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Summary

Mass spectrometry is widely used nowadays especially in the fields of pharmaceutical 
and proteomics research. Ginkgo biloba is one of the top selling phytopharmaceuticals 
in the US and Europe. The two major active components of Ginkgo leaf extract are the 
flavonoids and terpene lactones. Identification, determination, as well as the 
physiological effects of these two sets of compounds have been of increasing interest 
over the last 20 years. In this thesis, systematic qualitative and quantitative studies of the 
flavonoids and terpene lactones in Ginkgo biloba by liquid chromatography / mass 
spectrometry have been undertaken. Also in this thesis, mass spectrometric 
methodology was developed and applied to the identification of the proteins specifically 
phosphorylated in response to cCMP.

Structural information of Ginkgo biloba flavonoids and terpene lactones, the fragment 
of compounds were obtained on both a LCQ ion trap and Q-TOF mass spectrometer. 
The tentative fragment pathways were proposed and used for structural elucidation of 
some unknown components in Ginkgo biloba commercial products. Capillary column 
separation of Ginkgo biloba commercial product was evaluated and fingerprint profiles 
of five Ginkgo biloba commercial products were compared.

A reverse-phase high-performance liquid chromatography electrospray ionisation 
(RP-HPLC/ESI) mass spectrometry method was developed and validated for the 
simultaneous determination of ten major active components in Ginkgo biloba extract 
(bilobalide, ginkgolides A, B, C, quercetin, kaempferol, isorhamnetin, rutin hydrate, 
quercetin-3-/3-D-glucoside and quercitrin hydrate).

The quantitative determination of flavonoids and terpene lactones by LC/MS in human 
urine after consumption of Ginkgo biloba product was developed. The online 
solid-phase extraction and capillary column with column-switch technique require 
minimum sample pre-treatment and both flavonoids and terpene lactones can be 
detected simultaneously.

The mass accuracy at high molecular weight by matrix-assisted laser 
desorption/ionisation time-of-flight mass spectrometry was investigated to resolve a 
question on mass accuracy which had been observed to be relatively low for high mss 
proteins. Bovine serum albumin (BSA) was employed as a model compound and 
strategies to improve mass measurement at high mass were examined.

LC/MS was applied in part of the cyclic nucleotide project in the School of Biological 
Science. Since cAMP and cGMP are recognized second messengers and play important 
roles in signal transduction, to elucidate the function of cCMP in signal transduction, 
efforts were made to identify the cCMP-responsive protein kinase substrates. 
Methodology of specific enrichment of phosphopeptides using immobilized metal 
affinity chromatography (IMAC) was developed, phosphorylated proteins responding 
specifically to cCMP were proposed, and this supports the relationship of cCMP with 
cell hyperproliferation.
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Chapter 1

Introduction to HPLC and mass spectrometry

1



1.1 Introduction to chromatography

Chromatography is a technique which is widely used for the separation of analyte 

mixtures and the identification of their individual components. Chromatography has 

been defined as

“A method used primarily for the separation o f components o f a sample, in which the 

components may be distributed between two phases, one o f which is stationary while the 

other moves. The stationary phase may be a solid, liquid supported on a solid, or a gel. 

The stationary phase may be packed in a column, spread as a layer, or distributed as a 

film and the mobile phase may be gaseous or liquid”

by the International Union of Pure and Applied Chemistry (IUPAC)1. The 

chromatography process occurs as a result of repeated absorption/desorption steps 

during the movement of analyte along the stationary phase. The separation is based on 

the differences in the equilibrium coefficients of the individual analytes in the sample. 

Based upon the physical nature of the mobile phase chromatography is classified 

accordingly: gas chromatography (GC), liquid chromatography (LC), capillary 

electrophoresis chromatography (CEC) and supercritical fluid chromatography (SFC).

1.1.1 History of chromatography

Chromatography is considered as one of the most dynamic and versatile analytical 

methods, it has advanced greatly since its beginnings in the twentieth century. A 

Russian botanist Tswett first introduced the concept of chromatography in 1903, he 

reported the novel separation and isolation of various plant pigments by using a glass

2



column packed with calcium carbonate. In his experiment, coloured bands relating to 

the differing plant components passed through the column sequentially and for this 

reason the process was termed chromatography which means colour writing. 

Unfortunately, his remarkable work was regarded as being of little merit and was 

ignored by his contemporaries for nearly twenty years. It was not until 1931 that Kuhn 

and his co-workers3 applied Tswett’s method to the separation of isomers of polyene 

pigments which promoted the acceptance of the method. This research generated 

renewed interest and recognition of chromatography as a valuable separation method. In 

1941, liquid-liquid partition chromatography was developed by Martin and Synge4, of 

the Wool Industries Research Association in England. A solid support made of water 

retained on a solid support of silica gel was used as the stationary phase. In 1944, Martin 

with his colleagues Consden and Gordon introduced paper chromatography5 in which 

paper acts as a flat “column”. It was one of the key enabling-techniques that lead to 

Sanger’s 1958 Nobel Prize for determining the first amino acid sequence of the protein 

insulin, although it was later replaced by thin-layer chromatography, Edman 

degradation and various forms of electrophoresis. In 1952, James and Martin developed 

the technique of gas-liquid chromatography and demonstrated the integrated theory of 

this separation technique6. Because of his remarkable contribution to chromatography 

Martin was award the Nobel Prize for Chemistry in 1952.

HPLC was invented in 1966, being named high-performance liquid chromatography by 

Horvath who reported a packing material comprising of silanized silica and 

demonstrated that high pressure and small particle size provide improved separation. 

The first commercial HPLC system was not available until 1969 when the high pressure 

and small particle size were applied to the commercial column. Theoretical
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understanding of gas chromatography and later of liquid chromatography was 

developed when the concept of the “height equivalent to a theoretical plate” was put 

forward7'9.

HPLC was popularized throughout the 1970s since it provided more precise and rapid 

separations required for many areas of biochemical research. After nearly 40 years 

development, chromatography plays an even more important role in a wide range of 

scientific studies. It is an extremely versatile and robust separation technique which is 

widely used in fields such as the analysis of compounds in pharmaceuticals, natural 

products and biology.

1.1.2 Theory of chromatography

Chromatography is a physical method of separation in which the components being 

separated and distributed between two immiscible phases, one phase is held static which 

is termed as stationary phase, the other phase, termed as the mobile phase, travels past 

the stationary phase under either gravity or pressure or electrophoretic pressure. The 

stationary phase is a dispersed medium with a large surface area and it can be either 

solid or liquid spread over an inert support or spread as a thin film on the walls of the 

column. The mobile phase can be gas (GC), liquid (LC), electrolyte (CE) or a 

supercritical fluid (SFC). Chromatographic theory was first proposed in 1941 by Nobel 

Prize winners Martin and Synge. In the 1950s, Craig10 and Glueckauf11 developed

19 19so-called “plate theory”; van Deemter and Giddings established the rate theory. The 

following sections discuss the important parameters underlying the theory of 

chromatography.
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1.1.2.1 Distribution coefficient (K)

Chromatographic separation occurs due to the differential migration of analytes along 

the column. The average rate of migration of an analyte through the column depends on 

the fraction of time spent in the stationary phase and on the affinity of the analyte to the 

stationary phase. Components that tend to reside in the mobile phase will move more 

quickly than those that prefer the stationary phase. The different tendencies of analytes 

to preferentially exist in the stationary or mobile phase allow their separation due to the 

continual equilibration between the two phases14. Each analyte is distributed between 

the two phases with its characteristic distribution coefficient, K, which is defined as

K=Cs/Cm (Eq. 1.1)

where Cs is the molar concentration of the analyte in the stationary phase and Cm is its 

molar concentration in the mobile phase. Analyte with a high distribution coefficient 

will move slowly through the column. Separation cannot be achieved between analytes 

with the same distribution coefficient.

1.1.2.2 Retention time (tR)

The retention time (tR) is the time taken for an analyte to move from the point of 

injection until it reach the detector. A typical chromatogram (Figure 1.1) shows the 

retention times and peak widths ( W a  and W b )  of the analyte compounds A and B 

relative to the non-retained components. In this figure, tM is the dead time, which is the 

time for unretained components to reach the detector. It is identical for all analytes in a 

given chromatographic system since they migrate with the same velocity (that of the

5



mobile phase). The adjusted retention time tR’ is the time for which an analyte is 

retained compared with that of an unretained compound and is therefore directly 

associated with the interaction of the analyte with the stationary phase. Their 

relationship is given by

tR,= tR - tM (Eq. 1.2)

1/2
1/2

Time

Injection

Figure 1.1 Chromatographic separation of two analytes A and B. tm-dead time; 

tR-retention time of an analyte; Wj/2-peak width at half maximum.

1.1.2.3 Capacity factor (k’)

The capacity factor is used to described the migration rates of analytes through the 

chromatographic system, this can be calculated from the chromatogram by

k’=( tR - tM)/ tM (Eq. 1.3)
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It can be used to compare retentions on different instruments since it is independent 

of the mobile phase flow rate and the physical dimensions of the column. Ideally, the 

capacity factor of the components in the separation should be between 1 and 5. 

Values much lower than unity correspond to analytes eluting very rapidly which 

makes accurate determination of the retention times difficult. Values higher than 20 

indicate long elution time and broad peak width.

1.1.2.4 Selectivity factor (a)

The selectivity factor (a) is defined as the ratio of the distribution coefficients of 

components A and B or the ratio of capacity factors of components A and B.

a=KB/KA=k’B/k’A (Eq. 1.4)

The selectivity factor indicates how well a chromatographic system can separate two 

analytes A and B. B is more strongly retained component, where the selectivity factor is 

always greater than 1. If Qf=l the retention times are identical and no separation can be 

obtained.

Although the selectivity factor describes the separation of peaks it cannot give accurate 

information, especially for LC systems, since it does not take into account peak widths. 

A better measure of separation of two neighbouring peaks is provided by column 

resolution, Rs, from which both retention difference and column efficiency are 

evaluated.
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1.1.2.5 Resolution (Rs)

The resolution (Rs) between two components in a chromatogram is determined from the 

differences in the corresponding retention times and baseline peak widths (W b ). For 

symmetrical peaks of Gaussian shape it can be defined as

where W1/2 is the peak width at half-height. Generally, baseline resolution can be 

achieved when Rs> 1.5 for peaks of similar size. An increase in the resolution value 

shows improved separation whereas smaller values illustrate that two analytes 

co-elute to some degree.

1.1.2.6 Separation efficiency

The efficiency of a given separation method is described in terms of the plate height (H) 

and the number of theoretical plates (N). Plate number originates from distillation 

theory and was first applied to chromatography by Martin and Synge4 in 1941. 

Theoretical plates are considered as a series of narrow discrete sections in a 

chromatographic column or layer and equilibrium of the solute between the stationary 

and mobile phase is taken at each plate. Movement of analyte and mobile phase is 

viewed as a series of transfers from one plate to the next. The efficiency of a 

chromatographic system improves as the number of equilibrations and thus the number 

of theoretical plates increases. The plate number N of a chromatographic system is 

defined as,

(Eq. 1.5)

N=16(tR/w )2 (Eq. 1.6)
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or N=5.54 (tR/wi/2) 2 (Eq. 1.7)

The height of a theoretical plate H, is readily calculated providing the length of the 

column (normally in centimetres) is known,

H = L/n  (Eq. 1.8)

where H = distance over which chromatographic equilibrium is achieved and is referred 

to as the height equivalent to a theoretical plate (HETP). Each theoretical plate is 

regarded as an equilibrium step, therefore the column efficiency increases as the number 

of theoretical plates increase, and the smaller the plate height, the more efficient the 

column. HETP is smaller for smaller column-packing materials, lower mobile phase 

flow rate, less viscous mobile phase and higher column temperatures.

1.1.2.7 van Deemter equation (band broadening theory)

1 9In 1945, van Deemter developed an equation that related the height of the theoretical 

plate to the linear mobile phase velocity and the various physical chemical properties of 

the solid phase and mobile phase,

HETP = A + -  + (C„ + C, ) v = a(dp ) + -  + c(dpf v  (Eq. 1.9)
V V

The overall effect derived by the van Deemter equation plotting the HETP against 

mobile phase velocity is shown in Figure 1.2.
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Figure 1.2 van Deemter plot, the height-equivalent of the theoretical plate versus

linear mobile phase velocity

The terms used in the van Deemter equation are described below. 

v : the mobile phase velocity. 

dp: diameter of packing particles

A(a): the Eddy diffusion which represents the various of pathways by which a 

component finds its way through the column. The various possible pathways result in 

different retention times as the mobile phase carries sample molecules through the 

packed stationary phase and this effect is directly proportional to the diameter of the 

particles packing the column. To minimise this effect small and uniformity packed 

columns should be employed.

B(b): the longitudinal diffusion. It describe the band broadening process in which 

solutes diffuse from the concentrated centre of a zone to the more dilute regions ahead 

of and behind the zone centre. The contribution of the longitudinal diffusion is
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inversely proportional to the mobile phase velocity. The B term in the van Deemter 

equation is negligible due to the small solute diffusion coefficient at practical flow rates 

in HPLC relative to gases (as in GC)15.

Cs and Cm (c): the mass transfer effect which describes the time available for 

equilibrium of an analyte to be established between the mobile and stationary phases. 

The slow equilibrium will cause the chromatographic column to operate under 

non-equilibrium conditions. Analyte molecules at the front of a band are swept ahead 

before they have time to equilibrate with the stationary phase and thus be retained. 

Similarly, equilibrium is not reached at the trailing edge of the band, and molecules are 

left behind in the stationary phase by the fast moving mobile phase. The mass-transfer 

broadening is related to both the size of packing particles and the column flow rate. The 

faster the mobile phase moves, the bigger the packing size, the less time there is for 

equilibrium to be approached7.

The van Deemter equation was first applied in gas chromatography but it has been 

found to be equally applicable to liquid chromatography. Although there are many other 

similar dispersion equations, the van Deemter equation remains one of the most accurate 

form and is used extensively in column design. HPLC has been developed extensively 

since it was realized that the separation efficiency can be largely improved by reducing 

particle-packing size and increased pressure.
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1.1.3 An overview of types of liquid chromatography

The basic liquid chromatograph consists of a solvent system, a sample injection device, 

a column, a detector and a data system (Figure 1.3). The sample is introduced into the 

HPLC system by sample loop injection or by an autosampler. Mobile phase is delivered 

by the high pressure pump and carries the sample through the column where separation 

takes place with the analytes being detected, usually with a UV detector.

Sample Injection

Column

O. J_L

Pump

Data
recorder

Detector

Figure 1.3 Schematic diagram of the components of a basic HPLC system

A number of column chromatography types are available for the analysis and separation 

of mixtures. They can be classified according to stationary or mobile phase, separation 

process and mechanism. Size-exclusion16,17, ion exchange18, 19, affinity and reverse 

phase chromatography are the most widely used nowadays, only the types of 

chromatography employed in the work in this thesis are discussed.

1.1.3.1 Affinity chromatography

Affinity chromatography requires that an immobilized ligand, covalently coupled to the 

column’s stationary phase, interacts specifically and reversibly with the solute of
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interest. Figure 1.4 is a schematic representation that illustrates the processes involved 

in an affinity column based separation. As the sample passes through the column, the 

analyte of interest should bind in complementary fashion to the ligand (A) covalently 

attached to the solid support, while the rest of the solutes in the sample, incapable of 

specific binding, flow through without direct interaction. After the contaminants wash 

completely through the column, the analyte of interest (B) is then eluted via a variety of 

approaches.

Release of the bound analyte include ligand : analyte complex disruption by inclusion of 

competitive ligands in the mobile phase or by changes in mobile phase composition 

such as ionic strength or pH. Finally, the column is re-equilibrated for its next use.

Solid
support

0 X 0
OOOoooo

Sam ple

OOOO
OOOO

W ashing

OOO

Elution

Figure 1.4 Illustration of affinity chromatography, in which sample B bind specifically 

to the column, whereas contaminants are washed off straight away, and sample B can be 

eluted later.
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In order to be an effective affinity chromatographic system the column matrix must 

have certain properties: a) the ligand must contain functional groups that will allow for 

covalent coupling to the solid support without adversely altering its binding activity 

towards the analyte; b) the ligand must be capable of somewhat specific but reversible 

binding to the analyte of interest, and the affinity of the ligand:solute complex must be 

sufficient to provide for good binding; c) non-specific interaction between the column 

and unwanted sample components should be minimal; and d) the covalent linkages used 

to immobilize the ligand must be stable to all conditions employed during 

chromatography and column clean-up.

Affinity chromatography has been widely applied, for example, to the isolation of some
*yr\

naturally occurring products including enzymes such as chymotrypsin , alkaline

i 'l ')
phosphatase , lectins , specific peptides and was utilised in the protein 

phosphorylation study in this thesis.

1.1.3.2 Reverse phase high-performance liquid chromatography (RP-HPLC)

Reverse phase HPLC is currently the most popular method of separation as it offers 

efficient separation with good resolutions over relatively short analysis times. About 

80% of all chromatography applications use reverse phase separation.

1.1.3.2.1 Stationary phases in reverse phase chromatograph

In reverse phase HPLC, the packing materials are mainly silica-based and contain 

covalently bonded alkyl chains of different lengths. The most commonly used alkyl 

chains are n-octadecyl (Ci8), octyl (Cg) and n-butyl (C4), as well as phenyl (C6H5) and
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amino (NH2), each are responsible for imparting specific chromatographic character to 

the column. For example, the chemically bonded octadecylsilane (ODS) packing is the 

most commonly used. ODS packing silica has OH groups on its surface which react 

with an octadecyl group to give a strong non-polar stationary phase. The reaction is 

shown in Figure 1.5. Due to the steric hindrance of these functional groups, there are 

still some free silanol groups present and they will interact with the analytes causing 

peak tailing. To minimize this effect end capping24 is introduced to cover the silanol 

group.

9 h 3 CH3
o—Si-OH + Cl Si (CH2)i7—CH3 -------- - O-Si-O—Si—(CH2)17-CH,

C H 3 C H 3

Figure 1.5 Formation of ODS reverse phase stationary phase

The silica-based supports are unstable in aqueous buffers at alkaline conditions since the 

hydrolysis of the siloxane bonds can occur. The use of polymer-based reversed phase 

resins such as polystyrene -divinylbenzene copolymer support offer the advantage of  

increased stability over a wide range of pH values from 1 to 13, as opposed to 2 to 8 for 

bonded silicas. Rapid developments in areas like proteomics led to the introduction of 

the monolith column, also known as a rod column which is made by filling capillaries 

with a monolith, a continuous separation bed is created inside the capillary using a 

polymerization mixture that undergoes chemical and physical changes inside the 

column. Generally monolithic columns can be considered as a single large “particle” of 

porous structure which provides higher performance than conventional particle packed 

columns . The main advantage of the monolithic column is the elimination of the need
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to use end frits to retain the stationary phase. The elimination allows a homogeneous 

structure of the entire column, rather than exhibiting different properties because of the 

packing particles and retaining frits which are claimed to be responsible for bubble 

formation during analysis26.

Columns of i.d. 2-5 mm are generally used for analytical purposes. Wider columns of i.d. 

between 10 mm and 25.4 mm can be used for preparative work. Column lengths are 

normally 5, 10, 15, 25 cm long, if  micro particulate stationary phases of 10 pm or less is 

used. Miniaturization in analytical techniques has become very attractive in recent years 

from an economic and ecologic point of view. The benefits include reduced chemical 

consumption (particularly solvent), improved separation, excellent selectivity and small 

amounts of sample required which is very important in biological analysis. The trends in 

column format address these new requirements by using packings with smaller particles 

to obtain more resolution, and sensitivity. Nomenclature for cylindrical column formats 

is given in Table 1.1, for example columns with internal diameters (i.d.) of 1-2.1 mm are 

classified as microbore columns. Such columns should, according to van Deemter 

theory, provide a gain in sensitivity over a conventional 4.6 mm HPLC column that is 

inversely proportional to the square of the internal diameter27. Experiments performed 

with columns of different dimensions have demonstrated an increase in sensitivity when 

using 1.0mm i.d. columns compared to 4.6 mm i.d. columns of 17-fold28 and 16 to

9018-fold . For more enhanced sensitivity and ideal MS electrospray ionisation 

compatibility, the column i.d. was driven down to 0.3 mm, as well as using zero dead 

volume connections. The use of microbore columns and nanobore columns is well 

demonstrated nowadays and are widely used for high-efficiency separation of complex 

mixtures, for example, of peptides from the trypsin digestion of protein(s).
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The physical format of columns is also changing. Columns with rectangular, square or 

other perimeter-shape conduits, i.e. on chips, have appeared and will soon become more 

widely used.

Table 1.1 Nomenclature of HPLC columns

Column description Dimension Typical flow rate

Preparative column id.>10 mm >20 mL/min

Semi-preparative column 5 mm < id. <10 mm 5.0-40 mL/min

Normal-bore column 4 mm < id. <  5 mm 1.0-10.0 mL/min

Narrow-bore column 2.1 mm < id. <  4 mm 0.3-3 mL/min

Microbore column 1 mm <  id. <  2.1 mm 50-1000 pL/min

Capillary column 100 pm < id.< 1 mm 0.4-200 pL/min

Nanobore column 25 pm <  id. <  100 pm 25-4000 nL/min

1.1.3.2.2 Mobile phase used in reverse phase HPLC

The mobile phase in the reservoir is first degassed to prevent air bubble formation in the 

pump heads and in the column, which can reduce the efficiency and produce serious 

noise. Degassing can be performed by purging the solvent with helium or by ultrasonic 

treatment. A pump is used to deliver solvent systems into the column and there are a 

number of different types of LC pumps available, the most common of which is the dual 

head-reciprocating pump. The mobile phases used in reverse phase HPLC generally are 

a mixture of water or an aqueous buffer and a water miscible solvent (e.g. methanol or 

acetonitrile). The elution of the analyte can be isocratic or gradient. In isocratic elution 

the composition of the mobile phase is constant for the whole analysis time, which is

17



suitable for some detectors that are sensitive to mobile phase changes, and once all 

analytes have been removed no regeneration of the starting conditions is required prior 

to the next run. Gradient elution needs to be considered if  the chromatographic 

resolution is not adequate within a reasonable analysis time and separation is 

unsatisfactory. In a gradient elution, the composition of the mobile phase in the column 

can be continually changing using two distinct mobile phases which are combined in 

differing amounts in a mixing chamber before application to the stationary phase.

For RP-HPLC, the proportion of the organic solvent is increased over time, hence 

increasing the mobile phase strength therefore the hydrophilic analyte is eluted first and 

followed by the more hydrophobic analytes This technique is likely to provide optimum 

retention time and selectivity for the mixtures of a broad polarity range, however 

re-equilibration of the column to the starting conditions, after each run, is required prior 

to the next separation.

1.1.4 Detectors used in chromatography30,31

Several detectors are available for detection of analytes after chromatographic 

separation. The most commonly used is the ultraviolet detector which relies upon the 

presence of an ultraviolet light absorbing chromaphore in the analyte. It is applicable to 

a large number of compounds, as it can be rather sensitive, has a wide linear range, is 

relatively unaffected by temperature fluctuations and is also compatible with gradient 

elution. The diode array detector allows the detection of the light absorbance at a 

number of wavelengths simultaneously and also allows the production of the 

absorbance spectra of the eluted components . Other detectors include refraction index
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detectors, fluorescence detectors33, electrochemical detectors34, radioactivity detectors35 

and more recently on-line LC/mass spectrometry36 and LC/NMR37’38.

1.2 Introduction to mass spectrometry

Mass spectrometry is now a highly sophisticated technique, with computerized 

instrumentions playing a vital role and has steadily evolved over the last century. A 

mass spectrometric system is capable of forming, separating and detecting ions 

according to their mass-to-charge ratio (m/z) and the resulting mass spectrum is a plot of 

the relative abundance of the ions generated as the function of the m/z ratio. All mass 

spectrometers are composed of a sample inlet, ion source, mass analysis, ion detection 

and data processing components, as shown in Figure 1.6.

Ion
sourct

D*U
collection

Figure 1.6 Schematic diagram of the components of a mass spectrometer 

1.2.1 A brief history of mass spectrometry39

The history of MS began in 1897 with the discovery of the electron by Sir J. J. Thomson 

of the Cavendish Laboratory of the University of Cambridge, who studied electrical 

discharges in gases. In the first decade of the 20th century, Thomson constructed the
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first mass spectrometer (then called a parabola spectrograph) for the determination of 

mass-to-charge ratios of ions40. In this instrument, ions generated in discharge tubes 

were passed into electric and magnetic fields, which for his design made the ions move 

through parabolic trajectories. The rays were then detected on a fluorescent screen or 

photographic plate. Thomson was awarded the 1906 Nobel Prize in Physics “in 

recognition of the great merits of his theoretical and experimental investigations on the 

conduction of electricity by gases”. In 1918, the British scientist F.W. Aston, designed a 

mass spectrometer in which ions were dispersed by mass and focused by velocity, it 

improved the MS resolving power by an order of magnitude over the resolution 

Thomson had been able to achieve41. Aston won the 1922 Nobel Prize in Chemistry for 

isotope studies carried out with this type of instrument42. Around 1920, the American 

scientist Dempster developed a magnetic deflection instrument43 with direction focusing 

and the first electron impact source which ionises volatilized molecules with a beam of 

electrons from a hot wire filament. This design is still widely used in modem mass 

spectrometers.

In the 1930s Mattauch and Herzog invented the high-mass resolution double focussing 

instruments and another design was developed by Nier and Johnson44. The magnetic 

sector was developed and became a commercial instmment in the U.S. by the 1940s and 

was manufactured by Consolidated Engineering Corporation (Pasadena California). In 

the early 1940s, the magnetic sector was developed by Neir to conduct isotopic analysis, 

which resulted in separation of uranium-235 from uranium-238 for the first atomic 

bomb during World War II45. In 1946, the time-of-flight mass spectrometer (TOF-MS) 

concept was proposed by William E. Stephens46 and practical TOF instruments were 

first designed and constructed in the late 1940s and mid -1950s by Cameron and
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Eggers47. The mass resolution of TOF was greatly improved in 1974 by Mamyrin48. Ion 

cyclotron resonance MS (ICR-MS) was brought to the attention of chemists in 1960s39 

by Baldesschweiler et al. In 1974, Marshall et al. invented Fourier transform ICR MS 

(FT-ICR MS) which gives the highest mass resolution of any instrument49. At the same 

time, APCI was discovered by Homing and his group50 and LC-MS coupling was 

reported by McLafferty et al.51

The ESI-MS technique was first conceived in the 1960s by Dole52, but it was put into 

practice in the early 1980s by Fenn . MALDI-MS, a form of laser desorption MS, was 

reported by German scientists Hillenkamp and Karas54, and independently by the 

research scientist Tanaka and coworkers at Shimadzu Corp., Kyoto, Japan55. Until the 

early 1980s, biomolecules were usually ionised by electron impact (El) or chemical 

ionisation (Cl) methods. An essential requirement for these two ionisations is to 

vaporize the sample. This is of no great concern in the analysis of small organic 

molecules or those amenable to gas chromatography. However, polar thermally labile 

samples cannot be analyzed by El or Cl without prior derivatization, for example, by 

trimethylsilylation (TMS)56. Over the last 20 years, biological MS has changed out of all 

recognition. This is primarily due to the development of “soft ionisation” methods, such 

as fast-atom bombardment (FAB), which permits the ionisation and vaporization of 

large, polar, and thermally labile biomolecules57. However, FAB whilst being the 

pioneering technique of the early 1980’s is only used for some specialist chemical 

applications and is not generally used in biological mass spectrometry now. MALDI and 

ESI are the two main soft ionisation techniques which widely used in the study of large 

biomolecules nowadays, and considered as complimentary to each other. A brief 

description of the mass spectrometers used in this thesis is given below.
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1.2.2 Introduction to LCQ electrospray ion trap

The LCQ ion trap is a product of the Thermo Electron Company. It is an analytical 

instrument which has both electrospray and APCI ionisation sources and has multiple 

MS/MS capacity, and is able to perform both quantitative and qualitative analyses.

1.2.2.1 The electrospray ionisation ion source

1.2.2.1.1 LC/MS Interfacing

Many separation techniques such as gas chromatography (GC), liquid chromatography 

(LC) or capillary electrophoresis (CE) can be coupled with mass spectrometry and these 

coupling techniques have been widely used in pharmaceutical, food and biological 

fields. A liquid chromatography/mass spectrometry (LC/MS) is an instrumental setup in 

which a high-performance liquid chromatograph (HPLC) and a mass spectrometer (MS) 

are combined. The LC is the input device for the mass spectrometer, effluent from the 

LC is introduced into mass spectrometer, and the mass spectrometer is the detector for 

the LC. An LC/MS interface is required to translate from the high-pressure environment 

of the LC to the very low-pressure environment in the mass spectrometer. The coupling 

of liquid chromatography/mass spectrometry provides sensitive, selective, rapid and 

information-rich analytical methodology in many fields and has become a robust and 

routine analytical tool.

Direct on-line combination of liquid chromatography to a mass spectrometer was 

considered for many years as incompatible58, because the mass spectrometer requires a 

vacuum and the analytes of interest to be present in the gas phase whereas HPLC 

provides separation of involatile compounds in a liquid mobile phase. Different
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methods were used to tackle these problems59, e.g. moving belt coupling60 and the 

particle beam61 interface are based on the selective vaporization of the elution solvent 

before it enters the spectrometer source; continuous-flow fast-atom bombardment62, 

relied on reducing the flow of liquid that is introduced into the interface in order to 

obtain a flow that can be pumped directly by the source. Later a series of HPLC/MS 

coupling methods such as, electrospray and atmospheric pressure chemical ionisation 

(APCI) were introduced. Amongst which electrospray is the most widely employed one.

1.2.2.1.2 The electrospray ionisation mechanism

Electrospray ionisation (ESI) is a soft ionisation technique. ESI sources ionise the 

sample at atmospheric pressure and then transfer the ions into the mass spectrometer. 

Electrospray is conceptually a more simple method for the ionisation of polar molecules 

compared to MALDI. Figure 1.7 shows the ESI interface and schematic representation 

of the electrospray process.
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S7Figure 1.7 ESI interface and schematic representation of the ESI process

In Electrospray, the sample of interest is dissolved in a solvent solution and introduced 

into the ESI source, either through a HPLC column or by syringe infusion, as a fine mist 

of droplets, which has an accompanying flow of nitrogen gas surrounding it. 

Electrospray is produced by applying a strong electric field to the liquid passing through 

a capillary tube. The electric field is obtained by applying a potential difference of 

3-6 kV between this capillary and the counter-electrode, producing electric fields of 

106 V m'1. The small charged droplets are sprayed from the ES capillary into a bath gas 

of hot nitrogen (~100 °C) at atmospheric pressure and travel down a pressure and 

potential gradient towards an orifice in the mass spectrometer high-vacuum system. The 

electrospray field induces a charge accumulation at the liquid surface located at the end 

of the capillary, which breaks up to form highly charged droplets when the 

surface-Coulombic forces overcome surface-tension forces. The process continues until
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gas-phase ions are produced from charged droplets in a series of solvent 

evaporation-Coulomb fission cycles. The gas, most often nitrogen, is injected coaxially 

at a low flow rate which allows dispersion of the spray to be limited in space so that 

sample droplets can pass either through a curtain of heated inert gas, or through a heated 

capillary to remove the solvent and enter the mass analyser. The exact mechanism of ion 

formation whether it is by ion evaporation or by complete solvent removal from the

63  -j-charged droplet is under debate . The ionised analytes are protonated, e.g. [M+H] or in 

negative mode de-protonated [M-H] ,with the help of some volatile acid or base 

working as an ion-pairing agent. The ESI sources can tolerate flows up to 0.2 mL/min, 

which allow convenient coupling to a classical HPLC system. The flow can scale down 

to about 100 nL/min by using nano-electrospray techniques, which is compatible with 

HPLC using small-bore or capillary columns.

ESI is a soft ionisation technique and has made significant contributions to modem mass 

spectrometry. Any polar or ionic compound can be analyzed by ESI. Some heat-labile 

or high molecular weight compounds which were previous unsuitable for mass analysis 

can be analysed by ESI. ESI has become particularly useful in the mass analysis of polar 

analytes, such as, biological polymers (proteins, peptides, glycoproteins and 

nucleotides), pharmaceuticals and their metabolites57. The greatest advantage of ESI 

compared to MALDI is that it can be easily interfaced to hyphenated technique, such as, 

HPLC or CE which make the automated analysis of proteins and peptides faster and 

more reliable.
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1.2.2.2 Components of the LCQ ion trap mass spectrometer

In the LCQ system, the ion optics, mass analyser, ion detection system and the 

atmospheric pressure ionisation stack, are all enclosed in a vacuum manifold, while the 

ion source is the link between atmospheric pressure and the vacuum system.

1.2.2.2.1 Ion source — Electrospray probe

The electrospray probe is the interface that couples the mass spectrometer to the HPLC 

and produce ions from the liquid phase. The ESI probe assembly of the LCQ ion trap is 

shown in Figure 1.8. The liquid sample from a syringe or a HPLC column is introduced 

into the ESI probe through the sample inlet. The sheath gas (nitrogen) nebulises the 

sample solution into a fine mist when the sample solution leaves the ESI nozzle. A high 

voltage is applied to the needle, the electric field near at the capillary tip is very high, 

and the solution leaves the electrospray needle (so called Taylor cone) as a fine mist of 

charged droplets which are drawn into the vacuum region of the mass spectrometer. The 

outer coaxial nitrogen auxiliary gas introduced through the ESI probe inlet assists in the 

nebulisation and evaporation of the sample solution.
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Figure 1.8 The ESI probe assembly of the LCQ ion trap64 

1.2.2.2.2 Mass analysis — ion trap mass analyser

The ion trap mass analyser consists of three electrodes: a circular electrode, with two 

hyperbolic endcaps on the top and the bottom, the ring electrode is positioned 

symmetrically between the two-endcap electrodes as shown in Figure 1.9. These 

electrodes form a cavity and have functions including ion storage, ion isolation, 

collision-induced dissociation (CID for MSn) and sequential mass ejection processes.
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Figure 1.9 Cross sectional view of the LCQ ion trap mass analyser64

First, a DC offset voltage is applied to the mass analyser electrode to draw ions in from 

the inlet tube. An RF voltage is applied to the central ring electrode to create a 

three-dimensional rotationally-symmetrical quadrupole electric field. At low amplitude 

ions above a minimum of m/z can be stored in this field in stable orbits and as the RF 

voltage is increased, the trajectories of the ions become unstable in order of increasing 

m/z ratios. Ions with unstable orbits are ejected from the mass analyser towards the ion 

detection system. A huge advance in ion trap technology was the introduction of a 

buffer gas, such as, helium gas inside the mass analyser cavity which slowed ions down 

so that they become trapped by the potential well created by the RF field being applied. 

The helium gas also serves to dampen the amplitude of the oscillations of the trapped 

ions, thereby focusing them into the centre of the cavity. Sensitivity and resolution are
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both enhanced due to these interactions with helium gas in the trap at pressures ~10'3 

mbar.

An ion trap has a unique capability, which differentiates from all other mass 

spectrometers, in that it stores ions. Once an ion is stored, it can be manipulated in many 

different ways to perform, for example, multistage MS/MS experiments (MSn). For 

other mass spectrometric techniques this would require additional and large analyser 

hardware (in tandem). An ion trap is especially sensitive and is frequently used for 

structural elucidation through MS/MS and MS" experiments. For this purpose, the He 

bath gas in the trap is used for collision induced dissociation (CID). First, the ions of 

interest are isolated by eliminating all other m/z species from the trap. These mass 

selected ions are resonantly excited to larger orbits by applying a high amplitude voltage 

to the alternating dipolar field at the end caps and subsequently inducing collisions with 

the surrounding helium atoms. Compared with a triple quadrupoles, the ion trap is a 

physically small and a less expensive instrument, which nevertheless is highly sensitive 

and possesses MSn capacities. However, it is not best suited for quantitative analysis due 

to its small trapping volume, and limited capacity for ion storage. Overfilling of the ion 

trap will cause the deterioration of the mass spectrum and loss of dynamic response 

range due to space charging. To avoid these effects, the number of ions introduced into 

the trap should be controlled carefully. Trapping of ions can also be performed in a 

linear ion trap device. Recently, the linear ion trap has been combined with quadrupole, 

time-of-flight and Fourier-transform ion cyclotron resonance mass spectrometry. A 

linear ion trap has two major advantages over the quadrupole ion trap, a larger ion 

storage capacity and a higher trapping efficiency65, both greatly improve its 

performance.
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1.2.2.2.3 Ion detection

The ion beam passes through the mass analyser and is transformed into a usable signal 

by a detector. In the LCQ system an electron multiplier detector which is located behind 

the mass analyser, ions emerging from the ion trap hit a conversion dynode, as shown in 

Figure 1.10, which improves sensitivity and performance in negative ion mode. The 

electron multiplier is the most commonly used detector in mass spectrometers because 

its low cost and good linear dynamic response range (~107). It is capable of producing a 

high signal-to-noise ratio, and it also permits voltage polarity interchange between the 

positive ion and negative ion mode of manipulation.

Figure 1.10 Cross sectional view of the LCQ ion detection system64

When a positive or negative ion reaches the conversion dynode, it causes the emission 

of several secondary particles include photons, positive ions, negative ions, electrons
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and neutrals. When positive ions strike the negative high-voltage conversion dynode, 

the conversion dynode converts ions from the mass analyser into secondary particles 

(negative ions and electrons). When negative ions strike the positive high-voltage 

conversion dynode, the secondary particles of interest are positive ions or photons. The 

number of secondary particles is greater than that of ions striking the conversion dynode 

and the signal is amplified. These secondary particles are accelerated into the electron 

multiplier. They strike the cathode with sufficient energy to dislodge electrons as they 

collide with its curving inner wall. These electrons pass further into the electron 

multiplier, again striking the walls, causing the emission of more and more electrons as 

they travel towards the ground potential. Thus a cascade of electrons is created that 

finally results in a measurable current at the end of the electron multiplier. The current is 

typically amplified to the order of 105 -106 for a singly charged ion hitting the entrance 

of the electrode.

1.2.3 Introduction to matrix-assisted laser desorption ionisation time-of-flight 

(MALDI-TOF) mass spectrometry

MALDI-TOF is a technique offering fast and accurate determination of a number of 

polymer characteristics. It is now widely used in proteomics research.

1.2.3.1 Description of the MALDI source and the MALDI mechanism

MALDI is the acronym for matrix-assisted laser desorption/ionisation. MALDI’s 

development came out of earlier successes in applying laser desorption ionisation (LDI) 

to biomolecules as well as plasma desorption and fast-atom bombardment (FAB). 

During the 11th International MS Conference in Bordeaux in 1988, the MALDI
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technique was described as suitable for proteins with molecular masses exceeding 

10 kDa and attracted the attention of the MS community54. Simultaneously Japanese 

scientists demonstrated the desorption of protein ions with masses in excess of 

60,000 Da55. Since then, MALDI has become an important part in the field of protein 

chemistry. It is mostly used in peptide mass mapping, where proteins separated by 

polyacrylamide gel electrophoresis (PAGE) are digested by a suitable enzyme and the 

resulting peptides are mass analyzed66.

Compared with electrospray ionisation, MALDI has the following merits of its own:

a. It is more compatible with buffers, normally used in biological assays, reducing the 

need for sample cleanup.

b. It can analyze mixtures and different classes of biopolymers, including peptides, 

oligonucleotides, glycoconjugates and synthetic polymers. Whereas ESI generates 

multiply charged ions, especially as the molecular weight increases.

c. It tends to give abundant [M+H]+ or [M-H] ions which gives an immediate picture 

of the molecular species present. It is suitable for biopolymers with very high mass, 

the m/z ratio can be as high as 200,000.

d. It provides very high sensitivity and often requires only femtomoles of sample.

e. It can be automated with high throughput and simplicity of operation.

Despite of its widespread application, the fundamental processes of ion generation and 

desorption are still not well understood and still the subject of active research . Some of 

the basic conditions which rule desorption are understood and molecular modelling is 

beginning to reveal some important aspects of the processes even though dynamic 

modelling of realistic volumes of pm3 in size and with time scales of tens of
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nanoseconds are still beyond the capacity of even very large computers68. Ionisation is 

even more of a challenge; Knochnemuss and Zenobi suggested a mechanism that the 

matrix primary ionisation is followed by matrix ion-analyte molecule reactions which 

lead to analyte ions69. Karas et al, on the basis of thermodynamics, proposed a new 

model for the underlying ionisation processes in MALDI which explains the observation 

that UV/MALDI spectra are dominated by singly charged ions70. There is strong 

experimental evidence that the matrix is essential to dilute and isolate analyte molecules 

from each other by the formation of a solid solution upon evaporation of the solvent and 

to function as a mediator for energy absorption71. The matrix is present in vast excess of 

the analyte and when mixed thoroughly with analyte isolates individual analyte 

molecules and promotes adequate matrix-analyte collisions or interactions. The matrix 

serves to absorb energy from the pulsed laser beam, and provides photoexcited acid or 

basic sites for ionisation of analyte molecules in ion/molecule collision72. MALDI is a 

relatively simple ionisation method where a sample (and suitable solvent) and matrix 

(and suitable solvent) are mixed thoroughly and dried on a sample plate. A UV laser is 

fired on the plate, the matrix absorbs energy and transfers it to sample so as to produce 

gas phase sample neutrals and, to a lesser extent ions, as illustrated in Figure 1.1173. 

Sample ions are generally formed by ion/molecule reactions in the gas-phase MALDI 

plume, by protonation and also processes, such as, sodiation are commonly observed. 

Nitrogen lasers are a common choice to illuminate the sample and have a principal 

wavelength in the UV range (337 nm) on commercial MALDI mass spectrometers. 

UV-absorbing aromatic compounds are most commonly used as matrices74, and various 

aromatic acids provide excellent sensitivity for forming protonated ions.
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Figure 1.11 Illustration of a MALDI ion source 

1.2.3.2 Time-of-flight (TOF) analyser

The concept of separating ions of different charge-to-mass ratios via time-of-flight 

(TOF-MS) were originally proposed in 194847. However, in its first realization, all the 

key elements, such as pulsed ion source, electronics and detector, were so imperfect that 

the original instruments were of little practical use. It could hardly separate ions of very 

low masses. The first TOF mass spectrometers of any practical interest were proposed in 

the 1950s, and were linear time-of-flight mass analysers. The mass resolution (m/Am) 

was 100-300 at a partial pressure of about lO'7 Torr in the ion source. At that time 

time-of-flight mass spectrometers were considered as low resolution instruments. The 

resolution of simple TOF instruments is restricted due to several practical and technical 

reasons, such as uncertainties in the time of ion formation, its initial location in the 

extraction field, the kinetic energy of the analyte ions and metastable fragmentation. A 

serious effect being due to the energy spread of ions created in the pulsed source which
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considerably limits the mass resolution. Because of these limitations, a pause occurred 

in TOF development and application from 1960s to 1980s. In the 1970s, important 

progress was achieved when the electrostatic ion reflectron was introduced by Mamyrin 

et al75. The introduction of the reflectron enables the compensation for differences of 

times-of-flight in the field-free drift regions affected by the energy spread in the source. 

Mass resolutions up to 6000 (FWHM) have been reported for peptides up to about 3000 

Da with reflectron TOF-MS76 and resolution of up to 30,000(FWHM) can be achieved 

on lower mass ions.

Because time-of-flight requires the ions to be produced in bunches, it is especially suited 

for pulsed laser sources. Since the introduction of matrix-assisted laser desorption 

ionisation (MALDI) by Karas and Hillenkamp54, time-of-flight has evolved rapidly as a 

routine analytical mass spectrometer for the analysis of biomolecules. The simplest 

time-of-flight mass analyser consists of a short source-extraction region, usually of a 

few centimeters, a drift region typically 0.5 to 4 m in length, and a detector. A high 

voltage is applied on the source (typically 6-30 kV) to accelerate ions to constant 

energy. The drift region is field free, ions move across this region with velocities that 

are inversely proportional to the square root of their mass. Ion flight times generally fall 

between 1 0  to 2 0 0  ps, and can be recorded by a digital oscilloscope to produce a mass 

spectrum.

Figure 1.12 shows the schematic diagram of MALDI with a reflectron-TOF tube. A 

sample, co-crystallized with the matrix, is irradiated by a laser beam, leading to 

sublimation and ionisation of analytes. About 100-500 ns after the laser pulse, a strong 

acceleration field is switched on (delayed extraction), which imparts a fixed kinetic
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energy to the ions produced by the MALDI process. These ions travel down a flight tube 

and are turned around in an ion mirror, or reflector, to correct for initial energy 

differences. The ions can be detected sequentially according to their masses; lighter ions 

have higher velocities and arrive at the detector earlier than heavier ions.

TOF-maas analyzer

t i n

Reflector

Figure 1.12 Schematic diagram of MALDI-TOF with a reflectron tube77

The analytical advantages of TOF include its relatively low cost, high sensitivity, large 

mass range and the ability to record a complete spectrum in a single acquisition.

