

 Swansea University E-Theses ___

Automated software upgrade for reconfigurable mobile devices.

Zhang, Hui

 How to cite: ___
Zhang, Hui (2011) Automated software upgrade for reconfigurable mobile devices.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42402

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42402
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Automated Software Upgrade for
Reconfigurable Mobile Devices

m i
t o y

% /
Swansea University
Prifysgol Abertawe

Hui Zhang

College of Engineering

Swansea University

Submitted to Swansea University in fulfillment of the requirements
for the degree of

M aster of Philosophy (M. Phil)

December, 2011

ProQuest Number: 10798110

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10798110

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

LIBRARY,

Abstract

Due to rapid advancement of the mobile communication technologies and the existence
o f multi-standards, the demands for managing mobile device effectively to fulfill
various functionalities are on the rise. With the development of firmware over-the-air
(FOTA) technology, the reconfigurable feature o f mobile device provided by Software
Defined Radio (SDR) technology offers a new way to realize the multi-functionalities
o f mobile devices. Therefore, based on the reconfigurable feature provided by SDR
devices and the FOTA technology standardized by Open Mobile Alliance Device
Management (OMA DM) standard, in this thesis, a framework of Modulation Module
Update (MMU) is proposed for upgrading the modulation module on the mobile device
over-the-air.

As the modulation module is a vital module for radio devices, the upgrade or
reconfiguration of modulation module can be extremely helpful for the realization of
multi-functionalities. Therefore, in this thesis, the management object for updating
modulation module are defined based on OMA DM standard, and three operation
phases are defined in this framework as well. Compared with the original framework
provide by OMA DM standard, the MMU framework is significantly improved from
both the logical structure design aspect and the operation mechanism design aspect. The
download operation of the firmware upgrade is optimized by the download mechanism
proposed in this thesis, which is an over-the-air (OTA) software download mechanism
combining the centralized download method and the decentralized download method for
different circumstances. An important module named Central Information Controller
(CIC) is also proposed to realize the control of the decentralized download method.

The implementation of the MMU is achieved in this thesis as well. The server side and
the client side o f the framework as well as the CIC are simulated to test and verify the
framework we proposed for the modulation module OTA upgrade.

Declarations and Statements

DECLARATION

This work has not previously been accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

This thesis is the result o f my own investigations, except where otherwise stated. Where
correction services have been used, the extent and nature of the correction is clearly
marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliography
is appended.

Signed... .. (candidate)

I hereby give consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organizations.

Signed... (.. (candidate)

Data

STATEMENT 1

u

Data .1

STATEMENT 2

Signed.. _ /... (candidate)

Data

Table of Contents

Abstract...I

Declarations and Statements.. II

Table of Contents... Ill

Acknowledgement...VII

List of Figures..VIII

List of Tables...XI

List of Abbreviations.. XII

List of Publications...XIV

1. Introduction.. 1

1.1 Overview...1

1.2 Contributions............................. :... 2

1.3 Outline..4

2. Background............................ 5

2.1 Software Defined Radio..5

2.1.1 Introduction of SDR... 5

2.1.2 Reconfiguration of SDR... 6

2.1.3 Development of SDR... 8

2.1.4 Summary.. 9

2.2 Firmware Over-the-air Upgrade...10

2.2.1 Firmware Upgrade Technology... 10

2.2.2 Firmware Over-the-air... 12

2.2.3 Research on FOTA of SDR Devices.. 14

i n

2.2.4 Summary...16

2.3 OMA Device Management... 16

2.3.1 Open Mobile Alliance.. 16

2.3.2 Device Management Standard... 17

2.3.3 Device Management Mechanism... 18

2.3.3.1 DM Tree.. 18

2.3.3.2 Package and Message.. 19

2.3.3.3 Format of Message.. 20

2.3.3.4 Operation Procedure... 22

2.3.3.5 Security... 23

2.3.4 Firmware Update Management Object.. 24

2.3.5 Summary.. 26

3. Design o f Modulation Module Update..27

3.1 Introduction... 27

3.2 Logical design of MMU.. 27

3.2.1 Management Architecture.. 28

3.2.2 Management Object... 32

3.3.3 Management Operation Mechanism.. 36

3.3.3.1 Initialization Phase.. 37

3.3.3.2 Download Phase.. 39

3.3.3.3 Update Phase... 41

3.3 OTA Software Download Mechanism.. 42

3.3.1 Centralized Download Method.. 43

3.3.2 Decentralized Download Method.. 43

3.3.3 Combined Download Mechanism.. 44

IV

3.4 Summary 47

4. Implementation of Modulation Module Update...48

4.1 Introduction.. 48

4.2 Implementation of DM Server... 48

4.2.1 User Interaction Layer... 49

4.2.2 DM Protocol Layer.. 50

4.2.3 SyncML Representaion Layer... 53

4.2.4 Transport Layer.. 56

4.3 Implementation of Agents in Mobile devices.. 56

4.3.1 Overall design.. 57

4.3.1.1 Functional Design... 57

4.3.1.2 Programming Design.. 58

4.3.2 Device Management Core Layer.. 59

4.3.2.1 DM Tree.. 59

4.3.2.2 DM Agent... 60

4.3.3 Application Layer.. 61

4.3.3.1 FUMO Agent.. 62

4.3.3.2 DL Agent... 63

4.4 Central Information Controller...65

4.5 Summary...67

5. Test and Verification Results.. 68

5.1 Introduction...68

5.2 Test Procedure..69

5.2.1 Decentralized Download.. 69

5.2.2 Centralized Download.. 70

v

5.3 Test Results 72

5.3.1 Initialization Phase... 72

5.3.1.1 Configuration.. 72

5.3.1.2 MMU Server... 73

5.3.1.3 MMU Client.. 75

5.3.1.4 DM Tree.. 77

5.3.2Download Phase.. 79

5.3.2.1 Message Exchange in Download Phase.. 79

5.3.2.2 CIC for Decentralized Download.. 83

5.3.2.4 Decentralized Download... 84

5.3.2.3 Centralized Download .. 86

5.3.3Update Phase... 88

5.3.3.1 MMU Server... 88

5.3.3.2 MMU Client.. 90

5.4 Summary... 92

6. Conclusion and Future Work...93

6.1 Conclusion of Contributions... 93

6.2 Future Work.. 93

Bibliography.. 94

VI

Acknowledgement

First of all, I want to thank Dr. Xinheng Wang, my supervisor, for his friendly and

patient supervision and many inspiring discussions.

1 am also grateful to all my friends, for their support in any respect during the

completion of my study.

Finally I would like to give my special thanks to my parents. Without their support it

would not have been possible for me to study in the UK.

VII

List of Figures

Figure 2.1 Reconfiguration Feature of SDR Devices..8

Figure 2.2 SDR Market segmentation.. 9

Figure 2.3 Growth of FOTA Handsets...12

Figure 2.4 General architecture of the FOTA...12

Figure 2.5 Firmware Over-the-air Download Flow... 14

Figure 2.6 Structure of a DM Tree..18

Figure 2.7 Exchange of Operation Message...20

Figure 2.8 Structure of SyncML.. 21

Figure 2.9 Sample of SyncML Message... 21

Figure 2.10 Setup Phase...23

Figure 2.11 Management Phase... 23

Figure 2.12 Flow of Firmware Update...25

Figure 3.1 Management Architecture .. 29

Figure 3.2 Flow of Management Operations..32

Figure 3.3 Structure of MO for Modulation Module...34

Figure 3.4 Initialization Phase...38

Figure 3.5 Download Phase.. 40

Figure 3.6 Update Phase... 42

Figure 3.7 Centralized OTA Software Download.. 43

Figure 3.8 Decentralized OTA Software Download...44

Figure 3.9 A Combined Download Mechanism.. 45

V III

Figure 3.10 Flow of the download Mechanism of MMU... 46

Figure 4.1 Functional Layers of Dm Server..49

Figure 4.2 Design of User Interaction Layer..50

Figure 4.3 Design of dm.server.engine..52

Figure 4.4 Design of dm.server.dmoperation...53

Figure 4.5 Design of SyncML Classes...54

Figure 4.6 Design of Management Command Classes..55

Figure 4.7 Design of the dm.message.coder...55

Figure 4.8 Design of Transport Layer..56

Figure 4.9 Functional Structure of Client Side...58

Figure 4.10 Programming Design of Agents in Mobile D evice.................................... 58

Figure 4.11 Design of DM Tree..60

Figure 4.12 Design of DM Agent.. 61

Figure 4.13 Design of FUMO Agent...63

Figure 4.14 Design o f DL Agent.. 65

Figure 4.15 Design of CIC.. 67

Figure 5.1 Decentralized Download Test.. 70

Figure 5.2 Centralized Download Test..71

Figure 5.3 Configuration Interface in MMU Client 2 ..73

Figure 5.4 Log o f Initialization in MMU Server.. 74

Figure 5.5 Log of Initialization in MMU Client 2 ... 76

Figure 5.6 DM Tree before Initialization.. 78

IX

Figure 5.7 DM Tree after Initialization..78

Figure 5.8 Log of Download Phase in MMU Server..80

Figure 5.9 Log of CIC..84

Figure 5.10 Log o f Decentralized Download in MMU Client 2 85

Figure 5.11 Log o f Centralized Download in MMU Client 387

Figure 5.12 Log of Update Phase in MMU Server.. 89

Figure 5.13 Log of Update in MMU Client 2 ...91

x

List of Tables

Table 2.1 Mobile Communication Standards..6

Table 2.2 Comparison of Different Download Methods...11

Table 2.3 DM Tree Properties..19

Table 2.4 Common Commands in Device Management...22

Table 5.1 Message of Adding Management Object... 74

Table 5.2 Message of Initialization Results o f MMU Client 276

Table 5.3 Message of Configuration of PkgURL Node...80

Table 5.4 Message of Configuration Results of MMU Client 2 81

Table 5.5 Message of Execution Command for Download.. 82

Table 5.6 Message of Decentralization Download Results of MMU Client 285

Table 5.7 Message of Centralization Download Results of MMU Client 3 87

Table 5.8 Message of Execution Command for Update... 89

Table 5.9 Message of Update Results o f MMU Client 2 .. 91

XI

List of Abbreviations

ACL Access Control List

AMF Airborne, Maritime Fixed

ASIC Application-specific Integrated Circuit

ATC Air Traffic Services

CDMA Code Division Multiple access

CIC Central Information Controller

DM Tree Device Management Tree

DSP Digital Signal Processor

EDGE Enhanced Data rates for GSM Evolution

EMS Emergency Medical Service

FOTA Firmware Over The Air

FPGA Field Programmable Gate Array

FUMO Firmware Update Management Object

GPP General Purpose Processor

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HMAC Hash-based Message Authentication Code

IEEE Institute o f Electrical and Electronic Engineers

ITS Intelligent Transportation Systems

MO Management Object

MMU Modulation Module Update

NIC Network Interface Card

OMA Open Mobile Alliance

OMA DM Open Mobile Alliance Device Management

OTA Over-The-Air

SDR Software Defined Radio

SoC System on Chip

WCDMA Wideband Code Division Multiple Access

WLAN Wireless Local Area Network

UMTS Universal Mobile Telecommunications System

URL Uniform/Universal Resource Locator

List of Publications

Published

H. Zhang, H. X. Wang, and M. Iqbal, "An OMA DM Based Framework for Updating

Modulation Module for Mobile Devices", International Journal o f Adaptive, Resilient

and Autonomic Systems, 2(3), pp. 13-23, 2011.

M. Iqbal, H. X. Wang, and H. Zhang, "Load-Balanced Multiple Gateway Enabled

Wireless Mesh Network for Applications in Emergency and Disaster Recovery",

International Journal of Adaptive, Resilient and Autonomic Systems, 2(4), pp. 35-52,

2011 .

Submitted

X. H. Wang, and H. Zhang, "Development and Implementation of a Decentralized

Download Method for Updating Firmware on Wireless Devices", EURASIP Journal on

Wireless Communications and Networking.

X IV

1. Introduction

1.1 Overview

Nowadays, multiple standards have co-existed in the world mobile communication

environment and mobile wireless technology has gained tremendous popularity due to

its ability to provide ubiquitous information access to users on the move [1][2].

Consequently, the demands for more functionalities and higher intelligence of the

mobile devices are on the rise. Traditional radio devices are primarily based on

hardware, which enables the devices to be modified through physical intervention. With

the requirement of the versatile functionalities, this significantly leads to higher cost and

reduces the flexibility of the devices [3].

The emergence of software defined radio (SDR) technology has significantly changed

the situation. The physical layer functions of a SDR device are software defined. It

means that the operation or behaviour o f the device can be changed only by changing

the software [4]. This provides a chance to implement the multi-mode, multi-band or

multi-functional functionality by upgrading software. In addition, the upgrade o f SDR

device can be achieved by downloading software to realize a series o f functionalities,

such as fixing bugs, offering new services, changing air interface, etc.

Although the download and upgrade of software for SDR devices can be realized,by

several methods, over the air (OTA) software upgrade shows more advantages than

others in the long run [5]. Today, OTA upgrade of software is not restricted to

application software any more. With the development of firmware over the air (FOTA)

technology, firmware can also be updated by OTA method. Actually, FOTA technology

conspicuously improves the development o f the technologies for upgrading SDR

devices. Nowadays, open mobile alliance device management (OMA DM) standard has

become a universal standard for FOTA, especially the FOTA update specified by

FUMO [6]. Therefore, it is also adopted for the firmware upgrade o f SDR based

l

devices.

However, the OMA DM protocol and the FUMO defined by OMA DM Standard for

firmware upgrade only provide a common specification to satisfy most of the mobile

devices. They do not consider the specified design of management object and

management operations which are directly related to the firmware upgrade operation.

Moreover, the firmware download method applied by FUMO is limited in specific

circumstances. At present, the traditional client/server architecture used for software

download is the well-known means of distributing software, which is also applied by

OMA DM standard. Therefore, the server is the only device that can provide firmware

to mobile devices for update. Although this centralized download method is the most

traditional way to download firmware, it can hardly carry out the firmware download

for a large number o f mobile devices in a limited timeframe only with a few central

servers. Thus, when there are lots of devices in a specific area, such as sensors in a

wireless sensor network, waiting for software download at the same time, the traditional

method exposes its limitations.

Accordingly, the research on the firmware upgrade of SDR devices based on the FOTA

technology and the OMA DM Standard is o f great significance. In this thesis, we

proposed the MMU framework to solve the above problems.

1.2 Contributions

In this thesis, a framework named MMU is proposed, which is designed and

implemented for updating the modulation module OTA on the mobile device based on

OMA DM. The detailed contributions are organized as follows.

• The logical design of MMU is presented in this thesis. We elaborate the overall

design of MMU in Chapter 3, including the design of management architecture, the

management object and the management operations. Although the design of MMU

2

is based on the basic framework provided by OMA DM standard, the logical

structure and the operation mechanism is significantly improved in MMU.

Compared with the original framework o f OMA DM standard, the download

operation is optimized by the download mechanism we designed, which is an OTA

software download mechanism combining the centralized download method and

the decentralized download method for different circumstances. This download

mechanism is more efficient than the regular download mechanism provided by

FUMO, especially when there are a lot of mobile devices waiting for the firmware

to be updated. Besides, the FUMO protocol only defines the logical flow of

firmware update, which does not specify the specific operations or the detailed

message exchange flow between the server and clients. Therefore, in the design of

MMU, the management operations o f modulation module upgrade are exclusively

extended and designed in detail. The firmware upgrade operations we proposed are

divided into three phases, which are initialization phase, download phase and

update phase, and each phase is designed in detail. In addition, the nodes for the

management object of modulation module are also designed in detail, including the

type, format, name, size, as well as the Access Control List (ACL) property o f each

node.

• MMU is implemented in this thesis. The detailed implementation of MMU is

elaborated in Chapter 4 from a coding point of view. MMU is implemented by

three parts which are the DM Server side, Agents in mobile devices and the CIC.

The DM Server is implemented by the traditional five layer structure which

includes User Interaction Layer, DM Protocol Layer, SyncML Representation

Layer, Transport Layer, and Network Layer. However, we have implemented the

DM Protocol Layer and SyncML Representation Layer in a more flexible way. The

implementation of these layers in MMU is based on relatively independent classes

which can be seen as the different components in these layers. These components

realized by different classes are respectively related to the operation commands or

the elements in syncML Messages, which can be combined into different operations

3

or different syncML messages based on different requirements. Besides, the

detailed implementation of the clients in mobile devices is also realized, including

DM Tree, DM Agent, FUMO Agent, and DL Agent. The implementation of these

client agents are also component based. Each part can be seen as a component in

the mobile device, which is relatively independent to each other. Each component

provides interfaces to other components and invokes the interfaces provided by

other components to realize the communications between different components.

The change o f each component will have less influence on the other components,

and new functionalities can be added by adding new component. This

implementation method to design MMU is more effective than traditional

implementation method and makes the framework more flexible. Moreover, the

implementation of CIC is achieved as well. CIC provides the control functions for

the decentralized download method we proposed. As we mentioned in the last

section, the traditional download method is deficient in some situations. CIC we

proposed plays a vital role to solve this problem.

• The server side and the client side of the framework as well as the CIC are

simulated to test and verify the framework proposed, and the test and verification

results show the feasibility and accuracy o f MMU.

1.3 Outline

The rest of the thesis is organized as follows: Background of SDR, FOTA, and OMA

DM standard is presented in Chapter 2. The detailed logical design of MMU framework

is elaborated in Chapter 3. The implementation o f MMU framework is presented in

Chapter 4. In Chapter 5, the test and verification results are presented. Finally, the

conclusion and future works are presented in Chapter 6.

