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A bstract

Motivated by the study of the cosmology of brane-worlds we begin by inducing 
vacuum decay in a 4+1 space-time assuming that the most likely configuration 
possesses spherical symmetry, and interpret the wall between the two vacua as a 
thick brane. We then set out to deduce the spectrum of perturbations about this 
solution with a view to making predictions about the CMB power spectrum of 
such a brane. However, we find that the instability of the spherically symmetric 
solution causes focusing of energy at the origin, which we suggest would result in 
black hole formation.
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Chapter 1 

Introduction

1.1 High Energy Physics

One of the most ambitious aims of modern physics is to unify the fundamental 
forces into one theory. The Standard Model successfully unifies electromagnetism, 
and the strong and weak nuclear forces, but does not include gravity -  although 
this is not a problem in practice since gravitational effects are small enough to be 
negligible, it should be possible to include gravity in principle. To unify gravity 
with the other forces, one needs not only a quantum theory of gravity, but to 
address the hierarchy problem too.

The hierarchy problem is basically that the range of physical values involved 
in the theory is very large. Although in quantum field theory particles interact 
by exchanging virtual particles, the low energy limit must be consistent with the 
classical expression of the forces, so taking gravity as the example, we may consider 
the Newtonian potential: the potential energy of two masses, m i and m 2 separated 
by a distance r is given by

r

where Gn is Newton’s constant, and is the physical value that determines the
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strength of the gravitational force. It is the extremely small value of Gn , 1

Gn ~  (1.2 x 101 9 GeV) - 2

tha t makes gravity so weak. 2 In relation to this value is a mass, which characterizes 
the force, known as the Planck mass:

Mpi =  G^ 1 / 2  ~  1-2 x 1019 GeV

The corresponding mass for the electroweak interaction is

M ew  ~  103 GeV

and so we see that at these energies corrections due to gravity are negligible. It is 
this huge range of scales, M^x/M ew  ~  1 0 16 that comprises the hierarchy problem.

String Theory

String theory is a very popular (although not yet falsifiable) area of research seen 
as a possible route to a quantum theory of gravity. The basic idea is that instead of 
being point-like, particles are represented by (vibrational states of) small (possibly 
Planck length, ~10- 3 5 m) one-dimensional ‘strings’, which can be open(-ended) or 
closed (loops). A promising feature of string theory is that one of the string states 
automatically corresponds to the graviton -  the predicted mediator particle of 
the gravitational force. In fact, string theory developed beyond one-dimensional 
objects to general p-dimensional ones, called p-branes, so that the original strings 
are 1 -branes, and 2 -branes are 2 -dimensional surfaces -  membranes, where the 
name comes from.

Although string theory does not solve the hierarchy problem on its own -  other 
mechanisms are needed for that such as supersymmetry (the proposal that fermions 
and bosons come in ‘supersymmetric’ pairs) resulting in ‘superstring theory’ where

1We work throughout in units of c =  h =  1.
2Of course, on the large scale mass accumulates, leading to large gravitational forces, but then

quantum effects are negligible.
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the Standard Model particles are revealed in some low energy limit -  it has many 
interesting features, of which one is its requirement of extra dimensions.

There are five types of string theory, Types I, IIA, IIB, and the two heterotic 
types, 50(32) and Eg x Eg, which despite their differences all have one thing in 
common: they require the existence of ten space-time dimensions to be consis­
tent theories. This is a very novel feature of a theory, since most need to have 
the number of dimensions they act in entered ‘by hand’. In fact, these differ­
ent theories demonstrate mathematical relations, known as dualities, so much so 
that Edward W itten [1] proposed the concept of an ‘M-theory’ -  a fundamental 
eleven-dimensional theory of which the five ten-dimensional theories are different 
limits.

Extra dimensions

That string theory requires ten dimensions of space-time is obviously in stark 
contrast to the four we are otherwise used to considering. This led to the revival 
of the idea of compactified dimensions such as in Kaluza-Klein theory. In Kaluza- 
Klein theory [2,3] there is an extra dimension, which is compact and very small 
(Planck length), so small that it would not have been noticed, at least at the energy 
scales (or equivalently, distances) probed to date.

The possibility of extra dimensions has led to many ideas of how to reconcile the 
hierarchy problem. Arkani-Hamed et al [4] proposed that large extra dimensions 
(large compared to the Planck length, as in Kaluza-Klein scenarios) could eliminate 
the hierarchy problem by explaining the weakness of gravity by the fact that it is 
‘diluted’ by the extra dimensions. The underlying premise is that gravity spreads 
out so that its strength is proportional to the ‘area’ covered at that distance, so 
that in d spatial dimensions (of infinite extent) the gravitational force is given by

Fd(r) oc Md~l rd- 1 m pi{dy

(where M p^) is the d-dimensional Planck mass) and thus our usual three dimen­
sions of space lead to the 1 /r 2  law. But what if there were in addition some extra 
compactified dimensions, i.e. dimensions whose extent is finite? Consider the case
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of n +  3 spatial dimensions where the extra n dimensions have size R. At distances 
r <C R  the force is spread over all n  +  3 dimensions so that we find

i.e. what we thought of as the Planck mass (in three spatial dimensions) is not 
a fundamental scale but rather a result of the higher dimensional Planck mass

the fundamental Planck mass is actually of the same order of the electro-weak scale,

size of order a millimetre. This is interesting because unlike electromagnetism, the

which means that deviations such as (1 .2 ) could be consistent with experiments 
to date. So, if two such extra dimensions exist, then the previously large energy 
scale of gravity is brought down to that of the other forces, thus eliminating the 
hierarchy problem, and deviations from Newton’s law can be expected at ranges 
of less than a millimetre.

Of course, the Standard Model interactions must not be allowed to experience 
the extra dimensions in the same way (since their behaviour at small distances is 
well-tested) -  they must be constrained (in some way) to some small ‘thickness’ 
(which could at most be 1 / M e w  since this is now the largest scale in the theory). 
In fact it has been shown [7] that this scenario can be explained using string theory.

In type II string theories, open strings must have one of their ends attached

(1.2)

but at distances r R  the ‘area’ is proportional to Rnr2 and so

(1.3)

which we perceive as

(1.4)

where

(1.5)

(which is fundamental) and the volume of the extra dimensions. For instance, if

and n = 2  (i.e. there are two extra dimensions) then those dimensions would have

1/r 2 law for gravity has only been verified down to scales of millimetre-order [5,6],
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to a special type of p-brane, called a D-brane. These open strings describe gauge 
theories, so we say that gauge theories ‘live’ on the D-branes. Conversely, since 
gravitons are closed strings, they can exist throughout the ‘bulk’ (the space between 
branes). In fact, since the D-branes can emit and absorb closed strings, they are 
gravitating objects and thus massive. The essence of [7] is that our universe could 
be a three-dimensional D-brane on which all the particles and interactions of the 
Standard Model ‘live’, but with gravity acting throughout the bulk.

Brane-W orlds

So, treating our universe as a brane is an alternative way (to compactification) of 
explaining the lack of observational evidence of the extra dimensions predicted by 
string theory -  the observable universe is constrained to some three-dimensional 
subspace (brane) in the higher dimensional bulk. Such a scenario became very 
popular in of itself, including as a way to deal with the hierarchy problem.

In contrast to the scenario mentioned already (of a large extra dimension bring­
ing the Planck scale down to that of the electro-weak), a model by Randall and 
Sundrum used a small (compact) extra dimension to do the opposite, i.e. to bring 
the electro-weak scale up to the Planck scale [12]. In this model there are two 
branes at either end of the small dimension (specifically, they are at the fixed 
points of an S l / Z 2 orbifold), the branes have tension of opposite sign and gravi- 
tationally repel each other, but are stabilized by a negative cosmological constant 
in the bulk. The bulk metric has a ‘warp factor’ so that distances on the negative 
tension brane (which is taken to be our universe) are exponentially smaller than 
on the other brane, thus explaining why Mpi M e w -

In a variation to this model, Randall and Sundrum took our universe to be the 
positive tension brane [13]. Although this no longer solves the hierarchy problem, 
by taking the other brane to infinity and fine-tuning our brane’s tension, a very 
surprising result was achieved: the linearized Einstein equations were found to 
hold on our brane (with small 1 /r 2 corrections to Newton’s potential), i.e. the 
model could have a non-compact (infinite) extra dimension and not contradict 
observations of gravity. This is because the curved background supports a bound 
state of the higher dimensional graviton, effectively confining it to a small region
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within that dimension.
That our universe could contain large extra dimensions and still be consistent 

with the observed law of gravity sparked much interest in the cosmological prop­
erties of such scenarios -  for these models to have any chance of being accurate 
descriptions of our universe, it is not enough just to have the same law of gravity -  
they must also be consistent with cosmological observations. So first let us review 
some of the basics of conventional cosmology in section 1 . 2  before turning to some 
of the related issues of ‘brane cosmology’ in section 1.3.

1.2 Standard Cosmology

1.2.1 Cosmological Evolution

The basis for a lot of cosmological theory is the ‘Cosmological Principle’, which 
(broadly) is the assumptions that the universe is homogeneous and isotropic. Al­
though the universe is clearly not homogeneous on small scales -  people, planets, 
stars, and so on are obvious density variations, and there appear to be clusters of 
galaxies and voids on scales up to 50 Mpc -  on large scales (e.g. over 200 Mpc) the 
universe appears smooth. Homogeneity cannot be tested in the strictest sense, but 
it is a powerful assumption since our own observations are then enough to test the 
resulting cosmological models. The cosmic microwave background is very strong 
evidence for isotropy (see section 1 .2 .2 ) but even before that was discovered, radio 
surveys indicated that the distribution of radio sources on the sky is isotropic to a 
few per cent, which is compelling evidence since radio surveys reach out to great 
distances (due to the low galactic extinction of radio waves).

Perhaps the most important observation made in cosmology was that of Hub­
ble [16] -  that the spectral lines of distant galactic objects were red-shifted in a 
systematic way, so that by interpreting the red-shift as a Doppler effect, Hubble 
was able to deduce a relationship between an object’s recession velocity and its 
distance from us -  Hubble’s law:

v = Hq d (1.6)
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where v is the object’s velocity, d its distance, and the constant of proportionality 
H0 is called Hubble’s constant. This suggests that the universe is expanding (in 
a way consistent with homogeneity), and so the Cosmological Principle is refined 
to say that the universe is isotropic to comoving observers (i.e. comoving with the 
expansion). But what is the nature of this expansion?

Friedmann had already found solutions of Einstein’s equations for a m atter 
filled dynamically evolving universe, where the evolution was dependent on the 
spatial curvature of the universe. Later, Robertson and Walker came up with the 
most general form for the metric of a homogeneous and isotropic universe, now 
known as the FRW metric:

where a(t) is the scale factor of the universe, and k takes the characteristic values 
(—1,0,1) denoting negative, zero, or positive spatial curvature respectively. In 
this coordinate system, comoving observers have constant space coordinates, and 
so the Hubble parameter is given by

ble constant’, H0, is simply its current value.
By assuming the energy-momentum tensor has the perfect fluid form (consistent 

with the Cosmological Principle),

ds 2 =  dt2 — a{t)2 —— 7—5- +  r2(d02 +  sin2 9 d02) 
1  — k r 2.

(1.7)

(1.8)

(where an overdot denotes a time-derivative), and the previously mentioned ‘Hub-

T \  =  diag(p, -p ,  -p ,  -p ) (1.9)

(where p is the energy density and p the pressure) Einstein’s equations take the 
form

( 1 .11 )

(1 .10 )
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(where H , a, p and p are all functions of time and any cosmological constant is 
included implicitly through p and p), the first of which is commonly known as 
Friedmann’s equation. Eliminating a from these equations yields

P = - 3 - ( p  +  p) (1-12)a

(sometimes known as the ‘energy conservation equation’), so that in combination 
with the Friedmann equation we have two first order equations which (given an 
equation of state, i.e. a relation between p and p) can be solved for a{t) and p(t). 

In cosmology, a linear equation of state is often assumed, in general:

p =  ( y - i ) p  (i-i3)

so that (1 .1 2 ) gives

p °c —  (1.14)

for instance, radiation has y  =  4/3, and dust has y =  1. By considering mixtures
of these possibilities, and more general ones altogether, cosmologists are able to
model the evolution of the universe, and the various forms of m atter it contains. 
A simple extrapolation of the expansion back in time suggests that in the past the 
universe was smaller and denser, and thus hotter. The logical conclusion is that the 
universe was once very small -  the ‘Big Squeeze’ as Gamow called it, or as it later 
became known, the ‘Hot Big Bang’ model. This model is of our universe evolving 
from an initially hot dense state according to the laws of General Relativity (as 
related by Friedmann’s equation etc.). Calculations of particle reactions in the 
early universe result in predictions of the relative abundance of light elements that 
we see in the universe today. The fact that the predictions match so well with 
observation is strong support for the Big Bang theory. Another prediction of the 
theory is a residual radiation from the early universe, which is now generally agreed 
to be the origin of the Cosmic Microwave Background.
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1.2.2 Cosmic Microwave Background

In the early universe, it was so hot that the average photon energy was enough to 
ionise any atoms, and so all m atter existed as ionised plasma in thermal equilibrium 
with the photons. But as the universe cooled (past about 3000 K, when the uni­
verse was approximately 300,000 years old) even the energy of the most energetic 
photons was less than the ionisation energy, and so nuclei and electrons could form 
atoms (‘recombination’), and radiation (now ‘decoupled’) could propagate freely. 
Since photons are bosons, their characteristic distribution was that of a black-body 
spectrum. Due to the expansion of the universe, the photons are red-shifted, but 
one of the features of the black-body spectrum is that it is preserved by the ex­
pansion of the universe, so that today we can expect this background radiation to 
have maintained this characterisitc spectrum, but with a lower temperature.

Indeed, this is just what Penzias and Wilson observed in 1965 [17] -  microwave 
background radiation with an extremely good fit to a black-body spectrum with 
characterisitc temperature 3K, uniform in all directions of space, now known as 
the Cosmic Microwave Background (CMB). The high isotropy of the radiation 
lends strong support to the Cosmological Principle, but the small anisotropies are 
of just as much significance. The Cosmic Background Explorer satellite (COBE) 
measured the radiation to have a temperature of 2.726 ±  0.010 K [20], and (after 
subtracting the effect of the Earth’s motion through space, and the microwave 
emissions of our own galaxy) detected small fluctuations of order 1  part in 1 0 5, 
as can be seen in figure 1 .1 . Since the universe is inhomogeneous on the scale of 
(clusters of) galaxies, we can expect that at the time of decoupling there were small 
density fluctuations which could grow under the influence of their own gravity, into 
the structures we observe today. The CMB has these small fluctuations imprinted 
in it, so by analysing them we can learn about how the structures formed. For 
instance, the fluctuations are too small to lead to galaxy formation in a purely 
baryonic universe, which has led to models in which a high percentage of the m at­
ter is in some ‘dark’ (since it is not visible) non-baryonic form. The non-baryonic 
m atter could have decoupled from the radiation before the baryonic matter, and 
thus fluctuations in its density would not be subject to the same constraints im­
posed by the CMB anisotropy data.
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F igure  1.1: CMB map of the sky showing the anisotropies: red 
indicates warmer and dark blue indicates cooler areas, using a lin­
ear scale of ±200 [iK  [21]. Taken from the W M AP Science Team 
archive [22].

The anisotropies are usually analysed by decomposing them  into spherical har­
monics:

~j T(Q,  0) =  a lm Ylm (0 ,  0 )
l,m

and defining the power spectrum by

Cl =  ( K „ |2)

This data  is conveyed by a plot of 1(1 ±  1 )Ci against I as in figure 1.2. From such 
plots it is possible to extract data, such as various cosmological parameters, or 
at least constrain relations among them (since there exists degeneracy among the 
parameters) -  one of the most prominent being the m atter density of the universe. 

We can see from (1.10) th a t a flat universe, k =  0, requires a particular value for 
the current m atter density of the universe, known as the critical density:

3 H 2
P c ~
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F igure 1.2: The CMB Power Spectrum. The data points are the 
WMAP 3-year data, the red curve is the best-fit ACDM model 
fit to the data [29], and the shaded region delineates cosmic vari­
ance about the model [21]. Taken from the WMAP Science Team 
archive [22].

