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Abstract
Coating flows can be defined as a laminar free surface flows, whereby a liquid layer is applied 
onto a solid substrate. A typical industrial application consists of co-rotating cylindrical rollers, 
which are used to apply a liquid coating (paint) onto a moving substrate, and depending on the 
direction of the rollers, can be configured in either forward or reverse mode. These types of 
coating solution flows are industrially important applications, and convey viscoelastic aspects 
due to their polymeric content and unsteady polymeric behaviour. The process often possesses 
localized regions of high shear and extension rates (narrow nip and wetting-line zones), which 
may cause instabilities on the coated substrate (ribbing, leveling, striping). These non-Newtonian 
and viscoelastic studies for industrial reverse roll coating focus on the use of computational 
techniques to model these types of coating flows, alongside the analysis of the fluid flow 
behaviour and under varied rheological properties. Two flow problem configurations have been 
considered, a model benchmark problem of mixed combined-separating flow, and the industrial 
application of reverse roll coating flow. Predictions and corresponding solutions are reported for 
viscous, inelastic and complex viscoelastic fluid properties. The numerical formulation adopts a 
Taylor-Galerkin pressure-correction (TGPC) scheme, using a finite element method for viscous, 
inelastic flows and a hybrid finite element/finite volume method for their viscoelastic 
counterparts.

The research plan is centered around computational fluid dynamics and rheological studies, with 
the main target focused on industrial roll-coating operations. From simple theory, Newtonian and 
non-Newtonian coating flows possess specific, yet disparate characteristics. This may lead to 
distinct and significant differences in their detailed flow behaviour, and in the stressing levels 
generated, dependent upon the nature of the flow configuration. The study is segmented into 
several stages: initially, solution was sought for a benchmark flow problem, where a semi- 
implicit time stepping finite element procedure was employed to simulate a mixed combined- 
separating flow. Here, both viscous and viscoplastic material approximations have been 
introduced. Secondly, the industrial application of reverse roll coating flow was addressed for 
viscous inelastic coating fluids. This incorporated scenarios of inclusion and not of a dynamic 
wetting line and consideration of the effects of a rubber elastomer-cover upon the applicator roll. 
Thirdly, viscoelastic paint coatings were addressed for the industrial reverse roll coating flow. 
Here, a hybrid finite element/finite volume sub-cell method was utilized, and with inclusion of a 
dynamic wetting line. Of the various viscoelastic material models available, use has been made 
of the Phan-Thien Tanner (PTT) network class of models, in both linear and exponential variety, 
and of the FENE class of models, with FENE-CR and FENE-P versions. This has offered a 
richness in capacity over variation of rheological properties.

The choice of computational methods has been justified and the TGPC algorithm was deemed 
suitable for problem solution. The methodology tested on combined-separating flow provided 
high-quality numerical results, which compare favorably against experiments, literature and 
theory. When applied to the reverse roll coating problem, the TGPC algorithm has been coupled 
to a time-dependent free-surface update procedure, to determine the dynamic movement of the 
meniscus and the wetting line. Around the nip-region, the flow problem manifests strong flow 
features, which have been investigated for a range of rheological properties of varying shear and



extensional response. The direct impact these have on localized peak nip-pressures and 
distributional lift levels has been observed, where several relief mechanisms have been 
successfully identified (important to optimize process control). The influence of solvent fraction, 
extensional viscosity and increasing elasticity, up to critical stress states have been analysed in 
considerable detail.

In summary, the success of this work indicates optimal flow process settings and preferential 
rheological coating properties to employ, with respect to this industrial coating process. As such, 
it lays the foundation and guide towards achieving a stable and consistent coating application -  
specifically, as high-speed high-gain production is of current demanded.

Shirley Ogechukwu Somtochukwu Echendu

June 2013
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Chapter 1

Introduction

This chapter is concerned with the general introduction to this body of research. Here, 
effective implementation, knowledge and understanding are all prerequisites. This is done 
through an in depth literature review. The theory and hypothesis are briefly explained, 
followed by the problem descriptions including the governing equations and boundary 
conditions adopted. The numerical techniques and algorithms are appraised and justified, and 
the computational stages are outlined giving the various means by which the numerical 
results has been analysed.



Chapter 1 Introduction

1.1 Introduction

In recent years, Computational methods have evolved as the most convenient and economical 
technique for solving industrial problems without building or commissioning the plant or 
application itself. Due to mathematical complexity of rheological problems, computation 
provides the effective solution for many practical engineering problems. Known as 
computational fluid dynamics, here, numerical methods and their associated algorithms are 
used to solve fluid flow problems. The main branch developed to implement these has been 
the relatively new field of computational rheology, where, given the mass and momentum 
balances, with a choice of constitutive equation and appropriate boundary conditions, the 
solution has been obtained for the non-linear system of partial differential equations 
governing the complex flows (Crotchet et al. 1984 and Zienkiewicz and Taylor 1989).

In the field of Rheology, this is defined as the study of deformation and flow of materials. 
The fundamental theoretical concepts are the kinematics which deals with the geometrical 
deformation and flow, conservation laws based on the forces and stresses and constitutive 
relations specific to elasticity. The constitutive equations link the dynamics and forces to 
describe the flow process, and these are then applied to solve engineering problems arising in 
industrial polymer processing, coating applications and food technologies. Fluids can be 
classed as viscous, inelastic, elastic, viscoelastic, plastic, viscoplastic or viscoelastoplastic 
depending on their individual characteristics (Bird et al. 1987). Viscosity is a measure of a 
fluids resistance to flow based on the material response. According to Newton’s postulate, 
under isothermal conditions, for simple steady shear flows, shear stress is directly 
proportional to shear rate. If a fluid does not satisfy this simple linear relationship, then it 
may be termed as ‘non-Newtonian’. These types of fluids may have varying viscosity with 
shear-rate and non-varnishing normal stress differences.

Coating flows can be defined as laminar free surface flows, whereby a liquid layer is applied 
onto a solid substrate. A typical industrial application consists of co-rotating cylindrical 
rollers which are used to apply liquid onto a moving substrate, and depending on the 
direction of movement of the rollers, it can be termed as forward or reverse mode. These 
types of flows are important features in industrial coating applications, due to their polymeric 
content and the complex flow response generated.. As such, knowledge of the coating flow 
behaviour and the rheological it conveys are essential elements in the design and operation of 
roller coating applications. These processes are quite complex and often possess localized 
regions of high shear and extension rates, which can interfere with the process operations, 
causing instabilities on the coated substrates. Most coating flows employed in industry are of 
polymeric type (Bird et al. 1987) and a high molecular polymer will increase pressure drops 
in many applications, as discovered by (Mysels 1949 and Toms 1948).

In order to accurately predict a solution to an engineering problem using computational fluid 
dynamics, there are three main stages required; pre-process, solve equations and post
process. The pre-processing stage consist of the development of a computational domain 
with appropriate boundary conditions, the flow governing equations and a set of constitutive 
equations, and the definition of the flow rheological equations of state. The solving of 
equations stage constitutes the use of a numerical scheme to solve the flow equations. Such a
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Chapter 1 Introduction

method includes finite difference, finite element and or finite volume methods. The post
processing stage involves the analysis and interpretation of the numerical solution from these 
computational techniques. The aim is for this to provide an optimized process, with improved 
overall process design and control, whilst for the practitioner,, reducing production cost and 
increasing commercial competitiveness.

Prior to the modeling of the roller coating process, a combining and separating flow (referred 
to as ‘mixing flow’) configuration was selected as a model flow and benchmark problem, to 
mimic the reverse mode in a reverse roll coating flow. This flow manifests reversing of flow 
direction, but does not include the fluid free-surfaces aspects. The numerical formulation 
adopts a Taylor Galerkin Pressure Correction (TGPC) scheme (Tamaddon-Jahromi et al. 
1992 and Carew et al. 1994), with finite element method for viscous, and inelastic flows, and 
a hybrid finite element/finite volume method for complex viscoelastic flow behavior. Such a 
numerical methodology was tested under the combining and separating flow configuration 
and highly accurate solutions were obtained which compares qualitatively with experiments 
and theory. For the combining and separating flow, material models analysed were of viscous 
and, viscoplastic type of models. For the reverse roll coating, flow simulations for viscous 
and inelastic, Linear and exponential PTT network class of models, FENE-CR and FENE-P 
models were investigated.

The field of roll coating has been well studied both experimentally and theoretically, with 
researchers focusing mainly on forward roll coating and Newtonian fluids. However, reverse 
mode processes have been somewhat important in the case of instabilities occurring. Several 
parameters are considered when operating such applications, including nip gap, speed ratios, 
deformable roll cover and fluid rheological properties. Benkreira et al. [1981, 1982, 2002a] 
have performed in depth studies on roll coating using experimental techniques. The authors 
have focused on roll coating of viscous fluids, analyzing ribbing instabilities and dynamic 
wetting. Coyle et al. [1987, 1990] observed the film splitting flow of shear-thing liquids in 
forward roll coating and the theory of deformable roll coating. Carvalho et al. [1994 and 
1996] investigated the elastohydrodynamic lubrication on roller nips, in terms of capillary 
and viscoelastic properties of roll cover. Cohu et al. [1995a, 1995b and 1997] also 
experimentally investigated on forward roll coating with deformable rolls and rheometry of 
paints. All authors have focused on experimental review of viscous and inelastic flow in 
forward roll coating with deformable rollers. Until recently, most of the theories and 
hypothesis of coating flows have all been based on these aspects. Some of the areas 
concerning industrial needs have not been fully explored. In recent developments to try and 
tackle practical industrial applications, several reviews and research studies on roll coating 
have been introduced. Benkreira [2002] experimentally studied the dynamic wetting in 
reverse roll coating. Ascenio et al. [2006] analysed high speed roll coating with complex 
rheological fluids. Lopez et al. [2002a, 2002b] presented the rheological effects in roll 
coating of paints and non-Newtonian effects on ribbing instability. Again, the authors have 
categorized roll coating applications and focused on specific aspects.

The computational and rheological studies for coating flows brings together the different 
aspects of the process. The overall aim is to use computational techniques to model coating 
materials in a reverse roll coating industrial application, involving dynamic wetting lines, the

- 3 -



Chapter 1 Introduction

approximation of complex nip-gap, meniscus and throughput flow, and the interaction with 
the complex coating fluid rheology. Here, a broad outline to the subject matter and its 
background are provided for the research study, covering details on fluid rheological 
properties and computational methods. The plan and outlined of the research conducted is 
then as follows:

In chapter 2, fluid mechanics is introduced and its relevance in the engineering of fluid flow 
processes. Here, the fluid model is defined and governing equations are assembled. The 
introduction covers the fundamental concepts of fluid flow and the three basic laws satisfied 
in any fluid dynamics processes, (law of conservation of mass, law of conservation of 
momentum and law of conservation of energy). With particular reference to the coating 
flows studied herein, this chapter aids in the understanding of the dynamics of coating flows 
and their governing equations and how the initial and boundary conditions are construed.

Chapter 3 entails the specification of various coating fluid model and assembly of the 
rheological equations of state. This allows for the analysis of the rheological aspects of the 
problem and how their influence is determined.

Chapter 4 is concerned with the theory behind numerical methods and development of the 
numerical techniques and algorithms used in the computational studies and simulation of 
coating flows, with relevance to the engineering of this industrial fluid flow process. The 
various numerical techniques are appraised and the choice of numerical analysis justified. 
The algorithms used in modeling the coating process are defined and mathematical models 
describing the mechanics behind the physical problems are assembled. Having considered all 
characteristics of the numerical schemes, a finite element based time stepping algorithm was 
selected, coupling a Taylor-Galerkin and pressure-correction method of high degree of 
accuracy, capable of solving viscous and viscoelastic flows. This chapter is devoted to 
analyzing the several mathematical techniques employed within this algorithm.

A model benchmark problem, combining and separating incompressible flow of Newtonian 
and inelastic Herschel-Bulkley fluids is studied numerically in Chapter 5. The influence of 
inertia and fluid rheology is analysed on flow patterns, velocity fields and pressure drops for 
various flow configurations, with fixed geometric gap-width that itself stimulates the splitting 
and merging of in the flow. For such Newtonian flows, the numerical procedure was verified 
with good agreement against previous numerical and experimental observations. To extend 
consideration to non-Newtonian inelastic materials, the material rheological characteristics 
were approximated with the use of the Herschel-Bulkley fluid model, incorporating the 
Ostwald-de Waele Power-law model and viscoplastic yield stress. An unyielded power-law 
fluid with varying power index (m) was investigated, then variation of the consistency index 
(k) were analysed. For Bingham model solutions, devoid of shear-thinning and increasing 
yield stress, the appearance of yielded and unyielded regions was observed. Under Herschel- 
Bulkley modelling, there was little change noted in the kinematics, but some was apparent in 
rheological response.

The industrial application is introduced in chapter 6; where a high-speed defect-free roll 
coating flow with free meniscus surface is simulated. This study has sought to attack
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industrial optimisation of coating performance by developing an effective predictive toolset 
for high-speed defect-free coatings, to address increased process efficiency and commercial 
productivity. Here, time-stepping/finite element methods are deployed to model this free- 
surface problem that involves the transfer of a coating fluid from a roller to a substrate (of 
prescribed wet-film thickness). This procedure is used in conjunction with a set of 
constitutive equations capable of describing the relevant fluid-film rheology in appropriate 
detail. Quantities of pressure, lift and drag have been calculated streamwise across the flow 
domain for which streamline patterns reveal a large recirculating vortex around the meniscus 
region. Further analysis has been conducted, mimicking the presence of a wetting line, whilst 
varying boundary conditions at the nip-zone. Observation has shown that such inclusion 
would serve as a relief mechanism to the positive peak pressures generated around the nip 
zone. Here, through an elasto-hydrodynamic formulation, the elastic deformation of a rubber 
roll cover (elastomer) has also been introduced, which offers fresh insight into the process 
with respect to nip-flow behaviour, and allows for the analysis of both positive and negative 
nip-gaps.

Subsequently, Chapter 7 addresses the numerical solution of high-speed reverse roller 
coating flow associated with the industrial process of thin-film paint-coatings of strip-steel. 
The modelling includes viscous inelastic rheology, meniscus and dynamic wetting lines. 
Flow structures are examined in detail around the meniscus, nip and wetting line regions, 
analysed via streamline and shear rates patterns, surface distributional lift and localised nip- 
pressures. For Newtonian coatings, two vortex transfer modes are visible: one large structure 
commencing just downstream of the meniscus; and a second miniscule structure in the nip- 
vicinity, upstream of the wetting line, which is accompanied by increase in localised pressure 
(this would be influenced by air-entrainment, if that were to become a feature of the 
problem). Effects of parameter variation are analysed in nip-gap size, adjustment of 
applicator roller-substrate speed-ratio and levels of surface tension.

The computational modelling of reverse roll coating, in the context of dynamic wetting lines 
is analysed in Chapter 8, for various non-Newtonian viscoelastic materials. Rheological 
description appeals to the Phan-Thien Tanner (PTT) network class of models, which 
parametrically can be made suitable to represent typical polymeric solution response, with 
properties of shear-thinning and strain-hardening/softening. The numerical technique utilises 
a hybrid finite element-subcell finite volume algorithms with dynamic free-surface location, 
drawing upon a fractional staged, predictor-corrector, semi-implicit time-stepping procedure. 
The numerical solution is investigated following a systematic study which allows for 
parametric variation in elasticity (We-variation), extensional hardening-softening (s), and 
solvent fraction (|3). Under incompressible liquid flow conditions, LPTT and EPTT 
constitutive equations were modelled for flow simulation through a two-dimensional planar 
reverse roll coating domain. Solution cover a range of Weissenberg numbers (We) up to 
critical levels, addressing velocity fields and vortex developments, pressure and lift profiles, 
shear-rate and stress fields. At low values (e>0.5, p =0.1) of extensional viscosity, EPTT 
model flow fields were considerably easier to solve, attaining critical We levels up to 0.4, in 
contrast to those for the LPTT model for which critical We levels were 0.3; this situation is 
reversed at high extensional viscosity levels. On the influence of strain softening in EPTT
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solutions, increasing the level of extensional hardening/softening stimulates the vortex 
structure around the nip region, with a reduction in peak pressure and lift values.

In chapter 9, further rheological exploration is examined in contrast to that above. Here, 
simulations are conducted for high speed reverse roll coating flow of polymer solutions using 
viscoelastic FENE constitutive models, appealing specifically to FENE-CR and FENE-P 
models, with properties of strain hardening and shear-thinning, respectively. A systematic 
computational and rheological study allows for parametric variation in elasticity (We- 
variation), level of extensional hardening (s), shear-thinning and solvent fraction (p). Various 
problem aspects are investigated to reveal the influence of viscoelasticity on vortex 
developments, pressure and lift profiles, shear and extensional rates, and critical stress states. 
Specific advantages of the viscoelastic rheological properties are observed by analysing 
stress and flow structures over a range of Weissenberg numbers. The novel aspects of the 
work lie in the application of the algorithm to the reverse roll coating process under such 
viscoelastic flow approximation. Furthermore, the effects of shear-thinning are observed 
comparing FENE-CR with LPTT and the effects of strain softening between FENE-P and 
EPTT.

Chapter 10 presents the conclusions and future directions to this study. Overall, this provides 
a guide to the suitable rheological properties required in an industrial coating for a stable and 
consistent application.



Chapter 2

Fluid mechanics and governing equations

This chapter is concerned with the introduction of fluid mechanics and its relevance in the 
engineering of fluid flow processes. The fluid model is defined and governing equations 
are assembled. The introduction covers the fundamental concepts of fluid flow and the 
three basic laws satisfied in any fluid dynamical process (law of conservation of mass, 
law of conservation of momentum and law of conservation of energy). With particular 
reference to the coating flows studied, this chapter aids in the understanding of the 
dynamics of coating flows, the formulation of their basic governing equations and how 
the initial and boundary conditions are configured.



Chapter 2 Fluid mechanics and their governing equations

2.1 Introduction
A fluid can be defined as a substance that flows and undergoes deformation when a shear 
force is applied. Fluids can include gases or liquids. Fluid mechanics is the branch of 
applied mechanics concerned with the study of statics or dynamics of fluid flow. Now a 
modem discipline, computational fluid dynamics constitutes computational methods used 
to develop solutions to fluid mechanics problems.

Between fluids and solids, a fluid undergoes strain when subject to applied (shear) stress, 
but solids resist stress to a certain limit (elastic limit) before deformation. Under applied 
shear force, a fluid undergoes continuous deformation which is analysed by the 
continuum concept. From the basic concepts of fluid mechanics, there are two types of 
approach used; the Lagrangian approach and the Euler approach. The Lagrangian 
approach describes the path of a fluid particle exactly (i.e. at a particular moment in time), 
where the coordinate system is dynamic and moves with the particle. This approach is 
quite complex for fluids, since they are in continuous motion, and is mainly used in solid 
mechanics. The latter, Euler approach describes the path of the fluid particles with respect 
to space and time, such that spatial reference is fixed e.g. for a fluid flow through a pipe, 
the Euler approach considers only a section of the pipe and tracks the fluid particles in 
that section. This type of approach is mainly used in fluid mechanics and is that used in 
this study.

There are various flow analysis techniques used in fluid mechanics; these are, control 
volume or integral analysis, differential analysis, and experimental analysis. Here the 
focus lies mainly on differential analysis. In any of the flow analysis techniques, the law 
of mechanics, thermodynamics and associated boundary conditions must be satisfied. 
These three laws are developed from the theories and principles of fluid mechanics; the 
law of conservation of mass, the law of conservation of momentum and the law of 
conservation of energy.

Other fundamental concepts in fluid mechanics are no slip conditions which are boundary 
conditions. For a fluid flowing through a pipe, the pipe wall is stationary, therefore 
having zero velocity. Thus, the fluid in contact with the pipe wall will flow at the velocity 
of the wall. For no slip conditions to apply, the relative velocity between the solid wall 
and the adjacent fluid particles is zero.

The flow visualisation can be performed by identifying the flow patterns taken up by the 
fluid particles, using streamlines, pathlines or streaklines.

The main aim of this chapter is to study and understand the various types of coating fluids 
used in the numerical modelling and to formulate the basic governing equations of the 
flow according to the fundamental theories and principles of fluid mechanics.
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2.2 Fundamental concepts of fluid flow
Fluids can be classified in various ways depending on the rheology, dilatational tensor, 
temporal variation, spatial dimension, motion characteristics and fluid type. A particular 
fluid type can be either liquid or gas based on the individual molecular behaviour. 
Depending on the density property o f  the fluid, it can be compressible or incompressible, 
where compressible fluids have varying density and incompressible fluid have constant 
density under applied pressure. Flows can also be classed as steady or transient, whilst 
considering the variation o f  the fluid properties with respect to time. Depending on the 
viscosity o f a particular fluid type, it can also be classed as a viscous or inviscid fluid, 
where viscous fluids have varying viscosity and inviscid fluid have vanishingly small 
viscosity.

In solving fluid mechanics problems, all fluid flows physically arise in three dimensional 
form (x, y, and z). Yet, for ease in mathematical complexity, fluid flow analysis can be 
performed in one, two, or three spatial dimensions.

Fluids
Classification

Fluid Flow  
Analysis

Fluid Flow  
D escrip tion

Fluid Flow  
B ehaviour  

D escrip tion

Liquid Or Gas -
One

Dimensional,

Incompressible 2-Dimensional,
Or Compressible Or

Transient Or 3-Dimensional
Steady Form

Eulerian Or -
Integral

Approach

Lagrangian Differentia l
Approach Approach

Inviscid Or 
Viscous

In modelling o f fluid flows, the continuum concept is applied assuming that;

■ The contribution to the motion o f individual molecules can be ignored,

■ The fluid undergoes continuous deformation, and

■ The fluid variables, attached to each point in the fluid domain, have a unique 

value.

In order to analyse any fluid flow problem, one has to define the system and its control 
volume. The system is a collection o f matter o f fixed identity, and a control volume is a 
volume in space in which fluid flows. In fluid dynamics one can define an open or closed 
system, depending on the type o f  problem, or indeed the finite nature o f the control 
volume.
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The various basic concepts of fluid mechanics considered are;

Fluid modelling

For any particular fluid flow problem, the kinematics of the fluids has to be determined. 
Kinematics is the study of how fluid moves. For static fluids, the fluid velocity field can 
be determined without reference to the force on the fluid depending on the spatial 
distribution of the particles in a fluid at any particular time. This can be expressed as,

V = u(x ,y ,z , t }i  + v(x ,y ,z , t }  j  + w{x,y ,z , t}k  (2.2)

For moving fluids, the dynamics of the fluid must be determined. Hence, fluid dynamics 
is the study of fluids in motion, a topic for this chapter, where the associated dynamics of 
fluid flow are investigated.

Flow field description

There are two approaches which can be used to represent the motion of a fluid flow. 
These include the Lagrangian and the Euler approach. In the Lagrangian approach, 
coordinate reference is relative to the motion of the particles themselves in a fluid 
element. The velocity of a particular element in the fluid at a particular point in time is 
studied and traced through the flow. This is done for every other element of the fluid and 
gives a complete description of the flow field. For fluids, this approach is fairly complex 
to follow, as they are in continuous motion. Alternatively, this approach is a popular 
choice in solid mechanics.

Under the Euler approach, the motion of the particles in the fluid element are studied with 
reference to a fixed spatial reference, as a function of space and time. Here, the motion of 
the flow is given by prescribing the properties of the fluid relative to the space coordinate 
system and time. This approach is generally easier to adopt in practice and is commonly 
used in fluid mechanics.

Time derivatives in a fluid

The properties of a fluid, such as density, pressure, acceleration, are relative to spatial 
distribution and time. In an Eulerian approach, one may describe the rate of change of a 
particular property with respect to time, t, at a fixed point in space. Therefore, suppose a 
property of a fluid is specified as a,

docIn an Eulerian scheme, a  = —  (x, y, z, t) (2.3)

docIn a Lagrangian scheme, «  = —- (j) (2.4)

In the Lagrangian representation, the rate of change of that property is described with 
respect to time following an individual molecular element of the fluid.

- 1 0 -



Chapter 2 Fluid mechanics and their governing equations

Reynolds transport theorem

Reynolds transport theorem is one of the fundamental principles of fluid mechanics and a 
part of the integral theorem which is considered when deriving the governing equations of 
fluid mechanics. It conveys the relationship between the time rate of change of an 
extensive property for a system and that for a control volume. Basically, the Reynolds 
transport theorem is a law governing the fluid motion using both system concept and 
control volume concepts.

Considering a volume V and a certain property a, associated with the fluid. The integral 
part of the material derivative, with both steady and unsteady effects, can be represented 
as;

Da da  ^ = —  + V.V(a)  (2.5)
Dt dt V '

Da dawhere ( ----- ) is the time rate of change of the property of a system, and ( — ) is the time
Dt dt

rate of change of the property within the control volume as the fluid passes through it and 
finally, [ K.V (a)  ] is the net flux of the property across the entire control surface.

Analysis offluid flow behaviour

There are two different approaches which can be used to analyse the behaviour of a fluid 
flow, the integral approach and the differential approach. In the integral approach, 
quantities are evaluated within a volume of fluid. This is accomplished by obtaining 
integrated equations expressing behaviour of fluid properties for a control volume in a 
flow field. This can be performed in two steps; firstly, to scrutinise the problem and check 
if the system is appropriate for control volume analysis; and secondly, to examine the 
behaviour of the control volume, i.e. moving, fixed or elastic. The properties which can 
be analysed in integral form are; volume flow rate, mass (integral of density over 
volume), and force (integral of stress over area).

In the differential approach, it involves the evaluation of unknown dependent variables at 
any spatial point in fluid flow for all time. The differential equations express the fluid 
flow behaviour with detailed knowledge of a flow field at a point.

- 1 1 -
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2.3 Fluid flow and associated governing equations
The fundamental concepts o f fluid flow are all based on three principle laws, the law of 
conservation o f mass, the law o f  conservation o f momentum and the law o f  conservation 
o f  energy.

Conservation o f  mass

The law o f conservation o f mass applies to all fluid elements. This law states that the 
mass o f a closed system will remain constant over time i.e. mass cannot be created nor 
destroyed, the mass flowing into a system must equal the mass flowing out o f that system.

Considering a volume o f fluid bounded by a closed surface,

6 x

6 y
6 z

The fluid flows is three dimensional, therefore with velocity component, (u, v and w) in 
the (x, y, and z) directions, respectively. In differential form, the continuity equation can 
be derived from the law o f conservation o f mass as follows;

mass =
density
volume

Dmass
Dt

d p | d(p i i )  | d ( p v )  | 5 ( / w ) _ 0
dt dx dy dz

or ^ -  + S / ( p U )  = 0 
dt V '

(2 .6 )

(2.7)

(2 .8 )

From equation 2.8, the fundamental continuity equations o f  fluid mechanics are obtained, 
which is valid for all types o f  flows including; steady, unsteady, compressible, 
incompressible, viscous and inviscid flows.

Considering an incompressible fluid with constant density, the density can be negligible, 
therefore one derives,

du dv dw —  + — + —  = 0
dx dy dz

Or V U  = 0 (2.9)
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Conservation o f momentum

In fluid dynamics, the study of fluids in motion, it is assumed that all fluid elements obey 
the basic laws of mechanics. The motions of these fluids are predicted using the 
fundamental laws of physics and physical properties. These are based upon the laws of 
Newton;

1) A body will remain at rest in a straight line until acted upon by an external force.
2) The rate of change of momentum of a body is proportional to the force applied and 
takes place in the direction of the force.
3) Action and reaction are equal and opposite.

The fundamental law which applies to fluid dynamics is Newton's second law, as stated 
above. The forces which influence the motion of the fluid include; gravitational forces, 
pressure, forces due to molecular viscosity, surface tension, compressibility and inertial 
Reynolds stresses. For a Newtonian incompressible fluid with constant viscosity and 
density, the momentum transport equation can be expressed as;

T̂T
p  = juV2U - p U - V U - V p  (2.10)

dt

For Newtonian compressible fluids, the external forces are gravity, (g) and surface 
tension. The surface tension is described by the Cauchy stress tensor (o),  therefore the 
momentum equation is expressed as:

D (pu)
Dt V a  + Pg  (2 U )

Where (cr) is the Cauchy stress tensor, which can be reduced to an isotropic pressure and 
an extra stress tensor, expressed as;

cr = —p\ + T (2.12)

The total material derivative, —  can be defined as,
Dt

J L = <L + U. y  (2.13)
Dt et

Combining equations 2.13 into 2.11, ignoring the forces due to gravity, one extracts,

— hm-V w = V-<y (2-14)
dt )

Therefore, replacing the Cauchy stress with expression 2.12, the momentum transport can 
be expressed through the Navier-Stokes equation as;
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ĵ = V*T- p U - V U - V p  (2.15)

The extra stress tensor ( T ) is defined as;

T = 2 f iD (2.16)

and the rate of deformation tensor, D over space and time, with the temporal derivative ( 
U,) and the matrix transpose ( f ) defined as;

D = -i(VC/ + VC/t ) (2.17)

For conversion to dimensional quantities, adopting characteristics scales on velocity U 
(Standard foil speed), length L (steady state coating height) and characteristic viscosity 
(//<?) set at a zero-shear rate level, the non-dimensional variables may be defined as:

*  u  *  L  *  Li-
u =— ,p  = ------ ,/u, = —

U *  MoU *  Mo

•* U x  . Uy  = — y ,x  = —,t - — t 
L  L  L

Thus, the non-dimensional quantity (Re) is introduced as;

Re = ^ l  (2.18)

As such, the non-dimensional Navier-Stokes equation for momentum transport may be 
expressed as;

Re—  = V - T - R e t / - V E / - V / >  (2.19)
dt

Initial and boundary conditions

In the modelling of flow, initial and boundary conditions must be specified, in 
conjunction with the governing equations. The initial and boundary conditions can be 
specified in terms of velocity or pressure, depending on the type of flow problem. For 
viscous fluids, it is assumed that at solid boundaries the fluids are not in motion, therefore 
the no-slip condition applies:

u = v = 0 (2.20)

For inviscid fluids, it can also be assumed that there are no fluid motions at the solid 
boundaries, but a tangential-slip condition applies:
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u n  = 0 (2.21)

For free surface flows, appropriate interface boundary conditions must be adopted and in 
a similar manner, initial conditions must be specified for time dependent flows.



Chapter 3

Rheology

This chapter is concerned with the introduction of the subject matter of rheology, the theory 
of complex fluid flow and associated material fluid properties, the introduction of 
mathematical models to represent the same, and their relevance in the engineering of fluid 
flow processes. The work entails the definition of how coating fluids are modelled and the 
assembly of the rheological equations of state. This allows for the in-depth analysis of the 
various rheological parameters and their influence on both, a model flow problem and an 
industrial roll coating application. The physical meaning and concepts behind the properties 
of complex non-Newtonian and viscoelastic fluid material are also described
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3.1 Introduction

Rheology is the study of flow and deformation of fluids [Bames 2000]. Fluids are said to be 
flowing when the elements of the fluid deform and adjacent particles in the fluid are moving 
relative to one another. The flow of fluids can be divided into two classical deformation 
states; i.e. shear flows and extensional flows [Macosko 1994, Tanner et al. (1998), Tanner 
(2000), and Morrison (2001)]. In shear flows, the fluid particles flow over or past each other, 
while in extensional flows, the adjacent particles in the fluid flows towards or away from 
each other.

The property of fluid that offers resistance to shear is called viscosity (inverse fluidity). 
Fluids are made to flow by imparting a velocity or applying a force. For any given velocity, 
the force increases with increasing viscosity, whereas for a given force, the velocity reduces 
with increasing viscosity. The gradient of the velocity in the direction at right angles to the 
flow is termed the ‘shear rate’ (shear strain or velocity gradient), and the resulting force per 
unit area created, applied or produced by the flow is referred to as the ‘shear stress’. Fluids 
with high viscosity (p) have high resistance to shear stress. Therefore, for any viscous fluid, 
shear stress (x) is proportional to shear strain (y). This can be expressed as;

r = p y  (3.1)

According to Newton’s law of viscosity, these fluids can be sub-divided into those 
expressing Newtonian and non-Newtonian fluid properties. Newtonian fluids possess a shear 
stress that is directly proportional to shear strain, while non-Newtonian fluids reflect a more 
complex dependency upon shear strain.

With respect to the variation of shear strain in relation to shear stress, when a shear force is 
applied, fluids can be classified into the following various categories depending on the 
viscosity:

Apart from Newtonian fluids with constant viscosity where shear stress is linearly 
proportional to shear strain, other fluid properties include those of:

■ Shear-thinning fluids or pseudo plastic fluids; where viscosity decreases with 
increasing shear stress, e.g. ketchup, blood, paint, nail polish.

■ Shear-thickening fluids or dilatants fluids; where viscosity increases with increasing 
shear stress, e.g. mixing of com starch and water.

■ Bingham plastic; where shear stress must reach a certain limit before flow 
commences, e.g. squeezy-bottle ketchup.

■ Thixotropic fluids; where viscosity decreases with time at constant shear stress.
■ Rheopectic fluids; where viscosity increases with time at constant shear stress.
■ The ‘Ideal fluid’; constantly shearing with little or no stress applied.
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■ The ‘Ideal solid’; no shear strain, with the maximum shear stress applied (no flow).
■ Viscoelastic fluids; that expose viscous and elastic properties, when shear stress is 

applied. Under pure viscous response, a fluid strains linearly with time; whilst under 
pure elasticity, the fluid strains instantaneously and returns back to its original state 
once the stress is removed.

The main aim of this chapter is to provide the underpinning theory to model industrial 
coating flows, using constitutive equations of state to represent the state of stressing in a fluid 
under flow. This then emerges as mathematical differential-type models to describe their 
equations of state. A study is performed of the associated rheological properties of some 
typical fluids of this type and relevance.

3.2 Newtonian fluid approximation

A Newtonian fluid can be defined simply as a fluid that possesses a constant viscosity with 
deformation rate and time; still viscosity may vary with adjustment in prevailing temperature 
and/or pressure conditions. This type of fluid does not display any elastic or extensional 
behaviour under flow; hence it does not support non-zero ‘Normal stresses’. Therefore, for 
Newtonian fluids, shear viscosity may be interpreted through the ratio of shear stress to shear 
rate.

r = p y  (3.1)

Common expectation for such fluid viscosity is to decrease with increase in temperature, and 
the larger the viscosity, the greater the rate of decrease [Bames at al. 1989]. With respect to 
pressure dependency, the fluid viscosity normally increases with rise in pressure, but at a 
slightly lower rate than under temperature changes and for situations encountered in 
everyday life.

All fluids become non-Newtonian at sufficiently large shear rates, but Newtonian fluids 
considered here will only do so at extremely high levels of shear rate.

3 .2 .1  F lo w  e q u a tio n s  fo r  N e w to n ia n  flu id s

For a Newtonian fluid with a constant viscosity (as above), some assumptions can be made 
about its flow in certain simple geometric settings. Here, one may consider the importance of 
viscosity in flows, the effects of turbulence for high-speed flows, and the importance of 
surface tension as well as viscosity in some flow situations.

- 1 8 -
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For flow through a tube:

For a fully developed laminar flow of a Newtonian fluid through a tube, of radius a, length L, 
flow rate Q, and pressure P, it has been long established by Poiseuille [Barnes 2000], that the 
velocity of the fluid at any given radius will have a parabolic profile [Holland et al. (1995)] 
as given by;

This shows that the shear rate or the velocity gradient varies linearly in the tube, from a 
maximum at the wall to zero at its centre. This also implies to the shear stress in the liquid. 
Therefore in such a scenario, the velocity is maximum at the centre of the tube where shear

the ‘no slip’ concept, that there is no slippage at the walls, which is true for most Newtonian 
fluids considered here. Accordingly, the general equation for the streamwise pressure drop 
[Barnes et al. (1989)] governing Newtonian laminar flow through a tube is given by;

where P represents the pressure drop (in Pascal units), Q is the flow-rate, L is the tube length,
a is the tube radius, and r| is the fluid viscosity.

For turbulent flows:

For turbulent flows, the Reynolds number (which is the ratio of inertial forces to viscous
forces) is introduced and expressed in non-dimensional form as;

where p  represents the fluid density, JJ a characteristic velocity-scale (based on say, mean 
flowrate Q), t  is a characteristic length-scale (based on say, tube-diameter), and q is the fluid 
viscosity.

