D.

8.4 Case Study as a Concrete dSCA

A concrete dSCA implementation of the Form 2 abstract dSCA solution to the GRCP 

will be considered in this chapter. The model will be cycle consistent, and therefore 

will have a system comprising of one main module which manipulates a tuple of 

length Maxjv. There will also be the explicit definition of the single program counter 

module. This situation is diagramtically shown in Figure 8.10.

Figure 8 .1 0 : Concrete dSCA Physical GRCP Solution

It has already been stated in this thesis that there are a range of tuple management 

functions that could be selected, and in this exposition the indexed-array approach 

will be adopted.
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W irin g  F unctions

All wirings will either be to module 1 , the programme counter module, or to an input 

(or by the nature of an cdSCA will not be connected). The varying /^-wiring functions 

are defined in Table 8.14 (note that this table does not show arguments 0 and 1). 

In comparison to the Form 2 abstract dSCA the index of arguments has been duly 

shifted by one to accommodate that concrete dSCA definition of the 0th argument 

being from the program counter and the 1st argument from the module itself.

0 o ( , 2 ) =  1 /M 1,2 ) = U J 0 u { , 2 = 9 0 2 l ( ,2) = 1 #28 ( , 2 = 1

A)( ,3) =  1 0 7  ( 1,3) =  UJ 0 u { ,3 =  1 0 2 l ( ,3) - 1 #28 ( ,3 = 2

A>( ,4) =  1 0 7  { 1 , 4 ) =  a; 0 u { ,4 — UJ 0 2 l ( ,4) = #28 ( ,4 -- UJ

0 i ( , 2 ) =  pc M 1 , 2 ) =  uj 0 1 5 ( , 2 = u 0 2 2 { , 2 ) = 1 #29 ( , 2 —UJ

0 i ( >3) = pc M 1,3) =  a; 0 1 b { - ,3 =  CJ 0 2 2 { ,3) = 1 #29 ( ,3 = UJ

A ( ,4) — UJ /%( 1,4) =  uj 0 1 $ ( ,4 — a; 0 2 2 { ,4) = #29 ( ,4 = UJ

f t ( , 2 ) =  UJ & ( 1,2) =  1 0 i o { , 2 - a; 0 2 3 { ,2) 1 0 3 O { , 2 = 3
f t ( , 3) =  UJ A ( 1,3) =  1 0 i o { ,3 =  UJ 0 2 3 { ,3) 1 # 3 0  ( ,3 — 4
f t ( ,4) =  UJ A ( 1,4) = oj 0 i e ( ,4 =  CJ 0 2 3 ( ,4) = 0 3 o { ,4 = UJ

f t ( , 2 ) =  1 A o (1,2) =  9 0 n { - , 2 = 0 2 a ( ,2) : 1 # 3 l ( , 2 = UJ

f t ( .3) — 1 0 1 0 (1,3) =  1 0 n ( - ,3 =  a; 0 2 a {- , 3) = 1 # 3 1  ( ,3 = UJ

f t ( A ) =  1 0 1 0 (1,4) =  cj 0 n ( ,4 =  a; 0 2 a ( ,4) - UJ # 3 l ( ,4 = UJ

M >2 ) =  1 0 1 1 (1,2) =  1 0 i% { , 2 =  UJ #25 ( ,2) = 1 # 3 2  ( , 2 = 5
M , 3) =  1 0 1 1 (1,3) =  1 0 i z { ,3 =  UJ # 2 5  ( ,3) = 1 # 3 2  ( ,3 = 6

0 a ( ,4) = UJ 0 1 1 (1 ,4 )=  a; 0 i s ( ,4 =  a; #25 ( ,4) - UJ # 3 2  ( ,4 = UJ

A ( , 2 ) =  1 0 1 2 (1,2) =  9 0 i o { , 2 =  a; #26 ( ,2) = 1 0 3 3 { , 2 = UJ

A ( >3) =  1 0 1 2 (1,3) =  1 0 i o { ,3 =  a; #26 ( ,3) = 1 0 3 3 ( ,3 = UJ

A>( ,4) — UJ 0 1 2 (1,4) =  uj 0 i o { ,4 ■ UJ #26 ( ,4) = UJ # 3 3  ( ,4 =- UJ

/%( , 2 ) = 1 0 1 3 (1 , 2 ) =  1 02o( , 2 = UJ 0 2 7  ( , 2 ) = 1 0 3 a ( , 2 = 7
A>( , 3) =  1 0 1 3 (1,3) =  1 02o{ ,3 =  CJ # 2 7  ( ,3) z= 1 0 3 a ( ,3 = 8

A ( ,4) =  UJ 0 1 3 (1,4) =  uj 02o{ ,4 = 0 2 7  ( ,4) = UJ 0 3 a { ,4 = UJ

0 3 5 { , 2 =  a; # 3 5  ( ,3) = UJ # 3 5  ( ,4 = UJ

Table 8.14: 0 — Wiring Functions for cdSCA

It is also the case that for 0 < pc.val < M a x ^  — 1 :
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• the 0th input for each module is wired to the program counter:

0 p c . v a l { \ i  0 )  P C j

•  the 1st input for each module is wired to the module itself:

0 p c .v a . l i 0 i  1) 1)

• and that for the program counter the definition is:

0 p c .v a l  (pC) 0 )  pc.

For the 7 -wiring functions, indicating whether a module is linked to a module, source 

or unconnected, it is also the case that:

• the 0th input for each module is wired to the program counter:

7 y(l, 0) = M  fo r  1 < y <  M ax

• the 1st input for each module is wired to the module itself:

7 y(l, 1) =  M  fo r  1 < y < M a x N,

• and that for the program counter the definition is:

7 y{pc, 0) =  M  fo r  0 <  y <  M a x n

The remainder of the 7 -wiring functions are defined in Table 8.15. Again these too a 

close resemblance to those given for the Form 2 abstract dSCA but with a correspond

ing shift in argument index to accommodate the above definitions for arguments 0 

and 1 .
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7 o (

IIcT 7 7 ( 1 ,2 )  =  t / 7 u ( ,2 ) =  S 721 ( ,2 ) =  M 728 ( , 2 ) = S
7 o ( , 3  ) =  M 7 7 ( 1 ,3 )  =  U 714 ( , 3 ) =  M 721 ( ,3) = M 728 ( ,3) = S
7 o ( , 4  ) =  M 7 7 ( 1 ,4 )  =  U 714 ( ,4 ) = U 721 ( ,4) =  U 728 ( ,4) = U
7 i  ( ,2) =  pc 7 8 ( 1 ,2 )  =  £7 715 ( ,2) =  U 722 ( , 2 ) =  M 729 ( ,2) =  U
7 i ( ,3) = pc 7s(1,3) =  U 715 ( ,3) =  U 722 ( , 3 ) =  M 729 ( ,3) =  u
7 i ( ,4 ) =  U 7 8 ( 1 ,4 )  =  U 715 ( ,4) =  u 722 ( ,4) =  U 729 ( ,4) =  u
7 2 ( ,2 ) = U 7 9 ( 1 ,2 )  = M 716 ( ,2) = u 723 ( ,2) =  M 730 ( ,2) =  S
7 2 ( ,3 ) =  U 7 9 ( 1 ,3 )  =  M 716 ( ,3) =  u 723 ( ,3) = M 730 ( .3) = S
72 ( ,4 ) = U 7 9 ( 1 ,4  ) = U 7 ie ( ,4) =  u 723 ( ,4) = U 730 ( ,4) = u
73 ( ,2 ) = M 7 i o ( l , 2  ) = S 7 l7 ( ,2) = u 724 ( ,2) = M 731 ( ,2) = u
73 ( ,3 ) = M 7 i o ( l ,  3) =  M 7 l7 ( ,3) = u 724 ( ,3) = M 731 ( ,3) = u
73 ( ,4 ) =  M 7io(1,4) =  U 7 l7 ( ,4) = u 724 ( ,4) = U 731 ( ,4) = u
7 4 ( ,2 ) = M 7 n ( l ,  2) =  M 718 ( ,2) =  u 725 ( ,2) =  M 732 ( ,2) =  S
7 4 ( ,3 ) =  M 7 n ( l , 3 )  =  M 7 i s ( ,3) =  u 725 ( ,3) =  M 732 ( ,3) =  S
7 4 ( ,4 ) =  U 7 n ( l , 4  ) =  U 7 i s ( ,4) =  u 725 ( ,4) =  U 732 ( ,4) =  u
75 ( ,2 ) =  M 7i2(1,2 ) =  S 7 l9 ( ,2) = u 726 ( ,2) = M 733 ( ,2) =  u
75 ( ,3 ) =  M 712( 1 , 3) =  M 7 i9 ( ,3) =  u 726 ( ,3) =  M 733 ( ,3) =  u
75 ( ,4) = 17 712( 1 , 4) =  U 7 l9 ( ,4) =  u 726 ( ,4) =  U 733 ( ,4) =  u
76 ( ,2 ) =  M 713(1 , 2 ) =  M 720 ( ,2) = u 72?( ,2) = M 734 ( ,2) = S
76 ( ,3 ) =  M 713( 1 , 3) =  M 720 ( ,3) =  u 727 ( ,3) =  M 734 ( ,3) = S
76 ( A ) =  U 7 1 3 ( 1 ,4 )  =  u 720 ( ,4) =  u 727 ( ,4) =  U 734 ( ,4) =  u

735 ( , 2 ) =  u 735 ( ,3) =  U 735 ( ,4) =  u
Table 8.15: 7 — Wiring Functions for Form 2 acvSCA

D elay Functions

For a concrete dSCA the delay functions are always the unit delay as all look-backs 

over time are now captured within the tuple. It is therefore defined that for 0 < 

pcjual < Maxjsi — 1, i = 1 and 0 < j  < 4 :

^1 tjtPcij'i O') *̂ )    ̂ 1

The program counter module has only one input, from itself, and this is also by 

definition always unit delay, so it is appropriate to define for 0 < pcjual < M a x m — 1 :

& pc,0,pc_val ( t )  O) 3 ' )  —  t  1
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Value Function: Initial S tate

The Initial State definitions for the Value Functions for module m i of the concrete 

dSCA solution to the GRCP needs to reflect the first M a xw, or 36, initial states. It is 

known from the definition of concrete dSCAs that only the values at time t = 0 and 

t = 35 are of use to computation and comparison of correctness. It is appropriate to 

define, for t = 0 :

/  s t a y , u, u, u, , u, u, u, u, \
u, u, u, u, , u, u, u, u,

V\(pcjual,  a, x) = u, u, u, u, , u, u, u, u,
u, u, u, u, , u, u, u, u,

V u, it, u, u y

and for 1 < pc _va l  < M a x j v  — 2 that:

/  s t a y , u, u, u, , u, u, u, u, \
u, u, u, u, , u, u, u, u,

V\ (pc.val,  a, x) = it, It, u, u, , u, u, u, u,
u, u, u, u, u, u, u, u,

\  u, It, u, u /

The final definition, for t =  35, is:

/  s t a y , true, s t a y , up, t rue 5 f a l s e , f a l s e
u p , t r u e , t r u e , f a l se, f a l s e , f a l s e , t r u e ,

Vi(35, a, x) = 90, t rue, 0 , t r u e , 0 , f a l s e , f a l s e
f a l s e , /a/se, f a l s e , /aZse, 0 , 0 , 0 ,

\  0 , 0 , 0 , 0

fa lse , 
fa lse , 
0,

/
The Initial State definition of the Value Function for module mpc is given in accordance 

with the definition of concrete dSCAs as:

1̂ ( 0 , a, x) =  1 

Vo(l, a, x) = 2

Vo(MaxN — 2, a, x) =  M a x jv — 1 

Vo(MaxN — 1 ,a ,x)  = 0
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Value Functions: S tate Transition

The state transition definition for the value function for the single module reflects 

the M a x x  cases that need to be covered, and also include the tuple management 

operations. The definition of the program counter module is:

I mod (add (Vpc(t, a, x), 1) , 36) if Vpc(t, a ,x)  = 0  

:

mod (add {Vpc(t, a, x), 1), 36) if Vpc(t, a, x) = M a x n  — 1 

with the definition of module 1 shown overleaf.
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Network output: V out

Network output will be from module 1, i.e. :

Vout(t,a ,x) = Vi{t,a,x)

The correct value would have to be projects out if a comparison to an abstract 

dSCA or original SCA is to be made. The execution order indicates that a new answer 

will be available every 36th clock cycle starting at time t = 0, and due to the tuple 

management operation, the value to be compared will be held in the 0 t/l element of 

the array.

8.4.1 Correctness

The complete definition of the concrete dSCA is captured in Appendix E.

By inspection and application of the mapping of modules (from the execution 

order) it can be seen that the concrete dSCA represents the Form 2 abstract dSCA. 

Consider the value of Vout of the Form 1 dSCA at time t — 0, from Table 8.6  it can 

be seen that it is equal to stay. The equivalent value in the Form 2 abstract dSCA 

is provided as the 0th element in the tuple of V\. Recall that this tuple is defined as:

Vi(pcjval,a,x) =

it can be seen that the 0th element is stay , the same as for the Form 1 abstract dSCA.

A similar process can be applied for other times, notably important results will 

be produced every 36 clock cycles.

(  s tay , It, It, It, > It, It, u, u, \
u, It, it., It, ,lt, u, u, u,
U, it, u, u, ,11, u , u, u,
it, it , It, u , ,tl, u, u, It,
it, it, It, u )

8.5 Concluding Comments

Four solutions to the GRCP example have been given, and this chapter has provided 

a discussion relating to the correctness of each model with respect to the ’’previous”
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model.

It is now claimed that a SCA can be seen as the mathematical representation of a 

computation, and that the concrete dSCA is a mathematical model of the computing 

device that will implement the computation.

It is further claimed that the use of abstract dSCAs supports the mathematical 

transformation of a SCA to a concrete dSCA using a number of mappings. The 

challenge taken forward into the next part of this thesis is how to mathematically 

define these mappings and transformations algebraically.

8.6 Sources

This chapter is all my own work.
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Transformations
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Chapter 9 

Concept of SCA Transformations

9.1 Introduction

In the previous chapters it has been shown how the solution to the GRCP could be 

represented as: an original SCA, two different abstract dSCAs and a concrete dSCA. 

The correctness of each of those models has also been discussed. The reader may 

have noticed that one model has, in some sense, been derived from a previous model. 

For example the concrete dSCA is an implementation of the Form 2 abstract dSCA, 

which itself is an implementation of the Form 1 abstract dSCA, which can be seen to 

be an implementation of the original SCA implementation. Given such a hierarchy, 

this thesis now proposes that there are mechanical methods to transform from one 

model to another. Future discussions are restricted to the following transformations:

1 . A k-module SCA network to an abstract dSCA network with a defining shape 

of V =  (k, 1);

2 . An abstract dSCA network with defining shape of V =  (k , 1) to an abstract

dSCA network with defining shape of V =  (n, k ); and

3. An abstract dSCA network with defining shape of V =  (n, k) to a concrete

dSCA with defining shape of V =  (n, k).

155
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Each transformation will be defined algebraically.

Such a series of transformations is analogous to refinement steps commonly found 

in the development of safety related systems (though refinement steps are usually 

applied to the transformation of a mathematical specification to a program). Program 

transformation is a large field, which this thesis does not intend to delve into in depth 

- the reader is pointed to Stephenson’s PhD thesis ([Ste95]) which covers a wide range 

of program transformation in her literature study.

In this introduction reference has been made to the various SCAs existing in a 

hierarchy. Poole, Holden and Tucker ([PHT98]) have previously considered hierarchies 

of Spatially Extended Systems, of which SCAs are a form, and this provides a useful 

alternative method for consideration of correctness in addition to the Type I and 

Type II notion discussed previously in this thesis. They set out to demonstrate how 

one SCA can abstract, approximate, or implement another SCA, and introduced the 

Integrative Hierarchy Problem:

“In te g ra tiv e  h ie ra rch y  problem : Develop a mathematical theory that 

is able to relate and integrate different mathematical models at different 

levels of abstraction” ([PHT98])

Poole, Holden and Tucker argue that to compare two SCAs, the following must 

be considered:

• spaces;

• clocks;

• global states; and

• input streams.
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Consider two networks, N\ and N 2 with each network having non-empty sets 

11 and I2 of modules, computing with respect to clocks T\ and T2, sets In i  and 

I n 2 of inputs. The previous discussions on SCAs has discussed the channels between 

modules, but for hierarchies we formally introduce sets Chi and Ch2 to explicitly refer 

to channels in network N\ and N 2 respectively The networks will therefore have the 

sets M a i  hl and M a 2 H2 of initial states and sets [7\ —► M a i ]I t11 and [T2 —► M ^ ] 7"2 of 

input streams. It is intended that the behaviour of the network N 2 is an abstraction 

of the behaviour of network Ni then it should be possible to construct the necessary 

mappings.

Spaces

For our purposes, the space of an SCA is analogous to the modules within networks. 

An SCA respacing function can therefore be introduced that maps modules within 

Ni to N 2:

7r : 11 -> I2

This mapping is a surjective function, with the intention that each module i € h  

in network Ni is abstracted by the module 7r(?) E I2 in network N 2.

Clocks

Mapping between two clocks, T\ and T2, is achieved by the introduction of retimings. 

Retimings were introduced by Harman and Tucker in [HT89] and [HT90]; and these 

should not be confused with the concept of retimings introduced by Leiserson and Saxe 

(whose retimings relate to improving the timing behaviour of a circuit by reallocation 

of registers - see [LS91] for details).

A clock is defined to be an algebra consisting of a set of natural numbers, the 

constant 0 and the successor operation t +  1. If R  and T  are two such clocks, then 

a retiming A : T  —> R  is a mapping between them capturing the concept that A(£) is
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the time cycle on R  that corresponds with the time cycle t € T.  This is demonstrated 

in figure 9.1.

« * « # * «
1 2 3 4 5 6 7 8 9 10 11 12

Figure 9.1: Retiming

More formally, let T  =  (T ,0 ,t f  1) and R  = (R, 0, r +  1) be two clock algebras, 

then if each clock cycle in R  corresponds to more than one clock cycle in T  then R  is 

at a higher abstraction than T. Further, A : T  —> R  is a retiming from T  to R , iff:

1 . A(0) =  0;

2 . A is surjective, that is to say that for all r 6  R  there is a t £ T  such that 

X(t) =  r; and

3. A is monotonic so that for any t, t' 6  T  if t < t' then A(t) <  A(£').

The set of all retimings from T  to R  is denoted as Ret(T, R). A  few useful 

operations relating to retimings are now discussed. A is known as the immersion of a 

retiming A £ Ret(T , R) and is defined as:

A(r) =  least t € T  such that  A(t) =  r

Start \  identifies the first clock cycle in the group that could be retimed to a value 

in the other clock. For example Start \{5) in Figure 9.1 would be 4. It is defined as 

applying the immersion to the result of the retiming of the clock under consideration:

Startx = (AA)



CONCEPT OF SCA TRANSFORMATIONS 159

Global States

The global state of an SCA at time t £ T  is defined as the set of values held by all 

the channels at time t € T. There exists a global state abstraction mapping, <p of the 

form:

<j) : M a i *11 -► M A ° h2

where the intention is that a global state s £ M A^ hl of SCA Ni  is abstracted in 

SCA N 2 by the state </>(s) £

It is sometimes necessary to provide a data abstraction function within the global 

state map if the algebras in each network are not the same. Poole, Holden and Tucker 

demonstrate the use of this when considering the hierarchy between two systolic 

convolvers, the first working on an algebra representing bits, and an abstraction 

using the carrier set MA.

Input Streams

Input streams for network N\ can be mapped to those in N 2 by means of the stream 

abstraction function:

0 : [7i -  M A1]Ini -  [T2 -» M A2\In*

with the intention that streams a € p i  —► M A1] 11 for Ni  are abstracted in N2 by 

0(a) e  [T2 -  MA2]In\

SC A  Equivalence

To show the equivalence of two SCAs in a hierarchy, it is therefore necessary to show 

the following diagram commutes:

T2 x [T2 -► M A2]In2 X M AZh2 - A *  M jfchl

A 6 4> <f>

Start* xfTr -* M Al]Inix  M Af hl — A  M a f '*1
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Correctness within a hierarchy would therefore allow the syntactic demonstration 

of the correctness of a model M 2 against a model Mi - if Mi  is already shown to 

be correct with respect to some specification S', then showing Mi  and M2 are in 

a hierarchy, such that 7r, A, (j) and 6 exist and a diagram for the above commutes, 

would demonstrate that M2 is also correct with respect to S. Consider the SCA 

implementation of the GRCP to be Mi, the Form 1 abstract dSCA implementation 

to be M2 , the Form 2 abstract dSCA implementation to be M3 and the concrete 

dSCA implementation to be M4 , then if the notation A >  B  is used to mean that 

B  is a correct implementation of A within a hierarchy, then the correctness of the 

concrete dSCA with respect to the specification S  can be asserted iff:

S  >  Mi > M2 t> M 3 > M4

In the exposition of transformations in this thesis a restriction is placed tha t the 

machine algebra M a will be consistent across the SCA models. The implication of 

this is that there will not be an investigation of the alterations of datatypes across 

the models, which in turn may affect timings and mappings used.

Before discussing the transformations a discussion is provided next on a number 

of fundamental algebras that will be used in the definition of the SCAs and the 

transformations. Finally, Chapters 10, 11 and 12 describe the transformations in 

detail and include a walk through of how the GRCP example is transformed from an 

SCA to a concrete dSCA.

9.2 Fundamental Algebra Specifications

There are four types of fundamental algebra specifications used in this thesis:

1 . Synchronous Concurrent Algorithms (SCA, adSCA and cdSCA)
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2. Machine Algebra

3. Lists

4. Forms of equations: Value Functions, wiring and delay functions, etc.

The important elements of each specification are discussed in the next set of sections, 

and full definitions of relevant specifications are provided in Appendix A.

9.2.1 SCA Algebraic Specification

As defined in Chapter 5.7.2, the specification of an SCA will be written as
Begin

End

Specification  SCA-N am e
Im port T, Ma
Sorts []
C onstants Sym bols []
V F  Function N am es Vi : T  x [T —» Ma ]u x  M \  — > M a
7 Function  N am es 7 (i, j)  : N*, x N  —> N*,
/^Function N am es P(hj)  '■ Nfc x N  —> { S , M } ,
^Function N am es Sij  : T  x [T —>• Ma]71 x  M \  —> T,
IV  E quations V i(0,a,x) =  x 0,

* • * 5

V m  ( 0 ,  (2, X ) =  X m

ST E quations Vi (t +  L a>31) =  f i >
. . . ,
Kn(t +  l , a , x )  =  A 

7 E quations 7 (0 ,0) =  x,

7 (2, j) =  x
/^Equations Pi h j )  =  L,

ft ihj) =  L
(^Equations +  L a, x)  =  t,

. . .  ,
,-(t +  1 , a, x) =  i

which of course is a convenient way of writing:
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(  N ,l,
0 ,true, false, u
succ : N —► N, add : N x N —» N, cond : U 
Vi : T  x [T -► MA}n x M \  -> Ma,
7 ( i , j )  : Nfc x AT -> : Nfe x JV

: T  x [T -> M^]n x -> T,
succ(n) =  n +  1, add(succ(a),b) = add(a, succ(b) ) , . . . ,

x N x N - > N , . . . ,

V o ( 0 ,  a, x) = 5 , . . . ,

Vo(t + 1, a, a;) =  add(Vi(t, a, x), 2), 
7(1,0) = M,. . . ,
/?(1,0) = 2......

\  5 i , o ( f , a , s )  =  £ -  1 , . . . /
To enable the construction of such specifications and provide access to the con

stituent parts, the SCAAlgebra specification is provided. It has one construction 

operation, CreateSCA , which takes enough arguments to create a representation of 

an SCA in the algebraic notation. There are also 13 decomposition operations that 

provide access to the various components of an SCA. The constructor operation, 

CreateSCA , is given as:

CreateSCA  : Name x ImpList  x SortList  x ConsListx

VFOpList  x 7 OpList x (30pList x SOpListx

IV E qLis t  x STEqLis t  x 7 EqList x  (3EqList x SEqList  —► S C A

and has the following definition:

/  B e g in

CreateSCA

/  nam e , 
im port, 
sorts, 
constants, 
opsVF, 
opsy, 
ops 13, 
ops5,
eqsVFIV , 
eqsV F ST , 
eqs'y, 
eqs(3,

\  eqsd,

S p e c if ic a t io n  name 
I m p o r t  im port 
S o r ts  sorts
C o n s ta n t  S y m b o ls  constants  
V F  F u n c tio n  N a m e s  opsV F  
7  F u n c tio n  N a m e s  ops^j 
(3 F u n c tio n  N a m e s  opsf3
6 F u n c tio n  N a m e s  ops 
I V  E q u a tio n s  eq sV F IV  
S T  E q u a tio n s  eq sV F S T
7  E q u a tio n s  eqsy 
(3 E q u a tio n s  eqs/3 
5 E q u a tio n s  eqsd

\

\  E n d /
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Decomposition operations provide access to the component parts of an SCA speci

fication, e.g. the 7 -wiring functions. As an example, consider the G et/?Eqs operation 

whose purpose is to return the list of imported specifications in the definition of an 

SCA. It is given as:

GetfiEqs : SCAAlgebra —> (3SCAEqList

and defined as:

/  B e g in

Get(3Eqs

\  E n d

S p e c if ic a t io n  name 
I m p o r t  import 
S o r ts  sorts
C o n s ta n t  S y m b o ls  constants 
V F  F u n c tio n  N a m e s  opsVF  
7  F u n c tio n  N a m e s  ops'y 
f3 F u n c tio n  N a m e s  ops(3
5 F u n c tio n  N a m e s  ops 
I V  E q u a tio n s  eq sV F IV  
S T  E q u a tio n s  eqsV F ST  
7  E q u a tio n s  eqs'y
/? E q u a tio n s  eqs/3
6 E q u a tio n s  eqsS

= eqsj3

/

Similar operations are defined to allow access to all constituent parts of an SCA and 

the complete definition of the SCA Manage specification is given in Appendix A.I.

Since abstract and concrete dSCAs are syntactic extensions to SCAs then the 

specifications for those will be defined in a similar manner. For brevity, this thesis 

will not define these specifications.

9.2.2 M achine Algebra Specification

The Machine Algebra, denoted as M^, is the carrier algebra A  so far used in the 

definition of Synchronous Concurrent Algorithms. It is renamed to focus the reader
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on the objective of the thesis, that of ‘compiling’ an SCA to a target machine archi

tecture. Operations within M a are said to be atomic, i.e. they cannot be further 

subdivided with relation to the level of abstraction currently under consideration.

M a includes operations that depend upon the underlying machine that transfor

mations are targeted at. For the purposes of this thesis a target machine that can 

perform simple mathematical and logical operations over the set of natural numbers 

and booleans, as shown in Table 9.1 (where the usual meaning is applied to the 

operations) will be used.

Natural Boolean Combined
add or eq
sub and It
mult not gt
div cond

Table 9.1: Operations in M a

It is important that operations in M a can handle the undefined element, u , in 

any of its arguments. The result of an operation where any argument is u will be 

u, even in the case of boolean operations, e.g. the OR operation where it might be 

expected that a u for one argument and a true for the other would result in true , 

will result in u. This is done because of the field in which this thesis is positioned 

where an undefined value would be erroneous and thus the undefined value should be 

propagated so it can be handled outside the computation system. M a is fully defined 

in Appendix A.2 .

9.2.3 List Algebra Specifications

The SCA specifications contains many lists, each of which will have a corresponding 

list specifications. Lists are required for the following:

1. Imported types (ImpList).
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2. Sorts (SortList).

3. Constants (ConsList).

4. Value Function operation definitions (VFOpList).

5. 7 -wiring function operation definitions ( 7 OpList).

6 . (3-wiring function operation definitions (fiOpList).

7. Delay function operation definitions (dOpList).

8 . Initial Value equations (IS V E q L is t  and d S C A IS V E q L is t ) .

9. State Transition equations (STVEqLis t  and dSCASTVEqLis t ) .

10. 7 -wiring function equations ('ySC AEqList  and "ydSCAEqList).

1 1 . /5-wiring function equations (/? SC AEqList  and (3dSC AEqList).

12. Delay function equations (6SCAEqList  and ddSCAEqList).

13. Project function equations (ProjEqList).

14. Mapping function equations (MapLis t).

Each specification, is similarly defined, with the main difference the definition of 

the Get El  operation. Get El  returns a particular elements from a list of equations 

from a defined position. All the specifications have standard head and tail operations.

This thesis will be mainly concerned with Equation Lists in an specification, rather 

than, for example, the operation or constant lists. The S T V  EqLis t  specification 

is now discussed in detail, and then a discussion on the differences of the GetEl  

operation for various other equation list specifications will be performed.
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SCA State Transition Equation List Specification

Within the STEqLis t  specification a single composition function is provided, tha t 

enables the recursive creation of a lists of elements. Three decomposition operations, 

hd, tl and Get El  are provided that extract the head of a list, the tail of a list and an 

element from a particular position in a list respectively. The empty list will always 

be represented by the constant [|

To create a list the specification provides one infix operation:

_, _ : S T V  Equation x S T V  EqList  —► S T V  EqList

Thus, (a, []) and (a, 6 , c, []) are both equation lists.

For the decomposition operations, consider the following example list:

V\ (£, a, x) = add( 1 , 7), 

V2 (t, a, x) = mult(3 ,6 ),

• 5
Vn (£, a, x ) =  sub(6.3),

D
The hd operation returns the head of a list, it is given as:

hd : S T V  EqList  —> S T V  Equation 

and is therefore be defined as:

hd(  []) =  0

hd (a, as) = a

such that the hd of the above list is:

Vi (t, a, x) = add( 1, 7)

The tl operation, which returns the tail of a list, is given as:

tl : S T V  EqList  —> S T V  Equation
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and is defined:
ti ([]) = D
tl (a, as) = as 

such that the tl of the above list would be:

V2 (£, a, x) = mult(  3 ,6 ),

' ?
Vn(t,a,x)  =  sub(6.3),

a
The final list operation allows the selection of a particular equation out of a 

list. In the case of the S T E q L is t , each equation is a value function that has a 

particular module number associated with it; the operation of Get El  is therefore to 

select the State Transition equation from the list that corresponds to a particular 

module number. GetEl  it is given as:

Get El  : S T V  EqList  x N  —> S T V  Equation

and is simultaneously defined as:

GetEl([},n) = Q

GetEl ((Vn(t,a,x) = z ,vs) ,n)  = (Vn(t, a, x) = z)

GetEl ((Vp(t,a:x) = z ,vs) ,n)  = GetEl(ys,n)

The GetEl  operation is the main operation that changes in all of the list specifi

cations and is now discussed for the remainder of the lists.

Initial State Value Equations List Specification

Definition of the Initial State for Value Functions are of the form:

Vn (0  ,a ,x)  =  x n

the retrieval of an Initial State definition for a Value Function is performed in the 

same manner as for the State Transition definition of a Value Functions, tha t is to
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say by recursing over the list of equations until the correct element is found. GetEl  

is given as:

GetEl  : IS V E q L is t  x i V ^  ISVEquation  

and is simultaneously defined as:

GetEl(\\,ri) =  null

GetEl ((Vn(t,a,x) = z ,vs) ,n)  = (Vn(t, a, x) = z)

GetEl ((Vp(t,a,x) = z ,vs) ,n)  = GetEl(vs,n)

The GetEl operation for a dSCA Initial State Value Equation List is similarly 

defined with the appropriate types.

dSCA State Transition Value Equations List Specification 

DSCA State Transition Value Functions are of the form

Vn(t +  1, a, x) =  f n{argu  . . . ,  argp(i))

the retrieval of an Initial State definition of the value function is performed in the 

same manner as for the State Transition definition of the Value Function, that is to 

say by recursing over the list of equations until the correct element is found. GetEl  

is given as:

GetEl  : d S C A S T V E q L is t  x A  —> dSCASTVEquat ion

and is simultaneously defined as:

GetEl(\\ ,n) = null

GetEl ((Vn(t,a,x) = z ,vs) ,n)  = (Vn(t, a, x) = z)

GetEl ((Vp(t,a,x) = z ,vs) ,n)  = GetEl(vs,n)

7  Wiring Function Equation List Specification

There are two forms of y-wiring function lists, one for SCAs and the other for dSCAs. 

For an SCA the q-wiring functions are of the form:

7  ( h j )  = X
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thus selection will be based on the variables i and j , and it is therefore appropriate 

to define:

GetEl : ^ S C  AEqList  x i V2 ^  rySCAEquation

as:
GetEl(\ \ i , j)  = null

G e t E l M i J )  = X ivs ) i i ij )  =  (7  ( h j ) = X )

GetEl  ( ( 7 ( 7 7 2 ,n )  =  X, vs), n) = GetEl(vs , i , j )

For a dSCA, the 7 -wiring function is of the form:

I z i h j )  = X

and selection will therefore be based on the variables i, j  and  2 . It is therefore 

appropriate to define:

GetEl  : 'ydSCAEqList  x N 3 —> 7 dSCAEquation

as:
GetEl(\\ i , j ,  z) = null

GetEl = X , v s ) , i , j , z )  =  (7 z{i,j) = X )

GetEl  ((7 3 (771, n) =  X, vs), i , j ,  z) = GetEl(vs, i , j)  z)

(5 Wiring Function Equation List Specification

The /3-wiring operation are extracted in a similar manner as for the 7 -wiring oper

ation. Again, there are two forms of /3-wiring function lists, one for SCAs and the 

other for dSCAs. In the SCA the /3-wiring functions are of the form:

P(hj) = X

thus selection will be based on the variables i and j ,  and it is therefore appropriate 

to define:

GetEl  : fdSCAEqList  x N 2 —> (ISCAEquation
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as:
GetEl(\\ z, j )  = null

GetEl = X ,v s ) , i ,  j )  =  ( P ( i , j ) = X )
GetEl ((P(m,n) = X ,v s ) ,n )  = GetEl(vs , i , j )

For a dSCA, the /3-wiring function is of the form:

thus selection will be based on the variables z, j  and  z. It is therefore appropriate to 

define:

GetEl : j3dSCAEqList x N 3 —> (5dSCAEquation

as:
Get El (\\ i, j ,  z) =  null

GetEl ((/3z{i,j) = X , v s ) , i , j , z )  = (f3z{ i j )  = X )

GetEl (((3z(m,n) = X ,vs ) , i , j>z ) — GetEl{ys , i , j , z )

Delay Function List Specification

Delay functions also have 2 forms, one for both SC As and concrete dSCAs, and 

another for abstract dSCAs. In SCAs and concrete dSCAs the delay functions are of 

the form:

di,j(t) — X

and selection is therefore based on the variables i and j , and it is therefore appropriate 

to define:

GetEl  : bEqList xJV2 ^  SEquation

as:
GetEl(\ \ i , j)  = null
GetEl((6id( t , a , x ) , v s ) , i J )  = (5id{t, a, x) =  X )

GetEl ((5m,n(t,a,x) = X ,v s ) ,n )  = GetEl(vs , i , j)
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For concrete dSCAs, the delay function is of the format:

thus selection is based on the variables i, j  and z. GetEl  is given as: 

GetEl  : SdSCAEqList  x N 3 —► ddSCAEquation

and defined as:

Mapping Function List Specification

The Mapping Function List contains elements the mapping (or inverse mapping), 

these are of the form

and elements are therefore selected by means of the variables i and j ,  using the GetEl 

operation of the Mapping Function List specification:

GetEl  : MapEqList  x N 2 —> MapEquation

which is defined as:

GetEl([]i, j ,z)

GetEl ((SijfZ(t, a, x ) ,v s ) , i , j ,  z) 

GetEl ((6m^ p(t,a,x) = X , v s ) , i , j , z

null

( î,j,z(l  ̂ AT)
GetEl(vs , i, j, z)

GetEl([]i,j)

GetEl  ((H(z, j )  =  X ,v s ) , i , j )  

GetEl  ((H(m, n) — X , vs), ra)

null

( S ( i , j ) = X )  

GetEl (vs, i , j )

it is similarly defined for the inverse mapping. 

Project Functions List Specification 

Projection functions are of the form
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thus it is appropriate to define the GetEl operation:

GetEl : ProjEqLis t  x N 3 —* ProjEquation

as:
GetEl(\\ i , j ,  z) =  null

GetEl ( (dNz = X,vs) , i>j ,z )  = =  X )
GetEl ({d*np = X , v s ) , i J , z )  = GetEl(vs ,i , j ,  z)

9.2.4 SCA Value Functions

SC A  S ta te  T ran sitio n  E q u a tio n  Specification (S T V E q u atio n )

An SCA State Transition definition of the Value Function is an equation of type 

STVEquation. The STVEquation specification defines how these definitons of Value 

Functions (a restricted form of equation) are constructed. The specification contains 

one operation for constructing and two operations for decomposing a Value Function.

A State Transition definition is an equation made up from two terms, one of the 

form Vi(t, a, x) and the other f i (argi , . . . ,  argn), as follows:

Vi(t, a, x) = f i{arg1, . . . ,  argn)

The ith module in a network N  with k modules and n  inputs will have an operation 

component of:

Vi : T  x [T -► M A]n x M kA -> MA

where T represents some imported clock, and algebra M A is the imported specification 

from which data in the network is selected.

The equational component in the SCA specification for the ith module will consist 

of two entries, one that defines the value at time t — 0 :

V i(0 ,a ,x )  =  e
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and one that defines the value at all other times t € T  for some clock T :

Vi(t, a, x) = e'

This section is dealing with the State Transition, and thus define it is appropriate 

to give one construction operation that takes a module number, a time term and a 

VFOpTerm:

CreateVF : N  x Term  x VFOpTerm —► S T  Equation 

and to define it as:

CreateV F ( n , t , t 2) = (Ki(£,a, a;) =  t2)

A constructed Value Function equation is made up of two component parts,

VFCallTerm = V F O p D ef

where the VFCallTerm  type are terms that are of the form Vn(t,a,x)  and the 

VFO pTerm  type as terms built from elements of M&. For example, CreateVF (n, £ + 

1, add(5,4) would result in Vn(t +  1, a, x) = add(5,4)

The decomposition operations provided in the Value Function specification are 

used to extract various components from a Value Function definition and also from 

the components of the Value Function. For example, the RetTerm  operation will 

return a term from an S T  Equation, it is given as:

RetTerm  : STVEquation  x N  —► Term

and defined as:

RTerm(Vn(t, a, x) = 1) =  Vn(t,a,x)

RTerm(Vn(t,a,x)  =  / n, 2) =  f n
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SC A  Initial S tate Equation Specification (ISVEquation)

An SCA Initial State definition of a Value Function is of type ISVEquation, and this 

specification defines how these definitions of a Value Functions (a restricted form of 

equation) are constructed. The specification contains one operation for constructing 

and two operations for decomposing the Initial State component of a Value Function. 

The Initial State is an equation made up from two terms as follows:

Vi(t,a,x) = xn

One construction operation is defined, and it is given as:

CreateVF : N 2 x VFOpTerm —> S T  Equation

and defined:

Crea teVF (n , t , t2) =  {Vn{t,a,x) = t2)

For example, CreateVF(n,  0,4) would result in 14(0, a, x) = 5 

The decomposition operations provided in the Value Function specification are 

used to extract various components from a Value Function and also from the compo

nents of the Value Function. For example, the RetTerm  operation will return a term

from an S T  Equation, it is given as:

RetTerm  : ISVEquation  x N  —► Term

and defined as:

RTerm(Vn( 0, a, x) = x n, 1) =  14(0, a, x)

RTerm(Vn(0, a, x) = xn, 2) = x n

9.2.5 VFCallTerm and VFOpTerm Specifications

Both the VFCallTerm and VFOpTerm are specifications of terms, and it is not in

tended to provide an algebraic definition of terms above and beyond that given in
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Chapter 9.2. In this section an object of the form Vi(t,a,x)  is called a VFCallTerm 

and one called a VFOpTerm will be a term conforming to one of the following three 

definitions:

• An constant from M a or an operation from M a whose arguments are VFCall- 

Terms, for example add(Vn(t, a, x), Vp(t, a, x) or true-,

• a VFCallTerm, for example Vn(t,a,x)-, or

• a term representing an input stream, and being of the form Oj(t)

A single decomposition operation is defined for each of the VFCallTerm  and 

V F O p D e f  elements. For the VFCallTerm  access is allowed to the index of the 

VFCallTerm  given as:

Getlnd  : VFCallTerm  -► N

and defined as:

Getlnd(yn(t, a, x)) = n

The decomposition operation for the V F O p D ef  term is one that can return ar

guments:

GetArg : V F O p D e f  Term

defined appropriately over the number of arguments that are possible in an operation 

built from M^, for example:

GetArg(op(ti), 1) =  t x 

GetArg(op(tu t2), 1) =  t x 

GetArg(op(t1, t 2),2) = t2 

GetArg(op(ti ,t2,tz), 1) =  t x 

GetArg(op(t1, t2, t3), 2) =  t2 

G'etArp(op(ti, t2, 3̂), 3) =  t3
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9.2.6 W iring Function Specification

The wiring function specification consist of:

1. 7 S C  AEquation;

2. ^dSCAEquation;

3. /3 SC  AEquation;

4. j3dSCAEquation.

In this chapter the definition of the 7 SC AEquation  specification is given in detail 

as an example and the other specifications can be produced in a similar manner.

One operation is required for composition:

Build7  : N 2 x {S, M, U} —► ^ S C  AEquation

given as:

Build'y(a,b, X )  = (7 (a, 6) = X )

Decomposition is provided by one operation:

GetArg : 7  S C  AEquation x i V ^  Term

given as:
GetArg (7 (a, b) =  X, 1) =  7 (0 , b)

GetArg (7 (a, 6) =  X, 2 ) =  X  

The dSCA')Equation  specification will introduce am additional index for the pro

gram counter, therefore the equations are defined appropriately.
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9.2.7 Delay Function Specification

As with some of the other specification, there are two forms of the delay function, 

one for SCAs and concrete dSCAs, and one for abstract dSCAs. First the SCA form 

is discussed.

One operation is required for composition:

BuildS : N 2 x Term 3 —> SSCAEquation

given as:

Build5(i)j , a ,x , t  — 1) =  ($ i,j(t, a, x) = t — 1)

Decomposition is provided by two operation, the first Get Index  returns the index 

of the delay function:

Getlndex  : SSC AEquation —► N 2

given as:

GetIndex(Sij(t ,a,x) = x) = (i, j)

and the second decomposition operation is the GetArg operation which returns ele

ments from the arguments of the delay function:

GetArg : SSC AEquation x N  —► Term

note that we are not interested in the actual values, just tha t a term is returned:

GetArg (Sij(a , b) c) =  A, 1) =  a 

GetArg (<5ij(a, 6 , c) = X, 2 ) =  b 

GetArg {Si^{a) 6 , c) = X ,  3) =  c

The abstract dSCA forms are similarly defined but take account of the additional 

index introduced for the program counter.
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9.2.8 Conclusion

This section has provided the details on the fundamental specification used in the act 

of transforming one SCA model to another. The algebraic nature of these transfor

mations leads to the potential of automation of the process in the future.

9.2.9 Sources

This chapter is all my own work, except for the discussion on hierarchies of SCAs 

which comes from Poole, Tucker and Holden’s work, [PHT98].



Chapter 10 

SCA to A bstract dSCA

Purpose of Transformation

To introduce the necessary syntactic sugar required to describe 

an existing S C A  as an abstract d S C A , where the def ining shape 

o f  the abstract dSC A reflects the shape o f  the source SCA.

10.1 Process

This chapter describes the process used to build the components of the abstract 

dSCA with defining shape V =  (&, 1) from an SCA with defining shape V =  (&;, 1). 

It considers the necessary transformations of:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Value Function Equations; and

4. State Transition Value Functions.

179



SCA TO A B ST R A C T  dSCA 180

Once the individual transformations are described in detail they are pulled to

gether to provide details of the transformation specification. At the end of this 

chapter this transformation specification is applied to the SCA implementation of 

the GRCP to produce a Form 1 abstract dSCA implementation. Finally, the correct

ness of the generated Form 1 abstract dSCA is discussed. The transformation of the 

operations part of the specification will not be discussed.

10.1.1 Prerequisites

There are a limited number of prerequisites for this transformation. For the SCA to 

Form 1 abstract dSCA there are the following prerequisites:

• The source SCA is an atomic SCA;

• Arguments to the functional specification of a state transition phase definition 

of Value Function are indexed from 1, such that the wiring and delay functions 

also start with the index 1 ;

• Module numbering starts at 1, and sequentially increments, i.e. no module is 

ever denoted as mo;

• Modules are numbered such that if there are k modules in the network, then 

they are numbered 1 , . . . ,&;  and

• All delays in the source SCA are of unit length.

10.1.2 W iring Functions

There is a subtle difference between the wiring functions in an SCA and those in a 

corresponding Form 1 abstract dSCA. This is due to the requirement of the dSCA to 

have wiring functions for all values of n{i) +  1 (the number of arguments to modules) 

and this value being consistent across all modules.
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Additionally, a suffix is introduced to reflect the value of the program counter 

the wiring function relates to. Since this transformation constructs a simple abstract 

dSCA that maps to the SCA, then M a x n  will only ever reaches 1 , and thus the suffix 

will always be 0 .

Each module in the abstract dSCA will replicate the wiring in the SCA and will 

also get a wiring for its 0th input to wire it to the program counter (this is the reason 

for the first prerequisite). The program counter’s wiring itself must also be created, 

and the second prerequisite allows the program counter module to assume the index 

of 0 as described in the definition of abstract dSCAs.

q-wiring O perations

Consider the SCA q-wiring function:

7  {x,y) = z

the transformation should produce the corresponding dSCA q-wiring function:

7o(z, y) = z

The informal process for generating the q-wiring functions for a Form 1 abstract 

dSCA from an SCA is:

• For each module in the target network, where 1 <  i < k

— Add the following q-wiring function to the list of new q- wiring functions 

to represent the wiring to the program counter:

7 o(b 0) =  M

— For each argument 1 < j  < n(i) add:

, oldzvalue if old_value exists in the source SCA 
7o(bj )  = . rr

U otherwise
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• Add the wiring function for the program counter:

7o(pc,0) -  M

Formally, the Createys  operation is introduced:

Createys  : SCAAlgebra —► yEqLis t

which takes the SCA and calls the B y s  operation passing it the number of modules

in the transformations) from the source SCA. M axa for the target SCA will be one 

greater than in the source dSCA since the shape of the SCA is not being altered, 

but an additional argument is required. Additionally, the B y s  operation takes the 

extracted 7-wiring functions from the source SCA, and an empty list (which will 

eventually contain the Form 1 abstract dSCA 7-wiring functions). It is defined as:

The B y s  operation:

B y s  : N 2 x 7 S C  AEqLis t  x 7 dSC AEqList  —» 7 dSC AEqList  

is defined simultaneously in two cases to recurse over the number of modules. The

calls to the B y s  operation are made whilst decrementing the number of modules, and 

creating a new 7-wiring list from a call to the B y  operation appended to the second

and value of p(i) (the number of arguments, and which will be referred to as M oxa

Createys  ( source.SCA ) = B ys

( num_mod(source_SCA),  ̂

GetM axA(sourceSC A ), 

GetyEqs(sourceSCA ) , 

/

first case is where the number of modules is greater than 0, in this situation recursive
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argument:

B ^ s

( num-mod, \
M ax a , 
eqs,

V neqs, J

=  B ^ s

( numjmod — 1,

Max a -,
eqs,

( ( M a x A i  \ \
num.mod ,£ 7

V \  eqs,

neqs 

}  )

where the operation B'y:

B 7 : N 2 x ^S C  AEqList —* 7 dSC AEqList

will construct the 0t/x arguments wiring function and calls the B^Arg  operation to 

create the wiring functions for the other arguments 1, . . . ,  M ax a '

70, \  /  M a x A, \  \
num.mod, num.mod,

, B'yArqs 
0, egs,

Af

£ 7

( Max a , ^
num.mod,

V /

( (

Build7

\ \ / \ / /
B^fArgs is given as:

B^jArgs : AT2 x 7 SC AEqList x 7 dSC AEqList —> 7 dSC AEqList

and is defined simultaneously over the Max a argument, the first case being:

/  arg.val — 1, ^ ^

num.mod, 
eqs,

B^Args

(  arg.val, ^ /

num.mod,
eqs,

V /

B^Args

\ \

B^Arg

/

( arg.val,  ̂

num.mod,

\  eqs /
/

where the operation B^Arg  is used to generate the wiring function, depending upon 

whether it existed or not in the source SCA:

B^Arg  : Af2 x 7 SC A EqListx  —► 7 dSC AEqList
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it is defined as:

B yArg

( argjval, ^

num-mod,

\  eqs

Build7

Build'y

7o,
numjmod , 

argjval, 

M  

7o>
num.mod , 

argjual,

U

if GetEl

eqs,

numjmod , 

y argjval J

otherwise

/
The second case of the ByArgs  operation is defined to return the generated list of 

wiring functions:

B'yArgs = neqs

 ̂ 0, \
numjmod , 

eqs,

y negs y

The second case definition for the ^75  operation is where the module number 

under consideration is 0 . This module does not exist in the source SCA and so the 

process generates the wiring function for the program counter:

B ys

0 ,

M ax a ,
eqs,

\  neQs , /

(

neqs, Buildy
pc,

0 ,
V M  y

/^-wiring O perations

Consider the SCA /3-wiring function:

£ (z ,2/) =  2

the transformation should produce the corresponding dSCA /3-wiring function:

A>(z,2/) =  ^
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The informal process for generating the /3-wiring functions for a Form 1 abstract 

dSCA from an SCA is:

• For each module in the target network, where 1 <  i < k\

— Add the following /3-wiring function to the list of new /3- wiring functions

• Add the wiring function for the program counter:

7o(pc,0) =pc

Formally, the Create(3s operation is introduced as:

Createfis : SCAAlgebra  —► (dEqList

and it takes the SCA and then calls the B(3s operation passing it the extracted /3- 

wiring functions from the SCA, an empty list (which will eventually contain the Form 

1 abstract dSCA /3-wiring functions), and the details of the source SCA used for the 

same purpose as described in the 7-wiring transformation. It is defined as:

to represent the wiring to the program counter:

/30 (2,0) = pc

For each argument 1 < j  < n(i) add:

A > ( m )
old.value if old_value exists in the source SCA

U otherwise

Create(3s  ̂ source.SCA  )  =  Bfis

 ̂ num.mod(source.SCA),  ̂

GetMaxA(source.SCA) , 

Get(3Eqs(source.SCA),

/
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The Bj3s operation:

Bj3s : N 2 x PSC AEqList x PdSCAEqList -> (3dSCAEqList

is defined simultaneously by two cases to recurse over the number of modules. The 

first case is where the number of modules is greater than 0, in this situation recursive 

calls to the B(5s operation are made, decrementing the number of modules, and 

creating a new /3-wiring list from a call to the B (5 operation to be appended to the 

second argument:

/  numjmod — 1, \

BPs

(  numjmod, 

M ax a , 
eqs, 

y neqs,

\

=  BPs

M ax  A)
eqis,

( M axA) \
BP numjmod,

V

, neqs

J  J
where the operation BP:

BP : N 2 x PSCAEqList pdSCAEqList

constructs the 0th arguments wiring function and calls the BpArg  operation to create 

the wiring functions for the other arguments 1, . . . ,  Max a'-

BP
( M a x A i   ̂

numjmod ,

\  egs,

(

/
Buildp

( A , \

numjmod, 

0 ,

V  PC

(

, BpArgs

M ax a , 
numjmod, 

eqs,

\ \

BftArgs is given as:

B 0Args : N 2 x PSC AEqList x PdSCAEqList -► PdSCAEqList
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and is defined simultaneously over the M ax a argument, the first case being:

(  r,anr. \  f  f  aVgjjal — 1, ^ ^

numjmod, 

eqs,
B(3Args

argjval, \  (

num-mod, 

eqs,

V /

B/3Args

\ \

, BfiArg

/

( argjval, ^

num jm od,

\  egs /
/

where the operation BfdArg is used to generate the wiring function depending upon 

whether it existed or not in the source SCA:

B(3Arg : N 2 x PSC AEqList x  —> PdSCAEqList

it is defined as:

BpA rg
I  av, N 

nm,

\  egs /

Buildp

=  <

Buildp

where:

A) 5
n m ,

av,

'  egs

RetT  erm(GetEl nm

^ av

Po, N
nm,

av,

w J

( eqs, ^

nm,

\ av )

, 2)

if condi

otherwise

The second case of the BpA rgs  operation is defined to return the already generated 

list of wiring functions if the argument number under consideration is 0 :

< 0 , \

num-mod, 

eqs,

y neqs j

BpA rgs = neqs
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The second case definition for the B p s  operation, is where the module under 

consideration is module number 0, which does not exist in the source SCA, but does 

in the abstract dSCA, and the wiring function for the program counter is generated 

in this case as:

BPs

I  numjmod , ^ I  

M ax a , 

eqs, 

y neqs, /

neqs, Buildp

\

PC 

0 ,
\ p e  j

10.1.3 Delay Functions

Consider the SCA delay function:

in the Form 1 abstract dSCA it would be transformed into the form:

and it is always the case in the Form 1 abstract dSCA that the delay is a unit delta.