1.2.4 Quadrupole time-of-flight (Q-TOF) mass spectrometer

1.2.4.1 Description of a quadrupole mass analyser

The quadrupole mass analyser is a device that uses the stability of the ion trajectories in 

oscillating electric fields to separate ions according to their m/z ratio. The analysers 

were first described in 1953 by Paul and Steinwegen, after continuing the work of 

Chrisophilos on strong focussing of ions. It is made up of four parallel rods of 

hyperbolic section. Ions travelling between the rods are subjected to the influence of a 

radio frequency (RF) electric field, the trajectory of an ion will be stable if it does not
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strike the rods. The fundamental theory of a quadrupole mass filter is very complex and 

will not be dealt with here. However, there are two types of voltages applied to the rods: 

1) a radio frequency voltage (V) of large amplitude (several kV) which entraps ions 

allowing their transmission and 2) a DC voltage, U, (-10 V) applied to the rods to 

enable mass selection. Whilst quadrupole theory is complex the ratio of U to V is an 

important parameter which is set by the computer so as to ensure unit mass resolution 

whilst scanning an appropriate mass range.

Due to the relative simplicity of the quadrupole design this device has been combined, 

in tandem, with like quadrupoles to achieve MS/MS. A triple quadrupole is composed 

of two quadrupole mass filters and a RF-only quadrupole, it is usually symbolized as 

Q-q-Q. The middle RF-only quadrupole has no DC voltage (i.e. U=0) and the mass 

resolution capacity falls away allowing all ions, of any mass to have a stable trajectory. 

Normally a collision gas is introduced at a pressure so that a mass selected ion from the 

previous quadrupole can undergo many collisions inducing the ion to fragment. The first 

and the third quadrupoles are mass analysers which can be either set to scan a mass 

range or set to transmit any single mass. This huge flexibility allows a range of 

“scanning modes” to be undertaken with this versatile device. Figure 1.13 displays the 

main scanning capabilities of a triple quadrupole, the most important of the MS/MS 

scans are: product ion scan, precursor ion scan and neutral loss scan. The triple 

quadrupole has an excellent reputation for quantitative analysis and is widely used in the 

pharmaceutical industry.
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Figure 1.13 Illustration of MS/MS scanning modes by a triple quadrupole mass

spectrometer.

1.2.4.2 Quadrupole time-of-flight (Q-TOF) mass spectrometry

Quadrupole time-of-flight (Q-TOF) mass spectrometers have only been commercially 

available in the last decade. They are now widely accepted and utilised by research 

groups for their ability to provide high sensitivity and accuracy in molecular weight 

determination, molecular structure information and quantitative analysis. For example, 

the Micromass Q-TOF Ultima used in this study is a hybrid quadrupole time-of-flight 

mass spectrometer and was the instrument used for the mass accuracy studies. The ion 

source of Q-TOF is an electrospray ion source, sample introduction is through an 

infusion pump, loop injection or from an HPLC column. The ESI interface, by using the
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orthogonal design, which generates ions in a Z-spray source, has proved very successful 

in handling involatile buffers.

As introduced previously, quadrupole analysers are generally made up of four parallel 

hyperbolic rods. If a positive ion enters the space between the rods, it will be drawn 

toward a negative rod. If the potential changes polarity before the ion neutralises itself 

on the rod, the ion will change direction. Therefore the ion trajectories are controlled by 

a set of time dependent forces that can be generated by applying direct current and 

radiofrequency potentials to a set of electrodes. In a Q-TOF, the ions leaving the 

quadrupole analyser will flow into the orthogonal time-of-flight analyser. A collision 

cell and orthogonal acceleration (OA) pusher is located between the quadrupole and the 

TOF analyser. The collision cell serves to induce fragmentation in MS/MS experiments 

with the orthogonal acceleration pusher serving to either push the ions downward into 

the TOF analyser or to drift into the post acceleration photomultiplier detector which 

can record mass spectra. The OA pusher enables all ions to enter the flight tube at 

precisely the same time in the Q-TOF. The ions pushed out of the OA can travel either 

in a “V” or “W” path down the TOF tube to the reflectron lens at the end of the 

instrument, the reflectron then reflects ions back to the detector.

In Q-TOF, the quadrupole is operated as an ion guide in MS mode and as a mass 

selection device in MS/MS mode. A reflectron time-of-flight (TOF) analyser is placed 

orthogonally to the quadrupole and serves as a mass resolving device for both MS and 

MS/MS modes. In the TOF analyser ions are separated on the basis of their velocity 

differences. The lighter ions travel faster and reach the detector earlier than the heavier
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ones. The final detector is a microchannel plate (MCP) in which an ion counting system 

is employed. The schematic diagram of Q-TOF is shown in Figure 1.14.

Quadrupole MS TOF MS

P u s h e r  D e te c to r

Collision
Cell

Z-Spray 
Ion sou rce

Quadrupole
analyser

Reflectron

7 0

Figure 1.14 Schematic diagram of the Q-TOF mass spectrometer

A Q-TOF can achieve high mass accuracy and is often used to obtain accurate mass of 

compounds. The use of “lockspray” allows the acquisition of exact mass data by 

providing the capability to introduce the reference compound (known lock mass), which 

is then used to correct for drifts in mass scale, through a different sample line from that 

of the analyte. Figure 1.15 shows the design of lockspray in Q-TOF. An oscillating 

baffle will switch between two sample lines at certain time intervals, thus allowing 

analysis of each spray independently, and avoids problems such as suppression of the 

analyte by the reference or vice versa, mass interference between the analyte and 

reference and clustering of the analyte and reference.
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Figure 1.15 Lockspray schematic and the dual electrospray source including an

infused internal lockmass from a second sprayer 78

1.2.5 A brief review of other analyser techniques

There are several mass analysers available, such as time-of-flight, quadrupole, ion trap, 

Fourier transform ion cyclotron resonance. They work on different theoretical principles 

and are often suited to different applications. The comparison of different mass analyser 

is shown in Table 1.2, an appropriate mass analyser needs to be chosen to achieve good 

mass spectrometric result.

Fourier transform ion cyclotron resonance (FTICR) mass analyser was first used with 

internal ion sources and developed rapidly when external ion sources are combined. 

Today the most popular external sources are ESI and MALDI. FTICR is unsurpassed in 

performance amongst all other mass spectrometers in terms of resolution, mass accuracy 

and possibly MS/MS capabilities. This performance relies on a super conducting
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magnet, which is inherently very stable to 1:108. However, this has also limited its 

uptake due to its expense and operation.

Table 1.2 Comparison of different mass analysers

Mass analyser m/z limit Resolution Mass accuracy (ppm)

Time-of- flight Unlimiteda Low 5-10

Ion trap < 3000b Low - 1 0 0

Quadrupole <4000 Low - 1 0 0

Magnetic sector A o High 2-5

FHCR

oV Very high Typically 1-2, can be 
as tow as 0 . 1

a Depends on detector

b Depends on the size of trap and the voltage which can be applied

ICR refers to ion cyclotron resonance. Its underlying characteristic is that ions can be 

trapped in a circular trajectory around a magnetic field. The analyser operates at high 

vacuum, 10'9 Torr, where little or no collisions occur when ions undergo cyclotron 

motion. The cyclotron frequency of the ion is proportional to the mass of ion which can 

then be measured to very high accuracy.

Magnetic sector is another mass analyser widely used. In a magnetic field, ions of 

different mass follow different circular trajectories. By placing slits to select and collect 

ions the magnetic analyser can select ions according to their m/z ratio. An electronic 

detector, such as, an electronic multiplier is placed behind the collector slit to directly 

measure the ion beam. However, the ion beam has an energy dispersion and angular 

dispersion, which causes the loss of resolution. Double-focusing mass spectrometers
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address these problems by using a combination of a magnetic and electrical field to 

focus and sort ions. Therefore an ion beam of a given m/z is brought to a focus even 

when the ion beam is initially diverging and containing ions of different energy. Double 

focusing provides accurate mass measurement and can achieve excellent measurement 

of ion abundances over a wide dynamic range 107 (7 orders). It is used to determine 

elemental compositions of ions in mass spectra which lead to compound identifications. 

But the relatively high price and complexity limits its popularity even though its 

performance for many applications is superb.

The orbitrap mass analyser is a wholly new mass analyser invented by Makarov79. It can 

be considered as a modified form of quadrupole ion trap, although the orbitrap uses 

electrostatic field while the quadrupole ion trap uses a dynamic electric field, typically 

oscillating at ~1 MHz. The orbitrap can provide high mass resolution, high mass 

accuracy, and good dynamic range and has been applied to a wide range of analytes.

1.2.6 Scan modes in mass spectrometry

Mass spectrometers can be operated in different scan modes, they are chosen according 

to the analysis to be undertaken. Several different scan mode can be chosen for one 

analysis and computer control MS can automate such procedures. Full scan mode is a 

scan mode in which the mass analyser records all the ions within a certain mass range 

set in advance. Generally, full scan experiments are used to determine the molecular 

weights of unknown compounds or of each component in a mixture of unknown 

compounds. Full scan mode provides more information about an analyte than does 

selected ion monitoring (SIM, see below). Full scan mode cannot provide high
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sensitivity due to the long scan time over a range of masses and limited time sampling 

each mass. Selected ion monitoring (SIM) scan is a common method to monitor ions of 

selected m/z ratio. This mode provides much higher sensitivity than full scan mode and 

is widely used for quantitation of known compounds.

Tandem mass spectrometry is any general method involving at least two stages of mass 

analysis. The first stage is to isolate a precursor ion which further undergoes a second 

stage or multistage to yield product ions and neutral fragments. Tandem mass 

spectrometry can provide more structure information and is very useful for structural 

elucidation of unknown components. Selected reaction monitoring (SRM) scan mode is 

a two-stage tandem mass spectrometry experiment in which a particular reaction or set 

of reactions, such as the fragmentation of an ion or the loss of a neutral moiety, is 

monitored. In the SRM scan mode, the precursor ions are excited so that they collide 

with collision gas. The collisions of the parent ions cause them to fragment to produce 

one or more product ions (by mass analyser CID for the ion trap or collision cell CID for 

the Q-TOF). Then, ions of interest for one or more mass-to-charge ratios are selected to 

produce SRM signal for each SRM process. Selected reaction monitoring allows for the 

very rapid analysis of trace components in complex mixtures. SRM mode offers high 

specificity since a limited number of product ions is monitored and thus the background 

noise (and chemical noise) is greatly reduced.

Pharmaceutical and biological sciences are currently the fields that LC/MS is most 

widely employed as an analytical technique. In the following chapters, LC/MS was 

applied in both these fields from an analytical point of view. One study is the 

quantitation of active components in Ginkgo biloba nutritional supplements and urine
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samples after ingestion of Ginkgo biloba. In another study, immobilized metal ion 

affinity chromatography LC/MS was applied to the identification of phosphoproteins in 

mouse brain samples, with the purpose of identifying potential substrate proteins of 

cyclic CMP. For LC, normal-bore column (4.6 mm i.d.), capillary column (300 pm i.d.) 

and nano column (75 pm i.d.) were exploited. For mass spectrometry, an ion trap and 

QTOF were used in the Ginkgo biloba study, while an ion trap and MALDI-TOF were 

utilized in the proteomics study. The mass accuracy at high molecular weight in 

MALDI-TOF was also investigated in this thesis. The phenomenon of peak broadening 

observed for high mass protein peaks was explained, by a theoretical study, on the basis 

of ion fragmentation.
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Chapter 2 

Tandem mass spectrometry of Ginkgo biloba 

flavonoids and terpene lactones
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2.1 Introduction to Ginkgo biloba

2.1.1 The history of Ginkgo biloba

Ginkgo biloba is a dietary supplement derived from the leaves of Ginkgo Biloba 

Linne, an ornamental, deciduous tree. The Ginkgo biloba tree is considered to be 

one of the world’s oldest living tree species with some specimens living over 1 0 0 0  

years old. Ginkgo biloba is also known as ginkgo, hill apricot, maiden hair tree, kew 

tree, oriental plum tree, silver apricot, silver fruit, and silver plume and is one of the 

traditional herbal remedies in both European and Chinese traditional medicine. In 

China, preparations of Ginkgo biloba have been used for 5000 years in the treatment 

of lung ailments such as asthma and bronchitis and as a remedy for cardiovascular 

disease1. The first publication concerning the internal use of the leaves of the Ginkgo 

tree for medical purpose dates back to 1505 A.D2. A standardized extract of Ginkgo 

biloba leaves (GBb or EGb 761) has been developed by Dr. Willmar Schwabe 

GmbH & Co. in Germany3 and is the common intravenous formulation available in 

Europe and used in clinical trials. It is extracted by a 27 step process, and the sample 

’761’, out of many thousands assayed samples gave the greatest number of purified 

components and is thus referred to as EGb761. At present, standardized extracts of 

Ginkgo biloba leaves are used in Europe in the treatment of peripheral and cerebral 

circulation disorders and are among the top selling dietary supplements in the 

botanical and herbal remedy market, with estimates of worldwide annual sales 

varying from 450 million US$ to over 1 billion US$ in 19984.
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2.1.2 The clinical applications of Ginkgo biloba (GBE)

Ginkgo is one of the best researched herbs; the scientific and clinical evidence of the 

efficacy of Ginkgo biloba is centred on two major physiological systems.

2.1.2.1 Improvement in peripheral blood flow

S ft 7Clinical studies ’ ’ have shown that GBE improves blood circulation by dilating blood 

vessels and reducing the stickiness of blood platelets. In these studies significant 

improvements in clinical symptoms resulting from improved blood circulation were 

demonstrated. The evidence from these studies suggests that Ginkgo biloba extract may 

be particularly effective in treating ailments associated with decreased blood flow to the 

brain, particularly in elderly individuals. The effects are largely due to the fact that 

Ginkgo strongly inhibits the platelet aggregating factor (PAF) which has the effect of 

thickening the blood and contributes to a strong inflammatory response. Ginkgo 

biloba treatment is therefore appropriate for conditions, such as, varicose veins, 

phlebitis, haemorrhoids, intermittent claudication (pain resulting from circulatory 

impairment), Raynaud Syndrome, male impotence and general poor circulation.

2.1.2.2 Reduction of cerebral insufficiency

GBE effectiveness in reduction of cerebral insufficiency has been demonstrated in

, Q Q t t
human trials ’ , especially with the elderly and with measurements including short 

term memory, period of concentration, task performance and speed of cognitive 

response in Ginkgo biloba has consistently shown significant clinical benefits. Based 

on studies conducted in laboratories, animals and humans, professional herbalists may

53



recommend Ginkgo for various health problems, such as, Dementia and Alzheimer’s 

disease; eye problems; intermittent claudication; memory impairment; tinnitus as well 

as a range of other ailments (altitude sickness, asthma, depression, disorientation, 

headaches, high blood pressure, erectile dysfunction and vertigo). The positive effects 

of Ginkgo biloba are its excellent record of safe, long term use, making this a herbal 

nutritional supplement that could be used on a consistent basis for anyone with 

circulatory problems and also as a general “life improvement” supplement during the 

ageing process.

2.1.3 Main active components of Ginkgo biloba extract

2.1.3.1 Flavonoids

Flavonoids are among the most ubiquitous groups of plant secondary metabolites 

distributed in various foods and medicinal plants. Figure 2.1 shows basic structures of 

flavonoids commonly found in dietary sources. They are structurally similar to steroid 

hormones, particularly estrogens, and therefore have been studied extensively over 

the past several years. Their potential roles in prevention of hormone-dependent 

cancers including those of breast, prostate and colon, which are leading causes of 

morbidity and mortality in western countries, have been investigated. In recent years, 

there has been a significant increase in the number of papers published on the health 

beneficial effects of flavonoids10. Many studies have shown that flavonoids exhibit 

biological activities, including anti-allergenic, anti-viral, anti-inflammtory and 

vasodilating actions. Flavonoids are largely planar molecules and their structural 

variation comes in part from the pattern of substituents, such as, hydroxylation, 

methoxylation, prenylation, or glycosylation. Flavonoid aglycones are subdivided

54



into flavone, flavonol, flavonone, and flavanol types. Figure 2.1 shows different type 

of flavonoids.

OH 0
OH 0

Genistein 
(Isoflavone type)

Daidzein 
(Isoflavone type)

Apigenin 
(Flavone type)

OH
.OH

OH
HO,

HO,

OHOH 0
OH 0

Catechin 
(Flavanol type)

Narigenin 
(Flavanone type)

Querceitin 
(Flavonol type)

Figure 2.1 Basic structures of flavonoids commonly found in dietary sources

The flavonoid constituents of Ginkgo extract are essentially flavonol in nature. 

Although they are sometimes found as their aglycones, flavonoids most commonly 

occur in plant materials as flavonoid O-glycosides, in which one or more hydroxyl 

groups of the aglycones are bound to a carbohydrate moiety, e.g. glucose sugar, forming 

an acid-labile glycoside O-C bond. In Ginkgo, the glycosidic linkage is normally 

located in position 3 or 7 of a phenolic aglycone (quercetin, kaempferol or 

isorhamnetin) and the carbohydrate moiety usually being D-glucose, L-rhamnose or

11 19glucorhamnose ’ . Certain flavonol glycosides, and/or their metabolites, may play key
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roles in the therapeutic actions of Ginkgo extract. Their structures and the position 

numbers are shown in Figure 2.2.
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HO,

HOOH O
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OHOH O

OH
OH

Rutin

Figure 2.2 Structures of some flavonoids found in Ginkgo extract

2.1.3.2 Terpene lactones

Of all the compound classes present in Ginkgo biloba, the terpene trilactones have 

received by far the most attention. This is due to their chemical uniqueness, their

56



importance in quality control and their analytical challenge4. Terpene lactones in Ginkgo 

biloba include various 20-carbon diterpene lactone derivatives (ginkgolides A, B, C, J, 

and M) and a 15-carbon sesquiterpene (bilobalide). The structures of these highly 

oxidized terpenes are shown in Figure 2.3. The structures of ginkgolides were originally 

elucidated by two Japanese groups in the 1960s13,14. In the 1980s, the interest in the 

ginkgolides suddenly soared when they were found to competitively inhibit the 

platelet-activating factor (PAF), thus preventing thrombus formation,

bronchoconstriction and suppressing allergic reactions.

O
HO.

O
3 O'

HO.

Ginkgolide A: R 1=R2=H) R3=OH 

G inkgolide B: R 1=R3=OH, R2=H
Bilobalide

G inkgolide C :R 1=R2=R3=OH 

G inkgolide J: R ^ H , R2=R3=OH

Figure 2.3 Structures of terpene lactones in Ginkgo biloba

2.1.3.3 Other components

Other components in Ginkgo biloba include 6 -hydroxykynurenic acid, organic acids 

(vanillic, ascorbic, shikimic, p-coumaric), iron-based superoxide dismutase, benzoic 

acid derivatives, carbohydrates, sterols and polyprenols4.
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Since Ginkgo biloba's pharmacological activity has been linked to the first two groups 

of compounds, the flavonoids and terpene trilactones, most of the commercial 

standardized extracts contain no less than 24% of Ginkgo flavonol glycosides and not 

less than 6 % of Ginkgo terpenes. Table 2.1 shows different classes of compounds 

present in the standardized Ginkgo extract EGb 761.

Table 2.1 Different classes of compounds present in the EGb7614

Compound class % Compound class %

Flavonol glycosides 24.0 High molecular mass compounds 4.0

Terpene trilactones 6 . 0 Inorganic constituents 5.0

Proanthoc yanid ins 7.0 Water, solvent 3.0

Carboxylic acids 13.0 Various 3.0

Catechins 2 . 0 Unknown 13.0

Non-flavonol glycosides 2 0 . 0 Alkylphenols <5 ppm

2.2 Aim of study

Mass spectrometers have been used to study flavonoids existing as their glycosylated 

conjugates and their aglycone flavonoids structure. Mass spectra obtained under 

electron impact (El) conditions have been widely used for structural investigation of 

flavonoids15. However, complex fragmentations may occur during El due to the broad 

spread of internal energy carried by the initially produced M+ ions, which may suppress

the peak for M+ and some important primary fragment ions containing structural 

information. Furthermore, El is not suitable for the analysis of polyphenolic flavonoids, 

such as flavonols and O-glycosides because of their high polarity and low volatility.
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The introduction of fast atom bombardment (FAB) with collision induced dissociation

1 f \  17(CID) was applied to the structural characterisation of flavones , flavonols and their 

O- and C-glycosides18. An LCQ ion trap mass spectrometer was used to determine the 

structures of various flavonoids in natural nutrition supplements19.

To help the determination and identification of active components in Ginkgo biloba 

extract and biological samples, the mass spectrometric properties of six flavonoids and 

four terpene lactones were investigated. MS/MS of the flavonoids have been well 

studied but with mass spectrometry of comparatively low mass accuracy such as ion 

traps. No reports have studied the fragmentation of terpene lactones by tandem mass 

spectrometry. In this study, ESI/MS" analyses were conducted on both flavonoids and 

terpene lactones using an ion trap mass spectrometer to generate MS/MS and MS" 

spectra and accurate mass analyses were performed on a Q-TOF instrument in order to 

assist in the elucidation of the fragment pathways of these compounds.

2.3 Experimental

2.3.1 Materials

Ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC), bilobalide (BL), quercetin 

dehydrate (QD), quercetin-3-/3-D-glucoside (QG), quercetin-3-rhamnoside (QH), 

kaempferol (KF), isorhamnetin (IR) and rutin (RH) were purchased from Sigma (St. 

Louis, MO, USA).

HPLC grade solvents: methanol, acetonitrile, formic acid and acetic acid were 

purchased from Fisher chemicals (Loughborough, UK) and were used without further
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purification. Water was purified with a Milli-Q deionisation unit (Millipore, Bedford, 

MA, USA). Gases used included oxygen free nitrogen and helium which were 

purchased from BOC Ltd (Surrey, UK).

2.3.2 MS and MS" of standard reference compounds

The ESI-MS and further MSn of standard flavonoids and terpene lactones were 

conducted using an LCQ ion trap mass spectrometer (Finnigan, Hemel hempstead, UK) 

equipped with an ESI source. The full scan analysis of the compounds, utilised to 

determine which polarity was the most useful in this study was initially conducted. For 

the MSn analysis the instrument was utilised in negative ion mode and the parameter 

settings are shown in Table 2.2. Standards were dissolved in methanol to a final 

concentration of about 100 pg/mL, and standard solutions were infused into the ESI 

source by syringe at a flow rate of 3 pL/min.

Table 2.2 ESI-MS conditions

Parameter Negative ion mode

Sheath gas flow (arbitrary units) 60

Auxiliary gas flow (arbitrary units) 15

Spray voltage (kV) 4.5

Capillary temperature (°C) 230

Capillary voltage (V) 2 0

Tube lens offset (V) 1 0
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2.3.3 Accurate mass analysis of Ginkgo biloba reference standards

The accurate mass measurement of the product ions formed by the fragmentation of the 

Ginkgo biloba reference standards was performed on the Q-TOF Ultima mass 

spectrometer (Micromass, Manchester, UK) in negative mode equipped with a lock 

spray source allowing both a reference compound and analyte to be studied 

simultaneously therefore allowing the acquisition of accurate mass data. The reference 

standard stock solutions were diluted with 50% methanol aqueous solution to a 

concentration of approximately 10 pmol/pL and infused into mass spectrometer with a 

syringe at flow rate of 1 pL/min. The spray voltage used was 2.5 kV, source 

temperature of 80 °C, desolvation temperature of 120 °C, TOF voltage of 9.1 kV, MCP 

voltage of 2300 kV, a cone gas flow of 100 L/hr, desolvation flow of 250 L/hr and the 

collision energy was set to 4 eV during the full scan MS experiments and 15-35 eV for 

MS/MS experiments. Cyclic CMP was used as lock mass reference and was infused at 

the same time with the Ginkgo biloba standards at a flow rate of 3 pL/min and was used 

to adjust the active components mass peaks produced in the ESI-MS and MS/MS 

experiments to improve their mass accuracy.

2.4 Result and discussions

2.4.1 Full scan MS under positive ion mode (ESI ion trap)

Both positive and negative ionisation modes were evaluated for the investigation of the 

Ginkgo flavonoids and terpene lactones. Tables 2.3 and 2.4 show the ions generated by 

the standards in positive and negative ionisation full scan mode, respectively. In 

positive ionisation mode, the protonated molecular ion signal is very weak and sodium
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glycosides, the aglycone counterpart quercetin (w/z=303) can be observed.
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Figure 2.4 Mass spectrum of bilobalide in positive mode 

[M+H]+: 327, [M+Na]+: 349
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Table 2.4 ESI-MS with ion trap mass analyser of Ginkgo biloba standards m/z and 

relative abundance (%, in brackets) of major ions in negative ionisation mode

Ions [M-H]- [M-2CO]' [M-HJ-CO [2M-H]' [M-H]"-Glc [M-H]'-Rha [M-H]'-Glc-Rha

BL

GA

325(100)

407(100) 351(84) 379(12)

651(32)
__ __ __

GB 423(100) 367(28) 395(8) — — — —

GC 439(100) 383(62) 411(14) — — — —

IR 315(100) — — 631(8) — — —

KF 285(100) — — 571(11) — — —

QD 301(100) — — 603(37) — — —

QG 463(100) — — — 300(17) — —

QH 447(100) — — — — 300(22) —

RH 609(1000 — — — 447(12) — 300(19)

2.4.2 MS under negative ion mode (ESI ion trap)

In negative mode the deprotonated molecular ions of the reference standards give much 

stronger signals then those generated in positive mode. In this mode, the deprotonated 

molecular ions [M-H]‘ of all the standards are the base peaks, no adducts were observed 

(Figure 2.5). The aglycone counterpart quercetin (m/z=301) can be observed in all 

three flavonoid glycosides. For ginkgolide A, B and C, the ion corresponding to loss of 

one and two carboxyl group [M-CO]' and [M-2CO]' can also be observed (Table 2.4) 

and the signal intensity is much stronger in negative mode than positive mode as shown 

in Figure 2.6.
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Figure 2.6 Comparison of ion intensity in positive and negative mode for the 10

components of Ginkgo biloba
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2.4.3 Collision induced dissociation of Ginkgo biloba standards

2.4.3.1 Ginkgo biloba flavonoids glycosides

In all the tandem mass spectrometry, molecular ions [M-H]' were chosen as the 

precursor ion as they are the base peak ions in negative ionisation mode. Figures 2.1-2.9 

show the ESI/MS/MS of three Ginkgo flavonoid glycosides when their deprotonated 

molecular ions were selected as precursor ions and the product ions recorded. As can be 

observed, the three flavonoid glycosides fragment to lose the glycoside and produce the 

corresponding aglycone, in this case quercetin, as the main fragment ion. This is very 

important characteristic which can be used to identify the flavonoid glycosides in 

Ginkgo biloba commercial samples as reported in Chapter 4. The proposed fragment 

pathway is shown in Figure 2.10.
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Figure 2.7 Negative ESI-MS/MS mass spectrum of rutin hydrate

Precursor ion [M-H]': 609; collision energy 28%.
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Figure 2.8 Negative ESI-MS/MS mass spectrum of quercetin-3-/3-D-glucoside. 

Precursor ion [M-H]‘: 463; collision energy 27%.
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Figure 2.9 Negative ESI-MS/MS mass spectrum of quercetin hydrate.

Precursor ion [M-H]‘: 447; collision energy 28%.
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Figure 2.10 Proposed fragment pathways of Ginkgo flavonoid glycosides
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It should be noted that both 300 and 301, corresponding to the quercetin fragment and a 

radical quercetin anion respectively, are the major ions in Figures 2.7-9. According to 

the literature , the relative abundance of the radical aglycone to the aglycone product 

ion is dependent on the collision energy with a relative increase in radical aglycone 

product ion formation detected with an increase in collision energy.

2.4.3.2 Ginkgo biloba flavonoid aglycones

A systematic ion nomenclature for flavonoid aglycones has been proposed by Claey and 

co-worker21. As shown in Figure 2.11, the symbols  ̂A+ and 1JB+ are used to designate 

primary product ions containing intact A and B rings, respectively. The superscripts 

i and j refer to the bonds of the C-ring that have been broken.
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Figure 2.11 Nomenclature and diagnostic product ions of deprotonated flavonols 

formed by ESI-ion trap mass spectrometer

The MS/MS spectra of flavonoid aglycones quercetin, kaempferol and isorhamnetin are 

shown in Figures 2.12-14, respectively. Major MS/MS fragment ions of the three 

flavonoid aglycones are summarized in Table 2.5. In the case of isorhamnetin, the 

spectrum is dominated by the [M-H-CH3 ] with m/z 300, which is the loss of a CH3 

radical from the precursor ion. This fragment pathway was supported by accurate mass 

analysis. Further fragmentation of m/z 300 was performed by ion trap mass spectrometer 

and shown in Figure 2.15. Quercetin and kaempferol share similar fragment patterns

while kaempferol gives more fragment ions. 1,3A , 0,4A and 0,4B were observed in the

1 9 ” • 0 9 ” *fragmentation spectra of both compounds. ’ A was observed in quercetin and ’ A in 

kaempferol. Ions corresponding to the loss of H2 O, CO, COO, ketene and their 

combined loss from precursor ions are observed in the spectra. The proposed fragment 

pathways determined by the combined ion trap MS" and accurate mass measurement, 

are shown in Figure 2.16, 2.17, 2.18, respectively.
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Table 2.5 Major product ions formed from ions using ESI MS/MS for the flavonoid 

aglycones quercetin and kaempferol in Ginkgo biloba

Ions QD KF IR *IR (M=300)

[M-H]- 301 285 315

[M-H-CH3]' 300

[M-OH]* 283

[M-H -H20 ]‘ 283 267

[M-H-CO]' 273 257 271

[M-H-COO]' 257 241

[M-H-CO-COO]' 229 213 227

[M-H-C2H20]' 243

[M-H -H20-C0]' 239

[M-H -2CO]' 229 243

[M-H -H20-2CO]' 2 1 1

[M-H -3 CO]' 2 0 1 215

[M-H -2CO-COO]' 185

U3a  + h 2o 169 169 169

1,2 A' 179

WA- 163 163

U3a- 151 151 151

°’4B' 193 187

0,4 A‘ 107 107 107

* This column is the MS3 of the MS/MS product ion m/z=300
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Figure 2.12 Negative LC/ESI-MS2 mass spectrum of quercetin. 

Precursor ion [M-H]': 301; collision energy 36%

257 .15
100 =

169.07 213.14

229.16
80

239.23

60a>8
I
B<

185.22

151.04

4 0I
267.10

163.13 187.19

20 107.07 201.15
285.26

143.19
93.22

100 140 240 260 280 300 320120 160 180 200 220
rrVz

Figure 2.13 Negative LC/ESI-MS mass spectrum of kaempferol.

Precursor ion [M-H]': 285; collision energy 46%
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Figure 2.14 Negative LC/ESI-MS2 mass spectrum of isorhamnetin 

Precursor ion [M-H]': 315; collision energy 34%
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Figure 2.15 Negative LC/ESI-MS3 mass spectrum of isorhamnetin 
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2.4.3.3 Ginkgo biloba terpene lactones

The MS/MS spectra of [M-H] ions of bilobalide and ginkgolide A, B, C are shown in 

Figures 2.19-2.22. All the Ginkgo terpene lactones exhibit similar fragmentation 

pathways. The summarized fragment ions are shown in Table 2.6. Ginkgo terpene 

lactones have unique chemical structures, they are highly oxidized terpenes with many 

carbonyl and hydroxyl function groups. Consecutive loss of H2O, CO, COO from 

molecular ions was observed. Proposed fragment pathways for Ginkgo terpene lactones 

are shown in Figures 2.23-2.26 by combining ion trap MS to the end fragment 

information and accurate mass measurement results.

183.2

a)oc
CO■oc

163.2

325.3208.9

237.3225.0
250.5 281.0

263.0

350250200 300
rrVz

Figure 2.19 Negative LC/ESI-MS2 mass spectrum of bilobalide

Precursor ion [M-H]': 325; collision energy 50%
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Figure 2.20 Negative LC/ESI-MS2 mass spectrum of ginkgolide A 

Precursor ion [M-H]':407; collision energy 28%
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Figure 2.21 Negative LC/ESI-MS mass spectrum of ginkgolide B

Precursor ion [M-H]':423; collision energy 28%
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Figure 2.22 Negative LC/ESI-MS2 mass spectrum of ginkgolide C 

Precursor ion [M-H]':439 collision energy 26%
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Table 2.6 Major product ions formed from ions using ESI MS/MS for the terpene 

lactones in Ginkgo biloba

Ion GA GB GC BL

[M-H]' 407 423 439 325

[M-H -H20]- 389 405 421 —

[M-H-CO]- — 395 411

[M-H-COO]' 363 379 395 281

[M-H-2COO]' — — — 237

[M-H-2COO-CO]' — — — 209

[M-H-2CO]* 351 367 383 —

[M-H-2CO-COO]’ — 323 — 225

[M-H-2CO-2COO]' — 279 — —

[M-H -H20-C 00]- — 361 377

[M-H-2C0-H20 ]‘ 333 349 365 251

[M-H-2C0-H20-C 00]' 289 305 321 —

[M-H-2CO-2H20-COO]' 271 287 303 —

[M-H-2C0-H20-2C 00]' 245 261 277 163

[M-H-2CO-2H20-2COO]' 

[M-H-4CO- CH20-]‘

227 243 259

183

19
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2.4.4 Accurate mass in characterisation of fragmentation

A limitation of the ion trap is its mass accuracy which is not great enough to give the 

empirical formulae of the fragment ions, however Q-TOF instruments have a high mass 

accuracy capacity, and is able to list all the possible element composition of the 

fragment ions within a predefined ppm range. In this study, cCMP was chosen as the 

lock spray reference because all the Ginkgo biloba standards are in the same mass range. 

By using cCMP as the lock spray reference, the variations of all the mass of theoretical 

element compositions of the fragment ions and the mass recorded by mass spectrometer 

are generally between 0.3-20 ppm (as shown on the previous figures) and so the element 

composition provided by the Q-TOF gives greater confidence in the fragmentation 

pathways proposed.

The determination of the accurate mass of the fragment ions is of great benefit, 

especially when there is more than one possible pathway of fragmentation that could 

give an ion of a given m/z value but the resultant ions differ in empirical formulae and 

are not isomers. In our study, several such cases were encountered. One is observed in 

the fragmentation of quercetin, the product ion at m/z 179 could be attributed to either 

the 1,4B' ion Figure 2.27 (a) or the 1,2A’ ion Figure 2.27 (b). Accurate mass analysis was 

therefore necessary (Table 2.7), the 1,2A' ion C8H3O5 has a mass accuracy of 5.4 ppm 

while the next on the list -69.8 ppm, and it can therefore be concluded that the ion of m/z

1 7179 is the ’ A" ion of quercetin.
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O H

O

C 9 H 7 O 4  C 8 H 3 O 5

(a) (b)

Figure 2.27 Possible fragment ions with m/z 179 in quercetin fragmentation

Table 2.7 Empirical formula of the m/z 179 peak by accurate mass analysis

Mass Calc. Mass mDa PPM DBE Score Formula

179.0008 178.9980 2.8 5.4 7.5 2 C8 H3 05

179.0133 -12.5 -69.8 11.5 4 C12H302

179.0192 -18.4 -102.6 2.5 1 C5 H707

In kaempferol fragmentation, the fragment ion with m/z 163 can again be attributed to 

one of two possible formulae; the 1,4B' ion Figure2.28 (a) or the 0,2A' ion Figure2.28 (b).

n 9From Table 2.8, it can be concluded that ion with m/z 163 is ’ A' ion of kaempferol,

1 9which proves that the characterisation of the m/z 163 ion as ’ A’ ion in the paper by

99 1 9Fabre et al. is wrong , actually, ’ A' ions of both quercetin and kaempferol are found to 

be m/z 179.

Table 2.8 Empirical formula of the m/z 163 peak by accurate mass analysis

Mass Calc. Mass mDa PPM DBE Score Formula

163.0104 163.0031 7.3 14.6 7.5 2 C8 H3 04

163.0184 -8.0 -49.0 11.5 4 C12 H3 O

163.0395 -29.1 -178.6 6.5 1 C5 H7 06
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Figure 2.28 Possible fragment ion with m/z 163 in kaempferol fragmentation

In the study of terpene lactones similar examples of isobaric possible pathways were 

also found. In the fragmentation of GC, the fragment ion with m/z 383 could be 

attributed to the lost of side alkyl side chain from the precursor ion as in Figure 2.29(a), 

or the lost of two carboxyl group in the ring, as shown in Figure 2.29(b). The accurate 

mass of the ion is shown in Table 2.9, from which it can be concluded that the ion of m/z 

383 is due to the loss of 2CO from the precursor ion, the same fragment pathway was 

observed in ginkgolide A and B.

Figure 2.29 Possible fragment ion with m/z 383 in ginkgolide C fragmentation

0

O

C(CH3)3

C 1 6 H 1 5 O 1 1

(a) (b)
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Table 2.9 Empirical formula of the m/z 383 peak by accurate mass analysis

Mass Calc. Mass mDa PPM DBE Score Formula

383.1299 383.1342 -4.3 -11.3 7.5 2 C18 H23 09

383.0978 32.1 83.7 8.5 1 C17 H19 010

Quadrupole time-of-flight (QTOF) mass spectrometry was reported to be able to 

produce valuable MS3 and MS4 data in addition to the usual MS2 data23, which is 

generally only obtained by ion trap and Fourier transform ion cyclotron resonance mass 

spectrometers. By making optimal use of in-source CID, product ions of the initial 

precursor ion can first be formed in the ESI source, hence MS2 and even higher MSn 

product ions become available for further fragmentation in the collision cell of the 

Q-TOF mass spectrometer. In this study, similar phenomena was observed and utilized 

in characterizing fragment pathway of reference compounds, for example, the precursor 

ion m/z 315 of flavonoid aglycone isorhamnetin, provided MS/MS data as shown in 

Figure 2.30, upon fragmentation under collision energy of 20 eV, which is similar to the 

MS/MS spectrum observed using an ion trap (Figure 2.14), the main fragment ion is 

m/z 300. When collision energy increased to 35 eV, the spectrum is shown in 

Figure 2.31, the further fragmentation of m/z 300 can be observed, and this spectrum is 

similar the MS3 of isorhamnetin precursor ion obtained by ion trap mass spectrometry 

(Figure 2.15). Therefore it is important to optimizing collision energy when running 

MS/MS using Q-TOF to confirm the LCQ Data, By choosing suitable collision energy 

in the MS scan stage, Q-TOF mass spectrometry can obtain MS/MS spectrum similar to 

that of MS3 or MS4 as in ion trap.
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Figure 2.30 MS/MS of m/z 315 of isorhamnetin by Q-TOF mass spectrometry

with collision energy 20 eV
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Figure 2.31 MS/MS of m/z 315 of isorhamnetin by Q-TOF mass spectrometry

with collision energy 35 eV
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2.5 Conclusion

Full scan mass spectrometry using ESI in negative mode shows very high sensitivity 

compared to analysis in positive ion mode. The LCQ ion trap has proved to be a 

powerful method for the study of the fragment pathway of flavonoids and terpene 

lactones since it can perform MSn in a step-wise manner, where n can be as high as 10 in 

theory. For flavonoids in this study MS5 was the highest generation of fragmentation 

that could be accurately studied, which is very useful in structural analysis, however, the 

ion trap is not a high resolution mass spectrometer and it can only be used to obtain 

nominal mass. The Q-TOF compliments the ion trap because of its high mass accuracy. 

In this study, MSn data obtained from ion trap and accurate mass measurement were 

combined to create a comprehensive fragment pathway of the flavonoids and terpene 

lactones in Ginkgo biloba. However, the fragmentation pathway of flavonoids is 

controversial, different pathways have been proposed by different authors22,24. For the 

terpene lactones where multiple losses of CO2 and CO occur, it is difficult to predict 

which section of the molecule is lost first. The combination of ion trap and accurate 

mass measurement gives the proposed fragment pathways a higher degree of confidence 

in comparison to other literature reports. To confirm the entire fragment pathways, more 

work such as isotope labels would need to be utilised in order to confirm these pathways 

however this was beyond the scope of the work detailed in this thesis. The MS/MS 

study performed here was required in order to understand the characteristic 

fragmentation pathways of the reference standards so that comparisons could be made 

with the MS/MS of unknown suspected flavonoids and terpene lactones in the later 

analysed Ginkgo biloba extract. In Chapter 4, a fingerprint profile of Ginkgo biloba
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extract is obtained by LC/MS in data-dependent MS/MS scan mode and the knowledge 

of the fragmentation pathways of flavonoids and terpene lactones was applied to the 

determination of the structure of the active components in Ginkgo biloba presented in 

the fingerprint profile.
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Chapter 3

Quantitative determination of the active components in 

Ginkgo biloba extract nutritional supplements by

LC/MS
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3.1 Introduction

3.1.1 Quantitative Analysis: Precision, accuracy and sensitivity

Quantitative analysis is the determination of the concentration of components in the 

sample. HPLC and mass spectrometry can perform the quantitative determination of 

components. Method validation is very important in quantitative analysis since it is the 

process of proving that an analytical method is acceptable for its intended purpose. 

Method validation should be evaluated in terms of precision, accuracy and sensitivity.

Precision is the closeness of agreement or degree of scatter between a series of 

measurements obtained from multiple samplings of the same homogeneous sample1. A 

more comprehensive definition was proposed by the International Conference on 

Harmonization (ICH)2. It can mainly be considered from the following two aspects: 

Repeatability expresses the precision under the same operating conditions over a short 

interval of time. This is pure instrumental precision; it can be measured by the 

sequential, repetitive injection of the same sample 10 or more times, followed by the 

averaging of the measured values and determination of the relative standard deviation 

(RSD) of all measurement. It can be termed as intra-assay precision. %RSD (%relative 

standard deviation) can be calculated by the following equation:

SD
%RSD = \00x  ' (Eq. 3.1)

Average

Reproducibility evaluates the reproducibility of the whole analytical method, including 

sample extraction, sample clear-up and instrumental behavior as well. The
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reproducibility of an LC/MS method is usually described by the coefficient of variation 

(CV)3.

Accuracy of a method is the closeness of the measured value to the true (or expected) 

value for the sample. Accuracy is normally evaluated by recovery studies. There are 

different ways to determine the recovery. 1 ) comparison to a reference standard, 2 ) 

recovery of the standard spiked into a blank matrix, 3) standard addition of the analyte. 

For the quantitation of herbs, since it is not possible to prepare a blank sample matrix 

without the presence of the analyte, standard addition method is most often used. In this 

study, three samples of Ginkgo biloba nutritional supplements, each spiked with known 

quantities of reference standards in low, middle and high concentrations were extracted 

according to the same extraction method. The components in these samples were 

determined by LC/MS, the ratio of the amount of the standard obtained from the 

experiment to the spiked amount was the recovery of the extraction.

% Re cov ery = 100 x  ̂Calculated ̂  
True value

(Eq. 3.2)

Sensitivity is another important factor when evaluating a method, and is often described 

by the limit of detection (LOD) and limit of quantitation (LOQ). Limit of detection of an 

analyte is the concentration which gives an instrumental signal significantly different 

from the background signal (defined as the analyte concentration giving a signal equal 

to the blank matrix signal, ye, plus three standard deviation of the blank matrix, sb,
'i

i.e., (yB+3se) ) and is often estimated by a signal-to-noise ratio of 3:1. Limit of 

quantitation is the minimum amount of analyte in a sample which give a response that
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can be quantified with suitable accuracy and precision. It is estimated by a 

signal-to-noise ratio of 1 0 :l 3.

3.1.2 Quantitation of the active components in Ginkgo biloba extract food 

supplement: literature review

Commercial Ginkgo biloba products are usually standardized mixtures, based on the 

content of flavonoids and terpene lactones. Many investigations have been carried out 

on commercial preparations. Normally, these two classes of compounds are measured 

separately. There are many analytical methods which can be used for the determination 

of Ginkgo flavonoids. Older methodologies for the assay of flavonoids include 

spectrophotometry, fluorometry, paper chromatography and thin layer chromatography4. 

Routine analysis of flavonoids is currently conducted by high-performance liquid 

chromatography with ultra-violet detection (HPLC-UV). It was reported that flavonoids 

occur in Ginkgo leaves and extracts as many different flavonoid glycosides, most of 

them are derivatives of quercetin, kaempferol and isorhamnetin. The aglycones 

themselves occur only in relatively low concentration. Hasler and coworkers published a 

reversed phase separation of 33 flavonoid glycosides, flavonoids and biflavones using a 

tertiary gradient system5. Unfortunately due to a lack of commercially available 

reference compounds no quantitation of all the individual glycosides is possible. The 

normal procedure for the quantitative analysis of flavonoid glycosides and aglycones in 

Ginkgo leaves and extracts is an acidic hydrolysis followed by a reverse phase liquid 

chromatography of the resulting aglycones5. Because only three flavonoid aglycones 

occur in significant concentrations, this procedure greatly simplifies the separation and 

facilitates analysis, the content of the flavonoid glycosides can be recalculated from
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measurement of the flavonoid aglycones. However, there is some limitation in this 

procedure, for example, this method cannot differentiate between the fortified 

flavonoids (aglycones or glycosides) and the intact flavonoids that originate from the 

Ginkgo plant. The price of quercetin and rutin is very low and they are easily available; 

there is a possibility that some Ginkgo products are fortified using these low cost 

ingredients. Differentiation between the flavonoid aglycones and glycosides is 

important because bioavailability, pharmacodynamics and pharmacokinetics of intact 

flavonol glycosides and the hydrolysis products are different6.