In terms of this we define the density parameter:

P

so th a t Q =  1 k = 0. The first peak in the power spectrum  is determined

(mainly) from Ob (the baryonic contribution to the density param eter), according 
to /peak c* 0 B- 1' 2. Since different models predict different power spectrums, this 
gives us a way to compare models with observational data.
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1.3 Brane Cosmology

When creating models to study the cosmology of brane-worlds, the details of the 
underlying theory are often ignored, and instead just considered to motivate the 
new framework. The basic framework is to consider a higher-dimensional space 
(known as the bulk) throughout which gravity acts, and some sub-space of it 
(known as the brane) to which the Standard Model particles are confined (in some 
unspecified way). This sub-space is usually approximated to be infinitesimally 
‘th in’ in the extra dimension, i.e. it is a hypersurface (whereas in the underlying 
theory it should have some thickness, as previously mentioned). So in brane cos­
mology when one refers to a ‘brane’ this may have nothing to do with the term 
as used in string theory, but rather refers to a submanifold of a space-time where 
ordinary matter resides.

The basic setup

To illustrate this ‘metric-based’ approach, we consider what is almost the canonical 
setup for a brane . 3 The metric of the bulk is given by4

ds2|buik =  — n( t ,w)2dt2 + a(t,w)2yijdxldxi  +  dw2 (1-15)

where is the maximally symmetric three-dimensional metric and the extra 
dimension is spanned by the tc-coordinate. Therefore, by specifying the brane to 
be at some particular tc-coordinate, for instance w = 0 , the metric on the brane is

d-S2 | brane =  ~ n ^  +  a(t, d f y  ijdx% dx3 (1.16)

where homogeneity has been automatically built into the cosmology of the brane. 
If t is chosen to be the proper time on the brane, then n(t , 0) =  1. The next step 
is to introduce matter to the brane. The energy-momentum tensor can be split 
into contributions from the bulk and the brane, with the brane part containing a

3 [30] is one of the earliest examples, or for a review see [31] (and references therein).
4We adopt the common notational convention that upper case Latin letters denote five­

dimensional indices (0,1,2,3,4), lower case Greek indices denote the four conventional dimensions 
(0,1,2,3), and lower case Latin indices run over the ordinary spatial dimensions (1,2,3).
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Dirac.-delta function, to ensure the m atter is confined there:

^ Ib ra n e  =  <*Mdiag(-p&, pb, pb, pb, 0) (1.17)

where pb and pt are the energy-density and pressure of the brane respectively. 
Then, when it comes to solving Einstein’s equations, one may consider the full 
energy-momentum tensor including the brane contribution (above), or, solve the 
equations in the bulk only, and utilise Israel’s so called ‘junction conditions’ [32] 
on the brane.

The Israel junction conditions are effectively the integration of the Einstein 
equations across a surface separating two metrically different regions, and relate 
the energy-momentum tensor of the surface to the change in extrinsic curvature 
across it. Actually, in the Randall and Sundrum scenario the brane separates two 
metrically identical regions, but there is still a change in the extrinsic curvature 
across it. This arises via the Z 2 symmetry of the brane, i.e. the fact that the two 
bulk regions are mirror images, and thus have their normal vectors pointing in 
opposite directions (which in turn leads to equal but opposite extrinsic curvature). 
To remove the Z 2 symmetry but maintain a massive brane requires the two regions 
to be metrically different -  the common case is two AdSs regions with different 
cosmological constants, in which case the brane is sometimes called a ‘shell’. An 
explicit example of such a case is reviewed in section 2 .1 .

Pitfalls and Progress

Having used the Israel junction conditions, a common illness of brane-cosmology 
models was that the the resulting Friedmann-like equations were found to be sig­
nificantly different from the standard ones, in that the Hubble parameter depends 
quadratically on the energy density (as opposed to linearly). For instance, in sec­
tion 2.1.1 we will find that for a certain scenario the Friedmann-like equation is

(where A is an explicit cosmological constant and is the Einstein constant of 
the five-dimensional space) which is in stark contrast to the equivalent expression
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from standard cosmology ( 1 .1 0 ):

H ^ ^ + A
3 a1

(where is the Einstein constant of the four-dimensional space). This was a 
problem, since the cosmological evolution resulting from a relation like (1.18) is 
not in general compatible with nucleosynthesis constraints.

Fortunately, a way around this problem was soon established [33,34]: it was 
shown that by fine-tuning the brane tension (interpreted as a cosmological con­
stant on the brane) relative to the bulk cosmological constant, the equations could 
be modified to obtain behaviour more like the norm, and thus compatible with 
standard cosmology theory [36]. This will also be demonstrated in section 2.1.

Many studies have been made of perturbations of brane-worlds, with a view to 
calculating the CMB anisotropies they predict -  see [37] (and references therein). 
One of the difficulties of this is connecting the brane perturbations with those of 
the bulk, since this involves solving differential equations across a surface where 
the metric is not smooth. Obviously this problem would not exist if one considered 
a brane across which the metric is smooth. One way to do this would be using a 
brane with a small but finite thickness (instead of infinitesimally thin) which we 
will call a ‘thick brane’. There are also other reasons to consider such a scenario: 
the simplest models make use of a minimally coupled Lagrangian, i.e. one where 
the only curvature term is the Ricci scalar curvature (the Einstein-Hilbert action, 
which upon variation yields Einstein’s equations -  see section A.2), but if higher 
curvature terms are included (which terms ‘should’ be there ultimately depends on 
a successful quantum theory of gravity) such as in an Einstein-Gauss-Bonnet theory 
(which includes second order curvature terms) then the ‘thin wall’ approximation 
may no longer hold [41].

With these limitations in mind, in this work we propose a model in which the 
brane is generated dynamically, to be specific, by ‘vacuum decay’. In a theory of a 
scalar field experiencing a potential that has two un-equal local minima (the global 
minimum being called the true vacuum, and the other the false vacuum), there 
exists the possibility of vacuum decay: starting with a space-time in which the 
scalar field is everywhere at the false vacuum (or very close to it), it is possible for
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a region to quantum mechanically tunnel to the true vacuum. This region would 
then expand to fill up the entire space. In between the two regions would be a 
domain wall, and it is this wall that we suggest could be interpreted as a thick 
brane. To proceed, we first review the theory of vacuum decay.

1.4 Vacuum Decay

In this section we review the work of [43,44]. Consider the theory of a scalar 
field in five dimensional space-time subject to a potential of the form in figure 1.3, 
described by the action

where the metric has signature (H-------------- ). Classically, there are two stable
minima, but quantum-mechanically the higher-energy minimum is only ‘meta- 
stable’ since it is possible to penetrate the barrier to reach the other minimum. The 
unstable minimum is termed the ‘false vacuum’ and transition from false vacuum 
to true is known as ‘vacuum decay’. Qualitatively the process is well known -  it 
is just the nucleation of a bubble: if the universe is filled by false vacuum, then

(1.19)

Figure 1.3: The potential £/($), with true and false vacuum in­
dicated as 4?t and 4>F respectively.
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quantum fluctuations mean that it is possible for a bubble of true vacuum to form, 
which can then grow to spread throughout the universe, converting false vacuum 
to true.

So, what form does the decay take? Simply (semi-classically), whichever is 
most probable. As discussed in [43], the probability of a decay per unit time per 
unit volume is given by

h  <xe-SE/n(l + 0(h))

where Se is the Euclidean action of the decay, which is defined as i times the 
‘analytic continuation’ of (1.19). To obtain this Euclidean action we first Wick- 
rotate the ^-integral of (1.19) by |  into the complex plane so that it runs over 
purely imaginary values, and define r  =  i t  so that

/ oo r i  oo /*oo
dt —> / dt —> i /  d r

- o o  J —ioo J — oo

Then we let gMl/ —> —g^u so that the metric in these coordinates has the signature 
(+ +  +  +  +), which means that inner-products continue as x-y  —* - x - y ,  and we 
therefore find:

S E =  t  d5Xy/g + £/($) -  E ( 1.20 )

Finding the most probable decay has now been reduced to finding the configuration 
of $  and g ^  that minimises (1 .2 0 ) subject to the conditions that —> <I>F at
Euclidean infinity and that $  is not a constant (so that ^  <f>F). Such a solution 
is called the ‘bounce’ (in analogy with a similar solution in particle mechanics).

To solve for the bounce, we assume the solution has 0(5) invariance. 5 If we 
also choose the invariance to be about the centre of the coordinate system then it 
amounts to specifying $  is a function of the Euclidean-radius only (which we call 
f), and the form of the metric is simplified:

$  =  $ ( £ )

9nv =  diag (l, p(£)2yij)

5For the case without gravity this was proved in [45]. With gravity it is an assumption, but 
not an unreasonable one, since the equations are 0(5) invariant.
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0

F igu re  1.4: A tanh-like shape ‘solution' with the wall between 
the two vacua at £w.

where y l3 is the metric of the 4-sphere. This reduces the equations of motion from 
partial- to ordinary-differential equations. As we will see in section 2.2 the solution 
is a tanh-like shape.6

So once again we ask: what does the decay look like? Let the solution be given

by

<&(€) =  n e )  (i-2 i)

which is shown in figure 1.4. Since £2 =  r 2 4- r2 (where r is the usual Minkowski- 
space radius), all we need to do to get the solution in Minkowski-space is transform 
back t  =  i t  so tha t £ 2 = — t 2 +  r 2, which is valid for r 2 > £2 , i.e. outside the 
lightcone. Thus the solution is

$ ( t , r )  =  / ( r 2 -  t2) (r2 > t2)

so we can see that at t — 0 the T -r profile looks like figure 1.4, and as time increases 
it looks like this profile is shifted in the positive-r direction, i.e. a bubble of true 
vacuum (of radius £w) nucleates at the origin at t = 0 and grows with time. In fact, 
we can see from figure 1.4 tha t the ‘wall’ (the boundary between the two vacua)

6In [43] Coleman assumed t/(<f>) to be nearly symmetrical, i.e. the energy difference between 
t/(4>F) and 1/(4>T) was small, allowing him to solve for explicitly in terms of a tanh.
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has coordinates £ =  and thus traces out the hyperboloid

r2 - t 2 = £w2

indicating that after nucleating, the bubble starts expanding at a velocity soon 
approaching that of light.

1.5 Plan for this Thesis

The plan for this work is to first create a model for a ‘thick brane’. In the next 
chapter we will review a spherical shell-brane resulting from regions of differing 
cosmological constant in the bulk, including the use of the Israel junction conditions 
to find the relationship between the brane’s evolution and its energy density, and 
fine-tuning the brane tension to recover Friedmann-like equations, as discussed in 
section 1.3. We will then find (numerically) the bounce for the vacuum decay of 
the theory defined by the action (1.19) and interpret the wall between the two 
vacua as a thick brane, in analogy with the aforementioned shell-brane.

The main part of this work will be to study some cosmological property of 
the thick brane, in particular, the fluctuations of the brane and the resulting 
anisotropies in the CMB. Although it was argued that the minimum energy (and 
thus most likely) configuration for vacuum decay will have spherical symmetry (in 
Euclidean space), there will be a large phase space of small fluctuations around 
this state, each of which has only slightly more energy (and is thus slightly less 
probable). Therefore if we consider the system to have some finite ‘tem perature’, 
by appealing to a thermodynamic principle -  that of energy versus entropy -  we can 
determine how the energy (associated with that temperature) will distribute itself 
among the spectrum of energy states and thus their relative probability, which in 
turn will represent the weighting with which that configuration contributes to the 
CMB power spectrum. Therefore this method will lead to predictions of the relative 
heights of the peaks of the CMB spectrum, but not of the absolute heights, since 
that would depend on the amount of energy available, and thus the ‘tem perature’ 
of the system.

In chapter 3 we introduce the formalism we will use to perturb the fields, and
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derive the equations governing the perturbations and the corresponding contribu­
tion to the action. In chapter 4 we solve the perturbation equations numerically, 
but find that there are no physically acceptable solutions. In chapter 5 we discuss 
this result, ultimately reasoning that due to radiation from the expanding bubble 
focusing at the origin, a different background needs to be used.



Chapter 2 

Bubble Branes

Having discussed in broad terms the setup for a brane in chapter 1, we now look 
at an example in detail, ultimately using the Israel junction conditions to obtain 
the equation governing the evolution of the brane, and then introducing a brane 
tension to recover standard cosmology.

In section 2.2 we see how such a scenario can be generated, via vacuum de­
cay; first setting up the system to solve, then solving it numerically, and finally 
comparing the metrics of the resulting brane with that of the preceding section.

2.1 Thin Branes

In this section we repeat the calculations of Deruelle and Dolezel [42]. In their 
setup, the bulk consists of metrically different regions both described by the co­
ordinates x A =  {t,r, x, 0,0}, and separated by a shell, E. The two regions of the 
bulk are anti-de Sitter spacetimes -  solutions of Gab +  ^±9 ab =  0 where + / — 
denotes outside/inside the shell. The corresponding metrics are

dr2
ds2|+ =  -$ + ( r )d t 2 +  ^  +  r 2 [d* 2 +  f k { x f  (d# 2 +  sin2 0 d 0 2)] (2 .1 a)

Hr2
ds2|_ =  -$ -(r)< a 2 (t)dt2 +  -y  +  r2 [d* 2 +  f k { x )2 (d<92 +  sin2 6»d0 2)] (2 .1 b)
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where

$ ±(r) = k -  L±r2 L± = ^ f

f - l(x) =  sin llX /o(x) = X f l i x )  =  s in X

and a(t) is known as the lapse function, introduced to join the metrics at the shell. 
The evolution of the shell is specified parametrically by

r =  a(r) t =  t(r)  (2 .2 )

By choosing r  to be the proper time on E the metric on the shell takes the form:

ds2s =  - d r 2 +  a 2 (r) [d% 2 +  f k i x f  (d<92 +  sin2 <9d<̂ 2)] (2.3)

Since we require the metric to be continuous across E, we ‘join’ this metric with 
those of (2 .1 ). First, the metric outside the shell:

ds2 In =  ds2 + , E

d r 2
—d r2 =  —<F+(a) dt2 +

<F+( a)

1 - -$ + (a )  t 2 +12 0 2

* +(a)

where an overdot denotes and thus

. =  > /?±(g) +  ° a (2 .4)
$+(a)

Joining the metric on the brane with that inside the shell we find:

ds2|s =  ds2|_ s

2   k  ^- d r 2 = - $ _ ( a ) a 2dt2 +
*_(«)

— 1 =  — $ - (a )  a 212 +
a12 / 2  u

^>-(a )
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After substituting for i using (2.4) we find:

*+(<*) /a* +  M a )  (n ~
=  (2 '5)

The equation governing the evolution of the scale factor of this brane, a(r), can
be obtained by applying Einstein’s equations in the form of Israel’s junction con­
ditions.

2.1.1 Israel’s Junction Conditions

The Israel junction conditions relate the jump in extrinsic curvature across a sur­
face to its energy-momentum tensor. Since extrinsic curvature can be expressed 
in terms of normal vectors, we first define these on the shell for the two regions.

Four independent tangent vectors on the shell are given by ||eT|| =  (f, a, 0, 0,0) 
and e A =  5A (for i = x, (f>). We can use these to find the normal vectors to the 
shell since they satisfy e^r iA  =  0 , giving

\\nA\\ oc ± (-< M , 0 , 0 , 0 ),

and defining the positive direction to be from inside to outside the shell causes the 
normal vectors in the positive direction to be H^aII oc (—a, t , 0,0,0). Normalising 
these vectors to unity: uatla =  1 , is where the difference in the two regions comes 
in, through the metric:

n ^ n B(3 '4B)± =  1

so we find

I I^ a I I  =  ( - M ,  0 , 0 , 0 ) 

I I^ a I I  =  a ( t ) ( - d , £ ,  0 , 0 , 0 )

Now that we have the normal vectors, we calculate the extrinsic curvature, 
Ami/, which is defined by

K% =  (2.6)
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where greek indices label tensors on the brane, i.e. with coordinates (r, x, 0, <j>) and 
induced metric (2.3), and is the covariant derivative associated with the bulk 
metric (2.1). The non-zero components are

/ r T± =  L ± ~ °  (2.7a)
y ] lP  + $ - L ±

K \ ^  =  K * ±  =  K * ±  =  - y j l P  + ^ - L± (2.7b)

where H  =  -.a

Utilising the definition

K S  =  K % + -  K * v ~ (2.8)

the Israel junction condition can be written

k T? = K S - 6 S K  (2.9)

where Tjf is the energy-momentum tensor of m atter on the brane. Since Tj? has 
the perfect fluid form T[“ =  diag(—p,p, p,p) -  where p and p are the energy density 
and pressure of the shell -  the r - r  component of (2.9) becomes

k,t ;  = - k p  = k tt -  k

= k tt - ( k ;  + 3 R x)

=  - s  k *

= - 3  { K X + - K * - )  (2.10)

( 2 1 1 )

This is our Priedmann-like equation, relating the scale factor to the energy density 
on the brane, the spatial curvature, and the cosmological constants in the bulk.
As we anticipated (in section 1.3), in stark contrast to standard cosmology (1.10),
we see H 2 +  ^  varies with p2 rather than p.
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As an aside, we can easily see here what the equivalent result would have been 
in (what Deruelle and Dolezel call) a ‘brane’ rather than ‘shell’ scenario. In the 
brane case, there is only one cosmological constant, and thus L_ =  L + = L, but 
the flip of the normal vector due to the ^-sym m etry  would change the sign of the 
second square root in (2 .1 1 ), resulting in

Conversely, as noted in [42], in the Gauss-Bonnet theory of gravity, one needs nei­
ther two values for the cosmological constant nor the Z2 symmetry to produce a 
massive shell, because the theory has two solutions in the bulk for a single cosmo­
logical constant: L± = 1 ±  y j  1 +  (where a  is a coupling constant).

