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A bstract
A reliable calculation of the charmonium potential at non-zero temperature from first 
principles is required as part of a wider effort to understand the phase transition 
of hadronic matter to quark-gluon plasma at high temperature. The interquark 
potential inside hot matter produced in heavy ion collisions can not be measured 
directly. Therefore the precise role of the interquark potential in quark-gluon plasma 
formation can currently only be determined through a reliable theoretical calculation. 
In this thesis charmonium potentials are obtained from dynamical lattice simulations 
of quantum chromodynamics by analysing correlators using two different approaches: 
i) conventional fitting — correlators are fitted in the conventional manner familiar 
from hadron spectroscopy on the lattice; ii) the HAL QCD time-dependent method 
— a novel technique borrowed from nuclear physics is used to derive an expression 
for the potential directly in terms of the correlators.

Recent lattice QCD studies relevant to the charmonium potential fall into two 
categories: i) non-zero temperature studies of the static quark potential; ii) zero 
temperature studies with physical charm masses. The results presented in this thesis 
are novel because they are from a study of the charmonium potential using physical 
charm masses at non-zero temperature.

The charmonium potential obtained from conventional fitting is found to be tem­
perature dependent, as the temperature increases, the potential flattens. However 
the method suffers from certain reliability issues. The time-dependent method is 
found to be more suitable than conventional fitting for studying the interquark po­
tential at high temperature. Using the time-dependent method the charmonium 
potential between 0.76Tc and 1.09Tc is found to be temperature dependent. The 
result is reliable and shows the potential flattening as the temperature increases, 
which is consistent with the expectation that at high temperature the interquark 
potential becomes colour-Debye screened. Extracting the potential from temper­
atures higher than 1.09Tc would have led to unreliable results, but this limit is 
specific to the configurations used and not the method itself. The study shows that 
if configurations are generated with the time-dependent method in mind, then it can 
be used to extract the charmonium potential at temperatures higher than 1.09Tc-
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Chapter 1

Introduction

A reliable calculation of the charmonium potential at non-zero temperature from 
first-principles is required as part of a wider effort to understand the phase transition 
of hadronic matter to quark-gluon plasma (QGP) at high temperature. The QGP 
phase of quantum chromodynamics (QCD) has been studied extensively in heavy 
ion collisions and theoretical calculations. However a complete understanding of this 
phase is still some distance away. Experiments are hindered by uncertainties in the 
phenomenology of the QGP such as the equation of state, transport properties, and 
spectral features of hadrons. These quantities are required to model the pocket of 
QGP fleetingly produced in heavy ion collisions, as it expands and cools back into 
the hadronic phase. Without them event data collected by detectors can not be 
properly interpreted.

One of the quantities of interest is the interquark potential at temperatures above, 
below and throughout the cross-over region between the hadronic and QGP phases. 
Interest in the charmonium potential specifically was increased by a theoretical cal­
culation suggesting J/'ip suppression could be used as a signal for QGP formation 
in heavy ion collisions. In [1] it is proposed that colour-Debye screening leads to 
a temperature dependent interquark potential and that this plays a pivotal role in 
QGP formation. However more recent studies of charmonium production using sta­
tistical [2,3] and transport [4,5] models, as well as a calculation of the imaginary 
part of the interquark potential [6 ], suggest that colour-Debye screening may not be 
the only important mechanism.

The interquark potential inside a pocket of QGP can not be measured experimen­
tally. Consequently a reliable theoretical calculation of the interquark potential at 
non-zero temperature is the only way to determine the precise role of the interquark
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potential in QGP formation. Theoretical work on the interquark potential at high 
temperature includes early models [7] and perturbative QCD calculations [8-10], but 
due to the persistence of strong coupling effects at the deconfinement temperature 
a fully non-perturbative method is strictly essential. In this thesis Lattice QCD 
is the non-perturbative tool of choice. Recent relevant lattice QCD studies of the 
interquark potential fall into two categories: (i) non-zero temperature studies of the 
static quark potential [1 1 - 2 1 ] and (ii) zero temperature studies of the potential be­
tween quarks with finite masses [22,23]. The results presented in this thesis are from 
a study of the charmonium potential using physical charm quark masses at non-zero 
temperature, which is the first of its kind.

In this work the charmonium potential is obtained by analysing correlators using 
two different approaches. In Chapter 4 conventional fitting techniques are used 
to extract the charmonium wave function. Then in Chapter 5 a novel technique 
from nuclear physics is applied to the charmonium system. Both consider the non- 
relativistic limit to be appropriate for charmonium and employ the Schrodinger 
equation. To set the background for these studies we review, in Chapter 2 , the 
salient features of QCD in the continuum, the phase transitions leading to QGP 
formation, and the heavy ion collisions being performed in the laboratory to learn 
more about hot matter. Then in Chapter 3 we introduce the lattice techniques key 
to obtaining the results. The thesis is concluded with Chapter 6  by summarising the 
results and discussing future avenues of research.

The publications: [24], [25], [26], [27] and [28], contain work presented in this 
thesis.



Chapter 2

H ot M atter

Experiment confirms that hadrons, such as the protons and neutrons of atomic 
nuclei, are composed of quarks. These constituent particles carry an additional 
degree of freedom to the electromagnetically and weakly interacting leptons, which 
is referred to as colour. Strong interactions, synonymous with colour dynamics, are 
mediated by colour-charged particles called gluons, which are responsible for binding 
quarks into hadrons — colour-neutral bound states composed of two (qq) or three 
(qqq) quarks, mesons and baryons respectively. In high energy particle colliders, a 
large number of different hadrons can be produced. This ‘particle zoo’ was initially 
very confusing but is now explained by a single theory — QCD.

Independently as well as a part of the standard model of particle physics, QCD 
describes a wide range of experimentally observed interactions with great success. 
However a comprehensive understanding of strongly interacting matter can not be 
claimed until all the physical phenomena it exhibits, including its phase structure, 
are described in terms of the QCD Lagrangian.

2.1 QCD
QCD is a Yang-Mills theory with SU(3) gauge group and six fermions, i.e. six 

quarks labelled, up (u ), down (d), strange (s), charm (c), bottom (b) and top (£), 
also referred to as quark flavours. Its Lagrangian density is written,

-S?QCD =  9} ( i  -  m ,S V )  q>f -  \ ( J ^ ,  (2.1)

where i =  1 ,2 ,3 ,  and a =  1, . . . , 8 , are colour indices, and /  is the flavour index — 
these are often suppressed in subsequent equations to simplify the notation. The
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coloured quark and anti-quark fields, qf and #/, transform in the fundamental rep­
resentation and are coupled to the gluon fields, which transform in the adjoint 
representation of SU(3), through the gauge covariant derivative,

where f â c are the structure constants and g is the QCD coupling constant. The 
Dirac matrices, 7 **, connect the spinor and vector representations of the Lorentz 
group, and G^v is the gluon field strength tensor given by,

Finally, m /  denotes the quark masses.
In addition to the inherent local SU(3) gauge symmetry, the QCD Lagrangian 

has several classical symmetries [29]. The space-time symmetries of the theory are: 
Poincare, charge-conjugation, parity and time-reversal symmetry. Also, if the u, d 
and s masses are considered light, and the c, b and t masses very heavy, such that they 
decouple, then the theory is approximately invariant under the scale transformations,

where A G R .

The global quark symmetries of the theory are:

•  U(1)b baryon number symmetry, corresponding to invariance under transfor­
mations of the type, q —> etaq, a  G R.

• SU(3)v  vector symmetry, if the u, d and s masses are considered approximately 
equal the theory possesses an approximate invariance under the transforma-

(2 .2)

The Gell-Mann matrices, A“, are the generators of S U (3) and satisfy,

(2.3)

G%, = d„ A i-d „ A l + gf°b'AbllAl. (2.4)

x fl —> Xxf\  q(x) —¥ \ 3/2q(\x) ,  A“(a:) —» \ A “(\x) ,  (2.5)

tions,

(2 .6)

V s /  * /
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where U G S U (3)y.

• SU(3)l x SU(3)r chiral symmetry, if it, d and s quarks are also considered 
approximately massless there is an approximate invariance under the transfor­
mations,

(  U L ’R \

dL’R
\  SL'R j

U,L,R

I  U L ’R \

dL'R
\  S L’R )

(2.7)

where qL’R — [(1 =f= 7 5) / 2 )q . This is an invariance of the quark kinetic terms,

qi0q = qLi 0 q L + qRi 0 q R (2 .8 )

but not of the quark mass terms,

m qqq =  m qqLqR +  m gqRqL,

where Ul,r 6  SU(3)l ,r - 

• U(1)a symmetry corresponding to the invariance,

(2.9)

qL —> etaqL, qR —> e %aqR. (2 .10)

There is also a pseudo global quark symmetry — SU(S)a■ SU(S)v  is the subgroup 
of S U (3) l x S U (3)r  corresponding to the set of transformations with Ur =  Ur. The 
set of transformations orthogonal to these with UL = U are labelled S U ( 3 ) a and 
referred to as the S U (3) axial symmetry, even though they do not form a true group.

In the quantum theory the QCD vacuum becomes a polarizable medium. Con­
sequently the effective charge measured for a particular coupling value is a function 
of the energy scale, /x, at which the measurement is made, meaning the approximate 
scale invariance of the classical theory is broken. To make a direct comparison with 
the fine structure constant of QED, it is conventional to consider an alternative 
definition of the QCD coupling,

« .(f )  =  (2.H)

The relationship between a s and fi is summarized by the /3-function, which for the
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Figure 2.1: In contrast to QED, QCD is strongly coupled at low energies. This 
means non-perturbative methods are essential to study the low energy behaviour of 
QCD. Below a certain energy scale, A q c d > bound states of quarks form.

QCD coupling constant at three loops (in the MS scheme) is,

^ 0is — O at \ — 2 A . 3 4 /n  1 « \
2 n a ‘  47r2<*s 647r3 “ s  ̂ ^

where,

A  =  11 - § %  A  =  51 -  Y Nf ’ A  =  2857 -  +  ^ - N ) ,  (2.13)

and N f  is the number of active quark flavours.

The salient feature of the QCD /3-function is its negative sign, which can be traced 
to the contribution from the self-interaction of the gluons, and thus the non-Abelian 
nature of the gauge group. Consequently the effective coupling becomes weaker at 
higher energies, or in other words, at high energies the theory exhibits asymptotic 
freedom [30]. At low energies the effective coupling becomes strong resulting in the 
confinement of colour charges. Figure 2.1 illustrates the behaviour of the coupling 
with energy. Since the QCD coupling runs with energy a corresponding dimensionful 
quantity, Aq c d , can be defined. In the M S  scheme at an energy scale of M z  (Z-boson 
mass) there are five active quark flavours (w, d, s, c, b) and Aqcd  ~  217MeV [31]. At 
low energies comparable to the masses of the lightest baryons, there are only three 
active quark flavours (u,d, s) and A qcd  ~  350MeV. This value sets the scale at
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which the coupling becomes large and non-perturbative effects become important. 
It is also relative to this scale that the u, d and s quarks are considered light and 
why the chiral properties of the c, b and t quarks are not considered.

In the QCD vacuum, flavour chiral symmetry breaking occurs,

SU(3)l  x SU(3)* -► SU(3)v, (2.14)

for which the chiral condensate, (qq), serves as an order parameter. The correspond­
ing Goldstone bosons are the eight pseudoscalar mesons of the quark model [32-34]. 
The masses of these mesons can be obtained from chiral perturbation theory.

2.2 S tates o f M atter in Q CD
Hadrons require a volume of approximately, 14  =  (47r /3 )r^ to exist, where the 

typical radius of a hadron, r/l? is about lfm. Consequently, there is an upper limit 
to the density hadronic matter can take,

nc ~  1/14 «  0.24 fm"3, (2.15)

which is roughly 50% higher than the density found in nuclei under normal condi­
tions. Furthermore this leads to a maximum temperature for hadronic matter [35]. 
Using natural units (kb =  1),

Tc »  1 /r* «  0.2 GeV. (2.16)

These arguments reveal that strongly interacting matter has a T —fiB phase diagram, 
where T  is the temperature and hb is the baryon number density, and that above 
a certain limiting curve in the T  — fiB plane hadronic matter can not exist. We are 
interested in using QCD to quantitatively investigate the fate of hadronic matter 
under extreme conditions, but can already make some qualitative remarks.

According to QCD, below the limiting curve in the T  — /jlb plane hadrons are 
colour-neutral bound states of quarks, hence above the limiting curve we expect 
deconfinement into a medium consisting of coloured constituents — QGP [36]. We 
can picture the approximate phase diagram of QCD shown in Figure 2.2 by imagining 
the two distinct ways in which QGP can be formed:

i) Holding the density at zero and increasing the temperature produces quark- 
anti-quark pairs from the vacuum in greater and greater numbers until the
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a Early 
Universe

;v Heavy Ion 
\  Collisions

Neutron Star Cores

^ C S C ^  
(qq) > Q

QGP

Hadron
(qq) >  o

Baryon Density Hb

Figure 2.2: A sketch of the QCD phase diagram. At low temperature and density, 
QCD is confining. Under extreme pressure and/or density QGP forms. At high 
density and low temperature a colour-superconducting (CSC) phase is expected. 
At high temperature and low density the transition to QGP, marked by a dash, 
represents the cross-over region; heavy ion collisions are probing roughly this region 
of phase space.

Nf =  2 pure gauge
00

2nd order 
—  0(4)

tri.m:

m ,
Nf =  1

physical point

2nd order
Z(2)

00

Figure 2.3: Critical behaviour in QCD [37].
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number density of hadrons is equal to the inverse of the typical hadron volume. 
At which point hadrons begin to overlap and the system dissolves into one of 
free quarks and gluons. We expect QGP formed in this manner to have an equal 
number of quarks and anti-quarks since it is formed by intense pair creation. 
We conclude the chiral condensate {qq) can be used as an order parameter for 
this type of transition.

ii) Holding the temperature at zero and increasing the number density of hadronic 
matter results in QGP formation once nc is reached, again at the point hadrons 
begin to overlap the relevant degrees of freedom become those of quarks and 
gluons not hadrons. At zero temperature only baryonic matter is present, this 
means the critical density is expected to be roughly the inverse of the typical 
baryon volume. Furthermore the QGP produced will be dominated by quarks 
suggesting {qq) is the relevant order parameter in a fixed gauge.

The nature of the phase transition to QGP has been given much attention. In 
the confined phase hadrons behave as if they are comprised of light quarks with 
constituent mass, ttiq «  300MeV. Conceptually we can think of the quarks as being 
‘dressed’ with gluons at low temperature. As the temperature increases the coupling 
becomes weaker, the gluon dressing detaches and ttiq —> m q, where m q is the bare 
quark mass. For the up and down quarks rnq «  0, this suggests (approximate) chiral 
symmetry restoration corresponds to deconfinement and vice versa. Based on this 
reasoning chiral symmetry restoration and deconfinement are assumed to coincide at 
high temperature and vanishing baryon density. However at least one study suggests 
that they may occur at different critical temperatures [38]. Figure 2.3 maps the order 
of the QCD phase transition at hb — 0 for different light quark masses, m Utd,s'-

•  For m q —> oo for all quark flavours pure S U (3) gauge theory is recovered and 
deconfinement is marked by a first order phase transition corresponding to 
spontaneous Z3 breaking [39,40].

• In the limit m q —>• 0 for all quark flavours a first order phase transition corre­
sponding to chiral symmetry restoration is found [40,41].

• For m q taking a value intermediate to the infinite and zero mass limits, there 
is no genuine phase transition only a cross-over region [40].

• For m U'd = 0 and m s > the transition is of second order and assumed to 
be in the 0(4) universality class [41]. The second order limits of the first order
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regions appear to be in the Z 2 universality class [42]. At m*ri the two different 
continuous transitions meet with the first order transition [40,43].

The important point to draw from Figure 2.3 and the studies from which it was 
formed is that the physical point corresponding to small u ,d  masses and larger s 
mass lies in the cross-over region. The implication for the interquark potential is 
that a sharp change corresponding to the critical temperature of a genuine phase 
transition is not expected.

The order of the QCD phase transition can also be investigated by analysing 
the Cosmic Microwave Background (CMB) radiation. For example if the universe 
underwent a genuine first order phase transition, domains of one phase would have 
formed within another. Although the QCD phase transition occurred much earlier 
in the history of the universe than many important phenomena, see Figure 2.4, 
evidence of domain walls should still be detectable in the CMB. A first order QCD 
phase transition would have resulted in a large amount of energy being released in 
the form of latent heat and major cosmological consequences.

  EW phase transition
0.1 TeV

— (QCD phase transition)0.1 GeV

—  neutrino decoupling 
—  photon reheating 

ce£v-—  primordial nucleosynthesisj j  0.1 MeV

0.1 keV

recombination -  

photon decoupling
0.1 eV

CMB radiation (2.73K) — ►0.1 meV

10‘]
Age (S) NOW

(1.37 xlO10 yr)

Figure 2.4: A plot showing the temperature versus age of the Universe, including 
the various phase transitions it is thought to have undergone [44].

The phase structure of QCD at high density and low temperature may be very 
rich. At high density where the coupling is weak and quark matter is abundant,
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the quark-quark interaction in certain colour channels is attractive leading to the 
formation of Cooper pairs. In analogy with BCS theory [45] the breaking of the local 
colour S U (3) symmetry by the Cooper pair condensates results in a superconducting 
phase. The interesting feature of superconductivity in cold dense QCD is that, in 
addition to their Dirac degrees of freedom, quarks have colour and flavour meaning 
many different patterns of pairing are possible and hence a panoply of different 
superconducting phases is possible [46].

2.3 T heoretical A pproaches to  QCD
Mapping the phase diagram of QCD is of great scientific interest. The area has 

received continuous attention since the discovery of the strong interaction. However 
to date no single theoretical approach has been satisfactorily applied to all regions of 
the QCD phase diagram. The strongly coupled nature of QCD at energies below and 
around A qcd means perturbation theory can not be employed to study phenomena 
such as deconfinement and QGP precisely, as a result several alternative approaches 
have been developed.

Potential models have been used to describe hadrons composed of charm and 
bottom quarks. If the motion of the valence quarks is much slower than the typical 
frequency of the gluon exchange between them, then a potential approach is justified. 
An example is the Cornell potential developed for charmonium [47-49],

K  T
Vq,  = - -  + - 2. (2.17)

where ac is the Coulomb parameter and a~2 is proportional to the string tension. 
Inserting this potential into the Schrodinger equation approximates the charmonium 
spectrum remarkably well, but it is difficult to extend this approach to include 
relativistic effects since it is inherently non-relativistic.

The method of QCD sum rules [50,51] is an approach to QCD in which hadrons 
are represented by their interpolating quark currents. Short and long distance gluon 
interactions are separated within the framework of the operator product expansion 
(OPE) to give the correlation function of the quark currents. The method has 
been used to calculate hadron masses, couplings and electromagnetic properties with 
reasonable accuracy and can also be extended to non-zero temperature and density. 
However the method is limited by approximations in the OPE.

Gauge-gravity duality [52-55] has been used to investigate the phase structure 
of strongly coupled theories. The duality has a weak-strong nature and an extensive
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dictionary has been developed between quantities in the gravity theory and observ­
ables in the gauge theory. By performing calculations in the weak coupling regime 
of the gravity theory, where calculations are feasible, information on observables in 
the strongly coupled regime of the gauge theory can be attained. This approach has 
been used to show such theories possess first order and higher order phase transi­
tions [56,57]. The fundamental issue is that the gravity duals investigated so far 
are known not to be the dual of QCD. Furthermore, as Figure 2.3 demonstrates, 
the nature of the QCD phase transition has a strong dependence on the masses of 
the three lightest quarks requiring a deeper understanding between the gravity dual 
parameters and the gauge theory masses.