It has previously been difficult to develop a suitably fast and robust LC-UV method for 

the analysis of Ginkgo terpene lactones since they are poor chromophores with very 

weak absorption in the UV range, even trace impurities interfere with the detection of 

these compounds by UV7. Furthermore, tedious pre-purification procedures of the 

samples have been necessary in order to separate the terpene trilactones from 

compounds which would interfere in their detection8, 9. The quantification of the 

non-UV active Ginkgo constituents requires methods that are more selective. Gas 

chromatography coupled with a flame ionisation detector (GC/FID) and mass 

spectrometer equipped with an electron impact interface (GC-EI/MS) has been 

explored1 0 , 1 ], but these methods are rather time-consuming because derivatization of the 

sample is required. The application of HPLC with evaporative light scattering detection 

(ELSD) and refractive index (RI) detection provided a satisfactory determination of the

0 19ginkgolides and bilobalide ’ . Advantages of RI over ELSD are its larger linear range, 

lower costs and its broader availability. Advantages of ELSD over RI are better 

baseline, compatibility with THF and gradients, small solvent peak and greater 

sensitivity. Both methods are suitable for the routine analysis of all terpene trilactones
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after an RP-HPLC separation, but these methods also required a long process of sample 

preparation. HPLC-RI is currently the most widely used quality control method. 

Supercritical fluid chromatography (SFC) combined with ELSD detection has proved to 

be an interesting alternative to HPLC and efficient separation of the terpene lactones 

can be achieved in 10 minutes in the isocratic mode13. Quantitative NMR is another 

method proposed for the quantification14.

Efforts were concentrated on simultaneous determination of the flavonoids and terpene 

lactones in Ginkgo biloba preparations. ELSD15 and GC/MS11 have been used to 

determine terpene lactones and flavonoid aglycones in Ginkgo biloba extract, these two 

methods include time-consuming extraction or derivatization procedure. Another 

problem is that in these two methods the flavonoid glycosides were hydrolysed into 

flavonoid aglycones before quantitation, so the information of flavonoid glycosides, 

which is important to evaluate the product quality and storage conditions, can not be 

obtained. Mass spectrometry is currently the most sensitive and selective analytical 

method for the rapid qualitative and quantitative analysis of known compounds as well 

as the identification of unknown compounds from crude and partially purified samples 

of natural supplements16 and has been applied to the analysis of Ginkgo biloba, mostly 

for the determination of Ginkgo terpene lactones17,18. Its unique ability to filter and 

isolate molecular ions with specific mass-to-charge (m/z) ratios from a complex mixture 

makes MS an invaluable tool for analytic chemistry. Recently there were reports on 

simultaneously detection of active components, terpene lactones and intact flavonoid 

glycosides in Ginkgo products by nanoelectrospray19, but it is more like a fingerprint 

profile, no quantitative results of Ginkgo flavonoid glycosides and terpene lactones 

were presented. In this chapter, an integrated approach consisting of HPLC, LC/MS has



been used for the quantification of active components in Ginkgo biloba nutritional 

supplements. Simultaneous quantitative determination of terpene lactones, flavonoid 

aglycones and three intact flavonoid glycosides were obtained with minimum sample 

pre-treatment and Optimisation of the extraction and rapid separation method was 

investigated.

3.1.3 Aims of study

Ginkgo biloba’s pharmacological activity has been linked to the two groups of 

compounds, flavonoids and terpene lactones, as introduced previously, most of the 

commercial extracts are standardized and claimed to contain no less than 24% of 

Ginkgo flavonoid glycosides and no less than 6 % of Ginkgo terpene lactones. Due to the 

great difference in concentration and chromatographic property, flavonoids and terpene 

lactones in Ginkgo biloba are determined separately15. Most studies have quantified the 

flavonoid content of Ginkgo biloba in terms of the quercetin, kaempferol and

on •isorhamnetin content, following an acid hydrolysis process . More information is 

needed regarding the flavonoid glycoside conjugates and aglycones content. It was 

reported that the content of flavonoid glycosides and flavonoid aglycones will vary 

according to the season of harvest. Also, the different proportion of flavonoid glycosides 

and aglycones suggests different storage condition, or degradation of the product. More 

importantly, it may indicate fortified chemical preparation19.

The principal objective of this chapter is to develop a routine quantitative method to 

determine quercetin, kaempferol or isorhamnetin, quercetin-3-/?-D-glucoside, 

quercetin-3-rhamnoside, rutin, ginkgolide A, ginkgolide B, ginkgolide C and bilobalide
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in Ginkgo nutrition supplements. A method for the quantitative determination of 10 

active components in Ginkgo biloba was successfully developed by on-line LC/ESI-MS. 

The extraction and hydrolysis methods for the isolation of the flavonoids and terpene 

lactones from Ginkgo biloba were also studied.

3.2 Experimental

3.2.1 Chemicals and standards

Methanol, acetonitrile (HPLC grade solvents), formic acid and acetic acid were 

purchased from Fisher chemicals (Loughborough, UK) and were used without further 

purification. Ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC), bilobalide 

(BL), quercetin dehydrate (QD), quercetin-3-/3-D-glucoside (QG), quercitrin (QH), 

kaempferol (KF), isorhamnetin (IR), rutin (RH) and andrographolide were purchased 

from Sigma (St. Louis, MO, USA). Water was purified with a Milli-Q deionisation unit 

(Millipore, Bedford, MA, USA). Gases used included oxygen free nitrogen and helium 

which were purchased from BOC Ltd (Surrey, UK).

3.2.2 Standard stock solution and calibration solutions

Stock solutions were prepared (1 mg/5 mL methanol) to give a final concentration of 

200 pg/mL and solutions were then used to prepare working standards for calibration 

curves and recovery experiments with Ginkgo extract samples. All solutions were 

placed in an ultrasonic bath for 1 0  minutes to ensure they were completely dissolved. 

The calibration solutions (working solutions) were accurately diluted with methanol just 

prior to use. All solutions were stored at -20 °C.
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3.2.3 Sample preparation

Samples of commercial Ginkgo extract products were prepared by combining the 

contents of 10 capsules or 10 tablets pulverized into powder. 100 mg of Ginkgo biloba 

nutrition supplement were accurately weighed into a 20 mL vial. 20 mL of methanol 

were added to the sample and shaken briefly to mix. The sample vial was sonicated in 

an ultrasonic bath Bransonic 2510 (Branson, Danbury, CT) at a frequency of 42 kHz at 

25 °C for 50 minutes, 1 mL of sample was then centrifuged for 10 minutes at 17,000 g 

to pellet insoluble material. 100 pL of the supernatant were removed into a sample vial 

and 10 pL of it were analyzed by HPLC/MS. The extraction procedure presented here 

minimized handling of the samples during preparation. The sample was extracted 

directly by methanol and transferred to the HPLC system without an evaporation 

procedure, solid-phase extraction (SPE) or liquid-liquid extraction (LLE) clean-up 

procedure.

3.2.4 Traditional QC (quality control) analysis

500 mg of Ginkgo product powder were accurately weighed and re fluxed with acidified 

methanol for 5 hours, then 10 pL of the resulting solution were injected onto LC system, 

as below.

3.2.5 LC/MS methodology

The extracts were analysed using an LC/MS system that consisted of a Hewlett Packard 

1100 HPLC system (Hewlett-Packard, Wilmington, DE, USA) with a HP autosampler, 

gradient pump, and a HP 1100 photodiode-array detection for HPLC separation



interfaced to a LCQ ion trap mass spectrometer (Finnigan, Hemel Hempstead, UK). The 

separation was achieved with a reverse phase analytical column, Luna Cis RP column 

(100x4.6 mm, 5 pm, Phenomenex, Torrance, CA, USA), using a gradient elution at a 

temperature of 35 °C. UV detection at 250 nm was applied. The mobile phase was 

composed of 0.1 %( v/v) acetic acid in water (A), l:l(v/v) mixture of ACN and 

methanol (B). The flow rate was 0.8 mL/min, and a splitter was used to transfer only 

|  of the flow into the mass spectrometer, the gradient is shown in Table 3.1. During full

scan MS mode analysis LC/ESI/MS was carried out in the negative ion mode from m/z 

200-800 with electrospray ionisation for quantitation. The heated capillary temperature 

was heated to 190 °C and the electrospray voltage was 4.5 kV, sheath gas flow rate was 

90 arbitrary units, and auxiliary gas flow was 15 arbitrary units. The system was 

calibrated according to manufacturer instructions and was tuned using the calibration 

solution. The ESI parameters were optimised by flow injection of standard solutions. 

The ions monitored in SIM and SRM mode is shown in Table 3.2. During SIM mode a 

mass window of ± 0.5 Da was used in order to specify the ion monitored and during 

SRM scanning mode the same window was utilized for both the precursor and product 

ion selection.

Table 3.1 Gradient elution program used from HPLC/MS analysis

Time (min) A% B% Flow rate (mL/min)

0 80 2 0 0 . 8

50 55 45 0 . 8

52 0 1 0 0 0 . 8

57 0 1 0 0 0 . 8

60 80 2 0 0 . 8

70 80 2 0 0 . 8
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Table 3.2 Ions monitored in SIM and SRM detection mode

Component SIM

(m/z)

SRM

(m/z)

Relative collision 

energy (%)

BL 325 325-* 183 50

GC 439 439-*377 26

RH 609 609-* 301 28

QG 463 463-* 301 28

QH 447 447-* 301 27

GA 407 407-* 363 28

GB 423 423->349 25

QD 301 301-* 179 36

KF 285 285^257 46

IR 315 315-* 300 34

3.2.6 Data analysis

Xcalibur ver. 1.2 software (Thermo Electron, San Jose, USA) was used for data 

acquisition and analysis. Microsoft Excel (ver. 5.0) was used for statistical calculations. 

Data are expressed as means ± SD (standard deviation of the mean). Linear regression 

analysis using the least squares method was used to evaluate the calibration curve of 

each analyte as a function of its concentration.

3.2.7 Reproducibility

Measurement of intra- and inter-day variability was utilized to determine the precision 

of the method. An extracted sample was analysed to determine the intra-day 

repeatability (examined in one day) and inter-day repeatability (determined over
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3 consecutive days). The relative standard deviation (RSD) was calculated as a 

measurement of method reproducibility.

3.2.8 Recovery

The accuracy of the method was examined by using the standard addition method for 

recovery studies. Ginkgo biloba commercial products were spiked with three different 

amounts of standards. The spiked samples and unspiked sample were assayed using the 

same method and results expressed as mean recovery ±SD. The recoveries were 

determined by calculating the concentration difference between unspiked and spiked 

results and comparing the data to the spiked levels.

3.3 Method development

3.3.1 Optimisation of chromatographic conditions

HPLC separation was achieved with a Ci8 reverse phase analytical column 

(100x4.6 mm, 5 pm, Phenomenex), using a gradient elution at a temperature of 35 °C. 

UV detection at 250 nm was applied. Figure 3.1 shows the HPLC separation from a 

mixed gradient elution program (Table 3.1) of a mixture solution of ten standards, the 

six flavonoids can be separated, but no UV absorbance of terpene lactones can be 

observed. To optimise the LC separation, the mass spectrometer needed to be used in 

order to observe the elution of terpene lactones.
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min

Figure 3.1 LC chromatogram of a mixture solution of 10 standard components, only 6  

Ginkgo flavonoids can be observed, the 4 terpene lactones show no UV absorbance 

Experiment conditions: Luna Cis 100x4.6 mm, 5 pm; mobile phase A: 0.1 %HAC in 

H20, B : 0.1% HAC in ACN; gradient see Table 3.1

Phosphate buffers are often used in the HPLC analysis of Ginkgo flavonoids to adjust 

the pH of mobile phase; however, these buffer solutions are not compatible with 

HPLC/MS on-line separation. In this case, the flavonoids and terpene lactones are basic 

compounds, acid needs to be added to adjust the pH of the mobile phase. For HPLC 

separation (column used in this study was a reverse Cj8 column), the compounds need to 

be neutralized so that they can equilibrate with the solid phase of the column and obtain 

good separation. However, for mass spectrometry, the compounds need to be ionised so 

that they can be detected by the mass spectrometer. Formic acid, acetic acid and TFA at 

different concentrations were compared for the sensitivity of ionisation, 0 .1 % acetic 

acid showed best separation on the HPLC column and good mass spectrometry 

sensitivity.
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Figure 3.2 LC/MS chromatogram of a mixture solution of 10 standard components 

using ACN as mobile phase. Mobile phase: 0.1% acetic acid (A), ACN (B); gradient: 

20% B for 5 min, 20-30% Bin for 40 min, 30-35% B for 10 min

A different mobile phase was evaluated for the separation of the standard mixture. 

Acetonitrile has a lower UV cut-off, lower viscosity and better mass transfer, while 

methanol is less expensive and more environmentally friendly. Both acetonitrile and 

methanol were compared for the separation. Figure 3.2 shows an LC/MS chromatogram 

of a mixture solution of 1 0  standard components, by using acetonitrile as mobile phase 

B. Flavonoids can be separated but ginkgolide A and ginkgolide B co-eluted at

24.02 minutes. The performance of methanol as a mobile phase is shown in Figure 3.3. 

By using methanol as the mobile phase, ginkgolide A and ginkgolide B were separated 

quite well at 26.93 and 29.14 minutes respectively, but rutin hydrate and
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quercetin-3-jS-D-glucoside co-eluted at 36.75 minutes and the separation took a long 

time whilst kaempferol and isorhamnetin were not eluted from the column after lhr.
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Figure 3.3 LC/MS chromatogram of a mixture solution of 10 standard components 

using methanol as mobile phase. Mobile phase 0.1% acetic acid (A), methanol (B); 

gradient: 25-50% B in 60 minutes

This clearly shows the difficulty in utilizing a single analysis for the determination of 

compounds of varied polarity such as these, however, good separation is very important 

to minimize the ion suppression during the electrospray process. Since the HPLC 

system has no tertiary pump, different ratios of ACN and methanol were used for the 

separation of the standards, it was found that 1:1 of ACN and methanol gives best 

separation. Figure 3.4 shows the total ion chromatogram (TIC) of the separation of a
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mixture, in solution, of 10 standard components under the stated conditions (Section 

3.2.5) and shows clearly that the 1:1 ratio provides good resolution for all ten standards. 

All components can obtain baseline separation in less than 50 minutes.

RH

1001
GB
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QH

GAQG

BL
KF

QD

Time (min)

Figure 3.4 LC/MS chromatogram of a mixture solution of 10 standard components 

using a 1:1 mixture of acetonitrile and methanol as mobile phase B. Experiment 

conditions: reverse column, Luna Cis 100x4.6 mm, 5 pm; gradient see Table 3.1

3.3.2 Optimisation of mass spectrometric conditions

3.3.2.1 Calibration and tuning of the LCQ ion trap

Mass calibration of the instrument is very important and allows the MS detector to 

assign the correct mass values to the ion signals that it detects. The basic process of
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mass calibration involves the acquisition of a data file (mass spectrum) using a standard 

mass calibration compounds. The data file is then compared with a mass calibration file 

of that compound, which has the correct mass assigned to each peak. Any difference 

between these two files is adjusted to bring the new data file into the line with the mass 

calibration file. This adjustment is then applied to all subsequent data files acquired. 

This process is called mass calibration. The LCQ ESI tuning and calibration solution 

contains caffeine, MRFA, Ultramark 1621 in 50:50 methanol: water containing 1% 

acetic acid. Caffeine provides an ESI singly charged peak at m/z 195.2. MRFA 

(L-methionyl-arginyl-phenylananyl-alanine acetate) provides an ESI singly charged 

peak at m/z 524.3. Ultramark provides ESI singly charged peaks at m/z 1022.1, 1122.1, 

1222.1, 1322.1, 1422.1, 1522.1, 1622.1, 1722.1, 1822.1 and 1921.9, as shown in Figure 

3.5.

1422.11

1 0 0 : 1522 .09
1322.13

524 .32 1622.06

1222 .15

1722.03

1122.16

1821 .98

1022.15 1921.96
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Figure 3.5 Mass spectrum of caffeine, MRFA and Ultramark 1621 tune solution
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For better sensitivity of mass spectromic analysis, the “tune files” for the reference 

standards were set up, in which the variable parameters within the mass spectrometer 

are optimised for the analysis of the protonated or deprotonated molecule of the 

compound being tuned for. In order to get the best sensitivity for an LC/MS study, some 

important mass spectrometric parameters were optimised for an LC flow rate of 

0.8 mL/min with a split flow of 0.2 mL/min to mass spectrometer. Since the study in 

Chapter 2 shows negative ionisation gives better sensitivity of molecular ion species 

[M-H]', the following Optimisation was carried in negative ionisation mode.

3.3.2.2 Optimisation of the sheath gas and auxiliary gas levels

The first stage of Optimisation was the adjustment of gas levels applied to the 

electrospray source in order to study the effect of different gas flows upon the ionisation 

of the compounds of interest. Sheath gas flow rate was altered between 60 and 100 

arbitrary units, keeping all other parameters constant. The responses of Ginkgo analytes 

showed significant dependence upon the sheath gas flow rate, as shown in Figures 3.6 (a) 

and (b). All compounds showed an increased response in signal intensity as the sheath 

gas level was increased to 90 arbitrary units, except kaempferol which has maximum 

signal intensity at 80 arbitrary units. A further increase of sheath gas flow rate to 100 

arbitrary units was observed to weaken the signal for 8  of 1 0  compounds, especially for 

QG and GA. Therefore for subsequent experimentation the sheath gas flow was set to 

90 arbitrary units for LC/MS analysis.
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Figure 3.6 Effect of sheath gas flow rate (arbitrary units) upon ionisation of the

flavonoids and terpene lactones
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Next the auxiliary gas levels were altered and the response of the standard compounds 

monitored. These gas levels were varied between 10 and 50 arbitrary units (the 

maximum level allowed with a sheath gas flow of 90 arbitrary units), the relative 

intensities of the compounds affected by these changes in gas flow rate are shown in 

Figures 3.7 (a) and (b).

The variation of auxiliary gas levels showed less change than sheath gas flow on signal 

intensities. The majority of the compounds showed maximum signal intensity at flow 

rate of 15 arbitrary units, except RH showed maximum signal at lower flow rate, 

therefore auxiliary gas level of 15 arbitrary units was used in further studies.
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Figure 3.7 Effect of auxiliary gas flow rate (arbitrary units) upon ionisation of 

the flavonoids and terpene lactones

3.3.2.3 Optimisation of spray voltage

The spray voltage was altered between 2.5 and 5 kV and the signal of all the compounds 

tested were monitored. Of the compounds tested the results where a significant 

difference in signal was detected are shown in Figures 3.8 (a) and (b). All the 

compounds tested showed a gradual increase of signal intensity with increasing spray 

voltage, with maximum signals at 4.5 kV, although there are some fluctuation for QG 

and GA. Further increase of spray voltage caused signal reduction for most of the 

compounds (8 out of 10). Therefore a spray voltage of 4.5 kV was used for all further 

analysis.
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Figure 3.8 Effect of spray voltage upon ionisation of 

the flavonoids and terpene lactones
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3.3.2.4 Optimisation of capillary temperature

The spray capillary temperature was altered between 170 and 250 °C and the intensity 

of the molecular ion species of the standard compounds monitored. As shown in Figures 

3.9 (a) and (b), 8 out 10 of the compounds shows maximum signal intensity at 190 °C, 

therefore the capillary temperature of 190 °C was used for further analysis.
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Figure 3.9 Effect of capillary temperature upon ionisation of the flavonoids and

terpene lactones

3.3.3 Optimisation of extraction procedures for Ginkgo biloba nutritional 

supplement samples

Extraction of flavonoids and terpene lactones from Ginkgo biloba is a challenge. The 

traditional quality control method for determination of flavonoids in Ginkgo products is 

extraction by hydrolyzing in acidified methanol to convert all the flavonoid glycosides 

into their flavonoid aglycone counterparts. After that several sample clean up steps are 

needed including a solid phase extraction (SPE) procedure5. For extraction of terpene 

lactones from Ginkgo extract, there are considerable sample clean up and partition steps 

because there are many apolar compounds e.g. ginkgolic acid, biflavones and 

chlorophyll, as well as polar constituents e.g. flavonoid glycosides which can interfere 

with the UV detection if they are not removed. Many procedures have been published 

over the last two decades. Early procedures were very time-consuming and error-prone
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which comprised up to 35 partitioning steps21, since then there are significant 

developments in the sample clean-up of various Ginkgo samples for terpene lactones 

analysis9,22'24. However, a SPE column or liquid-liquid extraction (LLE) step is still 

necessary to improve the rate of extraction of terpene lactones while filtering the 

intervening components. These laborious procedures make extraction and analysis of 

large numbers of samples difficult. The most simple sample clean-up is “no sample

• 25clean-up”, just an extraction immediately followed by analysis. Ganzera et al. 

investigated a Ginkgo extract with no sample clean-up using a HPLC system and ELSD 

detector. Although the method was validated in terms of recovery, peak purity, limit of

detection, linearity, extraction efficiency and reproducibility, the sample amount was

20rather high and there were some criticisms on the peak purity evaluation . However, the 

application of a mass spectrometry detector, due to its high sensitivity and selectivity, 

allows the sample size to be reduced and peak purity is much less of a problem. In this 

study, many different solvents were studied to extract the samples and an optimised 

extraction was developed for LC/MS quantitation.

3.3.3.1 Comparison of different solvent extraction systems

Methanol, acetonitrile, ethanol and l:l(v/v) methanol: acetonitrile were evaluated for 

their efficiency in the extraction of active components for Ginkgo biloba nutritional 

supplement. 20 mL of the above solvent were added to 100 mg of Ginkgo biloba 

nutritional supplement powder respectively. The solutions were sonicated in a water 

bath at 25 °C for 1 hour, 1 mL of the solution was centrifuged, lOpL of the supernatant 

were injected on HPLC/MS system using the optimised LC/MS conditions previously 

described. The concentrations were calculated using the calibration curves obtained
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from reference standards. Table 3.3 compares the extraction of Ginkgo biloba 

component by different solvents. As shown in this table, methanol is the solvent that can 

obtain the highest concentration of all the compounds tested, so methanol was chosen as 

the extraction solvent.

Table 3.3 Comparison of concentration of the different components in one Ginkgo 

biloba supplement extracted by different solvents. The concentrations were calculated 

using the calibration curves obtained from reference standards.

Solvent Methanol Acetonitrile Ethanol 1:1 Methanol: ACN

BL(pg/mL) 6.73 5.32 6.02 5.54

GC(pg/mL) 9.32 6.49 8.75 6.95

RH(pg/mL) 32.8 26.3 29.5 23.6

QG(pg/mL) 1.45 0.89 1.26 0.97

QH(pg/mL) 0.80 0.46 0.75 0.50

GA(pg/mL) 10.9 5.94 9.79 6.85

GB(pg/mL) 9.56 4.21 9.21 5.38

QD(pg/mL) 6.59 4.16 6.43 5.17

KF(pg/mL) 1.18 0.71 1.07 0.99

IR(pg/mL) 1.12 0.79 1.10 0.95

3.3.3.2 Comparison of different methanol concentrations

As methanol showed the best extraction efficiency, different concentrations of methanol 

were compared for the extraction of the 10 active components in Ginkgo biloba. Table

3.4 shows 100% methanol gives the best result, considering that the standard solutions 

were prepared in 100% methanol, it was chosen as the extract solution of choice.
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Table 3.4 Comparison of concentration of the different components in one Ginkgo 

biloba supplement extracted by different concentrations of aqueous methanol. The 

concentrations were calculated using the calibration curves obtained from reference 

standards.

Methanol (%, v/v) 50 60 70 80 90 100

BL(pg/mL) 5.82 4.91 5.84 6.60 6.13 6.75

GC(pg/mL) 8.14 7.38 8.47 8.99 9.07 9.36

RH(pg/mL) 27.6 26.1 32.5 35.1 34.4 33.2

QG(pg/mL) 1.04 1.16 1.46 1.37 1.48 1.56

QH(pg/mL) 0.66 0.61 0.69 0.68 0.74 0.82

GA(pg/mL) 8.31 7.61 7.45 8.64 8.68 11.1

GB(pg/mL) 8.06 73.3 8.17 8.34 8.85 9.58

QD(pg/mL) 3.90 5.14 5.98 6.09 6.37 6.64

KF(pg/mL) 0.78 1.33 1.56 1.57 1.39 1.21

IR(pg/mL) 0.60 1.00 1.13 1.15 1.17 1.18

3.3.3.3 Comparison of different sonication times on the efficiency of extraction

Sonication can greatly reduce the time of extraction; Table 3.5 shows the effect of 

sonication time on the extraction of flavonoids and terpene lactones in Ginkgo biloba. It 

shows the concentrations of all the standards are constant between 30-50 minutes in the 

sonicator. Too long a sonication will result in a decrease of the standards concentration, 

this might arise due to the heating caused by sonicating which may degradate the 

standards. Therefore, 50 minutes sonication time was chosen in this study.
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Table 3.5 Comparison of concentration of the 10 components in one Ginkgo biloba 

supplement extracted by different sonication time. The concentrations were calculated 

using the calibration curves obtained from reference standards.

mication time (min) 10 20 30 40 50 60 90 120

BL(pg/mL) 6.13 5.93 6.94 6.78 6.64 5.61 5.20 4.60

GC(pg/mL) 8.61 8.93 8.43 8.85 9.98 7.43 8.51 5.89

RH(pg/mL) 43.8 41.2 50.5 49.6 53.2 34.3 28.6 25.4

QG(pg/mL) 1.46 1.48 1.70 1.65 1.71 1.28 1.08 1.37

QH(pg/mL) 0.75 0.65 0.78 0.75 0.80 0.68 0.62 0.53

GA(pg/mL) 8.85 6.80 8.05 9.05 9.05 6.68 7.03 6.88

GB(pg/mL) 7.70 7.41 7.12 9.16 9.59 6.85 6.95 6.98

QD(ug/mL) 9.32 8.01 6.34 7.35 5.23 5.62 4.81 5.25

KF(pg/mL) 0.93 0.93 0.86 0.90 0.83 0.75 0.84 0.81

IR(pg/mL) 0.93 0.85 0.74 0.83 0.69 0.69 0.75 0.71

3.3.3.4 Optimisation of Soxhlet extraction procedure

Traditional quality control of Ginkgo biloba extract is evaluated by total flavonoids, in 

this process, the flavonoid glycosides are converted to flavonoid aglycones under acidic 

reflux, then the total flavonoid content can be obtained by multiplying by 2.51 for the

90amount of aglycones . In this study, the amount, of the 10 active components, upon 

different reflux times was studied.

About 500 mg of Ginkgo biloba nutritional supplement powder was accurately weighed 

and put into a Soxhlet thimble and refluxed with 100ml of methanol and 25%HC1 (9:1). 

Figures 3.10 (a) to (d) show the change of concentration of each compound upon the
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reflux time. The amount of terpene lactones remain unchanged up to 4 hours but longer 

reflux time causes ginkgolide B to degrade as shown in Figure 3.10 (a). Figures 3.10 (b) 

and (c) show that it takes about 40 minutes for flavonoids to reach their maximum 

concentration, then the concentration gradually reduces since they are hydrolysed to 

their aglycone counterparts. However, it was noted that the concentration of QH 

remained relatively constant even after 5 hours refluxing. Figure 3.10 (d) shows that it 

takes about 5 hours to convert all flavonoid glycosides into aglycones and the refluxing 

time for tradition QC (quality control) methods was set to 5 hours accordingly.

Figure 3.10 (a)-(d) The concentration of flavonoids and terpene lactones in Ginkgo 

biloba nutritional supplement upon refluxing time in Soxhlet extraction with 100ml of 

methanol and 25%HC1 (9:1)
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3.4 Results and discussions

3.4.1 Sensitivity

The limit of detection (LOD) was studied in order to investigate the sensitivity of the 

assay developed. In this study, the LOD was estimated by serial dilution of the analyte 

until the diluted sample gave a signal-to-noise ratio (S/N) of 3. This was conducted 

using both UV detection and detection by different forms of mass spectrometric 

analysis. Table 3.6 shows the comparison of LOD by UV detection and MS analysis

using both single ion monitoring (SIM), of the [M-H] ion, and single reaction 

monitoring (SRM), refer to Table 3.2 for the MS/MS transitions employed. It can be 

concluded from the data (Table 3.6) that mass spectrometry consistently gave better 

sensitivity compared to UV analysis and that selected ion monitoring gave the best 

sensitivity. Whilst the sensitivity of selected reaction monitoring mode was in most 

cases comparable with the signal obtained in full scan mode, the exceptions to the latter 

being those obtained for BL, QG and GA.

Theoretically, SRM analysis should be considered, over SIM analysis, when the 

background signal noise of the mass spectrometer is high. However, SRM was found to 

be significantly poorer than SIM mode. In this analysis there are 10 or more 

fragmentation processes for each compound, over which the ion signal is effectively 

diluted, thus reducing sensitivity in SRM mode. Therefore the SIM analysis was 

deemed to be the most beneficial for the further development of the assay.
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Table 3.6 Comparison of limit of detection of the 10 components in Ginkgo biloba by 

UV and MS under different analytical modes of detection, namely UV, full scan mass 

spectra, selected ion monitoring (SIM) and selected reaction monitoring (SRM)

Component UV
(pg/mL)

Full scan 
(pg/mL)

SIM
(pg/mL)

SRM
(pg/mL)

BL undetectable 0.73 0.044 0.185

GC undetectable 0.10 0.085 0.10

RH 1.06 0.28 0.010 0.28

QG 0.86 0.35 0.042 0.089

QH 0.75 0.18 0.031 0.09

GA undetectable 0.77 0.076 0.19

GB undetectable 0.08 0.010 0.17

QD 2.05 1.81 0.40 1.80

KF 1.30 0.52 0.065 0.18

IR 1.36 0.56 0.068 0.28

* A=250nm for UV analysis, ions monitored inSIM and SRM mode see Table 3.2

3.4.2 Linear range

Calibration curves were constructed by plotting peak areas of the SIM signal of [M-H] 

ions against concentration, the calibration curves of the 10 reference standards are 

shown in Figures 3.11-3.16.
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Figure 3.11 Calibration curve of bilobalide
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Figure 3.12 Calibration curve of ginkgolide C
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Figure 3.13 Calibration curve of ginkgolide A
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Figure 3.14 Calibration curve of ginkgolide B
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Linear regression analysis was also performed for each reference standard. Table 3.7 

compares the linear range and correlation coefficients obtained for the regression 

analysis based on a minimum of six data points with and without an internal standard 

added. The internal standard used was andrographolide. The use of an internal standard 

is generally considered a more accurate analytical method, however in this study, its use 

showed no improvement in the quantitative analytical result. The extraction process is 

very simple and has no drying or reconstitution steps and the LC/MS system used in this 

study is free of manual intervention steps, which provided several advantages over the 

conventional manual injection method. The high degree of automation provides 

consistent sampling, so the variation due to sample injection is thought not to be a major 

cause of error. As shown in Table 3.7, the method employed without an internal 

standard is better than that using an internal standard in terms of their comparative 

linearity. This suggests that manual sample preparation induces more errors into the 

entire extraction-analysis than automatic sample injection and mass spectrometric 

performance. The data also suggests that no loss of sensitivity is exhibited through 

continued analysis of the compounds and so the need for an internal standard, to 

compensate for loss of mass spectrometric performance, is not required.
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Table 3.7 Linear range for the 10 active components in Ginkgo biloba by LC/ESI-MS 

in negative ion SIM mode

Without internal standard With internal standard

Component Linear range 
(pg/mL)

R2 Linear range 
(pg/mL)

R2

BL 0.7-23 0.9991 0.7-11.5 0.9727

GC 0.27-17.5 0.9998 0.27-17.5 0.9982

RH 0 .6 8 - 2 2 0.9994 0 .6 8 - 2 2 0.9982

QG 0 .6 8 - 2 2 0.9988 0 .6 8 - 2 2 0.9934

QH 0.53-18 0.9991 0.53-18 0.9972

GA 1.21-19.4 0.9986 1.21-19.4 0.9977

GB 0.66-15.8 0.9976 0.66-15.8 0.9953

QD 0.8-26 0.9974 0.8-26 0.9894

KF 0.52-17 0.9988 0.52-17 0.9982

IR 0.54-17 0.9990 0.54-17 0.9984

To test whether these two calibration methods differ in their precision, a two- tailed test 

was applied to the two sets of sample variance, the result of F-test on the normalised 

standard deviation of each calibration, as shown in Table 3.8. The critical F value for 

degree of freedom 6  is 5.82 (P=0.05)3. Eight out of ten Ginkgo calibrations show no 

significant difference between these two methods and only one sample BL shows 

significant difference between the two calibrations. Thus there is no significant 

difference using either an internal standard or not.
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As the internal standard method needs more sample preparation work, based on the 

comparison results in this study, a method that does not utilise an internal standard was 

chosen for quantitation. In order to further test the reliability of this method, it was 

thought necessary to test multiple extracts of real biological samples as well as pure 

standards in order to determine the robustness of the analyses and whether it can be 

relied upon without an internal standard.

3.4.3 Intra-day and inter-day reproducibility

The reproducibility of the proposed method was evaluated by carrying out five replicate 

quantitative determinations for each of the studied compounds present in a given sample 

on the same day and five on three consecutive days. Table 3.9 and 3.10 illustrate 

intra-day and inter-day RSDs of the quantitation of the 10 components in Ginkgo biloba, 

respectively. It was shown that good repeatability and reproducibility can be obtained 

by this method and so the system is applicable for quantitative determination. The 

%RSD values of intra- and inter-day precision ranged from 5.5 to 11.2% and 6.3-11.2%, 

respectively, indicating very little variation in the HPLC-MS performance or the 

extraction efficiency of the methanol solubilisation of the compounds.
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Table 3.9 Intra-day precision of the 10 components in Ginkgo biloba extraction

Component BL GC RH QG QH GA GB QD KE IR

External standard

Mean 1.90 1.43 11.08 0.24 0.22 1.43 1.51 1.53 0.47 0.27

SD 0.16 0.08 0.73 0.018 0.012 0.16 0.13 0.13 0.036 0.017

CV 8.61 6.12 6.55 7.95 5.50 11.19 8.58 8.50 7.71 6.24

Internal standard

Mean 2.12 1.54 11.97 0.35 0.28 1.58 1.64 1.69 0.45 0.31

SD 0.21 0.12 0.95 0.029 0.025 0.18 0.15 0.16 0.042 0.025

CV 10.6 6.49 7.94 8.28 8.93 11.39 9.14 9.47 9.33 8.06

Table 3.10 Inter-day precision of the 10 components in Ginkgo biloba extraction

Component BL GC RH QG QH GA GB QD KF IR

External standard

Mean 1.96 1.52 11.65 0.35 0.41 1.52 1.87 1.48 0.53 0.38

SD 0.22 0.11 0.94 0.022 0.038 0.15 0.15 0.16 0.046 0.029

CV 11.2 7.24 8.07 6.29 9.26 9.87 8.02 10.81 8.68 7.63

Internal standard

Mean 2.23 1.46 11.38 0.32 0.35 1.48 1.72 1.66 0.49 0.33

SD 0.25 0.13 1.09 0.028 0.025 0.10 0.15 0.16 0.040 0.030

CV 12.3 8.90 9.58 8.75 7.14 6.76 8.72 9.64 8.16 9.09
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3.4.4 Recoveries of the 10 compounds in Ginkgo biloba nutritional supplements

The recovery values of the methods were calculated as the percentage of analytes 

recovered by the assay. Recovery of the herbs’ active components was obtained by 

standard addition because the components are already present in the herbal extract 

naturally and so this naturally occurring level must be determined and compensated. In 

this study, one of the Ginkgo samples was chosen for the recovery test and spiked at 

three levels, as described in the materials and methods. The results of the recovery 

experiments are shown in Table 3.11. The data shows that good recovery can be 

obtained by the extraction and analytical method described, the recovery values 

obtained were in all, but one case, greater than 90% (with the one outlier at 89.7% 

recovery) and the variation in recovery is generally better than 5% RSD with the 

greatest variation being only 11.2% at the lowest spiked level for GB. Among the 

compounds examined, kaempferol and isorhamnetin shows excellent recovery, the 

suspected reason for this observation is that the linearity of the calibration curve of these 

two compounds is better than others, although it has been previously reported that 

isorhamnetin exhibits a very low recovery by Deng et al.

3.4.5 Active components in commercial samples

Five commercial samples were obtained in order to study the variations in the levels of 

the ten examined compounds in these products. Sample 1 and 2 were bought from a 

local market, sample 3 was bought from a nationwide health food shop and sample 4, 5 

were obtained from Obsidian Research Ltd (Port Talbot, UK). Sample 5 was claimed to 

contain pure Ginkgo biloba extract.
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The traditional QC method of HPLC separation with UV detection of the hydrolysis 

formed aglycones was evaluated in this study. The quantitative results are shown in 

Table 3.12. From this table, all the five samples satisfy the quality control criteria with 

the total flavonoid levels higher than 24%, interestingly the proportion of the quercetin, 

kaempferol and isorhamnetin varies greatly.

Table 3.12 The content (%) of Ginkgo flavonoid aglycones after acidic hydrolysis

Sample
number

QD(%) KF(%) IR(%) Total 
aglycone (%)

Total 
flavonoids (%)

1 11.55 2.392 < LOQ 13.94 35.0

2 11.39 1.991 0.6741 14.06 35.3

3 5.806 4.349 1.275 11.43 28.7

4 6.542 3.613 1.023 11.18 28.1

5 8.741 1.855 0.5761 11.17 28.0

The five commercial samples were analyzed by the developed HPLC-SIM-MS method 

to obtain the levels of the active components in these samples. All the concentrations 

were converted to the percentage of each component in the Ginkgo sample as is 

commonly specified during quality control analyses. The results are shown in Table 

3.13 where it can be observed that the content of the ten components varied greatly 

between the different commercial samples, although they all claimed the sample has 

>6% of Ginkgo terpene lactones and >24% Ginkgo flavonoids. From our study, most of 

the samples satisfied the stated criteria for the Ginkgo terpene lactones (i.e., their levels 

should combined be >6%), the content of each terpene lactone is generally similar with 

bilobalide and ginkgolide A the more abundant components. However, the individual
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amount of specific compound within this class varied from sample to sample, the 

content of the same compound can differ as much as 200%. Taking ginkgolide A as an 

example, the content of ginkgolide A in sample 2 is 1.52%, but in sample 3 is 3.29% 

(see Table 3.13). As for Ginkgo flavonoids, rutin accounts for lA (6.2%) to Vi (12.1%) 

of total flavonoids, and a great difference, from 0.46% to 7.98%, in quercetin content 

was observed. The total flavonoid content determined is much lower than the quality 

control value of Ginkgo biloba extract product, which states that the levels should 

account for > 24%. This finding is not entirely surprising because the total flavonoids 

quantified by our analysis only accounts for the three flavonoid aglycones and three 

flavonoid glycosides which were commercially available. There are many other 

flavonoids glycosides in the sample which are undetermined because no standards were 

available and the total glycosides were not hydrolysed to their comparable aglycones 

prior to analysis in our method. Using the traditional QC method of HPLC separation 

with UV detection of the hydrolysis formed aglycones, the total flavonoid levels of all 

samples are higher than 24% suggesting that glycosides other than the ones tested for in 

our combined assay make up for the difference between our methods total flavanoid 

level and the level determined by QC methods.

Combining the result of HPLC and HPLC/MS, the content of rutin of sample 1 is too 

highly elevated (12.11%), and the content of quercetin in sample 2 is also too high 

(7.98%) in comparison to other samples. It can be concluded that samples 1 and 2 are 

fortified by low price quercetin or rutin additions, respectively. The Ginkgo sample 3 is 

the best quality product since it has the high content of both terpene lactones (10.6%) 

and flavonoids (28.7%) while the contents of possible fortified components, rutin and 

quercetin are low.

137



These results support previous reports of inconsistent content of commercial Ginkgo 

biloba products23'26. However, since the conventional quality control method involves 

hydrolysis followed by the analysis of flavonoid aglycones, it is not able to distinguish 

the fortified flavonoids from the natural flavonoid glycosides. The analysis of 

glycosides becomes important because product fortification is a common problem 

associated with natural products. The method described here avoids the hydrolysis 

process which makes the procedure more convenient experimentally and can 

differentiate some flavonoid aglycones and flavonoid glycosides. However, further 

availability of standards and their incorporation into the assay would improve the 

analysis. The method also has the advantage of being able to quantitate the flavonoids 

and terpene lactones in a single extraction and analysis. This method can be considered 

as a valuable tool for the quality evaluation of Ginkgo biloba dietary supplement 

products. The data presented here suggests that instead of setting a minimal amount for 

the total ginkgolides (> 6%) and flavonoids (> 24%), an alternative way of comparing 

the levels of the two bioactive compounds should be presented as quality control 

criteria.
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3.5 Conclusion

A HPLC-ESI/MS method was developed with the aim of quantitative analysis of ten 

active components in commercial Ginkgo biloba nutritional supplements. Compared 

with HPLC with UV or ELSD detection, mass spectrometry has the advantage in terms 

of sensitivity and selectivity, with no tedious sample clean up procedures being required. 

The limit-of-detection for UV and the various mass spectrometric scan modes employed 

were determined and compared. Selected ion monitoring (SIM) in negative ionisation 

mode was chosen for the quantitation of 10 major active components in Ginkgo biloba 

as it showed itself to be the most sensitive from the above preliminary studies. The 

sample preparation and assay procedure involved is simple, rapid, with good accuracy 

and reproducibility being demonstrated. This method offers a simultaneous quantitation 

of ten major active components in a single run, terpene lactones, flavonoid glycosides 

and aglycones can be monitored at the same time, no hydrolysis of flavonoid glycosides 

to aglycones is required.

There is remarkable variation in the contents of the flavonoids and terpene lactones 

although all the Ginkgo biloba nutritional supplements satisfy the traditional quality 

control standards which set a minimum amount of the total flavonoids >24% and 

ginkgolide >6%. The analysis of flavonoid glycosides as well as aglycones can be useful 

indicators of sample stability, too high concentration of rutin or quercetin can be 

recognized as fortification, this is circumvented when samples are hydrolyzed to back 

calculate flavonoid glycoside content in traditional quality control methods. The
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fortification of low cost components rutin or quercetin was observed in two out of five 

commercially available Ginkgo biloba products being analysed in this study. These 

results indicate that suitable quality control methods need to be implemented to ensure 

the quality of Ginkgo biloba nutritional supplements. This method may serve as a 

valuable tool for the quality evaluation of Ginkgo biloba dietary supplement products.
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Chapter 4

Fingerprint profile of Ginkgo biloba nutritional 

supplements by LC/ESI-MS/MS
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4.1 Introduction

Quality control of traditional Chinese herbs by “fingerprint analysis” has been given 

much attention in past reports as there are many varying factors in herbal medicine, 

unlike synthetic drugs, raising concerns in quality control. Species variation, 

geographical source, cultivation, harvest, storage and process are all factors leading to a 

product of different quality and efficacy. Compared with synthetic drugs, plant extracts 

are very complex mixtures, and the therapeutic effect of the plant is often not caused by 

only one or two compounds but the combination of a group of components1. In 

traditional Chinese medicine, the combination of different herbs is crucial since the 

same plants, when combined in different ratios, will cause different effects, therefore it 

is important to have an overall view of all the components in the plant extract in order to 

evaluate the quality of plant products. This is sometimes achieved by a process of 

"fingerprint analysis" in which the experimental data from the chemical analysis of 

different extracts are compared without accurately quantitating every individual 

compound known to occur in the extract. The major task of the fingerprint is 

identification and evaluation the similarity and stability among the samples. Usually a 

reference is used in fingerprint study. For crude plant evaluation the reference 

fingerprint should be the chromatogram of the plant from the original place; for plant 

extract, the reference fingerprint is the chromatogram of the product that has been 

proved to be therapeutically effective. Although "pure" quantitation is not achieved, any 

deviation from the comparable untainted or unfortified extract is an indication of an 

impure or tampered with extract.
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Each extract has its own chemical “fingerprint” and this has often been investigated 

using high pressure liquid chromatography (HPLC), thin layer chromatography (TLC) 

or nuclear magnetic resonance (NMR) analysis. Fingerprint chromatography was 

introduced in the 1990s’ and subsequently accepted by World Health Organization for 

the quality control of herbal medicines2. The use of fingerprinting analysis for quality 

control and standardization of medicinal herbs has attracted interest in herb research in 

recent years . Fingerprint analysis is used in the quality control of traditional Chinese 

medicines and their raw materials as stated by the Chinese Pharmacopoeia4 and is also 

now a demand of the European Economic Council (EEC) guideline 75/318 “Quality of 

Herb Drugs”5. Chromatographic profiles of major components are used to evaluate 

herbal growers and suppliers, to standardize raw materials and to control formulation 

and tablet content uniformity and screen for adulterants. Thin layer chromatography 

(TLC) has been the most widely used classical method for fingerprint analysis in herbal 

extracts. More recently HPLC-UV or HPLC/MS have been used for the detailed 

profiling of active components of trace marker compounds6. Hasler and Sticher obtained 

a fingerprint chromatogram of Ginkgo biloba and characterized components using pure 

reference flavonoids using a HPLC three-pump system with a diode-array detector. 

Altogether 33 flavonoids were identified unambiguously7, however, HPLC with UV 

detector is not suitable for terpene lactone analysis. Mauri et al. obtained a typical 

fingerprint-like spectrum by direct infusion in ESI-MS mode and assigned 9 flavonoid
o

glycosides which are known to be present in Ginkgo biloba . Recently 

nano-electrospray MS by direct infusion was used for the simultaneously detection of 

both active components9, giving a fingerprint-like profile. Due to the possibility of ion 

suppression by more abundant compounds in biological mixtures, direct infusion is
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thought not be able to provide a comprehensive profile of the plant extract and provide 

reliable quality control information. Among the various hyphenated instruments, liquid 

chromatography coupled with ion trap tandem mass spectrometry (LC/ITMS) is 

generally considered as one of the most powerful tools to perform on-line compositional 

and structural analysis of active constituents in plant extracts10. In this study, LC/ITMS 

was carried out in order to produce a fingerprint profile of Ginkgo biloba extract and the 

knowledge of the fragmentation pathways of active components was applied to 

determine the active components in Ginkgo biloba found in the fingerprint. Two LC/MS 

systems were used to compare the separation of Ginkgo biloba extracts in this study. 

