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A bstract

In this thesis, we are interested in the stochastic differential equation with 

jumps under regime switching.

Firstly, we investigate a continuous-time version of the mean-variance 

portfolio selection model with jumps under regime switching. The portfolio 

selection proposed and analyzed for a market consisting of one bank account 

an d multiple stocks. The random regime switching is assumed to be inde

pendent of the underlying Brownian motion and jump processes.

Secondly, we consider the problem of pricing contigent claims on a stock 

whose price process is modeled by a Levy process. Since the market is in

complete and there is not a unique equivalent martingale measure. We study 

approaches to pricing options.

Finally, we investigate a continuous-time version Markowitz’s mean-variance 

portfolio selection problem which is studied in a market with one bank 

account, one stock and proportional transaction costs. This is a singular 

stochastic control problem. Via a series of transformations, the problem is 

turned into a double obstacle problem.
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N otation

a.s.

0

Ia

A c B

a(C)

B(Rn)

f : A - + B

jgmxd .

H  :

A ',A T : 

C(D;Rn) :

Cm(D;Rn) :

C2,1(D x R +;M) :

Almost surely, or with probability 1.

The empty set.

The indicator function of a set A, 

i.e. Ia (x) =  1 if x  € A or otherwise 0.

A D B c = 0.

The cr-algebra generated by C.

The Borel cr-algebra on Rn.

The mapping /  from A to B.

[0, oo).

The n-dimensional Euclidean space.

The space of real n x d matrices.

The Euclidean norm of a vector x.

The transpose of a vector or matrix A.

The family of continuous Mn-valued functions defined 

on D.

The family of continuously m-times differentiable 

Rn-valued functions defined on D.

The family of all real-valued functions V(x,t)  defined 

on D x M+ which are continuously twice differentiable 

in x G D and once differentiable in £ £ R+.



Vi: Kt =  W  =  (Vij, • • • .V *) = (% ,■ ■ ■ ,£ ) .

Vxx • Vxx (^XiXj)nxn (QXidxj )nxn‘
Z/(17; i?n) : The family of i?n-valued random variables X with

E\X\P < oo.

£ p([a, 6]; i?n) : The family of Rn-valued ^-adapted processes 

{/M}a<t<*> such that Ja6 |/(^)|p^  < oo a.s.

Other notations will be explained where they first appear.
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Chapter 1

Introduction

1.1 Background

The jump diffusion process has come to play an important role in many 

branches of science and industry. In their book [31], 0ksendal and Sulem 

have studied optimal control, optimal stopping and impulse control for jump 

diffusion processes. In mathematical finance theory, many researchers have 

developed option pricing theory, for example: Merton [28] was the first to 

use the jump processes to describe the stock dynamics, Bardhan and Chao 

[1] were amongst the first authors to consider market completeness in a dis

continuous model. Jump diffusion models have been discussed by Chan [4], 

Follmer and Schweizer [11], El Karoui and Quenez [21], Henderson and Hob

son [18], and Merculio and Runggaldier [27], to name a few.

On the other hand, regime-switching models have been widely used for 

price processes of risky assets. For example, in Jobert and Rogers [20] the op

timal stopping problem for the perpetual American put has been considered, 

and the finite expiry American put and barrier options have been priced. As

set allocation has been discussed in Elliott and Van der Hoek [9], and Elliott

10



and Malcolm [10] have investigated volatility problems. Regime-switching 

models with a markov-modulated asset have already been applied to option 

pricing in Guo [14,15,16] and the references therein. Morerover, Markowitz’s 

mean-variance portfolio selection with regime switching has been studied in 

Yin and Zhou [36], Zhou and Yin [40] and Zhou and Li [39].

Portfolio selection is an important topic in finance, multi-period mean- 

variance portfolio selection has been studied in , for example, Samuelsom 

[34], Hakansson [17], and Pliska [33] among others. Continuous-time mean- 

variance hedging problems were attacked by Duffie and Richardson [8] and 

Schweizer [35] where optimal dynamic strategies were derived, based on the 

projection theorem, to hedge contingent claims in incomplete markets.

1.2 M athem atical m odel of security markets

Definition 1.1 A European call option gives its holder the right, but not 

the obligation, to purchase from the writer a prescribed asset for a prescribed 

price at a prescribed time in the future.

The prescribed time in the future is known as the expiry date or the ex

ercise date or the maturity. The prescribed purchase price is known as the 

strike price or the exercise price.

We denote by S{t) the price of a particular stock, S(t) the discounted 

price process, and the value process V (t) the total value of the portfolio, at 

time t. A contingent claim is a random variable X  representing a pay-off at 

the maturity time. It is part of a contract that a buyer and a seller agree at 

time t — 0.

11



1.3 M artingale

Throughout this thesis, we let (f2, P , P) be a complete probability space with 

a filtration {.Ff}o<<<oo> which satisfies the usual conditions, i.e. it is increasing 

and right continuous while Pq contains all P-null sets. By a filtration we mean 

a family of cr-algebras {.F*}o<t<oo that is increasing, i.e., Ps C p t if s < t. If 

(fi, P, P) is a probability space, we set

P  = {A C 0  : 3B t C £ P  such that B  C A C C, P{B) = P{C)}.

Then T  is a <r-algebra and is called the completion of T .  If T  — P, the 

probability space ( fl ,P ,P )  is said to be complete.

Definition 1.2 Let (5, E) be a measurable space, then the process X  is said 

to be adapted to the filtration {.Ft}o<t<oo if the random variable X t : —> E

is a (Pt, £) measurable function for each t G [0, oo).

Definition 1.3 A real-valued, adapted process X  =  {Xt)o<t<00 is caled a 

martingale with respect to the filtration {̂ }o<<<cxd if

(i) X t £ L1(dP); that is, E { |^ |}  < oo;

(ii) if s < t ,  then =  X 3, a.s..

Definition 1.4 A stochastic process X  is said to be cadlag if it a.s. has 

sample paths which are right continuous, with left limits.

Definition 1.5 Let X(t), Y(t) £ Rn be two cadlag semimartingales. The 

quadratic covariation of X(-) and Y(-), denoted by [X, y](-), is the unique 

semimartingale such that

X{t)Y(t) = X{0)Y{0)+ f  X{s~)dY{s)+ f  Y(s~)dX(s) + [X,Y]{t).
Jo Jo
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1.4 Brownian m otion

Brownian motion is at the heart of most models in practice. Its name comes 

from the Scottish botanist Robert Brown who reported it in around 1827.

The paths of a Brownian motion are continuous, almost surely. Moreover, 

we may identify u  G 0  with a continuous function t —> Wt(uj) from [0, oo) 

into Mn. Thus we may adopt the point of view that Brownian motion is just 

the space C([0, oo),Rn) equipped with certain probability measures P.

Definition 1.6 Let (fi, T , P) be a complete probability space with a filtration 

satisfying usual conditions. A (standard) one-dimensional Brownian 

motion is a real-valued continuous T t-adapted process {W*}*>o with the fol

lowing properties:

(1) Wo =  0 almost surely;

(2) for 0 < s < t < oo, the increment Wt — Ws is normally distributed

with mean zero and variance t — s;

(3) for 0 < s < t < oo, the increment Wt — W8 is independent 0 f { ? .} .

The filtration {^i}o<t<oo is a part of the definition of Brownian motion. 

However, we say Brownian motion on a probability space (ft, T , P) with

out filtration. That is, {Wt}t>o is a real-valued continuous process with 

properties (1) and (2), but property (3) is replaced by that it has inde

pendent increments.(We say a Brownian motion {W/}*>o has independent 

increments, if the increments Wti — Wti_x, 1 < i < k are independent, for 

0 < t0 < ti < • • • < tie < oo.) In this case, define T™ =  cr(Ws : 0 < s < t) 

for t > 0, i.e. is the ^-algebra generated by{W s : 0 < s < t}. We 

call the natural filtration generated by {Wt}. Clearly, {W*} is a

Brownian motion with respect to the natural filtration { T ^ } .  Furthermore, 

if {Tt} is a ’’larger” filtration in the sense that C for t > 0, and
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Wt — Ws is independent of Ps whenever 0 < s < t < oo, then {Wt} is a 

Brownian motion with respect to the filtration {Tt}.

1.5 Markov process

An n-dimensional .Fr adapted process X  = {A*}*>0 is called a Markov process 

if the following Markov property is satisfied: for all 0 < s < t < oo and 

A e B(Rn),

P(X{t) e A\TS) =  P(X{t) e  A|A(s)).

This is equivalent to the following one: for any bounded Borel measurable 

function ip : Rn -> R and 0 < s < t < oo,

E{v {X(t))\F,) =  E(<p(X(t))\X(s)).

1.6 Stochastic differential equations

Let ( fl ,P ,P )  be a complete probability space with a filtration {Pt}t>o sat

isfying the usual conditions. Let W(t) = (IVi(t), • • • , Wrn(t))T, t > 0 be an 

m-dimensional Brownian motion defined on the space. Let 0 < t0 < T  < oo. 

Let x 0 € Lj-to(H; Rn), i.e., an ^-m easurable Rn-valued random variable 

such that £|a;o|2 < Let 6 : En x [to, T\ —> Rn and a : Rn x [to, T ] —> Rnxm 

be both Borel measurable. Consider the n-dimensional stochastic differential 

equation of Ito type

dx(t) = b(x(t), t)dt +  a(x(t), t)dW (t )

with initial value x(t0) = x0. By the definition of stochastic differential, this 

equation is equivalent to the following stochastic integral equation



Systems in many branches of science and industry are often subject to 

various types of noise and uncertainty. For example, let us consider a simple 

model of an asset price. Suppose that at time t the asset price is S(t). 

Consider a small subsequent time interval dt, during which S(t) changes to 

S(t)+dS(t). (We use the notation d- for the small change in any quantity over 

this time interval when we intend to consider it as an infinitesimal change.) 

By definition, the return per unit of the asset price at time t is dS(t)/S(t).

To understand the modelling more easily, suppose that the asset is a bank 

deposit while the bank deposit interest rate is r. So S(t) is the balance of 

the saving account at time t. Thus the return dS(t)/S(t)  of the saving at 

time t is rdt, that is

dS(t)
W = ’

or

= r 5 ( t ) -

This ordinary differential equation can be solved exactly to give exponential 

growth in the value of the saving, i.e.

S(t) = S(t o)e’-<'-i°>,

where S(to) is the initial deposit of the saving account at time t0.

The most common model decomposes the return dS(t)/S(t)  of the asset 

price into two parts. First, there is a predictable, deterministic and antici

pated return on money invested in a risk-free bank. It gives a contribution

bdt

to the return d S /S , where b is a measure of the average rate of growth of the 

asset price. In simple model 6, which is also known as “drift” , is taken to be 

a constant. (In this thesis, 6 is a function.)

15



or

and

Then, the second one is the random change in the asset price in response 

to external effects. It is represented by a random sample drawn from a normal 

distribution with mean 0 and adds a term

adW(t)

to dS/S. o’ is a matrix called the volatility, which measures the standard 

deviation of the returns. It is taken to be a constant in simple model. ( In 

this thesis, a is also a function.) Here W(t) is a standard Brownian process.

So, putting these two parts together, we can easily justify the stochastic 

differential equation

^  = bdt + adW (t), 

dS(t) = bS(t)dt + aS(t)dW{t), 

S(t) = S(t0) + b [  S(u)du + a f  S{u)dW(u).
Jto Jto

The formal interpretation of an SDE is given in terms of what constitutes 

a solution to the SDE. There are two main definitions of a solution to an 

SDE, a strong solution and a weak solution. Both require the existence of 

a process S(t) that solves the integral equation version of the SDE. A weak 

solution consists of a probability space and a process that satisfies the integral 

equation, while a strong solution is a process that satisfies the equation and 

is defined on a given probability space.

We will be working on the SDEs under regime switching in this thesis,

dS(t) = b(a(t))S(t)dt +  a{a{t))S{t)dW{t),

where the continuous-time stationary Markov chain a(t) takes value in a 

finite state space § =  {1 ,2 ,...,/} .

16



1.7 SDEs w ith jum ps and Ito formula

D efinition 1.7 An adapted process X  = (X t)t>0 with X 0 = 0 a.s. is a Levy 

process if

(i) X  has increments independent of the past; that is X t — X s is indepen

dent of T s, 0 < s < t < oo; and

(ii) X  has stationary increments; that is, X t — X s has the same distribu

tion as X t- S, 0 < s < t < oo, and

(Hi) X t is right continuous with left limit (RCLL).

D efinition 1.8 A Poisson process N(t) of intensity A > 0 is a Levy process 

taking values m NUO  and such that

P[N(t) = n] = ^ f - e ~ xt,n  =  0 ,1 ,2 ,....  
n!

D efinition 1.9 Let B be the family of Borel sets U C M whose closure U 

does not contain 0. For U G B, we define

N(t ,U)  =  N(t ,U,u>)= Y ,  Xvi&V*)-
s:0<s<t

In other word, N(t,U) is the number of jumps of size Ar;s € U which occur 

before or at time t (the differential form of this measure is written N(dt , dz)). 

Then the set function

v(U) = -R[N(l,U)},

where E =  Ep denotes expectation with respect to P, also defines a a-finite 

measure on B, is called the Levy measure of the Poisson process N.

Actually there is a relationship between a Poisson process and a Poisson 

random measure as the following:

17



R em ark 1.1 For any fix U G B, let

iru(t) := 7Tu(t,cj) := N(t, U,u), 

then 7Tu(t) is a Poisson process with intensity X = v{U) =  E[JV(1, U)\, i.e. 

P(nu{t) = n) = ^ - e ~ xt, n = 0 ,1 ,2 ,.. ..n\

Let P) be a fixed complete probability space. Let N(t,z)  be a

Poisson process and denote the compensated Poisson process by

N(dt , dz) = N(dt , dz) — v(dz)dt,

where v is a Poisson point process. We assume that W(t), a(t) and N(dt, dz) 

are independent.

D efinition 1.10 Let Wt be 1-dimensional Brownian motion on (Q ,T,P).  

A (1-dimensional) Ito-Levy process (or stochastic integral) is a stochastic 

process St on (fi, J 7, P) of the form

St = S0 + / b(s,uj)ds-\- / cr(s,Lj)dWs + / / p(s,uj, z)N(ds,dz),
Jo Jo Jo JR

so that

P[ f  cr(s,uj)2ds < oo, t > 0] =  1. 
Jo

We also assume that Wt is Tt-adapted (Wt is a martingale with respect to 

T t) and

P[ (  |6(s,o;)|ds < oo,t > 0] =  1, 
Jo

P[ I  f  P(s , co,z)i'(dz)ds < oo,t >  0] 
Jo JR

18



Theorem  1.1 [0ksendal and Sulem (2005)] Let X(t)  G Mn be an Ito- 

Levy process of the form

Let f  G C1,2(Rn) and define Y(t) = f ( t ,X ( t) ) .  Then Y(t) is again an 

Ito-Levy process and

1.8 Esscher transform and minimal relative 

entropy martingale measures

The Esscher transform is a time-honored tool in actuarial science. It is also 

an efficient technique for valuing derivative securities if the logarithms of the 

prices of the primitive securities are governed by certain stochastic processes 

with stationary and independent increments.

