

 Swansea University E-Theses ___

Use of synchronous concurrent algorithms in the development of

safety related software.

Tacy, Adam James

 How to cite: ___
Tacy, Adam James (2005) Use of synchronous concurrent algorithms in the development of safety related software..

thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42576

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42576
http://www.swansea.ac.uk/library/researchsupport/ris-support/

USE OF SYNCHRONOUS CONCURRENT ALGORITHMS

IN THE DEVELOPMENT OF

SAFETY RELATED SOFTWARE

Adam James Tacy

Submitted to the University of Wales in fulfilment of the requirements for the

Degree of Doctor of Philosophy.

Swansea University

2005

ProQuest Number: 10805325

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10805325

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

UBRARY

Abstract
This thesis investigates the use of Synchronous Concurrent Algorithms (SCAs) in the

development of safety related software, where a stricter adherence to mathematical

correctness is required. The original model of SCAs is extended to produce abstract

and concrete dynamic SCAs (dSCAs) that allow dynamic, but predictable, SCAs to

be produced whose wiring maybe different at different values of a program counter.

A relaxed implementation of the Generalised Railroad Crossing Problem is used to

demonstrate each of the SCA models.

SCAs were originally defined by Tucker and Thompson and were restricted to

unit-delays between modules. Hobley investigated the introduction of non-unit delay

SCAs and how non-unit delay SCAs may be represented as unit delay SCAs. Poole,

Tucker and Thompson introduced the concept of hierarchies of Spatially Expanded

Systems, of which SCAs are a form. All of these tools are used and expanded upon in

this thesis to provide a mechanism enabling an SCA representation of an algorithm

to be transformed into an SCA representation of a computing device that implements

that algorithm, and to be able to demonstrate correctness.

As each SCA model can be represented algebraically, this thesis provides the

transformations as meta-algebras, i.e. algebras that can transfrom one algebra to

another algebra.

Acknowledgement s
First and foremost, I would like to thank my supervisor Dr Neal Harman for his

guidance and patience during my PhD studies. W ithout his support it would have

been difficult to focus for the length of part-time work this thesis has required.

I gratefully acknowledge the support I received from the UK Ministry of Defence

during the first few years of this work, particularly my manager at the time, and the

opportunities the MoD provided to attend meetings with the “fathers” of safety criti

cal software, and the “opportunity” to spend many silent nights in the Officer’s mess

in Benbecula, Outer Hebrides, during the long winter of 1995. I am also grateful to

the Martyn Hall who allowed me to continue my studies when I joined the commercial

world in the guise of CMG (and subsequently for the support of Clive Nicholls when

CMG became LogicaCMG).

In addition, my gratitude must go to all those people I have met on planes, trains,

ferries, airports, minibusses across Sweden, Finland, Norway, France, USA, Canada,

Germany, Greece and the UK for silently putting up with me trying to take more

space than usual at the odd table and back of chairs to progress this thesis, and to

my friends for their precious time spent either encouraging me or making comments

on various drafts of this thesis - there are many, but special thanks must go to Martin

Kilb, Melanie Bonnar and Lee Ryder.

Finally, my greatest thanks go to my parents for letting me inherit their wisdom,

determination, and intelligence, and crucially for what they gave up to provide me

the opportunity to achieve this.

To my dear Mum, Dad and sister.

iv

Contents

List of Tables xiii

List of Figures xv

I Safety Related Software Developm ent 1

1 Introduction 2

2 Safety R elated Software D evelopm ent 11

2.1 Mathematical Evolution of Software

developm ent.. 12

2.2 Current Safety Related Software Development Techniques.................... 22

2.3 Other Development T ech n iq u es .. 33

3 R eactive System s 35

3.1 In troduction .. 35

3.2 Case Study - The Generalised Railroad

Crossing P ro b le m ... 38

4 Thesis O verview 45

4.1 Thesis S ta te m e n t.. 46

4.1.1 Scope ... 46

4.1.2 Contribution .. 46

v

4.2 Thesis S tructure ... 47

II Synchronous Concurrent Algorithm s 49

5 Synchronous Concurrent A lgorithm s 50

5.1 In troduction ... 50

5.2 Informal Definition of S C A s .. 51

5.2.1 SCA Com ponents.. 51

5.3 Formal Definition of SCA .. 52

5.3.1 Example S C A ... 57

5.4 C o rre c tn e ss .. 58

5.5 Use in L ite ra tu re .. 60

5.6 Other Relevant M o d els .. 63

5.7 Algebraic Specification of S C A s .. 64

5.7.1 Mathematical E n t i t i e s ... 65

5.7.2 Algebraic Specification of S C A s ... 69

5.8 Limitations of the Standard SCA M o d e l .. 73

5.9 Concluding C o m m en ts .. 76

5.10 Sources.. 76

6 A bstract D ynam ic Synchronous Concurrent A lgorithm s 77

6.1 In troduction .. 77

6 .2 Informal Definition of Abstract d S C A s ... 78

6.2.1 Increasing Number of Functional Specifications per

Module .. 78

6.2.2 Relaxing Unit Delay A ssu m p tio n .. 80

6.2.3 Cycle Consistency... 81

6.2.4 Variable Wiring F u n c tio n s ... 87

6.2.5 Abstract dSCA C om ponents... 88

6.3 Formal Definition of Abstract d S C A s ... 89

vi

6.3.1 Defining Shape of an abstract dSCA ... 97

6.3.2 Defining Size of an abstract dSC A .. 98

6.4 C o rre c tn e ss .. 98

6.5 Algebraic Specification of abstract dSCAs ... 98

6 .6 Concluding C o m m en ts .. 99

6.7 Sources... 99

7 C oncrete Dynam ic Synchronous Concurrent A lgorithm s 100

7.1 In troduction .. 100

7.2 Informal Definition of Concrete d S C A s ... 101

7.2.1 Tuple Management : Q u e u e .. 103

7 .2 .2 Tuple Management : Indexed A rray ... 105

7.2.3 Cycle Consistency and Execution Order 107

7.2.4 Concrete dSCA Com ponents.. 107

7.3 Formal Definition of Concrete d S C A s... 109

7.3.1 Defining Shape of an concrete d S C A ... 117

7.3.2 Defining Size of an concrete dSCA ... 117

7.4 C o rre c tn e ss .. 117

7.5 Algebraic Specification... 117

7.6 Concluding C o m m en ts ... 118

7.7 Sources.. 118

8 G eneralised Railroad Crossing Problem R epresented as various SCAs 119

8.1 In troduction .. 119

8 .2 Case Study as an S C A ... 120

8.2.1 Informal D efin ition .. 120

8.2.2 Formal D efin ition... 124

8.2.3 C o rrec tn ess ... 127

8.3 Case Study as an Abstract d S C A ... 131

8.3.1 Form One Formal D efinition.. 132

8.3.2 Form Two Formal D efinition.. 138

8.4 Case Study as a Concrete d S C A ... 145

8.4.1 C o rrec tn ess ... 152

8.5 Concluding C o m m en ts ... 152

8 .6 Sources.. 153

III Transformations 154

9 C oncept of SCA Transformations 155

9.1 In troduction .. 155

9.2 Fundamental Algebra Specifications.. 160

9.2.1 SCA Algebraic Specification.. 161

9.2.2 Machine Algebra Specification... 163

9.2.3 List Algebra Specifications.. 164

9.2.4 SCA Value F unctions... 172

9.2.5 VFCallTerm and VFOpTerm Specifications.................................. 174

9.2.6 Wiring Function Specification... 176

9.2.7 Delay Function Specification.. 177

9.2.8 Conclusion... 178

9.2.9 Sources .. 178

10 SCA to A bstract dSCA 179

10.1 Process.. 179

10.1.1 Prerequisites.. 180

10.1.2 Wiring F u n c tio n s .. 180

10.1.3 Delay Functions... 188

10.1.4 Initial State E q u a tio n s .. 190

10.1.5 State Transition E quations.. 191

10.1.6 Transformation Process.. 196

10.2 C o rrec tn e ss ... 198

viii

10.3 Generalised Railroad Crossing Problem SCA Transformed to an Ab

stract d S C A ... 201

10.4 Correctness of Exam ple... 211

10.5 Concluding C o m m en ts ... 212

10.6 Sources.. 212

11 A bstract dSCA to abstract dSCA 213

11.1 P rocess.. 213

11.1.1 Prerequisites.. 214

11.1.2 Mapping Function ... 215

11.1.3 Wiring F u n c tio n s .. 215

11.1.4 Delay Functions... 217

11.1.5 Initial State E q u a tio n s .. 222

11.1.6 State Transition E quations.. 224

11.1.7 Transformation Process.. 228

11.2 C o rre c tn e ss ... 229

11.3 Generalised Railroad Crossing Problem as a single processor Abstract

dSCA .. 232

11.3.1 Automating the Generation of the Mapping F u n c tio n 232

11.4 C o rrec tn e ss ... 263

11.5 Concluding C o m m en ts ... 266

11.6 Sources... 267

12 A bstract dSCA to concrete dSCA 268

12.1 Process.. 268

12.1.1 Prerequisites.. 269

12.1.2 7 -Wiring F unctions... 269

12.1.3 /3-Wiring F unctions... 270

12.1.4 Delay Functions... 271

12.1.5 Initial State E q u a tio n s .. 271

ix

12.1.6 State Transition E quations.. 275

12.1.7 Transformation Process.. 278

12.2 Correctness of tran sfo rm atio n ... 280

12.3 Generalised Railroad Crossing Problem as a single processor Concrete

dSCA .. 282

12.4 Correctness of concrete dSCA E x am p le ... 309

12.5 Concluding C o m m en ts .. 311

12.6 Sources... 311

13 Sum m ary and Future Work 312

Bibliography 316

A Fundam ental Algebraic Specifications A - l

A.l Synchronous Concurrent Algorithm Specification

(SCAAlgebra)... A-l

A .2 Machine Algebra (M a) Specification .. A-7

A.3 Important List Specifications.. A-9

A.3.1 7 Function Equation L is t... A-9

A.3 .2 dSCA 7 Function Operation L i s t ... A-9

A.3.3 (3 Function Operation L i s t .. A-10

A.3.4 dSCA (3 Function Operation L i s t ... A-10

A.3.5 5 Function Operation L i s t .. A -ll

A.3 .6 dSCA 8 Function Operation List ... A -ll

A.3.7 Project Function Equation L i s t .. A-12

A.3.8 Map Function Equation L i s t ... A-1 2

A.3.9 SCA Initial State Equation L i s t .. A-13

A.3.10 dSCA Initial State Equation L i s t ... A-13

A.3.11 SCA State Transition Equation L is t .. A-14

A.3 .12 dSCA State Transition Equation L i s t .. A-14

A.4 Equation Specifications.. A-15

x

A.4.1 SCA State Transition E q u a tio n ... A-15

A.4.2 dSCA State Transition Equation .. A-15

A.4.3 SCA Initial State Equation ... A-16

A.4.4 dSCA Initial State E q u a tio n ... A-16

B SC A D efinition of G RCP A-17

C A bstract dSCA Definition of G RCP (Form 1) A-21

D A bstract dSCA Definition of GRCP (Form 2) A-27

E C oncrete dSCA definition of GRCP A-35

F SC A to A bstract dSCA Transformation A-49

G A bstract dSCA to A bstract dSCA Transformation D etails A-57

G .l Process.. A-57

G.1.1 Prerequisites... A-57

G .1.2 Mapping Function .. A-58

G.1.3 Wiring F u n c tio n s ... A-58

G.1.4 Delay Functions.. A-6 8

G.1.5 Initial State E q u a tio n s .. A-76

G .1.6 State Transition E quations... A-79

G.1.7 Transformation Process.. A-8 6

H A bstract dSCA to Concrete dSCA Transformation D etails A-88

H.l P rocess.. A-88

H.1.1 Prerequisites... A-8 8

H.1.2 7 -Wiring F unctions.. A-89

H.1.3 /5-Wiring F unctions.. A-92

H.1.4 Delay Functions... A-95

H .l.5 Initial State E q u a tio n s .. A-95

xi

H.1.6

H .l.7

State Transition E quations.. A-98

Transformation Process.. A-109

xii

List of Tables

1.1 Transformations .. 8

2.1 Techniques... 31

2.2 Heisel’s Six Steps Towards Provably Safe Software 32

2.3 Additional step to Heisel’s Six Steps .. 33

3.1 One Train Passing Through R (Sensors) .. 41

3.2 One Train Passing Through R (Logic) ... 42

3.3 Two Trains Passing Through R On Different T racks.............................. 42

3.4 Two Trains Passing Through R On Different T rack s 43

3.5 Two Trains Passing Through R On Different T rack s.............................. 43

3.6 Gate Control L o g ic ... 43

6.1 SCA Execution T race .. 84

6.2 1-2-3-Execution Trace ... 85

6.3 Wrong 2-3-1-Execution Trace ... 86

6.4 Correct 2-3-1-Execution Trace .. 87

8.1 Renaming I n p u t s .. 124

8 .2 j3— Wiring Functions for SCA .. 125

8.3 Initial State Values for S C A ... 126

8.4 /?— Wiring Functions for Form 1 a d S C A .. 133

8.5 (3— Wiring Functions to u for Form 1 a d S C A 134

8 .6 Initial State Values for abstract dSCA (Form 1) 134

xiii

8.7 Initial State Values for S C A .. 136

8 .8 Execution Order of Form 2 abstract d S C A .. 139

8.9 (3— Wiring Functions for Form 2 a d S C A ... 140

8.10 7 — Wiring Functions for Form 2 acvSC A ... 141

8 .1 2 Non-unit Delay Functions for Form 2 a c v S C A 142

8.13 Initial State Values for abstract dSCA (Form 2) 143

8.14 j3— Wiring Functions for cdSCA .. 146

8.15 7 — Wiring Functions for Form 2 acvSC A ... 148

9.1 Operations in Ma ... 164

xiv

List of Figures

1.1 Simple S C A ... 4

1.2 Example Reactive S y s te m .. 7

3.1 Simple Crossing System ... 40

5.1 A Generalised SCA N etw ork .. 51

5.2 Example S C A .. 57

5.3 Sample SCA N etw ork... 74

6.1 Execution Order Example S C A .. 83

8 .1 Physical GRCP S o lu tio n ... 121

8 .2 SCA Implementation of Sensor L o g ic .. 121

8.3 SCA Implementation of Motor L o g ic .. 122

8.4 Example Reactive S y s te m .. 122

8.5 Complete SCA Implementation of G R C P ... 123

8 .6 GRCP SCA Down L o g ic ... 129

8.7 GRCP SCA Up Logic.. 130

8 .8 Form One abstract dSCA GRCP S o lu t io n ... 132

8.9 Form Two abstract dSCA GRCP S o lu tio n ... 138

8.10 Concrete dSCA Physical GRCP S o lu tio n .. 145

9.1 R etim ing.. 158

11.1 Numbered abstract dSCA network .. 233

xv

Part I

Safety R elated Software
Developm ent

1

Chapter 1

Introduction

Software is being used in systems where a high-level of confidence in the correct

operation of the system is required. Accidents, such as the radiation overdosing of

patients using the Therac-25 cancer treating system ([LT93]), the overshooting of an

Airbus A3XX aircraft at Warsaw airport ([Com94]) and the Ariane 5 rocket incident

([Lio96]) demonstrate that care is required in the construction of such systems and

that there is perhaps still some way to go to achieve the high level of confidence

expected by the general public. Informally these types of systems are referred to as

safety related systems; and these in turn are one form of a class of systems called

high-integrity systems.

This thesis will investigate the use of a simple mathematical model that can be

used at different levels of abstraction in the development of Safety Related Systems;

the aim being to develop processes that have the potential to reduce the cost of safety

related software development and minimise the introduction of errors whilst crossing

between different mathematical models currently used.

There are many (disparate) approaches proposed in the literature that allow the

developer of a high integrity system to understand the (safety) requirements of these

system and then to subsequently develop the software to be used in a controlled

manner, producing the body of evidence necessary to demonstrate the system’s correct

2

INTRODUCTION 3

operation in a well defined environment.

Techniques, such as mathematical correctness and refinement, have been developed

by others to increase confidence that an implemented system meets its specification,

and confidence in the correctness of a specification can be increased by using math

ematical specification techniques. All of these techniques have generally been borne

out of research into four streams of approaches to high integrity systems: depend

ability (e.g. see the work on Predictably Dependable Computer Systems ([RLKL95],

and [ESP94])), safety engineering (e.g. the work of Leverson ([Lev8 6])), security(e.g.

financial systems) and real time systems. Each approach tackles similar problems

of integrity demonstration but from different domain perspectives. Rushby provides

a useful taxonomy of high integrity systems ([Rus94]), by comparing and drawing

together the terminology used in the four approaches above.

The techniques described in the literature generally cover particular aspects in

the development lifecycle, e.g. specifications using formal specification techniques or

hardware components using hardware description languages. The lack of a single

formalism for all phases implies there is additional effort required to translate and

maintain correctness across different models if a formal approach is to be adopted

from “cradle to grave” . This potentially increases both development costs, due to

different skill sets per development phase, and the opportunity for error introduction,

during the transition between formalisms at the boundary of phases. It should be

noted that it may not be necessary, appropriate or even commercially viable to apply

formal techniques to all stages of the development, and as is often the case in safety

related software development the risks to humans and/or environment needs to be

ascertained before appropriate methods are used.

A problem with many of the techniques given in the literature is that they require

the developer to become proficient in their specialised symbolism and are often based

on mathematical concepts beyond those with a cursory mathematical background.

INTRODUCTION 4

A driving motivation for this work is for it to be done in a formal notation that is

readily accessible to engineers. Our choice of SCA meets this since:

• SCA networks have a graphical representation that allows easy understanding,

for example a three module SCA can be represented as:

Figure 1 .1: Simple SCA

• Values output by modules in an SCA can be specified using simple equations,

for example the output of Module 1 can be represented by an equation such as:

V\(t + 1 , a, x) = add a, x), V3(t, a, a;))

• We will show that SCAs are applicable across a hierarchy of models of differing

abstraction, reducing the need to be an expert in many different formalisms.

In 1961 McCarthy proposed that one of the goals of computational theory should

be

“....to represent computers as well as computations in a formalism that

permits a treatment of the relation between a computation and the com

puter that carries out the computation.” ([McC63]))

In their work on Synchronous Concurrent Algorithms, the mathematical model

used in this thesis, Poole, Holden and Tucker presented the Integrative Hierarchy

Problem:

INTRODUCTION 5

“Develop a mathematical theory that is able to relate and integrate dif

ferent mathematical models at different levels of abstraction” [PHT98]

Poole, Holden and Tucker show that the construction of a hierarchy of Spatially

Expanded Systems (SES) ([PHT98]), of which Synchronous Concurrent Algorithms

are a form, is possible. They provide a mathematical framework that supports the

demonstration of equivalence between SES’s in a hierarchy. This thesis investigates

whether Synchronous Concurrent Algorithms (SCAs), originally introduced by Tucker

and Thompson in [TT85] and Thompson’s PhD thesis, [Tho87] (but best described in

the 1991 Technical Report from Swansea ([TT91]) which was subsequently updated

as the 1994 Technical Report - [TT94]) and further expanded to handle non-unit

delays by Hobley [Hob90] can be used in the development of safety related software

and thus fulfill McCarthy’s goal / the Integrative hierarchy problem.

The author’s motivation for the work comes from a) his formulative career years

in the UK Ministry of Defence dealing with the practical implementation of safety

related systems on a variety of UK only, UK/US and European projects, and b)

his undergraduate project that considered the implementation of dataflow architec

tures as a grid of processing elements, notably the work of Rumbaugh ([Rum77]).

Implementations could either be as a grid architecture (e.g. The Manchester Proto

type Dataflow Architecture, [GKW85]) or a token based architecture (e.g. Arvind’s

dataflow architecture with tagged tokens, [AP80]) - more information on dataflow

architectures can be found in Sharpe’s work, [Sha85]. Indeed, the initial thoughts of

the for study after his bachelors degree was to determine how a grid architecture can

be implemented as a single processor if all elements in the grid are executed under

some form of sequential ordering.

The first part of the author’s career, in the UK Ministry of Defence, gave an

added aspect to these initial thoughts. During this period, he worked in a section

focussed on safety related systems, and together with his knowledge on Synchronous

INTRODUCTION 6

Concurrent Algorithms (SCAs) - which he was already aware could model hardware,

and assumed could implement the dataflow graph in a formal manner - led to the

pondering of whether the following development path for high integrity systems was

valid:

• Formal specification of a system in a language such as Z, or B;

• Translation of the formal specification into a functional language;

• Animation of that specification to confirm correctness of specification;

• Creation of a dataflow graph of the functional language program;

• Implementation of the dataflow graph as a SCA;

• Implementation of the target architecture as a SCA; and

• Map implementation of the dataflow graph to implementation of the target

architecture.

Informally, a SCA consists of a set of modules that calculate and communicate in

parallel with respect to some external clock. Data is read into an SCA at a set of input

modules, and can be read out of the SCA at a set of output modules. SCAs can be

specified algebraically, and can therefore be algebraically manipulated. A refinement

methodology is provided in this thesis under which a computation represented as a

SCA can be transformed into a SCA modelling the computation device carrying out

the computation.

The class of systems considered in this thesis is the sub-set of real-time systems

known as reactive systems. The definition of a reactive system is given in Harel and

Pnueli’s work “On the development of reactive systems” ([HP85]). To summarise, a

reactive system is defined to be a system that controls a set of actuators based on

INTRODUCTION 7

the values read in from some set of sensors. Figure 1.2 shows an example reactive

system.

C o n t r o l S i g n a l s

Environmerr:

Contro
System

Figure 1 .2 : Example Reactive System

In such a system, there is a time delay between the reading in of values from the

sensors, the performing of some processing on those signals and the resultant sending

of control signals to the actuators. If it is stipulated that the reading in, processing,

and sending of these signals are co-ordinated by some external clock, then reactive

systems map to the notion of SCAs.

This thesis will present the usual model of SCAs and will then discuss a number

of “limitations” identified in relation to this work. To address these limitations a

number of syntactic extensions are introduced that support the notion of refinement

steps in safety related software development. SCAs that use these extensions are

known as Dynamic Synchronous Concurrent Algorithms (dSCAs) and it is useful to

distinguish between two types of dSCAs: abstract dSCAs, which allow concepts such

as the ability to look back over greater than one time unit; and concrete dSCA, which

contain concrete implementations of the abstract concepts of an abstract dSCA, e.g.

looking back greater than one time unit can be modelled as a finite tuple of memory

values. We acknowledge the work of Hobley ([Hob90]) which first introduced the

concept of non-unit delay SCAs, and how non-unit delay SCAs may be represented

INTRODUCTION 8

as unit-delay SCAs, on which we build.

Each dSCA is given a defining shape, V, described in detail later, which is a

tuple indicating the number of modules and the number of operations each particular

module can perform for a dynamic network. By default, the defining shape of a

Dynamic SCA directly representing a SCA with n modules would be V = (n, 1)

indicating there are n modules, each capable of performing only 1 operation. Similarly,

the defining shape of a simple computing device with one CPU executing a program

with n operations would be V = (l,n).

This thesis takes advantage of the property of dSCAs that allow a dSCA with a

particular defining shape to be folded into a dSCA with a different defining shape.

Consider an algorithm which has 20 separate functions to be implemented; it could

be implemented on a dSCA where V = (20,1) - the usual notion of an SCA - or some

other valid defining shape, some of which are V = (1 0 , 2),V = (5,4), V = (4, 5),V =

(1,20) - the last defining shape perhaps representing a single processor machine. Each

dSCA can be algebraically specified (since they are SCAs) and thus it is hypothesised

that it is possible to construct algebraic methods to transform between dSCAs of

differing defining shapes.

As concrete and abstract dSCAs are SCAs with syntactic extensions, it can be

further hypothesised that it is possible to construct algebraic methods to transform

between SCAs and both forms of dSCAs. The transformations investigated are shown

in Table 1.1.

Transformation R esult R esult R epresents
Start SCA SCA representation of Algorithm

1 Abstract dSCA dSCA representation of SCA
2 Abstract dSCA Abstract hardware representation of dSCA
3 Concrete dSCA Hardware implementation

Table 1.1: Transformations

INTRODUCTION 9

Underlying each algebraic specification of SC As and transformations is an algebra

specification the defines the operations each module can perform, this is referred to

as the machine algebra, or MA-

The input into the transformation process shall be a (source) SC A representation

of an algorithm it is wished to implement on a hardware system: the computation.

Modules in this SCA must implement a single operation from M A and the initial

transformation (or refinement step) will take this SCA and produces an equivalent

dSCA with a defining shape of V = (n, 1). The next refinement step/transformation

shapes the resultant dSCA into a shape matching the defining shape of the target

architecture, for example, a single processor machine with defining shape of V =

(1 ,n). The final refinement step creates a concrete dSCA from an abstract dSCA. The

resultant concrete dSCA represents the computer that carries out the computation.

To summarise, the main tools that this thesis uses from the literature are:

• Synchronous Concurrent Algorithms ([TT94])

• Non unit delay Synchronous Concurrent Algorithms ([Hob90])

• Hierarchy of Spatially Expanded Systems ([HTT89])

and the thesis provides:

• Dynamic Synchronous Concurrent Algorithms (abstract and concrete)

• Methods for the mechanical transformation between SCAs and abstract dSCAs,

and further, abstract dSCAs to concrete dSCAs.

It is sensible to divide this thesis into three main sections. This section provides the

introduction, and is followed by a section that introduces the original SCA model as

S A F E T Y RELATED SOFTWARE DEVELOPMENT 10

well as the syntactic extensions used to create abstract and concrete dSCAs. The final

section introduces the refinement steps/transformations mentioned above as three

separate transformations. Throughout this thesis the techniques are exposed through

the use of a case study: The Generalised Railroad Crossing Problem, introduced later.

The remainder of this introductory section establishes the context of safety related

software development by detailing the mathematical preliminaries and introducing

the case study. Chapter 2 introduces a number of issues relating to the development

of safety related systems, and includes an explanation of the environment tha t such

developments take place in and highlights the applicable legislation. This chapter

also provides a discussion on mathematical specification, correctness and refinement.

Chapter 3 discusses the class of reactive systems and introduces the case study. Con

cluding this section is chapter 4 which presents the thesis statement, the contribution

it is making and then describes the structure and organisation of the remainder of

the text.

Chapter 2

Safety R elated Software
D evelopm ent

The processes used in the development of Safety Related Software mark a return to

the basic mathematical methods and techniques of decidability/computability from

which computing initially emerged. Over the years development has diversified from a

strict mathematical basis driven by the commercial reality of producing software in an

environment where the target is the constant reduction in (development) costs. The

risk of developing incorrectly functioning software, introduced by a non-mathematical

approach, has been addressed, to some extent, by the emergence of the software

engineering discipline.

In this chapter, key moments where a mathematical basis has been fundamental

to the development of the computer field are discussed, from Church and Turing’s

1930’s exposition of computability to the work of Spivey and others on the formal

mathematical specification of programs. The approach taken is not intended to pro

vide a clearly recognisable path of developments or to single out individual “heroics” ,

but rather to look at where mathematics has been applied to various stages of de

velopment and indicate those contributions we see as significant. In summary the

class of computable functions, the progression of the computer field to computers

and assemblers, and the development of high level languages are considered. The

11

S A F E T Y RELATED SOFTWARE DEVELOPMENT 12

correctness of programs and specifications is also considered.

2.1 M athem atical Evolution of Software
development

Class of Com putable Functions

Modern day computing stemmed from the need to address the questions posed by

the field of mathematics known as computability theory - a topic that is addressed by

Cutland ([Cut89]). Church ([Chu36b, Chu36a]) and Turing ([Tur36]) both identified

models that could demonstrate the falseness of the Entscheidungsproblem - one of a

number of problems posed by Hillbert and Ackermann in their 1928 work, “Grundzuge

der Theoritischen Logik” ([AH28]). Both Church and Turing arrived at their solutions

independently, Turing by introducing his logical computing machines (now known as

Turing machines) and Church by the application of lambda-calculus. The closeness

of each solution was identified by Kleene who stated:

“So Turing’s and Church’s thesis are equivalent. We shall usually refer to

them both as Church’s thesis, or ... as the Church-Turing thesis” [Kle67].

The modern day understanding of Church’s and Turing’s work is that whatever can

be calculated by a machine can be calculated by a Turing Machine. Since the precise

class of problems that are Turing computable are known, there can be confidence

that the computational limits of what can be implemented on/by a modern processor

are well understood. See “Introduction to Metamathematics” chapters 12 and 13 by

Kleene ([Kle52]) for perhaps the fullest summary of Turing computable problems.

Onto C om puters and Assem blers

The 1940’s work of von Neumann and others on computing machines (Neumann’s

original internal work has been published in many places, for example [Neu93]) led

to the development of devices that could be successfully programmed and allowed

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 13

to compute on inputs - effectively allowing the implementation of the set of Turing

computable problems as stored programs. Von Neuman’s architecture is suited to

the implementation of Turing machines. Later work on functional languages took

Church’s lambda-calculus forward as the basis of a machine architecture, and led

us to the development of dataflow architectures, see ‘A dataflow Architecture” by

Rumbaugh ([Rum77]), amongst others. Backus had views on dataflow architectures

which were given in his paper “Can programming be liberated from the von Neumann

Style?” ([Bac78]).

In 1949 Wilkes ([Wil49]) showed that mnemonics codes, which had recently been

used to design programs on paper before the process of hand translation into bit

wise machine code used by machines based on von Neuman’s architecture, could be

“compiled” by the EDSAC computer system he was using. Soon Wilkes added an

ability for symbolic addressing ([Wil52, Wil53]) to his mnemonics, creating what is

now referred to as assembly languages, and the programs used for translation were

to become known as assemblers. By 1954 Backus was directing the implementation

of assembler for the IBM 701, the Speedcoding system ([Bac54]), and it wasn’t long

before the development of high-level languages and compilers was being undertaken,

notably Backus and others on FORTRAN ([BBB+57]) - Backus was later to play a

major part in the development of mathematical formalisms for languages. In this

period Bohm ([B54]) showed that a compiler for a language could be written in its

own language thus providing the first seeds of a potential mechanism to demonstrate

compiler correctness via a bootstrapping mechanism.

In 1961 McCarthy proposed 5 goals in his work “A Basis for the Mathematical

Theory of Computation” ([McC63]); these are paraphrased below:

1. To develop a universal programming language.

2. To define a theory of equivalence of computation processes.

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 14

3. To represent algorithms by symbolic expressions.

4. To represent computers as well as computations in a formalism that

permits a treatment of the relation between a computation and the

computer that carries out the computation.

5. To give a quantitative theory of computation.

It is the fourth of these goals that is specifically considered in this thesis.

The D evelopm ent of Formalisms for High-Level Languages

A mathematical basis to computing was still being applied as more abstract steps

were taken away from bitwise machine code programs. Algol 60 ([Bac59], which

was subsequently revised as [BBG+63]) was the first high-level language to have its

syntax formally specified using Backus-Naur Form (BNF). BNF introduced the notion

of grammars and formal semantics into high level language development and is closely

linked to the work on context-free grammars performed by Chomsky in his research

into the syntax of natural languages ([Cho56, Cho59]). In 1962 Floyd showed that

ALGOL 60 was not a context-free language; and further, that any programming

language where all programming variables must be declared before they are used,

and where the names of these variables can be arbitrarily long, are not context-free

either ([Flo62]). Floyd’s result showed that most modern day programming languages

are not context-free. The reader is pointed to Stephenson’s work on “An Algebraic

Approach to Syntax, Semantics and Compilation” ([Ste95]) for a good understanding

of where the field has gone since Floyds work.

Correctness of Programs

Providing formalisms for programming languages led to questions being raised on

how to demonstrate program correctness. Floyd continued his work on languages

looking at the semantics of programs and trying to determine how meanings could be

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 15

assigned to programs. In his work, “Assigning Meanings to Programs” , Floyd states

that the paper:

“attem pts to provide an adequate basis for formal definition of the mean

ings of a programs in appropriately defined programming languages, in

such a way that a rigorous standard is established for proofs about com

puter programs, including proofs of correctness, equivalence, and termi

nation” [Flo67].

Initially Floyd considers correctness, equivalence and termination of a flowchart

language by considering verification conditions for each component of the flowchart.

Similar techniques were then applied to a subset of the ALGOL language by con

sidering verification conditions for semantic units, i.e. ALGOL statements. The

complexities of a high-level language begin to become clear during its exposition,

and Floyd states that the introduction of “compound statements with bound local

variables..causes some difficulties” [Flo67].

Interestingly, Floyd makes a passing remark on the use of the GOTO statement

stating that:

“transfers out of a block by go-to statements cause local variables to the

block to become undefined” [Flo67]

Floyd also notes that his paper:

“does not say that local variables loose their values upon leaving a block,

but that preservation of their variables may not be assumed in proofs of

programs.” [Flo67]

Dijkstra continued the debate with his paper that identified the GOTO statement

as being considered harmful ([Dij6 8]). It is easy to understand not just from Dijkstra’s

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 16

viewpoint of creating confusing unmanageable code, but also from Floyds statements

on the status of local variables upon leaving blocks that this type of branching is not

welcome, and not seen, in Safety Related Software. Indeed, the 2001 ISO technical

report on the use of Ada within high integrity systems, of which the author was the

co-project editor, states very strongly that the goto statement is not included in high

integrity systems since the use of goto:

“is exceptional because its use is contrary to all principles of structured

programming. There are no circumstances in which goto can be used

where the use of some other construct is not preferable on grounds of

good practice, readability, and aesthetics. Given this, the use of goto

within high integrity systems is almost not an issue and the reasons for

not using it are almost irrelevant.” [ISOOO] (also published in [Wea99])

An argument may be made that careful use of GOTO can be used for exception

handling, however, the ISO guidance discourages the use of exceptions since its use

makes verification more difficult, particularly for symbolic and functional analysis.

In this period Hoare’s paper “An axiomatic basis for computer programming”

([Hoa69]) argued that a set of axioms and rules of inference can be gained from

studying computer programs, and that these axioms and rules of inference can be

used in formal proofs of the properties of computer systems. Hoare’s work introduced

the notion of pre and post conditions, where given a precondition P , a program Q

and a description of the result of the programs execution P , then it could be written

that:

P \Q \R

meaning that

“if the assertion P is true before initiation of a program Q, then the

assertion R is true on its completion.” [Hoa69]

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 17

Hoare provides axiomatic rules for the majority of procedural language constructs

including assignment, consequence, composition and iteration, and agues that:

• “When the correctness of a program, its compiler, and the hardware

of the computer have all been established with mathematical cer

tainty, it will be possible to place great reliance on the results of the

program, and predict their properties with a confidence limited only

by the reliability of the electronics...; and

• ...but the practical advantages of program proving will eventually

outweigh the difficulties, in view of the increasing cost of program

ming error” [Hoa69]

Several years later Dijkstra ([Dij75, Dij76]) introduced the concept of weakest

preconditions and guarded commands in order to formally derive proofs of program

correctness. Dijkstra’s 1982 book “Selected Writings on Computing: A personal

perspective” ([Dij82]) challenged the then growing perception that formal proofs are

only usable for small toy programs.

The late 1960’s saw the emergence of the “software crisis” and this led to the

emergence of the field of Software Engineering (identified in [NR69]). This software

engineering field has undoubtedly added structure and control to the development

of software, and techniques such as Rapid Application Development have enabled

more complex systems to be developed with a reduced number of errors, but limited

guarantees that it is absolutely free from errors. When it comes to safety related

software, where absolute reliance on correct operation is required, it is the author’s

view that formal methods must be applied, albeit with an appropriate amount of

pragmatism.

NASA researchers Butler and Finelli, at the Langley research facilities, provide ev

idence in their report “The Infeasibility of Quantifying the Reliability of Life-Critical

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 18

Real-Time Software” ([BF93]) that the use of statistical methods, e.g. testing, is not

feasible to ensure the reliability of high integrity systems.

A study by Hetzel ([Het84]) found that the probability of making a correct change

is less than 50%. Hetzel identifies two main reasons why changes fail:

• “unforeseen side effects: the change accomplishes what it was supposed to, but

also affects something that was working before.

• partial change completion: a change is applied to most parts of a system, but

one or more parts are overlooked.” [Het84]

Sommerville ([Som95]) indicates that removing X% of software faults does not

imply that an X% increase in reliability will be observed. Indeed Sommerville notes

that a particular study reported only a 3% increase in reliability after the removal of

60% of software faults. In summation, Sommerville proposes that the emphasis must

be upon removing faults with the most serious consequences.

Formal methods offer an opportunity to ensure that a developed system meets

its specification and that specification has resolved anomalies and omissions. How

ever, as Sommerville points out, there is a risk that program proofs derived from the

specification may be incorrect, or based upon assumptions on the system’s environ

ment which are incorrect. Additionally, it is the author’s experience that industry in

general see formal methods as cumbersome and expensive.

The Arianne rocket incident ([Lio96]) is an apt example of demonstrating that

although a component may work correctly in one environment, no assumptions can

be made about its operation in another environment. Modern safety practises require

a safety case including statements regarding the environment the system has been

built for to be produced.

For the sake of cost, and sanity, the use of formal methods should be targeted to

those parts of a system where the biggest benefits will be obtained. Modern safety

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 19

related development methodologies require a system to be engineered to minimise,

and compartmentalise, safety related software aspects.

Dijkstra’s pre and post conditions can be seen in current safety related software

development techniques where it is not unusual to supplement the chosen development

languages with defined annotations associated with program code to enable automatic

static analysis to take place. Languages/approaches such as Anna ([LvKB087]) and

SPARK Ada ([CG90, CGM92, Bar97]) are examples of where annotations are used

to provide pre and post conditions for use in analysis by a static analysis tool.

Correctness of Specifications

The Software Project Managers Network (SPMN), an organisation established in

the US in 1992 by the Assistant Secretary of the Navy to “identify proven industry

and government software best practices and convey to .. Department of Defense

system acquisition programs” , indicates that:

1. “Rework...” - the process of having to go back to a previous part of

the development process correct an issue and then redevelop - “...is

off the radar screen as a potential killer of cost and schedule.

2. First inspections are informal code walk-throughs despite the fact

that metrics consistently show (i) impact of requirements and design

defects is much greater than the impact of code defects and (ii) the

cost of finding and fixing a defect grows very rapidly with the time

between making and finding the defect.

3. The amount of rework done on the project is not tracked.” [SPM]

Boehms work, Software Engineering Economics ([Boe81]), defined the relative cost

of fixing an error introduced in the requirements phase depending upon where in the

development phase it is found in. This work demonstrates that finding an error in the

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 20

maintenance phase is typically 100 times more expensive to fix than if it was found in

requirements definition phase. In the safety context, any requirements error found in

maintenance implies that an accident may already have occurred, and thus the cost

would be many many more times higher, both in terms of human issues and potential

litigation!

In “Analyzing Software Requirements Errors in Safety Critical, Embedded Sys

tems”, Lutz ([Lut93]) analysed the software errors found in the development of the

Voyager and Galileo spacecraft software, and placed them within a framework based

on Nakajo and Kume’s error classification scheme (see [NK91]). Lutz places his work

in context with a large number of other studies into software errors, and indicates

that his study is the only one to consider complex safety related embedded systems.

One of the conclusions of his work is the need to use formal specifications techniques

in addition to natural language specifications in order to reduce number of errors.

This conclusion is based on the fact that primary cause of functional faults was due

to errors in understanding the requirements (62% on Voyager and 79% on Galileo).

Formal development is often thought of by industry as being expensive due to

the need to have suitably qualified resources. The ConForm project, an application

experiment under the European Commission’s European Systems and Software Ini

tiative (Grant 10670), demonstrated that the cost of using formal methods, across the

whole lifecycle was close to that of conventional development - noting that additional

effort required in the system design phase was recuperated in the reduction of effort

for the other phases ([TBL96]).

Lightweight Formal Methods ([JW96, Jon96, DKLM98, ELC+98]) is an approach

that brings the benefits of formal methods to the early stages of development, but

acknowledges that the cost of completing the development in a formal manner may

be disproportionate to the benefits gained. The ConForm project concluded that the

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 21

best use of formal methods was to target them at appropriate areas rather than have

a blanket use (in the conclusions of [FBGL94]). Other authors have attem pted to in

clude formal methods within the traditional approaches such as SSADM, HOOD and

Yourdon. For example Draper’s work on integrating Z into the SSADM methodology

“Practical Experiences of Z and SSADM” ([Dra92]); Giovanni and Iachini’s work on

HOOD and Z “HOOD and Z for the Development of Complex Systems” ([DI90]);

and the work on Yourdon and Z by Semmens and Allen “Using Yourdon and Z: An

Approach to Formal Specification” ([SA90]).

A useful survey on the industrial use of formal methods is given in the work

conducted on behalf of the Canada’s Atomic Energy Control Board, US National

Institute of Science and Technology and the US Naval Research Laboratory entitled

“International Survey of Industrial Applications of Formal Methods” ([CGR93]).

Leverson led a research group where one of the tasks has been looking at how to

make formal methods more accessible to industry. Their paper, entitled “Investigat

ing the Readability of State Based Formal Requirements Specification Languages”

([MZL02]) set out to understand one of the common complaints from industry that

formal methods are difficult to read, and therefore require higher levels of training

and more intelligent staff. Subjects taken from either a computer science or subject

m atter background, were shown specifications in a textual, graphical, tabular, and

logical expressions of a Traffic alert and Collision Avoidance System (TCAS). The

results show that background is an influential factor in understanding specifications

- a good background in the specification method being used is better than a good

background in the subject matter. Graphical approaches were useful when trying

to understand overviews and tabular methods when looking at details. The textual

specification provided was found to be not that helpful.

For a list of criteria that can be used when comparing the use of different formal

specification methods in reactive systems the reader should consult Ardis et al, “A

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 22

Framework for Evaluating Specification Methods for Reactive Systems Experience

Report” ([ACJ+96])

The reader is pointed to Jones and McCauley work entitled “Formal Methods

- selected historical references” ([JM92]) for a considerable expansion on historical

references than has been provided, including references to some of the technical and

company reports that were later to lead to significant published efforts. Our intention

has been to show the progression of development within a context of a mathematical

basis, what is covered next are some of the current techniques used in the development

of safety related software.

The result of this discussion could lead to the conclusion that the best return

on effort would be from investigating the requirements phase, however this phase is

adequately covered by other work, and the author is convinced that reducing the

costs for other phases of development is beneficial.

2.2 Current Safety Related Software Developm ent
Techniques

Following on from his original comments in his 1969 paper, “An axiomatic basis for

computer programming” , ([Hoa69]) in which Hoare pointed out his thoughts that the

advantages of program proof would eventually outweigh the difficulties, Hoare later

reflects in his 1996 paper, “How did software get so reliable without proof?” ([Hoa96])

that the various predictions of doom and gloom given over the last 20 years regarding

software safety have not materialised. Hoare’s justification of why these problems

have not occurred in such a predicted magnitude is interleaved within the previous

discussion: the worry of these predictions becoming true have led to the introduction

of various engineering techniques which have contributed to the reduction in errors.

The author’s view is that when it comes to human life, and safety related development,

can we afford to take the risk of using ” rule of thumb” techniques as opposed to formal

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 23

development?

To understand safety, the point at which a system becomes sufficiently important

that confidence in its correct development and operation above that for other forms

of software must be understand. Under UK law this point comes at the balance of

risk: the developer of a system must show that the risk of an accident happening

due to the system has been reduced to “as low as reasonably practical” . In the UK,

the concept of safety is effectively embodied within the Health and Safety At Work

Act 1974 ([Gov84]), which requires the risk of danger to be As Low As Reasonably

Practicable (the ALARP principle); UK case law, notably Donoghue vv Stevens in

1932, requires that a manufacturer owes a duty of care, not just to those at work, but

to all persons to ensure that the systems they produce are safe and do not give rise

to injury:

“You must take reasonable care to avoid acts or omissions which you can

reasonably foresee would be likely to injure your neighbour (persons who

are so closely and directly affected by my act that I ought reasonably to

have them in my contemplation as being so affected when I am directing

my mind to the acts or omissions which are called into question).” [Dav93]

An accident occurring within UK jurisdiction could lead to criminal charges be

ing brought under the Health and Safety At Work Act. However, it is increasingly

common for civil charges to be brought as well, and there is a lower level of proof

required for civil charges. Conviction of a civil charge usually results in the awarding

of damages to the injured party and the attraction of bad publicity. For these reasons

Davis states that:

“it is perceived that civil liability is the most important.” [Dav93]

Under civil law there are three areas of potential liability:

SA F E T Y RELATED SOFTW ARE DEVELOPMENT 24

• Liability under contract law,

• Liability under the law of negligence, and

• Liability under the new product liability legislation

The seller of a safety related system must also ensure that the goods a) comply

with their description, b) are of merchantable quality, and c) are fit for purpose.

Davis suggests that a corporation can protect itself from civil claims if they:

1 . “ensure as a developer they have the necessary skills and knowledge

to develop the system

2 . use best practice, e.g. standards

3. Include a reasonable limit of liability in the contract, including

(a) A requirement to comply with the instructions provided, and

(b) A description of the operating environment, perhaps with a warn

ing about other environments” [Dav93]

Burnett, ([Bur96]), gives a useful overview of the issues involved in developing

safety related software as part of her work on the Rigorously Engineered Decisions

(RED) project, a project forming part of the DTI/SERC Safety Critical Systems

Research Initiative. Her views come from her position in a firm of solicitors dealing

with IT and associated litigation.

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 25

Standards

The best defence a developer can use in a criminal/civil claim is the use of best

practise. To reduce the need to establish best practise in each case, and to provide

support to developers, many industries/professional bodies have captured what they

consider to be best practise in standards. The generic standard applicable to all

areas is now IEC 61508 ([IEC99]) where part 3 of this standard deals specifically with

software. Examples of sector and national specific standards are:

1 . European Space Agency: ESA Software Engineering Standards ([ESA91]);

2. US DoD: Military Standard 882B: System Safety Program Requirements

([DoD84]);

3. Nuclear Industry: IEC880 Software for Computers in the Safety Systems of

Nuclear Power Stations ([IEC8 6]);

4. Medical Industry: IEC60196 Medical Electrical Equipment - Part 1: General

Requirements for Safety 4: Collateral Standard: Programmable Electrical Med

ical Systems ([IEC96]);

5. Pharmaceutical: Supplier Guide for Validation of Automated Systems in Phar

maceutical Manufacture ([GAM]);

6 . UK MoD: Defence Standard 00-55:The Procurement of Safety Related Soft

ware in Defence Equipment and Defence Standard 00-56: Safety Management

Requirements for Defence Systems ([MOD89, MOD91] updated by [MOD97,

MOD96]);

7. UK Railway Signalling: Safety Related Software for Railway Signalling ([RIA91]);

8 . European Rail: Railway Applications: Software for Railway Control and Pro

tection Systems ([CEN97]);

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 26

9. Airborne Civil Avionics: DO-178B/ED-12B : Software Considerations in Air

borne Systems and Equipment Certification ([RTC92]) Issued in USA by the

Requirements and Technical Concepts for Aviation and jointly in Europe by

the European Organisation for Civil Aviation Electronics;

10. Motor Industry ([MISRA94]).

All of these standards provide guidance that allow the merging of the commercial

reality of making profit and the need to adhere to the ALARP principle (or equivalent

in other countries). Many standards introduce the principle of safety integrity levels,

where, in brief, functional aspects of a system are graded based on level of risk,

probability of accident occuring and severity of that accident. Often a number of

techniques are suggested dependent upon the safety integrity level being claimed for

functions of the system in a particular environment.

The UK Ministry of Defence was one of the first organisations to generate a

standard relating specifically to software safety with Interim Defence Standard 00-55

([MOD89]), which was also a unique / controversial standard in its mandating of the

use of formal methods and formal development. It was quickly realised that it was

not viable to have this standard sitting in isolation, as any requirement of its use

left an ambiguous notion as to where the boundary of the use of formal methods

would lie - in the worst case the whole development becomes safety related, and the

cost of development is therefore probably very high. Interim Defence Standard 00-56

([MOD91]) was introduced to provide project managers and developers a mechanism

to identify what elements of a system are related critical. After a number of years of

review and practical use (mainly studies) these standards achieved full Defence Stan

dard status (i.e. they are now legally applicable to all contracts) and are referenced

as [MOD97] and [MOD96].

In some particular industries, e.g. the UK Nuclear Power Industry, values for

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 27

acceptable accidents are laid down in an Act of Parliament. Two objectives are

achieved by this: a) reassurances to the public that the executive of government

believes that these values are correct, and b) provision of protection to the developers

and safety auditors in what would be a very high profile case if something were to go

wrong.

Some industries take other approaches, for example the UK railway industry has

a formal licensing scheme introduced following the recommendations in the report

into the UK Clapham Rail Disaster. See [WWG96] for an informal introduction to

this scheme.

Language Choice

The most significant language in relation to safety related software development is

Ada. Although the original language (Ada ’83, [IS087]) was not designed specifically

for safety related development it’s mandated use for defence systems in UK and US

until the year 2000 means it has been subject to the most study. Its most recent

version (Ada ’95, [IS095]) specifically addresses issues relating to high integrity in

an annex (Annex H). Ada originated from the US Department of Defense’s desire to

standardise on one High Order Language for its software development programs. On

the 28th January 1975 the Director of Defense Research and Engineering (DDRE)

issued a memorandum requiring:

“Military Departments to immediately formulate a program to assure

maximum DoD software compatibility...the advantages in...training, in

strumentation, module reutilization, program transportability, etc. are

obvious” [Cur75]

Subsequently the Higher Order Language Working Group (HOLWG) was formed.

In the 1976 DDRE Memo covering the WOODENMAN version of the language

requirements ([Cur76]) there is visibility of some of the issues relating to conflicting

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 28

requirements that are now considered good principles in developing safety related

software . Examples of these “conflicting requirements” are a) Programming Ease vs.

Safety from Programming Errors, and b)Object Efficiency vs. Program Clarity and

Correctness. WOODENMAN concludes these issues by stating:

“this tradeoff should be resolved in favor of error avoidance and against

programming ease” and “...the major criteria in selecting a programming

language should be clarity and correctness of programs within the con

straint of allowing generation of extremely efficient object code when nec

essary” . [Cur76]

An extensive evaluation took place of several languages and it was determined

that no existing language met all the requirements the HOLWG was looking for, as

recorded in [AWM+77]. A subsequent competition was held for a new language, and

in May 1979 the US Secretary of Defense announced the winner of the competition to

design and develop the new language ([Dun79]). Throughout the process the French,

German and UK governments were involved, the UK providing substantial advice on

language consolidation after previously performing its own similar exercise.

The reader is directed to Col. Whitaker USAF(Rtd)’s report in ACM SIGPLAN

on the HOLWG for a personal view on the development of Ada and the details of the

memos referred to above ([Whi93]). This work also indicates that Bell Laboratories,

upon invitation to submit the C programming language ([ISO90, KR78]) for the

evaluation, indicated that:

“there was no chance of C meeting the requirements for readability, safety,

etc.” [Whi93]

Work in the UK, on behalf of the Motor Industry Research Association has tried

to address the use of C in safety related systems. The use of C is wide spread through

out the commercial software development world, and therefore the cost of resource is

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 29

cheaper. H atten’s book, Safer C ([Hat95]), shows that there are a large number of

constraints that must be placed on language constructs and a number of additional

tools required before C can be used. In Germany, the TUV has issued a set of “Rules

for Programming in ’C’” ([FKPW96]). The related programming language C + + has

also been considered in some areas, Binkley provides a technical report on the use

of C + + from the US Government’s National Institute for Standards and Technology

Software, High Integrity Software Systems Assurance department ([Bin97]). In re

cent years other programming paradigms have been considered including functional

languages under the UK Department of Trade and Industry (DTI) study SADLI

([CBB+96]).

In the 2004 British Computer Society Intelligent Catalogue (available on-line to

members of the British Computer Society), of which the author of this thesis authored

the Safety Engineering and Safety Assessment chapters, it is suggested that:

“Language Choice - subsets of Ada, for example SPARK Ada, are the

prime candidates for development of safety systems for good engineering

reasons; however, this does not preclude the use of other languages. There

are systems written in C, and functional languages, such as ML, have been

used in research projects. However, the choice of language is guided by

requirements given in the standard relevant for the field, the amount of

tool support available, and the ability to demonstrate to peers why the

developed system is safe. It is for these reasons subsets of Ada are usually

used.” [Tac04]

Even though it is often used, the programming language Ada itself is not fully

suited to safety related software development, e.g. it includes the GOTO command.

To address concerns, the safety field created subsets of Ada and several of these

implementations include the ability to use annotations within a program to enable

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 30

static code examination. Two examples of this approach are Anna - A Language

for Annotating Ada Programs ([LvKB087]) - and SPARK - a safety related subset

([CG90, CGM92, Bar97]).

The applicability of Ada in the development of safety related software increased

when the original Ada standard ([IS087]) was updated, under ISO rules, and be

came Ada’95 ([IS095]). This new standard became the first ISO language standard

to specifically address issues relating to safety; detailed in Annex H of the standard.

Despite this, the high integrity community decided that whilst Annex H addressed a

number of issues, a clarification and re-emphasis document was required, and subse

quently an ISO technical report was produced. The report is entitled “Guide for the

Use of the Ada Programming Language in High Integrity Systems” ([ISOOO],[ISOOO])

[also published in draft as “The Use of Ada in High Integrity Systems” ([Wea99])].

The technical report identified the techniques shown Table 2.1 as being in current use

in the development of high integrity software development to understand program

correctness.

The technical report then goes on to consider all of Ada’s language features, and

applies one of the following tags to each feature against the techniques above:

• “Included: A feature is included if it is directly amenable to the des

ignated verification technique....Included features enable the analy

sis to be undertaken and directly support the production of high

integrity code.

• Allowed: A feature is allowed if the designated verification step is

not straightforward, but is still achievable; or if the use of the feature

is necessary and the use of a problematic verification technique can

be effectively circumvented.

• E xcluded: A feature is excluded if there is no current cost effective

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT

Approach Group Name Technique
Analysis Symbolic Analysis Formal Code Verification

Symbolic Execution
Flow Analysis Control Flow

Data Flow
Information Flow

Stack Usage Stack Usage
Timing Analysis Timing Analysis
Range Checking Range Checking
Other Memory Usage Other Memory Usage
Object Code Analysis Object Code Analysis

Testing Structure-based Testing MCDC
Branch Coverage
Structure Coverage

Requirement-based Testing Equivalence Class
Boundary Value

Table 2.1: Techniques

way of undertaking the designated verification technique. Assurance

of exclusion requires some form of verification” [ISOOO]

The ISO technical report clearly describes how it’s approach should be used,

1 . “the set of verification techniques should be determined from stan

dards and guidelines the development is to take place under,

2 . identify and understand the objectives to be satisfied by those tech

niques,

3. use the tables provided to determine what language features the tech

nical report includes, allows or excludes and then finally

4. confirm the resulting subset and additional verification steps for any

allowed features can actually satisfy the programming and verifica

tion requirements.” [ISOOO]

S A F E T Y RELATED SOFTW ARE DEVELOPM ENT 32

It is the author’s view that any language considered for use in high integrity

environment should go through a similar exercise.

Towards Safe System s

The author’s experience shows that Safety Related Software developments can use

a disjoint set of tools, specialised to particular design phases, that means a consistent

view of safety may be distorted when transitioning from one tool to another. In

Heisel’s Six Steps Towards Provably Safe Software, shown in Table 2.2 (([Hei95]), it

can be seen that a major boundary comes when crossing from step 4 to step 5, and

that these steps miss out the final part of a safety system, that of the hardware used

to execute the software.

No Step Proof Obligations
1 Define the legal states of the sys

tem.
Show that the initial state is legal.

2 Define the actions the system can
perform.

Analyze the conditions under which the
actions transform legal states into legal
states.

3 Define the interfaces of the sys
tem to the outside world.

Show that the internal system operations
are only involved if their preconditions are
satisfied. Show that for each combination
of sensor values exactly only one internal
operation is invoked. Show that - if the
sensors work correctly - the system faith
fully represents its environment.

4 Refine the data and operations of
the specification until data and
control structures of the target
programming language can be
used.

Show the correctness of the refinements.

5 Transform the specification in
Step 4 into a form suitable for a
program synthesis system.

Show the correctness of the algorithm per
forming this task.

6 Use the synthesis system to ob
tain a proven correct implemen
tation of the system.

Proof obligations are generated by the
synthesis system.

Table 2 .2 : Heisel’s Six Steps Towards Provably Safe Software

SA F E T Y RELATED SOFTW ARE DEVELOPM ENT 33

Adding an additional seventh step, shown in Table 2.3, to Hiesel’s 6 steps provides

a path of development that would meet McCarthy’s vision.

No Step Proof Obligations
7 Map the provably correct sys

tem from step 6 to the mathe
matical model of the hardware
under consideration

Proof obligations are generated by the
system that maps software implemen
tation to hardware implementation

Table 2.3: Additional step to Heisel’s Six Steps

2.3 Other Development Techniques

Standards, such as Defence Standard 00-56 ([MOD96]), require a developer to justify

the safety integrity level particular functions in a system acquire. Once a particular

level of integrity is identified for a function, the hardware and software elements that

implement that function inherit that same level of integrity. It is possible, by design,

to implement lower level integrity systems together to produce a complete system of

higher integrity.

As a simplified example, consider a pipe in which molten metal will pass when

required, but when it is not required to flow, people are likely to be standing under

neath the pipe performing maintenance or other functions whilst the molten metal is

held back (thus if the metal was to flow whist people were maintaining there could

be casualties). It would be easy to understand that the system that prevents the

molten metal flowing would have the highest integrity possible. Suppose this sys

tem is a simple valve, then there would have to be very stringent requirements on

its construction. Perhaps it is even impossible to create a valve with such integrity.

These requirements can be reduced by proposing two valves in series. Now both valve

must fail before an possible accident could happen, and so it could be argued that

each valve can now have less integrity because the two in series meet the integrity

RE AC TIV E SYSTEM S 34

requirement of the system.

For software compnets, one of a number of fault tolerance techniques could be

applied - these techniques are amply addressed by the reports from the Predictably

Dependable Computer Systems (PDCS) project, [RLKL95] and [ESP94]). As an

example of a technique, consider n-version programming, introduced by Chen and

Avizienis in [CA78]. In this technique multiple versions of the software are created

independently, and are subsequently executed with their outputs being collected and

examined by an external entity This external entity then chooses which result it will

use - perhaps on a majority voting algorithm or similar functionality. Leverson and

Knight performed a much discussed experiment in n-version programming ([KL8 6])

in which they concluded that whilst a valuable technique, the assumption of indepen

dence of errors did not hold in their experiment and that the levels of improvement

in reliability given by models was not achieved. An updated paper, ([KL90]), refutes

many allegations made against this experiment - particularly those by Avizienis and

his students. The Ariane 5 incident demonstrates that simply using copies of the

same software/hardware running in parallel is not sufficient.

The use of fault tolerant techniques and sound engineering principles will continue

to provide a reduction in failure rates below what could be expected. However,

as systems get more complicated and is it less easy to partition off safety related

aspects into distinct bounded parts of a system, the need to push forward with formal

techniques increases. Hoare concluded [Hoa96] by suggesting that it was the push for

formal methods that led to some of their principles being adopted by industry and that

there is still much research that has not yet crossed into the commercial world. The

work in this thesis is intended to be another step on the road of reducing complexity

of mathematical models for developers and reducing costs. Isaksen, Bowen, and

Nissanke ([IBN96]) provide a very comprehensive overview and bibliography of the

techniques used in developing safety related software.

Chapter 3

R eactive System s

3.1 Introduction

The system investigated in this thesis is one of a type of systems collectively known as

reactive systems (Harel and Pnueli are credited as identifying this class of systems in

their 1985 work “On the development of reactive systems” ([HP85])). In “Models for

Reactivity” ([MP93]), Pnueli and Manna put reactive systems in context with more

commonly talked about real-time systems by defining a hierarchy of models (where

each subsequent model builds upon the previous model):

• “A reactive systems model that captures the qualitative (non quan

titative) temporal precedence aspect of time. This model can only

identify that one event precedes another but not by how much.

• A real-time systems model that captures the metric aspect of time in

a reactive system. This model can measure the time elapsing between

two events.

• A hybrid systems model that allows the inclusion of continuous com

ponents in a reactive real-time system. Such continuous components

may cause continuous change in the values of some state variables

according to some physical or control law” . [MP93]

35

REAC TIVE SYSTEM S 36

Correctness of Pnueli’s reactive systems is addressed in Ketsen, Manno and Pnueli’s

work “Verification of Clocked and Hybrid Systems” ([KMP98]) where reactive systems

are described as a clocked transition system.

This thesis will consider the class of reactive systems, and so the example is

restricted to one where only the fact that one event precedes another can be identified,

but not by how much.

It is useful to place this restriction so the thesis can concentrate on understanding

transformations in the simplest form - one where there is no state information required

to be handled by the system, and leave as the task for future work the application

and potential modification of our techniques to real-time and hybrid systems.

The example selected for this thesis is the Generalised Railroad Crossing prob

lem introduced in “A Benchmark for comparing different approaches for specifying

and verifying real-time systems” ([HJL93]). Choosing such an example is aimed at

showing that the processes defined in this thesis are applicable to real-life examples.

The common example found during literature surveys on safety related systems

is that of a gas burner. The seminal definition of this problem is found in Ravi,

Rischel and Hansen’s work, “Specifying and Verifying Requirements of Real-Time

Systems” ([RRH93]) delivered as part of the Provably Correct Systems I project. It

was adopted by the Provably Correct Systems II (ProCos II) project as its case study,

(see [HLOR93] for an overview of ProCos II and [BHL+96] for the ProCos II Final

Report), and has been studied, amongst others by, Lamport in “Hybrid Systems in

TLA +” ([Lam92]), using Temporal Logic of Actions (TLA+) (see [Lam91] for more

on TLA+). Lano et al introduce a similar gas burner example in their paper “Design

of Real-Time Control Systems for Event Driven Operations” ([LS97]). Both Bowen,

in his work “Hardware Compilation of the ProCoS Gas Burner Case Study using

Logic Programming” ([Bow96]), and Muller-Olm, in “Compiling the Gas Burner Case

Study” ([M095]) have looked at the compilation of the gas burner problem.

RE AC TIV E SYSTEM S 37

In contrast to the work on implementations, when considering a comparison of

the specification, design and analysis of different formal verification techniques for

real-time systems, Hietmeyer’s Generalised Railroad Crossing (GRC) problem is the

benchmark problem found in the literature. This problem is defined in “A Benchmark

for comparing different approaches for specifying and verifying real-time systems”

([HJL93]). Hietmeyer and Lynch study this example in their MIT technical memo

“The Generalized Railroad Crossing: A Case study in Formal Verification of Real-

Time Systems” ([HL94a], which is also summarised in [HL94b]). Pnueli has studied

the Generalized Railroad Problem, with details available in “Deductive Verification

of Real-Time system using STeP” ([BMSU98]). Puchol has provided an ESTEREL

solution described in “A Solution to the Generalized Railroad Crossing Problem in

ESTEREL” ([Puc95]).Piveropoulos and Wellings cover the Requirements Engineering

aspects of the GRC problem using the E-notation in “Requirements Engineering for

Hard Real-Time Systems: the E Notation and a Case Study” ([PW99]).

Thus, both examples are well established in their relevant fields. The choice to

progress with Heitmeyer and Lynch’s GRC problem as the GRC problem was made

since it is a reactive system that provides a sensibly sized example. This allows the

proposed transformations to be exposed rather than worrying about a large state

space (that the real-time gas burner problem introduces) and an overly complicated

specification. Steggles has considered such a problem and demonstrated that (Second-

order) algebraic approaches can be used to describe he problem and also discussed

a form of functional refinement within his algebraic method (see either [SteOOa] and

[SteOOb]).

REAC TIVE SYSTEM S 38

3.2 Case Study - The Generalised Railroad
Crossing Problem

The generalized railroad crossing (GRC) was introduced by Heitmeyer and Lynch to

allow the comparison of the increasing number of formal methods being invented to

specify, design and the analysis real-time systems. The problem is produced in its

entirety below:

“The system to be developed operates a gate at a railroad crossing. The

railroad crossing I lies in a region of interest 72, i.e. 7 C R. A set of

trains travel through R on multiple tracks in both directions. A sensor

system determines when each train enters and exits region R. To describe

the system formally, a gate function is defined as g (t) £ [0,90], where

g (t) = 0 means the gate is down and g (t) = 90 means the gate is up.

Additionally, a set {A*} of occupancy intervals is defined, where each oc

cupancy interval is a time interval during which one or more of the trains

are in 7. The ith occupancy interval is represented as A* = where

Ti is the ith time of entry of a train into the crossing when no other train

is in the crossing and Vi is the first time since t* that no trains are in the

crossing (i.e. the train that entered at Ti has exited as have any trains

that entered the crossing since r*)

Given two constants ^ and f2> where £i > 0 and £2 > 0, the problem is

to develop a system to operate the gate that satisfies the following two

properties:

Safety Property: t £ A* ==> g (t) = 0 (The gate is down during

all occupancy intervals)

REAC TIVE SYSTEM S 39

U tility Property:* ^ (Ji [r* _ fi> vt + 6] 9 (t) = 90 (The gate is up

when no train is in the crossing)” [HJL93]

The system allows for there to be multiple trains in R at the same time.

Im plem entation of the GRC Problem

We will now consider an implementation of the GRC Problem, though it should be

noted that we are not overly concerned with this being a complete and formally correct

implementation. Rather, we wish to propose a solution that we can semantically

reason is correct in order to focus on demonstrating our methods and techniques.

It is proposed to implement a solution to the sensor system described above for a

region of interest, R, in which there are 2 tracks, tk\ and Each track will have

two sensors sub-systems on it, one to the left of the gates and the other to the right of

the gates, and each sensor sub-system is constructed from two sensors, each capable

of counting how many trains have passed in a particular direction, with the intention

being that one sensor captures trains moving into R and the other trains moving out

of R (that is to say that they have cleared I).

There are two assumptions made about the property of trains travelling through

R:

1 . a train must continue through R in the same direction in which it entered, and

2. a train cannot cross between tracks whilst in R.

and there are two assumptions made about the system overall:

1 . the length of a train is no greater than the distance between the boundaries of

R and 7, and

2. the time it takes a train to pass from the boundary of R to the boundary of I

is such that the barriers can be fully lowered or raised.

REAC TIVE SYSTEM S 40

"'1,1 ! 1 1, d.

1 fTPi/iihi 1 iTii 1I 1 1 II I I I 1 1 I 1 I I
HL,4

11111 i i f im T b 1H4J I 4UH1 U 1 1 1

1 1

1 1
1 1
1 1

i i irwiThiiil l it

1 1 1 1 1 1 1 I I I I 1 1 1

h l l ~ H 1 1 1 1 1 1

111 i|i i ^n m iy i 1
1 1

1 1

| I IR

I 1

! 1 |l| idTTVnTi 11 I I 1 111 1 1 1) 11 Ml 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
■̂2,1 ‘“’2,2

Figure 3.1: Simple Crossing System

Note that if one of the sensors fails then the system fails into a safe situation of

the barriers down.

In order to identify whether there is a train in R for a particular track, the

difference between the values held by the sensors is calculated. If this difference

is zero, then there is no train in i?, for that track.

Consider that track Tk\ has sensors si and S2 in the sensor system on the left

hand side of R , and sensors 53 and 54 in the sensor system to the right hand side of

R. A train going left to right will first trip sensor si on entering R and then s3 on

leaving; similarly a train going right to left will trip sensor s4 on entering R and then

S2 on leaving R. To identify if a train is in R the following logical test is performed:

inR(t) = (si(i) — s3(t) > 0) V (s4(t) — s2(t) > 0)

REAC TIVE SYSTEM S 41

Where there is more than one track, sensor numbers will be annotated with the

track number, thus a two track system will identify if a train is in R by performing

the following logical test:

((s u W - S1,3W > o) V {siA{t) - sh2(t) > 0))V
inR(t) =

((s 2, iW “ S2,3 (*) > 0) V (s2A(t) ~ s2,2(t) > 0))

and generically, for tracks T k i , . . . , T k n the logic will be:

(((s i . iW “ s i,3W > 0) V {s1A(t) - sh2(t) > 0))V \

inR(t) =

\ V { (sn, l(t) ~ Sn,3(t) > 0) V (s„,4(t) ~ S„)2(t) > 0))

For a practical implementation, the counter value will keep increasing to large

values, however for our discussions this is not really an issue.

Let us assume that a train takes 2 time units to cross between sensors in R and

that one enters at time 2. Tables 3.1 and 3.2 show the values of sensors and the logic

above in this situation.

t s i,i(£) 1̂,2 (t) s l,3(t) s l,4(t)
(a)

s ia(t) — s i,3p)
(b)

SmO) - Si,2(t)
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 1 0 0 0 1 0
3 1 0 0 0 1 0
4 1 0 1 0 0 0
5 0 0 0 0 0 0

Table 3.1: One Train Passing Through R (Sensors)

Similarly, if the same train passes on Tki entering at time 2 and another train

passes on T k 2 entering at time 3 then sensors si and S3 will trip for the train going

left to right and sensors sg and s6 for the train from right to left. Table 3.3 shows the

values of sensors in this situation, and Tables 3.4 and 3.5 show the logic determining

whether a train is in R.

REAC TIVE SYSTEM S 42

t (<0
a > 0

(d)
6 > 0

(e)
c V d

0 False False False
1 False False False
2 True False True
3 True False True
4 False False False
5 False False False

Table 3.2: One Train Passing Through R (Logic)

t si,i(t) *1,2 (t) *1,3^) *1,4 (t) *2,1 (t) *2,2(0 *2,3 (0 *2,4(0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 1
4 1 0 1 0 0 0 0 1
5 1 0 1 0 0 1 0 1
6 1 0 1 0 0 1 0 1

Table 3.3: Two Trains Passing Through R On Different Tracks

To meet the Safety property of the problem the sensors identifying the arrival

of a train in I (sn,i and sn>4) must be placed at the boundary of R in order to give

the gate time to close. Similarly the sensors identifying the departure from I (snj2

and sn>3) must be placed on the boundary of R (assuming no train is longer than the

distance between boundaries of R and I). The values of and £2 identified in the

U tility Property are therefore directly related to the distance between boundaries

of R and / , the maximum speed of trains travelling through R and the speed of the

gate movement.

Determining whether a train is in R is not the final step in our implementation;

the gates need to be implement. Recall that the definition of the problem introduced

the gate function, g (t) € [0,90], where gif) = 0 means the gate is down and g (t) = 90

means it is up. This is implemented as a sensor on the gate that provides an output

in the required range.

REAC TIVE SYSTEM S 43

t (a)
sl,l(t) ~ 1̂,3(t)

(*>)
SlA*) ~ Sl,2(t)

(c)
-52,1 P) — 2̂,3 (t)

(d)
$2,4 (£) — -̂ 2,2 (t)

0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 1 0 0 1
4 0 0 0 1
5 0 0 0 0
6 0 0 0 0

Table 3.4: Two Trains Passing Through R On Different Tracks

t (e)
a > 0

(/)
b > 0

0)
c > 0

(h)
d> 0

(i)
((e V /) V (3 V h))

0 False False False False False
1 False False False False False
2 True False False False True
3 True False False True True
4 False False False True True
5 False False False False False
6 False False False False False

Table 3.5: Two Trains Passing Through R On Different Tracks

In addition a gate operation function is provided that will take the values from

g(t) and inR(t) to determine if the gate motor should be sent the command up, down

or stay according to the logic shown in Table 3.6.

inR(t) g(t) Command
False — 90 stay
True > 0 down
True = 0 stay
False < 90 up

Table 3.6: Gate Control Logic

THESIS OVERVIEW

We define motor (t) as:

(

motor (t) =

i f

V

((inR(t) = False A g(t) = 90) V

(■inR(t) = True A g(t) = 0)

else i f (inR(t) = True A g(t) > 0)

then down

else up

The correctness of this solution is discussed in chapter 8.2.

^ then stay

Chapter 4

Thesis Overview

In this chapter the scope of the remainder of this thesis is proposed by identifying

the key elements discussed in the previous chapters and indicating the motivation for

the technical work contained in the following chapters.

So far the notion of high integrity software/systems has been discussed, as have

some details on the legal and professional pressures that drive the need for certain

approaches to be taken when building such a high integrity system. It has been indi

cated that the author’s view is that a formal approach is required, rather than reliance

on extensive testing and that even in the US, where the author has some experience,

the reliance on testing is being questioned by researchers in key institutions, such as

NASA.

From these early chapters it can be seen that there are a number of differing

techniques that can be used at differing life-cycle phases, but there is not really one

technique that can traverse all levels. The discussion on language choice, sets the

scene for future work on investigations on whether functional languages are suitable,

and demonstrates that some research has been performed on translating Z to ML, and

the use of functional languages in safety related systems, namely the SALDI project.

By introducing the GRC Problem as a case study a problem, and a solution, have

been presented that will be returned to throughout this thesis to demonstrate the

45

THESIS OVERVIEW 46

necessary extensions to the existing Synchronous Concurrent Algorithms model, and

how an implementation in one of the extended models may be transformed into an

implementation in another of the extension models.

4.1 Thesis Statem ent

4.1.1 Scope

Within this thesis we shall focus on developing a method to support a number of

transformations of an algorithm described as a Synchronous Concurrent Algorithm

to its implementation on a piece of hardware, also described as a SCA. A formal

basis is given to the methods by performing the transformations on the algebraic

specification of SCAs, and having the transformations themselves defined as algebra

specifications. For ease of discussion a pseudo algebraic format, that can trivially be

converted to descriptions that may be used an algebraic specification tool, is used.

4.1.2 Contribution

The core contribution of this thesis are the:

• introduction of syntactic extensions to SCA theory ([TT94] and [HTT90]),

named as dynamic SCAs (dSCAs), to solve the problem of being able to rep

resent both the computation and the computing device that implements the

computation in the same notation. Two forms of dSCAs are introduced:

— Abstract dSCA;

— Concrete dSCA.

• algebraic methods necessary to translate between a number of SCA models:

— SCA to Abstract dSCA;

THESIS OVERVIEW 47

— Abstract dSCA to Abstract dSCA (with differing defining shapes); and

— Abstract dSCA to Concrete dSCA.

4.2 Thesis Structure

The work in this thesis falls naturally into four areas:

1. Introduction of SCAs and our extensions to this model (Chapters 5-8);

2 . Transformations between various SCA models defined (Chapter 9-12); and

3. Summary and suggestions for future work (Chapter 13).

This chapter concludes Part I.

Part II commences with Chapter 5 which gives an overview and definition of

Tucker and Thompson’s SCAs and a short comparison of other applicable models.

As well as an informal and formal definition of SCAs, it is discussed what it meant

by saying a SCA is correct and how an SCA is specified algebraically. The final part

of Chapter 5 looks at the use of SCAs in the literature and discusses some limitations

of the original definition relating to the purposes of this thesis.

Next the extensions to SCA theory are introduced. These extensions address the

limitations identified in Chapter 5. In Chapters 6 and 7 abstract and concrete dSCAs

are introduced, respectively, in a similar style to that of Chapter 5. A return is then

made to the case study and it is demonstrated in Chapter 8 how each SCA model

can be used to provide an implementation.

In part III of this thesis three transformations used in the transformation (or

refinement) of an SCA to a concrete dSCA are introduced. Firstly, Chapter 9 will

introduce the concept of correct transformation, and discusses a number of funda

mental specifications necessary for transformations. The first transformations, SCA

to abstract dSCA, is defined in Chapter 10, with chapter 11 covering the abstract to

THESIS OVERVIEW 48

abstract dSCA (a process that allows the “reshaping” of the dSCA structure), and

12 covers the abstract dSCA to concrete dSCA transformations.

This thesis concludes in Chapter 13 with a discussion on proposed further work.

Part II

Synchronous Concurrent
Algorithm s

49

Chapter 5

Synchronous Concurrent
Algorithm s

5.1 Introduction

Synchronous Concurrent Algorithms are defined by Tucker and Thompson in their

work “Equational Specifications of Synchronous Concurrent Algorithms” [TT91] and

[TT94]. SCAs were introduced as a means of modelling the behaviour of a number

of discrete processing elements, that communicate and process in parallel with re

spect to a single clock. This chapter introduces Tucker and Thompson’s Synchronous

Concurrent Algorithms in an informal and formal manner. Following the exposition

of SCAs some other models from the literature are discussed, followed by how SCAs

are currently used. The chapter concludes by a) demonstrating how SCAs can be

specified algebraically, b) how the GRC problem can be implemented as an SCA and

finally c) what limitations have been found with the SCA original model during the

investigations for this thesis.

50

SYNCHRONOUS CONCURRENT ALGORITHMS 51

5.2 Informal Definition of SCAs

A Synchronous Concurrent Algorithm is a parallel algorithm consisting of a network

of M modules connected by channels. The network communicates and computes in

parallel over a data set A, with the communication and computation synchronised

with respect to a clock, T = {0 ,1 ,2 ,...} which measures discrete time. Input and

output to the network occurs at modules that are connected to sources and sinks,

respectively. A representative network is shown in Figure 5.1 consisting of 3 modules,

4 sources - <2i , . . . , <24 - and one sink - the output of module 1 .

Throughout this thesis it is implied that in the diagrams representing SCAs com

munication between modules will always travel in a downwards direction. For example

in Figure 5.1 module 1 will receive its inputs from modules 2 and 3. This notion is

clearly obvious when looking at an SCAs associated wiring function definition.

5.2.1 SCA Com ponents

D a ta a n d T im e: The algorithm processes data from a set A, at times t from a clock

C hannels: Modules within a SCA communicate via the channels of the network.

Each channel has unit bandwidth, with respect to the carrier set A and each channel

is uni-directionary, that is to say, a channel may only transmit a single datum a € A

at any one time, in one direction. A channel may branch infinitely, with the intention

a, a. a,

Figure 5.1: A Generalised SCA Network

SYNCHRONOUS CONCURRENT ALGORITHMS 52

that the datum being transmitted along the channel is “copied” and transm itted

along each of the new branches, but channels may never merge, since it would be

difficult to determine which datum would be used on the merged channel.

M odules: Each module in the network is capable of subsuming and processing its

inputs and producing one output. Consider the module m* £ M, which has n(i) £

N input channels, the processing performed by this module is defined by the total

function fa : A n^ —*■ A. The intent is that if the values 61, . . . bn^ £ A arrive on m 's

input channels, then rrii computes /*(& !,..., &„(*)).

Source M odules (In p u t): Data is read into the network at sources, also known as

input modules. Sources have no input channels and a single output channel, which

as with other channels, may branch. A network with n sources will process n input

streams, a1}. . . , an £ [T —>► A] with the convention that a,i(t) is supplied as input by

source % £ at time t £ T.

S ink M odules (O u tp u t) : Data is read out of the network by sink modules; by

definition, sink modules have a single input channel and no output channels.

5.3 Formal Definition of SCA

Let N be a synchronous network over data set A with clock T. If N has n > 0 sources

then the input to N is represented as a stream a1}. . . , an £ [T —> A]. It is also assumed

that N has k > 0 modules, m i , . . . m*, (where N* = {1,2, . . . , k}). Further, any vector

Xi) .. . x k £ Ak serves to specify the networks initial values, with the intention that

module rrii initially holds the value Xi. The te rm in a tio n assu m p tio n is defined as

follows:

“At each time t £ T a value is produced from each module. This value

can always by determined uniquely from the time t , the set of inputs a,

SYNCHRONOUS CONCURRENT ALGORITHMS 53

and the set of initial values x.n [TT91]

To support the termination assumption the value held by module m*, at time £,

can be determined by introducing functions Vi, . . . , Vk where for i ENj t the following

definition holds:

Vi : T x [T -► A]n x A k -► A

These functions are called the network’s Value Functions. By exploiting the ter

mination assumption and the synchronous nature of the network, the output of every

module in the network is either specified initially, or is specified in terms of the values

held at previous time cycles. Value Functions for a module are defined in two phases

- the Initial State phase, where t = 0, and the State Transition phase, where t > 0,

i.e. for module rrii the following is defined:

Vf(0,a,x)

Vi(t+ l ,a, x)

To complete the definition of Value Functions, it is necessary to define how the

modules are wired together, and what length of delay is required when selecting the

appropriate value from previous time cycles. This is achieved by the introduction of

wiring functions, 7(2, j) and (3{i,j), and a delay function a, x).

W iring Functions

Given the network N with k > 0 modules, n > 0 sources and modules m i , . . . ,rrik,

then rrii (where i € N*) will have an associated function, /*, that requires n(i) > 0

arguments and is defined as fi : A —► A. Each argument will arrive on m 's

input channels and will be filled with data from the set A from either a source, or

an adjacent module. Two operations, 7 (i, j) and (3(i,j) are introduced to identify

whether module rrii s j th input is from a source or an adjacent module, and the index

of that source or module (where j = 1 , . . . n(i)).

SYNCHRONOUS CONCURRENT ALGORITHMS 54

The operation 7 (z,j), which indicates whether the input is from a source or a

module, is defined as follows:

7 : N* x N -> {S, M }

where S indicates a source module and M indicates a module. The operation P (i , j),

which identifies the index of the source or module, is defined as:

P : N* x N - Nfc

For wiring functions the following three conditions always hold for i € N& and

1 < j <n(i):

1- f i ih j) I A7 (i , j) | i.e. for all inputs j = 1 , . . . ,n(z) of all modules i € N*, the

wiring functions /3(z, j) and 7 (2, j) are defined.

2 . 7 (i, j) — S ^ P(h j) ^ n) with the intended meaning that if the j th input

channel of module rrii comes from a source, then the index of tha t source,

provided by the ^-wiring function, must be within the valid source indices

1, . . . , n .

3. 7 (i , j) = M => 1 < j3(i,j) < k with the intended meaning that if the j th input

channel of module rrii comes from a module, then the index of tha t source,

provided by the /3-wiring function, must be within the valid module indices

1

D elay Functions

For each input channel j of module rrii data, calculated at some previous time cycle,

is selected. The delay function 5*j(£, u, x) identifies how many clock cycles ago the

input was calculated, or was available at the source. The delay function is defined as:

5id : T x [T -► A f x Ak ^ T

SYNCHRONOUS CONCURRENT ALGORITHMS 55

The value of the delay is deliberately set so that it takes account of the current

time, the current values of the input streams and the initial values of the network.

To preclude the construction of predictive circuits, i.e. where the value of Sij is such

that it looks forward in time, a temporal condition is introduced such th a t for any

time t 6 T, inputs a £ [T —► A]T\ and initial values x G A k, the delay must be less

that t:

5ij(t, a,x) < t

Early work on SCAs introduced the Unit Delay Assumption ([TT91]), which said

that all delays would be of unit length. Hobley ([Hob90]) showed that this restriction

was not necessary, and that a SCA with non-unit delay could be represented as a unit

delay SCA if constructed, for example, using buffering in channels.

Value Function Initial S tate Phase

The Initial State phase for Value Functions defines the state of modules in N at time

t = 0. Since Xi, the ith element of the set of initial values x, is intentionally the value

held by module rrii at time t = 0, it is appropriate to define, for i 6 N*,:

Vi(0 , a , z) = Xi

Value Function State Transition Phase

The intention behind the module specification : An® —► A of module rrii is that if

bi, • • •, &n (0 are the values selected by means of its delay functions c^i , . . . , <5iin(») from

past data along its input channels, then /*(&!,...,&«(*)) the value held at time t.

However, for j = 1 , . . . , n(z), the j th input is either supplied by some source at some

previous time, in which case, bj = aq(Sitj(t, a, x)), or it is supplied by some other

module in the network at some previous time, in which case bj = Vq(5ij(t, a, x), a, x).

Accordingly, Vi(t,a,x) is defined as:

Vi{t,a,x) = fi(bu . . . A (i))

SYNCHRONOUS CONCURRENT ALGORITHMS 56

where for j = 1 , . . . , n(i):

6 f ag(<M*>a ,aO) i f 7 (b j) = S A p { i , j) = q
3 \ yq^ i , j{^a ,x) ,a ,x) if = M A (3(i,j) = q

N etw ork O utput

Vout is defined as the vector representing the output from network N , consider that

N has m > 0 sinks, then Vout would be constructed as Vout — (HSl, . . . , V̂ m), where

Si, . . . , sm G Nfc.

Note that, in terms of specification, Vout may be reformulated as the stream trans

former Vout, such that the initial values can be considered as system parameters. In

this case the stream transformer Vout is defined as:

Vout : [T -* A]n x A k - ^ [T ^ A]m

where:

Vout{fl, -V)(^) Voutit, &, Y)

for any time t G T, set of inputs a G [T —> A]n, and initial values x G A k.

