

 Swansea University E-Theses ___

The global intelligent file system framework.

Gooch, Joanna

 How to cite: ___
Gooch, Joanna (2006) The global intelligent file system framework.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42337

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42337
http://www.swansea.ac.uk/library/researchsupport/ris-support/

The Global Intelligent File System
Framework

Joanna Gooch BSc. (Wales)

A thesis submitted to the University o f Wales in
candidature for the degree o f Philosophiae Doctor

Department o f Computer Science
University o f Wales, Swansea

September 2006

ProQuest Number: 10798045

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10798045

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

Since its inception the Internet has grown rapidly in both size and importance in our
everyday lives. The Internet today is the preliminary model o f what is commonly
called the global information infrastructure. However, at the moment this “infras
tructure” is considered to be an addition to our computer, and is not an integrated
part o f a file system which is essentially a “local information infrastructure” o f a
computer. Advancements in the sizes o f disks in computers, network bandwidth
and the types o f media available mean users now keep large amounts o f files in their
personal data storage spaces, with little or no additional support for the organisa
tion, searching or sharing o f this data. The hierarchical model o f file system storage
is no longer the most effective way o f organising and categorising files and infor
mation. Relying largely on the user, rather than the computer, being efficient and
organised its inflexible nature renders it unsuitable for the meaningful coordination
o f an increasing bulk o f divergent file types that users deal with on a daily basis.

The work presented in this thesis describes a new paradigm for file storage, man
agement and retrieval. Providing globally integrated document emplacement and
administration, the GIFS (Global Intelligent File System) framework offers the nec
essary architecture for transparently directing the storage, access, sharing, manipula
tion, and security o f files across interconnected computers. To address the discrep
ancy between user actions and computer actions, GIFS provides each user with a
“Virtual Secretary” to reduce the cognitive workload and remove the time-consuming
task of information organisation from the user. The Secretary is supported by a
knowledge base and a collection o f intelligent agents, which are programs that man
age and process the data collected, and work behind the scenes aiding gradual pro
liferation o f knowledge. The Virtual Secretary is responsible for providing fast and
accurate assistance to aid users who wish to create, store, retrieve, share, secure and
collaborate on their files.

Through both system prototyping and performance simulation it is demonstrated
that it is desirable as well as feasible to deploy a knowledge base in supporting an
intelligent user interface that acts like a human assistant who handles paperwork,
looks after filing, security and so on. This work provides the contribution o f a new
framework and architecture to the field of files systems and document management
as well as focusing on reducing the burden placed upon users through everyday
usage o f computer systems. Such a framework has the potential to be evolved into
a highly intelligent assistant to a user over a period o f service and the introduction
o f additional agents, and provides the basis for advancements in file system and
organisational technologies.

LIBRARY

^ S W P ^

Summary

Since its inception the Internet has grown rapidly in both size and importance in our
everyday lives. The Internet today is the preliminary model o f what is commonly
called the global information infrastructure. However, at the moment this “infras
tructure” is considered to be an addition to our computer, and is not an integrated
part o f a file system which is essentially a “local information infrastructure” o f a
computer. Advancements in the sizes o f disks in computers, network bandwidth
and the types o f media available mean users now keep large amounts o f files in their
personal data storage spaces, with little or no additional support for the organisa
tion, searching or sharing o f this data. The hierarchical model o f file system storage
is no longer the most effective way o f organising and categorising files and infor
mation. Relying largely on the user, rather than the computer, being efficient and
organised its inflexible nature renders it unsuitable for the meaningful coordination
o f an increasing bulk o f divergent file types that users deal with on a daily basis.

The work presented in this thesis describes a new paradigm for file storage, man
agement and retrieval. Providing globally integrated document emplacement and
administration, the GIFS (Global Intelligent File System) framework offers the nec
essary architecture for transparently directing the storage, access, sharing, manipula
tion, and security o f files across interconnected computers. To address the discrep
ancy between user actions and computer actions, GIFS provides each user with a
“Virtual Secretary” to reduce the cognitive workload and remove the time-consuming
task of information organisation from the user. The Secretary is supported by a
knowledge base and a collection o f intelligent agents, which are programs that man
age and process the data collected, and work behind the scenes aiding gradual pro
liferation o f knowledge. The Virtual Secretary is responsible for providing fast and
accurate assistance to aid users who wish to create, store, retrieve, share, secure and
collaborate on their files.

Through both system prototyping and performance simulation it is demonstrated
that it is desirable as well as feasible to deploy a knowledge base in supporting an
intelligent user interface that acts like a human assistant who handles paperwork,
looks after filing, security and so on. This work provides the contribution o f a new
framework and architecture to the field of files systems and document management
as well as focusing on reducing the burden placed upon users through everyday
usage o f computer systems. Such a framework has the potential to be evolved into
a highly intelligent assistant to a user over a period o f service and the introduction
o f additional agents, and provides the basis for advancements in file system and
organisational technologies.

Declaration

This work has not been previously accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed (candidate)

Date c o t

Statement 1
This thesis is the result o f my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A bibliog
raphy is appended.

Signed (candidate)

Date(22.A..1

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

Signed (candidate)

Date

Acknowledgments
I would like to acknowledge the help o f many people during my academic career at
Swansea. To my supervisor, Professor Min Chen for his guidance and also Dr Phil
Grant for his role as my second supervisor. Although not directly in a supervisory
role, my gratitude goes to Professor Faron Moller for his support and witty reparte
and letting me sit in the big comfy chair.

Any thesis acknowledgment would not be complete without a mention o f those peo
ple who were initially responsible for my progress, development and bank balance.
My parents have long tolerated having to tell people I’m a student, so I hope that this
thesis not only makes them proud, but also gives them the relief o f being able to tell
people I ’m a doctor and the knowledge that I love them both very much. I would
also like to acknowledge my sister, for both being my big sister and for moaning
until I was forced to mention her here.

Two other people were also completely indispensable to me during my academic
career. An honorable mention goes to Chris Moutray for his love and support and
also to Roz Swayne, who went above and beyond the call o f duty. Without them this
thesis would have never existed and I might not either. I owe you both so much.

I also have to acknowledge the motley crew of friends otherwise referred to as
“The Pouch”. To Andy Gimblett, Basheera Khan, Jason Bees and Dave Brooks
for cheering me on, providing endless hours o f entertainment and inventing new
words; David Chisnall for his technical help, constant reassurance, amusing camera
work and enduring my comments on his personal life; and Will Harwood for be
ing my bicycling companion and a fantastic kinky butler (you make a mean cup o f
coffee).

For those people who had to put up with me jumping around the lab, I offer both
apologies and thanks. My first year would not have been the same without the
acrobatics enabled by Gareth Daniel, my last year would have suffered were it not
for my surrogate big brother Will Thimbleby, and all the years that went in between
would have been plain wrong without Alfie Abdul-Rahman. A special mention
goes to my test subjects for my second case study: Min Bhogaita, David Dalton,
Will Harwood, Kay Patel and Peter Robinson. I’m sorry for taking such delight in
your memory failure!

There are several other people whom I would like to thank in the little space I
have remaining: Justin Mitchell for his friendship over the last seven years; Lidia
Oshlyansky for our Saturday morning brunches and being the voice o f sanity; Nicola
Morgan for chatting and singing; Dr Andy Jones and Dr Andrew Blyth for giving me
something I wanted to work toward and Andy Price for everything I could possibly
need from a friend.

Contents

1 Introduction 1
1.1 M otivation... 1
1.2 Aims and O b je c tiv e s ... 4
1.3 Outline .. 6

2 File Storage and Management 9
2.1 Historical File System D evelopm ent.. 9

2.1.1 MSDOS and W in d o w s.. 11
2.1.1.1 FAT 1 2 .. 11
2.1.1.2 FAT 1 6 .. 11
2.1.1.3 NTFS .. 12
2.1.1.4 F A T 3 2 .. 12
2.1.1.5 W IN FS .. 12

2.1.2 M a c O S .. 13
2.1.2.1 H F S .. 13
2.1.2.2 H F S+ .. 13

2.1.3 U n ix /L inux .. 14
2.1.3.1 V 7 F S ... 14
2.1.3.2 FFS ... 14
2.1.3.3 A F S ... 15
2.1.3.4 LFS ... 16
2.1.3.5 X F S ... 16
2.1.3.6 G F S ... 16
2.1.3.7 R esier3& 4 .. 17
2.1.3.8 G o o g le F S .. 17

2.1.4 O th ers .. 18
2.1.4.1 C P /M ... 18
2.1.4.2 N F S ... 18
2.1.4.3 H P F S ... 19
2.1.4.4 J F S ... 19
2.1.4.5 V x F S ... 20
2.1.4.6 B F S ... 20
2.1.4.7 F ossil... 20

v

CONTENTS vi

2.1.4.8 ZFS ... 20
2.2 A rc h ite c tu res ... 21

2.2.1 F A T ... 21
2.2.2 H F S ... 23
2.2.3 F F S ... 24
2.2.4 L F S ... 26

2.3 Issues with File S y s te m s ... 27
2.3.1 Hierarchical File Systems ... 27
2.3.2 Relational File Systems .. 28
2.3.3 Distributed File S y s te m s ... 29
2.3.4 Other File S y s te m s .. 29
2.3.5 User In te rfa c e s ... 30
2.3.6 Security .. 30

2.4 The In te rn e t.. 31
2.4.1 A Brief H is to ry ... 31
2.4.2 Addressing and N a m in g .. 32

2.4.2.1 Network Control P ro to co l... 33
2.4.2.2 T C P /IP .. 33
2.4.2.3 Domain Name Servers... 34
2.4.2.4 The Internet as a File Storage S ystem 35

2.4.3 Interface D evelopm ent.. 35
2.4.3.1 Early Internet In terfaces.. 35
2.4.3.2 Web B ro w se rs ... 36

2.4.4 Searching and Locating F ile s ... 36
2.4.4.1 Search Engine Development 37

2.4.5 Security and G ro w th ... 38
2.4.6 Current U s e s .. 39
2.4.7 Semantic Web .. 39

2.4.7.1 R D F ... 40
2.4.7.2 Tagging and F o lk so n o m ie s 40
2.4.7.3 C ritic ism ... 41

2.4.8 D is c u s s io n ... 42

3 Information and Knowledge 44
3.1 Information O verload .. 44

3.1.1 O v erv iew ... 45
3.1.2 H is to r y .. 45
3.1.3 Effects .. 46

3.2 Artificial In te llig en ce .. 47
3.2.1 Knowledge B a se s .. 48
3.2.2 Data M i n i n g .. 49
3.2.3 Agents .. 50

3.3 Personal Information M anagem ent... 51

CONTENTS vii

3.3.1 Computer Supported Cooperative Work and Groupware 53
3.3.2 Personal A ssistan ts .. 55

3.3.2.1 Office A ssistan ts... 55
3.3.3 Personalised Views and Searches .. 56

3.4 D iscussion.. 58

4 GIFS Overview 60
4.1 In troduction ... 60
4.2 B ackground ... 61
4.3 O v e rv ie w .. 61
4.4 File L ife c y c le ... 68

4.4.1 User Action Taxonom y.. 71
4.4.1.1 Storing a f i l e .. 75
4.4.1.2 Retrieving a f i l e ... 75
4.4.1.3 Storing a new version o f a f i l e 76
4.4.1.4 Deleting a f i l e ... 76
4.4.1.5 Searching for f i l e s .. 77
4.4.1.6 User notification... 78
4.4.1.7 Setting file p e rm iss io n s .. 78
4.4.1.8 Setting keywords .. 79

4.4.2 S u m m a ry ... 79

5 Data and Knowledge 80
5.1 In troduction ... 80

5.1.1 Technical Q u e s t io n s ... 80
5.1.2 A ssu m p tio n s .. 81
5.1.3 A p p ro a c h ... 82

5.2 Acquisition o f data from files via human in teraction 82
5.3 Design o f the Knowledge B a s e ... 83

5.3.1 Design P rinc ip les.. 83
5.3.2 T e rm in o lo g y .. 84
5.3.3 D e fin itio n s .. 84
5.3.4 Knowledge Base S tru c tu re ... 88

5.4 Life cycle o f data and know ledge.. 90
5.4.1 Compound Knowledge Instances .. 91
5.4.2 Example o f D a t a .. 92

5.5 Agents for Knowledge Capture and M an ipu la tion 93
5.5.1 O v e rv ie w ... 93
5.5.2 Classifications o f A g e n ts .. 93

5.5.2.1 A Brief D e sc rip tio n ... 95
5.5.3 Agent C re a tio n ... 96
5.5.4 A Closer L o o k ... 97

5.5.4.1 Filename A g e n t ... 97

CONTENTS viii

5.5.4.2 User Analysis A g en t... 98
5.5.4.3 Search Updater ... 99
5.5.4.4 Permissions A g e n t.. 99

5.5.5 D is c u ss io n ... 101

6 Case Studies 102
6.1 In troduction ..102
6.2 Case Study 1 102

6.2.1 H y p o th e s is ... 102
6.2.2 A ssu m p tio n s ..103
6.2.3 A p p ro ach .. 103
6.2.4 Scalability o f the Knowledge Based Approach 104

6.2.4.1 General Problem of Knowledge Base Growth . . 104
6.2.4.2 Previous Studies on the Growth o f Files105
6.2.4.3 Swansea File Growth Data ... 105
6.2.4.4 Increase in File S i z e s ...107
6.2.4.5 Increase in Disk S iz e s ...109
6.2.4.6 File Growth S im u la tio n ... 109
6.2.4.7 Data Creation T h e o r y ...110
6.2.4.8 Data Creation Implementation I l l

6.2.5 Example C ase ..113
6.2.5.1 Different Approaches for Implementation 114
6.2.5.2 Approach 1 114
6.2.5.3 Approach 2 ... 114
6.2.5.4 Approach 3 115

6.2.6 Test C onditions.. 115
6.2.7 Direct S e a rc h ... 115
6.2.8 Three Approaches for Improving the Direct S e a rc h117

6.2.8.1 C a c h in g ..117
6.2.8.2 A rc h iv in g ...118
6.2.8.3 Com binatory... 118

6.2.9 R e s u l t s ..118
6.2.10 Comparison o f Best-Case Scenario ..119
6.2.11 Comparison o f Worst-Case S cenario ..122
6.2.12 C o n c lu s io n ...126

6.3 Case Study 2 ...126
6.3.1 H y p o th e s is ...126
6.3.2 A ssu m p tio n s..127
6.3.3 A p p ro ach .. 127
6.3.4 Managing File Access L i s t s ...127
6.3.5 Example C a se ... 129
6.3.6 File Access Data C o lle c t io n ... 130
6.3.7 Virtual Secretary Created Access L is ts .. 134

CONTENTS ix

6.3.7.1 C alcu la tions... 134
63.1.2 Defining Personalities and O u tpu t...............................139

6.3.8 Virtual Secretary S u g g e s tio n s ... 139
6.3.8.1 Default P e rs o n a l ity .. 139
6.3.8.2 Strict Personality ... 140
6.3.8.3 Lenient P e rso n a lity .. 140

6.3.9 Comparison o f E ffo r t.. 143
6.3.10 R e s u l t s ... 143
6.3.11 C o n c lu s io n ...146

6.4 D iscussion... 146

7 System Level Development 148
7.1 O v e rv ie w ... 148

7.1.1 Technical Q u e s t io n s .. 148
7.1.2 A ssu m p tio n s ... 149
7.1.3 Research A pproaches..150

7.2 System D e s i g n ..153
7.2.1 Architectural approaches... 153
7.2.2 File p la c e m e n t ..158

7.2.2.1 Allocation U n i ts .. 158
1.2.2.2 V ersioning ...158
1.2.23 File P lacem ent..159

7.2.3 Communication P ro to c o ls .. 160
7.2.4 Encryption and S e c u r i ty ... 164

7.2.4.1 File E n c ry p tio n ...164
7.2.4.2 User A uthentication..165

7.3 System Level Im p lem en ta tio n ... 166
7.3.1 File D a ta b ase ... 166

7.4 File L ife c y c le ...167
7.4.1 V a r ia b le s ..169
7.4.2 File E x a m p le ... 169

7.4.2.1 User A uthentication.. 169
7.4.2.2 File C reation ... 170
7.4.2.3 Granting Access Perm ission...171
7.4.2.4 Sharing K n o w led g e .. 174
7.4.2.5 Informing Virtual S e c re ta rie s175
7.4.2.6 Editing a File ..175
7.4.2.7 Reading the Latest Version o f a F i le177
7.4.2.8 Modifying Access P e rm issio n s.................................. 177
7.4.2.9 Deleting a F i l e ..180

7.5 S u m m a ry ..180

8 Conclusion 182

CONTENTS x

8.1 Achievements and Evaluation.. 182
8.1.1 Review and Analysis o f Current Technologies........................ 183
8.1.2 Concept o f a Global File S y stem ... 184
8.1.3 Knowledge-Based Framework D e s ig n .. 184
8.1.4 Evaluating System S c a la b ility ..185

8.2 Future W o rk ..186

A Full Results for Case Study 1 188
A .l Results for Brute Force, Best-Case Scenario D a t a188
A.2 Results for Cached, Best-Case Scenario D a t a 191
A.3 Results for Archived, Best-Case Scenario Data 194
A.4 Results for Combined, Best-Case Scenario D a ta 197
A.5 Results for Brute Force, Worst-Case Scenario D a t a200
A.6 Results for Cached, Worst-Case Scenario D a ta201
A .l Results for Archived Worst-Case Scenario D a t a202
A.8 Results for Combined, Worst-Case Scenario D a t a 203
A.9 Full Results for Data Collection S tu d y ... 204

B Communication Protocol Examples 209

Bibliography 214

List of Figures 237

List of Tables 239

Chapter 1

Introduction

1.1 Motivation

Anyone who has used a computer regularly over the past 5 or so years will be able
to testify at the increasing amounts o f data which we are bombarded with on a daily
basis. Most users have no idea how to best store, organise and search their own data,
and even the best user-created hierarchy structures inevitably contain a folder named
“stu ff5, “random55, “misc” or “to sort55 containing all the files that did not seem to fit
anywhere else or required extra thought to be categorised. Computers have always
been hailed as the answer to our problems of time-consuming and monotonous tasks,
but the up-keep and care taking o f using these systems is becoming increasingly time
consuming in itself.

The main problems that users face is deciding what should be done with a file. First
o f all deciding how important it is, then considering whether or not it should be
kept in a “working55 directory, or a more permanent storage/archive directory. Then
if it requires the extra security o f setting a password or encryption, who should be
allowed to see it, who should be allowed to edit it, and whom it should be hidden
from. This is without considering the categorisation o f the file that most users have
to undertake in order to place a file on the physical disk in a nested set (or tree) of
directories.

Consider that in a paper-based office there is usually at least one secretary or clerical
assistant who performs a variety o f organisational tasks. This person is responsible
for the paper filing needs o f one person or a group o f people, and can store files in
and retrieve them from an assortment o f places such as a filing cabinet, a safe or
someone's desk with appropriate confidentiality. It is not unusual for this person to
also open, filter and forward incoming mail to the required individuals, bring time
sensitive documents to the owner's attention, copy documents and deliver them by
hand to the intended recipients.

1

1.1 Motivation 2

Whilst the advent o f emails and the proliferation o f networked offices has changed
the role o f a secretary somewhat, the analogy remains useful. The idea that within
an electronic file system users should be without such assistance is similar to sug
gesting that a manager o f an office should be responsible for dealing with all their
own paperwork, resulting in a desk piled high with stacks o f documents which there
is little time or inclination to deal with. Running an office in such a manner would
no doubt cause a rapid degradation in terms o f productivity and service and is obvi
ously not the ideal situation.

In the modem workplace (and to a slightly lesser extent, at home) people are now
acquiring incredible amounts o f data through everyday activities. Not only are text-
based documents created electronically for use in the workplace, jokes and ‘virals’
are circulated amongst friends via email, users are constantly searching and saving
information from the World Wide Web and taking photos or videos with digital
cameras. The sheer amount o f data now available to users means they no longer
have the time nor the organisational skills to process and store it all.

Hierarchies have been the structure o f file systems since the 1970’s, but their inflex
ible nature means that they are no longer suited to the everyday needs o f computer
users [207], Consider a user looking at a set o f photos which were taken on holi
day. An example o f directory path they might have stored their photos in could be
‘My Documents/My Pictures/Photos/Holiday05’. This seems almost sensible until
you realise there will be a multitude o f other file types associated with their holiday,
perhaps video files, digital maps, diaries or itineraries or saved web pages o f travel
arrangements. None o f these files could be categorised as being pictures, or photos
and so do not belong in those directories, yet they are all related to the holiday and
the photographs themselves. If all these files were to be put in the directory ‘My
Documents/Holiday05’ it would create difficulties when a user wanted to browse
their entire collection o f photos. Users need files to be categorised by several differ
ent attributes, but the structure o f hierarchical file systems does not allow for this.

While a hierarchy seems a logical way for a computer to organise and store files, it is
certainly not a logical way for humans to do the same [180]. There is no guarantee
that a user will be able to create a suitable storage hierarchy, nor that they will use
it consistently and without error. Users are prone to deleting the wrong versions
of files without a back up from which the original can be restored. Applications
(such as Adobe Acrobat) often have pre-defined directories that files are saved to
by default. If, without thinking, a user saves a document without properly reading
the file dialogue box (perhaps if they were in a rush) then a file could be stored
somewhere seemingly random. There is also the case where an application saves
multiple files in one action without letting the user know explicitly. For example,
saving a web page from within an Internet browser will save not only the HTML
page but will also generate a folder containing the images and other files included
in that page.

1.1 Motivation 3

File organisation is a perpetual activity for every computer user. However, the level
o f difficulties in this activity is becoming increasingly noticeable, largely due to in
formation explosion and deficiencies in current file systems. For example, many
managers and secretaries are constantly looking for extra disk space for storing doc
uments, or looking for files previously created on their computers. The hierarchical
tree structure available in most file systems (e.g., directories and folders) is a sat
isfactory mechanism for short-term and small-scale document organisation. How
ever, it becomes less user-friendly, often clumsy and problematic when dealing with
a large volume of files that are to be maintained over a long period. The sheer vol
ume of information users are confronted with reduces their likelihood o f organising
their documents. Categorising files and creating complex hierarchies for suitable
file storage can be a time-consuming task which places extra cognitive load on the
user [238].

Current search functions also lack in the required flexibility for users to deem them
useful. A deficit o f searchable criteria, a slow result time and poor quality o f results
are all reasons that discourage users from using search functions that are built into
their file or operating systems. This is another example of how the file system oper
ates on the agenda o f making the task easier for the computer, not the user. There are
no options to “find more files like this one”, even though comparisons are a perfectly
normal and logical path to follow in human thought processes.

Where there are document management systems with better search capabilities in
place, it is unlikely that a user will spend the required time and effort in “training”
a digital personal assistant, even if it would save them time in the long run [114].
The same can be said for archiving older files. Archiving is a process rarely used
by users, partly due to the growing size o f storage media, but also as it is an extra
housekeeping task for a user to perform.

File sharing is perhaps the most common activity in a collaborative environment
[88]. A user may typically create a document, and wish to distribute it to a group
o f other users. There are usually some additional requirements associated with this
task, such as read/write access permission, and transmission security. Despite the
fact that a variety o f mechanisms may be used for supporting this activity, they lack
in either user-friendliness or security, and in comparison with a human secretary,
most of the mechanisms leave a lot to be desired. For example, email attachments,
perhaps the most commonly used mechanism, may incur unnecessary duplication
and excessive space wastage. Many organisations and computer users are being
inundated with email attachments sent to them endlessly, and often pointlessly. Up
loading a document onto a web site is another mechanism typically for read-only
file sharing. It however requires some technical skills for setting up the service at
the server-end. Networked operating systems such as Windows also offer mecha
nisms for shared user space. Nevertheless, most o f these mechanisms are based on
file owners or groups, rather than on individual files. To most users, setting up a
mechanism in order for others to share a specific file is not really a trivial task.

1.2 Aims and Objectives 4

In an age when almost every facet o f our lives involves interaction with some kind
o f computer system, file security takes on an increasingly important role. Most
file systems rely on the security mechanisms provided by the operating system to
keep its contents secure. However, if these security measures usually consist o f a
password login and basic firewall which would provide no major problems to a per
sistent hacker, especially as many scripts or executables are freely distributed across
the Internet for such purposes. If these mechanisms were to be by-passed then an in
truder could gain unlimited access to the contents o f the files. A way to combat this
problem is by using an encrypted file system, but such systems require considerable
set-up and administration, a task that non-technical users would doubtful be able
to manage. File systems offering per-file encryption rely on the user remembering
passwords or keys in order to decrypt their files [40]. This could lead to one user
having to remember a variety o f different passwords that should (if the password is
to be considered secure) be comprised o f a seemingly random collection o f char
acters including digits and symbols. Encrypting the contents o f a file system also
creates problems for people working in a collaborative environment. I f an encrypted
file is to be shared amongst users or have multiple authors then there needs to be a
mechanism for key sharing, and users should not be expected to remember the keys
for each file.

Although both previous and current technologies have individually addressed the
problems related to file management discussed above, there has yet to be a combi
nation o f these technologies to provide a complete solution. Digital personal assis
tants [176] have been context-specific applications that do not solve the underlying
problems o f file storage but provide additional organisational capabilities to users.
In particular, previous systems have all required the user to specify the location o f
a file within the file system. The ‘secure’ and encrypted file systems have not been
designed to scale over a large network or to be deployed in a collaborative environ
ment with multiple users accessing and editing the same files. Knowledge-based
systems and tagging [38] are growing in popularity as this approach to knowledge
management is capable o f dealing with the increasing amounts o f data that users are
producing. Adaptive and search-based interfaces are allowing users to locate infor
mation more easily [1], but these systems do not remove the burden o f file location,
security management and the other activities commonly associated with file system
management.

1.2 Aims and Objectives

The aim of this thesis is to offer an alternative paradigm to the design, implemen
tation and deployment o f current file systems. Recent changes in the amount o f
computer data stored and accessed by users has meant that the older, monolithic
file systems both no longer service the needs o f users or are being utilised for the

1.2 Aims and Objectives 5

purpose originally intended.

However, these systems have shaped the way people think about and use computers,
so thefirst objective o f this thesis is to provide a thorough review and critical analysis
o f previous works on operating systems, file systems and security, knowledge bases,
intelligent agents and the Internet. In particular, the design ideas behind previous
and current file systems are re-examined and critiqued.

The second objective o f this thesis is to propose the concept o f a global file system.
All the required technologies are already in place, including the global infrastruc
ture o f the Internet, but they have yet to be combined in such a way to provide
scalable, secure and consistent file access. The global file system should offer in
creased functionality over existing file systems, catering for a wide-range o f user
needs including document placement, version control, support for collaborative en
vironments, secure storage, and powerful and intelligent search functions through
an adaptive interface. The addition o f these extra features in a file system will not
cause disadvantages for the user that are usually associated with these utilities. The
use o f such a file system will reduce the time, effort and cognitive ability needed to
manage files as well as providing a simple but powerful service to users even with
little technical expertise.

The third objective is to design the knowledge-based framework o f the entire system,
particularly those parts involved with the production, maintenance and analysis of
the knowledge bases as well as the optimal storage o f files. With such a generic
framework in place, we aim to develop and implement the separate parts required to
fulfill the concepts presented. This will include the structure o f the knowledge bases,
the user interface, integration with the operating system, communication protocols
and the file storage system.

The final objective is to demonstrate the practical feasibility and scalability o f the
system through simulation o f extended use. Through these studies it will be shown
that a global file system (and in particular, the knowledge based approach) could
scale to long term service, and also that over time the system could improve the
services offered to users by means o f adapting and predicting the user’s needs. The
analysis o f the results o f these tests will be used to facilitate further improvements.

If the above objectives o f this thesis were to be met, the main contribution o f this
work to the scientific community would be (i) the introduction o f a new conceptual
framework for a file system that is centered around a knowledge base in conjunction
with transparent internal organization of files for global access (in place o f the tra
ditional user-defined hierarchical file organization) and intelligent search-based file
archiving and retrieving facilities (in place o f the traditional listing and browsing fa
cilities); (ii) a good understanding, supported by experimental results, as to whether
or not such a framework is scalable in relation to the knowledge accumulation and
the future computational resources; (iii) a collection o f new methods proposed in
the case that a naive approach cannot achieve the required scalability;(iv) a proposal

1.3 Outline 6

o f the technical architecture for implementing such an architecture, supported by an
investigation into the technical feasibility o f a collection o f selected system compo
nents which are considered to be non-trivial in their integration into a file system.
Although this may not be a definite guideline for any commercial implementation
o f a new file system, it would be a first design exercise and feasibility study for such
an ambitious concept ever reported in the public domain.

This thesis is, however, not intended to deliver a complete file system based on such
a conceptual framework, which is most likely to be an unrealistic objective o f a PhD
programme. It is not intended to prove through user studies that such a file system
would be superior to the conventional file system, which would be a valid and useful
study if there were existing prototypes o f a comparable quality and completeness to
the commercial file systems.

The work conducted for achieving the above-mentioned objectives are detailed in
Chapters 2 - 7 , and the assessment o f the scientific contributions are discussed in
Chapter 8.

1.3 Outline

Chapter 2 will provide the reader with a background knowledge o f file storage and
management systems, including a detailed look at the architectures and histories of
the most important advances in storage technologies, document management sys
tems and the Internet. By studying the historical development o f file systems on
numerous platforms, a further understanding o f how situational and technological
developments influenced file system advancements can be obtained. Following the
historical overview, the more significant file system architectures are studied in more
technical detail. The issues faced by current and future file systems are presented,
including discussions on interface design and security. Finally, this chapter looks at
the development and growth o f the Internet, not just as a communications medium
but with special emphasis on its similarities to the more ‘traditional’ file systems, in
cluding the areas o f addressing, naming, searching, security, interface development
and growth.

Chapter 3 introduces the reader to the problems o f “Information Overload”, a con
cept which is now all too familiar but by no means a new development. This is
followed by a background discussion o f current issues facing those in the fields of
information retrieval, file system design and artificial intelligence. The designs,
uses and drawbacks o f current digital personal assistants, office assistants, per
sonal search agents and information retrieval systems are presented, along with an
overview of document management and classification systems. Chapter 3 aims to
equip the reader with a basic knowledge o f file retrieval, artificial intelligence sys
tems, digital personal assistants, agent technology and knowledge-based systems.

1.3 Outline 7

Both chapters 2 and 3 indicate material for further reading.

An in-depth overview of the uses o f GIFS is presented in chapter 4. From the per
spective o f a computer user, it is demonstrates how the deployment o f such a system
could save both time and effort. A background is provided to give the reader a strong
understanding o f the ideas and concepts that lead to the development o f a “Virtual
Secretary” and is further reinforced by a detailed example of a file life-cycle. Each
feature within GIFS and the Virtual Secretary is explained, without the need for
in-depth knowledge o f the system architecture.

Chapter 5 focuses on the aspects o f knowledge acquisition, processing and dissemi
nation within GIFS and takes a closer look at the under-lying data-mining and agent
technologies. Firstly the technique for gathering data from human interactions with
the system is examined, leading onto the design principles o f the knowledge base,
the terminology and definitions used and the internal structure o f the data. With the
basic concepts in place, the life-cycle o f data and knowledge within the system is
explored, including the algorithms and formulae which are used to specify search
results and suggestions, both pre-calculated and real-time. The technology behind
the intelligent agents required to build such a system is presented, along with clas
sifications o f each agent within GIFS. The tasks o f each agent are described with
in-depth examples o f the data created and analysed in order to support the Virtual
Secretary.

Chapter 6 encompasses two experimental studies in order to measure the scalability
and feasibility o f the system. For both, a detailed example is provided o f a scenario
of file system usage where a global file system would be advantageous. Firstly, this
chapter looks at the problems o f knowledge base and data growth, using data which
was collected from previous file system studies and created institutionally. In order
to predict the behaviour o f file and data growth, a simulation program is presented
to provide data to analyse in the case study. The study in itself comprises o f the
analysis and measurement o f several different algorithms and techniques to show
how a Virtual Secretary system could save the user time. The second case study
looks at the issue of feasibility and more specifically how much time and effort the
system could be expected to save a user. By using an example o f the ever-changing
access lists o f a file throughout its life-cycle, it is shown how the different settings
will cause the Secretary to behave in different ways in order to provide a more useful
service to the user.

The technical details o f GIFS can be found in Chapter 7, including details o f the un
derlying system design and a discussion on the merits and drawbacks o f alternative
architectures. The design and implementation of the communications protocols and
authentication methods deployed are examined in conjunction with the encryption
and security features provided by the system. Chapter 7 will provide a technical
illustration o f the system implementation and how it interfaces with current op
erating systems and networks. Perhaps most importantly, this chapter contains a

1.3 Outline 8

detailed walk-through of a typical file added by a user to the system, demonstrat
ing the design concepts discussed previously and the practical operations which are
transparent to the user.

Chapter 8 contains a critical assessment and evaluation o f the research with respect
to the aims and objectives. This chapter will provide an overview of the contri
butions that this thesis has provided to the scientific community. It will provide
an overview of the main highlights that have resulted from the research presented
hereof. Furthermore, this chapter will identify the future work which would advance
the concepts presented herein.

Chapter 2

File Storage and Management

Since computers were first used as a storage medium, the design and implementation
o f file systems has been a major research area for both academic institutions and
software manufacturers. With modem disks and operating systems now capable of
storing huge amounts o f data, file systems have had to constantly evolve in order to
meet the user’s needs and take advantage o f new technologies.

This thesis proposes a framework for a global and intelligent file storage and man
agement system, and examines its use and implementation mainly from the per
spective of file systems. This review chapter provides us with the background o f the
evolution o f file systems developed in conjunction with various operating systems.
The chapter also briefly examines the Internet as a quasi-file-system, focusing on the
features relevant to the notions o f a traditional file system. This chapter helps un
derline the novelty of the proposal of GIFS (Global Intelligent File System) detailed
in Chapters 4-7, and in particular the feasibility o f the architectural design detailed
in Chapter 7.

2.1 Historical File System Development

Over the years, file systems have been developed for a number o f different plat
forms with different storage needs. Table 2.1 shows a basic time line of file system
development and the significant contributions generated by each.

9

2.1 Historical File System Development 10
Ke

y
Fe

at
ur

es
No

su

bd
ire

ct
or

ie
s,

 b
ut

16

“u
se

r
ar

ea
s”

, n
o

se
cu

ri
ty

D
es

ig
ne

d
for

 f
lop

py

di
sk

s,
m

ax
im

um

pa
rti

tio
n

siz
e

32
M

B
i-n

od
es

,
si

ng
le

,
do

ub
le

an

d
tri

pl
e

in
di

re
ct

 b
lo

ck

ad
dr

es
si

ng
C

yl
in

de
r

bl
oc

ks
,

lon
g

file

na
m

es
,

5-
at

tri
bu

te

di
re

ct
or

y
en

try
,

2
bl

oc
k

si
ze

s
La

rg
e-

sc
al

e,
 t

ra
ns

pa
re

nt
,

lo
w

-b
an

dw
id

th
,

di
str

ib
ut

ed

file

ac
ce

ss
Pr

ot
oc

ol
 f

or
di

str
ib

ut
ed

FS

.
Bu

ilt
 o

n
O

N
C

R
PC

4
Su

cc
es

so
r

to
M

FS
,

B*
tre

e
st

ru
ct

ur
e,

 G
U

I
He

av
ily

m

od
ifi

ed

ve
rsi

on

of
FA

T
A

llo
w

ed

m
ul

tip
le

dis

k
pa

rt
iti

on
s

B-
tre

e
st

ru
ct

ur
e,

 A
llo

w
ed

lon

g
fil

en
am

es

an
d

3
tim

es
ta

m
ps

pe

r
fil

e
Fi

rs
t

co
m

m
er

ci
al

ly

su
cc

es
sf

ul
 j

ou
rn

al
in

g
FS

Fi
rst

 c
om

m
er

ci
al

 j
ou

rn
al

in
g

file

sy
st

em
Q

uo
ta

s,
al

te
rn

at
iv

e
da

ta
st

re
am

s,
sp

ar
se

fil

es
,

re
pa

rs
e

po
in

ts
,

vo
lu

m
e

m
ou

nt
 p

oi
nt

s,

ha
rd

lin
ks

,
file

co

m
pr

es
sio

n
an

d
en

cr
yp

te
d

st
or

ag
e

Lo
g-

st
ru

ct
ur

ed

wi
th

sim
ila

r
on

-d
isk

fo

rm
at

 t
o

U
FS

Jo
ur

na
lin

g
FS

Lo
ng

file

na

m
es

,
32

-b
it

cl
us

te
r

fie
ld

Jo
ur

na
lin

g
FS

wi
th

ex
te

nd
ed

file

at

tri
bu

te
s,

 i
nd

ex
in

g
an

d
qu

er
yi

ng
U

ni
co

de

na
m

es
,

lon
g

fil
en

am
es

,
32

-b
it

bl
oc

k
ad

dr
es

se
s

N
on

-c
lie

nt
 s

er
ve

r
m

od
el

 f
or

sh
ar

ed

sto
ra

ge

ac
ro

ss

Li
nu

x
cl

us
te

rs
Fi

rs
t

jo
ur

na
lin

g
FS

to
be

in
cl

ud
ed

in

sta
nd

ar
d

Li
nu

x
ke

rn
el

,
m

et
ad

at
a

on
ly

jo
ur

na
lin

g
64

-b
it

bl
oc

k
po

in
te

rs
Sn

ap
sh

ot
s

av
ai

la
bl

e
to

all
 u

se
rs

O
pt

im
ise

d
for

lar

ge

fil
es

an

d
ha

rd
w

ar
e

fa
ilu

re
s

Ex
tre

m
el

y
lar

ge

ca
pa

ci
ty

R
el

at
io

na
l

da
ta

ba
se

d
FS

Y
ea

r
19

77
19

77
19

79
19

83
19

84
19

84
19

85
19

85
19

87
19

88
19

90
19

91
19

93

19
93

19
94

19
96

19
96

19
98

20
00

20
01

20
02

20
03

20
03

20
04 i

M
ad

e
B

y
Ga

ry

K
ild

al
l

M
ic

ro
so

ft
Be

ll
La

bs
Ki

rk

M
cK

us
ic

k
C

M
U

Su
n

A
pp

le

C
om

pu
te

rs
N

ov
el

l
M

ic
ro

so
ft

IBM

&
M

ic
ro

so
ft

IB
M

V
er

ita
s

M
ic

ro
so

ft

M
ar

go

Se
ltz

er
SG

I
M

ic
ro

so
ft

Be

In
c.

A
pp

le
Si

st
in

a
N

am
es

ys
Ki

rk

M
cK

us
ic

k
Be

ll
La

bs
G

oo
gl

e
Su

n
M

ic
ro

sy
st

em
s

M
ic

ro
so

ft

Fi
le

Sy
st

em
C

P/
M

FA
T

12
V

7F
S

FF
S

A
FS

N
FS

H
FS

N
W

FS
FA

T
16

H
PF

S
JF

S
V

xF
S

N
T

FS

LF
S

X
FS

FA
T3

2
B

FS
H

FS
+

G
FS

R
ei

se
rF

S
U

FS
2

Fo
ss

il
G

oo
gl

eF
S

ZF
S

W
in

FS

<D
6 cx

S
T3

+-*
§
t:oa,

(N
u
3
£

2 .1 Historical File System Development 11

2.1.1 MSDOS and Windows

2.1.1.1 FAT12

The initial version o f FAT is now commonly referred to as FAT 12 and was written by
Bill Gates and Marc Donald in 1977 for managing disks in Microsoft Disk BASIC.
It was originally intended for use on floppy disks only, there were no hierarchies and
the maximum partition size was 32MB. The maximum number o f files allowed was
a couple o f dozen as the sole root directory had to fit on the first track o f the disk.
In 1983 with the release o f MSDOS 2.0, hierarchical directories were introduced
which added capacity as the overall size was no longer restricted to the fixed size
o f the root directory. There could now be as many files as there were numbers o f
clusters.

2.1.1.2 FAT16

The original FAT 12 file system was only intended to work on floppy disks, so when
IBM brought out a new PC featuring a 20MB hard disk in 1984, Microsoft released
MS-DOS 3.0. FAT 16 was named as the cluster addresses were increased to 16-bit
which enabled much bigger file systems as the number o f clusters could increase to
65,517. However, in the initial version o f FAT 16 the maximum number o f sectors
and maximum partition size o f 32MB was not altered.

Hard disks can have up to 4 primary partitions, however MS-DOS would only use
the partition marked as active which was also the partition it would boot. In Jan
uary 1986 MS-DOS 3.2 was released which introduced a new kind o f partition, an
extended partition. The extended partition acted as a container for additional parti
tions called logical drives and to begin with only one logical drive was allowed. By
the release o f MS-DOS 3.3 in August 1987, up to 24 logical drives were allowed (a
limit most likely imposed from the C: - Z: disk naming system), but still only inside
one extended partition.

The second version o f FAT 16 was released in November 1987 in Compaq DOS
3.31 with the 16-bit disk sector being increased to 32 bits. Although there were only
minor changes to the way things were stored on the disk, the entire DOS code had
to be rewritten to use 32-bit numbers, which was made more difficult by the fact
it had originally been written in 16-bit assembly language. In 1988 these changes
were released to a wider audience in MS DOS 4.0. Partition size was now restricted
by the 8-bit signed count o f sectors-per-cluster (maximum 642). Sectors were 512
bytes which allowed 32KB clusters and thus the limit for a FAT 16 partition size was
set at 2GB. FAT 16 is still used on most removable media (e.g. USB flash drives and
camera memory cards) as it has better performance than NTFS over small volumes.

2 .1 Historical File System Development 12

2.1.1.3 NTFS

The New Technology File System was first seen with the release o f WinNT 3.1 in
July 1993. It is the standard file system of Windows NT and its descendants: Win
dows 2000, Windows XP and Windows Server 2003 [76]. Other versions o f Win
dows are unable to read NTFS volumes without the assistance o f third-party utilities.
There are currently 5 different versions o f NTFS, with each providing additional
features [244]. Overall it has introduced the concepts o f quotas, alternative data
streams, sparse files, reparse points, volume mount points, directory junctions, hard
links, hierarchical storage management, native structured storage, volume shadow
copy, file compression, single instance storage and encrypting FS [192]. The main
drawback o f this file system is the lack o f support from non-Microsoft operating
systems which has been caused by Microsoft keeping the exact specifications se
cret. There now exists a reverse engineered implementation o f NTFS which runs on
FreeBSD and Linux that offers both read and write support, but for many years non-
Microsoft operating systems only had the capability to read from NTFS file systems
(if at all).

2.1.1.4 FAT32

The volume size limit o f FAT 16 caused Microsoft to implement a new version of
FAT to release with Windows 95, that is, FAT32. Cluster counts are held in a 32-bit
field, with 28 of these currently in use. Mathematically speaking, FAT32 should
support > 228 clusters, allowing drive sizes to be up to 2TB, however an error in
Scandisk won’t let FAT grow to over 222 clusters, so the volume limit is 124.55GB.
The maximum possible size o f a file on a FAT32 volume is around 4GB which was
more than adequate at the time o f release. In more recent years this has become an
annoying restriction for some users as modem applications regularly create files that
exceed this limit.

Windows ME was the last Microsoft operating system based on MS-DOS, and hence
there have been no more FAT file systems. Later versions o f Windows can read
FAT32 but are restricted to creating FAT32 partitions o f 32GB or smaller [193],
and although this restriction is documented [282] it has not been explained, leav
ing some experts to speculate that “Microsoft intentionally crippled the FAT32 file
system” [209].

2.1.1.5 WINFS

Windows Future Storage is not a completely new file system, as it was intended to
be built on top o f NTFS [234]. It was first expected to be released with Vista, the
new Microsoft operating system in 2006, but is now not expected until late 2007 at

2.1 Historical File System Development 13

the earliest [307], if at all. It flattens the hierarchy to a single directory and uses
a relational database to enable searching on file attributes [120]. It is implemented
in SQLServer, C# and C++ [235], and can allow the synchronisation o f external
storage, using agents for the tasks o f data gathering and sorting [308]. It is similar
to concept to the Be File System, released many years earlier [213] which can also
been seen in §2.1.4.6.

2.1.2 MacOS

2.1.2.1 HFS

Macintosh computers originally used the Macintosh File System (MFS) introduced
in 1984. As Macintosh systems stored more data than the other file systems available
at the time, Apple developed an entirely new file system. It was only designed to
work on small and slow media, so several performance enhancements were made,
(such as referring to files by handle instead o f name and storing all file and directory
information in a single file) which worked well until large volumes caused serious
performance problems. The time needed for MacFS to display the contents o f a large
directory was very slow due to the way it had to search through all the files with a
matching directory handle. This prompted the development o f HFS in 1984. The
directory structure o f MacFS was replaced with a B* tree that could be searched very
quickly regardless o f the number o f files [17]. As with advancements in other file
systems, HFS also increased the size o f various structures to hold larger numbers,
with 32-bit numbers replacing 16-bit nearly everywhere. One o f the instances that
this increase did not take place in was the restriction on the file directory which
would still only hold a total o f 64K files.

In the same way as MacFS, HFS stored all the locations o f files in one single direc
tory structure called the Catalog File. This made it radically different to the other file
systems available at the time, where directory information was stored and organised
by each particular directory. Performance could be affected if using the system when
multitasking, as active programs would all be stuck waiting to write to the catalog
file if one program was already using it. When HFS was first written, the Macintosh
did not have multi-tasking capabilities so the possibility o f this bottleneck was not a
reality. Compared to other file systems available at the time, HFS was perceived to
run a lot faster due to the caching and searching o f the B*-tree structure.

2.1.2.2 HFS+

HFS+ (also known as MacOS Extended) was released with MacOS 8.1 in January
1998 to replace HFS as the primary file system used on Macintosh computers. HFS

2 .1 Historical File System Development 14

became limited when disks began to approach 1GB in size due to its 16-bit allo
cation mapping table. Even small files would take up the space o f one allocation
block, meaning that a large amount o f space was being wasted. HFS+ uses a 32-bit
allocation mapping table to reduce this problem, as well as supporting much larger
files (block addresses are 32-bit instead o f 16) and permitting long filenames up to
255 characters in length. Another difference between this and the old version o f
HFS is the use o f Unicode instead o f MacOS roman for the naming o f files and
folders. Since its first release Apple has included support for optional journaling
features and case sensitive file and directory names. The access control list, which
was based on the file security added in MacOS Server 10.4, was designed to be fully
compatible with the system used in Microsoft Windows XP and Windows Server
2003. Some MacOS versions support only a subset o f the HFS+ format, which has
the effect of limiting the capacity and maximum number o f files and folders allowed
within a folder.

2.1.3 Unix/Linux

2.1.3.1 V7FS

Originally Unix file systems were derived from MULT1CS, as two o f the main con
tributors, Kenneth Thompson and Dennis Ritchie were heavily involved with both
projects. As such, Unix file systems tend to include sophisticated multi-user sup
port. One o f the most well-known versions is the Unix version 7 file system [277].
The file system is a directed acyclic graph from the root directory. File names can
be between 1 and 14 characters long, and composed of any character except 7 ’ (the
path separator) or NUL. There is a directory entry for each file in a directory and
its i-nodes. The directory entry only has 2 fields, the file name (14 bytes) and the
i-node number (2 bytes), which gives a maximum number of files limit as 64K. The
i-node contains the attributes o f file size, creation, last accessed and last modified
times, owner, group, protection and the number o f directory entries pointing to this
i-node. In order to handle larger files V7FS uses single, double and triple indirect
block addressing.

2.1.3.2 FFS

The Berkeley Fast File System (FFS, also known as UFS1) was originally derived
from V7FS and is used mostly by BSD-derivative distributions o f Unix [255], It
introduced longer file names, with the limit being increased from 14 characters to
255, and the largest improvement in performance was caused by using a larger block
size than previous systems [278]. It also introduced an expansion o f attributes in
the directory entries for files, which now contained 5 instead of 2 fields. These

2 .1 Historical File System Development 15

were i-node number, entry size, type (e.g. file or directory), size of filename in
bytes and the filename (padded to the 32-bit boundary) [191]. Another new feature
was that o f dividing a disk into cylinder groups, each with their own superblock,
i-nodes and data blocks. This approach tried to keep all related data o f one file
close together to decrease disk search times. For the first time in a file system
FFS included two different block sizes, not just one. It is more efficient for large
files to be stored across a small number o f large blocks than many small blocks.
As most Unix files are small, having only large blocks would be a waste o f space.
The extra efficiency that this provides is balanced out by the extra complexity in
the code that was required to implement it [189]. The reliability of the file system
was improved by the careful ordering o f disk writes [190]. After a crash, fsck (the
the disk checker program, [188]) can recover the file system to a usable state more
quickly by deducing from inconsistent data what happened directly before the crash.
All the metadata writes are forced synchronous and not buffered in memory, so once
the calls that caused the change has completed, the data has changed on the disk.

FreeBSD’s UFS2 was developed mainly to offer better support for extended at
tributes, but also included the addition o f 64-bit pointers, lazy i-node initialisation
and support for variable-sized blocks. The rest o f UFS2 remains similar to UFS1.
with additional contributions from Kirk McKusick and Paul-Henning Kamp.

2.1.3.3 AFS

The Andrew File System originated at Camegie-Mellon University in 1984 as a dis
tributed file system [276] for accessing files across a campus wide network. It was
part o f a project started in the early 80’s which was named after the university’s main
benefactors, Andrew Carnegie and Andrew Mellon. It was first required to support
up to 8000 users, providing storage for the files o f both students and staff with mini
mum bother. Compared to other distributed systems this was a very large number of
users and so had a major effect on the design, with no centralised algorithms being
used [135]. The main concept o f the file system was to reduce network traffic across
the back bone as much as possible and do most o f the work on the workstations.
This was achieved by arranging workstations into clusters, each with a file server
and each cluster then being connected to the backbone. There was still the possi
bility that a user could be on a workstation far away from the file server holding
their files so some network traffic vyas to be expected. Workstations and servers
both ran versions o f Berkeley Unix, although they both ran slightly different soft
ware. The workstations ran client code called Venus which was in the kernel, and
the servers ran a program called Vice which was not originally put in the kernel but
was later moved there for efficiency [279]. Each server and workstation had a hard
disk drive, on the clients they were used to store temporary files and cache requested
files only. As the workstations were not used for non-temporary storage, only the
servers needed to be backed-up. All the traffic across the network is encrypted, and

2 .1 Historical File System Development 16

clients are never trusted by the server [199]. The directories are protected by control
lists, but each file still has the 9 Unix rwx bits for compatibility [58].

2.1.3.4 LFS

The Log-Structured File System was originally developed in 1993 by Margo Seltzer
o f Berkeley. The majority o f the system is a reimplemented version o f the Unix
file system, but optimised in order to take advantage o f the increases in processor
and memory speed and size [182]. The slow access times o f a hard disk create
bottlenecks in file systems so in order to use the full bandwidth o f the disk the Log-
structured File System was created [241]. LFS treats a disk as one giant log, with
all pending writes buffered to memory and the written to the end o f the disk in one
contiguous segment [242], The similarity between LFS and UFS means that the
lower level Berkeley FFS code in UFS can be replaced by LFS code, whilst sharing
higher-level UFS code with FFS.

2.1.3.5 XFS

Silicon Graphics started the development o f XFS in 1993 for their IRIX operating
system (their version o f Unix). It was released in 1994 on IRIX 5.3 as a high-
performance journaling file system. It supports journaling, 64-bit files and highly
parallel operations. Unlike most other file systems, it uses B+ trees for most internal
structures to give a high degree of efficiency [236]. Most file systems use a bitmap
to manage free disk space, but XFS uses two B+ trees. One tree records the free
space ordered by starting block number, the other B+ tree sorts the free space by
length. This gives a very fast and space efficient way for finding the appropriate
amount o f free space for a file. The space needed on disk for the allocations of
i-nodes is allocated as needed, with their locations stored in yet another B+ tree.
Instead o f using direct, indirect, double-indirect and triple-indirect blocks with fixed
sizes for files, a B+ tree is used, with another being used to store the contents of
directories, giving much faster search times for large directories than in traditional
list-based file systems. As it was designed to be massively parallel, it uses a fine
grain locking system which allows multiple reads and single write to a file at the
same time [261]. In May 2000 it was released under the GNU public license, and as
a result is available in almost all Linux distributions as a choice of file system.

2.1.3.6 GFS

The Global File System began life as a PhD thesis by Ken Preslan at the University
o f Minnesota. A research group looking at ocean currents needed a way to sorts lots
o f simulation data that could be processed by their cluster. It was originally written

2 .1 Historical File System Development 17

under IRIX, but soon ported to Linux for ease o f writing. The basic idea was to
have symmetric access to a storage device that was shared among many computers,
with a single system image so all the machines saw the same file system [220]. With
most cluster-based file systems, management is a big issue so lots o f work was put
into creating a fine-grained locking system. The requirement o f locking individual i-
nodes lead to a slightly different disk layout compared to other file systems. First o f
all there is a gap (where other systems would normally have a boot block) to prevent
someone accidentally over-writing the data on the disk. Next on the disk comes the
superblock, then the resource groups and finally a number o f journals. A resource
group is similar to an ext2 or 3 block group that can be locked independently.

In GFS2 the journals are scattered around the disk like “normal” i-nodes. I f a node
fails, another node can recover that node’s journal but must first fence it off from
the rest o f the system to make sure it was not just taking a long time to complete an
operation [226].

2.1.3.7 Resier3&4

When it was introduced in 2001, ResierFS [228] (referred to as Reiser3 after the
announcement of the next version, Reiser4) offered features that were not available
in the most-used Linux file system of the time, ext2. The most publicised addition
was the facility for metadata-only journaling and it also had the ability for online
resizing, (growth only) and tail packing (a scheme to reduce internal fragmenta
tion). ReiserFS stores all the data (metadata, directory entries, i-node block lists
and tails of files) in a single B+ tree, assigning each item with a universal object
ID. The single tree design was intended to avoid the problems caused by linear time
directory lookups and limitations on the total number o f files due to i-node location
calculations using a fixed formula [53].

Reiser4 is a new version o f the ReiserFS, but written completely from scratch. Us
ing a type o f B* tree called a dancing tree [7], the underpopulated nodes are only
merged when flushed to disk unless under memory pressure or when a transaction is
completed. The lack of fixed blocks means files and directories can be created both
space and time efficiently. It has yet to be included in the Linux mainline kernel due
to coding issues arising from its use o f 64-bit numbers in certain places.

2.1.3.8 GoogleFS

The Google File system was created to meet the data processing needs o f the Google
search engine. It was created by Sanjay Ghemawat, Shun-Tak Leung and Urs Hol-
zle in 2000 for use on Linux. The design differs from traditional distributed file
systems in a number of ways borne out o f the specific demands o f the Google file
servers. Firstly, as the machines Google use for processing data are both numerous

2.1 Historical File System Development 18

and relatively inexpensive, hardware failures are to be expected, some of which will
be unrecoverable. This created the need for the file system to be capable o f mon
itoring and detecting possible errors, a high level o f fault tolerance and a system
for automatic recovery [162], Secondly, the files that Google uses are larger than
those traditionally created by most file system users, so parameters such as block
sizes have been optimised. Thirdly, files are appended to rather than overwritten
and rarely deleted, so most o f the optimisations for writing data concentrates on
appending rather than random writes to the middle o f files. The atomic append op
eration allows multiple clients to append to the same file at the same time without
the need for extra synchronisation between them.

2.1.4 Others

2.1.4.1 CP/M

The first file system of note was developed for the CP/M (first called “Control Pro
gram/Monitor”, later renamed on commercial release to “Control Program for M i
crocomputers”) operating system in 1974. It was originally written as a pet project
o f Gary Kildall, which grew to become a commercial product released in 1977. File
names were made o f up to 8 characters followed by a full stop, and then an extension
o f up to 3 characters identifying the file type [292]. There were no sub-directories
in the file structure, but in order to make it more compatible with multi-user sys
tems the concept o f user ‘areas’ was introduced. Placing a file in user area 1 would
make it inaccessible to all other users, although it was possible to place files in areas
independent o f the currently set user area. As CP/M was designed as a single-user
operating system there were no security checks in place to prevent a user from ac
cessing each o f the 16 user areas successively.

CP/M and early versions o f MS-DOS were very similar internally, and identical in
terms o f the file-handling data structures and disk drive letter naming. The user area
concept found in CP/M was never ported to DOS, the main innovation of DOS being
the inclusion o f the FAT12 file system [280].

2.1.4.2 NFS

NFS is a protocol which was developed by Sun Microsystems in 1984, defined in
RFCs 1094 [269], 1813 [57] and 3530 [260]. It defines a remote FS allowing users
to access files on a server as if they were working on a local disk. This system
allowed many lower-cost computer systems to share one high capacity disk at the
same time. Built on Open Network Computing Remote Procedure Call (ONCRPC),
it is used mainly on Unix but can also be ported to MacOS and Windows which
has let Unix system users connect to servers on a variety o f platforms. Offering

2 .1 Historical File System Development 19

an almost transparent service, a user logs in to a workstation which automatically
mounts the server disks and works on the files as if they were stored locally.

Since the beginning, there have been four major revisions of NFS, version 1 was
never released to the outside world as it was the prototype system. Version 2 was
distributed in 1985 with the SunOS 2 operating system and licensed to many Unix
workstation vendors. The NFS V2 specifications changed many times over the 10
year lifespan which created occasional incompatibilities between different NFS im
plementations. Version 3 kept the same security model as version 2 but incorporated
many performance improvements. It was developed during a series o f meetings in
Boston in July 1992 and was later released as RFC 1813 [57].