For a probability density function f(x),  let h be a real number such that

d X (t) =  b(t, uS)dt +  a(t, uS)dW(t) +  /  p{t, co, z)N(dt, dz)

where

N(dt , dz) = N(dt, dz) — v(dz)dt

dY(t)

=  ^ ( t ,  X(t))dt +  | f-(t, X(t))[b(t, u)dt +  a(t, u)dW(t)]

+  f  { f ( t , x ( r ) + p ( t , u i , z ) ) - f ( t , x ( r ) ) - ~ ( t , x ( r ) ) p ( t , u , z ) } i ^ ( d z ) d t  
J R OX

+  f  { f ( t , X( t - )  +  p ( t , u , z ) ) - f ( t , X ( r ) ) } N ( d t , d z ) -J R

19



exists. As a function in x ,

f(x; h) = -

is a probability density, and it is called the Esscher transform (parameter h) 

of the original distribution.

Suppose that a probability space (f2, T , P) and an increasing family of 

sub cr-fields of T ,  .7^,0 < t < T, are given as usual. A price process is a 

Ji-adapted stochastic process S(t) defined on (f2, J7, P).

We define V{S) as the set of all equivalent .9-martingale measures, namely 

the set of all probability measures Q ~  P  (mutually absolutely continuous). 

If the set V(S) is singleton, then the market is said to be complete. If the 

set V(S)  consist of more than one element, then the market is said to be 

incomplete.

Definition 1.11 (m inim al entropy m artingale m easure)[YO SH IO  

M IY A H A R  1999] If  an equivalent martingale measure P satisfies the fol

lowing condition

H(P\P) < H(Q\P),VQ e-P(S),

then P is called the minimal entropy martingale measure of S(t), where 

H(Q\P) is the relative entropy of Q with respect to P, which is given by 

the following formula

[ f  log[% d Q , Q «  P,
H(Q\P) = 1  Ja dp

I oo, otherwise.
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Chapter 2 

Portfolio selection of stochastic  

differential equation w ith  

jum ps under regime switching

Markowitz’s mean-variance portfolio selection with regime switching has been 

studied in Yin and Zhou [36], Zhou and Yin [40] and Zhou and Li [39].

Portfolio selection is an important topic in finance, multi-period mean- 

variance portfolio selection has been studied in , for example, Samuelsom 

[34], Hakansson [17], and Pliska [33] among others. Continuous-time mean- 

variance hedging problems were attacked by Duffie and Richardson [8] and 

Schweizer [35] where optimal dynamic strategies were derived, based on the 

projection theorem, to hedge contingent claims in incomplete markets.

In this chapter, we develop Stochastic Differential Equations under regime 

switching with jumps. The jump diffusion process has come to play an im

portant role in many branches of science and industry. In their book [31], 

0ksendal and Sulem have studied optimal control, optimal stopping and im

pulse control for jump diffusion processes.

21



2.1 SDEs under Regim e Switching w ith Jumps

Throughout this thesis, let (fJ, T , P) be a fixed complete probability space 

on which is defined a standard d-dimensional Brownian motion W(t) = 

(Wi(£),. . . ,  Wd(t))' and a continuous-time stationary Markov chain a(t) tak

ing values in a finite state space S =  {1,2, . . . , /}.  Let N(t,z)  be a n- 

dimensional Poisson process and denote the compensated Poisson process

N(dt, dz) = (Ni(dt, dzi) , . . . ,  Nn(dt, dzn))'

= (Ni(dt, dz{) -  vi(dzi)dt, . . . ,  Nn(dt, dzn) -  vn{dzn)dt) ', (2.1)

where N j,j  =  1, . . . ,  n, are independent 1-dimensional Poisson random mea

sures with characteristic measure Vj, j  =  1, . . .  ,n, coming from n indepen

dent 1-dimensional Poisson point processes. We assume that W(t), a(t) 

and N(dt,dz) are independent. The Markov chain a(t) has a generator 

Q =  (Qij)ixi given by

where A > 0. Here qij > 0 is the transition rate from i to j  if i ^  j  while

are stationary transition probabilities, and

P i j { t )  = P(oc{t) = j\oc(0) = i ) ,  t>  0,z,j  =  1,2, . . . , / .  (2.2)

Define T t =  o”{W(s), a(s), N (s , •) : 0 < s < t}. Let | • | denote the Euclidean 

norm as well as the matrix trace norm, M' denote the transpose of any vector 

or matrix M. We denote by L ^ 0 T;Rm) the set of all Rm-valued, measurable 

stochastic processes f(t)  adapted to {^}f>o, such that E JQT \f(t)\2dt < +oo.

by

P{a(t + A) = j\a(t) = i} =  <
\

A + o( A) : if i ^ j

1 +  quA + o(A) : if i = j

22



Consider a market in which d +  1 assets are traded continuously. One 

of the assets is a bank account whose price Po(t) is subject to the following 

ordinary differential equation:

dP0(t) = r(t,a(t))P0{t)dt, t € [0,T],
(2.3)

 ̂ P0(0) =  po > 0,

where r(t,i) > 0,i = 1 ,2,... ,1, is given as the interest rates corresponding to 

different market modes. The other d assets are stocks whose price processes 

Pm(t), rn = 1,2, . . . ,  d, satisfy the following system of stochastic differential 

equations (SDEs):

d
dPmit) = Pm(t){bm(t,a(t))dt +  E a(t))dWn{t)

71=1

P m jit.a^ .z^N jid t^dzj)} , t e [0 ,T \ ,  2̂'4^

Pm{0) = p m > 0,.

where for each i = 1,2, . . . ,  Z, b : [0,T] x § 4  Rdxl, a : [0,T] x § —> M.dxd, 

p : [0, T] x § x Mn —> Rdxn is the appreciation rate process and am(M) ;— 

((7mi (t, i ) , . . . ,  amd(t, i)) are adapted processes such that the integrals exists. 

And each column of the d x n  matrix p = [pij] depends on 2  only through 

the fcth coordinate Zk, i.e.,

p{k\ t , i , z )  =  p{k)( t, i ,zk),z  = ( z i , . . . , 2„) GRn

R em ark 2.1 Generally speaking, one uses non-compensated Poisson pro

cesses in a jump diffusion model (see Kushner [23]). However, we use com

pensated Poisson processes in equation (2.4) instead of using non-compensated 

Poisson processes, this is because: Firstly, using the relationship (2.1) we can 

easily transform a jump diffusion model driven by non-compensated Poisson

+
n f  

? / .
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processes into a jump diffusion model driven by compensated Poisson pro

cesses; Secondly, using compensated Poisson processes we can keep the Ric- 

cati equation (2.29) is similar to that of a diffusion model without a jump 

processes, and then H(t,i) in (2.30) has a financial interpretation.

Define the volatility matrix, for each i =

o(t,i) :=
^ 1  (M)^

— iPmn{fiiy)dxdi (2.5)

and

where

KM) =

p{t,i,z) =

\bd{t, i) J

\Pd(t,i,z)J

i d x  1

jd x n

Pmifi i) (Pml(^j b ^) j ’ > Pmnifi )̂)*

We assume throughout this thesis that the following non-degeneracy con

dition

o-(f,i) (7(i,i)/ > 51 y t  6  [0 ,T], and i =  1 ,2 ,... ,Z, (2.6)

is satisfied for some 5 > 0. We also assume that all the functions r( t , i), 

bm(t,i), <7mn(t, i), pmn{t,i,z) are measurable and uniformly bounded in t.
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Suppose that the initial market mode a(0) =  i$. Consider an asset with 

an initial wealth Xq > 0. These initial conditions are fixed throughout the 

thesis. Denote by x(t) the total wealth of the assets at time t > 0. As

suming that the trading of shares takes place continuously and that transac

tion cost and consumptions are not considered. Suppose the right portfolio 

(7To(t), TTi(t), • • • , 7Td{t)) exists, where 7To(t) is the money invested in the bond, 

and 7Ti(t) is the money invested in the ith stock. Then
d d

 ̂ i=0 i=0

k z(0 ) =  x0,

where rj0(t) is the number of bond units bought by the investor, and rji(t) 

is the amount of units for the «th stock. We call x(t) the wealth process 

for this investor in the market. Now let us derive intuitively the stochastic 

differential equation (SDE) for the wealth process as follows: Suppose the 

portfolio is self-financed, i.e. in a short time dt the investor does not put in 

or withdraw any money from the market. Let the money x(t) change in the 

market due to the market is own performance, i.e. self-finance produces
d

dx(t) = T]o(t)dP0(t) +  y ^r)i(t)dPj(t).
i—l

Now substituting (2 .3 )  and (2 .4 )  into the above equation, after a simple 

calculation we arrive
r d

dx(t) = r(t: a(t))x(t)dt +  ^  7 r a(t)) -  r(t , a(t)))dt
7Tl=l

d d

+ ^ 2  (*(t))dWn(t)
< 771=1 77=1 (2 .7 )
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where 7i(t) =  (7Ti (£),... ,7Td{t))' which we call a portfolio of the agent. And 

7Tm(t) is the total market value of the agent’s wealth in the mth asset, m = 

0 , 1 , . . .  ,d, at time t.

Setting

B(t,i) := (b1( t , i ) - r { t , i ) , . . . , b d(t1i ) - r ( t , i ) ) , i  = 1 , 2 , . . . , / ,  (2.8)

we can rewrite the wealth equation (2.7) as

dx(t) = r(t , a{t))x{t)dt +  B(t, a(t))7r(t)dt +  7Tr(t)cr(t, a(t))dW(t)

+ [  ir,(t)p(t,a(t),z)N(dt,dz),  (2.9)
J Rn

a;(0 ) =  Xq > 0 , a (0 ) =  io.

Definition 2.1 A portfolio 7r(-) is said to be admissible ifn(-) E Ljr(0,T\ 

and the SDE (2.9) has a unique solution x(-) corresponding to 7 r ( - ) .  In this 

case, we refer to ( x ( - ) ,  7 r ( - ) )  as an admissible (wealth, portfolio) pair.

R em ark 2.2 Most works in the literature define a portfolio, say 7r(-,i), as 

the fractions of wealth allocated to different stocks. That is,

(+\   _/ 7Ti(£) 7Td{t) ̂ i , . . .
®  “  x(t)  ̂x(t) ’ ' ' '  ’ x(t) ) ’ ^ ^ ^  ^

With this definition, equation (2.9) can be rewritten as

dx(t) =  x(t)[r(t, a(t)) +  B(t, a(t))u(t)]dt 

+  x(t)u(t)'a(t, a(t))dW(t)
r . (2.11)

+ / x(t)u(t)'p{t,a(t),z)N{dt,dz), 

a:(0) = zq > 0, <*(0) =  ô-

It is well known that this equation has a unique solution ( see [31] p. 10, 

Theorem 1.19). We can use the similar method in [31, Examplel.15, p8 ] to
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show positivity of the solution of Eq. (2.11) if the initial wealth x0 is positive 

and u(t)'p(t,i,z) > — 1 (this condition is achievable, for example, if all ele

ments of a portfolio are positive, and p = 1 , then u(t)'p(t, i,z)  > 0 . Generally 

speaking, if u(t) is bounded, there are many p satisfying u(t)'p(t, i , z) > —1 .)

A wealth process with possible zero or negative values is sensible at least for 

some circumstances. The nonnegativity of wealth process is better imposed 

as an additional constraint, rather than as a built-in feature. In our formu

lation, a portfolio is well defined even if the wealth is zero or negative, and 

the nonnegativity of the wealth could be a constraint.

The agent’s objective is to find an admissible portfolio 7r(-) among all 

the admissible portfolios with expected terminal wealth Ex(T) = £ for some 

given (  G K1, so that the risk measured by the variance of the terminal 

wealth

Var x(T) = E[x{T) -  Ex{T)}2 = E[x{T) -  Q2 (2.12)

is minimized. Finding such a portfolio 7r(-) is referred to as the mean-variance 

portfolio selection problem. Specifically, we have the following formulation.

Definition 2.2 The mean-variance portfolio selection is a constrained stochas

tic optimization problem, parameterized by C G l 1:

(
minimize Jm v (xo, io, n{’)) ’= E[x(T) — £] ,

' Ex{T) = C, (2-13)

 ̂ (x(-), 7 r ( - ) )  admissible .

Moreover, the problem is called feasible if there is at least one portfolio sat

isfying all the constraints. The problem is called finite if it is feasible and 

the infimum of Jm v (xo>*o>7r(')) is finite. Finally, an optimal portfolio to the 

above problem, if it ever exists, is called an efficient portfolio corresponding to

subject to
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the corresponding ( Var x(T), () G M2 and (&x(T)X) £ are interchange

ably called an efficient point, where crx(T) denotes the standard deviation of 

x(T). The set of all the efficient points is called the efficient frontier.

For more details of mean-variance portfolio selection see [36, 40]. We need 

more notations, let Ay be consecutive, left closed, right open intervals of the 

real line each having length 7 y such that

For future use, we cite the generalized Ito lemma (see [26, 2, 31]) as the 

following lemma.

Lem m a 2 . 1  Given an d-dimensional process ?/(•) satisfying

where f ,g  and 7  satisfy Lipschitz condition with appropriate dimensions,

A 12 — [0 , <712),

A 1 3  =  [<712,912 +  Q13)

1 1- 1

. 3= 2  j = l , j ^ 2  j - 2  j = l , j ^ 2

dy{t) =  f(t ,  y{t), a(t))dt +  g(t, y{t), a(t))dW(t)

moreover, each column 7 ^  of the matrix 7  =  [7 ^] depends on z only through
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the kth coordinate zk. Let <p(t,x,i) G C 1,2([0,T] x R n x S'jR), we then have

dg>(t,y(t),a{t))

= ry?(t, y(0, «(*))<& + <Px{t, y(t), a(t))'g(t, y(t), a(t))dW(t) 

n f
+  J Z  /  2/W + 7(fc)(*} y W» *)> <*M) -  <p(t> y{ t )^ ( t ) )}Nk{dt, dzk)

k = 1

+ [ iv{t,y(t),a(0) + h(a(t)J)) -  ip(t,y{t),a(t)))fi(dt,dl),
J R

where

T<p(t, x ,«) := (pt(t, x , t) + </>*(£, x, i)7 (i, x ,«)

+ -trace[y(£, a;, i) Vxx(*, *)$(*> *)] +  ■?)
i=i

n -

+  £ /  M*>yM +  7(fc)(^ y W i« W » ^ ).Q!W) -  <p(*»yM»a M)
*=i

-  <?*(*, y W> Qf(0 )/7 (fc)(*, y W. a W> **) W ( d*fc)>

where n is a martingale measure,

. . J j - i , i f y e A i j
h(hy) =  <

0 , otherwise

and fi(dt, d/) = 7 (d£, dZ) — g,(dl)dt is a martingale measure. And dt, dy) 

«s a Poisson random measure with intensity dt x fi(dy), in which fi is the 

Lebesgue measure on R.

2.2 Feasibility

Since the problem (2.13) involves a terminal constraint Ex(T) = (, in this 

section, we derive conditions under which the problem is at least feasible.
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(2.14)

First of all, the following generalized ltd lemma [2] for Markov-modulated 

processes is useful.