Informally, to create the Form 1 abstract dSCA delay functions from the SCA the 

following process is executed:

• For each module ra* in the target network, where 1 <  i < k:

— For each argument j  where 0 < j  <  n(i) generate:

•  Add the delay function for the program counter:

*^pc, 0 ,0  (^5 *^) —  ^ 1-
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Formally, the Createds operation is introduced to recurse through the list of SCA 

delay functions and create the list of Form 1 abstract dSCA delay functions. Createds 

operation is given as:

Create5s : SCAAlgebra —► SsEqList

It is defined as an operation that takes an SCA and extracts the number of modules 

and the maximum value of n(i) which will be referred to as M a xA through the 

transformation. Createds calls the B6s operation with the above arguments and an 

empty list (to hold the returned values), it is defined as:

( num m od(sourceSCA),  ^

Createds (source.SC A) =  Bds

The Bds  operation, given as:

GetMaxA(source.SC A ) ,

V 7

Bds : N 2ddSCAEqList —► ddSCAEqList

is defined by two cases. The first case adresses the situation where the number of 

modules is greater than 0 , where the following definition applies:

(

Bds
( num.mod y  ̂

M ax A, 

y neqs

= Bds

num.mod — 1 ,

Max a,
( MaxA-,  ̂

BdArgs num .m od ,

\

V V 7  7

with the BdArgs  operation given as:

BSArgs : N 2 x SdSCAEqList -► dSCAEqList

and defined, recursively over the number of arguments, with the first case definition
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of:

BdArgs

( arg.val,  ̂

num .m od ,

^ neqs J
BdArgs

( arg.val — 1 , ^

V

num.mod , 

y neqs

, Buildd

/

(  num.mod  \  ^ 

argval,

0 ,
t -  1 /

When the arg.val number is 0 the base case for the BdArgs  operation is defined 

to build a delay function for the 0^  argument:

/  num.mod , \

0 ,

0 ,

/
BdArgs

0 , \
num .m od , 

y neqs J

=  Buildd

V t - 1

The second case of E?£s, where the module number is 0, returns the results calcu

lated so far, appended to the delay function for the program counter:

I  (  num .m od , ^ \

negs, BuilddBds

( 0 , \
M ax a ,

 ̂ negs y
V V

o,

o,
t -  i / /

10.1.4 Initial State Equations

Consider an Initial State Equation from the SCA, it will be of the form:

Vi(fi,a,x) =  Xi

The corresponding Initial State Equation in the Form 1 abstract dSCA will be:

K (0 ,a ,z )  =  Xi

It can be seen that there is no transformation to make for the Initial State Equation 

of the SCA modules; however, the Form 1 abstract dSCA has an additional module,
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the program counter. Informally, the process for creating Form 1 abstract dSCA 

Initial State equations is therefore:

• Copy across the Initial State equation from the SCA; and

• Add an Initial State equation for the program counter Vpc(0, a, x) = 0 

Formally, the C rea te lSV F s  operation is introduced:

C rea te lSV F s  : SCAAlgebra -► d S C A IS V E q L is t

and it is defined as taking the SCA, extracting the Initial State equations from it, 

and adding an Initial State equation for the program counter to the resultant list:

C rea te lSV F s(SourceSC A ) = (  GetE(l I V (Source-S C A )> \
y CreateVF(pc,t, 0 ) J

10.1.5 State Transition Equations

State Transition equations in the abstract dSCA differ from those in an SCA by the 

need to wrap the functionality in a conditional operation. Consider the SCA State 

Transition equation:

Vi(t + 1, a,x) =  e 

when transformed for the Form 1 abstract dSCA it would become:

Vi(t +  1, a, x) = e i f  vpc(t, a,x) = 0

or if written with strict compliance to M a it would be written as:

Vi(t +  1, a, x ) =  cond{Vpc{t, a , x) — 0, e, null)

Note that the cond requires 3 arguments, and so the null value is placed into the 

definition for the case where Vpc(t, a, x) does not equal 0 - which will not be the case 

for an abstract dSCA where M a x ^  = 1 , as here.
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Informally, the process of transformation can be written as:

• For each SCA State Transition equation:

— Select VFCallTerm;

— Select VFOpTerm;

— create new VFOpTerm term cond(Vpc(t, a, x) = 0,rewire(VFOpTerm),null)  

using a version of VFOpTerm that has had its inputs rewired to take ac

count of the new wiring and delay functions; and

— create new State Transition equation.

• Add the following equation to reflect the program counter:

Vpc(t +  1, a, x) = mod(add(Vpc(t, a, x), 1), 1) if Vpc(t, a, x) = 0

When describing the abstract dSCA State Transition equations the cond operation 

is turned into the more readable form.

Formally, the C reateSTVF s  operation is introduced:

C reateSTVF s  : SCAAlgebra -> d SC A S T V E q L is t

with the intention that it takes an SCA specification and creates a list of Form 1 

abstract dSCA State Transition equations by extracting the SCA State Transition 

equations and supplying the new wiring and delay functions to the B S T s  operation.

It is given as:

(  G etE qIV (Source.SCA), \

C reateSTV  F s(SourceSC A ) = B S T s Createj3s (Get(30ps(Source.SCA) ) , 

Createds (G et^O ps(SourceSC A ) ) ,

 ̂ Createds (G et80ps(SourceSC A ) ) , y
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The operation B S T s :

B S T s  : S T V E q L is t  x d S C A ST V E qL is t  x PdSCAEqList  x 7 dSCAEqList x 

SdSC AEqList -► dSC A S T V  EqList

is defined recursively over the SCA State Transition equation list, in 2 cases; one 

case for when there are still equations to process, and the second for when there are 

no equations left to process. In the first case a recursive call is made to the B S T s  

operation with the tail of the equation list, and the newly created State Transition 

equation appended to the 2 nd argument:

/  eqs,
\

B S T s

(  (e,egs), ^

neqs, 

/7s,

7 5 ,

S s

= B S T s

\

/  ̂ e,

B S T
/7s,

7 5 ,

\  ̂ ds

/7s,

7  s,

d,S

\ \
neqs

/
The operation B S T :

B S T  : IVEquation  x {30pList x 7 OpList x SOpList —> IVEquation  

is subsequently defined as:

( RetTerm(e, 1),

(  (  m[ =  0 , \  \

^ RetTerm{e) 2), ^ 

n ew V F T erm , 

cond rewire {3s,
B ST

/7s, 

7 s ,
!

=  CreateVF

\

7®,
ds

y null
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where:

^ 1  VRetTerm{Ge.tEl('ys,i,0),2) (RctTcTTTl(GctEl(ds , 2, 0 , 0 ) , 2 ), <2, 3?)

^ R e t T e r m ( 'y o ( i ,0 ) = p c ,2 )  [RotT erm{biQQ [t, Cl, 3?) t 1, 2), fl, 3?)

=  V̂ c(£ -  1 , a, x) 

but in this example t = t +  1 thus:

To complete the definition of State Transition equation transformation a definition 

of the rewire operation is required. Whilst it is possible to provide a definition 

covering the general case of any number of arguments to an operation, in the example 

there will only ever be a maximum of 3 arguments (see definition of M a ) and so a 

specific implementation of rewire can be defined. It is given as:

rnl =  Vpc(t,a ,x)

and:

new V FTerm  =  GetIndex(RetTerm(e, 1))

rewire : Term  x N  x (30pList x 'yOpList x SOpList —> Term

and defined as:

i

rewire (3s, =  op

7 s,

\ 5s /

h

1 ,
(3s,

h
rewire (3 s, = op wire

7 s,
7 s,

\ S s  J j
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rewire

f  op (ti,t2), ^ 

h

IS,

6s

op

f tlf 1
( h  \

h h

1 , 2,
wire , wire

(3s, (3s,

7-5, 7 s ,

V \  58 \ 6 s  j

rewire

t  op(ti,t2,h ) ,  ^

h
(3s,

7 s,

Ss y

=  op

( h i ,  \ ( h  \ ( h  \ \

h h i ,

1 , 2, 3,wire , wire , wire
(3s, Ps, ps,

7  s, 7-5, i s ,

\ \ 6 s  ) V 68 Ss / /
where the wire operation is defined as: 

( t  \

wire

h 

3,
(3s, 

7 s,

V 8s j

Vnew-index(new-time, a, x) if wiring  =  M  

anew_iTldex(new-time) if wiring = S

and:

wiring =  RetTerm(GetEl(r)s,i,j,C ),2)

A true implementation would define newTndex  and new-time  to return the first 

part of the relevant elements, e.g. resulting in a State Transition equation

similar to:

Vi(t +  1 ,a ,x )  = op (VMiA)(Si^o(t +  1 ,a ,x ) ,a ,x ) )  

and then at a future point these would be simplified to the values, resulting in:

Vi(t +  1 , a, x) = op (Vk(t, a, x))
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Instead the issue is expediated and simplification is performed now, thus new-index 

and newJim e  are defined to return the 2 nd term of the respective wiring and delay 

functions:
/

new Andex = RetTerm GetEl h 

A

v °  /

,2

new-time =  RetTerm GetEl

5s, 

h 

h

\ °  /

\  \

,2

J

The second case definition for B S T s  simply takes the list of Form 1 abstract dSCA 

State Transition equations supplied as an argument and returns them, with the State 

Transition equation for the program counter appended. It is therefore defined as:

(

B S T s

\

neqs, 

Ps , 

7 s ,
5s

( neqs,

CreateVF

\
(  Vpc{t +  1, a ,x).

(
cond

Vpc(t,a ,x)  =  0, 

mod(add(Vpc(t, a, x), 1), 1), 

null

10.1.6 Transformation Process

Each of the operations above need to be coordinated together so that a SCA can be 

transformed into an abstract dSCA. The Create-adSCA  operation is provided to do 

this, it is given as:

T ra n s fo rm  : SCAAlgebra  —► adSC A Algebra

The operation takes the source SCA and the name of the abstract dSCA, along
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with the number of modules and number of inputs in the source SCA. It is defined:

( G etNam e(SC A src), \

S C  A Algebra ,

Trans fo rm (S C A src) = CreateadSCA

V F O p , 

7 o  :  T V 2  — > { M ,  S ,  £ / } ,  

/30 : N 2 N, 

SOp , 

C rea te ISV F s{SC A „ c), 

C reate5TT/F5(5CA sr.c), 

Create^ s(SC  A sr() , 

Create(5s{SCAsrc) , 

y CreateSs(SCAsrc)

where

VFOp =

SOp =

(  Vo : T x  M % x  Mj[+1 -» MA,

• J

U + i : r  x  M S x  M *+1 -  y 

f 5o,o,o :TxMJx Mj+1 —»
’J

V <5jj,0 : T x x Af*+1 -* T /
and

k = numjmod(SrcJSCA) 

j  = Get-MaxA(SrcJSCA)  

n = n u m J n p (S rc S C A )

The complete algebraic specification for the SCA to Form 1 abstract dSCA trans

formation is given in Appendix F.
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10.2 Correctness
T h e o rem  1 0 .2 .1 . The transformation of SCA to a Form 1 abstract dSCA preserves 
correctness.

The original SCA and transformed result, the Form 1 abstract dSCA, exist in a 

hierarchy and it is possible to show that the transformation is correct by considering 

Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded Systems.

Let N s c a  be > 0 module source SCA network with n SCA > 0 sources

processing data from a set M ^CA against a global clock T SCA

Let NdscA be N^sca >  ̂ module source SCA network with ndsCA > 0 sources 

processing data from a set M ^SCA against a global clock T dSCA as generated from 

N sca using the SCA to abstract dSCA transformation.

Poole, Holden and Tucker claim that if it is possible to generate appropriate 

mappings and show the following diagram commutes then the two spatially expanded 

systems under consideration were correct with respect to each other.

m c a  X [TdscA -  MAdSCAY x  M cAhJ scT  —

X <p

V,

<t>

StartA x [ T s c a  ^  M AscA}In^  x

Mappings are needed for four areas:

• spaces;

• clocks;

global states; and

input streams.
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The mappings are defined as follows:

Spaces. Spaces (modules) in the two networks do not differ for modules where 

i £ N%ca and i > 0. Thus it is appropriate to define the respacing operation 7r :

I  Nsca * ^NdScA as#
7r(i) = i fo r  1 < i < k

Clocks. There is no alteration in timing between the two networks, therefore the 

retiming between clocks T SCA and T dSCA is A : T SCA —► T dSCA, for t E T SCA and 

s E T dsCA can be appropriately defined as

A(£) =  s

Input Streams. There are no timing or data abstractions require for inputs since these 

are not altered by the transformation. Thus is it appropriate to define the input 

stream abstraction 6 : [T —► Ma]"5CA —► [T —> MA\ndSCA as the identity operation:

6(a)(t) = a ( \ ( t ) )

= a(s)

Global States. It is defined in the transformation that the carrier data set for source 

SCA and target abstract dSCA are the same, M^. Thus there is no data abstrac

tion required for consideration. We therefore consider the state abstraction map 

4> : M%hscA -» M%hdsCA for all states s € M%hscA to be defined as follows, for 

i e  N£CA:

4>(s)(i) = s(i)

Consider now any module mi in the SCA, it will have two equations in the SCA 

specification and two corresponding ones in the abstract dSCA specification.
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We now compare the two networks in the Initial State and the State Transition 

phases.

Initial State Phase Consider the output of the module at time t = 0 then

K w j4(A(°)> % ) >  =
=  X i

=  , a , x )

The transformation process for SCA to abstract dSCA creates the dSCA initial 

state equation by simply copying it from source SCA, thus the above is correct.

State Transition Phase Consider the output at time t = t + 1 then

+  !)> 0 (a )> <P(X)) =  M bu  • • ■, K( i ) )

For j  £ 1 ,.. .  ,n(z) then the input is either from another module in the network 

or is from an input, thus

K(g)(<W j(A(*),a,a;),a,a;) if /?OM , j)  = Q A 7 W 0 , j )  = M
<t>{aq{t)) if /?(?r(z), j)  = q A 7 ( tt( z ) ,  j )  =  S

or rewritten as

b _  f Vq{s,a,x) if P { iJ )  = A y ( iJ )  = M

3 1 flg(5)) if = A7(z, j) = 5
thus the mapping functions provide the same functionality as the process for 

rewiring in the transformation specification. Finally, the state transition equation 

in the dSCA is copied directly from the same numbered module and included in a 

conditional statement:

cond(Vpc(s, a, x) = 0, /*, null)
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The value of Vpc is always zero (consider the definition of the program counter 

values in a Form 1 abstract dSCA), therefore mi in the abstract dSCA always executes 

fi at all times t > 0 and it can therefore be written that:

10.3 Generalised Railroad Crossing Problem  SCA  
Transformed to an Abstract dSCA

This section contains a manual walk through of the transformation of the SCA so

lution to the GRCP using the specification provided in the previous chapter. The 

input to the process is the algebraic specification of the SCA, as shown in Annex B, 

and the first step is to confirm that it meets the prerequisites for transformation. 

The discussion following shows the transformation in process.

7 -W iring Equation Transformation

The 7 -wiring functions transform by way of the Createds operation that takes the 

SCA as an input. This is defined:

Kf( l),6»(a),0(a;)) =  V fSCA(s + l,a ,rr)

num.mod{source.SCA) , 

G etM axA (sourceSC A ), 

Get'yEqs(source_SCA),
Createds ^ source.SC A

/
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The call to GetyEqs  extracts the following details from the source SCA:

7(1,1) =  M, 7(7,1) =  M, 7(15,1) = s, 7(27,1 = M,
7(1,2) =  Af, 7(7,2 ) =  M, 7(15,2) =  M, 7(27,2 = M,
7(1,3) =  M, 7(10 ,1) =  M, 7(22,1) = M, 7(28,1 = M,
7(2,1) =  M, 7(10,2) =  M, 7(22,2) = M, 7(28,2 = M,
7(2,2 ) =  M, 7(11,1) =  5, 7(23,1) =  M, 7(29,1 = s,
7(4,1) =  M, 7(11,2) = M, 7(23,2) = M, 7(29,2 = s,
7(4,2) =  A/, 7(12,1) = Af, 7(24,1) = M, 7(31,1 = s,
7(4,3  ) =  Af, 7(12,2 ) = A4, 7(24,2) =  M, 7(31,2 = s,
7(5,1) =  M, 7(13,1) =  5, 7(25,1) =  M, 7(33,1 = s,
7(5,2 ) =  M, 7(13,2 ) =  M, 7(25,2) =  M, 7(33,2 = s,
7(6,1) =  M, 7(14,1) =  A/, 7(26,1) =  M, 7(35,1 = s,
7(6,2) =  A/, 7(14,2) =  M, 7(26,2) = M, 7(35,2 = 5,

and the numjmod  operation identifies that there are 36 modules in the source SCA, 

and that the largest number of inputs to any one module in the SCA is 3. It is 

therefore possible to rewrite the Createds call as:

(  36, \

Createds I source.SCA ) =  Byi
3,
G etqEqs(sourceSCA ) ,

V

Subsequently the call to Bqs  operation will result in the invocation of the first 

case (where the module number is greater than 1):

I  35, \

Bqs

( 36, ^ 35

3, eqs,

eqs,
=  Bqs

/
I 3' )

\  neqs, ) B y 36, , negs

egs, y /
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The call to B 7  expands as:

3, A
B'y 36,

\  eqs, J

Build') , B'yArgs

/  3, W

36, 

eqs,

\0 /

36,

0 ,

\ M /
Following the call to B'yArgs results in the following list:

7o(36, 1) =  U,

7o(36, 2) = U,

7o(36, 3) = U

since module 36 is not wired to anything in the source module. The return from B'y 

is the list:
7o(36,0) =  M,

7o(36, 1) =  U,

7o(36, 2) =  U,

7o(36,3 ) = U

The call to B'ys becomes:

B'ys

\( 35 ,

3 ,

eqs,

7o(36,0 ) =  M,

7o(36,1 ) = U,

7o(36, 2) =  U,

\  7o(36,3) = U, /  

which in turn would see another call to the B'y operation of:

.B7

(  3, ^
35, 

eqs, J

(

Build7

70) ^
35,

0 ,
\ M  J

, B'yArgs

3, N 

35, 

eqs, 

\ 0  /
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When considering the call to BdArgs  this time, the first result (for argument 

3) is still unwired, however the recursive call considers a situation where there are 

definitions in the original SCA. The result from BdArgs  this time will be the list:

-70(35,1) =  ?,

70(35,2) =  .?,

7o(35,3 ) = U

and subsequently the return from B'y will be the list:

7o(36,0) =  M,

7o(36, 1) =  S,

7o(36,2) =  ?,

7o (36,3) = U

The overall result of Createds is:

7o(l ,0)  == Af, 7 o ( l , 1) -= Af, 70(1,2) == Af, 70(1,3)
7o (2, 0) == Af, 7o(2,1) == Af, 7o(2 ,2) == Af, 7o(2, 3)
70(3,0) == Af, 7o(3,1) ==- u , 7o(3,2) == u , 70(3,3)
7o (4, 0) == Af, 7o (4,1) =--M, 70(4, 2) == Af, 7o(4, 3)
70(5,0) == Af, 7o(5,1) == Af, 7o(5,2) == Af, 7 o(5, 3)
7o(6,0) =z at, 7o(6,1) == Af, 7o(6,2) == Af, 7o(6, 3)
7o(7,0) == Af, 7o(7,1) == Af, 7o(7, 2) == Af, 7o(7, 3)
7o(8,0) == Af, 7o( 8 ,1) = 7o(8,2) == tf, 7o(8, 3)
7o(9, 0) == Af, 7o (9,1) = 7o(9,2) == tf, 7o(9, 3)
7o(10,0) =  Af, 7o(10,l) — Af, 70(10,2) =  Af, 7o(10,3
7o(H,0) = Af, 7 o ( H , l ) = 5, 70(11,2) =  Af, 7o(H,3
7o(12, 0) = Af, 70(12,1) = Af 70(12,2) =  Af, 70(12,3
7o(13, 0) — Af, 70(13,1) =  5, 70(13,2) =  Af, 70(13,3
7o(14, 0) =  Af, 70(14,1) =  Af, 70(14,2) =  Af, 70(14,3
7o(15,0) = Af, 70(15,1) =  5, 70(15,2) =  Af, 70(15,3
7o(16, 0) = Af, 70(16,1) =  tf, 70(16,2) = 17, 7o(16,3
7o(17,0) — Af, 70(17,1) 70(17,2) = 17, 70(17,3
7o(18,0) = Af, 70(18,1) =  tf, 70(18,2) = 17, 70(18,3
7o(19,0) — Af, 70(19,1) =  tf, 70(19,2) =  tf, 70(19,3

) =  Af, 
) =  U,
) = U>
) — M,  
) =  U,
) = U,
) =  U,
) = u ,
) =  U,
) = U, 
) =  U, 
) =  U, 
) =  U, 
) =  U, 
) =  U, 

= U, 
= U, 
= U, 
= U,
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7o(20, 0) =  M, 7o(20,1) =  C/, 7o(20,2) =  U, 7o(20, 3) =  !/,
7o(21,0 ) =  M, 7o(21, l)  =  t/, 70(21,2) =  t/, 7o(21,3 ) =  !/,
7o(22,0) =  M, 7o(22,1) =  M, 7o(22,2) =  M, 7o(22,3) =  !/,
7o(23,0) =  M, 7o(23,1) =  M, 7o(23,2) =  M, 70(23,3) =  !/,
7o(24, 0) =  M, 7o(24, 1) =  M, 7o(24,2) =  Af, 7o(24,3) =  (7,
7o(25,0) =  M, 7o(25,l) =  M, 7o(25,2 ) =  M, 70(25,3) =  !/,
7o(26,0) =  M, 7o(26, 1) =  M, 7o(26,2 ) =  M, 70(26,3) =  !/,
7o(27, 0) =  M, 7o(27,1) =  M, 7o(27,2) =  M, 7o(27,3) =  !/,
7o(28, 0) =  M, 7o(28,1) =  M, 7o(28,2) =  M, 7o(28,3) =  !/,
7o(29, 0) =  M, 7o(29, 1) =  S, 7o(29,2) =  5, 7o(29,3) =  I/.
7o(30, 0) =  M, 7o(30,1) =  U, 7o(30,2) =  U, 70(30,3) =  !/,
7o(31, 0) =  M, 7o(31, 1) =  5, 7o(31,2) =  5, 70(31,3) =  !/,
7o(32, 0) =  M, 7o(32,1) = U, 7o(32,2 ) =  !/, 70(32,3) =  !/,
7o(33,0) =  M, 70(33,1  ) = S, 7o(33,2) =  5, 7o(33,3) =  !/,
7o(34,0) =  M, 70(34, 1) = u, 7o(34,2) =  C/, 7o(34,3) =  !/,
7o(35,0) =  M, 70(35,1 ) =  S, 7o(35,2) =  S, 7o(35,3) =  I/,
7o(36, 0) =  M, 70 (36,1) =  U, 70(36,2) =  C, 70(36,3) =  !/,
7o(pc, 0) =  M

1 T ran sfo rm atio n

The /3-wiring functions from the SCA are transformed into the following

abstract dSCA /3-wiring functions:

/?o(l> 0) =  pe, /3o(l,l) =  2 , A ( l ,2 )  =  3, A>(1.3) = 4,
/3o(2,0) = pc, /3o(2,1) = 5, /3o(2,2) =  6, /3o(2,3) = w,
/30(3 ,0) = pc, /3o(3,l) =  w, /?o(3,2) = u, /3o(3,3) = u,
A>(4,0) = pc, A)(4,1) = 7, A>(4,2) = 8, /3o(4,3) = 9,
/30(5 ,0) = pc, /?o (5 ,1) = 10, /?o(5,2) = 11, /So (5,3) = w,
/So (6,0) = pc, /?o(6,l) = 12, /30(6,2) = 13, A  (6,3) = a/,
00 (7,0) = p c , /?o(7,l) = 14, /30(7 ,2) = 15, A (7 ,3 ) = u,
/30(8,0) = p c , /3o(8,l) = w, /3o(8,2) = ca, 0o(S,3) = u,
/30(9,0) = p c , 0o(9,1) = u>, /3o(9,2) = u>, 0o(9,3) = u>,
/30(10,0) = p c , /3o(10,1) = 22, /30(10,2) = 16, A>(10,3) = u ,
/30(11,0) = p c , A i( l l . l )  = 9, /30(11,2) =  17, A (H ,3 )  =  w,
/30(12,0) = p c , /30(12,1) =  22, /?0(12,2) =  18, A (12,3) = w ,
/?o(13,0) = p c , /3o(13,1) =  9, A)(13,2 ) =  19, A (1 3 ,3) =  u,
/30(14,0) = p c , /J0(14 ,l) =  22, A (14,2) =  20, A (14,3) =  oi,
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A)(15,0 ) = p c , A(15, =  9, A ( 15 ,2 — 21, A (1 5 ,3 —a;,
/?o(16,0) =  pc, A(16, = w, A(16 ,2 = w, A (1 6 ,3 = w,
A)(17,0 ) = p c , A(17, = w, A ( 1 7 , 2 = w, A (1 7 ,3 —w,
A ( 1 8 , 0) — pc, A(18 , = w, A (1 8 ,2 = w, A (18,3 = CJ,
/?0(19,0) =  pc, A(19, = w, A (19 ,2 = w, A (19,3 = £J,
A) (20,0) =  pc, A(20, = Cd, A  (20,2 =  w, A  (20,3 = £J,
/do (21,0) =  pc, A(21, =  w, A (21,2 =  w, A (21,3 = W,
/?o (22,0) — pc, A  (22, =  23, A (22,2 — 24, A (22,3 =
A  (23,0) — pc, A  (23, =  25, A (23,2 =  26, A (23,3 —W,
yd0(24,0) — pc, A  (24, — 27, A (24,2 =  28, A  (24,3 = CJ,
/d0(25,0) =  pc, A  (25, =  29, A (25,2 =  30, A (25,3 =
A  (26,0) =  pc, A  (26, — 31, A ( 2 6 , 2 =  32, A (26,3 = £J,
A ( 2 7 ,0  ) = p c , A  (27, = 33, A  (27,2 = 34, To 0

0 = W,
A  (28,0) =  pc, A  (28, = 35, A (28,2 =  36, A (28,3 = CJ,
A (29 ,0 )  = pc, A  (29, = 1, A (29,2 — 2, A  (29,3 - - CJ.
A) (30,0) = pc, A(30, = w, A (30,2 = A  (30,3 = £J,
A (31 ,0 )  — pc, A  (31, — 3, A ( 3 1 , 2 — 4, A (31,3 = a;,
A  (32,0) — pc, A  (32, = w, A (32,2 = w, A (32,3 = w,
A)(33,0) — pc, A  (33, — 5, A (33,2 — 6, A (33,3 = a;,
A  (34,0) = pc, A  (34, = w, A (34,2 = CJ, A (34,3 = w,
A  (35,0) = pc, A  (35, — 7, A (35,2 = 8, A (35,3 = CJ,
A  (36,0) = pc, 
A(pc, 1) — pc

A  (36, = w, A (36,2 = v, A (36,3 —

D elay Function Transformation (£ )

The delay functions are transformed such that for i = 1 , . . . ,  36 and j  =  0 , . . . ,  3:

î,j,o(̂ 3 5̂ *̂ )  ̂ 1

and the new delay function for the program counter modules is created as:

*̂ pC,0,o(̂ 5 *̂ )    ̂ f

Initial State Equation Transformation

The transformed Initial State equations for the Form 1 abstract dSCA are a copy of 

the SCA Initial State equations with the addition of an Initial State equations for the
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programme counter. The resultant Initial State equations are therefore given as:

l/2(0, a, x) = true 
V5 (0, a, x ) = true 
14(0, a, x) ■ down

l/3(0, a, x) = stay 
Vq( 0 , a, a?) = /a/se 
1/9(0, a, x) = up

Vi(0, a, a:) = stay 
E4(0, a, x) = up 
VV(0, a, x) = false 
Vio(0,a,x) 
Vi3(0,a,x 
Vi6(0,a,x 
I/i9(0 , a, x 
1/22(0, a, x 
1/25(0, a, x 
l/28(0,a,x 
1/31(0, a, x 
1/34(0, a, x
hjDc(0 , x

S ta te  T ran s itio n  E q u a tio n  T ran sfo rm atio n

Transforming the State Transition equations commences with a call to the CreateSTVFs  

operation:

) = true l/n(0 , a, x = true 1/12(0 , a, x = /a/se
) — false l/l4(0, fl,X - false l/i5(0 , a, x = true
) = false l/i7(0, a, x = 90 Vi8(0 ,a,x = true
) = o V2o(0, a, x = true l/2i(0, a, x = 0
) = false l/23(0,a,x = false 1/24(0 , a, x = false
) — false l/26(0,a,x — false 1/27(0, a, x = false
) = false V29(0, a, x = 0 E30(0, a, x = 0
) = 0 1/32(0, a, x = 0 1/33(0, a, x = 0

) = 0 V35(0, a, x = 0 l/36(0,a,x = 0

) = 0

/

CreateSTV Fs(Source.SC A) = B ST s

GetEqIV (Source.SC A ) , \

Createj3s (GetpOps(SourceJSCA) ) , 

Createds (Get'yOps(Source_SCA)) ,

 ̂ Createds (GetSOps(SourceSCA ) ) , y

where the last three arguments to the call to the B S T s  operations are the lists ob

tained above and the first argument is the list of State Transition Equations extracted 

from the SCA algebraic specification.

Consider the call to B S T 5 ,  this will initially result in a recursive call to itself as 

follows:
/  , X \  / eqs,

 ̂ (£ S T (e ,/3s ,7 s,£s), []),

B ST s 3s . =  B ST s ‘

^ (e,egs), ^

/?s,

7s,

(55

\

/?S,

7s,

<5s
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where e is the State Transition equation:

Vi(t +  1 , a, x) = c o n d u i t ,  a, x), V$(t, a, x), a, x))

The call to B S T  within this definition is as follows:

t  RetTerm (e,l) ,

(  (  m  1 =  0 ?
/ e  \

B S T 0s,
7 5 ,

I

=  CreateVF
cond

V

rewire

^ RetTerm(e, 2), ^ 

new V F T erm ,

0s, 

i s ,

\  null

which can be rewritten as:

B ST

' e ,
0 S ,

75,

/

=  CreateVF

(  Vi(* +  l ,a ,x) ,

^ (  Vpc{t, a, x) =  0 ,
(

cond 

1 ,
0s, 

7 5 ,

null

cond rewire

(  V2{t,a,x),  ̂

V3(t,a ,x),

\  V4(t,a ,x )  J
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the call to rewire is simplified as:

/  /  V2 \  \

rewire

cond

1 ,
/3s, 

7 s, 

5s

V3{t,a,x),  

\ V 4{t,a,x) j
=  cond

^ V2(t,a ,x), \  

V3(t,a ,x),  

\ v 4(t,a ,x )  j

/

and therefore the call to BST can be rewritten as:

/

/ e ,  \

B S T Ps,

7 s )

v 55 /

=  CreateVF

Vi(i + l,a,z), 
/  /

cond

Vpc(tj CL, 3?) — 0,

( V2(t,a ,x), ]  

cond V3(t,a ,x),

\  V4(t,a ,x)  j

null

finally resulting in:

/

Vi(t +  1, a, a;) =  cond

Vpc(t,a ,x) = 0,

cond

null

(  V ^ t .a .x ) ,  \  

V3(t,a ,x),

\  V4(t,a ,x) j

or written in a more natural form:

V\(t +  l ,a ,  x) = c<md(V2(t,a,x)> V3( t ,a,x),  V4(tya, x)) if Vpc(t, a,x) =  0

Finally, the recursive part of the B S T s  operation produces the State Transition 

equation for the program counter of (written in a more natural form):

Vi(t +  1, a, x) =  mod(add(Vpc(t , a, re), 1), 1) if Vpc(t, a, x) = 0
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The complete list of transformed, and simplified, State Transition equations are 

as follows:

V\(t +  1 , a, x ) =  cond(V2 (t, a, x), V3 (t, a, x), V^t, a, x)) if Vpc(t, a, x) =  0 ,
V2 (t +  1 , a , x )  = or(V5( t , a, x), V^t, a, x)) if Vpc(t, a, x) =  0,
V3(t +  1, a, x) =  start if Vpc(t, a, x) =  0,
V4 (t +  1, a, x) =  cond(Vj{k, a, #), Vs(t, a, x), Vg(t, a, x)) if Vpc(t, a, x) =  0 ,
V^(t +  1 , a, x) =  and(Vi0 (t, a, x), VTi(t, a, x)) if Vpc(t, a, x) =  0,
V^(t +  1 , a, x) =  and(Vi2 (t, a, x), V13(t, a, x)) if Vpc(t, a, x) =  0 ,
V^t +  1 , a, x) =  and(Vi4 (t, a, x), Vxs(t, a, x)) if Vpc(t, a, x) =  0,
V3(t +  1, a, x) =  down  if Vpc(t, a, x) =  0,
Vg(t +  1 , a, x) =  up if Vpc(t, a, x) =  0,
Vio(t +  1, a, x) =  eq(V2 2 (t, a ,x), Vi6 ( t ,a ,x ))  if Vpc(t,a ,x )  =  0,
Vii(t +  1 , a, x) =  eq(a9(t), Vi7 (t, a, x)) if Vpc(t, a, x) =  0,
Vi2(t +  1, a, x) =  eq(V2 2 {t, a, a:), Fi8 (t, a, a;)) if Vpc(t, a, x) =  0,
Vi3(t +  1, a, x) =  eg(a9 (t), Vi9 (t, a, x)) if Vpc(t, a, x) =  0,
Vi4(t +  1, a, ar) =  eq(V2 2 (t, a, x), V2o(t, ®)) if Vpc(t, a, x) =  0 ,
Vi5 (t +  1, a, x) =  0 i (a 9 (t), V2i(i, a, ar)) if Vpc(t, a, x) =  0,
Vi6 (t +  1, a, x) =  /a /s e  if Vpc(t, a, x) =  0,
VT7(t +  1, a, x) =  90 if Vpc(t, a,x) =  0 ,
Vis(t +  1, a, x) =  true  if Vpc(t, a, x) =  0,
Vi9(t +  l , a ,x )  =  0 if Vpc(t, a, x) =  0 ,
V2o(t +  1 , a, x) =  true  if Vpc(t, a, x) =  0 ,
V2i ( t +  l , a ,x )  =  0 if Vpc(t,a, x) =  0,
V2 2 (t +  1, a, x) =  or(Vr23 (t, a, x), F24(i, s ))  if Vpc(t, a, x) =  0 ,
V23(t +  1, a, x) =  or(Vr25(t, a, x), V ^ t ,  a, a:)) if Vpc(t, a, x) =  0,
V24(t +  1 , a, x) =  or(V27 (t, a, x), F28(t, a, x)) if Vpc(t,a ,x )  =  0,
V25(t +  1 , a, x) =  gt(V2g{t, a, x), V ^ t ,  a, x)) if Vpc(t, a, x) =  0 ,
V26(t +  1, a, x) =  pt(V3i(t, a ,x) ,  V32(t, a ,x))  if V pc(t, a,x) =  0,
F27(t +  1 , a, x) =  gt(V3 3 (t, a, x), V̂ 4 (t, a, a;)) if V pc(t, a, x) =  0 ,
F28(t +  1, a, x) =  gt(V33(t, a, x), V36 (t, a, x)) if Vpc(t, a, x) =  0,
F29(t +  1, a, x) =  sub(a i( t) , a2(t)) if Vpc(t, a, x) =  0 ,
V3o(t +  1, a, x) — 0 if Vpc(t, a,x) =  0,
V31 (t +  l , a ,x )  =  sub(a3(t), a4(t)) if Vpc(t, a,x) =  0,
V3 2 (t + l , a ,x )  =  0 if Vpc(t, a, x) =  0,
V 3 3 (t +  1, a, ar) =  sub(a5( t ) , a6(t)) if Vpc(t, a, x) =  0,
V34(t +  l , a , x )  =  0 if Vpc(t, a,x) — 0,
V35(t +  1, a, x) =  su&(a7(t) ,a8(t)) if Vpc(t,a ,x )  =  0,
V36(t + l , a ,x )  =  0 if Vpc(t, a, x) =  0,
Vpc(t +  1, a, x) =  mod(add(Vpc(t , a, x), 1), 1) if Vpc(t, a, x) =  0

The complete Form 1 abstract dSCA created from the transformation of the SCA  

at Appendix B is shown in Appendix C.
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10.4 Correctness of Example

The generated Form 1 abstract dSCA created from transforming the SCA can be 

seen to be the same as the Form 1 abstract dSCA given in Chapter 8.3 - the semantic 

proof of correctness given in that chapter shows that this abstract dSCA is a correct 

implementation of a solution to the GRCP.

The notion that the global behaviour of SCA abstracts that of the abstract form 

1 dSCA is now formalised. Let Varc and Vtgt be the global state functions determined 

from the channel state functions of these 2 SCAs.

C o n jec tu re  It is believed that the following diagram commutes:

Ttgt x [Ttgt -  A tgt\,n‘°' x A ?.?*
V,tg t  A C h t g t  

tg t

Startx x [Tsrc -► A src\Insrc x A C h g r c
STC

V sr c  * c hAL/uarc 
STC

We have seen from the definition of the correctness of transformation tha t this is 

true. Given the construction of appropriate mappings for:

• spaces;

• clocks;

• global states; and

• input streams.

We rely on Theorem 10.2.1 for proof of correctness. A quick examination of the 

specifications for the SCA and Form 1 abstract dSCA in the appendices demonstrates 

the theorem holds.
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10.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping a SCA to an 

abstract dSCA with a defining shape that represents the SCA. Using the SCA solution 

to the GRC Problem, the transformation has been demonstrated by producing an 

abstract dSCA representation of the GRC Problem.

10.6 Sources

The definition of the transformation and the walk through of the example is all my 

own work.



Chapter 11 

A bstract dSCA to abstract dSCA

Purpose of Transformation

To transform  an abstract dSCA with a defining shape 

o f  V =  (ni, mi) to an abstract dSCA with defining  

shape V =  (n2, m 2) using a mapping function  H 

which shows how operations at program counter value m \ 

on module n\ in Network Ni are transposed to 

execute at program counter value m 2 on module n2 

in Network N 2.

11.1 Process

This chapter highlights the key points in the process of transforming an abstract 

dSCA with defining shape V =  to an abstract dSCA with an defining shape

of V =  {n2 ,m 2). Full details of this transformation can be found in G.

Transformations are required for the following equation lists within a supplied 

abstract SCA algebraic specification are covered:

1. Wiring Functions;

213
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2. Delay Functions;

3. Initial State Equations; and

4. State Transition Equations.

After discussing the necessary transformations they are used to transform the 

abstract dSCA produced in the last chapter to an abstract dSCA with defining shape 

of V =  (1, k). Subsequently the correctness of the transformed Form 2 abstract dSCA 

is discussed.

11.1.1 Prerequisites

• The source network, Ni has hi > 1 modules and M a xni > 0 component speci

fications in its modules definitions;

• The object network, N 2 has k2 > 1 modules and M a xn2 > 0 component speci

fications in its modules definitions;

• The defining size of N 2 must be equal to or greater than the defining size of ATl5 

i.e. A ( N 2) >  A(l);

• There exists the total mapping, E given as:

a  . x Npci ► N&2 ^ ^pc2

that maps modules and execution orders of Ni to modules and execution orders 

of A2; and

• There exists the inverse mapping H-1, given as:

E" 1 : N*2 x NpC2 Nkl x Npci

(Note that this mapping may not be total, since some functional components of 

N 2 may be the undefined operation used to ensure synchronicity of the network).
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11.1.2 M apping Function

The provision of a mapping function is a fundamental prerequisite before this trans

formation can occur. Its purpose is to provide a total mapping between when a 

particular function executed on a particular module in the source network and what 

module and when it will execute on the target network. It is a simple list of equations 

containing two pairs:

(iu pcjuali) = (i2,pcjual2)

and must be defined for all values R € N-k\ of the A>module source abstract dSCA 

and pcjuali € {0, . . . ,  M axni — 1}. The mapping is denoted as E, and has the (partial) 

inverse S -1 . There is no need to map the program counter module.

11.1.3 W iring Functions

Unlike the previous transformation, wiring functions will alter values radically to 

provide the dynamic retiming and structure necessary to support a re-shaped abstract 

dSCA. The process of generating the wiring functions is quite simplistic and so this 

thesis will restrict itself to an informal demonstration (a more formal description is 

given in G).

7 -w iring Operations

Consider the source abstract dSCA 7 -wiring function:

'Jpcjuali  ( A  5 j l )

the corresponding target abstract dSCA 7 -wiring function will be:

'ypcjuafo (^2) J2) =  %2 

where j i  = j 2l and E (ii,pcjvali) = (z2 ,pc_uaZ2)
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The informal process of generating target abstract dSCA 7 -wiring functions is to 

walk the structure of the target architecture creating wiring functions for all modules 

at all values of the program counter for the number of inputs to each module.

•  For each module mi where i € Nk2 and i > 0:

— For each pc.val where pc.val € {0, . . . ,  M arr^  — 1}:

* For the oth argument of each module create:

7pc-«ai(*.°) =  M
* For each argument where j  E {1, . . . ,  n 2(i)} create a new 7 -wiring 

function

, J Value fro m  source if j )  J,
^ fpv .va l  ( b  J  J |  7- r  1 •[ U otherwise

with the intended meaning that the undefined connection is given if 

the inverse mapping is not defined, otherwise the appropriate value 

from the source network is used.

• For module 0 create M a x ^2 7 -wiring functions wiring ra0 back to itself. 

/5-wiring Operations

Consider the source abstract dSCA /3-wiring function:

P p c -v a l i  ( ^ 1  j j l )  —

the corresponding target abstract dSCA /3-wiring function will be:

P p c .v a l2 ( 2̂? J 2) ^2

where j i  = j’2 and E (ii,pc.vali) = (i2 ,pc-val2 ) The informal process of generating 

target abstract dSCA /3-wiring functions is to walk the structure of the target archi

tecture creating wiring functions for all modules at all values of the program counter 

for the number of inputs to each module:
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• For each module rrii where i £ N/-2:

— For each pc.val £ {0 , . . . ,  M a x ^ 2 — 1}:

* For the oth argument of each module create:

P'pc-va i M )  = M

* For each argument where j  £ {1, . . .  , n 2 (z)} create a new (3-wiring 

function

, J Value fro m  source i fH_1( i , j ) j
fipv-vaiyi'1) J )  S .

[ uj otherwise

with the intended meaning that the undefined index is given if the 

inverse mapping is not defined, otherwise the appropriate value from 

the source network is used.

• For module 0 create Max^j (3-wiring functions to wire mo back to itself.

11.1.4 Delay Functions

The delay functions for the source and target abstract dSCA are of the same format, 

however the derivation of the delay is more complicated than the simple generation of 

the wiring functions, and thus a more detailed explanation of the derivation is given.

In both networks, it is the intention of the delay function to indicate the time 

delay between now and the time the result was calculated. In the source abstract 

dSCA this is given by the defined delay function. For the object abstract dSCA this 

value needs to be derived from the data available.

Informally, target abstract dSCA functions are produced as follows:

• For each module m* where i £ N^2:

— For each pc.val £ {0 , . . . ,  Maxjy2 — 1}:
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* We define, for the 0th argument, the unit delay:

* For each argument where j  E  {1, . . .  , 712(2)} create a new 5-wiring 

function

t — newjvalue if 
( S  1(i,pcjval)) } A

8 p c .v a l  ( A  J  ) (A p c jv a l  (  A  J  )  i W )

otherwise

• For module 0 create M a x ^  delay operations of unit length delay to represent 

the wiring of ttiq back to itself.

The usual recursive functions are defined to walk the structure of the new abstract 

dSCA, but of particular interest is how the creation of a new delta function for 

particular values of pcjual, i and j .  The B6  operation, which is responsible for 

creating the new delay function for the argjvalth (j th) argument of module mod.val 

at program counter pcjual, is called and it is given as:

B8 : N 3 x SdSCAEqList x 7 dSCAEqList x /3dSCAEqListx  

N 2 x M apEqList2 —► 5dSCAEquation

To provide a definition of B6 the new value of the delay needs to be generated from 

the existing knowledge of the two abstract dSCAs. To understand what the delay 

should be, an understanding of what the module links to is required. If the wiring is 

to a source, or is unconnected, then the unit delay is generated. This case is identified 

by considering the target abstract dSCA /3-wiring functions, thus the first definition
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is given as:

B5

where:

(  modjval, ^ 

argjual, 

pc.val, 

oldSs 

old'ys, 

new(3s, 

M a x ^ 0, 

Max*#,
C -l

1 5

(

= BuildS

(  modjval,  ̂

argjval, 

pc.val, 

i - i  /

i f  condi

condi = RetT  erm

\

GetEl

V

t  old'ys, N

pc.val, 

modjval,

^ arg.val J

In the situation where this condition is not true, i.e. the wiring under consideration 

is to another module, then the value of the new delay function needs to be calculated. 

To calculate the new value, the following process is followed:

1 . Find the module and program counter value in the source abstract dSCA that 

relates to the current module and program counter value in the target abstract 

dSCA, using the inverse mapping function;

2. Identify the module in the source abstract dSCA that produces the value we 

are interested in from the /5-wiring function;

3. Identify the program counter value in the source abstract dSCA that the value 

we are interested in is calculated from the delay functions;
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4. Find the module and program counter in the target dSCA that produces the 

value we are interested in, using the mapping function; and

5. Calculate the delay between the current value of the program counter and the 

program counter value from (4).

The module and program counter in the source abstract dSCA is given directly 

by the inverse mapping function:

S _1(mod_ua/2 ,pc_ua/2) =  (modjualiypcjvali)

The position of arguments in the functional specification cannot change in the trans

formation. Thus if arg.val is the argument number under consideration in the target 

abstract dSCA, then it will also be in the source abstract dSCA. This fact and the 

/^-wiring function in the source abstract dSCA are used to determine the module that 

produces the value for that argument, in the source SCA:

modjual[es — ^  ^ (m o d -v a l i ,  arg.val)

Using the delay function from the source dSCA, the value of the program counter 

that the result was calculated at can be determined. It will be the current source 

program counter value minus the delay value for this argument modulus the value of 

Maxjsr in the source abstract dSCA:

p c . v a l =  (pc.vak -  (t -  mod M a x Nl

It is now possible to determine the value of the program counter in the target abstract 

dSCA by applying the mapping function to the values pcjualles just determined, and 

modjval^ 8, and taking the second element of the returned tuple:

pc-.valr2 S = snd(E(mod-val[es ,pcjval[es))
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The value of the delay can be worked out from the difference between the program 

counter in the target abstract dSCA now, and the value of pc.valr2es\

(pc.val — p c .v a l^ )  mod M ax2N

BS  is defined for this case as:

(  mod.val, \  

arg.val, 

pc.val, 

oldSs 

old^ys, 

old/3s,

Max*Jc,

M ax4/ ,

B8

■=■-1

= BuildS

(  mod.val, ^

arg.val, 

pc.val,

 ̂ t — ((pc.val — pc.vaTtgl) mod M a x ^ )  j

/
and:

pc.valrtgl =  snd

{ (
R etT  erm

/s.
Get£Z mod.valTi ,

with:

mod.valTSrSc = f s t R e tT  erm GetEl

p c .v a lrsersc J / /

old(3s , \ \ \
pC.Val sr c) 2m o d .v a lsrc5 j z

a rg .v a l J J
and:

pc.valrSjSc = pc.val src — t — GetEl

(  oldSs, ^ ^

mod.val src, 

arg.val,

^ pC.ValSrc J  J

mod M a xStfC
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where mod.valsrc and pc.valsrc are:

/
pc.valsrc = snd R e tT  erm

( \

mod.valsrc = f s t

(
R etT  erm

V

GetEl

/

\
mod.val, ,2

^ pc.val y j  J

( s-1. \ \ \
GetEl

\
mod.val, ,2

 ̂ pc.val J j /

11.1.5 Initial State Equations

Consider the target abstract dSCA module m*, its Initial State equations, will be of 

the form:
Vi(0,a,x) =  xifi 

Vi(0,a,x) = x iti

x) ^i,MaxN2— 1

where each value Xî pc_vai, where pc.val =  0 , 1 , ,  M a x ^ 2 — 1 , will either be the 

undefined element, or will come from some particular module and value of the source 

abstract dSCA program counter. Values of the source program counter and module 

are given directly from the mapping function, S.

Informally, the set of Initial State equations is created as follows:

• For each module mi where i £ N^2 and i > 0:

— For each pc.val £ {0, . . . ,  M a x ^ 2 — 1 } create a new Initial State equation:

new.value if H- 1(i,pc)) j
Vi(pc_val, a, x) =

u otherwise

For ra0, the program counter:
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— For each pcjual € {0 , . . . ,  M a x ^ 2 — 1} create a new Initial State equation: 

Vo(pcjual,a,x) = (pc.val +  1) mod M a x ^2

The usual set of operations to perform a recursive walk of the new structure are 

given, resulting in a call to the B IV pc  operation, where the key work is done in this 

transformation component. It is defined by two cases, the first representing the case 

where the program counter is greater than zero and the second case is where the 

program counter is zero.

The first case is defined for two situations, where the inverse mapping is defined 

(in which case a new equation is created from values in the source abstract dSCA) 

and where it is not (in which case an equation is created that returns the undefined 

value u in the appropriate parts of the initial state vector):

 ̂ pc — 1

h

\

B IV pc newjval

h
B IV p c  oeqs, =  <

neqs,

 ̂ pc — 1 \

E" ' 7 B IV pc  B u ild IV  pc, ,

\ u J
y neqs /

V /

where:

newjval = B u ild IV

RetTerm  (GetEl (oeqs, RetTerm(GetEl(E  1,i,pc), 2 ) ) , 2 ) y
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The second case of B IV p c , where the program counter is zero is the simple case 

of creating the equation for that value of the program counter and appending it to 

the list of already generated Initial State equations:

1 0 , N

h
B IV pc oeqs, 

neqs,

\  H_1

f

B uild IV

(

RetT  erm
[ GetEl(oeqs,E  1(z, 0)),

V
/

y neqs

11.1.6 State Transition Equations

Consider the target abstract dSCA module ra*, its State Transition equations, will be 

of the form:

f /*,<)(■••) if pc =  0

Vi(t + l,a,x) = < ...
[ f i , M a x N ~ i ( -  • ■) i f  P C  =  M a x N  -  1 

where each functional specification component } i , p c _ va h  f°r values of pc.val =  

0 , 1 , . . . ,  MaxN — 1 , will either be the undefined element, or will be the component 

specification extracted from some particular module and value of the source abstract 

dSCA program counter in the source abstract dSCA. In a similar manner to creating 

the Initial State equations, values of the program counter and module number in the 

source abstract dSCA for values in the target abstract dSCA are provided by the 

inverse mapping function, H-1.

Informally, the set of State Transition equations is created as follows:

• For each module where i E N^2 and i > 0:

— For each pc.val E {0, . . . ,  M a x ^ 2 — 1} in abstract dSCA extract and rewire 

the relevant functional specifications from the source abstract dSCA, if one 

exists, otherwise use the undefined constant u.
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— Create a new State Transition equation from the previous result.

• For mo, the program counter:

— Create the program counter State Transition equation:

Imod(add(Vpc(t, a, x ), 1), Maxat) if Vpc(t — 1, a, x) =  0 

:

mod(add(Vpc(t, a, x), 1), M a x ^)  :

The pattern for transformation is a familiar one of recursion over the structure 

of the target abstract dSCA. There are a couple of key functions that need to be 

explained in some more detail.

Consider that the VFOPDef term  of a Value Function equation for an abstract 

dSCA is of the form:

Ao(. • •) if PC = 0fi(pc , . . . ) = {  .k
if pc = 1

fi,MaxN—1 (■ • •) ^  PC CLXfy 1

It has already been noted that this is a convenient syntactic way of writing the 

conditional. If written according to the machine algebra, M^, it would appear as:

(  pc — 0 , \

/t,o(- • •)>
\

fi(jpc, . . . )  =  cond

cond

'  pc = 1 ,

A i  (••■)> 
/

V
cond

\

( pc = M a x x  — 1 , \  

1 (> • •)

null J  J / J
It is this second form that is used to select the component specification based on a 

particular value of the program counter. To do so, the operation GetFn  is introduced:

GetFn  : V F O p D efT erm  x N  —> Term



A B ST R A C T  DSCA TO A B ST R A C T  DSCA 226

and is defined recursively over the structure of the VFOpDef term definition:

To generate a target abstract dSCA State Transition equation for a module a list 

of the appropriate VFOpDef Terms, selected from the source abstract dSCA by means 

of the inverse mapping function S “ , the GetEl operation for STEqList specifications 

and the GetFn  operation defined above are used. Consider module mi in the target 

abstract dSCA, at program counter value pc.val it is defined to be executing either 

the:

1. VFOpDef term in module fst(fErl (i, pc.val)) at the source program counter 

value sndi^E-1^ ,  pc.val)) in the source abstract dSCA, if the mapping is defined; 

or

2 . the output u, if the mapping is undefined.

The N S T  operation is introduced to determine which case is under consideration, 

and it is given as:

and recurses over the program counter values to produce a list of VFOpDef terms that

GetFn(cond(a,b:c):0) = b 

GetFn(cond(a,b,c),pcreq) = GetFn(c,pcreq — 1)

N S T  : N 2 x d S C A S T V  EqList2 x M apEqList -► V F O p D ef L ist

are used for the definition of the State Transition equation for a particular module. 

It is defined:

N S T

t pc.val — 1 , 

mod.val,

/  /  oeqs,

= N S T  neqs, Extract mod.val arc,

oeqs, 
■=■-1

\  \  pC.Valsrc J J
oeqs,

/
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where:

mod.valsrc = f s t RetT  erm

(

GetEl

and:

pcjvalsrc = snd

( (

Re tT  erm

\

GetEl

\

/  = - i' 5
mod.val, 

y pc.val

(

\ \

,2

I )  

\  \ \

mod.val,

\  pc.val I

The Extract  function used in the above definition is given as:

,2

Extract  : dSC A S T V E q L is t  x N 2 -> V F O pD efT erm  

and is defined as:

/  oeas. \  ,
I GetEl(oeqs, mod.val),

{ pc.val

oeqs, 1 

Extract mod.val, = GetFn  

^ pc.val

The second case of the N S T  operation is defined as returning the list of VFOpDef 

terms constructed by appending the value for the program counter at 0  to those 

VFOpDef terms already obtained.

