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Abstract

Pseudodifferential operators on compact groups are discussed, with an em-
phasis on the conditions for which the theorem of Hille and Yosida holds.
Some preliminary functional analysis is given including the notion of reg-
ularly dissipative operators and Pontrjagin duality. The dual group is de-
scribed, especially that it is discrete. Some important inequalities, such as
Young'’s inequality, are also stated. Generalised trigonometrical polynomi-
als and generalised Sobolev spaces are defined on the compact group G. A
finite exhaustion of the dual space is used to define pointwise convergence
and to give a condition for which a generalised Sobolev space is continuously
embedded in C(G) and compactly embedded into a larger Sobolev space.

The thesis defines k-ellipticity, k-smoothing operators and the k-parametrix,
and proves their relation to the compactness of the embedding. It is shown
that k-ellipticity is characterised by an inequality of Garding type. Some
examples of pseudodifferential operators with constant coefficients are given.
Another inequality of Garding type is proved for pseudodifferential oper-
ators with variable coefficients, and the existence of a weak solution to
(A(z, D) —A)u = f is given under certain conditions on the adjoint A*(z, D).
A variational solution of B[y, u] = (p, f) is found, and we prove a Gérding

type inequality for the sesquilinear form.
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Chapter 1
Introduction

A differential operator, P(D) := ) a,D?*, which acts on smooth functions

with compact support in R™ can be written in the form

POW@) = g [ ] ceep@uimays

= F(P()F(u(z))),

where F' is the Fourier transform and P(£) is a polynomial. This is derived

by applying P(D) to the representation
1 ,
ue) = P (Pu) = s [ e eulg)aya

and using P(D)e!®¥¢ = ¢l==9¢P(¢) on R™. We call P(£) the symbol of
P(D).

Similarly a pseudodifferential operator, P(z, D) on R™, is an operator of the

form
P(z, D)u(z) = ﬁ; / ) / ) e CVEP(z, £)u(y)dyde. (1.0.1)

In this thesis we explore pseudodifferential operators, both P(D) with

constant coefficients and P(z, D) with variable coeflicients, on a compact
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Abelian group which has no inherently differentiable structure, by using a
form similar to (1.0.1). Moreover, the theorem of Hille and Yosida states that
an operator A = A(z, D) is the generator of a strongly continuous contrac-

tion semigroup on L2?(G) if and only if the following three conditions hold:

1. D(A) C G is dense.
2. A is a dissipative operator.

3. R(A— A) = X for some A > 0.
The third condition is equivalent to the solving of

A-—Au=f

for all f € L?(G) and one XA > 0, and we concentrate on attaining this result.

Initially some functional analysis is introduced which is necessary for us to
understand the behaviour of functions on compact Abelian groups. The
notion of regularly dissipative operators plays an important role in some of
the later theorems and is introduced in a general context.

Chapter 3 begins with a formal description of locally compact and compact
Abelian groups, the latter of which we are most interested in. The reader is
familiarised with the Haar measure, a translation invariant measure which
exists on all locally compact Abelian groups. The Haar measure on a group
G is denoted pg .

We give the notion of Pontrjagin duality between a group and its dual group,
and see that the dual group of a compact group is discrete. This discrete
nature allows us greater control, and justifies our interest in compact groups.

The convolution of two functions,

(f * 9)() = /G f(@ - v)eW)duc),

is given with its most common applications, namely the convolution theorem
(f *9)"(v) = fF(Ma(r)

7



and Young’s inequality

|| f 9||Lp(a) < ”f”LP(G) HgmLI(G) :

We often assume that our symbols are negative definite functions, as these
give rise to the most important applications, namely that a negative definite

symbol P(y) generates a convolution semigroup of measures (fi¢);>o given by

fis(y) = P

A general introduction to negative definite functtions is given in section 3.2
and more can be found in [10].

Chapter 4 begins with generalised trigonometric:al polynomials on our com-
pact group G, which have a finite Fourier series and are dense in C(G) and
LP(G). These generalised trigonometrical polynomials are denoted S(G). We
then aim to categorise the ‘smoothness’ of funcitions on L?(G) by the rate
of decay of their Fourier transforms, with a generralisation of Sobolev spaces,
denoted H}(G). This allows us to prove many rresults on the simpler space
S(G) and then extend to H(G).

Also a finite exhaustion is defined on the discrete dual space, as a means
of defining pointwise convergence and divergenc:e of generalised Fourier se-
ries. We use these convergence properties to give a condition for which the
Sobolev spaces are continuously embedded in C'((Z) and more importantly for
which the embedding of one Sobolev space into another is compact. To ob-
tain ‘almost everywhere’ convergence results in our case it is more involved,
compare [13] and [30] for positive results in thie one dimensional classical
case, (18] for negative results and [1] as a surveyy on results in the classical
multi-dimensional case.

The thesis defines k-ellipticity, k-smoothing oper:ators and the k-parametrix,
and we prove their relation to the compactness: of the embedding, and see
that k-ellipticity helps us to solve A.(D)u = f.

8



In chapter 5 we show that translation invariant k:-elliptic operators are char-

acterised by an inequality of Garding type:

IAD)eli7x = collolly e — cullellyy -

It is shown that under certain conditions, k-ellipticity, characterised by the

above inequality, gives the existence of a solutiom to
A(D)u=f.

The d-potential and d-energy of a measure are lbriefly mentioned and sym-
metric Dirichlet forms generated by a translation invariant pseudodifferential
operator are explored.

We give some examples.

Then a Garding type inequality for pseudodifferemtial operators with variable

coefficients is proved. i.e.

2 2 2
|A(z, D)‘P“Lz(c) 2 CO”‘P”r,k - c-’lHSO”L?(G) :

In section 5.6 we prove the existence of a weak soilution to [A(z, D) —AJu = f
under some condition on the adjoint A*(z, D).
Finally, the main result of the thesis is given in section 5.7, where we give a

variational solution based on conditions on the ssesquilinear form
Blu,v] = (A(z, D)u, v)12(g),

which is then simplified to conditions on the pseudodifferential operator
A(z, D). In particular, we prove a Garding type imequality for the sesquilinear
form B. i.e.

Blu,u] > Xo(1 = n)l|ullip ) = » lullfzq)



Chapter 2

Some Functional Analysis

2.1 Preliminary Functional Analysis

In this section we will introduce many notions froim functional analysis which
will be needed later. Theorems are frequently offeired without proof, although
references will be given so that the reader may wnderstand the concepts in
more detail. The thesis aims to be mainly selif-contained. However, the
reader is assumed to have some basic knowledge «of set theory and functional

analysis.

Definition 2.1.1. Let X be a complex Algebra. X is called an Algebra with

Involution if there exists a mapping

X - X

r +—z*
such that for o, 3 € C

(1) (cz+By)* = az* 4 By*
(2) ™™ =z

(3) (zy)* = y'z*

10



Definition 2.1.2. A sequence {z;}nen in a norrmed linear space X is said
to be weakly convergent if a finite lim, o f(z,)) exists for each continuous
linear functional f on X. Then {z,} is said to comverge weakly to an element
Too € X if im0 f(2n) = f(Zso) for all continuows linear functionals f on X.
Note also that z,, is uniquely determined, via tlhe Hahn-Banach Theorem.
More details can be found in [45], 120.

Theorem 2.1.1. (Riesz’ representation theorem;)

Let X be a Hilbert space with scalar product (-,,-) and let f be a bounded
linear functional on X. Then there exists a uniqueely determined vector y; in
X such that

f(z) = (z,yf) for all z € X, and || f|| = [lyl|-
Conversely, any vector y € X defines a bounded llinear functional f, on X by

fy(@) = (z,y) for all ¢ € X, and [[|fy]| = [ly].

2.2 Dissipative Operators im Hilbert Spaces

Dissipative operators, in particular regularly diissipative operators, are of
great importance for the main results of Chaptter 4. For this reason, we
describe dissipative operators and their propertiess here, following closely the
work of Tanabe, [42].

Definition 2.2.1. Let A be a linear operator in av Hilbert space X with dense
domain. The operator A is called a dissipative operator if Re (Au,u) < 0 for
all u € D(A). If —A is dissipative, i.e. Re (Au,w) > 0 for all u € D(A), we
call A an accretive operator.

A dissipative operator which extends a dissipativee operator A, is said to be a

dissipative extension of A. An operator A is mawimal dissipative if the only

11



dissipative extension of A is the operator A itself. Accretive extensions and

mazimal accretive operators are defined in the same way.

Theorem 2.2.1. Let A be a linear operator with dense domain. The fol-

lowing statements are equivalent:

(1) A is a dissipative operator.
(2) (A= X)u|| > Re)||u|| for all u € D(A) and all X satisfying ReA > 0.
(3) |[{A—=X)u|| > A|ul| for all u € D(A) and all A satisfying A > 0.

Theorem 2.2.2. When A is a dissipative operator, the following statements

are equivalent:

(1) A is a maximal dissipative operator.
(2) R(A—)X) =X for all X satisfying ReA > 0.
(3) R(A —)\) =X for some A satisfying ReX > 0.

Theorem 2.2.3. Let A be a closed dissipative operator. A is maximal
dissipative if and only if A* is a dissipative operator. In this case, A* is also

maximal dissipative.

2.3 Regularly Dissipative Operators

Let X be a complex Hilbert space with inner product (-,) and norm |- |. Let
V be another Hilbert space with inner product ((+,-)) and norm || - |. We
assume that V is embedded in X as a dense subspace and that the topology on
V is stronger than on X. Therefore, there exists an My such that |u| < Mpl|ul|
forallueV.

Definition 2.3.1. A sesquilinear form is a function B(:,-) : V. xV — C

12



which is linear in u and antilinear in v,

B(uy + uz,v) = B(ug,v) + B(ug,v), (2.3.1)
B(u,v1 +v2) = B(u,v1) + B(u,vy), (2.3.2)
B(\u,v) = AB(u,v), (2.3.3)
B(u, ) = A\B(u,v). (2.3.4)

Let B(,-) be a sesquilinear form defined on V X V, which we assume is
bounded,
|B(u,v)| < Mul| ]| (2.3.5)

and satisfies Gdrding’s inequality, i.e. for some § > 0 and some k € R
Re B(u,u) > 6 ||lul|> - k|ul* forallueV. (2.3.6)

If B(-,-) satisfies these conditions, an operator A is defined as follows:

(2.3.7)

Given u € V. If there exists an element f € X satisfying
B(u,v) = (f,v) for all v € V, then u € D(A) and Au = f.

Denoting the set of linear functionals on V' by V*, we also note that an

operator A is defined for an element f € V* by
B(u,v) = (Au,v) = (f,v) (2.3.8)
and that A is an extension of A, as shown in Tanabe [42]. In fact
D(A):={ueV:Aue X}.

Frequently both A and A are denoted simply by A, as the lack of distinction

should not lead to any confusion.

Theorem 2.3.1. The sesquilinear form B*(-, -) defined by B*(u,v) = B(v, u)
is called an adjoint sesquilinear form. If B(-, -) satisfies (2.3.5) or (2.3.6), then
correspondingly B*(-,-) does also. Therefore B*(u,v) = (A*u,v) = (u, Av)

where A* is the adjoint of A viewed as an operator in X.