2.1.4.3 HPFS

The High Performance File System was created by Microsoft and IBM in 1989 for
OS/2 as an better alternative to FAT. It allowed long filenames in mixed case char
acters (length o f 256 characters compared to 11 in FAT) and used the disk space far
more efficiently, causing less fragmentation o f files [92]. Files were stored on a per-
sector basis instead o f across multiple-sector clusters and the internal architecture
meant that related items were kept close to each other on the disk volume. It also
included different timestamps for each file stamp (e.g. created, accessed and modi
fied) in the 64KB of metadata it kept for each file. It had a B-Tree directory structure
with the root directory located in the middle o f the disk rather than at the beginning
yielding faster average access times [48]. IBM offered two types of drivers for the
file system but the fastest set meant paying Microsoft for each copy sold. This com
bined with the long disk check times on crash recovery encouraged IBM to port JFS
to OS/2 as a substitute.

2.1.4.4 JFS

In 1990, IBM introduced its Journaled File System to the AIX operating system. It
went on to become the first commercially successful journaling file system, remain
ing the file system for AIX computers for over 10 years. The development o f the first
implementation o f JFS is very closely linked to the memory manager o f AIX, a com
mon design for a file system supporting a single, closed-source operating system. In
order to support machines with more than one processor and enhance scalability
and portability (with a view to running on other operating systems) work began on a
new version o f the Journaled File System in 1995. It was first shipped on OS/2 Warp
Server for e-business in April 1999, 4 years o f designing, coding and testing later.
Over the same time period others from the JFS development team worked to port
this new JFS source base to AIX. The Enhanced Journaled File System (also known
as JFS2) shipped in May 2001 on AIX 5L. The open source community was granted

2 .1 Historical File System Development 20

access to a snapshot o f the original OS/2 JFS source in December 1999, when work
began to port JFS to Linux.

2.1.4.5 VxFS

VxFS is a journaled file system created as a commercial product by Veritas [273] in
1991. With filenames o f up to 255 characters in length, VxFS supports a maximum
file system size o f 1 terrabyte and offers 4 different block sizes. It uses extent-based
allocation and attributes (where a fixed contiguous chunk of disk is partitioned into
fix-sized blocks), fast file system recovery and access control lists [291].

2.1.4.6 BFS

BFS is a 64-bit journaled file system and the native file system o f the Be Operating
System, written by Dominic Giampaolo and Cyril Meurillon in 1996. In addition to
the usual name-based hierarchical interface for file location, it also indexes extended
attributes to enable a query-based interface [111]. When writing a file to disk, it uses
“preallocation’” , trying to give a file enough room to grow so it can be written in
one contiguous chunk to avoid fragmentation. To avoid wasting space with large
block sizes, it offers blocks down to 1KB. The main ideas and features behind BFS
are very similar to those purported to have been included in WinFS (see §2.1.1.5),
however BFS runs only on Unix based operating systems.

2.1.4.7 Fossil

Released at the end o f 2002, Fossil was developed by Sean Quinlan, Jim McKie and
Russ Cox at Bell Labs to run on their Plan 9 operating system. One o f the main
features o f Fossil is the ability to take snapshots o f the whole file system. At set
intervals or on command it can take whole snapshots, continuing until the partition
has been filled [223]. Snapshots are available to all users (not just administrators),
but only allows access to files that the users could originally see in order to stop users
looking at another’s old files or passwords [173]. Only the non-permanent snapshots
can be deleted, as the permanent ones are stored using Venti [222] (a network user
space daemon also by Bell Labs).

2.1.4.8 ZFS

Designed and implemented by a team at Sun Microsystems lead by Jeff Bonwick
[46], ZFS originally stood for “Zettabyte File System” in reference to the storage
capacity. ZFS is designed for use on the Solaris operating system and heralded as a

2.2 Architectures 21

limitless file system, or rather one whose capacity limits could never be reached. It
can accommodate 16 billion billion times the capacity o f current 64-bit file systems,
and Bonwick is quoted as saying “Populating 128-bit file systems would exceed the
quantum limits o f earth-based storage. You couldn’t fill a 128-bit storage pool with
out boiling the oceans.” [130]. When the contents of a file is changed, ZFS writes
the data blocks that have been changed to a different location than the original. The
metadata referring to the file is then updated to show where the new versions o f the
blocks can be found. If the metadata is never written (perhaps due to an error) then
the old version o f the file will still be recoverable as the original blocks will have
not been overwritten. This enables ZFS to take snapshots in 0(1) time instead o f
O(n) time.

2.2 Architectures

As seen above, the history and development of file systems has lead to many dif
ferent approaches in oder to solve mostly similar problems. Whilst it might not be
possible to say which approach is “best” or the most correct, there certain features in
several file systems which have presented interesting ways o f thinking with respect
to file system design. In order to understand more fully the issues faced by current
file systems, it is useful to take a closer look at the more important architectures that
have been presented throughout history.

2.2.1 FAT

The three versions o f FAT (12, 16 and 32) all differ slightly in implementation as
would be expected over such a long development period, but are all based on the
same model, the use o f the File Allocation Table. In a FAT file system, the first
thing on the disk is the boot sector which contains important information on the
file system as well as the boot code. The FAT itself comes after this boot sector, and
keeps track o f the disk space (it performs the same job as the i-node table and free list
in Unix). In some systems the FAT is replicated so the file system is still accessible
should the original become damaged. Following the FAT is the root directory, and
then the file data.

The FAT contains one entry per block on the disk. (The size o f the blocks is de
fined in the boot sector, between 1 and 8 sectors, depending on the size o f the disk)
Originally each FAT entry was 12 bits in the first version, which means a maximum
file system size o f 4096 blocks. In FAT16 16 bits were used per entry allowing 64K
blocks (per partition). FAT32 only currently uses 28 o f the 32 bits so technically
it could be called FAT28, but powers o f two sound better. There is a one-to-one

2.2 Architectures 22

FAT

Figure 2.1: An example of FAT

Size 8 3 1 10 2 2 2 4

FAT12& 16

FAT32

Figure 2.2: Old and new FAT directory entry structure

relationship between entries in the FAT and then number of disk blocks, except for
the first two entries which contain the disk class information.

In Figure 2.1 the FAT entry for 5 is 3, meaning that the next block of this file is
found in block 3. Block 3 has a value of 2, meaning block 2 comes next, followed
by 7. Block 7 has a special marker to denote the end o f the file. The directory entry
for each file gives the starting block of the FAT and by chaining through the rest of
the FAT entries all the blocks are found. Another special code is used to mark free
blocks, so when a file grows the system will look for a free space in the FAT and
assign that block to a file. This causes fragmentation of files, with blocks belonging
to the same file being very far apart on the disk.

The directory entry size for MS DOS has always been 32 bits in length. This was
perfectly adequate for FAT 12 and 16, but extra additions to the functionality of the
file system in FAT32 meant that some internal restructuring was necessary. The two
different versions of the directory entry can be seen in Figure 2.2.

In FAT 12 and 16, only short filenames were permitted (up to 8 characters and a 3-
letter extension). This comprised the first 11 positions of the directory entry. Next
came an attribute byte which contained the following bits: A - archive, D - directory
entry, V - volume label entry, S - system file, H - hidden file and R - read only. The
following 10 bytes were reserved for future use (and came in very useful in FAT32),
then 4 bytes for the time and date o f last modification, 2 bytes for the starting block
of the file and 4 bytes for the total file size.

File ext
■22 Future U se d)

E

D
at

e

1st
block File

nam e £
< NT Sec Creation Last

access
Upper
16 bits

F Lower
16 bits

size

Si ze 1 1 1 4 2 2

X

FREE

BAD

EOF

2.2 Architectures 23

In FAT32 long file names were introduced, but in order to keep the directory entries
compatible with FAT 12 and 16, instead o f a complete restructure, the reserved 10
bytes were given a use. The rest o f the directory entry structure remained identical.
The NT field exists solely for compatibility with NT to display file names in the cor
rect case (DOS names were all upper-case). The Sec field adds additional accuracy
(to 10 msec) to the creation time field. The last access field contains the date (but
not the time) o f the last access, then the final reserved 2 bytes are used to store the
first 16-bits o f the file starting block (as in FAT32 block numbers are 32 bits, the
extra 16 are needed in addition to the original starting block field to fit the whole
number in).

2.2.2 HFS

HFS is implemented in a different way to most file systems of a similar time. The
fact that Macintosh computers maintained more metadata is reflected in the file sys
tem design. Each volume on the disk is divided into logical blocks o f 512 bytes.
The logical blocks are grouped together into allocation blocks (which each contain
> 1 logical blocks). There are five structures within an HFS volume: the boot
blocks, master directory block, volume bitmap, extent overflow file and catalog file.
The boot blocks contain all the system startup information, and the master directory
block holds information about the volume, such as the date and time of creation,
block size and total number o f files. The volume bitmap keeps track o f which blocks
have been used for files, there is one bit for each block on the disk set to 1 if a block
is in use, 0 if not. The two main data structures in an HFS volume are the catalog
file and the extent overflow file.

The catalog file is a B* tree which contains the records for the files and directories
in the volume. There are four types o f records: directory records, directory threads,
file records and file threads, with each item being uniquely referenced by a Catalog
Node ID (or CN1D). The file thread contains the name of the file and the catalog
node ID of the parent directory and the file record holds the metadata o f the file.
Files on Macintosh computers are comprised o f two parts (or forks), the data fork
is the stream of bytes containing the file data, whilst the resource fork contains
file metadata. Unlike other file systems with a graphic user interface, the record
holds data on how to display the file’s icon properly in the interface, as well as
the directory path and the resource fork, which contains the first 3 extent records
(contiguous blocks o f data) for the file. Similarly, the directory thread holds the
name of the directory and the CNID o f the parent directory and the directory record
holds the directory metadata [47]. The catalog file holds all the records for every file
and directory in one giant structure, not on a per-directory basis seen in file systems
like FAT and FFS. Thus the hierarchy o f the file system is stored implicitly in the
catalog file, as each file thread contains the parent directory the file.

2.2 Architectures 24

i-n od es D a ta blocks

Boot
block

S u p e r
block

Figure 2.3: UFS disk structure

The extent overflow file keeps track o f all the sections o f files that are not stored
in contiguous sections on the disk. The first 3 extents of a file can be stored in the
catalog file record, so the extent overflow file only needs to be used when the file
uses more than 3 extents. It is also a B*-tree structure like the catalog file but the
contents are much simpler. Each extent record is comprised o f three extent descrip
tors which each encode an extent’s starting block and length into a 32-bit number.
Later versions gave the extent overflow file the capability to record locations o f bad
blocks so they were not written to.

2.2.3 FFS

The Berkeley Fast File System was created out o f a need to have a higher bandwidth
file system than the one originally used on Unix. The old file system divided a
disk into > 1 partitions. Each partition could contain a file system the structure o f
which can be seen in Figure 2.3, but a file system could not span > 1 partition.
The file system was described by the superblock, which contained the number o f
data blocks, the count o f the maximum number o f files and a pointer to the ‘free
list’ o f free blocks. In FFS the superblock is duplicated for safety. The superblock
succeeds the boot block on this disk, but some Unix implementations do not use a
boot block so it is left as empty space. Next on the disk comes the i-nodes (standing
for index-nodes), numbered from 1 to the maximum, with 1 i-node per file. Each i-
node is 64 bytes long and contains accounting information for each file and enough
information to locate all the blocks. The file system treats directories and files in a
similar manner, with directories being files that point to more files. After the i-nodes
come the data blocks where all the files and directories are stored. The i-nodes are
kept in a separate location to the file data, causing a long seeking time. Files that
were stored in the same directory did not share consecutive i-node records, meaning
that lots o f disk accesses were required to view all the files in one directory.

The directory structure consists of 4 fixed-length fields and one variable length field,
seen in Figure 2.4. First is the i-node number (2 bytes), followed by the entry size
(in bytes) so the next entry can be located after the variable-length field. The type
field denotes whether this directory entry refers to a file or directory. Finally comes
the length of file filename and then the filename itself, terminated by a 0 and padded

2.2 Architectures 25

i-node
Entry
size Type Length Filenam e (& padding)

Figure 2.4: Directory entry structure for UFS

to the next 32-bit boundary. As these directory records are searched through in
a linear fashion, it can take a long time to find an entry near the end o f a large
directory. FFS uses caching to improve file entry search performance, if a file name
is found in the cache then it does not need to search through all the directory entries.

In FFS, the basic block size increased from 512 to 1024 bytes, and the superblock is
replicated for safety. Each partition is divided into areas called cylinder groups that
are made o f > 1 consecutive cylinders on the disk.

The format o f i-nodes differs between systems, but they usually contain: the file
type and the 9 rwx permission bits, the number of links to the file (e.g. how many
directory entries point to it), the owner’s identity and group, the file length in bytes,
timestamps o f the file’s last read, write and i-node modification time plus thirteen
disk addresses. The first 10 o f these addresses point to data blocks for the file. As
block size is 1024 bytes, files of up to 10,240 bytes can be handled in this way.
For larger files, address 11 points to a disk block that contains 256 disk addresses.
This means files o f up to 10,240-(256*1024) = 272,384 bytes are stored in this way.
The same technique is used for handling larger files, by utilising the 12th and 13th
addresses as pointers to 256 disk addresses each. This means that theoretically, the
maximum number of blocks a single file could occupy is 16843018 and the size
would be 17,247,250,432 bytes. However, file pointers are only 32 bits in length so
the maximum file size is set as 4,294,967,295 bytes.

The bookkeeping information is put on the disk at a varying offset for each cylinder
group so the destruction of 1 platter does not destroy everything. The data is laid
out so that larger blocks are transferred in a single disk transaction, increasing the
throughput. To store smaller files efficiently with these large block sizes the blocks
can be broken down into fragments (2, 4 or 8). It uses two different file system
layout policies. One is global and uses the system-wide summary information to
decide the placement o f new i-nodes and data blocks. Local allocation routines use
a local scheme to lay out data blocks. Free blocks are kept in a linked list and
then used when required which originally caused blocks for each file to be spread
randomly around the disk. By using cylinder groups, FFS attempts to keep file data
and i-nodes for each file on the same cylinder, meaning faster access times. It also
added support for long file names, file locking, symbolic links, file renaming and
quotas.

2.2 Architectures 26

1 2 3 1 1

[~] Written data blocks ^ End of log

O bsolete data blocks | File header

Figure 2.5: Updating blocks in LFS

2.2.4 LFS

Whilst the speed of computer chips and the size o f memories have rapidly expanded,
the time for disk accesses is still slow in comparison and creates a bottleneck in
some file systems. Researchers at Berkeley reimplemented the Unix file system in
order to use the full bandwidth of the disk and thus created the Log-structured File
System. The entire disk is structured as a log, and all pending write operations to
the disk are buffered in memory and periodically written to the end of the disk in a
contiguous segment. A single segment could therefore contain file data, i-nodes and
directory blocks all mixed together. Each segment begins with a summary denoting
what an be found where. Obviously, finding i-node is more difficult than under the
usual Unix FS as they are scattered about and not kept in a fixed position on the
disk. To combat this problem, an i-node table is maintained and entries indexed by
i-number. This map is stored on the disk, but also cached so that the most frequently
accessed entries will already be loaded into memory. Most o f the on-disk format
of LFS is the same as in FFS, with the indirect block, i-node and directory formats
being identical.

As disks are not infinite in size, at some point it will not be possible to add any more
writes to the end o f the log. Some parts of the log will contains parts of files or i-
nodes that are no longer in use (for example if the file has been updated or deleted),
so LFS has a cleaner process that regularly scans and compacts the log. The cleaner
examines the log one segment at a time, and when it finds parts of the disk that are
no longer in use, it discards them and moves the remaining entries in the segment
to the buffer to be written back to a new segment, seen in Figure 2.5. It then marks
the original segment as free so it can be used for new data. In this way, the disk
acts like a large circular buffer. Bookkeeping tasks are more difficult than with the
other FS, for example when a file block is written back to disk its i-node must be
found, updated and put in the write buffer to be written in the next segment, plus the
corresponding entry in the i-node map must be updated.

2.3 Issues with File Systems 27

2.3 Issues with File Systems

Despite great advances in computer hardware and software technologies, the meth
ods o f storing and retrieving files have remained essentially the same since the in
troduction o f the file concept. As is to be expected when the same system is used
for an extended period o f time without any major technological leaps or complete
redesigns, old problems which plagued previous file system designs are now resur
facing for current file system technologies. The ways in which people use computers
are also constantly evolving, so new challenges and issues are also now being pre
sented.

2.3.1 Hierarchical File Systems

Hierarchical file systems have been with us since the 1970’s, but since then the
average amount o f disk space per user has greatly increased, as well as the number o f
relatively naive users. Having to file documents into a hierarchy is too constraining,
as documented by many sources, [88, 104, 229], and meanwhile users do not want
the extra hassle o f categorising their files.

There are two major problems associated with hierarchical file systems: [88] one
is that documents often need to be stored or classified in a variety o f different ways,
the other being that folders are used for storing files but are also utilised by the
system for management tasks such as sharing. Most users do not well understand
the concept of a file hierarchy [207], are bad at choosing meaningful file names
which they then have difficulty remembering and searching for [155]. Users have
no need to know how or where their files are stored, yet this task is currently left as
their responsibility.

Folders do not only organise documents, they can also obscure them, there are too
many different hierarchies for different applications and they have a basic limitation
o f inflexible and strict structure [145]. Users were found to be “squeezing” addi
tional information into the hierarchy which would have been better represented in a
different form.

A study [85] into the file system requirements o f large-scale applications (such as
video servers, electronic libraries, database mining and input/output intensive par
allel programs) showed that hierarchical-based file systems are not flexible enough
(either in architecture or functionality) to support large volumes o f data access.

2.3 Issues with File Systems 28

2.3.2 Relational File Systems

By using a relational database, Marsden and Cairns [180] proposed a flexible file
browsing system for novice users. They also highlighted the need for users to be
able to attach their own metadata to files and to save the results o f search queries for
reuse.

In the Semantic File System [112] the file store was replaced by a relational database,
which the user can manipulate to create virtual directories and then explore. How
ever, the users still needed to understand the concept o f a hierarchy. Gopal and
Manber extended the ideas o f the Semantic File System to include group-related
material [116]. Directories are populated with links to information gathered from
previous queries that may be o f interest. The user can narrow down the search space
by adding or removing links to the semantic folders.

Quan et al. [221] built a file system which allowed users to attach metadata to files
(as well as their own attributes), so the files can be classified in multiple ways. The
system then visualises the created hierarchy (and not the logical organisation the
files on disk) according to the user-assigned attributes. Similar approaches to this
solution have been proposed [146], however these systems rely on users assigning
the metadata manually. In user studies o f personal filing [239], it was found that not
unexpectedly, users are not likely to invest the necessary time to assign metadata to
files.

Storing files with respect to one attribute can be seen to be a good idea. Studies of
email storage [305] show that email messages are often stored in a single list, and
then sorted by a particular attribute for a required task (e.g. sort by date in order to
retrieve last week’s email).

It is not important to the user how files are stored, but how they are retrieved and
viewed. BFS [111] is an example o f a file system that stores files in one way (using
a relational database) but presents them to the user in a hierarchy.

MyLifeBits [109] is a project to fulfill the vision o f Memex, presented by Bush in
1945 [56], “a device in which an individual stores all his books, records and com
munications, and which is mechanized so that it may be consulted with exceeding
speed and flexibility”. It is a system for organising multimedia files and eliminating
the need for paper based memories such as photographs and letters etc., and indexes
each file in a database in order to arrange them into collections without the usual
hierarchy of file systems.

Van Zwol and Apers [290] presented a Webspace method for modeling large col
lections o f related documents by using database technology and the integration of
the Webspace method with context-based file retrieval. The Webspace method was
implemented in Mirror [296], an information retrieval model that allows users to
specify information in terms o f keywords, then uses relevance feedback to calcu

2.3 Issues with File Systems 29

late the relevance o f various multimedia types. The Webspace model distinguishes
two different levels: document (where the file is specified in XML) and semantic
(the concepts derived from documents are modeled in terms o f an object-oriented
schema).

2.3.3 Distributed File Systems

Distributed File Systems allow users to share data and storage resources by using
a common file system, which is usually implemented as a part o f the operating
system [168]. Ideally, a DFS should look like a conventional file system, with the
dispersion of servers and file storage devices being transparent to the users [270]
(for example the file abstraction in the Roe File System [97]). One advantage o f a
distributed file system is that the responsibility for maintenance and upkeep o f the
system is transfered to those in charge o f the network, meaning that important tasks
such as back ups and archiving [225] are (hopefully) more likely to occur.

The Sprite File System [204] used large caches on diskless workstations for access
to shared data. The files were kept consistent by a simple algorithm, as at the time
collaborative write privileges were rare (which is obviously not the case anymore).

One of the major problems faced by distributed file systems is that o f file naming.
There are three main approaches to solving this problem [21]. The simplest ap
proach guarantees a unique system-wide name by combining the hostname with the
local file name, as used in Ibis [283]. The second approach is to mount the remote
directories to their user’s local namespaces, as popularised by Sun’s NFS [246], and
the third uses a single global naming structure, variations o f which can be seen in
Andrew [249], Sprite [300], and DOMAIN [164].

Sprite, AFS, NFS and Spring all make extensive use o f caching in order to reduce
network traffic and improve perceived reaction speed. O f these, only Sprite [203]
has a distributed shared memory and isn’t built on top o f a monolithic operating
system.

2.3.4 Other File Systems

Vesta is a parallel file system designed to run on Vulcan, a massively parallel pro
totype machine built at IBM [72]. It partitions files into multiple disjoint sequences
that can be accessed in parallel [73].

Hess and Campbell proposed a context-aware file system [131], in which data and
applications are not tied to a machine, but can be mapped to a physical space based
on resource availability or the role o f that space (such as a conference room or
classroom). In this system, file storage is implicitly linked to the user and “follows”

2.3 Issues with File Systems 30

him around as a personal data cloud, becoming available to applications when he
enters a new space.

2.3.5 User Interfaces

The interface designers o f Windows ‘95 realised that most users did not understand
the concept or the architecture of a file system hierarchy after carrying out a user
study [268]. Instead o f redesigning the file explorer interface, they added in fea
tures such as “My Documents” and assigning default folders for applications to use.
However, this approach, although improving the situation still continues to confuse
users [43].

FlexiView [251] is a text-based system for viewing file storage hierarchies, whilst
Card et al. [59] explored different graphical visualisation methods such as treemaps,
cone trees and hyperbolic trees. Whilst both methods can produce good visualisa
tions, the both rely on the incorrect assumption that the underlying structure (e.g.
the hierarchy) is meaningful to the user.

2.3.6 Security

In the Unix file systems, each file has a bit map associated with it to describe who
can access a file [289]. This map has three rwx field for controlling the Reading,
Writing and execution o f a file by the owner, the owner’s group and everybody else
respectively. So rwxr-x—x means that the owner has complete access for this file, the
owner’s group can read and execute the file, whilst strangers can execute only (they
would be unable to ‘steal’ a copy o f the file as they do not have read access). Users
are assigned to groups by a system administrator, called a superuser. The superuser
can also override security and access any file.

The file security implemented in NTFS is considerably more complex than that
found in Unix-based systems [265]. When the user logs in, their initial process
is assigned a token by the operating system. This token contains the user’s SID
(security ID), a list o f security groups that the user belongs to, and any special privi
leges. The access token puts all the security information in one easy-to-find location.
When an object (e.g. a file) is created, it can have a parameter called a security de
scriptor which contains a list o f entries, referred to as an access control list. Each
entry permits or prohibits a set o f actions on the object by a SID or group. When a
process tries to perform an action on the given object using the handle which was
returned from the opening, the security manager gets the process’ access token and
then looks down the access control list. When it finds an entry matching the caller’s
SID or the caller’s group, it takes the specified access as definitive and looks no
further down the list. Entries denying access are placed higher up the list so a user

2.4 The Internet 31

specifically denied access to a file could not gain access to it by being a member o f
a permitted group appearing further down the list.

Kuo and Lin [161] presented design concepts o f secure network computing and a
secure RPC framework in order to facilitate the basic needs o f Internet users.

As seen in [67] the only way o f keeping accesses to a database private is to down
load sections o f the database as a duplicate and use private querying. This highlights
the advantages o f keeping knowledge bases on the client computers.

Bruce Schneider a vocal advocate o f cryptography and user privacy, saying that
“Cryptography is a technological equaliser” [253]. However, whilst cryptographic
techniques are now widely available to all computer users, they are still not often
deployed due to the extra effort required to administer and maintain them.

Blaze implemented the Cryptographic File System for Unix, with the encryption
services being the responsibility o f the file system [40]. It followed the principles
o f rational key management (the user should only have to enter a key once a ses
sion), transparent access (the user should not be able to tell whether or not a file
is encrypted, as the only difference will be that encrypted files are nonsense with
out the correct key), transparent performance (the en/decryption process should not
add much time to the storage process) and concurrent access (several users having
access to the same encrypted file simultaneously).

2.4 The Internet

The Internet represents one o f the most successful examples of the benefits resulting
from sustained investment and commitment to technological research and develop
ment [165]. From humble beginnings, it is now used by hundreds o f millions of
people on a daily basis [6] for a wide range o f purposes: from entertainment and
communication to business and research. O f course, the Internet did not just appear
overnight, but is the result o f many years o f work from researchers and scientists
worldwide.

2.4.1 A Brief History

The simple idea o f networked computing can be traced back to America in the
mid-sixties. A small but dedicated group o f telecommunications and computer re
searchers combined efforts and developed the ideas necessary to make networked
computing a reality. Working with Thomas Merrill at MIT in 1965, Lawrence G.
Roberts explored the possibility o f getting computers to talk to each other. Together,
they created the first ever WAN by connecting the TX-2 computer in Massachusetts
to the Q-32 computer in California, with low speed dial up [237]. Evolving into

2.4 The Internet 32

the ARPANET (funded by the American military), by August 1972 there were 29
nodes connected to this network in universities and research organisations across
America. Electronic mail was invented later in the year by researchers at Bolt Be-
ranek and Newman (BBN) as a way for ARPANET developers to coordinate their
implementation efforts [303].

Two years later in 1974, Telnet, (a commercial version o f ARPANET) was opened as
the first public packet data service. This year saw the first use of the term “Internet”,
by Cerf and Khan in a paper on Transmission Control Protocol [61]. More com
puter scientists wanted access to this growing network [129], but only people linked
in some way to ARPA were allowed. This caused the National Science Foundation
to sponsor a civilian network in 1980 called the CSNET. Other permanent computer
networks were also beginning to surface in other parts o f the world. In 1982 EUnet
(European Unix Network) was created by EUUG to provide E-mail and Usenet ser
vices. The original connections went between the Netherlands, Denmark, Sweden,
and UK. In 1983 the Department o f Defense split the ARPANET into two, MIL-
NET for military use (like the original ARPANET) and ARPANET was kept for
civilian research. Meanwhile, in the UK, JANET (Joint Academic Network) was
implemented.

For years, these networks grew and flourished, whilst researchers continued to im
plement new technologies allowing the wide area computer network to develop into
a more common occurrence. However, networks were no longer just the domain
o f military and educational institutions: in 1991 the Commercial Internet eXchange
(CIX) Association Inc was formed after the NSF lifted its restrictions on the com
mercial use o f the Internet [8],

In 1992, the term “Surfing the Internet” was coined by Jean Armour Polly, as the
number o f hosts broke 1 million and 4000 news groups existed. The estimated
growth rate o f the Internet in 1993 was 341,634%, with 2 million hosts and 600
www sites. In 1994 there were over 3 million hosts, 10000 www sites, and 10000
news groups, as the Internet celebrated its 25th anniversary. Pizza Hut opened its
online pizza ordering service, and Virtual First became the first online bank. The
World Wide Web overtook telnet as the 2nd most popular online line service (1st
was easily ftp/data transfer). By this time the Internet had developed into the system
which users today are familiar with, although by comparison it did not yet have such
a wide sociological and ubiquitous reach. The Internet has by no means finished its
evolution. As modem computing continues to advance, so too will the Internet in
order to keep up with the latest developments.

2.4.2 Addressing and Naming

The way in which computers are identified on a network can be compared to the
postal system. If you wish to send a letter to someone, you must put the correct

2.4 The Internet 33

address on the envelope. On a computer network, every computer has a unique ad
dress in order to identify it to the other computers and network services. Obviously
such a system was not developed overnight, but grew from solutions to the problems
presented by the beginnings o f networked computing. Back in 1965, when the first
WAN was implemented, there were only two computers on the network so identi
fication was really not too technical a problem. However, as more computers came
online, the need for a unique naming system became increasingly apparent.

2.4.2.1 Network Control Protocol

As more computers were connected to the ARPANET the Network Working Group
(N WG) created the first host-to-host protocol, named the Network Control Protocol
(NCP) in late 1970. The lower levels o f the OSI network layer model were provided
by the IMPs (Interface Message Processors), so the NCP provided the transport
layer, defining procedures to transmit a unidirectional, flow controlled data stream
between two hosts and also the procedure for establishing a bidirectional pair o f
such streams between a pair o f host processes. On January 1st, 1983, NCP was
replaced on the ARPANET by TCP/IP, which became the core network protocol
suite.

2.4.2.2 TCP/IP

In 1974 Bob Kahn and Vint Cerf (of Stanford) specified the Transmission Control
Protocol (TCP), o f which the first written version was presented to the International
Network Working Group (INWG). TCP was to provide all the transport and for
warding services on the Internet, to allow diverse computer networks to intercon
nect and communicate with each other. Before this, ARPANET had been using
NCP, which only allowed communication between hosts on the same network. TCP
comprises part o f the transport layer o f the OSI network model to regulate network
traffic, whilst IP is found in the network layer and is used to handle addressing.
The US Department o f Defense studied the use o f TCP/IP and decided it should
be required for use on ARPANET [311], so funded a research project in order to
implement it.

The first structure o f IP addresses specified in RFC 675 [60] had 8 bits for the
identification o f a network, and 24 bits for the identification o f a computer, which
allowed up to 256 networks, each with up to 16,777,216 unique network addresses.
Thus IP addresses have 32-bits o f address space, allowing 4,294,967,996 individual
addresses. At the time of specification, this appeared to be more than enough for
every single computer in the world.

However, the explosion in personal computing meant that computers were no longer
limited to military or academic institutes. The huge increase in the size of the Inter

2.4 The Internet 34

net meant that this original system could no longer cope and so a new hierarchical
model o f routing was developed: The Interior Gateway Protocol was used inside
regions o f the Internet and the External Gateway Protocol was used for gateways
between networks with different architectures (which was used for linking different
regions).

In the mid 90’s, with the rapid rate o f growth o f the Internet, the number o f free IP
addresses were dramatically reduced. The three different classes o f address blocks
assigned to organisations meant that the use o f existing IP addresses became ineffi
cient. Address blocks come in three different sizes, class A, B and C, that contain
16 million, 65,536 and 256 IP addresses each. Organisations requiring over 256
addresses would be assigned a class B address, even if they only required 257. Al
though it is possible to overcome this problem using Network Address Translation,
a new system of IP addressing was needed.

To provide more IP addresses, the architecture had to be changed to include more
bits. Instead o f the 32-bits found in IPv4, IPv6 contains 128 bits o f address space,
written in hex. IPv6 [83] began development in 1995 and has since been worked on
by a number o f organisations to ensure its widespread implementation.

2.4.2.3 Domain Name Servers

Before the Domain Name System (DNS) was invented, network users had to re
member the IP addresses o f the computers and networks they wanted to access.
DNS provided a mapping between the IP addresses and URLs which made access
to the growing number o f nodes a lot easier as people no longer had to remember
the numbers.

The hostnames of all networks used to be kept in a single file, ‘hosts’ on an FTP
server, managed by a single person. This file contained information on the com
puters attached to the ARPANET including the hostname and IP address. As the
number o f hosts on the Internet increased, the responsibility o f maintaining and dis
tributing the list was given to SRI. Any changes to the contents o f the DNS entries
would be emailed to SRI to be updated on the main list, and administrators would
periodically download an up-to-date version from SRIs FTP servers. This system
did not scale well, and soon the load on SRIs FTP servers as well as the effort
required to update the list became too high to deal with.

DNS was created by Paul Mockapetris o f University o f Wisconsin, which allowed
packets to be directed to a domain name that the server database could then translate
into the corresponding IP address [196, 197]. This system, still in use today dis
tributes DNS information across the Internet instead o f keeping all the data on one
host machine. Each domain owner maintains their own information on their host,
and a central authority keeps records o f where this information is kept.

2.4 The Internet 35

2.4.2.4 The Internet as a File Storage System

Logically, with each computer connected to the Internet having a unique address,
it is possible for each computer to be used as a network file store. However, it is
obvious that users wish to have some control over where and how their data is stored.
With the emergence o f the World Wide Web, many users created personal websites,
storing these pages on the servers o f their Internet Service Providers. Virtually all
webmail accounts now provide an amount o f online storage space for both emails
and the attachments contained within. Slowly, the Internet has evolved into a hybrid
o f an information service and a file system. Protocols such as WebDav [304] and
programs such as Microsoft’s Windows/Internet Explorer [268] have attempted to
give the Internet the look and feel o f a local computer file system.

2.4.3 Interface Development

Obviously, as the Internet grew in size, its appearance also changed significantly.
Primarily the domain o f a small subset o f academic and military researchers, little
thought was given to its usability or the appearance, the more important requirement
obviously being that as a network and proof o f concept, it was functional. Thank
fully, as the number o f users o f the network increased, so to did the efforts toward
fashioning a more usable interface.

2.4.3.1 Early Internet Interfaces

As with almost all computer programs, the first user interfaces to the Internet con
sisted only o f a command line. Whilst only a limited set o f commands had been
implemented, a more complex interface was not really required. However, as the
popularity o f the Internet began to increase, users began to demand a more usable
interface. A first attempt at a user-friendly interface to the World Wide Web was es
tablished when Paul Lindner and Mark P McCahill from University of Minnesota re
leased Gopher [16], a text based menu driven interface to access Internet resources.
Although a slight improvement on previous techniques, it was still required that the
user remembered or knew how to use the complex user interface.

The hypertext browser Lynx [2] was created independently o f the Internet, primarily
to distribute campus information across the University o f Kansas. When an Internet
interface was added by a student in 1993, Lynx became the preferred web browser
for text only terminals and is still in use today.

2.4 The Internet 36

2.4.3.2 Web Browsers

In 1990, the first web browser “World Wide Web” (www) was released by Robert
Cailliau and Tim Bemers-Lee o f CERN [37]. It was originally developed as a
means to provide a distributed hypermedia system and easy access to any form of
information anywhere in the world. Although it was non-graphical (which came
later in Mosaic in 1993), it still revolutionised modem communications [137] and
from this point onwards, development o f web browsers has been inseparably en
twined with the development o f the Internet.

NCSA Mosaic [15] took the online world by storm in 1993. As one of the first
graphical interface browsers, people without computer expertise were able to just
point and click to navigate the World Wide Web. It originally ran on Unix but was
soon ported to Macintosh and Windows platforms. The creator o f Mosaic, Marc
Andreessen formed a company that would later be called Netscape Communications
Corporation.

October 1994 saw the release o f Netscape Navigator and it was also at this point
that Microsoft marketed its Internet Explorer, effectively starting the browser wars
between the two companies. Both continued to develop their browsers and insert
proprietary extensions into their products, which eventually lead to Microsoft gain
ing the largest share o f the market, and Netscape open sourcing their browser, named
Mozilla.

The continual development and distribution o f Internet Explorer with Microsoft
Windows has meant there are strong ties between Internet Explorer and Windows
Explorer - the latter being used as a graphical interface for exploring the local file
system. Both the interface and functionality are very similar, blurring the lines be
tween the local file system and the Internet.

2.4.4 Searching and Locating Files

With the improvements in interface technologies, more users without specialist
knowledge were able to access the Internet, but previous to when search engines
becoming widespread people had only limited ways o f searching for information
they were interested in if they did not know the exact location. The concept that you
had to know exactly what you were looking for in order to find it seems absurd by
today’s standards, yet at the birth o f the Internet there were so few resources online
no more sophisticated mechanisms were needed.

When the Internet was first developed as the ARPANET, the number o f hosts could
be counted on two hands. As they were only military or academic institutions,
only a very specific subset o f information or communications were shared between
the different sites. This, combined with the lack o f information published over the

2.4 The Internet 37

network meant that no advanced techniques were necessary for locating the infor
mation a user was looking for. However, the explosion in the use o f the Internet that
came about when graphical interface browsers were introduced soon changed this
situation.

2.4.4.1 Search Engine Development

The first search engine, named “Archie” [98] (“archive” without the “v”) was created
in 1990, simply downloaded the directory listings o f every anonymous FTP server,
creating a searchable database of the filenames available. Similarly Gopher (created
in 1991) indexed plain text documents instead o f the directory listings. Veronic and
Jughead were two programs that both queried the Gopher listings. A new mecha
nism for indexing and accessing information on the Internet was provided by WAIS
(Wide Area Information Servers), which in turn allowed powerful search techniques
to be implemented such as the keyword search.

The first web crawler was called the “World Wide Web Wanderer” and was created
by Mathew Gray at MIT in 1993. The main purpose o f the crawler was to keep track
o f the size o f the Internet, and so the information it stored in the “Wandex” was not
overly detailed. The first full-text indexing crawler search engine was WebCrawler
that introduced the ability to search for any word on any web page. Since its release
in 1994, this functionality has now become the standard o f most search engines.

Most modern day search engines use similar mechanisms for finding and index
ing the data found on the Internet. Large amounts o f information is gathered from
webpages using small programs called webcrawlers or spiders. These crawlers con
sist simply o f a very basic automated web browser which follows every hyperlink
it encounters. As it traverses the Internet, it analyses each page and gathers data
on the title, headings and body content in order to decide how the page should be
indexed. The results are stored in a database which is then queried when a user
inputs a search term. Depending on the internal criteria o f the specific search en
gine, the best matches for that search term are returned from the index, along with
a short summary o f the page it was found on. Obviously, the more data a search
engine has stored in its index, the more likely it will be to provide an accurate and
comprehensive set o f results.

The most successful search engine to date is Google [50]. Released in 1998, it took
a few years for this simple but powerful search engine to rise to prominence. A
large part o f the success behind Google is the system called PageRank [51], where
the number o f pages linked to from other sites is taken into account when sorting
the results for relevance. However, PageRank is just a small part o f the criteria used
to determine relevancy o f webpages.

As well as an Internet search engine, Google now also provides a desktop search

2.4 The Internet 38

engine [1] for users to locate their locally stored files. Most users would now find
it impossible to find anything on the Internet without the aid o f a search engine, not
only due to the unimaginable amount o f data available, but also because users have
naturally become reliant on search engines as the solution to the data location prob
lem. The continual blurring o f the line between the Internet and personal computers
once again highlights the need for a redesign of traditional file systems.

2.4.5 Security and Growth

The evolution o f the Internet and ubiquitous network computing has given rise to
some interesting problems in the field o f information security. As it is now unusual
for a computer to not be connected in some way to a network o f some description,
it must be assumed that all computers are possible targets for some kind o f elec
tronic attack, in much the same way that all houses are liable to be broken into
by a burglar. Obviously the techniques o f firewalls, passwords and encryption go
some way toward protecting users o f the Internet from the unwanted attentions of
a hacker or cracker, but effective security remains the domain o f experienced and
knowledgeable users only. Not only do electronic attacks such as viruses and tro
jans create some kind o f disturbance in everyday computer usage (such as causing a
malfunction or unexpected behaviour in a computer), as data and information con
tained in files becomes more valuable there is the threat o f losing or compromising
the security o f such data.

If users currently did wish to store their files on the Internet, to a certain extent they
relinquish the control o f those files to whomever the relevant server belongs to. As a
computer user, the author would certainly not wish to store files in a publicly acces
sible place without some kind o f reassurance that the files would only be distributed
to the legitimate parties and would remain completely secure and hidden from any
one else. As the Internet is not policed (in the traditional sense) or organised by
any one central organisation (indeed, it is likely the Internet would not have been
such a success if this were the case), attempts at security are rather ad-hoc and the
responsibility o f the individual user.

If users were to use the Internet as a file system without any additional mechanisms
to support file storage, the problem of file location and retrieval would only worsen.
It would become even more difficult for users to find their files or to perform admin
istrative tasks such as archiving, backup or removal. If users were presented with an
infinite file system, although they would never have trouble storing their files, the
other problems associated with current file systems would still remain.

2.4 The Internet 39

2.4.6 Current Uses

At the end o f the last century, the majority o f Internet usage was related to interper
sonal communication [160,132], (This could be why there are so many easy-to-use
different email systems, instant messengers and chat programs but not many doc
ument management functions.) The unsuitability o f existing web technology for
effective document management has long been acknowledged. A study [227] o f the
less-than successful document management software used by Xerox highlighted the
need for extra tools in order to utilise the infrastructure o f the Internet for document
management and work group applications.

Adamic and Huberman [11] observed that there are many small elements in the In
ternet, but few large ones. Their observations enabled them to create mathematical
rules for modeling the behaviour o f Internet sites, users and the number o f hyper
links by using a power law. There have also been prediction models developed for
the likelihood of users following hyperlinks from one page to another [36],

Although the Internet is unstructured, it suffers from several problems [250] such
as overloads on network servers, limited ability to control access to sensitive data
and the lack o f mechanisms for data consistency.

Zhao and Resh [317] explored the transformation o f knowledge processes via Inter
net publishing, a term which refers to the means o f distributing publications that has
conventionally been done in a paper form. They noted that the Internet has created
an unparalleled opportunity for publishers to talk directly with consumers, to fill the
needs o f user knowledge and to create information products to best service those
needs.

Today in business operations there exist four major kinds o f web-based systems:
Intranets to support internal work; Web-presence sites designed to reach consumers
outside o f an organisation; Electronic commerce systems to support consumer inter
action (such as online shopping); and Extranets, a blend o f both internal an external
systems for business to business communication [138].

2.4.7 Semantic Web

The next stage in the development o f the Internet is believed to be the Semantic Web
[38]. It is an extension to the World Wide Web, where data and semantic definitions
can be processed by computer programs. More formally, the Semantic Web can be
defined as “a web of machine-readable information whose meaning is well defined
by standards” [103].

The terms “Semantic Web” and “Web 2.0” are often used interchangeably by those
outside scientific and technical fields. However, they have slightly different mean
ings. Web 2.0 (coined by O ’Reilly Media in 2004 [117]) is the name commonly

2.4 The Internet 40

used to refer to the new generation o f Web applications, sites and companies that
emphasise openness, community and interaction (such as blogs [65], wikis [54]).
The number 2.0 does not denote a designed version or discrete evolution, but is
used as the new developments are considered by some to be fundamentally different
from the original early 90’s web [194].

The machine readable information in webpages usually just tells the browser how to
render the pages [124]. The idea behind the Semantic Web is that web pages should
be written not only for humans to read, but for machines to understand and manip
ulate [274]. There has been much discussion over how this can be accomplished,
with Michael Uschold noting that ‘‘The challenge o f developing the Semantic Web is
how to pu t this knowledge into the machine. The manner in which it is done is at the
heart o f the confusion about the Semantic Web.” [288]. In the Semantic Web, ontolo
gies describe the semantics o f data, meaning that machines and programs can more
intelligently locate and integrate data for many different types o f tasks [86]. The
success o f the Semantic Web and its applications depends largely on the utilisation
and interoperability o f well formulated ontology bases in an automated heteroge
nous environment [281].

2.4.7.1 RDF

The Resource Description Framework (RDF) was designed to standardise the def
inition and use of metadata [82]. Specified by the World Wide Web Consortium
(W3C), and based on existing XML standards, URI and Unicode [103], RDF defines
how various domains can cross-communicate. By using XML as a transfer syntax,
it aims to provide uniform and interoperable means to exchange metadata between
programs and across the Web [224]. Each RDF triple is composed o f a subject, a
property and an object which represents a single fact with well-defined meaning. A
triple is the minimum piece o f knowledge that can be represented in RDF [118].

In the Semantic Web architecture, the basic layer o f data representation is standard
ised as RDF [215], but this can present various difficulties when trying to layer
expressive ontology languages on top o f RDF schema [3, 102]. The Semantic Web
will have data from many different ontologies and information processing across
the ontologies will not be possible without knowing the semantic mappings between
them [86].

2.4.7.2 Tagging and Folksonomies

Tagging is associating keywords or “tags” with data objects (websites, pictures,
email etc). When trying to find the data, the tags are searched instead o f keeping ev
erything organised in a folder hierarchy. Tagging websites have become common on
the Internet since 2004 [127] and have the benefits o f helping recall and supporting

2.4 The Internet 41

search mechanisms [179]. An example o f a successful tagging website is Flickr [4],
which lets users upload photos and tag them with metadata to help other users find
images they are interested in [194].

There are many different motivations as to why people tag [12], ranging from tech
nical to social. Tags are always personal but not necessarily private [287], a feature
for which there is growing support [257]. For example, if one user were to tag an
album listing with the name of the artist and the word “owned”, that would help one
user find all albums (s)he owned but would not be o f any use to any other users.

Folksonomies are ontologies that have evolved from community practice [194], col
laborative tagging systems where groups o f people can define a common vocabulary
for a particular domain. They can contain structural knowledge about documents,
and assist navigation by providing dynamic hyperlinks among tags, documents and
users [313]. Folksonomies can suffer from “meta noise” or idiosyncratic tagging
which burdens the user, and users can also change their own vocabularies, meaning
tags may no longer match [243]. Another problem is illustrated by a game on the
Internet which shows how hard it can be for two people to agree on the same words
for a description o f an image[295]. Whilst tags are useful for classifying articles
into broad categories, they can be less useful in indicating particular content [52],
and some users feel that the perceived benefits o f annotating files do not overcome
the investment [156].

2.4.7.3 Criticism

After the bursting o f the dot com bubble, many people are skeptical about the impor
tance o f the Semantic Web but many sources continue to herald and sensationalise
its arrival, claiming the hype surrounding it is simply a resurgence o f interest in
applying dismissed previously technologies [287],

Web 2.0 is, in principle, only a collection o f other people’s proposals and wish lists
for the next generation o f the Internet. Whilst it is a conceptual framework, it is not
a system or technical framework. The term “Web 2.0” can mean radically different
things to different people due to the lack o f set standards. When asked to define the
term, Tim O ’Reilly gave the following buzzword-laden and long winded response:
“Web 2.0 is the network as platform, spanning all connected devices; Web 2.0 ap

plications are those that make the most o f the intrinsic advantages o f that platform:
delivering software as a continually-updated service that gets better the more peo
p le use it, consuming and remixing data from multiple sources, including individual
users, while providing their own data and services in a form that allows remixing
by others, creating network effects through an “architecture o f participation ”, and
going beyond the page metaphor o f Web 1.0 to deliver rich user experiences ” [275].

Meanwhile, Tim Bemers-Lee, when asked if the Web 2.0 was all about connecting

2.4 The Internet 42

people replied: “Web 1.0 was all about connecting people. It was an interactive
space, and I think Web 2.0 is o f course a piece o f jargon, nobody even knows what
it means” [13]. This is a problem compounded by some websites using the term
2.0 for the use o f some trivial feature which can cause observers to consider it more
an attempt at promotion than providing a useful service. There is also the train of
thought that says “Web 2.0” is still just “Web 1.0” as new techniques do not replace
protocols such as HTTP but adds an additional layer o f abstraction on top o f them.

The technologies behind such a system are still relatively young and are certainly not
yet widespread [181], the fields o f artificial intelligence and knowledge representa
tion still have some way to go before they can operate on a level comparable to a real
person attempting the same search and logic tasks that humans find so simple. The
Semantic Web will mean assisting users to find relevant data, make appointments,
perform complex searches [139] and so on, but it does not address the problems of
information overload at all. It would (hopefully) provide more meaningful data and
hence allow a user to spend less time searching for correct answers, but at the same
time it has not yet been extended to the management o f personal documents. Given
the expected structure o f the Semantic Web, to do so would involve extra workload
on users when creating documents.

2.4.8 Discussion

The unstructured nature o f the Internet should be considered as one o f its strengths
as it has resulted in the large scale growth and availability o f information available.
At the same time whilst this may be a great strength for the dissemination o f in
formation, it creates a major weakness for using the Internet as a file system. The
Internet as a network spans much o f the earth and the problems of supporting a
structured or traditional network file system over something o f such magnitude are
obvious from both social and technological standpoints.

To be able to exist over the Internet, a more flexible approach to file storage is
required, however one that is more structured than the World Wide Web itself. Es
sentially, a large scale flexible file system which employs the previously designed
infrastructure and size o f the Internet without losing the advantages that this network
provides by using a rigid file system.

The current file systems no longer meet the needs o f the everyday computer user.
The metaphors used for filing systems are outdated and confusing to users whilst
the basic hierarchical structure does not have the required flexibility for multiple file
classifications. The amount o f data users deal with places an extra cognitive load
on the user when deciding how to process the data and where to store it, as well
as remembering where their previous documents were. This leads to confusion and
frustration with the users, and file systems not utilised to their full capacity. The
current file classification and search functions for file systems are too slow and time

2.4 The Internet 43

consuming to use and lack complex queries such as similarity matching. Users do
not want to spend the extra time and effort inserting metadata to files in order to
make these searches more effective. The same can be said o f users for back-ups
and archiving, the obvious long term benefits still do not encourage the users to
invest the necessary time and effort to protect themselves from mistakes (human
or computer generated) and save space and time. Although there exist systems for
collaborative work environments, they are additional to the file systems and are not
transparent. Users have difficulty in setting up encryption on their files and have no
desire to memorise the many keys they need to access them. Current systems do
not provide adequate, easy-to-use security, organisation and search mechanisms or
convenient user interfaces.

The Semantic Web or “Web 2.0” is in principle only a collection o f proposals and
wish lists for the next generation o f the Internet. It is a conceptual framework,
but not a system or a technical framework. This strengthens the need for the work
presented in this thesis.

The GIFS framework aims to fix these problems by removing the burden of file
storage, classification and management. Offering a transparent service for collabo
rative work, file versioning, metadata assignment and encryption, GIFS removes the
burdens associated with the management o f increasing amounts o f information and
data without additional input or effort from the user.

Chapter 3

Information and Knowledge

While this thesis presents a framework o f GIFS from mainly a file system per
spective, it also encapsulates the essence of information and knowledge processing,
which is a fundamental aspect o f computer science, and is studied in a broad range
o f subjects such as artificial intelligence, knowledge based systems, information
management, personal assistant, computer supported cooperative work and group-
ware, and so on. Because o f the huge volume of the literatures on these subjects,
this chapter is not intended to provide a comprehensive survey o f these subjects.
Instead, we focus on highlighting the most relevant discussions and developments
in these subjects.

Firstly, we present a summary review of the current problems o f information over
load to illustrate the problems that users currently face in their day-to-day computing
lives. This is followed by a brief review of the most relevant developments in the
field o f artificial intelligence, knowledge base systems and agents technology. We
then examine the most relevant developments in personal information management
in conjunction with a number o f current applications that are available to assist the
user in managing their data. Finally we present a discussion o f the previous works
in comparison to the proposed framework o f GIFS.

3.1 Information Overload

Albert Einstein once said ”1 never waste memory on things that can easily be stored
and retrieved from elsewhere” [94]. I f only the rest o f us could think about infor
mation in such a simple and structured way, our computers would no doubt be tidier
and more organised. However, in modem day computing, no matter how organised
or efficient a user is, there comes a point when the sheer amount o f information sent
to us via email or the Internet becomes too voluminous to process. If computers are

44

3.1 Information Overload 45

meant to make our lives easier, then why is a considerable portion o f most computer
operators day devoted to sorting, filing and processing electronic documents?

3.1.1 Overview

In simplest terms, information overload refers to the state in which a user has too
much information to either make an informed decision on a topic or to be able to
remain informed. There are many reasons that information overload can occur such
as a large volume of historical data, contradictions in available information, a lack
o f mechanisms to compare and process different kinds o f information, high rate o f
new information being released and a low signal-to-noise ratio, all of which make it
difficult to identify what is relevant.

The problems o f information overload have been well documented by many dif
ferent sources over the last decade [33, 206, 305, 30, 31], but the term was first
used by Alvin Toffler in his book “Future Shock” in 1970 [285]. More recently, the
terms “information pollution” and “interruption overload” have surfaced in publi
cations by Jakob Nielsen [208] and the Financial Times [232] respectively. These
terms do not just refer to the increasing amount o f information available, but also
to the huge growth in the breadth o f information dissemination. There are several
explanations behind the cause o f this so-called explosion [159]. These include the
development o f low-cost computing and storage devices and low-cost Internet ac
cess and the availability o f easy to use interfaces (such as the development o f the
web browser). Research into solutions to the problem o f information overload is
still in its infancy, leaving users without a way to extract the maximum benefit from
the Internet. Some researchers have argued that information overload on the Inter
net is simply an information retrieval problem [198], but with more and more data
being added to the Internet every day the techniques for allowing users to search and
browse for information should also come under scrutiny.

3.1.2 History

However, this is not the first time society has faced a boom in the amount o f in
formation. Over 500 years ago Johannes Guttenberg unleashed an information ex
plosion with his invention o f the printing press. No longer was written information
the domain o f a small intellectual elite. Roughly 400 years later, Alexander Gra
ham Bell ushered in the age o f telephony [267]; by 1915 there were more that nine
million telephones in use world-wide. Global communication changed from being
restricted to a slow medium (e.g. post) to an immediate medium. Toward the end o f
the Second World War, such was the rate o f scientific development and publishing,
Vannevar Bush lamented: “The investigator is staggered by the findings and con
clusions o f thousands o f other workers - conclusions which he cannot find time to

3.1 Information Overload 46

grasp, much less remember, as they appear” [56]. We can equate the most recent
information explosion with those that have gone before: As with the invention of
the printing press, the ability to disseminate information has been democratised, the
immediacy o f information creation and access is similar to that bought about by
the invention o f telephony, and the huge amounts o f information now available to
us via the world wide web would be incomparable to the amount that Bush cited
[159]. Past experiences have shown that when communication media become eas
ier and cheaper to use, people change their behaviour in order to use such systems
more [184].

Looking broadly at the problem of information overload across all available media,
it is easy to see why this has become such a problem. Twenty years ago, most houses
only had four television channels, a couple o f local newspapers, several national
newspapers and magazines and around thirty radio stations. Looking for some
thing that interested you from these sources actually took some effort: having to
plan a schedule around your favourite TV show, waiting for your favourite monthly
magazine to be printed or sifting through books in a library to find the topics that
interested you. Today, people have access to more data that does interest them than
they can possibly ever consume. Books pile up, inboxes overflow with RSS feeds
and emails demanding your attention, digital television boxes keep recording all
your favourite shows, and mobile telephones bleep constantly to signal incoming
messages. Whilst most o f the selectively sorted information will be o f interest (but
still too unwieldy to digest), there will inevitably also be irrelevant material mixed
in with it too, providing users with far more information than they could ever hope
to process [206, 314].

3.1.3 Effects

The average disk space on personal computers has been approximately doubling
every year, a rate faster than Moore’s Law [185]. As the space available to users
increases, the existence o f larger files becomes possible and electronic file stores
become more cumbersome to maintain and manage. A recent study by New Scien
tist measured the effect that information overload can have upon the mental capacity
o f humans. During this test, users were asked to perform a set o f simple tasks whilst
half were bombarded by interruptions such as phone calls and emails. The results o f
the test showed that information overload can decrease the IQ of a user by around
10 points, which lead to the claim that it was “more harmful than marijuana” [157].

Ten years ago, when a world-wide survey was undertaken by Reuters [297] they dis
covered that over two thirds o f managerial staff suffered increased tension and one
third suffered ill-health due to information overload. The term “Information Fatigue
Syndrome” [147] was used to describe the social, physical and mental problems
seen in the results by psychologist David Lewis. Other effects o f information over

3.2 Artificial Intelligence 47

load can include difficulties with memory, poor decision-making and a significantly
reduced attention span [259]. The emergence o f these effects are comparable to the
health problems caused by a diet too rich in calories. Once upon a time information
was scarce and so more o f it was seen as a good thing, but now the point o f saturation
seems to have been reached and users need assistance to limit the ill-effects.

It would be uncommon today to find a computer user who has their files completely
organised and can find any given document or piece o f information on demand with
little effort. As time continues, the problems o f information overload look set only to
increase, whilst no workable solution has been provided by researchers. The original
reason for inventing computers seems to have been forgotten - to make the lives o f
humans easier by removing the burden o f repetitive, simple and boring tasks. Why
should it not be possible to apply this thinking to the design o f a modern file system?
Whilst the idea o f an effortless file system may seem like an impossible dream
in today’s climate o f information overload, the technologies required to produce
such a system have long existed but have yet to be combined or applied properly
to this problem. The GIFS framework sets out to provide a scalable solution to the
difficulties o f information overload. In order to understand the knowledge-based
section o f the framework, a overview of the constituent technologies follows.

3.2 Artificial Intelligence

When considering how to alleviate the problems o f paper-based information over
load in an office environment, secretaries and personal assistants have proved indis
pensable. Responsible for the file storage needs o f other office staff, these employ
ees handle much o f the mundane work associated with documents. This scenario
can be transferred directly into an electronic environment (especially as most of
fices run with electric documents now rather than paper ones) and the creation o f a
personal assistant program to perform the mundane tasks related to file storage. At
tempting to produce any kind o f machine behaviour to mimic the action o f a human
counterpart (even if through analogy rather than direct observation) leads us into the
jurisdiction o f artificial intelligence.

