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Summary

The class of Markov Switching time series models, introduced by Professor James Hamilton, 
is nearly twenty years old. Despite this, relatively little work has been done on allowing 
gradual transitions between the regimes of the model. Almost all of the published work 
relates to modelling a transition between two regression lines rather than incorporating it 
into a time series model. We decided to approach the problem from two directions.

First, we wanted to look at Filtered Telegraph signals (Filtered Markov processes) and 
consider their suitability for time series analysis. Secondly, we wished to extend the existing 
Regime Switching models to allow a gradual transition between regimes.

In our work on the Filtered Markov process we present a method for obtaining moments 
for a signal with any number of regimes, rather than the usual two. This enables us to find 
the stationary, transient and conditional moments of the signal. We include an expression 
for the covariance of two observations from a signal, obtained using the conditional moments.

While considering how to fit a Filtered Markov process we identify several new methods 
that can be used for estimating the parameters of a sample from the Beta distribution where 
the observations have been contaminated by noise. We also include extensive tables of the 
percentiles of the estimators for each of the methods.

We also present a new algorithm that utilises the Filtered Markov process to generate 
random Beta variates.

Finally we take a more practical approach, introducing some simple models that, while 
useful in their own right, could also be used to bridge the gap between the two-regime 
Markov switching model and the Filtered Markov process. These Ladder models are then 
applied to several data sets to explore the problems faced by gradual switching models and 
collect evidence of their suitability.
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Perhaps we aren’t  such a ro tten  lot after all.
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Notation

General
6 Sum of a  and f3 (or a and b where r  =  1 ).
I  An Interval.
dt Short time interval.
7r A stationary distribution.
© The set of structural parameters of a model.
II The initial conditions.
X The combination of parameters and missing data [0 , s^].
i , j  The Regime index (usually i before, j  after),
w, v The Level index (usually u before, v after).

Filtered Markov Process
a, (3 The Switching Intensities when in regimes 0 and 1.
c, d The Scale and Shift parameters.
k  Mean level of the signal associated with regime i.
t  The Time-Scaling factor
p equal to e- r.
a Standard deviation of Gaussian noise.
S (t) The Markov process that determines the regime of the process. ,
X  (t) The values taken by a noise-free process.
Y(t) The values taken by a process contaminated by noise (usually Gaussian).
y(t) Observations from a process contaminated by noise (usually Gaussian).
e(t) A Gaussian error term.
t Index of time.
T  The maximum time in the series.

Discrete Models
a, b The Switching probabilities for regimes 0 and 1 .
li Mean level of the signal associated with regime i.
p , q The Probabilities of movement when in regimes 0 and 1.
<j  Standard deviation of Gaussian noise.
S(n) The Markov chain that determines the regime of the discrete chain.
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X (n ) • The values taken by a noise-free chain.
Y(n)  The values taken by a chain contaminated by noise (usually Gaussian).
y(n) Observations of a chain contaminated by noise (usually Gaussian).
y n The observation history (y(l),y(2), ...,y(n)}.
sn The regime history (s ( l) , s(2 ),..., s(n)}.
L(n ) The index of the level of the Markov chain (Sn, Ln).
n  Index of discrete time.
N  The Maximum time in the series.

The number of levels in either regime for a symmetric model.
N{u)i N(d) The number of levels in the upper and lower regime for an asymmetric

model.

Sample Moments
/i, p! Mean of a clean and noisy sample,
u, v' Variance of a clean and noisy sample.
7 , Y Skewness of a clean and noisy sample.
ac, k! Kurtosis of a clean and noisy sample.
7 7 , rf Fifth Central Moment of a clean and noisy sample.

Y  Sixth Central Moment of a clean and noisy sample.
Ki The ith Cumulant.
(  A  function of clean to noisy variance ratio.

Estimators and Distributions
F A  cumulative distribution function (CDF)
E Empirical CDF.

f A probability density function.
D Test Statistic of the KS test.
H HyperGeometric Function.
R Estimator of p.
Beta[a, 6 ] The Beta Distribution.
N[fi, a 2] Normal Distribution.
G[a\ Gamma distribution.

Models
T[-W(t/)5 -W(D)] A Ladder Model.
S[N(U), N {d)] A Slide Model.
UL[N(jj), N(d )> c] An Unravelled Ladder model.
US[N(u), N(e>},c] An Unravelled Slide model.
LF[N(u), A Line Fit model.
LFAR\N(jj}, N(d)\ A  Line Fit model with autoregressive noise.
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Introduction

We describe data as a time series when it consists of a set of observations which are ordered 
in time. The study of time series is an ancient one, but the theoretical models we use are 
constantly evolving to allow greater levels of sophistication. In this chapter we shall look 
at one particular area of development, namely the development of time-series models with 
non-linear dynamics.

1.1 The Road to  Non-Linearity

The examination of time series observations is hardly a new science. The record of sunspot 
data may be traced as far back as 28BC. It is fitting then, that the era of linear time series 
modelling began with a study of sunspots. The key feature of time series models is that 
they should capture not only the information contained in the values taken by the series, 
but also the information contained in the order in which those values occur. We do not 
expect this relationship between successive values to completely describe the process and 
will usually also include an irregular or unpredictable element, often termed ‘noise’. These 
first models can be described as both linear and Gaussian.

• Linear, in this context, means that there is a straight-line relationship between a value 
and its predecessor/s.

• Gaussian refers to the use of the Normal distribution to model the noise that obscures 
the true values of the series when we try to observe them.

Both of these two assumptions are of great assistance in allowing simple, mathematically 
tractable models to be developed. On the downside they are also restrictions on the type 
of behaviour that can be modelled.

These first linear Gaussian models, proposed by Yule (1927) and Slutsky (1937), were to 
dominate the development of time series model building for many decades to come. This 
class of models, known collectively as autoregressive models, combine a deterministic term 
(dependent upon previous values) with a ‘noise’ term (independent Gaussian variat.es) to
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form the distribution of the forecast variable. The term  ‘autoregressive’ refers to the way 

in which the determ inistic term  is formed, calculated from a linear com bination of values 

of the observed variable at earlier points in time. Exam ple 1 shows the simplest form this 

model can take, the first-order Autoregressive model. This title  is usually abbreviated to 

AR(1). The precise definition of an Autoregressive model such as this also requires tha t 

the  model be stationary. For this to  be the case there are restrictions on the  values th a t 

can be taken by the constant term s. For instance, in Exam ple 1 these restrictions require 

th a t |0 | <  1. This class of models proved extremely successful and much work has been 

done developing it to  greater generality.

Example 1 (An AR(1) Model)

Y (n )  = <f)Y{n — 1) +  e(n)

Where Y ( n )  is the values o f the process, at tim e n, 0  is a constant 
coefficient and  {e(n)} is a strict white noise process.

One way in which these models have been generalised is to  extend the autoregressive 
behaviour to  the noise term . Allowing both the determ inistic and noise term s in the model 
to depend on previous values gives us the more general Auto Regressive Moving Average 
(ARMA) model, a simple version of which is shown in Exam ple 2. For the process to be 
stationary  the values taken by the constant coefficients are under the same restrictions to 
those found in the simpler Autoregressive model.

Example 2 (An ARM A(1,1) Model)

Y( n )  — 0Y (n  — 1) =  e(n) — 0 e (n  — 1) (1.1)

Where Y ( n )  is the values o f the process, at time n, 0  and xj> are constant 
coefficients and (e(n)} is a strict white noise process.

Largely due to  the success of these models tim e series analysis has become a highly 

developed subject, and there are now well-established m ethods for fitting a wide range of 

models to  tim e series data. These m ethods are well docum ented in literature devoted to 

tim e series, including those by Box & Jenkins (1970), Brillinger (1975), Koopm ans (1995), 
Priestley (1981) and more recently Brockwell & Davis (1991) and Brockwell & Davies (2002).

To recognise the im portance of these models is not to  say th a t they do not have their 

lim itations. At their heart are two key assumptions, and the strength  of model in a  given 

context is directly related to  the strength  of its assum ptions. The two key assum ptions of 

which we speak in this case are th a t the  series is ‘s ta tionary ’ and th a t it is ‘linear’.
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• -Stationarity: Roughly speaking, stationarity refers to the property of a series that the 
distribution of future values remains constant through time. To put it more techni
cally, the probability distributions of the process are time-invariant. In practice there 
are different levels of stationarity (weak or second order) but we are only concerned 
with the general idea.

• Linearity: Where we refer to linearity we are requiring that the data has only a linear 
association with previous values. These linear relationships may extend beyond the 
previous value in the series, possibly even encompassing seasonal behaviour.

An alternative version of the ARMA model was proposed to deal with non-stationary 
series. If a time series appears to be non-stationary then we cannot use the traditional 
ARMA model. However, we may find that the first difference of the time series is itself 
stationary. If so then we could model this, the growth rate of the original series, using 
an ARMA model. This contraction is known as an Auto-Regressive Integrated Moving 
Average model (ARIMA). If we had a data series X ( n ), which is was non-stationary, and 
we defined the differenced series Z (n )

Z(n) = X(n)  -  X ( n  -  1)

Then fitting an ARIMA model to X(n)  would be equivalent to applying an ARMA model, 
as specified in (1.1), to Z(n).  We shall not be using ARIMA models in this research but 
the concept of working with a differenced series is important. It is a common theme in 
economic time series data where the growth rate, rather than the level, of a series is often 
modelled.

The assumptions of both linearity and stationarity are simplifications which may not 
hold in some circumstances. This would undermine the validity of a model that required 
those properties to be present. Specific applications may raise other queries that undermine 
the use of AR models. The area of application with which we are primarily concerned is 
the representation of econometric data, and any appraisal of the strengths and weaknesses 
of time series models will be done with reference to this context. Two examples of con
ditions under which linear models may be deemed unsuitable for use with economic time 
series are those showing evidence of time-irreversibility and those with varying volatility 
(Heteroskedasticity).

• Time-Irreversibility: In a time reversible model the statistical properties of a process 
are the same as those of the same process observed in reverse. Many authors find 
evidence of time irreversibility in observed time series. For instance, in business cycle 
fluctuations it is often documented that there is a tendency for downswings to be faster 
than upswings and Ramsey and Rothman (1996) find evidence of time irreversibility 
in many other macroeconomic variables. The Gaussian linear models we have been 
considering up to this point are generally considered unsuitable for modelling data
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exhibiting time irreversibility. Since economic time series are ‘true’ time series in 
that they are non-anticipating of future values, there is no theoretical reason why 
such processes should be reversible. There is no reason then that we should restrict 
ourselves to Gaussian linear models.

• Heteroskedasticity: Although not unique amongst time series, those in economics
often display periods during which they are more volatile and hence less predictable. 
We call series that display constant volatility Homoskedastic and those with varying 
volatility Heteroskedastic. The class of linear models are unsuitable for modelling 
this kind of phenomena.

There are many documented cases where Gaussian linear models are unsuitable. Often 
ways are found to transform the data so that these models can be used. The ARIMA models 
are an example of this. Despite modifications such as this, there remained the requirement 
for time series models capable of embracing these complexities rather than evading them.

1.2 Non-Linear Tim e Series M odels

Faced with these challenges some revision was necessary and, given the power and simplicity 
of the existing models, it seemed natural to adapt the ARMA models rather than rejecting 
them completely. Two obvious ways in which the limitations of the previous linear models 
could be overcome were to drop the requirement that noise be Gaussian or make an attempt 
to incorporate some non-linear dynamics into the behaviour of the model. But these 
modifications were not the only new approaches, most of which were developed to address 
a specific perceived failing of the existing models. Much work has been done in this area 
and many non-linear time series models have been proposed in recent years. Between them 
they are capable of describing a large variety of non-linear structures. A thorough study 
of the field is available from Tong (1990). We shall give a brief summary of some of the 
models that are of current interest. Though we could not hope to cover all the models on 
offer, most of the key innovations have been included here.

1.2 .1  P iecew ise  L inear M od els

An early attempt to update the ARMA models was the class of Piecewise-Linear models. 
These retained many of the strengths of the traditional ARMA models while adding one 
key development. They allowed the definition of a set of linear models rather than a single 
model. The whole set is then included in the definition of the process, which is able to 
switch from one (linear model) to another on meeting certain criteria. For example a 
simple threshold autoregressive model would switch from the behaviour of one linear model 
to the other when the current value of the process crossed a predetermined threshold. This 
general approach is very simple to understand for anyone with experience of ARMA models 
but is capable of complex behaviour that had previously been impossible to model. As a
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result many variations of this model have been developed, some quite specialised. • In a Self 
Exciting Threshold AutoRegressive (SETAR) model a partition of the real line is defined. 
Each interval is associated with a particular linear model. When the observed series Y (n) 
moves into a particular interval the movement of the process will be governed by the linear 
model associated with that interval. It is common for there to be a delay between a change 
in interval and a change in model. In the example given below it is the observed level of 
the series d steps earlier that controls the choice of models.

E xam ple  3 (A S E T A R (2 ;2 ,2 ) M odel)

Y(n)  — /  ^ ° ’0 (n — 0 0 ,2 ^(n — 2) +  e0,n I f
\  01,0 +  0 1 ,l^ (n  — 1) +  01 ,2^(n  — 2) +  £l,n I f

Y ( n  - d ) e R o  
Y( n  -  d) e Ri

Where 4> ĵ and d are constant coefficients and R q and R i are intervals forming a partition 
of the real line. Both eo,n and ei)7l are strict, white-noise processes.

Much of the innovation in the development of these models concerns methods for de
termining which of a set of models should be followed at a point in time. The ideas used 
in the SETAR models were extended even further in Open Loop Threshold Autoregressive 
models (TARSO). In these models the series no longer triggers its own transition from one 
regime (linear model) to another. In the TARSO models we have two processes running 
concurrently, an observable input and an observable output. The method of triggering 
a change is much the same as with the SETAR models with the regime inhabited by the 
observable output dependent on the value of the observable input series.

E xam ple  4 (A T A R S O (2 ; l , 1 ,1 ,1 ) M odel)

X(n)  — /  ^o,o +  <f>o,xX (n “  !) +  <t>o,YY{n) +  e0,n I f  Y (
~  1 0i,o +  0i,x*(™  -  1) +  0i,y r ( n )  +  elfn I f  Y (

n -  d) e Rq 

n — d) € R \

Where d and the 4> are constant coefficients and R q and R \ are intervals forming a partition 
of the real line. Both eo,n and eijTl are strict, white-noise processes.

In the TARSC model the two processes interact, with the observable output of one acting 
as the input to the other (i.e. (X ( n ) , Y ( n )) and (Y(n),  X ( n )).are both TARSO). Each of 
these models proposes more complex methods for determining the current regime of the 
process. One exception to this trend breaks the causal link between the level of the process 
and the regime it inhabited, and that is the Markov Switching model. In this variation the 
changes of regimes are determined not by the level of the process, but by an unobserved 
state variable typically modelled as a Markov chain.

E xam ple  5 (A Tw o-R egim e M arkov  C hain  D riven  M odel)

Y(n)  I  = ^ l Y ( n  ~  ^  ^  S^  = °
( =  (f>2Y (n  -  1) +  e(n) i f  S{n) =  1
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Where S (n ) is a two-state Markov chain taking values 0 and-1. Y(n)  are the observations 
while {e(n)} is a strict white noise process.

All these processes, however, share a common drawback. They are all dependent upon 
the idea of a structural break. By this we mean clear divisions, either in time or in level, 
between quite different behaviour patterns. In some circumstances, engineering perhaps, 
where the movement of a series may obey clearly understood laws we may know the position 
and nature of these structural breaks. Their application to economic applications may be 
less justified as we may not be able to say with certainty that any structural breaks exist. 
Before we could even start to fit models we would first have to estimate the number and 
nature of these breaks. There is a great danger here of increasing the number of levels 
until we had overfitted the model. Another problem with these methods is that we are still 
left with many of the weaknesses of linear models (see Learner (1978) and Campbell et al. 
(1997) for a consideration of this issue).

1.2.2 Sm ooth Threshold M odels

Some attempts have been made to free the threshold models from the problem of structural 
breaks by having one flexible model. This flexibility can be built in by allowing variation 
of the model itself over time. One way of doing this is to make the parameters of the model 
dependent on the earlier values (history) of the process. Amplitude Dependent Exponential 
Autoregressive models (EXPAR) introduce an exponential multiplier for the deterministic 
term that is dependent on the magnitude of previous observations. It allows the process to 
self regulate, bringing extreme values back towards a central level. In fact there are no pure 
constant terms in the expression at all, which has profound consequences for the behaviour 
of the model. Tong (1990) took the view that the resultant process may be "too restrictive 
for many applications other than pure vibrations".

Exam ple 6 (An EX PA R (2) M odel)

Y{n)  =  [a\ +  b\. exp(—cY 2(n — l))].Y(n — 1) +  [<22 +  6 2 - exp(—cY2{n — l))].Y(n — 2) +  e(n)

Where ai, bi and c are constant coefficients 
and (e(n)} is a strict white noise process.

An attempt to avoid the restrictions of a rigid regime structure incorporates a random 
element to the deterministic term in addition to the noise. These Random coefficient 
autoregressive (RCA) models allow for unpredictable changes to the definition of the model 
itself. This will still produce a symmetric process though and also adds more parameters 
to be estimated, namely the properties of the random term.

Exam ple 7 (An R C A (l)  M odel)

Y{n) — [a +  B (n)\.Y (n  — 1) +  e{n)
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Where B (n ) is a random variable independent of {e(n)}.

Another interesting method takes the idea of random multipliers and adapts it to the 
noise term rather than the deterministic term. This model, known as the Product Au
toregressive (PAR) model, is noticeably different to the other alternatives. This is quite 
distinct from the previous models we have covered in that it has dispensed with additive 
noise entirely. The stated form of this model is a little too simple to allow much flexibility 
but the central feature of it will reappear later in this chapter in the (more significant) 
ARCH models.

Exam ple 8 (A PA R  M odel)

Y  (n ) =  r)(ri)Ya(n — 1)

Where r)(n) is a sequence of independent, identically distributed positive random variables 
and a is a constant term.

1.2.3 Non Linear AutoRegressive Models.

Another attempt to generalise the existing models was to drop the requirement for linearity, 
without otherwise changing the approach. The autoregressive structure of the deterministic 
term in the model was simply extended to allow non-linear dependence on previous values 
of the process. This method has one obvious and one less obvious drawback. First it is 
clear that this will do nothing to address the Gaussian nature of the process, and secondly 
for higher orders of polynomial dependence on earlier values the process we have a problem 
of stability. Without some censoring of extreme values of the process it will only remain 
stable (or bounded) for certain polynomial relationships. This problem of stability can be 
addressed by limiting ourselves to the Bilinear (polynomial of order 2) case. The general 
case is termed the Bilinear Autoregressive Moving Average (BARMA) model. This has 
been used effectively to capture non-linearities with the data but does little to provide a 
flexible framework for modelling periodic changes in variance. The idea is introduced and 
explored in Granger h  Anderson (1978)

Exam ple 9 (A B A R M A (1,1,1,1) M odel)

Y  (n) =  <t>Y (n — 1) +  ipe(n) +  Ay (n — l)e(n — 1 )

Where <p, ip and A are constant coefficients and {e(n)} is the strict white 
noise process.
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1.2 .4  D eterm in istic  S ystem s

An extremely novel contribution to  the problem of non-linear series comes from the field 

of Chaos Theory. Relatively simple determ inistic systems of equations have been shown 

to display extremely complex behaviour. It seems unlikely th a t this new approach will 
prove as useful as it is appealing due to the nature of econometric processes. In economic 

tim e series we do not generally expect to  find the clear and rigid struc tu ra l relationships 
between factors th a t you may find in Physics, for instance. This leaves us w ith no real 
reason to  favour one kind of non-linearity over another which does not help us in model 

fitting. A nother concern is th a t should we embark upon fitting a suitable general model we 

would have no way to  conduct controlled experiments to  allow us to  estim ate param eters. 

Due to  the extreme sensitivity of these models to  initial conditions any error in the  estim ate 

of the  param eters could have an enormous effect on the behaviour of the final model. As a 

result it seems th a t this approach may rem ain a tantalising curiosity in econometric analysis 

ra ther than  a useful tool.

1.2 .5  C ond itional H eterosk ed astic ity

M any of these different models have proved extremely useful in various different areas of 
tim e series, bu t none have really a ttem pted  to  directly model the volatility observed in 
econometric data. The first really successful a ttem pt to do this was the introduction of 
the  ARCH model by Engle (1982). The two key features of the Autoregressive Conditional 
Heteroskedasticity (ARCH) model are the multiplicative error term  and the scaling factor 
dependent on previous values of the process. By combining these two features, both  seen 
before in other models, it is possible to  meet most of the requirem ents we have stated.

E xam p le  10 (A n  A R C H (2 ) M od el)

I f  Y ( n )  = e(n)y /V{n)

and V  (n) =  0O +  (f){Y2{n — 1) +  (f)2Y 2(n — 2) 

w ith  0 o >  0  and (f>±, 0 2  ^  0

Where are constant coefficients, and (c(n)} is white noise.

W hen Y( n )  and V( n)  are defined as in Exam ple 10 then Y( n )  is said to  follow an 
ARCH model. A further generalisation can be made to  this to  obtain the Generalised 
Autoregressive Heteroskedastic (GARCH) model, dropping the requirem ent for norm ality 
of the noise term . This leaves us w ith a model th a t is non-symmetric, non-Gaussian and can 
display heteroskedasticity. This is not to  say th a t ARCH is the end of the story. Though 
the new model was quite successful in describing volatility dynamics it has shown certain 
weaknesses. As w ith m any non-linear innovations the actual gain in term s of model fitting 

is relatively modest and this can overshadow the structural developments. The wide range
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of variations on ARCH reflects the enthusiasm for the idea- of modelling heteroskedasticity 
but it seems that the nature of the volatility modelled by ARCH is more suited to financial 
data than to many other areas.

1.3 Summary

As we can see, there has been a proliferation of ideas for developing time series models 
capable of displaying non-linear dynamics. Many of these models have achieved prominence 
in specific fields, but none have shown signs of achieving the same level of dominance the 
ARMA (and ARIMA) models had. This seems unlikely to change, regardless of future 
developments, given the breadth of the field of non-linear models. It is a mistake to think 
of non-linearity as being an extension to linearity. Rather, non-linearity should be seen as 
the whole, with linearity being one minor subset. It is possible models will be developed 
that try  to span this field incorporating many different non-linear terms, but these could 
become unwieldy. Is seems more likely that methods will be developed for identifying the 
dominant dynamics and a suitable choice made for modelling them.
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Hamilton’s New Approach

In his 1989 paper "A New Approach to the Economic Analysis of Non-Stationary Time 
Series and the Business Cycle ", Professor James Hamilton introduced a innovative method 
for modelling time series. We look briefly at the form of the model and the Bayesian filters 
he used to fit the model will be detailed. A consideration will be made of the influence of 
the paper and both the debate and development prompted by it.

2.1 Markov Switching M odels

Despite the stunning proliferation of non-linear time series models in recent years none have 
seemed likely to span a range of applications nearly so wide as that achieved by the linear 
models. These non-linear models often seem restricted to specific areas of use. Each model 
incorporates a different type of non-linearity, and does so using a different mechanism. The 
strength of each model where its features are appropriate becomes its weakness when they are 
not. Even when limiting ourselves to the field of economic time series the field is too wide for 
one model to dominate. Diebold (1998) is of the opinion that “...many of the non-linearities 
relevant in fields such as finance simply don’t seem to be important in macroeconomics...” 
and that volatility models, such as ARCH, were “...much more important in high-frequency 
financial data.” . He goes on to stress the relevance of regime switching of the Threshold 
models to macroeconomic forecasting.

The concept of regime-switching (as characterised by the Piecewise Linear models) has 
the capacity to fit neatly with the well established idea of business cycles. As far back 
as the thirties Keynes (1936) suggested that an economy fluctuated between longer periods 
of growth and short-lived but violent contractions. Where more than one regime appears 
to exist, each displaying (self-) consistent behaviour that differs from that of the other 
regime/s then a regime switching model may be appropriate. Under these conditions one 
simple model would struggle to capture the behaviour of the series, but switching between a 
small number of simple models may be sufficient. One of the criticisms of Piecewise Linear 
models is the requirement for structural breaks. These are the points where the process
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will switch from -one model to another. Unlike previous threshold models- the Markov 
switching model introduces switching between regimes that is not triggered by any quality 
or property of the series itself but by a hidden Markov chain independent of the observed 
series. The analysis undertaken by Hamilton (1989) looked at the first difference of the log 
of US GNP between 1952 and 1984. This can be seen as a natural extension of Neftci’s 
(Neftci (1984)) analysis of U.S. unemployment data. Where Neftci deduced the current 
state of the hidden process using the growth rate of unemployment, Hamilton postulates 
that the current state of the Markov chain is independent of the data, and "...only one of 
many influences governing the dynamic process...". The use of the hidden Markov chain in 
this way has the advantage that it "...does not suffer from some of the statistical biases that 
models of structural breaks do; the regime shifts are “identified” by the interaction between 
the data and the Markov chain, not by a priori inspection of the data." (Campbell et al. 
(1997)).

These models, despite their simplicity, are a flexible and effective tool for use with any 
data we suspect may display irregular cyclic behaviour. They retain much of the simplicity 
of the linear models and indeed linear models could be seen as a special case of switching 
models.

2 .1 .1  H a m ilto n ’s M od el

Early attempts to model the behaviour of economies faced the problem that many of the 
series were non-stationary. In order to progress economists focused on the growth rate of 
a series rather than their level. The assumption that underpinned much of the previous 
work on GNP figures is that the first difference of the log of GNP follows a linear station
ary process. The ‘New Approach’ that Hamilton introduced was "...of specifying that first 
differences of the observed series follow a non-linear process rather than a linear stationary 
process.". Further he proposed that the process could be effectively explained using a piece- 
wise linear model with switching between regimes controlled by a Markov chain independent 
of the visible series itself. He chose to use a chain with two regimes, expecting that these 
would represent the behaviour of the economy in periods of ‘slow’ and ‘fast’ growth. As 
it turned out these two regimes appeared to correspond to ‘growth’ and ‘recession’ states 
of the economy, fitting neatly into recognised measurements of previous business cycles. 
So closely did these states correspond to the published NBER estimates of the peaks and 
troughs of the business cycle that the research went on to propose that this kind of model 
would be useful as an "alternative objective algorithm" for determining and measuring their 
movements.

Now we shall specify the model in slightly more formal terms. For the original time 
series data we shall use the notation {z(n)}. This original series used is the level of real 
GNP measured at an annual rate in 1982 dollars. The series contains quarterly figures 
running from 1952: II until 1984:IV.

We transform this to obtain a new series {y(n)} by taking 100 times the difference in
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the log of {,z(n)}.

y(n) — 1 0 0 (ln(z(n)) — In (z(n  — 1 )))

It is proposed then, that this transformed variable can be modelled as a combination of a 
growth term  g(n) and a noise term e(n). The growth term corresponds to the growth rate 
of the economy and is dependent upon the regime of a two-state Markov Chain {S(n)}. He 
found that his results may suggest investigating a higher order Markov process.

y(n) =  g(n) +  e(n)

The Markov Chain can take the values 0 and 1 and the growth term is derived from this 
using:

g(n) =  (/i -  l0).s(n) +  l0 (2 .1 )

where lo and l\ are the two possible rates of growth (in regimes 0  and 1 respectively) and 
s(n) indicates the regime occupied by the unobserved Markov Chain at time n.

The transition between states is governed by a first order Markov process given by:

Pr[5(n) =  l |S (n  — 1 ) =  1 ] =  a

Pr[S(n) — 0|5(n — 1) =  1] =  1 — a

Pr[5(n) =  0|S(n — 1) =  0] =  b

Pr[5(n) =  l | 5 ( n - l ) = 0 ]  =  l - 6

He chose to model the residual error terms using an AR process with constant coefficients 
^  and "arbitrarily" set the number of lags to 4 although it seems likely that this choice was 
influenced by the fact the figures were quarterly. So we have the chain

y(n) = fa -  lo).s(n) +  Z0  +  e(n)

e(n) =  faefo  — 1 ) +  </>2e(n — 2 ) +  ... +  (f)re{n — r) +  e(n)

On to this autoregression for e(n) we add a Gaussian noise term (e(n)}. The process of 
building this model was influenced by an attempt to develop the model which allowed the 
computationally simplest maximum likelihood estimation. In addition to the model itself 
Hamilton proposes algorithms for use with this class of models.

2 .1 .2  Im p act o f  H a m ilto n ’s M o d el

Since its publication, Hamilton’s “seminal paper” (Kim et al. (2005)) has drawn a lot of 
attention. Applications of his model are numerous. For example Garcia (1998) applied 
his model to U.S. interest rates and inflation, Engle Sz Hamilton (1990) applied it to ex
change rates and Cecchetti et al. (1990) applied it to the stock market. In particular,
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for the measurement of macroeconomic fluctuations, the Markov switching model has be
come increasingly popular since Hamilton’s application of the technique to measure the U.S. 
business cycle. There have been a number of recent investigations of business cycles, in 
individual countries, with Markov switching models, including those of Lam (1990), Albert 
k  Chib (1993), Goodwin (1993), Acemoglu k  Scott (1994), Diebold k  Rudebusch (1996), 
Diebold et al. (1994), Hamilton k  Susmel (1994), McCulloch k  Tsay (1994), Ghysels (1994), 
Kim (1994), Kahler k  Marnet (1994), Krolzig k  Liitkepohl (1995), Sensier (1996), Clements 
k  Krolzig (1998), Boldin (1996), Krolzig (1997). There have also been studies in the analy
sis of international business cycles using similar models by Phillips (1991) and Filardo k  
Gordon (1994). These papers, inspired by Hamilton, can be broadly grouped into three 
categories.

• The first category comprises those who have applied the model, perhaps with some 
changes, in a different context. For instance, Goodwin simply takes the model and 
applies it to eight market economies. He finds only a little improvement over linear 
models and evidence that the model does not capture all the non-linearities for some 
economies. He also agrees that the model is valuable for dating business cycles. 
Acemoglu and Scott, after concluding that "strong non-linearities" exist in the UK 
labour market, successfully utilise the Markov switching model. The credibility of 
the model seems to have taken it beyond being an academic curiosity. We can find 
the ideas being applied in earnest by Buckle et al. (2002) in a New Zealand Treasury 
working paper to model growth and volatility regimes in the economy. They use 
several different models with three or four growth rates and multiple volatility regimes. 
They had little trouble fitting the models using maximum likelihood and the EM 
algorithm, and were again impressed by the usefulness of the model in tracking regime 
changes.

• The second category of papers concentrated on the theoretical and practical weak
nesses of Hamilton’s paper and offered alternative approaches. Hansen (1992) focuses 
on weaknesses, that Hamilton was aware of, with hypothesis testing of the model. 
He offers an alternative method for testing the fit of the model and suggests that a 
simple switching model (where the states arrive independently over time) would be 
more appropriate than a Markov switching model. He is unable to reject the hypoth
esis that the good fit of Hamilton’s original model is "simply due to sampling error" 
but finds his simple switching model, with more state dependence in the parameter 
values (a change Hamilton was to make later) fits far better than the original, linear, 
AR(4) model. Boldin (1996) is even more scathing when appraising the robustness of 
Hamilton’s original model. He find numerous local maxima when trying to obtain a 
Maximum Likelihood Estimate (MLE), a grave concern when using hill climbing op
timisation techniques. Curiously he only reported similar results to Hamilton when
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using exactly the same sample period and starting values. He also felt, as did Good
win, that a three regime model for GNP growth was "more robust and plausible".

•  The third, and final, category built upon Hamilton’s foundations to develop the idea 
further. Lam (1990) generalised the model to the case in which the autoregressive 
component need not contain a unit root and suggested an algorithm for fitting it. His 
paper is not conclusive on the issue of the relative merits of the vaxious stages of model, 
finding evidence to support each. Kim (1994) extends the Markov switching model to 
general state-space representation and adds the work previously done by Lam. He also 
claims a degree of success in improving efficiency in generating maximum likelihood 
estimations.

As we can see from this selection, there is both praise and criticism for parts of Hamilton’s 
paper. A true indication of the impact of the paper can be found in the fact that so much 
has been written dissecting (or building upon) his work.

2 .1 .3  P ossib le  D ev e lo p m en ts

We have heard already of many changes that have been, or could be, made to Hamilton’s 
model. Some attempt to generalise the model, leading perhaps to new classes of models 
developing, while others question specific assumptions or restrictions.

Many of the papers using this model concluded (or simply decided) that two-regimes 
were not enough. Three have been suggested when modelling European economies, up to 
four were used by Buckle, Haugh and Thomson but many more could be used.

Hamilton settled on dependence of his autoregressive component on up to four past 
values although this does not appear to have been a structural decision. Given the subjective 
nature of this decision and the developments in generalising the model, this, and many 
other questions, can be seen as more relevant to the application of the model rather than 
the development of the model itself. The various possibilities left to explore are likely to 
involve changing principles that will fundamentally change the structure, leading to a new 
model rather than a refined or alternative version of the old one.

2.2 F itting the Markov Switching M odel

This kind of estimation problem is sometimes known as a problem of Incomplete Data. We 
have a set of observations yjv =  (?/(l),y (2),..., y(iV)} that we propose have been generated 
by a model with structural parameters ©. We wish to make inference about © using 
yAr. The problem arises from the fact that the model does not obtain directly from ©. 
Instead it uses © to generate sat =  {s(l), s(2), •••, s(N)}  and obtains y^r from a combination 
of © and sjv- It is our inability to observe the values of sat (the missing data) that gives 
this type of problem its name.
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There are two different ways of approaching model- fitting by Maximum Likelihood in 
a case like this. The first is to attept to identify the regime history that allows us to 
maximise likelihood. We shall use this approach later and will refer to it as the Sequence 
Maximum Likelihood (SML). Sclove(1983) used this approach obtaining

f { y N, s N \®,TL)

Where n  are the initial conditions.
This was then maximised with respect to ©, n  and sjv. His result was therefore based 

on an imputed historical sequence for S(n). One of the notable weaknesses of this method is 
that imputing the history of S(n) greatly increases the number of variables to be estimated. 
This can lead to difficulties in maximising the likelihood function.

The second approach, and that favoured by Hamilton, is to maximise only with respect 
to © to obtain

f ( y N\ @, n )

This approach is based on ideas developed by Cosslett h  Lee (1985) and gave rise the 
Bayesian Smoothing algorithms used by Hamilton. As no attempt is made to recontruct 
the original state sequence only one pass through the data is required to obtain inference 
hence guaranteeing a bounded time to generate a likelihood figure. There is a potential 
weakness in this method in that it treats every interval between observations in isolation 
from the rest of the series deriving the likelihood of the series from the series of likelihoods. 
The algorithm is detailed below, first in simple terms, and then later in more detail.

2 .2 .1  T h e  B asic  F ilter

There axe two versions of the algorithm presented by Hamilton. The first is the Basic Filter, 
a simple and effective method for obtaining a likelihood value for each observation y{n) of 
the observed series. The full sample smoother extends this principle to allow inference 
to be made about the value of the missing data s(n) Using the whole sample rather than 
just the recent history. When using the basic filter a repetition of 5 simple steps for each 
observation will give us the Log-Likelihood for a set of parameter values.

We can summarise the algorithm in words.
Let us say we have been observing the series up to time n and have an estimate of the 
distribution of S (n ) based on the previous observations. This enables us to forecast the 
distribution of S(n  + 1). We can then modify this distribution using the likelihood of 
observing y(n ) in either regime. This, modified distribution, allows us to forecast S (n  +  
2) and so on. We obtain the likelihood of each observation y(n + 1) from the modified 
distribution of S (n +  1 ) as this is constucted from the likelihood in each regime, weighted by 
the inferred distribution between them.
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A more formal description of the method is given below. The notation we shall use is 
as follows

S(n) is the state of the Markov Chain at time n.

Y (n ) is the observed value at time n.

4>i are the coefficients of the AR process. 

a is the standard deviation of the Gaussian noise, 

r is the maximum lag of the AR process.

yn is the regime history (y(n), y(n -  1 ), ...y( 1 ), y(0 ),..., y { - r  +  1 )}

Note that [y(0),..., y(—r+1)] are the first few values that provide y( 1) with a history required 
as input for the rth lag autoregression.

The Basic Filter (for time n) accepts as input the joint conditional probability given all 
previously observed data.

Pr[5(n — 1) =  s(n — 1), S(n  — 2) =  s(n — 2),..., S(n — r) =  s(n — r ) |y n_i]

and has two outputs, concerning time n.
The joint conditional probability (for time n ) using all data up to, and including, time

n.

Pr[S'(n) =  s(n), S(n -  1 ) =  s(n  -  1 ),..., S(n — r +  1 ) =  s(n -  r +  l) |y n] 

and the conditional likelihood of the observation y(n )

f (y(n)  |y« -i)

Given the input at a point in time n  we apply the following 5 steps to find the output at 
time n  which then acts as the input at time n +  1 .

• Step 1: Forecast current distribution from past experience
By the Markov property of S(n)

Pr[5(n) =  s(n) ,S(n  -  1) =  s(n -  1),..., S(n -  r) = s(n -  r)|y„_i]

— Pr[5(n) - s(n)|5 ( ? 2  — 1) =  s(n — 1)] 

x Pr[S(n — 1) =  s(n — 1), S(n — 2) =  s(n — 2),..., S(n  — r) =  s(n — r ) |y n_i]
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• Step 2:- M odify the forecast distribution using current value
By incorporating the likelihood of each regime history having given rise to the obser
vation

f(y (n ) ,S (n )  = s ( n ) , S ( n  -  r) = s(n  -  r ) |y n_i)

=  f ( y ( n )\s (n ) =  s (n )> •••> S ( n - r )  = s(n -  r ), y n_i) 

x Pr[5(n) =  s(n),S(n  -  1) =  s(n -  1), ...,S(n -  r) =  s(n -  r)|y„_i]

Where we know that, if g(n) is defined as in 2.1

/(y (n)|S (n) =  5 (n), 5 (n  -  1) =  s(n -  1),..., 5 (n  -  r) =  s(n -  r ) ,y n_i)

V2 7rcr
exp - 2^ ( ( v W  ~  ^(n)) ~  i M y ( n  ~ k ) ~  y ( n  -  fc))])2

fe=i

• Step 3: Evaluate Likelihood of current observation
Summing over all probabilities

l l l
f(y{n)  |y „ -i)  = 5 1  -  S  f (y{n ) ,S (n )  = s ( n ) , S ( n - l )  = s ( n - l ) , . . .

s(n)=0 s(n—1)=0 s(n—r )= 0

S(n — r) = s(n — r ) |y n_i)

• Step 4: Obtain current distribution from probabilities
As we know that some value must be taken by S(n) we tranform from absolute prob
abilities to a distribution

Pr[5(n) =  s ( n ) ,5 ( n - l )  =  s ( n - l ) ,  . . . , 5 ( n - r )  =  « ( n - r ) |y n]
_  f (y (n ) ,S (n )  -  s (n ) ,S (n  -  1) =  s(n -  1 ), ...,S (n  -  r) =  s(n -  r ) |y w_i)

f(y(n)  |yn-i)

• Step 5: Adjust dim ension o f current distribution back to  r
By summing over the two regimes of S(n — r )
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Pr[S(n) =  s(n ) ,S (n  — 1) =  s(n — 1 ) , S ( n — r) = s(n — r + l)|yn]
l

=  ^ 2  Pr[5(n) =  s(n ),5 (n  -  1 ) =  s(n -  1 ), ...,5 (n  -  r) =  s(n -  r ) |y n]
s(n—r)=  0

The algorithm must be started with some initial distribution. This could be postulated 
or estimated. The simplest approach is to use the stationary distribution of the process, 
given the proposed parameter values. This is the method used by Hamilton. Another 
approach that has been suggested is to run the filter backwards and take the final distribution 
(at time n = 0 ), as this will allow the full set of observations to ‘suggest’ the most fitting 
initial distribution.

2 .2 .2  Full Sam ple S m ooth in g

The basic filter proposed by Hamilton is effective for evaluating the likelihood of an observed 
series, but has limitations when it comes to imputing the history of S(n). The full sample 
smoother is intended to "draw a more reliable inference about the lagged value of the 
state using currently available information" (Hamilton(1989)). The basic filter did make 
inference about the current regime s(n), but used only observations predating this i.e. 
{;y(m ) : m  ^  n}. The full sample smoother is intended to rectify this.

Summarising the algorithm in words.
From the results of the basic filter we have a set of inferred distributions. Each element in 
these distributions represents one unique value of the Markov chain
[5(n), S(n — 1 ),..., S(n — r  +  1)]. We take the first element and find the likelihood of the 
future observations of the series if  the Markov chain occupied this element at time n. We 
then do likewise for each of the other possible regimes and then modify the distribution 
between elements using the likelihood of the future observations. The resulting distributions 
are our full sample inference of {s(n)}.

The input to the Full Sample Smoother is the output of the Basic Filter (see Section 
2.2.1). We require the likelihood values of the observations and the regime distributions at 
each point. These are the starting points for the new algorithm.

/ ( 2/H |y n - i )  and

Pr[S(n) =  s(n), S(n -  1 ) =  s(n -  1 ),..., S(n -  r + 1 ) =  s(n -  r  +  l ) |y n]

The output from the Full Sample Smoother will be the regime distributions modified to 
include information from future values of the series, {y(n +  1), y(n  +  2),..., y(N)}

Pr[5(ra) =  s(n), S(n -  1) =  s(n -  1),..., S(n -  r +  1) =  s(n -  r +  l)|yw]
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To obtain the Full Sample Inference at a time n we apply the following steps:

• Step 1: Take one possible regime history
One such history may be

[S(k), S (k  — 1 ) , S(k -  r +  1 )] =  [s(k), s(k — 1 ) , s(k -  r +  1 )]

Start with the distribution

Pr[5(/c) =  s(k ) ,S (k  — 1) = s(k — 1), ...,S(k — r) = s(k — r + 1)] = (2 .2 )

f 1 I f  S(k) = s(k) h  ... & S(k  — r +  1 ) =  s(k -  r +  1)
I 0 Otherwise

• S tep  2 : R u n  th e  Basic F ilte r  from  th is  po in t
Start the basic filter from this point, n = k, and run it forward using (2.2) as an 
initial distribution. This will produce the following likelihood values for each future 
observation y(n)

f(y(n)\S(k)  =  s(k), S(k -  1 ) =  s(k -  1 ), ...,S(k - r  + l) = s(k  -  r +  l) ,y „ _ i)

• Step 3: Find the sm oothed probability
Use the future likelihood values to modify the current distribution to give the proba
bility for the condition [S(k), S (k  — 1),..., S(k  — r + 1 )] =  [s(k), s(k — 1),..., s(k — r  +  1)]. 
The modified probabilities are given by

Pr[5(fc) =  s(fc), ...,S(k -  r +  1) = s(k -  r +  l)|yjy]

=  Pr[S(fc) =  s(k) , ..., S(k  — r +  1) =  s(k -  r +  l)|yjfc)
f ( y ( k  +  l)|S(fc) =  3(fc),...,5(fe- r  +  1) - s(fc -  r  +  l ) , y fc) 

f { y { k  +  l)|yfe)
y f(y (k  + 2)\S(k)k =  s ( k ) , . . . , S ( k - r  +  1) =  s(k  -  r +  1), y fc+i) 

f (y (k  +  2)|y/c+i) 
f(VN\S(k)  =  g(fe)) . . . ,5 ( f e - r  +  1) = s ( k - r  + l ) , y N- i )  

f(VN\yN-i)
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• Step 4: R epeat Steps 1-3
Perform the steps 1-3 for each possible set of regimes [s(k), s(k — 1 ) , s(k — r +  1)]

• Step 5: Rescale to  obtain the Full Sample Inference
These values are the smoothed probabilities conditional on the values 
of [s(/c), s(k — 1 ) , s(k — r -f- 1 )] at time n = k. Standardising so they sum to 1 
will give the inferred distribution between states and the output of the Full Sample 
Smoother

This process is quite time intensive to use and complex to encode in its current form. In 
order to produce a set of smoothed probabilities we require many passes through the data 
set. If we have a data set {y(n ) : 1 ^  n  ^  N }  then we require:

1 pass of N  steps to complete the Basic Filter 

1 pass of N  — k steps for the kth of N  observations

TV— 1

Total number of steps required =  N  +  (N
71=1

There is a quicker way.

2 .2 .3  T h e  M a tr ix  A p p roach

When these Filters are implemented they are required to record large amounts of information 
as they operate in the form of distributions and likelihoods.

At the cost of even greater storage requirements it is possible to reduce the time required 
by the Full Sampler Smoothers. The key is to replace the mountain of iterations with 
some matrix algebra. This allows us to greatly reduce the number of steps required by 
removing much of the repetition. When performing the Bayesian steps given by Hamilton 
the probabilities are adjusted at every step to normalise them. As long as the cell values do 
not become too small (and we can correct them if they do) we can dispense with this step 
and represent the whole Filter in matrix form, normalising at the end of the process, and 
still arrive at the same figures. We shall consider the simplest case, with no autoregression, 
to keep the matrices manageable.

First we need to define some matrices:
The Forward Regime Transition matrix is given by F.

Where Fij — Pr[5(n +  1) =  j\S(n)  =  i]

And the Backward Regime Transition matrix by B.

- n )  = N  +
N ( N  + 1)

=  o(N2)

Where Bij — Pr[5(n — 1) =  j \S (n)  =  i\
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As we are dealing with the relatively straightforward case of a finite number of states in a 
irreducible matrix we will always be able to find a Backward Transformation matrix.

If we then define a series of (diagonal) Likelihood Matrices L(n).

Lik(n) =  f(y(n)\S{n)  =  k) i f  i = k 

and Lik(n) =  0  otherwise

Then we have:

and

/(y (n  +  l)|s(n) =  0 ) 1 0

f (y (n  + l)\s(n) = 1 ) _ 0  1

f ( y ( n -  l)|s(n) =  0 ) ’  1 0  '

f ( y ( n - l ) \ s { n )  = 1 ) 0  1

x F  x L(n  +  1) x

x B  x L{n -  1) x

Then, in general

f (y (n  +  1 ) , y(N)\s(n) = 0) 
f (y (n  +  1 ) , y(V )|s(n) =  1)

1  0

0  1
x F  x L(n + 1) x ... x F  x L (N ) x (2.3)

And of course

/ ( y ( l ) , . . . ,y ( n -  l)|s(n) =  0 ) 
/ ( y ( l ) , - ,y ( r c -  l)|s(n) =  1 )

1  0

0  1
x B  x L(n — 1) x ... x B  x L( 1) x 7T0

7Ti
(2.4)

Note that we can add an initial distribution II if we wish. We obtain the inference on 
S(n) by

f ( y N\ s ( n )  =  i ) = f ( y { l ) , . . . , y ( n - l )  \ s(n) = i) 

x f (y(n )\s (n ) = i) X f { y { n  + l),...,y (V ) | s (n)  =  i)

The inferred distribution is given by 

P r[S(n) -  i|yAr] =
f(YN\s{n) =  i)

f ( y N\ s ( n )  =  0) +  /(y jv |s(n) =  1)

At first sight this may not appear to achieve anything new. Indeed all we have done is 
perform the same calculation using matrices. The time saving can be found when we 
evaluate and then record two series of matrices, one moving forward through the series and
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the other moving backwards. This is done step by step by defining a Forward and Backward 
matrix for each observation. For the nth observation, y(n) we would have matrices F (n ) 
and B (n ) respectively. We start with stationary distributions II# and II# that we can 
either choose ourselves or obtain using the Filter.

F(N)  =  diagiUp) and B (  1) =  diagiYls)

Where I  is the Identity Matrix.
We can then we find the other matrices using

F ( n -  1) =  F x  Lin)  x F(n)

B (n  +  1) =  B  x L{n) x B{n)

This will give us a set of Ar Forward Matrices and N  Backward Matrices. We then store 
these and use them to determine the smoothed probabilities. We will require one more 
sweep through the data set to do this. Evaluating

/(yjv|s(n) =  0) = 1 0 x B{n) x x f(y(n)\s(n)  =  0 ) x 1 0 x F{n) x

and so on to find the probability densities for each regime. From these we can evaluate the 
distribution between states for this observation by rescaling so

Pr[s(n) -  Olyar] -
f(yN\s(n) = 0)

f{yN\s{n) = 0 ) +  f ( y N \s(n) = 1 )

We obtained this set of smoothed probabilities using

1 pass of N  steps to obtain the Forward Matrices 

1 pass of N  steps to obtain the Backward Matrices 

1 pass of N  steps to derive the probabilities

Requiring a total of 3N  steps, which is of order o{N). This is a significant improvement 
over the original application of the smoother.

2 .2 .4  F uture O bservation s

Of course this matrix approach is not limited to using the Full-sample. We can apply the 
same method when adding a fixed number of future observations to the inference. If we 
retain the notation of the last section and define

Fij -  Pr[5(n +  1) =  j\S(n) = i]
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and •

Lik{n) = Pr[y(n) =  y(n)|5(n) = k] i f  i  =  k

and Lik(n) =  0  otherwise

And we are at time t : and have our inferred distribution (based on all data up to and
including time t) for the current time point

Pr[S(n) =  0|y„]
Pr[S(n) =  l |y n]

In order to incorporate r  future value in the inference we work forward from t

Pr[5(n) =  0|y„] Pr[S(n) =  l |y n] 

x F  x L(n  +  1) x ... x F  x L(n  +  r) x

f (y{n  +  1), ...y(n +  r)\S{n) = 0, y n 
f (y (n  +  1 ), ...y{n +  r)\S{n) = 1 , y n

1  0  

0  1

thus including the future values in the inference.
This is almost the same method as for the Full Sample Smoother. Where the program

ming language chosen allows matrix operations this approach greatly simplifies the process 
(and performance) for more complex cases.