13



Definition 2.3.2. An operator defined by (2.3.7) which satiisfies the Garding
inequality for k = 0, is called a regularly accretive operator. 1If — A is regularly
accretive, A is called a regularly dissipative operator.

A regularly accretive operator is maximal accretive.

Definition 2.3.3. When B*(u,v) = B(u,v) holds for all u,v € V the

sesquilinear form is said to be symmetric.

Theorem 2.3.2. If E(-,-) is a bounded, symmetric sesquiilinear form on V
satisfying
Re E(u,u) > 6 [lull?,

then A is positive definite and self-adjoint, D(A%) =V, and

E(u,v) = (ATu, AZv) w0 € V. (2.3.9)

2.4 Semigroups and their Generators

Following chapter 4 of [34], let (X, | - ||) be a real or compllex Banach space.

Definition 2.4.1. A. A one parameter family (7}):>0 off bounded linear
operators Ty : X — X is called a (one parameter) semigrowp of operators, if
To =id and T,y = T 0 T hold for all s,z > 0.

B. We call (Tt);>0 strongly continuous if
i s =l =0

forallu e X.

C. The semigroup (T}):>0 is called a contraction semigroup if, for all ¢ > 0
ITillxx <1

holds, i.e. if each of the operators T; is a contraction. Here: ||T3|| 5 5 denotes

the operator norm.

14



Definition 2.4.2. Let (T}):>0 be a strongly continuous contraction semi-

group of operators on a Banach space (X, || - | x). The generator A of (T})>0
is defined by
. Lu—-u .
Au = lim (strong limit) (2.4.1)
with domain
. Tu—u "
D(A) =<ue X %mé exists as a strong limit p . (2.4.2)

We now continue to follow [34] with the mext theorem which encompasses

the main results of the thesis.

Theorem 2.4.1. (Hille-Yosida) A linear operator A on a Banach space
(X, ]l - llx) with domain D(A) C X is the generator of a strongly continuous
contraction semigroup (1t),, if and only if the following three conditions
hold:

1. D(A) C X is dense.
2. A is a dissipative operator. ie. Al|uf|x < ||(A — A)ul/x for all A > 0.
3. R(A— A)=X for some A >0.

Remark. If A* is injective, then condition 3 of theorem 2.4.1 holds. More-

over, if for a closed and dissipative operator A, and one X\ > 0 the equation
AN=Au=7f (2.4.3)

is uniquely solvable for all f € X, then for all A > 0 it is uniquely solvable
for all f € X. Therefore if (2.4.3) is uniquelly solvable for one A > 0, then
condition 3 of theorem 2.4.1 holds.

15



Chapter 3

Fourier Analysis on Compact

Abelian Groups

3.1 Compact Abelian Groups and their Dual
Groups

The aim of this section is to describe compact Abelian groups and the role
of the Fourier transform. Some important definitions are made, in particular
dual groups and the convolution of two functions. We frequently make use
of Bachman [2] and Yosida [45].

Definition 3.1.1. A non-empty set G is said to be a topological group if,
and only if, G is a topological space and
i) G is a group.
it) G is a Hausdorff space. i.e. given z,y € G,z # v,
there is X C G,Y C G s.t. X,Y are neighbourhoods of x,y
respectively and X NY = ¢.

16



i) f:G—G
gr——g
is continuous,
w) h:GxG—-G
(91,92) — 91 + 92
is continuous, where + denotes the group operatiom.
Definition 3.1.2. A topological group G is said to be @n Abelian group if
z+y=y+cforal z,y€G.

From now on, all groups we consider will be Abelian by @ssumption.

Definition 3.1.3. A topological group G is called compuct if for each open

covering of G there is a finite subcovering.
The following definition and theorem can be found in [44]].

Definition 3.1.4. Let ¢ > 0 and N C X be a subset in a Banach space
(X, ]I-]])- We call N an e-net for the set M C X, if M C |J Be(y) holds.

WeN
Theorem 3.1.1. A set M C X is pre-compact, i.e. its closure M is compact,

if for every € > 0 there exists a finite e-net.

Definition 3.1.5. A topological group, G, is called locally compact if for
each £ € G there is an open set O, C G containing x for which the closure

O—z is compact.
Theorem 3.1.2. A Hausdorff compact group is locally compact.

Definition 3.1.6. Let G be a locally compact group, and S denote the
Borel sets on G. For a subset E C G and element g € G, we define E® g :=
{heG:h=e+g,ecE}and g@E:={h€G:h=g+e,e€ E}.

A right Haar measure is a measure on G such that

(1) the measure of any non-empty open set is positive,
2) M(E®g)=u(E) E€S gel.

17



A left Haar measure satisfies (1) and u(g® E) = p(E). Any statement made

for a right Haar measure implies a corresponding statement for the left Haar
measure; Therefore we may use the right Haar measure throughout, and call

it simply ‘the Haar measure.’

A proof for the ezistence of a left Haar measure on every locally compact
(not necessarily Abelian) group is given in G.B. Folland [19], Theorem 2.10,
and in H. Reiter and J.D. Stegeman [40], Theorem 3.32.

Definition 3.1.7. A mapping

x:G—-C
with the properties
Ix(z)l=1 forallzed, (3.1.1)
x(@+y) =x(z)x(y) forallz,yegq, (3.1.2)

is called a character of G.

Definition 3.1.8. Let G be a compact Abelian group, and let the
class of all continuous characters on G be denoted by I'. If we take
(x1+ x2)(g) = x1(9)x2(g) as the group operation, we see that I' forms a
group, and this group is called the dual group of G.

Following [40] we introduce on I' the following topology. For a compact
set K C G and € > 0 denote by U(K,e) the set of all x € T such that
|x(z) — 1] < € for all z € K. The family of these sets U(K, ¢) form a basis of
neighbourhoods of the unit character. By translation we can now construct

a topology on I'.

Definition 3.1.9. We call a group, G, discrete if all subsets of G are open.
Note that under this topology, even a set comsisting of one discrete point is

open.

18



Theorem 3.1.3. The dual group of a compact group is discrete. Conversely,

if G is discrete, then I' is compact.

For the proof, see [40], p. 133, which also refers to Weil(1953) and Pontrja-
gin(1966).

Theorem 3.1.4. (Pontrjagin Duality Theorem) Let A denote the dual group
of I'. Let y be a fixed element of G and define, for v € T,

Then the mapping
A
given above is an isomorphism and a homeomorphism.

The proof of Theorem 3.1.4 is given in [2], p. 241.
Remark. If we write for a moment G* := I, where I is the dual group of

G, then we may interpret Pontrjagin’s theorem as: (G*)* = G.

Definition 3.1.10. We define the Fourier Transform of f € L'(G) as

fx) = /G FW)x(@)duc(y),

where p¢ is the Haar measure on G and x € I

Some immediate consequences of the definition are, for fi, f, € L}Y(G),

(fit+f2) " () = A0 + ()
and
(A1) " (0 = M0
In the case of L1(G), if we take
(=) = f(-=)

19




as the involution operation, we now have
(7)) = [ T2 7@ due(a)

for v € T. Since G is Abelian it follows that for any measurable £ C G,
pc(E) = pg(—E). Therefore replacing x by -x in the above expression, we

obtain
()" () = /G 7@ 1) duo(z),

but since v € I' we know

¥(=z) = (=7)(z) = 7(z),

hence

()" () = /G 7@ (@) dua(z) = F(7).

Theorem 3.1.5. (Plancherel)
The mapping

LYG)NL*G) — LX)
fef

is an isometry onto a dense subspace of L*(I'), and hence may be extended
to an isometry of L?(G) onto L(T').

A detailed proof of Plancherel’s Theorem on G can be found in [2], p. 235.
Remark. In Theorem 3.1.5 we used a formulation which also holds for

locally compact groups. Of course, in our case of an Abelian compact group
G, we always have L2(G) C L1(G).

Definition 3.1.11. Let p € M; (G) be a bounded Borel measure on G. Its

Fourier transform i : ' — C is given by
€)= [ @n(da) (313)

20



We note that
12(€)| < |lull = 2(0),

and that £ — [(€) is a uniformly continuous function, see [10]. Note that on

the discrete space I, every function is uniformly continuous.

Definition 3.1.12. We denote by f * g the convolution of f and g, defined

as

(f*9)(a / f(z - 1)9w)duc(y) = /G 9@ —9)f@W)dncly)  (3.14)

where f,g € L}(G) and pg is the Haar measure on G.

We now give two frequently used tools, the Convolution Theorem and

Young’s inequality.
Theorem 3.1.6. (Convolution Theorem) For f,g € L!(G) we have

(f*x9) " (7) = f()aly). (3.1.5)
Proof.

(fxg)" (1) = /G Y@ (f * 0)(@)dua(@),

I
2
N
@
N’
Q@
~~
N

—
Q
=
53

|
<
N—r
)
—~

8

I
<
N

(o}
=
Q
~~

8
e

——
(o9
=
Q
—~
=

Theorem 3.1.7. (Young’s Inequality) For f € IP(G), 1 < p < oo and
g € L}(G) the convolution

(Fx0)@) = | flo—n)ow)duotv)
defines an element in LP(G) such that

I f * gllee) < 1 fllr@)llglliLia)- (3.1.6)
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We will also later use the following (unnamed) inequality, which can be found
in Reiter & Stegeman [40].

Theorem 3.1.8. For k € L'(G) and u,v € L*(G) we have

[ [ e = wutenine@iine)| < el 617

Proof. Following the Cauchy-Schwarz Inequality with Young’s Inequality
yields

k(z — Jo(y)dpe(z)dpe y)‘ < |k xu)vllLie) < Ik *ullz@) vl

<kl llulla@ lIvlieae)-

3.2 Negative Definite Functions and

Convolution Semigroups

It is assumed for the rest of the thesis that G is a compact Abelian group.
The dual group of G is therefore discrete and is denoted I.

In this section we introduce the notion of negative definite functions on T,
the dual group of G, and assert a one-to-one correspondence between these

negative definite functions and convolution semigroups on G.

Definition 3.2.1. A function u : I' — C is called positive definite if, for any
choice of n € N and vectors &;,...,&, € I, the matrix (u({,— - §l))ﬂ=1 s

positive Hermitian,

i.e.

(ul& ~ El>)j,1=1,...,n = (“(51 &))j,l—l,...,n
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and for all Aj,..., A, € C we have

n

Z w(& — &)Ah > 0.

Jil=1

We now state Bochner’s theorem, following Berg, Forst in [10].

Theorem 3.2.1. (Bochner)
A function u : T' — C is the Fourier transform of a measure u € M} (G)

with total mass |||, if and only if the following conditions are satisfied:

1. wu is continuous

2. w(0) = (0) = |ull
3. w is positive definite.

Definition 3.2.2. A family of bounded Borel measures (u:),, on G,

is called a convolution semigroup on G if the following conditions hold:

i) w(G)<1lforallt>0

1) g * My = psyt Where s, > 0 and po = €9

13) e — €o vaguely as t — 0. i.e. for all f € Co(G) = Cp(G), it holds
lim () = lim f F(@)e(dx) = [ F()eo(d) = £(0).