However, it should also be noted that whilst Vout may be a useful alternative

form of specification to the Cartesian form originally given, there is a subtle problem

associated with the implicit A-abstraction on Vout used in the definition of Vout • Tucker

and Thompson state the following theorem:

“For any SCA over a set A and module functions / i , . . . , / * , the local

state functions Vi, . . . , 14, global state function, Vn , and output function

Vout are primitive recursive over A n . However, if A contains two or more

elements, then Vout £ PR {A n) ” [TT94]

Thus, although the definition of a Synchronous Concurrent Algorithm can be

classed as primitive recursive, if the definition of Vout contains more than one element,

SYNCHRONOUS CONCURRENT ALGORITHMS 57

then it itself is not (the reader is referred to [TT94] for a proof of this). The result has

no impact on the proof of correctness of Synchronous Concurrent Algorithms, rather

Tucker and Thompson imply it is better to deal with SCAs using the Cartesian form.

5.3.1 Exam ple SCA

The following small SCA is introduced as a running example that will be referred to

during the next few chapters before we consider the GRCP in full. Consider the 3

module SCA network N shown in Figure 5.2.

Figure 5.2: Example SCA

It is simple to define the delay functions for 2 = {1,2,3} and j = {1 , 2} as follows:

a, x) = t — 1

with the wiring functions for N being defined as

7(1,1) = M 0(1,1) = 1
7 (1, 2) = M 0 (1, 2) = 2
7(2,1) = 5 0(2,1) = 1
7(2,2) = 5 0(2,2) = 2
7(3,1) = 5 0(3,1) = 3
7(3,2) = 5 0(3,2) = 4

with the initial state vector being defined as x = (1 , 2 ,3) the Value Functions can be

defined in their two phases as:

SYNCHRONOUS CONCURRENT ALGORITHMS 58

Vi(0, a, x) = xi
V2(0, a,x) = x 2
V3(0,a,x) = x 3

However, we will always write the definition of Value Functions out as the simpli

fied equations:

Vi(0,a,x) = 1
V2(0,a,x) = 2
1/3 (0 , a, :r) = 3
V\ (t + 1 , a, x) ~ add (V2(t , a, rc), V3 (t, a, x))
V2(t + 1, a, x) = sub (ai (t) ,a2(t))
I/3 (t + 1 , a, x) = su6 (a3 (t),a4 (t))

5.4 Correctness

Thomson and Tucker introduce two types of correctness, Type I and Type II. Type

I correctness focuses on the behaviour of a network’s modules at particular times of

the system clock T. The second type of correctness, Type II, focuses on the loading

of input data and recovery of output data from an external environment. Type I

correctness is analogous to traditional glass box testing, whereas Type II correctness

is analogous to black box testing. Type II correctness is now considered in more detail

as future correctness discussions in this thesis will be based on the ideas presented.

In Type II correctness, it is assumed that the user specification is based on another

external clock C = {0 , 1 , 2 , . . .} that is running slower than the system clock T of the

network under consideration. If this is the case, then it is necessary to provide some

form of scheduling of input streams - and possibly output streams.

It is assumed that the relation:

Vi(t + 1, a, x) = add

V2(t + 1, a, x) — sub

Vs(t + 1 , a, x) = sub

V/3(i,i) (<$1,1 (t + 1 , a, x) , a, x) ,
F/3(i,2) (<*1,1 (t + 1 , a, x) , a, x)
a/3(2,l)(^l,l (I + ai X))»
a/3(2,2)(<*2,2 {t + 1, a, IE))
ayS(3,l)(^3,l {t + 1, a, £)),
ap(3,2) (<*3,2 (t + l ,a ,x))

SYNCHRONOUS CONCURRENT ALGORITHMS 59

specifies the computational task, or behaviour, such that for any set of inputs,

a £ [C —> A]n, and set of outputs, b E [C —> A]m:

U{a,b)

means that b is an acceptable stream of outputs for the stream of inputs a. We

call U a type II system task relation. To meet this specification there must be a

function that maps inputs to outputs. Let this function be $, and be defined as:

$: [C -► A]n -► [C -h. A]m

such that for any inputs a 6 [C —► 4̂]n, it can be said that:

The design of a network that meets this specification is given by choosing a new

clock T, with modules m i , , m * and functional specifications / i , . . . , /*,, so that a

n-source, k-module, m-sink network AT can be constructed . This network is generally

running with respect to a faster clock than the specification, and thus some scheduling

of the inputs and outputs is needed to make the relation U still make sense. Scheduling

can be modelled by the introduction of stream transformers 9\ and 02, which are

defined as:
6>! : [C -> ,4]™ —► [T —► A]m

2 : [T —► -* [C -+ A]n

The following should be noted:

• 9i and 6 2 need not be related

• 6 1 and 6 2 are part of the design that implements <!>.

There are no restrictions on the definition of 9i and 9 2 , apart from insisting that

they are primitive recursive over the appropriate algebra, and that they can perform

copying of data and other useful tasks.

SYNCHRONOUS CONCURRENT ALGORITHMS 60

A special case is when 6 1 and 6 2 are determined by the clocks T and C - this arises

when there is a deterministic relationship between the two clocks. This special case

is also known as re tim ing , not to be confused with the retiming of Leiserson and

Saxe ([LS91]), and is further discussed in Chapter 9.

To show correctness between the specification and design consideration needs to

be given to 0i, 02, and Vout. There is also a need to load the initial values into the

specification (since they do not exist). For convenience, this can be incorporated

within some initialisation operation within 0 i by defining for a given initial state

x E A k:
Qinit . _ A yn x ^ A]m X A k

by:

0™it(a , x) = (Q1(a) , x)

To further increase convenience of the notation, 02, and Vout can be combined

into one stream transformer specification, 'I', defined as:

: [C A]m x A k -► [C -► A}n

defined for each x E A k as:

* = o2(vout(e[nit))

that is for each a E [C —► A]n and x E A k:

* (a 1x) = O2(Vout(0? it (a) 1x))

^ is known as the external specification.

5.5 Use in Literature

SCAs have been used widely in the literature, but mainly stemming from the research

carried out from the research groups originally in Leeds, and subsequently, Swansea.

SYNCHRONOUS CONCURRENT ALGORITHMS 61

Stephens provides a wide ranging summary of the use of Stream Transformers in the

literature in the paper “Survey of Stream Transformers” ([Ste97]), which covers the

use of SCAs. It is not intended to repeat this already accomplished work in this

thesis, and will restrict this section to a short summary to demonstrate tha t SCAs

are in actual use and not just a limited use tool.

Six useful papers are:

• Synchronous Concurrent Algorithms [TT85];

• Non-unit delay SCAs [Hob90];

• Algebraic specification of Synchronous Concurrent Algorithms and Architec

tures [TT91];

• Equational Specifications of Synchronous Concurrent Algorithms [TT94];

• Scope and limits of synchronous concurrent computations [MT8 8]; and

• Clocks, retimings, and the transformation of synchronous concurrent algorithms

[HT94].

Hardware

There are a number of papers in the published literature relating to the application

of SCAs to hardware specification and design issues:

• Formal specification and the design of verifiable computers[HT8 8];

• Specification and verification of synchronous concurrent algorithms: a case

study of the Pixel Planes architecture [ET89a];

• Formal specification of a digital correlation ([HT90]);

SYNCHRONOUS CONCURRENT ALGORITHMS 62

• Specification and verification of synchronous concurrent algorithms: a case

study of a convolution algorithm [HTT89];

• Clocks, retimings, and the formal specification of a UART ([HT89]);

• Consistent refinements of specifications for digital systems [HT91];

• Infinite synchronous concurrent algorithms: the specification and verification of

a hardware stack [MT93].

Language

The literature contains several articles relating to synchronous languages and re

active systems, the following is a list of those specific to SCAs:

• A parallel deterministic language and its application to synchronous concurrent

algorithms [TT8 8].

Biological

The SCA model has successfully been applied to entities outside the direct field

of computing:

• Computational structure of neural systems [HTT90]; and

• An algorithmic model of the mammalian heart: propagation, vulnerability, re

entry and fibrillation [HPT96].

Other

• Specification, derivation and verification of concurrent line drawing algorithms

and architectures ([ET88]);

• Tools for the development of a rasteration algorithm [ET89b];

SYNCHRONOUS CONCURRENT ALGORITHMS 63

• Theoretical Considerations in algorithm design ([TT85]);

• Concurrent Assignment representation of synchronous systems ([MT87]) revised

in ([MT89]); and

• Verification of synchronous concurrent algorithms using OBJ3. A case study of

the Pixel Planes architecture ([EST91]).

The author has not been able to identify any source in the literature referring to

the use of SCAs in Safety Related Software development.

5.6 Other Relevant Models

SCAs are not the only mathematical approach that could have been the basis for

investigation in this thesis. The literature has many models that could have applied, a

comprehensive overview of these models can be found written by Astesiano, Broy and

Reggio (contained in Chapter 13 of [ABR99]). In this work, algebraic specification

techniques are divided into (at least) four different approaches, and a simple case

study is used to examine how the techniques are used. Techniques identified in that

work and some others techniques are:

• Milner’s Calculus of Communicating Systems (CCS) [Mil80];

• Hoare’s Communicating Sequential Processes (CSP) [Hoa85];

• Baeten and Weijland’s Algebra of Communicating Processes (ACP) - which is

built up from a Basic Process Algebra [BW90];

• The International Organisation for Standardisation’s Language of Temporal

Ordering Systems (LOTOS) [IS089];

SYNCHRONOUS CONCURRENT ALGORITHMS 64

• Process Specification Formalism (PSF) [MV89] and [MV90], which incorporates

the Algebraic Specification Formalism (ASF) of Bergstra, Heering and Klint

([BHK89]);

• Petri Nets (original model defined in [Pet81]. Reisig ([Rei91]) considers Petri

nets and algebraic specifications and in [Rei98] their use in specifying concurrent

systems is considered; and

• Iterated Maps (see [FH98] for an example)

The author has chosen to use SCAs for their simplistic and readily accessible

mathematical notation.

5.7 Algebraic Specification of SCAs

Synchronous Concurrent Algorithms will be specified in an algebraic style, based on

the work of Ehrig and Mahr’s “Fundamentals of Algebraic Specification” ([EM92])

and Wirsing’s “Algebraic Specification” ([Wir90]). To understand the mathematical

background to algebraic specifications the following elements need to be introduced:

1. Signatures;

2 . Algebras;

3. Terms;

4. Equations; and

5. Specifications.

SYNCHRONOUS CONCURRENT ALGORITHMS 65

5.7.1 M athem atical Entities
Signatures

Informally by an algebra we mean a collection of sets A i , . . . , A n, a collection of

constants, q £ A, for i £ / , and a collection of operations (or functions):

f i • A i l x • • • x A i n > A in+\

To describe, compare and reason about such algebras syntactic names are given to

each of these three kinds of objects. These names are collected together and organised

into a many sorted signature.

For any non empty set s 6 S of sort names, an S-Sorted signature (E) is the

S* x S indexed collection of sets:

E = = s i , . . . , sn € 5*, s € S}

where

• for the empty word A € S*, and each s £ 5, the element c € is called a

constant symbols of sort name S.

• for each non-empty word w = s1}. . . , sn £ *S'+, and each s € 5, the element

/ £ ^u;,s is called a function name of domain type w, range type s, and arity n.

By a signature we mean a pair (5, E) consisting of the sort name set S, and the

S-sorted signature E. We can write a signature in a more human readable way, such

as:

Begin
Signature A
Sorts
Constant Symbols . . . , c*, . . .
Function Nam es ■■ ■ , f i ■ As(i) x

End

SYNCHRONOUS CONCURRENT ALGORITHMS 66

Algebras

Where a signature defines the syntactic objects, an algebra provides the semantics. If

S is an S-Sorted signature, then an S-Sorted E — Algebra is the ordered pair (A, T,A)

where A = (A s|s E S'} is an s-indexed collection of sets.

For each sort name s E S

• the set A s is termed the carrier set of the algebra of sort names s

• Ea is an S* x S-indexed collection of sets:

s A = {Y,tJw = su . . . <Sne S \ s e S }

where

• for each sort name s E S and the empty word A the following is defined:

£ a , . = { c a \c e £ v }

where 6 A is termed a constant of sort name s E S which interprets the

constant name c E Ea,s in the algebra.

• for each non-empty word w = s i ,, sn € S+, and each 5 E S, the following is

defined:

K s = { / a I / e s . , }

where : A w —> A s is termed an operation with domain A Sl x . . . x A Sn , range

A s and arity n which interprets the function name / E HWt8 in the algebra.

We can write an algebra out in a more human readable manner, such as:

Begin
Algerba A
Carriers , A i , . . .
Constant M > A> s(i) 5 • • •
Operations . . . 1 fi • As(i) x . . . x A s(n ̂ > A s . . .

End

SYNCHRONOUS CONCURRENT ALGORITHMS 67

Terms

Let S be a non void S-Sorted signature and X = {a;fl|s € S'} be a family of sets of

variables, then the term algebra is defined as:

T(T,,X) = (T(E,X), E t (s 'x))

to be the E — algebra with S-indexed family of carrier sets:

r(s, x) = = Sll, € 5*, s e 5}
as follows:

1. for any sort s £ S and any constant symbol c € Ea,s, the following term can be

defined:

CT (E , X) ~ Cs

2. for any sort s E S, any non-empty word w = s i , . . . , sn € 5 +, functional name

/ € E^s, and any terms L 6 T (E ,X)S, for 1 < i < n, the following term can

be defined:

• • • 5 ^ n) — / s (* l , • • • > t n)

This definition of terms allows the complex definition of new terms, e.g.

fa (fb (fc (a) , b) , d, e, /)

Equations

Let E be a non void S-Sorted signature and X = (x s|s € S'} be a family of sets of

variables and let s € S' be any sort name. We define an equation , of sort name s, to

be an expression of the form:

t \ = t 2

where t \ , t 2 £ T (E ,X)S are terms of sort s.

SYNCHRONOUS CONCURRENT ALGORITHMS 68

Specifications

Finally we can introduce the notion of an algebraic specification. An algebraic spec

ification is the pair (E, E) where E is a signature and E a set of equations defining

the exact behaviour of the function names within the signature. We define that the

specification:
(A • cA

A =

\

f i ‘ X • ■ • X A s (n)

\ f i i a s(1) 5 • • • 5 a s (n) — • • •

can be written in a more human readable way as

A, (0 >

Begin
Specification A
Sorts
Constant Symbols . . . , Ci, . . .
Function Nam es : Aa(i) x . . . x A a(n) -> A s)̂
Equations . . . , , as(n) = ■■■

End

To further aid readability the notion of importing one specification into another is

introduced; by importing specifications the ability to define a specification A in terms

of another specification B is possible. Consider the specification B which is defined

as:
Begin

Specification B
Sorts . . . , B j , . . .
Constant Symbols . . . , cj 5.. .
Function Nam es £ s(1) x . . . x B s{n) -> £ s(i), . . .
Equations . . . , f j { a s{1), a s{n) = . . .

End

SYNCHRONOUS CONCURRENT ALGORITHMS

then the specification given as:

69

Begin
Specification
Import

A
B

Sorts , A i , . . .
Constant Symbols j Cj, . . .
Function Nam es j fi ■ X . . . X Ag ĵ ̂ > • j

> f j ' Rs(1) x . . . x J5s (n) —> B s^ , . . . ,

End

Equations > fiifls{ 1) 1 • • • 1 &s(n) • • •
> f j { as(1) 7 • ■ ■ } as(n) • • ■

is an informal way of writing:

A =

A ■ R. . . , . . . , Uj , . . . ,

• • • J C j , . . . , Cj , . . . ,

• • • i f i • A s (l) X . . . X
• • • 5 f j • Ba(1) X . . . X Es(Tn) * J D a (j) , . . . ,

^ • • • , f i i p s (1) ; • • • > ^ s (n)) = • • • j 5 f j { a s (1)5 • • • 5 a s (m) = • • • j

A s (i) ,

5.7.2 Algebraic Specification of SCAs

SCAs will be described in this thesis using a specific form of the algebraic specification

just introduced. Firstly all equations used in the specification of an SCA are special

cases of equations in that they are explicit definitions. Secondly, we introduce into our

specification notation additional divisions of the signature and equation components.

Our algebraic specification of an SCA will be:

SYNCHRONOUS CONCURRENT ALGORITHMS 70

Begin
Specification
Import
Sorts
Constant Symbols
VF Function Nam es
7 Function Names
P Function Names
5 Function Nam es
7 Equations
P Equations
5 Equations
IV Equations
ST Equations

End

S C A
T , A

Vi - . T x [T -> A]n x A k A
7 : Nfc x TV —>■ {S, M }
P : x N -> N
Si j : T x [T -> A]n x A k - ^ T
7 (hj) = •••
Pihj) = ■■■
5 i j (t , a , x) = . . .
Vi (0,a,x) = . . .
V i (t + 1 , a , x) = . . .

Where we import 2 specifications, a clock specification (T) and a specification, A,

that defines the data that goes over the SCA channels and the operations that Value

Functions can implement.

It is a trivial task to turn the above algebra specification into an algebra specifi

cation able to be executed in an algebraic specification tool, e.g. Maude ([CDE+99])

by removing elements such as the InitialValueEqs section, and collapsing the indi

vidual operation and equation sections. Both of these are in the definition to aid

construction and decomposition of SCA algebras. An example algebraic specification

produced by the removal of the proposed syntax is as follows:

SYNCHRONOUS CONCURRENT ALGORITHMS 71

B egin
Specification SCA
Im port T, A
Sorts
C onstant Sym bols
Function N am es Vi : T x [T —*■ A\n x A k —>• A

7 : Njt x iV -> {S, M }
/ 3:Nk x N ^ N
Sij : T x [T ^ A]n x A k

E quations l { h j) = • • ■
R h j) = ■■■
S i j (t , a , x) = . . .
Vi(0,a,x) = . . .
V i (t + 1 , cl, x) = . . .

End

Algebraic Specification of the Exam ple SCA

Recall the simple SCA that was introduced in Chapter 5.3.1, as an algebraic specifi

cation in our style it would become (with appropriate specifications for A and T):

SYNCHRONOUS CONCURRENT ALGORITHMS 72

B egin

End

Specification
Im port
Sorts
C onstant Sym bols
V F Function N am es
7 Function N am es
(3 Function N am es
5 Function N am es
7 E quations

(3 E quations

S E quations

IV E quations

ST Equations

SCA
T, A

Vi . T x [T -> A]n x A k -
7 : Nfc x AT —>■ {S, M }
(3 : Nfc x N -> N
Siyj : T x [T ^ A] n x A k

7(1,1
7(1,2
7(2,1
7(2,2
7(3,1
7(3,2

0 (1,1
0 (1,2
0 (2,1
0 (2,2
0(3,1
0(3,2

= M
= M
= S
= S
= s
= s
= 1
= 2
= 1
= 2
= 3
= 4

a, x) = t —
S^2(t ,a,x) = t —
S2, i{t ,a,x) = t -
$2, 2 (f, a, x) = t -
<53,i(t ,a ,x) = t -

a, x) = t -

Vi(0, a, x) = 1

V2 (0, a, x) = 2

l/3 (0, a, x) = 3

Vi(f + l ,a , x) = add(V2(t ,a,x) ,V3(t ,a,x))
V2{t + 1, a, x) = sub (aRt) , a2(t))
V3(t + 1, a, x) = sub (a3 (t),a 4 (t))

In the work performed to generate this thesis the author had no consistent access

to an algebraic specification tool, the use of which would be useful in demonstrating

the ease of modelling systems and the implementation of the transformations defined

SYNCHRONOUS CONCURRENT ALGORITHMS 73

later in this thesis. It is proposed that these definitions and transformations are

placed into an algebraic specification tool as the first part of future work.

For the reader interested in a real life example, Appendix B contains an algebraic

SCA specification of the Generalised Railroad Crossing Problem that is used as the

case study.

5.8 Limitations of the Standard SCA M odel

The simple translation of an SCA to hardware would require one “processor” per

module. This is achievable if it were to be implemented using a technology such as

Field Programmable Gate Arrays (FPGA), however this would not sit comfortably

with safety related software standards. This is because development of a new FPGA

is new hardware and would therefore introduce an untested and untried element to

the solution. Additionally, use of a FPGA potentially drives a large through life

cost as any upgrades/alterations would require new hardware. Ideally the solution

would be implemented on a generic microprocessor that is in wide spread use so that

a) known issues can be avoided, e.g. floating point problem with the Intel pentium

processor ([Int94]) and b) there is a reduced cost of upgrade and ownership. Note

that in recent years steps have been made to apply formal methods to hardware,

e.g. Hunt’s work on formally verifying the FM8501 microprocessor ([Hun94]), and

Harman and Tucker’s application of algebraic methods to correctness and verification

of microprocessors ([HT93], [HT96] and [HT97]) and also the work of UK Ministry of

Defence research establishment on the VIPER microprocessor ([Coh8 8] and [Coh89]).

The challenge addressed in this thesis is how to create an SCA that executes on

one processor from an SCA that requires a processor for each module, or put another

way, how is a single module SCA created that can alter its computation, wiring, and

delay operations depending upon the current execution time? It is contended that

this can be done using the existing model of SCAs, however the introduction of some

SYNCHRONOUS CONCURRENT ALGORITHMS 74

syntactic sugar makes the process cleaner and easier to understand. Since an SCA

can be specified algebraically, then it is possible to create algebraic transformations

that can be applied to manipulate a multi-module SCA into a single module SCA,

through a hierarchy of such models. This hierarchy allows correctness proofs between

each layer of abstraction in a style resembling refinement.

Consider again our simple example SCA, shown in Figure 5.3, representing a

computation. It is intended to execute this computation on a single SCA module

(which is how the computing device will later be represented).

a l a2 a3 a4

Figure 5.3: Sample SCA Network

In the simple example SCA network in Figure 5.3 each module performs a simple

mathematical operation. If this network is implemented by a single module then there

is the implication that each original network module is executed in sequence, e.g. at

time t = x the function from module 1 is executed, at time t = x + 1 the function

from module 2 is executed and then at time t = x + 2 the function for the third

module, module 3, is executed; to make semantic sense the computation would wrap

around to execute module 1 at time t = x + 3 etc. To summarise, module 1 should

execute at t mod 3 = 0, module 2 at t mod 3 = 1 and module 3 at t mod 3 = 2.

Since the output of module 1 relies on the outputs of modules 2 and 3 in the original

network, it must be possible to access data produced at times greater than the unit

delay associated with the initial definition of SCAs, in this case at times t — 1 and

SYNCHRONOUS CONCURRENT ALGORITHMS 75

t — 2 . To summarise, what is required is an SCA that allows:

• Execution different functions at different times;

• Introduction of delays greater than the unit delay; and

• Alteration of the wiring of a module depending upon the time.

A new module is introduced into the network, a program counter, that starts at

0 when t — 0 and is incremented at each clock cycle. This program counter can be

implemented either at each module or centrally, supplying values to all modules in

the network. Forms of SCAs that act in such a way are referred to as dynamic SCAs

(dSCAs).

Two forms of dynamic SCAs will soon be introduced - abstract and concrete.

Abstract dSCAs are a simple syntactical extension to Tucker and Thompson’s original

definition, which will support:

1. a functional specification for each module in TV, except the program counter,

that contains a number of specific component operations, executing only one at

a time, dependent upon the value of a counter;

2 . variations in the delay function between modules of N dependent upon the

value of a counter; and

3. variations in the wiring functions between modules in N dependent upon the

value of a counter.

Concrete dSCAs implement the abstract principles modelled by an abstract dSCA.

To achieve this requires the ability to store previously calculated values in tuples as

outputs on the SCA channels - in a manner similar to that proposed in Hobley

([Hob90]). In a concrete dSCA functions to manage tuples are provided that allow

SYNCHRONOUS CONCURRENT ALGORITHMS 76

a consistent method for adding and retrieving values from the tuple. For this thesis,

two of the more interesting tuple management techniques, queues and indexed arrays,

will be considered.

5.9 Concluding Comments

Synchronous Concurrent Algorithms have been introduced, both informally and for

mally, and it has been shown that they currently have practical uses. In addition, it

has been shown how a SCA can be specified algebraically.

To conclude, a number of limitations have been identified that need to be overcome

in order for SCAs to be used in a refinement structure for taking an SCA representing

a computation and producing an SCA that represents the computing device.

5.10 Sources

The initial work on Synchronous Concurrent Algorithms is an exposition of Tucker

and Thompson’s original work on SCAs, including some reference to the work of

Hobley who showed that SCAs did not need to be restricted to unit delay. The

author’s first ideas for this thesis were inspired by his work for his undergraduate

degree on dataflow architectures, and the subsequent desire to understand how SCAs

could represent dataflow machines. It was further inspired by the author’s initial

career in the Ministry of Defence related to safety related systems.

Chapter 6

A bstract Dynam ic Synchronous
Concurrent Algorithm s

A bstract dynamic SCA

To provide a model in which transformation o f algorithm shape

can take place with an understanding on impact o f t im e ,

and, input and output streams.

6.1 Introduction

Abstract Dynamic Synchronous Concurrent Algorithms (referred to as abstract dSCAs)

are introduced to overcome those limitations that have been identified with SCAs and

to support transformations of the shape of a SCA. Next the elements of an abstract

dSCA are informally described and then progression to a formal description is made.

The chapter concludes with an introduction to the concepts of Defining Shape and

Defining Size of an abstract dSCA and how to specify an abstract dSCA algebraically.

77

A B S T R A C T DYNAM IC SCA 78

6.2 Informal Definition of Abstract dSCAs

Informally, an abstract dSCA module will execute a component specification where

the component executed is selected based on the value of a program counter supplied

to that module. Inputs to the component specification will be selected from the

dSCA channels and inputs as indicated by the wiring functions, and values will be

selected from previous calculations based on the delay function. Both the wiring and

delay functions will also be bound to the value of the program counter, enabling a

predictable but dynamically shaped SCA to be defined.

Before examining abstract dSCA components this thesis will consider the three

(syntactic) differences introduced for abstract dSCAs that address the limitations

identified with SCAs, namely:

1. Increasing number of functional specifications per module.

2. Relaxing unit delay assumption.

3. Variable wiring functions.

6.2.1 Increasing Num ber of Functional Specifications per
M odule

A SCA computes values using on a single functional specification per module. In

the dSCA framework it is intended to choose a functional specification based upon

a particular value of a program counter, allowing one module to implement many

functions. To achieve this using simple syntactic extensions, a module’s specification

will be constructed from a number of component functional specifications with the

correct component selected by means of referring to an externally provided program

counter. This program counter value will be supplied to modules as the first argument.

Each module has the same finite number of component functional specifications,

A B S T R A C T DYNAMIC SCA 79

f i , o> • • • ->f i , MaxN - 1- This finite number is defined as M a x and this fact has three

implications:

1 . At some values of the program counter the module may be performing some

null calculation.

2 . At some values of the program counter the functional specification may not use

all the arguments in the overall module specification.

3. In the traditional SCA model there is a single equation defining the Value

Functions Initial State phase and a single equation defining the State Transition

phase of the Value Function. In the dSCA model, a Value Functions initial state

phase must be provided for each component functional specification, i.e. there

are Maxjq initial state equations representing the value for program counter

values pc = 0 ,1 , 2 , . . . , M a x n — 1 at times t = 0 , 1 ,2 , . . . , M a x n — 1 .

The program counter value could be generated in three different ways:

1 . a program counter per module (our investigations have shown that this approach

presents clumsy manual transformations and required additional proofs that all

program counters are set to zero at the start of execution and that they all

increase in step)

2 . include the program counter value as part of the output such that the module

has 2 outputs, one containing the functional output and the other the updated

clock value. Again, proofs need to be shown that all values are set properly and

are suitably incremented.

3. a single globalised program counter that provides its output to all modules.

A B ST R A C T DYNAM IC SCA 80

Since this thesis will look at manual transformations the author has decided to

minimise the burden of transformation by generating the program counter using the

third option - the global program counter.

Allowing multiple functions on a module introduces a problem of cycle consistency,

where results required were calculated more then M a x n cycles ago. The notion of

cycle consistency is discussed in detail in chapter 6.2.3, since to make a sensible

discussion required the introduction of non-unit delays.

6.2.2 Relaxing U nit Delay Assum ption

The delay function in an SCA allowed the retrieval of data calculated at previous

times - the original convention was the SCAs adhered to the unit delay assumption.

In a SCA with unit time delay, the definition of one Initial State phase and one State

Transition phase for Value Functions prevents the lookup of values where t < 0; since

at time t = 0 the Initial State phase determines the exact value output by the module

and at times t > 0 the State Transition phase dictates the restriction by using inputs

calculated at most t — 1 time units ago).

Hobley ([Hob90]) identified that restricting SCAs to unit delay was not necessary,

and further that a non-unit SCA could be represented as a unit delay if an appropriate

buffering of data was instigated (either in the channels or in the modules). Our work,

for the relaxing of the unit delay assumptions, draws heavily from Hobley’s work, but

notably:

• constrains the implementation to meet the needs of future transformations;

• introduces the notion of cycle consistency and cycle inconsistency; and

• generalises Hobley’s implementation, to produce a more flexible management of

buffering and a simplified syntax.

A B ST R A C T DYNAMIC SCA 81

If the unit delay assumption is relaxed then it cannot be guaranteed that values

from times t < 0 are not requested if there are only definitions for t = 0 and t + 1. In

chapter 6.2.1 the value M a x n was introduced to indicate the number of components in

the functional specification. It is therefore defined that if there are Maxjq components

in the specification then there must be M a x n initial values, for times 0 , 1 , . . . , M a x n ~

1.

It is immediately tempting to bound the delays allowed to be no greater than

M a xx , however the concept of cyclic consistency needs to be considered. This concept

is discussed in the next section, but has the following implication: let pcjnow be the

current value of the program counter, and pcjresi, . . . ,pc_resn(q represent the values

of the program counter when the functions that produce results that m* uses, then:

1. if pcjnow < pcjresi, . . . ,pc.resn(q < M a x ^ then the delay required is within

the range:

1 , . . . , M ax at

2. Otherwise the delay required is in the range:

M a x ^ + 1 , . . . , 2 x 2 * Maxjq

6.2.3 Cycle Consistency

Allowing multiple functions per module implies that there is an execution order for

those functions. The investigations carried out in the author’s work has ascertained

that certain execution orders can introduce potential temporal issues.

Consider a module that executes 5 modules, thus M a x ^ = 5, then a cycle can

be defined to be any consecutive time period [ti, £2 , £3 , £4, £5] where j = 0 and 1 5 =

£4 + 1, £4 = £3 + 1, £3 = ^2 T I 5 ^2 — ti T 1.

If any time pcjnow within the range [t: , . . . , t 5] is chosen then the component

functional specification executing at module m* at that point in time will select its

A B S T R A C T DYNAMIC SCA 82

inputs from the channels (or inputs) of the network calculated at some previous time,

as indicated by the delay functions. The following lemma is introduced:

Lem m a 6.2.1. The execution order chosen for the modules will have a direct affect
on the period of delay functions required.

In any execution order the component specifications providing results required for

the functional specification operating at pcjnow will be executed on some module at

values of the program counter corresponding to pcjresi, . . . ,pcjresn^ .

Let us consider the case where:

pc.resi, . . . , pcjresn(i) > pcjnow

then there are three cases that need considering:

1 . If pcjnow is at the start of a cycle, for example when t = M a x n , then since the

functions that will create values for its inputs will not have executed yet, then

it is the case that the values it requires (from the initial state) are within the

range 0 < t < M ax

2. If pcjnow is at the last point in the cycle it can be for its inputs to be calculated

after it, e.g. t = M a x ^ T ^ M a x ^ —2) for a functional specification with 2 inputs,

then its inputs must be found at times t = M a x ^ — 2 and t = M a x ^ — 1; and

3. If pc.now is after the last point in the cycle it can be for its inputs to be

calculated after it then the system includes a loop - which is not allowed.

If for all values of the program counter it can be shown that functions that calculate

inputs happen at program counter values higher than the one under consideration,

then the abstract is defined to be a cycle consistent abstract dSCA.

A cycle inconsistent abstract dSCA is one where for some values of the program

counter on some modules, the component specification for any result is executed

A B S T R A C T DYNAM IC SCA 83

earlier in the execution order. In such a case, the delay will always be greater than

MaxN for that particular input.

Further, a totally cycle inconsistent abstract dSCA is one where for all values of

the program counter, and all modules, the component specification for any result is

executed earlier in the execution order.

The effort required to show that a cycle inconsistent abstract dSCA is not totally

cycle inconsistent may be too great and thus any cycle inconsistent abstract dSCA

can be treated as totally cycle inconsistent. The implication of this is immaterial

for abstract dSCAs but has space implications for concrete dSCAs, this is discussed

later.

D em onstration Consider the 3 module SCA shown in Figure 6.1 which will be

implemented as a one module abstract dSCA.

Figure 6 .1: Execution Order Example SCA

The Value Functions for the SCA are given as:

Vi(0, a, x) = 1

1 4 (0 , a, x) = 2

V3(0 ,a,x) = 3

Vi(£ + 1 , a, = add (V-2(t, a, x), V3 {t, a, x))

V2(t + 1 , a, x) = sub (ai(£), a2 (t))

V3(t + 1 , a, x) = sub (a3(t), a4(t))

The detail of the wiring and delay functions for the SCA are not given here

as they are not necessary for understanding (if the reader so wishes they may be

A B S T R A C T DYNAMIC SCA 84

easily constructed by examining the network structure of the Value Functions). Let

Vout — Vi and given the input streams below:

a\ = (7 ,9 ,5 ,4 ,6 , 8 ,3 ,5 ,6)

0,2 = (1 ,8 ,3 ,0 ,5 ,8 ,1 ,1 ,2)

03 = (5 ,12 ,5 ,7 ,8 ,9 ,5 ,8 ,12)

04 = (4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4)

then the execution of the SCA can be traced as shown in Table 6 .1 , where the value

of Vout at every clock cycle is given in the last row of the table.

Time 0 1 2 3 4 5 6 7 8 9
Mod 1 Val 1 5 7 9 3 7 5 5 3 8
Mod 2 Val 2 6 1 2 4 1 0 2 4 4
Mod 3 Val 3 1 8 1 3 4 5 1 4 8
Vout (t , (2, x) 1 5 7 9 3 7 5 5 3 8

Table 6.1: SCA Execution Trace

C ycle C onsistent abstract dSCA

The creation of a cycle consistent abstract dSCA will produce an abstract dSCA

where the functional specification that produces the results for any other functional

specification occurs later in the execution order. This is easily achieved in this example

by implementing the execution order of 1-2-3 (another viable alternative is the order

1-3-2).

In order to provide consistent inputs to the network the input stream must be

delayed by M a x n clock cycles, to take account of an initialisation period, and then

each input value must be held for M ax n clock cycles i.e. for the length of a cycle.

For this example, the input streams would be rescheduled as:

a i = (u, u, u, 7 ,7 ,7 ,9 ,9 ,9 ,5)

a2 = (u, u,u, 1 , 1 , 1 , 8 , 8 , 8 ,3)

a3 = (u, u , u, 5,5,5,12,12,12,5)

u4 = (u,u,u, 4,4,4,4,4,4,4)

A B S T R A C T D YNAM IC SCA 85

The value functions for the one module cycle consistent dSCA will be constructed

as:

Ki(0,a,x) = (1,0,0)

Vi(l, u, x) = (1,2,0)
K(2,a , z) = (1,2,3)

I add(Vi(t — l ,a, x), Vi(£,a, x)) if Vpc(t,a ,x) = 0

sub (a^ t), a2W) if VJ,c(i, a, x) = 1

sub (a3 (i), a4(t)) if V̂ c(£, a, x) = 2

The program counter is defined as:

Vpc(0 , a,x) = 0

VpC(t + 1, a, x) = mod (add (Vpc(t, a , re), 1) .M ax^)

By examining the value function definition for V\ it can be seen that the first

component of the specification represents module 1 in the SCA, i.e. when the program

counter value is 0, and the second and third components represent modules 2 and 3

of the SCA respectively.

If Vout — hi then it is possible to trace the values output as time progresses. The

results of this tracing can be seen in Table 6.2.Time 0 1 2 3 4 5 6 7 8 9
PC Val 0 1 2 0 1 2 0 1 2 0

Module Val 1 2 3 5 6 1 7 1 8 9
hotit(,̂ fl, 3j) 1 2 3 5 6 1 7 1 8 9

Table 6.2: 1-2-3-Execution Trace

As before, the results of Vout are shown on the last row of the table, but in this case

only the results produced on every 3rd clock cycle from time t = 0 are of interest (the

others results are intermediate results). The results that are of interest are shown in

bold.

A B ST R A C T DYNAM IC SCA 86

Comparing Tables 6.2 with 6.1 it can be observed that the correct set of results

are computed every 3rd clock cycle.

Cycle Inconsistent abstract dSCA

For a cycle inconsistent abstract dSCA the execution order of 2-3-1 is considered. The

naive, and incorrect, implementation would produce something akin to the following

dSCA:

Vi(0 , a, x) = 2

Vi(l, a, x) = 3

hi (2 , a, x) = 1

Isub(ai(t)1 a2 (t)) if Vpc(t, a, x) = 0

sub (a3(t), a4 (t)) if Vpc(t, a, x) = 1

add (Vi(t — 2 , a, x), Vi(t — 1 , a, x)) if Vpc(t,a , x) = 2

In this example the component specification representing module 1 in the SCA is

executed last in the execution order, and the implementation simply tries to match

the delay function for its inputs to be in the same cycle as it. The result trace for

such an execution (assuming a similar rescheduling of inputs) is shown in Table 6.3.Time 0 1 2 3 4 5 6 7 8 9
PC Val 0 1 2 0 1 2 0 1 2 0

Mod Val 2 3 1 6 1 7 1 8 9 2

Vout (L *e) 2 3 1 6 1 7 1 8 9 2

Table 6.3: Wrong 2-3-1-Execution Trace

Again the important results are highlighted in bold whereas the other results are

intermediatory results. The first results is produced at time t = 2 which is fine,

however the second result is 7 and not 5 as expected. Looking at the intermediate

results it can be seen that the result required for the calculation are actually computed

at times t — 5 and t — 4 (or put another way at t — 2 * M a x ^ — 1 and t — 2 * M a x ^ — 2).

A B S T R A C T DYNAM IC SCA 87

If the definition of the Value Function is given to reflect these timings, then the

following abstract dSCA being defined:

Vi(0 , a,x) = 2

Vi(l, a, x) = 3

Vi(2, a, x) = 1

I sub (ai(t), a2(t)) ^ Vic(t, a, x) = 0

sub (a3(t), a4 (t)) if V ^ t , a,x) = 1

add (Vi(t — 5, a, z), Vi(i — 4, a, a;)) if a,x) = 2

This abstract dSCA results in the trace shown in Table 6.4.Time 0 1 2 3 4 5 6 7 8 9 10 11

PC Val 0 1 2 0 1 2 0 1 2 0 1 2

Mod Val 2 3 1 6 1 5 1 8 7 2 1 9
Vout (t , a, x) 2 3 1 6 1 5 1 8 7 2 1 9

Table 6.4: Correct 2-3-1-Execution Trace

It can now be seen that the correct set of results (shown in bold) are obtained

every 3rd cycle after an initial delay of 3 clock cycles.

This difference in start time of correct results is easily managed using retimings if

a formal syntactic proof of correctness were to be performed.

6.2.4 Variable W iring Functions

The introduction of a component based functional specification means that not all

inputs must be wired to the same modules for all values of the program counter (it

is also not necessarily true that all the inputs to a module are wired up for that

particular value of the program counter). The SCA definition of wiring functions are

extended to include the program counter as an index - 7pc (z, j) and j3pc (z, j) . Where

the component of the functional specification at a particular value of the program

counter does not wire up all inputs, a special value will be introduced to indicate

this.

A B S T R A C T DYNAMIC SCA 88

6.2.5 Abstract dSCA Components

D ata and Time: As with SCAs, the algorithm will process data from a set A at

times t from a global clock T = {0,1,2, . . .}.

Channels: The modules in a abstract dynamic Synchronous Concurrent Algorithm

communicate via the channels of a network. Each channel has unit bandwidth, with

respect to the carrier set A, and, each channel is uni-directionary. Thus, a channel

may only transmit a single datum a E A at any one time, in one direction. Channels

also have the properties that they may branch infinitely, but they may never merge.

When a channel branches, the intent is that the datum being transmitted along the

channel is “copied” and transmitted along each of the new branches.

M odules: Each module is capable of processing its inputs and producing one out

put. Processing occurs according to the functional specification. Consider module

nrii E M, where i > 0 and which has n(i) + 1 6 N input channels. The processing

performed by this module for the functional specification is defined by the total func

tion F i : A x An ^ +1 —► A. The intent being that if b0, 6X, . . . bn^) E A were to arrive

on m 's input channels, then m* computes -Fj(60, 61}. . . , 6n(*)), where F i is made of

M a xn component specifications /*to, • • ■, f i , M a x N - i and the appropriate component is

selected based on the value of the program counter, bo, and for 0 < pc < M ax nr — 1 ,

f i , Pc will select the appropriate arguments from &1}... bn^ E A for its calculation.

The notation that mo will be referred to as the program counter module will be

adopted, and for ease of description this thesis will often refer to mo as mpc. The

program counter module is similarly specified to have M axn component specifica

tions, however each component will be the operation of adding 1 to its previous value

modulo M axn- Additionally, the program counter module will output 1 mod M axn

A B S T R A C T DYNAMIC SCA 89

at time t — 0 through to 0 at time Maxpj — 1. This slightly counter-intuitive def

inition is necessary as the rest of the network will always consider the value of the

program counter at t — 1. Thus, in the simplest case where the first state transition

value function is computed, the current time will be t = M a x ^ and it is intended to

execute the 0 th component which requires Vpc(t — 1 , a, x) to be 0 , which is guaranteed

by the above rule.

In an SCA the inputs to a module m i: where i > 0 were denoted as &i,. . . , bn{i).

For an abstract dSCA the inputs will be denoted as 60 , 6i , . . . , 6n(i) where &i,. . . , 6n(i)

correspond to the inputs in an SCA and bo is reserved for the value of the program

counter.

Source M odules (Input): Data is read into the network at sources, also known as

input modules. Sources have no input channels and a single output channel, which

as with other channels, may branch. A network with n sources will process n input

streams, cq, . . . , an E [T —► A] with the convention that a*(£) is supplied as input by

source i E Iin at time t E T.

Sink M odules (Output): Data is read out of the network by sink modules; by

definition, sink modules have a single input channel and no output channels. Data is

read out of the network as values from A.

6.3 Formal Definition of Abstract dSCAs

Let A" be a synchronous network over data set A with clock T. If N has n > 0

sources then the input to N is represented as the streams a i , . . . , a n E [T —► A].

It is also assumed that N has k > 0 modules, m0,.. .mfc and that each module

rrii , where i E M*, has a maximum number, M a x at, of components in its functional

specification, and that mpc is the usual denotation for the programme counter module

m 0. Further, it is assumed that for any vector xq, . . . Xk E A k , where i E N*, Xi is a

A B S T R A C T DYNAMIC SCA 90

tuple of values, Xi = • • • ^i,MaxN-i) £ AMaXN will serve to specify the networks

initial M a x n values, with the intention that module rrii holds the value x^pc at time

t = pc and 0 < pc < M a x n — 1. The initial value for module m pc is specified as

the tuple xpc = (1 , 2 , . . . , M a x m — 1 , 0). (the reason for the offset index of program

counter values, rather than starting from 0 , is that a module at time t will consider

the program counter at time t — 1, e.g. at time t = 36, the value from the program

counter at time t = 35 should be 0 otherwise the wrong component specification will

be selected!).

Further, the term ination assum ption from the definition of SCA applies such

that:

“ We assume that at each time t E T there is a value output from each module, and

that this value can always by determined uniquely from the time t, the set of inputs

a, and the set of initial values a:” ([TT94])

The value held by module mi at time t can be determined as required by using the

termination assumption and the introduction of functions Vo,. .. ,Vk where for i E N*,

the following is defined:

Vi : T x [T -> A f x A k -+ A

These functions are called the network’s Value Functions.

The output of every module in the network can be determined by exploiting the

termination assumption and the synchronous nature of the network. Every module’s

output is either specified initially or is specified in terms of the values held at previous

time cycles. Value Functions can be defined in two phases, in a similar manner to

the definition of SCAs given earlier. For modules mo, . . . , m*;, there are M a x ^ Initial

A B S T R A C T DYNAMIC SCA 91

State phases (where t = 0 , 1 , . . . , M a x ^ — 1), and a single State Transition phase:

Y (0 , a, x),

Vi (MaxN — 1 , a, x) ,

Vi (t + 1 , a, x) .

To provide the complete definition of Value Functions, it is necessary to introduce

wiring functions, 7pc.vai(hj) and (3pc_vai{h j) , and delay functions, 8ij,pc_vai.

W iring Functions

Modules in a dSCA are wired together in different ways depending on the value

of the program counter. Consider the network N which has k > 0 modules and

n > 0 sources, then a module m *, where 0 < z < &, will have an associated function

specification, iq , that requires n(i) + 1 > 0 arguments. These arguments will arrive

on the input channels for rrii and will be filled with data from the set A from either

a source or an adjacent module. Two operations, 7 pc.vai{hj) and (3pc_vai{i,j) are

introduced that determine whether the j th input for module m*, at the program

counter value pc_ua/, is from a source, an adjacent module or the undefined module,

and what the index of that source or module is.

For a module rrii with inputs j = 0 , . . . n(i), the operation 7 pc_vai{ h j) is defined as

follows:

Ipc-val : Nfc x N —> {S, M, U}

where S indicates a source module and M indicates a module, and U indicates the

input is not connected/needed for the pcth component functional specification of Fi.

The value of 7 pc_Vai{h 0) will always be M since it is always connected to the program

counter.

We similarly define (3pc_vai (h j) as:

/%c.vai : Nfc x N —► Nfc U {u;}

A B S T R A C T DYNAMIC SCA 92

where u represents a special value for an unconnected connection. The value of

Ppc.vai(h 0) will always be pc, indicating that it is always connected to the program

counter.

We require the following five conditions to always hold (where i € N*, j 6

{0, . . . , n(i)} and pc.val 6 {0, . . . , M a x n — 1}:

1 - Ppc-vai{hj) I Ajpcjua-Xh j) I with the intended meaning that for all values of

the counter pc.val = 0 , . . . M a x n — 1 and inputs j = 0 , . . . , n(i) of all modules

2 = 1 , . . . , / : , the wiring functions (3pc_vai{hj) and 7 pC_Vai{hj) are defined;

2. 7 Pc.vai(hj) = S => 1 < (3pC_vai(i , j) < n with the intended meaning that if the j th

input channel of module m* at counter value pc.val comes from a source, then

the index of that source, provided by the /5-wiring function, must be within the

valid source indices 1 , . . . , n;

3. 7 pC.vai{hj) = M => 0 < Ppc.vai{hj) < k with the intended meaning that if the

j th input channel of module rrii at counter value pc.val comes from a module,

then the index of that source, provided by the /5-wiring function, must be within

the valid module indices 0 , . . . , k (recall that the program counter module is mo);

and

4. 7 Pc.vai{hj) — U <=> P p d h j) = v with the intended meaning that if the j th input

channel of module rrii at counter value pc.val is not connected, then the value

of the /5-wiring function, must indicate the special non connected index u.

5- Ipc-vai(2, 0) = M A Ppc_vai(h 0) = pc with the intended meaning that the zeroth

input to a module would always be from a module, whose index is the program

counter (and this includes the program counter module).

A consequence of the first condition is the need to define values of 7 p C. v a i (h j) and

A B ST R A C T DYNAMIC SCA 93

/3pc_Va i(h j) when the component of the functional specification under execution uses

only a subset of the module’s inputs.

D elay Functions

For each input channel j of module rrii at program counter value pc.val a delay is

associated, Sij>pc_vai, that indicates from what time cycle the input was produced. It

is defined as:

Si,jtPc.vai : T x [T —> A]n x Aktup -> T

The delay function in a dSCA is deliberately set so that it can take account of

the current time, the current values of the input streams and the initial values of

the network, as per the SCA definition. It is additionally indexed to reflect the

different values it may take at different values of the program counter the dSCA

module is currently executing at. To preclude the construction of predictive circuits,

i.e. where the value of Sij^c_Vai is such that it looks forward in time, the

temporal condition is introduced that for any time t G T, inputs a G [T —► A]n, initial

values x G A MAXnxK, and values of the counter pc.val G {0,1,2, . . . M a x ^ — 1} the

value of delay must be less than t, i.e.: SijiPC(t,a ,x) < t.

For a cycle inconsistent dSCA the definition of the delay function is further bound

so it cannot look at data calculated at times greater than 2 x M a x n — 1 clock cycles

before the current time, i.e.:

t (2 X AdaXjy'j ^j *̂) I

and that it must never be allowed to refer to times less that 0 :

The general rules of the delay function are that for i € N*, j G {0, . . . , n(i)} and

pc.val G {0 , . . . , Maxjv — 1}:

A B S T R A C T DYNAMIC SCA 94

1* î)j)pcjv(ii *̂) j. "with the intended me^nin^ thfl»t fop &11 inputs j = 0 , . . . , n(i)

of all modules i € Njt, the delay function SitjtPC_vai (t ,a , x) is defined;

2 . t — 2 x M aijv < SijtPC_vai(t ,a ,x) < i with the intended meaning that for all

inputs j = 0 , . . . , n(i) of all modules i G N& and at all values of the program

counter pc.val = 0 , , M a x the delay function SijjPC_vai (t , a, x) must be as a

minimum the unit delay and as a maximum 2 x M a xN (for a cycle consistent

dSCA this constraint would be appropriately amended to cope with tuple of

length Maxjq)\

and specifically relating to the program counter:

1 . 5ifliPC_vai(t,a, x) = t — 1 with the intended meaning that all program counter

inputs to all modules are subject to a unit delay; and

2 - $pc,o,pc_vai(t>a, x) = t — 1 with the intended meaning that there is unit delay on

the input of the program counter module to itself.

There will be times where the values of SijyPC_vai (£, a, x) are meaningless for the

calculation; however, since the rules require a value to be provided for all modules at

all values of the program counter the unit delay will be used in these cases.

V alue F u n c tio n In itia l S ta te P h ase

The initial state phase for Value Functions defines the state of modules in N at

times t = 0 , 1 , . . . , M a x N — 1 for modules 0 , . . . , k. For modules 0 , . . . , k and program

counter values 0 , . . . , M a x n — 1 since xitPCi the pcth element of the ith vector of the set

of initial values x, is intentionally the data value held by module rrii at time t = pc

then it is appropriate to define:

Vi(pcjval,a,x) = x^pc

A B S T R A C T DYNAMIC SCA 95

for i £ N*; and pc.val = 0 , . . . , M a x ^ — 1 .

For the program counter module, the values are specifically defined as:

(1 , 2 , . . . , Max^f — 1 , 0)

with the intended meaning that:

Vpc{0 , a, x) = 1

hpc(lj *̂) — 2

Vpc(Max]sr — 2, a, x) = M a x n — 1

Vpc(M axN — 1, a, x) = 0

Value Functions State Transition Phase

For modules 0 , . . . , k the intention behind the module specification Fi : A x A n ^ + 1 —>

A is that if 60, 61}. . . , 6n(i) are the values selected by means of its delay functions

&i,o,pcjuaij $i,i,pc.val, ■ • • 5 pc.val from past data along its input channels, then.

F{ (b0, b\ , . . . , &n(i))

is the value held at time t.

The definition of F{ for modules 1 , . . . , k consist of M a x n component specifica

tions, one for each value of pc, and may include producing the “undefined” constant;

where the intention is that the module performs no processing at that value of the

counter and simply outputs, u. The introduction of u is necessary to ensure that each

module has a value to output for each of its M a x ^ component functional specifica

tions.

A B ST R A C T DYNAMIC SCA 96

M a x x component specifications are defined for Fi as follows:

Fi

< bo, ^

bi,
* ' • 5

\ A(i) j

= <

^ ^1 ,0? ^
h i . . . , if = 0

^ ^ n (z ,0) ,0 j

A . \
f i ,2 . . . , if 60 = 1

^ b n (i , 1) ,1 j

^ b \ , M a x x — l i ^
f i , M a x p f if b0 — Maxpj — 1

y b n (i , M a x ^ — l) , M a x ^ — l J

where ^ i t0) • • • > ^n(i,i),0) ^2,1 ? • • • ? ^n(i,Max^) —15 M clxn') £ • • • 5 ^n(i) }5 he. arguments

in the component specification are selected from arguments in the functional definition

of the SCA.

For j = 0 , . . . , n (z) , the j th input is either supplied by some source at some

previous time, in which case, bj = aq (8 ij,pc_vai (t,a,x)), or it is supplied by some

other module in the network at some previous time, bj = Vq (5ij,pc_vai (t,a ,x) ,a ,x).

Accordingly, V (t, a, x) is defined as:

Vi (£, a, x) = Fi (6o,&i, • • • A(»))

where for j = 0 , . . . , n (i):

ag(kj,b0 (*,a,z)) if 7&0 (i, j) = SA

A 0 (* > j) = Q

Vq (k jM (*, a, x) , a, x) if 7 bo (i, j) = M A

A 0 (m)

^ if Tbo(hj) = UA

A 0 (b j)

bj =

A B S T R A C T DYNAMIC SCA 97

it will always be the case that b0 = Vpc (£, a, x).

For the program counter module, mpc, the definition of component specification,

Fi, is always:

N etw ork O utput

Vout is defined as the vector representing the output from network N. Consider that

N has m > 0 sinks, then Vout would be constructed as Vout = (V^, . . . , VSm), where

Si , . . . , sm £ i.e..

Vout is not allowed to change with the values of the program counter to ensure that

then a retiming is probably required on the values produced by Vout to ensure only

relevant values are observed. The relevant values will be produced every M a x ^ clock

cycles after an initial delay dependent upon the execution order chosen.

6.3.1 Defining Shape of an abstract dSCA

It is possible to implement the same algorithm on several dSCAs, differing only by

the number of modules and values of M a x To distinguish between such dSCAs the

pair V = (/c, Max^r) is defined as the Defining Shape of a dSCA, where k > 0 is

the number of modules in the dSCA network and M a x ^ is the number of component

specifications each module in the dSCA network has.

An algorithm which has 20 separate functions to be implemented, can therefore

be implemented on a dSCA where V = (20,1) - the usual notion of an SCA - or some

other valid combination, some examples of which are V = (1 0 , 2), V = (5 ,4), V =

mod (add (bo,1) M a x n) if b0 = 0

mod (add (b0:1) M a x n) if b0 = Max^r — 1

V out (k s i 3 • • • 5 K m)

only one set of outputs is considered. However, it should be noted that if M a x n > 1

A B S T R A C T DYNAMIC SCA 98

(4,5), V = (1,20) - the last defining shape perhaps representing a single processor

machine.

It is possible for a dSCA to be defined where V can support more functions than

are available, e.g. in the example we are using the value could be given as V = (5,5).

The only restriction placed on the defining shape is that there must be a sufficient

number of modules/computations allowed (value of Maxiv) to handle all functions in

the computation. To determine this, the defining size of the dSCA is introduced.

6.3.2 Defining Size of an abstract dSCA

The D efining Size of a dS C A with a defining shape of V = (k , M a x m) is defined to

be A = (k x Max^i). The defining size provides a metric to understand if a particular

algorithm will fit onto a particular dSCA defining shape. The example used in the

defining shape section, section 6 .2 .1 , with 20 operations would clearly need a dSCA

where A > 20 for it to be implemented on a dSCA.

6.4 Correctness

By inspection it can be seen that a dSCA is simply an SCA with some syntactic sugar

around the modules functional definition. Therefore the same correctness approaches

used for SCAs can be applied to abstract dSCAs.

Care must be taken to ensure that the same type of consistency is applied to

all modules, i.e. an abstract dSCA should not have modules where some are cycle

consistent and some are cycle inconsistent.

6.5 Algebraic Specification of abstract dSCAs

Since an abstract dSCA is really an SCA with some syntactic sugar, it can be specified

algebraically in the same way as an SCA. An example algebraic specification of an

A B S T R A C T DYNAMIC SCA 99

abstract dSCA is given in Appendix C.

As with the SCA example given in chapter 5, this form can be readily translated

into a format suitable for use within one of the algebraic tools available by collapsing

the additional operation and equation definitions in the notation, as shown for SCAs.

6.6 Concluding Comments

The introduction of abstract dSCAs is fundamental to this thesis, as it supports the

notion of transforming the defining shape of a dSCA, as will be demonstrated in

Chapter 11. The author has specifically ensured that abstract dSCAs are just simple

syntactic extensions of SCAs in order to provide a solid foundation for mathematical

analysis. This is known since it is possible to construct an abstract dSCA using just

the syntax of the normal definition of SCAs. In doing so, the indexing of the wiring

and delay functions would have to be removed and codified into the definition of the

function.

6.7 Sources

The work in this chapter on extending SCAs syntactically to cover the requirements

for dynamic SCAs is all my own work except for that that deals with the introduction

of non-unit delay SCAs which is based on the work of Hobley; however this thesis

enhances the understanding of non-unit delay SCAs when used in a hierarchy, in

particular the identification of cycle consistency and the need to provide equations

to represent the Initial State for times t = 0 ,1 , . . . , MaxN — 1. The initial work

investigated SCAs and what have now become concrete dSCAs - the author is grateful

to his supervisor, Dr. N. Harman, who suggested introducing the abstract dSCA

concept enabling the transformation of SCAs to be studied in a cleaner manner.

Chapter 7

Concrete Dynam ic Synchronous
Concurrent Algorithm s

C oncrete dynam ic SCA

To approximate a model o f physical hardware implementation

with memory and a program counter.

7.1 Introduction

The previous chapter introduced abstract dSCAs allowing the limitations of SCAs,

in the context of this thesis, to be addressed. Data was passed around the network

as single datum from an underlying algebra A and the delay function was responsible

for selecting the correct data from previous time cycles, t — 1 , . . . , i — (2 x M ax at — 1)

(or t — 1 , . . . , t — MaxN — 1 for cycle consistent abstract dSCAs). Current technology

does not support a machine with these temporal look-ups without the look-ups being

encoded in a more concrete manner. Concrete dSCAs are introduced to support the

encoding of results by storing these results in a finite length tuple per module.

As discussed in Chapter 6 a cycle inconsistent abstract dSCA can be either par

tially or completely cycle inconsistent. It was also mentioned that for abstract dSCAs

100

CONCRETE DYNAMIC SCA 101

this distinction was merely a classification but that there were implications for con

crete dSCAs. These implications relate to the size of the tuple needed for results.

Hobley, [Hob90], showed how non-unit delay SCAs may be represented as unit

delay SCAs by the introduction of buffered channels or internal storage. Whereas

Hobley’s work considers these buffers/storage as shift registers, we extend this and

generalise with the introduction of tuple management functions allowing, if we wish,

buffers to act as indexed arrays. Additionally, the concrete dSCAs that this thesis

introduces implement the other attributes of dynamic SCAs given in the previous

chapter.

7.2 Informal Definition of Concrete dSCAs

Recall that modules within an abstract dSCA network communicate via channels,

and each channels is of unit bandwidth with respect to the underlying algebra A,

and uni-directional. Concrete dSCAs, like abstract dSCAs, may be cycle consistent

or inconsistent, and this thesis will consider both types of concrete dSCAs since both

have differing requirements for storage.

In a concrete dSCA the size of the storage depends on the type of concrete dSCA

under examination:

• Cycle consistent dSCA needs a storage size of only M a x n -

• A totally cycle inconsistent dSCA needs a storage size of 2 x M ax

• All other cycle inconsistent dSCA needs, as a minimum, a storage size of M a x ^

plus a storage element for each result that is not cycle consistent.

Thus in the worst case it is necessary to store up to the last 2 x M a x ^ values

calculated by the module so they are available to other modules.

CONCRETE DYNAMIC SCA 102

This storage will be implemented in concrete dSCAs using tuples, thus the carrier

set A tup is constructed in such a way so that it includes the algebra A and tuples

made from A of the necessary length. Using Atup it is now possible to maintain the

unit bandwidth notion of SCAs.

There are many conceivable ways of placing data into the tuple and subsequently

retrieving them. The complexity of these approaches is related to the type of cycle

consistency under consideration. For a cycle consistent and totally cycle inconsistent

concrete dSCA these tuple management functions can be relatively simple, for a

non totally inconsistent concrete dSCA the functions are more complex requiring

knowledge of which results are cycle consistent and those which are not. For reasons of

simplicity this thesis will consider only cycle consistent and totally cycle inconsistent

concrete dSCAs. Two of the more interesting tuple management approaches are:

1. Queue. This is the most obvious implementation; and

2. Indexed array. This would closely map to a von Neuman architecture.

The tuple management operations will need to:

1. Update the data in the tuple, which consists of:

(a) inserting newly calculated data into the tuple at the correct position for

later extraction; and

(b) deleting old data from the tuple; and

2. Extract the required data

Updating the tuple values will be managed by the tuple update operation, T,

which for a cycle inconsistent concrete dSCA will be given as:

T : A x Ai x • • • x A 2xMaXN x A A 1 x • • • x A 2xMaXN

CONCRETE DYNAMIC SCA 103

For a cycle consistent concrete dSCA the definition of the tuple update operation

is simplified to:

T : A x A x x • • • x A MaXN x A -► Ai x • • • x A M(lXN

The intention behind T is that the first argument will be program counter value,

the next 2 x M a x ^ arguments are the tuple values from this module at the previous

time, and the final argument is the result just calculated.

Selection for a cycle inconsistent dSCA is made by applying a projection operation,

n l X̂ r " , on tuple to select the value at the index for the j th input of module

i at program counter value pc, and is given as:

C ' = ^ * ■ ■ ■ * A l * M a r N - A

Again, a cycle consistent concrete dSCA will define the projection operation over

the simplified tuple output as:

: A x X •.. x AMaXN - A

The two chosen tuple management techniques are now discussed in more detail.

7.2.1 Tuple M anagement : Queue

U pdating Data:

Managing the tuple as a first-in first-out queue requires new data, b, to be added to

the left hand side of the tuple and the removal of the rightmost data.

Cycle Inconsistent Tuple Management Definitions

The tuple management definitions for a cycle inconsistent concrete dSCA are

defined simultaneously. Where the value of the program counter is less than M a x ^ — 1 ,

then the values in the tuple at n get shifted right to n + 1, for 0 < n < M a x ^ — 1,

CONCRETE DYNAM IC SCA 104

and the new result added to the tuple at position 0 :

/ pcjval, ^

A O ? • • • j ^ M a x N - i 5T

\ J

6 , (1 q , • • • , & M a x j v —25

1) • ■ • 5 ® (2 x M a x p j) — 2

if the value of the program counter equals Max?] — 1 then the process above is

performed and then the whole first half of the tuple is copied into the second half:

/ M a x ^ — 1, ^
6, G o ? • • • j Q ' Ma x N — 2)

T
Qfl} • • • j ^Maxj^ — \i

ClMaxNi • ■ • 5 &2x.MaxN — l

J

= copy
^ M a x j q — l t • • • j & (2 x M a x p j) — 2

6, do? ■ • • j &Maxjv- 2)

6, ao, • • • j Q'MaxN — 2

The value of programme counter is not used in the queue tuple management

operations. It remains in the definition for ease of clarity across models.

Cycle Consistent Tuple Management Definitions

For a cycle consistent concrete dSCA there is no need to copy the data to higher

levels of the tuple at pc — M a xn — 1 s o the definition of T is simplified as:

Y(pcjval, Go? ■ • • j ^Maxjv- 1> (^5 a0 , • • • j Q*MaxN—2)

Selecting Data:

Cycle Inconsistent Tuple Management Definitions

The value of dij^pcvai in the projection function, n^ x̂ a^ , is directly proportional

to the time that the result was calculated. Consider the output of module rrii at time

f - l e T , which is what other modules will be restricted to observe, it will consist of

CONCRETE DYNAM IC SCA 105

a tuple of results as follows:

f Vh(t - l,a ,a;), ^

Vh{t - 2 ,a ,x),

. . . ,

Vh(t — M a x^ , a, z)

Vh(t - (M axN + 1), a, x),

. . . ,

If it is intended to select the result calculated at time t-4 then it will have been

shifted (t — 1 — (t — 4) indexes to the right of the start of the tuple, i.e. it will be

at index 3 (assuming that M a x ^ is of course greater than 4) - note that indexing of

tuple elements starts at 0 .

Cycle Consistent Tuple Management Definitions

The cycle consistent concrete dSCA will have the same definition, but is restricted

to values up to M a x n time cycles ago.

7.2.2 Tuple M anagem ent : Indexed Array

U pdating Data:

Managing the tuple as an indexed array ensures that new data is entered into to

a predetermined position in the array, whilst overwriting any existing data held in

that position. Since the program counter value is available to modules and uniquely

identifies values in the range of 0 , . . . , M a x ^ — 1 this value is chosen to indicate where

in the tuple results will be placed.

Cycle Inconsistent Tuple Management Definitions

In a cycle inconsistent concrete dSCA if the value of the program counter is less

than Maxj^r — 1 then the newly calculated value is entered into the array at position

CONCRETE DYNAMIC SCA 106

T
(2.(3 , • • • 5 Q'pc-.val—l'i b) Q"pc-val-\-1) • • •) ^ M a x j v — 1>

^Maxjv) • ■ • 5 ®(2xMaijv)- 1

indicated by the program counter as follows:

/ pc.val, ^

(2q, • • • , ^A/axjv—l ’

^Max^v; • • • 5 ^2xMaxjv —1

>6 /
When the program counter equals M a x ^ — 1 then the newly calculated vale is

entered at index Maxjy — 1 and subsequently the values with indexes 0 , . . . , M a x ^ — 1

are copied to indexes M a x n , . . . ,2 x Maxj^ — 1 , as:

T

 ̂Maxiy — 1,

(2i, . . . , aMaxN j

^ M a x ^ + l l 5 • • • j ^ 2 x M a x j v

V ’ 6

\

= copy
(2o, • • • , UMaxjv- 2?

^Maxpj) • • • j Q'(2 xMclxn) — 1

(2q, . . . , 2? ^5

(2(), . • • , (2jV/ax̂ —2) ^

Cycle Consistent Tuple Management Definitions

For the cycle consistent concrete dSCA the definition would be:

T (pc.val, (2(3, • • • , a Max n — 15 (flo 5 • • ■ 5 ^pc.val—1; ^5 ^pcjuaJ+l > • • • ^Max^ — l)

Selecting D ata

Cycle Inconsistent Tuple Management Definitions

Retrieval of the correct datum from the tuple, i.e. the identification of the correct

value for dijiPC Vai in the projection function, relies on knowledge of the

program counter value when the result was calculated, and selecting the appropriate

index value.

Cycle Consistent Tuple Management Definitions

The cycle consistent concrete dSCA has a similar definition but is limited to retrieval

from a tuple of length M a x m-

CONCRETE DYNAMIC SCA 107

7.2.3 Cycle Consistency and Execution Order

Concrete dSCAs have the same properties as abstract dSCAs regarding execution

order and cycle consistency, and has been shown, a cycle consistent dSCA requires a

tuple of only M a x ^ length, whereas a cycle inconsistent concrete dSCA requires one

with a length of 2 x M ax

7.2.4 Concrete dSCA Components

D a ta an d T im e: As with SCAs, a concrete dSCA will process data from a set A

which is augmented with tuples of the length M a x n to form the set A tup, at times t

from a global clock T = {0 ,1 ,2 ,...} .

C hannels: The modules in a concrete dSCA communicate via the channels of a

network. Each channel has unit bandwidth, with respect to the carrier set A tup and

each channel is uni-directional. A channel may only transmit a single datum a € A tup

at any one time, in one direction, where the tuples will be of length tl between all

modules except from the program counter, which is of length 1 , i.e. a single datum.

Channels also have the properties that they may branch infinitely, but they may

never merge. When a channel branches, the intent is that the datum being trans

mitted along the channel is “copied” and transmitted along each of the new branches.

M odules: Each module is capable of processing its inputs and producing one output,

which in all cases apart from the program counter, will be a tuple. Take a module

rrii € M, where i > 0 and which has n(i) + 2 € N input channels; then the first input

channel is always from the program counter, the second from the module itself, and

the remaining inputs from sources or other modules in the network, the processing

CONCRETE DYNAMIC SCA 108

performed by this module is defined as the total function:

F • A y A v An AL 2 • f*-tup ^tup tup f'-tup'

The intent being that if values 60, 61, 62, • • - 6n(*)+i € A tup were to arrive on mjs

input channels, then m» computes F^(60 , 61} 62, . . . , 6n(*)+1), where the Fi is made from

M a x x component specifications / ij0, . . . , fi,MaxN- i and the appropriate component is

selected by the value of the program counter, 60, and for 0 < pc_val < M a x ^ — 1 ,

fi,Pcjuai will select the appropriate arguments from 60, . . . 6n(*)+1 E A for its calculation.

Each component specification will follow the following form:

kAb0 , 6 1 . 6 2 , , 6»w+i) = T (6°> 61, /S c (* , (f c) , • ■ ■, n ^ (i)_lipc (6„(.)+i)))

where T is the chosen tuple management operation, II the associated projection

operation, f ^ c is the actual calculation performed by the module for tha t value of

the program counter and tl is either 2 x M a x n if the concrete dSCA is totally cycle

inconsistent, or M a x ^ if it is cycle consistent.

Module m 0 is defined as the program counter module, and the notion that this

module is referred to as mpc is adopted. The program counter module is always

specified as:

(mod (add (Vpc(t, a, x), 1) M axn) if V̂ c(£, a, x) = 0

:

mod (add (Vpc(t) a, x)) 1) M a xN) if Vpc(t, a, x) = M a x N — 1

Source M odules (In p u t) : Data is read into the network at sources, also known as

input modules. Sources have no input channels and a single output channel, which

as with other channels, may branch. A network with n sources will process n input

streams, a 1}. . . , an € [T —i► A\ (note that tuples are not allowed for inputs) with the

convention that a^(t) is supplied as input by source i E Iin at time t 6 T.

CONCRETE DYNAMIC SCA 109

S ink M odules (O u tp u t) : Data is read out of the network by sink modules; by

definition, sink modules have a single input channel and no output channels. Since

the modules will be producing tuple outputs it is necessary to select the required

value from the tuple output to obtain a sensible result.

7.3 Formal Definition of Concrete dSCAs

Let N be a synchronous network over data set Atup, which is the data set A augmented

with tuples of length tl (where tl is M a x ^ if the dSCA is cycle consistent or 2 x M a x ^

otherwise), with clock T. If N has n > 0 sources then the input to N is represented

as the streams a1}. . . , an E [T —► A]. It is assumed that N has k > 0 modules,

mo, . . . rrik, and that each module m*, where i E N, has a maximum number, Maxjy,

of components in its functional specification, and that module mo is a special program

counter module usually denoted as m pc.

It is further assumed that for any vector xq, . . . Xk E A ^ p , where for i E N*, a

vector of values, Xi, is defined for 1 < i < k such that Xi = (xi$, . . . , x^MaxN- i) € A\up.

That is to say, that for each module m,, where 1 < i < k, there are M a x ^ initial

states defined and that for each value of the program counter, 0 < I < tl — 1 , the

initial value tuple is of the form (xijt0, . . . , x*,/,ij-i), and that this will serve to specify

the networks initial values. The intention is that module m* holds the value at

time t E 0,/, M a x ^ — 1. Additionally, for the program counter module the initial

values x 0 = (^o,o5 • • •, xo,MaxN- i) are defined where x0fPC_vai is a single value from A

Further, the te rm in a tio n assu m p tio n from the original definition of SCA and

abstract dSCAs is kept such that:

“We assume that at each time t E T there is a value output from each

module, and that this value can always by determined uniquely from the

CONCRETE DYNAMIC SCA 110

time £, the set of inputs a, and the set of initial values x." ([TT94])

The value held by module m*, at time £, can be determined, as required by the

termination assumption, by introducing functions Vo,. . . , V* where for i = 0 , . . . , k

the following is defined:

Vi : T x [T - A]n x A tp -» Atup

These functions are known as the network’s Value Functions. By exploiting the

termination assumption and the synchronous nature of the network, the output of

every module in the network is either specified initially, or is specified in terms of the

values held at previous time cycles. Value Functions for a module can therefore be

defined in distinct components - for the Initial State and one for the State Transition

, i.e. for each module m* where i € N*. the following can be defined:

Vi (0, a, x) ,

Vi {Maxn — 1, a, x) ,

1, a, x) .

The nature of the network is such that it is not until t = Maxjy — 1 that the initial

value is meaningful, i.e. produces a tuple that is filled with all the correct values,

thus it is only the value at t = M a x n — 1 that is of interest; values before that could

be filled with undefined or some other chosen values. However, to ease correctness

proofs it is useful to have the state at time t = 0 being a well defined and known

state.

An alternative approach would be to define one initial state phase for the value

function, at time t = 0 which is equivalent to the previous approach at t — M a x ^

and then begin processing from that point.

This extension will use the first approach to allow easier comparison to the abstract

dSCA which the concrete may be derived from.

CONCRETE DYNAM IC SCA 111

To provide the complete definition of Value Functions, it is necessary to consider

the following

• Wiring Functions, 7 pc{hj) and PPc(hj)\ and

• Delay Function, 8 ij(t, a, x) .

W iring Functions

Just like modules in an abstract dSCA, the modules in a concrete dSCA are wired

together in different ways depending on the value of the program counter. Consider

the network N which has k > 0 modules and n > 0 sources, then a module rrii (i G N&)

will have an associated function specification, Fi, that requires n(z) + 2 > 0 arguments.

These arguments will arrive on m 's input channels and will be filled with data from

the set A tup from either a source, an adjacent module or the program counter module.

Two operations, 7 pc.Vai{hj) a^d (3pc_Vai{hj) are introduced that determine for module

rrii s j th input whether it is from a source or an adjacent module, and what the index

of that source or module is at the pc.valth cycle.

For a module rrii with inputs j = 0 , . . . n(i) + 2, the operation 7 pc.vai{hj) is defined

as follows:

lpc.vai : x N —► {S, M, U)

where S indicates a source module and M indicates a module, and U indicates the

input is not connected/needed for the pc..valth component functional specification of

F .

Ppc_vai(hj) is similarly defined as:

P : Nfc x N Nk U M

where u represents a special value for no connection.

The following six conditions always hold where i e N*, pcjual GO, . . . , M a x # — 1

and j G 0 , . . . , n(i) + 1:

CONCRETE DYNAMIC SCA 112

1- Ppc.vaiihj) 1 j) | with the intended meaning tha t for all values of the

program counter and for all inputs of all modules the wiring functions /3pc_vai(i,j)

and jpc.vaiihj) are defined;

2. 7 pc.vai(hj) — S =>■ 1 < /3pc-vai{hj) < n with the intended meaning tha t if the j th

input channel of module mi at counter value pc.val comes from a source, then

the index of that source, provided by the /3-wiring function, must be within the

valid source indices 1 , . . . , n;

3. 7 pc_vai(hj) = M => 1 < (3pC_vai{hj) < & with the intended meaning that if the

j th input channel of module at counter value pc comes from a module, then

the index of that source, provided by the /3-wiring function, must be within the

valid module indices 0 , . . . , k\

4. 7Pc.vai(hj) — U <=> Ppc.vai{hj) = ^ with the intended meaning that if the j th

input channel of module mi at counter value pc.val is not connected, then the

value of the /3-wiring function, must indicate the special non connected value

U]

5. 7 pc_waZ(̂ 5 fi) = pc A (3pc_vai{h 0) = M with the intended meaning that the zeroth

input of each module mi is wired to the program counter module; and

and for i € 1 , . . . , fc

1- lpc.vai{h 1) — i A Ppcjuaiih 1) = M with the intended meaning that the 1st input

of each module m i , except the program counter module, is wired to tha t module

(recall that the program counter only has only input, and this case is covered

by the previous condition).

A consequence of the first condition is the need to define values of 7 pc(i,j) and

/3 Pc{iJ) even for when the component of the functional specification under execution

uses a subset of the modules inputs - hence the introduction of the values U and u.

CONCRETE DYNAMIC SCA 113

D elay Functions

For each input channel j of module m*, where i E N*, a delay is associated,

5 itj (t,a ,x), that indicates the delay between the time cycle the input was produced

and the current time. It is defined as:

Sij : T x [T —> A\n x Aktup -* T

To preclude the construction of predictive circuits - where the value of SijtPC (t , a , x)

is such that it looks forward in time, the temporal condition is introduced that for

any time t 6 T, inputs a E [T —► A]n, initial values x E A^up, the value of delay must

mean looking at times less that t:

Since the purpose of the introduction of concrete dSCAs is to remove the necessity

to look back greater than the previous time unit, the delay function is restricted to be

the unit delay introduced in the original SCA definition. Recall that values calculated

at times t — 1,t — 2, . . . , £ — tl are preserved in the tuple produced at time t — 1 . The

suffix of pc introduced in abstract dSCAs is no longer needed as the value of the delay

function is no longer dependant upon values of the program counter.

The restrictions placed on Sij for concrete dSCAs, where i E and j E 0 , . . . , n(i) + 1,

are:

1 . 5ij (t,a ,x) | with the intended meaning that for all inputs of all modules the

delay function Sij (t,a ,x) is defined; and

2 . Sij (£, a, x) = t — 1) with the intended meaning that for all inputs of all modules

the delay function Sij (£, a, x) is the unit delay.

Initial S tate

CONCRETE DYNAMIC SCA 114

The Initial State defines the state of modules in then network N. For module m*,

where % € N*, the Initial State is defined for times t = 0 , 1 , , M a x ^ — 1.

Since ZjtPC, the pcth element of the ith vector of the set of initial values x , is

intentionally the tuple of data values held by module rrii at time t = pc.val, for

0 < pcjval < MaxN — 1 , and pc.val is the value of the counter, then it is appropriate

to define:

Vi(pCJVal, X) 3'i,pcjual

for i = 0 , . . . , k and pcjval = 0 , . . . , Maxjy — 1 .

The set of initial values is constructed in such a way that at time t = M a x ^ — 1

the output tuple for module rrii is loaded with all necessary initial values in the order

specified by the tuple management scheme under use. It is permissable for the values

of the initial state prior to t = M axn — 1 to be undefined since they do not partake

in any of the computation.

For module m 0 the program counter (also written as mpc), the value of x 0 is always

defined as:

= ((1), (2) , . . . , (M a xN - 1), (0))

State Transition

For module m i: where i G Nfc, the intention behind the module specification:

F • A v A v An —► A1 i • ■ri-tup ■ri-tup ■ritup -̂ -tup

is that if bo, . . . , 6n(i)+i are the values selected by means of its delay functions

î,o> • • • j ^i,n(i)+i from past data along its input channels, then Fi (b0, 6i, b2, . . . , 6n(*)+i)

is the value held at time t. The definition of Fi consists of M a x ^ component specifica

tions, one for each value of the programme counter, and may include the “undefined”

operation u - where the intention is that the module performs no processing at that

value of the counter and simply outputs, u (the introduction of the undefined value

is required to ensure each module outputs a value for each of its M a x ^ component

CONCRETE DYNAMIC SCA 115

functional specifications). Maxjv component specifications are defined for Fi as fol

lows:

Fi

(bo,
bi,
• • • >

\ ^ n (i) + l

f i , 0

= <
f i , 1

(bo,o, \
bi,o,
2̂,0)

* ’ * ?
V ^ n (i , 0) , 0 /
(0̂,1 > ^

&1,1>
&2,1j

\ n̂(i, 1),1 /

if 6q = 0

if 60 = 1

(bô Maxiy — 1)
b \ ^ M a x j q —l j

2̂,Maxjv —1’ if 6q = Maxfsf — 1

\ ^n(i,MaXAr —l),Maa;jv —1 /

where values (bo,0 , ^1,0? • • • j n̂(i,l),05 ^2,1? • • • j n̂(i,Afaxjv) — 1) • j ^n(i)+l} 5

i.e. arguments in the component specification are selected from appropriate argu

ments in the functional definition of the SCA. Each fi,pc_vah where z G N*, will be

defined as:

val

(bo>

61,

&2?

\

= T

(

boAJZc.val

V

(n t . ^ , (W .) N

\ ^ , « (i) - i , p c . « a l (b n (i,p c -va l)) / 7
y bn(i,pcjval) J

where T is the appropriate tuple management operation for the tuple length, the

projection functions IlJ. 2pcval, • • •, ̂ ^ , select the appropriate data from the

tuples arriving on rajs input channels, and f°^c val is the actual calculation performed.

However, for j = 0, . . . , n(i) + 1, the j th input is either supplied by some source at

some previous time, in which case, bj = au($i,j(t, a,x)), or it is supplied by some other

CONCRETE DYNAM IC SCA 116

b j ,p c . v a l <

module in the network at some previous time, in which case bj = Vu(5ij(t, a, x), a, x).

Accordingly, V*(£, a, x) is defined for j = 2 , . . . , n(i) as:

f Y (&0> frl) fi,0 (&2, &3, • • • 5 K(i,0))) if &o = 0
Vi(t,a,x) = < :

 ̂ T 1̂? fi,MaxN — 1 (^2; 3̂? • • • 5 ^n(i,Max^ — 1))) ^ 0̂ AdctXpj 1

where for j = 2 , . . . , r(i):

aq (8 i j {t,a,x)) if 7 bo(h j) = S A

A J m) = Q

n L , pc.,ai M (*> a > *)) if Iboihj) =
Pboihj) = 9x

For j=0, the definition of concrete dSCA dictates that the 0 th input comes from the

program counter module, mpc. Thus it is appropriate to define:

^0 hpC((̂ jio(̂ '5 ‘̂ 0) *̂)

 Fpc(̂ 5 ^5 37).

The 1st input to a module comes from itself, thus for j= l it is appropriate to define:

&i = Vi(8 i,i{ t,a ,x),a ,x)

= Vi(t,a,x)

For the program counter module, mpc, the following is defined:

I mod (add {Vpc(t, a, rr), 1), M a x^) if Vpc(t, a, x) = 0

:

mod (add (Vpc(t, a, x)) 1), M a xN) if V̂ c(£, a, x) = M a x N — 1

Network O utput

yout is defined as the vector representing the output from network N. Consider

that N has m > 0 sinks, then Vout would be constructed as Vout = (Vai i . . . , VSm),

where s l5. . . , sTn G {1, . . . , k}, i.e.:

Vout = (Fsx, . . . , VaJ .

CONCRETE DYNAMIC SCA 117

Since Vout for a concrete dSCA is a vector of tuples, each tuple containing the last

M a x x results, any comparison of dSCA to other models requires the extraction of the

necessary values from the tuples for comparison. Such a mapping will be dependant

upon the tuple management scheme used, and whether the concrete dSCA is cycle

consistent or not.

7.3.1 Defining Shape of an concrete dSCA

As with abstract dSCAs, it is possible to implement the same algorithm on several

concrete dSCAs, differing only by the number of modules and values of M a x m- T o

distinguish between such concrete dSCAs the pair V = (k^Maxj^) is defined as the

D efining S hape of a co n cre te dSC A , as for abstract dSCAs, where k > 0 is the

number of modules in the dSCA network and M a x n is the number of component

specifications each module in the dSCA network has.

7.3.2 Defining Size of an concrete dSCA

The D efining Size of a co n cre te dS C A with a defining shape of V = (/c, Max^r)

is defined to be A = (A; x Maxn).

7.4 Correctness

By inspection it can be seen that concrete dSCAs are simple syntactic extension to

the original SCA model as such syntactic correctness of a concrete dSCA can be

shown by applying the techniques given for the original SCA.

7.5 Algebraic Specification

Concrete dSCAs can be specified algebraically using a similar format to that used

for SCAs and abstract dSCAs. An example of the Generalised Railroad Crossing

CONCRETE DYNAM IC SCA 118

Problem, described later in this thesis, represented as a concrete dSCA specification

can be seen in Appendix E.

7.6 Concluding Comments

Concrete dSCA are the final (syntactic) extension to the SCA model introduced, and

are necessary to remove the abstract concepts of an abstract dSCA. Hobley showed

that non unit delay SCAs could be represented as SCAs given a suitable mechanism

for the buffering of values, what we have done is again demonstrate this, but in a

cleaner and more general way, as well as implementing the dynamic rewiring that we

require.

7.7 Sources

The work on Concrete dSCAs is all my own work. However, credit is given to Hobley

for the initial discussion on relaxing unit-delay requirements of SCAs and suggestions

on how these non-unit delays may be implemented as unit delay SCAs.

Chapter 8

Generalised Railroad Crossing
Problem Represented as various
SCAs

8.1 Introduction

The GRCP case study can be represented in all of the SCA forms so far presented.

In this chapter a solution to the problem is provided for the following three forms of

SCAs:

• Synchronous Concurrent Algorithm;

• Abstract Dynamic Synchronous Concurrent Algorithm (2 forms with differing

defining shapes are given); and

• Concrete Dynamic Synchronous Concurrent Algorithm.

As previously indicated, we are not going to claim that the solutions are formally

correct, what is of more interest to us is that each of the models can be used to

construct a representation of the solution to the problem. We semantically discuss

the correctness of each model, and then in later chapters we discuss a convenient

119

GRCP REPRESENTED AS SCAs 120

method of demonstrating correctness between models in a hierarchy, which it turns

out each of our descriptions in this chapter are.