2 .2 .5  P erform ance

The improvement in performance can be easily demonstrated by measuring the time taken 
to derive the inferred distributions for the same data using the two different methods. We 
compare the evaluation of the likelihoods using both looping and matrices when working 
with a Markov process with N(r ) regimes.

First we examined the increasing run times for both methods, as the number of levels 
increases (see Table 2.1). We can see a huge difference between the times taken to obtain 
the inference. In both cases, though, the expected time seems to be increasing in a linear 
fashion.

Next we took the same 2-regime Markov Switching model and obtained full sample 
inference with sample of different lengths to see how this affected the performance. The 
results are displayed in Table 2.2. This time we find the expected time increases linearly 
for the Matrix method but exponentially for the Looping method.

The difference in performance is so great that it reduces the expected time for full 
sample inference down to roughly three times that required for running on the Basic Filter. 
When working with the Basic Filter it is often desirable to reduce the number of parameters 
requiring estimation by running the Filter in reverse to obtain the initial distribution. This 
can be done as part of the process of obtaining Full Sample Inference, allowing both methods
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Num ber of Tim e in Seconds
Regim es (R) M atrices Loop

1 0.2700 34.6500
2 0.2700 72.1730
3 0.2910 109.0070
4 0.3000 146.1100
5 0.3110 184.1050
6 0.3100 228.6590

Table 2.1: A comparison of the performance of the Matrix Method and the original Looping 
algorithm for performing Full Sample Inference for a Markov Switching Model with N(R) 
regimes.

Length of Tim e in Seconds
Series(N ) M atrix Loop

10 0.0100 0.1210
40 0.0500 0.9510
70 0.0800 2.8240
100 0.1100 5.7080
130 0.1500 9.5640
160 0.1700 14.4610

Table 2.2: A comparison of the performance of the Matrix Method and the original Looping 
algorithm for performing Full Sample Inference for a 2 regime Markov Switching Model with 
time series of length N.
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to be applied simultaneously, with considerable time savings.

2.3 The Pointer Filter

In Hamilton’s model we have two regimes, upper and lower, each consisting of one level. 
This allows the hidden Markov chain S(n)  two possible regimes to occupy for each point in 
the time series. But in order to correctly model the autoregression at the current time point 
we also require knowledge of its recent history. It is much easier to work with a Markov 
chain so we construct one chain from the current state and recent history. For instance, if we 
have a r th order autoregression then we define a chain V (n ) =  [S'(n), S ( n — 1),..., S ( n —r+1)]

If we continue to work with a 2-regime chain S (n ) then we can define the Markov chain, 
V (n), as a 1 -dimensional vector.

oIIIT i f  s(n) = 0 ,.. s(n — r +  2 ) =  0 , s(n — r +  1 ) =  0

V{n) = 1 i f  s(n) =  0 ,.. s(n — r  +  2 ) =  0 , s(n — r +  1 ) =  1

V(n) = 2 i f  s(n) =  0 ,...., s(n — r  +  2 ) =  1 , s(n — r  +  1 ) =  0

V(n) =  2r + 1  -  1 i f  s(n) = 1 ,.. ., s(n — r +  2 ) =  1 , s(n — r +  1 ) =  1

It is quite straightforward to construct a transition matrix for the process as each level of V  
can lead only to two others. Then we can obtain an initial distribution, as Hamilton did, 
by starting the process in the stationary state, between V (—r +  1 ) =  0 and V {—r +  1) =  1 
say, and applying the transition matrix r  times.

The only problem with this approach arises as we increase the complexity of the model. 
The dimensions of the distributions of V, and its transition matrix, increase with the power 
of the order of the autoregression.

The number of levels of V  =  2r+1

As r rises the number of levels (and hence calculations required) becomes very large very 
quickly. This explosion of levels can occur in another way, if we try to introduce more levels 
into the driving Markov signal for instance. If we were to introduce more levels to allow us 
to model a gradual transition in the growth rate <?(n), we find the levels rising much faster. 
For instance if we increase r  by 2 we quadruple the number of levels, but if we double r  we 
multiply the number of levels by 2 r .

The kind of econometric behaviour we are interested in modelling is the existence of 
periodic changes of behaviour. In general we are not so concerned with cases where these 
regime changes happen too frequently as this would give rise to mixtures of distributions 
less suitable for the application of our Bayesian Filters. If we consider only the cases where 
the switches are few and far between, there is an approximation that may help us. Rather 
than recording the precise state history in the distribution of the Markov process we retain
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Current Required for Previous 
State autoregression history

Figure 2.1: A visual representation of recent history of the Markov Chain S(n ) that is 
recorded using a Pointer chain W(n).

information about only the most recent switchpoints. In this case we construct a different 
Markov chain, W (n ) that will record the history of S(n) We shall construct a chain that 
records only the two most recent switchpoints.

We define W (n)  =  [u(n),d(n)] where u(ri) is the measurement at time n  of the time 
that has elapsed since the most recent upward switch (from S(k  — 1) =  0 to S(k) — 1 ) and 
d(n) as the time since the most recent switch down (from S(k  — 1 ) =  1 to S(k) = 0).

We are still concerned only with an autoregression of lag r  and a driving signal S(n ) 
of 2 levels. The most recent switch that could have taken place is at k =  n and if the 
last switch occured before n — r +  1 it will not directly affect the autoregression. If the 
last two switches occured before this point then we shall record the most recent as having 
occured at time n — r and the other at time n — r — 1. In order to use a Bayesian Filter 
on this we require a number of possible values of u(n) and d{n) of = r +  3. A visual 
representation for this history is given in Figure 2.1.

The Markov chain we define to contain this information is W(n)  and we would define 
the levels in the following way:

W(n)  =  0 */ u{n) =  n — N(w) +  1 and d{n) =  n - + 1
W{n) = 1 i f u(n) =  n — N(W) +  1 and d{n) = n — N^W) +  2
W(n)  =  2 i f u{n) =  n — N(W) + 1 and d(n) =  n -  N(W) + 3

W(n)  =  N {w) i f II 1 + to and d(n) = n  — iV(jy) +  1
W(n) = +  1 i f u(n) = n — N(W) +  2 and d(n) — n — JV(w) +  2

W(n) — — 1 i f  u(n) =  n and d(n) =  n

Of course certain of these levels will remain at probability 0  as two switches will not be 
allowed to occur at the same point. Examples of such levels are W (n ) =  0, W (n ) =  N(w) +1
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etc. The transition matrix is easy to construct since

u(n  +  1 ) =  u(n) +  1 ) and d(n +  1 ) =  mm(N(w),d(n) +  1 )

As long as
d(n +  1 ) 7  ̂u{n +  1 )

Unless a new switch occurs. We also know the regime at each point as if

u(n ) <  d(n) then s(n) = 1

And vice-versa for u{n) > d(n).
Overall this is hardly a simple alternative and care must be taken when transforming 

from regime representation {s(n),..., s(n  —r +  1)} to Pointer representation W(n), but it has 
the advantage of being less affected by the demands of incorporating the recent switching 
history into the Filter. The model was termed the Pointer model and an example of its 
use can be found on page 177. The results were encouraging in that it returned very 
similar estimates to the original smoother. Further tests to use the method to introduce 
gradual switching were less successful when the higher order autoregressions were added as 
the likelihood space appeared very complex and recognising convergence proved difficult. 
Despite this the results were positive enough to suggest that for very complex cases this 
may prove a useful way to make the burden of calculation manageable.
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Maximising Likelihood

Maximum Likelihood is a relatively straightforward and flexible method for fitting non-linear 
time series models. A model can be quickly applied to find the Likelihood of a particular set 
of parameter values using numerical methods. The more problematic part is exploring the 
parameter space to maximise this function. In this chapter we examine some of the options 
available for identifying the Maximum Likelihood Estimate.

3.1 N ature of the M odelling

The type of problem we are facing is that of parameter estimation with incomplete data. 
The nature of the missing data is a hidden ‘driving’ process influencing the observed series. 
We shall be assuming this hidden process to be Markov chain with constant transition 
probabilities. Of course because this process is not visible the regimes occupied by the 
process at different times are undefined variables. We are faced with a choice of whether 
or not to treat the history of regimes as parameters to be estimated. If so, then for a series 
of length N  we would add N  extra parameters. When working with Hamilton’s filter we 
avoid doing so but we are still faced with a parameter space of high dimension. To make 
matters worse there may be a number of dimensions which are strongly dependent on each 
other. In this kind of situation direct methods of obtaining parameter estimates are rarely 
available. We have to resort to the likelihood function to measure the suitability of a set 
of parameters and then use numerical optimisation methods to find the most suitable set. 
The most suitable set, as judged by this method, are known as the Maximum Likelihood 
Estimate (MLE). The process of optimising any function brings difficulties of its own. We 
examine several numerical methods for finding the MLE and discuss their suitability.

3.2 Hill Climbing

We need to find the ‘best’ estimates for the parameters we are studying. We do this 
by finding which set of parameter values gives the greatest likelihood value for the given
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sample. For many dimensioned parameter spaces the simple approach of exploring every 
point is impossible when considering continuous or unbounded variables as parameters. We 
need, then, to find another way of finding the MLE. Many methods are possible, with hill 
climbing being the simplest. The idea behind the hill climbing algorithm is that if we 
move closer to the MLE our likelihood value will rise, due to the continuous nature of the 
likelihood function. In-fact if the distribution of the likelihood function is unimodal then 
this is a reliable and effective method. In order to maximise the MLE we simply look 
at gradient of the MLE and look at which ‘direction’ in parameter space will give us the 
greatest gain.

3.2.1 The Hill Climbing Algorithm

The concept behind this method is simple but there are many ways of applying it. In simple 
terms the likelihood is calculated at a point in parameter space. If we obtain the likelihood 
in a selection of local points then we can estimate the ‘gradient’ of the likelihood function 
relative to changes in each of the parameters. From this an optimum vector can be found 
that will give the direction of movement in parameter space that will result in the greatest 
increase in likelihood. By repeatedly moving and then recalculating the optimum vector 
a journey is taken through parameter space. In a simple distribution with only one local 
maximum this sequence of steps should always lead us towards the MLE. As the gradient 
at the current point refers to an arbitrarily small step, if our step does not take us to a 
higher level of likelihood then our step was too long. By only stepping to a point with 
a higher likelihood value we move ’uphill’ (eventually) taking us close to the MLE. This 
approach sounds straightforward to apply and indeed can be. The real complexity arises 
from the many techniques that are available for optimising the movement of the process, by 
controlling the length of the steps taken. The real weakness of this method is exposed when 
there are multiple local maxima in the likelihood function. In this case the journey, blindly 
climbing uphill, can become ‘trapped’ in one of the local maxima and never find its way to 
the global maximum, the MLE. Whether or not this happens depends solely on the choice 
of starting point, and so a wide range of possible starting points would have to be used 
to ensure all maxima were encountered. Even if we are careful, using several alternative 
starting points, if we are dealing with a sufficiently complex likelihood function then this 
method could not be relied upon to locate the MLE.

3.2.2 Hill Climbing in practice

The algorithm is relatively simple to understand and implement. The only complexity is 
deciding on the length of the steps. If step lengths are chosen too short the journey to the 
MLE is very slow but if the step lengths are too long then the process can become trapped 
by the topography of the likelihood function. For this reason the algorithm will require 
the capacity to adjust the step length when a proposed movement is rejected. As there
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is no random element in the algorithm the movement is largely deterministic (subject to 
numerical precision) with the result being determined by the choice of starting point. If you 
do not require any information other than the MLE then this method can be very effective. •

When first presenting the Markov switching model Hamilton used a hill climbing algo
rithm to maximise the likelihood of a parameter set. In particular he applied a Davidson- 
Fletcher-Powell routine. He found the models were "...relatively robust with respect to a 
broad range of start-up values". As we were less concerned by the efficiency of the model 
fitting we applied a somewhat cruder routine which, nevertheless, used the hill climbing 
principle. We found the same robustness, not just with the US GNP data but with data 
sets generated for the purpose of testing convergence.

3.3 Markov Chain M onte Carlo

We are sometimes required to make inference about parameters for a given set of data where 
the model has a complex, high dimensional probability distribution. We do not always find 
these distributions easy to work with, or even defined in some cases. We may be faced, 
for instance, with hierarchical models, mixture models or an incomplete set of data. In 
these situations we need a simple and flexible method which, nevertheless has the power 
to provide answers to a wide range of different problems. The rapid advance in processor 
speeds and storage capacity in the last few decades has made it practical to use iterative 
methods evaluated through simple computer programs. One way we can achieve this is 
by utilising the Monte Carlo principle. According to this we can learn anything we want 
about a variable by sampling its probability density function many times. This approach 
was first anticipated in the first half of the 20th century by Metropolis &; Ulam (1949).

3.3.1 The MCMC Algorithm

In Monte Carlo integration we draw samples from the required distribution and form sample 
averages to approximate expectations. The principle of the Markov Chain Monte Carlo 
(MCMC) is to obtain these samples using a specially constructed Markov chain. There are 
many special cases of MCMC with distinct ways of constructing these chains, each having 
its own strengths and weaknesses. In the course of our work we used one particular ver
sion of MCMC. This was the Metropolis algorithm called random walk Metropolis. Using 
this method we initiate a random walk around the model’s parameter space in such a way 
as to concentrate on the high probability areas. From the journey of the process we can 
recover the posterior distribution without any recourse to asymptotically valid approximar- 
tions about the shape of the likelihood. At some points we utilised the Single Component 
Metropolis-Hastings that updated only one parameter at a time while at other points we 
allowed the process to change several parameters simultaneously.

The process starts by choosing the initial point. From here new parameters are chosen 
at random by drawing a value from the proposal density. The proposal density of a point
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is some distribution (its actual form is not too important though under the Metropolis 
algorithm it must be symmetric) that may depend on the previous value of the parameter. 
The method we chose was to use independent Normal distributions to update each parameter 
seperately. As a result the acceptance probability was then calculated by taking the ratio of 
the likelihood values of the model at the current and the proposed point. This will be set to 
1 if the move increases likelihood. The new point is then accepted with this probability and 
rejected otherwise. It is easy to see that this process is a Markov Chain because the choice 
of proposed point depends only upon the current location. By this series of proposed and 
accepted points the process will, ‘walk’ around the parameter space concentrating on those 
areas with high likelihood. In fact once the process has settled down to the areas of high 
likelihood the process acquires the useful property of having as its stationary distribution 
the multivariate density we are wishing to study. Once in this state we can draw samples 
from this Markov Chain and use them to estimate any function of the distribution. We 
can, for instance, easily estimate the marginal distribution of the individual parameters to 
find their expected values and confidence intervals.

3.3.2 MCMC in Practice

There are potential problems when using MCMC methods. These are similar in nature 
to those faced when using hill climbing methods. If the proposal density is too narrow 
the Markov chain will not explore the distribution very quickly, leading to problem of slow 
‘mixing’. On the other hand if the proposal density is too wide then many of the proposed 
points will be simply rejected giving us fewer points. The points the process visits make 
up the sample that we use to represent the distribution and the more complex the shape of 
the distribution the more we require. Another problem shared with hill climbing methods 
concerns the unknown nature of the density function we are exploring. As we do not 
know its actual shape we cannot be sure that the process fully explores all key areas of 
the distribution. If it were to ignore certain alternative modes of a multimodal density we 
would not necessarily be aware of it as the process may converge to a different portion of 
the distribution. We can run multiple chains from different starting points but this will 
not always solve the problem as they may also converge incorrectly. As we increase the 
number of chains we are using we are slowing the process down and collecting progressively 
smaller samples to make our inference from. So although multiple chains can be a useful 
tool it is difficult to know how many would be enough. We can try to broaden the support 
of the proposal function to allow the process to ‘jump’ between alternative modes but 
this will increase the number of rejected moves which may reduce the rate of mixing. In 
more complex cases it may be necessary first to explore the rough characteristics of the 
multivariate distribution to identify potential problems before we start inference in earnest. 
There are also many ‘fixes’ that we can apply, but none of these will fully overcome the 
weaknesses of the system when dealing with potentially multi-modal densities.

Despite these concerns the method is incredibly simple to apply although to ensure
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convergence and obtain good estimates of confidence intervals, for instance, can be quite 
time consuming. The algorithm also has the advantage that it can be easily adapted to 
work as a random walking hill climber by only accepting points that increase likelihood 
making a seperate algorithm for hill climbing unecessary. We used this random walking 
version for finding MLEs and also in its true form for obtaining marginal distributions of 
the parameter estimates (and hence confidence intervals) when fitting models.

Hansen (1992) applied Monte Carlo simulation methods to Hamilton’s model and dis
cussed the suitability of those methods to this kind of problem. Although we are concerned 
with MCMC methods some of his criticisms are of interest to us. He points out that the 
likelihood function of Hamilton’s model is extremely ill behaved with numerous local optima 
and the question of which of these are found is heavily dependent on the starting point of 
the chain. He advises cautious interpretation of the results.

3.4 The EM algorithm

Dempster k  Rubin (1977) describe their EM algorithm as "a broadly applicable algorithm 
for computing maximum likelihood estimates from incomplete data". The principle behind 
the algorithm was not entirely new, Hartley (1958) had applied similar methods, while some 
of the theory had been presented by Orchard k  Woodbury (1972) and Sundberg (1974). 
When working with Hidden Markov Models it is sometimes known as the Baum-Welch al
gorithm, in reference to the ideas proposed in Baum et al. (1970). It is on this, specialised, 
version we will be concentrating. The purpose of the algorithm is to ensure better perfor
mance of Maximum Likelihood Esimation when working with complex likelihood functions 
that cannot be easily maximised numerically.

3.4.1 The EM Algorithm

Application of the algorithm involves two steps, the ’E ’ (or Expectation step) and the ’M’ 
(or Maximisation) step. The term ‘algorithm’ may be misleading since no single procedure 
of steps can be specified and that "detailed applications vary widely in complexity and 
feasability". The method, as it concerns us, works in the following way. We have a set of 
observed data {y(n)} and propose a set of starting values for the parameters ©i describing 
the hidden Markov process. The filter proposed by Hamilton is used to collect the complete 
set of smoothed probabilities using our current parameter estimates ©i. These are then 
used to reweight the observed data. W ith this weighted data we perform a series of simple 
sample statistics of OLS regressions. These will give us new estimates of the parameters 
controlling the movement of the process, ©2 - These new estimates are, in turn, used to 
produce more smoothed probabilities and so on. Each such calculation of probabilities and 
reweighting of the data can be shown to increase the value of the likelihood function. A 
fuller explanation of the process for this case, and others, can be found in Hamilton (1990).



3.5. THE MAP ALGORITHM 35

3.4.2 The EM Algorithm in Practice

The EM algorithm has been successfully applied to a wide range of different problems. The 
area of hidden Markov models is just one of these. The algorithm is generally well regarded 
and this is in no small part due to the two monotonicity properties. The convergence to 
the MLE is monotone and the value of the likelihood function increases with each iteration. 
Hamilton concedes that he found the algorithm robust with respect to starting values and 
that it offered a "vast improvement in efficiency" over earlier methods.

There are two potential problems with the EM algorithm generally. The first is that 
each application requires a different specification and so small changes to a model will result 
in changes to the required form of the algorithm. The second criticism of the algorithm 
focuses on the rate of convergence. While the initial steps of the algorithm are well chosen 
the rate of convergence tends to slow as it approaches the MLE. These factors make the 
EM algorithm a powerful tool, but where the specification of the models changes frequently 
or the likely location of the MLE is already known simpler methods may be more desirable.

3.5 The M A P algorithm

Kim (1993) suggested an alternative two-stage estimation method. He bases this method 
on the Maximum A Posteriori decision rule.

The sequence of inferred states of the hidden Markov chain (s(n)} can be obtained 
through the use of the MAP decision rule. Kim shows that it is a solution path of Bell
m an’s Dynamic Programming algorithm. Monte Carlo experiments peformed by Kim 
demonstrate that this method will outperform Hamilton’s method when measured against 
the misclassification of states. He also found that the dating of the business cycles of US- 
GNP generated by the MAP approach were closer to those published by the NBER that 
when using Hamilton’s method.

3.6 Summary and Conclusions

We have looked at the main alternatives for optimising the likelihood of a model. At 
different times we will require different things from this fitting process but one thing remains 
true. As a whole in our research we have been less interested in the efficiency of the fitting 
methods and more interested in their robustness. We have also frequently had a rough idea 
of the location of the MLE and the time to explore the likelihood space.

The hill climbers offer the simplest implementation but are relatively poor when it comes 
to efficiency, being very prone to missing the global maxima.

The EM algorithm is extremely effective at finding the higher likelihood region of the 
parameter space but quite slow to converge.

MCMC methods can be extremely useful for obtaining information such as the shape of 
the likelihood space close to the MLE. This makes them invaluable for finding the standard
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error or confidence intervals of estimates.
We have not implemented the MAP method in order to assess its suitability and only 

include mention of it here for sake of completeness.
Given that our requirement has been to test the difference between similar models rather 

than to analyse new time series we tend to favour the simpler methods. It is necessary for 
us to constantly adapt and develop our routines making any method with a comparatively 
high implementation time (such as the EM algorithm) undesirable. The approximate 
location of the solutions we seek are usually already known to us, through the results of the 
neighbouring models and we will usually start the optimisation algorithms from very close 
to their final solutions. As a result we will tend to work with very simple hill climbing 
algorithms, but perform repeated optimisations from different starting positions.
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The Filtered Markov Process

In this chapter we introduce a continuous time Markov process incorporating gradual switch
ing dynamics, and discuss its interesting points. We also present theoretical expressions for 
the transition probabilities, distribution functions and moments.

4.1 Gradual Switching H istory

Hamilton’s model represented a significant new chapter in the development of time series 
models, resulting from the challenge to address the existence of certain types of non-linearity. 
It is an example of one of the many steps that allow the subject area to progress. Each 
progression represents the availability of more sophisticated or flexible models. There is 
no end to this process, with the weaknesses of these new models becoming the research 
areas of the future. One such subject area is that of Markov Switching Regression models, 
like Hamilton’s model. Within this subject area, one such area for future research is 
the assumption of instantaneous transition from regime to regime. Whether or not this 
assumption is realistic will depend upon what behaviour the model is being used to describe. 
In Hamilton’s case the model is applied to the growth rate of US postwar GDP. In this kind 
of macroeconomic modelling is is unlikely that any regime transition will be immediate. The 
growth rate of an economy depends on the behaviour and output of countless businesses and 
industries. Whether or not we should consider this ‘inertia’ depends upon the relationship 
between the length of this transition period and the interval between observations. Despite 
this kind of structural model being fifteen years old surprisingly little work has been done 
on gradual switching models.

There are several decisions facing anyone wanting to model a gradually switching process:

• Is the form of the transition symmetric?

• How long should a transition take?

• W hat form should a transition take?
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The answers to each of these questions will then have significant implications for the 
model and what tools are open to us. For instance if the transition interval does not have 
clear start or end points this raises real problems for the sequential Bayesian method of fitting 
used by Hamilton. It also raises the possibility of the end of one transition overlapping 
with the beginning of the next. How to handle this will be an important question that will 
need a clear answer in order for us to construct our process. The duration of a switch is 
intimately connected with the form the switch takes. Several, quite different, choices have 
been made by different authors to find a function that can provide a smooth transition from 
one state to another.

4.1.1 Existing Research

In Bacon Sz W atts (1971) we are presented with what appears to be a clear case of a straight 
line abruptly changing gradient mid-series. They felt that the change might not be so sudden 
as it appeared and so introduced a transition function, dependent upon the distance from 
the switch point. They were fairly unconcerned by the precise choice of function, from a list 
of suitable ones, arguing that this was not crucial given the similarities of shape. They fitted 
this model to data collected on the behaviour of stagnant surface layer height in a controlled 
flow of water and conclusively rejected the assumption of instantaneous transition. The 
advantages of the kind of data they were working with was good prior knowledge about the 
behaviour in the two regimes.

In Ohtani et al. (1990) a transition function is also used to manage the switch from one 
model to another but the author opted for a more complex arrangement. An assumption 
was made that the switch was symmetric. Instead of defining the transition around a clear 
switch point they defined a transition interval, measured by its start and end points. This 
had the advantage of restricting the effects of a switch to within certain bounds. This more 
general approach also allowed a wide range of different transition patterns with differing 
transition rates and symmetry. The exact order of the process is determined by the AIC 
criteria. In applying the model to an import demand function for Japan before and after 
the second oil crisis (data from 1975 to 1986) they claim only that the gradual switching 
model is ’plausible’.

Prompted by an inability to fit models to data for labour productivity growth Varoufakis 
&; Sapsford (1991) tried developing their regression model. They had originally tried one 
strucutural break, then two, but were still unable to get a really convincing model. Accept
ing that the data displayed behaviour their models were unable to capture they introduced 
a gradual switch between the different regression models. The transition function they used 
was based on the Normal CDF. This development of their model resulted in a huge jump 
(upwards) for the likelihood function. They concluded that the switch was not immediate, 
suggesting that the series took eight years to fully settle down to the new regime after a 
switch.

In another example of a gradual switching model Konno Sz Fukushige (2002) focused on
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bilateral import functions, and the effects on them of the Canada-US Free Trade Agreement 
(CUSTA). The particular set of data is concerned with the introduction of the CUSTA and 
the way in which the import functions adjusted during its implementation. An adaptation 
of Ohtani’s model was used but the transition function was changed to one of arbitrary 
order. They conclude that the transition on the US side is almost immediate whereas 
on the Canadian side the adjustment is slow, taking almost the full 10 years the actual 
structural transition took.

It is worth noting, before we move on, that this is not the only way to model a gradual 
switch. Also available are models which incorporate parameter variation. These kinds of 
models, however, should probably not be considered as a simple extension of the Markov 
Switching Model.

4.1.2 Shortcomings of the Research

The study of gradual switching models is still in its infancy. Despite the first of these 
papers being 30 years old we have still not progressed much beyond a mixture of regression 
models. The range of papers available on the subject appears impressive but masks a major 
restriction. In almost all of the cases the data that are being analysed are known (or at 
least strongly believed) to contain one switch, and one switch only. As such the problem 
faced by the authors is to somehow reconcile the difference between the pre-switch and 
post-switch data. There do not appear to be any serious attempts to establish a model 
that incorporates gradual switching as an inherent property of its structure. It is likely that 
this is due to the effectiveness of the existing models and the limited advantages on offer 
for the majority of cases. Not least there is the problem of collecting sufficient evidence for 
inference. Even if the transition affects many observations after the switch, if the switching 
is infrequent there will be little information providing inference on the switching period. 
This could easily be swamped with only a moderate amount of noise. It is inevitable, 
however, that there would be challenges to overcome as in any open area of research. These 
models are worth pursuing for their own sake regardless of their possibly limited appeal.

4.2 Introducing the m odel

The path we have chosen in this research is to explore this idea of a gradual regime switching 
Markov model. To do this we must question an implicit assumption, namely the instanta
neous nature of the change from one regime to another. If we assume that this change is 
not immediate we require a model that will allow the series to adjust, slowly moving from 
the level associated with the previous regime to that of the current regime. In particular it 
would be interesting for us to consider the possibility of a gradual switching model driven 
by a continuous time Markov process. We shall call this hidden driving process the signal 
(or driving signal). For the moment we shall consider the driving process to have two levels,
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Figure 4.1: A representation of a simple RC network (containing a Resistor and Capacitor) 
with Input and Output terminals marked.

although we can generalise to include more if necessary. It is very important at this stage 
to make our notation clear when referring to the signal.

D efin ition  1 When introducing Hamilton’s model we used S (n ) to refer to the index of 
the current level of the signal where S (n ) could take the values {0,1}. We then used lo 
and li to refer to the level of the growth rate if  S{n) =  0 and S (n ) =  1 respectively. At 
times we will have to consider a more general case with N ^  regimes. In order to keep the 
notation simple, for S (n ) =  i, when we refer to the regime of the driving signal we shall 
always mean i, and when we refer to the level of the driving signal we always mean li. In 
some circumstances we may refer to the sta te  of the signal. This will be taken to mean the 
combined state comprising the regime and level of the signal, (S ( n ) , l $ ^ ) .

To recognise the fact we are now considering a continuous time process, rather than a 
discrete one as in Hamilton, we shall use t to denote the time rather than n. The observable 
process is given by X (t ). We define the process by setting the rate of change of the observed 
signal X(t)  to be inversely proportional to the distance of X (t)  from the level of the driving 
signal ls(t) such that this separation will reduce with time. This will give us a behaviour 
pattern governed by the negative exponential distribution.

There already exists an analogous situation in physics where an electrical circuit con
sisting of a resistor and a capacitor (an RC network) adapts to a change in voltage. In 
Figure 4.1 we show an example of an RC network. The input voltage is applied across the 
‘Input’ Terminals. The Output Signal is measured across the ‘Output’ Terminals. The 
principle behind the circuit is quite simple. When voltage is first applied the capacitor 
(C ) is uncharged and does not impede the current flow towards the earth. As the capac
itor charges it resists the flow of current leading to a greater voltage across the Output 
Terminals. Eventually, if the input voltage remains constant, the Output signal will seem 
to reach an equilibrium as the Input voltage becomes balanced by the Voltage across the 
capacitor. If the Input voltage is removed the capacitor now discharges itself slowly tending 
towards a state of complete discharge. The rates of charging and discharging are identical
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Figure 4.2: An example of the observed output voltage for the RC circuit if r  is large. The 
input voltage is a two-level Markov process.

(in magnitude), both being proportional to the difference between the Input Voltage and 
the Voltage across the capacitor. As a result we get a certain symmetry of style in the up 
and down movements of the Output Signal. This rate of dis/charging is affected by the 
properties of the Resistor and Capacity with the scaling constant r  given by.

r  =  RC

We shall often refer to this as the Time Scaling Factor. The greater the product of the 
capacitance and resistance the slower the process moves.

In Figure 4.2, we Rave given an example of a typical process. The Input signal can only 
takes voltages Iq = 0 and l\ — 1, and periodically changes from one level to another. When 
the voltage is 0 the process tends towards 0 {X(t) —» 0) and when the voltage is 1, we see 
X(t)  —> 1. In the second example shown in Figure 4.3, a lower value of r  leads to a faster 
convergence between the Input and Output voltages.

We are not intending to work with electrical circuits but this method of visualising the 
process is an invaluable tool to understanding its dynamics. This idea is not a new one to 
the science of signal processing. Wonham (1959), Fitzhugh (1983) and Pawula (1986) have 
already worked with this type of process deriving transition probabilities and conditional 
distributions. We shall reproduce some of their work here, adjusting their notation to match 
ours. They focus on the two-regime case and mostly on a symmetric driving signal. This 
type of process also falls within the broad class of piecewise-determinstic Markov processes 
introduced and explored in Davis (1984) although we shall not be using any of his results 
here. The multi-state Input signal has been discussed in Jalali (2003c). Some of the results 
he obtained are discussed in the next Section.
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Figure 4.3: An example of the observed output voltage for the RC circuit if r  is small. The 
input voltage is a two-level Markov process.

4.3 D istributions o f the Process

Now that we have proposed a stochastic process we should explore it theoretically. The 
analagy of the RC network can be used to obtain the fundamental rules of movement. From 
these we can find expression for the distributions and moments. The following results were 
proposed in Jalali (2003a).

4.3.1 M ovement of the Process

Let us take a circuit, like that in Figure 4.1, with a resistor (of resistance R ) and a capacitor 
(of Capacitance C ). The voltage across the Input terminals is a constant V  and that across 
the output terminals is X  and a current i is flowing. The charge on the capacitor C is 
given by Q. Electrical charge accumulates at the capacitor at a rate of i.dt and produces a 
potential across the capacitor (and output terminals) of Q/C. The current i can be written 
as

i = ^Q = c <^_
dt dt

But also
V - X  

l ~  R
Equating these two expressions we get

d X  V - X  
~dt ~  RC

Solving this we find an expression for the output voltage at time t, denoted by X  (t)
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X ( t ) = V  — cexp J  where c is a constant of integration

Incorporating initial conditions (X(0) =  x(0)), we can rewrite this

X(t)  = V - ( V - x ( 0 ) ) e x p ( - ^ d  

W ithout loss of generality we can take a unit time to be RC seconds, in which case

X{t) = V - ( V -  x(0 ))e -t

We can see clearly from this that if the Input voltage V  is kept constant the Output voltage 
Xt  will tend towards V  regardless of which is greater. If we relax the condition that V  be 
constant and instead allow it to alternate periodically between values 0  and 1 , then once 
0 < X{t \)  < 1 then 0 < X f a )  < 1 for <2 > t\. As a result the stationary distribution will 
only take values for X  in the interval 0 < x  < 1.

We now go further and replace V  with our continuous time Markov process £(£), with 
regimes i that correspond to levels of voltage U. The transition intensities of S{t) while in 
regime 0 and regime 1 are given by a  and (3 respectively. We have introduced a time-scaling 
factor RC  and we shall represent this by the constant r . In general it is often easier for 
us to rescale our measurement of time to ensure that r  =  1. In this standardised case we 
shall replace our transition intensities with their rescaled counterparts a and b, where

a =  ar  

b — fir

The level of the voltage at time t will be given by X ( t ), which will be controlled by the 
Markov process S( t ) through l$(t) (which is defined by ls ^  =  l{ when S(t) = i ) and the 
following movement rule

X ( t  + dt) = ls{t) -  (ls{t) -  x(t)) exp C4-1)

Where the regime of S( t ) (and hence the level of ls(t)) is constant during the interval 
[t, t +  dt). We can now drop the analagy of the RC  circuit as we have Markov process, such 
as we would find if we viewed the driving signal S(t) through a low-pass filter. It is from 
this the name Filtered Markov process derives.

4.3.2 The Stationary Distribution

We shall use the notation defined above and add several new terms. We shall take x(0) to 
be equal to the value of the process X( t)  at time t =  0. Given the movement rule (4.1) we 
know that eventually, with probability 1, we must have 0 < X( t)  < 1. However we shall
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insist on the initial-restriction 0 < X(0) < 1. To simplify notation in this section we shall 
take Iq =0 ,  li = 1 .

We shall denote by F{x) the stationary cumulative distribution function (CDF). The
CDFs conditional on S{t) =  i are denoted by Fi(x). Since S(t)  is a two-regime Markov
process we can express the transition probabilities in the form of the infinitessimal transition 
matrix. As we will be working with the standardised process this will be

—a a 
b - b

Note that this will have equilibrium probabilities

Pr[S (t) =  0] =  (4.2)a + b
Pr[S(t) =  l] =  (4-3)a +  o

Using these equilibrium probabilities (4.2) and (4.3) we can say that

P r [ S ( t ) = O k X ( t ) ^ x ]  =  — b— F0(x)
a + b

Pr [S( t ) =  1 k  X(t)  s£ x] =  - ^ ^ F i i x )

Given the fact that this solution is stationary we can also say that

Pr [S{t - d t )  = 0 k  X ( t  -  dt) < x*l =  ~ ^ — F0{x*)
a + b

1Pi[S(t-dt)  = l k X ( t - d t ) ^ x * ]  = Fi(x*)
a + b

Now if no transitions have occured during the interval [t — dt , £), then

{S(t) =  0 k  X( t)  ^  x} is equivalent to {S(t  — dt) =  0 k  X { t  — dt) ^  xe~^~dt }̂

Whereas if one transition did take place during the interval [t — dt,t)  then

{S(t) — O k  X{t)  ^  x } is equivalent to {S(t — dt) =  1 k  X ( t  — dt) ^  x + 0(dt)}

The probability of more than one switch inside [t — dt , t) is o(dt) and we can safely ignore 
it.

Hence we can write

 rFo(x) =  (1 — adt) -Fo(x + xdt)-\ ^—-F\(x + Oidt))bdt +  o(dt)
a + b  a + b  a + b

— ^— Fi(x) — (1 — bdt)— F\(x  — (1 — x)dt) H Fq(x  +  0(dt))adt +  o(dt)
a + b  a + b  a + b
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or

Fo(^) — Fo(x +  xdt) =  — aFo(x +  xdt)dt +  aF\(x  +  0(dt))dt  +  o(dt) (4.4)

F\(x) — F\{x — (1 — x)dt) — —bdtFi(x — (1 — x)dt) + bFo(x + 0(dt)) + o(dt) (4.5)

We can obtain the derivative of Fo by dividing (4.4) by xdt  and letting xdt  —> oo. This
is given in (4.6). Similarly we can obtain (4.7) from (4.5).

- x f 0(x) =  a(Fi(x) — Fo(^)) (4.6)

( l - x ) f i ( x )  = -b(Fi(x) -  F0(x)) (4.7)

From these we also obtain

M x ) =  , fo(x ) (4-8)a ( l  — x)

To solve these equations we find the first derivative of both sides of (4.6) and (4.7) with 
respect to x  and rearrange terms

~ x Yx M x ) =  - { a  -  l)fo{x)  +  afi(x)

(i -  x ) ^ h ( x ) =  bH x ) - { b -  i ) h ( x )

Then we substitute (4.8) to obtain

^ /o ( x )  =  ^  x  1 }/o(x) -  (4-9)

Or
1 A d , . . (a — 1 ) b . 4 _

'  -i-fo(x) =  -------1 -    (4.10)fo(x) J  dx x  1 — x

Equation (4.9) can be easily integrated to give us

fo(x) =  acxa~1( 1  -  x)b

from which it follows (due to (4.8)) that

/i(x ) =  bcxa( 1 — x ) b _ 1

The value of c can be obtained from the properties of a PDF since

[  fo(x)dv =  1
Jo

giving us
T(a +  6 + 1 )

c — r(a + i)r(6+i)
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So the conditional PDFs of the process can be written

/o W  =  r (a )r(6  +  1i ) I “' 1(1“ ^ )6 (4‘u )

*<*> = (4'12)

The unconditional PDF of the output is then

A quick application of Bayes Theorem to (4.11) and (4.13) gives us the probability of
being in either regime based only on an observed value of the process. This probability is
given by

Pr {S(t) =  0 | X{t) = x\ =  lim < * ( 0  < * +<*»}]
dx—+o Pr[x ^  X( t)  < x + dx]

( —y a+ b fo{x )

f ( x )
' r i a + b ) \  a—1 
r ( a ) m )  X (1 -  x)1

1 — X

Similarly we find
P r[S(t) =  1 | X(t)  = x ] = x  (4.15)

It is interesting to note that the conditional and unconditional distributions are all Beta 
distributions. For a standardised process (r  =  1 ) we have

fo{x) Beta(a , 6 + 1 )  

f i (x )  ~  Be£a(a +  1,6) 

f (x )  ~  Beta(a, b)

For the case where r / 1  we simply transform a =  a r  and 6  =  /3t .

fo(x) ~  Beta{a.T, fir + 1) 

f \ (x )  ~  Beta(ar  +  1, /3r)

f (x )  ~  Beta(ar,  f3r)

These solutions presume that we are dealing with levels Iq — 0 and /i =  1. It is straight
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forward to adapt these distributions to a more general case with levels li by scaling and 
shifting.

4.3.3 The Transition Probabilities

This type of process has been studied before, mostly in the field of signal processing in 
engineering. In earlier works Wonham (1959) and Pawula (1970) studied the transition 
probabilities of the Symmetric Filtered Random Telegraph signal. Where we refer to a 
symmetric signal we mean one in which the rate of switching is independent of regime. In 
a symmetric process the stationary probability of occupying each regime is identical. The 
symmetric Filtered Random Telegraph signal is the particular case of this Filtered Markov 
(FM) process where a  =  /?. More recently Fitzhugh (1983) produced a comprehensive study 
of Asymmetric Filtered random Telegraph signals. He gave expressions for the various den
sity functions, the Fokker-Planck-Kolmogorov equations and their transient solution along 
with an appraisal of its suitability for application to Channel Signal Analysis. Fitzhugh 
also extended the idea to the case of two arbitrary levels (rather than the 0  and 1 we had 
been working with previously). We now give the expression he obtained for the transition 
function of the process.

The notation we shall use is as follows.
{y(t)} represent the observations in our series.
(s(£)} represent the regimes of the driving signal.
lo, h  are the levels of the driving signal (assumed Iq < l\).
As the transition-probability function is time invariant we will consider only the transi

tion between times t = 0  and t = t.
The variables x  and y refers to the values of the process at time t = 0 and t = t 

respectively.
The time scaling factor we ignored (without loss of generality) in the last section is given 

the constant r . .
The transition-probability function between times t = 0 and t = t is defined as

rij(x, y, t)dy =  Pr[s(£) = j k  y(t) G {y, y +  dy) | s(0) =  i & y(0) = x]

To keep the expressions manageable we shall introduce some specific notation to this
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section.

Voi =

Vu =

\x -  k\ 
(h -  lo) 
\ y - k \

(h -  lo)
A =  e~T

m 0(x, t ) =  lo 4- A(x -  lo)

m i (x , t )  = l\ — \{l\  — x)
(A(Zi -  x) -  (h -  y))(X(x -  Ip) -  (y -  Ip)) 
( \{x  -  l0) +  (Zi -  y))(A(Zi - x )  + ( y -  Ip))

z =

And as we have already used F  to represent the CDF of X(t)  then we shall take H  to 
represent the Hypergeometric Function. Two terms depend on this

Hi(z)  = H(1 -  /3t , - a r ;  l ;z)

H 2(z)  = 77(2 — fir, 1 — err; 2; z)

Fitzhugh derived the forward Kolmogorov equations for a process discrete in level and 
continuous is time and the forward Kolmogorov (Fokker-Planck) equations for a process con
tinuous in level and time. By combining these he obtained the Fokker-Planck-Kolmogorov 
(FPK) equations for rpj.

d 1 d
Qj.ro0(x,y , t )  = - — [(y - lo )roo(x ,y , t ) \ -a rpo(x,y , t )  + (3roi(x,y,t)

d 1 d
— r0i (x ,y , t )  = - — [ { y - l i ) r p i ( x , y , t ) ] - P r 01(x,y , t)  + aroo(x,y,t)

By Riemann’s method these can be solved exactly. The derivation is rather lengthy. 
Given the initial conditions

ry (x ,y ,0 ) =  dijS(y -  x)

He obtains the solutions 

roo (x,V, t) =  A aTS(y -  m 0(x, t)) + (Arj01 +  J?1 0 )“T_1 (A»)oi -  Vu)

A(1_/3r)  ■H2(z ) - H 1(z ) \  (4.16)
(^oo  +  ^ n )  (-̂ 77oi +  Vio)

roi(x,y, t)  = ( /ia_r Zo)(A,oo +  r?n) ^  1 (At70i +  r71 0 )aTH i(z) (4.17)
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The two other solutions riofy-, y, t) and rn (x , y, t) can be obtained by symmetry. 

ru(x ,  y, t ) = X^T8(y -  m i( i, £)) +  +  ?7io)aT_1(*7too +  V u ) ^ 1 (Xrloo ~  Vio)

A(1 — a r )

( ^ 0 1  +  7?io)(^7?oo +  ^ll)

no (x ,y , t )  =  + rlm)aT 1(>'Voo + rln )0THi{z )

When working with the standardised case, where Iq — 0, l\ — 1 and r  =  1 the equations 
4.16 and 4.17 simplify to

roo(x,y,t) = e at8(y -  xe  *) +  a(xe 1 +  1 -  y)b l (e t ( \ - x ) + y ) a 1(e t ( l  -  x) + (1 -  y))

 ------—  ̂ 6 [ )  ~  ^ ------------ - H 2{z)  -  H x{z)
(:xe_t +  1 -  y){e~t { 1  — x) + y)

roi(x,y, t)  = a((xe~l + l - y ) b~1(e~t ( l - x )  + y)aHi(z)

where
z = (g~*(l ~ x ) ~  ( 1  -  y))(a;e~t -  y)

(:xe~l +  1 -  y)(e- t (l — x) + y)

He also provides the stationary conditional distributions as

r(ar + (3t  + 1) _ 1 _ f \ y ~ h \ \ PT
/o(!/) r(ar)r(/?r + 1) {h -  lo) \  h  ~ k> )  { h ~ *0 )
, , ,  _  r(ar +  /?r + 1) l  / ' |y -^o l \ ° T /% - * i l \ <9T~1

J l W  r ( a r  +  i ) r ( p T) ' ( h - i o ) ' \ h - i o  J  \ h - i o J

The unconditional output is then easily found

f( . T ( a r + P r )  1 / |y~^ol\ ° T~1 ( \y -  ^ll\ ' ?T~1
1 W  r(ar)r(/3r) ' ( h  -  l0) ' \ h  ~ k  )  \ h - k j

Which reduce to the distributions (4.11), (4.12) and (4.13) obtained in the previous 
section when lo = 0 , l\ =  1  and r  — 1 .

4.3.4 M oments of the Process

A powerful method for determining the moments of the, more general, -regime process 
can be found in Jalali (2003c). We shall outline the method and show how he uses it to 
obtain conditional moments, transient moments and the Covariance of the process. The 
author considers as an input signal a Markov process with regimes.
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The Transient M om ents

The notation we shall use here will require the definition of new terms.

{5(£)} is the regime of the driving signal, a N ^ y regime continuous time Markov process. 
Q is the matrix of transition intensities for S(t)  with entries qy.
P  is the regime transition matrix, given by P(t)  =  e ^ .  The entries are P i j ( t ) .

{X(t)} is the level of the process.
{ l i  : i  = 0 ,1 ,2 ,..., — 1} are the levels of driving signal.

We also need to define three key conditional terms.

In order to derive an expression for mij{x, t \r ) we need to introduce another concept. 
This is the value of the process conditional on its starting point, as well as starting regime. 
For the value of a process conditional on the initial value we use

P i j ( t )  =  Pr[S(t) =  j  | S(0) =  i]

Xi(t)  =  X (< )|S (0 ) =  i

Si(t) = S(t)  | 5(0) =  i

Xij(t)  =  X ( t ) \ S ( 0 )  = i , S ( t ) = j

We are then able to define a new concept, the contribution to the expectation for a specified 
start and end regime (m^). For the first moment we have

rriij(x,t) = pij(t)E[Xi(t) \ X(0) = x , S ( t )  = j , S ( 0) =  i\

But more generally we shall work with the rth moment. So rriij{x, t; r ) is defined by

mij{x, t \r) =pi j ( t )E[Xl ( t ) | X(0) =  x , S ( t ) = ^ ,5 (0 )  =  i]

X i (x , t) = X( t)  | X(0) = x k  5(0) =  i

We find the following relationship between the X ( x , t )  and X(0, t)

(4.18)

Equation (4.18) is easily proved using induction.
If we have an interval [0, t ) containing no switches (changes of regime) then we know



4.3. DISTRIBUTIONS OF THE PROCESS 51

that

Xi(x,  t ) =  k -  (k -  x ) e ~ r

=  li( 1 — e ’•j +  ze t 

= X i ( 0 , t ) + x e ~ r

We then assume that (4.18) holds for an interval containing k switches and add another 
(final) switch at time t = s. Obviously then

Xi{x,  s) =  Xi(0, s) +  xe~*

If the process is in regime j  during the final interval [s, t) then

t — g
X{(x,  t ) =  lj — ( lj — Xi(x,  s))  e ~

— lj — ( l j  — Xi(0, s ) — xe~r^j e ~

— h ~  (h ~  X{(0, s ) ) e  ~  +  x e ~ r

= -Xi(0, t) +xe~T

Ob\nously then

E[X(x, t) \  = E [ X ( 0 , t ) ] + x e x p ^ - ^  (4.19)

Now we can begin to construct an expression for the transient moments of the process. 
As we have the relationship 4.18 we can work with A(0, t) rather than X(x, t), and rriy(0, t\ r ) 
instead of m y(x, t;r) .

In order to proceed we need to find an expression for m ^(0, t).