To complete the generation of a State Transition equation for module m mo(i_vai 

in the target dSCA the list of rewired VFOpDef terms must be turned into the 

component specification. This is done using the N ew S T  operation, given as:

New S T  : V F O pD ef List  x N  —> V F O p D ef

which takes the list of VFOpDef terms (which has the VFOpDef term corresponding 

to pc =  Maxjv — 1 at the head and the VFOpDef term corresponding to pc = 0 at 

the end) and recurses down the list producing the appropriate target dSCA VFOpDef 

term. For the recursive case it is defined as:

 ̂ (e,es), \  (  es, ^

N e w S T  pc.val, = N ew S T  pc.val — I,

y neqs y y cond(Vpc(t,a ,x )  = pc.val, e, neqs) J
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and the base case is defined:

N ew S T
t e ,  ^

pc.val, 

y neqs J

= cond(Vpc(t, a, x) =  pc.val, e, neqs)

11.1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new abstract 

dSCA can be created by transforming the source abstract dSCA. The Create.adSCA  

operation is provided to do this, it is given as:

T ra n s fo rm  : adSCAAlgebra x N 2 x M apEqList2 —► adSCAAlgebra

The operation takes the source abstract dSCA and the defining shape of the 

target abstract dSCA together with the mapping and inverse mapping functions. It 

is defined for

VFOp =

SOp =

(  V0 : T  x M A x M \  —> M A, \

* 5

\ V k - . T x M l x M kA ^ M A )  

(  do,0,0 : T  x M a x M \  —»T, ^

• 5

^ Si j f i  : T  x M \ x  M \ ^ T  y

and:
j  = G et.M axA(Src.SCA)  

n = num .inp(Src.SC  A)
as:
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/  G etN am e{SC A src) 
adSCAAlgebra,

VFOp,
7 0  : N 2 —> {M, 5, U }: 
I30 : N 2 ^  N,
SOp,

(  S C A src, \  
k.

T ra n s fo rm

(  S C A src, 
k,
M ax ]\[,

\ H- - I

=  CreateadSC A

Create'js

Createps

CreateSs

M ax n  ,
—-l
S C A btc, \S C A src 
k,
Max^i
E_1 .  SC A src, \
k,
Max Mi

\ r x /

C rea te lV s

CreateSTs

S C A ,rc, \  
k,
MaxM,

S C A 3rc, \  
k,
MaxM, 
■=■-1

V / J
It is not intended to bring together all the operations defined in this chapter into 

a written down specification in this thesis for reasons of brevity. If this was to be 

performed, then it would appear similar to the algebraic specification provided for 

the SCA to abstract dSCA transformation in Appendix F.

11.2 Correctness
T h e o rem  1 1 .2 .1 . The transformation of a Form 1 abstract dSCA to a Form 2 ab
stract dSCA preserves correctness.

The Form 1 abstract dSCA and transformed result, the Form 2 abstract dSCA,
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exist in a hierarchy and it is possible to show that the transformation is correct by 

considering Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded 

Systems.

Let NdscAi be a Nj£SCA1 > 1 module source Forml abstract dSCA network with 

ndscAi ^  q sources processing data from a set M ^ CA1 against a global clock T dSCA1

Let NdscA2 be a NdSCA2 > 1 module Form 2 abstract dSCA network with ndSCA2 > 

0 sources processing data from a set M ^SCA2 against a global clock T dSCA2 as gener

ated from NdscAi nsing the abstract dSCA to abstract dSCA transformation.

Poole, Holden and Tucker claimed that if it was possible to generate appropriate 

mappings and show the following diagram commutes then the two spatially expanded 

systems under consideration were correct with respect to each other.

T dsCAi X [Tds c A i  -  M AdSCJ ™ ° “  x

4>

 ̂ iSCAl 
1 AdSCAl

<t>

Start* x [TdsCA2 M AdSC J ' " —  x m £ * -c

Mappings are needed for four areas:

A2 
A-d,SCA2

spaces;

• clocks;

global states; and

input streams.

The mappings are defined as follows:

Spaces. Spaces (modules) in the two networks differ, this is the point of the trans

formation, however, for modules m* where i e  NjfSCA2 the inverse mapping function
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provides the necessary details. Thus it is appropriate to define the respacing operation

^  ^NdSCA2 * ^ MaXNdSCA2 * ^NdSCAl * ^ MaxNdSCA1 aS-

7r(i,pc) = S_1(z,pc)
Clocks. There exists a timing abstraction between the networks which is clearly given 

by the relationship between the values M a x ^ dSCA2 and M a x ^ dSCA1. The retiming 

between clocks T dSCA2 and T dSCAl is the retiming A : T SCA —> T dSCA, where for 

t € T dSCA2 it can be appropriately defined as:

V ' ( MaxNdsnAA
- \  MaXNdSCAl J -

Input Streams. There are no data abstractions required for inputs since these are 

not altered by the transformation. However there is a temporal abstraction, which 

matches the above retiming. Thus is it appropriate to define the input stream ab- 

straction 9 : [TdsCM -  M AdscJ nSCA2 -  [TdsCA i _  M AdsCA1f SCM as the operation:

9 { a ) ( t )  =a(A(t))

=  a(s)

Global States. It is defined in the transformation that the carrier data set for source 

abstract dSCA and target abstract dSCA are the same, M^. Thus there is no data 

abstraction required for consideration.

There is though an alterations of channels between the two modules based on the 

inverse mapping function identified. We therefore consider the state abstraction map 

(f) : M 2 ~ * ^ a ^ c a i 1 ôr st at es s £ MAdscA2 2 defined as follows, for

i E NdkSCA2:

= s(i)

C o n jec tu re  Given this set of mappings it is believed that the diagram above 

commutes, and proof of such is done in a similar manner as for Theorem 10.2.1.
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11.3 Generalised Railroad Crossing Problem  as a 
single processor Abstract dSCA

Now this thesis will consider the transformation of the (source) Form 1 abstract dSCA 

from the previous chapter, which has a defining shape of V =  (k, 1), to the (target) 

Form 2 abstract dSCA with a defining shape of V =  (1, k). The following example is 

based on the full definition of transformation given in Appendix G, as highlighted in 

the previous section.

Before walking through the processes of transformation, the prerequisites are re

viewed:

• the source abstract dSCA has 36 +  1 modules;

• each module in the source abstract dSCA has M a x ŝ ° = 1 component specifi

cations;

• the target abstract dSCA has 1 +  1 modules;

• each module in the target abstract dSCA has M a x^  =  36 component specifi

cations;

• the defining size of the source abstract dSCA is A src =  36; and

• the defining size of the target abstract dSCA is A src  = 36, thus A tg t  > A s r c .

Thus, with the exception of a mapping between the source and target abstract 

dSCAs, the prerequisites are met. There are many possibilities for producing a map

ping function, and of interest is the development of an automatic method for produc

ing a mapping which results in a cyclic consistent abstract dSCA.

11.3.1 A utom ating the Generation of the M apping Function

Recall the definition of a cycle consistent abstract dSCA:
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“If for all values of the program counter it can be shown that functions 

that calculate inputs to other modules execute at program counter values 

greater than the value of the program counter when the module that uses 

those input values executes, then the abstract dSCA is said to be cycle 

consistent”

The generation of a mapping between a source abstract dSCA with a defining 

shape of V =  (fc, 1) to a target abstract dSCA with a defining shape of V =  (1 ,k) 

can be automated, if the following conditions are true:

• Vout contains only one module;

• M a x ŝ °  =  1;

• There are no loops in the network; and

• The modules are (re-)numbered in a breadth first manner from Vout.

Figure 11.1 shows an abstract dSCA network that meets such conditions.

Figure 11.1: Numbered abstract dSCA network

The generation of the mapping for such a network is the simple process of walking 

the network in a breadth first manner. It can be seen by inspecting Figure 11.1  that an
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algorithm of this type ensures that no module executes after the modules generating 

its inputs have executed - thus the resultant abstract dSCA is cycle consistent.

Using such an algorithm on the source abstract dSCA implementation of the 

GRCP, generates the following mapping function definition:

E(1,0) = 1,0) 3(10,0) = 1,9) 3(19,0) = 1,18) 5(28,0) = 1,27)
3(2,0) = 1,1) 3(11,0) = 1, 10) 3(20,0) = 1,19) 3(29,0) = 1,28)
3(3 ,0) = 1,2) 3(12,0) = 1,11) 3(21,0) = 1,20) 3(30,0) = 1,29)
3(4 ,0) = 1,3) 3(13,0) = 1,12) 3(22,0) = 1,21) 3(31,0) = 1,30)
3(5 ,0) = 1,4) 3(14,0) = 1,13) 3(23,0) = 1,22) 3(32,0) = 1,31)
3(6 ,0) = 1,5) 3(15,0) = 1,14) 3(24,0) = 1,23) 3(33,0) = 1,32)
3(7 ,0) = 1,6) 3(16,0) = 1,15) 3(25,0) = 1,24) 3(34,0) = 1,33)
3(8,0) = 1,7) 3(17,0) = 1,16) 3(26,0) = 1,25) 5(35,0) = 1,34)
5(9,0) = 1,8) 3(18,0) = 1,17) 5(27, 0) = 1,26) 3(36,0) = 1,35)

The corresponding inverse mapping function, S is subsequently defined as:

3 -1 (l,0) =  (1,0) S - 1(l,9) == (10,0) S - ^ U S )  = (19,0) 3 —1 (1,27) =  (28,0)
3 —1 (1,1) = (2,0) s - H u o ) = (11,0) S -^ l .W ) = (20,0) S - H l ^ )  = (29,0)
5 —1 (1,2) = (3,0) 3 _1(1,11) =  (12,0) 3 -1 (l,20) =  (21,0) 3 -1 (l,29) = (30,0)

[I] 1 h“* h—1 to II 0 S-H l.12) = (13,0) 3 -1 (l, 21) =  (22,0) 3 -1 (l, 30) = (31,0)
5 _1(1,4) = (5,0) s - ^ i . w ) = (14,0) 3 -1 (l, 22) =  (23,0) S -H i.S l)  = (32,0)
5 -1 (l, 5) = (6,0) s - ^ i . u ) = (15,0) 3 -1 (l, 23) =  (24,0) 3 -1 (l, 32) =  (33,0)
3 -1 (l,6) = (7,0) s - 'U .u i ) = (16,0) 3 _1(1,24) =  (25,0) S ^ l ^ )  =  (34,0)
5 —1 (1,7) = (8,0) s - ^ u e ) = (17,0) 3 _1(1,25) =  (26,0) 3 - 1(l,34) =  (35,0)
3 —1 (1,8) = (9,0) s - ^ i , ^ ) = (18,0) s - ^ M e )  =  (27,0) S - H l ^ )  =  (36,0)

It is possible that there are other methods for producing cycle consistent dSCAs, 

this is the only one that we have considered.

7 -wiring function

The target network has 1 +  1 modules and 36 component specifications for each 

module. Each module except the program counter will have a maximum of 3 +  1 

arguments. The Create^s operation will therefore be called as follows:

^ Source.SCA, ^

Create'ys
1 ,
36,

4,

\  “
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which would expand, according to its definition, to the call to B y s  of:

i, N

Createys

^ Source.SC A , ^ 

1 ,
36,

4,

V s " 1

=  B ys

G etys(SourceSCA)  ,

D .
36,

4,
C-l

/

The right hand side of this definition will result in a recursive call to B y s  as well as 

a call to the Bypc  operation. Considering the call to Bypc  first, it can be seen below 

that the value of M a xn  is decremented by one in preparation for the recursive nature 

of B^pc  and are supplying the empty list for the new values of 7 -wiring functions to 

be added to:

/  0 , \
oldys,

1 3 5 , \  \

oldys,
oldys,

B ys
36,

4,

=  B ys
Bypc

\  
36,

4 ,

1 ,

4,
■3-1
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The B'ypc call expands as:

B jp c

(  35, ^
old'ys,

0 , 
i,

4,
■=■-1

=  B'ypc

(  34,
old'ys,

< ( 3 ,

B'yarg

old'ys,

a ,
i,
35,

1 ,

4,
V E - 1 /

Taking a look at the call to the B'yarg operation, it can be seen to recurse over 

all the arguments, argjval 6  {0,1, 2,3}, and it can be ascertained that:

7 w (e-H i,35) )( /sf(“  H i. 35)), argjval) f 

or written to remove the inverse mapping function:

7orc(36, argjval) T

these values are to be expected, since module 36 in the source abstract dSCA simply 

provides a constant and has no inputs. The list of 7 -wiring functions returned for the 

4 arguments of module 1 at pcjval = 35 are:

735(1) 3) =  U,

735(1,2) =  (7,

735(151) — U,
735(1 , 0 ) = M
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The recursive call to Build'ypc will expand to:

I  33,

old'ys,

B'ypc

( 34,

old'ys,

f 735(1,3) = U, \ 
735(1,2) = U,

735(1 , 1) =  u ,

^  7 3 5 ( 1 , 0 )  =  M  )  

1 ,
4,
3 - 1

\

=  B'ypc

\

( \  \
old'ys,

B'yarg
1 ,
34,

V s - 1 /  

735 ( 1 , 3 ) =  ! / ,  ^  

735 ( 1 , 2 ) =  Cl, 

735 ( 1 , 1 ) =  £/,

735(1,0) =  M  )

1 ,
4,

V S - 1 J

The call to B'yarg in this case is more productive since S 1(l,34) =  (35,0), and 

module 35 in the source abstract dSCA is wired to two inputs. The expansion of the 

B'yarg call is:

1  2 ,

B'yarg

(Z, \
old'ys, 

new'ys,

1 ,
34,

V

= B'yarg

\
old'ys,

/  /

B'y

\
1 ,
3 4 ,

y s - 1

1 , N
3 ,

3 4 ,

old'ys, 

2 - 1  /

\

neqs
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The first call to B'y will instigate the case where there is no corresponding 7 -wiring 

function in the source abstract dSCA and so will produce a wiring to the undefined 

module:

£ 7

\C ,

3 ,

34 ,

old'ys,

The recursive call to B'yarg will be:

=  Buildry

< 73.  N
1 ,
3,

/

B'yarg

( * ,  \
old'ys,

new'ys,

1 ,
34,

— 734(1? 3) — U

1 ,
old'ys,

< C ,

=  B'yarg
B'y

V

V
1 ,
34,

2 ,

34,

old'ys,
c - i

neqs

/

This time the call to B'y will be the case where the mapping exists, and there is 

a corresponding 7 -wiring function in the source abstract dSCA. In this situation # 7
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will expand as:

B'y

where:

and:

1 ,

2 ,

34,

old'ys, 
■=■-1

\

=  Build'y

734,

1 ,

2 ,

RetT  erm

\

G e t E l

old'ys, 

i'old,')

2 ,

y PCold, J

\  \  

, 2

/

ioid — fs t(RetTerm (G etE l(E  1,1,34)), 2)

=  f  st(RetTerm(E~1 (1,34) =  (35,0)), 2) 

= fs t (  35,0)

- 3 5

pCoid — sndf st(RetTerm(GetEl('E1~1,1,34)), 2)

— snd(RetTerm('B~1 (1, 34) — (35,0)), 2)

— snd( 35,0)

- 0
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the call to B'y can be rewritten as:

B ^

1 ,

2 ,

3 4 ,

oldys,

=  Buildy

734,

1 ,

2 ,

RetT erm GetEl

{ oldys, \  \

3 5 ,

2 ,

0

=  Buildy

,2

=  Buildy

734,

1 , 
2 ,

RetT erm (y0 (3 5 , 2 ) =  S ) , 2 ) y 
\734 

1 ,

2 ,

\ 5  i
=  ( 7 3 4 ( 1 , 2 )  =  S)

Similarly the remainder of the 7 -wiring functions for module 1 at program counter 

value 34 are determined, providing the following list:

734(1, 3 ) =  U,

7 3 4 ( 1 , 2 )  =  5 ,

734(1,1) =  5 , 

734(1,0 ) =  M
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The process continues through the values of the program counters and modules, 

until the call to B j s  where the module number is 0 is reached. This will result in:

/O ,

old'ys, 

new'ys,

35,

4 ,

B j s

(

Build7

\

7o> ^ 

0 ,

0 ,
\ M  ,

, Build'y

(  7355 ^ 

0 ,

0 ,
Ku  ,

\

, newys

/
/

The complete list of 7 -wiring functions generated from this process are listed 

below:

7o(pc,0) = M, 79 (p c, 0) == M, 718 (pc, 0) = M, 727 (pc, 0) =  M,
7i(pc,0) = M, 7io (pc, 0) =  M, 7i9 (pc, 0) =  M, 72s(pc,0) =  M,
72 (pc, 0) -  M, 7 n  (pc, 0) = M, 72o(pc,0) =  M, 729 (pc, 0) =  M,
73 (pc, 0) -  M, 712 (pc, 0) =  M, 721 {pc, 0) =  M, 730 (pc, 0) =  M,
74 (pc, 0) = M, 7i3 (pc, 0) =  M, 722 (pc, 0) = M, 73i (pc, 0) =  M,
75 (pc, 0) = M, 7 i4(pc, 0) =  M, 723 (pc, 0) =  M, 732 (pc, 0) — M,
7e(pc,0) = M, 7i5(pc,0) =  M, 724 (pc, 0) =  M, 733 (pc, 0) =  M,
77 (p c) 0) = M, 716 (pc, 0) = M, 725 (pc, 0) = M, 734 (pc, 0) =  M,
78 (pc, 0) = M, 7i7 (pc, 0) =  M, 726 (pc, 0) =  M, 735 (pc, 0) =  M,
7o(l, 0) = M, 7 o ( l , 1) — M, 70(1,2) = M, 7 0 (1 , 3 ) = M,
7 i ( l ,0 )  =:M , 7 i ( l , 1) — M, 7i (1,2) = M, 7 1 (1 , 3 ) = u,

72(1,0) =:M , 72(1,1) = u, 72(1,2) = 7 2 (1 , 3 ) = t/,
73(1,0) =:M , 73(1,1) = M, 73(1,2) = M, 73 (1 , 3 ) = M,
74(1,0) =:M , 74(1,1) = M, 74(1,2) = M, 74 (1 , 3 ) = c/,
75(1,0) =:M , 75(1,1) = M, 75(1,2) = M, 75 (1, 3 ) = tf,
76(1,0) =:M , 76(1,1) = M, 76(1,2) = M, 76(1,3) = U,
77(1,0) =:M , 77 (1 ,1) = u, 77(1,2) = c/, 77 (1 , 3 ) = U,

78(1,0) =:M , 78(1,1) = 78(1,2) = U, 78(1,3) = tf,
79(1,0) =:M, 79 (1 , 1) = M, 79(10,2) == M, 79 (1 , 3 ) = u,
7io(l, 0 ) = M, 7 i o ( l , 1) -= 5, 7io (l ,2 )  =--M, 710(1 , 3 ) == tf,
7 i i ( l ,0 )  == M, 7 n ( l ,  1) “= M 7 i i ( l ,2 )  =--M, 711(1 , 3 ) == 17,
712(1,0) = M, 712(1,1) =--- s , 712(1,2) == M, 712(1, 3 ) == *7,
713(1, 0 ) = M, 713(1,1) == M, 713(1,2) =--M, 713(1, 3 ) == tf,
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7l4( ,0 =  M, 7l4( ,1 714 ( ,2 =  Af, 7 i4 ( l ,3 =  £7,
715 ( ,0 — M, 715 ( ,1 = u, 715 ( ,2 =  77, 715(1,3 =  77,
716 ( ,0 = M t 716 ( ,1 = U, 716 ( ,2 =  17, 716(1,3, =  £7,
717( ,0 — M, 717 ( ,1 = U, 717 ( ,2 =  77, 717(1,3 =  77,
718 ( ,0 =  M, 718 ( ,1 = U, 718 ( ,2 =  77, 718(1,3' = u,
719 0 ,0 =  M, 719 ( ,1 = U, 719 ( ,2 =  77, 719(1,3 =  77,
720 ( ,0 = M, 720 ( ,1 = U, 720 ( ,2 =  17, 72o(l, 3, = u,
7210 ,0 =  M, 721 ( ,1 = M, 721 ( ,2 =  M, 72 i(l,3 ' =  77,
722 (- ,0 =  M, 722 ( ,1 =  Af, 722 ( ,2 =  Af, 722(1,3' = u,
723 ( ,0 =  Af, 723 ( ,1 =  Af, 723 ( ,2 =  Af, 723(1,3 =  77,
724(- ,0 =  Af, 724( ,1 =  Af, 724( ,2 — Af, 724(1,3 =  77,
725 ( ,0 =  M, 725 ( ,1 =  Af, 725 ( ,2 =  Af, 725(1,3, = u,
726 ( ,0 = AT, 726 ( ,1 =  Af, 726 ( ,2 =  Af, 726(1,3 =  £7,
727 ( ,0 =  M, 7270 ,1 =  Af, 727 ( ,2 =  M, 727(1,3 = u
728 ( ,0 =  M, 728 ( ,1 =  5, 728 ( ,2 =  5, 728(1,3 = u.
729 ( ,0 =  Af, 729 ( ,1 = u, 729 ( ,2 =  77, 729(1,3 = U,

730 ( ,0 = Af, 730 ( ,1 = s, 730 ( ,2 =  5, 73o(l, 3' = U,

731 ( ,0 = Af, 731 ( ,1 = U, 731 ( ,2 =  77, 73i(l, 3' = U,

732 ( ,0 =  Af, 732 ( ,1 = 5, 732 ( ,2 =  5, 732(1,3 =  77,
733 ( ,0 =  Af, 733 ( ,1 =  7/, 733 ( ,2 =  77, 733(1,3 = 77,
734 ( ,0 = M, 734( ,1 = 5, 734 ( ,2 = -5, 734(1,3 = 77,
735 ( ,0 =  Af, 735 ( ,1 =  77, 735 ( ,2 =  17, 735(1,3 =  77

/5-wiring functions

The transformation of /2-wiring functions results in the following:

A )(pc,o) =  pc, /%(pc,0) == pc, /M (p c,0 ) =  pc, #27 (PC, 0 ) =  pc,
/?i(pc,0) =  pc, A o(p c ,0 ) =  pc, /^19(PC, 0) =  pc, to 00 0) =  pc,
/?2(pc,0) =  pc, A i(p c ,o ) =  pc, /?2 0 (p c,0 ) =  pc, /?29 (PC, 0) =  pc,
/M p c,0 ) =  pc, /?12 (p c ,0 ) =  pc, >02 l(pc, 0) =  pc, >030(PC, 0) =  pc,
/?4(pc,0) =  pc, /5i3(pc,0) =  pc, # 22(p c,0 ) =  pc, >0 3 l(pc, 0) =  pc,
/M PC, 0) =  pc, /?14 (pc, 0) =  pc, /̂ 23 (pc, 0) =  pc, /?32 (PC, 0) =  pc,
/5e(pc,0) =  pc, /?!5(pc,0) =  pc, /?24(pc, 0) =  pc, /?33 (PC, 0) =  pc,
>37(pc,0) =  pc, ^16 (pc, 0) =  pc, /?25(pc,0) =  pc, /%4 (pc, 0) =  pc,
/?s(pc,0) =  pc, /M (p c,0 ) =  pc, /̂ 26 (PC, 0) =  pc, J035 (PC, 0) =  pc,
A )( i,o )  == pc, A )(1 ,1) = 1, A>(1,2) = 1, >30(1 ,3 = 1,
/5 i(l, 0) == pc, / M M )  = 1, /? i( l ,2 )  = 1, /M l ,  3 = U>,
f t ( l , 0 )  == pc, >02(1,1) = u , >32(1,2) = u , >32(1,3 £J,
/53(1 ,0) == pc, >03(1,1) = 1, >33(1,2) = 1, >03(1,3 -- 1,
/?4( i ,  0 ) == pc, >3 4 ( 1 , 1 ) = 1, >34(1 ,2 ) = 1, >04(1,3 = W,
/? s(l,0 ) == pc, & ( ! , ! )  = 1, >05(1,2) = 1, >3 5 ( 1 , 3 = CJ,
>06(1,0) == pc, /% (!,!) = 1, >36(1,2) = 1, >36(1,3 — £J,
>0 7 ( 1 , 0 ) == pc, >07(1, 1) = w, >37(1,2) = £J, >37(1,3 — £J,
>08(1,0) == pc, /% (!,!) = £J, >08(1,2) = £J, >08(1,3 = £J,
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# 9 ( 1 , 0 )  =  p c , # 9 ( 1 , 1 )  =  1, # 9 ( 1 , 2 )  =  1, # 9 ( 1 , 3 )  =  w ,

# i o ( O II # i o ( l , l )  =  9, #10  ( , 2 ) =  1 , # i o ( ,3) =  U,

# n ( O II JS # n ( l ,  1) =  1 , #11 ( , 2 ) =  1 , # l l ( ,3) =  W,

#12 ( 0 II P # 1 2 ( 1 , 1 )  =  9, #12 ( , 2 ) =  1 , # 12( ,3) =  W,

# i 3 ( 0 II -e # i s ( l ,  1) =  1, #13 ( , 2 ) =  1 , #1 3  ( ,3) =  w,
# i 4 ( 0 II 'ts p # 1 4 ( 1 , 1 )  =  9, #14 ( , 2 ) =  1 , # 1 4  ( ,3) =  w,
#15 ( 0 II P # 15( 1 , 1 )  =  w, #15 ( , 2 ) =  u j , #15 ( ,3) =  w,

# i e ( O II -a # 1 6 (1 ,  1 ) = W , #16 ( , 2 )  =  U J , # 16 ( ,3) =  w,

Pu( , 0 )  =  p c , # 1 7 ( 1 , 1 )  ~ # 17( , 2 ) =  w, #1 7  ( , 3) =  u j ,

# i s ( 3 II •ts # 1 8 (1 ,  1 ) = ^ , #18 ( , 2 ) =  w, #18 ( ,3) =  w,
# 19 ( 0 II # 1 9 (1 ,  1 ) = W , #19 ( , 2 ) =  c«j, #19  ( ,3) =  w,
#20 ( 0 II ■tJ # 2 0 (1 ,  1) =  W, #20 ( , 2 ) = cj, # 20 ( ,3) =  w,
P21( O II P

1

# 2 l ( l ,  1)  =  1, #21 ( , 2 ) = 1 , #21  ( , 3) =  w,

#22 ( O II P # 2 2 ( 1 , 1 )  =  1 , #22 ( , 2 ) = 1 , #22  ( ,3) =  £J,

#23 ( II 3̂ P # 2 3 (1 ,  1 ) =  1, #23 ( , 2 ) =  1 , # 23  ( ,3) =  w,
#24  ( O II 3̂ P # 2 4 (1 ,  1) =  1, #24 ( , 2 ) =  1 , # 2 4  ( ,3) =  cj,

#25 ( O II "C3 P # 2 5 (1 ,  1) =  1, #25 ( , 2) = 1 , # 2 5  ( ,3) =  w,
/^26 ( O II 3̂ P # 2 6 (1 ,  1 ) =  1 , #26 ( , 2 ) = 1 , # 26  ( ,3) =  w,

#27 ( , 0 )  =  p c , # 2 7 (1 ,  1) =  1, #27 ( , 2 ) = 1 , #2 7  ( ,3) =  w,
P28( 0 II "a # 2 8 ( 1 , 1 )  =  1 , #28 ( , 2 ) =  2 , # 2 8  ( ,3) =  u j .

#29 ( II # 2 9 (1 ,  1) =  W, #29 ( , 2 ) =  u j , #29  ( ,3) = w,
#30 ( O II # 30( 1 , 1 )  = 3, #30 ( ,2) = 4, #3 0  ( ,3) = £J,

#31 ( , 0 )  --- p c , # 3 i ( l ,  l )  = w, #31 ( , 2 ) = u j , #31 ( ,3) = a;,
#32 ( , 0 )  = p c , # 3 2 ( 1 , 1 )  = 5, #32 ( , 2 ) = 6 , #32  ( , 3) = cj,
#33 ( , 0 )  = p c , # 33( 1 , 1 )  = #33 ( , 2 ) = a;, #33  ( ,3) = u,
#34 ( , 0 )  = p c , # 3 4 ( 1 , 1 )  = 7, #34 ( , 2 ) = 8 , #34 ( ,3) =  u j ,

# 35( 1 , 0 ) =pc,  
# 0 (pc ,  1) =  pc

# 35(1 ,1) =  <*>, #35 ( , 2 ) =  u j , #3 5  ( ,3) = a;,

D elay Functions

The initial call to create the delay functions is to the Created operation:

(  Source.SCA, \

1 ,
36,

4,
Createds

2_1. /
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this expands to:

CreateSs

(  Source S C A ,  \  

1 ,
36,

4,

1— '?

= B5s

(
1 ,
G et5Eqs(SourceSC A ) ,

4,
Get'yEqs(SourceSCA),

(  S o u rc e S C A , ^

Create/3 s

\

1 ,
36,

4,
^ - i

GetM ax^{Source.SCA),

36,

\ “ 7

the /5-wiring functions are given in the previous section, and the operations Get'yEqs, 

GetdEqs and G etM axN are defined in the SCA specification. The first call to BSs 

is the recursive case:

B8s

( l >oldds,
0,
4,
old'ys, 
new(3s,
1,
36,
^ - l1—1 ?

V s  )

/ o,
oldds,

(  (  35,
old5s,

= B5pc

1 ,
4,
old'ys, 
new/3s, 
1 ,
36,

I  s
4, old'ys, new(3s, 

\  1 , 36 ,E- \S
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This involves a recursive call to itself, and a call to the BSpc operation to produce 

the delay functions for the values of the program counter:

BSpc

l  35, \
oldSs, 
newSs,
1,
4,
old'ys, 
new/3s,
1,
36,

\ H

(  34,
oldSs, 

(

— BSpc

/

\

BSarg

V

(  3, \
oldSs,
D,
i,
35,
old'ys, 
newfis,
1,
36,
cr-i 1—1 }

V 3

, newSs

1,4, oldjs, newfis, 
\  1 ,3 6 ,E - \ E

Building the delay function for the arguments of module 1 at program counter 

value 35 would result in 4 unit delay functions since module 36 in the source abstract 

dSCA is not wired to anything.

The next recursive call is:

(  34, \
oldSs, 
newSs,
1,
4,

BSpc old'ys, = BSpc 
newfis,
1,
36,
=■-1

(  33,
oldSs,

E

\
/ ( 3i ^ \

oldSs,
D,
i,
34,

BSarg oldys, , newSs
newfis,
1,
36,
CT-l

/
1,4, old'ys, new/3s,
l , 3 6 ,~ - \ E
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where the call to BSarg considers a module which is wired to two sources:

\

BSarg

(  ̂ \
oldSs,
newSs,
1,
34,
old'ys, 
newfls,
1,
36,
■5—1

V H

=  BSarg

(  2, 
oldSs,

( ( 1, 
3,

BS

\

\
1,
34,
old'ys, 
newj3s, 
1,
36,
■=•-1

34,
oldSs, 
oldys, 
new(3s, 
1,
36,
■=■-1

' 5

V s,

, newSs

/

The 4th argument to module 1 at program counter value 34 is not wired and 

therefore the call above would produce the delay function:
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The recursive call to BSarg is:

(  1. 
old8s,

{ { 1.

BSarg

( 2 ,  \
oldSs, 
newSs,
1,
34,
old'ys, 
newfis,
1,
36, 
c - i

5

=  BSarg

BS

V
1,
34,
old'ys, 
newf3s, 
1,
36,
■=?-!

2 ,

34,
oldSs, 
old'ys, 
newj3s, 
1,
36,
C-l

\ S ,  ’

, newSs

/
It is known that /?34,( 1,2) is defined, and that the input is wired to a source, since:

H -1(l,34) =  (35,0) 

and that from the source abstract dSCA:

'#,(35,2) =  S

hence, the delay function will be the unit delay. It is a similar situation for the 

1st argument to this module at this program counter value, and of course the 0th 

argument is wired to the program counter and so will, by definition, be the unit

delay. The process generates the following list of delay functions for module 1 at

program counter value 34:

^1,3 , 3 4 a,x) = t  — 1,

^1,2,34(^5 a,x) = t — 1,

^1,1,34(^5 a,x) = t — 1,

^1,0,34(^5 a,x) = t — 1
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If the following call for program counter value 23, which occurs in the recursive 

path of BSpc, is considered then it can be seen that it makes some calls to other 

modules within the source abstract dSCA:

BSpc

(  23, \
oldSs, 
newSs,
1,
4,
old'ys, 
newfis,
1,
36,
■=—1

\ H

(  22 ,

oldSs,

= BSpc

7

\

/
( 3> ^

\
oldSs,
D,
i,
23,

BSarg old'ys, , newSs
new(3s,
1,
36,
c-11—1 1

V s  J /
1,4, old'ys, new/3s,
1.36.H-1, E 7

This produces a unit delay for the 4th argument, but when considering the call for 

the 3rd argument, the following is found:

BSarg

(  2, \
oldSs, 
newSs,
1,
23,
old'ys, 
new(3s,
1,
36,
H-1

V H 7

=  BSarg

(  1. 
oldSs,

/  /  b
2 ,

\
\

23,
oldSs, 
old'ys, 
newf3s,
1,
36,

.  i r  /
1, 23, old'ys, new(3s, 

V l ,3 6 ,S -1,3

, newSs
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The call to BS  now invokes the case where the wiring is to a module and thus a 

new delay needs to be determined:

/ l ,  \
2 ,

B5

where:

and:

=  BuildS

23, 

oldSs 

old'ys, 

oldfds,

1,
36,
^ - i' 3

)

pcjualsrc = snd

^ 1 ,2 ,2 3 )

t — ((pc.val — pcjvalrtgl) mod M a x ff)

( (

Re tT  erm

\

GetEl

\

\

,21,

V 23 )
= snd(RetTerm(E~1 (1,23) =  (24,0), 2)) 

=  snd(( 24,0))

=  0

) )

modjvalsrc = f s t

i

R e tT  erm GetEl
/ e -1 N1— ' 3

i,

V23

\

,2

V V \ 2 3  /  /
=  f  st(RetTerm(E~1 (1, 23) =  (24,0), 2)) 

=  M (2 4 ,0 ) )

=  24

7
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which means that:

mod.vaTSrc -  f s t Re tT  erm GetEl ,2

!  I I  oldfis, \  \  N

0,
24,

2

=  f  st (RetT erm(P0 (24, 2) =  28,2))

=  f s t (  28)

=  28

V V V / /

and:

pc_vaTŝ sc =  pc_valsrc — t — RetT  erm GetEl

V

oldSs, \ \

24,

V

2 ,

0 / /
=  0 — (£ — RetT  erm  (£24,2,0 x) — t — 1,2)) mod 1

=  0 — (i — t +  1) mod 1 

=  0 — 1 mod 1 

=  0

the value of pc -va l^  can therefore be determined to be:

(

pc..valrtgl =  snd

I

RetT  erm

\

GetEl

\

(  S ,  \
28,

v °  /
,2

) )
=  snd (RetTerm (E(28,0) =  (1,27), 2)) 

=  snd ((1, 27))

=  27

mod 1
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finally, the instantiation of BS  can be completed as:

/ l ,  \
2 ,

23, 

oldSs 

oldys, 

old(3s,

1,
36,

BS

■=■-1

=  BuildS ^1,2,23?

t -  ((23 -  27) mod 36)

/

=  BuildS ^1,2,23)

t — 32)

=  (£l,2,23(M}z) =  t -  32)

The BSspc operation continues to recurse until it reaches the case where the 

program counter is 0 and then produces the delay functions for module 1 at program 

counter value 0. To complete the generation of delay functions, the second case of 

BSs  is instigated - where the module number is 0:

0, \  

oldSs,

BSs

newSs, 

4,
old^s , 

36,

i,s-\

=  BuildS , newSs

= ((<W>,o(£, a , x ) = t  -  1), newSs)



A B ST R A C T  DSCA TO A B ST R A C T  DSCA 252

The values of all the non-unit delays are given as:

<$l,l,o(ti a ) x =  t  - 35 <$1,1,6 (^, x ) =  t  - 29, <$1,1,22(^, a , x ) =  t  --34,
<$l,2,o (^ x =  £ - 34, <$l,2,6(t, x ) =  t  - 28, <$1,2,22(^1 x ) =  t  --33,
<$l,3,o(t» x =  t  — 33, <$1,1,9(^1 a >x ) =  t - 24, <$1,1,23^ x ) =  t  --33,
<$l,l,l(£> 2; =  t  — 33, dl,2 ,9 ^ x ) =  t  - 30, <$l,2,23(t, a , x ) =  t  - -32,
<$1,2,1 (b  a , 2; =  t  - 32, <$i,2, io ( t ,  a X ) =  t -30, <$1,1,24(^» x ) =  t  - -32,
<$1,1,3 (t , a , X —  t  — 33, < $ i,i,n (t , a X ) =  t -26, <$l,2,24(t, a , x ) =  t  --31,
<$1,2,3 (*» X —  t  — 32, <$1,2,11 (t , a x ) =  t -30, <$1,1,25^ x ) - t  --31,
<$1,3,3(t) a , X =  t  — 31, <$i,2,i2(t, a x ) =  t -30 , <$1,2,25(^, a , x ) = £ --30,
<$i,i,4(t, a , X =  t  — 31, <$1,1,13 (^, a x ) =  t -28 , <$1,1,2 6 (^  a . x ) = £ --30,
<$1,2,4 ( t , a , X =  t  - 30, <$1,2,13 (t , a x ) =  t -30 , <$1,2,26(^, a x ) =  £ --29,
<$i,i,5(^ X =  t  - 30, <$1,1,21 (t , a x ) =  t -35 , <$1,1,2 7 (^  a x ) -  £ --29,
<$1,2,5(^1 a , X =  t  — 29, <$1,2,21 (t , a x ) =  t -34 , <$1,2,27^ a x ) = £ --28,
<$1,2,14(^5 a , z )  =  t - -30

Initial State Equations

The generation of Initial State equations for the target abstract dSCA begins with 

a call to the C reatelVs  operation:

CreateIVs

I  Source_SCA , 

1,
36,

- l

/

-  B IV s

1,
36,

G etE qlV (SourceSC A ),

\

77-1

which expands to the recursive call:

B IV s

1,
36, 

oeqs, 

neqs,

= B I V s

0 ,
36,

oeqs, 
/ 1 35,

B IV pc 1,
oeqs,

V
77-1

U
, neqs
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We consider the call to B IV pc  first, this expands in all cases as (since the inverse 

mapping in our example is total and there will be no undefined operations required 

to maintain synchronicity):

(  34,

B IV pc

(  35, ^

1,
oeqs,

V

=  B IV pc

\

b

oeqs,

 ̂ new.val, []

V r-i

where new.val is the following set of definitions:

/  oeqs,

( b 
35,

= BuildIV (
RetT erm

= BuildIV

= BuildIV

)  b
35,

GetEl

\
RetTerm | GetEl j 1, 

35

\  \
,2

’  V
RetTerm GetEl ^ RetTerm  iQ.,35) = (36,0), 2) )  ’2)  

/  b \
35,

/ / oeqs,
RetTerm, I GetEl I 36, | ,2

b
= BuildIV  | 35,

RetTerm (V^O, a, x) = 0,2)
b

= BuildIV  ( 35,
0

(Vi(35, a, x) =  0)

The recursive call to B IV pc  above therefore becomes:

t  34,

1, 1.

B IV pc  oeqs, =  B IV pc  oeqs,

(  35, ^

■=■-1
Vi (35, a, x) = 0, [] ) ,
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This process continues for all values of the program counter for module 1, and 

then the recursive call to B I V s  where the module number is zero is made. In this 

situation, the following case of the B I V s  operation is invoked:

( 0, N

B I V s
35, 

oeqs, 

negs,

V s " 1 !

=  (BpcIV s(36, Q),negs)

where the call to BpcIV s  is expanded as:

/

B pcIV  s

34, \
( 35, ^ / ( o, \ \

a . = B pcIV  s B u ild IV 35, ,[]

36 J V ^ mod(35 + 1,36) j /
y 36 

34, \

- BpcIVs (Vo(35,a,x) = o ,D ),
36

The recursion progresses, finally making a call to the base case where the program 

counter value is 0:

/n \ ! / o, \ \
B pcIV  s

0, 
eqs

V36 )
B uild IV 0, ,eqs

V 1 /
(Vo(0,a,x) =  l,e?s)
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The result of applying the mapping to the Initial State equations is:

Vb 0, a, x) == 1, Vb 1, a, x) =z 2,
14 3 ,a,x) == 4, Vb 4, a, x) =z 5,
Vb 6, a, x) =z 7, Vo 7, a, x) =z 8,
Vb 9, a, x) =z 10, Vo 10, a, x) =  11,
Vo 12, a, x) =  13, Vo 13, a, x) =  14,
Vo 15, a, x) =  16, Vb 16, a, x) =  17,
V0 18, a, x) =  19, Vb 19, a, x) -  20,
Vo 21, a, x) =  22, Vo 22, a, x) =  23,
V 0 24, a, x) =  25, Vo 25, a, x) = 26,
Vo 27, a, x) = 28, Vo 28, a, x) = 29,
Vo 30, a, x) = 31, Vo 31, a , x) = 32,
Vo 33, a , x) = 34, Vo 34, a , x) = 35,
V ! 0, a ,  x) = s t a y , V i 1, a ,  x) = t r u e ,

V ! 3, a ,  x) = up, 14 4, a, x) = t r u e ,

V i 6, a ,  x) =- f a l s e , V i 7,a,x) == down,
V i 9, a ,  x) =  t r u e , 14 10, a , x) =  t r u e ,

14 12, a, x) = f a l s e , 14 13, a, x) =  f a l s e

14 15, a, x) =  f a l s e , 14 16, a, x) = 90,
14 18, a , x) = 0, 14 19, a , x) =  t r u e ,

Vi 21, a , x) = f a l s e , 14 22, a, x) -  f a l s e

Vi 24, a , x) = f a l s e , 14 25, a , x) =  f a l s e

Vi 27, a, x) = f a l s e , 14 28, a , x) = 0,
14 30, a , x) = 0, 14 31, a , x) = 0,
14 33, a , x) = 0, 14 34, a x) = 0,

Vo(2 , a , x )  
Vb(5,a,x) 
Vo (8, a, x) 
Vb(ll ,a ,x  
Vo(14, a,  x 
14(17 , a , x  
Vo(20, a , x 
Vo(23, a,  x 
Vo(26, a, x 
14(29, a,  x 
14(32, a, £ 
14(35, a, a: 
14(2, a, x) 
14(5, a, x) 
14(8, a, x) 
14(11, a, x 
14(14, a,  x 
14(17, a, x 
14(20, a, x 
14(23, a,  x 
14(26, a, x 
14(29, a, x 
14(32, a, x 
14(35, a, x

z 3, 
z 6,
= 9,
—  12 ,

— 15,
— 18,
— 21 ,

— 24,
— 27,
= 30,
= 33,
=  0,
= stay,
= false,
= UP,
= false, 
= true,
— tr u e ,  

=  0 ,
= false, 
= false, 
=  0 ,
=  0 ,
= 0

State Transition Equations

To commence translating the State Transition equations, a call to the CreateSTs  

operation is made:
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CreateSTs

(  S o u rc e S C A , ^ 

1,

V
36,

=  B S T s

1,
36, 

G etE qSTV  F  (S o u rceS C A ) ,

Create/3s

I  S o u rc e S C A , ^ 

k,

M clxn,

\ 3_1 ./

Createds

(  S o u rc e S C A , '

k,
Maxnr,

V V
which in turn makes a call to the B S T s  operation once it has extracted the source 

State Transition equations. This call is expanded as:

B S T s

/ i ,
36,

S T V F s,

D.
1' 5

tgtfis,

V tgtSs )

= B S T s

( 0, \

B S T

(  36, \  \

S T V F s ,
z:-i
■— 11 5

tgtfis, 

tgtSs,

i /

/
36 /

It can be seen that this expansion makes a recursive call to itself, decrementing 

the value of the module number as it does so, and makes a call to the B S T  operation



A B ST R A C T  DSCA TO A B ST R A C T  DSCA 257

which creates the Value function equation for the module under consideration. This 

call to B S T  is expanded as follows:

(

B S T

(  36,

1,
S T V F s ,

' 5

fis,

V

=  B uildST

1, \

N ew S T

rewire

(  new jufopdef, \  \

1,
36,

/3eqs,

Seqs

36, 

y null

where:
(

newjufopdef = N S T

36,

1,

[],
S T V F s ,

The call to V ST  operation, expands as:

/

V ST

35, ^

1,

oeqs, 

\ s_1 /

=  V S T

34,

1,
/

[], Extract

\
oeqs,

v = - x

\oeqs,

mod-valsrc,

\  pcjualsrc J  J
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where:

mod-valsrc = f s t

(

Re tT  erm GetEl

\

\(  2- \  \

1,

V35 ) )
, 2

7
=  f s t  (RetTerm  ((E 1(1,35) =  (36,0)), 2)) 

= fs t{  36,0)

=  36

and:
/

pc-valsrc = snd RetT  erm

(
GetEl

(  - - 1 \  
*— 1 5

1,

V 35 )

\
,2

V V V 3 5  /  7 7
=  snd (RetTerm  ((E-1(l, 35) =  (36,0)), 2)) 

=  snd(36,0)

=  0

Thus the N S T  call becomes:

N S T

/  34,
35, \ 1,
1, /  oegs,
D. = N S T [], Extract 35,
oeqs, V 0

V s - 1 j oeqs,
U - 1

34> \
i,

= TVST (0),
oeqs,
H-1 J

\
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The next instantiation of the recursive call to N S T  proceeds:

N ST

/  33,
34 , \ 1,
1, /  /  oegs
(0), = JVST I [], Extract I 34,
oeqs, \  V 0

V s - 1 j oeqs,
U - 1

3 3 ,
1 ,

-  tVST (0,sub(a7(t),aa(t) ) ) ,
oeqs,

7

N S T  finally completes it recursion for module 1 and produces the following list:

0, sub(a7( t) ,a8(t)), 0, sub(a5(t), a6(t)), 0, sub(a3(t) , a4( t) ),
0, sub(a i( t ), a2( t) ) ,gt(V35(t, a, x), V3Q(t, a, x)), gt(V33(t, a, x), V ^ t,  a, x)), 
gt(V3i(t, a, x), V3 2& ^)), gt{V29{t, a, x), V30(t, a, x)), or{V27(t, a, x), V2g(t, a, x)),
or(V25{t, a, x), V2Q(t, a, x)), or(V23(t , a, x), V ^ t ,  a, x)), 0, true, 0, t r u e ,
90, fa lse ,  pt(ai0(t), V2i (t, a, x)), eq(V22(t, a, x), V2o(t, a, z)), eg(ai0(t), Fi9(t, a, x)), 
eq(V22(t, a, x ) , V 18(t, a, x)), eg(ai0(t), Vi7(t, a, x)), eq(V22(t, a, a:), Vi6(t, a, x)), 
up, down, and{Vi±{t, a, x), Kis(t, a, x)), and(Vi2(t, a, x), Vi3 (t, a, x)), 
and(Vi0(t, a,x), Vii(t, a,x)),

/  V7{ t ,a ,x) ,  \  /  V^t, a,x) ,
condl  V8{t ,a ,x) ,  1 , stay, or(V3(t, a, x),  Ve(t, a, x)), cond I V3 ( t , a ,x ) ,

\  V9( t ,a ,x )  )  \  V2{t, a, x)

The next part of the process is to rewire the above list for the new network, which 

is done by the rewire operation:

 ̂ (e, es), \  /  /  e, V /  <>0 \  \

1, modjval,

35, =  rw pc.val,

fieqs,

5eqs

rewire

fieqs,

 ̂ £e<?S y
V V

, rewire

es,

1,
34, 

/3eqs, 

y 5eqs

The rewire operation recurses through the list and produces a new list, in the 

same order but uses the rw operation to rewire each VFOpDef term encountered. For
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the first term, 0, the first instance of rw is used:

1 0, \
Ps,

rw 5s, =  0

1,

\ 35 /

The next term it encounters invokes the third form of rw:

i

rw

V

sub(a7(t),a8(t)),

Ps,

5s,

1,
34

\ ( ( a7(t), ^ ( a8(t), ^

Ps, Ps,

5s, 5s,
= sub wire , wire

1, 1,

1, 2,

\ k 34 ) 34 /

this invokes the use of the “input” form of the wire operation:

a7(t),
wire

Ps, 5s, 1,1,34 — a'RetTerm(GetEl{(3s,l,l,M)2) M  

Q'RetTerrn((/3s34(l,l)=7),2) ( )̂
=  a7(t)

The second argument is:

as(t),
wire

Ps, 5s, 1,2,34
® .R e f T e r m ( G e i .E Z ( /3 s , l ,2 ,3 4 ) ,2 )  ( ^ )  

^ ■ R eiT ,e r r r i ( ( / 3 s 3 4 ( l ,2 ) = 8 ) ,2 )  ( ^ )

=  a8(t)

therefore the rewired VFOpDef term will be:

sub(a7(t),a8(t))
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The complete list of VFOpDef terms returned from the rewire operation is:

0,
sub(a7(t),aB(t)),
0 ,

sub(a5(t),a6(t)),
0,
su6(a3(t),a4(£)),
0,
sub(ai(t),a2(t)),
gt(Vi(t — 29, a, x), V\(t — 28, a, x )), 
gt{Vi{t — 30, a, x), V\{t — 29, a, x)), 
gt(Vi {t — 31, a, x), Vi{t — 30, a, x)), 
gt{Vi(t — 33, a, x), Vi(t — 31, a, x)), 
or(Vi(t — 33,a,x),Vi(t — 32 ,a,x)), 
or(Vi{t — 34, a, x), V\ (t — 33, a, x)), 
or(Vi(t — 35, a, x), VRt — 34, a, x)),
0,
true,
0,
true,
90,
false,
^ ( aio(t),Ti(t -  30, a, x)), 
e<7(Vi(t — 28, a, x), VRt — 30, a, x)), 
eg(a10(t), Vi(t -  30,a,x)), 
eq(Vi(t — 26, a, x),V\(t — 30, a, x)), 
e?(aio(*),Ti(£-30,a,x)), 
e?(Ti(i — 24, a, x), Vi(t — 30, a, x)), 
up, 
down,
and(Vi(t — 29, a, x), V\(t — 28, a, x)), 
andfVRt — 30, a, x), VRt — 29, a, x)), 
and(Vi(t — 31, a, x), V\ (t — 30, a, x)),

/  Vi(t — 33, a, x), \  
cond I V\(t — 32, a, x), I ,

\  Vi(t -  31, a, x) /
stay,
or(Vi(t — 33,a,x),Vi(t — 32, a, x)),

/  Vi(£ — 35, a, x), \  
cond I Vi(£ — 34, a, x),

\  Vi (t — 33, a, x) y
The original list of terms is now fed into the N ew S T  operation, the purpose of 

which is to construct the conditional VFOpDef term for the module under consider

ation by recursing the list and creating the correct format. Finally, the new State
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Transition equation is constructed using the BuildST  operation, where results, for 

module 1 in the following (the more readable form for the conditional operation is 

used where appropriate):

/  V i(t-35 ,a ,x ), \  
cond I VRt — 34, a, x), I if VpRt — 1, a, x) =  0

\  VRt — 33, a, x) J
or (VRt — 33, a, x), VRt — 32, a x)) if VpRt - , a X = 1
start if Vpc(t - ,a X = 2

(  VRt — 33,a,x), \
cond VRt — 32, a, x), if VpRt - , a X = 3

\  Vl (t — 31, a, x) J
and(VRt — 31, a, x),VRt — 30, a,x)) if VpRt - , a X = 4
and(VRt — 30, a, x), VRt — 29, a,x)) if VpRt - , a X = 5
and(VRt — 29,a,x),Vi(t — 28, a, x)) if VpRt - , a X = 6
down if VpRt - , a X = 7
up if VpRt - , a X = 8
eq(VRt — 24, a, x), VRt — 30, a x)) if VpRt - , a X 9
eq\aRt),VRt -  30, a, x)) if VpRt - , a X = 10
eq(VRt — 26, a, x), VRt — 30, a x)) if VpRt - , a X = 11
eq(ag(t),Vi(t — 30, a, x)) if VpRt - , a X = 12
eq{VRt — 28,a,x),Vi(t — 30, a x)) if VpRt - , a X = 13
gt(a9(t),VRt -  30, a, x)) if VpRt - , a X = 14
false if VpRt - , a X = 15
90 if VpRt - , a X = 16
true if Vpc(t - , a X = 17
0 if VpRt - , a X = 18
true if VpRt - , a X = 19
0 if VpRt - , a X = 20
or [VRt — 35, a, x), VRt — 34, a x)) if VpRt - , a X = 21
or (VRt — 34, a, x),VRt — 33, a x)) if VpRt - , a X = 22
or (VRt — 33, a, x), VRt — 32, a>2:)) if VpRt - , a X = 23
gt(VRt — 33, a, x), Vi (t — 31, a x)) if VpRt - , a X = 24
gt(VRt — 31, a, x),VRt — 30, a x)) if VpRt - , a X = 25
gt(VRt — 30, a, x), VRt — 29, a x)) if VpRt - , a X = 26
gt(VRt — 29, a, x), Vi(£ — 28, a x)) if VpRt - , a X = 27
su6(a1(£),a2(£)) if VpRt - , a X = 28
0 if VpRt - , a X = 29
su6(a3(i) ,a4(£)) if VpRt - , a X = 30
0 if VpRt - , a X = 31
sub(a5(t),a6(t)) if VpRt - , a X = 32
0 if VpRt - , a X = 33
su6(a7(£),a8(£)) if VpRt - , a 34
0 if VpRt - , a X 35
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The final step in the process is the recursive call to the B S T  operation with module 

number equal to 0, in this case the function above is returned with the following State 

Transition equation for the program counter appended on to it:

Imod(add (Vpc(t, a , x), 1), 35) if Vpc{t — 1, a, x) =  0 

:

mod(add {Vpc{t) a, x), 1), 35) if Vpc(t — 1, a, x) = 35

The complete translated abstract dSCA can be seen described algebraically as 

shown in Appendix D.

11.4 Correctness

The generated target abstract dSCA created from transforming the abstract dSCA in 

the previous chapter can be seen to be the same as the Form 2 abstract dSCA given 

in Chapter 8.3.2 - the semantic proof of correctness given in that chapter shows that 

this abstract dSCA is a correct implementation of a solution to the GRCP.

Additionally, this and the previous abstract dSCA could exist in a hierarchy, and 

this will be shown by means of introducing mappings for:

• spaces;

• clocks;

• global states; and

• input streams.

Consider the Form 1 abstract dSCA given in Chapter 10 and the Form 2 abstract 

dSCA given above, we will now discuss the relationship between each of the models. 

