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Summary

This thesis looks at extending previous work in the field of Type I censored reliability ex­
periments. Due to its popularity and wide use, we use the Weibull distribution, and provide 
formulae on asymptotically valid variances and covariance of the maximum likelihood esti­
mates and quantiles. We also examine the effect that sample size and censoring levels have 
on such properties. Theoretical results are validated with simulation studies throughout.

These results are then used to obtain measures of precision in the Weibull parameter and 
quantile estimates given the assumption of asymptotic Normality. The suitability of using 
this large sample Normal theory in finite samples is consequently studied, and we provide 
an alternative measure of precision using relative likelihood methods. Confidence regions 
for each method are compared using published data.

We investigate the concept of undertaking interim analysis of reliability data, where 
maximum likelihood estimates are calculated at successive times during an experiment, but 
the experiment is only stopped when adequate precision in the censored estimate is obtained. 
That is, when the censored estimate can provide a reliable guide to the complete estimate.

Finally we summarise our results and conclusions, and some ideas for future research 
are discussed.
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Chapter 1

Introduction

This thesis is concerned with various aspects of the analysis of reliability data. We start 
with a brief description of reliability data, and summarise some of its unusual features.

Although data available for statistical analysis is typically regarded as fixed once col­
lected, reliability analysis is an exception, as data generally accrues with time, and it is 
possible to conduct one or more interim analyses in addition to a final analysis; successive 
analyses are then based on increasing sample sizes. There is the additional feature that the 
status of items (for instance, whether operational or not) can vary with time, even when 
the sample size is fixed at the outset of an experiment.

The data collected for such reliability studies is a measure of use until failure of, say, n, 
similar items that are being tested under the same conditions. Throughout this thesis, as in 
the wider literature, we will refer to the time to failure, even though the actual measurement 
may relate to some other aspect of use, such as the number of operations, breaking strength, 
or the number of complete cycles. We note here the underlying assumption tha t items are 
entered to the trial at the same time (at time 0).

Examples of such data include, the lifetimes of electrical insulators, remission times 
related to a drug for treating cancer, and the number of revolutions until failure of ball 
bearings. It is usual for these times to failure to be modelled, and some commonly used 
lifetime distributions have been developed, as will be discussed later. The motivation and 
emphasis of these studies are usually not simply to estimate the model parameters, but 
other, related factors such as failure rates, quantiles and probabilities are of interest. In 
practical terms, these can be interpreted by, say, a probability that an item survives beyond 
a time, t , or the determination of guarantee periods.

Reliability data is also commonly known as life data, failure-time data, and survival data, 
and there are numerous texts and journals that cover all aspects of the analysis; some of these 
are listed in Table 1.1. In the 1950’s and 1960’s reliability engineering advanced, mainly 
due to rapid advances in technology and application in a military setting, or with increasing 
customer expectations. Nelson (1982) gives some applications of reliability studies to many 
fields other than engineering and manufacturing, such as economists studying the length of
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Reliability Journals
Technometrics (1959-present)
IEEE Transactions in Reliability (1961-present)
Reliability Engineering & System Safety (1981-present)
Int. Journal of Reliability, Quality and Safety Engineering (1994-present)
Lifetime Data Analysis (1996-present)
Other journals
Journal of the Royal Statistical Society (1887-present)
Journal of the American Statistical Society (1888-present)
Biometrika (1901-present)
Books
Methods of Statistical Analysis of Reliability and Life Data, Mann et al. (1974)
The Statistical Analysis of Failure Time Data, Kalbfleisch Sz Prentice (1980) 
Statistical Models and Methods of Lifetime Data, Lawless (1982)
Applied Life D ata Analysis, Nelson (1982)
Statistical Analysis of Reliability Data, Crowder et al. (1991)
Practical Methods for Reliability Analysis, Ansell & Phillips (1994)

Table 1.1: Key journals and texts in the field of reliability data

time people are in the workforce; wildlife managers using mortality tables to predict wildlife 
population sizes and determine hunting seasons; or the success of medical treatments of 
certain diseases being measured by the length of patient survival. Insurance companies 
have long used actuarial methods to estimate survivorship of both medical patients and 
various equipment.

Many other examples of the use of reliability analysis are discussed in publications listed 
in Table 1.1, and key contributions also appear in more mainstream statistical journals.

Like other areas of statistics, reliability analysis is concerned with estimates and confi­
dence limits for population parameters, and with predictions and prediction limits for future 
items and samples. However, in reliability, the practitioner has some influence on the na­
ture of data to be analysed, as experiments are often stopped before all items have failed, 
and so the data are incomplete in some way. The analyst then uses the information in 
the (unfinished or censored) lifetimes of survivors as well as the information in the observed 
times to failure.

We next briefly review the practice of censoring.

1.1 Censored Data

Censoring is common in reliability because of time limits or other restrictions on data 
collection. To allow all of the items in some reliability studies to fail can often take a great 
deal of time, and could therefore be a very expensive process. Although some information 
is lost during a censoring regime, often the loss is small compared with the time or money 
saved (and it is always better - in statistical terms - to know the individual failure times of
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17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Table 1.2: Lifetimes (in millions of revolutions) of 23 ball bearings; from Lieblein and Zelen 
(1956)

each item in the sample).
Two common censoring techniques (Type I and Type II) are described below, and a 

more detailed discussion can be found in Cohen (1991). In this thesis we will be primarily 
interested in Type I censoring.

1.1.1 E xam ple o f C om plete and C ensored D a ta

Table 1.2 shows the lifetimes (in millions of revolutions) of n  =  23 ball bearings. The 
data was introduced by Lieblein & Zelen (1956) and has been widely discussed by others, 
including Kalbfleisch (1979); Caroni (2002) reports tha t the famous data set is misquoted, 
and proposes corrections, but we will analyse the data as originally presented. In particular, 
we will use this data set to illustrate the different types of censoring, and also, in later 
sections, as an example of fitting the Weibull distribution to sample data. We note here 
that, historically, relatively few real life data sets were published in the field of reliability, 
probably due to commercial confidentiality restrictions.

Type I Censoring

Type I, sometimes referred to as “time censoring” , is used to describe an experiment tha t 
will end at a prespecified time, c, and lifetimes will only be known for those items tha t have 
failed by time c - the remaining (surviving) items will have a censored failure time equal to 
the stopping time c. In the ball bearing failure times, if we had stopped the experiment at 
time, c =  70, instead of allowing all of the items to  fail, then the Type I censored sample 
would be as follows

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 70* 70* 70*
70* 70* 70* 70* 70*

where, as is conventional, the starred values denote the censored times.
This technique has the advantage tha t time duration of the experiment is fixed from the 

onset, and thus can be planned practically, but the number of items tha t will fail, M  say, is 
random, and so may be less useful statistically if there are too few failure times to analyse.
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T y p e  I I  C ensoring

A Type II censored sample is one for which only the first m  failure times of a random 
sample of n  items are observed. The number of observations, m, is decided before the data 
is collected, and the time of failure of the m th item is then recorded as the censored time 
of failure for the remaining n — m  items. Using the ball bearing data again, and suppose 
tha t we choose m  = 15; then the Type II censored sample would be

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 68.88* 68.88* 68.88*
68.88* 05 OO 00 00 * 68.88* 68.88* 68.88*

where again the starred values denote the censored times. Here, there is the statistical 
advantage that the number of failures is known in advance of the analysis, but the duration 
of the experiment is not known, and therefore less favorable in practical terms, as the 
experiment may be more difficult to plan and monitor.

We will be investigating when we could, in theory, or should, in practice, censor in such 
a way to maximise the practical benefits while minimising the loss of statistical information 
arising from curtailing an experiment or trial in some way.

The above summary has already indicated some random aspects of experiments and 
the data generated from them, and it is now appropriate to review briefly some of the 
mathematical funcations, and statistical background which we will use when discussing 
these aspects in further detail.

1.2 Mathematical Functions

We will use various properties of well-known mathematical functions in the discussion in 
this thesis, and refer to Abramowitz & Stegun (1972) and Gradshteyn & Ryzhik (2000) for 
further details.

1.2 .1  G am m a and related functions  

Gamma Function

The gamma function is denoted by T, and defined by

poo
T(z) = /  tz~Y exp(—t)dt (1.1)

Jo

or, equivalently,
poo

r (2 +  1) =  I tz exp(—t)dt. (1.2)
Jo
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The gamma function satisfies the recurrence relationship

T(z + l) = zr(*) (1.3)

and, for integer 2, we have
r(z + 1) =  z l  (1.4)

Psi (Digamma) Function

The psi function is the derivative of the natural logarithm of the gamma function, and is 
given by

Some important results are

*(z +  l) = *(*) +  ;; (1.6)

for 2 >  0, and

*(1) =  - 7  (1.7)

where 7  =  0.577215 • • • is called Euler’s constant.

Incomplete Gamma Function

The incomplete gamma function arises in the context of Type I censored data and is defined 
as

7 (2, x) =  [  t z~l exp (—t) dt, (1.8)
Jo

and as x  —► 00, the incomplete Gamma function tends to the Gamma function. It also 
satisfies the recurrence relationship

7(2 +  l ,# )  =  27(2, 2;) — x z exp(—x). (1.9)

We use the following notation for derivatives:

7< % ,* )  =  % ^ .  (1.10)

B eta and Incomplete Beta function

The beta function is defined in terms of the gamma function as
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and can be written as the integrals

r  1 roo +a—1
B(a , 6) =  j [  =  j o

The incomplete beta function is defined as

Bx{a,b) = (1-12)
Jo

for 0 <  x  < 1.

1.2.2 H ypergeom etric functions

The generalised hypergeometric function is defined as

FPiq(ai , ...,Op; b i , b q; z) = t1-13)

where (x)k is Pochhammer’s symbol for the product of k successive integers starting at Xj, 
in terms of gamma functions we have

“ ■ - t S p  <1j4>

A specific case of (1.13), often used has p  =  2, q = 1; which is

W ( n n h - +  +  ^  / i  i c \

2>l( i ’ 2’ ) r (o i )r (o 2 )L  r(6i-+fc) « '  ( ^

Further properties and results on the generalised hypergeometric function can be found in 
Slater (1966).

1.2.3 Order statistics

We arrange a random sample F i , I 2, •••, Y n  into ascending order. We write Y n . n ) =  min{Yi},
i

and Y (n:n\ = max{Pi}, with corresponding definitions for
i

^(l:n ) — Y (2\n ) — ••• — ^ (n —l:n) — ^(n:n)

in which we refer to Y(j:ra) as the ith order statistic.
Order statistics occur naturally in Type II censored samples (and hence make relatively 

few appearances in this thesis), as the sample consists of the m  smallest lifetimes (i.e., the 
first m  order statistics)

Y (\:n )  — Y (2 :ti) —  • • •  —

which will each have their own distribution, depending on their order, whilst the remaining
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n  — m will be censored with distribution function equal to Y(m:n). Balakrishnan &; Rao
(1997) and David & Nagaraja (2003) give discussions, further properties, and results on 
order statistics.

1.3 Statistical Background

1.3.1 G eneral C oncepts

probability density function (pdf) /  (y ) of Y  is defined via

f {y)dy  ~  f ( t ) d t , (1-16)

for t > 0, and the cumulative distribution (cdf), F  of Y ,  which is based on aggregating 
probabilities, is given by

Let Y  be a continuous random variable representing the time to failure, so Y  > 0. The

(1.17)

again for t > 0.
Any reliability distribution can also be characterised by its survivor function, S(t),  and 

the hazard function, h(t). The survival function is the probability tha t an individual 
survives at least time t , so that

(1.18)

for t > 0. The hazard (or instant hazard) function is defined in terms of the probability 
that, given its survival until t , an item then fails in the interval (t, 1 4- dt). Since this 
probability is, via the conditioning argument,

f{t )dt  _  f ( t )dt
1 - F ( t )  S(t) ’

we see that

(1.19)

Thus the hazard function is sometimes called a “conditional failure rate” , since the denom­
inator reflects the conditional probability given survival to  time t. The cumulative hazard 
function is given by

from which

H(t)  =  f  h(u)du  
Jo

(1.20)
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S ( t ) = e x p { - H ( t ) } .  (1.21)

In a reliability context, the discussion will often focus on the time by which a percentage
p of the population has failed. The 100p^ percentile of the distribution of Y  is defined by

Bioop = F - ’ (p), (1.22)

which introduces the quantile function of Y , as the inverse of its cdf.
The 10th percentile Bio concentrates on early failures, and is commonly used in engi­

neering. Of more interest in medical statistics is the median, or the 50th percentile, which 
gives the time at which half the observations or items have failed.

1.4 Lifetime Models

1.4.1 N egative  E xponential D istribution

The negative exponential distribution is the simplest distribution used in the analysis of 
reliability data, and is a popular choice for some types of electronic components, for example 
capacitors. For parameter 6 (>  0), it has pdf

/ ( S , ; 0 )  = iexp  { - ( f ) }  (1.23)

and cdf,

F(y\0)  =  1 -  exp { -  ( I ) } -  

The negative exponential distribution hazard function is constant, given by

M j/;0) =

so that the cumulative hazard function has the form

H (y ,e )  = | .

I t is straight forward to obtain the mean and variance of a negative exponential random 
variable, Y  as

E[Y\ =  e,

and
Var (Y) = d2.

Finally, the quantile function is

Bioop = - 01n ( l - p ) ; (1.24)
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Figure 1.1: Weibull pdf for varying /?; 0 — 100.

here, as throughout this thesis, In (a;) =  Loge (x) denotes the natural logarithm of the 
positive quantity x.

The negative exponential distribution also has the unique lack of memory property; in 
practical terms, future failures are not influenced by survival to the present.

1.4 .2  W eibull D istribution

The Weibull distribution, see Weibull (1951), is the most frequently used lifetime distribution 
model in all areas of engineering (Ansell & Phillips, 1994), and is also widely used in 
biomedical applications; see Gross h  Clark (1975). W ith scale parameter 0, and shape 
parameter (3 (both positive), the Weibull distribution has pdf

f(y',0,P) = P O ~ V ~ 1exP j -  (L25)

for which the corresponding cdf is,

F {y \0,(3) =  1 -  exp j -  • (1.26)

Figure 1.1 shows (1.25) for various values of (3, and indicates tha t this distribution can model
a large variety of data and life characteristics, as simply changing the value of (3 affects the
shape of the distribution.
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Figure 1.2: Weibull hazard function for varying /?; 9 =  1.

Wolstenholme (1999) notes tha t the variance of the Weibull random variable is inversely 
related to (3\ from Figure 1.1 we can see tha t there is less variability in the distribution for 
larger values of (3. The hazard function for the Weibull distribution is defined as

h { y , M )  = Ê r  (1.27)

and, via (1.20), we obtain the cumulative hazard function

= ■ (1-28)

The expression for the hazard function shows that the shape parameter (3 also determines 
whether the hazard function is an increasing ((3 > 1) ,  a constant (/? =  1) ,  or a decreasing 
{(3 < 1) function of time y, and we illustrate the Weibull hazard function in these three 
cases in Figure 1.2.The mean and variance of a Weibull random variable can be expressed 
in terms of the Gamma function, (1.2), as

£[Y] = 0 r ( i  +  l ) ,

and
Var  CY ) =  9'

Finally, the quantile function for the Weibull distribution takes the form

2 \  A  1
r , 1 + ^ J - r  l 1 + ^
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Bioop = F  1(p) = 0 { - l n ( l - p ) } e  . (1.29)

The Weibull distribution has received considerable attention - and, compared to other re­
liability distributions, has been applied to many reliability problems, particularly dealing 
with material strength and durity. Some examples for the use of this distribution are the 
analysis of failure in electronic components, ball bearings, motors and capacitors, and vari­
ous biological organisms situations, as well as for the study of breaking strength and fatigue 
in textiles.

It is clear that the negative exponential distribution is equivalent to the Weibull distrib­
ution with parameter (3 = 1 . As well as the negative exponential distribution, we also know 
tha t the Weibull distribution includes the Rayleigh distribution as a special case (when 
(3 = 2), and we have an approximately Normal distribution when (3 = 3.5; see Mann et al. 
(1974) for further discussion.

