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Abstract

In this thesis, new methods for the efficient segmentation of images are pre­
sented. The proposed methods are based on the deformable model approach, 
and can be used efficiently in the segmentation of complex geometries from 
various imaging modalities.

A novel deformable model that is based on a geometrically induced ex­
ternal force field which can be conveniently generalized to arbitrary dimen­
sions is presented. This external force field is based on hypothesized interac­
tions between the relative geometries of the deformable model and the object 
boundary characterized by image gradient. The evolution of the deformable 
model is solved using the level set method so that topological changes are 
handled automatically. The relative geometrical configurations between the 
deformable model and the object boundaries contributes to a dynamic vector 
force field that changes accordingly as the deformable model evolves. The 
geometrically induced dynamic interaction force has been shown to greatly 
improve the deformable model performance in acquiring complex geometries 
and highly concave boundaries, and give the deformable model a high invari­
ance in initialization configurations. The voxel interactions across the whole 
image domain provides a global view of the object boundary representation, 
giving the external force a long attraction range. The bidirectionality of the 
external force field allows the new deformable model to deal with arbitrary 
cross-boundary initializations, and facilitates the handling of weak edges and 
broken boundaries. In addition, it is shown that by enhancing the geometri­
cal interaction field with a nonlocal edge-preserving algorithm, the new de­
formable model can effectively overcome image noise. A comparative study 
on the segmentation of various geometries with different topologies from both 
synthetic and real images is provided, and the proposed method is shown to 
achieve significant improvements against several existing techniques.

A robust framework for the segmentation of vascular geometries is de­
scribed. In particular, the framework consists of image denoising, optimal ob­



ject edge representation, and segmentation using implicit deformable model. 
The image denoising is based on vessel enhancing diffusion which can be 
used to smooth out image noise and enhance the vessel structures. The im­
age object boundaries are derived using an edge detection technique which 
can produce object edges of single pixel width. The image edge information 
is then used to derive the geometric interaction field for optimal object edge 
representation. The vascular geometries are segmented using an implict de­
formable model. A region constraint is added to the deformable model which 
allows it to easily get around calcified regions and propagate across the ves­
sels to segment the structures efficiently. The presented framework is applied 
in the accurate segmentation of carotid geometries from medical images.

A new segmentation model with statistical shape prior using a varia­
tional approach is also presented in this thesis. The proposed model consists 
of an image attraction force that propagates contours towards image object 
boundaries, and a global shape force that attracts the model towards simi­
lar shapes in the statistical shape distribution. The image attraction force 
is derived from gradient vector interactions across the whole image domain, 
which makes the model more robust to image noise, weak edges and ini­
tializations. The statistical shape information is incorporated using kernel 
density estimation, which allows the shape prior model to handle arbitrary 
shape variations. It is shown that the proposed model with shape prior can 
be used to segment object shapes from images efficiently.
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Chapter 1 

Introduction

Image segmentation is one of the most important areas in image processing 
and computer vision. The segmentation of an image can be defined as the 
partitioning of the image domain into a set of regions Si C £1 as

where Si fl Sj = 0 for i ^  j.  In general, segmentation is used to extract 
regions which correspond to objects of interest in the image. The regions of 
interest can be extracted based on characteristics such as intensity, texture, 
colour and various information derived from the image.

In recent years, computerized image segmentation has shown to be in­
creasingly important in the area of medical imaging. The accurate delin­
eation of geometries from medical images can allow scientists to visualize 
and interact with the extracted geometries, and better understand the com­
plex physiological functions of the anatomical structures. Various image seg­
mentation methods have been applied for the visualization, inspection and 
analysis of anatomical structures from medical images. They have become a 
useful tool for the quantification of tissue volume, diagnosis of pathologies, 
surgical planning and biomedical modelling.

n

(i.i)

i



This thesis will focus on the formulation of new methods for the robust 
segmentation of biomedical images. In particular, the proposed methods are 
based on deformable models, which can be used to extract complex geome­
tries from the images efficiently.

1.1 Challenges in M edical Image Segm enta­
tion

Shape segmentation from image data has an important role in applications 
such as medical image analysis. The segmentation of medical images is an 
intricate process due to the complexity and variability of anatomical shapes, 
and the sheer size and quality of image datasets. Medical images are often 
affected by image noise, sampling artifacts and spatial aliasing, which may 
cause the boundaries of structures to be indistinct. There are also regions 
in the image in which multiple tissue types contribute to the intensity of 
a single pixel or voxel, causing diffused object edges. Another difficulty in 
delineating structures from medical images is the intensity inhomogeneities 
that may occur in tissue belonging to the same class or anatomical structure.

There have been applications of simple techniques such as thresholding 
and region growing in the extraction of 3D objects from volumetric im­
ages [2,3]. However, these techniques are very sensitive to noise and intensity 
inhomogeneities which exist in real images, and often produce leakages and 
regions which are not contiguous. Statistical approaches [4,5] are also used 
to identify different tissue structures from medical images. It usually involves 
manual interaction to segment images in order to obtain a sufficiently large 
set of training samples. Such strategies are often restricted to problems where 
there is sufficient prior knowledge about the shape or appearance variations 
of the relevant structures. Also, the use of the same training set for a large 
number of image scans may lead to biased results that do not take sufficient 
consideration of the variability within individuals. Atlas based approaches
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perform segmentation based on image registration techniques [6], whereby an 
image can be segmented by finding a transformation that maps a template 
image to the target image. It is however generally difficult for atlas based 
techniques to accurately extract complex geometries such as those from vol­
umetric medical images due to the variability of anatomical structures.

Another class of segmentation methods partitions an image into differ­
ent regions based on energy minimization. These energy based segmentation 
methods can usually be distinguished as combinatorial methods and varia­
tional methods. Graph based approaches [7-9] which are based on combi­
natorial optimizations can be used to minimize a cost function defined on a 
discrete set of variables. In this approach, a graph is composed of vertices 
representing image pixels or voxels, and edges that connect the vertices. The 
graph edges are assigned some non-negative weights or costs, and a cut is a 
subset of edges that partition the vertices into disjoint sets. The cost func­
tion which can consist of boundary and regional information has to be well 
defined for graph cuts to provide a globally optimal solution. In addition, the 
discrete representation of the graphs may produce geometric artifacts, and 
the algorithm such as [7,10] has a bias towards cuts with short boundaries.

Deformable models can be an effective alternative approach. They are 
usually based on a variational framework to minimize an energy functional 
defined on a continuous contour or surface. They have the ability to adapt 
to complex shape variations and to incorporate priors to regularize segmen­
tation. They have been widely used in applications such as shape extrac­
tion [11-14] and object tracking [15-18]. In these models, curves or surfaces 
evolve under the influence of both internal and external forces to extract 
the image object boundaries. Explicit models [19] represent contours and 
surfaces in their parametric form during deformation. This allows explicit 
models to track the points on the curves and surfaces across time, and is 
well suited for real-time applications due to smaller CPU-time requirement. 
However, explicit models generally have difficulties in dealing with topolog­
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ical changes due to the parameterization of the curves and surfaces. Mcln- 
erney and Terzopoulos [20] designed topology adaptive, explicit deformable 
models to handle topological changes that often exist in medical image vol­
umes. This explicit model requires a periodic reparameterization mechanism 
to deal with complex shapes and changes in topology. This technique how­
ever works well only when the model is required to inflate or deflate every­
where, which considerably limits its applications. Several authors [21-23] 
have also come up with different techniques to handle topological changes. 
However, these approaches usually involve a set of heuristic algorithms to 
detect self-intersections and handle splitting and merging of the deforming 
grid, which can be computationally expensive. Also, these strategies may 
not work well on structures that consist of complex topologies. Implicit de­
formable models [11,12] based on the theory of curve evolution and the level 
set method [24,25] are introduced to address some of these limitations. In 
these approaches, the evolution of curves and surfaces are represented implic­
itly as a level set of a higher-dimensional scalar function and the deformation 
of the model is based on geometric measures such as the unit normal and 
curvature. Thus the evolution is independent of the parameterization, and 
topological changes such as splitting and merging can be handled automati­
cally. In recent years, implicit deformable models have been widely applied in 
the segmentation of anatomical structures from 3D medical images [26-28].

This thesis presents new methods based on implicit deformable models 
for image segmentation. It is shown that the new models can be applied to 
segment object geometries from synthetic and real images efficiently.

1.2 Organization of the Thesis

This thesis presents new models for the efficient segmentation of images. The 
proposed models are mainly based on the deformable model approach, in 
which curves and surfaces evolve under the influence of internal and external
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forces to delineate the shapes of image objects.
In Chapter 2, the various methods for image segmentation are introduced. 

In particular, popular methods which have been widely used in the segmen­
tation of biomedical images are described.

In Chapter 3, a new deformable model that is based on a geometrically 
induced vector force is proposed. In particular, the external force field is de­
rived from the interactions between the relative geometries of the deformable 
model and the image object boundary. The bidirectionality of the external 
force field allows the deformable model to handle weak object edges. In ad­
dition, the new vector force changes dynamically as the deformable model 
evolves, which allows the deformable model to propagate through boundary 
concavities and complex geometries. An efficient method to enhance the 
object edge representation of the geometric interaction field, which provides 
the deformable model with a great robustness to image noise is used. Several 
experimental results on both synthethic and real images are presented. A 
comparative analyis with several methods which consists of image gradient 
based [13,29,30] and region based methods [1] is presented. The images used 
in the experiments consist of multiple objects, boundary concavities, complex 
geometries, diffused object edges and image noise. In the comparative exam­
ples, it is shown that the proposed model outperforms the existing methods 
in terms of convergence to complex geometries and boundary concavities, 
robustness to noise, handling of intensity inhomogeneity and diffused object 
edges and invariance to initialization. It is also shown that the new de­
formable model can be applied for the efficient segmentation of biomedical 
images.

In Chapter 4, a robust framework for the segmentation of vascular ge­
ometries is presented. The approach includes the image denoising, optimal 
edge detection, and segmentation of the geometries using deformable model. 
The image smoothing and denoising is based on the vessel enhancing dif­
fusion filter described in [31] which can be used to enhance the geometric
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structures of the vessel structures. The image object boundaries are derived 
using the Canny edge detection technique [32]. The object edge informa­
tion is then used to compute the geometric interaction field which provides 
a more coherent and global representation of the image object edges. The 
deformable model based on the geometric interaction force is then used to 
segment the vessel geometries from the image. In particular, a region con­
straint is added so that the deformable model can easily get around calcified 
regions and propagate across the vessels to segment the geometries efficiently. 
The proposed framework is applied in the segmentation of carotid geometries 
from medical image datasets. The geometries segmented using the proposed 
framework are compared against geometries from manual segmentation. It 
is shown that the proposed framework can be used to segment the vascular 
geometries accurately.

In Chapter 5, a new variational level set model for image segmentation is 
proposed. The proposed model consists of an image based energy that prop­
agates contours towards object boundaries, and a shape based energy that 
attracts the model towards similar shapes in the shape distribution derived 
from the training set. The segmentation model using a variational framework 
is formulated so that shape prior information provided by a training set of 
manually segmented shapes can be easily incorporated into the model. The 
image based energy consists of a contour smoothing term and an image at­
traction term based on the interaction of gradient vectors. The shape based 
energy is defined using a shape distance measure with intrinsic alignment. 
The shape prior information is incorporated into the model using nonpara- 
metric shape distribution, which allows the shape prior model to handle 
arbitrary shape variations. The training shapes used to derive the shape 
distribution are represented using signed distance functions. The proposed 
model is applied for the segmentation of synthetic and real images. It is 
shown that the proposed model with shape prior can efficiently handle image 
noise, occlusion, structures with similar intensity and diffused object edges
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to segment object shapes from the images.
In Chapter 6, a brief summary of the new segmentation models presented 

in the thesis is given. Some improvements that can be made to the deformable 
models, and some future directions are also described.
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Chapter 2 

Image Segm entation M ethods

In this chapter, the state-of-the-art approaches to image segmentation are 
presented. In particular, some of the most popular techniques which have 
widely used in biomedical image segmentation from various modalities such 
as computed tomography (CT) and magnetic resonance (MR) imaging are 
introduced. The methods described can be categorized into thresholding, re­
gion growing technique, watershed technique, classification, clustering, graph 
based approaches, atlas based approaches, and deformable models.

2.1 Thresholding

The gray levels or intensity values of pixels or voxels belonging to a particular 
object in an image are typically different from those of other objects or the 
background in the image. Therefore group of pixels or voxels with similar 
intensity values can often be classified as belonging to the same object in 
an image. One of the simplest ways to partition an image based on the 
intensity of pixels or voxles is by setting a threshold on image intensities. 
Image thresholding creates a binary partition of the image intensities i.e. 
pixels with intensities greater than the threshold value are grouped into one 
object class and all other pixels into another object class.



Threshold values are often selected manually based on the inspection 
of the image histogram. There are also automated techniques such as the 
Otsu’s method [33] for selecting the optimal threshold value from the im­
age histogram. A particular category of thresholding techniques selects the 
threshold value based on the profile of the histogram. Some of these methods 
calculate the convex hull of the histogram [34] and select the threshold based 
on the deepest concavity points. Another method to select a suitable thresh­
old is to carry out a peak analysis [35,36] of the histogram which can be done 
using convolution with smoothing and differencing kernels. However, image 
histograms are often noisy, thus causing many local minima and maxima, 
and substantial smoothing is often required to partition the modes.

There have been various applications of thresholding techniques in the 
segmentation of medical images. In [37], the trabecular bone is segmented 
based on a threshold value selected using structural and connectivity informa­
tion of the bone estimated from the image using a range of threshold values. 
In [38], changes in the volume fraction of the segmented trabecular bone 
were measured for different threshold values. The optimal threshold value 
corresponding to the minimum change in volume fraction was then selected 
to segment the trabecular bone from MR images. An isosurface algorithm 
was applied in [39] to reconstruct the geometry of the vascular model from 
binary images of vessels segmented using a simple thresholding technique. 
The nasal cavity geometries in [40,41] were also segmented from CT images 
using image thresholding.

Thresholding is a simple technique for segmenting images in which dif­
ferent structures have contrasting pixel intensities. The main limitation of 
thresholding is that it considers only the intensity, and does not take into 
account the relationships between the pixels and spatial characteristics of 
the image. It is sensitive to noise and inhomogeneous intensity which are 
often present in medical images. It can therefore easily include extraneous 
pixels or miss some isolated pixels within the region, and often produce pixel
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groups which are not contiguous.
Recently, locally adaptive thresholding techniques have been developed 

to deal with the limitations of global thresholding. In these approaches, the 
threshold value is calculated at each pixel based on some local statistics or 
parameters of the pixel neighborhood. In [42,43], the local mean and stan­
dard deviation of the pixel neighborhood are used for adaptive thresholding. 
Another group of authors [44,45] consider the local contrast and compares 
the intensity of a pixel with neighboring pixel intensities. Local adaptive 
thresholding has been used in the segmentation of the trabecular bone struc­
ture from peripheral quantitative CT images [46], and in the segmentation of 
carotid artery from MR angiography images [47]. Such techniques are often 
based on the assumption that pixel intensities vary about some mean value, 
which is often not the case in medical images. Also, substantial amount of 
image smoothing is often required to reduce the effects of image noise for 
local thresholding techniques.

Thresholding is often used together with other techniques in a sequence 
of image extraction processes. For example in [48,49], the geometries of 
biomedical structures are segmented using thresholding and mathematical 
morphology [50]. A more detailed description on thresholding techniques is 
provided in [51,52].

2.2 Region Growing

The region growing techniques are used for extracting regions in an image 
which are connected according to certain homogeneity criterion such as im­
age intensity, color and texture. It is based on the assumption that pixels 
or voxels which are in close proximity and having similar characteristics are 
likely to belong to the same object in an image. Region growing is often 
combined with other segmentation methods for the delineation of small, sim­
ple structures [53,54] in medical images. A rough approximation of blood
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vesseels in the form of binary images were first generated by thresholding 
the MR angiography data, followed by a thinning process to get the skele­
tonization of the geometry, which is then used to initialize the region growing 
process in [55]. In [56], fuzzy c-means is used to estimate the parameters of 
the Gaussian mixture model which is used to describe the local region char­
acteristics of medical images. These parameters are then used to construct 
the homogeneity criterion for the region growing process. Morphological fil­
tering is then applied to the images. In [57], a mesh model is first created 
from a rough approximation of the object’s geometry extracted using a re­
gion growing algorithm, and then used as the initial surface of a deformable 
model for refining the extracted geometry.

Region growing techniques usually start from some user-selected seed 
points (usually within region of interest) to extract an image structure by 
incrementally adding neighboring points to the region based on some pre­
defined criterion. At each iteration, the pixels or voxels neighboring the 
selected region are evaluated to determine if they should be considered as 
part of the region. If the pixels or voxels meet the homogeneity criterion, 
they are appended to the selected region and the iteration process continues 
until no similar pixels or voxels are added to the region.

Region growing algorithms vary depending on the homogeneity criterion 
used, the type of connectivity used to determine neighboring pixels, and the 
strategy used to visit neighboring pixels. The region can be set to grow 
until an image edge is met or until the difference between the selected pixel 
intensity and the average intensity of the region exceeds a tolerance value.

Region growing methods can produce well-defined object boundaries if 
the intensity variation within the region of interest (ROI) is small. However, 
in vascular structures that consist of long and narrow regions, even slow in­
tensity changes can prevent the iterative process from adding more similar 
pixels. This lead to the development of locally adaptive region growing al­
gorithms, which are designed to segment image objects with inhomogeneous
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intensity. A new region growing approach based on local cube tracking was 
used in [58] to segment vascular structures from CT and MR angiography im­
ages. This technique constrains the image object extraction process to each 
local cube so as to deal with the intensity variation in the image domain.

It is not a simple task to reconstruct the geometry of blood vessels ac­
curately from medical images due to the range of the intensity variation. In 
order to facilitate an accurate segmentation of blood vessels by region grow­
ing techniques, the homogeneity criterion should be adaptable to the local 
characteristics in each ROI. Sekiguchi et al. [59] designed a branch-based re­
gion growing method in which the region growing process is performed on one 
branch at a time, thus allowing the homogeneity criterion to be optimized 
according to the local image characteristics.

In recent years, the concept of fuzzy analogies has also been incorporated 
to region growing segmentation [60-62]. It is based on the fact that medical 
images are inherently inhomogeneous and the image object is extracted by 
defining a group of pixels that exhibits a global hanging togetherness (fuzzy 
connectedness). The approach is to construct a fuzzy map of connectedness 
of every pixel and their relations with the user-specified seeds in the ROI.

Although spatial information is considered, region growing techniques 
can often lead to holes and over-segmentation due to noise and variations in 
image intensities. Also, partial-volume effects can cause different regions to 
become connected. It is also difficult for region growing techniques to extract 
narrow and long regions due to the sensitivity to image noise or low image 
resolution.

2.3 W atershed

The watershed transform [63,64] is derived from the field of mathematical 
morphology. In this approach, the image is interpreted as a landscape or 
topographic surface, with the pixel intensity representing the elevation of
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the topographic surface. Consider water on the landscape flowing towards 
regions with local minima, the watersheds are the lines that partition these 
regions. In this way, the image is partitioned into homogeneous regions 
with the watersheds defining the boundaries of the regions. The watershed 
transform [65] was used in [66,67] to extract the geometry of the carotid. 
The watershed transform tends to be sensitive to noise and often produces 
over segmentation. It is also difficult for the watershed technique to extract 
thin structures and weak object edges.

2.4 Classification

Image classifiers [6 8 ] are supervised methods that can be used to partition 
a feature space derived from an image into different categories based on a 
set of training data. Typical features of an image are pixel intensity, local 
gradient, density, color, and distance from landmark. Multiple or n number 
of features can be placed together to form a feature vector, which defines 
a data point location in n-dimensional feature space. In particular, a pixel 
or voxel in an image denotes a point in the feature space, and a classified 
group is a region in the feature space with a high density of such points. The 
training set for the classifier is derived by manual segmentation such that a 
set of criteria for pattern recognition is defined, and then used as references 
for the automatic segmentation of new data.