We must consider the value of (0, t) after a time interval [0, t]. We will condition on 
the value shortly after the start (at time dt). At this point we will find ourselves in one of 
two positions. Either the process will have switched (once) or not at all. If Xy (0, t) is the 
process X(t)  which started from X(0) =  x in regime 5(0) = i and ended in regime 5(f) =  j  
then we wish to study E[Xij(0,t)]

If no switching has occured by time dt then

Xi(0,dt) = Xa(0,dt)

The probability of this is (1+qadt), where qij is defined earlier as an element of the transition 
rate matrix of {5(n)}, namely Q. The expectation will then be

E[Xi j (0, t)|5(dt) = i}= E lX i j iX u i0, d t ) , t -  dt)}
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We also have the matching probability (with the o(dt) term representing the possibility of 
multiple switches)

Pij(t)\{S(dt) =  *} =  (! +  qudtypij^ -  dt) +  o(dt)

If however switching has occured by time dt then

Xi(0, dt) =  Xik(0, d t )< l i (  1 -  e -* )

This has probability qikdt and the expectation will be

E[Xij{0, t)\S{dt) =  k] = E[Xkj(Xik{0, dt), t -  dt)]

With
Pij(t)\{S(dt) =  k} = qikdt.pkj(t  -  dt) +  o(dt)

Combining all these terms we obtain an expression for the probability moment m ^(0, t)

Pij(t)E[Xij(0, t)] = (1 +  qadt)pij(t -  dt )E[Xij(Xu(0, dt), t -  dt)] (4.20)

+  ^ 2  Qikdt.pkjit -  dt)E[Xkj(Xik(0, dt), t -  dt)] +  o(dt)
k- î

If dt is small then we can safely make the following changes

rriij(0, t) = (1 +  qudt)mij(Xu(0, dt), t -  dt) +  ^  qikdt.mkj(0, t) +  o(dt)
k^i

= (1 +  qadt)mij(0, t - d t )  + (1 +  qudt)li( 1 -  e_dt)e_(t_d^pi:?-(t)

+  qikdt.mkj( 0, i) +  o(d£)
k^i

If we take dt —► 0 we can drop any terms of the form o(dt)

N(R)~ 1
rriij(0, t) -  rriij(Q, t -  dt) = Ue^dt-Pi^t)  +  ^  qikdt.mkj{0, £)

fc=o

Clearly rajj(0, £) is differentiable close to t so if we represent the derivative with respect 
to time by rh^(0,t) then we have

N(r)~ i
mi:?(0,£) =  he tpij{t) +  ^  gifcrafcj(0,£)

/c=0
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In matrix form this can be written

M(0, t) = L e * P  (t) +  QM(0, t)

To solve this we take Laplace transforms of both sides and take M (0 ,0) =  0

sM(0, s) = L[(s +  1)1 — Q]-1 +  QM (0, s)

M(0,s) = [(si — Q)]-1L[((s +1)1 — Q)]-1

Where L contains the levels of the process, M  the contributions to the expectation and 
Q the infinitesimal transition probabilities.

lo

ioo

rao,o(0,£)

i—cTiS'
sTo'S

L = 0 0 ,M (0,*)=
0 0 In(r)- i _ . m N(R) - i,o(0, t) • • m N(R)- i tN{R)- i (0 , t )  _

Q =
9o,o • ■ • qo,N(R)- i

Qn {r )- i ,o  • • • Qn {r ) n {r ) - i

We can now repeat this process starting by finding an expression such as Eqn. 4.20 but 
for the rth moment. It is

P i j ^ E K X i j i 0, t))r] =  (1 +  qiidt)Pij{t -  dt)E[(Xij(Xj,i(0, dt), t -  dt))r}

+  Y l Hkdt.pkj(t -  dt)E[(Xkj(Xik( 0 , d t ) , t -  dt))r] (4.21)
k^i

We need a little creative algebra, expanding

Ei(Xij(Xii(0>d t ) , t - d t ) Y \  =  E[(Xij(0, t — dt) -f Xu(0,dt)e~^~dt^Y] (4.22)

=  E{XZj(0,t -dt))  

+Xu(0, dt)e- ,,- dt,r E [ x r - 1 (0, t -  dt)] +  o(dt)

and
dt.E[(Xkj{Xik(0, dt), t -  dt))r] = dt .E[Xrkj(0, t  -  dt)] +  o(dt) 

Substituting Eqn. 4.22 and 4.23 in Eqn. 4.21.

(4.23)

rriij(0,t;r) =  (1 +  qndt)mij(0, t — dt] r) +  r.dt.li{\ — e dt)e ^ t — dt] r — 1)

+  ^ 2  qikdt.rriij{0, t -  dt ; r) +  o(dt) 
k^i
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Ignoring smaller terms and letting dt —> 0, as- before, we obtain

N(R)- l
ihij(0, £; r) =  rlie~tm ij (0, £; r  -  1) +  ^  qik^rikji0, i; r) (4.24)

fc=0

Which can be expressed in matrix form

M(0, t- r) =  rL e- t M (0, t; r  -  1) +  QM(0, £; r)

To solve this equation, we take the Laplace transform of both sides of (4.24), noting that 
m ij(0 ,0 ;r) =  0.

srhy(0 ,s;r) =  r^m ^O , s +  l ; r  -  1) +  ^  <7ifc7hfcj(0, s; r)
fc=o

Writing this in matrix form we obtain

sM(0, s; r) — rLM (0, s +  1; r — 1) +  QM(0, s; r)

(si — Q)M(0, s; r) =  rL M (0 ,s  +  l ; r - 1)

M(0, s; r) = r(s l  -  Q )_1LM(0, s +  1; r  -  1)

When r is an integer we have, by recursion

M(0, s; r) = r!(sl -  Q )-1L((s +  1)1 -  Q )-1L...((s +  r  -  2)1 -  Q )-1LM (s +  r  -  1; 1)

=  r!(sl -  Q )-1L((s +  1)1 -  Q )_1L... (4.25)

...((s +  r  -  2)1 -  Q )-1L((s +  r  -  1)1 -  Q )_1L((s +  r )I -  Q )"1 (4.26)

By substituting the appropriate matrices into (4.25) we can obtain M(0, s; r) which 
contains the higher moments of the transient distributions in the -regime case. Once 
an expression for M(0, s; r) has been found it will be necessary to perform an inverse Laplace 
Transform. The conclusion of this process will be an expression for the transitory moments 
of the process. Most of the terms should drop out on subsitution of t = 0 giving us the 
stationary conditional moments. Problems can occur in one of two areas, inverting each 
of the ((s +  r )I  — Q) matrices and applying the inverse Laplace transform. While the 
inversion of the matrices is usually simple enough for 2 x 2 matrices, it may prove much 
more challenging when the process has a higher number of levels. The ease of application 
of the inverse Laplace transform depends heavily on the form of the inverted matrices. In 
the example below they take on a form that makes a partial fraction expansion easy and 
the expanded expression very amenable to the inverse transform. This is unlikely to be the 
case generally and other, more sophisticated, methods may need to be used.
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E xam ple:
To keep the calculations simple and to obtain a result that we can use later, we shall 

restrict ourselves to the two-regime case with levels lo = 0 and li = 1. In which case if we 
are interested in the first moments of the transient distributions we can define the matrices

L =
’ 0 0 '

, M(0, £; r )=
moo(0,t;r) m0i(0 ,t;r )

,Q  =
—a a

0 1 m lo(0,t-,r) m n (0 ,t;r ) b —b

This gives us

(si -  Q) = 

((s +1)1 — Q) =

(si — Q)-1 =  

((s +  l J I - Q ) - 1 =

s + a —a 
—6 s + b

S +  CL + 1 —<2
—b s +  b + 1 

s +  b
s(s “I- CL + 6) 

1

a
s + a

(s +  l)(s  +  cl + b + 1) 

Substitute these into 4.25, and replace a + b with 0

1

5 +  6 + 1
S +  <2 +  1

M(0, s) =  M (0 ,s ;l)  =
s(s +  l)(s  +  0) (s +  0 +  1)

ab
s(s +  1) ( 5  +  9)(s +  0 +  1)

0 a s +  6 +  1 a
0 s +  a b s + a + 1

q.(s +  a +  1̂
(s +  a)6 (s +  a)(s +  a + l )

If we assume that a + b ^  1, then by partial fraction expansion and inversion we obtain a 
lengthy, but very useful, expression

M(0, t) -
1 ab' a(a +  1) 1 ab a2

0(0 + 1) ab a(a +  1) 0 (0 -1 ) 1 1

1-0i-H1

l

- t

+ -
ab —a(b — 1)

c~et 1
ab —ab

1) 1
1 cr- to 0
- 

0
^ 1 1—1 1 0(0 +  1) -6 (6 + 1 ) 6(6+1)

e-(0+i)*

(4.27)

The cells of (above) gives us the transitory moments of a process at time t, given that 
X (0) =  0. The four cells of the matrix represent the four possible combinations of initial 
and final regime.

It is not much more difficult to work with higher moments in this case. When we pair 
the terms in (4.25) they become much more manageable. We can see this in Equation
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(4.28)

((s +  n)  I - Q ) - 1 -  

((a + r O I - Q ) - 1 .!, =

1
(s 4 -  n)(s +  a +  b +  n) 

1
(s +  n)(s +  a +  b +  n) 

It follows from substitu ting  (4.28) in (4.25) th a t

s +  b +  n a 
b s + a +  n

0  a 
0  s +  a 4 -  n

(4.28)

M(0,s;r) =  r!
n (s + n)(s +   ̂+ n) ) n = 0  ' ' '  ' /

0  u ( s  4 - 0 - 1 -  l ) . . . ( s  4 - a +  t —  1 )  

0 ( s 4 - a ) . . . ( a 4 - o 4 - r - l )
/  r  \  / r —1

r l (  n

s 4- 6 4- r a 
b s +  a +  r

n  (s +  n)(s +  6 +  n)
n= 0  v ' v ' /  \ n = l

ab a(s +  a +  r)
(s +  a)b (s +  a)(s +  a +  r )

(s 4- a 4- n) J 

/o r  r >  1 (4.29)

From Equation (4.29) we can once again expand by partial fractions and invert. Simple 
substitutions will give us a solution of the  form seen in Equation (4.27). For a stationary 
solution we are interested only in the first term  of such an expansion.

S ta t io n a r y  M o m e n ts

We already know the stationary  m oments of the process, as they are those of a B eta dis

tribution. We can easily check the validity of the above m ethod by obtaining them  from 

(4.27). We continue to  work w ith the two-regime case.

We know th a t the  cells of M (0, t) represent weighted conditional moments

M (0, t) =
poo(t).E[X0(0,t)\S(t) =  0] poi(<)-S[Xo(0,«)|5(t) = 1] 
pio(i)..E[.X1(0,i)|S(i) =  0] p i1(t).£[X1((M)|.S,(t) =  1]

I t is therefore easy to  obtain the m oments conditional only on the initial s ta te

=  M(0, t).
£ p f o(0,t)]

£ [* i(0 ,t ) ]

But three of the four term s in (4.27) are dependent upon t. As t —» oo, e 1 
us with only one term  to  contribute to the stationary  distribution.

0 leaving

lim M (0, t) =   ------------ — ------------ --— —
t—>oo (u, -)- 5)(fl' 4-5 4-1)

ab a(a +  1 )  

ab a(a +  1 )
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From this we can obtain two things.
First from either of the two rows we have the unconditional moment

£ « ‘>] =  S T 5

Secondly, we obtain the moments conditional on the final state

ElX( . t ) \S ( t )  =  0] =  ^ ^

B [X (t)|S(t) =  H =

Of course these (and those for higher moments) are precisely what we would expect,. 
But this confirms the method, which could then be used to obtain results for the moments 
of processes with greater numbers of levels.

Covariance of the (2 regim e) Process

Another result we can obtain using (4.27) has been taken from Jalali (2003d). After deriving 
an expression for the product of two successive observations from the same process (a time 
k apart) it is possible to obtain the following expression for the covariance of X(t)  and 
X ( t  + k).

a2 1 f  ab \ „ k ek
E[X( t)X( t  + fc)] =  ^  +  

where p = e*

Since we know that

E[X( t  + k)} =  E[X(t)] 

Var(X(t))  =
e \ e  + 1)

The correlation coefficient can also be found

C orr (X(t ) ,X (t  + k)) =  9pkg ~ _ ( k 

Although this is not defined for 9 — 1, by an application of L’Hbpital’s rule it reduces to

(1 — kin p)pk
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4.4 The D iscrete Approximation

Until this point we have been working with a continuous process. The observations are 
not assumed to occur at fixed intervals. The length of time the process resides in each 
state (the sojourns) have also been assumed to be continuous. The transition functions for 
this process are rather complex. Worse still, we find considerable problems with inference, 
something that we will deal with in the next chapter. Many of these problems may be 
exacerbated by the continuous nature of the model. We should consider how useful it 
would be to construct discrete models to approximate the behaviour of the Filtered Markov 
model. There are two elements of the process that are continuous in nature, the time scale 
and the level. We have the option of restricting either or both of these to a discrete set.

4 .4 .1  D iscre te  T im e

Our first attem pt to simplify the Filtered Markov process is to replace the continuous process 
with a discrete time process. In the continuous case we measure time using the index t , 
and our observations are taken at tn where

tn € R+ 

n e  {1,2,...,JV}

and to < t\ < £2 < <  tn

In order to keep our notation simple we have usually referred to time t rather than time tn. 
In our discrete time approximation we shall have a fixed interval between our observations 
Even though our observations are still made at tn we know that

tn = n.dt for  n — {1,2,..., N }  

where dt =  tn — t n - 1 f o r  all n

So when working with discrete time we shall simplify our notation by writing n when we 
mean tn. We also retain a and b but they now refer to switching probabilities rather than 
swiching intensities.

This introduction of discrete time has a profound effect on the equations describing the 
movement of the process. In the continuous case we relied on the following rule of movement

X ( t  +  dt) — S ( t) — (S( t ) — X(t))  exp (^~~~^ (4.30)

as long as S(t) remained unchanged during ( i,t +  dt]. Now that S(t) cannot change 
between observations due to the discrete nature of the driving signal (4.30) can be replaced
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by (4.31)

X { n  + 1) = S ( n  +  1) — (S (n  +  1) — X ( n ) ) .p  (4.31)

W h e r e  p =  exp ( — —V T
D istr ib u tio n  o f  th e  D iscre te  T im e P r o cess

The combination of the regime and level (S(n) ,  X ( n ) )  is still Markov as we can obtain the

future distributions from ju st these two pieces of information. However, while the  support

of the stationary  distribution of the continuous tim e model is a dense set th a t of the  discrete 

time model is of a Cantor type. For a finite num ber of steps the transitional d istribution 
is a countable set, bu t the  set becomes uncountable for the stationary  distribution.

For instance

, , /x  I x(Q)p wi th  probability 1 — a
i f  X ( 0 ) = x ( 0 ) a n d S ( 0 )  = 0 t h e n X ( l )  = I

! 1 — (1 — x(v))p w i th  probability a

We can generate a representation of a process with levels 0 and 1, of length 50 with 

a = b = 0.5 and a;(0) =  0.5. A PD F is estim ated using 5000 realisations of th is process and 

displayed in the histogram  in Figure 4.4. In a  visual representation such as th is we can show 
only a lim ited num ber of bars. Even though much of the  complexity of the  d istribution 
at this point is lost in this visual representation the nature  of the distribution is apparent. 
Despite the  quite different structure a t lower levels the behaviour of the process results in 
similar cumulative d istribution functions to  the  original model. This sim ilarity is quite 
good for large values of r .

We shall show two examples of comparisons made between the theoretical CD F of the 
continuous tim e case w ith an EC D F drawn from the equivalent discrete tim e case. These 

ECDFs were obtained using 1000 values of X(50) from a continuous tim e process with fixed 
starting  point z(0) =  0.5. In the first example (shown in Figure 4.5) we use a  = (3 = 0.2 
and t  =  5 (p =  0.8187).and find a slight deviation from the Uniform distribution.

In the second example (Figure 4.6) we use a  = = 0.4 and r  =  |  (p = 0.4493). Due

to the faster switching we find a much less sm ooth ECD F than  in the  first example and one 
th a t is characterised by an central interval of zero probability.

F itt in g  th e  D iscre te  T im e P ro cess

We have two main options when it comes to  fitting the discrete tim e process. The first 
option is to  work with the  Markov process (<S(n), X ( n ) ) .  This allows very straightforw ard 

generation of a series bu t creates problems when trying to  fit the model to  an observed series. 
W hether we are a ttem pting  to fit the  model as an approxim ation to  a true  F iltered Markov 

process or to  an observed process contam inated by noise we will find less th an  perfect data. 

For a Bayesian Filter, such as th a t proposed by Ham ilton, to  work we need to  be able to



4.4. TH E D ISC R E T E  A PPR O X IM A T IO N 60

60 

50 

40

f(x)
30 

20 

10

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

X

Figure 4.4: A representation of the  Cantor type distribution of the PD F of the  discrete 
time, continuous level model.
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Figure 4.5: A comparison between the ECDF of a discrete time, continuous level model 
(with param eters a  = (3 — 0.2, r  =  5) and the CDF of the Beta[ 1, l].
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Figure 4.6: A comparison between the EC D F of the  discrete tim e, continuous level model 
(with param eters a  =  (3 =  0.4, r  =  |  ) and the CD F of Beta  [^, | ] .

a ttach  probabilities to  a finite num ber of states of the combined process (S(n) ,  X ( n ) ) .  As 
X ( n )  is continuous there is no such structure  of finite sta tes and so we would be forced 
to im pute a historical sequence of regimes (S ( n )) th a t maximised the likelihood. This 
introduces an incredibly complex likelihood space with num erous local m axima, making 

obtaining the MLE considerably more difficult.
A second option to avoid these complications is to consider the  Markov chain consisting 

of the history of the regime occupied during the r  most recent intervals. We can call this 
Markov chain H ( n ) where

H ( n ) =  [5(n), S ( n  -  1 ), ..., S ( n  — r  +  1)]

Our transition probabilities are easy to caculate given th a t they depend on the transition  
from S(n)  to  S ( n  +  1). We can find H ( n  +  1) (using the Markov property) by

Pr[S'(n +  1) =  s(n  +  1),..., S ( n  — r  +  1) =  s (n  — r  +  1)]
l

P r [S ( n ) =  s ( n ) , ..., S ( n  — r  +  1) =  s (n  — r  +  1)]
— s ( n —r + l ) = 0

X P r [^(n  +  1) =  s(n  +  l)lS '(n) =  s(n)]

The only problem we face is th a t the recent history of regimes (alone) does not precisely 

determ ine the level of the process. If we take Iq — 0 and l\ =  1 then this position is given

by
r —1

x(n)  = x (n  — r).p7 +  ~  k)pk( l  ~ P)
k —G
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Which requires knowledge of x(n  — r), which is unobservable. Instead it gives us an interval 
I  in which the level of the process must lie. This interval will be given by

as our estimate of the level of the process. How good an approximation this is depends 
upon the relationship between r  and p. This process is easy and efficient to model although 
the matrices required for a fitting algorithm are of the order o(2r ). If p is large then we 
require a high value of r  in order to ensure the interval I(n)  is narrow. This has profound 
consequences for the computational demands of the method.

4 .4 .2  D iscre te  R an ge

As a result of our experimentation we concluded that discrete time continuous level models 
were generally problematic. It seems likely that a better approximation of the Filtered 
Markov model can be found working with a continuous time, discrete level process. We 
replace the fully continuous model with a continuous time Markov process (5(t), L(t)), where 
S( t ) is a two-regime continuous time Markov process in its own right. As in the FM process 
St represents the regime of the series (growth or decay) while L(t) is a finite level process 
whose transition probabilities are controlled by S(t). The intention is to use L(t) as a 
discrete approximation of X(t) .  The levels of L(t) represent sub-intervals of the range of 
the process X ( t ) between its upper and lower boundaries. It would be possible to evaluate 
the true transition probabilities between intervals by integrating across both. In general, 
however, as long as the number of levels is large enough, taking the probability density 
of a transition between the midpoints of the intervals will give us a reasonable estimate. 
Allowance must also be made for the impulse part of the transition function resulting from 
a switch free interval between observations. This can be done by adding the probability of 
this occuring to the appropriate cell of the transition matrix.

D istribution of the D iscrete Range M odel

The quality of the approximation of the distribution function to its theoretical counterpart 
will depend solely on the number of levels we choose to represent the continuous range of 
X(t) .  If this is set to a number as low as 10 we will find quite grave shortcomings with 
our approximation. A more reasonable number would be 50. Even though the number of 
levels may seem large this does not pose a serious problem for the Bayesian Filter. When 
using a Filter we only need record the inferred distribution of the process at the previous 
observation, with the Matrix representation of the Markov process (S(t), L( t)) is the tensor 
product of the vectors of the possible values of S(t ) and L(t).

I(n)  =  s(n -  k)pk( 1 -  p) , pr + ^ 2  s ( n -  k)pk( 1 -  p)
r—1

fc=0

The interval I  is of length pr and if this is small enough we can simply take the midpoint
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F itting the D iscrete Range M odel

We provide a full explanation of the algorithm for fitting this model to data on page 74 in 
the section titled ‘Approximate Likelihood Method’. The process is relatively time efficient, 
given the complexity of the transition probabilities and we have explored its use for a range 
of different cases. By varying the noise levels, parameter values and even the length of 
the sample data set and number of levels we are able to provide guidelines for the practical 
limits on the use of this algorithm.

4 .4 .3  A  F ully  D iscre te  M o d el

One of our original intentions was to modify the kind of Markov Switching model proposed 
by Hamilton to allow the introduction of gradual transitions to regime changes. The Fil
tered Markov model was one such attem pt to do this but represents a radical departure from 
the original specification of a Markov Switching model, in which both time and level were 
discrete in nature. In the previous sections we have been concerned with simplifications of 
the Filtered Markov model motivated by the simpler inference the discrete models offered. 
There is also room for development in the other direction, constructing new Markov Switch
ing models to capture the gradual switching dynamics of the Filtered Markov process. On 
page 143 we introduce a class of models with these characteristics. These Ladder models 
will be define in Chapter 8 and will bridge the gap between the Filtered Markov model and 
Hamilton’s Markov switching model.
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Fitting the Filtered Markov M odel

We have introduced a continuous time, continuous level Markov process we call the Filtered 
Markov (FM) process (or model). In this chapter we shall be looking at the process of fitting 
this model to data using Maximum Likelihood. We shall also outline several new methods 
for parameter estimation for a sample from the Beta distribution where the observations are 
contaminated by noise.

5.1 Introduction

The intention is this chapter is to develop a method, or methods, for fitting the two-regime 
FM model. This full model consists of 8 parameters, 6 main parameters and 2 to determine 
the initial conditions. The six main parameters the model requires are the two switching 
intensities a  and /3, the two levels Iq and l\, the time scaling factor r  and a  the standard 
deviation of the added noise. The initial conditions consist of the position of the process, 
x(0), and the regime of the driving signal, s(0). We shall eventually propose methods for 
estimating all 8 parameters simultaneously, but shall start with simpler methods for fitting 
a reduced parameter model. We shall begin with the simplest case of a two-parameter 
estimation problem and build up to the full model.

5.2 Generation of data

The data is generated using the programming language MATLAB, as are many of the other 
routines we have used. Simulating data from a FM process is very straighforward and the 
algorithm used is presented here.

The first series we generate is a summary of the switchpoints, since the behaviour be
tween these points is deterministic. We shall denote this series Z( tn). The initial conditions, 
2(0) and s(0), will be chosen at random (with appropriate stationary probabilities). The 
generation process involves producing a series of values drawn from an exponential distrib
ution with alternating means (determined by the appropriate switch intensity) to represent
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the intervals between switches. From these intervals we have the timings of switches. This 
series of switch points, and the parameter r , will then allow us to move forward through the 
series determining the position of the process at any of the switch points. The final part 
of the process is converting from our recording of the series on a continuous scale via the
position at switchpoints to recording the process using values over a predetermined fixed
interval scale. The observations will occur at times {£n} where n  =  {1,2,..., N }

If we are choosing the intial conditions randomly then we choose the initial regime from 
the stationary distribution of the driving signal first

Pr(S(0) =  0) =  ^ , P r ( S ( 0 )  =  l)  =  ^

7 /5 (0 )  =  0 then Z(0) ~  Beta(ar, hr +  1)

7 /5 (0 )  =  1 then Z(Q) ~  Beta(ar  +  1, br)

First we must generate the sequence of intervals that will (together with the initial 
conditions) define the process. The initial regime s(0) determines the regime occupied 
during each of the successive time intervals between switch points. The regime occupied by 
the driving signal during the kth interval is given by S{k). The interval lengths are denoted 
by {u(l),u(2),...J-

The number of switches required in a simulated sample, J , is determined by the final 
observation time N.  We keep incrementing J  until the following condition is met

J - 1  J

^ u ( j )  < N  < ^ 2 u ( J )
3 = 1  3 = 1

Each of the intervals represented by u(j)  for j  =  {1,2,..., J} are exponentially distributed

with alternating means. Due to the lack of memory property of the Exponential distribution 
the first of these intervals, u (l), can be represented by the same distribution even though 
t =  0 may not be a switch point. The mean of this first Exponentially distributed interval 
time u(l) is dependent upon the initial regime.

u(l), w(3),... ~  E x p ( l /a r )  and w(2), u (4 ),... ~  Exp( l /Pr )  i f  5(0) =  0
u(l), u (3 ),... ~  E x p (1//3t ) and w(2), u (4 ),... ~  E x p ( l /a r )  i f  5(0) =  1

Then the switch times can be easily found
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V - =  M l), t,(2), ...X J )}
n

v(n ) =  ^ 2 u (k) 
k=1

So

v(n) =  v(n — 1) +  u(n)

It is simple to determine the positions of the process at switch points using these time 
intervals, and 2 (0 ) =  x(0). We represent the position of the process at the kth switch point 
(at time v(k)) by z(k)

z(k) = Iq -  (l0 -  z(k - 1)). e x p ( - ^ )  i f  S{k) =  0 
z(k) = h  -  {h -  z(k -  1)). e x p ( - ^ )  i f  S(k) -  1

Finally we wish to work with a process that is observed at points separated by fixed intervals.

This process, {x(£n)}, is found using

x{tn) = Iq — (Iq — z(k — 1)). exp ^  ^ v(k)] and S (k ) =  0

x( tn) — l\ — (l\ — z{k — 1)). exp I — (tn~v(k~1)) j  i f  tn G (v(k — 1), v(k)] and S(k)  =  1

The observed process {y{tn)} is the simulated process we will use for model testing. It 
is obtained by adding Gaussian noise (if required) to the series {x(tn)}.

y(tn) =  x(tn) +  e(tn) Where e(tn) ~  N ( 0, a2) and e(£i), ^(£2 ), are independent

5.3 M odel F itting using M aximum Likelihood

When it comes to obtaining parameter estimates from a set of sample data from the FM 
process, there are two main options available to us. These two methods rely on Maximum 
Likelihood (ML) and the Method of Moments. As with any stochastic process a large 
amount of data is contained in the order in which the observations are made. By choosing 
to use ML we ensure that we will be able to utilise at least some of this information. Our 
notation is as follows:

We shall assume without loss of generality that our observation times £ are equally 
spaced at integer values of £. We have a set of data {x(£)} generated by the filtered Markov 
process with no noise added. We use xt  to represent the history of observed values of the 
process at time t. So

x t =  {x(t),x{t -  1), ...,*(!)}
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We wish to obtain a likelihood value for a given set of values of the parameters.
The process is defined using 5 parameters.
These are a  and yd, the switching intenstities up and down respectively,
The upper and lower levels of the process Iq and b, 
and r , the time scaling factor.
The set of parameters (a, /3, Zo^i>cr) 35 a set will be denoted by ©. When combined 

with the initial distribution n  we shall use E  =  (@ ,n).

We can construct a simple algorithm for determining the likelihood.
As input it will require

P r (S(t  -  1) =  i|x t_i)

And will produce as output
P r(5(t) =  i|x t )

and
/(x (f) |x t_i)

We will require the use of rij (x,y,dt)  defined in Section 4.3.3. We simplify this to 
rij(x,y)  as we shall always take dt =  1

rij(x , y)dy = Pr[s(t +  1) =  j  k  x(t  +  1) G (y, y +  dy) \ s(t) =  i k  x(t) =  x]

which is dependent upon all of the parameters of the model.

S tep  1
We can write our inferred distribution of the process at time t — 1 as

' Pr(S(f -  1) =  Olxt-O '
P r (S(t -  1) =  l |x t_i) _

At time t — 0 we take instead

’ Pr(S(0) =  0) ' 7T0

. Pr(S(0) =  1) . 7Ti

where 7Tj is the stationary probability of the process occupying the ith state. 
We can then obtain
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roo(x{t -  1); x(t)) r0i(x(t -  1), x(t)) 
r10(x(t -  1), x(t)) rn (x(t -  1), x(t))

P r (S(t  -  1) =  0|x*_i)
Pr(S(t  — 1) =  l|x f_ i)

S tep  2
From which we infer

/(x ( t) |x t_i) =  f ( x ( t ) , S ( t ) =  0|xt_i) +  f (x ( t ) ,S ( t )  = l |x t_i)

and finally

Pr(S(£) =  0|xt) 
Pr(5(£) =  l |x t )

f ( x ( t ) , S ( n ) =  0|xt_i) 
f ( x (t),S(n) = l |x t_i)

We then return to Step 1, using this as an input, and repeat until we reach t = T  when 
we proceed instead to Step 3

S tep  3
The likelihood, and log-likelihood, are evaluated by

T

t=o
T

Z(E ) =
0

Care must be taken during the process to ensure that numerical errors do not influence 
the result. The transitional distribution function contains a significant impulse element to 
model switch free observation intervals. Even a small rounding error in the data during a 
true switch free interval may result in this not matching precisely the position of the impulse 
in the distribution function. This can be remedied by broadening the impulse into a (very) 
short interval.

The likelihood method can now be applied to some simple estimation problems.

5.3 .1  C ase 1: 2 P aram eters

We can now generate data easily and we have a method for inferring the value of the
parameter values used to generate the simulated data At first we shall examine a very
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Figure 5.1: Log-Likelihood surface for a sim ulated symm etric process (a  — /3 =  | )  derived 
using the 2-param eter fitting m ethod outlined in Case 1.

simple estim ation problem before adding in ex tra  param eters. The simplest case we shall 
concern ourselves with is where we have an asym m etric, standardised, noise-free Filtered 
Markov process T hat is, where:

a  /  / I , Zo =  0 , l\ =  1 , t  — 1 , rr =  0

As such we have only two param eters to  estim ate, a  and (3. The initial conditions were 
random ly chosen and the rem ainder of the param eters were fixed. A short series was 
generated (100 values) over a range of possible values for a  and (3} although we have restricted 
ourselves mostly to  values in the range [0,1]. For the upper end of this scale we will find the 

process switching so frequently th a t we will rarely find a switch free interval. This is not 
really in keeping with the original concept of this research of using the model to represent 

gradual transitions between infrequent changes of regime.
In general we had little problem obtaining good estim ates for the param eter values. This 

was true even for the middle or upper end of the scale and even for short series such as this 
one. In Figure 5.1 we show the log-likelihood for one such example, for a  = (3 =  0.5. The 

clarity of the estim ate is be tte r dem onstrated by looking instead a t the likelihood function, 

shown here in Figure 5.2.
In general working with the Likelihood was a very effective way of solving for this type 

of problem.
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Figure 5.2: The Likelihood surface for a simulated symmetric process (a  =  j3 — derived 
using the 2-parameter fitting method outlined in Case 1.

5 .3 .2  C a se  2: 2 P a r a m e te r s  ( a , r )

Given that we can deal effectively with the the first estimation problem, we shall now move 
onto another case. A decision had to be made as to which parameter to add next. Experi
ments were conducted with several different three parameter models with mixed results. Of 
these by far the most intriguing concerned the addition of the time-scaling factor r. When 
this was added to the original two-parameter problem great difficulties were found in obtain
ing an estimate. To examine this further we simplified this case to another two-parameter 
case by taking the symmetric case of a  =  (3. The early examples for lower values of of 
a  and j3 did yield a maximum likelihood close to the values used to generate the process. 
Figure 5.3 shows the results of one such example, for a  =  (3 =  0.1 and r  — 1. The surface 

was generated over a range of values for a  falling between 0 and 1, against values for r  

between 0.9 and 1. When working with a noise free series such as this it is unlikely that we 

will have a problem with the overestimation of r. This is due to the influence of any switch 
free intervals in the series, whose deterministic movement is controlled by the r  parameter. 
If the proposed value of r  is too large to allow for the transition then the new value will fall 
outside the transitional distribution (conditional on the previous value) and so will return 

a 0 probability.
We can observe that there is a second, local, maximum log-likelihood value in the region 

covered by the graph. This represents the solution that does not depend on the impulse part 
of the transitional distribution function, that models switch free intervals. As a  increases in 

magnitude this maximum increases in likelihood eventually dominating the ‘true’ solution. 
A second example, shown in Figure 5.4, uses a data set generated using intensities only
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Figure 5.3: The Log-Likelihood surface for a simulated symmetric process (a =  (3 =  -^) 
derived using the 2-parameter fitting method outlined in Case 2.

slightly higher at a  =  0.2.
By taking two slices through the graph corresponding to r — 0.95 and r =  1 we can see 

that there is a second solution that now dominates the first (see Figure 5.5). We can also 
see that this does actually give an estimate but this is near a  =  1.3 and does not relate to 
the value of the parameters used to generate the process.

This problem is not simply one created by numerical errors or short data sets. Even 
if we specify greater precision in our evaluation of the distribution and use 1000 values 

instead of 100 we still find exactly the same result. We also find the same result for 
the asymmetric case, again dependent upon the magnitude of the parameters. Were this 

problem limited only to values of a  close to 1 we could probably accept it, given that we are 
unlikely to model data exhibiting such high frequency switching. In practice finding data 

with switching intensities liigher than 0.1 would hardly be seen as extreme. To put them  
in context, the solutions Hamilton obtained for the (discrete) two-regime Markov model of 
US GNP had switching probabilities of 0.2450 and 0.0951.

The problems we encounter when dealing with the time scaling factor r  are of a different 
nature to those produced by other parameters. We cannot simply increase the sample size 
and refine our estimates. It will be necessary to reconsider the methods we use for estimating
T.

5 .3 .3  E s t im a t in g  t h e  T im e  S c a lin g  F a c to r

It seems that the use of likelihoods alone is unlikely to allow us to solve estimation problems 

containing the time scaling factor r. Once we have an estimate for r  we can still use
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Figure 5.4: The Log-Likelihood surface for a simulated symmetric process (a =  (3 =  
derived using the 2-parameter fitting method outlined in Case 2.
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Figure 5.5: A Comparison of the Log-Likelihood values obtained for a simulated symmetric 
sample (a  =  /3 =  0.2) along the planes r  =  0.95 and r  =  1.
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likelihoods to obtain good estimates for the other parameters. Therefore we need to explore 
other methods for finding r.

Where we have a pure estimation problem i.e. where our sample is uncontaminated by 
noise and we know Iq and l \ ,  we use a method is proposed in Jalali (2003e) for estimating
r . The sample size is taken as T. For any two consecutive points x(£i) and x( t2) there are
upper and lower bounds of the possible values that can be taken by 2:(£2 ) given x(£i).

If S(t) =  0 for all £1 ^  £ < £2 then x(t2) = lo — (lo — x(ti)) exp

If 5(£) =  1 for all t\ < t2 then x fo )  = h  — (h  — z(£i)) exp

Therefore

lo -  (l0 -  x(£i)) exp ^  x( t2) (h -  x(£i)) exp 12  ̂  ^

We can define our estimators

m )  =  “ “ *(<*)<*(* 1 )

R(t2) = ( f c f S ) ’2 *1 ■

where lo and li are the two levels of the process. Then we have an estimator for p = exp(—y ) 
by taking

p =  mm {R( t i ) ,R ( t2) , . . . ,R( tT)}

and then f  =  — -
ln(p)

If the sample size is large enough and the intervals small enough relative to the frequency 
of the switching this should, with high probability, give a 100% accurate estimate. If not 
then at least we know that we have an overestimate, and hence an upper bound, for f . In 
practice we find numerical errors result in a few rogue values falling below this theoretical 
estimate. We can see an example of this in Figure 5.6, which displays the CDF of the R  
values for a sample of 200 with a  — j3 = 0.9, Iq = 0, l\ =  1 and r  =  1. We obtain p = 0.35 
where the ‘true’ value of p is 0.37.

Unfortunately this method is not particularly robust if the data is contaminated with 
any form of noise. In Figure 5.7 we see the CDFs of the test statistics R when the data 
is contaminated with Gaussian noise. We can see the complete absence of the step in 
the CDF once the standard deviation of the noise level reaches 0.05. In making these 
estimates we have full knowledge of the levels of the model and so it appears that this 
type of approach is not very robust. One possibility would be to introduce some form

£2 — h
T

£2 — £l
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Figure 5.6: The ECDF of the test statistic R, used in the process of estimating Tau for 
simulated data (details given in text)

of parameter augmentation into the estimation procedure, but this could bring its own 
problems and so we first try an approximate method.

5 .3 .4  A p p rox im ate  L ikelihood

At least one of the properties of the transitional distributions is creating estimation prob
lems. This is the inclusion of the impulse function to represent the deterministic movement 
of the process when no switch occurs during an interval. Although the addition of noise 
to a previously clean signal is in general a hindrance, it may alleviate the consequences by 
reducing this singular element. It will of course also deny us the precise knowledge of the 
position of the process that is available to us with a clean signal. Either we will require the 
transitional distribution function for a noisy process or we will be forced to seek a solution 
dependent upon numerical approximation. The complexity of the distribution functions 
makes the former seem rather imposing and we provide instead an algorithm for achieving 
the latter.

When obtaining the true value of the Likelihood with clean data we only made inference 
about the regime of the hidden Markov signal. Now we must also rely on inference about 
the current position of the clean (noise free) process |x (t)}, as we have only the observations 
of the observable process (i/(t)} where

V{t) =  x( t)  +  e(t)

and e(t) ^  AT(0,<r2) and  e(s) and e(t) are independent f o r  any  s ^  t

In order to do this we must decide on the number of levels we wish to use to approximate
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Figure 5.7: The ECDFs of R, the estim ator for Rho in the presence of different levels of 
Gaussian noise.

to  the continuous range of the clean process and we call this N ^ y  The greater the number 
of levels the greater the accuracy of the approxim ation b u t the slower the  calculations. 

Experim entation suggests th a t 10 levels is too few for the approxim ation to  work and 50 is 
probably a more reasonable lower bound.

The range of the clean process {:r(Z)} is [Zo, ] - This interval is then  split into 
sub-intervals I{. for i =  { 1 , 2 , We  shall take Iq =  0, l\ =  1 to  simplify the notation, 
wlog. The intervals /* are given by

x( t)  as if it were discrete ra ther than  continuous.

To complicate m atters further we need to model bo th  the regime of the Markov driving 

signal (S ( t )) and the level of the clean process X( t) .
We do this by defining a new process L ( t ) (which has 2 possible levels) to  replace 

.S'( )̂ and X ( t ) .  The first levels of L{t)  represent the i intervals th a t can be occupied 
by (:r(Z)} while the driving signal has regime S{t) — 0. The the second set of levels 

represent those same intervals while S(t)  =  1 . In notation

and i is then used as the  index of the level. From then on we trea t the  clean process

i f  i E {1, 2 ,..., A(£)} then L{t) =  i represents  the case where S( t )  — 0 and x ( t ) € Ii 

i f  i E {^(L) +  1 , 27V(£)} then L(t)  =  i represents  S( t)  =  1 and x{t)  E /*_;v(L)
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•We then apply a version of the Basic Filter (as defined on page 17) but make inference 
on the process L(t) rather than S(t).

We require as input
Pr(L(t -  1) =  i|x t_i)

And will produce as output
Pr (L(t) = i |x t )

and
/(x ( t) |x t_i)

When it comes to determining the transitional probabilities we again turn to an approx
imation.

Instead of using the density Pij(x(t i) ,x(t2 ) , t 2 — h )  for the transitions we introduce a 
matrix T  where:

Tij = P r ( L ( t ) = j \ L ( t - l ) = i )

We define x fa ) ,  t2 ~ t i )  to represent the transitional distribution that requires
at least one switch to have occured during the interval (hence no impulse element). It is 
presumed that each interval I* can be represented by its midpoint /*. These midpoints are 
given by

h  =  i f  k e  {1 , 2 , . . . , n (l ) }

h  = 2 <fc2^ j M  ^  k  e { % )  + 1 . % )  +  2- 2% ) }

We evaluate the transition probabilities between the levels of L

P r (L(t) =  j \L ( t  -  1) =  i) = (Ii, Ij,  1). ( - ^ - )

To complete T  we need to incorporate the behaviour when no switching occurs (the 
impulse element). For each level we increase the appropriate cells of T  by the probability 
of no switch

And if 4 ns) represents the position of the process after a switch free interval starting in 
interval i and we continue to represent every interval by its midpoint, then

x\ns) = Ii exp(—̂ ) f o r  i G {1, ...,iV(L)} 
x |ns) =  1 — (1 — J*) exp(-J). fo r  i G {N (L) +  1 ,..., 2iV(L)}

And the probability of a switch free interval is

P 'ns> = e x p (-a )  i f  i £  { 1 , ■■■, N(l)}
=  ex p (-^ ) i / » e { J V  +  l , . . . , 2 % )}
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Then we increase the appropriate cell in T  -by this probability

Tij =  Tij +  p W  i f x ^ S l j  
i f  $ Ij

This approximation is quite satisfactory for our purposes if N , ^  is large enough, although 
to ensure that we have a proper transition matrix we will need to rescale the rows of T  
slightly..

We have constructed our process by considering a clean signal {x(t)}. The observations 
we will have to work with will probably be contaminated by Gaussian noise, of standard 
deviation a. This observed series is denoted by {y(t)}.

Step 1
We have our inferred distribution of the process L(t) as

P r [L ( i-  1) = l|y t-i]
P r \L(t -  1) =  2|yt_i]

_ Pr(L(t -  1) =  2JV(i) |yt_ i) _

At time t = 0 we take

Pr(L(0) =  1) 7Ti
Pr(£(0) =  2)

=

. Pr(L(0) =  2N(l)) _ . n2N(L) .

Then we apply the transition matrix to.obtain the expected distribution for time t.

Pr[L(t) =  1 y t-i]
/

P r[L(t -  1) =  i | y t - i ]
/

Pr[L(t) =  2\yt-i]
=

Pr[L(f -  1) =  2 |yt-i]
x T

_ Pr[L(f) =  2N(L)\yt-i] . _ Pr[L(t — 1) = 2 A(L)|yf_i] _

Step 2
The next step is similar to the Basic Filter but does not have to incorporate AR noise. 
We evaluate

f(y{t)\L(t)  =  i) =  -7= e x p
V27TC7 1 'v M - 2 4 - 12 <t 2 2  N.( L )
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This is then included in the process by mulitplying the cells of the output of Stepl by 
the appropriate probability.

f{y( t) ,L{t) = l |y t_i) Pr [L(t) =  l |y t_ i)./(s/(t)|L (t) =  1]
f ( y ( t ) ,L { t )=  2|yt_i)

=
Pr[L(t) =  2 |y ,_ i)./(j/(« )|i(t) =  2]

. f (y( t ) ,L( t )  =  2JV(L)|yt_i) _ . P r[L(t) = 2 % )|y t_ 1 ) . / ( !,(t)|L(t) =  2JV(L)] .

Step3
From here we can infer that

2 N{l)

f ( y ( t ) \ y t - i )  =  ^ 2  f i y W ’ L W  =  * |y t - i )

Pr[L(t) =  l|yt)

i= 1

f ( y ( t ) ,L{ t ) =  l |y t_i)

►-» II to 1 f (y ( t ) ,L ( t ) =  2|yt_i)

_Pr{L(t) = 2NiL)\yt) .

II
S <cT e* 1

>

. /(y(*),L (t) =  2 IV(L)|yt_ 1) .

Step 4
Finally we can evaluate our likelihood in the same way as before, using

£(© ) =
t=l 

T

t= 1

It is also possible to easily convert back to produce inference on the distribution between 
regimes of the S( t ) process, since:

Pr[S(t) = 0 |y t] 
Pr[5(t) =  l |y t]

E  Pr[L(t) =  i\yt)
i=i

2N(l)
E  Pr[L(t) =  i \yt) 

1=n(L)+i
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This method does allow us to fit the full model, including Gaussian noise. For reasonably 
large the approximation is good enough to obtain results. The method seems more 
limited by the practicalities of fitting the model than by the approximation required. In the 
next chapter a study is made of the effectiveness of this method and we provide practical 
guidelines to its limitations.

5.4 M odel F itting using M oments

Although ML is probably the more suitable of the two options when fitting time series 
models, the estimation problem is of more general interest. As the stationary distribution 
of the process is Beta  we could consider the observations from a stationary series as ap
proximating a random sample from the Beta distribution. So we are also considering the 
closely related problem of parameter estimation for the Beta distribution. Furthermore we 
are concerned with the estimation problem when the original sample is contaminated with 
noise. Although the use of the method of moments for the Beta distribution can be traced 
back to 1895 there is not much to be found on this noisy sample problem in the literature 
and is therefore worthy of consideration. The estimation problem is trivial if the levels lo 
and are known so we shall start with the 4 parameter case.

Note that the stationary distribution of the Filtered Markov model with parameters a , 
j3 and r  has stationary distribution Beta(ar,  pr),  and so if these methods were applied to 
that model then the parameters of interest would be a =  a r  and b = /3r rather than a  and 
/3. We shall continue to use the parameter 9 to simplify notation, where

9 = a +  b

It should also be made clear that if we were to apply these methods to a time series we 
would require that the observations were obtained from a stationary FM process (to ensure 
convergence to the Beta distribution) and depend on the series being a good approximation 
to a sample of independent Beta (a, b) variates.

5.4 .1  C ase 1: Four P aram eters(a , 6, Zo, h)

The solution to this four parameter problem can be found in Elderton & Johnson (1969) and 
requires the estimation of the first four moments, which may have straightforward although 
lengthy expressions. Although the two levels of the process Iq and li are natural parameters 
of the stochastic model it is often simpler to consider scale (c) and shift (d). If we choose 
to reparameterise the distribution we find the moments take a much simpler form, and so 
we define
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d = l0 (5.1)

c =  h - l 0 (5.2)

This allows us to represent the mean (fi) and variance (v) more easily

H = +  d (5.3)
U

v = c2~T7— — T (^-4)e 2{9 + 1) v '

We can also write the 3rd and 4th central moments in similar form, greatly simplifying 
the process of finding the higher central moments.

£ [ ( * - „ ) * ,  =  0 3 2aK6~ a ) -

E [ ( X - n )

9S(8 + l)(9 +  2 )
4l _  -iab[abO + 2(S1 — 3a6)] 

04(0 +  l)(0 + 2)(0 +  3)

In particular we will also require estimates of the coefficients of Skewness and Kurtosis, 
7  and k (the estimates will be denoted by 7  and k). We know that these two depend only 
on a and b since

S [ ( * - / 7 T  _  ..2 4(0 + l)(b — a)2
v 3  ab(9 +  2)2

B [(X - / i ) 4j 3(a6« + 2(62 -3a(>))(» + l) ,c ^
t >2  K ab(6 + 2)(9 + 3) 1 J

Solving (5.5) and (5.6) gives us an estimator for 9

q =  6(ft -  1 -  72)
372 +  6  — 2 k

And then substitution of 9 into (5.6) leads us to

ab=  6 ^ + 1 >

02 ( k - 3 )  +  ( k - 3 ) ( 5 ^  +  6 )

Given estimates of both a.b and a +  b (namely 9) we can obtain two possible solutions for
a. From the sign of the Skewness we can tell whether a > b (or vice versa), allowing us to 
determine the values of a and b individually. Substitution of the estimates of a, 6  and the 
variance (v ) into (5.4) gives us an estimate for c. This can then be used with (5.3) to solve 
for d, giving us estimates of all the parameters.
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5 .4 .2  C ase  2: F o u r  P a r a m e te r s  (a  =  6 , l0) li,cr)

We already have clear expressions for the moments of the uncontaminated Beta distribution 
in 5.3 to 5.6. In this case we are now faced with a new problem, that of incorporating 
Gaussian noise (of standard deviation a) into our moments. The resultant expressions 
make a simple solution of the form we saw in Case 1 unlikely and force us to look for 
alternative approaches. One such solution, proposed in Jalali (2003b), utilises cumulants 
to circumvent this problem. The advantage they possess is that the higher order (3rd order 
or higher) cumulants are unaffected by Gaussian noise. In this case we are concerned with 
the symmetric case, for which all odd moments of higher order are equal to zero. W ith 
four parameters to estimate we will need four non-zero cumulants and will therefore use 
the 1st, 2nd, 4th and 6th. We shall work with the scale and shift parameters c and d, as 
defined in (5.1) and (5.2). We shall denote the ith cumulant by Ki , which have the following 
expressions:

Ki  =

K 2 = 

K a = 

K 6 =

4(6 + 1) +  <7 *

3c4

8(6 +  1)2(6 +  3)
15c6

4(0 +  l ) 3(0 +  3)(0 +  5)

We still have four unknowns and four cumulants. We can remove the scale 
c by taking ratios of cumulants. For instance using (5.9) and (5.10) we can 
expression in 6 only.

800(0 +  3)K l

Now
d_

dd

K i

0 +  3

3(0+  5) 2

^  0  for  all 6 ^  0
_(0 +  5) 2

So the right hand side of (5.11) is monotonically increasing with 0. Also

K 2
-3 2  < - §  < 0

4

This gives us a method for finding a unique estimate for 0. After finding 
solving (5.11) we can obtain the estimate of the scaling factor c from (5.9) thus

(5.7)

(5.8)

(5.9)

(5.10)

coefficient 
obtain an

(5.11)

(5.12)

(5.13) 

0  through
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And finally we find the variance of the noise a2 by substitution into (5.8)

-2
- 2a* = K 2 -

4(0 +  1)

The levels are easily found from here.
The major problem facing any method using cumulants is that of obtaining good esti

mates from the data. An examination of the practical limits for the use of this method 
have been made in the next chapter.

5 .4 .3  C ase 3: 5 P aram eters (a, 6 ,Zo^i>cr)

Finally we find ourselves facing the full set of parameters to estimate. In working with 
moments this is the largest number of parameters we shall have to worry about. This 
process settles down very quickly to the stationary distribution, becoming independent of 
the initial state and so, for all but the shortest samples, we can safely ignore this. We are 
also not concerned with the time-scaling factor r  directly here as our parameters of interest 
are a — oar and b = fir.