For free-surface coating flows

For free-surface coating flows, governed by a surface tension coefficient, q, when a thin 
sheet-substrate is pulled across a Newtonian fluid at a constant velocity V, with the fluid 
lying on one side of the sheet, the final thickness of the liquid coating formed on the sheet- 
substrate is approximately given by, (for capillary numbers up to 2, see below, [Barnes 
2000])

(3.2)

rate is zero and velocity is zero at the walls where shear rate is maximum. This is based on

P _ S  Q n L (3.3)

(3.4)
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(3.5)
\ p s )  \  s

Then, the influence of surface tension may be judged from the capillary number (a ratio of 
viscous to surface tension forces), as expressed by;

£

3.3 Non-Newtonian fluid flows

Non-Newtonian fluids usually have limiting values of viscosity at low and high shear rates, 
called the zero-shear and infinite-shear viscosities, respectively. At sufficiently low shear 
rates, the viscosity is constant, but begins to decrease thereafter at some point, with a straight 
line response (in log-log form) indicating a power-law behaviour [Barnes 2000]. When fluid 
viscosity decreases with increasing shear rate, these so-called fluids are referred to as shear 
thinning. These are distinguished from those manifesting a decrease in viscosity with time 
under constant shearing, then termed thixotropic fluids. On the other hand, when viscosity 
increases with increasing shear rate, the fluids are termed shear-thickening (or dilatant 
fluids). When an increase in fluid viscosity with time under constant shearing is observed, 
then the fluids are called rheopectic fluids.

3.3 .1  C o n s id e r in g  s h e a r - th in n in g /sh e a r -th ic k e n in g  flu id s

The material flow response for a non-Newtonian shear-thinning fluid can be captured using 
simple equations which relate viscosity to shear rate via a minimum number of parameters.

The Cross model:

The Cross model was named after Malcolm Cross [1965], an ICI rheologist who worked on 
dye-stuff and pigment dispersions. He expressed an equation which describes the viscosity of 
many suspensions on the whole viscosity curve as follows;

When describing a non-Newtonian fluid with this model, the degree of shear-thinning is 
dictated by the value of power-index m, with m = 0 for Newtonian fluids and m tending 
towards unity for shear-thinning fluids. For such a 3-parameter dependency, the viscosity 
function is shown schematically in log-log scale non-dimensional form in Fig. 3.1, reflecting 
linear form in the power-law region and no second-Newtonian limiting plateau at large 
deformation rates.

(3.6)

rj-ri* = 1 (3.7)
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Figure 3.1: Log-log viscosity against shear-rate, Cross model 

The Carreau model:

Similarly, the Carreau model, as illustrated in Fig. 3.2, adopts a close functional 
representation to that o f the Cross model, expressed as:

(3.8)

(1+( < r ) 7

The Carreau and Cross model are somewhat equivalent at low and high shear rates. 
Departure is noted in the powerlaw-region (with more curvature) and towards the second- 
Newtonian limiting plateau at larger deformation rates, icy >  1 O'2. In this research study, the 

Carreau model has been used to match the viscosity for a typical industrial coating fluid.
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Experiment 
Carreau Model

Shear rate

Figure 3.2: Log-log viscosity against shear-rate, Carreau model; matching a typical industrial
coating fluid

The Power-law model:

The power law model expresses any non-Newtonian fluid, where the infinite shear viscosity 
is small, the Cross model reduces to the Ostwald-de Waele power-law model, given by;

<j = h j m Or ij -  Kyn'~l (3.9)

The power-law index (m) is non-dimensional and ranges from m  = 1 for Newtonian 
behaviour, with m towards zero for shear-thinning representation, to m  above 1 for dilatant 
fluid response. The power-law model can well describe most structured fluids with shear 
rates in the range o f about 1 to 1000 s '1 (see Fig. 3.3.). In practice and above these values, the 
physical viscosity curves show a tendency to flatten in slope tailing-off towards a limiting 
high-rate shear viscosity plateau (second-Newtonian level).
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Figure 3.3: Log-log viscosity against shear-rate, Power law model.
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3 .3 .2  C o n s i d e r i n g  y i e l d - s t re s s  f lu ids

For yield stress fluids, there has been useful progress in modelling the behaviour of 
viscoplasticity, by using simple yield stress containing equations that Fit steady-state 
behaviour [Bird et al. (1983)]. These equations include the Bingham [1922], Casson [1959] 
and Herschel-Bulkley models [Papanastasiou (1987)]. All such models exhibit a 
regularization technique for the solid-fluid interface discontinuity and have been developed 
to make tractable yielded/unyielded regions within a flow (fluid-like being yielded; solid-like 
being unyielded).

The Sisko and Bingham equations:

For most structured liquids at high shear rates, the Cross model simplifies to the Sisko form, 
as follows;

i  = ri„ + 7 ~ ^ r  (310)
(*7)
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where for most shear-thinning fluids, power-index m=l. As such, equation 3.10 can be recast 
as the Bingham model equation, by multiplying through by shear rate, providing;

<y = — + v j  Or <t = <t0 + r j f  (3.11)
K

Here, the Bingham parameters are the yield stress (<jq) and the plastic viscosity

The Casson model:

In simple shear flow, the Casson model takes the form:

•Jcr = J c ^ + J t^ y  (3.12)

The Herschel-Bulkley model:

The corresponding form for the Herschel-Bulkley model is:

(T = a0+rcyn (3.13)

In recent research, there have been several modifications to these models, and here one 
focuses on the regularization procedures suggested in the Papanastasiou model [1987] based 
on the Bingham model. In addition, consideration is also given to shear-thinning inclusion 
via the Herschel-Bulkley approximation. The viscosity function governing the behaviour of 
this material is described in Fig. 3.4a, utilizing a viscous regularization technique as 
illustrated in Fig. 3.4b.
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Figure 3.4a: Log-log viscosity against shear-rate; variation in yield stress; Herschel-Bulkley
model.
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Figure 3.4b: Log-log shear stress against shear-rate; Herschel-Bulkley model under viscous

regularization.
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3 .3 .3  C o n s titu tiv e  e q u a tio n s  fo r  v is c o e la s t ic  flu id s

Viscoelasticity describes the flow behaviour for complex fluids such as polymers, emulsions 
and paste. Such material behaviour is dominated by research targeted at industrially relevant 
materials, with properties intermediate between ideal solids and fluids. The stress response of 
viscoelastic materials exhibits viscous and elastic characteristics that depart from that 
governed by Newton’s law of viscosity. As such, rheological science advances the 
fundamental understanding of flowing matter by establishing constitutive equations of state, 
via relationships expressed between stress, rate-of-change of stress and deformation-rate.

For general viscoelastic flow, the constitutive law relates force, through applied stress per 
unit area subject to deformation, assuming the fundamental principles as follows. The stress 
at any fluid-material point is determined from the deformation history of the fluid motion, 
where that stress is determined by the flow deformation history of the environment around 
that fluid-material point. As such, the constitutive equation, so derived, must be independent 
of coordinate variance, and any superimposed rigid body motion.

The constitutive model introduces the extra stress tensor [Crotchet et al. 1982] as:

7, = r ,+ r 2 (3.14)

where for a Newtonian fluid, the solvent purely-viscous stress component tensor is given by,

t, = 2juD (3.15)

and for a Generalized Newtonian fluid, by

rt =2M( f ) D  . (3.16)

For a viscoelastic fluid, stress is considered as a combination of viscous and elastic
influences, and as such, the simplest such construction of the Maxwell model introduces a 
convective term to describe the corresponding non-linear material response [Maxwell 1867] 
as,

f r 2+A,T2=2juD (3.17)

where X represents a material relaxation time and the convective derivative term is expressed 
as:

Ti = —  + C /.V r-r .V C /-r.(V f/)t . (3.18)
dt

Substituting the convective term into the constitutive model, equation 3.17, yields,
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f r  + A -  + U.Vt - t.V U - t.(VU) 
V dt

(3.19)

Now, introducing the dimensionless Group Weissenberg number, We as:

(3.20)

where U I t , represents an adopted scale on rate (inverse time-scale) here determined via 
characteristic velocity and length scales.

Hence, in non-dimensional form the constitutive model for viscoelastic flow may be 
expressed as:

Here, the role of the f-functional is to describes the material flow type, with /  = 1 
corresponding to material properties for an Oldroyd B model [1950]; other forms of 
functionality for f, result in alternative viscoelastic material properties, and these are explored 
below.

The Phan-Thien/Tanner (PTT) class of models:

This class of models emerges from rubber-network theory and offers finite-extensibility 
variants to the Oldroyd-B model. Such models, introduced by Phan-Thien and Tanner 
[1977], rectify the unbounded extensional response at finite rates of the Oldroyd-B model. 
Though alternative parametric settings, this model is effective in representing industrial 
viscoelastic flows, such as polymer melts and solutions, in that it can be manipulated to 
exhibit shear thinning, extensional hardening/softening and extensional hardening/sustained 
hardening material behaviour.

The/ function in general exponential form, yields the Exponential PTT model (EPTT), via:

Upon expansion of the exponential form f  using Taylor series approximation and truncating 
at first-order terms, the linear PTT (LPTT) model is obtained, from

(3.21)

(3.22)

/  = ! + — Tr{r) (3.23)
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Likewise, truncating further at second-order terms leads to a quadratic form (QPTT), based
on,

(3.24)

Upon such a class o f PTT models, the Gordon-Scholwalter combined-convected derivative 
may be introduced, with both upper and lower convective derivatives appearing, via

□ V

t 2 = r+ £ (D .r  + D. t ) (3.25)

This calls upon the material model parameters, s ,  £ (so-called slip-parameter) and r/s to

control the extensional and shear behaviour. Accordingly, the material functions are then 
expressed as,

ns = Pn0 + Tlp(l-P)

2n0(l-p)X,y:
*le = 4rloP + 4rlo(1-P ) ( f -2 X ,e ) ( f  + 2A,,e)
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Figure 3.5: a) Shear viscosity, b) extensional viscosity, c) shear stress, d) first normal stress
difference

EPTT model; [1] P = 0.9, £ = 0.5, [2] p = 0.1, e = 0.5, [3] p = 0.01, £ = 0.5, [4] p = 0.1, £ = 0.25.
LPTT model; [5] p = 0.9, £ = 0.5, [6] P = 0.1, £ = 0.5, [7] p = 0.01, £ = 0.5, [8] p = 0.1, £ = 0.25,

[9] p = 0.1, £ = 0.15, [10] p = 0.1, £ = 0.02.
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Fig 3.5 describes the behaviour of the respective PTT models selected. Shear viscosity for all 
PTT models decreases with increasing shear rate; hence, manifesting shear-thinning. 
Extensional viscosity for LPTT model rises with increased extensional rate and is capped at 
high rate (sustained extensional hardening). In contrast, under the EPTT model, extensional 
viscosity response falls with increasing rate (strain softening). N] the first normal stress 
differences are quadratic and weaker for EPTT model than LPTT. The selection range for 
values of the parameter (s), which largely governs the extensional behaviour, falls within the 
range 0.01<e<0.5, although larger values may be used [Tanner 1989 and Phan-Thien 1988]. 
The solvent fraction (P) decreases and is sampled from the range 0.01<P<0.9, to represent the 
highly shear-thinning nature of the industrial paints used as coating fluids.

The FENE class of models:

This class of models is substantiated from the base-theory of Hookean dumbbells, finite 
extensible nonlinear elastic (FENE) models. Such models refer to material representations 
that describe a long chain polymer, consisting of a chain of monomers connected by a 
nonlinear spring. The spring force is approximated by Warner's relationship [1972] to 
describe the polymer dynamics. The two versions of FENE models employed in this thesis 
are termed FENE-P and FENE-CR models.

FENE-P model describes a continuous form of polymer based upon a closure approximation, 
proposed by Peterlin [1966]. This reveals a significant reduction of the original FENE 
constitutive equation. The FENE-P model constitutive equation consists of a configuration 
tensor (A) and a viscoelastic stress tensor (r):

Both tensor variables, A and r, are then connected by a means of Kramer expression, given 
as,

An alternative version of FENE model may be identified by adopting the functional form;

where, f  (7>(A)) is given by the Warner spring-force expression, as:
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v / (TWA)) ,
A+ —V  , -' \ ( A - I )  = 0 

T /;(7V (A ))V '

where /?(7r(A )) is the conformation-dependent contribution to the friction coefficient, 

expressed through a one-parameter family dependence on *ras,

h(Tr(A))  = l - r  + fr ^ T r ( A )

With tc= 0, the FENE-CR model [Chilcott et al. (1988)] is recovered, and k — 1, the FENE- 
CD model is extracted. Here, it is the FENE-CR model that is utilized.

From Figure 3.6, the material functions for FENE-P and FENE-CR differ significantly, yet 
only in their respective shear viscosity fonns. These material functions are governed by the 
following expressions:

ns = n0

FENE-CR model: N -  2r>o(1~ ^ ' L
1 f

h e  = 4 n „ P + 4 n o ( 1 - P ) ( f - 2 X , e ) ( f  + 2 \ z )

FENE-P model: N ,=

ns =Ph0+ «

2r,0( l -p)X,y2
1 f 2

he = 4rloP+4rlo(1-P ) ( f - 2 X , e ) ( f +  2A.,e)

Notably, the FENE-P model possesses similar material behaviour as that observed for the 
EPTT material above -  shear-thinning and strain-hardening-softening. From Fig. 3.6, the 
shear viscosity is o f constant form for all FENE-CR models analysed, whereas under the 
FENE-P form, the shear viscosity is a decreasing function, with rate dependent upon the 
solvent fraction selected. At (3 = 0.9, with varying parameter L=5.0 and 10.0, the shear- 
thinning rate is observed to be closely matched for both fluids; whilst at P=0.1, L=3.0 reveals 
a higher shear-thinning rate than that extracted for L=5.0.
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With regards to extensional viscosity, both FENE-CR and FENE-P versions are observed to 
reach identical levels of extensional viscosity when matched at the same parameter value (L). 
It is apparent that, the larger the L-value, the larger the level of sustained hardening achieved 
for any particular solvent fraction (p).

With respect to response under first normal stress difference (Nj), the FENE-P model 
supports is quadratic behaviour, and therefore, is observed to be weaker (reaching lower 
levels) at larger shear rates than that substantiated by the FENE-CR model. Here, under shear 
deformation, it is the influence of shear-thinning that also impacts on Nj generating this 
FENE-P response.
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Figure 3.6: a) Shear viscosity, b) extensional viscosity, c) first normal stress 
FENE-CR model; [ 1 ] p = 0.9, L = 5.0, [2] p = 0.9, L = 10.0, [3] p = 0.1, L = 5.0, [4] p = 0.1, L = 3.0 
FENE-P model; [1] p = 0.9, L = 5.0, [2] p = 0.9, L = 10.0, [3] p = 0.1, L = 5.0, [4] p = 0.1, L = 3.0
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Chapter 4

Theory & Implementation of numerical methods

This chapter is concerned with the theory behind the numerical methods available and 
development of the numerical techniques and algorithms used. Specifically, in the 
computational studies and simulation of coating flows, with relevance to the engineering of 
fluid flow processes. The various numerical techniques are appraised and the choice of 
numerical analysis justified. The algorithms used in modeling the coating process are defined 
and mathematical models describing the mechanics behind the physical problems are 
assembled. Having considered all the characteristics of the numerical schemes available, a 
finite element based time stepping algorithm was chosen, coupling a Taylor-Galerkin and 
pressure-correction method, as this offered a high order degree of accuracy capable of 
solving viscous and viscoelastic flows. This chapter is devoted to analyzing the several 
mathematical techniques employed within this algorithm.



Chapter 4 Theory & Implementation o f numerical methods

4.1 Introduction

Numerical techniques referred to here are those in which mathematical statements of 
differential flow problems are formulated and solved, from continuous to discrete, providing 
algebraic solution through appropriate choice of algorithms and numerical solvers. There are 
various numerical aspects involved, but one common thread is the involvement of a large 
number of complex partial-differential mathematical calculations. Recently, there has been 
an enormous focus in the development and application of numerical schemes to tackle 
scientific and engineering problems. These have proven possible due to widespread 
availability of fast and efficient digital computers. Prior to the use of high-powered 
computation, engineering problems were mainly solved in three ways: firstly, by using 
analytical or exact methods, these methods are limited to linear problems with simple 
geometries and low dimensionality, whereas most realistic industrial problems are nonlinear 
and complex. Secondly, by using graphical techniques to characterize the behaviour of 
systems. Usually these solutions are not too precise and are extremely complex to implement 
without the use of computers. Lastly, by using a calculator, to manually implement numerical 
calculations which are elaborate, often complicated and slow.

Today, computers and numerical techniques provide an easy to use solution method, where 
more emphasis is directed towards formulating the relationship of the problem, to 
fundamental laws and interpretation of the solution. In order to implement any numerical 
procedure into engineering practice, one requires the practical need (the problem), the 
prerequisite mathematical background (theory) and computational expertise (algorithms- 
software implementation). The mathematical modeling involves the specification of the 
mathematical problem, which covers the description of the physical problem domain and an 
assumption of the physical conservation laws governing the system.

The use of numerical techniques naturally arises in all fields of engineering and physical 
science, and in particular for this research, within the field of computational fluid dynamics 
(CFD). The main aim here is the design and analysis of mathematical methods to give high 
precision discrete solutions to complex industrial flow problems. Herein, there are two main 
solvers employed within the numerical schemes devised, these include both direct and 
iterative matrix-solvers. The direct method computes the solution to a matrix-problem, 
working from the matrix itself (sparse, with storage-overhead requirements), in a finite 
number of steps. Alternatively, iterative methods are indirect (avoid matrix storage overhead) 
and devised to compute equivalent iterative sequences to a replaced iteration-matrix problem, 
where iterative convergence is determined as based upon an imposed tolerance threshold. 
Such iterative schemes must start from an initial guess and iterate through successive 
approximations that converge to a solution in the limit of the sequence. This involves passing 
a convergence threshold tolerance for proximity to the limit. Examples of such schemes may 
be seen in Newton’s method, and a Jacobi iteration method.

The first step in the numerical solution of a partial-differential equation system involves 
discretization. This process is where a continuous (differential) problem is replaced by a 
discrete equivalent (algebraic) problem with known solution that approximates to that of the 
original continuous problem. This is provided for by dividing a physical problem domain into
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a number of discrete regions. This can be carried out through several different procedures - as 
in finite difference (FDM), finite element (FEM), finite volume (FVM) and/or spectral 
schemes (SM). The theory surrounding such procedures is comprehensively documented and 
can be found in the literature, see [Owens et al. 2002].

Historically, finite difference methods (FDM) have proven a highly effective numerical 
technique that has dominated the CFD community. This method utilizes finite-difference 
operators within each differential equation to approximate the derivatives in a pointwise 
fashion, and thus, provides approximate numerical solutions to the original continuous 
differential problem. In an attempt to solve an engineering problem using the finite difference 
method, the problem domain is first divided into a grid network; where the FDM solution is 
specified as a discrete function upon that grid. Due to its simplicity in formulation and 
computation, FDM has played an important role in the advance of CFD. However, there are 
two main sources of error that arise in finite difference methods (as with other similar 
methods), round-off error and discretization/truncation error. In some complex flow 
situations, and particularly where there is flow-domain complexity, a conventional FDM 
Cartesian grid may produce an inaccurate FDM formulation, due to the associated large 
discretization errors encountered. This has given rise to the need for domain mapping, where 
real-world complex domains are first mapped into appropriate Cartesian representation, 
suitable for FDM, and hence conformal mapping techniques have emerged.

For non-uniform complicated computational flow-domains, the finite-element method and 
finite-volume methods have proved themselves to be more suitable and flexible in use. FEM 
divides up the domain into a finite tessellation of elements, which can be solved in relation to 
each other, by finding approximate solutions to the partial differential equations (PDE) and 
their associated assembled systems. FEM was developed from the work of Alexander 
Hrennikoff [1941] and Richard Courant [1943]. Although these researchers used different 
approaches, both targeted mesh discretization of a continuous domain into a set of discrete 
sub-domains, called elements. Hrennikoff divided the problem spatial-domain using a lattice 
analogy, while Courant discretized into finite triangular elements. The approach of Courant 
proved somewhat of a breakthrough and unified earlier results for PDEs, developed by Lord 
Rayleigh in 1894 and 1896, Ritz in [1908] and Galerkin in 1915, which were all based on 
finite triangular elements. Then, momentum and major implementation of FEM followed, in 
the late 40s by Zienkiewicz, and was further developed in the 1960s through the work of 
Clough [1960] for structural engineering. Key advantages of the FEM over FDM lies in: (i) 
its ability to handle complicated geometries with ease; (ii) its natural treatment of boundary 
conditions; (iii) its differential order reduction properties and integral-variational form; (iv) 
in weighted-residual form, its richness in classification through various choices of weighting 
functions. On the counterside, the FDM is conceptually simpler and easier to implement. 
There were mathematical hurdles to overcome under FEM, not least being the consistent 
application to dynamic fluids problems, necessitating departure from static solid mechanics 
derivations. Nevertheless, a first order FEM is identical to a FDM for a Poisson equation, 
most especially if the domain is divided into regular rectangular elements which can be 
subdivided into two triangles. The quality of FEM approximations is potentially higher 
between grid points than that afforded through FDM; therefore, FEM has been strongly 
preferred in structural mechanics.
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Other numerical schemes, like finite volume methods (FVM), are mainly used in CFD, where 
domains are discretized into large number of cells (2D: rectangular or triangular), with 
relatively low-order approximation within each cell. This method is easily formulated to 
allow7 for unstructured meshes. Similar to both FDM and FEM, FVM evaluates a PDE in the 
form of an algebraic system where the domain is discretized into a mesh and nodal-grid 
values are calculated at discrete locations on a finite number of cell-volumes (control- 
volumes), providing the cell environment surrounding each node-point on the mesh. In using 
the FVM to solve a PDE that contain a differential divergence term (evolution-conservation 
equation), cell-volume integrals are conventionally converted to cell-surface integrals at cell- 
boundaries, through the divergence theorem. Such a divergence term is then evaluated as 
fluxes on the surface boundary of each finite volume cell. To satisfy the law of conservation, 
the flux entering a given cell-volume is equated to the flux leaving that cell-volume, hence 
providing a balance with its adjacent neighbours.

Spectral schemes are yet further examples of alternative numerical techniques for solving 
ordinary differential equations (ODE), PDE and eigenvalue value problems involving 
differential equations. The spectral scheme is closely related to the FEM in that the former 
uses a global defined function that are non-zero over the whole domain while the latter, uses 
a local approach with a basis function that is non-zero only over the local compact support 
region of that function (region of small sub-set of elements). The implementation of spectral 
methods are usually accomplished through a Galerkin approach, or collocation method, 
where approximate solutions are sought over a finite space, requiring the differential 
equation to be satisfied exactly at a finite number of collocation points. Such spectral 
schemes provide iteratively fast solutions for steady state problems, and are computationally 
inexpensive but less accurate for complex domains.

In recent times, most engineering problems have fallen within this framework, so that they 
may be described using PDEs and are frequently governed by the same underlying physics. 
In numerically solving these PDEs, generates discrete problems of finite linear algebraic 
equation systems, governed by large sparse system matrices. This demands efficient and 
effective solvers: hence the need for iterative and direct solvers.

In this thesis, the computational studies for coating flows utilizes a numerical technique 
termed, Taylor-Galerkin pressure-correction (TGPC) algorithm. Prior to the development of 
this algorithm, early in the 1970s, a Galerkin mixed formulation were implemented with 
components of stress tensor discretized with velocity components and pressure to reach a 
steady state. There is a practical inability to model convection-dominated form, transient 
behaviour and three-dimensional geometries with this technique. New techniques proposed 
to remedy this effect, have emerged from Petrov-Galerkin [Brooks et al. 1982, and Barrett et 
al. 1984] methods for steady flows, and Taylor-Galerkin [Zienkiewicz et al. 1989] and 
Lagrange-Galerkin method [Benque et al. 1982 and Douglas et al. 1982] for transient flows . 
Based upon Euler, Leap frog and Crank-Nicholson time-stepping, Donea [1984] first 
proposed the Taylor-Galerkin schemes. Taylor-Galerkin and Lagrange Galerkin methods 
adopt a similar philosophy in that the spatial discretization is considered along the 
characteristics of the differential system, solving along particle paths, where particles are
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tracked over a limited time step interval. The drawback such an approach involves the 
solving of the pressure terms and the incompressibility constraint. For transient behaviour, 
one of the most successful methods is the projection or pressure-correction (PC) method 
introduced through the pioneering work of Chorin [1968] and Temam [1969]. This is a 
pressure-based fractional-staged scheme, which decouples the velocity and pressure terms of 
the momentum equation and considers a Poisson equation for the pressure at each time-step 
utilizing correction stages for velocity and pressure. For viscoelastic flow problems, in 1987, 
Townsend and Webster [1987] proposed the first instance to consider incremental pressure- 
correction via FEM, when combined with the Taylor-Galerkin method. Initially, this was 
derived in an explicit time-stepping form. This approach offered some distinct variational 
advantages with respect to boundary condition treatment and implementation. Nevertheless, 
this explicit scheme posed some severe limitations at low Re (in the viscous regime, crucial 
in the viscoelastic context) and naturally inherited a stability Courant-type time-step 
restriction. Subsequently in the early 1990s, Hawken et al. [1990] proposed further 
algorithmic modifications towards a semi-implicit form , where diffusion-terms were treated 
implicitly and the advection explicitly for viscous flow problems. The computation of 
solution was successful over a wide range of Re. Considering the stability over the fractional 
step scheme, pressure solution was found to be particularly sensitive and a source for 
destabilization. Van Kan [1986] provided theoretical advance to enhance stability of the PC- 
scheme without degrading accuracy by developing the pressure-correction methodology into 
a second-order form under finite difference discretization and Crank-Nicholson time 
splitting. These ideas were incorporated within the Townsend and Webster approach, 
described above. More recently, these ideas have been improved still further to include 
multiple time-step reference for governance of pressure terms [Keshtiban et al. 2008, 
Tamaddon-Jahromi et al. 2011],

Within finite element discretization for complex flow problems, the treatment of the 
convective term and appropriate spatial conditions in the choice of approximating functions 
for velocity, pressure and extra stress are considered most important. Applying the 
conventional standard Galerkin method guarantees minimum error for elliptic problems, but 
for hyperbolic functions, the convective term generates non-self adjoint typing-properties, 
causing rapid solution changes with spurious oscillations. Also the Galerkin method can lead 
to under-diffusive solutions due to negative artificial diffusion [Raithby et al. 1974]. In order 
to overcome these deficiencies and obtain stabilized solutions, several stabilization 
techniques have been proposed which are often based on artificial diffusion, such as the 
inconsistent Streamline Upwinding (Galerkin) technique and modification to the convective 
term through quadrature rules. A consistent implementation which is adopted in this study is 
termed, the “Streamline upwinding Petrov Galerkin technique” SUPG [Brooks et al. 1982], 
which is suitable for complex multi-dimensional problems, being devised to minimize 
stream-wise diffusion.

Having considered such enhancements and further developments, this thesis employs the 
TGPC algorithm to study coating flows. The algorithm is based on a semi-discrete spatial 
representation, with a hybrid finite element/finite volume approximation, where finite 
elements are applied for velocity and pressure on triangular parent elements, and cell-vertex 
finite volume schemes are applied for stress on subtended-child triangular control-volumes
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(within each parent cell). As above, the Taylor-Galerkin method adopts a Lax-Wendroff 
approach, using a Taylor series expansion in time to develop the split-stage time-stepping 
schemes. The TGPC framework is divided into three stages. The first stage involves a two- 
step approach, simply known as the predictor-corrector doublet (Lax-Wendroff) for velocity 
and stress [see Townsend et al. 1987] solved through an efficient low-iteration count 
Jacobian iterate scheme. The Galerkin projection method applied here in provides the finite 
element spatial approximation for the discretization process. The second stage introduces the 
projection method specifically designed to deal with the incompressibility constraint. This 
involves solving for the pressure-difference over a time-step as a primary variable in a 
Poisson equation, and employs a direct Choleski decomposition procedure. With the Crank- 
Nicholson representation for the pressure term in the projection method, stage three 
recaptures the divergence-free velocity field at the end of the time step loop; where once 
again solution is provided via a Jacobi iteration.

4.2 Finite e le m e n t  m ethod

In this study, the basic governing equations are discretized through a finite element method. 
In FEM, the computational domain is divided into a number of elements and a number of 
nodal points. FEM is a powerful numerical technique for obtaining approximate solutions to 
PDEs and their associated systems in a wide variety of engineering problems. In a complex 
domain, it becomes necessary to obtain these approximate numerical solutions rather than 
exact closed form solutions. The first step in describing a physical phenomenon is to 
establish the governing equations and suitable initial and boundary conditions for any 
particular engineering problem. Herein, one can observe the difficulty in obtaining a simple 
analytical solution stimulated by an irregular complex geometry. To overcome these 
difficulties, the FEM discretizes the domain into discrete elements with a finite number of 
unknown variables, in terms of assumed approximating functions within each element. These 
interpolating or approximating functions are defined in terms of nodal points. These nodes 
usually lie in the interior and or boundaries connecting to the adjacent elements. The nodal 
values of the field variables and the interpolation functions over the elements define the 
behaviour of the field variable within each element and therefore become the new unknowns. 
The accuracy of the solution and degree of approximation depends on the size and number of 
elements used and the interpolation functions themselves. The FEM formulates a solution for 
each element before assembly to represent the entire domain. Within FEM, there are several 
ways in which one can formulate the variables of each elements; a direct approach, a 
variational approach, a weighting residual approach and an energy balance approach. 
Regardless of the approach used, the following common basic steps are always required to 
obtain a finite element approximation for any engineering problem;

1. Domain discretization -  the first step is to construct a mesh by dividing the 
domain into elements of different shape. The type, size and number of elements 
depends on the kind of domain and engineering judgment. For some complex 
domains, it may be necessary to use different element shapes, structured or 
unstructured elements, or gradual mesh refinements.

2. Interpolation functions — the second step is to assign nodes to each element and 
select a type of interpolation function to represent the variation of the field
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variables over a single element. Depending on the number of nodes assigned to 
each element, the nature and number of unknowns at each node, the degree of the 
interpolating function may be assigned — for example, as quadratic or linear.

3. Express element properties -  once the mesh is established and nodes assigned, the 
variables of each element are formulated using matrix equations. This can be 
accomplished as indicated above, (direct, variational, weighting residual, or the 
energy balance approach) For the numerical method utilized in this thesis, the 
Galerkin method involves the weighted residual approach.

4. Assemble each element equation system into the complete system of equations — 
here the local matrix equation for each element is combined together to obtain a 
global matrix equation representing the behaviour of the entire system. This is 
then modified to introduce the initial and boundary conditions.

5. Solve Equations -  the system of equation is solved to obtain the unknown nodal 
variables. The equations may be linear or non-linear; several standard solution 
techniques may be adopted.

6. Additional computation -  sometimes this is required to obtain subsequent 
variables, once one nodal variable is established, and/or if the equations are highly 
complex and cannot be solved simultaneously.

The finite element method is used in a range of applications; time independent problems, 
eigenvalue problems of solid and fluid mechanics, or time dependent problems of continuum 
mechanics. Within the present body of research, the coating flows are commonly time- 
dependent problems, and since FEM has recently become a most active field of interest in the 
numerical analysis of continuum problems, therefore the FEM is a natural choice of 
selection.

4.2.1 Discretisation and interpolation

In FEM, the basic idea is to systematically generate basis functions on arbitrary regions by 
dividing into sub-regions. For a one-dimensional case, the sub-regions are intervals or line 
segments (see Fig. 4.1). Triangle, rectangles or quadrilateral for two dimensions, and 
tetrahedrons or hexahedrons in three dimensions. The sub regions must satisfy certain 
criteria;

a) Finite number of sub-regions
b) If there are two sub-regions, they must have a common point in one dimension, a 

common edge or common vertex in two dimensions, a common face, common edge 
or common vertex in three dimensions.

c) The union of all sub-regions must precisely define the domain.

Figure 4.1a: Sub-regions in one dimension
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Figure 4.1b: Triangular mesh in two dimensions

Figure 4.1c: Tetrahedral element in three dimensions

The next step is to define a finite number o f points/nodes on the boundary o f the sub
regions/elements. The solution o f the nodal variable expresses the behaviour o f the field 
variable satisfying the law of conservation. Depending on the type o f problem (ID, 2D or 3D 
case), the definition of these nodes may be in linear or quadratic form. Examples o f these 
nodal points are shown in Fig. 4.2. These nodal points are then interconnected to define each 
element field variable using the interpolation function.

In one dimension, 2 nodal points, or 3 nodal points,

*  * ★ ★ ★

In two dimensions, 3 nodal points, or 6 nodal points,

A A
In three dimensions, 4 nodal points,
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Figure 4.2: nodal point on elements in various problem dimensions

For a single field variable u(x,y) determined at each nodal point (x,y) in a three node triangle, 
the basis function to describe the approximate relation is given as,

u(x, v) = TV,(x ,y )u , + N 2( x , y ) u 2 + TV,(x ,y )u? (4.1)

where Nj, N? and N3 are the spatially dependent interpolation or shape functions. In the
FEM. the interpolating functions are usually polynomials. These functions are based on the
underlying fundamental conditions that: the function takes the value of each variable at a 
nodal point and varnishes at all other nodal points; the function has prescribed behaviour on 
each sub region i.e. linear or quadratic; and the function is continuous on the domain. In the 
FEM, these unknown variables U], U2 and U3, can then be determined by the weighted residual 
approach or the Ritz method. The Ritz method is basically a predecessor o f the more general 
FEM, where interpolation functions obey certain continuity requirements. The main 
difference is that, the assumed trial functions in FEM are defined over each interconnected 
element, while in the Ritz method; they are defined over the whole domain. Therefore, the 
Ritz method is only suitable for simple geometries.

In this study, the domains are discretized into planar two dimensional non-overlapping 
triangular elements, specifically a six-node triangle with linear pressure interpolations and 
quadratic velocity interpolations. For the construction o f linear finite elements for pressure 
(see Fig. 4.3), the vertex nodes are assigned with 3 nodal degrees o f freedom and for 
quadratic finite elements for velocity, the vertex and mid-side nodes are assigned with 6 
nodal degrees o f freedom, respectively.

^  Pressure nodes

• Velocity nodes

Linear Quadratic

Figure 4.3: Triangular element with linear and quadratic interpolations.

Polynomials are employed as the type o f shape functions and are relatively easy to 
manipulate. The velocity is approximated quadratically as,

|/(* ,0  = 5 V  ( / ) $ ( * )  (4.2)
/=i
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*■(*,/) = J V  (?)(f>,(x) (4.3)
/= i

and pressure linearly as,

p ( x 9t) = ^ p J (t)if/j ( x)  (4.4)
j=i

The order of a polynomial representing a field variable depends on the number o f degrees of 
freedom assigned to an element; therefore the number of coefficients in a polynomial equates 
to the number o f nodal variables.

For linear pressure representation,
p ( x , y )  = y/x+ y/2x  + y/2y  (4.5)

For quadratic velocity representation,
u(x,y)  = fa + <f>2x  + fay + fax1 + faxy + fay1 (4.6)

In order to evaluate the integrands over each triangular element in a finite element 
discretisation, natural area coordinates or barycentric coordinates are selected. Considering a 
point x f) within an element (see Fig. 4.4), coordinates L ^ L 2,L2 are area coordinates chosen 

to describe the location o f this point.

