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ABSTRACT

In the application of an integral method to the problem of electromagnetic 

scattering by three-dimensional objects, the electromagnetic problem is 

formulated in terms of an electric field integral equation for conducting bodies 

and a combined field integral equation for dielectric or composite objects. The 

electric and magnetic fields are related to the unknown surface currents by the 

Green's functions for the scalar and vector potentials. Triangular patches are 

used to  model the scatterer's surface and the basis functions proposed by Rao, 

Wilton and Glisson, represent the surface current on the scatterer's surface.

The application of the method of moments for the solution of the integral 

equations results in double surface integrals, which are computationally very 

expensive. Rao, Wilton and Glisson avoided the computation of a double surface 

integral by approximating the surface integral over the observation triangle by 

evaluating the integral at the centre of each observation point using a one point 

Gaussian quadrature scheme. This approach has also been adopted by other 

workers as it is relatively straightforward to implement since it only requires the 

field evaluation over the source triangle. In addition, the edge lengths of the 

triangle patches should be of the order of one-tenth of a wavelength if good 

results are to be obtained. This simplifies the computational task and it was 

believed that it decreases the computation time. For electrically large objects, 

many patches are needed and the order of the system matrices derived from the 

discretisation of the integral equations becomes large. This thesis investigates 

whether the approximation used to compute the impedance terms in the 

reported schemes lead to a computationally efficient scheme.



In this thesis, a comparison is made between the use of the EFIE and the CFIE 

with the fuil double surface integrals and the original EFIE and the CFIE schemes 

with the associated approximation. The integrals over the observation and 

source triangles are both evaluated. The equations of the discretised integral 

equations for conducting, dielectric and composite objects are derived to enable 

the impedance terms to be computed efficiently. A method is described of how 

to minimise the computing time for the  evaluation of the double surface integrals 

and a criterion is presented for obtaining a good compromise between accuracy 

and total computing time.

The proposed formulation has been developed for the EFIE, for scattering by 

perfect electric conductors only; for the CFIE, for both dielectric/magnetic 

materials only and also the CFIE for mixed perfect electric conductors and 

dielectric materials. The scheme has been used to calculate the radar cross- 

section of conducting, dielectric and mixed objects and the results compared 

with those based on the RWG formulation and from the literature. The basis of 

comparison with the RWG formulation is based on accuracy, total computation 

time and computer memory required. The proposed formulation's results for 

conducting objects compare well with results from the literature and clearly 

demonstrate significant computational advantage over the original RWG 

formulation. For dielectric objects, the proposed formulation shows only some 

computational advantage over the RWG formulation whereas there is a no 

improvement with the mixed objects.
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1.1 Introduction

More complex electromagnetic scattering and radiation problems can be solved 

nowadays than before thanks to the rapid increase in more efficient and accurate 

numerical algorithms and the accompanying rapid development in computer 

hardware. Numerical simulations in electromagnetics, like in other fields, are 

nowadays an indispensable part in the design and construction phases of various 

passive and electronic equipment. These have applications in many areas, such 

as in communications, the prediction of the radar cross section (RCS) of complex 

objects like aircraft, antenna and radar analysis and design, electromagnetic 

compatibility and microwave imaging. Practical measurements are often very 

expensive and time consuming. These are usually done a t the end of numerical 

simulations to validate the simulated results.

The numerical techniques for solving electromagnetic scattering and radiation 

problems involve either solving partial-differential equations with the Finite- 

Difference Time Domain (FDTD) method [1,2] or the Finite-Element Method 

(FEM) [3,4] which result in sparse matrices, or integral equations which are 

transformed to dense matrix equations using the Method of Moments (MoM) 

[5,6]. The FEM and the MoM are predominantly frequency domain methods 

though time dependent formulations have been reported [7-11].

1.2 Survey of electromagnetic analytic methods

Over the past forty years, various computational techniques have been 

developed to  solve electromagnetic related problems that are very difficult, if not 

impossible, to solve using analytical solutions or exact methods.
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Electromagnetic problems can be cast either as partial differential equations or 

as integral equations. The most common numerical methods for the solution of 

electromagnetic scattering and radiation field problems are reviewed in this 

section. These are the FDTD, the FEM and the MoM. Each numerical method has 

its own advantages and disadvantages and each is best suited for a certain class 

of problems. The following sections give an overview of some of the most 

common numerical methods. There is yet no single method that can tackle all 

types of electromagnetic problems.

The mathematical formulation of scattering problems relies on Maxwell's 

equations. There are generally two distinct approaches to solving Maxwell's 

equations. These are either based on differential equation or integral equation 

methods.

1.2.1 Finite difference time domain

The FDTD [12-14] is One of the most direct methods to solve Maxwell's time- 

dependent curl equations in differential form. In this method both time and 

space are discretised and the solution algorithm is iterative. The FDTD has broad 

applicability to the study of three-dimensional objects [15]. The scatterers can be 

closed, open, conducting, dielectric, inhomogeneous or anisotropic.

This is One Of the most popular method for analysing transient and frequency- 

domain electromagnetic problems. Its results are in the time-domain and these 

can easily be Fourier-transformed to the frequency domain, thus giving 

information over a wide frequency range.
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This method presents a direct way to introduce a numerical method for the 

solution of Maxwell's equations. In FDTD, the starting point is the Maxwell's 

equations in differential form. The equations are modified to central-difference 

equations and then discretised. The electric field and magnetic field are 

alternately solved for given instants in time in a computational space set up with 

the aid of the boundary conditions.

Initially, a computational domain or space must be set up with boundary 

conditions to compute Maxwell's differential form equations. The grid material of 

each cell within the domain must be specified. Any material can be modelled as 

long as its permeability, permittivity, and conductivity are specified within each 

cell.

The literature on FDTD is very extensive and a comprehensive literature survey 

on FDTD can be found in [13]. The method was originally developed by Yee [1] 

and was extended by Umashankar, Taflove, and Morris [16,17)]. The derivation 

of the FDTD formulation from Maxwell's equations is based on mathematical 

methods of approximating derivatives by finite differences and the integrals are 

approximated by summations. The problem of solving large systems of linear 

equations needed in many other numerical techniques is avoided because of the 

time-iterative solution process.

The FDTD is based oh solving the electromagnetic scattering problem in the 

time-domain by discretising Maxwell 's curl equations in time and space and 

solving them numerically as an initial value problem. The entire computational 

volume of the problem is discretised. For the scheme proposed by Yee [1], 

central-difference approximations are applied to the time and space derivatives 

in Maxwell's curl equations. The sampling points for the electromagnetic fields 

are chosen so that the discretisation error stays within some previously fixed 

bounds. The discretisations in space and time are not independent but have to
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satisfy the stability-condition for numerical stability and least numerical 

dispersion. Also, the components of the electric and magnetic fields are 

interleaved in time and space so as to be able to fulfil the appropriate boundary 

conditions at media interfaces. There is no need for setting up or solving a set of 

linear equations. The computer storage and running time are proportional to the 

computational volume and time interval.

The main advantages of FDTD-based techniques for solving electromagnetic 

problems are its simplicity and ability to handle inhomogeneous objects. The 

FDTD is a well-tested method that has been applied to such diverse applications 

as absorption in tissue [18], analysis of microstrip circuits [19] and antenna 

scattering [20].

Some of the drawbacks of FDTD include the requirement to perform 

computations over a spatial domain that is larger than the object. This is in 

contrast to either the volume or surface integral equation methods. For 

electrically large objects, this requires more computer memory storage space. 

The other disadvantage of the FDTD is the staircase approximation of oblique 

boundaries, and this often gives poor accuracy. The FDTD is not well suited to 

geometries that exhibit variations in shape that are small with respect to the 

wavelength. Another disadvantage of this method is that calculations on 

resonant structures lead to prohibitively long computation times [21].

Several researchers have used the FDTD to evaluate the scattering by metallic 

objects [22-26], dielectric objects [27,28] and composite objects comprising 

metallic and dielectric objects [21-31].
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1.2.2 Finite element method

The FEM [32-35] is based on solving the electromagnetic scattering problem in 

the frequency-domain by discretising the Helmholtz equation [36], which is an 

elliptic differential equation, in space and solving it numerically as a boundary 

value problem.

As in the FDTD, one chooses a finite spatial computational domain containing the 

object discretised by means of a suitable mesh. Discretising Helmholtz equation 

and enforcing the boundary conditions on the object's surface as well as 

continuity conditions across neighbouring grid mesh cells yields a system of 

linear equations that can be solved numerically for the field values at the node 

points of the grid cells. The system of equation can either be solved by Gaussian 

elimination or an iterative method such as the conjugate gradient method.

Since the solution has to satisfy the radiation boundary condition at infinity [37], 

ways have to be found to ensure that the FEM-solution computed in the finite 

computational domain satisfies the radiation condition at infinity [33,38]. The 

FEM can be applied to arbitrarily shaped and inhomogeneous objects. The 

coefficient matrix is banded which is an advantage over surface or volume- 

integral equation methods. One of the disadvantages of the FEM is that 

computations need to be done over a computational domain that is larger than 

the object as opposed to integral equation methods.

The finite element method (FEM) is the oldest numerical technique applied to 

engineering problems. FEM itself is not rigorous, but when combined with 

integral equation techniques it can yield rigorous formulations. Some of the 

advantages of FEM are:

(i) Sparse matrices result (as opposed to MoM for which dense matrices result).

6



Sparse matrices allow the application of a wide range of fast matrix solvers.

(ii) Its application involves discretisation of the computational domain, and 

therefore is adaptable to a wide range of geometries and material variations.

Although the FEM has been extensively used to solve complex electromagnetic 

field problems, its application to the open domain problems remains limited. This 

is due to the fact that the use of FEM in wave scattering problems requires a 

discretisation of the exterior and the introduction of absorbing boundary 

conditions [39] set on the outer boundary terminating the FEM mesh. It is for 

this reason that hybrid numerical schemes are usually preferred instead of the 

FEM. These schemes are usually based on the coupling of the FEM, which 

discretises the interior of the computational domain, and an integral equation 

method over the surface of the computational domain. Such applications of the 

method to EM scattering problems can be found in the works of AngeAlini et ai 
[40].

The FEM has been used to analyse the electromagnetic scattering from a wide 

range of objects including [41-44].

1.2.3 Method of Moments

The method of moments (MoM) [5] is one of the most popular methods to 

compute the scattering of electromagnetic waves by conducting bodies. The 

MoM is a mathematical procedure for converting an integral equation formulation 

of an electromagnetic field problem into a matrix form that can then be solved 

numerically. The use of the MoM became popular due to the work of Harrington 

[5]. The method has since been applied to  a wide variety of electromagnetic
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problems ranging from radiation from thin-wire antennas to scattering from 

three-dimensional objects [45-48]. Compared with other numerical methods, the 

MoM is very versatile in its application and highly accurate. It can be used to a 

wide range of objects such as wires, three-dimensional conducting and dielectric 

objects or composite objects.

The procedure for applying the MoM to electromagnetic scattering involves 

deriving an appropriate integral equation, discretisation of the integral equation 

into matrix equation, computation of the matrix elements and solving the matrix 

equation.

The MoM is based on solving complex integral equations by reducing them to a 

system of linear equations. The equation solved by MoM generally has the form 

of an electric field integral equation (EFIE), a magnetic field integral equation 

(MFIE) or a combined field integral (CFIE) [49,50]. The EFIE or the MFIE 

formulations are used when dealing with problems involving conductors 

[6,51,52]. Rao et al. [6] were the first to report the solution of electromagnetic 

scattering in the resonance region via the time-independent EFIE using triangular 

basis functions. When only the conductors are present the electric field integral 

equation technique is used to solve for the electric current distribution on the 

conductor's surface. When the dielectric is present, the CFIE is used. 

Umashankar et al. [53] developed the CFIE for lossy-dielectric scatterers using 

the triangular basis developed by Rao e t al. [6]. The use of the CHE increases 

the size of the problem as additional two sets of unknown surface currents, the 

dielectric and magnetic currents surface currents have to be solved for. Hence 

the CFIE formulation is more complex than either the EFIE or the MFIE 

formulations. Unlike the EFIE or the MFIE formulations, the CFIE demands 

tremendous computer storage space and computational demands when applied 

to electrically large scatterers [53]. Although the MoM can be applied in the time
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domain, much of the published work is based on time-independent integral 

equation formulations [6,51,53,54].

Two approaches can be defined in deriving an integral equation for a scatterer. 

An integral equation can be derived for the induced currents in the scatterer or 

for the equivalent currents on the scatterer. When the unknowns are surface 

currents on the scatterer the integral equation is called the surface integral 

equation and if the unknowns are volume currents inside the scatterer then the 

integral equation is called the volume integral. The integral equation is 

transformed into a matrix equation by discretising the unknown currents. Only 

the surface integral approach is used in this thesis. The integral equation 

formulation for computational electromagnetics is made easier by the use of the 

electromagnetic equivalence principle [5].

As with the FDTD and the FEM, the major problems with the MoM are the very 

large computer memory requirements and the long computation times when 

dealing with electrically large problems [55]. Several schemes have been devised 

to lessen these shortcomings. Techniques have been devised to compress the 

impedance matrix so as to reduce the computer memory storage requirement 

[56-58]. Preconditioners have been coupled to iterative solvers so as to 

accelerate the numerical solution of the matrix equations [59-60]. Basis functions 

with special properties [61-63] lead to sparse matrices with substantially reduced 

memory requirements.

The MoM requires 0 ( N 3) floating operations if Gaussian elimination is used to 

solve N linear equations, or 0 ( N 2)operations per iteration if the conjugate 

gradient (CG) method is used. The MoM can be applied in both time domain and 

frequency domain. The main differences in applying the method of moments in 

the two domains are primarily in the formulation and solution steps. In the time
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domain, the unknown equivalent current or field must be discretised in both time 

and space.

The required characteristics of the scatterer determine when to use the time or 

frequency domain calculations. For instance, non-linear characteristics are easier 

to model in the time domain whereas dispersive characteristics of a material are 

modelled more easily in the frequency domain than in the time domain. The 

work in this thesis is done in the frequency domain.

With the MoM method, the s c a tte re d  surface is divided into a number of 

connected triangular patches. The surface electric current is then approximately 

represented by the basis functions for triangular patches developed by Rao eta l 

[6].

The RWG functions represent the current passing through the edges of a 

triangular patch as a constant. Small triangular patches, typically with edge 

lengths of the order of one-tenth of a wavelength have to be used to yield a 

sufficiently accurate approximation of the surface current. For geometries with 

complicated shapes, the mesh density is higher. Application of the MoM to the 

surface integral equations results in a full system of linear equations which form 

dense matrix equations. This leads to a large number of unknowns for a large 

scatterer.

The MoM has been used by many authors in the study of electromagnetic 

scattering by conducting and dielectric objects [5,6,51,64-66]. Only a few 

references are cited here.
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1.2 .4  Hybrid Methods

Many hybrid techniques have been developed in an attem pt to overcome the 

intrinsic limitations of the major computational methods. For electrically large 

objects, the moment method becomes computationally very expensive in terms 

of both memory and computation times, even for resonant scatterers. One way 

around this difficulty is to employ hybrid techniques [67-69].

However, the accuracy of these hybrid techniques have been found to be limited 

[68] and this has led to the development of new methods which combine the 

MoM and other techniques such as the impedance matrix localization method 

(IML) [61,70], the fast multipoie method (FMM) [71,72], the complex multipole 

beam approach (CMBA) [73]. The fast multipoie method is an efficient way to 

perform matrix-vector multiplications whereby the field at each point due to 

every other source point is calculated for all points in a group of N points. 

Normally this would require 0(N2) calculations. The fast multipoie method 

reduces this to ACN1-5) [71,74,75]. Recently, McCowen [54] has analysed the 

scattering from three-dimensional dielectric objects by applying a far-field 

approximation to the CFIE. The results show significant savings in matrix fill-time 

and storage from the original CFIE formulation.

The FMM accomplishes its speed by using an indirect fast computation of the 

matrix vector product. As the matrix size increases, the matrix conditioning 

deteriorates such that precondition becomes necessary [75].

Other hybrid techniques mentioned below have been developed to solve complex 

problems. Finite-difference time-domain-physical optics (FDTD-PO) [76] 

techniques, MoM-FDTD [77], hybrid ray-FDTD [78,79] techniques have been 

proposed to reduce the memory requirements and computation times.
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There are also several hybrid formulations which combine the MOM with the FEM 

to solve electromagnetic radiation/scattering problems from structures consisting 

of inhomogeneous dielectric bodies of arbitrary shapes attached to one or more 

perfectly conducting bodies [80-84]. While either method alone fails to model 

these structures efficiently, a combination of both finite element and moment 

methods provides an excellent way to solve these problems. The FEM is 

employed to handle the interior domain of inhomogeneous dielectric bodies and 

the MoM is used to develop surface integrals that relate the field quantities on 

boundary surfaces with the equivalent surface currents.

1.3 The Problem

Rao, Wilton and Glisson [6] were the first to solve the EFIE using the MoM 

technique and the triangular basis functions. Umashankar et aL [53] later 

extended the application of the MoM using the RWG basis functions to the 

analysis of the electromagnetic scattering by arbitrary shaped three-dimensional 

homogeneous dielectric objects based on the CFIE. The geometry of the 

scatterer's surface is approximated by triangular patches. The testing process of 

the EFIE or the CFIE results in double surface integrals that are required for the 

calculation of the matrices [6,52]. Rao e t  a! [6] evaluated the double surface 

integrals by performing first an accurate integration over the source triangle, 

followed by an approximation of the integrand over the observation triangle, 

which was performed by sampling the integrand at a single point, the centroid of 

the observation triangle. This approach was taken to avoid the costly evaluation 

of the two double surface integrals resulting in a fast and accurate algorithm. 

This is the approach that has since been used by many researchers [53,54,58].
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The approach taken in this thesis avoids the approximation of the double surface 

integrals of the tested EFIE or the CFIE for computing the elements of the 

impedance matrix using the MoM [5]. With this method, the two surface 

integrals are evaluated more accurately. This is done in such a way that a 

balance is struck between accuracy and the computation time. This approach is 

in contrast to the existing approach RWG formulation which approximates the 

integrals but nevertheless, produce good results. However, for electrically large 

objects the latter approach requires a large number of unknowns resulting in the 

requirement for more computer memory and CPU-time. The main motivation in 

devising the proposed formulation was to  produce a scheme that goes a long 

way in addressing the shortcomings of the existing approach, which is hereafter 

referred to as the RWG formulation, particularly for electrically larger problems. 

The proposed formulation has been incorporated into the Swansea's MoM 3-D 

code for evaluation. The differences between these two approaches will be 

pointed out in chapters 3 and 4.

The scattering by the arbitrary shaped three dimensional (3-D) objects is 

analysed by solving the integral equation where the unknowns are the surface 

currents on the scatterer's surface. The surface of the object is approximated by 

flat triangular surface patches [6].

1.4 Organisation of the thesis

This thesis is organised as follows. The triangular patch model of the moment 

method formulation for the EFIE as derived by Rao et ai [6] for scattering by 

perfectly conducting objects and for the CFIE as derived in [53] for scattering by 

three dimensional dielectric objects is reviewed in chapter 2.
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The proposed modification to the EFIE formulation as proposed in [6] for 

conducting bodies is presented in chapter 3. The surface integrals present in the 

tested EFIE are computationally more expensive to compute than in the original 

scheme, so emphasis in the chapter is on an efficient algorithm and procedure to 

compute the matrix terms efficiently. The analytical RCS results for conducting 

bodies are presented and compared with the results from the literature.

The RCS problems [36] are used as the basis for comparison between the 

formulation proposed in this thesis and other computation schemes, including 

the RWG formulation. This comparison is used to assess the performance and 

efficiency of the proposed formulation.

The application of the proposed scheme is extended to dielectric objects in 

chapter 4. In this chapter, the modification to the CFIE formulation as derived in 

[53] is performed. In the case of the CFIE, the expressions for the impedance 

matrix terms for the modified formulation are more complex than those of the 

EFIE formulation and are therefore more computationally demanding to evaluate. 

Analytical RCS results for dielectric objects are presented and compared with the 

results from the literature.

Chapter 5 extends the modified CFIE formulation to incorporate mixed 

conducting materials and lossless/lossy dielectric materials and the 

corresponding RCS results are presented. Chapter 6 presents the overall 

conclusions for the thesis.
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2.1 Introduction

This Chapter discusses the essence of the Rao-Wilton-Glisson basis function 

se t introduced in [85]. The solution of computational electromagnetic 

problems tha t are based on surface integral equations depend on the 

representation of the unknown functions in term s of som e known basis 

functions. The m ost commonly used subdomain basis functions used in the  

numerical solution of the surface integral equations are the "rooftops" basis 

functions [85] and the triangular basis functions [6]. The rooftop basis 

functions are defined on rectangular sub-domains and the  triangular basis 

functions are defined on triangular sub-domains or patches. The triangular 

basis functions were developed by Rao, Wilton and Glisson [6] and are used 

in this work.

This chapter reviews in detail the  basis functions introduced by Glisson [86] 

and from the work developed by Rao et al [6]. The linear triangle basis 

function presented in [6] will be referred to in this thesis as the RWG basis 

function. This will lay the groundwork for the  formulation proposed in this 

thesis in subsequent chapters. As will be discussed in Chapter 3, the 

difference between the proposed formulation and the RWG formulation lies in 

the way the  impedance matrix elem ents are calculated.

In the surface integral equations th a t are considered in this work, the 

problems are discretised by the  Method of Moments (MoM) using the Rao- 

Wilton-Glisson (RWG) basis functions [6]. With this method, a mesh of 

connected flat triangular patches approximates the  geom etry of the  scatterer. 

The triangular patches have several advantages [87]. They have the ability to  

conform to  any geometrical surface or boundary; they aHow easy descriptions 

of the patch schem e to the com puter and may be used with greater densities 

on those areas of the surface w here greater resolution is required. The 

number of triangular patches of the  problem is directly proportional to the
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electrical size used since the basis functions used in the  discretisation of the 

surface integral equation are defined on the triangular patches.

These triangular-patch basis functions have been widely used in 

electromagnetic scattering problems to  model arbitrary surfaces [6], [50], 

[88-94]. Besides the triangular surface patch model, other approaches to the 

flat surface patch model have been reported in the literature, such as the 

rectangular patches [85,95] and polygonal patches [96,97].

Several researchers have also investigated the use of curved patches to 

describe the geom etry of arbitrary shapes [98-101]. Wilkes and Cha [98] 

extended the flat triangular patch model developed by Rao, Wilton and 

Glisson [6] to the curved triangular patch. Zhu and Lanstorfer [99] reported 

the  application of curved parametric triangular and quadrilateral edge 

elem ents as basis functions in the m om ent method solution of the electric 

field integral equation. They concluded that a combination of the basis 

functions defined on curved patches to model an arbitrarily shaped surface 

produced more accurate results than with conventional planar patches. Brown 

and Prata [100] developed a quadrilateral roof-top type of basis function for 

analysing electromagnetic scattering on curved surfaces. Their results were 

shown to agree very well with an analytic solution.

In the case where an object of curvature is of interest, the use of flat 

triangular patches creates unnecessary geom etry modelling errors in the 

solution. Such errors can be important, for example, in near-field calculations. 

Wilkes and Cha [98] dem onstrate, by analysing a metallic sphere, tha t 

parametrically defined curved patches in place of flat triangular patches and 

with specifically designed basis functions produce fewer number o f unknowns. 

Wei et. a/[ 101] have also dem onstrated that the use of curved triangular and 

quadrilateral basis functions can reduce the  total of number of unknowns 

when analysing curved surfaces.
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2.2 Maxwell's Equations and their solutions

The mathematical formulation of electromagnetic scattering problems relies 

on Maxwell's equations. These were originally introduced by Jam es Maxwell in 

1864 [102]. These equations are:

where E is the electric field, H is the magnetic field, B is the magnetic flux 

density and D is the efectric flux density, J  is the electric current density, M is 

the magnetic current density, pe is the electric surface charge density and pm 

is the magnetic surface charge density. The four fields E r  D, H and B 

describe the total electromagnetic field. All the quantities in Maxwell's 

equations are assumed to have harmonic time dependency.