One system is Hewlett Packard 1100 HPLC system (Hewlett-Packard, Wilmington, DE, 

USA) with LCQ ion trap mass spectrometer (Finnigan, Hemel Hempstead, UK) using 

normal size column Luna C]g RP column (100><4.6 mm, 5 pm, Phenomenex). The 

second system consisted of a LC Packings Ultimate Capillary LC system (Dionex, 

Amsterdam, Netherlands) with LCQ Deca XP ion trap (Thermo Finnigan, San Jose, 

CA), the column used in this system was an in-house made Cis capillary column. The 

use of characteristic fragmentation profiles was also investigated in order to determine 

whether signals unique to the flavonoids and terpene lactones could be obtained to give 

a clearer comparison of different extracts.

4.2 Experimental

4.2.1 Materials

HPLC grade solvents: methanol, acetonitrile, formic acid and acetic acid were 

purchased from Fisher chemicals (Loughborough, UK) and were used without further
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purification. Water was purified with a Milli-Q deionisation unit (Millipore, Bedford, 

MA, USA). Gases used included oxygen free nitrogen and helium which were 

purchased from BOC Ltd (Surrey, UK).

4.2.2 Sample preparation

Five commercial Ginkgo extract products (as described in Section 3.4.5) were dissolved 

in methanol by sonicating at 25 °C for 50 minutes, and centrifuged for 10 minutes at 

17,000 g (see 3.2.3 for detail) 10 pL of the supernatant were analyzed by HPLC/MS.

4.2.3 LC/MS of Ginkgo biloba nutrition supplement by normal-bore (4.6 mm i.d.) 

column

LC/MS was used to obtain a fingerprint chromatogram of methanol extracted Ginkgo 

biloba nutritional supplement. The LC system was a Hewlett Packard 1100 HPLC 

system (Hewlett-Packard, Wilmington, DE, USA) and the column used was a Luna Ci8 

RP column (100x4.6 mm, 5 pm, Phenomenex). The mobile phase was composed of 

0.1 %( v/v) acetic acid in water (A), l:l(v/v) mixture of ACN and methanol (B). The 

gradient ran from 20% B to 45%B over 50 minutes, the column was then washed with 

100% B for 5 minutes and re-equilibrated for 10 minutes. 10 pL of methanol extracted 

Ginkgo biloba nutritional supplement were injected onto the LC/MS system using an 

autosampler. The flow rate used was 0.8 mL/min, and a splitter was used to transfer 

only |  of the flow into the mass spectrometer. An LCQ ion trap mass spectrometer

(Finnigan, Hemel Hempstead, UK) was used for MS analysis. LC/ESI/MS was carried 

out in the negative ion mode from m/z 200-1000 with electrospray ionisation. The 

heated capillary temperature was 190 °C and the electrospray voltage was 4.5 kV,
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sheath gas flow rate was 90 arbitrary, and auxiliary gas flow was 15 arbitrary. The mass 

spectrometer was operated in a data-dependent mode composing of 3 scan events. The 

full scan mass spectrum was first obtained and followed by collision-induced 

dissociation of the highest abundant ion selected from the full scan. Next, in the third 

scan event, the highest abundant ion from the MS/MS was chosen for further 

fragmentation (MS3).

4.2.4 LC/MS of Ginkgo biloba nutritional supplement by capillary column

The column used in this experiment was an in-house made capillary Cis column 

(300 pm i.d. x 15 cm). A slurry packing procedure was employed to prepare the 

column. Slurries were prepared by placing ~5 mg of 100 A pore size Ci8 resin in a small 

vial, and adding 1 mL of isopropanol and a mini stirring magnet. A frit was prepared at 

one end of the 320 pm i.d. fused-silica capillary by dipping into a solution made of 

375 pL of Kasil 1624 potassium silicate solution (PQ Corporation, Valley Forge, PA, 

USA) and 125 pL of formamide (Sigma, St. Louis, MO, USA) for 2 seconds and 

heating in oven at 100 °C for 4 hours. The column was then packed using a high 

pressure chamber at constant nitrogen gas pressure of 40 bar until the desired length 

was packed. The pressure was turned off and the column was further packed overnight 

as the pressure dissipated. During assembly a second frit (Valeo, Houston, TX, USA) 

was placed at the other end of the column and the column encased in PEEK tubing in 

order to improve the stability of the column.

The LC/MS system was composed of a LC Packings Ultimate Capillary LC system 

(Dionex, Amsterdam, Netherlands) with LCQ Deca XP ion trap (Thermo Finnigan, San
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Jose, CA). The mobile phase was composed of 0.1 %( v/v) acetic acid in water (A), 

1: l(v/v) mixture of ACN and methanol (B), the flow rate was 4 pL/min. The gradient is 

shown in Table 4.1 and the electrospray settings are shown in Table 4.2. Again the mass 

spectrometer was performed in data-dependent mode as described for the 4.6 mm i.d. 

column LC/MS experiment.

Table 4.1 Gradient elution program used in capillary separation

Time (min) A% B% Flow rate (mL/min)

0 90 10 4

120 40 60 4

125 2 98 4

135 2 98 4

138 90 10 4

140 90 10 4

Table 4.2 Mass spectrometry setting of capillary LC/ESI-MS

Parameter Negative ion mode

Sheath gas flow (arbitrary units) 60

Auxiliary gas flow (arbitrary units) 10

Spray voltage (kV) 2.5

Capillary temperature (°C) 200

Capillary voltage (V) 15

Tube lens offset (V) 60
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4.3 Result and discussions

4.3.1 Identification of active components in Ginkgo biloba nutritional supplement 

by LC/MS with normal-bore (4.6 mm i.d.) column

The LC/MS chromatogram of ten standards of major active components in Ginkgo 

biloba is shown in Figure 3.4 in Chapter 3. A Fingerprint chromatogram of a methanol 

extracted Ginkgo biloba nutritional supplement (sample 3) was obtained with the same 

LC/MS conditions as the standards but with the mass spectrometer running in a 

data-dependent mode as previously described (Section 4.2.3). The advantage of this 

mass spectrometry setting is that it can obtain the full scan spectrum of column-eluted 

components of the sample and the fragment spectrum of the eluted components can be 

recorded simultaneously without the mass of the compounds being known prior to the 

analysis.

Using normal-bore column separation, 11 peaks were observed in the extracted Ginkgo 

biloba sample, as shown in Figure 4.1. The information gained from data-dependent 

HPLC/MS/MS and the knowledge from previous MS/MS and MSn fragmentation 

studies were next used to obtain the definite or tentative identifications of peaks in the 

resulting mass spectrum.
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Figure 4.1 Full scan base peak chromatogram by using data-dependent 

LC/MS/MS of Ginkgo biloba sample 3

4.3.1.1 Peak 2, 3, 4, 8, 9

Peak 2 has a retention time of 13 minutes and mass spectrum shows a base peak at m/z 

325 (Figure 4.2). The MS/MS spectrum of the peak is identical to that previously 

described for bilobalide (Figure 2.19). From further comparison of the retention time 

and MS/MS spectrum of the unknown with standard bilobalide, it can be concluded that 

peak 2 is bilobalide. By the same approach (utilisation of standards), peak 3 can be 

identified as ginkgolide C, peak 4 can be identified as rutin and peak 8, 9 as ginkgolide 

A and B, respectively.

152



R
el

at
iv

e 
A

bu
nd

an
ce

324.87100-1

9 0 -

8 0 -

7 0 -

6 0 -

5 0 -

4 0 -

3 0 -

20-
386 .68 406 .83

250 .8910- 304.74 360.91222.81 423 .13236 .83 402 .79307.07282.93 336 .70 356.76254 .89

380 400 420220 240 260 280 300 320 340 360
rrVz

Figure 4.2 Full scan spectrum of peak 2 (Figure 2.33) of Ginkgo biloba sample 3 

4.3.1.2 Peak 1

This peak occurs at a retention time of 11 minutes and shows a base peak at m/z 917 

(Figure 4.3). Fragmentation of the m/z 917 ion yields product ion at m/z 755 with the 

loss of 162amu (as seen in Figure 4.4). Further fragmentation of m/z 755 caused a loss 

of 146amu and produced a spectrum with product ions m/z 609, 343 and 300 as shown 

in Figure 4.5. The m/z 609 and corresponding fragment ions match the ions of intact 

rutin and its product ions as described (Figure 2.7) and so the compound is thought to be 

a derivative of rutin. In this MS3 spectrum the base peak product ion at m/z 300 is 

characteristic peak of quercetin aglycone. Since the mass of the glycoside functional 

groups glucosyl (-C6H10O5) and rhamnosyl (-C6H10O4) are 162 and 146, respectively,
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peak 1 is thought to consist of the quercetin moiety with two each of the glucosyl and 

rhamnosyl groups as opposed to rutin which contains only one of each group. Peak 1 is 

therefore tentatively identified as 2rhamnosyl-2glucosyl quercetin, however it should be 

recognised that the order of the sugar moieties can not be distinguished by the data 

obtained.
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Figure 4.3 Full scan spectrum of peak 1 (Figure 4.1) of Ginkgo biloba sample 3
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4.3.1.3 Peak 5

Peak 5 shows a retention time of 21.5 minutes and a base peak of 609, the same base 

peak mass as Peak 4 (rutin), the MS/MS analysis produced a different fragmentation 

spectrum compared to the standard rutin, as shown in Figure 4.6, it shows a 

characteristic fragment ion of m/z 300 which indicates that the aglycone is quercetin. 

The fragment of m/z 300 (Figure 4.7) shows an identical spectrum to that obtained with 

the commercial standard quercetin (refer to Figure 2.12). The compound is therefore 

considered to be similar in structure to rutin however the sugar moieties must be bound 

to the quercetin structure in a different manner compared to rutin in order to explain the 

differences in MS/MS data obtained.
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Figure 4.6 MS/MS spectrum of Peak 5
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Figure 4.7 MS3 scan of Peak 5 m/z 609 -* 300

4.3.1.4 Peak 6

Peak 6 shows a retention time of 22.6 minutes and base peak at m/z 593, upon 

fragmentation, a major product ion m/z 285 is obtained representing a loss of 308 amu 

from previous compounds which is thought to occur via the loss of a 

rhamnosyl-glucosyl moiety (Figure 4.8). Further MS spectrum of m/z 285 is shown in 

Figure 4.9, and this latter data shows similar major fragment ions to the standard 

kaempferol (as seen in Figure 2.13), peak 6 is hence tentatively determined to be 

rhamnosyl-glucosyl kaempferol.
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4.3.1.5 Peak 7

Peak 7 shows a retention time of 23.5 minutes and base peak at m/z 623, upon 

fragmentation, a product ion at m/z 315 can be obtained. Again this is thought to
a

represent a loss of a rhamnosyl-glucosyl moiety (Figure 4.10). Further MS spectrum of 

m/z 315 is shown in Figure 4.11, and the experimental data obtained is identical to the 

MS/MS spectrum of standard isorhamnetin (Figure 2.14). Peak 7 is therefore thought to 

be rhamnosyl-glucosyl isorhamnetin.
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Figure 4.10 MS/MS spectrum of Peak 7, m/z 623
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Figure 4.11 MS spectrum of Peak 7, m/z 623 — m/z 315

4.3.1.6 Peak 10

Peak 10 shows a retention time of 30.5 minutes and a base peak of m/z 755. MS2 of 755 

shows a loss of a rhamnosyl moiety causing a mass loss of 146 amu with product ion of 

m/z 609 (Figure 4.12). Further fragmentation of m/z 609 shows a typical ion of quercetin 

with m/z 300, the spectrum is identical to the MS/MS data for rutin (rhamnosyl 

glucosyl-quercetin), so peak 10 can be assigned as 2rhamnosyl glucosyl-quercetin
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Figure 4.12 MS/MS spectrum of PeaklO, m/z 755

4.3.1.7 Peak 11

Peak 11 shows a retention time of 36 minutes and base peak at m/z 739, upon 

fragmentation a base peak ion m/z 593, resulting from a loss of 146 amu, is obtained 

(Figure 4.13). Further MS spectrum of m/z 593 is shown in Figure 4.14, in this 

spectrum, m/z 284, the negative kaempferol ion with the formation of a free radical 

species by further loss of one hydrogen without loss of the charge (as seen for 

quercetin11) is base peak ion, so Peak 11 can be assigned as 2rhamnosyl-glucosyl 

kaempferol.
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4.3.2 LC/MS of Ginkgo biloba nutritional supplements by capillary column

An LC/MS system composed of a LC Packings Ultimate Capillary LC system (Dionex, 

Amsterdam, Netherlands) with LCQ Deca XP ion trap (Thermo Finnigan, San Jose, 

CA) was also evaluated for the analysis of Ginkgo biloba nutritional supplement. The 

LC and MS conditions are described in the method section, under these conditions, the 

standard reference materials exhibited satisfactory separation. The base peak MS full 

scan of the Ginkgo biloba extract itself shows more than 30 peaks (Figure 4.15) 

compared to the 11 peaks detected by the conventional bore column, this indicates that 

capillary column can obtain better sensitivity than the normal size column.
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Figure 4.15 Full scan base peak of capillary LC/MS of Ginkgo biloba nutritional

supplement sample 3
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Upon further investigation, using the principle described for the identification in 4.6mm 

normal-bore column, the tentative identification can be obtained from information 

provided by the data-dependent analysis by capillary column. Table 4.3 shows the MS 

and MSn of the peaks at different retention time and the proposed identification. The 

four terpene lactones (BL, GA, GB, GC) can be identified by comparing the full scan 

and MSn data with standards, among these, GA, GB, and GC were detected with the 

dimer as the base peak. Another terpene lactone ginkgolide J (GJ), with m/z of 423 can 

be observed at retention time 77.7 minutes, GJ was detected from the mobile phase 

derived acetic acid adduct as the base peak. The MS/MS of m/z 423 is shown in Figure 

4.16, the similar fragment ions of GB (379, 361, and 305) can be observed. The major 

components are identified as flavonoids, 35 flavonoids can be detected in this analysis, 

among these, 12 flavonoids are originated from quercetin, 10 flavonoids are originated 

from kaempferol, and 5 flavonoids are originated from isorhamnetin. 2 flavonoids are 

thought to originate from myrincetin (m/z 317) and 1 from methylmyrincetin (m/z 331). 

Peak 8, 10, 18, 23 are thought to be flavonoids originated from unknown aglycones with 

m/z of 345, 521, 417. Also Peak 22 (b) is recognized as aglycone with m/z of 285 from 

the MS/MS data however the identity of the sugar bound to it is unknown at present.
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Figure 4.16 MS/MS spectrum of Peak 13 m/z 423 at retention time of 77.7 minutes

The flavonoids identified in this capillary LC/MS study differ from Hasler’s HPLC 

fingerprint in which 33 flavonoids were identified7. This is thought to be because the 

detector utilised is different, UV is more sensitive to some flavonoids and mass 

spectrometry is sensitive to others and so these two should be deemed as complimentary. 

This LC/MS separation using capillary column obtains more peaks than Hasler’s reports 

and by using data-dependent scan mode, the mass and fragment pathways can be 

recorded at the same time so more information is provided. An advantage of the LC/MS 

approach is the ability to also study the levels of the terpene lactones which are not 

readily detected by HPLC in combination with UV.
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Table 4.3 MS, MS/MS and MSn of the peaks in Figure 4.18 and the proposed 

identification

Peak RT MS MS2 MS3 Identificationa

1 47.8 917 755 301 Q+2G+2R

2 51.3 901 739 593,285 K+2G+2R

3 55.6 771 609 301 Q+2G+R

4 58.0 801 639 331 Methylmyri c etin+2 G+R

5 60.1 771 609 301 Q+2G+R

6 61.6 755 593 285 K+2G+R

7 62.9 785 623 315 I+2G+R

8 64.3 815 653 345 Unknown
flavonoid+2G+R

9 66.0 755 593 285 K+2G+R

10 67.7 683 521 Unknown flavonoid+G

11 70.4 755 300 271,255, 179, 
151

Q+G+2R

12(a) 72.9 625 316 287, 271, 179, 
151

Myricetin+R+G

12(b) 73.3 917 755 609,300 Q+2G+2R

12(c) 73.5 325 281,251, 163 BL

13(a) 76.1 739 593 285 K+G+2R

13(b) 76.8 769 315 300 I+2R+G

13(c) 77.7 483 b 423 379,361,305 Ginkgolide J

14 78.8 901 739 593,285 K+2G+2R

15 79.7 879 c 439 395, 383, 365 GC

16 81.5 609 301 271,179, 151 RH

17(a) 83.2 639 331 316,315 Methymyricetin+G+R

17(b) 83.2 463 d QG

18 85.5 579 417 402, 371,205, 
181, 166, 151

unknown flavonoid+G

Continues
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Table 4.3 continued

Peak RT MS MS2 MS'3 Identificationa

19 87.8 609 301 271,255, 179, 
151

Q+G+R

20 90.0 593 285 267, 257, 229, 
151

K+G+R

21(a) 91.3 623 315 300 I+G+R

21(b) 92.8 447 259,241,215,151 QH

22 (a) 93.9 477 315 300, 285,271, 
243

I+G

22(b) 94.2 913 739 593, 285 K+R+unknown sugar 
(m/z 174)

23 95.3 653 345 330,315, Unknown
flavonoid+G+R

24 96.5 593 285 267,255, 229, 
151

K+G+R

25 99.8 755 609 300, 271,255 Q+G+2R

26 101.5 815 c 407 379,363,351, GA

27 103.0 847 c 423 395, 367, 305 GB

28 107.2 739 593 285 K+G+2R

29 109.3 755 609 300, 271,255 Q+G+2R

30 113.2 301 271,255 QD

31 116.7 739 593 285 K+G+2R

32 127.3 285 257 KF

33 129.3 315 300 283,255,
227,151

IR

a Q: quercetin, K: kaempferol, I: isorhamnetin, G: glucosyl R: rhamnosyl 

b acetic acid adduct 

c dimer

dno MS/MS obtained because mass spectrometer fragment the coeluted high abundant 
flavonoid
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Figure 4.17 Bask peak full scan of the five Ginkgo biloba commercial samples 

using capillary column LC/MS/MS in data-dependent mode

Figure 4.17 shows the fingerprint profile of the five Ginkgo biloba commercial samples, 

the three peaks in the middle including GA and GB are similar in all the samples and 

can be used as reference peaks to evaluate the other components by comparing the areas 

of these peaks. The QD/GA ratio in sample 2 is much higher than other samples, also 

RH/GA ratio in sample 1 is higher than other samples, which is consistent with our 

previous quantitative results. This indicates that the LC/MS fingerprint is a useful

19 • •technique in quality control of the plant extract, in our previous study the quantitation 

of both flavonoid glycosides and flavonoid aglycones is able to distinguish the spiked 

fortification (QD in sample 2 and RH in sample 1) which can not be detected by
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tradition quality control, but this fingerprint study can detect the fortification with no 

need of reference standards and this is especially useful when reference standards are 

unavailable.

It was considered that methanol extraction has the potential to extract many components 

from Ginkgo biloba, not just the active components flavonoids and terpene lactones that 

are the bioactive compounds of interest. To have a view of these compounds more 

specifically, different data processing techniques can be utilised. According to the 

fragmentation pathways of flavonoid glycosides previously described, all flavonoid 

glycosides will fragment to their aglycones upon fragmentation. So the extract ion 

chromatogram (XIC) of flavonoid aglycones m/z 301, 285, 315 can be used to analyse 

the flavonoid glycoside components in the sample. More than 10 peaks can be seen in 

each m/z range which indicates that Ginkgo biloba is a complex mixture of various 

flavonoid glycosides. Since no reference standard for the flavonoid glycosides are 

available, the method is not able to precisely identify each of the flavonoids, however, 

Figure 4.18 shows a profile of the flavonoids in Ginkgo biloba extract and how many of 

the flavonoids come from quercetin, kaempferol and isorhamnetin, respectively. This 

experiment was performed with an ion trap mass spectrometer in data-dependent mode. 

Using triple quadrupole mass spectrometers, it is possible to perform a precursor ion 

scan, in which the product ion can be specified and all the precursor ions that produce 

this specified ion under fragmentation will be recorded. Hence for a further 

development of the experimental analysis, a quadrupole mass spectrometer can be used 

to create a profile of all the flavonoids that give a product ion of quercetin, kaempferol 

and isorhamnetin, however, terpene lactones can not be detected by using this precursor 

ion scan.
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Figure 4.18 Capillary LC/MS extracted ion chromatogram (XIC) of Ginkgo biloba

extract at m/z 301, 285, 315

Alternatively, since the detected flavonoids are mainly glucoside and rhamnoside 

conjugated (with additional masses of 162 and 146 Da respectively), constant neutral 

loss analysis of the characteristic sugar ring can be used to identify the flavonoids from 

the methanol extract and obtain a profile of which flavonoid aglycones are conjugated 

to which sugar moieties. As shown in Figure 4.19, by using neutral loss of m/z 162, 146, 

308, 454, most of the flavonoids in Table 4.3 are present in this figure, and there are 3 

peaks a, b and c, corresponding to 449-^287 at 63.98 minutes, 449-^287 at 69.44 

minutes, 523-> 361 at 72.3 minutes, respectively, which were not detected by using full 

scan base peak but were observed by constant neutral loss data processing. The data 

also indicates that there are more glucoside flavonoids than rhamnoside flavonoids in 

Ginkgo biloba extract.
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Figure 4.19 Capillary LC/MS extracted ion chromatogram (XIC) of Ginkgo biloba 

extract by neutral loss of m/z 162, 146, 308, 454 Da

The same principle can be applied to the terpene lactones. According to Table 2.6, the 

loss of 44 Da (COO), 74 Da (2C0+H20) and 162 Da (2C0+H20+2C 00) can be used 

to profile the terpene lactones. However the neutral loss study of terpene lactones 

proved to be less successful because the dimer of the terpene lactones or the acetic acid 

adducted terpene lactones were more abundant in the mass spectra than the 

de-protonated molecule, and the characteristic fragmentation of the terpene lactones is 

only observed in the MS scan and the quality and the signal to noise ratio of the 

observed losses is not as good as MS2. Reducing the MS scan range could solve this 

problem of dimer fragmentation, however the increased mass range is required so as not 

to miss many of the flavonoids.
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The neutral losses profile can also be utilized to compare different samples, for example, 

by comparing neutral loss of m/z 308, it can be seen that sample 1 has more rutin than 

other samples, which indicates fortification. Interestingly, by comparing neutral loss of 

m/z 162 as shown in Figure 4.20, the peaks 3, 5-7, 12, 14 and 18 (as labelled in the 

figure and listed in Table 4.3) show obvious variations between samples, this is thought 

to because of the different origins of the extract or storage conditions which are very 

important in the quality control of plant extracts.
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Figure 4.20 Capillary LC/MS extracted ion chromatogram (XIC) of neutral loss of m/z 

162 Da of five Ginkgo biloba commercial samples

4.4 Conclusion

LC/MS is excellent for fingerprint quality control of plant extracts due to its high 

sensitivity and specificity. LC/MS with data-dependent scan mode not only gives a
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chromatogram which shows different peaks, at the same time, the mass and 

fragmentation of the components can be provided. This is a major advantage over 

HPLC-UV and TLC methods which are currently the major instrumentations used for 

fingerprinting analysis. The fingerprint chromatograms of five commercial Ginkgo 

biloba samples show variations in rutin and quercetin concentration, which indicate 

fortification, and this can not be spotted by using traditional QC method.

Capillary column (i.d. 300 pm) and normal-bore column (i.d. 4.6 mm) were compared 

in the separation of Ginkgo biloba commercial samples. The capillary column shows 

better resolution and sensitivity than a normal size column. Many more peaks are 

present in the chromatogram of capillary column separation. According to the fragment 

pathway of Ginkgo flavonoids, the XIC of m/z 301, 285 and 315 were constructed and it 

shows that more than 30 flavonoids can be detected by capillary column, neutral loss 

also provides important information regarding identification and evaluation the 

similarity and stability among the samples.

Comparing precise quantitation and fingerprinting in quality control of Ginkgo biloba 

extract, precise quantitation is more accurate and the exact amount of components of 

interest can be obtained, but limited number of components are under investigation 

mainly due to the limited availability of commercial standards, essential for accurate 

quantitative analysis. Fingerprint analysis can generate an overview of all the 

components in the sample under investigation. By comparing the peak area with 

standard fingerprint, semi-quantitative data can be obtained. The fingerprint method is 

therefore especially useful when reference standards for all components can not be 

obtained and be quantitated. However, chromatographic fingerprints sometimes exhibit
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variations in peak height and retention time of a given sample running through identical

columns even under the same separation conditions. Therefore proper normalization of

1 ̂chromatographic fingerprints must be taken into consideration . These two methods are 

thought to be complimentary in the quality control of plant extract.

It should be noted that in terms of the identification of bioactive components from 

Ginkgo biloba extracts by ion trap mass spectrometry no accurate mass was available. 

However by comparing the retention time and MS/MS fragments with the commercial 

standards, the identification of the 10 standards in the Ginkgo extracts can be confirmed. 

For those with no reference standards, the investigator is able to elucidate the aglycone 

from which the flavonoids originated, what sugar and how many sugars were added to 

the aglycone; but how the sugars are organized is unable to be decided from the MS/MS 

data. Further study may benefit from the collection of the LC fractions of the 

components of interest and characterization of these components with the help of 

other analysis methods such as NMR and X-ray. Although more than 30 peaks were 

resolved, the co-elution of the components was observed in this study, therefore slower 

gradient and longer elution time can be applied for better separation and more unknown 

identification.

Capillary column shows a better sensitivity and resolution than the normal-bore column, 

so in the next chapter it is used for urine analysis with the online SPE process by which 

time-consuming manual sample preparations can be avoided.
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Chapter 5

Determination of active components of Ginkgo biloba 

in human urine by capillary HPLC/MS with column 

switch on-line purification
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5.1 Introductions

Terpene lactones and flavonoids are two active species in Ginkgo biloba} . Terpene 

lactones are associated with increased circulation to the brain and other parts of the body
'y

and may exert a protection action of the nerve cells . The terpene lactones found in 

Ginkgo biloba are ginkgolides (ginkgolides A, B and C) and bilobalide. Ginkgo biloba 

also produces a large number of flavonoids in leaves, mainly derivatives of 

isorhamnetin, kaempferol and quercetin. Flavonoids in Ginkgo biloba are mainly 

flavonols which also occur naturally in many other plants. The flavonoids show 

biological properties through their free radical-scavenging antioxidant activities and 

metal-ion-chelating abilities . Despite the benefits of these components, their 

bioavailability after oral administration is considered to be a limiting factor4.

Flavonoids are well studied because of their ubiquitous existence. After ingestion,

flavonoid glycosides are thought to be first hydrolyzed by microorganisms in the

gastrointestinal tract to aglycones. The liberated aglycones can be absorbed from the

intestinal wall and excreted in the urine and bile as glucuronides and sulphate

conjugates5. A number of analytical techniques have been utilized to evaluate the

metabolism and bioavailability of flavonoids in vitro and in vivo. The methods utilised

previously for the study of urinary and other biologically important flavonoids levels

include HPLC6’7’8, and mass spectrometry (GC/MS9,10 and LC/MS1 ]). Study of terpene

lactones has been more limited to the study of plasma levels for which LC/ESI MS12 

1 ̂and LC/APCI MS have been reported. GC/MS was also report for terpene lactone 

analysis14.
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Mass spectrometry is one of the most effective techniques for the analysis of complex 

mixtures in biological samples because of its high sensitivity, specificity, and easy 

combination with chromatographic techniques. A common limitation of the previously 

developed techniques is that all of the methods reported require either a solid-phase 

extraction or a liquid-liquid extraction purification step prior to analysis, both very 

time-consuming. The techniques also examined only one of the two sets of compounds 

(flavonoids or terpene lactones); in contrast a previous HPLC/MS method developed by 

our group allowed the detection of both sets of compounds from the supplement itself 

by conventional bore HPLC/MS15. Although this method worked well for the analysis 

of the commercial herbal extract the analysis of the same components excreted in urine 

is complicated due to their lower levels and the large number of other high abundant 

species also excreted.

5.2 Aims of study

To evaluate the influence of flavonoids and terpene lactones of Ginkgo biloba and its 

beneficial health effects, it is important to monitor the concentration of the Ginkgo 

terpene lactones and flavonoids occurring in biological samples. Whilst 

pharmacological activities of Ginkgo biloba flavonoids and terpene lactones have been 

extensively studied, there has been little investigation into analytical methods for 

determination of terpene lactones and flavonoids simultaneously in such samples. In 

this study we developed a single quantitative assay for both flavonoids and terpene 

lactones in human urine by HPLC/MS with on-line cleanup of the urine sample. As a 

"proof of principle" study the assay was validated, shown to be sensitive, accurate and
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also function as well if not better than HPLC/MS detection with off-line purification as 

previously reported15.

The separation and quantitation of flavonoids and terpene lactones was achieved by 

using an in-house made capillary column, the high sensitivity of the capillary column 

and the online SPE with column switching technique require minimum sample 

pre-treatment. Different sample treatments, solid-phase extraction, liquid-liquid 

extraction and online solid phase extraction using a trap column were compared.

5.3 Experimental

5.3.1 Chemicals and standards

HPLC grade solvents: methanol, acetonitrile, formic acid and acetic acid were 

purchased from Fisher chemicals (Loughborough, UK) and were used without further 

purification. Ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC), bilobalide 

(BL), quercetin dehydrate (QD), quercetin-3-/3-D-glucoside (QG), 

quercetin-3-rhamnoside (QH), kaempferol (KF), isorhamnetin (IR), rutin (RH), 

andrographolide (Internal standard) and /3-glucuronidase/sulfatase (G0876) were 

purchased from Sigma (St. Louis, MO, USA). Water was purified with a Milli-Q 

deionisation unit (Millipore, Bedford, MA, USA). Gases used included oxygen free 

nitrogen and helium which were purchased from BOC Ltd (Surrey, UK). Stock 

solutions were prepared from 1 mg of each of the ten standards on a 0.0001 mg balance 

(Sartorius, UK) and dissolved in 5 mL methanol to give a final concentration of 

200 pg/mL. All solutions were placed in an ultrasonic bath for 10 minutes to ensure
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they were completely dissolved. The quantitation standards (working solutions) were 

accurately diluted with methanol just prior to use. All solutions were stored at -20 °C.

5.3.2 Collection and preparation of urine samples

Urine samples were collected from five volunteers before and 4 hours after the ingestion 

of a single tablet of Ginkgo biloba, the tablet was stated to contain 28.8 mg flavonoids 

and 7.2 mg terpene lactones. The blank (before) samples were used for spiking 

experiments to generate validation data. Urine samples were kept in a freezer at -20 °C. 

Before analysis the urine aliquots were centrifuged at 14000 g for 10 minutes in order to 

remove particulate matter and the supernatant was taken for analysis. 100 pL of urine 

aliquot were transferred to a 1.5 mL Eppendorf tube, then 25 pL of 1M sodium acetate 

buffer and 1 pL of enzyme (containing 114 units of /^-glucuronidase and 3.3 units of 

sulfatase) were added and incubated for 1 h at 37 °C. A 10 pL aliquot of internal 

standard was added to each sample and 5 pL of the sample were injected directly onto 

the HPLC/MS system.

5.3.3 Preparation of analytical column and online trap column

The analytical column and online trap column used in this experiment were prepared 

in-house and were both capillary columns of internal diameter of 320 pm, with lengths 

of the HPLC column and online trap column 15 cm and 3 cm, respectively. Two 

different solid phases Ci8 (PepMap stationary phase, Dionex, UK) and C30 (YMC, UK) 

were used to pack the columns tested in this study. Each stationary phase was prepared 

by placing ~5 mg of resin in a small vial, and adding 1 mL of isopropanol and a mini
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stirring magnet to each. A slurry packing procedure described in Section 4.2.3 was 

employed to prepare the columns.

5.3.4 Evaluation of compound trapping during column switching

A column switch pattern was designed using an Ultimate / Switchos / Famos pump and 

valve switching system (Dionex, Amsterdam, Netherlands) in order to record both the 

passing of sample from the trap to the waste and the elution of the sample retained by 

the trap column. The configuration is shown in Figure 5.1. Initially, Valve A and B are 

in the position 1-2 and so sample injected by autosampler will enter Port 4 of Valve A 

and follow the solid line and enter Port 8 of Valve B, so that the components that cannot 

bind to the trap column and washed away to the waste can be monitored by the mass 

spectrometer. After 3 minutes, Valve A and B are switched to position 1-10, 

components retained on trap column are then eluted using high organic composition 

mobile phase from the Ultimate pump and all the components that bind on the trap 

column can again be monitored by mass spectrometry (following the dashed lines). By 

using this method, all the components before and after the switch of the valve can be 

monitored simultaneously.
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Figure 5.1 Schematic illustration of online solid-phase extraction:

(a) Valve A and B in position 1-2, the components wash though the precolumn were 

monitored by mass spectrometry

(b) Valve A and B in position 1-10, components trapped on precolumn was eluted and 

monitored by mass spectrometry

5.3.5 LC/MS conditions

The HPLC/MS system was composed of an LC Packings Ultimate Capillary HPLC 

system with a Switchos loading pump and FAMOS autosampler (Dionex, Amsterdam, 

Netherlands) and an LCQ Deca XP ion trap (Thermo Finnigan, San Jose, CA). The 

column used for the separation was a Cjg capillary column. The mobile phase was
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composed of 0.1% (v/v) acetic acid in water (A), 1:1 (v/v) mixture of ACN and 

methanol (B), the flow rate was 4 pL/min and the gradient was based on a previous 

separation developed by our group15. The gradient used for the analytical separation is 

shown in Table 5.1. The loading pump was run at 30 pL/min 0.1 %( v/v) acetic acid in 

water and 5pL were injected per sample. The electrospray settings is shown in Table 5.2. 

The mass spectrometer was used in negative mode and selected ion monitoring of the 

[M-H]" ion was used to monitor each component analysed. The setup of the column 

switching system is shown in Figure 5.2.

To MS

Ultimate pum p

Loop

Loading pump

D isp en ser /  0 .

Column

N eed le

A uto sam p le r Valve A

Figure 5.2 Illustration of column switch LC/MS. The components to be analysed were 

retained on the Qg precolumn while the salt in the sample went to waste. After 3 

minutes, Valve A was switched and components trapped on the precolumn were eluted 

to Ci8 analytical column and detected by mass spectrometry
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Table 5.1 Gradient elution program used in capillary column separation

Time (min) A% B% Flow rate (mL/min) Valve A position

0 90 10 4 1-2

3 90 10 4 1-10

120 40 60 4 1-10

125 2 98 4 1-10

135 2 98 4 1-10

138 90 10 4 1-2

140 90 10 4 1-2

Table 5.2 Mass spectrometry setting of capillary LC/ESI-MS

Parameter Negative ion mode

Sheath gas flow (arbitrary units) 60

Auxiliary gas flow (arbitrary units) 10

Spray voltage (kV) 2.5

Capillary temperature (°C) 200

Capillary voltage (V) 15

Tube lens offset (V) 60

5.3.6 Offline solid-phase extraction (SPE) and liquid -liquid extraction (LLE)

For the off-line solid-phase extraction experiment Bond Elute Ci8 SPE cartridges 

(Varian, Oxford, UK) were conditioned by sequentially passing 1 mL of methanol and 

1 mL of 0.1% HAC through under gravity. After applying the sample (1 mL blank urine 

spiked with standards) the cartridge was washed with 1 mL of 0.1% HAC and then 

eluted with lmL of methanol. The eluent was blown to dryness with a gentle stream of
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nitrogen before being re-suspended and analysed by HPLC/MS without online trapping 

as described previously15. Before LLE, 1 mL of blank urine was again spiked with 

standards, 3 x 2  mL of ethyl ester was next added to extract the reference standards from 

urine sample. A rotating mixer was used for approximately 30 minutes to facilitate the 

extraction. The sample was centrifuged at 2000 g for 5 minutes, the ethyl ester layer was 

transferred to a glass vial and concentrated to dryness with nitrogen stream. The residual 

was then dissolved in the proper volume of methanol and analysed by HPLC/MS as for 

the offline SPE experiment.

5.4 Results and discussions

5.4.1 Test of reference standard retention of different in-house made SPE 

columns

The contaminating components of the urine samples (such as inorganic salts etc.) have 

the possibility of interfering with the combined HPLC and mass spectrometry analysis. 

In this study, an online trap column was used to preconcentrate the components of 

interest whilst the contaminants were washed to waste. The trapped components of 

interest could then be eluted onto the analytical column and separated before mass 

spectrometric detection. As a first step towards this goal the trap column needed to be 

tested in order to evaluate its potential for the retention of the components of interest. 

Due to the varying polarity of the flavonoids and terpene lactones two types of trap 

column were tested in this study, C30 and Ci8 columns. C30 columns have been reported 

to show significantly greater shape selectivity and improved retention compared to Cjg 

phases16. Whilst retention was achieved in our case the compounds were found to bind 

too tightly to the column and proved difficult to elute from the trap column in a sharp,
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resolved peak as would be required for on-column focussing onto the analytical column, 

as per the benefit of column switching techniques (data not shown). The Cis trap 

column exhibited good retention with no TIC response before the column switch at 

3 minutes as shown in Figure 5.3. The components of interest were eluted from the trap 

column at 3.4 minutes after the application of 90% acetonitrile mobile phase from the 

Ultimate pump and the full scan mass spectrum between retention time of 3.15 to 

3.85 minutes is shown in Figure 5.4. All the ions of interest (10 standards and 1 internal 

standard) are present in the 3.15-3.85 minutes mass spectrum. Therefore both good 

retention and highly resolved elution are exhibited by this online trapping column and 

so it was chosen for the following experiments. The time point at which the valve 

switch occurs is critical in this experiment and so is a parameter that needed to be 

optimized before further experimentation. The time point depends on the injection 

volume, the dead volume prior to and including the trap itself and sample loading 

velocity. If the valve was switched too soon the sample was not desalted thoroughly and 

the HPLC/MS response suffered (data not shown). If switched too late sample loss of at 

least some of the components was detected. In our case, the valve was switched at 

3 minutes, the dead volume (including the injection loop) was less than 6 pL, the 

loading pump flow rate 30 pL/min. The trap column was therefore flushed with a total 

volume of 90 pL 0.1% HAC which is 18 times the sample injection volume and the salt 

washed off thoroughly during this time. The recovery of each component needed 

investigation in order to determine whether any of the compounds themselves were 

being significantly lost to waste during the trapping period.
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Figure 5.4 Full scan mass spectrum of the peak in Figure 5.3

retention time 3.15-3.85 minutes
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5.4.2 Comparison of extraction recovery of online SPE, offline SPE, and LLE

The extraction recovery of the online purification method, conventional offline SPE and 

LLE methods was obtained by comparing the peak area of the recovered components 

SIM signal to that of the pure standards at the levels subjected to the purification 

protocols. The results are shown in Table 5.3 and show that the recovery of online 

purification is higher than 75% and exhibits higher recovery of all 10 standards except 

isorhamnetin compared to the commonly utilised LLE strategy of purification. Online 

trapping has similar recovery to offline SPE and therefore can be used in sample 

pre-treatment in order to avoid time consuming offline SPE and improve the automation 

of the whole analysis. The losses detected for the on-line trap HPLC/MS system were 

similar to those found in other purification protocols and so it is concluded that the 

switching time of the valve is adequate for the combined system.

Table 5.3 Comparison of recovery of solid phase extraction, liquid-liquid extract and 

online solid phase extraction of Ginkgo active components in blank urine matrix

Component On-line SPE (%) Off-line SPE (%) LLE (%)

BL 75.6 79.9 74.5

GC 82.3 76.7 70.6

RH 98.5 98.3 83.3

QG 96.8 95.2 82.6

QH 92.4 93.6 76.8

GA 95.7 93.9 90.0

GB 97.6 92.6 92.3

QD 93.2 91.5 77.8

KF 90.4 78.8 88.6

IR 82.1 81.8 88.0
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5.4.3 The method validation of quantitative analysis of active components of 

Ginkgo biloba in urine

In this study, the quantitative analysis of 10 active components of Ginkgo biloba in 

urine sample was undertaken using online-purification HPLC/MS with column 

switching technology. The total ion chromatogram (TIC) and extracted ion 

chromatogram (XIC) of the [M-H]' ions of blank urine spiked with mixture of standards 

of active components in Ginkgo biloba are shown in Figure 5.5 and 5.6.
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Figure 5.5 TIC of standard compounds spiked into urine prior to analysis
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Figure 5.6 XIC of [M-H]' ions of standard compounds spiked into urine

prior to analysis

It can be seen that the 10 components and internal standard obtain a reasonable 

separation by C]8 capillary chromatography with a few compounds co-eluting from the 

column. Further experiments did not improve the separation of these compounds but 

their molecular ions are distinct enough to allow their individual study. Compared to a 

normal-bore column, the flow rate of the capillary column is as low as 4 pL/min, which 

can be connected directly to mass spectrometer giving an increase in the sensitivity of 

the combined system as it acts in a concentration dependent manner.

Calibration curves were obtained by analyzing a series of blank human urine samples 

(100 pL) spiked with reference standards of the concentration range 10-10000 ng/mL, 

with andrographolide used as internal standard. Calibration curves were constructed by
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plotting peak areas ratio of the SIM signal of [M-H] ions of reference standard and 

internal standard against concentration, the calibration curves are shown in Figures 

5.7-5.13.
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Figure 5.7 Calibration curve of bilobalide
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Figure 5.8 Calibration curve of ginkgolide C
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Figure 5.13 Calibration curve of isorhamnetin

Linear regression analysis was also performed for each reference standard and the linear 

range and correlation coefficients obtained for the regression analysis based on a 

minimum of six data points was shown in Table 5.4. The limit of detection (LOD) was 

studied in order to investigate the sensitivity of the assay developed. In this study, the 

LOD was estimated by spiking the blank urine with a serial dilution of the analytes until 

the diluted sample gave a signal-to-noise ratio (S/N) of 3. LOD data is shown in 

Table 5.4. The LOD of the reference standards is between 1-20 ng/mL, which is an 

adequate sensitivity for the trace analysis in biological sample. The reproducibility of 

the proposed method was evaluated by carrying out five replicate quantitative 

determinations for each of the studied compounds spiked in blank urine on the same day 

and five on three consecutive days. Intra-day and inter-day RSDs of the quantitation of 

the 10 components in Ginkgo biloba is shown in Table 5.4, it shows that good 

repeatability and reproducibility can be obtained by this method and so the system is 

applicable for quantitative determination. The %RSD values of intra- and inter-day
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precision ranged from 8.5-13.6% and 11.6-17.2%, respectively, indicating little 

variation in the HPLC/MS performance.