Figure 4.4: Natural area coordinates for a linear triangular element 

The location of xp may be expressed linearly as:

x  = Lx,  + L.Xj + L x ,
11 2 ' 33 (4.7)

y  = Liy l +L2y 2 +Liy i

The coordinates may be interpreted as interpolating functions, relating the vertex or end 
nodes to the interior nodal point, therefore,
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L]+L2+L3=\ (4.8)

The natural coordinates then become the interpolating functions and can be used to express 
the field variable (u) as,

u (x) = w,Z, + u2L 2 + m3Z3 (4.9)

Interpreting u as a function of L] and differentiating u via the chain rule formula provides,

du _ du 3L, du dL2 du dZ3
dx dL, dx dL0 dx dL, dx

1 2 3 (4.10)
du _ du dLx du dL2 du dL3
dy dl^ dy dL2 dy dLl dy

Then, any product combination of Lj and its powers to nj, may yield an integrand over an 
elemental region f l  of area A, for which the following exact integration formula applies,

4.2.2 Weighted residual approach

The method of weighted residuals is a generalised approach for obtaining approximate 
solutions to linear and non-linear partial differential equations. It is basically one of the 
means of formulating the finite element matrix equations principally employed in this thesis. 
There are two steps involved in this method. One is to employ a trial function and satisfy the 
essential boundary conditions through an integral (weak-form) formulation minimizing 
discretisation error (residual) over the entire domain. This is done by assuming a general 
functional behaviour of the dependent field variable to approximately satisfy the differential 
equation and its boundary conditions. When this approximation and boundary conditions are 
substituted into the original differential equation, on average, its residuals will vanish over 
the entire domain. The second step is to solve the resulting equations from step one, and 
specialize the general functional form to a particular form representing the approximate 
solution sought. Consider a differential equation in the form,

D ( * )  = f  (4-12)
To find an approximate functional representation for a field variable ((f) in a domain 
bounded by the surface Z , /  is a known function of the independent variable. Assuming 
appropriate boundary conditions are prescribed on the surface, the method of weighted 
residual is applied in two steps; First, the unknown exact solution of the field variable (<f) is
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approximated by where the functional behaviour is completely specified based on 

unknown parameters, as

(4.13)

where for all the nodes in the surface ( /:« ) , (TV.) are the assumed interpolation functions

and {(f)i) are the unknown parameters of one of the independent variables. Substituting the 
approximate solution into the differential equation will result in some residual given as:

the number of unknown parameters such that the projected error R over the entire solution 
domain varnishes. Hence, in integral form,

The error R is distributed over the domain a < x < b by using a weighting function Wi exactly 
equal to the number of unknown constants in the field variable. The choice of test or 
weighting functions also varies and dictates the associated method:

1) Pseudo-spectral method or collocation method,
2) Sub-domain method,
3) Least squares method,
4) Method of moments,
5) Galerkin method.

In a pseudo-spectral method, the weighting functions are chosen to be Dirac delta functions, 
so that the residual errors are forced to be zero at the specific points (chosen nodes). The sub- 
domain method divides the domain into sub-domains and forces the weighted residual to be 
zero over various subsections of the domain. In the least squares method, the derivatives of 
the residuals are used as weighting functions in order to minimize the square error. In a 
method of moments, the weighting function is chosen from a family of polynomials, <and if 
the interpolations functions were polynomials then this is identical to the Galerkin method. 
For the purpose of this research, the numerical algorithm utilized, employs a Galerkin-type 
weighted residual method.

According to the Galerkin method, the weighted functions are the same as the interpolation 
functions.

(4.14)

The residual results from approximating {(f) by {ip) . The notion in the MWR is to determine

b

^RW,dx = 0 (4.15)
a

Wt =N j9 for i = \:n (4.16)
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4.3 Finite vo lu m e m ethod

As mentioned earlier, the numerical algorithm utilized in this research study employs a finite 
element discretisation method for velocity and pressure, solving viscous and inelastic flows, 
and a hybrid finite element/finite volume sub-cell scheme for the stress constitutive equation 
in viscoelastic flows. The former are described previously. Herein, attention is drawn to the 
finite element/finite volume sub-cell scheme for the viscoelastic stress constitutive equation.

The governing equations for the coating flows assembled in chapter 2, consist o f mass and 
momentum equations and extra-stress constitutive equations. These equations are decoupled 
in the TGPC algorithm whereby a finite element method is employed for the discretization of 
velocity components at both vertex and mid-side nodes, and pressure at vertex nodes only, 
while a finite volume cell vertex approach is adopted for stress components at vertex nodes. 
To aid in the description o f the finite element/finite volume sub-cell approach, the finite 
triangular element serves as a platform for constructing the finite volume sub-cell. In Figure 
4.5, a finite element triangle is drawn with 3 vertex nodes and 3 mid-side nodes. Within this 
finite element triangle, four finite volume sub triangles are constructed. For the finite element 
method, the velocity is approximated by quadratic element (on vertex and mid-side nodes), 
pressure by linear element (vertex nodes only). However, on each parent finite element 
triangle with four finite volume sub-cells, stress is approximated by quadratic elements with 
6 vertex nodes on four finite volume sub-cells fitted in each finite element triangle. Each 
finite volume presents a linear combination o f the stress values on the vertices o f that finite 
volume.

Finite element triangle 
Finite volume sub-cell

Figure 4.5: Schematic representation of finite element/finite volume sub-cell

Due to the dominant advective term in the constitutive equation, the finite volume method 
was deemed more suitable in solving the constitutive equation. The fv cell vertex scheme is 
adopted based upon fluctuation distribution where control volume residuals are distributed 
through an upwinding technique. Therefore for each scalar stress component acting in an 
arbitrary volume, the variation o f the quantity is controlled via fluctuation o f flux vector R 
and scalar source Q.

For the FV method, the Maxwell constitutive equation may be written in terms o f flux R, and 
source Q as [Wapperom et al. 1998 and Webster et al. 2005],
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—  + V.R -  Q 
dt

(4.17)

where
R=ur (4.18)

and
Q  = ( / r  + We[r.{VU)^ + t.VU) + 2(1 -/?)£>) (4.19)

For a scalar stress component ( r ) ,  integrating the Maxwell equation (4.17) over a control

volume f l  on the domain, using the Gauss divergence theorem on the flux term gives;

Typically, for planar steady simple shear flows, the scalar stress components of an Oldroyd- 
B fluid are given in dimensional form as;

where Y is the channel width, £/max is the maximum velocity and y is the shear-rate.

The cell vertex scheme evaluates the conserved variable on the vertices of the FV grid, 
therefore for each FV node; the discrete domain integrated covers all regions of all the FV 
cells with all nodes as vertex nodes. This type of scheme generally maintains their accuracy 
for non-uniform meshes.

Considering a surface element on a control volume via a line integral, eqn 4.20 can be written 
as,

where dS is the outward pointing surface element vector. For reasons of accuracy, surface 
element integration for fluxes, as in equation 4.20b, has been found inferior to area-element 
integration, as in equation 4.20a; henceforth, this is the selection of choice. The cell-vertex 
scheme is considered in such a way that the FV scheme evaluates the conserved variable on

(4.20a)

r  = -  2 ^ inaxp (4.21)

**y=Mr (4.22)

(4.23)

(4.20b)
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the vertices of the finite volume grid. Therefore, for each finite volume vertex node, the 
integration domain is the region of all the finite volume cells that have that node as a vertex.

Flux distribution schemes: Flux and source residuals can be evaluated over different control 
volumes . The flux distributions scheme is an approach whereby fluxes of a finite volume cell 
are non-imiformly distributed to its member nodes. Herein, the flux RT is calculated over 
individual finite volume cells T and distributed to the nodes (i) of that cell as;

r*r (4-24)
T

Where (or(r ) are weights determining the flux (Rr ) distribution to the vertex (/)in a triangle 

(T). The suitable choice of [a] ) is based on various criteria;

Conservation: The sum of all coefficients (a )  over the vertices of each triangle (T ) must 
equal to 1.
Positivity: Flux contribution of each triangle must be taken as positive to guarantee pure 
convection and prohibition of false extrema in the discrete steady state solution.
Linear Preservation'. The coefficients { a j ) must be independent of the data. The scheme 
maintains the exact steady state solution.

Treatment of time derivative: The time derivative term is distributed over the finite volume 
cell by means of Median Dual Cell (MDC) approach and is treated using a forward Euler 
scheme. The MDC is such that the flux distribution treats each individual cell and the 
activities within a cell will only affect the nodes that are vertices of that cell. The integral of 
the time derivative for each node (see equation 4.17), is distributed over the finite volume by 
assuming its piecewise constant over the MDC.

Therefore, to satisfy linear preservation, the weights can be expressed as:

where the coefficients (/?r ) linearly depends on the data summing to (Rr ). This proves the 
fact that linear schemes cannot be both positive and linear preserving. The flux distribution 
can either be expressed in terms of (/?) or ( a ) . Notably, linear schemes can now be divided
into two classes, one satisfying positivity and one linearity preserving. In determining the 
flux distribution, we can distinguish between triangles with one inflow and two inflow sides. 
Triangles with one inflow side can be both positive and linear preserving, whereas for 
triangles with two inflow sides, there are numerous choices which depend upon what 
property are required in the scheme [Struijs et al. 1991]; The (3 -scheme, and the low 
diffusion scheme.
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For non-linear schemes, a Positive Streamwise Invariant (PSI) scheme is found to be more 
appropriate in that it satisfies conservation and positivity. It is somewhat equivalent to (3- 
scheme which is linear positive. The scheme is first-order accurate at steady state, however 
Wapperom and Webster [1998] recognized the important o f linearity preserving to achieve 
high order accuracy and positivity on transient stability by redefining the [3 -scheme 
coefficients. Therefore, the determined PSI distribution coefficients satisfy those conditions.

Treating the source terms: As described above for the flux distribution, the total source Qr 
is calculated over individual finite volume cells T and distributed to the nodes (i) o f that cell
as,

a = I e f  (4.26)
r

where (Q l ) is the source contributing to the vertex (/) in  a triangle(T). The source integral

could also be evaluated over the MDC triangle. If so, this generates two contributions flux 
and the source terms as, one upwinded and governed over the /v-triangle T, (Rt, Q i ), and a 
second area-averaged and subtended over the median-dual-cell zone, {Rmdc, Qmdc)

4.4  Taylor-Galerkin p ressu re-correct ion

The Taylor-Galerkin and projection algorithm based on the finite element method is 
considered to solve the governing equations and finite element/finite volume sub-cell scheme 
for viscoelastic stress constitutive equations. For an incompressible isothermal flow, these 
equations are the mass balance, momentum balance and the stress constitutive equation. The 
mass balance equation is

^  + V ( p U )  = 0 (4.27)

where U is the fluid velocity. The momentum balance equation for a Newtonian fluid is;

p —  = p V 2U - p U S / U - V p  (4.28)
dt

and for a Generalized Newtonian fluid,

T

p  = V .c r -p U S 7 U  (4.29)
dt

where p  is the fluid density (constant for incompressible) and a  the total stress tensor given
as;
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a  = -p I  + T (4.30)

where p is the hydrodynamic pressure, I the unit tensor and T the extra stress tensor, given 
as

T = 2pD + r (4.31)

For the viscoelastic stress r ,

t + X t = 2(\-J3)D  (4.32)

where X is a relaxation time, (/? = p )  and (l -  0 )  is a polymeric viscosity and D is the rate
of deformation tensor (refer to Chapter 2). This now leads to a Maxwell constitutive equation 
of the form;

f T  + X + U.V T -  T.VU -  t.(V u y  J  = 2 (1 -  J3) D (4.33)

where/ represents the non-linear viscoelastic contribution.

Considering the following non-dimensional quantities, Reynolds number and Weissenberg 
number;

Re = and We = —  (4.34)
p  t

the mass balance, momentum balance and stress equation are non-dimensionalised in the 
form;

V I /= 0 (4.35)

R e ^ -  = V.(2//D + r ) - R e £ / -V U —Vp (4.36)

z + We
d r  \
~ + U.V T-  r.V U -  r.(V t/)+ J = 2 (1 ̂-  0 )  D  (4.37)

where (/?) is equivalent to (//) the solvent viscosity and (l-y^) is the polymeric viscosity 
contributions, and U is a characteristic velocity scale of the flow.

The Taylor-Galerkin pressure-correction algorithm is a time stepping procedure with 
fractional stages, semi-discretized in the temporal domain using Taylor series expansion in 
time, resulting in second order accuracy.
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Consider a differential equation,

du _ 
dt

Using Lax-Wendroff time stepping scheme,

d2u dF dFdu _ dF 
dt1 dt dudt du

The resulting second-order Taylor series expansion of the function in time is;

(4.38)

(4.39)

„ du" I , \2 f  d2u ^
it  =  u n + A t ---------- + - ( A  /) — r

dt 2 M  dt2
(4.40)

where, u n+l and u" are a function o f the u at time levels tn+, and t n , respectively.

In order to obtain an 0 (A /2) accurate scheme, yet to avoid explicit evaluation o f the

dF
Jacobian — , a two-step simple predictor corrector approach is introduced. The half-step

du
«+-

solution u 2 is predicted to approximate with an error o f O ^A r ) by an explicit Euler step, 

and then corrected with u"+] approximated with an error o f C)( A t ' ) .

Step 1:
n+T A/2 /7 . L-Xlu 1 - u  -1----

r du_ Y
d t J  ’

(4.41)

Step 2: un+1 = un +At
' duV’+T
v dt J

(4.42)

This second order accurate scheme is now applied to the constitutive equations as follows; 

For the momentum equation,

Step 1: U"+2 = U n + j - ( ( y . T - p U . 'V U y - V p n)j ,  (4.43)

Step 2: U"+l = U "+  —  
P

(V .7’ - p U . V U ) " +2 - V p (4.44)

And for the constitutive viscoelastic stress,
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Step 1:
-1 A/

t ”+ 2 = r» + ^ L l f r + x (c/.vT - T .V U - r.(V£/)+) -  2 (1 -  /?) £>)”, (4.45)
2X

Step 2:

r "+1 = r ” + y ( / r  + l ( t / .Vr - r . Vt / - r . ( VC/)t ) - 2 ( l - ^ ) Z ) ) ”+I, (4.46)

Concerning the pressure-correction procedure; this is fractional-staged method, where 
velocity and pressure terms of the momentum equation (Step 2 above) are decoupled, and a 
Poisson equation is considered for pressure at each time-step.

For the explicit scheme, a Crank-Nicholson treatment with 8 = i  is employed for pressure,

in+—
therefore from Equation 4.43, p 2 is approximated by;

I
p +2 = 8pn+]+ ( \ - 8 ) p n (4.47)

where (p n+] -  p n} represents the pressure difference on a single time-step (tn+i -  tn) = At.

For the incompressibility constraint in the mass balance equation, an intermediate velocity 
U* is introduced and projected (momentum equation step 2 above), such that;

t r  = £/"+— 
p

(V .T -pU .V U y+2 - V p n , (4.48)

Incorporating the pressure p 2 into U"+] and substracting U* from U"+] gives;

U"*i = i r + — v ( p ’* '-p " ) ,  (4.49)
p

Taking the divergence of Un+] and applying continuity, the resulting pressure difference 
equation is given as;

V2 (p n+1 -  p ") = V XT (4.50)

Therefore, this pressure-correction scheme embodies as explicit time fractional staged 
method, where stage 1 introduces a non-divergence free velocity term U* for velocity, and
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pressure at stage 2 solves explicitly for the pressure difference (p n+] -/?"), whilst stage 3 

corrects the velocity Un+], to a divergence-free end of time-step velocity.

Stage 1: 

Stage 2: 

Stage 3:

At i X
n+—u * = u n + — | ( v . r - p u .v u )  2 - V p n

V2 (p n+l — pn) = V./7*
V 1 8At

c/B+1 =zr+—v(Pn+'-pn)
p

(4.51)

(4.52)

(4.53)

The Taylor-Galerkin pressure-correction algorithm embraces both velocity and stress 
equations in the governing system of equations at a fractional stage:

Step la:
2 Re
At 

2 We

f  +- ^
Un+2- U n U ((V.r-ReC/.VC/)” -V p"), (4.54)

v

f  +I \
t +~2 -  rn = ( / r  + We (t/.V t - t.V U -  t.(V t/)+) -  2 (l -  0 )  d J  , (4.55)

At

Step lb

-U " )  = ^ (V .T -p U .V U y+2 - V p n j (4.56)

1
i « + -

2- T " )  =  ( f T  + W e { U N T -T V U -T . ( V U y ) -2 ( \ - 0 )D )  2 (4.57)

Stage 1 solves the velocity and stress components of the momentum and constitutive
(  oequation at half time step n + — from data gathered at time step («). This provides the
v

i
n+—

initial non-divergence free velocity U 2 to the two-step predictor-corrector procedure, 
where U* is introduced into the pressure fields. Here, the corresponding matrix systems of 
equations are solved iteratively by a Jacobi method [22].

Step 2 (4.58)
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Stage 2 uses the U*on it rhs, via a Poisson equation over a full time step (n,n +1) to solve 

for the pressure difference (p "+1 - p " ) ,  utilizing a direct Choleski decomposition method.

Step 3 (4.59)

Stage 3 corrects the non-divergence free velocity field Un+] using U* and (p ”+1 - p ”) 
applied through a Jacobi iteration method.

For the semi-implicit Scheme, introduced by Hawken et al [1990, and 1991]. A diffusion 
term is incorporated into the momentum equation in order to enhance stability and 
circumvent severe time-step size constraint, as given below;

Step la becomes
r i2 Re

At

Step lb becomes

U + 2 - U n j = ((V .r-R et/.V £/)n -V p") + V.p
(  „+!
D 1- D n (4.60)

^ ((/* - Un) = ̂ ('V.T- pU57U) ,+2 - Vp" j  + V .p (D '-D " )  (4.61)

For the finite element/finite volume sub-cell scheme, the results from the flux distribution 
and source contributions are applied to the two-step simple predictor corrector approach for 
the viscoelastic stress constitutive equations (4.54) and (4.56) as,

(4.62)

i
D  \ n + ~

■n+] = rn+At\ Q  2, , (4.63)
Q

refer to finite volume section (4.3) for expressions of R and Q .
Boundary conditions: Once the domain has been discretised with nodes and interpolation 
functions selected, appropriate boundary conditions are then specified. For this purpose, 
Dirichlet and Neumann boundary conditions are deployed. At fixed outer boundaries where 
Dirichlet conditions apply, the trial field variable is set to zero and solutions values are not 
calculated (Dirichlet conditions). On other boundaries, natural weak form solutions are 
incorporated in the full equation system (Neumann conditions).
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To implement the finite element formulation for the TGPC algorithm, a space of test function 
<f) is introduced for the momentum equation and y/ for the incompressibility constraint. The 
differential equation are multiplied by the test function and integrated over the domain using 
the Gauss divergence theorem. On those parts of the boundary where Dirichlet boundary 
conditions apply, the components of the test function vanishes, whereas under non-Dirichlet 
boundary conditions, the corresponding boundary integral applies.

4.5 Gradient recovery  sch em e

Velocity and velocity gradients appear in the constitutive equations for the solution of the 
stress equations. Accurate calculations of these velocity gradients enhance the stability and 
accuracy of the finite element discretization. At fixed boundaries in a domain, velocity 
gradients and stress values can be large. It is here that Dirichlet recovery of velocity gradient 
fields assists to capture highly accurate discrete representation of the finite element solution. 
There are two main techniques which can be used for gradient recovery; a local direct 
method [Hawken et al. 1991 and Matallah et al. 1998] and a Galerkin least squares method. 
The Galerkin method can either be global or locally. For the purpose of this work, a local 
direct method is selected for its superior properties. With this method, there is avoidance of 
large matrix storage, in that; the finite element gradient contributions are locally averaged for 
each node in a triangular element. For the mid-side nodes, average velocity gradients benefits 
from superconvergence properties [Levine 1983 and 1985] and for vertex nodes, gradient 
values include an average element contribution and the average mid-side nodal value. With 
quadratic interpolation of the six nodal recovered gradients per element, the velocity gradient 
components are local in nature and discontinuous from one element to another. The 
expression for velocity gradient is written in the form;

where k = 1, 2. The velocity vector can be approximated by the finite element interpolating 
function with N number of nodes to give;

The velocity gradient components for each element are based on local element information. 
By combining the two equations above, the velocity gradients may be calculated directly as;

G t (x’l)=-irfrOoxk
(4.64)

N

(4.65)

(4.66)
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4.6  Free-surface location

Some of the boundaries associated with the application o f coating flows involve free surface 
movement and these can be computed with various techniques; the Largragian/ALE 
approach and the volume of fluid (VOF) approach. The VOF approach splits the domain into 
wet and dry sections. The interface between the wet and dry regions defines the free surface. 
This method is orientated about an Eulerian approach, where fluid flows over a fixed mesh 
(solid/dry section). The free surface deformation is modelled on the fluid through a purely 
axial movement and axial mesh mapping redistribution strategy.

The ALE technique is powerful in describing the dynamics o f the space-time domain. This 
technique is applied through the concept of a mesh velocity allocation, combining both a 
Largragian and an Eulerian framework.

The local kinematic condition is another suitable procedure to govern the evolution o f the 
deforming flow domain using a height function [Sujatha et al. 2006].

dh dh
—  = v — u —  (4.67)a
dt y ' dx

This method is adopted in this thesis for the modeling o f free surfaces in the coating 
application. This approach was earlier employed by Phan-Thien [1988] to determine the 
deformation o f the flow domain. In this approach, the free surface is estimated from a 
previous solution using a height function which must be updated at every time step.

For flat free surfaces, the above equation (4.67a) applies, with constant y-coordinates. 
Whereas, on curved free boundaries, polar coordinates apply as,

dh 1 dh
T - = lV - » a - T 7 (4.67)b
dt r d S

where u = u ={us,vr) = is the velocity vector and h = li{r, i9,f)

Surface solution re-projection: To satisfy the zero normal velocity boundary condition at the
free surface, (vrnr ,+u.n. = 0) ,  where (/?,/?_) components o f unit normal to the free surface,
the domain may be re-meshed and nodal coordinates modified. This is done by projecting the 
velocity solution onto the new surface positions.
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4.7 Convergence criteria

For the finite element scheme, the solution convergence is monitored through a convergence 
criterion satisfaction o f which enables termination of the program. A suitable error estimation 
criterion is expressed as;

|| £ ( x )  |[.= 11 —  ~X | l < e  (4.68)
W  I l l ' l l ,
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Chapter 5

Modelling combined-separating flows *

Combined-separating incompressible flow of Newtonian and inelastic Herschel-Bulkley 
fluids were studied numerically employing a semi-implicit Taylor-Galerkin pressure 
correction algorithm, where steady solutions are obtained through a transient finite element 
procedure. The influence of inertia and fluid rheology is analysed on flow patterns, velocity 
fields and pressure drops for various flow configurations, with fixed geometric specification 
on gap-width that stimulates the merging and splitting in the flow. Initially, Newtonian fluids 
were simulated for this benchmark problem, and the numerical procedure was verified with 
good agreement against previous numerical and experimental observations. To extend 
consideration to non-Newtonian inelastic materials, the material rheological characteristics 
were approximated with the use of the Herschel-Bulkley model, incorporating Ostwald-de 
Waele Power-law and viscoplastic yield stress approximations. Corresponding solutions for 
unyielded power-law fluids are observed followed by a variation of the consistency index. 
Devoid of shear-thinning and increasing yield stress, Bingham model solutions have been 
investigated and under Herschel-Bulkley modelling, some changes were apparent in 
rheological response.

Material in this chapter have been published in the paper “Modelling with viscous and viscoplastic 

materials under combining and separating flow configurations” by S. O. S. Echendu, F. Belblidia, H. R. 

Tamaddon-Jahromi, M. F. Webster in Mechanics o f  Time-Dependent Materials, November 2011, Volume 15, 

Issue 4, pp 407-428.



Chapter 5 Modelling combined-separating flows

5.1 Introduction

Combined-separating flows occur as most important unit operations in chemical engineering 
applications, and many configurations involve complex fluids. The term “mixing” (here, used 
as merging of flows) attributes mainly to the process of reducing the degree of non- 
uniformity or gradient of a particular property, that is, concentration, viscosity or colour 
[Chhabra and Richardson, 1999]. Most of these fluids include polymeric liquids with a 
variety of rheological behaviour ranging from Newtonian to viscoelastic. These types of fluid 
processing procedures are abundantly found in the food industry, liquid manufacturing, steel 
processing, pharmaceutical, chemical petroleum and oil industries. They can include 
different classes of non-Newtonian materials, such as, polymers, paints, food products and 
drilling fluids [Bird et al. 1983; Barnes et al. 1989; Tanner and Walters. 1998; Tanner 2000; 
Bird et al. 1977]. Focusing on the assumptions of a simple single-phase liquid mixing flow 
around a horizontal cylinder with incompressible fluids, ignoring heat transfers, mass 
transfers or any chemical reaction, complications can arise with highly viscous Newtonian 
and non-Newtonian materials.

In practical situations, combined-separating flows may occur in industrial or biomedical 
processes, for instance, to produce a uniform product, separate or blend fluids as occurs 
under swallowing of food stuffs [Nicosia 2007; Nicosia and Robbins. 2001] transported 
down the pharynx and oesophagus. Concerning the swallowing impaired, the correct 
functioning of the throat valve strongly influences flow splitting alongside food material 
characteristics. In this research, an investigation is conducted using finite element modeling 
to analyse the Newtonian and non-Newtonian fluid flow of a merging and splitting flow 
through a channel. Under Newtonian conditions, the study concentrates on the flow patterns 
that result under various boundary conditions and an inertia parameter analysis. This covers 
variation in Reynolds number, velocity fields and pressure drop. For this a finite element 
simulation of the flow configuration is presented, based on a semi-implicit Taylor Galerkin 
Pressure Correction Algorithm [Townsend and Webster. 1989; Hawken et al. 1990]. The 
flow is analysed for a variety of bifurcations to investigate the influence of inertia on 
Newtonian flow under various flow settings. With reference to a mixing and separating flow 
cited in the literature [Cochrane et al. 1981; Walters and Webster, 1982], where both 
unidirectional and reverse-directional flow occur simultaneously, this benchmark problem 
manifests flow characteristics for both Newtonian and non-Newtonian fluids and the analysis 
of the numerical solutions generated for this complex flow.

Newtonian fluids are both shear-rate and strain-rate independent, manifesting a constant 
shear viscosity, zero first normal stress difference, and a constant extensional viscosity. Yet, 
there are other fluid types that exhibit somewhat different rheological response. For Bingham 
fluids, flow commences only when shear stress reaches a certain limit; therefore there is 
presence of yielded and unyielded flow regions, observed from early studies on entry and 
exit flows of Bingham Fluids by Abdali et al. [1992]. Savreux and Jay [2007] studied 
viscoplastic fluid mixing in a rotating tank, observing static and moving unyielded zones, and 
the disappearance of vortices as yield stress was introduced. Marouche et al. [2002] 
performed studies on the numerical modeling for such yield stress fluids in a mixing vessel 
and Zisis and Mitsoulis [2002] worked on viscoplastic flow around a cylinder held between
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parallel plates. All authors observed the appearance of yielded and unyielded zones as yield 
stress was introduced. To accommodate this scenario, where both flow and no-flow occur 
simultaneously, several modifications to the constitutive equations have been proposed and 
this includes viscous regularization, where a smooth transition in stress is mathematically 
ensured as shear-rates asymptote to vanishingly small values [cf. Papanastasiou 1987].

Inelastic-viscoplastic rheological behaviour can be represented using the Herschel-Bulkley 
(HB) model, which incorporates Ostwald-de Waele power-law and a viscoplastic yield stress 
approximations. Previous research has shown several type of viscous regularization method 
for Herschel-Bulkley model. Zhu et al. [2005] studied non-Newtonian fluid with yield 
stress; proposing a generalized model found to be better than the Herschel-Bulkley- 
Papanastasiou model. Rudman et al [2004] studied pipe flow of shear thinning fluids using 
the Herschel-Bulkley model; Alexandrou et al. [2003] studied flow instabilities for Herschel- 
Bulkley fluids (employing a regularized Herschel-Bulkley-Papanastasiou model) and 
verified the importance of having a finite yield stress for Herschel-Bulkley flows;, also, 
Alexandrou et al. [2001] studied steady Herschel-Bulkley flow in a three-dimensional 
expansion (employing a regularized Herschel-Bulkley-Papanastasiou model). All authors 
found good qualitative agreement with experimental data.

Summarizing, the Herschel-Bulkley form is the most general choice from the constitutive 
model employed in the present work for material representation, which incorporates the 
Power-law (inelastic) and Bingham models (yield stress). Initially, unyielded-inelastic 
power-law properties are resolved, with shear-thinning behaviour observed for (m) less than 
unity, and Newtonian response achieved with m=l. Subsequently, viscoplastic analysis is 
conducted via the Bingham model (shear independent), with parameterization over 
increasing levels of yield stress. Finally, full Herschel-Bulkley modeling combines analysis 
for inelastic behaviour with the viscoplastic response.

The present flow problems of interest have been investigated numerically with validated 
experimental evidence by Cochrane at al [1981], Walters and Webster [1982] (experimental, 
finite difference solutions) and Baloch et al [1995(b)] using a transient finite element 
approach that employed a pressure-correction scheme. The flow domain and problem is that 
of two thin insert plates positioned along the horizontal central plane of a channel and 
parallel to the channel walls with a separating gap between the two plates. Previous studies 
[Baloch et al. 1995(b)] have employed thin plates and various merging and separating 
configurations with comparison for three different plate separation gap-width s and 
increasing flow rates. These authors employed a network model, Phan-Thien/Tanner (PTT), 
to represent the behaviour of a Boger fluid, and demonstrated numerically the effects of 
variations in gap-width, inertia material parameters, increasing elasticity and flow conditions. 
Recently, Afonso et al. [2010] studied viscoelastic flows in mixing-separating cells using 
finite-volume techniques, to assess the effects of Deborah number (De), Reynolds number 
and gap size on the two-dimensional flow dynamics. They employed the upper-convected 
Maxwell model to describe the creeping flow of viscoelastic fluids. The flow configurations 
follow from the previous studies by Cochrane at al. [1981], Walters and Webster [1982] and 
Baloch et al. [1995(b)]. Result shows that for Newtonian creeping flow, the ratio of the 
reversed flow-rate increases with increase in gap size. For viscoelastic flows, below a critical
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and supercritical gap-size, increasing Deborah number slightly enhances the reversed flow 
and leads to a consistent increase in reversed flow-rate ratio. Additionally, various techniques 
have been used by other researchers to examine flow characteristics in typical mixing and 
separating configurations. Sendilkumar et al. [2007] studied the fluid mixing characteristics 
in a jet mixer for Newtonian and non-Newtonian fluids using computational fluid dynamics. 
That study involved flow patterns that result inside a jet mixer under a number of 
configurations. These authors focused mainly on the mixing time, when comparing 
Newtonian and non-Newtonian fluids under different jet nozzle configurations. Findings 
revealed that Newtonian fluids showed a better flow pattern on the streamlines and mixing 
times were far less than those for non-Newtonian fluids. Moreover, Fox et al. [1956] studied 
single-phase blending of liquids, also focusing on the mixing time; results indicated that the 
mixing time is dependent on the jet Reynolds number. Jayanti [2001] studied the 
hydrodynamics of jet mixing using CFD analysis and showed the effects of flow circulation 
patterns in the reactor. Until recently, most researchers in this area have concentrated on jet 
mixers, striving to correlate the mixing time to a factor of the jet Reynolds number.

In the context of the present study, the model problem manifests dominant flow splitting and 
separating characteristics. Here, the consequent kinematics and the various bifurcations that 
arise are demonstrated, to reveal the effects of increasing inertia on vortex development, 
velocity fields and pressure drops. In doing so, the problem concentrates on a channel 
configuration with thin insert plates, fixed geometric gap-width and equal flow rates in all 
channel arms, whilst varying boundary conditions. Steady solutions were obtained through a 
transient finite element approach that employs a semi-implicit incremental Taylor-Galerkin 
pressure-correction Scheme, developed in the earlier work of [Hawken et al. 1990; Keshtiban 
et al. 2008]. This leads to a time-stepping algorithmic framework, with multiple and 
ffactional-staged equations performed within each time step.

5.2 Computational dom ain  and sp ec if ica t ion s

The details of the particular combined-separating flow problem considered are presented 
schematically in Fig. 5.1. The insertion of the plates into the domain creates two inlet and 
two outlet channel arms of equal dimension on opposing sides of the partition and a plate- 
separation gap of width p. The plate-separation gap considered is p = 2.875L, where L is a 
characteristics length taken as the height of an inlet channel arm. The thickness of the plate is 
taken as a = 0.1 L and a sufficiently long length of channel of 23L is selected to reflect fully 
developed flow at entry and exit of the domain.

In order to compare our numerical approach directly with Baloch et al. [1995(b)], the 
specification in Fig. 5.1a has been considered as the standard benchmark problem. Firstly, 
creeping flow of a Newtonian fluid was simulated until fully developed steady conditions are 
reached. Then, increasing levels of inertia were introduced by varying the Reynolds number. 
This permits an analysis of the influence of inertia on the flow patterns, velocity fields and 
pressure drops (analogous to a time-dependent flow with increase of flow-rate). Firstly, a 
Poiseuille flow was generated in the two-dimensional domain as presented in Fig. 5.1a. Here, 
the Newtonian problem employs a Poiseuille-type flow at both inlets to the channel and both 
channel exits, with stationary boundary walls. Secondly, in order to vary the geometric-flow
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design of the problem, a separating flow is presented in Fig. 5.1b. Here, the Newtonian 
problem employs a Poiseuille-type flow at only the top inlet o f the channel, with exit flow 
permitted at all other channel-flow boundaries.

The two-dimensional flow domain was discretised through structured triangular elements, 
employing a mixed-order Taylor-Hood type o f finite element with piecewise-continuous 
quadratic interpolation for velocity and linear for pressure. Then, velocity nodal variables are 
located at the vertex and mid-side nodes, whilst pressure variables are restricted to the vertex 
nodes only. Three meshes were explored and in all three such cases, converged solutions 
were achieved with minimum influence of the mesh size. As illustrated in the zoomed mesh 
representations o f Fig. 5.2, Mesh 1 employs 800 elements, Mesh 2 has 3200 elements and 
Mesh 3 has 12800 elements. Comparing the mean velocity component at the central inlet and 
outlet region on both channel amis in each o f the three meshes, a spatial convergence rate of

 ̂ 57h was estimated, as shown in Fig. 5.3. In assessing quality o f mesh convergence, reference 
is taken to the most highly refined mesh with 12800 elements.
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Figure 5.1: Boundary conditions: (a) combined-separating flow, (b) separating flow

Considering a spatially bounded domain with piecewise smooth boundary and a temporal 
domain, under incompressible isothemial flow conditions. The fluid properties o f density and 
viscosity are constant. Therefore, the system o f equations governing the Newtonian steady 
flow problem, are the continuity equation for the conservation o f mass and the momentum 
equation (see chapter 2). The numerical algorithm employs a temporal-spatial Galerkin finite 
element approach, Taylor-Galerkin Pressure-correction scheme for viscous and inelastic 
flows. Here, the resulting Navier-Stokes and inelastic equations (see Chapter 2 and 3
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respectively) are solved together with the incompressibility constraint using a semi-implicit 
incremental time-stepping procedure. The scheme is based on a fractional-step method 
(described in Chapter 4), utilising semi-discretization in the temporal domain, through a 
Taylor series expansion in time [Donea 1984] and a pressure correction procedure, to extract 
a time-stepping scheme of second-order accuracy [Van Kan 1986].
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y* y^ y^ y* y' *y y '

c) Mesh 80x80
23RHpH K?jp H S ■5Hp-~nkJEDE j 5 2 ^ 1

I S rat s fcS ■s S s
r . j  f / r ^ C ' l 5 E2T23P^lE g*<*g|gl EJ
lS tS t s

r
Li

512 §5 55z2 5 2
s 5 |

Figure 5.2: Zoomed section of meshes: (a), coarse, (b), medium and (c), refined.