There are numerous ways in which training data can be applied for im­
age classification. The k-nearest neighbor [69] approach classifies image pixel 
into the same class as the majority of the k-nearest training data. In partic­
ular, this classifier finds k nearest neighbors of the unknown feature vector 
from the training vectors, and assigns the unknown vector to the class based 
on majority vote among the k points. This is usually done using Euclidean 
distance measure which does not reflect the global geometrical information 
of the training samples. In [70], the global geometrical information is incor­
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porated and parameter tuning is not required.
Another approach, the Parzen window carries out the classification by- 

using a weighted decision process within a predefined window function of 
the feature space, centered at the unlabeled pixel intensity. The k-nearest

they do not make underlying assumption about the statistical structure of 
the data.

The maximum likelihood or Bayes classifier [71] is a commonly used 
method for parametric classification. In this approach, pixel intensities are 
assumed to be independent random variables with parameterized probabil­
ity distributions, usually Gaussian for medical images. A mixture model 
is then defined in which the probability distribution can be computed as a 
multiplication of the parameterized probability functions. The training data 
are collected by acquiring representative samples from components of the 
mixture model and then estimating the K-means, covariances, and mixing 
coefficients.

The Bayesian model for pixel classification can be mathematically given
as,

Here P(9i\x) denotes the posterior probability which is the conditional 
probability of the class Oi given the feature vector a: of a pixel, that is as­
signed after the relevant information is taken into account. p(x\0i) is the 
likelihood which is the probability of x  given the class Oi and represents the 
data now available. P(0i) is the prior that is the probability of the event com­
puted before the collection of new data. Classification of new data can now 
be obtained by assigning each pixel to the class with the highest posterior 
probability calculated.

neighbor and Parzen window are considered nonparametric classifiers because

(2 .1)

where
(2 .2)
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Classifiers are relatively computationally efficient and can be applied to 
multichannel images [72,73]. One major drawback of classifiers is the require­
ment of manual interaction to segment the image and obtain the training set, 
which can be laborious. Also, the use of the same training set for a large 
number of image scans can lead to biased results that do not consider the 
variability within individuals. Recent improvements in image classification 
include the incorporation of spatial, neighborhood and geometric informa­
tion [74-77].

2.5 Clustering

Clustering techniques are unsupervised classification methods that group ob­
jects into different categories, with objects within each class exhibiting similar 
characteristics. Clustering methods generally perform in a similar fashion as 
image classification methods, but without using any training data. In par­
ticular, clustering techniques iterate between image segmentation and char­
acterization of properties of each class. In other words, data training is done 
intrinscially using the available data in clustering techniques. Some com­
monly used clustering methods are the K-means or ISODATA [78-81], fuzzy 
c-means [82-84], and expectation maximization (EM) algorithms [85-87].

The K-means method is used to minimize intra-cluster variability, which 
is the sum of squared distances between all points and the cluster centre, 
given by

K

Var — E E  \x -  fii\2 (2.3)
i—1 xeCi

where x represents the selected image pixel, K  is the number of clusters, 
and /i; is the centre of cluster Cj. In other words the K-means method 
partitions data by iteratively computing a mean intensity for each class, and 
segmenting the image by classifying each pixel in the class with the closest 
mean. ISODATA is similar to K-means, except that it does not assume a
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given number of clusters. A large K is usually chosen initially, and clusters 
are removed when their cluster centre are not assigned enough samples, thus 
obtaining an optimal number of clusters. The fuzzy c-means algorithm is 
also similar to the K-means algorithm, but it allows data to belong to two 
or more clusters. In this technique, a class membership is assigned to a 
data point based on the similarity of the data point to a particular class 
relative to the other groups. The EM is an iterative optimization method that 
generally uses the same clustering principles, with the assumption that the 
data follow a finite Gaussian mixture model. It alternates between computing 
the posterior probabilities and estimating the maximum likelihood of the 
means, covariances and mixing coefficients of the mixture model.

Image clustering approaches are efficient for acquiring global character­
istics, however they do not directly incorporate spatial modelling, and are 
thus sensitive to noise and intensity inhomogenities. Recent developments in 
image clustering techniques include the use of Markov Random Field (MRF) 
models [8 8 ], graph based theory [9] and particle swarm optimization (PSO) 
algorithm [89] which take into consideration the spatial information of im­
ages. More information and descriptions on image classifiers and clustering 
methods can be found in [90,91].

2.6 Graph Based Approaches

In recent years, graph based approaches [7-10] have been applied to the 
problem of image segmentation. Such techniques are based on combinatorial 
optimizations which can be used to minimize a cost function defined on a 
discrete set of variables. In this approach, the image is represented using an 
adjacency graph consisting of vertices which represent the image pixels or 
voxels. The vertices are connected by edges, with the weight of an edge rep­
resenting the similarity between two corresponding pixels. The graph edges 
are assigned some non-negative weights or costs, and a cut is a subset of
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edges that partition the vertices into disjoint sets. The cost of the cut is 
the sum of the costs of all edges that are cut. In [92], the cost function is 
formulated as a boundary based metric, and a minimum cut approach is used 
to partition a graph into subgroups such that the maximum cut across the 
subgroups is minimized. The minimum cut is considered as the cut that min­
imizes the energy function to provide the optimal segmentation. Such graph 
partitioning techniques however has a bias towards smaller regions with short 
boundaries [93]. The normalized cut technique [8 ] was introduced to reduce 
such bias by using a cost function which considers both the total dissimilar­
ity between the different groups and the total similarity within the groups. 
This however causes the technique to favour similar weight partition [94]. 
The graph cuts approach in [7,10] provides a more interactive framework for 
image object segmentation compared to other graph based methods [8,9]. In 
this technique, there are two special vertices designated as the source and 
sink that represent image object and background labels respectively. An s-t 
cut is a subset of edges such that the source and sink is partitioned on the in­
duced graph. In particular, the user can provide information to regularize the 
segmentation model by interatively selecting foreground and background re­
gions in the image. The object contour is assumed to be the global minimum 
within the image given the user-specified constraints. As such, the extracted 
geometry varies with the interactive input. The cost function which can con­
sist of boundary and regional information has to be well defined for graph 
cuts to provide a globally optimal solution. In addition, straightforward 
implementations of graph cut algorithms such as the max-flow algorithms 
can be computationally expensive. The discrete representation of the graphs 
may produce geometric artifacts, and techniques such as the ones described 
in [10,92] have a bias towards cuts with short boundaries.
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2.7 Atlas Based Approaches

Atlas based approaches use a standard atlas or template as a guide to perform 
medical image segmentation. The atlas is generated by compiling relevant 
information (i.e. location, shapes and spatial relationships) of anatomical 
structures. One way to create an atlas is to manually segment an image. 
This atlas is then used as a reference frame for the segmentation of new 
image data.

In general, atlas guided approaches perform segmentation based on image 
registration techniques [6 ]. An image can be segmented by finding a trans­
formation that maps a segmented template image to the target image that 
requires segmentation. This process of warping the atlas to the target image 
can be performed using linear and nonlinear transformations.

Atlas based approaches are often used for the segmentation and analysis 
of various structures from MR brain images [95-99]. An advantage of atlas 
based approaches is that the labeling of tissues or anatomical structures is 
transferred as well as the segmentation. It is however difficult for atlas based 
approaches to find accurate segmentations of complex structures due to the 
variability of anatomical structures. Different authors [95,100-102] have 
applied a sequence or combination of linear and nonlinear transformations 
to overcome this problem, but the computed deformation field is often not 
precise enough to warp the image and get the segmentation accurately. Thus, 
atlas based approaches are more suited for the segmentation of anatomical 
structures which exhibits slight variability between different individuals.

2.8 Deform able M odels

Deformable models [1,19,29,103] are curves and surfaces that can deform 
under the influence of internal and external forces to delineate an object 
boundary from the image. One of the earliest deformable models for image 
segmentation was introduced in the form of active contours in [19]. De­
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formable models have since become one of the most widely explored areas in 
image segmentaion, and have been applied for the segmentation and analysis 
of anatomic structures from various imaging modalities [104-106]. In gen­
eral, deformable models can be categorized into explicit [19,103] and implicit 
models [1,29,107].

2.8.1 Explicit D eform able M odels

Explicit deformable models represent curves and surfaces parametrically dur­
ing deformation. This parametric contour and surface representation allows 
the explicit deformable models to track the points of the curves and surfaces 
across time, and is therefore well suited for real-time applications due to the 
fast computation time.

The classic active contour is a parameterized curve C represented by x(s), 
where x  denotes the position vector in a Cartesian frame and s is the arc 
length. The energy functional can be defined on the contour as

E ( x ) = Eint +  Eext (2-4)

where Eint and Eext denote the internal and external energies of the contour 
respectively. The internal energy is used to regularize the smoothness of the 
contour and is defined as

where a(s) and /3(s) are parameters that control the tension and rigidity 
of the model respectively, and are usually set as constants, i.e. a(s) = a 
and f3(s) = (3. For example, large values of a and [3 will allow less amount 
of stretching and bending of the contour respectively. In contrast, small 
values of a and [3 will place less constraints on the size and shape of the 
contour respectively, and allow more stretching and flexibility of the contour.
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Note that careful tuning of these parameters is required, as large values of 
these parameters may cause over smoothing and shrink the contour, while 
small values of these parameters may cause the contour to be sensitive to 
local minima such as image noise. The external energy attracts the contour 
towards object boundaries in the image, and can be defined as

The external potential function is usually derived such that the local minima 
of Eimg(x,y) coincide with intensity extrema, object edges and features of 
interest in the image. An example of the image attraction function can be 
defined as

where c is a weighting parameter that controls the magnitude of the potential, 
and Ga denotes a Gaussian smoothing filter with standard deviation a. Here, 
I(x, y) represents the image intensity and * denotes the convolution operator. 
According to the calculus of variations, the contour that minimizes the energy 
functional E(x)  in equation (2.4) must satisfy the Euler-Lagrange equation

The active contour can be expressed as a function of the arc length s and 
time t , i.e. x  = x(s,t).  The evolution of the contour can then be defined as

Another approach to compute the local minima of the energy functional is to 
use a dynamic force formulation. The dynamics of the active contour x(s, t)

(2 .6)

where Eimg(x(s)) denotes a scalar potential function defined on the image.

Eimg(x ,y ) =  —c\VGa(x,y) * I (x ,y ) | 2 (2.7)

[104,108]
d_
ds

(2 .8)

dx d 
dt ds

(2.9)
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with mass density fi(s) and damping density 7 (5 ) can be defined as

cP“ t
+ 1 ~di = Fint^  + Fext^  2̂'10^

where F int  is the internal force given as

*-<«■>-10*1) 0 .11)

and F ext is the external force which can be defined as

F e x t ( x )  =  - V E i m g ( x )  (2.12)

Such a force formulation for the active contour allows the incorporation of 
various types of forces to regularize the model. A convenient technique to 
define the external force is to use a linear summation of different forces and 
can be expressed as

N

F ext{x) = Y J F i(x) (2.13)
i= 0

where N  denotes the number of forces. The contour converges when the 
internal and external forces balance, and the equilibrium of the system is 
achieved.

Although traditional active contours have been widely applied in the seg­
mentation of biomedical images, there are some limitations involved in using 
them. Traditional active contours are very sensitive to parameters. They 
have a small capture range and initial contours have to be placed close to the 
boundaries of the image objects in order to draw the contours towards them. 
The parametric active contours often have difficulties dealing with boundary 
concavities. Several techniques have been used to address the convergence 
issues of explicit deformable models. In [108], a pressure force is used to in­
crease the attraction range of the model. However, it requires careful setting 
of the pressure force to inflate or deflate the model, as a strong force may
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easily overwhelm the weak edges. In [109], an external force computed using 
a distance map is used to increase the attraction range. The distance poten­
tial force however attracts the model points to the nearest edge, which can 
often cause difficulties for the model to propagate into boundary concavities. 
The external force field in [103] uses a diffusion of the image based potential 
function, which improves the attraction range and handling of boundary con­
cavities of the deformable models. It however has convergence issues such 
as saddle or stationary points in the force field. It is also difficult for the 
explicit models to handle topological changes, such as splitting or merging 
during the deformation. In order to handle topological changes, Mclnerney 
and Terzopoulos [20,110] designed topology adaptive deformable models. 
During the deforma.tion, the model is periodically reparameterized with a 
new set of nodes and elements by computing its intersections with a reg­
ular simplicial partitioning of space. These intersection points are used as 
the nodes of the new contour or surface. The grid vertices that have moved 
from the exterior to the interior of the deformable model are then labeled 
to continuously track the interior grid vertices, such that the new contour or 
surface can be determined. This technique however works well only when the 
model inflates or deflates everywhere [1 1 1 ], which limits its applications in 
medical image analysis. Several techniques [21-23] have also been designed 
to handle topological changes. However, these approaches usually involve a 
set of heurestic rules to detect self-intersections and handle merging of the 
evolving model.

2.8.2 Im plicit D eform able M odels

Implicit deformable models are introduced by Caselles et al. [11] and Malladi 
et al. [1 2] to address some of the limitations of parametric deformable models. 
The implicit deformable models are implemented using the level set method 
introduced by Osher and Sethian [24] for front propagation. In this approach, 
the evolution of curves and surfaces are represented implicitly as a level set
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of a higher-dimensional scalar function. As the deformation of the model 
is based on geometric measures such as the unit normal and curvature, the 
evolution is independent of the parameterization and topological changes can 
be handled automatically. Consider a contour represented implicitly as the 
zero level set of the function <j>{x) : £7 —> such as

C = { x e Q \  <j>(x, t) =  0 } (2-14)

where £7 denotes the image domain, and <f>(x,t) is the evolving level set 
function. The level set function is defined as positive inside the boundary of 
the propagating front, and negative outside the propagating front as

<j>(x,t) > 0 for x  E £7in
4>(x,t) < 0 force G £7\£7in (2.15)
0(a?,t) =  0 for x  E dflin = C

where is a region in £7 with a boundary d£7in defined by the contour C. 
Figure 2 .1  depicts the level set function and the various level set contours.

The propagating front of the level set function is defined as <f>(x(t),t) = 0, 
and the evolution equation can be derived using chain rule as

86 dx . .
^  +  W . -  =  ° (2.16)

The evolution of a contour along its normal direction can be expressed as

3x
—  = V(n)n  (2.17)

where V  is the speed function that determines the speed of the front prop­
agation. ac denotes the mean curvature of the evolving front and is defined 
as

( 2 i s >
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Figure 2.1: Level set function and the corresponding level set contours.

and n is the unit normal of the contour defined as

V0
n = —

|V<2>|
(2.19)

The level set evolution equation can thus be expressed as

(2 .20 )

The numerical implementation of (2.20) can be com putationally expensive, 
as the evolving contour is represented implicitly in a higher-dimensional 

function. There are however efficient methods such as the fast marching 

method [112] and the narrow band method [25] which can be used to reduce 
the com putational cost of evolving the level set function. Although the fast 

marching method can be used to reduce the com putational cost significantly, 
they are designed for problems in which the sign convention of the speed 

function is constant. In other words, the front can only propagate forward or
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Figure 2.2: Segmentation of image objects using implicit deformable model.

backward in a single direction, which can limit the applications of the tech­

nique. Also, the fast marching method is only suitable for steady problems, 

i.e. H  =  0. The narrow band method provides an efficient solution for the 

front propagating problem by considering only a narrow band of pixels or 

voxels tha t are located in the vicinity of the current level set interface.
The level set method provides an elegant approach to formulate the de­

formable models for efficient image segmentation. The implicit deformable 
model can be used to extract multiple objects in an image, and can handle 
topological changes automatically. Figure 2.2 depicts the segmentation of 
disc objects from an image using implicit deformable model. As shown in 

the figure, the initial contour is set outside the disc objects, and is allowed 
to propagate and localize on the boundaries of the image objects. Figure 2.3 

depicts the evolution of the level set function, and the changes in topology 
in the corresponding level set contour.

The implicit deformable models are generally categorized into image in­
tensity gradient based methods and region based methods. The classic ge­

ometric active contour model introduced in [11, 12] is an image intensity 

gradient based model which uses an edge stopping function derived from an 
image which is smoothed by a Gaussian filter. The geometric active contour 

uses a constant force to expand or shrink the contour in the normal direc­

tion towards object boundaries. As such, the contour has to be initialized 

inside or outside the image object. The consant force used in the model can 

easily overwhelm weak object edges in the image. Various methods have

25



Figure 2.3: The changes in topology in the evolution of the level set function. 
The left column presents the evolution of the level set function and the right 
column shows the corresponding level set contour.
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been proposed to improve the performance of image intensity gradient based 
models [29,113,114]. In general, the image intensity gradient based models 
are sensitive to local minima such as noise as they make use of only local 
image information. The region based active contours [1,47,107] make use 
of the similarity of image characteristics to extract objects from the image. 
The image attraction energy used in such models is often derived from global 
image information. The region based models are therefore more robust to im­
age noise and intializations of the contours. They are however based on the 
assumption that image objects are composed of homogeneous image char­
acteristics such as intensity and colour, which limits their applications in 
real image dataset. In addition, region based models often have difficulties 
dealing with intensity inhomogeneity in the image.

2.9 Summary

This chapter introduced some of the most popular state-of-the-art methods 
for image segmentation. The methods described have been widely applied in 
the segmentation of biomedical image datasets. The various techniques are 
analysed, and the advantages and disadvantages in using these techniques 
are described. In particular, the various classes of deformable models, the 
formulation and convergence issues of the deformable models when applied 
to image segmentation are described. Table 2.1 shows the advantages and 
disadvantages of the various methods for segmentation. Although the thresh­
olding, region growing and watershed techniques are simple and fast, they 
are sensitive to noise and intensity inhomogeneity. Classification methods 
are relative fast but requires large training set and are often biased towards 
shapes in training set. Clustering techniques are sensitive to noise as they of­
ten do not consider spatial information. Graph based methods are robust to 
noise but they are computationally expensive and are often biased towards 
smaller regions. Atlas based methods produces labelling of image objects
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but have difficulty handling large shape variability in complex geometries. 
Deformable models can easily adapt to local features, and can incorporate 
forces to regularize the smoothness and shapes of the contours. In the next 
chapter, a new approach for efficient segmentation of images by deriving a 
geometric based external force field for deformable models is proposed.
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Table 2.1: Various methods for segmentation of images
Segmentation

methods
Advantages Disadvantages

Thresholding simple, fast sensitive to noise, 
sensitive to intensity 
inhomogeneity

Region growing simple, fast sensitive to noise, 
sensitive to intensity 
inhomogeneity

Watershed simple, fast sensitive to noise, 
sensitive to weak edges, 
produces over segmentation, 
difficulty in handling 
thin structures

Classification relatively fast large training set,
biased towards training shapes

Clustering relatively fast sensitive to noise, 
do not consider spatial 
information

Graph based 
approaches

robust to noise,
combinatorial
optimization

computationally expensive, 
biased towards smaller regions

Atlas based 
approaches

produces labelling of 
image objects

computationally expensive, 
difficulty in handling 
large variability in shapes

Explicit 
deformable models

relatively fast, 
easily adapt to local 
features,
can easily incorporate 
regularization forces

difficulty in handling 
boundary concavities, 
difficulty in handling 
topological changes

Implicit 
deformable models

easily adapt to local 
features,
automatic handling of 
topological changes, 
can easily incorporate 
regularization forces

computationally expensive
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Chapter 3

G eom etrically Induced Force 
Interaction for Contour and 
Surface Evolution

3.1 Introduction

The design of deformable models often varies in the representation of the 
object boundary and external force field used. There have been numerous 
publications on deformable models and improvement of the underlying tech­
niques. These usually take the form of image gradient based approaches 
e.g. [12,103,114-116], region based approaches e.g. [1,117] and hybrid ap­
proaches e.g. [118,119]. Image gradient based techniques have been found 
useful when there is limited prior knowledge and image gradients are rea­
sonable indications of object boundaries. However, the extension from 2D 
to 3D is not trivial. Conventional image gradient based approaches, such 
as the one in [12], require careful initialization even in 2D [117]. Although 
several improvements have been developed, e.g. [103,114], it remains a great 
challenge for image gradient based models to achieve initialization invariance 
and robust convergence. This is especially true when segmenting objects with
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complex geometries and shapes in 3D, where delicate manual initialization 
is more difficult than in 2D.