1.4.3 A lternative R eliab ility  D istr ib u tion s

In addition to the Weibull and its related distributions there are many other lifetime models, 
some of which are described briefly below; see Richards k  McDonald (1987) for further 
details.

The Burr XII distribution

The three-parameter Burr XII distribution, introduced by Burr (1942) has cdf

F{y;r,a,<f>) = j

for y > 0, where the positive parameters a  and r  control the shape of the distribution and 
(f> > 0 is a scale parameter. The Burr XII distribution has the property of including the 
Weibull model as a limiting case; see Watkins (2001).

The Extreme Value distribution

The Extreme Value distribution has cdf

F  (u ; e, 8) = 1 — exp {— exp [(it — e) /8}}

for —oo < u < oo, with location parameter oo < e <  oo and positive scale parameter 
8. This distribution is closely connected with the Weibull distribution; if Y  has a Weibull 
distribution,

U = In {Y)
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has an extreme value distribution. For further details on the relationship between Weibull 
and Extreme Value parameters, see Nelson (1982).

The Lognormal distribution

This distribution is closely related to the Normal distribution, in the sense tha t if In (V) is 
Normally distributed, then Y  follows a lognormal distribution with cdf

F (y;^ )  =  * ( t o )

for y  > 0, where 4> is the usual standard Normal cdf. This distribution is often useful if the 
range of data is several powers of 10, and thus has a large range of applications (see Johnson 
et al., 1994). Of particular interest is its use for certain types of life data, for example metal 
fatigue and electrical insulation life.

1.5 M odelling Lifetime Distribution

The first step in the process of modelling reliability data is identifying a suitable model. 
Model selection is often based upon graphical representation of the sample data, and advice 
on the choice of model is given in Chapter 1 of Lawless (1982).

In practice, the parameters of the distribution being fitted are usually unknown, and so 
an estimate must be calculated from the sample. A good estimator has to be consistent and 
efficient in giving valid and precise estimates in practice (ideally, we require the estimator 
to be unbiased, and to have the smallest possible variance). Several methods for estimating 
distribution parameters have been established, such as methods of moments, maximum 
likelihood, least squares, and Bayes estimator; see Mann et al. (1974) for an overview of 
estimation methods.

1.5.1 M axim um  Likelihood E stim ation

We will be using the method of maximum likelihood estimation for the reasons as discussed 
in Crowder et al. (1991), namely the method’s generality and relative ease of programming 
computation. Many texts also agree that, for small samples, the maximum likelihood 
estimates generally compare well with other estimates; see Nelson (1982), for instance. As 
well as reliability analysis, maximum likelihood extends to most statistical topics, including 
areas like time series, categorical data analysis, variance components, spatial analysis, to 
name a few. The properties of maximum likelihood estimates (from now on referred to as 
MLEs) will be discussed in further detail in succeeding Chapters, with particular emphasis 
on asymptotic Normality. We note here that the asymptotic covariance matrix of the MLEs 
is easily obtainable, as it is the inverse of the expected Fisher information matrix, where 
elements are based on expected values of second partial derivatives of the log-likelihood
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function. We discuss this further in the following chapter, and refer to Cox k  Hinkley 
(1974) for a detailed discussion of MLE properties.

However, in many cases, the analyst has to deal with small or moderate samples, and 
here, such large sample theory results may not hold. The bias and standard deviation of 
these small data sets may be larger than such results would imply, and as we will see in 
Chapter 2, these will also depend on the size and censoring level applied to the sample. Ross 
(1996) discusses two methods to reduce the bias of the Weibull shape parameter MLE, (3, as 
well as defining an "Asymptotic Function", tha t measures the difference between expected 
values of estimators from finite and infinite sample size. Encouragingly, however, the overall 
conclusion is that the maximum likelihood methods provide a good fit to Weibull data, even 
for small samples and censored data.

1.6 Computational issues

We use SAS for most computational tasks related to the generation and analysis of data. 
In particular, by writing a suitable algorithm in the statistical software package SAS, (see 
Der k  Everitt, 2002), we can simulate observed values from reliability distributions using 
the quantile function

Vi =  F ~ x (U i) ,

where the Ui are independently and uniformly distributed on [0,1]. Thus, to simulate a 
set of data from the Weibull distribution with known specified parameters (3 and $, we use 
(1.29) and compute

y i  =  0 ( - ln [ l  -U i ] )~P  (1.30)

(P)Using further SAS/IML commands we can then apply a censoring regime to gener­
alised data, and then compute the maximum likelihood estimates at successive censoring 
levels, and also when all simulated items have failed, i.e. after the last failure time, when 
the data set is complete. In order to obtain robust results and conclusions when assessing 
agreement with asymptotic results, our simulation exercises are based on 10,000 replica­
tions. Consequently the production of 10,000 replications, particularly for large sample 
sizes greater than 1000, say, can take up to six hours to  run for each set of parameter values. 
More information on SAS/IML® can be found in SAS (2004).

Throughout this thesis we will need to maximise functions based on likelihoods, where 
no analytical solutions are available. We will therefore need to employ a numerical method 
to perform the maximisation. Our approach is to use the Newton-Raphson computational 
procedure. Although other methods are available, this is a straightforward iterative process 
tha t is easily programmable in SAS/IM L®. More details are given in relevant sections.

Mathematica will also be used to evaluate some of the assumptions made in our theo­
retical considerations. Further details and specific code are given in relevant sections.
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1.7 Structure of thesis

In this chapter we have briefly reviewed the background theory required for analysing reli­
ability data using reliability distributions to model the time to failure. We have discussed 
the practical considerations, and the censoring techniques used to overcome these problems 
in experiments. In Chapter 2, we will outline the method of maximum likelihood estimation 
and use this to fit the Weibull distribution to complete and censored data.

This thesis will consider three distinct problems regarding ML estimation under a Type 
I censoring regime:

• The property of asymptotic Normality of MLEs is well known, see Nelson (1982), for 
example, and can be used to obtain approximate confidence limits around parame­
ters. Chapter 3 will find the extent to which the assumption of Normality of Weibull 
parameters and Rio are suitable for finite samples, in particular smaller and Type I 
censored data sets. We are interested in the effects of varying the censoring level on 
the convergence to asymptotic Normality.

• For the asymptotic theory to give good approximations, the sample, n, should be large, 
but for practical purposes, in general, the asymptotic methods are applied to small 
samples. In Chapter 4 we introduce an alternative method to measure the precision of 
the Weibull MLEs, that intuitively, may be more suitable for small, or highly censored 
samples.

• Chapter 5 will establish a method to measure the precision of Type I censored MLEs as 
estimates of the complete MLEs, and investigate the use of information from interim 
analyses, to predict the complete estimate. For simplicity, we will initially concentrate 
on the negative exponential distribution, and Chapter 6 will extend the methods 
developed for this case to the Weibull distribution, which has the added complications 
of an extra parameter and the quantile function Rio-



Chapter 2

M aximum Likelihood Estim ation in 
the Weibull D istribution

2.1 Introduction

This Chapter details the method of maximum likelihood, specifically for the Weibull distri­
bution. We also demonstrate how the size and nature of the data being analysed can affect 
the accuracy and precision of the MLEs.

Since we will not, in general, be able to study the sampling distribution of the MLE 
analytically, we must in practice either

•  use asymptotic theory, from which the MLE is regarded as Normally distributed about 
the true, unknown parameter, with variance-covariance matrix given by the Expected 
Fisher information (as will be discussed in further detail, below), or

•  use some alternative approach, such as the method of relative likelihood; see for in­
stance, Kalbfleisch (1979).

2.2 The M ethod of ML in Com plete Samples

We first outline the framework for fitting models from the Weibull distribution, and then 
apply this method to an example. Likelihood may be defined as the joint pdf based on a 
specified distribution at the observed sample points. The MLEs of the parameters are the 
values that maximise the likelihood function, or equivalently the natural logartihm of the 
likelihood function (the log-likelihood). From (1.25), the likelihood for a complete data set
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and the log-likelihood is

n n

I = n \n /3 -n (3 \n d  + ( p - l ) ' ^ 2 \ n y i - 0 - l3'^ 2 y f .  (2.2)
2=1 2=1

It is convenient to define,
n

Se =  l n  y*'
2=1

and

s j (t3) = t y f 3i ^ y i ) i  (2-3)
2 = 1

for integer j  > 0, taking 0° =  1 if necessary, and note that for j  > 1 we have

_  d?Sp (P) _  dSj- i  (0)
3 ^  d p  dp  ‘

Then (2.2) can be written as

I — n ln p  — np  ln 9 +  (/? — l)£ e — 0~^So (P) .

We then find the partial derivatives of I to be

=  n /T 1 -  n  ln 0 + Se + ln 9S0 (/3) -  6~^Si (/3), (2.4)
dp

and
^  =  -n /3 0 -1 +  p9-V+ »So  03). (2.5)

2 .2.1  P ro file  lik e lih o o d  a n d  a n  i t e r a t iv e  m e th o d

There are no analytical solutions to  these equations, but, we can equate (2.5) to zero, and 
then solve for 6 in terms of p. This gives

e = ( n - 1So(P))1/0- (2 .6)

We can now substitute (2.6) into (2.2) and (2.4) to obtain the profile log-likelihood, denoted 
with an asterisk,

I* =  n  ln P — n  ln 5o (P) +  n(ln n  — 1) +  (p — 1 )Sn (2.7)

with first derivative
dl_  =  „ r l  +  5n - „ g M ) ) (2.8)
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and second derivative

= _n/r ’ - „ J 1 . (2.9)
d f  P \  [So (P)] j  ;

We can now solve equation (2.7) for j3 using the Newton-Raphson iteration method, 
with a starting value (3^ "close" to the ML estimate in order for the method to converge. 
Farnum & Booth (1997) suggest

/3[°l=2(ln(S/(„;„)) - n - 1Se)"1 (2.10)

as an initial starting value. The iterative process is outlined below:

•  Calculate the next approximation to (3

dl* (/3W)

^  ^  (2-11)
d(3'2

•  Repeat this step replacing (3^ with $ k+l\  and continue repeating this until conver­
gence is achieved. We stop when successive values are close together, when is
close to 0.

We can then substitute our estimate (3 into (2.6), and solve for 9.

2.2 .2  Exam ple: B all bearings d ata

We now obtain the Weibull MLEs for the Ball Bearings dataset; see Table 1.2. For the 
n  =  23 failure times, the above procedure, using

/?t°1 = 1.9898

yields convergence in five iterations (see Table 2.1) to

3  =  2.1021,

which consequently gives
9 =  81.8783,

and together these allow us to calculate, using (1.29), the 10^ percentile

Bio =  28.0694. (2.12)

Table 2.1 shows the rate at which the profile score function reaches zero.
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Iteration P dr
d/3

&r

1 1.9898 1.07968 -9.9891
2 2.0978 0.03905 —9,2820
3 2.1021 0.00005 -9.2563
4 2.1021 1.042 x 10"10 -9.2562
5 2.1021 0 -9.2562

Table 2.1: Summary of iterations for fitting the Weibull distribution to the Ball Bearings 
data

1.2 7.0 23.9 47.9 62.7 95.1 128.7 151.6 185.2 253.1
2.2 12.1 24.3 48.4 72.4 97.9 133.6 152.6 187.1 304.1
4.9 13.7 25.1 49.3 73.6 99.6 144.1 164.2 203.0 341.7
5.0 15.1 35.8 53.2 76.8 102.8 147.6 166.8 204.3 354.4
6.8 15.2 38.9 55.6 83.8 108.5 150.6 178.6 229.5

Table 2.2: 49 failure times, given in Epstein (1960), thought to follow a negative exponential 
distribution

2.2 .3  Exam ple: E p ste in ’s D a ta  (49 failure tim es)

Finselbach h  Watkins (2006) consider a dataset of 49 failure times, originally discussed by 
Epstein (1960), and displayed in Table 2.2. The failure times (unit unknown) are thought to 
follow a negative exponential distribution, and so, if we were to perform Weibull analysis, 
we would expect an estimate of (3 to be approximately 1. W ith a starting value for the 
Newton-Raphson method being

/3[0] =  0.6667

the MLE analysis outlined above provides us with the following estimates,

P =  1.0300,

9 = 106.0505

and
Bio =  11.9312. (2.13)

Table 2.3 summarises the iteration process, and we see th a t we have convergence to  (3 after 
just 6 iterations. We remark tha t fi is appropriately close to 1, and we can compare the 
estimate of 9 to the value calculated in Finselbach & Watkins (2006) using the exponential 
analysis, 9 =  104.89 (for which Bio =  11.0513). It may be of interest to perform some 
formal goodness of fit tests for the suitability of fitting the Weibull distribution to this 
data, but such considerations will be omitted here as the purpose is simply to illustrate the 
procedure of obtaining the MLEs.
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Iteration P
dl* 
d/3 d/F

1 0.6667 35.8643 -144.0329
2 0.9157 8.6381 -83.4887
3 1.0191 0.7521 -69.6338
4 1.0299 0.0067 -68.4059
5 1.0300 5.314 x 10-7 -68.395
6 1.0300 0.0000 -68.395

Table 2.3: Summary of iterations for fitting the Weibull distribution to Epstein’s 49 Failures 
data

2.2 .4  Sim ulation: F ittin g  a  W eibull D istr ib u tion  to  W eibull D a ta

So far we have looked at two examples of failure data  and fitted a Weibull distribution to 
them, but there are limitations when analysing single sets of data. We want to investigate 
the effect of censoring and sample size on the bias and standard deviations of the estimates, 
and therefore require a simulation study to enable the study of the sampling distribution of 

9^j, with known true parameters (3 and 9.
The Weibull parameters are set at

(3 = 2, 0 =  100,

and we run the program for n  =  50,100,300,500, and 1000. The process is then repeated 
10,000 times. We can compare the estimated value Rio, obtained from the MLEs 9 and /?, 
with the true value calculated below:

Rio =  100 { -  ln(0.9)}2 =  32.4593 (2.14)

Results for the complete sample are summarised in Table 2.4.
We observe excellent agreement between the true and estimated parameter values, and 

this improves as n  increases. It is also clear that the precision of the MLEs improve as n 
gets bigger. Following from these results on the moments of MLEs, we note tha t it would 
be of interest to investigate the distribution of the Weibull MLEs and Rio, for both large 
samples (where the asymptotic properties, such as the variance, are known), and smaller 
samples (to see the extent to which the asymptotic Normality can be regarded appropriate). 
This will be addressed in Chapter 3.

2.3 The M ethod of ML in Type I Censored Samples

As outlined in section 1.1, an experiment terminated at some prespecified time, c, say, is 
subject to Type I censoring, and we only have the exact lifetimes y\, ...yM of the m  items 
th a t have failed before c, with the other n  — m  items having a censored operational life of
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n 50 100 300 500 1000
(3 : mean  
(st.dev.)

2.0553
(0.2341)

2.0269
(0.1600)

2.0093
(0.0905)

2.0053
(0.0705)

2.0026
(0.0496)

9 : mean 
(st.dev.)

99.8834
(7.3980)

99.9956
(5.3344)

99.9783
(3.0623)

99.9766
(2.3614)

100.0301
(1.6666)

Bio : mean 
(st.dev.)

33.2983
(5.3652)

32.8945
(3.7956)

32.6048
(2.1688)

32.5382
(1.6763)

32.5113
(1.1852)

Table 2.4: MLE summaries for the Weibull distribution fitted to simulated Weibull complete 
data with =  2,9 = 100

c. Thus, M  (>  0), is a random variable, with

Pr {any item fails in (0,c)} =  1 — exp =  Qc, (2.15)

say, so that M  follows a binomial distribution with parameters n  and qc. The observed
times to failure Y, follow the truncated Weibull distribution with pdf

top - i

Ô qc
exp (2.16)

for 0 < y < c. We point out here tha t letting c —► oo will lead to a complete sample, with 
M  =  n, and qc =  1.