The angular frequency is given by co = kl*[ii£ = {2nfX)l J p e , where k is the 

wave number and X is the  wavelength of the incident electromagnetic wave. 

There is an additional equation th a t involves the  current density J  and the  

charge density p e. These are related through the continuity equation th a t 

expresses the conservation of charge:

A corresponding equation for the magnetic current and the magnetic charge 

density is given by

V x H  = J  + jcosE

V x E  = -  jcojuH -  M  

V.D = p ,

= pm

(2.1)

(2.2)

(2.3)

(2.4)

V J  = -jcop( (2-5)
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V • M = -jo)pm (2 .6)

In an isotropic conductor, the current density J  is related to  the electric field 

by:

J  = oE (2.7)

where g  is called the electric conductivity. For g *  0 , the medium is a 

conductor and w hereas for g  = 0 , the medium is called a dielectric. In a linear 

isotropic medium, the  relations between D and E, B and H are:

D = £E (2.8)

and, for a linear magnetic material

B = fJEL (2.9)

where e and ju are the electric permittivity and the magnetic permeability 

respectively.

The magnetic field H is related to the  magnetic vector potential A in the  

presence of an electric current and electric charge only, by the equation

H = —Vx A (2.10)
M

I t can easily be shown that the electric field is related to the magnetic vector 

potential A and the scalar potential by:

E = -ya?A -V ^ (2.11)

where $ is the electric scalar potential.
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The corresponding equations for H and E in the presence of magnetic current 

and magnetic charge only are:

E = V x F  (2 .12 )

H = -jcd¥ -  V'P (2 .1 3 )

where F and are the electric vector potential and magnetic scalar potential 

respectively.

The equation relating the magnetic vector potential A and the electric surface 

current density J  is given by:

V2A + £ 2A = -//J  (2 .14 )

The electric scalar potential <J> is related to the  electric surface charge density 

by the equation

V2</> + k2</> = -£z- (2 .15 )

Similarly, the equations th a t relate the  electric vector potential F and the  

magnetic scalar potential to the magnetic surface current M and magnetic 

surface charge density are:

V2F + £ 2F = -*M  (2 .16 )

V2lF + k2x¥  = -^2L (2.17)
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The solutions for the vector potentials A(r) and F(r) in equations (2.14) and 

(2.16) are given by:

„ -jk R

A (r ) = j - j j  J(r')—r - d S ( r )  (2 .18 )
R

n r)  = j - \ [ m r ’- ) ^ d S i r )  (2.19)
4 f t R

Also, the solutions for the scalar potentials <J>(r) and ¥(r) in equations (2.15) 

and (2.17) are given by:

1 p~JkR
^(r) = - - — —  f f v ’s ■ J(r')^——  iiS(r') (2.20)

AnJO)£ j .j  R

¥ ( r ) « — !— f f v \ M ( r ,> i — dS(r') (2 .2 1 )
4ft jc o j j .  R

where R = r - r , with r being the observation point and r the source point

and Vs\s the surface divergence operator on the primed coordinates, i.e. 

source points. Both points are located a t the surface S of the object.

The expressions for the scattered fields in term s of the vector and scalar 

potentials, if both electric and magnetic currents are present, are given by

Es = -jcoA -  V</> - - V x F (2.22)
e

H* = -jcoF -  VXP + —Vx A (2.23)
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Boundary conditions are associated with Maxwell's equations to describe 

different physical situations. For scattering from perfect conductors, the 

electric field vanishes inside the object and the total tangential electric field 

on the  surface of the scatterer is zero. In the  case of dielectric scatterers, 

there  is continuity of the tangential electric or magnetic field across the  

interface.

Using the boundary conditions, Maxwell's equations are then rewritten in the 

form of integral equations which relate the electric and magnetic fields E and 

H to  the equivalent electric and magnetic currents J  and M on the surface of 

the object. Enforcing boundary conditions on the scatterer's surface enables 

the Maxwell's equations to be solved for the currents J  and M, assuming th a t 

the incident fields are known.

The next section discusses the RWG basis functions used to represent the 

current in the moment method.

2.3 The RWG Basis Functions

The RWG basis function is one of the most commonly used basis functions. It 

models the current density on a triangular patch as the superposition of th ree 

non-orthogonal current densities [6].

These were originally proposed by Glisson [86] and later developed by Rao 

et. a/. [6] These basis functions are suitable for use with the EFIE, MFIE, the 

CFIE and triangular patch modelling. It is assum ed tha t the  body's surface S 

is accurately approximated by triangular patches on which the  RWG basis 

functions are defined. The basis function proposed by Rao, Wilton and Glisson 

[6] is illustrated in Figure 2.1.
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Figure 2.1 Domain for the RWG surface basis functions

Figure 2.1 shows two triangles rw+ and T~ associated with the nf/7edge of a 

triangle-meshed surface of the scatterer. Points in r„+ may be specified 

either by the position vector r, defined with respect to the global origin 0 , or 

by the position vector p„+, which is defined with respect to the free vertex of

r„+. The sam e is true for the position vector p~ except that it is directed

toward the free vertex of T~. The plus or minus designations of the triangles

are chosen such that the positive current reference direction associated with 

the nth edge is from r„+ to T~. The vector basis functions associated with the

nth edge are defined as
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f » =

LaL 
2 4

i„p„
2K
0 otherwise

for all r  in T1

for all r  in T' (2.24)

where l„ is the length of the common edge and is the area of the  triangle 

T * . The subscripts refer to the edges and the superscripts refer to  faces of 

the triangular meshes.

Some of the properties tha t make the basis function ideally suited to 

represent the current on the scatterer's surface are:

(i) Within each triangle, the current density is the sum of three basis functions 

tha t are associated with the th ree  edges. The superposition of the basis 

functions within a triangle represents a distribution of surface density current 

flowing within the triangle.

(ii) At each edge except the nth edge (common edge of r„+ and T~), 

f„(r)has no component normal to  tha t edge. The component of f„(r) normal 

to  the nth edge is constant and continuous across the  edge, because the 

normal component of p* along the /7th edge is just the height of T* with the

nth edge as the base and the height expressed as 2A^/ln . This avoids the 

presence of spurious line charges in the numerical model.

(iii) The surface divergence of the basis function is

24



for r  in T*
K

(2.25)

0 otherwise

where the surface divergence in T* is (±1 /p*)d(p*fn)/dp* ( with f„ being 

the  com ponent of fn in the  direction of pn). Thus from equation (2.5) charge 

density is constant throughout the  interior of the each triangle.

(iv) The surface integral of the basis function over Tn+ and T~, which is 

needed later in the discretisation of equations detailed later is

where p ^ is  defined between the free vertex and the centroid of T* with 

p£+ directed away from the vertex and p£" directed toward the vertex, as 

shown in Figure 2.1 and r„c± is the vector from the global origin 0  to the 

centroid of r * .

2.3.1 Current Approximation

The first step in the method of m om ents solution process is to expand the  

current as a finite sum of expansion functions. Except for the boundary 

edges, a basis function fn is associated with each edge of the triangulated

t; + t„

J| f„ (r)dS = + ftT ) = /„(i f  -  C ) (2.26)

25



structure. The current on the s c a t te re d  surface may now be approximated in 

term s of fn by

N

(2.27)

w here N is the  num ber of edges not on a surface boundary. As a basis 

function is associated with each non-boundary edge, up to  th ree  non-zero 

basis functions may therefore exist within each triangular face. At each edge, 

only the basis function associated with that edge might have a com ponent of 

current normal to th e  edge. Since the normal component of fn a t the nth 

edge is unity, each com ponent ln in (2.27) may be interpreted as the normal 

com ponent of current density flowing past the nth edge. Equation (2.27) 

includes only contributions from non-boundary edges since the  normal 

component of current a t a surface boundary must vanish. The superposition 

o f the basis functions inside one triangle results in a suitable current 

distribution throughout the patch.

2.3.2 Testing Procedure

In order to  obtain a linear system of equations from the integral equations 

and to  solve for the unknown electric and magnetic current coefficients, the 

equations are tested by suitable testing functions.

The general form of the ERE and the  MFIE integral equations are:

Einc=Le(J)

n inc = Lm(J)

(2.28)

(2.29)
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w here Einc and H /nc are the  incident electric and magnetic fields 

respectively, Le and Lm are the  surface integral operators for the EFIE and

MFIE respectively, and J  is the induced current ( electric or magnetic).

The next stage in the  solution process requires the definition of a se t of m 

linearly independent testing (or weighting) functions, wjt  to be defined. An

inner product of each weighting function is formed with both sides of the 

integral equation being solved.

In the case of the  EFIE equation, the  testing process results in a se t of m 

independent equations of the form

By expanding J  using equation (2.27), a se t of equations N x N simultaneous 

equations with the  current constants, /„ ,  as the unknowns. In the  Galerkin

method, the weight functions Wj are chosen to be the basis functions

them selves, / y .

The vector Elnc contains the  known incident field quantities and the term s of 

the Z-matrix are functions of the  geometry. The unknown current coefficients

(E inc,Wj)  = (Le(J) ,Wj)  j  = 1,2, ,m (2.30)

N

(2.31)

Equation (2.31) maybe written in matrix form as

(2 3 2 )

where: Z y = < 4 ( f y) ^ >  and E f  = <E//7CJ} >
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are the  term s of the J  vector. These values are obtained by solving the 

system  o f equations.

The next section reviews the EFIE formulation for problems of 

electromagnetic scattering by perfectly conducting objects.

2.4 Formulation for Conducting Bodies

The integro-differential equation for the current distribution based on the 

electric field operator is called the electric field integral equation (EFIE). In 

this section, th e  derivation of th e  integral equation for th e  surface current 

induced on a conducting scatterer is reviewed. The use of the  RWG basis 

functions in applying the method of moments is covered next. The 

computation procedure for the evaluation o f the impedance matrix elem ents 

as done by RWG is then discussed.

2.4.1 Electric Field Integral Equation

This section focuses on the case where the perfect electric conductors are the 

only materials present in the  electromagnetic scattering problem. This m eans 

the conductors have infinite conductivity, the electric and magnetic fields do 

not penetrate the surface of the metallic objects more than a  thin boundary 

layer, which in practice is considered to be of zero thickness. Another effect of 

the infinite conductivity condition is tha t no tangential electric fields can exist 

on th e  surface of th e  metallic conductors, otherwise th e  infinite conductivity 

would lead to infinite currents, which is not practical.

In the case of perfect electric conductors, the electromagnetic scattering 

problem is considered in term s o f electric currents induced on the surface o f
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the  conducting object. Consider a perfectly conducting scatterer with a 

surface S, which is either open or closed. The incident electric field E ^ is  due 

to  an impressed source in the absence of the  scatterer. Induced surface 

currents J  flow on S.

The scattered electric field E*due to the surface current is given by

Es =-y<yA-V<zfr (2 .3 3 )

where the magnetic vector potential and the  scalar potential are defined in 

(2.18) and (2.20) respectively.

The continuity equation relates the surface charge density p to the  surface 

divergence of the current density:

V , .J  = -j cope (2.34)

w here V5 is the surface divergence operator.

Applying the boundary condition that the sum of the incident, Einc, and the  

scattered, Ef , electric fields has no tangential component on the perfectly 

conducting surface, i.e.,

h x (Einc + Ef ) = 0 on surface S (2.35)

leads to the following integro-differential equation for the surface current 

density J ,

E E ^ A  + V *)^ , ronS. (2.36)
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The subscript "tan" denotes the components tangential to the surface of S. 

With A and <j> given by the  equations (2.18) and (2.20) respectively, equation

(2.36) represents the so-called electric field integral equation.

2.4.2 Testing of the EFIE

The next step in solving for the current coefficients when applying the 

method of moments is to  implement the testing procedure. The expansion 

functions chosen are the sam e as the  RWG basis functions which were 

reviewed in section 2.3.2. Considering the  tangential com ponents only, the 

electric field equation (2.36) is tested  with the  basis function fm according to

the inner product defined in (2.30):

Making use of a surface calculus identity [103], the last term  on right hand 

side in (2.37) can be rewritten as

where use has been made of the fact tha t fm has no normal component to 

any part of the boundary of S.

Using equation (2.25), the integral in equation (2.38) is approximated as:

(2.37)

(2.38)
s

(2.39)

= im[<K C )-<K C )\
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where the two averages of 4 over the triangles T+ and Tm have been

approximated by the corresponding values of <|> a t the centroids of the 

triangles.

The Integration of the magnetic vector potential and the  incident field term s 

in equation (2.37) are similarly approximated.

The tested incident field term s are given by:

<E'"c, U  = /„ JJ E”c • p*dS + f j  • p~dS
Z'jnm f+ j +

(2.40)

+ v nc( C ) < - ]

and the  tested magnetic vector potential is approximated by

<A,fm) = ln A ' Pm'® + ~ T  | |  A • 9mdS
'̂J%t j-

(2.41)

The integrals in equations (2.40) and (2.41) are solved by approximating E//?c 

and A with their values a t the centroid of each triangle and then carrying out 

integrations similar to those used to obtain equation (2.26).

From equations (2.38) - (2.41), the tested electric field integral equation 

(2.37) becomes:
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(2,42)

-jarf. A (r")-^ l+ A (C )-^ -

Equation (2.42) is solved for the current coefficients by enforcing the 

boundary conditions a t each triangle edge, m = 1,2 ,N .

2.4.3 Evaluation of the Impedance Matrix Elements

By making use of the expression for the current expansion given by equation

(2.27) in (2.42) an N xN  system of linear equations is obtained which may 

be written in matrix form as

where [Vm] is a column vector of length N, [z^ ]  is an N xN  matrix and 

[l„\ is a column vector of length N. The elements of Z and V are given by

(2.43)

f n c+
7  = / im "m'^mn lm J mn ~

V Z

c+
>mc+ s -c+\ Pm (2.45)

where
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(2.46)

4tt jcos
(2.47)

Rm = “  rv/w m (2.48)

Each matrix elem ent Zmn is associated with the pair of edges m, for the

observation triangle and n, for the source triangle. Hence each integral in Zmn

is related to two source triangles attached to  edge /7and with two observation 

points a t the centroids of the two triangle attached to edge m.

The impedance matrix can be obtained directly by calculating the matrix 

elem ents directly for each pair of source and observation RWG basis 

functions. However, this direct approach is more time consuming, because 

the sam e value of vector and scalar potentials could appear in 3 different 

pairs of basis functions. This is because a triangular patch can have a 

maximum of 3 non-boundary edges, with each edge being an independent 

basis function. Hence, for the sam e observation point, the scalar and vector 

potentials in each triangular patch could be involved in up to 3 different pairs 

of basis functions. The vector and scalar potentials are calculated for each 

pair of triangular patches, instead of for each pair of basis function. This is a 

much more efficient approach of computing the impedance matrix elem ents. 

The integrations in (2.46) and (2.47) are performed over the source triangular 

patchs. This implies that in the computer implementation, the  calculated 

potential values and the  patches' coordinates should be saved and recalled 

when required during the computation of matrix elements. This approach 

guarantees tha t the integrals in the vector and scalar potential for each 

observation point are evaluated only once. Since each triangular patch can 

have up to 3 basis functions and noting tha t there are 3 field components,
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using this approach computation could be made as much as 9 times faster in 

comparison to the direct approach, which does the  computations edge by 

edge.

Once the matrices of Z and V of equation (2.43) are determined, the system 

of linear equations for the current coefficients In may be solved.

2.5 Comment on the evaluation of the integrals

The purpose of approximations used by Rao e t al. [6] used in equations

(2.39), (2.40) and (2.41) is to avoid the computation of the surface integrals 

over the observation triangles so that only the surface integral involving the 

function A over the source triangles T„ is performed. In other words, the 

integrals in (2.46) and (2.47) are evaluated by integrating from the centroid of 

T* to the middle of the edge lm and then to  the  centroid of T~. The incident

field and the vector potential quantities A are approximated by their values at 

the  centroid. The integrals of the  gradients of the  scalar potential quantities 

reduce to the differences of the scalar potentials a t the centroids. Hence the 

integrations of the tested quantities over each triangular patch are reduced to 

the  area of the triangular patch multiplied by the  integrand evaluated a t the  

centroid of the triangular patch. This avoids the expensive computation of two 

surface integrals to fill the impedance matrix. This results in a numerically 

efficient procedure that avoids the computation of integrations over the 

testing triangular domains.

The task of evaluating the double integrals can be quite difficult and time 

consuming. To overcome the difficulties of large memory requirem ent and 

high computation time, Rao et. ai [6] introduced the approximations 

described in sections 2.4.2 and 2.4.3.
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Since the introduction of the RWG basis functions, a number of researchers 

have implemented the  approximations pointed out in equations (2.39), (2.40) 

and (2.41) in analysing scattering from conducting objects and have 

dem onstrated tha t accurate results can be obtained by employing the  sam e 

approximations [51, 94, 104-111].

Chaowei and Sarkar [94] used the triangular patch vector basis functions 

developed by Rao e t al., [6], for expansion and testing functions in the 

conventional method of m om ents for the analysis of scattering from perfectly 

conducting plates.

Cai-Cheng Lu e t  al [105] utilized the RWG basis functions and the 

approximations in equations (2.39), (2.40) and (2.41) to analyse scattering 

from thin metallic sheets and a perfectly conducting sphere. They obtained 

good comparison with respect to  the analytical Mie series solution. Sendur 

and Gurel [106] analysed the scattering of electromagnetic waves of a 

Hertzian dipole in the presence of a perfectly conducting sphere using the  

RWG basis functions. Their results were in good agreem ent with the analytical 

solution obtained by Harrington [104], Leat e t  a1 [91] used the  RWG 

triangular-basis-function method of moments to model the impedance and 

field patterns of bowtie antennas in free space. Their results agree with those 

of the experimental paper by Brown and Woodward [107]. McCowen and 

Salman [51,108] implemented the RWG basis functions when analysing the 

scattering problems from metallic surfaces using the  method of moments with 

the far field approximation technique th a t increased the computational 

efficiency of the  original method of moments approach. Rossi e t  a1 [109] 

employed the  use of the  RWG basis functions to  represent the surface current 

induced on the conducting scatterer in the analysis of electromagnetic-wave 

scattering by arbitrarily shaped objects using a three-dimensional multilevel 

fast far-field approximation method. Song and Chew [110] solved the  

scattering problem of a very large conducting sphere (diam eter of 120X) 

using the method of moments, where the RWG basis functions were used, in
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conjunction with the multilevel fast multipole algorithm. Their numerical 

resuits compared well with the analytical Mie series results. Carr e t  a/[111] 

have again analysed the scattering problems of a sphere and a cube in free 

space using the RWG basis functions.

The next section considers the scattering of electromagnetic waves from 

dielectrics.

2.6 Formulation for Dielectric Bodies

2.6.1 Formulation of the CFIE

In this section, the derivation of the CFIE [112] and its MoM solution for 

scattering by 3-D dielectric bodies is discussed. For a homogeneous dielectric 

body, the boundary conditions are the continuity of the tangential electric and 

magnetic fields across the interface. Continuity of each field provides one 

equation. By combining the resultant EFIE and MFIE the CFIE is obtained.

This section deals with the electromagnetic scattering from dielectric bodies 

immersed in free space. The formulation of the CFIE is discussed. For the 

dielectric media, the adopted procedure is to solve a pair of coupled integral 

equations for the equivalent electric (J) and magnetic (M) currents on the 

surface S of the dielectric [53]. The equivalent surface current densities J and 

M are expanded using the RWG triangular-patch basis functions and the CFIE 

is then solved by the method of moments.
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Figure 2.2 Homogeneous dielectric object em bedded in a hom ogeneous 
medium (free space), J  and M are the  equivalent currents for the exterior.

Referring to Figure 2.2, 5  denotes the surface of a three dimensional 

hom ogeneous dielectric object illuminated by an incident plane wave. The 

regions exterior and interior to the object are characterized by material 

param eters e rran d  t respectively. The total fields ( E ^ H J

in the  exterior region are given by the sums of the incident fields (E'"C,H //,C) 

and the fields radiated by a se t of equivalent currents ( J , M )  orr th e  surface 

S. Hence

Ei = Einc + Eft J, M) outside surface S (2.49)

Hj = H'"c + H ftJ,M ) outside surface S (2.50)

where E{ and Hf are integral operators for the exterior region.

By the equivalence principle, the equivalent currents are related to the  total 

tangential fields on the surface S by:
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J = n x Hj just outside surface S (2.51)

M = -n  x Ej just outside surface S (2-52)

where n is the unit normal to surface S pointing out of the object.

Now, because of the discontinuous behaviour of E* and H* across surface S,

equations (2.51) and (2.52) imply th a t equations (2.49) and (2.50) are zero 

everywhere inside the dielectric object, i.e.

E/>ZC + El (J,M) linside s= 0 (2.53)

H'"c + Hf (J,M) |inside s = 0 (2.54)

The fields (E2, h 2) in the interior region are expressed in term s of the same 

pair of equivalent currents ( J , M ), but with the opposite sign [53]:

E2 - E J ( - J , -M )  1 ^ 5 = 0  (2.55)

H 2 -  H2( - J ,-M )  linsitje s = 0 (2.56)

From equations (2.22), (2.23) and (2.53) - (2.56), the electric and magnetic 

scattered fields can be expressed in term s of their sources, J  and M, through 

the electric and magnetic vector potentials and using the continuity of the 

tangential components of the electric and magnetic fields:

Ete (r) = jw  [A,(r) + A2(r)J+ [V ^ r )  + Vrf,(r)]+ V x [ l ^ r )  + 4 -F2(r)] (2.57)
Sl e2
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H'"c(r) = 7 ® [Fi(r) + F2(r)] + [V'I',(r) + V>I'2( r ) ] - V x t —  A ,(r ) + —  A 2(r)] (2.58)
Mi Mi

Equations (2.57) and (2.58) are the  combined field integral equations (CFIE). 

In this particular case, there are two regions, hence the expressions for the 

potentials, become, for / = 1,2:

A ,(r) = 3(r')G,{r,r'dS(r) (2 .5 9 )
s

* (r )  = - i - r J J  peG,(r,rdS(r) (2 .6 1 )
4 7ZS j  g

V ,(r) = pmG,(r,rdS(r) (2 .6 2 )
Mi g

where the complex permittivity e] is used in (2.19) and (2.20) to  obtain (2.60) 

and (2.61) is given by

= £i
r ^

1 +  - S -
\ JCOSi

and

(2.63)

(2.64)

Gt{ r , r )  =
~R~

(2.65)

(2.66)
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2 .6 .2  Testing o f the CFIE

The combined field integral equations (2.57) and (2.58) are tested  so th a t the  

unknown current coefficients, and hence the unknown surface currents can 

be obtained. The sam e RWG testing functions used in testing the EFIE in 

section 2.4.2 are used. Testing the  equations (2.57) and (2.58) on the surface 

of the dielectric gives:

( r )fj=(MA1+A2))g +((v^v^))g
(2.67)

+ (Vx tm)

( H inc, f m )  =  ( M F l + F 2 l f m ) +  ( ( V ' ¥ l +  V ' ¥ 2 l f m )

(2 .68)

-  (Vx
(  a  a AA1 j A2
\ M x  M i )

*m)

where the subscript m represents an edge formed by the triangles T*,

m = 1,2, ,Nd, where Nd is the number of edges on the dielectric surface.

The first term s in equations (2.67) and (2.68) are evaluated as discussed in 

section 2.4.2. They are approximated by evaluating the vector potentials a t 

the  centroids of the respective triangles. The sam e approximation is applied 

to the evaluation of the  Second-terms in equations (2.67) arid (2.68). This 

approximation is shown in equation (2.39).