5.3 New tonian  f low so lu t io n s

This study of combined-separating flow of a Newtonian fluid through a 2D planar-channel 
was performed on various bifurcations of different type of flow boundary conditions. In this
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section, the numerical results governing the investigation into the influence of inertia on flow 
streamline patterns, vortex size, velocity field and pressure drops are presented. These results 
were obtained numerically using the computational meshes presented in section 5.2. 
Previous numerical observations validated against experimental results were available, 
therefore this instance was chosen as an appropriate benchmark test problem. The flow 
domain for the problem, of Fig. 5.1, was discretized into triangular elements. The mesh 
design was such that the minimum size o f element was 0.025L. A finite element mesh of the 
domain consists o f 12800 total numbers o f elements, 25921 total numbers o f nodes and 1900 
total boundary nodes. Typical time-steps involved were At= 104 for Newtonian flows. Steady 
state solutions are extracted subject to a time-stepping relative increment tolerance o f 10"6 
employing five mass iterations per Jacobi step.

h357

h convergence

Figure 5.3: Spatial mesh convergence, based on mass conservation: combined-separating flow

5.3.1 In f lu en ce  o f  inert ia

Streamline patterns: Flow patterns in a combined-separating flow configuration (Fig. 5.4a) 
are an important feature, found useful to establish the presence o f stagnant regions, and the 
efficiency o f the overall flow process. Plerein, solutions are analysed by presenting 
streamline patterns that are plotted at equal intervals in each o f the two flow regions of 
reversed and unidirectional flow. The type o f flow pattern representation is that o f stream 
traces, these depending mainly on the geometrical domain o f the flow process. The particular 
flow domain used is important in that it aids determination o f the bulk flow and the 
quantification o f vortex formation (relatively static zones). In order to interpret the effects of 
inertia, with increasing Reynolds number, the flow of a Newtonian fluid has been examined 
and numerical predictions are presented for the wide-gap geometry (P=2.875L). It is 
observed that the flow responds to the presence o f the gap and breaks up, with some flow
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reversal and flow merging in both upper and lower exit sections o f the geometry. For a 
relatively low Reynolds number flow, viscous forces dominate those due to inertia and these 
prove sufficient enough to sustain unidirectional flow throughout the channel.

Re = 20

Re = 25

Re = 28

Re = 30

Re = 50

Re = 100

Figure 5.4: (a) Streamline patterns: Newtonian combined-separating
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For a Poiseuille-type separating flow (see Fig. 5.4b), solutions are obtained up to Reynolds 
number Re=20 without significant change in flow structure, with two stagnant regions 
emerging from the solid channel walls in the middle o f the geometry. With increasing inertia 
(25<Re<50), these stagnant regions begin to recirculate and grow in size, being 
symmetrically placed with respect to each other and about the central horizontal and vertical 
lines o f symmetry through the geometry. In this progression, for 25<Re<30, a pair of twin 
vortices form, which strengthen and collide to form one large vortex in the central geometric 
gap o f the domain. A zoom behind the centrally positioned insert plates in the exit flow 
channel amis ( 100<Re<300), reveals the formation o f recirculating vortices (from around 
Re~100), lying parallel to the plates initially and becoming more inclined away from the 
plates as the level of inertia increases, with the strength o f the central vortices decreasing 
somewhat to compensate. These observations lie in close correspondence with available 
numerical observations [Walters and Webster. 1982; Baloch et al. 1995(b)] validated against 
experimental results up to Re=30.

Re = 25

Re = 30

Re = 50

Re = 100

Figure 5.4: (b) Streamline patterns: Newtonian separating flow

For the simulation o f a Poiseuille-type Newtonian separating flow (typical representation o f a 
Newtonian-like food system in the swallowing canals [Nicosia and Brasseaur 2002]) through 
the 2D domain as in Fig. 5.1b, the streamline patterns generated are recorded in Fig. 5.4b, 
with results obtained up to Re=100. Vortices were observed at Re=30 and above. From these 
observations, the outcome illustrates how a food-like material, classified as Newtonian fluid,
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would flow through a separating channel. In particular, a distinct vortex is observed to be 
initiated just behind the plates at the center o f the channel. This reflects the sort o f anticipated 
patterns that might emerge in the vicinity of the epiglottis, at the end o f the pharynx and at 
the opening to the oesophagus (gap reflecting an open value setting), during a typical 
swallowing process. These vortices are further developed and expanded at Re=50 and above.

Velocity profiles: In Fig. 5.5, the velocity profiles along the (lower-red and top-green) centre 
of the channel amis are shown for the Poiseuille-type combining-separating flow. From such 
graphs, one may clearly observe the impact on the velocities due to the development of the 
vortex. Up to Re=20, no vortex development is observed; this can be gathered from the 
distinct gap between the bottom flow and the top flow, as Reynolds number increases. This 
gap decreases leading to the initial development o f the vortex at Re=25. This central vortex, 
once formed, then fully develops as shown at Re=50, where the two velocity profiles overlap 
each other. Also a tiny vortex, which begins to form behind the insert plates, is apparent here 
at Re=50, as the velocity suddenly increases just passed the geometric gap. Both the central 
vortex and the vortex behind the insert plates, fully develops as Reynolds number is 
increased up to Re=300. The two line-plots in the graph reveal that, whatever changes occur 
to the fluid velocity profiles in the lower channel arms also occur in the top channel arms.

R e s  50.0Re = 25.0Re = 20.0

0.5 0505

b o tto m
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Figure 5.5: Variation o f velocities with increasing inertia

The total velocity differences demonstrate the velocity drop from entry to exit for both the 
lower and top channel arms. As Reynolds number increases from Re=20 to 300, the 
perturbation in velocity across the geometric gap increases, and hence the total velocity 
differences gradually rise. There is a rapid increase in the velocity differences from
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50<Re<300, this observation reflects the influence of inertia on the velocities as the large 
central vortex develops.

Pressure profiles: The pressure profiles are observed along the centre x-axis of the bottom 
channel arms. The results are shown in Fig. 5.6 and are useful in determining the growth-path 
o f vortex development. Vortices are formed around areas o f low pressure and these zones 
attract the fluids towards its centre. From Fig. 5.6, one observes that both inlet flows are 
drawn towards the channel-centre and respond to the presence o f the gap; this results in an 
increase in pressure towards the centre of the channel. With an increase in inertia/flow rate, 
the fluid pressure also increases, causing higher pressures at the channel-centre zone. From 
the streamline patterns for Poiseuille-type flow, vortex development is clearly visible at 
Re=25, where the level o f inertia/flow rate o f the fluid causes the pressure to slightly increase 
towards the channel-centre. This same trend is observed with increase in Re up to 50. At the 
larger levels, from Re=100 to 300, due to the rapid increase in pressure towards the inlet 
channel arm, a decrease in pressure is observed towards the outlet channel arm, causing 
another vortex to form behind the insert plates. From the streamline patterns, this vortex is 
clearly appearing by Re=100, which correlates as shown in Fig. 5.6 with a decrease in 
pressure. The numerical solutions demonstrate that as the Reynolds number rises, the 
pressure across the channel also increases.

3 5 0
  Re
 Re
  Re
 Re
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28
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Figure 5.6: Pressure profiles along the bottom channel arms with increasing inertia
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5.4 Inelast ic  and v iscop last ic  f low  so lu t io n s

Following the above analysis, it is instructive to give some consideration to material change 
and introduce yield stress effects, via inelastic and viscoplastic fluid representation. Hence, 
again, the combined-separating Poiseuille-type flow configuration was considered (of Fig. 
5.1a), through a 2D planar-channel. As above, the mesh discretization was precisely that used 
for the earlier Newtonian flow, with the minimum size of element as 0.025L, 12800 total 
numbers of elements, 25921 total numbers of nodes and 1900 total boundary nodes.

These inelastic and viscoplastic flows are characterized under three parameters, through the 
combination of power-law model and Bingham model. These three parameters are the 
power-index m, the consistency index k, and the yield stress to. As such, one is interested in 
studying the independent variation of these parameters and investigating the corresponding 
effects upon the resultant steady-state solutions.

5.4.1 Inelastic shear-thinning power-law representation

Focusing on the combined-separating flow configuration, the first parameter of interest is the 
power-index m, which manifests itself through the fluid viscosity, so that when m<l shear- 
thinning behaviour is apparent (see chapter 3, Fig. 3.3 for material function). Typical pseudo
plastic fluids used in industrial applications, include starch solutions, emulsions, paints and 
some drilling muds. In this work, particular interest lies in analyzing the effects of variation 
in the power-index (m) and consistency index (k), on the flow.

5.4.1.1 Effects of variation in power-index (m)

Vortex development: The vortex development with power-index (m) is shown in Fig. 5.7, 
under a consistency-index of unity, k = 1.0. Here simulations were conducted for Re=25 and 
Re=50 in the moderate thinning range of 0.7<m<0.9, in order to observe the vortex 
development patterns. From Fig. 5.7a, (Re = 25) the trends show that decreasing m affects 
the development of the vortex by slightly increasing the size of the vortex formation, at the 
top and bottom channel-centre zones. Also, in Fig. 5.7b, with a decrease in m, a vortex 
formed behind the insert plates, at Re=50 and m=0.9, which develops slightly more as m was 
decreased to 0.8.

Velocity profiles: Fig. 5.8 shows the velocity variations with decreasing m for shear-thinning 
fluids, focusing on the mixing flow region and the flow along the bottom channel arms. As m 
was reduced, the maximum core-velocity in the bottom channel arm is observed to decrease 
with increased shear-thinning; this position is maintained along the channel. The velocity 
reduces rapidly towards the channel-centre, where the recirculation takes place, and the 
departing flow increases rapidly in velocity up to that of inlet flow. From Fig. 5.8, at the 
beginning of the outlet channel arm, a small variation in velocity is observed, highlighted on 
the graph; this variation is caused by the vortex formation behind the insert-plates, as shown 
in the streamlines patterns of Fig. 5.7a. At m=0.9 and up to m=0.7, the vortex is not visible in 
the streamline patterns, but a small variation in velocity is observed, as in Fig. 5.8. Hence, 
this data signals the onset and initial development of this vortex.
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m = 0.9

Figure 5.7: (a) Effect o f power-law index m on vortex size for combined-separating How
(Re=25, k=\)

in = 0.9

m = 0.8

Figure 5.7: (b) Effect o f power-law index m on vortex size for combined-separating flow
(Re=50,*=l)

Velocity difference relates to the decline in velocity from U max to U mjn. It is observed for 
shear-thinning fluids that as m decrease the velocity differences increase. Viscosity o f the 
fluid decreases as power-index m increases, and the maximum shear rate also decreases with 
increasing m. Typical fluids with these types o f viscosity and shear rate variations include 
natural polymeric fluids used in the liquid manufacturing industries. The increase in the 
viscosity o f these fluids causes an increase in resistance to flow due to the internal fluid 
friction, and hence, velocity differences increase with distance normal to the flow direction.
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Figure 5.8: Velocity profiles along the bottom-channel arms with power-law index m
(Re=25,rt=l)

Pressure profiles: The variation o f pressure against power-index m is monitored through the 
effect on the pressure profiles for the bottom channel arm, as illustrated in Fig. 5.9. It is 
observed that as m decreases, there is somewhat o f a decline in pressure across the channel. 
Hence, for example with m =l, the pressure at the inlet is at the level o f 192 units; then as m 
is decreased to 0.9, the pressure reduces to 168 units; at m=0.8 and 0.7, the pressure 
gradually drops to 146 and 126 units, respectively. This explains why there is an increase in 
vortex size with decreasing m, as shown in Fig. 5.7.
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Figure 5.9: Pressure profiles along the bottom-channel arms with power-law index m
(Re = 25, k = 1)
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5.4 .1 .2  Effects  o f  v a r ia t io n  in c o n s i s t e n c y - i n d e x  (k)

Vortex development: The second parameter of interest is the consistency index k. Adjustment 
in this parameter also causes viscosity change in the steady solutions generated. Based on 
power-index o f m=0.7, at Re=25, the streamline patterns generated may be analysed as a 
function o f the consistency index k, through values o f k=0.75, k=0.5 and k=0.25, as shown in 
Fig. 5.10. It is clearly observed that as k is decreased, the twin vortex, which begins to form 
at the centre o f the channel, fully develops into a large vortex. A second vortex is also visible 
behind the insert-plates, and this further develops at k=0.5 and k=0.25. This response in 
behaviour remains valid for other levels o f shear-thinning fluids likewise.

A = 0.75

k = 0.5

k = 0.25

Figure 5.10: Effects o f consistency-index k on vortex size 
(Re=25, m=0.7)

Velocity profiles: The analysis o f the velocity profiles across the channel, as a function o f k, 
is illustrated in Fig. 5.11. This shows the variation o f velocity with decreasing k and shows 
the impact this has on vortex development. Towards the centre o f the channel and behind the 
insert plates, varying velocity profiles are observed, leading to the development o f the vortex, 
as seen in Fig. 5.11. With decreasing k, the fluid viscosity decreases, therefore the internal 
friction o f the fluid decreases which leads to less resistance to flow and hence elevates levels 
o f deformation rate. Hence as k decreases, the velocity difference is seen to rise.

Pressure profiles: The pressure profiles, as a function o f the consistency index k, are shown 
in Fig. 5.12. The trends show that as k decreases, the pressure at the inlet drops rapidly. At 
k= l, the pressure level lies initially at 128 units; as k is reduced to k=0.75, k=0.5 and k=0.25, 
the pressure reduces to 98, 68, and 40 units, respectively. Therefore with lower k values, 
equivalent flow structures are achieved, but sustained by lower pressure drop at the inlet. 
With increasing k, the pressure drop across the channel tends to increase rapidly.

- 7 2 -
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Figure 5.11: Velocity profiles along the bottom-channel arms with consistency-index k
(Re=25, m=0.7)
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Figure 5.12: Pressure profiles along the bottom-channel amis with consistency-index k
(Re=25, m -0.1)
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5.4 .2  V isc o p la s t ic  Bingham y ie ld  s t r e s s  r e p r e s e n t a t io n

Coal suspensions, slurries, paints, printer inks, sludge are typical viscoplastic-Bingham fluids 
which can be mixed under industrial processing. Here analysis has been conducted on the 
influence o f yield stress on the flow of such types of fluids in related combined-separating 
flow configurations.

5 .4 .2 .1  Effects o f  y ie ld  s t r e s s  ( t o )

Vortex development: The stream traces for yield stress fluids in these flows are shown in Fig. 
5.13. Observations are that as yield stress values are decreased, there is a substantial increase 
in the size o f the vortex region. Hence, for Re=25, at lower values o f yield stress (to = 0.001), 
vortex formation is observed at the centre of the channel; and these vortices increase in size 
as yield stress values are further reduced (to to = 0.0001). It is important to note that when the 
level o f yield stress rises, more inertia is required in order to drive a central vortex. This is in 
agreement with the observations o f Savreux and Jay [2007] that vortices are found to 
diminish and disappear as yield stress is introduced and subsequently increased.

t o  = 0 . 0 0 0 1

T ft=  0.01

T ft=  0.1

Figure 5.13: Streamline patterns: viscoplastic Bingham fluids (Re=25)

Shear rate and viscosity: The viscosity and shear rate contours as a function o f yield stress, To 
(Re=25) are displayed in Fig. 5.14. The flow regions at the inlet and outlet walls and around 
the insert plates are identified as being exposed to high shear rates, therefore the viscosity in 
these flow-areas tends to be reduced for To = 0.1 and this is valid for any level of yield stress.

- 7 4 -
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Figure 5.14: Shear rate and viscosity contours across the channel: visco-plastic Bingham
fluids, (Re=25, T o=0.1)

Yielded and unyielded regions: Fig. 5.15 shows the growth o f unyielded regions for the flow 
o f the viscoplastic Bingham fluid across the combined-separating flow domain. The yielding- 
unyielding cut-off criteria, that captures the interface within the plots, is based on the 
magnitude o f stress exceeding the yield stress level which is set in any given instance (and 
assessed via defonnation-rate). At the relatively large yield stress level of io=0.1, the 
unyielded region increases and there is no evidence o f vortex formation. This is a direct 
consequence o f the lack o f any significant deformation present in these zones.

To =0.001

To =  0.01

T() = 0.1

Figure 5.15: Growth o f unyielded region (light green): visco-plastic Bingham fluids
(Re=25)



C h ap ter  5  M ode ll in g  c o m b in e d - s e p a r a t in g  f lo w s

5.5 H erschel-Bulk ley  (HB) f low so lu t io n s

This HB-analysis was conducted with the combination o f the power-law and yield stress 
models, at Re=25, m=0.7, k=1.0 and yield stress levels o f 0.01, 0.001, and 0.0001 (for 
combined-separating flow), taking into account variation under the two parameters, the 
power-law index m and the yield stress t 0 (see chapter 3, Fig. 3.4a and 3.4b for material 
function). From Fig. 5.16 and the streamlines patterns for the HB-fluid, observations agree 
with like trends for the visco-plastic Bingham fluid - that as yield stress increases; the 
formation o f a vortex disappears at yield stress values of 0.01 and above. Also due to the 
change in the power-index (m) (omitted under Bingham fluid modeling), the vortex size 
tends to be slightly more exaggerated than that observed with the visco-plastic Bingham 
fluid. Compared against the power-law fluid at the same levels o f power-index (m) and 
consistency index (k), variations in the streamlines patterns would indicate that there is little 
to no vortex formation at higher yield stress levels. Fig. 3.4a illustrates the viscosity and 
shear rate profiles (in log-scale) and tends to explain why there is some vortex formation at 
low levels o f yield stress. With the increase of x0 up to yield stress o f 0.1, the unyielded 
region expands with no vortex formation evident at these stress levels (see Fig. 5.17). These 
observations show clearly the influence o f rheological variation on the flow patterns and 
structures thereof.

t „ = 0 . 0 0 0 1

To =0.001

To = 0.01

To =0.1

Figure 5.16: Streamline patterns: Herschel-Bulkley fluids (Re=25, m=0.7, £=1.0)
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T„ =0.001

To =0.01

To = 0.1

Figure 5.17: Growth o f unyielded region (light green): Herschel-Bulkley fluids
(Re=25, m—0.7)

In comparison for separating flow configurations, some simulations have been conducted for 
different inertial levels (How rates) and shear-thinning levels at a fixed yield stress value of To 
= 0.01. Observations reveal that at low inertial levels (Re = 50) and high levels o f shear 
thinning (m = 0.6), vortices are again formed under the separating insert plate, as shown in 
Fig. 5.18a. Then as inertial levels rise to Re = 100, with a decrease in the level o f shear 
thinning (m = 0.8), these vortices expand rapidly due to the prevailing conditions, see Fig. 
5.18b. From the shear rate and viscosity contours o f Fig. 5.19, one can clearly detect that 
viscosity levels tend to be extremely low around the inlet wall regions; hence shear rate in 
these regions will rise.

T() = 0.01

Figure 5.18: (a) Streamline patterns: Herschel-Buckley fluids, Re=50, m=0.6, k=1.0

T(, = 0.01

Figure 5.18: (b) Streamline patterns: Herschel-Buckley fluids, Re=100, m=0.8, k=1.0

- 7 7 -
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Figure 5.19: Shear rate and viscosity contours across the channel: Herschel-Buckley
fluids, (Re=50, m=0.6)

5.6 O verview

Numerical simulation has been conducted for Newtonian and viscoplastic fluid models under 
combined-separating flow configurations in planar-channels. Solutions are described through 
streamline patterns, velocity profiles and pressure profiles. The overall study demonstrates 
the effective performance o f a fractional-staged Taylor-Galerkin Pressure-Correction Scheme 
for these complex inelastic flows, when used in combination with a Herschel Bulkley fluid 
model and its variants. The numerical solutions generated prove to be qualitatively in close 
agreement with available numerical and experimental results. The Newtonian problem serves 
as a benchmark to analyse its prominent features and upon which to introduce fluid 
rheological properties. Numerical results were obtained for steady flow situations and 
validated against published data. For Newtonian fluids, the flow was investigated for the 
influence o f inertia under two forms o f flow configurations with Poiseuille-type flow, a dual
inlet/outlet combined-separating flow and a single-inlet/dual-outlet separating flow. 
Corresponding streamline patterns have been extracted from which alternative vortex 
formations have been observed. For both the dual-inlet flow process and the single-inlet 
separating flow process, with increasing inertia, flow reversal patterns have been detected, 
with an increase in the central core vortex sizes, and a vortex was formed behind both insert 
plates at Re=100 level and above. This trend agrees well with previous experimental and 
numerical published data. Analysis on the velocity and pressure profiles demonstrates that 
with increasing inertia, the velocity and pressure also rise across the channel.

Under rheometrical variation, initial consideration was then given to an unyielded fluid, 
focusing on the effect o f power-index m on vortex sizes, velocity profiles and pressure drop. 
Findings showed that with decreasing power-index m, the vortex sizes slightly increase; the

- 7 8 -
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velocity gradient also increases whilst the pressure gradient decreases. Analyzing the 
variation of viscosity against shear rate, at low power-index m, larger viscosities were 
observed in and around the wall regions with lower shear rates. Visco-plasticity was then 
introduced through a Bingham approximation, taking into account only yield stress variation. 
Results for this have shown that decreasing yield stress levels, increases the yielded regions 
in the splitting and combining flow regions. This has led to the formation of a vortex at 
inertia levels of Re=25 and above; also a slight increase in pressure is observed at yield stress 
values of 0.01 and above.

Lastly, further investigation has endeavoured to generalize the rheological variation, 
introducing the Herschel-Bulkley (HB-) model, where there is the combination of inelastic 
behaviour and yield stress response. Here, and at the larger yield stress levels of 0.1, there is 
then little to no vortex formation at inertial levels of say around Re=25 (providing vortex 
suppression characteristics).



Chapter 6

Reverse roll-coating: computational investigation*

This chapter introduces the industrial flow problem where computational techniques are 
sought to investigate flow through a high-speed defect-free reverse roll coating application. 
The study aims to develop an effective predictive toolset for high-speed defect-free coatings. 
The computational domain involves the transfer of a coating fluid from a roller to a moving 
substrate (reverse mode) up to the nip-region. Time-stepping finite element methods are 
deployed to model the free-surface problem, in conjunction with a set of constitutive 
equations (for Newtonian and inelastic flows) capable of describing the relevant fluid-film 
rheology in appropriate detail. Flow structures and quantities of pressure, lift and drag have 
been calculated stream-wise across the flow domain and findings are applicable to a wide 
range of coating sectors in optimisation of coating performance, targeting adaptive and 
intelligent process control. Further analysis has been conducted, mimicking the presence of a 
wetting line, whilst varying boundary conditions at the nip, and several relief mechanisms are 
observed to the positive peak-pressures generated around the nip-zone. Through an elasto- 
hydrodynamic formulation, the elastic deformation of a rubber roll cover (elastomer) was 
introduced. This has offered fresh insight into the process with respect to nip-flow behaviour, 
which allows for the analysis of both positive and negative nip-gaps.

’Material in this chapter have been published in the paper “Reverse roll-coating: a computational 

investigation towards high-speed defect free coating” by F. Belblidia, H. R. Tamaddon-Jahromi, S.O.S. 

Echendu, M. F. Webster in Mechanics o f Time-Dependent Materials, December 2012, DOI 10.1007/s11043- 

012-9204-y
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6.1 Introduction

Roll coating is used extensively in the application of functional organic coatings onto strip 
steel, in the application of water-borne adhesives to tapes and in structural laminating 
applications. This process involves coating one side of a substrate (web, sheet) with a fluid 
formulation as it passes between co-rotating cylindrical rollers (reverse roll mode). As such, 
film and foil converting applications are considered, being the second most commonly used 
coating application technique that is after rotogravure. As a process, roll coating is highly 
versatile, but requires a technically skilled operator to maintain consistency. Currently, the 
application of coated strip steel in the construction industry is diversifying into more novel 
functions such as the use of photovoltaic coatings for solar energy collection or coatings that 
afford acoustic protection. More importantly, there is a continuous drive towards increased 
coating line-speeds for reasons of economy, whilst maintaining the requirements of 
controlling film weight and freedom from defects.

From previous studies, (Chandio et al. 2002a, 2002b, 2001) developed a numerical scheme 
for Newtonian flows, based purely on finite element methodology with free-surface 
prediction in time. Transient instabilities were analysed with varying speed ratios. 
Observations reveal that flow instabilities were stimulated upon increase in foil-speed rather 
than roll-speed. Industrially, a major drawback is presented through the occurrence of flow 
instabilities at high line speeds, which cause defects that take the form of ‘ribbing’ of the 
applied coating (3D effects). To date, there has been considerable focus on the mechanistic 
origins of such instabilities, mainly based on numerical modelling in which the liquid coating 
is represented as a Newtonian fluid (as a first approximation) — the onset of ribbing being 
associated with a critical capillary number (Ca). However, from a practical industrial 
perspective, a straightforward empirical correlation does not exist between the rheology of a 
given coating, and the line-speed marking the onset of instability. Generally, such industrial 
coating liquids contain a number of polymeric additives and surfactants, which may 
significantly affect the operating conditions, as well as product quality. When minute 
amounts of polymer are present, the onset of instabilities may occur at much lower line- 
speeds than for Newtonian coatings (Zevallos et al. 2005). Notwithstanding this fact, still the 
majority of theoretical work undertaken to date has employed Newtonian fluid 
approximation.

The proposed study seeks to address these issues and aims to develop effective predictive 
software tools for use in the development of high-performance coatings, capable of 
consistent application at high speeds. The work involves the application of novel approaches 
to the predictive modelling of the free-surface of the coating fluid (i.e. meniscus height in the 
applicator nip, wet-film thickness transferred to substrate) used in conjunction with 
constitutive equations capable of describing the fluid-film rheology in appropriate detail 
(shear-thinning, tension-thinning/thickening, elasticity). The findings of this research are 
applicable across a wide range of coating sectors in optimisation of coating performance (see 
review of Mackerle 2005). The ultimate research goal is to develop adaptive-intelligent 
control of the roll coating procedure to allow for rapid optimisation of machine variables and 
process productivity.
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Coyle et al. (1990c) furnishes the appropriate background material on finite element (fe) 
studies, and experimental studies for reverse roller coating (RRC) with non-Newtonian 
fluids. Findings have revealed that at high speed-ratios and large capillary numbers, the 
metered film flow deviates somewhat from lubrication theory prediction. Also, Fourcade et 
al. (1999) investigated fluid-solid interaction in a reverse roller-coating process, focussing 
principally on the deformation of the elastomer on the coated roll. Similarly, Cohu et al. 
(1997) conducted experiments on forward roller-coating for Newtonian fluids between 
deformable rolls, with the primary aim of predicting the coating thickness. Informatively, 
Carvalho et al. (1997) studied the effect of soft-roll deformation with respect to the onset of 
ribbing. Their main findings showed how a deformable cover may be used to lessen the 
ribbing on the liquid layer to achieve a required coating thickness. Additionally, Hao et al. 
(1999) employed a Galerkin fe-method to analyse the reverse roll coating process. They 
demonstrated that roll-speed ratio is the most significant factor influencing the process, and 
that a critical speed ratio always exists, observing significant increase in Reynolds (Re) and 
capillary numbers (Ca) with increasing speed ratio. Ascanio et al. (2004) performed an 
experimental study on a Newtonian fluid in a deformable nip-gap within a high-speed 
forward roll-coating process. No cavitation was generated as the negative peak-pressure was 
not sufficiently low when compared with the vapour pressure of the fluid. Fernando et al. 
(1988) investigated the importance of dynamic uniaxial extensional viscosities (DUEVs) 
relative to shear viscosity and viscoelastic parameters. That is, with regard to the onset of 
ribbing, web growth, and fibre formation in roll-coating applications, where they used non- 
Newtonian water-soluble polymer blends. Experiments on various blends with increasing 
DUEV, whilst maintaining identical shear viscosities over a given shear rate range up to 104s’ 
', pointed to the fact that this provoked earlier onset of ribbing. Once ribbing has onset, these 
authors observed a decrease in the number of ribs under increasing DUEV (associated with 
growth in web-size). Hence, there is compelling evidence that extensional properties are 
significant in the process. Moreover, in a pertinent and recent computational study, Zevallos 
et al. (2005) investigated forward roll coating with viscoelastic fluids using Oldroyd-B 
(constant shear viscosity, strain-hardening) and FENE-P models (shear-thinning, strain- 
hardening). They employed a fe-method, and found that liquid elasticity has a greater 
propensity to destabilise the flow. At any given surface tension level (governed by Ca), there 
was a critical Weissenberg number (We) above which the flow became unstable. 
Furthermore, one may refer to Mmbaga et al. (2005) for discussion on the topic of treatment 
of dynamic wetting lines.

On purely experimental grounds, four categories of coating flows were classified and 
reviewed by Benkreira et al. (1994). These are: free, metered, transfer and gravure coating 
flows. In addition, Benkreira (2002a) has analysed the movement of the dynamic wetting line 
in reverse-roll coating in a series of experiments, providing conditions for dynamic failure 
that may occur due to air entrainment (Benkreira 2002b). Most recently, Benkreira and Khan 
(2008) examined experimentally the effect of reduced air pressure on dynamic wettings for 
dip-coating. To assess the role of air/gas viscosity and substrate roughness on dynamic 
wetting failure, a series of silicone oils (of various viscosities) were tested in a vacuum 
chamber, allowing for the pressure to be reduced, along with various substrates of differing 
degrees of roughness. This allowed these authors to gather data capturing the effects of 
viscosity, roughness and air pressure on dynamic wetting line conditions. Benkreira and Ikin
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(2010) also assessed experimentally the role surrounding air/gas viscosity importance in 
dynamic wetting, a factor that has been missing in more fully describing the wetting 
phenomenon. The authors concluded that as processing speed increases, the viscous forces 
exercised by the liquid predominate over surface tension forces resulting in thin pockets of 
entrained air. Furthermore, findings also confirmed the complex role of roughness, in 
increasing or decreasing air entrainment speed, depending on the value of the viscosity on the 
coating solution. Alternatively, a two-roll apparatus was used by Gaskell et al. (2000) to 
investigate the detailed fluid mechanics of meniscus roll coating, in which inlets were starved 
and flow rates were small. Both forward and reverse modes of operation were investigated 
using optical sectioning, combined with dye injection and particle imaging techniques. 
Similarly, Ascanio et al. (2006b) presented a technique for measuring the pressure 
distribution of Newtonian fluids flowing through a deformable nip-gap created between rolls, 
counter-rotating at high speed. They employed a high sensitivity piezoelectric transducer 
mounted on the rigid roll of a laboratory film coater.

The present study advances the earlier research findings cited (Chandio et al. 2002a, 2002b, 
2001) in a number of different aspects listed below, where the roll coating parameters 
involved have been subdivided into distinct groups:
(i) The operating conditions of roll-speed;
(ii) Variation of nip-gap between rolls;
(iii) Boundary conditions adjustment at the nip (as pressure relief mechanism 1);
(iv) Slip conditions at the nip (pressure relief mechanism 2);
(v) Inelastic representation of fluid properties (pressure relief mechanism 3);
(vi) Roll-cover properties consisting of roll-radius, elastic/plastic/viscoplastic cover 

material and layer thickness (as relief mechanism 4).

In particular, this work focuses on the effects of parameter variation on the process and 
analysis of the film rheology.

6.2 Computational dom ain  and spec if ica t ions

The region of interest in the present analysis of the reverse roll coating line is identified in 
Fig. 6.1. In recognising appropriate boundary conditions for this problem, all nodes attached 
to the foil-substrate are assigned with the velocity of the foil. The substrate coating thickness 
is chosen as the characteristic length (L) and the foil-speed is set to the characteristic velocity 
(Uf), so that the standard setting yields a non-dimensional foil velocity of unity (Ur= 1). 
Since foil-roller velocity ratio is an important quantity, the standard roller velocity setting 
equates to that of the foil, providing a ratio of unity (thus, Ur=1). Initially during this first 
phase of the work, no-slip velocity boundary conditions are applied on all solid surfaces. At 
the nip-region (end of the flow domain considered), a finite miniscule gap of about 1% of foil 
thickness (calibration length-scale), is assumed to separate the roller and substrate moving 
surfaces.

The inflow at the roller, and the coating outflow, on the foil-substrate, are set assuming plug- 
type flow, ensuring an overall mass balance, so that the flow-rate at the roller ( QR=URhR)
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equates to the flow-rate at the foil ( QF = UFhF). This ensures that the desired film thickness 
is achieved through hF =hR UR/UF .

$------------ web

outflow

free surface ->

Roller

inflow

y = h(:

Y-axis

Figure 6.1: Schematic diagram of the flow domain

Free-surface boundaries are assumed at the inflow (region I in Fig 6.1), meniscus (region II), 
and outflow (region III) locations, respectively, being resolved through the representations 
described in Chapter 3, eqn (4.67) [see Sizaire and Legat 1997]. During the transient 
movement of the free-surface toward a steady-state position, a re-meshing time-stepping 
technique is performed to adjust the mesh within the domain (locally). On the free-surface 
boundary sections (meniscus, inlet flow, substrate coating) vanishing tractions are imposed 
and only atmospheric pressure is considered initially. For simplicity, the effects of surface 
tension are ignored. Thus,

-P + Tm =-Po + Am.. O', r„, =0 (6.1)

where p and p0 are local and atmospheric pressures, respectively; rnn, rnl are normal and 
tangential stress components, respectively. Surface tension inclusion is defined through its 
coefficient, crs , and account of the mean curvature of the free-surface, p ^  . Hence, if the
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surface tension is neglected, on the free-surface boundary, the normal stress balances with 
the pressure terms and the tangential stress vanishes.

Lift and drag calculations: Lift and drag constitute mechanical forces that arise between 
solid and liquid surfaces. Here, calculations are performed for the lift on the foil-substrate 
(Lf0ii) and the drag on the feed-roller (Drouer). For a Newtonian fluid, the lift and drag forces 
may be expressed through the following integral expressions over respective surfaces:

L fou= J  { - P  +  Tyy ) d Y  =  J  Lf d T >
f to "  r<w

D roller =  J  i ~ P  COS #  +  Lev COS + TXy  s in  =  J  (“ A  ) 
r  rroller roller

where r - 2 p D  and Lf and D, (integrands) are the distributional (localised) lift and drag 
quantities. Note that these quantities, cited below under non-dimensional reference with * 
superscript notation, may be accessed through experimental measurement, hence providing 
for direct comparison with the numerical solutions generated.

The modelling approach addresses various themes systematically through (a) development of 
an appropriate numerical techniques; (b) f e  discretization; (c) setting appropriate boundary 
conditions; (d) fluid modelling (paints) through complex viscous-inelastic constitutive 
equations (rheological considerations); (e) computation to mimic a dynamic wetting line and 
with slip conditions imposed.

iv)

Figure 6.2: FE discretisation; (a) mesh 2; i) full mesh, ii) meniscus region, iii) 
zoomed meniscus, iv) nip region (nip expanded radially by a factor o f 50, for 

illustration puiposes); (b) mesh 3; more refined (scaled and zoomed, as above)
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Typical industrial coating fluids of interest are weakly shear-thinning and moderately 
tension-thinning in extension. This study constitutes a primary analysis, where attention is 
paid to setting up the free-surface problem and incorporating viscous properties alone, first of 
Newtonian form and, secondly, through inelastic shear-thinning modelling.

Under isothermal setting for incompressible Newtonian and non-Newtonian flows, the 
governing conditions consist o f a continuity and momentum equation. These equations are 
coupled with the free-surface boundary equations and are solved through a finite element 
based time-stepping fractional-staged Taylor-Galerkin incremental pressure-correction 
(TGPC) framework (see chapter 4). A section of the roller coating domain is isolated (Fig. 
6.1) and discretised through triangular tessellation. Three comparative meshes (mesh 1, mesh 
2, mesh 3) have been developed for this purpose, as illustrated in Fig. 6.2a (mesh 2) and Fig. 
6.2b (mesh 3); (nb: coarser mesh 1 is not shown). Mesh 2 and mesh 3 are obtained by 
refining mesh 1 and mesh 2, successively. Quantitative parametric detail on these meshes is 
provided in Table 1. Mesh 2 has been shown to provide sufficient resolution when compared 
to mesh 1 and mesh 3. Here, the difference in computed solutions for velocity and pressure 
fields has been observ ed to be ~ 9% between mesh 1 and mesh 2, and less than 1% between 
mesh 2 and mesh 3. Therefore, for reasons o f efficiency, yet still retaining sufficient 
accuracy, mesh 2 is the standard choice used for computation and for the solutions presented 
below.

Table 1: M esh characteristics Mesh 1 Mesh 2 Mesh 3

Total num ber o f n od es 1560 2925 10536

Total num ber o f pressure nodes 433 812 2925

Total num ber o f e lem en ts 650 1302 5208

Total num ber o f d egrees of freedom 3553 6662 23997

6.3 New tonian  flow so lu t ion s

As a standard benchmark setting, Newtonian flows are simulated initially at /=  0 , starting 
from a quiescent state. Solution variables (velocity, pressure) will then develop in time to 
reach a limiting steady-state after a finite number o f time-steps (iterations). This procedure is 
monitored for convergence against an incremental relative-norm tolerance and viewed 
against a minimal target threshold, set at 0 (KTfl).

a) <---- 8j1 b)  «-----
2772

5
2925 _ _ _

 8̂0! >    ^

Figure 6.3: Nip velocity boundary conditions; a) blockage type, b) Couette-type - 8 6 -
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With a unit foil velocity (Uf= 1), flow blockage at the nip and similarly balanced roller 
speeds, solutions are implemented in stages within the inflow/outflow, meniscus and nip- 
regions: case (a) fixed meniscus free-surface, and case (b) with meniscus free-surface 
inclusion. Two types o f velocity profile are considered (zero-flux) at the nip-region. (i) 
vanishing stream-wise velocity across the nip-gap (blockage); and (ii) Couette-type velocity 
conditions, with driving lower (roller) and upper (substrate) boundaries. Both scenarios 
ensure a zero mass flow balance at this region (see Fig. 6.3). Radial velocity vanishes at the 
nip under either scenario.