Lattice QCD, formulated in Section 3, has arguably provided the most significant 
non-perturbative results for QCD. However with regards to studying the QCD phase 
diagram it currently suffers from a severe limitation. To investigate non-zero density 
a chemical potential is introduced into the lattice action. The Euclidean path integral 
must then be performed over an exponential term with an imaginary exponent. The 
oscillatory nature of this term causes the value of observables to fluctuate wildly, and 
the method is said to suffer from a ‘sign problem’. Promising steps are being taken 
towards solving the sign problem for lattice QCD [58-61], but a solution has not 
yet been reached. In this thesis we are hence taking the path of least resistance — 
lattice QCD at high temperature and zero chemical potential is readily computable.

2.4 R ela tiv istic  H eavy Ion C ollisions
Interest in high temperature QCD began to grow about three decades ago mainly 

due to the idea that ultra relativistic nucleus-nucleus collisions would produce pock­
ets of QGP which survive long enough to test the predictions of QCD. Over the last 
two decades experimentalists have successfully probed QCD by performing heavy 
ion collisions with centre of mass energies ranging from giga- to tera-electronvolts 
(GeV-TeV). In these collisions, heavy atoms are stripped of their electrons, acceler­
ated to high energies and collided with a heavy target or opposing beam. Whether 
QGP is formed in these collisions is mainly a function of the centre of mass energy of 
collisions. Very high energies probe the high temperature low baryon density region 
of the QCD phase diagram, while moderate energies probe lower temperatures and 
larger baryon density.

A pocket of QGP formed in a collision has the following time evolution [44]:

i) Immediately after collision there is a short pre-equilibrium phase, which is a
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period of immense entropy production, the hadrons interact, multiply and the 
relevant degrees of freedom become those of quarks and gluons rather than 
hadrons.

ii) The medium reaches local thermal equilibrium, soon after the system of free 
quarks and gluons begins to expand.

iii) Under expansion the medium cools, below a certain temperature, Tc, confine­
ment sets in and hadronization occurs.

iv) As the medium cools further inelastic collisions cease, this is known as chemical 
freeze-out.

v) The particles present at chemical freeze-out continue to interact until the sys­
tem expands to the point of kinetic freeze-out, whereafter the collision reactants 
are overwhelmingly likely to interact next with the detector rather than each 
other.

The non-equilibrium non-Abelian system in i) is difficult to model, as a result this 
period is poorly understood. However the most interesting physics occurs during ii) 
and iii). If it is considered a perfect liquid, then relativistic hydrodynamics can be 
used to model the evolution of the QGP pocket since the only information required 
is the local energy density and pressure, along with the conservation of the energy- 
momentum tensor and baryon number. If it can not be approximated as a perfect 
liquid extra information is needed such as the viscosity and heat conductivity [44].

Another important aspect of collisions is the centrality. Figure 2.5 is a schematic 
diagram showing the geometry of a heavy ion collision. The degree to which colliding 
nuclei overlap (or are central) on collision is parameterized by the impact parameter, 
6 . When b > 2R,  ‘distant’ collisions due to electromagnetic forces occur, which 
can cause the nuclei to break up, but do not result in the formation of a strongly 
interacting thermal medium. For b < 2R  peripheral collisions lead to a sudden rise in 
inelastic reactions due to the strong force. Central collisions occur when 6 =  0. The 
centrality of collisions can not be measured directly but is directly proportional to the 
multiplicity, which itself is proportional to the ratio of participants and spectators. 
The Glauber model is used widely to analyse nuclear reaction cross-sections. It can 
be used to determine the number of participant nucleons and hence the centrality 
of collisions [62].

The centrality of collisions can be correlated with certain emission patterns. 
Peripheral collisions result in an almond shaped participant region. The analysis
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Figure 2.5: Schematic diagram of a heavy ion collision. The impact parameter, 
6 , parameterizes the centrality of a collision. The radius of the nucleon is Lorentz 
contracted in the direction of travel, giving the nuclei a pancake shape on collision. 
Nucleons outside the collision zone are called spectators, those inside participants.

Figure 2.6: The transverse momentum, px, is the component of momentum detected 
perpendicular to the particle beams. The top set of diagrams illustrates the scenario 
in which the size of the system, R , is much larger than the mean-free-path of particles, 
/, the resulting pressure gradient and px distribution is approximately isotropic. The 
bottom set of diagrams illustrates the scenario in which I is comparable to R, leading 
to a pressure gradient and px distribution that are anisotropic.
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of these types of collision has been particularly instrumental in determining the 
liquid-like rather than gas-like nature of QGP. The almond shape of the participant 
region means the emission pattern of particles emerging from the cooling thermal 
medium is influenced by the ratio of the mean-free-path of particles, I, and the size 
of system, R. If I <C R  the pressure gradient is steep and anisotropic with a profile 
dictated by the shape and orientation of the participant region, see Figure 2.6. The 
anisotropic pressure gradient gives rise to a collective flow of particles which results 
in an emission pattern characterized by an elliptical azimuthal distribution [44]. This 
phenomenon is referred to as elliptical flow. If I is not much less than R  the pressure 
gradient is moderate in all directions and the emission pattern is isotropic.

Other than elliptical flow there are several methods that can be used to study a 
sample of hot dense strongly interacting matter:

• hadron radiation

• electromagnetic radiation

• jet quenching

• heavy quarkonium suppression

Hadron radiation refers to the emission of hadrons comprised of light quarks 
(it, d, s) from the surface that defines the boundary between the hot matter of the 
participant region and the surrounding vacuum. If QGP is formed then the temper­
ature of this surface is equal to the deconfinement temperature and is independent 
of how hot the medium initially was or continues to be. Consequently studying soft 
hadron production in heavy ion collisions provides information about the hadroniza- 
tion process but not QGP.

Electromagnetic radiation refers to photons and dileptons (e+e“ or emit­
ted from the medium of hot strongly interacting matter through quark and gluon 
interactions and quark-anti-quark annihilation. Once formed the photons and lep- 
tons leave the medium without any further interaction since they do not interact 
strongly. As a result they can provide information about any point in the medium 
including those where QGP is present. However the utility of photon and dilepton 
production in heavy ion collisions with regards to studying QGP is hindered by the 
fact that production occurs throughout the collision and at all points — the task is 
to characterize the electromagnetic radiation typical of QGP.

Jet quenching refers to the inference of a missing particle shower during the 
back-to-back scattering of two high energy quarks in a heavy ion collision. In a
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proton-proton collision such a scattering is detected in the form of two jets — the 
decay products of the high energy quarks — with trajectories in opposite directions. 
In a heavy ion collision the same interaction occurs except one jet trajectory is away 
from the hot medium and consequently observed, while the other is into the medium 
and undetectable once it is lost in the the melee of particles.

Heavy quarkonium suppression is particularly relevant to this thesis, as such it 
is discussed in detail in Section 2.5.

Heavy ion collisions were first performed at Brookhaven National Laboratory 
(BNL) near New York, and the European Centre for Nuclear Research (CERN) near 
Geneva in 1986. In these experiments light nuclei such as oxygen and sulphur were 
fired at fixed heavy nuclei such as gold or uranium. Evidence of J/'ifr suppression was 
found in these early experiments [63], which paved the way for future upgrades. By 
1995 lead-lead and gold-gold fixed target collisions were being performed by BNL- 
AGS and CERN-SPS with centre of mass energies of 5GeV and 2 0 GeV respectively. 
Between 1995 and 2000 [64] the NA50 collaboration responsible for investigating J/'ijj 
yields from the CERN-SPS experiment repeatedly found evidence of J/ip suppression 
increasing with the centrality of collisions [65]. The first dedicated heavy ion collider, 
the Relativistic Heavy Ion Collider (RHIC), was constructed at BNL and went online 
in 2000. A large amount of data relevant to high temperature QCD has been collected 
by RHIC. Prudent analysis has provided interesting results for elliptical flow, jet 
quenching, colour glass condensate saturation, particle ratios and many other aspects 
[66-69]. In 2010 RHIC physicists confirmed that temperatures of 345 MeV had been 
achieved in gold ion collisions, and that at these temperatures hadronic matter 
became deconfined, forming a QGP. For the most part this result was expected, 
however, the viscosity of the QGP was more similar to that of a liquid rather than a 
gas, contrary to expectation [66,67]. The second operational heavy ion collider is the 
Large Hadron Collider (LHC) at CERN. The LHC is better known for being a proton- 
proton collider but for one month a year it performs heavy ion collisions. ALICE is 
the specialist detector constructed to collect event data from lead-lead and proton- 
lead collisions, but important results have also been captured by CMS and ATLAS. 
In 2011 the ALICE collaboration published results from lead-lead collisions [70-74]. 
They presented measurements for the size of the QGP system created in lead-lead 
collisions at a centre of mass energy of 2.76 TeV. They also confirmed that hot 
QCD matter created in lead-lead collisions behaves like a liquid described well by 
hydrodynamics. Later J / i(j suppression was detected and studied in more detail [75] 
as well as jet quenching [76,77]. Furthermore heavy quarkonium suppression was
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confirmed by the CMS collaboration as a general feature of heavy ion collisions, with 
Y suppression observed in bottomonium yields [78]. The QGP pockets created at 
the LHC are larger and hotter than those created at RHIC. The energy of collisions 
at both sites will increase in the future. As the energy increases heavy quarks are 
produced more frequently both in the initial collision and the resulting thermal 
medium. As a result heavy quark processes and quantities such as the charmonium 
potential will become even more relevant to QGP phenomenology. There are plans 
to build a heavy ion collider to investigate higher densities of QGP. The Facility for 
Antiproton and Ion Research (FAIR) collider, to be sited at GSI in Germany, will 
have larger luminosity than RHIC and the LHC.

2.5 H eavy Q uarkonium  Suppression

Quarkonia are mesons made from a quark and its anti-particle, e.g. cc, bb. The 
heavy quarkonia are of particular interest because charmonium and bottomonium 
states have large binding energies and correspondingly small binding radii, t ~q . The 
ground states J/^> and T have binding energies of roughly 0.6 GeV and 1.2 GeV, with 
binding radii of 0.2fm and 0.1 fm respectively. These binding radii make charmonium 
and bottomonium states susceptible to suppression at temperatures where QGP is 
expected to exist.

According to QCD, QGP consists of free colour-charged quarks and gluons. By 
analogy with Debye screening in an electromagnetic plasma, free colour-charges are 
expected to screen each other, an effect referred to as colour-Debye screening. Ac­
cording to this interpretation, the interquark potential in a QGP will be modified 
from a potential built from a Coulomb and linear term, like the Cornell potential in 
(2.17), to a colour-Debye screened potential,

Vm =  - - e ~ r^ TK (2.18)r a1 r

The Debye radius, rp, parameterizes the density of colour charges. As the temper­
ature increases, td  decreases. When rD >  tq  a bound state is not affected by the 
medium. However once r D tq the bound state dissociates.

Heavy quarkonium suppression was first proposed as a QGP signal in the con­
text of J/-0 suppression [1]. Quantitative calculations suggested a temperature of 
approximately 300MeV is high enough to suppress the creation of charmonium. In 
the potential picture this corresponds to ro(300MeV) < rj/^.  Higher excited states
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of charmonium are less tightly bound with correspondingly larger binding radii: 
Xc(lP) ~ 0.3fm, xp'(2S) -  0.4fm [40], but still significantly smaller than the radii of 
light hadrons. Based on the temperature dependence of ro we conclude the different 
charmonium states dissociate at different temperatures, offering a way to determine 
the temperature of QGP samples via analysis of the charmonium spectrum. An 
analogous analysis is possible for bottomonium states.

Experimentally J/xp suppression is observed as a decrease in dilepton radiation 
at energies corresponding to the J/xp mass. The decrease seen in nucleus-nucleus 
collisions is measured relative to proton-proton or proton-nucleus collisions. In prac­
tice the observation of J/xp suppression is not straightforward. Measurements are 
complicated by the process of recombination, which refers to the binding of charm 
quarks produced by hard processes in the initial collision — free due to the thermal 
medium — with charm quarks produced thermally at a later stage in the collision. 
At high energies J/xp recombination can mask or even overcome suppression to yield 
a J/xp enhancement.

2.6 Sum m ary
Experiment confirms that at high temperature hadrons deconfine into a medium 

of free quarks and gluons. This quark-gluon plasma behaves almost like a perfect 
liquid and can be described well using hydrodynamic equations. The heavy ion 
collisions which probe QCD at high temperature are set to move firmly into the TeV 
scale. At these energies hard processes and heavy quark production are important. 
Consequently a reliable calculation of the charmonium potential will be required to 
interpret event data.

Lattice QCD is the only fully non-perturbative and model-independent approach 
to QCD. Therefore it is the best tool available for studying high temperature zero 
density QCD, and as such the best approach to calculating the charmonium po­
tential. The proceeding chapter reviews the main lattice techniques used in this 
work.



Chapter 3 

Lattice QCD

Formulating QCD as a lattice gauge theory permits phenomena which are analyt­
ically intractable due to their non-perturbative nature, such as confinement and 
quark-gluon plasma formation, to be investigated using numerical methods.

3.1 L attice G auge T heory

Lattice gauge theories are formulated in Euclidean space-time on a hypercubic 
lattice of spacing a. The formulation of gauge theories in discrete rather than con­
tinuous space-time introduces a momentum cut-off at order 1 /a , equipping lattice 
gauge theories with a built-in UV regularizer. The finite size of the hypercubic lat­
tice provides a complementary IR regularizer. Consequently, lattice gauge theories 
are mathematically well-defined.

By considering only a finite number of lattice points arranged in a hypercube, 
and imposing periodic boundary conditions, the system is reduced to a finite number 
of degrees of freedom. This allows the system to be simulated in a finite time by 
a computer. Whether the system is simulated exactly or approximately depends 
on the number of lattice points considered. At a certain point, exact simulation 
takes an impractically large amount of computer time and Monte Carlo importance 
sampling must be employed.

3.2 M onte Carlo Im portance Sam pling

The expectation value of an observable, O, in QCD is equal to the path integral 
over the measure, @[q,q,A], representing all possible gluon and and quark field
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configurations,

(0)  = |  J  2>[q, q, A}eiS^ ^ AiO[q, q, A], (3.1)

with,

<Sqcd[<7) q, A] =  J  d4x J£{qcd, (3.2)

and,
Z  = j  3>[q,q,A\eiS<:‘̂ ^ - A\  (3.3)

where Sqcd is the QCD action, «£qcd is defined in (2.1), the metric signature of 
d4x  is that of Minkowski space, and A , q, and q are the gluon, quark and anti-quark 
fields respectively.

To perform the path integral over all possible field configurations quickly becomes 
too time-consuming for lattices with more than a few sites in each dimension. We are 
left with no choice but to approximate the integral. This is done using importance 
sampling. To use this we Wick rotate to Euclidean space-time, t -* —ir, so the 
exponent of (3.1) becomes positive definite,

eiSQCD e-SLQCD G {0,1}, (3.4)

allowing it to be interpreted as a probability measure. Given this, observables can 
be calculated by replacing the right-hand side of (3.1) with the average value of 
the observable taken over an ensemble of configurations sampled with probability
g-̂ LQCD ̂

=  <3-5)
Un

where N  is the number of configurations, C/n, in the ensemble. Great care must be 
taken to ensure that the finite number of configurations selected to form an ensemble 
is a true representation of the complete configuration space defined by the measure 
— &[q, q, A}.

3.3 Form alism
To study QCD on the lattice we work with a Euclidean metric and discretize 

space-time over a finite number points arranged in a hypercubic lattice, A, with 
spacing a,

A = {x €  M4 | x i t2 ,3 /a  = 0,1,2,... , N s -  1 , ; r / a  =  0,1,2,... , ATt — 1}. (3.6)
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q { x )  q ( x + j l )

U ,(x )

u „ ( x y “ Uu{x+jl )

Figure 3.1: A schematic diagram depicting the typical formalism of lattice gauge 
theories. The fermions, q, reside on the lattice sites, while the link variables, f/M, 
connect neighbouring sites with orientation / a.

A quark field, q%a{x), is associated with the lattice sites, as shown in Figure 3.1, but 
there appears without colour, a, and Dirac, a, indices to simplify the notation. The 
next step is to discretize J^qcd shown in (2.1). To maintain gauge-invariance on the 
lattice the gauge field degrees of freedom are represented using the link variable,

which connects the sites x  and £+//, as seen in Figure 3.1. For QCD the link variables 
are elements of the 5(7(3) group, in contrast to the continuum gauge fields, A  of
(3.1), and the lattice gauge fields, A ^ x )  of (3.7), which are elements of the su(3) 
Lie algebra. The link variable has a counterpart in the continuum: the path-ordered 
exponential integral of the gauge fields, A, along some curve between x  and y is the 
gauge transporter,

G (x , y) is known as a Wilson line, or Wilson loop if the path, Cxy, is closed. Under 
a gauge transformation fl, G{x , y) and U ^x)  transform in the same way,

t/„(x) =  eiaA“M (3.7)

(3.8)

Up -> f2(x)f/(1(a:)nt (2; +  p), G(x, y) Q(x)G{x, y)Q^y).  (3.9)
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As a result the link variable can be seen as a lattice version of the gauge transporter 
between x  and x  +  /}. Crucially traces of path-ordered link products that form a 
closed loop are gauge-invariant. The smallest possible closed loop is the ‘plaquette’,

U^(x) = U^(x)Uv(x +  ij)U^(x -I- 0)^Uv{x) \  (3.10)

shown in Figure 3.1. We can use the plaquette to discretize the the gluonic part of 
J^qcd- In the continuum limit, a —> 0, it can be shown [79],

§  E E R e T r [1  -  m * ) ]  =  ^ E E T r <G- G'“' ) + ° ^ -  <3-n )
xGA fi< v  c x ii< v

The left-hand side of (3.11) is the simplest gluonic action with the correct continuum 
limit,

S c i u ]  =  -  M * ) ] .  (3 -12)
xGA h <v

where /3 =  Q/g2.
The link variable is also key to discretizing the fermionic part of «£qcd* The 

mass term is local and can thus be discretized immediately since q(x)q(x) is gauge- 
invariant on the lattice equally as it is in the continuum. In contrast the covariant 
derivative requires link insertions where non-local terms arise,

l >„,(*) - >  +  ( 3 13)

since terms of the form q(x)UIJl(x)q(x + fi) are gauge-invariant but those of the form 
q(x)q(x + /}) are not. The simplest discretized fermion action is written,

o r  - r n  4 S T ' \  f  ̂  Ull(x)q{x +  £) -  U-tl(x)q(x -  ft) \SF[q,q,U\ = a ^  q(x) I 2 ^  ^  -̂---------------+ mq(x) I ,
xGA \ / t = l  /

(3.14)
or equivalently,

s F[q, q , u ]  =  a4 ^ 2  D (x \y)«/3
x,yGA i ,j ,a ,0

(3.15)
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where we have defined the Dirac operator,

m y ) %  =  E f a U  " + m 6apl>ij6xy. (3.16)
/t=l

The full discretized action is,

Slqcd[q,Q,U] — Sp + S q - (3-17)

However, as (3.14) stands, Sp suffers from a serious flaw. To expose this it is useful 
to take the Fourier transform of the Dirac operator,

=  4 j  £  e - ^ D i x |y)e“ ” , (3.18)
x,y€ A

and analyse D(p\q) in the massless case,

4

D(p\q) = S(p — q) - ^ 2  sin(p„a). (3.19)
a «=i

When ptl = 0, (3.19) vanishes, corresponding to a particle. But it also vanishes when 
Pn = it/ a , indicating the presence of fifteen additional unwanted particles known as 
‘doublers’, one for each corner of the hypercube, p^a/ tt € [0,1]. This problem is 
solved by adding the Wilson term [80],

1  - y 4

-  J ^ ( l  -  c o s^ a )) , (3.20)
a n=\

to (3.18). This extra term vanishes when =  0. However for each component with 
pil = tt/ a it acts like an extra mass term by providing an additional contribution of 
2/a to the mass of the doublers. In the continuum limit, a —> 0, the doublers become
very heavy, decouple from the theory and leave only the physical pole, p^ =  0 .
This completes the Wilson formalism, which is the most basic action that can be 
used in lattice QCD simulations. More complicated actions can be constructed that 
reduce discretization errors. The process of constructing such actions is known as 
‘improvement’.
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3.4 H adron Spectroscopy

Lattice QCD can currently reproduce experimentally observed hadron spectra 
with errors down to the percent level or less, calculations have improved so much 
that the next steps are to include QED and u-d mass splitting effects. Also, in 
some channels many more states are observed in lattice simulations than in exper­
iment [81], in fact certain resonances have even been predicted using lattice QCD, 
for example the mass of the Bc meson was calculated theoretically before being 
confirmed by experiment [82].