Now consider the evaluation of the  third term s in equations (2.67) and (2.68).
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(Vx A,fm) = JJ(V x A) •

= ^ r { J p ; - [ ( V x A ) ] +̂
A A m  T +

(2 .6 9 )
+ ̂ r J l p m-[(VxA )frfS

m

= y [ p r  -(V x A ( C » + rT  -(V X A ( C » ]

Substituting the equations (2.39) and (2.69) in (2.67) and (2.68) gives

_ c+
Pm E c( C )  + ̂ - E ' " c( C )

= M ,
_c+
P/w {a , ( C ) + a 2( C ) } + 4 - {Ai ( C ) + a 2( ^ - )}

(2 .7 0 )

+ ^  [ { ^ ( O  -  ft ( C )}+{&(>£ ) -  )}]

+ Pi f tD j PaftD , Pi( Q , P2(Q

and

« .c +pm Hinc( C )  + H'"c( 0

=  J °> h £ .■  { ^ (0 + ¥2(o }+ 4 - { Fi(«-r >+f 2( c  >}

(2.71)

+L [{^ .(O  - 'J'iCC )}+ {^ 2(0- * 2 (0 } ]

C M P  , Q 2 ( C )  , C M P  Q 2( C )

M i Mi Mi Mi

41



where the Pz and Q, term s containing the curl operations are given by

.,2(r™±) = ^ ± { V x F ,>2( r f ) ] (2.72)

Q l,2 (rm*) =  '̂ 'Pm ± ' [ V  x A 1.2 (r^ * )J (2.73)

where

[V X F,(r)] = -j- | f  M (r') x V G ; (r, r')dS(r) (2 .7 4 )
4* Js

and

[V X  A j(r)] = j ]  J  ( r )  X  V'C,(r,r)dS(r) (2.75)

As is the case in section 2.4.2, the integrals over the tested  term s of the 

vector potentials are approximated by evaluating the  potentials a t the 

centroids of the respective triangles. This avoids the computation of double 

surface integrals, which can be computational very demanding. The sam e 

approximation is applied to  the evaluation of the term s with integrals with 

"curl term s" in equations (2.72) and (2.73).

Several researchers have shown th a t the  above mentioned approximations for 

evaluating the impedance matrix entries are sufficiently accurate to represent 

numerically the electromagnetic scattering by arbitrary shaped dielectric 

objects. Umashankar e t aL [53] used a method based on the method of 

moments and the CFIE to  analyse electromagnetic scattering by arbitrary
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shaped 3-D homogeneous lossy and lossless objects. They employed the 

RWG functions as both expansion and testing functions. The comparisons of 

the numerical results against the  analytical results for the sphere and a finite 

circular cylinder were good. Sarkar etal. [113] compared the far-field results 

computed from the surface integral formulation and the volume formulation 

for the problem of electromagnetic scattering from dielectric objects analysis 

of scattering problems. The results from the approaches were in good 

agreem ent, thereby validating both the approaches for the analysis of 

scattering problems. For the surface formulation, the Sarkar e t aL [113] 

adopted triangle-patch modelling developed by Rao [6].

Opp e t al. [114] applied the triangular surface patch technique to 

homogeneous dielectric bodies using the  combined field integral equation and 

validated the surface currents against analytic expressions for the surface 

fields for a hom ogeneous dielectric sphere. Their MoM generated results 

agreed very well with the predicted analytical results. The reason for 

performing the surface current validation was tha t the far field computation 

would wash out many of the numerical errors present in the  surface currents. 

Sheng e t  a! [115] presented an accurate method of moments solution of the  

CFIE using the multilevel fast multipole algorithm for scattering by 3-D 

arbitrarily shaped homogeneous objects using the  RWG functions as both the 

expansion and testing functions.

2.7 Formulation for Conducting and Dielectric Objects

This section reviews the formulation for the problem of electromagnetic 

scattering from objects consisting of perfectly conducting and homogeneous 

dielectric bodies of arbitrary shape situated in an isotropic free space medium. 

The system is excited by a plane wave. The surface equivalence principle 

[105] is used to replace the bodies by equivalent conductor surface current
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J c , dielectric electric surface current Jd and dielectric magnetic surface

current Md , radiating into an unbounded medium. A set of coupled integral

equations, involving the surface currents, is obtained by enforcing the 

boundary conditions on the  tangential components of the  total electric and 

magnetic fields. The method of m om ents is used to solve the integral 

equations. The following formulation is based on the work in [6] and [53].

dielectric

conductor

a = oo 
E = 0 
H = 0

Figure 2.3 The original conductor-dielectric problem

E = 0
H = 0

E = 0 
H = 0

Figure 2.4 The external equivalence problem
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-J ,
E -  0 
H = 0

E = E
i

H = H
M

Figure 2.5 The internal equivalence problem for the fields in the dielectric

The two-body configuration comprising a conducting object and a dielectric 

object shown in Figure 2.3, will be used to illustrate the formulation for the 

mixed problem. Although only two objects are shown for simplicity, the 

formulation can be extended to  multiple conducting and dielectric objects. In 

Figure 2.3, Sc and Sd denote the surfaces of a perfectly conducting and a

homogeneous body of arbitrary shape immersed in a homogeneous medium 

whose medium param eters are (£0,//0). Sc can either be open or closed but

Sd can not be open. The objects are excited by external impressed sources

tha t produce the field (E '"C,H'"C) in the absence of the objects. The objective 

is to  obtain the total fields (E ,H )  a t any arbitrary point outside the two 

objects. This total field is the  sum of the  incident field and the scattered field. 

Using the equivalence principle [105], the scattered field can be produced by 

equivalent surface currents of proper magnitude direction flowing on surfaces 

Sc and Sd and radiating into an unbounded medium. Applying th e  boundary

conditions on the  tangential components of the total fields results in a se t of 

coupled integral equations for these surface currents.

Using the equivalence principle, the problem of Figure 2.3 can be solved by 

considering the external equivalent problem shown in Figure 2.4 and the
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internal equivalent problem shown in Figure 2.5. In the external equivalent 

problem, the conducting body is replaced by an electric current, J c , flowing

on surface Sc and the dielectric body of Figure 2.3 is replaced by equivalent

electric and magnetic surface currents J^an d  Md flowing on surface Sd . The

material param eters of the whole space are now (s0,p0)and  the  impressed

sources are still the sam e as in the original problem of Figure 2.3. The total 

field (E,H) a t external points to  the  bodies is the sum of the incident field and 

the field produced by the surface currents J c , Jd and radiating in the 

unbounded medium characterised by (e0,̂ i0)as shown in Figure 2.4. Inside 

the bodies, the scattered field cancels the incident field.

Hence we can have,

where the subscript "tan" denotes the tangential component, S ' and 

denote the surfaces just inside Sc and Sd respectively, E*(JC) , E5(J^ ,M rf), 

H s(J c)and H5( J rf,Mrf) represent the  electric and magnetic fields produced 

by the surface currents J c , Jd and M ^when they radiate into the 

unbounded medium (e09̂ ) .

Since the fields across Sc and Sd in Figure 2.4 are discontinuous, the 

currents are given by

on Sc (2.76)

on Sc (2.77)

(2.78)

(2.79)
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J c  =  n c X K (2.80)

= n rfx H j (2.81)

-  - n d x E d (2.82)

where nc and represent the unit outward normal vectors to Sc and

Sd respectively, H+ is the total magnetic field just outside Sc in Figure 2.4

and (E j,H j)  are the total fields outside in Figure 2.4. The field inside

Sd is calculated using the equivalence shown in Figure 2.5. In this case the

whole space is characterised by the param eters (£,,//,) and the impressed

sources of the original problem are replaced by equivalent surface currents 

- J ^ a n d  - M d . These currents produce the total field (Ei5H ,)a t any point

internal to Sd . Outside Sd , the fields are zero. E/ and H, are purely scattered

fields calculated from the currents - J d and .

where S j is the surface just outside Sdr E,+(J dMd)  ar|d H.+(Jd,Md) are the 

electric and magnetic fields produced by the surface currents J d and M d a t a 

point on Sd .

Combining equations (2.76)-(2.79) and (2.83)-(2.84) gives

Hence

(2.83)

°n S j (2.84)
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(2.85)

E £  = - [ E '( J C) + E '( J ^ M , ) ] ^  on Sd (2 .86)

H K  =  ~[ns(Jc) + Rs(JdM d)]m  on Sd (2.87)

Testing of the equations (2.85)-(2.87) with the RWG basis functions follows 

the sam e pattern as was the case of the CFIE for dielectric bodies in section

Since the introduction of the RWG basis functions, several researchers have 

used the RWG basis functions as both the expansion and testing functions in 

the  analysis of mixed problems. Sarkar et. al. [116] analysed electromagnetic 

scattering and radiation from finite microstrip structures using th e  CFIE and 

the MoM using the RWG basis functions. Results obtained were in good 

agreem ent with those based on the volume integral formulation. Arvas e t  a!. 

[117] used a solution procedure based on the CFIE and method of m om ents 

solution technique. The RWG basis functions were used for both the 

expansion and testing functions. Rao et. al. [118] used a solution procedure 

based on the CFIE and method of moments solution technique. The RWG 

basis functions were used as both the expansion and testing functions.

2 .6 .2 .
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Salman and McCowen [119] used a MoM schem e based on the combined field 

integral equation (CFIE) to  model planar microstrip structures using the RWG 

basis functions. In another paper Salman and McCowen [120] applied th e  

MoM to  solve the  CFIE on mixed conducting and dielectric structures. They 

approximated the  scattering surfaces by triangular patches and used the RWG 

basis functions as both the expansion and testing functions. Results obtained 

with this method were found to  be in good agreem ent with those obtained 

using the  CGFFT scheme. Ling e t a/  [121] combined the adaptive integral 

method and the discrete complex image method to analyse large-scale 

microstrip structures. They discretised the mixed potential integral equation 

using the RWG basis functions for expansion and testing.

2.8 Concluding Remarks

The use of the RWG basis functions as both the expansion and testing 

functions in the  use of the EFIE, MFIE and the  CFIE with the  m om ent method 

for treating problems of electromagnetic scattering by arbitrarily shaped 

objects has been reviewed. Of particular importance in this review are the 

approximations made in the evaluation of the tested  integral equations. 

Considering the tested  integral equations, the integrals formed by the tested  

vector potentials are approximated by evaluating the  vector potentials a t th e  

centroids of the respective observation triangles. Similarly, the  tested  

gradient of the scalar potentials are approximated by evaluating the  scalar 

potentials at the respective centroids of the observation triangles. The sam e 

approximations are applied to the evaluation of the tested  curl of the  vector 

potentials.

The purpose of these approximations is to eliminate surface integrals of the  

potential quantities thus avoiding the expensive computation of two double 

surface integrals to evaluate the elem ents of the impedance matrix elem ents.
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References of several published works using this method have been cited in 

the previous sections o f this chapter.

It is the quality of these approximations and their implications in solving 

electrically large problems th a t is the subject of the  work in this thesis in the  

following chapters. The next chapter addresses these approximations by 

presenting a formulation for electromagnetic scattering from perfectly 

conducting objects where the testing of the EFIE is not approximated but is 

performed numerically.
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3.1 Introduction

This chapter presents the derivation of the four surface integral (4-SI) 

formulation based on the EFIE for electromagnetic scattering from perfect 

electric conductors. The EFIE has been used extensively to analyze radiation and 

scattering from perfectly conducting bodies [5,6,36,47,50,85,109,122,123]. The 

EFIE formulation is solved using the MoM via the Galerkin method using the RWG 

basis functions discussed in Chapter 2.

The solutions from the proposed method offer computational advantages when 

analysing scattering from electrically large bodies. In the RWG formulation, as 

discussed in Chapter 2, the values of the terms containing the vector potential, 

electric scalar potentials and the incident field are approximated by their values 

at the centroid of the triangles when solving the tested EFIE.

With this new 4-SI scheme, a more accurate evaluation of the impedance matrix 

term s is performed. This is achieved by using an /7-point Gaussian quadrature 

scheme to evaluate the integrals over the observation triangles, and a 

Patterson's integration method [124] over the source triangles. In the RWG 

formulation, there is only one testing point. With this new formulation, the RWG 

basis functions reviewed in Chapter 2 are used as both the expansion and testing 

functions. Two forms of the new scheme were implemented, namely the 2-SI 

and 4-SI schemes denoting integration over the source triangle only in the first 

instance and integration over both the source and observation triangles in the 

second case.

The equations arising from the tested EFIE are derived and the various terms are 

written a such a way as to facilitate easy coding. In adopting this new scheme, 

careful consideration needs to be given to the algorithms that are used to
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compute each impedance matrix term. The algorithms were coded and 

embedded into the Swansea's MoM3D code [125].

The presentation of the 4-SI formulation for perfectly conducting objects is done 

in two parts. Firstly, the theory for the 4-SI formulation is presented in sections 

3.2-3.3. The derived equations are left in a form suitable for numerical 

programming. This follows from the theory reviewed in Chapter 2.

In the second part of the chapter, the 4-SI scheme is validated through 

applications to a number of electromagnetic scattering problems. For validation 

purposes, published references are used. In cases where published data is not 

available, a 2 surface integral (2-SI) simulation (identical to the formulation used 

by Rao e t al. [6]) with a fine level of discretisation is used as a reference. The 2- 

SI scheme used by the Swansea's Electromagnetics Research Group has been 

extensively validated against published works [51,90,120].

3.2 Four-SI formulation for perfectly conducting bodies

The derivation and testing of the EFIE equation using the RWG basis functions 

for both the expansion and testing functions was reviewed in section 2.4.1. The 

approximation of the tested EFIE, as first suggested by Rao et al. [6] was 

highlighted in the same section. In this work, no approximations are done in the 

evaluation of the integrals in the tested EFIE. Instead, the integrals of the tested 

EFIE are evaluated more accurately. Equation (2.37), which is the tested EFIE, 

is repeated here for the sake of continuity:

(3.1)
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where the magnetic vector potential, A , and the scalar electric potential, are 

given by equations (2.18) and (2.20) respectively.

The integrals in (3.1) will now be evaluated without making the approximations 

pointed out in Chapter 2.

Consider the first term on the right hand side of equation (3.1). This can be 

written as

y < K A 4 r ') X ( r )> = /f f l^ J jA 4 r > /> ; ( r ) « !S  + (r  )'pm(r)dS,
'/%n f + “ iw T~

1 7 0 ~ j ^
"Jo}^ T F T F  II I f  ̂ +(r > p : ( r ) — dSdS (3.2)4*  2 4 .  24 , "  R

•* m  J n

+  > ^ - ^ r - ^ r f f f J p ; ( r ' ) . p ; ( r ) ^ d S 4 S  
Ak  2Am 2 4 , "  JrJ R

using

—jkR

A ( r ) = 4 * ? J ( r ) £ F ds ( 3 ' 3 )

and the discretisation expression for the electric surface current given in 

equation (2.27), fm is the testing function and is the same as the basis function

defined in equation (2.24). The integral terms in (3.2) are easily dealt with if a 

coordinate transformation is done such that the integrations are performed using 

a local coordinate system defined with respect to the triangles' vertices.
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Next, the second term on the right hand side of equation (3.1) can be expanded

as:

< V 0 , f „ > =  - j j o v . - t d s
S

Snjeoe A^
1 m An

1 I I_______m n

A n ja e  A* A*

1 I Im t

— + —+ I V

f f  f [ ^ - d S d S

(3.4)

where use has been made of equations (2.25), (2.35) and (2.40). Equation (3.4) 

also requires the evaluation of two surface integrals. One is performed over the 

source triangle and the other is performed over the observation triangle. 

Although (3.4) contains no position vector terms, the integration is most easily 

done using a coordinate system defined locally to each triangle.

Similarly, the tested incident field is given by

The equations (3.2), (3.4) and (3.5) are most easily evaluated if the integrations 

are performed using a local system of normalised area coordinates. The next 

section will discuss the transformation from a global coordinate system to a local 

system of normalized area coordinates before integrals in (3.2), (3.4) and (3.5) 

are dealt with.

(3.5)
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3.2.1 Area Coordinates

This section reviews a quadrature rule for evaluating an integral over a triangle. 

The integrations over the triangle are most easily conveniently evaluated after 

mapping the global coordinates of the triangular patches to a local system of 

area coordinates [126]. The surface integrals can then be evaluated by Gaussian 

quadrature after transforming the global Cartesian coordinates (x, yf 2) to a 

system of local area coordinates (a, b, d). The latter terms will be defined 

shortly.

The evaluation of the integrals in equations (3.2)-(3.5) involves the computation 

of the integrals over the observation triangles using an n-point Gaussian 

quadrature. The optimum number of "n-point" will be determined in Section 

3.3.2. The integration over the source triangle is computed using Patterson's rule 

[124]. Area coordinates simplify the representation and calculation of the terms 

containing the scalar and vector integrals in the tested integral equations 

[127,128]. This is achieved by locating an arbitrary point P inside the source

triangle,Tq, or observation tr ia n g le ,^ ,  such that the normalised area 

coordinates are given by
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2

3

O

Figure 3.1 Triangle patch showing the partitioning that defines the area

where point P divides the triangle into areas Au A2, A3 and A is the area of

the triangle. This is illustrated in Figure 3.1. 0  is the global origin and in this 

particular case, a source triangle is shown with its vertices numbered 1, 2 and 3. 

The lengths o f the sides are 4, k and /*. For the source triangie, the vertices

have position vectors r,', r2 and r'3, which are defined with respect to  the global

origin O. From (3.6), it is apparent th a t the normatized area coordinates are 

coupled by the equation

coordinates

(3.6)

a + b + c =1 (3.7)
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Each point within a given triangle can therefore be represented in term s of the 

normalised area coordinates and the position vectors of its vertices. For the 

source triangle, the global position vector for any point P inside the triangle is 

given by

r  =  ar[ +  br2 +  cr2 = ar[ + br2 + ( l - a -  b) rj (3.8)

The corresponding expression for case where P is inside the observation triangle 

is

r° = ar° + br2 + c r3° = ar° + br2 + (1 -  a -  b)r3° (3.9)

Here the superscript" '"  denotes source point and the superscript " 0" denotes 

an observation point.

Equations (3.8) and (3.9) can be written in matrix form as:

rx A c a

< = riy r2y r3y b (3.10)

S 4 c

and

r°X r°
Lx. r°2x. r°3x. a

= r°iy r °
2y

r °
h y b (3-11)

r ; r°lz r°h z r°3z c
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respectively.

2’

1’

O

Figure 3.2 Source triangle T q and observation triangle T pwith arbitrary located 

source and observation points.

The local position vectors, p>’, for the source triangle, and p>° (for i = 1,2,3) for

the observation triangle are defined with respect to the triangle vertices as 

shown in Figure 3.2. From Figure 3.2, the position vectors can be written as:

The positive sign is used if the current is flowing out of the triangle and negative 

if the current is flowing into the triangle.

(3.12)

and

(3.13)
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To integrate over the source triangle, use is made of the following

transformation from global coordinates to local coordinates:

1 1 - b

J Jg (r ')d S  =  2A j J  + br2 + crj ]dadb (3.14)
T q 0 0

where g ( r  )is  an arbitrary function over a triangle. This equation will be applied 

to the inner surface integral in equations (3.2), (3.4) and (3.5).

The integrations in section 3.2 can now be done in the local coordinate system, 

which is much simpler.

The integration over a triangle of surface of area A can be performed by using

an n-point Gaussian quadrature scheme such that [128]:

J | f {a ,  b, c)dS =  A 2^ w j ( a t , bt, ct) (3.15)
s *=i

Equation (3.15) will be used to solve the integrals over the observation triangles.

3.2.2 Numerical Solution of the tested EFIE

The transformation of global coordination system to the normalised local area 

coordinate system is now applied in the solution of the tested EFIE of equation

(3.1).

Substituting (2.69), (3.12) and (3.13) into (3.2) gives
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=(±); CO
u I Ii o m n

4* 2 4  2 4
j j j j ( r -r,f ).(r° - r lp)G (r \r )d S d S
'"m Tn

LL I Ir~o m n

An 2 4

1 l - S

( ± ) j a ^ ^ T  J j  J  J (a r i + b r 2 + c r i “ ^ H A ” + b°r° + c°r° - r ° )
0 0

G(r° ,r )da db dS

(3.16)

Equation (3.14) has been applied to the inner surface integral over the source 

triangle T* on the second line of equation (3.16). The inner surface integral is 

now to be evaluated in terms of the normalised local area coordinates. The same 

approach will be applied to the outer surface triangle, T* .

By performing the dot product in equation (3.16), it can be written in the form

ya><A„(r'),fm(r)> + h + h + h + h  + h  + h

(3.17)

+  I 9 +  I j o  +  I )  1 +  I]2  +  1)3 +  ! l4  +  ^15 +  ! l6  ]

where
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f  1 1 -b'

jja°  J J a G (r \r )d a d b dS°

ri4Z ̂  ™P° J J a G (r ° , r '  )dadH
i'=l n n\̂ 0 0

(3.18)

(  1 1-6'
jja°  |  J h>G{r\r')dadb
T« V° 0

dS

r X i ™ t f ( ' \ j t i G ( r ° , r ) d a d b -
»=1 0̂ 0

(3.19)

C 1 1 -bIk  IJ c G (r°  , r  )da db dS°

x f > , < P |  ] c G {r ° ,r )d d d b
1=1 v °  0

(3.20)

(  1 1 -b' ^
|Ja° J J G(r\r')da'dl>
T *  1^0 0

X4:£^<fjjG(r;,rVa^'
J=1 \0 0

(3.21)



r2ri

f  1 1 - b  \

\ \ ^ °  I \ a G(ra>r )dadti
T *  V O  0

dS°

N 0 1 1 -6

= i 2 ^ 2 > #  J J a'G(r°9r)dadt!

(3.22)

r°r2 2

^ 1 1-6  ̂
|J6° J |  bG (r\r')dadb
r- v °  0

dS°

N„ f  1 1- 6 ’J J bG(r° ,r  )dadb
'=1 Vo 0

(3.23)

r2r3
Z' 1 1-6 'N

r  i  j  c G(ra ,r')da db
Tm V° 0

al 1 1-6

r2r3Al Y , wib' } j cG(r°,r')dadb'
<-i V o o

(3.24)

'r2 r i .

Z' 1 1-6’
If^ °  1 1  G(r°9r)dadbl

Vo o
d5"

J j G (r°,r)dadb
i=l n nVO 0

(3.25)

63



f  1 1- 6 '

\ \S  J J 0 G(r\ r'yiaidb
0 0

dS°

11-6

^ 2 > ,<  |  J a‘G(r’,r)dadb'
1=1 0 0

(3.26)

( 1 1-*'
Jfc* J J b'G(r°, r'yjadb
T* \ 0  0

dS°

)  J *<Kr ;, r)dadb
*=i ^ o o

(3.27)

1 1-6

JJc'1 |  |  cG(r",r)dadb dS°

1 1-6

J j  cG(r°,r)dadb
‘=1 0 0

(3.28)

r3^
1 1-6

J jV  J j  G(r\r)dddb'
T± VOO

G tf jy d a d b '
'■=1 1̂0 0

(3.29)



1.3 = -< n ’
(  1 1-6’

u  f i ^  r'yiadb
T» V0 0

dS

= - r$ j £ i , wi J J a'G(r°,r')da'db'
1=] 0 0

(3.30)

I =  —r°r14 2

1 1-6II j /W . r'yiadb'
Tl 0 0

dS

= ~ < rX £ wJ | }  b‘G tf,r)dadb‘
1=1 lo o

(3.31)

and

I.s = -< r j IIT*
(  1 1- 6 '

f f  cG(r\r)dadb'
0 0

dS°

= - < r;A ' Z w,;=]

f  1 1- 6 '

|  J cG(rt°,r'yiadb
<0 0

I I  [ I  ‘ I  G (r ” ’ r
V° 0

dS°

1 1-6

(3.32)

(3.33)

where Gaussian quadrature integration, shown in (3.15), has been applied to 

the outer integral of (3.16). Ng is the total number of integration points on the
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observation triangle Tm chosen according to the accuracy requirement and wt is 

the weight associated with the ith sampling point. The procedure adopted to 

determine the required N.  is presented in section 3.3.2. The Gaussian

quadrature is only applied as long as Tm*Tn.