Table 5.4 Limit of detection, linearity range, intra- and inter-day precision of Ginkgo 

active components in urine matrix

Component LOD
(ng/mL)

Linearity
(ng/mL)

R2 Intra-day
(%CV)

Inter-day
(%CV)

BL 18.3 50-4000 0.9942 11.9 14.7

GC 12.2 40-5000 0.9957 10.4 13.1

RH 1.9 10-2000 0.9985 11.4 17.2

QG 4.2 10-2000 0.9988 8.5 15.6

QH 1.1 10-1000 0.9990 10.2 17.5

GA 6.9 20-10000 0.9949 8.5 11.6

GB 3.6 10-8000 0.9955 9.6 12.2

QD 3.4 10-4000 0.9967 13.6 17.0

KF 3.1 10-8000 0.9983 8.4 14.4

IR 3.2 10-4000 0.9977 7.9 13.6
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Table 5.5 Concentration (ng/mL) of Ginkgo terpene lactones and Ginkgo flavonoid 

aglyones in urine following ingestion of Ginkgo biloba tablets and enzyme hydrolysis

Component BL GC GA GB QD KF IR

Sample 1 1795 127 2092 841 50.5 79.4 37.9

Sample 2 1659 100 1729 679 42.8 62.8 24.5

Sample 3 1219 67 1204 455 17. 1 18. 1 9.6

Sample 4 1510 89 1618 663 37.2 52.4 18.9

Sample 5 1597 103 1654 623 31.4 55.3 26.7

Average (ng/mL) 1556 97 1659 652 35.8 53.6 23. 52

STD 215 22 317 138 12.6 22.4 10.4

5.4.4 Assay of active components in human urine

The developed method was applied to the analysis of the urine samples of 5 volunteers 

and the results are shown in Table 5.5. From urine analysis, Ginkgo terpene lactones are 

not affected by the inclusion of the /3-glucuronidase/sulfatase (Figure 5.14). BL, GA, 

GB were excreted in their original form and exhibit high concentrations in the urine 

sample, GC has a relatively low concentration, which is consistent with report from 

Mauri et al17 that GC is metabolised to its methylated form. Figure 5.14 shows terpene 

lactones and Ginkgo flavonoids before and after enzyme hydrolysis. Ginkgo flavonoid 

aglycones were lower than limit of quantitation before enzyme treatment, but can be 

readily identified and quantitated after enzyme hydrolysis, however they were detected 

at far lower concentrations than the ingested amount which is consistent with a previous 

report9. This suggests that after absorption through the intestinal wall the flavonoid 

aglycones are excreted in the urine not only as glucuronides and sulphate conjugates,
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but also in hydro-, dihydro- or methylate form which may account for reduced excretion 

values. The content of terpene lactones and flavonoids differ greatly due in some part to 

differing metabolism and also to differing urinary volumes however since the 

established method has good resolution, sensitivity and wide linear range, the active 

components can be quantitated simultaneously from urinary samples allowing further 

development of high throughput techniques to monitor Ginkgo bioavailability.
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Figure 5.14 Analysis of urine sample 4 hours after ingestion of the Ginkgo biloba 

tablet before (a) and after (b) enzyme treatment of the sample

198



5.5 Conclusion

An on-line column switching HPLC/MS was successfully developed for the analysis of 

urinary excreted flavonoids and terpene lactones derived from Ginkgo extract in a single 

analysis in this study. The reverse phase trap column was shown to allow the quick and 

efficient clean up of the injected urine sample which required minimal prior sample 

preparation thereby facilitating higher throughput and greater automation. The 

experiments were performed as a "proof of principle" study and were validated in order 

to demonstrate adequate recovery of the analytes, linear range of the analysis and 

acceptable limits of detection. The comparison of the developed method with off-line 

purification methodologies show that the on-line purification does not suffer from any 

significant loss of analyte or interference from other matrix materials. The assay was 

applied to study the levels of these compounds in the urine of 5 subjects 4 hours after 

ingesting a Ginkgo biloba extract tablet. Although no attempt was made in this study to 

quantitate the full amount of each analyte excreted by measuring total urinary volume 

and or utilising a normalising factor such as urinary creatinine in this present study 

however the results nevertheless show that the excreted levels could be analysed from as 

little as 100 pL of urine.
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Chapter 6

An investigation of mass accuracy at high molecular 

weight by matrix-assisted laser desorption/ionisation
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6.1 A brief overview of mass measurement

The term accurate mass generally refers to the mass that allows the elemental formula to 

be deduced unequivocally. For low molecular weight ions an accurate mass tends to be 

close in value to the nominal mass. To obtain the nominal mass of a compound, the 

mass spectrometer should have a mass accuracy of at least ±0.4 u. As molecular size 

increases so does the fractional component of mass. This arises especially with large 

numbers of H (mass = 1.0078 u) and gives accurate masses with large fractional 

components. The mass of a molecule with about 128 H atoms will add one mass unit to 

the nominal mass, that means the mass scale rolls over about every 1000 u for hydrogen 

rich molecules1. It should be noted that the IUPAC unit for mass is defined 12 u (not

1 7amu) is equal to the mass of C. However, the term Da (Dalton) is frequently and 

interchangeably used and is equivalent and equal to u.

The improvement of the mass accuracy of instruments has allowed scientists to 

determine the mass of the molecular ion accurately and from this information a 

molecular formula can be assigned although not necessarily uniquely. The traditional 

and continuing justification for high resolution mass spectrometry is for the 

identification and confirmation of the molecular formulae of new compounds. An early 

example of the utility of accurate mass is for the detailed characterization of higher 

boiling fractions of petroleum in terms of functional group composition .
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Mass spectrometric exact mass measurements are widely used to determine or confirm 

the elemental composition of low molecular weight organic compounds (<850 u). Most 

of the elements have isotopes; these are responsible for the peaks in the mass spectrum 

appearing as isotopic clusters. They are characteristic of the elemental composition and 

provide important analytical data3. The relative abundances of isotopes in a molecular 

ion (or in a fragment ion) result from their statistical distribution. Mathematical methods 

for the calculation of theoretical relative abundances within the isotopic cluster, for 

comparison with experiment, usually rely on expansion of the polynomial expression 

based on an extension of the binominal probability distribution4. Because the number of 

isotope combinations becomes very large at higher mass, requiring huge numbers of 

computer calculations, approximate mathematical methods have been sought to improve 

calculation times5, 6. Rockwood’s method uses Fourier transforms to conduct the 

multiple convolutions required to determine molecular isotope distributions. Discrete 

Fourier transforms are very efficient, and this method for calculating isotope 

distributions is fast, accurate and economical in its use of computer memory so it has 

significant practical implication.

Theoretically, the isotopic abundances for a given formula can be calculated and 

compared with experimental values, the consequence of which is that the elemental 

composition of any ion, or fragment, can be calculated from its measured mass if this is 

sufficiently accurately determined. The technique consists of measuring the mass of the 

monoisotopic peak characteristic of the intact molecule, with accuracy and precision
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sufficient to distinguish it from the masses of all or most other plausible elemental 

compositons7. It is true, for low molecular weight compounds, that the monoisotopic 

peak is the base peak of the molecular ion cluster (refer to Figure 6.1). In general, 

accurate mass measurement is non-ambiguous up to a couple of hundred mass units, for 

empirical formulae containing a relatively simple set of elements C, H, N and O, due to 

the small number of potential molecular formulae8. According to Marshall et al9 the 

highest mass for unique elemental composition determination is 895u for current 

instrumentation. For organic compounds, the carbon isotope is always a major 

consideration. When the carbon numbers start to get very high, the isotope distribution 

becomes dominated by the carbon content. For an increasing number of carbon atoms, 

i.e., higher mass compounds, the base peak is no longer the monoisotopic peak. In the 

case of, for example, high molecular proteins the isotopic distribution tends to be a 

Gaussian shape where the monoisotopic peak is hardly detectable (see Figure 6.1). Mass 

measurement accuracy is used to evaluate the performance of the instrument where the 

mass of an unknown species is measured against a known entity. Usually mass 

measurement accuracy is expressed in parts per million (ppm), the measurement 

indicates the deviation of the instrument mass measurement from the calculated 

monoisotopic mass. Different molecular weight ranges exhibit different mass accuracy, 

the highest mass accuracy of ±0.5 ppm can be achieved by FTICR over mass range from 

90-300 Da and ±1 ppm from 250-1000 Da9.
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Figure 6.1 Isotopic distribution of low, medium and high molecular weight 

compounds, showing the reduction in the intensity of the monoisotopic ion with 

increasing molecular weight. The monoisotopic ion is indicated by *.
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Currently, the main area which drives developments in mass spectrometry is biological 

and medical sciences, in particular the analysis of mixture of peptides, proteins and 

oligonucleotides10. The technical requirements for the mass spectrometer to meet the 

demands of biological science are high sensitivity, high scan speed, good mass accuracy, 

automation and the ability to obtain structural information11. In proteomics research, the 

normal procedures to identify a protein are first the digestion of proteins with enzymes, 

for example, trypsin, then mass spectrometry is employed to obtain information on the 

masses or amino acid sequence of the peptides. The experimental MS results are 

inputted to a protein database and compared with the masses or sequence of peptides 

which are digested theoretically from proteins by the database software12. It is probable 

to find many matched target proteins from the database. The more accurate the masses 

of the peptides, the more reliable the target protein identification13. For example, the 

amino acids Lysine and Glutamine have monoisotopic residual masses of 128.174 and 

128.131 u, respectively. This shows that mass measurement accuracy could be very 

important because any inaccuracy will cause false matches, or no match. So the mass 

spectrometrist must dedicate themselves to the development of mass analysers for high 

mass accuracy, and now there are commercial mass spectrometers which have mass 

accuracy as high as three decimal places, such as, FTICR9 and the very popular MS/MS 

instruments, such as, QTOF14 and MALDI-TOF-TOF15.

When MALDI was discovered and implemented on linear TOF mass spectrometers, the 

accuracy of mass measurement was extremely poor, i.e. ± 2  Da for peptides using
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external calibration. This poor accuracy and poor mass resolution (<500 (M/AM), 

FWHM) were largely caused by formation of ions with both a broad initial kinetic 

energy distribution and mass-independent initial velocities16. Refocusing of ions using

17an electrostatic mirror (or reflectron) boosted the achievable resolution to >2000 . Such 

mass spectrometers are commonly referred to as reflectron-TOF MS. The 

implementation of delayed extraction (DE) also alleviated the ion energy spread 

problem18,19. DE accompanied by the modem high-voltage electronic switches and fast 

digitization electronics enable MALDI-TOF instmments with reflectors and longer 

flight tube lengths to achieve mass resolution >10,000 with accompanying mass 

accuracy of about 10 ppm or better20.

Reflectron-TOF MS is not suitable for high molecular weight proteins. According to the 

principles of time-of-flight, the time-of-flight of a protein is proportional to the square

root of its molecular mass. The larger the protein, the longer the flight time. Studies by

21 22 Chait and Demirev et al. have shown that the metastable fragmentation time frame

for small proteins (5,000 to 20,000 Da) is of the order of tens of microseconds. Ions

spend half of their time in the drift region for a reflectron TOF system and most of their

time for a linear TOF system, so that fragmentation of these ions occurs predominantly

in the flight tube. A discussion of the affects of fragmentation of ions in the acceleration

region and field free drift tubes has been made by Cotter23, for fragmentation during

acceleration Cotter predicts “ions will contribute to the general baseline noise” between

the precursor ion and the product ion. Whilst in the flight tube he predicts
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“fragmentation in this region is largely inconsequential” as the “product ions and 

neutrals will all have the same time-of-flight as the precursor ion”. So MALDI-TOF of 

proteins is often performed in linear mode where sensitivity will be considerably higher 

as the molecular species will be detected, at the correct mass, even if it fragments during 

flight as the fragment ion has the same mean velocity as the precursor ion24. However, 

the discussion by Cotter does not explain the high mass tailing we observed at high 

mass and prompts a more thorough approach.

6.2 Calibration of the mass scale of a mass spectrometer

6.2.1 Introduction

To obtain an accurate mass spectrum, it is essential to calibrate the mass scale of the 

spectrometer and establish a mass scale over a defined mass range. If the calibration is 

poor, even a high precision mass measurement will be poor in terms of accuracy. 

Physically a mass scale does not exist, it has to be derived from another physical 

quantity usually time. Now time can be measured to very high accuracy and precision 

because time may be measured by a frequency counter. To achieve nominal mass, the 

calibration accuracy needs to be less than 0.4 u, higher mass accuracy is required to 

obtain the elemental formula. Mass accuracy of approximately 35 ppm at 100 u and 

0.018 ppm at 750 u are needed to achieve an unique formula1. So the mass accuracy 

required varies over the mass scale and has a practical limit defined by technology.
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Calibration of the m/z scale of the mass spectrometer is achieved using a reference 

compound yielding ions of known m/z. Appropriate instrument calibration is vital for 

good mass measurement accuracy. Two calibration protocols, described below, are used 

with accurate mass measurement.

6.2.2 External calibration

In external calibration mode, calibration is carried out prior to analysis. The spectrum of 

a known reference compound is recorded and the peaks in the spectrum are assigned to 

their exact masses by the instrument data system to produce the correct calibration. To 

achieve the best results using external calibration, the calibration needs to be conducted 

as soon as possible to the unknown accurate mass measurement to minimize instrument 

drift due to any instability of the electronics and temperature variation.

6.2.3 Internal calibration

In internal calibration mode, the m/z scale is calibrated using a single ion or a series of 

ions of known m/z from a reference compound that is introduced into the mass 

spectrometer ion source at the same time as the analyte. The method is superior to 

external calibration since the effects of instrumental drift are counteracted. To achieve 

optimum mass accuracy the number of calibration points need to be sufficient and 

equally spaced over the intended mass range. Ideally the calibration ions should be as 

close in mass to the analyte ions under investigation, as this reduces mass measurement
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errors. A single mass continuously to lock the mass calibration scale is commonly 

referred to as a “lock mass”. This method is used when the calibration compound is not 

continuously present.

The type of calibration compound depends on mass range, whether a nominal or

accurate mass is required, resolution of the instrument and ionisation mode. Some

common reference compounds are shown in Table 6 . 1 .

Table 6 . 1  Reference compounds for mass marking

I o n i s a t i o n R e f e r e n c e  c o m p o u n d s  f o r  m a s s  m a r k i n g M a s s  r a n g e

m o d e ( p r o b a b l e  i o n s )

E l PFK (Perfluorokerosine) 6 9  -  - 1 0 0 0

Heptacosafluoro-tri-N-butylamine up to 6 1 4

C l Poly (dimethysiloxane) 9 0 - 1 2 7 4

FAME (Fatty acid methyl esters mixture) < 1 0 0 0 ’

E S I PEG (polyethylene glycol) 8 0  -  >  9 0 0

PEI (Poly ethylenimine) 6 1 - 1 9 9 7

Alkyl ethoxy sulfate 2 6 5 - 1 0 2 7

Rbl/Nal 100-2000
M A L D I Mixture of peptides (Mixture 1)

Des-Argl -Bradykinin 9 0 5 . 0 5

Angiotensin I 1 2 9 7 . 5 1

Glul-Fibrinopeptide B 1 5 7 1 . 6 1

Neurotensin 1 6 7 3 . 9 6

Mixture of proteins (Mixture 3)
Insulin bovine 5 7 3 4 . 5 9

Insulin bovine ( 2 + ) 2 8 6 7 . 8 0

Thioredoxin from E. coli 1 1 6 7 4 . 4 8

Thioredoxin from E. coli ( 2 + ) 5 8 3 7 . 7 4

Apomyoglobin from horse 1 6 9 5 2 . 5 6

Apomyoglobin from horse ( 2 + ) 8 4 7 6 . 7 8

1 Dependent on FAME used.
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Methods of calibrating are instrument dependent, for time-of-flight, quadrupole and 

sector calibration time is used; for the ion trap, Orbitrap and FTICR calibration 

frequency is used. A comparison of precision for different mass analyser is listed in 

Table 6.225.

Table 6.2 Typical mass accuracy of different mass analyser25

Mass analyser type m/z range Mass measurement accuracy
TOF 106 > 2 ppm1
FTICR 10s -0.1 ppm
Sector full scan < 104 3 ppm
Sector peak matching < 104 0.3 ppm
Sector narrow scanning < 104 0.3 ppm
Quadrupole < 104 >0.1 Da
Special Quadrupole 104 > 10 ppm
Ion trap 103-104 0.1 Da
Ion trap very slow scan

o1
mor ■ i 50-100 ppm

1 Reflectron TOF typically for ions < 5000 Da

From this table, it is clear that FTICR currently offers the highest mass resolution of any 

mass spectrometer and is routinely used for accurate mass measurement requiring mass 

resolution in excess of lxlO6. For MALDI the easiest mass analyser to employ is TOF 

because MALDI is a pulsed technology like TOF. In addition, TOF has very high 

sensitivity as all ions are detected. Mass accuracy of ~5 to 10 ppm and mass resolving 

powers around 20,000 to 30,000 (FWHM) can be achieved with reflectron

96time-of-flight . When high-mass compounds have to be run they are often not 

amenable to reflectron TOF-MS as the sensitivity is low due to ion fragmentation (e.g.
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M+^F++N) within the flight path. These fragment ions generally do not reach the 

detector because their kinetic energy and path changes suddenly upon fragmentation and 

neutrals (N) formed on fragmentation pass straight through the reflectron and are lost . 

This phenomenon is observed to increase with increasing mass. Characterization of high 

mass proteins is thus usually conducted in linear-TOF mode, however accurate mass 

measurement is less well defined in linear TOF mode since the focusing action of the 

reflectron is absent, mass measurements are typically considered to be 100 ppm.

When using MALDI-TOF to obtain the mass spectra of proteins in linear mode, 

smoothing of the raw data affects the result. Part of this study was aimed to examine a 

number of strategies to improve mass measurement at high mass, one of which being 

how best to treat raw data.

grid

Ion source

D e tec to r R eflectron

Figure 6.2 Schematic diagram of a MALDI-TOF with a reflectron 

V=source voltage

Vgrid^variable grid voltage used for focusing
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In MALDI-TOF, ions are formed at the surface of the MALDI plate when the laser is 

fired (as seen in Figure 6.2), these are accelerated through the entire source-extraction 

region to the same final kinetic energy (zV)23

mv zV Eq. (6.1)

where m=mass of the ion, v=velocity, z=ne, «=number of charges, e=electronic charge

( 1 . 6 x 1 0 ' 1 9 C ) ,  and F=source voltage.

The ions cross the drift region towards the detector with velocities

v = 2 zV
K m J

Eq. (6.2)

and flight times

t = d
r  V /2 m )

2 zV
Eq. (6.3)

which depend upon the square root of their masses, where d=length of flight tube. 

If d and V are considered constant, the above equation can be written as

t -  c Eq. (6.4)

where c is a constant.

214



However, for practical purposes a time offset to is introduced to reflect uncertainty of the 

time origin, as follows

t t0 + cQ
r  V /2 ' m '
\ z  )

Eq. (6.5)

In general, the time-of-flight for a real system, which has small deviations of linearity, 

the time-of-flight can be modeled using a polynomial equation of the general form

t t0 + cQ m
\ z  )  i \ z  J

\ n,
Eq. (6.6)

When /=1, the following equation is obtained

t t0 + cQ
r

+ cm
\ z  J

Eq. (6.7)

In this equation, to accounts for any internal delay in the acquisition system, co(m/z)u2 is 

the flight time of an ion with initial velocity, v, from the target surface to the detector, 

and cj(m/z) is a small flight time correction for the ion velocities at the onset of the 

extraction pulse. This equation is used for calibration of mass spectra with external or 

internal standards. The flight times of ions in TOF mass spectrometers are converted to 

ion masses using a calibration such as Eq. 6.727.

28Moskovets et al. reported a mass calibration equation with 4 terms which minimizes

215



the effect of systematic errors resulting from the fact that ion velocities are mass 

dependent due to the rise time of the extraction pulse. By this equation (Eq. 6.8), a mass 

accuracy of 1.6 ppm was obtained over the mass range of 1.0-4.0 kDa.

t = + c-\ I —
z  )

- M l

z  J

M l

+ C, Eq. (6.8)

MALDI-TOF mass spectrometers are equipped with fast digitizers and very stable 

power supplies, which allow time to be measured to within a precision of 0.05 ns (at

29best), corresponding to 1 ppm uncertainty in mass for ions of 100 ps flight times . In 

practice TOF instruments use one of the above analytical methods and establish a 

difference table between the theoretical masses and observed masses and give a 

calibration graph with shows the mass “residuals” as a function of the mass scale. An

example is shown in Figure 6.3.

2000 12000 14000 16000 18000•</i -0 .2  1) 0)
“  - 0 .4 -  

- 0.6  -

4000 6000 8000 1000

Mass (Da)

Figure 6.3 Calibration graph of the Voyager DE STR TOF mass analyser for protein 

mixture (Mixture 3, listed in Table 6.1) as the calibration standard used in this study
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6.3 Experimental methods and materials

6.3.1 Chemical and materials

Bovine serum albumin standard (Sequazyme BSA Test Standard Kit) was purchased 

from Applied Biosystems (Framingham, MA, USA). Sinapinic acid, acetonitrile, 

trifluoroacetic acid were obtained from Sigma Chemical Co. (St. Louis, MO, USA) and 

used without further purification. Water was purified with a Milli-Q deionisation unit 

(Millipore, Bedford, MA, USA).

6.3.2 Experiment method

Data acquisition and processing were performed on a Voyager DE STR mass 

spectrometer (Applied Biosystems, Warrington, UK) equipped with a delayed extraction 

ion source. The path length is approximately 2 metre in linear mode and 3 metre in

"3Dreflectron mode . A pulsed nitrogen laser is used and operates at 337 nm. For the 

experiments described in this chapter, the instrument was operated in linear mode. The 

accelerating voltage was 25000 V and the grid voltage (Grid 1 shown in Figure 6.2) was 

set to 94% of the accelerating voltage. The delay time before extraction is 800 nsec 

allowing ions of the same mass but different initial kinetic energies (energy or velocity 

focusing) to focus at the detector at the same time, thus achieving time focusing and 

high resolution28.

217



The matrix used in this experiment was a saturated solution of 10 mg/mL sinapinic acid 

in 70/30 0.1%TFA/ACN. 1 pL of BSA standard was mixed with 25 pL of matrix 

solution, and 1 pL of the mixed solution was spotted on the MALDI plate. Normally 

20 to 30 sample spots were placed on the MALDI plate at one time; the samples were 

sufficiently stable to accommodate this method of preparation. After the spot dried on 

the target plate, it was introduced into the Voyager DE STR MALDI-TOF. Fine control 

over the laser desorption process could be achieved using a joystick control to focus the 

laser at various areas of the sample. The laser power was set to 2500 (a software 

parameter usually set between 1500 and 3000 units) and remained unchanged to avoid 

mass measurement error related to power change. Signals from 100 shots were 

accumulated and averaged to generate one mass spectrum. The calibration of the mass 

spectrometer was carried out on one BSA spot, and then the laser was fired again at the 

same spot to obtain a mass spectrum of BSA. After one spectrum was acquired, it was 

calibrated and the whole procedure repeated to ensure the best possible mass 

measurements were obtained. Two methods for smoothing spectra were employed, 

“noise filter” and “Gaussian smooth”, resulting in two sets of mass spectra each 

corresponding to a different signal filter.

6.4 Results and discussions

6.4.1 Mass accuracy and molecular weight

In the manual of the Voyager DE STR mass spectrometer, it is claimed that by external
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calibration, 0.05% mass accuracy can be obtained in linear mode and 0.01% or better 

mass accuracy can be obtained in reflectron mode. By internal calibration 0.02% and 

0.002% (20 ppm) mass accuracy can be obtained in linear and reflectron mode, 

respectively27. A variety of compounds (see Table 6.3) were used for mass measurement 

over the range 2 to 150 kDa, the standard deviation (SD) and relative standard deviation 

(RSD) is shown in Figure 6.4. It shows that mass error increases with molecular weight, 

especially at masses higher than 20,000 Da when the error increases linearly with 

increasing mass.

Table 6.3 Protein ion list for the study of mass measurement accuracy, reported in 

Figure 6.4

Protein ion m/z

Insulin 5733

Apomyoglobin (+2) 8473

Thioredoxin 11668

Cytochrome C 12225

Apomyoglobin (+1) 16943

/?-Casein 24078

BSA (+2) 33149

BSA (+1) 66415

IgG (+2) 74395

IgG (+1) 148804

219



(a)
Standard Deviation

250

200  -

♦  S D  

▲  S D x 100

"to 150 - □
8 100 -

50 -

150000 2000000 50000 100000

M a s s  □  D a g

(b)
R elative S ta n d a r d  Deviation

0.18
0.16
0.14
0.12 ♦ ♦

Q co a: 0.08
0.06
0.04
0.02

2000000 50000 100000 150000

M ass (Da)

Figure 6.4 Standard deviation and relative standard deviation of mass measurement 

using calibation as a function of increasing molecular weight for the protein standards

listed in Table 6.3

We aim to examine a number of strategies to improve mass measurement at high mass 

(>20,000 Da) and have employed the ubiquitous BSA (monoisotopic mass 66,384 Da, 

average mass 66431 Da) as a model compound. Albumin is an abundant blood plasma 

protein serving as an agent for osmotic regulation and fatty acid transportation. BSA has

220



been previously studied by electrospray analysis31-33 and its elemental formula deduced 

from an ion spray experiment C 2 9 3 5  H 4 5 8 3  N 730 O 3 9 9  S 3 9 s 4 .

6.4.2 Investigation of factors affecting the peak shape, mass resolution and 

assignment of the mass scale of high mass MALDI mass spectra

6.4.2.1 Peak shapes of high mass BSA

Normally the molecular ion in a mass spectrum can provide information on the 

molecular weight of a compound. By examining the relative abundance of isotopic 

peaks, or the isotopic profile, information concerning the elemental composition can be 

deduced. But the important prerequisite to using this approach is the identification of 

the peak corresponding to the monoisotopic ion. If the mass is high, in this case 

MW=66431 Da, the distribution of the isotopic envelope is Gaussian, the first visible 

mass is not the monoisotopic mass because it is at a low abundance and in the MALDI

i f
spectrum at the noise level . Even the most abundant mass in the molecular ion 

envelope is not distinguishable because of a lack of mass resolution and the huge 

combinations of isotope peaks present at high mass.

Figure 6.5 shows the MALDI mass spectrum of BSA, a zoom of the molecular ion peak 

is shown in Figure 6.6 and shows the peak of BSA [M+H]+ is very wide, the peak width 

at half maximum is about 850 Da. The peak is also observed to be asymmetric with a 

high mass tail extending several thousand mass unit.
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Figure 6.5 Raw MALDI-TOF spectrum of BSA in linear mode
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Figure 6.6 Expansion of the molecular ion region, of the singly 

charged BSA peak (from Figure 6.5)
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For high mass compounds, such as proteins, unit mass resolution is not possible, but the 

presences of isotopes at their natural abundances should still display a Gaussian shape 

isotopic envelope. Different algorithms have been used to obtain the shape of the 

isotopic envelope. The Voyager DE STR mass spectrometer has a built in program, 

which is able to predict the theoretical isotopic envelope from a molecular formula of 

the compound. The theoretical isotope envelope of BSA was obtained using this 

program, as shown in Figure 6.7 and the FWHM is only about 20 Da.

66430.33 100100

s 60
c

4 0

20

6 6 3 9 2 . 0 6 6 4 0 8 . 4 6 6 4 2 4 . 8 6 6 4 4 1 . 2 6 6 4 7 4 . 06 6 4 5 7 . 6

M a s s  (m /z )

Figure 6.7 Theoretical isotope distribution for BSA predicted 

from Data Explorer software

When the theoretical isotope envelope is superimposed onto the MALDI spectrum of 

BSA, as shown in Figure 6.8, an obvious difference can be observed in the predicted 

envelope and the experimental spectrum.
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Figure 6.8 Comparison of theoretical isotope envelope and isotope envelope displayed

by MALDI-TOF mass spectrometry

This difference could be due to

a. Insufficient or degradation of mass resolution at higher mass due to initial 

kinetic energy distribution of the ablated neutrals/ions.

b. Protein adduct formation, e.g. matrix adducts.

c. Some other physical effect in a linear TOF arrangement e.g. broadening of the 

peak due to ion fragmentation.

In section 6.4.4 the effect of the above was calculated and compared, where appropriate, 

to experiment. The effect of matrix adducts does not account for the lower-mass 

broadening and the literature indicates that typically one matrix unit is added. There is 

no evidence of adduction of many matrix molecules.

224



6.4.2.2 Establishing a mass scale in “linear TOF” mode

There are different choices to establish a mass scale for linear TOF when examining 

proteins at high mass. We can use the existing mass scale and extrapolate to high mass 

or use other high mass compounds to calibrate against. Also we can use a self 

calibration procedure, which can be applied to test the mass accuracy of the “linear 

TOF” mode for high mass proteins. The formula of BSA is C2935H4583N780O899S39, 

giving an average MW of 66430.3 Da, in positive MALDI-TOF, the [M+H]+ is 66431, 

and this was used for calibration. In our initial study using BSA, it was found that the 

method of smoothing affected the reported mass, for example, of the isotopic 

distribution maxima.

6.4.2.2.1 Smoothing

Post-processing of mass spectra is critical for optimal data interpretation and 

presentation. The Voyager 5.0 software includes routine data smoothing methods which 

can reduce background noise and improve the appearance of spectra. It has two methods 

for smoothing: a) Noise filter and b) Gaussian smoothing. The application of both of 

these is described below.

The “noise filter” programme is designed to identify correlated and uncorrelated 

features in data so that only the uncorrelated noise components are filtered. The degree 

of correlation is the parameter that determines how efficiently the noise is filtered with
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respect to the signal. This value typically varies from 0 to 1 with a common default of

0.7. Figure 6.9 shows the BSA spectrum after the noise filter was applied using a 

coefficient of 0.7, no obvious improvement can be observed from the raw spectrum (see 

Figure 6.5), and the maxima is difficult to choose and has a large uncertainty.
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Figure 6.9 Mass spectrum of BSA after noise filter (correlation 0.7)

Insert: zoom of [M+H]+ peak

The Gaussian smooth programme is a n-point filter, it is a widely used and well known 

data-smoothing process. The most general type of n-point smoothing was developed by 

Savitzky-Golay36, it is sometimes called a ‘moving window’ average. In this process, 

the program produces a new point by averaging the neighboring n-points (n: number of
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points to be averaged, always an odd number). The simplest form is 3-pt smoothing 

which takes the average of the “point” plus its two neighbours, n-pt smoothing generally 

applies a “weight”, to the neighbouring points, which reduces as the neighbour becomes 

further from the central “point”.

For high mass proteins where the peak is very wide, a wider averaging window needs to 

be selected for satisfactory results. For BSA, it was observed that smoothed spectra 

using 49-point smoothing did not cut the peak height by much, as shown in Figure 6.10, 

and was adopted. The resulting peak shape is symmetrical and the maximum is easier 

to identify with a small uncertainty.
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Figure 6.10 Mass spectrum of BSA after Gaussian smooth (49-point) 

Insert: zoom of [M+H]+ peak
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To compare the two smoothing methods, we used BSA as a standard and used it to 

self-calibrate, i.e., to measure the mass error of BSA as a separate measurement. The 

measurement of BSA was repeated 30 times, for each of the methods and the results are 

shown in Figure 6.11. The percentage error for method 1 is within ±0.4%, and for 

method 2 within ±0.2%, respectively. It is difficult to assess the accuracy and precision 

of methods 1 and 2 from Figure 6.11, although method 2 appears to have better 

precision (less scatter of data points).

0.5000
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0.2000 

2 0 . 1 0 0 0
L_

^  0.0000 
- 0.1000 
- 0.2000 
-0.3000 
-0.4000

25
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- a-M ethod 1 « Method 2

Figure 6.11 Linear TOF mass measurement accuracy of BSA, calibrating by Method 1 
and Method 2.
Method 1. using the Noise filter algorithm (N=0.7)
Method 2. using the Gaussian smoothing (using n points-where n is odd and n~ 
MW/1000)
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To assess this data further the accumulated average mass of BSA was calculated for 

each method and the results are shown in Figures 6.12 and 6.13. It can be clearly seen 

that the two methods bring the mass error under control and converging to a mass error 

of less than 1 Da after 20 to 30 measurements. Whereas the first series of measurements 

by method 1 appears to be a process “out of control”, where the mass error continues to 

drift upward and exceeds +90 Da after 28 measurements.

The above observation left us with an intriguing problem. In practice 3-6 measurements 

are typically used. Figure 6.13 shows that higher than 28 measurements need to be 

averaged to give a result with a mass error of 1 Da, at high mass. Therefore other 

methods to process calibration data other than smoothing of the mass spectrum in the 

molecular ion region (66000-69000 Da) were studied to see if more effective methods 

can be developed. These are described in Section 6.4.3.
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Figure 6.12 Cumulative mass error (Da) of the average molecular weight as a function 

of the number (n) of averaged mass scan using the “noise reduction” algorithm
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Figure 6.13 Cumulative mass error (Da) of the average molecular weight as a function 

of the number (n) of averaged mass scan using the “Gaussian smoothing” algorithm
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6.4.2.2.2 Optimisation of peak shape

To obtain accurate mass values in the calibration spectra well-shaped and symmetrical 

peaks with best resolution are ideally needed. Smoothing of the spectra was carried out 

on raw data before calibration was made. In this study, it can be observed that the grid 

voltage and delay time are two parameters which affect the mass resolution of the mass 

spectrum. These two latter parameters were systematically investigated as a function of 

mass, the result is shown in Figures 6.14 and 6.15. Figure 6.14 shows that the change in 

peak width for masses of 33 kDa, 66 kDa, 74 kDa and 148 kDa. For the lower masses, 

the trend line is flat, but for higher masses distinct minima in the peak width, i.e., best 

resolution, can be observed at 70% grid voltage. So 70% is a good choice for all masses 

which offers mass independent resolution.

231



5000 
4500 
4000 

_  3500 
5  3000 
5  2500 
?  2000 

1500 
1000 
500

98 96 94 92 90 88 86 84 82 80 78 76 75 74 70 60
% Grid v o l t a g e

-♦— 74249D a — 148500D a 66431 D a 33216  Da

Figure 6.14 Peak width as a function of grid voltage. Optimisation of grid voltage for 
protein samples at four different m/z values with delay time 800 nsec. The peak width 

was measured at full width half-maximum (FWHM).
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Figure 6.15 Peak width as a function of delay time for protein samples at two different 
m/z (74249 Da, 148500 Da) and three different grid voltages (94%, 75%, 65%) The 

peak width was measured at full width half-maximum (FWHM).

232



Figure 6.15 shows the effect of delay time on resolution, the curves are essentially flat, 

which indicate delay time is not as influential as grid voltage in resolution optimisation. 

No optimisation between grid voltage and delay time can be easily made as they are 

both appear mass dependent for these experiments. Ideally the grid voltage or delay time 

need to be changed with mass. This is impossible with current instrument design 

because the masses are not mass separated in the ion source, so switching either of the 

above two instrument parameters will be ineffective.

Even after optimisation and smoothing, the mass resolution is still low, and with n-point 

Gaussian smooth, approximately 30 acquisitions are needed to be carried out to obtain a 

satisfactory mass accuracy. This means 30x100, that is 3000 individual laser shots, are 

required and this is inefficient. In light of this finding, other methods were sought to 

determine the calibration mass and proposition for practical mass accuracy 

measurements are discussed below.

6.4.3 Investigation of fitting procedures to improve mass measurement at high 

mass

There are two alternative ways to detect the peak top instead of Gaussian smoothing. 

One is fitting to a function, curve fitting procedures are needed to fulfill this. The other 

one is by differentiation of the raw data, the peak top can be characterized when the first 

derivative is equal to 0, both of these approaches are investigated in this study.
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6.4.3.1 Curve fitting procedures

Curving fitting is a mathematical area and there are readily accessible methods such as 

MS-Excel and a fitting program, used in this study, called EasyPlot .

In Excel, when a spectrum is drawn from raw data, a trend line with a formula can be 

created from the raw data. The trend line can be fitted to a number of predefined 

functions, i.e., linear, polynomial, exponential, logarithmic, power or exponential form 

which can be chosen by the user. The choices of formulae by different data trend 

processing are:

i. Linear, y=mx+c 

ii. Logarithmic, y=ln (x) 

m, Polynomial, y=coXo+cjXj+C2X2 +... +CnXn 

1V' Exponential, y=xn 

v. Power, y=exp (x)

Another method that has been used in this study is EasyPlot. It is a powerful data 

analysis software package which can be applied to many different kinds of scientific 

data. A feature of it is that it can create a curve from any arbitrary set function or data set. 

It also has algebraic methods built in, such as, differentiation which was applied to 

investigate where the peak top is located. The curve fitted function found in this study is 

of the form
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(Eq. 6.9)

where y is intensity, x is mass scale, mi and m2 are mass offsets, a and b are constants, a, 

b, mj and m2 are determined by the fitting procedure. This function can be 

parameterized to use in the calibration. The curve fitting result by EasyPlot is shown in 

Figure 6.16, it shows a similar trend curve (dotted) as “Gaussian smoothing” algorithm 

as Data explorer software and it takes only seconds to obtain the peak top. EasyPlot 

does not average the raw data in the same manner as the Gaussian smooth method, 

which makes the curve more similar to the actual peak shape.

Another function found for fitting is Maxwellian-like and of the form

where xo is a mass offset, a and b are constants, n and m lie in the range 0 to 5 and would 

be equal to two for a Maxwellian peak shape.

y  =  x0 + ax en - b x m
(Eq. 6.10)
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Figure 6.16 Curve fitting (dotted) using the EasyPlot software 

6.4.3.2 First derivative method

The peak top is conceptually the zero point of a numerical first derivative. 

Differentiation is carried out by EasyPlot and the result is shown in Figure 6.17. The 

peak top can be exactly characterized by the point y= 0. This is a potential alternative to 

a curve fitting procedure to find the peak top, i.e., a measure of the average mass of a 

calibration ion.
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This is ju s t  a theoretical investigation  and w as not applied in practice since these 

procedures  could not easily  be integrated into Data Explorer. But it p rovides som e ideas 

for p ro g ram m in g  the A pplied  B iosystem s m ass  spec trom eter so ftw are  for future 

application.

6.4.4 Investigation of  the peak broadening phenomenon observed in linear TOF  

at high mass

T he current investigation  is not exhaustive  and on ly  p re lim inary  in nature. H owever, 

because  o f  the sign ificance o f  this observation  and the im pact on h igh  m ass  M A L D I, it
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was considered in some detail. There are several possible causes of peak broadening 

considered in this study and they are discussed below.

6.4.4.1 Poor mass resolution performance of linear TOF: An ion source effect or 

initial kinetic energy distribution?

The design of ion sources is critical for good performance by any ionisation technique in 

mass spectrometry. This is fundamentally an ion optical problem. Cotter has reviewed 

the fundamentals of TOF ion source design extensively in his two books23,38. However, 

he does not discuss the phenomenon observed here in terms of an ion optical problem. 

In 1955, Wiley and Mclaren39 described two focusing techniques for time-of-flight mass 

spectrometry, that is, space and time-lag focusing. These two techniques solve the 

problem of space distribution of ions in the ion source. The reflectron time-of-flight 

solved the affects of kinetic energy distribution of ions17. It is not our intention to 

investigate ion optics here and mass dependent behavior at high mass seems improbable 

as it would represent a serious defect in the ion optics of this high performance design. 

Usually mass dependent behavior occurs when magnetic fields are present and are 

generally most evident at lower mass. It has been stated that the initial velocity spread 

(uo) of an ion leads to an initial kinetic energy spread of i mu02, Karas et a t 0 have 

measured the initial velocity spreads of ions in the initial phase of the expansion of a 

MALDI plume. Their results show that for most matrices a-cyano-4-hydroxycinnamic 

acid, 2,5-dihydoxybenzoic acid, the velocity distribution ranging from approximately
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300 to 600 m s'1. Thus for increasing mass the kinetic energy distribution will increase. 

Table 6.4 gives the kinetic energy distribution calculated over the mass range up to 106 

Da, additionally the effective time “spread” and mass “spread” corresponding to these 

kinetic energy distributions has been calculated and is given in Table 6.4. It can be seen 

from Table 6.4 that the expected mass spread due to the initial kinetic energy spread of 

proteins with a mass about 66000 Da could be as great as ±100 Da, at the base of the 

peak, accounting for almost 10% of the observed peak broadening. However, delayed 

extraction which is built into the instrument should help to reduce the effects of initial 

kinetic energy spread. This observation suggests that the effect of peak broadening on 

varying the initial delay time should be studied in detail. However, the data in Fig 6.15 

shows that the effect of varying delay time is flat with little effect on the peak shape at 

half height.

P e a k  to p , 
t o r  m

Full-w idth  a t  half 
h e ig h t, 5  t o r  6  m

t+ o r  m.t. o r  m.

H alf-w idth  a t  b a s e  
5  t o r  5  m

Figure 6.18 Nomenclature used to denote the broadening of a peak 

in terms of time and mass spread.
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Table 6.5 shows the mass broadening effect of different initial MALDI plume velocity 

over a mass range from 2000 tol06Da. Higher initial velocity spread will cause even 

greater peak broadening, whereas lower velocity spreads will cause less broadening. For 

high mass proteins such as BSA, a velocity spread 300-600 m s'1 should be considered 

although Karas et al. indicates the velocity spread is -300 m s'1 for CHCA as matrix. 

The work of Karas et al. was obtained for lower mass species, in general, than those 

studied here. There are no experimental measurements of velocity spread at very high 

masses, especially for the higher mass range investigated here. The peak broadening for 

velocity spreads of 300 to 600 m s'1 is approximately 100 to 500 Da, as seen from the 

model calculations listed in Table 6.5. A full theoretical description of this effect would 

involve calculation for a distribution of initial velocities, e.g., a Maxwell-Boltzman like 

distribution. As yet there is little experimental data in this area, which would be needed 

for such calculations, however trends can be seen by the relatively simple model given 

here.
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Table 6.5 Estimation of mass broadening of a MALDI peak as a function of the initial 

kinetic energy (KE), arising from assumed velocity spreads ranging from 200 to 

1000 m s'1 of the ablated molecule (or ion), over the mass range 2000-106 Da

Mass Mass width, 5m, (Da)1 at initial average velocity (m s'1)
200 400 600 800 1000

2000 0.03 0.13 0.30 0.53 0.83
5000 0.21 0.83 1.86 3.31 5.18
10000 0.83 3.31 7.46 13.25 20.68
20000 3.32 13.25 29.80 52.91 82.55
50000 20.72 82.76 185.82 329.40 512.79
100000 82.83 330.49 740.54 1308.98 2030.33
200000 331.04 1317.60 2940.40 5168.27 7959.72
500000 2063.86 8154.44 17980.94 31096.33 46945.70
1000000 8221.48 32094.35 69427.02 117102.42 171664.94

Notes:
1. Half width of the peak, at base.

Figure 6.19 shows the theoretical peak broadening as a function of mass, the curve is 

quadratic which is consistent with what was observed in the experiment, as shown in 

Figure 6.4 (a).
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Figure 6.19 Mass differences (spread of peak at half base width) as a function of 

molecular mass for a velocity spread of 300 m s'1
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6.4A.2 Fragmentation and metastable decay of the molecular species

Most ions have a given lifetime before they break (fragment) unless they are very stable, 

in which case the molecular species persists. Once ions are formed they tend to 

fragment, the fragmentation is a function of time, the usual experimental observation

1 7window ranges from 10" sec to seconds.

o .
Prompt fragmentation is generally <10" sec and occurs in the source. If fragmentation 

occurs instantly in the MALDI source, the fragment ions will be accelerated to the same 

final kinetic energy as the molecular ion, both molecular ion and fragment ions will be 

recorded in the mass spectrum.

Fragmentation processes are driven by the amount of internal energy contained in the 

precursor ion. The more internal energy, the faster fragmentation is, the lower internal 

energy is, the slower the fragmentation will be . The fragmentation will continue to the 

point where the product ion is stable. Molecular ions with very low internal energy, i.e., 

below the reaction barrier, will not fragment. Such ions can be created in special ion 

sources, for example, found in soft ionisation techniques such as chemical ionisation 

and electrospray.

A theory of ion fragmentation was developed by Rosenstock et al. in 1952 and is 

referred to as quasi equilibrium theory (QET). Slower fragmentation is referred to as
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“metastable” decay and may contribute to ion loss in some mass spectrometer designs41. 

Initially, the term “metastable” decay was coined to describe processes which occur in 

the field free regions of a sector mass spectrometer23. However, it is now used to 

describe fragmentation of an ion between leaving the ion source and reaching the 

detector, so it covers a range, typically, 10'7 to 10‘3 sec.

99It has been observed by Demirev et al. , and other references cited therein, that the 

higher the mass of a protein, the greater the degree of metastable fragmentation. An 

important observation of ion fragmentation for high masses in TOF is the difference 

between reflectron-TOF and linear-TOF-MS. Reflectron-TOF does not show many ions 

in the high mass region whereas linear-TOF shows a greater proportion. In linear-TOF, 

if the following fragmentation occurs in the field free region,

IvT-* F+ + N

the parent ion M+, fragment ion F+ and neutral species N will have the same mean 

velocity23. In theory, they will arrive at the detector simultaneously and will not cause

• 99 • » » • »poor mass resolution. However, it is well documented that when ions with high kinetic 

energy, of several thousand electron volts (keV) fragment in a field free region the 

fragments will have a very broad peak shape. This is discussed in more detail below.

The process of ion fragmentation is similar to radioactive decay and in the simplest case 

can be described by a single half life, 7. The number of ions, N, surviving after a time t
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is given by

N  = N 0e~t,T (Eq. 6.11)

where Nq= number of ions at t=0. Figure 6.20 shows ion intensity curves, calculated for 

the Voyager mass spectrometer in linear mode (path length 2 m). For simplicity, the 

plots assume the ion source region has zero length so that all ions are immediately 

accelerated to an energy eV. In practice the ion source region is divided into two ion 

acceleration regions. The curves in Figure 6.20 show the intensity of the survivor

O n

molecular ion of BSA for ion lifetimes (r) varying between 10' -10' sec. It can be seen 

that the intensity falls off rapidly with shorter ion lifetime, although even for 7=1 O'4 s 

over 50% of ions decay before reaching the detector.
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Figure 6.20(a) Illustration of the effect of ion lifetime, r, on the intensity of the 
molecular ion species (survivor ions) for theoretical values, t = \ O'3, 10‘4, 10'5, 10'6,

n  #
10’ sec as a function of ion flight time. The curves have been calculated for BSA 
(MW=66431 Da), a path length of 2m and an acceleration voltage 25 kV. It is assumed 
the molecular ion is promptly accelerated to its final kinetic energy.
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Figure 6.20(b) Illustration of the effect of ion lifetime, 7, on the intensity of the 
molecular ion species (survivor ions) for theoretical values, r=lO’3, 10’4, 10~5, 10’6, 
10’7sec as a function of distance travelled by the ion. The curves have been calculated 
for BSA (MW=66431 Da), and an acceleration voltage 25 kV. It is assumed the 
molecular ion is promptly accelerated to its final kinetic energy. Dashed line shows the 
detector position in the linear mode for the Voyager STR DE MALDI-TOF-MS
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Figure 6.21 Effect of accelerating voltage, V on the intensity of the molecular ion 

(survivor ions) for V=l, 5, 10, 20 and 25 kV. The curves have been calculated for BSA 

(MW=66431 Da), a path length of 2 m and ion lifetime,t=  10‘4 s . It is assumed the 

molecular ion is promptly accelerated to its final kinetic energy. Dashed line 

shows the detector position in the linear mode for the Voyager STR DE 

MALDI-TOF-MS

Figure 6.21 shows the effect on BSA survival as a function of accelerating voltage. 