Region based methods [1,47,107,117,120] have also been widely applied 
to image segmentation. The Chan-Vese model [1] which is based on the 
Mumford-Shah functional [121] is considered as one of the most popular 
region based techniques. In this approach, the image is assumed to be com­
posed of regions of approximately piecewise-constant intensities. The Chan- 
Vese model then extracts the image object based on the average intensities 
inside and outside the contour. Although the Chan-Vese model can be used 
to extract objects with smoothly varying boundaries, it has difficulties deal­
ing with image regions with intensity inhomogeneity. Other region based 
models such as [47,107] also assume that image objects consist of distinct re­
gional features, which is often not true for real image dataset due to intensity 
inhomogeneity and multi-modal nature.

In this chapter, a novel deformable model with an external force field 
based on the relative position and orientation of the deformable model and 
object boundaries is proposed. The external force field is called the geometric 
potential force (GPF) field as it is based on the hypothesized interactions be­
tween the relative geometries of the deforming surface and the object bound­
aries (characterized by image gradients). The evolution of the deformable 
model is solved using the level set method so as to facilitate topological 
changes. The proposed external force field can attract the deformable model 
to object boundaries with arbitrary initialization, and allows the deformable 
model to reach highly concave regions which are generally difficult for other 
methods. The vector force field introduced, can be viewed as a generalized 
version of the magnetic force field described in the recent magnetostatic ac­
tive contour (MAC) model [116]. The proposed method uses a vector force 
field computed based on geometric properties such as unit vectors and unit 
normals which can be easily derived, and can therefore be conveniently ex­
tended to higher dimensions. In contrast, the MAC model cannot be directly
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applied to 3D image dataset as it is not apparent how the hypothesized cur­
rent direction represented by tangent vectors can be estimated and set on a 
3D object. It is shown that the proposed model can be applied to segment 
complex geometries from synthetic and real image datasets efficiently.

3.2 R elated Work

In image gradient based deformable models, it is assumed that object bound­
aries coincide with image intensity discontinuities. In region based tech­
niques, an image object is assumed to have distinctive and continuous re­
gional features such as colour and texture, which is not always true for real 
world data due to intensity inhomogeneity and multi-modal nature of the im­
ages. Conventional image gradient based methods have difficulties in dealing 
with boundary concavities, weak edges, image noise and difficult initializa­
tions as they are generally prone to local minima that often appear in real im­
ages. Numerous research works have been performed in order to improve the 
initialization and convergence capabilities of the gradient based approaches.

The geodesic active contour model [29] uses an image dependent constant 
flow to move each point on the deformable model in the direction of its nor­
mal at a speed proportional to the edge stopping function. This function 
monotonically shrinks or expands the contour towards the object boundary 
and plays an important role in the geodesic model, and in subsequent incre­
mental improvements, such as [113]. This method often produces leaking of 
the deformable model on images with indistinct object boundary or bound­
ary gaps. This is due to the fact that the edge stopping term only slows down 
the curve or surface near the boundary, and a relatively large pressure term 
can easily overwhelm it. Also, the edge stopping function which is similar to 
the ballon force, a constant inflation or deflation force used in [1 2 ], can only 
monotonically shrink or expand the contour depending on the sign conven­
tion of the pressure term. As such, cross-initialization of the contour which
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is useful in segmenting complex and compact geometries cannot be applied 
to the image dataset.

The geodesic model [29] can be expressed as:

dx
—  = g{otK + C ) f i -  (Vg h ) h  (3.1)

where C is a constant pressure term, k and h  are the curvature and inward 
unit normal of the contour respectively, and a  is a weighting parameter that 
controls the smoothness of the contour. The edge stopping function g(x) is 
given as:

9{x) = T77R (3'2)
where f ( x )  is a function that represents the image object edge, and is usually 
set to the image gradient magnitude, a is set according to the amount of 
noise, i.e. a is increased if the amount of noise is increased. However, too 
large a value of a may cause the contour to shrink. The constant C can be 
positive or negative depending on the direction of propagation. If C is too 
small, the contour may not propagate to the object edges, and if C is too 
large, the contour may overwhelm weak object edges.

The gradient vector flow (GVF) and its generalized version GGVF [13, 
103] have shown significant improvements over conventional external force 
field such as the geodesic model [29] and have been widely used in deformable 
models, e.g. [16]. It uses a vector diffusion equation that diffuses the gradient 
of an edge map to regions distant from the object boundary. The amount of 
diffusion adapts according to the image edge strength, and is designed such 
that there will be very little smoothing of the vector field in the proximity 
of large image gradients.The GGVF model can be defined as:

dx
—-  = ag n h  +  (1 — a)(v • h) fi (3.3)
d t

where x  denotes a position vector on the deformable contour, t denotes the
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artificial time component, g is the stopping function, k is the curvature, h  
is the unit normal, and a  is a real constant to balance the contribution of 
the curvature term; (v • h ) h  is the flow component normal to the contour. 
Let I  denote the image intensity and u = | V /| be the image gradient magni­
tude. The diffused gradient vector flow field v(x)  is given as the equilibrium 
solution to the following PDE:

r)u
- T -  =  -u)i(|V«|)V2ij -  W |V d ) (u  -  Vu) (3.4)
ot

where iui(|Vm|) = e ~ ^ u^K  ̂ and u>2 (|Vw|) =  1 — iui(|Vit|) are weighting 
functions which control the amount of diffusion according to the gradient of 
the edge map. K  is a parameter that controls the amount of field smoothness, 
and can generally be set to K  = 0.05 to K  = 0 . 2  depending on the amount 
of noise [13]. Although the GGVF has been shown to improve the capture 
range and boundary concavities tracking ability, it has convergence issues 
caused by saddle or stationary points in its force field, i.e. when the contour 
is tangent to the force vector [116,122].

In [122], a distance transform based on a modified mean curvature flow 
was used to compute the curvature vector flow (CVF), which can be used 
to attract contours into boundary concavities. Curvature flow was used to 
evolve the object boundaries till they were no longer concave. The inward 
or outward propagation was defined by monotonically non-negative or non­
positive curvature flow respectively. A distance map was then computed 
based on the evolution of a contour, from which the CVF can be defined. 
This method only reduces the number of stationary or saddle points. It is 
also noted that the CVF active contour requires that the object boundary be 
closed, i.e. there should be no gaps along the object boundary, otherwise pre­
processing is required to close the gaps along the object boundaries. However, 
image datasets often come with weak object edges and broken boundaries.

Recently, there have been several research works on physics-based de­
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formable models such as the ones described in [49,116,123]. In [123], a 
charged-particle model (CPM) based on electrostatics was applied to attract 
particles toward object boundaries. Jalba et al. [123] hypothesized a set 

of freely moving particles with the same positive charge q in an exter­
nal electrostatic field, generated by fixed negative charges ex proportional 
to the image gradient |V/(cc)| at point x. The positively charged particles 
are attracted towards the fixed negative charges under the influence of the 
external particle-mesh force F a and repelled by each other by the particle- 
particle force F r . These forces acting on a moving particle at position x  can 
be computed as the sums

*■•<*> p ’« < 3 5 >
x ' ^ x  x x  x '  GQ XX

x '  ^ X

where e is the permittivity, r xx> is the unit vector in the direction from x  to 
rxx> = |x — x f | is the distance between these two points. The total force 

acting on a particle is given by F =  waFa+wrFr+Wd F d where wa, wr and Wd 
are weighting parameters for the attraction force Fa, repulsion force F r and 
damping force F^ =  — respectively. A low ratio of wr to wa will cause 
the particles to be attracted to spurious edges while a high ratio will cause 
the particles to move through weak object edges. In contrast, a small Wd will 
cause the particle to cross over object edges while a large Wd will increase 
the viscous effect on the particles. The values of the parameters can be set 
to wa = 0.5, wr = 0.7 and Wd =  0.5 for a wide range of images. When the 
particles attain a stable equilibrium state due to the viscous effect of Fj, con­
tour reconstruction is required to obtain the object boundary representation. 
Although this approach can resolve the above-mentioned convergence issues, 
the fact that particles on weak edges may be attracted to nearby strong edges 
often causes broken contours to be formed. In addition, the method requires 
frequent particle insertion and deletion, which is computationally expensive,

35



which makes it impractical in 3D. Yang et al. [124] incorporated the parti­
cle model [123] into a contour model and showed subsequent improvements 
on the CPM. In their approach, a positively charged active contour moving 
in an hypothesized electrostatic field with field strength proportional to im­
age gradient magnitudes, is attracted to image edges based on a boundary 
attraction force based on the Lorentz force described in Equation (3.5). A 
boundary competition force is then used to repel nearby free contours from 
moving towards the already occupied image boundary. The repulsion force 
was generated in such a way that contours that have reached object bound­
aries will exert repulsion forces upon other contours while being minimally 
affected by other contours. However, the dominant external force field is 
static and its dynamic behavior due to repulsion force can be difficult to 
control. Park and Chung [125] also considered the pixels in the image edge 
map as static electric charges and used an external force equivalent to F 0 

in Equation (3.5) in their parametric model. Similar to [123], their para­
metric model based on hypothesized electric field computed from the edge 
map cannot deal with leakage at weak edges when strong nearby edges are 
present. Zhu et al. [126] incorporated tangent direction of the image map to 
compute a modified version of the electric potential force field. The tangent 
direction information is obtained by a 90° rotation of the gradient vectors 
of the smoothed image, and is coupled with a new parameter that controls 
the influence of the rotated vectors and the corresponding force field. This 
enhances the intensity of the hypothesized electric potential along the image 
edge and allows the active contour to better handle weak edge. However, the 
performance of the modified external force field in preventing leakage at weak 
edges is greatly determined by the value of the new parameter, which also 
affects the noise sensitivity of the active contour. In other words, the noise 
sensitivity of the modified electric field active contour increases together with 
its performance in handling weak image edges.

Li and Acton [49] used an external force calculated from the convolution
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of a vector field and the image edge map to attract the active contour towards 
image boundaries. The vector field kernel k(cc) consists of radial symmetric 
vectors pointing towards the center of the kernel, and is given as k(*) = 
m(x)x,  where m(x)  is the magnitude, x  — —x / r  is the unit vector pointing 
to the kernel origin, and r = \x\ is the distance from the kernel origin. The 
magnitude m(x)  of the vector field kernel should be a decreasing positive 
function of distance from the origin, and can be given as m(x)  =  (r +  e) - 7  

which is inspired by the gravitational law, or m(x) = e~ r2/^ 2 which is a 
Gaussian shape function, where 7  and £ are positive parameters to control 
the decrease, and e is a small positive constant to prevent division by zero at 
the origin. A small value of 7  will increase the attraction range of the vector 
field but may cause leakage through weak edges. In contrast, a large value of 
£ will increase the attraction range but may smooth out fine object edges. In 
general, 7  can usually be set to 1.5 and £ can be set to 1.0 for most images. 
The vector field convolution can then be written as:

F(x)  = f ( x )  * k(aj) (3.6)

where f ( x )  is the image edge map generated from the image intensity /, 
and * is the convolution operator. The kernels used in [49] however uses 
only regional pixels and edge pixels located away from the kernel origin are 
not included in the computation of the force. The authors showed better 
initialization and noise insensitivity in their method. However the generated 
field is static and cannot handle the convergence issues discussed above.

In [116,127], Xie and Mirmehdi introduced an external force field that 
is based on the hypothesized magnetic force between the active contour and 
object boundaries. This formulation has been applied directly in the mag- 
netostatic active contour (MAC) to compute the magnetic field and force 
required to draw the active contour towards object boundaries in 2D images. 
This image gradient based method showed significant improvements on con­
vergence issues, e.g. reaching deep concavities, and in handling weak edges
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and broken boundaries. When applying the analogy directly to deformable 
modeling, it requires estimation of tangent vectors for the deformable con­
tours, which is convenient in the 2D case, however, not possible in 3D. It 
will be shown later that the MAC model is in fact a special case of the 
proposed method in 2D. Xiang et al. [128] derived an external force for the 
active contour based on the elastic interaction (El) between line defects in 
solids [129,130], with its long range attraction force similar to the magnetic 
force used in MAC [116,127]. One of the unique properties of MAC and El 
is that they take into account the orientation of image gradient vectors in 
deriving the external force fields, unlike other edge based approaches, where 
only image gradient magnitudes are used. It will be shown later that the 
MAC model is in fact a special case of the proposed method in 2D. The new 
method does not rely on specific initialization as required in the El model 
and handles noise interference much better.

Kimmel [118] also explicitly used image gradient vector directions as an 
alignment measure in a hybrid approach, coupled with the geodesic active 
contour and minimal variance criterion suggested by [1]. Given a contour C 
of length L, and in a parametric form represented by x(s)  where s is the arc 
length, the alignment measure used in [118] is given as

where h(s) is the unit normal to contour C at s, V I(x )  is the image in­
tensity gradient at x. The alignment measure is used to optimize the ori­
entation of the curve with respect to the image intensity gradients. This 
measure, together with the gradient-based geodesic measure and the region- 
based minimal variance criterion is then used to push or pull the contour 
towards the image boundary. This hybrid approach, however, requires care­
ful tuning of the different parameters associated with various measures in 
order to efficiently bridge the image intensity gradient and regional infor­

(3.7)

38



mation. In addition, only local edge information are used in the alignment 
measure, while edge information of pixels located away from the contour are 
not considered in this technique.

3.3 Proposed M ethod

Here, a novel external force field is defined based on hypothesized geometri­
cally induced interactions between the relative geometries of the deformable 
model and the object boundaries (characterized by image intensity gradi­
ents). In other words, the magnitude and direction of the interaction forces 
are based on the relative position and orientation between the geometries of 
the deformable model and image object boundaries, and hence, it is called 
the geometric potential force (GPF) field. The bidirectionality of the new ex­
ternal force field can facilitate arbitrary cross-boundary initialization, which 
is a very useful feature to have, especially in the segmentation of complex 
geometries in 3D. It also improves the performance of the deformable model 
in handling weak edges, i.e. fuzzy object boundaries in the image. The com­
putation of the new force field utilizes pixels or voxels across the whole image 
domain, which provides a global view of the image object boundary. In ad­
dition, the proposed external force field is dynamic in nature as it changes 
according to the relative position and orientation between the evolving de­
formable model and object boundary.

3.3.1 G eom etric P otentia l Force

In order to first deduce the geometric interaction force in 2D, consider a 
deformable contour C and an ideal object boundary C' in the image plane (see 
Figure 3.1). Let dI and dl' denote the infinitesimal elements of contour C and 
object boundary O , respectively. In the existing force field based models such 
as [49,124], the interaction between dl and dl' is inversely proportional to the 
distance separating these two elements and the derived force lies in a straight
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Figure 3.1: Relative position and orientation between geometries in 2D and 
3D.

line between them. They do not take into account the local geometry of the 
deformable contour C or object boundary C'. It is proposed to incorporate 
the mutual location and orientation of these elements.

Let x  and x'  denote the positions of elements dl and dl', respectively. 
Thus, r xx> =  x  — x'  is their mutual location of those two elements, rxxt = 
\x — x'\ is the distance between them, and r xx> = (x — x ' ) / rxxt is the 
unit vector pointing to dl from dl'. The directions of these elements can be 
represented by their unit tangent vectors t  and $. However, a unique tangent 
vector is no longer available for infinitesimal surface elements in 3D. Thus, 
we use unit outward normal vectors h  and fi to characterize the orientations 
of these elements instead (see Figure 3.1). In 2D, they are simply 90° rotated 
tangent vectors.

The hypothesized interaction force dFdZ which acts on element dl by 
virtue of the hypothesized force field induced by element dl' can now be 
introduced. It is desirable to combine the element orientation vectors and 
distance vector in deriving the force. A simple but effective combination 
of these three vectors as n  (r xxi • f i )  is proposed, unlike CPM [123] as an 
example where only the distance vector r xx> is used. The multiplication of 
contour normal h  ensures that the force is always imposed in the normal di­
rection so that the deformable model does not suffer from convergence issues 
(i.e. stationary points, saddle points and extreme boundary concavities),
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which are often associated with other vector force field based methods such 
as GVF [103]. The dot product of the object boundary element normal with 
the distance vector allows the force on the contour in the normal direction 
to diminish as the contour reaches the object boundary. Similar to other 
physics-inspired force field, it is also desirable to decay the force interaction 
with the increase of distance between the elements, i.e. the force is designed 
proportional to h  (rxxf ■ n ' ) /rxx, where A > 0. Thus, the contribution of ele­
ment dl' of object boundary C' to the total force acting on dl in accordance 
with their distance and mutual orientation can be formulated as

where F is defined as force per unit length, dG is the contribution of element 
dl' of object boundary C’ into the scalar field G(x), which can be considered 
as an intermediate potential field, and A is a positive constant that affects 
the magnitude of the interaction force based on the distance between the 
elements. In this study, the best results are obtained when A coincides with 
the dimension of the image data, i.e. A =  2 in the 2D case. Furthermore, it is 
shown later that when A coincides with data dimension in 2D, the proposed 
force interaction has an explicit link to the magnetostatics theory and thus 
the spatial decay of the magnitude of the interaction force is analogous to 
that of the magnetic field.

As shown in Equation (3.8), the computation of the new force field only 
requires unit normal vectors and relative position of the two elements, which 
is convenient to acquire. Thus, this new force field can be easily extended 
to higher dimensions, e.g. 3D. Let dA  belong to the deformable surface S  
whereas dA' belongs to the object boundary S' (see Figure 3.1). The gener­
alized 3D version of force dF dA  acting between these two area elements can

dFdl = ndGdl , (3.8)
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be readily given as

dF<M = ndG<L4, dG = ( ^  • h ')  &A! (3.9)
^  X X 1

where F is defined as force per unit area, G is the corresponding 3D potential 
field, h  and n ' are unit surface normals of the deformable model and object 
boundary, respectively, and A =  3. Again, the magnitude and direction 
of the induced force F is handled intrinsically by the relative position and 
orientation between the geometries of the deformable model determined by 
the evolving surface S  and object boundary determined by S'. Since the force 
is derived geometrically and its interaction is a function of inverse distance, 
we name it geometric potential force (GPF).

3.3.2 G PF D eform able M odel

The GPF force in Equation (3.9) is derived using geometrical information 
from ideal object boundaries. Next, this is extended to deal with real image 
data and formulated for 3D deformable modelling. Here, an edge based 
approach is used, in which the image intensity discontinuity is utilized to 
estimate the presence and strength of object boundaries.

Let I(x)  denote the 3D image intensity, where x  is a voxel location in the 
image domain. Temporarily, let x  be considered as a continuously varying 
point. One may treat this as an interpolation between voxel grid points to 
obtain a continuous image intensity I(x).  To derive the force acting on dA, 
the total potential field for an arbitrary point x  is first computed as:

G(x) = P.V. W ( x ’) ■ ra'(®')) <L4'. (3.10)
X X

S'

where W(-) is an image dependent weighting function that is defined later, 
and P.V. means ‘Principal Value’: the contribution of infinitesimal circular
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vicinity of singular point x'  =  x  into the integral is disregarded, which occurs 
when surfaces S  and S' intersect.

In an ideal continuous image, I(x)  has a jump at the edge, where V / is 
infinite, and the surface S' is rigorously defined. In a real image, V / is a 
smooth function with its magnitude |V7j reaching its maximum in the vicin­
ity of the object boundary. Thus, instead of the surface integration over S', 
a volume integral is taken across the image domain. The weighting function 
W is set as proportional to the edge strength, which can be estimated as 
|V /|, so that strong edges have larger influence on the generated potential 
force field than weaker ones, i.e. W = |V /|. In this way, spurious edges 
which are caused by noise have little effect on the generated force field. Note 
that V / = |V /| ft =  W f i . The geometric potential field in the continuous 
form can then be formulated as

where integral is carried out over the image domain Q. The discrete form of 
the geometric potential field in Equation (3.11) can be given as

This can be considered as a convolution of the image intensity gradient with 
the vector kernel K a(^)

which can be carried out efficiently using the fast Fourier transform (FFT).

G(x) = P.V.
m

- • V /(* ') ) dV .)) (3.11)

(3.12)

x\x+1

\ n
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Note that the potential field G is computed as a convolution of two vector 
functions.

The total force acting on the unit area element of the deformable surface 
S  is thus given as F  = i iG(x).  where fi is the outward unit normal of the 
level set surface. Note, an inward normal can also be used, i.e. F =  — n  G(sc), 
which will result in opposite deformable model propagation since the force 
field is exactly in the opposite direction. An example is given in Figure 3.4. 
Hence, the force can now be written in a generalized form:

where J  is a constant taking values of ±1. Note that this is different from 
the constant force in the geodesic model, where the force is monotonically 
expanding or shrinking. The sign convention ±  is merely used to determine 
the direction of propagation of the deformable model.