To introduce the conventional method of extracting hadron masses from lattice 
QCD simulations, we express the Euclidean time-slice correlator of two operators, 
0 \  and O2 , in a system with Hamiltonian H, as a path integral over the interpolators 
Oi and O2 ,

where fi = aTN T (not to be confused with the QCD coupling), Z  =  Tr[e-0riVT̂ ], 
[(f)] = [q,q , U] and 5 lqcd  is defined in (3.17). The right-hand side of (3.21) can be 
evaluated numerically on the lattice, while from the left-hand side we can derive an 
expression with which we fit the data to extract hadron spectra:

Sending fd —► 0 0  we obtain the zero temperature limit and only the | n) = |D) term 
remains to give,

(O2(r)O!(0)) =  l l V  [e-W-T)» 6 2e -T"6 ; (3.22)

(3.23)
n

0En{n\eTHO2 e TH\m)(m\Oi\n)z  ^
(3.24)

(3.25)
71,771

(3.26)

771
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SOURCE 
T = 0

x +  r
q i (x+  r ) r W ( x , x - \ - r Y q 2(x) =  JI

SINK
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2/ +  s
=  q2( y ) r U ( y , y  + s)qi(y + 8)I

y
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Figure 3.2: The generic form of a meson correlator, q and q are fermion fields. 
U(x,x  + r) is the product of gauge links from x  to x  +  r  included to ensure object 
is gauge invariant and T is a product of gamma matrices that dictates the Lorentz 
transformation properties of the state.

where |Q) denotes the QCD vacuum state. This expression can be further simplified 
by considering large r  where only the ground state, E 0, survives:

lim (0 2(r )0 1(0)) = i< n |6 2|0>(0|01|n )e-r«'. (3.28)
t  —►large Zj

where |0 ) represent the charmonium ground state.

It is straight forward to apply (3.28) to a meson comprised of the quarks q\ and 
<72- The meson correlator (see Figure 3.2) is,

6 r ’y,r’s(r) =  ( J ( y ,r ; s ) J f(x,0;r)) =  i(f2 | J(y; s)|0)(0| J f(x; r)|D)e“T£:o. (3.29)

where,

Jp(x, 0; r) = q i(x+  r )T^U (x ,x+  r y q 2{x), (3.30)

•My, t \ s) = q2{y)rU(y, y +  s)qi(y +  s), (3.31)

are the creation and annihilation interpolators respectively. The meson state can be 
given definite spatial momentum by summing over all possible sink coordinates,

C*,q,r'B(r) =  — L= £  e - ^ t y . T j s ^ O j r ) ) .  (3.32)

If we project the sink to zero momentum by setting q =  0, then Eq = m o, and we can 
fit the time-slice correlator obtained using numerical methods to extract the meson 
ground state mass. Baryon masses can be extracted in exactly the same manner by
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utilising a ‘diquark’ interpolator. For example, the local interpolator for the nucleon 
is,

0 N(x) = Cabcu(x)a (u(x)lC^f5d(x))c , (3.33)

where the term in parentheses is the diquark.

Figure 3.2 depicts a generic meson correlator. It can be likened to a Feynman 
diagram that illustrates the creation of a quark and anti-quark at space-time coordi­
nates, (x, 0 ) and (x+r, 0 ), and their annihilation at, (y, r)  and (y+s, r), respectively. 
When q = r  =  s =  0, we can see from (3.32) that the correlator we obtain from 
numerical simulations, C t(t) , will take the basic form,

Cr(r) = Ar e_m°T. (3.34)

Using (3.34) as a fitting function, a two-parameter fit of Cr(r) at large r  gives values 
for Ar  and mo- To ensure that the correlator is only fitted in the range corresponding 
to large r, effective mass plots are studied. The effective mass is defined as,

m eS(r) = In Cr (r)
Cr{r  -I-1 )_

(3.35)

The range of r  where meff plateaus corresponds to the range of r  where the ground 
state has been isolated and (3.34) is valid.

3.5 Q uenched vs. D ynam ical Sim ulations

The action, S'l q c d ? is bi-linear in the fermion fields q and q. This allows the 
fermionic degrees of freedom to be integrated out. Using the right-hand side of 
(3.21) we can write,

(0) = j  f  9[U\<rSomd[U] n det Df.[U], (3.36)
J fs

where,

(3.37)
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and 0[U] is the operator for which the fermionic degrees of freedom have been 
integrated out. The fermionic part of the path integral has reduced to a product of 
fermion matrix (Dirac operator) determinants, one for each of the sea quark flavours, 
f s. A concrete example relevant to this work is the quarkonium correlator, which 
we can write in terms of the propagators,

(J (y ,T ;s)J f(x,0;r)) =  (T r [<q(y)rU{y,y+a)q(y+s)q(x+r)r*U(x,x+T)*q(x)]),
(3.38)

=  - ( T r  [q{x)q(y)rU{y,y+s)q(y+s)q(x+r)r^U(x ,x+ry]) ,
(3.39)

where cycling the fermion fields, as Grassmann variables, introduces a minus sign. 
We can now contract the two 2-pt functions that comprise the quarkonium correlator 
using Wick’s theorem to obtain,

{J(y,T;s)J*(x,0-,r))  = -(Tr [D_1(x|y)rC/(j(,2/+s)0_1(y+s|x+r)rty(x,x+r),]>, 
(3.40)

where D~1(x\y) is the inverse of the Dirac operator in (3.16), or equivalently the 
quark propagator from space-time point y to x. If we now consider the case where 
we have two mass degenerate quark flavours (it) and a heavier quark flavour (s) in 
the sea, then the Euclidean path integral according to (3.36) for the quarkonium 
correlator is,

< T (y ,r;s )jt(x ,0 ;r)> =  J  &[U]e~s^ ( d e t  DU[U])2 det D,[U] (3.41)

x Tr [D~1(x\y)rU(y,  y+ s)D ~ 1(y+s\x+r)F^U(x,  x+r)*] , (3.42)

where,

Z  = J  ^[C/]e-SG|t,l(det DU[U})2 det DS[U\. (3.43)

Monte Carlo importance sampling has to be performed with the corresponding Boltz­
mann weight — Z ~ l exp[—ScitZ]] (det Du)2 det Ds. The simplest approach to per­
forming a complete numerical simulation of QCD is to set the fermion matrix de­
terminants to unity. This is equivalent to neglecting the vacuum loops of quarks 
and referred to as the quenched approximation. Otherwise, to include the effect of
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quark degrees of freedom on the vacuum, the fermion matrix determinants must be 
evaluated for each configuration, which requires a significant amount of computer 
time. The fermion matrices have 3(colour) x 4(spinor) x N ^ N T rows and columns. 
Hence for all but the smallest lattices the computational cost of calculating the 
determinant is very high, which means quenched simulations remain an important 
option. Nevertheless it is now common for realistic simulations of full QCD with 
2+1 flavours of sea quark to be performed. Rational Hybrid Monte Carlo (RHMC) 
importance sampling is a popular method for simulating odd numbers of dynamical 
fermions [83]. Although, even RHMC does not involve calculating the fermion de­
terminant explicitly, instead clever algorithms are used to approximate the fermion 
determinant contribution to a high degree of precision.

3.6 Quark Sources

Whether quenched or dynamical configurations are generated, quark propagators 
need to be calculated in order to compute the expectation value of meson correlators. 
The all-to-all quark propagator is a matrix as large as the fermion matrix but it is 
not necessary to compute it in its entirety. Instead we can consider the point-to- 
all propagator defined as the propagator from a fixed site, x \  to any site of the 
lattice [79],

D ~l (yW)3p* = X ! D ~l (y\x )3ia s o{^\ x Ya> (3.44)
x ,a ,i

where the point source centred on x

S0(x' ,xya = 6x' X, (3.45)

is introduced. Using a fixed source is equivalent to considering a particular column of 
the fermion matrix. This column contains spinor and colour structure corresponding 
to the twelve possible combinations of i and a, consequently twelve inversions of 
the reduced fermion matrix, which contains only the particular column, must be 
performed to build the point-to-all propagator, D~l {y\x')3̂a . Inverting the fermion 
matrix to obtain propagators is computationally expensive. In the case of a meson 
comprised of mass degenerate quarks the cost can be practically halved using 7 5 -
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hermiticity,

'r5D~1(y\x')'i5 =  D~l {x'\y)]. (3.46)

3.7 Sm earing

Smearing procedures are used to improve the signal-to-noise ratio of correlators 
by suppressing the dependence of operators on high momentum field modes [84]. In 
any particular simulation a smearing procedure can be applied to the quark field, 
link field, or both. In each case a redefinition of the field at a given point as some 
weighted average of neighbouring values is involved.

Any operator with the correct quantum numbers contributes to the corresponding 
physical state but some may be more important than others. In most cases the 
overlap of the operator with the physical state can be greatly improved by giving 
the field interpolator a more realistic form. The general form of a smeared quark 
field is,

Qs{x') =  ^ 2  S (x ’' x )$(x )’ (3-47)
X

where S  is the smearing function. Smearing the quark field interpolators of «/* in 
(3.30) for the derivations in Section 3.4 results in smeared propagators. This is 
achieved by substituting S  for So in (3.44). For example, the smearing function to 
obtain a Gaussian smeared propagator is,

S V ,^ )  =  ( l  +  ’ (3-48)

where,

^    U\l(x  )^ x 7+ / i ,x 2(5X')X -f- U-f j , (x  ^

M a2  ’

is the lattice gauge-covariant Laplace operator. The two tunable parameters are the 
smearing radius, cr, and the number of smearing iterations, n a. Using a smearing 
function with a Gaussian form is an effective way of suppressing the high momentum 
modes. In addition a Gaussian in coordinate space remains a Gaussian in momentum 
space allowing the smeared quark field to be defined at a given site as a Gaussian- 
weighted average of the surrounding sites on the same time-slice [85].
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The correlator signal can also be improved by smearing the link field, which 
is equivalent to removing the high momentum modes of the gauge fields. Violent 
short distance fluctuations can negatively affect the clarity of the signal over longer 
distances, which are typically of more interest. So long as the link variables are re­
placed by averages over short paths connecting the link’s endpoints, the long distance 
behaviour of correlators in the continuum limit should not be affected.

In this work stout-link smearing [8 6 ] is employed. This method defines the 
smeared link after an iteration of the smearing algorithm as,

U fa )  =  e ^ U f a ) ,  (3.50)

where,

Qn(x) =  ^ ( u ^ x ) *  -  uĵ x) -  1  T r ^ O r )1 -  , (3.51)

) U^x)*,  (3.52)

and the ‘staples’ are defined,

Cnv(x) =  Uv(x)Ufi(x +  0)Uv(x +  /t)t (3.53)

+  Uv(x — P)^U^(x — z>)C/i,(rr — u +  ft). (3.54)

The tunable parameters are the real weight factors pMI/. Typically they are to set to 
a constant, p =  p. Another choice is to smear only the spatial links: 4 =  p^  =  0,
Pnm — P [79]. The major advantage of stout-link smearing over APE [87] or HYP [8 8 ] 
link smearing is that the smeared links U'^x) are differentiable with respect to the 
link variables, which is particularly beneficial when the Hybrid Monte Carlo method 
for dynamical quarks is being employed.

3.8 G auge F ixing
Correlators built from non-local operators are not intrinsically gauge-invariant. 

There are two approaches that can be employed to ensure the correct expectation 
value is obtained: (i) include path-ordered products of link variables that with the 
quark propagators form a closed loop (ii) fix the gauge. The first approach requires
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the link products U(x ,x  + r) and U(y,y  +  s) included in Figure 3.2 and related 
derivations. This approach is easy to implement but fluctuations in the link prod­
ucts configuration by configuration can introduce extra noise into the correlator 
signal. The second approach requires each configuration to undergo a gauge-fixing 
procedure before the expectation value is measured. This procedure costs a more 
significant amount of computer time than including link products, but results in 
cleaner correlator signals. The Coulomb gauge, V • A =  0, is particularly appropri­
ate when interested in the time-slice behaviour of an observable. Other gauges, such 
as the Landau gauge, d ^ A ^ x )  = 0, and temporal gauge, A0 (a:) =  0, are also used 
on the lattice.

3.9 Non-Zero Tem perature
Comparing the partition function of (3.21) with that of a thermal system, Z  = 

Tr[e-/?^], we can identify [37],

P = i A p =  aTNT, (3.55)

where aT = a for isotropic lattices and ks  is set to unity when working with lattice
results. In Section 3.4 we formally take the zero temperature limit p  -¥ 0, but this
can never fully be realized on a finite lattice. As a result lattice studies are always 
performed at non-zero temperature but those interested in zero temperature physics 
work with large enough aTN T such that their calculations are performed well within 
the low temperature regime. In this work we calculate the charmonium potential 
over ensembles with the same aT but different NT to investigate its temperature de­
pendence. Another way of investigating the temperature dependence of observables 
is to keep N T fixed and vary aT via the lattice coupling,

P = 6/g2(aT). (3.56)

Note that the lattice coupling and inverse temperature are both represented by 
p. The relationship between aT and the coupling P is given by the renormaliza­
tion group. When working with lattices with small or moderate aTNT anti-periodic 
boundary conditions must be applied to quarks and periodic boundary conditions 
to the gauge fields.

To properly discuss the relevance of any change in the charmonium potential 
with temperature it is important to know the temperature range corresponding to
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the cross-over transition. The Polyakov loop,

" N r- 1
L(x) =  Tr II Uo ( * J )

L j =o
(3.57)

is defined as a product of temporal links, f/o, that form a closed loop at spatial 
position x. The correlator of Polyakov loops at x and y is related to the free energy 
Fgq(|x — y|) of a static quark-anti-quark pair at temperature T,

{L(x)L(  y) f) =  e- aTW' F™(|x- y|) =  e - F'«<r)/T, (3.58)

where r  =  |x — y|. At large distance the Polyakov loop correlator tends towards the 
product of the expectation values of the individual Polyakov loops,

r^ m ge( L (X) L (y ) t ) ( L (x ) )  ( L ( y ) f > =  \ ( L ) \ 2 - (3 -59)

The large distance behaviour of the free energy on the lattice can hence be obtained 
by computing the average value of the Polyakov loop over all sites,

L = i ^ L ( x ) .  (3.60)

In the absence of dynamical fermions there is no string breaking and the free energy 
is expected to grow indefinitely with separation in the confined phase [79]. Therefore 
we can conclude,

(L) =  0 in confined phase, (3.61)

(L) t^O in deconfined phase. (3.62)

Furthermore under a global Z3 transformation the gauge sector of the lattice QCD 
Lagrangian is invariant but L(x)  transforms as,

L —̂ zL,  z  E Z3. (3.63)

In quenched QCD this means the Polyakov loop is an exact order parameter that 
tests whether the state of the system shares or spontaneously breaks the symmetry of 
the Lagrangian. It can thus be used to determine the temperature of the cross-over
transition. Lattice studies indicate the Polyakov loop behaves as shown in Figure
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Figure 3.3: A schematic diagram of the Polyakov loop behaviour at non-zero tem­
perature. Solid line: for pure gauge theory the Polyakov loop is an exact order 
parameter becoming non-zero and positive in the deconfined phase above the crit­
ical temperature, Tq. Dashed line: even when the quarks take finite masses the 
Polyakov loop still has near-critical behaviour.

3.3 as a function of temperature. The deconfinement temperature, 7c, is found to be 
approximately 270MeV in quenched simulations. If dynamical fermions are included 
in the simulation then the Polyakov loop is no longer a genuine order parameter, but 
lattice studies show that it still has near-critical behaviour, which corresponds to a 
rapid cross-over transition. The rapidity of the cross-over means it is still sensible 
to define a pseudo-critical temperature, 7c, in dynamical simulations — it is found 
to be approximately 154MeV [38,89,90].

In pure gauge theory the lightest states that can be created from the vacuum are 
glueball states which are significantly heavier than the pions present in dynamical 
QCD. We can see the decrease in Tq between quenched and dynamical simulations 
as a result of the relative increase in the density of colour charges in the latter, at 
any given temperature.

3.10 A nisotropic L attices
Anisotropic lattices have different temporal and spatial lattice spacings, aT and 

as, respectively. The anisotropy is defined as £ =  as/ a T. Anisotropic lattices with 
£ > 1 are advantageous for those interested in the time-slice behaviour of observables 
at non-zero temperature for two entwined reasons:

• The number of data points in the temporal dimension can be increased at a 
relatively low computational cost.

• The spatial volume can be kept fixed.
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Correlators decrease exponentially at a rate proportional to the energy eigenstates 
of the Hamiltonian (see (3.34)). Consequently heavy quark correlators have a small 
magnitude at large r. To resolve the correlator at large r  it is helpful, and often nec­
essary, to have a large number of finely separated time-slice data points. Anisotropic 
lattices can be used to increase resolution in the temporal dimension, without the 
bind of an increasing spatial volume, by setting £ > 1. With anisotropic lattices 
we are free to keep both as and N s fixed, while reducing aT to as/£. If the number 
of data points in the temporal dimension is increased appropriately by a factor of 
£, then the lattice size is kept constant but the temporal resolution increased at 
relatively little computational cost.

In this work temperature dependence is investigated by varying the temporal 
extent of an anisotropic lattice, see (3.55). The advantage of being able to keep the 
spatial volume fixed is particularly important here because it means any changes in 
the potential are definitely not due to spatial volume effects. There are two minor 
disadvantages to this approach: i) The temperature can only be varied in discrete 
steps, ii) The number of points in the temporal dimension changes from ensemble to 
ensemble (temperature to temperature), which means care must be taken to ensure 
spurious results are not obtained during the fitting of correlators — the number of 
data points available to fitting algorithms can change the results they provide.

An alternative method of investigating temperature dependence is to vary aT 
while keeping NT fixed, and thus set the temperature according to (3.56). The 
advantage of this would be the ability to vary the temperature contiguously, however 
to rule out spatial volume effects during the investigation as would be have to be 
kept fixed. As a result varying the temperature would correspond to varying the 
anisotropy, which would be impractical because each anisotropy value requires a 
very time-consuming tuning procedure.



Chapter 4 

Conventional F itting  Approach

In this chapter conventional fitting methods, typically used for hadron spectroscopy 
on the lattice, are employed to extract the charmonium wave function, which is sub­
sequently used to reverse-engineer the charmonium potential from the Schrodinger 
equation at a number of temperature values.