4

2. Background

2.1 Software Defined Radio

2.1.1 Introduction of SDR

Multiple standards have become a common phenomenon in today’s mobile device

networking environment. Many mobile communication standards co-exist in the world

mobile communication environment [7], such as GSM, IEEE 802.11 standards for

WLAN, as well as the 3G mobile technology standards, etc. Furthermore, the

next-generation mobile standards are on their way.

Table 2.1 presents the features o f several existing standards. Moreover, different

standards are employed in different regions or countries. Take 3G mobile technology

standards as an example, UMTS system is primarily used in Europe, Japan, and China

with different radio interfaces while CDMA2000 system is applied in North America

and South Korea [8].

The diversity o f the mobile technology standards makes an increasing requirement on

the versatility of mobile devices. Traditional radio devices are primarily based on

hardware. It means these devices can only be modified through physical intervention,

which significantly reduces the flexibility o f the devices and leads to high cost. For

years experts had been looking for an effective way to solve this problem. An ideal

scenario is that the mobile device is able to download the software to realize the

fully-functional, multi-band, multi-mode functionality and overcome the global roaming

limitations imposed by today’s multiple air interface standards [9]. The types of the

software that can be downloaded and updated could not be restricted to application

software and more functionality could be offered to mobile devices by software. Then,

the term of “SDR” was proposed.

The SDR Forum, working in collaboration with the IEEE PI900.1 group, has worked to

5

establish a definition of SDR [10]. The definition of SDR is as follow:

Radio in which some or all of the physical layer functions are software defined [11].

Table 2.1 Mobile Communication Standards

Specification

Uttra-
widebanc 802.11 a /b /g 802.11 n

W ireless
B roadband
(WiBro)

3GLTE
(cellular
WAN)

Digital Video
Broadcasting-
Handheld

Digital Video
Broadcasting
-■terrestrial

Application
High-speed
local
interconnect,
wireless
USB

Medium-speed
LAN

High-speed
LAN

Mobile
wireless
access

Mobile
data/voice

Mobile TV Mobile TV

Range 10 m 80 m 50-150m 1-5 km 1+km ----- -----
Rate 4B0 Mbps 11 Mbps (b),

54 Mbps (a/g)
100-600 Mbps 3-50 Mbps

(downlink)
100 Mbps
(downlink)

384 Kbps 7 Mbps

Frequency 3.1-10.6
GHz

2.45/5.8
GHz

2.45/5.8
GHz

2-6/2,
3 GHz

1.25/2.2/5/10/20
GHz

0.8 MHZ,
1.6 GHz

0.8 MHZ,
1.6 GHz

Modulation Orthogonal
frequency
division
multiplexing

Direct-sequence
spread spectrum,
orthogonal
frequency division
multiplexing

Orthogonal
frequency
division
multiplexing

Orthogonal
frequency
division
multiplexing

Orthogonal
frequency
division
multiplexing,
etc

Orthogonal
frequency
division
multiplexing

Orthogonal
frequency
division
multiplexing,
coded
orthogonal
frequency
division
multiplexing

Traditional radio devices can only be modified through physical intervention. By

contrast, SDR technology provides an efficient solution to these problems. An SDR

device can change transmitter and receiver characteristics such as modulation type,

radiated power, wideband and narrowband operations, and air interfaces only by

changing software [4]. This technology provides a chance to implement the multi-mode,

multi-band or multi-functional functionality by only upgrading the software.

A series of hardware and software are defined by SDR, where physical layer processing

is implemented through modifiable software or firmware operating on programmable

processing technologies [12] [13]. There are many kinds o f these devices, including

FPGA, DSP, GPP, SoC or other application specific programmable processors.

2.1.2 Reconfiguration of SDR

The reconfiguration of SDR based devices refers to the operation of software download

that is for transferring the reconfiguration data into the devices. The data needs to have

6

the capability to change the operation or behaviour of the SDR device. The type of the

reconfiguration data is as follows [14]:

• A piece of software, such as DSP algorithm, operating system device driver,

application software, etc.

• Parameters, such as DSP processing parameters, etc.

• An FPGA configuration bitstream.

• Parameter values for parameterized ASICs.

The reconfiguration of the device could be at any layer of mobile devices from the

application to hardware. The download and update operations may be applied to a series

of software including application software, system software, radio software, etc. By the

support of the hardware and software architecture provided by SDR device [15] [16], the

reconfiguration operation can realize a series o f functionalities, such as fixing bugs,

offering new services, changing air interface, etc. Figure 2.1 shows the reconfiguration

feature of SDR devices.

7

R e g u l a t i o n

Application Software

Operating System
Software

Hardware

t
Download

Bug fixes

* Upgrades

—»New services

1 Air interface

"*■ S oftw are M od u le

game, code,...

C onfiguration data
for an FPGA

-> O peration p aram eters

f ilte r co e ff...

Figure 2.1 Reconfiguration Feature o f SDR Devices

2.1.3 Development of SDR

SDR technologies as an effective way to solve the existing problem s o f current m obile

devices have been significantly developed. The adoption o f SDR technologies has

spread to various fields. A survey by SDR Forum shows the m arket segm entation o f

SDR in Figure 2.2 [17], which presents the application o f SDR technologies in different

dom ains, such as in military, civilian and com m ercial domains.

Cellular
WLAN/
WiMAX

Telematics
Aviation/
Avionics

Public
Sector

Military

— P o rta b le Term inals

In fra s tru c tu re

— WCDMA
— GSM/GPRS

/EDGE

— CDM A2000

— O th e r

— S m art P hones
— F e a tu re P h o n es

— Basic P h o n es
— L aptop C ards

-— E q u ip m en t

— P o rtab le
— M obile

— In fra s tru c tu re

— Public Safety

— Police
— Fire

— EMS
— ITS

H o m elan d Security

— S ervices

E q u ip m en t

— NIC C ards
— E m b ed d ed

— A ccess P o in ts

•— C o n su m er
— E n te rp rise

— C om m erc ia l

SDR Market Segm enta tion

— H an d h e ld

— AMF
— M aritim e/F ix ed

S ta tio n

G ro u n d /R o ta ry
W ing

— E m ergency

— N aviga tion
— GPS

— R o u te G u id an ce
— A irb o rn e

Sm all fo rm Factor — E n te r ta in m e n t/

— H an d h eld S a te llite R adio

— M an p ack

— G ro u n d Vehicle
— R otary W ing

— In-Vehicle Services

— C ellu lar/V oice
— D a ta /W e b
— Travel

1— A irborne

— Air G round/A TC /
A irlin e /e tc .

— N avigation/G P S

— In Air P assen g er
Services

— E n te rta in m e n t

— Cellular

— W eb

— G ro u n d In fra s tru c tu re

— S ecurity

Figure 2.2 SDR Market segmentation

The reconfiguration feature provided by SDR technologies is one o f the key reasons that

m akes it developed rapidly in the past few years. The research on SDR technologies is

still on its way. The softw are upgrade on SDR based devices as a key point o f the SDR

has been im proved by the evolution o f the hardw are technology. The developm ent o f

the perform ance o f hardw are such as DSP and FPGA improves the hardw are conditions

for the dynam ic reconfiguration o f SDR devices [18][19].

2.1.4 Summary

This section introduces the generation and developm ent o f SDR technology and the

reconfiguration feature o f SDR devices. Actually, in this thesis, our research focuses on

the software upgrade on m obile devices, which lays particular em phasis on the

m anagem ent and realization o f the softw are download and update betw een server side

and m obile devices. Although our research is not directly related to the lower layer

developm ent o f SDR system, note that the reconfigurable feature provided by SDR

technology is the precondition o f our research.

9

2.2 Firmware Over-the-air Upgrade

2.2.1 Firmware Upgrade Technology

The reconfiguration of the SDR based mobile devices related to the lower layer

software is usually related to firmware. In electronic systems and computing, firmware

is a term often used to denote the fixed, usually rather small, programs and/or data

structures that internally control various electronic devices. Actually, the boundary

between firmware and software is not quite strict [25]. As we all know, the upgrade of

firmware especially the radio software in SDR devices can realize the multi-mode, even

multi-functional functionalities. Not only that, it can also supply mobile device with

additional capabilities as well as fix software bugs or deficiencies of the software in

devices. All o f these functionalities lead to two vital points of the reconfiguration,

firmware download and update.

With the development of the mobile communication technologies, the methods of the

software download to mobile devices have significantly improved and become various.

The OTA software download technology has been applied from the initial application

software download to the firmware download [5][21]. Today, FOTA technology has

been widely used due to its advantages. Table 2 show the comparison between FOTA

and the other two download methods [22].

10

Table 2.2 Comparison o f Different Download Methods

Firmware OTA Firmware (cabled) Point-of-sale

Use
cases

Batch updates of
critical bug fixes,
Push new features
& functionalities

End-user
maintenance,
Large delta upgrades

Rectify known issues,
Just-in-time updating
of handsets via kiosk or
through manufacturer
update site

Applicable
to

Most suited to
operators who can
integrate OTA within
existing support
environments. Also
used by
manufactures but
end-user must bear
airtime cost

Large mobile device
manufactures who
bundle necessary
cable-ware with
device.

All

Pros Anytime, anywhere Fast and low cost Fast, low cost.
Process can be
removed from end-
user if required

Cons
Impact on user
experience

Requires necessary
cable and Internet
access

Consumes "sales
person's" time

Standards OMA, proprietary Proprietary OMA, proprietary,
etc

The three methods for firmware download in Table 2.2 have their own advantages for

different requirements. The obvious advantage of FOTA is that firmware in mobile

devices can be updated wirelessly, anywhere, and any time. The FOTA technology

allows the creation of the smallest possible firmware updates, which are then highly

compressed and transmitted over-the-air to mobile devices, and then decompressed and

applied on the device firmware [23]. This technology has been seen as the most

cost-effective solution to update the firmware for those devices which are already in use.

In recent years, the adoption of FOTA technology in handsets has increased rapidly. A

survey by Wireless Informatics Forum presents the growth of the FOTA handsets [24],

which is shown in Figure 2.3. As for the multi-mode, multi-band functionalities of SDR

devices which may require the firmware upgrade anytime, anywhere, the function

provided by FOTA technology is exactly what they need.

□ FOTA handsets shipped as % of all
shipments

Percentage 40

2006 2007 2008 2009 2010 2011

Figure 2.3 Growth o f FOTA Handsets

2.2.2 Firmware Over-the-air

FOTA technology allows the firmware to be updated over-the-air, which benefits a lot

o f groups, such as the manufacturers, operators as well as the end users [25]. Therefore,

the firmware update packages need to be downloaded to the mobile device to achieve

the update for different functions. Figure 2.4 shows a general architecture o f the FOTA

update.

U p d a te
Package

Update Package Generator

F irm w a re Version 1 DM Server

F irm w a re Version 2

FOTA A g e n t Mobile Device

O p e r a t in g S y s te m

H a rd w a re

Figure 2.4 General architecture o f the FOTA

12

A general implementation of FOTA mainly contains three parts [26], which are the

update package generator, DM Server, the agents in mobile devices.

The Update Package Generator is for generating the update package. As we know, the

download of firmware is to download the updating programs or parameters which are

used for the update process. These programs or parameters are usually provided by the

manufactories o f service providers. For some kinds of firmware, the update package for

download is actually not the programs o f the intended target version. It is a package

generated by specific algorithm, which is comprised of a set of data instructions for

transforming the software image form the source version to the intended target version

[23].

DM Server is the device management server used to send update packages to mobile

devices and manage the FOTA download and update operations. OMA DM standard

has been considered as the most widely applied standard for FOTA. This will be

introduced in later sections.

Agents in mobile devices are the clients responsible for realizing the firmware

download and update operations in mobile devices. DM Agent is responsible for

managing the communications and the exchange of management messages between the

devices and DM Server. FOTA Agent is for managing the operations of download and

update of firmware and processing the downloaded packages. Generally, the FOTA

download and update procedure is as follows. First, the Update Package Generator

creates the update packages. Then, the update package is downloaded to the mobile

devices from DM Server under the management of DM Server. After that, the

downloaded update package is processed by FOTA Agent to achieve the update

operation.

13

2.2.3 Research on FOTA of SDR Devices

The research on FOTA has been for a long time and the adoption of FOTA technology

in mobile devices has increased rapidly. The adoption of FOTA technology in SDR has

developed for years as well. Downloading firmware packages to mobile devices to

realize the multi-functionalities is one o f the major applications of FOTA technology

for SDR based devices. SDR Forum proposed a firmware OTA download flow which is

shown in Figure 2.5.

(^ ^ e tw o r k ^ SDR Device

Download Request
---=»

Accept

Network Operator Authentication

Device Authentication

Capability Request

*—

Capability Information

_ Check if capable

Download Session Opening

Download Installation Parameters

Data Transfer

Check for Errors

Back up Old Version

Install New Module

Functional Test

Test Result

Success-Download Session Closing

Figure 2.5 Firmware Over-the-air Download Flow

14

Figure 2.5 shows a download operation procedure initiated by the network. The

procedure includes the following steps:

1. Initiation.

2. Authentication: to identify the authentication of both sides of communication to

guarantee the identity legitimacy.

3. Capability exchange: to check if the device is capable o f downloading update

packages.

4. Data transfer: to download the data to mobile devices and check errors.

5. Installation and Test: to process the downloaded data, install the update, and verify

correct functionality.

6. Closing.

The procedure of download operation proposed by SDR forum specifies the flow to

realize the FOTA download operation for SDR based devices. Base on the flow, there

has been a series o f further research on FOTA download and update.

In [27], a framework Smart Box Management (SBM) was proposed. It is an end-to-end

remote management framework for Internet enabled device. The SBM server provides

the basic set o f services to the SBM clients over the Internet, such as remote activation,

remote configuration, dynamic updates (downloads), and device diagnostic uploads,

based on a set of protocols like device registration protocol, configuration protocol,

upload protocol, and download protocol. SBM realizes these management functions by

using their own protocols defined for the system which limits the generality o f the

system. The specified protocols can hardly be widely used for other systems.

In [28] the authors presented the work on a demonstration platform for a SDR

proof-of-concept and how OMA DM protocol and Functional Description Language

15

can be used to support RAT reconfiguration on SDR terminals. This paper introduced

the OMA DM standard to SDR firmware over-the-air download.

As we know, the firmware upgrade o f SDR device applies the FOTA technology.

Nowadays, FOTA has been supported by the Mobile Device Management technologies

which are standardized by the OMA. The FUMO protocol in OMA DM Standard has

been the most widely used protocol for FOTA technologies. Today, the OMA DM

Standard is applied for the firmware download as well.

2.2.4 Summary

In this session, we compare the current firmware upgrade technologies and explain the

advantages of firmware over-the-air upgrade for SDR devices. We also analyse former

researches which have been done for the FOTA upgrade of SDR devices. Today, FOTA

technology has been adopted by the upgrade of SDR devices. Therefore, OMA DM

standard applied by FOTA has also been considered as the standard for SDR devices. In

next section, we will introduce the OMA DM Standard and explain how it works as the

foundation of our research.

2.3OMA Device Management

2.3.1 Open Mobile Alliance

Open Mobile Alliance is founded in 2002, which was formed by WAP Forum and Open

Mobile Architecture [29], Later, a number of organizations that committed to promote

the standardization of mobile business. For example, Location Interoperability Forum

(LIF), SyncML Forum, MMS Interoperability Group (MMS-IOP), and Wireless Village,

have joined the OMA. At present, there are more than 400 members o f OMA, including

mobile operators, equipment suppliers, and software provider, etc. The aim of OMA is

to establish a uniform and global industry standard for mobile services.

16

So far, OMA has developed a series o f uniform standards, most of which have been

widely deployed, such as OMA Multimedia Messaging Service, OMA Download over

the air, OMA Management, etc.

2.3.2 Device Management Standard

The earliest standard for mobile device management was made by SyncML Forum,

which is syncML Device Management V I. 1.1. This standard supports the functions of

parameters configuration management, device firmware update and device data

collection. Afterwards, SyncML joined OMA. In 2003, OMA released the OMA

Device Management VI. 1.2 based on the syncML Device Management standard, which

is known as the OMA DM VI. 1.2. At present, the standard version of OMA device

management standard is OMA DM VI .2 .

The definition of Device Management (DM) given by OMA means the third party can

configure or update the mobile devices instead of terminal users. The third party is the

organizations who have the permission to manage the mobile devices as well as

terminal users. Based on device management standard, third party can remotely run

various management operations of mobile devices, such as configuration, fault monitor

and diagnosis, software or firmware update, etc [30][31].

In fact, OMA DM includes a series o f protocols to realize the various functions of

device management. OMA DM standard provides a framework, which provides the

basic functions for mobile device management, such as the flow o f the management

sessions and the format of the management messages [32]. Then, based on the basic

framework, other functions can be added to it by other protocols, such as FUMO

protocol, DiagMon protocol for mobile device diagnosis and monitor, etc.

17

2.3.3 Device Management Mechanism

2.3.3.1 DM Tree

To ensure the generality, Management Object (MO) is defined by OMA DM standard

[33]. The management o f the mobile device can be achieved by managing the

management objects. The benefit o f the definition of management object is that the

generality o f the protocol could not be impacted by the difference of the formats or

actions of the objects. There is a tree structure of these management objects, which is

known as DM Tree [34]. Each device supporting OMA DM Standard has a DM Tree.