The associated wealth process £°(') satisfies

dx°(t) =  r(t,a(t))x°(t)dt, 

x°(0) =  X q  > 0, a(0) =  20 , 

with its expected terminal wealth

c° := Ex°{T) = E e £ rMs))dsx0. (2.15)

Lem m a 2 . 2  Let 2/>(-, i), 2 =  1 ,2 ,. . . , / ,  be the solutions to the following sys

tem of linear ordinary differential equations (ODEs):

i
= -r(t,i)ip(t,i)  -  V 'qtjipfaj),

j=i (2.16)

ip(T,i) =  1,2 =  1 ,2 ,. . . , / .

Then the mean-variance problem (2.13) is feasible for every (  G R1 i/ and 

only if

Q = E [  \ip(t,a(t))B(t,a(t))\2dt > 0. (2.17)
Jo

Proof. To prove the “if’ part, construct a family of admissible portfolios 

7r^(-) =  (3tt(-) for /3 € M1 where

7r(Z) =  B(t, a(/))V(£> oc(t)). (2.18)

Assume x^{t) is the solution of (2.9). Let x^(t) = x°(t) +  /3y(t), where a:0(’)

satisfies (2.14) and y(-) is the solution to the following equation

dy(t) = [r(t, a(t))y(t) +  B(t , a(t))7r(t)]dt +  7r(f)V(t, a(t))dW(t)

+ f  7r(t)'p(t,a(t),z)N(dt,dz), (2.19)
J Rn 

2/(0) =  0 , 0 (0) =  20.
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Therefore, problem (2.13) is feasible for every £ G R 1 if there exists ft G R 

such that (  =  Ex^(T) = Ex°(T) +  /3Ey(T). Equivalently, (2.13) is feasible 

for every £ G R if Ey(T) ^  0. Applying the generalized Ito formula (Lemma 

(2 .1 )) to ip(t,x,i) = 'ifj(t,i)x, we have

d[p{t,y(t),a{t))]

= ip(t, a(t))y(t)dt +  a{t))[r(t, a(t))y(t) +  B(t , a(t))7r(t)]dt
i

+ ^ 2  j)y{t)dt +  ir{t)fa(t, a(t))dW(t)
3=1

+ l t ,  / w ( ^ a W)(yW +  7rWV(fc)(^ « W ^ ))  -^ (^ « W )y W
*=i ^

— ip(t, a(/))7r(/)/p̂ fê (/, a(£), z)}i/(dz)d£

+ f  W t,a ( t) ) (y ( t )  + 7r(typ{k)(t,a(t),z))
k=i J*

-  a{t))n(t)'p{k)(t, a(t), z)}Nk(dt, d2 fc)

[  a (0 ) +  h(a(t)J))y(t) -  ip(t, a(t))y(t)}p(dt: dt)
J R

+
J r

i
= —r(t, a(t))y(t)dt ~ ' ^ 2 q a{t)j'ip(t,j)y(t)dt

3=1

+ r(£, a(t))ip(t, a(t))y(t)dt -f B(£, a (/))7r(i)^(/, a(t))dt 
i

+ j)y(t)dt +  7r((0 V(Z, a{t))dW (t )
3=1

n r
£  /  {^(< ,aW )yW }^(dM ^ )
fc=i

[ W ,  a (0 ) +  h{a{t), T))y(t) -  ip(t, a(t))y{t)}p{dt, dl) 
J R

3=1

+

+

=  B(t , (x( t ) )7r( t ) ' i j j ( t ,  a ( t ) ) d t  +  7 r ( t ) ' a ( t , a ( f ) ) d i y  ( / )

+  S  /  W ( ^ « W ) y W } ^ f c ( d / , d 2:fc)
fc=i *'R
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J r

Integrating from 0 to T, taking expectation, and using (2.18), we obtain

Ey(T) =  E f  ip(t,a(t))B(t,a(t))7r(t)dt (2.20)
Jo

= E f  |?/;(i, a(£))£(i, a (i)) |2di.
Jo

Consequently, Ey(T) ^  0 if (2.17) holds.

Conversely, suppose that problem (2.13) is feasible for every (  G I 1. Then 

for each (  E R, there is an admissible portfolio 7r(-) so that Ex(T) =  (. How

ever, we can always decompose x(t) =  x°(t) +y{t) where y(-) satisfies (2.19). 

This leads to Ex°(T) +  Ey(T) = £. However, Ea:°(T) =  £° is independent of 

7r(-); thus it is necessary that there is a 7r(-) with Ey{T) ^  0. It follows then 

from (2.20) that (2.17) is valid.

Theorem  2.1 The mean-variance problem (2.13) is feasible for every £ G R 

if and only if

e [  \B{t,a(t))\2d t> 0 .  (2.21)
Jo

Proof. By virtue of Lemma (2.2), it suffices to prove that V>(M) > 0, 

Vi G [0, T], i = 1,2,. ..  ,1. To this end, note that equation (2.16) can be 

rewritten as
i

ip{t,i) = [—r(i, i) -  qu]ip(t, i) -  j),
< jfti (2 .2 2 )

i/>(T,i) = l , i  =  1,2, . . .  ,1.
\

Treating this as a system of terminal-valued ODEs, a variation-of-constant 

formula yields
t  1

eIt>ir,i)+iu)dT j)ds, (2.23)
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Construct a sequence ip ^ (^ i )  (known as the Picard sequence) as follows

On the other hand, it is well known that ip(t,i) is the limit of the Picard 

sequence ijĵ k\ t , i )  as k —> oo [see [19]]. Thus V>(M) > 0. This proves the 

desired result.

Corollary 2 . 1  If  (2.21) holds, then for any £ £ R, an admissible portfolio 

that satisfies Ex(T) = (  is given by

Proof. This is immediate from the proof of the “if’ part of Lemma (2.2).

^ ° \ t , i )  = i , t e [o .T ] , i  = i , 2 , . . . , i ,

t €  [0,T],i = 1,2,.. .  , l , k  = 0,1, —

Noting qij > 0 for all j  ^  i, we have

i) > e f  > o, k = 0 , 1 , . . .

(2.24)

where x° and g are given by (2.15) and (2.17), respectively.

Ex(T) = C

= x°(T)+Ey(T) .

And

C- C°  =  E y(T)
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Then one has

C -  C°ir(t) = --------B(t,a(t)) ',i(j(t,a(t)). (2.25)
Q

Corollary 2 . 2  If  E / 0T \B(t, a(t))\2dt =  0, then any admissible portfolio tt(-) 

results in Ex(T) = £°.

Proof. This is seen from the proof of the “only if’ part of Lemma (2.2).

E x(T) = E x°(T) +  E y(T)

=  C° +  ^ ( ^  a ( t ) ) B ( t ,  a ( t ) ) 7 r ( t ) d t

=  c ° -

Since, E / QT \ B(t, a(t))\2dt = 0.

Having addressed the issue of feasibility, we proceed with the study of 

optimality. The mean-variance problem (2.13) under consideration is a dy

namic optimization problem with a constraint Ex(T) = (. To handle this 

constraint, we apply the Lagrange multiplier technique. Define

J(xo,io,v(-), A) : =  E{|x(T) -  Cl2 +  2 A[i(T) -  C]} (2-26)

=  E[i(T) +  A -  C]2 -  A2, A € R.

Our first goal is to solve the following unconstrained problem parameterized 

by the Lagrange multiplier A:

minimize J(x o, io, 7r(*), A) =  E[a:(T) +  A — £ ] 2 — A2,
(2.27)

subject to ( z ( - ) ,  7 r ( - ) )  admissible .

This turns out to be a Markov-modulated stochastic linear-quadratic optimal 

control problem, which will be solved in the next section.
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2.3 Solution to the Unconstrained Problem

In this section we solve the unconstrained problem (2.27). Firstly define

+  / p(t,i, z)p(t,i, z)'v(dz)
J Rn

- 1

(2.28)

where 2 =  1 , 2 , . . . , / .

Consider the following two systems of ODEs:

i

and

^(M ) =  M M ) -  2 r(t,i)\P(t,i) -  Y ]qijP(t,j), 0 < t < T ,
>=i (2.29)

P(T,i) = l , i  = l ,2 , . . . , l ,

1 -v  ̂ ^
//(M ) = r(t, i)H(t,i) -  ■p^-7y53gyP(i,j')[^(t,j) -  tf(M)]> 0 < t < T ,  

H(T,i) = l , i  = 1,2,. ..  ,1,
(2.30)

The existence and uniqueness of solutions to the above two systems of equa

tions are evident as both are linear with uniformly bounded coefficients.

P roposition  2.1 The solutions of (2.29) and (2.30) must satisfy P(t,i) > 0 

and 0 < H(t,i) < 1, Vi G [0,T], i =  1,2, . . . , / .  Moreover, if for a fixed i, 

r(t,i) > 0, a.e., t G [0,T\, then H(t,i)  < 1, V/ G [0,T).

See the prove in [40].

Theorem  2.2 Problem (2.27) has an optimal feedback control

7T*(t ,  X,  i) =  — a(t,i)a(t, i)' +  / p(t, 2, z)p(t, 2, z)'v(dz)
J Rn

- 1

X [re +  (A — < )//( t,*)].

B(t,i)' (2.31) 

(2.32)
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Moreover, the corresponding optimal value is

inf
7r(’)  adm issible  

(2.33)

=  [/>((), io)ff(0,*o)2 +  0 - 1 ]  ( A- C) 2

+  2 [P(0 , io)H(0 , *0)*o -  C] (A -  0  +  ^(0, U>)4 ~ C2,

with the transition probabilities pi0i(t) given by (2 .2 ).

Proof. Let 7r(-) be any admissible control and x(-) be the corresponding 

state trajectory of (2.9). Applying the generalized Ito formula (Lemma (2.1)) 

to

d{P(t,a(t))[x(t) +  (A -  C )#(t,a(t))]2}

=  P(t, a(t))[x(t)  + (A -  ()H(t ,  a(t))]2dt 

+  2P{t, a(t)){A -  Q[x(t) +  (A -  a(t))]H(t , a(t))dt

+  2 {r(t, a(t))x(t)  +  B(t,  a ( t ) ) 7 r ( t ) }  

x P( t , o(t))[a:(t) +  (A -  C)H(t, a(t))]dt

where

l l pT

i = l  j = 1 0

tp(t, x, i) = P(t, i)\x +  (A -  C)H(t, «)]2, (2.35)

we obtain

j = i

+ ^2P(t, a(t))7r(t)'[a(t, a(t))a(t, a(t)y]ir(t)dt
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+  P(t, a(£))7r(£)'{ I  p(t, a(t ), z)p{t, a ( t ) ,  z)V(dz)}7r(t)cft  
Jr**

+ 2P(t, a(t))x(t)2,K(tya(t, a(t))dW(t)

+ £  /  p (t,a(t)){2[x(t) + ( \  -  Q H fa a i tW p W fa a i t ) ^ )
fc=i 7k

+ p^k\ t ,  a(t), z)2}dN(dt , cte)

+  [  { ^ ( * , a ( 0 )  +  M a W J ) ) [ z M  +  (A - C ) t f ( ^ a ( 0 )  +  M a M > ( 0 ) ) ] '
J r

-  P(£,a(£))[z(£) +  (A -  £ ) # ( * ,  a (« ) ) ]2}/Lt(di, dZ)

P i t , a(Z)){7r(Z) V ( t ,  a (t))cr(t ,  a ( t ) ) '

+  [  p(t, a(t), z)p(t, a(£) ,  2)V(dz)]7r(£)  
j R n

+  2tt(£)'P(£, a(£))'[a;(Z) +  (A -  £ ) # ( * ,  a W )l  

+  7(^> < * ( 0 ) M 0  +  (A -  C W ^ ,  « ( 0 ) ] } ^
i

+ (x -  o 2Y l qaM p (t ' N H (t ' f i  ~ H if^) \2dt
j=i

+ 2P(£, a(t))x(t)27r(t)'cr(t, a{t))dW (t)

+  £  /  + (X ~ OH(t,a(t))]p{k)(t:a(t),z)
k= 1 *'R

+  p̂ k\t ,&(t),  z)2}dN{dt, dz)

+  [ {P(t,oc(0) + h(a{t)J))[x(t) + {\ -  OH(t,a(0) + h(a(t)~(l)))f 
J r

-  P(£, a(£))[:r(£) +  (A -  C)H(t, a(t))]2}g,(dt, dt)

P(t , a(i))[7r(*) -  tt*(£, z (£ ) ,  a(£))]'[<7(£, a(t))a(t, a{t))'

+  /  p (£ ,a (£ )J p (£ ,a (£ ) ,2 : )V (d z ) ]
j R n

x  [n(t) — 7t *(t, x{t), a{t))]dt 
i

+  (A “  C)2 £ ^ P ( U ) [ t f ( U )  -  # (M )]2d£
7=1
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n  

k = 1

+ 2P(t, a(t))x(t)2ir(t)'a(t, a(t))dW(t)

£  [  P(t,a{t)){2[x{t) + (x ~ ()H(t,a(t))]p{k)(t:a(t),z)
' - = 1  • ' R

+ p̂ k\ t ,  a(t) ,z)2}dN(dt, dz)

+  [ {P{t,a{0) + h(a(t)J))[x{t) + ( \  -  C)H(t,a{0) + h{a{t)~(l)))f 
J r

~ P(t,a(t))[x(t) +  (A -  ()H(t,a(t))]2}p(dt,dI),

where 7r*(t,x,i) is defined as the right-hand side of (2.31). Integrating the 

above from 0 to T  and taking expectations, we obtain

E [x{T) +  A -  C] 2 

= P(0, i0)[x0 +  (A -  QH(0, i0)]2 +  0(A -  C)2

+ E f  P{t , a(t))[n(t) -  7t*(£, x(t), a(t))]'
Jo

x [cr(£, a(t))a(t, a(t))' +  [  p(t, a(t), z)p(t, a(t), z)'v(dz)]
J Rn

x [7r(£) — 7r*(t,x(t),a(t))\dt.

Consequently,

J(x0,io, ir(-), A) (2.36)

=  E[x(T) +  A -  C]2 -  A2 

=  [P(O,io)ff(O,io) +  0 - l ] ( A - O 2 

+  2[P(0, io)H(0, i0)x0 -  <](A -  C) + P{0, io)4 -  C2

+  E f  P(t,a(t))[ir{t) -  ir‘ (t,x(t),a(t))]'
Jo

x [a{t,a(t))a(t, «(£))' +  [  p(t,a(t), z)p(t,a(t), z)'v{dz)\ (2.37)
J Rn

x [7t(£) — 7T*(t,x(t),a(t))\dt.
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Since P(t,a(t)) > 0 by Proposition (2.1), it follows immediately that the 

optimal feedback control is given by (2.31) and the optimal value is given by

(2.33), provided that the corresponding equation (2.9) under the feedback 

control (2.31) has a solution. But under (2.31), the system (2.9) is a non- 

homogeneous linear SDE with coefficients nodulated by a(t). Since all the 

coefficients of this linear equation are uniformly bounded and a(t) is inde

pendent of W(t), the existence and uniqueness of the solution to the equation 

are straightforward based on a standard successive approximation scheme.

Finally, since

e : =  E I 9a(t)jP(t, j )[H(t,  j )  -  H(t, a(t))]2dt
J o m

and qij > 0 V« ^  j ,  we must have 9 > 0. This completes the proof.

2.4 Efficient Frontier

In this section we proceed to derive the efficient frontier for the original 

mean-variance problem (2.13).