4.1 N am bu-B ethe-Salpeter W ave Functions
If our sole interest was in computing charmonium masses at zero-temperature, 

the techniques introduced in Section 3.4 would be sufficient to obtain sensible values 
for ground state masses, e.g. m ^, though much more sophisticated hadron
spectroscopy techniques are used nowadays, for example the variational method 
[91,92]. Also the value of A y from (3.34) would not be exposed to any further 
interpretation. In our case we are interested in identifying A y with the product of 
the wave functions at the source and sink.

The relativistic equation for a two particle bound state is the (Nambu-)Bethe- 
Salpeter equation [93]. The NBS equation describes bound states in a quantum field 
theory in a relativistically covariant formalism. Consequently charmonium states 
are solutions of the NBS equation. Analytically solving the NBS equation to obtain 
solutions corresponding to charmonium states is not straightforward, though some 
progress has been made [94,95]. In this work we treat the charmonium system non- 
relativistically, in this limit the NBS equation reduces to the Schrodinger equation 
and we argue that the charm quark, specifically the constituent charm quark, is 
heavy enough for this approximation to be valid. In the literature it is common to 
refer to the matrix elements, (0| Jt(x; r)|fl) and (J7| J(y; s)|0), of (3.29) as NBS wave 
functions. In this work we simply refer to them as wave functions, noting that the
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amplitudes are just the overlap of charm and anti-charm states — with the correct 
quantum numbers — with the ground state of charmonium:

where |S7) and |0) represent the QCD vacuum and charmonium ground state respec­
tively, and T represents the relevant 7 -matrix monomial. The relationships, (4.1) 
and (4.2), are not explicitly gauge-invariant. To ensure gauge-invariance the gauge 
must either be fixed, or gauge-links must be included where non-local operators 
appear.

4.2 R everse-E ngineering th e  P oten tia l
To reverse-engineer the potential using the Schrodinger equation we must first 

obtain the wave function as a function of the quark separation, r. To do so we must 
analyse correlators computed with at least one extended interpolator. Looking at 
(3.32) and Figure 3.2, the following three source-sink arrangements of the quarks 
can be imagined:

• Local-local: r  =  s =  0, give clean signals that can be fitted to perform meson 
spectroscopy but they do not provide any information on observables with an 
extended nature, such as the interquark potential.

• Local-extended /  extended-local: r  =  0 and s ^  0, or r  ^  0 and s =  0. 
Extended-local correlators are undesirable because it is statistically advanta­
geous to have the extended operator at the sink, where a sum over spatial lat­
tice points is performed to fix the momentum. For this reason, local-extended 
meson correlators are always used when interested in using a correlator with 
either the source or sink extended but not both.

• Extended-extended: r  =  s ^  0, suffer from statistical noise more severely than 
local-extended correlators but the product of the matrix elements is guaranteed 
to be positive-definite for all excited states, which can aid analysis. We do not 
consider the r ^ s ^ O  case.

(4.1)

(4.2)
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A two-parameter fit of a local-local correlator using (3.34) as the fitting function 
yields the ‘wave function product’,

A ?  =  <n|./(y;0)|0><0|.7, (x;0)|fi> =  ^ ( 0 ) # ( 0 )  (4.3)

The expressions equivalent to (4.3) for local-extended and extended-extended corre­
lators are,

A r E(T) = M r ) # ( 0 )  and A r E(r ) = V>r(r)#(r), (4.4)

respectively. By analysing correlators corresponding to different quark separations, 
the wave function as a function of r can built using,

A LE(r  i  /----------
* r (r) =  - 7 = ^  or ¥ r (r) =  \M F E« ,  (4'5)

V  A r

for either the local-extended or extended-extended case, respectively.
In possession of a method to obtain the wave function as a function of quark 

separation we can now calculate the potential. As discussed in Section 4.1 the 
charmonium wave function is assumed to obey the Schrodinger equation,

+  Vr(r)^ 4T(r) =  E 'r 'M r). (4.6)

where f i  and E r  are the reduced mass and energy of the charmonium system and 
T indicates the Lorentz transformation properties of the state being considered. 
Rearranging (4.6) for the charmonium potential gives,

=  +  ( 4 ' 7 )

So in addition to the wave function 'l'r(r), we require f i  and E r  to reverse-engineer 
the charmonium potential. The reduced mass is,

m cm z m c
/* =  T =  (4-8)m c +  rric 2

and in this work, as in [96], the charm quark mass is defined as m c =  M y j 2, where 
M y  is the mass of the vector channel ground state. Therefore the reduced mass is 
simply, n =  M y /4 , with M y  to be determined by analysing vector effective mass 
plots, see (3.35). The energy of the charmonium state is also obtained from plotting 
the effective mass, because for zero momentum states the contribution of E r  is equal
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r J PC Channel Resonance J Representation
i 0 ++ a0 ^o(Xco) 0 Ai
7 * 1 — P ^ ( j / v o 1 71
75 0 -+ 7r %  fac) 2 e t 2

l i l 3 1 +- bi (he) 3 a 2t 1t 2
l 5 l i 1 ++ a i 3Pl(Xcl) 4 A xET{T2

Table 4.1: Left: 7 -matrix insertions and their corresponding J PC values in the 
continuum. Right: Representations of spin under the cubic group, Oh-

to the mass of the state. With the reduced mass and energy of the charmonium 
system, the final step towards obtaining the potential is to use the finite difference 
operator,

&r',r+a 2(5r/ r -|- 5r> r—a  ̂ 5r',r+a $r',r—a f A n\
a1 naz

to evaluate the second derivative,

2 1 d (  2 d \  d2 2 d  in.V2 =  - r ^ -  [ r 2—  , (4.10)
r 2 dr \  dr J  dr2 r dr

of (4.7), where we axe depending on the approximate rotational symmetry of the 
lattice.

Repeating the method outlined above on ensembles which differ only by the 
extent of their temporal direction, we can investigate the temperature dependence 
of the potential. However, we must remember we are using an equation, (3.27), 
which is only rigorously valid at zero-temperature to study non-zero temperature 
effects, and we must bear this in mind when drawing conclusions from the results.

4.3 S-W aves
Lorentz transformation properties play a significant role in determining the spec­

trum of states. A quark bi-linear in QCD, qTq, where T is one of the sixteen inde­
pendent 7 -matrix combinations, has the J pc  values listed in Table 4.1 (left) in the 
continuum. Parity and charge conjugation operations do not change when moving 
to the lattice but the representations of spin are constrained by the exclusive cubic 
symmetry of the spatial volume. A state with spin J  has 2 J  -I- 1 spin components 
that are degenerate in mass and form a 2 J  +  1 dimensional representation in the 
continuum. On the lattice there exist only 1 , 2 and 3-dimensional representations.
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The 1-dimensional representations are labelled A\  and A 2, the 2 -dimensional is E  
and the 3-dimensional 7\ and T2. The relationship of these representations to those 
of SU (2) can be derived through the process of subduction. In this case the SU (2) 
representations would be restricted to the rotations allowed by the cubic symmetry 
group, Oh [97,98]. Table 4.1 (right) shows the results of subduction up to J  =  4. In 
the non-relativistic limit obtained by projecting the quark spinor with 1 +  7 4 , the 
sixteen continuum quark bi-linears reduce to four, which have the 7r and p quantum 
numbers only — as in the naive quark model [97]. The 7r and p channels are the 
most appropriate from which to extract the charmonium wave function since we are 
using the non-relativistic Schrodinger equation to obtain the charmonium potential.

The 7r and p resonances are S-wave states, taking into account only the non-zero 
leading order terms of the velocity expansion [99], the interquark potential between 
the quarks in these states can be expressed as,

where Vc is the spin-independent potential, Vs is the spin-dependent potential and 
s 1,2 are the quark spins. Using si • s2 = —3/4,1/4 for the pseudoscalar and vector 
channels respectively, Vc(r) and Vs(r) can be obtained from the following expres­
sions,

For measurement the ensembles listed in Table 4.2 were used. The gauge action 
used was the two-plaquette Symanzik-improved action of [100],

Vr(r) =  Vc(r) +  V'sMs, ■ s2, (4.11)

Vfc(r) =  lVpS + jKy, 

Vs{r) = Vv -  KPS.

(4.12)

(4.13)

4.4  N f  =  2 S im ulation D etails

o S Y M

1 2  u\ui
(4.14)

(2)
where V  is the plaquette, 7Z is the 2 x 1 rectangular Wilson loop and V SJ  is con­

structed from two spatial plaquettes separated by a single temporal link, see Figure
4.1. us and uT are the mean spatial and temporal gauge link values respectively.
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x , y , z

T

Figure 4.1: Schematic diagram of V ^ J . The term is constructed from two spatial 
plaquettes separated by a single temporal link.

SqYM has leading discretization errors of 0(a^,  aT, a sas). The free parameter u  is 
chosen such that the approach to the QCD continuum is made on a trajectory far 
away from the critical point in the plane of fundamental-adjoint couplings.

The fermion action used was the fine Wilson, coarse Hamber-Wu action of [101], 

S^cHWff/, q] =  J_ (^ irm aT +  ̂  q(x)

~  2 ^“ [q(x )(r ~  lo)UT{x)q{x +  f) + q(x)(r +  7 0)U\(x -  r)q{x -  f )]

-  — — q(x)(4s -  - /v y i)Ui(x)q{x +  z)
L us 6’ I

+  — q(x)(4s  +  \ v r l i ) U } ( x  -  i)q{x -  z) 
us d

 ~q(x)(s  -  — Hrli)Ui{x)Ui(x +  i)q(x +  2z)
uj 12

-  ~2 ^W (S +  ^ r l i ) U } ( x  -  i)U}(x -  2i)q(x -  2z) |  (4.15)

where us and uT are the mean-link improvement parameters. us is determined from 
the spatial plaquette and uT is set to unity. The fermion anisotropy £q is given by the 
ratio of scales, £ =  as/a T. This fermion action is classically improved to 0 { a T, a%).
The chromoelectric term included in [101], is set to zero in this work. fj,r is set to
unity, and s is set to 1/8. The fermion action is improved in the spatial dimension 
but not in the temporal one. The doublers in space and time are removed by the 
Wilson term.

Configurations with two light mass-degenerate quark flavors were sampled using 
the Hybrid Monte Carlo algorithm with time step anisotropy. The temporal and spa-
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tial lattice spacings were measured to be as ~  0.162fm and a~l ~  7.35GeV [102,103] 
respectively, giving an anisotropy of £ =  as/a T ~  6 . Crucially the ensembles corre­
spond to a temperature range from the confined phase up to 2.09Tc where Tq is the 
deconfining transition. Tq was estimated from the point where the unrenormalized 
Polyakov loop starts to become non-zero, see Section 3.9. Charmonium correlators

N s N T T(MeV) T / T c Nrfg
1 2 80 90 0.42 250
1 2 32 230 1.05 1 0 0 0

1 2 28 263 1 .2 0 1 0 0 0

1 2 24 306 1.40 500
1 2 2 0 368 1 .6 8 1 0 0 0

1 2 16 459 2.09 1 0 0 0

Table 4.2: The table shows the lattice size, (Ns, N T), the corresponding temperature, 
T, in units of MeV and 7c, and the number of configurations in each ensemble, 
7Vcfg. The bare (input) anisotropies used in the generation of the configurations 
were: =  8.42 for the gluons and =  7.43 for the sea quarks. The renormalized
(measured) anisotropies were £g = 6.04 and £s = 5.84. The bare sea quark mass 
used was aTm°s =  -0.057 [104].

were calculated over the ensembles using Chroma [105], a software system developed 
specifically for lattice QCD. Gauge links were inserted within non-local operators 
to ensure gauge-invariance. The bare charm quark mass used was, aTm°c =  0.0117, 
with m^/mp  =  0.54. The bare anisotropy for the charm quarks was — 5.9. The 
computations were performed on an IBM Bluegene/P hosted by Swansea University 
for the UKQCD collaboration.

4.5 R esults
Local-extended and extended-extended charmonium correlators corresponding to 

all possible on-axes quark separations were obtained. Correlators corresponding to 
quark separations of the same magnitude were then averaged to give a set of seven 
correlators corresponding to the quark separations r / a s = 0 , 1 , 2 ,3 ,4 ,5 ,6 .

In the local-extended case correlators were computed with and without Gaussian 
smeared sources. To perform Gaussian smearing the smearing parameters na and 
u from (3.48) had to be tuned. To judge the effectiveness of a certain choice of 
smearing parameters effective mass plots were generated using (3.35). Plots in which 
the mass values at small r  were closest to those obtained for large r  were interpreted
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G aussian  Sm earing Param eter C om parison
Pseudoscalar, n varied, a  = 1.0’ a ’

1.2

0.8 -R

£ 0.6

0.4

i i i i i i i i i i i i i i i i i m  i i i i i i i i i i i i i i

— • •  

l l

• n = 1
a

• n = 2a

• n = 3
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•

-'J-IID
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• n = 5o

• no smearing

$!|Hu III
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0 10 20 30 40

x/a

Figure 4.2: A study of the smearing effect seen when holding a =  1.0 while varying 
n„. Based on this plot na = 2  was chosen.

as the most effective. A complete study of the 2-dimensional parameter space was 
prohibitively time-consuming. Instead a scan through na holding a =  1 . 0  was first 
performed, shown in Figure 4 . 2 .  From this scan na = 2  was found to be the most 
effective number of smearing iterations. A subsequent scan through o while holding 
n„ — 2 ,  shown in Figure 4 . 3 ,  found a — 1 . 0  to be the most effective smearing width. 
The most effective smearing parameter choice was thus deemed to be (na — 2 ,  a — 1. 0 ) .  

It is possible a better choice exists somewhere in the (na, a) parameter space, however 
this is unlikely because aggressive smearing, i.e. larger na or a, appears to have a 
negative effect based on Figure 4.2 and Figure 4 . 3 .

The sets of extended-extended and local-extended correlators from the 1 . 0 5 7 c  

ensemble are shown in Figure 4 . 4  and Figure 4 . 5  respectively, to show the quality of 
the data. The local-extended correlators in Figure 4 . 5  arc unsmearcd; the Gaussian 
smeared data is very similar.

Initially the wave function was obtained by fitting each correlator separately 
using (3.34) as the form of the fitting function and (4.5) to isolate the wave func­
tion. Naively fitting each correlator separately provided reliable results for corre­
lators corresponding to quark separations r /as = 0 , 1 , 2 ,  3 ,  but was unsatisfactory 
for the largest three separations, for which fits yielded inconsistent mass values.
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G aussian Sm earing Param eter C om parison
Pseudoscalar, n =2 , a  varied’ c ’

1.2 •i i i i i i i i i I i i i i i i i i i I i m  i i i i i | i i r

p  0.8
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£ 0.6 

0.4

• no smearing
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• a =  1.9
• o =  1.6
• a =  1.3
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Figure 4.3: A study of the smearing effect seen when holding na = 2 while varying 
a. Based on this plot the a =  1.0 was chosen.

P seudoscalar T im e -S lice  C orrelator
Extended-Extended, 1.05 T(,

0 - r=  la s
r = 2as
r = 3as
r = 4a

S

r= 5a
S

r = 6a

-15

0 105 15

x/a X

Figure 4.4: 1.057e extended-extended correlators. Extended-extended correlators 
always decay exponentially since every excited state contributes to the correlator 
with a positive sign.
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C/3Oh
u

o

Pseudoscalar Time-Slice Correlator 
Local-Extended, 1.05 Tc

O.r
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Figure 4.5: 1.057c local-extended correlators. Local-extended correlators do not 
always decay exponentially. At small r  the correlators have the opposite curvature to 
an exponentially decaying function, a sign that higher excited states with a negative 
wave function product are contributing to the correlator..

Consequently the wave function products, see (4.4), were deemed unreliable for 
r /a s = 4,5,6.

To obtain reliable values for the wave function products corresponding to each 
quark separation, a simultaneous fit was performed on each set of correlators using an 
eight-parameter fitting function — one parameter for the mass and seven for the wave 
function products corresponding to each quark separation, r / a s =  0 , 1 , 2 ,3 ,4 ,5 ,6 . 
This method uses the smallest separations to anchor the mass parameter to a value 
very close to that obtained when the local-local correlator is fitted with a two- 
parameter fitting function. The eight-parameter fit yielded reliable results for all 
quark separations when applied to the extended-extended correlators. Figure 4.6 
shows the output from the fitting procedure performed on the 1.057c extended- 
extended correlators. In this case a fitting range of r  =  10 — 16 was chosen based 
on the plateau seen in the 1.057c effective mass plot shown in Figure 4.7. Fitting 
ranges for other ensembles were chosen by studying the corresponding effective mass 
plot in the same manner.

Fitting algorithms can converge to solutions equivalent to a local rather than 
global minimum of the y2. Therefore it is important to provide the fitting algo-
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Eight-Parameter Fit of Extended-Extended Correlators
Pseudoscalar, 1.05TC

•  Data
0

■5

-15

0 2 4 6 8 10 12 14 16

Figure 4.6: The eight-parameter simultaneous fit of the 1.057c extended-extended 
correlators, which was performed for r  =  1 0  — 16.

rithms with a starting point in parameter space which is sensible, in this work this 
was provided by a linear fit. To further ensure values corresponding to the true 
global minimum of the parameter space were obtained, reliable fits were identified 
by comparing the results of three different fitting algorithms: the Minuit [106], Sim­
plex [107] and Simulated Annealing [107] fitting algorithms.

Reliable fits were not obtained on the sets of local-extended correlators. Extended- 
extended correlators have symmetric source and sink operators, guaranteeing a 
positive-definite wave function product for every excited state, whereas local-extended 
correlators do not and the wave function product can be positive or negative for any 
excited state. Also in correlators from ensembles with N T < 80 the ground state is 
not the only surviving state at largest available r. Taking these points into consid­
eration we can see why the fitting function is more likely to fail in the local-extended 
case than in the extended-extended case: in the extended-extended case contribu­
tions to the correlator from higher excited states are all positive, whereas in the 
local-extended case contributions can be positive or negative. In the fitting function 
there is a single positive term exponentially decaying with r , this term can encap­
sulate the behaviour of a sum of positive terms exponentially decaying with r  more 
easily than a sum of positive and negative terms exponentially decaying with r. Of
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Figure 4.7: The 1.057c local-local effective mass plot. The fit to a constant was 
performed for r  = 10 — 16.

course even though the fitting procedure is successful in the extended-extended case 
this does not mean the presence of higher excited states is not polluting the result.

Figure 4.8 shows the normalized pseudoscalar and vector wave functions squared, 
obtained from the 1.057c extended-extended correlators using an eight-parameter fit. 
In this case the pseudoscalar wave function appears more localized than the vector. 
This is also seen for other temperatures and can be shown clearly by calculating the 
root-mean-squared value of the quark separation,

where ^ (r)  is the normalized wave function. The wave function extends across all 
sites of the lattice volume, but we only obtained values for on-axis quark separations,

4.4 respectively. The 0.427c (r2 ) 1/ 2 value obtained for the vector was 0.3769(135)fm, 
which roughly agrees with the value of 0.47fm obtained using the Cornell potential 
model [49], and the value of 0 .2 fm stated in [40] for the binding radius of J/'ijj. A 
pseudoscalar wave function which is more localized than the vector conflicts with

(4.16)

this is why the factor of 47rr2 in (4.16) is necessary. The (r2 ) 1/ 2 values for the 
pseudoscalar and vector channels are shown at the bottoms of Table 4.3 and Table
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the basic intuition that since A/^ < Mj/^ the binding radius of r\c should be greater 
than that of J/-0. However the pseudoscalar and vector wave functions do not sit in 
the same potential. If Vps and Vy have different forms then the (r2)1/2 values can 
not be compared directly.