Each node in a DM Tree has a unique Uniform Resource Identifier (URI) [35]. The

structure of DM Tree is shown in Figure 2.6.

The Root

SyncML Devicelnfo DaigMon

DMAcc
MonG

PS
Monlnfo

xyzlnc MyMgm Server

Figure 2.6 Structure o f a DM Tree

OMA DM protocol defines a series of management commands which can be used for

the operations on tree nodes. Some of the tree nodes could represent the information of

the software or firmware on mobile devices. Nodes are divided into interior node and

leaf node. An interior node can have child nodes but a leaf node can not. OMA DM

protocol defines that an interior node can be expanded by management commands.

Besides, each node has a series o f properties which are used to define the specified

features of it. The basic properties o f nodes are shown in Table 2.3 [36].

18

Table 2.3 DM Tree Properties

Property Name Requirement Usage

ACL Must Access Control List

Format Must Data format of the current node

value

Name Must Name of the node

Size Must Current size of the node value

Title May A string that provides the

information about the node

TStamp May The time of the last change in

value of the node

Type May The type of the data in

programming languages

2.3.3.2 Package and Message

OMA DM protocol requires that the management operations should be sent through

syncML packages [37]. When one syncML package is too large to be sent at a time, it

can be divided into several syncML messages. The way of the communication between

server and mobile devices is request/response. Due to the limited resource of mobile

devices, server is not allowed to send a new message to mobile device before the former

one has been successfully processed. The procedure of message exchange is shown in

Figure 2.7.

19

-- - s
DM Client DM Server

Pkg # 1: Alert 1201, Replace (Devlnfo), Final

Pkg #2: Status on SyncHdr, Alert and Replace, Commands, Final
✓

Pkg #3 (1/2): Status on SyncHdr and commands, Results

Pkg #4 (1/3): Status on SyncHdr, Alert 1222

Pkg #3 (2/2): Status on SyncHdr and Alert, Result, Finaj
. . . x

Pkg #4 (2/3): Status on SyncHdr, Command containing Large
Object

Pkg #3 (1/2): Status on SyncHdr and commands. Alert 1222

Pkg #4 (3/3): Status on SyncHdr and Alert, rest o f Large Object,
Final

Pkg #3 (2/2): Status on SyncHdr and command, Results, Final
ŝ,

Pkg #4: Status on SyncHdr, commands, Final

Pkg #3: Status on SyncHdr and commands, Results, Final

Pkg #: Status on SyncHdr, Final

Figure 2.7 Exchange o f Operation Message

2.3.3.3 Format of Message

The management operation between server and mobile device is based on messages.

SyncML Representation protocol specifies the format o f the syncML messages.

! 1. SyncML Message
t

| OMA DM protocol defines that the container of operation messages is SyncML. A

! syncML message is composed of two parts, SyncHdr and SyncBody [38]. SyncHdr is

used to record the basic information o f the message. SyncBody is used to record the

main content o f the management operation. Both SyncHdr and SyncBody contain a

series of elements. Figure 2.8 shows the basic structure of a syncML message. Figure

2.9 is a sample o f syncML message.

20

SyncML

SyncHdr

•verDTD ‘ target
• verProto • source
• sessionlD
• m sg lD

SyncBody

• commands []

Alert

cmdID
data

Replace

cindlD
items

Figure 2.8 Structure o f SyncM L

< SyncML xmlns«"SYNCML:SYNCML1.2">
- <SvncHdr>

< VerDTD > 1 . 2 < /VerD TD >
< VerProto > DM / 1 . 2 < /V e rProtc >
< S e ss io n lD > l < / S e s s i o n I D >
< M sg ID > 2 < /M sg ID >

- <Target>
< LocURI >XXXX</LocURI>

< A a r g e t >
- < S o u rce>

< LocURI > XXXXXX </LocURI >
< / Source >

< /SyncH dr>
- < S y n c 5 o d y >

- < Status >
<MsgRef> 2 < /M sg R ef>
< C m d I D > l< /C m d I D >
<Cmd> S y n c H d r < /C m d>
< Data > 2 1 2 < /D ata >

< /S ta tu s>
< -- xxxxxxx

- <R eplace>
<CmdID> 2 < /C m d I D >

- <M eta>
< Format xm lns = ' s y n c m l : m e t i n f > b 6 4 < /F o r m a t>
<Type vm lns = ’ s y n c m l r m e t i n f > a p p l ic a t io n /X X X X X X < /T y p e >

< /M eta>
- < I te m >

- <Target>
< LocURI > . / d a t a </LocURI>

< /T arg et>
- <D ata>

Ba£e64-coded XXX file
< /D a ta >

< /I tem >
< /R ep la ce>
< Final / >

< /S v n cB o d y>
</SyncML>

Figure 2.9 Sample o f SyncML Message

2. Operation Command

Operation command is the vital part for the operation management. Operation

commands are recorded in syncML message and sent to mobile devices to realize the

management operation. Table 2.4 shows some common commands in device

management.

Table 2.4 Common Commands in Device Management

Command Usage Position

Add Add nodes Contained in SyncBody

Delete Delete nodes Contained in SyncBody

Get Get value of node Contained in SyncBody

Replace Replace value of node Contained in SyncBody

Exec Execute the operation represented

by node
Contained in SyncBody

2.3.3.4 Operation Procedure

Generally, the operation procedure has two phases, Setup Phase and Management Phase

[39]. Setup Phase is to exchange the authentication information and device information

exchange. Management Phase is for the specified management operations, which can be

repeated several times. The Setup Phase and Management Phase are shown in Figure

2.10 and Figure 2.11 respectively.

22

D M C lien t D M S e rv e r

PkgO: alert from the server

P kgl:client initialization with client
credentials and device information

 >
Package 2 :server initialization with server
credentials, initial management operations
or user interaction commands from the
server

V
V

Figure 2.10 Setup Phase

DM Client

Package 3: client response to server
management operations
 >

Package 4: more user interaction and
management operations if the session is
continued

DM Server

| Figure 2.11 Management Phase
1
r

2.3.3.5 Security

For the data security consideration, the management sessions based on OMA DM

protocol are all encrypted. The security of data is very important because many

23

information are included in management messages. Therefore, rules have been made in

OMA DM protocol to ensure the security o f data in management messages.

Verification

Before the DM Server and mobile device start the management operations, verification

is necessary. The contents to be verified include:

1. Server ID, the unique identification of Server.

2. User Name, the unique identification of user.

3. Password, both the DM Server side and device side need to pass the password

verification before the management operation session starts.

4. Nonce, used for calculating the Hash value to prevent from attack.

Integrity

The integrity o f management message is realized by HMAC-MD5. The integrity

verification of message is not necessary. But when the device side or server side

requires for integrity verification, it could be realized by HMAC-MD5.

2.3.4 Firmware Update Management Object

FUMO is an OMA specification for updating the firmware of mobile devices

over-the-air, which allows mobile devices to be updated over-the-air using the

industry-standard protocol OMA DM. FUMO has been seen as the standard of firmware

upgrade for mobile devices [6]. In fact, this is a protocol for firmware update in mobile

devices based on the framework provided by Device Management protocol. Figure 2.12

shows the overall flow o f the management operation mechanism for firmware update

[40].

24

Vehicle
Terminal

I .Push Initiation

2.D evice Inform ation Exchange

3.R eplace Fw Pkg/D ow nload/PkgU R L

4 .Exec M gnit Tree O bject (for D ow nload)

5.Request U pdate Package

D ow nload Package

K.Final N otification using G eneric Alert

6.D ow nload N otification using G eneric Alert

7.Exec M gm t Tree O bject (for U pdate)

Download
Server

DM
Server

Figure 2.12 Flow o f Firmware Update

The detailed steps o f firmware update o f FUM O are as follows:

1. DM Server sends notification to the mobile device in order to make the device

connect to DM Server.

2. Mobile device connects to DM Server and starts the management session.

Meanwhile, the mobile device sends client credential and device information to DM

Server.

3. DM Server sends the URL information o f the firmware to be downloaded to mobile

device by using “Replace’' command.

4. DM Server asks the mobile device to execute the download operation by using

“Exec" command.

5. Mobile device starts to execute the download operation by using the appropriate

way in different circumstances.

6. When mobile device finishes the download operation, it sends a message to notify

DM Server that the download operation is finished by using “Generic Alert '1. Then

25

DM Server can start new management operations.

7. DM Server asks the mobile device to execute the update operation by using “Exec”

command.

8. When mobile device finishes the update operation, it sends a message to tell DM

Server that the update operation is finished by using “Generic Alert”. Then DM

Server can start new management operations.

2.3.5 Summary

In this session, we introduce the OMA DM standard and explain how it works as the

foundation of our research. As we introduced in this session, OMA DM standard for

firmware upgrade only provides a common framework to satisfy all kinds of firmware

and all kinds of mobile devices. However, as the vital factor, the specified design of

management object and management operations is not involved. In fact, the proper

design of management object and efficient design of management operations have a

huge impact on the firmware upgrade operations. Besides, as we mentioned in last

chapter, the download mechanism adopted by FUMO is the traditional centralized

download method which has the limitations in some circumstances. Therefore, in this

thesis, we research these problems and propose our solutions by developing a

decentralised download method and implementing the system using a component based

mechanism. This will be introduced in next chapter.

26

3. Design of Modulation Module Update

3.1 Introduction

OMA DM Standard includes a series of protocols in order to specify the implementation

of the functions for device management. The protocols of OMA DM Standard provide a

framework for device management, which specifies the basic rules of device

management, including the basic flows of the management session and the format of the

management messages, etc. Based on the basic framework provided, other management

functions can be added into the framework by other protocols in OMA DM Standard,

such as FUMO, DiagMon, etc. FUMO protocol for the firmware update in mobile

device has a lot o f advantages and has been constantly improved.

As we all know, modulation module plays a significant role in radio devices, which is

directly related to the operation or behavior of the radio device. As we mentioned in

earlier chapters, the SDR technology offers us a chance to realize multi-functionalities

based on its software defined feature on physical layer. Therefore, the reconfiguration of

modulation module is a key point for the realization of multi-mode, multi-band, even

multi-functionalities. Thus, in this thesis, the Modulation Module Upgrade (MMU)

framework is proposed for the OTA upgrade of modulation module based on OMA DM

standard.

This chapter presents the overall design of MMU, mainly including the design of

management architecture, the management object and the management operations. The

design of OTA software download mechanism for different circumstances is elaborated

as well in this chapter.

3.2Logical design of MMU

It is well known that the OMA DM standard plays a dominant role in mobile device

management and firmware upgrade. It is a widely used standard that has been adopted

27

by almost all kinds of mobile devices. Therefore, the adoption of this standard in our

framework can make the framework more universal and flexible. Although the design

of MMU is based on the basic framework provided by OMA DM standard, the logical

structure and the operation mechanism is significantly improved in MMU. Compared

with the original framework of OMA DM standard, the download operation is

optimized by the download mechanism we proposed, which is an OTA software

download mechanism combining the centralized download method and the

decentralized download method for different circumstances.

In this section, we introduce the logical design of the MMU. The specific design of

MMU is as followed.

3.2.1 Management Architecture

MMU is a framework for updating the modulation module based on OMA DM. It is an

improved framework based on the framework provided by OMA DM standard, and is

designed for dealing with different download situations. As we mentioned in earlier

chapters, the firmware download method applied by FUMO is limited in specific

circumstances, and an effective download mechanism is proposed to solve this problem.

The design of the MMU expands and optimizes the original framework of OMA DM

standard. The modules for realizing the download mechanism are well designed and

included in the MMU framework as well.

Figure 3.1 shows the management architecture o f MMU we proposed. The architecture

of MMU is mainly composed of five parts, which are DM Server, Content Server,

Central Information Controller (CIC), the Agents and DM Tree in mobile devices. DM

Server and DM Agent as well as DM Tree are used for achieving the basic functions

required by OMA DM standard. Content Server and CIC are responsible for centralized

download method and decentralized download method, respectively. The DL Agent and

FUMO Agent aim to achieve the download and update operation based on the download

mechanism and the management operation mechanism we proposed.

28

lo b i l e D e v ic e

FUMO
A gent

CIC Client

C e n tra l In fo rm a t io n C o n tro lle r

Database
Database

Figure 3.1 Management Architecture

DM Server: DM Server is the server-side implementation o f the OM A DM protocol.

Its task is to manage OM A DM compliant devices by using different management

operations, e.g., provisioning, configuration o f device, updating software, and fault

management [41].

Content Server: Content Server is to provide and manage the software packages and

multi-media contents for the software upgrades and bug fix o f the mobile device.

Content Server is mainly responsible for the centralized download method.

Mobile Devices: The device to be managed is composed o f hardware components,

software modules for managing the hardware components, and device management

agent that performs software updates/management and firmware updates by connecting

to the OMA DM server [42].

Device Management Tree (DMT): Each device that supports OM A DM contains a

Management Tree. The M anagement Tree organizes all available management objects

in the device in a hierarchical tree structure where all nodes can be uniquely addressed

with a URL DM Server realizes the management actions by manipulating the nodes in a

device management tree [43].

DM Agent: DM Agent is a software component that resides in the mobile device. It is

29

used to process the messages received from the DM Server, including parsing messages

from DM Server, interpreting OMA DM commands, and executing relevant actions in

the device. In addition, the DM agent can also generate relevant responses and send

them back to the DM Server [44].

FUMO Agent: FUMO Agent coexists with the DM Agent and DL Agent to provide

firmware downloading and updating functions on the managed device. Generally,

FUMO Agent and other special purpose agents can coexist to provide additional

functions on a managed device [45] [46].

DL Agent: DL Agent is a developed module proposed in this thesis. DL Agent

coexisting with the DM Agent and FUMO Agent aims to manage the download

operation in mobile devices by intellectively choosing the appropriate way to execute

software download in different circumstances. The CIC Client included in this agent is used

for communicating with CIC to realize the decentralized download operation.

CIC: CIC is the module proposed in this thesis to enable decentralized download and

update operations. It is used for providing available software for mobile devices and

managing the software download between mobile devices in the specified area.

The design of the logical operation flow of MMU is shown in Figure 3.2. The detailed

steps o f the flow are as follows:

• User who has the permission can log in the DM Server and set the management

operation to manage the mobile devices.

• DM Server notifies the mobile device to start the software download operation.

• Mobile device can cancel the download operation by sending related message back

to DM Server.

• If download operation is confirmed, mobile device will set the download

30

information. It will choose the appropriate download method and execute the

download operation. Then, the mobile device will send the operation result back to

DM Server.

• DM Server notifies the mobile device to start the software update operation.

• Mobile device can cancel the update operation by sending related message back to

DM Server.

• If update operation confirmed, mobile device will execute the update operation and

send the operation result back to DM Server.

• Management session closed.

31

DM
Server

Mobile
DeviceUser

l.Log In

2.Set Management
Operation

3. Software Download— ►
Request

Cancel Download Operatio i
4. Download

Cancelled

S.Send message,
can cel d ow nload

Confirm Download Operation

7. Return Confirmation
Information

— 8.Set Download
Information 9.Software

Download

10.DownIoad Success,

11.Software Update
Request

Cancel Update Operation
late Cancel

13.Send Cancel InfoTnra ion

Confirm Update Operation

Confi rmed

16. Update Success

17.Complete

Figure 3.2 Flow o f Management Operations

3.2.2 Management Object

Virtual tree structure built with the management objects is used for efficient device

management. Through the DM Agent, DM Server may access individual node of the

32

| virtual management tree, or, by accessing the parent node, it may reach all its child
I
I nodes [47][48]. Each firmware or software to be managed in a mobile device

corresponds to a management object. The management object related to a certain

[firm ware/soft ware has a series of tree nodes, which contains the property information
I

! and the operation information of the firmware/software [40]. In this session, we define
I[

the firmware update management objects in the device management tree for the update

of the modulation module based on FUMO.

Figure 3.3 shows the structure o f the management object for the modulation module,

which shows how the management object of the modulation module is defined,

including its format, Access Control List (ACL) and Scope, and how they relate to other

nodes. The management object is an extension of the DM Tree in the mobile device.

Every managed software or firmware needs to be related to a management object in the

DM Tree like this structure. DM Server performs the management operations through

operating the nodes in the DM Tree.

33

PkgName
Format: Chi
ACL: Get
Scope: dynamic

Pkg Version
Format: Clir
ACL: Get
Scope: dynamic

Download
Format: Node
ACL: Exec
Scope: dynamic

Update PkgData
Fonnat: Node
ACL: Exec
Scope: dynamic

Format: Bin
ACL: Replace
Scope: dynamic

DownloadAndUpdate PkgURL
Format: Node
ACL: Exec
Scope: dynamic

Fonnat: chr
ACL: Get,Replace
Scope: dynamic ,

State
Fonnat: Node
ACL: Get
Scope: dynamic

Fonnat: chi
ACL: Get,Replace
Scope: dynamic

Foimat: Node
ACL: Get
Scope: dynamic

MdPkg
Foimat: Node
ACL: Get
Scope: peimanent

PkgURL

Figure 3.3 Structure of MO for Modulation Module

1. Fwlnfo is an interior node we designed to expand the" root node, acting as the

entrance of the firmware management object.

Path: ./Fwlnfo

ACL: Get, Scope: dynamic, Format: node.

2. MdPkg is an interior node acting as a placeholder for the modulation module’s

unique identifier. It stands for a software or firmware that can be managed by DM

Server. Through accessing the children nodes of MdPkg, DM Server can realize a

series of management operations on the mobile device.