Through flow patterns, Fig. 6.4 indicates the consequences o f inclusion/exclusion of 
meniscus free-surface movement. This points to the important fact that there is no flow 
reversal in the vicinity o f the meniscus under fixed boundary approximation, which enter the 
problem when traction-free-conditions are fully incorporated (introducing cross-stream 
tension in the coating), although meniscus shape does not appreciably alter, (Fig. 6.4). Thus, 
the flow entering from the roller-feed must travel up to the nip before returning back to the 
domain-exit to form the coating on the foil-substrate (as demonstrated through the streamline 
patterns).

a) b)

No FS

Fig. 6.4: Streamline patterns and effect o f free surface; a) excluding free surface 
movement, b) including free surface movement

For the traction-free setting under (Uf=Ur=\.0), Fig. 6.5a exposes the calibration o f the non- 
dimensional distributional lift, localised pressure on the foil substrate, and the distributional 
drag on the roller. A sharp rise in pressure (and hence lift) is observed, occurring locally at 
the nip and building up from a distance o f 5% of foil-length considered (measured from the 
nip). The peak-pressure-value is 0(10 ) larger than that in drag on the roller, which itself 
assumes a distribution that rises to a positive peak at - 2% of foil-length from the nip-gap (-10 
length units on roller), and then suddenly drops away at the nip-plane. The variation in
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distributional drag from positive to negative peak values is O (1.2* 102) units, whilst the 
equivalent variation in pressure is O(175*103) units (likewise, in lift, 0(70*103) units).

Furthermore and under the standard setting protocol, Fig. 6.5b (i) reveals large levels of 
shear-rate along the foil and roller, being slightly imbalanced near the nip-region between the 
two solid boundaries, this is due to the geometric design with a flat foil and circular roller. 
The streamline contours also reveal the large recirculation zone, commencing from the 
meniscus region and persisting as far as the nip zone, being almost symmetrical under the 
standard setting (see Fig. 6.5b (ii)).

200 0.0280

15060 -0.02 

-0 .04 

D *  -0 .06

10040

20 -0 .08  - 

- 0.1 -

- ° ' 1- 3 o o-25-100 -75-100 -75 -50
X*.

-25 0 -75 -50 -25

b) 415.9

n

Figure 6.5: Non-dimensional (a) distributional lift and pressure on foil, and drag on roller; 
(L* = lift * 103; P* = Pressure * 103; D* = Drag * 103)

(b)i Shear-rate across the nip-gap, (b)ii Streamlines at meniscus region

6.3 .1  Variat ion o f  foil and ro l ler  s p e e d s

In all the simulations performed, the foil-coating thickness was retained as constant at the 
desired level (/?/.=1 unit). Hence, any increase in foil-speed will generate an increase in exit- 
coating flow rate, which must be balanced by either increasing roller-speed or inlet-flow 
metering thickness (inlet-feed thickness on roller). Through experimental trials and based on 
lubrication approximations, Benkreira et al. (1982b); Coyle et al. (1990b), and others have
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concluded that, there exists a minimum thickness as the speed-ratio of applicator-metering

increases. Furthermore, at a fixed level o f inertia (Re) and surface tension (Ca),rolls ( —

this thickness decreases linearly with increasing velocity ratio, at a rate that lies in the range 
o fA = [0 .615-0.667].

h = A\ 1-̂ - (6.3)

Coyle et al. (1990b) also report that minimal thickness, according to lubrication theory, is 
attained when the wetting line crosses the minimum nip-gap location. Their findings are for 
both Newtonian and shear-thinning Carreau liquids o f Power law index m=0.5 (see below), 
covering three levels o f surface tension. Here, both film-thickness and wetting line position 
are a function o f roller-speed ratio. These findings highlight the challenges faced in achieving 
a low film-thickness at high foil-speed, whilst avoiding air entrainment.

333

253—  Vf=1, Vr=1 
- -  Vf=1, Vr=1.2 
- -  Vf=15,Vr=1

p *  153

133

-1 3 3 -50
x,

-3 1 5 -
-155"

Figure 6.6 : Distributional (left) lift and (centre) pressure on foil, and (right) drag on roller; 
(L* = lift * 103; P* = Pressure * 103; D* = Drag * 103)

Illustration o f typical findings in variation o f foil and roller-speeds are documented, in Fig.
6 .6, comparatively against the standard setting (Uf=Ur=\.Q) and a scaled unit flow rate (of 
Q= 1) and /?/.=/?#= 1.0. Two settings are investigated: (/) increasing foil-speed from 1.0 to 1.5 
at fixed roller-speed (increasing foil or roller-speed ratio from 1.0 to 1.5, with (>=1.5 and 
hp=\ .0, h/f= 1.5); and (ii) increasing roller-speed from 1.0 to 1.2 at fixed foil-speed 
(decreasing foil or roller-speed ratio from 1.0 to 0.833, with {9=1 and hf=  1.0, /?^=0.833). 
Note, that for direct comparison across scales (three cases), a common reference is adopted, 
hence retaining the same Reynolds number setting, Re=0.32. For the various alternative 
speed settings, the shear-rates at the nip-region are displayed in Table 2.
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Table 2: Shear-rates across the nip-gap

R oll-speed y  - Roll side Y - Foil side y  - Middle nip
Vf=l, Vr=l 400.6 415.9 203.9
Vf=l, Vr=1.2 494.5 (+23%) 403.8 (-3%) 224.4

Vf=l.S, Vr=l 365.9  (-8%) 654.2  (+57%) 254.9

Findings reveal that peaks in distributional lift on the foil-substrate increase as foil-speed 
increases and are not influenced by variations in roller-speed. Similarly, the peak in 
distributional drag on the roller varies with roller-speed and remains unaffected when subject 
to variations in foil-speed. Likewise, pressure distribution peaks observed on the foil- 
substrate increase with increasing foil-speed, a finding independent of roller-speed. In 
contrast to the standard setting (U/.=zUr= 1.0) and interpreted from the nip-region, increasing 
foil-speed (by a factor 1.5) causes the localised shear-rate to rise (by 57%) towards the foil- 
side (to a maximum); similarly, shear-rates rise (by 23%) on the roller-side (to a maximum) 
when the roller-speed is increased (by a factor 1.2), see Table 2.

6 .3 .2  V ar ia t ion  in n ip-gap s ize

Under standard setting (Up=l, Ur= 1), the influence o f nip-gap size variation has been 
analysed, where a nip-gap size o f unity is treated as the calibration standard. In relative 
perspective, this represents 1% o f film-thickness (h|~O(10-6m)). Findings, depicted in Fig.
6.7, reveal that most variation in the important quantities o f distributional lift/drag, localised 
pressure/shear-rate within the nip-region, occur at small nip-gap sizes, below 5% hp. A 
plateau-like region for pressure and shear-rate is observed above the 2.5% hp-level (2.5 nip- 
gap); there is also a sharp rise in pressure and shear-rate below nip-gap size o f 1 unit (with 
peak-values in units o f 173*103 for pressure and 415 for shear-rate); the intermediate zone 
between 1 and 2.5 sized nip-gaps yields only gradual change in these quantities. The profile 
in distributional lift varies much more gradually, being delayed in its decline against nip-gap 
choice, beginning to plateau out around the 5% hp-level. Variations in distributional drag (not 
shown) remain contained and relatively low in contrast to other quantities, reaching a 
maximal negative level (-1.3*103) fo ra  nip-gap size of 2.5 units.
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Figure 6.7: Nip-Gap effects; distributional lift and pressure profiles; standard setting 
(V f=1, Vr= 1), (L* = lift * 103; P* = Pressure * 103)

6.3.3 Bo u nd ar y  cond i t i on  a d j u s t m e n t  a t  t he  nip:  r e l i e f  m e c h a n i s m  I

An initial trial of various nip-flow profiles has been considered, either of blockage or 
Couette-type, both with zero mass balance across the nip-plane. This is prior to the 
implementation of slip conditions and further modelling complexities, where a wetting line 
may be incorporated. Initially, for blockage-type flow, there is no flow permitted across the 
nip-gap plane, so that only non-zero velocity is retained at the foil (U |) and roller ( U r )  (see 
Fig. 6.3a). Here, there is sharp solution change between that at the final mid-side node o f the 
neighbouring finite element and the bounding moving surface (quadratic fe-function 
approximation assumed across the element line edge). Note that, this is the standard profile 
choice unless stated otherwise. The alternate, and more physically realistic setting, is that of 
Couette-type flow (see Fig. 6.3b), where the shear-rate across the nip-gap approximates a 
constant (exactly so between parallel boundaries).

60

40

20

Blockage
Couette

21% reduction

d/

-50 -40 -30 -20 -10

b)
.50

100

50
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Couette

33% reduction

■A

-50 -40 -30 -20 -10 0

Figure 6.8: Effect o f the node boundary condition on the nip gap line (with Ca set 
to standard on the meniscus side), (L* = lift * 103; P* = Pressure * 10')
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By way of trial, the study focuses on the plane (2D-line) across the flow, representing the 
nip-gap width. Both extreme nodes on this line have either the kinematic condition of the 
roller (lower) or the foil-substrate (upper). Under the imposed kinematics of (U r=1.0 , 
U f= 1 .0 ), the central node across the nip-gap width will have a zero velocity condition, in 
either boundary condition type considered, Couette or blockage. By solving for the solution 
at this location (Uy=0, Ux=free), then relief is generated in peaks of lift (21%) and pressure 
(33%), as depicted in Fig. 6.8. Note, this finding is independent of the introduction of surface 
tension forces applied to the meniscus region.

6.3.4 Slip conditions at the nip: relief mechanism II

Gravitating towards a full wetting line implementation, the next factor to introduce relates to 
the effect of slip boundary conditions, as applied to the foil-substrate in the nip-gap, which 
directly links to respective surface qualities and roughness. Initially, only the final nip-node 
on the foil is treated as susceptible to this slip mechanism, following the theory conveyed in:

Us » p = P s U p ^ i y  (6-4)

where pslip is the slip coefficient and is the shear stress. For Newtonian fluids, the usiiP is 
given by:

(6-5)dy

Here, 5 is the slip length and du/dy is the shear velocity-gradient.

Experience reveals that exposure to slip has reduced the maxima in pressure and lift levels 
encountered, in contrast to those instances without slip, as shown in Fig. 6.9. Here, for 
realistic flow response, the level of imposed slip-length used lies in the range of 2*1 O'4 and 
2*1 O’3; which for current perspective, corresponds to 50% of the local shear-stress/shear-rate 
magnitude. Note that larger levels of slip-length coefficient will produce still lower peak 
levels of pressure and lift; hence this finding identifies a second relief mechanism on such 
forces.
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a) b)

no slip 
slip (2*1 O'4) 
slip (2*1 O'3)

no slip 
slip (2*1 O'4) 
slip (2*10‘3)

150

p *  100

Figure 6.9: Effect o f slip boundary condition on the foil at the nip-gap line,
(P* = Pressure * 10 '; L* = lift * 1 0 )

6.4 Inelast ic  m ateria l  modelling: re l ie f  m ech an ism  III

Shear-thinning material properties and their impact within the processing conditions are 
analysed by appealing to various viscous inelastic models. Initially, a power law 
approximation is introduced with a power index range o f m <l. This is followed by a more 
generalised Carreau model, used to represent typical industrial coating materials.

6.4 .1  P o w e r - la w  m o d e l  s o lu t io n s

With this model, the relationship between shear rate and viscosity is governed by 
/ / ( y ) / /^  = K y m~x , for various levels of power index m. For initial testing and calibration
over m-parameter below, the consistency parameter is set as unity (K=l unit) at unit shear- 
rate. As such, the region at the nip has been identified as being exposed to high shear rate, 
and therefore, lower viscosity is observed there with declining power index m.

On the foil and with falling m-parameter, maximum levels o f pressure and lift are observed 
to dramatically reduce. Hence, this substantiates a further possible relief mechanism in the 
process, as aptly demonstrated in Fig. 6.10.
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Figure 6.10: Power-law model: distributional pressure and lift with various power indices, 
(L* = lift * 103; P* = Pressure * 10 \ K =l)

To quantify such change over the nip-region, shear rates decrease by about 7% from the 
Newtonian setting to the inelastic case with m=0.3, as shown in Fig. 6.1 la, whilst localised 
pressure (and lift) reduce dramatically by two orders o f magnitude with declining m (from 
P= 173* 1 O' for m=l to as low as 3*103 for m=0.3), as depicted in Fig. 6.1 lb.

a )  b )
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0C 2 9  0
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2 S 0

2 7  D
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Figure 6.11: Power-law model: non-dimensional shear rates, and distributional pressure and 
lift across the nip plane with various power indices

In Fig. 6.12, contours o f shear rate and viscosity for a power-law index o f m=0.5 are 
displayed, covering the meniscus region and nip zone. As anticipated, shear rates levels are

- 9 4 -



C h ap ter  6  R everse  roll-coating: c o m p u ta t io n a l  in ves t iga t ion

some three orders of magnitude larger at the nip-region in contrast to the meniscus zone; 
whilst, viscosity is reduced by two orders o f magnitude in comparison across these two 
zones. This is in-line with viscometric variation for the power-law model. Interestingly, 
blue/red (low/high) coloured shear rate plots generate red/blue (high/low) viscosity plots in 
the regions o f interest.
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Figure 6.12: Power-law model: non-dimensional shear rates (left), and viscosity (right) 
contours: meniscus region (top), nip zone (bottom), m=0.5

The adjustment o f the kinematics (streamlines) with decreasing power index is illustrated in 
Fig. 6.13. There is a clear widening of the recirculation zone eye, with a shift in location 
towards the nip as m-parameter declines. In all instances, there is no flow across the 
meniscus boundary, and ultimately, all the fluid entering (metered to the inlet-roller) must 
travel up to the nip before returning to exit the domain and coat the flat foil-substrate.

Figure 6.13: Power-law model: streamline contours at the meniscus region with power index

The conclusion is that there is clear evidence here of the strong impact that shear-thinning 
properties have upon processing design decisions, as recognised through the relief 
mechanism of lowering nip-levels o f pressure and lift. That is, in contrast to considering only 
Newtonian coating fluids, noting the strong dependence o f viscosity on pressure levels. Here, 
there are some similarities observed in other industrial processes such as journal bearing 
systems. In these applications, viscosity relates to pressure through the Barus law ( 
p (y ,p )  = p ( y ) e ar ).
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6 .4 .2  Carreau m o d e l  s o lu t io n s

Below in order to better represent limiting viscosity levels at high deformation rates, it is also 
appropriate to introduce alternative material models of the Carreau-type, to improve data 
fitting at high and low deformation rate extremes, thereby varying infinite shear viscosity 
plateaux (second plateau levels).

EB topcoat 
at 30 and 40 C
(n on -d im en s iona l)

o
CO

at 30  C 
at 4 0  C 
Fitted at 30  C 
Fitted at 4 0  C

-©
0.01

0.001
1  e - 6  1  e - 5  1 e - 4  1 e - 3  1 e - 2  1 e - 1

S hea r-ra te

Figure 6 .14: Carreau model: non-dimensional shear rates vs. viscosity, viscometric data at 30°
and 40°C

Viscometric data have been provided for some model and industrial fluids, sampled at two 
temperatures of 30°C and 40°C, showing viscosity trends over a shear rate range o f 0.1 to 
103s'1. Such data is fitted by a Carreau-model and provided in non-dimensional format in 
Fig. 6.14. The functional form for the Carreau model is given by:

m—i
/ ' ( ;>) = / c + ( / ^ - / O 0  + ^ V 2) 2 (6 -6)

Here, po is the viscosity at zero shear-rate, p*? is the viscosity at infinite shear-rate, K is a 
consistency parameter, and m is a dimensionless constant. Deformation rates encountered in 
the nip-region are excessively high (around 400 non-dimensional units), and as a result, the 
local viscosity is correspondingly low there, around p ^  0.02 at 30°C and \ix  = 0.01 at 40°C. 
Such data is associated with second limiting plateau levels at high shear rates. This generates 
lower relative levels in pressure and lift on the foil, by some two orders from that o f the
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Newtonian case, as illustrated in Fig. 6.15. Furthermore, the temperature has a direct impact 
on maximum pressures attained at the nip, as the pressure for the coating at 40°C (1.7*103) is 
halved in contrast to that for the same fluid at 30°C (3.6*103). Similarly, the peak in 
distributed lift on the foil is also halved through an increase o f temperature by 10°C, as 
clearly demonstrated in Fig. 6.15. The use of an industrially-applicable fluid with these 
characteristics is therefore beneficial in dramatically reducing the pressure levels exerted on 
the foil-substrate.

EB at 30 C 
EB at 40 C

-50 -40 -30 -20 -10
X foi,

1.5

0.5

0

----------------- EB at 30 C
----------------- EB at40C

-50 -40 -30 -20 -10 0

Figure 6.15: Carreau model: distributional pressure and lift for EB topcoat at 30° and 40°C,
(L* = lift * 103; P* = Pressure * 103)

The viscometric data does not span the full range o f shear rates encountered within the actual 
coating process, as the nip-region experiences extremes o f shear-rate level, some two order 
of magnitude larger than elsewhere. In fact, the viscosity reaches the lower (second) plateau 
at 0.1 shear-rate level located in a region at about 50% of the distance from the nip towards 
the meniscus. Nevertheless, this engenders significant reduction in localised pressure and lift 
levels observed -  a finding that demands experimental verification by extracting viscometric 
data in situ, directly from the process.

6.5 M ode l l ing  e la s to -h y d r o d y n a m ic s :  r e l i e f  m e c h a n is m  IV

In this final section, the roller is considered as being covered with a deformable (rubber) 
elastomer, so that an elastohydrodynamic analysis may be incorporated within the context of 
the roller coating dynamics considered thus far. The principle behind such theory is to 
associate the degree o f deformation of the elastomer cover (which accounts for its shore 
hardness, or Youngs’ Modulus), as a function of the dynamic loading (local forces) it is 
exposed to over the roll-surface section in question (nip pressure). Effectively, this will 
introduce a localised neo-Hookean model into the problem description, via a linearised 
functional representation, through which the activated nip-pressure is related linearly to local 
displacement. This mimics the fluid-structure interaction which takes affect between the
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liquid film and the roller. This will then permit comparison of the effects of employing 
varying levels of shore hardness to the candidate elastomer cover (fourth relief mechanism in 
lowering loading exerted in the nip-gap). The thickness of the elastomer is therefore 
implicitly incorporated within the parameterisation. The deformation is interpreted through 
results in elastomer spatial displacement (Ax), in the form (Carvalho and Scriven 1997, 
Ascanio and Ruiz 2006b, Gostling et al. 2003)

o b „ PAx = aP = —  P = - f (6.7)
Eb k

Here, Et, represents the elasticity modulus per unit elastomer thickness, b the elastomer cover 
thickness and k the elastomer elasticity. Hence, decreasing elastomer elasticity corresponds 
to increasing elastomer softness. Note, that the resulting a-parameter relates to the commonly 
used ‘shore hardness’ measure, and depends on the level of elastomer elasticity/rigidity (Eb). 

In this respect, one might consider two possible nip-gap scenarios, that of: (i) positive nip- 
gap, or (ii) negative nip-gap width. The negative nip-gap setting is defined as that measurable 
gap generated by roller deformation, such that in the absence of roller deformation, there 
would be penetration of roller surface into the substrate surface.

6.5.1 Posit ive nip-gap scenario

From a practical implementation viewpoint, two different dynamic approximations may be 
proposed to represent the effects of elastomer deformation on localised pressure, lift and drag 
at the nip-gap region. First, there is a full transient analysis, in which the dynamic 
deformation of the nip-gap (and associated mesh movement) is pursued through time until a 
balanced position is obtained, according to the dynamic loading exerted through the 
distributed localised pressure generated at the nip. This approximation will closely represent 
the dynamics of the process conditions, but will engender considerably large computational 
times, to resolve the dynamics involved (subject of future study). To overcome this difficulty, 
and for efficiency, a second pseudo-transient approximation is proposed: whereby, the 
elastomer-roller is initially deformed to a maximum indentation that would have been 
attained, given the conditions of the steady pressure level endured under a non-deformable 
roller. The corresponding deformed nip-gap (and mesh) is then anchored (through time) and 
employed to predict a pseudo-final pressure level (first look), accordingly.
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Figure 6.16: Effect of elasticity coefficient o f deformable elastomer (roller) on 
distributional pressure, lift and drag; (a) Positive gap on, (b) Negative gap, 

(L* = lift * 10'; P* = Pressure * 103; D* = Drag * 10')

indeform able
k=1e+8
k=1e+7

indeformable 
k=1e+7 (+ gap=+1%) 
k=1e+7 (-gap=-1%)

For comparison purposes and to gain further insight, a series o f analyses have been 
conducted with variation in the level o f elastomer elasticity, based on the standard setting 
(Up= l, U r = 1  and initial nip-gap o f 1%). Fig. 6.16a (top) illustrates variation in the 
distributed patterns for pressure on the foil, lift on the foil and drag on the roller for two sets 
o f elastomer hardness (hard: k= 10 s, and soft: k=10 7). As anticipated, the application of an 
elastomer cover is observed to somewhat relieve levels in localised pressure and lift; 
subsequently these levels are decreased as the elastomer elasticity is decreased (hardness 
reduced). Beyond an elasticity threshold (here around k=5*10 6), a non-sustainable negative 
nip-pressure on the foil will appear causing numerical divergence (meaning, in practice, the 
elastomer becomes too ‘spongy’). The hard elastomer case has deformed by an order o f 0.1% 
in contrast to that o f an undefomiable roller, reducing the level o f both the localised pressure 
and lift by some 15% from the undeformable state. Moreover, the indentation (deformation) 
o f the soft elastomer is significantly more broadly pronounced (by about 3%), creating a U- 
stretch roller surface-shape over the x-breadth o f the nip-region. Accordingly, the levels of 
localised pressure and distributional lift are even more reduced (both by 70%). Nip-gap sizes 
are depicted in the figures according to the various levels o f elastomer hardness.

- 9 9 -



C hapter 6 R everse roll-coating: com pu ta tion a l in vestiga tion

6.5.2 Negative nip-gap scenario

The following procedure is adopted in order to simulate the squeezed coating situation under 
negative nip-gap imposition and the use of deformable rollers. In this, it is important to 
maintain realistic nip-gap widths and to avoid excessive corresponding mesh distortion. First, 
based on the standard setting, the maximum deformation of the roller is estimated, based on a 
positive equivalent gap-size. From this position, the nip-gap is narrowed, by shifting the 
roller surface upwards towards the substrate by a distance of twice the initial gap-size. The 
final deformed nip-zone and mesh-domain is then employed to simulate a scenario and level 
of pressure equivalent to a negative nip-gap. Fig. 6.16b illustrates comparatively 
corresponding pressure and lift distributions on the foil, and drag distribution on the roller,

+7
for a 1% positive gap with a non-deformable roller and a soft roller (k=10 ), and a negative 
gap of -1% for the same soft roller. Notably, there is some rise in the nip-pressure and lift 
distributions for a deformable elastomer with a negative gap, in contrast to those of a positive 
gap (deformable or not). Still, under the negative-gap setting, lift-elevation is more localised 
to the nip-gap zone and hence less influential away from this zone (with less disturbance 
offered as a consequence to the coating). This demonstrates the positive benefits that can be 
extracted from negative-gap imposition, so that negative-gap force-results can be devised that 
reach a level equivalent to the non-deformable roller at the nip, yet relieve those of the 
positive gap deformable elastomer away from the nip (x<-20). Hence, the available 
performance advantages of running squeezed negative nip-gaps are exposed.

6.6 Computational ou tco m es

The modelling of a high-speed defect-free reverse roll coating process has been performed 
employing a Taylor-Galerkin pressure-correction algorithm. The novelty of the research is 
stimulated by the demand from the coating industry to coat faster uniform, stable thin films, 
by manipulating coating rheology and coater operating conditions, including elements of 
hydrodynamic assistance. Specifically, the main points analysed are summarised as:

• Variation of roll speeds
• Variation of nip-gaps
• Boundary conditions adjustment at the nip ( Pressure relief mechanism 1)
• Slip conditions at the nip (Pressure relief mechanism 2)
• Inelastic material representation (Pressure relief mechanism 3)
• Roller elastomer hydrodynamics (Pressure relief mechanism 4)

Findings have been presented through streamline patterns. No flow reversal is evident in the 
vicinity of the meniscus when traction-free conditions are imposed. Thus, the flow entering 
from the inlet-roller must travel up to the nip before returning back to exit as the coating on 
the foil-substrate. Velocity variations reveal that as foil-speed increases, distributed lift and 
pressure on the foil increase and are not influenced by variations in roller-speed. Similarly, 
the drag on the roller varies with roller-speed and remains unaffected by variation in foil-
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speed. More importantly, pressure distributions generated on the foil decrease with 
increasing roller-speed. This suggests the optimum settings sought, where it is expected that 
the roller should rotate at a faster rate than the foil. Moreover, there is significant variation in 
maxima of localised pressure, shear rate and distributional lift, as the nip-gap size is reduced 
below 5% of foil thickness. Notably, there is a sharp rise of the above quantities below nip- 
gaps of 1%. A nip-gap size around 5% provides a threshold, above which all measures 
quantified are insensitive to change. There is also a significant reduction in localised 
pressure, lift and shear-rate maxima, when nip boundary conditions (first relief mechanism) 
are modelled through a Couette-type velocity condition, halving over that for the blockage 
alternative. By allowing some kinematic freedom to the central nodal degree of freedom, a 
relief mechanism governing the forces on the foil/roller has been identified. This indicates 
the necessity of incorporating a free-surface wetting line beyond the nip-region. The 
introduction of a slip condition (second relief mechanism) has, as anticipated, reduced the 
level of localised pressure, lift and shear-rate at the nip-gap region. Further increase in slip- 
length coefficient will produce still lower levels of localised nip-pressure and lift; hence this 
discloses a second relief mechanism on such nip loading.

For the fluid modelling and considering inelastic shear-thinning coating fluids under power- 
law modelling, pressure and lift maxima are reduced dramatically with decreasing power 
index (m) (so, under increased shear-thinning effects), offering a third source of relief 
mechanism to the process. In addition, a strong dependence of viscosity on pressure is 
observed. In a similar fashion and by employing an inelastic Carreau model, reduction in 
pressure and lift on the foil is observed for a typical industrial coating material. This indicates 
the importance and influence of temperature-rise, with the lowering of the second-plateau in 
viscosity that subsequently reduces the forces exerted on the foil.

As anticipated, the application of a roller-elastomer relieves nip-pressures and lift. 
Subsequently, these levels are decreased as the elasticity of the elastomer is decreased 
(softness increased, fourth relief mechanism). Moreover, beyond a certain elasticity 
threshold, a non-sustainable negative pressure on the foil is reached, which implies that the 
elastomer is too spongy for practical use. Necessarily the nip-gap size is larger for softer 
elastomers, with larger indentation (deformation) of the roller in comparison to harder 
elastomers; this creates a U-shaped stretched roller-surface throughout the nip-region. 
Similarly, under negative-gap size setting, one observes a change in the manner the localised 
pressure and lift are distributed for a deformable elastomer, in contrast to that for a positive- 
gap (deformable or not). Under the negative-gap setting, lift-elevation is more localised to 
the nip-gap zone and hence less influential away from this zone (with less disturbance 
offered as a consequence to the coating). Hence, negative-gap configurations may be used to 
advantage, where preferential squeezed local loading is achieved at the nip equivalent to that 
for the non-deformable roller setting; yet, they relieve loading patterns of the positive-gap 
deformable elastomer away from the nip. Thus, it is possible to replicate final nip-gap 
conditions, under a negative-gap scenario, close to that of the standard positive-gap position; 
although in this case the shape of the roller is deformed.



Chapter 7

Reverse roll-coating with dynamic wetting lines*

Numerical solution of reverse roller coating flow associated with the industrial process of 
thin-film paint-coatings of strip-steel is addressed. The modelling includes viscous inelastic 
rheology, meniscus and dynamic wetting lines, accomplished through a semi-implicit time- 
stepping finite element Taylor-Galerkin/pressure-correction scheme, coupled with a 
differential free-surface location technique. Flow structures are examined in detail around the 
meniscus, nip and wetting line regions, analysed via streamline and shear rates patterns, 
surface distributional lift and localised nip-pressures. Effects of parameter variation are 
investigated in nip-gap size, adjustment of applicator roller-substrate speed-ratio and levels 
of surface tension. Upon surface tension increase, significant features are observed on the 
dynamic wetting lines and at the contact zone.

'Material in this chapter have been accepted for publication in the paper “Modelling Reverse Roll 

Coating flow with dynamic wetting lines and inelastic shear thinning fluids” by S.O.S. Echendu, H. R. 

Tamaddon-Jahromi, M. F. Webster in Applied Rheology, June 2013
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7.1 Introduction

In the roller coating process of interest rotating cylindrical roller applicators are used to apply 
a thin-film of liquid coating onto one side of a moving substrate (steel-strip). This flow 
process is of extreme importance in modem industrial procedures, arising typically in the 
application of organic coatings onto strip steel. Common roller coating flows can be sub
divided into two principal categories, namely: forward-roller coating and reverse-roller 
coating (RRC). This computational study focuses on reverse roll coating, investigated via 
dedicated finite element and free-surface handling schemes. Reverse roller coating has 
proven itself extremely versatile, and hence remains the topic of various studies for viscous 
Newtonian and inelastic shear thinning coating fluids (paints with additives). For economic 
reasons, a driving objective behind the process has been to continuously increase coating line 
speeds, whilst maintaining stable constant film-thickness with smooth appearance along and 
across the strip-substrate. As a consequence, one of the major barriers posed, has been the 
onset of flow instabilities at higher line speeds; this may cause surface defects that take the 
form of ribbing or stripping on the applied coating. Some earlier studies on reverse roller 
coating are reviewed, having focused mainly on zonal influences (i.e. within nip, inflow, 
meniscus, out-flow regions), fluid rheology and flow instabilities. Therein, ribbing onset has 
been associated with a critical capillary number (Cacrjt). Coyle et al. [1987, 1990b, 1990c] 
analysed an experimental configuration for reverse-roller coating with non-Newtonian 
liquids, drawing upon finite element simulations. This study showed that at high-speed ratios 
and high capillary number (Ca), the metered film-thickness increased more than at low 
capillary number. Experimentally, Gaskell et al. [1995, 2000] investigated meniscus roll 
coating, again under reverse roll coating conditions. There, the flow was characterized by a 
single large eddy structure, with primary and secondary fluid transfer jets from the roller to 
the substrate. These structures tended to merge, as either flow-rate or speed-ratio was 
increased. For Newtonian fluids, Cohu et al. [1997] also investigated experimentally 
forward-roller coating between deformable rollers. Findings revealed that a decrease in 
rubber cover thickness on the applicator roll tended to decrease coating thickness. Also on 
experimental analysis, Benkreira et al, [1981, 1982] reviewed the four categorical regions in 
coating flows and studied the movement of dynamic wetting line, [Benkreira et al. 2002] 
providing the cascade operating conditions of dynamic failure due to air entrainment 
[Benkreira et al. 2008]. Moreover, Carvalho et al. [1997b] studied the effects of soft-roll 
deformation with respect to the onset of ribbing, for which findings demonstrated that a 
deformable roll cover may be used to lessen the ribbing on the strip to achieve a required 
coating thickness. Chandio and Webster [2001, 2002c] also used finite element methods to 
numerically predict reverse roller coating solutions for Newtonian fluid coatings. These 
simulations employed a semi-implicit Taylor-Galerkin/Pressure Correction scheme, where 
the study focused on flow patterns, variation in roll-speed and foil-speed. Their findings 
revealed that no flow reversal occurred in and around the vicinity of the free-surface 
meniscus. With respect to flow instabilities on the strip, this phenomenon tended to occur 
upon increase of foil-speed rather than increase of roll-speed. Moreover considering dynamic 
wetting lines, Shiode et al. [2009] numerically analysed reverse roller coating using a volume 
of fluid (VOF) method. Therein and due to drag forces encountered, their results revealed 
that, the wetting line moved closer to the nip as speed-ratio was increased. Jang et al. [2009] 
performed 3D non-Newtonian flow modeling for RRC, employing a finite volume method
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and a VOF free-surface technique. This relevant work was conducted for inelastic non- 
Newtonian fluids, with power-law index (m) ranging from 0.95 to 1.05, mainly focusing on 
factors such as resulting coating thickness and effect of roll-speed-ratio on ribbing 
instabilities. The results demonstrated that as power-law index increased, coating film- 
thickness increased with decrease in coating film-leakage. In contrast, as foikroller speed- 
ratio increased, the coating film-thickness decreased with increase in leakage film-thickness; 
in agreement with Chandio and Webster [2002c]. Thus, for a fluid with power-law index 
larger than unity (shear-thickening), ribbing instabilities are visible with more waviness on 
the strip surface. In the computational reverse roller coating study of Belblidia et al. [2012] 
for high-speed defect-free coatings, with and without elastomer-covered rollers, various relief 
mechanisms for pressure were identified. Whilst elastomer elasticity decreased (Shore 
hardness increased), the levels of localized pressure and distributional lift were also observed 
to decrease.

Prior to this phase of study, simulations were conducted with viscous, inelastic and 
viscoplastic fluids under confined mixing and separating flow configurations [Echendu at al. 
2011], This counterpart flow problem, with flow-splitting, provided some insight into the 
complex flow dynamics expected under roller coating and with similar rheology, yet devoid 
of free-surface issues. As such, the present article is a continuation of the viscous inelastic 
reverse roller coating study of Belblidia et al. [2012], but with the inclusion of a full dynamic 
wetting line analysis; hence drawing upon similar finite element procedures with a semi- 
implicit Taylor-Galerkin pressure-correction algorithm [Hawken et al. 1990, Webster et al. 
2005]. For location of the free-surface, kinematic boundary adjustment with a differential 
mesh stretching algorithm is employed. This scheme is such that the shape can be shifted 
from one coordinate system to another, locally or globally, according to free-surface 
orientation and compatibility conditions [Ramaswamy et al. 1990, Carvalho et al. 1997b]. 
Then solutions are analysed through: flow streamline patterns in separate zones; the effects 
of boundary condition change and free-surface adjustment; nip-gap size parameterization; 
speed-ratio change; surface tension effects; variations in distributed lift and localized 
pressure profiles; and movement of dynamic wetting line.

7.2 Computational dom ain  and sp ec if ica t ion s

The practical laboratory setup of a typical reverse roll coating process is shown in Fig. 7.1 
with the problem description schematically detailed in Fig. 7.2 employing a standard setting 
with regards to material properties and roller coating design. From Fig. 7.1, it is apparent that 
in the experimental process the pick-up roll, metering roll and applicator roll are all mounted 
horizontally, with the pick-up roll half submerged in a bath of coating liquid. Industrially in 
the present context, the applicator roll meets the strip-substrate to deliver the applied coating. 
This pick-up roll dips down into the coating bath and picks up the liquid whilst rotating; the 
liquid is then transferred to the metering roll, which meters the liquid to form a thin film; this 
is then transferred to the strip-substrate as a coating. Within the simulation, the part of the 
flow considered is the out-flow from the metering roll to the applicator roll, to the nip-gap, 
and proceeding to the coating region onto the substrate.
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Process description: From Fig. 7.2, the computational domain consists o f a cylindrical roller 
applicator, rotating in the forward direction, with the strip-substrate moving in the opposite 
direction; then, the liquid-film lies between the roller and the strip-substrate. The roller 
carries the fluid moving in the forward direction towards the nip and the strip picks up the 
coating fluid, whilst moving in the opposite direction. This involves fluid-splitting, to form 
the meniscus-strip coating (outflow), and the flow that is passed into-out o f the nip-gap 
region. The flow zone occupying the localised, narrowest area between the roller and the 
strip is referred to as the nip-gap; this has positive width with an undefomiable roll (no 
change in roll-shape). The application conditions are described by the capillary number (Ca), 
which is a ratio between viscous and surface tension forces. Fluid rheology is also an 
important factor that determines flow behaviour, in relation to stress generated in the coating 
process. Here, initially Newtonian fluids with constant shear-viscosities are simulated, 
regardless o f the applied shear rates, and later inelastic shear-thinning liquids are introduced 
to discern differences in flow response.