2.1.2 Recovering Standard Cosm ology

To recover standard cosmology on the brane as per [33,34], the energy density of
the brane is decomposed into that of ordinary matter, pm, and a constant brane
‘tension’, cr, which is really just a cosmological constant on the brane:

p =  pm +  <7 p =  pm O' (2.12)

By expanding (2.11) under the assumption pm <C |cr| and fine tuning cr as

<7 =  1  ( y = Z I  -  v73^ )  (2.13)

(2 .1 1 ) reduces to

2 k 2 k pm y/L+L_ \ n ( n 2\ (Q 1 A\
H  + ?  -  3 j = r + - y f = r _ +  ° {pm > (2-14)

So, defining Newton’s constant by

8 ?tG 2 k V L C L l
~3~ ~ T  y/=Ll-yf=TZ (2.15)
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produces the Friedmann-like equation:

H 2 + ^  = ^ p m + 0 ( p m2) (2.16)
CL O

Thus at late times (when pm has become small enough for pm2 to be negligible) 
we recover the standard cosmological evolution.

From (2.15) we can see that for G > 0 we require L + < L_ < 0. Above it
was implicitly assumed that L± ^  0; for the special case L+ =  0 we would have
fine-tuned a = - J —L_ and definedK V

8~ f  = f  ̂  (2 ' 17)

to once again arrive at (2.16).

2.2 Thick Branes

In the previous section the differing cosmological constant of the two regions was 
key to producing a jump in the extrinsic curvature and thus a massive shell. One 
way to produce two such regions is via the process of vacuum decay; the two 
regions of differing cosmological constant correspond to a region of true vacuum 
and a region of false vacuum. If space is initially filled by false vacuum then there 
is the possibility of it decaying to true vacuum via a tunnelling event. The wall 
separating the two vacua then corresponds to the massive shell.

2.2.1 Vacuum Decay

We now consider the theory of a minimally coupled action for a scalar field, ^(x), 
in a potential U(<&(x)), as in [44] but in five dimensions:

S  = J  <PxV\9\ \ d ^ d ^  -  u ( $ )  + (2.18)

where k is the five dimensional Einstein constant and R  the Ricci scalar curvature. 
It was argued in section 1.4 that vacuum decay was possible for a potential with
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two un-equal minima, and that the configuration of such a scenario is obtained by 
minimising the Euclidean action of the theory, given by

S E = J d5Xy/g \ d ^ d ^  + £/($) -  E
A AH

(2.19)

To proceed we assume the bounce (the name given to the vacuum decay field- 
solution) is (hyper-)spherically symmetric. Working in spherical polar coordinates, 
this amounts to letting $  be a function of Euclidean radius (denoted f) alone, i.e. 
4>(x) =  $(£), and the line element taking the form

ds2 =  g ^ d x ^ d x 1' = d£ 2 +  p(£)2 df^4 2 (2 .2 0 )

where df^ 2 is the line element of a unit 4-sphere. 1

The assumption of symmetry greatly simplifies the equations of motion (derived 
in appendix A). The scalar field equation becomes

$"(€) +  =  ^ '( * ( 0 ) (2 -2 i)

while the radial and angular components of Einstein’s equation are

V '(f l  (2
P «)

and

3 -  3p' ( £ ) 2 -  p ( 0 / ( 0  =  |  « P (0 2 I /(* (0 )  (2.23)

respectively. Using (2.22) to substitute for p;/(f), (2.23) becomes

P' ( « ) 2 =  1 +  ( $ ' ( ? ) 2  -  2 U (* (£))) (2.24)

Upon differentiating this and substituting for p"(£) again, we arrive at the scalar

:Note that in this section p(£) is the radius of curvature of the Euclidean space, not an energy
density -  which notation is meant will always be clear from the context.



CHAPTER 2. BUBBLE BRANES 27

field equation (2.21), thus showing that of the three equations of motion

$"(£) =  U ' m ) )  -  (2.25a)

P"(«) =  ( 2  ($ (0 )  +  3 $ '(£)2)  (2.25b)

P '(0 2 =  1 +  ( $ ' ( 0 2 -  2 U ( m ) )  (2.25c)

only two are independent. We will use the first two as the differential equations
to be integrated numerically, but the third will be important for determining the 
boundary conditions (particularly that p'{£)2 —> 1 as £ —> 0 and £ —> 0 0 ).

2.2.2 Numerical Solution

To solve equations (2.25) for $(£) and p(£) we need to resort to numerical methods. 
This is done by taking the first two (second order equations) and transforming 
them into four first order equations2, which can then be solved using a Runge- 
K utta technique. We use Fehlberg’s embedded Runge-Kutta formula (using the 
Cash-Karp parameters [15]) which adapts the step-size it uses based on an estimate 
of the relative error of the solutions compared to some specified tolerance. Once 
initial conditions are provided, in theory it is a simple case of calling a routine 
which integrates the equations out to a specified £-value. In practice it is not this 
simple, since the desired solution is not a stable one, and (as we will see) a little 
more work is required.

Any parameters of the system must also be specified before the numerical 
integration can take place. For this system these are U(<&) and k . We work 
in arbitrary units with k =  0.1 and setup £/($) to have the required form (i.e. one 
conducive of vacuum decay). The values for these parameters can be placed in 
physical perspective by comparing with the work of section 2.1.2. There we found 
that to recover standard cosmology on the (thin) brane we had to fine-tune the 
brane tension, resulting in a relation between Newton’s gravitational constant on

2An n-th order differential equation can always be transformed into a system of n coupled 
first order equations.
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the brane and the Einstein and cosmological constants of the bulk, (2.17). The 
equivalent relation here would be:

=  (2-26) 

The basic form for U(<&) is that of a quartic with three stationary points:

U'($) oc ($ -  $ F)($  -  $ T)($  ~  $m)

where <I>F and <I>T will be local minima (the false and true vacua, respectively), and 
a local maximum, and 4>T < 4>m < 4>F- The five degrees of freedom of the 

quartic are specified via the values of <I>T, <1>F, f/(<f>T), t / ($ F), and U($m) -  this 
completely determines U (<£>) and allows for the important features of the potential 
(e.g. the ‘height’ of the barrier between the minima) to be adjusted. Choosing 
these values to be3

$ T =  - l  $ F =  l [ /($ T) =  - 7  C/($F) =  0 U{Qm) = 4 (2.27)

produces the potential shown in figure 2.1. Now all that remains is to specify initial 
conditions for <f> and p, and then the numerical integration can be performed. To 
do this, we look at the behaviour of the fields as f  —* 0. In this limit we can expand 
$(£) and p(£) as power series (where we have used the facts that $'(0) =  0 and 
p(0) =  0, and defined $ 0  =  $(0)):

H O  = +  V  y C  (2.28a)i n\
n = 2

00 P(n)( 0 )„
1 71n = 1

^Choosing t/(4>F) = 0  ensures that the action (2.19) is finite-valued for the bounce.
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- 1.5 - 0.5 0 0.5 1 1.51

Figure 2.1: The potential, with the parameters specified
in (2.27). Its salient features are that it has two local minima with 
different values (so that one is considered the ‘true vacuum’ and 
the other the ‘false vacuum’) separated by a barrier.

Substituting (2.28) into (2.25) and equating coefficients of £ leads to 

* ( 0  =  * 0  +  e2 +  ( 4  K U(<E-o) +  9 [/"($„)) C  +  e>(?6) (2.29a)

p (5) =  5 +  K
C ($ 0 )

36
(2.29b)

e3 +  ( 2 5  k c/($0)2 - 1 4 4  u ' ( * o)2) e5 +  o { e )

so that the only parameter still un-specified is <£o- Before discussing how to deter­
mine $ 0, we first look at the asymptotic forms of the solution as £ —> 0 0 .

In the limit £ —> 0 0 , a first approximation to (2.25) is $(£) =  and p(£) =  £ +  6, 
where b is an arbitrary constant.4 To make a better approximation we first change

4This is in fact an exact solution, but a trivial one. It is an approximation in the sense that
we know our desired solution has <hF as an asymptote as £ —> 0 0 .
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variable:
z = £ + b (2.30)

so that equations (2.25a) and (2.25b) become

#"(*) = £/'($(:)) -  ' (2.31a)

„ -W  .  - * )  ( 2  !/<«(*)) + 3  W )  (2 J lb )
1 2

let P = F), and make the ansatz:

$(z) =  Or +  s(z) +  O(e~20z) (2.32a)

p(z) =  z +  C>(e-2,3z) (2.32b)

Substituting this into (2.25) gives the following equation for g(z):

0 =  9" ( z ) + g ’(z) ( 1  -  2/?) -  1 ^ 1 ^  (2.33)

which has a solution
/ \ 1  1  g(z) oc — +

(3 z3

(there is another solution which diverges from <f>F, in which we are not interested). 
So the asymptotic forms of $ ( 2 :) and p(z) are:

$(z) =  $ F +  ce~fiz C  + j A  +  o{e~20z) (2.34a)

p(z) = z  + 0 ( e ~ 2/3z) (2.34b)

where c is an arbitrary constant.
We are now ready to integrate out. The key lies in finding the ‘best’ possible 

value for $ 0; since the desired solution is unstable (separating divergent solutions 
from oscillating ones) <E>o is determined using a bisection algorithm, but it is still 
ultimately necessary to patch together the integrated solution and the known an­
alytic form (2.34a). Full details are given in appendix B, the result being that an



CHAPTER 2. BUBBLE BRANES 31

acceptable solution is found, which is shown in figure 2 .2 .
As discussed in section 1.4, this solution represents an expanding bubble of true

As we integrate for $(£) and p(f)> we can also calculate Se , which we do by 
recasting the integral expression for Se as a differential equation. For a solution of 
the field equations obeying (2.20) and (2.22), the Euclidean action (2.19) becomes

which implies that S e = P (oo), and can be integrated numerically as the differen­
tial equation

When we come to perturb the bounce, we will calculate the perturbation’s contri­
bution to the action in the same way.

2.2.3 Brane Interpretation

In analogy with the theory of section 2.1, we interpret the two regions of vacuum 
as the bulk, and the wall separating them as a thick brane. But what of the metric 
on our brane?

The brane is located at some constant value of Euclidean radius, £&, thus (2.20) 
reduces to:

vacuum, formed at t = 0  with radius £&, where from the plot of {/($(£)) versus £ 
in figure 2.2 we can see that £ 5  «  3 (in the thin wall case this plot would be a step 
function).

.2 r OO
-  p « ) 4  u m ) )  a?

Jo
(2.35)

To recast this as a differential equation, consider

To cast this in more familiar terms, we first expand dPl.

(2.36)

d Pl2 = d'lp2 +  sin2 df^ 2 (2.37)
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F ig u re  2.2: The bounce for the potential of figure 2.1.
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which implicitly tells us the relation between ip and the Euclidean ‘tim e’ coordinate 
r  (and thus the real time t), is:

r  =  i t  = f  cos ip 

So, upon transforming from ip to t, (2.37) becomes

2 - a t 2 / V  + «2 , 2

A further transformation,
t = ^  sinh tb

produces
d ^ 4 2 — —dtft2 +  cosh2 tb a ^ 3 2 

and so the complete expression for the metric on the brane (2.36) becomes

d r 2
ds | 6 =  p{£by —dtbz +  cosh2 tb ( ———- +  r 2 (d02 +  sin2 9 d<p2) 

1 — r 1
(2.38)

To compare this with the thin-brane of section 2.1, we return to the relation 
between t(r) and a(r) in (2.4) and now set A+ =  0 (in keeping with £/(4>F) =  0), 
and k = 1 , resulting in

i2 -  a2 =  1

which is satisfied by

t{T) =  P(&) sinh f “7 7 T ) a(r) = p(£b) cosh
A i d )  \p(Zb)

Thus the metric on the thin brane (2.3) becomes

ds2s =  - d r 2 +  p(£b)2 cosh2 [^X2 +  sin(x ) 2 (d# 2 +  sin2 6 d (p2)\ (2.39)
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or, upon transforming to r — sinx,

, 2  _  i 2 , i 2 ' T ^ I" d f 2ds s  -  —d r +  /?(&) cosh'
p (&) 1 — rd

+  r 2 (d0 2 +  sin2 0 d</>2)

which is (2.38) with the identification r  =  p(€b) U-
An interesting feature of such a universe is that it starts with non-zero radius -  

in the case of (2.38) p(f&) gives the initial radius. Since p(£&) is related to there 
is a direct relationship between the form of the potential U(&) and the initial size 
of the brane-world -  for instance the larger the difference in energy between the 
two minima, the smaller the initial size, since a smaller volume of negative energy 
density (the true vacuum) is needed to compensate the shell of positive energy 
density separating the two vacua. The affect of the form £/($(£)) on the scale of 
the bounce is discussed more in section B.l in the context of finding the numerical 
solution.



Chapter 3 

Pert ur bat ions

In section 2.2 we solved for the bounce (vacuum decay configuration with spherical 
symmetry), having argued that this would minimise the Euclidean action, and 
thus be the most likely configuration to occur. If we interpret the expanding 
wall between the two vacua as our universe, then our space-time metric would 
inherit this symmetry, and thus be completely homogeneous and isotropic. In 
order to introduce anisotropies (as observed in the CMB) we now wish to relax 
this symmetry constraint, and obtain solutions which deviate slightly from the 
original solution, since these will have next-to-lowest Euclidean action and thus be 
the next most likely configurations to occur. To be able to compare the probability 
of the configurations, we will need to know the (relative) value of the Euclidean 
action for each one.

In theory we could try to solve the equations of motion without any loss of 
generality (i.e. without imposing any symmetries) by proposing an arbitrary metric 
and scalar field, but this would result in a large1 set of coupled non-linear partial 
differential equations (in five independent variables) that would be very difficult 
to solve. So, to simplify the problem we use a perturbative expansion. In other

1 There would be potentially sixteen equations for sixteen functions (fifteen from Einstein’s 
equation, and one from the scalar field equation), less additional constraints imposed by gauge 
conditions.
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words, we consider the perturbed variables (distinguished by a tilde)

$(x) =  <$(£) +  e A<E>(x)

9imu{x ) = g ^ ( x )  +  £ h ^ ( x )

where e is some small parameter and <£(£) and g^ (x )  are the bounce solved for in 

chapter 2, i.e. g^v = diag(l, p ( 0 27u) and ^ ( 0  an(  ̂P(€) are solutions of (2.25) with 
m  <I>T and $(£) —> <I>F as £ —► oo. The resulting equations of motion can then 
be solved to first order in e; the zeroth order part results in the original equations 
solved by the bounce, and the first order parts are our perturbation equations, 
which are linear in the perturbation variables (A$, /iM„) we want to solve for. The 
resulting perturbative expansion of the action can be written

SE = S0 + e S 1 + e2S 2 + O(e*)

where So is the action for the unperturbed solution, and since we have expanded 
about a solution which minimises the action, Si =  0. This leaves S 2 as the quantity 
we need to calculate for our solutions.