During the introduction of SCAs and dSCAs we used the carrier algebra A to

define which data and operations were possible within the SCA. For the remainder

of this thesis we will deal with a specific instance of this algebra and will call this the

machine algebra, or M a - M a is specified in Appendix A.

8.2 Case Study as an SCA

8.2.1 Informal Definition

Recall that the proposed solution to the GRCP with 2 tracks consisted of 8 sensors

for the tracks, 2 sensors to indicate the gate positions, and the associated logic to

move the gates in relation to the values held by the sensors.

It was proposed that the tracks in the region of interest, R, would be named tki

and tk 2 . Each track would have two sensors sub-systems on it, one to the left of the

gates and the other to the right of the gates, and each sensor sub-system would be

constructed from two sensors, each capable of counting how many trains have passed

in a particular direction, with the intention being that one sensor captures trains

moving in to R and the other trains moving out of R, as shown in Figure 8.1.

The solution identified 2 distinct pieces of logic, one that interpreted the sensors

and another that controlled the actual gate.

To identify if a train is in R the following logic test is performed:

inR(t) = (“ Sl’3^ > °) V (Sl’4^ “ Sl'2^ > ° ^ V ^
\ ((s 2,lW - 32,3(*) > o) V (s2,4(t) - «2 ,2 (t) > 0)) /

Simplistically, this could be translated into a single SCA module that takes 8 input

streams as its input, one for each sensor, and produces a single output. However, for

the purpose of demonstrating the same example across SCAs and dSCAs an SCA

GRCP REPRESENTED AS SCAs 121

n 1 - A ~ 1 -i iTPlvTTlii i i T i 111111111 n i m i11111 iifnYmN iUjĴJ V 1

1 i
1 i
1 i
1 i

iiwiTiiiiimi

ii M m 11M11 m

llllllllllHH

111 l|l 1
i 1
i '
. 1 I R

i '

11111! |(MiYiTill 1iVi
■)

Figure 8.1: Physical GRCP Solution

will be developed where the functional definitions of modules are unit elements from

the machine algebra, M a (such an SCA is said to be atomic with respect to M^, or

simply an atomic SCA). Such an SCA implementation is graphically shown in Figure

8 . 2 .

Figure 8.2: SCA Implementation of Sensor Logic

The logic for controlling the gates introduced the gate function, g (t) G [0,90],

where g (t) — 0 means the gate is down and g (t) — 90 means it is up. This function

will be implemented as a sensor on the gate providing an output in the required range,

GRCP REPRESENTED AS SCAs 122

A motor(t) function was defined as:

(

motor (t) =

i f
((inR (t) = False A g(t) = 90) V

\

V

(inR(t) = True A g(t) = 0)

else i f (inR (t) = True A g(t) > 0)

then down

else up

then stay

An SCA that would represent this logic, as shown graphically in Figure 8.3.

inRinR

down

stajj

Figure 8.3: SCA Implementation of Motor Logic

In this implementation inR(t) is the input from track sensors and g(t) will be an

actual input. Recall that we defined a reactive system to be a system such as that

depicted in Figure 8.4.

Environmen

System

Figure 8.4: Example Reactive System

GRCP REPRESENTED AS SCAs 123

The overall SCA will be graphically represented as shown in Figure 8.5 which by

showing one of the tracks and the gate sensor/controller sets the context of the SCA

within the reactive system under consideration.

Sensor/Sensor ” Sensor

Figure 8.5: Complete SCA Implementation of GRCP

For future transformations the SCA implementation of the GRCP requires the

modules in Figure 8.5 to be numbered in a breadth first and left to right manner

from the bottom most module, which will be module 1, giving a total of 36 modules.

For the purposes of defining the SCA the inputs are also renamed as shown in Table

8 . 1 .

GRCP REPRESENTED AS SCAs 124

Diagram Name SCA Name Diagram Name SCA Name

Sl,l ai -51,3 06
51,3 a 2 sl,4 CLj

51,4 fl3 51,2 08
1̂,2 Q4 g Og

51,1

Table 8.1: Renaming Inputs

8.2.2 Formal Definition

W iring Functions

The 7 wiring functions are defined by the following three definitions, where for

i = 1 , . . . , 15,22, . . . , 28 and j = 1,2:

7 (h j)

with:
7 (1 , 3) = M

7 (4 ,3) = M

and: _____________________________________
7(11,1) = S 7(31,1) = 5

toIIcTr-HCO

7(13,1) = 5 7(33,1) = 5 7(33,2) = 5

7(15,1) = S 7(35,1) = 5 7(35,2) = 5

7(29,1) = S 7(29,2) = 5

The (3 wiring functions for the SCA solution to the GRCP are defined in Table

8 . 2 .

D elay Functions

The delay function will be the unit delay for all inputs to all modules, thus for

% — 1 , 2 , . . . , 35 and j = 1,2, 3 as follows:

GRCP REPRESENTED AS SCAs 125

0 (1, 1) = 2 0 (7, 1) = 14 0 (15, 1) = 9 0 (27, 1) = 33
0 (1, 2) = 3 0 (7, 2) = 15 0 (15, 2) = 21 0 (27, 2) = 34
0 (1, 3) = 4 0 (10, 1) = 22 0 (22, 1) = 23 0 (28, 1) = 35
0 (2, 1) = 5 0 (10, 2) = 16 0 (22, 2) = 24 0 (28, 2) = 36
0 (2, 2) = 6 0 (11, 1) = 9 0 (23, 1) = 25 0 (29, 1) = 1
0 (4, 1) = 7 0 (11, 2) = 17 0 (23, 2) = 26 0 (29, 2) = 2
0 (4, 2) = 8 0 (12, 1) = 22 0 (24, 1) = 27 0 (31, 1) = 3
0 (4 , 3) = 9 0 (12, 2) = 18 0 (24, 2) = 28 0 (31, 2) = 4
0 (5, 1) = 10 0 (13, 1) = 9 0 (25, 1) = 29 0 (33, 1) = 5
0 (5, 2) = 11 0 (13, 2) = 19 0 (25, 2) = 30 0 (33, 2) = 6
0 (6, 1) = 12 0 (14, 1) = 22 0 (26, 1) = 31 0 (35, 1) = 7
0 (6, 2) = 13 0 (14, 2) = 20 0 (26, 2) = 32 0 (35, 2) = 8

Table 8.2: j3— Wiring Functions for SCA

Value Functions: Initial S tate

The actual values in the initial state vector x for the GRCP are not given in the

original definition, however, the following assumptions are made:

• at initialisation there are no trains in i?;

• that the gates are fully up; and

• the initial output signal stay.

The other initial values in the system are provided in such a way that the stay

signal will be issued until the first input signals have propagated their way through

the system. Table 8.3 shows the initial state phase definition of the value functions

for this network.

Value Functions: S tate Transition

The state transition phase definition of the value functions for the control system

GRCP REPRESENTED AS SCAs 126

14(0, a, x) = stay V2(0, a, x) = true 1/3(0, a, x) = stay 14(0, a, x) = up
1/5(0, a, x) = true V6(0, a, x) = /a /s e 1/7(0, a, x) = /a /s e 14(0, a, x) = down
Vg(0, a, x) = up l/io(0, a, x) = true l/n (0 , a, x) = true Vi2(0, a, x) = false
VT3(0, a, x) = false 1/14(0, a, x) = false 1/15(0, a, x) = true Vi6 (0, a, x) = false
Vi?(0, a , x) = 90 Vi8(0, a, x) = true 1/19(0, a, x) = 0 l/20(0, a, x) = true
V2i (0, a , x) = 0 1/22(0 , a , x) = false V23(0, a, x) = false 1/24(0, a, x) = false
V25(0, a, x) = false 1/26(0, a, x) = false 1/27(0, a, x) = false V2s(0, a, x) = false
V29(0 , a , x) = 0 V3o(0, a,x) = 0 l/3i(0, a, x) = 0 1/32(0, a, x) = 0
1/33(0, a, x) = 0 1/34(0, a, x) = 0 1/35(0, a, x) = 0 1/36(0, a, x) = 0

Table 8.3: Initial State Values for SCA

are defined as follows:
V\(t + 1, a, x) = cond (V2 {t, a, x), Vs(t, a, x), V4(£, a, x))
V2 (t + 1, a, x) = or(V${t, a, x), Ve(t, a, x))
Vs(t + 1 , a, x) = start
V4(t + 1, a, x) = cond (VV(t, a, x), l/8(t, a, x), l/9(t, a, x))
Vs(t + 1, a, x) = and(Vio(t, a, x), Vii(t, a, x))
Vfc(t + l ,a,x) = and(Vi2 {t, a,x), Vi3(t, a,x))

+ 1, a, x) = and(Vi4 (t, a, x), Vi5(t, a, x))
Vs(Z + 1 , a, x) = down
Vg(t + 1, a, x) = up
Vio(f + , a, x = eq(V22 (t,a,x),V16(t,a, x))
Vh(f + , a, x = eq(ag(t), Vi7(£, a, x))
Vl2(t + , a, x' = eqiy22 if'l a, x), Vi8 (t, a, x))
Vi 3(t + , a, x = eq(a9{t),Vig{t,a,x))
VWt + , a, x = eq(V22 (t,a,x),V2o{t,a, x))
Vi5(t + , a, x = gt(a9(t), V2i(t, a, x))
Vi6(t + , a, x' — /aZse
Vi7(t + , a, x 90
Vi8(i + , a, x = true
Vi9(t + , a, x = 0

V2o(t + , a, x — true
V2i(t + , a, x = 0

V22(t + , a, x = or(l/23(Z,a,x), V24(t,a x))
V23(t + , a, x = or(V25(t,a,x),V26(t,a x))
V24 (t + , a, x = or(V27(t, a ,x), V28(t, a x))
V25(t + , a, x = ^(V29(t ,a ,x) , l /3o(t,a, x))
1^6 (̂ + , a, x = yt(l/3i (t ,a ,x) , l /32(t, a, x))
2̂7 (f + , a, x' = ^ (1/33^, a,®), 1/34(4, a, x))

1̂ 28 (̂ + , a, x = gt(V35(t,a,x),V36(t,a, x))
V2${t + , a, x = sub(ai(t),a2(t))
V$o(t + , a, x = 0
V 31 (t + , a, x = sub(a3(t),a4(t))

GRCP REPRESENTED AS SCAs 127

V3 2(t + 1 ,CL,X
V33 (t + 1 , a , x
T734(t + l , a , x
V35(t + l , a,x

+ l , a , a r

= 0
= sub(a$(t), ag(t))
= 0
= sub(a7(t),ag(t))
= 0

The complete algebraic specification of the SCA is given in Annex B.

8.2.3 Correctness

There are two conditions that it are required to demonstrate as true according to

the definition of the GRCP - namely the Safety P ro p e rty , where the gate is down

during all occupancy intervals, and the U tility P ro p e rty , where the gate is up when

no train is in the crossing.

To demonstrate correctness, an appeal is made to a semantic argument, divided

into two parts (a syntactic proof along the lines identified in Chapter 5 using retimings

could be constructed, but this would require a more mathematical specification than

provided). First it is shown that if there are any number of trains in i?, then they are

correctly identified as being so. Secondly, depending on the identification of train(s)

or not, the appropriate action is taken by the gate motor.

L em m a 8.2.1. The existence of trains in R (therefore are either in the region of
interest I or are heading into it)are identified by the output of the sensor subsystem
being greater than zero.

Figure 8.2 represents the sensor subsystem that is constructed from sets of similar

logic. The basic unit is the subtraction of two values followed by a comparison with

zero - the output being boolean.

Consider sensors s lfl and s ii3 whose intention is to count trains entering and exiting

from R from a left-right direction on the top track. As a train enters R the value of

is incremented and when the train leaves R the value of s i)3 is incremented. As

GRCP REPRESENTED AS SCAs 128

discussed previously, a train entering R means the gates must be down before that

train enters the region of interest I, and a train leaving R implies that it is no longer

in I.

It is clear that whilst there are trains in R there will be a difference in the values

of Siti and Si^. Logic is constructed to obtain the difference between the two sensor

values and then compare this result with zero - a boolean true value indicating that

a train or trains are in R on the top track going in a left to right direction.

Similar logic is constructed for the top track in a right-left direction, using sensors

Si54 and Si$- For the second track, sensors 52,1 and S2,3 are fed to similar logic for

trains moving in a left-right direction and sensors S2,4 and S2,2 used for right-left

direction on the second track.

The result of all four sensor logic elements will be four boolean values, which are

then consecutively ”OR”-ed together, using the standard interpretation of boolean or

operation, the result being a single boolean value of true, if there are any trains in

i?, or false if there are no trains in R.

Note that the unit delay between modules will introduce a delay of 4 time units

before signals from the sensors propagate into the network. Given the speed of modern

processors this is unlikely to be an issue. The benefit of an SCA approach is that this

value can be identified, and in larger examples may even be used to feedback to the

design. It should certainly be used in this example to help identify the distance that

the sensor detecting trains entering into R are placed from R.

L em m a 8.2.2. I f a train enters R then the barrier is instructed to go down if it is
not fully down, or stay down if it is already so.

Figure 8.6 shows the motor logic and of particular interest are the two sections

labelled A and B.

Consider logic block A, we are interested in the case where there is a train in R ,

in R = T and if the gate is down then the whole of block A, through the OR and

GRCP REPRESENTED A S SCAs 129

down]

sta}

Figure 8 .6 : GRCP SCA Down Logic

AND operations, will result in a value of true. If this result is true, then the output

module will pass the STAY result through. That is to say that if there is a train in

R and the gates are down then they will be requested to stay down.

Alternatively, the gate will not be fully down and so the logic in block A will be

false meaning the output module will pass through the logic from block B. The top

left logic of block B will be true since train is in R and the gate not down, thus the

DOWN signal will pass through the conditional gate in block B, and subsequently

through the output module.

L em m a 8.2.3. I f all trains have left R then the barrier is instructed to go up if it is
not fully up, or to stay up if it is already so.

Figure 8.7 shows the motor logic and again of particular interest are the two

sections labelled as A and B.

Looking at the logic in block A, if there are no trains in R and the gate is fully

up, then the output module is provided a true signal and thus passes the stay signal.

If the gate is not fully up, the logic block A results in a false signal going to the

output module and thus the result of logic block B is passed. Block B itself will

GRCP REPRESENTED A S SCAs 130

inRinR

dowrr

staj

Figure 8.7: GRCP SCA Up Logic

output the UP signal since there is no train in R the conditional logic is false.

Safety Property

It has been shown that the SCA can correctly identify whether a train is in R

or not, and further, that the correct signal (either down or stay) is sent to the gate

motor depending on whether there are trains in R or not.

This does not fully address the safety property which is concerned with the region

of interest I. For this property to be met, the gates must be fully down before the

train reaches / , i.e. there is a defined delay between a identifying a train is in R and

the train reaching / , i.e. the gates being fully down. By considering the graph it

can be seen that it takes a minimum of 8 clock cycles before the system can react to

a change in sensor values. In addition there is a delay, dependent upon the motor

speed, required whilst the gate lowers.

Thus, together with a knowledge of train speeds towards I and the speed of closing

a gate, it is possible to determine the appropriate distance from I that the entry sensor

must be placed (the boundary of R) so that the safety property will be upheld, such

GRCP REPRESENTED A S SCAs 131

that for all times t in time intervals, A*: the gate is down:

t € (J Xi = > g (t) = 0
i

U tility Property

The utility property states that the gate is up for all time intervals where there

are no trains in R. In a similar manner to the safety property, it has been shown that

the SCA can correctly identify when the train passes the bounday of R (i.e. there

should be no trains in I) and that if this is the case then the gate motors are sent

either the up or stay signal. Placing the exit sensor on the edge of R means there

is a slight delay whilst the gates are opening, but allows us to confirm there are no

trains in I - on the assumption that the distance between R and I is sufficient for a

whole train to be held within.

The length of time required before a train enters R and after a train leaves R,

to allow a reaction to the sensors and time for the gates to lower and open are the

values £1 and £2 in the formal definition of the utility property:

1 1 U Vi + ^ 9 w = 90
i

The SCA implementation of the GRCP is shown in Appendix B.

8.3 Case Study as an Abstract dSCA

Two abstract dSCA implementations of the GRCP will be constructed: the first,

which will be referred to as the Form 1 abstract dSCA, will be where the defining

shape represents a simple SCA arrangement, i.e. V = (36,1); and the second one,

referred to as the Form 2 abstract dSCA, will be where the defining shape represents

a single processor machine, i.e. V = (1,36).

GRCP REPRESENTED A S SCAs 132

8.3.1 Form One Formal Definition

The first form for the abstract dSCA implementation is one where the defining shape

is \7 = (36,1), or simply it is an abstract dSCA that resembles the SCA. This first

form can be diagrammatically seen in Figure 8 .8 , and differs from Figure 8.5 by the

introduction of module m pc and the associated wirings.

pcj

Figure 8 .8 : Form One abstract dSCA GRCP Solution

W irin g F unctions

The definitions of the /3-wiring functions for the first form of abstract dSCA are given

in Table 8.4. It should be noted that there is quite some similarity between the

definition of /3-wiring for this abstract dSCA and those for the corresponding SCA.

This similarity is intentional.

Table 8.5 shows the wirings to the co element.

The definition of the 7 wiring functions can be decribed using the following two

definitions, where for i = 1, 2 ,3 , . . . , 28 and j = 0 , . . . , 3:

j U if/30{ i J) = u

M otherwise

GRCP REPRESENTED A S SCAs 133

A>(i,o) — pc Ao 7 ,0) = pc A>(14,1) = 22 A>(24,1) = 27 Ao(31,0) = p c
A>(1> 1) = 2 Ao 7,1) = 14 A>(14,2) = 20 Ao(24,2) = 28 A)(31,1) = 3
A(l> 2) = 3 Ao 7 ,2) = 15 A>(15) 0) = pc /?o(25,0)=pc A)(31,2) = 4
A)(lj3) = 4 Ao 8, 0) = pc A>(15,1) = 9 Ao(25,1) = 29 A>(32,0) = p c
A (2,0) = pc Ao 9 ,0) = pc A)(15,2) = 21 /?o(25,2) = 30 A>(33,0) =pc

To II Or Ao 10,0) = pc A>(16,0) = pc /?o(26,0) = pc A (33,1) = 5
A>(2,2) = 6 Ao 10,1) = 22 /?o(17,0) =pc /30(26,1) = 31 A>(33,2) = 6
A (3,0) = pc Ao 10,2) = 16 /?o(18,0) = pc A, (26,2) = 32 Ao (34,0) = p c
Ao (4,0) = pc Ao 11,0) = pc A>(19,0) = pc A> (27,0) = pc A(35,0) = p c
A>(4,1) = 7 Ao 11,1) = 9 /30{ 20,0) = pc A) (27,1) = 33 A (35,1) = 7
A)(4,2) = 8 Ao 11,2) = 17 A)(21,0) = pc A>(27,2) = 34 A(35,2) = 8
A) (4,3) = 9 Ao 12,0) = pc /?o(22,0) = pc A>(28,0) = pc A (36 ,0) = pc
A) (3,0) = pc Ao 12,1) = 22 /?o(22,1) = 23 A)(28,l) = 35 A(pc, 1) = pc
A)(5,1) = 10 Ao 12,2) = 18 /?o(22,2) = 24 A, (28,2) = 36
A)(5,2) = 11 Ao 13,0) = pc /?o(23,0) = pc Aj(29, 0) = pc
A) (6,0) = pc Ao 13,1) = 9 /3o(23,1) = 25 A. (29,1) = 1
A)(6,1) = 12 Ao 13,2) = 19 A>(23,2) = 26 Aj(29,2) = 2
A>(6,2) = 13 Ao 14,0) = pc A) (24,0) = pc Aj(30,0) = pc

Table 8.4: j3— Wiring Functions for Form 1 adSCA

and the following:
7 0 (1 1 , 1

7 0 (1 3 , 1

7 0 (1 5 , 1

7 0 (2 9 , 1

7 0 (3 1 , 1

7 o (3 3 , 1

7 0 (3 5 , 1

7 0 (2 9 , 2

7 0 (3 1 , 2

7 o (3 3 , 2

7 o (3 5 , 2

= S
= S
= S
= S
= S
= s
= s
= s
= s
= s
= s

D elay Functions

Since this abstract dSCA is supposed to be a representation of the original SCA,

then it is correct to define the delay function to be the unit delay for all inputs to

all modules. It is therefore possible to describe the delay functions using a single

GRCP REPRESENTED A S SCAs 134

A>(2, 3) = w A>(3,1) = u> 3 o (3 ,2) = w ft (3 ,3) =u> f t (5 , 3) = w
A>(6,3) = w 3o(7 ,3)=ca 3o(8,1) = w A (8,2) = w A (8,3) = a;
A>(9,1) = w /9o(9 ,2)=w 3o(9,3) = m 3o(10,3) = u A (l l , 3) = u
/30(12,3) = a) A(13,3) = a ; 3o(15,3) =u) ft (15,3) = a; 3o(16,1) = w
/5o(16,2) = w /3b(16,3) = w 3o(17,1) = w 3o(17,2) = w 3o(17,3) = uj

f t (1 8 ,1) = u /?o(18,2) = u; 3o(18,3) = ui f t (1 9 , 1) = u; ft (19,2) = u>
A>(19,3) =u> ^0(20,1) = w 3o(20,2) = ta ft(20,3) = u A (2 1 , 1) = a;
/?o(21,2) = uj 3o(21,3) = a> 3o(22,3) = a; ft (23,3) = a) ft(24,3) =ca
,3o(25,3) = ^ 3o(26,3) =u> 3o(27,3) = w f t (2 8 ,3) = a; ft (29,3) =
A)(30,1) = w 3a(30,2) = a) 3o(30,3) = w f t (3 1 ,3) = u) f t (3 2 , 1) = u>
,30(32,2) = w 3o(32,3) = w f t (33,3) = w f t (3 4 , 1) = u; ft (34,2) = u>
A) (34,3) = a; 3o(35,3) = w f t (3 6 ,1) = u ft(36,2) = uj ft (36,3) = c j

Table 8.5: /3— Wiring Functions to u for Form 1 adSCA

equation for i = 1 ,2 , . . . , 35 and j = 0 ,1 ,2 ,3 as follows:

p̂c,0,0 (^5 *)̂ ̂ f

V alue F unction : In itia l S ta te

These are defined in Table 8 .6 .

Vi(0,a, x) = stay 1 4 (0 , a, x) = true 1/3 (0 , a, 1) = stay 1/4 (0 , a, x) = up
Vs(0, a, i) = true VJ;(0, a, x) = fa lse 1/7(0 , a, x) = fa lse l/8 (0 , a, x) = down
l/9 (0 , a, x) = up Vio(0, a, x) = true V11 (0 , a, x) = true 1/12(0 , a, x) = fa lse
1/13(0 , a, x) = fa lse y14(0 , a, x) — false VifJO, a, x) = true Vi6 (0 , a, x) = fa lse
Vn(0,a ,x) = 90 Vi8(0, a, x) = true l/i9(0 ,a,a:) = 0 l 2o(0 , a, x) = true
V21(0 ,a ,x) = 0 V22(0 ,a , x) = fa lse 1/23(0 , a, x) = fa lse l/24(0 , a, x) = fa lse
V̂ 5 (0, a, x) = fa lse V2e(0 ,a ,x) = fa lse 1/27(0 , a, x) = fa lse 1^ 8(0 , a, x) = fa lse
V29(0,a,x) = 0 V3O(0,a,x) = 0 V3i(0 , a, x) = 0 1/32(0 , a, 1) = 0
V33 (0 ,a ,x) = 0 1/34(0 , a, x) = 0 1/35(0 , a, x) = 0 l/36 (0 ,a ,:r) = 0
Vpc(0,a,x) = 0

Table 8 .6 : Initial State Values for abstract dSCA (Form 1)

GRCP REPRESENTED A S SCAs 135

V alue Functions: S ta te T ran sitio n

The corresponding definition of the State Transition phase for Value Functions

for the abstract dSCA solution to the GRCP are given as follows:

Vi(t + 1 a, x) = cond(V2 (t, a, x), V^t, a, x), 14(t, a, a;)) if Vpcify & X = 0
V2(t + 1 a, x) = or{V$(t, a, x), a, z)) if Vpc(t̂ a X = 0
V3(t+ 1 a, x) = start if Vpc{t, a X = 0
V4(t + 1 a, a:) = cond(Vj(t, a, x), V8(t, a, 2;), Vg(t, a, 2;)) if Vpcifi ^ X = 0
v5(t + 1 a, x) = and(Vio(t, a, x), Vii(t, a, 2:)) if Vpc(t, a X = 0
V6(t + 1 a, 2) = and(Vi2 (t, a, x), Vi3(t, a, 2;)) if l'pc(t) &X = 0
Vr(t + 1 a, 2:) = and(Vi4 (t, a, x), Vis(t, a, x)) if Vpcifi & X = 0
Vs(t + 1 a, x) = down if Vpc(t,a X = 0
V9(t + 1 a, x) — up if VpC(£, a X = 0
Vio(t + , a, x) = eq(V22 (t, a, x), Vi6(t, a, x)) if Vpcifi ^ X = 0
Vn (t + , a, x) = eq(a9(t), Vi7(t, a, x)) if lpc(t, a X = 0
Vi2(t + , a, x) = eg(V22(t, a, x), Vi8(t, a, x)) if 14>c(t, a X = 0
Vi3(t + , a, x) = eq(a9(t),Vig(t,a,x)) if Vpc(t,a X = 0
Vi4(t + , a, x) = eq(V22 (t, a, a:), V2o(^ a, x)) if V̂ c (t, a X = 0
Vi5(t + , a, x) = gt(a9(t), V2i(t, a, x)) if Vpc(t,a X = 0
Vie(t + , a, x) = false if V^c(t, a X = 0
Vi7(t + , a, x) =: 90 if Vpc(t, a X = 0
Vis(i + , a, x) = trae if V̂ c(t, a X = 0
Vi9(t + , a, x) = 0 if Vpc(t, a X = 0
V2 0 (t + , a, x) = true if a X = 0
V21(t + , a, x) = 0 if Vpcifi & X = 0
V2 2 (t + , a, x) = or(V23(t, a, z), a, a)) if Vpc(t, a X = 0
V2 3 (t + , a, x) = or(V25(t, a, x), V26(t, a, x)) if Vpc(t, a X = 0
V24 {t + , a, x) = or(V27(t, a, x), V28(t, a, x)) if Vpcifi ® X = 0
V25 (t + , a, x) = pt(V29(t, a, x), V3o(t, a, x)) if Vpc{t, a X = 0
V2 6 (t + , a, x) = flft(V3i(t, a, x), V32(t, a, x)) if Vpcifi &X = 0
V27(t + , a, x) = gt(V33{t, a, x), V ^ t , a, x)) if Vpc(t, a X = 0

+ , a, x) = 0t(V35(t, a, x), V36(t, a, x)) if VpC{t, a X = 0
V2${t + ,a ,x) = sa6(ai(t), a2(t)) if Vpc(t, a X = 0
V30(t + , a, x) = 0 if Vpcifi &X = 0
v3i(t + ,a ,x) = sub(as(t), a4 (t)) if Vpc(t, a X = 0
1^2 + , a, x) = 0 if Vpcifi ® X = 0
F3 3 + , a, x) = sub(a$(t), ae(t)) if l^»c(t, a X = 0
V34(t + , a, x) = 0 if Vpc(t, a X = 0
v35(t + , a ,x) = sub(aj(t),a8(t)) if VpC(t, a X = 0
V36^ + , a, x) = 0 if Vpc(t, a X = 0

GRCP REPRESENTED A S SCAs 136

W ith the program counter module defined as:

Vpc(t + 1 , a, x) = mod (add (Vpc(t, a , nr), 1), M a x n) if Vpc(t, a,x) = 0

The algebraic specification of the Form 1 abstract dSCA is provided in Appendix

C.

C o rrec tn ess

L em m a 8.3.1. The form 1 abstract dSCA solution to the GRCP is equivalent to the
SCA implementation.

Correctness of this abstract dSCA is addressed by appealing to the structural

similarities between the SCA and the Form 1 abstract dSCA, see Figure 8.5 for the

SCA and Figure 8.8 for the Form 1 abstract dSCA.

Now consider the initial state values of the SCA, which are repeated in Table 8.7:

17(0, a, x) = s ta y 17(0, a, x) = true 17(0, a, x) = s ta y 17(0, a, 2;) = up
V5(0, a, x) = t rue 17(0, a, x) = f a l s e V7(0, a, x) = f a l s e 17(0, a, 2;) = down
17(0, a, x) = up lio (0 , a, x) = t rue 171(0, a, x) = true 172(0, a, x) = f a l s e
Vl3(0, a, x) = f a l s e li4 (0 , a, x) = f a l s e Vi5(0, a, x) = t rue 176(0, a, 2;) = f a l s e
Vi7(0, a, x) = 90 li8 (0 , a, x) = t rue Vi9(0,a,a:) = 0 17o(0, a , 2;) = t rue
17i(0 , a , x) = 0 V22(0, a, x) = f a l s e V23(0, a, x) = f a l s e 174(0, a, x) = f a l s e
125(0, a, x) = f a l s e V26(0, a, x) = f a l s e 177(0, a, x) = f a l s e 178(0, a, 2;) = f a l s e
129(0, a, x) = 0 V3o(0,a,ar) = 0 17i (0, a, x) = 0 172 (0, a, 2;) = 0
133(0, a, x) = 0 ^34(0, a, x) = 0 175(0,0,2?) = 0 176(0,0,2;) = 0

Table 8.7: Initial State Values for SCA

A direct one-to-one mapping can be seen between these values and those given in

Table 8 .6 .

GRCP REPRESENTED A S SCAs 137

Similarly, the state transition definitions of the value functions of the SCA, re

peated here:

VRt + 1, a, x) = cond (V2(£, a, x), V3(t, a, x), V4(t, a, x))
V2{t + 1, a, x) = or(V5{t, a, x), V6(t, a, x))
V3(t + 1, a, x) = start
V4 (t + 1 ,a,x) = cond(V7(t,a,x),V$(t,a,x),V9(t,a,x))
V5(t + 1, a, x) = an<i(Vio(£, a, x), Vu(t , a, 2:))
Ves(i + 1, a, x) = and(Vi2(t, a, x),Vi3(t, a, re))

+ 1, a, a:) = and(Vi4(t, a, x), V\s(t, a, 2;))
Vs(t + 1, a, 2:) = down
Vg (t + l ,a,x) = up
v 10(t + , a x) = eq(y22(t ,a ,x) ,V16(t ,a,x))
Vu{t + , a x) = eq{a9{t),V17(t ,a,x))
v 12(t + , a X) = eq(V22{t, a, x), Vi8 (t, a, x))
Vis{t + , a X) = eq{a9{t),Vig{t,a,x))
Vu {t + , a x) = eq{V22{t, a, x), V20(t, a, x))
Vlbif + , a X) = gt{a9(t),V21(t ,a,x))
V16(t + , a x) = false
v 17(t + , a X) = 90
Vi 8(f + , a X) = true
Vi g(t + , a X) = 0
V2 0 (t + , a X) = true
v 21 (t + , a x) = 0
V22(t + , a X) = or{V23{t, a, 2;), V24{t, a, x))
V23(t + , a X) = or{V25(t, a, x), V26(t, a, x))
v24(t + , a 2:) = or(V27(t , a, x),V23{t, a, x))
V25 (t + , a x) = gt(V29(t ,a ,x),V30(t ,a,x))
V2 6(t + , a X) = gt{V3\(t, a, 2:), V32(t, a, x))
V27(t + , a x) = gt{V33(t ,a ,x) ,V34(t ,a,x))
V2s(t + , a x) = gt(V3b(t ,a,x),V36{t ,a,x))
V2g{t + , a X) = sub(ai(t),a2(t))
V30 (t + , a X) = 0
V31 [t + , a x) = sub{a3(t),a4(t))
V32(t + , a, X) = 0
V33(t + , a x) = sub(a5(t),a6{t))
v 34(t + , a x) = 0
V3 5 [t + , a X) = sub(a7(t),a$(t))
V 36(t + , a 2:) = 0

demonstrate a one-to-one mapping to the state transition definitions of the value

functions of the form 1 abstract dSCA, shown above (where the reference to the

program counter is added).

Since Vpc(t,a ,x) is the result of adding 1 to the previous value mod Maxjy = 1

GRCP REPRESENTED A S SCAs 138

then the answer will always be 0 thus the Form 1 adSCA State Transition definitions

for the Value Functions will directly equate to the SCA State Transition definitions.

It can therefore be seen by inspection that the SCA and Form 1 abstract dSCA

are equivalent.

8.3.2 Form Two Formal Definition

The 2nd form abstract dSCA is a single module implementation, where the defining

shape is given as V = (35,1). In this case, the value of M a x ^ will be 36; and whilst

it is difficult to diagrammatically show an abstract dSCA where Maxjq > 1 the shape

is indicate in Figure 8.9.

Figure 8.9: Form Two abstract dSCA GRCP Solution

It is decided to implement a cycle consistent abstract dSCA and therefore the

execution order needs to adhere to the principles of cycle consistency. This is achieved

by deriving the execution order from the module numbers in the Form 1 abstract

dSCA. Table 8.8 shows the proposed execution order:

A simple inspection of this execution order will demonstrate that the resulting

abstract dSCA is cycle consistent.

W iring Functions

/3 wiring functions are defined in Table 8.9.

It is also the case that the 0th input for each module is wired to the program counter,

GRCP REPRESENTED A S SCAs 139

Form 1 Form 2 Form 1 Form 2 Form 1 Form 2
Module Module PC Val Module Module PC Val Module Module PC Val

1 1 0 13 1 12 25 1 24
2 1 1 14 1 13 26 1 25
3 1 2 15 1 14 27 1 26
4 1 3 16 1 15 28 1 27
5 1 4 17 1 16 29 1 28
6 1 5 18 1 17 30 1 29
7 1 6 19 1 18 31 1 30
8 1 7 20 1 19 32 1 31
9 1 8 21 1 20 33 1 32
10 1 9 22 1 21 34 1 33
11 1 10 23 1 22 35 1 34
12 1 11 24 1 23 36 1 35

Table 8 .8 : Execution Order of Form 2 abstract dSCA

so that for pc.val — 0 , , M a x# — 1:

$pc.val{\i 9) PC

and that for the program counter the definition is that for pc.val = 0 , . . . , M a x ^ — 1 :

Ppc-val^pCi 9) pC

The 7 wiring functions, indicating whether a module is linked to a module, source or

unconnected are defined in Table 8.19.

It is also the case that the 0th input for each module is wired to the program

counter, so that for pc.val = 9 , . . . , M a x ^ — 1:

Ppc.val(1, 9) = M

and that for the program counter the definition is that for pc.val = 0 , . . . , M a x ^ — 1:

ftpcjualijpC") 9) M

GRCP REPRESENTED AS SCAs 140

$o(,1 = 1 @7 (h 1) = ^ 0 u { ,1 = 9 0 2 1 (,1 = $28 1 1 = 1

$o(,2 = i /M l> 2) = v $ u (,2 = 1 0 2 1 (,2 = $28 1 2 = 2

$o(,3 = 1 P r { h 3) = UJ M ,3 = UJ $21 (,3 = $28 1 3 = UJ

$ $,1 = 1 $ s (l , 1) = v $15 (,1 = UJ $22 (,1 = 0 2 9 1 1 = UJ

$ i (,2 = 1 $ 8(1 ,2) = u > $15 (,2 = UJ $22 (,2 = 0 2 9 1 2 = a;

$ i (,3 = UJ

3IICOt-H $15 (,3 = UJ $22 (,3 = 0 2 9 1 3 = UJ

f t (,1 = UJ A (i , i) = i 0 i o { ,1 = UJ $23 (,1 = $30 1 1 = 3
,2 = UJ A>(1,2) = 1 0 i o { ,2 = UJ $23 (,2 = $30 1 2 = 4

$ 2(,3 — UJ / % (l , 3) = w M ,3 — UJ $23 (,3 = $30 1 3 = a;

f t (,1 = 1 /3io(1, 1) = 9 M ,1 = UJ $24 (,1 — $31 1 1 = a;

$ 3(,2 = 1 A o (l , 2) = l P l 7 (,2 = a; $24 (,2 =z $31 1 2 = a;

$ 3(,3 - 1 $io(l> 3) = uj $17 (,3 = cj $24 (,3 = UJ $31 1 3 = UJ

$4(,1 = 1 $ 11(1 , 1) = i $is(,1 = UJ $25 (,1 =z $32 1 1 = 5
Pa{ , 2 = 1 $ n (l , 2) = l 0 i s (, 2 - - a; $ 2 5 (, 2 = $32 1 2 = 6

0 a (,3 = UJ A i (l , 3) = o ; A s (,3 —- u; $25 (,3 = UJ $32 1 3 = UJ

0 b { ,1 == 1 A 2(l , l) = 9 0 1 9 { ,1 = a; $ 2 6 (,1 =
$ 3 3 1 1 = UJ

0 b { ,2 = 1 >012(1,2) = 1 $ 1 9 (,2 = t*; $ 2 6 (, 2 = $ 3 3 1 2 — UJ

0 b { ,3 = UJ $ i 2(l , 3) = uj $ 1 9 (,3 = UJ $ 2 6 (,3 = UJ $ 3 3 1 3 = UJ

,1 = 1 As(l , 1) = 1 $ 2 0 (,1 = a; $27 (,1 = $34 1 1 = 7
0 o { , 2 = 1 A 3(l , 2) = l 0 2 o (, 2 = a; $27 (, 2 = $34 1 2 = 8

0 o { ,3 = UJ $13(1 ,3) = uJ 0 2 o { ,3 = a; 0 2 7 (,3 = UJ $34 1 3 = UJ

$ 3 5 (, 1 = a; $35 (, 2 = UJ $35 1 3 — UJ

Table 8.9: 0 — Wiring Functions for Form 2 adSCA

D elay Functions

There is only one module within the 2 nd form of abstract dSCA, and the delay

functions will need to reflect this, i.e. values required will have been calculated some

time in the past (bounded by M a x a/-).

For complicated examples it will be difficult to do this by hand, and in Chapter

11 this thesis provides a mechanical way of identifying these delays. It is defined that

for an abstract dSCA all delays where the wiring is to an input are unit delays, as

are the delays for the 0th argument (which goes to the program counter).

Consider the module that executes at pc = 36 in the Form 2 abstract dSCA, from

Table 8.8 it is possible to identify that this was module 1 in the Form 1 dSCA. It is also

GRCP REPRESENTED A S SCAs 141

7o 1 1 = M 7 7 (1 ,1) = U 7 u (,1 = S 721 1 1 = M 728 1 1 = S
7o 1 2 = M 7 7 (1 , 2) = U 7 u (,2 = M 721 1 2 = M 728 1 2 = S
7o 1 3 = M IICOt-H

7 u (, 3 = U 721 1 3 = U 728 1 3 = u
7 i 1 1 = M 7 8 (1) 1) = U 715 (,1 = U 722 1 1 = M 729 1 1 = u
7 i 1 2 = M 7 8 (1 ,2) = U 715 (, 2 = U 722 1 2 — M 729 1 2 = u
7 i 1 3 = U K-

1
CO II c: 715 (,3 = u 722 1 3 = U 729 1 3 = u

72 1 1 = U 7 9 (1 , 1) = M 716 (,1 - u 723 1 1 = M 730 1 1 = S
72 1 2 = U 7 9 (1 ,2) = M 716 (, 2 = u 723 1 2 = M 730 1 2 = S
72 1 3 = U 7 9 (1 , 3) = U 716 (,3 = u 723 1 3 = U 730 1 3 = u
73 1 1 = M 7 io (,1) = S 7 i? (,1 = u 724 1 1 = M 731 1 1 = u
73 1 2 = M 7 io (, 2) = M 7 i? (,2 = u 724 1 2 = M 731 1 2 = u
73 1 3 = M 7 io (,3) = U 7 i? (,3 = u 724 1 3 = U 731 1 3 = u
74 1 1 = M 7 n (, 1) = M 718 (,1 = u 725 1 1 = M 732 1 1 = S
74 1 2 = M 7 n (, 2) = M 718 (, 2 - u 725 1 2 = M 732 1 2 = S
74 1 3 = U 7 n (,3) = U 718 (,3 = u 725 1 3 = U 732 1 3 = u
75 1 1 = M 712 (,1) = S 7 l9 (,1 = u 726 1 1 = M 733 1 1 = u
75 1 2 = M 712 (, 2) = M 7 i9 (,2 = u 726 1 2 = M 733 1 2 = u
75 1 3 = U 712 (,3) = U 719 (,3 = u 726 1 3 = U 733 1 3 = u
76 1 1 = M 713 (,1) = M 720 (,1 = u 727 1 1 = M 734 1 1 = S
76 1 2 = M 7 l3 (,2) = M 720 (, 2 = u 727 1 2 = M 734 1 2 = S
76 1 3 = U 713 (,3) = U 720 (,3 = u 727 1 3 = U 734 1 3 = u

735 (,1 = u 735 1 2 = U 735 1 3 = u

Table 8.10: 7 — Wiring Functions for Form 2 acvSCA

known that the values used as inputs to module 1 in the Form 1 abstract dSCA come

from modules 2 , 3 and 4. Again, using Table 8.8 it can be identified tha t modules

2,3, and 4 are now executed on module 1 at values of pc = 1,2,3 respectively. It is

therefore the case that the first input to Form 2 module 1 at pc = 36 was calculated at

pc = 1 , or 35 clock cycles ago. Similar maths can be applied to the other arguments

to obtain the value of the delays for those inputs. The inputs to module 1 at pc = 36

will therefore be:
^ 1 , 1 ,0 — t — 34

^ 1 , 1 ,0 — t — 33

GRCP REPRESENTED A S SCAs 142

A similar process can be applied to all the delay functions in Form 2 , and the

resultant delay functions for all inputs which relate to the situation where 7 y(i>j) = M

are shown in Table 8.12.

Ai,i,o (t, a, x) = t — 35 <$1,1,6 (t, a,x) = t - 29 <$1,2,21 (t> a, :r) = t — 34
<$1,2,0 (t, a, x) = t — 34 <$1,2,6 (t, a, x) = t - 28 <$1,1,22 (t, a, x) = t — 34
<$i,3,o(M,aO = t - 33 <$i,i,9 (f> a, x) = t — 24 <$i,2,2 2 (t,a,ar) = t - 33
<$1,1, i(t, a, x) = t — 33 <$1,2,9(^1 a, x) = t - 30 <$i,i,23(t,a,^) = t - 33
<$1,2,1 (t, a, x) = t — 32 <$i,2,io(t) a, x) = t - 30 <$i,2,23(t, a ,x) = t - 32
<$1,1,3(^1 a, x) = t — 33 <$i,i,ii(t>a,aO = t - 26 <$i,i,2 4 (t, a, x) = t — 32
<$i,2,3 (t, a, x) = t - 32 <$1,2,11 a,ar) = t — 30 <$i,2,24(t,a,z) = t - 3 1

<$1,3,3(t , a , x) = t - 3 1 <$i,2 ,i2 (t, a,x) = t — 30 <$i,i,25(t,a>®) = t ~ 3 1

<$1,1,4 (t> a, x) = t — 3 1 <$1,1,13(^5 a^x) = t - 28 <$1,2,25 (t? a, x) = t — 30
<$i,2,4 (tj a, x) = t — 30 <$1,2 ,13f t a,ar) = t - 30 <$i,i,26(tj a, x) = t — 30
<$1,1,5 (t, a, x) = t — 30 <$i,2,u (t, a, x) = t — 30 <$i,2,2 6 (t, a, x) = t — 29
<$1,2,5 (t , d, x) = t - 29 <$i,i,2i(f» c l , x) = t - 35 <$1,1,27(^1 a, x) = t - 29

<$1,1,27(^5 a, x) = t - 28

Table 8 .1 2 : Non-unit Delay Functions for Form 2 acvSCA

Value Functions: Initial S tate

The Initial State definitions of the Value Functions for the 2nd form of the abstract

dSCA solution are defined for both modules i = 0 ,1 . For the program counter, the

initial states are defined, for values of program counter pc.val = 0 , . . . , 3 5 , as:

V p c (p C .V a l, fl, x'j — x pc,pc.val

with the initial values for the program counter defined for pc.val = 0 , . . . , 35 as:

x pC,pc.vai — mod(add(pc.val + 1) ,M a x N)

Initial State value equation for module 1 are related closely to those in the Form 1

abstract dSCA. The Form 2 values are given in Table 8.13.

Value Functions: S tate Transition

GRCP REPRESENTED A S SCAs 143

Vi(0, a, x) = stay Vi (1 , a, x) = true Vi (2, a, x) = stay
Vi (3, a, x) — up Vi (4, a, x) = true Vi (5, a, x) = false
Vi (6 , a, x) = false Vi (7, a, x) = down Vi(8 ,a,x) = up
Vi (9, a, x) = true Vi (10, a, x) = true Vi(ll, a, x) = false
Vi(12,a,x) = false Vi. (13, a, x) = false Vi (14, a, x) = true
Vi (15, a, x) = false Vi (16, a, x) = 90 Vi (17, a, x) = true
Vi(18, a, x) = 0 Vi (19, a, x) = true Vi (20, a, x) = 0
Vi(2 1 ,a,x) = false Vi(22, a, x) = false Vi (23, a, x) = false
Vi (24, a, x) = false Vi(25,a,x) = false Vi (26, a, x) = false
Vi (27, a, x) = false Vi (28, a, x) = 0 Vi (29, a, x) = 0
Vi (30, a, x) = 0 Vi (31, a, x) = 0 14 (32, a, x) = 0
Vi (33, a, x) = 0 Vi (34, a, x) = 0 14 (35, a, x) = 0

Table 8.13: Initial State Values for abstract dSCA (Form 2)

The State Transition definition of the program counter Value Function is defined as

follows:

(iadd(Vpc(t, a, x), l)mod36 if Vpc(t, a, x) = 0

:

add(Vpc(t, a, x), l)mod36 if a, x) = 35

For module 1 the State Transition definition of the Value Function is constructed

to take account of the Maxjq cases. The complete definition is as follows.

GRCP REPRESENTED A S SCAs 144

V\(t, a, x) =

/ Vi(t — 35, a, x), \
cone? | Vi(i — 34, a, x), I if Vpc(t — 1, a, x) = 0

\ Vi{t — 33, a, x) /
or(Vi(t — 33, a, x), 14 (£ — 32, a, a:)) if Vpc{t - a, x) = 1
start if VpC(t - a, x) = 2

/ V i(£ -33,a ,x), \
cone? 1 Vi(t — 32, a, x), J if Vpc{t - , a, x) = 3

\ Vi(t — 31, a,x) /
and{Vi(t — 31, a, a;), Vi(£ — 30, a, a;)) if Vpc(t - , a, x) = 4
and(Vi(t — 30, a, x), Vi(£ — 29, a, a;)) if VpC(t - , a, x) = 5
and(Vi(t — 29, a, a;), V\ (t — 28, a,x)) if VpC(t - , a, x) = 6
down if Vpc(t - ,a ,x) = 7
up if VpC(t - ,a ,x) = 8
eqiVRt — 24, a, x),Vi(t — 30, a x)) if Vpc(t - ,a ,x) = 9
eq(ag(t), V\(t — 30, a, a:)) if VpC{t - , a, x) = 10
eq{Vi(t — 26, a, a;), V\ (t — 30, a x)) if Vpcit - , a, x) = 11
eq{ad(t),Vi(t — 30 ,a,x)) if Vpc{t - , a, x) = 12
e(l i y i(^ — 28, a, x), Vi(t — 30, a X)) if Vpc(t — , a, x) = 13
gt(a9(t),Vi(t - 30, a, a;)) if Vpc(t - , a, x) = 14
false if VpC{t - , a, x) = 15
90 if VpC{t - , a, x) = 16
true if VpC(t - , a, x) = 17
0 if VpC(t - , a, x) = 18
true if Vpc(t - , a, x) = 19
0 if VpC(t - , a, x) = 20
or(Vi(t — 35, a, a;), Vi(£ — 34, a x)) if VpC{t - , a, x) = 21
or(Vi(t — 34, a, a:), Vi(£ — 33, a x)) if Vpcit - , a, x) = 22
or{V\ (t — 33, a, x), Vi (t — 32, a x)) if VpC{t - , a, x) = 23
gt(Vi(t — 33, a, ar), Vi(i — 31, a x)) if Vpdt - , a, x) = 24
gt{Vi(t — 31, a, x): V\(t — 30, a x)) if Vpdt - , a, x) = 25
gt(Vi (t — 30, a, x), V\(t — 29, a x)) if Vpdt - , a, x) = 26
gt{Vi(t — 29, a, a;), V\ (t — 28, a x)) if VPc{t - ,a ,x) = 27
sub(ai(t),a2{t)) if Vpdt - , a, x) = 28
0 if Vpdt - , a, x) = 29
5u6(a3(£),a4(£)) if Vpdt - , a, x) = 30
0 if Vpdt - ,a ,x) = 31
sub(a5(t),a6(t)) if Vpdt - , a, x) — 32
0 if Vpdt - ,a ,x) = 33
sub(a7(t),a8{t)) if Vpdt - , a, x) = 34
0 if Vpdt - ,a ,x) = 35

GRCP REPRESENTED A S SCAs 145

C o rrec tn ess

L em m a 8.3.2. The Form 2 abstract dSCA is a correct implementation of the Form
1 abstract dSCA.

Consider any time t E T then the value of the program counter will be t mod

Max?;. By inspection, it can be shown that values and operations in the initial

values and state transition functions in the Form 2 abstract dSCA map directly to

the Form 2 abstract dSCA.

The algebraic specification of the Form 2 Abstract dSCA is shown in Appendix

D.

8.4 Case Study as a Concrete dSCA

A concrete dSCA implementation of the Form 2 abstract dSCA solution to the GRCP

will be considered in this chapter. The model will be cycle consistent, and therefore

will have a system comprising of one main module which manipulates a tuple of

length Maxjv. There will also be the explicit definition of the single program counter

module. This situation is diagramtically shown in Figure 8.10.

Figure 8 .1 0 : Concrete dSCA Physical GRCP Solution

It has already been stated in this thesis that there are a range of tuple management

functions that could be selected, and in this exposition the indexed-array approach

will be adopted.

GRCP REPRESENTED A S SCAs 146

W irin g F unctions

All wirings will either be to module 1 , the programme counter module, or to an input

(or by the nature of an cdSCA will not be connected). The varying /^-wiring functions

are defined in Table 8.14 (note that this table does not show arguments 0 and 1).

In comparison to the Form 2 abstract dSCA the index of arguments has been duly

shifted by one to accommodate that concrete dSCA definition of the 0th argument

being from the program counter and the 1st argument from the module itself.

0 o (, 2) = 1 /M 1,2) = U J 0 u { , 2 = 9 0 2 l (,2) = 1 #28 (, 2 = 1

A)(,3) = 1 0 7 (1,3) = UJ 0 u { ,3 = 1 0 2 l (,3) - 1 #28 (,3 = 2

A>(,4) = 1 0 7 { 1 , 4) = a; 0 u { ,4 — UJ 0 2 l (,4) = #28 (,4 -- UJ

0 i (, 2) = pc M 1 , 2) = uj 0 1 5 (, 2 = u 0 2 2 { , 2) = 1 #29 (, 2 —UJ

0 i (>3) = pc M 1,3) = a; 0 1 b { - ,3 = CJ 0 2 2 { ,3) = 1 #29 (,3 = UJ

A (,4) — UJ /%(1,4) = uj 0 1 $ (,4 — a; 0 2 2 { ,4) = #29 (,4 = UJ

f t (, 2) = UJ & (1,2) = 1 0 i o { , 2 - a; 0 2 3 { ,2) 1 0 3 O { , 2 = 3
f t (, 3) = UJ A (1,3) = 1 0 i o { ,3 = UJ 0 2 3 { ,3) 1 # 3 0 (,3 — 4
f t (,4) = UJ A (1,4) = oj 0 i e (,4 = CJ 0 2 3 (,4) = 0 3 o { ,4 = UJ

f t (, 2) = 1 A o (1,2) = 9 0 n { - , 2 = 0 2 a (,2) : 1 # 3 l (, 2 = UJ

f t (.3) — 1 0 1 0 (1,3) = 1 0 n (- ,3 = a; 0 2 a {- , 3) = 1 # 3 1 (,3 = UJ

f t (A) = 1 0 1 0 (1,4) = cj 0 n (,4 = a; 0 2 a (,4) - UJ # 3 l (,4 = UJ

M >2) = 1 0 1 1 (1,2) = 1 0 i% { , 2 = UJ #25 (,2) = 1 # 3 2 (, 2 = 5
M , 3) = 1 0 1 1 (1,3) = 1 0 i z { ,3 = UJ # 2 5 (,3) = 1 # 3 2 (,3 = 6

0 a (,4) = UJ 0 1 1 (1 ,4)= a; 0 i s (,4 = a; #25 (,4) - UJ # 3 2 (,4 = UJ

A (, 2) = 1 0 1 2 (1,2) = 9 0 i o { , 2 = a; #26 (,2) = 1 0 3 3 { , 2 = UJ

A (>3) = 1 0 1 2 (1,3) = 1 0 i o { ,3 = a; #26 (,3) = 1 0 3 3 (,3 = UJ

A>(,4) — UJ 0 1 2 (1,4) = uj 0 i o { ,4 ■ UJ #26 (,4) = UJ # 3 3 (,4 =- UJ

/%(, 2) = 1 0 1 3 (1 , 2) = 1 02o(, 2 = UJ 0 2 7 (, 2) = 1 0 3 a (, 2 = 7
A>(, 3) = 1 0 1 3 (1,3) = 1 02o{ ,3 = CJ # 2 7 (,3) z= 1 0 3 a (,3 = 8

A (,4) = UJ 0 1 3 (1,4) = uj 02o{ ,4 = 0 2 7 (,4) = UJ 0 3 a { ,4 = UJ

0 3 5 { , 2 = a; # 3 5 (,3) = UJ # 3 5 (,4 = UJ

Table 8.14: 0 — Wiring Functions for cdSCA

It is also the case that for 0 < pc.val < M a x ^ — 1 :

GRCP REPRESENTED A S SC As 147

• the 0th input for each module is wired to the program counter:

0 p c . v a l { \ i 0) P C j

• the 1st input for each module is wired to the module itself:

0 p c .v a . l i 0 i 1) 1)

• and that for the program counter the definition is:

0 p c .v a l (pC) 0) pc.

For the 7 -wiring functions, indicating whether a module is linked to a module, source

or unconnected, it is also the case that:

• the 0th input for each module is wired to the program counter:

7 y(l, 0) = M fo r 1 < y < M ax

• the 1st input for each module is wired to the module itself:

7 y(l, 1) = M fo r 1 < y < M a x N,

• and that for the program counter the definition is:

7 y{pc, 0) = M fo r 0 < y < M a x n

The remainder of the 7 -wiring functions are defined in Table 8.15. Again these too a

close resemblance to those given for the Form 2 abstract dSCA but with a correspond

ing shift in argument index to accommodate the above definitions for arguments 0

and 1 .

GRCP REPRESENTED A S SCAs 148

7 o (

IIcT 7 7 (1 ,2) = t / 7 u (,2) = S 721 (,2) = M 728 (, 2) = S
7 o (, 3) = M 7 7 (1 ,3) = U 714 (, 3) = M 721 (,3) = M 728 (,3) = S
7 o (, 4) = M 7 7 (1 ,4) = U 714 (,4) = U 721 (,4) = U 728 (,4) = U
7 i (,2) = pc 7 8 (1 ,2) = £7 715 (,2) = U 722 (, 2) = M 729 (,2) = U
7 i (,3) = pc 7s(1,3) = U 715 (,3) = U 722 (, 3) = M 729 (,3) = u
7 i (,4) = U 7 8 (1 ,4) = U 715 (,4) = u 722 (,4) = U 729 (,4) = u
7 2 (,2) = U 7 9 (1 ,2) = M 716 (,2) = u 723 (,2) = M 730 (,2) = S
7 2 (,3) = U 7 9 (1 ,3) = M 716 (,3) = u 723 (,3) = M 730 (.3) = S
72 (,4) = U 7 9 (1 ,4) = U 7 ie (,4) = u 723 (,4) = U 730 (,4) = u
73 (,2) = M 7 i o (l , 2) = S 7 l7 (,2) = u 724 (,2) = M 731 (,2) = u
73 (,3) = M 7 i o (l , 3) = M 7 l7 (,3) = u 724 (,3) = M 731 (,3) = u
73 (,4) = M 7io(1,4) = U 7 l7 (,4) = u 724 (,4) = U 731 (,4) = u
7 4 (,2) = M 7 n (l , 2) = M 718 (,2) = u 725 (,2) = M 732 (,2) = S
7 4 (,3) = M 7 n (l , 3) = M 7 i s (,3) = u 725 (,3) = M 732 (,3) = S
7 4 (,4) = U 7 n (l , 4) = U 7 i s (,4) = u 725 (,4) = U 732 (,4) = u
75 (,2) = M 7i2(1,2) = S 7 l9 (,2) = u 726 (,2) = M 733 (,2) = u
75 (,3) = M 712(1 , 3) = M 7 i9 (,3) = u 726 (,3) = M 733 (,3) = u
75 (,4) = 17 712(1 , 4) = U 7 l9 (,4) = u 726 (,4) = U 733 (,4) = u
76 (,2) = M 713(1 , 2) = M 720 (,2) = u 72?(,2) = M 734 (,2) = S
76 (,3) = M 713(1 , 3) = M 720 (,3) = u 727 (,3) = M 734 (,3) = S
76 (A) = U 7 1 3 (1 ,4) = u 720 (,4) = u 727 (,4) = U 734 (,4) = u

735 (, 2) = u 735 (,3) = U 735 (,4) = u
Table 8.15: 7 — Wiring Functions for Form 2 acvSCA

D elay Functions

For a concrete dSCA the delay functions are always the unit delay as all look-backs

over time are now captured within the tuple. It is therefore defined that for 0 <

pcjual < Maxjsi — 1, i = 1 and 0 < j < 4 :

^1 tjtPcij'i O') *̂) ̂ 1

The program counter module has only one input, from itself, and this is also by

definition always unit delay, so it is appropriate to define for 0 < pcjual < M a x m — 1 :

& pc,0,pc_val (t) O) 3 ') — t 1

GRCP REPRESENTED A S SCAs 149

Value Function: Initial S tate

The Initial State definitions for the Value Functions for module m i of the concrete

dSCA solution to the GRCP needs to reflect the first M a xw, or 36, initial states. It is

known from the definition of concrete dSCAs that only the values at time t = 0 and

t = 35 are of use to computation and comparison of correctness. It is appropriate to

define, for t = 0 :

/ s t a y , u, u, u, , u, u, u, u, \
u, u, u, u, , u, u, u, u,

V\(pcjual, a, x) = u, u, u, u, , u, u, u, u,
u, u, u, u, , u, u, u, u,

V u, it, u, u y

and for 1 < pc _va l < M a x j v — 2 that:

/ s t a y , u, u, u, , u, u, u, u, \
u, u, u, u, , u, u, u, u,

V\ (pc.val, a, x) = it, It, u, u, , u, u, u, u,
u, u, u, u, u, u, u, u,

\ u, It, u, u /

The final definition, for t = 35, is:

/ s t a y , true, s t a y , up, t rue 5 f a l s e , f a l s e
u p , t r u e , t r u e , f a l se, f a l s e , f a l s e , t r u e ,

Vi(35, a, x) = 90, t rue, 0 , t r u e , 0 , f a l s e , f a l s e
f a l s e , /a/se, f a l s e , /aZse, 0 , 0 , 0 ,

\ 0 , 0 , 0 , 0

fa lse ,
fa lse ,
0,

/
The Initial State definition of the Value Function for module mpc is given in accordance

with the definition of concrete dSCAs as:

1̂ (0 , a, x) = 1

Vo(l, a, x) = 2

Vo(MaxN — 2, a, x) = M a x jv — 1

Vo(MaxN — 1 ,a ,x) = 0

GRCP REPRESENTED A S SCAs 150

Value Functions: S tate Transition

The state transition definition for the value function for the single module reflects

the M a x x cases that need to be covered, and also include the tuple management

operations. The definition of the program counter module is:

I mod (add (Vpc(t, a, x), 1) , 36) if Vpc(t, a ,x) = 0

:

mod (add {Vpc(t, a, x), 1), 36) if Vpc(t, a, x) = M a x n — 1

with the definition of module 1 shown overleaf.

GRCP REPRESENTED A S SCAs 151

C S iH (N r H Cv j rHcr5 ,H M , HCOt_ |

NMriG C C G C C

CO N H N H N H C O H C O H M i -e c c e e

GRCP REPRESENTED A S SC As 152

Network output: V out

Network output will be from module 1, i.e. :

Vout(t,a ,x) = Vi{t,a,x)

The correct value would have to be projects out if a comparison to an abstract

dSCA or original SCA is to be made. The execution order indicates that a new answer

will be available every 36th clock cycle starting at time t = 0, and due to the tuple

management operation, the value to be compared will be held in the 0 t/l element of

the array.

8.4.1 Correctness

The complete definition of the concrete dSCA is captured in Appendix E.

By inspection and application of the mapping of modules (from the execution

order) it can be seen that the concrete dSCA represents the Form 2 abstract dSCA.

Consider the value of Vout of the Form 1 dSCA at time t — 0, from Table 8.6 it can

be seen that it is equal to stay. The equivalent value in the Form 2 abstract dSCA

is provided as the 0th element in the tuple of V\. Recall that this tuple is defined as:

Vi(pcjval,a,x) =

it can be seen that the 0th element is stay , the same as for the Form 1 abstract dSCA.

A similar process can be applied for other times, notably important results will

be produced every 36 clock cycles.

(s tay , It, It, It, > It, It, u, u, \
u, It, it., It, ,lt, u, u, u,
U, it, u, u, ,11, u , u, u,
it, it , It, u , ,tl, u, u, It,
it, it, It, u)

8.5 Concluding Comments

Four solutions to the GRCP example have been given, and this chapter has provided

a discussion relating to the correctness of each model with respect to the ’’previous”

GRCP REPRESENTED A S SCAs 153

model.

It is now claimed that a SCA can be seen as the mathematical representation of a

computation, and that the concrete dSCA is a mathematical model of the computing

device that will implement the computation.

It is further claimed that the use of abstract dSCAs supports the mathematical

transformation of a SCA to a concrete dSCA using a number of mappings. The

challenge taken forward into the next part of this thesis is how to mathematically

define these mappings and transformations algebraically.

8.6 Sources

This chapter is all my own work.

Part III

Transformations

154

Chapter 9

Concept of SCA Transformations

9.1 Introduction

In the previous chapters it has been shown how the solution to the GRCP could be

represented as: an original SCA, two different abstract dSCAs and a concrete dSCA.

The correctness of each of those models has also been discussed. The reader may

have noticed that one model has, in some sense, been derived from a previous model.

For example the concrete dSCA is an implementation of the Form 2 abstract dSCA,

which itself is an implementation of the Form 1 abstract dSCA, which can be seen to

be an implementation of the original SCA implementation. Given such a hierarchy,

this thesis now proposes that there are mechanical methods to transform from one

model to another. Future discussions are restricted to the following transformations:

1 . A k-module SCA network to an abstract dSCA network with a defining shape

of V = (k, 1);

2 . An abstract dSCA network with defining shape of V = (k , 1) to an abstract

dSCA network with defining shape of V = (n, k); and

3. An abstract dSCA network with defining shape of V = (n, k) to a concrete

dSCA with defining shape of V = (n, k).

155

CONCEPT OF SCA TRANSFORM ATIONS 156

Each transformation will be defined algebraically.

Such a series of transformations is analogous to refinement steps commonly found

in the development of safety related systems (though refinement steps are usually

applied to the transformation of a mathematical specification to a program). Program

transformation is a large field, which this thesis does not intend to delve into in depth

- the reader is pointed to Stephenson’s PhD thesis ([Ste95]) which covers a wide range

of program transformation in her literature study.

In this introduction reference has been made to the various SCAs existing in a

hierarchy. Poole, Holden and Tucker ([PHT98]) have previously considered hierarchies

of Spatially Extended Systems, of which SCAs are a form, and this provides a useful

alternative method for consideration of correctness in addition to the Type I and

Type II notion discussed previously in this thesis. They set out to demonstrate how

one SCA can abstract, approximate, or implement another SCA, and introduced the

Integrative Hierarchy Problem:

“In te g ra tiv e h ie ra rch y problem : Develop a mathematical theory that

is able to relate and integrate different mathematical models at different

levels of abstraction” ([PHT98])

Poole, Holden and Tucker argue that to compare two SCAs, the following must

be considered:

• spaces;

• clocks;

• global states; and

• input streams.

CONCEPT OF SCA TRANSFORM ATIONS 157

Consider two networks, N\ and N 2 with each network having non-empty sets

11 and I2 of modules, computing with respect to clocks T\ and T2, sets In i and

I n 2 of inputs. The previous discussions on SCAs has discussed the channels between

modules, but for hierarchies we formally introduce sets Chi and Ch2 to explicitly refer

to channels in network N\ and N 2 respectively The networks will therefore have the

sets M a i hl and M a 2 H2 of initial states and sets [7\ —► M a i]I t11 and [T2 —► M ^] 7"2 of

input streams. It is intended that the behaviour of the network N 2 is an abstraction

of the behaviour of network Ni then it should be possible to construct the necessary

mappings.

Spaces

For our purposes, the space of an SCA is analogous to the modules within networks.

An SCA respacing function can therefore be introduced that maps modules within

Ni to N 2:

7r : 11 -> I2

This mapping is a surjective function, with the intention that each module i € h

in network Ni is abstracted by the module 7r(?) E I2 in network N 2.

Clocks

Mapping between two clocks, T\ and T2, is achieved by the introduction of retimings.

Retimings were introduced by Harman and Tucker in [HT89] and [HT90]; and these

should not be confused with the concept of retimings introduced by Leiserson and Saxe

(whose retimings relate to improving the timing behaviour of a circuit by reallocation

of registers - see [LS91] for details).

A clock is defined to be an algebra consisting of a set of natural numbers, the

constant 0 and the successor operation t + 1. If R and T are two such clocks, then

a retiming A : T —> R is a mapping between them capturing the concept that A(£) is

CONCEPT OF SCA TRANSFORMATIONS 158

the time cycle on R that corresponds with the time cycle t € T. This is demonstrated

in figure 9.1.

« * « # * «
1 2 3 4 5 6 7 8 9 10 11 12

Figure 9.1: Retiming

More formally, let T = (T ,0 ,t f 1) and R = (R, 0, r + 1) be two clock algebras,

then if each clock cycle in R corresponds to more than one clock cycle in T then R is

at a higher abstraction than T. Further, A : T —> R is a retiming from T to R , iff:

1 . A(0) = 0;

2 . A is surjective, that is to say that for all r 6 R there is a t £ T such that

X(t) = r; and

3. A is monotonic so that for any t, t' 6 T if t < t' then A(t) < A(£').

The set of all retimings from T to R is denoted as Ret(T, R). A few useful

operations relating to retimings are now discussed. A is known as the immersion of a

retiming A £ Ret(T , R) and is defined as:

A(r) = least t € T such that A(t) = r

Start \ identifies the first clock cycle in the group that could be retimed to a value

in the other clock. For example Start \{5) in Figure 9.1 would be 4. It is defined as

applying the immersion to the result of the retiming of the clock under consideration:

Startx = (AA)

CONCEPT OF SCA TRANSFORMATIONS 159

Global States

The global state of an SCA at time t £ T is defined as the set of values held by all

the channels at time t € T. There exists a global state abstraction mapping, <p of the

form:

<j) : M a i *11 -► M A ° h2

where the intention is that a global state s £ M A^ hl of SCA Ni is abstracted in

SCA N 2 by the state </>(s) £

It is sometimes necessary to provide a data abstraction function within the global

state map if the algebras in each network are not the same. Poole, Holden and Tucker

demonstrate the use of this when considering the hierarchy between two systolic

convolvers, the first working on an algebra representing bits, and an abstraction

using the carrier set MA.

Input Streams

Input streams for network N\ can be mapped to those in N 2 by means of the stream

abstraction function:

0 : [7i - M A1]Ini - [T2 -» M A2\In*

with the intention that streams a € p i —► M A1] 11 for Ni are abstracted in N2 by

0(a) e [T2 - MA2]In\

SC A Equivalence

To show the equivalence of two SCAs in a hierarchy, it is therefore necessary to show

the following diagram commutes:

T2 x [T2 -► M A2]In2 X M AZh2 - A * M jfchl

A 6 4> <f>

Start* xfTr -* M Al]Inix M Af hl — A M a f '*1

CONCEPT OF SCA TRANSFORMATIONS 160

Correctness within a hierarchy would therefore allow the syntactic demonstration

of the correctness of a model M 2 against a model Mi - if Mi is already shown to

be correct with respect to some specification S', then showing Mi and M2 are in

a hierarchy, such that 7r, A, (j) and 6 exist and a diagram for the above commutes,

would demonstrate that M2 is also correct with respect to S. Consider the SCA

implementation of the GRCP to be Mi, the Form 1 abstract dSCA implementation

to be M2 , the Form 2 abstract dSCA implementation to be M3 and the concrete

dSCA implementation to be M4 , then if the notation A > B is used to mean that

B is a correct implementation of A within a hierarchy, then the correctness of the

concrete dSCA with respect to the specification S can be asserted iff:

S > Mi > M2 t> M 3 > M4

In the exposition of transformations in this thesis a restriction is placed tha t the

machine algebra M a will be consistent across the SCA models. The implication of

this is that there will not be an investigation of the alterations of datatypes across

the models, which in turn may affect timings and mappings used.

Before discussing the transformations a discussion is provided next on a number

of fundamental algebras that will be used in the definition of the SCAs and the

transformations. Finally, Chapters 10, 11 and 12 describe the transformations in

detail and include a walk through of how the GRCP example is transformed from an

SCA to a concrete dSCA.

9.2 Fundamental Algebra Specifications

There are four types of fundamental algebra specifications used in this thesis:

1 . Synchronous Concurrent Algorithms (SCA, adSCA and cdSCA)

CONCEPT OF SCA TRANSFORMATIONS 161

2. Machine Algebra

3. Lists

4. Forms of equations: Value Functions, wiring and delay functions, etc.

The important elements of each specification are discussed in the next set of sections,

and full definitions of relevant specifications are provided in Appendix A.

9.2.1 SCA Algebraic Specification

As defined in Chapter 5.7.2, the specification of an SCA will be written as
Begin

End

Specification SCA-N am e
Im port T, Ma
Sorts []
C onstants Sym bols []
V F Function N am es Vi : T x [T —» Ma]u x M \ — > M a
7 Function N am es 7 (i, j) : N*, x N —> N*,
/^Function N am es P(hj) '■ Nfc x N —> { S , M } ,
^Function N am es Sij : T x [T —>• Ma]71 x M \ —> T,
IV E quations V i(0,a,x) = x 0,

* • * 5

V m (0 , (2, X) = X m

ST E quations Vi (t + L a>31) = f i >
. . . ,
Kn(t + l , a , x) = A

7 E quations 7 (0 ,0) = x,

7 (2, j) = x
/^Equations Pi h j) = L,

ft ihj) = L
(^Equations + L a, x) = t,

. . . ,
,-(t + 1 , a, x) = i

which of course is a convenient way of writing:

CONCEPT OF SCA TRANSFORMATIONS 162

(N ,l,
0 ,true, false, u
succ : N —► N, add : N x N —» N, cond : U
Vi : T x [T -► MA}n x M \ -> Ma,
7 (i , j) : Nfc x AT -> : Nfe x JV

: T x [T -> M^]n x -> T,
succ(n) = n + 1, add(succ(a),b) = add(a, succ(b)) , . . . ,

x N x N - > N , . . . ,

V o (0 , a, x) = 5 , . . . ,

Vo(t + 1, a, a;) = add(Vi(t, a, x), 2),
7(1,0) = M,. . . ,
/?(1,0) = 2......

\ 5 i , o (f , a , s) = £ - 1 , . . . /
To enable the construction of such specifications and provide access to the con

stituent parts, the SCAAlgebra specification is provided. It has one construction

operation, CreateSCA , which takes enough arguments to create a representation of

an SCA in the algebraic notation. There are also 13 decomposition operations that

provide access to the various components of an SCA. The constructor operation,

CreateSCA , is given as:

CreateSCA : Name x ImpList x SortList x ConsListx

VFOpList x 7 OpList x (30pList x SOpListx

IV E qLis t x STEqLis t x 7 EqList x (3EqList x SEqList —► S C A

and has the following definition:

/ B e g in

CreateSCA

/ nam e ,
im port,
sorts,
constants,
opsVF,
opsy,
ops 13,
ops5,
eqsVFIV ,
eqsV F ST ,
eqs'y,
eqs(3,

\ eqsd,

S p e c if ic a t io n name
I m p o r t im port
S o r ts sorts
C o n s ta n t S y m b o ls constants
V F F u n c tio n N a m e s opsV F
7 F u n c tio n N a m e s ops^j
(3 F u n c tio n N a m e s opsf3
6 F u n c tio n N a m e s ops
I V E q u a tio n s eq sV F IV
S T E q u a tio n s eq sV F S T
7 E q u a tio n s eqsy
(3 E q u a tio n s eqs/3
5 E q u a tio n s eqsd

\

\ E n d /

CONCEPT OF SCA TRANSFORMATIONS 163

Decomposition operations provide access to the component parts of an SCA speci

fication, e.g. the 7 -wiring functions. As an example, consider the G et/?Eqs operation

whose purpose is to return the list of imported specifications in the definition of an

SCA. It is given as:

GetfiEqs : SCAAlgebra —> (3SCAEqList

and defined as:

/ B e g in

Get(3Eqs

\ E n d

S p e c if ic a t io n name
I m p o r t import
S o r ts sorts
C o n s ta n t S y m b o ls constants
V F F u n c tio n N a m e s opsVF
7 F u n c tio n N a m e s ops'y
f3 F u n c tio n N a m e s ops(3
5 F u n c tio n N a m e s ops
I V E q u a tio n s eq sV F IV
S T E q u a tio n s eqsV F ST
7 E q u a tio n s eqs'y
/? E q u a tio n s eqs/3
6 E q u a tio n s eqsS

= eqsj3

/

Similar operations are defined to allow access to all constituent parts of an SCA and

the complete definition of the SCA Manage specification is given in Appendix A.I.

Since abstract and concrete dSCAs are syntactic extensions to SCAs then the

specifications for those will be defined in a similar manner. For brevity, this thesis

will not define these specifications.

9.2.2 M achine Algebra Specification

The Machine Algebra, denoted as M^, is the carrier algebra A so far used in the

definition of Synchronous Concurrent Algorithms. It is renamed to focus the reader

CONCEPT OF SCA TRANSFORMATIONS 164

on the objective of the thesis, that of ‘compiling’ an SCA to a target machine archi

tecture. Operations within M a are said to be atomic, i.e. they cannot be further

subdivided with relation to the level of abstraction currently under consideration.

M a includes operations that depend upon the underlying machine that transfor

mations are targeted at. For the purposes of this thesis a target machine that can

perform simple mathematical and logical operations over the set of natural numbers

and booleans, as shown in Table 9.1 (where the usual meaning is applied to the

operations) will be used.

Natural Boolean Combined
add or eq
sub and It
mult not gt
div cond

Table 9.1: Operations in M a

It is important that operations in M a can handle the undefined element, u , in

any of its arguments. The result of an operation where any argument is u will be

u, even in the case of boolean operations, e.g. the OR operation where it might be

expected that a u for one argument and a true for the other would result in true ,

will result in u. This is done because of the field in which this thesis is positioned

where an undefined value would be erroneous and thus the undefined value should be

propagated so it can be handled outside the computation system. M a is fully defined

in Appendix A.2 .

9.2.3 List Algebra Specifications

The SCA specifications contains many lists, each of which will have a corresponding

list specifications. Lists are required for the following:

1. Imported types (ImpList).

CONCEPT OF SCA TRANSFORMATIONS 165

2. Sorts (SortList).

3. Constants (ConsList).

4. Value Function operation definitions (VFOpList).

5. 7 -wiring function operation definitions (7 OpList).

6 . (3-wiring function operation definitions (fiOpList).

7. Delay function operation definitions (dOpList).

8 . Initial Value equations (IS V E q L is t and d S C A IS V E q L is t) .

9. State Transition equations (STVEqLis t and dSCASTVEqLis t) .

10. 7 -wiring function equations ('ySC AEqList and "ydSCAEqList).

1 1 . /5-wiring function equations (/? SC AEqList and (3dSC AEqList).

12. Delay function equations (6SCAEqList and ddSCAEqList).

13. Project function equations (ProjEqList).

14. Mapping function equations (MapLis t).

Each specification, is similarly defined, with the main difference the definition of

the Get El operation. Get El returns a particular elements from a list of equations

from a defined position. All the specifications have standard head and tail operations.

This thesis will be mainly concerned with Equation Lists in an specification, rather

than, for example, the operation or constant lists. The S T V EqLis t specification

is now discussed in detail, and then a discussion on the differences of the GetEl

operation for various other equation list specifications will be performed.

CONCEPT OF SCA TRANSFORMATIONS 166

SCA State Transition Equation List Specification

Within the STEqLis t specification a single composition function is provided, tha t

enables the recursive creation of a lists of elements. Three decomposition operations,

hd, tl and Get El are provided that extract the head of a list, the tail of a list and an

element from a particular position in a list respectively. The empty list will always

be represented by the constant [|

To create a list the specification provides one infix operation:

_, _ : S T V Equation x S T V EqList —► S T V EqList

Thus, (a, []) and (a, 6 , c, []) are both equation lists.

For the decomposition operations, consider the following example list:

V\ (£, a, x) = add(1 , 7),

V2 (t, a, x) = mult(3 ,6),

• 5
Vn (£, a, x) = sub(6.3),

D
The hd operation returns the head of a list, it is given as:

hd : S T V EqList —> S T V Equation

and is therefore be defined as:

hd([]) = 0

hd (a, as) = a

such that the hd of the above list is:

Vi (t, a, x) = add(1, 7)

The tl operation, which returns the tail of a list, is given as:

tl : S T V EqList —> S T V Equation

CONCEPT OF SCA TRANSFORMATIONS 167

and is defined:
ti ([]) = D
tl (a, as) = as

such that the tl of the above list would be:

V2 (£, a, x) = mult(3 ,6),

' ?
Vn(t,a,x) = sub(6.3),

a
The final list operation allows the selection of a particular equation out of a

list. In the case of the S T E q L is t , each equation is a value function that has a

particular module number associated with it; the operation of Get El is therefore to

select the State Transition equation from the list that corresponds to a particular

module number. GetEl it is given as:

Get El : S T V EqList x N —> S T V Equation

and is simultaneously defined as:

GetEl([},n) = Q

GetEl ((Vn(t,a,x) = z ,vs) ,n) = (Vn(t, a, x) = z)

GetEl ((Vp(t,a:x) = z ,vs) ,n) = GetEl(ys,n)

The GetEl operation is the main operation that changes in all of the list specifi

cations and is now discussed for the remainder of the lists.

Initial State Value Equations List Specification

Definition of the Initial State for Value Functions are of the form:

Vn (0 ,a ,x) = x n

the retrieval of an Initial State definition for a Value Function is performed in the

same manner as for the State Transition definition of a Value Functions, tha t is to

CONCEPT OF SCA TRANSFORMATIONS 168

say by recursing over the list of equations until the correct element is found. GetEl

is given as:

GetEl : IS V E q L is t x i V ^ ISVEquation

and is simultaneously defined as:

GetEl(\\,ri) = null

GetEl ((Vn(t,a,x) = z ,vs) ,n) = (Vn(t, a, x) = z)

GetEl ((Vp(t,a,x) = z ,vs) ,n) = GetEl(vs,n)

The GetEl operation for a dSCA Initial State Value Equation List is similarly

defined with the appropriate types.

dSCA State Transition Value Equations List Specification

DSCA State Transition Value Functions are of the form

Vn(t + 1, a, x) = f n{argu . . . , argp(i))

the retrieval of an Initial State definition of the value function is performed in the

same manner as for the State Transition definition of the Value Function, that is to

say by recursing over the list of equations until the correct element is found. GetEl

is given as:

GetEl : d S C A S T V E q L is t x A —> dSCASTVEquat ion

and is simultaneously defined as:

GetEl(\\ ,n) = null

GetEl ((Vn(t,a,x) = z ,vs) ,n) = (Vn(t, a, x) = z)

GetEl ((Vp(t,a,x) = z ,vs) ,n) = GetEl(vs,n)

7 Wiring Function Equation List Specification

There are two forms of y-wiring function lists, one for SCAs and the other for dSCAs.

For an SCA the q-wiring functions are of the form:

7 (h j) = X

CONCEPT OF SCA TRANSFORMATIONS 169

thus selection will be based on the variables i and j , and it is therefore appropriate

to define:

GetEl : ^ S C AEqList x i V2 ^ rySCAEquation

as:
GetEl(\ \ i , j) = null

G e t E l M i J) = X ivs) i i ij) = (7 (h j) = X)

GetEl ((7 (7 7 2 ,n) = X, vs), n) = GetEl(vs , i , j)

For a dSCA, the 7 -wiring function is of the form:

I z i h j) = X

and selection will therefore be based on the variables i, j and 2 . It is therefore

appropriate to define:

GetEl : 'ydSCAEqList x N 3 —> 7 dSCAEquation

as:
GetEl(\\ i , j , z) = null

GetEl = X , v s) , i , j , z) = (7 z{i,j) = X)

GetEl ((7 3 (771, n) = X, vs), i , j , z) = GetEl(vs, i , j) z)

(5 Wiring Function Equation List Specification

The /3-wiring operation are extracted in a similar manner as for the 7 -wiring oper

ation. Again, there are two forms of /3-wiring function lists, one for SCAs and the

other for dSCAs. In the SCA the /3-wiring functions are of the form:

P(hj) = X

thus selection will be based on the variables i and j , and it is therefore appropriate

to define:

GetEl : fdSCAEqList x N 2 —> (ISCAEquation

CONCEPT OF SCA TRANSFORMATIONS 170

as:
GetEl(\\ z, j) = null

GetEl = X ,v s) , i , j) = (P (i , j) = X)
GetEl ((P(m,n) = X ,v s) ,n) = GetEl(vs , i , j)

For a dSCA, the /3-wiring function is of the form:

thus selection will be based on the variables z, j and z. It is therefore appropriate to

define:

GetEl : j3dSCAEqList x N 3 —> (5dSCAEquation

as:
Get El (\\ i, j , z) = null

GetEl ((/3z{i,j) = X , v s) , i , j , z) = (f3z{ i j) = X)

GetEl (((3z(m,n) = X ,vs) , i , j>z) — GetEl{ys , i , j , z)

Delay Function List Specification

Delay functions also have 2 forms, one for both SC As and concrete dSCAs, and

another for abstract dSCAs. In SCAs and concrete dSCAs the delay functions are of

the form:

di,j(t) — X

and selection is therefore based on the variables i and j , and it is therefore appropriate

to define:

GetEl : bEqList xJV2 ^ SEquation

as:
GetEl(\ \ i , j) = null
GetEl((6id(t , a , x) , v s) , i J) = (5id{t, a, x) = X)

GetEl ((5m,n(t,a,x) = X ,v s) ,n) = GetEl(vs , i , j)

CONCEPT OF SCA TRANSFORMATIONS 171

For concrete dSCAs, the delay function is of the format:

thus selection is based on the variables i, j and z. GetEl is given as:

GetEl : SdSCAEqList x N 3 —► ddSCAEquation

and defined as:

Mapping Function List Specification

The Mapping Function List contains elements the mapping (or inverse mapping),

these are of the form

and elements are therefore selected by means of the variables i and j , using the GetEl

operation of the Mapping Function List specification:

GetEl : MapEqList x N 2 —> MapEquation

which is defined as:

GetEl([]i, j ,z)

GetEl ((SijfZ(t, a, x) ,v s) , i , j , z)

GetEl ((6m^ p(t,a,x) = X , v s) , i , j , z

null

(î,j,z(l ̂ AT)
GetEl(vs , i, j, z)

GetEl([]i,j)

GetEl ((H(z, j) = X ,v s) , i , j)

GetEl ((H(m, n) — X , vs), ra)

null

(S (i , j) = X)

GetEl (vs, i , j)

it is similarly defined for the inverse mapping.

Project Functions List Specification

Projection functions are of the form

CONCEPT OF SCA TRANSFORMATIONS 172

thus it is appropriate to define the GetEl operation:

GetEl : ProjEqLis t x N 3 —* ProjEquation

as:
GetEl(\\ i , j , z) = null

GetEl ((dNz = X,vs) , i>j ,z) = = X)
GetEl ({d*np = X , v s) , i J , z) = GetEl(vs ,i , j , z)

9.2.4 SCA Value Functions

SC A S ta te T ran sitio n E q u a tio n Specification (S T V E q u atio n)

An SCA State Transition definition of the Value Function is an equation of type

STVEquation. The STVEquation specification defines how these definitons of Value

Functions (a restricted form of equation) are constructed. The specification contains

one operation for constructing and two operations for decomposing a Value Function.