Let (u:):>0 be a convolution semigroup on G. It follows, by Bochner’s The-
orem 3.2.1 that the family of the Fourier transforms of y;, namely (:):>0,

consists of continuous positive definite functions on I'.

Theorem 3.2.2. Let (ut):>0 be a convolution semigroup on G. Then, there

exists a function ¢ : I' — C such that

fu(y) = e7H (3.2.1)
holds for all y € I and ¢ > 0.
Also following [10], we introduce negative definite functions.
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Definition 3.2.3. A function 9 : I' — C is called negative definite if
¥(0) > 0 and v +— e~ is positive definite, for ¢t > 0. By CN(I") we denote

the set of all (continuous) negative definite functions on I'.

Theorem 3.2.2 therefore states that for any convolution semigroup (u¢)i>o
there exists a unique negative definite function % :I' — C such that
f:(7) = e~ holds. A more direct definition of a negative definite function

is given here:

Proposition 3.2.1. A function 9 : I' — C is negative definite if, and only

if, for any n € N and vectors &;,...,&, € I, the matrix

(&) +9(&) —¥(& - &), 10,

is positive Hermitian.

Proposition 3.2.2. Let ¢ € CN(I"), then we have

i) 9¥(0) >0, in particular ¥(0) € R,
1) the mapping |¢|% : I' = R is subadditive,
i11) for any v € T it follows that Re[¢(v)] > ¥(0).

Theorem 3.2.3. (Peetre’s Inequality for negative definite functions)
Let ¢ : I' — C be a negative definite function, then the following inequality
holds:

1+ [9(6) i
1+ |9(n)] <2(1+ [p(€—n))- (3.2.2)

The proof of this inequality follows in exactly the same way as on R", given
in Jacob [34].
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Chapter 4

Some Function Spaces

4.1 Some Function Spaces

In this section we seek to categorise the ‘smoothness’ of functions on G,
where G is once again a compact Abelian group with countable dual group
I". We firstly consider generalised trigonometric polynomials, S(G), and then

expand to generalised Sobolev spaces, via a norm and scalar product on S(G).

Definition 4.1.1. A generalised trigonometrical polynomial is by definition

any function f: G — C having the representation

f(z) = Z ayy(z) , a, € C.
o)

The set of all generalised trigonometrical polynomials is denoted by S(G).

A well known fact is the following:

Proposition 4.1.1. Let G and I be as above and 1 < p < oo . Then S(G)
is dense in the spaces C(G) and LP(G), respectively.
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Since the characters in our case form a complete orthonormal system in
L2(G), every f € L%(G) can be represented as

f@)=2_ f()(=)
~ver
where the series converges in L%(G), and this L2limit does not depend on

the order of summation.

We want to introduce a certain family of function spaces generalising Sobolev
spaces. For this reason let k£ : I' — C be a function and denote by k, the
function defined on I" by k.(7v) = (1 + |k(7)|?)*/2. For each r € R, 7 > 0, we
define on S(G) the scalar product

(@) = D> KZ(MEWPA). (4.1.1)

vyell
finite

The norm corresponding to (4.1.1) is denoted by ||.||r -

In particular, for each function k£ : I' — C, we have

lellos = llello
where ||.||o denotes the norm in L?(G).

Definition 4.1.2. The completion of S(G) with respect to (4.1.1) is the
Hilbert space H}(G).

Obviously we have

Proposition 4.1.2. A. For 0 < s < r the space H}(G) is continuously
embedded into the space Hi(G), in particular H(G) is always continuously
embedded into L?(G) and

lullo < flullre v e HK(G)
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B. Let k;, : ' — C, i = 1,2, be two functions and suppose that for all
v € I'\T, T CT finite, the estimate |k;(7)] < ¢|ka(7)| holds. Then for
each r > 0, H, (G) is continuously embedded into the space Hj (G).

C. For each u € HL(G), r > 0, v — k7(y)ud(y) belongs to L*(T).

Conversely, whenever v — k7()v(y) belongs to L3(T") for some sequence
(v(7))rer, then

2 (o) i= Y v ()

~el
belongs to HL(G) and w(y) = v(7y).
As done in [15] for the n-dimensional torus, we can characterise the dual
space of HL(G), for r > 0. First we define for f € L%(G) and r > 0 the norm

e i= sup 1H%el (4.1.2)
0£ucH} (G) ”U”rk

It follows as in [15] that the set £ of all continuous linear functionals ! on
H7(G) given by l(u) = (f,u)o for some f € L*(G) is dense in [H(G)]* with
respect to the norm (4.1.2).

Definition 4.1.3. Let 7 > 0. The completion of L?(G) with respect to
|I|| - is denoted by H,"(G).

This notation, with the considerations made above, imply immediately:
Proposition 4.1.3. For r > 0 we have [H}(G)]* = H."(G).

Lemma 4.1.1. A. The set S(G) is dense in H."(G).
B. For each ¢ € S(G) we have

lollZee = D kT (NI (4.1.3)

vy€erl’
finite

Hence it follows
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Proposition 4.1.4. Let 7 € R and u € H(G), then

luliZ, = > k()P (4.1.4)
~er

The proof of the lemma is straightforward, and we refer the reader to [15],
202-203.
Obviously Proposition 4.1.4 implies that for r,¢t € R, r > ¢, the space HL(G)
is continuously embedded into the space H:(G).
Later in this paper, we will prove further properties of the spaces Hf(G),
r € R, and related spaces. In particular we will prove some compactness
results for the embedding of H(G) into Hi(G).
For later purposes we introduce the notion of a finite ezhaustion of I', the
discrete dual group of G. By this, we mean a sequence (I'y)men of finite

subsets I',, of I' with the following properties:

Tm#¢, TI'mGTmn and JTIm=T.

meN

4.2 Convergence and Embedding Theorems

We want to emphasise that the results in this paper frequently depend on
a fixed finite exhaustion of I'. Although the initial choice of exhaustion
(T'm)men is not important when formulating and proving these results, it

must remain fixed throughout.

Definition 4.2.1. Let G be a compact Abelian group with discrete dual
group I' and let (I';y)men be a finite exhaustion of I'. Furthermore, let

u € L!(G). We say that the Fourier series Y 4(vy)y(z) converges ug almost
yer
everywhere to u(z), w.r.t. (I'm),ens if the sequence Sy, (x) := > 4(v)y(x)
yElm
converges almost everywhere to u. Again pg denotes the Haar measure on

G.
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It is well known that even for the group G = T, the one dimensional torus,
i.e. the circle, the Fourier series of an L!-function need not converge almost
everywhere to the function. This result is due to A.N. Kolmogorov [37]. But
the celebrated L. Carleson theorem [13] states that for any u € L?(T*) the
Fourier series of u converges ur:1 almost everywhere to u. This result was
generalised by R. Hunt to elements in LP(T!), 1 < p < oo, see [30].

It was C. Fefferman [18], who pointed out that Carleson’s result does not
extend in the natural way for elements in L?(T?), where T? is the two di-
mensional torus. He found that in this case it does depend on the way in
which the summation of the series is done, i.e. on the choice of the finite
exhaustion. For further discussions on this problem we refer to [1].

However, the next theorem, which is a type of Sobolev embedding theorem,
also gives a sufficient condition that elements in certain subspaces of L%(G)

have a pointwise convergent Fourier series. We need the following condition.

Condition 4.2.1. Let k£ : ' — C be a fixed function and ¢, > 0 be a real
number. We say that k fulfills Condition 4.2.1 if and only if

> k7*o(y) < 00 (4.2.1)

yerl’

holds. By this we mean that the sequence ( S k%o ('y)) |, converges in
Y€lm me
C for the finite exhaustion (I';,)men. Condition 4.2.1 means exactly that the

embedding H°(G) — L?(G) is of Hilbert-Schmidt type.

Proposition 4.2.1. If Condition 4.2.1 holds for one finite exhaustion of T,
then it holds for all finite exhaustions of I'.

Proof. Given that ( S ke (7)) converges in C, the partial sum sat-
»Yel"m meN
isfies s, = Y, k;%°(y) < K, for a constant K € C and all m € N.
YE€lm
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Now let t, = 3. k;%0(y), where (I'),)men is a different finite exhaustion of
v€lm
I'. For each m € N there exists some a(m) € N for which I';, C Ty(m), s0

tm < Sa(m) < K.

Thus t,, is an increasing positive sequence, bounded above, and so converges
with
lim ¢, < lm sp,. (4.2.2)

Furthermore, given any ¢ € N, there is a §(i) € N such that I'; C T,, for
m > B(i) > i and

8i S tm < Sam) < K for m > B(3).

If we let ¢ — oo, then

lims; < lim ¢,
1—00 m—0o0

which combined with (4.2.2) implies that (8 )men and (tm)men converge to

the same limit.
a

Theorem 4.2.1. Let G, and I" be as mentioned above, (I'y,)men be any
finite exhaustion of I' and suppose that Condition 4.2.1 holds. Then the
space H(G) is continuously embedded into the space C(G) provided r > t,.
More precisely, the elements of H}(G) have an absolutely convergent Fourier

series and for ug almost all z € G we have

lu(z)| < cllullnk. (4.2.3)
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Proof. Let u € HL(G). Then we find

(St = (el mkm)

~elr ~er

< (k) (X 1))

~yel vyel’

< (ko) (X PRz (),

yer vyer

which implies that the series > 4(7)7(.) converges absolutely and uniformly
yerl’
on G. Hence there exists a continuous function u : G — C which is the uni-

form limit of ( > ﬁ(’y)’y(.)) - But on the other hand ( > 'EL('y)'y())

YElm YElm meN
converges in L2(G) to u. Thus u = U ug-almost everywhere. Moreover, we

find that

fae)| = | X @) < (ko) " fuls

~yel ~y€el

for all u € H}(G), which implies
lu(z)| < c||ullrk pc-almost everywhere

for all u € H(G). We also note that ||u||e = sup |u(z)| < cl|u||rk-
z€G

ie. in this case, H;(G) is continuously embedded into C(G). Hence the
theorem is proved, by Proposition 4.2.1. O

Our next aim is to give necessary and sufficient conditions for the embed-
ding of Hf(G) into L%(G), or more generally for H;**(G) into H(G), to be

compact. For this we need the following

Definition 4.2.2. Let I" and (I, )men be as above and &k : I' — R be a given

function.
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A. We say that a sequence (7;)jen, v; € I, diverges to oo, i.e. jlivlga v = 00,
if and only if for any mg € N there exists a number Ny € N such that for all
J = Np it follows that v; € '\ I'n,, holds.

B. We write lirglo k(v;) = oo if and only if for any N € N there exists a
mo € N such tjhat v; € '\ ', implies k(v;) > N.

C. We will write }LIEO k(y) = oo if and only if for any N € N there exists

mo € N, such that for all v € I'\ [, it follows that k() > N holds.

By our assumptions I' is discrete and (I';;)men is a finite exhaustion. Sup-
pose that ['yy1 \ Iy, has J,, elements. Moreover, let Z : I' — N be a

bijection such that Z |r \r is a bijection between Iy, \ I';,—1 and the set
m m—1

NN [(mZ_:IJ,,) +1, i J,,]. Note that for m = 0 we set 'y = ¢. Then it
follows Vf;ém the de;i;:ition that the sequence Z~! : N — I' diverges to co.