Although linear, the equations of motion from such an expansion are still very 
complicated. To simplify the problem further, we choose the form of A$(x)  and 
hfl]y(x) in a way that takes advantage of the symmetry of the zeroth-order solutions; 
to be specific, we use the cosmological perturbation theory of Kodama and Sasaki

[49].
In this theory, perturbations are expanded in terms of harmonic functions on 

the invariant background -  in this case the 4-sphere, which is invariant under 
spatial rotations (of the Euclidean 5-space). The power of this method is two­
fold. First, the perturbations can be classified into three types based on their 
behaviour under transformations of the invariant background (i.e. rotations), which 
are called scalar-, vector-, and tensor-type accordingly. Equations of the type we 
will consider (linear second order differential) are then found to decompose into 
groups, each of which only contains perturbations of one type, thus allowing the 
three types of perturbation to be treated separately. Since we are interested in 
perturbations to the scalar field 4>, we will only consider scalar-type perturbations,
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because these are the only type of perturbation a scalar field can be subject to. 
The second powerful feature of this theory is that there is no coupling between 
different harmonic modes, which means that modes can be treated independently. 
Ultimately this means the equations of motion reduce to equations for the radial 
functions which are the coefficients of the harmonic expansion, i.e. a set of ordinary 
differential equations (in one independent variable) -  a much less daunting system 
to solve. The formalism is reviewed in the current context (a five dimensional 
Euclidean space) in section 3.1.

Having reviewed the formalism we then employ it to deduce the equations 
of motion (section 3.2) and the action (section 3.3). Both calculations involve 
very long expressions which are dealt with using the Mathematica computer ap­
plication, but the resulting expressions can be expressed relatively succinctly. In 
section 3.4 we discuss the issue of gauge invariance and ultimately introduce new 
gauge invariant variables.

3.1 Harmonic Expansion

We now review the formalism of [49] with a 4-sphere invariant background -  first 
some definitions. The x-coordinate system covers the whole Euclidean space, and 
can be split into the radial and angular coordinates: ||xM|| =  (£, u j1)  where greek 
indices run from 0 to 4, and latin indices run from 1  to 4. Explicitly, the angular 
coordinates are ||c</|| =  (?/;, x, $, </>)• Let y^- be the metric of the 4-sphere, so that 
the corresponding line element is given by

dU4 2 =  y  ijduj1 duo3

and gij = p{£,)2y i j . The covariant derivative corresponding to y^ of a tensor T 
with respect to uj1 is denoted D{T =  Tj*, so that the Laplacian of the invariant 
background (4-sphere) is given by A =  y u DiDj.

We are now ready to define the basis of harmonics in which we will expand 
the perturbations. Scalar quantities can be expanded in terms of a complete set
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of (scalar) harmonics on the 4-sphere, denoted Y k and given by2:

(A +  /c2 ) y fc =  0  (3.1)

where k 2 — ra(m +3), m  E Z (full details of the ‘hyper-spherical’ harmonics, Y k(u), 
are given in section D .l). Scalar-type perturbations of vectors on the 4-sphere are 
expanded by

Y \  = ~ Y k n (3.2)
k

and those of tensors by:

Y kij = ^ y k\H + \ y i j Y k and y i}Y k (3.3)

Resuming the convention that perturbed quantities have a tilde over them
(to distinguish them from corresponding background quantity) we now write our 
perturbative expansion as:

$(x) =  $(£) + (3. 4a)
k

g^v{x) = g^{x)  +  e ^ 2  K v (x ) (3-4b)
k

Recalling that the background metric is given by

goo — 1 

goj = 0 

9ij — p{€) y ij

and since goo, goi, and transform (under a spatial rotation) as scalar, vector,

2N.B. the superscript k of Y k labels the mode of the harmonic -  it is not a tensor index.
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and tensor respectively, ha„ takes the form

hm = 2 A k( t ) Y k(u) 

h0j = p i O B k W f  M

Ay =  2 p ( 0 2 HLk(t;)Yk(u,)YiJ +  f fTk(()Y£(u)

(3.5a)

(3.5b)

(3.5c)

Since there is no coupling between different modes they can be treated inde­
pendently, and so the summation symbols (and corresponding labels) will usually 
be suppressed, i.e. (3.4) becomes

$(x) =  4 ( 0  +  eA$(£)Y(w) 

= g»Ax ) + £h„v(x)

(3.6a)

(3.6b)

3.2 Equations of motion

We wish to find the perturbed configurations of minimal Euclidean action, so we 
once again turn to the Euler-Lagrange equation for the scalar field and Einstein’s 
equation (derived in appendix A, and re-stated here with tildes applied to per­
turbed quantities for emphasis):

V 2$  =  C7'($) (3.7)

V ,£ / ( $ ) + a „ $ d „ $ J  (3.8)

(where V 2 is the Laplacian associated with g i.e. of the perturbed 5-space). 
We wish to solve these equations to first order in e, i.e. for the set of pertur­
bation variables {A<f>(£), A(£), B(£), # l ( 0 ,  ifT(£)}. Einstein’s equation (3.8) con­
tributes four independent components coming from the four regions of the metric: 
(lit/) = (00), (Oz), (zz), (ij). In ‘raw’ form these equations are very long, containing 
many angular-terms, such as various partial derivatives of the harmonic functions. 
However, after making use of the definition of the harmonics (see section D.l)
and some algebraic manipulations, all the angular dependence separates out from
the equations, reducing them to the following set of coupled ordinary differential
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equations : 1

+ A'(Q # ( ( )  + k B f A ' {® ~  4 # l'(? )  $'(«) (3.9a)

0 =  - 2 K M ( - ^ p(t) _  2KP( t f  A$'(f) $'(£)
o

+ x ( o  ^ 2 -  j  +  4 p (? ) ,4'({) p'(?) +  k b (o  p \ o

+ / c p ( 0 B ' ( ^ - 8 p ( 0 B i ' ( 0 p W - 4 p ( 0 2f f L 'W  (3.9b)

o =  - . ^ ) ^ )  +  - | p  +  H |

- 3 H L’(() + 3 ^ - ^  (3.9c)

=  2 /cA4>(g)p( $ ) 2  [/'($(£)) /  _  ft* _  4*t/(4>(g))p(g ) 2

3 y 2 3

+  * 0  * fc )  p ' ( 0  -  (fc2 - 1 8 )2 f ^ ' (g) -  

- 8 p ( f lf f t W ( € ) - p ( e W ( 0 -  f c 2

3 (k2 — 4) p(£)2 ffT"(Q 
i k 2

ffT({) 4 P(0 ^ t 'K )p '(€ )  P « ) 2 ^ t " ( 0  ,  .

+  2  +  fc2 +  (d-9eJ

i „ „ , r ,  3(fc2 -4 )p (O H T '(O p '(« )

(3.9d)

3The fact that (3.9) only involve the principal harmonic eigenvalue, k , justifies in (3.4) and 
(3.5) our implicit assumption that the radial functions are the same for the different modes with 
the same principal eigenvalue, i.e. that they only carry a fc-label, rather than a full mode label, 
say a = {mi, m2 , m3 , 7714}, as in

S(x) =  $ ( 0  + e J 2  A$„(x) Ya(u>)
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3.3 The Action

In the previous section we derived differential equations governing the perturba­
tion functions which in the next chapter we will attem pt to solve numerically. As 
discussed in the beginning of this chapter, we expect the first-order perturbative 
contribution to the action, Si, to be zero, since we have expanded about a sta­
tionary point -  this is verified in appendix C. This leaves S 2 , the second-order 
contribution to the action, as the quantity to calculate for each perturbation con­
figuration. Since this term is second-order, it consists of a double-sum over the 
harmonic modes, and so we revert to the full form of the perturbative expansion, 
(3.4).

In this section we integrate-out the angular parts of S 2 leaving only a radial 
integral. This requires the decomposition of the harmonics in terms of the Gegen- 
bauer functions, CfAjJ71 (see section D.l):

m i  m 2  m 3  3

y k{u) = ca cos(m4 cj4 +  a 4 ) J J C [ ^ ] ^ +1(coscJi) (3.10)
772.2 — 0  7 7 1 3 = 0  7 7 1 4 = 0  1 = 1

where k2 = mi (mi +  3), and ca is the mode coefficient (a is shorthand for the mode 
eigenvalues, a = {mi, m 2, m3, m 4 } ) . 4

We will use the following shorthand for the five-dimensional integral and its 
limits:

j d 5x =  J  d£ J  d4w
7 * 0 0  p  7T P 'K  7*7T p 2 tT

= d^ d'ip d x  dO d(f)
Jo Jo Jo Jo Jo

4To put this in familiar terms, on a 2-sphere we would have written

mi
Yk(v) = Y  cmi,m2 cos(m2w2 + a 2) C[|]™*(cosWi)

7 7 1 2 = 0

I
= ci,m cos(m,(f) + a) PC (cos 9) where k2 — 1(1 +  1)

771 =  0
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So, using a prime to distinguish dummy indices, the first few terms of the 
expression resulting from substituting the perturbative expansion into the action 
and extracting the second-order part are:

$ = E E / d?/d44
mi,m2, 771̂ ,7712, '■
m 3,m 4 m'3,m'4

i s i n 6> sin2 x sin3 ip Yk(ip, x,9,<p)Yk>(ip, X , 9 , < p )  x

p(0 4 4 k K ) /»*<({)  ( W ( 0 ) -  $ ,(?)2
* (£ )

+  2 ^ p ( 0 4 X , 9, 0 )

— k 2 sin# sin2 x  sin3 ip Yk(ip, Xi 9, 4>) ~ esc 9 sin ipYjj;0'0’0’2\ip,  x> 0)

-  cos 0  sin ip yd0’0’1’0) (^,} _  sin 0  sin - 0  ydo,0 ,2 ,0 ) (^ } ^ } 0 } 0 ) +  . . .  ^ +  . . .  |

(3.11)

where the yjfe(ij) are now understood to be those of (3.10) with the summations 
moved outside.

To proceed, we separate out Yk(u) as per (3.10) and perform the resulting 
integration, one angle at a time. First we let

Yk(ip, X, 9, (p) -> cos(ra4  0 +  a m4) Yk(ip, x, 0)

where Yjfc^, X> 9) is understood to be the rest of the expression under the summa­
tion in (3.10), i.e.

3

n w .x .f l )  =  C. n c p r l ^ o o s w O
i= 1
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and then perform all the ^-integrals using the orthogonality of cos and sin:

/*27T

/ cos(m (f) +  a m) cos(m! (j> +  a m> )d<t> = $mm'
Jo

/ s m ( m < p  +  a m ) s m ( m f </> +  a m ' ) d<l )  =  tt 5 m m >
Jo

/»27T

I cos(ra</> +  Oim ) sm(m' </> +  a m>) d(p = 0  

Jo

Thus, (3.11) becomes

*= E E / d«/ d’4
7711,7712,171̂,771.2, V
m3,1714 77J3

isin<9 sin2 x  sin3'ipYk('ip,x,Q)Yk'{'ip,X,6) x

p(€)4 x*(f) A M C  ( t / W f l )  -

+  2 ^ ] t a P ( 0 4 X, 6)

— k2 sin 6 sin2 x  sin3 V*, (?/>, Xi 0) +  m 4 2 csc 0  sin ^  (ip, X? 0 )

-  cos# sin^Y *0,0’1̂ ,  x,0) ~ sin# s in ^  Y^0,0’2̂ ,  x> 0) +  • +  • • • |  (3-12)

Next, we separate out 6 in the same way:

W , X , 0 ) -  C[%\2  (cos0 ) Y k( ^ X)

The difference to the (fycase is that the ^-derivatives need extra treatment, so we 
let u = cos 9 and make use of the defining equation for from section D.2,
i.e.

0 =  (1 -  u2) C [ \]” *''(«) -  2 u C [ i}2l'(u) +  (m 3 (m3 +  1) -  C[i]™*(«)

to eliminate all ^-derivatives, so that the ^-integral may be performed using the
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orthonormality relation5 derived in section D.3: 

so that (3.12) becomes

s> = E E / d« / d24
mi ,m,2 , ,m'2 v
7713,7714

-  ^ sin2 x  sin3 ^ y fc(^,x)Y fe/(^ ,x ) x

p ( 0 4 A ( 0  /» * .« )  ( w O )  -

+  ^ p ( 0 4 ^ " K ) ^ ( f ) ^ ' W , x ) (  

k2 sin2 x  sin3 ipYk(ip,x) ~  m 3(m3 +  l)wa.ipYk{ip,x) + ■ ■ • )  +  • • • j (3.13)

We then repeat the process for x and ip. Manipulating the Gegenbauer func­
tions into the form of the orthogonality condition is not usually as easy as has been 
suggested here, due to the large variety of terms, for instance there are terms which 
are divergent or are otherwise difficult to integrate analytically. These terms must 
first be cancelled or combined with other terms before they can all be integrated. 
For more information about this see section D.4.

Once all the angular integrals have been performed, we are left with the f- 
integral, in which the only mode-dependence is of k (the principal mode), summed 
over all modes and weighted by the coefficient ca:

S 2 = tt ^  c<?
mi,m2 ,7773,7714

5Since the C [|] are really just the associated Legendre functions in disguise, this may be 
more familiar as:
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This means that we can calculate the action for each A;-mode separately, and then 
trivially calculate the action for a general superposition of modes. Dropping the 
fc-labels from the perturbation variables, we find S2,k is given by (3.14).

S2,k =  / d£/Jo

A ( o 2 ^ - ( n - 3 K p ( i f u ( m ) ) + B ( o 2 ^ - ( ^ - ^ K P(i)2u ( m )

+  A(£)tfL( O ^ T  (32 Kp(a)2u m ) )  -  9 (12 +  A:2))

-  (s  K p i Z f u m ) )  +  9 (k2 -  8 ))

-  -  4) -  HL(S)H7( S ) ^ T L ( k 2 -  4)
4  K 2 k

-  h t( 0 2Ŷ ( f c 2  -  4) ( 3 6  +  3A2 -  8  « p(0 2 C/($(f)))

+ A(?)A&(flp(0V(*(O) + *p(f)V(0

+ ffL( e ) M ( 0 4 p ( o 4 v ($ (e ) )  +  + p K ) 2 v '( $ ( o ) )

+  A '( £ ) B ( £ ) ^ ^  +  A'(C)A(0 ^ ^ ^  -  A'(g)i?L(0 16p(^ 3p' (g)

+  A ( £ ) B ' ( £ ) ^ t  +  g (g )g ' (g )4p(C) P'K) +  B{Z)HL'{£)3 k p ®

-  A(g)gL(g)2° P(- 3p'(^  +  gL(g)gL'(g)4° P^ )3p'--  -  A'(?)Hl '( 0 ^ ^
AC K K

+ _  4)

-  HTmT\o15p̂ 2io(k2 - 4 )

-  ^ ' ( 0 2^ § r ( * 2 -  4) -  A(f)A4>'(£) p (0 4 <*>'(€)

+  g L(£)A$'(?) 4 p (0 4 $ '(0  +  A$'(?)2^ -  -  A (0 /rL" ( 0 ^ -
Z AC

+  -  H7(i)H7" ( i ) ^ N T ( k 2 -  4)

(3.14)
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3.4 Gauge Invariance

As they stand, the equations of motion for the perturbation variables (3.9) do 
not yield a unique solution because they contain gauge freedom from Einstein’s 
equations -  given a solution, others can be generated from it by a coordinate 
transformation (which we demonstrate below for a general field). To make sure 
we do not count a physical solution more than once, we will derive the gauge 
transformation under which (3.9) is invariant.

Consider some background vector field FfX(x) and its perturbed counterpart, 
Fm(x) given by

Fp(x) = Fp(x) + sAFtl(x) (3.15)

Since we are only considering linear order perturbation theory, it is sufficient to 
consider only infinitesimal coordinate transformations. Doing this at O(e), i.e.

+  e Sx^ (3.16)

(where an overbar indicates the new coordinate system) means that this coordinate 
transformation only acts at the perturbed level, leaving the background the same,
i.e. (x) =  F„ (x). In the language of [49], this can be thought of as a change
of correspondence between the unperturbed background and the perturbed world. 
Consider the transformation of F^(x) under the coordinate transformation (3.16):

F a(x) = *).(*) (3-17)

The left hand side of this expression can be written explicitly in terms of the 
original coordinates as

F a{x) =  F a(x +  e Sx)

~  F a(x) +  £ Fa^(x)  Sx^ (3.18)

Thus (3.17) becomes
^
F a +  £ Faig Sx ; (3.19)
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Expanding this in terms of the background field (i.e. Fa =  Fa +  £ AFa) gives:

    Qx^
Fa +  e AFa +  s Fafi SxP «  (F^ +  e AFfj)

~  (F/j, +  £ AFm) {S Z -e S x* ' . )

^ F a + £AFa - £ F fX6x^a (3.20)

which upon cancelling Fa with Fa (since the background is unaffected by the 
coordinate transformation) yields the gauge transformation for AFQ:

AFa = AFa -  Fa# Sx13 -  Fiu Sx» (3.21)

We now wish to derive the gauge transformations for our perturbation fields. 
Once again the pov/er of the theory presented in [49] is revealed: by expanding 
the coordinate transformation (3.16) in terms of the harmonics for scalars and
vectors -  (3.1) and (3.2) respectively -  the different modes decouple and we are
able to analyse the gauge transformations of the perturbation fields for each mode 
independently. Accordingly, we let the coordinate transformation (3.16) take the 
form

= f  +  e T ( O y M  (3-22a)
UJ1 -► J  +  £ L(i)  y*((j) (3.22b)

where T  and L are arbitrary functions. Now we simply recast (3.21) for our scalar 
field and metric appropriately.