Backing
roll

M etering
roll

Reverse coating

Figure 7.1: Reverse roll coating design setup

Problem domain design data: On process design and in non-dimensional units, the applied 
standard settings are: roller inlet film-thickness specified as 1.01 units, foil-substrate outlet 
coating thickness as 1 unit, nip-gap width as 0.1 unit (set at 10% o f foil-outlet height h), and 
leakage film-thickness as 0.01 unit (at l%h). Assuming suitable velocity scales, the foil- 
speed was set up as Vp=-1 unit (moving in the reverse direction o f the roller) and roll-speed 
as Vr=T unit, density and viscosity are set to unity (characteristic viscosity scale, ptp). This 
choice leads to a non-dimensional group Reynolds number, Re, set at a typical value o f 0.32.
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Strip
W etting Line

FluidM eniscus A Y
Nip

Roller

Figure 7.2: Schematic diagram of reverse-roller coating domain

The numerical scheme and simulation, employs a time-stepping finite element approach, 
semi-implicit Taylor-Galerkin pressure-correction scheme (TGPC). The computational 
domain is discretised into structured triangle elements. The principal finite element mesh 
used for the problem description is illustrated in Fig. 7.3 below, with mesh convergence 
assured through two other mesh choices, a coarser mesh consisting o f 650 number of 
elements, 1563 number o f nodes and 433 number o f vertex nodes and a finer mesh consisting 
o f 5208 number of elements, 10536 number o f nodes and 2925 number of vertex nodes. 
Solution precision has been resolved on these meshes, without the inclusion o f the extended 
free-surface wetting line, to avoid any additional instabilities stimulated by singularity 
inclusion. Differences in mesh solutions are found to be less than 0.1% in primary velocity- 
pressure components. The spatial domain was discretised through structured-meshing 
triangular elements employing a Taylor-Hood type o f finite element, with quadratic velocity 
and linear pressure complete interpolations. In this choice, velocity nodal degrees-of-freedom 
are located at all vertex and mid-side nodes, and pressure degrees-of-freedom apply at vertex 
nodes only. A typical mesh employed is illustrated in Fig. 7.3; consisting o f 1550 numbers of 
elements, 3485 number o f nodes, 968 pressure nodes and 768 boundary nodes.

For an incompressible, isothermal laminar flow, the governing system of equations includes 
those for continuity o f mass and momentum transport. Further to these equations, initial and 
boundary conditions are also required in order to complete the problem specification, from 
which to derive the corresponding pressure and velocity distributions. In this respect, a 
combination o f Dirichlet and Neumann boundary conditions are imposed on the various 
variables and the solution process is initiated from rest. These initial conditions are specified 
by prescribing an initial rest state for the primitive field variables at time, t=0. With respect to 
free-surface location, traction-free-surface boundaries are assumed at the inflow, meniscus, 
outflow and wetting regions. These locations are determined via solution o f the two 
equations provided in chapter 4 (eqn 4.67). Initial conditions on these free-surface 
boundaries are taken as quiescent. Then, to enhance efficiency in convergence to a steady- 
state. domain solutions are first computed with fixed-location traction-free boundaries, prior 
to release and completion o f the solution search. Remeshing is performed after each time- 
step to avoid excessive distortion o f elements in the boundary zones.
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f)

Figure 7.3: Finite element discretization; a) full mesh, b) meniscus region, c) zoomed 
meniscus, d) nip region, e) wetting region, f) zoomed contact and wetting region

Dynamic contact point adjustment: The contact point where the fluid interfaces meet the 
moving substrate is considered to be dynamic by allowing freedom o f movement through the 
wetting o f the adjacent surface sections. In doing so, when the nodes on the free-surface line 
segment make contact with the moving substrate, these nodes assume the substrate 
conditions and a new contact point is formed (see Fig. 7.4). Under such a procedure, the 
horizontal distance between the new and previous contact point is allowed movement in the 
forward positive x-direction only to avoid starvation at the nip.
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Foil movement
<-------

Contact point movement
 >

Figure 7.4: Treatment o f dynamic contact point

Boundary conditions at the inflow and outflow boundary sections are considered to be those 
o f plug flow (see Fig. 7.5), over which conservation o f mass flow is satisfied, viz.

Mass balance, over flow domain from  entry to exit with local reference:

[Q ,o iler = ( V r o , , e r K o l ,e r ) \= [ Q e a k  =  ( ̂ leak \ a k  )] + \Q fo il  ~  (^ fo il^ fo il )] (7.1)

Out
Flow

t ----; * —---- ----- ; _; m--- -------- "" --- -;"" j —-- ------; """ —-- ----- i U —-------f ̂ -------- _------ * ' -------------------------; " ------------- --- 5"" ■—-—_____

-------- i -

Flow

Contact Point 
= H*

Figure 7.5: Boundary conditions; a) out-flow, b) in-flow, c) nip-flow, d) leakage flow

With respect to lift calculations, these are the mechanical forces that arise between solid and 
liquid surfaces. Lift forces apply on and normal to the strip-substrate. For a viscous inelastic 
fluid, the lift may be expressed as,

Leakage
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A *  =  I  ( ~ P + T „ ) d T =  j  L ,d Y (7.2)

where, r = 2fuD, and Lf identifies the distributional lift quantities.

Surface tension considerations: Surface tension effects are analysed through application of 
interfacial surface tension forces on the free-surface boundaries of the RRC domain (inflow 
and outflow meniscus region). Both kinematic and dynamic conditions are considered within 
the surface tension calculation. On such free-surfaces, the kinematic condition ensures that 
the fluid does not cross such domain frontiers, via Equations (7.3 and 7.4). The dynamic 
condition of Equations (7.3) relates to a force balance across the free-surface (medium 
interface), where capillary forces prevail. For a fluid with surface tension coefficient (

) the force balance at the interface is expressed as:

f 1 1cr-n- - p a-n - ks — + —
R R

(7.3)
2 y

Here, a  is the Cauchy stress, pa is ambient surrounding pressure, Ri and R2 are the principle 
radii of curvature [Ashmore et al. 2008] and n is the normal vector to the free-surface. In 
planar flow, R2 tends to infinity [Tiu et al. 1999], thus for the free-surface boundaries as 
presented in the RRC domain, R] is considered as:

24&J~p s

for rounded meniscus

for the roller side (radius R )

for the foil side & wetting line

(7.4)

(7.5)

(7.6)

Non-Newtonian material modelling: Initially, fluid coating material was considered as 
Newtonian with constant viscosity. Inelasticity was then introduced through an Ostwald-de 
Waele Power-law shear-thinning modelling; where power-law index (m=l) corresponds to 
Newtonian fluid response, and ( m <  1) for shear-thinning properties. Then, 0.1<m<0.6, and k p  

is a consistency factor, taken here as unity, so that Newtonian zero-shear-rate viscosity is 
imposed at and below a unit shear-rate. The power-law model is represented as:

H ( y ) / ^  = Kp f ^  (7.7)

In addition, some viscometric data are also provided for a typical coating fluid paint. With 
associated first and second Newtonian plateaux apparent in the data, it was found more
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suitable to appeal to a Carreau model fit (see Chapter 2, Fig. 2.2) to extract a reasonable 
match to this data, o f the form:

m- 1
/ i {f )  = Moo+(m0 -Mao)(l + *c2f 2 ) 2 (7.8)

where additional parameters appear of upper/lower limiting //-plateaux. In this fitting, typical 
parameter values yield a ratio of / jUq = 0.01 units, reflecting a two-decade decline in 

viscosity levels within the shear-thinning region.

7.3 Viscous flow so lu t ions

Under such dynamic wetting line scenarios, first viscous analysis is launched with restriction 
to Newtonian constant viscosity rheology for the coating paints. Within the simulation 
procedures adopted, field solutions were initiated from a rest state, from which intemal- 
domain consistent steady-state fields were pre-calculated that satisfy a fixed free-surface 
position. This necessitates surface velocity projection to satisfy continuity, reaching 
temporal-converged steady-state conditions based on a time-stepping relative increment 
norm tolerance of 10-6, using five mass iterations per Jacobi step. Mass balance is monitored 
and maintained across the inlet, outlet and leakage regions. The intermediate solutions thus 
extracted may then be adopted as a close internal-field approximation and initial solution- 
state for a fully dynamic free-surface calculation.

Numerical solutions are reported non-dimensionally in terms o f flow streamline patterns, 
vortex structures, substrate pressure profiles, substrate distributional lift profiles, shear rate 
fields (tabulated) and dynamic wetting line locations. The fluid transfer modes in the domain, 
from the roller to the foil, are established using particle-tracking stream-traces. From Fig. 7.6, 
no flow reversal is apparent in the solutions at the vicinity o f the meniscus. Here, the metered 
plug-inflow on the roller is observed to develop and travel up to the nip, to pass through to 
the roller outlet, with a secondary vortex occurring around the nip-region in the contact point 
vicinity; then most of the flow reverses to be taken up in the form of the coating on the 
substrate. The flow is characterized by a single large flow structure with two vortex transfer 
modes: a primary vortex, commencing around the meniscus, and a secondary vortex, 
between the nip and the contact region (see Fig. 7.6a, 7.6b). These observations concur well 
with experimental findings as reported in Gaskell et al. [5].

Figure 7.6: Newtonian rheology, vortex patterns around a) meniscus and b) nip region
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Fig. 7.7 data illustrates corresponding foil-substrate pressure and distributional lift profiles. 
Peak-pressures are highly localised to the nip-region at a distance of 2% of foil-length (x=- 
10, relative to the origin at the narrowest part of the nip-gap), with maximum of 1.83*103 
units observed in nip peak-pressure. This pressure spike builds up from a distance of 20% of 
foil-length considered (500 units), to subsequently and instantly dissipate approaching the 
contact point. Distributional lift profiles are then dictated by pressure profiles on the 
substrate, yet increasing slightly more gradually towards the nip (max = 1.15*103 units), 
before reducing once more to zero at the wetting line.

0.8

0.6

0.4

0.2

-500 -400 -300 y  -200 -100
''foil

0.5

-500 -400 -300 -200 -100
‘foil

Figure 7.7: Substrate pressure and distributional lift profiles 
(P* = P r e s s u r e  * 1 0 3, L* = Lift * 1 0 -3)

Shear-rate field data at the meniscus and nip-region are provided in Fig. 7.8, with point 
values tabulated in Table 7.1. These data reveal vanishing shear-rates both on foil-side and 
roller-side at the meniscus and leakage-outlet, due to the flow conditions around these 
regions (plug flow). Toward the nip-region around point (x=-8.2), shear rate values are seen 
to gradually increase, reaching a peak value of 51.9 units at position (x=0.2), and then 
decrease to 27.8 units at the contact region. Shear rates are observed to increase span-wise 
across the nip-gap zone, with the maximum rate being biased towards the roller-side of the 
nip. This is a direct consequence of the secondary vortex and wetting-line presence, as 
without such features, shear-rate nip-maxima would arise on the foil-substrate (see our earlier 
findings, Belblidia et al. [2012]).
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Shear Rates Foil/Free side Roller
Meniscus 0 0

Nip 12.2 51.9
Contact Point 11.9 27.8

Leakage 0 0
Table 7.1: Sample shear rates at specific locations in RRC-Domain
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Figure 7.8: Shear-rate fields around the nip region, a) before nip, b) narrowest nip point,
c) contact point.
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7.3.1 Nip-gap variation and effects

Nip-gap conditions are held as of crucial importance to the overall RRC process, see Tiu et 
al. [1999]. Hence, analysis next turns to a parametric study on nip-gap width variation, with 
particular interest in the consequences on pressure and lift profiles. The base reference and 
standard design setting with Newtonian paint rheology, is of unity speed ratio (V f= 1, V r=1 
unit), and nip-gap of 0.1 units. This represents a nip-gap size of about 0.15pm (10% h, 
coating thickness) in practice. Then subsequently, four further nip-gap width sizes (s) of 
0.005, 0.01, 0.02, 0.05 units have been considered.

Fig. 7.9a reveals the effects of reducing nip-gap size on substrate pressure profiles, 
whereupon the location of the pressure peak point shifts further towards the narrowest nip- 
gap point location. Similar trends and patterns are then inherited within the distributional lift 
profiles on the substrate (see Fig. 7.9b). At smaller nip-gap sizes (s<=0.01), pressure profiles 
display both exaggerated positive peaks (rises) and negative peaks (dips); the extent of 
pressure-minima rise with further reduction in nip-gap size. Most rapid pressure and lift 
variations begin to occur below nip-gap sizes around 5% (s=0.05). Extrema generated at the 
lowest nip size of 0.5% (s=0.005), are 130* 103 units in maximum peak-pressure and 72* 103 
units in distributional lift. Such influence decays within the nip-zone, indicating that the 
wetting line acts as pressure relief mechanism, in agreement with the numerical and 
experimental work of Jang et al. [2009].
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Figure 7.9: Influence o f nip-size variation on; a) substrate pressure and b) lift 
profiles (P* = Pressure*! O’3, L* = Lift*!0‘3)
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7.3 .2  V ar ia t ion  o f  s p e e d -r a t io

In departing from the base equal-balance speed-ratio o f unity ( V ratj0= V F  / V r),  here solution 
effects are investigated by increasing foil-speed relative to the roller V ratio=1.5 (Vp=1.5, V R=1 
units), and vice-versa, increasing roll-speed relative to the foil V ra,jO=0.8 ( V f= 1 ,  V r= 1 .2  
units). Fig. 7.10 illustrates the consequence of such variation in speed-ratio on streamline 
patterns over the meniscus and nip-regions. Observations reveal that speed-ratio can indeed 
have a significant impact on the solution, [see Hao et al. 1999], Benkreira [2002]. When 
Viatio=0.8, streamline patterns are insignificantly affected from the base-case. In contrast with 
V ra«io=1.5, streamline patterns reveal a widening o f the central vortex at the meniscus and at 
the nip zones. The downstream meniscus is sucked in, further towards the nip, as is the 
upstream wetting line, and the size and strength o f the nip-zone recirculation is diminished 
(see circle-insert in Fig. 7.10). Thus, speculation implies that at somewhat larger speed- 
ratios, both meniscus and nip-zone vortices will merge, as indicated in the experimental 
observations o f Gaskell et al. [2000].

V ratio  ”  0 * 8

V ra tio  =

Figure 7.10: Influence o f speed ratio (Vratj0) on streamline patterns at meniscus and nip regions

Fig. 7.1 la & 7.1 lb  presents sets o f substrate pressure-profile results for two choices o f nip- 
gap setting s={0.1, 0.01} units, according to speed-ratio adjustment. Most significant rise in 
pressure-peak occurs with increase o f speed-ratio (Vrati0=1.5) under either design, but also, 
decreasing adjustment leads to a slight rise in pressure-peak; one notes, a maximum pressure 
peak o f 10  ̂ for the narrower nip-gap (s=0.01 units), and 2.4* 103 for the wider nip-gap (s=0.1 
units). The footprint o f the pressure rise noticeably switches between nip-gap, being 200/300 
for wider nip-gap (s=0.1 units) and 60/100 for narrower nip-gap (s=0.01 units). An 
interesting observation is that with speed-ratio decrease, pressure distribution is barely 
affected, whilst there is a marked effect upon pressure distribution under speed-ratio increase 
(either design). The location o f positive peak-pressure around the nip-region remains 
unaffected by speed ratio variation for both nip-gap settings.
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Figure 7.11: Influence o f speed ratio (Vratio) on pressure profiles for nip size a) s = 0 .1, and 
b) 0.01 (P* = Pressure * 1(F3, L* = Lift * 10°)

7.3 .3  In f luence  o f  su r face  t e n s io n

First, surface tension effects were analysed under the standard design setting (Vralj0= l, s=0.1, 
Newtonian rheology), considered upon both the meniscus and wetting line surfaces. Solution 
data are reported in terms o f streamline patterns and adjustment o f wetting line position (see 
Fig. 7.12), since kinematic conditions were barely affected. Here, one may clearly observe 
that changes are undetectable in fluid transfer and flow structures, both at the meniscus and 
nip-regions. In contrast, surface tension plays a major role along the wetting line and within 
the contact point zone, where a third vortex emerges, with its origin close to the contact-point 
attached to the wetting-line. As surface tension is increased (Ca‘ decrease), the contact point 
on the foil-substrate (vertical dashed line insert) shifts further away from the narrowest nip- 
gap location. The vertical line insert shows the position of the wetting line-foil contact point 
for the Newtonian solution without surface tension (x=2.0); once surface tension was 
introduced, this point shifts away from the initial insert line position to form a new contact 
point at (x=2.4), where the third vortex appears. As the level of surface tension is increased 
still further, this vortex now grows and expands causing dramatic reduction in film-leakage; 
as visible from the adjustment in the third contact-point wetting-line vortex structure, which 
grows in size and strength.
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Figure 7.12: Surface tension effects on vortex structure at the meniscus and wetting regions

7.4 Inelast ic  f low so lu t ions

The next point o f study turns to investigating the influence o f adjustment in material 
rheological properties, under standard domain design and RRC process settings (VRati0= l, 
s=0.1). In this respect, shear-thinning inelastic models are introduced, representative of 
industrial paint coatings. Since deformation conditions away from the nip are essentially 
those o f plug-flow (small to vanishing shear-rates) at the inlet, outlet and meniscus regions, 
hence inelastic shear dependency will only manifest itself within the localised nip-region, 
where large variation and high shear-rates are exposed. Typical shear-thinning properties 
analysed are those which cover variation in power law indices, m={0.1,0.3,0.6,1.0}, (^= 1 ).

7.4 .1  P o w e r - la w  m o d e l

Vortex Structures: Fig. 7.13 illustrates the various streamlines flow patterns extracted for the 
power-law shear-thinning model. Previous studies have revealed that rheological material 
properties can have a significant impact on vortices and flow solution, see Echendu et al. 
[2011]. Vortex patterns around the meniscus region are shown to be invariant with power- 
law index reduction both in shape and structure. Here, viscosity levels barely change 
practically right up to the miniscule nip-zone, where high shear rates occur and shear 
thinning begins. In the second set of streamline patterns that correspond to those around the
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nip-region, adjustment in the transfer vortex is clearly apparent, which expands towards and 
travels into the nip as shear-thinning influences increase (m decreases).

m = 0.6

m = 0.3

m = 0.1

Figure 7.13: Vortex structures for Power-Law fluids at meniscus and wetting regions

Pressure and lift profiles: The effects o f shear-thinning on pressure and distributional lift 
substrate profiles are illustrated in Fig. 7.14. With decline in power-law index (m), maximum 
peak-pressures decrease and the location o f the fluid splitting point shifts slightly further 
away from the nip. This effect is due to expansion and shifting o f the nip-zone vortex itself, 
which expands further away from the nip and into the extended meniscus zone.

2
m = 1.0 
m = 0.6  
m = 0.3 
m = 0.1

m = 1.0 
m = 0.6 
m = 0.3 
m = 0.1

1 . 5
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0 -300 -200 -100 0-200 -100
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Figure 7.14: Substrate pressure and distributional lift profiles for Power-law fluids
(P* = Pressure * 10 \  L* = Lift * 10‘3) - u s .
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Shear rates: Table 7.2 provides some localized and point-wise extrema in shear rate data for 
these shear-thinning power-law fits in the nip-region. Here, shear rates are generally noted to 
increase as the power-law index (/?/) is reduced. For Newtonian fluids (m =l), shear rates hit a 
maximum o f 52 units at the narrowest nip-gap setting (see above Table 7.1); yet, as shear- 
thinning is introduced and at a maximum thinning rate supported by m=0.1, shear rate 
maxima at the nip reach extrema of 120 units.

Table 7.2: Sample shear rates for Power-Law fluids

Regions/Power Nip Contact Point
Index Foil side Roll side Foil side Roll side

m = 0.6 14 79 14 36
m = 0.3 20 106 19 49
ni = 0.1 28 120 23 55

7.4 .2  Carreau m o d e l  fit to in d u s tr ia l  pa in t  c oat in g

Some viscometric data have been provided for a typical industrial topcoat fluid at a 
temperature o f 40°C, showing viscosity trends over a range o f shear rates. The industrial 
topcoat data provided is fitted with a Carreau model over a range o f shear rates (10-6 to 10-1) 
with parameters ( =0.01). This setting is compared against varied second viscosity plateaux 
(□□/□0=0.1 and 0.005). With these Carreau model fits to the industrial coating data, the 
range o f shear-rates are shifted to low shear-rate values when compared to the Power-law fit 
(see Chapter 3, Fig. 3.2). Thus interpreted relatively, the industrial coating thins earlier and 
faster, and at the nip, reaches its second Newtonian plateau value at the extremely high shear- 
rates encountered there.

Streamlines: From Fig. 7.15, as the viscosity plateau ratio is decreased, the streamline 
patterns for the Carreau model fit, hardly differ from those observed with the Newtonian 
solution at the meniscus region. However, some differences are apparent at the downstream 
nip vortex with the vortex intensity decreasing and expanding into the narrowest nip-gap 
region. There are no significant changes observed at the wetting line between 0.1< <0.01, 
whereas at viscosity plateau ratio =0.005, free-surface bulging arises, which has a tendency 
to increase the magnitude o f the film-leakage. Variations are only expected to occur when 
fluids are thinning at the nip-region, as shown in the power-law solutions. Hence, under 
Carreau approximation, the solution at the nip more closely resembles that o f a Newtonian 
fluid with a constant high shear-rate viscosity (of =0.01 units).

-119 -



C h apter  7 R everse  ro ll-coating w ith  d y n a m ic  w e t t in g  lines

Hoc = 0.01

Hoc = 0.005

J L j___ |___ I

J  L

o 5

Figure 7.15: Vortex structures fo r Carreau model fluids at meniscus and wetting regions

Pressure and lift profiles: Conspicuously, Fig. 7.16 shows the effects o f pressure and lift 
profiles on the foil-substrate for varying viscosity plateau ratios (0 .1< Poo /  P 0 <0.0005). The 

maximum peak-pressure of 0.183 * 10 ’ is observed for /Co / p 0 = 0 .1; reducing to a positive 

peak-pressure o f 0.018*10' at p ^ l  / / ()=0 .01; and to the lowest peak value o f 0.012 at 

Poo / Po =0.005. This manifests a reduction o f one order o f magnitude when comparing

solutions fo r /Co / P q =0.1 to that corresponding to the Newtonian solution; such Carreau 
solutions are o f equivalent magnitude to Power-law solutions with m=0.1. The order of 
magnitude reduction in pressure increases with decreasing viscosity plateau ratio. This 
reveals the effect of imposition o f the second Newtonian plateau in shear viscosity. Lift 
profiles also show the same characteristic trends as observed in pressure.
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Figure 7.16: Substrate pressure and distributional lift profiles for Carreau model fluids 
(P* = Pressure * 10'3, L* = Lift * 10'3)
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7.5 O u tcom es-overv iew

This phase of study has particularly addressed wetting line inclusion in the context of finite 
element solution for thin-film reverse roller coating, drawing upon free-surfaces and viscous- 
inelastic paint-coating rheology. The analysis has illustrated solutions through streamline 
patterns, substrate pressure and distributional lift profiles, demonstrating effects of 
parameterisation over nip-gap size, speed-ratio and surface tension on dynamic wetting.

Flow streamline patterns reveal two vortex fluid transfer modes within the RRC domain, a 
large vortex at the meniscus region and a secondary smaller vortex at the nip-wetting region. 
Both vortices are influenced by variation in foiliroller speed-ratio. As speed-ratio increases, 
the downstream vortex at the meniscus expands inwards towards the nip-region, whilst the 
upstream secondary vortex at the wetting region also expands inwards, away from the 
narrowest nip-region, and reduces the size and strength of the recirculation. As speed-ratio 
increases, this is held to be physically reasonable as the dynamic wetting line position is 
pulled inwards towards the nip-gap.

Pressure and lift profiles show positive peak-pressures just before the nip and negative peak- 
pressures around the contact point (for low nip-gap widths of s<0.01). As nip-gap size 
increases above s=0.5, the variation in pressure becomes quite small with correspondingly 
low positive peak-pressures. At a nip-gap size of s=0.01 and above, no negative peak- 
pressures are observed around the contact region. As roll-speed is increased, positive 
pressure-peaks only increase at a low rate; whilst comparatively, positive peak-pressures 
increase rapidly with increase in foil-speed.

Analysis on surface tension reveals that as the capillary number is decreased, the contact 
point moves in the opposite direction to that of foil-movement, sucking more fluid from the 
wetting line. This has the effect of stimulating growth in a third vortex around the contact- 
point region, and apparent reduction in leakage film-width.

Findings on inelastic paint rheology representation, under which shear-thinning is taken into 
account, reveal that as the power-law index (m) is decreased, positive peak-pressures 
decrease linearly. Streamline flow patterns show that the primary vortex structure at the 
meniscus remains undisturbed due to shear-thinning; whereas the minor secondary vortex 
structure at the nip-zone is seen to expand into the nip-gap. When a typical industrial paint 
topcoat is matched with a Carreau model fit, predictions reveal two orders of magnitude 
reduction in localised peak-values of pressure and lift, with the same intensity of vortex 
transfer structures as observed for a Newtonian paint.



Chapter 8

Reverse roll-coating: viscoelastic PTT flows*

This chapter deals with the viscoelastic modelling of reverse roll coating with dynamic 
wetting lines. Here, various non-Newtonian viscoelastic paint materials are analysed, 
appealing to the Phan-Thien Tanner network class of models. These models provide suitable 
representation for typical polymer solutions, with properties of shear-thinning and strain- 
hardening/softening. The numerical technique utilizes a hybrid finite element-subcell finite 
volume algorithm with dynamic free-surface location, drawing upon a fractional-staged, 
predictor-corrector, and semi-implicit time-stepping procedure. Numerical solutions are 
investigated following a systematic study, allowing for parametric variation in elasticity (We- 
variation), extensional hardening-softening (e), and solvent fraction (p). Under 
incompressible flow conditions, LPTT and EPTT constitutive equations are used to generate 
viscoelastic solutions, covering a range of Weissenberg numbers (We) up to critical solution 
levels. Results are analysed through velocity fields and vortex developments, pressure and 
lift profiles, shear-rate and stress fields. Various differences are observed comparing 
solutions under both constitutive models, where the main aim is to analyse flow features as a 
consequence of adjusting rheology. This is observed principally around the nip and wetting 
line regions. The solution trends gathered reveal qualitative agreement with comparable 
theoretical studies.
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8.1 Introduction

The main interest here lies in analysis of the reverse roll coating (RRC) procedure with non- 
Newtonian viscoelastic flows. In this regard, earlier viscous modeling work is built upon 
[Belblidia et al. 2012, Echendu et al. 2013] from that of previous chapters, which involved 
RRC with inclusion of dynamic wetting lines and inelastic materials. To date, the 
development of such procedures has appeared as an active area of research in the literature. 
The majority of theoretical work has employed Newtonian fluids, with only limited attention 
being paid to viscoelastic analysis. Nevertheless, industrial coating liquids often display 
viscoelastic character, containing varying amounts of polymer, which may affect process 
operating conditions. Hence the pertinence of this chapter, being concerned with the 
computational modelling of viscoelastic material under reverse roll coating flow 
configurations, analysing the rheological effects of material functions through parameter 
variation. The numerical solver utilises a hybrid finite element-subcell finite volume 
algorithms with dynamic free-surface location, drawing upon a fractional-staged, predictor- 
corrector, semi-implicit time-stepping procedure. Previous viscoelastic solutions of coating 
flows were studied by Zevallos et al. [2005] employing Oldroyd-B and FENE-P models for 
forward roll coating flow. Findings explained the analysis of Graham [2003] on the 
viscoelastic destabilization of the free-surface meniscus flow field, as in Zevallos et al. 
[2005], elastic stress was shown to influence the flow near the meniscus, by reducing and 
eventually eliminating the recirculation with increasing elasticity (We). Triantifilopous 
[1996] analysed the effects of liquid rheology in coating systems. Theoretical viscoelastic 
effects include the study of Greener and Middleman [1975] using an empirical constitutive 
relation to describe the material model, where observations reveal a decreased pressure at 
low Weissenberg numbers. Over recent years, there has been a considerable shift in emphasis 
to model paint rheology, away from constant shear viscosity Oldroyd-B models, to those of 
shear-thinning PTT models and FENE models. In experimental analysis, Tiu et al. [1999] 
studied the effects of non-Newtonian fluid properties on pre-metered reverse roll coating for 
hard-hard rolls, finding that the fluid viscosity plays a dominant part in determining the strip- 
film thickness, while the liquid feed-rate and nip-gap determines the metered film thickness. 
That study also found that viscoelastic fluids produce thicker, more stable films than do 
Newtonian fluids. Carvalho et al. [1994], and more recently Lopez et al. [2002b], studied 
non-Newtonian effects on ribbing instabilities. The former revealed that the lower the 
flexible polymer content, the lower the critical speed for 3D instabilities to occur.

The present phase of study focuses on the computation of non-Newtonian viscoelastic flow 
in a reverse roll coating setting with dynamic wetting lines. The computation here employs a 
Taylor-Galerkin pressure-correction algorithm with a second-order hybrid finite element and 
finite volume method [Carew et al. 1993, Wapperom et al. 1998]. This is a semi-implicit 
time-stepping procedure, solving for velocity, stress and pressure over fractional-staged 
equations. The parent finite element triangle is partitioned to form four child, triangular finite
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volume sub-cells. A finite element discretization technique solves the mass and momentum 
equation with quadratic velocity interpolation on the parent cell, while a finite volume sub- 
cell-vertex approach solves the constitutive equation for stress, using linear stress 
interpolation on the child cell. This hybrid scheme is deemed to provide second order 
accuracy for this study [Webster et al. 2005, Aboubacar et al. 2001, Aboubacar et al. 2005]. 
The finite element method may be further stabilized through a ‘Streamline Upwinding Petrov 
Galerkin (SUPG)’ technique [Carew et al. 1994], combined with a local direct method of 
recovery for velocity gradient approximation [Hawken et al. 1991, Matallah et al. 1998]. This 
scheme captures highly accurate discrete representation of the finite element solution. The 
computational domain involves two free-surface boundary sections; the upstream meniscus 
and the downstream wetting line. Free-surface movement is determined through a time 
dependent particle tracking scheme, a local kinematic condition governing the temporal 
evolution of the deformed domain using a height function [Phan-Thien 1977, Chandio et al. 
2003]. Two forms of PTT constitutive model are considered to represent the rheology of 
typical industrial polymer solutions. A linearised PTT model, which has increasing 
extensional viscosity property that reaches an elevated plateau at high strain-rates; and the 
exponential model, which gives decreasing extensional viscosity that reaches a low plateau at 
high strain-rates. The numerical solutions thus derived explore corresponding vortex 
structures, pressure and lift profiles, and stress fields, over a range of elasticity (We) and 
material function parametisation.

Previous computations with this numerical approach, for free-surface flows with 
viscoelastic (PTT) models, include studies for die-swell flows [Al-muslimawi et al. 2013, 
Ngamaramvaragul et al. 2000], tube-tooling and wire-coating [Ngamaramvarangul et al. 
2002]. Hence, in this chapter, the main aim is to model an industrial polymer coating flow, 
utilizing these PTT viscoelastic constitutive models for the RRC domain, an application that 
has received little coverage to date. Details of the analysis focus on the: effects of elasticity 
(We increase); influence of tension-hardening and strain-softening (LPTT to EPTT 
comparison); and impact of polymer concentration via change in solvent fraction content.

8.2 Problem  sp ec if ica t ion s

The computational domain is an extension to the geometry analysed in chapter 6, but 
includes the dynamic wetting line as illustrated in chapter 7. This work is a natural extension 
of the rheological studies of chapter 7. The viscoelastic models employed are chosen to 
facilitate approximation to the rheological response under flow of industrial paint coatings.

Under incompressible isothermal conditions, the behaviour of viscoelastic flow is generally 
governed by the fundamental principle of fluid mechanics expressing the conservation of 
mass and momentum (see chapter 2).
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In the present application, the first model variant adopted is the EPTT model, featuring a 
shear viscosity with shear-thinning behaviour, as opposed to the constant shear viscosity 
represented with the Oldroyd-B model (see chapter 3; PTT with f=l). This form of PTT 
model possesses a strain-softening material response function under classical extensional 
deformation, which reaches sustained lower asymptotic-limit at large strain-rates. The 
constant non-dimensional parameter s  largely dictates severity in strain-hardening/softening, 
with smaller values approaching zero offering the greater extremes (larger Trouton ratios). 
Depending on the s  -parameter selected, and below a value of 0.5, the EPTT model features 
initial hardening, prior to subsequent softening upon further rise in strain-rate.

For contrast in rheological characteristic response, EPTT solutions are compared against 
those for the LPTT model, the linearised functional PTT form. This Linear PTT model also 
exhibits shear-thinning behaviour, as under EPTT, but reflects only strain-hardening 
response, which is capped at large strain-rates (sustained-hardening property).

Under ideal shear and extensional flow deformation, corresponding material functions 
provide a vital guidance against which to interpret solution response in complex flow (mixed 
shear-extension). In chapter 3, Figures 3.5(a-d), material function plots for the respective 
PTT models have been presented, considering the relevant parameters, covering functional 
forms for steady-state shear (rjs) and extensional (?/c) viscosities, shear stress (xxy) and first 
normal stress difference (TV/).

{e, f}}-variation: The parameters considered are in the range of (3={0.9,0.1,0.01), at 8= {0.02, 
0.15,0.25,0.5), as displayed in Chapter 3, Figures 3.5(a-d). Under PTT modeling, the 
selected parameters have been chosen to isolate the effects of shear-thinning, strain 
hardening/softening and amount of solvent fraction, respectively. Initially, an EPTT flow 
model was simulated with (3=0.9 at extensional viscosity (e=0.5) up to critical elasticity (We). 
A change of solvent fraction to (3=0.1 and 0.01 reduces the second plateau of shear-viscosity 
to respective levels, causing an increase in the rate of shear-thinning. Also, there is a 
reduction in the second plateau of extensional viscosity with change of solvent fraction, 
which increases levels of strain-softening. In contrast to this, at (3=0.1 and 8=0.25, 
decreasing the extensional viscosity introduces slight hardening, where the extensional 
viscosity behavior of the EPTT fluid, marginally increases up to a peak level (hardening), 
and then rapidly decreases (softening) as the strain-rate rises further.

Under LPTT properties, no such softening feature is apparent. LPTT solutions were sought 
for (3=0.9, 8=0.5, and then (3=0.1 and 0.01. In terms of shear viscosity, this LPTT fluid 
possesses almost the same properties as those for the EPTT fluid with the same parameters; 
with the exception that the EPTT fluid thins a little faster. Notably, however, the terminating 
extensional viscosity of the LPTT fluid increases up to a plateau-level at high strain-rates; 
which itself is determined by the 8-parameter setting. At 8=0.5, extensional behaviour is
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invariant (practically Newtonian), whereas at £={0.25,0.15,0.02}, tension-hardening is 
appreciable, with rise up to limiting plateaux-levels of r\£= {4.0,7.6,12.4,90.4}.

Such material response is closely matched in both shear viscosity and first normal stress 
difference, see chapter 3, Figure 3.5d. In extensional viscosity of Figure 2b, noted differences 
arise over the deformation rate range from 10'1 to 104; and likewise in Nj at rates above 10*1. 
Significant differences are observed in all three material functions under the highly-mobile 
state of (3=0.1 and for even smaller solvent fractions; this is apparent in shear above rates of 
10°, and in extension above rates of 10"1. For EPTT, {e, p}={0.5, 0.01} is the more shear- 
thinning of the two instances in model 3 and model 7. This is also reflected therefore in Nj 
(chapter 3, Fig. 3.5d), where peaks and limiting Nj high-rate plateaux vary; weaker for EPTT 
than LPTT model. Hence, when {e, p}={0.25, 0.1}, extensional response is clearly more 
complex, rich in variation and rate dependent: displaying first strain-hardening in the rate- 
range 10'1 to 101, prior to softening in the rate-range 101 to 104.