Theorem  2.3 (Efficient portfolios and efficient front ier)  Assume 

that (2.21) holds. Then we have

P(0, i0)H{0, i0)2 +  9 -  1 < 0. (2.38)

Moreover, the efficient portfolio corresponding to z, as a function of the time 

t, the wealth level x, and the market mode i, is

7r*(t,x, i) = — [a(t,i)o(t,i)' +  /  p(t,i,z)p(t,i,z)'v{dz)]~lB(t,i)' (2.39)
JRn
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(2.40)

where

Y  C~ P(Q,io)H(0,io)x0
P(0, io)H(0, io)2 + 6 — 1 [ 1

Furthermore, the optimal value of Var x(T), among all the wealth processes 

x(-) satisfying Ex(T) = (, is

Var x*(T) (2.42)

P(0, io)H(0, i o f  +  e P(0, io)H(0, io)
-  D,n \  zj,n ■■ \2  , ax°\1 - 6 -  P (0 , io)H(0, i0)2 P( 0,io)H(0,i0)2 + 6 

. P(0,io)8 2

P(0,io)H(0,i0)2 + 6 °'

Proof. By assumption (2.21) and Theorem 2.1, the mean-variance prob

lem (2.13) is feasible for any £ G R1. Moreover, using exactly the same 

approach in the proof of the Theorem 2.2, on can show that problem (2.13) 

without the constraint Ex(T) = (  must have a finite optimal value, hence so 

does the problem (2.13). Therefore, (2.13) is finite for any £ G M1. Now we 

need to prove J m v ( x q ,  io, tt(-)) is strictly convex in 7r(*). We can easily get

E(2 rci3J2) < E(x\ +  x2)

E (2ac(1 — k)x\X2) < E(/c(l — n)x\ +  «(1 — n)xI)

E ( k 2x \  +  (1 — k ) 2x \  -I- 2ac(1 — n ) x \ X 2 )  <  E ( k x \  +  (1 — k ) x %)

E(kxi +  (1 -  k)x2 -  C)2 < E(«(a?i -  C)2) +  E((l -  k)(x2 -  ( )2),

where k G [0,1]. So, we obtain

E ( k x !  — k (  +  (1 — k ) x 2 -  (1 -  k ) ( ) 2 <  E ( k ( x i  -  C)2) +  E((l -  k ) ( x 2 -  C)2), 

which prove J m v { x q ,  i o ,  7r(-)) is strictly convex in 7r(-).
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Affine space means the complement of points at infinity. It can also 

be viewed as a vector space whose operations are limited to those linear 

combinations whose coefficients sum to one. Since Jm v {%o> ?r(*)) is strictly

convex in 7r(-) and the constraint function Ex(T)  =  £ is affine in 7r(-), we 

can apply the well-known duality theorem ( see [25] p.224, Theorem 1) to 

conclude that for any ( G t 1, the optimal value of (2.13) is

sup inf J(xo,io,7r('),\) (2.43)
AeR1 ’d ')  admissible

=  max inf (J(x 0 , i0 ,7r(*)^)+ < C,C* >) (2 -44)
£€R* tt(-) admissible

> -oo. (2.45)

By Theorem (2.2), inf^.) admissible J(xo,io,n(’), is a quadratic function

(2.33) in A — It follows from the finiteness of the supremum value of 

this quadratic function that

P(0, io)H(0, io)2 +  0 — 1 < 0.

Now if

P(0,zo)tf(0 ,io)2 +  0 - 1  =  0,

then again by Theorem (2.2) and (2.43) we must have

P{0,io)H(0,io)xo -  C =  0,

for all (  g R1, which is a contradiction. This proves (2.38). On the other 

hand, in view of (2.43), we maximize the quadratic function (2.33) over A — £ 

and conclude that the maximizer is given by (2.41), whereas the maximum 

value is given by the right-hand side of (2.42). Finally, the optimal control 

(2.39) is obtained by (2.31) with A =  A*.
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The efficient frontier (2.42) reveals explicitly the tradeoff between the 

mean (return) and variance (risk) at the terminal. Quite contrary to the case 

without Markovian jumps [39], the efficient frontier in the present case is no 

longer a perfect square (or, equivalently, the efficient frontier in the mean- 

standard deviation diagram is no more a straight line). As a consequence, 

one is not able to achieve a risk-free investment. This, certainly, is expected 

since now the interest rate process is modulated by the Markov chain, and 

the interest rate risk cannot be perfectly hedged by any portfolio consisting 

of the bank account and stocks [24], because the Markov chain is independent 

of the Brownian motion.

Nevertheless, the expression (2.42) does disclose the minimum variance, 

namely, the minimum possible terminal variance achievable by an admissible 

portfolio, along with the portfolio that attains this minimum variance.

T heorem  2.4 ( M i n i m u m  Variance) The minimum terminal variance is

Var x U X )  = p (0 ,jo)L (0 ,io ) 2 +  9X" ~ ° 

with the corresponding expected terminal wealth

P(0,io)H(0,io)
W n ' P(0,io)H(0,i0)2 +  e X°

and the corresponding Lagrange multiplier A^in =  0. Moreover, the portfolio 

that achieves the above minimum variance, as a function of the time t, the 

wealth level x and the market mode i, is

=  -\<j{t,i)a{t,i)'+ [  p(t, i ,z)p{t,i ,z)'v(dzj\-l B(t,i)'  (2.48) 
J Rn

X [Z-CminH{t,i)\. (2.49)

Proof. The conclusions regarding (2.46) and (2.47) are evident in view 

of the efficient frontier (2.42). The assertion A^in =  0 can be verified via

(2.41) and (2.47).Finally, (2.48) follows from (2.39).
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T heorem  2.5 (Mutual  Fund Theorem) Suppose an efficient portfolio 

7Ti(-) is given by (2.39) corresponding to £ = £1 > £min. Then a portfolio 

7r*(•) is efficient if and only if there is a f i>  0  such that

7T*(£) =  (1 -  MVminW +  ^ l { t ) , t  e  [0,T], (2.50)

where 7r^in(-) is the minimum variance portfolio defined in Theorem 2-4-

Proof. We first prove the “if’ part. Since both 7rJ,in(-) and 7rj(-) are 

efficient, by the explicit expression of any efficient portfolio given by (2.4), 

Tr*(t) =  (1 — M)irfi(') +  must be in the form of (2.4) corresponding to

C =  (1 — /i)Cmin +  A*Ci (also noting that x*(•) is linear in tt*(*)). Hence Tr*(t) 

must be efficient.

Conversely, suppose 7T*(*) is efficient corresponding to a certain £ > Cmin- 

Write £ — (1 — /̂ )Cmin +  mCi with some /i > 0. Multiplying

=  -[c(t ,a(t))a(t ,a(t)) '  + [  p(t,i,z)p(t,i,z)'v(dz)}~1B{t,a(t))'
JRn

X [^minW ~ Cmin

by ( 1  -  /x), multiplying

= <*(t))a(t, a{t))' + [  p{t, i, z)p(t,«, z)'v(dz)]~lB( t , a{t))'
J Rn

x [xi(t) + (a; -  CO#(*,«(*))]

by p, and summing them up, we obtain that (1  — W is repre

sented by (2.39) with x*(t) =  (1 - p ) x ^ in(t)-\-pxl(t) and £ = (l-/x)£min+M£i- 

This leads to (2.50).
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Since the wealth processes :r(-) is with jumps, it is more complicated 

when we solve the unconstrained problem (2.27). Firstly, we aim to derive 

conditions of feasibility. It is not hard to prove feasibility of the constrained 

stochastic optimization problem (2.13), which we get the unconstrained prob

lem (2.27) from. Then we solve the unconstrained problem (2.27). If we 

assume

7 (*, i) \= B( t , i) [x(t , i)a(t, i ) ' ] " 1 B(t, i) ', i = 1 ,2 , . . . ,  /,

7v*(t, x , i) := -  [<v(t , i)<r(t, z) ' ] - 1  B(t , z)'[z +  (A -  C )#(*, *)],

we have

inf J(x0,i0,7r{-),\)
7r(*) adm issible

=  I-P(0, io)H(0, io) 2 + 0 — 1](A — C)2 

+  2[P(<Uo)ff(0,io)so -  C](A -  C) +  P{0, io)4  -  C2,

where

t  i

“  H(t,a{t))]2dt
j = i

/> 1 >.n2 +  a (^ )7rW'{ [  Pi*, “ W) *)/°(*> ^)V(dz)}7r(f)di},
— s ; JRn

as [40]. So, we added one item f Rn p(t, z, z)p{t, z, z)'v(dz) in optimal feedback 

control 7r*(t,x,i) (see (2.27)) to simply the calculation.

6 :=E{ I  
Jo
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2.5 SDEs under Regim e Switching w ith pure 

jumps

Throughout this section, we will discuss SDEs under regime switching with 

pure jumps

dx(t) =  r(t, a(t))x(t)dt +  B(t , a(t))iT(t)dt +  ir'(t)cr(t, a(t))dW(t)

+  /  7Tf(t)p(t,a(t), z)N(dt,dz),
J Rn

:r(0 ) =  £ 0 > 0 , a (0 ) =  io.

Noting that

N(dt , dz) =  iV(d£, dz) +  v(dz)dt 

and using the generalized Ito Lemma 2.1, we have the following ltd formula.

Lem m a 2.3 Given an d-dimensional process y(-) satisfying

dy{t) = f ( t , y(t), a(t))dt +  g(t, y{t), a(t))dW(t)

+ [  7 (t,y(t),a(t) ,z)N(dt,dz),
J R n

where f ,  g and 7  satisfy Lipschitz condition with appropriate dimensions, 

moreover, each column 7 ^  of the matrix 7  =  [7 ^] depends on z only through 

the kth coordinate Zk. Let (p(t,x,i) £ C1,2 ([0,T] x R " x  §;K), we then have

d<p(t, y(t), a{t)) 

Tip(t, y{t), a{t))dt +  ipx(t, y{t),a{t))'g(t, y(t), a(t))dW(t ) 

n r
+  J Z  /  M * ,y(t) +  7(a°(*>3/W»<*(*)>*)><*M) -  ¥>(*>y <*(0 ) } # * ^ ,  dzk)

fc=i ^

+  [ M t ,  3/W. a (°) +  0 ) -  ¥>(*, 3/W> <x(t)))p(dt, dz),
JR
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where
n p

Tip(t,x,i) := <pt{t,x,i) + (px(t,x, i) ' f{t ,x ,i )  +  V ]  /  7 (t, y{t), a(t), z)v(dz)
k=i

1 x* ^+  -trac  e[g(t,x,iyipxx(t,x,i)g(t,x,i)] + ^2qij(p(t,x,j)
j=i

n  „

+  5 ^  /  +  -<p(*>3/M> <*(*))
*=1 711

-  </?*(£, y(t), a( t) ) ' j (k)(t, y(t),a(t), zk)}vk(dzk), 

where p is a martingale measure,

f/ , { j  t f y  e Ay
M*>y) =  <

O, otherwise

and p(dt , dZ) =  7 (dZ, d/) — p(d7)dt is a martingale measure. And j (d t , dy) 

is a Poisson random measure with intensity dt x p(dy), in which p is the 

Lebesgue measure on M.

In this section, we shall formulate our results without proof, however, we 

will specify the similar results to that of the corresponding results.

Firstly, we need to check the feasibility of (2.13) as before. Using the 

same method in the proof of Theorem 2.2, we obtain

T heorem  2.6 The mean-variance problem (2.13) is feasible for every (  G M 

if and only if

E f  [\B(t,a(t))\2 +  [  B(t, a(t))p(t,a(t),z)u(dz)]dt > 0.
J O  J R "

Secondly, we will solve the unconstrained problem (2.27). Define

7 (t, i) : =  [B(t, i)' +  [  p{t, i, z)u(dz)]'
J ! n
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a{t,i)a{t,i)' 4 - / p{t,i,z)p{t,i,z)'i>{dz) 
jRn

[B{t,i) + I p(t,i,z)i/(dz)},
J Rn

-1

where i = 1 , 2 , . . . , / .

Consider the following two systems of ODEs:

i
^(M ) =  [?(M) -  2r(t,i)]P(t,i) -  ^ q i j P i t J ) ,  0 < t < T,

j = i

and

1H{t,i) = r(t ,i)H(t,i)  -  ^  j )[H(t , j )  -  H(t,i)], 0 < t < T,
n M )  j=i

H(T,i)  = l , i  = l , 2, . . . , l ,

The existence and uniqueness of solutions to the above two systems of equa

tions are evident as both are linear with uniformly bounded coefficients. By 

the same argument of Theorem 2.3, we have

Theorem  2.7 Problem (2.27) has an optimal feedback control

n*(t,x,i) =  —

X

G(t,i)o(t,iy +  / p(t,i,z)p(t,i,z)'u(dz)
J Rn

[B{t,i)' + f  p(t,i,z)v(dz)][x + ( \- ( ; )H( t, i )]  
J Rn

Moreover, the corresponding optimal value is

inf J(x0,i0,7r(-),\)
7r(*) adm issible

= [P(O,io)% M o)2 +  0 - l ] ( A - C ) 2 

+ 2[P(0,io)H{0,io)xo -  C](A -  0  +  P(0,io)*o -  C2,
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where
T ^

<9:=E /
•'a j=l

1 1 rT ^  ^

=  ] T ^  /  P(t, j)p ioi(0 % [^ (^  j)  -  tf(M )]2̂  > o,
i=i i=i

with the transition probabilities Pi0i(t) given by (2 .2 ).

Finally, we proceed to derive the efficient frontier for the original mean- 

variance problem. By the same argument of Theorem 2.3 and Theorem 2.4, 

we get

Theorem  2.8 (Efficient portfolios and efficient fron tier) Assume 

that (2.21) holds. Then we have

P(O,io)H(0,io)2 + 6 - l  < 0.

Moreover, the efficient portfolio corresponding to z, as a function of the time 

t, the wealth level x, and the market mode i, is

n*(t,x,i) = — [a(t,i)a(t,i)' +  / p(t, i, z)p(t, i, z)'i/(dz)]~1
J Rn

x [B(t , i)' +  f p(t, 2, z)v{dz)\[x +  (A* -  QH{t,  *)]
J Mn

where

A* = C ~ P{0,io)H(0,io)xo +
P(0, io)H (0, io) 2 + 6 — 1 

Furthermore, the optimal value of Var x(T), among all the wealth processes 

x(-) satisfying Ex{T) = (,, is

Var x*(T)

P{ 0, i0)H(0, i0)2 + 6 P(  0, io)H(0, i0)
tttK -

1 - 9 -  P(0,ia)H(0,i0)2 P(0,ia)H{0,i0)2 +  9

+ P(0,io)9 x2
P(0,«o)5 (0 ,io)2 +  e °'
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T heorem  2.9 ( M in im u m  Variance) The minimum terminal variance is

Var xVn(T) =  ^  x 2 > 0
P(0,io)H(0,ioy  + B

with the corresponding expected terminal wealth

,  P{0,io)H(0,io)
>min •— ^ 0

P(0,io)H(0,io)2 +  6 

and the corresponding Lagrange multiplier A^in =  0. Moreover, the portfolio 

that achieves the above minimum variance, as a function of the time t, the 

wealth level x and the market mode i, is

A'minfoM) =  “ b ( M M M ) / +  /  P(t,i,z)p{t,i,z)'is{dz)]-1
J Rn

x [ B ( t , iY +  f  p(t,i,z)i/(dz)][x -  (mmH(t,i)\.
JRn
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Chapter 3 

The minimal entropy 

martingale measures for SDEs 

with jumps

Before describing the model, the reader is referred to Protter [32], Gerber and 

Shiu [13]. We consider the problem of pricing contingent claims on a stock 

whose price is modeled by Levy process and Markov Chain. In a market, 

there are many equivalent measures that make the discounted price process a 

martingale. In other words, such a market is incomplete. So, additional cri

teria must be used to select an appropriate martingale measure from among 

the uncountably many such measures with which to price a contingent claim. 