For the scalar field, we let F ^ x )  —> 4>(£) and AF^{x) —» A4>(£)y(o;). Since 4> 
is a scalar (a rank-0 tensor) we drop the last term of (3.21) so that it becomes

-  &(Z)T(Z)Y(u>)

=*• S ( 0  =  M (f )  -  $ '« )T (? )  (3.23)

Since the metric is a rank - 2  tensor, we repeat the last term of (3.21) for the
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extra index, so that upon letting Fa —> gap and AFa —> hap we get

hap hap pa/3,/x 3%̂  Pa/i &x 9nP â (3.24)

We now expand (3.24) for one region of the metric at a time, i.e. (a(3) =
(00), (Oz), (zz). First, (aft) = (00):

hoo — h o o  — goo,/x ~  90fi & £ %  ~  9 n o

= *  2  A ( Q Y M  =  2  A(£)Y(u) -  2  r(£)Y(u>)

=> A(Q = A(£) -  T '(0  (3.25)

(a(3) =  (0 z):

h o i  — h-Qi 9 0 i,n  3% ^  ^0/x 5i 9 fii ,0

= ►  p ( O m Y i H  =  B(£)Yi(uj) -  T(£)Yi{uj) -  p ( 0 2y , ^ ' ( € ) Y j ( u )

=  B(£)Yi(u) +  kT(£)Yi(u) -  p i t fL 'W Y i iu )

= p(0 H(w) ( b ( 0  +  -  p (f)L '(f))

= >  B(?) =  B({) +  k ^ f  -  p(?)L'({) (3.26)

(a/?) =  (zz): (there is no implicit sum over the repeated z-index)

ha = ha -  giitfl 5x» -  g0„ Sx"^ -  g^  fa'1;

= ha -  ( p (0 2y i i \0T(t)Y(u,) -  p(Z)2yii,mL(O Ym(u,) -  2p(£)2y imL(?)FmiM

= hi i -  2 p ({ y (f ly « r(O y (w )  -  p(£)27 i i , m - W »  -  2P( 0 2y imL(£)>"T»

= hu -  2p(£)2 p'(% .  n o Y H + m  ( U u , mY mn + y imr " »
P i t ) '  V2

(3.27)

To write the last term of this expression in the form of the tensor harmonics (3.3), 
consider expanding Y,™:
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y m  — y m  _i_ T^m y j
| i , i '  i j

y m  _  y m  _  p m  y j
,i \i i j

y imY mA = y imY m{i -  y imr ” y Y j 

= Yili- T iijY^

— Yi\i ~  2  Ty.* —

= y<n -
>i|i =  Uu,mYm + y imY™i

Thus (3.27) becomes

hii hii

=  ha -  2p({)2

y aT{t)Y(u) + L(i)Yt NH

= 2 p (6 ;

P'(€)

Lp(0 

l ® Y « r ( O y M  -* £ (£ )* « (« )  +  | i « ) y « y ( w )

✓(f).

=  2p (€):

HL(S)Y(u>)yii +  ffT(f)y « M  -  ^ T u n O Y H
p(£)

+  fe L (O y ii(w )- jL K )y « y M  

y „ y M  ( f f L(«) -  ^ T ( i )  -  ^ £ ({ ))  +  ( f f T(?) +  A £ ( 0

(3.28)

Expanding the left hand side of this expression:

hu =  2 p ( 0 2 Hl(S)Y(u>)y tl +  HriOYiju)

allows us to see that

H i ®  = m )  -  -  i L« )

Hr(ti) =  HT( 0  + k L ( 0

(3.29)

(3.30)
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To recapitulate; we have found the perturbation fields gauge transform as:

-  $'(£) T({) (3.31a)

A(t) = A(Z) -  T'(0 (3.31b)

m  = Bit) +  -  p it) L'it) (3.31c)

m )  = HLit) - (3.31d)

f t (o  =  h t ( o + k m (3.31e)

i.e. performing these transformations together leaves equations (3.9) unchanged.
By eliminating the gauge fields L(f) and T(f) from the transformation equa­

tions (3.31), we find combinations of the original fields which are gauge invariant. 
We call these A , B, and Z:

m  - m + ^  ( « d o  +

3.4.1 The Gauge Invariant Equations of M otion

Using (3.32) to substitute for A , B , and A<f> in (3.9), the equations of motion 
become (3.33), which are expressed soley in terms of the gauge invariant variables 
(i.e. Hl and i l T have ‘dropped out’). Thus we now have five equations in three 
variables (A, B , and Z)  which would appear to be over-constrained. We will return 
to them in the next chapter where we will solve them numerically.

To solve for S 2 it will be necessary to make the same transformation (to gauge 
independent variables), but since this is not so straight-forward (total divergences 
and thus boundary terms need to be considered), this is delayed until section 4.2.

(3.32a)

(3.32b)

(3.32c)
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The equations of motion expressed in gauge invariant variables are:

+ -  72p(f) £/'(*(?)) +  36 k V K ) * '®

0 = 2 ,4(0 p(?)3 U ' m ) )  + P(5)3 -4'(«) $'(£) + * m  p(0a $'(0  

m p t t ?  
36 p'(f)4

-  16 n2 u ( * ( t ) )  pfO V K )® ^)3 

+6 Kp ( o 3 u ' m ) )  (2 u m ) )  -  9 $'(o2)

-  4 k2p(f)5 U ' m ) )  ^ '( 0 2 ( - 2  !/(*(€)) +  ^ '( 0 2)  

3«p(02p'(?)^'(f) ( -2  (2 + A;2) [/($({)) + (8  + fc2) $'(£)2+

p(«3 <z'(0 6 p (0 f / '($ (0 )p '(s c) - 6 $ ' ( 0
3p '(?)2

+  / tp (0 2* '( 0  ( 2 t / ( $ ( 0 )  +  $ '( 0 2)
p(Q 4 4>'(Q 3"(Q  

P'(€)
(3.33a)

0 =  ,4 (0  k2 - 4 Ku ( m ) p ( o : +  4 p(f) ,4 '(0  p'(?) +  * B (0  p '(0  +  kp(()  &(()

2 k Z ( ( ) P(()1V(C)

3p 'K )2
2 « p (Q 3 .g '( 0 $ '( 0 2

P'K)

(4 p (0  t / '( $ (0 )  p '(0  -  9 $'(£) +  2 k t / (* (0 )  p ( i f  * '( 0 )

(3.33b)

/ / f \ 2Q 3,4(0 p'(o 3 B(o KZ(e)p(e)v(d
p(«)

0 — .4 (0  I 9 H   h

M £ )  p'(£)
-A:2 , -4 K lA (* (0 )p (0 a

(3.33c)

+  p (0  ^ '( 0  p'(?)

2A:
.3

2k

+ - 2 /c 2 : ( 0 p ( 0 J t7 '( $ (0 )* ,(fl
3 p '(0

0 = M ) + ^ m m + ^ ^ )
k k

(3.33d)

(3.33e)



Chapter 4 

Seeking Solutions

In the previous chapter we setup perturbations of the bounce and derived the
equations of motion for the gauge-invariant perturbation variables for each mode. 
In this chapter we will solve these equations numerically. As we do so, we will also

need to express the action in terms of gauge-invariant variables alone, so that we 
can treat it as a differential equation that can be integrated numerically, just as 
we did for So in section 2.2.2.

4.1 Reducing the Equations of M otion

The equations of motion for the gauge-invariant variables, (3.33), are five equa­
tions for three variables, (-4(0, ^ (0 , ^ (0 ) ,  which makes them over-constrained. 
To solve them numerically, we first solve them for the highest derivatives of the 
variables, i.e. (*4'(0, /^(Oj 2 /;(0)- Attempting to do so reduces them to the fol­
lowing three equations, two of which are non-differential equations for .4 (0  and 
B(0  in terms of 2 ( 0  and 2'(0> and the third of which is an uncoupled second 
order differential equation for 2 (0 :

want to calculate the action of each mode at the same time. To do this, we will

(4.1b)

(4.1a)
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e (k2 -  4) v  ($(?)) n o
p(o n o

n o
«(f )

2 k2 k p({) J ( 0  <E>'(£)2 +  (3 (A:2 -  4) +  2 a(fl)

6 ( k 2 - 4 ) U ' ( $ ( l ; ) ) p ' ( { ) 2'
n o

(4.1c)

where s(f) is the shorthand:

8(0  =  12 -  2 K p (0 2 U m ) )  -  3 k2 pf( 0 2

Thus the problem of solving for the perturbation variables has been reduced to
solving a single differential equation, i.e. (4.1c).

To solve this equation we will need some boundary conditions, but before pro­
ceeding with this we first attem pt to obtain an expression for the action in terms

-2(f)), which we will see also requires knowledge of boundary conditions.

4.2 The Gauge Invariant Action

As we solve equation (4.1c) for each value of k, we will also want to calculate 
S 2 ,k- But, since our current expression for 52,fc, (3.14), is in terms of the original 
variables, it is insufficient.

We first make the same substitutions from the original variables to the gauge- 
invariant ones (3.32), as we did for the equations of motion in section 3.4.1. How­
ever, unlike the equations of motion, after making the substitution the action still 
contains terms involving HL(£) and i/r(f)j so that the action takes the form:

We can use (4.1) to eliminate -4(f) and # (f) from the terms paired with a HL(£)~

of the gauge invariant variables (so that it can be solved for at the same time as

PO O

/  d f terms bi-linear in (.4, A', B, S', Z ,  Z',  HT, HT', HT", HL, Hh', Hh") 
Jo L
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or # t(£ )_term, but still HL(^) and Ht(£) remain:

PO O

S2, k =  / d£
Jo

terms bi-linear in (*4, A ' , B , >2, >2')

+  terms bi-linear in (Z, Z ', t fT, tfT', tfT", tfL, tfL', t fL") (4.2)

If it were not for the remaining HL(£)~ and i /T(£)-terms, (4.2) would be ready for 
numerical evaluation alongside

The integral of the unwanted terms can in fact proved to be zero, by virtue of 
them being equivalent to a total derivative. For instance, consider the following 
part of (4.2):

« i ° ° d?  ^ f y +

The integrand of this expression can be expressed as part of a total derivative:

+to to !(5ST'(0

Therefore, we can say that

j f ° d {  j S  5) +  & ■ ({ )» ,'( o )

/'
Jo %  \ P ' ( 0

+

i.e. we have replaced terms in the integrand involving second derivatives of HL(() 
and F /t(0  with terms involving only first derivatives, and introduced boundary 
terms. By systematically transforming all second derivatives and then first deriva­
tives of tfT(0  and then HL(£) in this way, eventually all of the # L(£) and # t(£ ) 
terms are eliminated from the integrand, leaving only terms to be evaluated on the
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boundaries:

S 2 ,k =  /  d f terms bi-linear in (A, A ' , B, B ' , Z, Z')
oo

+  terms bi-linear in (Z, Z \  HT, t fT', HT", Hu Hh\  HL") (4.3)
J o

Thus all that remains is to show that the boundary terms are equal to zero. To 
do this we now turn our attention to the behaviour of Z(£),  # l(£ )? and i / r ( 0  in 
the limits f  —> 0 and £ —*■ oo.

limit f  —> 0 so that we can determine appropriate initial values. As we will see 
later, we will also want to know how Z(£) behaves as £ —> oo to be able to check 
the validity of our numerical solution.

In the previous section we also saw that the action can only be expressed in 
an explicitly gauge-invariant way if it can be shown that certain terms evaluated 
on the boundaries of integration (i.e. zero and infinity) are equal to zero. To do 
this we need to know something about the behaviour of Hl(€) and # t ( 0  in these 
limits. Since we only need to set an upper limit on the boundary terms (and show 
that this is zero), it will suffice to know the largest possible form of HL(£) and 
ffT(f) consistent with their definition (rather than their exact form).

A sym ptotic forms for Z ( £ )

The limiting behaviour for <£(£) and p(£) as £ —► 0 is given by (2.29). By sub­
stituting these approximations into (4.1c) and proposing suitable ansatz, we can 
deduce that in this limit two independent solutions are:

4.3 The Boundary Conditions

In order to solve (4.1c) numerically we will need to know how Z(£) behaves in the

£(0 * r(m+5) (i+o(?2)) (4.4a)

(4.4b)
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where k2 = m (m  +  3). If we use the relation between A4>(£) and £ (f) , (3.32c), 
neglecting the HL(£) and Hj(£) terms, we see this translates to the solutions:

the first of these solutions is inadmissible, and we will therefore take (4.4b) as our 
boundary condition.

Repeating this process using the approximations for 4>(£) and p(£) as £ —> oo, 
i.e. (2.34), and recalling that z = £ +  b and (3 = y /U"($F) (see section 2.2.2), we 
find the solutions for Z{£) in this limit are:

m ( o  tx r (ro+3) (i + o { e ) )  

A $ ( o « r  (i +  o ($ 2))

(4.5a)

(4.5b)

(where the relation between the solutions seems natural since m  and — (m +  3) 
give the same value of k2). Since A4>(£) must be everywhere finite, it is clear that

(4.6b)

(4.6a)

which translate to

(4.7b)

(4.7a)

Once again the requirement that A4>(£) be finite renders the second of these solu­
tions inadmissible.

A sym ptotic limits for # l(£) and i/r (0

To set limits on the size of HL(£) and # t(£ ) we recall that they are effectively the 
perturbations to the uf-bji region of the metric and that they enter with factors of 
p(£)2, i.e. we can say that

^ ■ - p ( f ) 2̂ L (5 ) ,p (0 2̂ T(f)



CHAPTER 4. SEEKING SOLUTIONS 57

Since # l(£ ) and i7r(£) enter hij in the same way, they will have the same limiting 
behaviour, so while the following discussion is in terms of HL(£), the same is true 

for tfT(0-
Since must be smooth everywhere, at the coordinate origin its ^-derivative 

must be finite and therefore at most constant, i.e.

Urn d(hij < £° (4.8)

To translate this into a limit on # L(£), let

lim ffL(f ) ~  C  (4-9)

To find the limit for the exponent go we substitute (4.9) into (4.8) and use the fact 
that limp(£) =  £:

lim de (£2+9°) < £°

= >  lim £1+9° < f°

=>■ 1 +  go > 0

= >  Qo > - 1

In the limit £ —> z  —> oo the restriction on hij is that it must vanish:

lim =  0
z —>oo

We make a similar argument as above by letting

lim H l (z ) ~  z q°°
z —►oo

Thus, using the fact that lim p ( z )  =  z ,  we deduce:
2 —> OO

Qoo 2

So now that we know the maximum size we can expect HL(^) and i / r ( 0  to
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have (i.e. lim HL(^) = f  1 and lim HL(z) — z 2), we now return to where we left
\  >0 z —* oo J

off in deriving the gauge-invariant action in section 4.2.

4.4 The Gauge Invariant Action (at last)

Now that we know how the fields behave in the limits f  —> 0 and £ —* oo we are 
ready to evaluate the boundary terms of (4.3). We return to the example term 
considered in section 4.2, i.e.

First consider the limit at £ =  0:

P'(f) Z=o
=  lim

< lim £ x £ x C ~  s s

=  lim £

=  0

Similarly for the limit at £ =  oo:

p'(«)
= lim ffL'(z ) i/T'( z ) ^

4=oo z-*°° P (z)
<  lim z -3 x z 3 x z5

=  lim z
z —*oo 

=  0

In this way we find that the entire boundary term of (4.3) is equal to zero 
and thus we now give the full form for the action expressed soley in terms of
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gauge-invariant variables:

poo
S 2,k=  /  df 

Jo

( l2  -  3 « p(£)2 !/(* ({))) +  S ( 0 2 ^  |  M f  )2 (f)))

+  •4 (€)-g (O p(3 ^ )i‘ ( 9 -  2 ■« p(Oa (* (f l))  +  g ( 0 - g ( 0 fcp(^ (^ (fl2

36$ '(£)2 ( 9  +  A V K )2) -2 1 6 p K )# /(0 * ® '(f)  U ' m ) )+ z n f  p { i ) i
72p'(£)4

+  36pt i )2( p ' (0 2U ' m ) ) 2 +  ®'(£)2 ( - 4 k £/(«(€)) +  U " m ) ) ) ]

+ 6 /c p(?)3 p'(?) 3»'(?) U ' m ) )  (2 '(*(£)) +  3 $ '( 0 2)

+  Kp(£)41»'(02 ( l6  k B(<S(f))2 -  6 u m ) )  U " m ) )  + 3 $ '(£ )2 «/"(*({))) 

12p(£)3p'(£) , /  - „ , s \ M £ ) 3+ A ( S ) A \ e )  /K ) p ™  + (^K)B'(O + B(0^'(€))

4 p « ) V ( f )  ^ w , , , / © 5^ ) 2 . ^ j PG)6® ^ ) 2A [ t ) z w  ^  + Z ( { )  2#/

+  Z f t Z ' t e ) ^  ( 3 p (0  p'K) t / '( $ (0 )  -  9 *'(£) +  2 * p({)2$ '(?) [/($ (£)))

(4.10)

(4.10) can be treated as a differential equation to be solved alongside 2 (f) , just 
as S q was.