The solution technique selected is that of the hybrid finite element/finite volume scheme. The 
formulation employed is the Taylor-Galerkin pressure-correction (TGPC) algorithm, where 
the semi-implicit form of Carew et al. [1993] is modified, with finite element discretisation 
for the mass and momentum equations, and a finite volume sub-cell-vertex scheme for the 
constitutive equation. The TGPC framework combines a Lax-Wendroff time-stepping 
procedure based on temporal discretisation and Taylor series expansions [Donea 1984], with 
an incremental pressure-correction (PC) procedure. Under incompressible conditions, the 
coupled systems of equations are segmented at each time step into a number of fractional 
stages, which is solved in sequence providing a second-order level of temporal accuracy.

A spatial Galerkin fe  discretisation is applied on the momentum-continuity equation system 
and a finite volume method is adopted for the viscoelastic stress constitutive equations. This 
method employs a cell-vertex scheme based upon fluctuation distribution, where control 
volume residuals are distributed through an upwinding technique, and medium dual cell 
approximation is introduced to handle non-homogeneous source-term contributions.

The computational domain is spatially discretised through structured-meshing triangular 
elements (tessellation) employing a Taylor-Hood type of finite element with six-noded finite 
element triangles; three vertex nodes and three mid-side nodes. Velocity components are 
computed through quadratic interpolation functions at the six nodes of the finite element 
triangle, whereas pressures are computed through linear interpolation functions at the three 
vertex nodes of the fe  triangle.

The finite volume approximation is formed from partitioning each finite element (parent) 
triangle into four finite volume (child) sub-cells. These fv  subcells are assigned with three 
vertex nodes and stress components are computed at these vertices through linear 
interpolation functions.
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The meshing used for the computation is that illustrated in chapter 7, Fig. 7.3, and consists 
of 1550 numbers of elements, 3485 number of nodes, 968 vertex nodes and 768 boundary 
nodes. Then, solution consistency with mesh convergence has been assured through two 
other mesh choices; a coarser mesh, consisting of 650 number of elements, 1563 number of 
nodes and 433 number of vertex nodes; and a finer mesh, consisting of 5208 number of 
elements, 10536 number of nodes and 2925 number of vertex nodes. Solution precision has 
been resolved on these meshes, without the inclusion of the extended free-surface wetting 
line, to avoid any additional instabilities stimulated by singularity inclusion. Differences in 
mesh solutions are found to be less than 0.1% in primary velocity-pressure components.

Boundary conditions: Dirichlet and Neumann type boundary conditions are adopted. At the 
flow inlet and outlet, plug flow is assumed. This renders simplicity with vanishing inflow 
stress components (in plug flow), as the necessary driving boundary conditions on the 
hyperbolic-type stress equations.

The free-surface location method (see chapter 4) uses a time-dependent prediction technique 
where the evolution of the deformed domain is estimated from a previous solution through a 
height function. This strategy was previously applied by Phan-Thien [1977] in extrudate 
swell. Initial conditions on these free-surface boundaries are taken as quiescent. Then 
initially, to enhance efficiency in convergence to a steady-state, domain solutions are first 
computed with fixed-location traction-free boundaries, prior to release and completion of the 
solution search. Re-meshing is performed after each time-step (see chapter 7 for inclusion of 
and discrete treatment of the dynamic wetting line).

8.3 EPTT m od e l  f low  so lu t io n s

First, solutions are extracted for which performance of the EPTT model is examined on RRC 
flow with wetting line inclusion, to investigate the effects of elasticity (We) and influence of 
the polymeric solution by varying the material parameter (P). At £=0.25, the main interest lies 
in elasticity effects (with rising We) and changes in flow structures at different levels of 
strain-softening and strain-hardening. Steady state solutions are determined taken to a 
typical time step of At=10‘4 with relative increment tolerance of 10"6, whilst employing three 
mass iterations per embedded Jacobi iterative step. The influence of model parameters are 
described on vortex structures, pressure and lift profiles, and the component polymeric 
contribution to the stress tensor.
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Table 8.1: Critical states for different constitutive models:

Model Solvent 
Fraction p

Extensional 
viscosity €

Max.
We

Max.
p*

Max.
Tvv

Max.
N,

Max.
Txv

EPTT 0.9 0.5 0.5 1.7 1.5 1.15 0.5
0.1 0.5 0.4 0.6 13.7 13.5 3.97

0.25 0.4 0.7 24.9 24.5 4.43
0.01 0.5 0.3 0.5 16.5 21.3 9.81

LPTT 0.9 0.5 2.0 1.68 4.53 2.90 1.55
0.25 1.0 8.74 5.61 2.82

0.1 0.5 1.0 0.5 37.3 31.7 6.23
0.25 0.3 1.30 52.6 85.4 13.6
0.15 0.25 1.39 66.3 111.5 14.2
0.02 0.12 1.68 111.1 260.0 10.5

0.01 0.5 0.2 0.79

The viscoelastic flows studied here present steep stress boundary layers that are attached to 
the free-surface. As We rises, the stress boundary layer solution-thickness thins. As a 
consequence, a critical We is encountered, above which the stress gradient cannot be 
resolved and the computation fails to converge. Table 8.1 reports the various critical terminal 
We-states reached for the two constitutive models studied.

8.3.1 Elasticity (We) and so lv en t  fraction (P) change

The influence o f elasticity on the meniscus and nip-vortex structures is illustrated in Fig. 8.1 

and 8.2, respectively, with model parameters of: fixed £=0.5, and varying 0.01<P<0.9. The 
meniscus-vortex structure does not show any significant changes due to increase in elasticity 
for the three solvent fractions analysed. In contrast, one notes some adjustment in the 
evolution of the shape o f the meniscus free-surface at solvent fraction P =0 .01; this becomes 
more deformed due to the increased elastic forces imposed.

- 1 2 9 -
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(3 = 0.9 {3 = 0.1 (3 = 0.01

U: -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 8.1: Meniscus vortex development, EPTT flow (e = 0.5)

The influence of elasticity on vortex structure is more apparent at the nip-region and most 
prominent in Fig. 8.2b and 8.2c. At We=0.1 and p=0.9, the flow is close to Newtonian with 
recirculation observed in the shear-dominated nip-flow region. With elasticity increase, the 
recirculation is stretched more and more, and is observed to be compressed laterally and 
drawn inwards longitudinally, in the direction o f the meniscus. At We=0.3 and P=0.01, flow 
behaviour is far from that o f Newtonian response; with the highest shear-thinning rate, vortex 
distortion, compression and extension are all apparent features.

- 1 3 0 -
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(3 = 0.1 (3 = 0.01

We = 0.1 We = 0.1 We = 0.1

We = 0 .2 We = 0 .2 We = 0 .2

We = 0 .3 We = 0 .3 We = 0 .3

We = 0 .4 We = 0 .4

We = 0 .5 We = 0 .4  c = 0 .2 5

U: -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 8.2: Nip vortex development, EPTT flow (s = 0.5)

Figure 8.3 represents corresponding pressure profiles gathered for EPTT solutions. At P=0.9, 
differences in peak-pressures are now relatively small and observed to decrease with 
increasing elasticity (We). Again, the most significant pressure changes are revealed at 
P=0.0l. As elasticity increases from We=0.1 to 0.3, pressure levels decrease from maxima of 
1 to 0.5 units (50% reduction; 39% reduction in corresponding lift). Shear-thinning fluids are 
known to support reduced pressures, and here, shear-thinning dominates these EPTT 
solutions. Lift levels follow similar trends to those in pressure, revealing the significant level 
o f forces exerted on the foil-substrate as a result of exposure to these viscoelastic nip-flow 
conditions.

- 1 3 1 -



C h apter  8  R eve rse  roll-coating: v iscoe las tic  PTT f lo w s

W e = 0.1 
W e = 0.2  
W e = 0.3 
W e = 0.4  
W e = 0.5

0 . 5

- 3 0 0 -200 0-100
‘foil

W e = 0.1 
W e = 0.2 
W e = 0.3  
W e = 0.4  
W e = 0.5

0 . 5

- 3 0 0 -200 -100 0
'foil

1 . 5

CL 1

0 . 5

, , , 1 1 2 --- 1----1----1----1----1----1----1 l I I |

b)
---------  We = 0.1

Max. P* 
1.09

Max. L* : 
W e = 0.1 0 .80  
W e = 0 .2  0 64 

W e = 0 -3 0 54
W e = 0 4  O f t
W e = 0 .4 , £ = 0 .2 5  0 48

0.55^"—\

------------------W e = 0 .2 0 .82 1.5 -
-------------  We = 0 .3 0 .69

0 .6 0  a

0 .7 0  /

W e = 0 .4
----------------- W e = 0 .4 , £ = 0 .2 5 l l  1

- 0.5
p> =  0.1 p) = 0.1 V

. 0
-— I

. . ----1...... .............-L ______ i__ 1 . X . . .  1---1 . . J---10
- 3 0 0 -200 -100 

foil

i— ----------  r

Max. P*

1 . 5

k 1

W e = 0.1 0 .9 7
W e = 0.2 o 67

We = 0-3 0.51

0 . 5  -
0 = 0.01

0
- 3 0 0

- 3 0 0

2

1 . 5  -

ll 1 - 

0 . 5  -

-200 -100

Max. L* 

W e = 0.1 0 .7 5  
W e = 0.2 0 5 7

0 .4 7W e = 0.3

0 = o .o i
0

-200 -100 
foil

-200 w -100 
''foil

0  - 3 0 0

Figure 8.3: Pressure and lift profiles, EPTT flow (s = 0.5)

From Fig. 8.4, txx, and i yy field development and profiles are presented. These fields show 
the region o f large deformation rate on the roll surface dominated by shear. Here, xxx is 
largest on the roll side and decreasing with increase in elasticity (We) for the three solvent 
fractions analysed. For p=0.9, with the lowest level o f shear-thinning, the largest txx value

- 1 3 2 -
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attained was 2.95 at We=0.1, which decreased to 1.13 at We=0.5. At P=0.1, there is one 
order of magnitude increase in t xx values to 32.9 at We=0.1, which decreased with increasing 
elasticity (We) up to 13.2 at We=0.4. Overall, the decreasing effects on the absolute 
maximum are due to strain-softening influence. For all levels of solvent fraction, xxx values 
seem to decrease at almost the same rate (from We=0.1 to 0.3, the values halve). From Fig. 
8.4b, the xxx profiles show a rapid increase on the roll-side at the nip region and a decrease on 
the foil-side for all solvent fractions considered. There is a crossover point, between the 
increasing roll xxx-level and the decreasing foil xxx-level; this location marks the extent of the 
outer perimeter of the nip-vortex structure towards the meniscus. Moreover, this crossover 
point adjusts with decreasing solvent fraction: at (3=0.9, the crossover point is observed to lie 
at x=-3; whereas at p=0.1, this location increases to x=-5. This feature agrees with direct 
observation from the vortex structure interaction, where the nip-vortex recirculation is seen 
to expand on the roll surface side into the meniscus-vortex; to almost varnish at p=0.01, 
We=0.3. Xyy field content reveals significant effects over the contact-point zone, where 
corresponding largest levels arise. At the contact-point, the fluid comes into contact with the 
foil and is accelerated rapidly to the speed of the foil; here, a local maxima in Xyy is observed 
(cross-stream stretching; N2 effect). The deformation in this flow zone is dominated by 
extension, which results in a strain-softening response under EPTT approximation. Hence, 
and as We-levels increase further, such maxima decline still further -  a consistent result 
when We-rise is interpreted through increase in deformation rate. As illustrated in xxx levels, 
there is also a one order of magnitude increase when solvent fraction is decreased to p=0.1. 
There are no Xyy (N2) effects on the roll side to be observed, as profile levels remain around 
the zero-level.

N] and xxy fields and profiles are illustrated in Fig. 8.5. This illustrates that evolution trends 
in the first normal stress differences directly follow from those in their individual constituent 
normal stress components, with domination by xxx in those regions where xxx is most 
significant, and vice-versa for Xyy. Shear stress reveals a maximum on the foil surface. Here, 
the fluid undergoes exposure to maximum shearing deformation, due to the change in 
direction of flow to take up the speed of the foil.

For completeness, nip deformation rates, shear and extension fields and profiles are then 
shown in Fig. 8.6. Maximum shear-rates are observed on the roll surface, and maximum 
strain-rates around the contact-point on the foil. When nip-recirculation is generated, the 
shear-rate is greater than zero and strain-rate in less than zero; a feature observed on the roll 
side. In contrast on the foil side, the counterpart region, with shear-rate less than zero and 
strain-rate greater than zero, reveals a stagnant region with no recirculation (see shear-rate 
fields). The transition occurs when shear and strain-rates reach zero levels, and when this 
arises, the pressure becomes negative. These significant effects become more amplified with 
a decrease in solvent fraction up to p=0.01.
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Txx field P = 0.9 p = 0.1 p = 0.01

We = 0.1 max=2.95 We = 0.1 max=32.9 We = 0.1 max=41.0

We = 0 .2  max=2.01 We = 0 .2  max=21.5 We = 0 .2  max=27.2

We = 0 .3  max=1.56 We = 0 .3  max=16.3 We = 0 .3  max=21.1

We = 0 .4  max=l .29 We = 0 .4  max=13.2

e = 0 .2 5  
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i yv field —    — ----------------- —  —  —  —  — ---------------— -------------------

We = 0.1 max=2.41 We = 0.1 max=23.0 We = 0.1 max=29.3

We = 0 .2  max=l .84 We = 0 .2  max=17.5 We = 0 .2  max=22.1

We = 0 .3  max=1.50 We = 0 .3  max=14.2 We = 0 .3  max=16.5

We = 0 .4  max=1.50 We = 0 .4  max=13.7

e = 0 .2 5  
We = 0 .4  max=24.9We = 0 .5  max=1.50

Figure 8.4a: Nip t xx and T y v  developm ent, EPTT flow (£ = 0.5)
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Figure 8.4b: t xx and i y y  profile, EPTT flow ( e  = 0.5)
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Figure 8.5a: Nip N| and xxv developm ent, EPTT flow (e = 0.5)
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8.3.2 Effects o f  strain h a r d e n in g /s o f te n in g

In this section, interest focuses on the change in extensional viscosity properties. From Fig. 
8.4, at p=0.1 and We=0.4, as extensional viscosity increases (from e=0.5 to 0.25), with 
features of both strain-hardening and strain-softening response, a change in the recirculation 
patterns arises with largest fluid stretching occurring across the domain towards the foil-side; 
a third vortex then appears and grows in recirculation strength. In Fig. 8.5, peak-pressure 
levels are seen to increase from 0.6 (at £=0.5) to 0.7 (at £=0.25), when comparing at the same 
level of elasticity (We=0.4). The hardening behaviour in the EPTT solution at £=0.25, 
increases the t xx level on the roll surface from 13.2 to 24.6 units, as shown in Fig. 8.6. 
Correspondingly, the Tyy levels at the contact-point location are also seen to increase at the 
same rate. At this location, the flow is dominated by extensional response, so that the impact 
of strain-hardening is clearly observed, as tyy increases from 13.7 to 24.9 - almost double at 
the same level of elasticity. This sort of trend is also reflected in N) — a clear demonstration 
of the impact from strain-hardening.

From the shear stress profiles, peak xxy-values are only slightly larger in the hardening over 
the little-to-no strain-hardening instances. So, effects due to shearing are minimal. Yet, as 
anticipated, there is a rapid drop and increase in peak xxy-levels at the location where the third 
vortex emerges and is stretched across the domain towards the foil. Shear-rate values remain 
about the same, relatively unperturbed, for both levels of extensional viscosity; whereas 
strain-rates differ, taking values of 5.12 units at e=0.25 and 6.45 units at £=0.5.

8.4  LPTT m o d e l  f low so lu t ion s

In contrast to the foregoing, consideration is diverted to numerical solutions derived under 
the LPTT approximation. Here, solution comparison over parameter variation follows as with 
EPTT solutions above. The differences in the material functions are represented in chapter 3, 
Fig. 3.5. First vortex activity is observed and discussed, followed by analysis of stress fields 
and profiles.

8.4.1 Elasticity (We) and solvent fraction (p) change

Again, observing the meniscus-vortex in Fig. 8.7, there are no apparent solution differences 
at lower solvent fractions; but at (3=0.01, increasing We begins to stimulate the central core 
vortex and at the nip, the recirculation gradually unfolds and expands inwards, towards the 
meniscus. The pressure and lift profiles are illustrated in Fig. 8.8. Peak-pressure levels are 
observed to decline with increasing elasticity and lower solvent fraction, reflecting the 
dominance of shear-thinning characteristics. An interesting phenomenon is identifed in the 
normal stresses (see Fig. 8.9). At higher solvent fractions (|3=0.9 and 0.1), increasing 
elasticity (We) decreases the level of xxx, whereas at low solvent fraction ((3=0.01), the fluid 
becomes more resistant to shear and xxx levels rise. In all solvent fraction scenarios, as xxx

-140-



C h apter  8  R e verse  roll-coating: v iscoe las tic  P T T flow s

decreases, Tyy increases. The absolute maxima occur on the roll surface for t xx and at the 
contact-point location on the foil for xyy. N| (Fig. 8.10) follows identical trends as in t xx, 
which would indicate the strictly localised nature of No-influence (in xyy).

Meniscus P = 0.9 p = 0.1 P = 0.()1

N i p  

We = 0 .2

U: -1 - 0 .8  - 0 .6  - 0 .4  - 0 .2  0  0 .2  0 .4  0 .6  0 .8  1 1 .2

We = 0 .2  We = 0.1

We = 0 .4  We = 0 .4  We = 0 .2

We = 1 .0  We = 1.0

Figure 8.7 M eniscus and nip vortex development, LPTT flow (£ = 0.5)
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Figure 8.8: Pressure and lift profiles, LPTT flow (e = 0.5)
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Figure 8.9a: Nip t xx and T y y  developm ent, LPTT flow (e = 0.5)
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Figure 8.9b: Nip xxx and xyy profile, LPTT flow (e = 0.5)
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Figure 8.10a: Nip N| and i xy developm ent, LPTT flow ( e  = 0.5)
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Figure 8.10b: Nip Nj and i xy profile for LPTT flow (£ = 0.5)
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Shear stress is observed to generally decline with We-increase under all solvent fraction 
settings. Shear and extension rate fields are shown in Fig. 8.11, with maximum values 
extracted in Table 8.2. This data is placed into perspective against equivalent industrial 
expected rates. For each solvent fraction, one may note from Fig. 8.11 that there is little 
difference in deformation rates with rise in We. At high solvent fraction, shear-rate remains 
(Fig. 8.11) around the same levels, but below p=0.01, there is a significant increase in shear- 
rate as We increases. At this p=0.01 solvent fraction level, the viscosity level would appear to 
be dominated by its second plateau; so change in i xy is mainly due to shear-rate decline; yet,
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txx in seen to increase (hence a memory effect). Note that extensional viscosity distribution 
remains almost constant with no apparent increase, according to strictly localised changes in 
extension rates that are one order in magnitude smaller than those in shear-rate.

Table 8.2: Comparing shear and 
industrial rates.

extensional rates o f different constitutive models to

Model Solvent 
Fraction |J

Extensional 
viscosity t

Max. We Max.
y

Max.
£

EPT T 0.9 0.5 0.5 52.3 5.28
0.1 0.5 0.4 85.7 6.45

0.25 0.4 85.7 5.12
0.01 0.5 0.3 129 7.44

LPTT 0 9 0.5 2.0 51.2 5.08
0.1 0.5 1.0 66.7 4.22

0.01 0.5 0.2 104 7.12
Ind. D ata 0.1-0.01 0.15-0.5 Very low 1-50 0 .1-10
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Shear-rate p = 0.9 p = 0.1 p = 0.01

We = 0 .2  max=52.6 We = 0 .2  max=77.7 We = 0.1 max=77.2

We = 0 .4  max=52.4 We = 0 .4  max=73.9 We = 0 .2  max =104

We = 1 . 0  max=52.1 We = 1.0  max=66.7

We = 2 .0  max=51.2

-10 8 26 44 62 80 

Extension rate

We = 0 .2  max=5.59 We = 0 .2  max=7.01 We = 0.1 max=6.76

We = 0 .4  max=5.20 We = 0 .4  max=4.83 We = 0 .2  max=7.12

We = 1 . 0  max=5.19 We = 1 . 0  max=4.22

We = 2 .0  max=5.08

-3 -1.2 0.6 2.4 4.2

Figure 8.1 la: Shear and extension rate, LPTT flow (e = 0.5)
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P = 0 .9

W e = 0.2 roll 
W e = 0.2 foil 
W e = 1.0 roll 
W e = 1.0 foil

W e = 0.2 roll 
W e = 0.2 foil 
W e = 1.0 roll 
W e = 1.0 foil

W e = 0.2 roll 
W e = 0.2 foil 
W e = 1.0 roll 
W e = 1.

W e = 0.2 roll 
W e = 0.2 foil 
W e = 1.0 roll 
W e = 1.0 foil

Figure 8.11b: Shear and extension rate profiles, LPTT flow (e = 0.5)

-149  -



C h apter  8  R everse  roll-coating: v iscoe las tic  P T T flow s

8 .4 .2  Effects o f  in c r e a s in g  l e v e l s  o f  e x t e n s io n a l  h a r d e n in g

Taking the LPTT model at P=0.1, different levels o f extensional viscosity were analysed. 
This focuses on the effects o f changing the second limiting plateau o f the extensional 
viscosity. From Fig. 8.12, increasing extensional hardening from e=0.25 to 0.02, the vortex 
structure reduces in recirculation. Localised pressure and distributional lift peak-values 
increase due to enhanced hardening effects (see Fig. 8.13). The normal stresses increase 
reflecting a rapid increase in the first normal stress difference (Ni). Then, shear-rates are seen 
to decrease, as resistance to shear occurs due to increased strain-hardening (Fig. 8.14).

Meniscus P = 0.1, We = 0.1 Nip

c = 0 .2 5

c = 0 .1 5

e = 0 .0 2

U: -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 8.12: Meniscus and nip vortex development, LPTT flow (0.02 > £ < 0.25)

Max. L’ 

0 .8 9  

0 .9 4  

1 .0 7

Max. P’
e  = 0 . 2 5  
8 = 0 . 1 5  
8 =  0.02

£ — 0 . 1 5  < op
e = 0.02

1.68*
CL —I

0.5 0.5

-300 -200 -100 0 -300 -200 -100 0
‘foil 'foil

Figure 8.13: Pressure and lift profile, LPTT flow (0.02 > 8 < 0.25)
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i xx field i yy field Ni field

c = 0 .2 5  max =85.5  e = 0 .2 5  max =52.6 e = 0 .2 5  max =85.4

e = 0 .1 5  max =111.6  £ = 0 .1 5  max =66.3 £ = 0 .1 5  max =111.5

£ = 0 .0 2  max =260.2  £ = 0 .0 2  max =111.1 £ = 0 .02  max =260.0

0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 14 16 1820 -10 -5 0 5 10 15 20 25 30 35 40

Tty field Shear-rate Extension-rate
£ = 0 .2 5  max =13.6 £ = 0 .2 5  max =74.5  e = 0 .2 5  max =5.20

£ = 0 .1 5  max =14.2 e = 0 .1 5  max =72.1 £ = 0 .1 5  max =5.11

£ = 0 .02  max= 10 .5  e = 0 .02  max =61.0  £ = 0 .0 2  max =5.07

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -60 -44 -28-12 4 20 -3 -1.2 0.6 2.4 4.2 6

Figure 8.14a: txx, xyy, N], t xy, Shear and extension rate, LPTT flow (p = 0 .1 ,W e  = 0.1)
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Figure 8.14b: i xx, xyy and N |, LPTT flow (P = 0.1, W e = 0.1)
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Figure 8.14c: xxy, shear and extension rate, LPTT flow ((3 = 0 .1 ,W e  = 0.1)
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Comparing results directly for the two material constitutive models, Figures 8.15-8.17 show 
the significant differences gathered between EPTT and LPTT solutions at parameter setting 
o f {[3=0.1, c=0.25}. Slightly larger critical stress states were attained for EPTT(We=0.4) than 
with LPTT(We=0.3) (note, comparison is conducted at We=0.3). Peak-pressure levels for 
EPTT are lower than those for LPTT, due to the higher rate o f shear-thinning hit for EPTT 
solutions. Stress levels are much higher with LPTT than EPTT; on account o f EPTT strain- 
softening characteristics, whereas LPTT is strain-hardening. Due to EPTT faster shear- 
thinning rate, EPTT supports higher shear-rates than does LPTT; noting also the impact of 
EPTT strain-softening rate, absent under LPTT.

Meniscus B — 0.1, £ — 0.25, W e — 0.3

Nip

LPTT

Figure 8.15: meniscus and nip vortex development, EPTT and LPTT flow

0.8
P> = 0.1 
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0.6

0.4

0.2 EPTT
LPTT

-300 -200 Y -100 
foil

0

0.8 6 = 0.1 
£ = 0.25  
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0.4
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Figure 8.16: Pressure and lift profiles, EPTT and LPTT flow
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txx field Tyy field N i field

EPTT max =29.2  EPTT max =26.8 EPTT max =29.2

LPTT max =67.7  LPTT max =63.4  LPTT max =67.0

0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 14 16 1820 -10 -5 0 5 10 15 20 25 30 35 40

TxV field Shear-rate Extension-rate

EPTT max =10.4  EPTT max =83.5 EPTT max =7.29

LPTT max =11.2 LPTT max =74.4  LPTT max =4.98

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -10 8 26 44 62 80 -3 -1.2 0.6 2.4 4.2 6

Figure 8.17a: txx, xyy, N], i xy, shear and extension rate, LPTT flow 
((3=0.1, £ = 0.25, We = 0.3)

8.5 O utcom es-sum m ary

Numerical solutions have been presented for reverse roll coating with viscoelastic EPTT and 
LPTT constitutive models, inclusive o f wetting line presence. Solution for several parameter 
pairings have been investigated with different levels o f solvent fraction, to reflect highly 
polymeric fluids, and varying extensional viscosity, to isolate and identify softening and 
hardening flow response. It has been observed that highly polymeric fluids destabilise the 
flow at the nip region, as the nip-vortex is stimulated and distorted; this reveals a reduction in 
overall recirculation as elasticity (We) is increased. On nip-pressures: at larger e above e=0.5 
(lower levels o f extensional viscosity), the localised peak-pressure decreases, a feature
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always apparent under EPTT solutions; whereas for LPTT, at low e below 8=0.25 (larger 
levels of extensional viscosity), localised peak-pressures are seen to increase. Hence, tension- 
hardening elevates localised peak-pressures; whilst tension-softening has the opposite effect.

The high stressing levels on the foil-substrate shows the influence of shear/extensional flow 
on the stagnation region (maximum stress field observed on the foil-side); this tends to pull 
liquid away from the nip-vortex recirculation, to take up the speed of the foil whilst 
strengthening the flow in the meniscus recirculation. Under lower shear stressing, as with 
EPTT over LPTT solutions, the meniscus recirculation reduces more for EPTT than with 
LPTT solutions; here, there may also be a contribution from the strain-softening property of 
EPTT, absent under LPTT representation.



Chapter 9

Reverse roll-coating: viscoelastic FENE flows

Viscoelastic FENE constitutive models are considered in the simulation of high-speed 
reverse roll coating flow with polymeric paint solutions, where wetting lines are 
incorporated. Both FENE-CR and FENE-P models are utilised to illustrate the influence of 
shear-thinning in the context of strain-hardening properties. Steady solutions are derived 
numerically through a time-stepping hybrid finite element-finite volume subcell algorithm 
with dynamic ffee-surface location, drawing upon a fractional staged, incremental predictor- 
corrector, and semi-implicit time-stepping procedure. A systematic computational and 
rheological study allows for parametric variation in elasticity (We-variation), level of 
extensional hardening ( A l), shear-thinning and solvent fraction (p). Various problem aspects 
are investigated to reveal the influence of viscoelasticity on vortex developments, pressure 
and lift profiles, shear and extension rates, and critical stress states. Specific advantages of 
the viscoelastic Theological properties are observed by analysing stress and flow structures 
over a range of Weissenberg numbers. The novel aspects of the work lie in the application of 
the algorithm to the reverse roll coating process under such viscoelastic flow approximation.
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9.1 Introduction

In this chapter, the various influences of extensional flow are analysed in a reverse roll 
coating (RRC) process, when dynamic wetting lines are involved. In the computational 
domain, the polymer solutions represented encounter regions of both high shear and 
extension rates, which demand suitable viscoelastic description. This justifies the selection of 
a viscoelastic model from the FENE network class of models to represent the spatial- 
temporal evolution of the extra-stress tensor. Here under RRC flow, particularly FENE-CR 
and FENE-P models are selected for their richness in rheological properties. The FENE 
model highlights the key influence of sustained strain-hardening (tension-thickening) 
behaviour, whilst within shear; the FENE-CR model supports constant shear viscosity, in 
contrast to FENE-P model which provides shear-thinning response. A principle focus lies 
mainly in attaining larger elasticity levels with the FENE-option than obtained from the 
earlier study with PTT fluids [see chapter 8]. Significantly, FENE constitutive models can be 
solved in two forms of stress variable format, either stress tensor or configuration tensor 
form. In the earlier study, the PTT fluids utilised the stress tensor form and numerical 
solutions at critical stress states were achieved for much lower elasticity levels (We<2). As a 
consequence, the current work utilises a configuration tensor form of the FENE model, in 
contrast to the specific stress tensor form, in order to investigate these approximations. Some 
interesting features are observed in the respective numerical solutions for these models and 
their corresponding material functions aid in distinguishing their common and disparate 
character.

FENE models have been widely employed in recent computational rheological studies, with 
a view to simulating the behaviour of polymeric fluids, quantifying the influence of level of 
extensibility, solvent fraction and elasticity. Most work in the literature has focused on 
classical shear flows, and the effects of elasticity and levels of extensibility in terms of 
critical elasticity attained. Lee at al. [2002] studied viscoelastic free-surface flows in slot- 
coating by finite element methods, comparing the performance of different constitutive 
models including those of Oldroyd-B, FENE-CR and FENE-P. The authors concluded that 
increase in the hydrodynamic coating thickness is strongly dependent on the physical 
properties of the coating fluid. Rocha et al. [2009] studied the effects of extensibility in 
cross-slot bifurcation flow, employing the stress tensor form with both FENE-CR and FENE- 
P models. Results reveal that the critical Deborah number reduces as extensibility increases.

Most significantly the complex RRC flow domain reveals the existence of separate high 
shear and high extension rate zones, which can generate a high degree of accumulated stress; 
much higher than in comparable channel or simple shear flows. Hence, it is suitable to 
investigate the influence of different levels of extensibility, polymer:solvent fraction and 
effects of elasticity. Initially, such RRC flows are modelled utilising a stress tensor form of 
the FENE-CR model, and then under variable transformation, contrasted against
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implementation with configuration tensor form. Notably, due to advantageous numerical 
stability properties under configuration tensor definition, much larger critical Weissenberg 
(Wecrit) stress states have been observed under this configuration form. Consequently, flow 
simulations are pursued further in this form, whilst addressing material function parametric 
variation. To investigate the additional influence of shear-thinning, the selection under 
constitutive models was widened to also include that of FENE-P. In the reverse roll coating 
application, polymeric fluids are forced through a nip-gap under high shear-rate prevailing 
conditions, and beyond that meet the coating-substrate (foil) at a contact-point, whilst the foil 
is travelling at high speed and in reverse direction to that of the roller. A schematic 
illustration of the RRC domain is shown in [chapter 8], consisting of a cylindrical applicator 
roll rotating in the forward direction and the foil moving in the reverse direction. The 
polymeric fluid is conveyed forward by the applicator roll up to the nip-gap, with some 
penetration and through this zone. Then, flow conditions around the nip and contact-point 
locations, represent a combination of high-shear and highly-extensional flow. Since the foil- 
substrate surface is assumed to be a no-slip boundary, moving at high constant speed in the 
opposite direction to the roller, hence the polymeric coating fluid undergoes some degree of 
extension. At the contact-point, the material is accelerated rapidly to match the foil-speed, 
giving rise to a region of intense shear and extension. As such, the RRC process represents a 
complex combination of shear and extensional flow deformation, created by the combined 
influences of pressure-driven flow through the nip and drag flow induced by the foil. 
Although the flow is steady, it experiences changing flow dynamics as it moves through the 
flow-domain and a non-constant extension rate when subject to extension. In this particular 
study, a firm objective is to investigate the various effects of different levels of extensibility, 
amounts of solvent fraction and alternative critical elasticity levels reached. The present 
numerical findings are deemed valuable support to RRC process control — specifically, in 
aiding the reduction of undesirable recirculation, quantifying peak-pressure levels generated 
and in estimating accumulated stress in the coating. A laudable ultimate processing goal is 
then, to predict and derive optimally suitable flow-process conditions, to preserve uniformly 
coated foil-substrates where surface defects are avoided.

9.2 Prob lem  sp ec if ica t ion s

The computational domain is exactly as presented in chapter 8 and provides a natural 
extension of the rheological studies of Chapter 8. The viscoelastic model is chosen to 
facilitate flow of industrial fluids. Under incompressible isothermal conditions, the behaviour 
of viscoelastic flow is generally governed by the fundamental principle of fluid mechanics 
expressing the conservation of mass and momentum (see Chapter 2). The constitutive model 
considers a FENE-CR and FENE-P model to reflect constant shear viscosity and extension 
thickening, and shear thinning viscosity and extension thickening respectively. The first 
model variant adopted is the FENE-CR model featuring a constant shear viscosity. This form 
of FENE-CR model possesses an extensional hardening behaviour, capped at high
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extensional rates. The finite extensibility parameter L largely dictates severity in strain- 
hardening, with larger values approaching infinity offering the greater extremes (larger 
Trouton ratios).

Contrary to the constant shear-viscosity model, the FENE-P model is adopted and exhibits 
shear-thinning behaviour and extensional thickening capped at high extensional rates.

Under shear and extensional flow deformation, the state of material functions may be taken 
as an important model reference to interpret anticipated complex mixed-type flow response. 
In Chapter 3, Figures 3.6(a-c), material function plots for the respective FENE models are 
presented considering the relevant parameters, covering the steady-state shear (rjs) and 
extensional (rjf) viscosities, and the first normal stress difference (.Nj).

{L, p}-variation: The parameters considered are, L={5, 3} and p=[0.9, 0.1}, as displayed in 
chapter 3, Figure 3(a-c). With a base selection of (L = 5, 10} and {p = 0.9}, these choices are 
made to reflect high and low levels of extensional viscosity. For the FENE-CR model, the 
parameter selection consist of {L = 3, 5, 10} and (p = 0.9, 0.1}, used to study the impact of 
variation in strain hardening level and amount of solvent fraction, respectively. The FENE- 
CR response for p=0.9 and 0.1 at two different L-values (L={3, 5}), is exactly matched in 
both shear viscosities as unity, whilst there is slightly weakening in first normal stress 
difference for L = 3, chapter 3, Figure 3(c). In extensional viscosity of chapter 3, Figure 3b, 
noted differences arise over the deformation rate range from 10’1 to 104; and likewise in Nj at 
rates above 10'1. Significant differences are observed in all three functions under the highly- 
mobile state of p = 0.1; this is apparent in shear above rates of 10° and in extension above 
rates of 10'1. For FENE-CR, (L, P}={3, 0.1} is the more strain-hardening of all instances 
considered, which is also reflected therefore in Nj as weakening at high shear-rates. Hence, 
under the FENE-P model, the flow behavioral response is clearly more complex, rich in 
variation and rate dependent: displaying a combination of shear-thinning and strain- 
hardening in the rate-range 101 to 104. Here, Ni levels are considerably weaker than those 
represented with the FENE-CR model.

Fluid flow simulation was changed to FENE-P fluid at p = 0.9, Al = 5 and 10, and then p = 
0.1 Al = 3, and 5. In terms of shear viscosity, this type of fluid possesses almost same 
characteristics as LPTT fluid (see chapter 8) with matching parameters. Extensional viscosity 
level of FENE-P model increases up to a plateau at high extensional rate. The plateau level 
depends on the extensional viscosity value (L-parameter) selected.