For Tm=Tn, the integrands of both the vector and scalar potentials integrals are 

singular and a different integration approach is necessary.

To evaluate the elements of the impedance matrix, all four line integrals are 

evaluated. Hence the name four surface integrals method (4-SI) that has been 

given to this scheme. In this case, several observation points are placed in the 

observation triangle, T* . The inner surface integral over the source triangle is

evaluated for each observation point inside the triangle T*. This approach

improves the numerical accuracy when evaluating the impedance matrix 

elements, particularly for cases where closely coupled triangular patches are 

involved. However, a good compromise between accuracy in the calculation of 

the impedance terms and the number of Gaussian points inside the observation 

triangle is essential to avoid large computer computation times. Highly accurate 

numerical integrations lead to  a substantial increase in CPU time.

From (3.18) - (3.33), it can be deduced that following relationships are true:

I3= I 4- I , - I 2 (3.34)

I7 = I 8 - I 6 - I 5 (3.35)

and
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^15“  1̂6 1̂4 1̂3 (3.36)

Using the relationship c = \ - a - b '  otc° = \-a ° -b ° ,  it observed that it is not 

necessary to evaluate integrals I9, I 10, I n a n d l12.

Hence it is only necessary to perform the integrations

In the above equations, the inner surface integrals are evaluated over the source 

triangles for each point located inside the observation triangle. The outer surface 

integral is evaluated using an /7th point Gaussian quadrature rule.

3.2.2 Evaluation of the tested electric scalar potential

From equation (3.4), the tested gradient of the electric scalar potential can now 

be expanded to:
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<(V<D)„X>=(±)
4 Kjaus

Anj(D£ 1
(2 )JJ  |  J  G(r°,r)dadb' dS° (3.37)

^ L °  0

where use has been made of equation (3.14).

The term in square brackets in (3.37) is identical to I16of the tested magnetic 

vector potential in equation (3.33).

3 .2 .3  E v a lu a tio n  o f th e  t e s t e d  in c id e n t  fie ld

The tested incident electric field can now be written as

(3.38)
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where or can be x, y  or z

3 .3  I m p e d a n c e  Matrix C a lc u la t io n s

The formulations developed in this chapter were coded and incorporated into the 

Swansea's MoM 3D tool [125]. The MoM 3D tool is a full-wave electromagnetic 

solver based on the EFIE and the MFIE, which are evaluated in the frequency 

domain. It can be used for arbitrary three-dimensional electromagnetic problems 

involving metallic structures (wires and surfaces) and piecewise homogeneous 

media. The surface or wire currents are computed using a method of moment 

technique [5].

3 .3 .1  C a lc u la tio n  o f  th e  I m p e d a n c e  E le m e n ts

The calculation of the impedance matrix elements follows from equations (3.16) 

through (3.37). Hence the impedance matrix element is in the form

Zmn ~  (r ), fm (r)) +  ( ( VO)w>, fm ) (3.39)

where the element Zmn is the contribution from testing over the observation 

triangle, Tm, on the electric field due to the electric current on source triangle 

Tn . The simplified expressions for the tested magnetic vector potential and the

69



electric scalar potentials are given in equations (3.17) -  (3.33) and (3.37) 

respectively.

3.3 .2  Optimum number of  Gaussian points

3 .3 .2 .1  In tro d u c tio n

An important aspect of any numerical solution is the amount of computer time 

required to obtain the  desired accuracy in the solution. The matrix fill time can 

be quite long because of the complexity of numerical integrations that are  

required to evaluate the vector and scalar potential contributions. Considerable 

savings in computation time are achieved by reducing the order of the numerical 

quadrature scheme when the  integrand is slowly varying, i.e. when the source 

and observation points are not closely coupled. In that case, the 1-point 

Gaussian integration scheme is implemented. The outer integrals in equations

(3.1) are only sampled at the centroid of the observation triangle.

Numerical experiments were done to investigate the performance of the 4-point, 

7-point and 13-point to  ascertain th e  optimum n-point quadrature scheme. This 

was done on a single edge formed by two triangles. This was a way of 

determining the convergence of the Green's function. Several shapes of triangles 

were investigated with various Gaussian quadrature integration formulae.

The objective was to adopt the lowest n-point Gaussian quadrature scheme that 

offers a good compromise between accuracy and total computation time. The 

time required for the computation of the impedance matrix elements is a 

substantial part of the total computing time and its essential that the order of 

numerical integration scheme be minimised as much as possible so as to improve 

the numerical efficiency of the scheme.
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A singularity exists for cases where the observation and source triangles are 

coincident. The singularity is extracted from the integrand [50,129] and the 

remainder integrated using Gaussian quadrature.

The following method was used to determine the optimum number of Gaussian 

points needed to integrate the scattering by perfect electrical conductors 

accurately.

There are two critical regions of the integration process. One is when the source 

triangle Is in the vicinity of the observation triangle. The other Is when the 

integrand is singular. Then the kernels vary so rapidly that standard Gaussian 

quadrature cannot provide a suitable accurate approximation. When the source 

and observation triangles are closely coupled, a high number of sampling points 

are required in the Gaussian quadrature scheme.

The objective is to implement a different nth order Gaussian integration scheme 

as a function of the distance between the source and observation triangle. This is 

illustrated in Figure 3.3. A higher-order m-point Gaussian scheme is implemented 

for observation triangles that are within a distance Ri from the source triangle. 

For observation triangles located between Ri and R2 from the source triangle, a 

lower order n2-point scheme is implemented. For distance larger than R2, an n3- 

point scheme is used and this is a 1-point Gaussian scheme.
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n3-point Gaussian 
region

Source triangle

n,-point Gaussian 
region

re-point Gaussian 
region

Figure 3.3 Implementation of an n-point Gaussian integration scheme as a

function of distance between the source and observation triangles

The quadrature schemes used were taken from [127] and consisted of a one- 

point scheme, a four-point scheme, a seven-point scheme a thirteen-point 

scheme.

3.3 .2 .2  Optimisation of number of Gaussian Points

A nearness factor (NF) was introduced as a normalised parameter to specify the 

separation between source and observation triangles. The nearness factor is 

defined as

NF = —522- (3.40)
R
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where is the largest dimension of the source triangle and is the

least distance from the source triangle vertices to the centroid of the 

observation triangle.

in (3.40) refers to or R2 in Figure 3.3. Thus a higher n-point Gaussian 

scheme is associated with low values of R^ n .

Large values of NF imply that the source and observation triangles are very 

close, hence more accuracy is needed in computing the corresponding surface 

integrals. In that case, a higher order Gaussian method is needed. This implies 

that a large number of points equal to the order of the Gaussian integration 

method is needed within the observation triangle. This translates to more 

computation time for the evaluation of the surface integrals.

Small values of NF indicate that the source and observation triangles are far 

apart. Fewer points are needed for the observation triangle and a 1-point 

Gaussian integration point may be sufficient to achieve good integration 

accuracy if the separation distance is large enough.

A numerical experiment was performed by evaluating the impedance element for 

a particular source-observation triangle as a function of the nearness factor NF. 

The impedance elements were calculated using 1-point, 4-point, 7-point and 13- 

point Gaussian schemes and the results are plotted in Figure 3.5, Figure 3.7, 

Figure 3.9, Figure 11 and Figure 3.12. These were done for different triangle 

shapes.
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A,A’ EX 7 cm D.D

b,b; c , c14 cm

Figure 3.4 Triangles used to generate graph in Figure 3.5

Figure 3.4 shows two metallic plates, ABCD and ABCD', each meshed into three 

triangles with the dimensions shown. The vertical distance between the plates is 

varied, with plate ABCD fixed, and each time the impedance element for 

particular source/observation triangles is calculated using 1-point, 4-point, 7- 

point and 13-point Gaussian quadrature. Triangles BCE and BCE were used as 

the source and observation triangles respectively. All the dimensions shown in 

Figure 3.4 are in centimetres and the frequency was 300 MHz. The values for 

the impedance elements were plotted as a function of the nearness factor as 

shown in Figure 3.5.
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 7-point Gaussian
  13-point Gaussian
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Magnitude of impedance element (ohms)

Figure 3.5 Case 1 - Variation of impedance element with nearness factor for
Figure 3.4

The same procedure was repeated for three cases and the triangle shapes 

varied. These are shown in Figure 3.6 - Figure 3.12.

(-7,-7)

observation triangle

(2,10)

(5,-10)

\ (7,7)

Source triangle

Figure 3.6 Mesh used to generate Figure 3.7
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Figure 3.7 Case 2 Variation of impedance element with nearness factor for Figure
3.6

(-1,-11 (-i,i)

Observation triangle

(1,1)(1,-1)
Source triangle

Figure 3.8 Mesh used to generate Figure 3.9
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Figure 3.9 Case 3: Variation of impedance element with nearness factor for
Figure 3.8
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\  C,C

Observation triangleSource triangle
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Figure 3.10 Mesh used to generate Figure 3.11
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Figure 3.11 Case 4: Variation of impedance element with nearness factor for 
Figure 3.10
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Figure 3.12 Relative error in evaluating the impedance elements for the

1-point, 4-point and 7-point Gaussian versus the nearness 
factor.

As Figure 3.5, Figure 3.7, Figure 3.9, Figure 3.11 and Figure 3.12 demonstrate, a 

distinct improvement in the impedance element calculations was observed by 

increasing the number of quadrature points from 1 to 13 for closely coupled face 

triangles. However, no appreciable improvements were observed by increasing 

the number of quadrature points from 7 to 13. Although it appears that the 

graphs for the 4-point and 7-point Gaussian appear to  coincide, the actual 

figures for the impedance matrix terms stabilised from 7-point and higher points. 

It was on this basis that the 7-point Gaussian was chosen in preference to the 4- 

point Gaussian integration. There is a marked difference between the one-point 

and the higher order Gaussian schemes when the source and observation 

triangles are in close proximity. This proves that the higher order Gaussian 

schemes calculate the impedance matrix elements more accurately than the one-
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point scheme. It is aiso observed that for iarge distances between the source 

and observation triangles, the one-point scheme is just as accurate as any higher 

order scheme. This happens when the nearness factor is about 20 or less. This 

figure was based on the calculated impedance matrix terms used to  plot the 

graphs above, in this section. This is also the point at which all the 1-point, 4- 

point, 7-point and 13-point graphs converge. Hence beyond a certain separation 

distance between the source and observation triangles, a one-point Gaussian 

scheme is sufficient. This translates to very fast computation times for the 

evaluation of the impedance elements.

The 4-point is seen to be less accurate than the 7-point or the 13-point schemes, 

particularly for closely coupled triangles. However, for large edge lengths as 

shown in Figure 3.10, it appears that the 4-point is almost as good as the 7-point 

or 13-point schemes. Of particular interest is the little difference between the 7- 

point and the 13-point schemes. The 7-point Gaussian scheme is seen to 

perform as well as the 13-point scheme.

Figure 3.12 shows the relative error between the 1-point, 4-point, 7-point and 

the 13-point Gaussian calculated impedance values for the data taken from 

Figure 11. The impedance element values calculated using the 13-point Gaussian 

integration scheme was taken as the reference values. As Figure 3.12 illustrates, 

the relative error for the 1-point exceeds 10 per cent for nearness factors greater 

than about 200 whereas or both the 4-point and the 7-point Gaussian schemes 

the relative error is less than 1 per cent. However, for nearness factors less than 

about 200, the differences between relative errors are almost indistinguishable. 

Hence it has been assumed that, for values of nearness factors less than about 

20, the 1-point Gaussian is just as accurate as the 7-point or 13-point Gaussian 

scheme.
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As evident in the Figure 3.5 - Figure 3.11, the spatial resolution of the triangle 

meshes appear not to have had a significant effect on the trend between the 

nearness factor and the calculated impedance elements.

The seven-point Gaussian quadrature scheme was adopted based on the above 

results for closely coupled triangles, i.e. for a nearness factor greater than 190. 

This ensures that th e re  is an accurate evaluation of matrix elements for nearby 

regions of the scatterer. For greater distances corresponding to a nearness 

factor of 20 and below, a 1-point Gaussian quadrature rule was implemented.

3.3.2.2 Singularity Extraction

The self-term elements describe the self-interaction, i.e. the scattered field on a

triangular patch due to the current on that patch. In this case, T* = T* , hence

the source and observation points coincide resulting in singularity of the integrals 

in (3.16) and (3.37). The singular integrand involves a highly varying function so 

that the Gaussian quadrature will not provide a sufficient accuracy. The accurate 

computation of the self-terms is important as they dominate the impedance 

matrix.

The singularity in (3.16) and (3.37) is of the order 1/R ,  where the distance R

was defined in equation (2.50). The second integral can be evaluated as the 

complete elliptic integral of the first kind [130).

From equations (3.16) and (3.37), it can be observed that the integrals in (3.16) 

and (3.37) have the form
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'  = JJJI
,-jkR

T T R
■dS dS (3.41)

Equation (3.41) possesses integrable singularity problems when the Green's 

function becomes singular, i.e. when the distance R between the source and 

observation point approaches zero. In this case, an analytical integration of the 

singular term is necessary, since a Gaussian numerical integration is no longer 

adequate.

Adding and subtracting a term that has a \ /R singularity when R approaches zero 

[129] in the integrand of equation (3.41) gives

- jk R

' = t i l l  - j r *  *  = fJ IP
Tm Tn Tm ^  Tn

- jk R — 1
R

dS'
- jk R

R
dS' dS

(3.42)

The first integral on the right-hand side of (3.42) is well-behaved throughout the 

source/observation triangle. The integral is bound and hence can easily be 

evaluated numerically with the techniques in [6,126,131]. The second integral on 

the right-hand side of (3.42) can be evaluated analytically in closed form with 

the help of formulas developed in [50] and [129].
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3.4 Matrix Equation Solver

The general MoM matrix equation for the EFIE was solved using the direct 

solution method with Gaussian elimination or LUD decomposition using the 

Swansea's 3D-MoM code. With this technique, the computation time is

proportional to N 3, where N  is the total number of unknowns in the impedance 

matrix.

There are two primary time properties of the program. The first one comprises 

the Green's function evaluation time and the matrix fill time. This is the primary 

contributor to the total solution time for electrically large complex objects for the 

4-SI method. However, as the number of unknowns increases, the solve time 

becomes the primary contributor to the total time in the case of the 2-SI 

method.

3.5 Numerical Results and Discussions

3.5.1 Introduction

This section presents some numerical results computed by the Swansea's MoM 

3D code based on the 2-SI and 4-SI schemes. The numerical results are also 

meant to provide a general idea of the accuracy, savings in computer storage 

and computation time obtained by using the 4-SI scheme compared to the 2-SI 

scheme in solving electromagnetic scattering problems for electrically large 

objects.
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This section presents the results that were obtained using an implementation 

procedure described in this Chapter for electrically large perfectly conducting 

bodies. All the results presented in this section and in Chapters 4 and 5 were 

generated on a Pentium III 500MHz personal computer with 256 MB of RAM.

The radar cross section (RCS) is adopted as the main criterion for assessing the 

accuracy and efficiency of the 4-SI scheme and for comparing the 4-SI results 

with 2-SI and published results. For some problems where published results are 

not available, the computation is done with the 2-SI scheme using a fine mesh 

and then that solution is used a reference for validating the 4-SI result. 

Alternatively, in some cases, the 2-SI scheme is run several times with 

increasingly finer meshes and the results compared against those of the 4-SI 

scheme. Validation is assumed if the 4-SI results progressively converge towards 

the 2-SI solution based on a very fine mesh structure.

3.5.2 Scattering from a Sphere

The scattering from a perfectly conducting sphere is used as the starting point 

for the evaluation of the 4-SI numerical scheme. This is a convenient example 

because it has an analytical solution and provides the code with a calculation 

that is not trivial. Figure 3.13 shows a triangulated patch model of a sphere. The 

electrical size of the sphere is given by ka = 8.3, where a is the radius of the 

sphere. The triangle corners are on the sphere so that the effective radius of the 

sphere is less than a. The sphere is excited by an axial incident plane wave, i.e. 

0' = 0°. The surface of sphere is initially defined by 5000 triangular patches, 

corresponding to 7500 unknowns (the maximum number allowable for the 2-SI 

formulation by the available computing resources), a maximum triangular edge 

length of 0.15^oand the bistatic radar cross-section calculated using the 2-SI

formulation.
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Figure 3.13 Numerical model of a sphere, subdivided into triangular meshes with

ka = 8.3

The bistatic radar cross-section was also calculated using the 2-SI and 4-SI 

formulations with the sphere's surface meshed with 1692 triangles. The same 

calculations were repeated with the 4-SI formulation when the sphere was 

meshed with 1380 triangular patches, corresponding to a maximum edge length 

of 0.36Ao- Figure 3.14 and Figure 3.15 and Table 3.1 show the results for the

bistatic radar cross-section in the plane of the incident electric field. Figure 3.15 

shows the same results as Figure 3.14 but only for 90° <6> <180°, to highlight 

the differences between the 2-SI, 4-SI and the Mie series solution. The radar 

cross-section is normalised with na2, where a is the radius of the sphere. The 

agreement in Figure 3.14 between the results based on the 4-SI formulation
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(graph 4-SI(b) ), even with a maximum triangular edge length of 0 .3 6 4 , and

those of the Mie series solution is very good. The results for 4-SI(a) and 4-SI(b) 

with the maximum triangular edges of 0 .364  and 0 .2 5 4 , are almost

indistinguishable. Figure 3.15 shows that the agreement between the 4-SI(b) 

results and the Mie series solution is better than that between the 2-SI(b) results 

and the  Mie series solution results. The maximum triangular edge in both the 2- 

SI and 4-SI scheme is 0 .254  ■ As Figure 3.14 shows, the 2-SI formulation

compares very well with both the 4-SI results and the Mie series solution when 

the maximum edge length of the triangular patches is 0 .154 - This example

shows that the 4-SI formulation converges to the analytic reference Mie series 

solution with a remarkably coarse grid when compared the 2-SI formulation.

L Mie Series
— 2-SI(a)
—  4-SI(a)

 4-SI(b)

oo■O'— •

-10

-20
0 20 40 60 80 100 120 140 160 180

0j (degrees)

Figure 3.14 Bistatic RCS of a perfectly conducting sphere, ka = %.3.
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Figure 3.15 Bistatic RCS of the perfectly conducting sphere for

90° < 0t < 180°.

Memory and CPU-time requirements for the 2-SI and 4-SI schemes are given in 

Table 3.1. It is observed that the 4-SI reduces memory requirements by almost a 

factor of 7 and computation time saving is reduced by nearly a factor of six when 

compared to the 2-SI formulation. In the 2-SI scheme only just over half the 

matrix elements are stored and whereas in the case of the 4-SI scheme, all the 

matrix elements are stored. For the purposes of calculating the memory storage 

requirements, it is assumed that each impedance element is 8 bytes in size.
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Table 3 .1 - Computation and memory requirements for a ka = 8.3 perfectly 

conducting sphere.

Scheme
Number

of
patches

Number 
of Edges

Maximum
edge

length
0 0

Matrix
fill

time
(sec)

Solve
time
(sec)

Total 
computation 

time (sec)

Memory
required

(MB)

2-SI(a) 5000 7500 0.15 1493.2 9255.6 10748.9 216
2-SI(b) 1692 2538 0.25 1040.7 244.6 1285.3 24.6
4-SI(a) 1380 2070 0.36 1605.7 266.6 1872.3 33
4-SI(b) 1692 2538 0.25 2280.1 492.9 2773.0 49.1

Table 3.1 shows the 2-SI scheme needs more than three times the number of 

unknowns to achieve the same accuracy as the 4-SI scheme. This result in the 4- 

SI's computation time being nearly six times faster than the 2-SI formulation. 

There is also memory saving of about 84 per cent.

For this particular problem, it is seen that the agreement between the 4-SI and 

the Mie series solution is good. This shows that the 4-SI solutions are 

numerically accurate despite the coarseness of the mesh. The differences 

between the graphs is explained by the fact the analytic Mie series uses the 

actual radius of the spheres whereas for the 2-SI or the 4-SI schemes, the 

meshing introduces an effective radius of the modelled sphere which is less than 

the actual radius of the sphere. The 2-SI achieves the same accuracy but the at 

expense of more unknowns and computation time than the 4-SI method.

The numerical modelling of the sphere using a maximum edge length of 0.36X0

is a "crude approximation" by the usual standards and yet the 4-SI RCS 

prediction is very good. However, the problem with using a coarse mesh is that 

the curvature of the sphere is not modelled very well. To minimise this error, a
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radius correction factor would have to be used. This results in a slightly larger 

radius used in the modelling than the actual radius such that the area of the 

meshed surface area is equal to the surface area of the sphere.

3.5.3 Scattering from a metallic disc at oblique incidence

This example shows the scattering by a thin perfectly conducting disc of radius 

AX0, where A0 is the free space wavelength. In this case a 2-SI calculated

bistatic radar cross-section result based on relatively fine mesh used as a 

reference solution. The 4-SI results obtained using a coarser mesh are validated 

against this 2-SI result, obtained using 7390 unknowns.

Figure 3.16 Scattering by a thin metallic disc for wave incidence

at an angle

The wave is incident on the disc at & = 60° with the E-field parallel to the 

surface of the disc. At this angle of incidence, more surface waves are generated 

than at normal incidence. The graph denoted by 2-SI(a) in Figure 3.17 and 

Figure 3.18 and denotes the bistatic scattering for the 2-SI method when the
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disc is coarsely meshed such that the maximum triangular patch edge is 0.38/lo.

The corresponding graph for the 4-SI scheme is denoted by 4-SI(a). When the 

mesh is increased to 7390 edges, nearly the maximum possible allowed by the 

computer memory, the 2-SI scheme result given by 2-SI(b) converges towards 

the 4-SI generated results using 4863 unknowns. The two results are in good 

agreement. The maximum edge length for the 4-SI mesh is 0 .264  whereas it is

0 .1 4 4  for the 2-SI mesh. It is observed that for a mesh with a maximum edge 

length of 0 .3 8 4  corresponding to 2364 unknowns, the 2-SI result shown by 2- 

SI(b) deviates significantly from the reference solution of 2-SI(a), particulary for 

values of & approaching grazing angles. However, for the same mesh, the 4-SI 

results shown by 4-SI(a) show a better comparison with the reference solution 

although it also shows deviations for values of 0' approaching grazing angles as 

well. The graphs for both cases can be seen converging towards the reference 

solution, thus indicating convergence. The maximum number of unknowns for 

the 4-SI formulation was limited to 5000 by the computing resources.

Table 3.2 summarises the computation times of the two schemes. For the data 

shown, the 4-SI is six times faster and uses a far less number of unknowns than 

the 2-SI scheme. From Figure 3.17 it can also be observed that the 2-SI scheme 

requires more meshing to converge to the 4-SI graph. This problem 

demonstrates that the 4-SI formulation is more capable in coping with the effects 

of surface waves on a flat disc than the 2-SI formulation.
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 2-SI (a)
— 4-SI(a) 

2-SI(b) 
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theta

Figure 3.17 The bistatic scattering for a metailic disc of radius 4X in the plane 
$ = 0°for an incident angle 0i = 60°with a -  0°
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Figure 3.18 The RCS in Figure 5.17 shown for 0° < 0 < 180° to highlight 

the differences between the graphs.

The 2-SI suffers from the limitation that the maximum length for a triangle 

patch's edge length should not exceed 0.l5Ao/ where X0 is the free space

wavelength if accurate results are to be obtained. This limitation inhibits the use 

of the 2-SI method for analysing electromagnetic scattering by electrically large 

objects due to large computer secondary memory requirements and long run 

times.
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Table 3.2 -  Performance indicators for the 2-SI and 4-SI schemes for the 

scattering from a disc.