4.5 The Numerical Integration

We have already obtained the form of -2(f) as f  —> 0 and can thus generate 
appropriate initial conditions for 2 ( f )  and 2 '( f )  which are needed to numerically 
integrate (4.1c). We solve this equation along-side those for $ (f) and p(f), which 
together with the equation for the action, (4.10) makes a seventh order set of 
ordinary differential equations.
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F ig u re  4.1: 2 (£ ) is plotted in blue on the left-hand scale, and 
4>(£) in red using the right-hand scale. Using the well-behaved 
solution at the origin results in Z{£)  diverging when 4>(£) crosses 
from true vacuum to false.

Unfortunately, on integrating out, we find th a t soon after passing the wall 
Z(£)  diverges, as shown in figure 4.1. From (4.6) we knew th a t it was possible 
for Z(£)  to diverge exponentially as £ —► oo, so we need to consider our situation 
in more detail. Equation (4.1c) is a second order linear differential equation, so 
we expect its solutions to form a two-dimensional vector space. In section 4.3 we 
found a basis for this solution-space in the limits £ —> 0 and f  —> oo. However, 
we found tha t in both limits only one of the two basis solutions was ‘good' (i.e. 
physically acceptable), and therefore the only chance of there being a complete 
physical solution is if the good basis solution in each limit tu rn  out to be limits 
of the same solution -  mathematically we have no right to expect this, but the 

assumption th a t a physical solution exists might lead one to hope it. To put this 
in terms of the expansions (4.4) and (4.6) we let:
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lim Z ( f ) =  a 0,g Zot9(£) +  a 0,& 2o,&(0 (4-n )

lim >2̂ (£) =  OiQQ g ZoQ gi^) +  OLqoJ) £oO,b(£)
£ —►00

where the o; are arbitrary coefficients with the lg' subscript indicating the ‘good’ 
(physical) solution, and the ‘6 ’ subscript indicating the ‘bad’ (divergent) solution . 1 

Our ‘hope’ is that the solution (a 0 ,s>a o,&) — (1,0) integrates out to the solution 
(aoot9, a 0 0 jb) =  (1,0). As we integrate for >£(£), at each step there is some numerical 
error, so that even if at some point our solution is the one that is well-behaved at 
infinity, (ctoo,g, &oo,b) — (1 , 0 ), eventually it will pick up some of the bad solution. 
Since the bad solution grows exponentially, even having a small amount of it 
present will over-shadow the good solution, so that numerically we are doomed 
to always find a divergent solution as f  —)► oo. However, to check that a physical 
solution exits, in theory we need only show that (oo)5, &o,b) — (1 , 0 ) gives the best 
possible (i.e. smallest) solution as f  —> oo. To do this, we need only consider two 
ratios of <a0 ,5  : a oo)5; integrate these solutions out to some value of f, say £f , and 
from the values of Z(£f ) determine what ratio of aoi9 : 0 :0 0 ,0  would give Z(£f) = 0  

(which we are considering to be synonymous with (aioo ,̂ o ^ )  — (1 , 0 ))- If we find 
this ratio to be (0 :0 ,0 , a o,&) — (1 , 0 ) then a physical solution exists, and the problem 
becomes that of finding a best possible numerical fit to it, possibly as we did before 
for <£(£) by patching solutions together (see section B.2).

Unfortunately we fall down at the first hurdle: considering two ratios of (0 :0 ,0 , c*o,&)- 
This is because the omitted terms of the bad solution are bigger than the leading 
order term of the good solution, so an initial condition with a 0,& 7  ̂ 0  cannot have 
Oo,g specified with any accuracy:

lim Z(( )  = a ag Z aJ £ )  +  a ob Z n h(£)

=  a 0,g ( C ~2 + O(O) + a o , b (r(m+5) + 0(r<m+3>))
= ao,i,r(m+5) + o ( r (m+3))

Thus the only initial condition we can confidently use is (0 :0 ,0 , &o,b) — (1,0).

1A solution is characterised by the ratio of ag : ab, so we consider solutions normalised by
otg2 + ab2 = 1.
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The antidote to this problem is to begin integration at some mid-point, say 
£m =  2.5; designate two solutions as our basis solutions, say (Z(£m), Z'(^m)) = 
(1,0) and (i£(£m), Z '(£m)) =  (0,1), and once again find the ratio of these solutions 
that gives the best solution as f  —> oo. We then integrate (<ao)5, ao,&) =  (1,0) out 
to £m to see how this solution is represented in terms of the basis states at f m, and 
hope it is consistent with the best solution for £ —► oo.

We find the best solution as £ —► oo is given by (£ (fm), Z'(£m)) = (0.0707, —0.997), 
but that (aotg,aotb) = (1,0) corresponds to = (0.991,-0.137). If
we re-normalise these solutions to have Z(£m) — 1 we find they are respectively 
0£(fm), Z'(€m)) =  (1, -14.1) and (Z(£m), Z'(£m)) = (1, -0.138), which are plotted 
in figure 4.2. We can clearly see that these solutions are very different, and repeat­
ing for different values of m  reveals similar disparities, thus we must conclude that 
we cannot find any physically acceptable solutions. We discuss this in the final 
chapter.
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F igure  4.2: The non-diverging solution at the origin and the 
‘best' solution at infinity plotted together, both normalised to have 
Z { 2.5) — 1. The discontinuity of the gradient at this point indi­
cates that these solutions are not the same, and thus no physically 
acceptable solution exists. The instability of the ‘best’ solution is 
revealed by its eventual divergence, seen here at £ ~  5.5



Chapter 5 

Discussion & Conclusions

The Light Wall

In the previous chapter we discovered that there are no solutions to the pertur­
bation field equations. Initially we find this counter-intuitive, since it seems a 
reasonable task to propose a solution (possessing symmetry) to a set of equations, 
and then to find perturbations to this solution which break the symmetry. Thus 
in this chapter we discuss possible explanations for this result.

When setting up a perturbative expansion, it is implicitly assumed that the 
perturbation fields are finite, so when (as in our case) we find a perturbation field 
diverging, we must admit that our perturbative expansion has broken down. A 
possible reason for this could be that the very act of introducing the expansion 
loses some important feature of the system. In this work we expanded to linear 
order, which is common even in the presence of gravity (which is an inherently 
non-linear theory), so we would not expect this to be a problem. Nevertheless, 
we may consider the case in which the ‘mass’ of the scalar field is ‘light’, and 
thus neglect the effects of gravity. Aside from this, removing gravity reduces the 
complexity of the problem, which is usually a good thing to do when trying to 
understand some result. To do this in practice, we merely let k =  0. Returning to 
the equations of motion for the bounce, (2.25), we can immediately see that this 
gives p(£) = £, which we expect since in the absence of gravity space-time will be 
fiat. Our only equation of motion is now the scalar field equation, (2.25a), which
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upon once again assuming a spherically symmetric solution, <h(x) =  4>(£) becomes:

*" «) =  W O )  -  |  ^ ( f )  (5.1)

This equation can be solved numerically as before, producing a similar bounce-like 
solution. Upon once again introducing perturbations via

$(z) =  $ ( 0  +  eA & (O ^ M

we find the order e part of the scalar field equation is

M "(0 = - |  Afc'K) + m i )  + U"{$(0 ) )  (5-2)

Since this is what we get by transforming (4.1c) back from Z(£)  to A4>(£) with 
n — Hl {£) = / / t ( 0  — 0 and p(£) = f, we instantly know that the solutions in the 
limits f  —> 0 and £ —> oo are the same as before, namely:

lim A $ (0  i x f ,m+3)(l + 0(52)) (5.3a)

lim A$(£) oc £m(l +  0 + ) )  (5.3b)

and (recalling z = £ +  b)

lim A$(z) oc— — ( 1 +  O ^ (5.4a)
z-> oo  z 2 \  \ z ) )

lim A4>(2:) oc ( l  +  ( 9 ^ - ^  (5.4b)
2 — > 0 0  z 2 \  \ z J )

Although we might once again hope that the good solution for £ —> 0 would 
integrate out to the good solution for £ —> oo, we find that this is not the case.

Back to Lorentz space

To gain some physical insight we can consider the perturbation back in space-time, 
i.e. in Lorentz-signature 4+1 space (as opposed to Euclidean-signature space, where
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our physical intuition is not so easily applied). In Lorentz space as time increases 
from — oo the bounce is a shrinking spherical bubble of true vacuum which at t = 0 
reaches a minimum radius, ‘bounces’, and then expands for the rest of time. The 
perturbation field equation (5.2) is transformed to Lorentz space by merely flipping 
the sign of U , and so the solutions are obtained by the same transformation. Since 
/? =  yJU($ F), this means the Lorentz space solutions are obtained by j3 —> i/3, 
and thus independent real-valued solutions are given by

lim  » W o ( ^ ( 1 +  0 A ) )  (5.5a)
Z—► OO z l \  \ Z  J J

Um A$(z) <x +  o ( L j  j  (5.5b)

This looks promising -  in Lorentz space both solutions are decaying oscillations
for f  —> oo. However, to obtain the solutions for £ —> 0, we must also consider the
behaviour of the harmonics in Lorentz space.

Lorentz-space Harmonics

To obtain the Lorentz-space harmonics we will need the metric of the space in 
‘polar’ coordinates. We started off in Lorentz space with coordinates {t , x, y , z, w} 
where we would define a radial coordinate as

2 2 i 2 , 2 i 2r = x + y  + z + w

We then transformed to Euclidean-space with coordinates {r, x, y , z, w}, but worked 
in polar coordinates {£, *0, x, 0, <P} where f  is the Euclidean-space ‘radius’:

i-2 2 , 2 , 2 I 2 , 2£ =  r  +  x + y + z + w  

This transition from Cartesian coordinates to polars takes place via

r  =  £ sin 0  

r  =  £ cos 0
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where at each point (£, ip) there is a 3-sphere coordinatised by (x, 0, </>)• The range 
of ip is [0,7r] and the line element takes the form

ds2 =  d£2 +  p(^)2dD,4 2

= d£2 +  p ( 0 2 (d ^2 +  sin2 ^  dQ32)

where dDn2 is the line element of an n-sphere.
In Lorentz space (outside the light cone) the transformation from Cartesian to 

polar coordinates takes the form

r  =  £ cosh ip 

t — £ sinh ip

where there is once again a 3-sphere at each point, but now the range of ip is 
(—oo, oo) and the line element takes the form1

ds2 =  d£2 +  p(t;)2(—d'ip2 +  cosh2 t/>dQ32)

Thus in this case when we come to solving for the harmonics, Y{u),  we separate 
the variables as before (see section D.l):

4

*=i

but find the equation for the ^-function is:

0 =  /"WO +  3tanh ip f  (ip) +  ( cq^ 2 ^  ^  /WO (5-6)

(where k2 is the second separation constant -  see section D.l). We do not need to 
solve this equation in full for our current purpose, but just determine the allowed

1 These coordinates are not those one would usually use in Lorentz space, but we do so here 
to see the connection between the harmonics in Euclidean and Lorentz space. In fact, these 
coordinates are quite natural for our situation, since (as we saw at the end of chapter 2) xp relates 
to the proper time on the brane.
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values of the separation constant (k2), since these enter the expressions for AL(£) 
in the limit f  —> 0, (5.3), (recall k2 = m (m  +  3)). Consider the limit ip —*■ oo, for 
which (5.6) becomes

o =  /"WO +  3 f'(ip) -  k2 f{ip)

which has solutions:

lim f(ip) oc ev
ip—too

lim /(V>) oc e- l/(,,+3)xp—>00

where k2 = v(v +  3). Since f(ip) must be finite for all values of ip these solutions 
must have Re(i/) < 0 and Re(i/) > —3 respectively.

A similar analysis for ip —> — oo reveals the same solutions, and thus in general 
we must combine the limits on v to —3 < Re(^) < 0. Clearly the range v G [—3, 0] 
satisfies this, but we can also consider complex values of v and keep k2 real-valued, 
by letting

3 ,v — —— +  i X (A G K)
z

which gives

So whereas in Euclidean space we find k2 = m(m  +  3) with m  G Z + , in Lorentz
space we find k2 = v(v +  3) where either v G [0, — | ]  or v = — | +  z A with A G M+ .

Returning to (5.3), we can now determine the behaviour of A<I>(£) as £ —> 0 in 
Lorentz space by letting m  —* v, which for real-valued u {y G [0, — |]) gives

lim A $ ( C o c r (l'+3)(1 +  C, ($2)) (5.7a)

l im A $ ( O o c r ( l  +  0 (£ 2)) (5.7b)
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or for complex-valued v (v = — |  +  z A):

lim A$(£) oc £-3/2 cos(Aln£)(l +  0 ( £ 2)) (5.8a)

lim A<f>(£) oc £_3//2 sin(A ln£)(l +  0 (£ 2)) (5.8b)

In either case (real or complex z/), we find both solutions are divergent at the 
origin, and thus not acceptable.

So, with gravity neglected, in Lorentz space we find the perturbations to the 
scalar field are all well behaved as £ —> oo, but divergent as f  —> 0.

Incoming Radiation?

So what is the explanation for this lack of physical solutions? The factors of £-3/2 
in (5.8) indicate ‘focusing’ of the field towards the origin. Indeed, we can look
at the equivalent result in a general number of dimensions, d. In that case, the
Lorentz-space light-wall perturbation equation would have been

AJ>"(£) =  +  A®(0 U L ± A z 3 .  _  U " ( m ) )  (5.9)

(so that for d = 5 we get back (5.2) with k2 =  3)). If we once again considered
complex-values for v (whilst keeping k2 real):

v = \ — ^  +  zA

we find solutions like those of (5.8) but with the factor £~3/2 generalised to f 1~d/2.
The occurrence of radial functions diverging at the origin (and of factors like 

£1-d/2) is reminiscent of scattering theory, in which one might expand a state with 
well defined linear momentum (i.e. a plane wave) in terms of states of well defined 
angular momentum. In doing so, the relevant radial functions are the spherical 
Bessel functions, which in d dimensions are related to the normal Bessel functions 

by
j n - i + d / 2 { r )  ~  r l ~d/2 Jn_i+d/2(r)
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There are two kinds of Bessel function, both of which are decaying oscillations at 
infinity, but while those of the first kind, Jn(r), are finite at the origin, those of the 
second kind, Nn(r) (also called Neumann functions) are divergent. Since a plane 
wave is well behaved at the origin, its expansion is in terms of Bessel functions of 
the first kind. But, in considering a scattering process (e.g. off of some potential 
localised around the origin), then the solution is no longer just a plane wave, and 
Neumann functions must also be included. In this case it is often convenient to 
work in a different basis of Bessel functions known as the Hankel functions, defined

by

Hn }(r ) = Jn(r) +  i Nn(r)

H ^ ( r )  = Jn( r ) - i N n(r)

The advantage of the Hankel functions is that at large distances they behave like:

lim f f W ( r ) ~ - L c<r
r —>oo y / T

lim H ^ ( r )  ~  ~̂ = e~tr
r —► oo y j T

allowing their interpretation as outward and inward propagating radiation. Whilst 
Hankel functions are decaying oscillations at infinity, they are divergent at the 
origin, just as we found A<f>(£) to be earlier.