To clearly distinguish between the two systems reference will be made to the Form 1 

abstract dSCA as NdscAi and the Form 2 abstract dSCA as NdscA2 • Components of
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each network will be named as the sets I d s c A 2 and I d s c A i  f°r the modules (or spaces), 

the sets I n d s c A 2 and I n ds A C i  of input streams, and the sets C h d s c A 2 and C h d s c A i  

for the channels of the networks, where:

I d s c A i  =  {0> 1 , 2 , 3 , . . . ,  k }

IdSCA2 =  {0,1}

I n dSCAl =  {0, 1, • ■ • , 10}

IndscA2 = ( 0 ,1 , . . . ,  10}

C h d s c A i  — { 0 , 1 , . . . ,  36}

C h dSCA2 =  { 0 , 1 }

O u td S C A l  — {1}

OutdSCA2 — {1}

C o m p o n en t A b s tra c tio n  To compare the behaviours of NdscA2 and NdscAi the 

mappings between their components are first defined.

Spaces. Spaces between the two SC As are clearly related by the provided mapping 

function, for it is this that has been used to create the Form 2 abstract dSCA. The 

mapping is more complicated than a simple module to module mapping since we need 

to take account of the value of the program counter to understand the source module: 

The respacing 7r : I tgt x N muxn Arc is clearly defined by:

7r(i,pc) = f s t  : E~1(i,pc) for i =  1 

=  0 for i =  0

Clocks. Each clock cycle in the source SCA is represented by 36 clock cycles in the 

abstract dSCA. Thus a retiming A : TdscA2 —*> TdscAi can be defined for all t € TdscA2 

as:

A(t) = t

where MaxNdSCA2 — 1 and MaxNdSCAi

(  M glxn d S C A 2

d S C A  1 /  ->

= 36 thus:
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(~ )

or further simplified to ,̂

A (t) =  |_t/36j

the corresponding immersion A : TdscAi —3- T<isca2 is defined, for all t E T jsca i  by 

\ (t) =  36t, and Start\  is defined to therefore have the values S tart\  = 0 ,36, 7 2 ,1 0 8 ,__

States. There is no need to introduce a data abstraction map since it is defined that 

all SC As under consideration will be based on the machine algebra M^.

States are still a measurement of the channels in the relevant SCAs, however, it 

now makes sense to consider observable states rather than the whole state. The most 

appropriate observable states for this system is the output of m \  in the target SCA 

and the output of module m36 in the source SCA - i.e. the modules in Vout for each 

network.

The state abstraction map </>: M ^ htgt —* M%hsrc is introduced for observable states 

5 E M%hl as:

0(s,pc)( 1) = s(pc)

Input Streams. Input streams are on one hand relatively simple since the transfor

mation neither adds or removes input streams from the network. However, there are 

timing issues. Take the gate sensor input, this is used by several modules in the Form 

1 abstract dSCA and has a delay of unit length for all these modules to make it con

sistent with the SCA. In the Form 2 abstract dSCA, this value is required by module 

1 but at several different times as the modules from the Form 1 abstract dSCA are 

now executing at different values of the program counter. The most appropriate and 

global solution to this problem is to require the input values to be available for a whole
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cycle, in this case 36 lock cycles. This allows values to be available when required (this 

solution would need to be considered further for cycle inconsistent abstract dSCAs).

We define an input stream abstraction 9 : [TdscA2 ~ > MA]ChdSCA2 —* [TdscAi —>" 

M A]chdSCA1 to be the identity operation since input streams do not change between 

models, however we need to keep the result for 36 clock cycles (consistent with the 

retiming); thus we write:

0(a)(t) =

A bstraction of global behaviour. The notion that the global behaviour of 

the Form 1 abstract dSCA abstracts that of the abstract form 2 dSCA is now for

malised. Let Vi and V2 be the global state functions determined from the channel 

state functions of these 2 SCAs, then it is conjectured that the following diagram 

commutes:

Conjecture Given the above mappings, it is believed that the following diagram 

commutes:

T V,
d S C A l x[TdsCA1 -  M AdSCAl\InisCA1 x

<t>

Startx x [ T d s C A 2  -  M AdSCJ ™ ™ x

11.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping an abstract dSCA 

with one defining shape to an abstract dSCA with another defining shape. A demon

stration has been given by taking the Form 1 abstract dSCA solution to the GRC 

Problem, which represents the computation, and mapping that to a Form 2 abstract 

dSCA that represents the computation device.



A B ST R A C T  DSCA TO A B ST R A C T  DSCA 267

11.6 Sources

The definition of the mapping process is all my own work.



Chapter 12 

A bstract dSCA to concrete dSCA

Purpose of Transformation

To transform  an abstract dSCA with a defining shape 

o f V  = (n, m ) to a concrete dSCA with defining shape V =  (n, m)

12.1 Process

This chapter highlights the key parts of the processes used for the transformation 

of an abstract dSCA with defining shape V =  (n, m) to a concrete dSCA with a 

defining shape of V =  (n, m). Appendix H contains the complete formal definition of 

this transformation.

The following equation lists, within a supplied abstract dSCA specification, are 

considered for transformation:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Equations; and

268
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4. State Transition Equations.

This chapter’s first part considers the mechanisms for such a transformation and 

the second part demonstrates the application of the transformations to the Form 2 

abstract dSCA produced in chapter 1 1 . Recall that this abstract dSCA has a defining 

shape of V =  (1,36). The transformation will be to a cycle consistent concrete dSCA. 

It should be noted that if transformation to a cycle inconsistent concrete dSCA was 

required then alteration of the tuple lengths and the use of appropriate tuple mapping 

functions (examples of which are given in Chapter 7) would have to be used.

12.1.1 Prerequisites

The following prerequisites are required for the transformation:

• The source and object networks have k > 1 modules and M a x ^  > 0 component 

specifications in their modules definitions;

• The defining shape of the target network equals that of the source network; and

• Condition definitions of each adSCA module, except the programme counter, 

are of the format:

cond(pc = 0, a, cond(pc = 1, b, cond(pc =  2, c, cond(...))))

12.1.2 7-W iring Functions

The 7 -wiring functions in the target concrete dSCA will not differ much from those 

in the source abstract dSCA since the “look and feel” of the SCA is not being altered. 

W hat is different is the introduction of a new input to argument 1 which will require 

arguments 1 , . . .  ,n(z) of the abstract dSCA becoming arguments 2 , . . .  , n(z) +  1 in 

the concrete dSCA. The new argument introduced in concrete dSCA is a wiring of 

the first argument to the output of the module itself.
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Informally, to generate the target concrete dSCA 7 -wiring functions from a source 

abstract dSCA the following process is followed:

• For each module mi where i E Na,2:

— For each pcjual E {0, . . . ,  M a x ^ 2 — 1}:

* For each argument where j  E {2, . . . ,  n(i) +  1} create a new /5-wiring 

function

7Ic-val^J) =  7pc_«ai(i . i  -  !)

* For the oth argument of each module create:

7i « i M )  =  M

* For the 1st argument of each module create:

7pc.valih 1 ) = M

• For module 0 create M a x ^  /5-wiring functions to wire mo back to itself.

12.1.3 /5-Wiring Functions

In a similar way to how the target concrete dSCA 7 -wiring functions were constructed 

from source abstract dSCA 7 -wiring functions, so are the concrete dSCA /5-wiring 

functions. The /5-wiring functions in the target concrete dSCA again differ only in so 

much that the index of arguments 1 , . . . ,  n(i) shifts to 2 , . . . ,  n(i) +  1 .

Informally, to generate the target concrete dSCA /5-wiring functions from a source 

abstract dSCA the following process is used:

• For each module m  ̂ where i E Nfc2:

— For each pcjual E {0, . . . ,  M a x ^ 2 — 1}:
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* For each argument where j  € {2, . . . ,  n(i) +  1} create a new /5-wiring 

function

P p c .v a l  ( b  5  )  P p c jv a l  ( b  3  ^ )

* For the oth argument of each module create:

P ' p c . v a l ( h ° )  =  M

* For the 1st argument of each module create:

P p c - v a l ( h  1 )  =  M

• For module 0 create M a x n  /3-wiring functions to wire mo back to itself.

12.1.4 Delay Functions

Delay functions for the concrete dSCA are all of unit delay, and there are a number 

equal to the wiring functions. Thus, a unit delay function will be created for every 

element in the newly generated 7 -wiring equation list.

12.1.5 Initial State Equations

The Initial States for each module m*, where i € Njt2 are M a x n  tuples of length M a x n 

(recall that the mapping is being defined for a cycle consistent abstract dSCA). We 

will make use of the fact that calculations will only care about the initial state given 

for t = Maxjy — 1 and t = 0 , by defining the tuple at time t = 0 and use that value 

for all other initial values until t = M ax — N  —I where the final initial state equation 

will be generated.

The usual recursive equations are given for walking the structure of the abstract 

source dSCA, rsulting in a call to the B I V  operation:

B I V  : N 3 x d S C A IS V E q L is t2 -+ d S C A IS V E q L is t
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which is defined recursively in two cases over the first argument. Firstly for when the 

first argument does not equal M a xat, then the operation is dealing with an initial 

state from a time prior to t = Maxjy — 1, and as such an initial state will be created 

containing u elements in all positions, except for the first element (note tha t the 

positioning of the first element is dependant upon the tuple management schemes 

used, however for both schemes identified as of interest the first generated value is 

placed at position 0 in the tuple). B I V  is defined as:

 ̂ pcjual +  1, \

M ax  N, 

modjnum ,

B I V

pcjval, 

Maxjv, 

m odjnum , 

oeqs, 

y neqs

\

= B I V
oeqs, 
/

V

G enIVs

\

 ̂ modjnum ,  ̂

pcjual, 

Maxjv, 

y oeqs

\

, neqs

J
The G enIVs  operation used in B I V  is given as:

G enIVs  : N 3 x d S C A IS V E q L is t  -► dSC A ISV Equation

and is defined to create a M a x m length tuple with the first element being the initial 

value produced at time t — 0 in the source abstract dSCA initial values:

G enIVs

I  modjnum , 

pcjual, 

M ax at, 

y oeqs

\  /

=  B uild IV

modjnum, 

pcjual,

/  RetTerm(VF, 2),

\  W0, • • • , 'aMax^—2

\

where:

V F  = GetEl(oeqs,mod-num,pc.val)
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The second case definition of B I V , where t = Maxjv — 1, is given such that it 

constructs the complete initial state needed at time M a x ^ 2 — 1 as:

/  I  modjnum , \  \

pcjja l,

B I V

M clxni 
M axjv, 

m odjnum , 

oeqs, 

y neqs

\

J

B uild IV

\

(

In itS tate

\

M clxn, 

m odjnum , 

oeqs,

\

/

neqs

J 7

The operation In itS ta te  is where the Initial State for module modjnum  at time 

t = M a x ^  — 1 is created. Since we are using the array tuple management then the 

Initial State under these conditions will consist of a list of values with the first being 

the element calculated at t =  0 and the last being the one calculated at t = M a x n 

in the source abstract dSCA. It is given as:

In itS ta te  : N 2 x d S C A IS V E q L is t  x Term List  —> Term List

and is defined recursively, with the recursive case:

(  pcjja l, \  (  pcjjal — 1, \

modjnum ,
In itS ta te

oeqs, 

nlist

= InitS tate
modjnum, 

oeqs,

^ (R e tT e rm (V F ,2 ) , nlist) y

and the recursion being stopped by the 1st argument reaching 0:

1 0, ^
m odjnum , 

oeqs, 

n lis t ,

In itS ta te = (RetTerm  (V F , 2), nlist)

/
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where in both cases:

V F  — GetEl(oeqs, modjnum, pc_val)

The base call to the recursive B I V s  operation is where the initial state for the 

program counter is given. It is defined as:

/ o ,  \

B I V s
M ax  a/-, 

oeqs, 

y neqs J

where B IV p c  is given as:

/

BIV pc
( Maxjy — 1 , \  ^

[ ] , , neqs

M a x x /  /

B IV pc  : N  x d S C A IS V E q L is t  x N  -> d S C A IS V E q L is t

and is defined recursively over the values in Maxjv, such that:

(

B IV p c
( pc-val,  ̂

neqs,

^ Maxjv j

= B IV pc

pcjval — 1 , 

/
B uild IV

(  o,
Max^f, 

y pcjual +  1 mod M a x n  J

\
\ \

neqs

/
M ax N

and:

B IV pc
0 , ^

neqs,

^ M a x n  J

(
B uild IV

10,\ 
0 , 

V 1 )
, neqs

J
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12.1.6 State Transition Equations

Consider the format of the State Transition equation in the source abstract dSCA, it 

will be similar to:

The differences are attributable to the introduction of the tuple management 

functions, T and II (as well as the need to identify the value in the tuple th a t results 

are to be extracted from).

Informally, the process for creating the new State Transition equations is a two 

step process

• Generate the d functions - those that are used in the projection part of the tuple 

management functions

/

V*(i,a,x) =  <
or(Vi(t — 32, a, x), V\(t — 31, a, x)) if Vpc(t — l ,a ,  x) =  23 

gt(Vi(t — 31, a, x), V\(t — 30, a, x)) if Vpc(t — 1 , a, x) =  24

V

the corresponding component specification in the concrete dSCA would be of the 

form:

T

 ̂ hpc {f ) 5̂ 3-') 
Vi ( t,a ,x ),

T
Vi (t,a ,x )

\
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• Create the new State Transition equations.

We consider the two key steps of creating the d functions and the new State 

Transition equation in more detail next.

G eneration of th e  d functions

For an indexed array tuple management approach the results are stored relative to 

the value of the program counter when that result was calculated. The values of the 

d functions for each argument, given a cycle consistent dSCA, can be determined by 

using the following formula:

d m o d .n u m ,a r g jn u m ,p c -v a l  —  (Ad OX ]\[ T pCJUdl d vn o d jn u m ,a rg jn u T n ,p c jva l)

As an example, if a module has a definition:

Vi(t,a,x) = cond
Vi(t — 34,a,x ), ^ 

Vi(t — 33, a, x ), 

\ V 1( t - 3 2 , a , x )  )

if Vpc(t -  l ,a ,x )  =  0

Then its arguments would be stored at positions 1,2  and 3 in the array. Assuming 

Maxjg — 36, then if the first argument is considered, di$,o can be determined as:

^1,2,0 — (36 +  0 — $1,2,0) — 1

From the definition of the value function it can be seen that $1,2,0(t, a ,x) = t — 34, 

therefore:
^ 1,2,0 =  (36 +  0 — 34) — 1 

=  (2) -  1 

=  1

To generate the d functions the Createds operation is introduced tha t recurses 

over the structure of the concrete dSCA (since the source abstract dSCA and con

crete dSCA are the same “shape” means there is no requirement to use the mapping 

function).
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Having produced the d functions for the new network attention can be returned 

to the generation of the State Transition equations. Consider again the format of the 

State Transition equation in the source abstract dSCA, it will be similar to:

Vi{t,a,x) = <
or(Vi(t — 32, a, x), V\(t — 31, a, z)) if condl 

gt(Vi(t — 31, a, x), Vi(t — 30, a, x )) if cond2

and the corresponding component specification in the concrete dSCA would be of the 

form:

 ̂ ^ ( ^ , 0,2 3 ^, a, z ), a, x), 
Vi(6 hh2 3 ( t ,a ,x ) ,a ,x ) ,

Udi,2,23 (Vi(6i,2,23(t,a,x),a,x)), 
n̂i,3,23 (̂1 (<*1,3,2s(t, a, x),a, x)) 

hpc(^i,o,24(^5 x), q, 2:), 

Vi(^i,i,24(^a,x),a,2:),

T

or

Vi(t +  l ,a ,x )  =  <

if condl

T

V

n “i,2,2i (U(<Si,2,24(*.a,a;),a,a:)),

n “i,3,24 W f W * ! 0 , * ) . " . * ) )  J y

if cond2

The structure of the function does not change, except the introduction of the 

tuple management operations T and n , so the operation can create the new State 

Transition equations by recursing over the list of source State Transition equations. 

This is done using the CreateSTs  operation:

CreateSTs  : adSCAAlgebra x Function 2 —► d S C A S T V E q L is t

which in turns finally calls a csrewire operation that is responsible for inserting 

the tuple management functions into the State Transition equation. The true path
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component, i.e. the functionality that is used if the conditional component is true, 

needs to be manipulated to incorporate the tuple management functions, i.e given a 

component specification:

cond(a, 6 , c)

then b would be transformed into:

( Vpc{t,a,x), ^

Vvnodjnumit) &•> 
y rewire(b) y

To achieve this the csjrewire operation is introduced:

cs-rewire : Term  x N 3 x ProjEqList  x 'ydSCAEqListx

(ddSCAEqList x SdSCAEqList x Function  —► T erm

and it is defined as:

/  Vpc( t ,a ,x ), \/

cs-rewire

tr m ,

modjnum , 

pcjual, 

M ax at, 

ds,

\

V

/0 S,

ds,

T,

n

=  T

rw

m odjnum , 

pcjja l ,

M axa", 
ds,

/3s, 

ds,

V ^  n  y  y
The rewire operation is responsible for rewiring the network using the new delay 

and wiring functions.

/

Kno(i.num(f) ^)j
/ trm , \

12.1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new concrete 

dSCA can be created by transforming the source abstract dSCA. The Create-cdSCA
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operation is provided to do this, it is given as:

T ra n s fo rm  : adSCAAlgebra x Function2 —> cdSCAAlgebra

The operation takes the source concrete dSCA and is defineed as:

T  rans fo rm
(  S C A src, \

T,
n

=  CreatecdSCA

7

N am e ,

M A tu p  5

V F O p ,

70 : TV2 —> {M , 5, £7},

A) : N 2 -  N ,

SOp ,

Create^ys(SCAsrc) , 

Create(3s($CAsrc) , 

Created s (S 'C A src) , 

CreateIVs((SCAsrc) ,

/ 5 0 4 ^ ,  \
CreateST s

\
T,

n /
where:

V0 : T  x  M r\ tup x M \tup -► Mxtup,,

VFO p =

5 Op =

\  Vk '■ T  x M rf tup x M \tUp > MAtup> J

(  <50,o,o : T  x M2t„p x -> T, \

* ?
^ 5iji0  : T  x x —* T  y/
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and:
k = num-mod(SCAsrc) 

j  = G et-M axA(SC Asrc) 

n = num Jn p (S C A src)

It is not intended to bring together all the operations defined in this chapter into 

a written down specification in this thesis for reasons of brevity. If this was to be 

performed, then it would appear similar to the specification provided for the SCA to 

abstract dSCA transformation in Appendix F.

12.2 Correctness of transformation
T h e o rem  1 2 .2 .1 . The transformation of a Form 2 abstract dSCA to a concrete 
dSCA preserves correctness.

The Form 2 abstract dSCA and transformed result, the concrete dSCA, exist in a 

hierarchy and it is possible to show that the transformation is correct by considering 

Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded Systems.

Let NdscAi be a N fS C A 1  > 1 module source Form 2 abstract dSCA network with 

n <iscAi ^  q sources processing data from a set M ^ S C A 1  against a global clock T d S C A 1  

Let NdscA2 be a NfSCA2 > 1 module concrete dSCA network with ndSCA2 > 0 

sources processing data from a set M ^ S C A 2  against a global clock T d S C A 2  as generated 

from NdscAi using the abstract dSCA to concrete dSCA transformation.

Poole, Holden and Tucker claimed that if it was possible to generate appropriate 

mappings and show the following diagram commutes then the two spatially expanded 

systems under consideration were correct with respect to each other.
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T.d S C A l X [Ttd S C A l M A d S C A U
UridscAl fyfChdscAi VdSCAl j^ChdscA 
i A d s a A i  A d s C A l

4> 4>

Startx x [Td s C A 2 -> MAdSCJ ^ ™  x

Mappings are needed for four areas:

• spaces;

• clocks;

• global states; and

• input streams.

The mappings are defined as follows:

Spaces. Spaces (modules) in the two networks are equivalent, for modules where 

i € N f C A 2  thus it is appropriate to define the respacing operation 7r : lNdscA2 ~ 

IndscAl as>
7 r ( z )  =  i

Clocks. There is no timing abstraction between networks, thus the retiming A : 

rpdscA2 _^ rpdscAi^ where for f ^ rpdscA2  ̂ can appropriately defined as:

A(t) =  t

Input Streams. There are no data or temporal abstractions required for inputs since 

these are not altered by the transformation. Thus is it appropriate to define the input
, S C A 2stream abstraction 9 : [Td S C A 2  —> M d\ dSC A 2  

operation:
&{a)(t) = a(X(t)) 

= a(t)

\TdSCAl , d S C A l

A d , S C A l . as the
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(Note: recall that we are comparing inputs between the Form 2 abstract and 

concrete dSCA).

Global States. It is defined in the transformation that the carrier data set for source 

abstract dSCA and target concrete dSCA differ by the introduction of tuples. These 

means that the state abstraction map is related to the tuple management functions 

(namely the tuple insertion function)

We therefore consider the state abstraction map (j) : M^J^ C A 2 —► MA^sclt1 ôr 

all states s € MAdscli2 defined as follows, for i  € Nj*SCA2 (assuming the use of

queue tuple management functions):

4>{s)( i )  =  n " “ » s ( 0

C o n jec tu re  Given this set of mappings it is believed that the diagram above 

commutes, and proof of such is done in a similar manner as for Theorem 10.2.1.

12.3 Generalised Railroad Crossing Problem  as a 
single processor Concrete dSCA

Finally the transformation of the (source) abstract dSCA from the previous chapter, 

which has a defining shape of V =  (1, fc), to the (target) concrete dSCA with a 

defining shape of V =  (1, fc), using the array style tuple management functions is 

considered. The prerequisites are reviewed first:

• The source and object networks have k > 1 modules and M a xn > 0 component 

specifications in its modules definitions; and

• Condition definitions of each adSCA module, except the programme counter, 

are of the format:

cond(pc = 0 , a, cond(pc = 1 , fr, cond(pc = 2 , c, cond(...))))
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7 -w iring Functions

The process of transformation first creates the concrete dSCA 7 -wiring functions. 

To do so, the Create'ys operation is called as:

( G etN um M odules(SourceSC A ), ^

Create'ys ^ S o u rc e S C A , )  =  B ^ s

= B'ys

The call to B ^ s  expands as follows:

/ 1, \

G etM axN  (SourceSC  A ), 

^ GetryEqs(SourceSC A ),

f  1 , N
36,

y GetryEqs(SourceSC A ), J

B'ys 36, 

y old'ys,

= Rewire'ys
1 ,
36,

y Reindex'ys (old'ys) J
This call to the Reindex'ys operation expands as:

Reindex'ys(e^es) = (Reindex/y(e), Reindex'ys(es))

J

The list of abstract dSCA 7 -wiring functions contains as the first 8 elements:

70
7o
7o
70
71 
71 
7i 
70

(1.0) =  M,
(1.1) =  M,
(1.2) =  Af,
(1.3) =  M,  
( 1 , 0 ) - M ,  
(1,1 ) =  M,  
(1 , 2 ) = M, 
(0,0) = M
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So if Reindex'ys is applied to this list, the results would be:

Reindex^/s

7o(l> 0) =  M, \ /  Reindex7 (70(1, 0 ) =  M), \
7o(l, 1) =  M, /  7 o ( l,l)  =  M, \
7o (l ,2  ) =  M, 7o(1, 2) =  M,
7o(l,3) =  M, IICOr—\O

7 i( l ,0 )  =  M, Reindex^fs 7 i (1,0) =  M,
7 i ( l ,  1) =  M, 7 i ( l ,  1) =  M,
7 i ( l , 2) =  M, 7 i( l ,2  ) = M,
7o(0 , 0) =  M  J 7o(0 , 0) = M  J /

f  Reindex7 (70(1 , 0) =  M ), ^
Reindex  7 ( 7 0 ( 1 , 1 )  =  M )
Reindex j  ( 7 0 ( 1 , 2 )  =  M)
Reindex  7 ( 7 0 ( 1 , 3 ) =  M)
Reindex  7 (71(1, 0) =  M)
Reindex  7 (71 ( 1 ,1 )  = M )
Reindex  7 (71(1, 2) =  M )

\  Reindexj{'~(o{o, 0) =  M ) J
which, after applying the Reindex'y operation would result in the following list of 

7 -wiring functions:
70
70
70
70
71 
71 
71 
70

(1,0) = M,
(1.2) =  M,
(1.3) =  Af,
(1.4) =  M, 
(1,0  ) =  Af,
(1 . 2) - M ,
(1 .3 ) - M ,  
(0,0) = M

Application of the 7 — wiring transformation to the complete list of 7 —wiring oper

ations from the abstract dSCA produces the following list of 7 -wiring function for
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module 1 of the concrete dSCA:
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7 0 ( 1 , 0 ) =  M , 7 o ( l, 2) =  M , 7 o(1 ,3 )  =  M , 7 o ( l ,4 )  =  M ,
7 i ( l , 0 )  =  M , 7 i ( l ,  2) =  M , 7 i (1 ,3 )  =  M , 7 i ( l , 4 )  =  17,
7 2 ( 1 , 0 ) =  M , 72(1, 2) =  77, 7 2 (1 ,3 )  =  £7, 7 2 (1 ,4 )  =  C7,
7 3 ( 1 ,0  ) =  M , 7 3 (1 ,2 )  =  M , 7 3 (1 ,3 )  =  M , 7 3 (1 ,4 ) =  M ,
7 4 ( 1 , 0 ) =  M , 74(1, 2) =  M , 7 4 (1 ,3 ) =  M , 7 4 (1 ,4 )  =  77,
7 5 ( 1 , 0 ) =  M , 7 5 ( 1 , 2 ) =  M , 7 5 (1 ,3 )  =  Af, 7 5 (1 ,4 )  =  <7,

h—
1

O II 7 6 (1 ,2 )  =  M , 7 6 (1 ,3 ) =  M , 7 6 (1 ,4 )  =  17,
7 7 (1 ,0 )  - M , 77(1, 2) =  77, 7 7 (1 ,3 ) =  17, 7 7 (1 ,4 )  =  77,
7 s ( 1 , 0 ) =  M , 7 8 (1, 2) =  77, 7 8 (1 ,3 ) =  17, 7 8 (1 ,4 )  =  17,
7 9 ( 1 , 0 ) =  M , 7 9 ( 1 , 2) =  M , 79(10, 3) =  M , 7 9 (1 ,4 )  =  £7,
7io ( , 0  ) =  M , 7 io  ( ,2 )  =  5 , 7 io ( ,3  ) =  M , 7io (- , 4) =  77,

7 n  ( , 0) =  M , 7 n  ( ,2 )  =  M 7 n ( ,3  ) =  M , 711 ( ,4 )  =  [7,

712 ( ,0  ) =  M , 712 ( ,2 )  =  5 , 712 ( ,3  ) =  M , 712 (- , 4) =  77,

713 ( ,0  ) =  M , 713 ( , 2) =  M , 713 ( ,3  ) =  M , 713 (- , 4) =  [7,
714 ( , 0) — M , 714 ( ,2) = 5, 714 ( ,3  ) =  M , 714 ( ,4 )  =  17,
715 ( , 0) =  M , 715 ( , 2) =  77, 7 l5 ( > 3) =  77, 715 ( ,4 )  =  77,

716 ( , 0) =  M , 716 ( , 2) =  17, 7 ie ( ,3 )  =  17, 716 ( ,4 )  =  77,
717 ( ,0 )  =  M , 717 ( ,2  ) =  77, 7 l7 ( ,3  ) =  77, 717 ( ,4 )  =  77,

718 ( ,0  ) =  M , 718 ( , 2) =  77, 7 is ( ,3 )  =  C7, 718 ( ,4 )  =  77,

719 ( ,0 )  =  M , 719 ( ,2 )  =  77, 7 l9 ( , 3) =  Z7, 719 (- ,4 )  =  77,
720 ( ,0 )  =  M , 720 ( ,2  ) =  77, 720 (- ,3 )  =  77, 720 ( ,4 )  =  77,

721 ( ,0  ) =  M , 721 ( , 2) =  M , 721 ( ,3  ) =  M , 721C ,4 )  =  77,
722 ( ,0  ) =  M , 722 ( ,2 )  =  M , 722 ( ,3  ) =  M , 722 ( ,4 )  =  77,

723 ( ,0 )  =  M , 723 ( ,2 )  =  M , 723 ( ,3  ) =  M , 723 ( ,4 )  =  77,
724 ( ,0 )  =  M , 724 ( , 2) =  M , 724( ,3  ) =  M , 724 ( ,4 )  =  77,

725 (• ,0 )  =  M , 725 ( , 2) =  M , 725 ( ,3  ) =  M , 725 ( ,4 )  =  77,

726 ( ,0  ) =  M , 726 ( ,2  ) =  M , 726 ( ,3  ) =  M , 726 ( ,4 )  =  77,
727 ( , 0) =  M , 727 ( ,2  ) =  M , 727 ( , 3) =  M , 727( ,4 )  =  77,

728 ( ,0 )  =  M , 728 ( , 2) =  aS, 728 ( ,3 )  =  5 , 728 ( ,4 )  =  77,

729 ( , 0) =  M , 729 ( ,2 )  =  17, 729 ( , 3) =  77, 729 ( ,4 )  =  77,

730 ( ,0  ) =  M , 730 ( ,2 )  =  5 , 730 ( ,3 )  =  5 , 730 ( ,4 )  =  77,

731 ( ,0 )  =  M , 731 ( , 2) =  77, 731 ( ,3 )  =  77, 731 ( ,4 )  =  77,

732 ( ,0 )  =  M , 732 (- ,2 )  =  5 , 732 ( , 3) =  <9, 732 (- ,4 )  =  77,
733 ( ,0 )  =  M , 733 0 ,2 )  =  17, 733 (• , 3 ) =  17, 733 (- ,4 )  =  77,

734 ( , 0) =  M , 734 ( ,2) =  5, 734 ( , 3 ) - 5 , 734 ( ,4 )  =  77,
735 ( , 0) =  M , 735 ( , 2) =  77, 735 ( ,3  ) =  £7, 735 ( ,4 )  =  77

and for the program counter, where 0 < pcjual < M a xN — 1 the following 7 -wiring 

functions are produced:

'Jpcjual (,PC) 0 )  A t
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After the Reindex^s  operation completes, the result is used as an input to the 

call to the Rewire operation:

i, \
Rewircys  36,

 ̂ Reindex'ys {oldys) J
which expands as:

(

(

Rewire'ys
1 , \

36, 

y  new'ys J

=  Rewire'ys

0 ,
36,
/

\

ReWire'ypc

\

(  35, ^ 

1 ,

VD )
new'ys

J
where  the call to Rewire-ypc results in the expansion of the first case (where pcjval > 

0):

( 34, \

I  35, \
Rewire^pc 1 ,

y new^s J

= Rewire^pc
/

Build'y

34, 

1 ,

O ,  \  

1 ,
35,

\

new'ys

\

— Rewire^pc

\  ((735(1 , 1) =  M ) , new 'ys) J 
The recursion in ReW ire'ypc  will continue until the base case is reached, where 

p c jv a l = 0 , in which case the following definition is invoked:

ReW ire'ypc

0 ,

1 ,
old'ys , 

y  new'ys j

(

Build'y

f i .  \
1 ,

0 ,
\ M , j

\

, new'ys
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Finally, the recursive call to Rewire'ys where the module number is 0 is reached 

and in such a case the following definition is used:

1 °' \Rewire'ys 36, =  new'ys

 ̂ new'ys J
Completing the Rewire'ys operation completes the generation of 7 -wiring func

tions for the concrete dSCA. The list below shows the 7 -wiring functions produced 

for the GRCP solution:

7o ( ’ 0) == Af, 7o ( 1 ,2 )  =-A f, 7o ( 1 ,3 ) == Af, 7o ( 1 , 4 ) == Af, 70(1 1) =  Af,
71 ( . 0) =: Af, 7 i  ( 1 ,2 ) =■Af, 7 i  ( 1 ,3 ) == Af, 7 i  ( 1 ,4 )  = 7 i  1 1) — Af,
72 ( 5 6) - M, 72 ( 1 ,2 ) = U, 72 ( 1 ,3 ) == 17, 72 (1 ,4 ) = u , 72(1 1) = Af,
73 ( , 0) =-A f, 73 (1 ,2 ) = Af, 73 (1 ,3 ) == Af, 73 ( 1 ,4 )  = Af, 73(1 1) = Af,
74( 5 0) == Af, 74 (1 ,2 )  = Af, 74 ( 1 ,3 )  == Af, 74 (1 ,4 ) = u, 74(1 1) — Af,
75 ( ,0) == Af, 75 (1 ,2 ) = Af, 75 ( 1 ,3 ) == Af, 75 ( 1 ,4 ) =-u , 75(1 1) =  Af,
76 ( .0) == Af, 76 ( 1 ,2 )  = Af, 76 ( 1 ,3 ) == Af, 76 (1 ,4 ) =-u , 76(1 1) = Af,
77 ( 5 0) == Af, 77 ( 1 ,2 ) = £/, 77 (1 ,3 ) == 17, 77 ( 1 ,4 ) = u , 77(1 1) =  Af,
78 ( 10) == Af, 78 ( 1 ,2 ) = u, 78 ( 1 ,3 ) == 17, 78 ( 1 ,4 ) = u , 78(1 1) =  Af,
79 ( >0) == Af, 79 ( 1,2) = Af, 79 ( 10,3) =  Af, 79 ( 1,4) = u , 79(1 1) =  Af,
710 1,0) = Af, 7io 1 ,2 ):= 5, 7io 1,3) =  Af, 710 1 ,4 ):= tf, 7io ( ,1 =  Af,
7 n 1,0) == Af, 7 n 1 ,2 ):= Af 7 n 1,3) =  Af, 711 1 ,4 ):= £/, 7 n ( , 1 =  Af,
712 1,0) == Af, 712 1 ,2 ):= 5, 712 1,3) =  Af, 712 1 ,4 ):= tf, 7 l2 ( ,1 — Af,
713 1 ,0 ):= Af, 713 1 ,2 ):= Af, 713 1,3) =  Af, 713 1 ,4 ):= u, 713 ( ,1 — Af,
714 1 ,0 ):= Af, 714 1 ,2 ):= 5, 714 1,3) =  Af, 714 1 ,4 ):= u, 714 ( ,1 =  Af,
715 1 ,0 ):= Af, 715 1 ,2 ):= 17, 715 1,3) =  tf, 715 1 ,4 ):= u, 715 ( ,1 — Af,
716 1 ,0 ):= Af, 716 1,2) == t/, 716 1,3) =  tf, 716 1 ,4 ):= U, 716 ( ,1 =  Af,
717 1 ,0 ):= Af, 717 1 ,2 ):= u, 717 1,3) = u, 717 1 ,4 ): 717( ,1 =  Af,
718 1 ,0 ):= Af, 718 1 ,2 ):= u, 718 1,3) = u, 718 1 ,4 ):= u, 718 C ,1 — Af,
719 1 ,0 ):= Af, 719 1 ,2 ):= u, 719 1,3) = u, 719 1 ,4 ):= U, 719 ( ,1 =  Af,
720 1 ,0 ):= M, 720 1 ,2 ):= 17, 720 1,3) = u, 720 1,4) = U, 720 ( ,1 — Af,
721 1 ,0 ):= Af, 721 1 ,2 ):= Af, 721 1,3) =  Af, 721 1 ,4 ):= «7, 721 ( ,1 — Af,
722 1 ,0 ):= M, 722 1 ,2 ):= Af, 722 1,3) =  Af, 722 1 ,4 ):= tf, 722 ( ,1 =  Af,
723 1 ,0 ):= Af, 723 1 ,2 ):= Af, 723 1,3) =  Af, 723 1 ,4 ):= tf, 723 ( ,1 — Af,
724 1 ,0 ):= Af, 724 1 ,2 ):= Af, 724 1,3) =  Af, 724 1 ,4 ):= tf, 724( ,1 — Af,
725 1 ,0 ):= Af, 725 1 ,2 ):= Af, 725 1,3) =  Af, 725 1,4 ):= tf, 725 ( ,1 — Af,
726 1 ,0 ):= Af, 726 1 ,2 ):= Af, 726 1,3) =  Af, 726 1 ,4 ):= tf, 726 ( ,1 =  Af,
727 1 ,0 ):= Af, 727 1 ,2 ):= Af, 727 1,3) =  Af, 727 1,4 ):= 727 ( ,1 — Af,
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728 1,0) = M, 728 1 , 2) = 5, 728(1,3) = 5, 728(1,4) = 17, 728(1 1) — M,
729 1 , 0 ) = M, 729 1,2) = 17, 729(1 ,3) = C/, 729(1 , 4 ) = U, 729(1 1 ) = Af,
730 1 ,0  ) = M, 730 1,2) = 5, 73o(l,3) = 5, 73o(l,4) = Z7, 730(1 1) = M,
731 1 ,0  ) = M, 731 1,2) = 17, 73i(l,3) = 17, 73i(l,4) = tf, 73l(l l) = Af,
732 1 ,0  ) = M, 732 1 , 2 ) = 5, 732(1,3) = S, 732(1,4) = 17, 732(1 l) = Af,
733 1,0 ) = M, 733 1,2) = 17, 733(1,3) = 17, 733(1,4) = u, 733(1 1) = M,
734 1 ,0  ) = M, 734 1 , 2) = 5, 734(1,3) = S, 734(1,4) = 17, 734(1 1) = M,
735 1 , 0 ) = M, 735 1,2) = 17, 735(1,3) = [/, 735(1,4) = 17, 735(1 1) = M

where, for the program counter, where 0 < pc.val < M a x#  — 1 the following 7 -wiring 

functions are defined:

7 pcjval{pCi 0 ) M

#-w iring Functions

The new #-wiring function for module 0 of the concrete dSCA are defined, for 

0 <  pcjual < 35, as:

(3Pc-vai(pc, 0 ) =  pc

and for module 1 :

yd0( l , 0) =  PC, #0(1, 2) =  1, #o(l,3) =  1, #o( ,4) = 1, #o(l, 1) =  1,
# i ( l , 0) — pc, # 1(1, 2) =  1, # i( l ,3 )  =  1, # l ( ,4) =  u j , # i ( l , l )  =  1,
/?2(1, 0) =  pc, #2(1, 2) =  cj, #2(1,3) =  CJ, #2( ,4) =  u j , #2(1, 1) =  1,
#3(1, 0) =  pc, #3(1,2) =  1, #3(1,3) =  1, #3( ,4) =  1, #3(1,1) =  1,
#4(1, 0) = p c , #4(1, 2) =  1, #4(1,3) =  1, #4( ,4) =  u j , #4(1,1) =  1,
#5(1, 0) =  pc, #5(1, 2) =  1, #5(1,3) =  1, #s( ,4) =  u j , #5(1,1) =  1,
#6(1, 0) =  pc, # e ( l ,2) =  1, #6(1,3) =  1, #e( ,4) = u j , #6(1, 1) =  1,
#7(1,0) =  pc, #7(1, 2) =  w, #7(1,3) = #7( ,4) = iv, #7(1, 1) =  1,
# s ( l ,0) =  pc, #8(1, 2) =  (J, #8(1,3) = u, #8( , 4) = cj, # b(1,1) = 1,
#9(1, 0) = pc, #9(1, 2) = 1, #9(1, 3) = 1, #9( ,4) = co, #9(1,1) = 1,
# 10(1, 0) = pc, #io(l,2 ) = 9, # 10(1, 3) = 1, # 1 0 1 ,4 )=  w, # io ( l ,l )  = 1,
# 11(1, 0) =  pc, # n ( l ,2 )  = 1, # 11(1, 3) =  1, # 1 1 1 ,4 )=  a;, # n ( l , l )  =  1,
# 12(1, 0) =pc, #12(1,2) =  9, # 12(1, 3) = 1, # 1 2 l,4 )  =  w, #12(1,1) =  1,
# 13(1, 0) =pc, #13(1,2) =  1, # 13(1, 3) = 1, #13 1,4) = w, #13(1,1) = 1,
# 14(1, 0) =pc, #14(1,2) = 9, # 14(1, 3) =  1, #14 1, 4) = cj, #14(1,1) = 1,
# 15(1, 0) =pc, #15(1,2) = u, # 15(1,3) = u j , #15 1 ,4 )=  a;, #15(1,1) = 1,
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#ie( , 0) =  pc, #16 ( , 2) — Cl), #16 ( ,3) = CJ, #16 ( ,4) = CJ, #16(1, ) = 1,
Pn( , 0) = pc, #17 ( ,2) = CJ, #17 ( ,3) = Cl), #17 ( , 4) =  Cl), #17(1, ) “  1,
#18 ( , 0) =  pc, #18 ( , 2) =  cj, #18( ,3) =  £J, #18 ( ,4) =  CJ, #18(1, ) =  1,
#19 ( ,0) = pc, #19 ( , 2) =  Cl), #19 ( ,3) = a;, #19 ( , 4) = Cl), #19(1, ) — 1,
#20 ( , 0) =  pc, #20 ( ,2) =  (J, #20 ( , 3) =  Cl), #20 ( ,4) =  cj, #20(1, ) =  1,
#21 ( , 0) -  pc, #21 ( ,2) =  1, #21 ( > 3) = 1, #21 ( ,4) =  Cl), #2l(l, ) ~  1,
#22 ( , 0) =  pc, #22 ( ,2) =  1, #22 ( > 3) = 1, #22 ( , 4) — CJ, #22(1, -) ~  1)
#23 ( , 0) = pc, #23 ( 5 2) = 1, #23 ( > 3) =  1, #23 ( ,4) =  cj, #23(1, ) =  1,
#24 ( II 7 #24 ( ,2) =  1, #24 ( > 3) = 1, #24 ( ,4) =  w, #24(1, ) = 1,
#25 ( ,0) =  pc, #25 ( 5 2) =  1, #25 ( ,3) = 1, #25 ( , 4) — Cl), #25(1, ) =  15
#26 ( , 0) = pc, #26 ( 5 2) = 1, #26 ( 1 3) = 1, #26 ( ,4) =  cj, #26(1, ) =  1,

#27 ( , 0) = pc, #27 ( ,2) =  1, #27 ( ,3) = 1, #27 ( , 4) =  Cl), #27(1, ) — 1,
#28 ( , 0) =  pc, #28 ( >2) = 1, #28 ( ,3) = 2, #28 ( , 4) — Cl). #28(1, ) = 1,
#29 ( , 0) = pc, #29 ( , 2) = Ct), #29 ( ,3) = u, #29 ( , 4) =  Cl), #29(1, ) =  1,
#30 ( h-1 O II 7 #30 ( ,2) =  3, #30 ( ,3) =  4, #30 ( ,4) =  fJ, #30(1, ) — 1,
#31 ( , 0) =  pc, #31 ( 5 2) — Cl), #31 ( , 3) =  Cl>, #31 ( 5 4) — Cl), #3l(l, ) =  1,
#32 ( , 0) = pc, #32 ( >2) = 5, #32 ( 5 3) = 6 , #32 ( ,4) = cj, #32(1, ) =  1,
#33 ( , 0 ) =  pc, #33 ( , 2 ) =  w , #33 ( , 3) =  Cl), #33 ( , 4) — CJ, #33(1, ) =  1 ,
#34 ( , 0 ) = pc, #34 ( > 2) = 7, #34 ( > 3) = 8 , #34 ( ,4) =  cj, #34(1, ) — 1,
#35 ( , 0 ) = pc, #35 ( , 2) =  Cl), #35 ( ,3) = cj, #35 ( ,4) =  cj, #35(1, ) — 1

D elay Functions

Creating the delay functions for the concrete dSCA is performed by the CreateSs 

operation:

„ , Create^siSource^SCA),
CreateSs ( S o u rceS C A  ) =  B5s

which calls the BSs  operation with the first argument being the list returned from the 

generation of the concrete dSCAs 7 -wiring functions (as shown above) and an empty 

list for the new delay functions. The call expands as follows since there is more than 

one element in the list of wiring functions:

/

BSs
( e , e s ) ,

B S s

es,
/

\

BuildS

(  GetArg(RetTerm(e, 1), 1), ^ ^

GetArg(RetTerm(e , 1),2), 

GetIndex(RetTerm (e , 1), 1), 

t -  1 /
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The first element in the 7 -wiring function list, produced above, is:

7 o(l, 0) =  M

The call to BSs  will progress in the following manner

/

/  G etT r(7(7 0 (1 , 0 ), 1), N
BSs

(e,es),
=  BSs

es,
/

BSs

BuildS

V
es,
/

v

V

BuildS

= BSs

\
es,

Geti4rp(7 0( l , 0 ), 2 ), 

Get/ndea;(7 o(l, 0 ), 1), 

t -  1

\

\' 1 , '
0 ,

0 ,
t - 1  I 7 7

(£ii0lo (t,a ,z) =  t -  1), [

The recursion will complete when there is only one element left in the list of 7 - 

wiring functions, in which case the following call to BSs  is used:

(  GetArg(RetTerm(e, 1), 1), ^

GetArg(RetTerm(e , 1), 2 ), 

G etIndex(RetTerm(e , 1), 1), 

t -  1

For this example, it can be seen from the 7 -wiring function transformation above 

that the last element in the list is:

BSs  | | = BuildS
neqs,

V /

735 (pc, 0 ) =  M

which under the defined transformation will produce the delay function:

Spc, 0,35(^5 C/, x') — t 1
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The complete list of delay functions can be seen in Appendix E.

Initial S tate Equations

Construction of the new Initial State equations commences with a call to the 

C reate lVs  operation:

f  num jm odules(SourceSCA),  \  

G etM axN  (S o u rceS  C A ),
C reatelVs  ^ S o u rceS C A  )  =  B IV s

G e tIV (S o u rceS C A ),

D
where the call to B IV s  is expanded as the recursive call:

V /

( o>
36,

/

B I V s

i, \
36, 

oeqs , 

y  neqs J

— B IV s

\

oeqs,
(  (

\

B I V

\

0 ,
35,

1 ,
oeqs,

V O  )

neqs

/ J

Observe that the call to B I V  is in this case a recursive call to itself, with the 

value of the first argument incremented by one:

(

B I V

1 0 , N

35,

1 ,
oeqs,

Y neqs j

= B I V

1 ,
35,

1 ,
oeqs, 
(

\

G enIVs 0 ,
35,

Y oeqs j

, neqs
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The result of the G enlV  operation will be the following Initial State equation:

VI (0 ,a ,x)  =

I  s ta y ,u ,u ,u ,u ,u ,u ,u ,u ,  \  

u,u, u, iqiqrq u, u,u, 

u ,u ,u ,u ,u ,u ,u ,u ,u ,  

y u , u ,u , u ,u , rqu ,u ,u  j

The recursive nature of B I V s  is such that the result above is repeated until we 

produce the Initial State equation for module 1 at time t = 34:

Vi(34, a, x) =

I  s ta y ,u ,u ,u ,u ,u ,u ,u ,u ,  

u , iq iq u , iq rq iq u, iq 

iq iq iq iq iq iq  u, u, u, 

y iq iq iq u, rq u, u, u, u

The next call to B I V s  is to the non-recursive version:

t ( i,

\

B I V

(  35, \

35,

1 ,
oeqs,

neqs,

B u ild IV

35,

In itS tate

( 35,

1 ,
oeqs,

V s ’ 1 /

,  negs
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which results in a call to the In itS ta te  operation, which is itself defined recursively, 

and in this case results in:

(  34, \

1 ,

In itS ta te

35,

1 ,
oeqs,

0 ,

v ^ - 1 j

= In itS tate

oeqs,
/

RetT  erm

V
^ - l

(

GetEl

\

oeqs

i,

V 35

\  \  

,2

/

\

]

/

=  In itS tate

= In itS ta te

34,

1 ,
oeqs,

(.RetTerm  (Vi(35, a, x) = 0,2),  []),

34,

1 ,
oeqs,

(0 , 0) ,

“ -1  /

\

the next recursive call will look like:

In itS tate

I  35, N 

1 ,
oeqs,

V O ,  /

=  In itS ta te

33,

1 ,
oeqs,

(o,o,o),  y
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In itS ta te

( 0 , \  

1 ,
oeqs,

^ n lis t ,

This recursion continues until the value for the first argument reaches 0, in which 

case the following result is produced:

( stay, true, stay, up, true, fa lse, false, ^

down, up, true, true, false, false, false,

true, false, 90, true, 0, true, 0,

false, false, false, false, false, fa lse, false,

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

\ 0  !  

This result from In itS ta te  is subsequently used to construction the Initial State 

equation at time t =  M a xn  — 1 =  35:

(  stay, true, stay, up, true, false, fa lse, \

down, up, true, true, false, false, fa lse,

true, false, 90, true, 0, true, 0,

false, false, false, false, false, false, false,

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

v °  )

Next the case where B I V s  is called with the module number equal to 0. In this 

case the base case of B I V s  is invoked as:

o, a
36, 

oeqs,

Vi(35, a, x) —

B IV s

(

B IV pc
(  35, \

neqs

V 35, y  )
\  neqs, y

where B IV pc  builds the following list of Initial State equations:

Vo(35, a, x) — 0,

Vq(34, a, x) — 35,

Vo(l ,a ,x )  =  2, 

Vo(0  ,a ,x )  = 1 ,
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The complete list of Initial State equations can be seen in the algebraic specifica

tion of the concrete dSCA at Appendix E.

State Transition Equations

To generate the State Transition equations the CreateST  operation is called with 

the source SCA as an argument:

All of the arguments are either extracted from the source specification, e.g. ex

tracting the previous delay functions, or are created using elements of this transfor

mation, e.g. the creation of new wiring functions. Arguments that have to be created 

have already been shown in this chapter, with the exception of Createds , which is 

now shown.