A State Transition definition is an equation made up from two terms, one of the

form Vi(t, a, x) and the other f i (argi , . . . , argn), as follows:

Vi(t, a, x) = f i{arg1, . . . , argn)

The ith module in a network N with k modules and n inputs will have an operation

component of:

Vi : T x [T -► M A]n x M kA -> MA

where T represents some imported clock, and algebra M A is the imported specification

from which data in the network is selected.

The equational component in the SCA specification for the ith module will consist

of two entries, one that defines the value at time t — 0 :

V i(0 ,a ,x) = e

CONCEPT OF SCA TRANSFORMATIONS 173

and one that defines the value at all other times t € T for some clock T :

Vi(t, a, x) = e'

This section is dealing with the State Transition, and thus define it is appropriate

to give one construction operation that takes a module number, a time term and a

VFOpTerm:

CreateVF : N x Term x VFOpTerm —► S T Equation

and to define it as:

CreateV F (n , t , t 2) = (Ki(£,a, a;) = t2)

A constructed Value Function equation is made up of two component parts,

VFCallTerm = V F O p D ef

where the VFCallTerm type are terms that are of the form Vn(t,a,x) and the

VFO pTerm type as terms built from elements of M&. For example, CreateVF (n, £ +

1, add(5,4) would result in Vn(t + 1, a, x) = add(5,4)

The decomposition operations provided in the Value Function specification are

used to extract various components from a Value Function definition and also from

the components of the Value Function. For example, the RetTerm operation will

return a term from an S T Equation, it is given as:

RetTerm : STVEquation x N —► Term

and defined as:

RTerm(Vn(t, a, x) = 1) = Vn(t,a,x)

RTerm(Vn(t,a,x) = / n, 2) = f n

CONCEPT OF SCA TRANSFORMATIONS 174

SC A Initial S tate Equation Specification (ISVEquation)

An SCA Initial State definition of a Value Function is of type ISVEquation, and this

specification defines how these definitions of a Value Functions (a restricted form of

equation) are constructed. The specification contains one operation for constructing

and two operations for decomposing the Initial State component of a Value Function.

The Initial State is an equation made up from two terms as follows:

Vi(t,a,x) = xn

One construction operation is defined, and it is given as:

CreateVF : N 2 x VFOpTerm —> S T Equation

and defined:

Crea teVF (n , t , t2) = {Vn{t,a,x) = t2)

For example, CreateVF(n, 0,4) would result in 14(0, a, x) = 5

The decomposition operations provided in the Value Function specification are

used to extract various components from a Value Function and also from the compo

nents of the Value Function. For example, the RetTerm operation will return a term

from an S T Equation, it is given as:

RetTerm : ISVEquation x N —► Term

and defined as:

RTerm(Vn(0, a, x) = x n, 1) = 14(0, a, x)

RTerm(Vn(0, a, x) = xn, 2) = x n

9.2.5 VFCallTerm and VFOpTerm Specifications

Both the VFCallTerm and VFOpTerm are specifications of terms, and it is not in

tended to provide an algebraic definition of terms above and beyond that given in

CONCEPT OF SCA TRANSFORMATIONS 175

Chapter 9.2. In this section an object of the form Vi(t,a,x) is called a VFCallTerm

and one called a VFOpTerm will be a term conforming to one of the following three

definitions:

• An constant from M a or an operation from M a whose arguments are VFCall-

Terms, for example add(Vn(t, a, x), Vp(t, a, x) or true-,

• a VFCallTerm, for example Vn(t,a,x)-, or

• a term representing an input stream, and being of the form Oj(t)

A single decomposition operation is defined for each of the VFCallTerm and

V F O p D e f elements. For the VFCallTerm access is allowed to the index of the

VFCallTerm given as:

Getlnd : VFCallTerm -► N

and defined as:

Getlnd(yn(t, a, x)) = n

The decomposition operation for the V F O p D ef term is one that can return ar

guments:

GetArg : V F O p D e f Term

defined appropriately over the number of arguments that are possible in an operation

built from M^, for example:

GetArg(op(ti), 1) = t x

GetArg(op(tu t2), 1) = t x

GetArg(op(t1, t 2),2) = t2

GetArg(op(ti ,t2,tz), 1) = t x

GetArg(op(t1, t2, t3), 2) = t2

G'etArp(op(ti, t2, 3̂), 3) = t3

CONCEPT OF SCA TRANSFORMATIONS 176

9.2.6 W iring Function Specification

The wiring function specification consist of:

1. 7 S C AEquation;

2. ^dSCAEquation;

3. /3 SC AEquation;

4. j3dSCAEquation.

In this chapter the definition of the 7 SC AEquation specification is given in detail

as an example and the other specifications can be produced in a similar manner.

One operation is required for composition:

Build7 : N 2 x {S, M, U} —► ^ S C AEquation

given as:

Build'y(a,b, X) = (7 (a, 6) = X)

Decomposition is provided by one operation:

GetArg : 7 S C AEquation x i V ^ Term

given as:
GetArg (7 (a, b) = X, 1) = 7 (0 , b)

GetArg (7 (a, 6) = X, 2) = X

The dSCA')Equation specification will introduce am additional index for the pro

gram counter, therefore the equations are defined appropriately.

CONCEPT OF SCA TRANSFORMATIONS 177

9.2.7 Delay Function Specification

As with some of the other specification, there are two forms of the delay function,

one for SCAs and concrete dSCAs, and one for abstract dSCAs. First the SCA form

is discussed.

One operation is required for composition:

BuildS : N 2 x Term 3 —> SSCAEquation

given as:

Build5(i)j , a ,x , t — 1) = ($ i,j(t, a, x) = t — 1)

Decomposition is provided by two operation, the first Get Index returns the index

of the delay function:

Getlndex : SSC AEquation —► N 2

given as:

GetIndex(Sij(t ,a,x) = x) = (i, j)

and the second decomposition operation is the GetArg operation which returns ele

ments from the arguments of the delay function:

GetArg : SSC AEquation x N —► Term

note that we are not interested in the actual values, just tha t a term is returned:

GetArg (Sij(a , b) c) = A, 1) = a

GetArg (<5ij(a, 6 , c) = X, 2) = b

GetArg {Si^{a) 6 , c) = X , 3) = c

The abstract dSCA forms are similarly defined but take account of the additional

index introduced for the program counter.

CONCEPT OF SCA TRANSFORMATIONS 178

9.2.8 Conclusion

This section has provided the details on the fundamental specification used in the act

of transforming one SCA model to another. The algebraic nature of these transfor

mations leads to the potential of automation of the process in the future.

9.2.9 Sources

This chapter is all my own work, except for the discussion on hierarchies of SCAs

which comes from Poole, Tucker and Holden’s work, [PHT98].

Chapter 10

SCA to A bstract dSCA

Purpose of Transformation

To introduce the necessary syntactic sugar required to describe

an existing S C A as an abstract d S C A , where the def ining shape

o f the abstract dSC A reflects the shape o f the source SCA.

10.1 Process

This chapter describes the process used to build the components of the abstract

dSCA with defining shape V = (&, 1) from an SCA with defining shape V = (&;, 1).

It considers the necessary transformations of:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Value Function Equations; and

4. State Transition Value Functions.

179

SCA TO A B ST R A C T dSCA 180

Once the individual transformations are described in detail they are pulled to

gether to provide details of the transformation specification. At the end of this

chapter this transformation specification is applied to the SCA implementation of

the GRCP to produce a Form 1 abstract dSCA implementation. Finally, the correct

ness of the generated Form 1 abstract dSCA is discussed. The transformation of the

operations part of the specification will not be discussed.

10.1.1 Prerequisites

There are a limited number of prerequisites for this transformation. For the SCA to

Form 1 abstract dSCA there are the following prerequisites:

• The source SCA is an atomic SCA;

• Arguments to the functional specification of a state transition phase definition

of Value Function are indexed from 1, such that the wiring and delay functions

also start with the index 1 ;

• Module numbering starts at 1, and sequentially increments, i.e. no module is

ever denoted as mo;

• Modules are numbered such that if there are k modules in the network, then

they are numbered 1 , . . . ,&; and

• All delays in the source SCA are of unit length.

10.1.2 W iring Functions

There is a subtle difference between the wiring functions in an SCA and those in a

corresponding Form 1 abstract dSCA. This is due to the requirement of the dSCA to

have wiring functions for all values of n{i) + 1 (the number of arguments to modules)

and this value being consistent across all modules.

SCA TO A B ST R A C T dSCA 181

Additionally, a suffix is introduced to reflect the value of the program counter

the wiring function relates to. Since this transformation constructs a simple abstract

dSCA that maps to the SCA, then M a x n will only ever reaches 1 , and thus the suffix

will always be 0 .

Each module in the abstract dSCA will replicate the wiring in the SCA and will

also get a wiring for its 0th input to wire it to the program counter (this is the reason

for the first prerequisite). The program counter’s wiring itself must also be created,

and the second prerequisite allows the program counter module to assume the index

of 0 as described in the definition of abstract dSCAs.

q-wiring O perations

Consider the SCA q-wiring function:

7 {x,y) = z

the transformation should produce the corresponding dSCA q-wiring function:

7o(z, y) = z

The informal process for generating the q-wiring functions for a Form 1 abstract

dSCA from an SCA is:

• For each module in the target network, where 1 < i < k

— Add the following q-wiring function to the list of new q- wiring functions

to represent the wiring to the program counter:

7 o(b 0) = M

— For each argument 1 < j < n(i) add:

, oldzvalue if old_value exists in the source SCA
7o(bj) = . rr

U otherwise

SCA TO A B ST R A C T dSCA 182

• Add the wiring function for the program counter:

7o(pc,0) - M

Formally, the Createys operation is introduced:

Createys : SCAAlgebra —► yEqLis t

which takes the SCA and calls the B y s operation passing it the number of modules

in the transformations) from the source SCA. M axa for the target SCA will be one

greater than in the source dSCA since the shape of the SCA is not being altered,

but an additional argument is required. Additionally, the B y s operation takes the

extracted 7-wiring functions from the source SCA, and an empty list (which will

eventually contain the Form 1 abstract dSCA 7-wiring functions). It is defined as:

The B y s operation:

B y s : N 2 x 7 S C AEqLis t x 7 dSC AEqList —» 7 dSC AEqList

is defined simultaneously in two cases to recurse over the number of modules. The

calls to the B y s operation are made whilst decrementing the number of modules, and

creating a new 7-wiring list from a call to the B y operation appended to the second

and value of p(i) (the number of arguments, and which will be referred to as M oxa

Createys (source.SCA) = B ys

(num_mod(source_SCA), ̂

GetM axA(sourceSC A),

GetyEqs(sourceSCA) ,

/

first case is where the number of modules is greater than 0, in this situation recursive

SCA TO A B ST R A C T dSCA 183

argument:

B ^ s

(num-mod, \
M ax a ,
eqs,

V neqs, J

= B ^ s

(numjmod — 1,

Max a -,
eqs,

((M a x A i \ \
num.mod ,£ 7

V \ eqs,

neqs

})

where the operation B'y:

B 7 : N 2 x ^S C AEqList —* 7 dSC AEqList

will construct the 0t/x arguments wiring function and calls the B^Arg operation to

create the wiring functions for the other arguments 1, . . . , M ax a '

70, \ / M a x A, \ \
num.mod, num.mod,

, B'yArqs
0, egs,

Af

£ 7

(Max a , ^
num.mod,

V /

((

Build7

\ \ / \ / /
B^fArgs is given as:

B^jArgs : AT2 x 7 SC AEqList x 7 dSC AEqList —> 7 dSC AEqList

and is defined simultaneously over the Max a argument, the first case being:

/ arg.val — 1, ^ ^

num.mod,
eqs,

B^Args

(arg.val, ^ /

num.mod,
eqs,

V /

B^Args

\ \

B^Arg

/

(arg.val, ̂

num.mod,

\ eqs /
/

where the operation B^Arg is used to generate the wiring function, depending upon

whether it existed or not in the source SCA:

B^Arg : Af2 x 7 SC A EqListx —► 7 dSC AEqList

SCA TO A B ST R A C T dSCA 184

it is defined as:

B yArg

(argjval, ^

num-mod,

\ eqs

Build7

Build'y

7o,
numjmod ,

argjval,

M

7o>
num.mod ,

argjual,

U

if GetEl

eqs,

numjmod ,

y argjval J

otherwise

/
The second case of the ByArgs operation is defined to return the generated list of

wiring functions:

B'yArgs = neqs

 ̂ 0, \
numjmod ,

eqs,

y negs y

The second case definition for the ^75 operation is where the module number

under consideration is 0 . This module does not exist in the source SCA and so the

process generates the wiring function for the program counter:

B ys

0 ,

M ax a ,
eqs,

\ neQs , /

(

neqs, Buildy
pc,

0 ,
V M y

/^-wiring O perations

Consider the SCA /3-wiring function:

£ (z ,2/) = 2

the transformation should produce the corresponding dSCA /3-wiring function:

A>(z,2/) = ^

SCA TO A B ST R A C T dSCA 185

The informal process for generating the /3-wiring functions for a Form 1 abstract

dSCA from an SCA is:

• For each module in the target network, where 1 < i < k\

— Add the following /3-wiring function to the list of new /3- wiring functions

• Add the wiring function for the program counter:

7o(pc,0) =pc

Formally, the Create(3s operation is introduced as:

Createfis : SCAAlgebra —► (dEqList

and it takes the SCA and then calls the B(3s operation passing it the extracted /3-

wiring functions from the SCA, an empty list (which will eventually contain the Form

1 abstract dSCA /3-wiring functions), and the details of the source SCA used for the

same purpose as described in the 7-wiring transformation. It is defined as:

to represent the wiring to the program counter:

/30 (2,0) = pc

For each argument 1 < j < n(i) add:

A > (m)
old.value if old_value exists in the source SCA

U otherwise

Create(3s ̂ source.SCA) = Bfis

 ̂ num.mod(source.SCA), ̂

GetMaxA(source.SCA) ,

Get(3Eqs(source.SCA),

/

SCA TO A B S T R A C T dSCA 186

The Bj3s operation:

Bj3s : N 2 x PSC AEqList x PdSCAEqList -> (3dSCAEqList

is defined simultaneously by two cases to recurse over the number of modules. The

first case is where the number of modules is greater than 0, in this situation recursive

calls to the B(5s operation are made, decrementing the number of modules, and

creating a new /3-wiring list from a call to the B (5 operation to be appended to the

second argument:

/ numjmod — 1, \

BPs

(numjmod,

M ax a ,
eqs,

y neqs,

\

= BPs

M ax A)
eqis,

(M axA) \
BP numjmod,

V

, neqs

J J
where the operation BP:

BP : N 2 x PSCAEqList pdSCAEqList

constructs the 0th arguments wiring function and calls the BpArg operation to create

the wiring functions for the other arguments 1, . . . , Max a'-

BP
(M a x A i ̂

numjmod ,

\ egs,

(

/
Buildp

(A , \

numjmod,

0 ,

V PC

(

, BpArgs

M ax a ,
numjmod,

eqs,

\ \

BftArgs is given as:

B 0Args : N 2 x PSC AEqList x PdSCAEqList -► PdSCAEqList

SCA TO A B ST R A C T dSCA 187

and is defined simultaneously over the M ax a argument, the first case being:

(r,anr. \ f f aVgjjal — 1, ^ ^

numjmod,

eqs,
B(3Args

argjval, \ (

num-mod,

eqs,

V /

B/3Args

\ \

, BfiArg

/

(argjval, ^

num jm od,

\ egs /
/

where the operation BfdArg is used to generate the wiring function depending upon

whether it existed or not in the source SCA:

B(3Arg : N 2 x PSC AEqList x —> PdSCAEqList

it is defined as:

BpA rg
I av, N

nm,

\ egs /

Buildp

= <

Buildp

where:

A) 5
n m ,

av,

' egs

RetT erm(GetEl nm

^ av

Po, N
nm,

av,

w J

(eqs, ^

nm,

\ av)

, 2)

if condi

otherwise

The second case of the BpA rgs operation is defined to return the already generated

list of wiring functions if the argument number under consideration is 0 :

< 0 , \

num-mod,

eqs,

y neqs j

BpA rgs = neqs

SCA TO A B ST R A C T dSCA 188

The second case definition for the B p s operation, is where the module under

consideration is module number 0, which does not exist in the source SCA, but does

in the abstract dSCA, and the wiring function for the program counter is generated

in this case as:

BPs

I numjmod , ^ I

M ax a ,

eqs,

y neqs, /

neqs, Buildp

\

PC

0 ,
\ p e j

10.1.3 Delay Functions

Consider the SCA delay function:

in the Form 1 abstract dSCA it would be transformed into the form:

and it is always the case in the Form 1 abstract dSCA that the delay is a unit delta.

Informally, to create the Form 1 abstract dSCA delay functions from the SCA the

following process is executed:

• For each module ra* in the target network, where 1 < i < k:

— For each argument j where 0 < j < n(i) generate:

• Add the delay function for the program counter:

*^pc, 0 ,0 (^5 *^) — ^ 1-

SCA TO A B ST R A C T dSCA 189

Formally, the Createds operation is introduced to recurse through the list of SCA

delay functions and create the list of Form 1 abstract dSCA delay functions. Createds

operation is given as:

Create5s : SCAAlgebra —► SsEqList

It is defined as an operation that takes an SCA and extracts the number of modules

and the maximum value of n(i) which will be referred to as M a xA through the

transformation. Createds calls the B6s operation with the above arguments and an

empty list (to hold the returned values), it is defined as:

(num m od(sourceSCA), ^

Createds (source.SC A) = Bds

The Bds operation, given as:

GetMaxA(source.SC A) ,

V 7

Bds : N 2ddSCAEqList —► ddSCAEqList

is defined by two cases. The first case adresses the situation where the number of

modules is greater than 0 , where the following definition applies:

(

Bds
(num.mod y ̂

M ax A,

y neqs

= Bds

num.mod — 1 ,

Max a,
(MaxA-, ̂

BdArgs num .m od ,

\

V V 7 7

with the BdArgs operation given as:

BSArgs : N 2 x SdSCAEqList -► dSCAEqList

and defined, recursively over the number of arguments, with the first case definition

SCA TO A B ST R A C T dSCA 190

of:

BdArgs

(arg.val, ̂

num .m od ,

^ neqs J
BdArgs

(arg.val — 1 , ^

V

num.mod ,

y neqs

, Buildd

/

(num.mod \ ^

argval,

0 ,
t - 1 /

When the arg.val number is 0 the base case for the BdArgs operation is defined

to build a delay function for the 0^ argument:

/ num.mod , \

0 ,

0 ,

/
BdArgs

0 , \
num .m od ,

y neqs J

= Buildd

V t - 1

The second case of E?£s, where the module number is 0, returns the results calcu

lated so far, appended to the delay function for the program counter:

I (num .m od , ^ \

negs, BuilddBds

(0 , \
M ax a ,

 ̂ negs y
V V

o,

o,
t - i / /

10.1.4 Initial State Equations

Consider an Initial State Equation from the SCA, it will be of the form:

Vi(fi,a,x) = Xi

The corresponding Initial State Equation in the Form 1 abstract dSCA will be:

K (0 ,a ,z) = Xi

It can be seen that there is no transformation to make for the Initial State Equation

of the SCA modules; however, the Form 1 abstract dSCA has an additional module,

SCA TO A B ST R A C T dSCA 191

the program counter. Informally, the process for creating Form 1 abstract dSCA

Initial State equations is therefore:

• Copy across the Initial State equation from the SCA; and

• Add an Initial State equation for the program counter Vpc(0, a, x) = 0

Formally, the C rea te lSV F s operation is introduced:

C rea te lSV F s : SCAAlgebra -► d S C A IS V E q L is t

and it is defined as taking the SCA, extracting the Initial State equations from it,

and adding an Initial State equation for the program counter to the resultant list:

C rea te lSV F s(SourceSC A) = (GetE(l I V (Source-S C A)> \
y CreateVF(pc,t, 0) J

10.1.5 State Transition Equations

State Transition equations in the abstract dSCA differ from those in an SCA by the

need to wrap the functionality in a conditional operation. Consider the SCA State

Transition equation:

Vi(t + 1, a,x) = e

when transformed for the Form 1 abstract dSCA it would become:

Vi(t + 1, a, x) = e i f vpc(t, a,x) = 0

or if written with strict compliance to M a it would be written as:

Vi(t + 1, a, x) = cond{Vpc{t, a , x) — 0, e, null)

Note that the cond requires 3 arguments, and so the null value is placed into the

definition for the case where Vpc(t, a, x) does not equal 0 - which will not be the case

for an abstract dSCA where M a x ^ = 1 , as here.

SCA TO A B ST R A C T dSCA 192

Informally, the process of transformation can be written as:

• For each SCA State Transition equation:

— Select VFCallTerm;

— Select VFOpTerm;

— create new VFOpTerm term cond(Vpc(t, a, x) = 0,rewire(VFOpTerm),null)

using a version of VFOpTerm that has had its inputs rewired to take ac

count of the new wiring and delay functions; and

— create new State Transition equation.

• Add the following equation to reflect the program counter:

Vpc(t + 1, a, x) = mod(add(Vpc(t, a, x), 1), 1) if Vpc(t, a, x) = 0

When describing the abstract dSCA State Transition equations the cond operation

is turned into the more readable form.

Formally, the C reateSTVF s operation is introduced:

C reateSTVF s : SCAAlgebra -> d SC A S T V E q L is t

with the intention that it takes an SCA specification and creates a list of Form 1

abstract dSCA State Transition equations by extracting the SCA State Transition

equations and supplying the new wiring and delay functions to the B S T s operation.

It is given as:

(G etE qIV (Source.SCA), \

C reateSTV F s(SourceSC A) = B S T s Createj3s (Get(30ps(Source.SCA)) ,

Createds (G et^O ps(SourceSC A)) ,

 ̂ Createds (G et80ps(SourceSC A)) , y

SCA TO A B ST R A C T dSCA 193

The operation B S T s :

B S T s : S T V E q L is t x d S C A ST V E qL is t x PdSCAEqList x 7 dSCAEqList x

SdSC AEqList -► dSC A S T V EqList

is defined recursively over the SCA State Transition equation list, in 2 cases; one

case for when there are still equations to process, and the second for when there are

no equations left to process. In the first case a recursive call is made to the B S T s

operation with the tail of the equation list, and the newly created State Transition

equation appended to the 2 nd argument:

/ eqs,
\

B S T s

((e,egs), ^

neqs,

/7s,

7 5 ,

S s

= B S T s

\

/ ̂ e,

B S T
/7s,

7 5 ,

\ ̂ ds

/7s,

7 s,

d,S

\ \
neqs

/
The operation B S T :

B S T : IVEquation x {30pList x 7 OpList x SOpList —> IVEquation

is subsequently defined as:

(RetTerm(e, 1),

((m[= 0 , \ \

^ RetTerm{e) 2), ^

n ew V F T erm ,

cond rewire {3s,
B ST

/7s,

7 s ,
!

= CreateVF

\

7®,
ds

y null

SCA TO A B ST R A C T dSCA 194

where:

^ 1 VRetTerm{Ge.tEl('ys,i,0),2) (RctTcTTTl(GctEl(ds , 2, 0 , 0) , 2), <2, 3?)

^ R e t T e r m ('y o (i ,0) = p c ,2) [RotT erm{biQQ [t, Cl, 3?) t 1, 2), fl, 3?)

= V̂ c(£ - 1 , a, x)

but in this example t = t + 1 thus:

To complete the definition of State Transition equation transformation a definition

of the rewire operation is required. Whilst it is possible to provide a definition

covering the general case of any number of arguments to an operation, in the example

there will only ever be a maximum of 3 arguments (see definition of M a) and so a

specific implementation of rewire can be defined. It is given as:

rnl = Vpc(t,a ,x)

and:

new V FTerm = GetIndex(RetTerm(e, 1))

rewire : Term x N x (30pList x 'yOpList x SOpList —> Term

and defined as:

i

rewire (3s, = op

7 s,

\ 5s /

h

1 ,
(3s,

h
rewire (3 s, = op wire

7 s,
7 s,

\ S s J j

SCA TO A B ST R A C T dSCA 195

rewire

f op (ti,t2), ^

h

IS,

6s

op

f tlf 1
(h \

h h

1 , 2,
wire , wire

(3s, (3s,

7-5, 7 s ,

V \ 58 \ 6 s j

rewire

t op(ti,t2,h) , ^

h
(3s,

7 s,

Ss y

= op

(h i , \ (h \ (h \ \

h h i ,

1 , 2, 3,wire , wire , wire
(3s, Ps, ps,

7 s, 7-5, i s ,

\ \ 6 s) V 68 Ss / /
where the wire operation is defined as:

(t \

wire

h

3,
(3s,

7 s,

V 8s j

Vnew-index(new-time, a, x) if wiring = M

anew_iTldex(new-time) if wiring = S

and:

wiring = RetTerm(GetEl(r)s,i,j,C),2)

A true implementation would define newTndex and new-time to return the first

part of the relevant elements, e.g. resulting in a State Transition equation

similar to:

Vi(t + 1 ,a ,x) = op (VMiA)(Si^o(t + 1 ,a ,x) ,a ,x))

and then at a future point these would be simplified to the values, resulting in:

Vi(t + 1 , a, x) = op (Vk(t, a, x))

SCA TO A B ST R A C T dSCA 196

Instead the issue is expediated and simplification is performed now, thus new-index

and newJim e are defined to return the 2 nd term of the respective wiring and delay

functions:
/

new Andex = RetTerm GetEl h

A

v ° /

,2

new-time = RetTerm GetEl

5s,

h

h

\ ° /

\ \

,2

J

The second case definition for B S T s simply takes the list of Form 1 abstract dSCA

State Transition equations supplied as an argument and returns them, with the State

Transition equation for the program counter appended. It is therefore defined as:

(

B S T s

\

neqs,

Ps ,

7 s ,
5s

(neqs,

CreateVF

\
(Vpc{t + 1, a ,x).

(
cond

Vpc(t,a ,x) = 0,

mod(add(Vpc(t, a, x), 1), 1),

null

10.1.6 Transformation Process

Each of the operations above need to be coordinated together so that a SCA can be

transformed into an abstract dSCA. The Create-adSCA operation is provided to do

this, it is given as:

T ra n s fo rm : SCAAlgebra —► adSC A Algebra

The operation takes the source SCA and the name of the abstract dSCA, along

SCA TO A B ST R A C T dSCA 197

with the number of modules and number of inputs in the source SCA. It is defined:

(G etNam e(SC A src), \

S C A Algebra ,

Trans fo rm (S C A src) = CreateadSCA

V F O p ,

7 o : T V 2 — > { M , S , £ / } ,

/30 : N 2 N,

SOp ,

C rea te ISV F s{SC A „ c),

C reate5TT/F5(5CA sr.c),

Create^ s(SC A sr() ,

Create(5s{SCAsrc) ,

y CreateSs(SCAsrc)

where

VFOp =

SOp =

(Vo : T x M % x Mj[+1 -» MA,

• J

U + i : r x M S x M *+1 - y

f 5o,o,o :TxMJx Mj+1 —»
’J

V <5jj,0 : T x x Af*+1 -* T /
and

k = numjmod(SrcJSCA)

j = Get-MaxA(SrcJSCA)

n = n u m J n p (S rc S C A)

The complete algebraic specification for the SCA to Form 1 abstract dSCA trans

formation is given in Appendix F.

SCA TO A B ST R A C T dSCA 198

10.2 Correctness
T h e o rem 1 0 .2 .1 . The transformation of SCA to a Form 1 abstract dSCA preserves
correctness.

The original SCA and transformed result, the Form 1 abstract dSCA, exist in a

hierarchy and it is possible to show that the transformation is correct by considering

Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded Systems.

Let N s c a be > 0 module source SCA network with n SCA > 0 sources

processing data from a set M ^CA against a global clock T SCA

Let NdscA be N^sca > ̂ module source SCA network with ndsCA > 0 sources

processing data from a set M ^SCA against a global clock T dSCA as generated from

N sca using the SCA to abstract dSCA transformation.

Poole, Holden and Tucker claim that if it is possible to generate appropriate

mappings and show the following diagram commutes then the two spatially expanded

systems under consideration were correct with respect to each other.

m c a X [TdscA - MAdSCAY x M cAhJ scT —

X <p

V,

<t>

StartA x [T s c a ^ M AscA}In^ x

Mappings are needed for four areas:

• spaces;

• clocks;

global states; and

input streams.

SCA TO A B ST R A C T dSCA 199

The mappings are defined as follows:

Spaces. Spaces (modules) in the two networks do not differ for modules where

i £ N%ca and i > 0. Thus it is appropriate to define the respacing operation 7r :

I Nsca * ^NdScA as#
7r(i) = i fo r 1 < i < k

Clocks. There is no alteration in timing between the two networks, therefore the

retiming between clocks T SCA and T dSCA is A : T SCA —► T dSCA, for t E T SCA and

s E T dsCA can be appropriately defined as

A(£) = s

Input Streams. There are no timing or data abstractions require for inputs since these

are not altered by the transformation. Thus is it appropriate to define the input

stream abstraction 6 : [T —► Ma]"5CA —► [T —> MA\ndSCA as the identity operation:

6(a)(t) = a (\ (t))

= a(s)

Global States. It is defined in the transformation that the carrier data set for source

SCA and target abstract dSCA are the same, M^. Thus there is no data abstrac

tion required for consideration. We therefore consider the state abstraction map

4> : M%hscA -» M%hdsCA for all states s € M%hscA to be defined as follows, for

i e N£CA:

4>(s)(i) = s(i)

Consider now any module mi in the SCA, it will have two equations in the SCA

specification and two corresponding ones in the abstract dSCA specification.

SCA TO A B ST R A C T dSCA 200

We now compare the two networks in the Initial State and the State Transition

phases.

Initial State Phase Consider the output of the module at time t = 0 then

K w j4(A(°)> %) > =
= X i

= , a , x)

The transformation process for SCA to abstract dSCA creates the dSCA initial

state equation by simply copying it from source SCA, thus the above is correct.

State Transition Phase Consider the output at time t = t + 1 then

+ !)> 0 (a)> <P(X)) = M bu • • ■, K(i))

For j £ 1 ,.. . ,n(z) then the input is either from another module in the network

or is from an input, thus

K(g)(<W j(A(*),a,a;),a,a;) if /?OM , j) = Q A 7 W 0 , j) = M
<t>{aq{t)) if /?(?r(z), j) = q A 7 (tt(z) , j) = S

or rewritten as

b _ f Vq{s,a,x) if P { iJ) = A y (iJ) = M

3 1 flg(5)) if = A7(z, j) = 5
thus the mapping functions provide the same functionality as the process for

rewiring in the transformation specification. Finally, the state transition equation

in the dSCA is copied directly from the same numbered module and included in a

conditional statement:

cond(Vpc(s, a, x) = 0, /*, null)

SCA TO A B ST R A C T dSCA 201

The value of Vpc is always zero (consider the definition of the program counter

values in a Form 1 abstract dSCA), therefore mi in the abstract dSCA always executes

fi at all times t > 0 and it can therefore be written that:

10.3 Generalised Railroad Crossing Problem SCA
Transformed to an Abstract dSCA

This section contains a manual walk through of the transformation of the SCA so

lution to the GRCP using the specification provided in the previous chapter. The

input to the process is the algebraic specification of the SCA, as shown in Annex B,

and the first step is to confirm that it meets the prerequisites for transformation.

The discussion following shows the transformation in process.

7 -W iring Equation Transformation

The 7 -wiring functions transform by way of the Createds operation that takes the

SCA as an input. This is defined:

Kf(l),6»(a),0(a;)) = V fSCA(s + l,a ,rr)

num.mod{source.SCA) ,

G etM axA (sourceSC A),

Get'yEqs(source_SCA),
Createds ^ source.SC A

/

SCA TO A B ST R A C T dSCA 202

The call to GetyEqs extracts the following details from the source SCA:

7(1,1) = M, 7(7,1) = M, 7(15,1) = s, 7(27,1 = M,
7(1,2) = Af, 7(7,2) = M, 7(15,2) = M, 7(27,2 = M,
7(1,3) = M, 7(10 ,1) = M, 7(22,1) = M, 7(28,1 = M,
7(2,1) = M, 7(10,2) = M, 7(22,2) = M, 7(28,2 = M,
7(2,2) = M, 7(11,1) = 5, 7(23,1) = M, 7(29,1 = s,
7(4,1) = M, 7(11,2) = M, 7(23,2) = M, 7(29,2 = s,
7(4,2) = A/, 7(12,1) = Af, 7(24,1) = M, 7(31,1 = s,
7(4,3) = Af, 7(12,2) = A4, 7(24,2) = M, 7(31,2 = s,
7(5,1) = M, 7(13,1) = 5, 7(25,1) = M, 7(33,1 = s,
7(5,2) = M, 7(13,2) = M, 7(25,2) = M, 7(33,2 = s,
7(6,1) = M, 7(14,1) = A/, 7(26,1) = M, 7(35,1 = s,
7(6,2) = A/, 7(14,2) = M, 7(26,2) = M, 7(35,2 = 5,

and the numjmod operation identifies that there are 36 modules in the source SCA,

and that the largest number of inputs to any one module in the SCA is 3. It is

therefore possible to rewrite the Createds call as:

(36, \

Createds I source.SCA) = Byi
3,
G etqEqs(sourceSCA) ,

V

Subsequently the call to Bqs operation will result in the invocation of the first

case (where the module number is greater than 1):

I 35, \

Bqs

(36, ^ 35

3, eqs,

eqs,
= Bqs

/
I 3')

\ neqs,) B y 36, , negs

egs, y /

SCA TO A B ST R A C T dSCA 203

The call to B 7 expands as:

3, A
B'y 36,

\ eqs, J

Build') , B'yArgs

/ 3, W

36,

eqs,

\0 /

36,

0 ,

\ M /
Following the call to B'yArgs results in the following list:

7o(36, 1) = U,

7o(36, 2) = U,

7o(36, 3) = U

since module 36 is not wired to anything in the source module. The return from B'y

is the list:
7o(36,0) = M,

7o(36, 1) = U,

7o(36, 2) = U,

7o(36,3) = U

The call to B'ys becomes:

B'ys

\(35 ,

3 ,

eqs,

7o(36,0) = M,

7o(36,1) = U,

7o(36, 2) = U,

\ 7o(36,3) = U, /

which in turn would see another call to the B'y operation of:

.B7

(3, ^
35,

eqs, J

(

Build7

70) ^
35,

0 ,
\ M J

, B'yArgs

3, N

35,

eqs,

\ 0 /

SCA TO A B ST R A C T dSCA 204

When considering the call to BdArgs this time, the first result (for argument

3) is still unwired, however the recursive call considers a situation where there are

definitions in the original SCA. The result from BdArgs this time will be the list:

-70(35,1) = ?,

70(35,2) = .?,

7o(35,3) = U

and subsequently the return from B'y will be the list:

7o(36,0) = M,

7o(36, 1) = S,

7o(36,2) = ?,

7o (36,3) = U

The overall result of Createds is:

7o(l ,0) == Af, 7 o (l , 1) -= Af, 70(1,2) == Af, 70(1,3)
7o (2, 0) == Af, 7o(2,1) == Af, 7o(2 ,2) == Af, 7o(2, 3)
70(3,0) == Af, 7o(3,1) ==- u , 7o(3,2) == u , 70(3,3)
7o (4, 0) == Af, 7o (4,1) =--M, 70(4, 2) == Af, 7o(4, 3)
70(5,0) == Af, 7o(5,1) == Af, 7o(5,2) == Af, 7 o(5, 3)
7o(6,0) =z at, 7o(6,1) == Af, 7o(6,2) == Af, 7o(6, 3)
7o(7,0) == Af, 7o(7,1) == Af, 7o(7, 2) == Af, 7o(7, 3)
7o(8,0) == Af, 7o(8 ,1) = 7o(8,2) == tf, 7o(8, 3)
7o(9, 0) == Af, 7o (9,1) = 7o(9,2) == tf, 7o(9, 3)
7o(10,0) = Af, 7o(10,l) — Af, 70(10,2) = Af, 7o(10,3
7o(H,0) = Af, 7 o (H , l) = 5, 70(11,2) = Af, 7o(H,3
7o(12, 0) = Af, 70(12,1) = Af 70(12,2) = Af, 70(12,3
7o(13, 0) — Af, 70(13,1) = 5, 70(13,2) = Af, 70(13,3
7o(14, 0) = Af, 70(14,1) = Af, 70(14,2) = Af, 70(14,3
7o(15,0) = Af, 70(15,1) = 5, 70(15,2) = Af, 70(15,3
7o(16, 0) = Af, 70(16,1) = tf, 70(16,2) = 17, 7o(16,3
7o(17,0) — Af, 70(17,1) 70(17,2) = 17, 70(17,3
7o(18,0) = Af, 70(18,1) = tf, 70(18,2) = 17, 70(18,3
7o(19,0) — Af, 70(19,1) = tf, 70(19,2) = tf, 70(19,3

) = Af,
) = U,
) = U>
) — M,
) = U,
) = U,
) = U,
) = u ,
) = U,
) = U,
) = U,
) = U,
) = U,
) = U,
) = U,

= U,
= U,
= U,
= U,

SCA TO A B ST R A C T dSCA 205

7o(20, 0) = M, 7o(20,1) = C/, 7o(20,2) = U, 7o(20, 3) = !/,
7o(21,0) = M, 7o(21, l) = t/, 70(21,2) = t/, 7o(21,3) = !/,
7o(22,0) = M, 7o(22,1) = M, 7o(22,2) = M, 7o(22,3) = !/,
7o(23,0) = M, 7o(23,1) = M, 7o(23,2) = M, 70(23,3) = !/,
7o(24, 0) = M, 7o(24, 1) = M, 7o(24,2) = Af, 7o(24,3) = (7,
7o(25,0) = M, 7o(25,l) = M, 7o(25,2) = M, 70(25,3) = !/,
7o(26,0) = M, 7o(26, 1) = M, 7o(26,2) = M, 70(26,3) = !/,
7o(27, 0) = M, 7o(27,1) = M, 7o(27,2) = M, 7o(27,3) = !/,
7o(28, 0) = M, 7o(28,1) = M, 7o(28,2) = M, 7o(28,3) = !/,
7o(29, 0) = M, 7o(29, 1) = S, 7o(29,2) = 5, 7o(29,3) = I/.
7o(30, 0) = M, 7o(30,1) = U, 7o(30,2) = U, 70(30,3) = !/,
7o(31, 0) = M, 7o(31, 1) = 5, 7o(31,2) = 5, 70(31,3) = !/,
7o(32, 0) = M, 7o(32,1) = U, 7o(32,2) = !/, 70(32,3) = !/,
7o(33,0) = M, 70(33,1) = S, 7o(33,2) = 5, 7o(33,3) = !/,
7o(34,0) = M, 70(34, 1) = u, 7o(34,2) = C/, 7o(34,3) = !/,
7o(35,0) = M, 70(35,1) = S, 7o(35,2) = S, 7o(35,3) = I/,
7o(36, 0) = M, 70 (36,1) = U, 70(36,2) = C, 70(36,3) = !/,
7o(pc, 0) = M

1 T ran sfo rm atio n

The /3-wiring functions from the SCA are transformed into the following

abstract dSCA /3-wiring functions:

/?o(l> 0) = pe, /3o(l,l) = 2 , A (l ,2) = 3, A>(1.3) = 4,
/3o(2,0) = pc, /3o(2,1) = 5, /3o(2,2) = 6, /3o(2,3) = w,
/30(3 ,0) = pc, /3o(3,l) = w, /?o(3,2) = u, /3o(3,3) = u,
A>(4,0) = pc, A)(4,1) = 7, A>(4,2) = 8, /3o(4,3) = 9,
/30(5 ,0) = pc, /?o (5 ,1) = 10, /?o(5,2) = 11, /So (5,3) = w,
/So (6,0) = pc, /?o(6,l) = 12, /30(6,2) = 13, A (6,3) = a/,
00 (7,0) = p c , /?o(7,l) = 14, /30(7 ,2) = 15, A (7 ,3) = u,
/30(8,0) = p c , /3o(8,l) = w, /3o(8,2) = ca, 0o(S,3) = u,
/30(9,0) = p c , 0o(9,1) = u>, /3o(9,2) = u>, 0o(9,3) = u>,
/30(10,0) = p c , /3o(10,1) = 22, /30(10,2) = 16, A>(10,3) = u ,
/30(11,0) = p c , A i(l l . l) = 9, /30(11,2) = 17, A (H ,3) = w,
/30(12,0) = p c , /30(12,1) = 22, /?0(12,2) = 18, A (12,3) = w ,
/?o(13,0) = p c , /3o(13,1) = 9, A)(13,2) = 19, A (1 3 ,3) = u,
/30(14,0) = p c , /J0(14 ,l) = 22, A (14,2) = 20, A (14,3) = oi,

SCA TO A B ST R A C T dSCA 206

A)(15,0) = p c , A(15, = 9, A (15 ,2 — 21, A (1 5 ,3 —a;,
/?o(16,0) = pc, A(16, = w, A(16 ,2 = w, A (1 6 ,3 = w,
A)(17,0) = p c , A(17, = w, A (1 7 , 2 = w, A (1 7 ,3 —w,
A (1 8 , 0) — pc, A(18 , = w, A (1 8 ,2 = w, A (18,3 = CJ,
/?0(19,0) = pc, A(19, = w, A (19 ,2 = w, A (19,3 = £J,
A) (20,0) = pc, A(20, = Cd, A (20,2 = w, A (20,3 = £J,
/do (21,0) = pc, A(21, = w, A (21,2 = w, A (21,3 = W,
/?o (22,0) — pc, A (22, = 23, A (22,2 — 24, A (22,3 =
A (23,0) — pc, A (23, = 25, A (23,2 = 26, A (23,3 —W,
yd0(24,0) — pc, A (24, — 27, A (24,2 = 28, A (24,3 = CJ,
/d0(25,0) = pc, A (25, = 29, A (25,2 = 30, A (25,3 =
A (26,0) = pc, A (26, — 31, A (2 6 , 2 = 32, A (26,3 = £J,
A (2 7 ,0) = p c , A (27, = 33, A (27,2 = 34, To 0

0 = W,
A (28,0) = pc, A (28, = 35, A (28,2 = 36, A (28,3 = CJ,
A (29 ,0) = pc, A (29, = 1, A (29,2 — 2, A (29,3 - - CJ.
A) (30,0) = pc, A(30, = w, A (30,2 = A (30,3 = £J,
A (31 ,0) — pc, A (31, — 3, A (3 1 , 2 — 4, A (31,3 = a;,
A (32,0) — pc, A (32, = w, A (32,2 = w, A (32,3 = w,
A)(33,0) — pc, A (33, — 5, A (33,2 — 6, A (33,3 = a;,
A (34,0) = pc, A (34, = w, A (34,2 = CJ, A (34,3 = w,
A (35,0) = pc, A (35, — 7, A (35,2 = 8, A (35,3 = CJ,
A (36,0) = pc,
A(pc, 1) — pc

A (36, = w, A (36,2 = v, A (36,3 —

D elay Function Transformation (£)

The delay functions are transformed such that for i = 1 , . . . , 36 and j = 0 , . . . , 3:

î,j,o(̂ 3 5̂ *̂) ̂ 1

and the new delay function for the program counter modules is created as:

*̂ pC,0,o(̂ 5 *̂) ̂ f

Initial State Equation Transformation

The transformed Initial State equations for the Form 1 abstract dSCA are a copy of

the SCA Initial State equations with the addition of an Initial State equations for the

SCA TO A B ST R A C T dSCA 207

programme counter. The resultant Initial State equations are therefore given as:

l/2(0, a, x) = true
V5 (0, a, x) = true
14(0, a, x) ■ down

l/3(0, a, x) = stay
Vq(0 , a, a?) = /a/se
1/9(0, a, x) = up

Vi(0, a, a:) = stay
E4(0, a, x) = up
VV(0, a, x) = false
Vio(0,a,x)
Vi3(0,a,x
Vi6(0,a,x
I/i9(0 , a, x
1/22(0, a, x
1/25(0, a, x
l/28(0,a,x
1/31(0, a, x
1/34(0, a, x
hjDc(0 , x

S ta te T ran s itio n E q u a tio n T ran sfo rm atio n

Transforming the State Transition equations commences with a call to the CreateSTVFs

operation:

) = true l/n(0 , a, x = true 1/12(0 , a, x = /a/se
) — false l/l4(0, fl,X - false l/i5(0 , a, x = true
) = false l/i7(0, a, x = 90 Vi8(0 ,a,x = true
) = o V2o(0, a, x = true l/2i(0, a, x = 0
) = false l/23(0,a,x = false 1/24(0 , a, x = false
) — false l/26(0,a,x — false 1/27(0, a, x = false
) = false V29(0, a, x = 0 E30(0, a, x = 0
) = 0 1/32(0, a, x = 0 1/33(0, a, x = 0

) = 0 V35(0, a, x = 0 l/36(0,a,x = 0

) = 0

/

CreateSTV Fs(Source.SC A) = B ST s

GetEqIV (Source.SC A) , \

Createj3s (GetpOps(SourceJSCA)) ,

Createds (Get'yOps(Source_SCA)) ,

 ̂ Createds (GetSOps(SourceSCA)) , y

where the last three arguments to the call to the B S T s operations are the lists ob

tained above and the first argument is the list of State Transition Equations extracted

from the SCA algebraic specification.

Consider the call to B S T 5 , this will initially result in a recursive call to itself as

follows:
/ , X \ / eqs,

 ̂ (£ S T (e ,/3s ,7 s,£s), []),

B ST s 3s . = B ST s ‘

^ (e,egs), ^

/?s,

7s,

(55

\

/?S,

7s,

<5s

SCA TO A B ST R A C T dSCA

where e is the State Transition equation:

Vi(t + 1 , a, x) = c o n d u i t , a, x), V$(t, a, x), a, x))

The call to B S T within this definition is as follows:

t RetTerm (e,l) ,

((m 1 = 0 ?
/ e \

B S T 0s,
7 5 ,

I

= CreateVF
cond

V

rewire

^ RetTerm(e, 2), ^

new V F T erm ,

0s,

i s ,

\ null

which can be rewritten as:

B ST

' e ,
0 S ,

75,

/

= CreateVF

(Vi(* + l ,a ,x) ,

^ (Vpc{t, a, x) = 0 ,
(

cond

1 ,
0s,

7 5 ,

null

cond rewire

(V2{t,a,x), ̂

V3(t,a ,x),

\ V4(t,a ,x) J

SCA TO A B ST R A C T dSCA 209

the call to rewire is simplified as:

/ / V2 \ \

rewire

cond

1 ,
/3s,

7 s,

5s

V3{t,a,x),

\ V 4{t,a,x) j
= cond

^ V2(t,a ,x), \

V3(t,a ,x),

\ v 4(t,a ,x) j

/

and therefore the call to BST can be rewritten as:

/

/ e , \

B S T Ps,

7 s)

v 55 /

= CreateVF

Vi(i + l,a,z),
/ /

cond

Vpc(tj CL, 3?) — 0,

(V2(t,a ,x),]

cond V3(t,a ,x),

\ V4(t,a ,x) j

null

finally resulting in:

/

Vi(t + 1, a, a;) = cond

Vpc(t,a ,x) = 0,

cond

null

(V ^ t .a .x) , \

V3(t,a ,x),

\ V4(t,a ,x) j

or written in a more natural form:

V\(t + l ,a , x) = c<md(V2(t,a,x)> V3(t ,a,x), V4(tya, x)) if Vpc(t, a,x) = 0

Finally, the recursive part of the B S T s operation produces the State Transition

equation for the program counter of (written in a more natural form):

Vi(t + 1, a, x) = mod(add(Vpc(t , a, re), 1), 1) if Vpc(t, a, x) = 0

SCA TO A B ST R A C T dSCA 210

The complete list of transformed, and simplified, State Transition equations are

as follows:

V\(t + 1 , a, x) = cond(V2 (t, a, x), V3 (t, a, x), V^t, a, x)) if Vpc(t, a, x) = 0 ,
V2 (t + 1 , a , x) = or(V5(t , a, x), V^t, a, x)) if Vpc(t, a, x) = 0,
V3(t + 1, a, x) = start if Vpc(t, a, x) = 0,
V4 (t + 1, a, x) = cond(Vj{k, a, #), Vs(t, a, x), Vg(t, a, x)) if Vpc(t, a, x) = 0 ,
V^(t + 1 , a, x) = and(Vi0 (t, a, x), VTi(t, a, x)) if Vpc(t, a, x) = 0,
V^(t + 1 , a, x) = and(Vi2 (t, a, x), V13(t, a, x)) if Vpc(t, a, x) = 0 ,
V^t + 1 , a, x) = and(Vi4 (t, a, x), Vxs(t, a, x)) if Vpc(t, a, x) = 0,
V3(t + 1, a, x) = down if Vpc(t, a, x) = 0,
Vg(t + 1 , a, x) = up if Vpc(t, a, x) = 0,
Vio(t + 1, a, x) = eq(V2 2 (t, a ,x), Vi6 (t ,a ,x)) if Vpc(t,a ,x) = 0,
Vii(t + 1 , a, x) = eq(a9(t), Vi7 (t, a, x)) if Vpc(t, a, x) = 0,
Vi2(t + 1, a, x) = eq(V2 2 {t, a, a:), Fi8 (t, a, a;)) if Vpc(t, a, x) = 0,
Vi3(t + 1, a, x) = eg(a9 (t), Vi9 (t, a, x)) if Vpc(t, a, x) = 0,
Vi4(t + 1, a, ar) = eq(V2 2 (t, a, x), V2o(t, ®)) if Vpc(t, a, x) = 0 ,
Vi5 (t + 1, a, x) = 0 i (a 9 (t), V2i(i, a, ar)) if Vpc(t, a, x) = 0,
Vi6 (t + 1, a, x) = /a /s e if Vpc(t, a, x) = 0,
VT7(t + 1, a, x) = 90 if Vpc(t, a,x) = 0 ,
Vis(t + 1, a, x) = true if Vpc(t, a, x) = 0,
Vi9(t + l , a ,x) = 0 if Vpc(t, a, x) = 0 ,
V2o(t + 1 , a, x) = true if Vpc(t, a, x) = 0 ,
V2i (t + l , a ,x) = 0 if Vpc(t,a, x) = 0,
V2 2 (t + 1, a, x) = or(Vr23 (t, a, x), F24(i, s)) if Vpc(t, a, x) = 0 ,
V23(t + 1, a, x) = or(Vr25(t, a, x), V ^ t , a, a:)) if Vpc(t, a, x) = 0,
V24(t + 1 , a, x) = or(V27 (t, a, x), F28(t, a, x)) if Vpc(t,a ,x) = 0,
V25(t + 1 , a, x) = gt(V2g{t, a, x), V ^ t , a, x)) if Vpc(t, a, x) = 0 ,
V26(t + 1, a, x) = pt(V3i(t, a ,x) , V32(t, a ,x)) if V pc(t, a,x) = 0,
F27(t + 1 , a, x) = gt(V3 3 (t, a, x), V̂ 4 (t, a, a;)) if V pc(t, a, x) = 0 ,
F28(t + 1, a, x) = gt(V33(t, a, x), V36 (t, a, x)) if Vpc(t, a, x) = 0,
F29(t + 1, a, x) = sub(a i(t) , a2(t)) if Vpc(t, a, x) = 0 ,
V3o(t + 1, a, x) — 0 if Vpc(t, a,x) = 0,
V31 (t + l , a ,x) = sub(a3(t), a4(t)) if Vpc(t, a,x) = 0,
V3 2 (t + l , a ,x) = 0 if Vpc(t, a, x) = 0,
V 3 3 (t + 1, a, ar) = sub(a5(t) , a6(t)) if Vpc(t, a, x) = 0,
V34(t + l , a , x) = 0 if Vpc(t, a,x) — 0,
V35(t + 1, a, x) = su&(a7(t) ,a8(t)) if Vpc(t,a ,x) = 0,
V36(t + l , a ,x) = 0 if Vpc(t, a, x) = 0,
Vpc(t + 1, a, x) = mod(add(Vpc(t , a, x), 1), 1) if Vpc(t, a, x) = 0

The complete Form 1 abstract dSCA created from the transformation of the SCA

at Appendix B is shown in Appendix C.

SCA TO A B ST R A C T dSCA 211

10.4 Correctness of Example

The generated Form 1 abstract dSCA created from transforming the SCA can be

seen to be the same as the Form 1 abstract dSCA given in Chapter 8.3 - the semantic

proof of correctness given in that chapter shows that this abstract dSCA is a correct

implementation of a solution to the GRCP.

The notion that the global behaviour of SCA abstracts that of the abstract form

1 dSCA is now formalised. Let Varc and Vtgt be the global state functions determined

from the channel state functions of these 2 SCAs.

C o n jec tu re It is believed that the following diagram commutes:

Ttgt x [Ttgt - A tgt\,n‘°' x A ?.?*
V,tg t A C h t g t

tg t

Startx x [Tsrc -► A src\Insrc x A C h g r c
STC

V sr c * c hAL/uarc
STC

We have seen from the definition of the correctness of transformation tha t this is

true. Given the construction of appropriate mappings for:

• spaces;

• clocks;

• global states; and

• input streams.

We rely on Theorem 10.2.1 for proof of correctness. A quick examination of the

specifications for the SCA and Form 1 abstract dSCA in the appendices demonstrates

the theorem holds.

SCA TO A B ST R A C T dSCA 212

10.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping a SCA to an

abstract dSCA with a defining shape that represents the SCA. Using the SCA solution

to the GRC Problem, the transformation has been demonstrated by producing an

abstract dSCA representation of the GRC Problem.

10.6 Sources

The definition of the transformation and the walk through of the example is all my

own work.

Chapter 11

A bstract dSCA to abstract dSCA

Purpose of Transformation

To transform an abstract dSCA with a defining shape

o f V = (ni, mi) to an abstract dSCA with defining

shape V = (n2, m 2) using a mapping function H

which shows how operations at program counter value m \

on module n\ in Network Ni are transposed to

execute at program counter value m 2 on module n2

in Network N 2.

11.1 Process

This chapter highlights the key points in the process of transforming an abstract

dSCA with defining shape V = to an abstract dSCA with an defining shape

of V = {n2 ,m 2). Full details of this transformation can be found in G.

Transformations are required for the following equation lists within a supplied

abstract SCA algebraic specification are covered:

1. Wiring Functions;

213

A B ST R A C T DSCA TO A B ST R A C T DSCA 214

2. Delay Functions;

3. Initial State Equations; and

4. State Transition Equations.

After discussing the necessary transformations they are used to transform the

abstract dSCA produced in the last chapter to an abstract dSCA with defining shape

of V = (1, k). Subsequently the correctness of the transformed Form 2 abstract dSCA

is discussed.

11.1.1 Prerequisites

• The source network, Ni has hi > 1 modules and M a xni > 0 component speci

fications in its modules definitions;

• The object network, N 2 has k2 > 1 modules and M a xn2 > 0 component speci

fications in its modules definitions;

• The defining size of N 2 must be equal to or greater than the defining size of ATl5

i.e. A (N 2) > A(l);

• There exists the total mapping, E given as:

a . x Npci ► N&2 ^ ^pc2

that maps modules and execution orders of Ni to modules and execution orders

of A2; and

• There exists the inverse mapping H-1, given as:

E" 1 : N*2 x NpC2 Nkl x Npci

(Note that this mapping may not be total, since some functional components of

N 2 may be the undefined operation used to ensure synchronicity of the network).

A B ST R A C T DSCA TO A B ST R A C T DSCA 215

11.1.2 M apping Function

The provision of a mapping function is a fundamental prerequisite before this trans

formation can occur. Its purpose is to provide a total mapping between when a

particular function executed on a particular module in the source network and what

module and when it will execute on the target network. It is a simple list of equations

containing two pairs:

(iu pcjuali) = (i2,pcjual2)

and must be defined for all values R € N-k\ of the A>module source abstract dSCA

and pcjuali € {0, . . . , M axni — 1}. The mapping is denoted as E, and has the (partial)

inverse S -1 . There is no need to map the program counter module.

11.1.3 W iring Functions

Unlike the previous transformation, wiring functions will alter values radically to

provide the dynamic retiming and structure necessary to support a re-shaped abstract

dSCA. The process of generating the wiring functions is quite simplistic and so this

thesis will restrict itself to an informal demonstration (a more formal description is

given in G).

7 -w iring Operations

Consider the source abstract dSCA 7 -wiring function:

'Jpcjuali (A 5 j l)

the corresponding target abstract dSCA 7 -wiring function will be:

'ypcjuafo (^2) J2) = %2

where j i = j 2l and E (ii,pcjvali) = (z2 ,pc_uaZ2)

A B ST R A C T DSCA TO A B ST R A C T DSCA 216

The informal process of generating target abstract dSCA 7 -wiring functions is to

walk the structure of the target architecture creating wiring functions for all modules

at all values of the program counter for the number of inputs to each module.

• For each module mi where i € Nk2 and i > 0:

— For each pc.val where pc.val € {0, . . . , M arr^ — 1}:

* For the oth argument of each module create:

7pc-«ai(*.°) = M
* For each argument where j E {1, . . . , n 2(i)} create a new 7 -wiring

function

, J Value fro m source if j) J,
^ fpv .va l (b J J | 7- r 1 •[U otherwise

with the intended meaning that the undefined connection is given if

the inverse mapping is not defined, otherwise the appropriate value

from the source network is used.

• For module 0 create M a x ^2 7 -wiring functions wiring ra0 back to itself.

/5-wiring Operations

Consider the source abstract dSCA /3-wiring function:

P p c -v a l i (^ 1 j j l) —

the corresponding target abstract dSCA /3-wiring function will be:

P p c .v a l2 (2̂? J 2) ^2

where j i = j’2 and E (ii,pc.vali) = (i2 ,pc-val2) The informal process of generating

target abstract dSCA /3-wiring functions is to walk the structure of the target archi

tecture creating wiring functions for all modules at all values of the program counter

for the number of inputs to each module:

A B ST R A C T DSCA TO A B ST R A C T DSCA 217

• For each module rrii where i £ N/-2:

— For each pc.val £ {0 , . . . , M a x ^ 2 — 1}:

* For the oth argument of each module create:

P'pc-va i M) = M

* For each argument where j £ {1, . . . , n 2 (z)} create a new (3-wiring

function

, J Value fro m source i fH_1(i , j) j
fipv-vaiyi'1) J) S .

[uj otherwise

with the intended meaning that the undefined index is given if the

inverse mapping is not defined, otherwise the appropriate value from

the source network is used.

• For module 0 create Max^j (3-wiring functions to wire mo back to itself.

11.1.4 Delay Functions

The delay functions for the source and target abstract dSCA are of the same format,

however the derivation of the delay is more complicated than the simple generation of

the wiring functions, and thus a more detailed explanation of the derivation is given.

In both networks, it is the intention of the delay function to indicate the time

delay between now and the time the result was calculated. In the source abstract

dSCA this is given by the defined delay function. For the object abstract dSCA this

value needs to be derived from the data available.

Informally, target abstract dSCA functions are produced as follows:

• For each module m* where i £ N^2:

— For each pc.val £ {0 , . . . , Maxjy2 — 1}:

A B ST R A C T DSCA TO A B ST R A C T DSCA 218

* We define, for the 0th argument, the unit delay:

* For each argument where j E {1, . . . , 712(2)} create a new 5-wiring

function

t — newjvalue if
(S 1(i,pcjval)) } A

8 p c .v a l (A J) (A p c jv a l (A J) i W)

otherwise

• For module 0 create M a x ^ delay operations of unit length delay to represent

the wiring of ttiq back to itself.

The usual recursive functions are defined to walk the structure of the new abstract

dSCA, but of particular interest is how the creation of a new delta function for

particular values of pcjual, i and j . The B6 operation, which is responsible for

creating the new delay function for the argjvalth (j th) argument of module mod.val

at program counter pcjual, is called and it is given as:

B8 : N 3 x SdSCAEqList x 7 dSCAEqList x /3dSCAEqListx

N 2 x M apEqList2 —► 5dSCAEquation

To provide a definition of B6 the new value of the delay needs to be generated from

the existing knowledge of the two abstract dSCAs. To understand what the delay

should be, an understanding of what the module links to is required. If the wiring is

to a source, or is unconnected, then the unit delay is generated. This case is identified

by considering the target abstract dSCA /3-wiring functions, thus the first definition

A B ST R A C T DSCA TO A B STR A C T DSCA 219

is given as:

B5

where:

(modjval, ^

argjual,

pc.val,

oldSs

old'ys,

new(3s,

M a x ^ 0,

Max*#,
C -l

1 5

(

= BuildS

(modjval, ̂

argjval,

pc.val,

i - i /

i f condi

condi = RetT erm

\

GetEl

V

t old'ys, N

pc.val,

modjval,

^ arg.val J

In the situation where this condition is not true, i.e. the wiring under consideration

is to another module, then the value of the new delay function needs to be calculated.

To calculate the new value, the following process is followed:

1 . Find the module and program counter value in the source abstract dSCA that

relates to the current module and program counter value in the target abstract

dSCA, using the inverse mapping function;

2. Identify the module in the source abstract dSCA that produces the value we

are interested in from the /5-wiring function;

3. Identify the program counter value in the source abstract dSCA that the value

we are interested in is calculated from the delay functions;

A B ST R A C T DSCA TO A B ST R A C T DSCA 220

4. Find the module and program counter in the target dSCA that produces the

value we are interested in, using the mapping function; and

5. Calculate the delay between the current value of the program counter and the

program counter value from (4).

The module and program counter in the source abstract dSCA is given directly

by the inverse mapping function:

S _1(mod_ua/2 ,pc_ua/2) = (modjualiypcjvali)

The position of arguments in the functional specification cannot change in the trans

formation. Thus if arg.val is the argument number under consideration in the target

abstract dSCA, then it will also be in the source abstract dSCA. This fact and the

/^-wiring function in the source abstract dSCA are used to determine the module that

produces the value for that argument, in the source SCA:

modjual[es — ^ ^ (m o d -v a l i , arg.val)

Using the delay function from the source dSCA, the value of the program counter

that the result was calculated at can be determined. It will be the current source

program counter value minus the delay value for this argument modulus the value of

Maxjsr in the source abstract dSCA:

p c . v a l = (pc.vak - (t - mod M a x Nl

It is now possible to determine the value of the program counter in the target abstract

dSCA by applying the mapping function to the values pcjualles just determined, and

modjval^ 8, and taking the second element of the returned tuple:

pc-.valr2 S = snd(E(mod-val[es ,pcjval[es))

A B ST R A C T DSCA TO A B ST R A C T DSCA 221

The value of the delay can be worked out from the difference between the program

counter in the target abstract dSCA now, and the value of pc.valr2es\

(pc.val — p c .v a l^) mod M ax2N

BS is defined for this case as:

(mod.val, \

arg.val,

pc.val,

oldSs

old^ys,

old/3s,

Max*Jc,

M ax4/ ,

B8

■=■-1

= BuildS

(mod.val, ^

arg.val,

pc.val,

 ̂ t — ((pc.val — pc.vaTtgl) mod M a x ^) j

/
and:

pc.valrtgl = snd

{ (
R etT erm

/s.
Get£Z mod.valTi ,

with:

mod.valTSrSc = f s t R e tT erm GetEl

p c .v a lrsersc J / /

old(3s , \ \ \
pC.Val sr c) 2m o d .v a lsrc5 j z

a rg .v a l J J
and:

pc.valrSjSc = pc.val src — t — GetEl

(oldSs, ^ ^

mod.val src,

arg.val,

^ pC.ValSrc J J

mod M a xStfC

A B ST R A C T DSCA TO A B ST R A C T DSCA 222

where mod.valsrc and pc.valsrc are:

/
pc.valsrc = snd R e tT erm

(\

mod.valsrc = f s t

(
R etT erm

V

GetEl

/

\
mod.val, ,2

^ pc.val y j J

(s-1. \ \ \
GetEl

\
mod.val, ,2

 ̂ pc.val J j /

11.1.5 Initial State Equations

Consider the target abstract dSCA module m*, its Initial State equations, will be of

the form:
Vi(0,a,x) = xifi

Vi(0,a,x) = x iti

x) ^i,MaxN2— 1

where each value Xî pc_vai, where pc.val = 0 , 1 , , M a x ^ 2 — 1 , will either be the

undefined element, or will come from some particular module and value of the source

abstract dSCA program counter. Values of the source program counter and module

are given directly from the mapping function, S.

Informally, the set of Initial State equations is created as follows:

• For each module mi where i £ N^2 and i > 0:

— For each pc.val £ {0, . . . , M a x ^ 2 — 1 } create a new Initial State equation:

new.value if H- 1(i,pc)) j
Vi(pc_val, a, x) =

u otherwise

For ra0, the program counter:

A B ST R A C T DSCA TO A B ST R A C T DSCA 223

— For each pcjual € {0 , . . . , M a x ^ 2 — 1} create a new Initial State equation:

Vo(pcjual,a,x) = (pc.val + 1) mod M a x ^2

The usual set of operations to perform a recursive walk of the new structure are

given, resulting in a call to the B IV pc operation, where the key work is done in this

transformation component. It is defined by two cases, the first representing the case

where the program counter is greater than zero and the second case is where the

program counter is zero.

The first case is defined for two situations, where the inverse mapping is defined

(in which case a new equation is created from values in the source abstract dSCA)

and where it is not (in which case an equation is created that returns the undefined

value u in the appropriate parts of the initial state vector):

 ̂ pc — 1

h

\

B IV pc newjval

h
B IV p c oeqs, = <

neqs,

 ̂ pc — 1 \

E" ' 7 B IV pc B u ild IV pc, ,

\ u J
y neqs /

V /

where:

newjval = B u ild IV

RetTerm (GetEl (oeqs, RetTerm(GetEl(E 1,i,pc), 2)) , 2) y

A B ST R A C T DSCA TO A B ST R A C T DSCA 224

The second case of B IV p c , where the program counter is zero is the simple case

of creating the equation for that value of the program counter and appending it to

the list of already generated Initial State equations:

1 0 , N

h
B IV pc oeqs,

neqs,

\ H_1

f

B uild IV

(

RetT erm
[GetEl(oeqs,E 1(z, 0)),

V
/

y neqs

11.1.6 State Transition Equations

Consider the target abstract dSCA module ra*, its State Transition equations, will be

of the form:

f /*,<)(■••) if pc = 0

Vi(t + l,a,x) = < ...
[f i , M a x N ~ i (- • ■) i f P C = M a x N - 1

where each functional specification component } i , p c _ va h f°r values of pc.val =

0 , 1 , . . . , MaxN — 1 , will either be the undefined element, or will be the component

specification extracted from some particular module and value of the source abstract

dSCA program counter in the source abstract dSCA. In a similar manner to creating

the Initial State equations, values of the program counter and module number in the

source abstract dSCA for values in the target abstract dSCA are provided by the

inverse mapping function, H-1.

Informally, the set of State Transition equations is created as follows:

• For each module where i E N^2 and i > 0:

— For each pc.val E {0, . . . , M a x ^ 2 — 1} in abstract dSCA extract and rewire

the relevant functional specifications from the source abstract dSCA, if one

exists, otherwise use the undefined constant u.

A B ST R A C T DSCA TO A B ST R A C T DSCA 225

— Create a new State Transition equation from the previous result.

• For mo, the program counter:

— Create the program counter State Transition equation:

Imod(add(Vpc(t, a, x), 1), Maxat) if Vpc(t — 1, a, x) = 0

:

mod(add(Vpc(t, a, x), 1), M a x ^) :

The pattern for transformation is a familiar one of recursion over the structure

of the target abstract dSCA. There are a couple of key functions that need to be

explained in some more detail.

Consider that the VFOPDef term of a Value Function equation for an abstract

dSCA is of the form:

Ao(. • •) if PC = 0fi(pc , . . .) = { .k
if pc = 1

fi,MaxN—1 (■ • •) ^ PC CLXfy 1

It has already been noted that this is a convenient syntactic way of writing the

conditional. If written according to the machine algebra, M^, it would appear as:

(pc — 0 , \

/t,o(- • •)>
\

fi(jpc, . . .) = cond

cond

' pc = 1 ,

A i (••■)>
/

V
cond

\

(pc = M a x x — 1 , \

1 (> • •)

null J J / J
It is this second form that is used to select the component specification based on a

particular value of the program counter. To do so, the operation GetFn is introduced:

GetFn : V F O p D efT erm x N —> Term

A B ST R A C T DSCA TO A B ST R A C T DSCA 226

and is defined recursively over the structure of the VFOpDef term definition:

To generate a target abstract dSCA State Transition equation for a module a list

of the appropriate VFOpDef Terms, selected from the source abstract dSCA by means

of the inverse mapping function S “ , the GetEl operation for STEqList specifications

and the GetFn operation defined above are used. Consider module mi in the target

abstract dSCA, at program counter value pc.val it is defined to be executing either

the:

1. VFOpDef term in module fst(fErl (i, pc.val)) at the source program counter

value sndi^E-1^ , pc.val)) in the source abstract dSCA, if the mapping is defined;

or

2 . the output u, if the mapping is undefined.

The N S T operation is introduced to determine which case is under consideration,

and it is given as:

and recurses over the program counter values to produce a list of VFOpDef terms that

GetFn(cond(a,b:c):0) = b

GetFn(cond(a,b,c),pcreq) = GetFn(c,pcreq — 1)

N S T : N 2 x d S C A S T V EqList2 x M apEqList -► V F O p D ef L ist

are used for the definition of the State Transition equation for a particular module.

It is defined:

N S T

t pc.val — 1 ,

mod.val,

/ / oeqs,

= N S T neqs, Extract mod.val arc,

oeqs,
■=■-1

\ \ pC.Valsrc J J
oeqs,

/

A B ST R A C T DSCA TO A B STR A C T DSCA 227

where:

mod.valsrc = f s t RetT erm

(

GetEl

and:

pcjvalsrc = snd

((

Re tT erm

\

GetEl

\

/ = - i' 5
mod.val,

y pc.val

(

\ \

,2

I)

\ \ \

mod.val,

\ pc.val I

The Extract function used in the above definition is given as:

,2

Extract : dSC A S T V E q L is t x N 2 -> V F O pD efT erm

and is defined as:

/ oeas. \ ,
I GetEl(oeqs, mod.val),

{ pc.val

oeqs, 1

Extract mod.val, = GetFn

^ pc.val

The second case of the N S T operation is defined as returning the list of VFOpDef

terms constructed by appending the value for the program counter at 0 to those

VFOpDef terms already obtained.

To complete the generation of a State Transition equation for module m mo(i_vai

in the target dSCA the list of rewired VFOpDef terms must be turned into the

component specification. This is done using the N ew S T operation, given as:

New S T : V F O pD ef List x N —> V F O p D ef

which takes the list of VFOpDef terms (which has the VFOpDef term corresponding

to pc = Maxjv — 1 at the head and the VFOpDef term corresponding to pc = 0 at

the end) and recurses down the list producing the appropriate target dSCA VFOpDef

term. For the recursive case it is defined as:

 ̂ (e,es), \ (es, ^

N e w S T pc.val, = N ew S T pc.val — I,

y neqs y y cond(Vpc(t,a ,x) = pc.val, e, neqs) J

A B ST R A C T DSCA TO A B ST R A C T DSCA 228

and the base case is defined:

N ew S T
t e , ^

pc.val,

y neqs J

= cond(Vpc(t, a, x) = pc.val, e, neqs)

11.1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new abstract

dSCA can be created by transforming the source abstract dSCA. The Create.adSCA

operation is provided to do this, it is given as:

T ra n s fo rm : adSCAAlgebra x N 2 x M apEqList2 —► adSCAAlgebra

The operation takes the source abstract dSCA and the defining shape of the

target abstract dSCA together with the mapping and inverse mapping functions. It

is defined for

VFOp =

SOp =

(V0 : T x M A x M \ —> M A, \

* 5

\ V k - . T x M l x M kA ^ M A)

(do,0,0 : T x M a x M \ —»T, ^

• 5

^ Si j f i : T x M \ x M \ ^ T y

and:
j = G et.M axA(Src.SCA)

n = num .inp(Src.SC A)
as:

A B ST R A C T DSCA TO A B ST R A C T DSCA 229

/ G etN am e{SC A src)
adSCAAlgebra,

VFOp,
7 0 : N 2 —> {M, 5, U }:
I30 : N 2 ^ N,
SOp,

(S C A src, \
k.

T ra n s fo rm

(S C A src,
k,
M ax]\[,

\ H- - I

= CreateadSC A

Create'js

Createps

CreateSs

M ax n ,
—-l
S C A btc, \S C A src
k,
Max^i
E_1 . SC A src, \
k,
Max Mi

\ r x /

C rea te lV s

CreateSTs

S C A ,rc, \
k,
MaxM,

S C A 3rc, \
k,
MaxM,
■=■-1

V / J
It is not intended to bring together all the operations defined in this chapter into

a written down specification in this thesis for reasons of brevity. If this was to be

performed, then it would appear similar to the algebraic specification provided for

the SCA to abstract dSCA transformation in Appendix F.

11.2 Correctness
T h e o rem 1 1 .2 .1 . The transformation of a Form 1 abstract dSCA to a Form 2 ab
stract dSCA preserves correctness.

The Form 1 abstract dSCA and transformed result, the Form 2 abstract dSCA,

A B ST R A C T DSCA TO A B ST R A C T DSCA 230

exist in a hierarchy and it is possible to show that the transformation is correct by

considering Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded

Systems.

Let NdscAi be a Nj£SCA1 > 1 module source Forml abstract dSCA network with

ndscAi ^ q sources processing data from a set M ^ CA1 against a global clock T dSCA1

Let NdscA2 be a NdSCA2 > 1 module Form 2 abstract dSCA network with ndSCA2 >

0 sources processing data from a set M ^SCA2 against a global clock T dSCA2 as gener

ated from NdscAi nsing the abstract dSCA to abstract dSCA transformation.

Poole, Holden and Tucker claimed that if it was possible to generate appropriate

mappings and show the following diagram commutes then the two spatially expanded

systems under consideration were correct with respect to each other.

T dsCAi X [Tds c A i - M AdSCJ ™ ° “ x

4>

 ̂ iSCAl
1 AdSCAl

<t>

Start* x [TdsCA2 M AdSC J ' " — x m £ * -c

Mappings are needed for four areas:

A2
A-d,SCA2

spaces;

• clocks;

global states; and

input streams.

The mappings are defined as follows:

Spaces. Spaces (modules) in the two networks differ, this is the point of the trans

formation, however, for modules m* where i e NjfSCA2 the inverse mapping function

A B ST R A C T DSCA TO A B ST R A C T DSCA 231

provides the necessary details. Thus it is appropriate to define the respacing operation

^ ^NdSCA2 * ^ MaXNdSCA2 * ^NdSCAl * ^ MaxNdSCA1 aS-

7r(i,pc) = S_1(z,pc)
Clocks. There exists a timing abstraction between the networks which is clearly given

by the relationship between the values M a x ^ dSCA2 and M a x ^ dSCA1. The retiming

between clocks T dSCA2 and T dSCAl is the retiming A : T SCA —> T dSCA, where for

t € T dSCA2 it can be appropriately defined as:

V ' (MaxNdsnAA
- \ MaXNdSCAl J -

Input Streams. There are no data abstractions required for inputs since these are

not altered by the transformation. However there is a temporal abstraction, which

matches the above retiming. Thus is it appropriate to define the input stream ab-

straction 9 : [TdsCM - M AdscJ nSCA2 - [TdsCA i _ M AdsCA1f SCM as the operation:

9 { a) (t) =a(A(t))

= a(s)

Global States. It is defined in the transformation that the carrier data set for source

abstract dSCA and target abstract dSCA are the same, M^. Thus there is no data

abstraction required for consideration.

There is though an alterations of channels between the two modules based on the

inverse mapping function identified. We therefore consider the state abstraction map

(f) : M 2 ~ * ^ a ^ c a i 1 ôr st at es s £ MAdscA2 2 defined as follows, for

i E NdkSCA2:

= s(i)

C o n jec tu re Given this set of mappings it is believed that the diagram above

commutes, and proof of such is done in a similar manner as for Theorem 10.2.1.

A B ST R A C T DSCA TO A B ST R A C T DSCA 232

11.3 Generalised Railroad Crossing Problem as a
single processor Abstract dSCA

Now this thesis will consider the transformation of the (source) Form 1 abstract dSCA

from the previous chapter, which has a defining shape of V = (k, 1), to the (target)

Form 2 abstract dSCA with a defining shape of V = (1, k). The following example is

based on the full definition of transformation given in Appendix G, as highlighted in

the previous section.

Before walking through the processes of transformation, the prerequisites are re

viewed:

• the source abstract dSCA has 36 + 1 modules;

• each module in the source abstract dSCA has M a x ŝ ° = 1 component specifi

cations;

• the target abstract dSCA has 1 + 1 modules;

• each module in the target abstract dSCA has M a x^ = 36 component specifi

cations;

• the defining size of the source abstract dSCA is A src = 36; and

• the defining size of the target abstract dSCA is A src = 36, thus A tg t > A s r c .

Thus, with the exception of a mapping between the source and target abstract

dSCAs, the prerequisites are met. There are many possibilities for producing a map

ping function, and of interest is the development of an automatic method for produc

ing a mapping which results in a cyclic consistent abstract dSCA.

11.3.1 A utom ating the Generation of the M apping Function

Recall the definition of a cycle consistent abstract dSCA:

A B ST R A C T DSCA TO A B ST R A C T DSCA 233

“If for all values of the program counter it can be shown that functions

that calculate inputs to other modules execute at program counter values

greater than the value of the program counter when the module that uses

those input values executes, then the abstract dSCA is said to be cycle

consistent”

The generation of a mapping between a source abstract dSCA with a defining

shape of V = (fc, 1) to a target abstract dSCA with a defining shape of V = (1 ,k)

can be automated, if the following conditions are true:

• Vout contains only one module;

• M a x ŝ ° = 1;

• There are no loops in the network; and

• The modules are (re-)numbered in a breadth first manner from Vout.

Figure 11.1 shows an abstract dSCA network that meets such conditions.

Figure 11.1: Numbered abstract dSCA network

The generation of the mapping for such a network is the simple process of walking

the network in a breadth first manner. It can be seen by inspecting Figure 11.1 that an

A B ST R A C T DSCA TO A B ST R A C T DSCA 234

algorithm of this type ensures that no module executes after the modules generating

its inputs have executed - thus the resultant abstract dSCA is cycle consistent.

Using such an algorithm on the source abstract dSCA implementation of the

GRCP, generates the following mapping function definition:

E(1,0) = 1,0) 3(10,0) = 1,9) 3(19,0) = 1,18) 5(28,0) = 1,27)
3(2,0) = 1,1) 3(11,0) = 1, 10) 3(20,0) = 1,19) 3(29,0) = 1,28)
3(3 ,0) = 1,2) 3(12,0) = 1,11) 3(21,0) = 1,20) 3(30,0) = 1,29)
3(4 ,0) = 1,3) 3(13,0) = 1,12) 3(22,0) = 1,21) 3(31,0) = 1,30)
3(5 ,0) = 1,4) 3(14,0) = 1,13) 3(23,0) = 1,22) 3(32,0) = 1,31)
3(6 ,0) = 1,5) 3(15,0) = 1,14) 3(24,0) = 1,23) 3(33,0) = 1,32)
3(7 ,0) = 1,6) 3(16,0) = 1,15) 3(25,0) = 1,24) 3(34,0) = 1,33)
3(8,0) = 1,7) 3(17,0) = 1,16) 3(26,0) = 1,25) 5(35,0) = 1,34)
5(9,0) = 1,8) 3(18,0) = 1,17) 5(27, 0) = 1,26) 3(36,0) = 1,35)

The corresponding inverse mapping function, S is subsequently defined as:

3 -1 (l,0) = (1,0) S - 1(l,9) == (10,0) S - ^ U S) = (19,0) 3 —1 (1,27) = (28,0)
3 —1 (1,1) = (2,0) s - H u o) = (11,0) S -^ l .W) = (20,0) S - H l ^) = (29,0)
5 —1 (1,2) = (3,0) 3 _1(1,11) = (12,0) 3 -1 (l,20) = (21,0) 3 -1 (l,29) = (30,0)

[I] 1 h“* h—1 to II 0 S-H l.12) = (13,0) 3 -1 (l, 21) = (22,0) 3 -1 (l, 30) = (31,0)
5 _1(1,4) = (5,0) s - ^ i . w) = (14,0) 3 -1 (l, 22) = (23,0) S -H i.S l) = (32,0)
5 -1 (l, 5) = (6,0) s - ^ i . u) = (15,0) 3 -1 (l, 23) = (24,0) 3 -1 (l, 32) = (33,0)
3 -1 (l,6) = (7,0) s - 'U .u i) = (16,0) 3 _1(1,24) = (25,0) S ^ l ^) = (34,0)
5 —1 (1,7) = (8,0) s - ^ u e) = (17,0) 3 _1(1,25) = (26,0) 3 - 1(l,34) = (35,0)
3 —1 (1,8) = (9,0) s - ^ i , ^) = (18,0) s - ^ M e) = (27,0) S - H l ^) = (36,0)

It is possible that there are other methods for producing cycle consistent dSCAs,

this is the only one that we have considered.