Path: ./FwInfo/MdPkg

ACL: Get, Scope: dynamic, Format: node

3. PkgName is a leaf node that specifies the name associated with the modulation

module. By using certain operation commands, DM Server can get the name

34

information of the modulation module.'

Path: ,/FwInfo/MdPkg/PkgName

ACL: Get, Scope: dynamic, Format: chr

4. PkgVersion is a leaf node that specifies the version information associated with the

modulation module. By using certain operation commands, DM Server can get the

version information o f the modulation module.

Path: ./FwInfo/MdPkg/ PkgVersion

ACL: Get, Scope: dynamic, Format: chr

5. Download is an interior node, which acts as the target o f the “Exec” command. DM

Server operates the node to perform the initialization of the modulation module

download.

Path: ./FwInfo/MdPkg/ Download

ACL: Exec, Scope: dynamic, Format: node

6. PkgURL is a leaf node specifying the URL where the modulation module is

located. In MMU, this node is used to record the address o f the software to be

downloaded when centralized method is applied. By using certain operation

commands, DM Server can get or set the URL information of the modulation

module.

Path: ./FwInfo/MdPkg/ Download / PkgURL

ACL: Get, Replace, Scope: dynamic, Format: chr

7. Update Update is an interior node, which acts as the target o f the “Exec” command.

DM Server operates the node to perform the update operation of the modulation

module to the mobile device.

Path: ./FwInfo/MdPkg/ Update

ACL: Exec, Scope: dynamic, Format: node

8. PkgData is a leaf node acting as the target of a ‘Replace’ command when DM

Server is used to directly provide the binary firmware update module.

Path: ./FwInfo/MdPkg/ Update / PkgData

ACL: Replace, Scope: dynamic, Format: Bin

9. DownloadAndUpdate is an interior node and the target of an ‘Exec’ command.

35

The update takes place as soon as the download finishes.

Path: ./FwInfo/MdPkg/ DownloadAndUpdate

ACL: Exec, Scope: dynamic, Format: node

10. PkgURL is a leaf node specifying the URL where the modulation module package

to be downloaded locates. This node is used to record the address of the software to

be downloaded when centralized method is applied as well. By using certain

operation commands, DM Server can get or set the URL information of the

modulation module.

Path: ./FwInfo/MdPkg/ DownloadAndUpdate / PkgURL

ACL: Get, Replace, Scope: dynamic, Format: chr

11. State is a leaf node that contains a value indicating the current state of the update of

the modulation module. By using certain operation commands, DM Server can get

the state information of the modulation module.

Path: ./FwInfo/MdPkg/ State

ACL: Get, Scope: dynamic, Format: node

3.3.3 Management Operation Mechanism

In order to realize the function of firmware update in mobile device, we designed the

management operation mechanism for firmware update based on OMA DM and FUMO

protocols.

Actually, the FUMO protocol only defines the logical flow o f firmware update, which

does not specify the specific operations or the detailed message exchange flow between

the server and clients. Therefore, in this section, the management operations of

modulation module upgrade are exclusively extended and designed in detail. The

firmware upgrade mechanism we proposed are divided into three phase which are

initialization phase, download phase and update phase. The three phases in this thesis

are relatively independent. But the download phase and update phase are based on the

phase before them. However, as long as the phases before them have been completed,

3 6

these two phases can be executed at any time. For example, the download phase can be

executed right after the initialization phase or later. This kind of design makes the

management operation to be more flexible. If any error happens to one phase, it just

needs to re-execute this phase rather than the entire upgrade operation. The detailed

design of each phases are as follow.

3.3.3.1 Initialization Phase

Initialization Phase is a phase to deploy the firmware information in the DM Tree. This

phase needs to be executed only once. Once the related information exists in DM Tree,

this phase can be skipped. The aim of initialization phase is to add a series of nodes

related to the management object of modulation module to the DM Tree. DM Server

can realize the management operation, such as the download operation and the update

operation, by accessing these nodes.

At the beginning of the initialization phase, the server sends the Notification to the

client to make the client connect to the server. After the client receives the notification

message, it sends the initialization message with the device information back to the

server to allow the server to identify the device. When all these identifications are

completed, the server executes management operation for the initialization of the

modulation module update. First, the DM Server sends operation message with “Add”

command to create Fwlnfo as the entrance of the firmware management object. Then,

the rest nodes related to the update management object are added by the “Add”

commands within the next package. In the framework we proposed, the commands of

adding the management objects are all in one operation message rather than the

respective messages for higher efficiency [49], Figure 3.4 shows the details of the

initialization phase.

37

DM Client DM Server

1 .Pkg #0 Notification

2.Pkg #1 Alert(1200) Local URI: device information
3.Pkg #2 ADD
Target LocURI: ./ Fwlnfo
4.Pkg #3 Statn^ 00)
5.Pkg #4 ADD
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI
Target LocURI

./ Fwlnfo

./FwInfo/MdPkg
./FwInfo/MdPkg/ PkgName
./FwInfo/MdPkg/PkgVersion
./FwInfo/MdPkg/Download
./FwInfo/MdPkg/Download/PkgURL
./FwInfo/MdPkg/Update
./FwInfo/MdPkg/Update/PkgData
./FwInfo/MdPkg/ DownloadAndUpdate
./FwInfo/MdPkg/ Do'wnloadAndUpdate/PkgURL
./FwInfo/MdPkg/ State___________________

6.Pkg#3 Statu(200)

7.Pkg #4 Final

Figure 3.4 Initialization Phase

The detailed steps of the Initialization Phase are as follows:

1. DM Server sends notification to the mobile device in order to make the device

connect to DM Server.

2. Mobile device connects to DM Server and starts the management session.

Meanwhile, the mobile device sends client credential and device information to DM

Server.

3. DM Server adds the entrance node “Fwlnfo” to the mobile device by using “Add”

command. The entrance node needs to be added only once. After it is added to the

DM Tree, other related nodes can be added to this node.

4. After the entrance node has been added successfully, the mobile device sends

messages back to DM Server with the state information “200”.

5. After DM Server receives the message with the success information, it starts to add

other nodes to the mobile device.

38

6. After all o f the nodes have been added successfully, the mobile device sends

messages back to DM Server with the state information “200” which means the

operation has been successfully completed.

7. After DM Server receives the message with the success information, it can start

new management operations or terminate the current session.

3.3.3.2 Download Phase

Download Phase is a phase to realize the download operation by using proper

management commands. The download phase can be activated right after the

initialization phase or later. The precondition of download phase is that the management

object of the firmware to be managed has already been existing in DM Tree.

The download of the modulation module phase is mainly based on Download node and

the PkgURL node. By handling these two nodes, DM Server realizes the control of the

download operation. Server sends operation message with “Replace” command to

operate the ./Download/PkgURL for specifying the download descriptor of the

modulation module. After that, the download procedure is started by the message

received from the server with “Exec” command on Download node. Figure 3.5 shows

the details of the download phase.

39

DM Client DM Server

1 .Pkg #0 Notification

2 .Pkg #1 Alert(T200) Local URL device information

3.Pkg #2 Replace
Target LocURI: ./FwInfo/MdPkg/Download/PkgURL

4.Pkg #3 StatuQOO')
5.Pkg #4 Exec
Target LocURI: ./FwInfo/MdPkg/Download

V--.

6.FUMO Agent and DL Agent
execute tlie download operation"-

7.Pkg#3 Statu(200)
8. Pkg #4 Final

Figure 3.5 Download Phase

The detailed steps of the Download Phase are as follows:

1. DM Server sends notification to the mobile device in order to make the device

connect to DM Server.

2. Mobile device connects to DM Server and starts the management session.

Meanwhile, the mobile device sends client credential and device information to DM

Server.

3. DM Server sends the URL information to mobile device by using “Replace”

command. Mobile device gets the URL information and writes it into the node

PkgURL.

4. If the mobile device receives the URL information and writes it into the node

PkgURL successfully, it sends a message back to DM Server with the success state

“ 200” .

5. DM Server operates the Download node in the DM Tree of the mobile device by

40

using the “Exec” command to start the download operations.

6. Mobile device starts the download operation. The download of the firmware

package has two methods, which are the centralized method and the decentralized

method. In addition, the centralized method also includes two different ways. One

way is to download the firmware package from the download server provided by

other providers, using http protocol or other effective protocols. The other way is to

download the firmware package from the device management download server by

using the download protocol specified by DM Standard. In this thesis, we only take

the former situation into consideration. The download mechanism we proposed will

be introduced in next section.

7. If the download operation is successfully finished, the mobile device sends a

message back to DM Server with the success state “200”.

8. After DM Server receives the message with the success information, it can start

new management operations or terminate the current session.

3.3.3.3 Update Phase

Update Phase is a phase to realize the update operation by using proper management

commands. The update phase can be right after the download phase or not. The

precondition of update phase is that the package of the firmware to be updated has

already been downloaded to the mobile device.

Update phase is commenced by the message with “Exec” command on the update from

the server. This phase is right after the client sends the message back to the server to

notify the server that the download is finished. Client provides firmware update

manager to manage the update operation of the modulation module on the device.

Meanwhile, the interface related to the firmware layer is provided as well, which can be

invoked to complete the modulation module update operation. Figure 3.6 shows the

41

details of the update phase.

/ '
DM Client

" ----------------------- N

DM Server

9.P kg#2 Exec
Target LocURI: ./FwInfo/MdPkg/Update

10.Pke#3 Statu(200)
11.Pkg #4 Final

s'

Figure 3.6 Update Phase

The detailed steps of the Update Phase are as follows. These steps are the extension of

the Download Phase.

9. DM Server operates the Update node in the DM Tree o f the mobile device by using

the “Exec” command to start the Update operations.

10. Mobile device starts the Update operation. If the Update operation is successfully

finished, the mobile device sends a message back to DM Server with the success

state “200”.

11. After DM Server receives the message with the success information, it terminates

the current session. The management operation for the update o f modulation

module is finished.

3.3OTA Software Download Mechanism

The framework we proposed extends the download mechanism based on OMA DM,

which combines the centralized and decentralized software download mechanism.

Depends on different situations, the framework chooses the appropriate way to execute

the software download.

3.3.1 Centralized Download Method

In present mobile networks, software upgrades are performed via downloading from

central servers. The well-known client/server architecture as used in the mobile network

is the underlying network concept for software distributions. As shown in Figure 3.7,

the client requests to update the software from the central server, and then the server

provides software to the client. Therefore, the server is the only element that can

provide software to client for updating. Although the centralized download mechanism

is the most traditional way to download software to mobile device, it is still difficult to

deliver software to a large number o f clients in a limited timeframe only with a few

central servers.

3.3.2 Decentralized Download Method

With the decentralized OTA software download method, software can be provided by

mobile devices as shown in Figure 3.8, which means the software can be downloaded

from the client nearby. Each mobile device serves as a possible software server.

Therefore, software can be passed from one device to another through the connection

Software Request

> Software Download

Figure 3.7 Centralized OTA Software Download

43

like Bluetooth, etc. This method for software distribution could cut down the network

load and be more effective, especially when there are a lot o f mobile devices waiting for

the software to be updated.

Figure 3.8 Decentralized OTA Software Download

3.3.3 Combined Download Mechanism

As mentioned before, this framework combines the centralized download method and

the decentralized download method. When decentralized download is available, the

framework will choose this way for software download. If not, centralized download is

applied. Figure 3.9 depicts the combined download mechanism.

44

Database

Content
Server

Database

C e n t r a l I n f o r m a t i o n
C o n t r o l l e r

Figure 3.9 A Combined Download Mechanism

The decentralized part is dominated by the Central Information Controller (C1C) which

plays a significant role in the entire architecture. C1C is responsible for managing the

available software information. It broadcasts software information to mobile devices in

specified area, which aims at informing the mobile devices with the information about

the software needed in this area. In addition, CIC is also used to register the information

o f the mobile device with the available software, accept the software requirement

messages from the devices which ask for the software to download and send the

information needed back to those devices. Mobile devices carrying the related software

register their information to the CIC when they receive the broadcast information from

CIC asking for some software. Meanwhile, when one mobile device in the specified

area needs some software, it requests CLC if there is software available in this area. If

the software is available, the device gets the information o f the device with the software

from the CIC, then connects to that device and gets the software from it. If not, the

device downloads the software from the central server by the centralized way. When the

mobile device with the related software leaves the specified area, the CIC will delete the

registered infonnation o f that device.

Figure 3.10 shows the firmware download flow o f MMU with the combined centralized

45

and decentralized download method. When the download operation starts, the client, i.e.

Client A, checks i f it is in the area controlled by a CIC. If not, the modulation module

will be downloaded by the centralized method from the content server. Otherwise, it

checks i f it is possible to obtain the modulation module locally from the other clients. It

sends message to CIC to ask whether the modulation module is available for

downloading by decentralized way. If it is available, CIC would send Client A the

information about the client carrying the modulation module which is Client B. Then,

Client A connects to Client B, and downloads the modulation module from Client B. If

the modulation module is not available for decentralized way, Client A connects to the

content server to download the modulation module after analyzing download descriptor

by HTTP in the centralized way [50].

No

No

Yes

Download
Operation Ends

1C cheek if modulation module is
available locally?

Download
Operation Starts

Client A send query
message to CIC

Client A downloads
modulation module

from Client B

Client A connects to
Client B

CIC sends related
information of Client B

to Client A

Client A downloads
modulation module
from content server

Client A requests
modulation module
from content server

C lien t A ch eck s if it is in the a rea
c o n tro lle d by C IC

CIC notifies Client A
that modulation

module is not available
locally

Figure 3.10 Flow o f the download Mechanism o f MMU

46

3.4 Summary

In this chapter, the design of the MMU is elaborated. This chapter presents the overall

design of MMU, mainly including the design of management architecture, the

management object and the management operations. The nodes for the management

object of modulation module are designed in detail, including the type, format, name,

size, especially the ACL of each node. The management operations are divided into

three phase which are initialization phase, download phase and update phase. Each

phase is elaborated in this chapter. The design o f over-the-air software download

mechanism which employs the centralized download method and decentralized

download method for different circumstances is elaborated as well in this chapter.

4. Implementation of Modulation Module
Update

4.1 Introduction

The design of the management objects, management operation mechanism and the

download mechanism of MMU have been described in last chapter. Therefore, in this

chapter, the implementation o f MMU is presented from a coding point o f view. Based

on the management mechanism and download mechanism presented in last chapter, the

implementation in this chapter is elaborated from three aspects, which are the DM

Server side, the client side in mobile devices and the Central Information Controller

side.

4.2Implementation of DM Server

The main task of DM Server is the device management, which mainly depends on the

message exchange between server side and client side. From a functional perspective,

the design and implementation of device management function can be divided into five

parts as shown in Figure 4.1, which are User Interaction Layer, DM Protocol Layer,

SyncML Representation Layer, Transport Layer, and Network Layer. This hierarchical

five-layer structure is a traditional one to implement DM Server. Each layer in this

structure focuses on its own functions and communicating with other layers by

interfaces. Based on the traditional five-layer structure, we implemented the DM

Protocol Layer and SyncML Representation Layer in a more flexible way. The

implementation of these two layers in this thesis is based on relatively independent

classes which can be seen as the different components in these layers. These

components realized by different classes are respectively related to the operation

commands or the elements in syncML Messages, which can be combined into different

operations or different syncML messages based on different requirements. This makes

these layers more flexible and is easy for use and maintenance. The detailed

48

implementation of DM Server is as follows.

User Interaction Layer

DM Protocol Layer

SyncML Representation Layer

Transport Layer

Figure 4.1 Functional Layers o f Dm Server

4.2.1 User Interaction Layer

User Interaction Layer is the highest layer of device management. It is the layer that

directly handles the management requirements of users. This layer provides user

interface to get the management request from users, such as the request of software

update or data collection, etc. It also analyses and processes these requests, then

converts them into related management instructions and passes these instructions to the

lower layer. Besides, it is also used to present related information to the users, such as

the software upgrade results, and so on.

As for the modulation module update requirement, User Interaction Layer needs to deal

with a series o f commands, such as Add, Copy, Delete, Get, Replace, Exec, etc.

According to the specific need, these commands can be logically combined so as to

realize various complex and orderly management operations.

The implementation of User Interaction Layer mainly includes two packages which are

dm.server.user and dm.server.rqmanager. The detailed design o f dm.server.user and

4 9

dm.server.rqmanage is shown in Figure 4.2.

The dm.server.user package is for dealing with getting the user management

requirements and presenting the management results. There are mainly two classes in

this package, which are Requestproc and Resultsproc.

The dm.server.rqmanage package is used for converting the management requirements

of users into related management instructions by the ordered combination of different

commands. There are several classes in this package, including IRequest, RqConvert,

IResult, RqResult, RqAdd, RqDel, RqGet, RqExec, and so on.