If i(m) = 5°J, and N = {1,2,...,m}, then Z~'(Nym) = T'm. Hence,
using Z~! :vzzlcan consider I" as a sequence diverging to infinity.

Whenever we now write ¥ — 0o, we mean that we have fixed a mapping Z
with the properties stated above, and we consider the sequence Z7! : N — T,

Now we can prove

Theorem 4.2.2. Let r,t € R, t > 0. Moreover let G,T" and (I';y)men be as
above and consider I" as a sequence diverging to infinity. In order that the
embedding of H™*(G) into H(G) is compact, it is necessary and sufficient
that
lim k.(y) = o0 (4.2.4)
=00

holds.

Proof. A. First we prove that (4.2.4) implies the compactness of the embed-
ding. We start by proving that the set

M = {u € S(G), [ullrsse < 1}
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is finite in H(G). For an arbitrary element u € M we

segment by

and we find

le —umllie = D kTNl

YET\T'm,

define the m-th

We want to prove that the set M,, of all m-th segments of elements in M is

an e-net in H(G) provided m is sufficiently large. For € > 0 there exists a

mp € N such that if y € '\ ', it follows that

k7%(y) <e

*

holds. For v € I' \ I',, and m > mg we find

o= emle < > R 0)

YEM\'myg

< Y ETElam)P

YEM\'mq

< ullfek

<1

)

since we have u € M, i.e. |[ullryer < 1.

Hence M,,, is an e-net for M in H(G). Since I, is finite, My, is finite in

H7(G) for any m € N. Thus we know that for any € > 0 there exists a finite
e-net in H}(G) for the set M. By Satz 1.7 in [44], i.e. theorem 3.1.1, it follows
that M is finite in H(G) which implies the compactness of the embedding

of H;(G) into HL(G).
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B. Now suppose that the embedding of H;"*(G) into H;(G) is compact,
r,t € R, t > 0. We have to prove lirglo k«(y) = 00, where v — oo is understood
as stated above. Thus we consiZler I' as a sequence (7;)jen constructed by
a certain mapping Z : I' — N depending on (I'y,)men. On G we define the

function u/ by
w (z) = kT ()5()

and we find

W (y) = { ) =y
0 , YFE

which gives
112 =Y 107 ()2 K20 () = k7200 () R20 40 () = 1.
vel’

Hence the sequence (u/);cn is bounded in the Hilbert space H;t*(G) and for
this reason it has a weakly convergent subsequence denoted by (u/'). Now let
¢ € S(G), then it follows

(W, e = D K2 ()A (1) (7)
~yerl

= k200 () k7 () o ()

= k. () () -

We claim that

lim k7% (yy)@(vy) = 0.

j'—00
Since ¢ is a trigonometrical polynomial, there exists a finite set I', C I' such
that

o) = > ¢(1)1(x).

Y€l
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But this implies ¢(v) = 0 for all v € I'\ ', whenever I, C I',, and we find

lim k204 (y;)@(v;) = 0.

j'—o0

Therefore, (u?) converges weakly in H;t*(G) to 0.
By the compactness of the embedding of H}"(G) into H%(G) we find

|||, 4 — O for 5 — co. From this we conclude by using

' [I25 = Y K () = k()

yer
that
lim k;*(yy) =0
j1—00
or
Jim 2(yy) = o0 (4.2.5)

for the subsequence (7;:). But any subsequence (7;/) of (v;)jen contains a
subsequence (v;~) such that (4.2.5) holds and therefore (4.2.4) follows. O

Remark.

Theorem 4.2.2 can also be proved by the following known fact, pointed out
by E.Lytvynov. Let (a;)i2, be a fixed element of £,. Define a bounded
operator £y 3 (z;)2; — Az = (o121, QeZa,...) € £o. Then A is compact if

and only if limy_,o ax = 0, see Chapter 9. Exercise 1.1 in [7].

4.3 Translation Invariant Pseudodifferential

Operators

In the following, let G be a compact Abelian group with discrete dual group
" on which a finite exhaustion (I, )men is fixed. Furthermore, let k: ' — C
be a fixed function.
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Definition 4.3.1. For any ¢t € R we denote by 3_°(k) the set of all functions

A : T' — C such that with some positive constant c; 4

|A(Y)] < c1,akL(7) (4.3.1)

holds for all v € I'. Moreover let

ST =US ). (4.3.2)

teR

The k-degree of an element A € Y (k) is defined by
degi(A) == inf{t € R; |A(7)| < cpaki(y), Y €T}
Now, any A € ) (k) defines an operator A(D) on S(G) into itself by

[AD)p]" (v) == AMe(y) ¢ €S(G). (4.3.3)

Since

p(z) =Y p()(=),

~€er
finite

A(D) is well defined on S(G) and

AD)p(z) = > AMPN)(x) .

yer
finite

We call A the symbol of the operator A(D).

Definition 4.3.2. By A%(k) we denote the set of all operators generated by
a symbol A € 5" *°(k) with k-degree less than or equal to t.

Moreover we set A®(k) = |J A*(k) .

teR
For any A € ) (k) the operator A(D) belongs to A®(k). Conversely, given
A(D) € A*®(k), then there exists a number ¢t € R such that A(D) € A%(k),
hence for any € > 0 we find A € 32"**(k) and A is the symbol of A(D).
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Let A(D) € A(k), B(D) € A"(k) and «, 3 € C. Since aA(D) € A!(k) and
BB(D) € A"(k), we find aA(D) + 8B(D) € A™"(k). Hence for any t € R
A'(k) is a complex linear space, and for ¢t < r = ¢ V r it follows that A*(k)
is a subspace of A"(k). For the product of two operators it follows by a

straightforward calculation (see [15], Lemma 1.1) that we have:

Lemma 4.3.1. Let A(D) € A'(k), B(D) € A"(k) and T(D) := B(D) o
A(D). Then T(D) has the function y +— T'(7y) := B(v)A(y) as its symbol, in
particular we have T(D) € A" (k).

Thus we have found that A% (k) is an algebra, moreover,

) A%(k) = U A'(k)

teR

i) aAl(k) + BAY (k) C AH(k)

ii4) AT (k) o At(k) C A% (k).

Definition 4.3.3. Let G,I" and (I';,)men be as above.
A. An operator A(D) € A¥(k), t € R, is said to be k-elliptic, if there exists

an mg € N and a constant ¢ > 0 such that

|A(Y)] > cki(7) (4.3.4)

holds for all y € T\ 'y,

B. An operator R(D) € A*(k) is said to be a k-smoothing operator, if
degrR = —o0.

C. An operator R(D) € A*®(k) is said to be finite, if R(D)(S(G)) is finite
dimensional.

D. We define

A™°(k) = () A'(K) .

teR

37



Remarks.

1. An operator R(D) is finite if and only if its symbol R equals zero in the
complement of a finite subset of I .

2. Any finite operator is k-smoothing for any k. Indeed, let
["={yeT;R(y) #0} and for t € R let

maxyer |R(Y)]
min,er kL(y)

Ciri =
Then we have for all y € T’

IR(Y)| < Ceriki(v)

thus R(D) € A'(k) for any t € R.

3. It is not true that any k-smoothing operator is finite. A counterexample
is given by the operator R :Z" — C where R(a) := exp(—|k«(a)|), in [15],
p-199.

Definition 4.3.4. Let A(D) € A'(k), t € R. An operator B(D) € A~%(k)
with symbol B € 3°7%(k) is said to be a k-parametriz for A(D) if there exists
a k-smoothing operator R(D) such that

B(D) o A(D) =id — R(D). (4.3.5)
The following theorem is fundamental for all that follows,

Theorem 4.3.1. An operator A(D) € A'(k),t € R, is k-elliptic if and only
if there exists a k-parametrix B(D) € A~%(k) such that the operator R(D) in
(4.3.5) is finite.

Proof. A. Let A(D) be k-elliptic. Then there exists by definition my € N
such that for all v € I'\ T'yp,

JAMIT! < ek ()
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holds with some constant ¢ > 0. We define on I' the function B : ' — C by
0 ~veTl
B(y) := { B -
A(y)™" 7€l \T'm,

which satisfies the estimate
|B(y)| < ck.*(y) for all y € T,

Hence B € 3 *(k) and B(D) : S(G) — S(G) belongs to A~t(k).
On the other hand, let

1 v €Tl
R(y) :=
0 yeT'\Ty, .
Then R € 3.7°(k) := N 3.%(k) and the operator R(D) is finite. Thus we
teR
find

(B(D)o A(D)p)" (v) = B(m)AM)$(y) =

~

{ 0 €Tl
o(7) YET\TIn

which implies
B(D)o A(D) =id — R(D)

and B(D) is a k-parametrix of A(D).
B. Now let B(D) € A~%(k) be a k-parametrix of A(D) € A*(k), in particular
we know that B(D) has a symbol B € ¥ "%(k) and

B(D) o A(D) =id — R(D)

holds with a finite operator R(D). It follows that there exists a function
R:T — C and mp € N such that R(y) = 0 on '\ I';,,. Hence we find
B(Y)A(y) =1for all y € '\ T,

Since B € 5_"*(k) we get

JA(W)| = |B()|™ > cki(v)

for all v € I' \ I}, which implies the second part of the theorem. O
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Our next aim is to extend elements of .4*°(k) continuously to some spaces
H(G).

Proposition 4.3.1. Let r € R and k£ : I' — C be a fixed function. Moreover
let A € S *(k). Then we have for all ¢ € S(G)

IAD)¢ll,. i < cllpllpye (4.3.6)

Proof. For ¢ € S(G) we find

IAD)el2, = 3 |[AD)e]” ()] k2 (v)

vel’
< ¢ Y KEM)|@() kT (v)
yell
2
= cllelliie -

Note that all sums are finite since ¢ € S(G). a

Using Proposition 4.1.1 and Proposition 4.3.1 we can extend, for each r € R
any operator A(D) : S(G) — S(G) with symbol A € Y *(k) continuously to
an operator A,(D) : HL(G) — H,%(G).

Moreover, combining Lemma 4.3.1 and Proposition 4.3.1 we find for two oper-
ators A(D) and B(D) with symbols A € 3 (k) and B € Y"°(k), respectively,
and their product T'(D) = A(D) o B(D), that

IT(D)elleparrs < cllelle .+ 7R (43.7)

Thus, using the notation introduced above for the extended operators we
have, for any r € R,

T.(D) = A,_(D) o B,(D) (438)
where  A,_(D) : H;*(G) — H;*7%(G) and B,(D) : HL(G) — H,*(G),
hence T,(D) := H(G) — H;*7%(G).
Given A € Y *(k) and f € H;%(G),r € R, we want to solve the equation

A(Dyu = f. (4.3.9)
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Suppose that A(D) is k-elliptic. Then IV = {y € T'; A(y) = 0} is finite. Let
L(I") = {¢ € S(G);¢(y) = 0 for v € I"}. The closure of L(I") in H(G) is
denoted by A, and A is the finite dimensional subspace of H}(G) defined
by N' = {¢ € S(G); p(y) = 0 for v € I'\ I'}. Obviously N’ C Hy(G) for
any r € R.