7 -wiring function

The target network has 1 + 1 modules and 36 component specifications for each

module. Each module except the program counter will have a maximum of 3 + 1

arguments. The Create^s operation will therefore be called as follows:

^ Source.SCA, ^

Create'ys
1 ,
36,

4,

\ “

A B ST R A C T DSCA TO A B ST R A C T DSCA 235

which would expand, according to its definition, to the call to B y s of:

i, N

Createys

^ Source.SC A , ^

1 ,
36,

4,

V s " 1

= B ys

G etys(SourceSCA) ,

D .
36,

4,
C-l

/

The right hand side of this definition will result in a recursive call to B y s as well as

a call to the Bypc operation. Considering the call to Bypc first, it can be seen below

that the value of M a xn is decremented by one in preparation for the recursive nature

of B^pc and are supplying the empty list for the new values of 7 -wiring functions to

be added to:

/ 0 , \
oldys,

1 3 5 , \ \

oldys,
oldys,

B ys
36,

4,

= B ys
Bypc

\
36,

4 ,

1 ,

4,
■3-1

A B ST R A C T DSCA TO A B ST R A C T DSCA 236

The B'ypc call expands as:

B jp c

(35, ^
old'ys,

0 ,
i,

4,
■=■-1

= B'ypc

(34,
old'ys,

< (3 ,

B'yarg

old'ys,

a ,
i,
35,

1 ,

4,
V E - 1 /

Taking a look at the call to the B'yarg operation, it can be seen to recurse over

all the arguments, argjval 6 {0,1, 2,3}, and it can be ascertained that:

7 w (e-H i,35))(/sf(“ H i. 35)), argjval) f

or written to remove the inverse mapping function:

7orc(36, argjval) T

these values are to be expected, since module 36 in the source abstract dSCA simply

provides a constant and has no inputs. The list of 7 -wiring functions returned for the

4 arguments of module 1 at pcjval = 35 are:

735(1) 3) = U,

735(1,2) = (7,

735(151) — U,
735(1 , 0) = M

A B ST R A C T DSCA TO A B ST R A C T DSCA 237

The recursive call to Build'ypc will expand to:

I 33,

old'ys,

B'ypc

(34,

old'ys,

f 735(1,3) = U, \
735(1,2) = U,

735(1 , 1) = u ,

^ 7 3 5 (1 , 0) = M)

1 ,
4,
3 - 1

\

= B'ypc

\

(\ \
old'ys,

B'yarg
1 ,
34,

V s - 1 /

735 (1 , 3) = ! / , ^

735 (1 , 2) = Cl,

735 (1 , 1) = £/,

735(1,0) = M)

1 ,
4,

V S - 1 J

The call to B'yarg in this case is more productive since S 1(l,34) = (35,0), and

module 35 in the source abstract dSCA is wired to two inputs. The expansion of the

B'yarg call is:

1 2 ,

B'yarg

(Z, \
old'ys,

new'ys,

1 ,
34,

V

= B'yarg

\
old'ys,

/ /

B'y

\
1 ,
3 4 ,

y s - 1

1 , N
3 ,

3 4 ,

old'ys,

2 - 1 /

\

neqs

A B ST R A C T DSCA TO A B ST R A C T DSCA 238

The first call to B'y will instigate the case where there is no corresponding 7 -wiring

function in the source abstract dSCA and so will produce a wiring to the undefined

module:

£ 7

\C ,

3 ,

34 ,

old'ys,

The recursive call to B'yarg will be:

= Buildry

< 73. N
1 ,
3,

/

B'yarg

(* , \
old'ys,

new'ys,

1 ,
34,

— 734(1? 3) — U

1 ,
old'ys,

< C ,

= B'yarg
B'y

V

V
1 ,
34,

2 ,

34,

old'ys,
c - i

neqs

/

This time the call to B'y will be the case where the mapping exists, and there is

a corresponding 7 -wiring function in the source abstract dSCA. In this situation # 7

A B ST R A C T DSCA TO A B ST R A C T DSCA 239

will expand as:

B'y

where:

and:

1 ,

2 ,

34,

old'ys,
■=■-1

\

= Build'y

734,

1 ,

2 ,

RetT erm

\

G e t E l

old'ys,

i'old,')

2 ,

y PCold, J

\ \

, 2

/

ioid — fs t(RetTerm (G etE l(E 1,1,34)), 2)

= f st(RetTerm(E~1 (1,34) = (35,0)), 2)

= fs t (35,0)

- 3 5

pCoid — sndf st(RetTerm(GetEl('E1~1,1,34)), 2)

— snd(RetTerm('B~1 (1, 34) — (35,0)), 2)

— snd(35,0)

- 0

A B ST R A C T DSCA TO A B ST R A C T DSCA 240

the call to B'y can be rewritten as:

B ^

1 ,

2 ,

3 4 ,

oldys,

= Buildy

734,

1 ,

2 ,

RetT erm GetEl

{ oldys, \ \

3 5 ,

2 ,

0

= Buildy

,2

= Buildy

734,

1 ,
2 ,

RetT erm (y0 (3 5 , 2) = S) , 2) y
\734

1 ,

2 ,

\ 5 i
= (7 3 4 (1 , 2) = S)

Similarly the remainder of the 7 -wiring functions for module 1 at program counter

value 34 are determined, providing the following list:

734(1, 3) = U,

7 3 4 (1 , 2) = 5 ,

734(1,1) = 5 ,

734(1,0) = M

A B ST R A C T DSCA TO A B ST R A C T DSCA 241

The process continues through the values of the program counters and modules,

until the call to B j s where the module number is 0 is reached. This will result in:

/O ,

old'ys,

new'ys,

35,

4 ,

B j s

(

Build7

\

7o> ^

0 ,

0 ,
\ M ,

, Build'y

(7355 ^

0 ,

0 ,
Ku ,

\

, newys

/
/

The complete list of 7 -wiring functions generated from this process are listed

below:

7o(pc,0) = M, 79 (p c, 0) == M, 718 (pc, 0) = M, 727 (pc, 0) = M,
7i(pc,0) = M, 7io (pc, 0) = M, 7i9 (pc, 0) = M, 72s(pc,0) = M,
72 (pc, 0) - M, 7 n (pc, 0) = M, 72o(pc,0) = M, 729 (pc, 0) = M,
73 (pc, 0) - M, 712 (pc, 0) = M, 721 {pc, 0) = M, 730 (pc, 0) = M,
74 (pc, 0) = M, 7i3 (pc, 0) = M, 722 (pc, 0) = M, 73i (pc, 0) = M,
75 (pc, 0) = M, 7 i4(pc, 0) = M, 723 (pc, 0) = M, 732 (pc, 0) — M,
7e(pc,0) = M, 7i5(pc,0) = M, 724 (pc, 0) = M, 733 (pc, 0) = M,
77 (p c) 0) = M, 716 (pc, 0) = M, 725 (pc, 0) = M, 734 (pc, 0) = M,
78 (pc, 0) = M, 7i7 (pc, 0) = M, 726 (pc, 0) = M, 735 (pc, 0) = M,
7o(l, 0) = M, 7 o (l , 1) — M, 70(1,2) = M, 7 0 (1 , 3) = M,
7 i (l ,0) =:M , 7 i (l , 1) — M, 7i (1,2) = M, 7 1 (1 , 3) = u,

72(1,0) =:M , 72(1,1) = u, 72(1,2) = 7 2 (1 , 3) = t/,
73(1,0) =:M , 73(1,1) = M, 73(1,2) = M, 73 (1 , 3) = M,
74(1,0) =:M , 74(1,1) = M, 74(1,2) = M, 74 (1 , 3) = c/,
75(1,0) =:M , 75(1,1) = M, 75(1,2) = M, 75 (1, 3) = tf,
76(1,0) =:M , 76(1,1) = M, 76(1,2) = M, 76(1,3) = U,
77(1,0) =:M , 77 (1 ,1) = u, 77(1,2) = c/, 77 (1 , 3) = U,

78(1,0) =:M , 78(1,1) = 78(1,2) = U, 78(1,3) = tf,
79(1,0) =:M, 79 (1 , 1) = M, 79(10,2) == M, 79 (1 , 3) = u,
7io(l, 0) = M, 7 i o (l , 1) -= 5, 7io (l ,2) =--M, 710(1 , 3) == tf,
7 i i (l ,0) == M, 7 n (l , 1) “= M 7 i i (l ,2) =--M, 711(1 , 3) == 17,
712(1,0) = M, 712(1,1) =--- s , 712(1,2) == M, 712(1, 3) == *7,
713(1, 0) = M, 713(1,1) == M, 713(1,2) =--M, 713(1, 3) == tf,

A B ST R A C T DSCA TO A B ST R A C T DSCA 242

7l4(,0 = M, 7l4(,1 714 (,2 = Af, 7 i4 (l ,3 = £7,
715 (,0 — M, 715 (,1 = u, 715 (,2 = 77, 715(1,3 = 77,
716 (,0 = M t 716 (,1 = U, 716 (,2 = 17, 716(1,3, = £7,
717(,0 — M, 717 (,1 = U, 717 (,2 = 77, 717(1,3 = 77,
718 (,0 = M, 718 (,1 = U, 718 (,2 = 77, 718(1,3' = u,
719 0 ,0 = M, 719 (,1 = U, 719 (,2 = 77, 719(1,3 = 77,
720 (,0 = M, 720 (,1 = U, 720 (,2 = 17, 72o(l, 3, = u,
7210 ,0 = M, 721 (,1 = M, 721 (,2 = M, 72 i(l,3 ' = 77,
722 (- ,0 = M, 722 (,1 = Af, 722 (,2 = Af, 722(1,3' = u,
723 (,0 = Af, 723 (,1 = Af, 723 (,2 = Af, 723(1,3 = 77,
724(- ,0 = Af, 724(,1 = Af, 724(,2 — Af, 724(1,3 = 77,
725 (,0 = M, 725 (,1 = Af, 725 (,2 = Af, 725(1,3, = u,
726 (,0 = AT, 726 (,1 = Af, 726 (,2 = Af, 726(1,3 = £7,
727 (,0 = M, 7270 ,1 = Af, 727 (,2 = M, 727(1,3 = u
728 (,0 = M, 728 (,1 = 5, 728 (,2 = 5, 728(1,3 = u.
729 (,0 = Af, 729 (,1 = u, 729 (,2 = 77, 729(1,3 = U,

730 (,0 = Af, 730 (,1 = s, 730 (,2 = 5, 73o(l, 3' = U,

731 (,0 = Af, 731 (,1 = U, 731 (,2 = 77, 73i(l, 3' = U,

732 (,0 = Af, 732 (,1 = 5, 732 (,2 = 5, 732(1,3 = 77,
733 (,0 = Af, 733 (,1 = 7/, 733 (,2 = 77, 733(1,3 = 77,
734 (,0 = M, 734(,1 = 5, 734 (,2 = -5, 734(1,3 = 77,
735 (,0 = Af, 735 (,1 = 77, 735 (,2 = 17, 735(1,3 = 77

/5-wiring functions

The transformation of /2-wiring functions results in the following:

A)(pc,o) = pc, /%(pc,0) == pc, /M (p c,0) = pc, #27 (PC, 0) = pc,
/?i(pc,0) = pc, A o(p c ,0) = pc, /^19(PC, 0) = pc, to 00 0) = pc,
/?2(pc,0) = pc, A i(p c ,o) = pc, /?2 0 (p c,0) = pc, /?29 (PC, 0) = pc,
/M p c,0) = pc, /?12 (p c ,0) = pc, >02 l(pc, 0) = pc, >030(PC, 0) = pc,
/?4(pc,0) = pc, /5i3(pc,0) = pc, # 22(p c,0) = pc, >0 3 l(pc, 0) = pc,
/M PC, 0) = pc, /?14 (pc, 0) = pc, /̂ 23 (pc, 0) = pc, /?32 (PC, 0) = pc,
/5e(pc,0) = pc, /?!5(pc,0) = pc, /?24(pc, 0) = pc, /?33 (PC, 0) = pc,
>37(pc,0) = pc, ^16 (pc, 0) = pc, /?25(pc,0) = pc, /%4 (pc, 0) = pc,
/?s(pc,0) = pc, /M (p c,0) = pc, /̂ 26 (PC, 0) = pc, J035 (PC, 0) = pc,
A)(i,o) == pc, A)(1 ,1) = 1, A>(1,2) = 1, >30(1 ,3 = 1,
/5 i(l, 0) == pc, / M M) = 1, /? i(l ,2) = 1, /M l , 3 = U>,
f t (l , 0) == pc, >02(1,1) = u , >32(1,2) = u , >32(1,3 £J,
/53(1 ,0) == pc, >03(1,1) = 1, >33(1,2) = 1, >03(1,3 -- 1,
/?4(i , 0) == pc, >3 4 (1 , 1) = 1, >34(1 ,2) = 1, >04(1,3 = W,
/? s(l,0) == pc, & (! , !) = 1, >05(1,2) = 1, >3 5 (1 , 3 = CJ,
>06(1,0) == pc, /% (!,!) = 1, >36(1,2) = 1, >36(1,3 — £J,
>0 7 (1 , 0) == pc, >07(1, 1) = w, >37(1,2) = £J, >37(1,3 — £J,
>08(1,0) == pc, /% (!,!) = £J, >08(1,2) = £J, >08(1,3 = £J,

A B ST R A C T DSCA TO A B ST R A C T DSCA 243

9 (1 , 0) = p c , # 9 (1 , 1) = 1, # 9 (1 , 2) = 1, # 9 (1 , 3) = w ,

i o (O II # i o (l , l) = 9, #10 (, 2) = 1 , # i o (,3) = U,

n (O II JS # n (l , 1) = 1 , #11 (, 2) = 1 , # l l (,3) = W,

#12 (0 II P # 1 2 (1 , 1) = 9, #12 (, 2) = 1 , # 12(,3) = W,

i 3 (0 II -e # i s (l , 1) = 1, #13 (, 2) = 1 , #1 3 (,3) = w,
i 4 (0 II 'ts p # 1 4 (1 , 1) = 9, #14 (, 2) = 1 , # 1 4 (,3) = w,
#15 (0 II P # 15(1 , 1) = w, #15 (, 2) = u j , #15 (,3) = w,

i e (O II -a # 1 6 (1 , 1) = W , #16 (, 2) = U J , # 16 (,3) = w,

Pu(, 0) = p c , # 1 7 (1 , 1) ~ # 17(, 2) = w, #1 7 (, 3) = u j ,

i s (3 II •ts # 1 8 (1 , 1) = ^ , #18 (, 2) = w, #18 (,3) = w,
19 (0 II # 1 9 (1 , 1) = W , #19 (, 2) = c«j, #19 (,3) = w,
#20 (0 II ■tJ # 2 0 (1 , 1) = W, #20 (, 2) = cj, # 20 (,3) = w,
P21(O II P

1

2 l (l , 1) = 1, #21 (, 2) = 1 , #21 (, 3) = w,

#22 (O II P # 2 2 (1 , 1) = 1 , #22 (, 2) = 1 , #22 (,3) = £J,

#23 (II 3̂ P # 2 3 (1 , 1) = 1, #23 (, 2) = 1 , # 23 (,3) = w,
#24 (O II 3̂ P # 2 4 (1 , 1) = 1, #24 (, 2) = 1 , # 2 4 (,3) = cj,

#25 (O II "C3 P # 2 5 (1 , 1) = 1, #25 (, 2) = 1 , # 2 5 (,3) = w,
/^26 (O II 3̂ P # 2 6 (1 , 1) = 1 , #26 (, 2) = 1 , # 26 (,3) = w,

#27 (, 0) = p c , # 2 7 (1 , 1) = 1, #27 (, 2) = 1 , #2 7 (,3) = w,
P28(0 II "a # 2 8 (1 , 1) = 1 , #28 (, 2) = 2 , # 2 8 (,3) = u j .

#29 (II # 2 9 (1 , 1) = W, #29 (, 2) = u j , #29 (,3) = w,
#30 (O II # 30(1 , 1) = 3, #30 (,2) = 4, #3 0 (,3) = £J,

#31 (, 0) --- p c , # 3 i (l , l) = w, #31 (, 2) = u j , #31 (,3) = a;,
#32 (, 0) = p c , # 3 2 (1 , 1) = 5, #32 (, 2) = 6 , #32 (, 3) = cj,
#33 (, 0) = p c , # 33(1 , 1) = #33 (, 2) = a;, #33 (,3) = u,
#34 (, 0) = p c , # 3 4 (1 , 1) = 7, #34 (, 2) = 8 , #34 (,3) = u j ,

35(1 , 0) =pc,
0 (pc , 1) = pc

35(1 ,1) = <*>, #35 (, 2) = u j , #3 5 (,3) = a;,

D elay Functions

The initial call to create the delay functions is to the Created operation:

(Source.SCA, \

1 ,
36,

4,
Createds

2_1. /

A B ST R A C T DSCA TO A B ST R A C T DSCA 244

this expands to:

CreateSs

(Source S C A , \

1 ,
36,

4,

1— '?

= B5s

(
1 ,
G et5Eqs(SourceSC A) ,

4,
Get'yEqs(SourceSCA),

(S o u rc e S C A , ^

Create/3 s

\

1 ,
36,

4,
^ - i

GetM ax^{Source.SCA),

36,

\ “ 7

the /5-wiring functions are given in the previous section, and the operations Get'yEqs,

GetdEqs and G etM axN are defined in the SCA specification. The first call to BSs

is the recursive case:

B8s

(l >oldds,
0,
4,
old'ys,
new(3s,
1,
36,
^ - l1—1 ?

V s)

/ o,
oldds,

((35,
old5s,

= B5pc

1 ,
4,
old'ys,
new/3s,
1 ,
36,

I s
4, old'ys, new(3s,

\ 1 , 36 ,E- \S

A B ST R A C T DSCA TO A B STR A C T DSCA 245

This involves a recursive call to itself, and a call to the BSpc operation to produce

the delay functions for the values of the program counter:

BSpc

l 35, \
oldSs,
newSs,
1,
4,
old'ys,
new/3s,
1,
36,

\ H

(34,
oldSs,

(

— BSpc

/

\

BSarg

V

(3, \
oldSs,
D,
i,
35,
old'ys,
newfis,
1,
36,
cr-i 1—1 }

V 3

, newSs

1,4, oldjs, newfis,
\ 1 ,3 6 ,E - \ E

Building the delay function for the arguments of module 1 at program counter

value 35 would result in 4 unit delay functions since module 36 in the source abstract

dSCA is not wired to anything.

The next recursive call is:

(34, \
oldSs,
newSs,
1,
4,

BSpc old'ys, = BSpc
newfis,
1,
36,
=■-1

(33,
oldSs,

E

\
/ (3i ^ \

oldSs,
D,
i,
34,

BSarg oldys, , newSs
newfis,
1,
36,
CT-l

/
1,4, old'ys, new/3s,
l , 3 6 ,~ - \ E

A B ST R A C T DSCA TO A B ST R A C T DSCA 246

where the call to BSarg considers a module which is wired to two sources:

\

BSarg

(̂ \
oldSs,
newSs,
1,
34,
old'ys,
newfls,
1,
36,
■5—1

V H

= BSarg

(2,
oldSs,

((1,
3,

BS

\

\
1,
34,
old'ys,
newj3s,
1,
36,
■=•-1

34,
oldSs,
oldys,
new(3s,
1,
36,
■=■-1

' 5

V s,

, newSs

/

The 4th argument to module 1 at program counter value 34 is not wired and

therefore the call above would produce the delay function:

A B ST R A C T DSCA TO A B STR A C T DSCA 247

The recursive call to BSarg is:

(1.
old8s,

{ { 1.

BSarg

(2 , \
oldSs,
newSs,
1,
34,
old'ys,
newfis,
1,
36,
c - i

5

= BSarg

BS

V
1,
34,
old'ys,
newf3s,
1,
36,
■=?-!

2 ,

34,
oldSs,
old'ys,
newj3s,
1,
36,
C-l

\ S , ’

, newSs

/
It is known that /?34,(1,2) is defined, and that the input is wired to a source, since:

H -1(l,34) = (35,0)

and that from the source abstract dSCA:

'#,(35,2) = S

hence, the delay function will be the unit delay. It is a similar situation for the

1st argument to this module at this program counter value, and of course the 0th

argument is wired to the program counter and so will, by definition, be the unit

delay. The process generates the following list of delay functions for module 1 at

program counter value 34:

^1,3 , 3 4 a,x) = t — 1,

^1,2,34(^5 a,x) = t — 1,

^1,1,34(^5 a,x) = t — 1,

^1,0,34(^5 a,x) = t — 1

A B ST R A C T DSCA TO A B ST R A C T DSCA 248

If the following call for program counter value 23, which occurs in the recursive

path of BSpc, is considered then it can be seen that it makes some calls to other

modules within the source abstract dSCA:

BSpc

(23, \
oldSs,
newSs,
1,
4,
old'ys,
newfis,
1,
36,
■=—1

\ H

(22 ,

oldSs,

= BSpc

7

\

/
(3> ^

\
oldSs,
D,
i,
23,

BSarg old'ys, , newSs
new(3s,
1,
36,
c-11—1 1

V s J /
1,4, old'ys, new/3s,
1.36.H-1, E 7

This produces a unit delay for the 4th argument, but when considering the call for

the 3rd argument, the following is found:

BSarg

(2, \
oldSs,
newSs,
1,
23,
old'ys,
new(3s,
1,
36,
H-1

V H 7

= BSarg

(1.
oldSs,

/ / b
2 ,

\
\

23,
oldSs,
old'ys,
newf3s,
1,
36,

. i r /
1, 23, old'ys, new(3s,

V l ,3 6 ,S -1,3

, newSs

A B ST R A C T DSCA TO A B ST R A C T DSCA 249

The call to BS now invokes the case where the wiring is to a module and thus a

new delay needs to be determined:

/ l , \
2 ,

B5

where:

and:

= BuildS

23,

oldSs

old'ys,

oldfds,

1,
36,
^ - i' 3

)

pcjualsrc = snd

^ 1 ,2 ,2 3)

t — ((pc.val — pcjvalrtgl) mod M a x ff)

((

Re tT erm

\

GetEl

\

\

,21,

V 23)
= snd(RetTerm(E~1 (1,23) = (24,0), 2))

= snd((24,0))

= 0

))

modjvalsrc = f s t

i

R e tT erm GetEl
/ e -1 N1— ' 3

i,

V23

\

,2

V V \ 2 3 / /
= f st(RetTerm(E~1 (1, 23) = (24,0), 2))

= M (2 4 ,0))

= 24

7

A B ST R A C T DSCA TO A B ST R A C T DSCA 250

which means that:

mod.vaTSrc - f s t Re tT erm GetEl ,2

! I I oldfis, \ \ N

0,
24,

2

= f st (RetT erm(P0 (24, 2) = 28,2))

= f s t (28)

= 28

V V V / /

and:

pc_vaTŝ sc = pc_valsrc — t — RetT erm GetEl

V

oldSs, \ \

24,

V

2 ,

0 / /
= 0 — (£ — RetT erm (£24,2,0 x) — t — 1,2)) mod 1

= 0 — (i — t + 1) mod 1

= 0 — 1 mod 1

= 0

the value of pc -va l^ can therefore be determined to be:

(

pc..valrtgl = snd

I

RetT erm

\

GetEl

\

(S , \
28,

v ° /
,2

))
= snd (RetTerm (E(28,0) = (1,27), 2))

= snd ((1, 27))

= 27

mod 1

A B ST R A C T DSCA TO A B ST R A C T DSCA 251

finally, the instantiation of BS can be completed as:

/ l , \
2 ,

23,

oldSs

oldys,

old(3s,

1,
36,

BS

■=■-1

= BuildS ^1,2,23?

t - ((23 - 27) mod 36)

/

= BuildS ^1,2,23)

t — 32)

= (£l,2,23(M}z) = t - 32)

The BSspc operation continues to recurse until it reaches the case where the

program counter is 0 and then produces the delay functions for module 1 at program

counter value 0. To complete the generation of delay functions, the second case of

BSs is instigated - where the module number is 0:

0, \

oldSs,

BSs

newSs,

4,
old^s ,

36,

i,s-\

= BuildS , newSs

= ((<W>,o(£, a , x) = t - 1), newSs)

A B ST R A C T DSCA TO A B ST R A C T DSCA 252

The values of all the non-unit delays are given as:

<$l,l,o(ti a) x = t - 35 <$1,1,6 (^, x) = t - 29, <$1,1,22(^, a , x) = t --34,
<$l,2,o (^ x = £ - 34, <$l,2,6(t, x) = t - 28, <$1,2,22(^1 x) = t --33,
<$l,3,o(t» x = t — 33, <$1,1,9(^1 a >x) = t - 24, <$1,1,23^ x) = t --33,
<$l,l,l(£> 2; = t — 33, dl,2 ,9 ^ x) = t - 30, <$l,2,23(t, a , x) = t - -32,
<$1,2,1 (b a , 2; = t - 32, <$i,2, io (t , a X) = t -30, <$1,1,24(^» x) = t - -32,
<$1,1,3 (t , a , X — t — 33, < $ i,i,n (t , a X) = t -26, <$l,2,24(t, a , x) = t --31,
<$1,2,3 (*» X — t — 32, <$1,2,11 (t , a x) = t -30, <$1,1,25^ x) - t --31,
<$1,3,3(t) a , X = t — 31, <$i,2,i2(t, a x) = t -30 , <$1,2,25(^, a , x) = £ --30,
<$i,i,4(t, a , X = t — 31, <$1,1,13 (^, a x) = t -28 , <$1,1,2 6 (^ a . x) = £ --30,
<$1,2,4 (t , a , X = t - 30, <$1,2,13 (t , a x) = t -30 , <$1,2,26(^, a x) = £ --29,
<$i,i,5(^ X = t - 30, <$1,1,21 (t , a x) = t -35 , <$1,1,2 7 (^ a x) - £ --29,
<$1,2,5(^1 a , X = t — 29, <$1,2,21 (t , a x) = t -34 , <$1,2,27^ a x) = £ --28,
<$1,2,14(^5 a , z) = t - -30

Initial State Equations

The generation of Initial State equations for the target abstract dSCA begins with

a call to the C reatelVs operation:

CreateIVs

I Source_SCA ,

1,
36,

- l

/

- B IV s

1,
36,

G etE qlV (SourceSC A),

\

77-1

which expands to the recursive call:

B IV s

1,
36,

oeqs,

neqs,

= B I V s

0 ,
36,

oeqs,
/ 1 35,

B IV pc 1,
oeqs,

V
77-1

U
, neqs

A B ST R A C T DSCA TO A B ST R A C T DSCA 253

We consider the call to B IV pc first, this expands in all cases as (since the inverse

mapping in our example is total and there will be no undefined operations required

to maintain synchronicity):

(34,

B IV pc

(35, ^

1,
oeqs,

V

= B IV pc

\

b

oeqs,

 ̂ new.val, []

V r-i

where new.val is the following set of definitions:

/ oeqs,

(b
35,

= BuildIV (
RetT erm

= BuildIV

= BuildIV

) b
35,

GetEl

\
RetTerm | GetEl j 1,

35

\ \
,2

’ V
RetTerm GetEl ^ RetTerm iQ.,35) = (36,0), 2)) ’2)

/ b \
35,

/ / oeqs,
RetTerm, I GetEl I 36, | ,2

b
= BuildIV | 35,

RetTerm (V^O, a, x) = 0,2)
b

= BuildIV (35,
0

(Vi(35, a, x) = 0)

The recursive call to B IV pc above therefore becomes:

t 34,

1, 1.

B IV pc oeqs, = B IV pc oeqs,

(35, ^

■=■-1
Vi (35, a, x) = 0, []) ,

A B ST R A C T DSCA TO A B ST R A C T DSCA 254

This process continues for all values of the program counter for module 1, and

then the recursive call to B I V s where the module number is zero is made. In this

situation, the following case of the B I V s operation is invoked:

(0, N

B I V s
35,

oeqs,

negs,

V s " 1 !

= (BpcIV s(36, Q),negs)

where the call to BpcIV s is expanded as:

/

B pcIV s

34, \
(35, ^ / (o, \ \

a . = B pcIV s B u ild IV 35, ,[]

36 J V ^ mod(35 + 1,36) j /
y 36

34, \

- BpcIVs (Vo(35,a,x) = o ,D),
36

The recursion progresses, finally making a call to the base case where the program

counter value is 0:

/n \ ! / o, \ \
B pcIV s

0,
eqs

V36)
B uild IV 0, ,eqs

V 1 /
(Vo(0,a,x) = l,e?s)

A B ST R A C T DSCA TO A B ST R A C T DSCA 255

The result of applying the mapping to the Initial State equations is:

Vb 0, a, x) == 1, Vb 1, a, x) =z 2,
14 3 ,a,x) == 4, Vb 4, a, x) =z 5,
Vb 6, a, x) =z 7, Vo 7, a, x) =z 8,
Vb 9, a, x) =z 10, Vo 10, a, x) = 11,
Vo 12, a, x) = 13, Vo 13, a, x) = 14,
Vo 15, a, x) = 16, Vb 16, a, x) = 17,
V0 18, a, x) = 19, Vb 19, a, x) - 20,
Vo 21, a, x) = 22, Vo 22, a, x) = 23,
V 0 24, a, x) = 25, Vo 25, a, x) = 26,
Vo 27, a, x) = 28, Vo 28, a, x) = 29,
Vo 30, a, x) = 31, Vo 31, a , x) = 32,
Vo 33, a , x) = 34, Vo 34, a , x) = 35,
V ! 0, a , x) = s t a y , V i 1, a , x) = t r u e ,

V ! 3, a , x) = up, 14 4, a, x) = t r u e ,

V i 6, a , x) =- f a l s e , V i 7,a,x) == down,
V i 9, a , x) = t r u e , 14 10, a , x) = t r u e ,

14 12, a, x) = f a l s e , 14 13, a, x) = f a l s e

14 15, a, x) = f a l s e , 14 16, a, x) = 90,
14 18, a , x) = 0, 14 19, a , x) = t r u e ,

Vi 21, a , x) = f a l s e , 14 22, a, x) - f a l s e

Vi 24, a , x) = f a l s e , 14 25, a , x) = f a l s e

Vi 27, a, x) = f a l s e , 14 28, a , x) = 0,
14 30, a , x) = 0, 14 31, a , x) = 0,
14 33, a , x) = 0, 14 34, a x) = 0,

Vo(2 , a , x)
Vb(5,a,x)
Vo (8, a, x)
Vb(ll ,a ,x
Vo(14, a, x
14(17 , a , x
Vo(20, a , x
Vo(23, a, x
Vo(26, a, x
14(29, a, x
14(32, a, £
14(35, a, a:
14(2, a, x)
14(5, a, x)
14(8, a, x)
14(11, a, x
14(14, a, x
14(17, a, x
14(20, a, x
14(23, a, x
14(26, a, x
14(29, a, x
14(32, a, x
14(35, a, x

z 3,
z 6,
= 9,
— 12 ,

— 15,
— 18,
— 21 ,

— 24,
— 27,
= 30,
= 33,
= 0,
= stay,
= false,
= UP,
= false,
= true,
— tr u e ,

= 0 ,
= false,
= false,
= 0 ,
= 0 ,
= 0

State Transition Equations

To commence translating the State Transition equations, a call to the CreateSTs

operation is made:

A B ST R A C T DSCA TO A B ST R A C T DSCA 256

CreateSTs

(S o u rc e S C A , ^

1,

V
36,

= B S T s

1,
36,

G etE qSTV F (S o u rceS C A) ,

Create/3s

I S o u rc e S C A , ^

k,

M clxn,

\ 3_1 ./

Createds

(S o u rc e S C A , '

k,
Maxnr,

V V
which in turn makes a call to the B S T s operation once it has extracted the source

State Transition equations. This call is expanded as:

B S T s

/ i ,
36,

S T V F s,

D.
1' 5

tgtfis,

V tgtSs)

= B S T s

(0, \

B S T

(36, \ \

S T V F s ,
z:-i
■— 11 5

tgtfis,

tgtSs,

i /

/
36 /

It can be seen that this expansion makes a recursive call to itself, decrementing

the value of the module number as it does so, and makes a call to the B S T operation

A B ST R A C T DSCA TO A B ST R A C T DSCA 257

which creates the Value function equation for the module under consideration. This

call to B S T is expanded as follows:

(

B S T

(36,

1,
S T V F s ,

' 5

fis,

V

= B uildST

1, \

N ew S T

rewire

(new jufopdef, \ \

1,
36,

/3eqs,

Seqs

36,

y null

where:
(

newjufopdef = N S T

36,

1,

[],
S T V F s ,

The call to V ST operation, expands as:

/

V ST

35, ^

1,

oeqs,

\ s_1 /

= V S T

34,

1,
/

[], Extract

\
oeqs,

v = - x

\oeqs,

mod-valsrc,

\ pcjualsrc J J

A B ST R A C T DSCA TO A B ST R A C T DSCA 258

where:

mod-valsrc = f s t

(

Re tT erm GetEl

\

\(2- \ \

1,

V35))
, 2

7
= f s t (RetTerm ((E 1(1,35) = (36,0)), 2))

= fs t{ 36,0)

= 36

and:
/

pc-valsrc = snd RetT erm

(
GetEl

(- - 1 \
*— 1 5

1,

V 35)

\
,2

V V V 3 5 / 7 7
= snd (RetTerm ((E-1(l, 35) = (36,0)), 2))

= snd(36,0)

= 0

Thus the N S T call becomes:

N S T

/ 34,
35, \ 1,
1, / oegs,
D. = N S T [], Extract 35,
oeqs, V 0

V s - 1 j oeqs,
U - 1

34> \
i,

= TVST (0),
oeqs,
H-1 J

\

A B ST R A C T DSCA TO A B ST R A C T DSCA 259

The next instantiation of the recursive call to N S T proceeds:

N ST

/ 33,
34 , \ 1,
1, / / oegs
(0), = JVST I [], Extract I 34,
oeqs, \ V 0

V s - 1 j oeqs,
U - 1

3 3 ,
1 ,

- tVST (0,sub(a7(t),aa(t))) ,
oeqs,

7

N S T finally completes it recursion for module 1 and produces the following list:

0, sub(a7(t) ,a8(t)), 0, sub(a5(t), a6(t)), 0, sub(a3(t) , a4(t)),
0, sub(a i(t), a2(t)) ,gt(V35(t, a, x), V3Q(t, a, x)), gt(V33(t, a, x), V ^ t, a, x)),
gt(V3i(t, a, x), V3 2& ^)), gt{V29{t, a, x), V30(t, a, x)), or{V27(t, a, x), V2g(t, a, x)),
or(V25{t, a, x), V2Q(t, a, x)), or(V23(t , a, x), V ^ t , a, x)), 0, true, 0, t r u e ,
90, fa lse , pt(ai0(t), V2i (t, a, x)), eq(V22(t, a, x), V2o(t, a, z)), eg(ai0(t), Fi9(t, a, x)),
eq(V22(t, a, x) , V 18(t, a, x)), eg(ai0(t), Vi7(t, a, x)), eq(V22(t, a, a:), Vi6(t, a, x)),
up, down, and{Vi±{t, a, x), Kis(t, a, x)), and(Vi2(t, a, x), Vi3 (t, a, x)),
and(Vi0(t, a,x), Vii(t, a,x)),

/ V7{ t ,a ,x) , \ / V^t, a,x) ,
condl V8{t ,a ,x) , 1 , stay, or(V3(t, a, x), Ve(t, a, x)), cond I V3 (t , a ,x) ,

\ V9(t ,a ,x)) \ V2{t, a, x)

The next part of the process is to rewire the above list for the new network, which

is done by the rewire operation:

 ̂ (e, es), \ / / e, V / <>0 \ \

1, modjval,

35, = rw pc.val,

fieqs,

5eqs

rewire

fieqs,

 ̂ £e<?S y
V V

, rewire

es,

1,
34,

/3eqs,

y 5eqs

The rewire operation recurses through the list and produces a new list, in the

same order but uses the rw operation to rewire each VFOpDef term encountered. For

A B ST R A C T DSCA TO A B ST R A C T DSCA 260

the first term, 0, the first instance of rw is used:

1 0, \
Ps,

rw 5s, = 0

1,

\ 35 /

The next term it encounters invokes the third form of rw:

i

rw

V

sub(a7(t),a8(t)),

Ps,

5s,

1,
34

\ ((a7(t), ^ (a8(t), ^

Ps, Ps,

5s, 5s,
= sub wire , wire

1, 1,

1, 2,

\ k 34) 34 /

this invokes the use of the “input” form of the wire operation:

a7(t),
wire

Ps, 5s, 1,1,34 — a'RetTerm(GetEl{(3s,l,l,M)2) M

Q'RetTerrn((/3s34(l,l)=7),2) ()̂
= a7(t)

The second argument is:

as(t),
wire

Ps, 5s, 1,2,34
® .R e f T e r m (G e i .E Z (/3 s , l ,2 ,3 4) ,2) (^)

^ ■ R eiT ,e r r r i ((/ 3 s 3 4 (l ,2) = 8) ,2) (^)

= a8(t)

therefore the rewired VFOpDef term will be:

sub(a7(t),a8(t))

A B ST R A C T DSCA TO A B ST R A C T DSCA 261

The complete list of VFOpDef terms returned from the rewire operation is:

0,
sub(a7(t),aB(t)),
0 ,

sub(a5(t),a6(t)),
0,
su6(a3(t),a4(£)),
0,
sub(ai(t),a2(t)),
gt(Vi(t — 29, a, x), V\(t — 28, a, x)),
gt{Vi{t — 30, a, x), V\{t — 29, a, x)),
gt(Vi {t — 31, a, x), Vi{t — 30, a, x)),
gt{Vi(t — 33, a, x), Vi(t — 31, a, x)),
or(Vi(t — 33,a,x),Vi(t — 32 ,a,x)),
or(Vi{t — 34, a, x), V\ (t — 33, a, x)),
or(Vi(t — 35, a, x), VRt — 34, a, x)),
0,
true,
0,
true,
90,
false,
^ (aio(t),Ti(t - 30, a, x)),
e<7(Vi(t — 28, a, x), VRt — 30, a, x)),
eg(a10(t), Vi(t - 30,a,x)),
eq(Vi(t — 26, a, x),V\(t — 30, a, x)),
e?(aio(*),Ti(£-30,a,x)),
e?(Ti(i — 24, a, x), Vi(t — 30, a, x)),
up,
down,
and(Vi(t — 29, a, x), V\(t — 28, a, x)),
andfVRt — 30, a, x), VRt — 29, a, x)),
and(Vi(t — 31, a, x), V\ (t — 30, a, x)),

/ Vi(t — 33, a, x), \
cond I V\(t — 32, a, x), I ,

\ Vi(t - 31, a, x) /
stay,
or(Vi(t — 33,a,x),Vi(t — 32, a, x)),

/ Vi(£ — 35, a, x), \
cond I Vi(£ — 34, a, x),

\ Vi (t — 33, a, x) y
The original list of terms is now fed into the N ew S T operation, the purpose of

which is to construct the conditional VFOpDef term for the module under consider

ation by recursing the list and creating the correct format. Finally, the new State

A B ST R A C T DSCA TO A B STR A C T DSCA 262

Transition equation is constructed using the BuildST operation, where results, for

module 1 in the following (the more readable form for the conditional operation is

used where appropriate):

/ V i(t-35 ,a ,x), \
cond I VRt — 34, a, x), I if VpRt — 1, a, x) = 0

\ VRt — 33, a, x) J
or (VRt — 33, a, x), VRt — 32, a x)) if VpRt - , a X = 1
start if Vpc(t - ,a X = 2

(VRt — 33,a,x), \
cond VRt — 32, a, x), if VpRt - , a X = 3

\ Vl (t — 31, a, x) J
and(VRt — 31, a, x),VRt — 30, a,x)) if VpRt - , a X = 4
and(VRt — 30, a, x), VRt — 29, a,x)) if VpRt - , a X = 5
and(VRt — 29,a,x),Vi(t — 28, a, x)) if VpRt - , a X = 6
down if VpRt - , a X = 7
up if VpRt - , a X = 8
eq(VRt — 24, a, x), VRt — 30, a x)) if VpRt - , a X 9
eq\aRt),VRt - 30, a, x)) if VpRt - , a X = 10
eq(VRt — 26, a, x), VRt — 30, a x)) if VpRt - , a X = 11
eq(ag(t),Vi(t — 30, a, x)) if VpRt - , a X = 12
eq{VRt — 28,a,x),Vi(t — 30, a x)) if VpRt - , a X = 13
gt(a9(t),VRt - 30, a, x)) if VpRt - , a X = 14
false if VpRt - , a X = 15
90 if VpRt - , a X = 16
true if Vpc(t - , a X = 17
0 if VpRt - , a X = 18
true if VpRt - , a X = 19
0 if VpRt - , a X = 20
or [VRt — 35, a, x), VRt — 34, a x)) if VpRt - , a X = 21
or (VRt — 34, a, x),VRt — 33, a x)) if VpRt - , a X = 22
or (VRt — 33, a, x), VRt — 32, a>2:)) if VpRt - , a X = 23
gt(VRt — 33, a, x), Vi (t — 31, a x)) if VpRt - , a X = 24
gt(VRt — 31, a, x),VRt — 30, a x)) if VpRt - , a X = 25
gt(VRt — 30, a, x), VRt — 29, a x)) if VpRt - , a X = 26
gt(VRt — 29, a, x), Vi(£ — 28, a x)) if VpRt - , a X = 27
su6(a1(£),a2(£)) if VpRt - , a X = 28
0 if VpRt - , a X = 29
su6(a3(i) ,a4(£)) if VpRt - , a X = 30
0 if VpRt - , a X = 31
sub(a5(t),a6(t)) if VpRt - , a X = 32
0 if VpRt - , a X = 33
su6(a7(£),a8(£)) if VpRt - , a 34
0 if VpRt - , a X 35

A B ST R A C T DSCA TO A B ST R A C T DSCA 263

The final step in the process is the recursive call to the B S T operation with module

number equal to 0, in this case the function above is returned with the following State

Transition equation for the program counter appended on to it:

Imod(add (Vpc(t, a , x), 1), 35) if Vpc{t — 1, a, x) = 0

:

mod(add {Vpc{t) a, x), 1), 35) if Vpc(t — 1, a, x) = 35

The complete translated abstract dSCA can be seen described algebraically as

shown in Appendix D.

11.4 Correctness

The generated target abstract dSCA created from transforming the abstract dSCA in

the previous chapter can be seen to be the same as the Form 2 abstract dSCA given

in Chapter 8.3.2 - the semantic proof of correctness given in that chapter shows that

this abstract dSCA is a correct implementation of a solution to the GRCP.

Additionally, this and the previous abstract dSCA could exist in a hierarchy, and

this will be shown by means of introducing mappings for:

• spaces;

• clocks;

• global states; and

• input streams.

Consider the Form 1 abstract dSCA given in Chapter 10 and the Form 2 abstract

dSCA given above, we will now discuss the relationship between each of the models.

To clearly distinguish between the two systems reference will be made to the Form 1

abstract dSCA as NdscAi and the Form 2 abstract dSCA as NdscA2 • Components of

A B ST R A C T DSCA TO A B ST R A C T DSCA 264

each network will be named as the sets I d s c A 2 and I d s c A i f°r the modules (or spaces),

the sets I n d s c A 2 and I n ds A C i of input streams, and the sets C h d s c A 2 and C h d s c A i

for the channels of the networks, where:

I d s c A i = {0> 1 , 2 , 3 , . . . , k }

IdSCA2 = {0,1}

I n dSCAl = {0, 1, • ■ • , 10}

IndscA2 = (0 ,1 , . . . , 10}

C h d s c A i — { 0 , 1 , . . . , 36}

C h dSCA2 = { 0 , 1 }

O u td S C A l — {1}

OutdSCA2 — {1}

C o m p o n en t A b s tra c tio n To compare the behaviours of NdscA2 and NdscAi the

mappings between their components are first defined.

Spaces. Spaces between the two SC As are clearly related by the provided mapping

function, for it is this that has been used to create the Form 2 abstract dSCA. The

mapping is more complicated than a simple module to module mapping since we need

to take account of the value of the program counter to understand the source module:

The respacing 7r : I tgt x N muxn Arc is clearly defined by:

7r(i,pc) = f s t : E~1(i,pc) for i = 1

= 0 for i = 0

Clocks. Each clock cycle in the source SCA is represented by 36 clock cycles in the

abstract dSCA. Thus a retiming A : TdscA2 —*> TdscAi can be defined for all t € TdscA2

as:

A(t) = t

where MaxNdSCA2 — 1 and MaxNdSCAi

(M glxn d S C A 2

d S C A 1 / ->

= 36 thus:

A B ST R A C T DSCA TO A B ST R A C T DSCA 265

(~)

or further simplified to ,̂

A (t) = |_t/36j

the corresponding immersion A : TdscAi —3- T<isca2 is defined, for all t E T jsca i by

\ (t) = 36t, and Start\ is defined to therefore have the values S tart\ = 0 ,36, 7 2 ,1 0 8 ,__

States. There is no need to introduce a data abstraction map since it is defined that

all SC As under consideration will be based on the machine algebra M^.

States are still a measurement of the channels in the relevant SCAs, however, it

now makes sense to consider observable states rather than the whole state. The most

appropriate observable states for this system is the output of m \ in the target SCA

and the output of module m36 in the source SCA - i.e. the modules in Vout for each

network.

The state abstraction map </>: M ^ htgt —* M%hsrc is introduced for observable states

5 E M%hl as:

0(s,pc)(1) = s(pc)

Input Streams. Input streams are on one hand relatively simple since the transfor

mation neither adds or removes input streams from the network. However, there are

timing issues. Take the gate sensor input, this is used by several modules in the Form

1 abstract dSCA and has a delay of unit length for all these modules to make it con

sistent with the SCA. In the Form 2 abstract dSCA, this value is required by module

1 but at several different times as the modules from the Form 1 abstract dSCA are

now executing at different values of the program counter. The most appropriate and

global solution to this problem is to require the input values to be available for a whole

A B ST R A C T DSCA TO A B ST R A C T DSCA 266

cycle, in this case 36 lock cycles. This allows values to be available when required (this

solution would need to be considered further for cycle inconsistent abstract dSCAs).

We define an input stream abstraction 9 : [TdscA2 ~ > MA]ChdSCA2 —* [TdscAi —>"

M A]chdSCA1 to be the identity operation since input streams do not change between

models, however we need to keep the result for 36 clock cycles (consistent with the

retiming); thus we write:

0(a)(t) =

A bstraction of global behaviour. The notion that the global behaviour of

the Form 1 abstract dSCA abstracts that of the abstract form 2 dSCA is now for

malised. Let Vi and V2 be the global state functions determined from the channel

state functions of these 2 SCAs, then it is conjectured that the following diagram

commutes:

Conjecture Given the above mappings, it is believed that the following diagram

commutes:

T V,
d S C A l x[TdsCA1 - M AdSCAl\InisCA1 x

<t>

Startx x [T d s C A 2 - M AdSCJ ™ ™ x

11.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping an abstract dSCA

with one defining shape to an abstract dSCA with another defining shape. A demon

stration has been given by taking the Form 1 abstract dSCA solution to the GRC

Problem, which represents the computation, and mapping that to a Form 2 abstract

dSCA that represents the computation device.

A B ST R A C T DSCA TO A B ST R A C T DSCA 267

11.6 Sources

The definition of the mapping process is all my own work.

Chapter 12

A bstract dSCA to concrete dSCA

Purpose of Transformation

To transform an abstract dSCA with a defining shape

o f V = (n, m) to a concrete dSCA with defining shape V = (n, m)

12.1 Process

This chapter highlights the key parts of the processes used for the transformation

of an abstract dSCA with defining shape V = (n, m) to a concrete dSCA with a

defining shape of V = (n, m). Appendix H contains the complete formal definition of

this transformation.

The following equation lists, within a supplied abstract dSCA specification, are

considered for transformation:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Equations; and

268

A B ST R A C T DSCA TO CONCRETE DSCA 269

4. State Transition Equations.

This chapter’s first part considers the mechanisms for such a transformation and

the second part demonstrates the application of the transformations to the Form 2

abstract dSCA produced in chapter 1 1 . Recall that this abstract dSCA has a defining

shape of V = (1,36). The transformation will be to a cycle consistent concrete dSCA.

It should be noted that if transformation to a cycle inconsistent concrete dSCA was

required then alteration of the tuple lengths and the use of appropriate tuple mapping

functions (examples of which are given in Chapter 7) would have to be used.

12.1.1 Prerequisites

The following prerequisites are required for the transformation:

• The source and object networks have k > 1 modules and M a x ^ > 0 component

specifications in their modules definitions;

• The defining shape of the target network equals that of the source network; and

• Condition definitions of each adSCA module, except the programme counter,

are of the format:

cond(pc = 0, a, cond(pc = 1, b, cond(pc = 2, c, cond(...))))

12.1.2 7-W iring Functions

The 7 -wiring functions in the target concrete dSCA will not differ much from those

in the source abstract dSCA since the “look and feel” of the SCA is not being altered.

W hat is different is the introduction of a new input to argument 1 which will require

arguments 1 , . . . ,n(z) of the abstract dSCA becoming arguments 2 , . . . , n(z) + 1 in

the concrete dSCA. The new argument introduced in concrete dSCA is a wiring of

the first argument to the output of the module itself.

A B ST R A C T DSCA TO CONCRETE DSCA 270

Informally, to generate the target concrete dSCA 7 -wiring functions from a source

abstract dSCA the following process is followed:

• For each module mi where i E Na,2:

— For each pcjual E {0, . . . , M a x ^ 2 — 1}:

* For each argument where j E {2, . . . , n(i) + 1} create a new /5-wiring

function

7Ic-val^J) = 7pc_«ai(i . i - !)

* For the oth argument of each module create:

7i « i M) = M

* For the 1st argument of each module create:

7pc.valih 1) = M

• For module 0 create M a x ^ /5-wiring functions to wire mo back to itself.

12.1.3 /5-Wiring Functions

In a similar way to how the target concrete dSCA 7 -wiring functions were constructed

from source abstract dSCA 7 -wiring functions, so are the concrete dSCA /5-wiring

functions. The /5-wiring functions in the target concrete dSCA again differ only in so

much that the index of arguments 1 , . . . , n(i) shifts to 2 , . . . , n(i) + 1 .

Informally, to generate the target concrete dSCA /5-wiring functions from a source

abstract dSCA the following process is used:

• For each module m ̂ where i E Nfc2:

— For each pcjual E {0, . . . , M a x ^ 2 — 1}:

A B ST R A C T DSCA TO CONCRETE DSCA 271

* For each argument where j € {2, . . . , n(i) + 1} create a new /5-wiring

function

P p c .v a l (b 5) P p c jv a l (b 3 ^)

* For the oth argument of each module create:

P ' p c . v a l (h °) = M

* For the 1st argument of each module create:

P p c - v a l (h 1) = M

• For module 0 create M a x n /3-wiring functions to wire mo back to itself.

12.1.4 Delay Functions

Delay functions for the concrete dSCA are all of unit delay, and there are a number

equal to the wiring functions. Thus, a unit delay function will be created for every

element in the newly generated 7 -wiring equation list.

12.1.5 Initial State Equations

The Initial States for each module m*, where i € Njt2 are M a x n tuples of length M a x n

(recall that the mapping is being defined for a cycle consistent abstract dSCA). We

will make use of the fact that calculations will only care about the initial state given

for t = Maxjy — 1 and t = 0 , by defining the tuple at time t = 0 and use that value

for all other initial values until t = M ax — N —I where the final initial state equation

will be generated.

The usual recursive equations are given for walking the structure of the abstract

source dSCA, rsulting in a call to the B I V operation:

B I V : N 3 x d S C A IS V E q L is t2 -+ d S C A IS V E q L is t

A B ST R A C T DSCA TO CONCRETE DSCA 272

which is defined recursively in two cases over the first argument. Firstly for when the

first argument does not equal M a xat, then the operation is dealing with an initial

state from a time prior to t = Maxjy — 1, and as such an initial state will be created

containing u elements in all positions, except for the first element (note tha t the

positioning of the first element is dependant upon the tuple management schemes

used, however for both schemes identified as of interest the first generated value is

placed at position 0 in the tuple). B I V is defined as:

 ̂ pcjual + 1, \

M ax N,

modjnum ,

B I V

pcjval,

Maxjv,

m odjnum ,

oeqs,

y neqs

\

= B I V
oeqs,
/

V

G enIVs

\

 ̂ modjnum , ̂

pcjual,

Maxjv,

y oeqs

\

, neqs

J
The G enIVs operation used in B I V is given as:

G enIVs : N 3 x d S C A IS V E q L is t -► dSC A ISV Equation

and is defined to create a M a x m length tuple with the first element being the initial

value produced at time t — 0 in the source abstract dSCA initial values:

G enIVs

I modjnum ,

pcjual,

M ax at,

y oeqs

\ /

= B uild IV

modjnum,

pcjual,

/ RetTerm(VF, 2),

\ W0, • • • , 'aMax^—2

\

where:

V F = GetEl(oeqs,mod-num,pc.val)

A B ST R A C T DSCA TO CONCRETE DSCA 273

The second case definition of B I V , where t = Maxjv — 1, is given such that it

constructs the complete initial state needed at time M a x ^ 2 — 1 as:

/ I modjnum , \ \

pcjja l,

B I V

M clxni
M axjv,

m odjnum ,

oeqs,

y neqs

\

J

B uild IV

\

(

In itS tate

\

M clxn,

m odjnum ,

oeqs,

\

/

neqs

J 7

The operation In itS ta te is where the Initial State for module modjnum at time

t = M a x ^ — 1 is created. Since we are using the array tuple management then the

Initial State under these conditions will consist of a list of values with the first being

the element calculated at t = 0 and the last being the one calculated at t = M a x n

in the source abstract dSCA. It is given as:

In itS ta te : N 2 x d S C A IS V E q L is t x Term List —> Term List

and is defined recursively, with the recursive case:

(pcjja l, \ (pcjjal — 1, \

modjnum ,
In itS ta te

oeqs,

nlist

= InitS tate
modjnum,

oeqs,

^ (R e tT e rm (V F ,2) , nlist) y

and the recursion being stopped by the 1st argument reaching 0:

1 0, ^
m odjnum ,

oeqs,

n lis t ,

In itS ta te = (RetTerm (V F , 2), nlist)

/

A B ST R A C T DSCA TO CONCRETE DSCA 274

where in both cases:

V F — GetEl(oeqs, modjnum, pc_val)

The base call to the recursive B I V s operation is where the initial state for the

program counter is given. It is defined as:

/ o , \

B I V s
M ax a/-,

oeqs,

y neqs J

where B IV p c is given as:

/

BIV pc
(Maxjy — 1 , \ ^

[] , , neqs

M a x x / /

B IV pc : N x d S C A IS V E q L is t x N -> d S C A IS V E q L is t

and is defined recursively over the values in Maxjv, such that:

(

B IV p c
(pc-val, ̂

neqs,

^ Maxjv j

= B IV pc

pcjval — 1 ,

/
B uild IV

(o,
Max^f,

y pcjual + 1 mod M a x n J

\
\ \

neqs

/
M ax N

and:

B IV pc
0 , ^

neqs,

^ M a x n J

(
B uild IV

10,\
0 ,

V 1)
, neqs

J

A B ST R A C T DSCA TO CONCRETE DSCA 275

12.1.6 State Transition Equations

Consider the format of the State Transition equation in the source abstract dSCA, it

will be similar to:

The differences are attributable to the introduction of the tuple management

functions, T and II (as well as the need to identify the value in the tuple th a t results

are to be extracted from).

Informally, the process for creating the new State Transition equations is a two

step process

• Generate the d functions - those that are used in the projection part of the tuple

management functions

/

V*(i,a,x) = <
or(Vi(t — 32, a, x), V\(t — 31, a, x)) if Vpc(t — l ,a , x) = 23

gt(Vi(t — 31, a, x), V\(t — 30, a, x)) if Vpc(t — 1 , a, x) = 24

V

the corresponding component specification in the concrete dSCA would be of the

form:

T

 ̂ hpc {f) 5̂ 3-')
Vi (t,a ,x),

T
Vi (t,a ,x)

\

A B ST R A C T DSCA TO CONCRETE DSCA 276

• Create the new State Transition equations.

We consider the two key steps of creating the d functions and the new State

Transition equation in more detail next.

G eneration of th e d functions

For an indexed array tuple management approach the results are stored relative to

the value of the program counter when that result was calculated. The values of the

d functions for each argument, given a cycle consistent dSCA, can be determined by

using the following formula:

d m o d .n u m ,a r g jn u m ,p c -v a l — (Ad OX]\[T pCJUdl d vn o d jn u m ,a rg jn u T n ,p c jva l)

As an example, if a module has a definition:

Vi(t,a,x) = cond
Vi(t — 34,a,x), ^

Vi(t — 33, a, x),

\ V 1(t - 3 2 , a , x))

if Vpc(t - l ,a ,x) = 0

Then its arguments would be stored at positions 1,2 and 3 in the array. Assuming

Maxjg — 36, then if the first argument is considered, di$,o can be determined as:

^1,2,0 — (36 + 0 — $1,2,0) — 1

From the definition of the value function it can be seen that $1,2,0(t, a ,x) = t — 34,

therefore:
^ 1,2,0 = (36 + 0 — 34) — 1

= (2) - 1

= 1

To generate the d functions the Createds operation is introduced tha t recurses

over the structure of the concrete dSCA (since the source abstract dSCA and con

crete dSCA are the same “shape” means there is no requirement to use the mapping

function).

A B ST R A C T DSCA TO CONCRETE DSCA 277

Having produced the d functions for the new network attention can be returned

to the generation of the State Transition equations. Consider again the format of the

State Transition equation in the source abstract dSCA, it will be similar to:

Vi{t,a,x) = <
or(Vi(t — 32, a, x), V\(t — 31, a, z)) if condl

gt(Vi(t — 31, a, x), Vi(t — 30, a, x)) if cond2

and the corresponding component specification in the concrete dSCA would be of the

form:

 ̂ ^ (^ , 0,2 3 ^, a, z), a, x),
Vi(6 hh2 3 (t ,a ,x) ,a ,x) ,

Udi,2,23 (Vi(6i,2,23(t,a,x),a,x)),
n̂i,3,23 (̂1 (<*1,3,2s(t, a, x),a, x))

hpc(^i,o,24(^5 x), q, 2:),

Vi(^i,i,24(^a,x),a,2:),

T

or

Vi(t + l ,a ,x) = <

if condl

T

V

n “i,2,2i (U(<Si,2,24(*.a,a;),a,a:)),

n “i,3,24 W f W * ! 0 , *) . " . *)) J y

if cond2

The structure of the function does not change, except the introduction of the

tuple management operations T and n , so the operation can create the new State

Transition equations by recursing over the list of source State Transition equations.

This is done using the CreateSTs operation:

CreateSTs : adSCAAlgebra x Function 2 —► d S C A S T V E q L is t

which in turns finally calls a csrewire operation that is responsible for inserting

the tuple management functions into the State Transition equation. The true path

A B ST R A C T DSCA TO CONCRETE DSCA 278

component, i.e. the functionality that is used if the conditional component is true,

needs to be manipulated to incorporate the tuple management functions, i.e given a

component specification:

cond(a, 6 , c)

then b would be transformed into:

(Vpc{t,a,x), ^

Vvnodjnumit) &•>
y rewire(b) y

To achieve this the csjrewire operation is introduced:

cs-rewire : Term x N 3 x ProjEqList x 'ydSCAEqListx

(ddSCAEqList x SdSCAEqList x Function —► T erm

and it is defined as:

/ Vpc(t ,a ,x), \/

cs-rewire

tr m ,

modjnum ,

pcjual,

M ax at,

ds,

\

V

/0 S,

ds,

T,

n

= T

rw

m odjnum ,

pcjja l ,

M axa",
ds,

/3s,

ds,

V ^ n y y
The rewire operation is responsible for rewiring the network using the new delay

and wiring functions.

/

Kno(i.num(f) ^)j
/ trm , \

12.1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new concrete

dSCA can be created by transforming the source abstract dSCA. The Create-cdSCA

A B ST R A C T DSCA TO CONCRETE DSCA 279

operation is provided to do this, it is given as:

T ra n s fo rm : adSCAAlgebra x Function2 —> cdSCAAlgebra

The operation takes the source concrete dSCA and is defineed as:

T rans fo rm
(S C A src, \

T,
n

= CreatecdSCA

7

N am e ,

M A tu p 5

V F O p ,

70 : TV2 —> {M , 5, £7},

A) : N 2 - N ,

SOp ,

Create^ys(SCAsrc) ,

Create(3s($CAsrc) ,

Created s (S 'C A src) ,

CreateIVs((SCAsrc) ,

/ 5 0 4 ^ , \
CreateST s

\
T,

n /
where:

V0 : T x M r\ tup x M \tup -► Mxtup,,

VFO p =

5 Op =

\ Vk '■ T x M rf tup x M \tUp > MAtup> J

(<50,o,o : T x M2t„p x -> T, \

* ?
^ 5iji0 : T x x —* T y/

A B ST R A C T DSCA TO CONCRETE DSCA 280

and:
k = num-mod(SCAsrc)

j = G et-M axA(SC Asrc)

n = num Jn p (S C A src)

It is not intended to bring together all the operations defined in this chapter into

a written down specification in this thesis for reasons of brevity. If this was to be

performed, then it would appear similar to the specification provided for the SCA to

abstract dSCA transformation in Appendix F.

12.2 Correctness of transformation
T h e o rem 1 2 .2 .1 . The transformation of a Form 2 abstract dSCA to a concrete
dSCA preserves correctness.

The Form 2 abstract dSCA and transformed result, the concrete dSCA, exist in a

hierarchy and it is possible to show that the transformation is correct by considering

Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded Systems.

Let NdscAi be a N fS C A 1 > 1 module source Form 2 abstract dSCA network with

n <iscAi ^ q sources processing data from a set M ^ S C A 1 against a global clock T d S C A 1

Let NdscA2 be a NfSCA2 > 1 module concrete dSCA network with ndSCA2 > 0

sources processing data from a set M ^ S C A 2 against a global clock T d S C A 2 as generated

from NdscAi using the abstract dSCA to concrete dSCA transformation.

Poole, Holden and Tucker claimed that if it was possible to generate appropriate

mappings and show the following diagram commutes then the two spatially expanded

systems under consideration were correct with respect to each other.

A B ST R A C T DSCA TO CONCRETE DSCA 281

T.d S C A l X [Ttd S C A l M A d S C A U
UridscAl fyfChdscAi VdSCAl j^ChdscA
i A d s a A i A d s C A l

4> 4>

Startx x [Td s C A 2 -> MAdSCJ ^ ™ x

Mappings are needed for four areas:

• spaces;

• clocks;

• global states; and

• input streams.

The mappings are defined as follows:

Spaces. Spaces (modules) in the two networks are equivalent, for modules where

i € N f C A 2 thus it is appropriate to define the respacing operation 7r : lNdscA2 ~

IndscAl as>
7 r (z) = i

Clocks. There is no timing abstraction between networks, thus the retiming A :

rpdscA2 _^ rpdscAi^ where for f ^ rpdscA2 ̂ can appropriately defined as:

A(t) = t

Input Streams. There are no data or temporal abstractions required for inputs since

these are not altered by the transformation. Thus is it appropriate to define the input
, S C A 2stream abstraction 9 : [Td S C A 2 —> M d\ dSC A 2

operation:
&{a)(t) = a(X(t))

= a(t)

\TdSCAl , d S C A l

A d , S C A l . as the

A B ST R A C T DSCA TO CONCRETE DSCA 282

(Note: recall that we are comparing inputs between the Form 2 abstract and

concrete dSCA).

Global States. It is defined in the transformation that the carrier data set for source

abstract dSCA and target concrete dSCA differ by the introduction of tuples. These

means that the state abstraction map is related to the tuple management functions

(namely the tuple insertion function)

We therefore consider the state abstraction map (j) : M^J^ C A 2 —► MA^sclt1 ôr

all states s € MAdscli2 defined as follows, for i € Nj*SCA2 (assuming the use of

queue tuple management functions):

4>{s)(i) = n " “ » s (0

C o n jec tu re Given this set of mappings it is believed that the diagram above

commutes, and proof of such is done in a similar manner as for Theorem 10.2.1.

12.3 Generalised Railroad Crossing Problem as a
single processor Concrete dSCA

Finally the transformation of the (source) abstract dSCA from the previous chapter,

which has a defining shape of V = (1, fc), to the (target) concrete dSCA with a

defining shape of V = (1, fc), using the array style tuple management functions is

considered. The prerequisites are reviewed first:

• The source and object networks have k > 1 modules and M a xn > 0 component

specifications in its modules definitions; and

• Condition definitions of each adSCA module, except the programme counter,

are of the format:

cond(pc = 0 , a, cond(pc = 1 , fr, cond(pc = 2 , c, cond(...))))

A B ST R A C T DSCA TO CONCRETE DSCA 283

7 -w iring Functions

The process of transformation first creates the concrete dSCA 7 -wiring functions.

To do so, the Create'ys operation is called as:

(G etN um M odules(SourceSC A), ^

Create'ys ^ S o u rc e S C A ,) = B ^ s

= B'ys

The call to B ^ s expands as follows:

/ 1, \

G etM axN (SourceSC A),

^ GetryEqs(SourceSC A),

f 1 , N
36,

y GetryEqs(SourceSC A), J

B'ys 36,

y old'ys,

= Rewire'ys
1 ,
36,

y Reindex'ys (old'ys) J
This call to the Reindex'ys operation expands as:

Reindex'ys(e^es) = (Reindex/y(e), Reindex'ys(es))

J

The list of abstract dSCA 7 -wiring functions contains as the first 8 elements:

70
7o
7o
70
71
71
7i
70

(1.0) = M,
(1.1) = M,
(1.2) = Af,
(1.3) = M,
(1 , 0) - M ,
(1,1) = M,
(1 , 2) = M,
(0,0) = M

A B ST R A C T DSCA TO CONCRETE DSCA 284

So if Reindex'ys is applied to this list, the results would be:

Reindex^/s

7o(l> 0) = M, \ / Reindex7 (70(1, 0) = M), \
7o(l, 1) = M, / 7 o (l,l) = M, \
7o (l ,2) = M, 7o(1, 2) = M,
7o(l,3) = M, IICOr—\O

7 i(l ,0) = M, Reindex^fs 7 i (1,0) = M,
7 i (l , 1) = M, 7 i (l , 1) = M,
7 i (l , 2) = M, 7 i(l ,2) = M,
7o(0 , 0) = M J 7o(0 , 0) = M J /

f Reindex7 (70(1 , 0) = M), ^
Reindex 7 (7 0 (1 , 1) = M)
Reindex j (7 0 (1 , 2) = M)
Reindex 7 (7 0 (1 , 3) = M)
Reindex 7 (71(1, 0) = M)
Reindex 7 (71 (1 ,1) = M)
Reindex 7 (71(1, 2) = M)

\ Reindexj{'~(o{o, 0) = M) J
which, after applying the Reindex'y operation would result in the following list of

7 -wiring functions:
70
70
70
70
71
71
71
70

(1,0) = M,
(1.2) = M,
(1.3) = Af,
(1.4) = M,
(1,0) = Af,
(1 . 2) - M ,
(1 .3) - M ,
(0,0) = M

Application of the 7 — wiring transformation to the complete list of 7 —wiring oper

ations from the abstract dSCA produces the following list of 7 -wiring function for

A B ST R A C T DSCA TO CONCRETE DSCA

module 1 of the concrete dSCA:

285

7 0 (1 , 0) = M , 7 o (l, 2) = M , 7 o(1 ,3) = M , 7 o (l ,4) = M ,
7 i (l , 0) = M , 7 i (l , 2) = M , 7 i (1 ,3) = M , 7 i (l , 4) = 17,
7 2 (1 , 0) = M , 72(1, 2) = 77, 7 2 (1 ,3) = £7, 7 2 (1 ,4) = C7,
7 3 (1 ,0) = M , 7 3 (1 ,2) = M , 7 3 (1 ,3) = M , 7 3 (1 ,4) = M ,
7 4 (1 , 0) = M , 74(1, 2) = M , 7 4 (1 ,3) = M , 7 4 (1 ,4) = 77,
7 5 (1 , 0) = M , 7 5 (1 , 2) = M , 7 5 (1 ,3) = Af, 7 5 (1 ,4) = <7,

h—
1

O II 7 6 (1 ,2) = M , 7 6 (1 ,3) = M , 7 6 (1 ,4) = 17,
7 7 (1 ,0) - M , 77(1, 2) = 77, 7 7 (1 ,3) = 17, 7 7 (1 ,4) = 77,
7 s (1 , 0) = M , 7 8 (1, 2) = 77, 7 8 (1 ,3) = 17, 7 8 (1 ,4) = 17,
7 9 (1 , 0) = M , 7 9 (1 , 2) = M , 79(10, 3) = M , 7 9 (1 ,4) = £7,
7io (, 0) = M , 7 io (,2) = 5 , 7 io (,3) = M , 7io (- , 4) = 77,

7 n (, 0) = M , 7 n (,2) = M 7 n (,3) = M , 711 (,4) = [7,

712 (,0) = M , 712 (,2) = 5 , 712 (,3) = M , 712 (- , 4) = 77,

713 (,0) = M , 713 (, 2) = M , 713 (,3) = M , 713 (- , 4) = [7,
714 (, 0) — M , 714 (,2) = 5, 714 (,3) = M , 714 (,4) = 17,
715 (, 0) = M , 715 (, 2) = 77, 7 l5 (> 3) = 77, 715 (,4) = 77,

716 (, 0) = M , 716 (, 2) = 17, 7 ie (,3) = 17, 716 (,4) = 77,
717 (,0) = M , 717 (,2) = 77, 7 l7 (,3) = 77, 717 (,4) = 77,

718 (,0) = M , 718 (, 2) = 77, 7 is (,3) = C7, 718 (,4) = 77,

719 (,0) = M , 719 (,2) = 77, 7 l9 (, 3) = Z7, 719 (- ,4) = 77,
720 (,0) = M , 720 (,2) = 77, 720 (- ,3) = 77, 720 (,4) = 77,

721 (,0) = M , 721 (, 2) = M , 721 (,3) = M , 721C ,4) = 77,
722 (,0) = M , 722 (,2) = M , 722 (,3) = M , 722 (,4) = 77,

723 (,0) = M , 723 (,2) = M , 723 (,3) = M , 723 (,4) = 77,
724 (,0) = M , 724 (, 2) = M , 724(,3) = M , 724 (,4) = 77,

725 (• ,0) = M , 725 (, 2) = M , 725 (,3) = M , 725 (,4) = 77,

726 (,0) = M , 726 (,2) = M , 726 (,3) = M , 726 (,4) = 77,
727 (, 0) = M , 727 (,2) = M , 727 (, 3) = M , 727(,4) = 77,

728 (,0) = M , 728 (, 2) = aS, 728 (,3) = 5 , 728 (,4) = 77,

729 (, 0) = M , 729 (,2) = 17, 729 (, 3) = 77, 729 (,4) = 77,

730 (,0) = M , 730 (,2) = 5 , 730 (,3) = 5 , 730 (,4) = 77,

731 (,0) = M , 731 (, 2) = 77, 731 (,3) = 77, 731 (,4) = 77,

732 (,0) = M , 732 (- ,2) = 5 , 732 (, 3) = <9, 732 (- ,4) = 77,
733 (,0) = M , 733 0 ,2) = 17, 733 (• , 3) = 17, 733 (- ,4) = 77,

734 (, 0) = M , 734 (,2) = 5, 734 (, 3) - 5 , 734 (,4) = 77,
735 (, 0) = M , 735 (, 2) = 77, 735 (,3) = £7, 735 (,4) = 77

and for the program counter, where 0 < pcjual < M a xN — 1 the following 7 -wiring

functions are produced:

'Jpcjual (,PC) 0) A t

A B ST R A C T DSCA TO CONCRETE DSCA 286

After the Reindex^s operation completes, the result is used as an input to the

call to the Rewire operation:

i, \
Rewircys 36,

 ̂ Reindex'ys {oldys) J
which expands as:

(

(

Rewire'ys
1 , \

36,

y new'ys J

= Rewire'ys

0 ,
36,
/

\

ReWire'ypc

\

(35, ^

1 ,

VD)
new'ys

J
where the call to Rewire-ypc results in the expansion of the first case (where pcjval >

0):

(34, \

I 35, \
Rewire^pc 1 ,

y new^s J

= Rewire^pc
/

Build'y

34,

1 ,

O , \

1 ,
35,

\

new'ys

\

— Rewire^pc

\ ((735(1 , 1) = M) , new 'ys) J
The recursion in ReW ire'ypc will continue until the base case is reached, where

p c jv a l = 0 , in which case the following definition is invoked:

ReW ire'ypc

0 ,

1 ,
old'ys ,

y new'ys j

(

Build'y

f i . \
1 ,

0 ,
\ M , j

\

, new'ys

A B ST R A C T DSCA TO CONCRETE DSCA 287

Finally, the recursive call to Rewire'ys where the module number is 0 is reached

and in such a case the following definition is used:

1 °' \Rewire'ys 36, = new'ys

 ̂ new'ys J
Completing the Rewire'ys operation completes the generation of 7 -wiring func

tions for the concrete dSCA. The list below shows the 7 -wiring functions produced

for the GRCP solution:

7o (’ 0) == Af, 7o (1 ,2) =-A f, 7o (1 ,3) == Af, 7o (1 , 4) == Af, 70(1 1) = Af,
71 (. 0) =: Af, 7 i (1 ,2) =■Af, 7 i (1 ,3) == Af, 7 i (1 ,4) = 7 i 1 1) — Af,
72 (5 6) - M, 72 (1 ,2) = U, 72 (1 ,3) == 17, 72 (1 ,4) = u , 72(1 1) = Af,
73 (, 0) =-A f, 73 (1 ,2) = Af, 73 (1 ,3) == Af, 73 (1 ,4) = Af, 73(1 1) = Af,
74(5 0) == Af, 74 (1 ,2) = Af, 74 (1 ,3) == Af, 74 (1 ,4) = u, 74(1 1) — Af,
75 (,0) == Af, 75 (1 ,2) = Af, 75 (1 ,3) == Af, 75 (1 ,4) =-u , 75(1 1) = Af,
76 (.0) == Af, 76 (1 ,2) = Af, 76 (1 ,3) == Af, 76 (1 ,4) =-u , 76(1 1) = Af,
77 (5 0) == Af, 77 (1 ,2) = £/, 77 (1 ,3) == 17, 77 (1 ,4) = u , 77(1 1) = Af,
78 (10) == Af, 78 (1 ,2) = u, 78 (1 ,3) == 17, 78 (1 ,4) = u , 78(1 1) = Af,
79 (>0) == Af, 79 (1,2) = Af, 79 (10,3) = Af, 79 (1,4) = u , 79(1 1) = Af,
710 1,0) = Af, 7io 1 ,2):= 5, 7io 1,3) = Af, 710 1 ,4):= tf, 7io (,1 = Af,
7 n 1,0) == Af, 7 n 1 ,2):= Af 7 n 1,3) = Af, 711 1 ,4):= £/, 7 n (, 1 = Af,
712 1,0) == Af, 712 1 ,2):= 5, 712 1,3) = Af, 712 1 ,4):= tf, 7 l2 (,1 — Af,
713 1 ,0):= Af, 713 1 ,2):= Af, 713 1,3) = Af, 713 1 ,4):= u, 713 (,1 — Af,
714 1 ,0):= Af, 714 1 ,2):= 5, 714 1,3) = Af, 714 1 ,4):= u, 714 (,1 = Af,
715 1 ,0):= Af, 715 1 ,2):= 17, 715 1,3) = tf, 715 1 ,4):= u, 715 (,1 — Af,
716 1 ,0):= Af, 716 1,2) == t/, 716 1,3) = tf, 716 1 ,4):= U, 716 (,1 = Af,
717 1 ,0):= Af, 717 1 ,2):= u, 717 1,3) = u, 717 1 ,4): 717(,1 = Af,
718 1 ,0):= Af, 718 1 ,2):= u, 718 1,3) = u, 718 1 ,4):= u, 718 C ,1 — Af,
719 1 ,0):= Af, 719 1 ,2):= u, 719 1,3) = u, 719 1 ,4):= U, 719 (,1 = Af,
720 1 ,0):= M, 720 1 ,2):= 17, 720 1,3) = u, 720 1,4) = U, 720 (,1 — Af,
721 1 ,0):= Af, 721 1 ,2):= Af, 721 1,3) = Af, 721 1 ,4):= «7, 721 (,1 — Af,
722 1 ,0):= M, 722 1 ,2):= Af, 722 1,3) = Af, 722 1 ,4):= tf, 722 (,1 = Af,
723 1 ,0):= Af, 723 1 ,2):= Af, 723 1,3) = Af, 723 1 ,4):= tf, 723 (,1 — Af,
724 1 ,0):= Af, 724 1 ,2):= Af, 724 1,3) = Af, 724 1 ,4):= tf, 724(,1 — Af,
725 1 ,0):= Af, 725 1 ,2):= Af, 725 1,3) = Af, 725 1,4):= tf, 725 (,1 — Af,
726 1 ,0):= Af, 726 1 ,2):= Af, 726 1,3) = Af, 726 1 ,4):= tf, 726 (,1 = Af,
727 1 ,0):= Af, 727 1 ,2):= Af, 727 1,3) = Af, 727 1,4):= 727 (,1 — Af,

A B ST R A C T DSCA TO CONCRETE DSCA 288

728 1,0) = M, 728 1 , 2) = 5, 728(1,3) = 5, 728(1,4) = 17, 728(1 1) — M,
729 1 , 0) = M, 729 1,2) = 17, 729(1 ,3) = C/, 729(1 , 4) = U, 729(1 1) = Af,
730 1 ,0) = M, 730 1,2) = 5, 73o(l,3) = 5, 73o(l,4) = Z7, 730(1 1) = M,
731 1 ,0) = M, 731 1,2) = 17, 73i(l,3) = 17, 73i(l,4) = tf, 73l(l l) = Af,
732 1 ,0) = M, 732 1 , 2) = 5, 732(1,3) = S, 732(1,4) = 17, 732(1 l) = Af,
733 1,0) = M, 733 1,2) = 17, 733(1,3) = 17, 733(1,4) = u, 733(1 1) = M,
734 1 ,0) = M, 734 1 , 2) = 5, 734(1,3) = S, 734(1,4) = 17, 734(1 1) = M,
735 1 , 0) = M, 735 1,2) = 17, 735(1,3) = [/, 735(1,4) = 17, 735(1 1) = M

where, for the program counter, where 0 < pc.val < M a x# — 1 the following 7 -wiring

functions are defined:

7 pcjval{pCi 0) M

#-w iring Functions

The new #-wiring function for module 0 of the concrete dSCA are defined, for

0 < pcjual < 35, as:

(3Pc-vai(pc, 0) = pc

and for module 1 :

yd0(l , 0) = PC, #0(1, 2) = 1, #o(l,3) = 1, #o(,4) = 1, #o(l, 1) = 1,
i (l , 0) — pc, # 1(1, 2) = 1, # i(l ,3) = 1, # l (,4) = u j , # i (l , l) = 1,
/?2(1, 0) = pc, #2(1, 2) = cj, #2(1,3) = CJ, #2(,4) = u j , #2(1, 1) = 1,
#3(1, 0) = pc, #3(1,2) = 1, #3(1,3) = 1, #3(,4) = 1, #3(1,1) = 1,
#4(1, 0) = p c , #4(1, 2) = 1, #4(1,3) = 1, #4(,4) = u j , #4(1,1) = 1,
#5(1, 0) = pc, #5(1, 2) = 1, #5(1,3) = 1, #s(,4) = u j , #5(1,1) = 1,
#6(1, 0) = pc, # e (l ,2) = 1, #6(1,3) = 1, #e(,4) = u j , #6(1, 1) = 1,
#7(1,0) = pc, #7(1, 2) = w, #7(1,3) = #7(,4) = iv, #7(1, 1) = 1,
s (l ,0) = pc, #8(1, 2) = (J, #8(1,3) = u, #8(, 4) = cj, # b(1,1) = 1,
#9(1, 0) = pc, #9(1, 2) = 1, #9(1, 3) = 1, #9(,4) = co, #9(1,1) = 1,
10(1, 0) = pc, #io(l,2) = 9, # 10(1, 3) = 1, # 1 0 1 ,4)= w, # io (l ,l) = 1,
11(1, 0) = pc, # n (l ,2) = 1, # 11(1, 3) = 1, # 1 1 1 ,4)= a;, # n (l , l) = 1,
12(1, 0) =pc, #12(1,2) = 9, # 12(1, 3) = 1, # 1 2 l,4) = w, #12(1,1) = 1,
13(1, 0) =pc, #13(1,2) = 1, # 13(1, 3) = 1, #13 1,4) = w, #13(1,1) = 1,
14(1, 0) =pc, #14(1,2) = 9, # 14(1, 3) = 1, #14 1, 4) = cj, #14(1,1) = 1,
15(1, 0) =pc, #15(1,2) = u, # 15(1,3) = u j , #15 1 ,4)= a;, #15(1,1) = 1,

A B ST R A C T DSCA TO CONCRETE DSCA 289

#ie(, 0) = pc, #16 (, 2) — Cl), #16 (,3) = CJ, #16 (,4) = CJ, #16(1,) = 1,
Pn(, 0) = pc, #17 (,2) = CJ, #17 (,3) = Cl), #17 (, 4) = Cl), #17(1,) “ 1,
#18 (, 0) = pc, #18 (, 2) = cj, #18(,3) = £J, #18 (,4) = CJ, #18(1,) = 1,
#19 (,0) = pc, #19 (, 2) = Cl), #19 (,3) = a;, #19 (, 4) = Cl), #19(1,) — 1,
#20 (, 0) = pc, #20 (,2) = (J, #20 (, 3) = Cl), #20 (,4) = cj, #20(1,) = 1,
#21 (, 0) - pc, #21 (,2) = 1, #21 (> 3) = 1, #21 (,4) = Cl), #2l(l,) ~ 1,
#22 (, 0) = pc, #22 (,2) = 1, #22 (> 3) = 1, #22 (, 4) — CJ, #22(1, -) ~ 1)
#23 (, 0) = pc, #23 (5 2) = 1, #23 (> 3) = 1, #23 (,4) = cj, #23(1,) = 1,
#24 (II 7 #24 (,2) = 1, #24 (> 3) = 1, #24 (,4) = w, #24(1,) = 1,
#25 (,0) = pc, #25 (5 2) = 1, #25 (,3) = 1, #25 (, 4) — Cl), #25(1,) = 15
#26 (, 0) = pc, #26 (5 2) = 1, #26 (1 3) = 1, #26 (,4) = cj, #26(1,) = 1,

#27 (, 0) = pc, #27 (,2) = 1, #27 (,3) = 1, #27 (, 4) = Cl), #27(1,) — 1,
#28 (, 0) = pc, #28 (>2) = 1, #28 (,3) = 2, #28 (, 4) — Cl). #28(1,) = 1,
#29 (, 0) = pc, #29 (, 2) = Ct), #29 (,3) = u, #29 (, 4) = Cl), #29(1,) = 1,
#30 (h-1 O II 7 #30 (,2) = 3, #30 (,3) = 4, #30 (,4) = fJ, #30(1,) — 1,
#31 (, 0) = pc, #31 (5 2) — Cl), #31 (, 3) = Cl>, #31 (5 4) — Cl), #3l(l,) = 1,
#32 (, 0) = pc, #32 (>2) = 5, #32 (5 3) = 6 , #32 (,4) = cj, #32(1,) = 1,
#33 (, 0) = pc, #33 (, 2) = w , #33 (, 3) = Cl), #33 (, 4) — CJ, #33(1,) = 1 ,
#34 (, 0) = pc, #34 (> 2) = 7, #34 (> 3) = 8 , #34 (,4) = cj, #34(1,) — 1,
#35 (, 0) = pc, #35 (, 2) = Cl), #35 (,3) = cj, #35 (,4) = cj, #35(1,) — 1

D elay Functions

Creating the delay functions for the concrete dSCA is performed by the CreateSs

operation:

„ , Create^siSource^SCA),
CreateSs (S o u rceS C A) = B5s

which calls the BSs operation with the first argument being the list returned from the

generation of the concrete dSCAs 7 -wiring functions (as shown above) and an empty

list for the new delay functions. The call expands as follows since there is more than

one element in the list of wiring functions:

/

BSs
(e , e s) ,

B S s

es,
/

\

BuildS

(GetArg(RetTerm(e, 1), 1), ^ ^

GetArg(RetTerm(e , 1),2),

GetIndex(RetTerm (e , 1), 1),

t - 1 /

A B ST R A C T DSCA TO CONCRETE DSCA 290

The first element in the 7 -wiring function list, produced above, is:

7 o(l, 0) = M

The call to BSs will progress in the following manner

/

/ G etT r(7(7 0 (1 , 0), 1), N
BSs

(e,es),
= BSs

es,
/

BSs

BuildS

V
es,
/

v

V

BuildS

= BSs

\
es,

Geti4rp(7 0(l , 0), 2),

Get/ndea;(7 o(l, 0), 1),

t - 1

\

\' 1 , '
0 ,

0 ,
t - 1 I 7 7

(£ii0lo (t,a ,z) = t - 1), [

The recursion will complete when there is only one element left in the list of 7 -

wiring functions, in which case the following call to BSs is used:

(GetArg(RetTerm(e, 1), 1), ^

GetArg(RetTerm(e , 1), 2),

G etIndex(RetTerm(e , 1), 1),

t - 1

For this example, it can be seen from the 7 -wiring function transformation above

that the last element in the list is:

BSs | | = BuildS
neqs,

V /

735 (pc, 0) = M

which under the defined transformation will produce the delay function:

Spc, 0,35(^5 C/, x') — t 1

A B ST R A C T DSCA TO CONCRETE DSCA 291

The complete list of delay functions can be seen in Appendix E.

Initial S tate Equations

Construction of the new Initial State equations commences with a call to the

C reate lVs operation:

f num jm odules(SourceSCA), \

G etM axN (S o u rceS C A),
C reatelVs ^ S o u rceS C A) = B IV s

G e tIV (S o u rceS C A),

D
where the call to B IV s is expanded as the recursive call:

V /

(o>
36,

/

B I V s

i, \
36,

oeqs ,

y neqs J

— B IV s

\

oeqs,
((

\

B I V

\

0 ,
35,

1 ,
oeqs,

V O)

neqs

/ J

Observe that the call to B I V is in this case a recursive call to itself, with the

value of the first argument incremented by one:

(

B I V

1 0 , N

35,

1 ,
oeqs,

Y neqs j

= B I V

1 ,
35,

1 ,
oeqs,
(

\

G enIVs 0 ,
35,

Y oeqs j

, neqs

A B ST R A C T DSCA TO CONCRETE DSCA 292

The result of the G enlV operation will be the following Initial State equation:

VI (0 ,a ,x) =

I s ta y ,u ,u ,u ,u ,u ,u ,u ,u , \

u,u, u, iqiqrq u, u,u,

u ,u ,u ,u ,u ,u ,u ,u ,u ,

y u , u ,u , u ,u , rqu ,u ,u j

The recursive nature of B I V s is such that the result above is repeated until we

produce the Initial State equation for module 1 at time t = 34:

Vi(34, a, x) =

I s ta y ,u ,u ,u ,u ,u ,u ,u ,u ,

u , iq iq u , iq rq iq u, iq

iq iq iq iq iq iq u, u, u,

y iq iq iq u, rq u, u, u, u

The next call to B I V s is to the non-recursive version:

t (i,

\

B I V

(35, \

35,

1 ,
oeqs,

neqs,

B u ild IV

35,

In itS tate

(35,

1 ,
oeqs,

V s ’ 1 /

, negs

A B ST R A C T DSCA TO CONCRETE DSCA 293

which results in a call to the In itS ta te operation, which is itself defined recursively,

and in this case results in:

(34, \

1 ,

In itS ta te

35,

1 ,
oeqs,

0 ,

v ^ - 1 j

= In itS tate

oeqs,
/

RetT erm

V
^ - l

(

GetEl

\

oeqs

i,

V 35

\ \

,2

/

\

]

/

= In itS tate

= In itS ta te

34,

1 ,
oeqs,

(.RetTerm (Vi(35, a, x) = 0,2), []),

34,

1 ,
oeqs,

(0 , 0) ,

“ -1 /

\

the next recursive call will look like:

In itS tate

I 35, N

1 ,
oeqs,

V O , /

= In itS ta te

33,

1 ,
oeqs,

(o,o,o), y

A B ST R A C T DSCA TO CONCRETE DSCA 294

In itS ta te

(0 , \

1 ,
oeqs,

^ n lis t ,

This recursion continues until the value for the first argument reaches 0, in which

case the following result is produced:

(stay, true, stay, up, true, fa lse, false, ^

down, up, true, true, false, false, false,

true, false, 90, true, 0, true, 0,

false, false, false, false, false, fa lse, false,

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

\ 0 !