The method that has been developed for the asymmetric case of this problem does not 
utilise cumulants as was done for the symmetric case. This was motivated in part by the 
increased complexity of the expressions involved but also due to the difficulty in obtaining 
good estimates for the higher, odd cumulants. These generally are of very small magnitude 
and therefore the consequences of any inaccuracy can be quite significant. Instead a method, 
proposed in Jalali (2003d), makes use of the expressions for the moments, adjusted to 
incorporate the effects of the observation error (Gaussian noise).

The key innovation is to consider the (standardised central) sample moments of the 
contaminated observations {y(t)} and obtain estimates of those of the uncontaminated 
{x(t)}. Once we have done this the problem reduces to that in Case 1. We shall differentiate 
between the two sets of moments by denoting them as / / ,  u', Y , r f  (contaminated) and 
/q v, 7 , /c, 7] (uncontaminated) respectively. We begin with'the central moments of the Beta 
distribution. They are given below, up to the 5th order and are written in terms of the 
standardised central moments of an uncontaminated variable.

E[X] =  V
= V

E { ( X - t f ]
3=  7 1 ) 2

E { ( X - t f ] =  kv2

B K X - m)5] =  (f)V 2

We can then introduce the observation error e~iV(0, a2) by substituting Y  = X  +  e into 
E[(Y—y) n]. This allow us to express the moments of the contaminated sample (E[(Y—fi')n])
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in terms of the uncontaminated standardised central moments. These are given below

E\Y\ =  =  (5-14)

E[(Y — fi)2} = v' =  v +  cr2 (5.15)

E[(Y -  f i ) 3 ] =  j v ' %  =  7 1 ;̂  (5.16)

E[(Y  — /z)4] =  ku2 =  k v 2 +  6va2 +  3<r4 (5-17)

E[(Y — fi)5] = (t>vf2 =  (f)v 2 -f 1 0 <j2 7 t>2 (5.18)

From these we can obtain the standardised central moments of orders 3 to 5

V = y ( ^ ) 2 (5-i9)

■' -  ■ © ■ ♦ - ■ ( t O + S  <“ »>

*■ -  <«■>

We can then solve for 7 , k , r] in terms of 7 ', /s', 7 '.

7  =  f - V y  (5.22)
V y

To simplify the notation, and reduce this equation to one parameter, we can now intro
duce

„2 V
x~ = —

V

Which simplifies (5.22)-(5.24) to

7  =  x 3y  (5.25)

k  =  x ak! — 6(x2 — 1) — S(x2 — l ) 2 (5.26)

(f> =  x5<y -  10z3 (z2 -  1)7' (5.27)

Each of these three estimators on the left hand side of (5.25)-(5.27) is expressible in 
terms of a and b with x  the only variable on the right hand side.

It is possible, at some length, to reduce this to a cubic equation in x 2 with coefficients 
provided by functions of 7 ', k', <fi'.

x V  -  15(x2 -  1 ) x V  +  45(z2 -  l ) 2 +  30(x2 -  l ) 3 (5.28)
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We can use-the original sample to provide us with estimates of 7 ', k', <//, and this equation 
can then be solved for x 2. Once we have solved (5.28) and have a measure of the noise 
level we can use (5.22)-(5.24) to obtain estimates of the noise free parameters /q v, 7 , k, <j). 
Once we have these the problem reverts to that we dealt with in Case 1 of four parameters 
without noise.

It is also possible to obtain a result for non-Gaussian noise as long as the distribution of 
the noise is symmetric. All we require in addition is the Kurtosis of the distribution of the 
noise, which is represented by A. In this case we obtain a more general version of (5.28) 
which is given below in (5.29)

0  =  2 ( x 4 k!  — 6 (x2  — 1 ) — X(x2 — 1 )2 )2 7 ;

+ (x 4 k/ — 6 (:r2 — 1) — A(x2 — 1 )2){x2(j)' — 10(:c2 — 1 )7 ' +  147')

- 6 x 6Y 3 -  3x6 7/2(yY -  1 0 (z2 -  1 )Y) -  9 (x V  -  1 0 (x2 -  1 )Y) (5.29)

Which, with the inclusion of a suitable value for A can be solved as before giving us our 
uncontaminated estimates, after which the distribution of the noise becomes irrelevant.

C ase 5: T he S ym m etric  B e ta (a  =  6 , Iq, Zi, a)

The obvious weakness of this method stems from the fact that it relies on information 
derived from the third and 5th moments. In the case of a symmetric Beta distribution 
these will be zero and any deviation from zero is due to estimation error. So for this case 
we need an additional even moment, the next one being the 6th central moment. This 
normalised central moment 1p is defined as

if; = e [(y - h Y
E [ ( Y - ii)2]3

ori>v3 =  E[(Y -  i i f ]  (5.30)

If we use the substitution a =  6  =  % the right hand side of (5.30) can be expressed 
entirely in terms of 9. Some algebraic manipulation eventually gives us

, 3 15ifjV —

64(0 +  l)(0 +  3)(0 +  5) 

and using the fact that v — we obtain the following expression for if;

P ._  15(g +  l )2 (531)
^  (0 +  3)(0 +  5) ( ’

Another result we will require is that in the symmetric case (5.6) reduces to (5.32)

3( 0+1)  
(0 +  3)

(5.32)
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Equation (5.32), together with (5.31), gives a relationship between k and ip that holds 
for symmetric Beta distributions. That expression is given below in (5.33)

When noise (e £ iV(0, <r2)) is added to the 6th moment we obtain a new expression. 

E[((Y +  e) -  /z)6] =  E[(Y  -  //)6] +  15E[(Y -  /x)4 ]<r2 +  45E\{Y -  /i)2]a4 + 15a6 

Substituting in for the expectations we find

-0V3 =  ipv3 +  15k v2ct2 +  45ucr4 +  15a6

But we also know from (5.23) that

If we then substitute (5.35) and (5.36) in the identity (5.33) we obtain the desired 
equation for £

[(1 + C) V  -  15(1 + C) V  + 450C + 30C3] (6 -  (1 + C) V  + 6C + 3C2) (5.37) 
= 5[(1 + C )V -6 C -3 C 2]2

^ (6  — k ) =  5 k 2 (5.33)

If we define
(5.34)

Then we substitute £ into (5.31) and (5.23) to obtain the following

4  -  ( 1  +  0 :y  -  15(1 +  C )V  + 45C +  30C3

k =  ( 1  +  C )V  -  6 C -  3C2

(5.35)

(5.36)

All we need to do is obtain the noisy sample moments ip, k  and find the positive real 
roots of (5.37). This gives us our estimates of the level of noise (  since

Then we can easily obtain k  from (5.36) and then 9 from (5.32). Our estimate of 9 will 
give us estimates of a and b (since a = b =  | )  and hence all the noise-free moments and 
from here it is simple to solve for the parameters of the model.
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5.5 Summary and Conclusions

We started working with ML with the simplest model we could, which was an ideal, noise-free 
process. We immediately found problems with this simplest of methods that forewarned us 
of the problems ahead. Quite soon it became clear that, although there was no problem with 
identifiability, this kind of approach was unlikely to be of much use when more parameters 
were added (in particular r). By treating the continuous process as a discrete one we 
were able to apply other Likelihood methods, using a version of Hamilton’s filter. Using 
this method we were able to fit the model quite effectively when noise levels were low to 
moderate although some parameters proved easier to estimate than others. A thorough 
examination of the quality of the estimates obtained for different levels of noise is given in 
the next Chapter.

The Method of Moments was always unlikely to provide the most powerful method for 
working with time series models. This is due to the large amount of very useful information 
that is discarded in treating the process as a sample from a Beta distribution with the 
observations obscured by the presence of Gaussian noise. Due to the lack of any available 
methods for parameter estimation for a noisy Beta sample it was worth pursuing despite its 
limited suitability for working with time series modelling. W hat we obtained was a method 
that could be applied to time series but could only provide answers when noise levels are 
very low.

The Cumulants approach faced a similarly uphill struggle. The loss of useful information 
from the series makes this approach of theoretical interest only. W hat we found was that 
progress could be made but the difficulty of obtaining good estimates of the cumulants 
obstructed this method. Very large sample sizes or very little noise would be needed for 
this approach to work.

In all our approaches to parameter estimation involving the Beta distribution we have 
found similar problems. The presence of even a small amount of uncertainty in the obser
vations complicates the estimation process considerably. The methods collected here have 
been tested to determine how robust they are and identify the limits of their practical use. 
The results of these experiments are summarised in the next chapter.



C hapter 6

Applying the M ethods to  
Simulated Data

In the previous chapter we proposed a method for parameter estimation when working with 
the FM model and several others for a more general problem of parameter estimation for a 
contaminated Beta sample. In this chapter we apply the methods to simulated data to study 
their performance.

6.1 M odel Testing

We have settled upon a likely method for fitting the FM model and proposed several methods 
for obtaining inference about a sample from a Beta distribution contaminated by Gaussian 
noise. It now remains to observe these methods and their performance on simulated data. 
This will enable us to draw up guidelines for their use. For each method we wish to measure 
reliability (how often we can rely on it to produce a meaningful answer) and effectiveness 
(how good are the estimates it produces when the method does not fail). We shall retain 
the order in which we introduced the methods, and due to the number of tables we shall 
provide a page index.

Table Page

Approxim ate Likelihood for FM M
Estimator Percentiles (Sample Size 100) 96
Estimator Percentiles (Sample Size 1000) 98
Summary 100
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M om ents Case 1: Four Param eters A sym m etric
Estimator Percentiles (Sample Size 1000) for cr =  0 101
Estimator Percentiles (Sample Size 1000) for a =  0.01 102
Estimator Percentiles (Sample Size 1000) for a — 0.05 103
Estimator Percentiles (Sample Size 1000) for cr =  0.1 104
Summary 104

M om ents Case 2: Four Param eters Sym m etric Cumulants
Estimator Percentiles (Sample Size 1,000) for all a  105
Estimator Percentiles (Sample Size 10,000) for all a 107
Summary 107

M om ents Case 3: Five Param eters Asym m etric M om ents
Estimator Percentiles (Sample Size 1,000) for cr =  0 108
Estimator Percentiles (Sample Size 1,000) for cr =  0.01 110
Estimator Percentiles (Sample Size 1,000) for cr =  0.05 111
Estimator Percentiles (Sample Size 1,000) for cr =  0.1 112
Estimator Percentiles (Sample Size 1,000) for cr =  0.5 113

M om ents Case 5: Four Param eter Sym m etric M om ents
Estimator Percentiles (Sample Size 1,000) for all cr 113
Estimator Percentiles (Sample Size 10,000) for all cr 115
Summary 115

Conclusions 116

6.2 Approxim ate Likelihood

This method, proposed in Section 5.3.4, utilises a version of the Filter algorithm introduced 
in Hamilton (1989) to obtain a likelihood value for a data set and a given set of parameters. 
We use a series of observations from a simulated FM process to represent our data. Our 
fitting is done by an MCMC algorithm known as a random walk Metropolis (see Section 
3.3) which enables us to measure the shape of the likelihood space around the MLE. There 
are many ways we could have presented the measurements we collected in this and the next 
section. We give the estimates as percentiles of the sample estimates rather than a point 
estimate and measure of deviation. This was motivated by the fact that for only some of 
the parameters could the marginal distribution be said to be normally distributed.

In order to present the information collected in an efficient and readable manner the 
tables are constructed in the following way. There are two sets of tables, the first set
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present the results when dealing with a sample of 1 0 0  and the second set a sample of 1 0 0 0 .- 
In all cases we use levels Zo =  0, li =  1 and t — 1 . Each set consists of 7 tables for different 
noise levels a =  {0 . 1 , 0 . 2 , 0 . 7} .  For each line, indexed by (ex,/?, a), of the table upper 
(95%) and lower (5%) percentiles are given for the first of the two intensities ( a )  and the 
first of the two levels (Zo). The confidence intervals for the second parameter and second 
level can be found in the line indexed by the model (/?, cx, cr). When we use this approach 
to study the upper level parameter we must remember that the confidence interval will be 
reflected and centred around 1 rather than 0. Limits for r  and a  can be found in both 
lines of the table. Each set of values (ex, /?, cr) was tested only once, due to the large time 
requirements, with the results being split between these two cases. The obvious exception 
to this is the symmetric case which is presented in one line of the table only.

6 .2 .1  M C M C  M eth o d o lo g y

The walk was initiated at the ‘true’ parameter values used to generated the series and used 
a Normally distributed proposal distribution. A walk of 10,000 steps was used with a fixed 
burn-in period of 1,500 steps. This standard burn-in period for all runs was chosen by 
using the required burn-in period for the single run with slowest convergence. The lengths 
of the walk and burn-in period were necessary to ensure both convergence of the sampler 
to the posterior distribution and sufficient measurements to obtain a good estimate of the 
confidence interval for each parameter. The specification of the proposal distribution and 
the burn-in period were chosen after careful inspection of the output of the algorithm. The 
routine was written in C + +  to maximise performance but the time taken to measure a 
single set of parameters was still measured in hours. In the example below we show the 
convergence plots and marginal posterior distributions for a sample case.

Exam ple 11

In this example we take one of the cases shown in the first table, that of a  = 0.1, j3 — 

0 .3 , cr =  0.1. We also take Zo =  0, l\ = 1, r  =  1 and generate a series of length 100 When 
constructing the tables below we initialised the MCMC algorithm at the ‘true’ parameter 
values. In this case we do not do this, so as to demonstrate the convergence. The algorithm 
is instead initialised at ex =  0.5, /? =  0.5, a — 0.5, Zo =  0, Zi =  1, r  =  1. We run the algorithm 
until we have accepted 10,000 steps and the burn-in period is chosen by eye. In this case we 
chose a burn-in period of around 1,500 steps. The convergence plots are given in Figures
6.1 to 6.7 while the plots of the estimated marginal posterior distributions are shown in 
Figures 6 . 8  to 6.13. Marked on the convergence plots are the end of the burn-in period and 
the ‘true’ value used to generate the series.

It is noticeable that the quality of the inference is highly variable from parameter to 
parameter. In some cases the estimate is both accurate and robust. This is the case in 
estimating the noise level, cr. In other cases, such as the time scaling parameter r , the
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confidence interval is very broad. These estimation problems seem to be due to the quite 
subtle influence of the parameter tau. Even with full knowledge of the levels of the process 
(k) the switching behaviour is easily drowned out by the white noise. Where there is any 
doubt as to the precise location of one of the levels, such as in a strongly asymmetric case, 
little can be learned about tau.
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Figure 6.1: MCMC convergence plot for the log-likelihood of the series.
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Figure 6.2: MCMC convergence plot for alpha.
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Figure 6.3: MCMC convergence plot for beta.
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Figure 6.6: MCMC convergence plot for Tau.
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Figure 6.7: MCMC convergence plot for Sigma.
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Figure 6.9: A plot of the estim ate of the m arginal posterior distribution for beta.



6.2. A PPR O X IM A T E  LIKELIHOOD 94

Figure 6.10: A plot of the estim ate of the marginal posterior d istribution for the level of the 

lower regime, Iq.
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Figure 6.12: A plot of the estim ate of the m arginal posterior d istribution for tau.
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Figure 6.13: A plot of the estim ate of the m arginal posterior d istribution for sigma.
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Estim ator Percentile (Sample Size 100)

a P a £*0.05 £*0.95 J(),0.05 J(),0.95 ^0.05 T 0.95 <70.05 <70.95

0 .1 0 .1 0 .1 0 . 0 1 2 1 0.1006 -0.0072 0.0504 0.5021 1.0364 0.0950 0.1232
0 .1 0.3 0 .1 0.0487 0.1791 -0.0163 0.0295 0.8329 1.2261 0.0867 0.1171
0 .1 0.5 0 .1 0.0370 0.1675 -0.0295 0.0178 0.6582 1.0151 0.0794 0.1083
0 .1 0.7 0 .1 0.0517 0.1720 -0.0327 0.0063 0.7537 1.0403 0.0826 0.1083
0.3 0 .1 0 .1 0.2663 0.7450 0.9308 1.0824 0.8329 1.2261 0.0867 0.1171
0.5 0 .1 0 .1 0 .2 0 2 2 0.7001 0.8468 1.0124 0.6582 1.0151 0.0794 0.1083
0.7 0 .1 0 .1 0.2308 0.6824 0.8400 1.0160 0.7537 1.0403 0.0826 0.1083

a P <T £*0.05 £*0.95 J(),0.05 ^0,0.95 T  0.05 ^0.95 00.05 00.95

0 .1 0 .1 0 .2 0.0273 0.1799 -0.0563 0.0554 0.2816 0.6310 0.1699 0.2179
0 .1 0.3 0 .2 0.0501 0.2217 -0.0376 0.0796 0.7789 1.9807 0.1864 0.2430
0 .1 0.5 0 .2 0.0434 0.2241 -0.0554 0.0379 0.0534 0.8892 0.1616 0.2161
0 .1 0.7 0 .2 0 .0 0 1 1 0.0570 -0.0158 0.0591 0.0240 1.2682 0.1845 0.2391
0.3 0 .1 0 .2 0.1730 0.8462 0.9171 1.2398 0.7789 1.9807 0.1864 0.2430
0.5 0 .1 0 .2 0.1443 0.5029 0.7281 0.9252 0.0534 0.8892 0.1616 0.2161
0.7 0 .1 0 .2 0 . 0 2 1 0 0.3378 0.2789 0.9268 0.0240 1.2682 0.1845 0.2391

a P <7 <*0.05 <*0.95 J(),0.05 Jo,0.95 ^0.05 T  0.95 00.05 00.95

0 .1 0 .1 0.3 0.0379 0.1870 -0.0657 0.0968 0.1498 0.7081 0.2413 0.3053
0 .1 0.3 0.3 0.0236 0.1609 -0.0905 0.0252 0.0483 1.2406 0.2342 0.3114
0 .1 0.5 0.3 0.0149 0.1542 -0.0781 0.0656 0.0236 0.5139 0.2834 0.3760
0 .1 0.7 0.3 0.0418 0.1814 -0.0918 0.0166 0.0342 0.5991 0.2242 0.2940
0.3 0 .1 0.3 0.0937 0.4404 0.8682 1.2556 0.0483 1.2406 0.2342 0.3114
0.5 0 .1 0.3 0.0389 0.4359 0.4512 0.8061 0.0236 0.5139 0.2834 0.3760

' 0.7 0 .1 0.3 0.1392 0.5428 0.6989 1.1075 0.0342 0.5991 0.2242 0.2940

c* P <7 <*0.05 <*0.95 Jo,0.05 Jo,0.95 ?  0.05 ^0.95 00.05 00.95

0 .1 0 .1 0.4 0.0594 0.7767 -0.7420 0.1252 0.0288 0.4442 0.3765 0.4970
0 .1 0.3 0.4 0.0805 0.7312 -0.2375 0.0714 0.0109 0.4174 0.3492 0.4727
0 .1 0.5 0.4 0.0054 0.0945 -0.0919 0.0582 0.0677 1.1545 0.3628 0.4528
0 .1 0.7 0.4 0.0117 0.4597 -0.0658 0.1834 0.0094 0.7292 0.3444 0.4576
0.3 0 .1 0.4 0.1284 0.5186 0.5467 0.8594 0.0109 0.4174 0.3492 0.4727
0.5 0 .1 0.4 0.0419 0.3579 0.4366 0.8064 0.0677 1.1545 0.3628 0.4528
0.7 0 .1 0.4 0.0415 0.7599 0.2027 1.1513 0.0094 0.7292 0.3444 0.4576
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a P <7 <*0.05 <*0.95 J(),0.05 Jo,0.95 "70.05 "7 0.95 <70.05 <70.95

0 .1 0 .1 0.5 0.0435 0.2965 -0.1662 0.1269 0.1043 0.7837 0.4009 0.5284
0 .1 0.3 0.5 0.0345 0.4568 -0.4216 0.0401 0.0690 1.3012 0.4113 0.5749
0 .1 0.5 0.5 0.0149 0.3311 0.0591 0.3070 0.0172 0.4921 0.3653 0.4908
0 .1 0.7 0.5 0.0601 0.4458 -0.4029 -0.0115 0.0170 0.8988 0.4236 0.5681
0.3 0 .1 0.5 0.0060 0.7066 0.1294 0.9350 0.0690 1.3012 0.4113 0.5749
0.5 0 .1 0.5 0.0367 0.9687 0.2466 1.2203 0.0172 0.4921 0.3653 0.4908
0.7 0 .1 0.5 0.0184 0.4001 0.2469 0.6933 0.0170 0.8988 0.4236 0.5681

a P a <20.05 <20.95 fo,0.05 Jo,0 .9 5 "7 0.05 T 0.95 <70.05 <70.95

0 .1 0 .1 0 .6 0.0818 0.6227 -0.7518 -0.1848 0 . 0 1 1 2 0.7723 0.5328 0.7222
0 .1 0.3 0 .6 0.1166 0.7114 -0.3652 0.0207 0.0240 0.6283 0.5085 0.7294
0 .1 0.5 0 .6 0 .0 2 0 1 0.3970 -0.6095 0.2116 0.0143 0.5615 0.5424 0.7135
0 .1 0.7 0 .6 0.0271 0.8756 -0.4428 0.0991 0.0232 0.8622 0.5288 0.6794
0.3 0 .1 0 .6 0.1698 0.7748 0.4784 1.0387 0.0240 0.6283 0.5085 0.7294
0.5 0 .1 0 .6 0.0044 0.2629 0.2217 0.6944 0.0143 0.5615 0.5424 0.7135
0.7 0 .1 0 .6 0.0158 0.9200 0.0276 0.5684 0.0232 0.8622 0.5288 0.6794

Q; P a <*0.05 <*0.95 Jo,0.05 Jo,0.95 ^0.05 ^0.95 <70.05 <70.95

0 .1 0 .1 0.7 0.0844 0.5577 -0.3972 -0.0226 0.0313 0.6071 0.5320 0.6973
0 .1 0.3 0.7 0.0226 0.3155 -1.7580 -0.2159 0 .0 1 2 1 0.6495 0.6298 0.7939
0 .1 0.5 0.7 0.0240 0.9455 -2.6763 0.0014 0.0257 0.9637 0.6156 0.7719
0 .1 0.7 0.7 0 .0 2 2 0 0.4541 -1.0303 0.0277 0.0357 0.8415 0.5737 0.7357
0.3 0 .1 0.7 0.0008 0.0537 0.1195 0.3619 0 .0 1 2 1 0.6495 0.6298 0.7939
0.5 0 .1 0.7 0 . 0 0 2 1 0.3960 -0.0610 0.3598 0.0257 0.9637 0.6156 0.7719
0.7 0 .1 0.7 0 .0 0 2 0 0.6299 -0.0067 0.8729 0.0357 0.8415 0.5737 0.7357
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Estim ator Percentile (Sample Size 1000)

a P <7 £*0.05 £*0.95

lO©o<-5 0.95 T 0.05 T 0.95 00.05 <70.95

0 .1 0 .1 0 .1 0.0663 0 . 1 2 2 1 -0.0229 -0.0005 0.8784 1.0023 0.0913 0 .1 0 2 0

0 .1 0.3 0 .1 0.0890 0.1334 -0.0160 0 .0 0 0 2 0.9270 1.0302 0.0904 0 . 1 0 0 1

0 .1 0.5 0 .1 0.0752 0.1258 -0.0170 0.0028 0.8974 1.0692 0.0950 0.1075
0 .1 0.7 0 .1 0.0921 0.1439 -0.0076 0.0098 0.8608 1 .0 1 0 1 0.0882 0.0994
0.3 0 .1 0 .1 0.2812 0.4233 0.9802 1.0138 0.9270 1.0302 0.0904 0 . 1 0 0 1

0.5 0 .1 0 .1 0.3902 0.5697 0.9566 1.0162 0.8974 1.0692 0.0950 0.1075
0.7 0 .1 0 .1 0.6084 0.8487 0.9356 1.0168 0.8608 1 .0 1 0 1 0.0882 0.0994

a P <7 £*0.05 £*0.95 Jo,0.05 Jo,0 .9 5 T 0.05 T 0.95 00.05 00.95

0 .1 0 .1 0 .2 0.0708 0.1228 -0.0167 0.0163 0.8982 1.1512 0.1830 0.2013
0 .1 0.3 0 .2 0.0967 0.1705 -0.0241 0.0175 0.7413 1.0093 0.1930 0.2168
0 .1 0.5 0 .2 0.0763 0.1600 -0.0236 0.0164 0.6753 1.0563 0.1843 0.2094
0 .1 0.7 0 .2 0.0724 0.1331 -0.0248 0.0106 0.7809 1.3426 0.1833 0.2035
0.3 0 .1 0 .2 0.2533 0.4034 0.9300 1.0128 0.7413 1.0093 0.1930 0.2168
0.5 0 .1 0 .2 0.3441 0.6045 0.8956 1 .0 0 2 2 0.6753 1.0563 0.1843 0.2094
0.7 0 .1 0 .2 0.4266 0.6795 0.8326 0.9927 0.7809 1.3426 0.1833 0.2035

Ck P a &0.05 £*0.95 Jo,0.05 Jo,0 .9 5 ^0.05 ^0.95 00.05 00.95

0 .1 0 .1 0.3 0.0496 0.0993 -0.0361 0.0248 0.8108 1.3296 0.2822 0.3111
0 .1 0.3 0.3 0.0875 0.1887 -0.0455 0.0244 0.7630 1.4168 0.2649 0.2995
0 .1 0.5 0.3 0.0747 0 .2 1 2 0 -0.0198 0.0402 0.4021 0.8992 0.2620 0.2976
0 .1 0.7 0.3 0.0428 0.1186 -0.0319 0.0293 0.2422 0.8775 0.2920 0.3251
0.3 0 .1 0.3 0.3014 0.5819 0.9839 1.1282 0.7630 1.4168 0.2649 0.2995
0.5 0 .1 0.3 0.3651 0.8984 0.8115 1 .0 0 2 1 0.4021 0.8992 0.2620 0.2976
0.7 0 .1 0.3 0.2941 0.6273 0.7223 0.9802 0.2422 0.8775 0.2920 0.3251

a P <7 £*0.05 £*0.95 Jo,0.05 Jo,0.95 T 0.05 T 0.95 00.05 00.95

0 .1 0 .1 0.4 0.0785 0.1646 -0.0573 0.0367 0.8807 1.2265 0.3704 0.4106
0 .1 0.3 0.4 0.0750 0.1711 -0.0628 0.0070 0.9448 0.6958 0.3536 0.3937
0 .1 0.5 0.4 0.0752 0.2537 -0.0733 0.0354 0.7717 0.6918 0.3630 0.4116
0 .1 0.7 0.4 0.0740 0.2676 -0.0993 0.0076 0.5764 1.1758 0.3659 0.4088
0.3 0 .1 0.4 0.2312 0.4571 0.9448 1.1039 0.9448 0.6958 0.3536 0.3937
0.5 0 .1 0.4 0.3236 0.8591 0.7717 1.0484 0.7717 0.6918 0.3630 0.4116
0.7 0 .1 0.4 0.5353 0.9046 0.5764 0.9896 0.5764 1.1758 0.3659 0.4088
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a P <7 <20.05 <20.95 J(),0.05 J(),0.95 70.05 ' 7  0.95 <70.05 <70.95

0 .1 0 .1 0.5 0.0605 0.1511 -0.0353 0.0894 0.2639 0.8950 0.4629 0.5137
0 .1 0.3 0.5 0.0789 0.2181 -0.0904 0.0369 0.0589 0.7187 0.4619 0.5158
0 .1 0.5 0.5 0.0342 0.2749 -0.0027 0.1030 0.0041 1 .0 1 1 1 0.4850 0.5383
0 .1 0.7 0.5 0.0503 0.3109 -0.0785 0.0705 0 . 0 1 2 0 0.8403 0.4691 0.5266
0.3 0 .1 0.5 0.2294 0.5229 0.7398 1.0004 0.0589 0.7187 0.4619 0.5158
0.5 0 .1 0.5 0.2608 0.8592 0.7181 1.1509 0.0041 1 .0 1 1 1 0.4850 0.5383
0.7 0 .1 0.5 0.3249 0.9082 0.6278 1.0041 0 . 0 1 2 0 0.8403 0.4691 0.5266

a P a <20.05 <20.95 J(),0.05 £(),0.95 7  0.05 7  0.95 <70.05 <70.95

0 .1 0 .1 0 . 6 0.0550 0.1520 -0.0746 0.0887 0.0561 0.9395 0.5528 0.6119
0 .1 0.3 0 .6 0.0280 0.1165 -0.0649 0.0615 0 .0 1 0 1 0.9456 0.5651 0.6276
0 .1 0.5 0 . 6 0.0272 0.2274 -0.1190 0.0231 0.0048 1.0507 0.5506 0.6193
0 .1 0.7 0 .6 0.0940 0.4577 -0.1504 0.0052 0.0115 0.8447 0.5488 0.6087
0.3 0 .1 0 .6 0.0857 0.2936 0.7002 0.9641 0 .0 1 0 1 0.9456 0.5651 0.6276
0.5 0 .1 0 .6 0.0606 0.5248 0.3610 0.8867 0.0048 1.0507 0.5506 0.6193
0.7 0 .1 0 . 6 0.1597 0.8674 0.4231 0.8040 0.0115 0.8447 0.5488 0.6087

a P <7 &0.05 <20.95 Jo,0.05 Jo,0.95 70.05 70.95 <70.05 <70.95

0 .1 0 .1 0.7 0.0448 0.1166 -0.1086 1.0664 0.0312 1 .2 1 0 1 0.6355 0.7013
0 .1 0.3 0.7 0.0590 0.3917 -0.2087 0.8871 0.0092 1.2351 0.6621 0.7434
0 .1 0.5 0.7 0.0354 0.2131 -0.0659 1.0912 0.0107 0.9345 0.6333 0.7001
0 .1 0.7 0.7 0.0876 0.8916 -1.1267 0.7844 0.0066 1.0552 0.6385 0.7242
0.3 0 .1 0.7 0.1293 0.4441 0.5060 0.9263 0.0092 1.2351 0.6621 0.7434
0.5 0 .1 0.7 0.2371 0.7249 0.6420 1.0672 0.0107 0.9345 0.6333 0.7001
0.7 0 .1 0.7 0.0007 0.6694 0.0331 1.4837 0.0066 1.0552 0.6385 0.7242
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Sum m ary

One notable difference between this method and those involving moments is the absence of 
any figure to represent the failure rate. Even when the series under examination proves 
problematic for the fitting method some kind of estimate is always obtained.

On examining these tables we notice that not all the parameters are estimated with 
equal precision. For instance the standard deviation of the noise a tends to be estimated 
with a high degree of precision, even for high noise levels. This is true even when the 
precision of our estimates of other parameters is quite poor. This cannot be said for our 
estimates of the time scaling factor r , for which our estimates tend to be very poor for all 
but the lowest noise levels. For the other parameters our estimate tend to be quite good 
until the noise levels reach a =  0.3 or higher. In particular the estimates of the noise level 
are generally far better than the other estimates, even for a highly asymmetric or noisy 
model. The estimates are generally reasonably symmetric except for the most noisy and 
most asymmetric cases.

6.3 M ethods of M oments

For these methods to work with a time series we would expect to require quite low noise 
levels. In practice we found that they were of little use when dealing with time series 
data except in the most ideal circumstances and we would not recommend them for this 
purpose. As a consequence of this we include an examination of these methods for their 
general interest in terms of obtaining inference about contaminated Beta samples rather 
than for their original purpose. For this reason we do not use a series from the FM model, 
which may display some correlation between consecutive values, and instead use a sample 
drawn directly from the appropriate Beta distribution.

6 .3 .1  C ase 1: Four P aram eter  A sy m m etr ic  (a,b, lo, l i )

This algorithm is intended for use with a noise-free sample from the Beta distribution. 
We include here an appraisal of its performance when the sample is contaminated for the 
purpose of measuring the worth of the Five Parameter model (which attempts to incorporate 
noise into the inference). The confidence intervals are taken as the 5th and 95th percentiles 
of parameter estimates obtained from successful inference. Unsuccessful inference includes 
any case where there are non-real solutions (or negative values for certain parameters). The 
failure rate of the method for a set of parameters gives the proportion of the samples that 
resulted in a failed inference (on a scale of 0 to 1). Each set of parameters was tested 1000 
times to produce these estimates, with the length of the samples generated being either 1 0 0 0  

or 1 0 , 0 0 0  as specified in the table.
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Estim ator Percentiles (Sam ple Size 1000) for a  =  0

a b cr Fail ao.05 ao.95 lo,o.05 lo,o.95

0 .0 1 0 .0 1 0 . 0 0 0 .0 0 0.0049 0.0229 -0.0005 0.0004
0 .0 1 0 . 1 0 0 . 0 0 0 .0 0 0.0058 0.0173 -0.0003 0.0003
0 .0 1 0.50 0 . 0 0 0 .0 0 0.0054 0.0175 -0.0004 0.0004
0 .0 1 1 .0 0 0 . 0 0 0 .0 0 0.0045 0.0177 -0.0003 0.0004
0 .0 1 2 .0 0 0 . 0 0 0 .0 0 0.0039 0.0179 -0 .0 0 0 2 0.0004

a b a Fail ao.05 ao.95 lo,o.05 lo,o.95
0 . 1 0 0 .0 1 0 . 0 0 0 .0 0 0.0613 0.1875 -0.0041 0.0066
0 . 1 0 0 . 1 0 0 . 0 0 0 .0 0 0.0778 0.1289 -0.0018 0 . 0 0 2 1

0 . 1 0 0.50 0 . 0 0 0 .0 0 0.0809 0.1241 -0.0018 0.0016
0 . 1 0 1 .0 0 0 . 0 0 0 .0 0 0.0803 0.1232 -0.0016 0.0017
0 . 1 0 2 .0 0 0 . 0 0 0 .0 0 0.0749 0.1261 -0.0014 0.0017

a b cr Fail ao.05 ao.95 lo,o.05 lo,o.95

0.50 0 .0 1 0 . 0 0 0 .0 0 0.2970 0.8941 -0.0358 0.1238
0.50 0 . 1 0 0 . 0 0 0 .0 0 0.4074 0.6121 -0.0149 0.0185
0.50 0.50 0 . 0 0 0 .0 0 0.4356 0.5787 -0.0080 0.0084
0.50 1 .0 0 0 . 0 0 0 .0 0 0.4380 0.5707 -0.0066 0.0072
0.50 2 .0 0 0 . 0 0 0 .0 0 0.4298 0.5873 -0.0061 0.0058

a b a Fail a o .0 5 a o .9 5 lo,o.05 lo,0.95

1 .0 0 0 .0 1 0 . 0 0 0 .0 0 0.5393 1.6390 -0.0753 0.3171
1 .0 0 0 . 1 0 0 . 0 0 0 .0 0 0.7999 1.2332 -0.0426 0.0638
1 .0 0 0.50 0 . 0 0 0 .0 0 0.8717 1.1398 -0.0227 0.0253
1 .0 0 1 .0 0 0 . 0 0 0 .0 0 0.8750 1.1385 -0.0169 0.0173
1 .0 0 2 .0 0 0 . 0 0 0 .0 0 0.8637 1.1532 -0.0133 0.0128

a b a Fail ao.05 ao.95 lo,o.05 lo,0.95

2 .0 0 0 .0 1 0 .0 0 0 .0 0 0.7524 2.6524 -0.1241 0.5989
2 .0 0 0 . 1 0 0 . 0 0 0 .0 0 1.4194 2.6398 -0.1770 0.1843
2 .0 0 0.50 0 . 0 0 0 .0 0 1.6754 2.4134 -0.0893 0.0702
2 .0 0 1 .0 0 0 .0 0 0 .0 0 1.7134 2.3543 -0.0545 0.0488
2 .0 0 2 .0 0 0 . 0 0 0 .0 0 1.6883 2.3717 -0.0411 0.0327

LIB R A R Y j
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E s tim a to r  P ercen tile s  (Sam ple Size 1000) for- a  =  0.01

a b cr F a il ao.05 ao.95 10,0.05 lo,o.95

0 .0 1 0 .0 1 0 .0 1 0 . 0 0 0.0060 0.0241 -0.0019 0 .0 0 0 2

0 .0 1 0 . 1 0 0 .0 1 0 . 0 0 0.0064 0.0180 -0 .0 0 1 2 0 .0 0 0 1

0 .0 1 0.50 0 .0 1 0 . 0 0 0.0072 0.0189 -0.0014 0 . 0 0 0 0

0 .0 1 1 .0 0 0 .0 1 0 . 0 0 0.0076 0.0228 -0.0016 -0 .0 0 0 1

0 .0 1 2 .0 0 0 .0 1 0.04 0.0088 0.0341 -0 .0 0 2 2 -0.0003

a b a Fail ao.05 ao.95 lo,o.05 lo,0.95

0 . 1 0 0 .0 1 0 .0 1 0 . 0 0 0.0661 0.1930 -0.0091 0.0032
0 . 1 0 0 . 1 0 0 .0 1 0 . 0 0 0.0795 0.1299 -0.0028 0.0013
0 . 1 0 0.50 0 .0 1 0 . 0 0 0.0818 0.1246 -0.0025 0 . 0 0 1 1

0 . 1 0 1 .0 0 0 .0 1 0 . 0 0 0.0824 0.1265 -0.0025 0 . 0 0 1 0

0 . 1 0 2 .0 0 0 .0 1 0 . 0 0 0.0817 0.1332 -0.0026 0.0008

a b cr Fail ao.05 ao.95 10,0.05 lo,0.95

0.50 0 .0 1 0 .0 1 0 . 0 0 0.3329 1.0674 -0.0624 0.0683
0.50 0 . 1 0 0 .0 1 0 . 0 0 0.4222 0.6291 -0.0179 0.0158
0.50 0.50 0 .0 1 0 . 0 0 0.4462 0.5725 -0.0092 0.0084
0.50 1 .0 0 0 .0 1 0 . 0 0 0.4354 0.5769 -0.0078 0.0060
0.50 2 .0 0 0 .0 1 0 . 0 0 0.4353 0.5895 -0.0068 0.0051

a b cr Fail ao.05 a o .95 lo,0.05 lo,o.95

1 .0 0 0 .0 1 0 .0 1 0 . 0 0 0.6529 2.5509 -0.1866 0.2096
1 .0 0 0 .1 0 0 .0 1 0 . 0 0 0.8183 1.2739 -0.0577 0.0505
1 .0 0 0.50 0 .0 1 0 . 0 0 0.8777 1.1565 -0.0241 0 .0 2 2 1

1 .0 0 1 .0 0 0 .0 1 0 . 0 0 0.8824 1.1460 -0.0185 0.0163
1 .0 0 2 .0 0 0 .0 1 0 . 0 0 0.8651 1.1647 -0.0144 0.0124

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95

2 .0 0 0 .0 1 0 .0 1 0.04 1.3020 10.7617 -0.8841 0.3252
2 .0 0 0 .1 0 0 .0 1 0 . 0 0 1.4874 2.9255 -0.2167 0.1585
2 .0 0 0.50 0 .0 1 0 . 0 0 1.6731 2.4410 -0.0903 0.0702
2 .0 0 1 .0 0 0 .0 1 0 . 0 0 1.6966 2.4035 -0.0609 0.0479
2 .0 0 2 .0 0 0 .0 1 0 . 0 0 1.7082 2.4168 -0.0438 0.0334
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E stim ator Percentiles (Sam ple Size 1000) for a =  0.05

a b cr F a il ao.05 ao.95 10,0.05 lo,0.95

0.01 0.01 0.05 0.00 0.0271 0.0845 -0.0284 -0.0127
0.01 0.10 0.05 0.00 0.0285 0.0429 -0.0175 -0.0112
0.01 0.50 0.05 0.13 0.0496 0.1318 -0.0243 -0.0145
0.01 1.00 0.05 0.71 0.0776 0.1786 -0.0281 -0.0174
0.01 2.00 0.05 0.99 NA NA NA NA

a b cr Fail a o .0 5 a o .9 5 lo ,0 .0 5 lo ,0 .9 5

0.10 0.01 0.05 0.00 0.1725 0.7616 -0.1858 -0.0380
0.10 0.10 0.05 0.00 0.1129 0.1709 -0.0246 -0.0142
0.10 0.50 0.05 0.00 0.1213 0.1724 -0.0224 -0.0133
0.10 1.00 0.05 0.00 0.1487 0.2184 -0.0267 -0.0170
0.10 2.00 0.05 0.01 0.2405 0.4438 -0.0401 -0.0246

a b cr Fail a o .0 5 a o .9 5 lo ,o .0 5 lo ,0 .9 5

0.50 0.01 0.05 0.11 1.1770 18.0417 -4.4097 -0.2497
0.50 0.10 0.05 0.00 0.5613 0.8974 -0.0892 -0.0351
0.50 0.50 0.05 0.00 0.5064 0.6664 -0.0365 -0.0127
0.50 1.00 0.05 0.00 0.5220 0.6859 -0.0352 -0.0145
0.50 2.00 0.05 0.00 0.5810 0.8124 -0.0422 -0.0214

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95

1.00 0.01 0.05 0.70 3.7364 182.3911 -37.0644 -0.8524
1.00 0.10 0.05 0.00 1.2648 2.4756 -0.2932 -0.0824
1.00 0.50 0.05 0.00 1.0244 1.3652 -0.0693 -0.0082
1.00 1.00 0.05 0.00 0.9926 1.3323 -0.0568 -0.0088
1.00 2.00 0.05 0.00 1.0260 1.4383 -0.0559 -0.0154

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95

2.00 0.01 0.05 1.00 NA NA NA NA
2.00 0.10 0.05 0.01 4.2018 28.8325 -4.4826 -0.3923
2.00 0.50 0.05 0.00 2.1557 3.3808 -0.2243 -0.0139
2.00 1.00 0.05 0.00 1.9616 2.9233 -0.1343 0.0022
2.00 2.00 0.05 0.00 1.9187 2.9271 -0.0999 -0.0019
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E stim a to r  P ercen tiles  (Sam ple Size 1000) for a — 0.1

a b a F a il ao.05 ao.95 10,0.05 lo,0.95

0.01 0.01 0.10 0.00 0.0983 0.2920 -0.1196 -0.0538
0.01 0.10 0.10 0.01 0.1085 0.2144 -0.0695 -0.0517
0.01 0.50 0.10 0.82 0.2458 0.4735 -0.0925 -0.0675
0.01 1.00 0.10 1.00 NA NA NA NA
0.01 2.00 0.10 0.98 NA NA NA NA

a b cr Fail ao.05 ao.95 10,0.05 lo,0.95

0.10 0.01 0.10 0.01 0.4789 3.9393 -1.0941 -0.1574
0.10 0.10 0.10 0.00 0.2156 0.3201 -0.0916 -0.0618
0.10 0.50 0.10 0.00 0.2591 0.3630 -0.0839 -0.0626
0.10 1.00 0.10 0.01 0.4172 0.7954 -0.1181 -0.0806
0.10 2.00 0.10 0.98 NA NA NA NA

a b a Fail ao.05 ao.95 lo,o.05 lo,o.95

0.50 0.01 0.10 0.81 4.8084 238.5905 -63.6395 -1.2658
0.50 0.10 0.10 0.00 1.0537 1.9885 -0.3747 -0.1781
0.50 0.50 0.10 0.00 0.7187 0.9647 -0.1222 -0.0776
0.50 1.00 0.10 0.00 0.7844 1.0693 -0.1233 -0.0796
0.50 2.00 0.10 0.00 1.1189 1.7908 -0.1686 -0.1081

a b cr Fail ao.05 ao .95 10,0.05 io,0.95

1.00 0.01 0.10 1.00 NA NA NA NA
1.00 0.10 0.10 0.00 3.3000 17.0639 -3.2426 -0.5594
1.00 0.50 0.10 0.00 1.4732 2.1618 -0.2286 -0.1126
1.00 1.00 0.10 0.00 1.3664 1.9395 -0.1758 -0.0878
1.00 2.00 0.10 0.00 1.5603 2.4930 -0.1961 -0.1079

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95

2.00 0.01 0.10 0.98 NA NA NA NA
2.00 0.10 0.10 0.99 NA NA NA NA
2.00 0.50 0.10 0.00 3.7522 8.3712 -0.8965 -0.2597
2.00 1.00 0.10 0.00 2.7928 5.0991 -0.4121 -0.1287
2.00 2.00 0.10 0.00 2.6540 4.9028 -0.3061 -0.1113

Sum m ary

As we would expect this method gives good results for the noise free case. The estimates 
appear generally unbiased and are pretty good, even for the a and b. As we introduce
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Gaussian noise the method becomes more unstable, especially in the strongly asymmetric 
case. The failure rates in these extremes rise steadily until we find almost guaranteed failure 
under these circumstances. Failure of the method is defined as the case where the solutions 
fall outside the acceptable range, for instance when we obtain a negative estimate for a.

The other consideration is where the model ceases to produce useful estimates of the 
parameters. In the asymmetric case this probably occurs somewhere before reaching cr ~  
0.05 while the symmetric case will go on producing reasonable estimates slightly longer.

Of course we are able to make no estimate of the level of noise contaminating the sample.

6 .3 .2  C a se  2: F o u r  P a r a m e te r s ( a  =  6, lo, li, a )

This is the first of the new methods. It is intended for use with Symmetric Beta distributions 
and uses estimates of Cumulants in order to make inference about the parameters.

Estim ator Percentiles (Sample Size 1 ,0 0 0 )

a b cr Fail ao.05 ao.95 lo,0.05 lo,0.95 O"0.05 <^0.95

0.01 0.01 0.00 0.11 0.0058 0.0141 -0.0255 0.0289 0.0035 0.0312
0.10 0.10 0.00 0.24 0.0835 0.1130 -0.0240 0.0282 0.0046 0.0305
0.50 0.50 0.00 0.39 0.4221 0.5408 -0.0180 0.0286 0.0055 0.0326
1.00 1.00 0.00 0.45 0.8079 1.0602 -0.0118 0.0397 0.0087 0.0408
2.00 2.00 0.00 0.50 1.3361 2.1178 -0.0057 0.0799 0.0116 0.0544

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95 0"O.O5 do.95
0.01 0.01 0.01 0.00 0.0061 0.0149 -0.0250 0.0258 0.0082 0.0308
0.10 0.10 0.01 0.07 0.0833 0.1143 -0.0228 0.0258 0.0065 0.0304
0.50 0.50 0.01 0.32 0.4250 0.5404 -0.0192 0.0277 0.0065 0.0337
1.00 1.00 0.01 0.42 0.8037 1.0617 -0.0096 0.0377 0.0077 0.0413
2.00 2.00 0.01 0.46 1.3909 2.1502 -0.0095' 0.0733 0.0115 0.0542

a b cr Fail ao.05 ao.95 lo,0.05 lo,0.95 O"0.05 ^0.95
0.01 0.01 0.05 0.00 0.0057 0.0147 -0.0240 0.0281 0.0483 0.0581
0.10 0.10 0.05 0.00 0.0834 0.1164 -0.0249 0.0255 0.0472 0.0587
0.50 0.50 0.05 0.00 0.4287 0.5798 -0.0224 0.0230 0.0397 0.0601
1.00 1.00 0.05 0.02 0.8035 1.2096 -0.0375 0.0361 0.0282 0.0678
2.00 2.00 0.05 0.19 1.2998 2.5254 -0.0539 0.0901 0.0208 0.0816
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a b <X F a i l ’ao .05 ao.95 lo,o.05 lo,o.95 ^ 0 .0 5 & 0.95

0.01 0.01 0.10 0.07 0.0021 0.0200 -0.0261 0.0284 0.0949 0.1068
0.10 0.10 0.10 0.00 0.0742 0.1240 -0.0266 0.0273 0.0931 0.1096
0.50 0.50 0.10 0.00 0.3943 0.6222 -0.0378 0.0368 0.0855 0.1145
1.00 1.00 0.10 0.00 0.6498 1.4226 -0.0787 0.0767 0.0709 0.1273
2.00 2.00 0.10 0.16 0.6298 3.5411 -0.1809 0.2071 0.0332 0.1487

a b cr F a i l ao .05 ao.95 lo,0.05 lo,o.95 &0.05 &Q.95

0.01 0.01 0.50 0.38 0.1786 3.6458 -1.4082 -0.0916 0.2022 0.4872
0.10 0.10 0.50 0.45 0.2884 5.9131 -1.8006 -0.0905 0.1642 0.4878
0.50 0.50 0.50 0.73 0.5206 12.8933 -2.5414 -0.0774 0.1315 0.4913
1.00 1.00 0.50 0.83 0.7426 15.0891 -2.3302 -0.0353 0.1135 0.4705
2.00 2.00 0.50 0.88 0.2293 15.9057 -2.5807 0.0998 0.0985 0.4676



6.3. METHODS OF MOMENTS 107

Estim ator Percentiles (Sample Size 10,000)

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95 from <70.95
0.01 0.01 0.00 0.22 0.0086 0.0116 -0.0084 0.0096 0.0017 0.0107
0.10 0.10 0.00 0.40 0.0950 0.1043 -0.0063 0.0096 0.0016 0.0107
0.50 0.50 0.00 0.41 0.4722 0.5110 -0.0042 0.0091 0.0026 0.0181
1.00 1.00 0.00 0.40 0.9229 1.0129 -0.0047 0.0117 0.0034 0.0210
2.00 2.00 0.00 0.48 1.6951 2.0381 -0.0040 0.0348 0.0040 0.0339

a b a Fail ao.05 ao.95 lo,0.05 lo,0.95 from 0"o.95

0.01 0.01 0.01 0.00 0.0087 0.0113 -0.0086 0.0088 0.0094 0.0145
0.10 0.10 0.01 0.00 0.0941 0.1052 -0.0066 0.0062 0.0060 0.0138
0.50 0.50 0.01 0.11 0.4749 0.5158 -0.0079 0.0090 0.0039 0.0197
1.00 1.00 0.01 0.38 0.9498 1.0192 -0.0045 0.0093 0.0065 0.0217
2.00 2.00 0.01 0.38 1.7639 2.0560 -0.0070 0.0299 0.0061 0.0341

a b cr F a il ao.05 ao.95 lo,o.05 1(3,0.95 d-o.05 from
0.01 0.01 0.05 0.00 0.0086 0.0115 -0.0088 0.0076 0.0492 0.0510
0.10 0.10 0.05 0.00 0.0941 0.1052 -0.0081 0.0091 0.0491 0.0516
0.50 0.50 0.05 0.00 0.4774 0.5248 -0.0074 0.0072 0.0468 0.0529
1.00 1.00 0.05 0.00 0.9174 1.0762 -0.0121 0.0144 0.0428 0.0564
2.00 2.00 0.05 0.00 1.7778 2.2651 -0.0378 0.0262 0.0311 0.0614

a b cr F a il ao.05 ao.95 lo,o.05 1(3,0.95 from <70.95

0.01 0.01 0.10 0.01 0.0064 0.0141 -0.0083 0.0087 0.0977 0.1022
0.10 0.10 0.10 0.00 0.0923 0.1049 -0.0089 0.0072 0.0976 0.1025
0.50 0.50 0.10 0.00 0.4607 0.5342 -0.0116 0.0104 0.0956 0.1038
1.00 1.00 0.10 0.00 0.8833 1.1157 -0.0228 0.0230 0.0912 0.1066
2.00 '2.00 0.10 0.00 1.2665 2.5376 -0.0737 0.0788 0.0794 ' 0.1196

a b cr Fail ao.05 ao.95 lo,o.05 lo,0.95 <70.05 <70.95

0.01 0.01 0.50 0.46 0.0655 1.1732 -0.5468 -0.0465 0.4021 0.4922
0.10 0.10 0.50 0.45 0.1090 1.9154 -0.6737 -0.0007 0.3886 0.5070
0.50 0.50 0.50 0.64 0.6854 10.8585 -2.1349 -0.0796 0.2442 0.4877
1.00 1.00 0.50 0.68 0.5541 24.0956 -3.4825 0.0967 0.1621 0.4948
2.00 2.00. 0.50 0.89 0.7043 56.3027 -5.2504 0.0571 0.0870 0.4651

Summary

Failure of this model is, as before, taken as the case where estimates are either meaningless 
(infinite or imaginary) or outside the accepted range (negative) for that parameter. We
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find high failure rates for either end of the spectrum  for added noise. W ith  no noise the 
m ethod will frequently fail and also for high levels. Unsurprisingly we find the best results 

where cr <  1 as the bimodal distribution makes estim ation easier. This includes quite 

reasonable estim ates for the level of the noise. In general the estim ates are quite poor once 

the standard  deviation of the noise is much above a = 0.1. We find improved estim ates 
when we look a t samples of 10,000 rather than  1,000. In m any cases the failure rate  actually 

increases bu t when a result is obtained it is usually a be tter one.