2.3 .1  T he L ikelihood and fittin g  a W eibull d istr ib u tion  to  censored  data

W ithout loss of generality, the likelihood for Weibull data under a Type I censoring regime

M  “| n —M
IS

L c =
_i=l . i=1

Taking logarithms of (2.17), the log-likelihood for censored Weibull data is

M  (  M

lc = M  In 08) -  M/3 In (0) +  (/? -  1) £ l n  (y<) -  ^  Y ?  +  (n -  M ) <?

We now find it convenient to define

S M ,e  =  ^   ̂I n  Y ;

and

(2.17)

(2.18)
Z=1 t=l

M

Z—1

M  .  .

S m j (0) = E  i f  (In Y tf  +  (n — M) cP (lnc)J
2= 1
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for integer j  >  0,  taking 0° =  1 if necessary, and note that for j  > 1 we have

o  (a \  d J S M,o((3) d S M , j - i ( P )  
j  ( / 3 )  =  0  =  — d 0 — •

The log-likelihood, (2.18), can now be written as

lc =  M  ln 0  -  M 0  ln 0 + (/3 -  1 )S M,e -  (/?) -

We then equate the partial derivatives

| |  = M ir1 - M \ a e  +  s M,e -  e - e {sM,i (P) -  in $sM,o (/?)}, (2.19)

and

H  =  - M 0 O - 1 + p e - ^ S u f i  03), (2.20)

to zero. From (2.20) we obtain

(2.21)

so we can now substitute (2.21) into (2.18) to obtain the profile log-likelihood

I* =  M  In (3 -  M  ln SM,0 (P) +  (/? -  l^M .e  -  M. (2.22)

with first and second derivatives

|  =  M r 1 +  3 M , e - M g l g |  (2.23)

and
j j ^ - a  J J  f 3m,2 (/?) 3m.0 (3) ~  SM, 1 (/?) 1

<#>2 1  [3 m ,o (3 )12 / '

We can now solve equation (2.22) for (3C using the Newton-Raphson iteration method
with starting value, suggested by Farnum h  Booth (1997), as

(2.24)

we note that (2.24) simplifies to (2.10) for the complete case, where M  —► n  and c —> y(n n). 
This censored MLE of (3 can then be substituted into (2.21) to find 9C-

2.3 .2  Exam ple: B all B earings data  w ith  T yp e I censoring

Under the assumption that the continual monitoring of the ball bearings was possible, 
Table 2.5 summarises the MLEs, and maximum profile log likelihood, obtained at times
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c 50 75 100 125 150 oo
M 7 15 18 20 22 23

f t
\c
B 10,c

3.0866
69.4707
33.5100

2.7634
72.8142
32.2517

2.2398
80.3151
29.4066

2.0731
82.4301
27.8393

2.1268
81.5604
28.3111

2.1021
81.8783
28.0694

Table 2.5: Summary of MLEs for various censoring levels in a Type I censoring regime 
applied to the Ball Bearings data

c =  50,75,100,125,150. These can be compared to  the complete results when c —> oo, and 
all the items have failed; see section 2.2.2 above.

Somewhat more generally, we can repeat this process for a longer sequence of values for 
c, and plot each MLE against c. Figure 2.1 displays j3c versus c (for c =  19, increasing to 
c =  174 by intervals of 0.05), with observed failure times plotted along the horizontal axis. 
We observe sharp rises in the estimator at the actual times of failures; this follows directly 
from the increase in M  increases as another failure occurs, and reflects the increasing failure 
rate, which contrasts against the decrease in the MLE between failures, where the general 
trend is for (3C to decrease with increasing c, as seen in Table 2.5.

The opposite trend is seen for 0C in Figure 2.2, where sharp drops now occur in the 
MLE obtained at failure times. This can be explained by consideration of (2.21); a failure 
occurring increases the denominator M , and causes the estimate to decrease, which contrasts 
with a general increase in 9C with c between failures.

Finally, Figure 2.3 shows tha t for small c, Rio,c is generally increasing with c, with a 
sharp drop at each failure, but at around c =  50, this pattern changes, and the estimate 
begins to decrease between failures, with sudden rises with the occurrence of a failure. This 
seems to be explained by the dominance and size of the sharp increases seen in 6C for early 
c. This then lessens with the increased censoring time, and, after c =  50, it is the change 
in tha t dominates.

Clearly for each parameter and the quantile, the stability in the estimate obtained is 
relative to c, and, as c increases, the size of the respective jumps or drops reduce, and the 
observed estimates level off. These graphs may also benefit from smoothing and plotting of 
pointwise confidence intervals, and although these ideas are not considered further in this 
thesis, we note the possibility for future research.

2.3 .3  Exam ple: E p ste in ’s d ata

We can perform a similar analysis on Epstein’s 49 failure times data, and compare the 
results, shown in Table 2.6, with the complete data analysis, in section 2.2.3. We see as 
the censoring time increases and more items are left to fail, the estimates generally become 
closer to the complete estimates.

As with the ball bearings example, on plotting each MLE against c (now calculated from 
c =  2 to c =  355, by 0.05), we observe the same jumps or drops, and eventual levelling, of
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Figure 2.1: (3C versus c for the Ball Bearings data (Table 1.2), plotted with failure times (x)

c 50 100 150 200 oo
M 18 28 34 42 49

Pc
9 c
-®10,c

0.8569
124.0083

8.9736

0.8709
122.4351

9.2401

0.8625
124.7209

9.1789

0.9656
110.1130

10.7083

1.0300
106.0505

11.9312

Table 2.6: Summary of MLEs for various censoring levels in a Type I censoring regime 
applied to Epstein’s 49 failure times data
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Figure 2.2: 9C versus c for the Ball Bearings data, plotted with failure times (x )
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Figure 2.3: B\q versus c for the Ball Bearings, plotted with failure times (x )
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Figure 2.4: f3c versus c for Epstein’s data, plotted with failure times (x)

the estimate at the point of a failure; see Figure 2.4, 2.5, and 2.6 for plots of j3ci 6C, and B \q,c 
respectively. It would be of interest to assess the size and nature of these jumps, as related 
to  the censoring level; this is not our main focus, however, and it will not be considered 
here.

We see from both examples tha t the estimates level off as c increases, and when c reaches 
100 in the ball bearings example (or 200 in the 49 failure times data), the censored estimate 
does not appear to differ greatly from the complete estimate, hence censoring at these times 
may give a reasonable guide to the outcome of the experiment if c was large enough to  allow 
all items to fail. We will return to this concept of using interim analysis to predict final 
MLEs in Chapter 5.

2 .3 .4  Sim ulations: F ittin g  a  W eibull d istr ib u tion  to  C ensored W eibull 
data

Using SAS, we simulate a set number of Weibull random variables, again with (3 =  2 and 
9 =  100, and, using a Type I censoring regime, we censor at several different levels, including 
leaving a complete sample with no censoring, that is, c —> oo.

Leech & Watkins (1990) discuss the effect of censoring and sample size on the precision 
in parameter estimation, and we now investigate these factors separately. Table 2.8 sum-
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Figure 2.5: 6C versus c for Epstein’s data, plotted with failure times (x)
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n 50 100 1000
sd{K)
sd(j3)
sd(0c)
s d( 6 ) 
sd(Bio,c) 
s d (B i o)

0.3405
0.2341

9.4899
7.3980

5.9666
5.3652

0.2307
0.1600

6.6752
5.3344

4.2066
3.7956

0.0718
0.0496

2.0672
1.6666

1.3212
1.1852

~  1.4 

~  1.2 

~  1.1

Table 2.7: Ratio of standard deviations from censored'and complete estimates

marises the results for varying censoring level, keeping the sample size fixed at n = 1000, 
and we can compare these results with the final column of Table 2.4. Table 2.9 shows the 
results for varying sample sizes, keeping the censoring, or stopping, time fixed at c =  100; 
each column can be compared with the corresponding column of Table 2.4. In each case, 
the summaries are based on 10,000 replications.

When we vary the censoring level the standard deviations of the MLEs and quantile 
function decreases as c increases. By comparing these results to those in Table 2.4, we see 
tha t censoring as early at c — 100 on a large sample of 1000 units gives an approximately 
equal standard deviation of j3c to tha t of obtained for a complete sample with n = 500, 
but the standard deviations are considerably more for 0 and Bio under the Type I censored 
experimental design (with n  =  1000) compared to the n =  500 complete data. We also 
note that direct comparison of standard deviations between the complete estimates in Table
2.4 and the censored estimates in Table 2.9 (for the various n  considered) give the following 
ratios, shown in Table 2.7.

So, there are larger differences between the precision of censored and complete estimates 
of (3, and this reduces for estimates of 6. The precision of complete and censored estimates 
of Bio is very close, which is promising, as it is often the percentiles tha t are of more 
interest to practitioners than the parameters themselves. Investigation into these results 
could be extended to compare the precision between complete and censored estimates at 
further censoring levels, but this is not the focus of this thesis.

In practice, the costs of running an experiment would be the determining factor in 
deciding whether to use a larger sample size with early censoring, or a smaller sample with 
a higher level of censoring, if any at all. Usually, it would depend on which was most 
expensive, the running costs of an experiment with unknown duration, or a larger number 
of items to be tested.

2.4 Complete MLEs and the EFI M atrix

The expected Fisher information matrix, from now on referred to as the EFI matrix, is 
known to yield asymptotically valid variances and covariances of the Weibull distribution 
parameters; see, for example, Lawless (1982). This section will provide these theoretical 
EFI matrix, which will be checked to assess the extent to which asymptotic results apply
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c 50 100 150 200 oo
f3c : mean 
(St dev)

2.0052
(0.1326)

2.0023
(0.0718)

2.0021
(0.0559)

2.0024
(0.0509)

2.0026
(0.0496)

9C : mean  
(St dev)

100.4770
(6.0025)

100.0751
(2.0672)

100.0751
(1.6957)

100.0415
(1.6678)

100.0301
(1.6666)

B\o,c • mean 
(St dev)

32.5216
(1.3807)

32.4995
(1.3212)

32.5013
(1.2435)

32.5071
(1.2001)

32.5113
(1.1852)

Table 2.8: MLE summaries for Type I censored Weibull data, varying c, with fixed n  =  1000

n 50 100 300 500 1000A
/3C : mean 
(St dev)

2.0599
(0.3405)

2.0282
(0.2307)

2.0093
(0.1335)

2.0052
(0.1018)

2.0023
(0.0718)

9C : mean  
(St dev)

100.5839
(9.4899)

100.3429
(6.6752)

100.1056
(3.7926)

100.0612
(2.9274)

100.0751
(2.0672)

# 10,c : mean 
(St dev)

33.1581
(5.9666)

32.8139
(4.2066)

32.5704
(2.4351)

32.5193
(1.8662)

32.4995
(1.3212)

Table 2.9: MLE summaries for Type I censored Weibull data, varying n, with fixed c =  100

in finite samples. For a complete sample from the Weibull distribution, we can obtain the 
EFI matrix,

A = - E
o2i d2i 
d ¥  d/306

06s

and since the matrix is symmetric, only the upper half is given. Hence, we have the inverse 
EFI matrix

A _1 = ( v a r ( 0 )  C o v ( p e )

V a r ( e
(2.25)

This, in turn, will provide the asymptotic distribution of any function of /?, 9, in particular 
the quantile Bio, see Watkins & John (2008) for further details.

2.4 .1  E xpectations o f second derivatives

Watkins (1998) computes expectations of the second derivatives of the Weibull distribution, 
which, from (2.4) and (2.5), are given by

ppj
°  = - „ /T 2 +  2 6 - I 3 (ln 6 )  5, (/3) -  6 ~ »  (In 6 ) 2 S 0  (/3) -  0 ^ S 2  (/3),
op

0  =  - n p e - 2 -  /?(/? +  l ) 0- ^ +2)S'o 0 ?),

and
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d2l d 2l
d0dO d9d0

= - n e - 1 + e-V+VSo  09) {1 -  p in 9 }  +  0-W+1)Si (0).

Prom (2.3), we see that the second derivatives are functions of

for integers i , j  < 2. Hence we approach the expectations using the transformed variable

(2.26)

which follows the standard negative exponential distribution, with probability density func­
tion for 2 > 0 given by

exp ( - 2); (2.27)

The expectations required, in terms of the random variable Z  are

d 2l
E

E

d p

d 2V 
d e2

= n p - 2 ( l  + E  Z  (In Z f

= - n 0 6 - 2 ( l - { 0 + l ) E [ Z ) ) ,

and

E
d 2l

8(336
= - n e - 1 (-1  +  E  [Z] +  E  [Z In Z ]) .

By exploiting the connection between the Gamma functions outlined in Chapter 1, Watkins 
(1998) provides expressions for the expectations required; since

E  \Zr] =  f  zr exp ( - 2) dz =  T (1 +  r ) , 
0

we have

and specifically

E [Z r (In Z ) s\ =  r w (l +  r) . 

E y [ Z ] = T (2 )  = l ,

E y[lnZ ] =  rW  (l) =  - 7 ,

E y  [Z\nZ] = r W  (2) =  1 - 7

(2.28)

(2.29)

(2.30)
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and

E y Z (In z f  \ =  r<2> (2) = +  7 2 — 27 .
J 0

(2.31)

2.4 .2  A sym ptotic  standard deviations

These allow us to obtain the EFI matrix as follows

A = n P - 2 TT +  (7 ~ I)2 - « - * ( ! - 7 )
\ P20~2

On taking the inverse we have the variance covariance matrix

'P2 0(1 -  7 )

+  ( 7 - l ) :
A  1 =  6 n  17r 2 - 2 n 2(3~*0

(2.32)

Taking the square roots of elements of the diagonal elements of the inverse EFI matrix, 
(2.32), we obtain the approximate standard deviations. W ith (3 = 2, and 6 — 100, (2.32) 
becomes

A 1 =  6n 17r 2

=  6n 1tt 2

'22 100(1 -  7 )

2_21002 ¥  +  ( 7 - l ) !

2500

100(1 -  7 )

IT + (7 — 1)'

and hence we obtain the inverse EFI matrix elements, to 4 decimal places as,

'2.4317 25.7022 \
A -1 =  n -1

2771.6623

Table 2.10 and Table 2.11 display the theoretical asymptotic standard deviations of (3 
and 6 respectively, for various n, along with the simulated counterparts (based on 10,000 
repetitions). We repeat this check for consistency between theory and simulated results 
for several values of the shape parameter, (3, to allow coverage of a suitable portion of the 
parameter space and various failure rates. Those additional parameter values of particular 
interest are ( 3 = 1  and 3.5. At (3 = 1 the hazard function, or failure rate changes from 
a decreasing function to an increasing function, and we focus on this change by exploring 
what happens at (3 = 0.9 and (3 = 1.1. We see that for most cases, simulated values get 
closer to their theoretical counterparts with increasing sample size.

We have shown that for a complete sample, our asymptotic approximations to the vari­
ance of the MLEs hold in finite samples, and the next section will assess the asymptotic 
variances in censored samples. An obvious extension to checking these asymptotic theoret­
ical variances would be to assess the assumption of asymptotic Normality of the MLEs in
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0 n
50 100 300 500 1000

0.9 0.0992
0.1060

0.0702
0.0740

0.0405
0.0414

0.0314
0.0317

0.0222
0.0221

1 0.1103
0.1194

0.0780
0.0802

0.0450
0.0449

0.0349
0.0344

0.0247
0.0249

1.1 0.1213
0.1274

0.0858
0.0897

0.0495
0.0501

0.0384
0.0388

0.0271
0.0273

2 0.2205
0.2341

0.1559
0.1600

0.0900
0.0905

0.0700
0.0705

0.0490
0.0496

3.5 0.3859
0.4065

0.2729
0.2823

0.1576
0.1590

0.1220
0.1241

0.0863
0.0869

Table 2.10: Theoretical (upper) and simulated (lower) standard deviations of complete j3 
for various /?, n, and 9 = 100.