So perhaps the fact the solutions to our perturbation equation are divergent at 
the coordinate origin is a result of incoming radiation. One possibility is that this 
is an artefact of the mode expansion, i.e. that we have just chosen a bad basis. But 
if this is the case then presumably we could expect there to be some combination 
of different modes for which the divergences cancel, but this seems unlikely given 
the linear independence of the harmonic basis. Nevertheless, certainly one way 
to proceed would be to analyse the perturbations without performing the mode 
expansion. Given the complexity of the problem, the practical way to do this 
would seem to be a numerical simulation, i.e. to consider a large ‘grid’ of points
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in space-time on which the perturbation to the scalar field is defined.2 The form 
of the bounce is known numerically, so there is no need to solve for this again -  it 
could be entered as a background field. The simulation can begin at time t = 0 
(when the bubble of true vacuum is at its smallest) with some small non-zero 
value to the perturbation fields, and run forward to see how this evolves -  if there 
appears to be no problem at the origin, then this is indicative of a problem with 
the mode expansion.

This leaves the possibility that the incoming radiation is a truly physical effect 
(as opposed to an artefact of the mathematical formulation). This is certainly 
more appealing: the (perturbed) bounce is an expanding wall of higher energy 
density, and is thus able to radiate. Since this wall is in fact a spherical shell, 
it seems natural that energy radiated from it inwards would be focused towards 
the origin, which shows up as a divergence in the scalar field (just as in scattering 
theory). In the presence of gravity there is a further complication: a large amount 
of energy contained within a small region (in this case, a small radius about the 
origin) can give rise to a black hole. This is similar to the work of [46] where in 
3 +  1 dimensions and in the ‘thin-wall’ context it was concluded that vacuum decay 
could result in ‘gravitational collapse’, but since we have considered the light-wall 
case too, we conclude that the phenomenon is not a purely gravitational effect, 
but rather a result of the bubble’s motion. On the one hand this seems like a 
problem since a black hole is rarely considered as a perturbative effect, since inside 
the event horizon the role of time and radial coordinate is reversed. On the other 
hand, outside the horizon there is no problem in considering the effects of the black 
hole perturbatively, and since the horizon acts as a new boundary, this is where 
we would now apply boundary conditions (i.e. that only incoming radiation be 
permitted) -  which could be our saving since we could then allow solutions which 
diverge at the origin (in much the same way that in scattering theory one can allow 
incoming radiation if the region of interest does not include the origin).

In the presence of a black hole, a further complication could be if the new 
boundary condition (on the black hole’s event horizon) is not Lorentz-invariant,

2To reduce the complexity this could be done in 2 + 1 dimensions (at least to begin with), 
with no loss of generality, at least to the problem in hand, since we have seen that even for d — 3 
our theory predicts divergences like £-1/ 2.
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since then it will not be rotationally invariant in Euclidean space. This means it 
may not be possible to apply the same perturbation formalism as we did here, in 
which case it would once again be prudent to perform a full numerical simulation 
as suggested above.



Summary

We now summarize this thesis. Motivated by interest in brane scenarios in which 
an extra dimension can be large, we considered a 4 +  1 space-time occupied by a 
scalar field which experiences a potential that has two (un-equal) local minima. 
By assuming spherical symmetry, we solved the field equations for the ‘bounce’ -  
the configuration in which space is initially filled by false vacuum, but a bubble of 
true vacuum expands overcoming the false vacuum -  commonly known as vacuum 
decay.

By comparing with an exact solution, we interpret the wall between the two 
vacua as a ‘toy model’ brane-world with some small thickness. The advantage 
of considering a ‘thick’ brane was meant to be the relative ease with which we 
could introduce perturbations to it, from which we could go on to construct a 
CMB spectrum. We setup perturbations to the bounce as an expansion in a 
harmonic basis with five radial field coefficients. The equations of motion for 
these perturbation fields were reduced to a single ordinary differential equation in 
one gauge invariant variable, which we could solve numerically. We also obtained 
an expression for the action as a one-dimensional integral in terms of the gauge 
invariant variable, so that the action of each mode could be calculated.

Surprisingly we found that there are no physically acceptable solutions to the 
perturbation field equations, and interpret this as either a deficiency of the m ath­
ematical formulation (i.e. the mode expansion), or an interesting physical effect; 
that of the focusing of radiation. For any configuration other than the perfect 
bounce, the wall radiates energy, which when focused at the origin can give rise 
to a black hole, which would require the anti-de Sitter space inside the bubble to 
be generalised to Schwarzschild-anti-de Sitter. In either case the suggested way to 
proceed is via a full numerical simulation on a discretized space-time grid.



A ppendix A  

Extrem ising the A ction

In classical mechanics, Hamilton’s principle of least action states that a system 
evolves so as to extremise its action. In quantum mechanics the system does not 
evolve so as to extremise the action, but rather the system evolves in every possible 
way with a probability related to the corresponding value of the action. However, 
to study some processes, such as tunnelling, which involves the use of instantons, 
one may want to know which path extremises the action, since this will give the 
most likely evolution of the system.

In this work we are interested in extremising the action of a scalar field and 
gravitational field, to find the configuration corresponding to vacuum decay. To 
extremise the action means to find the field solutions such that when subject to a 
small variation, the corresponding variation in the action is zero to first order, i.e. 
to find the fields <f> and such that

5[$  +  e 5$, + e Sg^] = 5[$, 9 +  ®{£2)

for arbitrary perturbations 5<I> and Sg/XI/. We will see how to do this for our action 
in the following sections, where for the scalar field we find the Euler-Lagrange 
equation, and for the gravitational field, Einstein’s field equation.
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A .l The Scalar Field Equation

Consider an action dependent on a scalar field and its derivatives (in d dimensions):

S  = J  C ( $ ( x ) , d ^ ( x ) ) d dx

If we subject the field to a small arbitrary variation, we find the resulting 
variation of the action (to first order in £<F) is

-/(
dC \ d

If we integrate this by parts and only consider variations such that <5<I>(x) —* 0 as 
x  —> oo, we find

dC „ dC
SS = J s $  ( ^  -  ) ddx

For $(x) to extremise the action, we must have 6S = 0 for arbitrary 5$, which we 
can see implies

dC a dC
<9$ * 8 ( 8 ^ )  ' ■*

Equation (A.l) is the Euler-Lagrange equation for a scalar field.
For the Euclidean action (2.19) we have

£  = y/9 

and thus (A.l) becomes

+  u ( * )  -  E

y / 9 %  = 8„{y/ggrav9t) (A.2)

i.e.
v 2$  =  (A.3)

d<F
which is the equation of motion we will use for the scalar field.
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A .2 Einstein’s Equation

In this section we follow the outline given in [47]. To extremise the action with 
respect to the gravitational field, we consider it split into two parts:

S = SM + SG

where SG is the action of the gravitational field, and Sm  is the action of all other 
fields (treating the gravitational field as an external one). We now consider the 
variations to S m and SG resulting from the variation g^u —► g ^  +  Sg^.

The variation to Sm  is used to define an energy-momentum tensor for the 
system, via:

5Sm = I J  ddxA i \  T>u' S9 ^  (A.4)

i.e. T^u is related to the ‘functional derivative’ of Sm with respect to g^v.
The choice of SG is of great significance -  it determines the theory of gravity 

that will be used. In this work we use an Einstein-Hilbert action since (as we 
shall see) its extremum gives Einstein’s field equation of General Relativity.1 The 
gravitational part of the Einstein-Hilbert action is

S a  =  ^  j  d dx ^ M  R

where R  is the Ricci scalar curvature. To evaluate 8SG we must determine the 
variation in the integrand resulting from a variation in the metric, Sg^:

S(V\F\R) = RSV\9\ + V\9\iR
= R 5 ^ \  + ^ W VR»„)

= rsV\9\ + V\9\r̂ &<r + Ag\ <r sr̂
The last term of this expression can be re-written using the Palatini identity:

M r  ̂  = V\i\ or «t£a);i, -  vwi { irK )*
xTo work with a different or modified theory of gravity compared to Einstein’s, extra terms 

would be included in SG-
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The advantage of this is that it is now evidently a covariant divergence, and thus 
when integrated over all space is equivalent to a surface term (by Gauss’ theorem) 
which we take to be zero for a metric variation that vanishes at infinity, i.e. Sgpv —> 
0 as x —> oo. Thus we can now say that

SSg = h , J ddx (R5All + VW\ &<r) (a.5)
We wish to express this in terms S g and thus need expressions for 8 g and 
8y/\g\ in terms of Sg^,  which we now derive:

9 „ 9 up = Sp

=► S{glwSr p) = 0

= >  $9nv 9 VP +  9nv &9VP =  0

= *  bgap =  - g pa gvp (A.6)

For Sy/\g\ first consider Sg:2

Sg =  ^ (d e t(^ ) )

=  det(g ^  +  Sg^v) -  det(^MI/)

=  det(gpc{8° -  gvpSgap)) -  d e t ( ^ )

= g{det(Sl -  gupSgap) - I )

= g{ 1 - T \ ( g up8g°p) 1)

=  - g g ^ g T

=  9 9 P^ 9 „

2 This uses the fact that for a matrix A and a small parameter e :

det(l + e A) = 1 +  e TV A + O (e2)
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which allows us to see that

<5a/M  = \  Isl 1/2 ^ IpI 

= ^ M“1/2 \g\ g^Sg

/iv

Thus (A.5) becomes

ss° =  Tk J ddx ( R \ A g \  s r s g ^ + V \ g \  R*, (-<r <r sqc) 

=  ^  / &dx A a \  ( r t  -  1 i? < r )  ig»»

Recombining this with (A.4):

SS = SSM +  SSG

J d dxy/\g\ I t *1' -  —  ( R ^  -  - R g  
2 2/c V 2 s9,HU

we can see that requiring £5 =  0 for arbitrary Sg^„ amounts to

(A-7)

RTV -  - R g » v = k T»v 
2 y

which is Einstein’s field equation.
In this work we consider the Euclidean-space action (2.19):

5 k = J  d bXyfg \ d ^ d ^  + 1/($) -  E
A AH

(A.8)

where the change in sign of the scalar curvature R  means that the relevant matter- 
action needed to determine the energy momentum tensor appearing in (A.8) is

S m — —J  d



APPENDIX A. EXTREMISING THE ACTION 79

Thus using (A.4) with identities (A.6) and (A.7) we find

= - \ g ^ d x$ + d d v<b (A.9)

It will be more convenient to use Einstein’s equation in the form where the 
trace is taken of the energy-momentum tensor (T — T£), rather than the Ricci 
tensor:

0 9nvR ft T^v
1 
2

R - - R  = k T  
2

R = 2 h KT

so that Einstein’s equation becomes

R»„ = k [ T , „ - ^ T

Thus in the present case of d = 5 and (A.9), Einstein’s equation becomes

= * ( |  u(®) + 8 ^  (a .io )

which is what we use as our equation of motion for the gravitational field g ^ .



A ppendix B 

Fine Tuning

In chapter 2 we solved the equations of motion, (2.25) numerically to obtain the 
bounce. It was hinted that doing so was more intricate than was explained in the 
main text -  in this appendix we go into more detail. In the next section we see 
that the desired numerical solution is unstable, and how we get as close to it as 
possible. In section B.2 we see how the ‘best possible solution’ is improved by 
patching it with the known analytic behaviour in the long distance limit.

B .l  Finding <E>o

We can gain useful physical insight by considering (2.25a) in a different light.

« "(f) =  U ' m ) )  -  4^ | y $ '(«) (2.25a)

If we imagine $  to be the x-coordinate of a classical particle (with unit mass), and 
£ to be the time-coordinate, then 4>" is the acceleration of the particle, and (2.25a) 
tells us that the particle is experiencing a force resulting from the potential energy 
— E/($), and a (variable) damping force proportional to its velocity given by 4^-<F. 
The potential experienced by the particle, —[/($) is shown in figure B.l. In this 
picture, the solution of $(£) corresponding to vacuum decay is that of the particle 
starting at the top of the peak (4>o =  $ T), rolling down it and then up the other 
peak to come to rest at <I>F at some time in the infinite future (4> —» 4>F as £ —> oo).
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<I>

F igure  B .l:  The upside-down potential, —U, used to discuss the 
analogy between vacuum decay and the motion of a particle with 
position <f> at time as described by (2.25a)

Of course, this is a very unstable scenario, since the initial energy of the particle 
must be just right -  not enough and it will not have enough to reach <hF, too much 
and it will reach <hT with a non-zero velocity and thus overshoot it (once (I> > d>F, 
the particle will roll off to infinity, i.e. <f> —> oo as £ —> oo).

Our control of the initial energy given to the particle is through its starting 
position (<h0) alone, since we know it must s tart with zero velocity ($ '(0) =  0 is 
required for T to be smooth at the origin). Thus we now consider the possible 

scenarios resulting from differing values of d>0, so tha t we will be able to autom ate 
the process of finding the optimal value of T 0.

If we were to start with T 0 =  T t then from (2.25a) we can see th a t the solution 
is <!>(£) =  <f>T, i.e. the particle sits atop the peak forever -  a state of unstable 
equilibrium. This is equivalent to the scalar field being at true vacuum for all 

space and time -  obviously vacuum decay is not a possibility in such a case. Thus, 
we must start T off slightly past the peak. (I>0 >  T?, which means tha t the scalar
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Figure B.2: $  starts too close to 4>T, and does not deviate much 
within the integration range considered.

field never reaches true vacuum exactly.
If is too close to <I>T then the force (from the potential) acting on the particle 

is very small, and it will roll down the slope very slowly. Since in practice we only 
integrate out to a finite value of £, it is possible that by the time we get to this 
value $  is still very close to 4>T, as shown in figure B.2, which means our solution 
has not reached <hF and therefore does not correspond to vacuum decay. Thus, we 
must make sure that our starting value is far enough away from <I>T so that <E> can 
reach <f>F within our integration range -  i.e. the particle starts rolling soon enough 
that it can reach <I>F in the time range we consider.

Once we are sure $  is starting far enough from 4>T that it has enough ‘time’ to 
get to <f>F, we should find a range of values for <̂>0 for which $  overshoots <E>F, never 
to return, as in figure B.3. Obviously for this range of values the particle has too 
much energy and we need to increase 4>0 further. We say we should find a range of 
values, because it is possible that we will not, depending on the form of E/($); if 
U($m) is too big (i.e. the well between the peaks of figure B.l is too deep) or |$ T| 
is too small (i.e. the peak at 4>T in figure B.l is not much higher than that at 4>F) 
then the particle will lose too much energy due to the damping so that no matter 
what the value of <I>o it can never reach the top of the peak at <hF (in which case 
the output will look similar to figure B.4). Thus we must make sure the values 
chosen to define £/(4>) in (2.27) are such that this is not the case. In terms of the
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F igure  B.3: T overshoots Tp. This indicates tha t 4>0 needs to be 
increased.

scalar field, this means tha t there are possible forms for U (T) for which vacuum 
decay is not possible. We can understand this in terms of energy balance for 
a bubble of true vacuum to form, the energy ‘cost' of creating the wall between 
the vacua (where the potential has a maximum) must be compensated by the 
negative energy of the true vacuum relative to the false vacuum. While for a fiat 
background there is always some radius for which this balance occurs (although 
it may be outside our range of integration), when gravity is included this is no 
longer true. As is explained (and proved in the limit [/(<bT) ~  /7(TF)) in [44], 
the addition of gravitational potential energy and the modification to the volume 
and surface area of the bubble due to the curved background mean tha t there are 
configurations of 4/(T) for which no value of the bubble radius will balance the 
energy differences, and thus no bubble can form gravity can stabilize the false 
vacuum.

Once we have adjusted our potential to ensure it perm its the particle to reach 
<f>F within our integration range, we must concern ourselves with what happens 

when <4>0 is too far from <1>T i.e. when the particle has not got enough energy. If the 
particle has not got enough energy to reach <f>F then it will reach some maximum 
value, then fall back into the well and oscillate back and forth, losing energy due 

to the damping, as in figure B.4. This possibility is complicated further by the 

behaviour of p(£). From (2.25b) we can see th a t as the contribution from $ ;(f)2
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F igure  B.4: 4>0 is too far from <f>T the particle does not have 
enough energy to climb out of the well and falls back in.

becomes significant (due to the oscillations) p"(C) can become negative enough for 
p'(£) to become negative.

becomes an ‘anti-damping" term, increasing the velocity of the particle, which 
ultimately might see the particle have enough energy to overshoot 4>F (or 4>T), as 
in figure B.5. In practice this means tha t if <b exceeds 4>F then this may in fact 
mean th a t 4>0 was too far away from (I>T rather than too close (as in figure B.3) 
it is sufficient only to check the behaviour of p(£) to determine which is the case.