6.3 .3  C ase 3: F ive P aram eters A sym m etric  M om en ts (a, 5, Zq, h ,  cr)

E s t im a to r  P e rc e n t i le s  (S a m p le  S ize 1 ,000) fo r a  =  0

a b cr F a i l ao.05 ao.95 10,0.05 10,0.95 <7 0.05 <70.95

0.01 0.01 0.00 0.48 0.0051 0.0240 -0.0004 0.0017 0.0030 0.0330

0.01 0.10 0.00 0.67 0.0065 0.0173 -0.0001 0.0004 0.0015 0.0102

0.01 0.50 0.00 1.00 NA NA NA NA NA NA

0.01 1.00 0.00 1.00 NA NA NA NA NA NA

0.01 2.00 0.00 1.00 NA NA NA NA NA NA

a b cr F ail ao.os ao.95 lo,o.05 10,0.95 <70.05 <70.95

0.10 0.01 0.00 0.67 0.0563 0.1520 -0.0039 0.0020 0.0014 0.0099
0.10 0.10 0.00 0.51 0.0773 0.1300 -0.0006 0.0138 0.0086 0.0900
0.10 0.50 0.00 0.56 0.0801 0.1206 -0.0006 0.0025 0.0039 0.0212

0.10 1.00 0.00 0.58 0.0803 0.1208 -0.0005 0.0024 0.0037 0.0195
0.10 2.00 0.00 1.00 NA NA NA NA NA NA

a b cr F ail ao.05 ao.95 10,0.05 1(),0.95 <70.05 <70.95

0.50 0.01 0.00 1.00 NA NA NA NA NA NA

0.50 0.10 0.00 0.53 0.4042 0.6150 -0.0165 0.0098 0.0036 0.0207
0.50 0.50 0.00 0.54 0.4266 0.5741 -0.0014 0.0433 0.0237 0.1380
0.50 1.00 0.00 0.49 0.4298 0.5640 -0.0028 0.0117 0.0090 0.0462

0.50 2.00 0.00 0.45 0.4209 0.5754 -0.0025 0.0089 0.0065 0.0335

a b C7 F ail ao.05 ao.95 10,0.05 lo,0.95 <70.05 <70.95

1.00 0.01 0.00 1.00 NA NA NA NA NA NA

1.00 0.10 0.00 0.59 0.7946 1.1566 -0.0427 0.0419 0.0034 0.0200
1.00 0.50 0.00 0.47 0.8786 1.1397 -0.0227 0.0174 0.0083 0.0452

1.00 1.00 0.00 0.58 0.8585 1.1434 -0.0016 0.0788 0.0219 0.1534

1.00 2.00 0.00 0.45 0.8510 1.1273 -0.0052 0.0188 0.0095 0.0528
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a b (T Fail ' ao.05 ao.95 lo,o.05 1(3,0.95 <70.05 <70.95

2.00 0.01 0.00 1.00 NA NA NA NA NA NA
2.00 0.10 0.00 1.00 NA NA NA NA NA NA
2.00 0.50 0.00 0.43 1.6674 2.4181 -0.0877 0.0693 0.0062 0.0341
2.00 1.00 0.00 0.48 1.6906 2.4009 -0.0552 0.0463 0.0100 0.0536
2.00 2.00 0.00 0.65 1.6856 2.4180 -0.0057 0.3431 0.0269 0.2098
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E stim ato r P ercen tiles  (Sam ple Size 1,000) for a  =  0.01

a b cr F a il ao.05 ao.95 10,0.05 1(3,0.95 <7 0.05 & 0.95

0.01 0.01 0.01 0.24 0.0058 0.0250 -0.0015 0.0009 0.0055 0.0311
0.01 0.10 0.01 0.19 0.0074 0.0178 -0.0011 0.0001 0.0048 0.0135
0.01 0.50 0.01 1.00 NA NA NA NA NA NA
0.01 1.00 0.01 1.00 NA NA NA NA NA NA
0.01 2.00 0.01 1.00 NA NA NA NA NA NA

a b <r Fail ao.05 ao.95 lo,0.05 lo,0.95 <70.05 <70.95
0.10 0.01 0.01 0.20 0.0653 0.1659 -0.0067 0.0027 0.0043 0.0133
0.10 0.10 0.01 0.44 0.0761 0.1266 -0.0012 0.0120 0.0089 0.0885
0.10 0.50 0.01 0.37 0.0808 0.1222 -0.0017 0.0019 0.0042 0.0236
0.10 1.00 0.01 0.40 0.0835 0.1268 -0.0019 0.0014 0.0041 0.0212
0.10 2.00 0.01 1.00 NA NA NA NA NA NA

a b a Fail ao.05 ao.95 lo,0.05 lo,0.95 0 0 .0 5 0 0 .9 5

0.50 0.01 0.01 1.00 NA NA NA NA NA NA
0.50 0.10 0.01 0.37 0.4180 0.6100 -0.0172 0.0097 0.0037 0.0232
0.50 0.50 0.01 0.56 0.4304 0.5857 -0.0027 0.0484 0.0195 0.1428
0.50 1.00 0.01 0.42 0.4395 0.5719 -0.0044 0.0099 0.0085 0.0440
0.50 2.00 0.01 0.39 0.4268 0.5874 -0.0040 0.0074 0.0081 0.0354

a b cr Fail ao.05 a o .95 10,0.05 lo,0.95 <70.05 <7o.95

1.00 0.01 0.01 1.00 NA NA NA NA NA NA
1.00 0.10 0.01 0.41 0.8165 1.2001 -0.0434 0.0466 0.0043 0.0214
1.00 0.50 0.01 0.47 0.8970 1.1475 -0.0231 0.0188 0.0079 0.0465
1.00' .1.00 0.01 0.59 0.8626 1.1640 -0.0039 0.0838 0.0311 0.1521
1.00 2.00 0.01 0.46 0.8510 1.1398 -0.0071 0.0197 0.0092 0.0528

a b cr Fail ao.05 ao.95 10,0.05 1(3,0.95 <7o.os <70.95

2.00 0.01 0.01 1.00 NA NA NA NA NA NA
2.00 0.10 0.01 1.00 NA NA NA NA NA NA
2.00 0.50 0.01 0.41 1.6926 2.4255 -0.0844 0.0678 0.0059 0.0357
2.00 1.00 0.01 0.46 1.6993 2.4179 -0.0539 0.0483 0.0098 0.0545
2.00 2.00 0.01 0.67 1.6969 2.4207 -0.0089 0.3551 0.0376 0.2132
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E stim a to r  P ercen tiles  (Sam ple Size 1,000) for cr =  0.05

a b cr Fail ao.05 a o .95 I),0.05 lo,0.95 <70.05 <70.95

0.01 0.01 0.05 0.06 0.0257 0.0812 -0.0236 -0.0076 0.0390 0.0695
0.01 0.10 0.05 0.14 0.0278 0.0420 -0.0153 -0.0092 0.0471 0.0525
0.01 0.50 0.05 1.00 NA NA NA NA NA NA
0.01 1.00 0.05 1.00 NA NA NA NA NA NA
0.01 2.00 0.05 1.00 NA NA NA NA NA NA

a b cr Fail ao.05 ao.95 10,0.05 lo,0.95 <70.05 <70.95

0.10 0.01 0.05 0.12 0.1650 0.4632 -0.0891 -0.0285 0.0471 0.0526
0.10 0.10 0.05 0.22 0.1058 0.1726 -0.0207 0.0004 0.0225 0.1051
0.10 0.50 0.05 0.00 0.1223 0.1706 -0.0194 -0.0106 0.0441 0.0555
0.10 1.00 0.05 0.17 0.1499 0.2177 -0.0226 -0.0134 0.0449 0.0546
0.10 2.00 0.05 1.00 NA NA NA NA NA NA

a b cr Fail ao .05 ao .95 10,0.05 lo,0.95 <70.05 <70.95

0.50 0.01 0.05 1.00 NA NA NA NA NA NA
0.50 0.10 0.05 0.00 0.5535 0.8831 -0.0751 -0.0215 0.0440 0.0552
0.50 0.50 0.05 0.50 0.4963 0.6715 -0.0279 0.0357 0.0312 0.1585
0.50 1.00 0.05 0.04 0.5194 0.6778 -0.0313 -0.0071 0.0256 0.0689
0.50 2.00 0.05 0.00 0.5761 0.7959 -0.0372 -0.0138 0.0342 0.0626

a b cr Fail ao .05 ao .95 lo,o.05 1(3,0.95 <70.05 <70.95

1.00 0.01 0.05 1.00 NA NA NA NA NA NA
1.00 0.10 0.05 0.19 1.2555 2.0820 -0.1979 -0.0502 0.0447 0.0547
1.00 0.50 0.05 0.04 1.0150 1.3745 -0.0586 -0.0014 0.0220 0.0700
1.00 1.00 0.05 0.59 0.9686 1.3457 -0.0386 0.0636 0.0336 0.1600
1.00 2.00 0.05 0.11 1.0395 1.4235 -0.0459 -0.0016 0.0226 0.0776

a b a Fail ao .05 ao .95 10,0.05 lo,0.95 <70.05 <70.95

2.00 0.01 0.05 1.00 NA NA NA NA NA NA
2.00 0.10 0.05 1.00 NA NA NA NA NA NA
2.00 0.50 0.05 0.00 2.1552 3.4219 -0.1962 0.0101 0.0343 0.0622
2.00 1.00 0.05 0.12 1.9786 2.9667 -0.1157 0.0206 0.0190 0.0770
2.00 2.00 0.05 0.67 1.8757 2.8801 -0.0527 0.3610 0.0420 0.2217
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Estim ator Percentiles (Sam ple Size 1,000) for cr =  0.1

a b cr Fail ao.05 ao.95 10,0.05 10,0.95 O"0.05 <70.95

0.01 0.01 0.10 0.07 0.0921 0.2889 -0.0882 -0.0363 0.0699 0.1407
0.01 0.10 0.10 0.13 0.1045 0.1663 -0.0563' -0.0421 0.0936 0.1059
0.01 0.50 0.10 1.00 NA N A N A NA NA NA

0.01 1.00 0.10 1.00 NA NA N A NA N A NA

0.01 2.00 0.10 1.00 N A N A N A NA NA NA

a b <J Fail ao.05 ao.95 10,0.05 lo,0.95 ^0.05 <70.95

0.10 0.01 0.10 0.15 0.4739 1.9193 -0.4511 -0.1205 0.0943 0.1064
0.10 0.10 0.10 0.26 0.1985 0.3080 -0.0763 -0.0203 0.0476 0.1694
0.10 0.50 0.10 0.00 0.2595 0.3645 -0.0689 -0.0511 0.0912 0.1080
0.10 1.00 0.10 0.18 0.4161 0.7401 -0.0895 -0.0633 0.0931 0.1076
0.10 2.00 0.10 1.00 NA NA N A NA NA NA

a b a Fail ao.05 ao.95 lo,o.o5 lo,0.95 <70.05 <70.95

0.50 0.01 0.10 1.00 NA NA N A NA NA NA

0.50 0.10 0.10 0.00 1.0271 1.9353 -0.2850 -0.1284 0.0911 0.1089
0.50 0.50 0.10 0.54 0.6982 0.9583 -0.1051 -0.0074 0.0395 0.1853
0.50 1.00 0.10 0.00 0.7814 1.0556 -0.1029 -0.0547 0.0701 0.1249
0.50 2.00 0.10 0.00 1.0951 1.8073 -0.1300 -0.0795 0.0829 0.1153

a b a Fail ao.05 ao.95 lo,o.05 lo,0.95 <7 0.05 <70.95

1.00 0.01 0.10 1.00 NA NA N A NA NA NA

1.00 0.10 0.10 0.15 3.1704 8.4312 -1.1891 -0.4042 0.0932 0.1076
1.00 0.50 0.10 0.00 1.4189 2.1058 -0.1789 -0.0665 0.0730 0.1227
1.00 1.00 0.10 0.69' 1.3475 1.9506 -0.1436 0.3157 0.0339 0.2904
1.00 2.00 0.10 0.03 1.5446 2.4611 -0.1579 -0.0595 0.0525 0.1348

a b <7 Fail ao.05 ao.95 lo,o.05 lo,0.95 <7o.os &  0.95

2.00 0.01 0.10 1.00 NA NA N A NA NA NA

2.00 0.10 0.10 1.00 NA NA N A NA NA NA

2.00 0.50 0.10 0.00 3.7122 8.3672 -0.7095 -0.1658 0.0835 0.1165
2.00 1.00 0.10 0.02 2.7434 5.0352 -0.3134 -0.0528 0.0578 0.1338
2.00 2.00 0.10 0.70 2.5734 4.7136 -0.2035 0.3906 0.0542 0.2414
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Sum m ary

This method can only be relied upon to function in certain areas of the parameter space. 
For strongly asymmetric cases ( f  > 10) failure is common but also for the (exactly) sym
metric case. As before we also find the method strongest when the parameters of the Beta 
distribution are between 0 and 1 and differ from each other.

Where the method works it gives better results than the simple Four Parameter Asym
metric model including fairly good estimates of the level of the noise. When, in the same 
circumstances, the method fails it is usually due to a solution indicating a negative level 
of noise. Correcting by taking the level of noise as zero in this case tends to give much 
the same results as in the Four Parameter Asymmetric model. As the noise levels rise the 
model shows all the same symptoms as the Four Parameter Asymmetric model of biased 
estimates but to a lesser degree. One difference is that when a reasonable estimate of the 
noise level is available then it would be possible to know the degree to which this bias had 
occurred and correct for it.

6 .3 .4  C ase 5: Four P aram eter  S ym m etr ic  M om en ts  

Estim ator Percentiles (Sam ple Size 1,000)

a b cr Fail ao.05 ao.95 lo,0.05 lo,o.95 <70.05 <70.95
0.01 0.01 0.00 0.11 0.0054 0.0140 -0.0257 0.0270 0.0110 0.0293
0.10 0.10 0.00 0.25 0.0830 0.1115 -0.0244 0.0277 0.0101 0.0306
0.50 0.50 0.00 0.41 0.4236 0.5422 -0.0183 0.0267 0.0079 0.0323
1.00 1.00 0.00 0.48 0.8034 1.0623 -0.0136 0.0385 0.0065 0.0407
2.00 2.00 0.00 0.00 0.2748 2.0440 -0.0008 0.2614 0.0130 0.1201

a b cr Fail ao.05 ao.95 lo,0.05 lo,0.95 <70.05 <70.95

0.01 0.01 0.01 0.00 0.0058 0.0145 -0.0247 0.0244 0.0110 0.0329
0.10 0.10 0.01 0.10 0.0837 0.1141 -0.0225 0.0291 0.0101 0.0307
0.50 0.50 0.01 0.32 0.4237 0.5410 -0.0175 0.0270 0.0079 0.0338
1.00 1.00 0.01 0.44 0.8138 1.0554 -0.0110 0.0381 0.0066 0.0409
2.00 2.00 0.01 0.00 0.2988 2.0300 -0.0002 0.2585 0.0152 0.1201

a b cr Fail ao.05 ao.95 lo,0.05 lo,0.95 <70.05 <70.95

0.01 0.01 0.05 0.00 0.0053 0.0147 -0.0245 0.0281 0.0482 0.0592
0.10 0.10 0.05 0.00 0.0818 0.1168 -0.0231 0.0253 0.0468 0.0583
0.50 0.50 0.05 0.00 0.4283 0.5809 -0.0227 0.0247 0.0391 0.0605
1.00 1.00 0.05 0.02 0.7988 1.2010 -0.0366 0.0383 0.0272 0.0685
2.00 2.00 0.05 0.11 0.5942 2.4969 -0.0567 0.2089 0.0219 0.1191
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a b a Fail ao.05 ao.95 ' lo,o.05 lo,0.95 &0.05 <5"0.95
0.01 0.01 0.10 0.12 0.0013 0.0196 -0.0263 0.0279 0.0953 0.1071
0.10 0.10 0.10 0.00 0.0725 0.1228 -0.0237 0.0286 0.0935 0.1108
0.50 0.50 0.10 0.01 0.3539 0.6139 -0.0324 0.0527 0.0863 0.1220
1.00 1.00 0.10 0.44 0.7611 1.4873 -0.0850 0.0496 0.0680 0.1139
2.00 2.00 0.10 0.71 1.2612 4.1031 -0.2303 0.0965 0.0272 0.1225

a b cr Fail ao.05 ao.95 lo,o.05 lo,o.95 &  0.05 <5"0.95

0.01 0.01 0.50 0.96 NA NA NA NA NA NA
0.10 0.10 0.50 0.87 2.3784 8.8329 -2.2763 -0.9310 0.1087 0.3417
0.50 0.50 0.50 0.57 3.6282 46.9163 -4.7888 -1.0345 0.2010 0.3342
1.00 1.00 0.50 0.57 5.0290 96.3465 -6.7310 -1.1724 0.1970 0.3224
2.00 2.00 0.50 0.65 5.7918 168.9839 -8.2004 -1.1768 0.1965 0.3085
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Estim ator Percentiles (Sample Size 10,000)

a b cr Fail ao.05 ao.95 k),0.05 1-0,0.95 <70.05 <70.95
0.01 0.01 0.00 0.18 0.0075 0.0100 -0.0076 0.0081 0.0111 0.0111
0.10 0.10 0.00 0.32 0.0940 0.1017 -0.0096 0.0092 0.0102 0.0102
0.50 0.50 0.00 0.39 0.4750 0.5059 -0.0051 0.0084 0.0079 0.0176
1.00 1.00 0.00 0.45 0.9442 1.0145 -0.0018 0.0122 0.0064 0.0230
2.00 2.00 0.00 0.00 0.3531 2.0281 -0.0015 0.2474 0.0050 0.1163

a b cr Fail ao.05 ao.95 lo,o.05 lo,o.95 <70.05 <70.95
0.01 0.01 0.01 0.00 0.0086 0.0114 -0.0079 0.0084 0.0111 0.0111
0.10 0.10 0.01 0.00 0.0963 0.1042 -0.0067 0.0075 0.0102 0.0102
0.50 0.50 0.01 0.19 0.4780 0.5169 -0.0066 0.0084 0.0079 0.0177
1.00 1.00 0.01 0.40 0.9333 1.0178 -0.0038 0.0125 0.0064 0.0233
2.00 2.00 0.01 0.00 0.3890 2.0408 -0.0027 0.2439 0.0087 0.1159

a b a Fail ao.05 ao.95 lo,o.05 lo,o.95 <70.05 <70.95
0.01 0.01 0.05 0.01 0.0078 0.0113 -0.0094 0.0081 0.0483 0.0509
0.10 0.10 0.05 0.00 0.0944 0.1062 -0.0074 0.0082 0.0488 0.0512
0.50 0.50 0.05 0.00 0.4784 0.5215 -0.0074 0.0081 0.0468 0.0531
1.00 1.00 0.05 0.00 0.9304 1.0663 -0.0113 0.0134 0.0446 0.0564
2.00 2.00 0.05 0.00 1.7265 2.3629 -0.0375 0.0356 0.0263 0.0640

a b cr Fail ao.05 ao.95 lo,0.05 lo,0.95 <70.05 <70.95

0.01 0.01 0.10 0.00 0.0028 0.0113 -0.0071 0.0089 0.0987 0.1032
0.10 0.10 0.10 0.00 0.0900 0.1056 -0.0076 0.0094 0.0985 0.1030
0.50 0.50 0.10 0.00 0.4313 0.5155 -0.0054 0.0213 0.0992 0.1092
1.00 1.00 0.10 0.56 0.7601 1.0188 -0.0029 0.0508 0.0964 0.1182
2.00 2.00 0.10 0.98 NA NA NA NA NA NA

a b cr Fail ao.os ao.95 lo,o.05 10,0.95 <70.05 <70.95

0.01 0.01 0.50 1.00 NA NA NA NA NA NA
0.10 0.10 0.50 1.00 NA NA NA NA NA NA
0.50 0.50 0.50 0.86 8.2118 24.1012 -3.4489 -1.8569 0.1981 0.2745
1.00 1.00 0.50 0.52 15.6792 112.5247 -7.3728 -2.4966 0.1653 0.2680
2.00 2.00 0.50 0.65 18.1994 694.0079 -18.7541 -2.5049 0.1538 0.2809

Summary

In comparison with the symmetric method involving cumulants the result of this model are 
often very similar. Where both methods work well we find almost identical estimates. The
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Moments method appear to be more influenced by the noise than the Cumulants method. 
The Cumulants method is more prone to failure in extreme cases but the estimates of the 
Moments method is these cases is rather suspect anyway.

6.4 Conclusions

All of the new methods do indeed appear to be capable of obtaining the correct solutions. 
There is no question that their ability to measure the level of the contaminating noise is 
useful as the existing method could not do this. These methods are also useful in that they 
may enable us to distinguish between a mixture of two normal distributions and that of a 
noisy Beta distribution.

All the methods work most effectively in the relatively narrow parameter range of 0.1 < 
a,b < 0.5 where we have a clearly bimodal distribution (even with low levels of noise). 
Where we have a strongly asymmetric distribution the method will frequently find difficulty 
in distinguishing the second, lesser level. It is clear that having good knowledge of the 
levels of the process (or sample) is very important. When even a small amount of noise is 
added the estimation process is made much harder. If the levels of the process were able to 
be estimated more accurately inference would probably be possible for much higher levels 
of noise. This, for instance, would be the case where the sample represented percentages. 
The methods were also suprisingly effective at determining the level of noise obscuring the 
sample, even when all other estimates were hopelessly inaccurate.

None of the methods are robust enough to be effective in fitting the FM model to data 
unless the circumstances were ideal. By ideal we would require that the data was actually 
generated by a FM process, the noise levels were below a — 0.1, the series was symmetric 
or close to symmetric and we had a long series to work with.



C hapter 7

Random Variate Generation

We have obtained an expression for the stationary distribution of the Filtered Markov (FM) 
process, and have found it to be Beta. In this chapter we show how the Filtered Markov 
model can be used for the generation of random Beta variates.

7.1 Random  Variate Generation

There are many reasons why one might find it necessary to generate random numbers 
(or random variates). In a significant proportion of cases these random variates will be 
drawn from either the continuous or discrete Uniform distribution. There is also a real 
requirement for variates from other distributions, not least when undertaking simulations. 
Simulation is now a common method for solving scientific problems and may involve drawing 
random samples from any of the recognised distributions. The objective of drawing a 
random variate from a given distribution can usually be achieved in more than one way. A 
distribution may have a key property that gives rise to a generator. It is also possible that 
a relationship between the desired distribution and another, simpler, distribution may allow 
us to transform from the latter to the former. In general we would expect each distribution 
to have multiple methods available, displaying varying degrees of suitability for the purposes 
of efficient generation.

When we consider several different methods for generating a random variate there is not 
always a clear winner. In theory the best methods of all are exact methods. This is the case 
where we can invert the cumulative distribution function (CDF) to give a 1-1 relationship 
between a value in the support of the distribution and a probability measure of this value. 
For instance, if we represent a CDF by F  and that of the random variable X  (whose support 
is an interval) by Fx  then

Fx (x) = Pr(X  < x)

Now Fx(x)  is a probability measure. It is a monotonically increasing function of x  that 
maps the support of the random variable onto the set [0,1] such that each value of the 
probability measure of the random variable X  identifies a point x  uniquely. As a result we
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can randomly select a value x  from the distribution of X  by randomly selecting a probability 
from C7[0,1] and then inverting the CDF of X .

If x  ~  D ist(X )  then Fx (x) ~  U[0,1] (7.1)

So Di5£(F^1(17[0,1])

This inversion of the CDF is not always (or even often) possible. Even where it is 
possible this method may still be far from efficient. If the inversion results in an infinite 
series or any form that requires numerical approximation the method may be impractical. 
The time taken to obtain a good approximation may be excessive or lengthy calculation 
may allow numerical errors to creep in. At the other extreme of the scale of elegance is the 
preparation of lengthy tables of pre-generated pseudo-random values. In order to obtain 
our random variate we would then choose one entry at random from this table. Between 
these two are many other methods, each concentrating on one feature or property of the 
distribution.

7.1 .1  C h o o sin g  a  G en erator

Whenever a programmer requires the generation of values from a particular distribution, 
they must make a choice from the available methods. There are many different charac
teristics that should be taken into account to determine the most suitable method for the 
specific requirements of that application. In particular five attributes would be considered. 
They are: Statistical Reliability, Marginal Generation Time, Program Length, Set up Time, 
Memory Requirements. We shall consider each in turn.

• Statistical Reliability

Not all generators produce samples with precisely the target distribution. By Statistical 
Reliability we refer to a consideration of how closely the generated values adhere to the 
required distribution. Is the fit perfect or are they merely a close approximation? To 
establish this attribute of a generator it is necessary to demonstrate observations are, at 
least approximately, independent and drawn from the correct distribution. Testing for 
independence is relatively straightforward, while Chi-Square and Kolmogorov-Smirnov tests 
are frequently used for tests of fit. Stephens (1974) gives a good comparison of the methods 
available for this purpose.

• Marginal Generation Time

This is the demand in terms of processor time required to produce one random variate 
after all set up calculations or tasks have been performed. It will depend not only on



7.1. RANDOM  VARIATE GENERATION 119

the complexity and length of the algorithm but also on-the number and complexity of 
mathematical steps required. For instance, an addition and multiplication operation can be 
performed extremely quickly while exponential and logarithmic operations are comparatively 
slow. The marginal generation time might also depend upon the level of precision (statistical 
reliability) required by the user. Iterative methods, for instance, may often have the 
advantage of allowing the user to choose a level of precision to suit the current requirements, 
with possible consequences for performance.

• Program Portability/Length

Each method must be encoded into a specific function. This attribute is a measure of the 
ease with which this algorithm can be transferred from one machine to another. It would 
include a measure of the challenges involved in translating the code to suit your platform, 
preparing the new code and installing it. It gives a measure of the fixed investment by a 
programmer or developer, in terms of time and effort, for this algorithm to be made available 
for future use. This investment would only have to be made once for each type of platform 
as the coded algorithm could then be transported between similar machines.

•  Set up Time

The time to prepare the algorithm for first use is covered under the previous attribute. 
The set-up time refers instead to the time required by the program itself when preparing 
to generate a sample of variates. This time may include the calculation of constants or 
preliminary values and will be required only once before generating a set of data but may 
have to be repeated if the values of the parameters of the generated variates change.

• Memory Requirements

This will depend upon the program length, memory occupied by constants, variables, 
arrays etc. It may also reflect the storage requirements of a pre-generated table of values. 
In practice the modern desktop machine is sufficiently powerful to make this a relatively 
minor consideration for the type of algorithms used for random variate generation.

Which of these considerations is deemed the most important depends completely on 
the application being considered. Rarely is a single algorithm strong in all areas. It is 
also not the case that the most commonly used distributions have the simplest algorithms. 
There are examples where the frequency of use ensures that portability and set-up time 
will be sacrificed for speed and reliability. When a user prepares a short program to 
conduct a particular experiment the opposite requirements may apply. They would prefer 
low initial investment (through low program length and complexity) even if this resulted 
in higher marginal generation times. A third example would be where a study was being 
made into the statistical behaviour of functions of random variables. In this case all other 
considerations would become inconsequential beside the requirement for a very high level of 
statistical reliability.
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7 .1 .2  K olm ogorov-S m irn ov  G o o d n ess  o f  F it  T est

We have accepted that the output of a random variate generator may not always perfectly 
match the target distribution. In order to determine whether the approximation is sufficient 
for our purposes we may have to consider the ‘goodness of fit’ of a sample. By this we 
mean how closely the true distribution of a random variable corresponds to the distribution 
we have proposed that it is derived from. We do this by examining the empirical CDF 
(ECDF), constructed from a sample of the generated data, and making a comparison with 
its theoretical equivalent. When testing the values produced by a random number generator 
we have the advantage that we are hardly restricted by data collection. We can simply 
request as large a sample as we feel necessary, with relatively little time constraint, and 
then derive the ECDF. When samples are very large (of the order of millions) we can be 
sure of obtaining a very good estimate of the CDF and any statistical inconsistancies should 
become obvious.

In this case we are primarily concerned with the Beta distribution. We shall go on to 
show how the Filtered Markov model can be used to generate values closely approximating 
the Beta distribution. We shall term this the Stochastic Generator to distinguish it from 
other algorithms. We shall want to examine these values to determine how good this 
approximation is. The usual approach to this kind of problem is to apply a test of functional 
distance. Put simply, this looks at how closely the empirical CDF (constructed from a 
sample) resembles the true CDF of the Beta distribution. The most commonly used test 
of functional distance is the Kolmogorov-Smirnov test and we have chosen to use it to test 
the quality of the variates generated by the Stochastic Generator.

The Kolmogorov-Smirnov test (KS) is a non-paramateric test. The ECDF {E(n)}  
of the sample distribution is constructed from the sample (arranged in ascending order) 
( r c ( l ) , x (2 ),..., x(N )}  then taking the values x{i) as estimates of the percentiles ( jj) .  An 
example of an.ECDF as compared to a CDF in a continuous distribution is given in Figure 
7.1. These estimates are then compared with the ‘true’ positions of the candidate CDF F  
in the interval around the estimate, (x{i — 1 ),x(z +  1)). The maximum absolute value of 
this distance for the whole sample is taken as the test statistic, D.

D + =  supn |£(x(n)) -  F(x(n))|

D~  =  supn \E(x(n — 1)) — F(x(n)) | where E(x(0)) — 0 

D  — max(D+, D~)

This test statistic can then be compared with a set of tables to determine the closeness of 
fit and whether to reject the null hypothesis Ho : E  = F.

The KS test is an extremely popular method for testing functional distance although 
there are others. Many of them share a general principle with KS but differ in the way of 
evaluating the test statistic. For instance the Kuiper test statistic is obtained by taking
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Figure 7.1: An illustration of the comparison between a theoretical CDF and an ECDF for 
a sample from a continuous variable.

the sum of D + and D ~ .

P ro b lem s raised  by th e  B e ta  D istr ib u tio n

The usual method of applying the KS test is less ideal when considering the Beta distri
bution. When dealing with bounded functions with bounded (and closed) support it is 
effective but not all distributions have these characteristics. Unfortunately for us, the Beta 
distribution is an example of a distribution that does not. For low parameter values the 
Beta density function of the Beta distribution takes on the characteristic U shape. At each 
of the bounds of the x  axis, at 0 and at 1, there is a pole. Although these points are 
not themselves included in the open range (0,1) from which Beta values are drawn this will 
affect the performance of KS. The generated values cluster close to the edges of the interval 
and through rounding errors, take on the values of these boundaries.

There are two ways that this problem affects our use of the test. The first is that there 
are values outside the range of the variable in a region which has a density value of 0. The 
second side effect of this rounding is to transform several, marginally different, values to the 

same value. This ensures that one large step in the CDF is matched against many small 
steps in the ECDF. So the two problems we have to deal with are:

V alues o u ts id e  th e  range

These don’t really occur much until the parameter values are small. Matlab uses an 

algorithm called the Gamma Ratio method (see Section 7.2.1). When using this algorithm,
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P a ram e te rs Values R ounded(% )
0.1 1.25

0.05 7.84
0.01 34.53

Table 7.1: Failure rate for the Gamma Ratio algorithm for generating Beta variates.

which is employed in many embedded generators, the rounding is more frequently to 1 
than to 0. By this time most embedded Beta generators are already failing regularly to 
produce values. When generating Gamma values with small parameters the values fall 
predominantly at the lower end of the range, close to zero. Mat.lab measures precision by 
giving the distance between 1 and the nearest smaller real number. This distance is only 
around 2-16. By generating large numbers of Beta values using the Gamma ratio method 
we can estimate the frequency of these rounding errors, with the results given in Table 7.1. 
When rounding occurs it is usually to 1 rather than to 0, for the symmetric case.

A sample size of 100,000 using Johnk’s Method (a Gamma variate generation algorithm) 
was used to produce these statistics. For parameter values smaller than 0.01 the Gamma 
Ratio method can not be relied upon to work adequately as the values routinely round to 
0. Since this is the denominator of the generation equation this invalidates the method.

D uplica tion  of Values

This duplication of values is closely linked with the previous problem. The most common 
reason that a duplication will occur is that both have rounded to one end of the scale. If 
this occurs occasionally it is unlikely to trigger a rejection of the distribution but as this 
number grows it becomes a problem. We have seen earlier that this rounding is a frequent 
occurrence for small parameter values.

For instance take the case with parameters of 0.1. We may find only around 1% of values 
rounding to 1. This is unlikely to trigger rejection. However for parameter values of 0.01, 
we may find a contribution of 0.3 to the test statistic. This will almost always result in 
rejection.

A d ap tin g  th e  Test.

With only a small adjustment we can avoid these pitfalls. The first, rather obvious, alter
ation is to allow for the existence of duplicate values. We can do this by simply combining 
several small steps into one large one. This will ensure that one comparison is made for 
each step taken by the ECDF rather than for each percentile. The second alteration is to 
avoid making any direct comparisons with the ends of the scale, 0 or 1. Since these have 
a CDF value of 0 in every case this will merely measure the proportion of duplicate values. 
By only comparing to values inside the range (0,1) we will avoid this addition to the test 
statistic. Both of these changes are in keeping with the principle of the I\S test and merely
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Figure 7.2: An example of the ECDF and CDF of a sample from the Beta[0.05, 0.05] 
distribution.

ensure th a t we correctly com pare the ECDF with the CDF. It should therefore not affect 
the null d istribution of the test sta tistic  or the effectiveness of the test as any excessive 
clustering of points a t each end of the scale will affect the rest of the CDF.

In Example 7.2 we generate 1000 values from a Beta distribution with param eters a,b =
0.05 . Applying the K-S test (at the  1% level of significance) without modification we 
obtain  a test sta tistic  of D =  0.08 which results in rejection of the Beta as the generating 
distribution. The modified K-S test results in a test sta tistic  of D  =  0.0263, within the 
range for acceptance. Figure 7.2 shows the ECD F and CDF of the data.

7.2 B e ta  V ariate G en era tion

The Beta distribution is one of those with no dom inant m ethod of generation. There are 
m any different m ethods available. They focus on different features of the d istribution and 

none can claim to dom inate in all areas. The prim ary reason for this is th a t the Beta 
d istribution can take several, qu ite  different, forms whereas the fast generation m ethods 
for random  variate generation frequently use piecewise polynomial approxim ations to  the 

distribution. For values of a ,b < l  we have a U-shaped density function and for values 
of a ,b > l it has a unimodal density function. Each of the generation m ethods tends to  be 

suitable for one case or the other. The PD Fs of some of the m ain forms the Beta distribution 
can take are shown in Figures 7.3 to  7.6.

ECDF
CD F
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Figure 7.3: The PDF of a Beta[l,l] distribution.
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Figure 7.4: The PDF of a Beta[2,2] distribution.
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Figure 7.5: The PDF of a Beta[0.5,0.5] distribution.
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Figure 7.6: The PDF of a Beta[0.5,2] distribution.

7.2.1 E x istin g  G enerators

As we have already stated there is no dominant algorithm for generating Beta variates. 
This is not to say there is a paucity of algorithms. In fact the limitations of each of the 
available methods seems to have resulted in quite an assortment of different approaches 
being tried. We shall present here an overview of existing Beta generators and comment 
on their strengths and weaknesses.

O rder S ta tis tic s

This method exploits a property of samples drawn from the standard Uniform distribution. 
The order statistics of this sample are Beta distributed

I f  X ( i )  ~  U[0,1] and  X =  {x(l), z (2 ) ,..., x ( N ) }

and the M th order s ta t i s t i c  o f  the sample  X  is denoted by Oa/(X)

then Oj\/(X) ~  B e t a ( M , N )

There is, however, a significant problem with this method in that it can be used only to 
generate values from a Beta distribution with integer valued parameters. If the closest Beta 
distribution with integer parameters was a good subsitute then this fact would not matter 
so much. However, a brief study shows that, in the parameter range that is most useful 
(and indeed used), namely when the parameters are small, the form of the distribution is 
highly dependent on their absolute (and relative) size. Another problem is that in order to 
generate Beta variates with high parameters rather large samples would have to be generated 
with the corresponding implications for generation time.
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Gam m a M ethod

This approach works by utilising the fact that a certain function of two Gamma variables 
is Beta distributed.

I f  Ga ~  Gamma(a) and Gb ~  Gamma{b)
Q

then —— ~  Betala. b)
Ga + Gb v '

This gives an easily implemented generator, suitable for all parameter values. However it 
is worth pointing out that different Gamma generation methods may be used for different 
parameter values. This method can be very competitive, as there are many good Gamma 
generators available although it is possible to improve on its performance. Among its 
potential weaknesses are that it requires an existing Gamma generator, or possibly more 
than one if the full range of parameters is to be utilised efficiently. This could greatly add to 
its set up time if a Gamma generator was not already available. There is another problem 
that we have already mentioned that should be treated as a failing of the application of the 
method rather than the method itself. It is that, due to limits on mathematical precision, 
the rounding down of values can result in errors. This only occurs at the lower end of the 
parameter range, with values of a,b below 0.01.

Johnk’s M ethod

This is a method based on special properties of the beta density.

I f  Ri and R 2 ~  U[0,1]
i  i

and R f  +  R^ ^  1
i

R athen —j—-— j- ~  Beta(a, b)
Rf +

The expected time is not uniformly bounded in the parameters. It is also only appropri
ate when both parameters are less than 1. It can sometimes be slow, due to the two power 
transformations.

Standard R ejection M ethods

A rejection method is a fundamentally different approach. It draws a random variable 
from a distribution approximating the required Beta distribution and then rejects those 
deemed unrepresent ative These initial distributions are usually constructed in a piecewise 
fashion from polynomials. As a result of the slightly inelegant nature of the approach the
algorithms are often a little impenetrable and abstract. These methods in general can be
very effective and can often provide a competitive approach. Details of many of the possible 
rejection methods for the Beta distribution can be found in Devroye (1986). Each method
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uses a slightly different set of distributions to form the proposed value- and has its own rules 
for rejecting unsuitable candidates. The two most competitive versions are detailed below.

C h en g ’s Log-Logistic M e th o d  The Log-Logistic method of Cheng (1978) recognises 
that if W  has a Beta-Prime distribution with PDF

M x )  =  B M   ( }

CLTld —
w

1 + W

then X a i, has the Beta(a , b) distribution. The problem is then one of sampling from (7.2). 
One way to do this is use envelope rejection with a log-logistic target distribution. This is 
one of the best performing algorithms as it is robust and can be used for all values of a and 
b, something that cannot be said for many of the alternatives. Its performance is weakest 
when one parameter is small but it is easily implemented and requires little set-up time.

A tk in so n ’s Sw itch ing  A lgorithm s This approach introduced in Atkinson (1979) is not 
so much one method as a family of methods. In fact three different cases are included, 
each requiring a slight variation in the algorithm. The three cases, which assume a ^  b and 
cover all possible parameter values are:

(0 a b ^  1
(n) a 1 and b > 1

(Hi) a > 1 and b > 1

Although this method is not uniformly the fastest it does give the best overall perfor
mance over the entire parameter range. This is particularly true when a large sample is 
drawn without resetting the parameter values, due to a relatively high set-up time. The 
cost for this is a long and complex routine, and a method that is hardly transparent and 
should therefore be tested carefully after coding.

S trip  Table M e th o d s

A strip table method is favourite when speed is the primary requirement. The preparation 
and set up time requirements are prohibitive unless the code is to be heavily used. The basic 
approach relies on keeping a numerical representation of the distribution function stored on 
the machine to allow us to invert the cumulative distribution function numerically. Using 
this we can transform a probability measure, sampled from the Uniform distribution into 
a value from the target distribution. This approach is far more suitable for a distribution 
such at the Normal, where a standard distribution can be shifted and scaled to fit different 
parameters. The Beta is particularly unsuitable in this respect as each pair of parameters



7.3. THE STOCHASTIC GENERATOR 128

describes a different shape of the PDF and CDF.

7 .2 .2  S u m m ary

In general several methods have something to recommend them. The choice does depend 
upon the requirements of the user. If they are unwilling to invest a lot of time then the
Gamma Ratio method is suitable as it is likely that Gamma generators may already be 
available. If they do not mind coding short programs, and a and/or b vary frequently, one of 
the rejection methods can be used. The method of Cheng is very robust with competitive

decision is made primarily on Marginal Generation Time. Both of these two rejection 
methods can be used over the entire parameter range and the choice will come down to 
whether speed is valued more than program length or set-up time. If values are only 
required with parameters both less than one it may also be worth considering Johnk’s 
method.

Beta variates. The relevance of this to the stochastic process we have constructed relates 
to its stationary distribution. The next question we must consider is whether using the 
stochastic process offers a competitive algorithm for generating Beta variates.

7.3 .1  T h e  S ta tio n a r y  D is tr ib u tio n

The conditional and unconditional stationary densities are Beta distributed. The parameters 
of these Beta distributions are linked to the switching intensities (a, b) and time scaling factor 
(r) of the process.

The unconditional PDF:

performance. Overall Atkinsons’s switching algorithms give the best performance if the

7.3 The Stochastic Generator

So far we have been looking at the different approaches currently available for generating

The PDF condtional on the current state:

A te)

f o ( x )

Recall that a, b are the switching intensities and r  is the time scaling factor (or switching 
rate parameter) and

a = a .r  and b = j3.r
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One of the consequences-of this is that we immediately have expressions for the moments 
of the process. There is another consequence of this property. If the process has been 
running for a sufficient period of time and is stopped the value of the process is a random 
Beta variate. This gives an entirely new method of generating random numbers with a Beta 
distribution.

7 .3 .2  C on vergen ce o f  th e  P ro cess

We know that the stationary distribution is perfectly Beta. This gives us confidence that 
the output of the generator, if left sufficiently long, will closely resemble the Beta distrib
ution. This does not guarantee us a competitive generator. Only if we can reach a good 
approximation quickly can we hope to compete with the existing methods. Two ways we 
can measure this convergence are by looking directly at the declining influence of the initial 
value of the process and the covariance (or correlation) of the process.

Influence o f the Initial Point

We know that the standard process A(£), with levels 0 and 1, follows only two rules, one
for each of the two regimes of the driving signal S(t).

X{dt) =  x(0) exp (—y )  i f  S ( t ) =  0 fo r  all 0 < t < dt
X{dt) =  1 — (1 — x(0)) exp (— * )  i f  S ( t ) =  1 fo r  all 0 < t < dt

We can examine the result of using the same Markov process S ( t) with two different starting 
positions a:(0) and y(0) (where x(0) < y(0)) to give us processes X (t)  and Y(t)  . At time 
t — 0 the difference is y{0) — x(0). After a period dt the distance between the two process 
is

Y{dt) — X{dt) = (y(0) — x(0))exp (— * )  i f  S ( t ) =  0 fo r  all 0 < t < dt
Y(dt) — X{dt) =  (y(0) — x(0))exp (— * )  i f  S ( t ) =  1 fo r  all 0 < t < dt

We can see that the length-of the interval [X(£), T(£)] is completely predictable from the 
amount of time that has elapsed. We can therefore say that for a standard process with 
levels Iq and h , after time £ the envelope within which the process must be will be only 
(li — Iq) exp (—y) wide. As a rough guide this will mean that convergence of the process 
will become practically complete during the interval 5 < ^ < 10.

Correlation

Another way in which we can measure the convergence is by examining the correlation 
coefficient of the process. For very small time intervals dt this will be high declining to 
almost zero quite rapidly. We can obtain an expression for the Correlation of the process 
at two successive points in the same process.

On page 57 we introduced an expression for the Correlation coefficient of a Filtered
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Figure 7.7: The correlation coefficient for two observations from the same Filtered Markov 
process, time t  apart.

Markov process. The expression we obtained was dependent upon the switching parameters 

and the time scaling factor.

Qpk _
C o r r [ X ( t ) ,  X ( t  +  fc)] =  _  P (7.3)

We can display the structure of the correlation for different levels of 0 when r  is taken as 1. 
This is shown below in Figure 7.7. The line marked as ‘Limit’ represents the limiting case 
as 0 —> oo. We can see that for the higher values of 0 we have very fast convergence but 
quite slow convergence for low 0. It is also worth presenting this information in another 
way. If we consider the value of the correlation after the amount of time that has elapsed 

is equal to the expected time until another switch we obtain another perspective. If we 
take the case of a symmetric process (a =  b) and for each 0 look at the correlation after 

time k =  |  then we obtain the results shown in Figure 7.8. Note that the expression for 
the correlation (given in (7.3)) is not defined for 0 = 1 ,  and we must use L’Hdpital’s rule 

to obtain the value of the correlation at this point. This picture shows a slightly different 
side to the convergence. We see that for processes with smaller parameter values (0 <  2) 
the correlation should become insignificant within only a small number of switches.

7.3 .3  T h e  S toch astic  G enerator

As we have seen earlier, the stationary distribution of the FM process is Beta. In theory, 
at least, it is possible to generate values from the Beta distribution using a long enough 

realisation of the process. That it is feasible does not guarantee that it is desirable though 
and a thorough consideration of the strengths and weaknesses is required.

The principle behind the method is very simple and easily converted to a programming 
language. The Beta distribution has (potentially) four parameters, We have two shape
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Figure 7.8: The correlation coefficient for two observations from the same Filtered Markov 
process, seperated by the expected length until the next regime switch.

parameters, a and 6, and scale and shift parameters (c and d) to allow the distribution to be 
generalised. Of these we shall consider a and b only as the scale and shift can be applied to 
a standard Beta distribution in a linear transformation. So if we require a value X  where 
X  ~  c .Beta(a , 6) + d  then we simply sample from a process that dwells in states 0 and 1 for 
periods that are exponentially distributed with alternating means  ̂ and |  respectively. A 
simple linear transformation gives us our required distribution.