0 n
50 100 300 500 1000

0.9 16.5452
16.5078

11.6992
11.7093

6.7546
6.8252

5.2321
5.2277

3.6996
3.6948

1 14.8907
14.8247

10.5293
10.4643

6.0791
5.9579

4.7089
4.7314

3.3297
3.3435

1.1 13.5370
13.4953

9.5721
9.5773

5.5265
5.5945

4.2808
4.2213

3.0270
3.0643

2 7.4453
7.3980

5.23476
5.3344

3.0396
3.0623

2.3544
2.3614

1.6648
1.6666

3.5 4.2545
4.2376

3.0084
2.9925

1.7359
1.7465

1.3454
1.3493

0.9513
0.9511

Table 2.11: Theoretical (upper) and simulated (lower) standard deviations of complete 9 
with various /?, n, and 9 = 100.
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finite samples. This will be considered in a later chapter.

2.5 Type I Censored MLEs and the EFI M atrix

Watkins & John (2004) provides formulae for the elements of the EFI, and we follow the 
same techniques in this section to obtain the censored data variance-covariance matrix, now 
denoted as

J _  ( Var (Pc ) Com (j3c, ec)
C ~ \  Var (ec)

We again use the transformation (2.26), where Z  now follows the truncated negative 
exponential distribution with pdf

Qc1 exp ( - 2) (2.34)

(2.33)

for 0 <  z < zc, where we write

2.5.1 E xpectations o f second derivatives

By taking derivatives of the score functions ((2.19) and (2.20)), with respect to (3 and 9, 
and applying the transformation from Y  to Z, we obtain

-  *-2 
d p  ~  p

M  +  <

M

- 2

Y y l e - v p  {in (Yifl- 1) } 2 
i —1

+  (n — M ) c?6~Pp  (in (c#-1 ) ) 2 
(  M

M+ \ J2Zi (lnZ*)2+ (n ~ M) *c
i= l

(2.35)

and

d2lc

d9l
=  (39'

= (39-

(0 + 1) -P +  (n -  M ) cP9~P I -  M

(0 +  1) | $ ^ Z i  +  ( n - M ) 2 c J - M

d(3d6
d2lc

d9d(3

i -i
M

(2.36)

(2.37)

{1 +  /?ln (Yiff-1) } + ( n - M )  { l +  /3In (c0_1) } - M
t= l  
M

^ 2  Z* (1 +  ln %i} + (n ~  M ) zc {1 +  In zc} -  M
i= l
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The form of these second derivatives, written in terms of Z, show tha t the EFI matrix 
requires the expectations

E Z i (\nZ )j

say, for integer i, j  <  2. From (2.34), we have

l*2c z% exp(—z)
E[Z*] = f  

Jo

A4i j i

dz = qc 1j  {i +  1, zc)
Qc

where 7 (z +  l , z c) is the incpmplete gamma function defined in (1.8). Differentiating j  
times with respect to i then gives

E Z* (In Z )j = qc V -7) (i +  1, zc) .

The computation of this function will be given below.

2.5 .2  E xp ecta tion s involved

We recall that M  follows a Binomial distribution, with

so tha t

where

E[M] =  nqc,

E[n — M] — n ( l  -  qc) — nrcqc,

Tr —
l  - q c 

qc
(2.38)

is the odds-ratio of the probability of survival beyond c to failure before c.
In general, we can obtain the expectations in derivatives via a conditionality argument 

on M , in which we write

E
M

, i= l

=  nqcE ]g (y ) ] , (2.39)

where the expectation E  [g (Y)] is with respect to the truncated Weibull distribution, and 
can be expressed as an expectation in Z  following the truncated negative exponential distri­
bution. I t is suitable to here summarise the expectations required for the following analysis, 
and use notation tha t will simplify formulae in further chapters. We also plot these as func­
tions of c, in Figures 2.7 to 2.14. The expectations will use the recurrence relation of the 
incomplete gamma distribution, given in (1.9).

H1 0  = E[Z] = 7 (2, zc)qc 1 =  7(1, zc)qc 1 -  zcrc =  1 -  zcr{- i (2.40)

M20 =  E lz2] =  7(3, Zc)qc 1 =  27(2, zc)qc 1 -  z \r c = 2 -  2zcrc -  z \r c (2.41)
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Figure 2.7: Plot of /x10 =  & \^\ versus c, for /? =  2 and 9 =  100. 

Hoi =  £[lnZ ] =  7 (1) (1, zc) q~l

Hn  = E[Z  In Z\ = 7 (1) (2, zc) q~l =  /z01 +  1 -  zc In 2cr c

=  7 (1) (1, zc) q~l +  1 -  zc In zcr c

//2i =  E[Z 2  In Z] =  2fj,n  +  1 -  2cr c -

=  27^  (1,2C) g "1 +  3 -  zcrc -  2zc In zcrc -  z% In zcrc

li0 2  = E [{\nZ)2] =  7 (2) (1, zc) q- 1

(2.42)

(2.43)

(2.44)

(2.45)

fj,1 2  = E  Z  (In Z ) 2  =  /i02 +  2fj,0l -  zc (In z c ) 2  rc

= 7 (2) (1, zc) q~l +  27(1) (1, zc) q~l -  zc (In z c ) 2  rc (2.46)
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Figure 2.8: Plot of ji2o =  E  [Z 2] versus c, for (3 =  2 and 9 =  100.
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Figure 2.9: Plot of /i01 =  E  [In Z\ versus c, for j3 =  2 and 0 =  100.
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Figure 2.10: Plot of fxn  =  E  [Z\nZ] versus c, for (3 — 2 and 9 =  100.
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Figure 2.11: Plot of /x2i =  E  [Z2  (InZ)] versus c, for (3 — 2 and 9 — 100.
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Figure 2.12: Plot of fi0 2  =  E  J(lnZ)2j versus c, for (3 =  2 and 9 =  100.

Figure 2.13: Plot of /z12 = E  Z  (In Z ) 2  versus c, for (3 =  2 and 9 — 100.
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Figure 2.14: Plot of ^  =  E  Z 2  (In Z) versus c, for 0  =  2 and 9 =  100.

M22 — E  Z 2  (In Z) = 7 (2) (3, *c)gc 1 =  2/z12 +  2/zn  -  z2 (lnzc)2 r c

2 7 ( 2 )  ( M e )  1 +  6 t ( 1 )  ( M e )  & 1 +  2  

- z c (In zc) rc { 2 +  2 In zc +  zc In zc) (2.47)

We note that, in general, these functions are relatively constant for c >  200, and from 
Figures 2.7, 2.9, 2.10 and 2.13 it is clear tha t these functions approach their counterparts 
from in the complete case, given in equations (2.28), (2.29), (2.30), and (2.31).

Thus, on taking the expectations of the above second derivatives, we have

E
d \

d(32.
= n(3 2 |g c +  gc^ i2 + zc Qnzc ) 2  qcrc}

np - 2  f  Qc +  7 (2) (1, Zc) +  27W (1, zc) -  zc (In z c ) 2  qcrc 
\  +zc (Inzc)2 qcrc

=  n(3 2 {gc +  7 (2)(M c) +  27(1) ( M c)} ,
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Figure 2.15: Plot of n 1E  J— versus c, for (3 =  2, 9 =  100 and n = 1000.

E
dd:

= n/39 2 [(/? +  1) {qcfic +  zcrcqc} -  qc]

=  n(39~ 2  [{(3 +  1) {qc (1 ~  zcrc) +  zcrcqc} -  qc\

= n/39' 2  [((3 +  1) gc -  qc\

= n/32 9~2 qc,

and finally,

E
d2l

d(3d9
= E

d2l

=  —n$"

d9d(3
=  —n9~l {qc (nc +  Mil) +  2C (1 +  In zc) r cgc -  gc}

j_i /  qc (1 -  +  7(1) (1, *c) ^T1 +  1 -  zc In ̂ c) 1
+ 2C (1 +  In 2C) r cgc -  qc J

= -720"1 jgc + 7(1) (Me) } *

Again, we conclude that these expectations of the second derivatives also approach their 
complete counterparts as c —► oo, and Figures 2.15, 2.16 and 2.17 show these expectations, 
suitably standardised by multiplication by n -1 , for (3 =  2, 9 — 100, over 0 <  c < 400.
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Figure 2.16: Plot of n l E  — versus c, for j3 =  2, 9 =  100 and n  =  1000.

versus c, for (3 = 2, 9 =  100 and n  =  1000.
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2.5.3 A sym p to tic  standard deviations

Substituting these expectations into the elements of (2.33), we obtain our required symmet­
ric matrix

(P  2 {Qc +  7 (2) (L^c) +  27^) ( l , z c)} - 9  1 {gc +  7 (1) (M e)} '
71 V P2°~2(lc

and, with inverse it becomes,

A "1 =  n ' 1 9c7(2) (1>zc) — {7 ^  (l>zc)}2|  x (2.48)

(P 2 Qc 9 {qc +  7 ^) (1 ,zc)} \
V P~2°2 Uc +  7 (2) (1 , zc) +  2 7 W (1 , zc)})'

2.5 .4  C om putational issues

It is now convenient to exploit the connection between the incomplete gamma function and 
the confluent hypergeometric function in order to calculate the elements of the inverse EFI 
matrix required. This approach uses

7 (r, z) =  z rS i (r, z)

s .rr  z ) = y '  (~ z)n 
’ (r  -(- n)lnl

n = 0

where

and satisfies

with
Si (1, z) =  F i , i [ { l , 1}, {2,..., 2}; - z ]  (2.49)

where F^i is the usual hypergeometric function; see (1.13). We therefore have

7 ^  (r, z) = z r (In z) S \ (r, z) -  z rS 2  (r , z ) , (2.50)

and
(r, z) =  z r (In z ) 2  S i (r, z) — 22r (ln z )S 2  (r, z) +  2 zrS 3  (r* z ) . (2.51)

These functions can then be computed using M athem atical HypergeometricPFQ [{ai, . . . ,  ap}, 
{61, . . . ,  bq}, z], and our variance-covariance matrix, (2.48), is constructed. For example, in 
Mathematica, if we specify a value of j3 (beta), 9 ( th e ta ) , and c (c), then we can use the



2.5. T Y P E  I C ENSO RED  MLES A N D  T H E  EFI M A TR IX 44

following code to compute the above functions

zc=N[(c/theta)"beta] 
lc=Log[zc]
sl=HypergeometricPFQ[{1},{2},-zc] 
s2=HypergeometricPFQ[{1,1},{2,2},-zc] 
s3=HypergeometricPFQ[{1,1,1},{2,2,2},-zc] 
gl=zc*lc*sl-zc*s2
g2=lc*lc*qc-2*zc*lc*s2+2*zc*s3 (2.52)

So, for a Weibull distribution with (3 = 2 and 9 = 100, the elements of the censored EFI 
matrix (2.48) at c =  100, can be calculated in M athematica as follows,

ln[l] 
In [2] 
In [3] 
In [4] 
Out [4] 
In [5] 

Out [5] 
In [6] 

Out [6] 
In [7] 

Out [7] 
In [8] 

Out [8] 
In [9] 

Out [9] 
In [10] 

Out [10] 
In [11] 

Out [11]

=beta=2;
=theta=100;
=c=100;
=zc=N[(c/theta)"beta]
=1.

=qc=l-Exp[-zc]
=0.632121 
=lc=Log [zc]
=0.

=sl=HypergeometricPFQ[{1},{2},-zc] 
=0.632121
=s2=HypergeometricPFQ[{1,1},{2,2},-zc] 
=0.7966
=s3=HypergeometricPFQ[{1,1,1>,{2,2,2} , -zc] 
=0.891213
=gl=zc*lc*sl-zc*s2
=-0.7966
=g2=lc*lc*qc-2*zc*lc*s2+2*zc*s3
=1.78243
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In

Out

In

Out

In

Out

Thus, we obtain

, beta*beta*qc12 :=vbc=—  -------- -±—n*(qc*g2-gl*gl)
12] := n -15.1378
. theta*theta*(qc+g2+2*gl)131 :=vtc=—  ----------- -----------n*(qc*g2-gl*gl)*beta*beta

13] := n _14172.3496
theta*(qc+gl)14 :=vbtc=—  ------— 2— -n*(qc*g2-gl*gl)

14] := -  n -133.4214.

! _  _! / 5.1378 -33.4214 
c ~ U \ 4172.3496

It is then straightforward to then obtain the theoretical standard deviations of j3c and 
9C as the square root of the diagonal elements.

2.5.5 Effect o f th e  censoring level

Using the above expectations, we can also obtain the standardised asymptotic variances 

V a r f ^ x / j U ------------------«E----------------
\ P  J gc7(2) ( l ,z c) -  { 7 U) ( l ,z c)}

and
y ar ( x 0 ] =  ^  +  ^ (2) Zc) +  2^ (1) Zc)

6 J q d (2) (1,zc) -  {7 (1) (1,zc) }2 ’

as discussed in Watkins & John (2004). Using the square root of standardised quantities - 
that is, the asymptotic standardised standard deviations - we will assess the effect that the 
level censoring has on the precision of the estimate, as well as comparing these asymptotic 
results to their practical counterparts from simulated Weibull data, with (3 =  2 and $ = 100. 
Watkins & John (2004) presented these results for simulated data from a Weibull distribution 
with (3 = 9 = 1, and one, large sample size, n = 2500; we extend their work with the inclusion 
of several (much smaller) sample sizes, ranging from n = 50 to n = 1000, given below.

We plot the theoretical and simulated standard deviations versus c, at various sample 
sizes. We denote the theoretical standard deviations with a smooth line, unbroken (—)
for Pc, and dashed (-----) for 9C. The simulated results are represented by markers, with a
diamond (♦) for /?c, and a square (■) for 9C.

•  Figure 2.18 shows the theoretical and simulated standard deviations for (3C and 9C, for 
a sample size of 50, at increasing censoring levels. We see at early censoring levels 
there are quite large discrepancies between the theoretical and simulated values, but 
agreement improves as the censoring time is allowed to increase. Figure 2.19 again
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Figure 2.18: Theoretical and simulated standardised standard deviations of f3c (—♦—) and 
0C (- -) versus c, for (3 =  2, 9 =  100, and n  =  50. Simulated values are based on 10,000
replications.

shows some discrepancies between theoretical and simulated standard deviations for 
n  =  100 at early censoring levels, which improve as more items are left to fail.

• We see that for larger sample sizes, n = 300 (Figure 2.20), and n =  500 (Figure 2.21), 
there is good agreement between the simulated and theoretical standard deviations of 
(3C and 0C, with much improvement at early censoring levels when n increases to 500.

•  and for large samples, n =  1000 (Figure 2.22), we see excellent agreement between 
the simulated and theoretical standard deviations of (3C and 9C, even with very early 
censoring.

For all sample sizes, we see excellent agreement between theory and simulations at 
c > 140. We note that the standard deviations are reduced as c increases, this is expected, 
as more failure information is observed with later censoring levels, which, in turn will im­
prove the precision of the estimates yielded. These censored results clearly level off to the 
corresponding complete standard deviations as c —> oo.

2.5.6 Effect o f  th e  shape param eter

As in the complete case, the theoretical standard deviations obtained from the EFI matrix, 
see (2.48), need to be checked against finite simulated samples to assure the suitability of
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Figure 2.19: Theoretical and simulated standardised standard deviations of (3C (—♦—) and 
9C (- -) versus c, for j3 = 2, 9 =  100, and n =  100. Simulated values are based on
10,000 replications.
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Figure 2.20: Theoretical and simulated standardised standard deviations of [3C (—♦—) and
9C (- -) versus c, for /3 =  2, 9 =  100, and n — 300. Simulated values are based on
10,000 replications.
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Figure 2.21: Theoretical and simulated standardised standard deviations of (3C (—♦—) and 
6 C (- -) versus c, for (3 = 2, 9 =  100, and n  =  500. Simulated values are based on
10,000 replications.
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Figure 2.22: Theoretical and simulated standardised standard deviations of (3C (—♦—) and
6C (- -) versus c, for /? =  2, 6 — 100, and n =  1000. Simulated values are based on
10,000 replications.
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p c
50 100 150 200 oo

0.9 0.0416
0.0415

0.0323
0.0323

0.0284
0.0285

0.0263
0.0264

0.0222
0.0224

1 0.0476
0.0478

0.0358
0.0362

0.0311
0.0314

0.0291
0.0288

0.0247
0.0247

1.1 0.0540
0.0546

0.0394
0.0394

0.0338
0.0340

0.0310
0.0313

0.0271
0.0274

2 0.1305
0.1326

0.0717
0.0718

0.0557
0.0559

0.0507
0.0509

0.0470
0.0496

3.5 0.3764
0.3887

0.1254
0.1260

0.0884
0.0892

0.0863
0.0869

0.0863
0.0869

Table 2.12: Theoretical (upper) and simulated (lower) standard deviations of (3C with varying 
c and /?, and fixed 9 =  100, n  =  1000 .

the asymptotic approximations. These checks should also be extended to the asymptotic 
Normal distribution of the MLEs, which we will study in the next chapter.