Requestproc
-KurrRq: IRequest
+nextRq: IRequest
4state: int

+GetnjrrRqO: IRequest
+GetnexRq(): IRequest
+GetstateQ: int

RqAdd

-HreePath: String
-HiodeName: String
■HrodeAttribute: String

+SettreePathO
+5etnodeNameO
+SetAttributeO
+GettreePathO: String
HKGetnodeNameO: String
-tGetnodeAttrSjuteO: String

5

RqDel

-HreePath: String
-HiodeName: String

+SettreePathO
+SetnodeNameO
+GettreePathO: String
+GetnodeNameO: String

IResult

-HsNo: int
+sqType: String

+GelrsNoO: int
+SetrsNoO
+GetrsTypeO: String
+5etrsTypeO

IRequest
RqConvert ■HqNo: int

-HqType: String-HJserRq: IRequest
■HqType: String +GetrqNoO: int

+5etrqNoO
+GetrqTypeO: String
4-SetrqTypeQ

+ConverRqToInstructionO
+5etType0
+GetTypeO: String

RqResult

+state: String
+typeofRq: int

+GetstateQ
+GettypeofRqQ

RqGet

+treePath: String
-HiodeName: String

+SettreePathO
+5etnodeNameO
+GettreePathO: String
+SetrK)deNameO: String

RqReplace

-HreePath: String
-HiodeName: String

45ettreePathO
-tSetnodeNameO
+GettreePath(): String
+GetnodeNameO: String

RqExec

-HreePath: String
-HiodeName: String

+SettreePath()
-tSetnodeNameO
+GetnodeNameO: String
+GettreePathO: String

ResuttsProc

-KurrRs: IResult
-HiextRs: IResiit
-(stats: int
+GetarrRsO' IResult
+GetnextRqO: IResult
+GetstateO: int

Figure 4.2 Design o f User Interaction Layer

4.2.2 DM Protocol Layer

DM protocol is a significant layer, which is the highest layer to process the message

5 0

exchange between DM server and mobile devices. It is responsible for managing the

process o f device management. On the one hand, DM protocol layer gets the SyncML

objects parsed by SyncML Representation Layer from SyncML messages as well as the

identification information from Transport Layer. On the other hand, the SyncML

objects processed by DM Protocol Layer will be passed to SyncML Representation

Layer. Then, after processed by SyncML Representation, they will be sent to mobile

device through Transport Layer and Network Layer.

DM Protocol Layer controls the entire procedure of the management operation between

DM Server and mobile devices. Thus, it provides not only the management function of

single session but also the control function of the entire session pool. This layer resides

between User Interaction Layer and SyncML Representation Layer and interacts with

them. It is used for processing the user management instructions from the User

Interaction Layer, which encapsulates these instructions into SyncML objects and

passes them to the SyncML Representation Layer for further processing. Meanwhile, it

is also used for processing the SyncML objects passed from SyncML Representation

Layer and feeding back the processing results to User Interaction Layer.

From the perspective of implementation, DM Protocol Layer includes two main

packages, which are dm.server.engine and dm.server.dmoperation. The detailed design

of these two packages is shown in Figure 4.3 and Figure 4.4.

Figure 4.3 shows the design o f dm.server.engine, which aims to manage the sessions

and the session pool, and control the initiation, operation, processing and termination of

the sessions. There are mainly two classes in these two packages, which are dmSession

and dmSessionPool.

51

DmSessionBase

-f-deamPenod: long
+bmeToLive: long
-^sessions: HashMap

+GetQ: SyncSession
+PutC>: void
-rdeam Q: boolean
+RemoveO: syncSession

D m SessionP ool

+ transR ead: int
+ transW nte: int
+processor: int
■fsyncmlEncode: int
+syncm D ecode

+EndQ: void
+AbortO: void
-i-GetSessionlDO: String
+G etC urrStateQ : int
+MoveToO: void
+PreProcMsgO'. void
+ProcessM sgO: SyncML
+PostProcM sg(): void

< < In te rfa ce > >
Idm Session

■flastRequest: by te
■fsendCommond: ArrayList
+*AaitStatusCommands: ArrayList
-wnoreData: by te

+AbortQ: void
•+EndQ: void
4PreProcMsgQ: void
+PostProcMsgQ: void
■+ProcessMsgQ: SyncML
+ProcCompleteMsgQ: SyncML
+ProcInitMsgQ: SyncML
+ProcDmMsgO: SyncML

D m Session

Figure 4.3 Design o f dm.server.engine

Figure 4.4 shows the design o f dm.server.dmoperation, which realizes the user

instructions in SyncML objects. As mentioned, the operations, such as adding nodes and

deleting nodes, are all encapsulated into related components. There are several classes

in dm.server.dmoperation package, which inherits the IdmOperation interface. These

classes are used to convert the user instructions into the elements o f SyncML objects.

As shown in Figure 4.4, these classes are corresponding to the operation commands,

such as Add, Delete.etc.

52

opera tkmAdd

opera tionAlert

opera taonGopy

opera tionSta tus

opera tionGet

< < I n te r f a c E »
Id mOpera tk>n

+cmAdd: int
+onAlert: int
+cmAtomic int
■KmCopy: int
-KmDel: int
+Gr£xec: int
+onGet: int
-KmPufc int
-KrriReplaae: int
+anResults: int
-KmSeardi: int
-KmSequence: frit
-KmStaius: int
-HmSyn ereader: frit

+Exeaibe(): void
•fGetCommandO: AbstractCommandO
+GetCommandIDO: String
+GetTypeQ: int
4SetCommand0i void

a '

< -

< 3- -

opera tkmRepIaoe

opera tronSyorfieader

opera tkmPut

opera tkm Seqoence

opera tkmSearch

operation Result
operataonAtonuc

Figure 4.4 Design o f dm.server.dmoperation

4.2.3 SyncML Representaion Layer

SyncML Representation Layer contains all the elements specified by SyncML protocol

for message exchange. The layer realizes the mapping between the SyncML objects and

the SyncML messages. Each element in the SyncML message can be mapped to an

instantiation object. The management instructions set by users can be converted into

SyncML message from SyncML object by SyncML Representation Layer. Meanwhile,

the SyncML messages from the client side can be parsed into the SyncML object for

further processing by this layer as well.

The mapping between syncML object and syncML message is realized by a series of

classes called element class. Each element in SyncML message can be mapped to the

related element class. SyncML Representation Layer contains two main packages,

53

which are dm.message.syncml and dm.message.coder.

The dm.message.syncml package provides the element class needed, which contains

two parts, the syncML classes and management command classes. Each element class is

a component in this layer, which can be combined into different operations or different

syncML messages based on different requirements. The changing of the component,

such as adding or deleting, will not influence other components.

Figure 4.5 shows the detailed design of syncML classes. SyncML classes realize the

basic label elements of syncML messages, such as SyncHdr, SyncBody, Meta, VerProto,

Source, Target, SessionID,VerDTD, Cred, etc.

SyncHdr

-fcred: Cred
-Hneta: Meta
+msgID: Strrig
+noResp: boolean
+respURI: String
+sessionID: Session®
+source: Source
+targeti Target
+verDTD: VerDTD
-H/erProto: VerProto

+IsNoRespQ: boolean
4ReadO: void
+WriteO: void

Meta

SyncML

-fheader: SyncHdr
+body: SyncBody
-riastMsg: boolean

■fGetSyncHdrQ: SyncHdr
+GetSync£odyO: SyncBody
+IsLastMsgO*. boolean
+ReadOi void
+WriteO: void
+SetSyncHdrO: void
+SetSyncBodyQ: void

\
VerProto Source

SyncBody

+commands: Arraylist
-ffinalMsg: boolean

+AddCommandQ: void
-+IsFinatMsgO: boolean
4ftead0: void
+VVriteO: void
+IsValidCmdQ: boolean

VerDTD

SessionID Cred

Figure 4.5 Design o f SyncML Classes

Figure 4.6 shows the detailed design of management command classes. Command

classes realize the operation elements in syncML messages, such as Add, Delete,

Get,Replace, Exec, Alert, Sequence, etc.

5 4

Sequence

Atomic

Get

Alert

Exec

Search
- z \
{ >
•17

CommandBase

+cmdld: Cmd
-Hneta: Meta
-KioResp: boolean

4GetCred0: Cred
4GetNameQ: String
+IsNoRespQ: boolean
+ReadQ: void
+SetCredQ: void

■i>

■57
.V

ItemizedCommand

-Htems: ArrayList

•+GetMetaQ: meta
+GetNameO: String
+ReadQ: void
+SetMetaQ: Meta

Add D etele Replace

Cred

4GetDataQi String
-tGetFormatQ: String
+GetTypeO: String
+GetUserNameO: String

Cmdld
lle ta

ResponseCommand

+cmdReft String
-HnsgRef: String
•fsrcRef: String
+targetRef: String

+GetNameO: String
+ReadQ: void

Status

N7-..

Copy Put

Results

Figure 4.6 Design o f Management Command Classes

The dm.message.coder package provides the rest functions which decode the message

from the Transport Layer into SyncML message and encode SyncML message for the

Transport Layer. The design of dm.message.coder is shown in Figure 4.7.

« I n t e r f a c e »
Coder

•fDecodeQ: SyncML
■HEnCodeO: byteQ

SyncMLCode

-fmsgID: String

+Decode£): SyncML
4£ncode0: byteQ
+DecodeSyncMLO: SyncML
4&»codeSyncM(): byteQ

Figure 4.7 Design o f the dm.message.coder

55

4.2.4 Transport Layer

Transport Layer is the carrier o f message exchange between server side and client side

of MMU. At present, there are three kinds of SyncML message exchange carrier in

SyncML protocol, which are HTTP, WAP, and OBEX [51]. In this thesis, the MMU is

mainly based on Http. The server side uses Jave Sevlet to process the HTTP requests

from the client side. The business logic is encapsulated as a servlet, which can be

invoked by HTTP request from client side.

Transport Layer includes two important classes, DmServlet and Protocollnfo.

DmServlet inherits javax.servlet.http.HttpServlet, aiming for receiving and sending

SyncML messages. Protocollnfo is used for saving the basic HTTP protocol

information, including host, content-type, accept, etc. DmServlet gets the protocol

information by dopost() and encapsulates it into protocollnfo, then passes it to SyncML

Representation Layer for further processing. The design of DmServlet and Protocollnfo

is shown in Figure 4.8.

HttpServtet

Dm Servlet

+config: String
•fservUri: String
^session: String

Protocollnfo

+versionID: String
•fverwonlD: String

4GetType0i String
+destroyO: void
4doGetO: void
-KloPostOi void
-HnitO: void
+5etProtoc6ttnfbO: void

+GetVersionQ: String
+5etTypeO: void
45etVersionQ: void

Figure 4.8 Design o f Transport Layer

4.3 Implementation of Agents in Mobile devices

The main task o f Agents in mobile devices is to communicate with DM Server to

56

achieve the mobile device remotely management operation. Therefore, due to the

different aims of the management, the functions o f the agents in mobile devices are

different. In this thesis, we designed the Agents in mobile devices for the function of

software upgrade over-the-air.

The implementation of these clients is also component based. Each part or function

module can be seen as a component in the mobile device, which is relatively

independent to each other. Each component provides interfaces to other components and

invokes the interfaces provided by other components to realize the communications

between different components. The change of each component will have less influence

on other components, and new functionalities can be added by adding new component.

This implementation to designMMU is more effective than traditional implementation

method and makes the framework more flexible and easy to maintenance. In this

session, the detailed design of these agents is presented.

4.3.1 Overall design

This section describes the overall design of the Clients of MMU from the aspect of

function and the aspect o f implementation. The specific design is as followed.

4.3.1.1 Functional Design

As we mentioned in last chapter, the client side o f MMU is the clients residing in

mobile devices, which is responsible for processing the management operations from

server side. DM Server achieves the management function o f mobile device by the

message exchange between the server side and client side. Focusing on the software

upgrade function, the client side is composed o f several Agents in mobile devices,

which are DM Agent, FUMO Agent, DL Agent and DM Tree. Figure 4.9 shows the

functional structure o f the client side of MMU.

57

DM Tree

4 \ 4^ \

DM Agent

Software Platform

DL Agent
H ardw are Platform

C IC C lient DM Server

Mobile Device

Figure 4.9 Functional Structure o f Client Side

4.3.1.2 Programming Design

In this section, the design o f the client side o f MMU is presented from a programming

point o f view. As shown in Figure 4.10, the implementation o f MMU is divided into

four layers. They are, from the top to bottom, Application Layer, DM Core Layer,

Hardware Abstract Layer, and Operating System.

Application
Layer

SyncM L
ParseDevice

M anagem ent
Core

Layer

D M P rotocol H andler
SyncML
M essageNotification

H andler „ HTTP

FUM O M anager DL M anager

Tree M anager

Tree

O perating System

Hardw are A bstract Laver

Figure 4.10 Programming Design o f Agents in Mobile Device

58

4.3.2 Device Management Core Layer

DM Core Layer is the layer to realize DM Agent, which provides the basic device

management functions based on OMA DM Standard. It parses the messages received

from DM Server into the related operation instructions, and passes them to Application

Layer for further processing. Besides, it is also responsible for encapsulating the

management results into SyncML messages and passes them to the lower layer. DM

Core Layer includes seven function modules which are DM Tree Manger, DM Tree

Storage, SyncML Parse, SyncML Manager, DM Protocol Handler, Notification Handler,

and HTTP Handler. DM Tree is implemented by the DM Tree Manger module and DM

Tree Storage module. And DM Agent is realized by the rest modules. As mentioned, in

this thesis, the implementation of each function module is based on the concept of

component. The detail design is as follows.

4.3.2.1 DM Tree

From a coding point of view, DM Tree is a tree structure of the management objects.

Each node in DM Tree is corresponding to a management object for the device

management. Due to the management operation of devices is based on the operation of

the DM Tree, the implementation of DM Tree is composed of two packages which are

dm.client.tree and dm.client.treemanager.

The dm.client.tree package is used for realizing the basic elements of DM Tree,

including the interior node and leaf node as well as the attributes o f them. The

dm.client.treemanager package is to implement the operation o f DM Tree, such as

adding nodes, deleting nodes, changing attributes, etc. There are five classes in these

packages, including TreeNodeBase, DmACL, TreeManager, InteriorNode, Leafhode.

The detailed design of these two packages is shown in Figure 4.11.

59

TreeNodeBase

4-uri: String
4-format: String
+scope: int
4-type: String
4-ad: Dm ACL
4-titJe: String
4-timeStamp: Date
4-version: int

+GetACL0: Dm ACL
4-GetFormatO: String
4GetName{): String
4CetProperty(String): String
+<5etProperty Item (String): Strting
-KSetScopeQ: int
4CetT«mestampO: Date
4-GetTitieO: String
4<SetType(): String
4<SetURlQ: String
+GetVersion(): int
4-SetACL(DmACL): void
4-SetName(String): String
4-SetTitie(String): String
4-ToItemQ: Dmltem
4-ToStringQ: String

 ; e ...
Interforfiode

4-chiids: Vector

4-AddNode (String): void
4deleteNode(String): void
+GetCNldNamesO: String

4size: int
4-value: byte

4GetSize(): int
4-GetValueO: byteQ
4-SetSizeOnt): void
4-SetValue(byteO): void

Leafflode

4-AddNodeClreef4odeBase): Bit
4Deletef4odeCTreef4odeBase): int
4DeleteTree(): void
4-DoneO: void
4£xec(TreeNodeBase): int
4-Get(S tring): TreeNodeBase
4-InitO: void
+ReadllodeQ: TreeNodeBase
+Replace (Tr eeNodeBase): int

4-recordS tore: Hashtable

4-AddAccessRight(String, String): void
4-AddEntryAccessRight(tnt4 String): void
4CbeckAccessRight(int/ String): int
4CheckEntryAcce5sRight(int, String): int
4parseEntryAccessRights(int, String): void
44temoveAccessRight(String, String): void
4ftemoveEntryAcces5Right(int, String): void
4-ToStringO: String

+ad: Vector

DmACL

Figure 4.11 Design o f DM Tree

4.3.2.2 DM Agent

DM Agent is used for realizing the basic functions of device management, which is the

basis of software upgrade and other further functions. DM Agent provides the function

of message exchange specified by OMA DM Standard, such as parsing the syncML

messages, and so on. Therefore, other agents can exchange information with DM Server

based on DM Agent so as to realize other new functions.

DM Agent is composed of three packages which are dm.client.protocolhander and,

dm.client.syncmlparse, and dm.client.syncmlmsg.

The dm.client.protocolhander package contains a series of classes of DM management,

60

which is used for controlling the starting, operation, processing and termination of

sessions. The dm.client.syncmlparse package is used for decoding the messages from

DM Server or encoding the SyncML objects into the SyncML messages. The

dm.client.syncmlmsg package is for implementing the classes of the elements in

SyncML message, which has the same function as the SyncML Representation Layer in

DM Server. The detail design of the DM Agent is shown in Figure 4.12.

Protocoftia nder

+CreafceC!ientR.esponseO: ClientResponse
+GetResponseQueueQ: Vector
+InitQ; SyncML
-fPerform (SyncML)
+PerformAddO: boolean
+PerformAlert0: boolean
-tPerformDelQ: boolean
4PerformExec(): boolean
+PerformGetQ: boolean
■+PerformReptaceO: boolean
+PerfbrmSequence0: boolean

SyncMLParser

4Prase0: SyncML
4ParseSyncHdr(): SyncHdr
4Parse5yncBodyO: SynBody
■+ParseSement0: Element

SyncMUEIement

-Undent String

+GetNameQ: String
+Indent£): String

< ■

SyncML

+body: SyncMLBody
-♦header: SyncMLHdr

4GetBodyO: SyncMLBody
+GetHeader(): SyncMLHdr
+GetNameQ- String
+ToStringO: String

Add r
1

syncMLCommand

■fcmdlD: String

+GetCmdIDO'. String

Put
1

r

Exec

SyncMLBody

•fcommands: Command
-ffinalMsg: FinaMsg

-+GetNameO*. String
+GetCommandsO: Commands 0
-HSetStatusCommandsQ: ComrnandQ
-HsBnalQi boolean
+ToStringO: String

SyncMLHdr

-kred: Cred
+meta: Meta
+msgID: MsgID
-moResp: NoResp
+respURI: RespURI
•fsessonlD: SessionID
•fsoirce: Source
+target Target
-tverDTD: VerDTD
■fverproto: VerProto

+GetCredOi Cred
4GetMetaO: Meta
•fGetMsglDO: String
+GetNameQj String
+GetNoResp(): NoResp
4GetRespURlO: RespURI
+GetSessionDOi SessionID
+Get SourceQ: Source
+GetTarget0: Target
+Get VerOTDO: VerDTD
-KSetVerProtoO: VerProto

Figure 4.12 Design o f DM Agent

4.3.3 Application Layer

Application Layer is the highest layer to directly process the management operation of

software upgrade. It receives the operation instructions from DM Core Layer and

realizes the specified management operations, such as software download, software

61

update, etc. Besides, it also sends back the operation results to DM Core Layer for

further processing. Then, the results can be sent back to the server side. FUMO Agent

and DL Agent are both in this layer.