The general contrast consistency along the object boundaries however is 
important to the model. Large contrast variation can disrupt the force field, 
e.g. half of the object appears brighter than background and the other half 
appears to be darker. However, this does not mean that the entire object 
has to be brighter or darker than background. Those regions away from 
object boundary can be continuously varying in intensity (see Figure 3.2 as 
an example).

Once the force field F(cc) derived from the hypothesized interactions based 
on the relative geometries of the deformable model and object boundary is 
determined, the evolution of the deformable model under this GPF field can 
be defined. Consider a surface represented implicitly as the zero level set of 
the function <f>(x) : Q —► 9ft such as

where Q, denotes the image domain, and <f>(x,t) denotes the evolving level

F = J h G ( x ) . (3.14)

S = {x e f t  \ <f>{x, t) =  0 } (3.15)
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Figure 3.2: GPF: first row from left to right - input image and initial de­
formable model, corresponding edge map and computed geometric potential 
field, second row - initial and evolving deformable models, and third row - 
corresponding G PF vector field.

45



Figure 3.3: Direction of propagation of the G PF deformable model with 
cross-boundary initialization of the contour: first row - J  — 1, second row -
J  = - 1.

Figure 3.4: Direction of propagation of the G PF deformable model with 
cross-boundary initialization of the surface: first row - J  = 1, second row -
J  = - 1-
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set function. The level set representation of the proposed deformable model 
based on GPF can be formulated as

^  =  a ff« |V ^ | - ( l - a ) ( F - V ^ )  (3.16)

where a  is a constant parameter, k is the curvature and g(x) = 1 / ( 1  +  
|VJ|) is the edge stopping function, a  controls the amount of smoothness of 
the contour, for example an increase in a will cause an increase in contour 
smoothness. As the curvature k is coupled with the edge stopping function 
g , the effect of curvature flow will be small in the vicinity of object edges, 
while the geometric potential force F in the vicinity of the object edges have 
large values. Therefore, the model is generally not sensitive to the values 
of a  as the large geometric potential force F will attract the contours or 
surfaces to the object boundaries. Note, the GPF force field is defined on 
the deformable surface, which is implicitly embedded in the level set function, 
i.e. the force field computed at the propagating front needs to be extended 
across the computational domain so that the full level set function can be 
continuously evolved. Although direct force extension method such as the 
one in [131] can be used, the GPF forces can be conveniently computed for 
each level set so that this external force is extended to the entire level set 
function.

The GPF deformable model differs from conventional edge based models 
by utilizing edge voxel interactions across the whole image, thus providing 
a more global view of the object boundary. The magnitude of the potential 
field strength at each image location x  is based on the relative position of x  
with all other voxels in the image. Therefore, voxels at homogeneous regions 
will also have a non-zero potential field strength. In this way, surfaces which 
are initialized far away from object boundaries can propagate towards the 
image edges and converge,

As shown in Equation (3.9), the dot product r xx> ■ n  can be both posi­
tive and negative, depending on the relative configurations of the geometries
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between the deformable model and the image boundaries, thus giving a bidi­
rectional vector force field. This useful bidirectionality facilitates arbitrary 
cross boundary initializations, as its force vectors point towards the object 
boundary from both ways. This also allows the model to stabilize the de­
formable surfaces at weak edges, thus preventing leakage. The first row of 
Figure 3.2 shows a substantially blurred image with linearly varying intensity, 
and the corresponding edge map and computed geometric potential field. In 
addition, as the deformable model evolves, the unit vector r xx> changes ac­
cordingly based on the relative geometries. This contributes to a vector force 
field that changes dynamically as the deformable model evolves, as depicted 
in the second row of Figure 3.2. Therefore, the proposed model has much 
better invariance to its initial position and can deal with complex geometries 
and extreme boundary concavities.

The physics-based deformable models described in [49,123-126] and re­
viewed in Section 3.2 all use a kernel based function to compute the external 
force field with kernels being decreasing functions of distance from the origin. 
This is similar to convolving a vector field with the image edge map. For 
example, forces in Equation (3.5) can be represented as a convolution with 
the same kernel in Equation (3.13) with A =  2 :

2

F„(®) =  ^ ( K a * |V /|) , F r (®) =  j ^ ( K a * In) (3.17)

where In (a;) is a function equal to 1 when x  G and 0 otherwise. The 
repelling force F r (jc) is largely imposed in the tangential direction, which 
has very limited effect on changing the shape or topology of the deformable 
model. Thus, it is not necessary in the new model. In order to compare with 
the dominant attraction force F a, Equations (3.13) and (3.14) are combined 
and the GPF force is expressed as

F gpf — J n ( K A* V /) (3.18)
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It is clear that the GPF force is directed by the normal of the deformable 
model, i.e. it does not contain the tangential ‘parasitic’ component in con­
trast to the F a force. Moreover, the proposed GPF takes into account edge 
orientations, as well as edge strength (the convolution in Equation (3.17) 
is based on a convolution of a vector function on a scalar field; whereas in 
Equation (3.18) it is carried out on a vector field).

3.3.3 E dge-Preserving Enhancem ent o f G eom etric P o­
ten tia l F ield U sing N on-Local M ethod

Although the GPF deformable model can reduce its noise sensitivity to a 
certain extent by modeling gradient vector interactions across the image do­
main, deformable models based on image gradients are in general susceptible 
to heavy noise interference. Note, the GPF force F is determined by its po­
tential G, see Equation (3.14), and G can be pre-computed before evolving 
the deformable model. Thus, its performance can be improved towards im­
age noise by refining the potential G. Here, it is enhanced using non-local 
methods [132,133), so as to increase its robustness even in the presence of 
a large amount of image noise. One main advantage in choosing non-local 
methods over local diffusion or averaging methods [134,135] is the ability 
to preserve fine structures. Moreover, the potential field has zero or close to 
zero magnitude in the centre of object boundaries, with positive and negative 
potential values immediately on either side. Using local methods to carry 
out smoothing, there is a risk of canceling out on object boundaries, which 
is not desirable. In non-local methods [132,133], similarity is not measured 
based on a single pixel/voxel value but is measured based on the neighbor­
hood of the pixel/voxel. In particular, non-local methods not only compares 
the intensity value in a single pixel/voxel, but also the geometrical configu­
ration in its neighborhood. This gives a more robust performance than local 
smoothing filters. In a standard non-local denoising algorithm [132], an im­
age pixel/voxel is restored using the weighted average of all the pixels/voxels
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in the image. This algorithm, however, cannot be applied directly to the de- 
noising of the geometrically induced potential field G. This is because edge 
information in the geometric potential field is represented differently from 
that of the original image. For instance, the gray level values of the original 
image on the same side of object edges can be quite similar, thus giving a 
large weight for similarity measure. On the other hand, the difference in mag­
nitudes of the geometric potential field at these regions can however be very 
large, giving a small weight for similarity measure, causing similar structures 
to be considered as different. Therefore, instead of comparing voxel neigh­
borhood from the geometric potential field to refine itself, we measure voxel 
similarity from the original image and use the computed similarity weights 
to refine the geometric potential.

Given the noisy image with intensity I (x)  and its corresponding geometric 
potential field G(x),  this non-local smoothing of the geometric potential field 
is carried out by computing a weighted average at each voxel position x  
according to:

G'(x) = w(x , x ' )G(x)  (3.19)
a;'GO*,as'T^a:

where Qx is a search window centered around x.  Following the approach 
in Buades et al. [132], the similarity between two square (2D) or cube (3D) 
regions centered at location x  and x ' is measured, and the similarity weight 
from the image intensity I(x)  is determined as:

W(x , x)  = ——-e v / (3.20)
Z>{X)

where Ga(.) is a Gaussian kernel with standard deviation cr, N  denotes the 
region containing the pixels/voxels location <5, h is the parameter that con­
trols the amount of filtering, and Z(x)  is a normalization constant given by 
Z(x ) — Sa/eOx w(x ix ')- The parameter h controls the decay of the expo­
nential function and therefore the amount of smoothing. There will be little
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Figure 3.5: Edge-preserving non-local enhancement of geometric potential 
field: from left - example image with noise, geometric potential field G(x) 
and the corresponding enhanced G'(x). Note tha t G(x) and G'(x) are shown 
as 3D surface plots.

smoothing effect if h is too small, and over smoothing of the image if h is 
too large. In general, h is set proportional to the standard deviation cr, i.e. 

h = l.Oc to h = 1.5(7. The force acting due to the enhanced geometrical 

potential held on the deformable surface S described in Equation (3.14) can 
then be given as:

F(®) =  Jh(x)G'{x) (3.21)

=  J  h(x) w(x,x')G(x)
x ' , x ' ^ x

By comparing regional similarity instead of single pixel/voxel similarity 

from the noisy image, a more reliable geometric potential held is achieved. 
Moreover, oscillations a t flat or homogeneous regions are readily smoothed 
and edge information at object boundaries are enhanced in the denoised geo­

metric potential held. Figure 3.5 shows a 2D image with 70% added Gaussian 
noise, the computed geometric potential held G(x) and the enhanced G'(x) 
using nonlocal filtering. It is evident th a t this nonlocal method can efficiently 

remove noise interference and preserves edge information in the geometric po­

tential held. This greatly enhances the performance of the deformable model 

in handling image noise. The second row of Figure 3.6 provides the segmen­
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tation result on this substantially noise corrupted image using the enhanced 
geometric potential field.

3.3.4 R elationship  w ith  M AC and Com parison w ith  E l 

M odels

In the MAC models [116,127], the external force field is based on the hy­
pothesized magnetic force between the active contour C and object edge C'. 
Interaction between two elements dl and dl' of contours C and C', respec­
tively, is described in accordance with the Biot-Savart law:

ii Y'd/'
dFdZ =  T dZ (t x dB), dB =  (i x j v x) (3.22)

4v Ti'*

where T and T' are electric currents in contours C and C', respectively; t  
and i  are unit tangent vectors to elements dl and drespectively ; rx>x is the 
distance between dl and dl', r x>x is the unit vector pointing from dl' to dl, 
and no is the permeability constant. The current directions represented by 
the tangent vectors t  and t  have to be known in advance before computing 
the magnetic field and force. To deal with this requirement, the authors 
in [116,127] compute the direction of the imposed currents for the active 
contour and object boundary by rotating the respective gradient vectors in 
a clockwise or anti-clockwise manner such that a current loop is formed on 
both the active contour and object boundary.

As shown in [116,127], the MAC method has many advantages when 
dealing with objects of complicated topology, with noise, and weak edges. 
However, it is difficult to extend MAC to handle 3D images directly as it is 
not apparent how the hypothesized current direction is to be estimated and 
set on a 3D object. Here it is shown that the MAC model is a particular case 
of the proposed method in 2D.

Notice that tangent vectors t  and t  can be represented as a cross-product
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of normals n  and fi and the unit vector z  = (0 , 0 , 1 ) normal to the image 
plane: t  — z x h  and t  = z x n  (see Figure 3.1). Then applying Lagrange’s 
formula for the vector triple product we obtain

(z x n) x dB = — z  (h • dB) +  h  (z • dB)

h  (z ' dB), (3.23)

( A A f \  As As / As. / As \  , A. t  f  As As \z x n )  x r x'x = - z  [n ■ r x> x) +  n  (z • r x>x)

= - z  (ft! • r x>x) . (3.24)

Now Equation (3.22) can be re-written in the following form (ignoring con­
stants)

TM /'
dF dl =  T dl n  (z  • dB ), dB = ---- — ,z {rx>x • n )  (3.25)

r x ' x

Note that the magnetic field in the 2D model has only a vertical component: 
dB = (0,0,dB) =  dB z  where dB = (z  • dB). Hence, by setting dB =  dG, 
T =  1 and T' =  1 and also taking into account that r x>x = —r xx> and 
tx>x = rxx>, it will lead one to the 2D GPF model as in Equation (3.8) with 
A = 2. If one set T = J  and T ; =  |V /|, this will show that the image
intensity gradient based MAC model is equivalent to the proposed image
intensity gradient weighted GPF in 2D as given in Equations (3.12) and 
(3.14), again with A =  2. Thus, one can consider the proposed method as 
a generalization of the MAC method [116] to higher dimensions or, in other 
words, the MAC method is a special case of GPF in 2D.

The force field used in the El model [30,128] is defined based on the 
elastic interaction between line defects and can be given as:

v = P . V . ( f f  ^ l - V ( G c, * /  +  i/cH e(0))d>l (3.26)
J j ^ x x '

where x  and x'  are points on the moving contour and on the object boundary, 
respectively, Ga is a Gaussian kernel with standard deviation cr, vc is an
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Figure 3.6: Comparative results of the segmentation of concentric rings from 
noisy image - first row: El model; second row: proposed G PF model.

adjustable coefficient, and Hc is a smoothed Heaviside function. The elastic 
interaction force v in Equation (3.26) consists of an image based interaction 
force and a contour based interaction force. The image based interaction is 
given by the dot product (rxx'/r2xx,) • V(Ga * I) and takes a similar form 
to the proposed geometric interactions. The term  (rxx'/rxx, ) • V(zzc 7-fe(0)) 
represents the contour based interaction within the moving contour.

The El model initializes the contour using the zero-crossing of the image 
based interaction force, which sets the initial contour near the object bound­
ary. This also generates many false contours caused by spurious edges. It is 

assumed th a t the force generated by the noise is relatively small as compared 
to the interaction force at the object boundary. The El model then uses the 

contour based interaction force within the evolving contour to overcome the 

interaction between the noise and the contour. The param eter vc thus needs 

to be sufficiently large in order to shrink the spurious edges caused by the 

noise. This initialization strategy, however, is only suitable when the user 

intends to extract all the objects in the image. It is therefore not appropriate
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to use this initialization technique to extract a single object from multiple 
objects that exist in the image. For example, in order to segment the aorta 
and the femoral bone from the medical images shown in Figure 3.16 and Fig­
ure 3.20 respectively, the user should be able to place the initial contour or 
surface inside, outside or across the feature of interest. However, with a user- 
defined initialization, it is difficult to select the parameter vc, since a small 
vc may not be able to handle the image noise, and a large vc may overwhelm 
weak edges and the deformable model may not be able to propagate through 
boundary concavities as an example. It is also noted that the curvature flow 
used in the formulation of the El model is not coupled with an edge stop­
ping function which generally exists in geometric deformable models. The 
weighting for the curvature term in the El model can be set to a large value, 
so as to have significant influence on the contour evolution and to overcome 
the noise. However, without the edge stopping function, a large curvature 
force may easily overwhelm weak edges or even shrink the correct contour 
at the object boundary. Moreover, the computation of the contour based 
interaction force is required at every time step during the contour evolution. 
Although this can be accelerated by using fast Fourier transform (FFT), it 
still requires a significant amount of computational effort, especially when 
dealing with 3D images.

The proposed method, however, does not rely on any specific initialization 
strategy. The deformable model can be placed to localize single or multiple 
regions of interest with arbitrary cross boundary initializations. Compared 
to El, it is more effective in removing noise interference and more efficient in 
evolving the deformable model. Figure 3.6 gives such an example. A heavily 
noise corrupted image containing concentric rings with a cross boundary 
initialization is used for the test. It is shown that the El model has difficulties 
in finding the right balance in overcoming the image noise and propagating 
the contour further. The proposed method evolves much more efficiently and 
achieves a much better result.
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3.3.5 Im plem entation  and Setting  o f Param eters

The image object boundary description used in the computation of G(x)  
can be acquired from the derivatives of the image intensity using central 
difference, or standard edge detection methods such as the Sobel filter which 
estimates the image derivatives using convolution kernels designed to respond 
maximally to edges in the x , y and z directions. Some spurious edges can be 
removed by excluding edges with very small magnitude, i.e. 5% - 10% of the 
maximum magnitude.

The level set evolution in Equation (3.16) is solved numerically by the
finite difference method. Let Xijk = [xj, ?/j, Zk]T = [zAx, jAy ,  kAz]T be the
grid point where Ax, Ay  and Az are the grid steps along the x, y and z 
directions respectively (i.e. voxel size in each direction). Let At  be a time 
step, so tn — nAt  where n > 0. The level set function <f)(x,y,z,t) is then 
given on the time-space grid as:

<Pijk = Vh zk, tn) (3.27)

The forward Euler method is used for time discretization:

= <t>u+ A*{“ (ff k iwDjit -  a  -  “)(f  ■ (3-28)

In the curvature term (p/c|V0|) in Equation (3.28), all the derivatives 
such as d(ft/dx, dl /dx,  d(f)/dy, etc., are approximated using central differ­
ences, i.e. (d<j)/dx)i:jk «  [<t>i+i,j,k ~  <}>i-i,j,k\ /(2Ax), and so on. The vector 
force term (F  • V^) in Equation (3.28) is computed using the upwind differ­
ence scheme which can be expressed as:

+ ( '■ > * )>  <*»»

where the components in the x, y and z directions are given as:
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The initial contour or surface can be defined arbitrarily inside, outside or 
across the boundary of the image object to be segmented. An initial level 
set function is defined as a signed distance function D[So] from the initial 
surface S0:

(f)(xi,yj,zk, 0 ) =  D [S0] (3.33)

The signed distance function can be computed efficiently using the distance 
transform algorithm described in [9]. In this approach, the squared Euclidean 
distance is computed as a minimum convolution of a sampled function and a 
parabola. The Neumann boundary conditions are imposed at the boundaries 
of the image domain. The isosurface of the level set function is extracted 
and rendered using the marching cubes algorithm [136,137]. The Narrow 
Band approach described in [25] is used to reduce the computational cost in 
updating the level set function .

During the numerical computation, the level set function 4> can become 
irregular. Therefore, it is periodically reinitialised to the signed distance



function from the current zero level set (surface of the deformable model), 
S(t) — {x  : (f)(x,t) =  0}. Hence, 0  can be denoted as 4>(x,t) — D[<Sr(t)], 
which is a smooth function with S(t) as the zero level set.

As mentioned in Section 3.3.2, J  — ±1 can be used to determine the 
direction of propagation of the deformable model. In particular, the de­
formable model will extract relatively brighter voxels from an image region 
when J  — 1, and extract the darker voxels when J  — — 1 as shown in Figure 
3.3 and Figure 3.4. However, as shown in Figure 3.3 and Figure 3.4, the 
deformable model will often converge to the same object geometry with a 
cross-boundary initialization, a  is a constant parameter that controls the 
smoothness of the contour, and is generally set to a small value in the exper­
iments, i.e. a = 1 0 -3.

The enhancement of the geometric potential field using nonlocal method 
can be computationally expensive a search window Qx of size similar to 
that of the image is used. For computational purposes, a search window of 
2 1  x 21 pixels for 2D images as suggested in [132] and 2 1 x 2 1 x 2 1  voxels 
for 3D images are generally sufficient for most images, and a square or cube 
similarity neighborhood region N  of length 7 for 2D and 3D images is usually 
large enough for noise robustness and small enough to preserve fine structures 
and details [132]. In addition, the nonlocal filtering can be accelerated using 
efficient algorithms such as the combination of summed square image scheme 
and FFT used in [138], and the vectorization and parallelization strategy 
described in [133]. The parameter h in Equation (3.20) controls the amount 
of filtering which depends on the amount of noise present in the image, and 
is generally set proportional to the standard deviation a, i.e. h = l.Ocr to 
h — 1.5a. Note that refining of the geometric potential field is only necessary 
when the noise presence is significant such as the example shown in Figure 
3.13. The proposed GPF model can handle considerable amount of image 
noise as the geometric potential field is computed using edge pixel or voxel 
interactions across the whole image.
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Figure 3.7: Shape recovery from synthetic images: (a) isosurfaces of various 
shapes to be recovered from synthetic images (128x128x128), (b) initial 
deformable models (yellow) with input shapes (blue, sem i-transparent), (c) 
recovered shape using geodesic, (d) GGVF, (e) proposed GPF

X
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3.4 R esults and Discussion

In this section, experimental results on both synthetic and real image data are 
presented. The algorithms are implemented in C++, and the computations 
are performed on an Intel Core 2 Duo 3.00GHz processor with 4GB RAM. 
The comparative analysis is performed using several classical and state-of- 
the-art methods which consists of image intensity gradient based and region 
based methods. In particular, the geodesic model [29] is included as a repre­
sentative of conventional local edge fitting based method with monotonically 
expanding or shrinking force. The various vector field based models, such 
as [49,123-126], have very similar convergence and initialization dependence 
behavior to the GVF [103] or GGVF [13], due to their dominant external 
forces being static as discussed earlier. Thus, the GGVF [13] model is used 
as a representative of vector force field based approaches. In addition, the 
Chan-Vese model [1] with its region based formulation, and the more recent 
El model [30] which uses a dynamic vector force, are also included in the 
analysis. The geodesic, GGVF, El and Chan-Vese models are implemented 
according to the algorithms described in the papers [1,13,29,30]. In the ex­
periments, the parameters used for the various models are first selected based 
on the values recommended in the papers when appropriate, and when nec­
essary, a range of values for the parameters are used to tune the models 
such that the best outcomes for each model are selected to ensure a fair 
comparison.