Figure 4.9 and Figure 4.10 show the pseudoscalar and vector wave function 
squared; Figure 4.11 and Figure 4.12 show the natural log of the pseudoscalar and 
vector wave function squared; and Figure 4.13 and Figure 4.14 show the pseudoscalar 
and vector r 2|^ (r) |2 values plotted for each available temperature respectively. As 
the temperature increases the wave functions become less localized. The (r2)1/2 val­
ues, shown in Table 4.3 and Table 4.4, also increase with increasing temperature. 
These results arc consistent with the expectation that at high temperature bound 
states dissociate. In these figures we are seeing the states ‘melt’.

W ave Functions
from Extended-Extended Correlators

0.1

0.08

0.06

—  0.04

0.02

•  Pseudoscalar
•  Vector

0.2 0.4 0.6

r [fm l

0.8

Figure 4.8: The 1 . 0 5 7 c  pseudoscalar and vector wave functions squared. Error bars 
are of the order 10- L

The pseudoscalar and vector potentials were obtained by evaluating (4.7) for the 
square root of the |t/>(r)|2 data of Table 4.3 and Table 4.4. These were then combined 
using (4.12) to give the spin-independent potential, Vc- Figure 4.15 shows the spin- 
independent potential obtained for each temperature. The potentials emerge from 
the analysis at very different energy levels. The energy of the charmonium system 
for a particular state is taken equal to the mass of the state. For progressively 
higher temperatures the pseudoscalar and vector mass values obtained from fits
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Figure 4.9: The pseudoscalar wave function squared from extended-extended corre­
lators 0.42-2.097c. Error bars arc of the order 10-3 for all temperatures.
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Figure 4.10: The vector wave function squared from extended-extended correlators 
0.42-2.097c. Error bars arc of the order 10-3 for all temperatures.
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extended correlators 0 . 4 2 - 2 . 0 9 7 c .
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Figure 4 . 1 5 :  The spin-independent potential, Vq(r), plotted for T = 0 . 4 2 - 2 . 0 9 7 c .  

Error bars arc of the order 1 0 - 3  for all temperatures.

became larger and larger, sec Table 4 . 3  and Table 4 . 4 .  As a result the potentials 
for higher temperatures are shifted up in energy since the energy of the system 
enters equation ( 4 . 7 )  as constant additive term. In Figure 4 . 1 6  the r /as = 1 data 
points are shifted vertically to coincide with the r /as =  1 data point of the 0 . 4 2 7 c  

potential, to allow a comparison of the form of the potentials. The Cornell potential, 
see ( 2 . 1 7 ) ,  is included for reference. The vertical position of the Cornell potential 
is arbitrary, but constant throughout this thesis. The spin-independent potential 
shows a clear temperature dependence. As the temperature increases the potential 
flattens in line with our expectation that the interquark potential becomes colour- 
Debye screened at high temperature. However in comparison with the Cornell curve 
the potentials do not have a well-defined ‘Coulomb-plus-linear ’ form, which is cause 
for concern, especially for the 0 . 4 2 7 c  result because the method should be reliable 
at low temperature. Furthermore at large r  the potentials decrease slightly, where 
at most we would expect the potential to be constant.

The spin-dependent potential, Vs, was calculated using ( 4 . 1 3 ) .  The unshiftcd 
and shifted spin-dependent potentials are plotted in Figure 4 . 1 7  and Figure 4 . 1 8  

respectively. Once shifted we see the spin-dependent potentials are also temperature 
dependent. Though this is entirely expected given the spin-independent potential is
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Figure 4 . 1 6 :  The spin-independent potential, V c ( r ) ,  plotted for T = 0 . 4 2  2 . 0 9 7 c ,  

shifted so that V c ( r  — la s) coincides with that of the 0 . 4 2 7 c  curve in Figure 4 . 1 5 .  

Error bars are of the order 10~2 for all temperatures. The Cornell potential is plotted 
using ( 2 . 1 7 )  with k  = 0 . 5 2  and a = 2.34GeV_1.

temperature dependent and both Vs and Vc arc built from linear combinations of the 
same pseudoscalar and vector potentials, i.e. they contain the same information. The 
spin-dependent potential appears to be repulsive for small r  and then become slightly 
attractive for larger r, while the depth of the minimum decreases with increasing 
temperature.

4 . 6  C o n c l u s i o n s
Figure 4 . 1 6  provides evidence that the charmonium potential is temperature 

dependent. As the temperature increases the spin-independent potential flattens, 
but at large r  the potential decreases slightly contrary to expectations. Also, the 
fact that the form of the 0 . 4 2 7 c  potential, in particular, is not Coulomb-plus-linear 
is evidence that the method is failing, at least at large r.

Difficulties were encountered when fitting the correlators. These difficulties were 
due to the correlators containing a contribution from higher excited states even 
at the largest available r. In the local-extended case this made fits completely 
unreliable. In the extended-extended case fits were reliable but the contribution of
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Figure 4.17: The spin-dependent potential, Vs(r), plotted for T=0.42-2.097c. Error 
bars are of the order 10“'* for all temperatures.
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Figure 4.18: The spin-dependent potential, Vs(r), plotted for T=0.42-2.097c, shifted 
so that Vs(r = la s) coincides with that of the 0.427c curve in Figure 4.17.
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higher excited states to the correlators could not be taken into account, which is a 
typical problem encountered when working at high temperature. Several alternatives 
to the eight-parameter fitting function were tested. For example a sixteen-parameter 
fitting function was attempted with the aim of obtaining values for the ground state 
and first excited state masses and wave function products. Also attempted was the 
fixing of certain input parameters in more complicated fitting functions to values 
obtained from reliable fits to single correlators. None of the alternatives delivered 
more reliable results than the eight-parameter fit.

We conclude the presence of higher excited states is likely polluting the charmo­
nium potential obtained using conventional fitting techniques. At large r  this issue 
is compounded by the weak signal-to-noise ratio of the correlator. In the future we 
would like to obtain the charmonium potential for quark separations beyond lfm. 
With this in mind it would be difficult to develop the conventional fitting method 
to calculate the charmonium potential over a larger range of quark separations at a 
decent resolution. To do this an N s/2-parameter fit would have to be performed to 
get the ground state mass and wave function products. For N s > 12 this method will 
only become less reliable. Moreover the contribution of higher excited states at large 
t  would remain unaccounted for. Consequently it is reasonable to claim the method 
is limited to extended-extended correlators computed on lattices with N s < 12. In 
the following chapter we move away from conventional fitting to a method capable 
of extracting the potential from both moderate and large r.
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Chapter 5

HAL QCD T im e-D ependent 
Approach

An alternative to conventional fitting is provided by the HAL QCD collaboration, 
which developed a method to obtain nucleon-nucleon potentials directly from cor­
relators [108]. In this chapter, we apply the HAL QCD time-dependent method to 
the charmonium system to obtain the interquark potential at number of different 
temperature values.

5.1 HAL QCD T im e-D ependent M ethod
The time-dependent method takes local-extended correlators as input, these are 

constructed from the creation and annihilation operators introduced in (3.30) and 
(3.31), which have the form,

Jr (x; r) =  q(x) T U(x, x+r)  q(x+r),  (5.1)

where r  is the displacement between the quark and anti-quark fields q and q, x  is
the space-time point (x, r) and T is a monomial of gamma matrices used to generate
vector (J/'ip) or pseudoscalar (r}c) channels. U(x, x  +  r) is the gauge connection 
between x  and x +  r  required for gauge invariance.

From (3.32) the local-extended charmonium correlator is written,

C r(r ,r)  =  J ] ( J r ( x , r ; r )  4 (0 ;0 )), (5.2)
X

where we have neglected the volume term in the denominator of (3.32) since we will
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be interested in ratios of the correlator in which this term cancels, and the sum over 
the spatial coordinate at the sink, x, projects the momentum of the state to zero.

From (3.27), (4.1) and (4.2) the local-extended correlator can also be expressed 
as a sum over the eigenstates of the Hamiltonian, Ej,

Cr(r, r) =  £  (e- * r  +  e- * < * - > ) , (5 .3 )
j 3

where the sum is over the states j  with the same Lorentz transformation properties 
as the operator Jp, NT is the number of lattice points in the temporal direction, and 
^*(0) and 'ipj(r) are the wave functions at the source and sink as discussed in Section
4.1. We now consider only the forward-moving contribution to the correlator, the 
effect of ignoring the backward-moving contribution is discussed in Section 5.2,

where we have defined 'Fj(r) =  'ip*(0)'if>j(r)/2Ej. The next step is to differentiate 
both sides with respect to r,

Then, as was done in the conventional fitting approach, we note that m c Aqcd? 
and assume ^ ( r )  obeys the Schrodinger equation,

(5.4)

(5.5)
3

(5.6)

Substituting Ejtyj{r) in (5.5) for the left-hand side of (5.6) we obtain,

d C r ( r , r )

dr £  ( i  ~  Vr(r))  ^(r)e
3

— E j T (5.7)

We can now note that the terms in the brackets are independent of j  and move the 
sum to the right to obtain,
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Finally, this can be rearranged to yield the potential,

V t ( r )  = (5.9)

Again, the reduced mass is defined as fi =  M y / 4, and (4.9) is used to evaluate the 
second derivative. The immediate advantage of (5.9) over the conventional fitting 
method is that the local-extended correlators can be used directly, circumventing 
the need to rely on unreliable fits for the wave function. As before, the temperature 
dependence of the potential can be studied by repeating the analysis on ensembles 
with different temporal extent. Also, it is important to highlight that Vr(r) has an 
implicit r  dependence which must be averaged over.

5.2 A ccounting for th e Backw ard-M over

To derive (5.9) the backward-mover was neglected in (5.4). On lattices with 
a small temporal extent this will become a problem because the correlator data 
actually has the form,

Therefore at times around N T/2  the forward and backward-moving contributions to 
the correlator will be equally important and (5.4) will not describe the data with 
sufficient precision.

At first glance one may suggest simply differentiating (5.10) twice with respect
to T ,

(5.10)
J

(5.11)
j

= E + ̂ (r)) {e -E>T + (5.12)

+  W r ) )  ( - J  +  Kr(r)) C r{ r’ r ) -
(5.13)

We are then faced with the task of rearranging (5.13) for the potential, but this ap­
proach quickly becomes prohibitively complicated due to the quadratic dependence 
on what is essentially the Hamiltonian operator.
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Instead we seek to modify the temporal derivative term of (5.9),

1 dCr (r,r)  =  ~ E j  gj*,-(r)e-E'r =  - ( E o % ( r ) e ' Ê  +  +  ...)
C r ( r ,  r) d r  J 2 j ^ j { r )e ~EjT ^ o ( r ) e ~ E°T +  ^ i ( r ) e ~ ElT

(5.14)

In the large r  limit,

Hm - ( 5 . 1 5 )t->oo 6 r ( r , r )  or

since E 0 < E\  < E 2 ... . Therefore to properly describe the correlator data we 
require a closed form expression in terms of the full correlator expressed in (5.10), 
which tends to — E0 at large r . Fortunately, such an expression exists [109]:

_ 1 /  Cr(T —

2 VCr(r + 1) +  V ° r ( r  +  I)2 -  CT(NT/ 2 f  )

Replacing the left-hand side of (5.16) for the r-derivative term in (5.9) we can 
account for the backward-mover,

* (r) =  ‘ - ' ^ ( r . r )
6r(r,r) \  2/i

1 / c r( r , r - l )  +  v/Cr( r , r - 1)2- C r(r,iVT/2 )A
2 6 \ Cr(r,r+1) +  y/Cr ( r , T + l f  -  Ct (t, NT/ 2 f  )

5.3 M om entum  Space Propagators

Local-extended correlators can be obtained more efficiently by working with the 
quark propagators in momentum rather than coordinate space [110]. For a meson 
consisting of two arbitrary quarks, q\ and (fa, the local-extended correlator can be 
written,

Cr(r, r )  =  '^2(0\q2(x 1T)rq1(x-\-ri T)q1(0,0)r^q2(010)\0)1 (5.18)
X

= - J ^ T r  [D’ ^ x + r.rrO .O jrD r^ O .O ix .r jr l]  , (5.19)
X
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where the notation for the quark propagators is D  1(sink:source). Using the Fourier 
transforms of the quark propagators, which have the form,

D_1( y) =  ^ E £ r l (‘*)eiq'y-V q

it is possible to write the correlator in terms of D ~11 and D

(5.20)

< W e ‘p r ,

Cr(r, r) =  -  Tr [ ^ ‘( x + r , r  :0 ,0 ) ^ ( 0 , 0 :x, t )T'] ,
X

= - E  E Tr [A'11(p)r^21(q)rt] eip^ e ^
x  P,q

=  - ^ E Tr[^ 1(p)r̂ 1(q)rt̂
p.q

= - ^ E Tr [ ^ ( p W f - p ) ^ ]  eipv-
P

Now using the Fourier transform of the correlator,

Cr(r,T) =  i ] r C ( p )T)ei'” \

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

the following relation can be deduced,

C r ( p . r )  = -  Tr [ £ - 1(p )rD £ 1(-p )r* ]  . (5.26)

This implies that if C r(p5 r )  can be obtained, then C r ( r , r )  for any value of r  can 
be computed in straight forward manner by multiplying the product of quark prop­
agators in momentum space with the phase factor eip r . This is computationally 
more efficient than calculating C(r, r) using propagators in coordinate space. In 
cases where the meson’s constituent quarks are the anti-particles of each other, fur­
ther reductions in cost can be made. The two Fourier transforms, one for each 
propagator,

A,.‘(p) = Y l Di ^ x )e
X

D i H - P  ) = E Di 1(x)e'p'

- t p x (5.27)

(5.28)
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do not both have to be performed. Due to periodic boundary conditions the following 
relationship holds,

p) =  D - \  p), (5.29)

using this expression in combination with 7 5-hermiticity, see (3.46), one propagator 
can be computed from the other. Furthermore correlators only need to be obtained 
for positive quark separations, 0 < r  < ATt /2, because the real part of the phase 
factor expr is an even function of r  for fixed p,

eipr _  Cos(p-r) -H sin(p-r), (5.30)

this means the phase factors eipr and eip give the same real part of the correlator 
when (5.25) is applied. The imaginary part of the correlator is not used in the
analysis, in any case if it is not identically zero on a configuration by configuration
basis, then it can be shown that it is zero for the ensemble average.

The expression for the correlator in (5.18) is not manifestly gauge-invariant. As 
the propagators are being tied up in momentum space the easiest way to obtain 
gauge-invariant observables using this technique is to gauge fix rather than include 
gauge connections.

5.4 N f  =  2 R esu lts
The time-dependent method was applied to local-extended correlators obtained 

from the Nf =  2 simulation outlined in Section 4.4. To maintain the gauge-invariance 
of the observable, link products were not included in quark bi-linears, instead config­
urations were fixed to the Coulomb gauge beforehand using Chroma. By applying
(5.9) to sets of correlators like those shown in Figure 4.5, the pseudoscalar and 
vector time-slice potentials were obtained. Taken literally (5.9) suggests that the 
time-slice potentials should be independent of r. The pseudoscalar time-slice po­
tential at 1.057c shown in Figure 5.1 demonstrates that in practice this is not the 
case. The time-slice potential plots can be split up into three r  ranges: i) for small 
r  the potential is unstable, here higher excited states and lattice artifacts are still 
present, the r  =  1 data points do not adhere to the trend because they are calculated 
using the contact term C r(r =  0, r  =  0), these data points typically lie outside the 
axis range used in subsequent time-slice plots; ii) for moderate r  the potential is 
stable; iii) for large r  the potential data points decrease in unison. In Section 5.2 
we anticipated that the backward-mover would become an issue for ensembles with
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Figure 5.1: 1.057c (NT = 32) pseudoscalar time-slice potential plotted as a function 
of r  for each quark separation r. Error bars are of the order 10-3.

a small temporal extent. We can now show that it is necessary to use (5.17).

In Figure 5.2 and Figure 5.3 the individual contributions of the spatial and tem­
poral derivative terms in (5.9) to the time-slice potential of Figure 5.1 are shown. 
At large r  the spatial derivative contribution is stable but the temporal derivative 
points increase in unison. In Figure 5.4 the term accounting for the backward-mover 
shown in (5.16) is plotted, comparing this with Figure 5.3 we confirm that the root 
cause of the large r  behaviour is the backward-mover. Also, as required the sub­
stitute temporal term, (5.16), tends towards the negative of the pseudoscalar mass, 
rjc = 2.9804(l)GeV [31], at large r. In Figure 5.5 and Figure 5.6 the pseudoscalar 
and vector time-slice potentials are plotted using (5.17). In these plots the data 
points do not decrease in unison at large r  and we conclude that the backward-mover 
is being accounted for correctly. In all subsequent results (5.17) is used instead of
(5.9).

Combining the pseudoscalar (Figure 5.5) and vector (Figure 5.6) time-slice po­
tentials according to (4.12) the spin independent time-slice potential shown in Figure 
5.7 is obtained for the 1.057c ensemble. In the same fashion spin-independent po­
tentials were obtained for all the other ensembles listed in Table 4.2. These plots 
can be found in Appendix A. Since the spin-independent time-slice potentials flue-
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Figure 5.2: The 1.057c pseudoscalar time-slice spatial derivative term,
(l/C*r)(V2(7r/2/i), plotted as a function of r  for each quark separation r. Error 
bars are of the order 10~3.
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for each quark separation r, using (5.17). Error bars are of the order 10~3.
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NT T [T C] Central (Upper) Range Lower Range
80 0.42 2 5 -3 9 1 2 -1 5
32 1.05 1 2 -1 5 1 0 -1 3
28 1.20 1 0 -1 3 9 - 1 1
24 1.40 9 - 1 1 7 - 9
20 1.68 7 - 9 N/A
16 2.09 N/A N/A

Table 5.1: N f — 2 fitting ranges.

tuate time-slice by time-slice, are unstable for small r  and have the familiar high 
temperature issue of decreasing temporal extent with increasing temperature, the 
method to extract the potential was given careful consideration. The method chosen 
was to perform a time-wise correlated fit of the time-slice potential to a constant in 
a certain r  range for each quark separation. This generates a single value for the 
potential at each separation r. Ideally we would choose the r  range in which the 
time-slice data plateaued, but for the higher temperatures the data does not plateau. 
The next best option was deemed to be to fit the data in the r  ranges shown in the 
third column of Table 5.1. Potentials were also obtained from the r  ranges shown 
in the fourth column of the same table, these appear with triangular data points in 
subsequent plots and allow a fair comparison of potentials with that obtained for the 
temperature above. The end result of the analysis for the spin-independent potential 
is plotted in Figure 5.8. We see the potentials are quite spread in energy, the reason 
for this can be seen by studying the relevant spin-independent time-slice potentials 
shown in Appendix A. The data in these plots decreases with r  for each separation. 
For large r  the decrease is in unison and gradual and hence unproblematic, but for 
small to moderate r  the decrease is more rapid and at a noticeably different rate 
for each separation. This behaviour is problematic because as the temperature of 
an ensemble increases its temporal extent decreases and we are forced to fit for the 
potential between earlier r  values. Therefore the potentials obtained from higher 
temperature ensembles appear raised in energy. More importantly we must be aware 
that the data for each separation converges as we move from the largest available 
r  backwards in time to roughly r / a r =  4. If we simply fitted the spin-independent 
time-slice potential of each temperature, say, over the largest four r  values available, 
then we would observe a flattening of the potential with temperature but this would 
not be a true temperature effect but a spurious one due to the behaviour of the data 
with r. This point can also be seen by imagining the form of the spin-independent
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potential we would obtain by fitting the 0.427c ensemble between, say, r  =  25 — 39 
and r  = 7 — 9, the latter would be flatter for large r, and thus mimic the flattening 
we expect due to colour-Debye screening at high temperature. For this reason we 
emphasize that potentials at different temperatures can only be compared if they 
were obtained from the same r  range.