The above plots clearly illustrate the effect censoring has on the standardised theoretical 
and simulated standard deviations, summarised for (3 = 2 and 9 =  100. We now want to 
expand these checks on the theoretical and simulated standard deviations, numerically, for 
alternative shape parameter values. This should confirm the agreement between theory and 
practice for (3 =  2, when the hazard function is increasing, still holds for decreasing {(3 <  1) 
or constant (/? =  1) hazard functions. We restrain our parameter value options and keep 
9 fixed, because, although varying 9 (with (3 fixed) will change the spread and peak of the 
distribution, it should not affect the characteristics of the hazard function, or the nature of 
the failure data itself, hence, we do not expect that a change in the scale parameter will 
affect the asymptotic approximations used throughout this thesis.

Results for varying the censoring level with sample size fixed at n  =  1000 are shown in 
Tables 2.12 for /?c, and Table 2.14 for 9C; and varying the sample sample size with a fixed 
censoring level of c =  100, are shown in Tables 2.13 for /?c, and Table 2.15 for 9C.

We observe good agreement between these theoretical results and those obtained in 
simulation experiments, for all true values (3 considered here. This agreement improves as 
the sample size increases, and at n  =  1000, we see tha t even for early censored estimates 
the results for theory and practice are consistent.

2.6 The Weibull Quantile Function B \o

We can now use the EFI m atrix found in the previous section to derive the asymptotic 
distribution of Z?io,c. A first order Taylor series about the true parameters (/?, 9) is used 
to express the estimated 10t/l percentile as

J5io,c -  Bio +  b'@ c -  (3,9c -  9)
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0 n
50 100 300 500 1000

0.9 0.1443
0.1510

0.1020
0.1035

0.0589
0.0594

0.0456
0.0455

0.0323
0.0323

1 0.1603
0.1682

0.1133
0.0510

0.0654
0.0663

0.0507
0.0510

0.0358
0.0362

1.1 0.1763
0.1833

0.1247
0.1292

0.0720
0.0717

0.0558
0.0567

0.0394
0.0394

2 0.3206
0.3405

0.2267
0.2307

0.1309
0.1335

0.1014
0.1018

0.0717
0.0718

3.5 0.6490
0.5797

0.3967
0.4065

0.2290
0.2315

0.1774
0.1791

0.1254
0.1260

Table 2.13: Theoretical (upper) and simulated (lower) standard deviations of (3C with varying 
n  and (3, and fixed 9 = 100, c =  100 .

0 c
50 100 150 200 00

0.9 6.7102
6.8553

4.5392
4.5631

4.0223
4.0251

3.8461
3.8659

3.6996
3.7088

1 6.3797
6.4348

4.0853
4.0621

3.5880
3.5516

3.4344
3.4077

3.3297
3.3093

1.1 6.1358
6.1782

3.7139
3.7260

3.2353
3.2286

3.1020
3.0846

3.0270
2.9989

2 5.8028
6.0025

2.0426
2.0672

1.6996
1.6957

1.6678
1.6678

1.6648
1.6666

3.5 8.1390
8.5130

1.1672
1.1789

0.9527
0.9615

0.9513
0.9603

0.9513
0.9603

Table 2.14: Theoretical (upper) and simulated (lower) standard deviations of 9C with varying 
c and /?, and fixed 9 =  100, n  =  1000 .

0 n
50 100 300 500 1000

0.9 20.2999
22.6960

14.3542
15.0484

8.2874
8.4719

6.4194
6.4555

4.5392
4.5631

1 18.2699
19.9034

12.9187
5.8677

7.4586
7.5142

5.7774
5.8677

4.0853
4.0621

1.1 16.6090
17.9513

11.7443
12.4299

6.7806
6.8495

5.2522
5.2733

3,7139
3.7260

2 9.1349
9.4899

6.4593
6.6752

3.7293
3.7926

2.8887
2.9274

2.0426
2.0672

3.5 5.2200
5.4687

3.6912
3.7858

2.1310
2.1486

1.6507
1.6592

1.1672
1.1789

Table 2.15: Theoretical (upper) and simulated (lower) standard deviations of 9C with varying 
n  and (3, and fixed 9 = 100, c =  100 .
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where

and

b =
fd B ^ ' 

d(3 
agio 

v 09 ,

' - 0 / T 2A3 In A' 

A^

A = - I n  0.9. (2.53)

Hence, for large samples we have

E #io,c — #io  +  b 'E  (/?c — (3,0C-  0 ) — Bio

Var (#10,c) — bA ~1b

=  n 1 \qc7 (2) ( l ,z c) -  ( 7 (1) ( l ,z c)}
- l

( —6(3~2\ i  In A x i ) ( ^ Qc 9 {qc +  7(1) (!, ^c)}
r 2^2 k  +  7 (2)( l ^ c ) + 2 7 W (M e)}

- 0 / r 2A0 lnA ’
i

A^

Expanding the quadratic form then gives,

i \ 2r - e r  i ;
i \ 2

—P 2 02  (a^  ̂  In A [qc +  7 ^) (1, zc) -  qc In A] +

(3~292 ( a ^ )  [gc +  7(2) (M e) + 27W (M e) - g cA - 7 (1) (M e) In A]

which then simplifies to

/T 202 ( a^ )
1^2 J  gc (In A)2 -  2 In A (gc +  7 W (1, zc)) 

+9c +  7 (2) (1, *c) + 27(1) (1, zc)

and so we have

V ar  ^Bio,c) =  n  1 [<?c7(2) (M e) -  {7(1) (M e)}  J x

R- 2 n2  ( \ i \ 2  f  1 c (In A)2 -  2 In A (gc +  (1, zc
P  V M  + 9 c  +  7 (2) (1,zc) +  27 W (1 ,Zc)

(2.54)

We note tha t the asymptotic distribution of Bio,c is Normal with the above mean and 
variance; we refer to Mardia et al. (1979), for example, for further details on the asymptotic 
distribution of non-linear functions of MLEs. As with the MLEs of ft and 6 , we will need to 
assess the extent to which these asymptotic properties hold in finite samples. We further
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note that allowing all items to fail (c —> oo) we will obtain, for the complete case

E

and

Var  (B io) =  b A _1b

-Bio =f -Bio

=  G n -'n - 2 ^ 2  ( \ (In A)2 — 2 In A(1 — 7 ) +  +  (7 -  1): (2.55)

2 .6 .1  E ffe c t o f  c e n s o r in g  lev e l a n d  s h a p e  p a r a m e te r

As for the estimators /3C and 6 C, we will once again need to assess the agreement between 
these asymptotic results and their simulated counterparts on finite sample data. First, we 
can observe the effect that the level censoring has on the precision of the estimate Bio,C5 35 
well as comparing these asymptotic results to their practical counterparts from our simulated 
Weibull data, with (3 = 2 and 6  = 100. More thorough numerical checks of the asymptotic 
theory for Weibull data with various censoring levels, sample sizes, and shape parameter 
values, will follow below.

In Figures 2.23, 2.24, 2.25, 2.26 and 2.27, we plot the theoretical and simulated standard 
deviations versus c, at sample sizes n  =  50,100,300,500 and 1000 respectively. We denote 
the theoretical standard deviations with a smooth line, (—) the simulated results are rep­
resented by a diamond (♦) .  We see tha t when n is small there are noticeable differences 
between theoretical and simulated standard deviations at early censoring times, but this is 
small at n =  300, and has effectively disappeared when the sample size increases to  n  — 500.

As we would expect, the standard deviations are smaller for later censoring levels, reach­
ing the standard deviations for the complete sample, obtained from (2.55), as c —+ oo.

Tables 2.16 and 2.17 show the theoretical and simulated standard deviations of Bio,c 
for various censoring levels and sample sizes. When we vary the sample size and keep the 
censoring level fixed at c =  100, we see tha t the simulated sample standard deviations are 
closer to their theoretical counterparts as n  increases. We can see that for large sample size 
(ti =  1000) we have excellent agreement between theory and practice at all censoring levels, 
but we note that for small n, observed values are slightly higher. This was illustrated for 
(3 = 2 in Figure 2.27. Tables 2.16 and 2.17 confirm tha t the general pattern seen for (3 = 2 
holds for all shape parameter values.

2.7 Practical Considerations

From an experimental point of view, consideration must be given to the choice of how many
items to test (n), and the time, c, at which we stop the experiment. From a statistical
perspective, we would prefer to test as many items as possible, and allow all of these items to
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Figure 2.23: Theoretical (—) and simulated (♦) standard deviations of Rio)C versus c, for 
(3 =  2, 6  =  100, and n — 50. Simulated values are based on 10,000 replications.
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Figure 2.24: Theoretical (—) and simulated (♦) standard deviations of Rio,c versus c, for
(3 =  2, 6 =  100, and n =  100. Simulated values are based on 10,000 replications.
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Figure 2.25: Theoretical (—) and simulated (♦) standard deviations of Rio,c versus c, for 
(3 = 2, 0 — 100, and n  =  300. Simulated values are based on 10,000 replications.
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Figure 2.26: Theoretical (—) and simulated (♦) standard deviations of Rio,c versus c, for
/? =  2, 6 =  100, and n =  500. Simulated values are based on 10,000 replications.
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Figure 2.27: Theoretical (—) and simulated (♦) standard deviations of Bio,c versus c, for 
( 3  =  2, 9 =  100, and n  =  1000. Simulated values are based on 10,000 replications.

(3 c
50 100 150 200 oo

0.9 0.7705
0.7703

0.7445
0.7443

0.7231
0.7193

0.7077
0.7024

0.6665
0.6608

1 0.8922
0.8924

0.8604
0.8586

0.8328
0.8324

0.8133
0.8127

0.7702
0.7737

1.1 0.9969
1.0001

0.9598
0.9654

0.9258
0.9356

0.9023
0.9092

0.8592
0.8689

2 1.3820
1.3807

1.3254
1.3212

1.2414
1.2435

1.2049
1.2001

1.1864
1.1852

3.5 1.6641
1.6785

1.2267
1.2318

1.1098
1.1169

1.0981
1.1054

1.0981
1.1055

Table 2.16: Theoretical (upper) and simulated (lower) standard deviations of Bio,c with 
varying c and (3, and fixed 9 =  100, n — 1000.
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0 n
50 100 300 500 1000

0.9 3.3297
3.5726

2.3544
2.5045

1.3593
1.4048

1.0529
1.0652

0.7445
0.7443

1 3.8480
4.1481

2.7209
2.7858

1.5709
1.5595

1.2168
1.2176

0.8604
0.8586

1.1 4.2923
4.5038

3.0351
3.1436

1.7523
1.7813

1.3573
1.3669

0.9598
0.9654

2 5.9274
5.9666

4.1913
4.2066

2.4199
2.4351

1.8744
1.8662

1.3254
1.3212

3.5 5.4860
5.4522

3.8792
3.8915

2.2396
2.2539

1.7348
1.7344

1.2267
1.2318

Table 2.17: Theoretical (upper) and simulated (lower) standard deviations of Rio,c with 
varying n  and /?, and fixed 9 =  100, c =  100.

fail, but clearly limited resources will generally restrict both sample size and censoring time. 
We have investigated the theoretical standard deviations for Weibull parameter estimates 
j3c and 6 C as well as the quantile estimate Rio,c> at various sample sizes and censoring levels, 
and have shown tha t these asymptotic results hold in finite samples.

We can conclude tha t for (3 and 6 , large sample sizes will generally yield more precise 
estimates, but, when using a censoring regime, gains can be made in the precision if we 
reduce the sample size, as long as the censoring time is then increased.

However, Rio is often a more useful quantity to estimate, in particular for establishing 
warranty periods, and, in fact Figures 2.23 to 2.27 show that the same benefits cannot be 
achieved here. At n  =  1000, even for the earliest censoring time studied, c =  50, the 
estimate is more precise than those yielded from any smaller, complete, sample. It seems 
that in circumstances where the running costs of the experiment are more expensive than 
the cost of the items put to test, it would be more beneficial to  increase the sample size 
being tested, and lower the censoring time, as this would yield the most precise estimate at 
the lowest cost.

We have only looked at selected sample sizes and censoring times, and, for the purpose 
of assessing the suitability of the asymptotic approximations, these are, we argue, sufficient. 
However, further simulation experiments would be beneficial in finding an optimal level of 
censoring, and sample size, and evaluating the balance between obtaining adequate precision 
and experiment expenditure, in terms of a cost function. This will not be considered as 
part of this thesis, but is noted as a topic for further research.

2.8 Summary

In this chapter we have examined examples of fitting the Weibull distribution to both
complete and censored data. We have employed the EFI matrix to yield asymptotically valid
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variances and covariances of MLEs of the shape and scale parameters, as well as variances 
of functions of the parameters, in particular B \q. These parameter results feature widely 
in statistical inference, but published discussions generally give the observed information, 
see Nelson (1982) for example, or leave the EFI in terms of general integrals. This chapter 
provides formulae for the elements of the matrix, discusses their computation and behaviour, 
and assesses the worth of these asymptotic variances in finite samples. We have compiled 
the results of extensive simulation studies in order to check such approximations to the 
moments of the Weibull parameter MLEs, and have shown tha t there is good agreement 
between the theoretical approximations and simulated values, even for small sample sizes, 
which is somewhat contrary to assertions made in Nelson (1982).

Further to the study of moments of MLEs, in Chapter 3 we conduct an investigation 
to the distribution of the MLEs, which due to the asymptotic properties we know to be 
Normal for large samples, see Ansell & Phillips (1994) for example, but there is no reference 
to how large a sample needs to be for this to hold. We consider the rate at which the MLEs 
reach Normality, with increasing n, and also indicate the effect Type I censoring has on this. 
This progress should confirm the suitability of the asymptotic approximations in small to 
moderate samples. This extends the work introduced by Chua et al. (2007), where the 
emphasis concentrated on Type II censored Weibull data.

Obviously, where the sample size is too small for Normality to be assumed, a different 
method to measure the precision of the MLEs must be used. Several papers have dis­
cussed alternative approaches to the "Normal-theory" to obtain confidence regions, using 
the relative likelihood function, see Meeker Sz Escobar (1995) for example. As well as being 
asymptotically equivalent to the Normal confidence regions, studies by Watkins (2004) and 
Chua et al. (2007), for example, have shown tha t relative likelihood contours reflect more 
accurately the behaviour of the distributions of MLEs for small sample sizes. This will be 
the focus of Chapter 4.

The final strand of the thesis is to use these asymptotic theoretical results discussed 
hitherto, to explain the relationship between the time of censoring and the value of the MLE. 
Using the ball bearings data, Kalbfleisch (1979), computed MLEs for the complete data, 
and then worked backwards, imagining the experiment had been censored at 75 millions 
revolutions, recalculated the censored MLEs and compared the results. We, on the other 
hand, would like to work along the same time line as the experiment, and, as discussed 
using Figures 2.1, 2.2 and 2.3, we wish to find the extent to which the censored estimate 
obtained in an interim analysis, can be regarded as a reliable guide to the complete estimate, 
obtained when the last item fails.



Chapter 3

A sym ptotic N orm ality o f MLEs

The general property of asymptotic Normality of the MLEs is discussed in all of the key 
texts available in the field of reliability and statistical inference generally; we refer to Cox Sz 
Hinkley (1974) for a detailed discussion, based on the theoretical proof in Cramer (1946). 
Due to the assumptions and asymptotic approximations made in the previous chapters, a 
larger scale investigation seems appropriate. We consider the implications of asymptotic 
Normality, and more importantly, are any of these conditions met in finite samples?