This result from In itS ta te is subsequently used to construction the Initial State

equation at time t = M a xn — 1 = 35:

(stay, true, stay, up, true, false, fa lse, \

down, up, true, true, false, false, fa lse,

true, false, 90, true, 0, true, 0,

false, false, false, false, false, false, false,

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

v °)

Next the case where B I V s is called with the module number equal to 0. In this

case the base case of B I V s is invoked as:

o, a
36,

oeqs,

Vi(35, a, x) —

B IV s

(

B IV pc
(35, \

neqs

V 35, y)
\ neqs, y

where B IV pc builds the following list of Initial State equations:

Vo(35, a, x) — 0,

Vq(34, a, x) — 35,

Vo(l ,a ,x) = 2,

Vo(0 ,a ,x) = 1 ,

A B ST R A C T DSCA TO CONCRETE DSCA 295

The complete list of Initial State equations can be seen in the algebraic specifica

tion of the concrete dSCA at Appendix E.

State Transition Equations

To generate the State Transition equations the CreateST operation is called with

the source SCA as an argument:

All of the arguments are either extracted from the source specification, e.g. ex

tracting the previous delay functions, or are created using elements of this transfor

mation, e.g. the creation of new wiring functions. Arguments that have to be created

have already been shown in this chapter, with the exception of Createds , which is

now shown.

Generation of the d function for the concrete dSCA network commences with a

call to the Createds operation:

G etEqSTV F(Source.SC A) , \

Q

(Source.SCA, ̂

CreateST s Y,

Createds (Source.SC A) ,

Createds (Source.SC A)

Vn / CreateSs (Source .S C A),

G etM axN (Source.SC A)

T,

/

 ̂ GetNum M odules(Source.SCA), ̂

G etM axN (Source.SC A) ,

createds ̂ Source.SCA ̂ = Bds GetMaxA(Source.SCA) + 1 ,

GetSEqs(SourcesCA) ,

/

A B ST R A C T DSCA TO CONCRETE DSCA 296

which for the source abstract dSCA under consideration, with a defining shape of

(1,35) and maximum number of arguments of 4, can be written:

createds ̂ So u rceS C A ̂ = Bds

(G etN um M odules(SourceSC A),

GetM axN (S ource .S C A),

G etM axA(SourceSC A) + 1 ,

GetSEqs(SourcesCA),

\

= Bds

1 ,
36,

5,
Get5Eqs(SourcesCA) ,

\

/

The call to Bds expands into the recursive call:

(o>
36,

C , \

36,

5,
oldeqs,

Bds = Bds

/

5,
oldeqs,

< (35, \ \

1 ,
5,
36,

oldeqs,

Bdspc

/

A B ST R A C T DSCA TO CONCRETE DSCA 297

Expanding the call to Bdspc results in the recursive call:

/ 34,

Bdspc

(35,

1 ,
5,
36,

oldeqs,

V D

\

= Bdspc

1 ,

5,
36,

oldeqs,
/

Bdsarg

V

(4,
35,

1 ,
35,

oldeqs,

V D 7 7 /

Now, the call to the Bdsarg operation expands to the recursive call of:

Bdsarg

< 4,

1 ,
35,

36,

oldeqs,

VD

- Bdsarg

(3,

E
35,

36,

oldeqs,
/

Buildd

\

1 ,

4,
35,

35,

 ̂ djval, j

A B ST R A C T DSCA TO CONCRETE DSCA 298

with:

d.val = (M cixn + pc.val) —

thus:

t — R etT erm GetEl

(oldeqs, ^ V V

1 ,

3,

V 3 5 ’ J

,2

/ /
= (36 + 35) — (t — RetT erm (£1,3,35 = t — 1) , 2)

= (71) - (t - (t - 1))

= 71 - {t - t + 1)

= 71 — 1

= 70

I

Bdsarg

(4,

1 ,
35,

36,

oldeqs,

VD

= Bdsarg

\

3,

1 ,
35,

36,

oldeqs,
(

Buildd

V

= Bdsarg

A , \

4 ,

35,

35,

V 7 0 ’)
\(3,

1 ,
35,

36,

oldeqs,

V (^i?4,35 — 70, []) J
Values are of limited interest until we arrive at program counter values of 27 since

all values of the delay function up to this point are the unit delay. For program

A B ST R A C T DSCA TO CONCRETE DSCA 299

counter 27 the 5th argument is unwired, thus of unit delay, however the recursive call

to Bdsarg for the 4th argument, is as follows:

/ o \

Bdsarg

(3, \

1 ,
27,

36,

oldeqs,

Y neqs)

— Bdsarg

2 ,

1 ,
27,

36,

oldeqs,
/ /

Buildd

1 ,

3,
27,

35,

Y djual, y

\ \

5^1427 = 62 ,negs

and djual is calculated thus:

d-val = (Maxf j + pc.val) — t — RetT erm

\

GetEl

\

oldeqs,

1 ,

2 ,

V 27> 7

7

\ \ \

,2

7 7
= (36 + 27) — (t — RetTerm (£1,2,27 = t — 28), 2)

= (63) - (t - (t - 28))

= 63 - (t - t + 28)

= 6 3 - 2 8

= 35

A B ST R A C T DSCA TO CONCRETE DSCA 300

and therefore, Bdsarg can be traced as follows:

/

Bdsarg

(3, \

1 ,
27,

36,

oldeqs ,

Y neqs J

-- Bdsarg

2 ,

1 ,
27,

36,

o ldeqs ,

Buildd

\

i,

3,
27,

35,

V 3 5 ’ V

- - Bdsarg

\(2 ,

1 ,
27,

36,

oldeqs ,

V (^1^3,27 = ^^5^1^4,27 = 62,7T,e^s) y
Similarly the recursive call with the argument value of 2 will result in the recursive

call:

Bdsarg

(

\

1 ,

1 ,
27,

36,

o ldeqs:

(dl?2,27 = 34> ^
1̂,3,27 = 35,

1̂̂ 4,27 = ^2 ,
y neqs j

\

A B ST R A C T DSCA TO CONCRETE DSCA 301

At this point, the recursive call to Bdsarg is made, which simply returns the list

of new d equations:

/

Bdsarg

\

v

 ̂ d%2,27 = 34, ̂

1̂̂ 3,27 ~ 35,

^M,27 = ^2 ,
y neqs j

1 ,

1 ,
27,

36,

oldeqs,

 ̂ 1̂̂ 2,27 = 34, ̂

d%3,27 = 35,

1̂̂ 4,27 = ^2 ,
y neqs

The next step will be to recurse on the next value of the program counter, which

will continue until the following base case is invoked:

/ 0, \ ((5,

0 ,

Bdspc

1 ,
5,
36,

oldeqs,

Y neqs

Bdsarg

\

\

1 ,
36,

oldeqs,

V

\

neqs

which, would result in:

(^1 2̂,0 “ 1 > ^ 3,0 = 2, d^ 4)0 = 3, neqs ^

at this point the generation of d-values is now finished by recursively calling the Bds

operation, using its base case:

(o, \
36,

Bds 5, = neqs

oldeqs,

 ̂ neqs y

A B ST R A C T DSCA TO CONCRETE DSCA 302

The values of d which are interesting, i.e. are not of unit delay, are:

d 3 5 - 1 1 ,2 ,0 — 1 > ^ L 3 ,3 = ^ ’
✓735 _ i o

1 ,2 ,6 — ^ 1 ^ 3 ,1 1 — ^ 0 , 2 1 = 2 3 , ^ L 3 , 2 5 = 3 1
✓735 _ o

1 ,3 ,0 “ ^ 1 ,4 ,3 = ^ 1 ,3 ,6 =
^ 3 5 __ i o
“ 1 ,3 ,1 2 — ^ 1 ,2 ,2 2 ~ 2 4 , ^ 1 2 ,2 6 = 3 2

✓735 _ o
“ l 4 ,0 — ^ 1 2 ,4 — ^ 1 ,3 ,9 “ 1 5 ,

✓735 — 9 1
1 .2 ,1 3 — Z i ’ ^ 1 3 ,2 2 = 2 5 , ^ 1 ,3 ,2 6 “ 3 3

p o — A
“ l 2 ,1 ~ ^ 1 ,3 ,4 =

j 3 5 _ 2 1
“ 1 ,2 ,9 — Z i ’ ^ 1 ,3 ,1 3 — 1 9 , ^ 1 ,2 ,2 3 “ 2 6 , ^ 1 ,2 ,2 7 “ 3 4

p k _ t
1 ,3 ,1 —

✓735 _ i i
“ 1 ,2 ,5 — 1 1 >

✓735 _ i f ;
1 ,4 ,1 0 — i D ’ ^ 1 ,3 ,1 4 — 2 0 , ^ 1 ,3 ,2 3 “ 2 7 , ^ 1 ,3 ,2 7 = 3 5

✓735 . c
“ 1 ,2 ,3 —

✓735 _
“ l , 3 , 5 —

✓735 _ 2 1
1 ,2 ,1 1 — ^ 1 ,2 ,2 1 = 2 2 , ^ 1 ,2 ,2 4 = 2 8 , ^ 1 ,3 ,2 4 “ 2 9

^ 1 ,2 ,2 5 “ 3 0

Other calculated values, which will not be used in the eventual concrete dSCA due

to them being wired to inputs or the special w module are:
j 3 5

1 ,4 ,1
= 36 d35“ 1 2 , 0 - 45 d33

“ 1 2 , 7 = 52 d33“ 1 ,4 ,2 3 = 58 d351 ,2 ,3 1
= 66

✓j3 5
“ l , 2 , 2 = 37 j 3 5

1 ,4 , 0 = 45 j 3 5
“ 1 3 , 7 52 d331 ,4 ,2 4 = 59 J sk

1 ,3 ,3 1 = 66
✓735

1 ,3 ,2
- 37 d331 ,4 , 1 = 46 d33

b 4 ’
7 = 52 d“ 1 ,4 ,2 5 = 60 (p k

1 ,4 ,3 1 = 66
“ 1 4 , 2

= 37 d y 5

b 2’ 2 = 47 d33
b 2 ’

8 = 53 d33
“ 1 4 , 2 6

— 61 j s k
“ 1 2 , 3 2 = 67

d351 ,4 ,4 = 39 ✓735
h 4 , 2 =- 47 d33

b 3 ’ 8 — 53 d331 ,4 ,2 7
= 62 d3^“ 1 ,3 ,3 2

= 67
j 3 5
“ l 4 , 5 = 40 d33

T 4 , 3 = 48 d33 8 = 53 d3̂1 ,2 ,2 8 = 63 d3^“ 1 ,4 ,3 2
= 67

d33“ 1 4 , 6 = 41 d 3 5

b 2 ’ 4 = 49 d33
b 2 ’ 9 54 d3̂1 ,3 ,2 8 = 63 d3^“ 1 ,2 ,3 3 = 68

d
1 ,2 ,7 = 42

b 4’ 4 = 49 d33
b 3 ’

9 = 54 d 1 ,4 ,2 8 = 63 d3^1 ,3 ,3 3
= 68

✓735

b 3 ’7
= 42 d33

b 2’ 5
—- 50 d331 ,4 , 9

= 54 d331 ,2 ,2 9 = 64 d3^
“ 1 ,4 ,3 3 - - 68

d i A 7 = 42 d33
b 3’ 5 = 50 d331,2 ,2 0 55 d331 ,3 ,2 9

— 64 d33“ 1 ,2 ,3 4 = 69
< 2 , 8

= 43 d33
b 4 ’ 5 = 50 d33

1 ,3 ,2 0
= 55 d331 ,4 ,2 9 = 64 d33“ 1 ,3 ,3 4 69

j 3 5
1 ,3 ,8 43 d33

b 3 ’ 6 51 d33
1 ,4 ,2 0 = 55 d3^1 ,2 ,3 0

= 65 j'dk
1 ,4 ,3 4 = 69

j 3 5
1 ,4 ,8 = 43 d33

b 2 ’ 6 = 51 d331 ,4 ,2 1 - 56 d3̂“ 1 ,3 ,3 0
- 65 d3^1 ,2 ,3 5

= 70
✓735

1 ,4 ,9 44 d1 ,4 , 6 - 51 d 3 31 ,4 ,2 2
= 57 d3*>

“ 1 ,4 ,3 0 = 65 d 3 ^1 ,3 ,3 5
-z 70

d3^“ 1 ,4 ,3 5 70

The process of generating the State Transition equations can now continue. Recall

that the initial call would be:

t G e tE q S T V F (Source.SCA) , \

CreateSTs
(Source.SCA, ^

T,

v n
= B S T s

/

Createds(Source_SCA),

Create{3s(Source.SCA),

Created s(S our ce.SC A) ,

G etM axN (Source JSC A),
T,

n

A B S T R A C T DSCA TO CONCRETE DSCA 303

In the GRCP example there are two modules, thus there are two equations in the

list of State Transition equations from the source abstract dSCA. The expansion of

the call to B S T s is given as:

B S T s

\

(e, eqs),

neqs,

newds,

new (3 s,

newds,

36,

T,

n

(eqs,
(

\

= B S T s

(

B ST ck

\
newds,

new(3s,

newds,

36,

T,

n

\ \

G et Index (RetT erm(e, 1)),

0,
Maxjv,

newds,

new ps ,

newds,

T,

n

, negs

/

A B S T R A C T DSCA TO CONCRETE DSCA 304

Considering module 1, then the call to B S T ck will result in the following call to

the B S T operation, since the module is not tuq:

^ (Vpc(t, a, x) = 0, \ \

B S T

cond

\ /
1,

0,
36,

newds,

new(3s,

newds,

T,
n

= cond

(pcjrewire (Vpc(t, a, x) = 0),

6, \
cs.rewire 1,0,36,

y newds, (3s, 6s, T, II J

(C

B S T 1,1,36,

\ y newds, newfis, newds, T, II J

/
Each of the parts on the right hand side will be expanded as:

pcjrewire (Vpc(t, a, x) = 0) = {Vpc(t, a, x) = RetTerm (Vpc(t, a, x) = 0, 2))

= (Vpc(t,a ,x) = 0)

f Vpc{t,a ,x),

Ei (t,a ,x),

csjrewire

V i(t-3 5 ,a ,a :) , \ ^

cond Vx{t — 34, a, x), ,

 ̂ Vi(t — 33, a, x) y

1,0,36,

newds, (3s, 6s, T, II y

= T

cond
^ Vi(t — 35, a, x), ̂

Ei (t — 34, a, x),

y Vi(t — 33,a ,x) J

1,
0,
36,

ds,

(3s,

6s,

\ n J J

A B S T R A C T DSCA TO CONCRETE DSCA

with the rw operation expanded as:

rw

cond

1,
0,
3 6 ,

ds,

(3s,

6s,

V n

(Vx{ t - 35, a, x), \

Vi (t — 3 4 , a, x),

y E i (t — 3 3 , a, x) J

= cond

wire

wire

wire

I V\{t — 3 5 , a, x),

fis, 6s, ds,

1 , 2 , 0 ,

3 6 , n

Vi (t — 3 4 , a, x),

/3s, 6s, ds,

1 . 3 . 0 ,

3 6 , n

Vi(t — 3 3 , a ,x),

(3s, 6s, ds,

1 . 4 . 0 ,

y 3 6 , n

As an example, the first wire call expands as:

^ Vi(t — 3 5 ,a ,x) , ^

(3s, 6s, ds,

1 , 2 , 0 ,

y 3 6 , n

wire ^prjjval i^new.index (n e W - tim e , f t , 3?))

/
with:

(

prj-val = R etT erm GetEl

\

(d s . \ \

1,

2 ,

\ ° /

,2

/
= RetTerm (dsi,2,o — 1,2)

= 1

A B S T R A C T DSCA TO CONCRETE DSCA 306

new-index RetTerm GetEl

<Ps,\ ^
1,
2 ,

\ ° / /

,2

new-time = RetT erm GetEl ,2 + 1

= RetTerm (/%(1,2) = 1,2)

= 1

l (6s, \ \
1,

2 ,

V ° /
= RetTerm (£i,2,o(*> a,x) = t — 1,2) + 1

= * - 1 + 1

= t

therefore the first call to the wire operation is:

(Viit - 35, a, z), \
/3s, £s, ds,

1,2,0,

\ 36, n j

and rw therefore becomes:

/ I Vi(t — 35,a ,x), \ \

wire = n ? 5 (V r1 (t , a , x))

rw

cond

1,

0,
36,

ds,

/3s,

Js,

V n

Vi(t — 34, a, or),

^ V i(t — 33, a, a?) y

- cond
(n “ (V1(t,a ,x)) , ^

n | 5 (V i (t , a , x)) ,

V n i 5 (v 1 (t , o , x)) /

A B S T R A C T DSCA TO CONCRETE DSCA 307

B S T

cond
(Vpc(t,a,x) = 0, ^ \

b,

V /
1,

o,
36,

newds,

newfts,

newSs,

T,

n

= cond

(Vpc(t,a ,x) = 0,

 ̂ VpC(t, ^
Vi(t,a,x),

 ̂ IIf5(Vi(t,a,x)), ̂
cond n^5(Vi(i,a,2;)),

V \ nf(K(t,a,a;))) j

T

BST

V

/ c> ^
1,1,36,

V newds, new(3s, newds, J

The expansion of B S T continues recursively until the complete function for module

1 is produced (this can be seen in Appendix E).

If the call to B S T ck is considering module 0, then B S T ck returns the original

definition as the program counter definition does not change. In the GCRP example,

the result of B S T ck for module 0 will be:

A B S T R A C T DSCA TO CONCRETE DSCA 308

Vpc(t + l ,a ,x) = <

mod add (Vpc(t a X 1) 36) if Vpc(t - a, x = 0
mod add (Vpc(t a X 1) 36) if VpC(t - a, x — 1
mod add iypc{t a X 1) 36) if VpC {t - a, x = 2
mod add (Vpc(t a X 1) 36) if Vpc{t - , a, x = 3
mod add (Vpc(t a X 1) 36) if VpC(t - , a, x = 4
mod add (Vpc{t a X 1) 36) if VpC(t - , a, x = 5
mod add (VpC{t a X 1) 36) if Vpc(t - , a, x = 6
mod add (VpC(t a X 1) 36) if Vpc(t - , a, x = 7
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 8
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 9
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 10
mod add (VpC{t a X 1) 36) if Vpc(t - , a , x = 11
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 12
mod add (VpC{t a X 1) 36) if VpC{t - , a, x -= 13
mod add (Vpc(t a X 1) 36) if VpC(t - , a, x = 14
mod add (Vpc(t a X 1) 36) if VpC{t - , a, x = 15
mod add (VpC{t a X 1) 36) if VpC(t - , a, x = 16
mod add (Vpc(t a X 1) 36) if Vpc(t - , a, x = 17
mod add (Vpc(t a X 1) 36) if VpC(t - , a, x = 18
mod add (Vpc(t a X 1) 36) if Vpcit - a, x = 19
mod add (VpC{t a X 1) 36) if VpC{t - a, x —20
mod add (Vpc(t a X 1) 36) if Vpclt - , a, x —21
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 22
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 23
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 24
mod add (VpC{t a X 1) 36) if Vpdt - , a, x = 25
mod add (VpC(t a X 1) 36) if Vpdt - , a, x = 26
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 27
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x = 28
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x -= 29
mod add (Vpc{t a X 1) 36) if Vpdt - , a , x - 30
mod add (VpC(t a X 1) 36) if Vpdt - , a, x = 31
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x —32
mod add (Vpc{t a X 1) 36) if Vpdt ~ , a, x = 33
mod add (Vpc(t a X 1) 36) if Vpdt - , a, x —34
mod add (Vpc(t X 1) 36) if Vpdt - , a, x = 35

Recursive calls to B S T s continue until the base recursive call to B S T s is made,

which results in the base case call to just B S T ck with the appropriate functionality

from above selected depending upon the module number under consideration.

A B S T R A C T DSCA TO CONCRETE DSCA 309

For brevity we do not reproduce the transformed State Transition equations for

other modules here, instead, they are defined in the concrete dSCA specification given

in Appendix E.

12.4 Correctness of concrete dSCA Example

The generated target concrete dSCA created from transforming the abstract dSCA

in chapter 11 can be seen to be the same as the concrete dSCA given in Chapter 8.4

- the discussion of correctness given in that chapter is therefore still valid.

Additionally, this concrete dSCA and the previous abstract dSCA could exist in

a hierarchy, and this will be demonstrated by introducing mappings for:

• spaces;

• clocks;

• global states; and

• input streams.

Spaces

Spaces (modules) in the two networks are equivalent, for modules where i £ NdSCA2

thus it is appropriate to define the respacing operation 7r : lNdSCA2 INdSCAi as:

7 r (z) = i

Clocks

There is no timing abstraction between networks, thus the retiming A : T dSCA2 —>
rpdSCAl ̂ where for I £ rpdSCA2 ̂ can be appropriately defined as:

X(t) = t

A B ST R A C T DSCA TO CONCRETE DSCA 310

G lobal S ta tes

The set of sensible obvservable states for this SCA is the output of module 1 at regular

intervals, given by the retiming. Additionally, the appropriate value from the tuple

must be projected, and in this case it will be element at the value of the program

counter. The global state of an SCA at time t E T is defined as the set of values held

by all the observed channels at time t € T, We introduce a global state abstraction

mapping, </> of the form:

J. . / \ C h d S C A 2 . A C h d s c A l
r'obs ■ SidSCA2 dSC A l

which is defined to project out the relevant element of module 1.

In p u t S tream s

Input streams for the source and target dSCAs also exhibit a one-to-one mapping,

and we therefore construct the stream abstraction function:

e : [TdsCA2 - MAdscJ n“s™ \TdscAi - MAdscJ "

as:

6(ai(t)) = fli(A(t))

where A(t) = t , thus

0 (O i (t)) = C L i (t)

C o n jec tu re It is believed that the following diagram commutes:

T d S C A l X [T d S C A l —* MAdSCA1]In‘s™ x A - d S C A l

<t>

S ta rtx x [TdsCA2 - M AdSC J ' " — x i S C A 2
1 A*

i u P d S C A 2

A B S T R A C T DSCA TO CONCRETE DSCA 311

12.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping an abstract dSCA

to a concrete dSCA with the same defining shape (and same type of cycle consistency).

The techniques have been demonstrated by taking the Form 2 abstract dSCA solution

to the GRC Problem and generating the appropriate concrete dSCA solution.

12.6 Sources

This transformation is all my own work.

Chapter 13

Summ ary and Future Work

This thesis set out to investigate whether a method could be developed to support

the transformation of an algorithm described as a Synchronous Concurrent Algorithm

to its implementation on a piece of hardware, also described as a SCA. Through the

investigations it has been determined that this is the case, and that if a small number

of syntactic extensions are made to the standard model of SCAs then a concise set of

models can be produced that ease the understanding of such transformations. The

benefits of restricting the extensions to syntactic ones are that the dicsussion never

moves away from the well-founded notion of SCAs, and hence the work done on such

algorithms is still valid in the new models.

To summarise, this work has introduced abstract and concrete dynamic SCAs and

has demonstrated that there exist algebraic transformations that allow an algorithm

described as an SCA to be transformed into an an implementation on hardware that

is described as an SCA.

It has also been identified that the simplest and most compact transformations

will take place with algorithms that can be described as cycle consistent abstract

dSCAs.

The implementation of the models and techniques has been demonstrated by

applying them to the Generalised Railroad Crossing Problem. Subsequently it has

312

SUM M ARY AND FUTURE W ORK 313

been shown that all models of the solution exist within a hierarchy, thus conjectures

on the proof of correctness can be made. Sensibly, the first piece of future work should

be to demonstrate that these conjectures are true.

Proposed further work can be divided into X sections:

• Work on documented techniques;

• Extensions to techniques;

• Extending Boundaries; and

• Related Further Work.

Work on Techniques D ocum ented.

Perhaps the one weakness of the work has been the manual nature of the transfor

mations performed, since the author had very limited access to algebraic specification

tools. However, the algebraic style and nature taken give confidence that implemen

tation in actual tools will be straightforward, with only small adjustments needed to

the descriptions given to take account of any notation required be the chosen tool.

Hence the second proposed piece of work is the automation of the transformations.

Areas that should be explored within the transformations themselves are those

concerned with the options we have not considered, for example gaining a further

understanding of the changes to the transformations required if cycle inconsistent

SCAs are considered; or the impact of other mapping functions or tuple management

systems.

E xtensions to techniques.

In developing our transformations, the work has been conscious of issues that

will begin to tax the minds of safety engineers in the future. Take a system that is

today implemented in a particular way, that has functionality that may be required

in the future, but the hardware it is implemented on may not be available (or there

SUM M ARY AND FUTURE W ORK 314

may be another reason for changing the hardware implementation). If this is the

case, then extending the set of transformations to include a transformation from

concrete to abstract dSCA would aid the understanding of the new system. The

old implementation could be turned into an abstract dSCA and then manipulated

as required before being turned back into a concrete dSCA representing the new

hardware configuration.

One other piece of future work would be the investigation of allowing the machine

algebra, M a to alter across models. The current work requires M a to be consistent

across all models, which immediately precludes the use of higher level data objects.

Allowing M a to alter introduces the benefits of higher level programming concepts

to be used, such as enumerations, but adds levels of complexity to transformations.

Some care can be used in determining what can be allowed, enumerations for example

would be relatively easy to implement as in one abstract model they can be enumer

ations and at a lower level of abstraction could be implemented as integers. Potential

complexities arise where the abstract data types require the more concrete dSCAs to

implement multiple modules per high level concept. An example of this would be an

abstract dSCA that uses integers, and a concrete dSCA that only operated on bits;

if the abstract dSCA used 8-bit words, then the concrete dSCA would need eight

modules per abstract module to manage 32-bit integer operations. Note that SCAs,

and more importantly the hierarchy of SCAs, can manage this as Poole Tucker and

Holden show in their paper. Another interesting element to look at for future work

is that of increasing the spatial efficiency for cycle inconsistent dSCAs that are not

totally cycle inconsistent.

E xtending Boundaries.

At the boundaries of this work there is ample opportunity for future work. It

was noted in the introduction of this thesis that work has been done on directly

producing functional language programmes from formal specification languages, and

SUM M ARY AND FUTURE W ORK 315

we have indicated how our work was initially inspired by the dataflow approach to

implementation of functional languages. Fruitful results maybe gained by bridging

the gap between the work on generation of functional language programs from formal

methods, implementation of those programs as dataflow graphs, and finally imple

mentation of those dataflow graphs as SCAs (where this work can then complete the

path to actual implementation). At the other boundary, this work has targeted a ma

chine with a shared-memory like implementation, other models of computing should

be considered.

R elated Further Work.

Finally, the author feels that the field of Petri-nets may provide some benefits

when looking at analysis of the SCAs used in out transformations. Heiner and Heisel

discuss the modelling of safety-critical systems with Z and Petri nets (see [HH99]),

and it would appear, at a trivial level, there is a link between SCAs and Petri Nets -

in that SCAs can be converted to Petri Nets. A classical Petri net is a directed graph

which consists of nodes and arcs (see Peterson [Pet81]), an SCA consists of nodes

and channels - however, it may be more appropriate to consider the nodes of an SCA

graph as arcs in a petri net and the channels as nodes, and introduce a new petri net

node for the clock. Considering SCAs as petri nets may open up the work already

done on safety analysis using petri nets (e.g. Leverson and Stolzy’s work [LS87]).

This thesis has achieved the aim it set out to study.

Bibliography

[ABR99]

[ACJ+96]

[AH28]

[AP80]

[AWM+7'

[B54]

E. Astesiano, M. Broy, and G. Reggio. Algebraic Foundations of Systems

Sepcifications, chapter 13, pages 467-520. Springer, 1999.

M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G.

Staskauskas, and J. von Olnhausen. A framework for evaluating specifica

tion methods for reactive systems experience report. IEEE Transactions

on Software Engineering, 22(6):378—389, June 1996.

W. Ackermann and D. Hilbert. Gundzuge der Theoretischen Logik.

Springer, Berlin, 1928.

V. Kathail Arvind and K. K. Pingali. A dataflow architecture with tagged

tokens. Technical Report LCS Memo TM-174, MIT, 1980.

S. Amoroso, P. Wegner, D. Morris, D. White, W. Loper, W. Cambell,

and C. Showaltzer. Language evaluation coordinating committee report

to the Higher Order Language Working Group (HOLWG). Technical

Report AD-A037 634, US DoD, January 1977.

C. Bohm. Calculatrices Digitales: Du dechiffrage de formules logico-

mathematiques par la machine memem dans la conception du programme

[Digital Computers: On the deciphering of logical-mathematical formulae

by the machine itself during the conception of the program]. Annali di

Mathematica Pura ed Applicata, 37(4): 175-217, 1954.

316

BIBLIOGRAPHY 317

[Bac54]

[Bac59]

[Bac78]

[Bar97]

[BBB+57]

[BBG+63]

[BF93]

[BHK89]

J. Backus. The IBM 701 speedcoding system. Journal of the Association

for Computing Machinery, 1:4-6, 1954.

J. Backus. The syntax and semantics of the proposed algebraic langauge

og the Zurich acm-gamm conference. In Proceedings of an International

Conference on Information Processing, pages 125-132, UNESCO, Paris,

1959. Butterworth, London.

J. Backus. Can programming be liberated from the von neumann style? a

functional style and its algebra of programs. Comm. ACM , 21 (8):613—641,

August 1978.

J. Barnes. High Integrity Ada - the SPARK approach. Addison-Wesley,

1997.

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.

Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A.

Hughes, and R. Nutt. The FORTRAN automatic coding system. Pro

ceedings of the Western Joint Computer Conference, Los Angeles, 1957.

J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, A.J. Perlis,

H. Rutishauser, K. Samelson, and B. Vanquois. Revised report on the

algorithmic language ALGOL 68. Communications of the ACM , 6:1-23,

1963.

R. W. Butler and G. B. Finelli. The infeasability of quantifying the

reliability of life-critical real-time software. In IEEE Transactions on

Software Engineering, volume 19, pages 3-12. January 1993.

J.A. Bergstra, J. Heering, and P. Klint. Algebraic Specification, chapter

The Algebraic Specification Formalism ASF. Addison-Wesley, 1989.

BIBLIOGRAPHY 318

[BHL+96]

[Bin97]

[BMSU98]

[Boe81]

[Bow96]

[Bur96]

[BW90]

J. P, Bowen, C. A. R. Hoare, H. Langmaack, E.-R. Olderog, and A. P.

Ravn. A ProCoS II project final report: ESPRIT Basic Research project

7071. Bulletin of the European Association for Theoretical Computer

Science (EATCS), 59:76-99, June 1996.

D. Binkley. C + + in safety critical systems. In R. Hamlet, editor, An

nals of Software Engineering, volume 4, pages 223-234. Kluwer Academic

Publishers, 1997.

N. Bjorner, Z. Manna, H. Sipma, and T. Uribe. Deductive verification of

real-time systems using STeP. Technical Report STAN-CS-TR-98-1616,

Computer Science Department, Stanford University, December 1998.

B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

J. P. Bowen. Hardware compilation of the ProCoS gas burner case study

using logic programming. In G. Brown, editor, Proc. ProCoS-US Hard

ware Synthesis and Verification Workshop, Cornell University, Ithaca,

New York, USA, 14-16 August 1996.

R Burnett. Anticipate and prevent - managing the legal risks in safety

critical software. In F Redmill and T Anderson, editors, Safety Critical

Systems: The Convergence of High Tech and Human Factors. Proceed

ings of the Fourth Safety-critical Systems Symposium, pages 139-152,

London, 1996. Springer-Verlag.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Univer

sity Press, 1990.

BIBLIOGRAPHY 319

[CA78]

[CBB+96]

[CDE+99]

[CEN97]

[CG90]

[CGM92]

[CGR93]

L. Chen and A. Avizienis. N-version programming: A fault-toleance

approach to reliability of software operation. In Digest of papers FTCS-

8: Eight Annual International Conference on Fault Tolerant Computing,

pages 3-9, June 1978.

M. Chudleigh, C. Berridge, B. Butler, R. May, and I. Poole. SADLI :

Functional programming in a safety critical application. In F. Redmill

and T. Anderson, editors, Safety-critical Systems in The convergence of

High Tech and Human Factors - Proc. of the 4th Safety-critical Systems

Symposium. Springer-Verlag, 1996.

M. Clavel, F. Dur’an, S. Eker, P. Lincoln, N. M art’i-Oliet, J. Meseguer,

and J. Quesada. The Maude system. In Procs. of R T A ’99, number 1631

in LNCS, pages 240-243. Springer, 1999.

CENELEC. Railway applications: Software for railway control and pro

tection systems. Technical Report EN-50128, CENELEC, 1997.

B. Carre and J. Garnsworthy. Spark - an annotated ada subset for safety-

critical programming. In Tri-Ada) 1990.

B. Carre, J. Garnsworthy, and W. Marsh. Spark : A safety-related ada

subset. In Ada UK Conference, October 1992.

D. Craigen, S. Gerhart, and T.J. Ralston. An international survey of

industrial applications of formal methods (volume 1: Purpose, approach,

analysis and conclusions, volume 2: Case studies. Technical Report NIST

GCR 93/626-VI h NIST GCR 93-626-V2, U.S. Department of Com

merce, Technology Administration, National Istitute of Standards and

Technology, Computer Systems Laboratory., National Technical Informa

tion Service, 5285 Port Royal Road, Springfield, VA 22161, USA, 1993.

BIBLIOGRAPHY 320

[Cho56]

[Cho59]

[Chu36a]

[Chu36b]

[Coh88]

[Coh89]

[Com94]

[Cur75]

[Cur76]

N. Chomsky. Three models for the description of a language. IRE Trans

actions on Information Theory, 2(3): 113-124, 1956.

N. Chomsky. On certain formal properties of grammars. Information and

Control, 2:137-167, 1959.

A. Church. A note on the Entscheidungsproblem. Journal of Symbolic

Logic, 1:40-41, 1936.

A. Church. An unsolvable problem of elementary number theory. Amer

ican Journal of Mathematics, 58:345-363, 1936.

A. Cohn. A proof correctness of the viper microprocessor: The first level.

In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,

Verification and Synthesis, pages 27-71. Kluwer, 1988.

A. Cohn. Correctness properties of the viper block model: The second

level. In G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends

in Hardware Verification and Automated Theorem Proving, pages 1-91.

Springer-Verlag, 1989.

Main Commission. Report on the accident to airbus a320-211 aircraft

in Warsaw on 14 September 1993. Technical report, Aircraft Accident

Investigation Warsaw, Warsaw, 1994.

M. R. Currie. Memorandum from director defense research and engineer

ing. Internal documents to the US Government, January 1975.

M. R. Currie. Memorandum from director defense research and engineer

ing. Internal documents to the US Government, May 1976.

BIBLIOGRAPHY 321

[Cut89]

[Dav93]

[DI90]

[Dij68]

[Dij75]

[Dij76]

[Dij82]

[DKLM98]

[DoD84]

N. J. Cutland. Computability: An introduction to recursive function the

ory. Cambridge University Press, Cambridge, 1989.

D. Davies. Legal liability. In Bennet P, editor, Safety Aspects of Computer

Control Butterworth-Heinemann Ltd, 1993.

R. Di Giovanni and P. L. Iachini. HOOD and Z for the development

of complex systems. In Dines Bjprner, C. A. R. Hoare, and Hans Lang-

maack, editors, VDM ’90, VDM and Z - Formal Methods in Software De

velopment, Third International Symposium of VDM Europe, Kiel, FRG,

April, volume 428 of Lecture Notes in Computer Science, pages 262-289.

VDM-Europe, Springer-Verlag, 1990.

E. Dijkstra. Goto considered harmful. Communications of the ACM ,

11 (3): 147-148, 1968.

E. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Communications of the ACM, 18(8):453—457, 1975.

E. Dijkstra. A discipline of Programming. Prentice-Hall, Englewood

Cliffs, New Jersey, 1976.

E. Dijkstra. Selected Writings on Computing: A Personal Perspective.

Springer-Verlag New York, 1982.

M. Dunstan, T. Kelsey, S. Linton, and U. Martin. Lightweight formal

methods for computer algebra systems. In International Symposium on

Symbolic and Algebraic Computation, pages 80-87, 1998.

DoD. Military standard: System safety program requirements. Standard

MIL-STD-882B, Department of Defense, Washington DC 20301, USA,

30 March 1984.

BIBLIOGRAPHY 322

[Dra92]

[Dun79]

[ELC+98]

[EM92]

[ESA91]

[ESP94]

[EST91]

[ET88]

C. Draper. Practical experiences of Z and SSADM. In Jonathan P. Bowen

and J. E. Nicholls, editors, Z User Workshop, Workshops in Computing,

pages 240-251. Springer, 1992.

W. Duncan. Letter from the secretary of defense. Internal documents to

the US Government, May 1979.

S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamil

ton. Experiences using lightweight formal methods for requirements mod

eling. Software Engineering, 24(1):4—14, 1998.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa

tions and Initial Semantics, volume 6 of EATCS Monographs on Theo

retical Computer Science. Springer-Verlag, Berlin, 1992.

ESA. ESA Software Engineering Standards. Technical Report PSS-05-

0 Issue 2, European Space Agency, 8-10 rue Mario-Nikis, 75738 Paris

Cedex, France, February 1991.

ESPRIT. Predictably Dependable Computing Systems Second Year Re

port., 1994.

S.M Eker, V. Stavridou, and J.V. Tucker. Verification of synchronous

concurrent algorithms using OBJ3. a case study of the pixel planes archi

tecture. In G Jones and M Sheeran, editors, Designing Correct Circuits,

pages 231-252. Springer, 1991.

S.M. Eker and J.V. Tucker. Specification, derivation and verification of

concurrent line drawing algorithms and architectures. In R. A. Earn-

shaw, editor, Theoretical foundations of computer graphics and CAD,

pages 449-516, Heidelberg, 1988. Springer-Verlah.

BIBLIOGRAPHY 323

[ET89a]

[ET89b]

[FBGL94]

[FH98]

[FKPW96]

[Flo62]

[Flo67]

S.M. Eker and J.V. Tucker. Specification and verification of synchronous

concurrent algorithms: a case study of the pixel planes architecture. In

R A Earnshaw P M Drew and T R Heywood, editors, Parallel processing

for computer vision and display, pages 16-49. Addison-Wesley, 1989.

S.M. Eker and J.V. Tucker. Tools for the development of rasterisation

algorithms. In R A Earnshaw and B Wyvill, editors, New Advances

in Computer Graphics, Proceedings of Computer Graphics Internationsal

’89, pages 53-89, Tokyo, 1989. Springer.

J. Fitzgerald, T.M. Brookes, M.A. Green, and P.G. Larsen. Formal

and informal specifications of a secure system component: first results

in a comparative study. In Naftali Denvir and Bertran, editors, Formal

Methods Europe ’94 ~ Industrial Benefit of Formal Methods, pages 35-44.

Springer-Verlag, October 1994.

A.C.J. Fox and N. A. Harman. Algebraic models of superscalar micro

processor implementations: A case study. Technical Report CSR20-98,

University of Wales, Swansea, 1998.

M. Flick, K. Kemp, E. Pofahl, and K. Wolf. Rules for programming in

C. http://tuvasi.com /c-rules.htm , 1996.

R. W. Floyd. On the nonexistence of a phrase structure grammar for

ALGOL 60. Communications of the ACM , 5(10):483-484, 1962.

R. W. Floyd. Assigning meanings to programs. In J. T. Schwatz, edi

tor, Mathematical Aspects of Computer Science, pages 19-32. American

Mathematical Society, 1967.

BIBLIOGRAPHY 324

[GAM]

[GKW85]

[Gov84]

[Hat 9 5]

[Hei95]

[Het84]

[HH99]

[HJL93]

[HL94a]

Supplier guide for validation of automated systems in pharmaceutical

manufacture. Technical report, ISPE, 3816 W. Linebaugh Avenue, Suite

412, Tampa, Florida 33624, USA.

J. R. Gurd, C. C Kirkham, and I. Watson. The manchester prototype

dataflow computer. Comm. ACM , 28(1):34—52, January 1985.

UK Governement. Health and Safety at Work etc. Act 1974 (1984, c.37).

Her Majesty’s Stationary Office, 1984.

L. Hatten. Safer C : Developing software for high-integrity and safety-

critical systems. In McGraw-Hill International Series in Software Engi

neering. McGraw-Hill, 1995.

M. Heisel. Six steps towards provably safe software. In Gerhard Rabe, edi

tor, SAFECOM P’95: 1 4 th International Conference on Computer Safety,

Reliability and Security, pages 191-205, Belgirate, Italy, 1995. Springer-

Verlag.

W. Hetzel. The complete guide to software testing. Granada, 1984.

M. Heiner and M. Heisel. Modeling safety-critical systems with Z and

petri nets. Lecture Notes in Computer Science: Computer Safety, Relia

bility and Security, 1698:361-374, 1999.

C. Heitmeyer, R. Jeffords, and B Labaw. A benchmark for comparing

different approaches for specifying and verifying real-time systems. In

Proceedings of the 10th International Workshop on Real-Time Operating

Systems and Software, May 1993.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: A

case study in formal verificaton of real-time system. Technical Report

BIBLIOGRAPHY 325

[HL94b]

[HLOR93]

[Hoa69]

[Hoa85]

[Hoa96]

[Hob90]

[HP85]

[HPT96]

MIT/LCS/TM-511, Labratory for Computer Science, Massachusetts In

stitute of Technology, November 1994.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case

study in formal verificaton of real-time system. In Proceedings of the 15th

IEEE Real-Time Systems Symposium, pages 120-131. IEEE Computer

Society Press, 1994.

C. A. R. Hoare, Hans Langmaack, Ernst-Rdiger Olderog, and Anders P.

Ravn. Overview of ESPRIT ProCoS II project. Technical Report [CO

ORD CARH 1/1], Oxford University Computing Laboratory, September

1993.

C.A.R. Hoare. An axiomatic basis for computer programming. Commu

nications of the ACM , 12(10):576-583, 1969.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

C. A. R. Hoare. How did software get so reliable without proof. In M-C.

Gaudel and J. Woodcock, editors, Formal Methods Europe: Industrial

Benefit and Advances in Formal Methods. Springer, 1996.

K. Hobley. Formal Specification and Verification of Synchronous

Concurrent Algorithms. PhD thesis, University of Swansea, 1990.

D. Harel and A. Pnueli. On the development of reactive systems. In

K. Apt, editor, Logics and Models of Concurrent Systems, NATO ASI

Series, pages 477-498. Springer, 1985.

A V. Holden, M.J. Poole, and J.V. Tucker. An algorithmic model of the

mammalian heart: propogation, vulnerability, re-entry and fibrillation.

International Journal of Bifurcation and Chaos, 6:1623-1635, 1996.

BIBLIOGRAPHY 326

[HT88]

[HT89]

[HT90]

[HT91]

[HT93]

[HT94]

[HT96]

N.A. Harman and J.V. Tucker. Formal specifications and the design of

verifiable computers. In Proceddings of 1988 UK IT Conference, pages

500-503. Institute of Electrical Engineers (IEE), 1988.

N.A. Harman and J.V. Tucker. Clocks, retimings, and the formal spec

ification of a UART. In G Milne, editor, The fusion of hardware design

and verification, pages 375-396. North-Hoi land, 1989.

N.A. Harman and J.V. Tucker. The formal specification of a digital corre

lator 1: User specification process. In K McEvoy and J V Tucker, editors,

Theoretical foundations of LSI design, pages 161-262. Cambridge Univer

sity Press, 1990.

N.A. Harman and J.V. Tucker. Consistent refinements of specifications

for digital systems. In P Prinetto and P Camurati, editors, Proceedings of

ESP RIT BRA CHARME Advanced Research Workshop on Correct Hard

ware Design Methodologies, pages 281-304, Amsterdam, 1991. Elsevier.

N.A. Harman and J.V. Tucker. Algebraic models of computers and the

correctness of micro processors. In G J Milne and L Pierre, editors,

Correct Hardware design and verification methods, pages 92-108, Berlin,

1993. Springer Lecture Notes in Computer Science 683.

K. Hobley and J.V. Tucker. Clocks, retimings and the transformation of

synchronous concurrent algorithms. In G Megson, editor, Transforma

tional approaches to systolic design, pages 99-132. Chapman Hall, 1994.

N.A. Harman and J.V. Tucker. Algebraic models of microprocessors:

architecture and organisation. Acta Informatica, 33:421-456, 1996.

BIBLIOGRAPHY 327

[HT97]

[HTT89]

[HTT90]

[Hun94]

[IBN96]

[IEC86]

[IEC96]

[IEC99]

N.A. Harman and J.V. Tucker. Algebraic models of microprocessors: the

verification of a simple computer. In V Stavridou, editor, Mathematics

for dependable systems II, Proceedings of the Second IMA Conference,

pages 135-169. Oxford University Press, 1997.

K.M. Hobley, B.C. Thompson, and J.V. Tucker. Specification and veri

fication of synchronous concurrent algorithms: a case study of a convo

lution algorithm. In G Milne, editor, The fusion of hardware design and

verification, pages 347-374. North-Holland, 1989.

A.V. Holden, B.C. Thompson, and J.V. Tucker. The computational struc

ture of neural systems. In A V Holden and V I Kryukov, editors, Neu

rocomputers and attention. I:Neurobiology, synchronisation and chaos,

pages 223-240. Manchester University Press, 1990.

W.A. Hunt. FM8501 : A Verified Microprocessor, volume 795 of Lecture

Notes in Artificial Intelligence. Springer-Verlag, Berlin, 1994.

Ulla Isaksen, Jonathan P. Bowen, and Nimal Nissanke. System and soft

ware safety in critical systems, 1996.

IEC. IEC 880 : Software for computers in the safety systems of nuclear

power stations. 1986.

IEC. Medical electrical equipment - part 1: General requirements for

safety 4: Collateral standard: Programmable electrical medical systems.

Technical Report IEC 601-1-4, IEC, 1996.

IEC. IEC 61508 : Functional Safety : safety related systems Parts 1-7.

1999.

BIBLIOGRAPHY 328

[Int94]

[IS087]

[15089]

[15090]

[IS095]

[ISOOO]

[JM92]

[Jon96]

[JW96]

[KL86]

Intel. Statistical analysis of floating point flaw. Technical report, Intel,

November 1994.

ISO. ISO 8652:1987 - Programming Language - Ada. 1987.

ISO. ISO 8807. information processing systems - open systems inter

connection - lotos - a formal description technique based on temporal

ordering of observational behaviour. Technical report, ISO, 1989.

ISO. ISO /IEC 9899:1990 - Programming Language - C. 1990.

ISO. Information Technology - Programming Languages - Ada. Ada Ref

erence Manual - ISO /IEC 8652:1995(E). 1995.

ISO/IEC. ISO/IEC TR 15942:2000 information technology - program

ming languages - guide for the use of the ada programming language in

high integrity systems. Technical report, 2000.

C. B. Jones and A. M. Mccauley. Formal methods - selected histori

cal references. Technical Report UMCS-92-12-2, Manchester University,

Department of Computer Science, 1992.

C. B. Jones. Formal methods light: A rigorous approach to formal m eth

ods. Computer, 29(4):20-21, 1996.

D. Jackson and J. Wing. Formal methods light: Lightweight formal

methods. Computer, 29(4):21-22, 1996.

J. Knight and N. Leveson. an experimental evaluation of the assumption

of independence in multi-version programming. IEEE Transactions on

Software Engineering, SE-12(1):96-109, January 1986.

BIBLIOGRAPHY 329

[KL90]

[Kle52]

[Kle67]

[KMP98]

[KR78]

[Lam91]

[Lam92]

[Lev86]

[Lio96]

[LS87]

J. Knight and N. Leveson. A reply to the criticisms of the knight and

leveson experiment. ACM Software Engineering Notes, January 1990.

S. C. Kleene. Introduction to Metamathematics. North-Holland, Amster

dam, 1952.

S. C. Kleene. Mathematical Logic. Wiley, New York, 1967.

Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and hy

brid systems. In G. Rozenberg and F. W. Vaandrager, editors, Lectures

in Embedded Systems, number LNCS 1494, pages 4-73. Springer-Verlag,

1998.

B. Kernighan and D. Ritchie. The C programming Language. Prentice

Hall, 1978.

L. Lamport. The temporal actions of logic. Technical Report Research

Report 79, Digital Equipment Corporation, Systems Research Center,

December 1991.

L. Lamport. Hybrid systems in TLA +. In Hybrid Systems, pages 77-102,

1992.

Nancy G. Leveson. Software safety: Why, what, and how. ACM Com

puting Surveys, 18(2): 125—163, 1986.

J. Lions. Ariane 5 - flight 501 failure. Technical report, European Space

Agenct, 1996.

N. G. Leveson and J. L. Stolzy. Safety analysis using petri nets. In IEEE

Transactions on Software Engineering, 1987.

BIBLIOGRAPHY 330

[LS91] C E Leiserson and J B Saxe. Retiming synchronous circuitry. Algorith-

mica, 6:5-35, 1991.

[LS97] K. Lano and A. Sanchez. Design of real-time control systems for event

driven operations. In Formal Methods Europe, volume 1313 of LNCS.

Springer-Verlag, 1997.

[LT93] N. Leverson and C. S. Turner. An investigation of the therac-25 accidents.

IEEE Computer, 26(7):18-41, 1993.

[Lut93] R. R. Lutz. Analyzing software requirements errors in safety critical,

embedded systems. In IEEE International Symposium on Requirements

Engineering, pages 126-133, San Diego, CA, 1993. IEEE Computer So

ciety Press.

[LvKB087] D.C. Luckham, F.W. von Henke, Krieg-Bruckner, and O. Owe. ANNA -

A language for annotating Ada Programs, volume 26 of Lecture Notes in

Computer Science. Springer-Verlag, 1987.

[McC63] John McCarthy. A Basis for a Mathematical Theory of Computation. In

P. Braffort and D. Hirschberg, editors, Computer Programming and For

mal Systems, pages 33-70. North-Holland, Amsterdam, 1963. corrected

version of 1961 paper given at Western Joint Computer Conference, May

1961.

[Mil80] R. Milner. Calculus of communicating systems. In Lecture Notes in

Computer Science, volume 92. Springer, 1980.

[MISRA94] MIRA Motor Industry Software Reliability Association. Development

Guidelines For Vehicle Based Software. November 1994.

BIBLIOGRAPHY 331

[M095]

[MOD89]

[M0D91]

[MOD96]

[MOD97]

[MP93]

[MT87]

[MT88]

[MT93]

M Miiller-Olm. Compiling the gas burner case study. Technical Report

[MMO 16/1], ProCoS Technical Report, August 1995.

MOD. Interim Defence Standard 00-55 - The Procurement of Safety

Critical Software in Defence Equipment. Crown, 1989.

MOD. Interim Defence Standard 00-56 : Hazard Analysis and Safety

Classification of the Computer and Programmable Electronic System El

ements of Defence Equipment. Crown, 1991.

MOD. Defence Standard 00-56 : Safety Management Requirements for

Defence Systems. Crown, 1996.

MOD. Defence Standard 00-55 : The Procurement of Safety Related

Software in Defence Equipment. Crown, 1997.

Z. Manna and A. Pnueli. Models for reactivity. ACTA Information,

30:609-678, 1993.

A. R. Martin and J. V. Tucker. Concurrent assignment representation

of synchronous systems. In A. J. Nijmand J. W. de Bakker and P.C.

Treleaven, editors, PARLE: Parallel architectures and languages Europe.

Vol II: Parallel Languages, pages 369-386. Springer-Verlag, 1987.

K. Meinke and J.V. Tucker. Scope and limits of synchronous concurrent

computation. In F H Vogt, editor, Concurreny ’88, Springer Lecture

Notes in Computer Science, pages 163-180. Springer-Verlag, 1988.

B. McConnell and J.V. Tucker. Infinite synchronous concurrent

algorithms: the specification and verification of a hardware stack. In

W Brauer F L Bauer and H Schwichtenberg, editors, Proceedings of

BIBLIOGRAPHY 332

[MT89]

[MV89]

[MV90]

[MZL02]

[NK91]

[NR69]

[Pet81]

[PHT98]

NATO Summer School 1991 at Marktoberdorf, in Logic and algebra of

specification, pages 321-375. Springer, 1993.

A.R. Martin and J.V. Tucker. Concurrent assignment representation of

synchronous systems. Parallel Computing, 9:227-256, 1988-89.

S. Mauw and G.J. Veltink. An introduction to psf. In J. Diaz and

F. Orejas, editors, Proc TAPSO FT,89, vol 2, volume 352 of Lecture Notes

in Computer Science, pages 375-389. Springer, 1989.

S. Mauw and G.J. Veltink. A process specification formalism. Funda-

menta Informaticae, XIII, 1990.

K. Lundqvist M. Zimmerman and N. Leveson. Investigating the read

ability of state-based formal requirements specification languages. In In-

temeational Conference on Software Engineering, May 2002.

T. Nakajo and H. Kume. A case history analysis of software error

cause-effect relationships. IEEE Transactions on Software Engineering,

8(17):830-838, August 1991.

P. Naur and B. Randell, editors. Software Engineering: Report on a

Conference sponsored by the NATO Science Committee. Scientific Affairs

Division, NATO, Garmisch, Germany, January 1969.

J. L. Peterson. Petri net theory and modelling of systems. Prentice Hall,

1981.

M. J. Poole, A. V. Holden, and J. V. Tucker. Hierarchies of spatially

extended systems and synchronous concurrent algorithms. In Prospects

for Hardware Foundations, pages 184-235, 1998.

BIBLIOGRAPHY 333

[Puc95]

[PW99]

[Rei91]

[Rei98]

[RIA91]

[RLKL95]

[RRH93]

[RTC92]

[Rum77]

C. Puchol. A solution to the generalized railroad crossing problem in ES-

TEREL. Technical Report CS-TR-95-05, University of Austin at Texas,

1, 1995.

M. Piveropoulos and A. Welings. Requirements engineering for hard real

time systems: the a notation and a case study, 1999.

W. Reisig. Petri nets and algebraic specifications. Theoretical Computer

Science, 80(1): 1—34, 1991.

W. Reisig. Elements of Distributed Algorithms: Modelling and Analysis

with Petri Nets. Springer, 1998.

RIA. Safety related software for railway signalling. BRB/LU Ltd/RIA

technical specification no. 23, Railway Industry Association, 6 Bucking

ham Gate, London SW1E 6JP, UK, 1991. Consultative Document.

B. Randell, J-C. Laprie, H. Kopetz, and B. Littlewood, editors. Pre

dictably Dependable Computer Systems. Springer-Verlag, Berlin, 1995.

A.P. Ravn, H. Rischel, and K.M. Hansen. Specifying and verifying re

quirements of real-time systems. IEEE Transactions in Software Engi

neering, 19(1):41—55, January 1993.

RTCA/EUROCAE. DO-178B/ED-12B : Software Considerations in Air

borne Systems and Equipment Certification. RTCA/EUROCAE, RTCA,

Inc. 1140 Connecticut Avenue, N.W., Suite 1020, WASHINGTON DC

20036, USA, 1992.

J. Rumbaugh. A dataflow multiprocessor. IEEE Trans, on Comp.y 2:140-

146, 1977.

BIBLIOGRAPHY 334

[Rus94]

[SA90]

[Sha85]

[Som95]

[SPM]

[Ste95]

[Ste97]

[SteOOa]

[SteOOb]

J. Rushby. Critical system properties: Survey and taxonomy. Reliability

Engineering and System Safety, 43(2): 189-219, 1994.

L. Semmens and P. Allen. Using Yourdon and Z: An approach to formal

specification. In J. E. Nicholls, editor, Proceedings of the Fifth Annual

Z User Meeting on Z User Workshop, Workshops in Computing, pages

228-253. Springer-Verlag, 1990.

J.A. Sharp. Data Flow Computing. Wiley, 1985.

I. Sommerville. Software Engineering, 5th Edition. Addison Wesley, 5th

edition, 1995.

SPMN. Spmn software development bulletin.

K. Stephens. An Algebraic Approach to Syntax, Semantics, and Compi

lation. PhD thesis, University of Wales, Swansea, 1995.

R. Stephens. A survey of stream processing. Acta Informatica, 34(7) :491-

541, 1997.

L. J. Steggles. Specifying and verifying real-time systems using second-

order algebraic methods: A case study of the railroad crossing controller.

Technical Report CS-TR: 697, Department of Computing Science, Uni

versity of Newcastle, 2000.

L. J. Steggles. Specifying and verifying real-time systems using second-

order algebraic methods: A case study of the railroad crossing controller.

In Journal of Universal Computer Science, volume 6, pages 460-473.

Springer, 2000.

BIBLIOGRAPHY 335

[Tac04]

[TBL96]

[Tho87]

[TT85]

[TT88]

[TT91]

[TT94]

A. Tacy. Safety engineering summary. Private Correspondance to British

Computer Society, later edited in BCS publications, 2004.

J. Fitzgerald T. Brookes and P. Larsen. Formal and informal specifica

tions of a secure system component: Final results in a cmparative study.

In J.C.P Woodcock M-C. Gauel, editor, Formal Methods Europe ’96: In

dustrial Benefit and Advances in Formal Methods, number 1051, pages

214-227. Springer-Verlag, 1996.

B.C. Thompson. A mathematical Theory of Synchronous Concurrent

Algorithms. PhD thesis, School of COmputer Studies, University of Leeds,

1987.

B. C. Thompson and J. V. Tucker. Theoretical considerations in algo-

rtihm design. In R. A. Earnshaw, editor, Fundamental Algorithms for

Computer Graphics, pages 855-878, Heidelberg, 1985. Springer.

B.C. Thompson and V Tucker, J. A parallel deterministic language and

its application to synchronous concurrent algorithms,. In Proceedings of

1988 UJ IT Conference, pages 228,231. Institute of Electrical Engineers

(IEE), 1988.

J.V. Tucker and B.C. Thompson. Algebraic specification of synchronous

concurrent algorithms and architectures. Technical Report CSR-9-91,

Universtiy of Wales, Swansea, 1991.

J.V. Tucker and B.C Thompson. Equational specifications of synchronous

concurrent algorithms and architectures. Technical Report CSR-15-94,

Universtiy of Wales, Swansea, 1994.

BIBLIOGRAPHY 336

[Tur36]

[Wea99]

[Whi93]

[Wil49]

[Wil52]

[Wil53]

[Wir90]

[WWG96]

A. M. Turing. On computable numbers, with an application of

the Entscheidungsproblem. Proceedings London Mathematical Society,

42,43:230-265, 544-546, 1936. Reprinted in Dav65.

B. Whichman and et al. Guidance on the use of the ada programming

language in high integrity systems. In Ada Letters, 1999.

W. Whitaker. Ada - the project, the dod high order language working

group. ACM SIGPLAN Notices, 28(3), March 1993.

M. V. Wilkes. Program design for a high-speed automatic calculating

machine. Journal of Scientific Instruments, 26:217-220, 1949.

M. V. Wilkes. Pure and applied programming. Proceedings of the ACM

National Conference, pages 121-124, 1952.

M. V. Wilkes. The use of a ’floating-address’ system for orders in an auto

matic digital computer. Proceedings of Cambridge Philosophical Society,

49:84-89, 1953.

M. Wirsing. Algebraic specification. In J van Leewen, editor, The Hand

book of theoretical computer science, pages 675-788. Elsevier, 1990.

M A Watson-Walker and R J Gray. The institution of railway sig

nalling engineers licensing scheme - promoting competence in the work

place. In F Redmill and T Anderson, editors, Safety Critical Symposium:

The Convergence of High Tech and Human Factors. Proceedings of the

Fourth Safety Critical Systems Symposium, pages 124-138, London, 1996.

Springer-Verl ag.

A ppendix A

Fundamental Algebraic
Specifications

A .l Synchronous Concurrent Algorithm Specifi
cation
(SC A Algebra)

This defines the specification that defines a standard Synchronous Concurrent Algo

rithm.

B egin
Specification SCAAlgebra
Im port
Sorts
C onstant Sym bols
Function N am es

CreateSCA : Name x Im pList x Sort List x
ConsList x VFOpList x 7 OpListx
POpList x SOpList x IVEqListx
STEqList x 7EqList x (3EqListx
SEqList —> SCAAlgebra

Getlmport: SCAAlgebra —*■ ImpList
GetSorts : SCAAlgebra —>■ SortList
GetConsts : SCAAlgebra —> ConsList
GetVFOps : SCAAlgebra —► VFOpList
GetjOps : SCAAlgebra —> 7OpList
GetfiOps : SCAAlgebra —> fiOpList
GetSOps : SCAAlgebra —>• SOpList
GetlVEqs : SCAAlgebra —> IVEqList
GetSTEqs : SCAAlgebra —> STEqList

A-l

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-

Equations

GetjEqs : SCAAlgebra —> ■yEqList
GetpEqs : SCAAlgebra —> fiEqList
GetSEqs : SCAAlgebra —> SEqList

CreateSCA

(name,
import,
sorts,
constants,
opsVF,
ops'),
ops/3,
opsS,
eqsVFIV,
eqsVFST,
eqs'y,
eqsfi,

\ eqsS,

(B egin

/ B egin

Get Import

Get Sorts

\ End

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 F unction N am es ops')
(3 Function N am es ops(3
5 F unction N am es ops
IV E quations eqsVFIV
ST E quations eqsVFST
7 E quations eqs')
/3 E quations eqs(3
5 E quations eqs5

\

End
B egin

y End

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es ops')
ft Function N am es ops(3
5 Function N am es ops
IV E quations eqsVFIV
ST E quations eqsVFST
7 E quations eqs'y
(3 E quations eqs(3
5 E quations eqsS

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es ops')
(3 Function N am es ops(3
8 Function N am es ops
IV E quations eqsVFIV
ST E quations eqsVFST
7 E quations eqs'y
(3 E quations eqs(3
8 E quations eqs8

= import

= sorts

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS

GetConsts

GetVFOps

GetyOps

(B egin \
Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
y Function N am es opsy
j3 Function N am es ops/3
S Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 E quations eqs'y
/3 Equations eqs/3
S Equations eqsS

End
B egin

End
B egin

 ̂ End

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es opsy
(3 Function N am es ops(3
5 Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 E quations eqsy
(3 Equations eqs(3
5 E quations eqs5

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es ops'y
(3 Function N am es ops/3
5 Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 E quations eqsy
/3 Equations eqs/3
5 E quations eqsS

constants

opsVF

opsy

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-4

Get(3 Ops

GetSOps

GetlVEqs

I B egin \
Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es ops'y
(3 Function N am es ops(3
8 Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 E quations eqs'y
/3 E quations eqs(3
8 Equations eqs8

End
B egin

End
B egin

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es ops'y
(3 Function N am es ops/3
8 Function N am es ops
IV E quations eqsVFIV
ST E quations eqsVFST
7 E quations eqs'y
(3 E quations eqs/3
8 E quations eqs8

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es ops'y
{3 Function N am es ops/3
8 Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 Equations eqs'y
(3 Equations eqs/3
8 E quations eqsS

End

= ops (3

= ops8

= eqsVFIF

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS

GetSTEqs

GetyEqs

GetftEqs

I B egin \
Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
y Function N am es opsy
ft Function N am es ops ft
S Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 Equations eqsy
ft E quations eqs ft
S Equations eqsS

End
B egin

End
B egin

End

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es opsy
ft Function N am es ops ft
S Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 Equations eqsy
ft Equations eqs ft
<5 Equations eqsS

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
7 Function N am es opsy
ft Function N am es ops ft
5 Function N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 Equations eqsy
ft Equations eqs ft
S Equations eqsS

= eqsVFST

= eqsy

= eqs ft

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-6

GetSEqs

1 B egin

 ̂ End

Specification name
Im port import
Sorts sorts
C onstant Sym bols constants
V F Function N am es opsVF
y Function N am es opsy
(3 Function N am es ops(3
5 F unction N am es ops
IV E quations eqsVFIV
ST Equations eqsVFST
7 Equations eqsy
(3 E quations eqs ft
S Equations eqsS

— eqsS

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-7

A .2 Machine Algebra (M a) Specification

T h is describ es th e m achine algebra sp ecification used th rou gh ou t th e exam ple in th is

th esis .
B egin

Specification M a
Im port N, B
Sorts
C onstant Sym bols 0, true, false, i t

add : N U { i t } x N U {u} —»• AT U { i t }

sub : N U { i t } x N U { i t } —> N U { u }

and : B U { i t } x B U { i t } —» B U { i t }

or : B U { i f } x B U { i f } - > B U { i f }

Function N am es n o t : 5 U { i f } —>• B
eq : N U { i f } x N U { i f } - > B U { i f }

It : N U { i f } x N U { i f } - > B U { i f }

gt : N U { i f } x N U { i f } —+ B U { i f }

cond : B U { i f } x N U { i f } x N U { i f } —»■ TV U { i f }

Equations
add(a, 0) = a
add(a, succ(b)) = add(succ(a),b)
add(u, b) = if
add(a, u) = u
sub(a,0) = a
sub(succ(a), succ(b)) = sub(a, b)
sub(u, 6) = if
sub(a,u) — if
and(true,true) = true
and(true, false) = /aZse
and(false, true) = false
and(false, false) = false
and(u, b) = u
and(a, u) — u
or(true,true) = true
or(true, false) = trite
or{false, true) = trite
or (false, false) = false
or(u, b) = if
or (a, it) = it
not (true) = false
not(false) = trite
not(u) = it
eg(0, 0) = trite
eg(sifcc(a),0) = false
eq(0 ,succ(b)) —false
eq(succ(a), succ(b)) = eq(a, b)
eq(u,b) = it
eq(a,u) —u

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS

lt(0,0) = false
lt(succ(a),0) = false
lt(0 ,succ(b)) = true
lt(succ(a), succ(b)) = Zt(a, b)
lt(u,b) = u
lt(a, u) — u
gZ(0,0) = false
gt(succ(a), 0) = true
gt(0 :suc(b)) = false
gt(succ(a), succ(b)) = gt(a, b)
gt(u, b) = u
gt(a,u) = u
cond(false, b:c) = c
cond(true, fe, c) = 6

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-9

A .3 Important List Specifications

A .3.1 7 Function Equation List

Begin
Specification 7 SCAEqList
Import 7 SCAEquation
Constant Symbols []
Function Nam es _ : 7 SCAEquation x 7 SCAEqList —> 7 SCAEqList

hd : 7 SCAEqList 7 SCAEquation
tl : 7 SCAEqList —» 7 SCAEqList
GetEl : 7 SCAEqList x AT2 —► j S C AEqList

Equations
a,b = a,b
hd{[]) = 0
hd(a, as) = a
« (D) = n
tl (a, as) = as
G etE Z ([] ,2) = null
GetEl ((7 (2 , j) = x, eqs) , i , j)) = 7 (i j) = a:
GetEl ((7 (2 /, 2) = x, eqs) , i , j)) = GetEl (eqs , i , j)

End

A .3 .2 dSCA 7 Function Operation List

B egin
Specification 7dSC AEqList
Im port 'ydSCAEquaiion
C onstant Sym bols []
Function N am es

_ : 'ydSCAEquaiion x 'ydSC AEqList —► 'ydSC AEqList
hd : 'ydSCAEqList —> 'ydSCAEquation
tl : 'ydSCAEqList —> 'ydSCAEqList
GetEl : jdSCAEqList x AT3 —> ydSCAEqList

Equations
a, b = a,b
hd{\\) = 0
hd (a, as) = a
« (0) = D
tl (a, as) = as
GetE/([] ,2) — null
GetEl {(jk(i,j) = z,eqs),i,j,k) = 7*(m) = z
GetEl ((ya(b,c) — z,eqs),i,j, k) = GetEl(eqs:i, j ,k)

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-10

A .3.3 P Function Operation List

Begin
Specification (ISC AEqList
Im port ftSC AEquation
Constant Symbols []
Function Nam es

_ : /3SCAEquation x ftSC AEqList —> ftSC AEqList
hd : ftSCAEqList —> ft SCAEquation
tl : ftSCAEqList —>■ ftSCAEqList
GetEl : ftSC AEqList x N 2 -» ft SC AEqList

Equations
aft — aft
hd([]) = D
hd (a, as) = a
«(D) = 0
tZ (a, as) = as
GeiE7([], i) = null
GetEl {(ft{i,j) = x, eqs) ft, j) =ft{i,j) = x
GetEl ((ft(y,z) = x,eqs),i,j) = GetEl(eqs,i,j)

End

A .3.4 dSCA P Function Operation List

Begin
Specification ftdSC AEqList
Import ftdSCAE qua,tion
Constant Symbols []
Function Nam es

_: ftdSC AEquation x ftdSC AEqList —>■ ftdSC AEqList
hd : ftdSC AEqList —> ftdSC AEquation
tl : ftdSC AEqList —> ftdSC AEqList
GetEl : ftdSCAEqList x TV3 —> ftdSC AEqList

Equations
aft = aft
hd{ []) = D
hd (a, as) = a
« (0) = 0
tl (a, as) = as
Ge££7([] ,i) = null
GetEl ({ftk{i,j) = x,eqs),i,j,k) = ftk(i,j) = x
GetEl ((fta(b,c) = x,eqs),i,j,k) — GetEl(eqs,i,j,k)

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A -ll

A .3.5 S Function Operation List

Begin
Specification 5SCAEqList
Import SSCAEquation
Constant Symbols []
Function Nam es

_ : SSC AEquation x SSC AEqList —> SSC AEqList
hd : SSC AEqList —> SSC AEquation
tl : SSC AEqList —*■ SSC AEqList
GetEl : SSC AEqList x AT2 -> SSC AEqList

Equations
aft = aft
/id(Q) = 0
hd (a, as) = a
ti(0) = 0
tl (a, as) = as
GetEl(\\ ft) — null
GetEl ((Sij(t,a,x) = tr,eqs),i,j) = Si^(t,a,x) = t '
GetEl ((Sb,c(t,a,x) = t',eqs)ft,j) = GetEl(eqsft,j)

End

A .3 .6 dSCA S Function Operation List

Begin
Specification SdSC AEqList
Import SdSC AEquation
Constant Symbols []
Function Nam es

_: SdSC AEquation x SdSC AEqList —> SdSC AEqList
hd : SdSC AEqList —► SdSC AEquation
tl : SdSC AEqList —> SdSC AEqList
G etE l: SdSC AEqList x N 3 —> SdSC AEqList

Equations
aft — aft
hd([]) = □
hd (a, as) = a
ti(W) = W
tl (a, as) = as
GetEl(\\ , i) = null
GetEl ({Si,j,k(t, a, x) =t',eqs)ft,j ,k) = Sij!k(t,a, x) = t'
GetEl ((Sm^ q(t, a, x) = t',eqs),i,j, k) = GetEl(eqs,i)

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-12

A .3.7 Project Function Equation List

B egin
Specification Proj EqList
Im port Proj Equation
C onstant Sym bols []
Function N am es

_ : Pro j Equation x Proj EqList —> Proj EqList
hd : Proj EqList —> Proj Equation
tl : Proj EqList -a Proj EqList
GetEl : Proj EqList x AT3 —> Proj EqList

Equations
aft — aft
hd([]) = 0
hd (a, as) — a
tl{ []) = □
tl (a, as) = as
GetEl{\\ ,i) = null
GetEl ((d(i,j ,k) — t,eqs),i ,j , k) = d(i,j,k) — t
GetEl ((d(m,p,q) = t,eqs),i,j,k) = GetEl(eqs,i)

End

A .3.8 Map Function Equation List

B egin
Specification MapEqList
Im port MapEquation
C onstant Sym bols \\
Function N am es

_ : MapEquation x MapEqList —> MapEqList
hd : MapEqList —» MapEquation
tl : MapEqList —> MapEqList
GetEl : MapEqList x A/-2 —> MapEqList

E quations
a f t = a f t
hd ([]) = 0
hd (a, as) = a
« (D) = n
£/ (a, as) = as
GetE/Q] ,i) = tiu/Z
Ge£E/ ((Z(i,j) = t,eqs),i,j) = - (i j) = t
GetEl ((Ei(m, n) = t,eqs),i,j) = GetEl(eqs,i)

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-13

A .3.9 SCA Initial State Equation List

B egin
Specification
Im port
C onstant Sym bols
Function N am es

Equations

IS V EqList
IS V Equation
[]

_ : I SV Equation x I SV EqList —> I SV EqList
hd : IS V EqList —> IS V Equation
tl : IS V EqList —>■ IS V EqList
GetEl : IS V EqList x N —► IS V Equation
aft = aft
hd{\\) = D
hd(a,as) = a
« (0) = 0
££ (a, as) = as
GetEl (\\,i) = null
GetEl ((Vi(0,a, x) = z,eqs),i)

= K(0, a, x) = z
GetEl ((Va{0,a,x) = z,eqs),i)

= GetEl(eqs,i)
End

A .3.10 dSCA Initial State Equation List

B egin
Specification dSCAISV EqList
Im port dSCAISV Equation
C onstant Sym bols []
Function N am es

_: dSCAISV Equation x dSCAISV EqList -> dSCAISV EqList
hd : dSCAISV EqList —>■ dSC A I SV Equation
tl : dSCAISV EqList -> dSCAISVEqList
GetEl : dSCAISVEqList x TV -> dSCAISV Equation

E quations
a f t = a f t
Ad(D) = D
hd (a, as) = a
« (0) = D
tl (a, as) — as
GetEl(\\ ,i) = null
GetEl((Vi(0,a,x) — z,eqs),i) = VftO,a,x) = 2
GetEl ((14(0, a, x) = z,eqs),i) — GetEl{eqs,i)

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-14

A .3.11 SCA State Transition Equation List

B egin
Specification ST V EqList
Im port ST V Equation
C onstant Sym bols []
Function N am es

_ : ST V Equation x ST V EqList —»■ S T V EqList
hd : ST V EqList —> STV Equation
tl : ST V EqList —► STV EqList
GetEl : STV EqList x N —* ST V Equation

E quations aft — aft
hd([]) = o

hd (a, as) = a
tH []) = □
tl (a, as) = as
GetEl(\\ ,i) = null
GetEl ((Vftt, a, x) = 2, eqs),i) = V (̂t, a, z) = 2
GetEl ((Va(t,a,x) = z,eqs),i) — GetEl(eqs,i)

End

A .3.12 dSCA State Transition Equation List

B egin
Specification dSCASTV EqList
Im port dSCAISV Equation
Sorts
C onstant Sym bols []
F unction N am es

_ : dSC A I SV Equation x ST V F EqList —*■ dSCASTV EqList
hd : dSCASTV EqList —> dSCAISV Equation
tl : dSCASTV EqList dSCASTV EqList
GetEl : dSCASTV EqList x TV —>• dSCAISV Equation

Equations
aft = aft
hd(D) = 0
hd(a,as) — a
«(D) = D
tl (a, as) = as
Ge££7([] ,2) = null
GetEl ((Vi(t,a,x) = z,eqs),i) = V (̂£,a, rr) = 2
GetEl ((Va(t,a,x) = z,eqs),i) = GetEl(eqs,i)

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-15

A .4 Equation Specifications

A .4.1 SCA State Transition Equation

B egin

End

Specification
Im port
Sorts
C onstant Sym bols
Function N am es

E quations

ST V Equation

CreateVF : VFCallTerm x VFOpTerm -
RetTerm : ST V Equation x TV —> Term
Retlndex : STV Equation x TV —> TV

CreateV Fitiftz) = (£i = t2)
RetTerm(Vn{t, a, x) = f n, 1) = Vn(t, a, x)
RetTerm{yn{t, a, x) = f n, 2) — f n
RetIndex(Vn(t, a, x) = z) = n

S T V Equation

A .4.2 dSCA State Transition Equation

B egin
Specification
Im port
Sorts
C onstant Sym bols
Function N am es

E quations

dSCASTV Equation

CreateVF : VFCallTerm x VFOpTerm —> dSCASTVEquation
RetTerm : dSC ASTV Equation x TV —> Term
Retlndex : dSC ASTV Equation x TV —> TV

CreateV F (t\ ,t 2) = (7 = h)
RetTerm[yn{t, a, i) = /„, 1) = Ki(£, a, ar)
RetTerm{Vn(t,a,x) = f n,2) = f n
RetIndex(Vn(t, a, x) — z) = n

End

FUNDAMENTAL ALGEBRAIC SPECIFICATIONS A-16

A .4.3 SCA Initial State Equation

B egin
S pecification IS V Equation
Im port
Sorts
C onstant Sym bols
Function N am es

CreateVF : VFCallTerm x VFOpTerm —> IS V Equation
RetTerm : IS V Equation x TV —> Term
Retlndex : IS V Equation x TV —>■ TV

E quations
CreateV F{t\,t2) = (£1 = £2)
RetTerm(Vn(t, a, x) = /n,l) = Vn(t,a,x)
RetTerm{vn(t, a, x) = f n, 2) = / n
RetIndex(Vn(t, a, x) = z) = n

End

A .4.4 dSCA Initial State Equation

B egin
Specification dSCAISV Equation
Im port
Sorts
C onstant Sym bols
Function N am es

CreateVF : VFCallTerm x VFOpTerm —» dSC A I SV Equation
RetTerm : dSC A I SV Equation x TV —> Term
Retlndex : dSC A I SV Equation x TV —> TV

E quations
CreateVF(ti,t2) = (£1 = t 2)
RetTerm(Vn(£, a, x) = f n , 1) = Vn(t,a,x)
RetTerm(Vn{t, a, x) = / n,2) = f n
RetIndex(Vn(t, a, x) = z) = n

End

A-17

SCA DEFINITION OF GRCP A-18

A ppendix B

SCA Definition of GRCP

Begin
Specification
Im port
Sorts
C onstant Symbols
VF Function Names
P Function Names
7 Function Names
5 Function Names
7 Equations

P Equations

SCA
MJ4,T
SCA_Aigebra
0
Vi : T x M2 x M i —> MA
P : N x N -+ N
7 : N x N ^ { S , M }
Sitj :T xM % x M \ —>■T

7(1,1 = M, 7(7,1) = M,
7(1,2 = M, 7(7,2) = M,
7(1,3 = M, 7(10,1 = M,
7(2,1 = M, 7(10,2 = M,
7(2,2 = M, 7(H,1 = 5,
7(4,1 = M, 7(11,2 = M,
7(4,2 = M, 7(12,1 = Af,
7(4,3 = M, 7(12,2 = M,

7(5,1 = M, 7(13,1 = 5,
7(5,2 = M, 7(13,2 = M,
7(6,1 = M, 7(14,1 = M,
7(6,2 = M, 7(14,2 = M,
0 (U = 2, 0(7,1) = 14,
Pi 1,2 = 3, 0(7,2) = 15,
Pi 1,3 = 4, 0(10,1 = 22,
0(2,1 = 5, 0(10,2 = 16,
Pi 2,2 = 6, Pi 11,1 = 9,
0(4,1 = 7, 0(11,2 = 17,
0(4,2 = 8, 0(12,1 = 22,
0(4,3 = 9, 0(12,2 = 18,
W ,1 = 10, 0(13,1 = 9,
0(5,2 = 11, 0(13,2 = 19,
0(6,1 = 12, 0(14,1 = 22,
0(6,2 = 13, 0(14,2 = 20,

7(15,1 = 5, 7(27,1 = M,
7(15,2 = M, 7(27,2 = M,
7 (22,1 = M, 7(28,1 = M,
7 (22,2 = M, 7(28,2 = M,
7(23,1 = M, 7(29,1 = s,
7(23,2 = M, 7(29,2 = S,
7(24,1 — M, 7(31,1 = s,
7(24,2 = Af, 7(31,2 = 5,

7(25,1 = M, 7(33,1 = s,
7(25,2 = M, 7(33,2 = 5,
7(26,1 = M, 7(35,1 = 5,
7(26,2 = M, 7(35,2 = 5,
0(15,1 = 9, 0(27,1 = 33,
0(15,2 = 21, 0(27,2 = 34,
0 (22,1 = 23, 0(28,1 = 35,
0 (22,2 = 24, 0(28,2 = 36,
0(23,1 = 25, 0(29,1 = 1,
0(23,2 = 26, 0(29,2 = 2,
0(24,1 = 27, 0(31,1 = 3,
0(24,2 = 28, 0(31,2 = 4,
0(25,1 = 29, 0(33,1 = 5,
0(25,2 = 30, 0(33,2 = 6,
0(26,1 = 31, 0(35,1 = 7,
0(26,2 = 32, 0(35,2 = 8,

SCA DEFINITION OF GRCP A-19

8 E quations

IV E quations

ST Equations

5h i (t , a , x) = t - 1, 5u , i (t , a , x) = t - , 825, i { t , a , x = t - 1,

Sif2(t , a , x) = t - 1, 811,2 (t , a , x) = t - , 82b,2{ t , a , x = t - 1,

Sh3(t , a , x) = t - 1, 812,i(t , a, x) = t - , ^26,1 (t, d, X = t - 1,

82ti (t , a , x) = t - 1, Si2t2{ t , a , x) = t - , <^26,2 (t , a , x = t - 1,

S2j2(t , a , x) = t - 1, 8iz , i { t , a,x) = t - , 827, i { t , a ,x = t - 1,

84,1 (t , a , x) = t - 1, Si3t2{ t , a , x) = t - , ^27,2 (t, a, X = t - 1,

S4i2(t , a , x) = t - 1, 8i4, i { t , a ,x) = t — , 828, i (t , a , x = t - 1,

S4t3{ t , a , x) = t - 1, 8i4,2{t ,a,x) = t — , 828,2(t , a , x = t - 1,

^5,1 (t, cl, Xs) = t - 1, 8i 5, i (t , a , x) = t - , 829,i(t , a, x = t - 1,

5^ 2(t , a , x) = t - 1, 8 i 5,2(t , a , x) = t - , 829j2(t, a, x = t - 1,

86, i (t , a , x) = t - 1, 822,i {t, a, x) = t - , S3i ti i t , a , x = t — 1,

8Q,2{t ,a,x) = t - l , 822,2{t, a , x) = t - , ^31,2 (t, a, x = £ - 1,

fi7,i(t , a, x) = t - 1, 823, i(t ,a,x) = t - , 833, i { t , a , x = t - 1,

87t2{ t , a ,x) = t - 1, 823,2(1, a, x) = t - , 833,2(t , a , x = * — 1,

<$10,1 (t , a , x) = * - l , 824, i { t , a , x) = t — , ^35,1 (t, u, X = t - 1,

<4 o ,2{t,U,X) = t - 1, ^ 2 4 ,2 (4 a, x) t , ^35,2 (t, CL, X = t - 1

14(0 , a , x) = stay 14(0 , a, x) = t rue 1 4 (0 , a, x) = stay
14(0 , a, x) = up 14(0, a, x) = t rue 1 4 (0 , a, x) = f a l se
14(0 , a , x) - f a l s e 1 4 (0 , a, x) = down 1 4 (0 , a, x) = up
14o (0, a, x) = t rue V i i (0, a, x) = t rue 1 /1 2 (0 , a, x) =- f a l s e
V i 3 (0 , a, x) = f a l s e V i4(0, cl, x) = fa l s e 1 4 5 (0 , a, x) =- t rue
V i6(0 , a, x) — fa l se 147(0, a, x) = 90 148(0 , a , a ;) =- true
V i9(0 , a , x) = 0 V2O(0, a, x) = true l / 2 i (0 ,a,x) =- 0
V22(0 , a , x) = f a l se 1 /2 3 (0 , a, x) = fa l se V 2 4 (0 , a, x) == fa l s e
V2b(0 , a , x) = f a l se V2e(0 , a, x) = fa l se 1 4 7 (0 , a, x) =- f a l s e
V28 (0 , a, x) = f a l s e 1 4 9 (0 , a, x) = 0 1 4 o (0 , a, x) == 0
V31 (0, a, x) = 0 1 4 2 (0 , a, x) = 0 1 /3 3 (0 , a, x) =-0
V34{0 , a , x) = 0 1 /3 5 (0 , a, x) = 0 V36{0 , a , x) == 0

Vi(t + 1, a, x) — cond(V2(t , a , x) , V3(t , a , x) ,V4{ t , a,x)) ,
V2(t + 1, a, x
V3(t + l ,a ,x
V4(t + 1 ,a ,x
14 (£ + 1, a, x
14(£ + 1 ,a ,x
V7 (t + 1, a, x
V8(t + 1 ,a ,x
V9(t + 1 ,a,x
Via {t + l ,a ,x
Vh(f+1
V12 (t + 1
14 3^ + 1
14 4 (t + 1
14 5 (t + 1
Vie (t + 1
V1 7 (t + 1
Vis{t + 1
Vig(t + 1

a, x
a, x
a, x
a, x
a, x
a, x
a, x
a, x
a, x

= or(yb{t,a,x),VQ{t,a,x)),
= stay,
= cond(V7 (t, a, x), V8 (t, a, x),V 9 (t, a, x)),
= and(Vio(t,a,x),Vn(t,a,x)),
= and(Vi2 {t,a,x),Vi3 (t,a,x)),
= and(Vi4 (t, cl, x), Vib(£, a, x)),
= down,
= UP,
= eq(V2 2 (t,a,x),Vie{t,a,x)),
= eq(a9 (t),Vi7 {t,a,x)),
= eq(V2 2 (t,a,x),Vi 8 (t,a,x)),
= eq(a9 (t),Vi9 {t,a,x)),
= eq(V2 2 {t, a, x), V2 0 (t, a,x)),
= gt{a9 (t),V2 i{t,a,x)),
= false,
= 90,
= true,
= 0,