There are many different ways to solve this problem. Moreover, compared to 

the large body of work devoted to finding new approaches to option pricing in 

incomplete markets, relatively little seems to have been done to compare and 

to investigate the relationship between the various approaches. In this chap

ter, we will discuss the minimal entropy martingale measures and Esscher 

transform.
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3.1 Description of the m odel

Throughout this thesis, let (Q, .F,P) be a fixed complete probability space. 

The stock price St is the solution of the stochastic differential equation

dS(t) = S(t-){b(t , a(t))dt +  a(t , a(t))dW (t) (3.1)

+  [  p(t,a(t) ,z)N(dt,dz)},
J  R

where the coefficients a(t , z), 6(£, z) and p(t, z, 2:) are deterministic continuous 

functions, and the continuous-times stationary Markov chain a(t) takes value 

in a finite state space § =  {1 ,2 ,..., /}.

Assume

dY  (t, a(t)) = b(t, a(t))dt +  a(t))dW (t) (3.2)

+  /  p(t,a(t) ,z)N(dt,dz).
J  R

Note that, for any measurable function / ( t , 2 ,z),

^  f ( s 1AYa, i ) =  [  [  f ( s , z , i )N (d t ,dz ),
0 < s < t

where z G §, § =  { 1 ,2 ,..., /}. Then

dS(t) = S(t-)dY(t,a(t)).

The solution of this equation is obtained as follows. We take S(t) to be the 

stochastic exponential (sometimes called the Doleans-Dade exponential after 

its discoverer), which is denoted as Z = (Z(t), t > 0) and defined as

Z(t) = exp{Y(t,a{t)) - ( 3 - 3 )  

x  [ l  +  A y ( s , a ( s ) ) ] e - 4 y M ' » ,

0 < s < t

where Y c(t, a(t)) is the continuous part of Y (t , a(t)), for each t > 0.
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We will need the following assumption:

inf[AY(t,a( t) ) , t  > 0] > — 1 (a.s.) .

Proposition 3.1 I f  Y  is a Levy-type stochastic integral of the form (3.2) 

and above assumption holds, then each Z(t) is almost surely finite.

Proof. We must show that the infinite product (3.3) converges almost 

surely. We write

J ]  [1 + AKfs, a(s))]e-Ay(s'“W) =  A(t) + B(t),
0  < 3 < t

where

I I  [ 1  +  A ^ ( s > < * ( s ) ) ] e ~ A y *s ’“ < s ) ) l { | A y ( s , t i ( s ) ) | > ! } >

0  < 8 < t

and

B { t )=  J ]  [l +  A y(s,a(«))]e-Ay<s'“w)l {|Ay(s,oW)|<i }.
0 < s < f

Now, since Y  is cadlag, JJ{0 < s < t; ^ ^ (s jo fs ) ) !  > |}  < oo (a.s.) [see 

p84, [32]], and so A(t) is almost surely a finite product. Using the above 

assumption, we have

B(t) = exp{ ^  {log[l +  A K ( s , q ( s ) ) ]  -  A K (s,a(s))} l{|Ar(, ioW)|<j }}.
0  < s < t

We now employ Taylor’s Theorem to obtain the inequality

log(l + y) -  y < K y 2, 

where K  > 0, which is valid whenever |y| < | .  Hence 

log B{t)
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=  I J 2  {los [1 +  A r ( s >a ( s ) ) ]  -  A y ( s . Q ( s ) ) } 1 { | A y ( » , a W ) | < i } l
0< s< t

-  ^ 2  l ^ ^ ( ' S’ a ( S) ) | 2 l { |A y (s ,a (s ) ) |< i}
0 < s < t

< oo

a.s., and we obtain our required result.

Let Z(t) = e ^ \  From (3.3), we have

dZ(t) = b(t, a(t))dt H- a(t, a(t))dW(t) +  j  p(t,a(t), z)N(dt,dz)
J  R

-  ]-a2(t,a(t))dt +  j log(l +  p(t,a(t),z))N(dt,  dz)
I  J R

— I p(t,a(t), z)N(dt,dz)
J r

= (b(t,a(t)) — ^-a2(t, a(t)))dt + cr(t, a(t))dW(t)

-1- [  log(l -I- p(t,a(t),z))N(dt,  dz)
J r

+  [  [log(l + p(t,a{t),z)) -  p(t,a{t),z)]v(dz)dt.
J r

Then by Ito’s formula, we get

dZ(t) =  d e ^ t]

=  Z(t-){b(t , a(t))dt +  &{t, a(t))dW(t)

+  /  [log(l +  p(t, a(t), z)) -  p(t, a(t), z)]z/(d2:)dt}
J r

+  [ {exp{Z(t_) +  log(l +  p(t, a(t), 2 ))} -  exp{Z(t_)}}A/"(dt, dz) 
J r

+  [  {exp{Z(£_) +  log(l +  p(£, a(£), 2 ))} — exp{Z(£_)}
J r

— log(l -1- p(£, a(t), z)) exp{Z(£_)}}z/(d2:)cft

=  Z(t-){b(t, a(t))dt +  <r(£, a(t))diy(i) +  /  p(t, a{t), z)N(dt, dz)},
J r

as required.
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Then, we can easily get the solution of (3.1)

(s, a(s))dW(s) +  f  (  p(s,a(s),z)N(ds,dz)
Jo JR

I f  (U(~ ~ / ~\\ \+  J  (b{s ia \s)) 2---- ' J

x n  (1 +  [  p(s,a(s),z))AN(ds,dz))
0 < s< t

x exp{— / p(s, a(s), z))AN(ds, dz)}.
J R

Prom this we see that a  {5 (it) : u < £} =  J 7* and so a contingent claim T t 

expiring at time T  may be regarded as a nonnegative J^-measurable random 

variable.

3.2 Equivalent martingale measure and pric

ing formulas

The riskless rate of interest is given by a deterministic continuous function 

r(t , i), and we define the discounted stock price by

S(t) = exp{— f  r(s,a(s))ds}S(t). (3.4)
Jo

We begin by characterizing all equivalent martingale measures Q under which 

the discounted price process S  is a {Tt }-martingale. We continue to use 

the notation established in the previous section. Expectations under the 

canonical measure P will be denoted by EP[] while expectation with respect 

to any other measure Q will be denoted by Eq[-].

Let V  denote the predictable a-algebra on 0  x R+ associated with the 

filtration {/*<} and let V  =  V  x B, where B is the Borel a-algebra on R. A 

function H(t,uj,z) which is P-measurable will be called Borel predictable.

S(t) =  £(0) exp{ f  a 
Jo

54



Thus, suppressing the explicit dependence on lj, a Borel predictable function 

or process H(t, i , z) is one such that the process t —» H(t,u, z) is predictable 

for fixed z and the function z —» H(t ,u ,z)  is Borel-measurable for fixed t.

Lem m a 3.1 Let G(t,i) and H(t,i ,z )  be predictable and Borel predictable 

processes respectively. Suppose that
fit

E[ f  G(s, i)2ds] 
Jo

<  00,

and H > 0, H(t, i, 0) =  1 for all t > 0. Let h(t , i, z) be another Borel 

predictable process such that

/ [H(t,i,z) — 1 — h(t,i, z)]v(dz) < oo.
Jr

Define a process Z(t) by

Z(t) = e x p { [  G(s,a(s))dW(s) -  i  f  G(s,a(s))2ds (3.5)
Jo 2 Jo

+ /  /  h(s,a(s),z)N(ds,dz)
Jo Jr

— / [H{s, a(s), z) — 1 — h(s, a(s), z)\v(dz)ds}
J[0 , t )xR

x J J  H(s,a(s),  A y(5,a(5)))exp(—h(s,a(s), A F(s,a(s)))).
o < s < t

Then Z is a nonnegative local martingale with Z(0) = 1 and Z is positive if 

and only if H > 0.

Proof. It is clear that Z  is nonnegative if and only if H > 0. That Z  is a 

local martingale is a simple consequence of the Ito formula, the Ito formula 

gives

Z ( t ) = e x p { f  G(s,a(s))dW(s) — (  ^ ( s , a(s))2ds 
Jo Jo 2

+ /  /  logH(s,a(s),z)N(ds,dz)
Jo Jr
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=  1 +

+ f  f  [log H(s,a(s),z)  +  1 -  H(s,a(s),z)]v(dz)ds}
Jo JR

[  Zs_G(s, a(s))dW(s)
Jo

Z8_G(s,a(s))2ds + ^  J  Zs_G(s, a(s))2ds

— /  Zs_[H(s,a(s), z) — l\is(dz)ds
J [0,£)xR

+  / / Zs_ log H(s, a(s), z)i/(dz)ds
Jo JR

+ [  [  Z8_ [H{s, a(a), 2 ) -  l]W(da, cfe)
J o  J r

+ [  [ [Z8_H(s,a(s),z) -  Z8_ -  Z8_ logH(s,a(s),z)]v{dz)ds 
Jo J r

= 1+ [  Zs_ G(s, a(s))dW(s)
Jo

— j  Zs_[H(s,a(s), z) — l]i/(dz)ds 
J[0,t)xR

+ f  f  Za_[H(s,a(s),z) -  l]N(ds,dz)
Jo J r

+ j  I  Z8_[H{s,ot(s),z) — \}v(dz)ds 
Jo Jr

= 1 +  f  Z8_ G(s, a(s))dW(s)
Jo

+  [  [  Zs_ [.H{s, a(s), z) -  i\N(ds, dz).
Jo Jr

This last expression is a local martingale.

The processes G , H  and h can be chosen so that E [Z(t)\ = 1 for all t , in 

which case Z  is a martingale.

Theorem  3.1 Define a probability measure Q on T t , by

^ \ *  = m .

Under the condition

b(t,i) -  r(t,i) +  a(t,i)G(t,i) (3.6)
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+ /  p(t,i, z)(H(t,i, z) — l)i/(dz) = 0,V2 G §,
J r

V

E P[Z(T)\ = 1,

then Q is an equivalent local martingale measure for S(T).

Proof. From (3.4), we have the discount price S(t) of the form

dS(t) = S(t){(b(t, a(t)) — r(t , a(t)))dt +  a(t, a{t))dW(t)

+  [  p{t,a{t),z)N{dt,dz)}.
J r

Define

WQ(t) = W(t)  -  f  G{s,a(s))ds,
Jo

i/Q(dz)dt =  H ( t , a ( £ ) ,  z) i / (dz)d t ,

NQ(dt,dz) = N(dt:dz) — /  (H(t,a(t), z) — \)v(dz)dt.
J r

Since VF(£) and f* f RN(dt,dz)  are P-martingales, we use Ito’s product for

mula to find

d[W0 (t)Z(t)]

=  dW^(()Z(t_) +  WQ(t)dZ{t) + dWQ(t)dZ(t) 

= dW(t)Z(t_) -  G(t,a(t))<ftZ(t_)

+ )£(«-) [<?(*, a(0)<W (0 +  f  (H(t,a(t) ,z) -  l)N(dt,dz)}
J  R

+ Z(i_)[G(«, a(t))d< +  <W(t) /  (//(t, a(<), z) -  l)W(dt, dz)
J R
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Since dW(t) f R(H(t,a(t),z) — 1 )N(dt,dz) = 0, then

d[WQ(t)Z(t)}

= Z(t.)[  1 +  WQ(t)G(t, a(t))]dW{t)

J r

is a P-martingale. We derive for any si, s2 6 [0, t], and Si < S2 >

E0 [W0 (S2)|.FS1]
V. p [ W q ( s 2) Z { s 2 ) \ F s ,]

V p [Z(s2) \F si}
_  W q ( s 2 ) Z ( s 2)

Z(s2)

= Wq{821

is also a Q-martingale.

Since AN(dt,dz) = ANq(dt,dz), we have

+ Z(t.)[WQ{t) -  G(t,a(t))dt] [ {H(t,a{t),z) -  1 )N{dt,dz),
J R

therefore, Wq(t) is a Q-martingale. By the same type of argument Nq(dt , dz)

+  (Ks> a (s)) +  <*{s))G(s, a{s)) -  r(s, a(s)) -  )ds
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+ f  [  p(s,a(s),z)NQ(ds,dz)
J 0  J R

+ /  /  p(s ,a(s ), z)(H(s ,a(s) ,z )- l) i / (dz)ds}
J o  J r

x II(1+ [  P(s , a (s) , z )ANQ(ds,dz))
0 < s < t

x exp{— / p(s, a(s), z)ANQ(ds, dz)}.
J r

By the condition (3.6), we obtain

S(t) =  ,S(0)exp{ f  cr(s,a(s))dWQ(s) — f  a (s,c*(s^  ds 
Jo Jo 2

+  [  [  p(s,a(s),z)NQ{ds,dz)
J o  J r

x TT(1+ I p{s,®(s),z)ANQ{ds,dz))
o <s<t J r

x exp{— / p(s, a(s), z)ANq(ds, dz)}.
Jr

By Lemma 3.1, we can easily get S(t) is a martingale with respect to the 

measure Q.

3.3 Pricing by Esscher transform and mini

mum relative entropy

Gerber and Shiu (1994) proposed pricing contingent claims by Esscher trans

forms. Let 6 G R be fixed. The Esscher transform of a Levy process Y,  or 

equivalently of its underlying canonical measure P, is defined to be the pro

cess whose law Q# is given by

= exp {-9Y(t ,a( t ) )  + tip(6)},

where ^(6) = — logE[exp(—0Y(1, a(l)))] is the Levy exponent of Y.  Since 

the stock price process has time-dependent coefficients in our model, we need
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to consider generalized Esscher transforms of the form

= exp{— 0(s,a{s))dY{s,a{s)) + a(s)))ds} (3.7)

and choose 0(t7 a{t)) to satisfy the martingale condition.

Set

H(t, a(t), z) = exp(-0(t,  a{t))p{t, a(t), z)),

G(t,a(t)) =  a(t,a(t))0(t,a(t)).