Theorem 4.3.2. Let A € Y *(k) and A(D) be k-elliptic. Then for equation
(4.3.9) Fredholm’s alternative holds. ie. (4.3.9) only has a solution v € H(G)

for f € N,_;. This solution is unique up to an arbitrary element of N".

Proof. A. Let N' = {0}, i.e. A(y) # 0for all v € I'. Then we consider the
function u defined by
f()

ﬁ(7)=m , 7€r.

We have to prove that u belongs to H(G). By the k-ellipticity of A(D) it
follows that |A(y)|™! < ¢ k;*(7y) holds for all 4 € T'. Therefore we find
lullZ = X 1M PR () = X 1F0)PIAMI72R (7)

yerl’ ~yer

< Y |f PR () = I -

yer

Obviously u is a solution of (4.3.9) and since now N,_; = H; *(G), this case
is proved.

B. Suppose N’ # {0}, i.e. I” # ¢. In order that (4.3.9) has a solution
u € Hy(G), A(y)i(y) = F(v) must hold for all v € T, which implies f(7y) =
Oforally eI, ie. feN_;.

On the other hand, for f € N,_;, if we define

i) '
afy) = { A 27 ETAL
0 ,vyeI’
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then u € H}(G) and it is a solution of (4.3.9), the first statement is proved
as before. Now let g € A7, i.e. g(y)=0forye T\ T
We find

[A-(D)(u+g)]"(v) = AW (@) + (7)) = f()
for all y € T
Finally we let A,(D)u = f and A.(D)v = f for some u,v € H(G). This
implies
0= [A(D)(u—v)]'(7) = A(7)(@(7) — 9(7))
for all v € I'. That means 4(y) = 9(v) for all v € '\ I/, hence u —v € N’
and the second part of the theorem is proved. O

Using the notion of a k-parametrix, Theorem 4.3.2 can be formulated another

way,

Theorem 4.3.3. Let A, (D) € A'(k), t € R, be a k-elliptic operator and
let 7 € R. Then there exists an operator B,_;(D) : H;*(G) — H}(G) with
symbol B € S.7'(k), such that with a finite operator R,(D),

Br_4(D) 0 A,(D) = id, — R,(D) (4.3.10)

holds, i.e. B,_;(D) is a k-parametrix for A.(D). Here id, denotes the identity
on HL(G).

Proof. Define B € 3.7'(k) by

B(y) = { ?(7)_ ’ Z;I:,\ 3

and recall that a k-elliptic operator A(D) € A%(k) always has a symbol
A€ Y (k). O
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4.4 Ellipticity and Compactness of
Embeddings

The purpose of this section is to make clear the connection between k-
smoothing operators, k-ellipticity and compactness of the embedding of
H,"*(G) into H,(G). First we prove,

Proposition 4.4.1. Let k : I' — C and r € R. For any k-smoothing operator
R.(D) we have

D)u € [Hy(G) = HP(G) (4.4.1)
for all u € HL(G).

Proof. We have to prove for all s € R and all u € Hi(G) that ||R.(D)u||sk

is finite. Now, since R(D) is a k-smoothing operator it follows that

|IR(Y)| < cs k()

forall s€ Rand y €T.
This implies

IR-(D)ullsx = Y I[RA(D)ul "(7) Pk (%)
=Y [RO) P [P EE()

< ere Y KTV () K2 (y) )

vyel

= cr8||u||72~k
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The following results are dependent on the finite exhaustion (I'y,)men of T,

so it is important to keep the same finite exhaustion throughout.

In the proof of Theorem 4.2.2 we already used the notion lim k(y) = 0 for
some function k : I' — C. By this we mean that for any 5720?) there exists
mo € N such that v € T'\ I'y,, implies |k(y)| < €. Obviously ILI{.IO k(y) = o0
yields vlinolo k=1(v) = 0 analogous to Definition 4.2.2.C. !
Proposition 4.4.2. Let £k : ' — C and suppose that the embedding of
Hl(G) into L%(G) is compact. Then it follows for any k-smoothing operator
R(D) that

»,h_.r{.lo |R(y)| = 0. (4.4.2)

Proof. By Theorem 4.2.2, the compactness of the embedding yields

lim &7 (y) = 0.

Y00

Moreover R(v) € S.7(k), and the theorem follows. O

Our main result in this section is the following theorem.

Theorem 4.4.1. Let k: I’ — C be an arbitrary function. In order that the
existence of a k-parametrix B(D) € A™*(k) for an operator A(D) € A%(k),
t € R, always implies that A(D) is k-elliptic it is necessary and sufficient
that the embedding of Hi(G) into L?(G) is compact.

Proof. A. Suppose that the embedding is compact and that A(D) € A*(k)
has a k-parametrix B(D) € A~*(k) with symbol B € Y.*(k). Then there
exists an operator R(D) € A~*°(k) such that

B(D) o A(D) =id — R(v)

B(v)A(y) =1- R(%) for all v € T.
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By Proposition 4.4.2 it follows using the compactness of the embedding that

lim |R(v)| =0,

Y00

hence there exists mo € N such that 1 — [R(y)| > 3 for all v € T'\ ['y,,. For
these v we find

N =

IBWIAM) = 1= R(v)| =
and therefore
4G 2 2 1BO)™
Since B € Y. 7*(k) it follows that

|B(7)| < ck.*(y) for all v € T.

But for v € I \ 'y, this gives

i.e. the k-ellipticity of A(D).
B. Now suppose that the embedding is not compact. By Theorem 4.2.2 we

know that there exists a sequence (7;);en With ; € I, such that
lim y; = oo and k.«(v) < e
j—00

The sequence (k.(7;));en has a subsequence (k.(7;/)) converging in R to some
limit ¢/ > 1; remembering that we always have k,(y) > 1. Thus for any £ > 0
there exists mo € N such that for y; € I'\T'y, it follows that |k.(v;/)—c'| < €.
Let I be the set of all elements of the sequence (y;:). We define the mapping

R:T—-Chby
1, yel¥
R(y) = ,
0, yel'\I".
Since lim k(v;) = ¢’ it follows that there exists m; € N such that
Y1 —00

J



holds for all v/ € I \ I;,,. For these 4/ we find for ¢ >0 and t < 0

and

1 t
S L) >
(26’) k*(’Y) —_ 17

respectively. Thus for any ¢t € R and all 4/ € I, with a suitable constant, we
have
|R(Y)| < et k(7). (4.4.3)

Trivially |R(v)| < ¢ ki(7) holds for all v € '\ I". Thus R(D) belongs to
A~%°(k). Let s € R be fixed and consider

0 , vyeI'
Aly) = ,
ki(v) , yeT\I'.
Obviously A(D) € A*(k). Moreover, let
0 , YeI¥
B(v)i=9q _ )
ko(y) , yeT\TI",

which yields B € A~*(k). Thus for all v € T we find

or

B(D) o A(D) = id — R(D).

Hence A € A*(k) has a k-parametrix B(D) € A~*(k) but by construction
A(D) is not k-elliptic. This proves the theorem. O
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4.5 Operators with Variable Coefficients

We start with

Definition 4.5.1. For any ¢ € R, we denote by >_.(k) the set of all con-
tinuous functions A : G x I' — C such that with some positive constant
Ct A»

|A(z,7)] < ca ki) (4.5.1)

holds for all v € T and all z € G. As before, 3"°(k) := | Y. (k), and

teR
symbols in ¢ (k) have k-degree less than or equal to t.

Elements in Y_: (k) are called symbols. If A € 3 (k) such that for every
z € G the mapping A(z,-) : I' — C, v — A(z,7), is negative definite we call
A a negative definite symbol.

Definition 4.5.2. Each A € Y .°(k) defines a pseudodifferential operator
with variable coefficients, A(-, D) : S(G) — C(QG), by

A(z, D)u(x ZA z,7)h (z). (4.5.2)

vyerl

Definition 4.5.3. By At (k) we denote the set of all pseudodifferential oper-
ators with variable coefficients which are generated by a symbol A € 3¢ (k).

Definition 4.5.4. We denote the Fourier Transform of a symbol
A: GxI'-C
(z,7) — Alz,7)

with respect to = by
A = [ A i@duc(s) (453)

where 7,7 € I' and pg is the Haar measure on G. Note that z — A(z,7) is
a continuous, hence integrable function and for v € I' fixed, the integral in
(4.5.3) is well defined.
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For v € T fixed, as with the translation invariant case, we have in L%(G) the

representation

= > Am,y)n(e) . (4.5.4)

nel
However one must take care when applying the Fourier transform as unlike
the translation invariant case where we had equation (4.3.3), we now have

the following result:

Lemma 4.5.1. Let A(-,D):S(G) — C(G) with continuous symbol
A: G xT — C. Then for u € S(G) it follows that

[A(-, D)) ~ (7) = Y A(y - &, 8)i (4.5.5)

ger

Proof. By definition,

=Y Az, §)i(§)é()
ger
Therefore
[AC, Dyu()] ~ (1) = / (ZA z,§)d 6)6(33)) duc(z)
ger
= X |- 1@A@ Oudio()
ger
- ¥ [ Fr8@ie 9ueduc)
ger
= Y Aly-£9ua()
ger
where we used that for u € S(G) all sums are finite. O

Theorem 4.5.1. Let A(x,D) have a continuous symbol A : G xI' — C, and
let k: T - R.
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If

A < aiglORm), (45.6)
where g € LY(I'), ie. 3 g(y) < oo, and A is the Fourier transform of
~er

the symbol A with respect to the first variable, then the pseudodifferential
operator A(x,D) maps H{(G) into L?(G), and furthermore we have

A, DYulliaqo) < & lullyey (45.7)
Proof. Consider a trigonometric polynomial u € S(G)

Az, Dyu(z) = > Alz,7)i(y)r(z)

yer

=¥ (Z A(«s,v)f(x)) a(y)y(z)

yeI' \¢gerl

= D> AEMaMIE +() -

vyel £eT
Using the substitution & + v = n we find

Az, Dyu(z) = > > A(n—v,v)a()n(x)

~€l’ nel’
= > > Am-rvya()n(z) -
Therefore
2
1A Dyl = [ |5 XA -7 m)a)n)| duc(a)
nel’ vel'
= > DAl -y
nerl’ [vyel’
< d), (Z g(n—7) k() Iﬁ(v)l)
= &> (g {k1al})’(m) -
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Then by Young’s Inequality:

IA(z, D)ullfzq)

IN

J (Z g(n)) (Z k2 (y)la(y) I2)

nel el

2 2
= o I|g||L1(F) HU”H;(G)
~ 2
= C||u||H;(G)-

Since H}(G) is the completion of S(G) and A(z, D) is linear, we can contin-
uously extend A(z, D) to H,(G) and the theorem is proved. O
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Chapter 5

Estimates for Some Operators

5.1 Ellipticity and Lower Bounds for
Translation Invariant Pseudodifferential

Operators

Let G, I" and ('), ) men be as before. We want to characterise elliptic operators

by a certain inequality of Garding type.