Generation of the d function for the concrete dSCA network commences with a 

call to the Createds operation:

G etEqSTV F(Source.SC  A ) , \

Q

( Source.SCA,  ̂

CreateST s Y,

Createds (Source.SC A ) ,

Createds (Source.SC A)

Vn / CreateSs (Source .S C  A), 

G etM axN  (Source.SC A) 

T,

/

 ̂ GetNum M odules(Source.SCA ),  ̂

G etM axN (Source.SC A ) ,

createds  ̂ Source.SCA   ̂ =  Bds GetMaxA(Source.SCA)  +  1 ,

GetSEqs(SourcesCA) ,

/
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which for the source abstract dSCA under consideration, with a defining shape of 

(1,35) and maximum number of arguments of 4, can be written:

createds  ̂ So u rceS C A   ̂ =  Bds

( G etN um M odules(SourceSC A ), 

GetM  axN  (S  ource .S C  A), 

G etM axA(SourceSC A)  +  1 , 

GetSEqs(SourcesCA),

\

= Bds

1 ,
36,

5,
Get5Eqs(SourcesCA) ,

\

/

The call to Bds  expands into the recursive call:

(  o>
36,

C ,  \

36,

5,
oldeqs,

Bds = Bds

/

5,
oldeqs,

< (  35, \  \

1 ,
5,
36,

oldeqs,

Bdspc

/
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Expanding the call to Bdspc results in the recursive call:

/  34,

Bdspc

(  35,

1 ,
5,
36,

oldeqs,

V D

\

=  Bdspc

1 ,

5,
36,

oldeqs, 
/

Bdsarg

V

(  4,
35,

1 ,
35,

oldeqs,

V D 7 7 /

Now, the call to the Bdsarg operation expands to the recursive call of:

Bdsarg

< 4,

1 ,
35,

36,

oldeqs,

VD

- Bdsarg

( 3,

E
35,

36,

oldeqs,
/

Buildd

\

1 ,

4,
35,

35,

 ̂ djval, j
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with:

d.val = (M cixn +  pc.val) —

thus:

t — R etT  erm GetEl

( oldeqs, ^  V V 

1 ,

3,

V 3 5 ’ J

,2

/ /
=  (36 +  35) — (t — RetT  erm  (£1,3,35 =  t — 1) , 2) 

=  (71) -  (t -  (t -  1))

=  71 -  {t -  t +  1)

=  71 — 1 

=  70

I

Bdsarg

(  4,

1 ,
35,

36,

oldeqs,

VD

= Bdsarg

\

3,

1 ,
35,

36,

oldeqs,
(

Buildd

V

=  Bdsarg

A ,  \

4 ,

35, 

35,

V 7 0 ’ ) 
\(  3,

1 ,
35,

36,

oldeqs,

V (^i?4,35 — 70, []) J
Values are of limited interest until we arrive at program counter values of 27 since 

all values of the delay function up to this point are the unit delay. For program
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counter 27 the 5th argument is unwired, thus of unit delay, however the recursive call 

to Bdsarg  for the 4th argument, is as follows:

/ o  \

Bdsarg

(  3, \

1 ,
27,

36,

oldeqs,

Y neqs )

— Bdsarg

2 ,

1 ,
27,

36,

oldeqs,
/ /

Buildd

1 ,

3,
27,

35,

Y djual, y

\ \

5^1427  =  62 ,negs

and djual is calculated thus:

d-val = (Maxf j  +  pc.val) — t — RetT  erm

\

GetEl

\

oldeqs,

1 ,

2 ,

V 27> 7

7

\ \ \

,2

7 7
=  (36 +  27) — (t — RetTerm  (£1,2,27 = t — 28), 2) 

=  (63) -  (t -  (t -  28))

=  63 -  (t -  t +  28)

=  6 3 - 2 8  

=  35
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and therefore, Bdsarg can be traced as follows:

/

Bdsarg

(  3, \

1 ,
27,

36,

oldeqs ,

Y neqs J

-- Bdsarg

2 ,

1 ,
27,

36,

o ldeqs ,

Buildd

\

i,

3,
27, 

35,

V 3 5 ’ V

- - Bdsarg

\(  2 ,

1 ,
27,

36,

oldeqs ,

V (^1^3,27 =  ^^5^1^4,27 =  62,7T,e^s) y
Similarly the recursive call with the argument value of 2 will result in the recursive

call:

Bdsarg

(

\

1 ,

1 ,
27,

36,

o ldeqs:

(  dl?2,27 =  34> ^
1̂,3,27 =  35, 

1̂̂ 4,27 =  ^2 , 
y  neqs j

\
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At this point, the recursive call to Bdsarg is made, which simply returns the list 

of new d equations:

/

Bdsarg

\

v

 ̂ d%2,27 =  34,  ̂

1̂̂ 3,27 ~  35,

^M,27 =  ^2 ,
y neqs j

1 ,

1 ,
27,

36,

oldeqs,

 ̂ 1̂̂ 2,27 =  34,  ̂

d%3,27 = 35,

1̂̂ 4,27 =  ^2 , 
y neqs

The next step will be to recurse on the next value of the program counter, which 

will continue until the following base case is invoked:

/  0, \  (  (  5,

0 ,

Bdspc

1 ,
5,
36,

oldeqs, 

Y neqs

Bdsarg

\

\

1 ,
36,

oldeqs,

V

\

neqs

which, would result in:

( ^1 2̂,0 “  1 > ^ 3,0 =  2, d^ 4)0 =  3, neqs ^

at this point the generation of d-values is now finished by recursively calling the Bds  

operation, using its base case:

(o, \
36,

Bds  5, =  neqs

oldeqs,

 ̂ neqs y
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The values of d which are interesting, i.e. are not of unit delay, are:

d 3 5  -  1  1 ,2 ,0  —  1 > ^ L 3 ,3  =  ^ ’
✓735 _  i o  

1 ,2 ,6  — ^ 1 ^ 3 ,1 1  — ^ 0 , 2 1  =  2 3 , ^ L 3 , 2 5  =  3 1
✓735 _  o  

1 ,3 ,0  “ ^ 1 ,4 ,3  = ^ 1 ,3 ,6  =
^ 3 5  __ i o
“ 1 ,3 ,1 2  — ^ 1 ,2 ,2 2  ~  2 4 , ^ 1  2 ,2 6  =  3 2

✓735 _  o  
“ l  4 ,0  — ^ 1  2 ,4  — ^ 1 ,3 ,9  “  1 5 ,

✓735 —  9 1  
1 .2 ,1 3  —  Z i ’ ^ 1  3 ,2 2  =  2 5 , ^ 1 ,3 ,2 6  “  3 3

p o  —  A 
“ l  2 ,1  ~ ^ 1 ,3 ,4  =

j 3 5  _  2 1  
“ 1 ,2 ,9  —  Z i ’ ^ 1 ,3 ,1 3  —  1 9 , ^ 1 ,2 ,2 3  “  2 6 , ^ 1 ,2 ,2 7  “  3 4

p k  _  t  
1 ,3 ,1  —

✓735 _  i  i  
“ 1 ,2 ,5  —  1 1  >

✓735 _  i f ;  
1 ,4 ,1 0  —  i D ’ ^ 1 ,3 ,1 4  —  2 0 , ^ 1 ,3 ,2 3  “  2 7 , ^ 1 ,3 ,2 7  =  3 5

✓735 . c  
“ 1 ,2 ,3  —

✓735 _  
“ l , 3 , 5  —

✓735 _  2 1  
1 ,2 ,1 1  — ^ 1 ,2 ,2 1  =  2 2 , ^ 1 ,2 ,2 4  =  2 8 , ^ 1 ,3 ,2 4  “  2 9

^ 1 ,2 ,2 5  “  3 0

Other calculated values, which will not be used in the eventual concrete dSCA due 

to them being wired to inputs or the special w module are:
j 3 5

1 ,4 ,1
= 36 d35“ 1 2 , 0 - 45 d33

“ 1 2 , 7 = 52 d33“ 1 ,4 ,2 3 = 58 d351 ,2 ,3 1
= 66

✓j3 5
“ l , 2 , 2 = 37 j 3 5

1 ,4 , 0 = 45 j 3 5
“ 1 3 , 7 52 d331 ,4 ,2 4 = 59 J sk

1 ,3 ,3 1 = 66
✓735

1 ,3 ,2
- 37 d331 ,4 , 1 = 46 d33

b 4 ’
7 = 52 d“ 1 ,4 ,2 5 = 60 ( p k

1 ,4 ,3 1 = 66
“ 1 4 , 2

= 37 d y 5

b 2’ 2 = 47 d33
b 2 ’

8 = 53 d33
“ 1 4 , 2 6

— 61 j s k
“ 1 2 , 3 2 = 67

d351 ,4 ,4 = 39 ✓735
h 4 , 2 =- 47 d33

b 3 ’ 8 — 53 d331 ,4 ,2 7
= 62 d3^“ 1 ,3 ,3 2

= 67
j 3 5
“ l 4 , 5 = 40 d33

T 4 , 3 = 48 d33 8 = 53 d3̂1 ,2 ,2 8 = 63 d3^“ 1 ,4 ,3 2
= 67

d33“ 1 4 , 6 = 41 d 3 5

b 2 ’ 4 = 49 d33
b 2 ’ 9 54 d3̂1 ,3 ,2 8 = 63 d3^“ 1 ,2 ,3 3 = 68

d
1 ,2 ,7 = 42

b 4’ 4 = 49 d33
b 3 ’

9 = 54 d 1 ,4 ,2 8 = 63 d3^1 ,3 ,3 3
= 68

✓735

b 3 ’7
= 42 d33

b 2’ 5
—- 50 d331 ,4 , 9

= 54 d331 ,2 ,2 9 = 64 d3^
“ 1 ,4 ,3 3 - - 68

d i A 7 = 42 d33
b 3’ 5 = 50 d331,2 ,2 0 55 d331 ,3 ,2 9

— 64 d33“ 1 ,2 ,3 4 = 69
< 2 , 8

= 43 d33
b 4 ’ 5 = 50 d33

1 ,3 ,2 0
= 55 d331 ,4 ,2 9 = 64 d33“ 1 ,3 ,3 4 69

j 3 5
1 ,3 ,8 43 d33

b 3 ’ 6 51 d33
1 ,4 ,2 0 = 55 d3^1 ,2 ,3 0

= 65 j'dk
1 ,4 ,3 4 = 69

j 3 5
1 ,4 ,8 = 43 d33

b 2 ’ 6 = 51 d331 ,4 ,2 1 - 56 d3̂“ 1 ,3 ,3 0
- 65 d3^1 ,2 ,3 5

= 70
✓735

1 ,4 ,9 44 d1 ,4 , 6 - 51 d 3 31 ,4 ,2 2
= 57 d3*>

“ 1 ,4 ,3 0 = 65 d 3 ^1 ,3 ,3 5
-z 70

d3^“ 1 ,4 ,3 5 70

The process of generating the State Transition equations can now continue. Recall 

that the initial call would be:

t  G e tE q S T V F (Source.SCA ) , \

CreateSTs
( Source.SCA, ^

T,

v n
=  B S T s

/

Createds(Source_SCA), 

Create{3s(Source.SCA), 

Created s(S  our ce.SC A ) , 

G etM axN  (Source JSC A), 
T,

n



A B S T R A C T  DSCA TO CONCRETE DSCA 303

In the GRCP example there are two modules, thus there are two equations in the 

list of State Transition equations from the source abstract dSCA. The expansion of 

the call to B S T s  is given as:

B S T s

\

(e, eqs), 

neqs, 

newds, 

new (3 s, 

newds, 

36,

T,

n

( eqs, 
(

\

=  B S T s

(

B ST ck

\
newds, 

new(3s, 

newds, 

36,

T,

n

\ \

G et Index (RetT  erm(e, 1)), 

0,
Maxjv, 

newds, 

new ps , 

newds,

T,

n

, negs

/
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Considering module 1, then the call to B S T ck  will result in the following call to 

the B S T  operation, since the module is not tuq:

^ (  Vpc(t, a, x) =  0, \  \

B S T

cond

\ /
1,

0,
36,

newds, 

new(3s, 

newds,

T,
n

=  cond

( pcjrewire (Vpc(t, a, x) = 0),

6, \ 
cs.rewire 1,0,36,

y newds, (3s, 6s, T, II J

(  C

B S T  1,1,36,

\  y newds, newfis, newds, T, II J

/
Each of the parts on the right hand side will be expanded as:

pcjrewire (Vpc(t, a, x) = 0) =  {Vpc(t, a, x) = RetTerm (Vpc(t, a, x) = 0, 2))

=  (Vpc(t,a ,x ) = 0)

f  Vpc{t,a ,x), 

Ei (t,a ,x ),

csjrewire

V i(t-3 5 ,a ,a :) , \  ^

cond Vx{t — 34, a, x), ,

 ̂ Vi(t — 33, a, x) y 

1,0,36,

newds, (3s, 6s, T, II y

=  T

cond
^ Vi(t — 35, a, x),  ̂

Ei (t — 34, a, x), 

y Vi(t — 33,a ,x) J

1, 
0, 
36, 

ds,

(3s, 

6s,

\  n J J
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with the rw  operation expanded as:

rw

cond

1,
0,
3 6 ,

ds, 

(3s, 

6s,

V n

(  Vx{ t -  35, a, x), \  

Vi (t — 3 4 ,  a, x ), 

y  E i ( t  —  3 3 ,  a, x) J

= cond

wire

wire

wire

I  V\{t — 3 5 ,  a, x), 

fis, 6s, ds, 

1 , 2 , 0 ,

3 6 ,  n

Vi (t — 3 4 ,  a, x), 

/3s, 6s, ds,

1 . 3 . 0 ,

3 6 ,  n

Vi(t — 3 3 ,  a ,x), 

(3s, 6s, ds,

1 . 4 . 0 ,  

y  3 6 ,  n

As an example, the first wire call expands as:

^  Vi(t  —  3 5 ,a ,x ) , ^

(3s, 6s, ds,

1 , 2 , 0 , 

y  3 6 ,  n

wire ^prjjval i^new.index (n e W - tim e ,  f t ,  3?))

/
with:

(

prj-val = R etT  erm GetEl

\

(  d s . \  \  

1,

2 ,

\ °  /

,2

/
=  RetTerm  (dsi,2,o — 1,2) 

=  1
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new-index RetTerm GetEl

<Ps,\ ^
1,
2 ,

\ °  /  /

,2

new-time =  RetT erm GetEl ,2 + 1

= RetTerm  (/%(1,2) =  1,2)

=  1

l ( 6s, \ \
1,

2 ,

V °  /
=  RetTerm  (£i,2,o(*> a,x) = t — 1,2) +  1 

= * - 1 + 1  

=  t

therefore the first call to the wire operation is:

( Viit -  35, a, z), \
/3s, £s, ds,

1,2,0,

\  36, n  j

and rw  therefore becomes:

/  I  Vi(t — 35,a ,x), \  \

wire =  n ? 5 ( V r1 ( t , a , x ) )

rw

cond

1,

0,
36, 

ds, 

/3s, 

Js,

V n

Vi(t — 34, a, or),

^ V i(t — 33, a, a?) y

- cond
(  n “ (V1(t,a ,x )) , ^ 

n | 5 ( V i ( t , a , x ) ) ,

V  n i 5 ( v 1 ( t , o , x ) )  /
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B S T

cond
(  Vpc(t,a,x) = 0, ^ \

b,

V /
1,

o,
36,

newds, 

newfts, 

newSs, 

T,

n

=  cond

( Vpc(t,a ,x ) = 0,

 ̂ VpC(t, ^
Vi(t,a,x),

 ̂ IIf5(Vi(t,a,x)),  ̂
cond n^5(Vi(i,a,2;)),

V \  nf(K(t,a,a;)) )  j

T

BST

V

/  c> ^
1,1,36,

V newds, new(3s, newds, J

The expansion of B S T  continues recursively until the complete function for module 

1 is produced (this can be seen in Appendix E).

If the call to B S T ck  is considering module 0, then B S T ck  returns the original 

definition as the program counter definition does not change. In the GCRP example, 

the result of B S T ck  for module 0 will be:
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Vpc(t +  l ,a ,x )  =  <

mod add (Vpc(t a X 1) 36) if Vpc(t - a, x = 0
mod add (Vpc(t a X 1) 36) if VpC(t - a, x — 1
mod add iypc{t a X 1) 36) if VpC {t - a, x = 2
mod add (Vpc(t a X 1) 36) if Vpc{t - , a, x = 3
mod add (Vpc(t a X 1) 36) if VpC(t - , a, x = 4
mod add (Vpc{t a X 1) 36) if VpC(t - , a, x = 5
mod add (VpC{t a X 1) 36) if Vpc(t - , a, x = 6
mod add (VpC(t a X 1) 36) if Vpc(t - , a, x = 7
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 8
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 9
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 10
mod add (VpC{t a X 1) 36) if Vpc(t - , a , x = 11
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 12
mod add (VpC{t a X 1) 36) if VpC{t - , a, x -= 13
mod add (Vpc(t a X 1) 36) if VpC(t - , a, x = 14
mod add (Vpc(t a X 1) 36) if VpC{t - , a, x = 15
mod add (VpC{t a X 1) 36) if VpC(t - , a, x = 16
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 17
mod add (Vpc(t a X 1) 36) if VpC(t - , a, x = 18
mod add (Vpc(t a X 1) 36) if Vpcit - a, x = 19
mod add (VpC{t a X 1) 36) if VpC{t - a, x —20
mod add (Vpc(t a X 1) 36) if Vpclt - , a, x —21
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 22
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 23
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 24
mod add (VpC{t a X 1) 36) if Vpdt - , a, x = 25
mod add (VpC(t a X 1) 36) if Vpdt - , a, x = 26
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 27
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 28
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x -= 29
mod add (Vpc{t a X 1) 36) if Vpdt - , a , x - 30
mod add (VpC(t a X 1) 36) if Vpdt - , a, x = 31
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x —32
mod add (Vpc{t a X 1) 36) if Vpdt ~ , a, x = 33
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x —34
mod add (Vpc(t X 1) 36) if Vpdt - , a, x = 35

Recursive calls to B S T s  continue until the base recursive call to B S T s  is made, 

which results in the base case call to just B S T ck  with the appropriate functionality 

from above selected depending upon the module number under consideration.
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For brevity we do not reproduce the transformed State Transition equations for 

other modules here, instead, they are defined in the concrete dSCA specification given 

in Appendix E.

12.4 Correctness of concrete dSCA Example

The generated target concrete dSCA created from transforming the abstract dSCA 

in chapter 11 can be seen to be the same as the concrete dSCA given in Chapter 8.4 

- the discussion of correctness given in that chapter is therefore still valid.

Additionally, this concrete dSCA and the previous abstract dSCA could exist in 

a hierarchy, and this will be demonstrated by introducing mappings for:

• spaces;

• clocks;

• global states; and

• input streams.

Spaces

Spaces (modules) in the two networks are equivalent, for modules where i £ NdSCA2 

thus it is appropriate to define the respacing operation 7r : lNdSCA2 INdSCAi as:

7 r ( z )  =  i

Clocks

There is no timing abstraction between networks, thus the retiming A : T dSCA2 —>
rpdSCAl  ̂ where for I £ rpdSCA2 ̂ can be appropriately defined as:

X(t) =  t
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G lobal S ta tes

The set of sensible obvservable states for this SCA is the output of module 1 at regular 

intervals, given by the retiming. Additionally, the appropriate value from the tuple 

must be projected, and in this case it will be element at the value of the program 

counter. The global state of an SCA at time t  E T  is defined as the set of values held 

by all the observed channels at time t  € T, We introduce a global state abstraction 

mapping, </> of the form:

J. . / \ C h d S C A 2   . A C h d s c A l
r'obs ■ SidSCA2 dSC A l

which is defined to project out the relevant element of module 1.

In p u t S tream s

Input streams for the source and target dSCAs also exhibit a one-to-one mapping, 

and we therefore construct the stream abstraction function:

e : [TdsCA2 -  MAdscJ n“s™  \TdscAi -  MAdscJ "

as:

6(ai(t)) = fli(A(t))

where A( t )  = t , thus

0 ( O i ( t ) )  =  C L i ( t )

C o n jec tu re  It is believed that the following diagram commutes:

T d S C A l  X [ T d S C A l  —* MAdSCA1]In‘s™ x A - d S C A l

<t>

S ta rtx x [TdsCA2 -  M AdSC J ' " —  x i S C A 2  
1 A*

i u P d S C A 2
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12.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping an abstract dSCA 

to a concrete dSCA with the same defining shape (and same type of cycle consistency). 

The techniques have been demonstrated by taking the Form 2 abstract dSCA solution 

to the GRC Problem and generating the appropriate concrete dSCA solution.

12.6 Sources

This transformation is all my own work.



Chapter 13 

Summ ary and Future Work

This thesis set out to investigate whether a method could be developed to support 

the transformation of an algorithm described as a Synchronous Concurrent Algorithm 

to its implementation on a piece of hardware, also described as a SCA. Through the 

investigations it has been determined that this is the case, and that if a small number 

of syntactic extensions are made to the standard model of SCAs then a concise set of 

models can be produced that ease the understanding of such transformations. The 

benefits of restricting the extensions to syntactic ones are that the dicsussion never 

moves away from the well-founded notion of SCAs, and hence the work done on such 

algorithms is still valid in the new models.

To summarise, this work has introduced abstract and concrete dynamic SCAs and 

has demonstrated that there exist algebraic transformations that allow an algorithm 

described as an SCA to be transformed into an an implementation on hardware that 

is described as an SCA.

It has also been identified that the simplest and most compact transformations 

will take place with algorithms that can be described as cycle consistent abstract 

dSCAs.

The implementation of the models and techniques has been demonstrated by 

applying them to the Generalised Railroad Crossing Problem. Subsequently it has

312



SUM M ARY AND FUTURE W ORK 313

been shown that all models of the solution exist within a hierarchy, thus conjectures 

on the proof of correctness can be made. Sensibly, the first piece of future work should 

be to demonstrate that these conjectures are true.

Proposed further work can be divided into X sections:

• Work on documented techniques;

• Extensions to techniques;

• Extending Boundaries; and

• Related Further Work.

Work on Techniques D ocum ented.

Perhaps the one weakness of the work has been the manual nature of the transfor

mations performed, since the author had very limited access to algebraic specification 

tools. However, the algebraic style and nature taken give confidence that implemen

tation in actual tools will be straightforward, with only small adjustments needed to 

the descriptions given to take account of any notation required be the chosen tool. 

Hence the second proposed piece of work is the automation of the transformations.

Areas that should be explored within the transformations themselves are those 

concerned with the options we have not considered, for example gaining a further 

understanding of the changes to the transformations required if cycle inconsistent 

SCAs are considered; or the impact of other mapping functions or tuple management 

systems.

E xtensions to  techniques.

In developing our transformations, the work has been conscious of issues that 

will begin to tax the minds of safety engineers in the future. Take a system that is 

today implemented in a particular way, that has functionality that may be required 

in the future, but the hardware it is implemented on may not be available (or there
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may be another reason for changing the hardware implementation). If this is the 

case, then extending the set of transformations to include a transformation from 

concrete to abstract dSCA would aid the understanding of the new system. The 

old implementation could be turned into an abstract dSCA and then manipulated 

as required before being turned back into a concrete dSCA representing the new 

hardware configuration.

One other piece of future work would be the investigation of allowing the machine 

algebra, M a to alter across models. The current work requires M a to be consistent 

across all models, which immediately precludes the use of higher level data objects. 

Allowing M a to alter introduces the benefits of higher level programming concepts 

to be used, such as enumerations, but adds levels of complexity to transformations. 

Some care can be used in determining what can be allowed, enumerations for example 

would be relatively easy to implement as in one abstract model they can be enumer

ations and at a lower level of abstraction could be implemented as integers. Potential 

complexities arise where the abstract data types require the more concrete dSCAs to 

implement multiple modules per high level concept. An example of this would be an 

abstract dSCA that uses integers, and a concrete dSCA that only operated on bits; 

if the abstract dSCA used 8-bit words, then the concrete dSCA would need eight 

modules per abstract module to manage 32-bit integer operations. Note that SCAs, 

and more importantly the hierarchy of SCAs, can manage this as Poole Tucker and 

Holden show in their paper. Another interesting element to look at for future work 

is that of increasing the spatial efficiency for cycle inconsistent dSCAs that are not 

totally cycle inconsistent.

E xtending Boundaries.

At the boundaries of this work there is ample opportunity for future work. It 

was noted in the introduction of this thesis that work has been done on directly 

producing functional language programmes from formal specification languages, and
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we have indicated how our work was initially inspired by the dataflow approach to 

implementation of functional languages. Fruitful results maybe gained by bridging 

the gap between the work on generation of functional language programs from formal 

methods, implementation of those programs as dataflow graphs, and finally imple

mentation of those dataflow graphs as SCAs (where this work can then complete the 

path to actual implementation). At the other boundary, this work has targeted a ma

chine with a shared-memory like implementation, other models of computing should 

be considered.

R elated Further Work.

Finally, the author feels that the field of Petri-nets may provide some benefits 

when looking at analysis of the SCAs used in out transformations. Heiner and Heisel 

discuss the modelling of safety-critical systems with Z and Petri nets (see [HH99]), 

and it would appear, at a trivial level, there is a link between SCAs and Petri Nets - 

in that SCAs can be converted to Petri Nets. A classical Petri net is a directed graph 

which consists of nodes and arcs (see Peterson [Pet81]), an SCA consists of nodes 

and channels - however, it may be more appropriate to consider the nodes of an SCA 

graph as arcs in a petri net and the channels as nodes, and introduce a new petri net 

node for the clock. Considering SCAs as petri nets may open up the work already 

done on safety analysis using petri nets (e.g. Leverson and Stolzy’s work [LS87]).

This thesis has achieved the aim it set out to study.
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A ppendix A 

Fundamental Algebraic 
Specifications

A .l  Synchronous Concurrent Algorithm  Specifi
cation  
(SC A Algebra)

This defines the specification that defines a standard Synchronous Concurrent Algo

rithm.

B egin
Specification  SCAAlgebra
Im port
Sorts
C onstant Sym bols  
Function  N am es

CreateSCA  : Name x Im pList  x Sort List  x
ConsList x  VFOpList x  7 OpListx 
POpList x  SOpList x  IVEqListx  
STEqList x  7EqList x  (3EqListx 
SEqList —> SCAAlgebra 

Getlmport: SCAAlgebra —*■ ImpList 
GetSorts : SCAAlgebra —>■ SortList 
GetConsts : SCAAlgebra —> ConsList 
GetVFOps : SCAAlgebra —► VFOpList 
GetjOps : SCAAlgebra —> 7OpList 
GetfiOps : SCAAlgebra —> fiOpList 
GetSOps : SCAAlgebra —>• SOpList 
GetlVEqs : SCAAlgebra —> IVEqList 
GetSTEqs : SCAAlgebra —> STEqList

A-l



FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-

Equations

GetjEqs : SCAAlgebra —> ■yEqList 
GetpEqs : SCAAlgebra —> fiEqList 
GetSEqs : SCAAlgebra —> SEqList

CreateSCA

(  name, 
import, 
sorts, 
constants, 
opsVF, 
ops'), 
ops/3, 
opsS,
eqsVFIV, 
eqsVFST, 
eqs'y, 
eqsfi,

\  eqsS,

(  B egin

/  B egin

Get Import

Get Sorts

\  End

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function  N am es opsVF 
7 F unction  N am es ops')
(3 Function  N am es ops(3 
5 F unction  N am es ops 
IV  E quations eqsVFIV  
ST  E quations eqsVFST  
7 E quations eqs')
/3 E quations eqs(3 
5 E quations eqs5

\

End
B egin

y End

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function  N am es opsVF 
7  Function  N am es ops') 
ft Function  N am es ops(3 
5 Function  N am es ops 
IV  E quations eqsVFIV  
ST  E quations eqsVFST 
7 E quations eqs'y 
(3 E quations eqs(3 
5 E quations eqsS

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function  N am es opsVF
7 Function  N am es ops')
(3 Function  N am es ops(3
8  Function  N am es ops 
IV  E quations eqsVFIV  
ST  E quations eqsVFST
7 E quations eqs'y 
(3 E quations eqs(3
8  E quations eqs8

= import

= sorts



FUNDAMENTAL ALGEBRAIC SPECIFICATIONS

GetConsts

GetVFOps

GetyOps

(  B egin  \
Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF 
y  Function  N am es opsy 
j3 Function  N am es ops/3 
S Function  N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST  
7 E quations eqs'y 
/3 Equations eqs/3 
S Equations eqsS

End
B egin

End
B egin

 ̂ End

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF 
7  Function  N am es opsy 
(3 Function  N am es ops(3 
5 Function  N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST  
7 E quations eqsy 
(3 Equations eqs(3 
5 E quations eqs5

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF 
7 Function  N am es ops'y 
(3 Function  N am es ops/3 
5 Function  N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST  
7 E quations eqsy 
/3 Equations eqs/3 
5 E quations eqsS

constants

opsVF

opsy



FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-4

Get(3 Ops

GetSOps

GetlVEqs

I  B egin  \
Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF
7  Function  N am es ops'y 
(3 Function  N am es ops(3
8  Function  N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST
7 E quations eqs'y 
/3 E quations eqs(3
8  Equations eqs8

End
B egin

End
B egin

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF
7 Function  N am es ops'y 
(3 Function  N am es ops/3
8  Function  N am es ops 
IV  E quations eqsVFIV  
ST  E quations eqsVFST
7 E quations eqs'y 
(3 E quations eqs/3
8  E quations eqs8

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function  N am es opsVF
7 Function  N am es ops'y 
{3 Function  N am es ops/3
8  Function  N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST
7 Equations eqs'y 
(3 Equations eqs/3
8  E quations eqsS

End

= ops (3

= ops8

= eqsVFIF
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GetSTEqs

GetyEqs

GetftEqs

I  B egin  \
Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF 
y  Function  N am es opsy 
ft Function  N am es ops ft 
S Function  N am es ops 
IV  E quations eqsVFIV  
ST Equations eqsVFST  
7 Equations eqsy 
ft E quations eqs ft 
S Equations eqsS

End
B egin

End
B egin

End

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF 
7 Function  N am es opsy 
ft Function  N am es ops ft 
S Function  N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST 
7 Equations eqsy 
ft Equations eqs ft 
<5 Equations eqsS

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function N am es opsVF 
7 Function  N am es opsy 
ft Function  N am es ops ft 
5 Function  N am es ops 
IV  E quations eqsVFIV  
ST Equations eqsVFST 
7 Equations eqsy 
ft Equations eqs ft 
S Equations eqsS

= eqsVFST

= eqsy

= eqs ft
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GetSEqs

1 B egin

 ̂ End

Specification  name 
Im port import 
Sorts sorts
C onstant Sym bols constants 
V F  Function  N am es opsVF 
y  Function  N am es opsy 
(3 Function N am es ops(3 
5 F unction N am es ops 
IV  E quations eqsVFIV  
ST  Equations eqsVFST  
7 Equations eqsy 
(3 E quations eqs ft 
S Equations eqsS

— eqsS

End
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A .2 Machine Algebra (M a ) Specification

T h is describ es th e  m achine algebra sp ecification  used  th rou gh ou t th e  exam ple  in th is  

th esis .
B egin

Specification  M a
Im port N, B
Sorts
C onstant Sym bols 0, true, false,  i t

add : N  U  { i t }  x  N  U  {u}  —»• AT U  { i t }  

sub : N  U  { i t }  x  N  U  { i t }  —> N  U  { u }  

and : B  U  { i t }  x  B  U  { i t }  —» B  U  { i t }  

or : B  U  { i f }  x B U  { i f }  - > B U  { i f }

Function  N am es n o t : 5  U  { i f }  —>• B
eq : N  U  { i f }  x  N  U  { i f }  - > B U  { i f }

It : N  U  { i f }  x  N  U  { i f }  - > B U  { i f }  

gt : N  U  { i f }  x  N  U { i f }  —+ B  U  { i f }  

cond : B  U  { i f }  x  N  U  { i f }  x  N  U  { i f }  —»■ TV U  { i f }

Equations
add(a, 0) = a
add(a, succ(b)) = add(succ(a),b)
add(u, b) = if
add(a, u) = u
sub(a,0 ) = a
sub(succ(a), succ(b)) = sub(a, b)
sub(u, 6) = if
sub(a,u) — if
and(true,true) = true
and(true, false) =  /aZse
and( false, true) = false
and(false, false) = false
and(u, b) = u
and(a, u) — u
or(true,true) = true
or(true, false) =  trite
or{false, true) = trite
or (false, false) = false 
or(u, b) =  if
or (a, it) =  it
not (true) = false
not(false) =  trite
not(u) =  it
eg(0, 0) =  trite
eg(sifcc(a),0) = false
eq(0 ,succ(b)) —false
eq(succ(a), succ(b)) = eq(a, b)
eq(u,b) =  it
eq(a,u) —u
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lt( 0,0) =  false
lt(succ(a),0 ) =  false
lt(0 ,succ(b)) = true
lt(succ(a), succ(b)) = Zt(a, b)
lt(u,b) = u
lt(a, u) — u
gZ(0,0) = false
gt(succ(a), 0) = true
gt(0 :suc(b)) = false
gt(succ(a), succ(b)) = gt(a, b)
gt(u, b) = u
gt(a,u) = u
cond(false, b:c) = c 
cond(true, fe, c) = 6
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A .3 Important List Specifications 

A .3.1 7  Function Equation List

Begin
Specification 7 SCAEqList
Import 7  SCAEquation
Constant Symbols []
Function Nam es _ : 7 SCAEquation  x  7 SCAEqList  —> 7 SCAEqList

hd : 7 SCAEqList  7 SCAEquation  
tl : 7 SCAEqList  —» 7 SCAEqList  
GetEl  : 7 SCAEqList  x  AT2 —► j S C  AEqList

Equations
a,b =  a,b 
hd{[]) =  0 
hd(a, as) =  a
« ( D )  =  n
tl (a, as) =  as 
G etE Z ([] ,2 ) =  null
GetEl  ( (7 (2 , j )  =  x, eqs) , i , j ) )  = 7 ( i j )  =  a:
GetEl  ((7 (2 /, 2) =  x, eqs) , i , j ) )  =  GetEl (eqs , i , j )

End

A .3 .2 dSCA 7  Function Operation List

B egin
Specification  7dSC AEqList
Im port 'ydSCAEquaiion
C onstant Sym bols []
Function  N am es

_ : 'ydSCAEquaiion x  'ydSC AEqList —► 'ydSC AEqList 
hd : 'ydSCAEqList —> 'ydSCAEquation 
tl : 'ydSCAEqList —> 'ydSCAEqList 
GetEl : jdSCAEqList x  AT3 —> ydSCAEqList

Equations
a, b = a,b 
hd{\\) = 0 
hd (a, as) = a
« ( 0 )  =  D
tl (a, as) = as 
GetE/([] ,2) — null
GetEl {(jk(i,j) = z,eqs),i,j,k) = 7*(m ) = z 
GetEl ((ya(b,c) — z,eqs),i,j, k) =  GetEl(eqs:i, j ,k )

End
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A .3.3 P Function Operation List

Begin
Specification (ISC AEqList
Im port ftSC AEquation
Constant Symbols []
Function Nam es

_ : /3SCAEquation x ftSC AEqList —> ftSC AEqList 
hd : ftSCAEqList —> ft SCAEquation 
tl : ftSCAEqList —>■ ftSCAEqList 
GetEl : ftSC AEqList x N 2  -» ft SC AEqList

Equations
aft — aft
hd( []) =  D
hd (a, as) =  a
«(D) = 0
tZ (a, as) = as 
GeiE7([], i )  = null
GetEl {(ft{i,j) = x, eqs) ft, j)  =ft{i,j) = x 
GetEl ((ft(y,z) = x,eqs),i,j) = GetEl(eqs,i,j)

End

A .3.4 dSCA P Function Operation List

Begin
Specification ftdSC AEqList
Import ftdSCAE qua,tion
Constant Symbols []
Function Nam es

_: ftdSC AEquation x ftdSC AEqList —>■ ftdSC AEqList 
hd : ftdSC AEqList —> ftdSC AEquation 
tl : ftdSC AEqList —> ftdSC AEqList 
GetEl : ftdSCAEqList x TV3 —> ftdSC AEqList

Equations
aft = aft
hd{ []) =  D
hd (a, as) = a
« ( 0 ) =  0
tl (a, as) = as 
Ge££7([] ,i) =  null
GetEl ({ftk{i,j) =  x,eqs),i,j,k) = ftk(i,j) = x  
GetEl ((fta(b,c) = x,eqs),i,j,k) — GetEl(eqs,i,j,k)

End
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A .3.5 S Function Operation List

Begin
Specification 5SCAEqList
Import SSCAEquation
Constant Symbols []
Function Nam es

_ : SSC AEquation x SSC AEqList —> SSC AEqList 
hd : SSC AEqList —> SSC AEquation 
tl : SSC AEqList —*■ SSC AEqList 
GetEl : SSC AEqList x AT2 -> SSC AEqList

Equations
aft =  aft 
/id(Q) =  0 
hd (a, as) =  a
ti( 0) = 0
tl (a, as) =  as 
GetEl(\\ ft) — null
GetEl ((Sij(t,a,x) = tr,eqs),i,j) = Si^(t,a,x) = t '  
GetEl ((Sb,c(t,a,x) = t',eqs)ft,j) = GetEl(eqsft,j)

End

A .3 .6 dSCA S Function Operation List

Begin
Specification SdSC AEqList
Import SdSC AEquation
Constant Symbols []
Function Nam es

_: SdSC AEquation x SdSC AEqList —> SdSC AEqList 
hd : SdSC AEqList —► SdSC AEquation 
tl : SdSC AEqList —> SdSC AEqList 
G etE l: SdSC AEqList x N 3  —> SdSC AEqList

Equations
aft — aft
hd( []) =  □
hd (a, as) = a
ti(W) = W
tl (a, as) = as 
GetEl(\\ , i) = null
GetEl ({Si,j,k(t, a, x) =t',eqs)ft,j ,k) = Sij!k(t,a, x) = t' 
GetEl ((Sm^ q(t, a, x) =  t',eqs),i,j, k) = GetEl(eqs,i)

End
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A .3.7 Project Function Equation List

B egin
Specification  Proj EqList
Im port Proj Equation
C onstant Sym bols []
Function  N am es

_ : Pro j  Equation x Proj EqList —> Proj EqList 
hd : Proj EqList —> Proj Equation 
tl : Proj EqList -a Proj EqList 
GetEl : Proj EqList x AT3 —> Proj EqList

Equations
aft — aft 
hd([]) = 0 
hd (a, as) — a
tl{ []) = □
tl (a, as) =  as 
GetEl{\\ ,i) = null
GetEl ((d(i,j ,k ) — t,eqs),i ,j , k) =  d(i,j,k) — t 
GetEl ((d(m,p,q) = t,eqs),i,j,k) = GetEl(eqs,i)

End

A .3.8 Map Function Equation List

B egin
Specification  MapEqList
Im port MapEquation
C onstant Sym bols \\
Function  N am es

_ : MapEquation x MapEqList —> MapEqList 
hd : MapEqList —» MapEquation 
tl : MapEqList —> MapEqList 
GetEl : MapEqList x A/-2 —> MapEqList

E quations
a f t  = a f t
hd ([]) =  0
hd (a, as) =  a
« ( D )  =  n
£/ (a, as) =  as 
GetE/Q] ,i)  =  tiu/Z
Ge£E/ ((Z(i,j) = t,eqs),i,j) =  - ( i j )  =  t 
GetEl ((Ei(m, n) = t,eqs),i,j)  =  GetEl(eqs,i)

End
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A .3.9 SCA Initial State Equation List

B egin
Specification
Im port
C onstant Sym bols 
Function  N am es

Equations

IS V  EqList 
IS V  Equation
[]

_ : I  SV  Equation x I  SV  EqList —> I  SV  EqList 
hd : IS V  EqList —> IS V  Equation 
tl : IS V  EqList —>■ IS V  EqList 
GetEl : IS V  EqList x N  —► IS V  Equation 
aft =  aft
hd{\\) =  D
hd(a,as) = a
« ( 0 ) = 0
££ (a, as) =  as
GetEl (\\,i) = null
GetEl ((Vi(0,a, x) =  z,eqs),i)

=  K(0, a, x) = z
GetEl ((Va{0,a,x) = z,eqs),i)

= GetEl(eqs,i)
End

A .3.10 dSCA Initial State Equation List

B egin
Specification  dSCAISV EqList
Im port dSCAISV Equation
C onstant Sym bols []
Function  N am es

_: dSCAISV Equation x dSCAISV EqList -> dSCAISV EqList 
hd : dSCAISV EqList —>■ dSC A I SV  Equation 
tl : dSCAISV EqList -> dSCAISVEqList 
GetEl : dSCAISVEqList x TV -> dSCAISV Equation

E quations
a f t  = a f t
Ad(D) = D
hd (a, as) =  a
« ( 0 )  =  D
tl (a, as) — as 
GetEl(\\ ,i) = null
GetEl((Vi(0,a,x) — z,eqs),i) = VftO,a,x) =  2 
GetEl ((14(0, a, x) =  z,eqs),i) — GetEl{eqs,i)

End
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A .3.11 SCA State Transition Equation List

B egin
Specification  ST V  EqList
Im port ST V  Equation
C onstant Sym bols []
Function  N am es

_ : ST V  Equation x ST V  EqList —»■ S T V  EqList 
hd : ST V  EqList —> STV Equation 
tl : ST V  EqList —► STV EqList 
GetEl : STV  EqList x N  —* ST V  Equation 

E quations aft — aft
hd( []) =  o

hd (a, as) =  a
tH []) =  □
tl (a, as) = as 
GetEl(\\ ,i) = null
GetEl ((Vftt, a, x) = 2, eqs),i) =  V (̂t, a, z) =  2 
GetEl ((Va(t,a,x) =  z,eqs),i) — GetEl(eqs,i)

End

A .3.12 dSCA State Transition Equation List

B egin
Specification  dSCASTV EqList
Im port dSCAISV Equation
Sorts
C onstant Sym bols []
F unction  N am es

_ : dSC A I SV  Equation x ST V  F EqList —*■ dSCASTV EqList 
hd : dSCASTV EqList —> dSCAISV Equation 
tl : dSCASTV EqList dSCASTV EqList
GetEl : dSCASTV EqList x TV —>• dSCAISV Equation

Equations
aft = aft
hd( D) = 0
hd(a,as) — a
«(D) = D
tl (a, as) = as 
Ge££7([] ,2) = null
GetEl ((Vi(t,a,x) = z,eqs),i) = V (̂£,a, rr) =  2 
GetEl ((Va(t,a,x) =  z,eqs),i) =  GetEl(eqs,i)

End
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A .4 Equation Specifications 

A .4.1 SCA State Transition Equation

B egin

End

Specification
Im port
Sorts
C onstant Sym bols 
Function  N am es

E quations

ST V  Equation

CreateVF : VFCallTerm x VFOpTerm - 
RetTerm : ST V  Equation x TV —> Term 
Retlndex : STV  Equation x TV —> TV

CreateV Fitiftz)  = (£i = t2) 
RetTerm(Vn{t, a, x) =  f n, 1) =  Vn(t, a, x) 
RetTerm{yn{t, a, x) = f n, 2) — f n 
RetIndex(Vn(t, a, x) = z) = n

S T V  Equation

A .4.2 dSCA State Transition Equation

B egin
Specification
Im port
Sorts
C onstant Sym bols 
Function  N am es

E quations

dSCASTV Equation

CreateVF : VFCallTerm  x VFOpTerm  —> dSCASTVEquation  
RetTerm : dSC ASTV Equation x TV —> Term  
Retlndex : dSC ASTV Equation x TV —> TV

CreateV F (t\ ,t 2 ) =  (7 = h)  
RetTerm[yn{t, a, i)  =  /„, 1) = Ki(£, a, ar) 
RetTerm{Vn(t,a,x) = f n,2) = f n 
RetIndex(Vn(t, a, x) — z) = n

End
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A .4.3 SCA Initial State Equation

B egin
S pecification  IS V  Equation
Im port
Sorts
C onstant Sym bols 
Function  N am es

CreateVF : VFCallTerm  x VFOpTerm  —> IS V  Equation 
RetTerm : IS V  Equation x TV —> Term 
Retlndex : IS V  Equation x TV —>■ TV

E quations
CreateV F{t\,t2) =  (£1 =  £2)
RetTerm(Vn(t, a, x) =  /n,l) = Vn(t,a,x)
RetTerm{vn(t, a, x) = f n, 2) =  / n 
RetIndex(Vn(t, a, x) = z) = n

End

A .4.4 dSCA Initial State Equation

B egin
Specification  dSCAISV Equation
Im port
Sorts
C onstant Sym bols  
Function  N am es

CreateVF : VFCallTerm x  VFOpTerm  —» dSC A I SV  Equation 
RetTerm : dSC A I  SV  Equation x  TV —> Term 
Retlndex : dSC A I SV  Equation x  TV —> TV

E quations
CreateVF(ti,t2) = (£1 = t 2)
RetTerm(Vn(£, a, x) = f n , 1) =  Vn(t,a,x)
RetTerm(Vn{t, a, x) =  / n,2) = f n 
RetIndex(Vn(t, a, x ) = z) = n

End
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A ppendix B  

SCA Definition of GRCP

Begin
Specification
Im port
Sorts
C onstant Symbols 
VF Function Names 
P Function Names 
7 Function Names 
5 Function Names 
7 Equations

P Equations

SCA
MJ4,T
SCA_Aigebra
0
Vi : T  x M2 x M i —> MA 
P : N  x N  -+ N  
7 : N x  N ^ { S , M }
Sitj :T xM % x M \  —>■T

7(1,1 = M, 7(7,1) = M,
7(1,2 = M, 7(7,2) = M,
7(1,3 = M, 7(10,1 = M,
7(2,1 = M, 7(10,2 = M,
7(2,2 = M, 7(H,1 = 5,
7(4,1 = M, 7(11,2 = M,
7(4,2 =  M, 7(12,1 = Af,
7(4,3 =  M, 7(12,2 = M,

7(5,1 = M, 7(13,1 = 5,
7(5,2 = M, 7(13,2 = M,
7(6,1 = M, 7(14,1 = M,
7(6,2 = M, 7(14,2 = M,
0 ( U = 2, 0(7,1) = 14,
Pi  1,2 =  3, 0(7,2) =  15,
Pi 1,3 =  4, 0(10,1 = 22,
0(2,1 = 5, 0(10,2 = 16,
Pi  2,2 =  6, Pi 11,1 = 9,
0(4,1 = 7, 0(11,2 = 17,
0(4,2 = 8, 0(12,1 = 22,
0(4,3 = 9, 0(12,2 = 18,
W ,1 = 10, 0(13,1 = 9,
0(5,2 = 11, 0(13,2 = 19,
0(6,1 = 12, 0(14,1 = 22,
0(6,2 =  13, 0(14,2 = 20,

7(15,1 = 5, 7(27,1 = M,
7(15,2 = M, 7(27,2 = M,
7 (22,1 = M, 7(28,1 = M,
7 (22,2 = M, 7(28,2 = M,
7(23,1 = M, 7(29,1 = s,
7(23,2 = M, 7(29,2 = S,
7(24,1 — M, 7(31,1 = s,
7(24,2 = Af, 7(31,2 = 5,

7(25,1 =  M, 7(33,1 = s,
7(25,2 = M, 7(33,2 = 5,
7(26,1 = M, 7(35,1 = 5,
7(26,2 =  M, 7(35,2 =  5,
0(15,1 =  9, 0(27,1 =  33,
0(15,2 = 21, 0(27,2 = 34,
0 (22,1 = 23, 0(28,1 = 35,
0 (22,2 = 24, 0(28,2 = 36,
0(23,1 =  25, 0(29,1 = 1,
0(23,2 = 26, 0(29,2 = 2,
0(24,1 = 27, 0(31,1 = 3,
0(24,2 = 28, 0(31,2 =  4,
0(25,1 =  29, 0(33,1 = 5,
0(25,2 =  30, 0(33,2 =  6,
0(26,1 =  31, 0( 35,1 = 7,
0(26,2 = 32, 0(35,2 = 8,
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8 E quations

IV  E quations

ST  Equations

5h i ( t , a , x ) =  t -  1, 5u , i ( t , a , x )  =  t - , 825, i { t , a , x =  t -  1,

Sif2( t , a , x ) =  t -  1, 811,2 ( t , a , x )  =  t - , 82b,2{ t , a , x =  t -  1,

Sh3( t , a , x) =  t -  1, 812,i(t ,  a, x) =  t - , ^26,1 (t, d, X =  t -  1,

82ti ( t , a , x ) =  t  -  1, Si2t2{ t , a , x)  =  t - , <^26,2 ( t , a , x =  t -  1,

S2j2( t , a , x) =  t -  1, 8iz , i { t , a,x)  =  t - , 827, i { t , a ,x =  t -  1,

84,1 ( t , a , x) =  t -  1, Si3t2{ t , a , x)  =  t - , ^27,2 (t, a, X =  t -  1,

S4i2( t , a , x) =  t -  1, 8i4, i { t , a ,x)  =  t  — , 828, i ( t , a , x =  t -  1,

S4t3{ t , a , x) =  t -  1, 8i4,2{t ,a,x)  =  t — , 828,2( t , a , x =  t -  1,

^5,1 (t, cl, Xs) =  t -  1, 8i 5, i ( t , a , x)  =  t - , 829,i(t ,  a, x =  t -  1,

5^ 2( t , a , x) =  t -  1, 8 i 5,2( t , a , x)  =  t  - , 829j2(t, a, x =  t -  1,

86, i ( t , a , x) =  t -  1, 822,i {t, a, x) =  t - , S3i ti i t , a , x =  t  — 1,

8Q,2{t ,a,x) =  t - l , 822,2{t, a , x)  =  t - , ^31,2 (t, a, x =  £ -  1,

fi7,i(t ,  a, x) =  t -  1, 823, i(t ,a,x) =  t - , 833, i { t , a , x =  t  -  1,

87t2{ t , a ,x) =  t -  1, 823,2(1, a, x) =  t - , 833,2( t , a , x =  * — 1,

<$10,1 ( t , a , x ) =  * - l , 824, i { t , a , x)  =  t — , ^35,1 (t, u, X =  t -  1,

<4 o ,2{t,U,X ) =  t -  1, ^ 2 4 ,2 ( 4  a,  x )  t , ^35,2 (t, CL, X =  t -  1

14(0 , a , x) =  stay 14( 0 , a, x)  =  t rue 1 4 ( 0 ,  a, x) = stay
14( 0 , a, x) =  up 14( 0, a, x)  =  t rue 1 4 ( 0 ,  a, x)  = f a l se
14(0 , a , x ) -  f a l s e 1 4 ( 0 ,  a, x)  = down 1 4 ( 0 ,  a, x)  = up
14o ( 0, a, x) =  t rue V i i ( 0, a, x)  =  t rue 1 /1 2 (0 , a, x)  =- f a l s e
V i 3 ( 0 ,  a, x) =  f a l s e V i4( 0, cl, x)  =  fa l s e 1 4 5 ( 0 ,  a, x)  =- t rue
V i6( 0 , a, x) — fa l se 147( 0, a, x)  = 90 148( 0 , a , a ; )  =- true
V i9(0 , a , x) = 0 V2O( 0, a, x) =  true l / 2 i ( 0  ,a,x) =- 0
V22(0 , a , x) = f a l se 1 /2 3 (0 , a, x)  =  fa l se V 2 4 (0 ,  a, x) == fa l s e
V2b(0 , a , x) =  f a l se V2e(0 , a, x)  =  fa l se 1 4 7 ( 0 ,  a, x) =- f a l s e
V28 (0 , a, x) =  f a l s e 1 4 9 ( 0 ,  a, x) =  0 1 4 o ( 0 ,  a, x)  == 0
V31 (0, a, x) =  0 1 4 2 ( 0 ,  a, x) =  0 1 /3 3 (0 , a, x) =-0
V34{0 , a , x) = 0 1 /3 5 (0 , a, x) =  0 V36{0 , a , x)  == 0

Vi(t  +  1, a, x) — cond(V2( t , a , x ) , V3( t , a , x ) ,V4{ t , a,x) ) ,
V2(t +  1, a, x 
V3(t + l ,a ,x  
V4(t +  1 ,a ,x  
14 (£ + 1, a, x 
14(£ +  1 ,a ,x  
V7 (t +  1, a, x 
V8(t +  1 ,a ,x  
V9(t + 1 ,a,x  
Via {t + l ,a ,x
Vh(f+1
V12 (t + 1 
14 3^ + 1 
14 4 (t +  1 
14 5 (t +  1
Vie (t + 1 
V1 7  (t + 1 
Vis{t + 1 
Vig(t +  1

a, x 
a, x 
a, x 
a, x 
a, x 
a, x 
a, x 
a, x 
a, x

= or(yb{t,a,x),VQ{t,a,x)),
= stay,
= cond(V7 (t, a, x), V8 (t, a, x),V 9 (t, a, x)), 
= and(Vio(t,a,x),Vn(t,a,x)),
= and(Vi2 {t,a,x),Vi3 (t,a,x)),
= and(Vi4 (t, cl, x), Vib(£, a, x)),
= down,
= UP,
= eq(V2 2 (t,a,x),Vie{t,a,x)),
= eq(a9 (t),Vi7 {t,a,x)),
= eq(V2 2 (t,a,x),Vi 8 (t,a,x)),
= eq(a9 (t),Vi9 {t,a,x)),
= eq(V2 2 {t, a, x), V2 0 (t, a,x)),
= gt{a9 (t),V2 i{t,a,x)),
= false,
=  90,
= true,
= 0,
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V2 o{t + , a ,  X

v21 (t + , a ,  x
F22(t + , a ,  x
^23^ + , a ,  x
^ 2 4 + , a, x
^25(i + , a, x
^26 + , a, x
V27(t + , a, x
^28 + - , a ,  x
^29^ + , a, x
^30 + , a ,  x
V3i(t + , a, x
V32{t + , a, x
^ 3 3 + , a, x
^34 + , a, x
^35 + , a, x

End

= true,
= °,
= or(V2 3 (t,a,x),V24 (t,a,x 
=  or(V2 5 (t, a, x), V2 6 (t, a, x 
= or(y2 7 {t, a, x), V2 $(t, a, x 
= gt{V2 9 (t,a,x),Vw(t,a,x  
=  gt{Vn(t, a, x),V 3 2 (t, a, x 
=  gt{V3 3 {t,a,x),V 3 A(t,a,x  
=  gt(V3'>{t,a,x),V3f>{t,a,x 
= sub(ai{t),a2 (t)),
=  0 ,

= sub{d3 (t),a4 (t)),
=  0 ,

= sub(a5 (t),a6 (t)),
=  0 ,
= sub{a7 {t),as(t)),
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A ppendix C 

A bstract dSCA Definition of 
G RCP (Form 1)

B egin
Specification
Im port
Sorts
C onstant Sym bols 
V F  Function N am es  
j3 Function  N am es  
7  Function  N am es
6 Function  N am es
7  Equations

acvSCA 
M a , T 
SCA_Algebra

Vi
f3p c : N  x N  
7 pc : N  x N

M a
N
{ S , M }

^ i j ,p c  : T x < M \  —>• T

7o 1,0) ~  M, 7o(l,l) =■ M , 7o(l, 2) =--M, 7o(1,3) =--M,
7o 2,0) — M, 7o(2,1) =-M , 7o(2, 2) =~-M, 7o(2, 3) =-u,
7o 3,0) = M, 7o(3 ,1) =--u, 7o(3, 2) =--u, 7o(3, 3) =--u,
7o 4,0) = M, 7o(4 ,1) == M, 7o(4, 2) = M , 7o(4, 3) == M,
7o 5,0) — M, 7o(5,1) == M, 7o(5,2) == M, 7o(5, 3) =-~u,
7o 6,0) = M, 7o(6 ,1) =-M , 7o(6,2) =-M , 7o(6,3) =~-u,
7o 7,0) = M, 7o(7,1) == M, 7o(7, 2) == M, 7o(7, 3) =--U,
7o 8,0) — M, 7o(8,1) =--u, 7o(8,2) =--u, 7o(8, 3) =--U,
7o 9,0) — M, 7o(9,1) ---u, 7o(9, 2) =--u, 7o(9, 3) =--U,
7o 10,0 = M, 7o(10,1) = M, 7o(10,2) = M, 7o(10 ,3) = U,
7o 11,0 = M, 7o(U,l) = s, 7o(ll> 2) = M, 7o(H , 3) = U,
7o 12,0 — M, 7o(12,l) = M 7o(12,2) = M, 7o(12, 3) = U,
7o 13,0 — M, 7o (13,1) = s , 7o(13,2) = M, 7o(13,3) =  U,
7o 14,0 = M, 7o(14,1) — M, 7o(14, 2) = M, 7o(14, 3) =  U,
7o 15,0 =  M, 7o(15,1) =  s, 7o(15,2) =  M, 7o(15,3) =  U,
7o 16,0 = M, 7o(16,1) =  U, 7o(16,2) =  u, 7o(16,3) =  U,
7o 17,0 =  M, 7o(17,1) =  U, 7o(17,2) =  U, 7o(17,3) =  U,
7o 18,0 = Af, 7o(18,1) = U, 7o(18,2) = U, 7o(18,3) = U,
7o 19,0 = M, 7o(19,1) = U, 7o(19,2) = U, 7o(19,3) = U,
7o 20,0 = M, 7o(20,1) = U, 7o(20, 2) = U, 7o(20, 3) = U,
7o 21,0 — M, 7o (21,1) = U, 7o(21,2) = U, 7o(21,3) = U,
7o 22,0 = M, 7o(22,1) = M, 7o(22,2) — M, 7o(22,3)
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P E quations

7o(23,0 =  M, 7o(23 ,1) =  1W,
7o(24, 0 =  M, 7o(24,1) =  M,
7o(25, 0 =  M, 7o(25, 1) =  M,
7o(26, 0 =  M, 70(26,1) =  M,
7o(27,0 =  M, 70(27,1) =  M,
7o(28,0 =  M, 7o(28 ,1) =  M,
7o(29,0 =  M, 7o(29 ,1) = 5,
7o(30,0 =  M, 7o(30, 1) = u,
7o(31,0 =  M, 70(31,1) = s,
7o(32,0 = M, 7o(32,1) = v,
7o(33,0 =  M, 70(33,1) = s,
7o(34,0 =  M, 7o(34 ,1) = u,
7o(35,0 =  M, 7o(35 ,1) = s,
7o(36,0 =  M, 70(36,1) = v,
7o(pc,0 =  M