3.4.1 M ultip le O bjects

The first column in Figure 3.7 shows the shape extraction results for the six- 
ellipsoids problem. Given an arbitrary initialization across all the ellipsoids, 
only GPF could accurately recover the shapes. The geodesic model, given 
the same initialization configuration, simply expanded outwards and reached 
the image borders. This is due to the fact that the geodesic model cannot
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handle cross-boundary initialization as the constant pressure term can only 
monotonically shrink or expand the contour. Although the bidirectionality of 
the GGVF model enables it to handle cross-boundary initialization, the sad­
dle and stationary points in this example prevented GGVF from extracting 
the ellipsoids.

3.4.2 Convergence to  B oundary C oncavities

Next, we compare the ability of the deformable models to deal with highly 
concave boundaries. As shown in the second and third columns in Figure 
3.7, the geometrical object to be recovered consists of two flattened ellip­
soids connected by a narrowing tube with a constriction in the middle. With 
the deformable models initialized inside one of the ellipsoid, only GPF could 
propagate through the narrowing tube to accurately extract the shape. Also, 
with a more arbitrary cross-boundary initialization, GPF was the only suc­
cessful model to extract the exact shape. The other two methods could 
neither handle the arbitrary initialization nor propagate through deep con­
cavities. Note that the bottleneck between the two ellipsoids is extremely 
narrow, which makes it particularly difficult for the geodesic model to propa­
gate through without stepping through the object boundary due to the large 
expansion force.

3.4.3 H andling C om plex G eom etries and Topologies

The fourth and fifth columns in Figure 3.7 compare the shape extraction 
results on a complex geometry with different initialization configurations. 
When the initial surface is placed inside one of the sphere of the molecular 
structure, GPF is the only model that managed to extract the geometry suc­
cessfully. The other two models were not able to propagate through the long 
narrow tubes connecting the spheres. With a cross-boundary initialization, 
the geodesic model only recovered part of the geometry with a negative pres-
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Table 3.1: Comparative results on the segmentation of various shapes from 
synthetic images: Foreground (FG), background (BG) and overall accuracy 
measured in %.______________________________________________

Geodesic GGVF GPF
Six-ellipsoids FG (%) 93.9 0 .2 0 99.9
cross initialization BG (%) 0.15 99.3 1 0 0

Overall (%) 47.0 49.7 99.9
Ellipsoids with FG (%) 41.7 48.5 99.5
narrowing tube BG (%) 1 0 0 1 0 0 1 0 0

inside initialization Overall (%) 70.8 74.2 99.8
Ellipsoids with FG (%) 3.79 48.5 99.5
narrowing tube BG (%) 99.8 1 0 0 1 0 0

cross initialization Overall (%) 51.8 74.2 99.8
Molecular FG (%) 4.73 5.51 99.9
inside initialization BG (%) 1 0 0 1 0 0 99.7

Overall (%) 52.4 52.8 99.8
Molecular FG (%) 1 2 .0 1 0 .6 1 0 0

cross initialization BG (%) 99.8 95.6 99.7
Overall (%) 55.9 53.1 99.8

FG Average (%) 31.2 22.7 99.8
BG Average (%) 80.0 99.0 99.9
Overall Average (%) 55.6 60.8 99.8

sure force, while GGVF converges to the wrong shape due to the saddle and 
stationary regions in the complex geometry.

The above examples demonstrate the superior performance of the GPF 
deformable model in resolving deep concavities and handling complex geome­
tries and topologies. This is mainly due to the dynamic nature of the vector 
force field. In addition, we show that the bidirectionality of the new force 
field gives GPF the flexibility to deal with arbitrary cross-initializations.

Table 3.1 presents the comparative results for the recovery of various 
shapes shown in Figure 3.7. The foreground (FG) and background (BG) 
accuracy of the extracted shapes are measured as the percentages of true 
foreground and background voxels which were actually segmented as fore­
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ground and background respectively, i.e. FG = and BG = - ^ 7 , where 
the number of true positives (TP) and true negatives (TN) are denoted by 
the number of correctly classified foreground and background voxels respec­
tively. N fq and NBq denote the number of true foreground and background 
voxels. Note that each of the synthetic images used in the examples shown 
in Figure 3.7 has an image size of 1283 voxels, and contains a relatively large 
number of background voxels compared to the foreground voxels, e.g. the 
percentages of foreground and background voxels in the six-ellipsoids images 
are 7.60% and 92.4% respectively. Therefore, a normalized overall accuracy 
given as the average of FG and BG (i.e. overall accuracy =  FG +BG) is used 
to measure the accuracy of correctly extracted voxels from the image, so as 
to prevent measurement bias towards the large number of background voxels. 
Note that FG and BG do not take into account the number of misclassified 
voxels, and represent only the percentages of correctly classified voxels. For 
example, a high value in FG does not necessarily mean that the extracted 
geometry has high accuracy, as there may be a large number of misclassified 
background voxels, i.e. the Geodesic model in the extraction of multiple el­
lipsoids. Therefore, FG and BG should be viewed together with the overall 
accuracy to give a good indication of the accuracy of the extracted geome­
tries. The geodesic model is shown to give an average FG and BG accuracy 
of 31.2% and 80.0% respectively, and an average overall accuracy of 55.6%. 
The GGVF model provides an average FG accuracy of 22.7%, an average 
BG accuracy of 99.0% and an overall average of 60.8%. The GPF model 
clearly outperforms the others with a significantly higher FG and BG av­
erage accuracy of 99.8% and 99.9% respectively, and an overall average of 
99.8%.

3.4 .4  Localization of O bjects from Varying In tensity

The region based techniques such as the Chan-Vese model often assume that 
image objects consist of distinct characteristics, and are therefore sensitive to
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Figure 3.8: Localization of objects from images with intensity inhomogeneity: 
(top row) Chan-Vese and (bottom  row) G PF with contour initialization inside 
object boundaries.

Figure 3.9: Localization of objects from images with intensity inhomogene­
ity: (top row) Chan-Vese and (bottom  row) G PF with contour initialization 
across object boundaries.
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Figure 3.10: Shape recovery from weak edges - first row: geodesic; second 
row: GGVF: third row: Chan-Vese; fourth row: proposed GPF.
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intensity inhomogeneity. Although the GPF model is computed using pixels 
or voxels across the image, it is derived from image intensity gradient infor­
mation. It is therefore robust to smooth intensity variation in images. Figure 
3.8 depicts the segmentation of disc objects from an image with intensity in­
homogeneity using deformable models with the initial contours placed inside 
the object boundaries. As shown in the figure, the Chan-Vese contour inside 
the darker region shrinks, while the contour in the brighter region expands 
and leaks out of the object boundaries. In contrast, the GPF model located 
the object boundaries accurately. Figure 3.9 shows the segmentation of the 
discs objects with cross-boundary initialization. As shown, the Chan-Vese 
model has difficulties handling the intensity variation, while the GPF model 
converges to the object boundaries efficiently.

3.4.5 R ecovery o f W eak O bject Boundaries

Figure 3.10 shows a harmonic shape with smoothly varying image intensity 
and substantially diffused or blurred boundary segment. The geodesic model 
with the initial surface placed inside the object as shown in the first row, leaks 
through the weak edge. The GGVF model, due to the bidirectionality of its 
force field, can converge to the weak edge with careful initialization. However, 
a more arbitrary cross-boundary initialization causes the GGVF model to 
collapse as shown in the second row. The Chan-Vese model has difficulties 
in propagating across the image due to intensity inhomogeneity as shown in 
the third row of Figure 3.10. The GPF, on the other hand, can efficiently 
localize the object despite the weak boundary, intensity inhomogeneity, and 
cross-boundary initialization, as shown in the last row.

3.4.6 Invariance to  In itialization

The bidirectional and dynamic force field gives the GPF model a high in­
variance to various arbitrary initializations, therefore providing a high con-
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Figure 3.11: A rbitrary initialization using G PF (yellow - deformable surfaces, 
sem i-transparent blue - isosurfaces from synthetic images): F irst and second 
rows: double helix shape segmentation using different initializations. Third 
and fourth rows: molecular shape segmentation using different initializations.
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Figure 3.12: Shape recovery from noisy image - from left: noisy image, isosur­
face with initialization (yellow), and recovered shape using the GPF model.

sistency in segmentation results. For example in Figure 3.7, the geodesic 
and GGVF models both give very different segmentation results when the 
models are initialized differently. Conversely, the GPF model converged to 
the correct object boundaries given different initializations. More arbitrary 
initializations are used in the complex geometries in Figure 3.11 to further 
illustrate the initialization invariance of the GPF model. In the first and 
third rows of Figure 3.11, the initial surface is placed across one end of the 
double helix shape and molecular structure respectively. In the second and 
fourth rows of Figure 3.11, a uniformly distributed initialization is used to 
segment the complex geometries. No discernable difference is found in the 
results produced through different initializations.

3.4 .7  R obustness to  Im age N oise

As the geometric potential field is computed using edge voxel interactions 
across the whole image, it provides a more global view of the object bound­
ary representation. This makes the GPF model more robust to image noise 
compared to other models which use only local image intensity gradient infor­
mation. In addition, the edge-preserving denoising of the geometric potential 
field described in Section 3.3.3 can significantly reduce its sensitivity to noise.

Figure 3.12 shows the robustness of the GPF model on image noise, us­
ing the geometric potential field computed directly from the noisy image
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Figure 3.13: Shape recovery using edge-preserving nonlocal enhancement of 
geometric potential field - first row: noisy image (128x128x128), isosurface 
with initialization (yellow), and denoised geometric potential field using non­
local method; second row: evolving deformable surfaces using the El model 
(CPU-time, 109590s); third row: evolving deformable surfaces using the GPF 
model with original geometric potential field from noisy image (CPU-time, 
1846s); fourth row: evolving deformable surfaces using the GPF model with 
denoised geometric potential field using nonlocal method (CPU-time, 932s).
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Figure 3.14: Edge-preserving nonlocal denoising of geometric potential field 
- left: geometric potential field (normalized) of noisy image before nonlocal 
denoising; right: geometric potential field (normalized) of noisy image with 
nonlocal denoising.

(i.e. without denoising). It accurately extracted the shape from the noisy 
image. Note the substantial amount of noise made it difficult for the march­
ing cubes based algorithm to render the target object (cf. Figure 3.7). Figure 
3.13 illustrates the increase in noise robustness of the GPF model, using the 
nonlocal denoising algorithm on the geometric potential field. In this partic­
ular example, a considerable amount of non-uniform noise was further added 
to the noisy image from Figure 3.12. As depicted in Figure 3.13, the sub­
stantial amount of noise added produces some localized noise concentration 
or artifacts. Although the El model with its contour based interaction force 
can shrink the spurious edges caused by the large amount of noise, it pre­
vented the deformable model from propagating across the image object. A 
smaller weight for the contour based force will result in numerous erroneous 
regions. The deformable model using the potential field computed directly 
from the noisy image managed to extract the foreground object, but it also 
produced some erroneous edges. On the other hand, an enhanced geometric 
potential field using the nonlocal method greatly increases the accuracy of 
the deformable model in segmenting the object from the noisy image. Note 
that no filtering such as Gaussian or anisotropic smoothing was applied. The



Figure 3.15: Segmentation of the nasal cavity from CT image using different 
deformable models - first row: geodesic; second row: GGVF; third row: 
proposed GPF.
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Figure 3.16: Segmentation of human aorta from CT image dataset
(64x64x128) using different deformable models - first row: geodesic (CPU- 
time, 2416s); second row: GGVF (CPU-time, 104s); third row: proposed 
G PF (CPU-time, 1388s).
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Figure 3.17: Comparison of recovered geometries (orange) with manual seg­
mentation (blue) - from left: reconstructed geometry from manual segmen­
tation, comparison of manual segmentation with geometry recovered using 
geodesic model, comparison of manual segmentation with GGVF model, 
comparison of manual segmentation with Chan-Vese model, and compari­
son of manual segmentation with the proposed G PF model.

El model took 109590s to converge in this example due to the high compu­
tation cost of its contour based interaction force at each iteration, while the 
G PF model achieved a much faster convergence using 1846s and 932s with 
the original and denoised geometric potential field respectively. Figure 3.14 
compares the profiles of the geometric potential field before and after nonlo­
cal denoising. The noise fluctuation shown in the original profile of geometric 
potential held can introduce some false edges to the segmentation. However, 

the nonlocal denoising method described previously can remove the noise 
interference and enhance the true object boundary information.

3.4.8 S eg m en ta t io n  of R eal Im ages

Real images often contain complex geometries and topologies, image noise 

and weak edges. Here, some comparative results on the segmentation of 

medical image da ta  are shown. Figure 3.15 shows the segmentation of the 

nasal cavity from computed tomography (CT) images. The geodesic model
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Figure 3.18: Segmentation of cerebral arterial structure from MR im­
age dataset (128x128x128) using different deformable models - first row: 
geodesic (CPU-time, 5073s); second row: GGVF (CPU-time, 215s); third 
row: Chan-Vese (CPU-time, 6963s); fourth row: proposed G PF (CPU-time, 
2614s).
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Figure 3.19: Different views of the segmented cerebral arterial model using 
the G PF deformable model.

uses a constant force to shrink or expand a contour, and therefore cannot 

be intialized across the structures. As such, multiple contours have to  be 
initialized inside the structures for the geodesic model to handle the complex 
geometry and topology. As shown in the figure, the geodesic model leaks out 

at weak object edges due to the expansion force. The GGVF and G PF mod­
els are initialized across the object boundaries. The GGVF model cannot 

handle the saddle and stationary points and did not localize the image struc­
tures. In contrast, the G PF model propagates across the image structures 
and converge to the geometry accurately. Figure 3.16 shows the segmenta­

tion of a human aorta from CT images. In this example, a simple global 
image thresholding was applied to remove the dark regions which represent 
air cavity in the image. This preprocessing was applied so as to minimize 

the interference in segmenting the aorta. As the geodesic model cannot 
handle cross-boundary initialization, the initial surface is placed within the 
image structure as shown in the first row. The constant pressure term of the 

geodesic model easily overwhelms the weak edges and causes some leakage 
which expands towards the image boundary. A more arbitrary initializa­
tion is used for GGVF arid G PF as shown in the second and third rows 

respectively. The GGVF model did not propagate through the main aortic 

structure and collapsed to nearby edges, while the GPF model accurately 

converged to the geometry of the aorta. Note th a t in order for the GGVF
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method to converge properly, the initial surface needs to be placed very close 
to the aorta boundaries, which is impractical in 3D. Figure 3.17 compares 
the segmented geometries using various deformable models with manual seg­
mentation. It is found that although the geodesic model acquired a FG 
accuracy of 97.4% for this example, the corresponding BG accuracy acquired 
is less than 50% due to the leakage through weak edges. The GGVF model 
had difficulties propagating through the long narrow structure and only pro­
vided a FG accuracy of 7.3%, while the GPF model acquired a FG, BG and 
overall accuracy of 99.8%, 98.7% and 99.2% respectively. Figure 3.18 shows 
comparative results on the segmentation of cerebral arterial structure from 
magnetic resonance (MR) imaging. Two initial surfaces are placed inside the 
object of interest for the geodesic model, and across the object boundaries for 
GGVF, Chan-Vese and GPF. The geodesic model cannot propagate through 
the narrow tubular structures, and leaks out at weak object boundaries dur­
ing the evolution. The GGVF model collapsed to the nearby object edges 
due to the saddle or stationary points inside the narrow image structures. 
In contrast, the Chan-Vese and GPF models are able to propagate through 
the long tubular structures to extract the cerebral arterial geometry. The 
El model can be initialized near the boundary of the cerebral structure us­
ing the zero-crossing of the image based interaction force, and the image 
noise can be subsequently removed with its contour based interaction force 
to extract the geometry. However, this specific initialization strategy can­
not be applied to segment the aorta and the femoral bone from the medical 
images with multiple objects shown in Figure 3.16 and Figure 3.20 respec­
tively. Various views of the segmented cerebral arterial model using GPF 
is depicted in Figure 3.19. Figure 3.20 presents another example whereby 
a femur is segmented from CT images using the different methods. In this 
example, the geodesic model and the Chan-Vese model leaked due to the 
weak image edges and varying intensities respectively, while the GGVF and 
El models had difficulties in propagating across the image object. The GPF
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model, however, can effectively extract the image object despite the image 
noise, weak edges and inhomogeneous intensities.Figure 3.21 shows the var­
ious views of the femoral model segmented using the GPF model. Figure 
3.22 depicts the segmentation of multiple branches of the carotid using GPF 
and Figure 3.23 shows the various views of the segmented geometries. The 
examples above have shown that the GPF deformable model can efficiently 
segment narrow and complex structures, and can handle inhomogeneity in 
image intensities, noises and weak edges, which are often present in real im­
ages. The improvements achieved by the proposed method, as demonstrated 
extensively in various examples, are significant and consistent.

3.5 Summary

A novel deformable model using an external force field known as the geomet­
ric potential force (GPF) that is computed based on the relative geometrical 
configurations between the deformable model and image object is presented. 
The relative configuration between geometries gives the GPF model its dis­
tinctive bidirectionality, which allows it to handle arbitrary cross-boundary 
initialization. The new vector force field is dynamic and changes according 
to the relative position and orientation between the geometries as the de­
formable model evolves. As such, the dynamic force can easily attract the 
deformable model into highly concave regions, and propagate the surface 
through long thin structures. This allows the proposed method to deal with 
complex geometries and extreme boundary concavities efficiently. The en­
hancement of the potential field using nonlocal filtering can efficiently remove 
noise interference, and preserve object edges and fine details. Comparative 
studies against several existing edge based and region based techniques are 
provided. The results showed the proposed method achieved significant im­
provements in convergence capability and initialization invariance, and is 
more robust and efficient than the various methods. In Chapter 4, a robust
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Figure 3.20: Segmentation of femur from CT image dataset (128x128x128) 
using different deformable models - first row: geodesic (CPU-time, 4176s); 
second row: GGVF (CPU-time, 1250s); third row: Chan-Vese (CPU-time, 
10060s); fourth row: El (CPU-time, 163520s); fifth row: proposed G PF 
(CPU-time, 2423s).
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Figure 3.21: Different views of the segmented femoral model using the G PF 
deformable model.

Figure 3.22: Segmentation of multiple branches of the carotid from CT image 
dataset (120x120x60) using G PF (CPU-time, 2581s).

Figure 3.23: Different views of the segmented carotid model using the G PF 
deformable model.
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segmentation framework based on the GPF deformable model with region 
constraint is used to extract the geometries of vessels from medical images 
accurately. In Chapter 5, it is shown that by incorporating shape prior in­
formation, the deformable model can efficiently handle image noise, feature 
inhomogeneity, occlusion and diffused object edges to segment object shapes.
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Chapter 4

Segm entation of Vessel 
G eom etries from M edical 
Images using G PF Deform able 
M odel

4.1 Introduction

The human circulatory system consists of vessels that transport blood through­
out the body, providing the tissues with oxygen and nutrients. It is known 
that vascular diseases such as stenosis and aneurysms are often associated 
with changes in blood flow patterns and the distribution of wall shear stress. 
Modelling and analysis of the hemodynamics in the human vascular system 
can improve our understanding of vascular disease, and provide valuable in­
sights which can help in the development of efficient treatment methods. In 
recent years, computational fluid dynamics (CFD) has been widely used for 
patient-specific modelling of blood flow in vascular structures [139-142]. De­
spite the involvement of numerous groups working in this field, and rapid 
advancement in efficient computational methods, there has been limited ap­
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plications of computational hemodynamics in clinical practice. This is largely 
due to the challenges involved in the design of an integrated framework which 
can efficiently and accurately automate the interdisciplinary computational 
modelling process, which includes image segmentation, mesh generation and 
CFD simulation.