4.3.3.1 FUMO Agent

As we mentioned in chapter 3, FUMO Agent is responsible for the firmware upgrade

function for mobile devices. From the implementation point of view, the task o f FUMO

Agent focuses on the firmware upgrade, which means it is unnecessary for FUMO

Agent to know how the message exchange is realized. In other words, the message

exchange function is provided by DM Agent and FUMO Agent can just invoke the

interface provided by DM Agent to exchange the firmware upgrade information with

the DM Server.

The design and implementation of FUMO Agent is mainly composed of two packages

which are dm.client.downloadmanager and dm.client.updatemanager.

The dm.client.downloadmanager is responsible for processing the software upgrade

information parsed by DM Core Layer and managing the download of the software with

the DL Agent. It is also responsible for the software download when centralized

download method is employed. The dm.client.updatemanager package is to manage the

update operation of the software needed to be updated. The detailed design of them is

shown in Figure 4.13.

62

IdowntoadManager

-fdovvnLoaderUri: String

4-StartDovvnloadQ: void
+SetLocalPathO: void
+SetUriO: void _ _ _

I
I

DHanager&ase

-KiovvnLoaderUri: String
+localPath: String
-H>tatus: int
4-type: String

+StartDownioad(): void -
+SetLocalPathO: void
+SetL)riO: void
+GetLocalPathQ: String
•fGetUriQ: String
4-SetStatusQ: void
•fGetStatusQ: sString

DownloadManager

4-starttime: Time
+endT«ne: time
-4-alert: String
4period

4-StartDo'A'nloadO: void
4-StopDovvnloadQ: void
+GetStartTimeO: Time
4-SetStartTimeO: void
+GetEndTimeO: Time
+GetPeriodO: Time
+GetA!ertMsgO’- String

Iupdatet-lanager

-KipdatePkgPath: String
4-status: int

4-SetPathQ: void
4-StartUpdateQ: void
4-StopUpdateO: void
4'GetStatusO: String

4-updatePkgPath: String
■fstatus: int

4-SetPathQ: void
4-GetPathQ: String
4-StertUpdateQ: void
4-StopUpdateQ: void
4<^tStatus0i String

UpdateBase

4-StartUpdateQ: void
4-StopDownloadQ: void
4GetStartTmeQ: Time
4-SetStartT»meO: void
4<5etEndTimeO: Time
■fGetPeriodO: time
+GetAlertf'1sgO: String

+startTime: Time
4endTime: Time
+alert: String
^period

U pdatefianager

Figure 4.13 Design of FUMO Agent

4.3.3.2 DL Agent

DL Agent is designed for the software download mechanism we proposed. It works

with FUMO Agent to realize the software download in different circumstances. In brief,

it exchanges the information with CIC by the CIC Client module to make the decision

of the download method and is responsible for achieving the decentralized software

download when decentralized method is chosen.

The implementation of DL Agent is for making the decision of the download method

and downloading software package by decentralized download method. Therefore, DL

63

Agent needs to have the capability for communicating with CIC to get the available

software information. In addition, it also needs to have the function to communicate

with the mobile device nearby for the software download by the decentralized method.

The design and implementation of DL Agent is in one package named

dm.client.dlagent.

The dm.client.dlagent is composed of five classes which are responsible for five

different functions respectively. The DIManager class is the main part in DL Agent,

which manages the operation of other classes and communicates with FUMO Agent to

inform it the available download method. The RspforSwRQ class is used to require

software information from CIC. The DIMethodDecider is responsible for deciding

which download method is available based on the information getting from CIC. The

Communication class is used for the communication between DL Agent and other

devices, such as other mobile devices or the CIC. The decentralizedDownloader class is

for the software download in decentralized method when decentralized download

method is chosen. The detailed design of them is shown in Figure 4.14.

64

+ajnMethod: String

4MakeDesQ: bool
+Ched<5wlnfb0: booJ
+GetCurrMethodO: String

DlM ethodDeoder

+devCon: String
+ridCon: String

45etdevConQ: void
+SetdcConO: void
+SentSwInfbO: void
+5endDevInfbO- void

Communication

+currSwState: int
+softwareName: String
+softwareVerson: String

+GetojrrSwState(): int
+GetSoftwareVersion(): String
-fRetumResponeQ; void

RspforSwRQ

decentrafizedDownloader

+startTlme: Time
+endTime: Time
+Period: Time
+serdevlnfb: String
■fstate: String

HhStartDowndoadO: String
4£ndDownloadO: String
+GetStateQ: String
•fGetlnfoO: String

+dlmehtodDedder: DlMethodDedder
■fdecentralizedAvaflable: bool
+devID: String
+Gomm: Communication

+DeadeDlMethodO’ String
-HSetAvaiableOi bool
+GetDevId(): String
+SetCommO: void

Figure 4.14 Design of DL Agent

4.4Central Information Controller

CIC manages the available software information in the specific area and decides

whether the decentralized download method will be used when the mobile devices

request firmware to be updated. Therefore, from the coding point of view, the design

and implementation of CIC is composed o f five classes which are five function modules

of CIC. These five classes are Broadcast, Register, DeviceManager, SoftwareManager

and Communication. The detailed design of them is shown in Figure 4.15.

As CIC is a separate part out of the OMA DM framework, the detailed design and the

way it works with DL Agent are described as follows.

Broadcast class uses ‘Req4SW’ to broadcast to its neighbors to request the software its

65

neighbors have and any neighbor who has the software returns the device and software

information to CIC by the ‘Req4Register’ command from CIC. CIC will then register

the mobile devices with the software by ‘ AddDev’ function of Register module. If the

device has left the area, the device information will be removed by ‘RemoveDev’

function. After registering the devices, CIC uses DeviceManager and SoftwareManager

classes to manage specific device and software. When any device would like to

upgrade/update its firmware, it will request the information from CIC, which is done by

the Communication module. Once the information is found, the device will establish a

direct link with the device having the software and download the software from that

device. If CIC doesn’t have the required information, the device will communicate with

the Content Server directly and the traditional OMA DM download process will work.

66

+ManageDevInf60
+Save3DevInft>0
+DelDevInfoO
+GetDevInfbO: ertDev

-H3eviceInfoDB: dbSave

DeviceM anager

+AddDevQ
4RemoveDevO
+GetDevInfbO
45etDevInfbO
4-SelDevIDO: Siring

R egister

+ConSer: String
+CoriDev: String
■fOevInfb: String
+SwInfo: String

Communication

HhsoftwvareName: String
4softwareVeraon: String

■iWanageSwInfbO
45aveSwInft)0
■fOelSwInfbO
+GetSoftwareNameO: String
+GetSoftwareO

Softwa refianager

+softwareName: String
nhsoftwareVersion: String

4Req45W0
4Req^rRegisterO
HhSetSoftwareNameQ
+SetSoftwareVersionO
+GetSoftwareNameO: String
+GetSoftwareVersionOr String

Broadcast

Figure 4.15 Design of CIC

4.5 Summary

In this chapter, the implementation of MMU is elaborated from a coding point of view.

The implementation of DM Server is realized by five parts which are User Interaction

Layer, DM Protocol Layer, SyncML Representation Layer, Transport Layer, and

Network Layer. The detailed implementation of the clients in mobile devices is also

explained in this chapter, including the design o f DM Tree, DM Agent, FUMO Agent,

and DL Agent. Moreover, the detailed design of CIC is presented as well.

67

5. Test and Verification Results

5.1 Introduction

As we mentioned in earlier chapters, the MMU is an implementation of the framework

we proposed for software upgrade. It is used for the update o f the modulation modules

in mobile devices. It implements the management objects and management operation

mechanism as well as the download mechanism we proposed.

In this thesis, we simulated the server side and the client side of the framework, which

are respectively MMU Server and MMU Client. MMU Server implements the basic

functions of DM Server, which mainly aims at realizing the modulation module upgrade

operations. MMU Client is a simulation of the mobile devices, which implements the

agents we proposed for the software upgrade. CIC has also been implemented for the

decentralized download method.

Two object-oriented programming languages, Java and C# are employed for the

implementation of each part. The C# programming language is used to realize the user

interaction part, such as the setting of the management operations, the result display, etc.

The Java programming language is applied for the implementation of background

processing.

MMU simulates both the centralized download method and decentralized download

method for the modulation module upgrade. In the simulation, MMU Server, Content

Server, CIC, as well as the MMU Clients are distributed in different laptops. The

communications between them are based on wireless local area network. The

experimental environment includes the IBM laptops with 1 GB memory. Windows XP

is used as the operating system.

In this chapter, the results of the implementation o f MMU are presented to verify the

feasibility of the framework we proposed.

68

5.2Test Procedure

In this section, the test method and procedure are elaborated. The test procedure is based

on the three phases we proposed for the modulation module upgrade. Both of the

centralized method and decentralized method are verified. The detailed test procedure

for modulation module upgrade in centralized and decentralized scenarios is as follows.

5.2.1 Decentralized Download

The simulation environment we designed to test the decentralized download method is

shown in Figure 5.1. MMU Server, Content Server, CIC, as well as the MMU Clients

are distributed in different laptops. There are four MMU Clients with the labels 1-4 in

this area, and one of them (MMU Client 1) carries the modulation module upgrade

package. Therefore, for the other MMU Clients in this area, the download operation

should be achieved by the decentralized method.

In this thesis, MMU Client 2 is used to test the decentralized download method. The

detailed steps are as follows.

® Initialization phase. The tree nodes related to modulation module should be added to

the DM Tree in MMU Client 2.

© The message exchange to start the download operation at the beginning of the

download phase.

© The information exchange between MMU Client 2 and CIC for decentralized

download operation.

© MMU Client 2 downloads the modulation module package from MMU Client 1 by

decentralized download method.

© MMU Client 2 returns the download result to MMU Server.

69

© Update Phase. Update the modulation module in MMU Client 2.

M M U
S e rv e r

C o n te n t S e rv e r

CIC

MMU Client carry ing m o d u la t io n m o d u le u p g ra d e packages

MMU Client need in g to be u p g ra d ed

Figure 5.1 Decentralized Download Test

5.2.2 Centralized Download

The test for the centralized download method is after the test o f decentralized method.

The simulation environment we designed to test the decentralized download method is

shown in Figure 5.2. The M M U Client 1 and MMU Client 2 have moved out o f the area

controlled by CIC. Therefore, the upgrade operation for M M U Client 3 and MMU

Client 4 can only be achieved by centralized method.

70

MMU
Server

Content Server

CIC

MMU Client carrying modulation module upgrade package

MMU Client needing to be upgraded

Figure 5.2 Centralized Download Test

In this thesis, MMU Client 3 is used to test the centralized download method. The

detailed steps are as follows.

0 Initialization phase. The tree nodes related to modulation module should be added to

the DM Tree in MMU Client 3.

0 The message exchange to start the download operation at the beginning o f the

download phase.

0 The information exchange between MMU Client 3 and CIC. CIC notifies MMU

Client 3 that there are no other clients carrying the upgrade package in this area.

® M M U Client 3 downloads the modulation module package from Content Server by

centralized download method.

71

® MMU Client 3 returns the download result to MMU Server.

© Update Phase. Update the modulation module in MMU Client 3.

5.3 Test Results

The test results are presented in this section in the order of the three phases. As the

initialization phase and update phase are the same as the centralized download test and

decentralized download test, we will only show the results o f the download phase for

both tests.

5.3.1Initialization Phase

The initialization phase is related to the step (D of both centralized download test and

decentralized download test.

5.3.1.1 Configuration

To get connection with DM Server, a client needs to set a series o f parameters properly.

These parameters are the base of the save communication between MMU Server and

MMU Client. The parameters include the device information, encoding mode and the

account information of the server. Figure 5.3 shows the configuration interface of MMU

Client 2.

72

nJ MMU Client dD | h^ 3 mp

Configuration Setting Help

Devi ce & Account DM Tree Log

D evice In form ation

D evice ID 0000000000

MaxM s g S iz e 20000 Maxobj 40000

Support 11

Encoding © WBXNIL («■ XML

Account Inform ation

Name Test

Server Test

Address ht t p ://Iocalhost/M anagem ent

Port 80

Figure 5.3 Configuration Interface in MMU Client 2

5.3.1.2 MMU Server

In M M U, the aim o f initialization phase is to add the tree nodes which are related to

modulation module to the DM Tree. Therefore, all nodes related to modulation module

should be added before other phases start. The nodes should be added in a proper order

as well which has been defined in Chapter 3. Figure 5.4 shows the information o f MMU

Server, which presents the operations defined by MMU Server and the related syncML

messages sent to M M U Client 2. As shown in Figure 5.4, the node Mdpkg, which is the

entrance node o f other nodes, is added first. Then the rest nodes are added successively.

73

b-1 MMU Server I ©

C onfiguration S ettin gs H elp

M&n&gement In fo rm a tio n Management O p era tio n

O p era tio n s

N o t i f i c a t i on K S

In i t i a l l z a t i o n i » » i
Replace i » » i
Exec Download [> > »]
Exec Update

In i t i a l i r a t i on20:0 5 :31 Send I n i t i a l i z a t i o n to C lie n t
20:05:31 Add Bode MdFkg , URL: /MdPkg
20 :05:31 Add Bode PkgHame , UKL:. /MdPkg/FkgBame
20:05:31 Add Bode PkgV ersion , URL: /MdPkg/PkgVersi on
20 :05:31 Add Bode Download , UKL:. /MdPkg/Download
20 :05:31 Add Bode PkgURL , URL:. /MdPkg/Download/PkgURL
20:05 :31 Add Bode Update , URL:. /MdFkg/Update
20 :05 :31 Add Bode PkgData , URL:. /MdPkg/Update/FkgData
20 :05 :31 Add Bode DownloadAndUpdate
, URL:. /MdPkg/DownloadAndUpdate
20 :05 :31 Add Bode FkgURL
, URL /MdPkg/DownloadAndUpdate/FkgURL
20:05:31 Add Bode S ta te , URL: /M dPkg/State
20 :05:31 Add Bode Ext , URL: /MdPkg/Ext
20 :05:41 Receive Success Message from C lien tl

<SyneBody>
S S ta tu s)1

<M s gRe f >1 </M s gRefXCm dF.e f >1 <JC m dRe f >
<Cm dID >7 </Cm dID >
<£md)Alert</Cmd>
<Data>200 </Data>

<7S tatus>
<Add>

<£mdID>4</CmdID>
<Item>

<Targeti>
<LocURI>. / MdPkg</LocURI>
<Lo cBani e >M dPkg</Lo cBan> e >

S /T arg e t^
<Meta>

4Type xm lns= 'syncm l: met i n f) !\/Typ e)
^Format xmlns=' syncm l: m e t in f >node</Format>

</Meta>
<7ltemi>
<Item>

<Target>
CLocURI:. /MdPkg/PkgBame<7LocURI>
<LocBaitie>FkgBameS/LocBame>

<7Target>
<lfleta>

Olype x m lns^ syncm l:m e t in f Type>

Figure 5.4 Log o f Initialization in MMU Server

Table 5.1 shows the syncML message sent from MMU Server to MMU Client 2. This

message is one o f the messages in initialization phase, which is to add the Fwlnfo node

into the DM Tree. The name and the path as well as the type o f the node are included in

this message under the command “Add".

Table 5.1 Message o f Adding Management Object

<SyncML xmlns=’SYNCML:SYNCML1.2’>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/1.2</VerProto>
<SessionlD>1</SessionID>
<MsgID>1</MsgID>
<Target>

<LocURI>IMEI:000000000000000</LocURI>
</Target>
<Source>

<LocURI>http://localhost/Managements /LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef>
<CmdID>7</CmdID>
<Cmd>Alert</Cmd>

74

<Data>200</Data>
</Status>
<Add>

<CmdID> 4</CmdID>
<Item>

<Target>
<LocURI>./Fwlnfo</LocURI>
<LocName> Fwlnfo</LocName>

</Target>
<Meta>

<Type xmlns='syncml:metinf' ></Type>
<Format xmlns='syncml:metinf'>node</Format>

</Meta>
</11 em>

</Add>
<Final/>

</SyncBody>
</SyncML>__

5.3.1.3 MMU Client

After receiving the operation message from MMU Server, MMU Client 2 starts to

execute the operations specified in the message. In initialization phase, the messages

received from server are mainly for adding the nodes. As for the nodes adding, MMU

Client 2 will check if the nodes exist already. If not, the operation of adding nodes will

be executed.

Figure 5.5 shows the log information of the MMU Client 2, which presents the

operations executed by MMU Client 2 and the related syncML messages sent back to

MMU Server. As shown in Figure 5.5, the nodes related to modulation module are

added successively.