Artificial intelligence is a branch of computer science pertaining to intelligent be
haviour, adaptation and learning in machines. However, such is the size and scope
o f this research area, it could also commonly be classed under the auspices o f phi
losophy, engineering, psychology, biology or mathematics. Humans have long been
fascinated by the inner workings o f the human brain and classifying exactly what the
term “intelligence” actually means. Trying to make machines that can display some
kind o f intelligent behaviour allows for many different approaches and research ar
eas. Views o f researchers in artificial intelligence can be split into two categories,
that o f strong AI and weak AI [71]. The former refers to the idea that given enough
processing power and ‘intelligence’, a computer program could think, behave and

3.2 Artificial Intelligence 48

have a consciousness like a human. Many researchers (both computer scientists and
philosophers) find this notion to be far fetched and possible only within the realms o f
science fiction. In comparison, so-called weak AI is the simpler view that computers
can use intelligent behaviour to solve complex problems, without being intelligent
in the same way as a human.

Despite many advances in the field o f artificial intelligence, computers have yet to
encompass what we would call “common sense” [166]. Started in 1984, the CYC
project is attempting to do just that, by using a giant knowledge base to encode
basic human knowledge in order to give computer programs what humans would
refer to as rudimentary knowledge about the mechanics o f the world. The project
is still continuing many years later and remains nowhere near completion [214].
Instead o f trying to build one, large, all-encompassing intelligence, other research
has suggested that it is preferable to have many, simpler agents each performing a
simple task and then combined to provide a more complex answer [195].

The term “AI renaissance” [211] was coined by Daniel O ’Leary in 1997, when AI
was beginning to play an increasing role in information retrieval strategies. No
longer was AI restricted to pure applications, it was now being embedded on other
systems for searching, retrieving and analysis o f huge amount o f data.

For the purposes o f this review, we will look further only at the topics within artifi
cial intelligence that are directly relevant to the task and proposed solution in hand
as a complete review could fill libraries.

3.2.1 Knowledge Bases

Much of artificial intelligence is in some way concerned with the concept o f knowl
edge. There are the research areas o f knowledge representation, knowledge ac
quisition, knowledge engineering, knowledge bases and knowledge-based systems
among others. Defining what can be considered as knowledge is a slightly hazier
problem and unfortunately outside the scope o f this review. However, a knowledge
base can be defined as a special kind o f database for the purposes o f knowledge
management, providing the means for the autonomous collection, organisation and
retrieval o f that knowledge. Knowledge bases can be split into two major types:
machine-readable and human-readable. Machine-readable knowledge bases store
their knowledge in a computer parsable form in order that some kind o f deductive
reasoning can be applied to them. The data collection in such knowledge bases often
takes the form of a set o f logically consistent rules, meaning that logical operators
(such as conjunction and disjunction) can be applied. Employing these techniques,
classical deduction may be used to reason about the atomic knowledge instances
within a knowledge base. An example o f a machine-readable knowledge base was
used in a system which built a personal FAQ document [205] by studying the fre
quency o f particular questions asked. By maintaining a knowledge base o f rankings

3.2 Artificial Intelligence 49

denoting the most recently asked and frequently asked questions this prototype sys
tem was able to present more personalised content to each user.

Alternatively, human-readable knowledge bases are used primarily for training pur
poses, providing users with the capability to search and retrieve domain specific
knowledge. This kind o f knowledge base is used commonly inside large organisa
tions as a way of providing information or solutions on a particular problem to those
who may be less experienced in that area. For the purposes o f this research, any
further references to the term “knowledge base” should be regarded as referring to
a machine readable knowledge base only.

In the mid eighties, when knowledge base systems first emerged, there were several
key problems. These were: insufficient understanding o f the structure o f knowledge
based systems, the cost o f knowledge acquisition, and the focus on complete (but
narrow) solutions. Swartout [271] believes that recent advances in key areas (such
as a second generation architecture for knowledge-based systems, development o f
software engineering methodologies, libraries o f problem solving methods and on
tologies) have gone along way toward addressing these problems.

3.2.2 Data Mining

Knowledge management and IT have long had a symbiotic relationship [210]. As
computers essentially process information and data, the internal representations o f
these data and the manner in which it is retrieved and processed is o f great impor
tance. There are several different reasons why people store data [101]: it is becom
ing easier for them to do so; people store data because they think there are valuable
assets contained within it; scientists represent observations about a phenomenon un
der study; and businesses store data on customers, competitors and markets. These
are but a few examples o f why people store so much raw data, even when that raw
data is o f little benefit. This data only becomes useful once it is processed, the
science behind which is commonly referred to as data mining [178].

Data mining could be defined as “the nontrivial extraction o f implicit, previously
unknown and potentially useful information from data” [107] or “the science o f ex
tracting useful information from large datasets or databases” [128]. The simplest
example o f data mining is called the “market basket analysis” [49] which has ap
plication in the field o f retail and sales. If a shop keeps a record o f who buys var
ious different sorts o f products from their store, they can identify which customers
are likely to be interested in alternative products and target them with advertising
accordingly. Some people feel that this is an invasion o f privacy, especially in the
situation where adware or spyware unknowingly installed on computers track which
websites a user visits for marketing purposes. However, others see data mining as
a useful tool, particularly in the field o f scientific research where it can be used to
analyse the enormous datasets that are produced during experimentation.

3.2 Artificial Intelligence 50

In recent years, there have been many approaches to personalising content, using
software that learns patterns, habits and preferences. By the mid-90’s people had
begun to realise the potential o f data mining large collections o f unorganised data,
such as found on the Internet [99], The increasing computational power o f computer
processors and the size o f storage disks are having a positive effect on the accuracy
and usefulness o f this kind o f analysis. Knowledge bases containing data or meta
data (information about data) are particularly suitable, as the data can be stored in a
machine-readable format.

3.2.3 Agents

An agent is essentially a computational system which has goals, effectors and sen
sors, it decides autonomously which actions it should take to improve progress o f
those goals and has the ability to learn or adapt to improve its effectiveness [176].
Not all o f the above criteria need to be present for a program to be considered as a
software agent.

The concept o f agents is by no means new. Despite this, many o f the questions re
volving around agent interaction with people and their usage [9] have still yet to be
answered [302]. For many years now scientists have studied systems that demon
strate some kind of agent behaviour. Two of the first visionaries were Nicholas
Negroponte [202] and Alan Kay [151]. Since their invention it has been suggested
and envisaged that agents would be able to reduce the amount o f information a user
has to deal with [175] and act like a personal assistant.

On an application level, agents can be categorised into four different groups [126]:
Buyer or shopping agents, user or personal agents, monitoring or surveillance agents
and data mining agents. Buyer agents work in a similar fashion as the data mining
scenario presented in the previous subsection. They browse through the Internet,
suggesting products or goods that you may be interested in on the basis o f what you
have previously bought or have in your shopping basket (Amazon [171] is a good
example o f the uses o f a shopping agent). Personal agents can perform a variety
o f actions on behalf o f a user in a range o f different situations. For example, a
personal agent may check and prioritise your email having been told a set o f criteria,
fill out webforms automatically and store the information for further use, act as
a computer player to patrol an area in a computer game or assemble customised
news reports. Monitoring or surveillance agents observe and report on the status o f
equipment or other factors [247], e.g. monitoring stock levels in a shop in order to
effectively schedule ordering and minimising stock wastage. Perhaps predictably,
data mining agents operate over a data warehouse or knowledge base and discover
information, find patterns or shifts in trends. O f course, these groups are by no
means mutually exclusive and it is possible for an agent to be classified under more
than one category. For example, an information agent used to help users locate

3.3 Personal Information Management 51

relevant information in large, unstructured collections o f documents [24] could be
classed as both a data mining agent and a personal agent.

Mentioned in the previous chapter, web crawlers or spiders are independent software
agents that crawl the web to gather information, and are commonly used by search
engines. The spiders o f one such search engine, Lycos [119], have now evolved
to a multiagent system o f cooperating components that visit over 10,000,000 web
pages each day. The Lycos system consists o f 3 main components: the spiders, a
URL server for managing the future locations for the spiders to visit, and a catalog
update server which retrieves the information gathered by the spiders and stores it
in a repository.

There have been several attempts to combine artificial intelligence systems with
databases. One such attempt was the design o f a cache-based DBMS interface
that accepted queries and returned tuples in order to provide AI systems with e f
ficient access to databases [187]. Waltz and Kasif [298] presented a framework for
memory-based reasoning, which combined the strengths o f case-based reasoning
and probabilistic reasoning in order to create agents to work in largely autonomous
adaptive systems. The idea o f a ubiquitous media agent was introduced by Wenyin
et al [302]. The purpose o f this agent was to gather information on user’s actions
and multimedia file accesses in order to build up personalised semantic indices o f
multimedia data. The collection o f data in this system does not include metadata
that is commonly associated with each file, and looks to manually-created attached
text files in order to find semantic information.

3.3 Personal Information Management

Personal information management (PIM) is the umbrella term used to describe the
collection, storage, organisation and retrieval o f digital objects (e.g. files, addresses
and bookmarks) by an individual in their personal computing environment [163].
The distinction between personal information management and general information
management is that in the latter a professional organises things for other people
(such as a librarian) whilst in the former it is the onus o f the individual to manage
their own information [34].

PIM is a growing research area [142] especially as researchers sources have iden
tified PIM as a burden to users [177, 305]. In 1995, Barreau classified five com
ponent sub-activities o f PIM [22]: acquisition, organisation, maintenance, retrieval
and presentation. However, Barreau’s definition is by no means perfect. Board-
man [42] suggested several changes, including the removal o f the presentation cat
egory as by default, most PIM tools will automatically contain such functionality.
This disagreement over categorisations is not uncommon [306] and many similar
(but varied) definitions are in use by different members o f the research community.

3.3 Personal Information Management 52

The activity o f organisation (or categorisation) has been identified as a cognitively
hard operation for users [163], which may go some way to explaining why previ
ous studies have identified that users do not like to spend time categorising their
data [114,90]. Improving PIM would result in better uses o f resources such as time,
money, attention and energy (or in the case o f a commercial organisation, better em
ployee productivity) [35]. Thus much o f the research into PIM focuses on making
categorisation easier [89, 143, 148, 221, 240]. In comparison, the GIFS framework
removes this burden from the users by taking responsibility for both file classifica
tions and storage.

There have been many user studies into the different application areas o f PIM such
as email [19, 305], bookmarks [144, 10], photographs [239] and general files [312,
22, 23]. Different researchers have employed a variety o f techniques [153] when
evaluating PIM technologies and studying user behaviour. A cross-tool study o f
personal information management by Boardman and Sasse [43] found that users
do not display the same behaviour when organising different digital formats. It was
not possible to define users as displaying only one behavioural characteristic for
personal information management across different domains as where different tools
are used for each organisational activity, the user behaviour also changed. Kaye
et al [152] also had difficulty in identifying standard behaviour in users in cross
domain personal information management. The number o f different tools available
can also result in lack o f full utilisation by users due to the limitations o f each
domain and single content type [141].

Even within a singular domains, users can have different personal information man
agement strategies leading to different retrieval techniques [153]. Several user stud
ies have attempted to classify user behaviour into different categories with respect
to their filing and archiving preferences: filing or piling [177] denotes whether or
not a user categorises and stores files in an ordered hierarchy or an unsorted struc
ture; Abrams et. al. defined no filers, creation-time filers, end o f session filers and
sporadic filers [10] dependent on when (if at all) users reorganised and maintained
their personal collection o f URL bookmarks; email filing behaviour was studied
by Whittaker and Sidner [305] who defined frequent filer, spring cleaner and no
filer. The “no filer” category identified in the original study was later split further
by Balter into folderless spring cleaner and folderless cleaner [19]. The different
behaviours observed in these user studies support the need for a Virtual Secretary to
have multiple personalities in order to be an effective assistant.

As well as domain specific applications, several tools have attempted to provide a
complete solution for the searching and display o f personal information stores. Stuff
I ’ve Seen [90] by Microsoft Research presents a search interface for locating infor
mation o f different formats which the user has seen before. The search starts over
a broad area and then provides the user with contextual clues (such as screenshots
or keywords) so the search can be refined [78]. MyLifeBits [109] works in a sim
ilar fashion with more support for user annotation, but only over multimedia files.

3.3 Personal Information Management 53

LifeStreams [104] replaces the desktop metaphor with a searchable, time-ordered
stream o f information. Until recently, the user interfaces for personal information
management tools had changed relatively little since the invention o f the desktop
metaphor [70]. This has changed with the recent research activity and as a result,
most of the research systems created are file browsing systems; interfaces which lay
over the top o f the current file storage system technology [180] instead o f whole
new file systems. As this is the case, the user interface was not considered as a part
o f the scientific contributions o f this work.

3.3.1 Computer Supported Cooperative Work and Groupware

The terms “groupware” and computer supported cooperative work (CSCW) were
coined in 1984 by Irene Greif and Paul M. Cashman [122]. They are often used in
terchangeably but have distinctly different meanings. CSCW is a multi-disciplinary
field which studies the use o f technology to support group activities [299], observ
ing how people work in groups as well as the hardware, software, services and
techniques needed to support that activity [310]. A more succinct definition was
given by Wilson:

“CSCW [is] a generic term which combines the understanding o f the way people
work in groups with the enabling technologies o f computer networking, and associ
ated hardware, software, services and techniques.” [309]

CSCW can refer to the study o f a single user application (as in HCI research) or ap
plications designed for organisations [123], CSCW applications can be labeled with
a number o f names: groupware, group support systems, collaborative computing,
workgroup computing and multiuse applications [110]. However they are referred
to, these tools are designed to enable many participants to collaborate and work to
ward a common deliverable. Spanning a wide range of software that enables teams
o f people to work together efficiently [62], groupware usually runs over a network,
allowing a group o f people to access the same data or work on the same project [93].

The size o f a group can be small (e.g. two people conducting a meeting via video
conferencing) or considerably larger (e.g. the general population using an electronic
voting system). Groups can be tight-knit with shared goals, tasks and common
knowledge or alternatively very loose and amorphous with no explicit shared goals
or knowledge o f the other members. This type o f group is the kind commonly found
on the Internet [299] using one o f the many web-based collaborative tools. One
such tool is Wikipedia [231], an online encyclopedia that anyone can edit. This
particular type o f online collaborative system illustrates the problems o f provenance
or illustrating where a piece o f data came from [106]. Groth et. al. [121] defined
the provenance o f a piece o f computer data as “the process that led to that piece
o f data.” Tracing the origins o f data on the web and particularly in collaborative

3.3 Personal Information Management 54

environments is a popular ongoing research area [55] with unanswered questions
too numerous to mention here.

Groupware can be considered as software tools for CSCW and despite the name,
there are many single-user software tools which have been upgraded or updated to
become “group enabled”. For example, a text editor designed for a single user which
has an integrated electronic mail feature could be considered groupware, or at least
to have a groupware aspect [299]. Obviously in this example, the text editor is a
less collaborative tool than, for example, an electronic whiteboard which is used
concurrently by several different people to exchange ideas. In this way, it is easy
to see that producing a strict definition of what is (and isn’t) groupware would be
near-impossible. Instead, a spectrum of common task dimensions can be used to
evaluate how tightly-coupled the software and extent o f collaboration are [95]. The
text editor example given above would be at the low end o f the groupware spectrum,
as it provides few environmental cues. A system such as an electronic meeting sys
tem [169] with projectors, interactive whiteboards, video conferencing, access for
remote users and so on would rank much higher up the groupware spectrum. How
ever, the addition o f extra functionality to groupware can increase tool complexity
(termed “bloating”) [186]. In order to analyse and evaluate groupware systems,
software usability inspection techniques [216] and task analysis schemes [217] have
had to be updated in order to be flexible enough to model the collaborative aspects
which were absent from previous software.

CSCW research into groupware deployment has studied both the impact on inter
personal relations between users [230, 252] and also the effects upon organizational
efficiency [84]. Within a commercial or organisation setting, groupware and as
sociated technologies have the advantage o f generating a continuous record o f ex
changes via the electronic communication mediums, providing an account o f pro
ject/company progress far more detailed than that o f traditional minutes taken in
meetings [170]. In this way, groupware can contribute to a support the ability o f
an organisation to retain and archive its own history, referred to as “organisation
memory” [154], This is very similar to the technique the GIFS framework uses to
produce a complete record o f a file’s history.

By using one or more of the artificial intelligence and personal information manage
ment techniques mentioned in this section and §3.2 many pieces o f software have
been developed, (with varying degrees o f success) to assist users with the problems
of information overload and file storage. Whilst it would not be possible to include
every single attempt at assisting users in a personalised format, the remainder o f this
section looks at several different domain-specific applications.

3.3 Personal Information Management 55

3.3.2 Personal Assistants

Personal assistants are a research area that has captured the imagination o f computer
scientists for many years [74], There are several characteristics desirable in a digital
personal assistant [75]: a common user profile for use by all one user’s agents, the
ability to adapt to the user’s preferences, the capability to share information with
other agents and to collaborate with each other, and privacy o f information.

A study into “Open Sesame!” [136], one o f the first commercially available per
sonal assistants for use on Macintosh computers found that it lacked the requisite
flexibility needed in order to assist the user, as it tried (and predictably failed) to
surmise what caused a user to make particular decisions from past events and ac
tions alone. Equally, the Lumiere project [134] is the basis for Microsoft’s “Office
Assistant”, and uses Bayesian user modeling to predict user behaviour in context of
the suite o f Microsoft Office applications. One aspect that the office Assistant does
not help with is filing and document management, and many users have questioned
the value o f this particular assistant in reference to its intrusive and often annoying
behaviour. It is desirable for the user to have the final say in actions suggested by
an autonomous system, for example when Smartlook [245], an e-mail classifica
tion assistant, organises user’s emails into a set o f hierarchical folders it offers the
most likely 6 folders and allows the user to make the final choice. A study o f this
technique showed that users can tolerate errors from a personal assistant system (as
building a 100 percent accurate user model is rarely possible), so long as the as
sistant achieves reasonable performances. This technique also works well for those
situations where an agent cannot find enough data to make a confident suggestion.
Bauer et al. [25] proposed a set o f agents called “Trainable Information Assistants”
that generated scripts to extract information from websites, even when the format
and layout o f these websites changed over time. When encountering problems the
agent makes the user aware o f its limitations and asks for suggestions.

3.3.2.1 Office Assistants

It has been acknowledged for some time that there should be comprehensive systems
in place to help office workers in the more basic information management aspects
o f their job [96].

Office Assistant [315] is an implementation o f an agent that interacts with people at
the door o f an office and manages the office owner’s schedule. It is context aware,
changing behaviour dependent on current situation o f the office owner and works
in conjunction with their schedule and those o f other people to organise meetings.
There are several other similar systems: KautzBot [150] and SelmanBot [149] are
both software agents that communicate via e-mail in order to arrange meetings and
to automatically negotiate convenient times for all involved participants. Within an

3.3 Personal Information Management 56

office environment it is not just scheduling systems that have incorporated agent
technology. The Multi Agent Referral System (MARS) [316] was created on the
basis that much knowledge within an organisation or office environment may go
unpublished, so there should be a system to help manage the social network o f a
user. Each user is assigned an agent and assists them in obtaining and following
referrals in order to find the person in the organisation who would be most likely to
help satisfy the user’s informational needs.

The term “Virtual Secretary” was introduced by Bellika et al [28], who aimed to
combine user models and software agents to create adaptive user interfaces. It was
developed to assist and imitate the user’s computer associated actions, for which it
needed some knowledge about the way the user performs his or her tasks. Part o f
the functionality o f the secretary was to locate files on computers that a user had
previously been working on, given that the computers were connected to a global
network [29], Searching only via a given set o f keywords introduced many prob
lems in itself, least o f all those o f keyword assignment when the document is written.
Whilst it was apparent that user model-based software agents were a useful tool for
software personalisation, the concept only applies to long-term information inter
ests which go beyond a single session need for information. A later implementation
o f this project [39] used a twin-based set o f cooperative agents in order to man
age distributed knowledge. Each agent acts as a domain expert, and if it does not
know the answer, asks another agent on the network. Thus the set o f agents can
work together to answer user queries even if the original agent does not know the
answer. Although very similar in concept and ideology to GIFS, the examples seen
in the second paper were far more generalised, and had moved further away from
the concept o f filing and more toward querying knowledge bases.

3.3.3 Personalised Views and Searches

Given that it is already widely acknowledged that a hierarchy is an unsuitable dis
play metaphor for the contents for a file system [43, 174, 23, 158, 108], much re
search has revolved around the best way to present this information to users and
how best to personalise interfaces. An observational study o f file accesses [23]
showed that users preferred to search for a file visually rather than trying to recall
the filename they assigned to it previously, even though this method was less effi
cient. The search function by name was only used as a last resort even in the cases
where it would have considerably reduced the task time. A prototype system o f 3D
document organisation called “Data Mountain” [238] took advantage o f 3D spacial
cognition abilities o f humans. Users were able to place their “favourite” websites
contents at arbitrary positions on an inclined plane in a 3D desktop environment.
Another system, MSpace [254] searches for information about music/media files by
integrating metadata from the files and displaying “time slices” o f the data.

3.3 Personal Information Management 57

Customisation o f user interfaces can already be seen in many o f today’s commonly
used applications: the ability to select which menus to display, to add toolbar but
tons, to define macros and to add custom functionality through the use o f a scripting
language. However, naive users lack the required skills to program their own scripts,
and advanced users do not have the time to spare to do so, even if it would save them
time in the long run [301], The Information Programming Toolkit (IPtk) [100] is
a framework which sits between applications and low-level information storage to
enable the creation o f personalised and adaptive user interfaces. This allows users
to refer to documents by semantic structure, relationships and context but does not
change the underlying problems with the rigidity o f a hierarchical files system. Cre
ating interfaces that adapt to users without direct instruction can also be problematic.
Microsoft’s SmartMenus are disorientating [105], and as mentioned previously, the
Office Assistant falls far short o f the mark in the stakes o f helpfulness. Hence the
main aims of intelligent user interfaces should be to provide a more efficient, effec
tive and natural interaction between a human user and computer [183], Mulvenna et
al [201] proposed that there are three principle components to this observational per
sonalisation: analytics, representation and deployment. Once such interface [172]
provides just-in-time assistance by predicting the user’s most likely plan and per
forming parts o f the plan in the user’s behalf. Andre and Rist [14] illustrated three
different systems utilising animated virtual characters in order to personalise the
web browsing experience. In these tests, it was found that users preferred to have an
interface which provided them with some kind o f social context.

Although alternative and personalised views o f file systems and information stores
can help ease the problems of information overload [44], they obviously do not
provide a complete solution. Also o f great importance are the methods for searching
through and retrieving files and data. When searching for and retrieving documents,
keyword searches on their own are not enough [284]. Imagine going into a library
and searching for a book on the criteria that it has the word “computers” somewhere
in the text. Asking a librarian would add a more sophisticated specification using
other information like genre, time frame and content description, and thus so should
computers assist in the location o f data. Most o f the time when people are searching
for something, it is because they do not have sufficient knowledge themselves to
solve the query already. However, it can be argued [27] that users do not know the
best way to search, (that is, the internal representation o f data) in order to form the
most effective query. Agents have not only been used in conventional search engines
on the Internet, but also in systems where user preferences can be expressed in order
for more relevant documents to be highlighted [24].

Jansen [140] created a taxonomy of 26 interactions split into 9 groups for users per
forming web searches, a number o f actions which is greater than most users would
expect. Perhaps this large number o f actions all happening via the same interface has
some bearing on the studies [212] which have shown that both inexperienced and
advanced search engine users still have difficulty in efficiently completing a search

3.4 Discussion 58

task on the Internet. Many different sources have suggested that the accuracy and
efficiency o f search results on the Internet could be improved by incorporating user
feedback [125], and the addition o f personalisation agents [218] in order to provide
the service o f “intelligent information retrieval” [26].

Teaching a system to the point where it can competently predict a user’s needs is
a task that is manually undesirable, the set-up costs o f such a system means that a
user may not save time by using it. It is therefore far more desirable to unobtru
sively observe a user’s behaviour in order to learn functions o f value [114, 90]. An
alternative to this can be seen in a system named Apt Decision [258], used to find
real estate rentals. A constant feedback process allows a user profile to be built up
without redundant or unnecessary effort from the user. Phlat [77], an interface for
personal searches using user created keywords and metadata suffers from the similar
problem o f requiring the user to invest time in training the system.

3.4 Discussion

With information overload already a sizable and frustrating problem for almost all
computer users, new ways o f organising, processing and displaying data are obvi
ously needed. Using a computer now means that unavoidably some time will have
to be devoted to the administration and housekeeping tasks that are associated with
file storage. It is unlikely that the problems and effects o f information overload will
decrease naturally, and so new solutions are needed in order to help users manage
both their personal data and time.

Using computers to store and analyse large amounts of data and metadata can pro
vide very useful information to use when personalising interfaces or suggesting
courses o f action to a user. As computers become progressively more powerful
it is possible to store and process data with increasing speed, so the information that
can be deduced and extracted from this data is o f great importance, but only if it is
managed, processed and analysed in a meaningful way.

Whilst artificial intelligence is not yet at a level comparable to that o f humans, there
are many agent systems that can make life easier for users by performing a small
subset o f actions. However, almost all o f the systems described in this review chap
ter are either incredibly domain specific and inflexible, or not specific enough and
incapable o f performing any tasks well. Another problem, even for the small and
specific systems, is that o f scalability. There does not seem to be any data on the
deployment o f personalised systems for a large number o f users or in some cases,
over non-personal data stores (e.g. the Internet instead o f one single computer or
local network) In order for these systems to be successful over a large network or
for a large number o f users, the architectures and procedures would need to be very
carefully planned and most likely redesigned. As the preceding discussion illus

3.4 Discussion 59

trates, despite the huge number o f ideas and research papers behind intelligent agent
systems and personal file storage mechanisms, many of these systems have never
been implemented.

The research areas o f personal information management and computer supported
cooperative work support the ideologies of this thesis and several constituent parts of
the GIFS framework. However, the research systems developed within these fields
are either restrictively domain specific or focus on creating new user interfaces over
existing file systems.

There are a plethora o f agent systems which are described as secretaries or personal
assistants for use in an office environment, but this description is slightly misleading
as the majority o f them concentrate on tasks such as meeting scheduling and diary
management rather than those concerned with file storage. Whilst it may be the case
that these systems are appreciated more in the office environment, all computer users
would benefit from automated assistance with their file manipulation activities.

Previous agent or otherwise personalised assistants have sometimes hindered rather
than helped. Using a system which produces incorrect or inconsistent results is far
more frustrating and time consuming to a user than not using such a system at all
even if most users are willing to tolerate a reasonably small amount o f errors from
their assistant. The best way to train a computerised personal assistant is arguably
through observation o f the user’s actions, although this on its own is not a good basis
for making predictions as some kind o f more complex analysis will be required so
as to provide consequential results. Where these results have been used in order to
change the interface o f file storage systems, they have all concentrated on simply
displaying files to users or organising search results in alternative ways and have not
addressed the system level problems of file storage.

No system has yet combined these technologies in order to provide a solution for
file storage, retrieval and organisation in the same way as GIFS. Previous attempts
at creating document management or file storage systems have all used existing file
systems as the underlying storage mechanism, hiding the current problems from the
user rather than solving them.

Chapter 4

GIFS Overview

4.1 Introduction

This chapter presents an overview of the Virtual Secretary (VS), a knowledge-based
user interface. The Virtual Secretary forms the front-end o f a system named GIFS,
a Global Intelligent File System. A user instructs the VS to perform tasks for man
aging and storing files instead o f manipulating them manually via windows as with
many conventional operating systems. The VS manages all the technical details
related to each task, including the actual location o f the files and storage format,
security and access permissions in addition to handling all encryption and key dis
tribution activities. Whilst performing each task the Virtual Secretary gathers raw
knowledge about the user’s actions in a knowledge base which is then managed and
processed by a collection o f agents. These agent programs work behind the scenes
aiding the analysis and gradual proliferation o f knowledge. For example, a group
ing agent can establish relationships between similar files from existing knowledge
(such as their names, sizes, dates, keywords etc.), and group them in various ways.
With the support o f the knowledge base and agents, the VS is able to provide the
user with a more intelligent service than current systems. For instance, when the
user requests a document the VS may also thoughtfully bring a folder containing all
related files. Over a long period o f service and with the addition o f more agents, the
VS has the potential to be evolved into a highly intelligent assistant.

From the perspective o f the user, a Virtual Secretary is an adaptive user interface
running in the background o f their computer. From time to time, the user instructs
the VS to perform certain tasks, such as storing away a file, retrieving a group o f files
related to a specific context, or informing colleagues that a shared file is available
for viewing. The VS acts as the connecting link between the user and the computer’s
conventional interface for file storage whilst gathering raw data to be managed, pro
cessed and proliferated by the collection o f agents to facilitate an adaptive service.

60

4.2 Background 61

4.2 Background

A user operates a computer largely through manipulation o f various files. The needs
for secure and intelligent file management are two-fold, namely file organisation
and sharing.

File organisation is a perpetual activity for every computer user. Yet the level o f
difficulty in this activity is becoming increasingly noticeable, largely due to in
formation explosion and deficiencies in current file systems. For example, many
managers and secretaries are constantly looking for extra disk space for storing doc
uments, or looking for files previously created on their computers. The hierarchical
tree structure available in most file systems (directories and folders) is a satisfactory
mechanism for short-term and small-scale document organisation. However, it be
comes often clumsy, problematic and less user-friendly when dealing with a large
volume o f files that are to be maintained over a long period.

File sharing is perhaps the most common activity in a collaborative environment.
A user may create a document, and wish to distribute it to a group o f other users.
There are usually some additional requirements associated with this task, such as
read/write access permission and transmission security. Despite the fact that a vari
ety o f mechanisms may be used for supporting this activity, they lack in either user-
friendliness or security, and in comparison with a human secretary leave a lot to be
desired. Email attachments, a very commonly used mechanism, may incur unnec
essary duplication and excessive space wastage. Many organisations and computer
users are being inundated with email attachments sent to them endlessly and often
pointlessly. Uploading a document onto a web site is another technique typically
for read-only file sharing. This however requires some technical skills to set up the
service on the server. Networked operating systems such as Windows also offer
procedures for shared user spaces and network drives. Nevertheless, most o f these
methods are based on file owners or groups, rather than on individual files. To most
users, creating a mechanism in order for others to share a specific file is not really a
trivial task.

This work is primarily motivated by the needs for developing a globally integrated
management system for administrating the storage, access, sharing, manipulation
and security o f files across interconnected computers. In the UK First Workshop on
Grand Challenges for Computing Research, a vision o f such a system, called Global
Intelligent File Tele-System (GIFTS), in action was presented [63],

4.3 Overview

A Global Intelligent File System (GIFS) is a globally integrated management system
for administrating the storage, access, sharing, manipulation and security o f files

4.3 Overview 62

across interconnected computers. The Virtual Secretary (VS) is the knowledge-
based user interface for such a global system. Whilst it is not feasible to address
the wide range o f difficulties in prototyping a GIFS within this project, the effort
has been focused on the development o f the VS user interface and its supporting
knowledge framework based on the current operating system and data communica
tion technologies. Figure 4.1 illustrates the overall system infrastructure with two
Virtual Secretary systems operating in a networked environment.

A typical environment where a VS may operate involves a remote file server which
is supported by a larger volume o f disk space than a typical desktop or laptop com
puter. In such an environment, a VS will use the remote server as the primary
storage area for file warehousing. The communications between Virtual Secretaries
who serve different users are handled by using socket-based messaging system. A
VS may also communicate directly with any user using the email system although
the preferred method o f communication is alerting a user via their VS. We also be
lieve that it is technically feasible to integrate a VS user interface with the email
system, enabling emails to be processed as files, because each email is essentially a
text segment in a very large file (i.e. mbox or pst). A Virtual Secretary hides from
the user much of the technical detail concerning file organisation, grouping, direc
tory/folder structure, attribute setting, and so on. It is also a gate keeper for the user
for safe-guarding his/her files. When the user instructs the VS to store a file away
the file itself is stored in a location unknown to the user. A public key encryption
algorithm is applied to each document before it is transmitted to the external stor
age area, and if it is to be visible to other users their own Virtual Secretaries are
automatically informed o f the key they will need to view that file.

The concept o f GIFS and its main features are significantly different from those of
NFS and WWW. Some of the new features expected are summarised in Table 4.1.

The transformation of file systems and the World Wide Web to a new, integrated,
global, intelligent technological infrastructure for information distribution is a dra
matic idea, which requires and promises a major paradigm shift in our approach
to the design o f operating systems and global communication infrastructure. The
history o f operating systems (including distributed operating systems) and World
Wide Web provides a convincing answer to this question. Although there are com
mercially successful operating systems and web-browsers, academic and industrial
research has played a leading role in the development o f these technologies. Most
major technological innovations in these areas were delivered through non-profit-
making systems (e.g. Unix, NFS, TCP/IP and HTTP). In addition, the society, com
puter scientists, software engineers and users will have serious concerns about a
proprietary GIFS.

Between 1977 and 1988 there were over 12 different distributed operating systems
(including Cambridge DCS, Newcastle and NFS) developed. In the 1990’s, the fo
cus was shifted to the Internet and WWW, and there were no remarkable advances in

4.3 Overview 63

(Zi

o

G0)
£
G<Uo

to H W -fcJ

b£ G
G °

O ^3 ■ G <u"G «3 Ph G
X)

o w c 1=1
co •£
>* £fli -yg

Oh % Oh S & >
■Go

wbo
ax

G >
w • £ p a

G ox
co , 0X

-

Sco O

£

4) T J

.2 ,2t> *rt >i~!
w e G § *-•'- 'G or-t ^OX

e a #

&
o o o>^ i-,
<D0

1

G
ox

to x>
Sf9 G<Dd 4)

G o
* 8 a
to O G
« tfl Mflio oO b (£<
G CL,

bB

G

,2 ©

to
G
OX G
a . o
° «

CO

CO

s

a 5 ■§
O ^ bJ3
^ b^.SO , G

CL, O
G O

G
O

to

I IG - o
•.§ G

S |
.2 jb

GO J2
§ &
S "3> JD

G c£a
S3 t :

£
_ r -S
G b0

s •§a> &,

C/5

z

G
OX
2
G
(L)o

Gax

2ax
Ga
bo

•8GO
CO
G<DLh

G

• <N 0}
2 1H-> -----
G
O o

Gt-,
O
£
jig 53
G c l
O h o

G a)<U ,-N
G hO
G “*Do
ax

co .00

ax
2 ’C

-§ G~
« § g0 O Lh

a
G

<L> 4)
co o
G j 2 -O §

Cl ,
s s£ j OX

b0
J3

O h

G

pGo
G
OIn
a

n
bx
CAO
Q

G<us
OX

to o x
to G
& G

“ |<< S

G
OX-fcN
GL.
DXax

"ax to
to
2 §
U H

4.3 Ovei-view 64

Local file SystemVS
Interface Knowledge base Remote file

server
Comm Interface

f

Messaging contro|

Knowledge
exchange
(gossip)

Comm Interface
Remote file

Knowledge baseVS
Interface Locai file System

Figure 4.1: The GIFS Infrastructure

operating system technologies. The lack o f development in this area may attributed
to (i) the focus o f research resources on WWW in the 1990’s, (ii) the dominance o f
proprietary operating systems in the computer industry, (iii) the difficulty to manage
knowledge and intelligence in an open knowledge framework.

The notion o f GIFS was formulated through a recent project conducted at Swansea.
Although much smaller in terms o f size and achievements, a final year undergrad
uate project demonstrated the feasibility o f a global file system. Due to time con
straints at only a small subset o f basic features were implemented, however the main
objectives and vision o f a global file system remained constant throughout.

To help us to identify needs o f this work, we can visualise the following futuristic
scenario:

4.3 Overview 65

A user called Jo starts a working day with writing a memo
for a committee (c r e a t e f i l e) . She then drag-and-
drops the memo onto a Virtual Secretary icon on the desk
top (s t o r e f i l e) , which is a standard GIFS utility just
like the recycle bin. The Virtual Secretary suggests to Jo
how the file will be classified, and how the committee mem
bers be informed o f the availability and access key. Af
ter Jo selects and confirms the options, the memo is sent
to a GIFS server (s e n d f i l e) , and a set o f correspon
dences are sent to the committee members via their Vir
tual secretaries. Jo then asks the Virtual Secretary to dis
play all tele-meetings which she has registered her inter
est and are authorised to attend today. The tele-meetings
which matched the criteria are displayed as folders. As
she is unable to choose which meetings to attend, she asks
her Secretary to compare them to the meetings she attended
yesterday, and which are likely to be the most similar on
content, based on other attendees and literature currently
available (c o m p a re f i l e) . Two meetings are returned
as a result, and Jo decides to attend both simultaneously
by double-clicking the two corresponding folders, (o p e n
f i l e) each leading to a window containing all documents
(such as presentations and agendas) and devices (such as
camera and slide projector). Jo activates her own camera
(o p e n c o m m u n ic a t io n s t r e a m) and participates in

the meetings, taking her own notes and giving them to her
Virtual Secretary to store along with the other relevant doc
uments. After the meetings, Jo’s real-life Secretary brings
her a cup o f coffee. The Virtual Secretary notices that it is
1 lam and Jo has no meetings scheduled or documents open,
and asks if Jo would like to listen to Classic FM whilst she
enjoys her coffee break.

4.3 Overview 66

Task User File System
file placement /
semantic file naming /
physical file naming /
metadata tagging /
file storage /
encryption /
key distribution /
file distribution /
locating files /
archiving /
version control /
file relationships /

Table 4.2: Task assignment of users and previous file systems

The above scenario exemplifies a new way of managing various files and commu
nications over the Internet which cannot be supported by today’s operating system
and Internet technology. As most o f the operations performed by Jo are essentially
operations on files, this suggests a new approach to the user interface design for an
operating system is necessary.

There now approaches a paradigm shift between the tasks o f users and those under
taken by a file system. Whilst previously users may have been assisted in certain
tasks by their computer (such as versioning or encryption), the user had to specifi
cally request them via an additional program external to the file system itself. Tables
4.2 and 4.3 show the divisions between the tasks o f user and file system both for
traditional file systems and GIFS.

Obviously, the more o f these tasks that a user is responsible for, the more o f their
time and effort is required to manage their data and file collections. As computer
usage has increased most users are probably not aware o f how many extra tasks
they are having to perform which can be seen listed in Table 4.2. There is no
technological reason why a computer should not be responsible for these tasks as
seen in Table 4.3, unburdening the user.

The aims and objectives for the design o f this system are set out as follows:

• to store a file away in a transparent and secure manner

• to decide where and how the file is stored

• to enable a wide range o f search functions over the files including similarity
groupings

• to retrieve the file when some information about the file is given

4.3 Overview 61

Task User GIFS
file placement /
semantic file naming /
physical file naming /
metadata tagging /
file storage /
encryption /
key distribution /
file distribution /
locating files /
archiving /
version control / /
file relationships /

Table 4.3: Task assignment o f users and GIFS

• to assist the user in distributing the file in a collaborative environment

• to inform all users who are allowed to share the document about its availability

• to provide additional security to the document using encryption

• to manage file access privileges, user groups, passwords and encryption keys

• to analyse data to provide more accurate and faster searches and just-in-time
results for the user

• to protect the user from errors causing accidental file deletion and overwriting

• to automatically version each file and allow any version to be accessed

• to archive older versions o f documents

There are many technological challenges associated with the concept of a global file
system, the main ones being:

• To generalise the notion o f files to accommodate multimedia communication
over the Internet, and define an international standard that supports an open
architecture for a globally distributed GIFS.

• To make a paradigm shift in file system design possible by adopting a file-
centred design approach.

• To support multi-level file security and access management, incorporating
public key encryption and digital signatures into the set o f file attributes man
aged by GIFS.

• To develop intelligent and adaptive user interfaces that act as Virtual Secre
taries with knowledge o f users, files, their common correspondences and their

4.4 File Lifecycle 68

working environments.

• To develop a generic knowledge representation and management strategy that
can be supported by generations o f operating systems in an evolutionary man
ner.

• To deploy advanced technologies in GIFS for providing file services through
mobile communication and voice-driven interfaces.

• To provide direct support to a wide range o f applications involving data and
information management, including e-business and e-government.

4.4 File Lifecycle

During the early stages o f research, a presentation was given to the computer sci
ence undergraduate students during the annual colloquium. In order to help their
understanding o f this novel concept, a short video project was produced. This video
(which can be found on the DVD disk marked “Appendix C” at the back of this
thesis) took a tongue-in-cheek look at the operations o f the Virtual Secretary as if
it were not a computer program but still a real-life secretary. For those people who
are unable to view the DVD, some of the basic features can be seen as screen shots
in Figure 4.2.

The first two screen shots show a user who is obviously suffering from information
overload, both on his computer desktop and in real life (it is worth noting here that
this particular location was used ‘as-is’ for filming, and the desk was piled up with
papers before filming started). In row 2 we see the Virtual Secretary (or in this
case, the not-so-Virtual Secretary) taking files from users to be stored elsewhere,
retrieving those files, and delivering files to other users. Row 3 shows the secretary
preventing unauthorised access to files by keeping them out o f reach o f certain users
and by ‘fighting ofF intruders. Finally, row 4 shows the secretary encrypting a file
by tearing it up into small pieces. If a user were to intercept these pieces they would
be meaningless and impossible to understand, however with the aid o f the Virtual
Secretary the file can be reassembled perfectly at its destination.

The video also shows how the Virtual Secretary ‘interface’ can be customised to the
user’s needs, as seen in Figure 4.3. Picture 1 shows the option to have faster results
delivered (perhaps at the cost o f accuracy), picture 2 shows the secretary performing
tasks more independently and without the request o f the user. The picture marked
3 shows the secretary being overly intrusive whilst picture 4 shows the secretary
demonstrating a worrying amount o f stealth. Pictures 5 and 6 show the secretary
being friendlier and more forgiving toward the user or alternatively becoming more
strict and bossy with respect to the user’s actions.

4.4 File Lifecycle 69

1: Information Overload

2: File storage and retrieval

3: File security

4: Encryption

Figure 4.2: Some basic actions within GIFS

4.4 File Lifecycle 70

1: Faster results 2: More independent work

3: Intrusive 4: Fewer interruptions

5: M ore ‘friendly’ 6: More strict

Figure 4.3: Personalisation o f the Virtual Secretary

W hilst some o f the features seen in the video are not wholly accurate representa
tions o f this research, it provides a good (and not entirely serious) overview o f how
a Virtual Secretary might work and the problems that users may encounter, w ith
out the need for any in-depth technical knowledge. Since the making o f this video
the focus o f research has shifted slightly as it became apparent that searched-based
interfaces were already being produced in commercial software. Instead it was de
cided to focus the research on the more challenging scientific problems that had
been unearthed. However it still remains advisable to watch this video if possible to
help overall understanding o f the long term development goals.

Since the proposal o f our grand challenge in 2002 [63], and our proposal o f the con
cept and system framework in 2004 [64], the concept o f search-based has appeared
several pieces o f commercial software developed independently from this work.

For example, Figure 4.4 shows the interface o f Google Desktop Search [1] which
enables users to search their personal files by maintaining an index o f all compatible
files on their computer. Figure 4.5 shows the user interface o f Spotlight, a feature
o f the MacOS X 10.4. Similarly to Google Desktop, Spotlight maintains indexes o f

4.4 File L ifecycle 71

file metadata in the background. Also produced by Apple, for use with their Ipod
music players, the interface of iTunes can be seen in Figure 4.6. Although it only
runs over a subset of file types (e.g. media files), the interface provides a variety
of searching mechanisms based on the metadata of a user’s personal media library.
In much the same way to the above approaches, M icrosoft research produced Stuff
I’ve Seen (see Figure 4.7) and its successor, Phlat [79J. Stuff I’ve Seen [90] helps
users to locate files, documents, calendar entries and so on that they have previously
accessed. Information on these objects are all stored in the same index, regardless
o f what format the file or object originally took. The user interface also gives rich
contextual clues for users to narrow down their search results. In comparison, Phlat
focuses more on the design of the user interface and as a search tool for personal
information management. The search interface for Phlat can be seen in Figure 4.8.

Go-asle
Desktop*-*

Wjjf Imaaei Vrfw Nm Map; BgJU
>

SN>*» '•) An Q Mstory H at !h» w er^j •t-vj

O&TW * 0 < * « « Om m H m
O P'1*'* O Other

D-ilo ¥«1hr i day v &

| Soo'Cft OesHop i | Cancel

Figure 4.4: The user interface of Google Desktop Search

An earlier feasibility study, JoFS [115], which was undertaken by the author in
2001, had a basic web-based interface as shown in Figure 4.9. It provided the
search functionality for the network file system that was developed and worked well
as a proof of concept but was not closely bound to the workings of the operating
system.

The user interface of GIFS is further integrated with the operating system in order
to give users more of a feel of a native file system. However, as user interaction
was not the focus of this research, the example interfaces presented are designed to
facilitate the basic file access flow and knowledge transaction flow, which are the
main focus of this work. In order to show how these interfaces might appear several
example screenshots can be seen later in this chapter, but were not considered to be
a main contribution of this work.

4.4.1 User Action Taxonomy

Many of the advanced features of GIFS and the Virtual Secretary are hidden from the
user in a transparent fashion. In order to give the reader an overview of the system

4 .4 F ile L i f e c y c l e 12

rs^r\ \ S e a rc h in g “H o m e ’

182 ite m s

C om puter

C D

m
Save +

- +

^ 9 W ikipedia 1 / 4 / 0 6 2 :1 7 PM X i

w r

w
e n w tk ip e d ia .o rg .lc o w ik im e d ia fo u n d a tio n .o rg W 'k ip e d ia Mac C a te g o rie s

ICO

j l e v a lm a th c la s s .p h p 1 1 /2 9 /0 5 12 57 AM

j d w h a t - i s p tk p h p 1 1 /1 5 /0 5 10 31 AM | |

* W ik iped ia S ho t 7 / 1 / 0 4 I 01 AM 11

♦ b o o k m a r k s - l .h t m l 1 0 /2 8 /0 5 4 2 8 PM

** b o o k m a rk s 2 .h tm l 1 /2 6 /0 6 8 13 AM

•e b o o k m a rk s -2 Q 0 6 - 0 1 -2 9 .h tm l 1 /2 8 /0 6 1 1 :1 2 AM

*“ b o o k m a rk s - 2 0 0 6 0 2 - 0 2 .h tm l 1 /2 9 /0 6 9 0 4 PM

* b o o k m a rk s -2 0 0 6 - 0 2 -0 3 .h tm l 2 / 2 / 0 6 5 :0 4 PM

8 more . ^

_ a w s ta ts 0 3 2 0 0 5 is e s .u s txT

J J b o o k m a rk s .tx t

b o o k m a rk s .tx t

_£ b o o k m a rk s .tx t

_ c o o k ie s .tx t

_ j C o o k ies .x m l

_ te e d .x m l

select an item to s e e i t s p a th

4 / 1 / 0 5 3 0 8 PM

8 / 8 / 0 4 12 :3 1 AM

7 /1 3 / 0 4 2 :4 7 AM

7 /1 2 /0 4 8 26 PM

T o d ay a t 10 43 PM

9 /3 0 / 0 5 1 0 .15 PM

1 2 /1 8 /0 5 4 2 7 PM

Figure 4.5: The user interface of Spotlight

F ront under The Cork ~ m
from Under The Cork Tret
From under The Cof * Tree

2005
2005
200s
2005
2005
2005 s
2005 *am _! roii*iI a

3 Movies

a TV Shows

T Podcasts

U l Audio books

iPod Games

x Rad*>

STOXE
@ iTunes Store

Purchased

PLAYLISTS

<3^ Party Shuffle

► L J Pl*y<l»ts

► Uti Smart Playlists

* Recentty Added

£ Front Row Playlist

Figure 4.6: The user interface of iTunes

4.4 File L i f e c y c le 73

|Fuu» M** • : [' gear All f "

Figure 4.7: The user interface of Stuff I’ve Seen

Fie gd* V»w Tools Help

O CUer 107 results

bike

* Personal
MoH/Colendor

■OBQ

S a v e d Q u e r ie s O
'■v^D ate o

Ftie/ty Jag *5-0
- Personal (123)* ♦

Family (1)0
Gaming a

- Bikes (89)«
Images (1)0
Maps 0)0

♦ Book Clubs (1)0
Beet a —I
Friends 0 6) *
Cats -a
Art -a
New Friends a - |

 / Path

^ People

_J Type

c
o
G

Within the lo s t year

ud Pedal the Pinchot July 16ht 07 05 200S 10 05 0 Cal Tjader Winie Bobo
Yes. definitely SOMETHING I think this is twice in o row now that IVe hod dinner wtlh without
actually ndmg with him — Oriqinol M essaqe—
Path /Moilbo*
Tags "Personal\3ikes"

B Pedal the Pinchol July 16ht 07 05 20CS 9 56 CO. Willie Bobo ColTjeder
Well, we should do SOMETHING that weekend W e could join 8ie event (sounds LONG) bul it would
be a veiy different kind ol ride Not so much isolation but the support wouldn't be a bad thing. W e .
t-'ath /AutoArcniuecUtfJ/Sen! Hems
Toys ”Peisonol\Bihes‘."Petso[iBr^rifends'.'Peisuiisir

od Pedal the Pinch ot July 16ht 07 052005 9.48 20. CaJTjader Wilke Bobo
Well, the good pari would be that the route finding would be easy and they might provide food-
assuming we joined the event Should we reschedule? Bah. —-Ongmal M essage—
Path /Mailbox
Tags “Personal\0ikesu

Show m ore resu lts (57)

M ore than a year a go

j d Moran State Park Spetember Ride 08 1 1 2004 9 47 50 HughM asekela Willie Bobo
I sure hope I can get my bike fixed sooner than thafi Gah Yeah. Pm up for it if you're not out of town
How soon will you figure that out Maybe we should just sign up — Onginal M essage—
Pasfo / d 's Archive 1/2004 Inbox
Tags “PersonalVBikes" "Personal*

jd Bye 08 06 2004 4 42 27 JimmySmrti Willie Bobo

Figure 4.8: The user interface of Phlat

4 .4 F ile L i f e c y c le 74

Add a file

Add File

File |E \lcons\AJcohol Lam p ico BrowseRemove File
Save As

Search Keywords

Encryption
Set Ptivileges

Send File

Exit

A) C'one

Figure 4.9: The user interface of JoFS

from an operational viewpoint a user action taxonomy and examples are provided
below. It should be noted that in these examples the behaviour of the system is
documented through the eyes of the user, not a system designer and therefore there
is no mention of the processes that happen behind the scenes (including network
transport, encryption and archiving). Instead these examples concentrate on what
the user actually sees as the system behaviour, with the more in-depth and technical
details studied in the later chapters.

There have been nine actions identified for users, as seen in the following taxonomy:

• Execution

Store a hie

Retrieve a hie

Delete a hie

• Searching

Individual search

Proximity search

• Viewing

View search results

4 .4 File L i f e c y c le 75

View notifications

• Optional actions

Set keywords

Set permissions

4.4.1.1 Storing a file

A user creates a new file such as a word processing document, as they would nor
mally. GIFS would employ a drag-and-drop interface similar to that displayed in
graphical operating systems to allow the user to instruct the Virtual Secretary to
store this file away. The user would drag and drop the file onto the VS/GIFS icon to
store this file remotely. Depending on the settings of the VS, this action may cause
an interface to appear for the optional input of more details, see Figure 4.10 for an
example. In other cases, the VS may just take the file and store it without any further
need for input from the user.

Figure 4.10: The optional settings interface

4.4.1.2 Retrieving a file

Later in the day, the user wishes to retrieve the file that they created in the morning.
They open the VS program and have a choice of methods for retrieval. One such
technique is by using the list of recently used searches that have been generated
by the VS (Figure 4.11). Upon seeing the relevant search in the most recent list,
the user could select to see the results and from there mark the correct file(s). This

4 .4 F ile L i f e c y c l e 76

31 Searches [_j|n|'X|
S e a ic h R ec en t | F ieq u en l | Similarity {

S h o w P etfoim
D etails S e a ic h

Files modified yesterday r r

Files added since last use r r

Files related to "budget.doc" r r

Files authored by "Chen" after 06/05/04 r r

Files of type = "text" r r

Files authored by me today r r

Go!

Figure 4.11: The adaptive user interface

instructs the VS to bring the file back to the user’s local machine, and open it with
the appropriate program.

4.4.1.3 Storing a new version of a file

Once the user has finished editing a file, they add the file back to the system in much
the same way as they did upon creation of the file. The VS handles the version
control and so adding an edited file back to the system will not cause the original to
be overwritten. If the user wishes to increase the version to a specific number they
can do so from within the VS interface.

4.4.1.4 Deleting a file

As is the case with all the file storage mechanisms within GIFS, file deletion is out
of the hands of users. If the user requests a file to be deleted, then as far as all users
of the system are aware, that file no longer exists. In reality, this is not the case but
will be discussed further in Chapter 7. The user is able to undelete a file in the future
if they find it is still needed or was deleted in error, but up until that time the file will
be unavailable.

4 .4 F ile L i f e c y c le 1 1

4.4.1.5 Searching for files

There are a variety of ways that a user can locate their files for retrieval through the
Virtual Secretary. If a file is seldom used, or has not been accessed for a long period
o f time, then it is unlikely that it would appear in either the most frequent or most
recent search lists within the VS interface. When this is the case, the VS allows the
user to search for a file using the details about the file that they can remember. The
search options are natural and expressive allowing powerful queries. For example,
a user can ask the VS to find a file that they worked on a week ago, that may have
been about a committee meeting and originally written by Mr Smith by using the
example interface seen in Figure 4.12. The VS could then return a list of files that
most closely match the specified criteria, shown in Figure 4.13.

f l Searches

S e a ic h j R e c e n t | Frequent | Similarity |

Search Criteria

File name T

Keywords I

Author I

Extension f

Size
between j KB and f

Date ranges
None set Add

Go!

Figure 4.12: The search interface

The VS also allows proximity matching between files. For example, if the user
wants to find all the files that could be related to a report they have written on the
space usage of an office building, they can instruct the VS to find all files similar
to this report. The results returned are not restricted to files only written by the
user, as the search will span all files that the user has permission to access. Thus
a complete subset of files on similar/related topics can be recovered from just one
file. It is likely that the VS will also return some less-relevant files. However, over a
period of time the VS will develop more knowledge that highlights the unsuitability
of these files and will exclude them from the results.

Gioup

Type

KB

4.4 File L i f e c y c l e 78

Search Results
for "All files I a c c e s s e d yesterday"

curtmain.pdf
A dobe Acrobat Docum ent
1 ,4 8 4 KB

c_section_l.pdf
Adobe Acrobat Document

Addbtj 120 KB

_section_4.pdf
Adobe Acrobat Document
86 KB

graphs.xls
Microsoft Excel Worksheet

J_L| 22 KB

4 cheer-0006.mp4
Winamp m edia file
1 ,3 0 8 KB

c_exam ples_l .pdf
Adobe Acrobat Document
141 KB

c_section_2.pdf
Adobe Acrobat Document
71 KB

c_section_5.pdf
Adobe Acrobat Document
97 KB

Grove Villa Craswall.pdf
Adobe Acrobat Document
219 KB

4 cheer-0007.mp4
Winamp m edia file
1 ,7 8 8 KB

Figure 4.13: The search results interface

4.4.1.6 User notification

Files may be added to the system that are available to multiple users (such as many-
authored documents, committee hies or otherwise shared hies). In these cases, de
pending on the user’s preferences the VS could alert the user to the existence of
these new hies. This can be done in a variety of ways, ranging from a small icon
appearing in the user’s task bar, a once-a-day alert through the VS interface or a
weekly email. (Obviously the type of alert is personal preference and the time span
is dependent on the amount of traffic for a particular user. An example alert is shown
in Figure 4.14)

4.4.1.7 Setting file permissions

The Virtual Secretary assumes all hies are to be kept private unless it has identihed
an access pattern within the knowledge bases. If user wishes to share their hies with
others, it is simply a case of telling their Secretary which users are to be granted
access, and to what level (e.g. read, write or joint ownership). The VS may make
suggestions for access priviledges to save the user effort. These permissions can be
changed or revoked at any time by using the optional settings interface within the
VS. (Figure 4.10).

4.4 File Lifecycle 79

New tiles available

E u d u e t d c i
♦ 2 ofctef veiaorij

C'rcftcarrectensBff
Stodeir.timeiafals.t;;

♦ 1 oHer veicinn

♦ 5 oM** v6»ttor>?

CW1 m odel cns-ive’S.Ooc
♦ 2 oktef vetaons

CW) rnajk.s.xls

Figure 4.14: Example user notification alert

4.4.1.8 Setting keywords

When a text-based file is added to the system, the Virtual Secretary automatically
searches through it and provides suggestions for keywords. If the file is not text-
based a user can add their own personal keywords to the file by entering them into
the appropriate box in the “file settings” interface. The same method is used for
editing the keywords that have been suggested by the VS. Provided the user has the
write permission for a file, the keywords can be altered or updated at any time.

4.4 .2 S u m m ary

The Virtual Secretary interface aims to remove from the user the burdens associated
with file storage and retrieval. In order to provide the features seen in this chapter,
the Virtual Secretary must be supported by a collection o f agents, a set o f knowledge
bases and a file system. Seeing the Virtual Secretary from the viewpoint o f a user
gives a convenient and simplified perspective from which to start examining the
system as a whole. As much o f the technical detail o f the operations relating to file
storage is abstracted away from the user and handed to the computer to process, the
way in which this data is stored and processed becomes critically important.

Chapter 5

Data and Knowledge

5.1 Introduction

The strength and perceived intelligence o f GIFS and the Virtual Secretary system
comes from three different sources. The data it collects from a user’s actions,
through day to day use o f the system; the information that can then be extracted
from the raw data when it is analysed; and the knowledge resulting from combin
ing both the raw data and information. The task o f collecting, storing and analysing
large amounts o f data is an expansive research topic in its own right, and this chapter
covers only those parts required for the operation o f the Virtual Secretary. Once the
data has been gathered, it is analysed by a collection o f intelligent agents, resulting
in further data and information generation. From this information the knowledge
that alters the behaviour and interface o f the Secretary can be developed.