One of the main challenges in the computational modelling of hemody­
namics is the accurate reconstruction of the vascular geometry. Anatomically 
accurate geometric models of the vascular structures are essential for realistic 
flow simulations and analysis [143,144]. The anatomical information used to 
reconstruct the geometric models are usually provided in the form of medical 
image datasets (scans) from imaging modalities such as computed tomog­
raphy (CT) and magnetic resonance (MR) imaging. Manual reconstruction 
of the vasculature geometries can be tedious and time consuming. There 
is also the issue of variability between the geometries extracted manually 
by different individuals, and variability of geometries extracted by the same 
individual at different occasions. In order to allow computational flow mod­
elling to be efficiently applied as a diagnostic or predictive tool, the amount 
of user intervention required in the process should be reasonably small. In 
particular, a considerable amount of user intervention is often required in 
the reconstruction of an accurate geometric model for the simulation of flow 
dynamics. Therefore a robust and efficient method that can be used to ac­
curately segment the geometric structures from medical image datasets can 
be very useful and advantageous in the modelling process. Here, we propose 
a robust framework for the segmentation of vessel geometries using the GPF 
deformable model. The framework is then applied to efficiently segment the 
geometries of carotid arteries from CT images.
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4.2 Existing M ethods for R econstruction of
Vascular Structures

Although several techniques exist for the segmentation of vascular structures 
from medical images, it remains an intricate process due to factors such as 
image noise, partial volume effects, image artifacts, intensity inhomogeneity 
and changes in topology. In [145], the coordinate points for the center line 
of the aortic arch were extracted from volume rendered MR images. A cubic 
spline was then used to represent the aortic centerline, and cross-sectional 
grids were generated on normal planes at equidistant points along the curve. 
This generated a curved tube with circular cross section of uniform radius, 
which is not representative of the geometry of the aorta. In [146], the cen­
terline and diameter information of the vessels was extracted from the image 
dataset, and the vascular model was reconstructed using non-uniform ratio­
nal B-splines (NURBS). Such techniques may often smooth out geometric 
information that can be important to the computation of accurate flow dy­
namics, such as those at bifurcations.

The 3D models of the vascular structures in [147] were reconstructed 
by extracting the 2D contours of the vessels at each of the image slices of 
the MR image dataset, and then lofting through the contours to create the 
surface models of the vessels. The different vessels were then merged using 
boolean operations in solid modelling. The cross sections of a particular 
vessel may however intersect with cross sections of branching vessels, and 
the geometry at these positions have to be approximated. Other authors 
such as [148-152] also reconstructed 3D surface models of the vessels from 
2D contours extracted from image slices. This sometimes requires positioning 
and orienting the 2D contours according to the medial axis of the vessels, and 
curve and surface interpolation are used to approximate and reconstruct the 
surface models. However, the 2D contour extraction techniques used do not 
provide control over 3D smoothness, and 3D geometric properties from the

83



image datasets are not considered.
A simple thresholding technique was used in [39] to extract the binary 

image of the vessels, and the vascular model was reconstructed using an iso­
surface algorithm. The thresholding technique however does not consider 
the spatial characteristics of the image, and is sensitive to image noise and 
inhomogeneous intensity. In [58,59], region growing algorithms were applied 
to segment the vascular structures from CT and MR angiography data. The 
region growing techniques are, in general, sensitive to noise, and can of­
ten lead to non-contiguous regions and over-segmentation. In addition, thin 
structures are often not extracted due to variations in image intensities. The 
watershed transform was used in [6 6 ] to extract the geometry of the carotid. 
In this approach, the image is interpreted as a landscape or topographic sur­
face, with the pixel intensity representing the elevation of the topographic 
surface. Consider water on the landscape flowing towards regions with local 
minima, the watersheds are the lines that partition these regions. In this 
way, the image is partitioned into homogeneous regions with the watersheds 
defining the boundaries of the regions. The watershed transform tends to be 
sensitive to noise and often produces over-segmentation. It is also difficult 
for the watershed technique to extract thin structures and weak object edges.

In [153,154], a 3D dynamic surface model was used to delineate the bound­
ary of carotid arteries. An initial triangulated model was placed within the 
interior of the carotid vessels, and an inflation force was applied to deform 
the model towards the vessel wall. In particular, the inflation force is applied 
only when the vertices of the model are within the lumen, i.e., at locations 
with image intensity below a user-specified threshold. An image-based force 
is further applied to the surface model to better localize the boundary. It 
may however be difficult to select an appropriate threshold value that de­
lineates the vessel wall closely due to inhomogeneous image intensity. This 
approach is sensitive to noise, and manual editing is often required to move 
the vertices towards the vessel wall. In [155], a 2D discrete dynamic contour
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was first used to extract the vessel contours, a dynamic surface model was 
then inflated to reconstruct the surface model using the binary images of the 
extracted contours. This however does not consider the 3D geometric infor­
mation from the image dataset. In [156-158], the surface models for each of 
the vessel branches of the carotid artery were reconstructed independently 
using a tubular deformable model. A surface merging algorithm is then re­
quired to reconstruct the surface model of the carotid bifurcation from the 
triangulated surfaces of the vessel branches. This particular approach re­
quires the determination of the axis of each of the vessels, which can be done 
manually by selecting a reasonable amount of points from image slices to 
represent the curves of the structure. Due to the smoothing effect of this 
technique, regions of high curvature such as those at bifurcations or stenosis 
may not be modeled accurately. These explicit deformable models represent 
contours and surfaces parametrically, which requires the tracking of points 
on the curves and surfaces during deformation. It is therefore difficult for 
explicit deformable models to deal with topological variation and complex 
shapes.

Implicit deformable models have been applied in the segmentation of 
vascular structures in [159-163]. However, many of these techniques use an 
attraction force field which acts on contours or surfaces only when they are 
close to the object boundaries. As such, initial contours have to be placed 
close to the object boundaries, which can be tedious in complex geometries. 
A constant pressure term such as the one in [1 2 ], is often used to monotically 
expand or shrink the deformable model towards the image object boundaries, 
which can overwhelm weak object edges. In addition, the initial contours 
have to be placed either inside or outside object boundaries, which can be 
difficult for compact and narrow structures. Many of these techniques are also 
sensitive to image noise, and have difficulties in extracting deep boundary 
concavities.
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4.3 Robust Framework for R econstruction of
Vascular Geom etries

In this section, a robust framework is proposed for the reconstruction of 
vascular geometries from medical images. The approach consists of image 
denoising using vessel enhancing diffusion [31,164], optimal edge detection 
using the Canny edge filter [32], and robust segmentation of the vascular 
geometries using GPF deformable model.

4.3.1 V essel Enhancing D iffusion Filtering

The formulation of the vessel enhancing diffusion filter [31,164] is based on a 
smoothed version of the vesselness measure used in [165]. In this approach, 
an anisotropic diffusion filter with strength and direction determined by the 
vesselness measure is applied to enhance the geometric structures of the ves­
sel. The vesselness measure is determined by analyzing the eigensystem of 
the Hessian matrix given as:

G x G y G z

H  = l y x Gy l y z (4.1)

_ G x G y G z _

which describes the geometric information at each point of a 3D image in­
tensity I  based on the local intensity variations. Here, the derivatives of 
the image intensity I  are computed as convolution with derivatives of the 
Gaussian function, i.e. Ix = I (x)  * J^Ga(x), where Ga denotes the Gaussian 
function with standard deviation a. The principal curvatures and directions 
are given by the maximum and minimum eigenvalues and the corresponding 
eigenvectors. With the eigenvalues given such that |Ai| < |A2| < | A3 1, the
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vesselness measure is defined as:

0  if A2 > 0  or A3 > 0
K(A) ~ R a  ~ R 8  - g 2  2 c

(l — e ) ■ e 2A • (l — e * 1 ) • e otherwise
(4.2)

with
(4.3)

(4.4)

5 =  VA12 +  A22 +  A32 (4.5)

in which R a and R b can be used to differentiate tubular structures from 
blob-like and plate-like structures, while S  is used to differentiate between 
foreground vessel structures and background noise. The parameters q, and 
'd are weighting factors which control the sensitivity of the vesselness measure, 
and c is a small constant to ensure smoothness of the function around the 
origin. The parameters can generally be set as g = 0.5, =  0.5, $ =  5 and
c = 10- 6  as shown in [31].

For a multiscale analysis, the vesselness function is computed for a range 
of scales, and the maximum response is selected using the following equation:

The values of and amax are set such that small vessels which correspond 
to small scales or a values, and large vessels which correspond to large scales 
or a values are enhanced, and can generally be set as amin =  0.5 and <Jmax =

A diffusion tensor is then defined such that vessel diffusion takes place 
in the direction of the vessel, while diffusion perpendicular to the vessel

V = max Va(X) (4.6)

2 . 0 .
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direction is inhibited. The diffusion tensor can therefore be used to preserve 
vessel structures and is given as:

D  = Q \ 'Q T (4.7)

where Q is a matrix containing the eigenvectors of the Hessian matrix H , 
and A' is a diagonal matrix with elements given as:

A/ =  1 +  (w -  1) • V • (4.8)

A2/ — A37 = 1 +  (e — 1) • V* (4-9)

with w , e and s as tuning parameters, w should in general be a large value 
and determines the strength of anisotropic diffusion, e should be a small 
positive constant to ensure that the tensor is positive definite, and 5 denotes
the sensitivity to the vesselness response. The parameters can generally be
set as w = 25, e = 10- 2  and s = 5.0 as shown in [31]. The anisotropic 
diffusion is then defined as:

Lt = V - ( D V L )  (4.10)

where L(0) is set as the input image. Figures 4.1 and 4.2 show that the vessel 
enhancing diffusion filter can be applied to enhance the vessel structures
and smooth out noise in the image. The algorithm for the vessel enhancing
diffusion filter has been implemented using the Insight Toolkit [166].

4.3.2 O ptim al Im age O bject Edge R epresentation  for 

V essel G eom etries

Image object edges are usually represented as regions with high intensity 
contrasts. Image intensity gradients can be determined using the gradient 
operator or the Sobel filter which estimates image derivatives using convolu­



tion of the image with kernels designed to respond maximally to edges in the 
x , y and 2  directions. These techniques however produces object edge width 
of a few pixels. This can easily cause nearby structures to be connected. For 
complex geometries such as those in medical images, it is often necessary to 
determine fine edges using more robust edge detection techniques [167,168] 
for accurate representation of the image structures. The Canny edge detec­
tion [32] can produce object edges with single pixel width, and can therefore 
be used for accurate edge detection of the vessel structures. In the Canny 
edge detection technique, image smoothing is first applied to reduce noise in­
terference. This can be performed using the Gaussian filter or other smooth­
ing techniques such as vessel enhancing diffusion [31]. Given the smoothed 
image intensity ISmooth(x), the image intensity gradients are then computed 
to determine the magnitudes and directions of the edges. Image pixels with 
image intensity gradient magnitudes (i.e. f edge(x) = \VIsm0oth(x)\) which are 
not local maxima in the directions of the edges are suppressed so as to thin 
edge ridges. This can be done by comparing the image intensity gradient 
magnitude f edge(x) of the selected pixel with image intensity gradient mag­
nitudes of the neighbourhood pixels. Hysterisis thresholding is then applied 
to filter out spurious edges caused by noise. Image pixels with edge magni­
tude greater than a high threshold 77, i.e. f edge{x) > Th are considered as 
edges, while pixels with edge magnitude lower than a low threshold 7j, i.e. 
fedge{&) < Ti are removed. Image pixels with edge magnitudes in between 
the threshold values, i.e. 7) < f edge(x) < 77, which are connected to edge 
pixels are also considered as edges. The values of Th and 7] depend on the 
type of images and amount of image noise. For example, a smaller Th should 
be used if the image contrast is low and the edges are indistinct, and a larger 
Ti should be used if there is a large amount of noise in the image. In general, 
the values of Th and 7] are set such that weak edges are included while image 
noise are suppressed. The image intensity gradients at the detected edges are 
then used to compute the geometric potential field as defined in Equation



(3.11). As shown in Figure 4.1 and Figure 4.2, the geometric potential field 

gives a more coherent representation of the image object boundaries as it 
utlizes global edge pixel interactions across the image.

Figure 4.1: Vessel enhancing diffusion and image object edge representation 
of CT image dataset 1, from left to right - original image, image with vessel 
enhancing diffusion, image intensity gradient magnitude, Canny edge with 
image intensity gradient intensities, geometric potential field.

4.3.3 S eg m en ta t io n  of Vessel G eo m etr ies  using  G P F  
D efo rm ab le  M odel w ith  R egion  C o n s tra in t

It was shown in Chapter 3 th a t the G PF deformable model can be used to 

efficiently segment complex geometries from biomedical images. By using 

pixel or voxel interactions across the whole image domain, the deformable 

model is more robust to image noise and weak edges. The dynam ic vector 

force field changes according to the relative postition and orientation between 

the geometries, which allows the deformable model to propagate through long 

tubular structures.

Here, the G PF deformable model is applied to segment the geometries of
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Figure 4.2: Vessel enhancing diffusion and image object edge representation 
of CT image dataset 2, from left to right - original image, image with vessel 
enhancing diffusion, image intensity gradient magnitude, Canny edge with 
image intensity gradient intensities, geometric potential field.

human carotid arteries from CT images. Some of the main challenges in the 
segmentation of the carotid geometries include intensity heterogeneity, weak 
edges and adjacent veins with similar intensities to the carotid. In addition, 

calcifications which are attached to the arterial walls should not be included 
in the reconstructed geometries. Although the calcified plaques often appear 
as relatively bright regions compared to soft tissues, plaques with lower den­
sities may have similar intensities to the lumen. As the intensities of the 
plaques vary with the densities, it is not easy for techniques such as global 
intensity threshold to remove the plaques from the extracted geometries. In 

this section, a region constraint is added to the deformable model such that it 
does not propagate across the calcified regions. This is done by constraining 
the deformable model from propagating across regions with image intensity 

gradient m agnitude larger than a user specified value, Tmax. The deformable
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Figure 4.3: Image slice from CT image dataset 2 showing contours (top row) 
and corresponding pixels (bottom  row) extracted using: from left to right 
- G PF deformable model, G PF deformable model with intensity threshold 
and G PF deformable model with region constraint.

model with region constraint can thus be expressed as:

_ ( 0 if |V / |  >  Tmax
d t  I  a g  n  |V0|  — (1 — ct)(F • V0) otherwise

where a  is a weighting param eter, g is the edge stopping function, k, is the 

curvature and F  is the geometric potential force defined in Equation (3.14). 

a is generally set to a small value, i.e. a = 10~4 to a =  10-3 . As the 
calcified regions usually have relatively large image intensity gradients, the 

threshold value Tmax can be easily selected by observing the histogram of the 

image intensity gradient magnitude, and is generally set to Tmax =  350 to 

Tmax — 420 in the experiments.
Figures 4.3 and 4.4 depict a z-axis slice of the extracted geometry. As

92



JpSs I

Figure 4.4: Image slice from CT image dataset 4 showing contours (top row) 
and corresponding pixels (bottom  row) extracted using: from left to right 
- G PF deformable model, G PF deformable model with intensity threshold 
and G PF deformable model with region constraint.

shown in the figures, some calcified regions have similar intensity to the 

lumen, which caused the deformable model to include them  in the extracted 
geometries. The intensities of the plaques vary which makes it difficult for a 
global intensity threshold to suppress them. It is shown th a t by adding the 

region constraint, the deformable model can easily get around the calcified 
regions to segment the carotid geometries accurately.

4.4 R e s u l ts  a n d  D iscu ss io n

In this section, experimental results on the segmentation of the carotid ge­

ometries using the proposed framework are shown. In particular, 6 datasets 

from CT imaging (provided by Wolverhampton NHS trust) are used in the
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experiment. The volumes of interest containing the carotid arteries are ex­
tracted from the image datasets to reduce the size of the input datasets. The 
robust framework which consists of vessel diffusion enhancing, computation 
of optimal object edge representation and deformable model with regional 
constraint is then applied for the reconstruction of vessel geometries.

Figures 4.5 to 4.10 depict the segmentation of the carotid geometries us­
ing the GPF deformable model with region constraint. As shown in Figures 
4.5 to 4.9, the bidirectional and dynamic vector force allows the flexible cross­
boundary initializations of the model to easily propagate and converge to the 
geometries of the carotid arteries. The extraction of the vessel geometries 
from image datasets 1 and 4 took only 276s and 494s, while the extraction 
from image datasets 2 and 5 took 1216s and 1379s due to factors such as 
intensity variation, low contrast, multiple branches and complex topologies. 
For example, variation in intensity and low contrast can caused the image 
intensity gradients to take on smaller values, therefore giving a smaller vector 
force F. Also, the deformable model has to propagate a larger distance to ex­
tract geometries with multiple branches and complex topologies. A graphical 
user interface has been developed, which can be used to set multiple initial 
contours for fast convergence. It can also be used to remove inconsistency 
in object boundaries due to low resolution of the images, artifacts, etc., or 
small branches which do not affect the computational flow analysis. Figure 
4.7 depicts the segmentation of the carotid artery from image dataset 3 us­
ing different initializations. As shown in Figure 4.7, one can easily speed up 
the segmentation process by placing multiple initial contours or surfaces, as 
the deformable model with a single initial surface converges to the carotid 
geometry in 979s, while the deformable model with multiple initial surfaces 
converges to the geometry in only 206s. Figure 4.10 shows the segmentation 
of the carotid artery from image dataset 6 , in which the model converges 
to the vessel geometry in 185s using multiple initial surfaces. Note that the 
deformable model easily propagate through the stenotic carotid bifurcations
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Figure 4.5: Segmentation of carotid artery from CT image dataset 1
(61x71x125) using G PF deformable model (CPU-time, 276s).

and get around the calcified regions to efficiently segment the carotid ge­

ometries from the CT images. Figure 4.11 depicts the segmented carotid 
geometries.

The reconstructed vessel geometries using the proposed framework are 
compared against geometries from manual segmentation. Figures 4.12 to 
4.17 depict the comparison of the extracted geometries using random cross- 
section slices taken along the z-axis direction. The blue and orange contours 
represent the cross-section of the geometries extracted manually and using 
the G PF deformable model respectively. As shown in the figures, the image 

dataset consist of other tissue structures which may affect the geometric re­
construction. In particular, vessels adjacent to the carotid artery can often 

cause other models to leak out due to the similar intensity. The geometric po­

tential held provides a more coherent and global representation of the object 
edges, and allows the deformable model to extract the geometry accurately. 

By adding a region constraint, the proposed model can easily get around the 

calcified regions as the deformable model propagates through the tubular 

structures to segment the vessel geometry as depicted in Figures 4.13, 4.14,
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Figure 4.6: Segmentation of carotid artery from CT image dataset 2
(61x71x125) using G PF deformable model (CPU-time, 1216s).

Figure 4.7: Segmentation of carotid artery from CT image dataset 3
(70x80x120) using G PF deformable model with different initializations (top 
row: CPU-time, 979s, bottom  row: CPU-time, 206s).
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Figure 4.8: Segmentation of carotid artery from CT image dataset 4
(70x80x120) using G PF deformable model (CPU-time, 494s).

Figure 4.9: Segmentation of carotid artery from CT image dataset 5
(70x80x120) using G PF deformable model (CPU-time, 1379s).

Figure 4.10: Segmentation of carotid artery from CT image dataset 6
(70x80x120) using G PF deformable model (CPU-time, 185s).
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Figure 4.11: Segmented carotid geometries using the G PF deformable model.
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Figure 4.12: Comparison of geometry segmented from CT image dataset 1 
using image slices taken along z-axis direction: blue - manual, orange - G PF 
deformable model.

4.15 and 4.17. The proposed framework can therefore be applied to segment 
the vessel geometries efficiently from the images. As shown in the figures, the 

vessel geometries segmented using the G PF deformable model with region 
constraint exhibit considerably small deviations from the manually extracted 
geometries.