SCA DEFINITION OF GRCP A-20

V2 o{t + , a , X

v21 (t + , a , x
F22(t + , a , x
^23^ + , a , x
^ 2 4 + , a, x
^25(i + , a, x
^26 + , a, x
V27(t + , a, x
^28 + - , a , x
^29^ + , a, x
^30 + , a , x
V3i(t + , a, x
V32{t + , a, x
^ 3 3 + , a, x
^34 + , a, x
^35 + , a, x

End

= true,
= °,
= or(V2 3 (t,a,x),V24 (t,a,x
= or(V2 5 (t, a, x), V2 6 (t, a, x
= or(y2 7 {t, a, x), V2 $(t, a, x
= gt{V2 9 (t,a,x),Vw(t,a,x
= gt{Vn(t, a, x),V 3 2 (t, a, x
= gt{V3 3 {t,a,x),V 3 A(t,a,x
= gt(V3'>{t,a,x),V3f>{t,a,x
= sub(ai{t),a2 (t)),
= 0 ,

= sub{d3 (t),a4 (t)),
= 0 ,

= sub(a5 (t),a6 (t)),
= 0 ,
= sub{a7 {t),as(t)),

A-21

A B S T R A C T DSCA DEFINITION OF GRCP (FORM 1) A-22

A ppendix C

A bstract dSCA Definition of
G RCP (Form 1)

B egin
Specification
Im port
Sorts
C onstant Sym bols
V F Function N am es
j3 Function N am es
7 Function N am es
6 Function N am es
7 Equations

acvSCA
M a , T
SCA_Algebra

Vi
f3p c : N x N
7 pc : N x N

M a
N
{ S , M }

^ i j ,p c : T x < M \ —>• T

7o 1,0) ~ M, 7o(l,l) =■ M , 7o(l, 2) =--M, 7o(1,3) =--M,
7o 2,0) — M, 7o(2,1) =-M , 7o(2, 2) =~-M, 7o(2, 3) =-u,
7o 3,0) = M, 7o(3 ,1) =--u, 7o(3, 2) =--u, 7o(3, 3) =--u,
7o 4,0) = M, 7o(4 ,1) == M, 7o(4, 2) = M , 7o(4, 3) == M,
7o 5,0) — M, 7o(5,1) == M, 7o(5,2) == M, 7o(5, 3) =-~u,
7o 6,0) = M, 7o(6 ,1) =-M , 7o(6,2) =-M , 7o(6,3) =~-u,
7o 7,0) = M, 7o(7,1) == M, 7o(7, 2) == M, 7o(7, 3) =--U,
7o 8,0) — M, 7o(8,1) =--u, 7o(8,2) =--u, 7o(8, 3) =--U,
7o 9,0) — M, 7o(9,1) ---u, 7o(9, 2) =--u, 7o(9, 3) =--U,
7o 10,0 = M, 7o(10,1) = M, 7o(10,2) = M, 7o(10 ,3) = U,
7o 11,0 = M, 7o(U,l) = s, 7o(ll> 2) = M, 7o(H , 3) = U,
7o 12,0 — M, 7o(12,l) = M 7o(12,2) = M, 7o(12, 3) = U,
7o 13,0 — M, 7o (13,1) = s , 7o(13,2) = M, 7o(13,3) = U,
7o 14,0 = M, 7o(14,1) — M, 7o(14, 2) = M, 7o(14, 3) = U,
7o 15,0 = M, 7o(15,1) = s, 7o(15,2) = M, 7o(15,3) = U,
7o 16,0 = M, 7o(16,1) = U, 7o(16,2) = u, 7o(16,3) = U,
7o 17,0 = M, 7o(17,1) = U, 7o(17,2) = U, 7o(17,3) = U,
7o 18,0 = Af, 7o(18,1) = U, 7o(18,2) = U, 7o(18,3) = U,
7o 19,0 = M, 7o(19,1) = U, 7o(19,2) = U, 7o(19,3) = U,
7o 20,0 = M, 7o(20,1) = U, 7o(20, 2) = U, 7o(20, 3) = U,
7o 21,0 — M, 7o (21,1) = U, 7o(21,2) = U, 7o(21,3) = U,
7o 22,0 = M, 7o(22,1) = M, 7o(22,2) — M, 7o(22,3)

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 1) A-23

P E quations

7o(23,0 = M, 7o(23 ,1) = 1W,
7o(24, 0 = M, 7o(24,1) = M,
7o(25, 0 = M, 7o(25, 1) = M,
7o(26, 0 = M, 70(26,1) = M,
7o(27,0 = M, 70(27,1) = M,
7o(28,0 = M, 7o(28 ,1) = M,
7o(29,0 = M, 7o(29 ,1) = 5,
7o(30,0 = M, 7o(30, 1) = u,
7o(31,0 = M, 70(31,1) = s,
7o(32,0 = M, 7o(32,1) = v,
7o(33,0 = M, 70(33,1) = s,
7o(34,0 = M, 7o(34 ,1) = u,
7o(35,0 = M, 7o(35 ,1) = s,
7o(36,0 = M, 70(36,1) = v,
7o(pc,0 = M

/5o(l,0) = pc, A>(1,1) = 2,
A(2,o) = pc, A(2,l) == 5,
A(3,0) = pc, A (3 ,l) = “ ,
A>(4,0) = pc, A)(4,1) == 7,
A(5,0) = pc, /?o(5,1) == 10,
A(6, 0) = pc, A (6 ,l) == 12,
A(7,0) = pc, A (7 ,l) = 14,
A(8,0) = pc, A (8 ,1) == w,
A(9,0) = pc, A (9 ,l) =--01,
A(10,0 = pc, A>(io,l) = 22
A (n ,o = pc, /3b(ll,l) = 9,
A)(12,0 = pc, A>{12,1) = 22
A)(13,0 = pc, A (13,1) = 9,
/?o(14,0 = pc, /3o(14,1) = 22
/?o(15,0 = pc, A (15,l) = 9,
A(16,0 = pc, A (16,l) = 01,
A (17,0 = pc, A (17,l) = 01,
A(18,0 = pc, A (18,1) = w,
A(19,0 = pc, A (19,1) = w,
A(20,0 = pc, A (20,l) = u,
A)(21,0 = pc, A (21,1) = 01,
A (22,0 = pc, /lo (22,1) = 23
/?o(23,0 = pc, A>{23,1) = 25
A (24,0 = pc, A>(24,1) = 27
A (25,0 = pc, A (25,1) = 29
A(26,0 = pc, A) (26,1) = 31
/?o (27,0 = pc, A (27,1) = 33
A(28,0 = pc, A (28,1) = 35
A(29,0 = pc, Ao (29,1) = 1,
/?o(30,0 = pc, A (30,l) = 01,
A(31,0 = pc, A (31,l) = 3,
A>(32,0 = pc, A (32,l) = “ ,
/5o(33,0 = pc, Ao(33,1) = 5,
/?o (34,0 = pc, A (34,1) = w,
/?o(35,0 = pc, A (35,l) = 7 ,

A(36,0 = pc, A (36,1) = u,
A (p c , 1 = pc

7 o (23, 2) = M, 7 o (23 , 3)
7o(24,2) = M, 7 o (24, 3) = *7,
7 o (25, 2) = M , 70(25,3)
7o(26,2) = M, 70(26,3) = 17,
7o(27,2) = M , 7o(27,3) = £/,
7o(28,2) = M , 7o(28,3)
7o(29,2) = s, 7o(29,3) = U.
7o (30, 2) = u, 7 o (30 , 3) = U,
70(31,2) = s, 70(31,3) = U,
7o(32,2) = u, 7o(32,3) = U,
7o(33,2) = s, 7 o (33 , 3) = U,
7o(34,2) = u, 7 o (34 , 3) = U,
7 o (35 , 2) = s, 7 o (35 , 3) = tf,
7o(36,2) = u, 7 o (36 , 3) = C7,

A (l ,2) == 3, A)(l,3) == 4,
A (2,2) == 6, A) (2,3) == w,
A (3,2) = 01, A(3,3) == w,
A(4,2) == 8, A) (4,3) == 9,
A(5,2) == 11, A > (5 , 3) == w,
A (6 ,2) - = 13, A(6,3) == w,
A(7,2) == 15, A) (7,3) == w,
A(8,2) - --01, A (8,3) ==
A (9 ,2) = 01, A>(9,3) == w,
A(10,2) = 16, A)(10,3) =
A (H ,2) = 17, A)(ll,3) =
A (12,2) = 18, A(12,3) =
A (13,2) = 19, A (13 ,3) = w,
A (14,2) = 20, A)(14,3) = w,
A (15,2) = 21, A(15,3) = w,
A(16,2) = 01, A>(16,3) = w,
A(17,2) = A) (1 7 , 3) =
A (18,2) = 01, A(18,3) = w,
A (19,2) = 01, A(19,3) = w,
A (20,2) = 01, A (20,3) =
A(21,2) = 01, A (21 ,3) =
A (22,2) = 24, A (22,3) = w,
A (23,2) = 26, A (23,3) =
A (24,2) = 28, A (24,3) = w,
A (25,2) = 30, A (25,3) =
A (26,2) = 32, A (26,3) = w,
A (27,2) = 34, A (27,3) =
A (28,2) = 36, A (28,3) =
A(29,2) = 2, A (29,3) = Cl>.
A (30,2) = 01, A (30,3) = w,
A (31,2) = 4, A (31 ,3) =
A (32,2) = A (32,3) = w,
A (3 3 ,2) = 6, A (3 3 , 3) =
A (34,2) = 01, A (34,3) = w,
A (35,2) = 8, A (35,3) = u,
A (36,2) = “ , A (36,3) = w,

A B S T R A C T DSCA DEFINITION OF GRCP (FORM 1) A-24

5 Equations
$i^o{t,a,x) £ 1,
$i,3,o(t,a,x) = t - 1,

$i,i,o{t, a, x) = t - 1, $1,2,0 (t,a,x) = £ -

2̂,0,0 (I, 0, ■®) ^
<̂ 2,3,o(̂ , a, rc) = t - 1,

<52,i,o(*,a,z) = £ - 1, ^2,2,0 j a, x) = £ —

^3,0,o(i, a , x) = £ — 1,
3̂,3,0 (t,a,x) = t - 1,

63,i,o(£,a,x) = t - 1, 3̂,2,0 (A a, x) = £ -

4̂,0,o(̂ ; O, x) £ 1,
4̂,3,0 (̂ ? O, *0 ^

^4,i,o(£,o,x) = t - 1, $4,2,o(t, a,x) = £ —

5̂,0,0 (̂ , O, *®) ̂
$b,3,o(l, O, “®) ̂ 1,

^5,l,o(£,0,x) = t — Ij ^5,2,o(£j a, x) = £ —

6̂,0,o(ĵ O, •'*-') ̂
6̂,3,o(̂ > O, *®) ^

^6,1,0 (I, O', x) £ 1, ^6,2,0 (£) ft, x) = £ —

7̂,0,0 (̂ , 0,, x) ^
67,3,o(£,a,x) = £ - 1,

<S7>llo(£,a,x) = t - 1, 7̂,2,0 (̂ , a j x) = £ —

<S8,o,o(*,a,z) = £ - 1,
8̂,3,0 (̂ > a, x) = t — 1,

£8,i,o(£,a,x) = £ - 1, ^8,2,0 (̂ , a, x) = £ —

<J9>0,o(£,a,x) = t - 1,
<y9,3,o(t,a,ar) = £ - 1,

<59li,o(t,a,x) = t - 1, ^9,2,0 (^»a, x) = £ —

^10,0,o(i) a, x) — t — 1
<Sio,3,o(*,a,z) = t - 1

^10,1,o(̂ 5 a, x) = £ — 1, ^io,2,o(^ a, x) = £ —

^ll,0,o(£, a, x) = t - 1
^11,3,o(A a, x) = £ — 1

<W,o(*,a,x) = * - 1, ^ii,2,o(£, a, x) = £ —

1̂2,0,o(̂ j a> x) = t — 1
1̂2,3,o(£, a, x) = £ — 1

^i2,i,o(A a, x) = £ — 1 ^12,2,o(£; a, x) = £ —

<5i3,o,o(£,o,x) = t - 1
^13,3,o(£, a, x) = £ — 1

î3,i,o(i> a, x) = £ — 1 $13,2,o(t, 0,x) = £ —

^14,0,o(̂ , a> x) = £ — 1
<*14,3,ol*, a, z) = £ - 1

1̂4,1 ,o ih o, x) £ 1 <*i4,2,o(*,a,x) = £ -

^15,0,o(̂ j a, x) = t — 1
^15,3,o(^ a, x) = £ — 1

<*i5,i,o(*,a,z) = £ - 1 1̂5,2,o(£, O', x) = £ —

1̂6,0,o(£> a, 31) = £ — 1
1̂6,3,o(̂ , a,x) = t — 1

<W,o(*,o,x) = t - 1 ^i6,2,o(£, a, x) = £ -

1̂7,0,o(̂ j O, x) = £ — 1
^i7,3,o(i, a, x) = £ — 1

î7,i,o(£) a, x) = £ — 1 <5i7,2,o(£, a, x) = £ —

<5i8,o,o(£,a,x) = t - 1
<Si8,3,o(*,a,z) = £ - 1

1̂8,1,o(£) x) = £ - 1 1̂8,2,o(£,0,x) = £ -

^19,0,o(^,tt,x) = t - 1
^19,3,o(̂) a, x) = £ — 1

^19,i ,o(£, a, x) = £ — 1 ^19,2,o(i, O, x) = £ —

^20,0,0 (t, O', x) = t — 1
<*20,3,o(*,a,x) = t - 1

^20,l,o(̂ > a, x) = £ — 1 ^20,2,o(£,a,x) = £ -

^2i,o,o(£) a, x) = £ — 1
^21,3,o(̂ j a, x) = £ — 1

$21,1,o(£j a) x) = £ - 1 2̂1,2,o(£,0,x) = £ -

2̂2,o,o(^a,x) = t - 1
$22,3,o(*|fl,z) = £ - 1

^22,1,0 0 ; x) = £ - 1 $2 2 ,2 ,o{t, a,x) = £ -

2̂3,0,0 (̂ , a, x) = £ — 1
$23,3,o(t,0',x) = t - 1

^23,l,o(^a,x) = £ — 1 $23,2,o(t,a,x) = £ -

^24,0,o(£) a, x) = £ — 1
2̂4,3,o(*»a»3i) = t - 1

^24,i,o(i, a, x) = £ — 1 2̂4,2,o(£, a, x) = £ —

^25,0.o(̂ , a, x) = £ — 1
^25,3,0(t, a, x) = t — 1

2̂5,1,0(̂ s a, x) — t — I 2̂5,2,o(£,0,x) = £ -

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 1) A-25

IV E quations

^26,0,o(^j a i x = t - 1 ^26,1,o(£> a , x) — t ~ 1> 2̂6,2,0 (t,a, x) = t —
<526,3 ,0 {t, (I, X = t - 1

<527,0 ,0 (t, a , X = t - 1 S27 d A t ’a , x) = t ~ 1) <527,2,0 (t, a,x) = t —
^27,3,o(i) x = t - 1

2̂8,0 ,o(̂ j a i x = t - 1 <528,1,0 (t,a,x) = t —1 , <528,2,0 (t , a , x) = t —

2̂8,3 ,o(̂ > a, X = t - 1

^29,0,o(£j a > X = t - 1 2̂9 ,l,o()̂ a , x) = t —1) 2̂9,2,0 (t : a , x) — t —
2̂9,3 ,o(^ a> X = t - 1

3̂0,0 ,o(̂ > a , X, = t - l ^3 0 ,i,o(t, a , x) = t —1) 3̂0,2,0 { t , a , x) — t —
3̂0,3,0 (t,a, x = t - 1

3̂1,0 ,o(̂ > ai X = t - 1 ^3i,i,o(Zj a , x) — t — 1 , <531,2,0(̂ 5 a, x) = t —
^31,3,o(^j a> x = t - 1

3̂2,0 ,o(i; a , x = t - 1 < W , o (* ,a , z) = t - 1 , <532,2,0 (t , a , x) = t —

$ 3 2 , 3 , o (t , a , X = t - 1

f i 3 3 , o , o { t , a , x = t - 1 <533.i,o(*,a,x) = t - 1 , <533,2,0 (t, a, x) = t —
<533,3,0 { t , a , X = t - 1

3̂4,0,0 (̂ > a ? x = t - 1 S 3 4 , i , o { t , a , x) = t - 1 , <534,2,0 (t , a , x) = t -

<534,3 ,o(£,a,z = t - 1

3̂5,0 ,o(̂ j ai x - t - 1 3̂5,1,0 (t , a , x) — t —1) <535,2,o(^ 0 ,1 x) = £ —
<$35,3 ,o(t,a,X = t - 1

$36,0 .o(t; ai x = t - 1 3̂6,l,o(ĵ <̂5 x) t I 5 <536,2 ,0 (t , a, x) = t —

3̂6,3 ,o(̂) <*, £ = t - 1

<5pc,0 ,o(̂ . = t - 1

l/i(0 ,a ,x) = stay V2(0, a, x) = true l/}(0 , a, x) = stay
^4(0, a, 2;) = up V5 {0, a, x) = true Ve(0 , a, x) = /aZse
l/7 (0 ,a ,x) = false l/g(0 , a, x) = down 1/9(0, a, x) = up
Vio(0,a,x) =- true Vn(0 , a, x) = true Vi2 (0 , a, x) = /aZse
Vi3 (0 , a, x) == /aZse l/i4(0, a, x) = false Vi5(0, a, x) = true
Vi6 (0 ,a ,x) == false 1/17(0, a, x) = 9 0 l/i8 (0 , a,x) = true
Vi9 (0 , a, x) == 0 1/20(0, a, x) = true l/2i(0, a, x) = 0

1/22(0, a, x) == false 1^23(0,0, x) = false l/>4(0,a,x) = false
1/25(0, a, x) == /aZse l/2 6(0 ,a, x) = false 1/27(0, a, x) = false
1̂ 28(0, a, x) == false 1/29(0, a, x) = 0 1/30(0, a, x) = 0

l/3i(0, a, x) == 0 1/32(0, a, x) = 0 1/33(0, a, x) = 0
1/34(0, a, x) == 0 1/35(0, a, x) = 0 l/36(0,a,x) = 0
VpC(0 ,a ,x) == 0

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 1) A-26

End

ST E quations
V2 (t,a,x),

Vi(t + l ,a ,x) = cond j V$(t,a,x),
V4 (t,a, x)

or(V5 (t,a,x), V6 (t,a,x))
start

/ V7 (t, a, x),
V^it + l ,a ,x) = cond I Vg(t,a,x),

\ V9 (t,a,x)
and(Vio{t, a, x), Vu (t, a, x))
and(Vi2 {t, a, x), Vi3(t, a, x))
and(Vi4 (t, a, rc), Vi5(i, a, a:))
down
up

V2(t + l,a ,x)
V3{t + I;

V&(t + 1, a, x)
V6(t + 1, a, x)
V7{t + 1, a, x)
V$(t + l,a ,x)
V9 { t+ l ,a ,x)
Vio(t + ,a, 2; = eq{V22{t:a,x),Vie(t,a, x))
Vn (t + , a , x = eq{a9(t),Vi7{t,a,x))
Vi2(t + ,a, a: = eq(V22{t,a,x),Vi${t,a, x))
V13(t + j a, X“ = eq(a9(t),Vi9{t,a,x))
V14 (t + . ,a, x = eq(V22(t,a,x),V20(t,a, x))
Visit + . , a , 2: = gt(a9(t),V2i(t, a, x))
V i6 (t + , a , a: = false
Vi 7{t + , a , 2; = 90
Visit + , a , 2: = true
Vi 9 (t + j a, X = 0
V2o(t + ,a, X = true
V2i(t + > a, X = 0
V22(t + j a , X = or(V23{t,a,x),V24{t,a x))
V23(t + , a , X = or(V25{t,a,x),V26{t,a x))
V24(t + , a , X = or(V27{t,a,x),V2?>(t,a x))
v25(t + , a , X = gt{V29{t,a,x),V3o{t,a, x))
V2e{t + , a , X = gt(y3i(t,a,x),V32(t,a, x))
v27(t + , a , = gt(V33{t,a,x),V34{t,a, x))
V2s(t + , a X = gt(V3s{t,a,x),V3Q(t,a, x))
V29 (t + , a 2: = sub(ai(t),a2(t))
V30 (t + , a X = 0
V31(t + ,a X = sub(a3(t),a4(t))
V32(t + , a X = 0
V33(t + >a X = sub(a5(t),ae(t))
V34(t + , a x = 0
V35 (t + , a .X = sub(a7(t),a8(t))
V3Q(t + , a 2: = 0
Vpc{t + »a X = mod(add(Vpc(t, a , x), 1), 36)

i f Vpc(t,a,x) = 0,

if Vpc(t,a,x) — 0,
i f Vpc(t,a,x) = 0,

if Vpc(t,a,x) = 0,

if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc{t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc{t,a,x) = 0,
if Vpc(t, a, x) = 0,
if Vpc{t,a,x) = 0,
if Vpc{t,a,x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t,a,x) = 0,
if Vpc{t, a, x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t, a, x) = 0,
if Vpc{t,a,x) = 0,
if Vpc{t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t, a, x) = 0,
if Vpc(t,a,x) = 0,
if Vpc(t, a, x) = 0,

A-27

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-28

A ppendix D

A bstract dSCA Definition of
G RCP (Form 2)

Begin
Specification
Import
Sorts
Constant Symbols
VF Function Nam es
P Function Nam es
7 Function Nam es
5 Function Nam es
7 Equations

acvSCA
M a , T
SCA_Algebra

Vi :
Ppc
'fpc

T x M% x
: N x N -
: N x N —

MX M a

Ji,j,pc T x M%

N
{ S , M }

M \ -

7o(pc,0) = M, 79 (pc, 0) == M, 7 i 8 (pc, 0) = M, 727 (pc, 0) = M,
7 i(p c ,0) = M, 7io (pc, 0) = M, 7 i 9 (pc, 0) = M, 728 (pc, 0) = M,
72 (pc, 0) = M, 7 n (Pc, 0) = M, 720 (pc, 0) = M, 729 (pc, 0) = M ,
73 (pc, 0) = M, 712 (pc, 0) = M, 721 (pc, 0) = M, 730 (pc, 0) = M,
74 (pc, 0) = M, 713 (pc, 0) = M, 722 (pc, 0) = M, 73i (pc, 0) = M,
75 (pc, 0) = M, 714 (pc, 0) = M, 723(PC, 0) = M, 732 (PC, 0) = M ,
76 (pc, 0) = M, 7i5 (pc, 0) = M, 724 (pc, 0) = M, 733 (pc, 0) = M,
77 (pc, 0) = M, 716 (pc, 0) = M, 725 (PC, 0) = M, 734 (pc, 0) = M,
78 (pc, 0) = M, 7i 7 (pc, 0) = M, 726 (pc, 0) = M, 735 (pc, 0) = M,
7 o (l ,0) =- M , 7 o (l , 1) = M, 70(1 ,2) = M, 7 o (l , 3) = M,
7 i (l , 0) = 7 i (l , l) = M, 7 i (l , 2) = M, 7 i (l , 3) =
72(1, 0) = M, 72(1 ,1) = u , 72(1 ,2) = 72 (1, 3) = u ,
73(1 ,0) =- M , 73(1,1) = M, 73(1 ,2) = M, 7 3 (1, 3) = M,
7 4(1 ,0) =: M , 74(1 ,1) = Af, 74(1 ,2) = M , 7 4 (1, 3) = u .,
75 (1 ,0) =: M , 75(1,1) = M, 75(1 ,2) = M, 7 5 (1, 3) =
7 6 (1 ,0) =: M , 76(1 ,1) = M, 7 e (l , 2) = M , 76(1 ,3) =
7t(1,0) =: M , 77(1 ,1) = u , 77(1 ,2) = c/, 7 7 (1, 3) = t/,
7 8(1 ,0) =: M , 78(1 ,1) = U , 7s(1,2) = f/, 78 (1 ,3) =
79(1 ,0) =: M , 79(1, 1) = M, 79(10 ,2) == M, 7 9(1 ,3) =
7 io (l , 0) = M, 7 io (l , 1) == s, 7 io (l , 2) == M, 7 i o (l , 3) =
7 n (1 ,0) = M, 7 n (l , 1) == M 7 n (l , 2) == Af, 7 n (l , 3) == U ,
712(1,0) = M, 712(1,1) == 5, 712(1,2) == Af, 712(1,3) == U ,
7 13(1 ,0):= M, 7 i3 (l , 1) == M, 7 i3 (l , 2) == M, 713(1,3) == U ,

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-29

/? Equations

714(1, 0) = M , 714(1 , 1) =--S, 714(1,2) = M , 714 (,3) = u,
715(1 , 0) = M , 715(1 , 1) = U, 715(1,2) = u, 715 (,3) = u,
716(1,0) = M , 716(1,1) =--U, 716(1,2) = u, 7l6(- ,3) = u,
717(1,0) — M, 717(1, 1) = --U, 717(1,2) = u, 7l7(,3) = U,
7 i8 (l,0) = M, 718(1,1) =--U, 7 i s (1, 2) = u, 7l8(,3) = U,
719(1,0) = M, 719(1 ,1) =--U, 719(1,2) = U, 7ig(,3) = U,
72o (1, 0) ~ M, 720(1,1) =--U, 72o(l,2) = U, 720 (, 3) = U,
7 2 i(l,0) = M, 721(1,1) =--M, 7 2 i(l,2) = M, 721 (,3) = u,
722(1 ,0) = M, 722(1,1) = M, 722(1,2) = M, 722 (,3) = U,
723(1,0) = M, 723(1,1) = 723(1,2) = M, 723 (,3) = U,
724(1,0) = M, 724(1 , 1) =--M, 724(1,2) = M, 724 (,3) = U,
725(1,0) = M , 725(1,1) == Af, 725(1,2) = M, 725 (,3) = U,
726(1,0) = M, 726(1,1) = M, 726(1,2) = M, 726 (,3) = U,
727(1 , 0) = M , 727(1 ,1) =--M, 727(1,2) = M, 727 (, 3) = U,
728(1,0) = M , 728(1,1) = s , 728(1,2) = s, 728 (,3) = u.
729(1 , 0) = M , 729(1 ,1) =--u, 729(1, 2) = u, 729 (,3) = V,
730(1 , 0) = M , 730(1 ,1) =--S, 730(1, 2) = S, 730 (,3) = U,
731(1, 0) = M , 731(1, 1) =--U, 731(1, 2) = U, 731 (,3) = V,
732(1, 0) = M , 732(1 ,1) ='S , 732(1,2) = S, 732 (,3) = U,
733(1 , 0) = M, 733(1 , 1) =--U, 733(1, 2) = U, 733 (,3) = U,
734(1, 0) = M , 734(1 , 1) =--S, 734(1,2) = S, 734 (,3) = U,
735(1 , 0) = M , 735(1, 1) =--U, 735(1,2) = U, 735 (,3) = u

0o(pc, 0) = pc, 09 (pc, 0) =--pc, 0is(pc,O) = pc 027(PC, 0 = pc,
0i(pc, 0) = PC, 0io(pc,O) = pc, Pig(pc,0) = pc 028 (PC, 0 = pc,
02(PC,O) = pc, 0n(pc,O) = pc, 02o(pc,O) = pc 029 (PC, 0 = pc,
p3(pc,0) = pc, Pl2(pc,0) = PC, 021 (PC, 0) = pc 030 (PC, 0 = pc,
p4 (pc, 0) = pc, Pl3 {pc,0) = pc, 022 (PC, 0) = pc 03] (pc, 0 = pc,
05 (pc,o) = pc, 014(pC,O) = PC , 023(pc, 0) = pc 032 (PC, 0 = pc,
06 (pc, 0) = pc, 015 (PC, 0) = pc, 024 (PC, 0) = pc 033 (PC, 0 = pc,
0 7(pc, 0) = pc, 0ie(pc, 0) = PC, 025 (pc, 0) = pc 034 (pc, 0 = pc,
0s(pc,O) = pc, Pn(pc ,0) = PC, 026 (pc, 0) = pc 035 (PC, 0 = pc,
0o(l,O) == pc, A)(1,1) = 1, 0 o (l,2) = 1, /M l, 3) == 1,
0 i(l,O) == pc , /?!(1, 1) = 1, 0 i (l , 2) = 1, 01 (1 ,3) == w,
2(1 , 0) == pc, 02(1,1) = LJ, 02(1,2) = w, 02(1,3) == w,
^3(1,0) == pc, 0 3(1,1) = 1, 03(1,2) = 1, 03(1,3) == 1,
0 4(1,O) == pc, 0 4(i , i) = 1, 04(1,2) = 1, 04(1 ,3) ==
05(1,0) == pc, Pei 1,1) = 1, 05(1,2) = 1, 05(1,3) ==
/?6(1 ,0) == pc, Pei 1,1) = 1, 06(1,2) = 1, 06(1,3) == w,
/?7(1,0) == pc, /M i, 1) = 07(1,2) = w, 07(1 ,3) ==
0s(l,O) == pc, Pei 1,1) = 08(1,2) = w, 08(1 ,3) == w,
0 9(1,O) == pc, Pei 1,1) = 1, 09(1,2) = 1, 09(1 ,3) == w,
0 io(1,O) = pc, Pi o (l , 1) =-9 , 0 io (l, 2) == 1, 0 io (l , 3) = w,
0 ii(l,O) = pc, P u l 1,1) == 1, 0 n (l ,2) == 1, 0 i L(1, 3) = CJ,
012(1,0) = pc, 012(1,1) == 9 , 012(1,2) == 1, 012(1, 3) = w,
013(1,0) = pc, /^13(1, 1) == 1, 013(1,2)== 1, 01!0 1 ,3) = U),
^14(1,0) = pc, 014(1, 1) == 9, 014(1,2)== 1, 014(1,3) = CJ,
0 15(1,O) = pc, 015(1,1) == w, 015(1,2)== w, 01.5(1,3) =
A e (l ,0) = pc, 016(1,1) == w, 016(1,2) == 016(1, 3) = £J,
017(1,0) = pc, 017(1,1) == w, 0 1 7 (1 ,2)== w, 017(1, 3) =
018(1,0) = pc, 018(1,1) == w, 018(1,2) == 018(1, 3) = CO,

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-30

6 Equations

#19 (, 0) = p c , # 19 (1 ,) = Ol, #19 (,2) = 01, #19 (,3)
#20 (, 0) = p c , # 2 0 (1 ,) = 01, #20 (,2) = 01, #20 (,3)
#21 (, 0) = p c , # 2 1 (1 ,) = 1, #21 (, 2) = 1, #21 (,3)
#22 (, 0) = p c , # 2 2 (1 ,) = 1, #22 (,2) = 1, #22 (,3)
#23 (, 0) = p c , # 2 3 (1 ,) = 1, #23 (, 2) = 1, #23 (,3)
#24 (, 0) = p c , # 2 4 (1 ,) = 1, #24 (,2) = 1, #24 (,3)
#25 (, 0) = pc, # 2 5 (1 ,) = 1, #25 (, 2) = 1, #25 (,3)
#26 (, 0) = p c , # 2 6 (1 ,) = 1, #26 (,2) = 1, #26 (,3)
#27 (, 0) = PC, # 2 7 (1 ,) = 1, #27 (,2) = 1, #27 (,3)
#28 (, 0) = p c , # 2 8 (1 ,) = 1, #28 (,2) = 2 , #28 (,3)
#29 (, 0) = p c , # 2 9 (1 ,) = 0 1 , #29 (,2) = ui, #29 (,3)
#30 (■ , 0) = p c , # 3 0 (1 ,) = 3, #30 (,2) = 4 , #30 (,3)
#31 (, 0) = p c , #3l(l,) = 01, #31 (,2) = oi, #31 (,3)
#32 (, 0) = PC, # 3 2 0 ,) = 5, #32 (, 2) = 6 , #32 (,3)
#33 (, 0) = p c , # 3 3 (1 ,) = 01, #33 (,2) = 0;, #33 (,3)
#34 (, 0) = p c , # 3 4 (1 ,) = 7, #34 (,2) = 8, #34 (,3)
#35 (, 0) = p c , # 3 5 (1 ,) = 01, #35 (,2) = 01, #35 (,3)
o (p c , l) = p c

p̂c,0,0 0 , CL, *®)
<$pc,0,270 , CL, X
<$pc,0,1 ip, O', X?)
fipc,0,28 ip , X

<$pc, 0 , 2 { t , a , x)

<$pc,0,29 0 , a , X

fipc,0,3 0, CL, x)
<$pc,0,30 0 , X?

<$pc,0,4 0 , Xl)

<$pc,0,31 0 , <X, X

fipc,0,5 0 , X?)

<$pc,0,32 0 , <2, X
<$pc,0,6 0 , *2, 3?)
<$pc,0,33 0 , <̂5 31
<$pc,0,70, 31)
<$pc,0,34 0, *2, 31
<$pc,0,8 0, *2, 3l)
<$pc,0,35 0 , a , ^

<$1,0,0 (0 <2, 31
3.0 0 , ^
o,i { t , a , x
3.10.0.31
0,2 0 , <2, X
3 ,2 0 , <2, 31
0,3 0 , O, 31
3,30, O, X
0,4 0 ,0 ,3 1
3 . 4 0 ,0 ,3 1

0,5 0 , O, X

3.5 0 , O, X
0,6 0 , O, X
3,6 0 , 0 ,X
0,70 , a, X
3,7 0 , a, x

= £-1,
= £ - 1,
= £-1,
= £ - 1,
= £ - 1,
= £ - 1,
= £ - 1,
= £-1,
= £-1,
= £-1,
= £-1 ,
= £-1,
= £ - 1,
= t - l ,

= £ - 1,
= £ - 1,
= £ - 1,
= £ - 1,
£ 1,

= £ — 33,
: £ 1,
: £ - l ,
: £ - l ,
: £ - l ,
: £ - l ,
= £ - 3 1 ,
= £ - 1,
= £-1,
= £-1,
= £-1 ,
= £-1 ,
= £-1,
= £ - 1,
= £ - 1,

<$pc,0,9 0 , o , x) — £ 1,

<$pc,0 ,1 0 0 , o , x) — £

5 p c ,o ,n 0 ,o ,x) — £

<$pc,0 ,1 2 0 , o , x) — £

<5pc,0 ,1 3 0 , o , x) — £

<$pc, 0 ,1 4 (0 o , x) — £

<$pc,0 ,1 5 0 , o , x) £

<$pc,0 ,1 6 0 , o , x) £

<$pc,0 ,1 7 0 , o , x) — £

<$i,i,o0 , o , x) = £ — 35,

< 5 i , i , i0 ,o , x) = £ — 33,

<$1,1,20, o , x) = £ - 1,

<$1,1,30, o , x) = £ - 33,

<$i,i,40 , o , x) = £ — 31,

< $i,i,50 , a, x) = £ - 30,

< $i,i,60 , o , x) = £ - 2 9 ,

<$i,i,70 , o , x) = £ - 1,

= Ctl,

= 02,
= 01,
= 01,
= 01,
= 01,
= 01,

= 01,
= 01,
= u.
= 01,
= 01,
= 01,
= 01,

= 01,
= 01,
= co,

<$pc,0,180) o, x) — £

<$pc,0,190, o, x) £

<$pc,0,20 0) o, x) = £

<$pc,0 ,2 10 , o, x) £

<$pc,0,22 0 , O, x) £

<$pc,0,23 0 , o, x) = £ —

<$pc,0,24 0, O, x) = £

<$pc,0,25 0) O, x) = £ —

<$pc,0,26 0 , O, x) = £

<$1,2,00. 0 ,X

($1 , 2 , 1 0

<$1 , 2,2 0

<$1,2,3 0

<$1,2,4 0

<$1,2,5 0

<$1 , 2,6 0

<$1,2,70

a, X

a, x

a, x

a, x

a, x

a, x

a, x

= £ - 3 4 ,

= £ - 3 2 ,

= *-1,

= £ - 3 2 ,

= £ - 3 0 ,

= £ - 2 9 ,

= £ - 2 8 ,

= £ - 1,

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-31

^ 1 ,0 ,8 a, x) = £ - 1 , <Slili8(£,a,x) = £ - 1, <Si,2,8(*,a}aO = t - 1,
$1,3,8^ , ^ x) = £ - 1 ,

1̂,0 ,9 {t, O', x) = £ - 1 , <5i,i,9(i,a ,x) = t — 2 4 , £i,2 ,9 (£,a,a0 = * — 3 0 ,
$i,3,9{t,a,x) = t - 1,
1̂,0, io(£ a X = £ - 1 , $1,1, io(t a, x) = t — 1, $i,2,io(t a, x) = t — 3 0

<5i,3,10 (£ a X = £ - 1,
1̂,0, l l(t a X = £ - 1, $1,1, n a, x) = t — 26, 1̂,2,11 (£ a, x) = t — 30

^l,3 ,n(^ a X = £ - 1,
<̂ 1,0,12(̂ a X = £ — 1, ^1,1,12^ a, x) — t — 1, 1̂,2,12^ a, x) = t — 30

1̂,3 ,12^ a X = £ - 1 ,
1̂,0 ,13^ a X = £ - 1, 1̂,1,13^ a, x) = t — 2 8 , 1̂,2 ,13^ a, x) = t — 30
1̂,3 ,13^ a X = £ - 1,
1̂,0,14 a X = £ - 1, 1̂,1,14^ a, x) = t — 1, 1̂,2 ,14 (̂ a, x) = t — 30
1̂,3,14 a X = £ - 1,
1̂,0 ,15^ a X = £ - 1, 1̂,1,15^ a, x) = t — 1, <̂1,2 ,15^ a, x) = t — 1,
1̂,3 ,15 (̂ a X = t - 1,
1̂,0 ,16^ a X = t - l , 1̂,1,16^ a, x) = t — 1, ^l,2 ,1 6(i a, x) = t — 1,
1̂,3 ,16^ a X = £ - 1,
1̂,0 ,17^ a X = £-- 1, 1̂,1,17^ a rc) = £ — 1, ^l:2 ,17(i a, x) = t — 1,
1̂,3 ,17^ a X = £ - 1,
1̂,0 ,18^ a X = £ - 1, 1̂,1,18^ a, x) = t — 1, ^l,2 ,18(i a, x) = t — 1,
1̂,3 ,18^ a X = £ - 1,
1̂,0 ,19^ a X = t - 1, 1̂,1,19 a, :r) = t — 1, ^i,2,ig(i a, x) = t - 1,
1̂,3 ,19(£ a X = t — 1,

^l,0,2o(i a X = £ - 1 , 1̂,1,2o(£ a, x) = £ — 1, ^l,2,2o(i a, x) = £ - 1,
1̂,3 ,2 0^ a X = £ - 1 ,
1̂,0,21 {t a X = t - 1, 1̂,1,21 a, x) = t — 35, $1.2,2l{t a, x) = t — 34
1̂,3,21 (t a X = £ - 1,

$1,0,22 (t a X = t — 1, $l,l,22(t a, x) = t — 34, $1,2,22 (t a, x) = t — 33
$1,3,22 (t a X = t - 1 ,

1̂,0 ,2 3^ a X = £ - 1 , $1,1,23^ a, x) = t — 33, $l,2,23{t a, x) = t - 32
1̂,3 ,2 3^ a X = t - l ,

1̂,0,24 a X = t - 1, $1,1,24^ a x) = t — 32, 1̂,2,24 (t a x) = £ -3 1
1̂,3 ,2 4^ a X = £ - 1,
1̂,0 ,2 5^ a X = t - 1, 1̂,1,25 a x) = t — 31, $1,2,2b {t a, x) = £ — 30
1̂,3 ,2 5^ a X = t — 1,
1̂,0,26 a X = £ - 1, 1̂,1,2 6^ a x) = t — 30, $l,2,2b{t a x) = £ — 29
1̂,3 ,2 6^ a X = £ - 1,
1̂,0 ,2 7^ a X = t — 1, 1̂,1,2 7^ a x) —t — 29, $l,2,27(t a x) = £ — 28
1̂,3,27 (t a X = t - 1 ,
1̂,0 ,2 8^ a X = t — 1, 1̂,1,2 8^ a x) = t - 1, $l,2,2${t a x) = £ - 1,
1̂,3 ,2 8^ a X = t - 1,
1̂,0 ,2 9^ a X = t — 1, 1̂,1,2 9^ a x) = t - 1, $1,2,29 (t a x) = £ - 1,
1̂,3 ,2 9^ a X = £ - 1,
1̂,0,3o(̂ a X = £ - 1, 1̂,1,3o(̂ a x) = t - 1, $l,2,3o{t a x) = £ - 1,

^l,3 ,3o(̂ a X = t — 1,
$l,0,3l{t a X = t — 1, ^i?i,3 i(i a x) = t - 1, $l,2,3l{t a x) = £ - 1,

1̂,3,31 a X = i — 1,
1̂,0 ,3 2^ a X = i — 1, 1̂,1,3 2^ a x) = t - 1, 1̂,2,32 {t a x) = £ - 1,
1̂,3 ,3 2^ a X = t — 1,

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-32

IV E quations

1̂,0,33̂ ? a,x
$1,3,3 3 (1 ,a,x
61.0.34(i, a,x
61,3,34(tj d,x
61.0.35 (t ,a, x
$ l , 3 , 3 b (t , a , x

= t
= £
= t
= t
= t
= t

Vi(0,a,x) =
Vi (3 ,a,x) =
Vi(6,a,x) =
Vi(9,a,x) =
Vi (12, a,x
Vi (15, a, x
Vi (18, a, x
Vi (21, a, x
Vi (24, a, x
Vi (27, a, x
Vi (30, a, x
Vi (33, a, x
Vp c (0 ,a,x
Vpc(3,d,x
VPc (6 , d,x
Vpc(9,a,x
Vpc(12, d, X
Vi,c(15, a, x
Vpc(l 8 ,a,x
Vpc(2 1 ,a,x
Vpc(24,a,x
Vpc(27, a, x
Vpc(30,a,x
VPc (33, cl, x

$i,i,3 3 (t, a , x) = t - 1, 61,2,33(t, a, x) = £ - 1,

61,1,34 (t, a, x) = £ — 1, 61,2,34 (£, a, x) = t — 1,

61,1,35(̂ 5 a, x) = £ — 1, 61,2,35(̂ 5 a, x) = £ — 1,

stay,
up,
false,
true,

= false,
= false,
= 0,
= false,
= false,
= false,
= 0,
= 0,
= 1,
= 4,
= 7 ,

= 10,
= 13,
= 16,
= 19,
= 22,
= 25,
= 28,
= 31,
= 34,

Vi (1, a, x) =
Vi (4, a, x) =
Vi (7, a, x) =
Vi (10, a, x
Vi (13, a, x
Vi (16, a, x
Vi (19, a, x
Vi (22, a, x
Vi (25, a, x
Vi (28, a, x
Vi (31, a, x
Vi (34, a, x
VpC(l,a ,x
VpC(4,a,x
Vpc(7, a, x
V̂ c(10, a, x
Vi>c(13,a, x
Vpc(16, a, x
VpC(19,a,x
Vpc(2 2 ,a,x
Vpc(25, (2, X

VpC(28, a, x
Vpc(31, a, x
Vpc(S4,a,x

true,
true,
down,

= true,
— false,
= 90,
= true,
= false,
= false,
= 0,
= 0,
= 0,
= 2,
= 5,

= 11,
= 14,
= 17,
= 20 ,
= 23,
= 26,
= 29,
= 32,
= 35,

Vi(2,a,x) =
Vi(5, a, x) =
Vi (8, a, x) =
Vi (11, <2, x)
Vi (14, a, x)
Vi(17, a, x)
Vi (20, a, x)
Vi (23, a, x)
Vi (26, a, x)
Vi (29, a, x)
Vi (32, a, x)
Vi (35, a, x)
Vpc(2 ,a,x)
Vpc(5, a, x)
Vpc(8,a,x)
Vpc(11, d, x
Vpc(l4,a,x
Vpc(17, a, x
KpC (20, a, x
VpC(23, d, x
VpC(26, a, x
Vpc(29,a,x
Vpc(32, a, x
Vpc(35,d,x

stay,
false,
up,

= false,
= true,
= £ r i ie ,

= 0,
= false,
= false,
= 0,
= 0,
= 0,
= 3,
= 6,
= 9,

= 12,
= 15,
= 18,
= 21,
= 24,
= 27,
= 30,
= 33,
= 0

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-33

ST Equations

Vpc{t+ l ,a,x) =

mod(add(ypc(t,a,x), ,36) i f Vpc(t - a, x) = 0
mod (add {Vpc(t, a, x) , ,36) i f VPc{t - a, x) = 1
mod (add (Vpc(t, a, x), ,36) i f Vpc(t - a, x) = 2
mod (add (Vpc{t, a, x), ,36) i f Vpc (t - a, x) = 3
mod (add (Vpc (t ,a ,x), ,36) i f Vpc(t - a, x) = 4
mod (add {Vpc(t, a, x), ,36) i f Vpc{t - a, x) = 5
mod (add (Vpc (t , a ,x), ,36) i f Vpc(t - a, x) — 6
mod (add (Vpc{t, a, x), ,36) i f Vpc(t - a, x) = 7
mod (add (Vpc{t, a, x), ,36) i f Vpc(t - a, x) = 8
mod (add (Vpc(t, a, x), ,36) i f Vpc(t - a, x) = 9
mod (add (Vpc(t, a, x), ,36) i f Vpc(t - a, x) = 10
mod (add (Vpc(t, a, x), ,36) i f Vpc(t - a, x) = 11
mod (add (Vpc(t, a, x) , ,36) i f Vpc(t - a, x) = 12
mod (add (Vpc (t,a,x),. ,36) i f Vpcit - a, x) = 13
mod (add (Vpc(t, a, x), ,36) i f VPc it - ,a,x) — 14
mod (add (Vpc(t, a, x), ,36) i f Vpc(t - ,a,x) = 15
mod (add {Vpc(t, a, x) , ,36) i f Vpcit - , a, :c) = 16
mod (add (Vpc (t, a, x) , ,36) i f VPc(t - , a, x) — 17
mod(add(ypc{t,a,x), ,36) i f Vpdt - a, x) — 18
mod (add (Vpc(t, a, x) , ,36) i f VpC(t - , a, x) — 19
mod (add (Vpc{t, a, x) , ,36) i f VpC(t -

oII'sT<3

mod (add (Vpc(t, a, x) , ,36) i f VpC(t - a, x) = 21
mod (add (Vpc(t, a, x), ,36) i f VPd t - , a, x) = 22
mod (add (Vpc(t, a, x), ,36) i f Vpc(t - , a, x) = 23
mod (add (Vpc(t, a, x) , ,36) i f VpC(t - , a, x) = 24
mod (add (Vpc(t, a, x) , ,36) i f Vpdt - , a, 2;) = 25
mod (add (Vpc (t ,a ,x), ,36) i f VpC(t - , a, :r) = 26
mod (add (Vpc(t, a, x), ,36) i f VpC{t - , a, x) = 27
mod (add {Vpc{t, a, x) , ,36) i f Vpdt - , a, re) = 28
mod (add (Vpc(t, a, x), ,36) i f VpC(t - , a, x) = 29
mod (add {Vpc(t, a, x), ,36) i f VpC(t - , a, x) = 30
mod (add (Vpc(t, a, x) , ,36) if Vpdt - , a, x) = 31
mod (add (Vpc(t, a, x) , ,36) i f VpC{t - , a, x) = 32
mod (add (Vpc(t, a, x) , ,36) i f Vpdt - ,a,x) = 33
mod (add (Vpc(t, a, x), ,36) i f VPc(t - , a, x) = 34
mod(add(Vpc(t,a,x), ,36) i f VpC(t - , a, x) = 35

A B ST R A C T DSCA DEFINITION OF GRCP (FORM 2) A-34

Vi (t,a,x) =

/ Vi (t — 35. a, x), \
cond I Vi(t — 34, a,x), j if Vpc(t — 1, a, x) = 0

\ Vi (t — 33, a, x) J
or(Vi(t — 33, a, x),V<o(t — 32, a, x)) if VpC{t - 1 a, x) = 1
start if Vpc (t - 1 a, x) = 2

/ V i(t-33 ,a ,x), \
cond 1 V\ (t — 32, a, x), if VpC{t - 1 a, x) = 3

\ V i(t-3 1 ,a ,x) J
and(Vi(t — 31, a, x), V\(t — 30, a,x)) if VpC(t - 1 a, x) = 4
and(Vi (t — 30, a, x), V\ (t — 29, a, x)) if VPc(t - 1 a, x) = 5
and(Vi(t — 29, a, x), V\(t — 28, a,x)) if Vpdt - 1 a, x) = 6
down if VpC{t - 1 a, x) = 7
up if VpC{t - 1 a, x) = 8
eq{V\{t — 24, a, x),Vi(t — 30, a, x)) if V̂ c(£ - 1 a, x) = 9
eq{a9 (t),Vi(t - 30, a, x)) if Vpdt - 1 a, x) = 10
eq(Vi(t— 26:a,x),Vi(t — 30, a x)) if Vpdt - 1 a, x) = 11
eg(a9(*),Vi(i-30,a,aO) if Vpdt - 1 a, x) = 12

— 28, a, x), Vi(t — 30, a x)) if Vpdt - 1 a, x) = 13
gt{a9 (t),Vi{t - 30,a,x)) if V̂ c(i - 1 a, x) 14
false if V̂ c(£ - 1 a, x) = 15
90 if Vpdt - 1 a, x) = 16
true i f VpC(t - 1 a, X) 17
0 if Vpdt - 1 a, x) 18
true i f V̂ c(t - 1 a, x) - 19
0 i f Vpdt - 1 a x) = 20
or(Vi (t — 35, a, x) ,Vi(t — 34, a x)) i f Vpcit - 1 a x) = 21
or(Vi(t — 34, a, x) , Vi(t — 33, a x)) i f VpC{t - 1 a x) = 22
or(Vi(£ — 33, a, x), Vi(t — 32, a x)) i f Vpdt - 1 a x) = 23
gt(Vi(t — 33, a, x), Vi(t — 31, a x)) i f V̂ c(t - 1 a x) = 24
gt(Vi(t — 31, a, x), Vi(t — 30, a x)) i f Vpdt - 1 a x) = 25
gt(Vi(t — 30, a, x), Vi(t — 29, a x)) i f Vpdt - 1 a x) = 26
gt(Vi(t — 29, a, x), Vi(t — 28, a x)) i f VpC(t - 1 a x) 27
sub(ai(t),a2 {t)) if Vpdt - 1 a x) 28
0 if Vpdt - 1 a x) 29
su6(a3(t),a4(i)) i f VpC {t - 1 a x) 30
0 i f VpC{t - 1 a, x) 31
sub{a5 (t),a6 (t)) i f Vpdt - 1 a x) 32
0 i f Vpdt - 1 a,x) 33
sub(a7 (t),a&(t)) i f V̂ c(t - 1 a,x) 34
0 i f VpC (t - 1 a,x) 35

End

A-35

CONCRETE DSCA DEFINITION OF GRCP A-36

A ppendix E

Concrete dSCA definition of
GRCP

B egin
Specification
Im port
Sorts
C onstant Sym bols
V F Function N am es
P Function N am es
7 Function N am es
8 Function N am es
7 Equations

cdSCA
M a , T
SCA_Algebra

Vi :T x An x M*tup -> MAtuT
R • AT v N AT

&i.jiPC : T x An x M kAtup^ T

7o(l 0) = M, 7 o (l ,2) = M, 7 o(l, 3) = Af, 7 o(1,4) =
7o(l 1) = M,
7 i (l 0) = M, 7 i (1,2) = M, 71 (1,3) = M, 7i (1,4) =
7 i (l 1) = M,
72(1 0) = M, 72(1,2) = t/, 72(1,3) = !/, 72(1,4) =
7 2 (1 1) = M,
73(1 0) = M, 73(1,2) = M, 73(1,3) = M, 73(1,4) =
73(1 1) = Af,
74(1 0) = M, 74(1,2) = M, 74(1,3) = M, 74(1,4) =
74(1 1) = M,
75(1 0) = M, 75(1,2) = M, 75(1,3) = M, 75(1,4) =
75(1 1) = M,
7e(l 0) = M, 76(1,2) = Af, 76 (1,3) = M, 76(1,4) =
7e(l 1) = M,
77(1 0) = Af, 77(1,2) = !/, 77(1,3) = !/, 77(1,4) =
77(1 1) = M,
7 s (l 0) = M, IIr-H00 78(1,3) = !/, 78(1,4) =
7s(l 1) = M,
79(1 0) = M, 7 9 (1 , 2) = M, 79(10,3) = M, 79(1,4) =
79(1 1) = M,
7 io (l , 0) — M, 7io(l,2) = 5, 7 io(1 ,3) = M, 7 io(1 ,4) =
7 i o (l , l) = M,
7 i i(1 .0) = 7 n (l , 2) = M 7 i i (1 ,3) = M, 7 n (l , 4) =
7 n (l , l) = M,

u,

CONCRETE DSCA DEFINITION OF GRCP A-37

712(1 0 = Af, 7 i2 (l ,2) = 5, 7 i2 (l ,3) = Af, 712(1,4) = 7 ,
712(1 1 = AT,
713(1 0 = AT, 713(1,2) = Af, 713(1,3) = A/, 713(1 ,4) = 7 ,
713(1 1 = Af,
714(1 0 = M, 7 i4 (l , 2) = 5 , 714(1,3) = A/, 714(1,4) = 7 ,
714(1 1 — M,
715(1 0 — M, 715(1,2) = 7 , 715(1,3) = 17, 715(1,4) = 7 ,
715(1 1 = AT,
716 (1 0 = Af, 7 i6 (l ,2) = 7 , 7i6 (1 ,3) = U, 7 i6 (l , 4) = 7 ,
716(1 1 = Af,
717(1 0 = M, 7 i7 (l , 2) = 7 , 717(1,3) = U, 717(1,4) = 7 ,
717(1 1 = Af,
718(1 0 — Af, 7 i8 (l ,2) = U, 718(1,3) = 7 , 718(1,4) = 7 ,
718(1 1 = Af,
719(1 0 — M, 7 i9 (l , 2) = U, 719(1,3) = 7 , 719(1 ,4) = 7,
719(1 1 = M,
720(1 0 — M, 720(1,2) = U, 720(1,3) = 7 , 720(1,4) = 7 ,
720(1 1 — Af,
721(1 0 = Af, 7'2i(l, 2) = M, 721(1,3) = Af, 7 2 i(l ,4) = 7 ,
721(1 1 = M,
722(1 0 = M, 722(1, 2) = M, 722(1,3) = Af, 722(1,4) = 7 ,
722(1 1 = AT,
723(1 0 = M, 723(1,2) = M, 723(1,3) = A/, 723(1 ,4) = 7 ,
723(1 1 = AT,
724(1 0 = Af, 724(1 ,2) = Af, 724(1,3) = Af, 724(1 ,4) = 7 ,
724(1 1 = Af,
725(1 0 = Af, 725(1,2) = M, 725(1,3) = Af, 725(1,4) = 7 ,
725(1 1 = Af,
726(1 0 = Af, IIc7CO 726(1,3) = Af, 726(1 ,4) = 7 ,
726(1 1 = Af,
727(1 0 = Af, 727(1,2) — Af, 727(1,3) = Af, 727(1,4) = 7 ,
727(1 1 = Af,
728(1 0 = Af, 728(1,2) = 5 , 728(1,3) = S, 728(1,4) = 7 .
728(1 1 = Af,
729(1 0 = Af, 729(1,2) = E7, 729(1,3) = 7 , 729(1 ,4) = 7 ,
729(1 1 = Af,
730(1 0 = Af, 73o(l, 2) = 5 , 73o(l, 3) = S, 73o(l, 4) = 7 ,
730(1 1 = Af,
7 3 l(l 0 = Af, 7 3 i (l ,2) = U, 7 3 i(l , 3) = 7 , 7 3 i(l ,4) = 7 ,
7 3 l(l 1 = Af,
732(1 0 = Af, 732(1, 2) = S, 732(1,3) = S, 732(1,4) = 7 ,
732(1 1 = Af,
733(1 0 = Af, 733(1,2) = U, 733(1,3) = 7 , 733(1 ,4) = 7 ,
733(1 1 = Af,
734(1 0 — Af, 734(1,2) = 5 , 734(1,3) = 5 , 734(1 ,4) = 7 ,
734(1 1 = Af,
735(1 0 = Af, 735(1,2) = U, 735(1,3) = 7 , 735(1,4) = 7 ,
735(1 1 = Af,
7o (pc 0 = Af, 79 (jpC) 0) = Af, 7 is(p c, 0) = Af, 727(pc, 0) = Af,
7 i (pc 0 — Af, 7io(P c , 0) = Af, 7 i 9 (pc, 0) = Af, 728 (pc, 0) = Af,
72 (pc 0 — Af, 7 n (p c ,0) = M, 720 (pc, 0) = Af, 729 (pc, 0) = Af,
73 (pc 0 — Af, 7 i2 (p c ,0) = Af, 721 (pc, 0) = Af, 730 (pc, 0) = Af,
74 (pc 0 = Af, 7 i3 (p c ,0) = Af, 722 (pc, 0) = Af, 731 (pc, 0) = Af,

CONCRETE DSCA DEFINITION OF GRCP A-38

0 Equations

75 (pc, 0) = Af,
7e(pc,0) = Af,
77 (pc, 0) = M,
78 (pc, 0) = M,

/50(1,0) = pc,
0o(i,i) = i,
0i(l, 0) = pc,
/?i(l, 1) = 1,
02(i,o) = pc,
02(i , i) = i,
03(1,O) = pc,
/?3(1,1) = 1,
04(1,O) =pc,
04(1,1) = 1,
05(1,O) =pc,
05(1,1) = 1,
06(1,O) =pc,Aj(1,1) = 1,
07(1,O) =pc,
/?7(1,1)=1,
08(1,O) =pc,
08(1,1) = 1,
09(i,o) = pc,
09(i , i) = i,
0io(l,O) = pc,
/?io(l
0 n (l
0 n (i
012(1
012(1
013(1
013(1
^14(1
014(1
015(1
/5l5(l
/̂ 16 (1
016(1
/?17(1
017(1
/5l8 (1
0i8(l
019(1
019(1
020 (1
/̂ 20(1
$21 (1
021 (1
022(1
022(1
023(1
/?23(1
024(1

1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1.
0) = pc,
1) = 1,
0) = pc,
1) = 1.
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,
1) = 1,
0) = pc,

7i4 (pc, 0)
7i 5 (pc, 0)
716 (pc, 0)
717 (pc, 0)

A»(l,2) =

A (1,2) =

f t (l , 2) =

03(1,2) =

04(1,2) =

05(1,2) =

06(1,2) =

07(1,2) =

0s(l ,2) =

09(1,2) =

010(1,2) =

0 i i (l ,2) =

012(1,2)=

013(1,2)=

014(1,2) =

015(1,2) =

016(1,2) =

017(1,2) =

0 i 8(1, 2) =

019(1,2) =

0 2 o (1 , 2)

02i (l ,2)

022(1, 2)

023(1,2)

024(1,2)

= M, 723 (pc, 0) = Af, 732 (pc, 0) = Af,
= M, 724 (pc, 0) = Af, 733 (pc, 0) = Af,
= M, 725 (pc, 0) = Af, 734 (pc, 0) = M,
= M, 726 (pc, 0) = Af, 735 (pc, 0) = M

1, 0b(l,3) = 1, 0o(l,4) = 1,

1, 0 i(l, 3) = 1, 0i (1,4) = uj,

uj, 02(1,3) = uj, j32 (1,4) = uj,

1, 03(1,3) = 1, 03(1,4) = 1,

1, 04(1,3) = 1, 04(1,4) = w,

1, 05(1,3) = 1, 05(1,4) = w ,

1, 06(1, 3) = 1, 06(1,4) = u,

uj, 0 7(1, 3) = uj, 07(1 ,4) = cj,

UJ, 0g(l,3) = co, 0s(l,4) = uj,

1, 09(1,3) = 1, 09(1,4) = uj,

- 9, 0io(l,3) =

— 1, 0 n

= 9, 012

= 1, 013

= 9, 014

= 015

= W, 016

= 017

= 018

— 019

= W, 020

= 1, 021

= 1, 022

= 1, 023

= 1, 024

1.3) =

1.3) =

1.3) =

1.3) =

0io(l,4

0n (l , 4

012(1,4

013(1,4

014(1,4

1.3) = a;, 015(1,4

1,3) = cj, 016(1,4

1.3) = uj, 0 i7(l, 4

1.3) = £J, 018(1,4

1.3) = cj, 0 i9(l, 4

1 .3) = uj, 0 2 o (1 ,4

1.3) = 1, 02i(l, 4

1.3) = 1, 022(1,4

1.3) = 1, 023(1,4

1.3) = 1, 024(1,4

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= w,

= £J,

= CJ,

024(1, 1) = ! ,

CONCRETE DSCA DEFINITION OF GRCP A-39

^25(1 ,0 = PC, £25(1 ,2) = 1, £25(1 ,3) = 1 , £25(1 ,4) = cj,
25(1 ,1 = 1,
/̂ 26 (1 0 = pc, £26(1 ,2) = 1, £26(1,3) = 1 , £26(1,4) = <x>,
p26(1;1 = 1,
27(1 ,0 = pc, £27(1 ,2) = 1, £27(1 , 3) = 1, £27(1,4) = CJ,
#27(1J1 = 1,
/̂ 28(1> 0 = pc, £28(1 ,2) = 1, £28(1 ,3) = 2, £28(1,4) = to.
$28(1j 1 = 1,
29(1 ,0 = pc, £ 29(1, 2) = u , £ 29(1,3) = uj , £ 29(1, 4) = to,
/?29 (1 1 = 1,
f t o (l ,0 = pc, £ 30(1, 2) = 3, £ 30(1,3) = 4, £ 30(1 ,4) = w,
$3o(l> 1 = 1,
/53i (1 ,0 = pc, £ 31(1, 2) = UJ, £ 31(1 ,3) = uj , £ 31(1 ,4) = co,
$ 3 l(lj 1, = 1,
$ 32(1 ,0 = pc, £ 32(1, 2) = 5, £32(1 ,3) = 6 , £ 32(1, 4) = to,
$32(1, 1 = 1,
$33(1, 0 = pc, £ 33(1, 2) = UJ, £ 33(1,3) = to, £ 33(1, 4) = O),
$ 33(1 ,1 = 1,
£ 34(1 ,0 = pc, £ 34(1, 2) = 7, £ 34(1, 3) - 8 , £ 34(1,4) = w,
£ 34(1 ,1 = 1,
£ 35(1 ,0 = pc, £ 35(1, 2) = uj, £ 35(1 ,3) = uj, £ 35(1,4) = to,
£ 35(1,1 = 1,
$o(p c,0 = pc, £g(pc, 0) = pc, £ is (p c ,0) = p c , £27 (pc, 0) = pc,
£1 (pc, 0 = pc, £ io (p c ,0) = pc, £19 (pc, 0) = pc, £28 (pc, 0) = p c ,
$ 2(pc,0 = pc, £ n (p c ,0) = pc, £20 (pc, 0) = pc, £29 (pc, 0) = pc,
$ 3(pC,0 = pc, £ i 2(p c ,0) = pc, £ 2l(p c ,0) = p c , £30 (pc, 0) = p c ,
$ 4(pc, 0 = pc, £ i3 (p c ,0) = pc, £22 (pc, 0) = p c , £ 3l (p c ,0) = pc,
£5 (Pc, 0 = pc, £14 (pc, 0) = pc, £23 (pc, 0) = p c , £32 (pc, 0) = pc,
$e(p c,0 = p c , £ l 5(p c ,0) = pc, £24 (pc, 0) = pc, £33 (pc, 0) = p c ,
$ 7(pc,0 = pc, £16 (pc, 0) - pc, £25 (pc, 0) = pc, £ 34(pc, 0) = pc,
$ s(p c ,0 = pc, £ i 7(pc,0) = pc, £26 (pc, 0) = pc, £ 35(pc, 0) = pc

S Equations
£1,0,0 (^ a , X = t - 1, £1,1,0 (t a , X = t - 1, £1,2,0 (t, a , x) — t —

£1,3,0 {t a , X = t ~ 1, £ l,4,o(£ a , X = t - 1,
£1,0,1 (£ a , X = t - 1, £1,1,l (i a , X = t - 1, £1,2,1 { t a , x) = t —

£1,3,1 (^ a, X = t - 1, £1,4,1 (t a , X = t - 1,
£1,0,2 (t a , X = t - 1, £1,1,2 (t a , X = t — 1, £1,2,2 (t a, x) — t —

£1,3,2 (t a, X = t - 1, £ l,4,2(t a, X = t - 1,
£1,0,3 (^ a, X = t - 1, £ l , l ,3^ a, X = t - 1, £1,2,3 (£ a, x) — t —

£1,3,3 (̂ a, X = t - 1, £ l,4,3(^ a, X = t - 1,
£1,0,4 (£ a , X = t - 1, £1,1,4 (i a, X = t - 1, £1,2,4 { t a, x) = t —

£1,3,4 (t a , X = t - 1, £1,4,4(̂ a, X = t - 1,
£1,0,5 (t a, X = t - 1, £1,1, s(£ a, X = t - 1, £1,2,5 (£ a, x) = t —

£1,3,5 (£ a, X = t - 1, £1,4,5^ a, X = t - 1,
£ l,0,6^ a, X = t - 1, £1,1,6^ a, X = t - 1, £1,2,6 (t a, x) = t —

£ l,3,6 it a, X = t - 1, £ l,4,6(t a, X = t - 1,
£ l,0,7(^ a, X = t - 1, £1,1,7 { t a, X = t - 1, £1,2,7^ a x) = t —

£ l,3,7(^ a, X = t - 1, £ l,4,7 (̂ a, X = t - 1,
£ l,0,8(^ a X = t — 1, £ l , l ,8(̂ a X = t - 1, £1,2,8^ a x) = t —

£ l,3,8(^ a X = t - 1, £ l,4,8(i a X = t - 1,
£ l,0,9(t a = t - 1, £ l,l , 9 { t a X = t - 1, £1,2,9^ a x) = t —

£ l,3,9 (t a X = t - 1, £ l,4,9(i a X = t - 1,

CONCRETE DSCA DEFINITION OF GRCP A-40

<*1,0,lo(*, <2, 3 = £ -

<*1,3,10(^7 <2, 3 = £ -
<*1,0,11 (*7 a , 3 = £ —

<*1,3,11 (*, O) 3 = £ —

<*1,0,12(^7 <2, 3 = £ —

<*1,3,12(^7 O, 3 = £ —

<*1,0,13(^7 a , 3 = £ -

<*1,3,13(^7 <2, 3 = £ -
<*1,0,14 , <2, 3 = £ —
<*1,3,14 (*> O) 3 = £ —

<*1,0,15 (*) <2? 3 = £ —

<*1,3,15(^7 a , 3 = £ —

<*1,0,16(̂ 7 <2, 3 = £ —

<*1,3,1 6) O, *25 = £ —

<*1,0,17(^7 <2, 3 = £ -

<*1,3,17(^7 <2) 3 = £ —
<*1,0,18(,̂<2,3 = £ —

<*1,3,18(7̂ <2, 3 = £ —

<*1,0,19(^7 <2, 3 = £ -

<*1,3,19(*, <2, 3 = £ —

<*1,0,2o(*, <2, 3 = £ —

<*l,3,2o(*, <2, 3 = £ -
<*1,0,21 (*) <2, 3 = £ -
<*1,3,21 (*, a, X = £ -
<*1,0,22(^7 22, X = £ -

<*1,3,22(^5 O, 3 = £ -
<*1,0,23(*7 <2, 3 = £ —

<*1,3,23(^7 <2, 3 = £ -
<*1,0,24 (^, O, 3 = £ —
<*1,3,24 (^, O, X = £ -

<*1,0,25(^7 <2, 3 = £ -
<*1,3,25(^7 22, 3 = £ —

<*1,0,26(^7 <2, 3 = £ -

<*1,3,26(^7 <2, 3 = £ —

^1,0,27^7 <2, 3 = £ —
<*1,3,27(^7 <2, 3 = £ —

<*1,0,28^7 <2, 3 — t ~
^1,3,28^7 <2, 3 = £ -
<*1,0,29(^7 a , 3 — t —
<*1,3,29(^7 <2, 3 = t -
<*1,0,30(^7 <2, 3 = £ —
<*1,3,30(£, <2, 3 = £ -

<*1,0,31 (̂ 7 <2, 3 = £ -

<*1,3,31 (£7 <2, 3 = £ —
<*1,0,32(^, <2,3 = £ —
<*1,3,32(^7 <2, 3 = £ —

<*1,0,33(^7 <2, 3 = £ —

<*1,3,33(^7 <2, 3 = £ -

<*1,0,34 (̂ 7 22, 3 = £ —
<*1,3,34 (^, <2, 3 = £ -
<*1,0,35 (̂ 7 <2, 3 = £ —
<*1,3,35(^7 <2, 3 = £ -

<*1,1,10 (t,CL,x) = t -
<*l,4 ,lo(,̂ O, x) £
<*i,i,n(*,o,3) = t -
SiA,n(t,a,x) = £ -
<*1,1,12 (t,a,x) = £ -
<*1,4,12 7̂ <2, x) —t —
<*i,i, 13(̂ 7 22, 3) ^
<*1,4,13(̂ 5 a,x) —t —
<*l,l,14 (̂ > <2, T) £
<*1,4,14(̂ 5 22, 3) — £
<*1,1,15 (*,0 , 3) = t -
<*1 ,4,15 {t,CL,x) = t ~
<*1,1,16 (t,a,x) = £ -
<*1,4,16 (t ,a,x) —t -
<*i,i,i7(*,o,3) = t -
<*1,4 ,17^, 22, x) = t —
<*1,1,18 {t,a,x) = £ -
<*1,4 ,18^, a, x) = t -
<*1,1,i9(*, <2, 3) £
<*M,i9(*,o,x) = t -
<*1,1,20 {t,a,x) = £ -
<*1,4,20{t, cl, x) = t —
<*1,1,21 (*, a, x) = t —
<*1,4,21(̂ 5 cl, 3) £
<*1,1,22(*, <Z, x) = t —
< * l,4 ,2 2 (* ,0 ,x) = t -
<*1,1,23 (*, a,x) = t —

<*1,4,23 { t , a , x) = £ -

<*1,1 ,24^ ,0 ,35) = t -
<*1,4,24(t,CL,x) = £ -
<*1,1,25 {t,a,x) = £ -
<*1,4 ,2 5^) aix) = t —
<*1,1,26 (*, Oj x) £
<*i,4,26(*, 22, x) = £ —
<*1,1,27(*, a, x) = £ -
<*1,4,27(̂ 5 a, x) = £ —
< * l , l ,2 8 (* ,0 ,x) = £ -

<*1,4 ,28(^ a, x) = t ~
<*1,1,29 (*, <2, 3:) = £ —
<*i,4 ,2g(i, 22, 3) = £ -
<*l,l,3o(*, 0 , 3) = £ -

<*l,4,3o(*, 0 , 3) = £ -

<*1,1,31 {t,a,x) = t -
<*1,4,31 (* ,0 ,2 ?) = £ -

<*1,1,32(^5 <2, 2:) = £ —
<*1,4,32 (*, O, X) = £ -

<*1,1,33(*, <2, 3;) = £ —

<*1,4,33(̂ 5 o, 3;) = £ -
<*1,1,34 (*) O) 3;) — £

<*1 ,4 ,34(̂ 3 <2 , 3) — £
<*1,1,35(£, 22, x) = £ —
<*1 ,4 ,35(*, <2, 3) — £

<*l,2,lo(*) a , 3) = £

<*1,2,11 (*, 22, x) = £

<*1,2,12(^1 <2, X) = t

<*1,2,13(̂ , <2, 3) = £

<*1 ,2 ,14^ , 22, x) = £

<*1,2,15(^5 <2, 3) = £

<*1,2,16(̂ 7 <2, 3) = £

<*1,2,17(^7 <2 , 3) = £

<*1,2,18^7 <27 3‘) = £

<*1,2,19(^7 <2, 3) ~ t

<*l,2,2o(*) <2, 3) = £

<*1,2,21 (*? <2)3) = £

<*1,2,22(^7 CL, 3) = £

<*1,2,23 (*> O, 3) = £

<*1,2,24(̂ 7 a, 3) = £

<*1,2,2 5 (̂) <2, 3) = £

<*1,2,26 (^7 <2) 3) = £

<*1,2,27(7̂0,3) = £

<*1,2,28 a, 3) = £

<*1,2,29(̂ 7 <2, 3) = £

<*1,2,3 o (* , <2, 3) = £

<*1,2,31 (*, o , 3) = £

<*1,2,32(^70,3) = £

<*1,2,33(^70,3) = £

<*1,2,34 (*7 <2, 3) = £

<*1,2,35(̂ 7 <2, 3) = £

CONCRETE DSCA DEFINITION OF GRCP A-41

d E quations
<2(1 1 0) = 1, d 1 2 0) = 2, <2(1 3 0) = 3,
<2(1 1 1) = 4, d 1 2 1) = 5, <2(1 3 1) = 36,
<2(1 1 2) = 37, d 1 2 2) = 37, <2(1 3 2) = 37,
<2(1 1 3) = 6, d 1 2 3) = 7, <2(1 3 3) = 8,
<2(1 1 4) = 9, d 1 2 4) = 10, <2(1 3 4) = 39,
d(1 1 5) = 11, d 1 2 5) = 12, <2(1 3 5) = 40,
<2(1 1 6) = 13, d 1 2 6) = 14, <2(1 3 6) = 41,
d(1 1 7) = 42, d 1 2 7) = 42, <2(1 3 7) = 42,
<2(1 1 8) = 43, d 1 2 8) = 43, <2(1 3 8) = 43,
<2(1 1 9) = 21, d 1 2 9) = 15, <2(1 3 9) = 44,
<2(1 1 10) = 45, d 1 2 10) = 16, <2(1 3 10) = 45,
d(1 1 11) = 21, d 1 2 11) = 17, <2(1 3 11) = 46,
<2(1 1 12) = 47, d 1 2 12) = 18, <2(1 3 12) = 47,
<2(1 1 13) = 21, d 1 2 13) = 19, <2(1 3 13) = 48,
<2(1 1 14) = 49, d 1 2 14) = 20, <2(1 3 14) = 49,
<2(1 1 15) = 50, d 1 2 15) = 50, <2(1 3 15) = 50,
<2(1 1 16) = 51, d 1 2 16) = 51, <2(1 3 16) = 51,
<2(1 1 17) = 52, d 1 2 17) = 52, <2(1 3 17) = 52,
<2(1 1 18) = 53, d 1 2 18) = 53, <2(1 3 18) = 53,
<2(1 1 19) = 54, d 1 2 19) = 54, <2(1 3 19) = 54,
<2(1 1 20) = 55, d 1 2 20) = 55, <2(1 3 20) = 55,
<2(1 1 21) = 22, d 1 2 21) = 23, <2(1 3 21) = 56,
<2(1 1 22) = 24, d 1 2 22) = 25, <2(1 3 22) = 57,
<2(1 1 23) = 26, d 1 2 23) = 27, <2(1 3 23) = 58,
<2(1 1 24) = 28, d 1 2 24) = 29, <2(1 3 24) = 59,
<2(1 1 25) = 30, d 1 2 25) = 31, <2(1 3 25) = 60,
<2(1 1 26) = 32, d 1 2 26) = 33, <2(1 3 26) = 61,
<2(1 1 27) = 34, <2 1 2 27) = 35, <2(1 3 27) = 62,
<2(1 1 28) = 63, <2 1 2 28) = 63, <2(1 3 28) = 63,
<2(1 1 29) = 64, d 1 2 29) = 64, <2(1 3 29) = 64,
<2(1 1 30) = 65, d 1 2 30) = 65, <2(1 3 30) = 65,
<2(1 1 31) = 66, d 1 2 31) = 66, <2(1 3 31) = 66,
<2(1 1 32) = 67, d 1 2 32) = 67, <2(1 3 32) = 67,
<2(1 1 33) = 68, <2 1 2 33) = 68, <2(1 3 33) = 68,
<2(1 1 34) = 69, <2 1 2 34) = 69, <2(1 3 34) = 69,
<2(1 1 35) = 70, <2 1 2 35) = 70, <2(1 3 35) = 70

CONCRETE DSCA DEFINITION OF GRCP A-42

IV E quations
VpC{0, a, x) = 1, Vpc(l,CL,x) = 2 Vpc(2, (2, — 3,

—4, l/pc(4,a,x) = 5 V̂ c(5,a,:c) = 6,
Vpc(6 ,a,x) = 7, VpC(7, (2 , x) = 8 Vpc(8 ,a,x) = 9,
Vpc(9,a,x) = 10, Vpc (10, a x) = 11, VpC(l l ,a,x) = 12
Vpc(12, fl, 3j) —13, Vpc(13, <2, X = 14, VpC(14,a,ar) = 15
Vpc(lh,a,x) == 16, Vpc(16, <2, x) = 17, Vpc(17,<2,£) = 18
V̂,c (18, a, x) == 19, Vpc(19, fl, x) = 20, V̂,c(20,a, x) = 21
Vpc(21, <2 , —= 22, Vpc{22,a x) = 23, Vpc(23, a, x) = 24
Vpd24, a, x) = 25, Vpc(25, a x) = 26, V̂ c(26,a,:r) = 27
Vpc{27,a,x) = 28, VpC (28, a, x) 29, Vpc(29,a,x) = 30
Vpc(30, a, x) —= 31, Vpc (31, <2 x) = 32, Vpd 32, a, x) — 33
Vpc(33, (2, 3?) == 34, Vpc (34, a x) = 351, Vpc(35 ,a ,x)= 0,

/ stay u u u u u u u \
u u u u u u u u

Vi(0,a,i) = u u u u u u u u ?
u u u u u u u u

\ u u u u I
f stay u u u u u u u \

u u u u u u u u
Vi(l,a,a:) = u u u u u u u u ?

u u u u u u u u
\ u u u u I
(stay u u u u u u u \

u u u u u u u u
Vi(2,a,x) = u u u u u u u u ?

u u u u u u u u
V u u u u I
/ stay u u u u u u u \

u u u u u u u u
Vi(3,a,ai) = u u u u u u u u ?

u u u u u u u u
\ u u u u
/ stay u u u u u u u \

u u u u u u u u
Vi (4, a, a) = u u u u u u u u 5

u u u u u u u u
\ u u u u J

CONCRETE DSCA DEFINITION OF GRCP A-43

/ stay u u u u u u u
u u u u u u u u

e> II u u u u u u u u
u u u u u u u u

\ u u u u
/ stay u u u u u u u

u u u u u u u u
Vi {Q,a,x) = u u u u u u u u

u u u u u u u u
\ u u u u
/ stay u u u u u u u

u u u u u u u u
V7 (0,a,x) = u u u u u u u u

u u u u u u u u
\ u u u u
/ stay u u u u u u u

u u u u u u u u
Vi(8,a,ar) = u u u u u u u u

u u u u u u u u
\ u u u u
1 stay u u u u u u u

u u u u u u u u
Vi (9, a, x) = u u u u u u u u

u u u u u u u u
\ u u u u
(stay u u u u u u u

u u u u u u u u
Vi (10 ,a,x) = u u u u u u u u

u u u u u u u u

> U
u u u

/ stay u u u u u u u
u u u u u u u u

Vi (11, a, x) = u u u u u u u u
u u u u u u u u

> U
u u u

f stay u u u u u u u
u u u u u u u u

Vi (12, a, x) = u u u u u u u u
u u u u u u u u

> U
u u u

(stay u u u u u u u
u u u u u u u u

Vi (13, a, x) — u u u u u u u u
u u u u u u u u

> U
u u u

(stay u u u u u u u
u u u u u u u u

Vi (14 ,a,x) = u u u u u u u u
u u u u u u u u

\ u u u u

CONCRETE DSCA DEFINITION OF GRCP A-44

Vi(15, a, a:) =

Vi (16, a, 2:) =

Vi (17, a, x) =

Vi (18, a, x) =

Vi(19, a, x) =

Vi(20, a, x) =

Vi(21,a,x) =

Vi(22, a, 2:) =

Vi (23, a, 2:) =

Vi (24, a, x) —

(stay w u u u u u u \
u a u u u u u u
u w u u u u u u
u u u u u u u u

> U
u u u)

/ stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u

) U
u u u J

/ stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u

> U
u u u J

(stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u

> U
u u u j

(stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

> U
u u u)

/ stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u)
/ stay u u u u u u u \

u u u u u u u u
u u u u u u u u
u u u u u u u u

> ^
u u u J

/ stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

> W
u u u)

/ stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

> u
u u u I

/ stay u u u u u u
u \u u u u u u u u

u u u u u u u u
u u u u u u u u

\ « u u u !