/5o(l,0) =  pc, A>(1,1) = 2,
A(2,o) =  pc, A(2,l) == 5,
A(3,0) =  pc, A (3 ,l) = “ ,
A>(4,0) =  pc, A)(4,1) == 7,
A(5,0) =  pc, /?o(5,1) == 10,
A(6, 0) = pc, A (6 ,l) == 12,
A(7,0) =  pc, A (7 ,l) = 14,
A(8,0) = pc, A (8 ,1) == w,
A(9,0) = pc, A (9 ,l) =--01,
A(10,0 = pc, A>(io,l) = 22
A (n ,o = pc, /3b(ll,l) = 9,
A)(12,0 = pc, A>{12,1) = 22
A)(13,0 = pc, A (13,1) = 9,
/?o(14,0 = pc, /3o(14,1) = 22
/?o(15,0 = pc, A (15,l) = 9,
A(16,0 = pc, A (16,l) = 01,
A (17,0 = pc, A (17,l) = 01,
A(18,0 = pc, A (18,1) = w,
A(19,0 = pc, A (19,1) = w,
A(20,0 = pc, A (20,l) = u,
A)(21,0 = pc, A (21,1) = 01,
A  (22,0 = pc, /lo (22,1) =  23
/?o(23,0 = pc, A>{23,1) = 25
A  (24,0 = pc, A>(24,1) = 27
A  (25,0 = pc, A (25,1) =  29
A(26,0 = pc, A) (26,1) = 31
/?o (27,0 = pc, A (27,1) = 33
A(28,0 = pc, A  (28,1) = 35
A(29,0 = pc, Ao (29,1) =  1,
/?o(30,0 = pc, A (30,l) = 01,
A(31,0 = pc, A (31,l) = 3,
A>(32,0 = pc, A (32,l) = “ ,
/5o(33,0 = pc, Ao(33,1) = 5,
/?o (34,0 = pc, A  (34,1) = w,
/?o(35,0 = pc, A (35,l) =  7 ,

A(36,0 = pc, A  (36,1) = u,
A ( p c ,  1 = pc

7 o (23, 2) = M, 7 o (23 , 3)
7o(24,2) = M, 7 o (24, 3) =  *7,
7 o (25, 2) =  M , 70(25,3)
7o(26,2) =  M, 70(26,3) =  17,
7o(27,2) =  M , 7o(27,3) =  £/,
7o(28,2) =  M , 7o(28,3)
7o(29,2) = s, 7o(29,3) =  U.
7o (30, 2) =  u, 7 o (30 , 3) =  U,
70(31,2) = s, 70(31,3) =  U,
7o(32,2) =  u, 7o(32,3) =  U,
7o(33,2) = s, 7 o (33 , 3) =  U,
7o(34,2) =  u, 7 o (34 , 3) =  U,
7 o (35 , 2) = s, 7 o (35 , 3) =  tf,
7o(36,2) =  u, 7 o (36 , 3) =  C7,

A ( l ,2 )  == 3, A)(l,3) == 4,
A (2,2) == 6, A) (2,3) == w,
A (3,2) = 01, A(3,3) == w,
A(4,2) == 8, A) (4,3 )  == 9,
A(5,2) == 11, A > ( 5 , 3 )  == w,
A (6 ,2) - = 13, A(6,3) == w,
A(7,2) == 15, A) (7,3) == w,
A(8,2) - --01, A  (8,3) ==
A (9 ,2) = 01, A>(9,3) == w,
A(10,2) =  16, A)(10,3) =
A (H ,2) =  17, A)(ll,3) =
A (12,2) =  18, A(12,3) =
A (13,2) =  19, A (13 ,3) = w,
A (14,2) = 20, A)(14,3) = w,
A (15,2) = 21, A(15,3) = w,
A(16,2) = 01, A>(16,3) = w,
A(17,2) = A ) ( 1 7 , 3) =
A (18,2) = 01, A(18,3) = w,
A (19,2) = 01, A(19,3) = w,
A (20,2) = 01, A (20,3) =
A(21,2) = 01, A (21 ,3) =
A (22,2) = 24, A (22,3) = w,
A (23,2) = 26, A  (23,3) =
A (24,2) =  28, A  (24,3) =  w,
A (25,2) =  30, A (25,3) =
A (26,2) =  32, A  (26,3) =  w,
A (27,2) =  34, A  (27,3) =
A  (28,2) =  36, A (28,3) =
A(29,2) =  2, A (29,3) =  Cl>.
A  (30,2) = 01, A (30,3) = w,
A (31,2) = 4, A (31 ,3) =
A  (32,2) = A  (32,3) = w,
A ( 3 3 ,2) = 6, A ( 3 3 , 3) =
A  (34,2) = 01, A  (34,3) = w,
A  (35,2) = 8, A (35,3) = u,
A (36,2) = “ , A  (36,3) = w,
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5 Equations
$i^o{t,a,x) £ 1, 
$i,3,o(t,a,x) = t -  1,

$i,i,o{t, a, x) = t -  1, $1,2,0 (t,a,x) = £ -

2̂,0,0 (I, 0, ■®) ^
<̂ 2,3,o(̂ , a, rc) = t -  1,

<52,i,o(*,a,z) = £ -  1, ^2,2,0 j a, x) = £ —

^3,0,o(i, a , x) =  £ — 1, 
3̂,3,0 (t,a,x) =  t -  1,

63,i,o(£,a,x) =  t -  1, 3̂,2,0 (A a, x) = £ -

4̂,0,o(̂ ; O, x) £ 1, 
4̂,3,0 (̂ ? O, *0 ^

^4,i,o(£,o,x) = t -  1, $4,2,o(t, a,x) =  £ —

5̂,0,0 (̂ , O, *®)  ̂
$b,3,o(l, O, “®)  ̂ 1,

^5,l,o(£,0,x) = t — Ij ^5,2,o(£j a, x) = £ —

6̂,0,o( ĵ O, •'*-')  ̂
6̂,3,o(̂ > O, *®) ^

^6,1,0 (I, O', x) £ 1, ^6,2,0 (£) ft, x) = £ —

7̂,0,0 (̂ , 0,, x) ^
67,3,o(£,a,x) =  £ -  1,

<S7>llo(£,a,x) = t -  1, 7̂,2,0 (̂ , a j x) =  £ —

<S8,o,o(*,a,z) = £ -  1,
8̂,3,0 (̂ > a, x) = t — 1,

£8,i,o(£,a,x) = £ -  1, ^8,2,0 (̂ , a, x) =  £ —

<J9>0,o(£,a,x) = t -  1, 
<y9,3,o(t,a,ar) = £ -  1,

<59li,o(t,a,x) = t -  1, ^9,2,0 (^»a, x) =  £ —

^10,0,o(i) a, x) — t — 1 
<Sio,3,o(*,a,z) = t -  1

^10,1,o(̂ 5 a, x) =  £ — 1, ^io,2,o(^ a, x) =  £ —

^ll,0,o(£, a, x) = t -  1 
^11,3,o(A a, x) =  £ — 1

<W,o(*,a,x) = * -  1, ^ii,2,o(£, a, x) = £ —

1̂2,0,o(̂ j a> x) = t — 1 
1̂2,3,o(£, a, x) = £ — 1

^i2,i,o(A a, x) =  £ — 1 ^12,2,o(£; a, x) =  £ —

<5i3,o,o(£,o,x) = t -  1
^13,3,o(£, a, x) = £ — 1

î3,i,o(i> a, x) = £ — 1 $13,2,o(t, 0,x) = £ —

^14,0,o(̂ , a> x) = £ — 1
<*14,3,ol*, a, z) = £ -  1

1̂4,1 ,o ih o, x) £ 1 <*i4,2,o(*,a,x) = £ -

^15,0,o(̂ j a, x) =  t — 1 
^15,3,o(^ a, x) =  £ — 1

<*i5,i,o(*,a,z) =  £ -  1 1̂5,2,o(£, O', x) = £ —

1̂6,0,o(£> a, 31) = £ — 1 
1̂6,3,o(̂ , a,x) = t — 1

<W,o(*,o,x) = t -  1 ^i6,2,o(£, a, x) =  £ -

1̂7,0,o(̂ j O, x) = £ — 1 
^i7,3,o(i, a, x) =  £ — 1

î7,i,o(£) a, x) = £ — 1 <5i7,2,o(£, a, x) =  £ —

<5i8,o,o(£,a,x) = t -  1 
<Si8,3,o(*,a,z) =  £ -  1

1̂8,1,o(£) x) =  £ -  1 1̂8,2,o(£,0,x) = £ -

^19,0,o(^,tt,x) =  t -  1
^19,3,o(̂ ) a, x) =  £ — 1

^19,i ,o(£, a, x) = £ — 1 ^19,2,o(i, O, x) = £ —

^20,0,0 (t, O', x) = t — 1
<*20,3,o(*,a,x) =  t -  1

^20,l,o(̂ > a, x) =  £ — 1 ^20,2,o(£,a,x) = £ -

^2i,o,o(£) a, x) =  £ — 1 
^21,3,o(̂ j a, x) =  £ — 1

$21,1,o(£j a) x) =  £ -  1 2̂1,2,o(£,0,x) = £ -

2̂2,o,o(^a,x) = t -  1 
$22,3,o(*|fl,z) =  £ -  1

^22,1,0 0 ; x) =  £ -  1 $2 2 ,2 ,o{t, a,x) =  £ -

2̂3,0,0 (̂ , a, x) =  £ — 1
$23,3,o(t,0',x) =  t -  1

^23,l,o(^a,x) = £ — 1 $23,2,o(t,a,x) = £ -

^24,0,o(£) a, x) =  £ — 1 
2̂4,3,o(*»a»3i) =  t -  1

^24,i,o(i, a, x) =  £ — 1 2̂4,2,o(£, a, x) = £ —

^25,0.o(̂ , a, x) =  £ — 1 
^25,3,0(t, a, x) = t — 1

2̂5,1,0(̂ s a, x) — t — I 2̂5,2,o(£,0,x) =  £ -
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IV  E quations

^26,0,o(^j a i x =  t -  1 ^26,1,o(£> a , x )  — t  ~ 1> 2̂6,2,0 (t,a, x) =  t —
<526,3 ,0 {t, (I, X = t -  1

<527,0 ,0 (t, a ,  X =  t -  1 S27 d A t ’a , x ) =  t ~ 1 ) <527,2,0 (t, a,x) =  t —
^27,3,o(i) x =  t -  1

2̂8,0 ,o(̂ j a i x =  t -  1 <528,1,0 (t,a,x) =  t —1 , <528,2,0 ( t , a , x ) = t  —

2̂8,3 ,o(̂ > a, X = t -  1

^29,0,o(£j a > X = t -  1 2̂9 ,l,o( )̂ a , x )  = t  —1) 2̂9,2,0 ( t : a , x ) — t  —
2̂9,3 ,o(^ a> X =  t -  1

3̂0,0 ,o(̂ > a , X, =  t - l ^3 0 ,i,o(t, a , x )  =  t  —1) 3̂0,2,0 { t , a , x ) — t  —
3̂0,3,0 (t,a, x =  t -  1

3̂1,0 ,o(̂ > ai X = t -  1 ^3i,i,o(Zj a ,  x )  — t  — 1 , <531,2,0(̂ 5 a, x )  =  t —
^31,3,o(^j a> x =  t -  1

3̂2,0 ,o(i; a , x = t -  1 < W , o ( * ,a , z )  = t - 1 , <532,2,0 ( t , a , x )  =  t  —

$ 3 2 , 3 , o ( t , a , X =  t -  1

f i 3 3 , o , o { t , a , x =  t -  1 <533.i,o(*,a,x) =  t  - 1 , <533,2,0 (t, a, x ) = t  —
<533,3,0 { t ,  a ,  X =  t  -  1

3̂4,0,0 (̂ > a ? x = t -  1 S 3 4 , i , o { t , a , x )  =  t  - 1 , <534,2,0 ( t , a , x ) = t -

<534,3 ,o(£,a,z = t -  1

3̂5,0 ,o(̂ j ai x - t  -  1 3̂5,1,0 ( t , a , x )  — t  —1 ) <535,2,o(^ 0 ,1 x )  = £ —
<$35,3 ,o(t,a,X =  t -  1

$36,0 .o(t; ai x = t -  1 3̂6,l,o( ĵ <̂5 x )  t I 5 <536,2 ,0 ( t ,  a, x) = t  —

3̂6,3 ,o(̂ ) <*, £ = t -  1

<5pc,0 ,o(̂ . =  t -  1

l/i(0 ,a ,x) = stay V2(0, a, x) =  true l/}(0 , a, x) =  stay
^4(0, a, 2;) = up V5 {0, a, x) = true Ve(0 , a, x) =  /aZse
l/7 (0 ,a ,x) = false l/g(0 , a, x) =  down 1/9(0, a, x) =  up
Vio(0,a,x) =- true Vn(0 , a, x) =  true Vi2 (0 , a, x) = /aZse
Vi3 (0 , a, x) == /aZse l/i4(0, a, x) =  false Vi5(0, a, x) =  true
Vi6 (0 ,a ,x) == false 1/17(0, a, x) =  9 0 l/i8 (0 , a,x) =  true
Vi9 (0 , a, x) == 0 1/20(0, a, x) =  true l/2i(0, a, x) =  0

1/22(0, a, x) == false 1^23(0,0, x) =  false l/>4(0,a,x) =  false
1/25(0, a, x) == /aZse l/2 6(0 ,a, x) =  false 1/27(0, a, x) =  false
1̂ 28(0, a, x) == false 1/29(0, a, x) =  0 1/30(0, a, x) =  0

l/3i(0, a, x) == 0 1/32(0, a, x) =  0 1/33(0, a, x) =  0
1/34(0, a, x) == 0 1/35(0, a, x) =  0 l/36(0,a,x) =  0
VpC(0 ,a ,x) == 0
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End

ST  E quations
V2  (t,a,x),

Vi(t +  l ,a ,x) = cond j V$(t,a,x),
V4  (t,a, x ) 

or(V5 (t,a,x), V6 (t,a,x)) 
start

/  V7 (t, a, x),
V^it + l ,a ,x) =  cond I Vg(t,a,x),

\  V9 (t,a,x) 
and(Vio{t, a, x), Vu (t, a, x)) 
and(Vi2 {t, a, x), Vi3(t, a, x)) 
and(Vi4 (t, a, rc), Vi5(i, a, a:)) 
down 
up

V2(t + l,a ,x ) 
V3{t + I;

V&(t +  1, a, x) 
V6(t + 1, a, x) 
V7{t + 1, a, x) 
V$(t + l,a ,x ) 
V9 { t+ l ,a ,x )
Vio(t + ,a, 2; = eq{V22{t:a,x),Vie(t,a, x))
Vn (t + , a , x = eq{a9(t),Vi7{t,a,x))
Vi2(t + ,a, a: = eq(V22{t,a,x),Vi${t,a, x))
V13(t + j a, X“ = eq(a9(t),Vi9{t,a,x))
V14 (t +  . ,a, x = eq(V22(t,a,x),V20(t,a, x))
Visit +  . , a , 2: = gt(a9(t),V2i(t, a, x))
V i6 (t + , a , a: = false
Vi 7{t + , a , 2; = 90
Visit + , a , 2: = true
Vi 9 ( t  + j a, X = 0
V2o(t + ,a, X = true
V2i(t  + > a, X = 0
V22(t + j a , X = or(V23{t,a,x),V24{t,a x))
V23(t + , a , X = or(V25{t,a,x),V26{t,a x))
V24(t + , a , X = or(V27{t,a,x),V2?>(t,a x))
v25(t + , a , X = gt{V29{t,a,x),V3o{t,a, x ))
V2e{t + , a , X = gt(y3i(t,a,x),V32(t,a, x))
v27(t + , a , = gt(V33{t,a,x),V34{t,a, x))
V2s(t + , a X = gt(V3s{t,a,x),V3Q(t,a, x))
V29 (t + , a 2: = sub(ai(t),a2(t))
V30 (t + , a X = 0
V31(t + ,a X = sub(a3(t),a4(t))
V32(t + , a X = 0
V33(t + >a X = sub(a5(t),ae(t))
V34(t + , a x = 0
V35 ( t  + , a .X = sub(a7(t),a8(t))
V3Q(t + , a 2: = 0
Vpc{t + »a X = mod(add(Vpc(t, a , x), 1), 36)

i f  Vpc(t,a,x) = 0,

if  Vpc(t,a,x) — 0, 
i f  Vpc(t,a,x) = 0,

if  Vpc(t,a,x) = 0,

if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc{t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc{t,a,x) = 0, 
if Vpc(t, a, x) =  0, 
if Vpc{t,a,x) = 0, 
if Vpc{t,a,x) =  0, 
if Vpc(t, a, x) = 0, 
if Vpc(t,a,x) =  0, 
if Vpc{t, a, x) =  0, 
if Vpc(t,a,x) = 0, 
if Vpc(t, a, x) = 0, 
if Vpc(t,a,x) =  0, 
if Vpc(t, a, x) =  0, 
if Vpc(t, a, x) = 0, 
if Vpc{t,a,x) = 0, 
if Vpc{t,a,x) =  0, 
if Vpc(t,a,x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t, a, x) = 0, 
if Vpc(t, a, x) =  0, 
if Vpc(t,a,x) = 0, 
if Vpc(t, a, x) = 0, 
if Vpc(t, a, x) = 0, 
if Vpc(t,a,x) = 0, 
if Vpc(t, a, x) =  0,
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A ppendix D 

A bstract dSCA Definition of 
G RCP (Form 2)

Begin
Specification
Import
Sorts
Constant Symbols 
VF Function Nam es 
P Function Nam es 
7  Function Nam es 
5 Function Nam es 
7  Equations

acvSCA 
M a , T 
SCA_Algebra

Vi :
Ppc
'fpc

T  x M% x 
: N x N -  
: N  x N  —

MX M a

Ji,j,pc T  x M%

N
{ S , M }

M \ -

7o(pc,0) = M, 79 (pc, 0) == M, 7 i  8 (pc, 0) =  M, 727 (pc, 0) =  M,
7 i(p c ,0 ) = M, 7io (pc, 0) =  M, 7 i 9 (pc, 0) =  M, 728 (pc, 0) =  M,
72 (pc, 0) = M, 7 n  (Pc, 0) =  M, 720 (pc, 0) =  M, 729 (pc, 0) =  M ,
73 (pc, 0) = M, 712 (pc, 0) =  M, 721 (pc, 0 ) = M, 730 (pc, 0) = M,
74 (pc, 0) = M, 713 (pc, 0) =  M, 722 (pc, 0) =  M, 73i (pc, 0) =  M,
75 (pc, 0) = M, 714 (pc, 0) =  M, 723(PC, 0) =  M, 732 (PC, 0) =  M ,
76 (pc, 0) = M, 7i5 (pc, 0) =  M, 724 (pc, 0) =  M, 733 (pc, 0) =  M,
77 (pc, 0 ) = M, 716 (pc, 0) = M, 725 (PC, 0) =  M, 734 (pc, 0) =  M,
78 (pc, 0 ) = M, 7i 7  (pc, 0) =  M, 726 (pc, 0) =  M, 735 (pc, 0) =  M,
7 o ( l ,0 )  =- M , 7 o ( l , 1) = M, 70(1 ,2 )  = M, 7 o ( l , 3) = M,
7 i ( l , 0 )  = 7 i ( l , l )  = M, 7 i ( l , 2) = M, 7 i ( l , 3) =
72(1, 0 ) = M, 72(1 ,1)  = u , 72(1 ,2 )  = 72 ( 1, 3 ) = u ,
73(1 ,0 )  =- M , 73(1,1)  = M, 73(1 ,2 )  = M, 7 3 ( 1, 3 ) = M,
7 4(1 ,0 )  =: M , 74(1 ,1)  = Af, 74(1 ,2 )  = M , 7 4 ( 1, 3) = u .,
75 (1 ,0 )  =: M , 75(1,1)  = M, 75(1 ,2 )  = M, 7 5 ( 1, 3 ) =
7 6 (1 ,0 ) =: M , 76(1 ,1)  = M, 7 e ( l , 2 )  = M , 76(1 ,3 )  =
7t(1,0) =: M , 77(1 ,1)  = u , 77(1 ,2 )  = c/, 7 7 ( 1, 3) = t/,
7 8(1 ,0 )  =: M , 78(1 ,1)  = U , 7s(1,2) = f/, 78 (1 ,3 )  =
79(1 ,0 )  =: M , 79( 1, 1) = M, 79(10 ,2)  == M, 7 9(1 ,3 )  =
7 io ( l , 0 ) = M, 7 io ( l ,  1) == s, 7 io ( l , 2 )  == M, 7 i o ( l , 3 )  =
7 n  (1 ,0) = M, 7 n ( l ,  1) == M 7 n ( l , 2 )  == Af, 7 n ( l , 3 )  == U ,
712(1,0) = M, 712(1,1) == 5, 712(1,2) == Af, 712(1,3) == U ,
7 13(1 ,0 ):= M, 7 i3 ( l ,  1) == M, 7 i3 ( l ,  2) == M, 713(1,3) == U ,
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/? Equations

714(1, 0 ) =  M , 714(1 , 1) =--S, 714(1,2) = M , 714 ( ,3 ) = u,
715(1 , 0 ) =  M , 715(1 , 1) = U, 715(1,2) = u, 715 ( ,3 ) = u,
716(1,0) =  M , 716(1,1) =--U, 716(1,2) = u, 7l6(- ,3 ) = u,
717(1,0) — M, 717(1, 1) = --U, 717(1,2) = u, 7l7( ,3 ) = U,
7 i8 (l,0 ) =  M, 718(1,1) =--U, 7 i s ( 1, 2 ) = u, 7l8( ,3) = U,
719(1,0) = M, 719(1 ,1) =--U, 719(1,2) = U, 7ig( ,3 ) = U,
72o (1, 0) ~ M, 720(1,1) =--U, 72o(l,2) = U, 720 ( , 3) = U,
7 2 i( l,0 ) = M, 721(1,1) =--M, 7 2 i( l,2 )  = M, 721 ( ,3 ) = u,
722(1 ,0) = M, 722(1,1) = M, 722(1,2 ) = M, 722 ( ,3 ) = U,
723(1,0) = M, 723(1,1) = 723(1,2) = M, 723 ( ,3 ) = U,
724(1,0) = M, 724(1 , 1) =--M, 724(1,2) = M, 724 ( ,3 ) = U,
725(1,0) = M , 725(1,1) == Af, 725(1,2) = M, 725 ( ,3 ) = U,
726(1,0) = M, 726(1,1) = M, 726(1,2) = M, 726 ( ,3 ) = U,
727(1 , 0 ) = M , 727(1 ,1) =--M, 727(1,2) = M, 727 ( , 3) = U,
728(1,0) = M , 728(1,1) = s , 728(1,2) = s, 728 ( ,3 ) = u.
729(1 , 0 ) = M , 729(1 ,1) =--u, 729(1, 2 ) = u, 729 ( ,3 ) = V,
730(1 , 0 ) =  M , 730(1 ,1) =--S, 730(1, 2 ) = S, 730 ( ,3 ) = U,
731(1, 0 ) =  M , 731(1, 1) =--U, 731(1, 2 ) = U, 731 ( ,3 ) = V,
732(1, 0 ) =  M , 732(1 ,1) ='S , 732(1,2) = S, 732 ( ,3 ) = U,
733(1 , 0 ) =  M, 733(1 , 1) =--U, 733(1, 2 ) = U, 733 ( ,3 ) = U,
734(1, 0 ) =  M , 734(1 , 1) =--S, 734(1,2) = S, 734 ( ,3 ) = U,
735(1 , 0 ) =  M , 735(1, 1) =--U, 735(1,2) = U, 735 ( ,3 ) = u

0o(pc, 0 ) =  pc, 09 (pc, 0) =--pc, 0is(pc,O) = pc 027(PC, 0 =  pc,
0i(pc, 0) =  PC, 0io(pc,O) = pc, Pig(pc,0) = pc 028 (PC, 0 =  pc,
02(PC,O) =  pc, 0n(pc,O ) = pc, 02o(pc,O) =  pc 029 (PC, 0 =  pc,
p3(pc,0 ) =  pc, Pl2(pc,0) = PC, 021 (PC, 0) = pc 030 (PC, 0 =  pc,
p4 (pc, 0) =  pc, Pl3 {pc,0 ) =  pc, 022 (PC, 0) =  pc 03] (pc, 0 =  pc,
05 (pc,o) =  pc, 014(pC,O) = PC , 023(pc, 0) =  pc 032 (PC, 0 =  pc,
06 (pc, 0) =  pc, 015 (PC, 0) =  pc, 024 (PC, 0 ) =  pc 033 (PC, 0 =  pc,
0 7(pc, 0) =  pc, 0ie(pc, 0) =  PC, 025 (pc, 0) = pc 034 (pc, 0 =  pc,
0s(pc,O) =  pc, Pn(pc ,0 ) = PC, 026 (pc, 0) =  pc 035 (PC, 0 =  pc,
0o(l,O ) == pc, A)(1,1) = 1, 0 o (l,2 )  = 1, /M l, 3) == 1,
0 i( l,O ) == pc , /?!(1, 1) = 1, 0 i ( l ,  2) = 1, 01 (1 ,3) == w,
# 2(1 , 0 ) == pc, 02(1,1) = LJ, 02(1,2) = w, 02(1,3) == w,
^3(1,0) == pc, 0 3( 1,1) = 1, 03(1,2) = 1, 03(1,3) == 1,
0 4(1,O) == pc, 0 4( i , i )  = 1, 04(1,2) = 1, 04(1 ,3) ==
05(1,0) == pc, Pei 1,1) = 1, 05(1,2) = 1, 05(1,3) ==
/?6(1 ,0) == pc, Pei 1,1) = 1, 06(1,2) = 1, 06(1,3) == w,
/?7(1,0) == pc, /M i, 1) = 07(1,2) = w, 07(1 ,3) ==
0s(l,O ) == pc, Pei 1,1) = 08(1,2) = w, 08(1 ,3) == w,
0 9(1,O) == pc, Pei 1,1) = 1, 09(1,2) = 1, 09(1 ,3) == w,
0 io(1,O) =  pc, Pi o ( l , 1) =-9 , 0 io ( l, 2) == 1, 0 io ( l ,  3) =  w,
0 ii( l,O ) = pc, P u l  1,1) == 1, 0 n ( l ,2 )  == 1, 0 i L(1, 3) = CJ,
012(1,0) =  pc, 012(1,1) == 9 , 012(1,2) == 1, 012(1, 3) =  w,
013(1,0) = pc, /^13(1, 1) == 1, 013(1,2)== 1, 01!0 1 ,3 ) =  U),
^14(1,0) = pc, 014( 1, 1) == 9, 014(1,2)== 1, 014(1,3) = CJ,
0 15(1,O) =  pc, 015(1,1) == w, 015(1,2)== w, 01.5(1,3) =
A e ( l ,0 ) = pc, 016(1,1) == w, 016(1,2) == 016(1, 3) =  £J,
017(1,0) = pc, 017(1,1) == w, 0 1 7 (1 ,2 )== w, 017(1, 3) =
018(1,0) = pc, 018(1,1) == w, 018(1,2) == 018(1, 3) =  CO,
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6 Equations

#19 ( , 0 ) =  p c , # 19 ( 1 , ) =  Ol, #19 ( ,2 )  =  01, #19 ( ,3)
#20 ( , 0 ) =  p c , # 2 0 ( 1 , ) =  01, #20 ( ,2 )  =  01, #20  ( ,3)
#21 ( , 0 ) =  p c , # 2 1 ( 1 , ) =  1, #21 ( , 2 ) =  1, #21 ( ,3)
#22 ( , 0 ) =  p c , # 2 2 ( 1 , ) =  1, #22 ( ,2) = 1, #22 ( ,3)
#23 ( , 0 ) =  p c , # 2 3 ( 1 , ) =  1, #23 ( , 2 ) =  1, #23 ( ,3)
#24 ( , 0 )  =  p c , # 2 4 ( 1 , ) =  1, #24 ( ,2) = 1, #24 ( ,3)
#25 ( , 0 ) =  pc, # 2 5 ( 1 , ) =  1, #25 ( , 2 )  =  1, #25 ( ,3)
#26 ( , 0 ) =  p c , # 2 6 (1 , ) =  1, #26 ( ,2) = 1, #26 ( ,3)
#27 ( , 0) =  PC, # 2 7 (1 , ) =  1, #27 ( ,2) = 1, #27  ( ,3)
#28 ( , 0) =  p c , # 2 8 (1 , ) =  1, #28 ( ,2 )  =  2 , #28 ( ,3)
#29 ( , 0) =  p c , # 2 9 (1 , ) = 0 1 , #29 ( ,2 )  =  ui, #29 ( ,3)
#30 (■ , 0) =  p c , # 3 0 (1 , ) = 3, #30 ( ,2 )  =  4 , #30 ( ,3)
#31 ( , 0) =  p c , #3l(l, ) =  01, #31 ( ,2 )  =  oi, #31 ( ,3)
#32 ( , 0) =  PC, # 3 2 0 , ) =  5, #32 ( , 2 ) =  6 , #32 ( ,3)
#33 ( , 0) =  p c , # 3 3 (1 , ) = 01, #33 ( ,2 )  =  0;, #33 ( ,3)
#34 ( , 0) =  p c , # 3 4 (1 , ) =  7, #34 ( ,2 )  =  8, #34 ( ,3)
#35 ( , 0) =  p c , # 3 5 ( 1 , ) = 01, #35 ( ,2 )  =  01, #35 ( ,3)
# o ( p c , l )  =  p c

p̂c,0,0 0 , CL, *®) 
<$pc,0,270 , CL, X 
<$pc,0,1 ip, O', X?)
fipc,0,28  ip ,  X

<$pc, 0 , 2 { t , a , x )

<$pc,0,29  0 ,  a ,  X  

fipc,0,3 0, CL, x) 
<$pc,0,30  0 ,  X?

<$pc,0,4 0 ,  Xl)

<$pc,0,31 0 ,  <X, X

fipc,0,5 0 ,  X?)

<$pc,0,32  0 ,  <2, X
<$pc,0,6 0 , *2, 3?) 
<$pc,0,33 0 , <̂5 31 
<$pc,0,70, 31)
<$pc,0,34 0, *2, 31 
<$pc,0,8 0, *2, 3l)
<$pc,0,35  0 ,  a , ^  

<$1,0,0 (0 <2, 31
3.0 0 , ^ 
o,i { t , a , x
3.10.0.31
0,2 0 ,  <2, X 
3 ,2 0 , <2, 31 
0,3 0 ,  O, 31 
3,30, O, X 
0,4 0 ,0 ,3 1
3 . 4  0 ,0 ,3 1  

0,5 0 ,  O, X

3.5 0 ,  O, X 
0,6 0 ,  O, X 
3,6 0 , 0 ,X  
0,70 ,  a, X 
3,7 0 , a, x

= £-1, 
=  £ - 1, 
= £-1,  
=  £ - 1, 
= £ - 1, 
= £ - 1, 
= £ - 1, 
= £-1, 
= £-1,  
= £-1, 
= £-1 ,  
= £-1,  
= £ - 1, 
=  t - l ,  

= £ -  1, 
= £ - 1, 
= £ - 1, 
= £ - 1, 
£ 1,

= £ — 33,
: £ 1, 
: £ - l ,  
: £ - l ,  
: £ - l ,  
: £ - l ,
= £ - 3 1 ,
= £ -  1,
= £-1,
= £-1,
= £-1 ,
= £-1 ,
= £-1,
= £ - 1,
= £ -  1,

<$pc,0,9  0 ,  o , x )  — £ 1,

<$pc,0 ,1 0 0 , o , x )  — £ 

5 p c ,o ,n 0 ,o ,x )  — £

<$pc,0 ,1 2 0 , o , x )  — £

<5pc,0 ,1 3 0 , o , x )  — £

<$pc, 0 ,1 4 ( 0  o , x )  — £

<$pc,0 ,1 5 0 , o , x )  £

<$pc,0 ,1 6 0 , o , x )  £

<$pc,0 ,1 7 0 , o , x )  — £

<$i,i,o0 , o , x )  =  £ — 35, 

< 5 i , i , i0 ,o ,  x )  =  £ — 33,

<$1,1,20, o , x )  =  £ -  1,

<$1,1,30, o , x )  =  £ -  33, 

<$i,i,40 , o , x )  =  £ — 31, 

< $i,i,50 , a, x )  =  £ -  30, 

< $i,i,60 , o , x )  =  £ -  2 9 , 

<$i,i,70 , o , x )  =  £ -  1,

=  Ctl, 

=  02, 
=  01, 
=  01, 
=  01, 
=  01, 
=  01, 

=  01, 
=  01, 
= u. 
=  01, 
=  01, 
=  01, 
=  01, 

=  01, 
=  01, 
=  co,

<$pc,0,180) o, x) — £ 

<$pc,0,190, o, x) £ 

<$pc,0,20 0) o, x) =  £ 

<$pc,0 ,2 10 , o, x) £ 

<$pc,0,22 0 , O, x) £ 

<$pc,0,23 0 , o, x) =  £ — 

<$pc,0,24 0, O, x) =  £ 

<$pc,0,25 0) O, x) =  £ — 

<$pc,0,26 0 , O, x) =  £

<$1,2,00. 0 ,X  

($1 , 2 , 1 0  

<$1 , 2,2  0  

<$1,2,3 0  

<$1,2,4 0  

<$1,2,5 0  

<$1 , 2,6  0  

<$1,2,70

a, X 

a, x 

a, x 

a, x 

a, x 

a, x

a, x

=  £ -  3 4 ,  

=  £ -  3 2 ,  

=  *-1,  

=  £ -  3 2 ,  

=  £ -  3 0 ,  

=  £ -  2 9 ,  

=  £ -  2 8 ,  

= £ -  1,
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^ 1 ,0 ,8 a, x ) =  £ - 1 , <Slili8(£,a,x) =  £ -  1, <Si,2,8(*,a}aO =  t -  1,
$1,3,8^ , ^  x) =  £ - 1 ,

1̂,0 ,9 {t, O', x ) =  £ - 1 , <5i,i,9(i,a ,x) =  t — 2 4 , £i,2 ,9 (£,a,a0  =  * — 3 0 ,
$i,3,9{t,a,x) =  t - 1,
1̂,0, io(£ a X =  £ - 1 , $1,1, io(t a, x) =  t — 1, $i,2,io(t a, x) =  t — 3 0

<5i,3,10 (£ a X =  £ -  1,
1̂,0, l l(t a X =  £ -  1, $1,1, n a, x) =  t — 26, 1̂,2,11 (£ a, x) =  t — 30

^l,3 ,n(^ a X =  £ -  1,
<̂ 1,0,12(̂ a X =  £ — 1, ^1,1,12^ a, x) — t — 1, 1̂,2,12^ a, x) =  t — 30

1̂,3 ,12^ a X =  £ - 1 ,
1̂,0 ,13^ a X =  £ -  1, 1̂,1,13^ a, x) = t  — 2 8 , 1̂,2 ,13^ a, x) =  t — 30
1̂,3 ,13^ a X =  £ -  1,
1̂,0,14 a X =  £ -  1, 1̂,1,14^ a, x) =  t — 1, 1̂,2 ,14 (̂ a, x) =  t — 30
1̂,3,14 a X =  £ -  1,
1̂,0 ,15^ a X =  £ -  1, 1̂,1,15^ a, x) =  t — 1, <̂1,2 ,15^ a, x) = t — 1,
1̂,3 ,15 (̂ a X =  t -  1,
1̂,0 ,16^ a X =  t - l , 1̂,1,16^ a, x) = t  — 1, ^l,2 ,1 6(i a, x) =  t — 1,
1̂,3 ,16^ a X = £ -  1,
1̂,0 ,17^ a X = £-- 1, 1̂,1,17^ a rc) =  £ — 1, ^l:2 ,17(i a, x) =  t — 1,
1̂,3 ,17^ a X =  £ -  1,
1̂,0 ,18^ a X =  £ -  1, 1̂,1,18^ a, x) =  t — 1, ^l,2 ,18(i a, x) = t — 1,
1̂,3 ,18^ a X = £ -  1,
1̂,0 ,19^ a X = t - 1, 1̂,1,19 a, :r) =  t — 1, ^i,2,ig(i a, x) =  t -  1,
1̂,3 ,19(£ a X = t — 1,

^l,0,2o(i a X = £ - 1 , 1̂,1,2o(£ a, x) = £ — 1, ^l,2,2o(i a, x) =  £ -  1,
1̂,3 ,2 0^ a X =  £ - 1 ,
1̂,0,21 {t a X =  t - 1, 1̂,1,21 a, x) = t  — 35, $1.2,2l{t a, x) =  t — 34
1̂,3,21 (t a X = £ -  1,

$1,0,22 (t a X = t — 1, $l,l,22(t a, x) = t — 34, $1,2,22 (t a, x) =  t — 33
$1,3,22 (t a X = t - 1 ,

1̂,0 ,2 3^ a X = £ - 1 , $1,1,23^ a, x) =  t  — 33, $l,2,23{t a, x) = t -  32
1̂,3 ,2 3^ a X = t - l ,

1̂,0,24 a X = t - 1, $1,1,24^ a x) =  t  — 32, 1̂,2,24 ( t a x) =  £ -3 1
1̂,3 ,2 4^ a X =  £ - 1,
1̂,0 ,2 5^ a X = t - 1, 1̂,1,25 a x) = t — 31, $1,2,2b {t a, x) =  £ — 30
1̂,3 ,2 5^ a X = t — 1,
1̂,0,26 a X = £ -  1, 1̂,1,2 6^ a x) = t — 30, $l,2,2b{t a x) = £ — 29
1̂,3 ,2 6^ a X = £ -  1,
1̂,0 ,2 7^ a X = t — 1, 1̂,1,2 7^ a x) —t — 29, $l,2,27(t a x) =  £ — 28
1̂,3,27 (t a X = t - 1 ,
1̂,0 ,2 8^ a X = t — 1, 1̂,1,2 8^ a x) = t  -  1, $l,2,2${t a x) = £ -  1,
1̂,3 ,2 8^ a X = t -  1,
1̂,0 ,2 9^ a X = t — 1, 1̂,1,2 9^ a x) = t -  1, $1,2,29 (t a x) =  £ -  1,
1̂,3 ,2 9^ a X = £ -  1,
1̂,0,3o(̂ a X = £ -  1, 1̂,1,3o(̂ a x) = t -  1, $l,2,3o{t a x) = £ -  1,

^l,3 ,3o(̂ a X = t — 1,
$l,0,3l{t a X = t — 1, ^i?i,3 i(i a x) = t -  1, $l,2,3l{t a x) = £ -  1,

1̂,3,31 a X = i — 1,
1̂,0 ,3 2^ a X = i — 1, 1̂,1,3 2^ a x) = t  -  1, 1̂,2,32 {t a x) = £ -  1,
1̂,3 ,3 2^ a X = t — 1,
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IV  E quations

1̂,0,33̂ ? a,x
$1,3,3 3 (1 ,a,x
61.0.34(i, a,x 
61,3,34(tj d,x
61.0.35 (t ,a, x 
$ l , 3 , 3 b ( t ,  a ,  x

= t 
=  £ 
= t 
= t 
=  t 
=  t

Vi(0,a,x) = 
Vi (3 ,a,x) = 
Vi(6,a,x) = 
Vi(9,a,x) =  
Vi (12, a,x 
Vi (15, a, x 
Vi (18, a, x 
Vi (21, a, x 
Vi (24, a, x 
Vi (27, a, x 
Vi (30, a, x 
Vi (33, a, x 
Vp c ( 0  ,a,x 
Vpc(3,d,x
VPc (6 ,  d,x
Vpc( 9,a,x 
Vpc(12, d, X 
Vi,c(15, a, x 
Vpc(l 8 ,a,x  
Vpc(2 1 ,a,x  
Vpc(24,a,x 
Vpc(27, a, x 
Vpc(30,a,x 
VPc (33, cl, x

$i,i,3 3 (t, a , x ) = t  -  1, 61,2,33(t, a, x) =  £ -  1,

61,1,34 (t, a, x) = £ — 1, 61,2,34 (£, a, x) = t — 1,

61,1,35(̂ 5 a, x) =  £ — 1, 61,2,35(̂ 5 a, x) =  £ — 1,

stay,
up,
false,
true,

= false, 
=  false, 
= 0,
= false, 
= false, 
=  false, 
= 0,
= 0,
= 1,
= 4,
=  7 ,

=  10,
= 13,
= 16,
= 19,
=  22,
=  25,
=  28,
= 31,
= 34,

Vi (1, a, x) = 
Vi (4, a, x) = 
Vi (7, a, x) = 
Vi (10, a, x 
Vi (13, a, x 
Vi (16, a, x 
Vi (19, a, x 
Vi (22, a, x 
Vi (25, a, x 
Vi (28, a, x 
Vi (31, a, x 
Vi (34, a, x 
VpC(l,a ,x  
VpC(4,a,x 
Vpc(7, a, x 
V̂ c(10, a, x 
Vi>c(13,a, x 
Vpc( 16, a, x 
VpC(19,a,x 
Vpc(2 2 ,a,x  
Vpc(25, (2, X  

VpC(28, a, x 
Vpc(31, a, x 
Vpc(S4,a,x

true, 
true, 
down, 

= true, 
— false, 
=  90,
=  true, 
=  false, 
= false, 
=  0,
= 0,
= 0,
= 2,
= 5,

=  11, 
= 14, 
= 17, 
=  20 , 
= 23, 
=  26, 
=  29, 
=  32, 
=  35,

Vi(2,a,x) =  
Vi(5, a, x) =  
Vi (8, a, x) =  
Vi (11, <2, x) 
Vi (14, a, x) 
Vi(17, a, x) 
Vi (20, a, x) 
Vi (23, a, x) 
Vi (26, a, x) 
Vi (29, a, x) 
Vi (32, a, x) 
Vi (35, a, x) 
Vpc(2 ,a,x) 
Vpc(5, a, x) 
Vpc( 8,a,x) 
Vpc(11, d, x 
Vpc(l4,a,x 
Vpc( 17, a, x 
KpC (20, a, x 
VpC(23, d, x 
VpC( 26, a, x 
Vpc(29,a,x 
Vpc( 32, a, x 
Vpc(35,d,x

stay,
false,
up,

= false, 
=  true, 
=  £ r i ie ,  

= 0,
= false, 
=  false, 
= 0,
= 0,
= 0,
= 3,
= 6,
= 9,

=  12,
= 15,
= 18,
=  21,
= 24,
=  27,
= 30,
= 33,
= 0
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ST  Equations

Vpc{t+ l ,a,x) =

mod(add(ypc(t,a,x), ,36) i f  Vpc(t - a, x) =  0
mod (add {Vpc(t, a, x) , ,36) i f  VPc{t - a, x) =  1
mod (add (Vpc(t, a, x ), ,36) i f  Vpc(t - a, x) =  2
mod (add (Vpc{t, a, x), ,36) i f  Vpc (t - a, x) = 3
mod (add (Vpc (t ,a ,x ), ,36) i f  Vpc(t - a, x) =  4
mod (add {Vpc(t, a, x ), ,36) i f  Vpc{t - a, x) =  5
mod (add (Vpc (t , a ,x ), ,36) i f  Vpc(t - a, x) — 6
mod (add (Vpc{t, a, x ), ,36) i f  Vpc(t - a, x) =  7
mod (add (Vpc{t, a, x ), ,36) i f  Vpc(t - a, x) =  8
mod (add (Vpc(t, a, x), ,36) i f  Vpc(t - a, x) =  9
mod (add (Vpc(t, a, x ), ,36) i f  Vpc(t - a, x) =  10
mod (add (Vpc(t, a, x), ,36) i f  Vpc(t - a, x) =  11
mod (add (Vpc(t, a, x) , ,36) i f  Vpc(t - a, x) =  12
mod (add (Vpc (t,a,x),. ,36) i f  Vpcit - a, x) =  13
mod (add (Vpc(t, a, x), ,36) i f  VPc it - ,a,x) — 14
mod (add (Vpc(t, a, x), ,36) i f  Vpc(t - ,a,x) =  15
mod (add {Vpc(t, a, x) , ,36) i f  Vpcit - , a, :c) =  16
mod (add (Vpc (t, a, x) , ,36) i f  VPc(t - , a, x) — 17
mod(add(ypc{t,a,x), ,36) i f  Vpdt - a, x) — 18
mod (add (Vpc(t, a, x) , ,36) i f  VpC(t - , a, x) — 19
mod (add (Vpc{t, a, x) , ,36) i f  VpC(t -

oII'sT<3

mod (add (Vpc(t, a, x) , ,36) i f  VpC(t - a, x) =  21
mod (add (Vpc(t, a, x), ,36) i f  VPd t  - , a, x) =  22
mod (add (Vpc(t, a, x), ,36) i f  Vpc(t - , a, x) =  23
mod (add (Vpc(t, a, x ) , ,36) i f  VpC(t - , a, x) =  24
mod (add (Vpc(t, a, x) , ,36) i f  Vpdt - , a, 2;) = 25
mod (add (Vpc (t ,a ,x ), ,36) i f  VpC(t - , a, :r) =  26
mod (add (Vpc(t, a, x), ,36) i f  VpC{t - , a, x) = 27
mod (add {Vpc{t, a, x) , ,36) i f  Vpdt - , a, re) = 28
mod (add (Vpc(t, a, x ), ,36) i f  VpC(t - , a, x) =  29
mod (add {Vpc(t, a, x), ,36) i f  VpC(t - , a, x) =  30
mod (add (Vpc(t, a, x) , ,36) if Vpdt - , a, x) =  31
mod (add (Vpc(t, a, x) , ,36) i f  VpC{t - , a, x) =  32
mod (add (Vpc(t, a, x) , ,36) i f  Vpdt - ,a,x) =  33
mod (add (Vpc(t, a, x ), ,36) i f  VPc(t - , a, x) =  34
mod(add(Vpc(t,a,x), ,36) i f  VpC(t - , a, x) =  35
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Vi (t,a,x) =

/  Vi (t — 35. a, x), \
cond I Vi(t — 34, a,x), j if Vpc(t — 1, a, x) =  0

\  Vi (t — 33, a, x ) J
or(Vi(t — 33, a, x),V<o(t — 32, a, x)) if VpC{t -  1 a, x ) = 1
start if Vpc (t -  1 a, x) = 2

/  V i(t-33 ,a ,x ), \
cond 1 V\ (t — 32, a, x), if VpC{t -  1 a, x) = 3

\  V i(t-3 1 ,a ,x ) J
and(Vi(t — 31, a, x), V\(t — 30, a,x)) if VpC(t -  1 a, x) = 4
and(Vi (t — 30, a, x ), V\ (t — 29, a, x)) if VPc(t -  1 a, x) = 5
and(Vi(t — 29, a, x), V\(t — 28, a,x)) if Vpdt -  1 a, x) = 6
down if VpC{t -  1 a, x) = 7
up if VpC{t -  1 a, x) = 8
eq{V\{t — 24, a, x),Vi(t — 30, a, x)) if V̂ c(£ -  1 a, x) = 9
eq{a9 (t),Vi(t -  30, a, x)) if Vpdt -  1 a, x) = 10
eq(Vi(t— 26:a,x),Vi(t — 30, a x)) if Vpdt -  1 a, x) = 11
eg(a9(*),Vi(i-30,a,aO) if Vpdt -  1 a, x) = 12

— 28, a, x), Vi(t — 30, a x)) if Vpdt -  1 a, x) = 13
gt{a9 (t),Vi{t -  30,a,x)) if V̂ c(i -  1 a, x) 14
false if V̂ c(£ -  1 a, x) = 15
90 if Vpdt -  1 a, x) = 16
true i f  VpC(t -  1 a, X) 17
0 if  Vpdt -  1 a, x) 18
true i f  V̂ c(t -  1 a, x) - 19
0 i f  Vpdt -  1 a x) = 20
or(Vi (t — 35, a, x) ,Vi(t — 34, a x)) i f  Vpcit -  1 a x) = 21
or(Vi(t — 34, a, x ) ,  Vi(t — 33, a x)) i f  VpC{t -  1 a x) = 22
or(Vi(£ — 33, a, x), Vi(t — 32, a x)) i f  Vpdt -  1 a x) = 23
gt(Vi(t — 33, a, x), Vi(t — 31, a x)) i f  V̂ c(t -  1 a x) = 24
gt(Vi(t — 31, a, x), Vi(t — 30, a x)) i f  Vpdt -  1 a x) = 25
gt(Vi(t — 30, a, x), Vi(t — 29, a x)) i f  Vpdt -  1 a x) = 26
gt(Vi(t — 29, a, x), Vi(t — 28, a x)) i f  VpC(t -  1 a x) 27
sub(ai(t),a2 {t)) if  Vpdt -  1 a x) 28
0 if  Vpdt -  1 a x) 29
su6(a3(t),a4(i)) i f  VpC {t -  1 a x) 30
0 i f  VpC{t -  1 a, x) 31
sub{a5 (t),a6  (t)) i f  Vpdt -  1 a x) 32
0 i f  Vpdt -  1 a,x) 33
sub(a7 (t),a&(t)) i f  V̂ c(t -  1 a,x) 34
0 i f  VpC (t -  1 a,x) 35

End
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A ppendix E 

Concrete dSCA definition of 
GRCP

B egin
Specification
Im port
Sorts
C onstant Sym bols 
V F  Function N am es  
P Function  N am es
7  Function  N am es
8 Function  N am es  
7  Equations

cdSCA
M a , T
SCA_Algebra

Vi :T x An x M*tup -> MAtuT
R  • AT v  N  AT

&i.jiPC : T  x An x M kAtup^ T

7o(l 0) =  M, 7 o ( l ,2  ) =  M, 7 o(l,  3) =  Af, 7 o(1,4) =
7o(l 1 ) = M,
7 i ( l 0) =  M, 7 i (1,2) =  M, 71 (1,3 ) =  M, 7i (1,4) =
7 i ( l 1 ) = M,
72(1 0) =  M, 72(1,2) =  t/, 72(1,3) =  !/, 72(1,4) =
7 2 (1 1) =  M,
73(1 0 ) =  M, 73(1,2) =  M, 73(1,3) = M, 73(1,4) =
73(1 1 ) = Af,
74(1 0) = M, 74(1,2) = M, 74(1,3) =  M, 74(1,4) =
74(1 1) = M,
75(1 0) = M, 75(1,2 ) = M, 75(1,3) =  M, 75(1,4) =
75(1 1) =  M,
7e(l 0) =  M, 76(1,2) =  Af, 76 (1,3) = M, 76(1,4) =
7e(l 1 ) = M,
77(1 0) = Af, 77(1,2) = !/, 77(1,3) = !/, 77(1,4) =
77(1 1 ) =  M,
7 s ( l 0) =  M, IIr-H00 78(1,3) =  !/, 78(1,4) =
7s(l 1 ) =  M,
79(1 0) =  M, 7 9 (1 , 2 ) =  M, 79(10,3) =  M, 79(1,4) =
79(1 1 ) =  M,
7 io (l ,  0) — M, 7io(l,2) =  5, 7 io(1 ,3) =  M, 7 io(1 ,4) =
7 i o ( l , l )  =  M,
7 i i(1 .0 )  = 7 n ( l ,  2) =  M 7 i i (1 ,3) =  M, 7 n ( l , 4 )  =
7 n ( l , l )  =  M,

u,
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712(1 0 = Af, 7 i2 ( l ,2 )  = 5, 7 i2 ( l ,3 )  =  Af, 712(1,4) =  7 ,
712(1 1 =  AT,
713(1 0 =  AT, 713(1,2 )  =  Af, 713(1,3 )  =  A/, 713(1 ,4) =  7 ,
713(1 1 = Af,
714(1 0 = M, 7 i4 ( l ,  2) =  5 , 714(1,3) =  A/, 714(1,4) =  7 ,
714(1 1 — M,
715(1 0 — M, 715( 1,2 )  =  7 , 715(1,3) =  17, 715(1,4) =  7 ,
715(1 1 =  AT,
716 (1 0 = Af, 7 i6 ( l ,2 )  = 7 , 7i6 (1 ,3 ) = U, 7 i6 ( l ,  4) =  7 ,
716(1 1 =  Af,
717(1 0 = M, 7 i7 ( l ,  2) =  7 , 717(1,3) = U, 717(1,4) =  7 ,
717(1 1 =  Af,
718(1 0 — Af, 7 i8 ( l ,2 )  = U, 718(1,3) =  7 , 718(1,4) =  7 ,
718(1 1 = Af,
719(1 0 — M, 7 i9 ( l ,  2) = U, 719(1,3) = 7 , 719(1 ,4) = 7,
719(1 1 = M,
720(1 0 — M, 720( 1,2 )  =  U, 720( 1,3 ) =  7 , 720( 1,4 )  =  7 ,
720(1 1 — Af,
721(1 0 =  Af, 7'2i(l, 2) = M, 721( 1,3 )  = Af, 7 2 i( l ,4 )  = 7 ,
721(1 1 = M,
722(1 0 = M, 722( 1, 2) = M, 722( 1,3 )  = Af, 722(1,4 )  = 7 ,
722(1 1 = AT,
723(1 0 = M, 723( 1,2 )  = M, 723(1,3 )  =  A/, 723(1 ,4) =  7 ,
723(1 1 = AT,
724(1 0 = Af, 724(1 ,2) = Af, 724(1,3) = Af, 724(1 ,4) = 7 ,
724(1 1 = Af,
725(1 0 = Af, 725( 1,2 )  = M, 725( 1,3 ) = Af, 725(1,4) = 7 ,
725(1 1 = Af,
726(1 0 =  Af, IIc7CO 726(1,3) =  Af, 726(1 ,4) =  7 ,
726(1 1 = Af,
727(1 0 = Af, 727( 1,2 )  — Af, 727( 1,3 )  = Af, 727(1,4 )  = 7 ,
727(1 1 =  Af,
728(1 0 = Af, 728(1,2) =  5 , 728(1,3) = S, 728(1,4) = 7 .
728(1 1 = Af,
729(1 0 =  Af, 729( 1,2 )  =  E7, 729(1,3 )  =  7 , 729(1 ,4) =  7 ,
729(1 1 = Af,
730(1 0 = Af, 73o(l, 2) = 5 , 73o(l, 3) =  S, 73o(l, 4) = 7 ,
730(1 1 = Af,
7 3 l( l 0 =  Af, 7 3 i ( l ,2  ) = U, 7 3 i( l ,  3) = 7 , 7 3 i( l ,4 )  = 7 ,
7 3 l( l 1 = Af,
732(1 0 =  Af, 732(1, 2) =  S, 732(1,3) =  S, 732(1,4) =  7 ,
732(1 1 =  Af,
733(1 0 = Af, 733(1,2) = U, 733(1,3 )  = 7 , 733(1 ,4) = 7 ,
733(1 1 = Af,
734(1 0 — Af, 734(1,2) =  5 , 734(1,3) = 5 , 734(1 ,4) = 7 ,
734(1 1 = Af,
735(1 0 = Af, 735(1,2) = U, 735(1,3) =  7 , 735(1,4 )  =  7 ,
735(1 1 =  Af,
7o (pc 0 =  Af, 79 (jpC) 0) =  Af, 7 is(p c, 0) =  Af, 727(pc, 0) =  Af,
7 i (pc 0 — Af, 7io(P c , 0) =  Af, 7 i 9 (pc, 0) =  Af, 728 (pc, 0) =  Af,
72 (pc 0 — Af, 7 n (p c ,0 )  =  M, 720 (pc, 0) =  Af, 729 (pc, 0) =  Af,
73 (pc 0 — Af, 7 i2 (p c ,0 ) =  Af, 721 (pc, 0) =  Af, 730 (pc, 0) =  Af,
74 (pc 0 =  Af, 7 i3 (p c ,0 ) =  Af, 722 (pc, 0) =  Af, 731 (pc, 0) =  Af,
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0 Equations