The martingale condition (3.6) can be used to specify 6 as follows:

a(s, i)2$(s, i) +  6 ( 5 ,  i) — r(s, i) (3.8)

+  / p(s,i ,z)(exp(-6(s,i)p(s,i ,z)) -  \)v{dz) =  0.
Jr

[To see that this has a unique solution 0 for fixed s and i , define 

F(6) = f Rp(z)(exp(—9p(z)) — 1 )v(dz) — 9 for 6 E {—hi,h2), where 0 < 

hi ,h2 < 0 0 . Then it is easy to check that F  is monotonically decreasing and 

F(6) —> + 0 0  as 6 4, — hi and F(6) 0 0  as 0 t  h2. Hence equations of the

form F(6) =  c have a unique solution in (— h2)\

For a fixed measure P, the relative entropy IP(Q) of any measure Q with 

respect to P  is defined to be

[Note that IP(Q) > 0 for any Q. If Q is not absolutely continuous with respect 

to P, IP{Q) is infinite.] For an equivalent martingale measure Q given by 

Theorem 3.1 and the martingale condition (3.6), the relative entropy in terms 

of the Q-martingales Wq(t) and Nq(dt,dz) is therefore

H Q )
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=  E0 [log Jjjl-FT]

=  Eflpog Z (T )W

=  Ec l j  G{s,a(s))dWQ( s ) + l- j  G(s,a(s))2ds

+  f  (  log H(s,a(s),z)NQ(ds,dz)
Jo Jr

+  [  (  log H (s, a{s), z)(H(s,a(s),  z) — \)v{dz)ds
Jo Jr

+  /  [log H(s,a(s),  z) + 1 — H(s,a(s),z)]v(dz)ds 
Jo Jr

= Eq[\ J  G{s,a(s))2ds

+ f  f  [H(s1a(s),z)(logH(s1a(s)1z) -  1) + l)]u(dz)ds].
J o  J r

The problem of finding the equivalent martingale measure of minimum 

relative entropy can be reduced to that of minimizing

e q[^g?(s»*)2 +  [ [H{s,i,z)(\ogH(s,i ,z) -  1) +  \)\v(dz)\,
*  J r

for fixed s, subject to (3.6). Then it is clear that the problem can be reduced 

to that of minimizing

)-G(s,i)2 + f[H(s ,i , z){\ogH(s ,i ,z)  -  1) +  l]v(dz) (3.9)
*  J r

for each fixed s and u subject to (3.6). Denote by Q* the measure associated 

with the optimal choice of G and H. Then the corresponding optimal value 

I* of (3.9) is therefore also deterministic and for other choice of G and H 

with associated measure Eg,h , we have

]-G{s,i)2 +  [ [H(s,i ,z)(logH(s,i,z) -  1) +  1 ]i/(dz) > I*. 
z  J r

Hence

E G,H[^G(s,i)2 + f  [H (s , i , z ) ( logH (s , i , z ) - l )  + l]i/(dz)]
1  J r
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> I *

= e  Q . m
Now we fix G(t , i) and choose H(t , i, z) to minimize

f  [H(s,i ,z)(logH(s,i,z) -  1) +  1 ]i/(dz)
J R

subject to (3.6) and then minimize (3.9) (with the optimal H) over G.

Let A(s,a(s)) be a continuous function and let

L ( \ H )

= [ [H(s,a{s),z)(\ogH(s,a(s),z) -  l) + l]i/(dz)
J  R

+  /  A (s,a(s))p(s,a(s),2 ) (P (s ,a (s ) ,2:) -  l)i/(dz).
J r

Thus A is a Lagrange multiplier associated with the constraint (3.6) and L is 

the associated Lagrangian. Observe that H —» L(A, H) is convex in H > 0, 

so to find the optimal H, we require

j t L ( \ , H  + tF)\t=o = 0,

for all F. Then, we get

j t L ( \ ,H  + tF)\t=0

-  £  
dt [ [  [{H{s, a(s), z) +  tF)(\og(H(s, a(s), z) +  tF) -  1) +  1 ]v{dz) 

J r

+ [  \(s,a(s))p(s ,a(s),z)(H(sia(s),z) + tF- l ) i / (dz)] \ t=0 
J r

[  [F\og(H(s,a(s) ,z)+tF) + \(s,a(s))p(s,a(s),z)F]i/(dz)\t=0 
J r

/  [Flog H(s, a(s), z) +  A(s, a(s))p(s, a(s), z)F]i/(dz)\t=0 
J r

=  0,
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for all F. We obtain

F (s, z, z) =  exp(—A(s, z)p(s, z, 2 )).

The Lagrange multiplier A can be expressed in terms of G (assumed to be 

fixed for the moment) via (3.6):

r(s, z) — a(s, i)G(s, i) — 6(s, z)

= /  p(s,«>)(exp(-A (s,i)p(s,a,2 )) -  l)v(dz).
J r

Since all the optimization is carried out for fixed s, we temporarily drop the 

explicit dependence on 5 for the sake of clarity. The above equation is then 

simply

r(z) -  a(i)G(i) -  b(i) (3.10)

=  /  P(hz)(exp(-\(i)p(i ,z)) -  l)v(dz),
J r

Then for fixed z, putting H( i,z) = e a(')p(*.*) into (3.9) gives

\ g ( i ) 2 +  f  [1 -  exp(—A(z)^(z, z))(\(i)p(i, z) +  l)]z/(dz), (3.11) 
z  J r

which we must now minimize over G. We differentiate the above with respect 

to G and solve

G(i) + (G(i)) [  \(i)p(i ,z)2exp(—X(i)p(i,z))if(dz) = 0.
Jr

However, differentiating (3.10) shows that

A'(G(z)) =  <r(z)( f  p(i,z)2exp(-X(i)p(i,z))u(dz))~\
J r

Then we get G =  <r(z)A(z), for fixed z. Since the second derivative of (3.11) 

is positive, G(i) = a(i)X(i) does indeed give the minimum of (3.10).

63



Then we get

where

min^G^z)2 +  [  [H(i, z)(log H(i, z) -  1) +  1 )v(dz),i G S]
* J R

=  x Gmin{i) -t- j  2 )̂(log Umin(ij z) 1) -4- 1 )v(dz)
1  J R

Now both G and H are specified in terms of A, and restoring the s and i 

in (3.10) gives the equation for A(s,z)>

<j(s, z)2A(s, i) +  b(s, z) — r(s, z)

+ / p(s, i ,z )(exp(-\(s ,i)p(s, i ,z )) -  l)v{dz)
J R

=  0,

hence

<r(s, z)2A(s, i) +  b(s, z) — r(s, z) (3-12)

+  / p(s,z,z)(exp(-A(.s,z)/9(s,z,;2:)) -  l)z/(ck:) =  0.
J R

Comparing above equation and (3.8), we get 0(s,i) =  A(s, z).

As one of the main motivations behind the study of the Esscher transform 

presented here is Gerber-Shiu (1994) [[13]], it is interesting to see if similar 

results hold for the model of stock price used in that thesis, namely

S(t) =  5(0) exp{adW(t) +  f  f  pN(dt , dz) 4- bdt}
Jo Jr

for constants a , b and p. We also take r =  0, so that S = S. And the 

Esscher transform of Y  is exactly the same as before. However, whereas
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for our model the martingale condition used to specify 6 is (3.6), a different 

martingale condition applies to the Gerber-Shiu model above. Since

S(t) = 5(0) exp{adW(t)  4- f  f  pN(dt,dz) 4- bdt}
Jo JR

= 5(0) exp{adWq(t) +  /  pNqidt , dz) 4- bdt 4- a /  G(s, a(s))ds
Jo Jo

+ p f  [ (H(s,a(s),z) -  l)v(dz)ds}.
Jo JR

By Ito’s formula, we get

dS{t) = <rS(t-.)dWQ(t)+ [  pS(t-.)dNQ(dt,dz)
J R

2

+ 5(£_){<tG(£, ot(t)) +  6 +  —

p f  (H(t,a(t), z) — l)i/(dz)}dt 
J R

5(t_) [ (exp(p) -  1 -  p)NQ(dt,dz)
J r

5(£_) j  (exp(p) — 1 — p)v{dz)dt 
J r

+

+

+

=  cr5(£_)dW(2(£)

£72
4- 5(£_){<7G(£, a (0 ) +  b 4- —

+ p I  (H(t,a(t), z) — \)v(dz)}dt 
Jr

4- S{tJ) f  (exp(p) -  l )NQ(dt,dz)
Jr

+ 5(£_) I (exp(p) -  1 -  p)i/q(dz)dt.
Jr

Hence, in order for 5  =  5  to be a martingale under Q, we require

crG(t, a(t)) +  b +  %- +  p f  (H(t , a(t), z) -  l)u(dz)
J Jr

4- f  (ep -  1 -  p)H(t,a(t),z)u(dz)
Jr' r

=  0.
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In terms of 0, this translates into

2 p
— 0 6  +  b +  %- +  /  [(ep — l)e- ^  — p]v(dz) =  0.

2 Jr

Turning now to the minimum relative entropy measure, we need to minimize 

(3.9) subject to (3.6). Following exactly the same Lagrangian procedure as 

before, we get

H  =  exp(A(l — ep))

G = g A.

Then we have

- a 2X + b + ^ -

4- [  [(ep -  l)eA(1"eP) -  <r]u(dz)
Jr

=  0 .

We see that it is no longer possible to make 0 = A. But if the Levy process 

only makes very small jumps, its Levy measure v is concentrated around 0. 

Making the approximation

1 — ep ~  —p,

for small p. We can obtain that the solution of above equations can be 

approximated to some extent by 6  «  A.
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Chapter 4

SDEs w ith transaction costs

Richardson (1989) is probably the earliest paper that studies a faithful ex

tension of the Mean-Variance model to the continuous-time setting. Li and 

Ng (2000), in a discrete-time setting, developed an embedding technique to 

change the originally time-inconsistent MV prblem into a stochastic Linear 

Quadratic control problem. The technique was extended by Zhou and Li 

(2000), along with a stochastic LQ control approach, to the continuous-time 

case.

All the existing works on continuous-time Mean-Variance models have 

assumed that there is no transaction cost, leading to results that are ana

lytically elegant. Portfolio selection subject to transaction costs has been 

studied extensively, albeit in the realm of utility maximization. This chapter 

aims to analytically solve the MV model with transaction costs.

4.1 Formulation of the problem

Consider a market where 2 assets are traded continuously. One of the assets is 

a bank account whose price Po(t) is subject to the following random ordinary
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differential equation:

dP0 (t) =  r(a(t))P0 (t)dt.

where r(i) > 0, i = 1 ,2 ,... ,Z, are given as the interest rate process corre-

process P\(t), satisfies the following stochastic differential equations:

where for each i = 1 ,2 ,... ,  Z, b : § —> R, a : § —> R is adapted process.

We assume that the filtration is generated by the Brownian

motion and Markov chain. We denote by Lj- the set of square integrable 

{•^heto.r] adapted processes,

\}T =  {X|The process X  =  X(t) t£ 0̂T îs an { .F ^^T padapted  process

and by L t h e  set of square integrable Fi-measurable random variables, 

\}Tt =  {X|Xis anFV-measurable random variable such that

There is a self-financing investor with a finite investment horizon [0, T] 

who invests X(t)  dollars in the bank and Y(t) dollars in the stock at time t. 

Any stock transaction incurs a proportional transaction fee, with G [0, oo) 

and n G [0,1) being the proportions paid when buying and selling the stock, 

respectively. Throughout this paper, we assume that /?+// > 0, which means 

transaction costs must be involved. The value process, starting from (x , y) 

at t = 0, evolves according to the equations:

sponding to different market modes. Another asset is a stock whose price

dP^t) = P1(Z){6(ct(Z))dZ +  a(a(Z))dW(Z)}, t G [0,T],

such that E [X2 (t)]dt < oo}.

(4.1)
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Y y'LM(t) = y +  [  b(a(s))Yy,L'M(s)ds +  f  u(a(s))Yy-LM(s)dW(s) (4.2) 
Jo Jo

+ L(t) — M(t),

where L(t) and M(t) denote respectively the cumulative stock purchase and 

sell up to time t. Assume r(i) > 0, b(i) > r(i). b = max(6(i)), f  =  max(r(i)) 

and a = max(<j(i)). Obviously b > f. Sometimes we simply use X , Y  or 

X L,M, Y l,m instead of X X,L’M, Y y'L,M, if there is no ambiguity.

The admissible strategy set A  of the investor is defined as follows:

A  = {(L, M)|The processes L =  {L(£)}t€[0)r] and M  =  {M(t)}te[0,r] 

are {.Ff}iG[o,T]-adapted, cadlag, nonengative 

and nondecreasing, and the processes X x,L’M 

and Y y,L'M are both in L̂ r, for any (x,y) E R2}.

(L, M) is called an admissible strategy, if (L, M) E A. Correspondingly, 

(X X,L’M ̂ Yy,L,M̂  is called an admissible (bond-stock) process, if (x,y) E R2 

and (L, M)  E A.

For an admissible process (X X,L,M, Y y'L’M), we define the investor’s net 

wealth process by

W x 'Y(t) = X(t) + (1 - n ) Y ( t ) + -  (1 + /3)Y(t)-,t  e  [0,T].

Namely, W x,Y(t) is the net worth of the investor’s portfolio at t after the 

transaction cost is deducted. The investor’s attainable net wealth set at the 

maturity time T  is defined as

Y\?x,y =  {W X,Y(T)\WX,Y(T) is the net wealth at T  of an admissible process 

(X, Y) with X(0") =  ar, T(0") = y.}.

And during this chapter, we assume T  > ln (^ j) .
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The investor’s problem is to choose an admissible stategy so as to maxi

mize the expected utility of terminal wealth

sup Et'y[U(Wx ’Y(T))\Ft].
(.L , M ) £ A

T t is generated by X t t >0 and Ytt>0. Here Ex,y denotes the conditional expec

tation at time t given that initial endowment X (t) = x, Y (t) =  y, and the 

utility function

W i
U(W) = -----, 0 < 7 < 1.

7

By the original Markowitz’s MV portfolio theory, an efficient strategy is 

one that is Pareto efficient, which means there does not exist another strategy 

that has higher mean and no higher variance, and/or has less variance and 

no less mean at the terminal time T. There could be many efficient strate

gies, and the terminal means and variances corresponding to all the efficient 

strategies form an efficient frontier. We can obtain the efficient frontier from 

solving the following variance minimizing problem:

Problem  1,
/

minimize Var(W),
<

 ̂ subject to E [W] = C, W  G W0x’y,

where

c > e ^ x  +  (1 -  ii)erry+ -  (1 +

This means the target expected terminal wealth is higher than “all-bond” 

strategy. We can obtain the efficient frontier from the above problem. Prob

lem 1 is equivalent to the following problem.
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P roblem  2,

minimize E[VF2], 

subject to E [W] =  C, W  G

4.2 Feasibility

Feasibility issue is important and unique to the MV problem, and will be 

discussed in this section. Firstly, we introduce two lemmas.

Lemm a 4.1 If  JFi G W2 € and W2 < W lt then W2 G

Proof. By the definition of Wo’y, there exists (L, M) G such that 

X L’M{0~) = X ,  Y L’M{0 -)  =  y and W xL,m-yLM(T) = Wx. We define

L(t) = <

M{t) =  < 

Then (L, ii?) 6 .4, and

X L'a {t) = <

L (t) , t < T ,
Wi -  Wo

l (t ) +  * , t =  r ,

t < T,
w ,m, W !-W 2M(T) H J  ̂ t = T.

ft + H

X L'M{t), t < T,

X L'M{ t ) - W l + W2 t = T,

Y l 'a {t) =  Y L'M( t ) , t e  [0,T],

Therefore, W2 =  (T) 6 W£’”.

From [6], we have
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Lemma 4.2 For any {x,y) e l 2, we have

(1) the set is convex;

(2) if (a*, Vi) G R2, Wi G W {0Xim), i =  1,2, then Wi + W2 e  W ^ 1+X2,yi+y2); 

if xi < x 2 and y\ < y2, then Wo*1,yî  < WqX2’V2\ ’

(4) w (0x- {1+l3)e'y+e) C n f y) and v ^ x + ( 1 " M)c,v" ff) C W {0x'y) for any g > 0;

(5) W ^ ,cy) =  0 WqX,v̂  for any g > 0;

if x +  (1 — fi)y+ — (1 +  (3)y~ > 0, £/ien 0 G VVq^.