Theorem 5.1.1. Let r € R. For any k-elliptic operator A(D) € A*(k) there

exists two constants ¢y > 0 and c¢; > 0 such that

IAD)ell7k = collollsen — c1llell (5.1.1)
holds for all ¢ € S(G).

Proof. Let ¢ € S(G) and r € R. Using the k-ellipticity of A(D) we find that
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there exists mg € N such that

Yo AMPIeMPEI M 2 e Y oM k()

YE€T\'my YEM\T'm,
=) @RI (y) —c > |p(n) P KZ 2 (y)
yel ’YEFmo
=cllellfiie —c Y [P E*(),
Y€l mg
thus

IAD)ellRe = clelfiee + D (AMP = k() KT (1) lgMnIP. (5.1.2)

YE'm,

Taking co = ¢ and ¢; = max [|A(7))2 = ckZ(v)]|, the theorem follows. O
YE mg

Corollary 5.1.1. Let r,s € R and A(D) € A'(k) be a k-elliptic operator.
Then there exist constants ¢ > 0 and ¢, > 0 such that

IAD)@l7x = collli? o — cat llella (5.1.3)
holds for all ¢ € S(G).

Proof. By (5.1.2) we find

1Al 2 cllellf e+ D (AMIP = kM) le(M)I? K ()

YETmq
|A()? — ck(v)
> C”‘P”r-;—tlc + Z K22 ()

Y€ETm,

[P K2 ().

1AM —co k2¢(7)]
k3~ (y)

Taking c¢o = ¢ and ¢;; = max , we get the desired result. [

Y€ mg

For Corollary 5.1.1 we can prove the following converse:

Theorem 5.1.2. Suppose that Hi(G) is compactly embedded into L%(G)
and that A(D) € A'(k) fulfills (5.1.3). Then the operator A(D) is k-elliptic.
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Proof. Taking ¢ = v, equation (5.1.3) yields
[AMPET(7) 2 o k(1) = 1 k2(7)

and therefore
|A(W)? = cokZ(y) — cr K272 () (5.1.4)

for all v+ € . Since the embedding is compact, by Theorem 4.2.2 we find
that lim k,() = oco. Thus there exists my € N such that v € I'\ ', implies
=00

c
e kT () < SR
provided that s — r < 0. Hence we find for v € I' \ T'pp,
c
AP 2 2K() |

which implies the k-ellipticity of A(D). O

5.2 Fundamental Solutions and Potentials

Let G be a compact Abelian group with discrete dual group and let (I'n,),.cn
be a finite exhaustion of I'. In the following we suppose that Condition 4.2.1
holds, i.e. for a fixed function, k : I' — C, there exists a real number ¢, > 0

such that

> k(7)< o0 (5.2.1)

yel

holds. By this we mean that the sequence ( S kMo (7)) converges
in R.

In Section 4.2 we have proved that (5.2.1) implies the compactness of the
embedding of H}(G) into H(G) for 7 > s. We denote by M(G) the set of

all (complex valued) regular Borel, i.e. Baire, measures on G.
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Proposition 5.2.1. Let &k be as above and u € M(G). Then it follows that
p € Hy®(G), where t; is the real number in (5.2.1).

Proof. We have to show that

D1 PE ()

el

is finite. By (5.2.1) it is sufficient to prove |ii(7y)| < constant for all v € T.

But for any positive Borel measure we find

()| =

jivbﬂwdﬂhﬂ

stw=mm<w,

since G is a compact group. Here we follow the work of H. Bauer [3]. Given

an arbitrary complex-valued measure p it follows that

|l <l ]+ L]+ et ],

where p’, u’, ui, and u® denote the positive and negative parts of the real

and imaginary part of u, respectively. Thus, taking

o= uh] + [ul] + ph ] + |l ] we get
Do IBM)PETHR(Y) S B(G)® Y kH(y) < oo
yerl el

a

We know that L2(G) C L!(G), hence elements of L2(G) may be interpreted

as complex valued measures.

Remark. Let T := {to eER; Y k;Ho(y) < oo} and set ¢’ := inf{to; to € T}.
vyer

It follows that M(G) € Hg?~%(G) for any € > 0. But it is more convenient

for us to consider a fixed space H;®(G) for some t, € T.

Definition 5.2.1. By § € H_*(G), with ¢, as in equation (5.2.1), we denote
the measure given by 8(y) =1 for all v € T.
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Proposition 5.2.2. For any u € H{°(G) we have
/ w(z)5(dz) = (u, 6)y = u(0) .
e’

Proof. Note that by Proposition 4.1.2, H;*(G) and H{°(G) are in duality
with respect to the scalar product in L2(G). Moreover as we have proved in
Theorem 4.2.1, H°(G) is continuously embedded into C(G), the space of all
continuous functions on G.

Since v(0) = 1 for any v € T, we find

Jou(z)d(dz) = (u,8), = 3 @(7)d(7)

vyel

= 7ZGZF'&('Y)W(O) = u(0) .

O

Definition 5.2.2. Suppose that & satisfies (5.2.1) and let A € 3"(k), r € R.
We call g4 € H,7(G) a fundamental solution of the operator A(D) if

Ay_ty(D)ga =6 (5.2.2)
holds in H;*(G).

Proposition 5.2.3. Let A € Y "(k), k satisfying (5.2.1), be a k-elliptic
operator such that A(vy) # 0 for all v € I'. Then there exists a fundamental
solution of A(D).

Proof. Equation (5.2.2) is equivalent to
A(M)ga(y) = 1for all y €T,

hence for a solution to exist we must have A(y) # 0 for all v € I'.

Under this condition we find
9a(7) =A@
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and the k-ellipticity of A(D) yields

> |ga(n)PRE2(y) < e 3 kT (kI 0(y)

el yerl

=c Y k;%(y) < o0,

vel
which implies g4 € H}, "(G) and moreover g4 € > (k). O
Suppose now that A(D) has a real symbol A € 3 "(k) and that

A7) 2 cki(v) (5.2.3)

holds for all vy € "\ T, for some mg € N, i.e. A(D) is k-elliptic.

Then there exists a constant d > 0 such that A(y) + d # 0 holds for all
~v € I. In that case, Proposition 5.2.3 implies the existence of a fundamental
solution g4 of the operator A(D) + d.

Using the notion of a fundamental solution and the remark made above, we

can give another formulation of Theorem 4.3.1,

Theorem 5.2.1. Let k be as in (5.2.1), A(D) a k-elliptic operator with
symbol A € >_"(k) then there exists a complex number d such that A(y)+d #
0 holds for all y € I'.

Moreover let f € L2(G). For any solution of the equation

Ar(Du = f
we have the representation
u(z) — Q(D)u(z) = ga+a(D)f(), (5.2.4)
where (D) is defined by the function

Q) =d(A()+d)” Z (5.2.5)
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Proof. Since A(D) is k-elliptic there is a bound ¢ > 0, s.t. |A(y)| > c up to
a finite number of «’s. Therefore there exists a complex number d such that
A(7) + d # 0 holds for all v € T. Since A(y) + d # 0 we have

(A() +d)aly) = f(v) +da(y),

hence

a(7) = (A +d) ™ F() +d (A(y) +d) 7 ()
or

a(y) = d(A(y) +d) 7 a(y) = §ara(n)F (7).

It remains to prove that @ is an element of > " (k).
But as shown in Section 4.2, lim k.(y) = oo, hence lim dk;!(y) = 0, and
the k-ellipticity of A yields d?,;; | > cki(v) for all Zy%eo '\ 'y, for some
mo € N. This implies |Q(y)| < ck;"(v) for all v € T O

Remark. In Section 4.2 we have given a reasonable definition of

lim k.(7) = oo using the finite exhaustion (I'y,), ey Of T.

=00

Specifically that lim k,(y) = oo if and only if, for any N € N, there exists
y—00

an mg € N such that v € '\ I',, implies k.(y) > N.

Now let A(D) be a k-elliptic operator with symbol A € >."(k) and suppose
that for some d € C, the fundamental solution ga.4 € H}, *(G) exists. Here

to is the real number appearing in (5.2.1) which is assumed to be satisfied by
k.

Definition 5.2.3. Let 4 € M(G) C H;*(G) and garq € H} *(G) be
defined as above and let 7 — ¢ > 0. Then the d-potential, Ul +q Oof pu with
respect to A(D), is defined as

Uk, u(z) = / Gara(z — v)du() (5.26)

o7



Under the assumptions of Definition 5.2.3, we have by a formal calculation

Ul;u-d(m) = [Uﬁ+d]/\(’7)7(x)

yel

= Gara(V)()v(z)

vel

= 3 apyraid ) () -
yer’
Using Proposition 5.2.1 we get further

U4 all?, . = ) |Gara(0)? |2(y)|? k=200 ()
Y
< (Jul(G))? ) |Gara(y)[? K2 =20 ()
Ye

< c||ga+a(v) ”f—to,k

and thus we have proved

Corollary 5.2.1. Let A(D) and d be as in Definition 5.2.3.
Then U%, ; belongs to H,*(G) for any p € M(G).

By an easy calculation we find the following global regularity result:

Corollary 5.2.2. Let A(D) and d be as in Definition 5.2.3. Furthermore let
p € M(G) NHE(G), s > to. Then we have U4, , € HiV7(G).

Finally in this section, we introduce the notion of the energy of a measure.

Definition 5.2.4. Let A(D) and d be as above and p € M(G). The d-energy
€at+a(p) of p with respect to A(D) is defined by

aralp) = [ Viele) due), (527

provided the integral is finite.
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Lemma 5.2.1. Let u € M(G) have a density v, € H; *°(G) with respect to

the Haar measure uc. Then €444(p) is finite.

Proof. By (5.2.7) we have

e nrall) = /G A, o(2) u(2) dpio(2)

and Proposition 4.1.4 implies

/G|U¢1+d(33) vu(@)| dpe(z) < “Ui+d”t—to,k [Velley—r.

Now we can prove

Theorem 5.2.2. Suppose that k satisfies (5.2.1) and let A(D) be a k-elliptic
operator with real symbol A € >""(k). Furthermore choose d € R such that
A()+d > 0 holds for all v € I' and let u € M(G) have a real-valued density
€ H;7°(G). Then we have
2
cara) = [ JAD) + D} V) dcle). (529

Proof. First observe that

Ul ra(2) = (asa * 1) () = (gata * vu)(T).

Then it follows that

| Vi@ i) duota) = 3 (05,0700 a)

ver

= > (A(M) +d) 7 aly) A7)

yer

_ i) i)
= 2 A D Ay +a

yer
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2

(A(y) +d)? %

- ¥

vyel

= [ |40+ 9 Vi@ dusto).
O

Example 5.2.1. Let G = T" be the n-dimensional torus and A(k) = |k,
k € Z™. In this case (5.2.8) gives, after some calculations, the well known
result, (d > 0)

n

27 2T 8
e nrall) = / /
0 U

> a—ng‘_‘w(Gn )

n

27 2r
+cd/ /
0 o |i=1

2
dé; ...do,

2
> UL a6y, ,600)[d0: ... 6, (5.2.9)

5.3 Translation Invariant Dirichlet Forms

Let G be a compact Abelian group with discrete dual group and let ('), ,cn
be a fixed finite exhaustion. By CN(I') we denote the set of all (continuous)
negative definite functions ¢ : I' — C as in definition 3.2.3.