5.1.1 Technical Questions

File systems typically store information in the form of flat records (such as i-node
tables or FAT tables). There is little use o f databases in file systems, and even
less use o f knowledge bases. Hence, in order to realise GIFS, the main technical
questions include:

• How can a knowledge representation scheme be designed so that its basic
framework lasts for years, without the need of middleware or patching o f the
software to update it frequently whenever there is a need to introduce a new
feature into the file system?

• How can each piece o f knowledge be structured such that it is uniquely iden
tifiable within the system?

80

5.1 Introduction 81

• What kind o f knowledge processing utilities will be needed to implement the
functionality of the GIFS framework?

• How can the knowledge processing utilities be implemented efficiently in or
der to avoid on-demand processing for most events?

• How can the knowledge base be updated without the need for a system re
design?

• How should files be stored locally?

• How should data be collected from users?

• How can user’s interactions with the file system be specified?

• How should files with multiple versions be handled?

• How should each Virtual Secretary be identified?

The above questions will be answered in the rest o f this chapter, as the knowledge-
based architecture is presented.

5.1.2 Assumptions

The design o f the knowledge-based architecture relies on the following assumptions:

• Disk sizes will increase faster than knowledge base sizes, as will be discussed
in §6.2.4.5.

• An average user will be situated within a networked environment as this is a
common phenomenon nowadays, and networking capability will continue to
expand.

• Users will interact with the Virtual Secretary for all their file storage and re
trieval, as this presupposes that the Virtual Secretary technology proposed in
this thesis will in the future replace the traditional user interface for file sys
tems for a very large number o f ordinary users. By that time only a small
number o f technical specialists will know how to handle traditional user in
terfaces (an analogy to the text-based command windows), who will also be
aware that such interactions may not be transferred to the knowledge base o f
the Virtual Secretary.

• Users will create 5000 files a year or more as will be seen in §6.2.4.5.

• Users will access or search for some files considerably more frequently than
others. This is as certain files or types o f files will form part o f a user’s daily
computing routine or be used frequently for reference purposes and so will be
accessed more often than files which are created for one-off occasions.

5.2 Acquisition o f data from files via human interaction 82

• Users will wish to collaborate with colleagues on some files. Working in
groups is now a very common task in the workplace, even for simple tasks
such as asking colleagues for suggestions or improvements to a file. The
increase in personal websites on the Internet also supports the assumption by
proving that people wish to share their data (such as photos etc) with others.

5.1 .3 A pproach

To address the above technical questions, the best approach is through research and
development. In this work, we conduct a relatively comprehensive design exercise
that provides an overall design o f the knowledge framework for GIFS, and we will
selectively implement the main technical components o f the framework to dem on
strate the technical feasibility o f this design. In particular, we present the overall
design o f the knowledge base in 5.3.4, and a collection o f processing utilities in
the form o f agents in 5.5. As detailed in 5.5.2, we implemented 24 agents which
covered a wide area o f operations such as communication, knowledge capture, user
profiling and searching. The data flow between the knowledge base and other parts
o f GIFS will be detailed in 7.2.1.

5.2 Acquisit ion of data from files via human interac
tion

Server

Virtual Secretary

Network

KB KB

Figure 5.1: A Simplified GIFS Architecture

A user works on and operates a com puter largely through the manipulation o f files.
In most current operating and file systems, a limited amount o f metadata is stored

5.3 Design o f the Knowledge Base 83

about each file. The systems which include more metadata do not have appropriate
searching facilities attached, and still only record a small subset o f data. Computers
are ideal for processing large amounts o f data, as well as recording all actions that a
user performs.

The Virtual Secretary is the user interface for GIFS. By using this interface, the
computer can record a wide variety o f metadata on the way a user creates, manip
ulates and accesses their files. Previous data-gathering or learning systems have
failed as users were uninterested in investing the necessary time or effort to train
their assistants. The Virtual Secretary (VS) removes this problem as every single
action a user performs will expand the knowledge base the Secretary works across,
without requiring extra input from the user. As seen in the previous chapter, a user
can perform a variety o f actions through the VS. Each o f these actions will generate
data, which will then be stored in a knowledge base, and processed by a collection
o f intelligent agents. Some of these agents will simply sort the data, whilst others
will produce new knowledge to assist the system and thus the user. Before looking
in detail at the architecture o f the agents and interface, it is worth understanding the
design principles and aims o f the knowledge base.

5.3 Design of the Knowledge Base

5.3.1 Design Principles

The following design principles will be followed:

• The data collection process should be separated from the process o f knowl
edge processing. It is a common mistake that the decision o f what data to
collect is based on what can be processed with the current technologies and
what is considered useful in the context o f one person’s knowledge about ap
plications.

• Every piece o f knowledge must be time-stamped according to its creation
time. This helps to ensure the provenance of each piece o f data, by be
ing well-documented and unique enough to allow reproducibility [121]. It
is necessary to consider the validity o f this time-stamp carefully, and how it
is used, as most time-stamps will be based on local clocks. Time-stamps can
be adjusted by comparison with the server clock, or a central clock such as
h t tp : / /g r e e n w ic h m e a n t im e .c o m . Alternatively, it could be necessary
to only synchronize the clocks o f Virtual Secretaries that belong to the same
person across different machines, with other Secretaries clocks dealt with by
an algorithm similar to one used with timing problems and synchronicity in
operating systems.

5.3 Design o f the Knowledge Base 84

• The knowledge representation scheme should not be constrained by “ver
sions” wherever possible, especially in terms o f knowledge structure, ele
ments of attribute set, size and ordering o f attribute list, etc. Hence new at
tributes can be introduced and old attributes can be replaced without referring
to the notion o f version.

• Using constants to represent attributes that are not intrinsically numerical is
to be avoided.

5.3.2 Terminology

The terms, data, information and knowledge are often used interchangeably in re
lated literature, though they often have a different emphasis:

• D ata is the raw knowledge collected through various user interaction, and
communications. We use the term “raw knowledge base” to avoid it being
misinterpreted as a “database” which usually has a predefined structure that is
fixed throughout the life cycle o f the database (or its particular version). How
ever, we are also aware that raw knowledge is commonly referred to “data”.

• Inform ation is extracted from the data, and is often an abstraction o f the
data. For example, an email may be considered as data or raw knowledge, the
keywords, sender name, and so on that can be extracted are information. This
can also be referred to as “metadata”.

• Knowledge is commonly referred to as the information resulted from a pro
cess of reasoning and normally has more semantic meaning. For example, a
link between two files called “2003budget.doc” and “2003_budget_sheet.xls”
is considered as knowledge.

The term “file” is often used as a generic term for both ordinary files and folders
(directories). Ordinary files may also be often referred to as documents, although
this terminology is avoided where possible as whilst most computer users would
understand a word processed file as a document, the same cannot be said for sound
or media files.

5.3.3 Definitions

In addition to the previously presented principles, several other guidelines are used
to provide a consistent and logical development environment for the knowledge
bases and agent system.

Each VS has a unique identifier (VSID), which is advantageous for licensing and
security reasons (for example, when VSs exchange data directly). Although it may

5.3 Design o f the Knowledge Base 85

be advantageous for each agent to have a unique identifier, they are simply given a
name which is consistent under each Secretary. Thus each agent can be identified
from the VSID and the agent name.

Each action is given a unique (between actions) identifier, and any other pieces of
data related to that file will also have the same identifier. As each o f these pieces
o f data refer to a different attribute, combining the attribute name and identifier
gives a unique identifier across the system. The identifiers are constructed from
the Virtual Secretary ID (VSID) and a timestamp. Other fields were considered for
inclusion in the identifier, however they were not unique (such as author, filename
and hostname), and network addresses were avoided as they are prone to change.

The structure o f the knowledge bases and the knowledge representation language
is a question o f personal preference. There are several suitable alternatives. XML
is a natural choice due to its expandable nature, and its widespread usage means
that knowledge represented in such a way may have a longer shelf life. However,
XML does not suit knowledge processing, including retrieval and reasoning. For
mats such as Prolog predicates are much more suitable for processing. The ideal
design would have XML as an external and permanent (long-term) representation,
and Prolog predicates for internal and short-term representation. It would be possi
ble to store and transmit the data using the Resource Descriptor Framework [272]
model and submit queries via a query or inference language. However, most o f
these query languages were not developed or documented sufficiently at the time
o f project implementation to be considered a viable This would require a parser to
translate between the XML and Prolog (a trivial piece o f software). As the solution
is so simple in terms o f implementation, the knowledge bases have been stored as
Prolog, with the communications protocols and external knowledge base communi
cations written in XML.

For file retrieval, the Virtual Secretary creates a temporary local store whose name is
derived from the current date within the user’s native file system which will contain
all the files retrieved on that day. When the VS is told to file the document away, it
is removed from the directory. Either at regular time intervals or at the end o f the
day (depending on set preferences) the VS files away the files automatically.

Data, or raw knowledge, can be collected in many ways, including users’ interac
tions with the operating system and emails. In principle, there are no constraints on
what data will be collected as long as it is collectible. The first implementation o f
GIFS will concentrate on those data collected through users’ interaction with a file
system.

Definition: An action is an operation performed by a user, typically via a Virtual
Secretary, who is then able to collect attributes related to this particular action. An
action may have sub-actions. An ordered list o f actions may be combined to form a
super-action.

5.3 Design o f the Knowledge Base 86

Definition: An attribute is a data or information entity of a specific data type (or
attribute type) associated with an action. The attribute can be a distinguishable item
in user’s direct input (i.e. data such as filename), the status provided by the operating
system (i.e. data such as a timestamp), or information extracted from the raw data
associated with the action (i.e. information such as the document title from an MS-
word document).

Actions considered in GIFS version 0.5 are:

• Save a file, or more precisely, instruct a VS to store away a file. This action
may have the following attributes:

- filename (direct input)

- timestamp (OS status)

- If the object to be filed away is a folder, the list of all files and sub-folders
it contains (OS status)

- the owner/user o f this Secretary (information)

- author(s), the default is the owner but this can be extracted from a docu
ment, its metadata, or be entered by the user (information/direct input)

- keywords, which can be extracted from a document, its metadata, or be
entered by the user(information/direct input)

- access permissions and security level with separate read and write ac
cess, for individuals and also groups(direct input/information)

• Search a file by giving a set of search criteria, which may include:

- date, time, size authors, title, keywords etc.

- most accessed, or similarity to another file

• Select a file from a list o f files returned by a search.

• Retrieve a file or several files.

• Delete a file or several files.

• Modify attributes o f one or more files.

• Change the security password for the Secretary

Attributes that can be modified include:

• keywords

• password

• access permissions

5.3 Design o f the Knowledge Base 87

• filename

• author

• version number

• encryption key - note this is not set by the user but can be changed by the VS
when requested

Attributes that cannot be modified include:

• date o f creation

• date o f modification

As many or as few o f these actions can be combined into one knowledge entry,
although only <1 action can be selected from the set o f direct actions on the file (e.g.
save or delete, not both). There is no action for moving a file, as a directory/folder
no longer reflects the physical organisation o f files in GIFS and physically moving
a file would cause problems with version control. The user has no concept o f or
control over the physical layout o f the disk. Folders within GIFS are defined only as
the graphical representation o f a grouping o f search results. Files can be renamed,
although the file names set by the user are used purely as an attribute in the metadata.
The Virtual Secretary has the “knowledge” that a file is renamed and thus can still
keep track o f previous versions.

This leads us to the question about the definition o f a “version”. There are several
alternatives.

Definition 5A A version is an explicit numbering system associated with each file
and it can only be changed by the user(s) who has the write access permission o f the
file. The number can just be an attribute, or coded into the file name.

Definition 5B There is no explicit specification o f version required. The Virtual
Secretary maintains the knowledge about how a file is changed or evolved. When
the VS is asked about the history of a file, the VS will show a list o f actions on a
file and its relationships with others (e.g. open as A and saved as B, and A and B
become related). When the VS retrieves a file for the user, it automatically archives
it. When the file is returned, the relationship between the files is mapped if changes
to the file have occurred.

Definition 5C Both 5A and 5B are available to facilitate version management.

Whilst definition 5A provides a good structural base for version control, it is too
restricted and relies too much on the user versioning their own files correctly —
precisely what the system is trying to avoid. Definition 5B requires a large amount
o f disk space if files are edited and consequently versions are changed frequently.
However it may produce complications for files that can be edited by a group of
people as there will be no easy way for the users to tell if they are editing the most

5.3 Design o f the Knowledge Base 88

up to date version o f the file. This definition is also useful if the user accidentally
destroys the most recent version o f their file and provides a perhaps primitive mech
anism for backing up files. Although definition 5C is unlikely to be the most elegant
solution, it combines the rigid structure o f definition 5A and the flexibility and vast
knowledge propagation o f definition 5B.

5.3.4 Knowledge Base Structure

A knowledge base is associated with a specific Virtual Secretary (VS), and contains
the following general knowledge:

v i r t u a l S e c r e t a r y (V S I D , Timestamp, [A t t r i b u t e L i s t])

where VS ID is the licensing/unique ID string. The same VS can be installed on dif
ferent computers for the same user, the VSID will be unique in each installation but
there will be an entry in the knowledge base linking each o f these VSIDs so data can
be shared between them with no restrictions. The VSID string should be carefully
designed to accommodate free licensing, site licensing, single, and multiple instal
lations. Timestamp contains the date and time when the VS was installed, as local
clocks can be entirely inaccurate this should be provided by the server the first time
the VS connects. The A t t r i b u t e L i s t is currently unused, but may be needed
for future extension.

knowledgeCount(LastID)

Last id denotes the knowledge sequence number, which is a 16-letter string, and
each letter can be chosen from an ordered set o f 64 characters [#, *, Z, Y, ..., A, z,
..., a, 9, 8, ..., 1, 0]. Hence this gives us (1664 = 1.158 x 1077) combinations. If
one VS can create 1010 pieces o f knowledge each day, it will create 365xl00xl010
= 3.65 x 1014 pieces o f knowledge in 100 years, so this numbering system should be
sufficient.

Data in the main knowledge base takes the format of:

a c t i o n (I D , Timestamp, [S u b A c t i o n L i s t] , [O L is t])

where ID is the identifier that binds all the sub-actions in the SubActionLis t , and
the Timestamp is the time at which this entry was added. The OList contains the
predicates relating to the origin and expiry o f the data.

Each action that takes place should be uniquely identified not only for one user, but
also across the entire system for the sharing o f data. However, this is difficult to
manage in a world-wide distributed system. GIFS is designed to ensure that each
action is uniquely identified with a Virtual Secretary’s knowledge base. Provided
that each VS has a unique VSID in a domain, we can ensure that each action can be
uniquely identified in the domain. It is not difficult to enforce a unique VS through

5.3 Design o f the Knowledge Base 89

a licensing mechanism. The concatenated ID (VSID-ID) format ensures that each
ID is unique domain-wide.

The SubActionList takes the form of:

[s u b A c t i o n l , . . . , subActionN]

where each subA ct ion has a generic form:

subActionName (ID, [A t t r i b u t e l , . . . , A t tr ibuteN])

with id being the same as the ID from the main action. This list of sub-actions is
fully expandable.

The OList has the form:

o L i s t (I D , o r i g i n , [A t t r i b u t e l , . . . , A t t r i b u t e N])

The o r i g i n tag merely denotes whether or not this data was created autonomously
by an agent or with user input. If the data was agent created, then the attributes in
the list will be filled with details on that agent, e.g. the name of the agent and the ID
of the actions that were used in the deduction.

A file storing request activated through a VS may result in the following knowledge
to be added into the VS’s knowledge base:

a c t i o n (0000000000000001, 1158161802, [FileAway, O r i g i n L i s t])
f i l e N a m e (0000000000000001, "MyDocument . doc")
f i l e T y p e (0000000000000001, "MS-Word")
f i l e S i z e (0 000 00 00 000 00 0 01, 12 8698)
f i l e T i m e C r e a t e d (0 000000000000001, 1158161802)
f i l e L a s t A c c e s s e d (00 00000 00 0 0 000 01, 115 8164523)
f i l e L a s t M o d i f i e d (0000000000000001, 1158164523)
u s e r S e t V e r s i o n (00 00 00000 00 00001, 1)
keywordsVS(0000000000000001, ["s p e c i f i c a t i o n ", "r epor t "])
keywordsU(0000000000000001, [" s p e c i f i c a t i o n " , "GIFS"])
a c c e s s (0000000000000001, UserAID, read, w r i t e)
a c c e s s (0000000000000001, UserBID, read, w r i t e)
a c c e s s (0000000000000001, UserGroupA, read, noWrite)
o L i s t (0000000000000001, u s e r , [a l l])

Due to the extensible design of the knowledge base, further knowledge can be added
in later. For example, the following data shows how keywords found by some agents
using new software programs could be incorporated:

a c t i o n (0 00 00000 00 000 08b, 1158169534, [Agent, F i l e])
agent(K eySearch , [Software])
sof tware (000000000000008b , [KeySearchLite , MS-WordProfi le])

5.4 Life cycle o f data and knowledge 90

r e f A c t i o n (00000 00 00000 008b, 000000 0000000001)
keyw ords(0 00000 00 000 00 001, 000000000000008b, [b u d g e t , . . .])

Search operations produce an action entry in the following format:

a c t i o n (I D , Timestamp, [Search, R e s u l t s] , [OList])

where ID is the identifier for this action, Timestamp is the time at which it was
initiated and OList contains the origins o f the data as before. The s e a r c h predicate
takes the following form:

se arc h (ID , [S e a rc h C r i t e r ia])

with the S e a r c h C r i t e r i a variable holding all the criteria set by the user for this
specific search. The results o f each search are stored in the format of:

r e s u l t s (I D , [[F i l e l D l , S c o r e l] , [F i l e ID 2 , S c o r e 2] ,
. . . , [Fi le lDN, ScoreN]])

where [F i l e l D (l . . .N)] are variables holding each file ID that was included in
this search and [Score (l . . .N)] holding the corresponding scores.

The reverse o f the FileAway action, Filehome retrieves a file for the user.

a c t i o n (I D , T i m e s t a m p , [F i l e , F i l e h o m e] , [OList])

where ID, Timestamp, F i l e and OList follow the same format as in previous
predicates and the Filehome predicate has the structure:

f i l e h o m e (I D , [RemoteServer, L o c a l P a t h])

where RemoteServer contains the name and network address of the server that the
file was retrieved from and Loca lPath contains the temporary location of the file
on the user’s local machine.

As GIFS is designed to protect users and data from deletion errors, although from
the point o f view of the user the data is deleted, from the point o f view of the system
it is archived. Thus the following data is added to the knowledge base:

a c t i o n (I D , t imestamp, [F i l e , D e le te] , [o L i s t])
d e l e t e (I D , FID)

5.4 Life cycle of data and knowledge

A knowledge base is associated with a specific Virtual Secretary, that is, a VS in
terface servicing a specific user. Each knowledge base, K, is composed a set of
knowledge modules, K l , K 2 , K 3 , . . . , Km. In a distributed VS environment,

5.4 Life cycle o f data and knowledge 91

KnowledgeAgents
User

Interface Raw Data

Figure 5.2: The life cycle of data

modules can be located on different computers, and are maintained, sometimes indi
vidually and sometimes collectively, by a group o f knowledge management agents.
The modular structure o f a knowledge base facilitates the ownership o f knowledge
stored in each module, and a unique identification o f each piece of knowledge within
the module. A knowledge module, Ki, contains the following general knowledge:

v i r t u a l S e c r e t a r y (V S I D , Timestamp, A t t r i b u t e _ L i s t)
knowledgeCount(LastKSN)

where v s id is a licensing string, Timestamp is the date and time when the corre
sponding VS was installed, and A t t r i b u t e _ L i s t is an extensible list o f attributes
characterising the VS software. The predicate KnowledgeCounter (LastKSN)
maintains a counter for knowledge sequencing numbers, each o f which uniquely
identifies a compound knowledge instance, which will be detailed in the following
subsection.

5.4.1 Compound Knowledge Instances

A Compound Knowledge Instance (CKI) is one or several pieces o f knowledge gath
ered or generated in the context of a specific action or task, such as filing away a
document. Each CKI is represented in a knowledge module as a collection o f Prolog
predicates in the following general format:

mainKI(KSN, Timestamp, SubKI_List)
<subKIl>(KSN, . . .)
<subKI2>(KSN, . . .)

where KSN is the knowledge sequencing number that binds principal knowledge in
stance (mainKI) with all the supplementary knowledge instances (subKI’s) in the
SubKl_List. A SubKl_Lis t consists o f a list o f names (called functor in Pro
log) o f supplementary knowledge instances [< subKl l >, < subKl 2 >, . . .]. The
ordering o f these functors is insignificant in a CKI, hence the format o f each type
o f CKI in terms o f the number o f attributes can evolve freely without necessity for

5.4 Life cycle o f data and knowledge 92

defining a version in every evolution stage. The unification capability of logic pro
gramming enables pattern matching with little programming effort.

5.4.2 Example of Data

 Listing 5.1: An example o f a data created through the addition of a file_____
m ainK I(0000000\#00000001 , 1158169534, [f i l e , f i leAway])
f i l e (0 0 0 0 0 0 0 \ # 0 0 0 0 0 0 0 1 , [f i leName, f i l e T y p e , f i l e L o c a l P a t h ,

f i l e S i z e , f i l e T im e C r e a te d , f i l e L a s t A c c e s s e d ,
f i l e L a s t M o d i f i e d , u s e r S e t V e r s i o n , keywords,
a c c e s s])

f i l eN am e(0000000 \#00000001 , "MyDocument. doc")
f i l e T y p e (0 000000 \ # 0 0 000001, "MS-Word")
f i l e S i z e (00000 0 0 \ # 0 0 000001, 12 8698)
f i l e T i m e C r e a t e d (000000 0 \ # 0 0 0 00001, 115816 9534)
f i l e L a s t A c c e s s e d (0000000\#00000001 , 11581753 91)
f i l e L a s t M o d i f i e d (0000000\ # 0 0 000001, 11581753 91)
u s e r S e tV e r s io n (0 0 0 0 0 0 0 \# 0 0 0 0 0 0 0 1 , 1)
v s V e r s i o n ((0000000 \#00000001 , 1)
keywordsVS(0000000 \#00000001 , [" s p e c i f i c a t i o n " , "r e por t "])
k e y w or d sU (0000000 \#00000001 , [" s p e c i f i c a t i o n ", "GIFTS"])
a c c e s s (0 0 0 0 0 0 0 \ # 0 0 0 0 0 0 0 1 , 9 1 k s j l k j s l f 9840, read, w r i t e)
a c c e s s (0000000 \#00000001 , exampleUser l , read, w r i te)
a c c e s s (0000000 \#00000001 , exampleUser2, read, nowri te)
a c c e s s (0000000 \#00000001 , gr o u p l , read, w r i te)
a c c e s s (0000000 \#00000001 , group2, read, now ri te)
g r o u p l (0 0 0 0 0 0 0 \ # 0 0 0 0 0 0 0 1 , [exampleUser3 , exam ple User4])
g r o u p 2 (0 0 00000 \#00000001 , [u s e r l , u s e r 4 , u s e r 5])

In the example seen in Listing 5.1 the principal knowledge instance (mainKI) gives
the functors o f two supplementary knowledge instances, f i l e and f i leAway. The
f i l e predicate provides a further list o f supplementary knowledge instances for a
range o f file attributes. The f i l e A w a y predicate records a set o f operations per
formed for the task. Some o f the above knowledge (e.g. f ileName), is gathered
from user interaction by the Virtual Secretary; some (e.g. group2) obtained from
previous knowledge in the knowledge base; and some (e.g. keywordsVS) gen
erated by relevant agents. However, a substantial amount o f the knowledge (e.g.
f i l e S i ze) is acquired from the operating system by the VS. Hence the overall bur
den for the user to provide the Virtual Secretary with raw knowledge is very limited.

5.5 Agents for Knowledge Capture and Manipulation 93

5.5 Agents for Knowledge Capture and Manipulation

5.5.1 Overview

Within GIFS, agent programs perform a variety o f tasks in the background to support
the Virtual Secretary interface. As seen in Chapter 3, artificial intelligence still has
a long way to go before it can produce a system that contains common sense or is
intelligent in the classic sense o f the word. By using many small agents in GIFS
that each perform very specific roles a useful service can be maintained without the
worry o f creating one large “intelligence”.

Some agents within GIFS are responsible for communications and interfacing with
other parts o f the system, whilst others solely perform simple deductions or calcu
lations in order to help a more complex agent. Primarily, the agents operate over
the raw data in the knowledge bases that is produced by the user interacting with
the Virtual Secretary. By using deductive reasoning new knowledge can be created
which is used both by the Virtual Secretary interface and can also then be analysed
by further agents. This is a continual process as data is added with feedback from
the Virtual Secretary and new knowledge is created.

5.5.2 Classifications of Agents

There are 3 main classifications for agents within GIFS. These classifications are
broad and not necessarily unique (e.g. it is possible given these classifications that
an agent may belong to more than one group).

• Communications: Agents whose main task is to provide communications ser
vices to the system

• Processing: Agents whose main task is to perform calculations which are
necessary for the more complex tasks

• Creation: Agents whose main task is to analyse the knowledge bases and
create new knowledge

A list o f the agents and their main types can be seen in Table 5.1. It is worth noting
that almost all o f the processing agents also display the behaviour o f a creation agent.
When their operations are performed the results of the intermediary calculations are
stored within the knowledge bases. It is this data which is then combined or used by
a creation agent in order to deduce further knowledge.

5.5 Agents for Knowledge Capture and Manipulation 94

Name Type
Archive processing
Author processing

AuthorList creation
Favourites creation
Filename processing

FilenameList creation
Friend Profiling processing
Interface comm communication

Keyword processing
KeywordList creation

Knowledge Transplant communication
Permission creation

Recent creation
Search updater processing

Similarity processing
Time and Date processing

TimeList processing
Type processing

TypeList creation
Union processing

User analysis processing
Vars processing

Version processing
VersionList creation

Table 5.1: List o f agents

5.5 Agents for Knowledge Capture and Manipulation 95

5.5.2.1 A B rief Description

Archive: The Archive agent is responsible for reducing the size o f the working
knowledge base. It will move any data that is obsolete (e.g. when a file has been
“deleted” by the user), unlikely to be of use (e.g. when a file has not been accessed
for over a year) or is superfluous (e.g. there are over 5 versions of a file, with earlier
versions not being accessed for over 3 months).

A uthor and AuthorList: The Author agent has two main functions. Given a file,
it can compute a similarity score (as a percentage) o f that file based on author by
comparing with all other files. Alternatively, given a file and a list o f files, it will
compute the similarity score o f the author for all the files in the list. In comparison,
the AuthorList agent maintains lists o f files, categorised by author.

Favourites: The Favourites agent maintains a list o f the search operations requested
and performed by the user most often.

Filename and Filenam eList: The Filename agent computes the similarity of all
files to a given filename and returns a score between 0 and 100. It also calculates
this similarity score given a filename and a subset of files for comparison. The
FilenameList agent maintains and returns lists o f files ordered by filename. As these
agents work on a text-based field, they make use o f the external libraries provided
by the communications agent.

Friend Profiling: The Friend Profiling agent creates a list o f the most contacted
users. For example, those with which knowledge is shared via the knowledge trans
plant agent and those whom files are shared with. It is also responsible for the
maintenance o f groups for the purposes o f file sharing.

Interface comm: This agent provides communications services between the Virtual
Secretary and the agents (where needed). More importantly, it also acts as a bridge
between the agents and external third party programs (such as those used for text
matching) which have been written in alternate languages.

Keyword and KeywordList: The keyword agent calculates a similarity score for all
files, given a set o f keywords. It can also perform the same calculation over a given
set o f file IDs, returning a percentage score between 0 and 100. The KeywordList
agent maintains lists o f files sorted by keywords. Both agents use the external li
braries for string matching.

Knowledge Transplant: The Knowledge Transplant agent handles the incoming
and outgoing o f knowledge to and from other Virtual Secretaries.

Permission:The Permission agent maintains the suggestions for file permissions by
working together with the user analysis agent.

Recent: The Recent agent maintains a list o f the most recent search actions per
formed by the user.

5.5 Agents for Knowledge Capture and Manipulation 96

Search updater: The Search updater keep the lists o f precomputed search results
up to date either by running at a specified time interval or as the contents o f the
knowledge base changes.

Similarity: The Similarity agent is the main agent for coordinating the search results
when comparing a file to others. It calls other agents to provide it with similarity
scores before collating and ordering the results to be returned.

Time and Date and TimeList: The Time and Date agent performs similarity testing
over either a set of or all files using three different functions - linear, polynomial and
bounded cosine function. It returns the results as a list o f scores between 0 and 100.
The TimeList maintains lists o f files, grouped and ordered by time in periods o f 1
day.

Type and TypeList: The Type agent computes a similarity score between 0 and 100
for a given file over all other files or a subset o f files. The score will be 100 for an
exact match (e.g. “doc” and “doc”), 50 for a type match (e.g. “jpg” and “g if ’) and
0 if there is no match. The TypeList agent maintains the lists o f files categorised by
extension.

Union: The Union agent is used solely by other agents to perform unions or inter
sections over sets o f results to give a combinatorial set.

User Analysis: The user analysis agent calculates the probabilities o f a user being
granted access (read, write or co-author) to a file.

Vars: The Vars agent is used for directly querying the knowledge bases in order
to retrieve file metadata such as names, sizes and types. It is not used in any o f the
searches by the interface uses it extensively when displaying results or other options.

Version and VersionList: The Version agent computes the similarity between one
file’s version and all other files. The score is returned as a value between 0 and 100,
and is largely dependent on the range o f versions that are available. The VersionList
agent maintains lists o f all files ordered and sorted by version number, as well as
per-file lists containing the numerical representations o f each file.

5.5.3 Agent Creation

All the agents listed above have been written in Sictus Prolog 3.12.0. As the knowl
edge bases were written in a Prolog/XML extensible style language, Prolog seemed
the most natural choice as an implementation language. In previous versions of
GIFS, the agents utilised a pre-defined architecture called “The Open Agent Ar
chitecture” [68] which required Sicstus Prolog to run. However, as implementation
and research progressed, it became apparent that OAA was not a suitable choice. Al
though well documented and researched, the OAA architecture introduced too many
overheads for a large scale agent network and too many complexities for a smaller

5.5 Agents for Knowledge Capture and Manipulation 91

sized research project implementation. The agents were thus slightly rewritten to
function without the help o f aforementioned architecture, but remained in Sicstus
Prolog.

For certain tasks (e.g. string matching), it was more efficient to use a 3rd party set
o f functions that were readily available than to write them from scratch. The string
matching function that was used was called FuzzySearch written by SoftComplete
Developm ent1. It provides a variety o f fuzzy matching algorithms to be used over
strings. The source code for these functions had been written in C++ so first a C
wrapper program had to be written. A DLL was then created to allow Prolog to
call the functions referenced in the C code by using the Prolog —> C bridge. In this
manner the Prolog agents were able to call the string matching functions that were
provided in the 3rd party C++ code.

5.5.4 A Closer Look

In the following section four agents are looked at in more detail. They provide
a range o f services in order to facilitate the Virtual Secretary interface as well as
supporting the operations o f other agents.

5.5.4.1 Filename Agent

The filename agent compares a file name to all the other file names in the knowledge
base in order to help calculate the proximity score o f all files. It uses 3rd party fuzzy
matching algorithms to generate a percentage score denoting the similarity of all
filenames in the knowledge base to a given filename. For example, the filenames
“mydocument” and “yourdocument” would return a high similarity score, whereas
the filenames “mydocument” and “cabbages” would result in a low similarity score.

Listing 5.2 displays a section of code from the filename agent. The predicate
comparef i l e nam e /2 which starts on line 1 takes a filename N and returns a set of
(F i l e l D , Score) tuples in R e s u l t s . Line 2 shows the agent first building a set
S of all the filenames and corresponding file ids that a user has access to. Once the
list has been built, the data is extracted into two singular lists: Abs containing the
filenames and F i l e s containing the file ids. Line 4 performs the calculation o f the
proximity score o f each filename in Abs to the filename N, with the results stored as
a list in Scores. Finally, line 5 contains the call to the predicate which builds the
results into a list which has the format o f [(F i l e l D l , S c o r e l) , . . . , (F i l e lDN
, ScoreN)] .

'h t t p : / / w w w . s o f t c o m p l e t e . com

5.5 Agents for Knowledge Capture and Manipulation 98

Listing 5.2: A predicate within the filename agent
comparefi lename(N, R e s u l t s)

s e t o f ((ID,Name), f i l eNam e(ID , Name), S) ,
m a k e l i s t s (S , F i l e s , Abs) ,
d o c l e v e r l (N , Abs, S c o r e s) ,
r e b u i l d l i s t s (F i l e s , S c o r e s , R e s u l t s) .

5.5.4.2 User Analysis Agent

The user analysis agent performs many mathematical calculations over in order to
provide the individual probability scores o f file access permissions to the permis
sions agent. These values are calculated by using agent-created knowledge that has
been extracted from the raw data o f user actions and interactions with the Virtual
Secretary. The code in Listing 5.3 shows one such calculation which processes
the data o f previously made correct suggestions. If a user has been suggested to
have read access previously and this suggestion has been accepted by the user, the
returned score will be high. Alternatively, if this user has never been correctly sug
gested to have write access for this file then the score will be 0.

One o f the definitions for the predicate c r r s / 4 is included in Listing 5.3. It takes
a user ID Userid , the number o f previous versions o f a file Vno, a list of file ids
for each previous version V l i s t and returns R esu l t , a positive number. In lines
3 and 4 all the previous correct suggestions for a user U s e r id to have read access
for previous versions o f this file are identified. The relevant knowledge ids are
then stored in s. Line 5 shows a cut which prevents Prolog from backtracking and
performing the s e t o f / 3 operation again if a future line fails. Lines 6-9 form an
if-then-else statement. I f set S contains > 1 element (e.g is not empty) then the
result returned is the length o f S divided by the total previous versions, Vno. I f S is
empty, the score assigned to R e s u l t will be 0.

Listing 5.3: A predicate within the User Analysis agent
e r r s (U s e r i d , Vno, V l i s t , Resu l t)

member(ID, V l i s t) , member(Userid, R l i s t)) , S) ,
5

l e n g t h (S , N) ,
R e s u l t i s N / Vno

R e s u l t i s
lO

5.5 Agents for Knowledge Capture and Manipulation 99

5.5.4.3 Search U pdater

The search updater is a more complex agent than those already seen above. This is
because not only is it required to call the processing agents to perform searches, but
it must also cache and sort the search results, ensuring these results are up-to-date
by running at a predefined time interval or as new data is added to the knowledge
bases. By working in collaboration with the recent/favourites agent, it calculates the
results for these searches even when not requested directly by the user so that should
the user request these results they are already up-to-date.

When the user requests a search, the Search updater first checks the cache o f search
results. If the Search updater is running continually it will already have the most
recent results for all the searches previously performed in a knowledge base as a
complete set (so requesting N results and then N+5 results will not require the whole
search to be performed again). I f this particular search has never been run before,
operation is passed over to the search builder agent.

When any new data is added to the knowledge base the search updater agent works
down the list o f most frequent and most recent searches and calls the respective
processing agents to re-perform each search so that the new data will be included.
Listing 5.4 shows a section o f code from the search updater agent. In this small
segment, the agent takes a set o f search criteria S, and locates the time that this
search was last performed T, and the corresponding results R by using the predicate
g e t s e a r c h / 3 seen on lines 1—4. Once the previous search has been found, all new
files that have been added since are identified using the s e t o f / 3 predicate on lines
8 and 9, and sent as a reduced search space F i l e s to one o f the search agents.

________________Listing 5.4: A predicate within the search agent________________

5

g e t s e a r c h (S , R, T)
s e t o f ((I D , S, R e s u l t s , Timestamp),

se a rc h (I D , Timestamp, S, R e s u l t s) , S e t) ,
maximum(Set, (x , x , x , 0) , (ID, S, R, T)) .

f in dnewdata(S , R, F i l e s)
g e t s e a r c h (S , R, T) ,
s e t o f ((I D , Time), f i l e L a s t M o d i f i e d (I D , Time),

A l l T i m e s) ,
p i c k t i m e s (T , A l lT im es , F i l e s) .

5.5.4.4 Permissions Agent

The permissions agent maintains the lists o f predictions o f file access control lists. It
works in conjunction with the user analysis agent to provide the user with a sugges
tion o f whom should have what permissions for any given file. Once the suggestion

5.5 Agents for Knowledge Capture and Manipulation 100

has been created it is then fed back into the Virtual Secretary interface to be pre
sented to the user.

Listing 5.5: A predicate within the permissions agent

5

10

15

20

25

30

35

c a l c r ([H | T] , Vno, V l i s t , F i le w ord s , Now,
N1,N2,N3, N4, N5, N6, N7, N8, T1, T2, FID)

cs(H, Vno, V l i s t , S I) ,
pas(H, Vno, V l i s t , S 2) ,
cr rs (H , Vno, V l i s t , S 4) ,
wrrs(H, Vno, V l i s t , S 6) ,
o l s (H , V l i s t , Now, S7) ,
l a s (H , S 5) ,
wl sr(H , F i le w o rd s , S3) ,
(

S3 > 0,
i
• /

S3a i s S3/100
/
S3a i s 0

) ,
Pnew i s (S1*N1)+ (S2*N2)+ (S3a*N3) + (S4*N4)+ (S5*N5)

- (S6*N6)- (S7*N7),
k(K) ,
(

v e r l i s t (F I D , _ , [FID, T| _]) , ! ,
p (_, T, H, read, Pold)
/

Pold i s 0
) ,
R i s ((1 -K) * Pold) + (K * Pnew),

(

R>=T1, !,
a s s e r t (p r e d i c t (N o w , FID, H, read, c e r t a i n , R

))

(

R>=T2, ! ,
a s s e r t (p r e d i c t (N o w , FID, H, read,

perhaps , R))
}
t r u e

)

) ,
c a l c r (T , Vno, V l i s t , F i le w o rd s , Now,

N1,N2,N3, N4, N5, N6, N7, N8, Tl , T2, FI D) .

5.5 Agents for Knowledge Capture and Manipulation 101

Listing 5.5 shows a section o f code from the permissions agent which calculates the
probability score o f a user being granted read access to a file. The predicate c a l c r
/ 1 6 takes a list of users [h |t] , the number o f previous version of this file Vno and
a list o f their ids v l i s t . F i le w o rd s is a set o f strings which have been identifed
as related to this file, Now is the current timestamp, whilst atoms N l . .N8 contain
personality values o f the Secretary and f i d is the file id o f the newly-added file.

The individual scores for each category s i . . S7 are calculated by the user analysis
agent on lines 1-9, and are then adjusted according to the Secretary’s personality
settings (lines 17-18) and the scores o f previous comparisons (lines 21-26). If the
resulting score is over a threshold value (line 29) then that user is added to the list
o f those who are likely to have read permission.

If the score is below the highest threshold but above the second, the user is added
to a possible list (line 32). If this user has score below both thresholds no action is
taken and the agent processes the remaining users in the list T (lines 38 and 39).

5.5.5 Discussion

This chapter has defined the knowledge framework used to support the Virtual Sec
retary. The technical questions presented in §5.1.1 have all been addressed in the
design, and as such the feasibility o f the design has been demonstrated. In addi
tion to illustrating the data that is collected from the Virtual Secretary’s interactions
with the user, the internal format and design principles o f the knowledge base were
presented. A series o f agents were described that operate over this data in order
to provide dissemination and proliferation o f knowledge. Several agents were ex
amined in detail to give a view of the processes that run in this system behind the
scenes. In the next chapter the feasibility and scalability o f this adaptive service is
demonstrated.

Chapter 6

Case Studies

6.1 Introduction

In order for GIFS to provide a beneficial service to users, it must assist in the day-to-
day file organisational activities without hindering the performance o f the computer.
In other words, the system should remove the burden o f file storage and organisa
tion from the user. Such improvements would be worthless if the system became
unusable after a period o f time due to the amounts o f data being produced and anal
ysed, or if the system was not capable o f providing helpful suggestions to the user
after analysing previous data. Therefore to prove the feasibility of the Virtual Secre
tary and knowledge-based approach for file storage presented previously, a variety
o f simulation tests over computer-generated datasets are needed to demonstrate the
two major performance issues o f this work: Scalability and Adaptability.

6.2 Case Study 1

6.2.1 Hypothesis

W ith appropriate techniques, the average search tim e for a V irtual Secretary
can be achieved in a scalable manner.

The amount o f data gathered and produced by the GIFS framework over a long
period o f use means that in order to provide a useful service, the Virtual Secretary
must be able to return search results in a time which has a slower rate o f increase
proportional to the size o f the data set. In order to be considered scalable, the time
taken as a function o f the size o f the dataset must not grow faster than a polynomial
o f small degree.

102

6.2 Case Study 1 103

6.2.2 Assumptions

The following assumptions are made for the purposes o f this case study:

• File sizes will continue to grow at a rate o f 100KB per year on average and
this assumption will be discussed in detail in §6.2.4.2 and §6.2.4.3.

• Disk sizes will continue to increase by 40% per year, as will be seen in
§6.2.4.5.

• The size o f the knowledge base for a typical Virtual Secretary will increase by
70,000 entries per year in a best-case scenario, as will be explained in §6.2.4.1.

• The size o f the knowledge base for a typical Virtual Secretary will increase
by 300,000 entries per month in a worst-case scenario as will be discussed in
§6 .2 . 11.

• A typical user will have some knowledge o f the file they wish to search for.
It would be impossible for a user to try and search for a file that they had ab
solutely no knowledge o f in either paper-based or current electronic systems.
Therefore it is assumed that the user will have knowledge o f some subset of
attributes about a file but not necessarily complete information.

• A typical Virtual Secretary will search the entire knowledge base unless other
wise instructed and will return an ordered list o f the complete results. This is
due to the implementation o f the search function and will be discussed further
in §6.2.7.

• A user can select to only view the top specified number o f results. Users are
unlikely to want to review the score for every single file in the system when
the file they are looking for would be more likely to be near the top o f the
results.

6.2.3 Approach

In order to explore the hypothesis, data was collected and reviewed to support the
above assumptions. As well as a review o f the literature o f previous user and disk
studies, data was collected from anecdotal interviews with colleagues. Another ap
proach used was that o f simulation. Given the amount o f time a study would need
to be conducted in order to run over appropriately sized datasets, data had to be
created using a simulation program. Both approaches were used in this instance to
provide evidence in order to support the assumptions and allow the case study to be
conducted.

6.2 Case Study 1 104

6.2.4 Scalability of the Knowledge Based Approach

Collecting large amounts o f data over an extended period of time is not likely to
result in performance advantages for the user if the knowledge bases are so large
that searching through them takes hours. Whilst waiting a couple of seconds for
some search results or for a file to be located may seem reasonable for a day-to-
day activity (some people may argue that this would still be a frustrating wait), if
performing the same action on a much larger knowledge base took 3 hours, the user
would be unlikely to use the system at all.

6.2.4.1 General Problem of Knowledge Base Growth

Each file addition from a user generates between 10 and 14 entries o f raw data in
the knowledge base (depending on which attributes are set). A survey o f fellow
postgraduate students showed that at the time o f writing, they each created around
5000 files per year. This would produce between 10*5000 and 14*5000 entries in
the knowledge base (50,000 and 70,000 respectively). Over a period of 10 years,
this equates to at least 700,000 pieces o f data created entirely from file additions.
Data would also be created from file deletions, changes in permissions and groups,
as well as the extra knowledge created by the agents on analysis o f this raw data.
Thus it can be expected for this number to double in order to include these extra
actions. Over a period of 50 years it would not be unexpected for over 7 million
pieces of data to be created.

7000000

6000000

5000000

 ̂ 4000000
<A

"5
« 3000000wo

2000000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Years

Figure 6.1: Dataset growth over a period o f 50 years

6.2 Case Study 1 105

Year Files Users Files per user Source
1981 86000 - - [248]
1984 19978 - - [200]
1991 304847 200 1524 [32]
1994 23000000 1845 12466 [263]
1994 429995 7500 57 [113]
1998 - - 24000-45000 [293]
1998 140000000 10568 13247 [87]

Table 6.1: File and user statistics from previous studies

6.2.4.2 Previous Studies on the Grow th of Files

The numbers represented in Figure 6.1 show the best-case scenario as it assumes
that as time continues users will not create many more than 5000 files per year.
There is little or no data available on the number o f files belonging to a user over a
period o f time. Whilst there have been many studies into file system performance
[248, 266, 18, 264, 200, 256], only a few of them included details as to the number
o f files examined in the study and the number o f users that those files belonged to
[87, 32, 113, 293, 263]. The studies were all performed on differing types o f file
systems (local, server and distributed) running on a variety o f operating systems
mostly by taking a snapshot o f the file system status. The data can be seen in Table
6.1. Whilst these numbers certainly show an increasing trend in the number of
files per user on a file system, the differences in data gathering techniques, file and
operating systems studied and the lack of data over multiple snapshots means that
these results do not give a sufficient basis to form generalisations for future file
statistics.

6.2.4.3 Swansea File Growth Data

Instead, it was decided to analyse file usage statistics from the servers o f the com
puter science department. The server, named “cs-svrl” services the academic staff,
support staff, clerical staff, research assistants and postgraduates o f the computer
science department, currently totaling 161 users in all. By executing a simple script,
the server administrators were able to provide a breakdown on the number o f files
per user and associated timestamps over a period o f several years. The file times
tamps can be altered not only by the file system, but also any program that uses the
files on the client machine. Thus if the client machine or process has an incorrectly
set time, so then will the i-node data for that file. Some files were found to have
modified times o f 1901 or 2028, which can be attributed to the wrapping around of
the POSIX time system (which counts the number o f seconds since the 1st January
1970). Entries with obviously incorrect timestamps were removed from the sample,

6.2 Case Study 1 106

Year Files
1996 17865
1997 38037
1998 71586
1999 58221
2000 62983
2001 113269
2002 167176
2003 335375
2004 273768
2005 403511
2006 390142*

Table 6.2: Last modified dates of files o f all users on cs-svrl

Year Files Avg file size (bytes)
2001 23816 26806
2002 37651 17725
2003 40759 34554
2004 46466 125776
2005 46643 215023
2006 74150* 360792

Table 6.3: The last modified file times o f User A on cs-svrl

the remainder o f the results can be seen in Table 6.2.

O f the 161 users identified, the number o f files per user ranged between 1 and
256853. Whilst all members of staff and postgraduates within the department are
granted access to cs-svrl, many also have their own personal machine which some
users prefer to use instead of storing their files on the network. The most active
user (e.g. had the most files) was then identified and their file statistics individually
examined to show the number o f files they worked on during a year and the total
sizes of files per year. This particular staff member, referred to as user A, joined the
department in 2001 so there is no file data beforehand. The results can be seen in
Table 6.3 and Figure 6.2.

As these figures clearly show and as supported by previous works, the number of
files used per year increased. These statistics were created mid-way through a year,
so the final result was doubled to allow for the remaining 6 months (marked with a
***). By extrapolating the line seen in the graph, it can be estimated that in 50 years
time, over 3 million files could be created by a user per year.

Following on from the estimate o f number o f files, a fifty year knowledge base of
raw file data alone could contain 1,000,000,000 (one billion) entries. This is still

6.2 Case Study 1 107

90000
.0.3171*y = 5E-272e

80000

70000

60000

50000

-S 40000

30000

20000

10000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Year

Figure 6.2: Number of files modified per year by UserA

a best case scenario, as it is likely that as the system evolved more data would be
gathered to assist in the knowledge processing activities.

6.2.4.4 Increase in File Sizes

Table 6.4 contains the average file size in bytes o f all files on cs-svrl. Although it
shows a steady increase in growth from 1990-2003, there is a sharp increase over
the last 3 years. As the number of total files on cs-svrl has increased at a more
steady pace seen in Table 6.2, average file sizes doubled between 2003 and 2004,
and have almost doubled again between 2004 and 2006.

In order to examine the changes in the sizes o f files over a period o f years, a second
set o f user file statistics was selected. User S is one o f the longest serving members
o f staff in the department and has also used cs-svrl for primary file storage so pro
vided an acceptable spread o f data over a number o f years. As seen in Table 6.5 and
Figure 6.3 it is unsurprising that the average file sizes have increased since 1994. In
comparison to the overall increase in average file size on cs-svrl, user S has a rela
tively small average file size, but one which still follows the trend o f increase. The
introduction o f larger disks, more powerful computers and larger storage formats
(such as Unicode) have all contributed to this increase.

6.2 Case Study 1 108

Year Avg file size (bytes)
1990 7045.6
1991 20265.4
1992 17477.1
1993 15005.5
1994 18044.9
1995 91175.9
1996 36321.1
1997 43270.3
1998 54980.8
1999 66400.1
2000 112891.6
2001 88426.6
2002 93614.0
2003 92144.9
2004 180495.3
2005 235763.4
2006 309444.1

Table 6.4: The average file sizes of all files on cs-svrl

Year Files Avg file size (bytes)
1994 254 6443.8
1995 827 15631.1
1996 516 10101.6
1997 617 14359.9
1998 1794 8362.1
1999 3763 18421.8
2000 755 12918.6
2001 2285 15086.8
2002 2851 20271.8
2003 3082 31195.7
2004 3070 38954.7
2005 3960 45453.3
2006 1996 46087.8

Table 6.5: The number and average size of files for User S on cs-svrl

6.2 Case Study 1 109

50000

45000

40000

if 35000
*
If 30000N
« 25000

• 20000 ra to
$ 15000
<

10000

5000

0
1992 1994 1996 1998 2000 2002 2004 2006

Year

Figure 6.3: Average file sizes for user S

6.2.4.5 Increase in Disk Sizes

The development and capacity o f hard disk sizes is considerably better documented.
Figure 6.4 shows the capacity o f disk drives over time, with a logarithmic scale.
The data for this graph was extracted from [262], and shows a trend o f exponential
growth possibly due to the utilisation o f error correcting codes and the magnetore
sistive effect [133], However, in the last few years the sizes o f new disk drives have
plateaued noticeably. Therefore, a more realistic prediction o f disk sizes in the fol
lowing years comes from Seagate [66], who predict a 40% increase in disk capacity
per year. Following this prediction, terrabyte disks will be commonly available in
the next 2 to 3 years, and the capacity in 50 years will be over 7,000,000,000 GB.

As the projected development o f disk sizes is well over the projected knowledge
base size, disk space can be disregarded as a problem in the GIFS framework.

6.2.4.6 File Growth Simulation

As it is not practical for the purposes o f this project to use real data gathered over an
extended period o f time (as no such data is currently available), a data creation pro
gram was implemented to assist in the testing process. Although it is near impossible
to accurately predict numbers involved in the future o f computing, by using some
arithmetics and probabilities the data creation program generated what can be con
sidered as accurate as possible. Within this test, the size, volume and general spread

6.2 Case Study 1 110

1000

100

10

1

0.1

0.01

0.001
5/25/1979 11/14/1984 5/7/1990 10/28/1995 4/19/2001

Figure 6.4: The size o f disks over time on a logarithmic scale

o f the data are considered to be far more crucial than the accuracy o f each individual
piece o f data. Should a higher accuracy o f data be required, several user studies and
time-consuming statistical processes would have to be used over a cross section o f
computers. It was decided that for the purposes o f the scalability test, accuracy o f
the contents o f the knowledge base came second to the volume o f knowledge and
data itself.

6.2.4.7 Data Creation Theory

There have been many studies into the contents o f file systems, however they were
mostly concerned with Unix file systems and have not been conducted recently.
Those conducted after 1994 stated several factors which influenced the data creation
process.

A file usage study o f software developers was carried out in 1994, o f 7500 users
connected by a LAN [113]. This study observed that:

• Regularly accessed files are larger

• Files are least mostly accessed and least often modified

• 50-60% of the files were shared between workgroups

6.2 Case Study 1 111

• As sharing activity increases the modifications decrease

• The average file size for source code increases as sharing increases, and less-
so for non-source code files

The first large-scale study into Windows file system usage was undertaken in 1999
by Doucer and Bolosky [87]. This study agreed with the findings o f previous re
search, with the additional discoveries that:

• The mean file size ranged from 10KB to 40KB

• The number o f files per user had increased by an order o f magnitude

• Most files are small but most bytes are in large files

• Median file age is 48 days, but lifetimes vary widely

• File name extensions are strongly correlated with file size

Whilst both o f these studies provide useful guidelines on file system data produc
tion, another study undertaken at approximately the same time [293] found that
there was extreme variance in all o f the traced usage characteristics. As all these
studies were undertaken over 6 years ago it is likely that file sizes will have con
tinued to increase, and user behaviour will have changed to reflect the increase in
available data and media from the Internet and local networks. It is always difficult
to accurately predict the development o f computers and storage technology over a
period o f time. Therefore the findings o f the previous research was kept in mind
when implementing a data creation program, but were not followed religiously.

6.2.4.8 Data Creation Implementation

The file usage simulation program was written in C#.NET. It loaded in pre-set pa
rameters from external files, such as ‘words’ (used for keyword and file name gener
ation), ‘authors’ (a set o f known authors) and ‘extensions’. In addition to the list of
file extensions, the upper and lower bounds for file sizes were loaded as a ‘txt’ file
will most likely be smaller than an ‘mpeg’. These values were used for calculating
file size growth.

The number o f files for which data was created was reliant on the time across which
the data was to be produced. The total number of files produced was calculated
by multiplying the number o f years by 5000 (which was the current state/best case
scenario for files created per year).

The program then filled in the data attributes for each file by using the pre-defined
values that were loaded from the external files at initialisation. For one user, the
majority o f files available were authored by that user and a smaller amount would be

6.2 Case Study 1 112

available from other users. Authors were designated by weighted selection, with a
75% probability o f one specific author and 25% probability o f an alternative author.

In order to assign the number o f keywords for each file, between 0 and 10 were
selected from those loaded from the external file, with duplicate keyword selections
removed. The file’s title was generated in the same manner with the weighted prob
abilistic addition o f a keyword and the author’s name. Once the file title had finished
being built the length was between 1 and 13 words (with up to 10 o f those words
also being keywords, plus the author name).

The file extensions were allocated to each file from a set o f 17 different file types.
Given the extension, the file size was assigned by producing a value between the
lower and upper bounds o f file size associated with that extension.

The creation and modification times for the first version files were assigned by se
lecting a number between 0 and the time span entered by the user. The accessed
time was created by adding an interval o f up to 1 year to the modified time.

Following the above steps, the details for each file were filled in. At this stage the
program will have only created the first generation o f files (version 1). The program
then iterates through the list o f files, spawning a new file for each old one using a
weighted ratio o f 80:20 (e.g. out o f 100 first generation files, 80 will have at least
one other version, and 20 will not).

When a new version o f a file was created, the filename, extension, creation time
and keywords were duplicated directly from the older version. To reflect changes in
the contents o f the file, new keywords were added combined with the possibility of
others being removed. The file size o f a new version was manipulated accordingly to
fit the trend o f file sizes increasing over time, it was also assumed that the majority
of files would increase in size after each version. The accessed time o f the new
version was created by generating an appropriate interval to the previous version’s
modified time, with the new modified time being set between the new access and
old modified times.

Once the data for all second generation files had been produced, the above process
for determining future versions o f a file was repeated again for the newest files. As
this is done in a probabilistic fashion, for each data set generated for identical time
spans there is likely to be a natural variance in the number o f files contained within.

The data creation program also had to produce data for users deleting files as well as
creating them. O f course, as previously mentioned, in GIFS files are not removed,
simply flagged as deleted so they can be retrieved as necessary. To reflect this oper
ation data from the deletion of around 1500 files per year was created, plus a small
percentage o f files which would then be undeleted. This number was decided upon
after reviewing a set o f user’s anecdotal data as well as the contents o f their “Recycle
Bins”.

6.2 Case Study 1 113

As the projected development o f disk sizes is well over the projected data set size,
disk space can be disregarded as a problem in future file systems. However, a large
knowledge base will take a considerable amount o f time to search and process. In
order to combat this problem, GIFS uses a variety o f different mechanisms and
agents: archiving, caching, and combined archiving and caching.

6.2.5 Example Case

In order to show how the deployment o f a Virtual Secretary would help users store
and retrieve their files, the following problem is presented showing typical actions
in an academic/administrative setting.

User P is working on the budget request documentation for the Computer Science
department (a common annual task). He starts by reading some recommendations
from User J contained in a document called “Budget2006.doc”(l). He makes his
own notes in “drafLbudget_2006.txt”(2) and generates some rough numbers in “bud-
get05.xls”(3). Other members o f staff read these notes and numbers and go on to
create their own versions, each adding comments/changes etc. For 4 members of
staff (typically the senior departmental staff), each one creates around 2 extra ver
sions o f each file (=3*4*2 = 24 files). Then the final drafts o f the files are made
to be taken to a faculty meeting, so approximately 3 more versions o f each file are
made (24+3 = 27). Someone then produces a presentation on the budget request
over several days, creating several versions o f this file. (27+6 = 33).

Each member o f the Faculty o f Science within the university creates their budget
requests in a similar manner. The Faculty members are Computer Science, Chem
istry, Mathematics, School o f Biological Sciences, Physics and Psychology. If each
department produces their budget request in a manner similar to that shown in the
Computer Science department, this makes 33*6 = 198 files created for one bud
get meeting. The reports are made to the university for the faculty budget, to be
presented at another meeting (so several more versions o f each budget file follow
ing the meeting, plus a new set o f documents created for this meeting, 250 files).
The university administration then makes reports on the budget requests, including
drafts, notes and reports from various members o f the administration at different
levels (500 files).