Scheme
Number

of
triangular
patches

Number
of

unknowns

Maximum
edge
length

Matrix
fill

time
(sec)

Solve
time
(sec)

Total 
computation 

time (sec)

Memory
(MB)

2-SI(a) 1602 2364 0.38 156.9 197.3 354.3 9.78
2-Sf(b)
(with symmetry)

4995 7390 0.142 2395.7 9881.3 12277.1 95.175

2-SI(c) 3282 4863 0.257 596.0 1721.0 2317.0 41.05
4-SIfa) 1602 2364 0.38 1708.5 407.7 2116.2 19.58
4-SI(b) 3282 4863 0.257 9700.0 5086.0 14786.0 82.1

3.5.4 Scattering from a metallic plate at nearly grazing incidence

The next example demonstrates the 4-SI scheme can handle scattering from a 

metallic plate with fewer numbers of unknowns than the 2-SI method. This is a 

more challenging problem than the scattering by a conducting sphere. The 

horizontally polarised plane wave impinges at the metallic plate at almost grazing

angle (0* = 70°), causing the excitation of very strong waves along the edges of 

the metallic plate. These waves contribute to the scattering process and need to 

be resolved to accurately predict the far field scattering.

The dimensions of the square plate are x 4A0. The bistatic RCS is calculated 

with the incident plane wave at a nearly grazing angle of incidence =10°). 

The results are shown in Figure 3.19. Figure 3.20 and Figure 3.21 show the RCS 

results for the bistatic angles of 0° < Bi < 45° and 45° < 0t < 90° to clearly show 

the differences between the results for the 2-SI and 4-SI formulations when
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compared with reference solution [132]. The maximum length of the triangular 

edges is varied from 0.3^oto 0.1 \XQ and the 2-SI and 4-SI results are compared

with the results obtained by Poirier et aL [132] using the method of moments. 

The 2-SI method gives good agreement only when the maximum edge length is 

0.\5Ao and less as shown by the plots labelled 2-SI(b) and 2-SI(c). For meshes

with maximum edge lengths of 0.25/loand 0.3Aof the results of which are shown 

by plots 2-SI(a) and 2-SI(d) respectively, it is observed that the results are not in 

agreem ent with the reference solution for the region 6t < 70°. The

corresponding results for the 4-SI formulation shown by plots 4-SI(a) and 4-SI(c) 

show good agreem ent with the reference solution for the whole observation 

region, i.e. 0 < 0t < 90°. The 4-SI method gives very good agreement with the 

reference solution even with a mesh having a maximum edge length of 0.34,.

Ref [132]
2-SI(a)
4-SI(a)
2-SI(b)
2-SI(c)
4-SI(b)
2-SI(d)
4-SI(c)

bistatic angle, 6, (degrees)

Figure 3.19 Bistatic scattering diagram for the 4 x 4 XQ plate
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Figure 3.20 Bistatic scattering diagram for the 4Xa x4X„ plate 

for 0° <&,< 45°.
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Figure 3.21 Bistatic scattering diagram for the 4A0 x 4 \  plate

for 45° < 0i < 90°.
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This problem dem onstrates the advantage of the 4-SI method over the 2-SI 

method in handling electromagnetic scattering at nearly grazing angles of 

incidence.

Table 3.3 shows the performance indicators for the 2-SI and 4-SI formulations 

for the electromagnetic scattering by the 4X0 x4X0 square plate.

Table 3 .3 - Performance indicators for the 2-SI and 4-SI schemes for the 

4Aa x 4X0 metallic plate.

Scheme
Number of 
triangular 
patches

Number 
of Edges

Maximum
edge
length
M

Matrix fill 
time 
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI(a) 1058 1541 0.25 473.1 54.2 527.3 9.1
2-SI(b) 5000 7400 0.11 1481.4 9898.2 11379.6 210.0
2-SI(c) 2888 4256 0.15 474.0 1133 1607 69.1
2-SKd) 722 1045 0.3 230.0 17.0 247.0 4.2
4-SI(a) 1058 1541 0.25 845.5 110.0 955.5 18.11
4-SI(b) 2888 4256 0.15 7013.0 3623.0 10636.0 138.0
4-SKO 722 1045 0.3 459.0 34.0 493.0 8.3

The 4-SI method shows computational gains in both computation time and 

memory requirements as shown in Table 3.3. Results for plot 2-SI(b), which 

gives an excellent comparison with the reference solution, are compared with the 

results for 4-SI(a), which also agrees well with the reference solution. From 

Table 3.3, it is noted that the 4-SI is nearly 12 times as fast as the 2-SI 

formulation and saves on memory requirements by a factor of eleven.

3.5.5 Scattering from a metallic rectangular Trihedral

In this section, the backscattered fields from a rectangular trihedral are 

computed using the 2-SI and 4-SI formulations and the results compared with
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the results by Al-hekail and Burnside [133]. Al-Hekail and Burnside used a 

hybrid method based on the Uniform Theory of Diffraction (UTD) to compute the 

backscattered fields from the trihedral structure and the results compared very 

well those they obtained using the method of moment. The reference results 

from [133] are those based on the method of moments. The number of 

unknowns used is not mentioned. The trihedral corner reflector is an interesting 

target in that the RCS of several objects such as trucks, tanks or other vehicles 

have significant trihedral corner reflector scattering effects. Metal trihedrals are 

also commonly used as radar chaff constituents by the military.

u

4X

Figure 3.22 Rectangular Trihedral

Figure 3.22 shows a rectangular trihedral consisting of three identical plates with 

each side of length 4 lo. The frequency is 1.2 GFiz. This structure is particularly

interesting in that it is not only electrically large but there exist strong 

interactions between the different parts of the structure.

The electromagnetic scattering by rectangular trihedrals has been have 

investigated by other authors. Taflove and Umashankar [134] used the finite- 

difference time-domain method to analyse the scattering from an electrically
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large metallic trihedral. Baldauf et a/. [135] used the shooting and bouncing ray 

method (SBR) method and the geometrical optics theory to compute the 

backscattered far fields from a rectangular trihedral.

Figure 3.23 shows the backscattered fields taken in 0 = 54.7° plane for an 

incident plane wave in the 0 = 90°plane and polarized in the ^ -d irection . Figure 

3.24 shows the results but only for 0 ° < ^ < 1 8 0 ° , so as to clearly show the 

differences between the results for the 2-SI and 4-SI formulations.

<f)(degrees)

Figure 3.23 Monostatic RCS from the rectangular trihedral at 1.2 GHz in the
plane 0  = 54.7°
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Figure 3.24 Monostatic RCS from the rectangular trihedral 

at 1.2 GHz in the plane 0  = 54.7° for 0° < ^  < 180°

Figure 3.23 and Figure 3.24 show the backscattered fields from the trihedral at

1.2 GHz in the plane 0 -  54.7°. The electric field is polarised in the phi direction.

The graphs show good agreement between the reference solution [133] and the 

4-SI when the maximum mesh edges are 0.24A*, and 0.28Ao as shown by the 

plots 4-SI(a) and 4-SI(b) respectively. For the same meshing, the 2-SI method 

shows large deviations from the reference solution when the maximum edge 

length is 0.28>-o as expected but shows some improvement when the maximum 

mesh edge is 0.24Xo. Still, its accuracy is not as good as either plot 4-SI(a) or 

4-SI(b). This demonstrates the capability of the 4-SI method to model scattering
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of electromagnetic fields from electrically large bodies with a far fewer number of 

unknowns than the 2-SI method. As for the 2-SI, a very fine mesh with a very 

large number of unknowns would be needed to match the 2-SI accuracy to that 

of the 4-SI and the reference solution. The 4692 unknowns used to generate 

plots 2-SI(a) and 4-SI(a) were the maximum possible due to the limitation on 

memory by the available computing resources. The 2-SI formulation is known to 

produce very good results if the maximum mesh edge lengths are of the order of 

one-tenth of a wavelength. The number of unknowns and the total computation 

times and memory requirements are summarised in Table 3.4.

Table 3 .4 - Performance indicators for the 2-SI and 4-SI formulations for the 

rectangular trihedral with each edge of length 4A0.

Scheme
Number of 
triangular 
patches

Number 
of Edges

Maximum
edge
length

( X )

Matrix fill 
time 
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI(a) 3174 4692 0.24 580.0 2353.2 2933.2 84.0
2-SI(b) 2400 3540 0.28 230.9 1915 2145.9 47.8
4-SI(a) 3174 4692 0.24 9937.0 6467.7 16404.7 168.0
4-SI(b) 2400 3540 0.28 5004.8 4410.2 9415.0 95.6

3.5.6 Scattering from a cavity

This example shows the scattering by a 2.5 A,0 x2.5A0 x3.75^0open cavity. See

Figure 3.25. The opening is in the direction of 0 -  0° and is closed at the bottom. 

The monostatic RCS patterns for the 00 - and <(><(>- polarisation are computed 

using 2-SI and 4-SI formulations using triangular patches with maximum edge 

lengths of 0.37A0 and 0.24Ao. An additional 4-SI result, i.e. plot 4-SI(c), see

Table 3.5, was later obtained using a different computer from the one used to
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compute the rest of the results. The results are shown In Figure 3.26 - Figure 

3.29 and are compared with the results by Donepudi etal. [136].

Figure 3.25 Diagram of the 2 .5 \  x2.5Z0 x3.75/to cavity

30 -

20 -

.--
CO
T3

10 -in
g   2-SI(a)

 4-SI(a)
♦ 2-SI b

 4-SI{b)
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-20
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Incident angle 0, (degrees)

Figure 3.26 Monostatic RCS of an 2.5X x 2.5X x 3.75/3, open cavity for 

OO polarisation.
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Figure 3.27 Monostatic RCS of an 2.5/1 x 2.5X x3.75A open cavity for 

00 polarisation for 0° < Of < 90°.
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Figure 3.28 Monostatic RCS of an 2.5/1 x 2.5A x 3.75/1 open cavity for 

(jxj) polarisation.

Ling etal. [137] obtained the RCS of an electrically large open-ended rectangular 

cavity using the waveguide modal approach and the shooting-and-bouncing ray 

(SBR) method. The comparison between the two approaches was very good. 

Rius et af. [138] presented a spectral iterative algorithm for RCS computation in 

electrically large open-ended conducting cavities. Good agreement with method 

of moments and hybrid modal solutions and with experimental data was 

obtained.
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Figure 3.29 Monostatic RCS of an 2.5A x 2.5/1 x 3.75A open cavity for 

</h/> polarisation for 0° < 0, < 90°.

Donepudi et a/. [136] used a higher order multilevel fast multipole algorithm 

(MLFMA) for solving integral equations of electromagnetic wave scattering by the 

open-ended conducting cavity. Their scheme leads to a significant reduction in 

the mesh density, thus the number of unknowns, without compromising the 

accuracy of geometry modelling. The thrust of this method is similar to the 

them e of this work, which seeks to reduce the number of unknowns when 

modelling electrically large bodies without compromising the accuracy of the 

method.
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As can be seen in Figure 3.26 and Figure 3.27 showing the monostatic RCS for 

the ee-polarisation, the RCS levels predicted by the 4-SI formulation are in better 

agreement with the RCS levels predicted by the reference result in [136] than 

corresponding resuits obtained using the 2-SI formuiation. The 4-SI(b) plot is 

almost indistinguishable from the 4-SI(c) result (obtained using a finer mesh as 

shown inTable 3.5) and the reference results, apart from the null around Q - l \ °  

where it underpredicts the level of the reference result by about 12 dB. Plot 4- 

51(b), obtained a mesh possessing a maximum edge length of 0 .2 4 4 ,

corresponding to 4768 unknowns, is in excellent agreem ent with the reference 

solution, unlike corresponding result of plot 2-SI(b).

Figure 3.28 and Figure 3.29 show the computed 2-SI and 4-SI monostatic results 

for the <j)(j) polarisation. Figure 3.29 shows the same results as shown by Figure

3.28, but only for 0° < 0 < 90° to highlight the differences between the results. 

The results were obtained using the same meshes as those used to obtain the 

monostatic RCS ee-polarisation results as shown in Table 3.5. As can be seen in 

Figure 3.28 and Figure 3.29, the 4-SI results, i.e. plots 4-SI(a) and 4-SI(b) 

produce better comparisons with the reference solution than does the results for 

the 2-SI formulation, i.e. plots 2-SI(a) and 2-SI(b). The agreement between the 

4-SI result, 4-SI(b) and the reference solution is very good. The same can be not 

said for the corresponding result for the 2-SI formulation, i.e. plot 2-SI(b).

To produce the same level of accuracy as that given by the plot 4-SI(b), the 2-SI 

formulation would need the cavity mesh to have maximum edge length of the 

order of 0 .U o. This would require about 24000 unknowns. The 4-SI formulation

requires only 4768 unknowns. The 4-SI formulation's savings in computation 

time and computer storage are huge.

Table 3.5 summarises the computational requirement for the 2-SI and the 4-SI 

schemes.
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Table 3 .5 - Computation and memory requirements for an open cavity

with dimensions 2.5/t0 x2.5A0 x3.75A0.

Scheme
Number of 
triangular 
patches

Number 
of Edges

Maximum
edge
length

(*)

Matrix fill 
time 
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI(a) 1320 1960 0.37 121.6 186.8 308.4 14.6
2-SKb) 3200 4768 0.24 605.5 2020.2 2625.7 87.4
4-SI(a) 1320 1960 0.37 1456.3 299.7 1756.0 29.5
4-SI(b) 3200 4768 0.24 9942.7 4135.8 15078.5 173.4
4-SI(cf ... 6400 9520 0.18 6654.2 5709.9 11364.1 691.5
4-SI(c) - problem run on a faster computer

3.6 Conclusion

A formulation based on the EFIE using the MoM and the RWG basis functions has 

been presented. The technique presented evaluates the impedance matrix more 

accurately than the 2-SI method. The scheme has been applied to  the 

electromagnetic scattering problems by electrically large objects. The results 

have shown that the 4-SI is an efficient scheme to analyse the RCS of electrically 

large objects with a high level of accuracy. In the results that were presented, a 

coarse mesh with a maximum edge length of about0.38/1 has been used and the 

comparisons between the 4-SI and published materials or between the 4-SI and 

the 2-SI scheme with a fine level of discretisation have been good. The examples 

that were given in this Chapter demonstrate that the 4-SI method can be applied 

to objects of a variety of sizes and shapes.

In the formulation presented in this chapter, two surface integrals appearing in 

the tested EFIE are evaluated with a higher order Gaussian quadrature scheme 

for closely coupled objects, which is a very time consuming process. The
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impedance elements due to the coupling between closely spaced triangular 

patches dominate the second level in terms of magnitude of the impedance 

matrix after the diagonal elements. Hence an accurate evaluation of these terms 

also determines the  overalf accuracy of the final solution, i.e. the surface 

currents. The overall accuracy and the numerical efficiency of the 4-SI scheme 

depends largely on the speed and accurate evaluation of the integrals in the 

tested EFIE. This requires the evaluation of two surface integrals over both the 

observation and source triangles. For electrically large objects, this involves 

many pairs of triangles and thus many unknowns. It then becomes critical that a 

good compromise be struck between accuracy, the evaluation of the double 

surface integrals and the total computation time.

For nearby terms a 7-point Gaussian integration is used. For loosely coupled 

triangles, a one-point Gaussian quadrature scheme is used without compromising 

the accuracy of the evaluation of the surface integrals. This also helps to speed 

up the computation process.

The scheme has been shown to possess advantages over the 2-SI scheme when 

analysing electrically large conducting objects. It uses fewer unknowns than the 

2-SI method to analyse a particular electrically large problem. That in turn 

translates to less computer storage space and total computation time. Thus the 

4-SI scheme can be applied to the electromagnetic scattering from electrically 

large objects, providing satisfactory results at less computation costs when 

compared with the usual 2-SI method.

This new approach not only results in improved accuracy in the computation of 

the impedance matrix elements, but in fewer triangular meshing patches for the 

same scatterer as a result of the improved averaging process of the tested EFIE. 

The latter result translates to  larger edge lengths of the triangular patches on 

the surface of the scatterer. However, it must be noted that this scheme
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possesses more complex integrals that inevitably require more computational 

time and storage space if not handled properly. Computational improvements 

over the RWG formulation exist only if the scheme is applied to electrically large 

scatterers where a very large number of triangle patches are needed to  define 

the geometry of the scatterer.
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4.1 INTRODUCTION

The previous chapter dealt with the electromagnetic scattering by perfect electric 

conductors using the 4-SI method. This chapter extends the applicability of the 

4-SI scheme to scattering by homogeneous dielectric objects.

A Galerkin formulation based on the Rao-Wilton-Glisson (RWG) basis functions 

[6] is used. The same RWG basis functions reviewed in chapter 2 are used in the 

formulation to be presented in this chapter. As in chapter 3, the technique to be 

employed is to  evaluate more accurately the double surface integrals appearing 

in the tested integral equation, particularly for the case of closely coupled 

triangular patches. The modified formulation for the electromagnetic scattering 

by dielectric conductors presented in this chapter builds up on the work of 

Umashankar et at. [53]. Umashankar et  al. [53] extended the work done by Rao 

et al [6] to calculate the scattered electromagnetic field from a three- 

dimensional lossy dielectric object of arbitrary shape illuminated by an incident 

plane wave. In their approach, the object was approximated by planar triangular 

patches and the  sam e basis functions developed by Rao et al [6] for conducting 

bodies were used. In their formulation, Umashankar et al [53] used a CFIE 

instead of the EFIE used by Rao eta l  [6] for scattering by conducting bodies.

The underlying theory for scattering of electromagnetic waves by dielectric 

objects was discussed in chapter 2. The surface integral equations are 

formulated in terms of equivalent electric and magnetic currents over the 

dielectric's surface. The RWG basis functions are both used for testing and 

current expansion. The application of the boundary conditions leads to a set of
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four integral equations that are linearly combined to yield the combined field 

integral equation (CFIE). As with the case of perfectly conducting objects 

discussed in chapter 3, the double surface integrals arising from the tested 

integral equation are evaluated more accurately using an n-point Gaussian 

quadrature scheme, particularly for closely coupled triangular patches. The use 

of higher order n-point Gaussian quadrature is relaxed when the triangular 

patches are loosely coupled. Instead, a 1-point Gaussian quadrature scheme, 

which is identical to the 2-SI scheme, is implemented. No accuracy is lost by 

performing this 1-point Gaussian integration because the Green's function is 

slowly varying for loosely coupled triangles. The accuracy of this new formulation 

is studied with respect to the computation of the RCS for dielectric objects of 

various shapes. The technique is then applied to the  study of radar cross- 

sections of electrically large dielectric objects. The accuracy and computation 

costs of the 4-SI method are then compared with those of the 2-SI method. 

Published data is also used to validate the accuracy of the 4-SI method.

Several papers have analysed the electromagnetic scattering by homogeneous 

dielectric objects and some of the methods used are the T-matrix [139,140] and 

unimoment [141], Fredholm integral equation approach [142] and the method of 

moments for the surface integral formulation [53,118,143-145],

Also the finite-difference method [146,147], the finite-element method (FEM) 

[148,149] and the volume integral equation (VIE) formulation [150,151] have 

been found to be very versatile in dealing with arbitrary shaped dielectric bodies. 

The FEM is an efficient method for modelling electromagnetic scattering from 

dielectric objects, either homogeneous or inhomogeneous objects. This is due to 

the fact that the resulting impedance matrix is sparse.

However, when analysing electrically large objects, the VIE technique has be 

accelerated by fast solvers since the number of unknowns increases very rapidly
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with the size of the dielectric objects. The most commonly used acceleration 

technique is the Conjugate Gradient Fast Fourier Transform (CGFFT) [152]. This 

has the effect of reducing both the computation time and computer storage.

However, these methods ail suffer the disadvantage that they yield very large 

matrices for three-dimensional problems. The surface integral equation 

formulation is often preferred for homogeneous dielectric objects because it 

limits the discretisation of the unknown quantity to the surface of the object. 

This results in a comparatively smaller matrix.

This chapter is divided into three sections. Section 4.1 is the introduction, section

4.2 discusses the theory of the 4-SI pertaining to dielectric objects and most of it 

has been discussed in Chapter 2. Section 4.3 presents the numerical results and 

comparison of the 4-SI results are made those of the 2-SI and those of published 

papers. Finally, section 4.4 presents the concluding remarks.

4 .2  4 - S I  FORMULATION FOR DIELECTRIC OBJECTS

4.2 .1  Introduction

The RWG formulation for dielectric bodies was reviewed in section 2.6. The 

derivation of the CFIE and its MoM solution for dielectric objects was discussed in 

the same section. It was pointed out that the integral terms of the tested CFIE 

containing the  scalar/vector potentials, curl of the vector potentials and the 

gradient of the scalar potentials over the observation triangles are evaluated by 

approximating them by their values at the centroids of the observation triangles. 

This simplifies the evaluation of the integrals greatly resulting in a fast and
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accurate algorithm. However, the requirement that the maximum edge length be 

of the order A /10 for the 2-SI formulation so as to prevent erroneous solutions 

leads to many unknowns when analysing electrically large dielectric objects. The 

formulation to be presented allows the edges of the triangular patches to exceed 

A /10 leading to fewer triangular patches to define the geometry. Fewer triangles 

translate to fewer unknowns for a given problem. This is achieved by evaluating 

the two surface integrals accurately, particularly for closely coupled pairs of 

source and observation triangles.

The starting point are the two equations (2.67) and (2.68) in chapter 2. These 

are repeated here for clarity:

on surface S (4 .1 )

+ <Vx F Fr l ! 2

& £2 X )

<H'”c, U  = 0 [ F 1 + F2] , f J  + < [W 1 + V ^ 2],fw>

on surface S (4.2)

-<V x •̂1 | 2̂ 
M i  L h \

X )

The testing of the magnetic vector potential A  and the gradient of the electric 

scalar potential o  has already been treated in detail in section 3.2. The testing of 

the electric vector potential F and the magnetic scalar potential ¥  is similar to 

the testing of the magnetic vector potential A and the electric scalar potential <D 

respectively. It is observed in equations (4.1) and (4.2) that the application of
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the method of moments with Galerkin method (the RWG basis functions are also 

used as testing functions) to solve the electromagnetic integral equations 

requires the calculation of double surface integrals. However, the review of the 

RWG formulation in chapter 2 has shown how the evaluation of the double 

surface integrals is avoided by approximating the integral over the observation 

triangle and evaluating only the surface integral over the source triangle.

Since the inner product is linear, the first term on the right hand side of (4.1) can 

be written as:

(jia [A , + A 2] ,fm> = A ,(r  ) ,f„(r)> + ja>(\2(r ), fm( r )> (4.3)

Using (3.2), the left hand side terms of equation (4.3) can be written as

L  l.
47r 2At 2A* f f  f t

^  ^  (K + T m)(T n++Tn- )
R

-dSdS (4.4)

where the terms in equation (4.4) have been defined in Chapter 2 , / = 1,2 and

denotes the region in which the source and the field position vectors r and r  are 

located. The primed and unprimed quantities refer to the source and 

observation terms respectively.

Similarly, using (4.4), the terms containing the tested terms for the electric 

vector potential in (4.2) can be written as
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1 L  I -jkfR
(jO) F. , f )  = ja>— -----\ J  m /  J  .  1 A ±  7 A *  -

i ^  ^  (T:+Tm)(T n++T„~)

Jj |J  p l ( r  y p : ( r ) — dSdS (4 .5 )

The evaluation of the integrals in (4.4) and (4.5) follows exactly the same steps 

presented in equations (3.16) -  (3.33) and inserting the relative permeability and 

permittivity of the respective media where appropriate.

The evaluation of the tested gradients of the electric scalar and magnetic scalar 

potentials follows directly from equation (3.37).

For the tested gradient of the electric scalar potential, the expression becomes:

LL
N„ 1 1-*

= ; r Br L- 2 > yIx ja e ,
J fG,(r',r)da'db'
0 0 for / = 1,2 (4.6)

where Ng is the number of Gaussian points for the outer integral, and Wj is the 

weight.