Table 4.1 presents the accuracy of the segmented geometries using the 
proposed method. The foreground (FG) and background (BG) accuracy of 
the extracted shapes are measured as the percentages of true foreground 

and background voxels which were actually segmented as foreground and 
background respectively, i.e. FG =  TIL anci gQ  — where the number 

of true positives (TP) and true negatives (TN) are denoted by the number 
of correctly classified foreground and background voxels respectively. NFq 
and NBq denote the number of true foreground and background voxels. In 

order for a fair measure of accuracy, a normalized overall accuracy given 
as the average of FG and BG (i.e. overall accuracy =  FG \ BG) is used to 

measure the accuracy of correctly extracted voxels from the image, so as to 

prevent measurement bias towards the large number of background voxels.
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Figure 4.13: Comparison of geometry segmented from CT image dataset 2 
using image slices taken along z-axis direction: blue - manual, orange - G PF 
deformable model.

Figure 4.14: Comparison of geometry segmented from CT image dataset 3 
using image slices taken along z-axis direction: blue - manual, orange - G PF 
deformable model.
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Figure 4.15: Comparison of geometry segmented from CT image dataset 4 
using image slices taken along z-axis direction: blue - manual, orange - G PF 
deformable model.

Figure 4.16: Comparison of geometry segmented from CT image dataset 5 
using image slices taken along z-axis direction: blue - manual, orange - G PF 
deformable model.
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Table 4.1: Comparison of the segmented carotid geometries using the GPF 
deformable model with manual segmentation: Foreground (FG), background 
(BG) and overall accuracy measured in %.

CT image dataset GPF

1

FG (%) 89.9 
BG (%) 99.9 
Overall (%) 94.9

2
FG (%) 89.8 
BG (%) 99.9 
Overall (%) 94.8

3
FG (%) 96.0 
BG (%) 99.9 
Overall (%) 97.9

4
FG (%) 99.1 
BG (%) 99.8 
Overall (%) 99.5

5
FG (%) 93.8 
BG (%) 99.5 
Overall (%) 96.7

6

FG (%) 94.4 
BG (%) 99.6 
Overall (%) 97.0

FG Average (%) 93.9
BG Average (%) 99.8
Overall Average (%) 96.8
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Figure 4.17: Comparison of geometry segmented from CT image dataset 6 
using image slices taken along z-axis direction: blue - manual, orange - GPF 
deformable model.

As FG and BG do not take into account the number of misclassified voxels, 
and represent only the percentages of correctly classified voxels, FG and BG 
should be viewed together with the overall accuracy to give a good indication 
of the accuracy of the extracted geometries. It is shown tha t the proposed 
framework provides significantly accurate geometries with overall acurracies 
of 94.9%, 94.8%, 97.9%, 99.5%, 96.7% and 97.0% for image datasets 1 to 6, 
and an average overall accuracy of 96.8%.

4.5 S u m m a r y

We have presented a robust framework for the reconstruction of vascular 

geometries from medical images. Image denoising is performed using vessel 
enhancing diffusion, which can smooth out image noise and enhance vessel 

structures. The Canny edge detection technique which produces object edges 
with single pixel width is used for accurate detection of the lumen boundaries. 

The image intensity gradients are then used to compute the geometric poten­
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tial field which gives a global representation of the geometric configuration. 
The deformable model uses a regional constraint to suppress calcified regions 
for accurate segmentation of the vessel geometries. The proposed framework 
show high accuracy when applied to the segmentation of the carotid arteries 
from CT images.
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Chapter 5

A Variational Level Set 
Approach to Segm entation  
W ith Shape Prior

5.1 Introduction

Active contours provide an effective framework for object segmentation as 
they can easily adapt to shape variations [1,107,169]. Various types of infor­
mation can also be incorporated to regularize the smoothness and shape of 
the contour. However, it is still a great challenge for active contour models 
to achieve strong invariance to initialization and robust convergence. This is 
particularly true when the active contour is applied on real image datasets 
consisting of varying intensities and complex geometries. In the presence of 
artifacts, occlusions or large amount of noise, it is difficult for purely image- 
based models to extract objects accurately. In such cases, prior knowledge of 
shape information can be very useful as it provides a constraint to the defor­
mation of the contour such that the model favours similar shapes represented 
in the training set.

One of the earliest approach in modeling shape information uses an ex­
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plicit representation of the shapes. In [170], the training shapes are repre­
sented using landmark or control points, and principal component analysis 
(PCA) is used to model the variability of the training set. The use of land­
mark points however has a drawback as the accuracy of the shape analysis 
depends on the quality of the landmarks. In addition, such shape mod­
els require the parameterization of the active contours. Recently, various 
groups [70,171-173] have incorporated shape prior information into the level 
set framework. In [171], shapes are represented using signed distance func­
tions, and PCA is applied to the training shapes. The prior information is 
then incorporated into a geodesic active contour [29] to attract the level set 
function towards similar shapes represented in the shape distribution. The 
shape model is then composed of the mean shape and a weighted sum of the 
principal modes of variation. In [174], PCA is applied to the space of signed 
distance functions, and the parameters of the principal eigenmodes are op­
timized efficiently. The signed distance functions are more robust to slight 
misalignments of the training shapes than parametric contours. However, 
the space of signed distance function is nonlinear and the shape representa­
tions using linear combination of eigenmodes do not in general correspond 
to a signed distance function. In [175], the shape information is imposed 
onto the contour extracted from the level set function at each iteration. The 
shape prior therefore acts on the contour and has difficulties in modelling 
topological changes.

In general, many of the shape models are based on statistical assumptions 
that the training shapes are distributed according to a Gaussian distribution. 
This can easily restrict the range of applications as real world objects can 
often exhibit complex shape variations and the projection from 3D object to 
2D image can be nonlinear. In [70,173,176], the kernel density estimation 
(KDE) which is a nonparametric technique for the estimation of probability 
distribution functions, is applied to the space of shapes to model the shape 
distribution. This allows the model to handle a relatively large variation of
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shapes.
In this chapter, a new variational level set model using Bayesian infer­

ence is presented. The proposed model uses an image based energy and shape 
based energy to attract the active contour towards the object shape. Image 
intensity and colour or their local distributions has been commonly used to 
derive the image energy, such as in [173,176]. Texture information can also 
be used, however they may form a large dimensional feature space, which 
can be difficult to formulate in the level set framework without cascading the 
feature vectors that may reduce its discriminability. Image intensity gradient 
is sensitive to image noise and weak edges as it uses local image information, 
and region based models are often affected by intensity variations. In this 
chapter, the image based energy is derived from the global interaction of im­
age intensity gradient vectors. This gradient vector interaction field is also 
known as the geometric potential field, and it is shown in Chapter 3 that its 
vector form can increase the robustness and efficiency of the active contours 
in handling image noise, challenging initialization, weak edge and even bro­
ken object boundaries. Here, its scalar form is used as an image feature to 
indicate the presence of object boundaries. Its characteristics are fundamen­
tally different from image intensity or image intensity gradient, as it exhibits 
a coherent and global geometric configuration of the image objects. The 
shape based energy is incorporated into the segmentation model using non­
parametric shape distribution [173]. The use of the nonparametric technique 
of KDE allows the shape prior to model arbitrary shape distributions, and 
can therefore handle large shape variations in the training set. The proposed 
model which consists of the image and shape based energy allows the active 
contour to efficiently handle feature inhomogeneity, occlusion, image noise 
and weak object edges.
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5.2 Proposed M ethod

In this section, the formulation of the proposed level set based segmentation 
model is presented. The proposed model consists of an image attraction 
force which propagates contours towards object boundaries, and a global 
shape force which deforms the model according to the shape distribution 
learned from a training set. The image attraction force is derived from the 
interaction of gradient vectors. It differs from conventional image intensity 
gradient based methods as it utilizes pixel interactions across the whole image 
domain. A shape distance is defined to measure the dissimilarity between 
shapes. The statistical shape information is incorporated into the model 
using nonparametric shape density distribution of the training shapes.

5.2.1 Bayesian Form ulation o f Segm entation  M odel

In this section, the segmentation model is formulated using Bayesian infer­
ence, where the segmentation of an image represented by the image intensity 
I  can be considered as maximizing the conditional probability given as

w W  = — t f j ) —  t5-1)

Here, p(<f>\I) denotes the posterior probability and p(I\4>) is called the like­
lihood which is the probability of I  given the shape <j>. The shape that
maximizes the posterior probability distribution can be estimated using a 
maximum a posteriori (MAP) approach:

0  = argmaxp(</>|/) = argm axp(/|0 ) • p(<f>)
<t> <t>

= argmin ( -  log(p(/|<£)) -  log(p(0))) (5-2)

since p{I) is independent of the shape <j> and is constant for a given image. 
The MAP estimation of the shape in Equation (5.2) that maximizes the
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posterior probability can also be achieved to minimize the following energy

functional:

E{(f>) = -log (p (/|0 )) -  log(p(<f)))

E im a g e iK4>') ~b v E g frape (4>)

where Eimage((j)) represents the image based term, EShape{(t>) represents the 
shape prior and v is a constant that controls the influence of the shape based 
energy. Note that maximizing the posterior probability in Equation (5.1) is 
equivalent to minimizing the negative log-likelihood which is given as a sum 
of the energies Eirnage{(f)) and Eshape(<i>) in Equation (5.3). The minimization 
of the energy functional E{4>) can therefore be interpreted as a segmentation 
model that simultaneously maximizes the accuracy of the object boundaries 
located by the evolving shape, and the similarity of the evolving shape with 
respect to the shapes represented in the training set.

5.2.2 Im age Based Energy

The image based term is used to propagate the model towards the feature 
of interest in the image and can be image intensity gradient based or region 
based. Conventional image intensity gradient based methods [12,29] are of­
ten sensitive to image noise as they make use of local image information. 
The gradient vector flow (GVF) model in [103] uses vector diffusion which 
increases the attraction range and allows the model to handle boundary con­
cavities. It however has convergence issues caused by saddle or stationary 
points in its force field [114,177]. Although region based techniques [1,47,107] 
exhibit more robustness against noise, they often cannot handle feature inho­
mogeneity. In Chapter 3, a new image attraction force based on hypothesized 
gradient vector interactions for contour evolution is derived. Here, the image 
based energy is formulated in a variational framework so that statistical prior 
information can be conveniently incorporated into the model.
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The following image based energy functional is proposed:

Eimage{<t>) = p f  g(x)\VH(tj>)\dx + J G(x)H(<j>)dx (5.4)

where p is a constant parameter that controls the smoothness of the contour, 
g(x) =  1 / | 1 +  V /|, and H  is the Heaviside function. G(x) represents the 
gradient vector interaction field given as:

where r xx> is the unit vector from pixel location x  to x '  and rxx> is the 
distance between the pixels, and A is a constant which coincides with the 
dimension of the image data (i.e. A =  2 for 2D image). The first term 
in Equation (5.4) induces the segmentation model to favor minimal length, 
while the second term attracts the active contour towards object boundaries 

Although the gradient vector interaction field G(x) is derived from image 
intensity gradients, it utilizes image pixels or voxels across the whole image 
domain, and thus gives a global representation of the geometric configuration. 
This provides the active contour with a high invariance to initializations and 
a large attraction range. It also increases the robustness of the active contour 
against image noise.

5.2.3 Shape B ased Energy

In this section, a nonparametric technique is used to generate a statisti­
cal shape distance measure for level set based shape representations. The 
signed distance function which can be conveniently derived from the level set 
function is used to represent a shape. Figure 5.1 depicts the various repre­
sentations of shapes. As shown in the figure, the signed distance function 
exhibits spatial correlation between the pixels and the object boundaries,

(5.5)
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and can thus be effectively used for shape representations.

o

Figure 5.1: Various shape representations: (from left to right, top to bottom ) 
contour or surface, binary image and signed distance function representations 
of shapes for annular-like objects, corpus callosum, knee and carotid respec­
tively.

In order to derive a shape prior, a distance or dissimilarity measure for 

two shapes has to be defined. Given a set of training shapes {4>i} i= i . . .N,  the 
shape distance measure between the evolving shape and the training shapes
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(pi can be defined as:

D2(4>, <t>i) = f  ( h (4>(x  + H )) -  H ^ S f d x  (5.6)
n

where is the center of gravity of the shape </>, and can be defined as 
Htf, = f  xh{(p)dx, where h{(p) = j ^ ^ x -  Note that the training shapes 
cpi are assumed to be aligned with respect to their center of gravity. The 
intrinsic alignment in the shape distance provides a dissimilarity measure 
which is invariant to the location of the shape (p.

The nonparametric technique of KDE can then be used to model the 
statistical shape distribution. Here, the shape energy functional is defined 
based on a probability density on the space of signed distance functions by 
integrating the shape distance (5.6) in KDE as

1 ^ / 1  \
E shape{<P) = Y l eX1P ( ~ 2^2 jD2(<̂’^) )

i=l '  '

where a is the kernel width, and can be set based on the mean nearest- 
neighbor distance. The shape prior is invariant to the translation of the 
shape (p. Intrinsic alignments with respect to scale and rotation can also be 
incorporated in the model [173].

5.2 .4  Variational Level Set Segm entation  M odel W ith  

G lobal Shape Prior

The minimization of the energy functional in Equation (5.3) generates a 
segmentation model which attracts the active contour towards image object 
boundaries and similar shapes in the training set. The gradient descent with 
respect to the shape (p is used to minimize the energy functional in Equation 
(5.3), and can be derived using calculus of variation as:
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<90   d E im a g e ir f 1) 9 E shape{L4>1') q \

dt ~ d4> V d4> ‘

The image based gradient flow is given as:

=  p g ^ V  ' ( ^ ( 1̂1 ) 5^ x ^  ~  G (.x )5(<l>(.x )) (5-9)

where 6 is the Dirac delta function. The shape gradient flow is defined as:

f )T7  ( A \  TT w  d D 2 ( ^ i )  
shape y r )  1 d(f>

d<t> 2tr2 Wi
(5.10)

which induces a shape force in the direction of each training shape 0 * weighted 
by the factor:

Wi = e z p ( - ^ D 2 (</>,</>i)) (5.11)

The shape derivative with respect to 0 is given as:

® 5 |* >  .  2W W ,(<W W ) -  » (* (*  -
n

X J -  H(<t>iix' -  H 4,)5(<t>(x'))V<j>{x’)dx!') (5.12)

The variational segmentation model therefore maximizes the alignment 
between the active contour and the image object boundaries, and the simi­
larity of the evolving shape with respect to the shapes represented using the 
statistical shape distribution.

5.3 Im plem entation Details

The image object boundary representation used in the derivation of G(x) can 
be computed using central differences, or standard edge detection methods 
such as the Sobel filter. Some effects caused by spurious edges can be removed
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by not considering pixels with very small edge magnitude, i.e. 5% -10% of the 
maximum magnitude. G{x) is computed efficiently as a vector convolution 
using FFT.

The Heaviside function H  in Equation (5.4) is approximated by the reg­
ularized function He defined as:

and the Dirac delta function 5 in Equation (5.6) is approximated by the 
derivative of He as:

where e is an arbitrary small constant, i.e. e — 1.0. The finite difference 
method is used to approximate the derivatives, and the narrow band ap­
proach [25] which considers only a narrow band of pixels around the level set 
interface is used to reduce the computational cost in updating the level set 
function.

The training set are generated or extracted manually in the form of binary 
images, and the signed distance functions which represent the shapes are 
computed using an efficient distance transform algorithm [9].

The curvature weighting parameter p in Equation (5.4) can be set to a 
small value such as p = 1. 0 or set as 0 , as the shape prior can effectively 
smooth out noise interference and regularize the shape of the contour. The 
weighting parameter v in Equation (5.3) is used to balance the effects of the 
image and shape based energy functionals on the segmentation process. The 
choice of v depends on the specific application and the complexity of the 
images, and it is often required to tune this parameter for efficient segmen­
tation [70,173,178]. A v value that is too small may cause the shape prior to 
have little effect on shape regularization, and a v value that is too large may 
cause the global shape force to be too dominant and overwhelm local shape 
features. Here, the magnitude of the gradient vector interaction field G(x)

(5.13)
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is used as a guide to choose an appropriate value for z/, since it is the dom­
inant component in the image based gradient flow given in Equation (5.9). 
In particular, |G| is usually much larger than the magnitude of the shape 
gradient flow, therefore v is set to a considerably large value to balance the 
image and shape based energy functionals. This can be done by setting v 
to a fraction of the ratio of |G|mox to the maximum of the magnitude of the 
shape gradient flow at the initial configuration. It can be noted that once 
the appropriate v values are chosen, they can be used to efficiently segment 
a wide range of images of the same modality and application.

5.4 R esults and Discussion

In this section, it is shown that the proposed method can be applied to effi­
ciently segment image objects. The proposed method was compared against 
the Chan-Vese region based model [1], and the Chan-Vese model with shape 
prior [173] in which the proposed shape based energy is incorporated to the 
Chan-Vese model, on both synthetic and real images. In the experiments, 
a range of values for the parameters of the Chan-Vese model [1] and the 
Chan-Vese model with shape prior [173] are used, and the best outcomes for 
each model are selected to ensure a fair comparison.

5.4.1 Synthetic Im ages

Figure 5.2 depicts the segmentation of multiple annular-like objects from an 
image with 40% noise and intensity variation. It is shown that the image 
based energy derived from the global interactions of gradient vectors is robust 
to image noise and allows the active contour to extract the shapes accurately 
with an arbitrary cross-boundary initialization. Although the Chan-Vese 
model can handle the image noise, it cannot deal with the inhomogeneous 
intensity as shown in the figure.
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Figure 5.2: Segmentation of annular-like shapes from noisy image: (from left 
to right) initial contour, region based energy [1], gradient vector interaction 
based energy.

Next, we consider a training set of 20 images with annular-like objects 
of considerable shape variations which we will use to derive the shape prior. 

Figure 5.3 depicts 5 of the shapes of the multiple annular-like ob jects in the 

trailing set. The top row of Figure 5.3 shows the binary images and the 
bottom  row of the figure shows the signed distance function representation 
of the training shapes.

Figure 5.3: Training shapes of multiple annular-like objects: (top row) binary 
images and (bottom  row) corresponding signed distance functions.

The shape prior is incorporated to the active contour models to extract 

the shapes from a noisy image (i.e. 70% of the pixels replaced by Gaussian 

noise), occlusions and intensity variation as shown in Figure 5.4. The top row
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Figure 5.4: Segmentation of annular-like shapes from occluded and noisy im­
age: (top row, from left to right) initial contour, Chan-Vese model, Chan-Vese 
model with shape prior, (bottom  row, from left to right) initial contour, gra­
dient vector interaction based energy, gradient vector interaction and shape 
based energy.

of Figure 5.4 shows the segmentation of the annular-like objects using Chan- 
Vese model, and Chan-Vese model with shape based energy. The bottom  row 
of the figure shows the segmentation of the shapes using the proposed active 
contour with gradient vector interaction based energy, and gradient vector 

interaction and shape based energy. As shown in the figure, the shape force 
overwhelmed the region based force in the Chan-Vese model [1], arid did not 

locate the boundaries of the objects accurately. In contrast, the proposed 
active contour with shape prior extracted the shapes efficiently.

Figure 5.5 shows another example in which the proposed model with 

shape prior is applied to segment the annular-like shapes with parts of the 

objects removed from the image. As shown in the figure, the gradient vec­

tor interaction based energy allows the active contour to locate the object 

boundaries, while the global shape based energy draws the active contour 
towards similar annular-like shapes to segment the image objects effectively.
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Figure 5.5: Segmentation of annular-like shapes using gradient vector in­
teraction and shape based energy (from left to right) input image, initial 
contour, converged model.

5.4.2 R eal Im ages

The proposed level set segmentation with shape prior is also applied on real 

images. In particular, it is shown th a t the statistical shape prior can be used 
to increase the robustness of the deformable model in the segmentation of 
biomedical structures such as the corpus callosum, knee joint and carotid 
geometries from image dataset. In the various applications, the training 
shapes are manually segmented to model the shape distribution. The shape 
priors are then used in the segmentation of the biomedical structures from 
images of which the shapes are not included in the training set. As the shape 
prior information is incorporated using nonparam etric shape distribution, the 
model can handle a relatively large amount of shape variability in the training 

set. The image and shape based energies can therefore a ttrac t the contours 
towards image object boundaries and similar shapes represented in the shape 
distribution to  minimize inter-operator variability.