75

M M U Client a \mm m̂
Configuration Setting Help

D evice & A ccoun t) DM T ree { Log

Management
O p e ra ti on

I n i t i a l i z a t i o n
P hase

Download P hase

U pdate P hase

Send I n i t i a l i z a t i o n
d ev ice in fo r m a tio n) to DM

2 0 :0 5 :3 0
P ackage
S e rv e r
^ 0 :0 5 :3 3 Rece iv e I n i t i a l i z a t i o n
from DM S e rv e r
2 0 :0 5 :3 9 Add Node FWFkg
, URL: /F w ln fo
2 0 :0 5 :3 9 Add Node FWPkg
, URL:. /Fw Info/M dPkg
2 0 :0 5 :3 9 Add Node PkgName
, URL:. /Fw lnfo/M dPkg/PkgN an,e
2 0 :0 5 :3 9 Add Node P k gV ersion
, URL:. /Fw Info /M dPkg/F kgV ersi on
2 0 :0 5 :3 9 Add Node Download
, URL:. /Fw Info/M dPkg/D ow nload
2 0 :0 5 :3 9 Add Node PkgURL
, URL: . /Fw Info/M dPkg/Dow nload/PkgUR
L
2 0 :0 5 :3 9 Add Node U pdate

URL:. /Fw lnfo /M dF kg/U pdate

</SyncH dr>
<SyncBody>

< S ta tu s>
<MsgRef>l </MsgRef>
<CmdID>l</CmdID>
<Cm dRe f >0 </Cm dRe f >
«Cm d>SyncHdr <7Cm di>
<D a t a>200 “C/D a t a>

< /S ta tu s >
Ŝtatus)*

<MsgRef>l </MsgRef>
<CmdRefM</CmdRef>
<Cm dID >4 </Cm dID >
<Cmd>Add</Cmd>
<Data>200</Data>

< /S ta tu s >
< F in a l/>

<ySyncBody>
<s/SyncML>

Figure 5.5 Log o f Initialization in MMU Client 2

Table 5.2 shows the syncML message sent back to MMU Server from MMU Client 2.

This message is one o f the messages in initialization phase to inform the MMU Server

that the node adding operation has been finished successfully. The status code 200 is

included in this message under the element ‘‘Status’'.

Table 5.2 Message o f Initialization Results o f MMU Client 2

<SyncML xmlns='SYNCML:SYNCML1.2 *>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/1.2</VerProto>
<SessionID>l</SessionID>
<MsgID>2</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

<LocURI>IMEI:000000000000000</LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>1</MsgRef>
<CmdID>l</CmdID>
<CmdRef> 0</CmdRef>

_______ <Cmd>SyncHdr</Cmd>________

76

<Data>200</Data>
</Status>
<Status>

<MsgRef>1</MsgRef>
<CmdRef> 4</CmdRef>
<CmdID> 4</CmdID>
< Cmd> Add</Cmd>
<Data>200</Data>

</Status>
<Final/>

</SyncBody>
</SyncML>

5.3.1.4 DM Tree

The tree nodes in DM Tree represent the management objects in mobile devices.

Therefore, the adding of the node is not only just adding the node into the DM Tree, but

also the attributes of the nodes. Figure 5.6 show the nodes of the DM Tree before the

nodes of the modulation module are added. The nodes in Figure 5.6 are the basic nodes

in a DM Tree. That means if a mobile device could be managed by a DM Server, these

nodes are necessary. Figure 5.7 shows the nodes of the DM Tree after the nodes of

modulation module are added in initialization phase. As shown in Figure 5.7, the nodes

as well as their attributes are added into the DM Tree.

77

M M U Client c=»7 a

C onfigu ration S etting H elp

D evice & Account DM Tree

Management Tree

Log

B-
+j" SyncML
3 D evlnfo

Man
••••Mod
-• DmV

Lang
3 D evD etail

Bearer
I] i m i

DevTyp
OEM
FwV
SwV
HwV
Li- gOb j

Node P r o p er tie s

D ev l d
F orm at

Node ACL

Get

Figure 5.6 DM Tree before Initialization

D e v i c e A Account DM Tr ee Log

DM Tree Node P r o p e r t i e s

B - •
(j) SyncML
0 D e v l n f o
0 ■D e v D e t a i l
0 Fwl nf o

b C E3S
PkgName

•••■ PkgVe rs i on
0 - Download

L- PkgUFJ-
0 - Update

:••■■ PkgData
0 DownloadAndUpdate

:••• Fwl nfo
- S t a t e

Format

Node ACL

Get

Add

D e l e t e

Figure 5.7 DM Tree after Initialization

5.3.2Download Phase

The update phase is related to the step © © @ (D of both centralized download test and
decentralized download test.

5.3.2.1 Message Exchange in Download Phase

The message exchange at the beginning of download phase is related to the step © of

both centralized download test and decentralized download test.

As mentioned, the task of download phase is to realize the download execution of

modulation module by proper method. Actually, the download method is decided by

MMU Client. That means in MMU Server side, the management operation defined is

the same as both download method. Therefore, in this section, we only present the test

results between MMU Server and MMU Client 2 in this section.

Figure 5.8 shows the log information of the MMU Server, which presents the operations

defined by MMU Server and the related syncML messages sent to MMU Client 2. As

shown in Figure 5.8, during the download phase, there are two management operations

need to be executed. The two operations are “Replace” and “Exec”.

79

d-J MMU Server

C on figu ration S ettin gs H elp

Management Inform ation Management O peration

O perati ons

F oti f i c a t i on

In i t i a l i z a t i on

R eplace

Exec Download

Exec Update

» »
»»
»»
»»
»»

20:05 :50 R eplace Value o f Rode FkgURL
URL:. /FVi'Pkg/Download/FkgURL
2 0:05:53 R eceive Success Message from
C li ent
2 0 .0 6 :0 0 Exec Download
20:06:23 R eceive Success Message from
C lie n t2 0 :06:30 Send Server Management
O peration Message to C lien t

<MsgRef>l </MsgRef><)CmdRef>l
</CmdRef>

<Cm dID >7 </Cm dID >
<Cm d>Al er t //Cm d>

at a >200 </D at a>
/ / S t a t u s /
<Rxec>

<CmdID>7</CmdID>
/I te m /

/T a r g e t /

« L o cURI >. /Fwlnfo/MdFkg/Downl oad</Lo cURI >
<Lo cR am e /D ownl o ad//Lo cRami e /

/ /T a r g e t /
/ / I t e m /

/ /E x e c /
/ F i n a l / /

//S yn cB od y/
//SyncM L/

Figure 5.8 Log o f Download Phase in MMU Server

Table 5.3 shows the syncML message sent from MMU Server to MMU Client 2 for the

'“Replace" operation. This message is one o f the messages in download phase, which is

to replace the attribute o f PkgURL node in the path o f

“ ./FwInfo/MdPkg/Download/PkgURL". The PkgURL node records the download

information o f the modulation module for the centralization download method. When

the centralization download method is chosen, this download address recorded in

PkgURL will be used. As shown in Table 5.3, the name and path as well as the value o f

the node are included in this message under the command '‘Replace'*.

Table 5.3 Message o f Configuration o f PkgURL Node

<SyncML xmlns='SYNCML:SYNCML1.2'>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/1.2</VerProto>
<SessionID>l</SessionI D>
<MsgID>2</MsgID>
<Target>
< LocURI>IMEI: OOOOOOOOOOOOOOCK/LocURI>

_____</Target>______________________________

80

< Source>
<LocURI> http://localhost/Management </LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>2</MsgRef>
< CmdID>1</CmdID>
<Cmd> SyncHdr</Cmd>
<Data>212</Data>

</Status>
<Replace>

< CmdID>6</CmdID>
<Item>

<Target>
<LocURI>./Fwlnfo/MdPkg/Download/PkgURL </LocURI>
<LocName> PkgURL </LocName>

</Target>
<Data> http://localhost:1234 </Data>

</Item>
</Replace>
<Final/>

</SyncBody>
< /SyncML>________________ _____________________________________

Table 5.4 shows the syncML message sent back to MMU Server from MMU Client 2.

This message is one of the messages in download phase to inform the MMU Server that

the “Replace” operation has been finished successfully. The status code 200 is included

in this message under the element “Status”.

Table 5.4 Message o f Configuration Results o f MMU Client 2

<SyncML xmlns='SYNCML:SYNCML1.2’>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/l.2</VerProto>
<SessionID>l</SessionID>
<MsgID>2</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

<LocURI>IMEI: 00000000000000CK/LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>2</MsgRef>
<CmdID>l</CmdID>
<CmdRef> 0</CmdRef>

81

<Cmd>SyncHdr</Cmd>
<Data>200</Data>

</Status>
<Status>

<MsgRef>1</MsgRef>
<CmdRef> 6</CmdRef>
< CmdID> 3</CmdI D>
<Cmd>Replace</Cmd>
<Data>200</Data>

< /Status>
<Final/>

</SyncBody>
</SyncML>

Table 5.5 shows the syncML message sent from MMU Server to MMU Client 2 for the

“Exec” download operation. This message is one of the messages in download phase,

which is to initiate the download execution in mobile devices. The target of the Exec

command is the Download node in DM Tree. As shown in Table 5.5, the name and the

path of the target node are included in this message under the command “Exec”.

Table 5.5 Message o f Execution Command for Download

<SyncML xmlns^'SYNCML:SYNCML1.2'>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/1.2</VerProto>
<SessionID>l</SessionID>
<MsgID> 3</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

<LocURI>IMEI:00000000000000CK/LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>2</MsgRef>
<CmdID>1</CmdID>
<Cmd>SyncHdr</Cmd>
<Data>200</Data>

</Status>
<Exec>
< Cmd I D> 7< / Cmd I D>
<Item>

<Target>
<LocURI>./Fwlnfo/MdPkg/Download</LocURI>
<LocName>Download</LocName>

</Target>
</Item>

82

</Exec>
<Final/>

</SyncBody>
</SyncML>

5.3.2.2 CIC for Decentralized Download

The decentralized download step is related to the step (D of decentralized download

test. After receiving the download operation message from MMU Server, MMU Client

2 or MMU Client 3 starts to execute the operations specified in the message. In the

download phase, the “Exec” message received from MMU Server is only for initiating

the download operation. Therefore, MMU Clients 2 and MMU Client 3 need to decide

which download method is applied in different circumstances. In this section, the results

show the operations of CIC and the communications between CIC and MMU Clients 2.

CIC keeps the available software information and is responsible for providing this

information to the mobile devices. Figure 5.9 shows the log information of CIC, which

presents the operations in CIC and the communication procedures between CIC and

MMU Client 2. As shown in Figure 5.9, CIC requests software 024124523, which is the

modulation module by broadcasting, and gets the device information of MMU Client 1

carrying the software. When CIC receives the request from MMU Client 2, it sends the

information of the MMU Client 1 to MMU Client 2. Therefore, the decentralized

download can be applied by MMU Client 2.

83

o-J CIC I r-\ |

Configuration Settings Help

B roadcast_In fo S e t t i n g D evice Management Softw are Management [Log

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 2

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 2 .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 3 .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5 .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5 .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5 .

have l e f t . . .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5 .

n o t b e e n r e g i s t e r e d

1 0 / 0 7 / 1 1 1 0 : 1 0 : 4 0 .

sw0241 2 4 5 2 3 5 . . .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 4 0 .

1 0 / 0 7 / 1 1 1 0 : 10 :4 1 .

devi c e 0 0 2 . . .

1 0 / 0 7 / 1 1 1 0 : 1 0 : 4 2

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 2

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 3

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5

1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5

have l e f t . . .
1 0 / 0 7 / 1 1 1 0 : 1 0 : 3 5

B r o a d c a s t . . . Re qu es t f o r s o f t w a r e : s w 0 2 4 1 2 4 5 2 3 5 . . .

R e c e v i c e m ess ag e . S o f t w a r e a v a i l a b l e . . .

B r o a d c a s t . . . Re qu es t f o r r e g i s t e r : s w 0 2 4 1 2 4 5 2 3 5 . . .

R e c e v i c e r e g i s t e r i n f o r m a t i o n . . . R e g i s t e r d e v i c e s . . .

Check i f t h e d e v i c e s have b e e n r e g i s t e d . . .

Remove t he r e g i s t e r m f o m a t i o n o f t h e d e v i c e t h a t

Add t he r e g i s t e r i n f o m a t i o n o f t he d e v i c e t h a t have

R e c e i v e t he r e q u e s t me s s ag e from d e v i c e 0 0 2 f o r

Check t he a v a i l a b l e i n f o m a t i o n o f s w0241 2 4 5 2 3 5 . . .

S end t he d e v i c e i n f o m a t i o n o f devieeOOl t o

B r o a d c a s t . . . Re qu es t f o r s o f t w a r e : s w 0 2 4 1 2 4 5 2 3 5 . . .

. R e c e v i c e i n f o r m a t i o n : S o f t w a r e a v a i l a b l e . . .

. B r oa d c a s t . . . Re qu es t f o r r e g i s t e r : s w0241 2 4 5 2 3 5 . . .

R e c e i v e r e g i s t e r i n f o r m a t i o n . . R e g i s t e r d e v i c e s . . .

. Che c k i f t h e d e v i c e s have b e e n r e g i s t e d . . .

.Remove t he r e g i s t e r i n f o m a t i o n o f t he d e v i c e t h a t

Add t he r e g i s t e r i n f o m a t i o n o f t h e d e v i c e t h a t h ave *

Figure 5.9 Log o f CIC

5.3.2.4 Decentralized Download

The decentralized download step is related to the step @ © o f decentralized download

test. When decentralized download method is chosen, the modulation module will be

downloaded from the MMU Client 1 nearby locally. Figure 5.10 shows the log

information o f the MMU Client 2, which presents the operations executed by MMU

Client 2 and the related syncML messages sent back to M M U Server. As shown in

Figure 5.10, the download operation in decentralized download method is executed

successively.

84

o 1 M M U Client 0

C onfiguration Setting Help

Device A Account | DM Tree Log

Management
O p e ra ti on

I n i t i a l i r a t i on
P hase

Download P hase

U pdate P hase

2 0 :0 6 :0 1 R ec e iv e S e rv e r Management
O p e ra tio n M essage from DM
S e rv e r2 0 :0 6 :0 1 Exec v a lu e o f Node
Download ,
URL: /FWPkg/Download/PkgURL
2 0 :0 6 :0 1 S t a r t Download M o d u la tio n
P a c k a g e !
2 0 :0 6 :0 1 Choose dow nload m ethod
w ith CIC!
2 0 :0 6 :0 5 D e c e n t r a l i z e d Download
M ethod i s s e l e c t e d
2 0 :0 6 :0 5 E x ecu te dow nload
M o d u la tio n P ackage from o th e r d e v ice
2 0 :0 6 :2 0 M o d u la tio n F ackage
Download f in i s h e d !
2 0 :0 6 :2 3 Send C l i e n t R esponse to
s e r v e r

C/SyncHdr >
<SyncBody>

< S ta tu s >
<MsgRef>2</MsgRef>
<Cm dID >1 </Cm dID >
<CmdRefX)</CmdRef>
«Cm d>S jTicHdr <7Cm d>
<D a t a>200 </D a t a>

< y S ta tu s>
< S ta tu s >

<MsgRef>l </MsgRef>
<CmdRef>7</CmdRef>
<CmdID>9</CmdID>
<£m d>Ex e c </Cm d>
< D ata>200</D ata>

< /S ta tu s >
< P in a l />

<7SyncBody>
</SyncML>

Figure 5.10 Log o f Decentralized Download in MMU Client 2

Table 5.6 shows the syneML message sent back to MMU Server from MMU Client 2.

This message is one o f the messages in download phase to inform the MMU Server that

centralization download has been finished successfully. The status code 200 is included

in this message under the element "Status".

Table 5.6 Message o f Decentralization Download Results o f MMU Client 2

<SyncML xmlns='SYNCML:SYNCML1.2'>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/l.2</VerProto>
<SessionID>l</SessionID>
<MsgID>2</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

<LocURI>IMEI:000000000000000</LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>2</MsgRef>
< CmdID>1</CmdID>
<CmdRef> 0</CmdRef>

85

<Cmd> SyncHdr</Cmd>
<Data>200</Data>

</Status>
<Status>

<MsgRef>1</MsgRef>
<CmdRef> 5</CmdRef>
<CmdID>9</CmdID>
< Cmd> E x e c< / Cmd>
<Data> 200</Data>

</Status>
<Final/>

</SyncBody>
</SyncML>

5.3.2.3 Centralized Download

This section is related to the step © © of centralized download test. When centralized

download method is chosen, the modulation module will be downloaded from the

content server whose address has been obtained by the “Replace” operation in the

earlier message. Figure 5.11 shows the log information of the MMU Client 3, which

presents the download operations executed by MMU Client 3 and the related syncML

messages sent back to MMU Server. As shown in Figure 5.11, the download operation

in centralized download method is executed successively.

86

r
oJ M M U Client t ° ~ i a~toiir

— , , .

Figure 5.11 Log o f Centralized Download in MMU Client 3

Table 5.7 shows the syncML message sent back to MMU Server from MMU Client 3.

This message is one o f the messages in download phase to inform the MMU Server that

centralization download operation has been finished successfully. The status code 200 is

included in this message under the element “Status” .