The expression for the tested gradient of the magnetic scalar potential is similar 

to (4.6) except for the floating constants:

_  MtUn
N a

2 n jc o ^

1 1 - i

} J G'ifj ,r )dadti
0 0

(4 .7 )
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Now consider the third term on the right hand side of equation (4.2) which 

contains the tested curl of the magnetic vector potential.

Now, using equation (2.59), the expression for the magnetic vector potential 

takes the form

± =  A _
4tt

(4.8)
(K+T;)

so that

v x A ,m„ =  j j  f .(r ')x V 'G i(r .,r ')c B (r ’)
71

(4.9)

_ «  L
An 2A"

| |  p , ( r ' ) x V ' G , ( r . , r ' ) # ' )

using the definition of the RWG basis function in (2.24) and V denotes the 

surface divergence with respect to the source (primed) coordinates, rm is the 

observation point vector.

Hence the tested form of (4.9) becomes
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<VxA,.,fm>

LI I I  r*t m n

4 *  2 4  2 4r JJ
(Tm+Tm)

JJ piq y.VG,(r,r)dS' ' P, dS

(4.10)

LI I I—  1 1  m n

4 k  2 4  2 4  (T* +T~ ) (T* +T~ )

|J  JJ (r° -  rif )*((r -  r(j) x V G , (r, r'))  dSdS

where use has been of the expressions for the position vectors in equations

(3.12) and (3.13).

Now, substituting the expression

V G, (r, r ) = (r° -  r )(1 +  jktR)
R:

(4.11)

in (4.10) and manipulating the cross-product term gives

1 1 1i ; * *  Jf B r - ’p { r * < w i - r > * ' - } i + A K h i r
^  (r:+Tm)(T:+T

(4.12)
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Rearranging the equation (4.12) to a form that can easily be numerically 

integrated leads to

< V x A „ 0  = ^ ^ r  | |  ( i^ - rv) { ( r 'x r <i)J + ( r ; - r* )x ( r ; j .+ r ; j* + r^ ]d S e

(4.13)

where

1 ]~h p-JkiR
J = 1 1  (1 +  jklR ) -—j-da'db' (4.14)

0 0

1 1 - b -jkiR
J„ =  |  |  a (l + jk lR ) - - ^ d a d b

0 0
(4.15)

I 1".6
J„ = |  |  6 (1+ jk:R) - —̂ d a d b  (4.16)

and

R'

L l~i e~Jk<R
J . =  |  |  c ( \  + jkiR)— — dadb  (4.17)

0 0 R

After several manipulations the following expressions are obtained for the dot 

and vector product term s for the position vectors in equation (4.13):

( r ° - r if H r "  x r^ )  = [ a 0( if  x r (r> r (i +ba(r° + c„(r° x r . J - r J  (4.18)
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( r , , - 0 x 1-;=  [0 , ( 1-; x r ; .r ,5 +  i f  xr,’. ^  ) +  &„(!•,' x r 2° .r l? +  r2° x r , ' .^ )  

+ c0{r[ x rf-r^ +  r° x r ,'*^ ) +  i f  x r,'*if]

(r,, - r ° ) x r ;  =  K ( r ;  x i f . i f  + i f  x if . i f ) +  b jr ,  x r2° .if  +  r ” x r f . i f ) 

+  (r, x r3° «r, + i f  x rj »r ) + r, x rf -r, ]

O’), - r °) xr; =  [a0(r, x r f - i f  +  rf x i f . i f ) +  6 , ( if  x i f - i f  +  rf x r f - i f ) 

+  c„(«f x r3° .r  +  rf x r ; . i f  ) +  i f  x r f .r  ]
P P

Using the equations from (4.18) to (4.21) in (4.13) gives

(4.19)

(4.20)

(4.21)

119



<VxA„fm>

Mi m̂J'n
An 2

N .

X wj a°j( ri° x \ T /,)J(a ° ,b ° ,c ° ,a n b,, c, )
j=1

./V„

+ Z WJb°i (r2 x r/, *r/f )J(^y > > <7 > > bi>c/ )
7=1

+ Z^jC°j(T3° x *i/?)J(«y, b ° , c° ,a ] ,&■,c-)
7=1

+ Z wya ; ( r2 x r i°#r/9 +  ri° x r 2*r/p) h ( a 0j>b% c0j ’a 'i>b 'i>c 'i) 
7=1

N‘ ,
+ z l wj bj ( r2 x r 2 'riq + r 2 x r 2 #r/p ) J a{a°j,b0j , c 0j ,ai ,bi ,ci ) + 

7=1

N* ,
+  Z w 7c 7 ( r2 x r 30#r/, + r 3 x r2 -r /p) J a ( ^ , ^ , C y , a ; , ^ , c ; )

7=i

+ ripxr2*ri'Ja(a0j 9bj,c°j,ai ,bi9ci) +

N*
+ Z W7a 7^r2 Xrl°#ri9 + Tl Xr2'rip )h (a°’b%c0j ’a'i’bn c'i)

7=1
N, t 

+  x r 2° T i? +  r£
7=1

N*
+  Z ^ ( r 2 X r3 - r /9 + l 3 x r 2*r /p ) h ( a p b % C ° ; A A > C ' i )  

7=1
< * « .

+ i f  ■x.r2'rt }h(a0j ,b 0j ,c 0j ,a j,bt,ci)

N*
+ X w; a / ( r3 x r i0, | i, + r ° x r 3*r/ ,) J c(a ;>6">cy>a />*i>c/) 

y=i
N s

+ x r2°*r/, +I2 x r 3*r/,) J c(«y>^>cy > « i^ i.ci)
;=i

+ ri„ x rf-r^ Jc (a",b° ,c",a,,6,',c')]
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The tested curl of the magnetic vector potential is now in a form that can be 

programmed.

In (4.22), the integrals J, Ja, Jb and J c over the source triangles T* are 

evaluated using Patterson's rule [124]. Each complete integration over T* is

performed for each observation point inside observation triangle T*. The

Gaussian quadrature scheme is then used to complete the integration over the 

observation triangle. This is represented by the summation signs in (4.22).

The expression for the tested curl of the electric vector potential is obtained in 

the same way used to come up with (4.22). The integrals for the tested curl of 

the vector potential are evaluated in exactly the same way as for the tested curl 

of the magnetic vector potential. The only difference is in the floating constants.

4 .2 .2  CFIE M atrix  E q u a tio n

To obtain the moment matrix the equivalent surface currents J  and M are 

expanded with the RWG basis functions, in, such that

J = 2 > A
n=l

(4.23)

(4.24)
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where Nd\s the number of edges on the triangular mesh approximating the 

geometry of the dielectric scatterer and the quantities an and J3n are the 

unknown expansion coefficients of the currents on the dielectric mesh edges.

Equations (4.23) and (4.24) are substituted into the tested equations (4.1) and 

(4.2) to yield 2Nd x2Nd simultaneous equations and a square impedance 

matrix Z. These equations can be written in matrix form as

r r z jj i  r z jMi i ' K r

r ZMj i  r z MMl|_*”m n j L'-m n J _ [ 3 n ] _ _ [H m ]
(4.25)

where the first superscript of the matrix element indicates the field current type, 

the second superscript denotes the source current type, m and n are give the 

edge number for the observation and source triangles respectively, i.e. 

w = l ,2 ,3 , ,Nd edges and n = 1 .2 ,3 , ,Nd edges. The right side column

vector contains tested excitation vectors, Vm for electric fields and Hm for

magnetic fields.

The Z matrix is shown in (4.25) partitioned into square matrices. The elements of 

the diagonal submatrix for the electric current are given by:
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ZJJ =1 Imn m n E O '® a ) a ^  + Y JU m ) K
/=l /=i

(4.26)

+ y | - — |{o: - a . ; }
a—* imc ' m” mn '/'=! V J  i J

The elements for the diagonal submatrix, [ Z j ^ ] ,  for the magnetic current are 

given by:

Z m n= / Imn m n 1 + ' £ U m ) K
/=! / '= !

+

(4.27)

The elements for the off-diagonal submatrix are given by

7 jm =^■mn — X -J  1mn '/»,
1=1 1=1

(4.28)

I f l l + I X
/=i «=i

(4.29)
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The elements for the excitation vectors are:

Vm =

U _

m~~2

The tested vector potential integrals take the form

1 1 1A, = ----
An 2

Jj JJ p B±(r>/7*(r)G ,.(r,r')dS'rfS

= F.d

The tested scalar potentials and scalar take the form

1 1 1O f ~ J J J j G , ( r , r ) ^ d S
‘"m Tn

= '¥[

and the tested curl of the vector potentials take the form

(4.30)

(4.31)

(4.32)

(4.33)
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p.- =
1 1 1

^  <r;+r-)

= Q t

JJ Pi, x V G ,(r ,r ' P, dS

(4.34)

Equations (4.32) and (4.33) are evaluated as shown in section 3.2.2. The 

evaluation of (4.34) is shown in (4.10) through (4.22). In all cases, the two 

surface integrals are evaluated accurately and are not approximated.

With the current expansion coefficients an and /^determ ined from (4.25), the

scattered fields and hence the RCS, can be calculated using the usual 

expressions [153]. The electric and magnetic currents on the surface of other 

regions are calculated using the relationships in (4.23) and (4.24).

4 .2 .3  Optimisation of  the  number of  Gaussian Points for the  1 \ R 3 
in teg ra l

A nearness factor (NF) was introduced in Chapter 3, Section 3.3.2.2, as a 

normalised param eter to specify the separation between source and observation 

triangles. It was observed that the larger the NF becomes, i.e. the closer the 

observation points get to  the source triangle, the more computational effort is 

required for the 1\R integral. However, as the NF gets smaller, i.e. as the 

observation points recede from the source triangle, less computational effort is 

required to compute the 1\R integrals. Numerical experiments were performed to 

determine the optimum number of Gaussian points needed for the observation 

triangles for the numerical integration process. Graphs of the variations of the 

matrix impedance elements, calculated using a 1-point, 4-point, 7-point and a
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13-point Gaussian quadrature scheme, with the NF were plotted and the point of 

intersection of the graphs for low NF values determined. This gave the values of 

the NF below which a 1- Gaussian quadrature scheme could be used in the 4-SI 

method without losing accuracy but saving computation time. This is necessary 

to strike a good compromise between accuracy and computation time for the 4- 

SI method. In this section, the same procedure is repeated for the 1\R3 
integrals. These integrals are encountered when dielectrics are present in the 

scattering problem. The value for the relative permittivity used in the numerical 

experiments was 4.

CASE 1

A ,A ’

C,C’7 cm

Figure 4.1 Triangles used to generate graph in Figure 4.2

Figure 4.1 shows two dielectric plates, ABCD and ABCD', each meshed into three 

triangles with the dimensions shown. The vertical distance between the plates is 

varied, with plate ABCD fixed, and each time the impedance element for 

particular source/observation triangles is calculated using 1-point, 4-point, 7-
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point and 13-point Gaussian quadrature. Triangles BCE and BCE were used as 

the source and observation triangles respectively. All the dimensions shown in 

Figure 4.1 are in centimetres and the frequency used was 300 MHz. The values 

for the impedance elements were plotted against the nearness factor as shown 

in Figure 4.2.

3000

• • • • 1-point Gaussian
 4-point Gaussian
 7-point Gaussian
  13-point Gaussian

2500 -

2000  -

XIa  1500 -

ii
u_Z

1000 -

500 -

5 10 15 20 25 30 35 40 45 50 55 600
Magnitude of impedance element (Q)

Figure 4.2 Case 1 - Variation of impedance element with nearness factor 

for Figure 4.1.
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140
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100

•  1-point Gaussian
 4-point Gaussian
   7-point Gaussian
  13-point Gaussian

fi
EQ

II
U -z

6 8 100 2 4

Magnitude of impedance element (£2)

Figure 4.3 Graph in Figure 4.2 redrawn to show the intersection of the curves for 

low NF values

The same procedure was repeated for three other cases and the triangle shapes 

varied as shown below.
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CASE 2

(-3.5,-3.5,0) (-3.5,3.5,0)

'observation triangle

(3.5,3.5,0)

 ̂r Source triangle

Figure 4.4 Mesh used to generate graph in Figure 4.5

tooo
- * * - 1-point Gaussian
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 7-point Gaussian
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II
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200 -
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Magnitude of impedance element (Q)

Figure 4.5 Case 2 - Variation of impedance element with nearness factor for
Figure 4.4
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•  1-point Gaussian
 4-point Gaussian
 7-point Gaussian
  13-point Gaussian

3
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Ll_
z

53 40 2
Magnitude of impedance element (£2)

Figure 4.6 Redrawn Figure 4.5 showing clearly the intersection for the n-point 

curves.

CASE 3

AA' E£' (005,4-35,z) QD’

y

B,B \  QC

(0.05,0,2) Source m angle 
(bottom) Observation triangle (0.05,8.7,z)

r (top)
X

Figure 4.7 Mesh used to generate Figure 4.8
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Figure 4.8 Case 3: Variation of impedance element with nearness factor for 

Figure 4.7.
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Figure 4.9 Graph in Figure 4.8 redrawn to show the intersection of the curves for 

low NF values.
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CASE 4

x  (2,5,z)

Observation triangle 
(top)Source triangle 

(bottom)

Figure 4.10 Mesh used to generate Figure 4.11
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Figure 4.11 Case 3: Variation of impedance element with nearness factor for 

Figure 4.10.

132



250

•  1-point Gaussian
 4-point Gaussian
 7-point Gaussian
  13-point Gaussian

225

200

175

9= 150

J
O 12541

100U -Z
75

0 4 8 12 16 20
Magnitude of impedance element ( Q )

Figure 4.12 Graph in Figure 4.11 redrawn to show the intersection of the curves 

for low NF values.

As the above Figures demonstrate, a distinct improvement in the impedance 

element calculations was observed by increasing the number of quadrature 

points from 1 to 13 for closely coupled triangles. However, no appreciable 

improvements were observed by increasing the number of quadrature points 

from 7 to 13. Graphs for the 7-point and 13-point Gaussian quadrature schemes 

are virtually indistinguishable. It was on this basis that the 7-point Gaussian was 

chosen in preference to the 4-point Gaussian integration. There is a marked 

difference between the one-point and the higher order Gaussian schemes for 

when the source and observation triangles are in close proximity, i.e. when the 

NF is large. This proves that the higher order Gaussian schemes calculate the 

impedance matrix elements more accurately than the one-point scheme for 

closely spaced triangles. It is also observed that for large distances between the 

source and observation triangles, the one-point scheme is just as accurate as any

133



higher order scheme. This is observed to occur for a NF value of 40 and below, 

happens when the nearness factor is about 20 or less. This is the value of NF at 

which the 1-point curve converges with the higher order scheme curves as 

shown in the above graphs. Hence beyond a certain separation distance 

between the source and observation triangles, a one-point Gaussian scheme is 

sufficient. This translates to very fast computation times for the evaluation of the 

impedance elements.

The 4-point is seen to be less accurate than the 7-point or the 13-point schemes, 

particularly for closely coupled triangles. It is on this basis that the 4-point 

scheme was not used. As it was observed that there is little difference between 

the 7-point and the 13-point schemes, the 7-point Gaussian quadrature scheme 

was used for closely coupled triangular patches (NF > 40) and the 1-point 

Gaussian quadrature scheme used for loosely coupled triangular patches.

4 .2 .4  Numerical Im plem entat ion

Consider the evaluation of the integrals in (4.22). If the observation triangle, T* 

and the source triangle, T* are not closely coupled, then the integrals in (4.22)

are regular and can be calculated numerically using the Gaussian quadrature 

scheme for the outer integral, and Patterson's rule [124] for the inner triangle. 

Following the procedure in Chapter 3, a one-point Gaussian quadrature scheme 

is used for loosely coupled triangles and a seven-point Gaussian quadrature 

scheme for closely coupled objects. This is equivalent to employing the 2-SI 

scheme. In fact, as was illustrated in Chapter 3, the numerical solutions for the 

higher order n-point Gaussian quadrature scheme are the same as the one-point 

Gaussian quadrature scheme. The only difference is in the computation time
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where the higher order Gaussian scheme takes many orders of magnitude longer 

than the one-point solution.

When the triangles 7^ and T* are close to each other the evaluation of the

double surface integrals are evaluated using a 7-point Gaussian quadrature 

scheme.

From (4.10), it is observed that ( V x A ,. ,^ )  is zero if the triangles T* and T*

lie on the same plane. The cross product of the gradient of the Green's function 

and the basis function results in a vector that is perpendicular to the testing 

function. For the case when T* and T* are not in the same plane but are very

close to each other, (V x A ,.,fm) has a near singularity of the order of 1/R 3 . 

This is evaluated using the seven-point Gaussian quadrature scheme.

4 .3  RESULTS AND D ISC U SSIO N S

This section presents some performance data on the 4-SI method for dielectric 

objects based on the theory given in the above sections. The 4-SI results are 

compared with those of the 2-SI and published material. The performance of the 

4-SI is measured in terms of the number of unknowns, computer storage space 

required and the total computation time needed to solve a particular problem 

with good accuracy. These param eters are then compared principally against 

those of the 2-SI method. Published papers are also used to check the accuracy 

of the 4-SI method.
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4.3.1 Scattering by dielectric spheres

This section presents the radar cross-section results for scattering by a lossless 

and a lossy dielectric sphere. The lossless dielectric sphere is considered first. 

The incident wave is travelling in the negative ^direction and the electric field is 

polarised in the positive x-direction. For reference, the Mie-series results are 

used. Figure 4.13 shows the bistatic radar cross-section results of a lossless 

dielectric sphere whose relative permittivity is sr = 3 and permeability jur = l .

Figure 4.14 shows the same results but for O < 0 ,< 9O °to  highlight the 

differences between the two methods. The size of the sphere is ka = 5 3 ,  where 

k is the free space wave number and a is the radius of the sphere. There are 

three types of results shown in Figure 4.13 and Figure 4.14, a Mie series solution 

result, 4-SI results and 2-SI results obtained for different triangular patch 

meshing of the dielectric sphere. Figure 4.14 shows the same results as Figure

4.13 but only for the region 0° <Oj < 90°, so as to show clearer the differences

between the results of the three approaches. The 4-SI results, i.e. 4-SI(a) and 4- 

SI(b) with maximum edge lengths of 0 .3 8 ^  and 0.27Zd respectively, compare

very well with the Mie series solution result. The wavelength in the dielectric is 

denoted by ̂ . This is despite the course mesh used to obtain the 4-SI(a) result.

The slight discrepancies between the 4-SI(a) and the Mie series solution could be 

explained by the surface geometry being not defined accurately enough by the 

large triangular patches used. A radius correction factor would need to 

introduced. The analytic Mie series solution uses the exact radius of the sphere in 

calculating radar cross-section results. The 2-SI result shown by curve 2-SI(b), 

uses a mesh with a maximum edge of 0.21 A.df fails to track the reference Mie

series solution result as accurately as the 4-SI results. However, on reducing the 

maximum edge length to 0 .2 4 ^ ,  the 2-SI result, shown by curve 2-SI(a),
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compares well with the reference Mie series solution. The mesh is still very 

coarse for the 2SI scheme but the result is very remarkable in that it shows 

maximum deviations of only about ldB from the Mie series at some values of 0 .
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Figure 4.13 Bistatic scattering by a dielectric sphere ka = 5 .3 , er = 1
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Figure 4.14 Bistatic scattering by a dielectric sphere for 0< < 90°.

In order to produce accurate results, the maximum triangular patch edge should 

be of the order of O.U^ for the 2-SI formulation. This would require the toal

number of unknowns exceeding 28000. The computation time and the computer 

memory requirement would therefore be many magnitudes higher than that for 

the  4-SI to achieve the equivalent accuracy. Table 4.1 summarises the  CPU and 

memory requirements for the 2-SI and 4-SI methods. The computing resources 

limited the number of unknowns to 7500 and 5000 for the 2-SI formulation when 

calculating the bistatic radar cross-section and monostatic radar cross-section 

bistatic results respectively. The limitation for the 4-SI formulation was 5000 

unknowns.
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Table 4 .1 -  Com putation tim e and com puter memory requirem ents for 

a  ka = 5.3 dielectric sphere

Scheme
Number

of
triangular
patches

Number of 
unknowns

Maximum
edge
length
w

Matrix
fill

time
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI(a) 2292 6876 0.24 1632.5 8659.1 10291.598 180.3

2-SI(b) 1596 4788 0.27 860.5 1619.0 2479.5 87.4
4-SKa) 876 2628 0.38 6706.9 1484.4 8191.23 52.7
4-SI(b) 1596 4788 0.27 11965.2 5955.0 17920.2 174.9

Its worth noting that the data given for the 2-SI scheme in Table 4.1 is not 

representative of the 2-SI requirements for the given problem. The mesh would 

need to have a maximum triangular patch edge length of the order of one-tenth 

of the dielectric resuits. What is clear though from Table 4.1 is the fact that given 

a proper mesh, the CPU time and memory requirements for the 2-SI method 

would exceed that for the 4-SI method.

The electromagnetic scattering by a 2 4  diameter sphere of lossy dielectric,

sr = 2 .0 - / 2 . 0 ,  is presented next. Figure 4.15 and Figure 4.16 show the bistatic

radar cross-section for the H-plane and E-plane respectively for the 2A0
diameter lossy sphere. Good agreement is obtained between the 2-SI, the 4-SI 

results with those by McCowen and Tran [154] and Zhu et al [155]. Two mesh 

structures were employed, one with a maximum edge length of 0 .3 8 ^  and the

other with a maximum edge length of 0 .2 5 4  ■ As in the lossless sphere case

discussed above, one would not normally use a mesh structure with an edge 

length exceeding about 0 .1 5 ^  with the 2-SI formulation.
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Figure 4.15 The bistatic radar cross-section of a lossy sphere in the H-plane
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Figure 4.16 The bistatic radar cross-section of a lossy sphere in the E-plane

Table 4.2 gives the computation requirements for the two methods. No definite 

conclusions can be drawn from the 2-SI results when compared with the 4-SI 

results because of the coarseness of the mesh. Judging from the data in Table 

4.2, the computation time and storage space for the 2-SI formulation would 

exceed that of the 4-SI(b) if a suitably fine mesh were to be used.

Table 4.2- Computation time and memory requirements for a lossy dielectric

sphere of radius l.(U0 and relative permittivity sr = 2.0 -  j 2.0 .

Scheme
Number

of
triangular
patches

Number of 
unknowns

Maximum
edge
length
a d )

Matrix
fill

time
(sec)

Solve
time
(sec)

Total
computation 
time (sec)

Memory
(MB)

2-SI(a) 1012 3036 0.38 392.1 420.6 812.7 35.15
2-SKb) 1596 4788 0.25 2416.0 3647.6 6063.6 87.4
4-SI(a) 1012 3036 0.38 9439.8 842.9 10282.7 70.3
4-SI(b) 1596 4788 0.25 21340. 3663.9 25003.9 175
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4.3.2 Scattering by a dielectric cylinder

Figure 4.17 Homogeneous dielectric cylinder excited by a plane wave

This example considers the bistatic scattering by a homogeneous lossless 

dielectric cylinder of relative permittivity sr -  2.  The dielectric cylinder is excited

by a plane wave as shown in Figure 4.17 and its height is given by 

h = 2a = 0 .77334 =1 093/^, where X0 and Xd are the free space and dielectric

wavelengths respectively. Shown in Figure 4.18 are the bistatic scattering cross- 

section results of the 2-SI and 4-SI formulations for the dielectric cylinder in the

plane </> = 0°. The2-SI and 4-SI computed results are compared with the results

by Notaros and Popovic [156]. Three different mesh structures were used to 

obtain the 2-SI results, i.e. 2-SI(a), 2-SI(b) and 2-SI(c) as shown in Figure 4.18. 