T he Sam pling P rocess

When the process has been running sufficiently long we can stop it at any point and de
termine its value. When generating observations from a process we would normally move 
from one observation point tn to the next t n + 1 but when generating random values these 
observations are unnecessary. This can be simply demonstrated. If we examine the distri
bution of the process just before a switchpoint (from regime 0 to regime 1) we find simply 
the stationary distribution conditional on being in regime 0. This is due to the ‘lack of 
memory’ property of Poisson processes. From this we can conclude that we can move from 
one switchpoint to the next, randomly generating the intervals between them rather than 
concern ourselves with regular observations. At each switchpoint it will be necessary to 
evaluate the level of the process, which depends upon the level of the process at the pre
vious switchpoint and the time that has elapsed since then. In doing this we are actually 
sampling from a discrete time Markov chain. We know that the conditional distribution for 
each regime will be correct but we also require that distribution between regimes is correct 
in order for the stationary distribution of this chain to be Beta.
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As far as determining our algorithm we have two different approaches we can take. 
When starting the process to obtain a single Beta variate we need to determine the point 
at which we interrupt the process. This could be done either by specifying the exact time 
that must elapse before we stop the process or to specify the number of switches we require 
the process to make before taking an observation from a switchpoint.

•  Fixing Finish Time
This has one clear advantage. The influence of the starting state on the final distribu
tion is easy to measure. The disadvantages, however are significant. The complexity 
of the technique is much increased with a requirement for a continual check on amount 
of time that has elapsed. These conditional statements are very time consuming for 
a processor. As the parameter values become very large the length of time spent in 
each regime becomes shorter requiring many more switches (and hence iterations) to 
reach the finish time. This renders the marginal generation time unbounded as the 
switching rate tends to infinity. It also does not guarantee that any switches will take 
place during the time interval leaving the generated value determined precisely by the 
starting point. In order to avoid the worst of these problems the finishing time could 
be determined by a function of the parameter values, ensuring a more practical choice. 
As long as the initial regime and level of the chain are chosen from the stationary dis
tribution of the process then the final value of the chain should also have the correct 
distribution.

• Fixing Switch Number
Using this method has several clear advantages. First, the process becomes trivially 
simple. The initial point is determined and then a number of values are drawn from 
the exponential distribution for the time spent in each period and the final value is 
determined. Secondly, since the length of a switch is very long for low parameter 
values, the run-in time is long enough for very convincing convergence to have taken 
place. The only problem is at the other end of the scale. For large parameter values 
(9 > 1), intervals between switches are very short, and very little movement of the 
process (and hence convergence) will take place leaving the process very dependent 
upon the initial distribution. The choice of how to initialise the chain is slightly more 
complex than in the first case. If we choose an odd number of switches then we will 
always find the final regime of the chain different to the initial regime. It is important 
to choose the initial regime from a distribution such that the final regime of the chain 
is distributed correctly.

The choice of approach will depend upon the purpose for which the generator is intended. 
When considering performance the second approach does result in a simpler routine. We 
shall mostly concern ourselves with the second approach as performance will be crucial in 
any comparisons made with other algorithms.
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Initial Conditions

The process will never become independent of the initial value x(0). However it does be
come, quite quickly, effectively independent of it for many choices of parameters. Depending 
on the method we choose for sampling we may or may not have control on the degree of 
independence. As such it is important to study the importance, or otherwise, of the initial 
value. If the initial value is a random variable then we will sidestep many of the problems 
associated with fixed starting values. There are several considerations when choosing the 
distribution of the starting value value.

• Distribution
The closer we can get to the required Beta distribution when choosing the initial 
value the less convergence is required. When working with high parameter values, 
for instance, the Beta distribution can be closely approximated by other distributions 
(the Normal distribution for instance) with appropriately chosen mean and variance. 
A suitable choice will give a good starting point for the process to converge quickly.

• Extreme Values
The process cannot ever actually reach the upper and lower bounds given by the 
two levels 0 and 1. The longer it spends without switching the closer it can get to 
these bounds, and it is important to ensure the generator distribution has sufficiently 
complete coverage of the required range. One quick and easy way of determining 
the initial position is to choose the mean value of the process. This guarantees fast 
convergence in most cases but for fast switching may not allow the full range [0 ,1] to 
be generated.

• Speed
When looking to maximise the performance of the generator every little fraction 
counts. Choosing a Normally distributed initial point may take many times longer 
to generate than a fixed starting point (such as the mean value).

We should not forget how varied the forms of the Beta distribution are. It is likely that 
different initial distributions would suit different ranges of the parameter values. If we are 
able to choose one initial distribution to suit all parameter values it will probably be due 
to the decreased importance of the starting point for many of these sub-groups rather than 
its consistent suitability.

Choice of Initial D istribution

In terms of maximising performance, fixing the number of switches seems to offer the most 
promise. In order to further optimise the performance we need to select the best distribution 
for our intial point. We shall consider several different options and consider the advantages
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and drawbacks of each. The param eters of the  B eta d istribution we intend to  generate are 

a and b which will have levels 0 and 1 .

•  Bernoulli.

The initial regime of the Filtered Markov process 5(0) is chosen from a Bernoulli 

distribution where the probabilities are taken from the param eters of the required 

Beta. The intial value x(0) is then taken as the level of the opposing regime i.e.

, a
S  (0 j rs-' B ernou lli

cl -t- b

X (0) =  1 - 5 ( 0 )

In choosing 5(0) we ensure th a t the choice of regime is in keeping with the stationary  

distribution of the Filterered Markov process. In choosing this value of X (0) we ensure 

the greatest possible range of values for the process after the  first switch encouraging 
fast convergence. This choice of starting  conditions is very fast and suitable for lower 

switching intensities.

•  Uniform.
The regime of the process 5(0) is also taken from a Bernoulli d istribution w ith ap
propriate probabilities bu t the  initial value is Uniformly distribu ted  between 0 and 1
i.e.

S (  0) rsj B ernou lli
cl b

X( 0)  ~  U[ 0,1]

This is also quite fast and more suitable for the interm ediate values of the switching 
intensities where the B eta d istribution may be relatively evenly distributed across its 
support.

• Normal.

T he initial regime is chosen from a Bernoulli d istribution as before but the level of the 

process is taken from a Normal d istribution w ith the  same m ean and variance as the 

appropriate  conditional B eta distribution, i.e.

5(0) r^ B ernou lli
a

a + b

7 / 5 ( 0 )  =  0 f i=  ( ----- ^ andcr2 = ( - -------  °  ^  ^  (7 .4 )J w  ^  V a  +  6 + V  \ { a  + b + l ) 2{a + b + 2)J v '
7 / 5 ( 0 )  =  1 11 =  (  a ^--andcr2 = ( - ------ (7.5)

w  ^  \ a  + b + l j  \ ( a  + b + l ) 2(a + b + 2) J  v '

X*(0) ~  N o rm a l{n ,o l ) (7.6)
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But the Normal distribution has infinite support while the Beta is bounded so we take

X(0)  =  ^
X (0 ) =  0  i f  x * ( 0 ) ^ 0

X(Q) = X*(Q) i f  0 < X * ( 0 ) < 1  
X(0)  = 1 i f  X*{0) ^  1

This gives us an initial distribution that is already very close to the Beta distribution 
for higher switching intensities. This is not the case for lower values and it is by far 
the most time consuming choice of initial distribution.

In order to test these three choices for the initial conditions we shall resort to simula
tions. We shall generate many thousands of values using this process, obtain from these an 
empirical cumulative density function (ECDF) and then test this against the Beta distribu
tion using the Kolmogorov-Smirnov test of functional distance. Each column in the tables 
below will represent a different model specification. The model specification will begin with 
the choice of starting distribution Bern, Uni and Norm to represent Bernoulli, Uniform and 
Normal respectively. The number following this will give the number of switches that will 
be added after the initial value is chosen. Uni2, for instance, will be generated using a 
Uniform initial point and then two intervals culminating in switchpoints with the value at 
the second switch point taken as the generated Beta variate.

Table 7.2 gives the functional distance (as defined in the KS test) between an ECDF 
produced using a random sample of 10,000 variates and the theorectical CDF for symmetric 
Beta distributions. Table 7.3 gives the mean rejection rate by the KS test (at a 1% level of 
significance) of the ECDF from the Beta CDF over 1000 samples of 1000 from symmetric 
Beta distributions. Tables 7.4 and 7.5 are identical except that they focus on asymmetric 
Beta distributions. For comparison we also include the exising Matlab generator (which 
uses the Gamma Ratio method) for comparison and the figures are given in the column 
headed ‘Beta’. It should be noted that the first two rows are absent from the Beta column. 
This is due to the failure of the Gamma Ratio method (as used by Matlab) to reliably 
generate values for these parameter values due to rounding errors.

For the Bernoulli and Uniform prior we find that the process in unable to converge 
quickly enough for higher a and b. This is due to the very short expected length of the 
intervals between switches. The Normal distribution does not have such a problem as it is 
already a good approximation to the Beta distribution with high parameters. The generator 
is far less sensitive to choice of prior for small a and 6, due to the rapid convergence. We 
can also see even over 4 switches the rejection rate for the Normal starting distribution 
remains very low. The only exceptions to this are for the highly asymmetric cases such as 
a — 10, b — 10,000. To be on the safe side we should probably take 6 switches instead of 4, 
after which the rejection rate is indistinguishable from the existing generator.
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Param eters M odels
a b Bern2 Bern4 Uni2 Uni4 Nor m2 Norm 4 B eta
0.001 0.001 0.0234 0.0237 0.0232 0.0233 0.0232 0.0242 -

0.005 0.005 0.0254 0.0252 0.0249 0.0253 0.0255 0.0252 -

0.01 0.01 0.0261 0.0259 0.0263 0.0257 0.0267 0.0250 0.0260
0.05 0.05 0.0270 0.0275 0.0275 0.0269 0.0276 0.0268 0.0269
0.1 0.1 0.0272 0.0270 0.0274 0.0274 0.0264 0.0268 0.0274
0.5 0.5 0,0417 0.0275 0.0342 0.0276 0.0268 0.0267 0.0275
1 1 0.0890 0.0345 0.0327 0.0279 0.0272 0.0273 0.0272
2 2 0.1892 0.0826 0.0370 0.0270 0.0280 0.0274 0.0276
5 5 0.3811 0.2730 0.1425 0.0889 0.0277 0.0282 0.0273
10 10 0.4852 0.4428 0.2454 0.2053 0.0268 0.0267 0.0278
50 50 0.5130 0.5125 0.3883 0.3832 0.0274 0.0276 0.0273
100 100 0.5131 0.5121 0.4204 0.4192 0.0273 0.0287 0.0275
1000 1000 0.5127 0.5126 0.4792 0.4803 0.0278 0.0280 0.0268

Table 7.2: A comparison of the K-S Goodness of Fit test statistics of the ECDF of a sample 
from the Stochastic Beta Generator for symmetric Beta distributions.

Param eters M odels
a b Bern2 Bern4 Uni2 Uni4 Nor m2 Norm 4 B eta
0.001 0.001 10 7 3 9 9 5 -

0.005 0.005 9 6 10 9 10 11 -

0.01 0.01 10 11 5 8 4 4 10
0.05 0.05 9 11 11 11 17 5 6
0.1 0.1 15 12 10 8 6 2 14
0.5 0.5 157 12 45 10 3 6 • 6
1 1 1000 41 24 11 11 6 8
2 2 1000 1000 61 12 5 4 5
5 5 1000 1000 1000 1000 5 5 14
10 10 1000 1000 1000 1000 14 14 15
50 50 1000 1000 1000 1000 10 16 15
100 100 1000 1000 1000 1000 12 5 3
1000 1000 1000 1000 1000 1000 16 10 5

Table 7.3: A comparison of the rejection rate of the K-S Goodness of Fit test of the ECDF 
of a sample from the Stochastic Beta Generator for symmetric Beta distributions.
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Param eters 
a b Bern2 Bern4 Uni2

M odels
Uni4 N or m2 Norm 4 B eta

0.01 0.1 0.0276 0.0275 0.0273 0.0276 0.0277 0.0271 0.0274
0.01 1 0.0275 0.0271 0.0281 0.0272 0.0273 0.0274 0.0271
0.01 10 0.0271 0.0270 0.0341 0.0276 0.0274 0.0271 0.0274
0.01 100 0.0272 0.0276 0.0486 0.0274 0.0276 0.0269 0.0273
0.1 1 0.0279 0.0277 0.0495 0.0275 0.0280 0.0271 0.0276
0.1 10 0.0296 0.0277 0.1569 0.0342 0.0300 0.0273 0.0274
0.1 100 0.0277 0.0275 0.2971 0.0693 0.0310 0.0273 0.0273

1 10 0.2412 0.0970 0.4451 0.2594 0.0401 0.0291 0.0272
1 100 0.2827 0.1251 0.8315 0.6735 0.0486 0.0306 0.0269
1 1000 0.2887 0.1292 0.9644 0.9036 0.0503 0.0311 0.0274

10 100 0.8884 0.8559 0.8195 0.8097 0.0400 0.0351 0.0273
10 1000 0.9707 0.9397 0.9765 0.9750 0.0445 0.0386 0.0276

Table 7.4: A comparison of the K-S Goodness of Fit test statistics of the ecdf of a sample 
from the Stochastic Beta Generator for asymmetric Beta distributions.

Param eters M odels
a b Bern2 Bern4 Uni2 Uni4 Norm 2 Norm 4 B eta

0.01 0.1 13 17 3 12 12 10 9
0.01 1 10 7 21 10 7 11 7
0.01 10 6 8 56 6 9 5 10
0.01 100 8 6 • 357 11 6 11 8
0.1 1 15 11 427 13 17 6 11
0.1 10 29 10 1000 58 30 9 10
0.1 100 30 15 1000 953 32 6 12
1 10 1000 999 1000 1000 193 25 6
1 100 1000 1000 1000 1000 395 37 8
1 1000 1000 1000 1000 1000 452 52 12

10 100 1000 1000 1000 1000 176 84 13
10 1000 1000 1000 1000 1000 278 139 12

Table 7.5: A comparison of the rejection rate by the K-S Goodness of Fit test of the ecdf 
of a sample from the Stochastic Beta Generator for asymmetric Beta distributions.
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7.3.4 Comparison of Performance

The generation of random Beta variates from this Stochastic process has much to recommend 
it. The method is transparently simple, easy to code and relatively quick. This is not the 
only reason it should be considered as a serious alternative to the existing models. Some 
of the methods applied, or the coding of them may occasionally fail to succesfully return 
Beta values when the parameters fall into the extremes of the possible range. There is 
definitely a case for arguing that one, reliable, method could replace the current patchwork 
of generators that are currently employed by most Statistical software.

Statistical Reliability

We already know that the Stochastic method is reliable in the sense that it will always return 
a value, no matter how extreme the parameters. In assessing the suitability of the generator 
we are more concerned with statistical reliability. In the case of the stochastic process we 
know that the stationary distribution will match the desired Beta distribution but need to 
be sure that the output of the generator is close to that stationary distribution. We can 
judge this convergence by examining the KS test statistic for different parameter values and 
different numbers of steps of the generator. In the chosen version of the generator we use 
a Normal prior, and we can see from Table 7.2 that the generator has converged after only 
2 steps for the symmetric case, even for extreme parameters. The asymmetric case is dealt 
with in Table 7.4, and we see slower convergence here especially when both parameters are 
larger than 1. For the most problematic cases we plot the mean KS test statistic versus the 
number of steps used by the generator to see how this convergence develops. The results 
are given in Figure 7.9 and show the mean KS test statistic over 1000 experiments, each 
consisting of a sample of 1000 values. The dotted lines represent the rejection levels for the 
KS test, at the 1%,5% and 10% levels. As we can see in even the most difficult cases the 
generator converges to an acceptable level by 6 steps and (effectively) fully converges after 
about 10 steps. The evaluation of the marginal generation time is done using the Normal 
prior with 6 steps. This should be sufficient for all but the most demanding scenarios and 
is probably a conservative choice when dealing with the usual range of parameters.

Marginal G eneration Tim e

The currently used methods vary in their performance. There is not just variation between 
the different methods but variation for different parameter values. Some are fast but work 
only for limited sets of the parameter space and some are fast in some areas and slow is 
others. The measured speeds are obviously dependent upon the capabilities of the processor 
used to generate the values and should not be taken as absolute. They do, however give a 
good indication of the relative performance of the different methods. W ith the exception 
of a change in the way mathematical functions are evaluated by processors this relative 
performance should be unlikely to change dramatically.
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Figure 7.9: Convergence plots for the Stochastic G enerator for different Beta distributions. 
The num ber of steps of the generator is plo tted  against the mean KS test statistic. The 
dotted  lines represent the rejection level of the KS test a t (from top down) 1%, 5% and 
10%.

In order to fully test the alternative algorithm s available we shall perform our own 
simulations. To obtain these benchmark timings the m ethods wrere coded in as minimal 
a form as possible, with all non-essential commands removed. A selection of the m ethods 
have been tested and their performance given below (as fis per variate) so th a t a comparison 
can be made with the performance of the Stochastic method. In practice none of these 
m ethods can acheive these speeds. The actual m arginal generation tim e is small compared 

to the time taken to  check the comm and syntax and param eter set and then select the 
correct generator. This is why each m ethod should be measured in its minimum form. It 
is, however, worth bearing in m ind th a t the Stochastic generator works for all param eter 
values. This would save tim e when compared against the suite of generators (such as 
Atkinson’s Switching m ethod) bu t not individual ones. Even w ithout this factor it is clear 

to see th a t the Stochastic generator performs competitively, especially in certain  areas of 

the param eter space.
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M arginal G en era tion  T im es for B e ta  G en era tion  A lg o r ith m s (fis)

G am m a R a tio  (V aryin g P aram eters)

a b

0.01 0.1 1 10 100

0 .01 141.3 144.2 192.3 185.2 188.3

0 .1 144.2 194.2 185.3 187.2
1 241.3 233.3 235.3

10 226.3 229.4

100 228.4

C h en g ’s L og-L ogistic  (V arying P aram eters)

a b
0.01 0.1 1 10 100

0.01 231.4 317.4 333.5 335.5 337.5
0.1 224.3 284.4 290.4 292.4

1 181.3 202.3 206.3
10 187.2 190.3

100 188.3

A tk in son ’s S w itch in g  (V arying P aram eters)

a b
0.01 0.1 1 10 100

0.01 143.2 126.2 107.1 107.1 109.2
0.1 134.2 106.1 107.1 109.2

1 94.2 108.2 109.1
10 161.2 197.3

100 165.2

G am m a R a tio  (F ix ed  P aram eters)

a
0 .01 0.1

b
1 10 100

0.01 136.2 137.2 135.2 177.3 179.2
0.1 140.2 137.2 178.3 179.3

1 132.2 176.2 177.3
10 217.4 218.4

100 220.3
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C heng’s Log-Logistic (F ixed  P a ram e te rs)
a

0.01 0.1
b
1 10 100

0.01 106.1 194.3 211.3 209.3 211.3
0.1 96.1 159.2 170.3 169.2

1 53.1 78.1 81.2
10 60.1 64.1

100 61.1

A tk in so n ’s Sw itching (F ixed  P a ram e te rs)

0.1 1000.01 10
40.1
39.1
37.1
78.1

59.1
64.1

40.1
38.1
37.1

0.01
0.1

77.1

38.1
46.110

100

S tochastic  M e th o d
a

0.01 0.1
b
1 10 100

0.01 99.1 100.1 99.1 101.2 99.1
0.1 99.2 99.2 99.1 100.1
1 180.3 179.2 179.2

10 180.2 179.3
100 180.2

P ro g ra m  P o r ta b ili ty /L e n g th

This may be a relatively minor consideration for a serious developer, but some of these 
methods have much more complex structure than others. When a method is required that 
is fast to code and easy to understand then some weight may be given to complexity. In 
Table 7.6 we make a comparison of the minimum number of commands required to code each 
of the leading Beta generation algorithms. Atkinson’s suite of generators suffers under this 
perspective. The algorithm consists of three different generators with the most appropriate 
one selected for each parameter set. The rejection methods are also less transparent that 
some other methods. Again we can see that the Stochastic method performs well when 
compared with the best of the existing generators.
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A lgo rithm Lines of C ode (approx .)
Atkinsons’s Switching Family 80
Cheng’s Log-Logistic Method 60
Stochastic Method 20

Table 7.6: A comparison of the minimum number of commands required to code each of 
the leading Beta generation algorithms.

7.4 Conclusion

Since a low Marginal Generation time is probably the most important single property a 
generator can have it is ultimately the determining factor in the importance of a generator. 
As such we must accept that the Stochastic Generator cannot comprehensively outperform 
Atkinson’s algorithm across the whole parameter range. It does offer better performance 
where a, b < 1 even using 6 switching intervals, but it suffers from the disadvantage that no 
performance improvement is gained when drawing large samples with the same parameter 
values. In this lower range it is likely that a more careful choice of initial distribution may 
result in even lower generation times. However if speed is not the sole consideration the 
Stochastic Generator must be worthy of consideration.



C hapter 8

The Ladder Models

In an earlier chapter we outlined the use of discrete time, discrete level models for use as 
approximations to the Filtered Markov (FM) process. In this chapter we propose a class of 
these models for this purpose and also for use as a simple but effective method for extending 
the Markov switching models to incorporate gradual switching mechanics.

8.1 A nother look at Gradual Switching

Given the great difficulties in fitting the FM model to noisy time series data it has been 
necessary to construct a simpler, more robust, model. So we go back to a more general, 
and mechanically simple, model that has the two-state case as its simplest form. We retain 
the idea of a two regime process but allow the process to take intermediate levels as it 
adjusts from one regime to the other. After the gradual transition has been completed to 
either regime the model will remain at a stable level until the next switch occurs. We call 
these two levels the stable levels or end levels and all other levels intermediary. We link 
the direction of movement through the levels to the current regime and restrict the process 
to remain within the finite level structure. This allows us the Markov Regime Switching 
behaviour but allows much more complex transitions between the upper and lower ends of 
the range of levels. This is stated more formally below.

8.2 A  Class of Gradual Switching M odels

In order to explore the possibility of practical gradual switching models we introduce a 
class of discrete time, discrete level models. As with Hamilton there is a Markov chain 
controlling the Mean level of the series with a Gaussian error term added to introduce the 
observable series.

y(n) =  g(n) +  e(n)

Where the mean level of the series at time n is given by g(n) and e(n) ~  iV(0, cr2)
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The model for determining the mean level consists of two chains, with discrete levels 
and in discrete time. The first chain S(n ) will consist of two-regimes that determine which 
of two movement patterns the series exhibits. The second chain L(n) controls the mean 
value of the series. The first chain S(n)  can sometimes be influenced by the second chain 
L{n) and L{n) will always be influenced by S(n).  Together the chain of combined states 
(S(n ), L(n)) form a Markov chain, as the distribution in the future state depends solely on 
its current state. When we need to refer to the state the process occupies (S (n ), L(n)) we 
will need to distinguish between (0, k ) and (1, k ) (which are the case of the same level with 
different regimes). We will do this by indexing the first as dk (for down regime, level k ) 
and uk  (for up regime, level k).

The mean value of the process at a given point n  is at one of a ‘ladder’ of levels.

{i0,Zi,...,Zjv(L)- i}  wdiere lu < lv if u < v

Such that
E[Y(n)} = lu i f  L(n) =  u

The chain L{n) is influenced by S(n)  which controls the direction of movement on the 
ladder

if S (n ) =  1 and L{n) — u then L(n  4- 1) > u

if S(n)  =  0 and L(n) =  u then L(n + 1) < u

Since the ladder can move only up while S(n ) =  1 once the ladder reaches the top of the 
ladder (L(n ) =  N ^  — 1) no further change in the level of the chain is possible until the 
direction of movement changes as a result of a change in regime of S.

Example 1:
In its simplest form S(n ) could be a (two regime) Markov chain wdth transition proba

bilities a and b (for states 0 and 1 respectively) and — 2. Then we have regimes 0 and
1 with associated levels Iq — 0, Zi =  1 and the transition matrix

Pr[5(n) =  0 |5(n — 1) =  0] Pr[S(n) =  l ^ n  — 1) =  0] 
Pr[5(n) =  0 |5(n — 1) =  1] Pr[5(n) =  1| S(n  — 1) =  1]

1 — a a 
b 1 - 6

While working with these models we have found that the transition matrices are simpler to 
work with when we interpret the switching to occur immediately after, rather than before, an 
observation. The result of this is that the first observation in a new regime will represent the 
end of an interval in the new regime rather than the beginning, and should be accompanied 
by movement in the level structure. This will result in only one level being available for 
each regime of S(n), leading to

L(n) =  S(n )
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This is of course a simple two-state Markov chain. The process can be specified in a much 
more general way.

8.3 The General Ladder M odel

As before we define the set of levels of the process in as general way as possible with levels

{Z0, Zi,..., In{l)- l )  where lu ^  lv i f  u < v

The current regime of the controlling Markov process is given by S(n ) and the level of the 
series is controlled by L(n). The transition probabilities for the Markov chain (5(n), L{n)) 
are given by

Pij(u, v ) =  P r(5 (n  +  1) =  j  &; L(n +  1) =  v \ S (n ) =  i &; L(n) = u )

This defines a general multi-level function driven by the Markov process (5(n),L(n)). In
order to restrict it to give us our General Ladder Model we require that the level of the
chain L(n)  can move only in the direction indicated by the regime S(n )

Poo(u, v ) =  0 if v  >  u

P u ( u ,  v ) =  0 if v < u

We also require that the stable levels points of the ladder act as boundaries for the level 
chain. Only a switch of regime will free the process from the ‘stable’ states (0,0) or 

( ! . % ) - ! ) •

Poo(0,0) =  1 - ^  P01(°’v)
V =  1

*(L)- 2
Pu {N(L) -  1 , A ( L)  -  1 )  =  1 -  2  Pi o( N( L) -  l , v )

v —0

This gives us the general model. Not many restrictions are placed on it at this stage to
allow it to encompass several clearly different cases. All we have really done at this stage is
to define a chain of levels that switches between two regimes, one of growth and the other 
of decay. While in the growth regime (S (n ) =  1) the level may only increase up to a limit 
and vice versa for the decay regime. Within this definition several distinct sub-groups have 
emerged as being practically useful. Each one has slightly different practical benefits.
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8.4 The Ladder M odel L [N^,N^]

This takes the general model and restricts it farther. First we make the regime chain S(n ) 
and its switching probabilities independent of the level chain L(n).

For all u we have

N ( L ) - 1

PoiK'f) = a
v=0  

N ( l ) ~  1

y ;  poo(u,v) =  1 - a
v= 0  

N(L)-1
y  Pio(u,v)  = b
v= 0

N (L)- 1

y  P n { u , v )  =  1 - 6
v=0

We then make the movement of the level chain deterministic and dependent only on the 
regime of the regime chain.

Poo(u,v)  =  <

Pu(u,v)  =

p io {u ,v ) =  

Poi{u,v)  -

1 - a i f  u = v — 0
1 — a i f  u > 0 and v = u — 1

. 0 otherwise

r i - 6 i f  u = v = 7V(L) -  1
1 - 6 i f  u < iV(£,) — 1 and v = u +  1

0 otherwise

i f  v =  u — 1 
otherwise

i f  v = u +  1 
otherwise

We can observe that it is now impossible for the level process to inhabit states uq and 
dN(L)~l- These correspond to the level 0 while in regime 1 and to level — 1 while in 
regime 0. This is a deliberate measure to ensure that the process is easier to work with 
when inverting matrices and obtaining likelihoods. We declare also that the value of the 
levels are equally spaced and independent of state

Ik =  ^  j  i -  lo)

This process, for = 4, can be represented by the diagram shown in Figure 8.1.
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Regime 0 Regime 1
(Down) (Up)

1-a

Figure 8.1: A diagram  representation of the movement pa tte rn  of the Ladder Model, L [4 ,4]

This process, w ith lo = 0 and Z3 =  1, would have the following set of combined states 

T h e  sta tes are  {dO, d l, d2, u l , u2, ^3} w ith  levels  {0, U U 1}

The transition  m atrix  between states would be

(1 -  a)
( 1 - a )  .

T  =
( 1 - a )

(1 - 6)
(1 - 6)
(1 - 6)

W here a dot symbolises 0 probability and if the distribution at tim e n  is given by f n then  

fn+l = f n - T

8.5 The Slide Model S [N(L),N{L)]

There are tim es when the Simple Ladder Model is not suitable. It has a tendency (doc
um ented in C hapter 9) to overfit. By overfitting we mean the model returning very high 
estim ates of the  regime switching param eters suggesting very frequent switches of regime. 
In these circumstances we may prefer to  utilise a version of the  Ladder Model term ed the 

Slide Model. This is identical to the Simple Ladder Model is many respects except th a t we
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Regime 0 Regime 1
(Down) (Up)

[~d2~| | u2

' I  t 1
H  0i0 *

Figure 8.2: A diagram representation of the movement pattern of the Slide Model, S[4,4]

introduce one significant restriction. There is far more difference between the stable end 
levels ( lo  and In {l ) - i )  and the intermediary levels (Zi to In l̂ ) - 2 ) that represent the process 
gradually adjusting from one stable level to the other. In the Slide Model we demand that 
while the level chain is inhabiting the intermediary levels no change is permitted in the 
regime chain. So the switching probabilities become

Poo(0,0) - 1 - a

Poi(0,1) =  a

Pu (N(l) ~  1) n (l ) ~  1) =  1 -  b 

Pio(n (l) ~  1, N(L) -  2) =  b

The movement rules become

Poo(u, v ) = 1 i f  u > 0 and v  =  u — 1

Pn( u,  v)  =  1 i f  u < N (l) — 1 and v  =  u +  1

The flow chart for the Slide Model S[4,4] can be seen in Figure 8.2 and below we have 
the transition matrix
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T  =

( 1 - a )
1

1 

• (1 ~b)

There are certain consequences of these added restrictions. One of these consequences is 
that the regime chain is now dependent upon the level chain and is therefore no longer 
Markov. Together with the level chain the combined state (5(n), L(n)) is still Markov and 
this is what we model. In order to know the future distribution of the regime chain we 
require information on the length of time since the last switch.

8.6 The Unravelled M odels

We have already mentioned that fact that overfitting can be a major problem for gradual 
switching models. The introduction of the Slide model was one attempt to deal with 
this. This prevents the model from trying to fit short deviations from the stable end 
levels. But sometimes even this approach cannot restrain the model sufficiently when 
facing significant noise. It is quite easy, however, to take the number of switches the 
driving process makes using the following adaptation and make it a parameter of the model. 
It is worth emphasising at this point that this structure is not exactly a model. It is 
probably better described as a ‘method’, a method for fitting a Ladder or Slide model when 
the existing algorithm struggles. It must be established straight away that once we have 
introduced these adaptions the chains we are working with are no longer Markov.

First we examine an Unravelled Slide model U S [ N ^ , N ^ l) ,c\. We retain L(n) un
changed from the Slide model. We modify S (n ) so it consists of c +  1 levels, where c is the 
maximum number of switches we will allow. Each of which can be visited only once.

As before we define the transition probabilities using p where

Pij(u, v ) =  Pr[S'(n +  1) =  j  & L{n +  1) =  v \ S (n ) =  i &, L(n ) =  u]

For this model we do not allow a return to regimes visited earlier

Pi j(u,v)=  0 i f  j  < i 

Nor do we allow the regime chain to take two switches simultaneously

Pij(u,v)=  0 i f j > i  + 1
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Nor may it exceed the prescribed number of switches •

Pij(u,v) = 0 . i f  j  > c + 1

The final regime becomes an absorbing regime. We then treat the alternate regimes 
as equivalent. After deciding (for instance) that so represents the growth regime then 
{s(0), s(2), s(4 ),..}. will all be taken to represent growth regimes with identical effects on 
the level chain. If we retain this assumption that the first regime represents growth then 
we have the following transition probabilities

1 — a i f  v = u = 0
poo(u, v ) =  {pij(u, v) : j  = i and i is even} =   ̂ 1 - a  i f  u >  0 and v =  u — 1

0 otherwise

Pw{u, v ) =  {pij(u, v) : j  = i and i is odd} =  <
1 — 6 i f  v = u = N(q  — 1
1 — 6 i f  u < — 1 and v = u +  1

0 otherwise

poi(u, v) =  {piji+i(u, v ) : i  is even} = 

Pi2 {u,v) = [pi,i+i(u,v)  : i is odd} = <

a i f  v — u +  1 
0 otherwise

6 i f  v =  u — 1 
0 otherwise

Let us say we want a Slide process with three levels. We also want to limit the regime 
chain to make only three switches during the length of the series. We do this by replacing 
the regime chain we have used before with a regime sequence. If the process is to start in 
(0,1) say we know that the states (5(n), L{ 1)) visited, in order, will be

(0,1) =» (0,0) swl̂ hl (1,1) => (1,2) swl̂ h2 (2,1) =* (2,0) swî hZ (3,1) =» (3,2)
start end

We know that the Unravelled Slide model will visit each and every one of these states and 
arrive eventually in (5(n),L (n)) =  (3,2). Rather than represent this using the original 
regime chain we can use a continuous sequence in which each state is visited once and once 
only. This sequence of states can be indexed

{d0, d l, u2, u3, d4, d5, u6, u7}
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Where states separated by 4 steps are identical in terms of properties. So

dO, d4 are identical 

d l,d5  are identical 

c£2, d6 are identical 

and so on

When developing a fitting algorithm for use with a computer program it is easier to 
combine the regime and level chains into one combined state C(n) with states {0,1,...} 
equal to combined states {d0, d l , ...}. The transition matrix for C(n) (which we shall call 
C) is larger than those we have worked with before, seeing as we now have c . N ^  states. 
The following matrix corresponds to the 4-regime case given above. A dot represents zero 
probability of transition.

a .
. 1 
. 1

The design of this model is solely to allow us more control of fitting the Slide model. When 
estimating the likelihood of a solution we ignore all contributions that derive from outside 
the range of combined states. All that this allows us to do is limit the search for a maximum 
likelihood solution to the set of regime patterns requiring no more than a certain number of 
switches c. Once we have these figures for different values of c we can make comparisons of 
likelihood between different value's of c to find the most probable number of switches that 
will have taken place.

It is also possible to work with an Unravelled Ladder Model. This is the same as the 
Unravelled Slide Model but uses similar rules for switching regimes and levels as found 
in the Ladder model (adapted for the restriction of regimes of course). In practice the 
Ladder Model becomes more useful (relative to the Slide Model) once the constraint of 
fixed switching is implemented. Under these conditions the unnecessary switching that 
troubles the Ladder model is dissuaded by virtue of the fixed switch numbers.

C =

1 — a a

1 - 6  6

. 1 — a
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Regime 0 Regime 1
(Down) (Up)

Figure 8.3: A diagram representation of the movement pattern of the Asymmetric Slide 
Model, S[3,4]

8.7 The Asym m etric M odels

In an attem pt to allow greater flexibility and allow varying transition rates for the different 
regimes we introduce the Asymmetric Slide and Ladder models. To introduce this asym
metry to the Slide model is fairly straightforward. This is simply the Slide model as we 
have introduced it but with a different number of levels in the two regimes. We dispense 
with number of levels and replace it with and A7̂ ) ,  which are the number of 
levels in the up regime and down regime respectively. Figure 8.3 shows a diagrammatical 
representation of the 5[3,4] model. By varying the number of levels in each state we can 
control the .transition rate without removing the deterministic nature of the movement. The 
transition matrix is equally simple, constructed almost identically to the symmetric case.

Things are not so simple when we start to consider the Asymmetric Ladder model, 
termed L [ N ^ ,  N ^ ] .  In the symmetric case every level in both regimes could only make a 
transition to two other levels of the process. Each regime used the same level structure so 
there was no difficulty in establishing which transitions are possible. When working with 
an asymmetric Ladder we retain the same rules for movement when no switching occurs but 
are faced with the problem that the levels do not have equivalents in the opposing regime. 
In Figure 8.4 we demonstrate one possible solution to the problem for L[3,4]. We have had 
to make a decision as to what transitions are possible from state dl. It must be noted that 
several different (sensible) options may exist and each will lead to its own solution when 
fitting a model. The greater the number of levels on each side the greater the number of 
possible variations. We have chosen one particular method for determining the rules of
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Regime 0 Regime 1
(Down) (Up)

‘" I  ^
&

0

u l

Figure 8.4: A diagram representation of the movement pattern of the Asymmetric Ladder 
Model, L[3,4]

movement which is probably as justifiable as any.

8.8 The Line Fit M odel

In some of the Case Studies in Chapter 9 we find ourselves questioning the validity of 
the results produced by the Bayesian filters. In order to test what correspondence there 
is between the MLE and the imputed regime sequences suggested by the filters (for the 
MLE) we shall introduce another model. In many respects it is probably more similar 
to the Unravelled model than the earlier Ladder models. It is really a form of parameter 
augmentation, in that we include the regimes occupied during the time series as parameters. 
Due to the problems optimising a likelihood function with such a large number of parameters 
we only use it when we have a very good idea of the most credible regime history. We then 
take the imputed historical sequence of regimes suggested by the filter and maximise the 
likelihood, making only slight alterations to this sequence of regimes. For an asymmetric 
Ladder model we term this the Line Fit model and denote it L F [ N ^ , N ^ ] .

For the Bayesian filter we obtain two pieces of output. The likelihood is obtained using

/ ( y w | © , n )

where y^v is the full set of N  observations, © are the parameters of the model and n  are
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the initial conditions. We also obtain the inferred probabilities

P r[S(n) = i | yAr,© ,n]

Due to the way these probabilities are obtained by the filter there is no guarantee that 
the sequence suggested by these probabilities is even possible. There is another way to 
obtain a maximum likelihood estimate of the parameters, one we touched upon when first 
introducing the filters in Section 2.2. We can expand our parameter set © to include the 
regimes occupied by the signal {s(n)}. We define this new parameter set

E  =  [©, sN] where Sn is a regime sequence {s(l), s(2 ),..., s(N)}

Our likelihood function for this parameter set is

/ s ( y ^ |s ,  n )

We shall call the values of E  obtained by maximising this likelihood distribution the ‘se
quence MLE’ or MLEs- The reason we chose not to use this version of the likelihood
function is the very large number of additional parameters it introduces. This makes the 
likelihood function very difficult to maximise. To combat this we shall only introduce this 
approach when we already have obtained the sequence of probabilities from the basic fil
ter. In this case we ensure that our initial proposal for is likely to be close to the best 
sequence.

The process of obtaining this likelihood is much simpler than for the basic filter requiring 
only the following calculation (where there is no autoregressive noise).

/s(y iv |E , n )  =  Pr[5(l) =  8(1) I n] . f ( y ( l ) \S ( l )  = 8(1))
N

+ '52'PriS (n ) = 5(n ) I S { n -  1) =  s ( n -  l)].f(y(n)\S(n) = s(n))
71=2

Of course the other advantage of obtaining MLEs is that we can plot the sequence obtained 
from this against the original data.

8.9 Variations of the Ladder M odels

Many different variations on this Ladder theme are possible. In this Section we shall detail 
some of the ways we can generalise the model further.

8 .9 .1  L evel S tru ctu re .

We have generally considered only the case where the levels of the ladder are equally spaced 
and independent of the current state. This is not a necessary requirement. We could take
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Figure 8.5: A representation of a regime transition for a 5[4 ,4] with a variable level structure.

a level structure where each level was a fixed proportion of the level before 
For instance

{u0, ul ,  u2, u3, u4, d4, d3, d2, dl, d0} =  { 0 , f , 1,1, §, 0}

Which would look a little something like Figure 8.5. If enough levels axe used and the 
transition probabilities are chosen appropriately we could use this as a discrete time, discrete 
level approximation to the FM model.

8 .9 .2  S w itch in g  B eh aviou r.

The Asymmetric models are not the only way we can vary the transition times between 
regimes. Another way we can achieve this is to vary the rate of transition between the 
major, levels. In the previously stated models movement must oc.cur when the process is 
not in one of the stable end states. A Ladder model incorporating variable transition rates 
would allow (but not demand) this movement by introducing two new parameters p and g,
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which represent the probability of moving when no switching occurs.

Poo(u, v )

1 — a i f  v — u = 0
(1 — a)p i f  u > 0 and v = u — 1

(1 — a)(l — p) i f  u > 0 and v =  u
0 otherwise

P u { u , v )

1 - 6  i f  v = u = N(L)
(1 — b)q i f  u < and v = u +  1

(1 — 6)(1 — q) i f  u < iV(£) and v = u
0 otherwise

a.p i f  u < N(l) and v = u +  1
Poi(u, v) a (l —p) I f  v = u

0 otherwise

b.q i f  u > 0 and v = u — 1
pio(u, v) — 6(1 — q) i f  v = u

0 otherwise

This would allow more flexibility in modelling the switch since the switches do not need to 
be of fixed length. It also allows us to retain the variable transition rates of the asymmetric 
model without any of the problems in determing the transition patterns. Of course there 
is no limit to the number of parameters that could be added. In theory you could work 
with movement and switching probabilities unique to each level of the process although this 
process would be hard to fit without including other constraints due to the large number of 
degrees of freedom.

8.10 Summary

In this Chapter we have introduced a class of discrete time, discrete level Markov chains for 
the purpose of extending the two-regime Markov switching model to incorporate gradual 
switching between the regimes. Many variations are possible on the examples we mentioned 
including for instance Asymmetric Unravelled models. The models are not too complex 
in their structure as we have already found that the earlier FM process was rather difficult 
to fit to data where noise was present due to the great flexibility of the structure. They 
should still, however be capable of capturing evidence of gradual switching mechanics, if it 
exists, for real time series data.

Fitting the Ladder Models is fairly straightforward. We simply adapt the smoother 
developed by Hamilton and outlined earlier, which obtains a Maximum Likelihood mea
surement of the data set. As we have given examples of the use of the Filters in Section 
2.2.1 and again in Section 5.3 we shall not repeat ourselves. Obtaining the MLE will then 
be a simple process of optimisation using method discussed in Chapter 3.
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Fitting the M odel to Real Data

In earlier chapters we have specified a range of gradual switching models. Of these the 
Ladder models have proved to be the most stable, and so in this chapter we shall attempt to 
apply these models to real time series in order to model gradual switching behaviour.

9.1 Identifying Gradual Switching

As we have observed earlier, the field of non-linear time series models is very broad. We 
cannot expect one model to span the whole field and instead should judiciously select an 
appropriate model for a given set of data. But what characteristics will lead us to consider 
a gradual switching model? There are certain properties that we would expect from any 
Markov Switching model and these should be apparent, but for this particular class of 
models to be a prime candidate we require something more.

The key feature of any switching model is that it allows more than one type of behaviour. 
Whenever it appears that we can divide the data set into shorter series, each displaying 
different behaviour, then some kind of switching may be required. If many of the subsets 
appear very similar to each other then it is possible that a regime switching model would 
be appropriate. An example of this can be seen in Figure 9.1. The data, taken from 
Nelson (1973), show the civilian unemployment rate in the United States between 1890 and 
1974. It is quite apparent that the usual level of the series for the observation period 
is around 5%, except for two intervals. The first of these intervals corresponds with an 
economic depression which started with the ‘Panic of 1893’ and did not fully abate until 
1897. The second exceptional interval matches the ‘Great Depression’ of 1930-1939. In 
this example it seems quite sensible to consider a regime switching model, not only from 
structural considerations but also from visual inspection of the data. The simplest form of 
regime switching we could consider in this case would link the mean level of the process to 
the regime occupied.

If this kind of model reflected the trend of the process rather than the mean level we 
might describe the process as having a Markov Trend. In this case the graph would be
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Figure 9.1: The rate of Civilian Unemployment in the US between 1890 and 1974 with 
possible abnormal regimes marked.

characterised by different gradients in different sections. This zig-zagging behaviour can 
be seen in another data set taken from Nelson (1973). The data, displayed in Figure 9.2, 
shows the monthly figures for automobile registrations from 1947 to 1968. Superimposed 
on the graph are straight lines, representing the approximate gradient. These lines are 
estimated visually and serve only to illustrate the apparent tendency for the series to alter
nate between two linear growth rates, one positive and the other negative. If the lengths 
of these sojourns are predictable for each regime then the series might be more suited to 
a seasonal trend model. If, as in this example, the sojourn lengths are variable then a 

Markov switching model may be more appropriate. Whether or not this pattern of growth 

and decay represents any meaningful structural component is unclear, but it shows that a 

regime switching model may indeed be a useful tool in modelling the growth rate of this 
particular time series.

We now have seen examples of the kind of behaviour that would lead us to consider the 
family of Markov switching models. They may have Markov level or Markov trend and 

may have complex autoregressive processes to model the residuals. In this research we have 

presented various models incorporating Gradual Switching dynamics. As there is limited 
research in this field there is not a wealth of examples to call upon. If we consider how 

this gradual switching would affect the case of a Markov trend pattern we should expect 
to see the same characteristic regime pattern of the previous example but with evidence 
that the gradient changes slowly rather than instantaneously. One such data set that may 
serve as useful evidence in that used by Makridakis et al. (1998) It shows the real daily
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Figure 9.2: The number of car registrations per month in the United States between 1947 
and 1968. Superimposed on the data are two linear growth regimes.

wages in the U.K. between 1264 and 1994, a period spanning over 700 years. Several 
things are immediately apparent in this time series, shown in Figure 9.3. First, we see a 
clear separation of the period into regimes. It is also clear that these regimes cannot be 
said to have constant gradient. There is a way that we could use the switching model to 
incorporate this kind of behaviour. That is if we allow the process to change gradually 
from one state to another. While the straight lines in the graph represent possible gradients 

for the positive growth regime the fitted line is actually a realisation of a gradual switching 

model, fitted by eye only, to demonstrate it’s capacity to model these dynamics. There is 
no suggestion that this kind of model is the only option when trying to work with a time 

series like this, only that is provides another possible approach. In order to defend against 
the accusation of overfitting it should be noted that the fitted line only inhabits six growth 

states (three positive and three negative) during the whole 735 values in this times series.
So far the modelling has been by eye only, for illustrative purposes. The next step is to 

select several data sets that may, or may not, display gradual switching. To each of these 

we shall apply various Ladder and Slide models in an attempt to identify gradual switching 
mechanics and then model it.

The data sets we have selected are:

1. US Unemployment Figures.

2. The Diameter of Ladies Skirts.
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3. UK Real Wages.
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Figure 9.3: The level of the real daily wage in the UK over a period of around 700 years. 
Superimposed on the d a ta  are straight hues, representing a possible linear growth regime, 
and a sample realisation of a gradual switching model.

4. US postwar GNP (to which Ham ilton fitted the original Markov Switching model)

9.2 C ase 1: U .S . U n em p loym en t

We have already introduced this d a ta  set as one th a t is ideal for dem onstrating regime 

changes. Given the ideal natu re  of the d a ta  set we would expect ideal results. Fortunately 
the d a ta  (and m ethod) do not disappoint us.

9.2 .1  A V isual In sp ection

On examining the data , shown in Figure 9.1, we can see clear evidence of regime change 
behaviour. There is the suggestion th a t the two deviations from the normal regime may be 

a t different levels. As we want an easy introduction to  the use of these models we transform  
the d a ta  to our advantage. In this case the transform ation consists of taking logs to  bring 

them  closer without making m ajor, and unnatural adjustm ents to  the data . This ensures 
th a t we do not have to consider using any more th an  two regimes.

9 .2 .2  T h e L adderM odel

As one would expect we will s ta rt a t the beginning, with the first model we specified, the 

Ladder model. In specifying the model we make certain  decisions regarding the exact form 
of the transition  m atrix  and level structure. These assum ptions are given below:
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L adder M odel Log-Likelihood
£[2,2] 12.4023
L[3,3] 15.0410
£[4,4] 14.5895
£[5,5] 13.7007
£[6,6] 12.4378
£[7,7] 11.6724

Table 9.1: The Maximised Log-Likelihood of the US Unemployment data when modelled 
using the Ladder model with different number of levels

• Movement between the levels within a regime is considered as compulsory when not 
at the upper or lower end of the level structure (p = q = 1). This is the original 
Ladder model we specified.

• The regime indicated by S(n)  is presumed to be the regime occupied during the 
interval t £ (n — 1, n]. As a result if the regime of the signal changes the level of the 
signal will also change.

• In order to find a good starting distribution for the filter we use an approach suggested 
by Hamilton. We consider the series in reverse, starting with some vague prior 
distribution for the regimes occupied in the final few steps. We then apply the filter 
to the reversed series using our chosen parameter estimates. The purpose of this is 
to recover a convincing distribution of regimes for the first few values of the series. 
These distributions are then used as our prior distribution when we come to run the 
filter forwards. These distributions are almost completely independent of our chosen 
prior and tend to be quite good, arising as they do from the data itself. It also reduces

the number of parameters that need to be estimated.

We vary the number of levels in the Ladder, L [ N ^ ,  -Y(l)]? for both regimes and obtain 
log-likelihood values that are shown in Table 9.1. The maximum likelihood (ML) occurs 
for a ladder that has 3 levels. This is not exactly a lengthy ladder but' this should not 
draw attention from the fact that the models with greater numbers of steps (4 or 5) receive 
more support than the basic two-regime Markov model, which is included in the table as 
L[2,2]. If we perform an identical analysis using the Slide model with the same conditions 
we obtain almost identical results. The results of this are given in Table 9.2. Plotting the 
log-likelihood values for both models together in Figure 9.4 we see clear evidence of some 
kind of gradual switch

We shall take a ladder of length 3 as the optimum, as suggested by the likelihood. The 
parameter estimates obtained for L[3,3] are given in Table 9.3. We can now move on to 
look at the inferred distribution of states when the parameter values correspond the those 
of the MLE.
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S lid e  M o d e l L o g -L ik e lih o o d
S[2,2] 12.4077
S[3,3] 15 .0378
S[4,4] 14.9827
S[5,5] 14.4197
S[6,6] 14.2181
S[7,7] 13.0513

Table 9.2: The Maximised Log-Likelihood of the  US Unemployment d a ta  when modelled 
using the Slide model w ith different num ber of levels
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Figure 9.4: A comparison of the Maximised Log-Likelihood for the US Unemployment da ta  
for the Slide and Ladder Models w ith different num bers of levels.