In the following we often need

Condition 5.3.1. The negative definite functions under consideration are
assumed to be real valued. Moreover, we assume {y € T, ¥(y) = ¥(0)} =
{0}. Finally, it is assumed that there exists Ng € N and a constant ¢y > 0
such that v € I' \ I'y, implies ¢(y) > co.

Lemma 5.3.1. Suppose that ¢ € CN(I') and that Condition 5.3.1 holds.

Then it follows with some constant ¢ > 0 that

Y(7) = cu(7) (5.3.1)
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holds for all v € I' \ T'x,.

Proof. We have to prove

Nl=

$(7) > c(1+9()?)

for all vy € I'\ I'y,-
By our assumptions we have 9(v)> > ¢ for all v € T'\ I'y, and taking

c=co(l+ c%)_%, ie. that c<1land ¢g=c(l— cz)_%, we find
v (1-) =2

¥(7)? > A1+ 9.
0

By Lemma 5.3.1 it seems to be reasonable to consider operators with symbols
¥ € S°Y (), where 9 is a negative definite function satisfying Condition 5.3.1.
But it turns out that it is more convenient to take ¢ € Y"%(43), where by

Proposition 3.2.2 it follows that for a real valued function 1 the function w%
is well defined.

Proposition 5.3.1. Suppose that 1 satisfies Condition 5.3.1. Then
¥ € S} (y2) and Y(D) is pz-elliptic.

Proof. Obviously we have

Bl < @)

On the other hand, since ¥(7y) > ¢ for v € I' \ I'y,, we find for these «’s

)2

1
2

P(7) > c((1+93(7)%)

=c(1+9(y),
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where

c= Co(l + Co)_l.

a

In order to construct a fundamental solution for the operator (D),
P € S} (¥2), we assume (5.2.1), i.e. it is supposed with some ¢, > 0 that

> (W2 ()™ < o0 (5.3.2)

~yel

holds. From this, Condition 5.3.1 and Proposition 3.2.2 we find that for all
d € R, d>0, it follows that ¥(vy) +d # 0.
Thus, by Proposition 5.2.3 we get

Theorem 5.3.1. Let ¢ € CN(T') satisfy Condition 5.3.1 and (5.3.2). Then
for any d € R, d > 0, there exists a fundamental solution g4 € Hi‘;"(G)
for the operator (D) + d. Moreover, if 1(0) # 0, and so ¥(y) > 0 for all
v € T, then there also exists a fundamental solution g, € Hz_;o(G) for the

operator (D).

By Proposition 5.2.1 we have M(G) C H;;"(G) and for this reason d-
potentials may be defined, thus we get

Corollary 5.3.1. Suppose ¥ € CN(I") satisfies the assumptions of Theorem
5.3.1. Moreover, let © € M(G) and U’ , be the d-potential of p with
respect to A = (D), d € R, d > 0. Then it follows that U%_, € Hi_%“(G)
by Corollary 5.2.1.

Our next aim is to prove that d-potentials of measures with densities
v, € pr_%t" (G) form a Dirichlet space in the sense of Beurling and Deny [12].

For the following considerations we refer to [23] as a general reference.

62



Definition 5.3.1. Let E be a closed symmetric sesquilinear form with do-
main D(E), a dense subspace of L2(G), and suppose that E is non-negative,
E(u,u) > 0, for all u € D(E), and F is closed.

The form F is called a symmetric Dirichlet form if, and only if, u € D(E)
implies that v := (0 Au) V1 € D(E) and

E(v,v) < E(u,u).
The pair (E,D(E)) is called a symmetric Dirichlet space.

A Dirichlet form F is said to be regular if D(E) N C(G) is dense in D(E),
equipped with the topology generated by E;(u,v) := E(u,v) + (u,v),, and
also in C(G) with respect to the topology generated by the sup-norm. More-
over, let us call a Dirichlet form local, if having u,v € D(E),

suppu N suppv = ¢ implies E(u,v) = 0.

The following theorem is due to Beurling and Deny [12], see also [14] p.190.
It characterises all translation invariant Dirichlet forms on G. By definition
E is translation invariant if for any z € G and all u € D(E) it follows that
7.u € D(F) and E(7yu, 7,u) = E(u,u), where 7,u(y) = u(y — ).

Theorem 5.3.2. Let G be a compact Abelian group with discrete dual group
I". Then there exists an element 1 € CN(I") such that a translation invariant
Dirichlet form E satisfies

E(u,v) = Y _ %(7)a(7)d(y) (5.3.3)

vel

with domain D(E) C L*(G), given by

D(E) = {u € L*(Q), Z¢(7)|ﬁ(7)|2 < oo} . (5.3.4)

€T

Now we find
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Theorem 5.3.3. Let ¢ : I' — R be a negative definite function such that
Condition 5.3.1 holds. Then the Dirichlet form (5.3.3) is generated by the
operator (D) and D(F) = H:/}% (G), ie.
1 1
B(u,v) = (4(D)¥u, $(D)*v), (53.5)
for all u,v € H!, (G).
w3

Proof. Since S(G) C C(G) the domain of the minimal extension of (5.3.5) is
just H; 3 (G). Now Plancherel’s theorem 3.1.5 gives for ¢, 9 € S(G)

(WD), p(D)2y) = 3 ()2 e(MY(1) :P()

vel

= p(nely E(p,9).

yel

Using Theorem 1.3.1 in [23], (5.3.5) can be characterised as follows:

H?1(G) = Hy(G) = D(%(D)) C D(E) = K, (G)

and

Blu,v) = (4(D)u, ),
for u € D(¢(D)) and v € D(E).
Now, if ¥(D) is a local operator, i.e. suppy(D)u C suppu for all
u € D(¢(D)), it follows that E is a local form provided that for any
u € Hi% (G) there exists a sequence (Un)nen, Un € Hfﬁ (G) such that u,

converges to u in pr 3 (G) and suppu, C supp u for all n.
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Indeed, in this case it follows for u,v € Hi% (G) with suppu Nsuppv = ¢
that

E(u,v) = lim E(un,v)

n—oo

= Jim | $(D)unvduo =0,

n—oo

since supp ¥(D)u, C suppu, C suppu and by our assumptions it follows
that supp ¥(D)u, Nsuppv = ¢.

Note that by Theorem 18.27 in [10] an operator A(D) with symbol ¢ € CN(T")
is local if and only if ¥(y) = ¢ + q(v), where ¢ > 0 is a constant and q is a

non-negative quadratic form on I'.

5.4 Examples

We give two translation invariant examples:

Example 5.4.1. In [17] J. Douglas used the sesquilinear form

P (0(6) — 9(6)) ((6) = %(6) o1
» Y 167r/ / sin®(0 — 6')/2 d9dd

in order to solve the Plateau problem. But a short calculation shows that

with A(k) = [k|

= > MR)B(RY(E), o9 € S(T).

keZ
Thus D is defined on H}, ,(T') = HY2(T?), the classical Sobolev space on
the one dimensional torus T!.
Since A2 : Z — R is a negative definite function, which also satisfies Con-
dition 5.3.1, when taking I';, = {2, |2| < m}, we can apply the results of the
previous section to the Dirichlet form D. The operator generating D is given

by A(D), a non-local pseudodifferential operator.
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The next example is due to A. Bendikov [4], see also Chr. Berg [8] and [9)].

Example 5.4.2. Let T® = TN be the infinite dimensional torus. Its dual
group may be identified with Z(>), the set of all sequences of integers with
the property that all of its elements but a finite number are equal to zero.
Thus any v € Z is represented by a sequence (7’);en, 7/ € Z, and only
finitely many +7’s are different from zero.

Let a = (a;)jen be a sequence of positive integers and ¢ > 0 a real number.

Consider the mapping A% : Z(*) - R,
o
o A2(7) = 3 a; (7)) +c.
j=1

Note that this sum is always finite! Moreover, A% is a negative definite
function on Z(*). Setting k(y) = [Ag('y)]% we find that A2 is defined on
H2(T*) generates a Dirichlet form on H}(T*).

In addition, we mention

Example 5.4.3. Consider the set of rational numbers
_JlP.
Q= {E.pGZ,qu}.

with addition as the group operation. Taking the discrete topology on Q, we
know that Q is a discrete group, and so it is the dual group of an Abelian
compact group. We denote this group G so that G* = Q and Q* is isomorphic
to G by theorem 3.1.4.

In this case we cannot choose a finite exhaustion which is compatible with the
natural group and order structure on Q. Therefore the convergence properties
of Fourier series become more complicated. We refer only to the papers [26]
and [27] for a taste of the subject.
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5.5 An Inequality of Garding Type for
Pseudodifferential Operators with

Variable Coefficients

One of the conditions for a variational solution of the equation B¢, u] =
(¢, f), explored in section 5.7 later, is an inequality of Géarding type. This
section aims to provide the conditions on the pseudodifferential operator

which give rise to such an inequality. We begin with

Lemma 5.5.1. Let A; € Y .°(k), be a symbol such that

|41 (v — £,6)| < h(y — €) KL(€) (5.5.1)

where h € LY(I"). Then for the corresponding pseudodifferential operator
Ai(z, D) it holds that

[ A1(z, D)ull2(qy < ”h”Ll(l") ”u”ch(G) : (5.5.2)

Proof. By Theorems 3.1.5, 3.1.8 and Lemma 4.5.1, we find

|(A1(IL‘, D)U7U)L2(G)l = |([A1($a D)u] i "a)Lz(l")I

= S Aty - 6,9 [a©)] R

vel' £erl

< S k-9l 1a(€)] )]
~yel (el
< Allpyry ellg g vl -
Therefore,
I(Al (CL‘, D)ua U)L2(G)|

|141(z, D)ull2(q) =
LG ||’U||Hg(c)

< [Rllprry llullgg ) -
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We have already proved that for a translation invariant pseudodifferential

operator of order t, for v € I' \ I',,, with I'y,, finite,

AW) Z cki(v)

implies A
JAD)ull, g 2 co llullypep = crllullo -

Now consider a pseudodifferential operator A(x,D) of order t, such that for

fixed zy € G,
A(zo,7) > cki(y) forally € T\ Ty,
and Condition (5.5.1) of Lemma 5.5.1 holds for
Ay(z,v) = A(z,vy) — A(zo,7).

Then
A(z, D) = A(zo, D) + (A(z, D) — A(zo, D))

where
| A(zo, D)ullg = co ”u”tk = Jlullg - (5.5.3)

Therefore by Lemma, 5.5.1,

IA(z, D)ull, > [ A(zo, D)ully — I(A(z, D) — A(zo, D))ull,

v

co [lull, = ex llullo = [1hllury lull

2> (CO - ”h“Ll(r)) ”thk —c1 lullg -

For a pseudodifferential operator A(x,D) of order t, satisfying Condition
(5.5.1) with
Ai(z, D) := A(z, D) — A(zo, D),

we have proved the following theorem,
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Theorem 5.5.1. Let A(z, D) be as above, and in addition assume that for
h in (5.5.2) it follows that ||A||L1r) < co, Where ¢o is as in (5.5.3). Then there
exist constants ¢; > 0 and ¢y > 0 such that the Garding-type inequality

| Az, Dyully > ez llullyx — e lfull (5.5.4)

holds.