For the first mesh with a maximum edge length of 0 .3 6 ^ ,  the 2-SI fails to agree

with the reference solution. However, the corresponding 4-SI result given by 

curve 4-SI(a) compares well with the reference solution in [156]. This is despite
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the coarse mesh which distorts the surface area of the modelled cylinder. There 

is an improvement in the comparison of the 2-SI result, 2-SI(c), when the 

meshing density is increased such the maximum edge length is 0.22^. Still, the

corresponding 4-SI result, curve 4-SI(b), compares better with the reference 

soltion. For a fine mesh such that the maximum edge length is 0.12^, the 2-SI

result, curve 2-SI(b), is in excellent agreement with the reference solution. For 

this result, the 2-SI formulation requires 7494 unknowns, 11655 sec and 214 Mb 

of memory. This is compared with the 4-SI result, 4-SI(b), which requires 1860 

unknowns, 5746 and about 26.4 MB to produce the same levels of accuracy as 

that of the 2-SI(b) result and the reference solution.
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Figure 4.18 Bistatic cross-section of a homogeneous lossless dielectric cylinder in
the plane <j>- 0°

The 4-SI(a) solution generated with a mesh with a maximum edge length of 

0.362^ is in fairly good agreement with the reference solution. For a mesh with a
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maximum edge length of O .2 4 , the 4-SI method gives the same accuracy as

that achieved by the 2-SI scheme with a mesh with a maximum edge length of 

0. 1 4 . The performance indicators of the 2-SI and the 4-SI formulations in

analysing the electromagnetic scattering by the dielectric cylinder are 

summarised in Table 4.3.

Table 4.3- Computation time and memory requirements for a dielectric cylinder

with height 0.77334 and radius 0.386654

Scheme
Number

of
triangular
patches

Number of 
unknowns

Maximum
edge
length
(4 )

Matrix
fill

time
(sec)

Solve
time
(sec)

Total
computation 
time (sec)

Memory
(MB)

2-SI(a) '' 204 612 0.36 24.1 3.6 27.7 1.44
2-SICb) 2498 7494 0.1 1971.0 9683.5 11654.5 214
2-SI(c) 620 1860 0.2 187.7 94.7 282.4 13.2
4-SI(a) 204 612 0.36 506.3 6.9 513.2 2.86
4-SI(b) 620 1860 0.2 5220.3 525.8 5746.1 26.4

It is observed from Table 4.3 that with a fine mesh of 0.14 , the 2-SI method

takes nearly 22 times more time than the 4-SI to achieve the same accuracy. 

This despite the fact that a coarse mesh was used with the 4-SI method. Further 

more, the 2-SI requires 99 times more memory to  achieve good accuracy for this 

particular problem.

4 .3 .3  S c a t te r in g  by  a d ie le c tr ic  b o x

This example considers the bistatic scattering by a dielectric box shown in Figure 

4.19. The box has dimensions 5 .0 4 x 1 .0 4 x 0 .6 4  and relative permittivity,

er = 1.75-jO.3.
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l . ( U

Figure 4.19 Geometry of the dielectric box

The excitation is a plane wave along the z-axis. The resulting bistatic radar cross- 

section curves are given in Figure 4.20- Figure 4.23 for the 00 and <j><|> 

polarisations. Initially, the box is discretised with 1290 edges resulting in a 

maximum edge length of 0.38/ly. As can been seen in Figure 4.20 - Figure 4.23,

the 4-SI results, shown by the curves 4-SI(a) are in almost complete agreement 

with the results obtained by Topsakal eta i  [157] apart from the instances when 

55° < 9 <  15° when the 4-SI differs from the reference solution for the Ee

scattering. The corresponding results for the 2-SI formulation, given by curves 2- 

SI(a), are not agreem ent with the results in [157] by Topsakal eta /  [157] which 

used an adaptive integral method [158] with 5500 unknowns. The meshing 

density was increased to 1608 triangular patches, corresponding to 4824 

unknowns. There was marginal improvement in the 4-SI results, shown by the 

curves 4-SI(b). However, the 2-SI result showed a great improvement by 

converging towards the reference but still the agreem ent with the reference 

solution was poor. When the meshing density was further increased to 2496 

triangular patches, i.e. 7488 unknowns, the 2-SI result, shown in Figure 4.20 and
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Figure 4.21 by curves 2-SI(c), showed an improvement over the previous results 

with coarser mesh. The levels of accuracy predicted by the 2-SI results are still 

different from those of the results in [157], particularly for the region 

20° <Ot < 110° .
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Figure 4.20 Bistatic radar cross-section for the E, component for the 

the scattering by the dielectric box.
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Figure 4.21 Bistatic radar cross-section for the E0 component shown for

0<<9, <90°.

With more edges such that the maximum patch edge length is of the order of 

0.1/ly, the 2-SI result would eventually compare very with the reference curve.

This would require a mesh with 3350 triangular patches, corresponding to 10050 

unknowns. This would certainly result in higher computational costs for the 2-SI 

formulation over those of the 4-SI formulation shown in Table 4.4. The 

computational costs for the 2-SI and 4-SI formulations for the results presented 

in this section are summarised in Table 4.4.
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Figure 4.22 Bistatic radar cross-section for the E4 component for the 

scattering by the dielectric box.
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Figure 4.23 Bistatic radar cross-section for the e4 component shown for

O<0. <90°.

Table 4 .4 - Computation costs for the dielectric box in Figure 4.19

Scheme
Number

of
triangular
patches

Number of 
unknowns

Maximum
edge
length
W

Matrix
fill

time
(sec)

Solve
time
(sec)

Total
computation 
time (sec)

Memory
(MB)

2-SI(a) 860 2580 0.38 269.8 257.8 527.6 25.4
2-SI(b) 2496 7488 0.22 1976.7 10148.90 12125.6 214
2-SKc) 1608 4824 0.28 835.9 1684.8 2520.7 88.8
4-SI(a) 860 2580 0.38 8147.0 1212.7 9359.7 50.8
4-SI(b) 1608 4824 0.28 20336.8 7212.0 27548.8 177.5
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4.3.4 Scattering by a dielectric plate

This section considers the monostatic radar cross section of a 2X0 x 2X0 dielectric

slab with a thickness of 0.0254Ao, sr = 7 . 4 - y i . l l  and =1.4 — y0.672. The

dielectric slab could only be meshed with a maximum number of triangular 

patches of 1596 corresponding to 4799 unknowns. The computing resources 

limited the maximum number of unknowns to 5000. The results computed using 

the 2-SI and 4-SI formulations are shown in Figure 4.24 and Figure 4.25 for H- 

polarisation and E-polarisation cases respectively. The computed results are 

compared with the results by Shen [159] who used the discrete Fourier 

transform numerical technique to evaluate the differential-integral arising from 

the electromagnetic scattering problem. He validated his results with those of 

Peters and Volakis [160]. As seen in Figure 4.24, there is excellent agreem ent 

between the 4-SI results and those of Peters and Volakis for the H-polarisation 

case. This is despite the fact that the dielectric plate was discretised with 1596 

triangles whose maximum edge lengths were 0 .4 ^ .  This was the smallest

possible edge length due to the computer's memory resources. However, this 

type meshing is too coarse for the 2-SI method as is evident in Figure 4.24.

Figure 4.25 compares the 2-SI, 4-SI and the results in [159] for the E- 

polarisation case. The comparison is good except for 60° < 0 < 6 T where there is 

a large discrepancy between the 4-SI results and those in [159]. Elsewhere, the 

4-SI result compares very well with there reference solution and fares better 

than the 2-SI. The differences in the radar cross-section levels are explained by 

the fact that the mesh is too coarse. However, the results demonstrate that the 

4-SI formulation can still produce accurate results for scattering by dielectric 

objects with lower levels of discretisations than the 2-SI formulation.
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Figure 4.24 Monostatic RCS of a square dielectric slab: H-polarisation
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Figure 4.25 Monostatic RCS of a square dielectric slab: E-polarisation

Table 4.5 shows the trend in the computational costs for the dielectric plate 

problem.

Table 4.5 -  Computation costs for the dielectric box in Figure 4.19

Scheme
Number

of
triangular
patches

Number of 
unknowns

Maximum
edge
length
( 4 )

Matrix
fill

time
(sec)

Solve
time
(sec)

Total
computation 
time (sec)

Memory
(MB)

2-SI 1596 4788 0.40 807.9 3027.00 3834.9 87.4
4-SI 1596 4788 0.40 19395.2 8013.8 27409.0 175

However, Table 4.5 cannot be used for a direct comparison between the 2-SI 

and the 4-SI methods for this particular problem because the "correct"
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discretisation was not used for this problem for the 2-SI because of lack of 

enough computer memory. For an edge resolution in the order of O.U^, there

would be 66240 unknowns. Using symmetry would reduce this to 33120 

unknowns, which is a massive problem. This would certainly take far longer than 

the 4-SI to run and would require massive computer memory space.

The next section presents the last example for electromagnetic scattering by a 

dielectric disc.

4 .3 .4  S c a t te r in g  by  a d ie le c tr ic  d isc

The last example is a dielectric disc of radius Aof thickness of 0 .0U o, relative

permittivity sr = 2 .0 -  yiO.O and a relative permeability fir = 1 .0 . The monostatic

radar cross-section is computed using the 2-SI and 4-SI methods and the results 

compared with the results by Peters and Volakis [160].
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Figure 4.26 Monostatic RCS for a dielectric disc: er = 2.0- ylO.O, 

thickness = 0.0Uo (E-polarisation)
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Figure 4.27 Monostatic RCS for a dielectric disc (E-polarisation) for 

O<0<  45°.
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Figure 4.28 Monostatic RCS for a dielectric disc (E-polarisation) for

45° < 0 <  90°.

Peters and Volakis solved the integrals in the dielectric scattering problem using 

the combined conjugate gradient-fast Fourier transform (CG-FFT) method. For 

the 4-SI method, the dielectric disc is discretised with 1200 triangles and 1632 

triangles such that the maximum edge lengths are 0 .3 8 ^  and 0 .3 2 ^

respectively. For the E-polarisation case shown in Figure 4.26, Figure 4.27 and 

Figure 4.28, the 4-SI curve shows excellent agreem ent with Peters and Volakis' 

results [160], despite the coarse mesh. For both mesh cases of 1200 triangles 

and 1632 triangles, the 2-SI results was in agreem ent with the reference solution 

for certain values of theta, on a section basis as shown in Figure 4.26, Figure 

4.27 and Figure 4.28. Nevertheless, this shows that the 2-SI method fails to 

produce accurate results for the same number of triangles as for the 4-SI 

method, if the mesh is coarse.
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Figure 4.29 Monostatic RCS for a dielectric disc: sr = 2.0-  >10.0, 

thickness = 0.0UQ (H-poiarisation)
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Figure 4.30 Monostatic RCS for a dielectric disc (H-polarisation)

for 30° < 0i < 90°.

For the H-polarisation case shown in Figure 4.29 and Figure 4.30, the 4-SI 

results exhibit good agreement with Peters and Volakis' results except when 

55°<0<65°, in which case relatively large discrepancies from the reference 

solution are observed. However, the two meshes of 1200 and 1632 triangles give 

almost indistinguishable results. A slight increase in meshing should remove 

these discrepancies. However, this is not the case with the 2-SI method. A mesh 

with 1200 triangles ( curve 2 -S I(a)) exhibits a large deviation from the reference 

solution whereas for a mesh of 1632 triangles, very good agreement is achieved 

for theta up to 70°. Thereafter, the agreement between the 2-SI and the 

reference solution is poor, unlike the results of the 4-SI method. It appears the 

2-SI fails to cope when the incidence angle approaches grazing angles. A large
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increase in the discretisation of the dielectric disc such that the maximum edge 

length is of the order o.lAd would clear these errors. However, this increase in

accuracy would come with a very huge computation cost when compared with 

the 4-SI method.

A comparison of the memory and CPU requirements for this example is shown in 

Table 4.6.

Table 4 .6 -  Computation costs for the dielectric box in Figure 4.19

Scheme
Number

of
triangular
patches

Number of 
unknowns

Maximum
edge
length
a d )

Matrix
fili

time
(sec)

Solve
time
(sec)

Total
computation 
time (sec)

Memory
(MB)

2-SI(a) 1200 3600 0.38 486.6 820.9 1307.5 49.4
2-SI(b) 1632 4896 0.32 819.0 1973.4 2792.4 91.4
4-SI(a) 1200 3600 0.38 7945.7 1520.1 9465.8 100
4-SI(b) 1632 4896 0.32 21007.4 7635.9 28643.3 182.9

The figures given for the 2-SI method in Table 4.6 are not representative of the 

actual performance of the 2-SI in tackling this dielectric problem. The mesh is 

too coarse and the maximum edge length should be of the order of 0.\Xd . This

would require 8040 triangular patches resulting in 24100 unknowns. 

Computation times and demand for computer memory would therefore exceed 

those of the 4-SI by several orders of magnitude.
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4 .4 .  CONCLUDING REMARKS

The 4-SI formulation of the CFIE for dielectric objects has been presented and 

implemented. The 4-SI implementation for the CFIE was validated using 

reference data for dielectric objects of different geometrical shapes. Where the 

available computer memory allowed, the presented results have shown that the 

4-SI formulation is accurate and possesses computational advantages over the 2- 

SI formulation in calculating the scattered fields by dielectric objects. However, 

the computational advantages are not as impressive as those obtained for the 4- 

SI implementation of the EFIE for perfectly conducting objects.

The 4-SI formulation was applied to obtain the radar cross-section for several 

dielectric objects of different geometrical shapes. The 4-SI formulation results 

were compared with results calculated using the 2-SI formulation and the results 

from published material. In some cases, the numerical results for the 4-SI were 

found to be in good agreement with the results from published material despite 

the course mesh with maximum triangular patch edges as large as 0 .4 /ly . This

was achieved with a very reduced value of the number of unknowns for several 

geometrical dielectric objects' shapes when compared with the 2-SI method. In 

addition, the CPU time was also reduced significantly despite the evaluation of 

the computationally time demanding double surface integrals. The accuracy of 

the 4-SI results was justified by comparing the 4-SI results with analytical 

solutions and published data for several dielectric objects of different geometrical 

shapes.

The integral equations and method of moment technique generates a dense 

impedance matrix with complex valued elements. For the traditional matrix 

solution, the required computer storage is C (N 2) and execution time A (N 2) to
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134G (N3), where N is the number of triangular surface patches. With the 2-SI 

method, the required computer storage is 0 ( N 2/ 2 )  because of the matrix folding 

and only the upper matrix is stored. For large dielectric scatterers N becomes 

very large. Hence a method that solves a particular problem with a reduced 

value of N without compromising accuracy is desired. The results that were 

presented have demonstrated that the 4-SI method is a more efficient method 

than the 2-SI for solving the electromagnetic scattering problems by electrically 

large dielectric objects.

From the results presented in section 4.3, the 2-SI's results are not very accurate 

for monostatic RCS as the incidence angle approaches grazing angles. This is 

probably because the surface waves are not being modelled properly because of 

the approximation made in the evaluation of the integral equations. The 4-SI 

method appears to cope very well with grazing angles of incidence.

The 4-SI CFIE formulation for electromagnetic scattering by homogenous 

dielectric using the RWG basis functions as both the expansion and testing 

functions objects. The double surface integrals appearing in the tested CFIE are 

evaluated more accurately than in the original RWG formulation. This accuracy 

enables the size of the triangular patches to be larger than In the 2-SI 

formulation because of the improved averaging process in the calculation of the 

impedance matrix elements.
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5.1 Introduction

This Chapter presents the MoM solution of the CFIE [50] for scattering by three- 

dimensional dielectric and perfectly conducting objects using the 4-SI 

formulation. Like in the previous chapters 3 and 4, the scatterers' surfaces are 

modelled by triangular patches. The RWG basis functions are both used as the 

expansion and testing functions to convert the EFIE and MFIE into matrix 

equations.

A number of authors have applied the RWG basis functions in addressing the 

problem of scattering by composite objects [50,118,120,161,162]. Rao et al 

[118] used a method based on basis functions defined over triangular patches, 

which was an extension of the method previously developed for metallic 

structures [6], for the analysis of conducting bodies coated with lossy materials. 

Rao et al. later extended the method in [6] to handle combined metallic and 

dielectric structures separated by infinitesimally distances but never touching 

[50]. Soudais [161] analysed the scattering from arbitrary shaped conducting 

and dielectric objects using a hybrid boundary integral method/finite element 

method. Salman and McCowen [120] used the method of moments (and the 

RWG basis functions) applied to CFIE to determine far-field scattering from 

resonant size objects comprising dielectric material and perfect electric
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conducting surfaces. Kolundzija [162] analysed the scattering by composite 

objects using a method based on the formulation in [163].

As was observed in chapters 3 and 4, as the size of the scatterer increases, the 

computational resources required to solve the scattering problem increases. 

When the problem consists of both the conducting and dielectric materials, the 

number of unknowns grows very rapidly, thereby restricting the size of the 

problem that can be analysed. This is so because the dielectric doubles the 

number of unknowns. The material presented in chapters 3 and 4 for analysing 

the electromagnetic scattering by perfect electric conductors and dielectrics 

respectively demonstrated that the 4-SI formulation handles an electrically large 

scatterer with a fewer number than the conventional 2-SI technique. The 

decrease in memory requirements and computation time was particularly 

pronounced for electrically larger scatterers.

This chapter extends the application of the 4-SI method to the electromagnetic 

scattering from problems having both dielectric and perfect electric conductors. 

The dielectric and conducting objects may or may not be in contact. As in 

previous chapters, the conducting and the dielectric structures are both modelled 

by planar triangular patches and by using a Galerkin procedure with the RWG 

basis functions, the method of moments is used to solve the combined field 

integral equation (CFIE).

The composite objects comprising the dielectric and the conducting objects can 

take various configurations: it can consist of conductive body coated with a thin 

layer of dielectric material or a dielectric body partially coated with a thin layer of 

conducting material, a combination of both or three dimensional dielectric and 

conducting objects in contact. The problem of electromagnetic scattering from 

composite problems has been analysed by several authors [50,162,164,165,166].
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A formulation to the scattering problem in terms of the equivalent dielectric and 

magnetic currents on the surface of the dielectric scatterer and equivalent 

electric currents on the surface of the conducting scatterer is used, leading to 

surface integral equations which are solved using the method of moments. The 

RWG formulation for mixed dielectric and conductor problems was reviewed in 

chapter 2.

The 4-SI formulation is applied to the investigation of scattering from composite 

materials and the results compared with published data. This chapter is 

organised as follows. In the next section, the 4-SI formulation for composite 

materials is presented. The numerical results are presented in section 5.3 and 

section 5.4 presents the concluding remarks for the chapter.

5.2. 4-SI Formulation for Composite problems

5.2.1 Integral Equations

The derivation of the RWG formulation for mixed problems, i.e. consisting of 

dielectric and conductors, was reviewed in section 2.7. For the purpose of 

deriving the equations for the 4-SI formulation, the starting points are the 

equations (2.85) -  (2.87). They are repeated here for the sake of continuity.
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E '£ = - r E s(Je) + Es(Jd,Md)l on Sc (5.1)
l Jtan

E Z  = - [ r  (Jc) + r  on sd (5.2)

(5.3)

The electric and magnetic surface currents produce the electric and magnetic 

fields which radiate into the unbounded medium. These fields are given by

where the magnetic vector potential, A, the electric vector potential, F, the 

electric scalar potential, <D, and the magnetic scalar potential, ¥ ,  are given by 

equations (2.18), (2.19), (2.20) and (2.21) respectively.

Substituting (5.4) and (5.5) into (5.1), (5.2) and (5.3) and making use of 

equations (2.18), (2.19), (2.20) and (2.21) yields

Es(r) = -ja>A(r) -  V O  -  - V  x F(r) (5.4)
£

H1 (r) = -y®F(r) -  V T  +  -  V x A(r) (5.5)
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j a  [A , ( J c ) +  A e (J „ )] + [  V A  (p ec ) +  V^c ( p j ) ]

+ - V x F e(M d ) = E me
tan on S,

(5.6)

j a  A  (J c ) +  V (p cc) + j a  [ A e ( J d ) + A  ((J d )] +

F.CM ,,) , F^M rf)'[VA(p5) + V*(p5)] + Vx
£ e &i

(5.7)

= E S  on Sc

— V x A c( J c ) +  y « [F e(M rf) + Fi (M l/)] +
Me

[V 4 '<(p 7 ) + V 'F ,( p 7 ) ] - V x
A e(J rf) A , ( j rf)

Me Mi

(5.8)

= H S  on S(

where p c , p d and represent the surface charge densities associated with 

the current densities J c , J d , respectively.

The subscripts on the field quantities represent the unbounded medium in which 

the sources radiate, e  for external and / for internal. The bracketed currents for 

the field quantities represent the source of that field.

5.2.2 Testing of the Integral Equations

The integral equations (5.6) - (5.8) are solved numerically using the method of 

moments [5]. The unknown electric current density, J c and the unknown

dielectric current density, Jd flowing on the surfaces of the conductor and the
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dielectric respectively and the unknown magnetic current density M d on the 

dielectric's surface are expanded using the RWG basis functions such that:

(5.9)
n=l

Jd=I>nfn (5.10)
n=l

(5.11)
n=l

where an, fin and yn are the unknown current expansion coefficients to  

be determined using the method of moments and are for the electric, 

dielectric and magnetic currents respectively. N c and N d are the number

of non-boundary edges on the electric conductor and dielectric 

respectively.

To solve for the unknown current coefficients, the equations (5.6) - (5.8) 

are tested using the RWG basis functions and reduced to a set of 

(Nc +2N d)x (N c + 2Nd)linear algebraic equations which can be written in

matrix form as:

168



'[z J‘J‘] [z’A] [zJ‘M<]' ’[«»]’ '[Ef]'
[zv.] [A] = [Ef]
rZMA] rZHAj >.]_ _[H f \

where (Nc + 2N d) is the total number of unknowns.

E™c and E™c are the voltages due to the incident electric fields on the

conductor and dielectric surfaces respectively and H™c is the magnetic 

field incident on the dielectric surface.

The impedance matrix is shown in (5.12) partitioned into nine sub 

matrices. For each sub matrix, the first superscript indicates that the 

observation edge m is on a conducting surface, if the first superscript is 

Jc or on a dielectric surface if the first superscript is Jd or Md. The

second superscript denotes the location of the source point.

Sub matrix Z JcJc is an Nc x N c matrix and its elements are given by

equation (4.27), noting that there is only one region, i.e. the perfect 

electric conductor. This expression is the same as the impedance for a 

prefect electric conductor treated in chapter 3.

The sub matrix Z JcJd is an N c x N d matrix and its elements are also given

by equation (4.27). The elements result from the testing with fmof the

electric field on the surface of an electric conductor produced by the 

dielectric current on the dielectric. The source points are on the dielectric 

and the correct constitutive parameters of the dielectric object are
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inserted in equation (4.27).

The submatrix ZJcMd is an Nc x N d matrix and its elements Z3cMd(m,n)

are given in equation (4.29). It is the result of the testing with fm of the

electric field on the electric conductor's surface produced by a magnetic 

current on the surface of the dielectric.

The sub matrix ZJdJc is an N d x N c matrix. The element Z3dJc(m,n) is

equal to the testing of the electric field on the dielectric's surface 

produced by a surface current on the surface of the electric conductor.

The expression for element Z JdJc(m,n) is given by equation (4.27) with 

the correct constitutive parameters for inserted for each region.

The sub matrix Z JdJd is an N d x N d and its elements are given by (4.27).

The observation and source points are ail on the dielectric materials. The

sub matrix Z JdMd is an N d x N d and its elements are also given by (4.27)

but this time the tested fields are due to the magnetic current on the 

surface of the dielectric. The observation and source points are all on the 

dielectric materials.

An element of the N d x N c sub matrix Z MdJc is equal the negative of that 

of Z J‘Md.

The elements of the N d x N d sub matrix Z MdJd are given by (4.30).

Lastly, the elements of the N d x N d sub matrix zMdMd are given by 

(4.28).

The 4-SI evaluation of the elements of the sub matrices in (5.12) has been 

presented in detail in Chapters 3 and 4 and hence will not be repeated here. The
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strategy of the computation is the accurate evaluation of the double surface 

integrals appearing the sub matrices for closely coupled observation and source 

triangular patches. For loosely coupled triangular patches, an evaluation of the 

elem ents is done in a manner identical to the RWG formulation.