Denote

C =  suP{E[iv]|VF e  n f ' y)}.

By Lemma 4.1, Problem 2 is feasible when

C G V  = [e^x +  (1 -  g)efTy+ -  (1 +  P)erry~1C}-

Now, we need to check whether Problem 2 is feasible when C =  C? since

Problem 2 is not feasible when (  > (. We have (  =  +oo and thus Problem

2 is always feasible for any (  > erTx +  (1 — g)erTy+ — (1 4- /?)ef r2/_j when 

(3 = g, = 0 [see Lim and Zhou (2002)].

4.3 Unconstrained Problem  and Double Ob  ̂

stacle Problem

We shall utilize the Lagrange multiplier method to remove the constraint 

of Problem 2. Let us introduce the following unconstrained problem with 

Lagrange multiplier A.

Problem 3 (Unconstrained Problem),

f minimize E[W2] — 2A(E[W] — C)> 

subject to W  G W j’y,
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or equivalently,

Problem  4,
minimize E[(W — A)2],

subject to W E  W j’y.

Define the value function of Problem 2 as follows:

Vi(x,y,  0 =  m f  E [ W % t € V .wew£'y ,E[w]=<;

The following result, showing the connection between Problem 2 and Problem 

4, can be proved by a standard convex analysis argument [6].

P roposition  4.1 Problem 2 and Problem 4 have the following relations.

(1) IfW£ solves Problem 2 with parameter C, ET),  then there exits A e l  

such that W£ also solves Problem 4 with parameter A.

(2) Conversely, if W\ solves Problem 4 with parameter A E R, then it 

must also solve Problem 2 with parameter ( = E[VPx].

According to Lemma 4.2, it is easy to see that W j,y — A =  W j_Ae ,y. 

Since

W0x,y -  A 

=  W$'s -  w ^ - 0 

_  w ^ -Ae_fT'y

We consider the following problem instead of Problem 4:

Problem  5,
f

minimize E [W ], 

subject to W E  W j-Ae ,y.

Consider (4.1) and (4.2) where the initial time 0 is revised to some s E 

[0,T), and define W f ,y as the counterpart of W j’y where the initial time is
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s and initial bond-stock position is (x , y). We then define the value function 

of Problem 5 as

V{t,x,y)  =  ^ M xyE[W%(t,x ,y)  G [0,T) x R2. (4.3)

The following proposition establishes a link between Problem 2 and Problem 

5.

Proposition 4.2 / /£  G T>, then

sup(P(0 ,x  — Ae_fT, y) -  (A -  C)2) =  V\(x>y\Q -  C2-
AeR

Proof. Compute

sup(P(0 ,a: -  Ae_fT, ?/) -  (A -  C)2)
AeR

=  sup inf E[W2 -  (A -  C)2]
AeR wewS~Xe~rT'v

= sup inf E[(W -  A) 2 -  (A -  C)2]
AeR W £ W q'v

< sup inf E[(W — A) 2 — (A — O 2]
”  AGR W€WZ'\E[W]=C

= sup inf (E[W2) -  C2)
AeR wewZ’v,R{w]=<

inf (E[W2] -  C2) 
w e W o ,3/,E[w]=c

= Vi(a:, y; C) — C2-

Therefore,

sup(V(0 , x -  Ae-fT, y) -  (A -  C)2)
AeR

< Vi(a;, y; C) — C2-

Since Vi is convex and £ is an interior point of D, by convex analysis, there 

exists A* G M such that

U (x, y , ; C) -  2A*C < V, (x, y , ; C) -  2A*C, VC € V.
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For any W  G W0 , we have

E[(W -  A* ) 2 -  (A* -  C)2]

=  E[VK2] -  2 \'(R[W] -  C) -  C2

> Vi(a:,y;E[W]) -  2A*(E[W] -  Q  -  C2

> V^C .̂yiC) -  C2-

If follows

sup(F(0 , : r -  Ae r , y) — (A — C) )
AeR

=  sup inf E[(W -  A) 2 -  (A -  C)2] 
AeR w e w % 'y

> inf E \(W -  A* ) 2 -  (A* -  C)2] 
“  wewg'v

> V i(i,y ;C)-<2,

which yields the desired result.

Therefore, we need only to study the value function V(t,x,y).

Lemm a 4.3 The value function V defined in 4-3 has the following proper

ties.

(1) For any t € [0, T), V( t , •, •) is convex and continuous in R2.

(2) For any t G [0, T), V(t ,x ,y)  is nonincreasing in x and y.

(3) For any g > 0, t G [0,T); we have V ( t ,x + ( l  — g,)g,y—g) > V(t,x,y),  

V ( t , x - ( 1  + P ) e , y -  e) > V(t,x,y).

(4) For any g>  0, t G [0,T), we have V(t,gx,gy)  =  g2 V(t,x,y).

(5) If x +  ( 1  -  g,)y+ -  (1  +  P)y~ > 0, then V(t, x , y) = 0.

Proof. All the results can be easily proved in term of the definition of V  

and Lemma 4.2.
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We define

<p = { ( x ,y ) e  R2|:r +  (1  -  fi)y+ -  (1  -  P)y~ > 0}.

It is well known that the value function V is a viscosity solution (see Theorem 

5.2, Chapter 4, Yong and Zhou) to the following HJB equation

m in{-^ t -  C0cp, <py -  (1 -  n)ipxi (1 +  P)tpx -  ipy} =  0,

V(t,x,y,i) e  [0,T) x if x §,

with the terminal condition

r t s , , , r , o - (* +  ( 1 - ^ + - ( 1  +  f l»~)T, o < 7 < 1 ,
7

where

C0 ifi{x, y, t, i) = ^ 0 (i)2y2<Pyy(x, y, t, i) +  b{i)y<py{x, y, t, i)
i

+  r(i)x<px(x, y, t, i) +  ^  qij<p(x, y, t, j) .
j = l

Due to the homotheticity of the utility function, we have for any positive 

constant £,

r, £y, t, i) = CV(x, y, t, i), 0  < 7  < 1 .

It is well known that under the assumption b > r, short selling is always 

suboptimal. Hence, we only need to consider y > 0. Then

— X
tp(x,y,t,i) = y 7Y ( - , M ) , 0  < 7  < 1 .

y

So, above HJB equation is turned to

min{ — Vt -  CiV,~fV -  (x +  1 -  y)Vx, (x +  1 + P)VX -  j V ]  =  0, in D,

V(x,T,i)  = - ( x  + 1 -  //)7,
7

76



where fl = ( — ( 1  +  /z), oo) x [0 ,T) x S , 0  < 7  < 1 , and

CiV(x,t , i)  = ^cr 2 (i)x2 Vxx(x , t :i)

-  (b(i) -  r(i) -  <r2 (z)( 1 -  ^))xVx(x, t , i )

+ 7(&W -  - 7 ) ) V ( x , t , i )
1

+
i = 1

Further, let

w(x , £ z) = -  ln(7 Y(x , f, z ) ) .
7

Then w(x,t, i)  is governed by

m ini—̂  — £ 2^ , (x + l — u) — —, — (x +  1 4 - fi)\ =  0 , in D,wx wx

w(x , T, z) =  ln(.T +  1 — / i ) ,

(4.4)

where

C2w(xJt,i) =  <̂72 (z)x2 (ii;xa;(ic,M)

+  7 w2 (:r, t, i)) -  (b(i) -  r(i) -  <r2 ( z ) ( l  ~ 7 ))^a;(^ , t , z)

1 * 1

+  4(0 -  o<72(0(1 -  7 ) +  y
2  U  1

Now we relate this equation to a double obstacle problem. Let

v(x,t, i)  = wx(x,t,i).

Formally we have

- ^ (C 2w(x,t, i))  =  ^ a 2 (i)x2vxx(x,t, i)

-  ( 6 ( z )  -  r ( z )  -  (2 -  'y)cr2 (i))xvx(x, t, i)

7 7



-  (&W -  r W -  (! -  'y)<r2 (i))v{x, t, i)

+ j a 2 (i)(x2v(x, t , i)vx(x, t, i) +  xv2 (x, t , i))
i

+ ^ •?) “  ^  > *))vo(», j)
j=i 

=  £u,

where v0 {t,i, j) =  exp{7 (w(x,t , j)  -w (x , t , i ) ) } .

This inspires us to consider the following double-obstacle problem:

maxfminlv* +  Cv, (x +  1 — fi)v — 1}, (x -I-1 4 - (3)v — 1} =  0, in 17, 
1

v(x,T,i)  =

equivalently,

vt +  Cv =  0 , 

vt + Cv < 0 , 

vt +  Cv > 0,

1
< V <

x 4 - 1  — ji

v =

V =

X +  1 +  /?’ 
1

x  +  1 — /x’

v(x,T,i)  =
X +  1 — /x’

in 17.

We define

SR =  {(x , t , i ) £ 17 : v(x,t , i)  =
1

}.x +  1 — fl 

B R  =  {(x,t, i)  £ Ct: v(x,t , i)  = x +  1 +  p

N T  =  {(x,t, i)  £ 17 : ----- J— -  < v <  J------}.
x +  1 +  ft x +  1 — fl

(4.5)
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4.4 Existence and regularity of solution to  

problem (4.5)

We aim to prove the existence and regularity of solution to the double obsta

cle problem. One technical difficulty is that the upper obstacle is infinite on 

the boundary x = — (1 — p). To avoid the singularity , we confine ourselves 

within Cl = {x > x*t 0  < t < T}, where x* > — ( 1  — p) is sufficiently close to

— (1  — p), and the following boundary condition will be imposed on x = x*:

v(x*,t,i) = —   ------ , t G [0, T). (4.6)
x  - r  1 — n

We will see that (4.6) is indeed true because x < x* is contained in SR when 

< %s,oo defined in next section.

P roposition  4.3 The double obstacle problem (4.5) has a unique solution 

v{x,t) e  Wp2)1 (n iv \k | < 8 ), for any 8  > 0 , 1 < p < oo, where is any 

bounded set in Cl. Moreover,

v {x , t , i ) eC °° (N T ) ,  (4.7)

vt(x , t , i )>  0, (4.8)

and

u(0 , t, i) = — , if b(i) -  r(i) -  (1  -  7 )a2 (i) < 0 ,
J. Ui

v(0 , t, i)  — <

, 1 +  P
ifb(i) — r{i) — ( 1  — 7 )cr2 (i) > 0 , where

e - ( 6 W - r ( i ) - ( l - 7 ) a 2 ( i ) ) ( T - t ) _ ! _  j Qr t l < t < T ,
l - p

for 0  < t < ti,

1__________  1 +  /3
^  b(i) — r(i) — (1  — 7 )cr2(«) n 1 — p
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The main difficulty of the proof lies in the degeneracy of operator C at 

x = 0. Before providing a proof, we would like to give its sketch. We can deal 

with the problem in x* < x < 0  and in x > 0  independently in order to avoid 

the degeneracy of the operator C at x = 0 , and no boundary value is required 

on x = 0. The standard penalty method can be adopted to show the 

regularity of solution, and (4.8) can be deduced from maximum principle. 

Regarding (4.7), we only need to show the smoothness on {x =  0} D NT.

4.5 The proof o f Proposition 4.3

We will only confine our attention to r* < x < 0, and the case of x > 0 is 

similar. By transformation x = —ey and u(y,t ,i)  =  v(x,t ,i),  (4.5) and (4.6) 

become

min{max{—ut — £ yu, u -----------   }, u —
-ev  + 1 +  /3 ̂

(4.9)

where y* = ln(—x*), and

1 3
£ yu(y , t, i) = -(T2uyy(y, t , i) -  (b{i) -  r(i) 7 )°2 (i))uy(y, t , *

-  (b(i) -  r(i) -  ( 1  -  j ) a 2 (i))u(y,t,i)

-  7 a2 (i)eyu(y, t, i)(uy(y, t, i) +  u(y, t, i))
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Lem m a 4.4 Let ui} i =  1,2, satisfy

Uit LyUi -- 0 ,
1 1

ey +  1 +  /3 —ey +  1 — /x

Uit LyUi ^  0 ,
1

Uj  =  -----------------------
-ev  +  1 +  p

 ̂ Uit LyU{ ^  0 ,
1

Ui  =  ------------- ;---------—ey +  1 — /i

«i{y,T,i) = ipi(y), - 0 0  < y < y’ ,

(4.10)

Assume that

(b) ipi(y) is bounded;

(c) for any N  > 0, Ui{y,t,i) <E W ^ { ( - N , y * )  x [0,T) x S);

(d) dyUi is bounded.

i f  M y )  > M y ) > then ui (s/>M) > u 2 (y,t,i).

Proof. Denote

Af  =  {(y,t, i)  : ui{y,t, i) < u2 (y ,t , i), -oo  < y < y \  0 < t < T, i G S}. 

Suppose not. Then Af  must be a nonempty open set, and

u\ < -------- :------—ey +  1 — fi
1

ey +  1 +  P

It follows

—u\t — Lyu\ > 0 , — u2t — Cyu2 < 0  in Af.

Let w = ui — u2, which satisfies



where dpAf is the parabolic boundary of Af. And 

Cyw{y,t,i)
1 3

=  -  (&W - -  (g _ 7 V 2 (* )H (y ,M )

-  (b(i) -  r(i) -  ( 1  -  7 )0-2 {i))w(y, t, i)

-  7 <j2 {i)ey[u2 (y, t, i)wy(y, t, i)

+  (wiy(3/, i) +  Ui(y, t, i) +  u2(y, *, *))w(3/, t, i)]
1

+ 5Z •?) “  0 )uo(*> j)-
j=i

Since w is bounded and all coefficients in the above equation are bounded 

as well, applying the maximum principle, we have w > 0  in Af, namely 

ui — u2 > 0  in Af, which contradicts the definition of Af.

Since (—0 0 , y*) is unbounded, we define a finite domain (—N , y*) x [0, T) x 

§ with N  > 0, namely,

• r r N  r  N  N   ̂ i  N   ̂ I nmin{max{—u, -  Cyu ,u -  _ el) ^  ~ _ gV +  j  +  p ) =  °,

uN{y,T,i)  =  — — t-------,-JV < y  < y \
—ey +  1 — /i

uN{ y \ t , i )  =  — j-l -j--  , 0  < i < r ,
(4.11)

where a boundary condition on y = — N  is imposed.

Lem m a 4.5 For any N  > 0 given, the problem (4.11) has a solution uN(y, t, i) G 

W 2,1((—N, y*) x [0,T) x §), 1 < p < + 0 0 , and

> 0 ,

lu  Ih'|’1((-JVj,*)x[0,T)xS) — C ’

where N  < N  and c depends only on N  but is independent of N. Moreover,



where M is independent of N.