5.6 On Weak Solutions to A(x,D)u = f

We start with

Definition 5.6.1. Let T be a pseudodifferential operator with adjoint T*.
Let f € L%(G). We call u € L?(G) a weak L2-solution of the equation Tu = f

if we have
[ a7 duo(a) = [ 1v duolo)
G e
for all v € D(T™*).

We want to prove

Theorem 5.6.1. Let A(z, D) € A2(k) be a pseudodifferential operator with
variable coefficients, and let A*(z, D) be the adjoint of A(x,D) defined by

/ (A(z, D)u) vduc(z) = / u (A*(z, D)v)duc(z)
G

G

for all u,v € HZ(G). Also assume that for some f € L2(G) and all u € L?(G)

l/Gf udpc(z)| <c ” [A*(x,D) - )\] (5.6.1)

“”LZ(G)

holds. Then the equation [A(z, D) — A] u = f admits a weak L2-solution.
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Proof. Consider the set
Wy := {w € L*(G) : s.t. (A*(z, D) — A)v = w for some v € HY(G)}.

W, is a linear subset of L2(G) and since A*(z, D) maps H2(G) continuously

into L2(G), W), is a non-empty set. On W) we define the linear functional

FA . W)\-—WC
w — Fw ::/'ufduc(a:)
e

where v € H(G) is a solution of the equation
(A*(z,D) = Nv =w.

Note that F) is independent of v. If ¥ is another solution of the equation,
(A*(z, D) — A\)0 = w, then by the assumption (5.6.1)

< (A", D) = N ® = 8) e

/ £(v - 9)dpc(z)
G

Also, by the assumption,

< c|[(A*(2, D) = Nl (g

|Fyw| = l/Gv f dug(z)

= ¢ ||w||L2(G) :

Therefore F) is a continuous linear functional on Wy C L%(G). So by the
Hahn-Banach theorem, we may extend F to a continuous linear functional
on L2(G), which we also denote F).

For this reason, we have that, for some u € L%(G),

Fw= / uw dpe(z)
G
holds for all w € L%(G).
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For v € H(G), we know that (A*(z, D)v — Av) belongs to W), therefore

/ u(A*(z, D)v — M)duc(z) = / fvduc(z)
G e

which shows that u € L2%(G) is a weak L2-solution of the equation
A(z, D)yu — Au = f. O

5.7 A Variational Solution Using Conditions

on the Sesquilinear Form

In this section we will investigate variational solutions of certain pseudodif-

ferential operators.

Theorem 5.7.1. Let k£ : ' — C be a negative definite function (this
condition may be stronger than necessary). Assume that the sesquilin-

ear form defined by a pseudodifferential operator with variable coefficients
A(z, D) : HI™(G) — L?(Q), as Blu,v] := (A(z, D)u,v) satisfies

1B, vl < & lullgpey Il (5.7.1)

Re Blu,u] > ¢ ||U||?{;g(c;) = Ao llull2(q (5.7.2)
and assume that the embedding HP*(G) — L?(G) is compact.

Then the Fredholm Alternative holds for the problem:

Blp,u] = (¢, f) for all ¢ € H*(G). (5.7.3)

More precisely,
either for any f € L%(G), there is a unique solution u € H*(G), of

Blp,u] = (¢, f)  forall p € HP(G),
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or there are a finite number of linearly independent solutions
v (j=1,2,...,n), v; € H¥G), of
there are a finite number of linearly independent solutions
v; (j=1,2,..,n), v; € HYG), of
In the second case, for the existence of a solution to (5.7.3) it is necessary
and sufficient that (f,v) = 0 for all v € span{vy, ..., v,}. If a solution exists,

it is only unique up to an additive element in span{v, ..., v, }.

Proof. We refer the reader to the formulation of Fredholm’s alternative given
by I.S. Louhivaara and C. Simader in [38].
Take a fixed A > Ao, A # 0, where )\ is the constant appearing in the
Garding inequality (5.7.2).
Let Ax(z, D) = A(z, D)+ \. The sesquilinear form associated with A,(z, D)
is

By[u,v] = Blu,v] + A(u, v).

By Riesz representation theorem and the Géarding inequality, for any

g € L*(G) there exists a unique solution w € HP*(G) of
By, w] = (v, 9) for all ¢ € HF(G). (5.7.4)

Formally we set w = A;'(z, D)g. Note that this is not the inverse operator,
rather it is the unique w € HP*(G) for each g € L*(G) in (5.7.4).

Then since Blp,u] = (p, f) is equivalent to By[p,u] = (¢, \u + f) for all
v € HP(G) and u € HP(G); u satisfies By, u] = (¢, f) if and only if

u= A;'(z, D)(Mu + f).
That is to say, u satisfies B[y, u] = (y, f) if and only if

u—Tu=f; (where T'= AA;! and f; = AS'f) .

72



From Bj[p, w] = (p, 9), it follows that
2
¢ ”w”H;g(G) < |B,\[w, w]| < |(w,9)| < ”w”H;"(G)”g”LZ(G) )

i.e. we know c ||w||HLn(G) < g2,
¢ ”A;l 9”ng((;) < ||9”L2(G),
¢ M gllgmey < A9 llr2(qy

7 (G)
¢ |7 gllggm < Mglleey .
k

Hence T maps bounded sets of L?(G) into bounded sets in HP*(G). Applying
the compactness of the embedding H*(G) into L?(G), which we denote 7, we
conclude that 7 o T maps bounded sets in L?(G) into compact sets in L2(G).
Thus the Fredholm-Riesz-Schauder theory can be applied, and it follows

either (a) for every f1 € L?(G) there exists a unique solution of
u—Tu= fl y

or (b) there are nontrivial solutions of u — Tu = 0 and the equation
u— Tu = fi has a solution if and only if (f;,v;) = 0 for a finite number of
functions v; (1 < j < n), which forms a basis of the space of solutions of
v—T*v=0.

If case (a) holds, there exists a solution of

Blp,u] = (¢, f)

for any f € L?(G). It is unique because f = 0 implies f; = 0 and consequently
u=0.

To consider case (b), note that the Garding inequality and conditions which
lead to equation (5.7.4) are also true for A*(z, D) by Theorem 2.3.1, with a

possibly different A\g constant. We will denote the new constant Aj ie.
* 2 2
Re B*[u,u] > ¢ [Jullgpcy = A0 lulltag,) - (5.7.5)
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Taking A larger than both Ag and Aj, we shall prove that

-1

T* = M\(A*(z, D) + X) (5.7.6)

Indeed, by the definition of T,
(T*v, 9) = (v, Tg).

Setting

we have

BA[(Pa h] =

and in particular,
Bx[w, h] = Aw, g).
We set A(A* + \)"'v = . Then @ € H{*(G) satisfies

B[, 9] = Av,%)  for all ¥ € HP(G),

because
By\lw,¥] = (w,Ax(z,D) )
= (AA*+ ) v, (A+A))
= (MA+N)" (A*+ )7 v,9)
= Av,9).
Hence

By[w, h] = A(v, h) = A(v,Tg) = AN(T"v, g) = MNw, g).
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If we combine

Bylw,h] = A(w,g)
B)‘[’L‘f),h] = /\(w>g)
and By[p,h] = Xy, 9),

we get
0= By\[w—-®,h] = Aw—10,9) .

Since g is arbitrary, we must have w — @ = 0. i.e. T*v = A\(A* + A)"'v. This
completes the proof of equation (5.7.6).
From equation (5.7.6) we conclude that T*v — v = 0 for v € HP*(G), if and
only if

Blv,¢] =0 for all ¢ € HZ(G),

because
T*v—v =0
MA*+ N =0
v = (A*+ N
A*v =0
Blv,p] =(A",9)=0 VpeHP(G).

To complete the proof, we must show that the conditions(fi,v;) = 0 are
equivalent to the conditions (f,v;) = 0.

This follows from the equalities:
_ e 1 . 1
(fh'uj) = (A)\lf7vj) = (f1 (A,\l) Uj) = '/_\'(f)T vj) = X(.f’vj)‘
d

We will now give conditions implying (5.7.1) and (5.7.2), respectively. As in
Section 5.5, for a symbol A € Zim(k) we have the decomposition

A(.’L‘,’Y) = A(x0>'7) + (A(il), 7) - A(IL‘(),’)’))
= A(zo,7) + Ai(z,7)
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with

A(zo,7) < cok?™(v),
A("EO)’Y) - /\Okzm(')’),

\%

and

|Ai(y — £,6) < h(y—€)k2m(¢).

Then for u,v € S(G), we may decompose the associated sesquilinear form,

B[u?U] = (A($0> D)ua U) - (Al(wa D)’LL, ’U)
= B[u,v] — Bs[u,v].

The first part satisfies
|B1[u, v]| < co[lullup @) )|z o)

and
By[u,u] = ZA(%,”Y)W('Y)'Z > Ao ”u”%{'k"(c)’

yel'

and the second part satisfies, by Peetre’s inequality,

|Balu, o]l < D) h(y = OK™E) ()] [0()]

~yell ger
= Ll - 9 © (@) k) o)
~v€l €T *
< 2SN Ry — €) KMy — €) KME) [ K () [8(v)
~el® €el

< 2RO KOl lellape ol

provided k() K™(-) e L}(T).
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Theorem 5.7.2. Let A € 3.°™(k) have the decomposition
A(z,7) = A(zo,7) + (A(z,7) — Alz0,7)) = AlZ0,7) + As(z,7)  (8.7.7)

for some fixed o € G and assume

A(z0,7) < co k™ (), (5.7.8)
A(zo,7) = X0 kI™(7), (5.7.9)

and
A1 (¢,7)] < R(C) k2™(v). (5.7.10)

A. If A(-)k™(-) € LY(T") then the sesquilinear form B[, ] defined on S(G) by
Blu,v] = (A(z, D)u, v) (5.7.11)
has a continuous extension to H*(G) and it holds
|Blu, v]| < cllullupe) vilup@- (5.7.12)
B. If A(-)k™(-) € LY(T) and for some 7 € (0, 1) it holds
2™IRC) EP Nl € 1do (5.7.13)
then on HP*(G), B[, -] satisfies the Garding inequality
Blu,u] > Xo(1 = 1) [[ullfpq)- (5.7.14)
Remark. If we relax condition (5.7.9) to
A(0,7) > Do k2™ () (5.7.15)

for all v € '\ I, where IV C T is a finite subset, then estimate (5.7.14)

becomes
Blu,u] > Xo(1 = n)llullfp ) = o llullfa- (5.7.16)
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For this we need only rewrite

Bilu,u] = EA(an Y|y

= Y Almo, M+ Y Alze, M)
~ET\I =
> do ) KMEMP + D (Alwo, ) — B (n)|a()?

2 ||U||12{;;1(G) - P”U”%z(c),

where p = max |A(zo, ) — kI™(7)|.
yer’
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