Segmentation of the corpus callosum from MR image can be challenging 

as the intensity range is similar to connecting structures such as the white 
m atter of the cortical regions and fornix as shown in Figure 5.6. Therefore, 

segmentation models which use only image information may often include 

other white m atter regions due to diffused object boundaries and similar 

region characteristics in the image. By incorporating prior shape information,
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the segmentation model can a ttrac t the model to similar shapes represented 

in the shape distribution to efficiently segment the structure from the image.

Figure 5.6: Various images of the brain: structures such as the white m atter 
of the cortical regions and the fornix have similar intensity range and are 
connected to the corpus callosum.

The training set consists of 15 shapes of the corpus callosum which are 
manually segmented from MR images. Figure 5.7 depicts some of the training 
shapes of the corpus callosum. The top row of the figure depicts the manually 
segmented shapes, and the bottom  row of the figure shows the corresponding 
signed distance functions of the training shapes. The shape information is 
then incorporated to the active contour model to segment the corpus callosum 

structures from images of which the shapes are not included in the training 

set. In particular, the active contour is used to segment the corpus callosum 

shapes from 20 image datasets. The extracted contours are compared with 

manual segmentation to show the efficiency of the proposed model.
Figure 5.8 depicts the segmentation of the corpus callosum from MR 

image. The top row of the figure shows the initial contour and converged
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Figure 5.7: Training shapes of the corpus callosum: (top row) manually 
segmented images and (bottom  row) corresponding signed distance functions.

contour of the Chan-Vese model, and Chan-Vese model with shape based 

energy. The bottom  row of the figure depicts the initial contour and con­

verged contour using the gradient vector interaction based energy, and the 
proposed model with shape prior. It is shown tha t the gradient vector in­

teraction model is more efficient, than the region based Chan-Vese model in 
segmenting the brain image, as the Chan-Vese model leaks out to various 
structures in the image. The proposed model with shape prior also provides 
a more accurate segmentation than the region based model with shape prior. 
Figure 5.9 shows another example in which the proposed method is applied 
to segment the corpus callosum. As shown in the figure, the active contour 
which uses only the image based energy, leaks out to include the fornix struc­

ture due to the similar intensity. In contrast, the proposed model with shape 
prior efficiently segment the shape from the image. In Figure 5.10, it is shown 

tha t the proposed active contour with shape prior is highly invariant to ini­

tializations as the active contour converged accurately to the object shape 

using different initializations. As shown in the figure, the active contour is 

initialized across different structures in the image. This makes it difficult 

for techniques which uses only image information to extract the geometry, 
as image forces generated in other structures may cause the active contour 

to converge to various structures with similar intensity. It is shown tha t the
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proposed active contour with shape prior can effectively overcome the image 
based force generated in other structures to converge to the geometry of the 
corpus callosum. The setting of v is important as a v value that is too small 
may cause the shape prior to have little effect on shape regularization, and 
a v value that is too large may cause the shape force to be too dominant 
and overwhelm local shape features. Here, the magnitude of the gradient 
vector interaction field G(x) is used as a guide to choose an appropriate v 
value, since it is the dominant component in the image based gradient flow. 
In general, |C?| is much larger than the magnitude of the shape gradient flow, 
therefore v is set to a relatively large value to balance the image and shape 
based energies. This is done by setting v to a fraction of the ratio of \G\max 
to the maximum of the magnitude of the shape gradient flow at the initial 
configuration. Figure 5.11 depicts the segmentation of the corpus callosum 
using the proposed model with different values of the weighting parameter 
v. It is shown that the active contour with different weighting parameters, 
v = 2.0 x 104, v — 3.5 x 104 and v — 5.0 x 104, converged to the shape of 
the corpus callosum to segment the image structure accurately.

Figure 5.12 depicts the comparison of the extracted contours using the 
proposed model with shape prior and manual segmentation. The blue con­
tours represent the shapes extracted manually and the orange contours repre­
sent the shapes extracted using the proposed active contour with shape prior. 
It is shown that the shapes segmented using the proposed model coincides 
closely with the manually extracted shapes. Table 5.1 presents the accu­
racy of the extracted contours using the proposed active contour with shape 
prior. It is shown that the proposed model provides accurate segmentation 
of the corpus callosum structures with an average foreground, background 
and overall accuracy of 95.7%, 99.7% and 97.7% respectively.

The proposed model is also applied in the segmentation of the knee from 
MR image. The training set consists of 15 shapes manually segmented from 
the MR image dataset. Figure 5.13 depicts some of the shapes in the training
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Figure 5.8: Segmentation of corpus callosum from MR image: (top row, 
from left to  right) initial contour, Chan-Vese model, Chan-Vese model with 
shape prior, (bottom  row, from left to right) initial contour, gradient vector 
interaction based energy, gradient vector interaction and shape based energy.

Figure 5.9: Segmentation of corpus callosum from MR image using the pro­
posed active contour: (top row) gradient vector interaction based energy, 
(bottom  row) gradient vector interaction and shape based energy.
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Table 5.1: Comparison of the segmented corpus callosum geometries us­
ing the proposed model with manual segmentation: Foreground (FG), back­
ground (BG) and overall accuracy measured in %.

D ataset Accuracy Dataset Accuracy

1
FG (%) 97.2 
BG (%) 99.5 11 
Overall (%) 98.3

FG (%) 99.4 
BG (%) 99.5 
Overall (%) 99.5

2
FG (%) 92.3
BG (%) 99.9 12
Overall (%) 96.1

FG (%) 96.5 
BG (%) 99.5 
Overall (%) 98.0

3
FG (%) 98.4 
BG (%) 99.3 13 
Overall (%) 98.9

FG (%) 98.4 
BG (%) 99.5 
Overall (%) 98.9

4
FG (%) 97.9
BG (%) 99.5 14
Overall (%) 98.7

FG (%) 93.6 
BG (%) 99.8 
Overall (%) 96.7

5
FG (%) 94.1
BG (%) 99.8 15
Overall (%) 96.9

FG (%) 95.4 
BG (%) 99.8 
Overall (%) 97.6

6
FG (%) 96.4
BG (%) 99.8 16
Overall (%) 98.1

FG (%) 93.6 
BG (%) 99.9 
Overall (%) 96.7

7
FG (%) 89.6
BG (%) 99.8 17
Overall (%) 94.7

FG (%) 97.5 
BG (%) 99.8 
Overall (%) 98.6

8
FG (%) 96.0 
BG (%) 99.8 18 
Overall (%) 97.9

FG (%) 90.2 
BG (%) 99.9 
Overall (%) 95.1

9
FG (%) 95.6
BG (%) 99.4 19
Overall (%) 97.5

FG (%) 97.4 
BG (%) 99.9 
Overall (%) 98.6

10
FG (%) 98.9
BG (%) 99.6 20
Overall (%) 99.3

FG (%) 96.1 
BG (%) 99.7 
Overall (%) 97.9

FG Average (%) 95.7 
BG Average (%) 99.7 
Overall Average (%) 97.7
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Figure 5.10: Segmentation of corpus callosum from MR image using the pro­
posed active contour with shape prior using different initializations: (top row) 
initialization across boundary of object, (bottom  row) initialization outside 
boundary of object.

set. The top row of the figure shows the shapes segmented manually from 
the MR images, and the bottom  row of the figure shows the corresponding 
signed distance functions of the training shapes.

Figure 5.14 depicts the segmentation of the knee using various act ive con­
tour models. The top row of the figure shows the segmentation of the knee 

using the Chan-Vese model and Chan-Vese model with shape prior. The bo t­
tom row of the figure shows the segmentation of the knee using the gradient 
vector interaction based energy, and proposed model with gradient vector 
interaction and shape based energy. It is shown tha t the gradient vector 
interaction based energy provides a more robust segmentation of the knee as 

compared to the region based energy. The incorporated shape prior infor­

mation also gives a more accurate segmentation with the proposed method. 

Figure 5.15 shows another example in which the proposed model with shape 
prior is used to segment the knee from the image. As shown in the figure, 

the global shape based energy a ttrac ts  the active contour to similar shapes in 

the training set while the gradient interaction based energy allows the active
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Figure 5.11: Segmentation of corpus callosum from MR image using the 
proposed active contour with shape prior using different parameters: (top 
row) v — 2 .0x lO 4, (middle row) v =  3.5 x 104 and (bottom  row) v = 5 .0xlO 4.
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Figure 5.12: Comparison of contours extracted using the proposed active 
contour and manual segmentation: blue - manual, orange - proposed active 
contour.
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HNHHH
Figure 5.13: Training shapes of the knee: (top row) manually segmented 
images and (bottom  row) corresponding signed distance functions.

contour to locate the object boundaries to segment the shapes efficiently.

Figure 5.16 depicts the segmentation of the carotid geometry from CT 
image using the proposed model. In this example, 20 training shapes are 
manually generated to model the shape distribution. Note th a t the image 
data  consists of various structures such as adjacent vessels and bones, and 
image regions representing the carotid may often contain diffused edges and 
intensity inhomogeneity. Therefore, careful initializations are often required 
for purely image based segmentation model to extract the shape of the struc­
ture. In contrast, given an arbitrary  initialization across various structures 
in the image as shown in Figure 5.16, the proposed deformable model with 
shape prior can overcome the image based forces generated by other image 

structures to segment the carotid geometry efficiently.

5.5 S u m m a r y

A new variational model for level set segmentation with statistical shape 

prior has been presented. The image based energy derived from the global 

interaction of gradient vectors provides a more coherent and global repre-

127



Figure 5.14: Segmentation of the knee from MR image: (top row, from left to 
right) initial contour, Chan-Vese model, Chan-Vese model with shape prior, 
(bottom  row, from left to right) initial contour, gradient vector interaction 
based energy, gradient vector interaction and shape based energy.

Figure 5.15: Segmentation of the knee from MR image using gradient vector 
interaction and shape based energy.
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Figure 5.16: Segmentation of the carotid from CT image using gradient 
vector interaction and shape based energy.

sentation of the geometric configuration. The active contour model is thus 

more robust to  image noise and weak edges, and has a strong invariance to 
initializations. By using kernel density estimation, the incorporated shape 
prior can model arbitrary  shape distributions. The proposed model can thus 
segment complex shapes from occluded and noisy images effectively. Several 
examples are provided using various object shapes from synthetic and real 
images. It is shown th a t the proposed model with gradient vector interaction 
and shape based energy can be used to segment object shapes from various 
images efficiently.
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Chapter 6 

Conclusion and Future Work

In this thesis, new image segmentation methods based on deformable models 
have been presented. It is shown that the presented models can be applied to 
segment complex geometries from synthetic and real images accurately and 
efficiently. Some of the main contributions to the field of image segmentation 
include the derivation of a new external force field for deformable models, 
the design of a robust framework for the efficient segmentation of vascular 
geometries, and the formulation of a new deformable model with statistical 
shape prior.

In particular, a novel deformable model that uses an external force field 
known as the geometric potential force (GPF) is proposed in Chapter 3. 
In contrast to existing image gradient intensity based approaches, the pro­
posed method utilizes pixel or voxel interactions across the whole image, 
which effectively provides a global representation of the image object. The 
derived geometric potential field is thus more informative and exhibits spa­
tial and structural characteristics of image objects which are more coherent 
than image cues that are based solely on local edge or regional informa­
tion. This makes the new model more robust towards image noise and 
weak object edges. The relative spatial configurations between geometries 
gives the proposed deformable model its distinctive bidirectionality, which
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facilitates the handling of arbitrary cross-boundary initializations. In ad­
dition, the new framework is equipped with a dynamic vector force field 
that adapts appropriately to the relative position and orientation between 
the geometries as the deformable model evolves. This allows the proposed 
deformable model to seamlessly handle complex geometries and topologies 
efficiently. The dynamic vector force can easily attract the deformable model 
into highly concave regions, and propagate the contour or surface through 
long thin structures. The enhancement of the geometric potential field based 
on regional similarity measure, can effectively remove noise interference, and 
yet preserve object edge information and fine details. Several comparative ex­
amples against existing edge based and region based techniques are provided 
using various geometries and topologies from both synthetic and real images. 
The comparative study clearly showed that the proposed method achieved 
significant improvements in convergence capability and initialization flexibil­
ity and outperformed several state-of-the-art methods. The straightforward 
generalization of the proposed model to higher dimensions allows the new 
model to be applied to N-dimensional images, and opens up to a wide range 
of potential applications.

A robust framework for the segmentation of vascular geometries from 
medical image datasets is presented in Chapter 4. The new approach consists 
of image denoising, optimal edge detection, and image segmentation using 
implicit deformable model. The image denoising is performed using vessel 
enhancing diffusion so as to smooth out image noise and enhance the vessel 
structures, and the Canny edge technique is used to detect object edges with 
single pixel width which is important for accurate reconstruction of complex 
geometries. The image gradients computed at the detected edges are then 
used to derive the geometric potential field which gives a global represen­
tation of the geometric configuration of the image objects. The proposed 
approach therefore generates a potential field which gives an accurate and 
coherent representation of the object boundaries of the vessels in the image.
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The vessel geometries are segmented using implicit deformable model with 
region constraint. In particular, the region constraint is incorporated to the 
deformable model so as to suppress the calcified regions with considerably 
large image gradient magnitude. The deformable model can therefore get 
around the calcified regions easily for accurate segmentation of the vessel 
geometries. The robust framework is applied to the segmentation of carotid 
geometries with high accuracy.

In addition, a new deformable model with statistical shape prior using 
a variational approach is presented in Chapter 5. The proposed model con­
sists of an image based energy which propagates contours towards object 
boundaries, and a shape based energy which attracts the model towards sim­
ilar shapes represented in the shape distribution. The image based energy 
is derived from the interactions of gradient vectors across the whole image 
domain, which gives the deformable model a global representation of the 
geometric configuration. The deformable model is therefore more robust to 
image noise, diffused edges, and has a strong invariance to intializations. The 
shape based energy is defined using a shape distance measure with intrinsic 
alignment. The kernel density estimation technique is used to model the sta­
tistical shape distribution, and The incorporated shape prior can therefore 
model a large variation of shapes in the training set. The proposed model 
with shape prior can therefore be applied to segment various object shapes 
from synthetic and real images. The images used in the comparative analysis 
consist of image noise, occlusions, diffused edges and intensity inhomogeneity, 
and the training shapes exhibit considerable shape variation. In particular, 
the proposed method is applied in the segmentation of complex biomedical 
structures including the corpus callosum, knee joint and carotid geometries 
from image dataset. It is shown that the proposed model with image based 
energy derived from gradient vector interaction and shape based energy us­
ing statistical shape distribution, can be used to segment the various object 
shapes from the images efficiently.
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Here, some improvements for the methods presented, and future work and 
directions in the area of image segmentation will be described. The geometric 
potential field is derived from the image gradient vector interaction across 
the image, which provides a global representation of geometric configuration 
of the image object boundaries. An attraction force field based on the global 
interaction of image characteristics such as regional intensity distribution can 
also be incorporated to the segmentation model. The deformable model will 
therefore be more robust as it utilizes the local edge information and regional 
intensity distribution, and the global interaction of the image characteristics.

The presented framework for the robust segmentation of vascular geome­
tries uses an anisotropic diffusion filter based on the vesselness measure for 
image smoothing. The vesselness measure can also be incorporated in the 
derivation of the geometric potential field. In particular, the geometric po­
tential field can be defined such that the magnitude takes on a larger value 
on object edges with higher vesselness measure. In this way, the contrast 
at object edges of tubular structures will be higher and image regions with 
other structures or image noise will be homogeneous in the derived poten­
tial field. This will allow the deformable model to accurately segment the 
vascular geometries.

The recent advances in medical imaging make it convenient to generate 
dynamic image dataset, which allows researchers to better understand the 
motion and function of biomedical structures. One common usage of dy­
namic image dataset in clinical practice is the analysis of 4D cardiac image 
dataset from ultrasound or MR imaging. Accurate delineation of biomedical 
structures from dynamic image dataset is useful for the diagnosis and compu­
tational analysis of the anatomical function. As the geometric potential force 
can be easily generalized to higher dimensions, the GPF deformable model 
can be directly applied in the dynamic segmentation of biomedical structures 
from 4D image dataset. Another approach for the robust segmentation of 
dynamic image dataset is to incorporate spatio-temporal information to the
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segmentation model. As biomedical structures exhibit strong temporal cor­
relation between adjacent image frames, we can define a regularization force 
based on the geometric variation in the temporal direction to dynamically 
segment the image dataset. Image representation is important in image pro­
cessing and image segmentation. A conventional way of image representation 
is based on image characteristics such as intensity or colours at each point 
of the image. However, real objects in an image are not composed of points 
of various intensity or colours. Different types of information such as edges, 
textures and shapes can be extracted from image objects at various scales. 
A multiscale approach can therefore be used to derive the image attraction 
force for the deformable models. Image edges at different spatial scales are 
first computed from an image smoothed using Gaussian filters of different 
variances. A multiscale edge representation is then derived by combining the 
edges detected at various scales such that image edges which exist only in fine 
scales are suppressed, and edges which exist at both fine and coarse scales 
have larger magnitudes. The multiscale edge representation can then be used 
to derive the image force for attracting the deformable models towards image 
object boundaries.

It is shown that the statistical shape information [173,179] can be in­
corporated to increase the robustness of the deformable model. The prior 
information of the image intensity distribution can also be incorporated into 
the segmentation model. The intensity prior information can be used to 
attract the deformable model towards similar intensity distribution in the 
training images. The deformable model can therefore utilize the local image 
information and the global shape and intensity prior information to segment 
object shapes from images efficiently.
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Appendix A

List of Param eters 

G PF deform able m odel

J  in Equation (3.14) -  constant parameter used to control the direction of 
propagation of the deformable model, values set as J  = ±1 to give propaga­
tion in opposite directions.

a in Equation (3.16) -  curvature weight parameter to control the amount 
of contour smoothness of the deformable model, generally set a s a =  1 0 -3.

N onlocal sm ooth ing o f geom etric potentia l field

Qx in Equation (3.19) -  size of search window, generally set to 21 x 21 for 
2D images and 21 x 21 x 21 for 3D images.

h and a in Equation (3.20) -  parameter to control the amount of filter­
ing and standard deviation of Gaussian kernel respectively, generally set as 
h = 1.0a to h = 1.5cr.

N  in Equation (3.20) -  size of similarity neighbourhood region, generally 
set as N  = 7.

Vessel enhancing diffusion

g, c and $ in Equation (4.2) -  weighting factors to control the sensitivity of 
the vesselness measure, generally set as g = 0.5,  ̂=  0.5, 'd = 5.

c in Equation (4.2) -  small constant to ensure smoothness of the function 
around the origin, set as c = 1 0 -6.
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(Tmin and (Jmax in Equation (4.6) -  parameters corresponding to the range 
of scales for vesselness measure, generally set as <rmin =  0.5 and <Jmax = 2.0.

w, e and s in Equations (4.8) and (4.9) -  parameter to control strength 
of anisotropic diffusion, small positive constant to ensure diffusion tensor is 
positive definite, and parameter to sensitivity to vesselness response, gener­
ally set as w = 25, e — 10- 2  and s = 5.0.

O ptim al object edge representation

Th and 7} -  high threshold and low threshold for Canny edge detection, values 
of Th and Ti depend on the type of images and the amount of noise, a smaller 
Th is used if image contrast is low and a larger 7] is used if there is a large 
amount of noise.

G P F  deform able m odel w ith  region constraint

a  in Equation (4.11) -  curvature weight parameter to control the amount of 
contour smoothness, generally set a s a =  1 0 - 4  to a = 1 0 -3.

Tmax in Equation (4.11) -  threshold value for intensity gradient magnitude, 
value set by observing the histogram of the image gradient magnitude, gen­
erally set as Tjnax — 350 to Tmax — 420.

Variational m odel w ith  shape prior

v in Equation (5.3) -  parameter to control influence of shape based energy, 
value depends on the specific application and complexity of images, gener­
ally set as a fraction of the ratio of the maximum of the geometric potential 
field magnitude to the maximum of the shape gradient flow magnitude at 
initialization.
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p in Equation (5.4) -  parameter to control the smoothness of the contour, 
generally set as p = 1 .0 .
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