3.1 Approximate Confidence Regions

We know that, asymptotically, /̂3C, 9^j follows the Normal distribution with mean (/?, 9) 
and covariance matrix equal to the inverse of the EFI matrix, given in (2.48). This, in 
turn, gives the approximate confidence regions for the sampling distribution of ^/?c, 9CJ ; for 
example, the (1 — a) 100% confidence limits for j3 is

Pc± s a/2yjvar

for saj 2  satisfying
P r { S < s a/2} =  l - | ,

where S  follows the standard Normal distribution, and sQ/2 is easily obtained from a Normal 
table, see for example Murdoch & Barnes (1974). So, for a  = 0.05, our 95% confidence 
intervals for the true Weibull parameters are

/? =  /3c ± 1 .9 6 \ I V a r ( 0 c ) (3.1)

and

9 = 9C dh 1.96a Var ($c), (3.2)
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where, from (2.48), we have the approximate variances,

(32 qcVar
n

and

<?c7(2) (Me) -  {7 (1) (Me)}'

V a r  l a  , f } ~ 2 8 2  {qc +  7(2) (1, Zc) +  27(1) (1. *c)}
n 9C7(2) (1,^c) — {t (1) ( M c)}‘

where (3,9, and therefore qc and zc, are unknown (except in simulation experiments), and 
have to be replaced by the estimates (3C and 9C in practice. We expect to see symmetric 
confidence intervals for a single parameter.

Revisiting the ball bearings in Table 1.2, if censored at c =  100, via (3.1) and (3.2) we 
obtain the approximate confidence intervals for (3 and 9 to be

(3 = (3C ±  1.96y Var  ^

=  2.2400 ±  1.96V0.2007 

=  (1.3620,3.1180) (3.3)

and

9 = 0C ±  1.96y  V ar

=  80.3159 ±  1.96\/69.6458

=  (63.9589,96.6729) (3.4)

In practice, the s value, saj 2  — 1.96 would be replaced by t  value, and we refer to Mont­
gomery & Runger (1994) for further details.

Similarly for bivariate (j3c, 9 ^ j, asymptotic Normality implies tha t the sampling distri­

bution of (j3c, 9^j is characterised by ellipses of constant density, defined by

\ 0 - O oJ  \ e - e 0J

for arbitrary non-negative c. Since, asymptotically,

( 0 - 0 c \  ,  ( 0 - 0 c \  2

U - 8 .

Watkins (2004) illustrates that due to the convergence of observed and expected Fisher infor­
mation matrices, an approximate 100 (1 — a) % confidence region for ((3,9) can be obtained
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Figure 3.1: 95% Confidence Ellipse around the MLEs for the Ball Bearings data at c — 100. 

by calculating the ellipse

f  R - R \ '  . / r - r \
= —2 k m

where J c is the observed Fisher information matrix. This result depends on unknown (3 
and 9, therefore in practice we use the estimates (j3c, 9 ^ j , and the notation J c.

We can therefore construct the 95% confidence ellipse for the ball bearings data, censored 
at c =  100, and this is shown in Figure 3.1. From a brief investigation of the ellipse, we see 
tha t the limits deduced above in (3.3) and (3.4) for f3 and 9 provide a rough guide to the 
scope of the confidence ellipse of ((3,9).

3.1 .1  A sym p to tic  assum ptions in  sm all sam ple sizes

Are these asymptotic approximations suitable in the inference of small to moderate samples, 
such as the ball bearings data? There seems to be a consensus within these key texts, tha t 
these large sample theory approximations do not hold very well for small to moderate 
sample sizes, see for example, Shenton & Bowman (1977). However, there appears to be 
no referenced information suggesting how big a sample should be before these asymptotic 
assumptions may hold. In this chapter we will not be looking to test Normality at any 
given sample size, but instead to show, using our simulated estimates, tha t at a small sample 
size the MLEs are non-Normal, and eventually when the sample size gets larger, the MLEs
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become Normally distributed. Our interest is the rate at which this occurs for different 
shape parameter values and censoring levels. As always, we simulate N  =  10,000 failure 
times from a Weibull distribution, for various sample sizes and censoring levels. We set 
0 =  100 and vary the shape parameter (3, as the value of this parameter will affect the 
hazard function, and therefore has a large influence on the nature of the data.

We use the properties of the bivariate Normal distribution, in particular the necessary, 
but not sufficient, condition that each marginal distribution is univariate Normal, and so an 
initial conclusion of non-Normality of and 6 C would confirm multivariate non-Normality. 
We will therefore begin by checking the distribution of the MLEs for individual parameters, 
and then will extend our testing to the multivariate Normal tests described below.

Another interesting aspect for study is the rate at which the quantile function Rio, 
approaches Normality, and we will explore the estimates of Rio further on in this chapter.

3.2 Tests and Measures of Univariate Norm ality

There are many discussions of tests of normality, and we refer to D’Agostino & Stephens 
(1986), and more recently, Khattree &; Rao (2003) (Chapter 24), and Thode (2002) for a 
detailed outline on such tests. We will discuss some of the best known tests and review the 
literature advice and recommendations.

3.2.1 B asic  S ta tistica l Sum m aries

This section introduces moment based tests, tha t is, tests for skewness, %/&!? and tests of 
kurtosis, &2- More details, and suggestions for using these tests, are discussed in D’Agostino 
et al. (1990). We let 0 be a Normal random variable with mean ji, and standard deviation <7, 
then we define the skewness and kurtosis using the third and fourth standardised moments

%/ft =

~

E 4>-\l e [ 4 - A*

E

E

3
2 \  2

E 4>-\l
cr4

and for the Normal distribution these are equal to 0 and 3 respectively. D’Agostino & 
Stephens (1986) shows that the sample estimates of y/P[ and j32  can be used to  describe 
non-Normal distributions, by using the standardised third and fourth moments, given by

m l
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0 A b2 % in  C l % < C I % > C I
0.8 0.54 3.51 93.67 5.65 0.68
1 0.61 3.64 93.37 6.13 0.50
2 0.69 4.00 92.98 6.36 0.66
3.5 0.50 3.33 94.26 5.09 0.65

Table 3.1: Tests of skewness and kurtosis of /3C yielded from a Weibull distribution with 
various /?, and fixed 0 =  100, c =  100, and n =  50.

and
m 4 

02 =  —2 m 2

where

m k = — — —--------, k = 2 ,3 ,4

and </> is the sample mean. Under Normality, these statistics would then have expected 
values of 0 and = 3 7̂ 4 -

For each estimate, we can investigate the symmetry around the calculated confidence 
intervals, again with the focus on the effect of censoring and the nature of the data, de­
termined by the shape parameter (3 of the sampling distribution of Via the
asymptotically derived confidence limits, (3.1) and (3.2), for each simulated MLE, we can 
obtain the corresponding 95% confidence interval. By counting how many of these con­
fidence intervals contain the true parameter value, as well as the percentage of confidence 
limits with MLEs th a t fall either below the lower limit, or above the upper limit, we can 
judge the effectiveness of the Normal assumption We would expect symmetric intervals, 
with 95% of true param eter values to lie within the intervals, and thus 2.5% to fie below 
and 2.5% to lie above the limits.

Results and discussion

As we see from Tables 3.1 and 3.2, this is far from the case at n  =  50. The coverage of the 
confidence intervals are good (close to 95%), but a much higher proportion of the true values 
tha t are not within the interval are below the lower limit, again suggesting right skewness 
of the MLEs, which is confirmed by the values of y/b[ yielded (all greater than 0). A slight 
improvement is noticed as n  increases to 500, see Tables 3.3 and 3.4. In fact we do not see 
symmetry until n  =  5000, for both parameters, in Tables 3.5 and 3.6. This is consistent 
across the various values of the shape parameter j3 investigated.

3 .2 .2  P rob ab ility  P lo ts

A Q — Q (Quantile-Quantile) plot involves plotting the sample order statistics against the
"expected" quantiles from a standard Normal distribution. The first step is to sort the
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P A 62 % in  C l % <  C l % > C I
0.8 1.44 7.69 92.99 6.80 0.21
1 1.13 5.64 93.64 5.89 0.47
2 0.70 4.42 94.14 4.80 1.06
3.5 0.56 3.91 94.26 5.09 0.65

Table 3.2: Tests of skewness and kurtosis of 0C yielded from a Weibull distribution with 
various /?, and fixed 9 =  100, c =  100, and n = 50.

P A b2 % in  C l % <  C l % > C I
0.8 0.19 3.09 94.81 3.56 1.63
1 0.21 3.16 94.72 3.68 1.60
2 0.18 3.14 95.39 3.09 1.52
3.5 0.16 3.01 94.88 3.28 1.84

Table 3.3: Tests of skewness and kurtosis of (3C yielded from a Weibull distribution with 
various /3, and fixed 0 =  100, c =  100, and n =  500.

P A b2 % in C l % < C l % > C I
0.8 0.32 3.36 95.18 3.24 1.58
1 0.34 3.28 94.72 3.59 1.69
2 0.21 3.17 95.12 3.15 1.73
3.5 0.16 3.09 94.70 3.23 2.07

Table 3.4: Tests of skewness and kurtosis of 9C yielded from a Weibull distribution with 
various /?, and fixed 9 =  100, c =  100, and n =  500.

P A 62 % in C l % < C I % > C I
0.8 0.00 3.02 95.11 2.51 2.38
1 0.06 3.04 94.90 2.88 2.22
2 0.04 2.98 95.14 3.00 1.86
3.5 0.10 3.13 95.25 2.80 1.95

Table 3.5: Tests of skewness and kurtosis of j3c yielded from a Weibull distribution with 
various /?, and fixed 9 =  100, c =  100, and n =  5000.

P A b2 % in  C l % < C I % > C I
0.8 0.11 3.10 94.94 2.85 2.21
1 0.05 2.99 95.16 2.66 2.18
2 0.02 3.01 95.16 2.48 2.36
3.5 0.04 2.94 95.05 2.63 2.32

Table 3.6: Tests of skewness and kurtosis of 9C yielded from a Weibull distribution with
various /3, and fixed 9 =  100, c =  100, and n =  5000.
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observations to obtain order statistics

0(1) > 0(2) > —j0(jv)

these are the empirical quantiles used as the ordinates on the plot. Values for the abscissa 
of the empirical quantiles must now be chosen, and a commonly used plotting position is

The pairs
( ^ _1 (p i), 3>(i))

axe then plotted. The Q — Q plot allows us to see if the two cdfs differ only in scale and 
location; if the cdfs are in good agreement then the plotted points will lie on a straight line, 
any systematic deviation from linearity in the plot indicates tha t the data is not Normal. 
Kalbfleisch (1979) comments that Q — Q plots are widely used in goodness of fit tests, hence 
we use this graphical method as an initial guide to the suitability of the assumed Normal 
distribution in our finite simulated samples of MLEs, for various shape parameter values 
and sample sizes. A formal test will follow to provide further confirmation and information 
to the Q — Q plots. We refer to Thode (2002) for a more detailed discussion on probability 
plotting, including an outline of standardised P  — P  (Percentile-Percentile) plots, which 
allow some goodness-of-fit tests based on the correlation between sample and theoretical 
probabilities; these plots are more sensitive to detecting discrepancies in the middle of the 
distribution.

Output and discussion

Each Q — Q plot (Figure 3.2 to 3.17) gives the quantiles plotted for a sample obtained from 
complete failure data, ( x ) , and the sample when failures are censored at c = 100, (o). We 
start with a sample of 10,000 MLEs calculated from a generated Weibull distribution with 
parameters (3 = 0.8 and 0 = 100; we first examine the distribution of j3c for increasing n, 
and then repeat for 0C.

At n  =  50, Figure 3.2 shows a clear curved pattern with slope increasing from left to 
right, indicating tha t the distribution of }3C is skewed to the right. The same pattern is 
seen in both the complete and censored plots, with a larger range of expected and observed 
value indicated for the censored estimate, particularly in the right hand tail. There also 
seems to be a levelling effect at the tails of the censored plot, which can indicate truncation.

As n  increases to  500 (see Figure 3.3), the right skewness is reduced, and both the cen­
sored and complete estimate plots are more symmetric, lying on the 45° line. As expected, 
a wider range of values are observed in the censored estimates, and there are more outliers 
present.
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Figure 3.2: Q — Q plot for (3C, based on data generated from a Weibull distribution with 
(13,0) =  (0.8,100) and n — 50.
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Figure 3.3: Q — Q plot for (3C, based on data generated from a Weibull distribution with
(/?, 0) =  (0.8,100) and n =  500.
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Figure 3.4: Q — Q plot for 0C, based on data generated from a Weibull distribution with 
(0,0) =  (0.8,100) and n = 50.

The Q —Q plot of 6C at 0  =  0.8 differs from the corresponding plot for 0 C. There are now 
noticeable differences between the complete data estimates and those obtained at c — 100. 
The complete plot is much less skewed, and there appear to be many more observed outliers 
to the right in the censored case. These outliers reduce as n  reaches 500, and the censored 
plot is a closer reflection of the complete MLEs.

The same pattern is displayed for the Q — Q plots for 0 = 1 ,  shown in Figures 3.6, 3.7, 
3.8 and 3.9. More outliers are present in the plot of 9C than 0 C, and the MLEs become 
more Normally distributed as n  increases.
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Figure 3.5: Q — Q plot for 0C, based on data generated from a Weibull distribution with 
{(3,9) =  (0.8,100) and n = 500.
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Figure 3.6: Q — Q plot for fic, based on data generated from a Weibull distribution with 
(P,9) =  (1,100) and n =  50.
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Figure 3.7: Q — Q plot for (3C, based on data generated from a Weibull distribution with
(P,0) =  (1,100) and n =  500.
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Figure 3.8: Q — Q plot for 9C, based on data generated from a Weibull distribution with 
(l3, 6) — (1,100) and n  =  50.
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Figure 3.9: Q — Q plot for 0C, based on data generated from a Weibull distribution with
(/?, 9) =  (1,100) and n =  500.
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Figure 3.10: Q — Q plot for (3C, based on data generated from a Weibull distribution with 
((3,6) =  (2,100) and n =  50.

Clearly from the Weibull pdf, Figure 1.1, (3 = 2 has a completely different shape to the 
distribution when (3 < 1. The Q — Q plots for (3C, Figures 3.10 and 3.11, however, are 
not dissimilar. The Q — Q plots for 6C, Figures 3.12 and 3.13, show a larger discrepancy 
between censored and complete estimates.
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Figure 3.11: Q — Q plot for /3C, based on data generated from a Weibull distribution with 
(/?, 0) =  (2,100) and n =  500.
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Figure 3.12: Q — Q plot for 9C, based on data generated from a Weibull distribution with 
(/3,9) =  (2,100) and n = 50.
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Figure 3.13: Q — Q plot for 9C, based on data generated from a Weibull distribution with
(/?, 9) =  (2,100) and n =  500.
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Figure 3.14: Q — Q plot for /?c, based on data generated from a Weibull distribution with 
03,6) =  (3.5,100) and n  =  50.

Once again the same pattern of right skewness is present in the Q — Q plots of the MLEs 
generated from a shape parameter (3 =  3.5 (Figures 3.14, 3.15, 3.16 and 3.17), becoming 
more symmetric in j3c as both n  and c increases, and a near normal (close to the 45° line) 
plot for complete 9, even at small sample sizes.
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Figure 3.15: Q — Q plot for /?c, based on data generated from a Weibull distribution with 
(/?, 9) =  (3.5,100) and n =  500.
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Figure 3.16: Q — Q plot for 0C, based on data generated from a Weibull distribution with 
(0,0) =  (3.5,100) and n = 50.
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Figure 3.17: Q — Q plot for 6C) based on data generated from a Weibull distribution with
(0 ,6) =  (3.5,100) and n =  500.
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3.2 .3  Form al N orm ality  Tests

The formal tests tha t have been developed can be classified as graphical tests, EDF tests, 
moment based tests, and Shapiro-Wilk regression tests.