P a r a m e te r a  b lo h  <r
V alu e 0.0269 0.1294 0.6216 1.2356 0.1720

Table 9.3: The Maximum Likelihood estim ates of the param eters of the Lr[3,3] model for 
the  US Unemployment series.

□ Ladder Model 
■ Slide Model
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Figure 9.5: A comparison of the inferred probability the signal is in the upper regime 
(S'(n) =  1) for the Slide and Ladder models.

The two lines shown in Figure 9.5 represent the inferred probability of being in the upper 
(atypical) regime for the Ladder and Slide models. It is clear that the greater flexibility of 
the ladder model leads to (marginally) less clarity in the distinction between regimes. For 

instance, a couple of possible aborted switches could be indicated around 1915 and 1920. 
By an aborted switch we mean a regime switch occuring while the process still occupies 

an intermediary level. Finally we can obtain the sequence (and corresponding parameter 
estimates) that maximise the sequence likelihood using L F [ 3,3]. We take the results of the 
basic filter and then use a hill climbing algorithm to find MLEs- We display the results of 
this in Figure 9.6.

9 .2 .3  C onclusion

With this data we found exactly what we were looking for; a short and friendly data set 
to allow us to trial the models. Furthermore there is some evidence of gradual switching 

between the two regimes. Both of the models (Slide and Ladder) suggest a three level 
chain. This would mean that the transition from one of the stable end levels to the other 

takes 2 months to complete.

9.3  C ase 2: Skirt D ia m eter

Our second case study data set is an unusual one, taken from Roberts (1992). The data 
points are measurements (in mms) of the diameter of ladies skirts (at the hem) over a 100 
year period. It has been chosen as it is short, unusual and demonstrates some of the 

difficulties of working with gradual switching models. The subject of this time series is 
hardly one that would spring to mind when considering a Markov Switching model. Its



9.3. CASE 2: SKIRT D IA M E T E R 164

1.6

0)*->
CO
L_

LU
D
O)O

1

0.8

0.6

0.4

0.2

0 4 T T

Data

LF[3,3]

1890 1900 1910 1920 1930 1940 1950 1960 1970 

Year

Figure 9.6: A comparison of the time series data with the Sequence Maximum Likelihood 
path.

inclusion here is to demonstrate evidence supporting the existence of gradual switching in a 
wide variety of sources. In the first case study we modelled the level of the observed series 
rather than the growth rate. In this case we shall be modelling the growth rate. The two 

key pieces of ‘evidence1 that suggest we may be able to model the data are:

1. The apparent similarity of the (magnitude of the) gradient during uninterrupted pe
riods of increase or decrease.

2. The ‘rounded1 nature of the transition from the rising to falling states.

With the decision made to apply a gradual switching model we choose the simplest form 

of the method to apply. In general this will be the Ladder model. When we look at the data 
(see Figure 9.7) we see evidence of two different gradients, one positive and one negative. 
The curving nature of the intervening sections show evidence of a gradual switch between 

these two regimes. As such we shall model for the existence of Markov trend rather than 
Markov level by taking the first difference of the data. A plot of the differenced data is 

given in Figure 9.8.

9.3 .1  T h e Ladder M odel

We begin by fitting the Ladder model for different numbers of levels. We make the usual 

restriction requiring a change in level to accompany a change in regime and obtain our prior 
from the data by reversing the filter. Unfortunately when we apply the model to the data we 
obtain multiple solutions dependent upon our choice of starting point for the maximistion 

algorithm. These multiple solutions are documented in Table 9.4. When we examine these
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Figure 9.7: Time series data displaying the diameter of ladies skirts (at the hem) 
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Figure 9.8: Time series data displaying the first difference of the diameter of ladies skirts 
(at the hem) over a period of nearly 50 years
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M odel Solution Log-Likelihood a b lo In (l ) -  i a
L[2. 2] 1 -201.7133 0.0000 0.0725 20.2169 -16.3193 34.2788
L[2.2] 2 -211.7424 0.8281 0.9586 24.0596 -22.2704 30.4297
L[3,3] 1 -202.0927 0.0369 0.1242 19.0928 -15.2822 45.3334
L[3, 3] 2 -206.4237 0.7487 1.0000 21.5052 -23.3298 38.2186
L[4.4] 1 -200.7379 0.0002 0.0888 19.2300 -17.1531 38.8454
L[4.4] 2 -200.0680 0.5434 0.6240 12.4394 -36.2837 49.3603
L[5. 5] 1 -199.5216 0.0001 0.0886 18.8292 -17.2097 42.2922
L[5.5] 2 -195.2566 0.5458 0.5354 10.4527 -44.0679 51.2415

Table 9.4: The Maximised Log-Likelihood of the Skirt Length data when modelled using 
the Ladder model with different number of levels

1865 1870 1875 1880 1885 1890 1895 1900 1905 1910

Year(n)

Figure 9.9: The inferred probabilities of the signal being in the upper regime {S(n)  =  1) for 
the L[6,6] model.

solutions we find those with higher likelihood do not fit in with our interpretation of the 
time series as one characterised by regime switching.

The multiple solutions arise from using different starting positions for the hill climbing 
algorithm. There are solutions (with a close to 0) that represent the cases where the fitted 
model changes regime only once and those (writh a, b > 0.5) that represent a frenzied case 
of ‘over-switching’. This is obvious from looking at the inferred state distribution for the 
L[6. 6] model, given in Figure 9.9. The filter is usually clear as to which regime the process 
occupies but allows far too many switches to allow the pattern of sojourns to fit happily 
into our idea our of regime switching solution.

9.3 .2  T h e  O v e r-S w itc h in g  P h e n o m e n a

The important questions are ‘Why does this happen?' and ‘How can we prevent it?’. It 
appears that, when faced with a high level of noise relative to the difference in levels, we



9.3. C A SE 2: SK IRT D IA M E T E R 167

find th a t the process fits to  the noise ra ther than  any likely regime p a tte rn  we identified by 
eye. This results in very high regime switching probabilities and a process th a t does not 
exhibit long sojourns in one regime. This does not really tally  with the idea of a regime 

switching model. It is also the case th a t as so many more switches take place there is 
also a much greater num ber of credible regime patterns which explains the plethora of local 

m axima. Overfitting seems to  be a m ajor problem when working w ith gradual switching 

models and measures need to  be made to overcome it. One obvious solution would be to 
introduce prior distributions for the various param eter values. We shall try  to avoid doing 
this as we feel th a t doing so would only lead us to  a solution for th a t particular set of priors.

9.3.3 The Slide Model

Given th a t we are unlikely to  obtain any satisfactory results using the Ladder model perhaps 

we should try  to  apply the Slide model. This model takes a more extrem e approach to 

preventing over-fitting. T ha t approach is in demanding th a t once a change in regime starts, 
the  gradual switch runs its course and no further switching is allowed until the level of the 
chain has reached the  other end of the ladder. As before we have compulsory movement, 
switches accompanied by movement and priors obtained from an inverted process. As we 
apply the Slide Model we find the hill climber much clearer about the  MLE for a given 
ladder length. The problem of m ultiple local m axim a appears to have receded somewhat 
bu t it may have been replaced by another problem. We can see from the results in Table
9.5 th a t the log-likelihood is rising but a glance at the MLEs suggests something is wrong. 
By the tim e we reach 5 [1 0 ,10] we find the switching intensities are very close to 0 and 
1 , meaning th a t the  process never remains in the upper s ta te  and never leaves the lower 
state. There is little point in continuing to  try  higher num bers of levels of the signal. The 
overall conclusion drawn after examining the inferred distributions of s(n)  suggest th a t only 

two switches are involved, one during the series and one shortly before it s tarts . Despite 

this the solution obtained from maximising the sequence likelihood for only two switches 

is disappointing, as we can see in Figure 9.10. M any of the  features th a t the model is 

completely failing to  capture could be modelled more effectively using incomplete switches 

bu t the  Slide model is structu red  to  exclude these. We have already tried  the  Ladder model 

and found other factors rule it out. It is therefore necessary to  tu rn  to  the  Unravelled model 
to  constrain the  Ladder to  prevent over-fitting.

9.3.4 The Unravelled Ladder

The final step in our journey is to  see if constraining the maximum num ber of switches 
used by the Ladder model to some ‘reasonable’ number will assist us in fitting a Ladder 
mode to  this data. As far as possible we would hoped to avoid m aking such subjective 
distinctions and allow the model to fit itself but there appears no alternative in this case (if 
we wish to  progress w ith these models). The results of fitting this model are given in Table
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M odel L og-L ikelihood a b N(l) 1 CT
S [2 ,2] -202.2190 0.0000 0.0701 20.4443 -16.0515 33.3300
S[3,3] -201.7149 0.0000 0.0719 20.2170 -16.3251 34.2659
S[4,4] -201.5368 0.0000 0.0773 20.1649 -16.4261 34.9702
S(5, 5] -200.4452 0.0001 0.1115 19.2120 -17.1851 38.8432
S[6,6] -199.0826 0.0000 0.1290 18.8355 -17.2116 42.2086
8(7,7] -198.0626 0.0000 0.1592 18.6009 -17.2790 45.4674
S[8,8] -197.3313 0.0000 0.2132 18.5042 -17.3066 49.0717
S[9,9] -196.8990 0.0000 0.3354 18.6316 -17.2007 53.4108

S [1 0 ,10] -196.2009 0.0000 1.0000 18.6854 -17.1097 60.5842

Table 9.5: The Maximised Log-Likelihood of the Skirt Length data when modelled using 
the Slide model with different number of levels
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Figure 9.10: The series corresponding to the SMLE sequence using the two-switch pattern 
suggested by the Slide model.
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No. of No. of Levels
Sw itches 6 7 8 9 10 11 12

1 -199.62 -199.58 -199.80 -200.05 -200.36 -200.87
2 -200.71 -200.47 -200.38 -200.36 -200.46 -200.69 -201.05
3 -200.91 -200.73 -200.69 -2 0 0 .6 6 -200.69 -200.85
4 -200.74 -200.37 -200.05 -199.96 -200.11
5 -200.83 -200.03 -198.99 -198.26 -198.24
6 -195.16 -194.50 -195.02
7 -196.75 -196.12 -196.59
8 -195.27 -194.90 195.25
9 -196.62 -196.31 196.71

Table 9.6: The Maximised Log-Likelihood of the Skirt Length data when using Unravelled 
Ladder models with different number of levels and switches.

Table 9.6. There is plenty of evidence of some kind of gradual switch in the series data. 
For most different number of switches the model suggests a Ladder Length of between 9 
and 12 steps. The maximum likelihood is recorded for 6 switches, combined with 11 levels 
of the ladder. Figures 9.11 and 9.12 show the log-likelihood and likelihood respectively. 
What is clear when plotting the log-likelihood becomes even more striking when plotting the 
likelihood. Given that 6 switches (during the observed series) gives the best performance 
closely followed by 8 we shall examine the sequence likelihood in each case. The two 
Unravelled Ladder models we shall persist with are UL[ 11,11,6] and UL[ 10,10,8], that is, 
6 switches of a ladder with 11 levels and 8 switches of a ladder with 10 levels.

9 .3 .5  D eterm in in g  S w itch  P o in ts

Before we can begin working with the sequence likelihood we should try  to identify the likely 
positions for switches between regimes. This will help us avoid the problems associated 
with local maxima in the likelihood function. In order to do this we shall examine the 
inferred regime for each point of the time series suggested by the Basic Filter. The inferred 
probability of being in regime 1 (the upper regime) is shown in Figure 9.13 for the six and 
eight switch cases.

The two lines match very closely with the eight switch case trying to model the slight 
feature in a smooth looking graph around 1881. For six switch points we estimate the 
switches to occur at {1877,1889,1894,1899,1906,1908} while for the eight switch case we 
would estimate {1877,1882,1885,1889,1894,1899,1906,1908}. It is worth noting that when 
we differenced this series we took the difference between a point and the preceding one, so 
these switches may indeed have occurred a year earlier than this.
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Figure 9.11: The maximised Ijog-Likelihood for the  Skirt d a ta  using the Unravelled Ladder 
model for the  optim um  ladder length for each num ber of switches (within the observed
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series)
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Figure 9.13: A comparison of the inferred probability that the regime of the driving signal 
is in the upper regime (S { n ) =  1) between U L [ l \ ,  11,6] and U L[ 10,10,8].

P aram eter a b lo H d - i <7

U L [l l ,  11, 6] 0.12 0.15 49.99 -42.46 12.98
U L [1 0 ,10.8] 0.15 0.21 52.29 -45.65 12.34

Table 9.7: The maximum likelihood parameter estimates for the Skirt Length data using 
the Unravelled Ladder model.

9 .3 .6  Im pu ted  Sequence

We can use these parameter estimates and approximate switch points as initial values for 
maximising the sequence likelihood. We shall then plot two lines against the data for 

Unravelled models utilising both 6 and 8 switches.. These series will correspond to those 
suggested by the MLE and the sequence MLE. In Figure 9.14 we show the two series for 

the six switch case and in Figure 9.15 we show the two series for eight switches.

9 .3 .7  C onclusions

We can obtain a reasonably good fit for the data using as few as 6 switches between two 
regimes, one representing falling skirt diameters and the other rising skirt diameters. The 

parameter estimates in each case (using the Line Fit model) can be found in Table 9.7. For 
this data set there is no suggestion that the choice of model has any significant structural 
meaning. It may be that there is a precise relationship between cycles of fashion and 

that simple mathematical rules are followed but this does not need to be the case. This 
data set was chosen to demonstrate the versatility of this kind of model and test the fitting 

algorithms and the use of the Unravelled ladder.



9.3. C A SE  2: SK IR T D IA M E T E R 172

1100

—  1000 

E 900
k-0>4-̂® 800 
|  700

£  600 

g  500 

400
1867 1877 1887 19071897

MLE

Data

Sequence MLE

Year

Figure 9.14: A comparison of the series suggested by the MLE and the sequence MLE for 
a t /L [ l l ,  11,6] model.
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Figure 9.15: A comparison of the series suggested by the MLE and the sequence MLE for 
a f/L [10 ,10,8] model.
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Figure 9.16: An annual figure for the level of UK Real wages, measured in Ln(pounds) 
between 1260 and 1994.

9 .4  C a se  3: U K  R e a l W ages

For our third case study we have chosen a time series representing the real daily wages in 
the U.K. over much of the last millenia. The source of the data is Makridakis et al. (1998). 
We do not work with the series itself which consists of 735 annual measurements covering 
the period 1260 to 1994. As a result of a visible non-linearity in the series we will takes 
logarithms of the data and then difference to allow us to work with the growth rate. Due 
to the size of the data set and the considerable noise to gradient ratio we shall work with 
a series of 10 year averages (not a 10 year moving average), a plot of which can be seen in 
Figure 9.16. The order in which these transformations were made was to first construct the 
10 year averages, then take logarithms and difference. It is this differenced series we shall 
analyse. We can see alternating periods of growth and decay of the real daily wage. It 
is hoped that the model will identify this apparent cycle and also confirm that the change 
between these two periods is gradual rather than abrupt.

9 .4 .1  T h e  L a d d e r  M o d e l

We first apply the Ladder model to the data series and examine the results. The maximised 
likelihood values for the Ladder model with different number of levels can be found in Table 
9.8, and is presented visually in Figure 9.17. It is clear that the maximum value occurs for 
a ladder length of 13. If we look at the sequence of inferred distributions for ‘up’ or ‘down’ 
state we find the probable number of switches. These distributions (shown in Figure 9.18) 
suggest two full switches (around 1380 and 1500) and several more incomplete switches 
(shortly before the series starts at 1270 and around 1720). It is also possible to detect 
the slight suggestion of a switch around 1880 but it seems unlikely that this will be very 
influential.
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L a d d e r  M o d e l L o g -L ik e lih o o d a b lo U lL)- 1 &
L[6 , 6 ] 111.79 0.1303 0.0544 -0.022 0.0315 0.048
L[7,7] 111.90 0.1354 0.0567 -0.024 0.032 0.048
L[8 , 8 ] 111.98 0.1379 0.0575 -0.026 0.0324 0.0479
L[9, 9] 112.04 0.1382 0.0572 -0.027 0.0328 0.0478
L [1 0 ,10] 112.07 0.1345 0.0549 -0.029 0.0331 0.0478
L [ l l ,  11] 112.10 0.1284 0.0513 -0.032 0.0332 0.0477
L [1 2 ,12] 112.16 0.1067 0.0434 -0.036 0.0332 0.0475
L [1 3 ,13] 112.21 0.0933 0.0394 -0.038 0.0337 0.0474
L [1 4 ,14] 112.17 0.0867 0.0379 -0.04 0.0342 0.0474
L [1 5 ,15] 112.06 0.0862 0.0379 -0.042 0.0343 0.0474
L [1 6 ,16] 111.91 0.0897 0.0387 -0.046 0.0343 0.0475
L [1 7 ,17] 111.81 0.0947 0.0388 -0.057 0.0336 0.0475
L [1 8 ,18] 111.78 0.0973 0.039 -0.066 0.0333 0.0475
L [1 9 ,19] 111.78 0.0993 0.0393 -0.073 0.0333 0.0475
L[20, 20] 111.79 0.098 0.039 -0.079 0.0333 0.0475

Table 9.8: The Maximised Log-Likelihood of the UK Wages data when using Ladder models 
with different number of levels and switches.
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Ladder Length

Figure 9.17: A plot of the Maximised Log-Likelihood for the Ladder Model with different 
numbers of levels.
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Figure 9.18: The inferred probability that the signal is in the upper regime (S( n )  =  1).

C ase  (3 sw itc h ) L o g -L ik e lih o o d lo
" A  '

l l2 &
M L E 88.0117 -0.0379 0.0337 0.0474
S e q u e n c e  M L E 103.6385 -0.0338 0.0296 0.0559

Table 9.9: Some parameter estimates for the UK Wages data (with 3 switches with the 
series) found using by maximising log-likelihood and sequence log-likelihood.

9 .4 .2  I m p u tin g  a  R e g im e  S e q u e n c e

Interpreting the results of our application of the Ladder model we shall assume the time 
series can be modelled using 5 switches, 4 within the range of the time series itself and 

one shortly before it starts. We shall use the estimates obtained from fitting the Ladder 

model as a starting point for finding the sequence MLE (for 3 and 5 switches). Some of the 

parameter estimates given by the maximising the likelihood and the sequence likelihood, 
when trying to obtain the best sequence, are shown in Tables 9.9 and 9.10. A comparison 

of the best sequences found using MLE and sequence MLE are shown in Figures 9.19 and 

9.20.

C ase  (5 sw itc h ) L o g -L ik e lih o o d lo 112 cr
M L E 119.8076 0.0337 -0.0379 0.0474
S e q u e n c e  M L E 125.8620 0.0377 -0.0389 0.0422

Table 9.10: Some parameter estimates for the UK Wages data (with 5 switches with the 
series) found using by maximising log-likelihood and sequence log-likelihood.
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Figure 9.19: A comparison of the best sequence (using 3 switches) found by maximum 
likelihood (MLE) and sequence maximum likelihood (SMLE).
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Figure 9.20: A comparison of the best sequence (using 5 switches) found by maximum 
likelihood (MLE) and sequence maximum likelihood (SMLE).
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9.4 .3  C on clu sion s

Each of the two cases gives a pretty reasonable fit with all the major (large scale) features 
included. Given that the number of switches is fairly low it is probably worth the extra 
effort to work with the 5 switch case. The maximum likelihood estimates of the parameters 
of the T[13,13] model can be found in Table 9.8.

Note: The model suggests growth periods of 1250 to 1400, 1560 to 1700 and 1760 to the 
present day. The periods of decay are 1400 to 1560 and 1700 to 1760.

9.5 Case 4: US Postwar G N P

The fourth case study uses a familiar times series. It is the growth rate of the difference of 
the log of US Gross National Product between the years 1952 and 1984. It is included for 
two reasons. First, it is the data set that Hamilton used when he introduced his Markov 
switching model and is a worthy candidate for reasons of continuity. Secondly, it will be 
interesting whether the inference shows up any evidence in support of gradual switching. 
The series was downloaded directly from Hamilton’s website to ensure we were using the 
same figures.

9 .5 .1  H a m ilto n ’s M arkov S w itch in g  M o d el

The original analysis of this data set, undertaken by Hamilton (1989), uncovered an apparent 
sequence of rising and falling regimes of GNP. His results can be expressed in two parts, as 
the parameter estimates he obtained and also the inferred distribution of the process between 
these two states. The clarity of this separation of the series into apparent regimes will have 
encouraged the development of this class of models and strengthened the assumption that 
there was an underlying Markov signal. Figure 9.21 shows us the probability of being in 
the falling regime. It is worthy of comment that the algorithm appears to be confident that 
the process is either in one regime or the other. The three lines correspond to the simple 
smoother at the time (using only current or previous observations), four quarters later and 
the full sample smoother. There is very little difference between the second and third 
versions. We should not read too much into this, as the clear regime pattern suggested can 
be misleading. The filter constructs the likelihood from taking each step and examining it 
separately from the others. As a result the sequence suggested by the inferred distributions 
does not necessarily represent anything like the single best solution. Instead it represents 
something more like a distribution drawn from all solutions, weighted by their likelihood. 
This becomes clear if we try to obtain the sequence maximum likelihood solution.

9.5 .2  T h e P o in ter  F ilter

It is clear from the inferred distribution that the pattern of the hidden driving signal consists 
of long periods of growth, interrupted by short periods of recession. Given the lengths of
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Figure 9.21: A comparison of the different inference obtained from the filter about the 
current regime (P r [ S ( n )  =  0]) at the time, 4 quarters later and using the whole sample.

time involved it is unlikely that more than one or two switches will occur during the recent 
history of the process (the last 4 quarters). In this instance we could consider using the 
Pointer Filter to fit the Hamilton Markov Switching model and compare its results with 
those of the Basic Filter. We apply the method detailed in Section 2.3, requiring the 
process to remember only the last two switchpoints. On top of the Markov growth pattern 
we add the the same AR(4) noise used in the original analysis.

The algorithm optimises robustly as did the original, leaving us with one clear maximum. 
This is given below, in Table 9.11, along with the original parameter estimates. These 
results are very close to the original values. Even more striking is the similarity in the 
inferred distribution between levels, shown in Figure 9.22. Again we find almost total 
agreement with the original findings. The saving in terms of performance is slight in this 
case and therefore in no way surplants the original algorithm in such a straightforward 
case. When dealing with more complex model dynamics, such as gradual switching, and 

well behaved data it can help prevent the order of the distribution matrices becoming 
unmanageable. After successfully applying this algorithm to fitting the same model as 

Hamilton the next step is to introduce gradual switching mechanics. We can do this quite 

simply by transforming the state history to include a gradual, rather than instant, switch. 
First we attempt to fit some versions of the model with asymmetric switching periods. We 
choose to apply a basic model with gradual downward switch, immediate upward switch 

and no autoregressive noise added. We can see in Table 9.12 the results of these initial 
experiments. On the plus side we find much the same kind of solutions as we found in 

the original Hamilton model. We do, however, find little to indicate the relevance of these 
models. The noise levels do not fall significanly as we extend the switching period and 

remain at the same levels as when we work with the simple two-state model.
From here it would have been a natural progression to have explored this a little further
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Param eter • H am ilton Vector
a 0.2450 0.2755
b 0.0951 0.1052
lo -0.3577 -0.4092
h 1.16 1.1565
a 0.7690 0.7618
4>i 0.014 0.0208
4*2 -0.058 -0.0741
4> 3 -0.247 -0.2436
<t> 4 -0.213 -0.1805

Table 9.11: A comparison of the parameter estimates obtained by maximising likelihood for 
Hamiltons Markov Switching model using both Hamiltons filter and the Pointer Filter.

by adding autoregressive noise to the gradual switching process. When adding autoregres
sive noise to Hamilton’s model we are faced with distribution matrices that expand rapidly 
as the order of the autoregression grows. This can discourages us from working with high 
order autoregressions, as the time required to obtain solutions also grows. This problem 
is considerably worse when considering gradual switching models. While a process with 
two-regimes of 1 level each and an autoregression of order r requires matrices of size 2r+1, 
a two-regime, n level gradual switching process could require matrices of size 2r+1nr+1. It 
is not unusual to work with gradual switching models with up to 10 levels. The result of 
this is that finding a solution is a much more time consuming process. The introduction 
of a lengthy autoregression also makes much a much higher dimensioned parameter space 
with more complex structure (and more local maxima). This compounds the problem by 
requiring much more thorough exploration of the parameter space. These are the problems 
faced when combining gradual switching models and autoregressive noise, and why we try 
instead to work with Pointer filter (which reduces the size of the required matrices) or the 
Line Fit model (which introduces the regime history as parameters to be estimated). Due 
to the limitiations of the Line Fit model, we use it only to refine an approximate solution 
we already have. As a result we turn first to the Pointer filter. The introduction of grad
ual switching behaviour was not itself problematic. It proved rather difficult to obtain the 
maximum likelihood values. The likelihood space seemed rather complex and the algorithm 
had a tendency to behave rather unpredictably. After much experimentation a decision was 
taken to abandon this approach. One of the major factors in making this decision was the 
time taken to obtain each solution. Instead of persisting with this line, the focus shifted to 
models that can be applied much faster.

9 .5 .3  T h e  Ladder M od el

Rather optimistically (given our previous experience) we shall begin by applying the Ladder 
model. While the evidence we have (Hamilton’s parameter estimates) suggests the ratio
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Figure 9/22: A comparison between the inferred probability of being in recession (S ( n )  =  0) 
using both Hamilton's filter and the Pointer filter.

M od el L og-L ikelihood a b
f (U )  j’(D) T(U) T(D )

N(U)~ 1 ’ &

L[2,3] -185.4000 0.2775 0.1025 -0.4077 1.1470 0.8108
L[2,4j -185.2377 0.3301 0.1032 -0.4507 1.1290 0.8166
L[2,5] -185.2146 0.3326 0 . 1 0 2 1 -0.4536 1.1163 0.8186
L[2,6] -185.1858 0.3422 0.0959 -0.5038 1.0909 0.8209
L |2 ,7] -185.0708 0.3431 0.0959 -0.5081 1.0897 0.8208

Table 9.12: The maximised Log-likelihood and MLE for gradual switching Ladder models 
fitted using the Pointer Filter.
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M odel Log-L ikelihood a b i(U) i(D) 
Ao > Ao

T(U) T(D) 
lN(u)- 1 > lN(D)- 1 a

L[2 , 2 ] -184.9760 0.3202 0.0973 -0.4938 1.0914 0.8232
L[3,3] -183.1656 0.4292 0.1478 -0.6897 1.1672 0.8033
L[4,4] -183.3183 0.4437 0.1733 -0.8547 1.2137 0.8078
L[5,5] -185.1080 0.4338 0.1825 -0.9898 1.2293 0.8282

Table 9.13: The maximised Log-likelihoods and MLEs for US GNP using different Ladder 
models.

between noise levels and difference in levels is below 1, we should still expect difficulty in 
applying the higher order ladders. The results of these early experiments are given in Table 
9.13. Here we face a familiar problem. Is the increase in likelihood due to better fitting of 
the regime switching behaviour or due to modelling of the fluctuations of the noise. The 
answer to this becomes clear as the order of the ladder increases. As the order increases 
the values of the switching parameters rises. For the L[5,5] model the mean sojourn time 
for the upper and lower levels are 5.48 and 2.31 respectively, not enough for the process to 
reliably complete the switch from one end of the scale to the other. It is clear the addition 
of the extra levels is not merely slowing down the rate of transition between the ends of 
the ladder. As the switching parameters approach 0.5 it allows the model to behave as a 
bounded random walk up and down a discrete scale with a finite number of levels. As with 
previous data if we want solutions reflecting regime switching behaviour then we must move 
beyond the Ladder model. The next, natural, step to take is to employ the Slide model.

9 .5 .4  T h e  S lid e M od el

The usual approach we take when faced with this problem is to switch to using the Slide 
Model. This has the advantage that the switching process is unstoppable and however 
convincing the initial evidence of a switch, an inappropriate switch of regime will punish 
the likelihood severely. It does forfeit a property the Ladder model possesses, which is 
the ability to model a partial (incomplete) transition. This is the case where the Ladder 
switches regime before the level of the signal has reached one of the stable end-levels. The 
results of fitting the Slide model when the model is symmetric (the number of levels in each 
regime is the same) are given in Table 9.14. We have also included some cases where the 
level numbers are different for different regimes. These are the Asymmetric Slide models 
(see Table 9.15).

We would like to think that this reduction in likelihood heralded an improved model fit, 
but sadly this may not be the case. The likelihood score is constructed partly from the 
Markov switching probabilities and partly from the residuals. By adjusting the transition 
matrix to obtain a Slide model we introduce several deterministic movements. These carry 
a probability of 1, which subtracts nothing from the likelihood score. It is questionable 
whether the likelihood value obtained from models with two different orders are comparable. 
As a result the likelihood may be a good method for determining the optimum parameter
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M odel Log-Likelihood a ' b T(U) r (D )
A0 J Ao

i ( U )  i ( D )  
l N ( u ) - 1 » l N(D)- l &

S[2,2] -184.9760 0.3202 0.0973 -0.4934 1.0914 0.8233
S[3,3] -182.6793 0.4218 0.0848 -0.7293 1.0982 0.8266
S[4,4] -180.5120 0.7516 0.0801 -1.0175 1.1040 0.8266
S[5,5] -180.9961 0.9999 0.0916 -0.8803 1.1562 0.8448

Table 9.14: The maximised log-likelihoods and MLEs for US GNP using different symmetric
Slide models.

M odel Log-Likelihood a b T(U) f ( D )
Ao > Ao

T(U) y (D )
l N ( u ) - 1 > l N (D )- 1 <7

S[2,2] -184.9760 0.3199 0.0974 -0.4928 1.0915 0.8232
S[2,3] -183.6453 0.3345 0.0908 -0.5544 1.1048 0.8268
S[2,4] -181.2549 0.4204 0.0839 -0.7712 1.1038 0.8068
S[2,5] -180.1126 0.4952 0.0816 -0.8447 1.1094 0.8088
S[2,6] -179.1744 0.5893 0.0847 -0.8673 1.1296 0.8100
S[2,7] -178.0377 0.7288 0.0875 -0.9143 1.1537 0.8051
S[2,8] -177.2544 0.9146 0.0924 -0.9154 1.1805 0.8052
S[2.9] -177.1244 0.9999 0.1009 -0.8445 1.2187 0.8081

S[3,4] -179.9285 0.5345 0.0809 -0.9309 1.1128 0.8038
S[3,5] -178.5958 0.6680 0.0834 -0.9858 1.1322 0.8034
S[3,6] -177.9186 0.7580 0.8940 -0.9382 1.1627 0.8077

S[4,5] -179.2435 0.9999 0.0832 -1.0582 1.1288 0.8245

Table 9.15: The maximised log-likelihoods and MLEs for US GNP using different Asym
metric Slide models.

values for particular specification of the Slide model, but not so good for measuring one 
version against another. In this case a fairer judgement may be made by examining the 
standard deviation of the noise. The best results are obtained for an asymmetric switching 
process with a slower transition down that up. We find the best model with 5[3,5] levels 
up and down respectively although the 5[3,4], 5[2, 7] and 5[2 ,8] cases display almost the 
same level of noise. The variance of the added noise represents only around 95% of that in 
the simple two-level model.

9 .5 .5  E v id en ce  o f  G radual S w itch in g

The question remains as to whether this slight improvement in the fit of the models repre
sents a significant enough gain to be heralded as evidence of gradual switching. In order to 
draw some conclusions from this we shall need to determine some way to perform a mean
ingful comparison of the two-regime model with and without gradual switching. One way 
this can be done is to construct a model that can display both types of behaviour. In order 
to do this we will have to take at face value the results of the inference and assume that the 
series really does display long, uninterrupted periods of growth. The model can be defined
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as follows:

We have a process w ith levels, of them  in the upper regime and of them  

in the lower regime. A part from this the transition  m atrix  of the  process is constructed 

identically to  the  Slide model. The following example is for the case = 3, =  5 .

We have combined states {dO, d l, ul ,  u2, w3, n4}. Note th a t combined states d2 and uO 

are ignored, as before. The combined states have corresponding levels

{IqD\  l[D\  l ^ \  1*2 \  4 ^ } -  Note also th a t as we are dealing w ith an asymm etric level

structu re  while IqD  ̂ and 4 / (d ) - i  = lpj(U)-v 4 ^  *s no  ̂ necessarily the  same level as

as it was in the  sym m etric case.

T  =

( 1 - a )  .

1
1

1
( 1 - 6 )

The significant difference is in the level structure. We (slightly) generalise by adding another 
param eter.

k
N,{D)

•vl A T (D )-l  L0  )

_  AU) ( N Q j ) - l - k \  J U ) MJ)
~  N( u ) —i N{ u)  _  x J  A l0 LN ( U ) - l )

W hen 7  =  1 we have an asymm etric Slide model S[N(u), N(D)].
W hen 7  =  0 we have a two-regime, two-level model, although it will not be perm itted 

to  switch as freely as the S'[2,2] model.

We shall denote this model 5[N(£/), 7 ]. The reliability of the  conclusions we draw

from this will be very dependent upon the capacity of this construction to recreate the 
results of the original model.

The results of applying this model can be found in two separate tables. W hen we set 

7  =  1 we obtain  the same results as for the simple Slide model, shown in Table 9.15. The 
results for the  case 7  =  0 are found in Table 9.16. In the first we mimic a Slide model 
and in the second we mimic the two-regime model bu t w ith modified level structure so as 

to make the  Markov transition  probabilities comparable w ith the Slide model. We can see, 

for 7  =  0 , th a t  despite the algorithm  gaining some likelihood as a  result of the  deterministic 
movement, th is is balanced by the deteriorating fit due to  the  greater restrictions. For 

7  =  1 we see falling levels of noise ra ther than  rising ones as the  num ber of levels increases
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M odel Log-Likelihood a b i(U) i(D)
l o >

T(U) f(D)
l N ( u ) - 1 ’ l N ( D ) - 1 &

S[2,2,0] -184.9760 0.3198 0.0974 -0.4924 1.0918 0.8231
S[2,3,0] -184.9206 0.2970 0.0979 -0.4879 1.0831 0.8305
S[2,4,0] -184.7260 0.3122 0.1036 -0.5367 1.0634 0.8346
S[2,5,0] -184.7867 0.3341 0.1019 -0.6416 1.0326 0.8383
S[2,6,0] -185.1177 0.3570 0.0995 -0.7663 1.0054 0.8391
S[2,7,0] -185.3373 0.1639 0.1254 -0.1658 1.1401 0.8696

S[3,5,0] -183.7392 0.4374 0.0845 -0.6924 1.0222 0.8375

Table 9.16: T he maximised Log-likelihoods and MLEs for the  modified Slide model (mim
icking the two-regime Slide).

M odel Log-Likelihood Log-Likelihood Likelihood
(7  =  0) (7 =  1) Ratio

S[2,4] -184.7260 -181.2549 3.4711
S[2,6] -185.3373 -178.0377 7.2996
S[3,5] -183.7392 -178.5958 5.1434

Table 9.17: A comparison of the maximised Log-Likelihood for the two versions of the 
modified Slide model.

and this is reflected in the higher likelihood values. To allow some comparison to be made 
between the two cases we look a t the difference in likelihoods (see Table 9.17). These 
models N(jr>), 0] and S[N([/), N p ) ,  lj.a re  not nested and so we must be cautious in

our in terpreta tion  of the likelihood ratio  statistic. W hat conclusion we are able to  draw 
from this is open to debate but it is useful as an indication th a t there does appear to be 
some evidence of gradual switching. In order to make any robust conclusion it will be 
necessary to  respecify the model so the two cases are nested.

We shall continue w ith broadly the same direction of a ttack  b u t should consider whether 

we have trea ted  the tw o-state case too harshly. To keep the model simple, when 7  =  0 the 
transition  does not occur between the two-regimes until the  stable end level in the regime 

is reached. I t may be fairer to  allow this transition  to  occur a t any point within the  level 
structu re  of a  regime. To do this we m ust replace 7  w ith two param eters.

To keep the  model reasonably practical we limit ourselves to  the  asym m etric case 
5[2, w ith only two levels in the upper regime. The two new param eters we in
troduce control the position of the switch within the level s tructu re  and the degree to  which 
this switch is instantaneous. We can now specify the level structure  more formally:

0 ^  g ^  N(d ) is the threshold param eter, controlling the position of the switch 

0 ^  h ^  1 is the contrast param eter, controlling the suddeness of the switch

We have sta tes j do, d i, •••, ^ 1} with associated values j IqD\  l[D\  . . . ,  j
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For each value in the lower regime dk we transform in one of two ways.

We denote this model by S[2, N ^ , g ,  h). So for the case where h = 1 we have the Asym

metric Slide model while for g = N(d) and h = 0 we have the same two-regime, two-level 
model (S[2, TV^, 0]) we have just been working with. One advantage we now have is that 
we are able to clearly see that the models S[2, N(E>),g, 0] (which represent approximations 
of the two-regime, two-level model) are a special case of the general model. This gives us 
the opportunity to apply the Likelihood Ratio test to the results.

Running the optimisation routine for these two cases (S[2, N(D),  g, 1] and S[2, A^d), N(d)> 
gives the same results as before. Now we can make the small adjustment of introducing 
these two parameters as variables and optimise again. The likelihood for this test model is 
not always easy to maximise, but the relative simplicity of the routine and model structure 
allows repeated attempts with different starting positions. Robust maxima are found and 
they always appear to have a contrast value close to 1 (see Table 9.18). This value of h 
corresponds to the unmodified Slide model. Given that h =  1 gives the higher likelihood we 
can take the unmodified Slide model to represent all versions of the Slide model. Now we 
need to find the best value of g when h = 0. These are tested in Table 9.19 and optimum 
values found for the transition between regimes in the level structure. We can now take the 
best values in Table 9.19 to represent the maximum likelihood for the model with a contrast 
value of h =  0. A comparison should then be made against model with h =  1, as these 
represent the Slide model The results of this are given in Table 9.20.

The test statistics we obtain for the Likelihood Ratio test have significance values of 
0.045 and 0.004 respectively. These are significant at the 5% level and allow us to conclude 
that gradual switching is present, given certain conditions. These conditions concern the 
quality of the approximation of the two-regime, two-level model to the original. We can 
see the MLE’s in most cases remain pretty close to the original values, although this cannot 
be said of the S'[2,7] case. To test this further we can examine the inferred distribution of 
regimes produced by all three cases in Table 9.20. The results are displayed in Figure 9.23.

We would be hard pressed to seperate the four graphs on display and given the acceptable 
similarity betweeen the MLEs there is no reason to reject any of the models as a poor 
representation of the two-level model, despite the additional restrictions they impose.
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M o d e l L o g -L ik e ’d a b i (U )  i(D )  
*0 J k)

T(U) i(D )
N ( u ) - V  N( D) - 1 & g h

S [2 ,4 ,g ,h ] -181.2547 0.4217 0.0836 -0.7752 1.1027 0.8068 3 0.9999
S [2 ,5 ,g ,h ] -180.1125 0.4972 0.0814 -0.8502 1.1088 0.8088 1 0.9999
S [2 ,6 ,g ,h ] -179.1635 0.5899 0.0848 -0.8594 1.1278 0.8098 2 0.9592
S [2 ,7 ,g ,h ] -178.0374 0.7343 0.0874 -0.9142 1.1527 0.8049 2 0.9981

Table 9.18: T he maximised Log-likelihoods and MLEs for the modified Slide model (with 
contrast and offset param eters).

M o d e l L o g -L ik e lih o o d a b i(U) i(D)
Ao > *0

T(U) |(D)
N(u)~ 1’ N(D)-1 a

S[2 , 4, 2 , 0 ] -183.9989 0.3756 0.0803 -0.5453 1.0621 0.8339
S[2 , 4 ,3 ,0 ] -183.2638 0.4734 0.0772 -0.4573 1.0894 0.8327
S[2, T, 2 , 0 ] -184.6420 0.3932 0.0948 -0.5971 1.0275 0.8504
S[2, 7 ,3 ,0 ] -182.5161 0.5529 0.0909 -0.5630 1.0565 0.8347
S[2 , 7 ,4 ,0 ] -182.1011 0.6633 0.0837 -0.4440 1.0825 0.8405
S[2 , 7 ,5 ,0 ] -182.2061 0.8242 0.0801 -0.3238 1.1087 0.8501
S [2 ,7 ,6 , 0 ] -183.3437 0.7163 0.0880 -0.1465 1.1872 0.8506
S [3 ,5 ,2 , 0 ] -182.6593 0.5095 0.0857 -0.5154 1.0682 0.8356
S [3 ,5 ,3 ,0 ] -182.4385 0.6263 0.0770 -0.4258 1.0866 0.8417
S [3 ,5 ,4 ,0 ] -182.6934 0.9999 0.0693 -0.3600 1.0854 0.8566

Table 9.19: The maximised Log-likelihoods and MLEs for the  modified Slide model (with 
contrast and offset param eters).

M o d e l L o g -L ik e lih ’d L o g -L ik e lih ’d T e s t d .o .f . S ign ificance
(h = 0 ) (* =  1) S ta t i s t ic (P = )

S [2 ,4 ,3 , h] -183.2638 -181.2549 4.0178 1 0.0450
S [2 ,7 ,4 , h] -182.1011 -178.0377 8.1268 1 0.0044

Table 9.20: A comparison of the maximised Log-Likelihood of the  two versions of the 
modified Slide model (offset param eter is optim ised). The test sta tistic  of the  Likelihood 
R atio  test is given.
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Figure 9.23: The inferred probabilites of the US GNP being in recession (-S'(n) =  0) for 
different versions of the modified Slide model. Only a short section of the series is shown 
(1952 to 1964).

9.5 .6  U nravelled  M odels

Although we have managed to collect evidence for the existence of gradual switching in the 
original dataset, we have by no means conclusively proved it. From here we can progress in 
two ways. First, we can continue applying these models and consider the results. Secondly, 
we can continue to seek out more evidence for their suitability. In practice we can do these 
two things simultaneously by moving onto one of the other variations of the general class of 
models, namely the Unravelled models detailed in Section 8.6.

The first step in the process of fitting Unravelled models is to determine the probable 

number of switches. The likelihood will not optimise well if we allow this to vary during 
the process so we perform the optimisation separately for each possible number of switches. 
We would usually estimate the number of switches by eye and then vary around this (as far 
as time permits) as less obvious switching behaviour could easily be overlooked. In practice 

we would not want a model that presumed switching every few points, as this would be 
deviating from the original intention of working with this kind of model. The converse, 
of a model that demonstrated many fewer switches than anticipated might still be of great 
interest in identifying a less systematic (or reversible) regime change.

On examining the distribution (see Figure 9.24) between regimes for the L[2,2] model, 
based on full sample inference, we find several clear periods where there is a high probability 

the process is in the lower regime. It is possible, indeed likely, that each of the most probable 
paths that contribute to the bulk of the likelihood do not exploit every one of these regions. 
For clarity we have labelled these regions A through G. The inference appears to show
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Figure 9.24: The inferred probability (using the Full Sample smoother) of the signal being 
in the recession state (S (n ) =  0). Letters A to G represent the 7 likely sojourns in this 
regime suggested by the data.

M odel Log-Likelihood a b lo li <T
UL[2 , 2 ,10] -187.7633 0.3209 0.0433 -0.9648 0.9473 0.8633
U L [2,2 , 11] -190.7098 0.2667 0.0535 -0.7054 0.9728 0.8763
U L [2,2,12] -187.0398 0.3145 0.0536 -0.8190 0.9822 0.8513
U L [2,2,13] -189.5046 0.2542 0.0651 -0.5790 1.0198 0.8595
U L [2,2,14] -186.6543 0.3072 0.0647 -0.6949 1.0181 0.8406
U L [2,2,15] -188.6710 0.2417 0.0784 -0.4631 1.0706 0.8447
U L [2,2,16] -186.5183 0.3101 0.0760 -0.6133 1.0467 0.8322
U L [2,2,17] -188.2137 0.2483 0.0911 -0.4071 1.1026 0.8350
U L[2,2,18] -186.5654 0.3202 0.0875 -0.5580 1.0690 0.8260
U L[2,2,19] -188.0146 0.2614 0.1035 -0.3735 1.1251 0.8279
UL[2 , 2 , 20] -186.7340 0.3322 0.0991 -0.5148 1.0882 0.8207

Table 9.21: The maximised Log-Likelihood for the Unravelled Ladder model UL[2,2,-] for 
different numbers of switches

quite firmly that the process begins and ends in the same (upper) state and so we would 
expect an even number of switches. If a realisation of the process utilised every one of these 
regions then we would expect 14 switches. So we apply the Unravelled Ladder UL[2,2, c] 
model with between 10 and 20 switches. The results of this are displayed in Table 9.21.

As expected there is a clear advantage to the versions of the model that require an even 
number of switches. We also find that the maximum likelihood value occurs for 16 switches, 
rather than 14. If we consider the other measurement of fit we find the estimated noise 
level to continue to fall for higher numbers of switches. This demonstrates the difficulty 
of working with these models. The algorithm is very eager to add the possibility of extra 
switches in order to mop up some of the residual noise, regardless of whether any of the 
likely regime sequences we could construct would implement them.

U nravelled  Slide M odel

We shall first consider what happens when we use the Unravelled Asymmetric Slide model. 
We assume the number of switches is in the range of 12 to 18, that the number of levels
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M odel Log-Likelihood a b f(U ) T(D)
Ao » Ao

HU) r(D)
N (u ) - 1  ’ N(D) — 1 <7 Min(<x)

U S [2 ,2,16] -186.518 0.3101 0.0760 -0.6133 1.0467 0.8322 No
U S [2 ,3,14] -185.065 0.3323 0.0680 -0.7142 1.0509 0.8339 No
U S [2 ,4,14] -182.358 0.4389 0.0693 -0.9173 1.0676 0.8079 No
U S [2 ,5,14] -181.068 0.5340 0.0722 -0.9512 1.0872 0.8084 Yes
U S [2 ,6,14] -180.139 0.6266 0.0762 -0.9336 1.1131 0.8108 Yes
US[2 , 7,14] -178.879 0.7788 0.0805 -0.9506 1.1431 0.8057 Yes
U S [2 ,8,14] -178.051 0.9584 0.0856 -0.9274 1.1725 0.8053 Yes
U S [2 ,9,14] -177.874 0.9999 0.0933 -0.8369 1.2127 0.8099 Yes

U S [2 ,10,14] -179.417 0.9999 0.1029 -0.7290 1.2481 0.8201 Yes
U S [3 ,4 ,14] -180.917 0.5511 0.0719 -1.0144 1.0931 0.8038 Yes
U S [3 ,5,14] -179.646 0.6966 0.0753 -1.0436 1.1164 0.8046 Yes

Table 9.22: The maximised Log-Likelihood for different versions of the Unravelled Slide 
model (The number of switches is fixed at 14).

N u m b e r of 
Sw itches (c) U S[2,2, c] US[2 , 3, c]

M odel
US[2,4,c] US[2,5,c] US[3,4,c]

12 -187.0398 -185.579 -183.178 -181.787 -181.715
14 -186.6543 -185.065 -182.358 -181.068 -180.917
16 -186.5183 -185.124 -182.775 -181.944 -181.755
18 -186.5654 -185.458 -183.479 -183.232 -183.009
20 -186.7340 -185.937 -184.311 -184.574 -184.255

Table 9.23: The optimum switch number found by a comparison of the maximised Log- 
Likelihood for different versions of the Unravelled Slide model

in the down regime is between 1 and 9, and the number of levels in the upper regime is 
between 1 and 3.

We first choose a triple of these constant parameters {N^ , , c) and apply the model
US[N(u), c], and then by measuring the log-likelihood, optimise with respect to the 
parameters (a, 6, lo,li,cr). Although we use likelihood to measure the suitability of a partic
ular model, specified by its constant parameters, it is misleading to attempt to make direct 
comparisons between models with different parameters using likelihood. The deterministic 
structure of parts of the transition matrix encourage longer and longer transition times. A 
summary of the results is given in Table 9.22.

On comparing these models we find two things. Initially we notice that the findings of 
the simple unconstrained Slide model are borne out, with the lowest level of noise reported 
by the US[2,8,14] and US[3,4,14] models, in the =  2 and = 3 categories 
respectively. We are also pleased to find clear and stable maxima in the likelihood function. 
We can. see that this seems largely independent of the model chosen by comparing the 
performance of each model across different switch numbers in Table 9.23.

Presenting this in graph form makes the results easier to comprehend (See Figure 9.25).
Each line represents a different model, as defined by the ladder lengths u and v, applied
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Figure 9.25: The optimum number of switches found by plotting the maximum likelihood 
possible for the different versions of the Unravelled Slide model.

across a range of values for the number of switches. The maximum point of each graph is 
indicated by a marker. It is by observing this graph that the second interesting observation 
becomes apparent. All of the gradual switching models appear to favour a 14 switch 
structure, while the t/5 [2 ,2 ,c] prefers 16 switches. Some light can be shed on this by 
focussing on the same models but measuring them by the level of noise they infer. If we 
take the standard deviation of the noise rather than the likelihood as measure of fit then 
we obtain Table 9.24. Again, when we present this in graphical form, in Figure 9.26, it is 
clearer. Where a minimum exists we have indicated it with a marker.