Consider that each file creates around 20 separate pieces of information. I f there
are 300 files available to one user over the course o f a year on the topic o f budget
requests, this makes 6000 pieces o f information to be searched. (Although the bud
get request above produced 500 files, it is unlikely that one user would have read
access to all these files.) If the last 10 years worth o f budget information is kept on
the system, this makes over 60000 pieces of information relating to budget requests.

These numbers are simply for files that are related to department finance or the

6.2 Case Study 1 114

budget requests. Also considering that there will be other files on the system (on av
erage, members o f the Computer Science department were found to produce around
4000 files per year), this makes a total o f files about the budget + (number o f files per
user * number o f other user’s data that gives us read/write access) = 300+(4000*20)
= 80300 files with 1606000 pieces o f data produced per year.

If disk and storage size for the knowledge bases is not considered to be a problem,
then the time needed to search and process such large amount o f data becomes
critical for the usage o f such a system. In order to show that GIFS is scalable,
several tests were carried out over various sized datasets.

6.2.5.1 Different Approaches for Im plem entation

For the first implementation, the data for every file was all kept in one large knowl
edge base. However, this caused problems due to restrictions imposed by the im
plementation languages chosen. Sicstus Prolog version 3.12 can only use the first
256MB of RAM for stacks. The stack is a section o f memory which Prolog uses to
store user-defined predicates and also the recursion calculations. When processing
large amounts o f data, the stack can become full, causing the program to crash.
When a knowledge base containing over 10000 files was queried there was not
enough stack space to sort the results. When a knowledge base o f over 250000
files was queried the stack ran out o f space almost immediately the knowledge base
was loaded.

In order to find a better solution to this software-imposed problem, several alterna
tives were investigated and implemented.

6.2.5.2 Approach 1

The first solution was to optimise the search algorithm (in Prolog) and reduce the
stack size by working out the complete results for one file at a time (instead o f on a
per-attribute basis). Although this improved the running time for the program and
allowed the smaller datasets to be sorted, it was still unstable when collating the
results o f the medium and large datasets due to the stack limitations.

6.2.5.3 A pproach 2

The second approach involved changing the structure of the knowledge base slightly,
by splitting up the one large knowledge base into several smaller knowledge bases,
each containing the complete data on one set o f attributes (such as author, keywords
etc). This worked effectively for the mid-sized datasets, but still had little success
with the largest ones. Further examination showed that after running each query the

6.2 Case Study 1 115

stack was not as efficiently freed as expected. The simple solution to this problem
was to kill each prolog process programatically after it had computed the set of
results, thus clearing the stack space and allowing for the results to be returned.

6.2.5.4 Approach 3

Approach 3 reduced the stack size by computing the results for each file one at a
time, and then discarding it should the result fall below some pre-set threshold (for
example, if the user requested the top 50 files if the result was lower than that o f
the file already in position 50). Although this approach seems an elegant solution,
the recursive nature o f Prolog meant that the knowledge base had to be read through
twice to gather ranges (for those agents that required ranges o f numbers to calculate
upon), putting strain on the stack once more. Also, whilst returning the top N num
ber o f files is efficient for a single search, should the user next request the top N +l
files, the whole search would have to be performed again.

It was decided that approach 2 provided the most functional solution.

6.2.6 Test Conditions

The following tests were performed on a single machine with a Pentium 4 2.4GHz
processor and 480Mb of RAM. It contained a 40 GB hard disk and was running
Windows XP with Service Pack 2. The interface program ran under version 1.1.4322
o f the Microsoft .NET framework. The agent programs ran under Sicstus Prolog
3.12. and incorporated the Fuzzy Search library version 3.105. During the entirety o f
the process the computer was disconnected from the network to prevent any external
or unintentional processes from running. The computer automatically rebooted itself
after each set o f results had been computed to ensure that each test was run under
exactly the same conditions.

6.2.7 Direct Search

In order to compare the different mechanisms provided by GIFS to manage large
amounts o f data, a simulated search was performed. This particular search was
bome from the example case described in §6.2.5, which requested the Secretary
to find the first 50 files that were similar to a file written by “Jo”, with the word
“budget” in the name and the keywords o f “budget”, “finance” and “committee”,
with a “doc” extension.

For the control set o f results, a brute force search is run over 5 different data sets for
each time frame 5 times. These times were then averaged and the standard deviation

6.2 Case Study 1 116

Dataset 1 2 3 4 5 avg SD
1 23.000 21.625 21.172 21.953 21.453 21.841 0.632
2 21.813 21.484 21.734 21.594 21.063 21.538 0.262
3 21.844 21.703 21.516 21.719 21.500 21.656 0.130
4 21.359 21.188 21.469 21.281 21.078 21.275 0.134
5 21.734 20.938 21.609 21.172 21.375 21.366 0.288

Table 6.6: Brute force results for data over 1 month (seconds)

Dataset Time
1 month 21.535

3 months 47.710
6 months 1:27.186
9 months 2:07.604

1 year 2:47.178
5 years 13:43.313
10 years 27:55.130
20 years 57:57.609
30 years 1:42:02.192
40 years 3:05:21.675
50 years 4:31:08.592

Table 6.7: Averaged brute force results (hh:mm:ss)

calculated as seen in Table 6.6. The full results for each dataset can be seen in the
appendix in tables A. 1- A. 10, and the averaged results can be seen in table 6.7.

The results show that the search took approximately 20 seconds for a 1 month
dataset (Table 6.6), 45 seconds for 3 months (Table A .l), 90 seconds for 6 months
(Table A.2), 130 seconds 9 months (Table A.3) and 165 seconds for a year (Table
A.4). The standard deviation across all these times is low and shows high consis
tency o f all results. As the dataset size increased to between 5 and 20 years (Tables
A.5- A.7) the standard deviation increased slightly. As the search times also in
creased this is unsurprising as the deviation still represents only a fraction o f the
overall search time. On the larger datasets the search took around 1 hour and 40
minutes for 30 year’s worth o f data (Table A.8), 3 hours for 40 years (Table A.9)
and almost 5 hours for 50 years (Table A. 10). The averaged results for the brute
force searches can be seen in Figure 6.5.

The results from the brute force search show a linear (O)n increase in the length of
search for the datasets up to 30 years where the standard deviation also increases
dramatically. The datasets which are smaller than 30 years all produced consis
tent results o f the search times with small standard deviations. However, the larger
datasets show an unexpected exponential increase in search times with large stan-

6.2 Case Study 1 117

18000

16000

14000

_ 12000
(A•o
C

I 10000
<D
E
£ 8000 o (0 o
W 6000

4000

2000

0
0 10 20 30 40 50

Dataset Size (years)

Figure 6.5: Average brute force search times

dard deviations. This is most likely due to the swapping/pagefile errors caused by
the restrictions o f the test machine hardware.

6.2.8 Three Approaches for Improving the Direct Search

With the results from the brute force search technique gathered and analysed we can
now look at the techniques employed by GIFS in an attempt to reduce these times.

6.2.8.1 Caching

The first technique is based on the axiom that when a search is repeated, the only
scores that need to be calculated are those for files which were added since the
search was previously performed. These new scores are then combined in a result
set with the old scores to give a complete list o f results. Searches which have been
identified as ‘favourites’ would be performed automatically without the need for
user interaction at least once a day. To simulate the situation the appropriate amount
o f data (e.g one day’s worth) was added to each dataset before running each search
a second time.

6.2 Case Study 1 118

6.2.8.2 Archiving

Even with the search only being undertaken over the last day’s data, the times still
proved too long to allow practical use. In the long-term datasets, the knowledge
bases are bulky and cumbersome, taking hours to be searched through even for just
a single day’s worth o f data. The archive agent can be used in this instance to remove
old knowledge and data from the knowledge bases that may no longer be relevant.
Note that this knowledge is not deleted, but moved to a different storage location
so complete searches could still be performed if they were required. The archive
agent will move any data which has a last modified and accessed timestamp o f over
a year. For files with multiple versions it will move all but the most recent 5. The
knowledge base containing search results and records will have duplicate searches
removed, with only the most recent remaining. The archive agent would run over
night or on a daily basis when the computer is idle and so is not timed (as such
timings would be meaningless). The resultant datasets after the archiving process
had completed were used with the brute force search to show the improvement in
search times. However, by combining this archiving method with that o f result
caching, the search times can be cut even further as seen below.

6.2.8.3 Combinatory

As we already have a list o f the favourite searches (e.g. the most popular) it would
be advisable to run each search in the background whenever new file data is added
to the knowledge base. In this case, only one file has to be processed at a time,
and as a background process (unless the user has immediately requested a search).
The time taken for a background search over one file’s data should remain almost
constant for all dataset sizes, as the knowledge would be processed by the secretary
at the same time it is added to the knowledge base. Using this method of updating
the cache continuously gives the 4th projected improvement for search times.

6.2.9 Results

The brute force search mechanism showed an increase o f O(n) as dataset size in
creased. The algorithm which used caching showed a similar complexity in time in
crease although to a lesser degree. Using archiving, the search time for each dataset
leveled out at around 160 seconds, and combining this approach with caching fur
ther reduced the time to 15 seconds. The worst-case scenario data showed the same
trends as the best-case scenario, with obviously larger search times.

6.2 Case Study 1 119

D ataset B rute Force New D ata Archived Com bined
1 21.841 09.360 21.372 09.500
2 21.538 09.600 21.325 09.480
3 21.656 09.420 21.303 09.340
4 21.275 09.560 21.409 09.460
5 21.366 09.360 21.456 09.560

Table 6.8: Results for data over 1 month (seconds)

D ataset B rute Force New D ata Archived Com bined
1 47.569 10.120 47.347 10.400
2 47.475 10.120 47.406 10.460
3 47.647 10.100 47.175 10.220
4 47.772 10.100 47.390 10.280
5 48.088 10.120 47.187 10.220

Table 6.9: Results for data over 3 months (seconds)

6.2.10 Comparison of Best-Case Scenario

As seen before in §6.2.7, the search is run on data sets o f 10 different sizes. Within
each, there are 5 different data sets and each test is repeated 5 times to give an
average. For brevity, only the average times are shown in Tables 6 .8- 6.18, the full
tables o f results for each test can be found in Appendix A, Tables A. 11- A.43.

Figure 6.6 shows each o f the average times for a search using the caching method. It
shows a quadratic increase in time over the different datasets. The deviation between
these results is minimal as each test within a dataset produced similar results. Even
over the largest datasets the deviation remains small, so the ‘swapping’ effect seen
in the brute force tests has unlikely effected these results.

The next graph, Figure 6.7, plots the average search results for the archived datasets.
This approach initially shows a very high increase in the rate o f search times, but
then once the datasets reach the size o f 5 years, the times level off to a value between
approximately 140 and 190 seconds. The spread in the individual results can be

Dataset B rute Force New D ata Archived Com bined
1 1:27.072 0:10.560 1:26.569 0:10.540
2 1:27.653 0:11.000 1:26.569 0:10.640
3 1:27.419 0:10.780 1:27.069 0:10.820
4 1:25.641 0:10.840 1:25.844 0:10.980
5 1:28.147 0:10.860 1:26.978 0:10.620

Table 6.10: Results for data over 6 months (minutes:seconds)

6.2 Case Study 1 120

D ataset B rute Force Cached Archived Com bined
1 2:07.962 0:12.300 2:06.231 0:12.560
2 2:07.506 0:12.220 2:03.503 0:12.240
3 2:08.131 0:12.120 2:03.612 0:12.460
4 2:08.038 0:12.520 2:02.750 0:12.120
5 2:06.385 0:16.780 2:02.428 0:15.920

Table 6.11: Results for data over 9 months (minutes:seconds)

D ataset B rute Force Cached Archived Com bined
1 2:46.769 0:13.900 2:05.441 0:13.200
2 2:47.644 0:14.740 1:57.281 0:12.760
3 2:46.878 0:14.420 1:57.719 0:13.240
4 2:47.588 0:14.180 1:55.435 0:12.980
5 2:47.009 0:14.140 1:56.588 0:13.020

Table 6.12: Results for data over 1 year (minutes:seconds)

D ataset B rute Force Cached Archived Com bined
1 13:41.422 0:53.240 3:05.825 0:14.960
2 13:43.006 0:53.400 3:06.316 0:14.600
3 13:38.919 0:54.520 2:46.622 0:15.040
4 13:42.278 0:54.900 2:48.216 0:15.300
5 13:50.941 0:54.260 2:26.760 0:14.320

Table 6.13: Results for data over 5 years (minutes:seconds)

D ataset B rute Force Cached Archived Com bined
1 27:50.125 2:36.460 2:30.594 0:15.080
2 27:41.831 2:37.820 2:37.875 0:15.240
3 27:53.347 2:54.720 2:31.122 0:15.500
4 27:58.819 2:54.360 2:47.522 0:15.120
5 28:11.531 2:45.920 3:14.866 0:15.540

Table 6.14: Results for data over 10 years (minutes:seconds)

D ataset B rute Force Cached Archived Com bined
1 58:17.941 9:10.260 2:46.781 0:15.480
2 57:49.353 8:46.460 3:17.353 0:16.720
3 57:39.406 9:05.240 3:01.010 0:15.400
4 57:45.663 9:08.820 2:55.294 0:15.540
5 58:15.681 8:46.960 2:37.141 0:15.180

Table 6.15: Results for data over 20 years (minutes:seconds)

6.2 Case Study 1 121

D ataset B rute Force Cached Archived Com bined
1 1:40:13.553 0:20:02.480 0:02:24.975 0:00:15.000
2 1:48:12.712 0:21:09.020 0:02:43.803 0:00:15.340
3 1:33:04.472 0:20:15.560 0:02:36.372 0:00:14.980
4 1:40:07.397 0:20:26.460 0:03:07.825 0:00:16.000
5 1:43:32.825 0:20:03.880 0:02:26.912 0:00:15.920

Table 6.16: Results for data over 30 years (hours:minutes:seconds)

D ataset B rute Force Cached Archived Com bined
1 2:39:47.609 0:36:17.220 0:03:10.972 0:00:16.080
2 2:51:36.066 0:36:18.260 0:02:51.297 0:00:15.500
3 3:01:29.097 0:34:20.240 0:02:46.100 0:00:15.340
4 3:42:17.091 0:36:13.840 0:02:54.078 0:00:15.560
5 3:11:38.512 0:36:12.580 0:02:51.731 0:00:15.480

Table 6.17: Results for data over 40 years (hours:minutes:seconds)

Dataset B rute Force Cached Archived Combined
1 4:12:13.706 0:50:26.260 0:02:33.025 0:00:15.460
2 3:59:01.884 0:50:30.480 0:02:37.735 0:00:15.500
3 4:49:03.769 0:50:28.540 0:02:51.625 0:00:15.480
4 4:49:14.656 0:50:11.700 0:02:17.081 0:00:14.880
5 4:46:08.947 0:51:22.320 0:02:35.488 0:00:15.560

Table 6.18: Results for data over 50 years(hours:minutes:seconds)

6.2 Case Study 1 122

3500

3000

2500

'</>
-o
c

§ 2000

<D
E

jo 1500
to <c </)

1000

500

0
0 10 20 30 40 50

D ataset S ize (years)

Figure 6.6: Search times using cached data

attributed to the way in which the archive agent functions. Each dataset will have
obviously contained different numbers o f versions for files leading to some datasets
being reduced more than others by the archiving process.

Figure 6.8 shows the search times obtained when combining the archiving and
caching techniques. Although the results in this graph follow the same trend as seen
in Figure 6.7, the times have been greatly reduced.

Figures 6.9 and 6.10 show all four approaches plotted together. It is easy to see
in Figure 6.9 the swapping problem encountered by the brute force search, but it
is harder to see the archiving and cached results. Figure 6.10 plots the same data
but on a logarithmic scale. From this graph we can see that brute force and caching
both show quadratic increase. Caching gives better search times than archiving for
datasets under 10 years in size, where the caching times continue to increase and the
archive times remain reasonably constant. The most successful approach was the
combination o f archiving and caching, which resulted in a search time o f around 15
seconds for any o f the datasets regardless o f size.

6.2.11 Comparison of Worst-Case Scenario

As mentioned in §6.2.4.1, whilst 5000 seems like a reasonable estimate for the num
ber o f files created per user per year, it is likely that the number o f files will increase,

I I--------------------------------------1-------------------------------------- 1--------------------------------------T

*

Se
ar

ch

Ti
m

e
(s

ec
on

ds
)

Se
ar

ch

Ti
m

e
(s

ec
on

d
s)

6.2 Case Study 1 123

200

180

160

140

120

100

80

60

40

20
0 10 20 30 40 50

D ataset S ize (years)

Figure 6.7: Search times using archived data

17

16

15

14

13

12

11

10

9
0 10 20 30 40 50

D ataset S ize (years)

Figure 6.8: Search times using caching and archiving

Se
ar

ch

Ti
m

e
(s

ec
on

ds
)

Se
ar

ch

Ti
m

e
(s

ec
on

d
s)

6.2 Case Study 1 124

18000
Brute Force

C ached
Archived

Combined16000

14000

12000

10000

8000

6000

4000

2000

100 20 30 40 50
D ataset S ize (years)

Figure 6.9: Comparison o f search times

100000

10000

1000

100

10

1

Figure 6.10: Comparison o f search times with logarithmic scale

Brute Force
C ached — x-

Archived *
Combined o

___ -x

20 30
D ataset S ize (years)

6.2 Case S tudy 1 125

Dataset Size Brute Force Cached Archived Combined
1 year 15:06.392 01:14.432 04:51.240 0:20.550

5 years 32:52.972 03:51.692 05:40.556 0:22.998
10 years 1:29:45.220 18:49.412 05:11.596 0:22.371

Table 6.19: Average Search Times for Worst-case datasets(minutes:seconds)

10000
Brute Force

C ached
Archived

Combined

1000
(/>-o
cc
o0)
</>
CD
6f—
x:
p

100

0 2 4 6 8 10
D ataset S ize (years)

Figure 6.11: Comparison o f worst-case scenario search times with logarithmic scale

hence the first set o f tests are referred to as the best-case scenario. Using the projec
tions created from the short study o f cs-svr 1, a second set o f datasets was produced
to reflect the likely increase and present what could be referred to as the worst-case
scenario. The full results can be found in Appendix A (Tables A.44- A .55), whilst
Table 6.19 shows the average search times for each worst-case dataset size.

The previous tests that had been run on the best-case datasets showed the increase in
the time needed to process a dataset o f a certain size at a rate higher than expected
due to the limits in the capacity o f the test machine memory. As this had been
observed to happen for the smallest set o f data (e.g. for the 10 different best case
scenario datasets), it was decided that only the datasets in the range o f 1 to 30
years would be used for the worst-case scenario test in order to reduce the effects o f
memory swapping. The worse case scenario tests were obviously much larger than
those that had been previously used, and as a result the test com puter was unable to
process the datasets o f 20 years and over. For this reason, only the 1 ,5 and 10 year
datasets were used for the worst-case scenario test.

6.3 Case Study 2 126

The worst-case scenario datasets produced similar results to those o f the best-case
scenario, with understandably increased search times. Whilst it is not possible to
extrapolate data so easily as only 3 datasets were used, these datasets displayed the
same behaviour as their smaller counterparts. That is, the brute force search took the
longest, the caching technique was faster than that o f archiving until approximately
6 years. Archived data search times stayed level at about 5 minutes each, as did the
combinatory approach at 22 seconds.

6.2.12 Conclusion

This results o f this study have clearly proved the hypothesis. When using brute
force and caching algorithms the search time was not scalable. However, when
apply the techniques o f archiving and combined archiving and caching the search
times did not increase past a constant time. Thus, the average search time for a
Virtual Secretary can be achieved in a scalable manner.

6.3 Case Study 2

The other important criteria when evaluating GIFS and the Virtual Secretary sys
tem is that o f functionality and feasibility. There are many large scale network file
systems already available, however there is not one that provides the automatic or
ganisation, storage and retrieval o f files as suggested in GIFS. In order to show that
GIFS incorporating a Virtual Secretary could save the user time and effort, a second
experimental case study was designed.

6.3.1 Hypothesis

The m anagem ent of people-file relationships by a V irtual Secretary is more
scalable than by hum an secretaries.

Previous literature [80, 43, 79, 20] has shown that humans have difficulty in re
membering details o f their computer related tasks. With respect to the access and
distribution lists o f a particular files, users would not be able to remember who the
file should and should not be seen by when the circumstances change regularly and
there is a high volume o f items to be processed. This case study aims to show that
by using a Virtual Secretary, the management o f file distributions becomes scalable.

6.3 Case Study 2 127

6.3.2 Assumptions

The following assumptions were made for this case study:

• The file access list o f a single or dual user file would be simple for both hu
mans and a Virtual Secretary to monitor. A file which was never shared with
other users would not present any challenges whatsoever for the Virtual Sec
retary or its human counterpart. In order to fully test the scalability o f this
approach, a reasonably complex example was required to provide a substan
tial challenge.

• The case presented represents a highly collaborative, structured organisation
with a typical but complex file-person scenario. File access and distribution
patterns will vary widely between different users and different organisations.
It would be impossible to create a file lifecycle that represented the access
patterns o f every different user. Through informal conversations with various
members o f the department, it was decided that the scenario presented was
not completely unusual for the activities o f a user involved in a task such as
the one described.

• The Virtual Secretary for this study was new/inexperienced with the needs
o f the user, so the only data used for reasoning is that which is explicitly
stated in the case study. In terms o f consistent usage, it is highly likely that
a Virtual Secretary would already have various recommendations for users
based on previous actions. Whilst such recommendations would likely make
the Secretary a more useful assistant, it would make the results o f the case
study harder to analyse, and give the Secretary an unfair advantage in the
comparisons with other techniques.

6.3.3 Approach

Previous research [80,43,79,20] has shown that people are prone to forgetting data
related to their personal computing tasks. In order to further support the assumptions
made, simulated scenario based on everyday user experience was proposed, and a
data collection process was undertaken to gather data specifically on person-file
relationships. In order to compensate for the lack o f data in the knowledge base,
three different Virtual Secretary personalities were used in the analysis process.

6.3.4 Managing File Access Lists

The main focus o f this second case study was to show the steps normally required by
a user when sharing files with other users or subsets o f users. During the functional
lifetime of a file, the people who have authorship and ownership rights are likely to

6.3 Case Study 2 128

change considerably as the file evolves from draft through to final copy to archive.
Over a long period o f time and in large organisations or institutions the membership
o f various committees and departments is likely to change through outside factors
such as promotion, maternity leave or resignations. Also, if no distribution or mem
bership lists are available for a user, they may make mistakes trying to remember
the exact membership o f a user group. Whilst it is not possible to prevent users
from making mistakes or to predict when external events may affect the distribu
tion o f files, it is possible to minimise those effects. For example, by informing
the user they had missed out a member from a committee document access list or
automatically handling committee and group membership.

There are several different levels o f effort required when changing the access list of
a file. When a user creates a file and wishes to keep it private, no action is required
on their part. I f a file is accessible by several people and a user wishes to remove
access for one or more o f them, a small amount o f effort is required to remove the
specified user(s). However, if a user wishes to include a user or group o f users in the
access lists for a file, not only must they know who they intend to include, but also
the electronic identification o f that user. On traditional systems this would involve
manually adding each user by some kind of network identifier. In the best case o f
traditional file systems this would mean using an email address or mailing list. Thus
the levels o f effort required to change access privileges for a file can be categorised
as:

• No effort

Making no changes to the access list

• Small effort

Removing users from an access list

Removing a group from an access list

• Large effort

Adding a user to an access list

Adding a group o f users to an access list

As more complex actions are undertaken with access lists, the cumulative effort
required for each whole action can be calculated by summing the effort required for
each o f its constituent parts. For example, the action o f removing all users bar one
from an access list would take small effort (removing the group) plus large effort
(re-adding the single user).

The effort required to perform these same actions using GIFS can be classified into
similar groups as those without. Confirming a set o f choices or not changing the
access control list can be categorised as negligible or no effort. Removing users
from an access list would require small effort, and adding users or groups would take

6.3 Case Study 2 129

slightly more effort. However, using the Virtual Secretary to add a user would take
considerably less effort than performing the same action without as the Secretary
maintains the list o f identities o f users, so the addition process is simplified. Also,
at other times the Secretary may make suggestions to the user (for example, if the
user has unintentionally missed someone off the access control list o f a committee
distributed document) which would make a potentially large effort action (adding a
user) into a negligible effort action (confirming or disagreeing with the Secretary’s
suggestion).

To demonstrate how the Virtual Secretary reduces the effort needed to maintain user
access lists, we shall now examine an example scenario in more detail.

6.3.5 Example Case

User C creates a new file (event 1), some notes on the upcoming budget report to be
submitted by his department to the university. He spends a couple o f days reworking
this file, adding and changing its contents (events 2, 3 and 4) before sending it to two
other members o f staff (User P and User F) who are also responsible for producing
the budget report (event 5).

User F informs user C that he is not interested in the budget report this year, as
this responsibility has been handed to User H. User C continues to edit the file and
sends the next version to User P and User H (event 6). After reading the document,
User H makes some changes and sends it back to Users C and P (event 7). User C
thinks some o f the changes are useful, but others are incorrect so he makes his own
changes to the most recent file and sends it back to Users H and P (event 8). User
P makes additional changes to the contents o f the file and sends it back to Users C
and H (event 9). With the additional input from his coworkers, User C continues to
work on the file over the course o f a weekend, creating 3 more versions and making
each available to Users H and P (events 10, 11 and 12).

Users H and P are both happy with the contents of the file, so it is then sent by User
C to the whole department (Group D) for read-only access (event 13) via email,
although only a fraction o f staff members will actually read the file. Only User C
now has write access, and following some suggestions, creates a further two versions
o f the file (event 14 and 15), with the latter being sent only to the head o f the budget
committee (User HBC). User HBC is satisfied that the file reaches the minimum
requirements for consideration by his committee, and so asks User C to send the file
on to the rest o f the budget committee (event 16).

User C sends the file to the budget committee (Group BC), but unbeknown to him,
leaves off a member o f the committee (User X) in error. This causes some confusion
within the committee as not all members have been able to see the file’s contents.
When the error is later discovered, User C also sends it to the previously forgotten

6.3 Case Study 2 130

member (event 17). The next time User C submits a new version o f this report to the
budget committee (event 18), someone has left their job (User Y) and so is removed
from the readership list.

Finally, the budget committee is happy with the report, and so User C can send it to
the executive committee (Group EC) for review (event 19). The executive committee
have a few more suggestions for User C, so he creates two more versions o f the file
(event 20 and 21), allowing the executive committee to see both. Once accepted
by the executive committee, User C can send the finished report to the heads o f
department within his faculty (Group FDH) for informational purposes only(event
22). Having completed the budget report for one year, User C makes additional
notes surrounding the document and sends it to Users H and P (event 23) in order to
help with next year’s report.

Table 6.20 shows how the access privileges for the file described in the above sce
nario change over a period o f time, along with the manual actions required to be
taken by User C in order to ensure these privileges are correct. Whilst it may be
argued that for the same file there would be residual access privileges, this would
not be the case when using a traditional file system with no version control, hence
the files would be treated as individual.

6.3.6 File Access Data Collection

Over a period o f 5 days, 5 subjects were asked to reason on and remember the file
access lists for the example scenario. After being informed of each event, they were
asked to consider who the file should next be available to for both read and write
access. The amount o f time each person took to decide upon the access list was
recorded along with their answer.

The user study was conducted in the following way:

• Five unpaid subjects volunteered to participate in this study.

• The study was conducted over a period o f five days.

• Each day, every subject was interviewed once in the morning and once in the
afternoon.

• Each interview comprised o f between two and three questions, and lasted ap
proximately two minutes.

• During the interview, the subject was told o f an event affecting the file access
list for a document, which corresponded to an event seen in Table 6.20.

• Using both the information they had just heard and by recalling the previous
access list from memory, the subject was then asked to decide what the new
access list for the file should be.

6.3 Case Study 2 131
Ac

tio
n

R
eq

ui
re

d

I 1 1 1 Ad
d

F,
P(

W
rit

e,
 R

ea
d)

A
dd

H
,

P(
W

rit
e,

 R
ea

d)
Ad

d
F,

P(
W

rit
e,

 R
ea

d)
Ad

d
F,

P(
W

rit
e,

 R
ea

d)
Ad

d
F,

P(
W

rit
e,

 R
ea

d)
Ad

d
F,

P(
W

ri
te

,
R

ea
d)

Ad
d

F,
P(

W
rit

e,
 R

ea
d)

Ad
d

F,
P(

W
rit

e,
 R

ea
d)

Ad
d

F,
P,

Gr
ou

p
D

(R
ea

d)
Ad

d
F,

P,
Gr

ou
p

D
(R

ea
d)

Ad
d

H
B

C
(R

ea
d)

Ad
d

H
B

C
,

Gr
ou

p
BC

-X

(R
ea

d)
Ad

d
H

B
C

,
Gr

ou
p

B
C

(R
ea

d)
Ad

d
H

B
C

,
Gr

ou
p

B
C

(R
ea

d)
,

Re
m

ov
e

Y
Ad

d
Gr

ou
p

EC
(R

ea
d)

Ad
d

Gr
ou

p
EC

(R
ea

d)
Ad

d
Gr

ou
p

EC
(R

ea
d)

Ad
d

Gr
ou

p
FD

H
(R

ea
d)

Ad
d

H,
 P

(R
ea

d)

D
es

ire
d

A
cc

es
s

C
on

tr
ol

 L
is

t
R

ea
d

u u u o

P h

pi
u

ffi
Pi
u

ffi
Pi
u

X
pi
o '

X
pi
o '

ffi
pi
U

X
pi
u

33
Pi
u C,

 P
,

H,
 G

ro
up

D

C,
 P

,
H,

 G
ro

up

D
C,

 H
B

C
C,

 H
B

C,
 G

ro
up

B

C
-X

C,
 H

B
C

,
Gr

ou
p

B
C

C,
 H

BC
,

Gr
ou

p
B

C
-Y

C,
 G

ro
up

EC

C,
 G

ro
up

EC

C,
 G

ro
up

EC

C,
 G

ro
up

FD

H

PH
33
u

W
ri

te

o u u u

Oh
pi
U

33
Pi
u

ffi
Pi
u

X
Pi
u

ffi
pi
o '

33
Pi
o '

X
pi
u

31
pi
o' O O O O O O O O O O o

E
ve

nt

- <N CO o> r - oo CTs o 1—H <N co VO t " 00 o \ o
<N (N

CN
(N

CO
<N

J253
<u

X

o
Ucoo
<L>oocd
a>X

T3a>
t-H

'3a"<u
<w
(L)
00
sXo
*3
s

0CN
vd
CD

1

6.3 Case Study 2 132

• The answer each subject gave was recorded, along with the time taken to
produce the answer.

The detailed sets o f results per subject can be found in the Appendix, Tables A .56-
A.60. The average timings can be seen in Table 6.21, along with the number of
errors that the user made in each assertion. If one o f the subjects were to give read
access to a user who should not have been permitted, this would count as one error.
I f the subject were to omit access for a required user, this would also count as one
error.

Event Average Time
(Seconds)

Average E rro rs

3 3.6 0
4 7.3 0
5 7.02 0.8
6 6.77 0.6
7 26.77 1
8 9.76 1.2
9 8.64 0.8
10 27.52 0.8
11 13.72 0.8
12 6.1 0.8
13 33.36 3.4
14 19.28 3.4
15 26.99 3.6
16 19.72 3.8
17 36.51 4.6
18 31.43 4.6
19 41.18 4.4
20 39.17 5
21 47.44 4.8
22 49.02 5.2
23 26.86 3.4

Table 6.21: Averaged results o f users predicting file access lists

The results from this experimental data show that users were prone to forgetting
who they were meant to allow file access to, openly admitted to guessing and took
longer to provide an answer (incorrect or not) as time and complexity o f the problem
increased. The subjects were mostly good at remembering who the file should be
distributed to when the circumstances did not change greatly (e.g. events 3-12),
but were less consistent at remembering and reasoning when several users were
involved. Some subjects even produced names for the access list that had not been
mentioned as part o f the study, whilst another forgot that the “boss” should have

6.3 Case Study 2 133

E 25 -

2 20 -

10 15

Event Number

Figure 6.12: Average time taken by a user to calculate access user list for case study
2

® 3

10 15

Event Number

Figure 6.13: Average number o f errors by a user to calculate access user list for case
study 2

6.3 Case Study 2 134

access to their own files.

6.3.7 Virtual Secretary Created Access Lists

In order to evaluate the assistance given to the user via a Virtual Secretary to save
time and effort, the scenario in §6.3.5 was used. Three different Secretary person
ality settings were deployed; default, strict and lenient. When each new version o f
the file was added (as seen in events 1-23) the suggestions made by the Secretary
were noted, along with the actions required by the user to produce the desired access
control list.

There are several ways in which the Virtual Secretary can help the user avoid making
mistakes as seen in the example case. As well as holding membership lists o f defined
groups centrally, the Secretary can create groups dynamically if it identifies a set o f
users who are frequently added to access lists together. When adding a fiie if the
access list intersects with >75% o f the membership o f a previously defined group,
the Secretary will bring this to the user’s attention (seen in Figure 6.14) and suggest
that the remaining users are also added. The details o f users who can access each
file are displayed in a simple way through the optional interface seen in a previous
chapter. Should the predictions differ from the desired output, the interface shown
in Figure 6.15 is used.

■ ■

You have granted most of the group 'Dept' 1
read a ccess .

Do you also wish to include the following
group members?

Yes No
Jones r f?

Mora r «■

Done

Figure 6.14: A group membership alert

6.3.7.1 Calculations

In order to produce the access control lists and suggestions for a user, the agents
supporting the Virtual Secretary must perform several calculations across the data
and knowledge in the knowledge bases. The numerical value o f the output denotes
a probability that a user should be included or excluded from an access list. The

6.3 Case Study 2 135

Access List Predictions

Confident
Write Read Remove

Chen c r c

Jo (• r r

Faron r <? r

uncertain
Write Read Rem ove

Grant r (• f*

Group Dept c <? r

Tucker r r a

Add More.. Done

Figure 6.15: The Virtual Secretary prediction interface

overall calculation is made up o f several smaller equations, which are described
below.

The Virtual Secretary predicts the next access list for a file by using the following
equation.

P r e d i c t i o n f i n a i = d e f (1 — k) * Prediction0id + k * Predictionnew

0 < k < 1

A: is a constant defined within the personality settings o f the Virtual Secretary and de
notes how much importance should be attached to the previous results. The smaller
k is, the more importance is given to the previous results o f the calculation, whilst a
k o f value 1 would ignore the results o f the previous calculation completely.

The score o f P red ic tio n ^ is located in the knowledge base, whilst the value o f
Predictionnew is calculated by using the following equation:

_ . . . Y]wiCi
P r e d i c t i o n n e w = d e f ---------

w is a set o f weightings which vary across a corresponding set o f criteria, c. For each
user two prediction scores are calculated, one for predicting write access, and the
other for predicting read access. They are defined slightly differently when studied

6.3 Case Study 2 136

in detail below, but for the purpose o f the main equation above can be treated as
the same. The weightings { wi„7 } for each score are determined by the personality
settings o f the Secretary. The calculations { Ci_.7} for each stage o f the prediction
are defined as follows, where/ and/ ' denote files, u denotes a user and n denotes
the current time in Unix format.

F —def
U =def

F p v (f) =def
u w p (f) = def

U r p (f) ~def
x € S =def

cs (u, /) =

the set of all files
the set of all users
{ / ' : / ' is a previous version for /}
{u : u has write permission for /}
{u : u has read permission for /}
{x is a member o f set S }

l { / ' e ^ (/) : u € U w p (f ') } \

!f l^ (/) l
(6 .1)

The co-author score, cs(«, f) defined in equation 6.1, is calculated by the sum of
number o f write access permissions a user has had over the previous versions o f the
file, divided by the total number o f versions of the file to give a final score between
0 and 1. Users that have co-authored every previous version o f a file will score 1,
whilst a user who has never co-authored a previous version will score 0.

p a(«, /) —def
|{ / ' e F p„ (f) : u e U r p (f)} |

I F p v (f) \
(6.2)

The previous access score, pa(u,f) defined in equation 6.2, is calculated by the sum
o f the number of versions of a file that a user u had read access for, divided by the
total number o f versions. This results in a score o f between 0 and 1, with a user who
has had read access to every previous version scoring the maximum.

Urcpif) = def {u : u was correctly predicted to be given read access for / }
Uwcp(f) —def {u : u was correctly predicted to be given write access for / }

U r i c p n (f) =def {u i u was incorrectly predicted to not be given read access

f o r /}
Uricpg(f) —def { u • u was incorrectly predicted to be given read access for / }

crrs(u, /) =def
\ { f ’ e F pv(f) : u e u rcp(f')}\

(6.3)

6.3 Case Study 2 137

r , f, K / ' e i ^ f /) : u € U wcp(f) } \
crws(ii, j) -d e f . , » i ---------------- (6-4)

\ ^ p v { J)\

The correct read access score, (crrs(w,/)) and the correct write access score, (crws(w,
f)) defined in equations 6.3 and 6.4 respectively, are both calculated by taking the
number o f correctly made predictions from all previous versions o f this file for a
given user and dividing it by the number o f versions o f a file. Users who have been
correctly predicted to have read/write access to all previous versions o f a file will
have a score o f 1, whilst users who have had no correct read/write predictions made
for this file will score 0.

n K / ' e FpvU) ■ « e Uricpg(f) } \wrrs(U, /) = d e f ---------------- lFr m i -----------------

, |{ / ' e F ^ }) ■ « e u ricpn(f ') } \

+ (6 - 5)

U Wi c p n { f) —def {u '■ u was incorrectly predicted to be given write
access fo r/}

U WicPg(f) —def {u : u was incorrectly predicted to not be given write
access for /}

ivnv-(,r n e FpV(f) • u e Uwicpn(f)}\
wrws(“ ’/} = d e f -----------------

|{ / ' € Fpv{ f) : u S Uwicpg(f')}\

+ ---------------- \ ^ U) \ ---------------- (6-6)

The definitions for the incorrect read and incorrect write access equations, seen in
equations 6.5 and 6.6 are slightly more complex. For each, the score is calculated
by the number o f times a user was predicted to have access incorrectly, added to
the number of times a user was not predicted to be given access incorrectly, divided
by the total number o f file versions. The resulting score falls between the values
o f 0 and 1, as a user could not logically have a total greater than the number o f
versions contained in the sets defining both predictions. A user who has always
been included in the incorrect predictions will score a 1, and a user who has never
had any incorrect predictions will score a 0.

6.3 Case Study 2 138

t (/) — d e f time that / was accessible G N
T (/,u) — d e f m ax{ t(/') : / ' G Fpv(f) and u G Uwp(f) oru G UTp(f ') \

by convention, max 0 = 0
t (F) = d e f m ax{t(/) : / 6 F]
lf(F) = d e f { / : f & F and t (/) = r (F)}

la sM = d f (1 i f ’“ 6 ° r “ 6 y (lf (F)) (6 7)‘ ' * f \ o otherwise V ’

, f 1 if |T (/, u) - n \ > 15778463 , ,

ols(« , / , „) = „ | Q (6.8)

The last action score, las(w) defined in equation 6.7 has a value of 1 if the user
u was included in the last action performed (not necessarily for a version o f this
file), and 0 if they were not. Similarly, the old score (ols(w,/«)) defined in equation
6.8 will return a value o f 1 if the user u last had access to a version o f/ over six
months (15778463 seconds) ago, or a 0 o f they were assigned access to the file
more recently.

fs (/) =def the set o f file strings o f /
wws(u) =def the set o f strings linked to user u for write access
rws(u) =def the set o f strings linked to user u for read access

wlw(f , u) = d e f f u z z y (fs(f),vrws(u)) ~ lfs(/) (6 9)

r lw (/ ,u) = d e f f u z z y (fs(/),rw s(t/)) ~ (6>1°)

The word link scores for read and write (rlw (/ u) and w lw (/ u), defined in equations
6.9 and 6.10 respectively) utilise the 3rd party fuzzy string matching library. As
such, the exact score is difficult to define, although an approximation gives a close
enough definition for the purposes of understanding the prediction calculations. The
score for each can be approximated to the similarity between the set o f words defined
in a wordl i n k / 2 predicate in the knowledge base for a user u, that are also included
in the word list for a file f divided by the number o f key words linked to/ Note that
in the definition, the term “key words” is different to “keywords” as it also includes
strings found in the file name. The score returned is between 1 for a perfect and
complete match, to 0 for no match.

6.3 Case Study 2 139

6.3.7.2 Defining Personalities and O utput

The values required to define the default Secretary personality for use in the above
calculations can be seen in Listing 6.1.

Listing 6.1: The personality settings for the default Virtual Secretary
w e i g h t i n g (a l , 0, coauthor , 0 . 3 5) .
w e i g h t i n g (a 2 , 0, p r e v i o u s a c c e s s , 0 . 2 5) .
w e i g h t i n g (a 3 , 0, w ordl ink , 0 . 2) .
w e i g h t i n g (a 5 , 0, c o r r e c t , 0 . 0 5) .
w e i g h t i n g (a 6 , 0, m is ta k e , 0 . 0 5) .
w e i g h t i n g (a 7 , 0, l a s t a c t i o n , 0 . 0 5) .
w e i g h t i n g (a 8 , 0, o l d , 0 . 0 5) .
t h r e s h o l d (a 9 , 0, c e r t a i n , 0 . 4) .
t h r e s h o l d (a l O , 0, perhaps , 0 . 2) .
k (0 . 98) .

When the calculation agent runs across the knowledge base the scores are output in
the predicate p r e d i c t / 6 which takes the form of:

p r e d i c t (F I D , Timestamp, UID, AccessType, Pred ictType , Score)

This predicate contains the scores o f each individual user which is then used by
the permission agent in order to propose the access list membership to the user via
the Virtual Secretary interface. An example set o f results created by the calculation
agent can be seen in Listing 6.2, with the f i d shown in condensed format to save
space.

Listing 6.2: Example output from the calculation agent
p r e d i c t (11. .4854 , 1146493474, "C", read, c e r t a i n , 0 . 751) .
p r e d i c t (11. .4854, 1146493474, "P", read, perhaps , 0 . 314) .
p r e d i c t (11. .4854 , 1146493474, "H " read, perhaps, 0 . 223) .
p r e d i c t (11. . 4854, 1146493474, "C", w r i t e , c e r t a i n , 0 . 751) .
p r e d i c t (11. .4854 , 1146493474, "P ", w r i t e , perhaps, 0 . 314) .
p r e d i c t (11. .4854 , 1146493474, "H", w r i t e , perhaps, 0 . 223) .

6.3.8 Virtual Secretary Suggestions

6.3.8.1 Default Personality

The first test was run using the default Virtual Secretary personality, and the results
displayed in Table 6.22. To begin with (events 1-5) the Secretary correctly predicts
that the new document is to be kept private. Once users P and H have each been
added twice the Secretary makes an uncertain prediction that they should have read

6.3 Case Study 2 140

and write access. At event 11, user P scores high enough to be moved into the cer
tain prediction category. When user H also reaches this level (event 13) the access
control list is changing dramatically from the previous patterns seen. Users H and
P now have to be removed from the list and their scores begin to drop accordingly.
When group D is added to the access list its score remains too low for it to become
even an uncertain prediction as so many versions previously have been sent to users
H and P. For the remainder o f the actions (events 15-22) the Secretary does not
make any correct predictions until users P and H are added in event 23. The Virtual
Secretary helps the user by avoiding the exclusion o f user X in event 17 and auto
matically removing user Y in event 18 and has an overall effort level less than that
of manual addition. However, with the default personality settings, the prediction
scores do not decrease sufficiently when users are removed from the access lists, or
increase sufficiently when they are continually added (after the initial creation).

6.3.8.2 Strict Personality

The second test used a different set o f Secretary personality settings. The so-called
“strict” personality has higher score thresholds for predictions to be made and places
a higher weighting on previous actions. The results o f using this Secretary to predict
the access control list can be seen in Table 6.23. Similar to the default personality,
the strict personality also included users P and H incorrectly in event 13, although
by event 19 user P only has an uncertain prediction for read access and user H has
been removed from the predictions entirely.

Whilst the incorrect predictions o f users P and H in events 13-18 reduce their scores
sufficiently to be excluded from further predictions, the scores o f other users such
as HBC and group BC are not high enough to be included.

6.3.8.3 Lenient Personality

The lenient Virtual Secretary personality had a lower threshold for uncertain pre
dictions but also placed less importance on long-term user scores and more on the
previous actions and errors. The aim was to make this personality identify rapidly-
changing access patterns promptly and also stop making incorrect predictions faster.

As seen in Table 6.24 this personality had some success at reducing the amount
o f effort required by the user. Even though users P and H have been included in
over half the access lists before event 13, once an erroneous prediction is flagged
their scores begin to drop sufficiently to be excluded from addition in three events.
Once a user has been added to the access list their score will be high enough for the
Secretary to make an uncertain prediction to include them in the next version o f the
file. The high adaptability o f this personality means that is is particularly suited to

6.3 Case Study 2 141

_^

73 73 73cd cd cd
O CD IDO o o,
U o o 73 73 73 cd

<DPQ PQ PQ cd(D G<D GD 04
• 0 s & §■ §• o4 ffi
cd o o o o u u Q

73cd
o
04 O O O w w w O h

O <L> O O h & O h

o4
Q

o4
Q

U
PQ
53

u u O
PQ
53

G
O
t-H

o

G
O
Vh

a

Go
«-H

O

G
8
o

& 73 73 73 73 73 73 73 733 73 73 73 73 73 73 73 73
8
O

8
a <3 <3 <3 < <3 < <3 <3

/ —V
73 73 73 73 73 73 73 73 73 73
73 73 cd cd cd cd cd cd G G

’O' 73 <3 < O
04

o
P4 04

<D
04

<D
04

D
04 04 O

Cd cd
<d O o O O o (D <D <D D D D

73 p4 04 'C •c •n •c •c •c •E3 •c •c •C
Oi
In <u o'

+-> £ £ £ £‘3
o ' | | ''o'

H->

l
X X X X X X X X K ffi

< u04 OT OT o" or or or or or or or
oT 53 o O O O CD CD CD D D Da A ^ X > > > > > > > > > >o Oh O h o o o o O o O O o o

'V 73 73 73 B a a a a a a a a a<J 73 73 73 o o d> CD (D (D CD D D D
< I 1 1 1 < <3 <3 1 1 1 I 1 04 04 o4 o4 o4 04 04 O h o4 04 1

'G
0 c d 53 53 53 53 53 53 53 53 53 53 53 53 53’3

- M P4 I 1 1 1 i 1 O h OT 0-T 0-T 53 53 i o" or or or or or or or or or
D
D < oa5

■+■»
•PNu 53 53 53 53 53 53 53 53 53 53 53 53 53
£ I 1 1 1 i 1 O h or or or 53 53 i or or or or or or or or or or

73 53
-«->

A
d O h O h ora

V
73
<G

04 O u o <J o u u u u U u CJ u V u o o u o u u o o
a
o <a

-m 53U • PN
O h O h or

£ u u u u u u u o u U u u u u u u o o o u o u u
■**a<u> , <N m 7j- m vo t - - 00 ON o - H <Nm 7 f NO r -r H

00 ONH oCN(N CN
fS

m<NW

£
Id
GO
oO,

ooon

>
3tG

N|-Ho
73
O

.G
-t->

tJ}.G
"c/3
G

JD
<G
<u-G-I—*

<h- ho

o
ts
Goo
oooG
o

X I

73o

§<o

ot>o
§XI
U
<N(N
'O
0

1

6.3 Case Study 2 142
A

ct
io

n
R

eq
ui

re
d

I 1 1 1 Ad
d

P,
F(

W
rit

e,
 R

ea
d)

Re
m

ov
e

F(
RW

);
Ad

d
H

(W
rit

e,
 R

ea
d)

1 1 1 1 1 1 Re
m

ov
e

P,
H

(W
rit

e,
 R

ea
d)

;
Ad

d
Gr

ou
p

D
(R

ea
d)

Re
m

ov
e

P,
H

(W
rit

e,
 R

ea
d)

;
Ad

d
Gr

ou
p

D
(R

ea
d)

Re
m

ov
e

P,
H

(W
rit

e,
 R

ea
d)

;
Ad

d
H

B
C

(R
ea

d)
Ad

d
H

B
C,

 G
ro

up
B

C
(R

ea
d)

;
Re

m
ov

e
P,

H
(W

rit
e,

 R
ea

d)

|
Ad

d
H

B
C,

 G
ro

up
B

C
(R

ea
d)

;
Re

m
ov

e
P,

H
(W

rit
e,

 R
ea

d)
Ad

d
H

B
C,

 G
ro

up
B

C
(R

ea
d)

;
Re

m
ov

e
P,

H
(W

rit
e,

 R
ea

d)

|
Ad

d
EC

(R
ea

d)
;

Re
m

ov
e

P(
R

ea
d)

Ad
d

EC
(R

ea
d)

Ad
d

EC
(R

ea
d)

Ad
d

FD
H

(R
ea

d)
Ad

d
P,

H
(R

ea
d)

C
on

fid
en

t
U

nc
er

ta
in R
ea

d

I 1 1 1 1
Ph
Pi

X
Pi

X
Pi

X
P-T

X
Pi

K
Pi

X
Pi X

X
Pi

X
Pi

X
Pi

X
Pi

X
Pi eu Ph I I I

W
ri

te

I 1 1 1 l
Ph
Pi

X
Pi

X
Pi Pi

S
Pi

K
Pi

a
Pi ffi

a
p;

X
Pi

X
Pi

X
Pi

X
pi l 1 I I I

R
ea

d

U u u u U u u O u U O u
p<
u u o u o o U o O o U

W
ri

te

u u V u U u u u u U U u
Ph
u u u u o u U u U u U

E
ve

nt

- CN cn vO oo Os o - cs mH IT) O) r- 00 Osi-H oCN
r i
CN CNCN mCN

ibl
e

6.
23

:
Ch

an
ge

s
re

qu
ire

d
for

 t
he

ac

ce
ss

co

nt
ro

l
lis

t
of

the

file

us
in

g
a

str
ic

t
V

irt
ua

l
Se

cr
et

ar
y

pe
rs

on
al

ity

6.3 Case Study 2 143

situations where the access list changes frequently and many short-term changes are
made. It may not suit more long-term, complex access list patterns.

6.3.9 Comparison of Effort

The effort levels required to manipulate the access control lists using the manual
method and Virtual Secretary personalities can be seen in Table 6.25. Manually
setting the file access privileges would take 35 large effort and 1 small effort actions
in total. In addition to these actions, an error was made on the part o f the user in
event 16 meaning that a user was accidentally excluded. When using any o f the
Virtual Secretary personalities this exclusion was brought to the user’s attention and
so the error did not occur.

The default Virtual Secretary personality shows a reduction in the levels o f effort
required o f the user to produce the same access control list. However, in the latter
events (13 onwards), more effort is required to maintain the access list than when
using the manual technique as this personality places more importance on long
term trends. When the access permissions change in quick succession the errors
made do not cause a great enough alteration in the prediction scores o f each user or
group. The default personality is best suited for use where files exhibit a long-term
o f slowly-evolving access pattern.

The strict Virtual Secretary personality takes more account o f the incorrect predic
tions that were made previously, but also has high thresholds for prediction scores.
This results in the Secretary making fewer incorrect predictions (hence the reduction
in the total number of small effort actions), but no overall increase in the number
o f correct predictions, meaning the total o f large effort actions remains the same as
when using the default personality.

In comparison, the lenient Virtual Secretary personality has much lower thresholds
for making uncertain predictions. This reduces the number o f large effort actions re
quired by the user as the Secretary is more likely to correctly suggest a user or group
to have access. Conversely, this also increases the likelihood that an incorrect pre
diction will be made and a small effort action will be needed to remove superfluous
users from the access list. This clarifies why the lenient Secretary required more
small effort actions than any o f the other approaches. Displaying this behaviour
means that the lenient personality is particularly suited to situations where access
privileges change a great deal frequently.

6.3.10 Results

As expected, when users are left to remember and reason about a file access list
over a period o f days, they frequently make mistakes and took an increasing amount

6.3 Case Study 2 144
A

ct
io

n
R

eq
ui

re
d

I 1 1 1 Ad
d

P,
F(

W
rit

e,
 R

ea
d)

Re
m

ov
e

F(
W

rit
e,

 R
ea

d)
;

Ad
d

H
(W

rit
e,

 R
ea

d)

1 1 1 1 1 1 Re
m

ov
e

P,
H

(W
rit

e)
;

Ad
d

Gr
ou

p
D

(R
ea

d)
Re

m
ov

e
P,

H
(W

ri
te

)
Re

m
ov

e
P,

H
(R

ea
d)

,
Gr

ou
p

D
(R

ea
d)

;
Ad

d
H

B
C

(R
ea

d)
)

Ad
d

G
ro

up
B

C
(R

ea
d)

;
Re

m
ov

e
P,

H,
 G

ro
up

D

(R
ea

d)

1 1 Ad
d

EC
(R

ea
d)

;
Re

m
ov

e
H

B
C

(R
ea

d)
,

Gr
ou

p
B

C
(R

ea
d)

Re
m

ov
e

H
B

C
(R

ea
d)

,
Gr

ou
p

B
C

(R
ea

d)
1 1 Ad

d
P,

H
(R

ea
d)

;
Re

m
ov

e
Gr

ou
p

FD
H

,
Gr

ou
p

E
C

(R
ea

d)

U
nc

er
ta

in
R

ea
d

I 1 1 1 I ClT PlT
K
ClT

X
Ph"

X
cC

X
ClT X P,

H,
 G

ro
up

D

P,
H,

 G
ro

up

D
P,

H,
 H

B
C,

 G
ro

up

D
H

B
C,

 G
ro

up

B
C

H
B

C,
 G

ro
up

B

C
H

B
C,

 G
ro

up

B
C

H
B

C
,

G
ro

up
s

EC
,

B
C

Gr
ou

p
EC

Gr
ou

p
EC

FD
H

,
Gr

ou
p

EC

W
ri

te

I 1 1 1 I ClT PlT
K
eC

ffi
Pp oT

f f i
PlT

X
ClT

X
l l I i I I I I I

C
on

fi
de

nt
R

ea
d

u u u u U u u o u u o u
P-I
U U O O O O U U u U U

W
ri

te

u u u V V u o u u o o u
PP
u u O U O O u U o U U

E
ve

nt

- CN cn Tj- VO t"- oo ON o
-

<N cn "3- «r> VO 00 OV o
<N CN

CN
CN

cn
CN

6.3 Case Study 2 145

Event Manual Default VS Strict VS Lenient VS
1 - - -
2 - - -
3 - - -
4 - - -
5 2 large 2 large 2 large 2 large
6 2 large 2 large 1 large, 1 small 1 large, 1 small
7 2 large 1 large - -
8 2 large - - -
9 2 large - - -
10 2 large - - -
11 2 large - - -
12 2 large - - -
13 3 large 1 large, 2 small 1 large, 2 small 1 large, 2 small
14 3 large 1 large, 2 small 1 large, 2 small 2 small
15 1 large 1 large, 2 small 1 large, 2 small 1 large, 3 small
16 2 large 2 large, 2 small 2 large, 2 small 1 large, 3 small
17 2 large 2 large, 2 small 2 large, 2 small -
18 2 large, 1 small 2 large, 2 small 2 large, 2 small -
19 1 large 1 large, 2 small 1 large, 1 small 1 large, 2 small
20 1 large 1 large, 2 small 1 large 2 small
21 1 large 1 large, 2 small 1 large -
22 1 large 1 large, 2 small 1 large -
23 2 large - 2 large 2 large, 2 small

Total 35 large 18 large 18 large 9 large
1 small 20 small 14 small 16 small

Table 6.25: Effort required to create the desired access control list

6.4 Discussion 146

o f time to think about their answers. As shown in the previous case study, the
Virtual Secretary can provide results in a linear time, so the recommendations made
to the user do not take longer as the situation becomes more complex. The human
counterparts in comparison were not able to answer in linear time. Even when using
a computer to assist in the housekeeping o f the file access list manually, mistakes can
be made and more effort is required. Using a Virtual Secretary reduces the amount
o f effort needed to maintain the access lists o f files and so is far more scalable than
its human counterpart when dealing with large amounts o f data.

6.3.11 Conclusion

The results o f this case study support my hypothesis that a Virtual Secretary is more
scalable when managing file-person relationships than human secretaries. As well
as reducing the time needed to maintain the file distribution and access lists, the
Virtual Secretary was able to help users avoid mistakes. In comparison, humans are
more likely to take a long time remembering their past actions, reasoning over what
action to take next and then arriving at an incorrect answer. This case study only
looked at the effects o f maintaining one file specifically. In a real-life scenario users
would have to maintain hundreds o f access lists for their individual files. Whilst
this would be no problem for the Virtual Secretary, it would likely further decrease
the performance o f the human counterparts. The human management o f people-
file relationships has proved to be unscalable as many errors were made and the
time taken to reach a decision increased, whilst the Virtual Secretary approach was
shown to be scalable for administering this task.

6.4 Discussion

This chapter has demonstrated the ways in which a Virtual Secretary system could
save the user time and effort. By performing two case studies, the scalability o f the
knowledge-based approach was evaluated.

In case study 1, a search was performed over synthesised datasets o f varying time
spans. Whilst a brute force search took up to several hours to complete, by imple
menting a caching technique these times were dramatically reduced. The addition
o f an archiving mechanism reduced these times further for datasets over 10 years
in size. A consistent search time o f around 10 seconds for any sized dataset was
achieved by combining the archiving and caching methods. When the tests were re
peated over the larger worst-case scenario datasets the same trends were displayed
and the combinatory approach still produced the best search time (approximately
20 seconds). These results confirm the scalability o f the knowledge-based approach
used in the GIFS framework.