75 (pc, 0) =  Af, 
7e(pc,0) = Af,
77 (pc, 0) =  M,
78 (pc, 0) =  M,

/50(1,0) =  pc,
0o(i,i) = i,
0i(l, 0) =  pc, 
/?i(l, 1) =  1,
02(i,o) = pc,
02( i , i )  =  i,
03(1,O) =  pc, 
/?3(1,1) = 1, 
04(1,O) =pc, 
04(1,1) = 1, 
05(1,O) =pc, 
05(1,1) = 1, 
06(1,O) =pc,Aj(1,1) = 1,
07(1,O) =pc,
/?7(1,1)=1,
08(1,O) =pc, 
08(1,1) = 1, 
09(i,o ) =  pc,
09( i , i )  =  i,
0io(l,O) = pc,
/?io(l
0 n ( l
0 n ( i
012(1
012(1
013(1
013(1
^14(1
014(1
015(1
/5l5(l 
/̂ 16 (1 
016(1 
/?17(1 
017(1 
/5l8 (1 
0i8(l 
019(1 
019(1 
020 (1 
/̂ 20(1 
$21 (1 
021 (1 
022(1 
022(1 
023(1 
/?23(1 
024(1

1) = 1,
0) =  pc,
1) = 1,
0 ) =  pc,
1) = 1,
0) =  pc,
1) =  1,
0 ) =  pc,
1) = 1.
0 ) =  pc,
1) =  1,
0 ) =  pc,
1) = 1.
0) =  pc,
1) = 1,
0 ) =  pc,
1) = 1,
0) =  pc,
1) = 1,
0 ) =  pc,
1) = 1,
0 ) =  pc,
1) = 1,
0 ) =  pc,
1) = 1,
0 ) =  pc,
1) = 1, 
0 ) =  pc,

7i4 (pc, 0) 
7i 5 (pc, 0)
716 (pc, 0)
717 (pc, 0)

A»(l,2) =  

A  (1,2) =  

f t ( l ,  2) =  

03(1,2) =  

04(1,2) =  

05(1,2) = 

06(1,2) =  

07(1,2) =  

0s( l ,2)  =  

09(1,2) =  

010(1,2) = 

0 i i ( l ,2 )  = 

012(1,2)= 

013(1,2)= 

014(1,2) = 

015(1,2) = 

016(1,2) = 

017(1,2) =

0 i 8( 1, 2) =

019(1,2) =

0 2 o ( 1 , 2 )

02i ( l ,2)

022( 1, 2 )

023(1,2)

024(1,2)

= M, 723 (pc, 0) =  Af, 732 (pc, 0) =  Af,
= M, 724 (pc, 0) = Af, 733 (pc, 0) =  Af,
= M, 725 (pc, 0) = Af, 734 (pc, 0) =  M,
= M, 726 (pc, 0) =  Af, 735 (pc, 0) =  M

1, 0b(l,3) =  1, 0o(l,4) =  1,

1, 0 i(l, 3) = 1, 0i (1,4) =  uj,

uj, 02(1,3) = uj, j32 (1,4) = uj,

1, 03(1,3) =  1, 03(1,4) =  1,

1, 04(1,3) =  1, 04(1,4) =  w,

1, 05(1,3) =  1, 05(1,4) = w ,

1, 06(1, 3) = 1, 06(1,4) = u,

uj, 0 7(1, 3) = uj, 07(1 ,4 ) = cj,

UJ, 0g(l,3) =  co, 0s(l,4  ) = uj,

1, 09(1,3) = 1, 09(1,4) = uj,

- 9, 0io(l,3) =

— 1, 0 n

= 9, 012

= 1, 013

= 9, 014

= 015

= W, 016

= 017

=  018

— 019

=  W, 020

=  1, 021

=  1, 022

= 1, 023

= 1, 024

1.3) =

1.3) =

1.3) =

1.3) =

0io(l,4 

0n ( l ,  4 

012(1,4 

013(1,4 

014(1,4

1.3) = a;, 015(1,4 

1,3 ) = cj, 016(1,4

1.3) = uj, 0 i7(l, 4

1.3) = £J, 018(1,4

1.3) = cj, 0 i9(l, 4

1 .3 )  =  uj, 0 2 o ( 1 ,4

1.3) =  1, 02i(l, 4

1.3) = 1, 022(1,4

1.3) = 1, 023(1,4

1.3) =  1, 024(1,4

= w, 

= w, 

= w, 

= w, 

=  w, 

= w, 

=  w,

= w, 

= w, 

= w, 

= w, 

= w,

= w,

= £J,

=  CJ,

024( 1, 1) =  ! ,
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^25(1 ,0 = PC, £25(1 ,2 ) = 1, £25(1 ,3) = 1 , £25(1 ,4) = cj,
# 25(1 ,1 = 1,
/̂ 26 (1 0 =  pc, £26(1 ,2 ) = 1, £26(1,3) = 1 , £26(1,4) = <x>,
p26(1;1 = 1,
# 27(1 ,0 =  pc, £27(1 ,2 ) = 1, £27(1 , 3 ) = 1, £27(1,4) = CJ,
#27(1J1 = 1,
/̂ 28(1> 0 =  pc, £28(1 ,2 ) = 1, £28(1 ,3) = 2, £28(1,4) = to.
$28(1j 1 =  1,
# 29(1 ,0 =  pc, £ 29( 1, 2 ) =  u , £ 29(1,3 )  =  uj , £ 29( 1, 4 ) = to,
/?29 (1 1 =  1,
f t o ( l ,0 = pc, £ 30(1, 2 ) =  3, £ 30( 1,3 )  =  4, £ 30(1 ,4 )  =  w,
$3o(l> 1 =  1,
/53i ( 1 ,0 =  pc, £ 31( 1, 2) =  UJ, £ 31(1 ,3 ) =  uj , £ 31(1 ,4 )  =  co,
$ 3 l( lj  1, =  1,
$ 32( 1 ,0 =  pc, £ 32(1, 2) =  5, £32(1 ,3) =  6 , £ 32( 1, 4 ) = to,
$32(1, 1 =  1,
$33(1, 0 =  pc, £ 33(1, 2 ) = UJ, £ 33(1,3 )  = to, £ 33( 1, 4 ) = O),
$ 33( 1 ,1 = 1,
£ 34(1 ,0 = pc, £ 34( 1, 2 ) = 7, £ 34( 1, 3 ) - 8 , £ 34( 1,4 )  = w,
£ 34(1 ,1 = 1,
£ 35(1 ,0 = pc, £ 35(1, 2) = uj, £ 35(1 ,3 )  = uj, £ 35(1,4 )  = to,
£ 35( 1,1 =  1,
$o(p c,0 = pc, £g(pc, 0) = pc, £ is (p c ,0 )  = p c , £27 (pc, 0) = pc,
£1 (pc, 0 = pc, £ io (p c ,0 ) = pc, £19 (pc, 0) = pc, £28 (pc, 0) = p c ,
$ 2(pc,0 = pc, £ n (p c ,0 )  = pc, £20 (pc, 0) = pc, £29 (pc, 0) = pc,
$ 3(pC,0 =  pc, £ i 2(p c ,0 ) = pc, £ 2l(p c ,0) = p c , £30 (pc, 0) = p c ,
$ 4(pc, 0 = pc, £ i3 (p c ,0 ) = pc, £22 (pc, 0) = p c , £ 3l ( p c ,0 ) = pc,
£5 (Pc, 0 = pc, £14 (pc, 0) = pc, £23 (pc, 0) = p c , £32 (pc, 0) = pc,
$e(p c,0 = p c , £ l 5(p c ,0 ) = pc, £24 (pc, 0) =  pc, £33 (pc, 0) = p c ,
$ 7(pc,0 =  pc, £16 (pc, 0 ) -  pc, £25 (pc, 0) =  pc, £ 34(pc, 0) =  pc,
$ s(p c ,0 =  pc, £ i 7(pc,0) =  pc, £26 (pc, 0) =  pc, £ 35(pc, 0) =  pc

S Equations
£1,0,0 (^ a , X =  t - 1, £1,1,0 (t a , X =  t - 1, £1,2,0 (t, a , x) — t  —

£1,3,0 {t a , X =  t ~ 1, £ l,4,o(£ a , X =  t  - 1,
£1,0,1 (£ a , X =  t - 1, £1,1,l ( i a , X =  t  - 1, £1,2,1 { t a , x) =  t  —

£1,3,1 (^ a, X =  t - 1, £1,4,1 (t a , X =  t - 1,
£1,0,2 (t a , X =  t - 1, £1,1,2 ( t a , X =  t  — 1, £1,2,2 ( t a, x) — t  —

£1,3,2 (t a, X =  t  - 1, £ l,4,2(t a, X =  t  - 1,
£1,0,3 (^ a, X =  t - 1, £ l , l ,3^ a, X =  t - 1, £1,2,3 (£ a, x) — t  —

£1,3,3 (̂ a, X =  t - 1, £ l,4,3(^ a, X =  t - 1,
£1,0,4 (£ a , X =  t - 1, £1,1,4 (i a, X =  t  - 1, £1,2,4 { t a, x) =  t  —

£1,3,4 (t a , X =  t - 1, £1,4,4(̂ a, X =  t - 1,
£1,0,5 ( t a, X =  t - 1, £1,1, s(£ a, X =  t - 1, £1,2,5 (£ a, x) =  t  —

£1,3,5 (£ a, X =  t - 1, £1,4,5^ a, X =  t - 1,
£ l,0,6^ a, X =  t - 1, £1,1,6^ a, X =  t - 1, £1,2,6 (t a, x) =  t  —

£ l,3,6 it a, X =  t - 1, £ l,4,6(t a, X =  t  - 1,
£ l,0,7(^ a, X =  t - 1, £1,1,7 { t a, X =  t - 1, £1,2,7^ a x) =  t  —

£ l,3,7(^ a, X =  t - 1, £ l,4,7 (̂ a, X =  t - 1,
£ l,0,8(^ a X =  t  — 1, £ l , l ,8(̂ a X =  t - 1, £1,2,8^ a x) =  t  —

£ l,3,8(^ a X =  t - 1, £ l,4,8( i a X =  t - 1,
£ l,0,9(t a =  t - 1, £ l,l ,  9 { t a X =  t  - 1, £1,2,9^ a x) =  t  —

£ l,3,9 ( t a X =  t - 1, £ l,4,9(i a X =  t - 1,
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<*1,0,lo(*, <2, 3 =  £ -

<*1,3,10(^7 <2, 3 = £ -
<*1,0,11 (*7 a , 3 = £ —

<*1,3,11 (*, O) 3 = £ —

<*1,0,12(^7 <2, 3 = £ —

<*1,3,12(^7 O, 3 =  £ —

<*1,0,13(^7 a , 3 =  £ -

<*1,3,13(^7 <2, 3 =  £ -
<*1,0,14 , <2, 3 =  £ —
<*1,3,14 (*> O) 3 =  £ —

<*1,0,15 (*) <2? 3 =  £ —

<*1,3,15(^7 a , 3 =  £ —

<*1,0,16(̂ 7 <2, 3 =  £ —

<*1,3,1 6 ) O, *25 =  £ —

<*1,0,17(^7 <2, 3 =  £ -

<*1,3,17(^7 <2) 3 =  £ —
<*1,0,18( ,̂<2,3 =  £ —

<*1,3,18( 7̂ <2, 3 =  £ —

<*1,0,19(^7 <2, 3 =  £ -

<*1,3,19(*, <2, 3 =  £ —

<*1,0,2o(*, <2, 3 =  £ —

<*l,3,2o(*, <2, 3 =  £ -
<*1,0,21 (*) <2, 3 =  £ -
<*1,3,21 (*, a, X =  £ -
<*1,0,22(^7 22, X =  £ -

<*1,3,22(^5 O, 3 =  £ -
<*1,0,23(*7 <2, 3 =  £ —

<*1,3,23(^7 <2, 3 =  £ -
<*1,0,24 (^, O, 3 =  £ —
<*1,3,24 (^, O, X =  £ -

<*1,0,25(^7 <2, 3 =  £ -
<*1,3,25(^7 22, 3 =  £ —

<*1,0,26(^7 <2, 3 =  £ -

<*1,3,26(^7 <2, 3 =  £ —

^1,0,27^7 <2, 3 =  £ —
<*1,3,27(^7 <2, 3 =  £ —

<*1,0,28^7 <2, 3 — t ~
^1,3,28^7 <2, 3 = £ -
<*1,0,29(^7 a , 3 — t —
<*1,3,29(^7 <2, 3 = t -
<*1,0,30(^7 <2, 3 =  £ —
<*1,3,30(£, <2, 3 =  £ -

<*1,0,31 (̂ 7 <2, 3 =  £ -

<*1,3,31 (£7 <2, 3 =  £ —
<*1,0,32(^, <2,3 =  £ —
<*1,3,32(^7 <2, 3 =  £ —

<*1,0,33(^7 <2, 3 =  £ —

<*1,3,33(^7 <2, 3 =  £ -

<*1,0,34 (̂ 7 22, 3 =  £ —
<*1,3,34 (^, <2, 3 =  £ -
<*1,0,35 (̂ 7 <2, 3 =  £ —
<*1,3,35(^7 <2, 3 = £ -

<*1,1,10 (t,CL,x) = t -  
<*l,4 ,lo( ,̂ O, x) £ 
<*i,i,n(*,o,3) = t -  
SiA,n(t,a,x) =  £ -  
<*1,1,12 (t,a,x) =  £ -  
<*1,4,12 7̂ <2, x) —t — 
<*i,i, 13(̂ 7 22, 3 ) ^
<*1,4,13(̂ 5 a,x) —t —
<*l,l,14 (̂ > <2, T)   £
<*1,4,14(̂ 5 22, 3 ) — £ 
<*1,1,15 (*,0 , 3 ) = t -  
<*1 ,4,15 {t,CL,x) = t ~  
<*1,1,16 (t,a,x) = £ -
<*1,4,16 (t ,a,x) —t -  
<*i,i,i7(*,o,3) = t -
<*1,4 ,17^, 22, x) =  t — 
<*1,1,18 {t,a,x)  = £ -
<*1,4 ,18^, a, x) = t -
<*1,1,i9(*, <2, 3 ) £
<*M,i9(*,o,x) = t -
<*1,1,20 {t,a,x) = £ -  
<*1,4,20{t, cl, x ) = t  — 
<*1,1,21 (*, a, x) = t — 
<*1,4,21(̂ 5 cl, 3 ) £
<*1,1,22(*, <Z, x) = t —
< * l,4 ,2 2 (* ,0 ,x )  = t -  
<*1,1,23 (*, a,x) =  t — 

<*1,4,23 { t , a , x )  =  £ -  

<*1,1 ,24^ ,0 ,35) = t -
<*1,4,24(t,CL,x) = £ -  
<*1,1,25 {t,a,x) =  £ -
<*1,4 ,2 5^) aix) = t  — 
<*1,1,26 (*, Oj x) £
<*i,4,26(*, 22, x) =  £ — 
<*1,1,27(*, a, x) =  £ -  
<*1,4,27(̂ 5 a, x) =  £ —
< * l , l ,2 8 (* ,0 ,x )  =  £ -  

<*1,4 ,28(^ a, x) =  t ~  
<*1,1,29 (*, <2, 3:) =  £ — 
<*i,4 ,2g(i, 22, 3 ) =  £ -
<*l,l,3o(*, 0 , 3 )  =  £ -  

<*l,4,3o(*, 0 , 3 )  =  £ -

<*1,1,31 {t,a,x) = t -
<*1,4,31 (* ,0 ,2 ? )  =  £ -

<*1,1,32(^5 <2, 2:) = £ — 
<*1,4,32 (*, O, X )  =  £ -  

<*1,1,33(*, <2, 3;) =  £ —

<*1,4,33(̂ 5 o, 3;) = £ -
<*1,1,34 (*) O) 3;) — £ 

<*1 ,4 ,34(̂ 3 <2 , 3 )  — £ 
<*1,1,35(£, 22, x) = £ — 
<*1 ,4 ,35(*, <2, 3 ) — £

<*l,2,lo(*) a , 3) =  £ 

<*1,2,11 (*, 22, x) = £ 

<*1,2,12(^1 <2, X )  = t  

<*1,2,13(̂ , <2, 3) = £

<*1 ,2 ,14^ ,  22, x) =  £ 

<*1,2,15(^5 <2, 3 ) =  £ 

<*1,2,16(̂ 7 <2, 3) = £ 

<*1,2,17(^7 <2 , 3 ) =  £ 

<*1,2,18^7 <27 3‘) =  £ 

<*1,2,19(^7 <2, 3) ~ t  

<*l,2,2o(*) <2, 3) = £ 

<*1,2,21 (*? <2)3) =  £ 

<*1,2,22(^7 CL, 3) =  £ 

<*1,2,23 (*> O, 3 )  =  £

<*1,2,24(̂ 7 a, 3) =  £ 

<*1,2,2 5 (̂ ) <2, 3) =  £

<*1,2,26 (^7 <2) 3 )  =  £ 

<*1,2,27( 7̂0,3) =  £ 

<*1,2,28 a, 3) =  £ 

<*1,2,29(̂ 7 <2, 3) =  £

<*1,2,3 o (* , <2, 3 )  =  £ 

<*1,2,31 (*, o , 3) =  £ 

<*1,2,32(^70,3) =  £ 

<*1,2,33(^70,3) =  £ 

<*1,2,34 (*7 <2, 3) =  £ 

<*1,2,35(̂ 7 <2, 3 ) =  £



CONCRETE DSCA DEFINITION OF GRCP A-41

d E quations
<2( 1 1 0) = 1, d 1 2 0) = 2, <2(1 3 0) =  3,
<2(1 1 1) =  4, d 1 2 1) =  5, <2(1 3 1) = 36,
<2(1 1 2) = 37, d 1 2 2) = 37, <2(1 3 2) =  37,
<2(1 1 3) = 6, d 1 2 3) = 7, <2(1 3 3) =  8,
<2( 1 1 4) =  9, d 1 2 4) =  10, <2(1 3 4) = 39,
d( 1 1 5) =  11, d 1 2 5) =  12, <2(1 3 5) = 40,
<2(1 1 6) = 13, d 1 2 6) = 14, <2(1 3 6) = 41,
d( 1 1 7) =  42, d 1 2 7) = 42, <2(1 3 7) = 42,
<2(1 1 8) =  43, d 1 2 8) = 43, <2(1 3 8) =  43,
<2( 1 1 9) =  21, d 1 2 9) = 15, <2(1 3 9) =  44,
<2( 1 1 10) = 45, d 1 2 10) =  16, <2(1 3 10) =  45,
d( 1 1 11) = 21, d 1 2 11) =  17, <2(1 3 11) =  46,
<2(1 1 12) = 47, d 1 2 12) =  18, <2(1 3 12) = 47,
<2( 1 1 13) =  21, d 1 2 13) =  19, <2(1 3 13) =  48,
<2( 1 1 14) = 49, d 1 2 14) = 20, <2(1 3 14) = 49,
<2(1 1 15) = 50, d 1 2 15) =  50, <2(1 3 15) = 50,
<2( 1 1 16) = 51, d 1 2 16) =  51, <2(1 3 16) = 51,
<2(1 1 17) = 52, d 1 2 17) = 52, <2(1 3 17) = 52,
<2(1 1 18) = 53, d 1 2 18) = 53, <2(1 3 18) = 53,
<2(1 1 19) = 54, d 1 2 19) = 54, <2(1 3 19) = 54,
<2(1 1 20) = 55, d 1 2 20) = 55, <2(1 3 20) = 55,
<2(1 1 21) = 22, d 1 2 21) = 23, <2(1 3 21) = 56,
<2(1 1 22) = 24, d 1 2 22) = 25, <2(1 3 22) = 57,
<2(1 1 23) = 26, d 1 2 23) = 27, <2(1 3 23) = 58,
<2(1 1 24) = 28, d 1 2 24) = 29, <2(1 3 24) = 59,
<2(1 1 25) = 30, d 1 2 25) = 31, <2(1 3 25) = 60,
<2(1 1 26) = 32, d 1 2 26) = 33, <2(1 3 26) = 61,
<2(1 1 27) = 34, <2 1 2 27) = 35, <2(1 3 27) = 62,
<2(1 1 28) = 63, <2 1 2 28) = 63, <2(1 3 28) = 63,
<2(1 1 29) = 64, d 1 2 29) = 64, <2(1 3 29) = 64,
<2(1 1 30) = 65, d 1 2 30) = 65, <2(1 3 30) = 65,
<2(1 1 31) = 66, d 1 2 31) = 66, <2(1 3 31) = 66,
<2(1 1 32) = 67, d 1 2 32) = 67, <2(1 3 32) = 67,
<2(1 1 33) = 68, <2 1 2 33) = 68, <2(1 3 33) = 68,
<2(1 1 34) = 69, <2 1 2 34) =  69, <2(1 3 34) = 69,
<2(1 1 35) = 70, <2 1 2 35) = 70, <2(1 3 35) = 70
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IV  E quations
VpC{0, a, x) = 1, Vpc(l,CL,x) = 2 Vpc(2, (2, — 3,

—4, l/pc(4,a,x) = 5 V̂ c(5,a,:c) =  6,
Vpc(6 ,a,x) = 7, VpC(7, (2 , x) = 8 Vpc(8 ,a,x) =  9,
Vpc(9,a,x) = 10, Vpc (10, a x) = 11, VpC( l l ,a,x) = 12
Vpc( 12, fl, 3j) —13, Vpc(13, <2, X = 14, VpC(14,a,ar) =  15
Vpc(lh,a,x) == 16, Vpc(16, <2, x) = 17, Vpc(17,<2,£) =  18
V̂,c (18, a, x) == 19, Vpc(19, fl, x) = 20, V̂,c(20,a, x) =  21
Vpc(21, <2 , —= 22, Vpc{22,a x) = 23, Vpc(23, a, x) =  24
Vpd24, a, x) = 25, Vpc(25, a x) = 26, V̂ c(26,a,:r) =  27
Vpc{27,a,x) = 28, VpC (28, a, x) 29, Vpc(29,a,x) =  30
Vpc(30, a, x) —= 31, Vpc (31, <2 x) = 32, Vpd 32, a, x) — 33
Vpc(33, (2, 3?) == 34, Vpc (34, a x) = 351, Vpc(35 ,a ,x )=  0,

/  stay u u u u u u u \
u u u u u u u u

Vi(0,a,i) = u u u u u u u u ?
u u u u u u u u

\  u u u u I
f  stay u u u u u u u \

u u u u u u u u
Vi(l,a,a:) = u u u u u u u u ?

u u u u u u u u
\  u u u u I
( stay u u u u u u u \

u u u u u u u u
Vi(2,a,x) = u u u u u u u u ?

u u u u u u u u
V u u u u I
/  stay u u u u u u u \

u u u u u u u u
Vi(3,a,ai) = u u u u u u u u ?

u u u u u u u u
\  u u u u
/  stay u u u u u u u \

u u u u u u u u
Vi (4, a, a) = u u u u u u u u 5

u u u u u u u u
\  u u u u J
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/  stay u u u u u u u
u u u u u u u u

e> II u u u u u u u u
u u u u u u u u

\ u u u u
/ stay u u u u u u u

u u u u u u u u
Vi {Q,a,x) = u u u u u u u u

u u u u u u u u
\ u u u u
/ stay u u u u u u u

u u u u u u u u
V7 (0,a,x) = u u u u u u u u

u u u u u u u u
\ u u u u
/ stay u u u u u u u

u u u u u u u u
Vi(8,a,ar) = u u u u u u u u

u u u u u u u u
\ u u u u
1 stay u u u u u u u

u u u u u u u u
Vi (9, a, x) = u u u u u u u u

u u u u u u u u
\ u u u u
(  stay u u u u u u u

u u u u u u u u
Vi (10 ,a,x) = u u u u u u u u

u u u u u u u u

> U
u u u

/  stay u u u u u u u
u u u u u u u u

Vi (11, a, x) = u u u u u u u u
u u u u u u u u

> U
u u u

f stay u u u u u u u
u u u u u u u u

Vi (12, a, x) = u u u u u u u u
u u u u u u u u

> U
u u u

( stay u u u u u u u
u u u u u u u u

Vi (13, a, x) — u u u u u u u u
u u u u u u u u

> U
u u u

( stay u u u u u u u
u u u u u u u u

Vi (14 ,a,x) = u u u u u u u u
u u u u u u u u

\  u u u u
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Vi(15, a, a:) =

Vi (16, a, 2:) =

Vi (17, a, x) =

Vi (18, a, x) =

Vi(19, a, x) =

Vi(20, a, x ) =

Vi(21,a,x) =

Vi(22, a, 2:) =

Vi (23, a, 2:) =

Vi (24, a, x) —

( stay w u u u u u u \
u a u u u u u u
u w u u u u u u
u u u u u u u u

> U
u u u )

/  stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u

) U
u u u J

/  stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u

> U
u u u J

(  stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u

> U
u u u j

( stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

> U
u u u )

/  stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u )
/  stay u u u u u u u \

u u u u u u u u
u u u u u u u u
u u u u u u u u

> ^
u u u J

/  stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

> W
u u u )

/  stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

> u
u u u I

/  stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

\ « u u u !
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Vi(25, a, x) =

V\(2Q,a,x) —

V1(27,a,x) =

Vi(28,a,x) =

Vi(29 ,a,x) =

Vi(30 ,a,x) =

Vi(31,a,a:) =

l/i(32, a, x)

Vi (33, a, a;) =

/  stay u u u u u u u N\
u u u u u u u u

= u u u u u u u u
u u u u u u u u

> U
u u u )

/  stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

> “
u u u

/  stay u u u u u u u \
u u u u u u u u

= u u u u u u u u
u u u u u u u u

u u u
/  stay u u u u u u u \

u u u u u u u u
= u u u u u u u u

u u u u u u u u
u u u /

/  stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

> U
u u u I

/  stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

> "
u u u /

/  stay u u u u u u u \
u u u u u u u u

= u u u u u u u u
u u u u u u u u

> w
u u u

/  stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

u u u
/  stay u u u u u u

u \u u u u u u u u
= u u u u u u u u

u u u u u u u u
\ u u u u /
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ST  Equations

Vi (34, a, re) =

Vi (35, a, re) =

(  stay u u u u u u u \  
u u u u u u u u
u u u u u u u u
u u u u u u u u
u
stay
up
90

u u u 
true 
true 
true

upstay 
true 
0

false false false false 0
Vo

/
true false false down \

false false false true false
true 0 false false false

0 0 0

Vpc{t + 1, a, re)

0 0 0

mod add Vpc(t a x ) 1) ,36) if Vpdt- l,a , x)
mod add Vpdt a x ) 1) ,36) if Vpdt - l,a , x )
mod add Vpc{t a x ) 1) ,36) if Vpcit - l,a , x )
mod add Vpc(t a x ) 1) ,36) if Vpdt - 1, a, x )
mod add Vpcit a x ) 1) ,36) if Vpcit - 1 ,a, x )
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a,, x )
mod add Vpc(t a x ) 1) ,36) if Vpcit - 1, a,, x )
mod add Vpcit a re) 1) ,36) if Vpcit - l,a , x)
mod add Vpdt a x) 1) ,36) if Vpcit - 1, a, X )
mod add Vpcit a x) 1) ,36) if Vpcit - 1, <2,x)
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a, x )
mod add Vpcit a re) 1) ,36) if Vpcit - l,a , x )
mod add Vpcit a x ) 1) ,36) if Vpcit- 1, a, x )
mod add Vpcit a re) 1) ,36) if Vpcit - 1, a X)

mod add Vpcit a X) 1) ,36) if Vpcit - 1, (2, x )
mod add Vpdt a x ) 1) ,36) if Vpdt - 1, a x )
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a,, x )
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a, x )
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a, x)
mod add Vpdt a x ) 1) ,36) if Vpcit - 1,a, x )
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1 ,a, x )
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a x )
mod add Vpdt a re) 1) ,36) if Vpcit - 1, a x )
mod add Vpdt a re) 1) ,36) if Vpdt - 1 ,a, x )
mod add Vpdt a x ) 1) ,36) if Vpcit - 1, a x )
mod add Vpcit a re) 1) ,36) if Vpcit - 1, a x )
mod add Vpcit a re) 1) ,36) if Vpcit - l ,a x)
mod add Vpdt a x) 1) ,36) if Vpcit- 1 ,a re)
mod add Vpcit a x ) 1) ,36) if Vpcit - 1, a re)
mod add Vpcit a re) 1) ,36) if Vpcit - 1, a x )
mod add Vpdt a x) 1) ,36) if Vpcit - 1,a re)
mod add Vpcit a x ) 1) ,36) if Vpcit - 1 ,a re)
mod add Vpdt a re) 1) ,36) if Vpcit - I,a re)
mod add Vpcit a x ) 1) ,36) if Vpcit - 1 ,a re)
mod\ add Vpcit a re) 1) ,36) if Vpcit - l ,a re)

0
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26

- 27 
■ 28
- 29
- 30 
31

- 32
33
34

- 35

/



CONCRETE DSCA DEFINITION OF GRCP A-47

O H N N ^ i n ( D N 0 0 0 5 O H l N M ^ i n ( f l N 0 0 f f l O H N M T f l OO H N C O ^ i n ! O N M O ) H H H H H i - l H H H H N N N C S N N N N N C S C O ( O M ( O C O M
II || II || || || || || || II II II II II II II II II II II II II II II II II II II II II II II II II II II

f  o'  ^  f  f  f  f  f  f  f  f  o'  cf f  f  f  f  f  cf cf f  f  f  f  s '  s '  a  a  a  a  e  e  e  8 a  e

CO 00

COt̂ lOOlO<NiÔ  
|— I COr-tCOiHOO

C G C

H H

/7> H H H H H
1  f
a  -  .. .. .- +J -to to -IO

e e
h

e  a  e

"ag "a ~e ~d o e g e 
o  e  e  e

H H H H H H H 
f  f  a  cf cf cf cf
t-f -to- tT -to' to" -to' -to"

g ^ r ^ r  g 5 ^ 5
'Is' 'TT 'TT /hs 'b' 'TT IT
cf cf cf cf cf cf cf 
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A ppendix F

SCA to A bstract dSCA  
Transformation
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A ppendix G

A bstract dSCA to A bstract dSCA  
Transformation D etails

G .l Process

This appendix describes the process of transforming an abstract dSCA with defining shape V = 

(n i,m i) to an abstract dSCA with an defining shape of V =  (n2 ,m 2). The transformations required 

for the following equation fists within a supplied abstract SCA specification are covered:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Equations; and

4. State Transition Equations.

After discussing the necessary transformations they are used to transform the abstract dSCA 

produced in the last chapter to an abstract dSCA with defining shape of V =  (1 ,k).

G.1.1 Prerequisites

• The source network, Afi has Ari > 1 modules and M axni > 0 component specifications in its 

modules definitions;

A-57
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• The object network, N2 has k2 > 1 modules and M axn2 > 0 component specifications in its 

modules definitions;

•  The defining size of N2 must be equal to or greater than the defining size of Ah, i.e. A (N 2) >

A (i);

• There exists the total mapping, E given as:

^  x NpCl ► x NpC2

that maps modules and execution orders of Ni to modules and execution orders of N2; and

• There exists the inverse mapping E_1, given as:

E _ 1  : Mfc2 x NpC2 Nkl x NpCl

(Note that this mapping may not be total, since some functional components of N2 may be 

the undefined operation used to ensure synchronicity of the network).

G.1.2 M apping Function

The provision of a mapping function is a fundamental prerequisite before this transformation can 

occur. Its purpose is to provide a total mapping between when a particular function executed on a 

particular module in the source network and what module and when it will execute 011 the target 

network. It is a simple list of equations containing two pairs:

(J'srcipc.valsrc) =  (itgt,pc-valtgt)

and must be defined for all values isrc — 1 , . . .  ,k  of the fc-module source abstract dSCA and 

pcjualsrc = 0 , . . . ,  Max-jv — 1- The mapping is denoted as E, and has the (partial) inverse E-1 .

There is no need to map the program counter module.

G.1.3 W iring Functions

Unlike the previous transformation, wiring functions will alter values radically to provide the dy

namic retiming and structure necessary to support a re-shaped abstract dSCA.
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7-w iring O perations

Consider the source abstract dSCA 7 -wiring function:

'Ypc-val i  (*1 > J2) ^2

the corresponding target abstract dSCA 7 -wiring function will be:

'Ypc-vah (̂ 2 i J2) — 2̂

where j \  =  J2 , and E (i\,pc-val\ ) =  (i2 .pc.val2 )

The informal process of generating target abstract dSCA 7 -wiring functions is to walk the 

structure of the target architecture creating wiring functions for all modules at all values of the 

program counter for the number of inputs to each module.

• For each module m* where i G Nk2 and i > 0:

For each pcjval where pc.val G {0, . . . ,  M a x^2 — 1}:

* For the oth argument of each module create:

7pc-val&Q) = M

* For each argument where j  G { 1, 712(2)} create a new 7 - wiring function

Value fro m  source if E 1{i,j)  I 
U otherwise

with the intended meaning that the undefined connection is given if the inverse 

mapping is not defined, otherwise the appropriate value from the source network

is used.

• For module 0 create M a x^2 7 -wiring functions wiring m 0 back to itself.

Formally, the Create'ys operation:

Creators : dSCAAlgebra x N 2 x M apEqList —>■ 7 dSC AEqList
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is introduced and is defined as:

Createjs

(  ScmrceSCA, \  
numjmod, 
M clxn,

f  nm, \
Get'yEqs(sourceSCA),

B'ys

/
M a x jy ,
GetMaxA(sourceSCA), 
—-1 /

It takes as arguments the source abstract SCA, the number of modules in the target abstract SCA 

and then value of Maxn  for that network as well as the inverse mapping function equation fist. The 

maximum number of arguments that all modules take in the source is extracted from the source 

specification - since this cannot change through transformation.

The B'ys operation, given as:

B'ys : N  x 7 dSCAEqList2 x N  x N  x MapEqList —> 7 dSCAEqList

is defined recursively over the number of modules in the target SCA in two cases, the first representing 

the case where the module number is 0, and the second case where it is not. When the module under 

consideration is the 0t/l module, B'ys is defined as the recursive call to itself:

B'ys

(  modjual, \  
old'ys, 
newys, 
M axN ,
Max a ,

V E-‘

(  mod.val — 1, 
old'ys,

( ( MaxN — 1, \
old'ys,

=  B'ys

\

Bjpc

\
M a x x ,  
Max a,

modjual, 
Max a ,
—- 1

, newys

The recursive call contains an argument where a fist is appended to the newly generated 7 -wiring 

functions for a module. This list is created by calling the B'ypc operation:

B'ypc : N  x 7  sSC AEqList2 x N  x N  x MapEqList —> 7  dSC AEqList

which is itself defined recursively over the values that the program counter may take in two cases: 

firstly where the program counter is equal to 0  and secondly where the program counter is greater
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than zero. In the second case B'ypc is defined as:

B'ypc

(  pcjual, \
old'ys, 
n e w y s , 
modjual,
Max a ,

\  S ' 1 )

(  pcjual  — 1, 
old'ys,

(  (  Max a -  1, \
old'ys,

= i?7pc B'yarg

V
m od.val, 
Max a, 

V s ' 1

modjual, 
pcjual,

V s - 1

new'ys

The operation recurses on itself building a fist of new 7 -wiring functions for a module at a 

particular value of the program counter for all inputs to a module by calling the B'yarg operation:

B'yarg : N  x 7  dSC AEqList2 x N 2 x M apEqList —> jd S C  AEqList

B'yarg is itself also defined recursively, this time over the argument number under consideration. It 

has two cases, the first where the argument index is zero, and the second where it is not. For the 

second case it is defined as:

B'yarg

(  arg jnum , \  
old'ys, 
new^fs, 
modjual, 
pcjual,

\  S"1

B'yarg

(  argjnum — 1, 
old'ys,

(  (  modjual, \
argjnum,

B 7  pcjual, 
old'ys,

V e - 1
modjual, 
pcjual,

VH-1

\

V

neqs

w\iere the B ’y operation is used to construct the 7 -wiring function for this particular argument index 

at a particular program counter for a particular module. It is given as:

B'y : N 3 x 7  dSC AEqList x M apEqList —> 7  Equation

To construct the 7 -wiring for a function it is first identified whether there exists a corresponding 

element in the source abstract dSCA. This is achieved by examining the inverse mapping function.
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If the inverse mapping is undefined for the module and program counter values under consideration 

then the wiring in both the source and target abstract SCAs are unimportant. In such a case, the 

output of the B'y operation is defined to be the creation of a 7 -wiring function to the unconnected 

value U. Therefore, where E r1 (modjual, pcjual) |  we define:

B'y

f  modjual, \  
argjual, 
pcjual, 
old'ys,

V E-i

Build'y
( r)pc.valt ^

modjual, 
argjual,

\ u /

Similarly, it may be the case that the inverse mapping function is defined, but in the source 

abstract dSCA there is 110 7 -wiring function defined for this combination of module number, program 

counter value and argument number. It can be easily identified what the corresponding wiring 

function was in the source abstract dSCA, since it will be:

‘lfsnd(3~1 (mod-val,Pc.vai))(fst(E 1 (modjual,pcjval)),argjual)

Where this 7 -wiring function does not exist then the result of B'y is:

B'y

(  modjual, \  
argjual, 
pcjual, 
old'ys,

\  S_1 /

=  Build'y
( 'ypc-vah ^

modjual, 
argjual,
U /

The final case is where the inverse mapping is defined and a corresponding /5-wiring function 

exists in the source network. For this situation the 7 -wiring operation in the target dSCA is con

structed as:

7 Pc-vai('modjual, a rg ju a l)  =  R e tT e r m

(
GetEl

\

(  old'ys, \
fst(E ~ 1 (modjual, pcjual) ) ,  
argjual,

\  snd(E~1(modjual,pcjua,l))  J

\

the B j  operation can therefore be defined, when s  1 (modjual, pc-Val) [ as:

B'y

(  modjual, \  
argjual, 
pcjual, 
old'ys,

V 3->

=  Build'y

 ̂'Jpc-vali
modjual,
argjual,

RetT erm GetEl

(  old'ys, \iold,
argjual,

\  PCold ) /  /
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where:
i0id =  f  st(RetTerm (G etEl(E~l , modjual, pcjual)), 2) 
pcoid — snd(RetTerm (G etEl(S~1, modjual, pcjual)), 2)

The second case of the Byarg  operation, where the argument index is zero, simply generates a 

7 -wiring function for the 0th argument. This wiring, by definition, will be to the program counter 

module, and is appended to the fist of functions generated for that module. The function returns 

this new list, and is defined as:

o, \
o l d ' / S ,  (  (  - /p c jo a l  \  \

newys,Byarg modjual, 
pcjual,

v s - i

Build'y

\

( 'Jpc.val ^
modjual,
0,

\  M

, newys

The second case of the B'ypc operation, where the program counter is 0, simply generates the

7 -wiring functions for module m n  at pcjual =  0 , and appends them to the list of already generated

7 -wiring functions for module m n  at all other values of the program counter. It is defined as:

/  0 , \  /  /  M ax a — 1 , \  \

B'ypc

oldys, 
newys, 
modjual, 
M a x  a , 
- -1

Byarg

V

oldys,
0,
modjual, 
0,

V S - 1

, newys

Finally, the second case definition of B ys  operation is defined for the case of module zero as:

B ys

(  0 ,
oldys, 
newys, 
M a x w ,  
M a x  a,

V ^ 1

\
/

Buildy

\

(  7o, \  
0,
0, 

\ M

, Buildy

(  yMaxw — li ^
0 ,
0 ,

\  M

, newys

/

/^-wiring O perations

Consider the source abstract dSCA /5-wiring function:

fipc-valiil'lijl') = %1
the corresponding target abstract dSCA /5-wiring function will be:

Ppc.vah (̂ *2, 52) — 2̂
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where j i  =  j'2 and E (ii,pcjuali) =  (i2,pc.val2 ) The informal process of generating target abstract 

dSCA /5-wiring functions is to walk the structure of the target architecture creating wiring functions 

for all modules at all values of the program counter for the number of inputs to each module:

• For each module m* where i E  Nfc2:

— For each pcjual E  {0, . . . ,  M a x^2 — 1}:

* For the oth argument of each module create:

Ppc-valih 0) = M

* For each argument where j  E  {1,. . .  , 712(2)} create a new /5-wiring function

fipvjval (b 5')
Value from source if E 1( i,j)  |
U) otherwise

with the intended meaning that the undefined index is given if the inverse mapping 

is not defined, otherwise the appropriate value from the source network is used.

• For module 0 create M axn  /5-wiring functions to wire mo back to itself.

Formally, the Createfds operation is introduced:

Createfds : SCAAlgebra x N 2 x MapEqList —► /5 dSC AEqList

and it is defined as:

Createj3s

(  SourceSCA, \
K
M a x t f ,

(  K  \
GetfiEqs(sourceSCA),

=  Bfis

/
M  ax tv ,
GetMaxA(sourceSCA), 

\ = - ‘ /
It takes as arguments the source abstract SCA, the number of modules in the target abstract SCA 

and then value of Maxm for that network as well as the inverse mapping function equation fist. The 

maximum number of arguments that any module can take, Max a , is calculated by the call to the 

GetMaxA  function - the impact of this is that more wiring functions may be generated than are
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necessary but as these are wired to the unconnected module they will not partake in the functionality 

of the resultant target abstract dSCA.

The purpose of the Createfds operation is to extract the relevant details out of the source 

abstract SCA and call the Bfds operation. The values that are extracted are the number of modules 

in the source abstract SCA, the source /5-wiring functions and Max a - 

The Bps  operation:

Bps  : N  x pdSCAEqList2 x N 2 x MapEqList  —»■ pdSCAEqList

is defined recursively over the number of modules in the target SCA in two cases, the first represents 

the case when the module number is 0  and the second case is where the module number is greater 

than 0. In the second case the BPs is defined with the recursive call to itself:

BPs

(  modjnum , \  
oldPs, 
newPs, 
M a x w ,
M a x  a ,
H_1

(  modjnum — 1, 
oldPs,

(  (  M o x n  — 1} \
oldPs,

=  BPs

\

BPpc

\
M a x N ,
M a x  a, 

VE-1

modjnum, 
M a x  a ,

, n e w P s

The recursive call contains an argument where a list is appended to the newly generated /5-wiring 

functions for a module. This list is created by calling the BPpc operation:

BPpc : N  x PdSC AEqList2 x N 2 x MapEqList —>• pdSCAEqList

which is defined recursively over the values that the program counter may take in two cases. The 

first case is where the program counter is 0  and the second is where the program counter is greater
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than zero. In the second case BPpc is defined as:

Bppc

(  pcjual, \
oldPs, 
newPs, 
modjnum, 
M a x  a ,

\  S_1 )

(  pcjual — 1 , 
oldPs,

( ( MaxA — 1, \

=  Bppc BParg

V
modjnum, 
M a x  a ,

\ s - ‘

oldPs,
o.
modjnum,
pcjual,

V E->

, newPs

This operation recurses on itself building a list of new /5-wiring functions for a module at a 

particular value of the program counter for all inputs to a module by calling the BParg operation. 

The Bparg  operation is given as:

BParg : N  x PdSC AE qL ist2 x N 2 x M apEqList —► PdSC AEqList

and is also defined recursively, this time over the argument number under consideration in two cases 

- where the argument index is zero, and where it is not. For the second case it is defined as:

\

\

BParg

(  argjual, \  
oldps, 
newPs, 
modjnum, 
pcjual,

BParg

(  argjnum  — 1 , 
oldps,

(  (  modjnum, \
argval,

BP pcjual, 
oldps,

\ V S - 1

, n e w P s

modjnum, 
pcjual, 

V - 1

The BP  operation is used to construct the /5-wiring function for this particular argument index at 

a particular program counter for a particular module. It is given as:

B p  : TV3 x PdSC AEqList x M apEqList —> PdSCAEquation

To construct the /5-wiring function it is first identified whether there exists a corresponding element 

in the source abstract dSCA. This is achieved by considering the inverse mapping function, if it is 

undefined for the values under consideration then its wiring in both the source and target abstract
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SCAs are unimportant. In such a case the output of the BP  operation is defined to be the creation 

of a wiring function to the unconnected value cj , where {modjual, pcjual) | ,  as:

Bp

(  modjnum, \  
argjual, 
pcjual, 
oldPs,

V S - 1

=  Buildp

/

^ Ppcjvalt  ̂
modjnum, 
argjual,
U)

Where the inverse mapping is defined, the corresponding wiring function in the source abstract 

dSCA can be identified as:

Psnd.(E~1-(mod-num,pc-vai))(f 1 {modjnum, pcjuaVf), argjual}

The /5-wiring operation in the target dSCA is therefore constructed as:

(
Ppc.vaiimodjnum, argjual) =  RetTerm GetEl

\

(  oldPs, \  \
f s t  (H- 1  {modjnum, pcjual)), 
argjual,

y snd(pL~l {modjnum,pcjual)) J /
the BP  operation, where z, 1{modjual,pcjual) j  can therefore be defined as:

BP

(  modjnum, \  
argjual, 
pcjual, 
oldPs,

V S - 1

= Buildp

/

^ Ppcjvali 
modjnum, 
argjual,

RetT erm

(

GetEl

(  oldPs, \  \
ioldi 
argjual

\  PCold J J J
,2

where:
ioid = fst{RetTerm{GetEl{'E 1, modjnum, pcjual)), 2 )
PCold =  snd{RetTerm{GetEl{E~l , modjnum, pcjual)), 2 )

The second case of the BParg operation, where the argument index is zero, simply generates a

/5-wiring function for the 0th argument, which will be to the program counter, and appends it to the

list of functions generated for that module and returns the new fist. It is defined as:

\

BParg

(  o,
oldps,
newPs,
modjual,
pcjual,

\ 3 - ‘

(

Buildp

\

(  Ppcjvah  ̂
modjnum  
0,

\  PC

\

, newps

/ /
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The second case of the Bftpc operation, where the program counter is 0, simply generates the

/5-wiring functions for module m n  at pc.val =  0  and appends them to the list of already generated

/5-wiring functions for module m n  at all other values of the program counter. It is defined as:

\  f  (  MaxA — 1, \  \
oldfis,

B(dpc

I  0,
old/3s, 
new{ds, 
modjual, 
Max a, 

V S - 1 /

Bfiarg

\

modjual, 
0,

VE-1

,n/5s

J
Finally, the second definition of B(3s operation is defined for the case of module zero, or the 

program counter. In this case there is only one ft-wiring function for each value of the program 

counter:

B P s

( o, A
oldPs, 
newPs, 
M a x x ,  
Max a ,

VE-1

Buildp

\

(  A), \  
o, 
o,

\ p c  )

(  PMaxN — li  ̂
0,
0,

\  Pc

\

, newPs

/ /
/

G .1.4 Delay Functions

The delay functions for the source and target abstract dSCA are of the same format, however the 

derivation of the delay is more complicated than the simple generation of the wiring functions, and 

thus a more detailed explanation of the derivation is given.

In both networks, it is the intention of the delay function to indicate the time delay between 

now and the time the result was calculated. In the source abstract dSCA this is given by the defined 

delay function. For the object abstract dSCA this value needs to be derived from the data available. 

Informally, target abstract dSCA functions are produced as follows:

• For each module nii where i € Nk2 ■

— For each pcjual G ( 0 , . . . ,  M a x^2 — 1}:

* We define, for the 0th argument, the unit delay:
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* For each argument where j  E {1, . . .  , 712(2)} create a new S-wiring function 

. t-new-value if
Vpc-val  (^) J )  — \  \ Y p c - v a l  J ) M )

t — 1 otherwise

• For module 0 create M a x^  delay operations of unit length delay to represent the wiring of 

mo back to itself.

Formally, the new delay functions are created by calling the CreateSs operation, given as: 

Createds : dSCAAlgebra x N 2 x M apList2 —> SdSCAEqList

where the first argument is the specification defining the source abstract dSCA, the second and third 

argument describe the defining shape of the target abstract dSCA, and the final 2 arguments the 

mapping and its inverse. CreateSs is defined as:

CreateSs

( Source SCA, \  

Maxjy, = BSs

(  k ,
GetSEqs(SourceSCA) , 
GetMaxA(SourceSCA) [], 
GetjEqs(SourceSCA),

( SourceSCA, ^ 
k ,
M a x N ,

GetM ax n (SourceSC A) , 
M a x ^ ,

\

Createfds

V

The BSs operation is defined recursively over the number of modules in the target abstract 

dSCA. There are two cases, the first where the module index under consideration is greater than 0 

and the second case where the index is 0. BSs is given as:

BSs : N  x SdSC AEqList2 x N  x jdSC A E qL istx
fidSC AEqList x AT2 x M apEqList2 —> SdSC AEqList
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In the first case, BSs is defined as:

( mod-val — 1, 
oldSs,

(

BSs

( mod-val, \  
oldSs, 
newSs, 
Max a ,
old'ys, 
newfis, 
Max^c, 
M a x 1̂ ,

=

BSpc

( M a x w  — 1, N\ 
oldSs,
[ ] ,
modjual, 
M a x  a,  
old'ys, 
new(3s, 
M a x sx c ,

M ax^ ,
C -1

, newSs

\  V E
M a x  a ,

\  H /  old'ys,
newfis,
Max%c,
M a x 1̂  ,
'—1 9

\  2 /

The internal call to BSpc creates a list of delay functions for a particular value of the program 

counter for module mod-val. BSpc is given as:

BSpc : AT- x SdSC AEqList2 x N 2 x 7  dSCAEqListx
fidSCAEqList x N 2 x MapEqList2 —> SEqList

It is defined recursively over values of the program counter in two cases: where the program counter
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is not zero and where it is. For the first case BSpc is define as:

(  pcjual — 1, 
oldSs,

(  (  Max a — 1 , \
oldSs,

BSpc

(  pc.val, 
oldSs, 
newSs, 
modjual,
Max a ,
old'ys, 
newfis, 
Maxŝ c, 
M ax*!? ,

=  BSpc

BSarg

modjual, 
pcjual, 
old'ys, 
new (3 s, 
Maxs£ c,
M a x f f i ,
—- l

, newSs

\  V s
modjual,

” _1 Max a ,
\  s  )  old'ys,

new (3 s,
Maxsfic,
M a x 1̂ ,
—-l

\  s  y
The call to BSarg enables the construction of a list of delay functions for the arguments of 

module mn  at program counter value pc, it is given as:

BSarg : N  x SdSC AEqList2 x N 2 x 7  dSCAEqListx
(3dSCAEqList x N 2 x MapEqList2 —> SEqList

It is defined recursively over the number of arguments for the module in two cases - where the 

argument index is not 0, and where it is 0. For the case where the argument index is not 0 then
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BSarg is defined as:

BSarg

(  argjnum, \
oldSs,
newSs,
modjual,
pcjual,
old'ys,
new/3s,
Max%c,
M a x f j* ,
~-i1 J

V s

(  argjnum — 1, 
oldSs,

(  (  modjual, \
argjnum, 
pcjual, 
oldSs, 
old'ys, 
newj3s, 
MaxsN,

=  BSarg

BS

\

Max°N,

V =>
modjual,
pcjual,
old'ys,
newfis,
Maxsfic,
M a x ^ 1,

?
\  s.

, newSs

J
Finally, the BS operation, which is responsible for creating the new delay function for the j th 

argument of module mn at program counter pc, is called and it is given as:

BS : N 3 x SdSC AEqList  x 7  dSC AEqList  x fidSCAEqList  x 
N 2 x MapEqList2 —> SdSCAEquation

To provide a definition of BS the new value of the delay needs to be generated from the existing 

knowledge of the two abstract SC As. To understand what the delay should be, an understanding 

of the particular delay required is needed. If the wiring is to a source, or is unconnected, then the 

unit delay is generated. This case is identified by considering the target abstract dSCA /5-wiring 

functions:
f  modjual, \  

argjual, 
pcjual, 
oldSs 
old'ys, 
newfis,BS

Maxs£ c, 
M a x f f ,

=  BuildS

(  modjual, \  
argjual, 
pcjual,
t - 1 /

i f  condi
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where:

condi — RetTerm , 2

(  (  /  oldjs , \  \  \

3*®  PC-T '’ ,mod-val,
V V \  arg-val )  j  )

In the situation where this condition is not true, i.e. the wiring under consideration is to another

module, then the value of the new delay function needs to be calculated. To calculate the new value, 

the following process is followed:

1 . Find the module and program counter value in the source abstract dSCA that relates to the 

current module and program counter value in the target abstract dSCA, using the inverse 

mapping function;

2. Identify the module in the source abstract dSCA that produces the value we are interested 

in from the /?-wiring function;

3. Identify the program counter value in the source abstract dSCA that the value we are inter

ested in is calculated from the delay functions;

4 . Find the module and program counter in the target dSCA that produces the value we are 

interested in, using the mapping function; and

5. Calculate the delay between the current value of the program counter and the program counter 

value from (4).