Proof. Following Friedman (1982), we consider a penalty approximation 

of the problem (4.11):
. . 1  . . 1

- )  =  0,
—ea - | -  i  - t -  p —e» t  i  — fjb

1

-  u”'c -  £ yuN’s + Pc(uN'c -  „  , a) + 7 £(«n'£ -  1

uN'£(y,T,i)  =

-ev + l + /3‘ 

, - N  < y  < y \
—ey +  1 — fi 

uN,£{y*, t, i) =  — — ------ ,uN'£( - N , t , i )  =-  ey * +  1 -  n

where

—e~N +  1 — p
,0 < t < T ,

(4.13)

m )  < o, 7e(0 > 0,

A(C) =  0 i f ? > e , 7 t(f) =  0  if £ < - e

f t ( o )  =  - C l ,  (c, > 0), 7e(0) =  C2 , (c2 > 0),

m )  > o , ■/.(«) > o,

m )  < o , 7?fc) > 0 ,

with constants C\ and C2 to be chosen later. For any e > 0 given, it is not 

hard to show by the fixed point theorem that the above semi-linear problem 

has a unique solution uN,e(y,t,i)  G N, y*) x [0, T) x §).

Next we want to prove

< uN'e < -------^  , in ( - N ,y •) x [0 ,T ) x S. (4.14)
-e» +  1 +  P ~ ~ - &  +  l - / t

Let

1
g{y) = —ey +  1 — y,

We have

( - |  -  Cv)g(y) +  P M V )  -  _ e y + 1 1 +  ig ) + 7 £(9(y) -  +\
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^  [ - ( 6  -  r)ey + (6 -  r -  (1 -  7 )<t2) ( 1  -  aO]
(-ey  +  1 -  / / ) 3

+  ^ ( - e y  +  1 +  (3)(—e y +  1 -  +  7e^

* 1 1 
“  z Z f e L ey + i _ »  “  _ ey + 1 _  J  exp{7 [«)(x, t , j ) -  w(x, t, i)]} 

j= 1 ^  ^
1 r / l x 2>

(-e^ +  1 -  /i) 3
[ - ( 6  -  r)ey +  (6 -  r -  (1 -  7 )a ) ( 1  -  fi)]

+  A ( ( _ e,  +  i + ^ e» +  l - M ) ) +  7e(0)
( 1  ~ /i)2( 1 ~ 7 ) <7'2 o  / ___________________ ^ +  /i____________________ .  .  v

(x* +  1 -  / / ) 3 (-e» +  1 +  /3)(—ev +  1 -  fi)} 7e l} '

When £ is sufficiently small, /d£( (_eV+1+̂ ey+1_/x)) =  0. Take

»=,<o)=2«^r^
Then _eV̂-1- is a supersolution, and thus

u N , t  ^  - e v  +  l - n ’ i n  H V . l f )  X [ 0 ’ T )  X S - 

In the same way, we can choose

d  =  - 8  (0) =  lfe- r - ( 1 - 7 y 2|(l +  ^)2
1 P ‘ ( )  (z* +  l +  /?)3

such that _eV+1+p is a subsolution. So, we get (4.14).

Then, we obtain

— ci < fi£(uN,£---------------- - )  < 0 , 0  < %(uN,e----------—------) < c2 .
—ey + 1  +  p ~ ’ —ey H- 1 — /x —

We then deduce from (4.13) that \un,£\w2,i^_n y^ x Q̂ T x̂S  ̂ < c, where c is 

independent of e because both Ci and c2 are independent of e. Using W^ 1 

interior estimate, we further have for any N  < N,

l1ijV,elw,p’1((-/r1y*)x[o,r)xS) — c’
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where c depends on N  but is independent of e and N.

Due to (4.14), we infer u ^ ,e\t=T > 0. Differentiating the equation in (4.13) 

w.r.t. t , we get an equation that u^ ,£ satisfies. Applying the maximum 

principle, we deduce

>  0 ,

which gives > 0  by letting e —> 0 .

Since the bound of uN,e and the C2 norm of terminal value are indepen

dent of N  and e, we obtain by the W 2,1 interior estimate,

lMjV,e|w ’*-1( ( - » - l 1y)x[0,T)xS) -

for any y < 0, where M  is independent of N  and e. Applying the imbedding 

theorem, we have

\ U y ,£\ L ° ° ( { - y - l , y ) x [ 0 , T ) x S )  <  M .

Since y is arbitrary, it follows

my ’£ \ L° °( ( - N, y* )x [0 ,T) xS)  <  A f ,

which yields (4.12) by letting e —> 0. The proof is complete.

We can get following Lemma from Dai and Yi [7]

Lemma 4.6 The problem (4.9) has a unique solution u(y,t, i),

u(y,t ,i) e W 2,1( ( -N ,  y*) x [0,T) x S), for any N  > 0, 

ut >  0,

|W y U ~ ((-o o 1y*)x[0,T)xS) ^  A f.
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4.6 Characterization of free boundaries

A double obstacle problem usually gives rise to two free boundaries. Firstly, 

we will show that each free boundary can be expressed as a single-value func

tion of time t. Then, we will examine the properties of the free boundaries.

Now, we introduce a lemma which will play a critical role in the existence 

proof of free boundaries.

Lem m a 4.7 Let v(x, t , i) be the solution to the double obstacle problem (4.5). 

Then

vx +  v2 < 0 , in Cl.

Proof. It is clear that vx +  v2 = 0 in B R  and SR. So, the rest is to show 

vx + v2 < 0 in NT. Denote

p(ar, t, i) = vx(x, t, i), p(x, t , i) = v2 (x , t , i).

Then

~ P t ~  ^ o 2x 2pxx +  (6  -  r  -  (3 -  j ) a 2 )xpx +  (26 -  2r -  (3 -  2 7 )a2)p

= j<t2 (4xvvx +  x2vl +  x 2vvxx +  v2)
1

+  X I t , j )  - v x(x, t,i))v0 {i,j)
3=1  

1

+  X  *>•?) ”  v(x’ *))27vo(*, j), 
j = 1

and

- P t ~  ^ v 2x2Pxx +  (6  -  r  -  ( 2  -  j ) a 2 )xpx +  (26 -  2 r  -  ( 2  -  2 y)a2)p 

= —a 2x2vl +  rya2 (2 x 2v2vx +  2 ru 3)
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+  ^ 2  ^  i )  -  *))**(*> j ) ,
j=i

in N T. Let H(x, t , z) =  u*(a;, £, z) +  v2(a;, t, z) =  p(rc, £, z) +  p(:r, t, z). Then

-  Ht -  i a 2x 2Hxx +  ( 6  -  r  -  (3 -  7 )<72 -  7 a 2xv)xHx 

+  (26 — 2r — (3 — 2 7 )<7 2 — 2/ycr2xv)H

= - ( 1  -  7 )a2 (xva; +  u) 2 

1

+ ^ 2 <lij(vx(x, t1j)  -  vx{x,t,i))v0 {i,j)
3=1  

1

+ (v(®, *, j)  -  v(x, t, i))2^v0 (i, j)
3=1  

1

+ %-2 u(:r, £, z)M®, t, j)  -  u(z, t, «)H(z, j).
j=i

We get — (1 — 7 )(72(:ruc+'i;)2 < 0, since 0 < 7 < 1. Then we can find v(x,t ,i),  

which qij ^  0 is small enough, to obtain

-  Ht -  i<72x 2Hxx +  ( 6  — r  — (3 — 7 )a2 -  j<j2xv)xHx 

+  (26 — 2r — (3 — 2r'i)o2 — 2 7  a2xv)H

< 0 .

Obviously H(x,t , i)  =  0 on the parabolic boundary of NT. By the max

imum principle, we have vx +  v2 < 0 , in fh

T heorem  4.1 There are two monotonically increasing functions x s(t,i) : 

[0, T] x § —» [—(1 — //), + 00) and Xb(t: i) : [0, T] x S —> [—(1 — /x), + 00), such 

that

S R  =  {(a:, t, i) G Q, : x <  xs(t), t G [0, T)}, i G §,
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and

B R  = {(x,t,i) £ ft : x > Xb(t),t £ [0 ,T )},i £ S.

Moreover,

x 3(t,i) < Xb(t,i) for all t £ [0, T).

Proof. Notice

i ( v - ^ T 0 ) = v * + ( ^ r h w - V l + v 2 - 0'

As a consequence, if (xi, t, i)  £ BR, i.e. v(xi, t , i)  = , then for any

x 2 > X\,

0  *  « ( * * .  * ■ 0  -  X 2 + \  +  !3 ~  v ( x i ’ l ’ i }  -  X ,  +  f T f l  =  ° ’

from which we infer v(x2 , t, i)  = X2+1+p, i.e. (x2 ,t,*) £ BR. The existence 

of x&(£, i) (as a single-value function) follows.

We consider v(x , t, i) =  (a; +  1 — n)2v{x, £, 2). Notice 

SR =  {(x, t,i) E ft : v(x , t, i) = x +  1 — //} and

£ ( * - ( * + i - p ) )

=  A ( ( x + i _ , i)2 (i;_ _ L _ ))

=  -[(x  +  1 -  /x)v -  l ]2 +  (x +  1 -  / i ) 2 ( u x + v2)

< 0 ,

since ux +  v2 < 0. If (xi, t, i) £ SR, v{x, t , i) =  a+i , for any x 2 < xi, then

1 2
0  =  u(xi, t, i )  —-------< v(x2, t, i ) --------—-------< 0 .

X i  +  1 -  f l  X2  +  I -  /X

Then the existence of x s(t,i) follows.
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The monotonicity of xa(t, i) and Xb(t, i) can be similarly deduced by virtue

of

d d
— {v -  (x +  1 +  A)) =  — (v - ( x  + l - p ) )  = vt >0.

Then we can get x a(t,i) < Xb(t,i), since SRf l  B R  =  0.

In finance, xa(t,i) and Xb{t,i) stand for the optimal selling and buying

boundaries, respectively. We can get their following behaviors from Dai and 

Yi [7],

Theorem  4.2 Let xa(t,i) be the optimal selling boundary. Then

M

xs(t,i) < (1  -  p)xM, 

where x M(i) =  and

xs(T~,i) = lim x 9{t,i) =  (1 -  p)xM,i\
t ->T~

(ii)

xs(t, i) = 0 , when b(i) — r(i) — ( 1  — 7 )<7 2 (i) =  0 ,

xs(t, i) > 0 , when b(i) — r(i) — (1  — 7 )<72 (z) < 0 ,

x9 (t, i) < 0 , when b(i) — r(i) — ( 1  — 7 )<t2 (z) > 0 ;

(Hi) x s(t,i) is continuous. Moreover, x s{t,i) £ (^([O jT) x §).

We assume T  > ln (f^ ) , then

Theorem  4.3 Letxb(t,i) be the optimal buying boundary. Denote



Then

(i)

Xb(t,i) >  ( l  +  f$)xM(i), 

where x M(i) =  and

xb(t, i) = oo, i f and only i f t 0 < t <  T;

(a)

xi,(t,i) > 0 , when b(i) — r(i) — ( 1  — j)cr2 (i) < 0 ,

and

xb(t, i) > 0 f o r t e  ( t i ,T ) ,xb(ti,i) =  0 , xb(t,i) < 0 for t e  (0,£i)

when b(i) —  r(i) —  ( 1  — 7)cr2 (i) >  0,

where h  = T -  In

(Hi) xb(t,i) is continuous.

4.7 Equivalence

In this section, we will show the equivalence between the double obstacle 

problem (4.4) and the original problem (4.5).

Theorem  4.4 Let v(x , t, i) be the solution to the double-obstacle problem 

(4.4). Define

w(x, t,i) = A(t,i) + \n(xs(t,i) +  1 -  p) +  f  v(£,t,i)d£, (4.15)
J x a{t,i)

where

A(t,i)
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j T rx 2 

i
+y

rx2 +  (b(i) +  r(i))(l -  p)x +  (b(i) -  \cr {i){ 1 -  t ) ) ( 1  -  aO
(x +  1 — /i) 2

\x=xa{r),idT

1
exp{7 (w(x,t, j)  -  w(z, t,i))}.

j 2 (wt(x ,t , j)  - w t(x,t,i))

Then w(x, t,i) is the solution to the problem (4.5). Moreover,

w(x,t, i) e C2,1(Q\F),

where F is the intersection of the free boundaries and the line x = 0, i.e., 

F  =  {((),£, «)|zs(M) =  0 or Xb(t,i) =  0, t 6  [0,T) , i  6  §}.

R em ark 4.1 We exclude the set F on which some partial derivatives of 

v(x,t ,i) or w(x,t, i) are discontinuous because of the degeneracy of the dif

ferential operator C or £ 2 • Then

0 , ifb(i) -  r(i) -  ( 1  -  7 )<r2 (i) < 0 ,

x = 0 , ifb{i) — r(i) — ( 1  -  j ) a 2 (i) = 0 ,

(0 , *i) i f b(i) -  r(i) -  (1  -  7 )cr2 (i) > 0 ,

where t\ is defined in Theorem (4.3).

Proof. Since v(x,t , i)  = x+\ for x < xs(t, i), we can get

w(x , t , i) = A(t, i) +  ln(r +  1 — //), x < xs(t, i). (4-16)

So w(x, t , i) satisfies the terminal condition. Therefore, to prove that w(x, t , i) 

is the solution to the problem (4.5), it suffices to show

F =  <
— wt — C2W > 0, in SR and B R  ,

— wt — C2W = 0, in N T  .
(4.17)

Observe

wx(x,t ,i)  = v(x,t, i). (4.18)



According to the definition of A{t), we claim

—wt — C2w =  0, o n r  =  xa{t, i).

Because of (4.18),

£'2'w\x=xa(t,i)

= i o2 (i)x2 {wxx(x, t, i) +  i w 2x(x, t, i))

-  (b(i) -  r(i) -  a2 (i){l -  7 ))xwx(x, t, i)

+ m  -  ^ 2« (  1 -  7 ) +  £
7

^<r2 (i)x2 (vx(x, t , *) +  7 u2 (z, £,)) -  (6 ( 0  -  r(i) -  ( 1  -  i)cr2 (i))xv(x, t , t)

-  *>« -  h i  -  7)<T2 (1) +  i ] ? « h 7 (“ (0W)- U’(0’,'<))U=x.(«,!)
3=1  7

r(«)x2(̂ , i) +  (6 (i) +  r(z))(l -  (J.)xa(t, i) +  (6 ( 0  -  W ( i ) { l  -  7 ) ) ( 1  -  /z)J

+ i > 4
J=1 1

= -u;t(:ra(f,0 ,M),

since (4.16).

So, we can easily get

— (—wt -  C2w) < 0, in SR , 
ox
Q

—  (~wt -  C2w) = 0, in N T  ,
Q

—  (—wt -  C2w) > 0, in B R  . 
Ox

Then we deduce (4.17).
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By Proposition 4.3, v G C 1,0 (Q,\F) and then w G C2,0 (Ct\F). We will 

show wt G C(Sl\F). According (4.15),

wt(x,t ,i)

= A'(t, i) +   v(xs( t , i) , t , i )xa{t,i) +  f  vt(^ t , i )d^
X$( t , l )  1 fl Jxa(t,i)

/•max(min(x,xb(t,i)),xs (t)i))

=  A '(M ) +  /  vt (£, t , i )d£,
Jxs(t,i)

/•max(min(x,Xb(M))v£s(M))
= A'(M) -  / Cv((,t ,i)d^

J x 8(t,i)
/•max(min(x,x{,(f,i)),xs (t,i))

= A'(t,z) — / d£2w
Jxa(t,i)

= A. (£, z) +  /^2^|xs(t,i) ^ 2 |̂max(min(x,Xb(Z,i)),Xs(Z,i))

■^2'^|m£oc(min(x,X6(f,i)),xs (Z,i)) >

which implies the continuity of wt{x,t,i). The proof is complete.
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