EDF Tests

Empirical distribution function (EDF) tests essentially enable us to test the hypothesis that 
the data comes from a proposed distribution, and are based on the differences between the 
observed and theoretical ecdf. For a random sample 0 l5 under the hypothesis
tha t the data is Normal, we have

[<%> -  A
p ( . )  _  $  i  i--------------------- j .

where p  and a  are the sample mean and standard deviation, respectively. EDF tests reject 
the null hypothesis (Normality) when discrepancies between the EDF of a sample, defined 
as

and p (j) are too large.
The Kolmogorov-Smirnov test statistic, D, is defined as the maximum vertical distance 

between the ecdf, Fjv (jf>j, and the proposed (in our case, normal) cdf, p yy  The larger D  
is, the worse the fit between the theoretical distribution and data set, and so significantly 
large values of D  lead us to reject the hypothesis tha t the underlying data is adequately 
modelled using the proposed distribution. We also have the goodness of fit test statistics 
denoted by

I '

and
1 n

A 2 = - n  -  -  2 J  [(2* -  1) (logp(j) +  log (1 -  ?(„+!_«)))]
i=l

where W 2 is the Cramer-von Mises tests statistic, and A 2 is the Anderson-Darling statistic. 
If these numbers are too large then the hypothesis of normality is rejected. Modifications 
to the EDF test statistics are derived in Stephens (1974), so tha t the critical values for each 
test are independent of the sample size, and tha t source provides further information on 
goodness of fit tests.

M oment based tests

The \fb[ and 62 statistics are very useful in indicating the type of non-Normality, and can
judge if the non-Normality will affect any inferences to be made with the data, for example,
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if a t — test is to be applied to the data or a prediction is to be made. Omnibus tests, which 
have good power properties over a range of non-Normal distributions, have been developed 
using a combination of the sample estimates\/&i and 62, and will be discussed in a later 
section. A detailed review of skewness and kurtosis tests is given in D ’Agostino et al. (1990). 
They also describe a method to implement the tests into available statistical packages, that 
is, it shows how to calculate the normal approximations to  \fb[ and 62, Z  (V^i) and Z  (62), 
and then uses these approximations to calculate the D ’Agostino-Pearson K 2 omnibus test, 
discussed in D ’Agostino k  Pearson (1973), as below

K 2 =  Z 2 ( v ^ )  +  Z 2 (62) •

The K 2 statistic has approximately a x 2 distribution with 2 degrees of freedom when 
the population is normally distributed. Since x! 1S the negative exponential distribution, 
pdf (1.23), with 0 =  2, the critical value for an upper tail probability of p is

-21n(p).

Therefore, for p  =  0.05 we obtain the critical value 5.9915.

Shapiro-Wilk Tests

The W  tests statistic is the ratio of the square of a linear combination of the sample order 
statistics to the usual corrected sum of squares estimator of variance, s2, Shapiro k  Wilk 
(1965). We denote Wi the vector of expected value of the i th order statistic, and V  as the 
covariance matrix of the order statistics, <̂ >(1 ) ,  0(2)> •••, 4>(n )- We then let (f/ denote a vector 
of the ordered random observations, then the Shapiro-Wilk tests statistic is given by

v r =  W )2
(n — l) s 2’ 

where we define
,  y v - 1

ai — (&1) •••) &n)
(w 'V -W - 'w )*

Small values of W  lead to the rejection of the null hypothesis of Normality.
More details of the approximations associated with the W  statistic are given in Shapiro 

k  Wilk (1965). This test was initially derived for sample sizes of n  < 50, and there is some 
literature covering the extension of this basic test to larger sample sizes, see D’Agostino 
(1971) and Shapiro k  Francia (1972). However, the Shapiro-Wilk test, and its extensions, 
see Royston (1982), are only recommended for a sample size up to 2,000, and will therefore 
not be used to test our simulated samples of 10,000 MLEs, due to the extensive calculation 
that would be involved.
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c n
50 100 500 1000 2500 5000

50 1024.74 578.23 97.51 28.27 34.86 8.54
100 500.58 337.48 65.48 12.80 27.68 0.17
150 334.77 268.55 74.36 7.93 19.78 1.19
200 308.31 223.27 36.47 11.85 10.18 2.89
oo 448.32 162.40 28.62 16.96 13.34 1.17

Table 3.7: K 2 test statistics for Pc yielded from simulated Weibull data with (/?, 9) =  
(0.8,100) for various n and c.

c n
50 100 500 1000 2500 5000

50 7503.46 3712.21 477.82 336.90 129.62 49.20
100 3023.02 1278.22 202.54 97.67 25.19 24.88
150 1525.78 562.97 118.68 49.77 22.66 3.12
200 775.14 291.23 82.05 23.87 17.12 4.65
oo 278.75 121.67 52.59 15.61 13.76 1.17

Table 3.8: K 2 test statistics for 6C yielded from simulated Weibull data with (/3,6) =  
(0.8,100) for various n  and c.

Power Comparisons and recommendations

We note here th a t comparative tests for univariate Normality are discussed more thoroughly 
in Shapiro et al. (1968), and literature shows tha t the recommendations for using specific 
tests are based on a number of factors, such as simplicity of calculation, power of the 
test, including the alternative options, and also the availability of critical values. Despite 
probably being the most well known EDF test, the Kolmogorov-Smirnov test gives the 
weakest results compared to the others, and recent texts are unanimous tha t this test 
should never be used, see Thode (2002) for example. Due to  the power properties discussed 
above, we use the D’Agostino-Pearson K 2 omnibus test, D ’Agostino & Pearson (1973), for 
our samples of MLEs.

3.2.4 R esu lts  and d iscussion

Tables 3.7 to 3.18 display the corresponding K 2 statistics, with bold values indicating a 
Normal distribution (K 2 < 5.9915). The indications of non-Normality in the Q-Q plots 
for P =  0.8 are confirmed by the K 2 statistics in Table 3.7. We see tha t Normality is 
not reached until n = 5000, and also tha t due to the nature (early failures) of the data 
at P — 0.8 there is not a substantial difference to the distribution of the MLEs after the 
censoring level increases past c =  100. Again, Table 3.8 shows tha t Normality is not 
detected until n =  5000, and then only for complete and late censoring levels.

As the hazard function changes dramatically around P = 1, we also include the K 2 
statistics for p  =  0.9 and p  =  1.1 in Tables 3.9, 3.12, 3.11, and 3.14. For each shape
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c n
50 100 500 1000 2500 5000

50 1222.40 524.04 108.67 67.76 31.71 21.98
100 564.44 288.86 60.09 37.42 17.23 6.42
150 408.38 238.92 37.11 25.57 12.69 7.90
200 439.58 181.32 25.30 22.75 8.18 2.22
00 540.49 233.02 38.94 18.87 19.26 1.68

Table 3.9: K 2 test statistics for (3C yielded from simulated Weibull data with {(3,9) = 
(0.9,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 1605.82 725.74 124.45 63.21 13.15 15.27
100 638.50 395.93 81.07 30.71 16.05 6.28
150 421.96 303.20 51.95 15.72 17.99 6.61
200 359.18 236.21 51.34 10.46 7.23 6.53
CO 503.76 297.56 61.11 25.46 7.68 9.22

Table 3.10: K 2 test statistics for (3C yielded from simulated Weibull data with {(3, 9) — 
(1,100) for various n  and c.

parameter, we see that K 2 statistics for j3c and 6C decrease for increasing n  and c, thus 
indicating an approach to Normality. We also note that there are more K 2 <  5.9915 
observed for the samples of 6C than fic.

We notice from the Weibull pdf (Figure 1.1) tha t for (3 =  2, the amount of failures 
occurring after time y =  100 begins to decrease, which is reflected in the K 2 statistics 
in Table 3.15, with Normality measures similar to the complete MLEs at censoring levels 
greater than 150. This is true for all sample sizes, and again, normality is only attained at 
large n. The larger discrepancy between censored and complete estimates, shown earlier in 
the Q — Q plots for 6C (Figures 3.12 and 3.13), is confirmed by the K 2 statistics in Table 
3.16. It is still true that the Normality measures become similar at censoring levels greater 
than 150, but there is a much bigger difference at early censoring. Normality is achieved 
at much smaller sample sizes in 9C.

c n
50 100 500 1000 2500 5000

50 1877.71 783.25 129.79 93.64 11.58 10.25
100 711.14 322.11 40.21 40.35 6.70 4.43
150 426.18 170.65 25.83 14.30 7.59 0.41
200 285.69 151.58 16.44 9.52 4.33 0.74
oo 454.99 200.86 35.70 18.43 6.40 3.73

Table 3.11: K 2 test statistics for j3c yielded from simulated Weibull data with {(3,6) =
(1.1, 100) for various n and c.
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c n
50 100 500 1000 2500 5000

50 12978.40 3178.07 629.21 298.66 78.62 44.99
100 2508.50 1201.61 123.79 87.66 18.45 11.93
150 884.85 435.64 46.50 21.09 4.04 2.41
200 535.46 254.52 24.32 15.29 6.72 2.42
oo 184.01 129.47 15.75 2.69 2.45 4.82

Table 3.12: K 2 test statistics for 9C yielded from simulated Weibull data with ((3,0) =  
(0.9,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 10901.33 3229.06 543.60 318.44 143.74 38.31
100 2043.07 773.16 207.71 84.43 31.54 4.57
150 557.71 382.88 65.29 22.57 15.00 0.06
200 254.43 184.89 37.91 14.39 6.28 1.56
oo 40.09 87.63 26.31 9.12 2.94 1.65

Table 3.13: K 2 test statistics for 9C yielded from simulated Weibull data with ((3,9) =  
(1,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 9040.95 3952.98 601.61 287.78 82.94 40.54
100 2306.51 915.54 90.60 61.07 28.65 16.95
150 437.80 306.95 20.02 18.42 5.52 8.96
200 192.60 130.57 12.20 9.35 4.77 5.07
CO 92.61 72.10 6.58 5.35 5.98 3.83

Table 3.14: K 2 test statistics for 9C yielded from simulated Weibull data with ((3,9) =  
(1.1,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 18119.57 1912.81 162.75 119.68 58.71 19.27
100 851.13 253.06 61.54 10.84 11.05 2.36
150 455.72 150.60 19.46 14.09 1.03 0.64
200 519.85 154.88 21.61 24.48 3.52 2.76
00 619.99 208.56 33.17 28.58 4.72 1.39

Table 3.15: K 2 test statistics for (3C yielded from simulated Weibull data with ((3,9) =
(2, 100) for various n and c.
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c n
50 100 500 1000 2500 5000

50 17447.69 4836.94 912.78 305.56 137.92 68.82
100 978.45 408.74 79.83 34.04 18.50 12.45
150 22.56 14.36 2.00 2.57 1.47 0.75
200 8.98 1.97 0.30 1.67 0.48 0.22
oo 8.91 0.77 0.15 1.69 0.26 0.21

Table 3.16: K 2 test statistics for 9C yielded from simulated Weibull data with (/?, 9) =  
(2,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 17201.16 12610.99 811.23 382.51 156.35 56.21
100 407.89 289.06 44.90 26.63 15.00 21.44
150 282.36 167.62 43.33 10.86 25.31 9.28
200 333.85 210.05 52.21 15.52 25.62 15.68
00 334.41 210.89 52.76 15.60 25.87 15.73

Table 3.17: K 2 test statistics for (3C yielded from simulated Weibull data with (/?,9) = 
(3.5,100) for various n and c.

The K 2 test results for f3 =  3.5 in Tables 3.17 and 3.18 show tha t in fact (3C does not 
reach Normality in this case, whereas 9C appears to follow a Normal distribution in samples 
as small as n — 50, provided the censoring level, c, is greater than 100.

3 .2 .5  D iscu ssion

The simulation tests performed on (3C and 9C all agree tha t asymptotic Normality is implau­
sible in small to moderate, or highly censored data sets. The rate of reaching Normality 
with increasing sample size depends on the true shape parameter, (3, and this can affect the 
distribution of (3C and 9C differently.

For p  <  1.1, the pattern of Normality in the distribution of (3C and 9C is similar, with 
sample sizes of n  =  2500 (for 9C) to  n  =  5000 (for Pc) required before Normality is observed. 
For p  — 2, we only observe Normality in the distribution of (3C when n  reaches 2500, but 9C

c n
50 100 500 1000 2500 5000

50 39086.03 20628.42 1925.42 649.06 317.88 142.11
100 637.28 324.58 44.27 10.09 14.34 3.99
150 0.14 0.67 3.28 0.39 0.42 0.20
200 0.71 1.51 4.26 0.38 0.32 0.13
oo 0.72 1.49 4.26 0.38 0.32 0.13

Table 3.18: K 2 test statistics for 9C yielded from simulated Weibull data with {(3,9) —
(3.5,100) for various n and c.
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follows a Normal distribution for samples as small as n = 100, providing there is only very 
late, or no censoring. This much faster rate of the distribution of 0C reaching Normality 
is also seen at (3 =  3.5; however, j3c fails to reach Normality even for a complete sample at 
n  — 5000.

3.3 Tests for Bivariate Norm ality

There are several strategies suggested to assess multivariate Normality. As in the univari­
ate case, probability plots can be a subjective test for bivariate Normality, and can also 
assess the directions of departure from Normality. We may also subjectively assess the 
marginal Normality via univariate tests described above, and then use the necessary, but 
not sufficient, condition tha t a multivariate Normal distribution is Normal in each of its 
marginal distributions. The extension of univariate procedures to the multivariate case is 
the approach taken by several researchers. For example, Healy (1968) suggested a method 
for multivariate normal plotting based upon the use of the squared radii, which, when or­
dered, are distributed as %2 with 2 degrees of freedom, which is in fact a plot of the unit 
Exponential order statistics. Finally, we can directly assess the bivariate Normality from 
the bivariate observations. A variety of tests are available for each of these strategies, see 
Thode (2002) or Khattree h  Rao (2003) for a detailed review of available tests.

3.3 .1  G raphical M eth ods

As we saw earlier, bivariate Normality implies that the scatter plot of (j3c, 6^j will be 
elliptical in shape. We again use the MLEs obtained from 10,000 replicated set of data 
generated from Weibull distributions with various combinations of n  and c. As before, we 
set 9 = 100, and look initially at f3 =  2. We display scatter plots of these estimates, and 
display these for samples censored at c =  100, for n  =  50,100,500,1000 and 5000, in Figures 
3.18, 3.19, 3.20, 3.21, and 3.22, respectively.
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Figure 3.18: Scatter plots of | J3c,9^j generated from a Weibull distribution with ((3,9) = 
(2,100) and n = 50, censored at c = 100.

Figure 3.19: Scatter plots of \J3C, 9CJ generated from a Weibull distribution with ((3,9) =
(2, 100) and n — 100, censored at c =  100.
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Figure 3.20: Scatter plots of ^/?c, O^j generated from a Weibull distribution with (/?, 6) — 
(2,100) and n  =  500, censored at c =  100.
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Figure 3.21: Scatter plots of \j3c,6cj  generated from a Weibull distribution with (/3,9) =
(2, 100) and n =  1000, censored at c — 100.
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Figure 3.22: Scatter plots of ^/?c, 0cj  generated from a Weibull distribution with (/?, 6) =  
(2,100) and n =  5000, censored at c =  100.