The simple U .9[2,2, c] case has no minimum, nor does the U S [ 2 , 3, c]. These models are 

able to switch states very quickly, allowing them to soak up some of the noise. For lower 
noise levels this is not a problem but when it is not always possible to determine the regime 

by knowledge of the value erroneous sojourns may be created. The models displaying longer 
switching times have no such problem. The cost of a mistaken switch for these models is 
much higher. We find that the greater the number of levels, the more clearly defined the 
optimum point is, in terms of noise levels.

U n ravelled  Ladder M od el

The next natural step after considering the simplest case, the Slide model, is to turn our 

attention to the Ladder model. Surely this can only improve matters by adding greater 

flexibility to the switching behaviour. The truth is somewhat less inspiring. We shall first 
examine a summary of the results we obtained.
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N u m b er o f  
S w itch es(c) U S [2 ,2, c] US[2, 3, c]

M o d el 
U S [2 ,4, c] U S [2 ,5, c] U S [3 ,4, c]

12 0.8513 0.8501 0.8319 0.8315 0.8271
14 0.8406 0.8339 0.8079 0.8084 0.8038
16 0.8322 0.8291 0.8067 0.8084 0.8053
18 0.8260 0.8269 0.8064 0.8151 0.8136
20 0.8207 0.8257 0.8071 0.8228 0.8215

Table 9.24: A comparison of the standard deviation of residual noise for different versions 
of the Unravelled Slide model using different numbers of switches.
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Figure 9.26: The optimum number of switches found by plotting the standard deviation of 
the residual noise for the different versions of the Unravelled Slide model.

N um ber o f  
Sw itches U L [2 ,2, c] UL[2, 3, c]

M od el 
U L [2 ,4, c] U L [2 ,5, c] U L [3 ,4, c]

12 -187.0398 -187.0455 -186.5043 -186.7402 -185.5300
14 -186.6543 -186.4133 -185.6937 -185.8406 -184.5687
16 -186.5183 -186.0593 -185.1705 -185.2403 -184.0279
18 -186.5654 -185.9098 -184.8578 -184.8614 -183.7384
20 -186.7340 -185.8973 -184.6861 -184.6309 -183.5950
22 -185.9768 -184.6095 -184.5008 -183.5384
24 -186.1202 -184.5991 -184.4406 -183.5331
20 -184.636-1 -184.4308 -183.5566

Table 9.25: The optimum switch number found by a comparison of the maximised Log- 
Likelihood for different versions of the Unravelled Ladder model

12 14 16 18 20

Switch Number(c)
22

US[2,2,c]

US[2,3,c]

US[2,4,c]

US[2,5,c]

US[3,4,c]

US[2,8,c]



9.5. CASE 4: US PO ST W A R  G N P 192

-183

-184 -

-184 -

E  -185 
o
~  -185<D
□  -186 - 
6>
o -186 -

-187

-187

-188
15 2010 25

UL[2,2,c]

UL[2,3,c]

UL[2,4,c]

UL[2,5,c]

UL[3,4,c]

Switch Number(c)

Figure 9.27: The optimum switcli number found by plotting the maximised Log-Likelihood 
for different versions of the Unravelled Ladder model

It is worth reiterating at this point that, while the Asymmetric Slide model is simple to 
construct the same cannot be said of the Asymmetric Ladder Model. Unlike the symmetric 

case, where there is no problem in determining the start and end points of a regime transi
tion, when a regime change takes place, multiple solutions exist The particular approach 
we have chosen was dictated by programming ease rather than any other criterion. As such 

the results we have obtained when the upper regime consists of more than one level, while 
valid, cannot be said to be authoritative. We have chosen some of the better perform
ing versions of the Unravelled Ladder model and maximised the log-likelihood for different 
numbers of switches. The results of this are given in Table 9.25, and then plotted in Figure 

9.27.
A quite different picture emerges from the Unravelled Slide model. For the simple model, 

discouraged from switching by the large gap between levels, there is a clear maximum for 

16 switches. As the ladder lengths increase we find the optimum number of switches rising 

and the consequence of each partial switch becoming less extreme. Despite its flexibility it 
is this tendency of the model that makes it poor at distinguishing the appropriate number 

of switches to employ.
This tendency is clear from Table 9.26 as well. The greater the number of levels the 

smaller the features the model will try to apply itself to. It quickly becomes lost in modelling 
the noise and loses sight of the regime behaviour, so apparent to the simpler models.

Figure 9.28 shows evidence of this inexorable drive to overfit. As we add more levels the 

noise levels fall and the likelihood rises. Eventually the switching intensities will become 
so large as to betray any concept of regime-determined behaviour.
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N u m b e r  o f  
S w itc h es U L [2 ,2 ,c ] UL[2, 3, c]

M o d e l 
U L [2 ,4, c] U L [2 ,5, c] U L [3 ,4, c]

12 0.8513 0.8591 0.8471 0.8488 0.8399
14 0.8406 0.8462 0.8325 0.8334 0.8218
16 0.8322 0.8378 0.8231 0.8240 0.8117
18 0.8260 0.8323 0.8168 0.8181 0.8043
20 0.8207 0.8284 0.8120 0.8139 0.7979
22 0.8252 0.8079 0.8105 0.7917
24 0.8225 0.8043 0.8077 0.7854
20 0.8010 0.8051 0.7789

Table 9.26: A comparison of the standard  deviation of residual noise for different versions 
of the Travelled Ladder model using different numbers of switches.
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Figure 9.28: Com paring the residual noise for different versions of the  Unravelled Ladder 
model utilising different numbers of switches.
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Figure 9.29: A plot of the standard deviation of the residual noise for Unravelled Ladders, 
w ith varying numbers of levels in the lower regime.

In order to progress further we choose to  accept the weakness of the Ladder model to 
determ ine regimes and constrain ourselves to the  inference of the Slide model regarding 
switch numbers. Then we can at least explore whether the switching structure, of which we 

are already convinced by the Slide model is be tter modelled with a  Ladder. If we plot the 
noise level for many of the Ladder models we have observed when restricted to  14 switches, 
then we obtain Figure 9.29. We find a local minimum in the region favoured by the Slide 
model. There is no such confidence of a unique solution as there was in th a t case.

9 .5 .7  Im puting th e  B est Sequence

So far we have been able to dem onstrate evidence of a gradual transition  during switches. 
W ithout really changing the growth regime structure we can account for around 8% of the 
variance of the noise. For comparison the autoregressive element of the Ham ilton model 

reduces the noise level by around 13%, although it is worth remembering th a t this is a fourth- 
order autoregression. It would be interesting to  know exactly how this autoregression was 
operating and in what way it reduces the noise level.

To do this we must look more closely a t the best sequence for S (n ). We do this
by applying the Line Fit model th a t we introduced on page 153. It is really a form of

param eter augmentation in which we introduce the regimes occupied during the tim e series 
as param eters to  be estimated. Due to  the problems in optim ising a likelihood function with 

so many param eters we only apply this model when we have a very good idea of what the 
'best sequence’ of regimes should look like. We also calculate the suitability of each regime 

sequence using a slightly different likelihood function we term  the Sequence Likelihood.
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Label S tart D a te E nd D a te
A 1952:11 1953:11
B 1956:111 1957:1
C 1959:111 1959:IV
D 1968:111 1969:1
E 1973:11 1974:1
F 1979:1 1979:11
G 1980:111 1981:111

Table 9.27: The s ta r t and end positions for the sojourns in the down (or recession) sta te  as 
predicted by H am ilton’s two-state Markov switching model.

This is to avoid some of the problems th a t have arisen using the filters, problems to be 

discussed in C hapter 10.
In Table 9.27 we separate the peaks and troughs of the inference for the two-level model 

(identified in Figure 9.24) into apparent sojourns in the  falling state . We labelled these 

using the letters A-F with the approxim ate positions, determ ined by ou tpu t of the  two-state 

Ladder model
We are careful to  assume th a t any best sequence for {s(n)} would incorporate all of 

these switches given th a t there may be costs incurred in term s of likelihood. We shall 
consider each sequence as containing of some, or all, of these sojourns and attem pt to find 
a best sequence within this restriction. To do this we tu rn  to  working with the Line Fit 

model and find the sequence MLE. This model is defined in Section 8.8. Optimising this 
model is considerably more problem atic with the Ladder models. The likelihood space is 
richly littered w ith local maxima and some of the param eters (namely the switch points) are 
discrete variables. As a result the optim isation is exceedingly tricky and only a very large 
num ber of a ttem pts and careful exploration of the possibilities ensures th a t a maximum has 
been found. Fortunately we have good reason to have tru st in the existence of a regime 
structure  with only a few sojourns and can work only with solutions consisting of these.

We were quickly able to determine th a t those solutions utilising fewer than  4 switches 

fall way behind in term s of both likelihood and noise levels. Of those solutions th a t were 

credible we obtained maximised sequence log-likelihood values (\n (M L E e)). These are 

shown in Table 9.28.

The two cases th a t stand out are ABEFG, with log-likelihood -191.2676, and ABCDEFG, 
with variance 0.7996. Both are relevant, for different reasons and they  are shown together 

in G raph 9.30.
It is worth commenting th a t these sojourns are shorter th an  those indicated by the 

Ladder and Slide models and also shorter than  those indicated by the  same models when 
autoregressive noise is added. We then take some of the  be tte r performing models (and 

regime sequences) and re-evaluate them  using a 4th order autoregression (with coefficients 

fa) to model the residual noise. This should give us som ething like the best of the set 
of regime sequences th a t H am ilton’s filter was indicating. The param eter estim ates .and



9.5. CASE 4: US PO STW AR  G N P 196

S o jo u rn s L o g -L ik e lih o o d a b lo h &
A B E G -193.8579 0.3127 0.0331 -1.0987 0.9202 0.8742

A B C E G -196.0615 0.3619 0.0419 -1.0817 0.9354 0.8603
A B D E G -196.1789 0.3382 0.0422 -1.0199 0.9448 0.8585
A B E F G -191.2676 0.4210 0.0413 -1.3476 0.9283 0.8351

A B C D E G -197.9204 0.3789 0.0512 -1.0103 0.9604 0.8439
A B C E F G -193.1984 0.4044 0.0508 -1.1690 0.9641 0.8168
A B D E F G -193.4175 0.3796 0.0512 -1.1057 0.9738 0.8154

A B C D E F G -194.5511 0.4161 0.0604 -1.0912 0.9899 0.7996

Table 9.28: A comparison of the maximised sequence likelihood for the Line Fit model 
LF[2,2] using different sojourn patterns.
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Figure 9.30: The growth rate of the US GNP series combined with two of the best sequences 
of S (n )  proposed by the L F [ 2,2] model for two different sojourn patterns.
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S ojourns Log-Likelihood a b lo li <x
A B EG -191.0834 0.3688 0.0327 -1.184 0.8929 0.8609

A B E FG -188.5315 0.4209 0.0413 -1.2958 0.922 0.8179
A B C D E G -190.1618 0.1877 0.0589 -0.4397 1.1155 0.7701
A B C E FG -190.5852 0.4655 0.0501 -1.2699 0.9372 0.807
A B D E FG -188.8483 0.2909 0.0532 -0.8937 1.0306 0.777

A B C D E FG -187.4716 0.2178 0.0691 -0.5416 1.1511 0.7315

Sojourns 01 02 03 04
A B EG 0.1723 0.0828 -0.0336 -0.0081

A B E FG 0.1718 0.0698 0.0108 -0.065
A B C D E G 0.0781 0.0027 -0.2223 -0.2424
A B C E FG 0.1627 0.0457 0.0646 -0.045
A B D E FG 0.1907 0.0445 -0.0841 -0.2237

A B C D E FG -0.0361 -0.1074 -0.2859 -0.2928

Table 9.29: A comparison of the maximum sequence likelihood estimates for the Line Fit 
model LF[2,2] using different sojourn patterns (when the residuals are modelled using an 
AR(4))

maximised sequence likelihood are given in Table 9.29.
We see an interesting pattern emerging from this table. For the full set of 7 switches 

the autoregressive pattern Hamilton has led us to expect is clearly visible. We find the 
first two coefficients small compared with the third and fourth. When we remove certain 
sojourns this pattern disappears quite quickly. In fact only those lines of fit including 
the sojourn D seem to display high values for the last coefficient. But this is not the 
only noticeable feature. The line (ABCDEFG) achieving the highest likelihood value when 
AR noise is included is not one of the best performing without that noise. W ith careful 
examination some local maxima appear in the positions of the AR-free solutions. This is 
hardly surprising, given the number of local maxima in this type of likelihood space, but it 
is likely that the autoregression is doing more than just explaining the noise. By enabling 
the signal to be transformed without any cost (in terms of likelihood) it is allowing some of 
the more improbable models (without AR) to become competitive. A good example of this 
is the full 7-switch regime structure, ABCDEFG. This has a log-likelihood value of -194.5. 
This is approximately 4% as probable as the best fitting model which has a log-likelihood 
of around -191.3.

The question now is how competitive the gradual switching models are when applied 
using a Line Fit model. There are many different possibilities when choosing a model and 
each model, and regime structure, must be systematically explored to ensure we have not 
missed the overall maximum sequence likelihood value. Though this is time consuming, 
the routines are extremely fast and can process huge numbers of cases very quickly. As 
such we are fairly sure we have representative solutions. We first consider the models with 
no autoregressive noise, and the benchmarks against which we are testing at a maximum
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Figure 9.31: A comparison of maximised sequence log-likelihood of LF[2, N ^ }  models for 
some of the most likely sojourn patterns.

likelihood value of -191.2627 and a minimum variance of 0.7996. We shall consider first 
those models with only gradual switching during the switch from the upper to  lower regime. 
Figure 9.31 shows the performance of the  LF[2, N ^ }  models for different regime switching 
patterns.

The best performing appears to  be the L[2,4] model. This is borne out if we measure 
the performance in terms of the estim ated standard  deviation of the noise, ra ther than  the 
likelihood. This is displayed in Figure 9.32. It is also of note tha t the different possibilities 
of regime switching behaviour are arranged approxim ately in order of likelihood. The 7 
switch case does seem to be the most convincing of the possibilities, as it results in higher 
likelihood values for all models than  any other com bination of pa tte rn  and model.

We go on to present the same information for the LF[S, N ^ \  and LF[4, N ^ ]  models 
in Figures 9.33, 9.34 , 9.35 and 9.36. The decision of which of these models performs best 

is not as clear. The best performing in terms of likelihood is LF[3,4] bu t the lowest noise 
levels are usually recorded by LF[3, 5]. Of the L F \4, A ^ )]  models we find LF[4, 4] clearly 

the  best. We can also see irregularities in the scores of these models. The graphs are not 
as predictable as in previous cases. This appears to  be due to  the model being capable 

of modelling more levels than are required by the data. There is a tendency for the level 
associated w ith the lower regime to  become more volatile as the model switches between 

utilising all the available levels or only some. We are now in a position to compare the best 
model in each category with each other to determ ine the best fitting model overall. The 

results of this comparison are given in Tables 9.30 and 9.31 and then presented visually in 

Figures 9.37 and 9.38.
We could come to different conclusions depending on how we choose to measure the 

models. Overall the highest likelihood and lowest noise levels are given by LF[3, 4], closely
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Figure 9.32: A comparison of standard deviation of residual noise of L F [ 2, models for
some of the most likely sojourn patterns.
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Figure 9.33: A comparison of maximised sequence log-likelihood of LF[3, models for
some of the most likely sojourn patterns.
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Figure 9.34: A comparison of standard  deviation of residual noise of LF[3, N(d ] models for 
some of the most likely sojourn patterns.
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Figure 9.35: A comparison of maximised sequence log-likelihood of LF[4, models for
some of the  most likely sojourn patterns.
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Figure 9.36: A comparison of standard  deviation of residual noise of LF[4, N ^ ]  models for 
some of the most likely sojourn patterns.

S o jo u rn s L F [2 ,4] L F [3 ,4] LF[3, 5] L F [4 ,4]
A B E G -194.0555 -194.0711 -194.6710 -194.9722

A B C E G -195.6397 -195.7239 -197.0488 -197.4665
A B D E G -196.2372 -195.2358 -195.7690 -196.2810
A B E F G -192.8949 -192.1330 -193.2963 -194.0762

A B C D E G -196.8999 -196.1733 -197.3726 -197.8110
A B C E F G -193.5888 -194.7348 -194.6486 -195.5243
A B D E F G -194.1041 -192.1136 -193.2335 -194.6230

A B C D E F G -193.8598 -191.9329 -193.5451 -195.8591

Table 9.30: A comparison of the maximised sequence log-likelihood of the leading Line Fit 
models for different sojourn patterns.

S o jo u rn s L F [2 ,4] L F [3 ,4] LF[3, 5] L F [4 ,4]
A B E G 0.8649 0.8664 0.8690 0.8794

A B C E G 0.8422 0.8457 0.8499 0.8647
A B D E G 0.8475 0.8396 0.8416 0.8569
A B E F G 0.8247 0.8213 0.8246 0.8426

A B C D E G 0.8171 0.8167 0.8214 0.8382
A B C E F G 0.7994 0.8064 0.8033 0.8215
A B D E F G 0.7999 0.7904 0.7923 0.8159

A B C D E F G 0.7714 0.7639 0.7672 0.7919

Table 9.31: A comparison of the standard  deviation of the residual noise for each of the 
leading Line Fit models for different sojourn patterns.
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Log-Likelihood Std . Dev. V ariance
L F[2 ,2] -191.2676 0.8351 0.69739
L F[3 ,5] -193.2963 0.8246 0.67997

G ain
C hange (%)

-2.0287 -0.0105
-1.3%

-0.0174
-2.5%

Table 9.32: A comparison between the noise levels and maximised sequence log-likelihood 
for LF[2,2] and LF[3,5] where they conform to an ABEFG sojourn pattern.

Log-Likelihood Std. Dev. V ariance
L F[2 ,2] -191.2676 0.8351 0.69739
LF[3,4] -192.1330 0.8213 0.67453

G ain
C hange(% )

-0.8654 -0.0138
-1.7%

-0.0229
-3.3%

Table 9.33: A comparison between the noise levels and maximised sequence log-likelihood 
for LF[2,2] and LF[3,4] where they conform to an ABEFG sojourn pattern.

followed by LF[3,5]. Both of them outperform the LF[2,2] case on both counts. The two 
key sojourn patterns in the LF[2,2] case are the cases ABEFG and ABCDEFG. We now 
require a slightly more precise comparison between them. In Table 9.32 we compare LF[2,2] 
and LF[3,5] in terms of their maximised sequence likelihood and the standard deviation of 
the residual noise at the SMLE, given that they broadly conform to the ABEFG sojourn 
pattern. Table 9.33 gives the same comparison between LF[2,2] and LF[3,4]. Tables 9.34 
and 9.35 repeat these measurements for another pattern of sojourns.

The gain is marginal in the first case amounting to only a slight improvement in likeli
hood. In the second case, however, the story is quite different. The difference in likelihood 
is sizeable and there is a distinct reduction in noise level. As the comparison is between 
different models it is difficult to say whether this consitutes a ‘significant’ improvement or 
not. All we can say is that there is plenty of evidence that this kind of gradual switching 
mechanics may occur in real world data. The parameter estimates for these two models 
are shown in Tables 9.36 and 9.37.

Log-Likelihood S td . Dev. V ariance
L F [2 ,2] -194.5511 0.7996 0.63936
L F[3 ,5], -193.5451 0.7672 0.588596

G ain
C hange(% )

1.0060 -0.0324
-4.1%

-0.0508
-7.9%

Table 9.34: A comparison between the noise levels and maximised sequence log-likelihood 
for LF[2,2] and LF[3,5] where they conform to an ABCDEFG sojourn pattern.
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Log-Likelihood S td . Dev. V ariance
L F [2 ,2] -194.5511 0.7996 0.63936
LF[3,4] -191.9329 0.7639 0.583543

G ain
C hange(% )

2.6182 -0.0357
-4.5%

-0.0558
-8.7%

Table 9.35: A comparison between the noise levels and maximised sequence log-likelihood 
for LF[2,2] and LF[3,4] where they conform to an ABCDEFG sojourn pattern.

S o jou rn  P a t te rn Log-Likelihood a b j (U) i (D)
Ao > Ao

T(U) i (D)
N (U)—1 ’ N(D) - 1 a

A B E G -194.0711 0.2278 0.0343 -1.1199 0.9758 0.8664
A B C E G -195.7239 0.2554 0.0438 -1.1447 1.0073 0.8457
A B D E G -195.2358 0.2329 0.0445 -1.0303 1.0259 0.8396
A B E FG -192.1330 0.2436 0.0441 -1.1596 1.0289 0.8213

A B C D E G -196.1733 0.2553 0.0545 -1.0591 1.0595 0.8167
A B C E F G -194.7348 0.2455 0.0550 -1.0316 1.0733 0.8064
A B D E FG -192.1136 0.2455 0.0550 -1.0777 1.0826 0.7904

A B C D E F G -191.9329 0.2647 0.0655 -1.1057 1.1189 0.7639

Table 9.36: The maximum sequence likelihood estimates for the parameters of the LF[3,4] 
model using different sojourn patterns.

S o journ  P a t te rn Log-Likelihood a b i(U)  i (D)  
Ao » Ao

f (U)
l N (u)- 1 > LN ( d ) - i *

A B E G -194.6710 0.2162 0.0345 -1.2602 0.9759 0.8690
A B C E G -197.0488 0.2230 0.0448 -1.1644 1.0200 0.8499
A B D E G -195.7690 0.2230 0.0448 -1.1966 1.0251 0.8416
A B E FG -193.2963 0.2140 0.0452 -1.1823 1.0425 0.8246

A B C D E G -197.3726 0.2363 0.0554 -1.1903 1.0640 0.8214
A B C E FG -194.6486 0.2279 0.0559 -1.1787 1.0823 0.8033
A B D E FG -193.2335 0.2126 0.0569 -1.0833 1.1038 0.7923

A B C D E F G -193.5451 0.2246 0.0685 -1.0919 1.1471 0.7672

Table 9.37: The maximum sequence likelihood estimates for the parameters of the LF[3,5] 
model using different sojourn patterns.
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S o jo u rn  P a t te rn Log-Likelihood a b i (U)  y( D) 
A0 > 0

T(U) T(D )
l N(u)- 1 ’ l N ( m - 1 a

A B E FG
A B C D E FG

-188.5315
-192.9228

0.4209
0.3935

0.0413
0.0608

-1.2958
-1.0657

0.9220
1.0045

0.8179
0.787

S o jou rn  P a t te r n  
A B E FG  

A B C D E F G

01
0.1718
0.1201

02
0.0698
-0.0505

03
0.0108
0.0629

04
-0.0650
0.1184

Table 9.38: The results of maximising the sequence likelihood of the LF[2,2] with residual 
noise modelled using an AR(4). In this case the hill climber is started from the best sequence 
of LF[2,2]

S o jou rn  P a t te rn Log-Likelihood a b T(U) i (D)
A0 J Ao

i (U)  ?(D) 
l N(V)- 1 ’ LN(d ) -  1 &

A B E FG -188.3305 0.3620 0.0419 -1.1614 0.9454 0.8110
A B C D E FG -187.4716 0.2178 0.0691 -0.5416 1.1511 0.7315

S o jou rn  P a t te rn 01 02 03 04
A B E FG 0.1896 0.0997 -0.0205 -0.1606

A B C D E FG -0.0361 -0.1074 -0.2859 -0.2928

Table 9.39: The results of maximising the sequence likelihood of the LF[2,2] with residual 
noise modelled using an AR(4). In this case the hill climber is started from the the parameter 
estimates (and sequence estimate) obtained by Hamilton

9 .5 .8  A u to -R e g re s s iv e  N o ise

The final question for us to ponder in relation to these type of models concerns the kind of 
auto-regressive noise (AR(4)) found in Hamilton’s original Markov switching model. How 
does it change the way the model fits and what effect will it have on our gradual switching 
models. In order to study this we could add it directly to the Ladder models but this would 
prove rather time consuming, given the number of levels we would be using. Instead we 
add it to the Line Fit model, a process which is very straightforward We denote the Line- 
Fit model with added 4th order autoregressive noise L F A R [ N ^ : N ( d ) \ • I f  we consider the 
two most significant sojourn patterns and apply a 4th order autoregressive process to model 
the noise we find that the first results do not match those obtained by Hamiltons filter. It 
differs both in the predicted sojourns and in that there is little evidence of autoregressive 
noise. However, it seems that this is a local maximum only. If we restart the hill climber 
from other positions (including Hamiltons original parameter estimates) we obtain another, 
better maximum. After exhaustive repetition of this process it seems likely that this 
represents the global maximum. Not only are they a distinct improvement, they are very 
close to Hamiltons original estimates.

They show similar evidence of higher order autoregressive behaviour in the residuals. 
W hat has changed from the first case to the second is not simply due to a case of finding 
another, better, solution to the same problem but a marked change in the sojourns in the
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Model • Direction of Regime Switch (Dn refers to a transition down to regime 0)
Dn Up Dn Up Dn Up Dn Up Dn Up Dn Up Dn Up

LFARW[2,2] 5 9 22 24 34 35 70 72 89 92 112 113 118 122
LF[2,2] 5 9 22 24 34 35 70 73 89 92 112 113 118 122
LFAR(2)[2,2] 5 9 19 24 32 35 70 75 87 92 109 113 116 123
LF[3,4] 4 8 20 24 32 34 69 72 87 92 110 113 116 122
LF[3,5] 4 8 19 24 32 35 68 72 86 92 109 113 116 122

Table 9.40: A comparison between the best sequences suggested by the different solutions 
we obtained.

LFARW [2,2] L F[2 ,2] LFAR^2) [2,2] L[3,4] L[3,5]
LFAR(1}[2,2] 0 1 16 12 17
L F[2 ,2] 1 0 15 15 18
LFAR(2)[2,2] 16 15 0 10 9
L F[3,4] 12 15 10 0 5
L F[3 ,5] 17 18 9 5 0

Table 9.41: A comparison of the similarity of the most likely regime sequence for different 
models. Similarity is measured by the number of times the sequences disagree.

regime pattern. We shall concentrate now on the ABCDEFG sojourn pattern as this seems 
the most likely. While the first solution for the Line Fit model with autoregressive noise, 
LFARW[2,2] (see Table 9.38) showed only 1 change of regime switch time from those for 
LF[2,2], the second solution LFARP^[2,2] (see Table 9.39) differs in 7 of the 14 switch 
points. The beginning and end points of each of these 7 periods of recession for the best 
sequence for each model are shown in Table 9.40.

One way we can measure the similarity (or otherwise) of the different solutions is to 
count the number of times the regime differs between a pair of models over the 131 points 
in the time series. We can tabulate this measure of similarity (see Table 9.41) and then 
perform an analysis to see how closely related the different groups are.-

The results of this analysis are displayed in Figure 9.39. The three main groups are 
apparent and LF  A R ^[2 ,2]  is closer to the Ladder models than to LF[2,2].

The way in which LFAR^>[2,2], LFAR[3,4] and LFAR[3,5] distort the regime pattern 
from that of LF[2,2] is quite similar in many ways. If we look more closely at the actual 
effect on the timings we find that all three move to earlier downward switching (see 9.42).

The question we begin to ask ourselves is whether the AR noise and the Ladder models 
are both capitalising on the same behavioural mechanics. This is borne out further if we 
look at the Mean Squared Difference (MSD) between the level of the signal for each of the 
the models. This information is given in 9.43. Each of the locations refers to different 
subsets of the series. The row marked ‘During [3,4] Recession’ includes those observation 
times that fall within recessions predicted by the LF[2,2] model. Those ‘Close to Switches’ 
are those within 4 time units of a predicted switch point (for any model).
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LF[2,2| LFAR(,)[2,2| LF[3,4] LR|3,5] LFAR<2)[2,2]

Figure 9.39: A tree structure showing the similarity between the switching point sequences 
suggested by the different models

D o w n S w i t c h  
E a r l y  Late

U p S w i t c h  
E a r l y  Lat e

LFAR(2)[2,2] 5 0 0 2
LF[3.4] 7 0 2 0
LF[3. 5] 7 0 1 0

Table 9.42: The deviation of the best sequence of several models, from that of the two-level 
signal found using LF[2,2].

Location M ean Square Difference in Signal Diff
LFAR^2] [2, 2] LFA RW  [2, 2] LF\3,4]

vs vs VS
LF[ 3,4] U SG N P U SG N P

Full Time Series 0.2283 0.5351 0.5836 0.0485
During [2,2] Recession 0.4462 0.5358 0.5432 0.0074
During [3.4] Recession 0.3391 0.4396 0.4505 0.0109
Close to Switches 0.4002 0.4879 0.5337 0.0458

Table 9.43: Mean Sum Difference of the levels of the signal for several models during subsets 
of the series



9.5. CASE 4: US POSTWAR GNP 208

M odel Log-Likelihood a b T(U) |(D)
Ao > *0

i(U) i(D)
lN(u)- 1 ’ ■ <x

LF[2,2] -194.5511 0.4161 0.0604 -1.0912 0.9899 0.7996
LFAR[2,2] -187.4716 0.2178 0.0691 -0.5416 1.1511 0.7315
LF[3,4] -191.9329 0.2647 0.0655 -1.1057 1.1189 0.7639
LFAR[3,4] -189.7035 0.2555 0.0661 -1.0123 1.1219 0.7497

M odel 0 i 02 03 04
LF[2,2] 0.0000 0.0000 0.0000 0.0000
LFAR[2,2] -0.0361 -0.1074 -0.2859 -0.2928
LF[3,4] 0.0000 0.0000 0.0000 0.0000
LFAR[3,4] -0.0371 0.0070 -0.1421 -0.1463

Table 9.44: The maximum sequence likelihood estimates of the parameters of different 
models using the ABCDEFG sojourn pattern.

W ithout A R  Noise W ith A R  noise Change %
LF[ 2,2] 0.7996 0.7315 -0.0681 -8.5%
LF[ 3,4] 0.7639 0.7497 -0.0142 -1.9%

Table 9.45: The reduction in noise level due to the addition of autoregressive noise.

Although the LF[3,4] records higher MSD with the data series the difference in the 
MSD between the models is actually smaller during the switching episodes that at other 
times.

The final step for this data set is to take the Line Fit model and add autoregressive 
noise to it. When we do this with the LF[2,2] model we find a reduction in noise levels of 
over 8%. If some of this can be explained by gradual switching mechanics we would not 
expect another similarly large reduction. Given the time it takes to explore the complex 
parameter space when working with lines of best fit, no attempt is made at this stage to be 
comprehensive. We only consider the best performing of the AR-free models, the LF[3,4], 
as a candidate. It is likely, as with the LF[2,2] case, that the precise specification of the 
model that performs best without AR, continues to dominate with it. But as the likelihood 
spaces for these models are complex and the results intended only as illustrative we shall 
restrict ourselves to the LF[3,4] model. The autoregressive noise is added in precisely the 
same way as with the LF[2, 2] model we have been working with already. Despite the 
drawbacks of working with the line of best fit it is likely, in such a simple example, that our 
maximum sequence likelihood estimate will be either the global maximum or closely related 
to it. The parameters of the fitted model are shown in Table 9.44.

The improvement is hardly stunning. We find only a slight reduction in noise levels 
after adding AR to the LF[3,4] model. In fact the noise levels do not even fall to the same 
levels as the LFAR[2, 2] model (see 9.45).

Whereas the LF[2, 2] model lost over 8% of its noise through introducing an autoregres
sion the L[3,4] fared much less well, only dropping around 2%. We can also see another
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suggestion of the reduced importance of the autoregression in the much smaller coefficient 
values. The fact that they are still a long way from zero tells us that there is still some 
systematic behaviour pattern left in the data. This may be, as Hamilton proposed, due 
to the way the data was collated and de-seasonalised. But if this is not the case, or only 
partly so, then it suggests that, even if there is some form of gradual switching mechanics 
at play here, we have not necessarily specified the model in such a way to fully exploit it.

9 .5 .9  Sum m ary

The earlier data sets were chosen for their compliance with gradual switching models. They 
were relatively short and contained behaviour that strongly suggested the kind of mechanics 
we sought. They served a useful purpose in introducing the methods we have been propos
ing and allowing an overview of the strengths (and weaknesses) of working with gradual 
switching models. This final data set was not selected as such. Given that Hamilton’s 
paper served as a starting point for this piece of research it seemed fitting to apply these 
new tools to it. The results have been mixed. We present here a summary of the steps 
taken in this case study and our conclusions.

The first step was to construct the model used by Hamilton and obtain his results. This 
was quickly done. We then explored the possibility of slightly modifying the smoothing 
algorithm to work with a distribution based on previous switching times rather than a full 
history (Pointer Filter). The results we obtained were surprisingly close to the results 
obtained by the original smoother. In a case such as this where switching maybe relatively 
infrequent this may allow higher order autoregressions or larger numbers of levels to be 
used without introducing unmanageable matrix sizes. The attempts made to use this 
approach to introduce gradual switching were of limited success. The complex structure of 
the likelihood space led to difficulty obtaining maxima. As this was not considered central 
this line of research was abandoned.

The Ladder model was introduced but the levels of noise were simply too high for any 
clear distinction to be made between the regime led structure highlighted in previous work 
and a random walk between the levels of the process. Given the fact that we had found 
similar problems with previous data sets, more ideal in terms of structure, this was not 
surprising.

The Slide model produced more positive results, as has been the case earlier. The 
rigid structure of the model ensured that switching was not undertaken lightly ensuring the 
retention of the expected regime structure. The results of this must be interpreted carefully 
as the structure of the model drives down the likelihood value. But when a consideration is 
made of the level of noise we find the 5[3,5] is favoured, with lesser support for neighbouring 
models including S[2,7] and S'[2,8]. It is likely that this does represent evidence of gradual 
switching although a more formal test would need to be devised.

In an attempt to provide such a formal test a more general model was proposed capable 
of approximating both the two-regime, two-level Markov chain and a Slide model. In order
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to ensure the results of this test can be treated as reliable we checked to see how closely we 
can approximate the tested models. The closeness of the approximation is probably good 
enough to treat the conclusions as relevant although obvious concerns remain. We find a 
sufficiently high test statistic for the likelihood ratio test to conclude there is evidence for 
the existence of gradual switching.

Following on from this we introduce the Unravelled model and use it to estimate the 
number of regime switches that are predicted to occur within the data set. We find that 
when working with the two-state model it predicts 16 switches although two are so close as to 
be combined when autoregressive noise is added. We opt for the, only slightly less probable, 
14 switch solution and define these 7 possible sojourns in the lower regime. We then work 
across a range of models, testing each for different numbers of regimes. We conclude that 
there are an even number of switches and that all Slide models, apart from L[2,2], agree 
on 7 regimes of recession. Several models perform well under these conditions, namely 
5[2 ,4,14], S[2,7,14], S[2,8,14] and S[3,4,14]. The reduction is noise levels is sufficient to 
conclude they are relevant

We also show that that the Ladder models predict a number of switches increasing with 
the number of levels of the model, highlighting the problem with working with Ladders. 
Even under such highly constrained circumstances it seems difficult to obtain any useful 
inference from the Ladder model when working with anything other than ideal or simulated 
data.

We then take another approach by taking the understanding of the data set we have 
obtained through the use of our other models and impute the best sequence of regimes. The 
consideration here is not so much with finding the best solution as with constraining the 
ladder models in a way that make it possible to test for the existence of gradual switching 
rather than a test of the capabilities of the Ladder model. To optimise efficiently using 
only a sequence likelihood algorithm is tricky to say the least. We only attempted to use 
it to modify a proposed regime pattern and optimise within its neighbourhood. Extensive 
repetition ensured that the results were reasonably likely to be very close to the global 
maxima. We found that two models stood out from the rest, the LF[3,4] and LF[3,5] with 
sojourn pattern ABCDEFG (see Figure 9.24). They were capable of reducing the sequence 
log-likelihood and noise level significantly, when a consideration is made of the higher order 
of the added autoregression in Hamilton’s model.

Finally we fitted a handful of the best performing models but with autoregressive noise 
added. We found large reductions in the noise levels for the LFAR[2,2] model, as did 
Hamilton. We found much smaller reductions in the noise levels for the gradual switching 
models, only falling to similar levels as those shown by LFAR[2,2]. It seems likely that 
some of the autoregressive pattern could be explained by gradual switching. To go further 
in confirming this we found much reduced coefficient estimates for the autoregressive noise.

In conclusion, we find that in all the different approaches we have taken to try to uncover 
and model gradual switching mechanics in this particular data set we have found very
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similar results. Almost exclusively the most favoured model incorporates a short transition 
during an upward regime shift and a longer transition for a downward shift. The models 
would suggest a transition into recession taking somewhere between three quarters and two 
years, while the transition during recovery will take only 1 or 2 quarters. We even found 
experimental evidence to support this type of model. It seems likely that some form of 
gradual switching does take place in this data set although the continued (although reduced) 
existence of autoregressive behaviour may suggest that we have not hit upon the precise 
specification.



Chapter 10

W orking w ith Gradual Switching  
M odels

In the light of the developments made in this work we consider the problems of working with 
gradual switching models, and discuss their possible solutions and propose areas for future 
study.

10.1 A Summary of Developments

From the beginning our intention was not to introduce new models for the sake of it. It is 
likely the models we worked with, as with the Beta generation, may have many interesting 
properties or have greater possibilities than we have exploited. Nevertheless our interest 
was always primarily in the capacity to detect and model the transition between levels of a 
two-regime Markov process.

The first model we focussed on was the Filtered Markov process. Prompted by the 
observed signal of a two-level Markov process when viewed through a low-pass filter, this 
stochastic process proved interesting in ways we had not anticipated. It quickly became 
clear that the model would be far too flexible and adaptable to be effectively applied to many 
real case studies, apart from those which we know are controlled by appropriate underlying 
mechanics. Neither are the models well served in terms of the algorithms we use to fit them, 
which reward structure on one level while ignoring it on another. It was this difficulty in 
levering this model into the role we had chosen for it that drove us to experiment with 
discrete approximations. Using these we were able to at least measure the bounds within 
which we were capable of operating.

The Filtered Markov model was a little more productive in an entirely unforseen way. 
When we discovered it had a familiar stationary distribution the advantage only seemed 
significant in that it was easy to work with. Quickly, though, it became obvious that we 
could use this model to generate Beta variates. Surprisingly enough a comparison with the 
currently available algorithms showed that it was very competitive in terms of simplicity
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and speed.
From the Filtered Markov model the next natural step was to the Ladders, a general class 

of models that could capture a wide range of switching behaviour. Great improvements 
were indeed possible with these simple models, but they still had a tendency to move away 
from the purpose for which they were intended and towards entirely different solutions. 
This should perhaps not be seen as a problem in general, but in so far as our intention was 
to restrict them to one area it proved problematic. The development into the Slide models 
finally gave us this capacity we had been seeking to tie the models to regimes rather than 
rapid switching. They tended to match the clear patterns indicated by the simple Markov 
models, even going further in providing stronger inference about current regime.

Further progress was possible through the introduction of the Unravelled Ladder models. 
By forcing the process to make only a fixed number of changes we were able to draw 
inference only from a realistic switching pattern, unlike the original algorithms that may 
draw likelihood from a host of improbable scenarios. They also allow us to introduce the 
number of switches a process may have made as a parameter that can be estimated. These 
Unravelled models can also be combined with full sample smoothing to help provide even 
stronger inference on regime distribution.

Finally, when faced with the problem of demonstrating the existence of gradual switching 
mechanics in econometric data, namely records of the US GNP figures, we turned to working 
with Line Fit models to impute the most likely regime history. As far as possible we had 
sought to avoid working with these due to their complex structure and the difficulties in 
finding global maxima. The extensive knowledge we had built up with the array of models 
we had used gave us an edge and allowed us, in all probability, to find the overall solutions.

The evidence we uncovered did indeed suggest that this data set appears to exhibit 
gradual switching dynamics. We found lower levels of noise for the gradual switching Line 
Fit models, and a good agreement between their predictions and official datings of business 
cycles. These regime dates were as good as those produced by Hamilton’s original model, 
but only those obtained with the inclusion of autoregressive noise. We would even suggest 
that at least some of the autoregressive noise evident in this, earlier, model is probably due 
to some kind of gradual switching behaviour during regime transitions.

10.2 Possible Developments

In the course of this research certain possibilities have arisen that seem to me worthy of 
further examination. In some of these cases a certain amount of work was done that has 
not been included here, either because no useful progress was made or it did not fit well 
into any of the different sections of this thesis while other directions were simply left open. 
Of the first category we should draw attention to the most interesting cases.
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10 .2 .1  R an d om  V ariate G en eration

Initially it was quite a pleasant surprise when the Filtered Markov Process turned out 
to have a Beta stationary distribution. We experimented with variations on this theme 
such as extending the stochastic process to higher numbers of dimensions. This had only 
limited success, throwing up distributions like Dirichlet’s. Despite this it seems likely that 
there is more potential in this area for development. There are close links between the Beta 
distribution and the Generalised Hypergeometric distribution. The distributions of both the 
Beta and Filtered Markov distribution are constructed using Generalised Hypergeometric 
Functions. It is possible that some general relationship exists between this kind of process 
and a subclass of the Hypergeometric. This work was well beyond the scope of this thesis 
and was not explored.

10 .2 .2  S m ooth in g  A lgorithm s

Over the course of this research we have used the smoothing algorithm, or versions of it, 
extensively. In particular we have found it to be extremely effective in identifying the 
distribution of the process between the two regimes. We have also found, in the simplest 
case, that it relies heavily on the fact that the choice between the two regimes is rather 
stark. The potential for mis-classification is relatively slight. When extra levels are added 
to the regimes the possibility of mis-classification becomes quite large and switching too 
easy. This is especially true when you consider that most of the time we are working 
with differenced processes in which the consequence of a poorly determined switch point 
may be only minor. This, coupled with the the capacity of the process to draw inference 
from switching that is not well supported by the data, can lead to difficulties with more 
complex models. There are two elements we feel could be addressed in order to improve 
the effectiveness of these smoothers; working directly with integrated process (rather than 
differenced series) and incorporating future data in the inference procedure.

In te g ra te d  Processes

It has sometimes been frustrating, when working with gradual switching models, to see them 
enthusiastically model every little twist and turn of the data set while ignoring larger scale 
structure. This has been true even with simulated data, although the problem is much 
worse with genuine time series. While appreciating that algorithms are not compelled to 
fit the pattern we want and may have good reason for preferring a higher frequency model, 
this can be somewhat frustrating. One alternative is to apply prior distributions to the 
parameters of the model so as to constrain it to the range we prefer. As far as possible 
we tried to avoid doing this so as to avoid finding ourselves in the situation of obtaining 
no more or less than we requested. The source of the problem becomes apparent when 
you consider the differenced process. The long term shifts in mean growth, obvious in an 
integrated process, hardly register when the same data is differenced. As with any Markov
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switching model the most valuable inference you can make concerns the current state of the 
process. For anything except low levels of noise the distribution can appear unimodal and 
any separation is impossible if the order of the data is not considered. It is precisely this 
that rendered the Methods of Moments so limited for use with time series data. It was 
only with huge data sets that the subtle features that differentiate the mixed model from a 
single distribution become apparent.

In working with the smoothing algorithm it became clear that even with relatively high 
levels of noise it was often possible to obtain quite good estimates of the distribution between 
regimes. When future data, or indeed the full sample, was used to enhance the inference 
this was especially true. We tried to find ways to estimate the current value of the process 
from the history of the growth rate. Normally this is not possible as the history is not 
recorded but estimates of the expected growth rate at each point can be recalled and used 
to produce an expected current value. When the inference about the current state is good, 
tending close to 0 or 1, this estimate is quite good. In this way a short sighted placement 
of a switchpoint could have long term negative consequences. The method worked thus:

We start the process at x(0) at time n  = 0.
The process has levels Iq to lN(Ly
After the first Markov step of the process we have residuals rj, associated with the levels 

li, where
r»( 1) =  y(l) -  (x(0) + U)

rather than
r*(l) = y{  1) -  k

Treating the residual as any error term we can obtain f (y( l ) \ l i ) .  By taking these likelihood 
values for i we can obtain Pi(n)  =  P r ( S ( n ) =  i)  for i =  {0,1}.
If we define £7(1) as the expected growth at time n =  1 then

£7(1) =  lo.po(l) +  / i .p i ( l )  +  x(0)

E (n  +  1) =  lo-Po{n) +  l \ .p\(n)  +  x{n)

We then use this to obtain the residuals at time n by

r i(n) =  y(n) -  (.E(n  -  1) +  k)

In practice with simple examples the results were encouraging. The problems arose in two 
ways.

First the algorithm works by seriously penalising switching. As a result there is a 
tendency for the process to switch only after strong evidence has arrived to support it. As 
the noise levels rise higher and higher this delay in recognising the switch points can become
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Figure 10.1: A time series obtained by taking a Moving Average of the record of monthly 
car registrations in the US.
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Figure 10.2: An example of the inference about the regime history (of the car registration 
data) using only a Basic filter.

problematic. The effect on this method is to ensure the current value of the process, as 
modelled through the expected growth rates, tends to lag behind the time series.

Secondly, the separation between states need to be clear, even if not consistent, so the 
process can construct good estimates of the long term growth rate. In order to do this it 
is helpful to bring in future data or even the full sample to make inference. We can give 
an example of this, below. We take the time series, illustrated in Figure 9.2 on page 159. 
representing the Registration of Cars in the United States. A moving average is then taken 
of the data, giving the more amenable series shown in Figure 10.1. The order of the moving 
average was set to 12 as there was significant annual periodicity in the data. The symmetric 
Slide model was fitted for a range of appropriate switch lengths and Likelihood favoured 
S[8,8]. When we examine the series of distributions of inferred regime the algorithm is 
usually quite clear (see Figure 10.2).

But to see how much this inference is improved by adding inference from the full sample 
a comparison should be make with Figure 10.3. Here we find almost no uncertainty on 
the current regime. Several quite noticeable episodes, namely around 1948 and 1963. are 
completely absent. When the algorithm can separate the different regimes as clearly as 
this it would be quite possible to estimate the current position by summing the expected
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Figure 10.3: An example of improved estimation of the regime switching history possible 
when using Full Sample Inference.

growth rate at each point.
Overall this approach showed some promise but was not perfected. Quite soon it was 

abandoned in favour of working with the Unravelled models. We remain convinced that a 
version of this method could work effectively.

In co rp o ra tin g  F u tu re  D a ta

Extending the smoothing algorithm to include future data adds to the complexity of the 
process but not excessively so. Hamilton uses it to improve the inference about the current 
regime of the signal although his method is tedious to code. When it is applied through 
matrix algebra it becomes much easier and faster to apply. No attempt is made to include 
this future data in the evaluation of likelihood but the consequences of not doing so for the 
two-level model are not catastrophic. As we add more levels, we incorporate more flexibility. 
And this flexibility leads to instability. This is not a failure of the model, rather a failure 
of the algorithm, as the information necessary to detect a change of regime is spread over 
several time intervals rather than just one. What is needed is some way of penalising a 
switch in regime not by assigning a punitive likelihood cost to it, as is currently done, but by 
exploring the future consequences of such a move. In order to do this an entirely new way 
of obtaining the likelihood will be necessary, as this likelihood cost for switching must be 
paid in order to allow the switching intensity parameters to be accurately estimated. What 
we propose is that it is possible to obtain the inferred distribution of regimes first, then use 
this to find the likelihood. This approach could be seen as a development of the application 
of the EM algorithm to this problem. In the EM algorithm the full sample inference 
about the regime history is used to weight the data set from which sample estimates are 
obtained giving rise to the next set of parameter estimates. In this new variation the full 
sample estimates are obtained and then used to weight the transitions before evaluating the 
likelihood.

For instance, if we have a process, y(n), comprising a signal with two levels (lo and l\) 

and Gaussian noise.
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We then run the smoothing algorithm using parameter estimates {a,, 6, Zo, , cr} to pro
duce the series of distributions Pr[(S(n) =  s(n) | y^ j for all n.

Then for each n  we have
Pr[(S(n) =  0 | yN]

_ Pr[(S(n) =  1 I Yn ] _

And we take
' Pr[(S(0) =  0 Yn ] 7T0

. Pr[(S(0) =  1 Yn ] _ 7Ti

Where 7r is a suitable prior distribution e.g. the stationary disribution.
We then estimate

Pr[S(n) = i h  S{n + 1) = j  | yN] =  P r[(S(n) = i | y N]. P r[(5 (n -f 1) = j  | y N]

And obtain the log-likelihood from a summation of these terms.

n i l

i(e,n) = 5353^iog„(Pr(s(t-i) = «&s(t) = i))
n = l i—O j = 0

=  =  i  I y N ] . P r [ ( S ( n  +  l )  = j  \ yN])
n = l i = 0  j = 0

Again, we had some success with this for simple cases but the method had a specific 
weakness. This was that there is no direct link between the value taken at consecutive 
time points. The process can happily draw inference from a transition from S(t — 1) = 
0 to S(t) = 0 and then from a transition from S(t) = 1 to S(t + 1) =  0 a moment 
later. Of course in doing this it does not require a switching intensity at all, leading to a 
serious underestimation of these parameters. A lack of time precluded a thorough explo
ration of this problem although the method shows promise and with suitable modification 
would be likely to provide an alternative algorithm for fitting this kind of model.
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