6.4 Discussion 147

Case study 2 examined the scalability o f the Virtual Secretary system with respect
to maintaining file access lists. By showing the actions required by a user to share a
file with various users and groups, a cumulative result effort was computed. Using
three different Virtual Secretary personality settings, it was shown that the amount
o f time and effort required by the user could be reduced. The Virtual Secretary
also averted potential mistakes that were made by the user when performing the ac
tions manually or undertaken directly from the memory o f users. The three different
personality settings each made differing predictions to the user as to the most appro
priate access list for a file. The example case involved a frequently-changing access
pattern meaning that whilst all personalities offered an improvement over the man
ual method, the lenient personality yielded the best results. Whilst it was shown that
humans were not scalable with respect to maintaining the human-file relationships,
the Virtual Secretary was proven to be scalable, returning results in a consistent time
and causing fewer errors than the human counterparts.

Both case studies have shown the suitability o f deploying a Virtual Secretary sys
tem to assist users in the management and organisation o f their files. Having now
documented in detail the structure and design o f the knowledge-based Secretary
interface, the underlying file storage mechanisms are explored in the next chapter.

Chapter 7

System Level Development

7.1 Overview

The Virtual Secretary and the knowledge framework seen previously provide the
functionality o f a personal assistant. Behind this interface lies the file system, net
work transport and storage mechanisms that combine to produce GIFS. From a sys
tem viewpoint there are five constituent parts required to facilitate this global file
system framework. The Virtual Secretary interface, knowledge base(s) and agents
have already been studied in depth previously, although their location plays an im
portant role in the overall architecture design. The program referred to as the FileDB
(which originally stood for “file database”, the name remained even after the design
changed to incorporate more than just a database) acts as a gateway to the file store,
administering file requests and user authentication. The file store contains the raw
file data, however the FileDB must be used in order to locate the data successfully.

7.1.1 Technical Questions

From the discussions in previous chapters, we can clearly see that there is no cur
rent file system that can operate like what proposed for GIFS. This inevitably leads
to an important technical question: “is the proposed GIFS framework technically
feasible?”

In addition, there are numerous detailed technical questions, such as:

• What network architecture is the most suitable for supporting the GIFS frame
work?

• How should the constituent parts o f the GIFS framework be distributed across
a network architecture?

148

7.1 Overview 149

• How can multiple versions o f files be maintained in an efficient manner?

• How can the system keep files secure but still deliver a transparent service?

• How can a key distribution mechanism be designed for use with file encryp
tion?

• How are collaborative files kept both secure and accessible?

7.1.2 Assumptions

The following assumptions are made for the design and implementation o f the file
system of GIFS:

• Users o f GIFS have access to a local or wide-area network.

• Transfers between the user’s computer and the network are considered instan
taneous. Network speeds are continuing to increase as they become more
widely used, and should continue to increase at a rate greater than that at
which file sizes are increasing.

• Users will require all o f their files to be encrypted. Increased network usage
means that users want to keep their files secure in both transit and storage. It is
not an unreasonable assumption to make that the best way to keep file secure
is through some form o f encryption system.

• Users will require access to different versions o f a file.

• Users will assign metadata to a file where they feel the automatic assignment
was not sufficient. Although §3.3.3 showed that users are unlikely to add
metadata to files, the system provides this facility in the event that users deem
extra assignment necessary.

• Users are capable o f remembering one password for authentication. As most
computer or network systems at the current time require users to enter at least
one password it would not be unreasonable to expect users to be able to re
member a password in order to authenticate themselves with the system.

• Users will want to work collaboratively with other users on some files.

• Users will not want to remember more than one password or security key.
The problems o f information overload discussed in §3.1 can also be applied
to passwords and encryption keys. Having several different passwords to per
form various tasks on a computer is both time consuming and frustrating if
forgotten. Hence it is desirable that the increase security o f a file system does
not increase the amount o f effort a user has to expend in using that system.

7.1 Overview 150

• The network and other networked computers on the system are stable and re
liable. As networks and computers improve in speed an efficiency, they are
mostly very reliable. However, it is sometimes the case that computers fail
or networks are inaccessible due to circumstances outside the user’s control.
It is assumed for the purposes o f this work that the networks and comput
ers mentioned are stable and always accessible, as obviously this is a major
requirement for the system.

• Disk sizes can be considered limitless for the purposes o f this study. As dis
cussed before in §6.2.4.5, disk sizes are increasing at a rate greater than that
o f projected file or knowledge base sizes. Therefore, disk sizes are irrelevant
to this area o f our study.

• Users may wish to partially open files. Sometimes it may be desirable, espe
cially with larger files, that user may want to edit the middle o f the file rather
than the beginning. In this scenario it is possible in some file systems to save
time by opening only the sections o f a file as they are required.

• All file management tasks are undertaken through the Virtual Secretary inter
face. As stated in the previous chapter, it is presumed that the Virtual Secretary
interface will replace traditional file system user interfaces and in the future
users will not have the specialised knowledge to manipulate the file system
manually. Those users who are capable are assumed to know enough to re
alise that their actions will not be recorded by the GIFS framework and thus
no new data will be placed into the knowledge bases.

7.1.3 Research Approaches

There are two basic approaches for the design and implementation of GIFS. The first
is to build GIFS on top o f an existing file system and add in the required additional
components. The second is to design a new architecture, implement a number of
key features and show that all the components in the design are feasible.

The features and concepts behind the idea o f GIFS are significantly different to pre
viously implemented file systems. Although it would be possible to add in some
extra components and enhance a file system to exhibit a GIFS-like behaviour, the
extra complexity caused by integration with commercial or unfamiliar code make
the approach undesirable. It would also be difficult to insert the extra functionality
that GIFS would require to display the full potential o f the concept. The focus of
this work was to prove the concept o f a new file system rather than to present a fully
function system by the end (as such an expectation would be well beyond the reach
o f a single PhD thesis), so the second approach o f completely redesigning the ar
chitecture o f a file system and implementing the components which are required to
prove the feasibility o f the framework was chosen. Both the design and implemen

7.1 Overview 151

tation are discussed in detail in sections 1.2—1 A. Despite choosing this approach o f
a new concept for file system storage, previous technologies were still used where
necessary in order to present a functional framework.

The GIFS framework makes use o f many small, previously invented technologies as
can be seen in Table 7.1. As they have been used in other systems and developed
independently previously, there is no need in this work to prove their feasibility for
use.

Technology Reference
encryption [253]

block-based file system [130]
databases [233]

knowledge bases [167]
network security [40]

collaborative work [217]
versioning [69]

suggestion agents [175]
archiving [223]
tagging [41]

network file systems [168]

Table 7.1: Previous technologies

Various encryption and hashing algorithms have been invented over the years [81,
286,219] and the study o f mathematics behind them continues to find weaknesses or
propose newer, more secure techniques. For the purposes o f this work, it is assumed
that the chosen cryptographic functions are secure, even though there may be ways
in which they can be broken. The GIFS framework uses encryption to store the
user’s files in a secure manner, as well as in the processes o f user authentication,
communication and key distribution.

A block-based file system allows segments (or blocks) o f the file to be read without
requiring the rest of the file. When saving new versions o f files this saves space as
only the changed blocks are required to be stored, not the whole file. ZFS [46] uses
this method to improve the efficiency o f writing to disk.

Network and distributed file systems have been used for many years [21, 58, 246]
and the concept o f storing files over a network is not new. However, none o f these
previous technologies have automatically managed the placement o f files, instead
acting as an extension to the local hierarchical file system. In the GIFS framework,
the network is used to store the files but the user does not have knowledge o f where
on the network the file is stored. Users can however, assign version numbers to files
if they wish. The Virtual Secretary automatically increments the version number
for each subsequent file and also gives the user the option to increment the version

7.1 Overview 152

number further to highlight major revisions. This is a relatively simple versioning
system, although much work has gone into systems operating over collaborative en
vironments to ensure the safe and effective use o f multiple file versions by multiple
users [217, 69].

Archiving is a basic operation for file and disk management to ensure efficient and
stable file access. Whilst it may have been previously desirable to archive files
[223, 222], the increases in disk sizes have reduced the need to save space. The
GIFS framework employs archiving techniques to improve search efficiency and to
optimise knowledge base and file access.

Databases are a mature technology, but so far there has been no operating system
built utilising it closely. The nearest attempt o f an operating systems was that o f
BeOS and BFS [111]. The concept o f a knowledge base rather than a database is
newer in comparison, but still a proven technique in the fields o f data mining and
discovery [210]. Knowledge bases are used within the GIFS framework to offer a
flexible storage solution to the large amounts o f data gathered about files and user
actions as well as providing a convenient source o f knowledge for the intelligent
agents to work across. The agents are not only used to perform searches, but also to
provide the user with recommendations or suggestions o f actions or settings. Such
agent systems have become highly popular since the AI renaissance in the mid 1990s
with a wide range o f applications employing agent technology [119, 29, 75, 195].
Adding extra data attributes to files (or “tagging”) is used both in GIFS and other
systems [41] to aid in the analysis, search and retrieval o f data. There are many
different methods for classifying what data should be used within tags, although this
research area is still in its infancy. As such, in the name of extensibility, metadata
assigned in the GIFS framework could be either user or system generated.

These technologies are used as the building blocks for the GIFS framework but
are obviously not part o f the novelty o f the system. However, unlike in the GIFS
framework, these technologies have not been combined to form an entire system
previously, and have not been closely integrated with the structure o f the operating
system.

Although GIFS could feasibly work on a single machine with no network connec
tion, one o f the main focuses o f this research is the distribution, transport and au
tomatic storage o f files over a network of any size. In order to implement the file
system, the network and server architecture was carefully considered.

7.2 System Design 153

File DB

Files
• " < $ >

Kev

Flow of data

0 File S torage

o
Agent

Figure 7.1: Single user with single computer architecture

7.2 System Design

7.2.1 Architectural approaches

When designing the framework and architecture for GIFS, several different options
were reviewed, each with their own merits and drawbacks.

The simplest design can be seen in Figure 7.1. In this instance, the file system runs
on one single machine and is not part of a network. The knowledge bases and files
are both stored in their entirety on the local machine, and the data processing agents
therefore also run on this local machine. This design is elegant in its simplicity but
fails to address one o f the major objectives of this work: network access to files and
the scalability o f the file storage capacity.

The next design, in Figure 7.2, removes everything except the user interface from the
local machine. The files and knowledge bases are all stored on a server, separated
from the user’s local machine by a LAN or WAN. As the knowledge bases are stored
remotely, the data processing agents are also situated there. Taking into account all
users connected to the file server collectively, it increases the amount o f network
traffic needed, as almost all user interaction with the Virtual Secretary will have
to access the relevant knowledge bases. The speed o f the network would be one
of the major bottlenecks in such a system and create problems with latency. The
advantages of keeping all the data on the server are the decreased processing load

7.2 System Design 154

Flow of data Server
File S torageClient
Agent

KB

Network

File DB Files

Figure 7.2: Single user with networked computer architecture

on the client machine and increased ease o f key distribution for encrypted and shared
files. The server will already have all the data available that it requires to generate
new keys for each different user to access a file. However it would mean the keys
are all stored in one central location, which creates a security risk as well as raising
questions over the ownership o f the data.

The design seen in Figure 7.3 is a multi-user extension of the system seen in Figure
7.2. This design does not scale well to support a large amount o f users as there
would be a great number o f agent processes working over different data but running
on the same machine. This would create an unmanageable workload for a single
server and would increase the complexity of storing each user’s knowledge bases
separately in order to keep their data discrete.

To address the bottleneck created by the server being the repository for all data, the
design in Figure 7.4 takes a half and half approach. The files are still stored on the
server across a network, but the knowledge bases for each are stored locally. Whilst
this has the drawback that the local computer will be running the agent processes and
so will have a higher processing load, it means that basic knowledge base queries
can be performed without the need for network communications. Although the local
system will now have to request data from the server when making new keys for
encrypted files and then distributing them to the relevant Virtual Secretaries, the
keys can be stored locally giving the user extra reassurance that they still “own”
their data.

The architecture in Figure 7.5 is a hybrid design. Whilst there still remains one
single server for multiple users, the knowledge bases are now kept on the local ma-

7.2 System Design 155

Kev

ServerFlow of data

Clients File S torage

Agent

KB

Network

File DB Files

Figure 7.3: Multiple users with single server architecture

Server
Client

File DBNetwork

KevKB
Flow of data Files
File S torage

< ^)> Agent

Figure 7.4: Single user with networked computer alternative architecture

7.2 System Design 156

Clients

Server

Network

Files

KB’

KB’

KB’

KB
(repository

only)

File DB

Kev

File S torage

Agent

Flow of data

Figure 7.5: Multiple users with single server alternative architecture

chine, meaning that the agent processes are executed there also. The advantages
of this approach are two-fold. Firstly the process load on the server is significantly
reduced, and secondly the network traffic and bandwidth required is also lessened.
A repository for knowledge bases is maintained on the server, providing a oppor
tunity for back-ups as well as retaining certain pieces of data with respects to key
management to help with the tasks o f key distribution and creation.

In order to help the system scale for a large number o f users, Figure 7.6 proposes a
system where the server is part o f or connected to a cluster o f large capacity storage
machines. Whilst this helps with the space needs of many users, it does create a
bottleneck of a single server gateway through the network and back to the client
machine. This design also introduces the need for a more complex file placement
and retrieval strategy within the server.

The final design in this section shows one (or more users) connected to a set of
servers, each with their own FileDB program and file storage space. As seen in
Figure 7.7 this is similar to the concept o f a totally distributed file system. The loads
on each server can be balanced to share the time and space needed for access by a
large amount o f users. There is an extra layer o f complexity due to the number of
servers unless the data is to be duplicated across each o f them. If a user connected
to one server in one session and stored a file, unless the data was then distributed to
the other servers, the user would have to connect to the same server again in order
to retrieve that particular file. Distributed systems have long been an active area of
research, and remain a very complex type o f network storage.

Although a distributed file system has many advantages the extra complexity that
would be added in terms of protocol design, balancing mechanisms and so forth

7.2 System Design 157

Server
Client

K w

File DB Flow of data
Network

File S torage

Agent

Files FilesKB

File server
clusterFiles Files

Files Files

Figure 7.6: Clustered server architecture

Servers
Client

File DB FilesNetwork

File DB Files
KB

Key
File DB FilesFlow of data

File Storage

Agent

Figure 7.7: Distributed server architecture

7.2 System Design 158

make it an unsuitable architecture to use for the purposes o f his research. Keeping
the knowledge bases on the user’s local machine would allow the information and
knowledge to be kept separate from other users as well as enabling them to keep
“ownership” o f their data. By using the design seen in Figure 7.5 the system retains
the advantages o f local knowledge base placement whilst also simplifying other
processes (such as encryption) by keeping a small repository o f knowledge on the
server. It would be possible to have a file cache on the client, similar to those used
in any modern distributed file system or web browsers. However, as this is a proven
concept, it was not implemented in order to focus on the core design issues.

7.2.2 File placement

As mentioned in previous chapters, the user has neither the knowledge or control
over the physical location (on disk) o f their files. This allows the file storage mecha
nism to be designed for the ease o f incorporating other features. In order to provide
an elegant solution for the versioning and encryption systems and also minimise the
space required for file storage, each file is split into blocks.

7.2.2.1 Allocation Units

Hard disk drives are typically accessed as block devices and this abstraction is main
tained by GIFS. Allocation units, or blocks can be a variety o f different sizes within
file systems dependent on disk architecture, in GIFS they are 4096B. Starting at byte
0, a file is split into sequential 4096 byte chunks with the final block being padded if
necessary in order to be o f an equal size. The blocks are then stored independently
o f each other and are reassembled in order if the complete file is needed. When a
file is encrypted (the process o f which will be demonstrated in §7.2.4.1), each block
is encrypted individually.

7.2.2.2 Versioning

Storing a new version o f an entire file each time a modification is made is an in
efficient use o f disk space and network bandwidth. A better solution would be to
only store those parts o f the file that have changed. By splitting files into blocks as
described above an effective storage mechanism for multiple-versioned files can be
implemented within the FileDB.

For each version o f a file, the FileDB stores the file ID, version number and the
date/time o f addition. These values will correspond to those in the knowledge base
o f the Virtual Secretary from which the request originated. In addition, a variable-
length binary string (referred to as a bitfield) is also stored. The bitfield will have

7.2 System Design 159

a length equal to the number o f blocks a file has been split into (i.e. the size o f the
file divided by the block size). Each bit in the bitfield represents whether or not the
corresponding block in this version o f a file has been modified since the previous
version. If there have been changes, a 1 is stored in the appropriate position, if there
were no changes a 0 is stored.

When a user requests a certain block o f a file (usually the beginning two blocks, but
conceivably also specific mid-file blocks), the FileDB looks at the latest entry for
that file ID in a table contained within the FileDB. If for the required block the the
corresponding position in bitfield is set to 1, then the last version of the file has the
most recent data for this block and so the block is retrieved from the file system. If
the value is 0, there were no changes to this block in the last revision o f the file, so
the entry for the previous version is examined from the FileDB. The value o f the bit
in the appropriate position in this bitfield is checked. This process continues until
for all required blocks the last occurrence o f a 1 in that position has been identified.
The bitfield o f the chronologically first entry will always be comprised entirely of
1 ’s, as all the bytes in this file will have changed during creation. If a user requests a
specific version o f a file, the FileDB looks up the bitfield for that version and checks
each o f the required blocks. If any o f them are 0, it then begins to work backwards
through the previous bitfield entries as described above. Using this method, only
the FileDB knows of the relationship between all versions o f any file and avoids
duplicating the entire file on every revision.

This technique is similar to the copy-on-write strategy of ZFS. When the contents of
a file is modified, it writes the blocks that have been changed to a different location.
The metadata is then updated to show where the new versions o f the blocks can be
found. If the metadata is never written (due to an error) then the old version o f the
file will still be recoverable as the original blocks will have not been overwritten.
Since the data is not overwritten on an update, snapshots are an 0(1) operation in
both GIFS and ZFS.

If a user has write permission for a file they are able to upload changed blocks in
order to be included in the revision history. To ensure only one person is editing
a file at any one time a simple check-in/out flag is used. If two people decide to
edit the same file at the same time despite warnings then the two resulting files are
forked, and either some external software or human intervention is needed to unite
them back into one file again.

7.2.2.3 File Placem ent

As each file is split into equal-sized blocks, there are now many equal-sized chunks
o f data to store and retrieve. In GIFS, as the user has no control over the physi
cal location or format o f their files, they can be stored in the most convenient and
efficient way for the computer to maximise performance. Several different options

7.2 System Design 160

were considered, including the arrangement of files in a one-directory-per-version
basis, a one-directory-per-user basis or an equal distribution algorithm. The first two
approaches would have resulted in an unbalanced and inefficient directory struc
ture but would simplify the naming/location process. Placing the file blocks in an
equally-distributed directory structure would have improved efficiency but added
extra complexity to the naming and location o f each data block. As each block was
o f an equal size, it was decided to store them in a database.

As no inbuilt database currently exists on the Windows platform, an external database
was used. The advantages o f using a database from a system designer’s perspective
are that location and retrieval mechanisms for data will be pre-optimised, the stor
age mechanism will be automatically handled so as to provide the fastest access for
all entries, and multiple users and queries can be serviced simultaneously. More
simply, a database will provide the most optimal outcome with a greatly reduced
implementation effort.

As a database already forms part o f the FileDB program, the file store can be eas
ily incorporated there. Although both the FileDB and the file store share the same
database, they should still be viewed as conceptually different parts o f the architec
ture, in the same way that the FileDB program is more than just a database.

Each record in the file store represents one block o f a file and holds 4 fields required
for file storage tasks. The raw data will be held in one field and will obviously have
a fixed size o f 4096 bytes. The file ID will be held in another field, along with the
block number to identify the correct position for the data within the file. The date
and time at which this block was added is also stored.

7.2.3 Communication Protocols

In order for the Virtual Secretary to communicate with the server and other Secre
taries, a communications protocol was designed. Using an XML schema, several
different types o f message and response were defined. The extensible nature of
XML means that in the future new message types can be added without constrain
ing the older versions.

The XML schema is used not only to define the protocol, but also to check that each
message is well-formed and valid. The full XML schema to define all message types
can be found in Appendix B, Listing B.2, meanwhile a few sections o f the schema
are examined below.

Within the schema there are two major types o f messages: requests and responses.
Listing B. 1 in Appendix B gives the definition o f the request type, whilst a pictorial
interpretation can be seen in Figure 7.8. The request message has a complex type
which is composed o f other elements and attributes. The choice tag allows one and
only one element to to selected. Therefore a request element can contain either: a

7.2 S ystem Design 161

Optional alt

J Raquirad singla alaau

[^j| Raquirad rapaatad all

|---------------
deletion —(Saquance of all

Cto

I ryp*t > a global typa

Figure 7.8: The request element from the XML schema

7.2 System Design 162

user and file element; a userlist and file element; a user and hashstring element; a
userlist element; a file element; a user element; a kbentries element; or a deletion
element.

The sequence tag specifies the order in which elements have to occur. Therefore if
a request element did contain the first sequence o f elements displayed in the choice
tag, the user element would come first, followed by the file element.

The attributes o f “id” and “type” that come after the choice tags can both be included
and refer to the attributes o f the request message. The “id” attribute contains the
identification number o f the type o f message as an integer value, and the “type”
attribute contains the string representation o f the corresponding request type. The
list o f message ids and request type can be seen in Table 7.2.

ID Type
1 request_key/retum_keys
2 store Jile
3 request Jile/respondJile
4 acknowledge
5 permissions
6 kb_entries
7 logon
8 authenticate
9 online_status
10 deletion

Table 7.2: Message id and type values

Listing 7.1: Section o f XML Schema defining the response message
< xsd :e lem en t name = "response" t y p e = " r e s p o n s e "/>
< x s d :complexType name="r e s p o n s e " >

< x s d :ch o ice>
< x sd :e lem en t name=" u s e r l i s t " t y p e = " u s e r l i s t "/>
< x sd :e lem en t name=" f i l e " t y p e = " f i l e "/>
< x sd :e lem en t name=" v a l id" t y p e = " x s d : s t r i n g " / >
< x sd :e lem en t name="logon" t y p e = " x s d : s t r i n g " / >
< x s d :sequence>

< x sd :e lem en t name=" f i l e " t y p e = " f i l e " / >
< x sd :e lem en t name=" u s e r l i s t " t y p e = " u s e r l i s t "/>

< /x sd :se q u e n c e >
< x sd :e lem en t name=" s t r i n g " t y p e = " s t r i n g " />

< /x s d :c h o ic e >
< x s d : a t t r ib u t e name= "id" t y p e = " x s d : i n t "/>

< x s d : a t t r ib u t e name= "type" t y p e = " x s d : s t r i n g " />
</xsd:com plexType>

7.2 System Design 163

The response element defined in Listing 7.1 shows the structure o f a message sent
in response to a request message. As before, the choice tag denotes that only one
element (or sequence) from inside the list can be selected. So a response element
will contain the attributes o f “id” and “type” which contain the response type integer
and the string definition (e.g. “4” and “acknowledge” respectively), plus any one of
the following: a userlist element; a file element; a valid element; a logon element; a
name element; or a sequence containing a file elements and a userlist element.

The file element seen in the response and request elements is defined in Listing 7.2.
As before, this element has two attributes: “id” and “version”. The id attribute de
notes the id o f the file as set in the knowledge base. The version attribute is an
optional integer value denoting the version number o f the file and does not have to
be included in every message. One other element appears in the file element, either
a blocklist element or a filedata element. The full definitions o f the filedata and
kbentries elements can be found in Appendix B, Listing B.3 and are reasonably
self-explanatory after the element definitions already seen. The blocklist element
(which is used to transport the raw file data blocks) can be seen in Listing 7.3. A
blocklist element can contain only one element type, a “block”. The “minOccurs”
and “maxOccurs” values denote the range o f occurrences acceptable within this ele
ment. Logically, a blocklist element must therefore contain at least 1 block element,
but does not have an upper size limit.

_________ Listing 7.2: Section o f XML Schema defining the file element__________
< x s d :complexType name = " f i l e " >

< x s d :ch o ice>
< x sd :e lem en t name = " b l o c k l i s t " typ e = " b l o c k l i s t "

minOccurs="0"/>
< x sd :e lem en t name = " f i l e d a t a " typ e = " x s d : s t r i n g "

m inOccurs="0"/>
< / x s d :ch o ice>
< x s d :a t t r i b u t e name = "id" t y p e = " x s d : s t r i n g " / >
< x s d :a t t r i b u t e name = "vers ion" t y p e = " x s d : i n t " use="

o p t i o n a l "/>
< / x s d :complexType>

_______Listing 7.3: Section o f XML Schema defining the blocklist element______
<xsd:complexType name = " b l o c k l i s t " >

< x sd :ch o ice>
< xsd :e lem en t name = "block" ty p e = "block" minOccurs

="1" maxOccurs= "unbounded"/>
< /x s d :c h o ic e >

</xsd:com plexType>

Examples o f communication messages created by using the XML schema can be
seen in §7.4.

7.2 System Design 164

7.2.4 Encryption and Security

To offer a secure service to users it was decided that each individual block of a
file should be encrypted before transmission across the network and storage on the
server. However, it was equally important that the encryption mechanism should
be transparent to the user. Within GIFS, several different types o f encryption and
hashing algorithms are used.

7.2.4.1 File Encryption

The versioning system, based on splitting files into allocation units, was designed
not only to decrease the amount o f space needed to store newer version of files, but
also in order to allow each block o f a file to be encrypted separately.

Upon the creation o f a file, the Virtual Secretary o f the originating author produces
a very long symmetric AES key. AES is a standardised block cipher [81], the key
for which is produced by the random number generator on the client machine. This
key is then used to encrypt every block o f the file. Each user has a pair o f keys
(public and private) for use in an asymmetric encryption algorithm. The newly-
created AES key is encrypted by the user’s public key which is stored on the server.
This encrypted key is kept within the user’s knowledge base.

If the file is to be shared with other users, they will each require an encrypted AES
key in order to decrypt the file. The Virtual Secretary requests the public keys o f
each user from the FileDB and uses each one to create an encrypted version o f the
AES key. These keys are then either sent back to the FileDB for distribution or sent
directly to the relevant Secretaries.

The FileDB also stores the user’s private key which is required to decrypt all their
AES keys. Storing the public and private key pairs in the same location would not
be secure, so the private key is stored in an encrypted format. The user’s password
is hashed using a known algorithm which creates the symmetric key required to
encrypt the private key. The choice o f hash algorithm is not important provided that
it is different to the one used during the user authentication process (See §7.2.4.2) as
the outcome of that operation is stored on the server. The whole encryption process
for two users can be seen in Figure 7.9. The advantage o f this encryption system is
that it is transparent to the user and they are only required to remember one password
for the whole system.

If the user wishes to change their password, their private key must be decrypted
using the old password hash and then re-encrypted using a hash o f the new password.
The AES keys for each file do not need to be recalculated unless the user suspects
that their password has been compromised. In this event, the password, private and
public keys must be changed and then used to create replacement encrypted AES

7.3 System Level Implementation 165

keys for each file. The AES key itself would stay the same so access to the files for
other legitimate users would be unaffected.

User 1 User 2

decryptsdecrypts

decrypts

encrypts encrypts

encrypts

AES
Key

Private key 2

Password 1

Private keyl

Password 2

Public key 2Public key 1

File

Figure 7.9: File encryption methods within GIFS

7.2.4.2 User Authentication

Upon first use o f the Virtual Secretary, the user’s password is hashed using a known
algorithm and sent to the FileDB for storage on the server. When the user starts their
Virtual Secretary it sends a logon message to the server. The server replies with a
randomly generated string. The user is prompted to enter their password which is
hashed using a chosen algorithm and concatenated with the random string sent by
the server. The resultant string is then hashed using the same algorithm again, and
sent by the Virtual Secretary to the server. The server will have performed the same
operations as the Virtual Secretary (but using the hashed version o f the password
it has stored) and so the two strings should be equal. If the two values match, the
user is authenticated. As the password is stored on the server in a hashed form it is
important that two different hashing algorithms are used for user authentication and
file encryption purposes.

7.3 System Level Implementation 166

Traditional Unix

Spatial or Hierarchical File
Managers

Virtual Secretary Spatial or Hierarchical
File ManagersNNetwork Layer

KB Network Layer

VFS
Agents Interface Layer

FS
Network Layer Object Layer

FileDB Pooled storage layer
Block device

File store Block device

Figure 7.10: Comparison of layers in a Unix file system, GIFS and ZFS

7.3 System Level Implementation

Figure 7.10 shows roughly how the layers in the GIFS architecture correspond with
those in a traditional Unix file system and Sun’s ZFS. In both cases the Virtual Sec
retary replaces the traditional hierarchical file managers. The knowledge base holds
all the metadata on the files, along with the extra data, information and knowledge
gathered and deduced by the agents. As well as processing data, the agents provide
the bridge to the network layer. This layer is directly comparable to the network
layer o f both traditional Unix file systems (such as CIFS in AFS) and ZFS (NFS).
The FileDB (discussed in more detail in 7.3.1) controls access to the file data, user
authentication and knowledge dissemination. The file store contains the raw file
data.

7.3.1 File Database

The FileDB on the server has several purposes. It stores the files, controls access
and permissions, manages user authentication, content delivery and knowledge dis
semination. It is implemented in C# on top of a database (Microsoft SQLServer),
however the name database does not adequately encompass the range of services the
FileDB offers but is used as a generalisation in this instance. Databases are currently
seen as an additional program within an operating system, but ideally for GIFS it
would be included in the lower level code of the operating system, improving per
formance.

The interface program on the server that forms part o f what is classed as the FileDB
parses the communications from the Virtual Secretary clients, requests data from
the database and returns appropriate answers back to the Virtual Secretaries. The

7.4 File Lifecycle 167

requests for data within the FileDB are all relatively simple, as the majority o f heavy
data-processing occurs on the client in the knowledge base, which has a much richer
collection o f information. Some information is duplicated between the knowledge
bases and the FileDB, however this is for extra security checking and version man
agement only and the server does not provide any knowledge itself. Simple queries
are passed to the database by the FileDB wrapper program, where the more complex
operations are performed.

One o f the advantages o f using a pre-packaged database is the efficiency o f searches.
SQLServer automatically balances the B-Tree structures o f each table it holds data
on, meaning that search times are kept to a minimum. For this reason, the segments
or blocks o f a file are actually kept within the database itself as it would be consid
erably less efficient in this implementation to keep them in an alternative position
on disk without access to the native file system or operating system source code.

There are 5 tables within the file database, each o f which is shown along with a brief
explanation o f the fields in Tables 7.3, 7.4, 7.5, 7.6 and 7.7.

Field name Description
FID The file ID

dateTime The date and time that this version was created
bitField An array o f bits that show which blocks have changed since

the last version
permsChanged A true/false flag to show if someone’s permissions have been

changed since this version and the new blocks require a new
AES key

version A numerical indication o f version

Table 7.3: The version table

Field name Description
UID The user ID
FID The file ID

permissions Can be A for authoring/ownership, R for read only,
W for write, or REM for removed

dateTime The date and time these permissions were given/changed

Table 7.4: The permissions table

7.4 File Lifecycle

There follows a closer look at the operations of the FileDB and the server. First o f
all, the basic variables and concepts are introduced to give a better grasp o f the more
technical procedures in the example.

7.4 File Lifecycle 168

Field nam e Description
UID The user ID

password The user’s password, hashed using MD5
publickey The user’s public key

Table 7.5: The users table

Field nam e Description
FID The file ID
UID The user who is currently editing this file

dateTime The date and time this file was checked out
flag A boolean value showing whether or not this file has been

returned
version A numerical value showing which version o f the file was

checked out
duplicate A boolean value denoting if this file was checked out >1

times without return

Table 7.6: The checkout table

Field name Description
FID The file ID

blockno The number (position) o f this block
dateTime The date and time this file was added
blockdata The binary data for this block

Table 7.7: The files table

7.4 File Lifecycle 169

7.4.1 Variables

In this example the real-life values o f variables have been replaced by text that is not
only easier to read, but will help the reader follow the logical path o f the processes
occurring. The definitions o f variables and naming conventions set out in Chapter
5 are used within the system as specified but may have been substituted by other
non-compliant values for the purposes o f the example.

There are 5 users o f the system, named userA, userB, userC, userD, and userE.
These values will replace the user/Virtual Secretary IDs (UID) which would usually
be a ‘meaningless’ string of characters. The file under scrutiny in this example is
known to the users as “Budget.xls”, although this is stored along with the rest o f the
metadata in the knowledge base on the client’s machine and so is not needed here.
The FileDB refers to a file by the file ID (FID), which matches the FID value set for
this file in the knowledge base. The users are unaware that their files have IDs and
even less the knowledge o f the value o f the ID string. Within this example the FID
is “000000000001” and any variable or value followed directly by the character “#”
is in an encrypted format and must be decrypted before it can be processed.

All the metadata for this file is placed in the knowledge base on the client machine.
Some of this data is also duplicated in the FileDB to assist in versioning and access
control. These are fields such as the file size/block total (needed to facilitate the
block mechanism), the file creation time, and access privileges for each user. The
different blocks o f each file are stored within the FileDB. Hence there are no tradi
tional network paths. Each file that is sent to a user is created on-the-fly, using the
required blocks for the specified version.

7.4.2 File Example

Using the variables set out above, the lifecycle o f a file as it passes through the
system can be observed. This includes examples o f communications between the
Virtual Secretary and the server, the internal workings o f the FileDB and the pro
cesses required to facilitate the file storage o f GIFS.

7.4.2.1 User Authentication

The Virtual Secretary starts a session with the server by sending a logon request
message which contains an identifying user ID as seen in Listing 7.4.

_____________________Listing 7.4: Logon request to server_____________________
c r e q u e s t i d ="7" t y p e = " lo g o n ">

c u se r id= "userA" />
< /r e q u e s t>

7.4 File Lifecycle 170

The server acknowledges this request (shown in Listing 7.5) by generating a random
string and sending it back to the Virtual Secretary.

_______________ Listing 7.5: Logon reply to the Virtual Secretary_______________
c r e s p o n se i d = "7" t y p e = "logon">

< s t r i n g i d = "arandomstring" />
< /re sp o n se >

The Virtual Secretary hashes the user’s password using MD5 and concatenates it
with the random string, and then performs an MD5 hash on the resultant string.
Listing 7.6 shows the messages used to send the string to the server.

________Listing 7.6: The request message containing the hashed password________
c r e q u e s t id="8" t y p e = " a u th e n t i c a t e " >

c u s e r i d = "userA" />
c h a s h s tr in g i d = " v e ry h a s h e d u p s t r in g " />

< /r e q u e s t>

The FileDB looks up userA’s hashed password in the user’s table (Table 7.8), con
catenates it with the random string it sent previously, hashes it using the same hash
function as the Virtual Secretary (e.g. MD5) and then compares this string with the
one it just received. If the two strings are the same, the logon is successful and the

UID password publickey
userA passworda# pkA

Table 7.8: User A’s entry in the user’s table

server sends an acknowledgment message back to the Secretary, or an error message
if the password was incorrect. Both messages can be seen in Listing 7.7.

________________ Listing 7.7: Logon acknowledgment message________________
c r e sp o n se id = "4" t y p e="acknow ledge">

< lo gon > tru e< /logon >
< /re sp o n se >
or
c r e sp o n se id = "4" ty p e ="acknowledge">

< lo g o n > fa ls e < / lo g o n >
< /re sp o n se >

7.4.2.2 File Creation

UserA creates a file called “Budget.xls” and instructs their Secretary to file it away.
The file is split into allocation units (or blocks) of 4096B in size. The Virtual Secre
tary generates an AES key which is used to encrypt each allocation unit. The AES

7.4 File Lifecycle 171

key is encrypted with userA’s public key and stored locally. The Virtual Secretary
then sends the file to the server, using the message seen in Listing 7.8.

Listing 7.8: Sending a file to the server
c r e q u e s t i d = "2" t y p e = "s t o r e _ f i l e " >

< f i l e i d = "000000000001">
< b l o c k l i s t >

c b lo c k id="2">
< b lo ck d a ta > en cr y p te d b lo ck d a ta l< /b lo c k d a ta >

< /b lock >
<block id="2">

< b lock d ata> en cryp ted b lock d ata2< /b lock d ata>
< /b lock>

<block ±d="16">
< b lo ck d a ta > en cr y p te d b lo ck d a ta l6 < /b lo c k d a ta >

< /b lock>
< / b l o c k l i s t >

< / f i l e >
< /r e q u e s t>

The FileDB parses this message and extracts the necessary information from it. A
new entry is inserted into the version table, shown in Table 7.9.

FID dateTime bitField perm sChanged version
000000000001 1234567 111111111111111 False 1

Table 7.9: The new entry into the version table

Once this process has been completed successfully, an acknowledgment message is
sent back to the Virtual Secretary. The file is now stored securely on the server, but
cannot be accessed as the permissions have yet to be set.

7.4.2.3 G ranting Access Permission

UserA is the original author and owner of the file and thus has full access permis
sions. They also wish to share the file with userB, userC, userD and userE and
additionally allow userB to modify it. There are several smaller steps needed to
achieve this, the first o f which is seen in Listing 7.9, the request for public keys
from the server. Note that userA is omitted from this step, as their Virtual Secretary
already knows the public key from within their knowledge base. Once the FileDB
has processed this message, it queries the database for the public keys o f the spec
ified users, and finds the entries shown in Table 7.10. The FileDB then returns the
keys to the Virtual Secretary in the format shown in Listing 7.10.

7.4 File Lifecycle 172

 Listing 7.9: An XML message requesting public keys
c r e q u e s t i d ="l" ty p e = "request_key">

< u s e r l i s t >
<user id = "userB">

<publicK ey />
< /u ser>
<user id = "userC">

<publicK ey />
< /u ser>
<user id = "userD">

<publicK ey />
< /u ser>
<user id = "userE">

<publicK ey />
< /u ser>

< / u s e r l i s t >
< /re q u es t>

UID password publickey
userB passwordb# pkB
userC passwordc# pkC
userD passwordd# pkD
userE passworde# pkE

Table 7.10: Entries for users B,C,D and E in the users table

_________Listing 7.10: Returning the public keys to the Virtual Secretary
c r e sp o n se i d ="l" typ e = "re turn_keys">

< u s e r l i s t >
c u se r id ="userB">

<publicKey>pkB</publicKey>
< /u ser>
c u se r = id "userC" >

cpublicK ey>pkC c/publicK ey>
c /u se r >
c u se r id ="userD">

cpub1i cKey>pkDc/pub1i cKey>
c /u se r >
c u se r id = "userE">

cpublicK ey>pkEc/publicK ey>
c /u se r >

c / u s e r l i s t >
c /r e s p o n s e >

7.4 File Lifecycle 173

Once it has received the necessary public keys, the Virtual Secretary uses each one
to encrypt the AES key that was used to encrypt the file. There are now 5 encrypted
keys for this file, each one only decrypted by the respective users’ private key. The
Virtual Secretary builds a message to denote the permissions for the file. A section
o f this message can be seen in Listing 7.11, whilst the full message can be found in
Appendix B in Listing B.3.

The FileDB inserts this new data into the permissions table o f the database, shown
in Table 7.11.

__________________ Listing 7.11: Partial permissions message__________________
c r e s p o n se id="5" typ e = "p e r m i s s i o n s ' ’>

c f i l e id ="000000000001" />
< u s e r l i s t >

c u se r id="userA">
c p r iv s>

crea d > tr u e c /r e a d >
c w r i t e > tr u e c /w r i t e >
c a u th o r > tr u e c /a u th o r >
c removed> f a 1s e c / removed>

c /p r iv s >
c /u se r >

c u se r i d = "userB">
c p r iv s>

c rea d > tr u e c /r e a d >
c w r i t e > tr u e c /w r i t e >
c a u t h o r > f a l s e c /a u t h o r >
crem oved>falsec/rem oved>

c /p r iv s >
c /u se r >

c / u s e r l i s t >
c /r e s p o n s e >

UID FID perm issions dateTime
userA 000000000001 WRA 1234567
userB 000000000001 WR 1234567
userC 000000000001 R 1234567
userD 000000000001 R 1234567
userE 000000000001 R 1234567

Table 7.11: New data inserted into the permissions table

Once this process is complete, the FileDB sends back a valid acknowledgment mes
sage as in Listing 7.12.

7.4 File Lifecycle 174

Listing 7.12: An XML acknowledgment message
c r e s p o n se id = "4" type="acknowledge">

< v a l id > t r u e < /v a l id >
< /re sp o n se >

In the case o f a new file, the above process for altering permissions is performed at
the same time the file is created, but permissions can also be modified in the same
way at any subsequent point in the future.

7.4.2.4 Sharing Knowledge

When a new file is available to multiple users their Virtual Secretaries will be unable
to find it unless the appropriate knowledge is added to each users’ knowledge base.
In order to distribute the new knowledge and keys, the Virtual Secretary sends a
message (an example o f which is shown in Listing 7.13) to the server requesting
the online status o f the other Secretaries. The empty online tags will be filled in by
the FileDB with the IP addresses o f the online Secretaries, or left blank otherwise.

_________________ Listing 7.13: An XML online status request_________________
c r e q u e s t id="9" ty p e = " o n l in e _ s t a tu s " >

< u s e r l i s t >
c u s e r id ="userB">

c o n i i n e / >
c /u s e r >
c u s e r = id "userC" >

c o n i i n e / >
c /u s e r >
c u s e r i d ="userD">

c o n l in e />
c /u s e r >
c u s e r id = "userE">

c o n l in e />
c /u s e r >

c / u s e r l i s t >
c /r e q u e s t >

The FileDB will check to see which Secretaries in the user list are currently online.
Those that are will receive a message containing the knowledge to be added to the
knowledge bases seen in Listing 7.14. The messages for the Secretaries that are
not online are kept on the server until the next time the Virtual Secretary connects.
To reduce the load on the server it is possible for Secretaries that are online to
communicate directly, This is referred to as “gossip”, whilst the messages for offline
Secretaries sent to the server as described above.

7.4 File Lifecycle 175

____________ Listing 7.14: An XML knowledge distribution message
c r e q u e s t i d ="6" t y p e = " k b _ e n t r i e s ">

< k b _en tr ie s>
<user i d = "userB">

<newkey i d="encryp tedkeyB">
</newkey>

< /u ser>
<fi l e i d = "000000000001" version="0"/>
< k b en try> K B -en try -s tr in g< /k b en try>

< /k b _ e n tr ie s >
< /r e q u e s t>

7.4.2.5 Inform ing V irtual Secretaries

If a file is to be viewed by multiple users, their Virtual Secretaries must be informed
o f the required key for decryption, not only facilitate the addition o f the newly cre
ated knowledge to enter into the knowledge bases. As with the sharing o f knowl
edge, the keys can be sent to the Secretaries via the server or directly. The key data
is sent in the same message as the new knowledge base entries.

7.4.2.6 Editing a File

UserB wishes to modify the file, so begins by requesting the most recent version
from the server (Listing 7.15).

________ Listing 7.15: An XML message requesting a file from the server________
< req u es t id="3" t y p e = " r e q u e s t _ f i l e " >

c u s e r i d = "userB" />
c f i l e i d ="000000000001" version="0" />

< /r e q u e s t>

The FileDB checks what permissions userB has for this file, shown in Table 7.12.
It should not be possible for a user to request a file that they do not have access
to as their knowledge bases will not contain the required information. However,
performing this extra check on the server helps prevent unauthorised access from
external sources.

UID FID permissions dateTime
userB 000000000001 WR 1234567

Table 7.12: User B ’s entry in the permissions table

7.4 File Lifecycle 176

As userB has write permission an entry is inserted into the checkout table to show
the file is being edited as in Table 7.13.

FID UID dateTime flag version duplicate
000000000001 userB 7654321 True 1 False

Table 7.13: The new entry into the checkout table

The FileDB then looks at bitfield for this file, shown in Table 7.14, in order to
start assembling the correct version o f the file to be sent back to userB. As all the
positions are in this bitfield are ‘1’, the most recent version o f each is required to
assemble the complete file (Listing 7.16). It would be desirable to save network
traffic if only the blocks o f the file requested (e.g. the first two for the opening of
a file or other specific mid-file blocks) were sent to the Virtual Secretary, however
at this time the whole file is needed in order for the client computer to be able to
open the file. The storage and transport mechanisms have been designed so that the
introduction o f a virtual file system on the client will not result in major changes to
the schema, FileDB or file store.

FID dateTime bitField perm sChanged version
000000000001 1234567 111111111111111 False 1

Table 7.14: The most recent entry in the version table

Listing 7.16: An XML message sending a file to a VS
< resp on se i d = "3" ty p e = " r e s p o n d _ f i l e " >

< f i l e id ="000000000001">
< f i l e d a t a > a l l t h e f i l e d a t a b l o c k s < / f i l e d a t a >

< / f i l e >
< /re sp o n se >

The Virtual Secretary client uses userB’s password to decrypt their private key,
which in return is used to decrypt the AES key from their knowledge base. The AES
key is used to decrypt each o f the blocks in turn. Once the user has finished modify
ing the file, the Virtual Secretary compares each new block with the old ones. Only
if they have changed are they sent back to the server. In this case, userB has only
made changes to blocks 3 & 4, so they are the only blocks that need re-encrypting
for sending back to the server. Blocks 3 & 4 are encrypted with the AES key that
was used for decryption and the file is then sent back to the server as seen previously,
along with the updated knowledge base entries.

The FileDB checks that userB has write access for this file, and that it is not currently
‘checked out’ by anyone else with write access. The version table is updated with

7.4 File Lifecycle 177

FID dateTime bitField perm sChanged version
000000000001 1234567 111111111111111 False 1
000000000001 8765432 001100000000000 False 2

Table 7.15: The contents o f the version table after a new version has been added

the FID and the new date/time and bitfield, the result o f which is shown in Table
7.15.

The file is checked back in by editing the entry in the checkout table. Once the
file is checked back in, an acknowledgment message is sent back to the Virtual
Secretary. The FileDB also distributes new version knowledge received from the
Virtual Secretary to each user who has access to the file.

7.4.2.7 Reading the Latest Version of a File

After many versions o f the same file have been created, the correct assembly o f the
file on the server becomes more important. All the entries for the file in this example
can be seen in Table 7.16.

FID dateTime bitField perm sChanged version
000000000001 1234567 111111111111111 False 1
000000000001 8765432 001100000000000 False 2
000000000001 9876543 001001000000000 False 3

Table 7.16: The entries for this file in the version table

UserA has requested the most recent version o f this file, so the FileDB queries the
database for the most recent version in the version table. Blocks 3 & 6 were mod
ified, so version 3 o f block 6 & 3 are needed. Then the previous entry is checked,
which shows that blocks 3 & 4 were modified. Flowever, we already have a more
recent version o f block 3, so from this version only block 4 is needed. The FileDB
checks the next previous bitfield, where all the other blocks (1,2,5,7-16) were mod
ified so are required. The file and block string is constructed and sent to the Virtual
Secretary as seen in a previous example.

7.4.2.8 M odifying Access Permissions

The permissions o f a file can be modified at any time by the file’s owner. UserA
decides to revoke userB’s access permissions for the file. It would be superfluous
to take away access to a file the user has already seen, as they may have an extra
copy of the file stored locally. Instead, the versions created after this time are made
unavailable to the user, the Virtual Secretary informs the server o f these changes by

7.4 File Lifecycle 178

sending the message seen in Listing 7.17.

___________________ Listing 7.17: Changing file permissions
c resp o n se id="5" ty p e = "p e r m i s s i o n s ' '>

c f i l e id ="000000000001" />
< u s e r l i s t >

c u s e r i d = "userB">
c p r iv s>

c r e a d > fa ls e c /r e a d >
c w r i t e > f a l s e c / w r i t e >
c a u t h o r > f a l s e c /a u t h o r >
crem oved>truec/rem oved>

c /p r iv s >
c /u s e r >

c / u s e r l i s t >
c /r e sp o n se >

The FileDB updates userB’s permissions for this file in the database, the result of
which can be seen in Table 7.17.

UID FID permissions dateTime
userB 000000000001 WR 1234567
userB 000000000001 REM 99876543

Table 7.17: The updated entries for User B in the permissions table

The FileDB sets a flag in the version table next to the latest version o f this file to
show that the next version of the file will require a new AES key (Table 7.18), and
then sends an acknowledgment message back to the Virtual Secretary that originated
the request.

FID dateTime bitField perm sChanged version
0000000000001 1234567 111111111111111 False 1
0000000000001 8765432 001100000000000 False 2
0000000000001 9876543 001001000000000 True 3

Table 7.18: The most recent version is flagged in the version table

When userA next checks out the file for editing the Virtual Secretary is informed
that a new AES key must be generated to encrypt the edited blocks. In the same
way as when the file was originally set, new encrypted AES keys are created for the
remaining users with access and distributed accordingly, along with the additional

7.4 File Lifecycle 179

knowledge base entries generated for a new version o f a file. The database is updated
by new entries in the permissions table (Table 7.19) and the version table (Table
7.20).

UID FID permissions dateTime
userA 0000000000001 WRA 1234567
userB 0000000000001 WR 1234567
userC 0000000000001 R 1234567
userD 0000000000001 R 1234567
userE 0000000000001 R 1234567
userB 0000000000001 REM 9876543
userA 0000000000001 WRA 19234569
userC 0000000000001 R 19234569
userD 0000000000001 R 119234569
userE 0000000000001 R 19234569

Table 7.19: The permissions table after User B has had their permissions changed

FID dateTime bitField perm sChanged version
0000000000001 1234567 111111111111111 False 1
0000000000001 8765432 001100000000000 False 2
0000000000001 9876543 001001000000000 True 3
0000000000001 9876543 110000000000000 False 4

Table 7.20: The version table after the permission alteration

The next time userB tries to access the file, they can only get the versions made prior
to when their permissions were removed. The FileDB checks the permissions table
within the database, which shows they were revoked at time stamp 99876543, and
then identifies the latest version o f the file that was created before: the third version
in this example (see Table 7.21).

FID dateTime bitField perm sChanged version
0000000000001 9876543 001001000000000 True 3

Table 7.21: The last entry made in the version table before userB’s permissions
changed

The database provides the appropriate blocks of the file by working backwards
through the bitfields as described in previous examples, then the required blocks
are sent. If another user wishes to read the latest version o f the file, their Virtual
Secretary must now use at least 2 keys to decrypt all the blocks. For this reason,
currently when a user has permissions for a file removed the next version o f the file
will have to be completely re-encrypted giving a bitfield full o f 1 ’s. This is a less el
egant solution than that o f using multiple keys for one file, but the least complex one

7.5 Summary 180

since all the blocks are currently sent to the user per version (as the client machine
cannot open file segments). The communications protocol, FileDB program and
internal database have been designed with the intention o f using a block-based file
system on the client, so no further implementation work would be needed to enable
a multiple-key mechanism once a virtual file system was in place on the client.

7.4.2.9 Deleting a File

When a user instructs their Virtual Secretary to delete a file, the file information is
still held on the server and in the file store. However, it will no longer be accessible
unless the author instructs their Secretary to undelete it. Listing 7.18 shows the
message which would be sent to the FileDB if userA wished to delete the file seen
throughout this example.

Listing 7.18: A file deletion message
c r e q u e s t i d ="10" t y p e = "de le t ion " >

< d e le t io n >
< f i l e i d = "000000000001" version="2" />
< k b e n tr y > K B -d e le te d -e n tr y -s tr in g < /k b e n tr y >

< /d e le t io n >
< /re q u es t>

The KB-deleted-entry-string contains the knowledge that would need to be inserted
into the knowledge bases o f other users who previously had access to this file. The
FileDB does not retain any knowledge o f which files have been deleted as the knowl
edge bases and Virtual Secretary will ensure that the file is no longer requested. If
when a file is deleted it is still checked out by a user with write access, should they
alter the file and give it back to their Secretary the files will be effectively undeleted
as new data will be produced.

7.5 Summary

This chapter has illustrated the features found in the system level architecture o f
GIFS and answered the technical questions set out in §7.1.1. Several alternative de
signs were analysed for suitability and the communications protocol was specified.
The different layers found in the GIFS model were explained and contrasted to the
layers o f other file systems. The mechanisms required to facilitate the allocation
units, versioning system and encryption techniques were also examined.

The examples seen in the second half o f the chapter show a subsection o f the com
munications between the Virtual Secretary and the server and also those commu
nications between Virtual Secretaries. It has been demonstrated how the FileDB

7.5 Summary 181

processes the data contained in the communications messages, returning query re
sults from the database, assembling files to send to Virtual Secretaries or managing
the distribution o f knowledge and encryption keys. The file store which is con
trolled by the FileDB holds multiple versions o f the files without unnecessary space
wastage. Used in coordination with the knowledge-based framework and the Virtual
Secretary interface these mechanisms can be used to provide transparent and secure
file storage whilst removing all associated burdens from the user.

Chapter 8

Conclusion

8.1 Achievements and Evaluation

Throughout the course o f this thesis, an alternative paradigm to the design, im
plementation and deployment o f current file systems has been presented, and the
technology contributing to its constituent parts examined.

This work has achieved its objectives as set out in Chapter 1, including the following.
We have:

• reviewed the surrounding literature and made a critical analysis o f current file
system technologies, highlighting the increasing gap between user needs and
operating system technologies;

• proposed the concept of a global file system which offers increased functional
ity over existing file systems, catering for a wide-range o f user needs includ
ing document placement and organisation, version control, support for col
laborative environments, secure storage, and powerful and intelligent search
functions through an adaptive interface;

• presented the design o f a knowledge-based framework for the global file sys
tem and implemented the separate parts to fulfill the highlighted concepts,
including the structure o f the knowledge bases, the user interface, integra
tion with the operating system, network communication protocols and the file
storage system;

• evaluated the system through simulation in order to demonstrate its scalability
in various tasks over a long period o f service.

182

8.1 Achievements and Evaluation 183

8.1.1 Review and Analysis of Current Technologies

Although all the required technologies for a global file system have coexisted for
a considerable time, they had never been combined to provide the framework nec
essary to provide users with functionality that current file systems lack. Chapter 2
presented an in-depth review o f file system development over a spectrum o f oper
ating systems, and §2.2 gave a critical analysis o f several file system architectures.
The problems currently faced by file system design and implementation were dis
cussed in §2.3. As the Internet and more generally computer networks have grown to
surround much of our everyday interactions with computers and file systems, a brief
history o f its design and development was documented. In particular, we considered
the technologies used within the Internet which are displaying increasing similarity
to features provided traditionally by file systems in §2.4.2-§2.4.6. It was shown that
as the Internet continues to grow in terms o f both popularity and commercial success
it is already beginning to integrate into local file systems and searching mechanisms.

To provide a broad understanding of the remaining constituent technologies needed
to create a global file system framework, Chapter 3 provided a thorough background
survey o f several artificial intelligence related topics. The concept o f knowledge
bases and data mining were introduced along with a review o f the field o f intelli
gent agents in §3.2. This background information enabled an evaluation o f artificial
intelligence applications, in particular those offering services similar to a personal
assistant. A review of personal search assistants and those which create personalised
interfaces followed. Section 3.3 described the concepts o f personal information
management, groupware and computer supported cooperative work.

Through the literature studies in these two main respects, we found that there is a
huge gap between current operating system technology and the needs o f users for
handling files in everyday life. In particular,

• current systems do not assist users with the organisation o f their files [43,
314, 45];

• current systems are not able to identify and store relationships between similar
files [91, 124];

• adding encryption or security mechanisms to files is time-consuming and
cumbersome, especially in a collaborative environment [163, 80];

• current systems lack rich knowledge o f file metadata and access patterns [79,
305];

• the folder paradigm found in hierarchical systems is no longer sufficient for
meeting the organisational and storage needs o f users [23, 10, 108, 158, 174,
180, 268].

8.1 Achievements and Evaluation 184

8.1.2 Concept of a Global File System

The second objective was met in Chapters 4, 5 and 7, where the concept o f a global
file system was introduced and examined in detail. As many features o f the file sys
tem are transparent to the user, a system overview was presented in §4.4.1 with the
focus on the expected behavior o f the system from that perspective. The technical
concepts regarding the development o f a suitable framework were shown in Chap
ters 5 and 7, with Chapter 5 concentrating on the knowledge-based aspects such
as data mining and agent operation, whilst Chapter 7 looked in detail at the system
level design including network structure, communications protocols and encryption.
The work found in these two chapters in particular provides the evidence needed to
support the first major thesis objective.

The concept we proposed is novel and ambitious, because it differs from the existing
operating system and file system technologies by providing a transparent and secure
facility for the automatic storage o f files. It contrasts with other notions found in
the literature, such as conventional digital personal assistants (§3.3.2) o f personal
information management (§3.3) by removing from the user the burden or knowledge
o f how and where their files are physically stored. It meets the user’s requirements
(as examined in Chapter 3) for secure and transparent file storage in a collaborative
environment including accomplished searching mechanisms.

GIFS is technologically feasible with the ability to develop its intelligence in an
evolutionary manner. The extensible nature o f the agents and knowledge framework
mean that further processing and knowledge gathering techniques can be incorpo
rated without the need for a complete system or protocol redesign. The design is
scalable because the knowledge framework and the architecture o f the system on
the client and server machines (discussed in §7.2) were constructed to be flexible
enough to be implemented on any particular machine, operating system architecture
or disk configuration.

8.1.3 Knowledge-Based F ramewor k Design

Chapters 5 and 7 showcased the design and implementation options behind the
global file system and Virtual Secretary and satisfied the major thesis objective. The
knowledge-based design was examined in Chapter 5, including an in depth expla
nation o f data acquisition from user actions as well as the knowledge base structure
and design principles. This implicitly establishes how the amount o f knowledge
currently gathered and analysed by operating systems is insufficient to support the
actions of a global file system, as well as demonstrating how the user is not required
to expend any additional input in the training o f their Secretary.