To compare the form of the spin-independent potentials in Figure 5.8, the data 
for each temperature are vertically shifted in Figure 5.9 such that the r /a s = 1 
data points coincide with that of the lowest temperature potential. The Cornell 
potential, see (2.17), is included for reference. The general form of the potential 
at low temperature agrees well with the zero-temperature literature. The potential 
clearly curves for small r and straightens for larger r  in accordance with the Coulomb- 
plus-linear form expected from one-gluon exchange being dominant at small r  and 
colour flux tubes developing at large r. In Figure 5.10, for each temperature, the 
triangular data points of Figure 5.9 are taken as the limit of a single asymmetric error 
bar originating from the corresponding circular (central) data point. These error 
bars appear slightly shifted to the right and account for the systematic uncertainty 
in the analysis. The statistical uncertainty associated with taking the ensemble 
average appears slightly shifted to the left. Potentials in Figure 5.10 should only 
be compared with the potential corresponding to the next highest temperature, 
according to the r  ranges in Table 5.1. Comparisons outside of this criterion are not 
valid since changes in the potential due temperature can not be separated from those 
due to r  range choice. Comparing the potentials in the necessary ‘staggered’ manner 
we see that between 0.427c and 1.057c the potential flattens by an amount greater 
than the systematic uncertainty. This is in agreement with the expectation that 
the spin-independent potential should flatten with increasing temperature due to 
colour-Debye screening. When comparing pairs of potentials higher in temperature 
the flattening of the potential is no more significant than the systematic uncertainty.

We obtain the spin-dependent time-slice potential for each available temperature 
by combining the pseudoscalar and vector time-slice potentials according to (4.13). 
Performing correlated fits on these time-slice potentials, as was done with the spin- 
independent time-slice plots, gives the spin-dependent potential as a function of 
quark separation. The end result of the analysis is plotted in Figure 5.11. To 
compare the form of the potentials more easily the higher temperature potentials 
are shifted in Figure 5.12 such that the r /a s =  1 data points coincide with that of 
the lowest temperature potential. In Figure 5.13 the systematic error is included
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coincide with that of the 0 . 4 2 7 c  potential. Statistical error bars appear on the left, 
while systematic appear on the right.

using the triangular data points of Figure 5.12 in the same manner as for the spin- 
independent case. The spin-dependent potential appears to have a repulsive core, 
flattening out for large separations and becoming attractive. A temperature effect 
is not deducible since the systematic uncertainty of the potentials is always more 
significant than the change seen in the potential of the next highest temperature.

In Figure 5.14 the Nj  = 2 spin-independent potentials from the conventional 
fitting and time-dependent methods are compared. The results of the two methods 
do not agree. Therefore one or both of the methods fails to provide the correct 
result. The time-dependent results agree well with the Cornell potential, in contrast 
the conventional fitting results really lack a Coulomb-plus-linear form. Doubt is also 
cast over the conventional fitting results due to the large increase in the mass value 
with temperature obtained from fitting, see Table 4.3 and Table 4.4. As such we 
conclude that the time-dependent results are more reliable than the conventional 
fitting ones.
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5.5 N f  =  2 + 1 S im ulation  D etails

We now turn to a calculation of the charmonium potential using lattice ensembles 
with 2+1 dynamical flavours. The parameters of these ensembles are listed in Table
5.2. The simulation details of [111], repeated here for convenience, were followed 
exactly to obtain these ensembles:

In the gauge sector a Symanzik improved action was used,

 j"Pa s' —  “ TT-o o'3ui ss 12u6„ ss

(5.31)

where V  is the plaquette, 7Z is the 2 x 1  rectangular Wilson loop, the coupling g 
appears in (3 — Q/g2, £o is the bare anisotropy, and us and uT are the spatial and 
temporal gauge links respectively. This action has leading discretization errors of

In the fermion sector we employ an anisotropic clover action,

Sp[U, q, q] = a3saT ^  Q{x )Qq(x ), (5.32)

where,

Q = m 0 +  VTW T +   2 \ CrC,rsT̂ ST 'y -/ csGss'G9a
\  s<.s* j

(5.33)

m0 is the mass of the fermion, cr^ = §[7m7i,], and the Wilson operator, = 
— ^£7 aiAm, where and A^ are the first and second lattice gauge-covariant 

derivatives respectively, the latter is written in (3.49). In terms of dimensionless 
variables, q = a j 2q, m 0 = aTm0, =  a^V, A^ =  aMA, Gttv = a^ayG ^  and the 
dimensionless ‘Wilson operator’, =  VM — ^^A ^ , the fermion matrix Q becomes,

Q = ar m 0 +  vT W T +  v , W e - ^  (c r< r ,rG ST +  ^  c sct!s-G "' (5.34)

From the field redefinition [112,113], there is one redundant coefficient: either vT 
or vs. There are two common choices to eliminate this redundancy: setting va = 1 
(^T-tuning) or vT =  1 (ivtuning). In this work vT is set to unity and we define
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N s NT T(MeV) T /T c Afcfg
24 128 ‘Zero’ ‘Zero’ 250
24 40 141 0.76 500
24 36 156 0.84 500
24 32 176 0.95 1000
24 28 201 1.09 1000
24 24 235 1.27 1000
24 20 281 1.52 1000
24 16 352 1.90 1000
32 32 176 0.95 500
32 24 235 1.27 500

Table 5.2: The table shows the lattice size, (NS,N T), the corresponding temperature, 
T, in units of MeV and Tc, and the number of configurations in each ensemble, Ncfg.

v  =  v3. Then ca and cT have the tree-level tadpole-improved values,

c’ = k  (5,35)

where us and uT are the spatial and temporal tadpole factors respectively, appearing 
with tildes to differentiate them from their gauge sector counterparts. The fraction 
O't/O's = 1/C is sef 1° the desired renormalized gauge anisotropy. In this work the 
gauge links in the fermion action are 3-dimensionally stout-link smeared gauge fields, 
see Section 3.7.

Configurations were sampled using the RHMC algorithm. The temporal and 
spatial lattice spacings were measured to be as ~  0.123fm and a~l ~  5.63GeV, 
giving an anisotropy of £ =  as/a T ~  3.5. Tc was calculated from the inflection point 
of the renormalized Polyakov loop. Before measurement the configurations were 
fixed to the Coulomb gauge. A Fourier-accelerated gauge-fixing procedure several 
times faster than Chroma’s in-house gauge-fixing routine was used, the details of 
which can be found in [114].

Charmonium correlators were calculated using a mass parameter set by tuning 
the pseudoscalar effective mass to the experimental rjc value at zero temperature [81]. 
A bespoke program written in C + +  and Q D P++ was used to Fourier transform 
coordinate-space propagators obtained from Chroma to momentum-space and to 
subsequently calculate correlators according to the equations outlined in Section
5.3.

The computing resources were provided by HPC Wales. The Cardiff HTC cluster,
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Figure 5.15: Local-extended charmonium correlators for all possible on-axis separa­
tions of the 0.767c ensemble.

consisting of 162 dual processor nodes, each having two six-core Intel Westmcrc Xeon 
X5650 2.67 GHz CPUs and 36GB of memory, was used.

5 . 6  N j'  =  2 + 1  R e s u l t s
Local-extended correlators corresponding to on-axis, face-diagonal and body- 

diagonal quark separations from the simulation outlined in Section 5.5 were obtained. 
Correlators corresponding to quark separations of the same magnitude were then 
averaged to give a set of 37 correlators, corresponding to the 37 separations of 
unique magnitude. The set of correlators for the 0.767c ensemble is shown in Figure 
5.15, Figure 5.16 and Figure 5.17, separated into on-axis, face-diagonal and body- 
diagonal subsets. The local-local (r/aa — 0) correlator is included in all three plots 
for reference. As one would expect the magnitude of the correlator signal varies 
inversely with the quark separation at the sink.

A significant benefit of working with the propagators in momentum space is the 
ease with which the local-extended correlators corresponding to off-axes separations 
can be computed. The speed of working solely in coordinate space with Chroma, ver­
sus working in momentum space with a bespoke Chrom a/QDP-f+/C-f+ program, 
was compared on a 324 (NT = 32, Ns = 32) lattice. The fermion matrix inversion is
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an overhead common to both methods; a single lattice propagator was obtained in 
roughly 20720 core-seconds in each case, on 32 cores this takes about ten minutes. 
However, correlators were obtained faster using the momentum rather than coordi­
nate space method. In each case the sixteen correlators corresponding to the sixteen 
possible 7 -matrices were obtained for a total of 49 different quark separations — the 
49 on-axis separations. In coordinate space using Chroma this took roughly 11780 
core-seconds for each configuration; in momentum space using the bespoke program 
this took roughly 7890 core-seconds. On 32 cores this equates to roughly six and 
four minutes respectively. Therefore on a 324 lattice correlators are obtained using 
33% fewer core-hours with the momentum space method. Taking into account the 
common overhead the saving is more modest, sixteen down to fourteen minutes, 
which represents a saving of approximately 12.5%. A saving of similar magnitude is 
observed on all lattice sizes, but will naturally increase with the lattice volume.

Local-extended correlators with quark separations along face- and body-diagonals 
provide potential data points at multiples of asy/2 and asy/ 3 respectively. It was 
hoped this would offer a way to interpolate potential data points from on-axis quark 
separations. However potentials calculated from correlators corresponding to on- 
axis, face-diagonal and body-diagonal type quark separations form distinct curves 
rather than interpolating each other. To demonstrate this behaviour the 0.767c 
pseudoscalar potential is shown in Figure 5.18 with the potential points for on- 
axis, face-diagonal and body-diagonal quark separations shown in different colours. 
The potential was calculated using (5.17), and here a time-wise correlated fit to a 
constant was performed on the on-axis, face-diagonal and body-diagonal time-slice 
potentials for each separation for r  =  15 — 19. To better understand the behaviour 
exhibited in this plot the spatial and temporal derivative terms are plotted separately 
in Figure 5.19 and Figure 5.20 respectively. The spatial derivative term separates 
into three distinct curves depending on the type of separation. At large r  the face- 
and body-diagonal data points decrease sharply, this behaviour is likely a finite 
volume effect. The temporal derivative term does not separate so distinctly into 
three curves. For values of r  greater than 1.5fm the body data points diverge from 
the trend set by the on-axis and face-diagonal data points, but this behaviour is 
more than likely simply due to the correlator signal becoming very small, as one can 
see the errors on the body-diagonal data points become very large. We conclude 
the separation of the potential into three distinct curves could be due to one or 
both of the following issues: i) in the evaluation of the spatial derivative term a 
different lattice spacing appears in the denominator of the finite difference operator
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Figure 5.20: The 0.767c substitute temporal term, (5.16), for r  =  15 — 19.

for each type of separation, as —>■ aaV 2 and aa —> as\J3, for face- and body-diagonal 
separations respectively. Effectively, the spatial lattice spacing, as, is the interval 
with which the dependence of the correlator on r is being sampled. Since this is 
relatively coarse to begin with, sampling the correlator at as\/2 and as\J3 in the 
face- and body-diagonal cases results in a data set with a slightly different form, 
this difference is amplified when the second derivative is taken; ii) contributions to 
the correlator due to the charmonium wave function spreading around the compact 
spatial dimensions add in a lion-trivial manner, which could also be complicated by 
the discrete nature of the lattice.

There is no solution to i) that doesn’t involve generating new configurations but 
a first thought towards solving problem ii) might be to derive a spatial version of
(5.16). However unlike in the temporal case the functional form of the unaccounted 
contribution is unknown and actually the very quantity we arc trying to calculate — 
the wave function. Another possibility is that the issue is a result of using spherical 
coordinates where Cartesian would be most appropriate. In any case, we do not use 
results from the correlators with face- or body-diagonal quark separations, deciding 
that the potentials obtained with the ‘finest’ lattice spacing should be the most 
accurate.

The Ns = 32 ensembles, listed in Table 5.2, provided a means to investigate the
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Figure 5.21: Ratio of local-extended correlation functions computed over lattices 
with Ns — 24 and Ns = 32. NT = 24 for both lattices.

volume dependence of the correlators, and hence also that of the potentials. Figure 
5.21 shows the result of taking the ratio of local-cxtcndcd correlators computed 
over ensembles with Na = 24 and Ns =  32, and NT = 24 in both cases. There is 
no significant volume dependence for r /as = 0- 9. This can be seen by studying 
Figure 5.21 and Figure 5.22. For r /as = 10 12, the ratio clearly deviates from 
unity with increasing severity. From this volume study we conclude there is no 
overall volume dependence, but the local-extended correlators with r/as — 10-12 arc 
compromised by the use of periodic boundary conditions. This effect is similar to 
the issue regarding the temporal backward-mover in that it is due to the correlation 
at a space-time point on the lattice having contributions that travel opposite ways 
around a compact dimension. Again at first glance it may seem that we can account 
for this by deriving a spatial version of (5.16), but the key difference is the form 
of the functions depending on r  were known, in (5.3) these are the two exponential 
terms inside the parentheses. In this case we would need to know the form of the 
function we are essentially trying to calculate — the wave function. Consequently 
the potential values, Vr{r/as = 9-11), are excluded from the results.

The pscudoscalar and vector time-slice potentials shown in Figure 5.23 and Figure 
5.24 were obtained by applying (5.17) to the 0.767c on-axis correlators. Combining
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N T T [Tc] Central (Upper) Range Lower Range
1 2 8 ‘Zero’ 3 0 - 6 3 1 5  -  1 9

4 0 0 . 7 6 1 5 -  1 9 1 2  -  1 7

3 6 0 . 8 4 1 2  -  1 7 11  -  1 5

3 2 0 . 9 5 11 -  1 5 1 1  -  1 3

2 8 1 . 0 9 1 1  -  1 3 N/A

Table 5.3: N f  = 2 + 1 fitting ranges.

these time-slice potentials according to (4.12), the spin-independent time-slice poten­
tial shown in Figure 5.25 was obtained. The spin-independent time-slice potentials 
from all ensembles are shown in Appendix B. Out of these the 1 . 2 7 7 c ,  1.527c and 
1.907c spin-independent potentials are not considered any further due to them hav­
ing no t  range in which the potential is stable. The other time-slice spin-independent 
potentials were fitted for the r  ranges shown in Table 5.3. In these r  ranges a time- 
wise correlated fit to a constant was performed on the time-slice potentials for each 
separation. This generated a single value for the potential at each separation r. The 
end result of the analysis for the spin-independent potential is shown in Figure 5.26. 
The potentials appear at very similar energies, much more so than in the N f  = 2
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case, see Figure 5.8. This is encouraging because it suggests the chosen r  ranges all 
overlap well with the stable plateau region.

Nevertheless to compare the form of the curves, the potentials are shifted in 
Figure 5.27 such that the r /a s =  1 data points coincide with that of the ‘zero’ 
temperature potential. The Cornell potential is also included again; the potentials 
take a form that could clearly be built from a Coulomb and linear term. In this case 
it is particularly important that the potentials are observed to have a Coulomb-like 
form at small r because the configurations were stout-link smeared. If there was a 
complete lack of a Coulomb-like behaviour at small r, then it would be reason to 
believe the stout-link smearing procedure had corrupted the short-range information 
of the configurations. The divergence of potentials from the Cornell potential at 
small r could simply be a reflection of the true charmonium potential, or an artifact 
of the finite lattice spacing.

In Figure 5.28 the triangular data points in Figure 5.27 are used to form a 
systematic error bar on the corresponding circular data points for each temperature, 
as was done in the N f = 2 case. According to the r  ranges in Table 5.3, potentials can 
only be compared with the potential corresponding to the next highest temperature. 
Comparing the potentials in a manner adhering to this criterion we do not see 
a significant temperature effect between zero temperature and 0.767c at large r. 
Between 0.767c and 0.847c, and 0.957c and 1.097c the spin-independent potential 
flattens by an amount more significant than the systematic error. Between 0.847c 
and 0.957c the potential flattens by an amount that is on the limit of the systematic 
error.

At small r  the zero temperature potential is lower than the 0.767c potential, 
contrary to what we expect due to colour-Debye screening. This is initially dis­
appointing because the zero temperature result is the most reliable. However as 
so many more data points were available for the zero temperature case, it is not 
surprising that it takes a different form to the high temperature potentials. From 
Figure B.l we see the data points continue to decrease significantly with time until 
roughly r  =  30. As it is only for the zero temperature ensemble that we can fit 
the time-slice potentials above this r  value, the zero temperature spin-independent 
potential is the only one for which we obtain a result solely from a true plateau. 
For the higher temperatures the time-slice potentials are still ‘settling’, even for the 
largest available r.

In parallel, the fact that the zero temperature potential does not lie above the 
0.767c potential can be seen as a reasonable outcome based on colour-Debye screen-
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T[TC] (* PeV ])2 a [GeV-1]
‘Zero’ 0.4352 2.2978
‘Zero’* 0.3975 2.5156

0.76 0.4167 2.4001
0.76* 0.4187 2.3886
0.84 0.3977 2.5146
0.84* 0.3643 2.7453
0.95 0.3561 2.8080
0.95* 0.3583 2.7908
1.09 0.3424 2.9206

Table 5.4: The results of performing a linear fit on the large r  data of the spin- 
independent potentials shown in Figure 5.28. The string tension <j  is equivalent 
to a-2, displayed in alternative units. The values obtained for the string tension, 
with an asterisk on the associated temperature, can be compared to that of the 
next highest temperature in a fair manner, since they were extracted from spin- 
independent potentials obtained from the same r  range.

ing. As the temperature increases more and more colour-charges are produced from 
the vacuum, but the interquark potential is not modified significantly until the den­
sity of colour-charges is comparable to the interquark separation. From the results 
for 0.767c we could conclude that the density of colour-charges is such that the 
charmonium potential is unmodified up to this temperature.

To shed more light on the temperature dependence of the spin-independent po­
tentials their associated string tensions were calculated by performing a linear fit on 
the Vc{r/as =  5 — 8) data (see Table C.l) of Figure 5.28. The results of these fits 
are shown in Table 5.4. In general the string tension decreases as the temperature 
increases. It is only between zero temperature and 0.767c that the string tension 
increases against this trend significantly. The likely reasons for this are the same as 
those discussed above for the form of the potential. Interestingly, the value of the 
string tension extracted from the zero temperature ensemble, (0.4352MeV)2, is very 
close to the ubiquitous literature value of (0.44MeV)2, this is further evidence that 
the method is extracting the correct physics.

On the whole we conclude that the spin-independent potential flattens as the 
temperature increases, which is in line with our expectation that the interquark 
potential becomes colour-Debye screened at high temperature.

We also obtained the spin-dependent time-slice potentials for the different tem­
peratures by combining the pseudoscalar and vector time-slice potentials from each
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Figure 5.27: The spin-independent potential plotted for all r  ranges and temper­
atures. The potentials have been shifted. The Cornell potential is plotted using
(2.17) with ac = 0.52 and a = 2.34GcV_1.
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Figure 5.28: The spin-independent potential with systematic error plotted for all 
temperatures. Statistical error bars appear to the left and systematic ones to the 
right of data points.
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Figure 5.29: The spin-dependent potential plotted for all r  ranges and temperatures.

ensemble according to (4.13). These were analysed in the same way as the time- 
slice spin-independent plots to obtain Figure 5.29, Figure 5.30 and Figure 5.31. As 
for the Nf = 2 simulation the spin-dependent potential appears to have a repulsive 
core at small r  but taking into account the uncertainty is quite constant for large r. 
A similar form for the spin-dependent potential has been found in another lattice 
study [23]. A temperature dependence is less apparent in the spin-dependent poten­
tial than in the spin-independent potential. The systematic error is typically larger 
than any change in the potential due to the temperature changing. One factor is 
simply that the spin-dependent potentials are a difference rather than sum of the 
pseudoscalar and vector potentials, meaning uncertainties are relatively larger.