From these figures it can be seen that fragmentation processes may extend all the way 

from the time of ionisation to the time that ions reach the detector, but for ions with 

lifetimes faster thanlO"5 sec, most of ions will fragment in the acceleration field.

If the fragmentation occurs in the acceleration region, it will be detrimental to the mass 

resolution since fragmentation at this time produces ions that arrive at the detector 

predicted by Cotter23 to “contribute to the general baseline noise” between the precursor 

and product ion peaks. These ions contribute to the baseline noise in the spectrum and
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tailing of molecular ion peak. This illustrates that for high mass ions, metastable 

fragmentation in the flight tube can be very extensive. This fragmentation will affect the 

mass spectra particularly in terms of achievable mass resolution.

6.4.4.3 Effect of internal energy release on peak width

In the previous section the effect of internal energy has been described. The greater the 

internal energy the faster the rate of ion fragmentation will be. Another important factor 

is the amount of internal energy partitioned to kinetic energy of the fragments F+ and N 

which will lead to translational (kinetic) energy spread of the products in the laboratory 

frame of reference. In the book entitled ‘Metastable Ions’ by Cooks et al.24 this is 

described in detail. The velocity spread of the products F+ and N are given in below, a 

novel aspect of this calculation of the velocity spread of the neutral species, which is 

usually neglected but is a process which contributes to a linear-TOF mass spectrum.

The starting point is that the precursor ion is accelerated in the ion source through a 

potential V and will have a kinetic energy eV,

-̂ -rav2 = eV (Eq. 6.12)

where m is the mass of ion in kg (1 Da =1.66xl0'27 kg), v is the velocity in m s’1, e is

-19charge on the electron in Coulombs (1.602x10* C)
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Figure 6.22 Velocity diagram describing the ion fragmentation process (M+-> F++N)

Figure 6.22 shows the vector diagram describing ion fragmentation, in this figure 

vi = velocity of the molecular ion (precursor)

V2 = velocity of the product ion (F+)

V3= velocity of the product neutral (N)

U-2 = velocity of the product ion (F+) in the centre of mass frame 

U3 = velocity of the product neutral (N) in the centre of mass frame 

The maximum and minimum velocity spread for F+ is given by24

v2x(max) = vl + ( ^ ^ y tl (Eq. 6.13)
mxm2
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,2m37\
m,m2

v2jc(min) = v1- ( — —),/2 (Eq. 6.14)

where T is the internal energy of M+ that is converted into translational energy of the 

products in the fragmentation and

1 2 1 2 1 2T + -m ,v i = - w 2 ( v , + m 2 )  + - / n 3 ( v 1 + w 3 )  (Eq. 6.15)

The velocity of the neutral species is not shown by Cooks et al24, and is derived here,

m2u2 +m 3u3 = 0 (Eq. 6.16)

-  m,u
=

3 3

m„
(Eq. 6.17)

r p  m \ m 2 2T =  M, =
2m,

m,m- f V-  m3w3
2m, m-

m,m
1 "3 M , 2

2m. (Eq. 6.18)

V3,(max) = v, + ( ^ 2 ^ ) ,/2 (Eq. 6.19)
m,m3

v3x(min) = v, (Eq. 6.20)
m]m3

From the above equations we can estimate the velocity spread of the F+ (v2X(max) to 

V2 (̂min)) and N (v^(max) to v^(min)). In Table 6.6, the maximum velocity spreads for
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BSA are calculated for energy releases (7) of 0.1, 1 and 5 eV. The internal energy 

releases above are only estimates based on previous measurements24 based on lower 

mass species, this may be a deficiency when modeling high mass species, such as BSA, 

that can be corrected when the internal energy content of very high mass ions created by 

MALDI is known.

Peak top,
V2x(mean), t2X(mean)

Full-width at half 
height, 6 m

Half-width at base
Mass width = 25 m

Figure 6.23 Nomenclature used to denote the broadening of a peak due to kinetic 

energy release, in terms of velocity, time and mass spread. * refer to Table 6.6
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Table 6.6 Calculated values of the maximum and minimum velocity, time-of-flight and 

mass spreads (refer to Figure 6.23 for an explanation of terms) for BSA fragment ion 

and neutral species F+, N as a function of internal energy release to translational energy 

(T/eV) of the fragments. It is assumed in this model calculation, to illustrate the effect, 

that the fragmentation is 66431+-» 33215++33216

Velocity and time-of-flight 
of the products

Internal energy release (T/eV) 
0.1 1 5

Fragment ion, F+ v2x(mean)(m s'1) 8520 8520 8520

v2x(max) (ms'1) 8537 8574 8641

v2x(min) (m s'1) 8503 8466 8399

Cx(mean) (sec) 2.347x1 O'4 2.347X10-4 2.347X10-4

2̂x(m ax) (sec) 2.352xl0'4 2.362X10-4 2.381x1c4

^2;t(m in) (sec) 2.343xl0‘4 2.333X10-4 2.315x1 O’4

MasS(max)), 5m, (u) 265* 832* 1840*

Mass(min)), 5m, (u) -267* -848* -1920*

Mass width, 25m, (u) 531* 1681* 3759*

Fragment v2x(mean) (m s'1) 8520 8520 8520

neutral, N v* (max) (m s''> 8537 8574 8641

v^(min) (m s 1) 8503 8466 8399

t3X( mean) (sec) 2.347x1 O'4 2.347xl0'4 2.347xl0'4

tjx(max) (sec) 2.352x1 O'4 2.362xl0'4 2.381x1c4

t^(min) (sec) 2.343xl0'4 2.333X10-4 2.315x1c4

Mass(max), 5m, (u) 265* 832* 1840*

Mass(mi„)), 5m, (u) -267* -848* -1920*

Mass width, 25m, (u) 531* 1681* 3759*

* Mass difference from mean mass of 66431 u

* The mass difference is calculated = Mass(max) -  Mass^m)= 25m
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Table 6.6 gives the velocity, time and mass spreads for the hypothetical fragmentation of 

BSA to one half its mass. In this case both the fragment ion and neutral have the same 

numerical values for their velocities (and velocity spread) and this is a result of choosing 

that the fragmentation leads to equal masses for the products. If the masses of F+ and N 

were chosen unequal then the velocity spreads would be different, leading to different 

contributions to the velocity spread only. Note the mean velocities of the products, 

demean) and Vjx(mean) are not different from their precursor, no matter what the fragment 

and neutral masses are. For energy releases of 0.1, 1 and 5 eV the time spreads around 

the mean time of 234.69 ps is ± 0.469, 1.485 and 3.32 ps, respectively. These 

correspond to mass spreads of ±265, 832 and 1840 u, respectively. The measured mass 

spread of the experimental spectrum is about 3200 u at the base (assuming a 

symmetrical peak and ignoring the high mass tail) and 850 u at half height. The above 

calculated values refer to the maximum velocity (and time spread) and therefore relates 

to the measurement taken at the base of the experimentally observed peak.

Thus if this process is due to kinetic energy release upon fragmentation then the above 

data suggest the kinetic energy release is in excess of 5 eV. This is a very large kinetic 

energy release, especially when values published in the literature42, 43 are taken into 

account, as the largest energy releases are reported for ions, such as, doubly-charged 

ions where energy releases are of the order a few eV and largely arise from Coulombic 

repulsion. However, BSA is a very much larger species with greater ability to store 

internal energy in its (3n-3) degrees of freedom. Therefore it is proposed that a possible
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mechanism for peak broadening is due to fragmentation of the ions as they fly through 

the analyser. The energy release needs to be of the order 1 to 10 eV, which taking into 

account the high masses may not be an unreasonable amount of energy to store. The 

model for kinetic energy release may need some rethinking when comparing small 

molecule fragmentation considered by Physical Chemists in the 1970’s and the situation 

for very large molecules.

The asymmetric shape of the peak is thought to be due to ion fragmentation in the 

acceleration region as the exponential decay plots shown in Figures 6.19 and 6.20 show 

there to be a considerable degree of fragmentation occurs early on, especially when the 

ion lifetime is less than 10'5sec, i.e., fast metastable decay. Earlier work on ion 

fragmentation show this lifetime is quite probable and therefore we can expect this 

effect to be large and seems to agree with current observations. This study is only 

preliminary in nature but has uncovered a hitherto unreported effect in high mass 

MALDI- TOF-MS mass spectra.

6.5 Conclusion

In this study, the mass accuracy of MALDI-TOF of high mass proteins was investigated 

as a result of preliminary studies obtained for the cyclic nucleotide research work, 

reported in Chapter 7. For data processing to obtain peak tops (or centroids) for mass 

calibration Gaussian smoothing, using 49-point window, was found to be good for
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proteins such as BSA when compared to the alternative noise filter method, which did 

not give good results when applied. However, the requirement for a large number of 

mass spectra to be averaged to obtain good mass accuracy is noted as a draw back of the 

method developed here. In a study to find alternatives two techniques involving curving 

fitting and differentiation of calibration peak shapes was investigated using readily 

available software, such as MS-Excel and a powerful scientific programme EasyPlot. 

These methods are proposed as alternatives to those available within the existing 

software of the Voyager MALDI-TOF-MS system. These data processing techniques 

could be applied by mass spectrometry manufacturers.

The phenomenon of peak broadening observed for high mass protein peaks was 

investigated and a theoretical study showed that these phenomena can be explained on 

the basis of the ion undergoing fragmentation whilst in flight and the product ion(s) and 

neutral(s) will have the same time-of-arrival and thus the same effective mass. 

However, the fragmentation process leads to broader peaks due to kinetic energy release. 

Model calculations show that ions as massive as BSA only need 0.1 to a few eV of 

internal energy to be released into kinetic energy and translational motion of the product 

to account for such broadening effects. The mass asymmetry on the higher mass side of 

peaks may be explained by in-source fragmentation process. Further work is needed to 

build up a more complete picture to this preliminary study.
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Chapter 7

Mass spectrometric analysis of changes in the murine 

brain phosphoproteome elicited by cCMP
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7.1 Introduction

7.1.1 Introduction to cyclic nucleotide biochemistry

Cyclic nucleotides have attracted the attention of scientists since the discovery of 

adenosine 3’,5’-cyclic monophosphate (cAMP) by Rail and Sutherland in 19581. The 

major significance of this pioneering work was that it provided the impetus for the 

exploration of cell regulation and signal transduction mechanisms. Signal transduction 

is any process by which a cell converts one kind of signal into another and is a vital 

aspect of inter-cell communication. The process often involves a sequence of 

biochemical reactions inside the cell, which are carried out by enzymes and linked 

through second messengers2.

7.1.1.1 Nucleotides and cyclic nucleotides

Nucleotides (Figure 7.1) are molecules containing a heterocyclic nucleobase, a sugar 

ring and a phosphate moiety. The nitrogenous nucleobase includes purines such as 

adenine and guanine, and pyrimidines, such as cytosine, uridine and thymine (Figure 

7.2). The sugar unit can be either D-ribose or 2’-deoxy-D-ribose. Nucleotides are the 

structural units of nucleic acids which contain genetic instructions and are involved in

n BASE

Figure 7.1 Structure of nucleotide
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various processes such as protein synthesis.

Pyrimidine

Adenine Guanine

Purine o

H3< V  n h

Cytosine Thymine

Figure 7.2 Structures of some naturally occurring purine and pyrimidine bases

A cyclic nucleotide is a nucleotide in which the phosphate group is bonded to two of the 

sugar’s hydroxyl groups, either between 3’, 5’-position or the 2’, 3’- position, forming a 

cyclic structure (Figure 7.3). X-ray crystallography and proton-NMR have been used to 

examine the rigid conformations of cyclic nucleotides3,4, particularly the 3’,5’-cyclic 

phosphodiester. This rigid conformation is the possible reason that chemical synthesis of 

cyclic nucleotides requires fairly drastic conditions and their biosyntheses are extremely 

endothermic5. Compared to their phosphomonoester counterparts, cyclic nucleotides are 

more resistant to weak acid and alkaline hydrolysis. The cyclic nucleotides are less 

polar than the analogous non-cyclic forms thus they are consequently less soluble in 

aqueous solutions6. The 2’,3’-cyclic nucleotides have been proved to be mainly 

breakdown products of nucleic acid7, 3’,5’-cyclic nucleotides, on the other hand, have 

been found to play important roles in metabolic regulation in bacterial, plant and tissue
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Figure 7.3 Structure of 3’, 5’-cyclic nucleotide and 2’, 3’-cyclic nucleotide

7.1.1.2 Cyclic nucleotides as second messengers

The concept of second messengers was first reported by Sutherland and Rail1 in 1958 

when they were investigating adrenalin, an important hormone which travels through 

the blood as a signal of an imminent danger. They studied the effects of both adrenalin 

and glucagon upon glycogen phosphorylase activity in dog liver and found that elevated 

levels of cAMP, brought about by glucagon and adrenalin, stimulated hepatic 

glycogenolysis, resulting in an increased level of glucose in the blood stream10.

According to Sutherland’s second messenger theory, adrenalin is a primary messenger 

secreted from the adrenal glands into the bloodstream that circulates until it binds to a 

specific receptor in the outer side of a membrane of a target cell. The binding activates 

adenylyl cyclase (AC), which converts adenosine 5’-triphosphate (ATP) to cAMP on the 

inner side of the membrane, through interaction with a G-protein. This triggers the 

production of the second messenger, cAMP, which stimulates the activity of 

cAMP-dependent protein kinase which in turn phosphorylates a number of 

physiologically active proteins, thereby altering their activity (Figure 7.4)11. The 

increase in concentration of the intracellular levels of cAMP also increases the activity
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of cAMP phosphodiesterase which hydrolyzes the second messenger to its precursor 

AMP12.

g LG protein

cAMP
Protein
Kinase

Agonist
Primary

m e sse n g e r

ATP Protein

Figure 7.4 cAMP second messenger system

A consequence of this process and a major reason for studying cyclic nucleotide systems 

has been that they are very valuable drug targets. These drugs alter the activities of 

proteins by increasing or reducing the cAMP level or adenylyl cyclase or 

phosphodiesterase activity in the body. The simplest such agent is caffeine, present in 

coffee and tea, which inhibits phosphodiesterase activities; as a result, it inhibits the 

breakdown of cyclic AMP and thus mimics the effects of adrenaline13.
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7.1.1.3 Adenosine 3’5’-cyclic monophosphate

Adenosine 3’5’-cyclic monophosphate or cAMP (Figure 7.5) was the first cyclic 

nucleotide identified by Sutherland and Rail1 and its discovery opened new horizons in 

biological research. The presence of cAMP has now been firmly established in higher 

plants14, bacteria15’16, and in nearly all animal organs and tissues17. cAMP is considered 

to be a vital component in all nucleated mammalian cells and proven to be involved as a 

regulatory agent in various short term, sudden effect hormones by recognizing and
1 o

amplifying the signal inside the cell . Studies have also shown that an abnormal level of 

cAMP relates to a variety of disorders of hormone function, such as diabetes mellitus19, 

cystic fibrosis20, allergic responses21, asthma22, hyperparathyroidism23 and cancer24,25. 

There are various cAMP related enzymes involved in signal transduction pathway with 

cAMP acting as second messenger.

NH

OH
OH

Figure 7.5 Structure of Adenosine 3’,5’-cyclic monophosphate 

7.1.1.3.1 Adenylyl cyclase

Adenylyl cyclase is responsible for the synthesis of cAMP from ATP. cAMP is released 

into the cytoplasm after Gs-protein binds to its receptor on the catalytic domains of 

adenylyl cyclase. After that, the cAMP binds to protein kinase to expose this enzyme’s
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active site, which continues the communication pathway26. Adenylyl cyclase plays a 

dual role in the regulation of cAMP. It has many stimulatory and inhibitory receptors 

that bind G proteins and moderate its catalytic subunit activity. When the G proteins 

bind to the receptors, the binding sites of ATP are exposed and the enzyme adenylyl 

cyclase is then able to catalyze the transformation of ATP to cAMP. Since there are both 

inhibitory and stimulatory receptor sites for the G-proteins, the binding of these proteins 

to adenylyl cyclases can increase the production of cAMP, but can also decrease the 

production of cAMP.

7.1.1.3.2 cAMP phosphodiesterase

Phosphodiesterase is the enzyme that catalyzes the hydrolysis of phosphodiester bonds 

of cyclic nucleotides and so acts as the ‘off-switch’ in the signal transduction pathway. 

Initially three isoforms were identified; CaM-PDE, cAMP-PDE and cGMP-PDE27,28. 

The number of PDE isoforms identified increased with the years and in 1995, the 

nomenclature for the PDE family was standardized . Today there are more than 11 

families of phosphodiesterases, which differ significantly in distribution, specificity and 

kinetics30. Inhibitors of phosphodiesterases can prolong or enhance the effects of 

physiological processes mediated by these cyclic nucleotides so they too are 

pharmacological targets for selective inhibitors.

7.1.1.3.3 cAMP-dependent protein kinase

cAMP-dependent protein kinase, also known as protein kinase A (PKA), refers to a 

family of enzymes, which, in response to cAMP in the cell, initiate changes in the 

activity of extra-nuclear proteins by phosphorylating serine (S) or threonine (T)
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re s id u e s '1. Protein  phosphory la tion , first identified as a m echan ism  for regula ting

79 . . . .
p ro te in  activ ity  in the 1950s , is p robab ly  the m ost im portan t m echan ism  for regulation 

in m am m alian  cells. Protein kinases are m ajo r  in tracellu lar  targets o f  cyclic nucleotides 

signal transduction  pa thw ays  and are know n  to regulate  the m ajority  o f  cellular

33pathw ays; up to 30%  o f  all p roteins m ay  be m odified  by  k inase  activity ' . Each 

cA M P -d ep en d en t  protein k inase is a ho loenzym e that consists  o f  two regula tory  and two 

catalytic subunits. U n d er  low levels o f  cAMP, the regu la to ry  subunits  b lock  the catalytic 

centre  o f  the catalytic subunits, the h o loenzym e rem ains  intact and is cataly tica lly  

inactive. W h en  the concentra tion  o f  cA M P  rises, as a result o f  ac tivation  o f  adenylyl 

cyclase or inhibition  o f  phosphodiesterases ,  cA M P  binds to the two b ind ing  sites on the 

regula tory  subunits,  w hich  then undergo a conform ational change  that re leases the 

catalytic subunits  (F igure 7.6) . T he free catalytic subunits  can then ca ta lyze  the 

transfer o f  ATP term inal phosphates  to protein substrates w hich  usually  results in a 

change  in ac tiv ity  o f  the substrates, as a result o f  increased surface charge.

cAMP

R2C 2 +4cAMP ^  R2C 2(cA M P ) 4  2(cAMP)2R+2C

Figure 7.6 Mechanism o f  protein kinase A activity
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cAMP-dependent protein kinase has several functions in the cell, including 

phosphorylation of proteins and regulation of glycogen, sugar, and lipid metabolism. 

Proteins phosphorylated by cAMP-dependent protein kinase include glycogen 

phosphorylase kinase, protamine, glycogen synthetase, hormone sensitive lipase, casein,
'■> c

troponin, fructose-1,6-diphosphatase, pyruvate kinase and histone . Despite its broad 

substrate specificity, PKA activity can be highly selective in a physiological setting36. 

Specific hormones, each capable of increasing intracellular cAMP levels, can result in
07

the preferential phosphorylation of different target substrates . The effects of 

cAMP-dependent protein kinase phosphorylation are generally short term and transient 

because protein phosphatases quickly dephosphorylate cAMP-dependent protein kinase 

substrates.

Cyclic AMP can also exert longer term effects. cAMP-dependent protein kinase is 

recognized as a means of regulation of gene expression since a protein called 

cAMP-response element binding protein (CREB) was found to be a target of PKA. On 

phosphorylation of the CREB protein dimerization occurs and in this state is able to 

interact with DNA at the cAMP response element (CRE), an 8-base pair palindrome, 

allowing initiation of transcription in the presence of two other proteins, CPB (CREB 

binding protein) and p300, both large proteins which only interact with CREB as its 

phosphorylated dimer5. Cyclic AMP effects independent of protein kinase include action 

on ion channels38 and / or EPAC (Exchange protein directly activated by cyclic AMP)39.
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7.1.1.4 Guanosine 3’,5’-cyclic monophosphate

Guanosine 3’,5’-cyclic monophosphate is a cyclic nucleotide derived from guanosine 

triphosphate (GTP). It was first isolated from rat urine in 196340 followed by 

identification in various mammalian tissues41, plant42and bacterial cells43. Although the 

intracellular concentration of GMP is typically 10 fold less than cAMP44, cGMP acts as 

a second messenger much like cAMP, most notably by activating intracellular protein 

kinases in response to the binding of membrane-impermeable peptide hormones to the 

external cell surface45 and regulating the movement of sodium ions and water across 

membranes although it has a more restricted function than cAMP46. Enzymes for cyclic 

GMP metabolisms analogous to those for cyclic AMP are present.

7.1.1.4.1 Guanylyl cyclase

The synthesis of cGMP is catalyzed by guanylyl cyclase (GC), the enzyme which 

converts GTP to cGMP. There are two main forms of guanylyl cyclase, 

membrane-bound GC and soluble GC47. Membrane-bound GC is activated by hormones 

such as the natriuretic factors , while nitric oxide and mtrosamines typically stimulate 

cGMP synthesis in soluble GC49.

7.1.1.4.2 cGMP phosphodiesterase

cGMP phosphodiesterases hydrolyze cGMP and three classes are found in mammals; 

cGMP-stimulated phosphodiesterase, cGMP-specific phosphodiesterase and 

cGMP-inhibited phosphodiesterase. Among these, cGMP-stimulated phosphodiesterase 

and cGMP-inhibited phosphodiesterase also involve in the regulation of the action of
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cAMP for example in adipose tissue lipolysis50 and platelet aggregation51.

7.1.1.4.3 cGMP-dependent protein kinases (PKG)

cGMP-dependent protein kinases catalyze the phosphorylation of several endogenous 

substrates in different tissues e.g. smooth muscle and cerebellar purkunje cells ’ . 

cGMP-dependent protein kinases are present in 5-10 fold less amounts compared to 

cAMP-dependent protein kinases in many tissues e.g. cerebellum, adrenal cortex, lung 

and heart54,55,56. Unlike PKA, PKG is a dimer consisting of one catalytic and one 

regulatory unit, with the regulatory unit blocking the active sites of the catalytic unit. 

Again cGMP binds to sites on the regulatory unit of PKG and activates the catalytic 

units, enabling them to phosphorylate their substrates however catalytic and regulatory 

units do not disassociate when cGMP-dependent protein kinases activated57.

7.1.1.5 Cytidine 3’,5’-cyclic monophosphate

After the demonstration of the natural occurrence of cAMP and cGMP and the 

identification of their roles as second messengers in a variety of cellular processes 

further investigations were carried out to determine if there are any other naturally 

occurring cyclic nucleotides and if so, their possible cellular functions. Evidence of the 

natural occurrence of cytidine 3’,5’-cyclic monophosphate (cyclic CMP, see Figure 7.7) 

was initially found by Bloch and his colleagues in liver extracts and leukaemia L1210 

cultures m 1974 . Wikberg and Wingren debated this issue by claiming that 

endogenous cyclic CMP-immunoreactive material could be separated 

chromatographically from authentic cCMP59,60. However, radioimmunoassay61, 62 and
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enzyme immunoassay63, 64 methods provided new data that supported the claims of 

Bloch. Several factors were reported to stimulate increase in intracellular cyclic CMP 

concentrations, such as luteinizing hormone releasing hormone65, long acting thyroid

f\f\ f\lstimulator and elevated cell proliferation rate . Newton and his coworkers have now 

unequivocally demonstrated the natural occurrence of cyclic CMP by means of tandem 

spectrometric analysis of mammalian tissue extracts, higher and lower plants, as well as
/TO %

bacteria such as E. coli . Radioimmunoassay showed that cyclic CMP concentrations 

were of similar levels in a variety of tissues, but the cCMP concentration is elevated in 

rapidly proliferating cells which suggests that cyclic CMP may have value as a clinical 

marker, as indicated by levels in leukaemic patients69. Further research confirmed the 

existence of enzymes capable of cyclic CMP synthesis (cytidylyl cyclase) and 

hydrolysis (cCMP phosphodiesterase).

NH

OH
OH

Figure 7.7 Structure of cytidine 3’,5’-cyclic monophosphate

7.1.1.5.1 Cytidylyl cyclase

Cytidylyl cyclase is the enzyme that converts CTP to cCMP (see Figure 7.8) and was 

initially identified in mouse myeloid leukaemic tumours and normal mouse liver and
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70 71 77 •spleen ’ . Although disputed by Gaion and Krishna , Newton proved that cyclic CMP 

was one of the products of the putative cytidylyl cyclase activity with the CTP substrate 

in 198873. The controversy regarding the identities of both the cyclic nucleotide in tissue 

extract and the putative cyclic CMP product of the cytidylyl cyclase reaction was 

explained by the discovery of four novel cyclic CMP analogues, cytidine 3’,5’-cyclic 

pyrophosphate, cytidine 2’-0-monophosphate-3’,5’-cyclic monophosphate, cytidine 

2’-0-glutamyl 3’,5’-cyclic monophosphate and cytidine 2’-0-aspartyl-3’,5’ cyclic 

monophosphate (see Figure 7.9). The chromatographic systems for resolving cCMP 

were later used for the specific assay for cytidylyl cyclase74 and a radioimmunoassay for

7 Sextracted cCMP . Cytidylyl cyclase has subsequently been established as existing in 

many rat and mammalian tissues and it was found that cytidylyl cyclase could be 

stimulated by Fe2+ and Mn2+76.

cytidylyl cyclase HO

Figure 7.8 Reaction catalysed by cytidylyl cyclase
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cytidine 3\5'-cyclic pyrophosphate

N H
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O H

cytidine 2'-0-monophosphate 
-3',5'-cyclic monophosphate

cytidine 2'-0-glutamyl cytidine 2'-0-aspartyl
S'.S'-cyclic monophosphate -3 \5 ' cyclic monophosphate

Figure 7.9 Analogues of cCMP also produced by cytidylyl cyclase

Application of the cytidylate cyclase activity assays has shown that cytidylyl cyclase is 

unaffected by effectors of adenylyl cyclase such as glucagon, cathcholamines, and 

muscarinic agents, or effectors of guanylyl cyclase such as ANP and nitroso-compounds, 

but it is activated by diethylstilboestrol, testosterone, calmodulin and to a lesser extent 

progesterone17,76.

7.1.1.5.2 cCMP phosphodiesterase

cCMP phosphodiesterases are enzymes that degrade cCMP to 5’-CMP (see Figure 7.10).
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They can be classified into two groups, cCMP-specific phosphodiesterase and

68 77  •multifunctional phosphodiesterase. The former is substrate specific ’ while the latter 

is capable of hydrolyzing both the 2’,3’- and 3’,5’- isomers of cyclic nucleotides and has 

activity with both purines and pyrimidines78'80. cCMP-speciflc phosphodiesterase was 

identified by Newton et al in a variety of rat organ tissues81. There are similarities as 

well as differences between the two classes of phosphodiesterase82. Both enzymes show 

similar optimal pH values, relative insensitivity to typical cAMP/cGMP 

phosphodiesterase inhibitors and require the involvement of cations as cofactors, 

whereas their differences lie on their specificity and effect of calmodulin on their 

activity . cCMP-specific PDE is the only enzyme demonstrated to be inhibited by 

calmodulin.

cCMP phosphodiesterase

Figure 7.10 Reaction catalysed by cCMP phosphodiesterase

7.1.1.5.3 cCMP-responsive protein kinase

With evidence of the sensitivity of cytidylyl cyclase and cyclic CMP phosphodiesterase 

to hormone agonists, it is a reasonable hypothesis that a cyclic CMP-binding protein or 

cyclic CMP protein kinase must exist if cyclic CMP has a second messenger function. 

Proteins capable of binding cCMP were first reported in 198584, cCMP-responsive
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protein kinase activity, with activation due to cCMP only, was demonstrated in rat 

tissues several years later. Newton et al have demonstrated several binding proteins, two

85 •of which possess protein kinase activity selectively sensitive to cyclic CMP , studies 

with [y-32 P]-ATP incorporation have indicated at least 17 endogenous protein substrates 

of this kinase, but they have yet to be characterized86. In normal levels cCMP has no 

significant role in cell proliferation; Bond, by using IMAC ZipTip, identified Rab23 as a 

possible phosphorylation substrate of cCMP-responsive protein kinase and indicates this 

phosporylation could potentially lead to cell hyperproliferation and formation of a brain 

tumor83. The available data suggest that cCMP may be a third secondary messenger 

involved in cell proliferation growth and differentiation, but deduction of the function of 

cyclic CMP as a third cyclic nucleotide metabolic regulator will only be credible after 

the cyclic CMP binding proteins and the substrates of cyclic CMP-sensitive protein 

kinases have been characterized and demonstrated to be integral components of systems 

responsive to exogenously applied cyclic CMP, and to be shown sensitive to factors
o r

modifying cytidylyl cyclase and cyclic CMP phosphodiesterase activities .

7.1.1.5.4 Preliminary studies of biological effects of cCMP

Studies from radioimmunoassay have shown that levels of cCMP are elevated in rapidly 

dividing tissues and that there is an inverse relationship between brain cCMP levels and
07  ,

aggression in male mice, which may be linked to testosterone levels . Many varied

biological effects of cCMP have been reported by studying effects of dibutyryl cyclic

88CMP upon rat and mouse tissues including the stimulation of DNA synthesis ,
O Q  m # t

inhibition of RNA synthesis , an increase in concentration of free amino acids and lipid 

concentration, and decrease in total protein concentration90. Further research showed
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that there is an increase in the contents of mRNA, rRNA and tRNA in brain cells 30 to 

60 minutes following the separate injections of cCMP, cUMP, cytidine and uridine, 

showing a more specific effect of cytidine and cCMP on neurons and glial cells62.

cCMP levels have been shown to be elevated in developing tissues such as kidney foetal 

tissue compared to adult tissue91, corresponding to the lower levels in phosphodiesterase 

and higher levels of cytidylyl cyclase activity observed in tissues undergoing rapid 

regeneration and developing tissues . Increased levels of cCMP have also been shown 

in cell hyperproliferation . cCMP was found to be present at concentration 100 fold 

greater than normal cells in leukaemia L-1210 cells. In accordance with this, cytidylyl 

cyclase activities are increased in foetal and other rapidly dividing tissues, and

1 7decreased in ‘older’ tissues .

7.1.1.6 Other naturally occurring cyclic nucleotides

Inosine 3’,5’-cyclic monophosphate (cIMP), uridine 3’,5’-cyclic monophosphate 

(cUMP), and 2’-deoxythymidine 3’,5’-cyclic monophosphate (cdTMP) have been 

identified as naturally occurring in mammalian tissues by Newton and colleagues using

Q9 •FAB/MIKES mass spectrometry . The proteins capable of their biosynthesis,

1 7hydrolysis and binding have been identified in rat tissues , however the physiological 

significance of these cyclic nucleotides remains to be elucidated.
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7.1.2 Introduction to proteomics

7.1.2.1 Proteome and proteomics

A rough draft of the human genome was completed by the Human Genome Project in 

early 200193, 94. The completion of the Human genome sequence is one of the most 

important landmarks in biological research. A major challege in modem biology is to 

understand the expression, function, and regulation of the entire set of proteins encoded 

by an organism. It requires an investigation of genes, gene transcripts, proteins, and 

metabolites which have been termed the genome, transcriptome, proteome and 

metabolome respectively (Figure 7. II)95. Proteome is a term coined in 1994 by Marc 

Wilkins96, a graduate student at Macquarie University in Australia, to provide an 

analogy to the term “genome”. Proteomics is the study of the proteome which can be 

viewed as an experimental approach to explain the information contained in a genomic 

sequence in terms of the structure, function, and control of biological processes and 

pathways97.

7.1.2.2 Challenges in proteomics, post-translational modification

While it is often viewed as the “next step” of genomics, proteomics is more complex 

than genomics. The genetic information in an organism is contained within the nucleus 

where it is arranged into genes encoded by DNA which constitutes the chromosomes. 

During gene expression the information encoded within the genome is converted by a 

process of transcription to a corresponding primary RNA transcript. This is subsquently 

porcessed within the nucleus to form mature messenger RNA (mRNA), mRNA is then 

transported to the cytoplasm where it is bound to ribosomes, to act as a template for
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translation into the corresponding protein (Figrue 7.11). It has been estimated that one 

gene produces 6-8 proteins98 because of splice variants and post transcriptional 

modifications99,10°, which makes the study of the proteome more complex than genomic 

studies. Most importantly, while the genome is a constant entity, the proteome differs 

from cell to cell and in a single cell from time to time as it is constantly changing 

through its biochemical interactions with the genome and environment. One organism 

will have radically different protein expression in different parts of its body, at different 

stages of its life cycle and in different environmental conditions. Hence the 

identification of the proteins in their final state is required if the purpose of proteomics 

is to understanding of protein function and interaction. Once genes are transcribed they 

are edited and translated into proteins. Covalent modifications to the amino acid 

sequence can occur co-translationally or post-translationally and such modifications 

play a pivotal role in regulating protein activity. Identification of the type of 

modification and its location offer crucial information for understanding the function or 

regulation of a given protein. So far more than 200 different modifications have been 

reported, many of which are known to control signaling pathways and cellular 

processes102, 103. Post-translational modifications include alkylation, acetylation, 

glycylation, glycosylation and phosphorylation, usually to serine, tyrosine, threonine.

Much of the complexity of higher organisms is believed to reside in the specific 

post-translational modification of proteins. Post-translational modifications play critical 

roles in a proteins function and the reversible phosphorylation/dephosphorylation of 

proteins is one of the most common and important regulatory mechanism104.
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Phosphorylation plays a key role in the regulation of virtually all cellular events. Many 

crucial biological processes such as the cell cycle, cell growth, cell differentiation, and 

metabolism are tightly controlled by reversible protein phosphorylation, modulating 

protein activity, stability, interaction and localization105,106. It has been estimated that 

more than one-third of all proteins can be modified by phosphorylation in mammalian 

cells, and that up to 5% of the genes in a vertebrate genome encode for either protein 

kinases or phosphatases107. The most common type of protein phosphorylation studied 

involves the formation of phosphate ester bonds with the hydroxyl side chains of serine, 

tyrosine, and threonine. Serine phosphorylation represents ca. 90% of all cellular

phosphorylation, threonine phosphorylation ca. 10%, and tyrosine phosphorylation only

108 •0.1% . The collection of proteins which are phosphorylated is described as the

pho sphoproteome.

7.1.2.3 Key technologies used in proteomics research

Protein samples of biological origin are by nature highly complex and require 

sophisticated analytical tools to provide reliable analysis of the components. Proteomics 

especially challenges the need for robust, automated, wide dynamic range and sensitive 

high-throughput technologies. Several key technologies have emerged as important 

tools for the global profiling of the most functional compartment encoded for in the 

genome at the protein levels. The first technology is the separation of proteins which 

includes two-dimensional gel electrophoresis and/or chromatographic separation. The 

second technology, mass spectrometry combined with bioinformatics, has become an 

important tool in the analysis of protein sequence and structure, making the 

characterization of part of the proteome simultaneously possible109. The basic analytical
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requirements in proteome analysis are high sensitivity, high resolution, high throughput 

and high-confidence protein identification. To reduce sample complexity prior to mass 

spectrometry for protein identification, one of the following two approaches is usually 

taken: a) proteins are first separated, and then digested, this is called ‘top-down’ 

proteomics110, b) ‘shotgun’ proteomics, a complex protein mixture is first digested, 

peptides are then chromatographically resolved, this is referred to as ‘bottom-up’ 

proteomics111. In both cases, separation technologies play a critical role in protein 

identification and analysis. Considering the high complexity of mixtures of biological 

origin, pre-MS separation technology and dynamic range of pre-MS separation and 

mass spectrometry becomes the bottleneck for the successful study of biomolecules112.

7.1.2.3.1 Two-dimensional gel electrophoresis

7.1.2.3.1.1 A brief history

Two-dimensional gel electrophoresis can also be referred to as 2-D gel electrophoresis 

or 2D-PAGE. Separation of protein mixtures by electrophoresis began early in the

i 1 o
twentieth century. In 1956, Smithies and Poulik described a combination of paper and 

starch gel electrophoresis for the separation of serum protein which is the first two 

dimensional co-ordinate data. In 1970, Laemmli UK produced the first gel image data 

by running 2-D gel electrophoresis for increased separation of structural proteins in a 

bacteriophage where they incorporated isoelectric focusing114. In 1975, Klose115 and 

O’Farrell116 published the protocol for high resolution 2-D gel electrophoresis for the 

analysis of E. coli proteins. Since then 2-D gel electrophoresis, which permit the 

simultaneous analysis of hundreds or even thousands of gene products, have been the
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method of choice for separation of complex protein mixtures.

7.1.2.3.1.2 The theory of 2-D gel electrophoresis

7.1.2.3.1.2.1 Isoelectric focusing (IEF)

IEF is an electrophoretic method that separates proteins according to their isoelectric 

points (pi). Protein molecules carry charge depending on the pH of their surroundings, a 

protein molecule in solution at any pH other than its isoelectric point has a net average 

charge. This causes it to move in an applied electric field. Isoelectric focussing is a 

process that separates proteins on the basis of their mobility at a particular pH. 

Isoelectric focusing involves utilizing an IPG (immobilized pH gradient) strip and 

setting up a pH gradient and allowing proteins to migrate in the presence of an electric 

field to the point in the system where the pH equals their isoelectric point. To establish a 

pH gradient requires the use of polymeric buffer compounds which resemble proteins 

themselves, as they have large numbers of both positive and negative charges, and 

possess isoelectric points over a similar pH range (3-12). Such buffers are called 

ampholytes; they migrate to their isoelectric point, as there are hundreds or even 

thousands of individual ampholyte species, they spread across the whole gel slab 

between the cathode contact and the anode contact. Thus after a few hours of 

application of the electric field, the ampholytes have migrated and formed a pH gradient; 

the pH range depends on their composition. Any proteins present also move, since the 

proteins are mostly larger, they move more slowly, so the pH gradient becomes 

established before the proteins reach their isoelectric position. A protein applied to the 

gel will migrate until it reaches a pH equivalent to its own pi, provided that its pi falls 

within the range of the ampholytes used to generate the pH gradient. IEF concentrates
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proteins into focused narrow zones because if they diffuse out of the zone, they will 

become charged and migrate back to the position of zero net charge under the influence 

of the electric field117.

7.1.2.3.1.2.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE)

SDS-PAGE is currently the most commonly used electrophoretic technique for the 

analysis of proteins which separates proteins primarily by mass. Polyacrylamide gel is 

formed by the polymerization of monomers of acrylamide with monomers of a suitable 

bifunctional cross-linking agent, N, N ’-methylene-bis-acrylamide, referred to as 

bis-acrylamide for short. A three dimensional network is formed by the cross-linking of 

randomly growing linear polyacrylamide chains by a mechanism of vinyl 

polymerization with the addition of the catalysts, 

N,N,N’,N’-tetramethylethylethylenediamine (TEMED). The proportion of acrylamide 

and bis-acrylamide determines the extent of cross linking and are important in 

determining the physical properties of the gel, including pore size, elasticity, density and

1 1 Q #

mechanical strength . Once the polyacrylamide gel has set, proteins can be applied to 

the gel matrix which acts as a molecular sieve separating proteins according to their 

shapes. SDS gels involve running the electrophoresis after denaturing the proteins with 

the detergent sodium dodecyl sulphate. Dodecyl sulphate binds strongly to proteins and 

effectively masks the intrinsic charge of the polypeptide chain, consequently, separation 

can occur only as a result of the molecular sieving through the pores of the gel119.
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7.I.2.3.1.2.3 2-D gel electrophoresis

This technique separates proteins in two dimensions. The first dimension, isoelectric 

focusing (IEF), separates proteins according to their isoelectric points (pi) and the 

second dimension, SDS-PAGE, separates proteins according to their molecular weights. 

Each spot on the resulting gel corresponds to a single protein species in the sample. 

Thousands of different proteins can thus be separated and the pi and the molecular 

weight of a specific protein can be obtained.

7.1.2.3.1.3 Advantages and disadvantages of 2-D gel electrophoresis

2-D gel electrophoresis has been employed for more than 30 years and is still widely 

used. It is reported that 2-D gel electrophoresis can simultaneously separate 

approximately 2000 proteins, and by using optimised protocol, up to 10,000 proteins 

can be seen120. 2-D gel electrophoresis provides a very high resolution of proteins and 

high sensitivity based on different possible protein staining methods. The combination 

of two-dimensional gel electrophoresis with mass spectrometry (MS) is the most 

common analytical scheme in proteomics. The high resolving power of 2-D gel 

electrophoresis allows separation of a protein mixture into individual spots in a flat gel. 

Ideally, a single protein is isolated from a specific spot of interest and then digested to 

peptides. The identification of proteolytic fragments and hence of the precursor protein 

can be achieved by MS, usually by matching the MS results with an available database. 

Although 2-D gel electrophoresis and MS are not directly connected, fully integrated 

technology that combines the two techniques via robotic systems is now commercially 

available121.
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However, even with continuously improvements, 2-D gel electrophoresis has 

unavoidable drawbacks and intrinsic limitations122. Some disadvantages of 2-D gel 

electrophoresis are that it is very time-consuming methodology for reproducible protein 

separation; it has limited pi range and is not suitable for membrane proteins which count 

more than 30% of all proteins, and it can only detect high abundance proteins. Dynamic 

range and protein solubility issues complicate the detection and separation of 

low-abundance and hydrophobic proteins by 2-D gel electrophoresis. Proteins that occur 

in low copy number in the whole cell lysate e.g. signalling proteins and transcription 

proteins have not been successfully investigated using this approach. High mass proteins 

have great difficulty entering into the SDS gel so they cannot be analysed. Another 

limitation is that it is difficult to be directly coupled with MS since the necessity of 

off-line protein digestion.

These drawbacks have undermined the prospects for 2-D gel electrophoresis as a 

dominant separation technique in proteomics and have stimulated the development of 

alternative technologies. To achieve a wider dynamic range of analysis, obtain better 

reproducibility and increase analytical throughput, several multidimensional 

chromatographic separations have been proposed as alternatives to 2-D gel 

electrophoresis123. In particular, with the emergence of techniques such as nano flow 

capillary high-performance chromatography in conjunction with electrospray ionisation 

tandem MS, attention has been focusing on developing comprehensive 

multidimensional liquid-based separation techniques.
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7.1.2.3.2 Chromatographic separation of proteins and peptides

Over the past decade, the analysis of peptides and proteins by high performance liquid 

chromatography progressed rapidly due to its high resolving power, reproducibility and 

its compatibility with electrospray mass spectrometry. The chemical properties of 

proteins and peptides vary in charge, hydrophobicity, solubility, pi, these differences 

being the basis for their separation and purification by today’s modem HPLC methods. 

One attractive feature of liquid chromatography is the broad selection of stationary and 

mobile phases which makes it a versatile and fundamentally important tool in 

proteomics. Proteins or peptides separated by RP-HPLC can be introduced directly into 

the mass spectrometer through an ESI source for identification and analysis. Increased 

resolution of proteins and peptides can be achieved by multiple steps of chromatography. 

Because of the high resolving power of LC, ion-suppression effects in MS caused by 

overlapping signals from high and low abundance ions can be reduced or even 

eliminated. It is also possible to enrich low abundance proteins or peptides presented in 

complex sample mixtures within a wide dynamic range of concentration using selected 

LC methods124. Although mass spectrometers can measure the mass of intact proteins, 

proteins can be difficult to handle and to resolve under the same conditions, and the
1 y e

sensitivity for proteins is much lower than for peptide .

The analysis of low levels of peptides originating from complex biological samples 

requires improved sensitivity of any given detection system. This is typically achieved 

by the use of columns with smaller i.d. such as capillary columns of 300 pm i.d. with a 

typical flow rate of about 4 pL/min or nanoscale LC-ESI/MS as employed in LCMS 

experiments. Columns with 50-200 pm internal diameter and HPLC systems with flow
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splitters that can handle flow rate of a few 100 nL/min are commercially available.

Currently, chromatographical separations are even performed at flow rates as low as

12620 nL/min using columns with internal diameter down to 15 pm . Such reduced flow 

rates offer greatly improved sensitivity in concentration-sensitive detectors such as mass 

spectrometers. With such a low flow rate, loading a sample onto the column is very time 

consuming, however, this can be avoided by making use of column switching 

techniques. The purpose of column switching is to segregate the loading of the sample 

and the actual separation to reduce the loading time as well as clean up the sample. This 

is achieved by first loading the sample at a high flow rate onto a short 

preconcentration-column (trap column) which has a larger diameter than the nano 

column127. Once the sample is loaded and desalted, the trap column is switched to be in 

line with the 75 pm i.d. nano analytical column to run the gradient at a lower flow rate. 

When coupled to a tandem mass spectrometer, peptides can be analyzed and selected for 

fragmentation in the collision cell of the MS instrument as they elute from the column. 

The sensitivity of nano HPLC compared to conventional HPLC increases approximately 

3700 times according to the theoretical down-scale factor128.