Table 5.7 Message o f Centralization Download Results o f MMU Client 3

<SyncML xmlns='SYNCML:SYNCML1.2'>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/1.2</VerProto>
<SessionID>l</SessionID>
<MsgID>2</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

<LocURI>IMEI:000000000000000</LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef>2</MsgRef>
< CmdID>1</CmdID>
< CmdRe f> 0</CmdRe f>

Configuration Setting Help

D evice & A ccount DM T ree Log

O p e ra t i on
2 0 :0 6 :0 1 R ec e iv e S e rv e r Management < /SyncH dr > >

I n i t i a l i z a t i on O p e ra tio n M essage from DM S e rv e r <SyncBody>
P hase 2 0 :0 6 :0 1 Exec v a lu e o f Node < S ta tu s >

Download , <MsgRef>2</MsgKef>

Download P hase M L :. /FtfPkg/Download/PkgURL <CmdID>l </CmdID>

2 0 :0 6 :0 1 S t a r t Download M o d u la tio n <C(ndRefXX/CmdRef>

P a c k a g e ! <<£m d>SyncHdr <7 Cm d>

U pdate P hase 2 0 :0 6 :0 1 Choose dow nload m ethod <D a t a>200 <7D a t a>

w ith CIC! V S t a tu s >

2 0 :0 6 :0 5 C e n t r a l i z e d Download < S ta tu s >

M ethod i s s e l e c t e d <MsgRef>l </M sgRef>

2 0 :0 6 :0 1 E x e cu te dow nload <Cm dRe f >7 </Cm dRe f >

M o d u la tio n P ackage from C o n te n t <CmdID>9</CmdID>

S e rv e r <Cm d>Ex e c <7 Cm d>

2 0 :0 6 :2 0 M o d u la tio n Fackage <Ii a t a2200 <7D a t a>

Download f in i s h e d ! < y S ta tu s ^

2 0 :0 6 :2 3 Send C l i e n t R esponse to < T in a l/>

s e rv e r < /SyncBo dy>
<7SyncML> —

87

<Cmd> SyncHdr</Cmd>
< Data> 2 00</Data>

</Status>
<Status>

<MsgRef>1</MsgRef>
< CmdRe f> 7</CmdRe f>
< CmdID> 9</CmdID>
<Cmd>Exec</Cmd>
<Data>200</Data>

</Status>
<Final/>

</SyncBody>
</SyncML>

5.3.3Update Phase

The update phase is related to the step © of both centralized download test and

decentralized download test. Due to the update phase are the same as the two tests, we

only present the test results between MMU Server and MMU Client 2 in this section.

5.3.3.1 MMU Server

As mentioned, the task of update phase is to finish the update execution of modulation

module. The precondition of update execution is that the download execution has been

finished successfully. That means the modulation module package is downloaded into

the mobile device. Figure 5.12 shows the log information of the MMU Server, which

presents the operations defined by MMU Server and the related syncML messages send

to MMU Client 2. As shown in Figure 5.12, the update operation is initiated by the

command “Exec” on node Update.

88

uy M M U Server GE) p m k S m i

C onfiguration S ettin gs Help

Management Inform ation Management O peration

Operati ons

Hoti f i c a t i on I» » I
In i t.i a l l r a t i on 1» » 1
Replace 1» » 1
Exec Download 1» » I
Exec Update l»»l

20:05:50 Replace Value o f Node PkgURL ,
URL:. /FWFkg/Download/PkgURL
20:05:53 R eceive Success Message from
C lien t
20:06:00 Exec B ownlo ad
20:06:23 R eceive Success Message from
C li ent
20:06:30 Exec Update
e20:06:48 R eceive Success Message from
C li ent

<MsgRef>l</MsgRef><CmdRe£>l
</CmdRef>

<CmdID>5<yCmdID>
<Cm d>Al er t < /Cm d>
<D at a>200 at a>

<(/Status>
<Exec>

<Cm dID >5 </Cm dID >
<dtem>

'CTargeO
«LocURI>. /FwInfo/MdPkg/Update

</LocUFJ>
<LocName YUp dat e Lo cHam e >

"C/Tar get>
<yitem)-

</Exec>
< F i n a l />

K/SyncBodjd
</SyncML>

Figure 5.12 Log o f Update Phase in MMU Server

Table 5.8 shows the syncML message sent from MMU Server to MMU Client 2 for the

“Exec" update operation. This message is one o f the messages in update phase, which is

to initiate the update execution in mobile devices. The target o f the Exec command is

the Update node in DM Tree. As shown in Table 5.8, the name and the path o f the target

node are included in this message under the command '‘Exec".

Table 5.8 Message o f Execution Command for Update

<SyncML xmlns='SYNCML:SYNCML1.2’>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/l.2</VerProto>
<SessionID>l</SessionID>
<MsgID> 3</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

< LocURI>IME1:000000000000000</LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
_____ <MsgRef>2< /MsgRef> __________________ _____

89

< CmdlD>1</CmdID>
<Cmd>SyncHdr</Cmd>
<Data> 200</Data>

</Status>
<Exec>
<CmdID>5</CmdID>
<Item>

<Target>
<LocURI>./Fwlnfo/MdPkg/Update</LocURI>
<LocName>Update</LocName>

</Target>
</Item>

</Exec>
<Final/>

</SyncBody>
< /SyncML>

5.3.3.2 MMU Client

After receiving the operation message from MMU Server, MMU Client 2 starts to

execute the update operation specified in the message. The update of modulation

module is realized through the interface provided hardware abstract layer. Figure 5.13

shows the log information of the MMU Client 2, which presents the update operations

executed by MMU Client 2 and the related syncML messages sent back to MMU Server.

As shown in Figure 5.13, the update operation is executed successively.

90

bJ M M U Client iej UiaJ’
C onfiguration Setting Help

D ev ice & A c c o u n t | DM T re e 1 Log

Management
O p e ra ti on

I n i t ia l iz a t io n
Phase

Download Phase

Update Phase

2 0 :0 6 :3 1 R ec e iv e S e rv e r Management
O p e ra tio n M essage from S e rv e r |
2 0 :0 6 :3 1 S t a r t u p d a t in g m o d u la tio n
package
2 0 :0 6 :4 5 M o d u la tio n p ac k ag e have

b ee n u p d a te d from V e rs io n 1 to
V e rs io n 2
2 0 :0 6 :4 6

Send C l i e n t R esponse to s e r v e r

</SyncH dr>
<SyncBody>

< S ta tu s >
<MsgRef>2</MsgRef>

<CmdID>l </CmdID>
<CmdRefXl</CmdRef>
«Cm d>SyncHdr <i/Cm d>
<Data>200<7Data>

< /S ta tu s >
< S ta tu s >

<MsgRef>l </MsgRef>
<JCmdRef>5</CmdRef>
<CmdID>5</CmdID>
<Cmd>Exec4/Cmd>
< D ata>200</D ata>

4 /S ta tu s >
< J in a l />

4/SyncBody>
4/SyncM L/

Figure 5.13 Log o f Update in MMU Client 2

Table 5.9 shows the syncML message sent back to MMU Server from MMU Client 2.

This message is one o f the messages in update phase to inform the M M U Server that the

“ Exec" update operation has been finished successfully. The status code 200 is included

in this message under the element “Status".

Table 5.9 Message o f Update Results o f MMU Client 2

<SyncML xmlns='SYNCML:SYNCML1.2’>
<SyncHdr>

<VerDTD>1.2</VerDTD>
<VerProto>DM/l.2</VerProto>
<SessionID>l</SessionID>
<MsgID>2</MsgID>
<Target>

<LocURI> http://localhost/Management </LocURI>
</Target>
<Source>

<LocURI>IMEI:000000000000000</LocURI>
</Source>

</SyncHdr>
<SyncBody>

<Status>
<MsgRef> 2</MsgRef>
<CmdID>1</CmdID>
<CmdRef> 0</CmdRef>

library ̂j
iC, /

<Cmd>SyncHdr</Cmd>
<Data>200</Data>

</Status>
<Status>

<MsgRef>1</MsgRef>
<CmdRef> 5</CmdRef>
<CmdID>9</CmdID>
<Cmd>Exec</Cmd>
<Data>200</Data>

</Status>
<Final/>

</SyncBody>
</SyncML>

5.4 Summary

In this chapter, we simulated the server side and the client side of the framework as well

as the CIC to test and verify the framework we proposed for the modulation module

OTA upgrade. The test and the verification results in this chapter show the feasibility

and accuracy of MMU.

9 2

6. Conclusion and Future Work

In this chapter, we conclude the contributions and present the possible future work of

this thesis.

6.1 Conclusion of Contributions

In this thesis, a framework MMU for modulation module upgrade in mobile devices

based on OMA DM Standard is proposed. This thesis presents the overall design of

MMU, including the design of management architecture, the management object and

the management operations. A combined download mechanism which combines the

decentralized download method and centralized download method is proposed, which

allows the firmware not only to be downloaded from central servers but also to be

passed from one device to another. The implementation o f MMU is elaborated from a

coding point of view in this thesis, including the DM Server side and the Agents of the

Client side in mobile devices. Moreover, we simulated the server side and the client side

of the framework as well as the CIC to test and verification the framework we proposed

for the modulation module OTA upgrade. The test and the verify results show the

feasibility and accuracy of MMU.

6.2Future Work

In this thesis, we propose a framework MMU for modulation module upgrade in mobile

devices based on OMA DM standard. Our research focuses on the software upgrade on

mobile devices especially the modulation module, which lays particular emphasis on the

management and realization of the software download and update between server side

and mobile devices. Although our research is based on the reconfigurable feature

provided by SDR technology, it has not directly referred to the lower layer development

of SDR system and the implementation o f MMU is still in a simulation phase. Therefore,

the future work can be related to the lower layer implementation.

93

Bibliography

[1] A. Sandeep, M. Sangita, et al, “Universal Manager: seamless management o f enterprise mobile

and non-mobile devices,” 2004 IEEE International Conference on Mobile Data Management,

pp.320-331,2004.

[2] F. Siddiqui, and S. Zeadally, “Mobility management across hybrid wireless networks: Trends

and challenges, Computer Communications,” 29(9), pp. 1363-1385, 2006.

[3] J. Hoffmeyer, P. Il-Pyung, et al, “Radio software download for commercial wireless

reconfigurable devices, Communications Magazine,” IEEE, 42(3), pp. S26-S32, 2004.

[4] “A technology overview o f Software Defined Radio,” Wipro Technologies White Paper,

August 2002

[5] “Underatanding finnware over the air-FOTA,” Innopath White Paper, 2007

[6] “The Critical Role o f Interoperability standards for mobile device management,” Innopath

White Paper, 2007

[7] U. Ramacher, “Software Defined Radio Prospects for Multi-standard Mobile Phones,” IEEE,

40(10), pp.62-69, October 2007

[8] 3GPP. http://www.3gpp.org/

[9] John D.Ralston, Peter G. Bier, “The emergence o f software phone,” SDR Forum, 1998

[10] SDR Forum, http://www.sdrforum.org

[11] “SDRF Cognitive Radio Definitions,” SDR Forum working document, November, 2007

[12] A. Kountouris, C. Moy, “Reconfiguration in software radio systems”, Karlsruhe Workshop on

Software Radios, 2002

[13] J.P. Delahaye, G. Gogniat, et al, “Software radio and dynamic reconfiguration on a DSP/FPGA

platform”, in Rykaczewski, P. and Schmidt, M. (Eds.): in special issue on Software Defined

Radio o f Frequenz, May-June, No. 58, pp. 152-159, 2004

[14] “Base Station System Structure”, SDR Forum Document, January. 2002

[15] J.P. Delahaye, C. Moy, P. Leray, J. Palicot, “Managing dynamic partial reconfiguration on

heterogeneous SDR platforms”, SDR Forum, November,2005

[16] J.P. Delahaye, C. Moy, P.Leray, J. Palicot, ’’Partial Reconfiguration o f FPGAs for Dynamical

Reconfiguration o f a Software Radio Platform”, in Proc. o f 1ST Mobile and Wireless

Communications Summit, Budapest, Hungary, June 2007

[17] “SDR Market Study Task 1: Market Segmentation and Sizing”, SDR Forum Document,

SDRF-05-A-0003-V0.00,March, 2005

[18] P. Sedcole, B. Blodget, T. Becker, J. Anderson, P. Lysaght, “Modular dynamic reconfiguration

94

in Virtex FPGA,” Computers and Digital Techniques, IEE Proceedings - , vol. 153, no.3, pp.

157-164, 2 May 2006

[19] M. Ullmann, M. Hubner, B. Grimm, J. Becker, “A FPGA Run-Time System for Dynamical

On-Demand Reconfiguration,” In Proc. o f the 18th Int. Parallel and Distributed Processing

Symposium, 2004

[20] A.P.Ershow, “Fourth-generation software”, Cybernetics and systems analysis, 1973

[21] Sharon Peleg, “Redefining FOTA deployment in EMEA—FOTA’s role in user experience

management,” Wireless Informatics Forum.

[22] C. Andreas, L. Matt, “ Finnware Over-the-air: From Hype to Market Reality”, ARCchart

research paper sponsored by Red Bend Software, October,2006

[23] “Finnware Over the Air (FOTA) and Mobile Device Management (MDM)”, HP White Paper,

March 2009

[24] “Finnware Management: Using Wireless Informatics to solidify the business case”, Wireless

Informatics Forum, 2007

[25] Sharon Peleg, “Principles o f Updating Mobile Firmware Over-the-Air (FOTA)”, Red Bend

Software White Paper.

[26] “Key Criteria for Evaluating Technologies for Effective Finnware Over-The-Air (FOTA)

Updating o f Mobile Phones”, Red Bend Software White Paper.

[27] R. Chakravorty, H. Ottevanger, “Architecture and Implementation o f a Remote management

framework for dynamically reconfigurable devices,” Proc. o f the 10th IEEE International

Conference on Networks, pp.375-381, 2002.

[28] Shi, Z., C. Dolwin, et al. “An OMA DM based Software Defined Radio Proof-of-Concept

Demonstration Platform,” Personal, IEEE 18th International Symposium on Indoor and Mobile

Radio Communications, pp. 1-5, 2007.

[29] Open Mobile Alliance, http://www.openmobileallianve.org

[30] S. Husain, T. Alonso, et al. “Remote device management o f W iMAX devices in multi-mode

multi-access environment,” IEEE International Symposium on Broadband Multimedia Systems

and Broadcasting, pp. 1-14, 2008.

[31] Ma, J., J. Liao, et al. “Device Management in the IMS, Journal o f Network and Systems

Management,” 16(1), pp.46-62, 2008.

[32] B. Steinke, and K. Strohmenger. “Advanced Device self Management through Autonomies and

Reconfigurability, Mobile and Wireless Communications Summit,” 16th 1ST. pp. 1-4, 2007.

[33] Open Mobile Alliance, “OMA Device Management Standardized Objects”, 2007.

[34] Open Mobile Alliance, “OMA Device Management Tree and Description”, Version 1.2, 2008.

95

[35] IETF. “Uniform Resource Identifiers (URI)”, RFC 2396, 1998

[36] Open Mobile Alliance, “OMA Device Management Tree and Description Serialization”,

Version 1.2, 2005.

[37] Open Mobile Alliance, “OMA Device Management Representation Protocol”, Version 1.2,

2005.

[38] Open Mobile Alliance, “SyncML Representation Protocol”, Version 1.2.1, 2007

[39] Open Mobile Alliance, “OMA Device Management Protocol”, Version 1.2.1, 2008

[40] Open Mobile Alliance, “Firmware Update Management Object”, Version 1.0.2, 2009

[41] Open Mobile Alliance, “Device Management Architecture”, Version 1.3, 2009

[42] R. State, O. Festor, et al., “An extensible agent toolkit for device management,” Proc. o f the

2004 IEEE/IFIP Int'l Symp. on Network Operations and Management Symposium, pp.845-858,

2004

[43] K. Joon-Myung, J. Hong-Taek, et al., “OMA DM-based remote software fault management for

mobile devices,” Int. J. Netw. Manag, 19(6), pp.491-511, 2009

[44] L. Hun-Jung, P. Seon-Ho, et al., "u-MoDEM : ubiquitous Mobile Device Environment Manager

based on OMA-DM," The 10th International Conference on Advanced Communication

Technology, pp.283-287, 2008.

[45] S. Jaeyoung, C. Youngwoo, et al., "Design and implementation o f the management agent for

mobile devices based on OMA DM," Proceedings o f the 2nd international conference on

Ubiquitous information management and communication, 2008

[46] Open Mobile Alliance. "Finnware Update Management Object Architecture", Version 1.0,

2007

[47] Oommen, P. "A framework for integrated management o f mobile-stations over-the-air," 2001

IEEE/IFIP International Symposium on Integrated Network Management Proceedings,

pp.247-256, 2001.

[48] D. Krishnaswamy, T. Pfeifer, et al. "OMA DM Based Remote RF Signal Monitoring o f Mobile

Devices for QoS Improvement," Real-Time Mobile Multimedia Services, Springer

Berlin/Heidelberg, pp.76-87, 2007.

[49] Kang, JM, Ju HT, Choi MJ, Hong JWK, "OMA DM Based Remote Software Debugging o f

Mobile Devices", Lecture Notes in Computer Science, 4773: 51 “ 61, 2007

[50] H.Zhang, H.X.Wang, et al., "An OMA DM Based Framework for Updating Modulation

Module for Mobile Devices, " International Journal o f Adaptive, Resilient and Autonomic

Systems, 2(3), pp. 13-23, 2011

[51] Open Mobile Alliance, "Device Management HTTP Binding", Version 1.3, 2010

9 6