Each o f Chapters 2,3 and 4 presented examples o f commercial software which uses
a knowledge-based or data mining/search approach such as Stuff I ’ve Seen [90],

8.1 Achievements and Evaluation 185

iTunes [294], Google Desktop Search [1] and Spotlight [5]. These commercial prod
ucts strengthen the approach used in this thesis, whilst other sources [79, 20, 305]
affirm that file and operating systems are both moving toward a data/knowledge-
based architecture.

The agent technology required to extract meaningful information from the data gath
ered in the knowledge bases was then explained in §5.5, with several different tech
niques for agent deployment being evaluated. Chapter 5 then provided a more de
tailed analysis o f several agents deployed in the system, demonstrating how the raw
data gathered through the system could be processed and analysed to yield useful
information.

The penultimate chapter of this thesis provided a discussion o f several alternative
architectures for the server-side architecture and overall framework. Through a de
tailed example o f the lifecycle o f a file, Section 7.4 demonstrated the system level
technologies required to support the framework which were presented previously in
Chapters 4 and 6 and explained the parts o f the framework that are transparent to
the user through normal operation. Chapter 7 also included a practical explanation
o f the versioning, encryption and security mechanisms that are used to facilitate
a transparent service, which demonstrates how such a service was technologically
possible.

8.1.4 Evaluating System Scalability

The final objective was met in Chapter 6, where we demonstrated the effectiveness
o f a global file system and Virtual Secretary in assisting the user with the problems
o f information overload and document management in a secure and collaborative
environment. Two case studies were presented to analyse the system performance
under different conditions.

The first study in §6.2 concentrated on the growth o f the knowledge within the sys
tem, and provided experimental results for validating the scalability o f a knowledge-
based file system over long term usage. As the required test data was not available,
§6.2.4.6 documents how we created large amounts o f simulation data in order to
properly scrutinize the performance, as well as analysing historic data in §6.2.4.3.
Several different techniques were used in order to demonstrate the improvements in
operational times a Virtual Secretary could provide. It was shown that by deploying
intelligent agents to analyse data and produce further information and knowledge in
the background, search times for large datasets could be significantly reduced. With
out these agents and improved search mechanisms, the search times were shown to
be non-scalable, which would outnumber any advantages o f deploying the system.
The combination o f search techniques were proved to follow a constant time, mean
ing that the operational times were scalable and thus gathering large amounts of
information would not cause problems with system performance.

8.2 Future Work 186

The second case study focused on the scalability o f the Virtual Secretary whilst as
sisting the user in everyday file management tasks. It was shown that the Virtual
Secretary helped users by decreasing user-generated errors in file distribution and
access lists and significantly reducing the amount of time users would need to spend
on file administration tasks. The suggestions made by the Virtual Secretary in this
case study show that in comparison to traditional file systems, GIFS conclusively
reduces the effort required to manage a user’s files. In comparison to a human
secretary, this study demonstrated that the Virtual Secretary was scalable when rea
soning over file access control lists, both in terms o f the time taken and the number
o f errors generated.

8.2 Future Work

The file system mechanism in GIFS was written for optimal storage when multiple
versions o f file are created. However, part o f the elegance of this solution is lost to
the extra network traffic created where the file system on the client machine (e.g. the
part responsible for displaying the file) could not display only parts o f the file. To
make full use o f the bandwidth optimisations afforded by the file system a virtual file
system able to handle and display partial files could be implemented on the client.

The agents included so far within GIFS assist the Virtual Secretary with a variety of
tasks. By the addition o f more agents, not only could increasingly complex trends
be identified within the user-created data to provide a more accurate service, but a
more inclusive solution could be offered. A natural step would be to include emails,
calendar entries and so on as files and gather data about them in a similar way to
which other files are handled.

The opportunity to gather real data from user interactions with the system would
be invaluable when analysing the performance o f GIFS. User studies take a large
amount o f time to organise, but would provide useful, naturally-produced data which
over a long period of time would become important for system benchmarking. In
addition to a user study o f file management behaviours using GIFS, it would also be
beneficial to analyse further how well the Virtual Secretary performed when asked
to calculate the access control lists o f a file or the next actions o f a user. The lack
o f currently available data on file system access patterns or file usage statistics also
highlights an area o f study that could be used to further this work.

The client-server network mechanism has long been acknowledged as giving poor
performance under large loads and causing bottlenecks. It would be desirable to
distribute the file data over a large number o f different network locations without
losing reliability or accessibility. Due to the extra information which is processed
by the FileDB and kept along with file data, a more sophisticated dissemination
mechanism would be required. Although distributed file systems are already a pop

8.2 Future Work 187

ular area o f research, extra attention in this instance should be paid to the security
and ownership issues o f distributing files and knowledge bases. Another important
area to consider when adding in a distributed file system to the framework would
be the duplication and availability o f files when one or more nodes o f the network
storage system became unavailable.

As all communications and data transferred over the network are encrypted in some
way, the major security weakness o f the system lies in the internal format o f the
knowledge bases on the client machine. Ideally, the knowledge bases should incor
porate an encryption mechanism without compromising system performance, re
quiring the agents which process the data to be able to decrypt it. The design and
implementation o f a supporting encrypted knowledge framework would prove an
interesting topic o f research.

Appendix A

Full Results for Case Study 1

A .l Results for Brute Force, Best-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 48.156 47.422 47.141 47.266 47.859 47.569 0.380
2 48.047 47.063 47.469 47.828 46.969 47.475 0.418
3 47.281 48.531 47.188 47.766 47.469 47.647 0.484
4 46.703 48.094 48.281 47.969 47.813 47.772 0.556
5 47.938 48.688 47.781 47.938 48.094 48.088 0.316

Table A. 1: Brute force results for data over 3 months (seconds)

Dataset 1 2 3 4 5 avg SD
1 1:26.2 1:26.4 1:27.2 1:28.3 1:27.1 1:27.0 0.744
2 1:29.1 1:26.5 1:26.0 1:28.1 1:28.3 1:27.6 1.163
3 1:27.5 1:27.3 1:27.3 1:27.4 1:27.3 1:27.4 0.055
4 1:25.2 1:25.1 1:24.5 1:26.9 1:26.3 1:25.6 0.861
5 1:27.3 1:27.8 1:28.3 1:28.2 1:28.8 1:28.1 0.494

Table A.2: Brute force results for data over 6 months (minutes:seconds)

188

A. 1 Results for Brute Force, Best-Case Scenario Data 189

Dataset 1 2 3 4 5 avg SD
1 2:07.6 2:07.9 2:05.6 2:09.6 2:08.9 2:07.9 1.360
2 2:08.8 2:08.2 2:07.0 2:06.5 2:06.8 2:07.5 0.880
3 2:10.0 2:08.1 2:08.1 2:07.4 2:06.8 2:08.1 1.085
4 2:08.9 2:08.2 2:07.4 2:06.8 2:08.7 2:08.0 0.802
5 2:08.2 2:04.3 2:05.7 2:07.8 2:05.6 2:06.3 1.464

Table A.3: Brute force results for data over 9 months (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 2:45.0 2:49.0 2:46.2 2:45.9 2:47.5 2:46.7 1.390
2 2:45.8 2:46.6 2:47.7 2:46.7 2:51.2 2:47.6 1.876
3 2:46.1 2:45.5 2:46.7 2:48.2 2:47.6 2:46.8 0.988
4 2:49.2 2:47.8 2:46.7 2:48.0 2:46.0 2:47.5 1.117
5 2:46.4 2:48.2 2:48.6 2:46.8 2:44.8 2:47.0 1.346

Table A.4: Brute force results for data over 1 year (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 13:37 13:48 13:38 13:44 13:40 13:41 4.211
2 13:33 13:34 13:50 13:55 13:43 13:43 8.340
3 13:34 13:44 13:39 13:34 13:44 13:38 4.361
4 13:36 13:33 13:49 13:51 13:43 13:42 6.890
5 13:54 13:47 13:58 13:51 13:44 13:50 4.996

Table A.5: Brute force results for data over 5 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 27:46 28:04 27:45 27:50 27:45 27:50 7.284
2 27:45 27:34 27:38 27:43 27:49 27:41 5.205
3 27:52 27:45 28:13 27:57 27:40 27:53 11.447
4 28:06 27:53 27:30 28:06 28:19 27:58 16.595
5 28:27 28:01 28:10 28:09 28:10 28:11 8.426

Table A.6: Brute force results for data over 10 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 58:18 58:44 58:28 58:04 57:56 58:17 16.925
2 57:29 57:54 58:34 57:18 57:51 57:49 26.013
3 57:55 58:08 57:16 57:12 57:46 57:39 21.902
4 57:15 57:36 57:35 57:40 58:43 57:45 29.980
5 58:33 57:42 57:51 58:44 58:28 58:15 24.392

Table A.7: Brute force results for data over 20 years (minutes:seconds)

A. 1 Results for Brute Force, Best-Case Scenario Data 190

Dataset 1 2 3 4 5 avg SD
1 1:38:51 1:37:50 1:40:20 1:40:17 1:43:50 1:40:13 121
2 1:37:04 1:39:25 1:40:02 2:09:03 1:55:30 1:48:12 737
3 1:34:13 1:34:26 1:32:44 1:31:43 1:32:16 1:33:04 64
4 1:44:10 1:42:26 1:37:26 1:38:47 1:37:49 1:40:07 161
5 1:32:39 1:34:36 1:57:51 1:57:35 1:35:03 1:43:32 695

Table A.8: Brute force results for data over 30 years (hours:minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 2:47:38 2:20:58 2:42:46 2:44:14 2:43:22 2:39:47 573
2 2:39:38 2:44:59 2:57:05 3:14:33 2:41:46 2:51:36 777
3 2:50:48 2:30:26 3:22:53 3:23:55 2:59:24 3:01:29 1212
4 3:16:13 3:53:45 3:50:08 3:57:34 3:33:47 3:42:17 921
5 3:03:41 3:07:56 3:07:18 3:03:27 3:35:50 3:11:38 734

Table A.9: Brute force results for data over 40 years (hours:minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 4:11:04 4:12:59 3:59:01 4:44:41 3:53:24 4:12:13 1068
2 3:57:14 3:36:40 4:03:30 4:54:02 3:23:44 3:59:01 1857
3 3:46:07 4:57:14 4:50:39 4:44:15 5:47:04 4:49:03 2311
4 3:51:55 5:01:37 4:49:06 4:35:56 5:47:40 4:49:14 2249
5 4:58:35 3:55:22 4:54:36 5:13:34 4:48:37 4:46:08 1601

Table A. 10: Brute force results for data over 50 years (hours:minutes:seconds)

A.2 Results for Cached, Best-Case Scenario Data 191

A.2 Results for Cached, Best-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 09.5 09.3 09.4 09.1 09.5 09.4 0.149
2 09.8 09.0 09.5 09.9 09.8 09.6 0.328
3 09.5 09.8 09.4 09.2 09.2 09.4 0.222
4 09.3 09.5 09.7 09.8 09.5 09.6 0.174
5 09.1 09.5 09.5 09.6 09.1 09.4 0.215

Table A. 11: Caching method results for data over 1 month (seconds)

Dataset 1 2 3 4 5 avg SD
1 10.1 10.1 10.2 10.0 10.2 10.1 0.074
2 10.0 10.2 10.1 10.3 10.0 10.1 0.116
3 10.1 10.1 10.2 10.0 10.1 10.1 0.063
4 09.7 10.0 10.4 10.2 10.2 10.1 0.236
5 10.0 10.1 10.2 10.2 10.1 10.1 0.074

Table A. 12: Caching results for data over 3 months (seconds)

Dataset 1 2 3 4 5 avg SD
1 10.6 11.1 09.9 11.0 10.2 10.6 0.458
2 10.7 11.4 11.4 11.3 10.2 11.0 0.477
3 11.2 11.2 10.1 10.7 10.7 10.8 0.406
4 10.7 10.5 11.3 11.0 10.7 10.8 0.280
5 10.9 11.2 11.0 10.4 10.8 10.9 0.265

Table A. 13: Caching results for data over 6 months (seconds)

A.2 Results for Cached, Best-Case Scenario Data 192

Dataset 1 2 3 4 5 avg SD
1 12.3 12.4 12.4 12.5 11.9 12.3 0.209
2 12.4 12.7 12.1 11.9 12.0 12.2 0.292
3 11.9 12.0 12.3 11.9 12.5 12.1 0.240
4 12.2 12.4 12.5 13.0 12.5 12.5 0.263
5 16.6 16.3 16.6 17.3 17.1 16.8 0.365

Table A. 14: Caching results for data over 9 months (seconds)

Dataset 1 2 3 4 5 avg SD
1 14.2 13.6 13.6 14.0 14.1 13.9 0.252
2 14.8 14.9 14.4 15.4 14.2 14.7 0.417
3 14.5 14.2 14.3 14.1 15.0 14.4 0.318
4 14.5 14.7 13.7 14.1 13.9 14.2 0.370
5 13.8 14.3 14.1 14.3 14.2 14.1 0.185

Table A. 15: Caching results for data over 1 year (seconds)

Dataset 1 2 3 4 5 avg SD
1 51.4 51.4 55.3 53.6 54.5 53.2 1.595
2 53.7 52.8 53.5 52.8 54.2 53.4 0.540
3 54.8 54.7 55.0 53.7 54.4 54.5 0.453
4 54.7 54.9 54.9 55.4 54.6 54.9 0.275
5 53.8 54.7 54.3 55.7 52.8 54.3 0.960

Table A. 16: Caching results for data over 5 years (seconds)

Dataset 1 2 3 4 5 avg SD
1 2:36.7 2:36.7 2:35.8 2:36.7 2:36.4 2:36.5 0.349
2 2:35.8 2:35.2 2:35.1 2:35.5 2:47.5 2:37.8 4.846
3 2:55.7 2:54.8 2:54.4 2:54.4 2:54.3 2:54.7 0.519
4 2:55.4 2:53.6 2:54.6 2:54.1 2:54.1 2:54.4 0.608
5 2:54.8 2:54.7 2:42.9 2:38.3 2:38.9 2:45.9 7.381

Table A. 17: Caching results for data over 10 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 8:44.2 9:23.1 9:45.1 9:14.2 8:44.7 9:10.3 23.352
2 8:44.5 8:43.4 8:44.5 8:43.4 8:56.5 8:46.5 5.044
3 9:41.9 9:37.2 8:42.3 8:42.4 8:42.4 9:05.2 28.053
4 8:40.5 9:04.4 9:39.7 9:23.1 8:56.4 9:08.8 20.655
5 8:46.4 8:46.9 8:46.7 8:47.6 8:47.2 8:47.0 0.412

Table A. 18: Caching results for data over 20 years(minutes:seconds)

A.2 Results for Cached, Best-Case Scenario Data 193

Dataset 1 2 3 4 5 avg SD
1 20:03.3 20:03.2 20:02.0 20:01.7 20:02.2 20:02.5 0.649
2 21:52.4 21:33.1 21:21.2 20:55.7 20:02.7 21:09.0 37.909
3 20:14.4 20:17.2 20:16.0 20:15.2 20:15.0 20:15.6 0.966
4 20:51.6 21:21.3 20:00.3 19:59.0 20:00.1 20:26.5 33.978
5 20:04.6 20:03.3 20:04.3 20:03.5 20:03.7 20:03.9 0.491

Table A. 19: Caching results for data over 30 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 36:18.1 36:16.6 36:17.3 36:16.8 36:17.3 36:17.2 0.519
2 36:21.7 36:17.6 36:16.5 36:17.2 36:18.3 36:18.3 1.816
3 34:20.7 34:19.1 34:19.9 34:19.7 34:21.8 34:20.2 0.932
4 36:11.6 36:10.7 36:25.0 36:11.6 36:10.3 36:13.8 5.603
5 36:14.5 36:12.8 36:13.1 36:11.0 36:11.5 36:12.6 1.238

Table A.20: Caching results for data over 40 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 50:29.8 50:26.0 50:24.8 50:25.4 50:25.3 50:26.3 1.810
2 50:30.5 50:28.7 50:30.0 50:31.5 50:31.7 50:30.5 1.088
3 50:32.6 50:27.8 50:26.1 50:28.4 50:27.8 50:28.5 2.170
4 50:12.6 50:22.7 50:07.4 50:07.4 50:08.4 50:11.7 5.825
5 50:31.0 50:28.8 50:28.4 52:46.6 52:36.8 51:22.3 64.894

Table A.21: Caching results for data over 50 years (minutes:seconds)

A.3 Results for Archived, Best-Case Scenario Data 194

A.3 Results for Archived, Best-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 21.453 21.672 21.391 21.172 21.172 21.372 0.188
2 21.219 21.578 21.281 21.078 21.469 21.325 0.178
3 21.313 21.188 21.359 21.281 21.375 21.303 0.066
4 20.984 21.609 21.156 21.688 21.609 21.409 0.283
5 21.516 21.375 21.422 21.406 21.563 21.456 0.071

Table A.22: Archived results for data over 1 month (seconds)

Dataset 1 2 3 4 5 avg SD
1 47.688 47.656 46.984 47.375 47.031 47.347 0.298
2 47.328 47.438 47.156 47.500 47.609 47.406 0.154
3 47.156 47.016 47.266 47.281 47.156 47.175 0.095
4 47.359 47.578 47.406 47.734 46.875 47.390 0.289
5 47.406 47.078 46.984 46.969 47.500 47.187 0.222

Table A.23: Archived results for data over 3 months (seconds)

Dataset 1 2 3 4 5 avg SD
1 1:26.09 1:26.93 1:26.32 1:26.90 1:26.57 1:26.56 0.326
2 1:26.75 1:26.32 1:26.37 1:26.39 1:27.00 1:26.56 0.263
3 1:26.67 1:26.65 1:26.82 1:27.95 1:27.23 1:27.06 0.488
4 1:25.20 1:25.65 1:26.18 1:26.01 1:26.15 1:25.84 0.371
5 1:26.70 1:26.25 1:26.34 1:29.28 1:26.31 1:26.97 1.162

Table A.24: Archived results for data over 6 months (minutes:seconds)

A.3 Results for Archived, Best-Case Scenario Data 195

Dataset 1 2 3 4 5 avg SD
1 2:06.17 2:05.93 2:06.40 2:06.82 2:05.81 2:06.23 0.360
2 2:03.68 2:03.31 2:03.60 2:03.35 2:03.54 2:03.50 0.144
3 2:03.07 2:04.23 2:03.79 2:03.48 2:03.46 2:03.61 0.385
4 2:02.54 2:02.73 2:02.37 2:03.15 2:02.93 2:02.75 0.276
5 2:01.35 2:04.39 2:02.01 2:02.45 2:01.92 2:02.42 1.041

Table A.25: Archived results for data over 9 months (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 2:05.76 2:05.12 2:05.87 2:05.32 2:05.10 2:05.44 0.321
2 1:57.65 1:56.76 1:57.71 1:57.84 1:56.42 1:57.28 0.574
3 1:58.23 1:58.59 1:57.18 1:57.46 1:57.10 1:57.71 0.591
4 1:54.71 1:54.81 1:56.26 1:55.29 1:56.07 1:55.43 0.636
5 1:57.43 1:56.28 1:56.43 1:56.43 1:56.34 1:56.58 0.429

Table A.26: Archived results for data over 1 year (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 3:04.93 3:05.12 3:07.89 3:05.93 3:05.23 3:05.82 1.086
2 3:06.76 3:06.54 3:05.67 3:06.04 3:06.54 3:06.31 0.399
3 2:47.40 2:46.70 2:46.65 2:46.03 2:46.31 2:46.62 0.461
4 2:49.79 2:48.75 2:46.89 2:47.82 2:47.81 2:48.21 0.985
5 2:27.17 2:26.28 2:26.68 2:26.68 2:26.96 2:26.76 0.301

Table A.27: Archived results for data over 5 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 2:30.26 2:32.31 2:30.18 2:30.76 2:29.43 2:30.59 0.958
2 2:37.21 2:39.10 2:37.84 2:37.06 2:38.14 2:37.87 0.732
3 2:31.23 2:30.10 2:31.29 2:29.98 2:32.98 2:31.12 1.079
4 2:47.15 2:47.14 2:47.64 2:46.96 2:48.70 2:47.52 0.631
5 3:14.09 3:15.03 3:14.31 3:16.79 3:14.09 3:14.86 1.025

Table A.28: Archived results for data over 10 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 2:47.31 2:47.03 2:45.12 2:47.28 2:47.15 2:46.78 0.834
2 3:16.23 3:18.25 3:17.56 3:17.89 3:16.82 3:17.35 0.730
3 3:01.93 3:01.18 3:00.43 3:02.32 2:59.15 3:01.01 1.130
4 2:56.81 2:55.28 2:54.93 2:55.00 2:54.43 2:55.29 0.806
5 2:37.26 2:37.48 2:37.17 2:37.15 2:36.62 2:37.14 0.283

Table A.29: Archived results for data over 20 years (minutes:seconds)

A.3 Results for Archived, Best-Case Scenario Data 196

Dataset 1 2 3 4 5 avg SD
1 2:24.98 2:23.84 2:24.96 2:24.17 2:26.90 2:24.97 1.063
2 2:43.18 2:43.82 2:45.25 2:43.17 2:43.57 2:43.80 0.764
3 2:36.92 2:35.53 2:36.75 2:36.26 2:36.39 2:36.37 0.482
4 3:08.60 3:07.59 3:08.03 3:07.95 3:06.93 3:07.82 0.550
5 2:27.32 2:27.06 2:25.78 2:26.98 2:27.40 2:26.91 0.587

Table A.30: Archived results for data over 30 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 3:10.59 3:10.65 3:10.59 3:12.32 3:10.68 3:10.97 0.678
2 2:51.06 2:51.64 2:51.57 2:51.07 2:51.12 2:51.29 0.256
3 2:43.84 2:55.90 2:44.50 2:42.98 2:43.26 2:46.10 4.930
4 2:53.85 2:54.90 2:53.62 2:54.79 2:53.20 2:54.07 0.666
5 2:51.64 2:53.04 2:51.03 2:51.90 2:51.03 2:51.73 0.741

Table A .31: Archived results for data over 40 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 2:32.28 2:32.84 2:34.28 2:33.18 2:32.53 2:33.02 0.697
2 2:37.39 2:37.12 2:38.93 2:37.90 2:37.31 2:37.73 0.654
3 2:51.43 2:52.57 2:51.03 2:51.06 2:52.01 2:51.62 0.594
4 2:16.79 2:16.71 2:16.00 2:17.81 2:18.07 2:17.08 0.762
5 2:35.26 2:35.43 2:35.10 2:36.40 2:35.21 2:35.48 0.471

Table A.32: Archived results for data over 50 years (minutes:seconds)

A.4 Results for Combined, Best-Case Scenario Data 197

A.4 Results for Combined, Best-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 9.4 10.0 9.1 9.5 9.5 9.5 0.289
2 9.5 9.4 9.5 9.4 9.6 9.5 0.074
3 9.2 9.3 9.7 9.0 9.5 9.3 0.241
4 9.0 9.6 9.7 9.6 9.4 9.5 0.249
5 9.4 9.5 9.6 9.5 9.8 9.6 0.135

Table A.33: Combined results for data over 1 month(seconds)

Dataset 1 2 3 4 5 avg SD
1 10.2 10.6 10.2 10.2 10.8 10.4 0.252
2 10.6 10.6 10.7 10.2 10.2 10.5 0.215
3 10.6 09.9 10.2 10.2 10.2 10.2 0.222
4 10.6 10.2 10.2 10.2 10.2 10.3 0.160
5 10.5 10.4 10.5 09.8 09.9 10.2 0.305

Table A.34: Combined results for data over 3 months (seconds)

Dataset 1 2 3 4 5 avg SD
1 10.3 10.9 10.5 10.8 10.2 10.5 0.272
2 10.9 10.1 10.9 10.6 10.7 10.6 0.293
3 11.2 10.3 10.5 10.8 11.3 10.8 0.386
4 10.6 11.5 10.0 11.3 11.5 11.0 0.591
5 10.3 10.7 10.0 11.3 10.8 10.6 0.444

Table A.35: Combined results for data over 6 months (seconds)

A.4 Results for Combined, Best-Case Scenario Data 198

Dataset 1 2 3 4 5 avg SD
1 12.6 12.3 12.5 12.9 12.5 12.6 0.195
2 12.0 12.4 12.5 11.8 12.5 12.2 0.287
3 12.3 12.7 12.9 11.9 12.5 12.5 0.344
4 11.9 12.0 12.5 11.9 12.3 12.1 0.240
5 15.8 16.0 15.9 15.9 16.0 15.9 0.074

Table A.36: Combined results for data over 9 months (seconds)

Dataset 1 2 3 4 5 avg SD
1 13.2 12.9 13.2 13.0 13.7 13.2 0.275
2 13.5 13.0 12.7 12.2 12.4 12.8 0.458
3 13.0 13.4 13.1 13.2 13.5 13.2 0.185
4 12.8 13.0 13.1 13.0 13.0 13.0 0.097
5 13.0 13.0 13.1 12.5 13.5 13.0 0.318

Table A.37: Combined results for data over 1 year(seconds)

Dataset 1 2 3 4 5 avg SD
1 15.5 14.6 14.6 15.2 14.9 15.0 0.349
2 14.6 14.3 14.7 15.1 14.3 14.6 0.296
3 15.3 15.2 14.3 15.0 15.4 15.0 0.392
4 15.4 14.7 15.1 16.2 15.1 15.3 0.501
5 14.2 15.1 14.3 14.3 13.7 14.3 0.448

Table A.38: Combined results for data over 5 years (seconds)

Dataset 1 2 3 4 5 avg SD
1 15.0 14.7 15.3 15.0 15.4 15.1 0.248
2 15.3 14.8 14.9 15.6 15.6 15.2 0.338
3 15.8 15.3 15.5 15.4 15.5 15.5 0.167
4 15.6 15.0 14.6 14.9 15.5 15.1 0.376
5 16.2 15.5 15.0 15.3 15.7 15.5 0.402

Table A.39: Combined results for data over 10 years (seconds)

Dataset 1 2 3 4 5 avg SD
1 15.2 15.4 16.0 15.3 15.5 15.5 0.278
2 16.8 16.6 16.7 17.0 16.5 16.7 0.172
3 15.8 15.4 15.4 15.4 15.0 15.4 0.252
4 16.0 15.0 16.0 15.4 15.3 15.5 0.397
5 15.4 14.8 14.9 15.5 15.3 15.2 0.278

Table A.40: Combined results for data over 20 years (seconds)

A.4 Results for Combined, Best-Case Scenario Data 199

Dataset 1 2 3 4 5 avg SD
1 15.1 14.9 15.3 14.7 15.0 15.0 0.200
2 14.7 15.2 15.5 15.7 15.6 15.3 0.361
3 15.4 14.5 14.7 14.9 15.4 15.0 0.365
4 16.1 15.6 16.5 15.7 16.1 16.0 0.322
5 15.4 16.2 16.0 16.2 15.8 15.9 0.299

Table A.41: Combined results for data over 30 years (seconds)

Dataset 1 2 3 4 5 avg SD
1 15.6 16.0 16.4 15.8 16.6 16.1 0.370
2 15.6 15.2 15.7 16.1 14.9 15.5 0.414
3 15.6 14.9 15.4 15.5 15.3 15.3 0.241
4 15.6 15.4 15.3 16.2 15.3 15.6 0.338
5 15.7 15.4 15.3 15.5 15.5 15.5 0.132

Table A.42: Combined results for data over 40 years (seconds)

Dataset 1 2 3 4 5 avg SD
1 15.7 15.4 15.5 14.7 16.0 15.5 0.431
2 15.8 16.1 14.9 16.0 14.7 15.5 0.583
3 15.2 15.4 15.3 16.6 14.9 15.5 0.584
4 15.1 14.4 15.2 14.7 15.0 14.9 0.292
5 15.5 15.5 16.0 16.1 14.7 15.6 0.496

Table A.43: Combined results for data over 50 years (seconds)

A.5 Results for Brute Force, Worst-Case Scenario Data 200

A.5 Results for Brute Force, Worst-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 15:07.7 15:02.7 14:57.6 15:11.6 15:21.3 15:08.2 9.03
2 14:58.3 14:58.7 15:09.3 15:21.5 15:16.3 15:08.8 10.37
3 14:54.1 15:06.8 14:58.5 15:06.5 15:07.3 15:02.6 6.00
4 15:05.8 14:59.2 14:58.6 14:58.8 15:01.5 15:00.8 3.04
5 15:04.5 15:00.3 15:30.0 15:00.4 15:22.5 15:11.6 13.79

Table A.44: Brute force results for worst-case data over 1 year (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 33:02.5 33:03.7 32:44.1 32:36.8 32:47.6 32:50.9 11.77
2 33:04.5 32:55.2 32:57.1 33:08.4 32:50.3 32:59.1 7.29
3 32:45.8 33:06.8 32:41.6 32:50.5 32:56.9 32:52.3 9.89
4 32:52.8 32:43.2 32:58.2 32:57.4 32:54.1 32:53.2 5.99
5 32:49.8 32:45.5 32:47.0 32:52.7 32:51.8 32:49.4 3.07

Table A.45: Brute force results for worst-case data over 5 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 1:38:42 1:33:39 1:37:39 1:29:01 1:27:58 1:33:24 292.45
2 1:25:08 1:24:58 1:27:48 1:27:46 1:26:58 1:26:32 83.18
3 1:42:45 1:41:27 1:32:50 1:26:08 1:25:30 1:33:44 490.09
4 1:26:21 1:29:15 1:27:53 1:25:50 1:29:00 1:27:40 92.16
5 1:27:21 1:26:53 1:28:19 1:27:16 1:27:13 1:27:24 32.56

Table A.46: Brute force results for worst-case data over 10 years (h:mm:ss)

A .6 Results for Cached, Worst-Case Scenario Data 201

A.6 Results for Cached, Worst-Case Scenario Data

D ataset 1 2 3 4 5 avg SD
1 1:19.3 1:16.6 1:16.6 1:16.4 1:16.0 1:17.0 1.32
2 1:17.9 1:17.6 1:16.6 1:16.6 1:16.6 1:17.1 0.64
3 1:16.1 1:16.5 1:16.2 1:16.0 1:16.7 1:16.3 0.29
4 1:15.9 1:10.6 1:11.3 1:09.6 1:10.2 1:11.5 2.53
5 1:10.6 1:10.1 1:10.2 1:09.9 1:10.7 1:10.3 0.34

Table A.47: Cached results for worst-case data over 1 year (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 3:47.3 3:46.2 3:47.0 3:46.7 3:46.0 3:46.7 0.54
2 3:47.2 3:50.7 4:11.7 4:12.7 4:12.4 4:02.9 12.84
3 4:10.8 4:03.5 3:45.5 3:46.6 3:46.7 3:54.6 11.74
4 3:48.1 3:47.8 3:45.9 3:46.2 3:47.1 3:47.0 0.96
5 3:46.4 3:48.1 3:47.2 3:47.5 3:47.0 3:47.3 0.63

Table A.48: Cached results for worst-case data over 5 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 18:48.6 18:49.0 18:48.8 18:49.9 18:49.0 18:49.1 0.50
2 18:49.3 18:50.3 18:50.4 18:50.3 18:49.9 18:50.1 0.46
3 18:49.4 18:50.2 18:48.9 18:49.1 18:49.3 18:49.4 0.5
4 18:49.7 18:48.6 18:49.3 18:48.9 18:47.9 18:48.9 0.69
5 18:49.7 18:49.7 18:50.3 18:49.6 18:49.2 18:49.7 0.39

Table A.49: Cached results for worst-case data over 10 years (minutes:seconds)

A. 7 Results for Archived Worst-Case Scenario Data 202

A.7 Results for Archived Worst-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 5:43.4 5:41.9 5:40.5 5:45.2 5:42.8 5:42.8 1.75
2 4:54.8 4:55.6 4:55.6 4:56.5 4:54.0 4:55.3 0.94
3 5:40.8 5:40.4 5:36.1 5:36.5 5:38.9 5:38.6 2.17
4 3:55.5 3:56.9 3:58.8 3:58.8 3:58.2 3:57.6 1.43
5 4:00.7 4:03.7 4:04.6 4:00.4 4:00.4 4:02.0 2.03

Table A.50: Archived results for worst-case data over 1 year (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 4:18.2 4:11.3 4:11.3 4:12.8 4:10.7 4:12.9 3.08
2 4:30.5 4:33.7 4:30.5 4:29.8 4:29.7 4:30.8 1.64
3 5:56.3 5:51.5 5:51.3 5:50.2 5:50.7 5:52.0 2.46
4 7:27.2 7:25.3 7:27.4 7:30.0 7:25.4 7:27.0 1.91
5 6:17.0 6:18.3 6:23.8 6:25.4 6:15.6 6:20.0 4.33

Table A.51: Archived results for worst-case data over 5 years (minutes:seconds)

Dataset 1 2 3 4 5 avg SD
1 6:19.2 6:21.6 6:20.0 6:19.8 6:17.6 6:19.6 1.44
2 4:55.6 4:57.5 4:55.3 5:06.0 4:56.2 4:58.1 4.49
3 4:14.5 4:15.2 4:14.9 4:16.5 4:15.2 4:15.3 0.75
4 5:59.8 5:54.3 5:55.1 5:53.5 5:53.4 5:55.2 2.65
5 4:28.6 4:29.4 4:29.9 4:31.4 4:29.4 4:29.7 1.04

Table A.52: Archived results for worst-case data over 10 years (minutes:seconds)

A .8 Results for Combined, Worst-Case Scenario Data 203

A.8 Results for Combined, Worst-Case Scenario Data

Dataset 1 2 3 4 5 avg SD
1 22.328 23.141 22.828 22.531 22.406 22.647 0.273
2 21.578 21.844 21.203 21.641 21.406 21.534 0.198
3 22.672 22.094 23.156 22.406 21.969 22.459 0.388
4 17.422 17.156 18.25 17.797 18.906 17.906 0.566
5 18.188 18.469 17.609 18.266 18.484 18.203 0.290

Table A.53: Combined results for worst-case data over 1 year (seconds)

Dataset 1 2 3 4 5 avg SD
1 18.719 19.469 19.578 19.578 19.906 19.45 0.359
2 19.297 20.656 19.563 20.125 20.016 19.931 0.429
3 23.563 22.953 23.078 22.391 23.281 23.053 0.356
4 29.125 28.203 28.203 28.094 28.422 28.409 0.340
5 24.094 23.625 24.703 24.016 24.281 24.144 0.321

Table A.54: Combined results for worst-case data over 5 years (seconds)

Dataset 1 2 3 4 5 avg SD
1 25.813 25.25 25.797 26 25.359 25.644 0.263
2 21.797 21.109 21.219 20.781 21.313 21.244 0.301
3 20.719 20.563 20.328 19.906 19.906 20.284 0.304
4 23.641 24.594 24.156 23.719 24.703 24.163 0.397
5 20.563 20.781 20.453 20.234 20.563 20.519 0.162

Table A.55: Combined results for worst-case data over 10 years (seconds)

A.9 Full Results for Data Collection Study 204

A.9 Full Results for Data Collection Study

Event Read Access W rite Access Time (Seconds)
3 C C 0.78
4 C C 20.53
5 CPF C 10.95
6 CH c 8.16
7 CHP c 66.56
8 CHP c 20.67
9 CHP c 15.72
10 CP CP 88.33
11 CP CP 52.29
12 CP CP 18.36
13 CD CHP 98.18
14 C C 42.43
15 [HBC] - 35.86
16 [BC] c 13.18
17 [BC]+X C c 37.64
18 [BC]-Y C c 38.58
19 [EC] c 30.07
20 - c 36.69
21 [EC] c 51.30
22 [FDH] c 45.89
23 C c 57.37

Table A.56: Full results of Subject A predicting file access lists

A.9 Full Results for Data Collection Study 205

Event Read Access W rite Access Time (Seconds)
3 C C 0.61
4 C C 5.45
5 CPF c 11.52
6 CHP CHP 10.08
7 CH CH 18.28
8 CH CH 0.95
9 CHP CHP 19.70
10 CHP CHP 28.7
11 CHP CHP 0.96
12 CHP CHP 0.75
13 D CHP 12.37
14 D CHP 11.92
15 [BC]D CH 31.54
16 [BC]D HC 41.13
17 [BC]+X D CH 29.62
18 [BCJ+X-Y CH 13.44
19 [EC] [BC] HPD CH 49.68
20 [EC] [BC] CHPD HP 49.97
21 [BC]HPD CHP 93.6
22 [FDH][BC]

[EC]CHPD CHP 23.10
23 C C 22.95

Table A.57: Full results of Subject B predicting file access lists

A.9 Full Results for Data Collection Study 206

Event R ead Access W rite Access Time (Seconds)
3 C C 12.15
4 C C 0.80
5 CPF CPF 0.91
6 CHP CHP 7.46
7 CHP CHP 12.33
8 CHP CHP 6.15
9 CHP CHP 1.37
10 CHP CHP 4.94
11 CHP CHP 2.52
12 CHP CHP 0.86
13 CHPD CHP 7.78
14 CHPD CHP 11.65
15 [HBC]D CHPD[HBC] 27.54
16 [BC][HBC]

CHPD
[BC][HBC]

CHP 22.72
17 [BC]+X

CHPD [HBC]
CHP [BC]+X

[HBC] 84.51
18 CHP [HBC]

[BC]-Y+X D
CHP [HBC]
[BC]-Y+X 63.20

19 [BC]+X [EC] CHD [BC]+X [EC] H 67.87
20 [EC] [BC]+X CD [EC] [BC]+X 47.45
21 [EC][BC]CFXD [EC][BC]CFX 38.88
22 [FDH][BC]

[EC]CFDX
[BC][EC]

CFX 48.69
23 C C 7.02

Table A.58: Full results of Subject C predicting file access lists

A.9 Full Results for Data Collection Study 207

Event Read Access W rite Access Time (Seconds)
3 C C 0.89
4 C C 6.24
5 CPF CPF 5.62
6 CHP CHP 2.63
7 CHP CHP 20.63
8 CHP CHP 4.34
9 CHP CHP 4.31
10 CHP CHP 7.62
11 CHP CHP 6.79
12 CHP CHP 5.13
13 CD C 38.70
14 CD C 22.43
15 [HBC]C C 25.74
16 [BC]C C 8.21
17 [BC]+X C C 11.68
18 [BC]+X-Y C C 18.52
19 [EC] [BC]-Y+X C C 40.8
20 [EC] [BC]+X-Y C C 46.45
21 [EC][BC]-Y CX C 29.54
22 [FDH][EC]

[EC][MC]CX C 104.65
23 [BC]-Y+X C C 31.49

Table A.59: Full results of Subject D predicting file access lists

A.9 Full Results for Data Collection Study 208

Event Read Access W rite Access Time (Seconds)
3 C C 3.01
4 C C 4.11
5 CPF CPF 6.28
6 CHP CHP 6.74
7 FP FP 17.04
8 FP FP 17.64
9 FP FP 3.82
10 FP FP 8.01
11 FP FP 6.02
12 FP FP 4.09
13 HPD HP 10.48
14 HP HP 8.36
15 [HBC]C CHP 14.26
16 [BC][HBC] CHP 13.36
17 HPXD HPX 19.10
18 HPXD HPX 23.43
19 [EC] HP 17.46
20 HP HP 15.31
21 [BC]HPD HP 23.90
22 [FDH][EC] HP 22.88
23 HP HP 15.49

Table A.60: Full results of Subject E predicting file access lists

Appendix B

Communication Protocol Examples

Listing B . l : Section o f X M L Schem a defining the request elem ent

< x s d : e l e m e n t n a m e = " r e g u e s t " t y p e = " r e q u e s t "/>
< x s d : com p lexT yp e nam e=" r e q u e s t ">

< x s d : c h o i c e >
< x s d : s e q u e n c e >

< x s d : e l e m e n t nam e="user" t y p e = " u s e r "/>
< x s d : e l e m e n t nam e=" f i l e " t y p e = " f i l e "/>

< / x s d : s e q u e n c e >
< x s d : s e q u e n c e >

< x s d : e l e m e n t name = " u s e r l i s t " t y p e = " u s e r l i s t " / >
< x s d : e l e m e n t nam e=" f i l e " t y p e = " f i l e "/>

< / x s d : s e q u e n c e >
< x s d : s e q u e n c e >

< x s d : e l e m e n t nam e=" u s e r " t y p e = " u s e r "/>
< x s d : e l e m e n t name = " h a s h s t r i n g ” ty p e = "

h a s h e d s t r i n g " />
< / x s d : s e q u e n c e >
< x s d : e l e m e n t n a m e = " u s e r l i s t " t y p e = " u s e r l i s t " / >

< x s d : e l e m e n t name = " f i l e " t y p e = " f i l e "/>
< x s d : e l e m e n t nam e="user" t y p e = " u s e r "/>
< x s d : e l e m e n t nam e=" k b e n t r i e s " t y p e = " k b e n t r i e s "/>
< x s d : e l e m e n t name = " d e l e t i o n " t y p e = " d e l e t i o n "/>

< / x s d : c h o i c e >
< x s d : a t t r i b u t e name= " id " t y p e = " x s d : i n t "/>
< x s d : a t t r i b u t e name= " t y p e " t y p e = " x s d : s t r i n g " / >

< / x s d : com plexT ype>

209

210

Listing B.2: XML Schema defining the communications protocol
<xsd:schem a x m ln s :x sd = "h t t p :/ /w w w .w 3 . org/2001/XMLSchema">

< x sd :e le m e n t name=" r e q u e s t " t y p e = " r e q u e s t "/>
< x sd :e le m e n t name = "response" t y p e = " r e s p o n s e "/>

< x s d :complexType name=" r e q u e s t ">
< x s d :ch o ice>

< x s d : sequence>
< x sd :e lem en t name="user" ty p e="user" />
< x sd :e lem en t name=" f i l e " t y p e = " f i l e "/>

< /x sd :se q u e n c e >
< x s d : sequence>

< x sd :e lem en t name=" u s e r l i s t " t y p e = " u s e r l i s t "/>
< x sd :e lem en t name=" f i l e " t y p e = " f i l e " / >

< /x sd :se q u e n c e >
< x s d :sequence>

< x sd :e lem en t name="user" t y p e="user" />
< x sd :e lem en t name="hashs t r ing" t y p e = "

h a s h e d s t r i n g "/>
< / x s d : sequence>
< x sd :e lem en t name=" u s e r l i s t " t y p e = " u s e r l i s t "/>

< x sd :e le m e n t name=" f i l e " t y p e = " f i l e " / >
< x sd :e lem en t name="user" t y p e = " u s e r " />
< x sd :e lem en t name=" k b e n t r i e s " type= " k b e n t r i e s " />
< x sd :e lem en t name=" d e le t i o n " t y p e = " d e l e t i o n " />

< /x s d :c h o ic e >
< x s d :a t t r i b u t e name= "id" t y p e = " x s d : i n t "/>
< x s d :a t t r i b u t e name= "type" t y p e = " x s d : s t r i n g " />

</xsd:com plexType>

< x s d :complexType name = " u s e r l i s t " >
< x s d :ch o ice>

< x sd :e le m e n t name = "user" ty p e = "user" m inO ccurs="
0 " / >

< /x s d :c h o ic e >
< / x s d : complexType>

< x s d :complexType name = "user">
< x s d :ch o ice>

< x sd :e lem en t name = "pr iv s" t y p e = " p r i v s " />
< x sd :e lem en t name = "newkey" t y p e = "newkey"/>
< x sd :e le m e n t name="publicKey" t y p e = " x s d : s t r i n g "

m inO ccurs="0"/>
< x sd :e le m e n t name = "onl ine" t y p e = " x s d : s t r i n g " / >

< /x s d :c h o ic e >

211

< x s d :a t t r i b u t e name= "id" t y p e = " x s d : s t r i n g " / >
</xsd:com plexType>

< x s d :complexType name = "pr ivs">
< x sd : sequence>

< x sd :e le m e n t name ="read" ty p e = " x s d : s t r i n g " />
< x sd :e lem en t name = "wri te" ty p e = " x s d : s t r i n g " /

>

< x sd :e lem en t name = "author" ty p e = " x s d : s t r i n g "
/ >

< x sd :e lem en t name ="removed" typ e = " x s d : s t r i n g "
/ >

< /x sd :se q u e n c e >
</xsd:com plexType>

< x s d :complexType name = "newkey">
< x s d :ch o ice>
< x sd :e le m e n t name = "id" t y p e = " x s d : s t r i n g " />
< /x s d :ch o ice>

</xsd:com plexType>

< x s d :complexType name = "hasheds tr ing">
< x s d :ch o ice>

< xsd :e lem en t name = "id" t y p e = " x s d : s t r i n g " />
< / x s d :c h o ice>

< /x s d :complexType>

< x s d :complexType name = " kbe n tr i e s" >
< x s d : sequence>

< x sd :e lem en t name = "user" ty p e = "user" />
< x sd :e lem en t name = " f i l e " ty p e = " f i l e " />
< x sd :a t t r i b u t e name = "kb_entry" typ e = "

x s d : s t r i n g " />
< /x sd :se q u e n c e >

< / x s d :complexType>

< x s d :complexType name = " d e le t io n " >
< x s d : sequence>

< x sd :e lem en t name = " f i l e " ty p e = " f i l e " />
< x s d :a t t r i b u t e name = "kb_entry" typ e = "

x s d : s t r i n g " />
< /x sd :se q u e n c e >

</xsd:com plexType>

<xsd:com plexType name = " f i l e " >

212

< x s d : c h o i c e >
< x s d : e l e m e n t name = " b l o c k l i s t " t y p e = " b l o c k l i s t "

m i n O c c u r s = "0"/>
< x s d : e l e m e n t name = "f i l e d a t a " t y p e = "xsd :s t r i n g "

m i n O c c u r s = "0"/>
< / x s d : c h o i c e >
< x s d : a t t r i b u t e name = "id" t y p e = " xsd :s t r i n g " / >
< x s d : a t t r i b u t e name = "vers ion" t y p e = " x s d : i n t " u s e = "

o p t i o n a l "/>
< / x s d : c o m p le x T y p e >

< x s d : c o m p le x T y p e name = " b l o c k l i s t " >
< x s d : c h o i c e >

< x s d : e l e m e n t name = "block" t y p e = "block" m in O c c u r s
="1" m a x O c c u r s= "unbounded"/ >

< / x s d : c h o i c e >
< /x s d : c o m p le x T y p e >

< x s d : c o m p le x T y p e name = "block">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="blockdata" t y p e = " x s d : s t r i n g "
m i n O c c u r s = "1" m a x O c c u r s = "1"/>

< / x s d : s e q u e n c e >
< /x s d : c o m p le x T y p e >

< x s d : c o m p le x T y p e n a m e= "r e s p o n s e " >
< x s d : c h o i c e >

< x s d : e l e m e n t n am e= " u s e r l i s t " t y p e = " u s e r l i s t "/>
< x s d : e l e m e n t n am e= " f i l e " t y p e = " f i l e " / >
< x s d : e l e m e n t name = " v a l i d " t y p e = " x s d :s t r i n g " / >
< x s d : e l e m e n t name="logon" t y p e = " x s d :s t r i n g " />
< x s d : s e q u e n c e >

< x s d : e l e m e n t n a m e= " f i l e " t y p e = " f i l e " / >
< x s d : e l e m e n t n a m e= " u s e r l i s t " t y p e = " u s e r l i s t "/>

< / x s d : s e q u e n c e >
< x s d : e l e m e n t n am e= " s t r i n g " t y p e = "s t r i n g " />

< / x s d : c h o i c e >
< x s d : a t t r i b u t e name= "id" t y p e = " x s d : i n t "/>

< x s d : a t t r i b u t e name= "type" t y p e = " x s d :s t r i n g " / >
< / x s d : c o m p le x T y p e >

< x s d : c o m p le x T y p e name= "s t r i n g " >
< x s d : a t t r i b u t e name= "id" t y p e = " x s d : i n t "/>

< / x s d : c o m p le x T y p e >

< /x s d : s c h e m a >

213

Listing B.3: Example permissions message
c r e s p o n s e i d ="5" t y p e = "p e r m i s s i o n s ' '>

< f i l e i d ="000000000001" />
< u s e r l i s t >

< u s e r id = " u se r A " >
< p r i v s >

< r e a d > t r u e < / r e a d >
< w r i t e > t r u e < / w r i t e >
< a u t h o r > t r u e < / a u t h o r >
< r e m o v e d > f a l s e < /r e m o v e d >

< / p r i v s >
< / u s e r >
< u s e r i d = "userB">

< p r i v s >
< r e a d > t r u e < / r e a d >
< w r i t e > t r u e < / w r i t e >
< a u t h o r > f a l s e < / a u t h o r >
< r e m o v e d > f a l s e < /r e m o v e d >

< / p r i v s >
< / u s e r >

< u s e r id = " u se r C " >
< p r i v s >

< r e a d > t r u e < / r e a d >
< w r i t e > f a l s e < / w r i t e >
< a u t h o r > f a l s e < / a u t h o r >
< r e m o v e d > f a l s e < /r e m o v e d >

< / p r i v s >
< / u s e r >
< u s e r i d ="userD">

< p r i v s >
< r e a d > t r u e < / r e a d >
< w r i t e > f a l s e < / w r i t e >
< a u t h o r > f a l s e < / a u t h o r >
< r e m o v e d > f a l s e < /r e m o v e d >

< / p r i v s >
< / u s e r >

< / u s e r l i s t >
< / r e s p o n s e >

Bibliography

[1] Google desktop search. h t t p : / / d e s k t o p . g o o g l e . c o m / f e a t u r e s .
h tm l.

[2] Lynx source distribution directory, h t t p : / / l y n x . i s c . o r g / .

[3] RDF Vocabulary Description Language 1.0: RDF Schema. h t t p : / / w w w .
w3 . o r g / T R / r d f - schema/, 2004.

[4] Flickr. h t t p : / / w w w . f l i c k r . c o m / , 2005.

[5] Spotlight, h t t p : / / w w w . a p p l e . c o m / m a c o s x / f e a t u r e s / s p o t l i g h t / ,
2005.

[6] Internet world usage stats, h t t p : / / w w w . i n t e r n e t w o r l d s t a t s . c o m / ,
2006.

[7] Reiser 4 Design Principles: Dancing Tree, h t t p : / / w w w . n a m e s y s . c o m /
v4 /v4 . h t m l # d a n c i n g _ t r e e , 2006.

[8] J. Abbate. Inventing the Internet. MIT Press, 1999.

[9] G. D. Abowd and E. D. Mynatt. Charting past, present, and future research
in ubiquitous computing. ACM Trans. Comput.-Hum. Interact., 7(l):29-58,
2000.

[10] D. Abrams, R. Baecker, and M. Chignell. Information archiving with book
marks: Personal web space constmction and organization. In Proceedings
CHI 1998, pages 41^18, 1998.

[11] L. A. Adamic and B. A. Huberman. The web’s hidden order. Communications
o f the ACM, 44(9):55-59, Sept. 2001.

[12] M. Ames and M. Naaman. Why we tag: Motivations for annotation in mobile
and online media. In CHI '07: Proceedings o f the SIGCHI conference on
human factors in computing systems, pages 971-980, New York, NY, USA,
2007. ACM Press.

214

BIBLIOGRAPHY 215

[13] N. Anderson. Tim Bemers-Lee on Web 2.0: “Nobody even
knows what it means”, h t t p : / / a r s t e c h n i c a . c o m / n e w s . a r s / p o s t /
20060901 -7650 . html, Sept. 2006.

[14] E. Andre and T. Rist. From adaptive hypertext to personalized web compan
ions. Communications o f the ACM, 45(5):43-46, May 2002.

[15] M. Andreessen and E. Bina. NCSA Mosaic: A Global Hypermedia System.
Internet Research: Electronic Networking Applications and Policy, 4(1):7—
17, 1994.

[16] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Albert.
The Internet Gopher Protocol (a distributed document search and retrieval
protocol), 1993.

[17] Apple Computer, Inc. HFS specification from developer.apple.com.
h t t p : / / d e v e l o p e r . a p p l e . c o m /d o c u m e n ta t io n /m a c /F i l e s /
F i l e s - 99 . html, July 1996.

[18] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ouster-
hout. Measurements o f a distributed file system. In SOSP ’91: Proceedings
o f the thirteenth ACM symposium on Operating systems principles, pages
198-212, New York, NY, USA, 1991. ACM Press.

[19] O. Balter. Strategies for organizing email messages. In Proceedings ofH CI
1997, pages 21-38, 1997.

[20] X. Bao, J. L. Herlocker, and T. G. Dietterich. Fewer clicks and less frustra
tion: Reducing the cost o f reaching the right folder. In TUI ’06: Proceedings
o f the 11th international conference on Intelligent user interfaces, pages 178—
185, New York, NY, USA, 2006. ACM Press.

[21] A. Barak, D. Malki, and R. Wheeler. AFS, BFS, CFS... or Distributed File
Systems for UNIX. In European UNIX Users Group Conference Proceed
ings, pages 461-472. EUUG, Sept. 1986.

[22] D. Barreau. Context as a factor in personal information management sys
tems. Journal o f the American Society fo r Information Science, 46(5):327-
339, 1995.

[23] D. Barreau and B. A. Nardi. Finding and reminding: File organization from
the desktop. SIGCHIBull., 27(3):39-43, 1995.

[24] M. Bauer, D. Dengler, and G. Paul. Instructible information agents for web
mining. In IU I2000, New Orleans, LA, USA, pages 21-28. ACM, 2000.

[25] M. Bauer, D. Dengler, G. Paul, and M. Meyer. Programming by demon
stration for information agents. Communications o f the ACM, 43(3):98-103,
2000.

BIBLIOGRAPHY 216

[26] N. J. Belkin. Intelligent information retrieval: Whose intelligence? In
Proceedings des 5. Internationalen Sypmosiumsfar Informationswissenschafi
(ISI ‘96), 1996.

[27] N. J. Belkin. Helping people find what they don’t know. Communications o f
the ACM, 43(8):58-61, Aug. 2000.

[28] J. G. Bellika, G. Hartvigsen, and R. A. Widding. Using user models in soft
ware agents: The virtual secretary. ICMAS98, pages 391-392, 1998.

[29] J. G. Bellika, G. Hartvigsen, and R. A. Widding. The virtual library secretary:
A user model-based software agent. Personal Technologies, (2): 162-187,
1998.

[30] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Innovation in extremis:
Evolving an application for the critical work o f email and information man
agement. In Proceedings o f DIS ’02, pages 181-192,2002.

[31] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task:
The design and evaluation o f a task management centered email tool. In
Proceedings o f CHI’03, pages 345-352, 2003.

[32] J. M. Bennett, M. A. Bauer, and D. Kinchlea. Characteristics o f files in NFS
environments. In SIGSMALL ’91: Proceedings o f the 1991 ACM SIGSMAL-
L/PC symposium on Small systems, pages 33—40, New York, NY, USA, 1991.
ACM Press.

[33] H. Berghel. Cyberspace 2000: Dealing with information overload. Commu
nications o f the ACM, 40(2): 19-24, Feb. 1997.

[34] O. Bergman, R. Beyth-Marom, and R. Nachmias. The user subjective ap
proach to personal information management systems. Journal fo r the Ameri
can Society fo r Information Science, 9(54):872-878, 2003.

[35] O. Bergman, R. Boardman, J. Gwizdka, and W. Jones. Personal information
management. In CHI ’04: CHI ’04 extended abstracts on Human factors
in computing systems, pages 1598-1599, New York, NY, USA, 2004. ACM
Press.

[36] J. E. P. Bernardo A. Huberman, Peter L. T. Pirolli and R. M. Lukose. Strong
Regularities in World Wide Web Surfing. Science, 280:95-97, Apr. 1998.

[37] T. Bemers-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The
World Wide Web. Communications o f the ACM, 37(8):76-82, Aug. 1994.

[38] T. Bemers-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American Website: http://www.scientificamerican.com, May 2001.

BIBLIOGRAPHY 217

[39] C.-G. Bian, W. Cao, and G. Hartvigsen. ViSe2 - An Agent-Based Expert
Consulting System with Efficient Cooperation. International Journal o f Ad
vanced Computational Intelligence, 2(3): 104-110, 1998.

[40] M. Blaze. A Cryptographic File System for UNIX. In Proceedings o f the First
ACM Conference on Communications and Computing Security, Fairfax, VA,
Nov. 1993.

[41] S. Bloehdom, O. Gorlitz, S. Schenk, and M. Volkel. TagFS - Tag Semantics
for Hierarchical File Systems. In Proceedings o f the 6th International Con

ference on Knowledge Management (I-KNOW 06), Graz, Austria, September
6-8, 2006, September 2006.

[42] R. Boardman. Improving Tool Support fo r Personal Information Manage
ment. PhD thesis, Imperial College London, Sept. 2004.

[43] R. Boardman and M. A. Sasse. “Stuff Goes into the Computer and Doesn’t
Come Out”: A Cross-tool Study o f Personal Information Management. In
CHI 2004, Vienna, Austria, pages 583-590, Apr. 2004.

[44] R. Boardman, R. Spence, and M. A. Sasse. Too Many Hierarchies? The Daily
Struggle for Control o f the Workspace. In Proceedings o f HCI International
02, volume 1, pages 616-620, 2003.

[45] O. Bondarenko and R. Janssen. Documents at hand: Learning from paper to
improve digital technologies. In CHI 2005, Portland, Oregon, USA, pages
121-130, Apr. 2005.

[46] J. Bonwick. ZFS: The Last Word in Filesystems, A Personal
Blog, h t t p : / / b l o g s . s u n . c o m / r o l l e r / p a g e / b o n w i c k ? e n t r y = z f s _
t h e _ l a s t _ w o r d _ i n , Oct. 2005.

[47] S. Brecher. HFS File Structure Explained. MacTech, 1(12).