CONCRETE DSCA DEFINITION OF GRCP A-45

Vi(25, a, x) =

V\(2Q,a,x) —

V1(27,a,x) =

Vi(28,a,x) =

Vi(29 ,a,x) =

Vi(30 ,a,x) =

Vi(31,a,a:) =

l/i(32, a, x)

Vi (33, a, a;) =

/ stay u u u u u u u N\
u u u u u u u u

= u u u u u u u u
u u u u u u u u

> U
u u u)

/ stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

> “
u u u

/ stay u u u u u u u \
u u u u u u u u

= u u u u u u u u
u u u u u u u u

u u u
/ stay u u u u u u u \

u u u u u u u u
= u u u u u u u u

u u u u u u u u
u u u /

/ stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

> U
u u u I

/ stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

> "
u u u /

/ stay u u u u u u u \
u u u u u u u u

= u u u u u u u u
u u u u u u u u

> w
u u u

/ stay u u u u u u
u \u u u u u u u u

= u u u u u u u u
u u u u u u u u

u u u
/ stay u u u u u u

u \u u u u u u u u
= u u u u u u u u

u u u u u u u u
\ u u u u /

CONCRETE DSCA DEFINITION OF GRCP A-46

ST Equations

Vi (34, a, re) =

Vi (35, a, re) =

(stay u u u u u u u \
u u u u u u u u
u u u u u u u u
u u u u u u u u
u
stay
up
90

u u u
true
true
true

upstay
true
0

false false false false 0
Vo

/
true false false down \

false false false true false
true 0 false false false

0 0 0

Vpc{t + 1, a, re)

0 0 0

mod add Vpc(t a x) 1) ,36) if Vpdt- l,a , x)
mod add Vpdt a x) 1) ,36) if Vpdt - l,a , x)
mod add Vpc{t a x) 1) ,36) if Vpcit - l,a , x)
mod add Vpc(t a x) 1) ,36) if Vpdt - 1, a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1 ,a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a,, x)
mod add Vpc(t a x) 1) ,36) if Vpcit - 1, a,, x)
mod add Vpcit a re) 1) ,36) if Vpcit - l,a , x)
mod add Vpdt a x) 1) ,36) if Vpcit - 1, a, X)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, <2,x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a, x)
mod add Vpcit a re) 1) ,36) if Vpcit - l,a , x)
mod add Vpcit a x) 1) ,36) if Vpcit- 1, a, x)
mod add Vpcit a re) 1) ,36) if Vpcit - 1, a X)

mod add Vpcit a X) 1) ,36) if Vpcit - 1, (2, x)
mod add Vpdt a x) 1) ,36) if Vpdt - 1, a x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a,, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a, x)
mod add Vpdt a x) 1) ,36) if Vpcit - 1,a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1 ,a, x)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a x)
mod add Vpdt a re) 1) ,36) if Vpcit - 1, a x)
mod add Vpdt a re) 1) ,36) if Vpdt - 1 ,a, x)
mod add Vpdt a x) 1) ,36) if Vpcit - 1, a x)
mod add Vpcit a re) 1) ,36) if Vpcit - 1, a x)
mod add Vpcit a re) 1) ,36) if Vpcit - l ,a x)
mod add Vpdt a x) 1) ,36) if Vpcit- 1 ,a re)
mod add Vpcit a x) 1) ,36) if Vpcit - 1, a re)
mod add Vpcit a re) 1) ,36) if Vpcit - 1, a x)
mod add Vpdt a x) 1) ,36) if Vpcit - 1,a re)
mod add Vpcit a x) 1) ,36) if Vpcit - 1 ,a re)
mod add Vpdt a re) 1) ,36) if Vpcit - I,a re)
mod add Vpcit a x) 1) ,36) if Vpcit - 1 ,a re)
mod\ add Vpcit a re) 1) ,36) if Vpcit - l ,a re)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

- 27
■ 28
- 29
- 30
31

- 32
33
34

- 35

/

CONCRETE DSCA DEFINITION OF GRCP A-47

O H N N ^ i n (D N 0 0 0 5 O H l N M ^ i n (f l N 0 0 f f l O H N M T f l OO H N C O ^ i n ! O N M O) H H H H H i - l H H H H N N N C S N N N N N C S C O (O M (O C O M
II || II || || || || || || II

f o' ^ f f f f f f f f o' cf f f f f f cf cf f f f f s ' s ' a a a a e e e 8 a e

CO 00

COt̂ lOOlO<NiÔ
|— I COr-tCOiHOO

C G C

H H

/7> H H H H H
1 f
a - - +J -to to -IO

e e
h

e a e

"ag "a ~e ~d o e g e
o e e e

H H H H H H H
f f a cf cf cf cf
t-f -to- tT -to' to" -to' -to"

g ^ r ^ r g 5 ^ 5
'Is' 'TT 'TT /hs 'b' 'TT IT
cf cf cf cf cf cf cf
■oj -tô .+_r -tô to, to, s~r

o u u u u u u

H H H H H H H

g ^ g r ^ g ^
lOlO /-"■viOt-«H H H «H H
G .r C G -~ O ̂ C3 - C

l 5 l 5
c3 d d w c C

 -- --- V. L̂T-n s „ CT3 CN
g g g g g c
to rt t£> T—I to rH to
G a G e G
O’ O' & O' o< -HU 8 « « 41 Ol

£ g g g g g g
£^ 5̂ 1̂0 0)10 rHLOCOlOlO lO CO C?<N CO C^CQCS CO CO CO CO CO CO

J ? G B C G R R

'h 1 H
cf 1 ««*. SO SO

H H H H
cf cf cf cf

 to -to' ■♦o' -to'

g £ v 5 5 5

C3 o '•*-> 08
<u
S- c >so O so

^ _
lft(M«IN«(Nrt(NMrtMCOrOn rs

G G G G G G
-o -o, ̂ S 3 , _

O 5C O 'C O
H H H H H H

^ cf cf cf cf cf cf
§" vG w sG -if sif xG

cf cf cf cf cf cf cf cf cf cf cf cf cf
•to to -to -to -to to' -to -to to to to -to -to

d cf C3 cf C3 cf C3 cf
-to to to to to tO~ to t-T

H
cf
-to

5
cf
a

C3 H H H H H H
cf cf cf cf cf cf

^g ssg gg
 ̂ O y u u o u

a g g g g l g g

H H H H H
cf cf cf cf cf
so so SO so" S»T

H H H H"H H H H -H V ' b ' V W V H
i f f f f f f f cf f f f f f f a f
t-T +f ■♦■f ■+f '+f tô tô tT tô t f tô tT 'to_ to

'~rC '~rT '~u V~o '~u u o u o o c j u y u t j u o u o u o
^ ̂ - g g g g g g ^ g g g g g g g g g g g g

H
f

t—T
+
SO

5

CONCRETE DSCA DEFINITION OF GRCP A-48

A ppendix F

SCA to A bstract dSCA
Transformation

A-49

SCA TO A B ST R A C T DSCA TRANSFORM ATION A-50

O
co?oeio
h

538--O

o
Co"5353
cf
8--O515©}

50
53*

tq

O
cô3‘'O

53*
tq

O
co
ca
-kT
•«o
•q
tq
O
co

<3S53*

to
■♦o'50’ <S3
q53*
tq

EhCo

O
Co"53
*kTco• <S>

cq
Eh
co
-t-T50•C-3

-tO ^50 Cq

o o
Co Co

cq »* O
50 O Co 5-0 °o 03

so ' -+o
co CO CO

•po 1 <S>^ 1̂ ki53* &< 53*
Cq O tqco. ^
-(o' -kT co
50 50 ^

q q ^
53* &< o cq O coCO. 03

<3
8--O<1505»̂o

O
co"5353

40co<s>
q
cq
COto

50•pi
q
K3*-

SO
50

53
8-►O<15

t t T

50•s-a
53*

cq
Oco
"53

50*<0
to

cq

O
co"53

50‘ «S>
q53*
cq

O
co"53CO.

50*<S>
q
cq
O
co"53
CO.

e53*pi*40<3
"w S.v 50 &

* 3 P

T5 55 -ss

-to
50

q ^to
cq cq
coo^

Co Eg-q T3
T T

-2> ~S
CI5

o
co O

Co

-E? C55 -2 r'"°

o oCo Co

538--O515535
»**«o

535--O515535

o 50 50ĉ CO <cCT» 515 5U 515
5̂ -to -to -toS 53 53 5353 5U <15 155- *»
h O O O

Co
50 j-50

&h ^
^ bCo Ê •o co

5U 515 -to -to 53 53
515 5U U S~

o o

50•10
o53t
cq
Oco"53
X
*40CO
*pi
o53̂
cq
O
coc-

50

cq

50•pi
o
Cr<

o ^
50

Co"e
X

o53<
cq
O r
Co Cq -e

*40
CO

*pi
oCr<

*40
CO•pi

O531
tq

-to
50•<tJ

o_53t

T
50 •<o

oCr<
Cq

O ^o« o
cq co^ C-
O x
Co C*
X ..

M 50
^ 2s

• • ^

cq cq

to o
3 ^
O co. co x"53 XCO.
T

cq OTTt Cr

X
(M
^ X <N
535 ^ 8~ • •

^ 50
c~~ CO.

cq cq

50•c*i
OCr<

"5 cq
o ^ot O
cq co
^ CO.
O x

X ..
M 50
£ ^
. .co. ca

cq cq

^ ^ cq
^ o ?

T o T
x Co -to

i c " e 50

3 •? o
^ T
cq ^ ^
^ O O
O 53< coco cq ^
CO. ^
x o x

N Co «
fe; 3 ^
. . 04

S,Js ■• ^
^ 50 ^
CO. <<3 <<3
cq cq cq

r ’O ^
Eg O ^
<§.$3 0
X t X*40 I CO , . •'40q 50, -1 50 O
Cq 3 ^

E-t x Co O x ̂aO <-© to
^ v Si,
■° * 0
X t o CO.

t§ to x •<̂ cr* e
^ §
« * ! '■ §^ I

50

Êco
cq

E~(
co
cq

2
o

• pH

Idu
ss*y05
DhCO

5-1o
a

acd
co w
t «
0 0 co a

O cn
X5 05
s §>1 cd

co ^

M)<D
ffl

re
wi

re

: T
er

m
x

N
 x

/3
0p

Li
st

x

7O
pL

is
t

x
SO

pL
is

t
—

> T
er

m

G
et

Na
m

e{
SC

A,

SCA TO A B ST R A C T DSCA TRANSFORM ATION A-51

<3a-O
cd

0 5

Oco

a ,
O

O co
co

CO
cd- -to
C3.. .. a, o
o

£q
co"'

T T
<N CN

co *-\S s co
co ^

O
E~('’cq” Co ^

CD cu -to -too o
<D <u

O O

—7 ^
& °

Co. to
<D cd-to -too o
CD CD
a a
o o

o
CO
'O
<3co-toecu
a

O

oco

a
o
coeo
a
h

ocoi
cdCJa
3Oco
O

^ d '
to O1 Co

CD i
CJ
a 3
O
co

H
C3

HO
<U <0

o o

O S co
CD
CJa3
O
co
coCri
Kl

w ^
co O Co

e-

'ts

cq

"C3 ^q H

co

cq

Ocoi
CDCJ
f~
3
O
co

co
Ĉ
CD-to
C3
CD
a

o

CD
CJa
3
O
co
coCjt

1 3 .
HO HO
<U <U

O O

cocq
cq

Ocoi
CD
CJ
a
3o
co

cocq
CD-to
C3
CDa

O

O co Co 1I
CD W
CJ a
a 3
§ §

2 §

OCo
CD
CJ
a
3

O eg
CO

CD
CJ
a
3
O

CO

co
°o
05

OCoI
CD
CJa
3
O
co
co

°o
CD-to
C3
CDa

o

*-1CJi
cq
HO0)
O

ocoi
CD
CJa
3
O

CO
co

&H

CO
<D-to
C3
CDa

o

cq
HO
<U

O

ocoi
CD
CJa
3
O

CO
coa,

OCq-to
CD

o
cocq.
CD-to
C3
CDa

o

CO

CO
oq

Ocoi
CD
CJa
3
O

CO
co
fen

CO
CD-to
<3
CDa

O

cescr
H

I
Cr

ea
te

^s
 {

G
et

'y
O

ps
(S

ou
rc

eS
C

A)
),

\
Cr

ea
te

8s
 (

G
et

80
ps

(S
ou

rc
e.

SC
A)

),

SCA TO A B ST R A C T DSCA TRANSFORM ATION A-52

SCA TO A B ST R A C T DSCA TRANSFORM ATION A-53

e

Cri
e

'TSO
H
<3 - O u - u

g, <xx a , o a.

T—1
1 o

"e g
a 1

i s <0a a Ql
C3 e H)

oq
^ - — ^ e o a

su
•co

aQJ

«0
cq

SCA TO ABSTRACT DSCA TRANSFORMATION

CD 5̂. c-O

<0
Hj W -55 ̂ «je <£*. ^ «*>

=0 Cr*<u 05 «3 coH co

A-54

SCA TO ABSTRACT DSCA TRANSFORMATION A-55

5-

- h/■—' -t-a CM CD

"cT ^c CD ■̂3e- . ^ ■M -K>
CD cd

6-
CD

-rb
rw r* ^ 05 ^Ds O <<2

CDJ-• <s> _ „
9 "3cu aa S

eocj

<dso
<3CD
o

§•

r “1 >1 9)
CD C *" < 0

CO CO CO a, „ <5 coo ^ °o & - <45 2L 50O -<s> ^ t-o O -«o 00. <”" c-O

hCO
CQ

CD
5~* cS>

CDa

CD
t -•c-a

CDa

CD
J -

CD
J -

SCA TO ABSTRACT DSCA TRANSFORMATION

eocj
eoCJ

<0 -50 ̂ O COCO o

K3h o
O

s-<u
HO<u
0$

COca -«r •«>» o

HO

E~
hHO
0$

CO<£L -eT

CO

o o
-«~4

Co CO

•+J -+iw <J
o o
&- s»H) <J)

hi hi■+̂> -w
U CJ

cg e$
i - l IN"a "3e eo o

CJ CJ

+

X

x
hi
£

£

X

X
h
+

aO
&H

h hi
T t

i-h+ i-H+
L̂.,

£
X X

X X
hi h
o Oo ■<■$

*■£ . . r (<T

a .Oo

^ ^p co rj Co 1 1 CJ Co U t. I
^ Co P

■co— *X e•c*I
s3 C

6 *i <=5;
6 J3 wI O

-S£

CO CO CO ■os cni -̂- <-©

T3G
H

A-56

-c40

A ppendix G

A bstract dSCA to A bstract dSCA
Transformation D etails

G .l Process

This appendix describes the process of transforming an abstract dSCA with defining shape V =

(n i,m i) to an abstract dSCA with an defining shape of V = (n2 ,m 2). The transformations required

for the following equation fists within a supplied abstract SCA specification are covered:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Equations; and

4. State Transition Equations.

After discussing the necessary transformations they are used to transform the abstract dSCA

produced in the last chapter to an abstract dSCA with defining shape of V = (1 ,k).

G.1.1 Prerequisites

• The source network, Afi has Ari > 1 modules and M axni > 0 component specifications in its

modules definitions;

A-57

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-58

• The object network, N2 has k2 > 1 modules and M axn2 > 0 component specifications in its

modules definitions;

• The defining size of N2 must be equal to or greater than the defining size of Ah, i.e. A (N 2) >

A (i);

• There exists the total mapping, E given as:

^ x NpCl ► x NpC2

that maps modules and execution orders of Ni to modules and execution orders of N2; and

• There exists the inverse mapping E_1, given as:

E _ 1 : Mfc2 x NpC2 Nkl x NpCl

(Note that this mapping may not be total, since some functional components of N2 may be

the undefined operation used to ensure synchronicity of the network).

G.1.2 M apping Function

The provision of a mapping function is a fundamental prerequisite before this transformation can

occur. Its purpose is to provide a total mapping between when a particular function executed on a

particular module in the source network and what module and when it will execute 011 the target

network. It is a simple list of equations containing two pairs:

(J'srcipc.valsrc) = (itgt,pc-valtgt)

and must be defined for all values isrc — 1 , . . . ,k of the fc-module source abstract dSCA and

pcjualsrc = 0 , . . . , Max-jv — 1- The mapping is denoted as E, and has the (partial) inverse E-1 .

There is no need to map the program counter module.

G.1.3 W iring Functions

Unlike the previous transformation, wiring functions will alter values radically to provide the dy

namic retiming and structure necessary to support a re-shaped abstract dSCA.

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-59

7-w iring O perations

Consider the source abstract dSCA 7 -wiring function:

'Ypc-val i (*1 > J2) ^2

the corresponding target abstract dSCA 7 -wiring function will be:

'Ypc-vah (̂ 2 i J2) — 2̂

where j \ = J2 , and E (i\,pc-val\) = (i2 .pc.val2)

The informal process of generating target abstract dSCA 7 -wiring functions is to walk the

structure of the target architecture creating wiring functions for all modules at all values of the

program counter for the number of inputs to each module.

• For each module m* where i G Nk2 and i > 0:

For each pcjval where pc.val G {0, . . . , M a x^2 — 1}:

* For the oth argument of each module create:

7pc-val&Q) = M

* For each argument where j G { 1, 712(2)} create a new 7 - wiring function

Value fro m source if E 1{i,j) I
U otherwise

with the intended meaning that the undefined connection is given if the inverse

mapping is not defined, otherwise the appropriate value from the source network

is used.

• For module 0 create M a x^2 7 -wiring functions wiring m 0 back to itself.

Formally, the Create'ys operation:

Creators : dSCAAlgebra x N 2 x M apEqList —>■ 7 dSC AEqList

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-60

is introduced and is defined as:

Createjs

(ScmrceSCA, \
numjmod,
M clxn,

f nm, \
Get'yEqs(sourceSCA),

B'ys

/
M a x jy ,
GetMaxA(sourceSCA),
—-1 /

It takes as arguments the source abstract SCA, the number of modules in the target abstract SCA

and then value of Maxn for that network as well as the inverse mapping function equation fist. The

maximum number of arguments that all modules take in the source is extracted from the source

specification - since this cannot change through transformation.

The B'ys operation, given as:

B'ys : N x 7 dSCAEqList2 x N x N x MapEqList —> 7 dSCAEqList

is defined recursively over the number of modules in the target SCA in two cases, the first representing

the case where the module number is 0, and the second case where it is not. When the module under

consideration is the 0t/l module, B'ys is defined as the recursive call to itself:

B'ys

(modjual, \
old'ys,
newys,
M axN ,
Max a ,

V E-‘

(mod.val — 1,
old'ys,

((MaxN — 1, \
old'ys,

= B'ys

\

Bjpc

\
M a x x ,
Max a,

modjual,
Max a ,
—- 1

, newys

The recursive call contains an argument where a fist is appended to the newly generated 7 -wiring

functions for a module. This list is created by calling the B'ypc operation:

B'ypc : N x 7 sSC AEqList2 x N x N x MapEqList —> 7 dSC AEqList

which is itself defined recursively over the values that the program counter may take in two cases:

firstly where the program counter is equal to 0 and secondly where the program counter is greater

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-61

than zero. In the second case B'ypc is defined as:

B'ypc

(pcjual, \
old'ys,
n e w y s ,
modjual,
Max a ,

\ S ' 1)

(pcjual — 1,
old'ys,

((Max a - 1, \
old'ys,

= i?7pc B'yarg

V
m od.val,
Max a,

V s ' 1

modjual,
pcjual,

V s - 1

new'ys

The operation recurses on itself building a fist of new 7 -wiring functions for a module at a

particular value of the program counter for all inputs to a module by calling the B'yarg operation:

B'yarg : N x 7 dSC AEqList2 x N 2 x M apEqList —> jd S C AEqList

B'yarg is itself also defined recursively, this time over the argument number under consideration. It

has two cases, the first where the argument index is zero, and the second where it is not. For the

second case it is defined as:

B'yarg

(arg jnum , \
old'ys,
new^fs,
modjual,
pcjual,

\ S"1

B'yarg

(argjnum — 1,
old'ys,

((modjual, \
argjnum,

B 7 pcjual,
old'ys,

V e - 1
modjual,
pcjual,

VH-1

\

V

neqs

w\iere the B ’y operation is used to construct the 7 -wiring function for this particular argument index

at a particular program counter for a particular module. It is given as:

B'y : N 3 x 7 dSC AEqList x M apEqList —> 7 Equation

To construct the 7 -wiring for a function it is first identified whether there exists a corresponding

element in the source abstract dSCA. This is achieved by examining the inverse mapping function.

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-62

If the inverse mapping is undefined for the module and program counter values under consideration

then the wiring in both the source and target abstract SCAs are unimportant. In such a case, the

output of the B'y operation is defined to be the creation of a 7 -wiring function to the unconnected

value U. Therefore, where E r1 (modjual, pcjual) | we define:

B'y

f modjual, \
argjual,
pcjual,
old'ys,

V E-i

Build'y
(r)pc.valt ^

modjual,
argjual,

\ u /

Similarly, it may be the case that the inverse mapping function is defined, but in the source

abstract dSCA there is 110 7 -wiring function defined for this combination of module number, program

counter value and argument number. It can be easily identified what the corresponding wiring

function was in the source abstract dSCA, since it will be:

‘lfsnd(3~1 (mod-val,Pc.vai))(fst(E 1 (modjual,pcjval)),argjual)

Where this 7 -wiring function does not exist then the result of B'y is:

B'y

(modjual, \
argjual,
pcjual,
old'ys,

\ S_1 /

= Build'y
('ypc-vah ^

modjual,
argjual,
U /

The final case is where the inverse mapping is defined and a corresponding /5-wiring function

exists in the source network. For this situation the 7 -wiring operation in the target dSCA is con

structed as:

7 Pc-vai('modjual, a rg ju a l) = R e tT e r m

(
GetEl

\

(old'ys, \
fst(E ~ 1 (modjual, pcjual)) ,
argjual,

\ snd(E~1(modjual,pcjua,l)) J

\

the B j operation can therefore be defined, when s 1 (modjual, pc-Val) [as:

B'y

(modjual, \
argjual,
pcjual,
old'ys,

V 3->

= Build'y

 ̂'Jpc-vali
modjual,
argjual,

RetT erm GetEl

(old'ys, \iold,
argjual,

\ PCold) / /

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-63

where:
i0id = f st(RetTerm (G etEl(E~l , modjual, pcjual)), 2)
pcoid — snd(RetTerm (G etEl(S~1, modjual, pcjual)), 2)

The second case of the Byarg operation, where the argument index is zero, simply generates a

7 -wiring function for the 0th argument. This wiring, by definition, will be to the program counter

module, and is appended to the fist of functions generated for that module. The function returns

this new list, and is defined as:

o, \
o l d ' / S , ((- /p c jo a l \ \

newys,Byarg modjual,
pcjual,

v s - i

Build'y

\

('Jpc.val ^
modjual,
0,

\ M

, newys

The second case of the B'ypc operation, where the program counter is 0, simply generates the

7 -wiring functions for module m n at pcjual = 0 , and appends them to the list of already generated

7 -wiring functions for module m n at all other values of the program counter. It is defined as:

/ 0 , \ / / M ax a — 1 , \ \

B'ypc

oldys,
newys,
modjual,
M a x a ,
- -1

Byarg

V

oldys,
0,
modjual,
0,

V S - 1

, newys

Finally, the second case definition of B ys operation is defined for the case of module zero as:

B ys

(0 ,
oldys,
newys,
M a x w ,
M a x a,

V ^ 1

\
/

Buildy

\

(7o, \
0,
0,

\ M

, Buildy

(yMaxw — li ^
0 ,
0 ,

\ M

, newys

/

/^-wiring O perations

Consider the source abstract dSCA /5-wiring function:

fipc-valiil'lijl') = %1
the corresponding target abstract dSCA /5-wiring function will be:

Ppc.vah (̂ *2, 52) — 2̂

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-64

where j i = j'2 and E (ii,pcjuali) = (i2,pc.val2) The informal process of generating target abstract

dSCA /5-wiring functions is to walk the structure of the target architecture creating wiring functions

for all modules at all values of the program counter for the number of inputs to each module:

• For each module m* where i E Nfc2:

— For each pcjual E {0, . . . , M a x^2 — 1}:

* For the oth argument of each module create:

Ppc-valih 0) = M

* For each argument where j E {1,. . . , 712(2)} create a new /5-wiring function

fipvjval (b 5')
Value from source if E 1(i,j) |
U) otherwise

with the intended meaning that the undefined index is given if the inverse mapping

is not defined, otherwise the appropriate value from the source network is used.

• For module 0 create M axn /5-wiring functions to wire mo back to itself.

Formally, the Createfds operation is introduced:

Createfds : SCAAlgebra x N 2 x MapEqList —► /5 dSC AEqList

and it is defined as:

Createj3s

(SourceSCA, \
K
M a x t f ,

(K \
GetfiEqs(sourceSCA),

= Bfis

/
M ax tv ,
GetMaxA(sourceSCA),

\ = - ‘ /
It takes as arguments the source abstract SCA, the number of modules in the target abstract SCA

and then value of Maxm for that network as well as the inverse mapping function equation fist. The

maximum number of arguments that any module can take, Max a , is calculated by the call to the

GetMaxA function - the impact of this is that more wiring functions may be generated than are

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-65

necessary but as these are wired to the unconnected module they will not partake in the functionality

of the resultant target abstract dSCA.

The purpose of the Createfds operation is to extract the relevant details out of the source

abstract SCA and call the Bfds operation. The values that are extracted are the number of modules

in the source abstract SCA, the source /5-wiring functions and Max a -

The Bps operation:

Bps : N x pdSCAEqList2 x N 2 x MapEqList —»■ pdSCAEqList

is defined recursively over the number of modules in the target SCA in two cases, the first represents

the case when the module number is 0 and the second case is where the module number is greater

than 0. In the second case the BPs is defined with the recursive call to itself:

BPs

(modjnum , \
oldPs,
newPs,
M a x w ,
M a x a ,
H_1

(modjnum — 1,
oldPs,

((M o x n — 1} \
oldPs,

= BPs

\

BPpc

\
M a x N ,
M a x a,

VE-1

modjnum,
M a x a ,

, n e w P s

The recursive call contains an argument where a list is appended to the newly generated /5-wiring

functions for a module. This list is created by calling the BPpc operation:

BPpc : N x PdSC AEqList2 x N 2 x MapEqList —>• pdSCAEqList

which is defined recursively over the values that the program counter may take in two cases. The

first case is where the program counter is 0 and the second is where the program counter is greater

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-66

than zero. In the second case BPpc is defined as:

Bppc

(pcjual, \
oldPs,
newPs,
modjnum,
M a x a ,

\ S_1)

(pcjual — 1 ,
oldPs,

((MaxA — 1, \

= Bppc BParg

V
modjnum,
M a x a ,

\ s - ‘

oldPs,
o.
modjnum,
pcjual,

V E->

, newPs

This operation recurses on itself building a list of new /5-wiring functions for a module at a

particular value of the program counter for all inputs to a module by calling the BParg operation.

The Bparg operation is given as:

BParg : N x PdSC AE qL ist2 x N 2 x M apEqList —► PdSC AEqList

and is also defined recursively, this time over the argument number under consideration in two cases

- where the argument index is zero, and where it is not. For the second case it is defined as:

\

\

BParg

(argjual, \
oldps,
newPs,
modjnum,
pcjual,

BParg

(argjnum — 1 ,
oldps,

((modjnum, \
argval,

BP pcjual,
oldps,

\ V S - 1

, n e w P s

modjnum,
pcjual,

V - 1

The BP operation is used to construct the /5-wiring function for this particular argument index at

a particular program counter for a particular module. It is given as:

B p : TV3 x PdSC AEqList x M apEqList —> PdSCAEquation

To construct the /5-wiring function it is first identified whether there exists a corresponding element

in the source abstract dSCA. This is achieved by considering the inverse mapping function, if it is

undefined for the values under consideration then its wiring in both the source and target abstract

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-67

SCAs are unimportant. In such a case the output of the BP operation is defined to be the creation

of a wiring function to the unconnected value cj , where {modjual, pcjual) | , as:

Bp

(modjnum, \
argjual,
pcjual,
oldPs,

V S - 1

= Buildp

/

^ Ppcjvalt ̂
modjnum,
argjual,
U)

Where the inverse mapping is defined, the corresponding wiring function in the source abstract

dSCA can be identified as:

Psnd.(E~1-(mod-num,pc-vai))(f 1 {modjnum, pcjuaVf), argjual}

The /5-wiring operation in the target dSCA is therefore constructed as:

(
Ppc.vaiimodjnum, argjual) = RetTerm GetEl

\

(oldPs, \ \
f s t (H- 1 {modjnum, pcjual)),
argjual,

y snd(pL~l {modjnum,pcjual)) J /
the BP operation, where z, 1{modjual,pcjual) j can therefore be defined as:

BP

(modjnum, \
argjual,
pcjual,
oldPs,

V S - 1

= Buildp

/

^ Ppcjvali
modjnum,
argjual,

RetT erm

(

GetEl

(oldPs, \ \
ioldi
argjual

\ PCold J J J
,2

where:
ioid = fst{RetTerm{GetEl{'E 1, modjnum, pcjual)), 2)
PCold = snd{RetTerm{GetEl{E~l , modjnum, pcjual)), 2)

The second case of the BParg operation, where the argument index is zero, simply generates a

/5-wiring function for the 0th argument, which will be to the program counter, and appends it to the

list of functions generated for that module and returns the new fist. It is defined as:

\

BParg

(o,
oldps,
newPs,
modjual,
pcjual,

\ 3 - ‘

(

Buildp

\

(Ppcjvah ̂
modjnum
0,

\ PC

\

, newps

/ /

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-68

The second case of the Bftpc operation, where the program counter is 0, simply generates the

/5-wiring functions for module m n at pc.val = 0 and appends them to the list of already generated

/5-wiring functions for module m n at all other values of the program counter. It is defined as:

\ f (MaxA — 1, \ \
oldfis,

B(dpc

I 0,
old/3s,
new{ds,
modjual,
Max a,

V S - 1 /

Bfiarg

\

modjual,
0,

VE-1

,n/5s

J
Finally, the second definition of B(3s operation is defined for the case of module zero, or the

program counter. In this case there is only one ft-wiring function for each value of the program

counter:

B P s

(o, A
oldPs,
newPs,
M a x x ,
Max a ,

VE-1

Buildp

\

(A), \
o,
o,

\ p c)

(PMaxN — li ̂
0,
0,

\ Pc

\

, newPs

/ /
/

G .1.4 Delay Functions

The delay functions for the source and target abstract dSCA are of the same format, however the

derivation of the delay is more complicated than the simple generation of the wiring functions, and

thus a more detailed explanation of the derivation is given.

In both networks, it is the intention of the delay function to indicate the time delay between

now and the time the result was calculated. In the source abstract dSCA this is given by the defined

delay function. For the object abstract dSCA this value needs to be derived from the data available.

Informally, target abstract dSCA functions are produced as follows:

• For each module nii where i € Nk2 ■

— For each pcjual G (0 , . . . , M a x^2 — 1}:

* We define, for the 0th argument, the unit delay:

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-69

* For each argument where j E {1, . . . , 712(2)} create a new S-wiring function

. t-new-value if
Vpc-val (^) J) — \ \ Y p c - v a l J) M)

t — 1 otherwise

• For module 0 create M a x^ delay operations of unit length delay to represent the wiring of

mo back to itself.

Formally, the new delay functions are created by calling the CreateSs operation, given as:

Createds : dSCAAlgebra x N 2 x M apList2 —> SdSCAEqList

where the first argument is the specification defining the source abstract dSCA, the second and third

argument describe the defining shape of the target abstract dSCA, and the final 2 arguments the

mapping and its inverse. CreateSs is defined as:

CreateSs

(Source SCA, \

Maxjy, = BSs

(k ,
GetSEqs(SourceSCA) ,
GetMaxA(SourceSCA) [],
GetjEqs(SourceSCA),

(SourceSCA, ^
k ,
M a x N ,

GetM ax n (SourceSC A) ,
M a x ^ ,

\

Createfds

V

The BSs operation is defined recursively over the number of modules in the target abstract

dSCA. There are two cases, the first where the module index under consideration is greater than 0

and the second case where the index is 0. BSs is given as:

BSs : N x SdSC AEqList2 x N x jdSC A E qL istx
fidSC AEqList x AT2 x M apEqList2 —> SdSC AEqList

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-70

In the first case, BSs is defined as:

(mod-val — 1,
oldSs,

(

BSs

(mod-val, \
oldSs,
newSs,
Max a ,
old'ys,
newfis,
Max^c,
M a x 1̂ ,

=

BSpc

(M a x w — 1, N\
oldSs,
[] ,
modjual,
M a x a,
old'ys,
new(3s,
M a x sx c ,

M ax^ ,
C -1

, newSs

\ V E
M a x a ,

\ H / old'ys,
newfis,
Max%c,
M a x 1̂ ,
'—1 9

\ 2 /

The internal call to BSpc creates a list of delay functions for a particular value of the program

counter for module mod-val. BSpc is given as:

BSpc : AT- x SdSC AEqList2 x N 2 x 7 dSCAEqListx
fidSCAEqList x N 2 x MapEqList2 —> SEqList

It is defined recursively over values of the program counter in two cases: where the program counter

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-71

is not zero and where it is. For the first case BSpc is define as:

(pcjual — 1,
oldSs,

((Max a — 1 , \
oldSs,

BSpc

(pc.val,
oldSs,
newSs,
modjual,
Max a ,
old'ys,
newfis,
Maxŝ c,
M ax*!? ,

= BSpc

BSarg

modjual,
pcjual,
old'ys,
new (3 s,
Maxs£ c,
M a x f f i ,
—- l

, newSs

\ V s
modjual,

” _1 Max a ,
\ s) old'ys,

new (3 s,
Maxsfic,
M a x 1̂ ,
—-l

\ s y
The call to BSarg enables the construction of a list of delay functions for the arguments of

module mn at program counter value pc, it is given as:

BSarg : N x SdSC AEqList2 x N 2 x 7 dSCAEqListx
(3dSCAEqList x N 2 x MapEqList2 —> SEqList

It is defined recursively over the number of arguments for the module in two cases - where the

argument index is not 0, and where it is 0. For the case where the argument index is not 0 then

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-72

BSarg is defined as:

BSarg

(argjnum, \
oldSs,
newSs,
modjual,
pcjual,
old'ys,
new/3s,
Max%c,
M a x f j* ,
~-i1 J

V s

(argjnum — 1,
oldSs,

((modjual, \
argjnum,
pcjual,
oldSs,
old'ys,
newj3s,
MaxsN,

= BSarg

BS

\

Max°N,

V =>
modjual,
pcjual,
old'ys,
newfis,
Maxsfic,
M a x ^ 1,

?
\ s.

, newSs

J
Finally, the BS operation, which is responsible for creating the new delay function for the j th

argument of module mn at program counter pc, is called and it is given as:

BS : N 3 x SdSC AEqList x 7 dSC AEqList x fidSCAEqList x
N 2 x MapEqList2 —> SdSCAEquation

To provide a definition of BS the new value of the delay needs to be generated from the existing

knowledge of the two abstract SC As. To understand what the delay should be, an understanding

of the particular delay required is needed. If the wiring is to a source, or is unconnected, then the

unit delay is generated. This case is identified by considering the target abstract dSCA /5-wiring

functions:
f modjual, \

argjual,
pcjual,
oldSs
old'ys,
newfis,BS

Maxs£ c,
M a x f f ,

= BuildS

(modjual, \
argjual,
pcjual,
t - 1 /

i f condi

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-73

where:

condi — RetTerm , 2

((/ oldjs , \ \ \

3*® PC-T '’ ,mod-val,
V V \ arg-val) j)

In the situation where this condition is not true, i.e. the wiring under consideration is to another

module, then the value of the new delay function needs to be calculated. To calculate the new value,

the following process is followed:

1 . Find the module and program counter value in the source abstract dSCA that relates to the

current module and program counter value in the target abstract dSCA, using the inverse

mapping function;

2. Identify the module in the source abstract dSCA that produces the value we are interested

in from the /?-wiring function;

3. Identify the program counter value in the source abstract dSCA that the value we are inter

ested in is calculated from the delay functions;

4 . Find the module and program counter in the target dSCA that produces the value we are

interested in, using the mapping function; and

5. Calculate the delay between the current value of the program counter and the program counter

value from (4).

The module and program counter in the source abstract dSCA is given directly by the inverse

mapping function:

'E~1(modjval2,pcjval2) = (modjval\,pcjval\)

The position of arguments in the functional specification cannot change in the transformation. Thus

if arg.val is the argument number under consideration in the target abstract dSCA, then it will also

be in the source abstract dSCA. This fact and the /3-wiring function in the source abstract dSCA

are used to determine the module that produces the value for that argument, in the source SCA:

mod-val™ 1* = fdpc_vaiv{rnodA}ali,argjual)

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-74

Using the delay function from the source dSCA, the value of the program counter that the result

was calculated at can be determined. It will be the current source program counter value minus the

delay value for this argument modulus the value of M axat in the source abstract dSCA:

pc-val[es = (pc.vali - (t - ^ od_vail)aT.p_vaj5pc^ ail(t, a,x))) mod M axxN

It is now possible to determine the value of the program counter in the target abstract dSCA by

applying the mapping function to the values pc_val\es just determined, and mod_val\ es, and taking

the second element of the returned tuple:

pcjual2 CS — snd(E(modjvalies ,pc-valies))

The value of the delay can be worked out from the difference between the program counter in the

target abstract dSCA now, and the value of pcjval£es:

(pcjual — pcjval™3) mod M ax2N

B5 is therefore defined as:
/ modjval, \

argjual,
pcjual,
oldSs
old'ys,
oldfis,
M axs£ c,
M a x 1̂ ,
—-1

\ S
and:

with:

and:

B6 — BuildS

(modjual, \
argjual,
pcjual,

{ t — ((pcjual — pc-valtgt) mod M ax t̂ t) J

I RetTerm I 1pc_valrtgl = snd I R etT erm I Get El I modjval^ , ,2
iresLsrc

modjualrsersc = f s t

\ \ pcjual

(I oldfis, \ \ \

RetTerm

(

GetEl

V

pcjval src,
modjualsrc,

\ argjual y

,2

/

pcjvalrSrSc = pcjvals t — GetEl

(oldSs, \ \
modjval src,
argjual,

\ pcjualsrc j J
mod M axŝ c

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-75

where modjvalsrc and pc_valsrc are:

pcjval
■=■—1

src — snd I RetTerm I GetEl I modjval,
\ \ \ pcjval

—- I

mod-valsrc = f s t I RetTerm I GetEl I modjval, J ,2
\ \ \ pcjval J

The second case of BSarg, where argjaum = 0, is a case of returning the list of delay functions

already generated with the delay for the channel to the program counter module added:

BSarg

(o ,
oldSs,
newSs,
mn,
pc,
—- l' J

oldjs,
oldfis,
Max% c ,

\

/

BuildS

\

(mn, \
0,
pc,
t ~ i /

\

(newSs

/

\ M a x ^ J

The second case of B 5pc, where pcjval — 0, is where the delay functions for module mn at

program counter 0 are appended to the already constructed delay functions:

B 5pc

0 , \
oldSs,
newSs,
modjval,
Max a ,
^ ?
1—1J
old'ys,
Maxs£ c,

\ M a x ^ J

BSarg

(Max a — 1, \
oldSs,
D,
modjval,
0,
—- I

oldjs,
Max%c,
Max'S*

\

\ neqs

Finally, the second case of BSs manages the situation where all the modules have been addressed,

except for module 0. In this circumstance, the delay functions already constructed are returned, in

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-76

addition to a delay function for the program counter, m0, as follows:

oldSs,
newSs,
Maxjv (/ 0 , \

Build5BSs BuildS , newSs

/
oldjs,
Max%

G.1.5 Initial State Equations

Consider the target abstract dSCA module m*, its Initial State equations, will be of the form:

V1(0, a, x) = xii0
Vi(0,a,x) = xifi

K(0, a, X) — X i , M a x j v — l

where each value Xi,pc_vai, where pc-val = 0,1, . . . , M clxn — 1, will either be the undefined

element, or will come from some particular module and value of the source abstract dSCA program

counter. Values of the source program counter and module are given directly from the mapping

function, S.

Informally, the set of Initial State equations is created as follows:

• For each module nu where i € Nk2 and i > 0:

— For each pcjval G {0, . . . , M a x^2 — 1} create a new Initial State equation:

newjvalue if
otherwise

• For mo, the program counter:

For each pcjual € {0, . . . , M a x — 1 } create a new Initial State equation:

Vq{pcjual, a, x) = (pc.val + 1) mod M a xat2

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-77

Formally, the CreateIVs operation is introduced as:

CreatelVs : dSCAAlgebra x N 2 x MapEqList —>• dSCAISVEqList

where the arguments are such that it takes a source abstract dSCA specification and values giving

the defining shape of the target abstract dSCA to produce the Initial State equations for the target

dSCA. We define the operation as:

\

CreateIVs

(SourceSCA, \
k,
Maxjv,

V E - i

BIVs

(k ,
M axat,
GetEqIV (Source.SC A),

/ —- l J
The purpose of the operation, B IV s , called by CreateIVs, is to build the new Initial State

equations for the network. It is given as:

BIVs : N 2 x dSCAI SV EqList2 x MapEqList —> dSC AI SV EqList

and is defined recursively over the number of modules in the target abstract dSCA. There are two

cases: where the module number under consideration is greater than 0 , and where the module

number is zero. In the first case BIV s is defined to recurse on itself, decrementing the module

number and adding the result of calling the BIV operation to the list of new Initial State equations:

(num.mod— 1, \
M axat,

\
num.mod,

BIVpc
BIVs

(num.mod, \
Maxpj,
oeqs,
neqs,

v ^ 1

= BIVs

oeqs,
((Maxw — 1, \

num.mod,
oeqs, ,neqs

J
/

This operation makes a call to the BIVpc operation to generate the fist of Initial State equations

for all values of the program counter for module nurrumod. Where BIVpc is given by:

BIVpc : N 2 x dSCAISVEqList2 x MapEqList - > dSCAISVEqList

where the first argument is the program counter value, the second argument the module number

under consideration, the third argument the list of Initial State equations from the source abstract

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-78

dSCA, the fourth argument is the list of new Initial State equations that are being recursively created

and the final argument is the inverse mapping function.

B IV pc is defined recursively over program counter values with two cases, the first representing

the case where the program counter is greater than zero and the second case is where the program

counter is zero. The first case is defined for two situations, where the inverse mapping is defined (in

which case a new equation is created from values in the source abstract dSCA) and where it is not

(in which case an equation is created that returns the undefined value u):

I pc - I , \

B IV pc

(pc,
i,
oeqs,
neqs,

V S - 1

= <

BIV pc

BIV pc

newjval,

B uildIV pc

y neqs

if a 1(i,pc) [

if E 1(i,pc) T

where:

newjval = B uild IV I pc,
\ RetTerm (GetEl (oeqs,RetTerm(GetEl(E~1,i,p c),2)) ,2)

The second case of BIVpc, where the program counter is zero is the simple case of creating the

equation for that value of the program counter and appending it to the list of already generated

Initial State equations:

/ 0 , \

BIVpc
h
oeqs,
neqs,

V S - 1

B uild IV [R e tT e rm (GetEl(oeqs, E_1 (i, 0)),

/ \ neqs

The second case of B IV s returns the list of already generated Initial State equations, with the

list of functions for the program counter appended to the front of them:

(0, \
B IV s

M ax tv ,
oeqs,
neqs,

V S - 1

= (B pcIV s(M axN , [], M axx),neqs)

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-79

BpcIVs is g iv e n as:

BpcIVs : N x dSCAISV EqList x N -> dSC AI SV EqList

a n d is r e c u r s iv e ly d e f in e d u s in g tw o c a s e s o v e r t h e p r o g r a m c o u n te r v a lu e s as :

0,
BpcIVs j neqs,

Maxu

pcjval,
BpcIVs (neqs,

M clxn

((0>= I BuildIV I 0 ,] ,eqs

(pcjval — 1,
/ / 0,

pcjval,= BpcIVs BuildIV

\ \
mod pcjual + 1,

Maxpi

\ \
eqs

\ M clxn

G .1.6 State Transition Equations

/ /

Viit + 1, a , x)

Consider the target abstract dSCA module its State Transition equations, will be of the form:

/*, 0(. . .) if pc = 0

fi,MaxN- 1 (- ■ •) if pc = M axN - 1

where each functional specification component fi.pc_vai, f°r values of pcjval = 0 , 1 , . . . , M a x^ — l,

will either be the undefined element, or will be the component specification extracted from some

particular module and value of the source abstract dSCA program counter in the source abstract

dSCA. In a similar manner to creating the Initial State equations, values of the program counter and

module number in the source abstract dSCA for values in the target abstract dSCA are provided by

the inverse mapping function, H-1 .

• For each module where i € Nfc2 and i > 0 :

- For each pc.val G { 0 , . . . , M ax^ 2 — 1} in abstract dSCA extract and rewire the relevant

functional specifications from the source abstract dSCA, if one exists, otherwise use the

undefined constant u.

— Create a new State Transition equation from the previous result.

F o r m o , t h e p r o g r a m c o u n te r :

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-80

— Create the program counter State Transition equation:

mod(add(VpC(t , a, x), 1), M axa t) i f Vpc(t — 1 , a, x) = 0

Fpc(f T I; a, x) <

mod(add(VpC{t,a ,x),l) ,M axN) ’■

Formally the CreateSTs function is introduced as:

CreateSTs : SCAAlgebra x N 2 x MapEqList2 —> dSCASTVEqList

CreateSTs takes a source abstract dSCA specification and values for the defining shape of the target

abstract dSCA and produces the State Transition equations of that target dSCA. It is defined as:

f k,
M ax tv ,
GetEqSTVF(Source.SCA),

CreateSTs

(SourceSCA, \
k,
Maxx,
—- l

\ S

BSTs

\

—- l

Createj3s

CreateSs

(SourceSCA, \
k ,

Max at,

H_1 /(SourceSCA, \
k,
M a x at,

V \ s - 1 , y
The operation called by CreateSTs is the BSTs operation which is given as:

BSTs : N 2 x dSCASTV EqList2 x MapListx
(IdSCAEqList x SdSCAEqList —> dSCASTV EqList

and is defined recursively over the set of module numbers. In keeping with a number of these

transformation operations it has two cases, the first where the module number is greater than 0 , and

the second where it is 0. The first case takes as arguments, the module number under consideration,

the value of Max a t, the list of source abstract dSCA State Transition equations, the target State

Transition equations, the inverse mapping, and finally the target abstract dSCAs /3-wiring and delay

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-81

functions. It is defined as:

(modjnum, \
Max at,
STVFs,

BSTs neqs,

tgtfis,
V J

(modjnum — 1,
/ / M ax at, ^

STVFs,
■=■-1

= BSTs BST

y neqs
Maxat

tgtfis,
tgtSs,

y modjnum

The operation BST used in the above definition is given as:

BST : N 2 x dSCASTV EqList x MapListx
(IdSCAEqList x SdSCAEqList —»• dSCASTVEqList

and is defined such that a new equation is built up for module modjval under consideration. It is

defined as:

I modjval,

BST

(Max]\[, \
modjval,
STVFs,

Ps,
Ss,)

— BuildST NewST
rewire

where:

Max at ,
^ null

(Maxjy, \
modjval,

(new-vfopdef, \
modjval,
pcjval,
Peqs,

y Seqs

\

newjvfopdef = NST
STVFs,

y ET1 j

The NewST(rewire(NST(...))) component of the above definition needs some explaining. Con

sider that the VFOPDef term of a Value Function equation for an abstract dSCA is of the form:

r a,o(...;
fi.l (■ • ■>

if pc = 0

if pc = 1

, f i , M a x N - 1 (- • -) if pc = MaxN — 1

It has already been noted that this is a convenient syntactic way of writing the conditional. If

ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-82

written according to the machine algebra, M a , it would appear as:

/ pc = 0,
/»,o(- • •)»

/ PC = 1,
f i (p c , . . .)= c o n d R,

\ V

cond (/ pc — M olxn — 1
. . . , COTld I f i , M a x] y — 1 (• • ■)>

\ null
J

It is this second form that is used to select the component specification based on a particular

value of the program counter. To do so, the operation GetFn is introduced:

To generate a target abstract dSCA State Transition equation for a module a list of the appro

priate VFOpDef Terms, selected from the source abstract dSCA by means of the inverse mapping

function E“ , the GetEl operation for STEqList specifications and the GetFn operation defined

above are used. Consider module in the target abstract dSCA, at program counter value pcjval

it is defined to be executing either the:

1. VFOpDef term in module /s t(E _ 1 (i,pc_ua/)) at the source program counter value snd(E,~l (i, pcjval))

in the source abstract dSCA, if the mapping is defined; or

2 . the output u, if the mapping is undefined.

The N S T operation is introduced to determine which case is under consideration, and it is given as:

and recurses over the program counter values to produce a list of VFOpDef terms that are used

GetFn : VFOpDef Term x N —> Term

and is defined recursively over the structure of the VFOpDef term definition:

GetFn{cond{a,b, c),0) = fe
GetFn(cond(a,b,c),pcreq) — GetFn(c,pcreq — 1)

N ST : N 2 x dSCASTV EqList2 x MapEqList -*> VFOpDef List

for the definition of the State Transition phase of the Value Function for a particular module. It is

A B ST R A C T DSCA TO A B ST R A C T DSCA TRANSFORM ATION A-83

d e f in e d :

w h e re :

a n d :

N ST

(pc.val, \
mod.val,
neqs,
oeqs,

y ~ -

= N ST

(pc.val — 1,
mod.val,

/ oeqs,
neqs, Extract I mod.valsrc,

y pCJValgrc
oeqs,

V E -1

—-1
mod-valsrc — fs t I RetTerm I GetEl I mod.val, J ,2

y y y pc.val

c - i
pc.valsrc = snd I RetTerm I GetEl I mod.val, | , 2

y y y pc.val

T h e Extract f u n c t io n u s e d in t h e a b o v e d e f in i t io n is g iv e n as:

Extract : dSCASTVEqList x N 2 —> VFOpDefTerm

a n d is d e f in e d as :

Extract (Z l v a l ,) = GetFn (GetEl(oeqS,mod.val), \
\p c .v a l) \ pC~Val J

T h e s e c o n d c a s e o f th e N ST o p e r a t io n is d e f in e d a s r e tu r n in g t h e l i s t o f V F O p D e f te r m s c o n

s t r u c t e d b y a p p e n d in g t h e v a lu e fo r t h e p r o g r a m c o u n te r a t 0 t o th o s e V F O p D e f t e r m s a l r e a d y

o b ta in e d :
0, \
mod.val,

N ST neqs,
oeqs,

V S_1
where mod.valsrc a n d pc.valsrc a r e a s d e f in e d fo r t h e f i r s t c a s e o f NST. T h e r e s u l t o f N ST is t o

oeqs,
= j neqs, Extract (mod.valsrc,

pc.valsrc

p r o d u c e a l i s t o f V F O p D e f te r m s , h o w e v e r th e s e t e r m s w ill a l l b e w ir e d b a s e d o n t h e v a lu e s in t h e

s o u r c e a b s t r a c t d S C A a n d m u s t b e r e w ir e d . R e w ir in g is a c c o m p lis h e d w i th t h e rewire o p e r a t io n ,

w h o s e p u r p o s e is t o r e c u r s e d o w n a f is t o f V F O p D e f t e r m s , p r o d u c in g a n e w l i s t o f V F O p D e f

te r m s w i th w ir in g a n d d e la y f u n c t io n s p u t in p la c e t o re f le c t t h e t a r g e t d S C A . C o n s i s t e n t w i th t h e

d e f in i t io n s o f t h e o th e r t r a n s f o r m a t io n s in th i s th e s i s s im p lif ic a t io n o f t h e w ir in g a n d d e la y f u n c t io n s

is a p p l ie d in - s i tu .

A B ST R A C T DSCA TO A B ST R A C T DSCA TRANSFORM ATION A-84

T h e rewire o p e r a t io n is g iv e n a s a n o p e r a t io n t h a t t a k e s a V F O p D e f l is t , t h e m o d u le n u m b e r

a n d t h e p r o g r a m c o u n te r v a lu e u n d e r c o n s id e r a t io n to g e th e r w i th t h e l i s t o f beta-w ir in g a n d d e la y

f u n c t io n s fo r t h e t a r g e t a b s t r a c t d S C A :

rewire : V F O pD ef List x N 2 x pdSC AEqList x SdSCAEqList —► V F O pD ef List

T h e o p e r a t io n rewire is d e f in e d r e c u r s iv e ly o v e r t h e l i s t o f V F O p D e f t e r m s w i th t h e f i r s t c a s e

b e in g d e f in e d as:

/ (e,es)> \
mod.val,

rewire pc.val,
fieqs,

 ̂ 5eqs

and t h e s e c o n d c a s e is d e f in e d as :

((e>

rw

\
mod.val,
pc.val,
peqs,

y Seqs J

, rewire

(esi \ \
mod.val,
pc.val — 1,
fieqs,

y Seqs

rewire

/ e, \
mod.val,
pc.val,
Peqs,

y Seqs

= rw

(e, \
mod.val,
pc.val,
Peqs,

\ Seqs J

T h e o p e r a t io n rw u s e d in rewire c o u ld b e d e f in e d g e n e r ic a l ly t o t a k e a c c o u n t o f a n y n u m b e r o f

a r g u m e n ts , b u t fo r c l a r i ty in th i s th e s is , i t is d e f in e d fo r t h e 4 c a s e s t h a t Ma w ill a l lo w (z e ro t o 3

a r g u m e n t s) :

rw

rw

(*(*i)> N\
Ps,
Ss,
mod.val,

\ pc.val J

f t , \
ps,
Ss,
mod.val,

\ pc.val

(

= t

= t wire

rw

(t (t i , t 2), \
Ps,
Ss,
mod.val,

\ pc.val J

(

= t

(\ \
Ps,
Ss,
mod.val,
1,

y y pc.val J J

f l̂i \ (2̂

wire

Ps,
Ss,
mod.val,
1,

y pc.val J

,wire

\
Ps,
Ss,
mod.val,
2 ,

y pc.vai y

A B ST R A C T DSCA TO A B ST R A C T DSCA TRANSFORM ATION A-85

ps,
rw 5s,

mod.val,
y pc.val J

with the supplementary operation wire being given as:

wire(ti, Ps, 5s, mod.val, 1,pc.val),
= t J wire{t2, Ps, 5s, mod.val, 2,pc.val),

wire(tz, ps, 5s, mod.val, 3,pc.val)

wire : Term x PdSC AEqList x 5dSCAEqList x N 3 —*■ Term

and defined for the three cases that may make up an atomic term within M a '-

. const, \wire / j r . - = constPs,5s,i,j,pc I

wire Vp(t l,a ,x), \ _ y n ind (new.time,a,x)
Ps,5s,i,j,pc.)

where:

and:

new.index — RetTerm(GetEl(Ps, mod.val, j , pc.val),2)

new.time = RetTerm(GetEl(5s, mod.val, j, pc.val), 2) + 1

To complete the generation of a State Transition equations for module mmo(i_vai in the target

dSCA the list of rewired VFOpDef terms must be turned into the component specifications. This is

done using the NewST operation, given as:

New ST : VFOpDef List x N —> VFOpDef

which takes the fist of VFOpDef terms (which has the VFOpDef term corresponding to pc = M a x^~

1 at the head and the VFOpDef term corresponding to pc = 0 at the end) and recurses down the

list producing the appropriate target dSCA VFOpDef term. For the recursive case it is defined as:

/ (e, es), \ / es,
NewST J pc.val, J = NewST I pc.val — 1,

y neqs J y cond(VpC(t, a, x) = pc.val, e, neqs)

and the base case is defined:

' e , \
NewST j pc.val, = cond(Vpc(t, a, x) = pc.val, e, neqs)

neqs J

A B ST R A C T DSCA TO A B ST R A C T DSCA TRANSFORM ATION A-86

The function call to create the new VFOpDef term for the target dSCA is therefore:

(((M axN, \ \ \
mod.val,

NewST
rewire

N ST S oldeqs,
V S "1 7

mod.val,
pc.val,
peqs,

y Seqs
Maxx,

y null

which can be seen in the definition of the B ST operation, wrapped by the value function building
J

operation. This functionality is walked through in the section where we manually transform dSCAs.

The second case of BSTs, where the module is 0 is where the list of already generated state

transition value functions is appended to the State Transition equations for the program counter,

and is defined as:
/ 0, \

MaxN, / mod(add(Vq(t, a, x), 1), Max^i) if <T \

BSTs
neqs,
STVFs,
T-l
ps,

y Ss

(
V0(t + 1 ,a,x)

y neqs
mod(add(Vo(t,a, x), \) ,M a x^) if c2

where:

ci = Vpc(t,a,x) = 0

c2 = Vpc(t,a,x) — Maxjy - 1

G .1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new abstract dSCA can be

created by transforming the source abstract dSCA. The Create.adSCA operation is provided to do

this, it is given as:

Transform : adSC A Algebra x N 2 x MapEqList2 —> adSCAAlgebra

The operation takes the source abstract dSCA and the defining shape of the target abstract

dSCA together with the mapping and invers mapping functions.. It is defined:

A B ST R A C T DSCA TO A B ST R A C T DSCA TRANSFORM ATION A-87

where:

and:

(G etN am e(SC A src), \
adSC AAlgebra,

VFOp,
70 -.N2 ^ { M , S , U } ,
0o : N 2 -> N,
SOp,

I SCAsrc, \
k,

Transform

SCA,tc, \
k,
Maxjy,

1

= CreateadSCA

Create'ys

Createfts

CreateSs

Maxjv,
\ E - 1

SCAsrc, \
k,
M a x j y ,

VS- 1 ')
(SCAsrc, \

k,
MaxN,

C rea te lV s

C reateSTs

\ s - \
/ SCAsrc, \

k,
Maxjsr

\ E - 1
(SCAsrc, \

k ,

Maxft,
-3-1

V S /

V F O p

SOp =

/ Vo : T X x M* ^ M^, \

\ Vk :T x M% x AfJ MA J

(Jo,0,0 : T x M J x M j - > T , \

V J* j,o : T x x AfJ -► T /

j = Get-Max A(Src.SCA)
n = num Jnp(SrcSCA)

A ppendix H

A bstract dSCA to Concrete dSCA
Transformation D etails

H .l Process

This appendix defines the processes for the transformation of an abstract dSCA with defining shape

V = (n ,m) to a concrete dSCA with a defining shape of V = (n,m). The following equation lists,

within a supplied abstract dSCA specification, are considered for transformation:

1. Wiring Functions;

2. Delay Functions;

3. Initial State Equations; and

4. State Transition Equations.

Recall that this abstract dSCA has a defining shape of V = (1, 36). The transformation will be

to a cycle consistent concrete dSCA. It should be noted that if transformation to a cycle inconsistent

concrete dSCA was required then alteration of the tuple lengths and the use of appropriate tuple

mapping functions (examples of which are given in Chapter 7) would have to be used.

H.1.1 Prerequisites

The following prerequisites are required for the transformation:

A-88

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-89

• The source and object networks have k > 1 modules and M ax^ > 0 component specifications

in their modules definitions;

• The defining shape of the target network equals that of the source network; and

• Condition definitions of each adSCA module, except the programme counter, are of the for

mat:

cond(pc = 0, a, cond(pc = 1,6, cond(pc = 2, c, cond(...))))

H .1.2 7-W iring Functions

The 7-wiring functions in the target concrete dSCA will not differ much from those in the source

abstract dSCA since the “look and feel” of the SCA is not being altered. What is different is the

introduction of a new input to argument 1 which will require arguments 1, . . . ,n(i) of the abstract

dSCA becoming arguments 2, . . . ,n(i) -I- 1 in the concrete dSCA. The new argument introduced in

concrete dSCA is a wiring of the first argument to the output of the module itself.

Informally, to generate the target concrete dSCA 7-wiring functions from a source abstract

dSCA the following process is followed:

• For each module m* where i 6 Nfc2:

- For each pcjval € {0,. . . , M ax ^ 2 — 1}:

* For each argument where j € {2,. . . , n(i) + 1} create a new ft-wiring function

‘"Ypcjualifi j') Ifpcjualiif J

* For the oth argument of each module create:

Ifpcjvaldi 9) M

* For the I s* argument of each module create:

Ipc-valih 1) = M

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-90

• For module 0 create M ax^ P~wiring functions to wire m 0 back to itself.

Formally, the Create'ys operation is introduced as:

Create'ys : adSC AAlgebra —> 7 dSC AEqList

and is defined:
/ GetNumModules(SourceSCA)

Create'ys (Source.SCA) = B'ys IGetM axN(SourceSCA),
y Get'yEqs{SourceSCA),

The B'ys operation achieves two purposes, first it calls the Reindexys operation to manage

responsible for adding the new wiring function for argument 0 to all modules, except the program

counter module, at all times of the program counter. B'ys is given as:

B-ys : N 2 x 7 dSC AEqList —> 7 dSC AEqList

taking as its first two arguments the defining shape of the concrete dSCA, and the third argument

being the source abstract dSCA 7-wiring functions. It is defined as:

the alteration of indexes, as described above, and then it calls the Rewire'ys operation which is

/ num-mod,
B'ys I Maxpf,

y old'ys,

I num-mod,
Rewire'ys I M axjv,

y Reindex'ys (old'ys)

where the operation Reindex'ys is given as:

Reindex'ys : jdSCAEqList —* jdSCAEqList

and defined as:

Reindex/ys(e,es) — (Reindex'y(e), Reindex'ys (es))

and finally Reindex7 is given as:

Reindex7 : 7dSCAEquation —> 7dSCAEquation

and is defined in two cases, the first where the wiring function is for the 0 th argument or the module

is 0, and the second for where it is not. The first case is defined:

RetArg{RetTerm(e, 1), 2) = 0V
RetArg(RetTerm(e, 1), 1) = 0Reindex7 (e) = e if

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-91

In the second case a new 7-wiring function is created from the components of the source 7-wiring

function, with the argument index incremented by one:

^ ^ f R e t F n (R e t T e r m (e , l)) i ^

Reindex 7 (e) = Build'y RetArg(RetTerm(e, 1), 1),
RetArg(RetTerm(e, 1),2) + 1,

y RetTerm(e, 2) /
Having shuffled the existing 7-wiring functions, the Rewire'ys operation adds the additional

7-wiring functions for argument 1 for all values of the programme counter for all modules, except

the program counter module. It is given as:

Rewire'ys : N 2 x 7 dSC AEqList —► 7 dSC AEqList

and is defined recursively over the module number, in two cases. The first case is defined as:

\
pcjval,

Rewire'ys
modjnum,

Rewire'ys [pcjval,
newys,

f modjnum — 1,
pcjval,
/ / pcjval — 1,
I ReWire-ypc I modjnum , j ,new js

U \ o j
where the operation Rewire'ypc used by the above definition is responsible for recursing over the

values of the program counter and producing the actual wiring function. It is given as:

Rewire'ypc : N 2 x 7 dSC AEqList —>■ 7 dSC AEqList

and is defined recursively over the program counter values. The first case is where the program

counter is not 0, and it is therefore defined as:

\
\pc.val,

Rewire'ypc j modjnum ,] = Rewire'ypc
newys

(pcjual — 1,
modjnum ,
((modjnum, \

1,

V

Build'y

\
pcjual,

\ M,

, newys

/ / /
The second case of the Rewire'ypc operation is defined as:

/
Build'y

0,
Rewire'ypc I modjnum,] =

y newys
y

(modjnum, \
1,
0,

y m ,

, new'ys

/ J

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-92

The definition of the second case of the Rewire'ys, where the module number if 0 is defined to simply

return back the list of newly generated equations:

Rewire'ys

/ o, \
pcjval,
old'ys,

y newys J

= new'ys

H .1.3 /3-Wiring Functions

In a similar way to how the target concrete dSCA 7-wiring functions were constructed from source

abstract dSCA 7-wiring functions, so are the concrete dSCA /5-wiring functions. The /5-wiring

functions in the target concrete dSCA again differ only in so much that the index of arguments

I , . . . ,n(i) shifts to 2, . . . , n(i) + 1.

Informally, to generate the target concrete dSCA /5-wiring functions from a source abstract

dSCA the following process is used:

• For each module mj where i G N*.2:

— For each pc.val G {0,. . . , M ax ^ 2 — 1}:

* For each argument where j G {2,... ,n(i) + 1} create a new /5-wiring function

Ppc-val(fi I) Ppc.valifi J
* For the oth argument of each module create: %

Ppc-val&Q) = M

* For the 1st argument of each module create:

Ppc.valih 1) = M
• For module 0 create M ax^ /5-wiring functions to wire mo back to itself.

Formally the Createfls operation is introduced as:

Createfis : adSCAAlgebra —> /3dSCAEqList

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-93

and is defined:
/ GetNumModules(Source.SCA),

Createfis (Source.SCA) = Bfts j GetMaxN(SourceSCA),
y GetfiEqs(SourceSCA),

The Bfts operation achieves two purposes, first it calls the ReindexPs operation to manage

the alteration of indexes, as described above, and then it calls the Rewireps operation which is

responsible for adding the new wiring function for argument 1 to all modules, except the program

counter module, at all times of the program counter. BPs is given as:

BPs : N 2 x PdSCAEqList —> PdSC AEqList

taking as its first two arguments the defining shape of the concrete dSCA, and the third argument

being the source abstract dSCA /5-wiring functions. The final argument is the transformed /5-wiring

functions. It is defined as:

(num.mod, \ / num.mod,
Maxpj, I = Rewireps I Max at,
oldPs, J y Reindexps (oldPs)

where the operation ReindexPs is given as:

ReindexPs : fldSC AEqList —> PdSC AEqList

and defined as:

ReindexPs{e,es) = {Reindex(3(e), Reindexps(es))

and finally ReindexP is given as:

ReindexP : PdSC AEquation —> PdSC AEquaiion

and is defined by two cases, the first where the wiring function is for the 0 th argument or the module

is 0, and the second for where it is not. The first case is defined:

n , ni \ -r (RetArg(RetTerm(e, 1),2) = 0V Rezndex0(e) = e if ̂ RetArg{RetTerm(et 1}j 1} = 0

In the second case, a new /5-wiring function is created from the components of the source /5-wiring

function, with the argument index incremented by one:

 ̂ PRetFn{RetTerm{e,\))i ^
ReindeX0(e) = Build? ^

 ̂ RetTerm(e, 2) J

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-94

Having altered the indices of the existing /5-wiring functions, the Rewirefis operation adds the

additional /5-wiring functions for argument 1 for all values of the programme counter for all modules,

except the program counter module. It is given as:

Rewire/3s : N 2 x fidSCAEqList —> (3dSC AEqList

and is defined recursively over the module number. Where the module number is not 0, then

Rewirefts is defined as:

\
mod.num,

Rewire/3s (pc.val,] = Rewirefis
newfis,

(modjnum — 1,
pc.val,
(f pc.val - 1, \ \

ReWirefipc modjnum, ,
V D / '

y newfis 7 7
the operation RewirePpc used by the above definition is responsible for recursing over the values of

the program counter and producing the actual wiring function. It is given as:

Rewiref3pc : N 2 x /5 dSC AEqList —>■ fidSC AEqList

and is defined recursively over the program counter values. The first case is where the program

counter is not 0:

\

\(pc.val,
mod.num, | = Rewirefipc
new/3s

f pc.val — 1,
modjnum,
((mod.num, \

1,

V

Build/3

\
pc.val,

y mod.num, J

, newfis

J
The second case of the Rewire/3pc operation is defined as:

/ / mod.num, \0,
Rewireppc mod.num,] =

y newfis
\

1,
0,

\
, new/3 sBuildft

y modjnum,

The definition of the second case of the Rewirefis, where the module number is 0 is defined to return

back the newly generated /5— wiring functions:

/ 0, \
Rewirefts pc.val,

oldps,
y new(3s J

= newPs

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-95

H .1.4 Delay Functions

Delay functions for the concrete dSCA are all of unit delay, and there are a number equal to the

wiring functions. Thus, a unit delay function will be created for every element in the newly generated

7-wiring equation list.

Formally, the CreateSs operation is introduced as:

CreateSs : aSCAAlgebra —> 5SCAEqList

Note that delay functions in the concrete dSCA are of the type SSCAEqList and not SdSCAEqList.

The CreateSs operation is defined as:

CreateSs (Source.SCA) = BSs ^ ^ reateTs(Source.SCA), ^

The BSs operation is defined recursively over the elements in the 7-wiring function list:

BSs : 'jdSCAEqList x SdSC AEqList —> SdSC AEqList

the case where the fist is not a single element is defined as:

(GetIndex(RetTerm(e, 1), 1), \ \

, neqsBSs (e,es),
neqs, = BSs

(es,
(

\
BuildS

\

GetArg(RetTerm(e, 1), 1),
GetArg(RetTerm(e, 1), 2),
t - 1 J

and the definition of BSs where there is only one element in the fist of 7-wiring functions is defined

BSs (’ I = BuildSneqs,

(GetIndex(RetTerm(e,T),\), \
GetArg(RetTerm(e, 1), 1),
GetArg(RetTerm(e, 1), 2),

V t-1
H .1.5 Initial State Equations

The initial states for each module mi, where 1 < i < k are Max^j tuples of length M axn (recall

that the mapping is being defined for a cycle consistent abstract dSCA). We will make use of the

fact that calculations will only care about the initial state given for t = M axn — 1 and t = 0, by

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-96

defining the tuple at time t — 0 and use that value for all other initial values until t = Max — N — I

where the final Initial State equation will be generated.

The operation CreateIVs is introduced that takes the source abstract dSCA specification and

produces the Initial State equations. It is given as:

CreateIVs : adSCAAlgebra -> dSC AISV EqList

and is defined as:

CreateIVs (Source.SCA) = B IV s

(num.modules{Source.SCA), \
GetMaxN{Source.SCA),
G etIV iSm jrce.se A),

V J
The call to the B IV s operation is where the work of the transformation takes place. B IV s is

given as:

B IV s : N 2 x dSC AISV EqList2 -> dSCAISVEqList

and it is defined recursively over module numbers in two cases, the first is where the module number

is greater than zero, and in such a case B IV s is defined as:

\

B IV s

(mod.num, \
Maxjy,
oeqs,

Y neqs)

= B IV s

(modjnum — 1,
Maxu,
oeqs,
((0, \

Moxn — 1,
B IV modjnum,

oeqs,
\ \

\
,neqs

The operation B IV :

B IV : N 3 x dSCAISVEqList2 -> dSCAISVEqList

is defined recursively in two cases over the first argument. Firstly for when the first argument

does not equal Maxm, then the operation is dealing with an initial state from a time prior to

t = MaxN — 1 , and as such an initial state will be created containing u elements in all positions,

except for 0th element. Note that the positioning of the first element is dependant upon the tuple

A B S T R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-97

management schemes used, however for both schemes identified as of interest the first generated

value is placed at position 0 in the tuple. B IV is defined as:

\
/ pc.val, \

M ax t v ,

modjnum,
oeqs,

B IV = B IV

(pc.val + 1,
Maxtv,
mod.num,
oeqs,
(

\

\ neqs

The GenIVs operation used in B IV is given as:

GenIVs

\

(mod.num, \
pc.val,
Maxtv,

\ oeqs

\
,neqs

7) /

GenIVs : N 3 x dSCAISVEqList —► dSC AISV Equation

and is defined to create a Max tv length tuple with the first element being the initial value produced

at time t = 0 in the source abstract dSCA initial values:

/ mod.num, \ / mod.num, \

GenIVs pc.val,
Max t v ,

y oeqs

BuildIV pc.val,
f RetTerm(VF, 2),

\ \ ^0, • ■ ■ , 'U'MaxN — 2 J J

where:

VF = GetEl{oeqs, mod.num, pc.val)

With the second case of BIV , where t = Max tv — 1, then the complete initial state needs to be

generated (from previous values):

/ (mod.num, \ \
pc.val,

B IV

(Maxx, \
Max tv,
modjnum,
oeqs,

y neqs J

BuildIV

\

InitState

(Max tv, \
modjnum,
oeqs,

\ V

, neqs

J
The operation InitState is where the Initial State for module modjnum at time t = Max tv — 1 is

created. Since we are using the array tuple management then the Initial State under these conditions

will consist of a list of values with the first being the element calculated at t = 0 and the last being

the one calculated at t = Max tv in the source abstract dSCA. It is given as:

InitState : N 2 x dSCAISVEqList x TermList —> TermList

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-98

and is defined recursively, with the recursive case:
/ pcjual, \ / pcjual — 1,

InitState — InitState
\

modcnum,
oeqs,

Y nlist J

and the recursion being stopped by the 1st argument reaching 0:
/ 0, \

modjnum,

modcnum,
oeqs,

Y (RetTerm (VF,2), nlist)

InitState oeqs,
nlist,
tt- i

= (RetTerm (V F ,2), nlist)

where in both cases:

VF = GetEl(oeqs, modcnum, pccual)

The base call to the recursive B IV s operation is defined as:

o. \
ft/lax^,
oeqs,

Y neqs J

B IV s
MaxN — 1 ,

= BIVpc ,neqs
Max N

where BIVpc is given as:

BIVpc : N x dSCAISVEqList xJV-> dSCAISVEqList

and is defined recursively over the values in Maxjq, such that:
(pcjual — 1,

' 0 ,/ pcjual,
BIVpc I neqs, j = BIVpc

y Maxx
I BuildIV I M axw , | ,neqs
y y pcjual + 1 mod M axm

Y Max tv
and:

BIVpc () = IY Maxx J Y
0,

BuildIV j 0, | ,neqs

H .1.6 State Transition Equations

Consider the format of the State Transition equation in the source abstract dSCA, it will be similar

to:

Vi(t,a,x) = < or(V\(t — 32, a, x),V \(t — 31, a, x)) if Vpc(t — 1, a, x) = 23
gt(V\{t — 31, a, x), V\ (t — 30, a, x)) if Vpc(t — 1, a,x) = 24

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-99

the corresponding component specification in the concrete dSCA would be of the form:

(

(Vpc(tl &•! %) l
Vi(t, a, x),

if Vpc(t, a, x) = 23

if Vpc(t, a, x) = 24

The differences are attributable to the introduction of the tuple management functions, T and

Informally, the process for creating the new State Transition equations is a two step process

• Generate the d functions - those that are used in the projection part of the tuple management

functions

• Create the new State Transition equations.

G eneration o f th e d functions

For an indexed array tuple management approach the results are stored relative to the value of the

program counter when that result was calculated. The values of the d functions for each argument,

given a cycle consistent dSCA, can be determined by using the following formula:

IT (as well as the need to identify the value in the tuple that results are to be extracted from).

.n u m ,a r g jr iu m ,p cju <ial — (AfflXjV T pC-Val &modjn,um,argjnum,pc-val)
As an example, if a module has a definition:

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-100

Then its arguments would be stored at positions 1,2 and 3 in the array. Assuming M axm = 36,

then if the first argument is considered, di,2,o can be determined as:

<A,2 ,o = (36 + 0 — £1,2,0) — 1

Prom the definition of the value function it can be seen that £1,2,0 (£>a, x) = t — 34, therefore:

^120 = (36 + 0 - 3 4) - 1
= (2) - 1
= 1

To generate the d functions the Createds operation is introduced that recurses over the structure

of the concrete dSCA (since the source abstract dSCA and concrete dSCA are the same “shape”

means there is no requirement to use the mapping function). Createds is given as:

Createds : adSC A Algebra —► Proj EqList

which is defined to take the abstract dSCA, defining shape of the target concrete dSCA and the

number of arguments per module, and calls the Bds operation whilst extracting the Ss equations

from the source abstract dSCA:

createds (Source.SC A) = Bds

The Bds operation is given as:

f GetNumModules(SourceSCA), \
GetM axN(SourceSCA),
GetMaxA(Source.SCA) + 1,
GetSEqs(SourcesCA),

\

Bds : N 3 x 5d,SCAEqList x Proj EqList —> Proj EqList

which is defined, in the recursive case, as:

Bds

(modjnum, \
Max Mi
Max a ,
oldeqs,

Y neqs J

= Bds

(k - l ,
Max^i
M a x a,
oldeqs,
((Maxjj — 1, ^

modjnum,
Max a ,
M ax m ,
oldeqs,

Bdspc

\ \

,neqs

/

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-101

In keeping with most of the definitions in the transformations so far, the Bdspc operation will

recurse over the program counter values, and is defined as:

Bdspc : N 4 x 5dSC AEqList x Proj EqList —>■ Proj EqList

this is also recursively defined, and the recursive case is as follows:

(pcjual — 1,
modjnum,
M a x a ,
Maxw,
oldeqs,
((Max a — 1, \Bdspc

(pcjual, \
modjnum,
Max a ,
Maxjy,
oldeqs,

\ neqs J

Bdspc

\

Bdsarg

\

pcjual,
modjnum,
Max,N,
oldeqs,

\

,neqs

The Bdsarg is the operation that recurses over the arguments in a module:

Bdsarg : N 4 x 5dSCAEqList x Proj EqList —> Proj EqList

Again, this is defined recursively, and the recursive case is as follows:

where:

Bdsarg

(argjnum, \
modjnum,
pcjual,
Maxjv,
oldeqs,

\ neqs f

= Bdsarg

(argjnum — 1,
modjnum,
pcjual,
Maxw,
oldeqs,
((modjnum, \

\

Buildd

\

Max a ,
pcjual,
Maxw — 1,

y djual,

neqs

J

djual = (Max m + pcjual) —

(
t — RetT erm

\

(
GetEl

(oldeqs, \ \ \
modjual,
M a x a ,

\ pcjual, j j j
the base case of the Bdsarg operation, where the argument number is equal to 1 (since argument 0

V

and 1 are wired to the program counter and the module itself and therefore require no projection of

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-102

Bdsarg neqs

results) is defined as:
/ 1, \

modjnum,
pcjual,
MaxM,
oldeqs,

y neqs J

Note that the value of 1 is subtracted from the Max a argument in the calculation of to reflect the

fact that argument indexes in the source abstract dSCA are one behind those in the target concrete

dSCA.

The base case of Bdspc, where the program counter value is 0 is defined:

/ / MaxA, \ \

Bdspc

(o, \
modjnum,
M a x a ,
Maxjv,
oldeqs,

Y neqs

Bdsarg

j M a x a , \
pcjual,
modjnum,
Maxx,
oldeqs,

\ \

,neqs

J
and the base case of the Bds operation - where the module number is 0, simply returns the d

functions already generated, since module 0 is the program counter and requires no such functions

to be defined:
(0 , \

Moxm,

Bds Max a , = neqs
oldeqs,

Y neqs y

Having produced the d functions for the new network attention can be returned to the generation

of the State Transition equations. Consider again the format of the State Transition equation in the

source abstract dSCA, it will be similar to:

Vi{t,a,x) = < or(Vi(£ — 32, a, x), V\{t — 31, a, x)) if condl
gt(Vi(t — 31, a, x), V\(t — 30, a, x)) if cond2

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-103

and the corresponding component specification in the concrete dSCA would be of the form:

The structure of the function does not change, except the introduction of the tuple management

operations T and II, so the operation can create the new State Transition equations by recursing

over the list of source State Transition equations. This is done using the CreateSTs operation:

CreateSTs : adSCAAlgebra x Function2 —> dSCASTVEqList

which is defined as:

T

/ Vpc(6 h 0 ,2 3 (t,a ,x),a ,x),
Vi{6 1 X 2 3 {t,a,x),a,x),

if condl

T

/ Vpc(5h0,24(t,a,x),a:x)
Vi (61,1,24 (t,a ,x),a ,x), if cond2

/ G etEqSTVF(SourceSCA), \
0
Createds(SourceSCA),
Create/3s(SourceSCA),
CreateSs(SourceSCA),
GetMaxN (SourceSCA)

SourceSCA
CreateSTs T

/
The BSTs operation is where the structure of the equation list is recursed:

BSTs : dSC A STV EqList2 x Proj EqList x (IdSC AEqListx
SdSC AEqList x N x Function2 —> dSC A STV EqList

and it is defined recursively in two cases. The first case is where there exists a fist of equations, and

a recursive call is made to this operation with the list of new equations (neqs) being appended by

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-104

the result of a call to the B ST operation:

BSTs

((e,eqs), \
neqs,
newds,
newfis,
newds,
Maxpj,
T,

V n

= BSTs

eqs,
(

BSTck

\

e, \
GetIndex(RetTerm(e, 1)),
0,
M clxn,

, negs

/ /

newds,
new (Is,
newds,
T,

\ n
newds,
new(Is,
newds,
Maxx,
T,

V n
The operation BSTck is a simple checking operation to see if the module index is non zero.

/

If this is true then a call to Z?ST is made to construct a new dSCA State Transition equation.

Alternatively, if this index is zero, then the module under consideration is the program counter

module and a new definition should be created to reflect this (as the program counter definition

will not change between modules, the shortcut of using the abstract dSCA definition in the concrete

dSCA rather than creating a brand new definition is taken). BSTck is given as:

BSTck : dSC A STV Equation x N 3 x Proj EqListx
PdSCAEqList x SdSC AEqList x Function2 —> dSC A STV Equation

with the following definition:

(e , \
modjnum,
pcjual,
Maxjy,

BSTck newds,
new (Is,
newds,
T,

V n)

= <
CreateV F

(modjnum,
t + 1, a, x,

f RetTerm(e, 2), ^
modjnum ,
pcjual,
Max tv ,

B ST newds,
new (Is,
newds,
T,

V \ n)

if condi

o wise

where:

condi = modjnum ^ 0

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-105

B ST will be a recursive definition over the structure of a State Transition equation’s OpDef

Term - recall that this will be of the form:

cond(VpC(t, a, x) = 0, a, cond(Vpc(t, a,x) = 1,6, cond(Vpc(t, a, x) = 2, c, cond{...))))

The three components (the conditional test, true path and false path) of each VFOpDef term will

be separately “rewired” . The conditional tests component is always of the form:

Vpc(t, a, x) = pcjual

and in the concrete dSCA definition it will be:

/ /
Vrnew-pc RetT erm GetEl

(Ss,
modjnum,
0,

y RetTerm{e,2),
,2 a, x RetTerm{e, 2)

/ /
where:

/
newjpc = RetT erm GetEl

(0s,
modjnum,
0,

y RetTerm{e, 2), J

\ \
,2

/
and:

e = (Vpc(t, a, x) = pcjual)

The pcjrewire operation is introduced, which will create the new conditional component. For a

complete definition a new equation with references to the extractions from correct wiring and delay

functions should be produced, but in practice, the structure of the concrete dSCA does not differ

from the abstract dSCA and the definition of pcjrewire can be simplified to just return the input.

We give pcjrewire as:

pcjrewire : STVEquation —> STVEquation

and provide the following definition for it:

pcjrewire(e) = e

The true path component, i.e. the functionality that is used if the conditional component is

true, needs to be manipulated to incorporate the tuple management functions, i.e given a component

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-106

specification:

cond(a, b, c)

then b would be transformed into:
Vpc(t,a,x),Vmod.jnumij'i T),
rewire(b)

To achieve this the csjrewire operation is introduced:

csjrewire : Term x TV3 x Proj EqList x 'ydSCAEqListx
PdSC AEqList x 5dSCAEqList x Function —»■ Term

and it is defined as:

csjrewire

(trm , \
modjnum,
pcjual,
Max^i
ds,
ps,
5s,
r ,

V n /

= x

\I VpC(t, a, x),Vmod.-.numij'i 0̂
/ trm, \

modjnum,
pcjual,
Muxn,
ds,
Ps,
5s,

\ n
A generic rewire operation is not introduced, rather the definition for the number of arguments

rw

\

used in the machine algebra is given (there are zero to 3 arguments):

rw

and rw is defined as:

Term x N 3 x Proj EqList x (IdSC AEqList x Function
x5dSCAEqList —> Term

(trm, \
modjnum,
pcjual,
M ax tv ,
ds,rw

ps,
5s,

\ n

= trm

rw

(trm(trmi), \
modjnum,
pcjual,
Maxjy,
ds,
Ps,
5s,
n t

= trm wire

(trm i,
ps,
5s,
ds,
modjual,
2 ,

pcjual,
M ax^,

V n

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-107

rw = trm

rw

(trm {trm \,trm 2), \
modjnum,
pcjual,
MaxN,
ds,
(ds,
5s,

\ n }

(trm (trm i,trm 2,trm 3), \
modjnum,
pcjual,
M clxn,
ds,
(ds,
5s,

V "

((trm i, \
Ps,
5s,
ds,

wire modjual, ,wire
2 ,
pcjual,
Maxx,

V V n)
((trm I,

= trm

wire

wire

wire

I trm 2, \ \
ps,
5s,
ds,
modjual,
3,
pcjual,
Maxjsj,

V n
\ \

V
with the supplementary operation wire being given as:

ps, 5s, ds,
modjual, 2,pcjual,
Maxjv, II
trm 2,
ps, 5s, ds,
modjual, 3,pcjual,
M ax^, II
trm 3,
Ps, 5s, ds,
modjual, 4, pcjual,

^ M ax7v,II

wire : Term x pdSCAEqList x 5dSCAEqList x ProjEqListx
N 4 x Function —> Term

Wire is defined for the three cases that may make up an atomic term within Ma -

where:

wire

wire

wire

(const,
Ps, 5s, ds,
modjual, j, pcjual,

\ M ax n , If
/ ap(t)>

Ps, 5s, ds,
modjual, j, pcjual,
M ax^, II
Vp(t - 1, a, x),
ps, 5s, ds,
modjual, j, pcjual,

y MaxN,Tl

const

— G-new jindexPP

^prj.val (P̂new-index (new-time, a, 3?))

/
newJndex = RetTerm GetEl

{ P s , \ \
modjual

y pcjual / y
, 2

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-108

and:

and finally:

< (5s, \ \
RetTerm GetEl modjual,

j ,
,2

K y pcjual /)
/ (ds, V \

- RetTerm GetEl modjual,
j ,

,2

\ y pcjual) /

+ 1

Finally attention is turned to the false path of the term; this needs to be passed as an argument

back to the BST operation. The definition of B ST can therefore be given over the recursive structure

of the State Transition equation, given as:

B ST : Term x N 3 x Proj EqList x fidSC AEqList x SdSCAEqList x
Function2 —*■ Term

and defined as:

f cond(a,b,c), \
modjnum,
pcjual,
M clxn,

B ST newds, = cond
new ft s,
newSs,
T,v n

The recursive base case is defined as:

((a,
pcjrewire (modjnum, pcjual,

newfis, newSs
b,

csjrewire (modjnum, pcjual, M axn ,
newds, Ps, 5s, T, Id

B ST I modjnum, pcjual + 1 ,M ax^,
y y newds, new Ps,newSs, Y,II

B ST

(c,
modjnum,
pcjual,
MaxN,
newds,
newPs,
newSs,
T,

\ n

= csjrewire

(c,
modjnum,
pcjual,
Maxu,
newds,
ps,
5s,
r ,

V n /
The base case definition of BSTs, where only one State Value equation is in the fist, is simply

the result of making a call to the BSTck operation and appending the result to the new equations

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-109

passed in as an argument:

BSTs

e, \
neqs,
deqs,
new'ys,
newfis,
newSs,
T,

V n /

BSTck

V

\ \
GetIndex(RetTerm(e, 1)),
0,
Maxtv,
newds,
newfis,
newSs,
T,

V n

, neqs

H .1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new concrete dSCA can be

created by transforming the source abstract dSCA. The Create_cdSC A operation is provided to do

this, it is given as:

Transform : adSCAAlgebra x Function2 —» cdSCAAlgebra

The operation takes the source concrete dSCA and is defined as:

Transform
SCAsrc,
T,
n

= CreatecdSCA

(Name,
Mjtup ,

VFOp,
70 : N 2 ^ { M , S , U) ,

N,
SOp ,
Create'ys(SCAsrc) ,
Createfds{SCAsrc) ,
Create5s(SCAsrc) ,
CreatelVs{SCAsrc) ,

(SCAsrc,
CreateSTs I T,

V n
where:

VFOp =

SO p =

(Vq : T x M ^tup x M ^tup > M^tup, \

\ Vk : T x M%tup x M \tup —> M^tup /

f ô.a.o : T x M^tup x M%tup —> T , \

\ S, j,o : T x M ltup x M%(up)

A B ST R A C T DSCA TO CONCRETE DSCA TRANSFORM ATION A-110

and:
k = numjmod(SCAsrc)
j = Get-M ax A{S CAsrc)
n = numJnp(S CAsrc)

It is not intended to bring together all the operations defined in this chapter into a written down

specification in this thesis for reasons of brevity. If this was to be performed, then it would appear

similar to the specification provided for the SCA to abstract dSCA transformation in Appendix F.