In Figure 5.32 the spin-independent potentials obtained from the N} — 2 and 
Nj =  2 T 1 simulations using the time-dependent method are compared. It is im­
portant to note that neither set of results has been shifted vertically from their 
positions in Figure 5.9 and Figure 5.27. It is encouraging that the potential data 
points interpolate each other at small r, especially given that the lattice parameters 
used in each simulation are quite different. For a given temperature the Nf — 2 + 1 
spin-independent potentials are flatter at large r  than those from the N f  — 2 simu­
lation. This could be due to the inclusion of an extra sea quark that has the ability 
to screen the strong force between quarks, but it could also be an effect analogous
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Figure 5.30: The spin-dependent potential plotted for all r  ranges and temperatures, 
but shifted vertically.
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Figure 5.31: The spin-dependent potential plotted for all temperatures. Statistical 
error bars appear to the left and systematic ones to the right of data points.
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Figure 5.32: A comparison of the spin-independent potentials obtained from the 
Nj — 2 (Figure 5.9) and Nj  =  2 + 1 (Figure 5.27) simulations using the time- 
dependent method.

to that seen in Figure 5.18. There we saw a divergence of the potential depending 
on the type of separation, but we can equivalently view this as a dependence of the 
potential on the spatial lattice spacing. In Figure 5.18 the relevant spatial lattice 
spacings are as, as\ /2 and as\ /3 for the on-axis, face-diagonal and body-diagonal 
type separations, where as = 0.162fm. There the potential appears to flatten at 
larger r as the spatial separation of neighbouring points decreases. In Figure 5.32 
we see the same behaviour between the potentials obtained from the lattice with 
larger a s, namely the Nf  =  2 results, and the lattice with smaller as, namely the 
Nf = 2 -f 1 results, where as = 0.123fm. Here the potentials also appear to flatten 
more for the smaller spatial lattice spacing.

In Figure 5.33 we compare the spin-independent potentials with the heavy quark 
free energies obtained in [115] — in this work the heavy quark free energy of a static 
quark-anti-quark pair in a colour singlet state separated by a distance r  is defined

by,

F U T  =  _  iog [Tr (Lra,(0)LMn(r))], (5.36)
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Figure 5.33: The spin-independent potential plotted against heavy quark free ener­
gies for comparable temperatures. The free energy data has been vertically shifted 
for the sake of comparison.

where Lren is the renormalized Polyakov loop. The free energy curves in Figure 5.33 
have been shifted vertically in energy from their position in [115] so that their form 
can be compared to the Nf = 2 + 1  spin-independent potentials. A more significant 
temperature effect is seen in the free energies than in the N f  = 2 +  1 potentials. 
However a direct comparison with the Nf = 2 + 1 potentials would not be reasonable 
because they have been calculated using a finite charm mass whereas the free energies 
were calculated for infinitely heavy charm quarks.

5 . 7  C o n c l u s i o n s
For both N f  — 2 and N f  = 2 + 1, the time-dependent method yields spin- 

independent potentials with the expected Coulomb-plus-linear form. This in itself 
is good evidence that the method is successfully extracting correct physics from the 
simulations. Furthermore in the N f  = 2 -f 1 ease this confirms that the stout-link 
smearing of the configurations is not interfering with the short-range physics.

The N f  — 2 spin-independent potentials do not exhibit a conclusive temperature 
dependence in agreement with colour-Debye screening, though one is seen between 
the 0.427c and 1.057c potentials. Observing a temperature dependence between
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higher temperatures was hindered by the correspondingly short temporal extents.
Overall the N f = 2 +  1 spin-independent potentials do exhibit a conclusive tem­

perature dependence, in agreement with colour-Debye screening. Taking into ac­
count the N f  =  2 and N f  = 2 +  1 results together we conclude that the time-dependent 
method is only applicable up to some limiting temperature, above which the effect 
of higher excited states and lattice artifacts prevents the method from being sensibly 
applied. For the lattice parameters used in this study, the maximum temperature at 
which the method has been sensibly applied is 1.097c-. Since the Nf = 2 + 1 lattice 
parameters were not chosen specifically for the time-dependent method it is safe to 
assume a more tailored choice of lattice parameters would allow the potential to be 
extracted for T  > 1.097c-

From Figure 5.18 and Figure 5.32 we note that the use of a coarser spatial 
lattice spacing may spuriously increase the gradient of the spin-independent potential 
at large r. Alternatively, the divergence of the on-axis, face-diagonal and body- 
diagonal potentials in Figure 5.18 may be reduced by using Cartesian rather spherical 
coordinates in the future. In any case, we assume that the finer lattice spacing 
provides the more correct result, as such the disagreement seen between the N f  = 2 
and N f  = 2-1-1 results in Figure 5.32 brings into doubt the validity of the N f  = 2 
results. Another issue with the N f = 2 results is that the dimensionful spatial extent 
of the configurations is less than that of the N f = 2 + 1 configurations. Consequently 
the volume dependence study done for the N f  = 2 + 1 configurations brings into 
question the validity of at least the r /a s =  5,6 data points. The unknown extent 
of boundary effects and the short temporal extents of the N f = 2 results means the 
N f  = 2 +  1 results are favoured for their reliability.
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Chapter 6

Conclusion

In this thesis charmonium potentials have been calculated using two different meth­
ods to analyse correlators obtained from dynamical simulations of QCD.

Conventional fitting techniques were applied to correlators obtained from a N f = 2 
simulation. Potentials could not be extracted from local-extended correlators be­
cause in this case some higher excited states contribute to the correlator with a 
negative sign. As a result the correlators do not have a functional form that is 
always decaying exponentially, which means fitting functions with a single exponen­
tial term for each correlator fail. We conclude that conventional fitting techniques 
should not be applied to local-extended correlators, or at least not on lattices with 
short temporal extents. In the extended-extended case fitting was more successful, 
higher excited states always contribute to the correlator with a positive sign, which 
is guaranteed by the symmetric source and sink operators. However the reliability of 
the potentials from this analysis is brought into question for the following reasons: 
i) higher excited states pollute the results for the ground state wave functions even 
at the largest available r; ii) the mass values obtained from fitting increase very 
significantly with temperature; and iii) the spin-independent potentials do not have 
a Coulomb-plus-linear form. Consequently even though the analysis of extended- 
extended correlators using conventional fitting techniques yields a temperature de­
pendent spin-independent potential, which flattens in agreement with the concept 
of colour-Debye screening, the result is deemed unreliable. The spin-dependent po­
tential from conventional fitting was found to be repulsive at small quark separation 
and attractive at larger quark separation, but this result is as unreliable as the the 
spin-independent one.

The HAL QCD time-dependent method was applied to correlators obtained from
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N f = 2 and N f = 2 +  1 simulations. In both cases the spin-independent potentials 
have a clear Coulomb-plus-linear form, which alone is good evidence that the method 
is extracting the correct physics from the simulations. In the N f = 2 +  1 case this 
confirms that the short-range information of the configurations was not affected by 
stout-link smearing. Prom the N f = 2 simulation a temperature dependence in the 
spin-independent potential cannot be concluded because the dependence on the r  
range used to fit time-slice potentials is significant. This is more than likely a simple 
function of the relatively short temporal extent of the corresponding configurations. 
The N f = 2 ensembles have a smaller temporal lattice spacing and in general have 
fewer temporal data points than the N f = 2 + 1 ensembles. Due to the short tem­
poral extent, the analysis is always being performed at a time that is too early for 
lattice artifacts and higher excited state effects to have abated, and these effects 
mask any underlying temperature dependence. However in the N f = 2 + 1 case the 
temperature dependence is more significant than the effect of changing the r  range. 
Between 0.76Tc and 1.09Tc, the spin-independent potential flattens at large r  with 
increasing temperature, which is consistent with the expectation that the interquark 
potential becomes deconfining at high temperature due to colour-Debye screening. 
The change in the potential with temperature is quite gradual, in general and when 
compared to heavy quark free energies, but since the phase transition from hadronic 
matter to QGP is a cross-over, a rapidly changing potential is not expected. Spin- 
dependent potentials were also calculated. Like the N f = 2 result, the N f = 2 + 1 
spin-dependent potentials were found to have little dependence on temperature and 
to be strongly repulsive at small quark separation, but at larger quark separation, 
with the exception of the 1.097c result, the potential is constant. The N f = 2 + 1 
time-dependent results are the most reliable in this thesis, therefore it is encourag­
ing that out of the three results for the spin-dependent potential, the form of the 
N f = 2 + 1 result agrees best with the existing literature.

An efficient method for calculating charmonium correlators from momentum 
space quark propagators was implemented as part of this work. This decreased 
the time taken to calculate correlators and allowed correlators corresponding to any 
quark separation, not just on-axis quark separations, to be computed. It was hoped 
that correlators corresponding to quark separations along face- and body-diagonals 
could be analysed to obtain potentials at an increased number of quark separations. 
However it was discovered that the spin-independent potential has a dependence on 
the spatial lattice spacing — the smaller the spacing, the more the potential flattens. 
This effect should be investigated further. If this effect is related to the resolution
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with which the correlator’s dependence on the quark separation is known, then one 
would expect that below a certain value, all values of the spatial lattice spacing 
should give the same result.

The time-dependent method is limited by the lattice size and spacings of the 
ensemble to which it is being applied. A lattice with many points in the temporal 
extent with a fine temporal lattice spacing is required to accurately apply this method 
to higher temperatures. Furthermore a large spatial volume and a fine spatial lattice 
spacing is required to reduce boundary effects and help allow off-axis separations to 
be used. Configurations with many more lattice sites than the ones used in this work 
are now routinely generated, and with supercomputers improving every year these 
requirements can be realistically met, meaning the time-dependent method could 
definitely be used to calculate potentials accurately at temperatures below, around 
and significantly above Tq in the future. One may think anisotropic lattices are 
unnecessary, since both fine temporal and spatial lattice spacings are being called 
for, however anisotropic lattices are important for high temperature studies because 
they allow the spatial volume to be kept constant while varying the temperature, 
thus avoiding any dependence of the results on spatial volume. Ideally the number of 
temporal lattice points would be kept constant and large while the temporal lattice 
spacing was used to vary the temperature. At present this is not an option because 
every temperature would then correspond to a different anisotropy and tuning the 
bare input parameters of the action for just a single anisotropy value takes many 
personnel-hours. An automatic way to do this would be extremely valuable.

In this thesis the approximate rotational symmetry of the lattice was relied upon 
to evaluate the second derivative of wave functions or correlators in spherical co­
ordinates. The advantage of using spherical coordinates was that only correlators 
corresponding to quark separations along the radial direction were required. How­
ever, due to the geometry of the lattice Cartesian coordinates are the most appro­
priate choice. Therefore the implementation of Cartesian coordinates is an obvious 
improvement that can be made in the future. For example in the context of the 
time-dependent method, the local-extended correlators corresponding to all possible 
quark separations could be obtained, then the second derivative in (5.17) could be 
evaluated using the Cartesian finite difference operator,

^ x ' , x + a  2 6 x ' yx  : ' , x —a  , & y ' , y + a  ^ ^ y ' , y  “ I-  & x ’ , y —a  , &z ' , z + a  ^ ^ z '  , z  d -  & z ' , z —a  ( a  - \ \
-  | -  | - ,

instead of (4.9) to obtain the potential at all lattice sites, assuming periodic boundary
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conditions are used. It would be interesting to see how using Cartesian coordinates 
affects the Coulomb section of the spin-independent potential and the divergence of 
the on-axis, face-diagonal and body-diagonal potentials in Figure 5.18.

The most obvious future application of the time-dependent method is to lattice 
QCD configurations that have been generated with the method in mind, but the 
method could also be applied to other systems where non-perturbative effects are 
of interest. For example the method could be used to calculate the electron-hole 
potential in graphene using a lattice model. Another effect that could be given 
attention is string breaking. In dynamical simulations the potential should become 
horizontal at roughly twice the mass of the quark in the bound state. If a larger 
spatial extent is used or the disparity between on-axis, face-diagonal and body- 
diagonal potentials is solved, then string breaking should be observable.



A ppendix A  

JV,= 2 Spin-Independent 
T im e-Slice Potentials

In this appendix the spin-independent time-slice potentials calculated by applying
(5.17) to the local-extended correlators obtained from the Nf = 2 simulation (Section 
4.4) are shown. The 1.057c plot is shown again for convenience.
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Figure A.3: 1.207c spin-independent potential plotted as a function of r  for each 
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Figure A.5: 1.687c spin-independent potential plotted as a function of r  for each 
quark separation r.
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Figure A.6: 2.097c spin-independent potential plotted as a function of r  for each
quark separation r.
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N f  = 2 + 1 Spin-Independent 
Tim e-Slice P otentials

In this appendix the spin-independent time-slice potentials calculated by applying
(5.17) to the N s = 24 local-extended correlators obtained from the Nf = 2 + 1 
simulation (Section 5.5) are shown. The 0.767c plot is shown again for convenience.
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Figure B.3: 0.847c spin-independent potential plotted as a function of r  for each 
quark separation r.
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Figure B.5: 1.097c spin-independent potential plotted as a function of r  for each 
quark separation r.
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Figure B.6: 1.277c spin-independent potential plotted as a function of r  for each
quark separation r.
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Figure B.7: 1.527c spin-independent potential plotted as a function of r  for each 
quark separation 7’.
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Figure B.8: 1.907c spin-independent potential plotted as a function of t  for each
quark separation r.
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A ppendix C

N f  =  2 + 1 Spin-Independent 
P otential D ata

T [ T C] Vc {r = la s) Vc (r = 2as) Vc (r = 3as) £ II
Co

‘Zero’ 2.5822(12) 2.8687(20) 3.0618(30) 3.2258(42)
‘Zero’* 2.5822(35) 2.8716(64) 3.0635(99) 3.2185(143)

0.76 2.5822(26) 2.8725(46) 3.0669(73) 3.2318(109)
0.76* 2.5822(26) 2.8821(46) 3.0854(70) 3.2527(102)
0.84 2.5822(25) 2.8736(46) 3.0655(73) 3.2192(103)
0.84* 2.5822(28) 2.8714(50) 3.0600(80) 3.2068(114)
0.95 2.5822(200) 2.8691(36) 3.0556(56) 3.2008(79)
0.95* 2.5822(24) 2.8740(47) 3.0664(77) 3.2172(114)
1.09 2.5822(24) 2.8528(44) 3.0233(71) 3.1552(103)

T [ T C] Vc (r = 5as) Vc (r = §as) Vc (r = 7as) Vc {r = 8as)
‘Zero’ 3.3760(59) 3.5111(80) 3.6302(114) 3.7298(169)
‘Zero’* 3.3498(201) 3.4647(275) 3.5625(375) 3.6455(500)

0.76 3.3783(153) 3.4988(207) 3.6090(270) 3.7023(357)
0.76* 3.3970(141) 3.5192(190) 3.6304(249) 3.7241(321)
0.84 3.3482(135) 3.4611(170) 3.5567(214) 3.6450(270)
0.84* 3.3297(151) 3.4285(193) 3.5074(242) 3.5791(305)
0.95 3.317(105) 3.4097(134) 3.4899(168) 3.5539(211)
0.95* 3.3368(158) 3.4296(210) 3.5112(276) 3.5763(361)
1.09 3.2588(138) 3.3414(179) 3.4116(228) 3.4790(288)

Table C.l: The N f  = 2 +  1 spin-independent potential data of Figure 5.27. The sta­
tistical uncertainty in the data is located inside round parentheses and is symmetric 
about the central value. The data values associated to the temperature values with 
an asterisk, correspond to the potentials obtained for the r  ranges in the fourth 
column of Table 5.3. A linear fit was performed on the V ( r  = 5 -  8a s ) data shown 
in the second tier of the table, to obtain the string tension for each temperature.



108 N f = 2 +  1 SPIN-INDEPENDENT POTENTIAL DATA



Bibliography

[1] T. Matsui and H. Satz, “J/ip  Suppression by Quark-Gluon Plasma 
Formation,” Phys. Lett. B178 (1986) 416.

[2] P. Braun-Munzinger and J. Stachel, “(Non)thermal aspects of charmonium 
production and a new look at J/'ijj suppression,” Phys.Lett. B490 (2000) 
196-202, arX iv:nucl-th/0007059 [n u c l- th ] .

[3] P. Braun-Munzinger and J. Stachel, “On charm production near the phase 
boundary,” Nucl.Phys. A690 (2001) 119-126, arX iv:nucl-th/0012064 
[n u c l- th ] .

[4] Y.-p. Liu, Z. Qu, N. Xu, and P.-f. Zhuang, “J/V' Transverse Momentum 
Distribution in High Energy Nuclear Collisions at RHIC,” Phys.Lett. B678 
(2009) 72-76, arX iv:0901.2757 [nucl-th ] .

[5] X. Zhao and R. Rapp, “Medium Modifications and Production of Charmonia 
at LHC,” Nucl.Phys. A859 (2011) 114-125, arXiv: 1102.2194 [hep-ph].

[6] M. Laine, O. Philipsen, P. Romatschke, and M. Tassler, “Real-time static 
potential in hot QCD,” JHEP  0703 (2007) 054, arXiv :hep-ph/0611300 
[hep-ph].

[7] F. Karsch, M. Mehr, and H. Satz, “Color Screening and Deconfinement for 
Bound States of Heavy Quarks,” Z.Phys. C37 (1988) 617.

[8] Y. Burnier, M. Laine, and M. Vepsalainen, “Heavy quarkonium in any 
channel in resummed hot QCD,” JHEP  0801 (2008) 043, arX iv :0711.1743 
[hep-ph].

[9] N. Brambilla, J. Ghiglieri, A. Vairo, and P. Petreczky, “Static 
quark-antiquark pairs at finite temperature,” Phys.Rev. D78 (2008) 014017, 
arX iv:0804.0993 [hep-ph].



110 BIBLIOGRAPHY

[10] A. Dumitru, Y. Guo, A. Mocsy, and M. Strickland, “Quarkonium states in 
an anisotropic QCD plasma,” Phys.Rev. D79 (2009) 054019,
arX iv:0901.1998 [hep-ph] .

[11] O. Kaczmarek, F. Karsch, F. Zantow, and P. Petreczky, “Static quark 
anti-quark free energy and the running coupling at finite temperature,”
Phys.Rev. D70 (2004) 074505, arXiv :hep-lat/0406036 [h ep -la t].

[12] W HOT-QCD Collaboration, Y. Maezawa et al., “Heavy-quark free energy, 
Debye mass, and spatial string tension at finite temperature in two flavor 
lattice QCD with Wilson quark action,” Phys.Rev. D75 (2007) 074501, 
axXiv:hep-lat/0702004 [h ep -la t] .

[13] A. Mocsy and P. Petreczky, “Quarkonia correlators above deconfinement,” 
Phys.Rev. D73 (2006) 074007, arX iv:hep-ph/0512156 [hep-ph].

[14] Z. Fodor, A. Jakovac, S. Katz, and K. Szabo, “Static quark free energies at 
finite temperature,” Po5LAT2007 (2007) 196, arX iv :0710.4119 
[h e p - la t] .

[15] P. Petreczky, C. Miao, and A. Mocsy, “Quarkonium spectral functions with 
complex potential,” Nucl.Phys. A855 (2011) 125-132, arXiv: 1012.4433 
[hep-ph].

[16] A. Bazavov and P. Petreczky, “On static quark anti-quark potential at 
non-zero temperature,” Nucl.Phys. A904-905 2013 (2013) 599c-602c, 
arX iv :1210.6314 [h ep -la t] .