7.1.2.3.3 Mass spectrometry

Mass spectrometry is currently the technique of choice for identification and 

characterization proteins on a large scale. The power and efficiency of mass 

spectrometry was recently recognized through the Nobel price in Chemistry in 2002, 

where both electrospray and matrix-assisted laser desorption/ionisation principles (the 

two most widely applied ionisation techniques for proteomics work) were 

rewarded129,130. Traditionally, ESI has been associated with tandem MS and protein
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sequencing while MALDI was associated with peptide mass fingerprinting (PMF) and 

these modes are complementary to each other. It has been demonstrated that proteins 

can be analyzed by mass spectrometry requiring very little or no manipulations of the 

samples, just by placing thin slice of frozen tissue section (for example a human breast 

needle biopsy or a mouse brain) directly on the MALDI target plate and applying the 

matrix solution " . However, as previously indicated (section 7.1.2.3), in many cases,

different proteins are present in very different concentrations in tissues or cells which 

may contain many hundreds to thousands of different proteins. In these cases, the 

complexity of the protein sample requires a separation procedure prior to the mass 

spectrometric analysis of the sample.

Electrospray sources have been coupled to liquid chromatography because the 

electrospray process is capable of transferring ions from solution directly into the gas 

phase as they elute from the column. Electrospray mass spectrometry (ESI-MS) enables 

the detection of proteins due to its ability to form multiply charged ions and thus 

reducing the m/z values to levels that can be detected. The widely established protocol is 

that enzymatic digestions of the protein mixture are fractionated by C]8 reverse phase 

liquid chromatography coupled directly to ESI-MS capable of data-dependent MS to 

produce fragmentation (MS/MS) spectra from as many components as possible. The 

resultant spectra are then subjected to database search algorithms that match the MS/MS 

spectra to amino acid sequence.
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7.1.2.3.4 Protein identification by database searching

Proteins are long chain polymers of L-amino acids. All amino acids have in common a 

carboxyl group and an amino group bonded to a primary carbon. In the protein structure, 

amino acids are covalently coupled via peptide bonds to form the linear peptide chain. 

To identify a protein, the first step is to convert proteins to a set of peptides using a 

sequence-specific protease. Trypsin is an aggressive and stable protease, which cleaves 

proteins specifically on the carboxy-terminal side of arginine and lysine residues, thus
1 JC

creates information-rich peptides in the preferred mass range for sequencing .

Y3 Y2 X! y! Z!

H
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N
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Figure 7.12 Designation for fragment ions when peptide backbone is fragmented

Figure 7.12 shows a peptide with 4 amino acids; in mass spectrometers, peptide 

fragmentation is induced by collision-induced dissociation, bond breakage mainly 

occurs through the lowest energy pathways, that is, the cleavage of the peptide bonds. 

This leads to the formation of b and y ions , b ions are formed when the charge is
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retained on the amino-terminal side, y ions are formed when the charge is retained on 

the carboxy-terminal side, also a, c, x, z ions can be formed as shown in Figure 7.12. 

Ions are labelled consecutively from the original amino terminus am, bm and cm, in which 

m represents the number of amino acid R groups contained in these ions. They are also 

labelled consecutively from the original carboxyl terminus as zn, yn, xn, in which n 

equals the number of R groups contained in these ions. Apart from these ions, fragment 

ions due to the further loss of NH3 or H2O can be produced, for example, bm-NH3 or 

yn-H2o.

As shown in Figure 7.12, each peptide fragment in a series differs from its neighbour by 

one amino acid. In theory, it is therefore possible to determine the amino acid sequence 

by considering the mass difference between neighbouring peaks in a series. This process 

is called de novo sequencing134. However, the information in MS/MS spectra is often 

not complete and there are intervening peaks which may confuse the analysis. Database 

matching is an alternative way to identify proteins. This is easier than de novo 

sequencing, because although a peptide fragmentation spectrum might not contain 

sufficient information to derive the complete amino acid sequence unambiguously, it 

might still have sufficient information to match it uniquely to a peptide sequence in the 

database on the basis of the observed and expected fragment ions. The disadvantage of 

database searching is that the experiments should be carried out using organisms whose 

genome have been sequenced, so that all the possible peptides are known. Peptides can 

be identified from databases by their fragmentation spectra using pattern searching with 

several different algorithms such as SEQUEST and Mascot, PeptideSearch, Sonar 

ms/ms and ProteinProspector. The SEQUEST algorithm developed in 1994 by Yates’

ITS • • •research group was utilised m this study. In SEQUEST algorithm, a signal processing
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technique called autocorrelation is used to mathematically determine the overlap 

between the experimental spectrum and a theoretical spectrum derived from the 

sequence in the database. The overlap is given in the form of scores, including the 

Xcorrelation score and the Delta correlation score. These scores provide a quick 

assessment of each match, and they can be a filtering tool. The Xcorrelation score (XC) 

value describes how well the theoretical for each sequence cross correlates with the 

observed spectrum. XC scores above 2.0 are usually indicative of a good correlation. 

The Delta correlation (dCn) describes how different the first peptide match is from the

second peptide match in the search. A general rule of thumb is that a dCn of 0.1 or

1 ̂greater is good . The filter range of the scores set in this study is shown in Table 7.4 

(Section 7.2.7).

In LC-MS/MS analysis of protein digests the mass spectrometer will cycle through a 

sequence that consists of obtaining a mass spectrum followed by obtaining tandem mass 

spectra of the most abundant peaks that were found in the first mass spectra. This 

process does not necessarily result in measurement of peptides covering the complete 

protein (100% sequence coverage), for example, very short peptides of only a few

• i mamino acids or very long peptides of >30 amino acids are often not detected . 

However, at least some of the peptides can be sequenced by the mass spectrometer, 

which is sufficient for protein identification but not for complete protein 

characterization.
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7.1.2.4 Phosphoproteome study by chromatographic enrichment of 

phosphopeptides

In signalling pathways, kinase cascades are often turned on and off by the reversible 

addition and removal of phosphate groups. Protein phosphorylation has been shown to 

play an essential role in a variety of fundamental cellular functions such as gene 

transcription, cell-cycle progression, energy storage, metabolic regulation and 

apoptosis137,138. Therefore, the identification of phosphorylated proteins and the exact 

localization of the modification level are essential in understanding a biological pathway 

at the molecular level. Analysis of the entire complement of phosphorylated proteins in 

cells has been investigated in recent years. This is the combined result of optimisation of 

enrichment protocols for phosphorylated proteins and phosphopeptides, better 

fractionation techniques, especially multidimensional chromatography, and the 

improvements in methods used to selectively visualize phosphorylated residues by mass 

spectrometry. It is estimated that there are approximately 100,000 potential 

phosphorylation sites in the human proteome of which fewer than 2000 are currently
1 OQ

known . Traditional procedures used to identify phosphorylated proteins include 

radioactive labelling with P-labeled ATP followed by SDS polyacrylamide gel 

electrophoresis or thin layer chromatography then Edman sequencing, and the use of 

phosphospecific antibodies140. Most of the traditional methods are inadequate because it 

is impossible to obtain the large amount of proteins required for phosphorylation 

analysis.

Mass spectrometry is now the technique of choice for phosphorylation analysis because 

of its sensitivity, versatility and speed with MALDI-TOF and ESI-MS/MS commonly
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used141. In the post-source decay (PSD) MALDI-TOF, phosphorylated peptides 

identification can be carried out by searching for peptides whose mass is shifted by 

98 Da or 80 Da due to the loss of H3PO4 and HPO3 from the predicted one. For serine 

and threonine phosphorylation, (MH-FbPO^ is the more abundant ion observed. 

However, the loss of the phosphate moiety is not favoured in the case of 

phosphotyrosine, because the phosphate moiety is stabilized by the aromatic ring142.

In the ESI-MS/MS mode, the side chains on phosphoserine, phosphothreonine and 

phosphotyrosine can fragment easily on both sides of the phosphoester bond upon 

collision-induced dissociation (CID). Peptides carrying a phosphate group can be 

identified by the neutral loss of ^PCLfrom the precursor ions in the positive mode143, 

that is 32.6, 49, 98 Da from the (M+3H)3+, (M+2H)2+, and (M+H)+ ions, respectively.

Recent technological developments have made it increasingly feasible to directly 

analyze complex peptide mixtures by LC-MS/MS with the identification of hundreds of 

peptides and proteins being achieved within a single chromatographic run. However, the 

comprehensive analysis of phosphorylated proteins has encountered some biological 

and analytical limitations. From a biological point of view, phosphorylated proteins are 

often present at very low concentrations and are therefore difficult to be detected in 

complex mixtures containing high concentrations of other cellular proteins. From the 

analytical point of view, there are several factors that complicate the analysis of 

phosphorylated proteins. Firstly, negatively-charged modification can hinder proteolytic 

digestion by trypsin and secondly, the sequence near the phosphorylation site is usually 

very hydrophilic, leading to a selective loss of phosphopeptides during the standard 

methods used for sample preparation. Thirdly, mass spectrometers have a finite dynamic
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range, peptides of very low abundance may not be picked up for sequencing in the 

presence of high abundant unphosphorylated peptides. Finally, phosphorylated peptides 

may undergo neutral loss of phosphate during MS, which can further limit their 

detection142. Major challenges in the analysis of phosphorylated proteins or 

phosphopeptides are the isolation of the phosphoprotein, and then the isolation or 

enrichment of the phosphopeptides from the overwhelming amount of 

nonphosphorylated peptides present in a complex protein total digest. Currently, 

immobilized metal affinity chromatography (IMAC) has proven particularly effective in 

the capture of phosphopeptides144'146.

IMAC utilizes immobilized Fe3+, Ga3+, K+, or Cu2+ ions to selectively retain 

phosphorylated peptides since phosphopeptides can be captured selectively through 

their negatively charged phospho-group on immobilized-metal affinity (IMAC) columns. 

This method relies on high affinity interaction between transition metal ions and 

phosphorylated side chains of serine, threonine or tyrosine147. In this technique, a 

stationary phase with an immobilized transition metal binding functionality, e.g.

• • • ^4-lmidodiacetic acid (EDA) or nitrilotriacetic acid (NTA) is first charged with either Fe 

or Ga3+. The transition metals therefore form tight complexes with the stationary phase 

as shown in Figure 7.13. Protein digests are loaded onto the column at low pH, the 

adsorption of phosphopeptides is based on the coordination between immobilized metal 

ion and electron donor groups (phosphate group) in the peptide structure. After the 

washing step, the bound phosphopeptides can be released by changing the pH and 

disrupting phosphorylated proteins or peptides from their metal ligand complexes.
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Figure 7.13 Illustration of IMAC chromatography

The advantages of IMAC for phosphorylated protein enrichment are ligand stability, 

high protein loading, mild elution conditions, simple regeneration, high applicability 

under denaturing conditions and low cost148. However, there are several limitations of 

IMAC, such as, possible losses of phosphopeptides during elution from the column and 

the presence of interfering peptides deriving from the acidic non-phosphorylated 

peptides that show affinity to the immobilized metal ions. To prevent 

non-phosphorylated peptides binding to the IMAC column through carboxyl groups, 

recently, Ficarro et al. reported a method based on the esterification and thereby 

neutralization of the negatively charged amino acid residues before the IMAC step, 

which allows identification of hundreds of phosphopeptides in yeast cell lysates149. 

Because binding of non-phosphorylated peptides is minimized, this approach is very 

sensitive, phosphopeptides at low femtomol levels were claimed to be identified. Recent 

research shows that the stainless steel surfaces available in LC/ESI MS hardware can 

play a principal part in adsorption and even trapping of phosphorylated analytes under 

acidic conditions150 and this effect should be considered for future research.



7.1.3 Aims of study

As introduced previously, adenosine 3’,5’-cyclic monophosphate (cyclic AMP) has well 

established functions as a biochemical second messenger, mediating the action of a wide 

range of mammalian hormones and neurotransmitters, while the second cyclic 

nucleotide, guanosine 3’,5’-cyclic monophosphate (cyclic GMP) performs a similar but 

more restricted function. In view of the parallel functions of purine and pyrimidine 

nucleotides in nature, these roles of purine cyclic nucleotides as secondary messengers 

pose the question as to whether pyrimidine cyclic nucleotide second messengers also 

exist. The natural occurrence of cCMP has now been unequivocally demonstrated by 

means of tandem spectrometric analysis of sequentially purified tissue extracts. A 

number of factors which regulate the specific enzymes responsible for its synthesis and 

degradation have been identified and many varied biological effects of cCMP have been 

reported. However, the mechanism of its action and its precise cellular function are not 

yet fully elucidated. The identification of the phosphorylation substrate of 

cCMP-responsive protein kinase would be helpful in elucidating the function of cCMP 

in signal transduction. Bond identified Rab23 as a possible phosphorylation substrate 

of cCMP-responsive protein kinase in 5min cCMP incubation using IMAC ZipTip. 

The aim of this study is to identify phosphorylated proteins which are either unique or 

increased in expression in response to elevated levels of cCMP in different incubation 

times, that is, 1,5, 15 and 30 minutes.

Recent improvements in phosphopeptides enrichment by immobilized metal affinity 

chromatography (IMAC) and in mass spectrometry make it possible to identify 

phosphorylated proteins on a proteome-wide basis. IMAC coupled to LC-MS/MS has
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been proved to be a powerful method to identify phosphorylated proteins present in 

complex mixtures of non-phosphorylated proteins.

To fulfil our aims in this study, mouse brain homogenates were incubated for a number 

of time periods with known amounts of ATP and three different cyclic nucleotides, 

cAMP, cGMP, cCMP or “blank” which contains only ATP without the addition of any 

cyclic nucleotide. Normal intracellular cyclic nucleotide (cAMP) level in brain is about 

0.5 mM151, hence 2 mM was chosen as elevated level without having adverse effect on 

functioning brain cells. ATP is phosphate donor, 5 mM was chosen so ATP is in excess 

and will not be a hindering factor in the study. An online IMAC-nano LC/MS platform 

for phosphoprotein profiling was set up and phosphorylated proteins in cCMP-incubated 

mouse brain homogenate were characterised. The identification of these phosphorylated 

proteins should provide new avenues for investigating the mechanism of cCMP 

signalling pathways and its cellular function.

7.1.4 Established methods

This study carried on from the work of Bond in the Cyclic Nucleotide Biochemistry 

Research Laboratory and Biomolecular Analysis Mass Spectrometry (BAMS) Facility.
Ol

In the work of Bond , mouse brain homogenates were incubated with ATP and different 

cyclic nucleotides and control (with only ATP) for different time periods. Then the 

homogenate was centrifuged and dialysed overnight. The dialysed brain homogenates 

were then enriched by IMAC ZipTip followed by trypsin digestion and HPLC/MS/MS 

for identification. Alternatively, the dialysed brain homogenates were first digested with 

trypsin and then enriched by IMAC ZipTip followed by HPLC/MS/MS for
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identification. In this study, we carry on from the previous work with the aim of: a) the 

optimisation and the set up of online IMAC system, b) identification of the 

phosphorylated proteins unique expressed in response to cyclic CMP incubations of 

different incubation times.

7.2 Experimental

7.2.1 Materials

7.2.1.1 Chemicals

All chemicals were obtained from Sigma-Aldrich (Poole, Dorset, U.K.) with the 

exceptions: glycerol, acetic acid, hydrochloric acid (HC1), methanol (MeOH), 

acetonitrile (ACN), obtained from Fisher Scientific (Loughborough, Leic., U.K.). The 

MALDI matrices a-cyano-4-hydrocinnamic acid and sinapinic acid were purchased 

from Fluka (Sigma) and the MALDI calibration mixtures 1 and 3 were obtained from 

Applied Biosystems (Warrington, U.K.). Formic acid (HCOOH) was purchased from 

Analar (Dorset, U.K.), and the dialysis membrane for the dialysis of the whole brain 

homogenate purchased from Medicell International (London, U.K.). The oxygen-free 

nitrogen was supplied by BOC Ltd (Guildford, Surrey, U.K.). Milli-Q purified water 

was prepared ‘in-house’ in the BAMS Facility using the Elix® and Milli-Q® Ultrapure 

water purification system obtained from Millipore U.K. Ltd (Watford, U.K.). All the 

chemicals used in gel electrophoresis including IPG strips and 2-D Quanti Kit were 

obtained from Amersham Biosciences (Uppsala, Sweden) except Tris base and glycine, 

which were obtained from Melford laboratories Ltd (Ipswich, U.K.).
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7.2.1.2 Animals

A total of 48 8-week old female mice were sacrificed during this study. The mice were 

obtained from Harlan UK Ltd (Shaw’s Farm, Blackthorn Bicester, Oxon, UK), and were 

delivered as a batch of 24 mice a time, over two consecutive weeks. The sacrifice of the 

mice was conducted on the same day as delivery and performed as rapidly as possible 

by a blow to the base of the head followed by decapitation. The brains were then 

removed and pooled into an ice-cold buffer to avoid tissue decomposition due to post 

mortem changes.

7.2.1.3 Apparatus

Immobiline TM DryStrip Reswelling Tray for IPG strip rehydration, Ettan IPGphor 

platform for first dimension isoelectric focus, and second dimension gel electrophoresis 

apparatus were obtained from Amersham Biosciences (Uppsala, Sweden).

7.2.2 Sample preparation for the extraction of proteins from mouse brain tissue

The extraction buffer was 50 mM Tris-HCl (pH 7.4), the pH of which was adjusted with 

a 6 M HC1 solution. This buffer also consisted of 78 mM of dithiothreitol (DTT), 1 mM 

of ethylenediamine tetra-acetic acid disodium salt (EDTA) solution, 1 mM PMSF, 1 pM 

pepstatin A and 20 pM leupeptin83. The buffer was freshly made immediately before use 

and was maintained at ice cold temperatures during the extraction of the mouse proteins. 

Mouse brains were placed in 1:9 (w/v) of the extraction buffer immediately after
OQ

removal , then the tissue was disrupted by mechanical homogenization at 900 r.p.m. in 

a Potter S Elvehjem Homogenizer (Braun Melsunger, Germany) for four 10-second
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bursts in an ice bath to ensure effective and full disruption of the cells and minimize 

protein denaturation due to heating. The resulting crude tissue homogenate was pipetted 

into 20 mL vials to make 16 aliquots of 5 mL homogenate and was utilised for the 

protein estimation experiment for the study of the effects of cyclic nucleotides upon 

murine brain protein phosphorylation.

A standard 2 mM solution of one cyclic nucleotide (cyclic AMP, cyclic GMP or cyclic 

CMP), and 5 mM ATP disodium salt was prepared in ice-cold 50 mM Tris-HCl buffer 

(pH 7.4). A control lacking cyclic nucleotides was also prepared. 4 x 5  mL of each of 

these solutions was pipetted into the previous prepared 5 mL mice brain homogenate 

solutions in 20 mL vials. These newly produced solutions were then vortexed and 

incubated at 37 °C for 1, 5, 15 and 30 minutes in a water bath to allow the incorporation 

of the phosphate groups into proteins catalysed by native protein kinases. At the 

allocated time the incubations were transferred to an ice bath and kept for 5 minutes to 

stop kinase activity. The samples were then stored at -80 °C.

Before further analysis, the samples were centrifuged at 16,000 g for 30 minutes to 

remove cell debris and insoluble material. The sample solution was then dialyzed 

against 50 mM Tris-HCl with 7 mM DTT and the protease inhibitors 1 mM EDTA and 

ImM PMSF in the cold room overnight and separated into 200 pL aliquots and stored at 

-80 °C.
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7.2.3 Protein assay

1 S9The Bradford method was utilised for protein assay. The Coomassie brilliant blue 

G-250 dye, when dissolved in a strong acid, turns a red brown colour due to protonation, 

but when it binds to a positively charged protein, the blue colour is restored due to a 

shift in the pKa of the bound Coomassie blue. Bradford reagent: 100 mg of Coomassie 

Brilliant Blue G-250 was dissolved in 50 mL of 95% ethanol and then made up to a 

volume of 500 mL with distilled water. The solution was acidified using 100 mL of 85% 

(w/v) orthophosphoric acid and diluted further with distilled water to give a final 

concentration of 0.01% (w/v) Coomassie Brilliant Blue G-250.

A standard solution of 1 mg/mL Bovine Serum Albumin (BSA) was prepared and 

subsequently diluted with Tris-HCl (pH 7.4) to concentrations ranging from 0.2 mg/mL 

to 1 mg/mL. From these serial dilutions, 100 pL were taken and added to 5 mL of 

Bradford reagent. The tube were then vortex mixed and left for 2 minutes to allow the 

effective binding of proteins to the dye and their absorbance at 595 nm was measured 

using an Agilent 8453 UV-visible spectrophotometer. A calibration curve was produced 

by measuring the absorbance for each BSA dilution (Figure 7.14). 20 pL of the crude 

brain tissue homogenate sample and 80 pL Tris buffer were mixed with 5 mL of the 

Bradford reagent, the absorbance was then measured at 595 nm and concentration 

calculated from the calibration curve.
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Calibration curve of Bradford assay
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Figure 7.14 Calibration curve of Bradford method

7.2.4 2-D gel electrophoresis

The separation of proteins in the tested sample was primarily performed by 

two-dimensional gel electrophoresis. The original protocols that were used can be found 

in the Amersham manual for 2-D gel electrophoresis (code number 80-6429-60), 

however, several steps were altered to optimise the procedure.

7.2.4.1 TCA/acetone precipitation

Brain homogenates were suspended in 10% TCA in acetone, with 0.07% 

2-mercaptoethanol overnight at -20 °C, proteins were pelleted by centrifugation and the 

pellets were washed with ice cold acetone containing 2-mercaptoethanol at least 3 times 

before the pellets were freeze dried.
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7.2.4.2 Rehydration of the IPG strips

The pellets were redissolved in rehydration buffer and protein concentration was
I C O

quantitated by 2-D Quanti Kit according to the users’ manual . A suitable volume of 

sample was pipetted into one lane in the Immobiline TM DryStrip Reswelling Tray. A 

7 cm IPG gel strip was slipped into the lane with its gel side facing down and its pointed 

end towards the back of the tray to ensure maximum absorption of the rehydration 

solution. Then the strip was covered with about 4 mL of Dry Strip Cover Fluid to avoid 

any evaporation and crystallization of urea. The strip was then protected from dust and 

contamination by the protective tray cover and left to rehydrate overnight at room 

temperature.

7.2.4.3 Isoelectric focusing

After the rehydration of the IPG strips, the gel strip was rinsed with deionised water and 

transferred to the Ettan IPGphor platform and two electrodes were applied on the holder 

over the anodic and cathodic end of the strip. The gel was placed face up and was 

covered with 1-2 mL Dry Cover fluid to avoid the crystallization of urea and “burning” 

of the strip during the IEF. When the strip holder was properly assembled, it was 

covered with the appropriate lid and IEF was run by using the parameters (Table 7.1) 

programmed in the Ettan IPGphor.
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Table 7.1 IEF conditions for a 7 cm mini gel

Voltage (V) Voltage mode Step duration (h:min) Volt-hours (Vh)

100 Step and Hold 1:00 100

200 Step and Hold 1:00 200

500 Step and Hold 1:00 500

1000 Step and Hold 1:00 1000

5000 Gradient 0:20 830

5000 Step and Hold 2:00 10000

Total 6:20 12630

1.2 A A  Casting of SDS-PAGE gels

A 7 cm resolving gels containing 10% acrylamide were prepared from 3.33 mL of 30% 

bis-acrylamide stock and 4.02 mL of distilled water, 2.5 mL of 1.5M Tris-HCl (pH 8.8) 

and 100 pL 10% (w/v) SDS stock. Just prior to casting, 5 pL of N, N, N 1, 

N’-tetramethylenediamine (TEMED) and 50 pL of 10% ammonium persulphate were 

added to induce polymerization, giving a total volume of 10 mL. The mixture was 

immediately poured between two clean glass plates. Water saturated butanol was 

pipetted immediately onto each gel to form a flat upper surface. The homogenous gels 

were then allowed to polymerize for at least one hour before being ready for the 

electrophoresis.

7.2.4.5 Equilibration and loading of IPG strips on the gels

Each IPG strip was equilibrated in order to fix the pH range on the strip prior to 

placement onto the gel. This process was carried out in a suitable plastic tube (supplied 

by Amersham Biosciences) with the gel side of the strip facing up. The first
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equilibration step involved the addition of DTT (10 mg/mL) to the equilibration buffer 

and introduction of each strip to individual tubes. The strip was left to equilibrate for 

13 minutes. Then it was equilibrated with an iodoacetamide solution (25 mg/mL) for 

another 13 minutes and removed from the plastic tube, its gel side was rinsed with a 

small amount of Milli-Q water.

With the help of forceps the IPG strips were then positioned on the top part of the casted 

separation gel and along the gap of the plates, together with SDS electrophoresis buffer 

which help the strip slipping between the plates. A layer of warm agarose and 

bromophenol blue solution in 1 x SDS buffer was pipetted on top of the strip to ensure 

that it would not lose contact with the gel. The agarose was then allowed to set for 

approximately 5 minutes before the commencement of SDS-PAGE.

1.2.4.6 SDS-PAGE electrophoresis

After the gel was cast and IEF strip was loaded on top of the resolving gel, the gel was 

secured onto the gel electrophoresis apparatus and the electrical supply connected. Prior 

to running the buffer reservoir was filled with SDS buffer containing 0.5 g SDS, 1.5 g 

Tris and 7.2 g glycine made up to 500 mL with distilled water. The apparatus was then 

allowed to run for approximately 15 minutes at 50 volts and 45 minutes at 200 volts 

until the bromophenol blue dye reached the bottom of the gel. The schematic diagram of 

2-D gel electrophoresis is shown in Figure 7.15.
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Figure 7.15 Schematic diagram of 2-D gel electrophoresis

7.2.4.7 Staining of proteins on gels

After the SDS gel electrophoresis, the IEF strip was discarded and the resolving gel was 

then carefully removed from the plates and stained in solution containing 0.12% 

Coomassie Blue G250, 10% ammonium sulphate, 20% methanol, 10% O-phosphoric 

acid. The gel was then destained in deionised water until spots of protein were clearly 

seen.

7.2.5 Protein identification by IMAC chromatography

7.2.5.1 Trypsin digestion

Sequencing grade modified trypsin (Promega, Madison, USA) was used for digestion of 

the freeze dried brain homogenates. The trypsin solution was made by first dissolving 

trypsin (20 pg) in 20 pL of 50 mM acetic acid, then diluting 50 times with 40 mM
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NH4HCO3 with 1 0 % acetonitrile. The trypsin solution was added to the brain 

homogenate to create a trypsin: protein ratio of 1:100 and incubated at 37 °C overnight. 

The reaction was terminated by freeze-drying the samples. The samples were 

resuspended in 0.1% acetic acid before application to further separation and LC/MS 

analysis.

7.2.5.2 Optimisation of IMAC techniques

7.2.5.2.1 IMAC Ziptip

IMAC ZipTips®MC were utilised following manufacturers instructions 154. Each 10 pL 

ZipTip mc was activated with the aspiration and expulsion to waste of 50% aqueous 

acetonitrile containing 0.1% acetic acid (Wash solution 1) three times. The metal 

chelating resins were charged by the aspiration and dispensation of 10 pL metal solution 

(200mM of ferric chloride in 10 mM HC1). The ZipTip®Mc was then washed three times 

with Milli-Q grade water (Wash solution 2) and three times with 1% acetic acid/10% 

ACN (Wash solution 3), with all expulsions going to waste. The ZipTip®Mc was then 

equilibrated by the aspiration of Binding solution: 50 mM 2-[N-morpholino] 

ethanosulfonic acid (MES) buffer containing 10% acetonitrile and adjusted to pH 5.5 

with ammonium hydroxide and dispensing it to waste, then repeating this operation 

4 times.

The binding of phosphorylated proteins was conducted by the aspiration on and 

dispension off the ZipTip of each sample in MES buffer (10 pL) to waste twenty times 

to ensure maximum binding was achieved. The ZipTip®Mc was then washed three times 

with the binding solution followed by Wash solution 1 and Wash solution 2, each time
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the resulting eluent was dispensed to waste.

The elution of bound phosphorylated proteins was achieved by ten times aspiration and 

dispersion in 10 pL of 0.3 M ammonium hydroxide solution. The eluted peptide solution 

was then concentrated and reconstituted in 0.1% formic acid and analysed by 

MALDI-TOF MS and LC/MS.

7.2.5.2.2 IMAC SPE

In this study, an in-house made IMAC SPE cartridge was evaluated for the enrichment 

of phosphorylated proteins and peptides.

F ritted  D is c  

P o r o s  M C  2 0  

F ritted  D is c

L u er T ip  -

Figure 7.16 IMAC SPE cartridge (lmL)

IMAC SPE cartridges were made by packing 200 pL slurry of SelfPack Poros 20 MC 

Metal Chelate Affinity Packing (Applied Biosystems, Foster City, CA, USA) into an 

empty 1 mL Cis SPE cartridge under vacuum (Figure 7.16). The binding and elution 

procedures were optimised from Ficarro et al]5°. The digested peptide samples were
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dissolved in 200 pL 0.1% HAC in 1:1:1 of methanol/ACN/H^O. IMAC SPE cartridges 

were first washed off with 200 pL of 0.1%HAC, followed by 400 pL of lOOmM FeCri 

solution, 200 pL of 0.1 %HAC, then peptide samples were loaded onto the cartridges, 

the unbound peptides washed with 200 pL of NaCl solution, followed by 200 pL of 

0.1%HAC, the phosphorylated peptides eluted by 200 pLNa2HP0 4 . The cartridges are 

used under gravity and the steps of IMAC SPE are illustrated in Figure 7.17.

200 p L
2 00 p L  4 0 0 p L  200|jL 200(jL 400pl_ 200|jL 5 0 m M N a 2H P O 4

0 .1 %  HAc 1 0 0 m M  F eC I3 0 .1 %  HAc P e p tid e  S a m p le  1 0 0 m M  N aC l 0 .1 %  HAc pH 9.0

i i l l  i l l

Poros M C 20

Activating M etal binding W ash in g  S a m p le  application W ash in g  W ash in g  Elution

P h o s p h o p e p t id e s

Figure 7.17 Steps of IMAC SPE

After the eluents from the IMAC SPE cartridge were collected, HAC was added to 

adjust the pH of the eluents before they were applied to Cis SPE cartridges to further 

clean up the sample. The 1 mL Ci8 SPE cartridges (Bond Elute, Varian, Harbor City, CA, 

USA) were activated by 800 pL of 100% acetonitrile, follow by 800 pL 0.1% TFA, the 

acidified peptides eluted from the IMAC SPE cartridges were then loaded onto the Cis
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SPE cartridges. The unbound materials were washed off by 800 pL 0.1% TFA, then the 

desalted peptides eluted by 0.1% TFA in 75% ACN. The elutions were concentrated to 

dryness and analysed by MALDI-TOF and LC/MS.

7.2.5.3 On-line IMAC LC/MS for phosphopeptides enrichment and identification

The on-line IMAC experiments were performed using a LC Packings Ultimate 

Capillary LC system (Dionex, Amsterdam, Netherlands). A FAMOS microautosampler 

(Dionex) equipped with a 20 pL loop was used for injections. The on-line IMAC was 

designed with two pump switch systems. The IMAC trap column was installed in 

between port 6 of injection valve and port 2 of loading pump valve B (Figure 7.18), the 

loading pump flow rate was 5 pL/min. The analytical column was run at a flow rate of 

200 nL/min using an Ultimate pump with a flowsplitter. The IMAC trap column was 

first connected to a waste line (port 3, see dashed line in Valve B). It was initially 

flushed with 20 pL of 50 mM EDTA for 8 minutes, followed by two washes with 20 pL 

of 100 mM FeCb before 20 pL of sample were loaded onto the trap. Next 20 pL of 

100 mM NaCl in 0.1% HAC were loaded in order to wash off any non-phosphorylated 

peptides, after that the loading pump valve B was switched so that port 2 was connected 

to port 1 (solid line of valve B) and port 4 of valve A, meantime the valve A was in 

position 1-2 (dashed line in valve A). 20 pL of elution solution 50 mM Na2HPC>4 

(pH 9.0) were then loaded onto the IMAC trap which eluted phosphorylated peptides 

onto a precolumn of 300 pm i.d. x 5 mm packed with the stationary phase 3 pm 100 A 

PepMap Cig (Dionex) for desalting and preconcentration, via a SWITCHOS pump 

(Dionex).
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Figure 7.18 Schematic diagram of on-line IMAC system

Valve B: Peptides loaded onto IMAC trap, phophopeptides bound on the trap while 

unphosphorylated peptide washed off to waste at pH 3-4 (dotted line), bounded 

phosphopeptides eluted at pH 9.0 (solid line)

Valve A: enriched peptides were loaded onto the Cis precolumn and desalted (solid line), 

the trapped and cleaned peptides was back flushed to analytical column and mass 

spectrometry (dotted line)

The eluted phosphopeptides were trapped on the precolumn for 3 minutes to allow 

sufficient time to desalt the sample. After 3 minutes, valve A was switched and the 

peptides trapped on the Ci8 precolumn back flushed onto the analytical column. The 

Chromeleon software suite (Dionex) was used for instrument control, and also for 

triggering of MS data acquisition. The peptides were resolved on an in-house made 

analytical fused-silica nanocolumn of 15 cm x 75 pm i.d. packed with 3 pm particles,
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100 A pore Ci8 PepMap stationary phase (Dionex). Mobile phase A was 0.1% formic 

acid in 98% water and 2% acetonitrile while mobile phase B was 0.1% formic acid in 

98% acetonitrile. Peptides were eluted from the column with a linear gradient of 0-45% 

B over 110 minutes. Finally, the column was re-equilibrated for 30 minutes with the 

initial mobile phase A between runs. Details of valve switches of on-line IMAC system 

are shown in Table 7.2.

Table 7.2 Details of valve switches of on-line IMAC system

Event Valve B* Valve A* Time (min)

EDTA washing 1-10 1-2 8

Metal binding 1-10 1-2 8

Metal binding 1-10 1-2 12

Sample loading to IMAC trap 1-10 1-2 8

Washing off unbound peptides 1-10 1-2 12

Eluting from IMAC trap to C18 trap 1-2 1-2 15

Backflushing from C l8 trap to MS 1-10 1-10 140

* For valve position 1-10 and 1-2 see Figure 7.17

The eluted peptides were analyzed by an LCQ Deca XP ion trap mass spectrometer 

equipped (Thermo Finnigan, San Jose, CA) with a nanoelectrospray ion source, the 

mass spectrometry conditions are shown in Table 7.3. The mass spectrometer was 

operated for 140 minutes in a data-dependent MS/MS mode which included four scan 

events. The full scan mass spectrum was first obtained and followed by 

collision-induced dissociation of the three highest abundant ions selected from the full 

scan. The mass scan range is 475-2000 Da, an isolation width of 2 Da and normalized 

collision energy of 35% (arbitrary units) was used in the MS/MS analysis.
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Table 7.3 Parameter setting of nanoLC/MS and LC/MS/MS on LCQ ion trap

Sheath gas flow, aux gas flow rate 0

Spray voltage 1.7 kV

Capillary temperature 160 °C

Capillary voltage 10 V

Tube lens offset 10.00 V

Multipole 1 offset -7.25 V

Lens voltage -16.00 V

Multipole 2 offset -10.00 V

Multipole RF Amplifier 400 V

Entrance lens -48 V

7.2.6 Matrix-assisted laser desorption ionisation (MALDI-TOF) MS

The MALDI-TOF MS analysis was conducted on the Voyager-DE STR mass 

spectrometer (Applied Biosciences, Warrington, U.K.) in positive ion detection mode, 

the pulsed nitrogen laser operating at 337 nm and linear mode for protein analysis and 

reflector mode for peptide analysis. The peptide ion produced were extracted with a 

400ns delay and accelerated to 25 kV. The accumulation of signals from 100 shots were 

averaged, the mass spectrum generated then the laser intensity altered accordingly and 

fired at various areas around the crystallised sample.

Before the analysis of homogenate incubates, the instrument was externally calibrated 

with calibration mix 1 (Applied Biosciences, Warrington, U.K.) for peptide analysis and 

calibration mix 3 (Applied Biosciences) for protein analysis. The calibration mixtures 

were prepared according to the protocols suggested by Perseptive Biosystems, where 1 

in 24 dilution of each calibration mixture in the appropriate matrix is required.
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0.5 pL of protein or peptide sample was applied to the MALDI plate, and then 0.5 pL of 

matrix was applied on top of it and allow it to dry at room temperature. The matrix used 

for the analysis of proteins was a saturated solution of 10 mg/mL sinapinic acid in 70/30 

0.3%TFA/ACN. For peptide analysis, a saturated solution of 10 mg/mL 

a-cyano-4-hydroxy-cinnamic acid in 50% 0.1% TFA/ACN was used.

7.2.7 Protein sequence database searching

The SEQUEST database containing the sequence of mouse proteins from the Harvard 

microchemistry website ('http://biowork.spc/intrachem.html) was used for the 

correlation of trypsin digested proteins. Soffware parameters were set to detect a 

differential modification of 80 Da on serine, threonine, and tyrosine. All data sets were

1 'Xfisearched using the following acknowledged constraints : ±2.5 Da mass tolerance for 

peptide precursor mass searching; ±0.5 Da mass tolerance for the fragment ions. The 

output files from the correlation analysis were further studied using the XC scores, to 

produce a list of identified peptides and corresponding proteins as well as the 

comparison of the virtual spectra produced by SEQUEST and the actual MS spectra 

obtained from the nanoflow LC-ESI analysis. The positive identification of proteins 

follows the filter criteria as summarized in Table 7.4 and the assignments of 

phosphopeptide sequences were confirmed by comparing the acquired MS/MS spectra 

to the theoretical fragmentation pattern carefully.
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Table 7.4 Criteria for SEQUEST database searching

Ion XC dCn Sp Different peptides

Charge +1 > 1.8 > 0.1 > 150 > 2

Charge +2 >  2.2 > 0.1 > 150 > 2

Charge +3 > 2.8 > 0.1 > 150 > 2

Where: XC-cross correlation value 
dCn-delta correlation value 
Sp-preliminary score
Different peptides-the number of times the peptide was scanned

7.2.8 Flow diagram of the protocols developed

LC/MS/MS

In-gel
digestion

Whole mouse brain

Trypsin digest

Protease inhibitors

2-D gel electrophoresis

On-line IMAC 
selective enrichment

MALDI-TOF MS and LC/MS/MS

Protein identification

cCMP, cAMP, cGMP 
and Co ntro 1 + ATP

SEQUEST Database

Incubate at 37 C for 1, 5, 15 and 30 min

Centrifuge and dialyse overnight
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7.3 Results and discussions

7.3.1 Protein quantitation

The Bradford method was applied to obtain an estimation of the amount of total protein 

present in the crude brain homogenate. The calibration curve produced was used to 

determine the amount of total protein present in the brain extract. The linear regression 

equations were derived from the linear trend line and were used to calculate the amount 

of protein present in the various protein preparations from the incubates after 

centrifugation and dialysis. The average protein concentration of the brain homogenate 

quantitated by the Bradford method was 4.2 mg/mL.

7.3.2 Protein separation by 2-D gel electrophoresis

2-D gel electrophoresis is the most widely used method in protein separation and was 

initially evaluated in this study. Figure 7.19 shows the 2-D PAGE images of the blank 

and cCMP incubations, the reproducibility was satisfactory, but the gel spots have 

vertical streaks. The reason of this is that the proteins have not fully dissolved and 

entered the gel properly, a common problem for gel analysis in this study. The protein 

homogenate was centrifuged at the speed of 16,000g to remove cell debris and insoluble 

material, so dialysis was then required to remove the lipid and salt and the membrane 

proteins were still in the supernatant. A disadvantage of 2-D gel electrophoresis is that it 

is not suitable for membrane proteins and brain proteins do have a high proportion of 

membrane proteins, furthermore many signal transduction-related proteins are 

membrane proteins155. If the brain homogenates were further ultracentrifuged at 

50,000 g to obtain only cytosol of the brain proteins, improved 2-D PAGE images with
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reduced streaking and tailing would be expected, but at the same time it may lose all the 

membrane proteins potentially important in our study. As there was no obvious 

difference between the two gels, no spot cutting and protein identification was carried 

out in this experiment.

pH 3 pH 10 Molecular
Marker

pH 3 pH 10

Figure 7.19 2D-PAGE comparison of Blank (Left) and cCMP 

charged incubates (Right)

7.3.3 Evaluation of different IMAC strategies

7.3.3.1 Evaluation of IMAC ZipTip

/3-casein, molecular mass of 26.6 kDa, is a naturally occurring phosphorylated protein. 

According to literature156, there are two /3-casein trypsin digested phosphopeptides, one 

mono phosphorylated peptide, FQpSEEQQQTEDELQDK, and one tetraphosphorylated 

peptide, RELEELNVPGEIVE/?SL/7S/?S/>SEESITR. In this study, the trypsin digest of 

/3-casein was used as a standard peptide mixture to evaluate the IMAC phosphopeptide
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enrichment by using the protonated phosphopeptide molecule of m/z 2061.8 

corresponding to the amino acid sequence FQpSEEQQQTEDELQDK. The method 

development started with the existing method developed by Bond83 in which IMAC 

ZipTips were used. MALDI-TOF spectra of standard peptides before and after passage 

through IMAC ZipTip are shown in Figure 7.20. In this figure, after the IMAC ZipTip, 

the peaks with m/z 1382.9, 2185.7, 2222.7, 2910.7 and 3111.7 are absent while the peak 

with m/z 2061.8 corresponding to the monophosphopeptide remains very strong, 

indicating that the ZipTip enriches the phosphopeptide by removing some 

unphosphorylated peptides. However, the tetraphosphorylated peptide can not be 

observed after the IMAC ZipTip and there is a peak at m/z 1967.3, corresponding to an 

unphosphorylated peptide, observed as being bound to the EMAC ZipTip.
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Figure 7.20 MALDI-TOF spectrum of 0-casein trypsin digested peptide mixture

before and after IMAC Ziptip
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However, when the mouse brain homogenate trypsin-digested samples were applied to 

IMAC ZipTips, poor quality spectra were observed, as shown in Figure 7.21, in which 

hardly any peptides can be observed. Since protease inhibitor were added in the brain 

homogenate, larger peptides should be present in the digested sample. It indicates that 

IMAC ZipTips are not suitable for the study of phosphorylated peptides of complex 

protein mixtures such as brain homogenates. This finding is not surprising since the 

ZipTip is a 10 pL pipette tip with a micro-volume bed of chromatography media fixed at 

its end. It is intended for purifying and concentrating femtomoles to picomoles of 

protein or peptide samples before analysis and is not designed and consequently may 

not be suitable for complex protein digest mixtures such as these. Alternative methods to 

enrich phosphorylated peptides were therefore investigated.
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Figure 7.21 MALDI-TOF spectrum of elution of IMAC ZipTip of peptides digested

from proteins in brain tissue homogenate
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1.3.3.2 Evaluation of IMAC SPE

Standard peptides were tested on the IMAC SPE cartridge. Figure 7.22 shows the 

comparison of MALDI-TOF spectra of elution of IMAC ZipTip and SPE of trypsin 

digested peptides of standard protein /3-casein; IMAC SPE and ZipTip show very 

similar spectra, both techniques enrich the phosphopeptides by removing some 

unphosphorylated peptides to some extent but do not perform perfectly. The 

tetraphosphorylated peptide was absent in both IMAC systems, and the peak with m/z

1967.3 corresponding to unphosphorylated peptide was also present in both IMAC; thus 

this is deduced to be an intrinsic shortcoming of IMAC itself, i.e., the 

tetraphosphopeptide might bind tightly on the metal chelating resin and can not be 

eluted while non-phosphorylated peptides can also bind to the IMAC column through 

carboxyl groups. However, it is still a method of choice to selectively enrich the 

phosphorylated peptides.
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Figure 7.22 Comparison of IMAC ZipTip and SPE of trypsin digested peptides of

standard protein /3-casein
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Since the bed volume of IMAC SPE is several times more than IMAC ZipTip, better 

loading capacity of IMAC SPE was to be expected and was proved by MALDI 

spectrum of the eluted peptides of brain homogenate, as shown in Figure 7.23, the 

MALDI-TOF spectrum of IMAC SPE of peptides digested from proteins in brain tissue 

homogenate exhibits many more peptides comparing to IMAC ZipTip enrichment 

(Figure 7.21).
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Figure 7.23 MALDI-TOF spectrum of IMAC SPE of peptides digested from proteins 

in brain tissue homogenate

7.3.3.3 Evaluation of online IMAC trap column for phosphopeptides enrichment

An online IMAC system was derived from IMAC SPE cartridge which had proved to be 

successful in the selective enrichment of phosphopeptides. The setup was described in
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section 1.2.53. 10 pL of /5-casein trypsin-digested peptides were loaded by autosampler 

onto the IMAC trap column, the eluents of sample loading, washing and Na2HP0 4  

elution were collected and analysed by MALDI-TOF. Figure 7.24 shows mixtures of 

peptides before loading onto the IMAC trap; the monophosphorylated peptide with m/z 

2061 is relatively weak comparing to other unphosphorylated peptides. In Figure 7.25, 

the spectrum of the eluent of the sample loading step, no phosphorylated peptide was 

observed; similarly in Figure 7.26, the spectrum of the eluent of washing step, 

phosphorylated peptide was also not observed. Figure 7.27 is the spectrum of the eluent 

of pH 9.0 Na2HP0 4  buffer; here the monophosphorylated peptide was highly enriched, 

tetraphosphorylated peptide was absent but there were also unphosphorylated peptides 

observed. These figures demonstrate that the on-line IMAC system set up in this study 

can enrich phosphorylated peptides efficiently as previously seen in IMAC ZipTip and 

SPE. The detection limit for known phosphopeptide from trypsin digested beta-casein 

was approximately 1 pmol. The spectra of brain homogenate trypsin digests elution 

from the IMAC trap column show a similar view of that of IMAC SPE (Figure7.23). 