The analysis thus far gets us quite close to a good solution, but to get even 
closer we make use of the known analytic form of our desired solution, (2.34):

(2.25b)

^  P;( 0  becomes negative, then the ‘dam ping’ term in (2.25a) switches sign and

* (z ) =  * F +  c e - » ‘ ( T  +  _ L )  +  0 (e-W .)  

p(z) — z +  O(e~20z) (2.34b)

(2.34a)

Using (2.34a) and the numerical data for 4>(£) and 4>'(£) we can calculate two 

values for the arbitrary constant c. By varying Tq we search for the solution for
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F igure  B.5: Oscillations in 4> cause p'(£) to becoming negative, 
leading to ‘anti-dam ping’ resulting in shooting off to oo.
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F igu re  B.6: Solutions which are very close to the desired one, 
but are ultimately unstable.

which these values of c coincide as best as possible. In this way we may find 
solutions which are very close to our desired one, but ultimately they are unstable, 
and diverge, as in figure B.6. To find our perfect solution we take one of these and 

‘patch' it with the exact solution, as described in the next section.
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B.2 Patching Solutions

In the previous section we found the best possible solution, given numerical im­
precision. Now we wish to improve on this by taking a ‘best possible’ solution,

using equations designed to enforce the asymptotic form. In this way, when we 
come to solve the perturbation field equations, we can use the same algorithms, 
and at some point merely switch from one set of equations to another.

So first, how do we determine at which point we will switch equations? Consider 
the solution for <£(2 ) in the limit z —> oo, (2.34a), and its derivative, but with the 
constant c different in each case, the neglected terms of the expansion omitted, 

and using the definition g(z) = — +  —— ;yl n

These equations can be re-arranged to give expressions for C\ and C2 in terms of

for Ci and c2. If our numerical solution was a perfect fit to (2.34a) then we would 
find ci =  c2, so to find the point where out solution best fits (2.34a) we look to 
make the ratio c i/c2 as close to 1 as possible. Typically we find a point where

Once we have found this point, we integrate from there on using equations 
which enforce (2.34a). Consider again the expression for

and from some point where it closely matches the analytic form (2.34) re-integrate

$ ( 2 ) =  <f>F +  Ci g(z) e Pz 

$ '(z) =  c2 (g'(z) - 0 g ( z ) )  e~0z

(B.2)

(B.3)

$ ( 2 ) and <f>'(z) respectively, so that using the numerical data we can obtain values

^ - 1  ~  10-3.

$ '(z) =  c (g'(z) -  0  g{z)) e 02

Substituting to express the right hand side in terms of $ ( 2 ) gives:

tf(z ) =  (*(*) -  <J>F) ^  -  /?) (B.4)
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F ig u re  B.7: Patched solution -  at f  =  4.4 we find ^  =  1.003 and 
from this point on integrate out using equations (B.4) and (B.5)

The solution to (B.4) is
<f>(z) =  Tf + d\ e~Pz

where d\ is an arbitrary constant. Thus, integrating using (B.4) automatically 
yields a result of the desired form. Similarly, for T>'(z) we use

=  X ~  % P 9 \ z )  + 0* g(zj)  (B.5)g'(z) -  ( j  g{z)

because it has solution

&(z) = d2 (g'(z) - 0

which is also of the desired form.
By doing all this we ultim ately produce a solution like that in figure B.7 where 

converges to 4>F as £ —> oo, so we take this as our vacuum decay solution.



A ppendix C 

The Vanishing of S \

In section 3.3 we claimed that having performed a perturbative expansion about 
a solution which extremises the action, the first order perturbative contribution 
to the action should be zero. In this appendix we verify that this is indeed the 
case for an arbitrary perturbation that vanishes at infinity (as was assumed when 
deriving the equations of motion in appendix A).

Whereas specifying an arbitrary perturbation to the scalar field is straightfor­
ward:

$(z) =  $ ( 0  +  etf$(x)

it is not quite so simple for the metric. To perturb the metric in the polar coor­
dinate basis by an arbitrary amount would in general lead to singularities in the 
scalar curvature, so instead we perturb the metric in a Cartesian coordinate basis. 
First we change basis, using x  as the polar coordinates, and c as the Cartesians:

c _  dxa x dxx
5'“/ “  l h v 9aKlkF

so that gc is the metric in the Cartesian basis and gx in the polar basis. To perturb 
the Cartesian metric is trivial:

flJL. =  9% +  £ s9w

(where the elements of the metric perturbation, SgM„, are arbitrary functions of
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the Cartesian coordinates). We then transform this back into the polar basis:1

^  _  dca _c dcx 
9 ~  d x ^ ^ d x ^

We are now in a position to calculate the first-order contribution to the action 
resulting from these perturbations. Expressing the action integral in cartesian 
coordinates, we may write:

S E = J  Zd5c

L  =  i/<F

— L q +  £ L\ +  (9(e2)

i  9 " $ ^ $ +  [/($ )
A A Hi

The first few terms of Li are:

t , .  « M £(2 1 £ 2 ( i ) l  +  » +
£ aci £4

24cos2ip +  sin2ijj(kp(£)2 (2 U($(£)) +  $ '( 0 2)

+ V (0 2 + 4P(0p"(0))

+  ••• (C.l)
| (5 +  7cos(24>))p(€)p'{t) |

We now eliminate derivatives of our scalar field and metric perturbations by 
integrating by parts, e.g. for some arbitrary term f(x):

f O O  Q

/ f (x )  —-6${c) dci = 
7-00 ac\

f (x )  6$(c)
d

f(x(c))5$(c)  dci
3 J  — OO 9 c \

where the boundary term is taken to be zero. Thus L\ is now expressed in terms

Tt is noted that ^qo multivalued at the origin, but that the scalar curvature is everywhere 
finite (and single-valued).
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of <5$ and the 5g^v only, i.e. (C.l) becomes: 

p ( 0 3Li = S$(c)

+  &9n (c)
sin2 'ijj 
4  k £ 2

+ C0S[ % F  (12 w o 2 - 1 ) + m o 2 ( 2  u m ) )  -  $ '« ) 2))

(6(p'(£)2 -  1) +  « p ( 0 2 (2C /($(0) +  $ 'K )2) + 6 « p ($ )p " (0 )

(C.2)

As soon as we insist that $(£) and p(£) obey the equations of motion (2.25) we 
find that Li  =  0. Thus first order perturbations to the bounce are distinguished 
by their second order contribution to the action.



A ppendix D  

Hyper-Spherical Harmonics

In chapter 3 we performed a perturbative expansion in terms of harmonics of the 
invariant background, i.e. the 4-sphere, and then made use of their various prop­
erties to integrate over them. In this appendix we explore these hyper-spherical 
harmonics in more detail, so that we can see how this integration was performed.

D .l General Solution

In this section we mirror the usual derivation of spherical harmonics, but gener­
alised to n dimensions. Consider an n-sphere with coordinates Ui (z =  1 , . . . ,  n), 
and metric tensor y^ which has the canonical form:

dDn2 =  y tj dujldLjJ

! *-i
sin21Jm i = j

m=l
0 i ^ j

Denoting the Laplacian with respect to y*j as A, spherical harmonics, Y(u),  
are defined by

A Y ( u )  = - k?  Y(u )  (D.l)



APPENDIX D. HYPER-SPHERICAL HARMONICS 93

By separating the variables:

n

Y(u,) =  Y [ f i (ui) (D.2)
i=1

the partial differential equation (D.l) reduces to a set of (uncoupled) ordinary 
differential equations (using 6 as a dummy variable):

o =  f"(0) +  (n -  i) cat 0 f ((O) +  MO) (V -  (D.3)
\  sin V J

with separation constants where ki =  k (the principal eigenvalue appearing in 
(D.l)) and kn+1 =  0.

For i = n  we find /"(0) =  —kn2f n(0) which has solutions

f n(9) oc cos(mn0 +  an)

where kn2 — m n2 and m n G Z (since f n must be a periodic function with period 
2 t t ) .

For i 7  ̂n we let u = cos 0 so that (D.3) becomes

0 =  (1 -  u2) f ”(u) +  (z -  1 - n ) u f ' { u )  + fi(u) ( k 2 -  (D-4)

From section D.2 we can see that the solutions of this equation are the associated 
Gegenbauer functions:

/ , ( « ) « c [ v ] : ; +i(«)

where k 2 = m^m* +  n — z), m* G Z and m l > rrii+
Thus (D.2) becomes

n —1

Yk(uj) oc cos(mnu n +  a n) C [ ^ ] ^ +1 (cos^)
%—i

where k 2 =  mi (mi +  n — 1) and m* > m*+i. But since (D.l) is linear in Y(u),  its
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general solution is a sum of such terms:

771 1 771n _ i  n — 1

Yk(u)) = 52 ‘ ' 52 COS(mnLJn +  0Ln) C [ ^ ]  ™*+1 (cos ̂ i)
7 7 1 2 — 0  m n=0  i = l

where the cmir..jmn are arbitrary mode coefficients.

D.2 Gegenbauer Differential Equation

One way of writing the Gegenbauer differential equation is [50]:

0 =  (1 — x 2) y"(x) — (2A +  1) x y'(x) + i/(i/ + 2A) y(x) (D.5)

of which we can easily see that Legendre’s equation is a special case with A =
It is possible to express the solution to (D.5) in terms of the Legendre functions of 
the first and second kind, but if the solution is required to be finite at x = ±1 then 
v is required to be an integer, and the solutions are the Gegenbauer polynomials, 
y(x) = CIAJ^x).

In analogy with Legendre’s equation, one can consider the ‘associated’ Gegen­
bauer differential equation:

j  y{x) (D.6)

where k \ 2 = m \ ( m \  +  2A) and m \  E Z. The analogy continues since the solu­
tions, which we may call ‘associated Gegenbauer functions’, C[A]mj’ 1/2(i) , can be
expressed in terms of the Gegenbauer polynomials as:

C[A]i“ (x) =  (1 -  x 2)"*/2 Q b ) m c[A ]l(*)

Since C[A]/(x) is an I-th degree polynomial in x , we see that CfAjj71 is zero for m >  I.

0 =  (1 -  x 2) y"{x) -  (2A +  1) x y'(x) +  I kx2 -  \
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D.3 Orthogonality

To deduce the orthogonality relation of the Gegenbauer functions, we first consider 
the (more general) Sturm-Liouville problem:

d d \
dxP^ d x  +  q^  +  ^ W^ J  = 0 (D-7)

Let y\(x) and 2/2(2 ) be two eigenfunctions of (D.7) with corresponding eigenvalues 
Pi and p2‘.

l x P^ l x  + Q^  + ̂  Vl ^  = 0 (SL1)

l x p ^ l x + + ^ y =  0 (SL2)

Now take the linear combination of these equations 2/2(2 ) x (SL1) — 2/1(2 ) x (SL2):

^ ( 2 ) ^  [p(x)yi(x)\ -  yi(x)-^[p(x)y2'(xj\ +  {Pi -  p2) 2/1(2 ) 2/2 (2 ) w(x) = 0 

which upon collecting the derivatives together gives

^  [p{2 ) (2/2(2 ) yi(x) -  2/1(2 ) 2/2 ' (2 ))] +  {Pi -  P2) 2/1(2 ) 2/2(2 ) w{x) =  0 (D.8)

We now integrate over some interval [a, b] (in which p{x) and the eigenfunctions 
are continuous) to give

b r b
p{x) (2/2(2 ) yi{x) - 2/1(2 ) y2 {x)) + { P i - P 2) /  w(x) 2/1(2 ) 2/2(2 ) dx = 0

a J a

If we now consider ‘singular’ boundary conditions, i.e. p{a) = p(b) = 0, we see that 
eigenfunctions with different eigenvalues are orthogonal with respect to the weight 
function w(x), i.e.

/ w{x) 2/1(2 ) 2/2(2 ) dx =  0 for p i ^ P 2 
J  a
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By writing the associated Gegenbauer equation (D.6) as

( i - x 2)^~A Q ^ ( i  -  x 2)A+^~j~ +  ( fcA2( i  -  x 2)x~ * +  ~  x2)A~ * ) )  y (x ) =  0

we can see that this in Sturm-Liouville form with the identifications

p(x) =  (1 — x 2 ) a + 2 

P = kx2 

w(x) =  (1 — x 2) ^ 2 

q(x) = kX- i/22(1 -  x2)A_3/2

Therefore, since p ( ±l )  — 0 (for A > — |) ,  we can see that the associated Gegen­
bauer functions are orthogonal over the interval [—1,1] with respect to the weight 
function (1 — x 2)x~i  i.e.

J  (1 — z 2)A_* C[A]J"(x)C[A]™(x)dx =  0 for I ?  I' (D.9)

In this work we choose to always work with normalised Gegenbauer functions, i.e. 
ones obeying the orthonormality relation:

j \ l - x 2)x- iC[X\?(x)C[\]?{x)dx  = 6W (D.10)

D.4 Less Obvious Integrals

In section 3.3 it was mentioned that to do all the 0-, and ^-integrals of S 2

was not as simple as to just employ the Gegenbauer equation and orthogonality 
relation. This is because there are terms with multiple derivatives, terms bilinear 
in derivatives, and terms with coefficients different from those in the Gegenbauer 
equation, and so on. Ultimately though, all these terms should reduce to a ‘simple’ 
(analytically integrable) term, since they all originated from a scalar (the action). 
To manipulate terms into an integrable form we systematically eliminate terms for 
which some kind of relation can be found. In the next two subsections we see two
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such relations and how they are derived. For brevity, the [A] and (it) of C[A]™(u) 
are dropped throughout.

D.4.1 Zero-boundary term s

Here we construct a term, f(u), to be zero on the boundaries, /(± 1 )  =  0 so that

we can say J  f'(u) du =  0. By expanding the integrand we then have an identity

which can be used to eliminate a chosen term.
u

Consider the term — We can expand the associated Gegenbauer

functions in terms of the Gegenbauer polynomials to count the powers of (1 — u 2) 
contained in this term:

■ C™c^ =  u (1 -  u 2)m-"C<,m) c[m)u
(1 — u2)1 

Evaluating this at u = ±1:

(1 - u 2)
II cmcmn = 0 for m  > n

u = ±  1

But to be able to take advantage of this using Mathematica it is convenient to 
be able to make a substitution that is valid for general values of m  and n. Therefore 
we require a term that is zero for m  < n. For this we consider the quantity Ai n(m) 
defined as

n

M n(m) =  Y [ ( m  ~  0  
*=o

where in the case that n  is not an integer the product is understood to be up to 
the greatest integer less than or equal to n, so that

A4n(m) =  0 for m  < n

Thus (since m  only takes integer values)

= 0 Vn
It

u = ± l
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Since this is of the form specified at the beginning of this section, we may declare:

M ' i m)  S  ( (T ^ r  <?<?)*•- o (Dll)
For t i ^ O  this can be expanded to:

mn+1/ I r^m  rv m  p i  r^m  r^m

-— Q 6 du = (mn+1 — A4n(m)) /  -— Q 6 du
1 ( l _ w 2) n + i  V

1 pi V pm pm ..
( 1 - 2  n)lT^  +  ^  ( O f  C r +  C T)+  2

dw

/ l  p m  p m
t— a n 6 ,, dw when p is 

.! (1 -  U2Y+l
greater than or equal to the greatest integer less than or equal to n +  1 and 
n +  1 > 0. By doing this for the largest value of n +  1 first, and then working our 
way down, we eventually eliminate terms with large powers of (1 — u2)~l that do 
not fit into the orthogonality relation.

D.4.2 Covariant divergences

Another way to construct an identity is by considering covariant divergences. For 
instance, consider some function defined on the 2-sphere, f(9,(p). If we take the 
covariant divergence of this, and integrate over the 2-sphere, then by Gauss’s 
theorem this must be zero:

y / y y i j m  <t>hj d<t>d6 =  0
_

By expanding the integrand and doing any integrals we can explicitly, we then 
have an identity which can be used to eliminate a chosen term. The following 
table gives terms whose covariant divergence on the 2-sphere can be taken to form 
an identity, and a term which we eliminate using that identity.
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covariant divergence of used to eliminate

m-
1 — u2

m(m -  l)C[i]™'(«)C[i]r'(«) 

(1 -  «2)C[i]™"(U) C [ in « )

m c [ a r ( « ) c [ i ] r ( « )

m

(1 -  u2)2
2c[i]™(u ) c [ i ] r H

m

m-

(1 -  u2f
c[i]™ («)c[i]jr(«)

1 — v?

In summary, when performing the angular integrals of S 2 we mostly just rely on 
the orthonormality of the Gegenbauer functions, but there are also some ‘less ob­
vious integrals’. For these we construct identities which are used to systematically 
eliminate the miscellaneous terms, so that ultimately each angular integral reduces 
down to its corresponding orthonormality relation.
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