The solution technique is based on a finite-element discretisation with semi-implicit Taylor- 
Galerkin/pressure-correction algorithm used to solve the governing equations. This scheme 
incorporates a time-stepping procedure and a fractional-staged equation methodology over 
each time-step. The fractional-staged equation procedure is represented in some four phases: 
first a mass matrix form; second a Poisson-equation type; third, a corrected mass matrix
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form; and fourth, a free-surface location stage for surface height (h) (see below). The 
numerical solvers include: a Jacobi iteration method for the first and third stages, performing 
three mass iterations per step; and a direct Choleski decomposition method used for stage 
two. For a reasonable balance between accuracy and stability, a time-step o f 10~4 is adopted 
throughout all calculations. The velocity field introduces a piecewise continuous 
approximation based on quadratic shape functions, and the pressure field is approximated by 
linear shape functions.

For the extra-stress, a triangular-subcell cell-vertex finite volume approach is developed [8, 
9, 10], where a parent finite-element is sub-divided into four child finite-volume subcells. 
The individual components o f the stress tensor, are then approximated by linear shape 
functions over each finite volume subcell.

The computational domain is spatially discretised through structured-meshing triangular 
elements employing a Taylor-Hood type o f finite element with six noded finite element 
triangles; three vertex nodes and three mid-side nodes (see chapter 7 & 8 for mesh).

Boundary conditions and free surface tracking method are illustrated in chapter 8.

9.3 FENE-CR m odel  f low so lu t ions
Model performance is first examined by applying FENE-CR in a stress tensor form. The flow 
is simulated up to critical solution states o f We and flow fields are analysed. Observations 
reveal relatively low critical We solution states as observed for the PTT models. Table 1 
shows critical We-levels reached for each simulation. Subsequently, a configuration tensor 
form o f the FENE-CR model has been employed. This provides the ability to reach much 
larger elasticity levels up to W e= ll. The reason for this lies in the improved numerical 
evolution properties available under the configuration form, as can be demonstrated through 
the corresponding Det(x) fields and the improved precision o f boundary condition 
representation [Hulsen 1988, Hulsen 1990, Wapperrom et al. 1995]. The effects o f increasing 
elasticity and level o f strain-hardening at low solvent fraction ((3=0.9) are analysed, and then 
equivalently, for highly polymeric mobile solutions ((3=0.1). The analysis highlights the 
influence o f strain-hardening across the domain, as this is one o f the key features o f the 
FENE-CR model.

Model Solvent Fraction (I Finite extensible factor L Max. We
FENE-CR
configuration tensor 0.9 5 11

10 2.8
stress tensor 0.9 5 0.4
FENE-P 0.9 5 11

10 1.6
0.1 5 0.3

3 1.2
Zevallos (FENE-P) 0.59 1-10 11.0

Table 9.1: Critical states for different constitutive models.
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a) Meniscus zone 

T.,-5 A L = 5 A L = 10

We = 0.1 We = 0.1

We = 1We = 0.1 We = 1.0

We = 2 .0We = 2 .0We = 0 .4

We = 11.0 We = 2.8
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Figure 9.1: a) M eniscus and, b) Nip vortex developm ent for FENE-CR flow (P = 0.9)
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Figure 9.2: Pressure and lift profiles for FENE-CR flow (p = 0.9)
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Figure 9.3: a) N | and, b) Tyy nip developm ent for FENE-CR flow (P = 0.9)
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c) Txy- f i e l d s
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Figure 9.3: c) shear stress nip development for FENE-CR flow (P = 0.9)

9.3 .1  Elast ic ity  (We) and E xtens ion a l  h a r d e n in g  ch ange  (Al)

From Fig. 9.1 and with increasing elasticity, the meniscus and nip-region flow structures are 
analysed in considerable detail, comparing the influences on respective flow solutions, 
according to the stress tensor and configuration tensor variable-base used. The stress tensor 
form attained a critical elasticity level o f We=0.4, whereas the configuration form reached 
higher critical states at W e= ll. Observations reveal that at higher elasticity levels above 
We=2, the recirculation reduces in size and meniscus shape becomes deformed as the 
polymeric fluid is highly stretched along the directions o f the moving boundary. As further 
solutions are extracted at ever larger We-levels, more fluid tends to be picked up by the foil, 
reducing the strength o f the recirculation at the nip-region, whilst increasing the leakage flow 
height.

Regarding the pressure and lift profiles shown in Fig. 9.2, localised peak-pressure levels rise 
with increasing elasticity up to a plateau above We=2.0, where the extensional viscosity 
reaches its limiting state. As such and with increasing strain-rate, the extensional viscosity 
remains constant, and hence the peak-pressure also remains around a constant level. The lift 
profile reflects the forces on the foil due to pressure, and also peaks locally around the nip- 
region where the pressure does likewise.
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The first normal stress differences (Nj) are identified in Fig. 9.3a. Here, Ni-levels are larger 
around the nip on the foil-substrate side and about the contact-point zone. The values reached 
particularly reflect the levels of Nj in extension, as the flows reaches a region of high 
deformation rate (in extension and shear) at this location. The FENE-CR model features a 
constant shear viscosity and hardening extensional viscosity, therefore Nj -levels are more 
related to extensional effects. The iyy levels observed in Fig. 9.3b are much greater at the 
contact-point zone, where strain-rates are maximum and increasing. Shear stress 
development at the nip-region is illustrated in Fig. 9.3c. Here, shear stress levels are observed 
to rise with increasing We up to critical solution states, and accumulate around the contact- 
point zone.

As extensional viscosity level is increased up to A l= 1 0 ,  numerically converged critical 
elasticity solution states are seen to be much lower, at We=2.8, and above We=2 up to the 
critical solution level, flow structures around the meniscus are deformed with more stretching 
apparent of the polymeric fluid. At the nip-region itself, vortex structures are stretched 
inwards towards the meniscus as more fluid is picked up by the foil-substrate. Leakage flow 
height also increases. The pressure and lift peak levels at this level of hardening, are greater 
than that observed at A l= 5 ,  and also increase with increasing elasticity. N] fields show a 
doubling in maximum levels, as compared to the lower extensional hardening scenario, r e 
values reach a plateau above We = 2, due to the critical strain-rate being attained; also the 
same observation applies to the shear stress fields.

9.4  FENE-P m od el  f low so lu t io n s

Under extracted FENE-P solutions, the shear viscosity is thinning with increasing shear-rate, 
and Ni is weakening under the present complex flow deformation conditions. Yet in terms of 
extensional viscosity, levels attained are much lower than under FENE-CR solutions. As 
such, the FENE-P material functions correspond to those of the LPTT model (see Fig. 9.7); 
yet the difference is that the FENE-P models are solved in configuration variable form.

9.4.1 Influence of  sh ear-th in n in g

Different amounts of solvent fraction have been investigated (p=0.9 and 0.1) and also 
different levels of hardening (A l=5 and 10). A t  high solvent fraction, and low hardening, 
critical elasticity levels attained were much higher at W e=ll. Herein, the meniscus shape 
also deforms in solutions above We=2; where accordingly the central core vortex expands, 
with less recirculation strength, as the polymeric fluid is stretched and pulled by the rotating 
roll and foil.
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a) Meniscus zone
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Figure 9.1: a) M eniscus and, b) Nip vortex developm ent for FENE-P flow ((3 = 0.9 and 0.1)
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Figure 9.2: Pressure and lift profiles for FENE-P flow ((3 = 0.9 and 0.1)

-168  -



Chapter  9  R e verse  roll-coating: v iscoe las tic  FENE f lo w s

a) N i-fields

3 = 0.9 A
We = 0.1

- = 5 3  =  0 . 9  A L =  10 3  =  0 . 1  A

We = 0.1

L = 5

We = 0.1
max. 25.3 max. 251.0max. 68.2

P 40
35

We = i  .0 . . .  We = 1 .0  We = 0.3 .Q_  30
max. 43.3 ^ max.  154.6 m may 409 6 _  25

m 20 

15 I 10

I■ -10

We = 1.6We = 2.0
max. 45.2 max. 158.3

We = 11.0 max. 83.2

b) T y y - f i e l d s

We = 1.6We = 2.0
max. 0.27 max. 9.79

max. 109.0
We = 0.1We = 0.1We = 0.1 max. 0.40 max. 2.00

max. 225.0
We = 1.0 We = 0.3We = 1.0

max. 0.19 max. 9.75

20
18
16
14
12
10
8
6
4
2
0

We = 11.0
max. 1.01

Figure 9.3: a) N | and, b) Tyy nip developm ent for FENE-P flow (P = 0.9 and 0.1)
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c) T Xy - f i e l d s
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Figure 9.3: c) shear stress nip development for FENE-P flow ((3 = 0.9 and 0.1)

With increase in strain-hardening (Ai = 10), the critical stress states reduce dramatically in 
solutions up to We=1.6, for which meniscus-shape deformation is apparent and this feature 
arises much earlier than observed for A l=5. For highly polymeric fluids (P=0.1, Ai=5), the 
critical solution We-state attained is reduced even further, now being only up to We=0.3.

The influence o f shear-thinning is more apparent in vortex structures observed around the 
nip-region and for the highly-polymeric mobile-flow solutions. Here, recirculation size and 
strength increases and is seen to expand inwards towards the meniscus, with an increase in 
size o f the leakage flow zone. Previous research studies, both experimental and numerical 
[Echendu et al. 2011], concur with this finding, as observation would indicate that shear- 
thinning tends to often stimulate vortex enhancement.

Pressure and lift profiles demonstrate rising peaks with increasing elasticity for all solvent 
fractions analysed (see Fig. 9.2). Notably, peak levels reach a plateau above certain critical 
stress states (We=1.5), corresponding to when extensional viscosities also reach their 
plateaux. Although peak levels attained are much less than those observed under FENE-CR 
solution; this is due to the influence o f shear-thinning for both high-solvent and highly- 
polymeric flows. For the highly-polymeric mobile solutions, the peak-pressure levels reduce 
even more.
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From Fig. 9.3(a-c), the various states o f stress development are observed. N| is seen to 
increase at the contact-point zone and also with increasing elasticity. As the level o f strain- 
hardening increases from Ai 5 to AL = 10, the maximum in Nj values triples and stress states 
reach high levels. As solvent fraction is decreased from p=0.9 to 0.1, Ni maximum values are 
one order o f magnitude larger than those obtained for high-solvent solutions. In addition for 
high-solvent solutions, xyy levels are much lower, lying in the range o f zero to unity; whereas 
with their highly-polymeric counterparts, maximum xyy-levels are ~O(10“). With highly- 
polymeric mobile solutions, the fluid is highly shear-thinning and high levels of deformation- 
rate are generated; hence, more significant polymer extension is encountered at the contact- 
point zone, as seen in xyy fields. In shear stress fields o f Fig. 9.3c, accumulated stress build up 
is observed on the foil-side, due to the high strain-rate attained in that region, and the higher 
the polymeric content, the larger the maximum shear stress generated.

For highly-polymeric mobile solutions, comparison was also performed on the two 
constitutive models for strain-hardening parameter settings o f (A l=3 and A l=5). 

Observations show that shear-thinning properties stimulate vortex activity, and the vortex 
structure (size/strength) is also much less at lower strain-hardening levels (seen at the nip- 
region, Fig. 9.4). In addition (Fig. 9.5), pressure and lift levels are also much lower at low Ai 
and with these FENE-P solutions.

a) Meniscus

FENE-CR

FENE-P
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b) Meniscus ft -  0.1, A l —5, We — 0.3

FENE-CR

FENE-P

Figure 9.4: meniscus and nip vortex development for FENE-CR and FENE-P flow, P = 0.1,
a) A l = 3, We = 1.0
b) Al= 5, We = 0.3
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Figure 9.5: Pressure and Lift Profile for FENE-CR and FENE-P flow (p = 0.1)
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Figure 9.6: N |, iyy and shear stress nip development for FENE-CR and FENE-P flow ((3 = 0.1)
a) Al = 3, b) A l = 5.
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9.5 Comparison of FENE and PTT so lu t ion s
(in fluence  of sh ea r - th in n in g /s tra in -so f ten in g )

Having investigated the FENE class of models, one can interrogate differences in rheological 
response by direct comparison against the class o f PTT models. Since the PTT form resides 
in stress tensor variables alone, and to preserve equitable comparison basis, below the FENE 
versions are also considered in this same form. In this fashion, the influence of shear-thinning 
may be quantified by comparing, for example, the differences in solution response between 
stress fields with FENE-CR and LPTT models [see Fig. 9.8-9.10], when extensional viscosity 
behaviour is matched and shear-thinning properties are disparate. Likewise, the direct 
comparison between FENE-P and EPTT, under comparable shear-thinning properties, allows 
one to unambiguously associate with the strain-softening properties o f EPTT, as distinct from 
the sustained hardening o f FENE-P (as with LPTT). The respective material behaviour are 
presented in Fig. 9.7.

1.2

1.1
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Figure 9.7: Material function plots comparing model behaviour for FENE and PTT materials;
(p = 0.9, L = 5.0, e = 0.042)

a) Shear viscosity b) Extensional viscosity c) Ni
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Firstly, on the influence of shear-thinning, the extensional viscosity behaviour of FENE- 
CR(L=5) is matched to that of LPTT(e=0.042). For this setting, the critical elasticity solution 
state reached is We=0.4 for FENE-CR and We=0.1 for LPTT; which reveals that numerical 
solution becomes less tractable as shear-thinning is introduced. Here, meniscus deformation 
is relatively unaffected, whereas nip vortex structure is slightly stimulated, proving larger 
than that observed under constant shear viscosity FENE-CR solution. Secondly, wetting-line 
solution response is interrogated for cases FENE-P(L=5) and EPTT(e=0.042), where one 
may identify the impact of EPTT strain-softening under comparable levels of shear-thinning. 
In this instance and with EPTT solutions, the dynamic wetting line is pushed out further 
away from the nip-zone by the coating fluid, causing an overall measurable increase in 
leakage flow; the meniscus region remains unaffected. This is apparent in the outer-domain 
shape changes in Fig.9.8 below.

In Fig. 9.9, corresponding pressure profiles are illustrated, contrasting separately the highly- 
localised influences of shear-thinning and strain softening, across the various models on 
offer. Here one may observe, that increase in both shear-thinning and strain softening effects, 
cause reduction in highly-localised peak-pressure levels, which are strictly manifest over the 
nip-region. Notably, shear-thinning is roughly twice as strong a reducing influence on peak- 
pressures, than that attributable to strain-softening. There is a one unit reduction in peak 
pressure levels with regards to the influence of shear-thinning (FENE-CR = 1.9 to LPTT = 
1.8units), whereas with strain-softening, a half unit reduction is observed for the peak 
pressure levels (FENE-P = 1.85 to EPTT = 1.8units).

Corresponding stress field development in Ni, iyy and Txy are provided in Fig. 9.10. A direct 
comparison of all stress maxima is extracted from the summary data provided in Table 9.2. 
On shear-thinning influence, with FENE-CR and LPTT comparison under Fig. 9.10a, the 
stressing levels are generally observed to be less under LPTT than FENE-CR solution. 
Notably, there are large and significant effects due to shear-thinning in Nj-fields, where 
maxima in FENE-CR are some five-times larger than with LPTT (ratio 5:1). LPTT-stress 
fields, in rxy and % , are also reduced by about one-half, from those of FENE-CR flow. The 
maximum state of shearing in the field is observed within the nip-region on the roll-side (e.g. 
see Ni for FENE-CR), while the maximum state of extension is exposed within the iyy field 
(largest in FENE-CR), around the contact-point region on the foil-side.

The immediate comparison between FENE-P and EPTT stress solutions of Fig. 9.10b permits 
insight into the isolation of strain-softening effects. One notes that EPTT extensional 
behaviour, in contrast to that of LPTT and FENE-P, is considerably more complex; it 
comprises of initial hardening, and then subsequently, strain-softening at higher strain-rates 
(see Fig. 9.7). In contrast, shear-thinning trends essentially replicate those under FENE-P but 
slightly earlier than observed for the LPTT and FENE-P model behaviour. Notably again, 
between FENE-P and EPTT N]-solutions, there are large and significant effects due to strain- 
softening impacting on Nj. Here, maxima in FENE-P are now three-times larger than with
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EPTT flow (ratio 3:1). Note in addition on FENE models alone, that N |-levels also reduce by 
a factor of about one-third between FENE-CR to FENE-P, attributable again to thinning 
influence (as extensional properties are replicated in this comparison).

Significant features are further observed in the xyy and i xy stress fields o f Fig. 9.10b, where 
EPTT solutions reach larger stressing-levels than those extracted under FENE-P flow. 
Notably, critical EPTT elasticity solution levels reached lie around W e=0.l'. The level and 
positioning of iyy, around the contact-point/wetting-line zone, indicate the relative strength 
and impact of N2-effects (biaxial cross-stream stretching o f the coating fluid), as dependent 
upon the fluid-coating rheology and its bearing on the overall reverse roll coating process 
itself. In all these F E N E -solutions, it is conspicuous that N2 influence versus that o f Ni, is 
about fifty percen t Jess. In stark contrast, the trend is completely opposite under all PTT 
solutions and irrespective o f softening presence, generating a re la tive  increase o f  twenty-five 
p ercen t from N| to N2-levels. Moreover, softening itself also plays a role here in LPTT to 
EPTT normal-stressing levels, being responsible for some twenty percent reductions; hence, 
evidence of being within the high strain-regime, where softening has an impact.

Much of the explanation for these findings may be exposed by switching to comparison over 
shear (xxy) stress fields, between FENE-CR of Fig. 9.10a to FENE-P o f Fig. 9.10b. From this, 
one may gather the strong impact that shear-thinning has imposed 011 FENE-P solutions 
(which also, has a knock-on effect on xyy—maxima). As one might anticipate, such shear- 
thinning influence is much less prominent in the comparison between LPTT and EPTT 
solutions, as both these models support this property. Moreover, it is conspicuous that both 
xxy and Xyy-maxima for FENE-P show reduction from those o f EPTT.

a) Meniscus

FENE

Influence of shear-thinning

Nip

LPTT

1 W e cri ~ 0.1 f o r  E P T T  is  n o t a b l y ,  m u c h  r e d u c e d  o v e r  s i m p l e  v i s c o m e t r i c  f l o w s ;  o r  y e t ,  e v e n  u n d e r  c o m p l e x  

m i x e d  s h e a r - e x t e n s i o n a l  f l o w s  at l o w e r  d e f o r m a t i o n - r a t e s  t h a n  e x p o s e d  h e r e  in t h e s e  n o n - i n d u s t r i a l  f l o w s .
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b) M e n i s c u s  Influence of strain-softening

: ■ : • Nip

FENE-P

Figure 9.8: Meniscus and nip vortex developments, p = 0.9, We = 0.1

a) Influence o f shear-thinning, (FENE-CR, Tl= 5, LPTT, e=  0.042)

b) Influence o f strain softening, (FENE-P, T l =  5, EPTT, 8= 0.042)
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Figure 9.9: Pressure profiles, P = 0.9, We = 0.1

a) Influence o f shear-thinning, (FENE-CR, T \=  5, LPTT, 8=0.042)

b) Influence o f strain softening, (FENE-P, T l =  5, EPTT, 8= 0.042)
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a) Influence o f shear-thinning 
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b) Influence o f strain-softening 
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Figure 9.10: N \, i yy and shear stress nip development (P = 0.9), We = 0.1

a) Influence o f shear-thinning, (FENE-CR, T l =  5, LPTT, 8=0.042)

b) Influence o f strain-softening, (FENE-P, Tl = 5, EPTT, s = 0.042)
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Figure 9.11: N ,, i yy, txx and xxy nip profiles (p = 0.9), W e = 0.1, FEN E(TL= 5), PTT(£= 0.042)
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Finally and for all models, quantitative and local comparison on N] ( = x x x - X y y ) ,  xxx, Xyy (N2) 
and xxy (shear-stress) profiles is achieved in Fig. 9.11. Overall: (i) normal stressing is twice as 
large on the roll-side than that on the foil-side', (ii) this is more concentrated in peak-values 
to the nip on the foil-side, being more distributed over a wider roll-surface region about the 
nip on the roll-side; (iii) N2  dominates in Ni on the foil-side, and zxx dominates in Nj on the 
roll-side', (iv) absolute shear stress maxima is one-quarter of normal stress on the roll-side, 
whilst only one-tenth on the foil-side.

Focusing solely on roll-side results and considered in rising order, Ni and xxx, EPTT- 
solutions reveal the lowest peak levels, followed by those for LPTT, then FENE-P, and 
finally the largest in FENE-CR. This pattern and relative proportional rise is also replicated 
in shear stress. Here, sustained strain-hardening FENE solutions strongly dominate their PTT 
counterparts; doubling in value to FENE-P levels (with shear-thinning present), and tripling 
in value to FENE-CR levels (without shear-thinning). Hence, extensional deformation has a 
dominant influence on the roll-side. It is also noted that there is a distinction in response 
between the two models of FENE-P and LPTT, which share common hardening response and 
close shear-thinning. Moreover, the close levels of LPTT and EPTT, indicate the marginal 
influence of strain-softening, present under EPTT; and just how miniscule this is in contrast 
to the more dominant hardening influence. The consistently lower viscometric Nj for PTT 
over FENE versions, also leads to their distinct differences in levels here too.

In contrast on the foil-side, peak Ni-levels (remarkably - totally dominated by N2) are much 
greater for FENE-CR (by 2.5 times), than with any of the other three shear-thinning model 
versions: declining in the order of LPTT, EPTT and FENE-P results. Hence, shear 
deformation (shear-thinning) has a dominant influence on the foil-side around the contact- 
point/wetting-line zone. Note that, the most extreme reduction in this respect is associated 
with the FENE-P result.

Table 9.2: Comparing stress maxima values for all models

Model Max. Nj Max. Tyy Max. Txy

; FENE-CR 112.9 54.8 8.22
LPTT 20.8 25.7 5.23
FENE-P 46.9 16.7 2.64
EPTT 16.8 19.9 4.62

9.6  O u tcom es-overv iew

This study has presented an investigation for reverse roller coating viscoelastic flow, primary 
concerned with FENE-based modelling, but with extended consideration to PTT solutions. 
The reverse roller coating problem is one that manifests industrial levels of shear and
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extensional deformation, for which modest levels of elastic solution are anticipated. Under 
the FENE class, numerical solutions have been extracted under both stress tensor and 
configuration tensor forms. Under this variable transformation, the configuration tensor form 
has proven itself to reflect superior numerical evolution properties, as was originally 
intended, which in turn render numerical solutions tractable to impressively larger critical 
elasticity states. The study has been divided into separate phases: initially, FENE-CR 
solutions were compared and contrasted between stress and configuration tensor form, 
analysing the effects of increasing elasticity up to critical states. Configuration tensor 
solutions reached W e=ll, whilst stress tensor forms only attained the much more modest 
level of We=0.4, under identical parameter settings of (p=0.9 and L=5.0). Then influence of 
level of extensibility were observed for L parameter value (L= 10) and high solvent flow (p 
=0.9). Here much lower elasticity levels were attained at We = 2.8. And highly polymeric 
mobile flows were simulated, also for high and low level of extensibility (L =5 and 3). In 
contrast to the constant shear viscosity FENE-CR flows, shear thinning FENE-P flows were 
simulated to match same level of extensibility as in FENE-CR flows and to study the 
influence of shear-thinning and level of extensibility. Critical elasticity states attained were 
observed to be much lower at We = 1.6 for L parameter (L=10) than that seen for the FENE- 
CR flow at We = 2.8. Highly polymeric FENE-P flows were also introduced with enhanced 
shear-thinning, where significant influences are observed with regards to critical states, 
reduced peak pressure levels and simulated and extending vortex structures.

Subsequently, FENE model solutions have been compared against those for PTT models, to 
positively shed light on segregated shear-thinning and strain-softening influences within the 
process. Both shear-thinning and strain-softening, stimulate vortices and destabilise the flow 
around the wetting region, leading to an overall increase in quantity of leakage flow. Overall, 
viscoelasticity effects are found to expand vortices, as the meniscus itself deforms with the 
moving boundaries. Shear-thinning and strain-softening properties, on the other hand, 
stimulate vortex growth, where vortices grow into and across the nip zone, ultimately to 
merge with the meniscus vortex, becoming one large momentum-transfer mode.

In terms of peak pressure levels observed at the nip, shear-thinning is roughly twice as strong 
a reducing influence on peak-pressures, than that attributable to strain-softening. Comparing 
the various solutions generated, one may conclude that maxima in pressure (restrained to the 
nip-zones), is directly linked with viscosity levels. This is evidenced by shear-thinning fluids, 
which generate lower peak-pressure levels than observed with constant shear-viscosity fluids. 
Likewise regarding extensional properties, strain-softening fluids tend to lower peak-pressure 
levels over their strain-hardening counterparts.

Overall, normal stressing is twice as large (shear stress quadruples) on the roll-side against 
that on the foil-side; N2  dominates in Nj on the foil-side, and rxx dominates in Nj on the roll- 
side. Hence, shear deformation (shear-thinning) has a dominant influence on the foil-side 
around the contact-point/wetting-line zone.
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Chapter 10

Concluding remarks

This final chapter provides an overview and general summary to the body of research 
undertaken with addition suggestions for fruitful lines to follow in future work. The 
achievements of this study are presented and the logic behind the analysis is discussed and 
clarified. All main aims and objectives have been accomplished, for which the solution fields 
produced are in excellent agreement with theoretical hypothesis and experimental evidence. 
Employing various coating material through a reverse roll coating application, it has been 
shown how the dynamics of the flow influences the coating process. As such, the major 
achievements of this work lie in the understanding of the rheological properties of coating 
flows and their influence on the manufacturing process in actual operation. The material 
model approximations implemented are those of Newtonian, inelastic and viscoelastic type. 
The process has been modeled numerically extending a finite element based algorithm to 
incorporate free surface treatment of the meniscus and wetting lines. The computational 
technique appeals to semi-implicit Taylor-Galerkin methodology. Under viscoelasticity, 
appeal has been made to a finite volume technique to represent stress solution, from which a 
hybrid finite element-finite volume method has emerged. The algorithm has been validated 
and shown to lie in excellent agreement with both counterpart numerical solutions and 
experimental data. As such, this predictive technology provides an effective tool for the 
computational modeling of reverse roll coating applications. Initially, the studies focused on
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a related two dimensional combined and separating flow configuration, using Newtonian 
fluids and introducing yield stress concepts (see chapter 5). This problem was deemed 
suitable to mimic the reverse roll coating application, yet without the inclusion of free 
surfaces, it provided a suitable starting point for validation of the numerical method and 
introduction to the numerical aspects of such flow problems. In the study phases to follow, 
several constitutive equations were considered to define the rheology of the coating fluid, 
including viscous inelastic and viscoelastic PTT and FENE class of models.

The research has been divided into distinct phases to aid in the understanding of the aims and 
objectives of the work. Chapter 2 introduces the fundamental principles of fluid mechanics, 
highlighting the basic assumptions taken in the computational approximation of such an 
industrial flow process. In particular, the research considers the application of the process to 
the solution of non-Newtonian flows. To achieve this, several constitutive equations have 
been pursued to model the rheological response of the coating material and to facilitate this, 
it is helpful to attempt flow classification. The rheological properties of suitable coating 
flows are introduced and studied in chapter 3. The numerical algorithm incorporates a free 
surface technique to address the problem requirements of coating flows, as described in 
chapter 4.

In this context, the first problem and flow domain considered was that of the combined- 
separating flow configuration, with viscous, inelastic and viscoplastic materials. This 
problem was one of a planar Poisuielle unidirectional and reversing flow, into and out of a 
channel with a flow splitting partition and a central gap in the partition. This benchmark 
problem was chosen to mimic the flow reversal of reverse roll coating, and findings were 
taken in comparison against previous numerical and experimental data. This study provided 
the necessary insight into the numerical solution of such flows before progressing to more 
complex reverse roll coating flows. The results were found to lie in excellent agreement with 
comparable studies reported in literature. A Herschel-Bulkley fluid model was applied, with 
a power-law model and a yield stress approximation. Unyielded power law solutions were 
found to stimulate vortices with increased shear-thinning. Whereas for Bingham model 
solutions, higher levels of inertia were required to obtain the same level of vortex formation 
as observed under shear-thinning. Under Herschel-Bulkley modeling, and at larger yield 
stress levels, vortices were eliminated with the appearance of unyielded regions.

In chapter 6, the reverse roll coating application was investigated, for which several pressure 
relief mechanisms have been identified. Here, viscous and inelastic materials were utilised to 
model the coating material rheology and several process operating conditions were analysed: 
including speed ratio, nip-gap, slip conditions and elastohydrodynamic effects. For such 
viscous material approximations, and with increasing foil speed, some degree of meniscus 
deformation was observed in the direction of the moving foil. As the nip-gap size was 
reduced, peak pressure levels increased accordingly, followed by associated levels of lift. At 
this stage and whilst avoiding wetting line inclusion, slip conditions were investigated to 
predict the influence of wetting on peak pressures at the nip region. Observations 
accordingly, have revealed a reduction in localized peak pressure levels at this nip region. An 
elastomer mbber cover on the roller was also implemented (in both static and dynamic modes 
of implementation), accounting for both with positive and negative nip-gaps. Findings have
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shown oscillations in pressure around the nip zone; the lower the elastic constant (greater 
hardness) of the rubber covers, the larger the displacement observed.

Subsequently for the RRC application, a wetting line region was introduced into the problem 
approximation in Chapter 6. Then, viscous inelastic materials were studied, suitable for some 
paints, under surface tension considerations and different process conditions. The RRC 
domain consists of both shear and extension-dominated regions; therefore a generalized 
Newtonian model was initially employed. The corresponding flow problems were solved 
numerically and process operation and instabilities analysed. The flow around the nip 
realized a localized region of high shear rate influence. The material functions indicate the 
general description of such flows and their distributions throughout the domain demonstrate 
this fact. Under surface tension, a stagnation zone is observed around the contact point. 
Inelastic fluids, such as those governed by the power-law model, of constant thinning form in 
the power-law regime, have the propensity to eliminate this nip-region recirculation and also 
of lowering peak pressure levels.

With a keen interest in non-Newtonian fluid mechanics, attention was turned towards 
viscoelastic solutions and complex RRC flow, with highly elastic coating liquids (polymeric 
paint constituents). For this purpose, material modeling was switched to viscoelastic 
representation, where memory effects and normal stress influences may be analysed. Appeal 
has been made to PTT models, to identify the influence of increasing elasticity (We- 
variation), covering a number of instances of high-solvent and highly-mobile polymeric 
fluids. The first such model adopted was that of the EPTT (exponential) model, with shear- 
thinning and strain-softening behaviour at high extension rates. Different strain-softening 
levels were compared and contrasted for various solvent fractions. Solutions fields attained 
critical elasticity states in the range of We=0.5. Such a critical We-state becomes much less 
for highly polymeric mobile solutions. Notably, localized peak pressure levels have been 
observed to decline with increasing elasticity due to the increase in the rate of softening. A 
second PTT model variant employed is that of the LPTT (linear) model, which supports 
shear-thinning and sustained strain-hardening properties. Herewith, pressure levels are 
observed to rise with increasing elasticity, in contrast to findings with the counterpart strain- 
softening EPTT model -  hence, exposing the dependence upon sustained strain-hardening 
properties. At high solvent fractions, critical We-states attained were larger for LPTT- 
solutions in the range of 2.0; whereas for highly polymeric fluids, EPTT fluids were 
considerably easier to solve computationally, and reached larger critical We-states than for 
their LPTT counterparts.

In yet other attempts to reach higher elasticity levels, FENE constitutive equations have also 
been employed to model the coating material, specifically, in FENE-CR and FENE-P form. 
Different variable-forms of FENE-CR utilized include a stress tensor form and a 
configuration tensor form. The stress tensor form attained similar critical elasticity levels as 
those reached for the PTT models (also of stress tensor form), whereas the configuration 
form was found to be superior in numerical stability, and as such reached higher elasticity 
states up to We=l 1. Numerical solutions obtained with the FENE-CR model, reveal a rise in 
localized peak pressure levels with increasing elasticity, due to sustained strain-hardening 
•effects. Although the FENE-CR model displays a constant shear viscosity (as with
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Newtonian approximation), critical stress states are observed to be much higher than all other 
models investigated (FENE-P and PTT). In contrast, the FENE-P model possesses shear- 
thinning and sustained strain-hardening effects. The FENE construct equations realize a 
configuration tensor form, and it is under this variable form, that they are capable of reaching 
higher elasticity levels at high solvent fraction. In relative terms and for highly polymeric 
mobile solutions, the critical levels of elasticity reduced due to increased shear-thinning. Yet, 
peak pressure levels attained were much lower than those gathered under FENE-CR 
solutions.

When FENE-CR(Al=5) and LPTT(e=0.042) solutions are compared and contrasted for high- 
solvent fraction mobile solutions (P=0.9), both in stress tensor form, the main rheological 
differences lie in the constant shear viscosity behaviour of FENE-CR and shear-thinning 
effects of LPTT. Here, FENE-CR solutions attain a critical elasticity level of We=0.4, 
whereas LPTT only reaches the modest critical elasticity level of We=0.1. Observations 
reveal that shear-thinning fluids are much more complex to solve for under RRC flow 
configuration, and hence, reach much lower We-critical levels than apparent for constant 
shear viscosity fluids. In contrast, FENE-P(Al =5) and EPTT(s =0.042) solutions are 
compared to reveal the influence of strain-softening, Both shear-thinning ad strain softening, 
stimulates vortices and destabilises the flow around the wetting region leading to an overall 
increase in leakage flow. In terms of peak pressure levels observed at the nip, shear-thinning 
is roughly twice as strong a reducing influence on peak-pressures, than that attributable to 
strain-softening.

From the corresponding numerical results derived, the following general conclusions are 
highlighted below for the reverse roll coating process operation:

• Shear-thinning fluids at the nip region, eliminates vortices
• Under surface tension, stagnation is observed around the contact point
• Peak pressure levels directly relates to viscosity levels
• Increasing strain-rate increases pressure-levels for hardening fluids and reduces 

pressure-levels for softening fluids
• Under uniaxial extension, critical elasticity levels are considerably higher for shear- 

thinning fluids, whereas for planar extensional flows observed herein, higher critical 
elasticity levels are much more difficult to attain with higher levels of shear-thinning.

Overall, the flow of coating fluids through an industrial reverse roll-coating application 
represents a grand rheological challenge which necessitates suitable process operation, its 
proper description and control of the flow properties. To this end, the solvent and polymer 
model described herein predicts an ideal model amenable to practical studies. They provide 
close intelligent predictive tool for industrial processes. The novelty of the work lies in the 
treatment of the dynamic contact point to avoid starvation of the nip in a reverse roll coating 
process. Also previous research studies have experimentally examined different polymer 
solutions, and recently, Zevallos has presented findings on forward roll coating with FENE-P 
models. In the current work, viscoelastic models are analysed in a general manner, in their 
application to reverse roll coating flow, when considering rheological variation of the coating 
fluids and analysis of such influences on the process operation. In the case of inelastic
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approximation, shear-thinning stimulates vortices. For viscoelasticity, strain-softening and 
hardening also stimulate vortices and stretching of the polymeric fluid. Significant iyy effects 
on the contact foil-side have been observed for extension flows which reveal a novel and 
important aspect of the industrial reverse roll coating process. Furthermore, shear-thinning 
fluids have been observed to influence the levels of iyy attained at this contact foil-side 
region, and therefore, reduce its peak. Normal stressing is twice as large on the roll-side than 
on the foil-side; N2  dominates in Nj on the foil-side, and rxx dominates in Nj on the roll-side. 
Hence, shear deformation (shear-thinning) has a dominant influence on the foil-side around 
the contact-point/wetting-line zone. At the same time, this research also demonstrates the 
stimulation and consequences of biaxial extension.

Having analysed the rheological properties of coating flows and its influences on the process 
operation, further attention may now be focused on other pressing problem issues, viz:

• More complex modeling of an elastomer covered roll and its influence on the flow 
dynamics at the nip and contact region (say under viscoelasticity)

• Analysing the effects of complex rheological properties such as, under White- 
Metzner and/or pom-pom modeling, suitable to match a typical industrial coating

• Three dimensional flow simulation studies
• Three-roll system modeling in two or three dimensions
• Wet-film weight prediction
• Wetting and /or peeling effects of the dynamic contact region
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