[17] A. Bazavov and P. Petreczky, “Static quark correlators and quarkonium 
properties at non-zero temperature,” arXiv: 1211.5638 [h e p - la t] .

[18] O. Kaczmarek and F. Zantow, “Static quark anti-quark interactions in zero 
and finite temperature QCD. I. Heavy quark free energies, running coupling 
and quarkonium binding,” Phys.Rev. D71 (2005) 114510,
arX iv:hep-lat/0503017 [h e p - la t] .

[19] A. Rothkopf, T. Hatsuda, and S. Sasaki, “Proper heavy-quark potential from 
a spectral decomposition of the thermal Wilson loop,” PoS LAT2009 (2009) 
162, axXiv:0910.2321 [h ep -la t] .



BIBLIOGRAPHY 111

[20] A. Rothkopf, T. Hatsuda, and S. Sasaki, “Complex Heavy-Quark Potential 
at Finite Temperature from Lattice QCD,” Phys.Rev.Lett. 108 (2012) 
162001, arX iv :1108.1579 [h ep -la t] .

[21] Y. Burnier and A. Rothkopf, “Disentangling the timescales behind the 
non-perturbative heavy quark potential,” Phys.Rev. D86 (2012) 051503, 
arX iv:1208.1899 [hep-ph] .

[22] Y. Ikeda and H. Iida, “The anti-quark-quark potential from Bethe-Salpeter 
amplitudes on lattice,” PoS LATTICE2010 (2010) 143, arXiv: 1011.2866 
[h ep -la t].

[23] T. Kawanai and S. Sasaki, “Interquark potential with finite quark mass from 
lattice QCD,” Phys.Rev.Lett. 107 (2011) 091601, arXiv: 1102.3246 
[h e p - la t] .

[24] C. Allton, W. Evans, and J.-I. Skullerud, “Charmonium potentials at finite 
temperature,” PoS  LATTICE2012 (2012) 082.

[25] W. Evans, C. Allton, and J. I. Skullerud, “Ab Initio Calculation of Finite 
Temperature Charmonium Potentials,” Phys.Rev. D89 (2014) 071502.

[26] W. Evans, C. Allton, P. Giudice, and J.-I. Skullerud, “Charmonium 
Potentials At Non-Zero Temperature,” PoS  LATTICE2013 (2013) 168.

[27] C. Allton, G. Aarts, A. Amato, W. Evans, P. Giudice, et al., “Quark-gluon 
plasma phenomenology from the lattice,” J.Phys.Conf.Ser. 509 (2014) 
012015.

[28] W. Evans, C. Allton, P. Giudice, and J.-I. Skullerud, “Charmonium 
Potentials At Non-Zero Temperature,” to be submitted to JHEP  (2014) .

[29] R. S. Chivukula, “The Origin of mass in QCD,” eConf C040802 (2004) 
L010, arX iv:hep-ph/0411198 [hep-ph].

[30] D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Non-Abelian Gauge 
Theories,” Physical Review Letters 30 (June, 1973) 1343-1346.

[31] Particle Data G roup Collaboration, J. Beringer et al., “Review of Particle 
Physics (RPP),” Phys.Rev. D86 (2012) 010001.



112 BIBLIOGRAPHY

[32] M. Gell-Mann, “A Schematic Model of Baryons and Mesons,” Physics Letters 
8 no. 3, (February, 1964) 214-215.

[33] G. Zweig, “An SU(3) Model for Strong Interaction Symmetry and its 
Breaking I,” CERN Report 8182/TH.401. (January, 1964) .

[34] G. Zweig, “An SU(3) Model for Strong Interaction Symmetry and its 
Breaking II,” CERN Report 8418/TH.412. (February, 1964) .

[35] I. Y. Pomeranchuk Doklady Akad. Nauk. SSSR  78 (1951) 889.

[36] H. Satz, “Phase transitions in QCD,” Nucl.Phys. A681 (2001) 3-21, 
arX iv:hep-ph/0007209 [hep-ph] .

[37] O. Philipsen, “Lattice QCD at non-zero temperature and baryon density,” 
arX iv:1009.4089 [h e p - la t] .

[38] Y. Aoki, Z. Fodor, S. Katz, and K. Szabo, “The QCD transition 
temperature: Results with physical masses in the continuum limit,”
Phys.Lett. B643 (2006) 46-54, arX iv:hep-lat/0609068 [h ep -la t].

[39] B. Svetitsky and L. G. Yaffe Nucl.Phys. B210 [FS6] (1982) 423.

[40] H. Satz, “The States of Matter in QCD,” arX iv:0903.2778 [hep-ph].

[41] D. R. Pisarski and F. Wilczek Phys. Rev. D29 (1984) 338.

[42] F. Kaxsch, E. Laermann, and C. Schmidt, “The Chiral critical point in 
three-flavor QCD,” Phys.Lett. B520 (2001) 41-49, arXiv :hep-lat/0107020 
[h e p - la t] .

[43] S. Gavin, A. Gocksch, and R. D. Pisarski, “QCD and the chiral critical 
point,” Phys.Rev. D49 (1994) 3079-3082, arXiv :hep-ph/9311350 
[hep-ph].

[44] T. Hatsuda, Y. Miake, and K. Yagi, Quark-Gluon Plasma. No. 23 in 
Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. 
Cambridge University Press, December, 2005.

[45] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of 
superconductivity,” Phys. Rev. 108 (Dec, 1957) 1175-1204.



BIBLIOGRAPHY 113

[46] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schfer, “Color 
superconductivity in dense quark matter,” Rev.Mod.Phys. 80 (2008) 
1455-1515, arX iv :0709.4635 [hep-ph],

[47] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. Lane, et al., “The 
Spectrum of Charmonium,” Phys.Rev.Lett. 34 (1975) 369-372.

[48] E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, and T.-M. Yan, 
“Charmonium: The Model,” Phys.Rev. D17 (1978) 3090.

[49] E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, and T.-M. Yan, 
“Charmonium: Comparison with Experiment,” Phys.Rev. D21 (1980) 203.

[50] M. Shifman, A. Vainshtein, and V. Zakharov, “QCD and Resonance 
Physics,” Nucl. Phys. B147 (1979) 385; 448.

[51] P. Colangelo and A. Khodjamirian, “QCD sum rules, a modern perspective,” 
arX iv:hep-ph/0010175 [hep-ph] .

[52] J. M. Maldacena, “The Large N limit of superconformal field theories and 
supergravity,” Adv. Theor.Math.Phys. 2 (1998) 231-252,
arX iv:hep -th /9 7 11200 [hep-th] .

[53] S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators 
from noncritical string theory,” Phys.Lett. B428 (1998) 105-114,
arX iv:hep-th/9802109 [h ep -th ].

[54] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 
(1998) 253-291, arXiv:hep-th/9802150 [hep-th].

[55] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N 
field theories, string theory and gravity,” Phys.Rept. 323 (2000) 183-386, 
arX iv:hep-th/9905111 [hep-th] .

[56] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and
M. Van Raamsdonk, “The Hagedorn - deconfinement phase transition in 
weakly coupled large N gauge theories,” Adv. Theor. Math. Phys. 8 (2004) 
603-696, arX iv:hep-th/0310285 [hep-th].

[57] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement 
in gauge theories,” Adv. Theor.Math.Phys. 2 (1998) 505-532,
arX iv:hep-th/9803131 [h ep -th ].



114 BIBLIOGRAPHY

[58] G. Aarts, F. A. James, J. M. Pawlowski, E. Seiler, D. Sexty, et al., “Stability 
of complex Langevin dynamics in effective models,” JHEP  1303 (2013) 073, 
a rX iv :1212.5231 [h ep -la t] .

[59] G. Aarts and F. A. James, “Complex Langevin dynamics in the SU(3) spin 
model at nonzero chemical potential revisited,” JHEP 1201 (2012) 118, 
arX iv :1112.4655 [h ep -la t] .

[60] G. Aarts, F. A. James, E. Seiler, and I.-O. Stamatescu, “Complex Langevin: 
Etiology and Diagnostics of its Main Problem,” Eur.Phys.J. C71 (2011)
1756, a rX iv :1101.3270 [h ep -la t] .

[61] AuroraScience Collaboration, M. Cristoforetti, F. Di Renzo, and
L. Scorzato, “New approach to the sign problem in quantum field theories: 
High density QCD on a Lefschetz thimble,” Phys.Rev. D86 (2012) 074506, 
arX iv:1205.3996 [hep -la t] .

[62] ALICE Collaboration, B. Abelev et al, “Centrality determination of Pb-Pb 
collisions at V̂ vvyv =  2.76 TeV with ALICE,” Phys.Rev. C88 no. 4, (2013) 
044909, arX iv:1301.4361 [nuc l-ex ].

[63] NA38 Collaboration, C. Baglin et al. Phys. Lett. B220 (1989) 471.

[64] H. Satz, “The SPS heavy ion programme,” Phys.Rept. 403-404 (2004)
33-50, arX iv:hep-ph/0405051 [hep-ph].

[65] NA50 Collaboration, M. Abreu et al., “Evidence for deconfinement of 
quarks and gluons from the J/'ip suppression pattern measured in Pb + Pb 
collisions at the CERN SPS,” Phys.Lett. B477 (2000) 28-36.

[66] STAR Collaboration, J. Adams et a l, “Experimental and theoretical 
challenges in the search for the quark gluon plasma: The STAR 
Collaboration’s critical assessment of the evidence from RHIC collisions,” 
Nucl.Phys. A757 (2005) 102-183, arXiv:nucl-ex/0501009 [nucl-ex].

[67] PH ENIX Collaboration, K. Adcox et a l, “Formation of dense partonic 
matter in relativistic nucleus-nucleus collisions at RHIC: Experimental 
evaluation by the PHENIX collaboration,” Nucl.Phys. A757 (2005) 184-283, 
arX iv:nucl-ex/0410003 [n u c l-ex ].



BIBLIOGRAPHY 115

[68] I. Arsene, I. Bearden, et al., “Quark-gluon plasma and color glass condensate 
at RHIC. The perspective from the BRAHMS experiment,” Nuclear Physics 
A 757  no. 1-2, (2005) 1-27.

[69] B. Back, M. Baker, et a l, “The PHOBOS perspective on discoveries at 
RHIC,” Nuclear Physics A 757 no. 1-2, (2005) 28-101.

[70] A LICE Collaboration, B. Abelev et al., “J / ^  Suppresion at forward rapidity 
in Pb-Pb collisions at =  2.76 TeV,” Phys. Rev. Lett. 109 (Aug, 2012)
072301.

[71] A LICE Collaboration, K. Aamodt et al., “Charged-particle multiplicity 
density at mid-rapidity in central Pb-Pb collisions at y/s^N  = 2.76TeV,” 
Phys. Rev. Lett. 105 (Dec, 2010) 252301.

[72] A LICE Collaboration, K. Aamodt and others., “Elliptic flow of charged 
particles in Pb-Pb collisions at y/s^N  = 2.76TeV,” Phys. Rev. Lett. 105 
(Dec, 2010) 252302.

[73] A LICE Collaboration, K. Aamodt et al., “Centrality dependence of the 
charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at 
y/sNN = 2.76TeV,” Phys. Rev. Lett. 106 (Jan, 2011) 032301.

[74] A LICE Collaboration, K. Aamodt et al., “Suppression of charged particle 
production at large transverse momentum in central Pb-Pb collisions at 
y/SNN = 2.76TeV,” Physics Letters B  696 no. 1-2, (2011) 30-39.

[75] A LICE Collaboration, B. B. Abelev et al., “Centrality, rapidity and 
transverse momentum dependence of J/V> suppression in Pb-Pb collisions at 
y / s ^ = 2.76 TeV,” Phys.Lett. 743 (2014) 314-327, arXiv: 1311.0214 
[nuc l-ex ].

[76] A LICE Collaboration, B. Abelev et al., “Measurement of charged jet 
suppression in Pb-Pb collisions at =  2.76 TeV,” JHEP  1403 (2014) 
013, arX iv :1311.0633 [nucl-ex].

[77] ATLAS Collaboration, A. Angerami, “Measurements of jet quenching and 
heavy flavor production with the ATLAS detector,” Nucl.Phys. A910-911 
(2013) 12-19, a rX iv :1210.0138 [nucl-ex].



116 BIBLIOGRAPHY

[78] CMS Collaboration, T. Dahms, “Upsilon suppression in Pb-Pb collisions at 
the LHC,” arX iv: 1307.1795 [nuc l-ex ].

[79] C. Gattringer and C. Lang, Quantum Chromodynamics on the Lattice - An  
Introductory Presentation. Springer, 2010.

[80] K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D 10 (1974) 2445.

[81] Hadron Spectrum Collaboration, L. Liu et al., “Excited and exotic 
charmonium spectroscopy from lattice QCD,” JHEP 1207 (2012) 126, 
arX iv:1204.5425 [hep-ph] .

[82] Ferm ilab L attice , M ILC, H P Q C D  Collaboration, A. Kronfeld et al., 
“Predictions from lattice QCD,” Int. J.Mod.Phys. A21 (2006) 713-719, 
arX iv:hep-lat/0509169 [h ep -la t] .

[83] M. Clark, “The Rational Hybrid Monte Carlo Algorithm,” PoS LAT2006
(2006) 004, arX iv:hep-lat/0610048 [h ep -la t].

[84] C. Allton, “Gauge-invariant smearing and matrix correlators using Wilson 
fermins at (3=6.2,” Physical Review D 47 no. 11, (1993) 5128.

[85] S. Basak, I. Sato, S. Wallace, R. Edwards, D. Richards, et al., “Combining 
quark and link smearing to improve extended baryon operators,” PoS 
LAT2005 (2006) 076, arX iv:hep-lat/0509179 [h ep -la t].

[86] C. Morningstar and M. J. Peardon, “Analytic smearing of SU(3) link 
variables in lattice QCD,” Phys.Rev. D69 (2004) 054501, 
arX iv:hep-lat/0311018 [h ep -la t] .

[87] APE Collaboration, M. Albanese et al. Phys. Lett. B192 (1987) 142.

[88] F. Knechtli and A. Hasenfratz, “Dynamical fermions with fat links,”
Phys.Rev. D63 (2001) 114502, arX iv:hep-lat/0012022 [h ep -la t].

[89] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding, et al., “The 
chiral and deconfinement aspects of the QCD transition,” Phys.Rev. D85 
(2012) 054503, arX iv :1111.1710 [h ep -la t].

[90] W uppertal-Budapest Collaboration, S. Borsanyi et al., “Is there still any 
7c mystery in lattice QCD? Results with physical masses in the continuum 
limit III,” JHEP  1009 (2010) 073, arXiv: 1005.3508 [h ep -la t].



BIBLIOGRAPHY 117

[91] C. Michael Nucl. Phys. B259 (1985) 58.

[92] M. Lusher and U. Wolff. Nucl. Phys. B339 (1990) 222.

[93] H. A. Bethe and E. E. Salpeter, “A Relativistic Equation for Bound State 
Problems,” Phys.Rev. 84 (1951) 1232-1242.

[94] V. Sauli and P. Bicudo, “Excited charmonium states from Bethe-Salpeter 
equation,” PoS Q C D -T N T -II (2011) 043, arXiv: 1112.5540 [hep-ph].

[95] V. Sauli, “Intriguing solutions of Bethe-Salpeter equation for radially excited 
pseudoscalar charmonia,” arX iv: 1207.2621 [hep-ph].

[96] Y. Ikeda and H. Iida, “Quark-anti-quark potentials from 
Nambu-Bethe-Salpeter amplitudes on lattice,” Prog. Theor. Phys. 128 (2012) 
941-954, a rX iv :1102.2097 [h ep -la t] .

[97] U K Q CD  Collaboration, P. Lacock, C. Michael, P. Boyle, and P. Rowland, 
“Orbitally excited and hybrid mesons from the lattice,” Phys.Rev. D54 
(1996) 6997-7009, arX iv:hep-lat/9605025 [h ep -la t] .

[98] X. Liao and T. Manke, “Excited charmonium spectrum from anisotropic 
lattices,” arX iv:hep-lat/0210030 [h ep -la t] .

[99] HAL QCD Collaboration, S. Aoki, “Hadron interactions in lattice QCD,” 
Prog.Part.Nucl.Phys. 66 (2011) 687-726, arXiv: 1107.1284 [h ep -la t].

[100] C. Morningstar and M. J. Peardon, “The glueball spectrum from novel 
improved actions,” Nucl.Phys.Proc.Suppl. 83 (2000) 887-889,
axX iv:hep-lat/9911003vl.

[101] T rinL at Collaboration, J. Foley, A. O’Cais, M. Peardon, and S. M. Ryan,
“A Non-perturbative study of the action parameters for anisotropic-lattice 
quarks,” Phys.Rev. D73 (2006) 014514, arX iv:hep-lat/0405030 
[h e p - la t] .

[102] R. Morrin, A. O. Cais, M. Peardon, S. M. Ryan, and J.-I. Skullerud, 
“Dynamical QCD simulations on anisotropic lattices,” Phys.Rev. D74 (2006) 
014505, arX iv:hep-lat/0604021 [h ep -la t] .

[103] M. B. Oktay and J.-I. Skullerud, “Momentum-dependence of charmonium 
spectral functions from lattice QCD,” arXiv: 1005.1209 [h e p - la t] .



118 BIBLIOGRAPHY

[104] G. Aarts, C. Allton, M. B. Oktay, M. Peardon, and J.-I. Skullerud, 
“Charmonium at high temperature in two-flavor QCD,” Phys.Rev. D76
(2007) 094513, arX iv:0705.2198 [h e p - la t] .

[105] SciDAC, LHPC, UKQCD Collaboration, R. G. Edwards and B. Joo, 
“The Chroma software system for lattice QCD,” Nucl.Phys.Proc.Suppl. 140 
(2005) 832, arX iv:hep-lat/0409003 [h ep -la t].

[106] CERN, “Program library,” 2014. h ttp : / /c e rn lib .w e b .c e rn .c h /c e rn lib / . 
[Online; accessed 23-July-2014].

[107] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 
Numerical Recipes in FORTRAN; The Art of Scientific Computing. 
Cambridge University Press, New York, NY, USA, 2nd ed., 1993.

[108] HAL QCD Collaboration, N. Ishii, “Time-dependent effective 
Schroedinger-like equation for lattice nuclear potentials,” PoS 
LATTICE2011 (2011) 160.

[109] S. Durr, “Physics of r( with rooted staggered quarks,” Phys.Rev. D85 (2012) 
114503, arX iv:1203.2560 [hep-la t] .

[110] S. Aoki, 2012. Private Communication.

[111] R. G. Edwards, B. Joo, and H.-W. Lin, “Tuning for Three-flavors of 
Anisotropic Clover Fermions with Stout-link Smearing,” Phys. Rev. D78
(2008) 054501, a rX iv :h ep -la t/0 8 0 3 .3960.

[112] K. Symanzik, “Continuum Limit and Improved Action in Lattice Theories. 1. 
Principles and (f>4 Theory,” Nucl.Phys. B226 (1983) 187.

[113] K. Symanzik, “Continuum Limit and Improved Action in Lattice Theories. 2. 
O(N) Nonlinear Sigma Model in Perturbation Theory,” Nucl.Phys. B226 
(1983) 205.

[114] R. Hudspith, “Fourier Accelerated Conjugate Gradient Lattice Gauge 
Fixing,” arX iv: 1405.5812 [h e p - la t] .

[115] O. Kaczmarek, “Screening at finite temperature and density,” PoS 
C PO D 07 (2007) 043, arX iv:0710.0498 [h ep -la t] .