Once the matrix equation (5.12) is solved for the unknown current coefficients, 

any other parameters of interest such the radar cross-section can easily be 

calculated.

The potential integrals in the evaluation of the impedance elements have a

singularity of the order of (l/R 3) when the dielectric is in contact with the perfect

electric conductor. The calculation of the singular terms follows the analytical 

approach developed in [167].

5.3 RESULTS

The modified CFIE formulation is applied to scattering of electromagnetic by 

mixed objects comprising conducting and dielectric objects. The RCS results 

computed using the 4-SI formulation developed in Chapters 3 and 4 but applied 

to mixed objects are presented. These results are compared with those based on 

the 2-SI formulation and published material. Three examples will be considered 

in the following sections.
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5 .3 .1  Scattering by a m eta llic  p late  coa ted  w ith  a d ielectric

d ie lec tric  plate

m e ta llic  p late

Figure 5.1 Perfectly conducting plate coated at the top with a dielectric

Figure 5.1 shows a perfectly conducting plate with dimensions 20 x 20 x 1 cm, 

coated on one side with a dielectric. The dielectric material with 8r = 3 .1 5 -0 .1  j

and /ur =1.0, is 3 mm thick. The frequency is 3.2 GHz. The monostatic RCS of

the coated conducting plate is studied at grazing incidence for two polarisation 

cases, the # # -polarisation and the ^  - polarisation.

The grazing incidence makes it a difficult problem because of the generation of 

surface waves that must be modelled properly. The total scattering is a 

combination of the scattering from the edges, corners and the junction between 

the conducting and dielectric materials.
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The monostatic RCS results generated using the 2-SI and of 4-SI schem es are 

compared with the results of Soudais et al [168] in Figure 5.2 - Figure 5.5. 

Soudais e ta l  [168] modelled the electromagnetic scattering from the composite 

dielectric and conducting structure by hybrid partial differential equation - 

integral equation formulations. Their method entailed solving for both surface 

and volume unknowns for the exterior and interior regions of the structure.
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Figure 5.2 Comparison of the monostatic RCS of a conducting plate 
of size 20 x 20 x 1 cm coated on one side with a dielectric. Grazing 
incidence at 3.2 GHz, M polarisation.
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Figure 5.4 Comparison of the monostatic RCS of a conducting piate of size 20 x 
20 x 1 cm coated with a dielectric layer of thickness 3 mm. Grazing incidence,

3.2 GHz, 00 polarisation.
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Figure 5.5 The monostatic RCS in Figure 5.2 shown with 0 up to 20° to highlight 
the differences in the results. Grazing incidence, 3.2 GHz, 06 polarisation.

Table 5.1 Computation costs for the coated conducting plate for #  -polarisation 
and the 0 0 -polarisation.

Scheme
Number 
of pec 
patches

Number
of

dielectric
patches

Total 
Number of 
unknowns

Maximum
edge
length

Matrix
fill

time
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI 1020 1020 4590 0.20,0.36 2570 3585 6175 80.4

4-SI(a) 1020 1020 4590 0.20,0.36 17853.7 6861 24714.7 160.7

4-SI(b)* 1932 1932 8694 0.14,0.25 13508.7 5372 18880.7 576.7

results modelled on a different pc

For the monostatic RCS results for the </>(/) -polarisation, the results are shown in 

Figure 5.2 and Figure 5.3, (Figure 5.3 shows the same results as in Figure 5.2,
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but for only for 00 <(j>< 30°). Both the 2-SI and 4-SI results are better than the 

theoretical results in [168], assuming that the measurements are more accurate 

than the calculated results. However, in all cases, the measurement results differ

significantly from the calculated results save for the region 0° < ^ < 1 5 ° ,  where 

the contribution from the scattering by the corners of the structure is not very 

significant. Significant differences appear between the calculated results and the

measurement results for ^ greater than 15°, where the scattering by the 

corners is important. Of particular concern is the little difference between the 4- 

SI(a) and 4-S(b) results and the 2-SI results. The corresponding meshing and 

computation times are shown in Table 5.1. The 4-SI(a) and 2-SI results have the 

same and the dielectric material is very undermeshed. It was expected that the 

4-SI method would produce better results than the 2-SI method, as was the case 

in Chapter 3 with scattering by perfectly conducting materials. It appears that 

scattering from the edges is not being modelled properly. When the meshing 

density is nearly doubled, the 4-SI method results, shown by curve 4-SI(b), are 

almost the same as the 2-SI method with nearly half the meshing density.

For the case of ee-polarisation, the results are shown in Figure 5.4 and Figure

5.5. Figure 5.4 shows the results for Q° <$< 45° and Figure 5.5 shows the

results for 0° < ^ < 2 0 ° ,  to highlight the differences between the results. The 

mesh and computation times for the 2-SI and 4-SI methods in Figure 5.4 and 

Figure 5.5 are the same as those shown for 2-SI and 4-SI(a) in Table 5.1. Using 

the measurement results as reference for the case of ee-polarisation in [168], 

the 4-SI results compare very well with the theoretical results in [168] apart from 

the small region around (f> = 20°. The 2-SI results differ significantly from the

measurement and theoretical results in [168] in certain regions. The number of 

unknowns for this problem was limited to 4590 for both the 2-SI and 4-SI 

formulations. Soudais e t  a/  [168] used 9175 surface unknowns and 15 079
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volume unknowns. This difference in the number of unknowns partly explains the 

difference between the 2-SI, 4-SI and the results in [168]. The comparison 

between the computational requirements for the 2-SI and 4-SI is difficult to  

make considering the very coarse mesh used for the dielectric.

5.3.2 Scattering by a prism with multiple metallic and dielectric 
regions

Perfect conductor

Dielectric regions

Figure 5.6 Cross-section of the prism with one metallic and two 

dielectric regions.

The result presented in this section consists of a prism comprising a metallic and 

two dielectric regions. This structure is important due to the presence of two
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junctions formed by the metallic region and the two dielectric regions. The cross- 

section of prism in the x-y plane, shown in Figure 5.6, is an isosceles triangle 

whose medians divide it into three regions of different constitutive parameters.

The length of the two equal triangle sides is X0, the angle between them is 40°

and the height of the prism is A0 , where \  is the free space wavelength. The

constitutive parameters of the two dielectric regions are: srl = \A-j0 .1 ,jurl = 1,

sr2 = 4 . 0  -  y'0.3 and jurl = 1 . 2 -  y'0.6. The subscripts 1 and 2 denote the position

of the dielectric region as shown in Figure 5.6. The prism is excited by a plane

wave such that the electric field vector is given by Ef = y / m  >

Figure 5.7 shows the monostatic RCS normalized by wavelength squared in 

decibels versus angle phi. The 2-SI and 4-SI results are compared with those 

obtained by Soudais [161] using a finite element method. Kolundzija [162] later 

analysed the same problem using a general method based on the PMCHW 

formulation [163] for analysis of scattering by arbitrary composite metallic and 

dielectric structures., and obtained good comparison with the results in [168].
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Figure 5.7 Monostatic RCS of a 3-D prism with conducting and dielectric regions
in contact.

The prism scattering problem was analysed using the meshing data shown in 

Table 5.2. It is seen in Figure 5.7 that the results obtained by the both the 2-SI 

and 4-SI methods appear to have converged. Apart from slight variations, all the 

4-SI results are almost coincident, despite the fact the number of unknowns 

ranges from 3357 to 9570. The 2-SI results, with 3357 unknowns, practically 

coincides with the 4-SI result generated with 9570 unknowns.
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Although the general shapes of the graphs for the 2-SI and 4-SI methods is the 

same as that of the reference solution, the comparison is not good except when 

the electromagnetic wave is incident on the conducting side of the prism.

Table 5.2 Computation costs for the composite prism in Figure 5.6

Scheme
Number 
of pec 
patches

Number
of

dielectric
patches

Total 
Number of 
unknowns

Maximum
edge

length

(4,)

Matrix
fill

time
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI 350 944 3357 0.28 1125 1005 2130 43
4-SI(a)* 1100 2640 9570 0.14 12437 6099 18536 699
4-SI(b) 350 944 3357 0.28 12134 ^3878 16012 86
4-SI(c) 612 1940 6738 0.19 7826 2249 10075 347

results generated with a PC with higher specifications

The next example is on the electromagnetic scattering by a dielectric disk coated 

with a conducting material at both ends.

5.3.3 Scattering by a dielectric disc coated with conducting material 

at both ends

Conducting
coatingdielectric

Figure 5.8 Geometry for dielectric disk for which ka = 6.37,/z = OAa, 

coated with a conducting material at both ends.
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Figure 5.8 shows the geometry for a dielectric disk with ka = 6.37, height

h = Q.4a and sr = 3 . 1 7 .  The dielectric disk is coated on both ends only. The

results for the 2-SI and 4-SI formulations are compared in Figure 5.9 with 

measurements and calculated results in [166]. The theoretical results in [166] 

were calculated using a numerical scheme based on surface integral equations 

solved using the method of moments. This numerical scheme can only be applied 

to objects with circumferential symmetry.

It is observed in Figure 5.9 that the comparison of the both the 2-SI and the 4-SI 

results and the reference solutions in [166] is not good.

30

 4-SI(a)
20

— 4-SI(b)
—•— Ref [166] mesurement 
  Ref [166] MoM10

0

-10

-20

-30
300 15 45 60 75 90

Theta(degrees)

Figure 5.9 Monostatic RCS for a dielectric disk coated with a conducting film at
both ends.
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However, although the general shape for the 4-SI graphs are almost similar to  

the reference solutions. This discrepancy Is attributed to the very coarse mesh 

used, particularly for the dielectric medium, as shown in Table 5.3. There is no 

mention of the number of unknowns used in [166]. The computing resources 

limited the number of unknowns used that could be used.

Table 5.3 Computation costs for the metallic coated dielectric disk

Scheme
Number 
of pec 
patches

Number
of

dielectric
patches

Total 
Number of 
unknowns

Maximum
edge

lengths
A'd • \

Matrix
fill

time
(sec)

Solve
time
(sec)

Total 
computation 
time (sec)

Memory
(MB)

2-SI 840 1240 4940 0.32
0.184

2664 4942 7606 93

4-SI(a) 840 1240 4940 0.32
0.184

15137 5648 20785 186

4-SI(b)* 1580 2380 9284 0.25
0.14

11137 5044 16181 657.59

The results for plot 4-SI(b) shown with an asterisk in Table 5.3 were generated 

on a faster computer.

5.4 Concluding Remarks

A 4-SI formulation has been presented to solve the CFIE for the electromagnetic 

scattering problem by mixed objects of arbitrary shapes. The procedure is based 

on the method of moments solution technique and the surfaces of the 

conductors and the dielectric surfaces are modelled by planar triangular patches. 

In all the examples presented in this section, it is observed that there is almost 

no discernable improvement of the 4-SI formulation over that of the 2-SI 

formulation-
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The results obtained using the 2-SI and 4-SI formulations are not as good as the 

reference solutions from published papers. This can be attributed partly to the 

coarse mesh in all the examples presented. However, for the sam e mesh, the 4- 

SI's results are seen to be slightly closer to the reference solutions than the 2-SI 

results.

In all the examples presented in this section, it is observed that there is almost 

no discernable improvement of the 4-SI formulation over that of the 2-SI 

formulation. Some of the plausible reasons are: the 4-SI formulation does not 

work very well for composite objects or that the code developed from the 4-SI 

formulation for composite objects has a bug somewhere which causes this 

unexpected under performance. It is also noted that the mesh density in all the 

three examples presented was not as fine as that normally used for such 

problems for the 2-SI formulation. The performance of the two formulations 

could not therefore be investigated for a wide range of mesh densities due to the 

limitation on the available computer memory.
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6.0 Summary and conclusions

6.1 Introduction

This chapter presents the conclusion of the thesis and proposes suggestions for 

future research.

A frequency-domain MoM approach using the RWG basis functions to calculate 

electromagnetic scattering from 3-D objects was presented. The 4-SI formulation 

implementation has been compared with results from the 2-SI formulation and 

validated with results from published papers. The 4-SI formulation results for 

dielectric and conducting objects are found to be in good agreement with the 

analytical solutions and other numerical techniques' results. The results show 

that with the 4-SI formulation for scattering from perfectly conducting objects, 

the mesh density is reduced considerably when compared with the results from 

the 2-SI formulation. This reduction in the mesh density results in significant 

savings in computational time and memory requirements. It has been 

demonstrated that 4-SI is more efficient in analysing electrically larger problems 

than the 2-SI formulation. This is attributed to the more accurate evaluation of 

the surface integrals in the tested integral equations.

It has been demonstrated that the 4-SI formulation offers an alternative to the 

2-SI and has a faster computation time, uses less computer memory storage 

space and possesses improved accuracy with increasing electrical size of the 

object(s). Computational efficiency is very important when scattering evaluation 

is required for numerous cases of electrically large objects. This, in fact, 

motivated the development of the 4-SI method.

6.2 Chapter summaries
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An approach based on the MoM and the RWG basis functions to scattering by 3- 

D objects has been developed and validated.

Chapter 1 presented an introduction to the main topics of this thesis. Also 

included was the literature review covering the commonly used numerical 

techniques used to model electromagnetic scattering from conducting and 

dielectric objects.

In chapter 2, the review of the RWG formulation, upon which the formulation 

presented in this thesis is based, was done. The integral formulations for the 

scattering by perfectly conducting objects, dielectric objects and composite 

objects as is currently used by the many cited papers were reviewed. The 

chapter clearly outlined the way the RWG formulation approximates the integrals 

of the impedance matrix. The proposed formulation addresses the shortcomings 

the 2-SI formulation.

Chapter 3 presented the 4-SI formulation for scattering by perfectly conducting 

bodies. The EFIE for the 4-SI formulation for scattering by conducting bodies 

was derived. The approach was to evaluate the four-dimensional integrals 

jo){A ,fm) and <V^,fm) directly and accurately with no arbitrary simplifications,

particularly for closely coupled triangular patches. This is different from the 2-SI 

formulation where the observation point is always placed at the centre of the 

observation triangle to avoid the evaluation of the four-dimensional integrals. 

Convergence tests were performed to determine a good compromise between 

computation speed and the accuracy of the solution. These tests yielded the 

optimum number of Gaussian quadrature points needed to evaluate coupling 

triangular patches depending on the distance between the source and the 

observation triangles. Performance of the 4-SI schem e against the 2-SI method 

was examined by considering computer execution time, the required computer
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memory storage space the number of unknowns needed to solve a particular 

problem with good accuracy. The 4-SI and 2-SI results were compared with 

results from the published literature.

By examining the comparison between the results of the 4-SI, 2-SI and 

published results in Chapter 3, it is apparent that the 4-SI scheme is more 

computational efficient when analysing scattering by electrically larger perfectly 

conducting bodies. Less computation times, less computer memory and fewer 

unknowns are needed by the 4-SI method than with the 2-SI method to solve a 

particular problem. In addition, the 4-SI scheme can handle remarkably coarser 

meshes than the 2-SI method, i.e. edge lengths of the order of 0.25A, are 

acceptable. This translates to fewer unknowns with the 4-SI method. In fact 

some results have shown that edge lengths of the order of 0.38X yield 

surprisingly good results.

Chapter 4 presented the 4-SI formulation for electromagnetic scattering by 

dielectric objects only. The expression for the evaluation of the impedance matrix 

terms were derived and presented in a format suitable for program coding. The 

same concepts used for the evaluation of the impedance matrix integrals in 

chapter 3 were used. The results for scattering by dielectric objects were 

presented. These were compared with the 2-SI results and results from 

published literature. The same conclusions drawn from chapter 3 apply to 

chapter 4. The 4-SI method also works for dielectric objects and that the 4-SI is 

a computationally more efficient method than the 2-SI for solving electrically 

larger dielectric objects with a large radius of curvature. Less computation time 

and fewer unknowns is needed to converge to a solution. As in chapter 3, the 4- 

SI tolerates edge lengths larger than 0 .25^, where kd is the wavelength of the
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electromagnetic wave inside the dielectric. This explains the decrease in the 

number of unknowns in the 4-SI method compared to the 2-SI method.

Chapter 5 presented the formulation for the scattering by mixed problems, 

comprising dielectric and conducting objects. Most of the theory meant for this 

chapter was covered in chapters 3 and 4. Electromagnetic scattering results for 

mixed objects were presented and compared with the results obtained using the

2-SI method and published literature. Again, the same trend observed in results 

presented in chapters 3 and 4 were observed, i.e. the 4-SI requires less number 

of unknowns and takes less computation time when dealing with electrically 

larger problems when compared with the 2-SI method.

From the results presented in chapters 3, 4 and 5, it is obvious that the 4-SI 

scheme works. The examples that have been presented clearly show that the 4- 

SI, when compared to the conventional 2-SI method as proposed by Rao et. a! 
[6], reduces the number of unknowns without compromising the accuracy of the 

solution. This translates to improved computation times and lower computer 

storage space. However, these gains can only be achieved if the object under 

test is electrically large, otherwise the conventional 2-SI MoM approach is 

superior to the 4 fold scheme. From the results presented in chapters 3, 4 and 5, 

it can be seen that the 4-SI method improves the computational efficiency in the 

sense of both memory and CPU time over that of the 2-SI method. However, this 

is only possible for objects whose dimensions exceed the order of a A, the 

wavelength of the incident wavelength in the case of conducting objects, or it is 

the wavelength inside the dielectric object. Electrically smaller objects or objects 

with high radius of curvature or fine detail need very fine mesh so that the 

geometrical surface is described more accurately than with a coarser mesh. In 

those cases, the advantages of the 4-SI method no longer apply.
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It was also observed that the 4-SI is better equipped to handle electromagnetic 

scattering problems at or near grazing angles of incidence. In such cases, more 

surface waves are generated and the 2-SI scheme struggles to converge to 

solution even with very fine mesh densities.

A 4-SI method has been used to analyse scattering from conducting and 

dielectric objects. This is achieved by testing the full surface integrals of the 

impedance matrix without making any assumptions. Gaussian quadrature is used 

to solve the integrals for closely coupled triangular patches leaving the one point 

Gaussian quadrature rule for the loosely coupled patches.

6.3 Future Work

More work is needed to validate the 4-SI scheme against other examples. The 4- 

SI scheme has been demonstrated to work well for dielectrics and conducting 

objects. The 4-SI numerical results for the electromagnetic scattering by 

dielectrics and conducting objects are encouraging for the investigation of this 

procedure for the solution of electrically larger problems where the advantage of 

the 4-SI is expected to be more pronounced. The results for the mixed objects 

have been inconclusive, mainly because of the limitations imposed by the 

computing resources.

Although not reported in the thesis, the current distribution on the edges of thin 

dielectric slabs (thickness typically less than 0 .0 1 ^ )  Is not being modelled

properly. This is probably due to the source and observation points being very 

close each other, resulting in near singularity terms in the impedance matrix 

terms. This needs further investigation.

This work demonstrates that 4-SI scheme has an advantage over the standard 2- 

SI formulation in the RCS prediction of dielectric and conducting objects.
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The conventional MoM technique leads to fully populated impedance matrices. 

This limits the electrical size of the problem that can be solved on a given 

computer with limited memory. The application of fast solution methods such the 

fast multipole method [38] to the MoM leads to reduced memory and CPU 

requirements. Very recently, McCowen [169] demonstrated the effectiveness of 

applying the FMM to the CFIE by reducing the matrix-fill time and the computer 

storage of the original CFIE by over 80%. Because of the improved accuracy 

demonstrated for the 4-SI formulation, particularly for scattering from perfectly 

conducing objects and to a less extent scattering from dielectric objects, there is 

scope to carry over the 4-SI to the fast-multiple method with view to further 

enhancing the effectiveness of the fast-multiple method's applications.
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Appendix A

A Normalized Local Area Coordinate System 
and numerical integration over a triangle

The integral considered in Chapters 3, 4 and 5 for numerical of a function f  over 

a triangle is performed by a Gaussian quadrature rule such that:

I =  \ \ f {a <P<Y}dA = A^ Wf ( . a l iP i 'Y l)  (A-1)
T '=1

where the ith Gaussian point of location ( t f / , / ? / , / / ) ,  there corresponds a 

Gaussian weight M^and functional evaluation f{ccn p n Y )̂. T is a flat triangle 

of area A. The error in quadrature is zero if the number of points ng is of 

sufficient magnitude. The values of the constants wf, cinPnYjWZ listed in

Table A.l for the various formulas. The most convenient way to evaluate the 

integral is to transform coordinates to a local system of area coordinates [127] 

within triangle T. The triangle T is divided into three regions of area Ai, A2/ and 

A3 which are constrained to satisfy Ai + A2 + A3 = A, as shown in Figure (A.l).
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Figure A.l Definitions of areas used in defining area coordinates. 

The normalised area coordinates are defined as

which, because of the area constraint, must satisfy

a  + p  + y -  1 (A.3)

Some of the quadrature rules are listed in Table A.l. A multiplication factor M 
indicates the number of permutations associated with an evaluation point having 

a weight wr  For example, M =1 is associated with an evaluation point at the

triangle's centroid M = 3 indicates a point on a median line and M= 6

indicates an arbitrary point in the interior of the triangle. The factor p  indicates 

the order of the quadrature rule.
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It can be shown that [169] : 

dA = 2A d a  d p

It can easily be shown that the surface integral over T In (A.l) transforms 

as follows:

1= \ \ f { a i p i y)dA = 2 A ) 1\  f { a , P , y ) d a  dp
T a=0/3=0

Equation (A.5) is used to evaluate the integral over the source triangle.

(A.4)

(A. 5)
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Table A .l Weights and evaluation points for integration on triangles.

n W, a P/Y M P

1 1.000000000000000 0.333333333333333 0.333333333333333 1

0.333333333333333 1

3 0.333333333333333 0.666666666666667 0.166666666666667 2

0.166666666666667 3
4 -0.562500000000000 0.333333333333333 0.333333333333333 3

0.333333333333333 1
0.333333333333333 0.200000000000000
0.600000000000000 0.200000000000000 3

6 0.109951743655322 0.816847572980459 0.091576213509771 4

0.091576213509771 3
0.223381589678011 0.108103018168070 0.445948490915965

0.445948490915965 3
7 0.225000000000000 0.333333333333333 0.333333333333333 5

0.333333333333333 1
0.125939180544827 0.797426985353087 0.101286507323456

0.101286507323456 3
0.132394152788506 0.059715871789770 0.470142064105115

0.470142064105115 3

12 0.050844906370207 0.873821971016996 0.063089014491502 6

0.063089014491502 3
0.116786275726379 0.501426509658179 0.249286745170910

0.249286745170910 3
0.082851075618374 0.636502499121399 0.310352451033785

0.053145049844816 6
13 -0.149570044467670 0.333333333333333 0.333333333333333 7

0.333333333333333 1
0.175615257433204 0.479308067841923 0.260345966079033

0.260345966079033 3
0.053347235608839 0.869739794195568 0.065130102902216

0.065130102902216 3
0.0771133760890257 0.638444188569809 0.312865496004875

0.486903154253160 6
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Appendix  B

Defin i t ion  of  S c a t t e r i n g  A n g le s

The azimuth angle and the elevation angle used in the RCS plots are defined in 

Figure B.l, where <p denotes the azimuth angle, 0  denotes the elevation angle, 

and a  denotes the polarization of the Incident wave. Figure B.l shows the case 

where the plane wave is incident on a fla t plate. The E-polarisation is defined 

when a  =  9 0 ° and the H-polarisation occurs when a  = 0 ° .

Figure B.l Definition of the azimuth, elevation and polarisation angles

used in the calculation of RCS.
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The incident electric field is usually specified with unity amplitude and may be 

written as :

E' = [(a ■ 8 )0  + ( a • m e ' ikr = [Ex 0x + Ey0y  + E J ]

where

kr r = -k 0 sin(3 )[cos($  )x +  sm ($  )^ ] 

and kt is the propagation constant in the medium under consideration.

(B.l)

(B.2)
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