[48] D. Bridges. Inside the High Performance File System. Significant Bits mag
azine, 1996.

[49] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: General
izing association rules to correlations. In SIGMOD ’97: Proceedings o f the
1997ACM SIGMOD international conference on Management ofdata, pages
265-276, New York, NY, USA, 1997. ACM Press.

[50] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1—7): 107—117, 1998.

[51] M. Brinkmeier. Pagerank revisited. ACM Trans. Inter. Tech., 6(3):282-301,
2006.

[52] C. H. Brooks and N. Montanez. Improved annotation o f the blogosphere
via autotagging and hierarchical clustering. In WWW ’06: Proceedings o f

BIBLIOGRAPHY 218

the 15th international conference on World Wide Web, pages 625-632, New
York, NY, USA, 2006. ACM Press.

[53] F. Buchholz. The structure o f the Reiser file system, h t t p : / / h o m e s .
c e r i a s . p u r d u e . e d u / ~ f l o r i a n / r e i s e r / r e i s e r f s . p h p , Jan. 2006.

[54] M. BufFa and F. Gandon. SweetWiki: Semantic Web enabled technologies in
Wiki. In WikiSym ’06: Proceedings o f the 2006 international symposium on
Wikis, pages 69-78, New York, NY, USA, 2006. ACM Press.

[55] P. Buneman, S. Khanna, and W. C. Tan. Data Provenance: Some Basic Issues.
In FSTTCS, volume 1974 o f Lecture Notes in Computer Science, pages 87-
93. Springer, 2000.

[56] V. Bush. As we may think. The Atlantic Monthly, 1(176): 101-108, July 1945.

[57] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813: NFS version 3
protocol specification, June 1995. See also RFC 1094 [269]. Status: INFOR
MATIONAL.

[58] R. Campbell. Managing AFS: The Andrew File System. Prentice Hall, 1998.

[59] S. K. Card, J. D. MacKinlay, and B. Schneiderman. Readings in Information
Visualisation. Morgan Kaufmann, 1999.

[60] V. G. Cerf, Y. K. Dalai, and C. A. Sunshine. RFC 675: Specification of
Internet Transmission Control Program, Dec. 1974. Status: UNKNOWN.
Not online.

[61] V. G. Cerf and R. E. Kahn. A protocol for packet network interconnec
tion. IEEE Transactions on Communcation Technology, 22(5):627-641, May
1974.

[62] D. Chaffey. Groupware, Workflow and Intranets: Re-engineering the Enter
prise with Collaborative Software. Digital Press, 1998.

[63] M. Chen and J. Gooch. Global Intelligent File Tele-System (GIFTS): The
next generation o f World Wide Web. In The UK First Workshop on Grand
Challenges fo r Computing Research, 2002.

[64] M. Chen and J. Gooch. Virtual Secretary: A Knowledge-based User Interface
for File Management. In The 8th World Multiconference on Systematics,
Cybernetics and Informatics, 2004.

[65] A. Chin and M. Chignell. A social hypertext model for finding community
in blogs. In HYPERTEXT ’06: Proceedings o f the seventeenth conference on
hypertext and hypermedia, pages 11-22, New York, NY, USA, 2006. ACM
Press.

BIBLIOGRAPHY 219

[66] J. M. Chirico. Seagate outlines the future o f storage. h t t p : / / w w w .
h a r d w a r e z o n e . c o m / a r t i c l e s / c a t . p h p ? i d = 3 0 , Jan. 2006.

[67] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information
retrieval. Journal o f the ACM (JACM), 45(6):965-981,1998.

[68] P. R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An open agent architec
ture. pages 197-204, 1998.

[69] B. Collins-Sussman. The subversion project: building a better CVS. Linux
J,;, 2002(94):3, 2002.

[70] A. Cooper. About Face 2.0: The Essentials o f User Interface Design. John-
Wiley & Sons, Inc., 2003.

[71] B. Coppin. Artificial Intelligence Illuminated. Jones and Bartlett Publishers
International, 2004.

[72] P. Corbett, S. J. Baylor, and D. G. Feitelson. The Vesta Parallel File System.
IBM Research Report RC 18337, Yorktown Hts, NY, Sept. 1992.

[73] P. F. Corbett and D. G. Feitelson. The Vesta parallel file system. ACM Trans.
Comput. Syst., 14(3):225-264, 1996.

[74] G. Coulouris. Say hello to the reactive computer. Technical Report 1976,
Queen Mary College, Department o f Computer Science, Apr. 1976.

[75] I. Crabtree, S. J. Soltysiak, and M. P. Thint. Adaptive personal agents. Per
sonal Technologies, (2): 141-151, 1998.

[76] H. Custer. Inside the Windows NT File System. Microsoft Press, first edition,
1994.

[77] E. Cutrell and S. T. Dumais. Exploring personal information. Communica
tions o f the ACM, 49(4):50-51, Apr. 2006.

[78] E. Cutrell, S. T. Dumais, and J. Teevan. Searching to eliminate personal
information management. Communications o f the ACM, 49(l):58-64, Jan.
2006.

[79] E. Cutrell, D. Robbins, S. Dumais, and R. Sarin. Fast, flexible filtering with
Phlat. In CHI ’06: Proceedings o f the SIGCHI conference on Human Factors
in computing systems, pages 261-270. ACM Press, 2006.

[80] M. Czerwinski and E. Horvitz. An investigation o f memory for daily com
puting events. In Proceedings ofH CI 2002, pages 230-245, 2002.

[81] J. Daemen and V. Rijmen. AES Proposal: Rijndael, Sept. 1999.

BIBLIOGRAPHY 220

[82] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein, J. Broek-
stra, M. Erdmann, and I. Horrocks. The Semantic Web: The Roles o f XML
and RDF. IEEE Internet Computing, 4(5):63-74, 2000.

[83] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification,
December 1998.

[84] A. R. Dennis, J. Alan R. Heminger, J. J. R. Nunamaker, and D. R. Vogel.
Bringing automated support to large groups: The Burr-Brown experience.
Inf. Manage., 18(3): 111-121, 1990.

[85] M. Devarakonda. Impact o f application scale and diversity on file systems.
In SIGOPS European Workshop ’94, pages 123-124, Apr. 1994.

[86] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning
to match ontologies on the Semantic Web. The VLDB Journal, 12(4):303-
319, 2003.

[87] J. R. Douceur and W. J. Bolosky. A large-scale study o f file-system contents.
SIGMETRICSPerform. Eval. Rev., 27(l):59-70, 1999.

[88] P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen, M. Salis
bury, D. Terry, and J. Thornton. Extending document management systems
with user-specific active properties. ACM Transactions on Information Sys
tems, 2(18): 140-170,2000.

[89] P. Dourish, W. K. Edwards, A. LaMarca, and M. Salisbury. Presto: An exper
imental architecture for fluid interactive document spaces. ACM Transactions
on Computer-Human Interaction, 2(6): 133-161, 1999.

[90] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff
I ’ve Seen: A system for personal information retrieval and re-use. In SIGIR
’03: Proceedings o f the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, pages 72-79, New York,
NY, USA, 2003. ACM Press.

[91] S. Dumais, E. Cutrell, R. Sarin, and E. Horvitz. Implicit queries (IQ) for
contextualized search. In SIGIR ’04: Proceedings o f the 27 th annual interna
tional ACM SIGIR conference on Research and development in information
retrieval, pages 594—594, New York, NY, USA, 2004. ACM Press.

[92] R. Duncan. Design goals and implementation o f the new High Performance
File System. Microsoft Systems Journal, 4(5): 1-13, Sept. 2003.

[93] P. Dyson. Dictionary o f Networking. Sybex Inc.,U.S., 1999.

[94] A. Einstein. (1879- 1955).

[95] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: Some issues and experi
ences. Commun. ACM, 34(l):39-58, 1991.

BIBLIOGRAPHY 221

[96] C. A. Ellis and G. J. Nutt. Office information systems and computer science.
ACM Computing Surveys (CSUR), 12(l):27-60, 1980.

[97] C. S. Ellis and R. A. Floyd. The ROE File System. In Proceedings o f the
3rd Symposium on Reliability in Distributed Software and Database Systems.
IEEE, Oct. 1983.

[98] A. Emtage and R Deutsch. Archie - An Electronic Directory Service for
the Internet. In Winter Usenix Conference Proceedings 1992, pages 93-110,
1992.

[99] O. Etzioni. The World Wide Web: Quagmire or Gold Mine? Communica
tions o f the ACM, 39(11):65-68, Nov. 1996.

[100] S. Farrell, V. Buchmann, C. S. Campbell, and P. R Maglio. Information pro
gramming for personal user interfaces. In IUI ’02, San Francisco, California,
USA, pages 190-191. ACM, Jan. 2002.

[101] U. Fayyad and R. Uthurusamy. Data mining and knowledge discovery in
databases. Communications o f the ACM, 39(11):24—26, Nov. 1996.

[102] L. Feng, E. Chang, and T. Dillon. A semantic network-based design method
ology for XML documents. ACM Trans. Inf. Syst., 20(4):390-421, 2002.

[103] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential, chapter 1. The MIT
Press, 2003.

[104] S. Fertig, E. Freeman, and D. Gelemter. Lifestreams: An alternative to the
desktop metaphor. In CHI ’96: Conference companion on Human factors in
computing systems, pages 410—411, New York, NY, USA, 1996. ACM Press.

[105] L. Findlater and J. McGrenere. A comparison of static, adaptive and adapt
able menus. In CHI 2004, Vienna, Austria, pages 89-96, Apr. 2004.

[106] T. Finin, L. Kagal, and D. Olmedilla. Report on the Models o f Trust for the
Web workshop (MTW’06). SIGMOD Rec., 35(4):54-56, 2006.

[107] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in
databases: An overview. AI Magazine, 13(3):213-228, 1992.

[108] G. W. Furnas and S. Jul. Workshop on navigation in electronic worlds. In CHI
’97: CHI ’97 extended abstracts on Human factors in computing systems,
pages 230-230, New York, NY, USA, 1997. ACM Press.

[109] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. MyLifeBits: Ful
filling the Memex Vision. In Proceedings Multimedia ’02, Juan-les-Pins,
France, pages 235-238. ACM, Dec. 2002.

BIBLIOGRAPHY 222

[110] C. Ghaoui. Encyclopedia o f Human Computer Interaction. IGI Publishing,
2006.

[111] D. Giampolo. Practical File System Design with the Be File System. Morgan
Kaufmann, 1998.

[112] D. Gifford, P. Jouvelot, M. Sheldon, and J. O ’Toole. Semantic file systems. In
Proceedings o f the Thirteenth ACM Symposium on Operating Systems Prin
ciples (Pacific Grove, CA). ACM, 1991.

[113] D. S. Gill, S. Zhou, and H. S. Sandhu. A case study o f file system workload
in a large-scale distributed environment. SIGMETRICS Perform. Eval. Rev.,
22(1):276—277, 1994.

[114] J. Goecks and J. Shavlik. Learning users’ interests by unobtrusively observ
ing their normal behaviour. In IU I2000, New Orleans, LA, USA, pages 129—
132. ACM, 2000.

[115] J. Gooch. The JoFS. Undergraduate dissertation, University o f Wales,
Swansea, May 2002.

[116] B. Gopal and U. Manber. Integrating content-based access mechanisms with
hierarchical file systems. In Proceedings o f the 3rd ACM Symposium on Op
erating Systems Principles (New Orleans, LA). ACM, Feb. 1999.

[117] P. Graham. Web 2.0. h t t p : / / w w w . p a u l g r a h a m . com /w eb20 . h t m l , Nov.
2005.

[118] B. C. Grau. A possible simplification of the Semantic Web architecture. In
WWW ’04: Proceedings o f the 13 th international conference on World Wide
Web, pages 704-713, New York, NY, USA, 2004. ACM Press.

[119] R. Green and S. Pant. Multiagent Data Collection in Lycos. Communications
o f the ACM, 42(3):70, Mar. 1999.

[120] S. Grimaldi. The WinFS Files: Divide et Impera. h t t p :
/ / m s d n . m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . a s p ? u r l = / l i b r a r y /
e n - u s / d n w i n f s / h t m l / w i n f S 2 0 0 5 1 2 0 6 . a sp , Dec. 2005.

[121] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau.
An Architecture for Provenance Systems. Technical report, Electronics and
Computer Science, University o f Southampton, oct 2006.

[122] J. Grudin. Computer-supported cooperative work: Its history and participa
tion. IEEE Computer, 5(27): 19-26, 1994.

[123] J. Grudin. Groupware and social dynamics: Eight challenges for developers.
Communications o f the ACM, 37(1):92-105, 1994.

BIBLIOGRAPHY 223

[124] R. Guha, R. McCool, and E. Miller. Semantic search. In WWW ’03: Proceed
ings o f the 12th international conference on World Wide Web, pages 700-709,
New York, NY, USA, 2003. ACM Press.

[125] V. N. Guivada, V. V. Raghavan, W. I. Grosky, and R. Kasanagottu. Text
databases and information retrieval. IEEE Internet Computing, Sept. 1997.

[126] S. Haag, M. Cummings, and D. J. McCubbrey. Management Information
Systems fo r the Information Age. McGraw-Hill/Irwin, 2006.

[127] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social Bookmarking Tools:
A General Review. D-Lib Magazine, 11(4), Apr. 2005.

[128] D. Hand, H. Mannila, and P. Smyth. Principles o f Data Mining. MIT Press,
Cambridge, MA, 2001.

[129] F. Heart, A. McKenzie, J. McQuillian, and D. Walden. ARPANET Comple
tion Report, Jan. 1978. Bolt, Beranek and Newman, Burlington, MA.

[130] V. Henson, J. Bonwick, and M. Ahrens. Existential QoS for Storage. In
Proceedings o f the First Workshop on Algorithms and Architectures fo r Self-
Managing Systems, June 2003.

[131] C. K. Hess and R. H. Campbell. An application o f a context-aware file sys
tem. Personal Ubiquitous Computing, (7):339-352, Nov. 2003.

[132] S. Hiltz and M. Turoff. The Network Nation: Human Communication Via
Computer. Addison-Wesley Publishing, 1981.

[133] L. L. Hinchey and D. L. Mills. Magnetic properties o f superlattices formed
from ferromagnetic and antiferromagnetic materials. Physical Review B,
33(5):3329, Mar. 1986.

[134] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The
Lumiere Project: Bayesian User Modeling for Inferring the Goal and Needs
o f Software Users. In Proceedings o f the fourteenth Conference in Uncertain
l y in Artificial Intelligence, Madison, WI, pages 256-265. Morgan Kaufmann
Publishers, July 1998.

[135] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West. Scale and performance in a distributed
file system. ACM Transaction on Computer Systems, 6(1):51—81, Feb. 1988.

[136] M. A. Hoyle and C. Lueg. Open sesame!: A look at personal assistants. In
PAAM ’97, London, UK, pages 51-60, Apr. 1997.

[137] Internet Society (ISOC). A Brief History o f the Internet Version 3.31, 4th
August 2000. http://www.isoc.org/intemet/history/brief.html (13th February
2002).

BIBLIOGRAPHY 224

[138] T. Isakowitz, M. Bieber, and F. Vitali. Web information systems. Communi
cations o f the ACM, 41(7):78-80, July 1998.

[139] IvanHerman. W3C Semantic Web Activity, h t t p : / / w w w . w 3 . o r g / 2 0 0 l /
sw/, 2005.

[140] B. J. Jansen. Using temporal patterns o f interactions to design effective auto
mated searching assistance. Communications o f the ACM, 49(4):72-74, Apr.
2006.

[141] S. R. Jones and R J. Thomas. Empirical assessment o f individuals’ ‘personal
information management systems’. Behaviour and Information Technology,
16(3): 158-160,1997.

[142] W. Jones. Personal information management. Annual Review o f Information
Science and Technology, 9, 2007.

[143] W. Jones, H. Bruce, A. Foxley, and C. F. Munat. The universal labeller: Plan
the project and let your information follow. In Proceedings o f ASIST 2005,
Nov. 2005.

[144] W. Jones, S. Dumais, and H. Bruce. Once found, what next? A Study of
‘keeping’ behaviours in the personal use of web information. In Proceedings
o f ASIST 2002, pages 391-402, 2002.

[145] W. Jones, A. J. Phuwanartnurak, R. Gill, and H. Bruce. Don’t Take My
Folders Away! Organizing Personal Information to Get Things Done. In CHI
2005, Portland, Oregon, USA, pages 1505-1508, Apr. 2005.

[146] W. P. Jones and T. Dumais. The spatial metaphor for user interfaces: Ex
perimental tests o f reference by location versus name. ACM Transactions on
Office Information Systems, 4(l):42-63, Jan. 1986.

[147] K. Nellis. Experts: Information onslaught bad for your health, h t t p : / /
w w w .c n n .c o m /T E C H /9 7 0 4 /1 5 / in fo .o v e r lo a d / in d e x .html , 1997.

[148] V. Kaptelinin. UMEA: Translating interaction histories into project contexts.
In Proceedings ofSIGCHI2003, pages 353-360, 2003.

[149] H. A. Kautz, B. Selman, and M. Coen. Bottom-up design o f software agents.
Communications o f the ACM, 7(37): 143-146, 1994.

[150] H. A. Kautz, B. Selman, M. Coen, and S. Ketchpal. An experiment in the
design o f software agents, pages 43—48,1994.

[151] A. Kay. Computer Software, volume 251. 1984.

[152] J. Kaye, J. Vertesi, S. Avery, A. Dafoe, S. David, L. Onaga, I. Rosero, and
T. Pinch. How do people manage their digital photographs? In Proceedings
CHI 2006, pages 275-284, Apr. 2006.

BIBLIOGRAPHY 225

[153] D. Kelly. Evaluating personal information management behaviours and tools.
Communications o f the ACM, 49(1):84—86, Feb. 2006.

[154] S. Khoshafian and M. Buckiewicz. Introduction to Groupware, Workflow and
Workgroup Computing. John Wiley & Sons Inc, 1995.

[155] A. Kidd. The marks are on the knowledge worker. In CHI ’94: Conference
companion on Human factors in computing systems, page 212, New York,
NY, USA, 1994. ACM Press.

[156] D. Kirk, A. Sellen, C. Rother, and K. Wood. Understanding photowork. In
CHI ’06: Proceedings o f the SIGCHI conference on Human Factors in com
puting systems, pages 761-770, New York, NY, USA, 2006. ACM Press.

[157] W. Knight. ‘Info-mania’ dents iq more than marijuana, Apr. 2005. New
Scientist Online.

[158] A. J. Ko, H. Aung, and B. A. Myers. ‘Eliciting design requirements for
maintenance-oriented IDEs: A detailed study o f corrective and perfective
maintenance tasks. In ICSE ’05: Proceedings o f the 27th international con
ference on Software engineering, pages 126-135, 2005.

[159] H. F. Korth and A. Silberschatz. Database research faces the information
explosion. Communications o f the ACM, 40(2): 139-142, Feb. 1997.

[160] R. Krait, T. Mukhopadhyay, J. Szczypula, S. Kiesler, and W. Scherlis. Com
munication and information: Alternative uses of the internet in households.
In CHI 98, Los Angeles, CA, pages 368-375, Apr. 1998.

[161] G.-S. Kuo and J.-P. Lin. Design Concepts for an Intelligent Internet. Com
munications o f the ACM, 41(11):93—98, Nov. 1998.

[162] M. LaMonica. Google’s secret o f success? Dealing with failure, h t t p :
/ / n e w s . z d n e t . com/210 0- 9588_22 - 5596811. html, Mar. 2005.

[163] M. Lansdale. The psychology o f personal information management. Applied
ergonomics, 1 (19):55—66, 1988.

[164] P. J. Leach, P. H. Levine, J. A. Hamilton, and B. L. Stumpf. The file system of
an integrated local network. In CSC ’85: Proceedings o f the 1985 ACM thir
teenth annual conference on Computer Science, pages 309-324, New York,
NY, USA, 1985. ACM Press.

[165] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch,
J. Postel, L. G. Roberts, and S. S. Wolff. The Past and Future history o f the
Internet. Communications o f the ACM, 40(2): 102-108, Feb. 1997.

[166] D. B. Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure.
Communications o f the ACM, 38(11):32—38, Nov. 1995.

BIBLIOGRAPHY 226

167] H. J. Levesque and G. Lakemeyer. The Logic o f Knowledge Bases. MIT
Press, 2001.

168] E. Levy and A. Silberschatz. Distributed file systems: Concepts and exam
ples. ACM Computing Surveys (CSUR), 22(4):321-374, Dec. 1990.

169] D. Li, Z. Wang, and R. R. Muntz. “Got COCA?” A new perspective in build
ing electronic meeting systems. In WACC '99: Proceedings o f the inter
national jo in t conference on Work activities coordination and collaboration,
pages 89-98, New York, NY, USA, 1999. ACM Press.

170] S. Lilley, G. Lightfoot, and P. Amaral. Representing Organization: Knowl
edge, Management, and the Information Age, chapter 8. Oxford University
Press, 2004.

171] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-
item collaborative filtering. Internet Computing, 7(l):76-80, Jan. 2003.

172] J. Liu, C. K. Wong, and K. K. Hui. An adaptive user interface based on
personalized learning. IEEE Intelligent Systems, pages 52-57, Mar. 2003.

173] Lucent Technologies. Fossil manual page, h t t p : / / p l a n 9 . b e l l - l a b s .
com /m agic /m an2htm l/4 /f o s s i l , 2006.

174] P. Lyman and H. Varian. How much information? The Journal o f Electronic
Publishing, 6(2), 2000.

175] P. Maes. Agents that reduce work and information overload. Communications
o f the ACM, 37(7):30-40, July 1994.

176] P. Maes and A. Wexelblat. Interface agents. In CHI 96, pages 369-370, Apr.
1996.

177] T. W. Malone. How do people organise their desks? implications for the de
sign o f office information systems. ACM Transactions on Office Information
Systems, 1(1):99—112, Jan. 1983.

178] G. Marchionini. Information Seeking in Electronic Environments. Cambridge
University Press, 1995.

179] C. Marlow, M. Naaman, D. Boyd, and M. Davis. HT06, tagging paper, tax
onomy, Flickr, academic article, to read. In HYPERTEXT '06: Proceedings
o f the seventeenth conference on Hypertext and Hypermedia, pages 31-40,
New York, NY, USA, 2006. ACM Press.

[180] G. Marsden and D. E. Cairns. Improving the usability o f the hierarchical file
system. In Proceedings ofSAICSIT2003, pages 122-129, Jan. 2003.

[181] P. Martin and P. W. Eklund. Knowledge Retrieval and the World Wide Web.
IEEE Intelligent Systems, pages 18-25, May 2000.

BIBLIOGRAPHY 227

[182] J. Matthews, D. Roselli, A. Costello, R. Wang, and T. Anderson. Improving
the performance o f log-structured file systems with adaptive methods. In
Proceedings o f the Sixteenth ACM SOSP, Oct. 1997.

[183] M. Maybury. Intelligent user interfaces: An introduction. In IU I99, Redon-
odo Beach, CA, USA, pages 3-4. ACM, 1999.

[184] M. Mayer. The telephone and the uses o f time, pages 225-245. MIT Press,
Cambridge, Massachusetts, 1977.

[185] S. McCarthy, M. Leis, and S. Byan. Larger disk blocks or not. In Proceedings
o f the USENIX FAST Conference, Monteray, CA, Jan. 2002.

[186] J. McGrenere, R. M. Baecker, and K. S. Booth. An evaluation o f a multiple
interface design solution for bloated software. In Proceedings o f the SIGCHI
conference on Human factors in computing systems, pages 164—170. ACM
Press, 2002.

[187] D. P. McKay, T. W. Finin, and A. O ’Hare. The intelligent database interface:
Integrating AI and database systems. In Proceedings o f the 8 th National Con
ference on Artificial Intelligence (AAAI-90), pages 677—684, Boston, MA,
USA, 2 9 -3 1990. AAAI Press.

[188] M. K. McKusick. Running “fsck” in the background. In Proceedings o f the
BSDCon 2002, pages 55-64, 2002.

[189] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. Local
Filesystems, The Design and Implementation o f the 4.4BSD Operating Sys
tem. Addison Wesley, 1996.

[190] M. K. McKusick and G. R. Ganger. Soft Updates: A Technique for Eliminat
ing Most Synchronous Writes in the Fast File System. In Proceedings o f the
FREENIX Track: 1999 USENIX Annual Technical Conference, pages 1-18,
1999.

[191] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System
for UNIX. ACM Transactions on Computer Systems, 2(3): 181-197, Aug.
1984.

[192] Microsoft Corporation. How NTFS Works. h t t p : / /
t e c h n e t 2 . m i c r o s o f t . com/WindowsServer /en /Library /
8 c c 5 8 9 1 d - b f 8 e - 4 1 6 4 - 862d-dac5418c59481033 .mspx?mfr=true,
Mar. 2003.

[193] Microsoft Corporation. Limitations o f the FAT32 File System: 184006.
h t t p : / / s u p p o r t . m i c r o s o f t . c o m /k b /184006 /en -u s , Dec. 2004.

BIBLIOGRAPHY 228

[194] D. E. Millard and M. Ross. Web 2.0: Hypertext by any other name? In
HYPERTEXT ’06: Proceedings o f the seventeenth conference on hypertext
and hypermedia, pages 27-30, New York, NY, USA, 2006. ACM Press.

[195] M. Minsky and D. Riecken. A conversation with Marvin Minsky about
agents. Communications o f the ACM, 37(7):22-25, July 1994.

[196] P. V. Mockapetris. RFC 882: Domain names: Concepts and facilities, Nov.
1983. Obsoleted by RFC 1034, RFC1035. Updated by RFC0973. Status: UN
KNOWN.

[197] P. V. Mockapetris. RFC 883: Domain names: Implementation specification,
Nov. 1983. Obsoleted by RFC1034, RFC1035. Updated by RFC0973. Status:
UNKNOWN.

[198] M. Montebello. Information overload-an IR problem? Spire, 00:00-65,
1998.

[199] J. H. Morris, M. Satyanarayanan, M. A. Conner, J. H. Howard, D. S. H.
Rosenthal, and F. D. Smith. Andrew: A distributed personal computing envi
ronment. Communications o f the ACM, 29(3): 184-201, Mar. 1986.

[200] S. J. Mullender and A. S. Tanenbaum. Immediate files. Software - Practice
and Experience, 14(4):365-368, 1984.

[201] M. D. Mulvenna, S. S. Anand, and A. G. Buchner. Personalization on the net
using web mining. Communications o f the ACM, 43(8): 122-125, Aug. 2000.

[202] N. Negroponte. The Architecture Machine. The MIT Press, Jan. 1973.

[203] M. N. Nelson, Y. A. Khalidi, and P. W. Madany. The Spring File System.
Sun Microsystems Laboratories Inc. Technical Report SMLI TR-93-10, Feb.
1993.

[204] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the Sprite
Network File System. ACM Transaction on Computer Systems, 6(1): 134—
154, Feb. 1988.

[205] D. N g’ambi. Dynamic “intelligent handler” o f frequently asked questions. In
IUI ’02, San Francisco, California, USA, pages 190-191. ACM, Jan. 2002.

[206] J. Nielsen. Hypertext and Hypermedia. Academic Press, 1990.

[207] J. Nielsen. The death o f file systems, h t t p : / / w w w . u s e i t . c o m / p a p e r s /
f i l e d e a t h . h t m l , Feb. 1996.

[208] J. Nielsen. Curmudgeon: EM, not IP (information pollution). Queue, 1(8):76—
75,2003.

[209] P. Norton. Peter Norton’s New Inside the PC, page 428. Sams Publishing,
first edition, 2002.

BIBLIOGRAPHY 229

[210] C. O ’Dell and C. J. G. Jr. I f Only We Knew What We Know: The transfer o f
internal knowledge and best practice, chapter 1. Free Press, 1998.

[211] D. E. O ’Leary. The Internet, Intranets, and the AI Renaissance. IEEE Com
puter, pages 71-78, Jan. 1997.

[212] C. H. olscher and G. Strube. Web Search Behaviour o f Internet Experts and
Newbies. In 9th International WWW Conference, Amsterdam, NL, 2000.

[213] A. Orlowski. Windows on a database sliced and diced by BeOS
vets, h t t p : / / w w w . t h e r e g i s t e r . c o . u k / 2 0 0 2 / 03/29/windows_on_
a _ d a t a b a s e _ s l i c e d / , Mar. 2002.

[214] K. Panton, C. Matuszek, D. Lenat, D. Schneider, M. Witbrock, N. Siegel, and
B. Shepard. Common Sense Reasoning From CYC to Intelligent Assistant.
In I. Y. Cai and J. Abascal, editors, FSTTCS, volume 3864 o f Lecture Notes
in Artificial Intelligence, pages 1-31. Springer, 2006.

[215] P. F. Patel-Schneider and D. Fensel. Layering the Semantic Web: Problems
and Directions. In ISWC ’02: Proceedings o f the First International Semantic
Web Conference on The Semantic Web, pages 16-29, London, UK, 2002.
Springer-Verlag.

[216] D. Pinelle and C. Gutwin. Groupware walkthrough: Adding context to group-
ware usability evaluation. In CHI ’02: Proceedings o f the SIGCHI confer
ence on Human factors in computing systems, pages 455-^462, New York,
NY, USA, 2002. ACM Press.

[217] D. Pinelle, C. Gutwin, and S. Greenberg. Task analysis for groupware us
ability evaluation: Modeling shared-workspace tasks with the mechanics o f
collaboration. ACM Trans. Comput.-Hum. Interact., 10(4):281—311, 2003.

[218] J. Pitkow, H. Schutze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds, E. Adar,
and T. Breuel. Personalized search. Communications o f the ACM, 45(9):50-
55, Sept. 2002.

[219] B. Preneel, R. Govaerts, and J. Vandewalle. Differential cryptanalysis o f hash
functions based on block ciphers. In CCS ’93: Proceedings o f the 1st ACM
conference on Computer and communications security, pages 183-188, New
York, NY, USA, 1993. ACM Press.

[220] K. Preslan, A. Barry, J. Brassow, G. Erickson, E. Nygaard, C. Sabol, S. Soltis,
D. Teigland, and M. O ’Keefe. A 64-bit, shared disk file system for Linux. In
16th IEEE Symposium on Mass Storage Systems, San Diego, CA, pages 22 -
41, Mar. 1999.

[221] D. Quan, K. Bakshi, D. Huynh, and D. R. Karger. User interfaces for support
ing multiple categorization. In Proceedings o f Interact 2003, pages 228-235,
2003.

BIBLIOGRAPHY 230

[222] S. Quinlan and S. Dorward. Venti: A new approach to archival storage. In
First USENIX Conference on File and Storage Technologies, Monterey, Cal
ifornia, 2002.

[223] S. Quinlan, J. McKie, and R. Cox. Fossil, an archival file server. Lucent
Technologies Bell Labs, Unpublished memorandum, Sept. 2003.

[224] R. Rada, C. Cargill, and J. Klensin. Consensus and the web. Commun. ACM,
41(7): 17-22, 1998.

[225] R. Rao, S. K. Card, W. Johnson, L. Klotz, and R. H. Trigg. Protofoil: Storing
and finding the information worker’s paper documents in an electronic file
cabinet. In CHI 94, Boston, USA, pages 180-185, Apr. 1994.

[226] Red Hat, Inc. Red Hat Global File System, http : //www. redhat. com/
sof tware/rha/gf s/, 2004.

[227] G. L. Rein, D. L. McCue, and J. A. Slein. A case for document management
functions on the web. Communications o f the ACM, 40(9): 81-89, Sept. 1997.

[228] H. Reiser. The naming system venture. Jan. 2001.

[229] J. Rekimonto. Time-machine computing: A time-centric approach for the
information environment. In Proceedings UIST '99, Asheville, NC, pages
45-54. ACM Press, Nov. 1999.

[230] R. E. Rice and G. Love. Electronic emotion: Socioemotional content in
a computer-mediated communication network. Communication Research,
14(1):85-108, 1987.

[231] D. Riehle. How and why Wikipedia works: An interview with Angela
Beesley, Elisabeth Bauer, and Kizu Naoko. In WikiSym '06: Proceedings
o f the 2006 international symposium on Wikis, pages 3-8, New York, NY,
USA, 2006. ACM Press.

[232] R. Rigby. Warning: Interruption overload. h t tp : / /w w w .f t .c o m /
c m s /s /d O f 7 1 f b 6 - 3 2 4 3 - l ld b - a b 0 6 - 0000779e2340 ,dw p_uuid=
4 e 6 1 2 c c a -6 7 0 7 - l l d a - a 6 5 0 - 0000779e2340 , p r i n t = y e s . h tm l, Aug.
2006. The Financial Times Limited.

[233] L. C. Rivero, J. H. Doom, and V. Ferraggine. Encyclopedia o f Database
Technologies and Applications. IGI Publishing, 2005.

[234] T. Rizzo. WinFS 101: Introducing the New Windows File Sys
tem. h t t p : / /m s d n .m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . a s p ? u r l=
/ l i b r a r y / e n - u s / d n w i n f s /h tm l /w in f S03112004 . a sp , Mar. 2004.

[235] T. Rizzo and S. Grimaldi. An Introduction to “WinFS” OPath.
h t t p : / / m s d n .m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . a s p ? u r l=
/ l ib r a r y /e n - u s /d n w in f s /h tm l /w in f S 1 0 1 8 2 0 0 4 . asp ,O ct. 2004.

BIBLIOGRAPHY 231

[236] D. Robbins. Common threads: Advanced filesystem implementor’s guide,
part 9: Introducing xfs. h t tp : / /w w w - l 2 8 . ib m .c o m /d e v e l o p e r w o r k s /
l i n u x / l i b r a r y / 1 - f s 9 . h t m l .

[237] L. Roberts and T. Merrill. Toward a cooperative network o f time-shared com
puters. In Proceedings o f the Fall AFIPS Conference, Oct. 1966.

[238] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and M. van
Dantzich. Data mountain: Using spacial memory for document management.
In Proceedings UIST ’98, San Francisco, CA, pages 153-162. ACM Press,
1998.

[239] K. Rodden and K. Wood. How do people manage their digital photographs?
In Proceedings CHI 2003, pages 409-416, 2003.

[240] D. Rose, R. Mander, T. Oren, D. Ponceleon, B. Salomon, and Y. Y. Won. Con
tent awareness in a file system interface: implementing the “pile” metaphor
for organizing information. In Proceedings o f SIGIR ’93, pages 260-269,
1993.

[241] M. Rosenblum and J. K. Ousterhout. The LFS Storage Manager. In Proceed
ings o f the 1990 Summer Usenix, pages 315-324, June 1990.

[242] M. Rosenblum and J. K. Ousterhout. The design and implementation o f a log-
structured filesystem. ACM Transactions on Computer Systems, 10(l):26-52,
Feb. 1992.

[243] T. Russell. Cloudalicious: Folksonomy over time. In JCDL ’06: Proceedings
o f the 6th ACM/IEEE-CS joint conference on Digital libraries, pages 364-
364, New York, NY, USA, 2006. ACM Press.

[244] M. Russinovich. NT Internals: Inside Win2K NTFS, Part 1.
h t t p : / / m s d n . m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . asp?url=
/ l i b r a r y / e n - u s /d n w 2 k m a g 0 0 / h tm l /N T F S P a r t l . asp, 2002.

[245] J. D. Ruvini and J. M. Gabriel. Do Users Tolerate Errors From Their As
sistant? Experiments with an E-mail Classifier. In IUI ’02, San Francisco,
California, USA, pages 216-217. ACM, Jan. 2002.

[246] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Design and
implementation o f the Sun network filesystem, pages 379-390, 1988.

[247] M. Saptharishi, C. Diehl, K. Bhat, J. Dolan, and P. Khosla. Cyberscout: Dis
tributed agents for autonomous reconnaissance and surveillance. In Mecha-
tronics and Machine Vision 2000, pages 93-100, September 2000.

[248] M. Satyanarayanan. A study o f file sizes and functional lifetimes. In SOSP
’81: Proceedings o f the eighth ACM symposium on Operating systems prin
ciples, pages 96-108, New York, NY, USA, 1981. ACM Press.

BIBLIOGRAPHY 232

[249] M. Satyanarayanan, J. H. Howard, D. N. Nichols, R. N. Sidebotham, A. Z.
Spector, and M. J. West. The ITC Distributed File System: Principles and
Design. In Proceedings o f the 10th ACM Syposium on Operating Systems
Principles, pages 35-50, Dec. 1985.

[250] M. Satyanarayanan and M. Spasojevic. AFS and the web: Competitors or
Collaborators? In SIGOPS European Workshop ’96, pages 89-94,1996.

[251] D. Schaffer and S. Greenberg. Sifting through hierarchical information. In
Proceedings CHI 1993, pages 173-174, 1993.

[252] J. Schmitz and J. Fulk. Organizational colleagues, media richness, and elec
tronic mail: A test o f the social influence model o f technology use. Commu
nication Research, 18(4):487-523, 1991.

[253] B. Schneider. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. Wiley, Oct. 1995.

[254] M. C. Schraefel, M. Wilson, A. Russell, and D. A. Smith. MSPACE: Im
proving Information Access to Multimedia Domains with MultiModal Ex
ploratory Search. Communications o f the ACM, 49(4):47-49, Apr. 2006.

[255] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. The Design and Imple
mentation o f the 4.4 BSD Log-structured File System. In Proceedings o f the
1993 Winter Usenix, Jan. 1993.

[256] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and V. Pad-
manabhan. File system logging versus clustering: A performance compari
son. In Proceedings o f the 1995 USENIX Conference, pages 249-264, Jan.
1995.

[257] S. Sen, S. K. Lam, A. M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse,
F. M. Harper, and J. Riedl. tagging, communities, vocabulary, evolution. In
CSCW ’06: Proceedings o f the 2006 20th anniversary conference on Com
puter supported cooperative work, pages 181-190, New York, NY, USA,
2006. ACM Press.

[258] S. Shearin and H. Lieberman. Inteligent profilling by example. In /t/7 2001,
Santa Fe, New Mexico, USA, pages 145-151. ACM, Jan. 2001.

[259] D. Shenk. Data Smog: Surviving the Information Glut. HarperCollins Pub
lishers, New York, NY, USA, 1997.

[260] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. RFC 3530: NFS version 4 protocol specification, Apr. 2003.

[261] Silicon Graphics, Inc. XFS: A high-performance journaling filesystem,
http://oss.sgi.com/projects/xfs/.

BIBLIOGRAPHY 233

[262] I. Smith. Historical notes about the cost o f hard drive storage space, h t t p :
//www. l i t t l e t e c h s h o p p e . c o m / n s l 6 2 5 / w i n c h e s t . html, Apr. 2004.

[263] K. A. Smith and M. 1. Seltzer. File layout and file system performance. Har
vard University technical report TR-35-94, 1994.

[264] K. A. Smith and M. I. Seltzer. File system aging: Increasing the relevance
o f file system benchmarks. In SIGMETRICS '97: Proceedings o f the 1997
ACM SIGMETRICS international conference on Measurement and model
ing o f computer systems, pages 203-213, New York, NY, USA, 1997. ACM
Press.

[265] D. A. Solomon. Inside WindowsNT, 2nd edition. Microsoft Press, Apr. 1998.

[266] M. Spasojevic and M. Satyanarayanan. An empirical study o f a wide-area
distributed file system. ACM Trans. Comput. Syst., 14(2):200-222, 1996.

[267] T. Standage. The Victorian Internet. Walker and Company, 1998.

[268] K. Sullivan. The Windows 95 user interface: A case study in usability en
gineering. In CHI '96: Proceedings o f the SIGCHI conference on Human
factors in computing systems, pages 473^-80, New York, NY, USA, 1996.
ACM Press.

[269] Sun Microsystems, Inc. RFC 1094: NFS: Network File System Proto
col specification, Mar. 1989. See also RFC1813 [57]. Status: INFORMA
TIONAL.

[270] L. Svobodova. File servers for network-based distributed systems. ACM
Comput. Surv., 16(4):353-398, 1984.

[271] W. R. Swartout. Future directions in knowledge-based systems. ACM Com
puting Surveys (CSUR), 28(4): 13, 1996.

[272] A. Swartz. RFC 3870: Application/RDF+XML Media Type Registration,
Sept. 2004.

[273] Symantec Corporation. Veritas storage foundation. h t t p : / / w w w .
Symantec. c o m /P r o d u c t s /e n ter p r i s e? c = p r o d in fo & r e f Id = 2 0 3 .

[274] T. Bemers-Lee. Semantic Web road map. h t t p : / / w w w .w 3 c .o r g /
D e s i g n l s s u e s / S e m a n t i c . html, 1998.

[275] T O ’Reilly. Web 2.0 Compact Definition, h t t p : / / r a d a r . o r e i l l y . c o m /
a r c h i v e s / 20 0 5 / 1 0 /web_2 0_compact_def i n i t i o n . html, Oct. 2005.

[276] A. S. Tanenbaum. Modern Operating Systems, chapter 13, pages 549-573.
Prentice Hall, first edition, 1992.

[277] A. S. Tanenbaum. Modern Operating Systems, chapter 6, pages 445-448.
Prentice Hall, second edition, 2001.

BIBLIOGRAPHY 234

[278] A. S. Tanenbaum. Modern Operating Systems, chapter 10, pages 732-744.
Prentice Hall, second edition, 2001.

[279] A. S. Tanenbaum. Modern Operating Systems, chapter 8, page 564. Prentice
Hall, second edition, 2001.

[280] A. S. Tanenbaum. Modern Operating Systems, chapter 6, pages 435—438.
Prentice Hall, second edition, 2001.

[281] D. Taniar and J. W. Rahayu. Web Semantics & Ontology, chapter 1. IGI
Publishing, 2006.

[282] R. B. Thompson and B. F. Thompson. PC Hardware in a Nutshell, page 506.
O ’Reilly, third edition, 2003.

[283] W. F. Tichy and Z. Ruan. A replicated, distributed file system. In EW 2:
Proceedings o f the 2nd workshop on making distributed systems work, pages
1-6, New York, NY, USA, 1986. ACM Press.

[284] H. Tirri. Search in Vain: Challenges for Internet Search. Computer,
36(1): 115-116, Jan. 2003.

[285] A. Toffler. Future Shock. Bantam, 1970.

[286] J. D. Touch. Performance analysis o f MD5. In SIGCOMM ’95: Proceedings
o f the conference on Applications, technologies, architectures, and proto
cols fo r computer communication, pages 77-86, New York, NY, USA, 1995.
ACM Press.

[287] W. Treese. Web 2.0: Is it really different? netWorker, 10(2): 15-17,2006.

[288] M. Uschold. Where are the semantics in the Semantic Web? AI Mag.,
24(3):25-36,2003.

[289] U. Vahalia. UNIX Internals: The New Frontiers, 1st edition. Prentice Hall,
Oct. 1995.

[290] R. van Zwol and A. Peter M. G. The webspace method: On the integration of
database technology with multimedia retrieval. In Proceedings CIKM 2000,
McLean, VA, pages 438—445. ACM, Feb. 2000.

[291] VERITAS software coorporation. VxFS commands. h t t p : / / e v a l .
v e r i t a s . c o m / d o w n lo a d s / v a n / f s _ q u ic k r e f .p d f , 2002.

[292] O. Vermeulen. CP/M internals, h t t p : / / w w w . d c a s t . v b o x . c o . u k / c p m .
html, Jan. 2003.

[293] W. Vogels. File system usage in Windows NT 4.0. In SOSP ’99: Proceedings
o f the seventeenth ACM symposium on Operating systems principles, pages
93-109, New York, NY, USA, 1999. ACM Press.

BIBLIOGRAPHY 235

[294] A. Voida, R. E. Grinter, N. Ducheneaut, W. K. Edwards, and M. W. Newman.
Listening in: Practices surrounding itunes music sharing. In Proceedings o f
CHI’05, pages 191-201,2005.

[295] L. von Ahn and L. Dabbish. Labeling images with a computer game. In CHI
’04: Proceedings o f the SIGCHI conference on human factors in computing
systems, pages 319-326, New York, NY, USA, 2004. ACM Press.

[296] A. D. Vries. Content and Multimedia Database Management Systems. PhD
thesis, University o f Twente, Enschede, The Netherlands, Dec. 1999.

[297] P. Waddington. Dying for information: An investigation o f information over
load in the UK and world-wide, 1996. Reuters Business Information, London.

[298] D. Waltz and S. Kasif. On reasoning from data. ACM Computing Surveys
(CSUR), 27(3):356-359, 1995.

[299] G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, chapter 10. The MIT Press, 1999.

[300] B. Welch and J. K. Ousterhout. Prefix tables: A simple mechanism for lo
cating files in a distributed system. In Proceedings o f the 6th Conference on
Distributed Computer Systems, pages 184—189. IEEE, Oct. 1986.

[301] D. S. Weld, C. Anderson, P. Domingos, O. Etzioni, K. Gajos, T. Lau, and
S. Wolfman. Automatically personalizing user interfaces. In Proceedings o f
the 18th Joint International Conference on Artificial Intelligence, Acapulco,
Mexico, Aug. 2003.

[302] L. Wenyin, Z. Chen, F. Lin, H. Zhang, and W.-Y. Ma. Ubiquitous media
agents: a framework for managing personally accumulated multimedia files.
Multimedia Systems, (9): 144—156, 2003.

[303] M. Wertheim. The Pearly Gates o f Cyberspace, pages 221-225. Virago Press,
1999.

[304] E. J. Whitehead, Jr. and Y. Y. Goland. WebDAV: A network protocol for
remote collaborative authoring on the web. In Proc. o f the Sixth European
Conf on Computer Supported Cooperative Work (ECSCW’99), Copenhagen,
Denmark, September 12-16, 1999, pages 291-310.

[305] S. Whittaker and C. Sidner. Email overload: Exploring personal information
management o f email. In Proceedings SIGCHI 1996, pages 276-283, 1996.

[306] S. Whittaker, L. Terveen, and B. A. Nardi. Let’s stop pushing the envelope
and start addressing it: A reference task agenda for HCI. In Human Computer
Interaction 15, pages 75-106, Sept. 2000.

[307] S. Wildermuth. A Developer’s Perspective on WinFS: Part 1.
h t t p : / / m s d n . m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . asp?ur l=

BIBLIOGRAPHY 236

/ l i b r a r y / e n - u s / d n w i n f s t a / h t m l / w i n f s d e v p e r s p . asp, Mar.
2004.

[308] S. Wildermuth. A Developer’s Perspective on WinFS: Part 2.
h t t p : / / m s d n . m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . asp?ur l=
/ l i b r a r y / e n - u s / d n w i n f s t a / h t m l / w i n f s d e v p e r s p p a r t 2 . asp,
July 2004.

[309] P. Wilson. Computer supported cooperative work: An introduction. Kluwer
Academic Publishers, 1991.

[310] P. Wilson. Computer Supported Cooperative Work (CSCW): Origins, con
cepts and research initiatives. Computer Network and ISDN Systems,
23(1):91—95, 1991.

[311] B. Winston. Media Technology and Society, A History: From the telegraph
to the Internet, pages 321-336. Routledge, 2000.

[312] D. Wolber, M. Kepe, and I. Ranitovic. Exposing document context in the
personal web. In IUI ’02, San Francisco, California, USA, pages 190-191.
ACM, Jan. 2002.

[313] H. Wu, M. Zubair, and K. Maly. Harvesting social knowledge from folk-
sonomies. In HYPERTEXT '06: Proceedings o f the seventeenth conference
on Hypertext and hypermedia, pages 111-114, New York, NY, USA, 2006.
ACM Press.

[314] R. Wurman. Information Anxiety. Doubleday, New York, NY, 1989.

[315] H. Yan and T. Selker. Context-aware office assistant. In IUI 2000, New
Orleans, LA, USA, pages 276-279. ACM, 2000.

[316] B. Yu and M. P. Singh. An agent-based approach to knowledge management.
In Proceedings CIKM 2002, McLean, Virginia, USA, pages 642-644. ACM,
Nov. 2002.

[317] J. L. Zhao and V. H. Resh. Internet publishing and transformation o f knowl
edge processes. Communications o f the ACM, 44(12): 103-109, Dec. 2001.

List of Figures

2.1 An example o f F A T .. 22
2.2 Old and new FAT directory entry s tru c tu re ... 22
2.3 UFS disk structure .. 24
2.4 Directory entry structure for U F S ... 25
2.5 Updating blocks in L F S .. 26

4.1 The GIFS Infrastructure.. 64
4.2 Some basic actions within G I F S ... 69
4.3 Personalisation o f the Virtual Secretary .. 70
4.4 The user interface o f Google Desktop S e a r c h 71
4.5 The user interface o f S p o tlig h t... 72
4.6 The user interface o f iTunes .. 72
4.7 The user interface o f Stuff I’ve S e e n ... 73
4.8 The user interface o f P h l a t ... 73
4.9 The user interface o f JoFS ... 74
4.10 The optional settings in te r f a c e .. 75
4.11 The adaptive user in te r fa c e ... 76
4.12 The search in terface ... 77
4.13 The search results in te rface ... 78
4.14 Example user notification a l e r t ... 79

5.1 A Simplified GIFS A rc h ite c tu re ... 82
5.2 The life cycle o f d a t a ... 91

6.1 Dataset growth over a period o f 50 y e a r s ... 104
6.2 Number o f files modified per year by User A ...107
6.3 Average file sizes for user S .. 109
6.4 The size o f disks over time on a logarithmic s c a l e110
6.5 Average brute force search t im e s ...117
6.6 Search times using cached d a ta .. 122
6.7 Search times using archived d a t a ...123
6.8 Search times using caching and a rc h iv in g .. 123
6.9 Comparison o f search tim es ...124
6.10 Comparison o f search times with logarithmic s c a l e 124

237

LIST OF FIGURES 238

6.11 Comparison o f worst-case scenario search times with logarithmic
s c a le ...125

6.12 Average time taken by a user to calculate access user list for case
study 2 ..133

6.13 Average number o f errors by a user to calculate access user list for
case study 2 ..133

6.14 A group membership alert ...134
6.15 The Virtual Secretary prediction in te r fa c e .. 135

7.1 Single user with single computer a rc h ite c tu re ..153
7.2 Single user with networked computer arch itecture 154
7.3 Multiple users with single server a rc h ite c tu re ..155
7.4 Single user with networked computer alternative architecture 155
7.5 Multiple users with single server alternative architecture 156
7.6 Clustered server a rc h ite c tu re ..157
7.7 Distributed server a rc h ite c tu re .. 157
7.8 The request element from the XML s c h e m a ... 161
7.9 File encryption methods within G IF S .. 165
7.10 Comparison o f layers in a Unix file system, GIFS and Z F S166

List of Tables

2.1 Important file system developments .. 10

4.1 Features o f NFS, WWW and G IF S ... 63
4.2 Task assignment o f users and previous file s y s te m s 66
4.3 Task assignment o f users and G IF S .. 67

5.1 List o f a g e n t s .. 94

6.1 File and user statistics from previous s tu d ie s ..105
6.2 Last modified dates o f files o f all users on c s - s v r l106
6.3 The last modified file times o f User A on cs-svrl106
6.4 The average file sizes o f all files on cs-svrl ...108
6.5 The number and average size o f files for User S on c s - s v r l 108
6.6 Brute force results for data over 1 month (s e c o n d s)116
6.7 Averaged brute force results (h h :m m :ss).. 116
6.8 Results for data over 1 month (s e c o n d s) ..119
6.9 Results for data over 3 months (seconds)..119
6.10 Results for data over 6 months (m inutes:seconds).................................119
6.11 Results for data over 9 months (m inutes:seconds).................................120
6.12 Results for data over 1 year (m inutes:seconds)....................................... 120
6.13 Results for data over 5 years (m inu tes:seconds).................................... 120
6.14 Results for data over 10 years (minutes:seconds).............. 120
6.15 Results for data over 20 years (minutes:seconds).............. 120
6.16 Results for data over 30 years (hours:m inutes:seconds).121
6.17 Results for data over 40 years (hours:m inutes:seconds).121
6.18 Results for data over 50 years(hours:minutes:seconds)......................... 121
6.19 Average Search Times for Worst-case datasets(minutes:seconds) . . 125
6.20 Manual changes required for the access control list o f the file 131
6.21 Averaged results o f users predicting file access l i s t s132
6.22 Changes required for the access control list o f the file using the de

fault Virtual Secretary personality ..141
6.23 Changes required for the access control list o f the file using a strict

Virtual Secretary p e rso n a lity ..142

239

LIST OF TABLES 240

6.24 Changes required for the access control list o f the file using a lenient
Virtual Secretary p e rso n a lity ..144

6.25 Effort required to create the desired access control l i s t 145

7.1 Previous technologies... 151
7.2 Message id and type v a lu e s ..162
7.3 The version t a b l e .. 167
7.4 The permissions ta b le ..167
7.5 The users t a b l e ..168
7.6 The checkout t a b l e ...168
7.7 The files t a b l e ...168
7.8 User A’s entry in the user’s t a b l e ..170
7.9 The new entry into the version t a b l e ... 171
7.10 Entries for users B,C,D and E in the users t a b l e172
7.11 New data inserted into the permissions t a b le ..173
7.12 User B ’s entry in the permissions t a b le ..175
7.13 The new entry into the checkout t a b l e ..176
7.14 The most recent entry in the version t a b l e ... 176
7.15 The contents o f the version table after a new version has been added 177
7.16 The entries for this file in the version ta b le ... 177
7.17 The updated entries for User B in the permissions t a b l e178
7.18 The most recent version is flagged in the version ta b le 178
7.19 The permissions table after User B has had their permissions changed 179
7.20 The version table after the permission a lte ra tio n 179
7.21 The last entry made in the version table before userB’s permissions

c h a n g e d .. 179

A. 1 Brute force results for data over 3 months (seconds)........ 188
A.2 Brute force results for data over 6 months (minutes:seconds) 188
A.3 Brute force results for data over 9 months (minutes:seconds) 189
A.4 Brute force results for data over 1 year (m inutes:seconds).189
A.5 Brute force results for data over 5 years (m inu tes:seconds) .189
A.6 Brute force results for data over 10 years (minutes:seconds).189
A.7 Brute force results for data over 20 years (minutes:seconds).189
A.8 Brute force results for data over 30 years (hours:minutes:seconds) . 190
A.9 Brute force results for data over 40 years (hours:minutes:seconds) . 190
A. 10 Brute force results for data over 50 years (hours:minutes:seconds) . 190
A .l 1 Caching method results for data over 1 month (seconds)......................191
A. 12 Caching results for data over 3 months (s e c o n d s)191
A. 13 Caching results for data over 6 months (s e c o n d s)191
A. 14 Caching results for data over 9 months (s e c o n d s) 192
A. 15 Caching results for data over 1 year (se c o n d s) 192
A. 16 Caching results for data over 5 years (seconds)192
A. 17 Caching results for data over 10 years (m inu tes:seconds)............... 192

LIST OF TABLES 241

A. 18 Caching results for data over 20 years(minutes:seconds)...................... 192
A. 19 Caching results for data over 30 years (m inu tes:seconds)...................193
A.20 Caching results for data over 40 years (m inu tes:seconds)...................193
A.21 Caching results for data over 50 years (m inu tes:seconds)...................193
A.22 Archived results for data over 1 month (seconds) 194
A.23 Archived results for data over 3 months (seco n d s)................................. 194
A.24 Archived results for data over 6 months (m inu tes:seconds).................194
A.25 Archived results for data over 9 months (m inu tes:seconds) 195
A.26 Archived results for data over 1 year (m inutes:seconds)....................... 195
A.27 Archived results for data over 5 years (minutes:seconds)195
A.28 Archived results for data over 10 years (m inutes:seconds)....................195
A.29 Archived results for data over 20 years (m inutes:seconds)....................195
A.30 Archived results for data over 30 years (m inutes:seconds)....................196
A .31 Archived results for data over 40 years (m inutes:seconds)....................196
A.32 Archived results for data over 50 years (m inutes:seconds)....................196
A.33 Combined results for data over 1 m on th (seconds)..................................197
A.34 Combined results for data over 3 months (s e c o n d s)197
A.35 Combined results for data over 6 months (s e c o n d s) 197
A.36 Combined results for data over 9 months (s e c o n d s) 198
A.37 Combined results for data over 1 y e a r(seco n d s)..................................... 198
A.38 Combined results for data over 5 years (seconds) 198
A.39 Combined results for data over 10 years.(seconds)................................. 198
A.40 Combined results for data over 20 years.(seconds)................................. 198
A.41 Combined results for data over 30 years.(seconds)................................. 199
A.42 Combined results for data over 40 years.(seconds)................................. 199
A.43 Combined results for data over 50 years.(seconds)................................. 199
A.44 Brute force results for worst-case data over 1 year (minutes:seconds) 200
A.45 Brute force results for worst-case data over 5 years (minutes:seconds) 200
A.46 Brute force results for worst-case data over 10 years (h:mm:ss) . . . 200
A.47 Cached results for worst-case data over 1 year (minutes:seconds) . . 201
A.48 Cached results for worst-case data over 5 years (minutes:seconds) . 201
A.49 Cached results for worst-case data over 10 years (minutes:seconds) . 201
A.50 Archived results for worst-case data over 1 year (minutes:seconds) . 202
A.51 Archived results for worst-case data over 5 years (minutes:seconds) 202
A.52 Archived results for worst-case data over 10 years (minutes:seconds) 202
A. 5 3 Combined results for worst-case data over 1 year (seco n d s) 203
A.54 Combined results for worst-case data over 5 years (seconds) 203
A.55 Combined results for worst-case data over 10 years (seconds) 203
A.56 Full results o f Subject A predicting file access lists204
A.57 Full results o f Subject B predicting file access lists205
A.5 8 Full results o f Subject C predicting file access lists206
A.59 Full results o f Subject D predicting file access l i s t s207
A.60 Full results o f Subject E predicting file access l is ts208