The module and program counter in the source abstract dSCA is given directly by the inverse 

mapping function:

'E~1(modjval2,pcjval2) =  (modjval\,pcjval\)

The position of arguments in the functional specification cannot change in the transformation. Thus 

if arg.val is the argument number under consideration in the target abstract dSCA, then it will also 

be in the source abstract dSCA. This fact and the /3-wiring function in the source abstract dSCA 

are used to determine the module that produces the value for that argument, in the source SCA:

mod-val™ 1* =  fdpc_vaiv{rnodA}ali,argjual)
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Using the delay function from the source dSCA, the value of the program counter that the result 

was calculated at can be determined. It will be the current source program counter value minus the 

delay value for this argument modulus the value of M axat in the source abstract dSCA:

pc-val[es = (pc.vali -  (t -  ^ od_vail)aT.p_vaj5pc^ ail(t, a,x))) mod M axxN

It is now possible to determine the value of the program counter in the target abstract dSCA by 

applying the mapping function to the values pc_val\es just determined, and mod_val\ es, and taking 

the second element of the returned tuple:

pcjual2 CS — snd(E(modjvalies ,pc-valies))

The value of the delay can be worked out from the difference between the program counter in the 

target abstract dSCA now, and the value of pcjval£es:

(pcjual — pcjval™3) mod M ax2N

B5 is therefore defined as:
/  modjval, \

argjual,
pcjual,
oldSs
old'ys,
oldfis,
M axs£ c,
M a x 1̂ , 
—-1

\  S
and:

with:

and:

B6 — BuildS

(  modjual, \
argjual, 
pcjual,

{ t — ((pcjual — pc-valtgt) mod M ax t̂ t) J

I RetTerm  I 1pc_valrtgl = snd I R etT  erm  I Get El I modjval^ , ,2
iresLsrc

modjualrsersc =  f s t

\  \  pcjual

(  I  oldfis, \  \ \

RetTerm

(

GetEl

V

pcjval src, 
modjualsrc,

\  argjual y

,2

/

pcjvalrSrSc =  pcjvals t — GetEl

(  oldSs, \  \
modjval src, 
argjual,

\  pcjualsrc j  J
mod M axŝ c
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where modjvalsrc and pc_valsrc are: 

pcjval
■=■—1

src — snd I RetTerm  I GetEl  I modjval, 
\  \  \  pcjval

—- I

mod-valsrc =  f s t  I RetTerm  I GetEl  I modjval, J ,2
\  \  \  pcjval J

The second case of BSarg, where argjaum  = 0, is a case of returning the list of delay functions

already generated with the delay for the channel to the program counter module added:

BSarg

(  o ,
oldSs, 
newSs, 
mn, 
pc,
—- l' J

oldjs, 
oldfis, 
Max% c ,

\

/

BuildS

\

(  mn, \  
0, 
pc,
t ~ i  /

\

(newSs

/

\  M a x ^  J

The second case of B 5pc, where pcjval — 0, is where the delay functions for module mn at 

program counter 0  are appended to the already constructed delay functions:

B 5pc

0 , \
oldSs, 
newSs, 
modjval, 
Max a ,
^  ?
1—1J
old'ys, 
Maxs£ c,

\  M a x ^  J

BSarg

(  Max a — 1, \  
oldSs,
D,
modjval,
0,
—- I

oldjs, 
Max%c, 
Max'S*

\

\  neqs

Finally, the second case of BSs manages the situation where all the modules have been addressed,

except for module 0. In this circumstance, the delay functions already constructed are returned, in
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addition to a delay function for the program counter, m0, as follows:

oldSs,
newSs,
Maxjv (  /  0 , \

Build5BSs BuildS , newSs

/
oldjs,
Max%

G.1.5 Initial State Equations

Consider the target abstract dSCA module m*, its Initial State equations, will be of the form:

V1(0, a, x) =  xii0 
Vi(0,a,x) =  xifi

K(0, a, X) — X i , M a x j v  — l

where each value Xi,pc_vai, where pc-val =  0,1, . . . ,  M clxn — 1, will either be the undefined 

element, or will come from some particular module and value of the source abstract dSCA program 

counter. Values of the source program counter and module are given directly from the mapping 

function, S.

Informally, the set of Initial State equations is created as follows:

• For each module nu  where i € Nk2 and i > 0:

— For each pcjval G {0, . . . ,  M a x^2 — 1} create a new Initial State equation:

newjvalue if
otherwise

• For mo, the program counter:

For each pcjual € {0, . . . ,  M a x — 1 } create a new Initial State equation:

Vq{pcjual, a, x) = (pc.val +  1 ) mod M a xat2
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Formally, the CreateIVs  operation is introduced as:

CreatelVs : dSCAAlgebra x N 2 x MapEqList  —>• dSCAISVEqList

where the arguments are such that it takes a source abstract dSCA specification and values giving 

the defining shape of the target abstract dSCA to produce the Initial State equations for the target 

dSCA. We define the operation as:

\

CreateIVs

(  SourceSCA, \  
k,
Maxjv,

V E - i

BIVs

(  k ,
M axat,
GetEqIV (Source.SC A ),

/ —- l J
The purpose of the operation, B IV s , called by CreateIVs,  is to build the new Initial State 

equations for the network. It is given as:

BIVs : N 2 x dSCAI SV EqList2 x MapEqList —> dSC AI SV EqList

and is defined recursively over the number of modules in the target abstract dSCA. There are two 

cases: where the module number under consideration is greater than 0 , and where the module 

number is zero. In the first case BIV s  is defined to recurse on itself, decrementing the module 

number and adding the result of calling the BIV  operation to the list of new Initial State equations:

(  num.mod— 1, \
M axat,

\
num.mod,

BIVpc
BIVs

(  num.mod, \  
Maxpj, 
oeqs,
neqs,

v ^ 1

=  BIVs

oeqs,
(  (  Maxw — 1, \

num.mod, 
oeqs, ,neqs

J
/

This operation makes a call to the BIVpc  operation to generate the fist of Initial State equations 

for all values of the program counter for module nurrumod. Where BIVpc  is given by:

BIVpc  : N 2 x dSCAISVEqList2 x MapEqList - >  dSCAISVEqList

where the first argument is the program counter value, the second argument the module number 

under consideration, the third argument the list of Initial State equations from the source abstract
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dSCA, the fourth argument is the list of new Initial State equations that are being recursively created

and the final argument is the inverse mapping function.

B IV pc  is defined recursively over program counter values with two cases, the first representing

the case where the program counter is greater than zero and the second case is where the program

counter is zero. The first case is defined for two situations, where the inverse mapping is defined (in

which case a new equation is created from values in the source abstract dSCA) and where it is not

(in which case an equation is created that returns the undefined value u ):

I  pc - I ,  \

B IV pc

(  pc,
i,
oeqs, 
neqs, 

V S - 1

=  <

BIV pc

BIV pc

newjval,

B uildIV  pc

y neqs

if a  1(i,pc) [

if E 1(i,pc) T

where:

newjval = B uild IV  I pc,
\  RetTerm  (GetEl (oeqs,RetTerm(GetEl(E~1,i,p c),2 )) ,2)

The second case of BIVpc, where the program counter is zero is the simple case of creating the

equation for that value of the program counter and appending it to the list of already generated

Initial State equations:

/  0 , \

BIVpc
h
oeqs,
neqs,

V S - 1

B uild IV  [ R e tT e rm (  GetEl(oeqs, E_1 (i, 0)),

/ \  neqs

The second case of B IV s  returns the list of already generated Initial State equations, with the 

list of functions for the program counter appended to the front of them:

( 0, \
B IV s

M ax  tv , 
oeqs, 
neqs, 

V S - 1

=  (B pcIV s(M axN , [], M axx),neqs)
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BpcIVs  is  g iv e n  as:

BpcIVs  : N  x  dSCAISV EqList x  N  ->  dSC AI SV EqList

a n d  is  r e c u r s iv e ly  d e f in e d  u s in g  tw o  c a s e s  o v e r  t h e  p r o g r a m  c o u n te r  v a lu e s  as :

0,
BpcIVs  j neqs, 

Maxu

pcjval, 
BpcIVs  ( neqs, 

M clxn

(  ( 0>=  I BuildIV  I 0 , ] ,eqs

(  pcjval — 1,
/ / 0,

pcjval,=  BpcIVs BuildIV

\ \
mod pcjual +  1, 

Maxpi

\  \
eqs

\  M clxn

G .1.6 State Transition Equations

/ /

Viit +  1, a ,  x)

Consider the target abstract dSCA module its State Transition equations, will be of the form:

/*, 0(. . .) if pc =  0

fi,MaxN- 1 (- ■ •) if pc = M axN -  1 

where each functional specification component fi.pc_vai, f°r values of pcjval =  0 , 1 , . . . ,  M a x^  — l, 

will either be the undefined element, or will be the component specification extracted from some 

particular module and value of the source abstract dSCA program counter in the source abstract 

dSCA. In a similar manner to creating the Initial State equations, values of the program counter and 

module number in the source abstract dSCA for values in the target abstract dSCA are provided by 

the inverse mapping function, H-1 .

• For each module where i € Nfc2 and i > 0 :

-  For each pc.val G { 0 , . . . ,  M ax^ 2 — 1} in abstract dSCA extract and rewire the relevant 

functional specifications from the source abstract dSCA, if one exists, otherwise use the 

undefined constant u.

— Create a new State Transition equation from the previous result.

F o r  m o , t h e  p r o g r a m  c o u n te r :
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— Create the program counter State Transition equation:

mod(add(VpC(t , a, x), 1), M axa t) i f  Vpc(t — 1 , a, x) = 0

Fpc(f T I; a, x) <

mod(add(VpC{t,a ,x),l) ,M axN) ’■

Formally the CreateSTs  function is introduced as:

CreateSTs  : SCAAlgebra x N 2 x MapEqList2 —> dSCASTVEqList

CreateSTs  takes a source abstract dSCA specification and values for the defining shape of the target 

abstract dSCA and produces the State Transition equations of that target dSCA. It is defined as:

f  k,
M ax tv ,
GetEqSTVF(Source.SCA),

CreateSTs

(  SourceSCA, \  
k,
Maxx,
—- l  

\  S

BSTs

\

—- l

Createj3s

CreateSs

(  SourceSCA, \  
k ,

Max at,

H_1 /(  SourceSCA, \
k,
M a x at,

V \ s - 1 , y
The operation called by CreateSTs  is the BSTs  operation which is given as:

BSTs  : N 2 x dSCASTV EqList2 x MapListx
(IdSCAEqList x SdSCAEqList  —> dSCASTV EqList

and is defined recursively over the set of module numbers. In keeping with a number of these 

transformation operations it has two cases, the first where the module number is greater than 0 , and 

the second where it is 0. The first case takes as arguments, the module number under consideration, 

the value of Max  a t, the list of source abstract dSCA State Transition equations, the target State 

Transition equations, the inverse mapping, and finally the target abstract dSCAs /3-wiring and delay
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functions. It is defined as:

(  modjnum, \  
Max at, 
STVFs,

BSTs neqs,

tgtfis,
V J

(  modjnum — 1,
/  /  M ax at, ^

STVFs,
■=■-1

=  BSTs BST

y neqs 
Maxat

tgtfis, 
tgtSs, 

y  modjnum

The operation BST  used in the above definition is given as:

BST  : N 2 x dSCASTV EqList x MapListx
(IdSCAEqList x SdSCAEqList  —»• dSCASTVEqList

and is defined such that a new equation is built up for module modjval under consideration. It is 

defined as:

I modjval,

BST

(  Max]\[, \  
modjval, 
STVFs,

Ps,
Ss, )

— BuildST NewST
rewire

where:

Max  at ,
^  null

(  Maxjy, \  
modjval,

(  new-vfopdef, \  
modjval, 
pcjval,
Peqs, 

y  Seqs

\

newjvfopdef =  NST
STVFs,

y  ET1 j

The NewST(rewire(NST(...))) component of the above definition needs some explaining. Con

sider that the VFOPDef term of a Value Function equation for an abstract dSCA is of the form:

r a,o(...;
fi.l (■ • ■>

if pc =  0  

if pc =  1

, f i , M a x N - 1 (- • -) if pc =  MaxN — 1 

It has already been noted that this is a convenient syntactic way of writing the conditional. If
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written according to the machine algebra, M a , it would appear as:

/  pc =  0,
/»,o(- • •)»

/ PC = 1, 
f i (p c , . . . )= c o n d  R,

\  V

cond ( /  pc — M olxn — 1
. . . , COTld I f i , M a x ] y  — 1 (• • ■)>

\  null
J

It is this second form that is used to select the component specification based on a particular 

value of the program counter. To do so, the operation GetFn  is introduced:

To generate a target abstract dSCA State Transition equation for a module a list of the appro

priate VFOpDef Terms, selected from the source abstract dSCA by means of the inverse mapping 

function E“ , the GetEl operation for STEqList specifications and the GetFn operation defined 

above are used. Consider module in the target abstract dSCA, at program counter value pcjval 

it is defined to be executing either the:

1. VFOpDef term in module /s t(E _ 1 (i,pc_ua/)) at the source program counter value snd(E,~l (i, pcjval)) 

in the source abstract dSCA, if the mapping is defined; or

2 . the output u, if the mapping is undefined.

The N S T  operation is introduced to determine which case is under consideration, and it is given as:

and recurses over the program counter values to produce a list of VFOpDef terms that are used

GetFn : VFOpDef Term  x N  —> Term

and is defined recursively over the structure of the VFOpDef term definition:

GetFn{cond{a,b, c),0 ) =  fe 
GetFn(cond(a,b,c),pcreq) — GetFn(c,pcreq — 1)

N ST : N 2 x dSCASTV EqList2 x MapEqList  -*> VFOpDef List

for the definition of the State Transition phase of the Value Function for a particular module. It is
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d e f in e d :

w h e re :

a n d :

N ST

(  pc.val, \  
mod.val, 
neqs, 
oeqs,

y ~ -

=  N ST

(  pc.val — 1, 
mod.val,

/  oeqs, 
neqs, Extract I mod.valsrc,

y pCJValgrc
oeqs,

V E -1

—-1
mod-valsrc — fs t  I RetTerm  I GetEl I mod.val, J ,2 

y  y  y  pc.val

c - i
pc.valsrc =  snd I RetTerm  I GetEl I mod.val, | , 2 

y  y  y  pc.val

T h e  Extract f u n c t io n  u s e d  in  t h e  a b o v e  d e f in i t io n  is  g iv e n  as:

Extract : dSCASTVEqList x  N 2 —> VFOpDefTerm

a n d  is  d e f in e d  as :

Extract (  Z l v a l ,  )  =  GetFn (  GetEl(oeqS,mod.val), \
\p c .v a l  )  \ pC~Val J

T h e  s e c o n d  c a s e  o f  th e  N ST  o p e r a t io n  is  d e f in e d  a s  r e tu r n in g  t h e  l i s t  o f  V F O p D e f  te r m s  c o n 

s t r u c t e d  b y  a p p e n d in g  t h e  v a lu e  fo r  t h e  p r o g r a m  c o u n te r  a t  0 t o  th o s e  V F O p D e f  t e r m s  a l r e a d y  

o b ta in e d :
0, \
mod.val,

N ST neqs, 
oeqs,

V S_1
where mod.valsrc a n d  pc.valsrc a r e  a s  d e f in e d  fo r  t h e  f i r s t  c a s e  o f  NST. T h e  r e s u l t  o f  N ST  is  t o

oeqs,
=  j neqs, Extract ( mod.valsrc, 

pc.valsrc

p r o d u c e  a  l i s t  o f  V F O p D e f  te r m s ,  h o w e v e r  th e s e  t e r m s  w ill a l l  b e  w ir e d  b a s e d  o n  t h e  v a lu e s  in  t h e  

s o u r c e  a b s t r a c t  d S C A  a n d  m u s t  b e  r e w ir e d .  R e w ir in g  is  a c c o m p lis h e d  w i th  t h e  rewire  o p e r a t io n ,  

w h o s e  p u r p o s e  is  t o  r e c u r s e  d o w n  a  f is t  o f  V F O p D e f  t e r m s ,  p r o d u c in g  a  n e w  l i s t  o f  V F O p D e f  

te r m s  w i th  w ir in g  a n d  d e la y  f u n c t io n s  p u t  in  p la c e  t o  re f le c t  t h e  t a r g e t  d S C A . C o n s i s t e n t  w i th  t h e  

d e f in i t io n s  o f  t h e  o th e r  t r a n s f o r m a t io n s  in  th i s  th e s i s  s im p lif ic a t io n  o f  t h e  w ir in g  a n d  d e la y  f u n c t io n s  

is  a p p l ie d  in - s i tu .
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T h e  rewire  o p e r a t io n  is  g iv e n  a s  a n  o p e r a t io n  t h a t  t a k e s  a  V F O p D e f  l is t ,  t h e  m o d u le  n u m b e r  

a n d  t h e  p r o g r a m  c o u n te r  v a lu e  u n d e r  c o n s id e r a t io n  to g e th e r  w i th  t h e  l i s t  o f  beta-w ir in g  a n d  d e la y  

f u n c t io n s  fo r  t h e  t a r g e t  a b s t r a c t  d S C A :

rewire  : V F O pD ef List  x  N 2 x  pdSC  AEqList  x  SdSCAEqList  —► V F O pD ef List

T h e  o p e r a t io n  rewire  is  d e f in e d  r e c u r s iv e ly  o v e r  t h e  l i s t  o f  V F O p D e f  t e r m s  w i th  t h e  f i r s t  c a s e  

b e in g  d e f in e d  as:

/  (e,es)> \  
mod.val, 

rewire pc.val, 
fieqs,

 ̂ 5eqs

and t h e  s e c o n d  c a s e  is  d e f in e d  as :

( ( e>

rw

\
mod.val, 
pc.val, 
peqs, 

y Seqs J

, rewire

( esi \ \
mod.val,  
pc.val — 1, 
fieqs, 

y Seqs

rewire

/ e, \
mod.val, 
pc.val, 
Peqs, 

y Seqs

=  rw

(  e, \
mod.val, 
pc.val, 
Peqs,

\  Seqs J

T h e  o p e r a t io n  rw  u s e d  in  rewire  c o u ld  b e  d e f in e d  g e n e r ic a l ly  t o  t a k e  a c c o u n t  o f  a n y  n u m b e r  o f  

a r g u m e n ts ,  b u t  fo r  c l a r i ty  in  th i s  th e s is ,  i t  is d e f in e d  fo r  t h e  4 c a s e s  t h a t  Ma w ill a l lo w  (z e ro  t o  3 

a r g u m e n t s ) :

rw

rw

(  *(*i)> N\
Ps,
Ss,
mod.val,

\  pc.val J

f t ,  \
ps,
Ss,
mod.val,

\  pc.val

(

=  t

=  t wire

rw

(  t ( t i , t 2), \  
Ps,
Ss,
mod.val,

\  pc.val J

(

=  t

( \ \
Ps,
Ss,
mod.val,
1,

y y pc.val J J 

f  l̂i \  (  2̂

wire

Ps,
Ss,
mod.val,
1,

y pc.val J

,wire

\
Ps,
Ss,
mod.val,
2 ,

y pc.vai y
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ps,
rw 5s,

mod.val, 
y pc.val J

with the supplementary operation wire being given as:

wire(ti, Ps, 5s, mod.val, 1,pc.val), 
= t J wire{t2, Ps, 5s, mod.val, 2,pc.val), 

wire(tz, ps, 5s, mod.val, 3,pc.val)

wire : Term  x PdSC AEqList x 5dSCAEqList x N 3 —*■ Term

and defined for the three cases that may make up an atomic term within M a '-

. const, \wire / j r . -  = constPs,5s,i,j,pc I

wire Vp(t l,a ,x ), \  _  y n ind (new.time,a,x) 
Ps,5s,i,j,pc. )

where:

and:

new.index — RetTerm(GetEl(Ps, mod.val, j , pc.val),2)

new.time = RetTerm(GetEl(5s, mod.val, j, pc.val), 2) + 1

To complete the generation of a State Transition equations for module mmo(i_vai in the target 

dSCA the list of rewired VFOpDef terms must be turned into the component specifications. This is 

done using the NewST  operation, given as:

New ST  : VFOpDef List x N  —> VFOpDef

which takes the fist of VFOpDef terms (which has the VFOpDef term corresponding to pc =  M a x^~  

1 at the head and the VFOpDef term corresponding to pc = 0 at the end) and recurses down the 

list producing the appropriate target dSCA VFOpDef term. For the recursive case it is defined as:

/  (e, es), \  /  es,
NewST  J pc.val, J =  NewST  I pc.val — 1,

y neqs J y cond(VpC(t, a, x) =  pc.val, e, neqs)

and the base case is defined:

' e ,  \
NewST  j pc.val, = cond(Vpc(t, a, x) =  pc.val, e, neqs) 

neqs J
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The function call to create the new VFOpDef term for the target dSCA is therefore:

(  (  (  M axN, \  \  \
mod.val,

NewST
rewire

N ST S oldeqs,
V S "1 7

mod.val, 
pc.val, 
peqs, 

y Seqs
Maxx, 

y null

which can be seen in the definition of the B ST  operation, wrapped by the value function building
J

operation. This functionality is walked through in the section where we manually transform dSCAs.

The second case of BSTs, where the module is 0 is where the list of already generated state

transition value functions is appended to the State Transition equations for the program counter,

and is defined as:
/  0, \

MaxN, /  mod(add(Vq(t, a, x), 1), Max^i) if <T \

BSTs
neqs,
STVFs,
T-l
ps,

y Ss

(
V0(t + 1 ,a,x) 

y neqs
mod(add(Vo(t,a, x), \) ,M a x^)  if c2

where:

ci = Vpc(t,a,x) = 0 

c2 = Vpc(t,a,x) — Maxjy - 1

G .1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new abstract dSCA can be 

created by transforming the source abstract dSCA. The Create.adSCA operation is provided to do 

this, it is given as:

Transform  : adSC A Algebra x N 2  x MapEqList2  —> adSCAAlgebra

The operation takes the source abstract dSCA and the defining shape of the target abstract 

dSCA together with the mapping and invers mapping functions.. It is defined:
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where:

and:

(  G etN am e(SC A src), \
adSC AAlgebra,

VFOp,
70 -.N2 ^ { M , S , U } ,
0o : N 2 -> N,
SOp,

I  SCAsrc, \  
k,

Transform

SCA,tc, \  
k,
Maxjy,

1

= CreateadSCA

Create'ys

Createfts

CreateSs

Maxjv, 
\ E - 1

SCAsrc, \
k,
M  a x j y , 

VS- 1 ' )
(  SCAsrc, \

k,
MaxN,

C rea te lV  s

C reateSTs

\  s - \
/  SCAsrc, \  

k,
Maxjsr 

\  E - 1
(  SCAsrc, \  

k ,

Maxft, 
-3-1

V S /

V F O p

SOp  =

/  Vo : T  X x M* ^  M^, \

\  Vk :T  x M% x AfJ MA J 

(  Jo,0,0 : T x M J x M j - > T , \

V J* j,o : T x x AfJ -► T /

j  =  Get-Max A(Src.SCA) 
n =  num Jnp(SrcSCA)



A ppendix H 

A bstract dSCA to  Concrete dSCA  
Transformation D etails

H .l Process

This appendix defines the processes for the transformation of an abstract dSCA with defining shape 

V = (n ,m ) to a concrete dSCA with a defining shape of V = (n,m). The following equation lists, 

within a supplied abstract dSCA specification, are considered for transformation:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Equations; and

4. State Transition Equations.

Recall that this abstract dSCA has a defining shape of V = (1, 36). The transformation will be 

to a cycle consistent concrete dSCA. It should be noted that if transformation to a cycle inconsistent 

concrete dSCA was required then alteration of the tuple lengths and the use of appropriate tuple 

mapping functions (examples of which are given in Chapter 7) would have to be used.

H.1.1 Prerequisites

The following prerequisites are required for the transformation:

A-88
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• The source and object networks have k > 1 modules and M ax^ > 0 component specifications 

in their modules definitions;

• The defining shape of the target network equals that of the source network; and

• Condition definitions of each adSCA module, except the programme counter, are of the for

mat:

cond(pc = 0, a, cond(pc = 1,6, cond(pc =  2, c, cond(...))))

H .1.2 7-W iring Functions

The 7-wiring functions in the target concrete dSCA will not differ much from those in the source 

abstract dSCA since the “look and feel” of the SCA is not being altered. What is different is the 

introduction of a new input to argument 1 which will require arguments 1, . . .  ,n(i) of the abstract 

dSCA becoming arguments 2, . . .  ,n(i) -I- 1 in the concrete dSCA. The new argument introduced in 

concrete dSCA is a wiring of the first argument to the output of the module itself.

Informally, to generate the target concrete dSCA 7-wiring functions from a source abstract 

dSCA the following process is followed:

• For each module m* where i 6 Nfc2:

-  For each pcjval € {0,. . . ,  M ax ^ 2 — 1}:

* For each argument where j  € {2,. . . ,  n(i) + 1} create a new ft-wiring function

‘"Ypcjualifi j') Ifpcjualiif J

* For the oth argument of each module create:

Ifpcjvaldi 9) M

* For the I s* argument of each module create:

Ipc-valih 1) =  M
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• For module 0 create M ax^ P~wiring functions to wire m 0  back to itself.

Formally, the Create'ys operation is introduced as:

Create'ys : adSC AAlgebra —> 7 dSC AEqList

and is defined:
/ GetNumModules(SourceSCA) 

Create'ys ( Source.SCA  ) =  B'ys IGetM axN(SourceSCA),
y Get'yEqs{SourceSCA),

The B'ys operation achieves two purposes, first it calls the Reindexys operation to manage

responsible for adding the new wiring function for argument 0 to all modules, except the program 

counter module, at all times of the program counter. B'ys is given as:

B-ys : N 2  x 7  dSC AEqList —> 7 dSC AEqList

taking as its first two arguments the defining shape of the concrete dSCA, and the third argument 

being the source abstract dSCA 7-wiring functions. It is defined as:

the alteration of indexes, as described above, and then it calls the Rewire'ys operation which is

/  num-mod, 
B'ys I Maxpf, 

y old'ys,

I num-mod, 
Rewire'ys I M axjv,

y Reindex'ys (old'ys)

where the operation Reindex'ys is given as:

Reindex'ys : jdSCAEqList —* jdSCAEqList

and defined as:

Reindex/ys(e,es) — (Reindex'y(e), Reindex'ys (es))

and finally Reindex7 is given as:

Reindex7 : 7dSCAEquation —> 7dSCAEquation

and is defined in two cases, the first where the wiring function is for the 0 th argument or the module 

is 0, and the second for where it is not. The first case is defined:

RetArg{RetTerm(e, 1), 2) =  0V 
RetArg(RetTerm(e, 1), 1) =  0Reindex7 (e) =  e if
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In the second case a new 7-wiring function is created from the components of the source 7-wiring 

function, with the argument index incremented by one:

^ ^ f R e t F n ( R e t T e r m ( e , l ) ) i  ^

Reindex 7 (e) =  Build'y RetArg(RetTerm(e, 1), 1), 
RetArg(RetTerm(e, 1),2) + 1, 

y RetTerm(e, 2) /
Having shuffled the existing 7-wiring functions, the Rewire'ys operation adds the additional 

7-wiring functions for argument 1 for all values of the programme counter for all modules, except 

the program counter module. It is given as:

Rewire'ys : N 2 x 7 dSC AEqList —► 7 dSC AEqList

and is defined recursively over the module number, in two cases. The first case is defined as:

\
pcjval,

Rewire'ys
modjnum, 

Rewire'ys [ pcjval, 
newys,

f  modjnum — 1, 
pcjval,
/  /  pcjval — 1,
I ReWire-ypc I modjnum , j ,new js

U  \ o j
where the operation Rewire'ypc used by the above definition is responsible for recursing over the 

values of the program counter and producing the actual wiring function. It is given as:

Rewire'ypc : N 2 x 7 dSC AEqList —>■ 7 dSC AEqList

and is defined recursively over the program counter values. The first case is where the program 

counter is not 0, and it is therefore defined as:

\
\pc.val,

Rewire'ypc j modjnum , ] =  Rewire'ypc 
newys

(  pcjual — 1, 
modjnum ,
(  (  modjnum, \

1,

V

Build'y

\
pcjual, 

\  M,

, newys

/ / /
The second case of the Rewire'ypc operation is defined as:

/
Build'y

0,
Rewire'ypc I modjnum, ] =  

y newys
y

(  modjnum, \  
1,
0,

y m ,

, new'ys

/ J
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The definition of the second case of the Rewire'ys, where the module number if 0 is defined to simply 

return back the list of newly generated equations:

Rewire'ys

/  o, \
pcjval, 
old'ys, 

y  newys J

= new'ys

H .1.3 /3-Wiring Functions

In a similar way to how the target concrete dSCA 7-wiring functions were constructed from source 

abstract dSCA 7-wiring functions, so are the concrete dSCA /5-wiring functions. The /5-wiring 

functions in the target concrete dSCA again differ only in so much that the index of arguments

I , . . .  ,n(i) shifts to 2, . . . ,  n(i) +  1.

Informally, to generate the target concrete dSCA /5-wiring functions from a source abstract 

dSCA the following process is used:

• For each module mj where i G N*.2:

— For each pc.val G {0,. . . ,  M ax ^ 2 — 1}:

* For each argument where j  G {2,...  ,n(i) + 1} create a new /5-wiring function

Ppc-val(fi I) Ppc.valifi J
* For the oth argument of each module create: %

Ppc-val&Q) = M

* For the 1st argument of each module create:

Ppc.valih 1) = M
• For module 0 create M ax^  /5-wiring functions to wire mo back to itself.

Formally the Createfls operation is introduced as:

Createfis : adSCAAlgebra —> /3dSCAEqList
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and is defined:
/  GetNumModules(Source.SCA),

Createfis ( Source.SCA ) =  Bfts j GetMaxN(SourceSCA),
y GetfiEqs(SourceSCA),

The Bfts operation achieves two purposes, first it calls the ReindexPs operation to manage 

the alteration of indexes, as described above, and then it calls the Rewireps operation which is 

responsible for adding the new wiring function for argument 1 to all modules, except the program 

counter module, at all times of the program counter. BPs is given as:

BPs : N 2  x PdSCAEqList —> PdSC AEqList

taking as its first two arguments the defining shape of the concrete dSCA, and the third argument 

being the source abstract dSCA /5-wiring functions. The final argument is the transformed /5-wiring 

functions. It is defined as:

( num.mod, \  /  num.mod,
Maxpj, I = Rewireps I Max at, 
oldPs, J y Reindexps (oldPs)

where the operation ReindexPs is given as:

ReindexPs : fldSC AEqList —> PdSC AEqList

and defined as:

ReindexPs{e,es) = {Reindex(3(e), Reindexps(es))

and finally ReindexP is given as:

ReindexP : PdSC AEquation —> PdSC AEquaiion

and is defined by two cases, the first where the wiring function is for the 0 th argument or the module 

is 0, and the second for where it is not. The first case is defined:

n , ni \ -r (  RetArg(RetTerm(e, 1),2) = 0V Rezndex0(e) = e if  ̂ RetArg{RetTerm(et 1}j 1} =  0

In the second case, a new /5-wiring function is created from the components of the source /5-wiring

function, with the argument index incremented by one:

 ̂ PRetFn{RetTerm{e,\))i ^
ReindeX0(e) =  Build? ^

 ̂ RetTerm(e, 2) J
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Having altered the indices of the existing /5-wiring functions, the Rewirefis operation adds the 

additional /5-wiring functions for argument 1 for all values of the programme counter for all modules, 

except the program counter module. It is given as:

Rewire/3s : N 2  x fidSCAEqList —> (3dSC AEqList

and is defined recursively over the module number. Where the module number is not 0, then 

Rewirefts is defined as:

\
mod.num,

Rewire/3s ( pc.val, ] = Rewirefis
newfis,

(  modjnum — 1, 
pc.val,
(  f  pc.val -  1, \  \

ReWirefipc modjnum, ,
V  D /  '

y newfis 7 7
the operation RewirePpc used by the above definition is responsible for recursing over the values of 

the program counter and producing the actual wiring function. It is given as:

Rewiref3pc : N 2  x /5 dSC AEqList —>■ fidSC AEqList

and is defined recursively over the program counter values. The first case is where the program 

counter is not 0:

\

\( pc.val,
mod.num, | =  Rewirefipc 
new/3s

f  pc.val — 1, 
modjnum,
(  (  mod.num, \

1,

V

Build/3

\
pc.val, 

y mod.num, J

, newfis

J
The second case of the Rewire/3pc operation is defined as:

/  /  mod.num, \0,
Rewireppc mod.num, ] =

y newfis
\

1,
0,

\
, new/3 sBuildft

y modjnum,

The definition of the second case of the Rewirefis, where the module number is 0 is defined to return 

back the newly generated /5— wiring functions:

/ 0, \
Rewirefts pc.val, 

oldps, 
y new(3s J

= newPs
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H .1.4 Delay Functions

Delay functions for the concrete dSCA are all of unit delay, and there are a number equal to the 

wiring functions. Thus, a unit delay function will be created for every element in the newly generated 

7-wiring equation list.

Formally, the CreateSs operation is introduced as:

CreateSs : aSCAAlgebra —> 5SCAEqList

Note that delay functions in the concrete dSCA are of the type SSCAEqList and not SdSCAEqList. 

The CreateSs operation is defined as:

CreateSs ( Source.SCA ) =  BSs ^ ^ reateTs(Source.SCA), ^

The BSs operation is defined recursively over the elements in the 7-wiring function list:

BSs : 'jdSCAEqList x SdSC AEqList —> SdSC AEqList

the case where the fist is not a single element is defined as:

(  GetIndex(RetTerm(e, 1), 1), \  \

, neqsBSs (e,es),
neqs, = BSs

(  es, 
(

\
BuildS

\

GetArg(RetTerm(e, 1), 1), 
GetArg(RetTerm(e, 1), 2), 
t -  1 J

and the definition of BSs where there is only one element in the fist of 7-wiring functions is defined

BSs ( ’ I =  BuildSneqs,

(  GetIndex(RetTerm(e,T),\), \  
GetArg(RetTerm(e, 1), 1), 
GetArg(RetTerm(e, 1), 2),

V t-1
H .1.5 Initial State Equations

The initial states for each module mi, where 1 < i < k are Max^j tuples of length M axn  (recall 

that the mapping is being defined for a cycle consistent abstract dSCA). We will make use of the 

fact that calculations will only care about the initial state given for t = M axn — 1 and t =  0, by
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defining the tuple at time t — 0 and use that value for all other initial values until t = Max — N  — I 

where the final Initial State equation will be generated.

The operation CreateIVs is introduced that takes the source abstract dSCA specification and 

produces the Initial State equations. It is given as:

CreateIVs : adSCAAlgebra -> dSC AISV EqList

and is defined as:

CreateIVs ( Source.SCA ) =  B IV s

(  num.modules{Source.SCA), \  
GetMaxN{Source.SCA), 
G etIV iSm jrce.se A),

V J
The call to the B IV s  operation is where the work of the transformation takes place. B IV s  is 

given as:

B IV s  : N 2  x dSC AISV EqList2  -> dSCAISVEqList

and it is defined recursively over module numbers in two cases, the first is where the module number 

is greater than zero, and in such a case B IV s  is defined as:

\

B IV s

(  mod.num, \  
Maxjy, 
oeqs,

Y neqs )

= B IV s

(  modjnum — 1,
Maxu, 
oeqs,
( (  0, \

Moxn — 1, 
B IV  modjnum, 

oeqs,
\ \

\
,neqs

The operation B IV :

B IV  : N 3 x dSCAISVEqList2  -> dSCAISVEqList

is defined recursively in two cases over the first argument. Firstly for when the first argument 

does not equal Maxm, then the operation is dealing with an initial state from a time prior to 

t = MaxN — 1 , and as such an initial state will be created containing u elements in all positions, 

except for 0th element. Note that the positioning of the first element is dependant upon the tuple



A B S T R A C T  DSCA TO CONCRETE DSCA TRANSFORM ATION A-97

management schemes used, however for both schemes identified as of interest the first generated 

value is placed at position 0 in the tuple. B IV  is defined as:

\
/  pc.val, \

M ax t v , 

modjnum, 
oeqs,

B IV = B IV

(  pc.val +  1, 
Maxtv, 
mod.num, 
oeqs,
(

\

\  neqs

The GenIVs operation used in B IV  is given as:

GenIVs

\

(  mod.num, \  
pc.val,
Maxtv,

\  oeqs

\
,neqs

7 ) /

GenIVs : N 3 x dSCAISVEqList —► dSC AISV Equation

and is defined to create a Max tv length tuple with the first element being the initial value produced

at time t =  0 in the source abstract dSCA initial values:

/  mod.num, \  /  mod.num, \

GenIVs pc.val, 
Max t v , 

y oeqs

BuildIV pc.val,
f  RetTerm(VF, 2),

\  \  ^0, • ■ ■ , 'U'MaxN — 2 J J

where:

VF  = GetEl{oeqs, mod.num, pc.val)

With the second case of BIV , where t =  Max tv — 1, then the complete initial state needs to be 

generated (from previous values):

/  (  mod.num, \  \
pc.val,

B IV

( Maxx, \
Max tv, 
modjnum, 
oeqs, 

y neqs J

BuildIV

\

InitState

(  Max tv, \
modjnum, 
oeqs,

\ V

, neqs

J
The operation InitState  is where the Initial State for module modjnum at time t = Max tv — 1 is 

created. Since we are using the array tuple management then the Initial State under these conditions 

will consist of a list of values with the first being the element calculated at t = 0 and the last being 

the one calculated at t = Max tv in the source abstract dSCA. It is given as:

InitState  : N 2  x dSCAISVEqList x TermList —> TermList
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and is defined recursively, with the recursive case:
/  pcjual, \  /  pcjual — 1,

InitState — InitState
\

modcnum, 
oeqs,

Y nlist J

and the recursion being stopped by the 1st argument reaching 0:
/  0, \

modjnum,

modcnum, 
oeqs,

Y (RetTerm (VF,2), nlist)

InitState oeqs,
nlist,
tt- i

= (RetTerm (V F ,2), nlist)

where in both cases:

VF = GetEl(oeqs, modcnum, pccual)

The base call to the recursive B IV s  operation is defined as:

o. \
ft/lax^, 
oeqs,

Y neqs J

B IV s
MaxN — 1 ,

= BIVpc ,neqs
Max N

where BIVpc is given as:

BIVpc : N  x dSCAISVEqList xJV-> dSCAISVEqList

and is defined recursively over the values in Maxjq, such that:
(  pcjual — 1,

' 0 ,/  pcjual,
BIVpc I neqs, j = BIVpc

y Maxx
I BuildIV  I M axw , | ,neqs
y y pcjual +  1 mod M axm

Y Max tv
and:

BIVpc ( )  = IY Maxx J Y
0,

BuildIV  j 0, | ,neqs

H .1.6 State Transition Equations

Consider the format of the State Transition equation in the source abstract dSCA, it will be similar 

to:

Vi(t,a,x) = < or(V\(t — 32, a, x),V \(t — 31, a, x)) if Vpc(t — 1, a, x) =  23 
gt(V\{t — 31, a, x ), V\ (t — 30, a, x)) if Vpc(t — 1, a,x) =  24
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the corresponding component specification in the concrete dSCA would be of the form:

(

( Vpc(tl &•! %) l
Vi(t, a, x),

if Vpc(t, a, x) =  23

if Vpc(t, a, x) =  24

The differences are attributable to the introduction of the tuple management functions, T and

Informally, the process for creating the new State Transition equations is a two step process

• Generate the d functions - those that are used in the projection part of the tuple management 

functions

• Create the new State Transition equations.

G eneration  o f th e  d functions

For an indexed array tuple management approach the results are stored relative to the value of the 

program counter when that result was calculated. The values of the d functions for each argument, 

given a cycle consistent dSCA, can be determined by using the following formula:

IT (as well as the need to identify the value in the tuple that results are to be extracted from).

.n u m ,a r g jr iu m  ,p  cju <ial — (AfflXjV T pC-Val &modjn,um,argjnum,pc-val)
As an example, if a module has a definition:
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Then its arguments would be stored at positions 1,2 and 3 in the array. Assuming M axm = 36, 

then if the first argument is considered, di,2,o can be determined as:

<A,2 ,o =  (36 + 0 — £1,2,0) — 1

Prom the definition of the value function it can be seen that £1,2,0 (£>a, x ) = t  — 34, therefore:

^120 =  (36 + 0 - 3 4 ) - 1  
=  (2 ) -  1 
=  1

To generate the d functions the Createds operation is introduced that recurses over the structure 

of the concrete dSCA (since the source abstract dSCA and concrete dSCA are the same “shape” 

means there is no requirement to use the mapping function). Createds is given as:

Createds : adSC A Algebra —► Proj EqList

which is defined to take the abstract dSCA, defining shape of the target concrete dSCA and the 

number of arguments per module, and calls the Bds operation whilst extracting the Ss equations 

from the source abstract dSCA:

createds ( Source.SC A ) = Bds

The Bds operation is given as:

f  GetNumModules(SourceSCA), \  
GetM axN(SourceSCA), 
GetMaxA(Source.SCA) + 1, 
GetSEqs(SourcesCA),

\

Bds : N 3  x 5d,SCAEqList x Proj EqList —> Proj EqList

which is defined, in the recursive case, as:

Bds

(  modjnum, \
Max Mi 
Max a , 
oldeqs,

Y neqs J

= Bds

( k - l ,
Max^i 
M a x  a,  
oldeqs,
( (  Maxjj — 1, ^

modjnum,
Max a ,
M  ax m , 
oldeqs,

Bdspc

\ \

,neqs

/
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In keeping with most of the definitions in the transformations so far, the Bdspc operation will 

recurse over the program counter values, and is defined as:

Bdspc : N 4  x 5dSC AEqList x Proj EqList —>■ Proj EqList

this is also recursively defined, and the recursive case is as follows:

(  pcjual — 1, 
modjnum,
M a x  a ,
Maxw, 
oldeqs,
(  (  Max a — 1, \Bdspc

(  pcjual, \
modjnum,
Max a , 
Maxjy, 
oldeqs,

\  neqs J

Bdspc

\

Bdsarg

\

pcjual,
modjnum,
Max,N,
oldeqs,

\

,neqs

The Bdsarg is the operation that recurses over the arguments in a module:

Bdsarg : N 4  x 5dSCAEqList x Proj EqList —> Proj EqList

Again, this is defined recursively, and the recursive case is as follows:

where:

Bdsarg

(  argjnum, \  
modjnum, 
pcjual, 
Maxjv, 
oldeqs,

\  neqs f

= Bdsarg

(  argjnum — 1, 
modjnum, 
pcjual,
Maxw, 
oldeqs,
(  (  modjnum, \

\

Buildd

\

Max a , 
pcjual, 
Maxw — 1, 

y djual,

neqs

J

djual =  (Max m + pcjual) —

(
t — RetT erm

\

(
GetEl

(  oldeqs, \  \ \
modjual,
M a x  a ,

\  pcjual, j  j  j
the base case of the Bdsarg operation, where the argument number is equal to 1 (since argument 0

V

and 1 are wired to the program counter and the module itself and therefore require no projection of
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Bdsarg neqs

results) is defined as:
/ 1, \

modjnum, 
pcjual,
MaxM, 
oldeqs, 

y neqs J

Note that the value of 1 is subtracted from the Max a argument in the calculation of to reflect the 

fact that argument indexes in the source abstract dSCA are one behind those in the target concrete 

dSCA.

The base case of Bdspc, where the program counter value is 0 is defined:

/  /  MaxA, \  \

Bdspc

(  o, \
modjnum, 
M a x  a ,
Maxjv, 
oldeqs,

Y neqs

Bdsarg

j  M a x  a , \
pcjual, 
modjnum, 
Maxx, 
oldeqs,

\ \

,neqs

J
and the base case of the Bds operation - where the module number is 0, simply returns the d 

functions already generated, since module 0 is the program counter and requires no such functions 

to be defined:
(  0 , \

Moxm,

Bds Max a , = neqs
oldeqs,

Y neqs y

Having produced the d functions for the new network attention can be returned to the generation 

of the State Transition equations. Consider again the format of the State Transition equation in the 

source abstract dSCA, it will be similar to:

Vi{t,a,x) =  < or(Vi(£ — 32, a, x), V\{t — 31, a, x)) if condl 
gt(Vi(t — 31, a, x), V\(t — 30, a, x)) if cond2
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and the corresponding component specification in the concrete dSCA would be of the form:

The structure of the function does not change, except the introduction of the tuple management 

operations T and II, so the operation can create the new State Transition equations by recursing 

over the list of source State Transition equations. This is done using the CreateSTs operation:

CreateSTs : adSCAAlgebra x Function2  —> dSCASTVEqList 

which is defined as:

T

/  Vpc(6 h 0 ,2 3 (t,a ,x),a ,x), 
Vi{6 1 X 2 3 {t,a,x),a,x),

if condl

T

/  Vpc(5h0,24(t,a,x),a:x) 
Vi (61,1,24 (t,a ,x),a ,x), if cond2

/  G etEqSTVF(SourceSCA ), \
0
Createds(SourceSCA), 
Create/3s(SourceSCA), 
CreateSs(SourceSCA), 
GetMaxN (SourceSCA)

SourceSCA
CreateSTs T

/
The BSTs  operation is where the structure of the equation list is recursed:

BSTs : dSC A STV  EqList2  x Proj EqList x (IdSC AEqListx  
SdSC AEqList x N  x Function2  —> dSC A STV  EqList

and it is defined recursively in two cases. The first case is where there exists a fist of equations, and 

a recursive call is made to this operation with the list of new equations (neqs) being appended by
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the result of a call to the B ST  operation:

BSTs

(  (e,eqs), \  
neqs, 
newds, 
newfis, 
newds, 
Maxpj,
T,

V n

= BSTs

eqs,
(

BSTck

\

e, \
GetIndex(RetTerm(e, 1)),
0,
M clxn,

, negs

/ /

newds, 
new (Is, 
newds,
T,

\ n
newds, 
new(Is, 
newds,
Maxx,
T,

V n
The operation BSTck is a simple checking operation to see if the module index is non zero.

/

If this is true then a call to Z?ST is made to construct a new dSCA State Transition equation. 

Alternatively, if this index is zero, then the module under consideration is the program counter 

module and a new definition should be created to reflect this (as the program counter definition 

will not change between modules, the shortcut of using the abstract dSCA definition in the concrete 

dSCA rather than creating a brand new definition is taken). BSTck is given as:

BSTck  : dSC A STV  Equation x N 3 x Proj EqListx
PdSCAEqList x SdSC AEqList x Function2 —> dSC A STV  Equation

with the following definition:

(  e , \
modjnum,
pcjual, 
Maxjy, 

BSTck newds, 
new (Is, 
newds,
T,

V n  )

=  <
CreateV F

(  modjnum, 
t +  1, a, x,

f  RetTerm(e, 2), ^ 
modjnum , 
pcjual,
Max tv ,

B ST  newds, 
new (Is, 
newds,
T,

V \ n  )

if condi

o wise

where:

condi = modjnum ^  0
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B ST  will be a recursive definition over the structure of a State Transition equation’s OpDef 

Term - recall that this will be of the form:

cond(VpC(t, a, x ) =  0, a, cond(Vpc(t, a,x) = 1,6, cond(Vpc(t, a, x) = 2, c, cond{...))))

The three components (the conditional test, true path and false path) of each VFOpDef term will 

be separately “rewired” . The conditional tests component is always of the form:

Vpc(t, a, x) = pcjual

and in the concrete dSCA definition it will be: 

/ /
Vrnew-pc RetT erm GetEl

(  Ss, 
modjnum,
0,

y RetTerm{e,2),
,2 a, x RetTerm{e, 2)

/ /
where:

/
newjpc = RetT erm GetEl

(  0s,
modjnum,
0,

y RetTerm{e, 2), J

\  \ 
,2

/
and:

e = (Vpc(t, a, x) =  pcjual)

The pcjrewire operation is introduced, which will create the new conditional component. For a 

complete definition a new equation with references to the extractions from correct wiring and delay 

functions should be produced, but in practice, the structure of the concrete dSCA does not differ 

from the abstract dSCA and the definition of pcjrewire can be simplified to just return the input. 

We give pcjrewire as:

pcjrewire : STVEquation —> STVEquation 

and provide the following definition for it:

pcjrewire(e) =  e

The true path component, i.e. the functionality that is used if the conditional component is 

true, needs to be manipulated to incorporate the tuple management functions, i.e given a component
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specification:

cond(a, b, c)

then b would be transformed into:
Vpc(t,a,x),Vmod.jnumij'i T),
rewire(b)

To achieve this the csjrewire operation is introduced:

csjrewire : Term  x TV3 x Proj EqList x 'ydSCAEqListx
PdSC AEqList x 5dSCAEqList x Function —»■ Term

and it is defined as:

csjrewire

(  trm , \
modjnum, 
pcjual, 
Max^i 
ds, 
ps,
5s,
r ,

V n  /

= x

\I  VpC(t, a, x),Vmod.-.numij'i 0̂
/  trm, \

modjnum, 
pcjual,
Muxn, 
ds,
Ps,
5s,

\ n
A generic rewire operation is not introduced, rather the definition for the number of arguments

rw

\

used in the machine algebra is given (there are zero to 3 arguments): 

rw

and rw is defined as:

Term  x N 3 x Proj EqList x (IdSC AEqList x Function 
x5dSCAEqList —> Term

( trm, \
modjnum, 
pcjual,
M  ax tv , 
ds,rw

ps, 
5s,

\ n

= trm

rw

(  trm(trmi), \  
modjnum, 
pcjual, 
Maxjy, 
ds,
Ps,
5s,
n  t

= trm wire

(  trm i,
ps,
5s, 
ds,
modjual, 
2 ,

pcjual, 
M ax^,

V n
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rw = trm

rw

(  trm {trm \,trm 2), \  
modjnum, 
pcjual,
MaxN, 
ds,
(ds,
5s,

\ n  }

(  trm (trm i,trm 2,trm 3), \  
modjnum, 
pcjual,
M clxn,
ds,
(ds,
5s,

V "

(  (  trm i, \
Ps,
5s, 
ds,

wire modjual, ,wire 
2 ,
pcjual,
Maxx,

V V n  )
(  (  trm I,

= trm

wire

wire

wire

I  trm 2, \  \
ps,
5s, 
ds,
modjual,
3,
pcjual,
Maxjsj,

V n
\  \

V
with the supplementary operation wire being given as:

ps, 5s, ds, 
modjual, 2,pcjual, 
Maxjv, II 
trm 2, 
ps, 5s, ds, 
modjual, 3,pcjual, 
M ax^, II 
trm 3,
Ps, 5s, ds, 
modjual, 4, pcjual, 

^ M ax7v,II

wire : Term  x pdSCAEqList x 5dSCAEqList x ProjEqListx
N 4 x Function —> Term

Wire is defined for the three cases that may make up an atomic term within Ma -

where:

wire

wire

wire

(  const,
Ps, 5s, ds, 
modjual, j, pcjual, 

\ M  ax n , If
/  ap(t)>

Ps, 5s, ds, 
modjual, j, pcjual, 
M ax^, II 
Vp(t -  1, a, x), 
ps, 5s, ds, 
modjual, j, pcjual, 

y MaxN,Tl

const

— G-new jindexPP

^prj.val (P̂new-index (new-time, a, 3?))

/
newJndex =  RetTerm GetEl

{  P s , \  \
modjual 

y pcjual /  y
, 2
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and:

and finally:

< ( 5s, \ \
RetTerm GetEl modjual,

j ,
,2

K y pcjual / )
/ (  ds, V \

- RetTerm GetEl modjual,
j ,

,2

\ y pcjual ) /

+ 1

Finally attention is turned to the false path of the term; this needs to be passed as an argument 

back to the BST operation. The definition of B ST  can therefore be given over the recursive structure 

of the State Transition equation, given as:

B ST  : Term  x N 3 x Proj EqList x fidSC AEqList x SdSCAEqList x 
Function2 —*■ Term

and defined as:

f  cond(a,b,c), \  
modjnum, 
pcjual,
M clxn,

B ST  newds, = cond
new ft s, 
newSs,
T,v n

The recursive base case is defined as:

( ( a,
pcjrewire ( modjnum, pcjual, 

newfis, newSs
b,

csjrewire ( modjnum, pcjual, M axn , 
newds, Ps, 5s, T, Id

B ST  I modjnum, pcjual +  1 ,M ax^, 
y y newds, new Ps,newSs, Y,II

B ST

(  c,
modjnum, 
pcjual, 
MaxN, 
newds, 
newPs, 
newSs,
T,

\ n

= csjrewire

(  c,
modjnum, 
pcjual, 
Maxu, 
newds, 
ps,
5s,
r ,

V n /
The base case definition of BSTs, where only one State Value equation is in the fist, is simply

the result of making a call to the BSTck operation and appending the result to the new equations
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passed in as an argument:

BSTs

e, \
neqs, 
deqs, 
new'ys, 
newfis, 
newSs,
T,

V n  /

BSTck

V

\  \
GetIndex(RetTerm(e, 1)),
0,
Maxtv,
newds, 
newfis, 
newSs, 
T,

V n

, neqs

H .1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new concrete dSCA can be 

created by transforming the source abstract dSCA. The Create_cdSC A  operation is provided to do 

this, it is given as:

Transform  : adSCAAlgebra x Function2 —» cdSCAAlgebra 

The operation takes the source concrete dSCA and is defined as:

Transform
SCAsrc, 
T,
n

= CreatecdSCA

(  Name,
Mjtup ,

VFOp,
70 : N 2 ^ { M , S , U ) ,  

N,
SOp ,
Create'ys(SCAsrc) , 
Createfds{SCAsrc) , 
Create5s(SCAsrc) , 
CreatelVs{SCAsrc) , 

(  SCAsrc, 
CreateSTs I T,

V n
where:

VFOp  =

SO p  =

( Vq : T  x M ^tup x M ^tup > M^tup, \

\  Vk : T  x M%tup x M \tup —> M^tup /  

f  ô.a.o : T  x M^tup x M%tup —> T , \

\  S, j,o : T  x M ltup x M%(up )
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and:
k = numjmod(SCAsrc) 
j  =  Get-M ax A{S CAsrc) 
n = numJnp(S CAsrc)

It is not intended to bring together all the operations defined in this chapter into a written down 

specification in this thesis for reasons of brevity. If this was to be performed, then it would appear 

similar to the specification provided for the SCA to abstract dSCA transformation in Appendix F.