Therefore the brain tissue homogenates incubated with cyclic nucleotides were first 

digested with trypsin and then applied to this on-line IMAC system before entering 

nano-LC/MS for further separation and identification.
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Figure 7.27 MALDI-TOF spectrum of eluent from IMAC trap column of /5-casein

trypsin digest as the bounded peptides were eluted with Na2HP0 4  solution from the

IMAC trap column
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7.3.4 Comparison of peptide profile after IMAC enrichment by MALDI-TOF

Phosphorylation is a dynamic process, and this can be observed when comparing 

MALDI-TOF spectra of brain homogenate derived from different cyclic nucleotide 

incubation time points. Figures 7.28-7.31 show the MALDI-TOF spectra of the eluents 

from EMAC trap column of cCMP incubation at four different time points. The peptide 

with m/z of 1280 is most abundant in 5 minute incubation, while peptide with m/z 3304 

is absent in 1 and 5 minutes, reaching an abundance peak at 15 minute, and is reduced in 

the 30 minute sample. More phosphorylated peptides can be observed with increasing 

incubation time.
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Figure 7.28 MALDI-TOF spectrum of eluent of 1 min cCMP incubation peptides

from IMAC trap column
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after IMAC trap column
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Figure 7.31 MALDI-TOF spectrum of eluent of 30 min cCMP incubation peptide

after IMAC trap column

Figure 7.32 shows a typical comparison of brain homogenates, incubated with different 

cyclic nucleotides, by MALDI-TOF. The four incubations show similar spectra, but this 

does not mean phosphoproteome is closely similar for the four incubates, since the 

MALDI source ionises all the peptides at the same time, thus ion suppression cannot be 

avoided. However although in MALDI spectra only the relatively abundant peptides can 

be observed, there are still some differences which can be observed; for example, the 

peptide with m/z 1924 is observed at a greater relative abundance than m/z 1530 in 

cCMP than the other incubations. To identify the phosphopeptides LC/MS/MS was used, 

as the nano LC system allows the separation of the peptides before mass spectrometric 

analysis and the sensitivity is greatly increased.
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Figure 7.32 Comparison of protein phosphorylation of different cyclic nucleotide 

incubation (30min) by MALDI-TOF

7.3.5 Identification by online IMAC enrichment and LC/MS/MS of proteins 

phosphorylated in response to cCMP

Phosphorylated proteins were identified by inputting the MS and MS/MS data and 

searching the mouse database using SEQUEST software as described in Section 7.2.7. 

The software parameters were set to detect a differential modification of 80 Da on 

serine, threonine, and tyrosine. The filters (XC, dCn, Sp and number of peptides) shown
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in Table 7.4 were applied to the database search and the assignments of phosphopeptide 

sequences were confirmed by comparing the acquired MS/MS spectra to the theoretical 

fragmentation pattern. On average, 40-50 phosphorylated proteins were identified in 

each time point of the cyclic nucleotide incubations by using the XC, dCn and Sp value 

filter criteria shown in Table 7.4, with some phosphorylated proteins present in more 

than one time incubation. Altogether about 120 phosphorylated proteins for each 

incubation were identified (data shown in Table A1-A16). Since the aim of this study is 

to identify phosphorylated proteins unique or increased in expression in response to 

cCMP incubation in the hope to elucidate the function of cCMP in signal transduction, 

the predicted and hypothetical proteins with unknown function are not considered and 

only phosphorylated proteins which exists in the cCMP incubation while apparently 

absent or of lower abundance from those with other cyclic nucleotides are studied.

The proteins identified by SEQUEST software were compared and the proteins unique 

to cCMP incubates listed. Phosphorylated proteins of the same incubation time range 

were compared initially. There are more phosphorylated proteins observed in the 

30 mins incubation with some of these proteins being identified in cAMP, cGMP or 

blank incubation of incubation times other than 30 mins, these proteins were therefore 

not considered either. Since the samples are quite complex, there could be variations 

between analyses due to the information dependent acquisition of the MS/MS data 

which can vary from analysis to analysis, thence leading to variance in the specific 

peptides identified in any given analysis at any given time point. Therefore the 

identified phosphorylated proteins unique to cCMP were re-examined by studying the 

LC/MS data in order to ensure that the peptide from which the protein was identified 

was either unique in the cCMP incubation or the intensity of this peptide is significantly
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higher in cCMP incubation compared to the other incubations. One example is shown 

below. The unique phosphoprotein, serologically defined colon cancer antigen 13, was 

identified in the 30 min cCMP incubation, the phosphopeptide matching the database is 

RHKGPGRpTGGLVISRP with the doubly charged precursor ion of m/z 758.24 at 

retention time of 89.2 min, the XIC of full scan base peak chromatogram with the m/z 

range of 758.24 of the four incubations is shown in Figure 7.33. There is strong peak at 

retention time 89.27 min, but for other incubations there is just background noise. 

Therefore, this peptide is characterized as unique to cCMP with high confidence, and 

serologically defined colon cancer antigen 13 was then designated as a putative 

cCMP-responsive protein kinase substrate.

89.27
100—i

cCMP50-

8 ioo-i

<  50- Balnk

100n

cAMP
50-

10u-i

cGMP50-

105 11075 80 85 90 95 100
Time (rrin)

Figure 7.33 XIC of full scan base peak chromatogram at m/z range of 758.24 of the 

four cyclic nucleotide incubations using 75 pm i.d. Ci8 column with 0-45% B for 110 

minutes (98%ACN with 0.1% formic acid) on LCQ Deca ion trap mass spectrometer
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Another example shows the exclusion of a false positive identification. Cystathionase 

was identified only in the 30 min cCMP incubation, by the SEQUEST database 

searching. The fragmentation of doubly charged precursor ion is m/z 962.6 at retention 

time 62.6 minute matches the theoretical fragmentation phosphopeptide in the database 

with the sequence of KAGDEIICMDEVYGGTpNRY. The XIC of full scan base peak 

chromatogram with the m/z range of 962.6 of the four incubations is shown in 

Figure 7.34, all four cyclic nucleotide incubation have obvious peaks with similar 

intensity (highest in cAMP incubation) at that retention time. Therefore, this protein was 

proved as false identification although the peptides in cAMP, cGMP and Blank were not 

picked up by the mass spectrometer or the database.

62.60
100"i

50-

50-

50-

40 70 80 9010 20 30 50 60

NL: 5.13E8 

cCMP

NL: 4.50 E8 

B lank

NL: 7.27 E8 

cAMP

NL: 3.66 E8

cGMP

Time (min)

Figure 7.34 XIC o f full scan base peak chromatogram at m/z range o f 758.24 o f the

four cyclic nucleotide incubations using 75pm i.d. Cis column with 0-45% B for 110

minutes (98%ACN with 0.1% formic acid) on LCQ Deca ion trap mass spectrometer
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By using the above screening methods, the proteins that are phosphorylated only 

because of the elevated level of cCMP can be identified. In this study, the proteins of 

interest are phosphorylated proteins. Peptides carrying a phosphate group can be 

identified by the neutral loss of H3PO4 from the precursor ions in the positive mode. So 

the screened proteins were examined again to determine whether the neutral loss of 

H3PO4 occurred, the peptides without neutral loss of H3PO4 were considered false 

identification. An example of one that fulfils this criteria is the peptide 

RHKGPGR/?TGGLVISRP (serologically defined colon cancer antigen 13) described 

previously. Figure 7.35 shows the full scan base peak chromatogram of the 

IMAC-LC/MS/MS run of 30 min cCMP incubated brain homogenate trypsin-digested 

peptides. It displays a lot more peaks than the corresponding MALDI spectrum, and 

each peak is observed to consist of several peptides (see Figure 7.36).
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1 03 .85 1 3 3 .1 6

9 1 .3 4
7 0  -
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Figure 7.35 Full scan base peak chromatogram of trypsin digested peptides of brain 
tissue homogenate cCMP 30 min incubation with online IMAC enrichment and nano 
Ci8 column separation coupled to a LCQ Deca ion trap mass spectrometer
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Figure 7.36 Full scan MS at retention time 89.27 min

Figure 7.36 shows full scan spectrum at retention time 89.27 min, it is still a mixture of 

peptides. MS/MS was then performed with the three highest abundant peptides with m/z 

of 758.24, 1150.66 and 1278.87. As shown in Figure 7.37, the peptide with m/z of 

758.27 in Figure 7.36 was recognized as phosphopeptide with a sequence of 

RHKGPGR/?TGGLVISRP. For the doubly charged peptide with a sequence 

RHKGPGR^TGGLVISRP, the major fragmentation should be the neutral loss of one 

phosphoric acid, and in this spectrum, the most abundant peak should be the m/z of 

precursor ion (758.27) minus 49, which is m/z 70921 as shown in the spectrum (Figure 

7.37).
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Figure 7.37 MS/MS spectrum of doubly charged peptide with sequence 

RHKGPGRpTGGLVISRP, precursor ion m/z 758.24, * neutral loss of 98 Da from 

precursor ions (MH22+-49)

In this spectrum, 15 out of 26 ions of b and y ions of this peptide can be observed, the 

list of these ions is shown in Table 7.5. The phosphorylation site can be assigned to 

tyrosine as the mass difference between by and b6 ions is 101 amu + 80. The 

SEQUEST score is shown in Table 7.6, comparing with the criteria setting in Table 7.4 

indicates a clear probability in identification.
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Table 7.5 The m/z of all the b- and y- fragments generated from the MS/MS analysis 

of the peptide ion with m/z of 758.24, the m/z match the theoretical values of the 

identified sequence was shown in bold

AA B Y
1 H 138 .1 5 - 14
2 K 2 6 6 .3 2 13 7 8 .4 9 13
3 G 3 2 3 . 3 7 1250.31 12
4 P 4 2 0 .4 9 1193 .26 11
5 G 477.54 109 6 .1 5 10
6 R 633.73 1039.09 9
7 T@ 814.80 882.91 8
8 G 8 7 1 .8 5 701.84 7
9 G 928.90 644.79 6
10 L 1042.06 587.73 5
11 V 1141.19 474.58 4
12 I 1254.35 375.44 3
13 S 13 4 1 .4 2 262.29 2
14 R - 175.21 1

Table 7.6 SEQUEST scores for m/z 758.24

MH+ Charge XC dCn Sp Ions

1515.63 +2 2.41 0.13 210.9 15/26

The phosphorylated proteins that are unique in cCMP incubation or higher in cCMP 

incubation at the different incubation times are listed in Table 7.7. The full scan 

spectrum comparison and MS/MS spectrum, b and y ions of the identified 

phosphopeptides of all these proteins in Table 7.7 except serologically defined colon 

cancer antigen 13 (which is discussed here as an example) are shown in Appendix 3. It 

can be observed that the number of phosphorylated proteins due to the inclusion of 

CMP increases with the incubation time. This could be explained due to the fact the 

blank sample is not actually blank, there are naturally occurring cCMP, cAMP and 

cGMP levels in the blank incubation, so at shorter incubation time, less difference 

among the samples may be expected as these levels are available. As time increases, the

334



Ions-num
ber of experim

ental ions m
atching 

the 
theoretical ions 

for the 
peptide

i n  c p
v  n X
i-t
CD

PI
a
CD

g. ^
P  O

5 I(/> 2  ̂o p 
o  p - .  o 

p

< p
3T
CD

N

ni p  ̂ol-toco(73
3CTQ
CD
O
•“ 0

CD

Oo 
3
CD
P  “rt)i—‘ • J J i
o3  H- •

p °  cT
CD

£  S
ffi 3+ i

i |tp rD 
CD O

P -  pp >-»

S’ *O  CD

3  oq o cr
M-j r-*
T3 O  
CD U  ►O p 

‘ •
C P
CD
I—* •P*
CD
P

B
CDQ*

CD o

& *
I  S-3 »S 2  
3 c?
S 2 t P  CTQ

I
CD

P
CD
oop*o-I
CD

*P

CD

B'
N3
i—»
O
p*0
1  
o

00

B'
3o
CD

CP

►1o

W OO Ul
U ) 00 o
U> O  P
"~J CPs —I
DO DO ON

h<  m

X /O &?0 ?N O

a s
Us ON 
U> 00
a s  b oNTl i—

On no 
to

o
p

M M W
tv) K) W

ip
00

Us DO 
U> U>

p o p  
DO i—* >—1
P  Os NO

U) u> w
O  ON NO
Os DO O
On -~J ►—1

DO DO 
- P  - P

r

i* 1TO ^
p* o
c p
o

x
CD
c p

B'
CD
P

CTQ
CDi
cT
p
X*
CD

ON
o
'- J
OO
N7l

B; » 
S  c p  o

3.p
CTQ

o
00

N<
CP
CD
P5
P
CD
CP

op
oppo
CD
i-l

r-t-oo'
CD
P

- P  H-
Os DOK- C7l
H- O
DO Us N7l

!» J*
/O Q

NO
o
NO

OO

OO
'- Jip
o

Us
ON

M M W

DO
NO

DO DO
ip ip

M  U l M  
OO H  w

P  Ul toi-* Oi i—*s o p
o  b o  no

Ui P u
Co DO DO
O  P  o s

p * CP
CD -I

p '
T3
CD
P

o<-►
2

ta
DO

CP
CD
P

3'
x *
p'

<sw
00

k!orror/OXo

CD 
<  
O

2 . 5*

'C
oo
pt/1
CD

5
CD
CP

a
p
CD
a;
cT

8 *
&

S
ICD
CP

P
O
P*
CPo

E

DO
NO

N/l

§■

s

er
p
p

<
p
r-K

J?’CTQ
CP
CD
P
£•
CPo

NO ON 
LO -O
—1 O © Us 
-P ON

DO DO

DO
ON

O  O
►—> i—*
O  -P

DO ON 
ON Us 
NO h-

U> DO 
- P  P

Os
OJN71

DO
DO

OLo
DO

-P
NOUJ

DO
-p

po
a*
p

o'p

DO
NON71
P .

£CO
Oroaar<o>ro
€
00

00
NO
ON
o
O n

DO
U )
ON

P
O n
O n

O

DOOCop

CP
CD

Xo
CPop

hP

335

Table 
7.7 

Phosphorylated 
proteins unique 

in 
elevated 

cCM
P 

incubations 
from 

SEQ
U

EST



cCMP naturally occurring in the brain is used up and the added cyclic nucleotide to 

saturation levels is responsible for the detected phosphorylation effects. This could 

effectively mean that the later timepoints represent the more cyclic nucleotide specific 

protein phosphorylations whilst in earlier timepoints these specific modifications are 

competing more with low level modifications caused by “naturally occurring” cyclic 

nucleotides.

7.3.6 Function as obtained from literature of putative cCMP-responsive protein 

kinase substrates

The function of the proteins apparently specifically phosphorylated in response to 

elevated level of cCMP can be grouped into several categories

Cell Proliferation: 

• Cell Cycle regulation
• lamin B2
• myeloid/lymphoid or mixed lineage-leukaemia translocation to 1 homo log 

(MLL)
• centromere/kinetochore protein zwlO homolog
• deleted in azoospermia-like

• Cell survival/anti-apoptosis and cell proliferation
• MAP-kinase activating death domain isoform 8

• Pro-apoptotic: protein kinase, interferon-inducible double stranded RNA 
dependent

• Low density lipoprotein receptor-related protein 1 (LRP1)

• Tumour suppressors and oncogenes
• protein kinase, interferon-inducible double stranded RNA dependent
• myeloid/lymphoid or mixed lineage-leukaemia translocation to 1 homolog 

(MLL) (leukaemia)
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• Cytoskeleton and cell organisation
• formin homology 2  domain containing 1

• Low density lipoprotein receptor-related protein 1 (LRP1)

Transcription regulation:

• MAP-kinase activating death domain isoform 8

• protein kinase, interferon-inducible double stranded RNA dependent
• lamin B2 (possible via chromatin regulation)
• serologically defined colon cancer antigen 13

Cell patterning and development: 

• Homeobox and homeodomain-containing proteins and Regulators:
• serologically defined colon cancer antigen 13
• myeloid/lymphoid or mixed lineage-leukaemia translocation to 1 homolog 

(MLL)

The above suggests that cCMP is involved in the phosphorylation of proteins that have 

various functions and many of these proteins are involved in cell proliferation, 

consistent with observations discussed earlier i.e. elevated levels of cCMP and cytidylyl 

cyclase activities in rapidly differentiating cells (Section 7.1.1.5.4).

7.3.6.1 Lamin B2 (Lmnb2)

Lamin B2 is a basic structural component of nuclear lamina, which are thought to

• • * 1 5 7provide a framework for the nuclear envelope and may also interact with chromatin . 

The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by 

the disintegration and formation of the nuclear envelope in prophase and telophase,

1 SRrespectively . Increased phosphorylation of the lamins occurs before envelope 

disintegration and probably plays a role in regulating lamin associations.
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In the cell cycle , p rogression  through m itosis  is thought to be governed  by  m atura tion  

prom oting  factor (M PF), a so luble m olecule  in the cy top lasm  consis t ing  o f  tw o proteins 

C dk (cyc lin -dependen t k inase) and cyclin. W h en  activated, M P F  initiates a pa th w ay  

leading to ac tiva tion  o f  a lam in-specific  k inase, w h ich  will in turn phosphory la te  lam in 

pro te ins  o f  the nuclea r lamina, and p rom ote  the nuclear enve lope  b reakdow n  c y c le 159. 

M ore phosphory la ted  lamin w as observed in cC M P  incubation as show n in A ppendix  3. 

The p roposed  cell cyc le  including  lam in B2 with cC M P  incursion is illustrated as Figure 

7.38, w ith cC M P  ac tiva ting  the serine / th reonine k inase  7 (C D K 7 ) w hich  then activates 

MTF, the activated M P F  then phosphory la ting  lamin B2 w hich  p rom otes  the nuclear 

m em b ran e  b reak d o w n  cycle.

L a m i n  B 2  D egraded
cyclin

C yclin-degradation  
V  enzym e

C d k 7
G2 ch eckpoin tG2

c C M P
CELL

CYCLE
G1

^cl'n concentration10

Figure 7.38 P roposed  cell cycle with e levated level o f  cC M P
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7.3.6.2 Myeloid/lymphoid or mixed lineage-leukaemia translocation to 1 homolog 

(MLL)

This is an oncogene protein involved in rearrangement in leukaemia160. The normal 

MLL gene plays a key role in developmental regulation of gene expression (including 

HOX genes). It regulates cell cycle through cyclin-dependent kinase inhibitors p27 and 

p l 8 161.

7.3.6.3 Centromere/kinetochore protein zwlO homolog (zwlO)

This protein regulates the cell cycle through chromosome segregation during cell 

division. During the cell cycle, the zwlO protein moves from the 

centromere/kinetochore at prometaphase to kinetochore microtubules at metaphase, and 

then back to the centromere/kinetochore at anaphase which suggests that zwlO may act

at the kinetochore as part of a tension-sensing checkpoint that renders anaphase onset

162dependent upon bipolar tension exerted across all centromeres .

7.3.6.4 Deleted in azoospermia-like (DAZL)

This protein is germ-cell-specific RNA-binding protein, essential for gametogenesis. It 

is able to stimulate translation and function at the level of translation initiation and 

thought to activate translationally silent mRNAs during germ cell development through

1 fSKthe direct recruitment of PABPs (poly(A)-binding proteins) . Also this protein is 

involved in progression into meiosis164.
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7.3.6.5 MAP-kinase activating death domain isoform 8

This protein is pro-apoptotic, via activation of MAPK (death domain-containing adaptor 

protein that interacts with the death domain of TNF-alpha receptor 1 to activate 

mitogen-activated protein kinase (MAPK) and propagate the apoptotic signal), but this 

isoform is pro-survival and lacks exon 16, which has pro-apoptotic domain165.

7.3.6.6 Protein kinase, interferon-inducible double stranded RNA dependent 

(PKR)

Activated PKR is a tumour-suppressor and can induce apoptosis and inhibit translation. 

It is a regulator of diverse cellular response to stress, by working through TNF-a 

pathway, also it activates transcription166.

13.6.1 Low density lipoprotein receptor-related protein 1 (LRP1)

This protein has a role in determining blood vessel structure and in angiogenesis, cell 

migration, proliferation and vascular permeability and is known to play roles in areas as 

diverse as lipoprotein metabolism, degradation of proteases, activation of lysosomal 

enzymes and cellular entry of bacterial toxins and viruses and is shown to interact with 

scaffolding and signalling proteins via its intracellular domain in a 

phosphorylation-dependent manner and to function as a co-receptor partnering with 

other cell surface or integral membrane proteins .
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7.3 Conclusion

In this study, an online IMAC-nano LC/MS platform for phosphoprotein profiling was 

set up and phosphorylated proteins in mice brain homogenate incubated with cCMP 

were characterised. Phosphopeptide enrichment by immobilized metal affinity 

chromatography (IMAC), followed by nano liquid chromatography separation and mass 

spectrometry and protein database searching make it possible to identify abundant 

phosphorylated proteins on a proteome-wide basis. IMAC coupled to LC-MS/MS has 

proven to be a powerful method to identify the phosphorylated proteins present in 

complex mixtures containing non-phosphorylated proteins. On-line IMAC shows better 

loading capacity than IMAC ZipTip, other advantages of on-line IMAC system include 

(a) the samples can be processed automatically instead of the time-consuming ZipTip 

process, and (b) the avoidance of manual ZipTip process provides more reproducible 

result The further separation of phosphorylated peptides by nano-HPLC enables the 

complex mixture of phosphorylated peptides to be simplified prior to mass 

spectrometric analysis. The identification of the proteins via database searching 

(SEQUEST) was an integral part of this study and the identification of these 

phosphorylated proteins should provide new avenues for investigating the mechanism of 

cCMP signalling pathways and its precise cellular function.

It has been reported that cCMP has varied biological effects for example, the stimulation 

of leukaemia L-1210 cells and DNA synthesis, the inhibition of RNA synthesis as 

introduced in Section 7.1.1.5.4. In this study, several proteins were identified as unique 

(unique is described for this work as a peptide whose presence in the cCMP incubation 

is either unique only to cCMP or significantly stronger in cCMP compared to other
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incubations) to elevated level of cCMP, and this protein phosphorylation can be linked 

to the biological function of cCMP. For example, strong evidence has been obtained for 

a causal link between phosphorylation of lamins by protein kinase C and disassembly of 

the nuclear lamina during mitosis168 and it is reported that lamin B2 is 

hyperphosphorylated in leukemic cells than normal cells169. The function of each protein 

is grouped in Section 7.3.6. The data here support previous research implicating 

elevated level of cCMP a role in cell hyperproliferation in brain and other mammalian 

tissues. Also protein related to Leukaemia is found to be phosphorylated 

(myeloid/lymphoid or mixed lineage-leukaemia translocation to 1 homolog), this 

supports the view that cCMP is involved in the stimulation of leukaemia L -  1210 cells58. 

Proteins identified which involve in transcription regulation can be linked to the 

function as DNA and RNA synthesis.

Comparing four incubation timepoints, 30 min incubation has more specific 

phosphorylated proteins in response to cCMP, which indicates the phosphorylation was 

caused by the elevated level of cCMP rather than naturally occurring cCMP. For further 

research, the incubation time could be longer to investigate the long term effect of 

cCMP in cellular function.

It should be noted that there are also unique phosphorylated proteins identified in 

elevated level of cAMP and cGMP (as shown in Appendix 2. Table Al-16), but since the 

aim of this study is to identify phosphorylated proteins elicited by cCMP, no effort was 

made to investigate phosphoproteome of elevated level of cAMP and cGMP. 

Comparisons of LC/MS of the peptides identified shows the peptides are unique to 

cCMP incubation and are absent or lower in other incubations, which are evidences that
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the phosphorylation was caused by elevated level of cCMP.

There are possibilities of effect on phosphatases by cCMP. Contrary to protein kinases, 

which phosphorylate the substrate, phosphatases reverse the phosphorylation, and this is 

a dynamic balance process. Further experiments could include phosphatase assays, for 

example with heavy isotope labelled phosphorylated proteins, to determine the activity 

of these enzymes and how significant their role is in dephosphorylating the proteins 

during the purification procedures. If the activity of these enzymes is determined to be 

significant, then the inclusion of phosphatase inhibitors such as calyculin A during the 

extraction procedure should be considered. However, if the activity of the phosphatases 

is low, it could be conceived that the protease inhibitors added during the extraction 

procedure could also be acting as inhibitors of esterases, thus inhibiting the phosphatase.

Although IMAC was utilised in this study in the purification of phosphorylated proteins
O '!

from the sample mixture, it is not an entirely selective technique. A previous study 

shows IMAC columns were also retaining proteins with GTP or GDP bound to them and 

therefore the response to cCMP could be GTP or GDP binding instead of a 

cCMP-responsive protein kinase effect, or the effect could be the phosphorylation of the 

GTP bond proteins.

There is also the possibility that cCMP inhibits the breakdown or even stimulates the 

synthesis of the identified proteins, and that their phosphorylation is via another non 

cCMP-responsive mechanism, or indeed that cCMP facilitates the release of these 

proteins from the membrane, or that the phosphorylation of proteins might be the 

indirect result of an accelerated cell cycle, the acceleration being the direct response to
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cCMP. Many indirect effects are plausible, for example, the phosphorylation of 

MAP-kinase activating death domain isoform 8  might be explained as the result of 

cCMP blocking effects of cAMP as a competitive inhibitor, e.g. inhibiting PDE, weak 

agonist of PKA, PKG or regulative feedback to their cyclases.

In this study, by utilizing IMAC affinity chromatography, only the phosphorylated 

proteins are characterized. It cannot provide sufficient information to define the 

processes whereby the phosphorylation of target proteins is elevated in response to 

cCMP. The phosphorylation and dephosphorylation of the indicated proteins was 

searched in literature. However, for many of the proteins identified, there is no literature 

indicating whether phosphorylation activates the protein or inactivates it (except lamin 

B2, which is described in Section 7.3.6.1). To find out this, one possible choice is to 

extract the active protein using a phospho-specific antibody and to check 

phosphorylation state.

Further study should involve the comparison of whole protein identification (without 

IMAC enrichment) between incubations with different cyclic nucleotides. For such a 

complex brain homogenate, the sample separation remains a key factor of successful 

identification and comparison among different incubations. Future experiments could 

use simpler tissue or simpler organism and compare with the brain tissue. As a trial 

experiment, gel electrophoresis separation of whole brain homogenate proteins was 

evaluated in this study and some protocols and results are shown in the appendix which 

might be a good starting point for further research.

In order to determine whether the phosphorylations of proteins observed here are the
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result of direct cCMP-responsive protein kinase activity or the end product of an 

indirect mechanism, definitive evidence could only be produced by using the purified 

cCMP-responsive protein kinase in incubation with the purified putative substrate 

proteins identified here.

In conclusion, in this study, the proteins in Table 7.7 were characterized as putative 

cCMP-responsive protein kinase substrates, because the phosphorylation could be also 

possibly due to one such response which leads to initiation or acceleration of chain 

reactions/cycles, which contain phosphorylation steps. Of the identified proteins, as can 

be observed from Figure 7.33 and Appendix 3, only two of the 11 proteins are shown to 

be unique to cCMP incubation while for the other 9 proteins, the corresponding peptide 

is higher in concentration due to elevated cCMP, and this might be because of the 

naturally occurring cCMP also present in all the other incubations. The Rab 23 reported 

by Bond as putative cCMP-responsive protein kinase substrate was not found in this 

study, this could because different brain extracts (different mice, protease inhibitors 

when dialysis) and different IMAC processes were used (online IMAC), and it could be 

the phosphorylated protein is of very low level in the whole brain tissue extract.
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Chapter 8 Conclusion



Summary

A HPLC-ESI/MS method was developed for simultaneous quantitation of 10 major 

active components in Ginkgo biloba nutritional supplements, by a single run, in this 

study. Mass spectrometry has the advantage in terms of sensitivity and selectivity, there 

is no tedious sample clean up procedures to follow. The sample preparation and assay 

procedure involved is simple, rapid and has demonstrated good accuracy and 

reproducibility. There is remarkable variation in the contents of the flavonoids and 

terpene lactones although all the Ginkgo biloba nutritional supplements satisfy the 

traditional quality control standards. Fortification by use of low cost components rutin 

and quercetin was observed in two out of five commercially available Ginkgo biloba 

products analyzed in this study. These results indicate that suitable quality control 

methods need to be implemented to ensure the quality of Ginkgo biloba nutritional 

supplements and this method may serve as a valuable tool for the quality evaluation of 

Ginkgo biloba dietary supplement products.

In this study, LC/MS was carried out to produce fingerprint profiles of Ginkgo biloba 

extracts, and the knowledge of the fragmentation pathways of active components was 

applied to determine the active components in Ginkgo biloba found in the fingerprint. 

Fingerprinting can generate an overview of all the components in the sample, under 

investigation, and is a complimentary quality control method to exact quantitation using
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reference standards. Mass and fragmentation information of the resolved components 

can be simultaneously obtained by LC/MS employing data-depcndent scan mode. 

Capillary column displays better sensitivity than normal-bore column in the 

identification of unknown active components in commercial samples of Ginkgo biloba.

In this thesis, an on-line purification, column switching HPLC/MS method was 

developed for the analysis of urinary excreted flavonoids and terpene lactones derived 

from Ginkgo extract in a single analysis. The reverse-phase trap column was shown to 

allow the quick and efficient clean up of the injected urine sample which required 

minimal previous sample preparation allowing higher throughput and greater 

automation to be achieved. Comparison of this method to off-line purification 

methodologies show that the on-line purification does not suffer from any significant 

loss of analyte or interference from other matrix related effects. The experiments were 

performed as a "proof of principle" study and were validated in order to demonstrate 

adequate recovery of the analytes, linear range of the analysis and acceptable limits of 

detection.

The mass accuracy at high molecular weight by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry was investigated to resolve an 

experimental observation of poor mass accuracy when studying high mss proteins. 

Bovine serum albumin (BSA) was employed as a model compound and strategies to
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improve mass measurement at high mass were examined. The phenomenon of peak 

broadening observed for MALDI-TOF high mass protein peaks was investigated and a 

theoretical study showed that these phenomena can be largely explained on the basis of 

two factors, i.e., the initial velocity distribution and ion fragmentation in flight.

In this study, an online IMAC-nano LC/MS platform for phosphorylated protein 

profiling was set up and phosphorylated proteins in cCMP incubated mice brain 

homogenate were characterised. These proteins are thought to be substrates of 

cCMP-responsive protein kinase and many of them are thought to be involved in cell 

differentiation. The data obtained support previous research implicating cCMP has a 

role in cell hyperproliferation in brain and other mammalian tissues. Also proteins 

related to Leukaemia are found to be phosphorylated (FMS-like tyrosine kinase land 

myeloid/lymphoid or mixed lineage-leukaemia translocation to 1 homolog), this 

supports the view that cCMP is involved in the stimulation of leukaemia L -  1210 cells. 

The identification of these phosphorylated proteins should provide new avenues for 

investigating the mechanism of cCMP signaling pathways and its precise cellular 

function.
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Appendix 1 Q-TOF MS/MS spectra of some standards in Ginkgo biloba

Figure A. 1 MS/MS spectrum of QD by Q-TOF

Figure A.2 MS/MS spectrum of KF by Q-TOF
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Figure A.3 MS/MS spectrum of BL by Q-TOF
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Figure A.4 MS/MS spectrum of GA by Q-TOF
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Appendix 3 Full scan spectrum comparison, MS/MS spectrum, b and y ions of 

the identified phosphopeptides of the proteins in Table 7.6

•  Formin homology 2 domain containing 1
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•  M AP-kinase activating death domain isoform 8

5 2 .4 0
100 - |

NL: 6 .7 4 E 7  

cC M P
5 0  -

10$ -

NL: 4 .0 2 E 7  

B alnk4  5 0  -

NL: 3 .1 5 E 7  

t CAMP5 0  -

10$  -

NL: 4 .6 8 E 7  
cG M P5 0  -

3 0 3 5 4 0 4 5 5 0 5 5 6 5 7 5 8 06 0 7 0
T im e (m in)

*

S  6 0

3 5 9 . 1
7 5 4 . :

8 5 2 . 3
1 2 7 7 . 21 1 6 2 . 1

8 8 1 . 8

500.7

3 4 6 . 4

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

395



■la
tiv

e 
A

bu
nd

an
ce

AA B Y
1 E 130.12 - 13
2 K 258.29 1506.49 12
3 T 359.40 1378.32 11
4 T@ 540.47 1277.22 10
5 P 637.58 1096.14 9
6 F 784.76 999.03 8
7 P 881.87 851.85 7
8 S* 1048.92 754.74 6
9 L 1162.08 587.69 5
10 K 1290.25 474.53 4
11 G 1347.30 346.36 3
12 N 1461.40 289.312 2
13 R - 175.209 1

•  Evolutionarily conserved G-patch domain containing

100
NL: 1 .97E8

cCMP

NL: 1 .55E8

Balnk

NL: 1 .30E8

cAMP

NL: 9.62E7

cGMP

o 20 4 0 1006 0 8 0 120 1 4 0
Time (min)

396



*

100'

1 0 1 8 . 0

4 0 '
6 5 5 . Q  6 5 4 . 1

1 0 1 7 . 1 ♦1 y«
b i o  1 2 9 8 . 2  
1 2 9 7 . 1

7 4 0 . 7

5 4 1 . 5 5 4 0 . 1

t 4 2 5 . 4

3 0 0
W 4

6 0 0
o no 1 5 0 0200 4 0 0 5 0 0 7 0 0 8 0 0 9 0 0 1000 1100 1200 1 3 0 0 1 4 0 0100

m /z

AA B Y
1 K 129.18 - 13
2 E 258.29 1542.39 12
3 D 373.38 1413.27 11
4 S* 540.43 1298.19 10
5 I 653.58 1131.14 9
6 S 740.66 1017.98 8
7 E 869.77 930.90 7
8 F 1016.95 801.79 6
9 L 1130.11 654.61 5
10 S* 1297.15 541.46 4
11 Q 1425.28 374.42 3
12 A 1496.36 246.28 2
13 R - 175.21 1



•  Protein kinase, interferon-inducible double stranded RNA dependent
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•  Arrestin domain containing 1
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•  Low density lipoprotein receptor-related protein 1
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•  Deleted in azoospermia-like
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AA B Y
1 N 115.11 - 13
2 S 202.19 1539.55 12
3 L 315.34 1452.47 11
4 V 414.48 1339.31 10
5 T 515.58 1240.18 9
6 Q 643.71 1139.08 8
7 D 758.80 1010.95 7
8 D 873.88 895.86 6
9 Y# 1117.02 780.77 5
10 F 1264.20 537.63 4
11 K 1392.37 390.46 3
12 D 1507.46 262.28 2
13 K - 147.19 1

Appendix 4 Recipe for two 7 cmlO% acrylamide gel

Gel type Acrylamide H20d 1.5M Tris 

pH8.8

1 M Tris 

pH6.8

10%SD

S

10% APS TEMED

Resolving 5 mL 6.75 mL 3.75 mL — 75 pL 75 pL 15 pL

Stacking 650 pi 3.25 mL — 1.25 mL 25 pi 25 pi 5 pi

Appendix 5 Solutions to be prepared for 2D-Gel electrophoresis

Rehvdration buffer:

7 M urea, 2 M thiourea, 4% CHAPS, 40 mM DTT, 0.5% IPG buffer, 

0.002% Bromophenol blue, deionised water (H 20d)

Lysis buffer 1

40 mM Tris-HCl (pH 7.4), 1 mM 2-mercaptoethanol, 1 M PMSF, 0.2 M Na3VC>4 , 

1 mM NaF
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Lvsis buffer 2

7 M urea, 2 M thiourea, 4% CHAPS, 65 mM DTT, 1 mM EDTA, 0.5 mM EGTA, 

1 M PMSF, 0.2 M Na3V 04, 1 mM NaF, 40 mM Tris-HCl 

SDS Electrophoresis buffer

3 g Tris, 14.4 g glycine, 1 g SDS H2 O to make 1 L solution 

SDS equilibration buffer

50 mM Tris-HCl (pH8 .8 ), 6  M urea, 30% glycerol, 2% SDS, 400 pi of 1% bromophenol 

blue, H2 0 d to 200 mL 

Agarose sealing solution

25 mM Tris, 192 mM glycine, 0.1 %( w/v) SDS, bromophenol blue, 0.5 % (w/v) 

agarose

Coomassie gel staining 1 liter

1.0 g coomassie Blue R-250, 450 mL methanol, 450 H2 0 d, 100 mL glacial acetic acid 

Coomassie gel destain 1 L

100 mL methanol, 100 mL glacial acetic acid, 800 mL H2 0 d 

Colloidal Coomassie Stain

0.12% Coomassie Blue G250, 10% ammonium sulphate, 20% methanol, 10% 

O-phosphoric acid 

Destaining solution:

0.4 g potassium ferricyanide (K3Fe(CN)6 ) in 200 mL sodium thiosulphate (0 . 2  g/L 

Na2 S2 0 3 .5H2 0)
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Appendix 6 Parameters of active rehydration and IEF process of 24 cm IPG strip

Voltage(V) Voltage mode Step duration(h:min) Volt-hours (Vh)

30 Step and Hold 1 2 : 0 0 36

1 0 0 Step and Hold 1 : 0 0 1 0 0

2 0 0 Step and Hold 1 : 0 0 2 0 0

500 Step and Hold 1 : 0 0 500

1 0 0 0 Step and Hold 1 : 0 0 1 0 0 0

8000 Gradient 0:30 2250
8000 Step and Hold 1 0 : 0 0 80000

Total 26:30 84086

Appendix 7 Homogeneous gel solutions for 2 x 24 cm SDS gel

Final %T Volume required for (mL)

1 0 % 12.5% 15%

Acrylamide stock 66.67 83.33 1 0 0

1.5 M Tris-HCl pH 8 . 8 50 50 50
Water 79 62.3 45.67
10% SDS 2 2 2

10% APS 2 2 2

TEMED 0.05 0.05 0.05
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Appendix 8 Silver staining process

Step Solution Time on gentle 
shaker in solution

Fix 50% methanol 
1 2 % acetic acid 

38% H20

> 2 0  mins

Wash 50% ethanol 
50% H20

2  x 2 0  mins

Sensitize 0.02%Na2 S2 0 3 .5H20 1 mins

Rinse Milli-Q H20 3 x 20 seconds
Silver 0.2% AgN03 in 0.026% (v/v) 

formaldehyde
2 0  mins

Rinse Milli-Q H20 2  x 2 0  seconds
Develop 6 % (w/v) Na2 C 0 3, 4.0 x 

lO'VoCw/v) Na2 S2 0 3 .5H20  in 
0.017% (v/v) formaldehyde

2-5mins

Wash Milli-Q H20 2 x 2  mins
H2 0:methanol:acetic acid 1 0  mins

Appendix 9 Sequential extraction protocol

375 mg mice brain was ground into powder in liquid nitrogen. This powder was placed 

into 1.7 mL lysis bufferl, sonicated in an ice-cold water bath for 6x10 s with 60 glass 

beads. Then the solution was centrifuged at 5000 g for 15 mins (4 °C), then centrifuged 

at 16000 g for 60 mins (4°C). This resulted in getting supernatant 1, and a pellet 1 of 

329 mg. Next 1.6 mL of lysis buffer 2 was added to pellet 1, stirred for 1 hr in ice-cold 

water for 60 mins, and then centrifuged for 30 mins at 4 °C, supernatant 2 being 

produced.
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Appendix 10 In-gel digestion protocol

'X • * •Excised and destained gel band was cut into 1 mm pieces, wash 3 times in 

50% acetonitrile, 50 mM NH4 HCO3 with vortexing for 30 mins at room temperature. 

After that the gel pieces were washed with 100% acetonitrile with vortexing for lOmins, 

before they were dried in a ‘speedvac’ vacuum condenser. Then the “swollen” gel pieces 

were placed on ice with 50 pL 20 pg/mL trypsin solution in 40 mM NH4 CO3 , 

10% acetonitrile and incubated at 37 °C overnight. After incubation, extraction was 

started with 3.5% TFA in 50% acetonitrile with sonication for 15 mins, this was 

repeated three times and the combined solution was evaporated to dryness using a 

“speedvac” condenser. The digested peptides were then resuspended in 10 pL 

0.1% TFA.

Appendix 11 Cig ZipTip o f the digested peptides protocol

Millipore Reverse-phase ZipTips® Cjg were used for both desalting and concentrating 

the peptides formed after trypsin digestion. The method used was based upon the 

documented protocol in the Millipore instruction guide and care was taken not to 

introduce air into the ZipTips at any point during any ZipTips procedure. Each 10 pL 

Ziptip was first activated by the aspiration and expulsion of 10 pL of 50% acetonitrile 

three times.

Equilibration of the Cig ZipTip then occurred with 0.1% TFA being aspirated and
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expelled three times. The binding of peptides from the sample to the reverse phase 

packing was then conducted by aspirating the sample a minimum of ten times into 

ZipTip. The Ziptip then underwent a wash step with 0.1% TFA to remove any unbound 

components and the bound peptides were eluted with 10 pL of 75% ACN/0.1% TFA. 

The eluted sample was then concentrated to dryness and reconstituted in 4 pL of 50% 

ACN in 0.1% TFA for subsequent MALDI-ToF analysis or in 30 pL of 50% ACN in

0.1% TFA for ESI-MS/MS analysis. This was vortex-mixed to ensure equal distribution 

of sample components.

Appendix 12 Recovery of TCA/acetone precipitation

201,179

m
120,284

100,236

55,925

38,289

29,678

20,669

I.Prestianed Marker 
2-4. Tris extraction
5-7.TCAI/acetone

precipitation

8. Marker Dalton 7

Figure A.7 Recovery of TCA/acetone precipitation by comparing the Tris extracted 

brain homogenate (Lanes 2-4) and TCA/acetone precipitation of the Tris extracted brain 

homogenate (Lane 5-7). The loss of some proteins comparing to the lanes without 

precipitation can be observed. But it is a still widely used to remove interfering

substance and concentrate the proteins.
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Appendix 13 7 cm 2D gel of mice brain tris extraction protein homogenate using

IEF strip of different pH range

pH3 pH10 Standard 

* m

• . .

m

m  -i

Figure A.8 10 (ug of mice brain homogenate separated

by pH 3-10 EPG strip and 9% SDS gel
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pH4 pH7 standards

— I 4 4 ----------

Figure A.9 20 pg of mice brain homogenate separated by pH 4-7 IPG strip and 9%

SDS gel.

Normally, a narrow pH in the first dimension gives better resolution of the proteins, but 

better resolution was not observed in pH 4-7 gel from this experiment, the pH 4-7 gel 

seems not focused properly. The reason of this is because the two strips were run at the 

same time. It was found out that strips of different pH cannot run together, because the 

start resistance of two strips is different and therefore the electric current requirements 

conflict. When connected in parallel, it is difficult for them to attain equilibration at the 

same time under the same IEF condition, this is also suitable for sequential extraction, 

and the proteins obtained by two extraction methods are better run separately.
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Appendix 14 7 cm 2-D gel of sequential extracted mice brain homogenate

Figure A. 10 7 cm 2-D gel electrophoresis of 40 pg of tris extraction of mice brain
proteins followed by TCA/acetone precipitation and resuspension in lysis buffer. The 
gel shows proteins were overloaded for silver staining.

* *
« #  *

Figure A. 11 7 cm 2-D gel electrophoresis of 30 pg of urea extraction of mice brain
proteins after Tris extraction, followed by TCA/acetone precipitation and resuspension 
in lysis buffer the gel is better comparing to the Tris extraction one. It might be because 
the amount of proteins loaded is less.
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Appendix 15 24 cm 2-D gel of tris extracted mice brain homogenate

#
2 ^

Figure A. 12 24 cm 2-D gel electrophoresis of 100 pg of Tris extraction of mice brain

proteins followed by TCA/acetone precipitation and resuspension in lysis buffer

The 24 cm gels displayed many more spots than the 7 cm smaller gels. But the larger 

gels are much more difficult to handle and break easily. The first dimension is very 

satisfactory because the protein spots are well focused, but there are vertical streaks in 

the gel. This is mainly due to the second dimension of electrophoresis. One reason of the 

streaks might be because the pH of the resolving gel, the other reason might be the 

iodoacetamide equilibration step (15 mins) is not long enough, another reason could be 

poor solubility of proteins in the gel.
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Six spots (shown in arrows) were cut from the gel followed by destaining and in-gel 

digestion. After cleaning the sample by Cjg ZipTip, they were analysed by MALDI ToF 

and LC/MS, no convincing identification was obtained from database search with 

LC/MS results. Although mass spectrometry compatible silver staining protocol was 

used in this experiment, the reason of this might be that the sensitivity of mass 

spectrometer is not as high as silver staining. The sensitivity of silver staining can be as 

low as l-2ng (50fmol on average proteins), while the sensitivity of mass spectrometer is 

at pmol level.

Appendix 16

1

Figure A. 13 1-D gel electrophoresis of cyclic nucleotides incubated mice brain 

homogenate. Lane 1: cAMP incubation; lane 2: Blank incubation; lane 3: cCMP 

incubation; lane 4: cGMP incubation; lane5: molecular marker. Left: colloid Coomassie 

staining. Right: Coomassie blue staining

1-D gel for comparison of different incubations
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No obvious differences were observed among different incubations from the 1-D gel 

image as shown in this Figure. The sensitivity of the colloid Coomassie staining was at 

the similar level to Coomassie blue, although it was claimed to be comparable to silver 

staining.
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