These plots show the increasing precision in (j3c,0^J as n  increases, but clearly the 
distributional shape does not become elliptical until n  =  5000, and so, as we would expect, 
bivariate Normality does not appear to hold in finite samples. We can observe the effect of 
a change in true shape parameter, by comparing the scatter plot with (3 = 2, in Figure 3.18, 
with various (3 values, at n = 50, in Figures 3.23, 3.24, and 3.25. At such small sample 
sizes, we see tha t there is a constraint on the lower limits of (3C and 0C, resulting in the plots 
having what can be described as a "boomerang" shape. We also note tha t these lower limit 
constraints are more defined in the samples with true shape parameter (3 < 1, certainly at 
c =  100, as for our simulated data.
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Figure 3.23: Scatter plots of \J3C, 6cj  generated from a Weibull distribution with (/?, 6) =  
(0.8,100) and n  =  50, censored at c — 100.
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Figure 3.24: Scatter plots of \J3C, 9cj  generated from a Weibull distribution with ((3,9) — 
(1,100) and n  =  50, censored at c =  100.
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Figure 3.25: Scatter plots of /̂?c, 9cj  generated from a Weibull distribution with (/?, 9) =
(3.5,100) and n =  50, censored at c =  100.
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3 .3 .2  M ultivariate T est S ta tistics

As well as the in-depth study of the marginal distributions, we have chosen to use a method 
proposed by Mardia Sz Foster (1983), which is similar to the approach used in the D’Agostino 
and Pearson K 2 statistic, using multivariate measure of skewness and kurtosis, b\^m and 

2- The test statistics are calculated from generalised versions of the squared radii,

r y  =  (yi -  y)' S 1 ( y j  -  y ) ,

and given as

and

i , j = 1

i=i

As for the univariate case, we can now perform a formal test of Normality on the bivariate 
sample. Mardia &; Foster (1983) propose a test statistic Sjy, defined as

S w  =  { w  (&1.2 ) } 2 +  { w  (62 ,2 ) } 2

in which W  (&i,p) and W  {b2,P), the Wilson-Hilferty transformations of a x 2 variate, are 
standardised multivariate measures of skewness and kurtosis for the p- variate sample, defined 
as

W =  6^7  { 6 (^3~bl’p) ̂  ~ 1 8 /  +  4 }  ’

where

and

/  =
( p ( p + l ) ( p  +  2)}

W (b 2
1/2

1 9 /i
(1 -  (2 //i) )

1 +  &2>P {2/ ( / a -  4)}V2j1/3

where

f i  =  6 +  |8p(p +  2 ) / (p  +  8)2} 1 n1/2

. {p(p +  2 )/2 } 1/2(p +  8 ) -1» 1/2+

{ l + ( n p ( p  +  2)(p +  8)-2) / 2 } V2

For further details we refer to the paper.
Again, under the hypothesis that the joint distribution of the estimators is multivariate 

Normal, we have ~  anc  ̂hence the same critical value, 5.9915, as the corresponding
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c n
50 100 .500 1000 2500 5000

50 6275.55 2428.66 173.71 99.87 41.47 12.30
100 1643.99 578.00 72.31 20.95 10.82 4.51
150 785.44 295.83 53.30 11.62 7.31 0.83
200 425.98 161.51 29.89 5.82 4.81 0.07
oo 224.20 76.71 16.33 4.30 3.71 1.79

Table 3.19: Syy test statistics for (j3c,QcJ yielded from a Weibull distribution with ((5,9) =  
(0.8,100), and various n  and c.

c n
50 100 500 1000 2500 5000

50 14801.86 1944.24 246.96 111.01 25.81 12.01
100 1361.68 553.24 47.77 29.94 4.60 3.40
150 511.91 221.51 28.82 8.41 1.43 0.67
200 391.44 139.56 13.10 7.16 0.65 0.81
oo 245.75 107.70 8.31 1.46 2.91 0.28

Table 3.20: S ^  test statistics for \J3C, 9CJ yielded from a Weibull distribution with (/?, 6) =  
(0.9,100), and various n  and c.

univariate assessment of Normality, for an upper tail probability of p — 0.05.

R esu lts  a n d  d iscussion

Tables 3.19 to 3.24 summarises the statistic for 10,000 simulated pairs of /̂3C, 9 ^ j , over 
a range of shape parameter values, with varying n  and c. As we are investigating the 
variation of three factors (/?, n ,c), a series of tables is the only way in which these results 
can be displayed.

These results confirm the lack of Normality in small and early censored samples. The 
rate of reaching joint Normality is more consistent across the range of shape parameters 
used, than those for the univariate tests; we see the test statistics reaching the critical value 
associated with Normality at samples at n  =  1000, although only when censoring levels are 
greater than 100.

3.4 Norm ality of Functions of MLEs

The relevance and importance of the quantile Rio has been introduced in chapter one and 
two. Naturally, it is of interest to extend the Normality tests performed on (5C and 9C to 
Rio.c- In this section we repeat the univariate tests, discussed for the Weibull MLEs, to the 
sets of 10,000 estimates of Rio yielded for the simulated data, for various shape parameters, 
sample sizes and censoring levels.
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c n
50 100 500 1000 2500 5000

50 11266.65 2253.13 226.11 104.43 40.07 11.11
100 1060.42 392.96 87.47 12.44 3.06 1.77
150 358.31 270.80 33.67 4.15 0.97 0.68
200 215.08 147.53 21.52 3.60 0.21 3.52
oo 183.72 116.09 18.29 1.84 0.17 0.67

Table 3.21: S'jy test statistics for \J3C, 0cj  yielded from a Weibull distribution with {(3,0) — 
(1,100), and various n  and c.

c n
50 100 500 1000 2500 5000

50 9288.27 3128.89 293.28 123.70 23.23 11.24
100 1398.97 456.99 32.75 31.52 5.51 3.66
150 344.48 189.65 10.82 6.89 0.06 0.66
200 162.70 87.29 5.43 3.68 0.11 0.44
oo 189.78 69.99 8.46 5.02 0.60 0.16

Table 3.22: S ^  test statistics for \J3C, 6cj  yielded from a Weibull distribution with {(3,6) = 
(1.1,100), and various n  and c.

c 71
50 100 500 1000 2500 5000

50 36756.18 5371.70 704.91 224.37 96.89 55.94
100 727.26 228.87 55.25 11.49 4.65 4.98
150 144.31 57.92 8.40 1.28 4.86 0.58
200 146.50 38.38 7.68 1.84 1.65 0.21
CO 178.41 57.70 9.52 3.03 1.78 0.65

Table 3.23: S ^  test statistics for \ fic, 0CJ yielded from a Weibull distribution with {(3,0) = 
(2,100), and various n and c.

c 71
50 100 500 1000 2500 5000

50 199995.88 30327.67 3623.99 1518.16 606.27 250.61
100 273.94 261.76 29.92 7.84 3.70 3.14
150 47.76 252.91 6.78 0.91 2.07 0.35
200 64.81 296.64 9.94 1.29 2.30 0.76
CO 65.11 296.66 10.08 1.33 2.36 0.76

Table 3.24: test statistics for (J3C, 0cj  yielded from a Weibull distribution with ((3,6) =
(3.5,100), and various n and c.
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0 A 62 % in  C l % <  C l % > C I
0.8 1.06 4.70 92.14 7.85 0.01
1 0.84 4.23 93.75 6.22 0.03
2 0.34 3.13 94.28 4.67 1.05
3.5 0.02 2.84 95.94 2.52 1.19

Table 3.25: Tests of skewness and kurtosis of Bio,c yielded from a Weibull distribution with 
various (3, and fixed Q =  100, c =  100 and n  =  50.

3.4.1 B asic S ta tistica l Sum m aries o f  Bio,c

As for the parameters (3 and 0, we can calculate the moments \fb[ and 62 to investigate the 
skewness and kurtosis of our samples of Bio.c- For a Normal distribution we expect the 
values

A  = o,
and

£>2 = 3 + N  +  1

It is also possible to construct 95% confidence intervals around the true quantile function,

Bio =  ^ o , c ± 1 . 9 6 y W ( i i o ^ )  (3.5)

where V ar  is given in (2.54). As before, we investigate the symmetry around the
calculated confidence intervals, again with the focus on the effect of censoring and the nature 
of the data, determined by the shape parameter (3 of the sampling distribution of (j3c, .
By counting how many of these confidence interval contain the true percentile value, as well 
as the percentage of confidence limits with MLEs tha t fall either below the lower limit, or 
above the upper limit, we can judge the effectiveness of the Normal assumption.

Results and Discussion

This information is summarised in Tables 3.25, 3.26 and 3.27 for data censored at c =  100. 
As for the Weibull parameter estimators, we see the coverage of the confidence intervals are 
good (close to 95%), but a much higher proportion of the true values tha t are not within 
the interval are below the lower limit at n  =  50, again confirming the right skewness of the 
MLEs. A reduction in skewness is noticed as n  increases. This is consistent for values 
of the shape parameter /?, and in general, the samples become more Normally distributed 
when the shape parameter value increases.

3.4.2 P rob ab ility  P lo ts

We refer to  the beginning of the chapter for details of the univariate plotting tests we intend 
to use, namely Q — Q plots. We will display and discuss the tests for samples from a
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0 A 62 % in  C l % <  C l % > C I
0.8 0.39 3.32 94.94 3.51 1.55
1 0.30 3.16 94.67 4.05 1.28
2 0.01 3.23 95.25 2.90 1.85
3.5 0.04 2.98 95.16 2.74 2.10

Table 3.26: Tests of skewness and kurtosis of Rio,c yielded from a Weibull distribution with 
various /?, and fixed 9 =  100, c =  100 and n =  500.

0 A b2 % in  C l % < C l % > C I
0.8 0.08 3.01 95.06 2.91 2.03
1 0.11 3.09 95.16 2.66 2.18
2 0.05 3.04 95.50 2.40 2.10
3.5 0.02 3.13 95.05 2.63 2.32

Table 3.27: Tests of skewness and kurtosis of B\o,c yielded from a Weibull distribution with 
various /?, and fixed 9 =  100, c =  100 and n  =  5000.

range of shape parameters below. Again, each Q — Q plot (Figures 3.26 to  3.33) gives the 
quantiles plotted for a sample obtained from complete failure data, ( x ) , and the sample 
when failures are censored at c =  100, (o).

As for the Weibull parameter estimators, at n =  50, Figure 3.26 shows a clear curved 
pattern indicating right skewness for both the complete and censored simulated data when 
/3 =  0.8. We note tha t the expected normal values include negative values, which clearly 
are not present in the observed values, as by definition Bio >  0 for j3, 9 > 0. When n  
increases to 500, we see in Figure 3.27, tha t the right skewness is reduced, but it is still 
evidently present in the distribution. In both sample sizes illustrated, there are a wider 
range of expected and observed values for the censored case, and more outliers present.
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Figure 3.26: Q — Q plot of J§io,c> based on data generated from a Weibull distribution with 
(/?, 9) =  (0.8,100) and n — 50.
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Figure 3.27: Q — Q plot of Bio c, based on data generated from a Weibull distribution with
((3,9) =  (0.8,100) and n =  50o’.



3.4. N O R M A L IT Y  OF FU N C T IO N S OF MLES 94

M
a
>

t

Figure 3.28: Q — Q plot of Rio,C) based on data generated from a Weibull distribution with 
(/3, 9) =  (1,100) and n = 50.

The same pattern is seen for the Q — Q plots for /3 — 1, in Figures 3.28 and 3.29. 
Although now we note a greater reduction of skewness with a sample size of n  =  500 than 
that seen for j3 = 0.8.
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Figure 3.29: Q — Q plot of Bio,c, based on data generated from a Weibull distribution with
(0,6) =  (1,100) and n =  500. ’
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Figure 3.30: Q — Q plot of Rio.c, based on data generated from a Weibull distribution with 
{(3,9) =  (2,100) and n =  50.

We continue to see this reduction in the right skewness of the distribution of Rio,c when 
the shape parameter increases to (3 = 2. The Q — Q plot at n — 50, see Figure 3.30, lies 
much closer to the 45° line, and there is less upward curvature in the tails. From the Q — Q 
plot in Figure 3.31, we might be prepared to accept tha t the sample in fact does follow a 
Normal distribution at n = 500.
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Figure 3.31: Q — Q plot of BiojC, based on data generated from a Weibull distribution with
(/3,0) =  (2,100) and n =  500.
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Figure 3.32: Q — Q plot of Rio.c, based on data generated from a Weibull distribution with 
(0,0) =  (3.5,100) and n =  50.'

Again, at 0  =  3.5 we see a much closer fit to Normality in Figures 3.32 and 3.33.
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Figure 3.33: Q — Q plot of BiojC, based on data generated from a Weibull distribution with
{(3,9) =  (3.5,100) and n =  50o’.
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c n
50 100 500 1000 2500 5000

50 1705.30 1176.99 258.23 87.76 63.92 20.68
100 1679.16 1152.62 263.86 83.88 63.95 11.44
150 1654.20 1128.88 258.27 98.77 54.39 11.55
200 1707.64 1035.71 209.31 108.00 46.18 11.41
oo 1656.44 779.31 185.75 98.46 41.63 11.76

Table 3.28: K 2 test statistics for Rio,c yielded from simulated Weibull data with ((3,6) =  
(0.8,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 1553.18 728.44 188.18 96.78 46.92 30.10
100 1493.54 745.78 178.19 90.83 39.75 28.64
150 1473.02 709.74 177.63 88.70 32.27 25.24
200 1474.12 674.58 168.29 86.32 24.63 19.10
00 1478.42 659.54 149.71 71.50 30.18 15.59

Table 3.29: K 2 test statistics for J3io,c yielded from simulated Weibull data with ((3, 6) =  
(0.9,100) for various n  and c.

3.4 .3  Form al N orm ality  T ests

Tables 3.28 to 3.33 display the corresponding K 2 statistics, with bold values indicating 
cases in which we would accept the hypothesis that the underlying distribution is Normal, 
as before, these correspond to K 2 < 5.9915.

The lack of Normality for (3 — 0.8 is confirmed in Table 3.28, where the K 2 statistic fails 
to fall below the critical value at any sample size, even a complete sample of n  =  5000.

Again, due to the change in the nature of the hazard function around (3 =■ 1, we also 
summarise the K 2 test statistics for (3 =  0.9 and (3 =  1.1. These are seen in Tables 3.29, 
3.30 and 3.31. We now see the effect of the shape parameter, and as (3 increases the K 2 
test statistics decrease, thus approaching Normality. It is not until (3 =  1.1, for which the 
hazard function is increasing with time, do we see any samples reach Normality, and then 
it is only valid for n = 5000, with censoring levels c > 100.

c n
50 100 500 1000 2500 5000

50 1236.12 715.12 148.35 52.69 29.24 18.46
100 1166.89 724.78 154.99 47.42 16.57 22.54
150 1129.82 711.80 137.28 43.22 15.51 21.69
200 1117.94 651.15 132.73 45.21 13.57 22.65
00 1044.58 648.75 127.84 37.68 17.90 23.32

Table 3.30: K 2 test statistics for Bio}C yielded from simulated Weibull data with (/?, 9) =
(1,100) for various n and c.
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c n
50 100 500 1000 2500 5000

50 1877.71 495.35 72.45 71.80 10.73 6.83
100 711.14 518.20 61.71 56.16 12.15 6.78
150 426.18 490.71 61.31 41.31 9.20 2.60
200 285.69 435.33 54.90 38.86 7.51 3.79
oo 454.99 451.46 60.22 46.52 8.96 3.95

Table 3.31: K 2 test statistics for B io,c yielded from simulated Weibull data with (/?, 6) = 
(1.1,100) for various n  and c.

c n
50 100 500 1000 2500 5000

50 1556.74 146.98 35.68 8.17 2.20 1.92
100 185.34 78.32 22.34 6.25 2.76 4.54
150 158.85 63.80 9.50 13.11 1.94 0.82
200 151.42 53.59 9.87 14.59 4.87 0.76
00 163.19 63.06 12.57 14.17 5.83 1.38

Table 3.32: K 2 test statistics for B \q,c yielded from simulated Weibull data with (/?, 6) = 
(2,100) for various n  and c.

We recall that for /3 — 2 the Q — Q plot indicated Normality at n  =  500, the K 2 test 
statistics, in Table 3.32, however, show that that is not the case, and Normality is not 
observed until n  =  2500, although it is now also seen for data censored as early as c =  50.

For (3 =  3.5, the K 2 test statistics, displayed in Table 3.33, now show tha t Normality is 
reached by n =  100, for censoring levels c >  100. It is also clear from the results, tha t at 
c =  200, in most simulations, all items have failed, and the test statistics are generally the 
same for c =  200 and complete data.

3.5 Summary

Exploiting the asymptotic properties of the Weibull parameter MLEs is a key step in ap­
plying results from statistical inference.

c n
50 100 500 1000 2500 5000

50 26459.03 14292.25 1267.21 393.40 104.28 68.79
100 13.66 0.02 2.31 2.41 2.78 7.17
150 11.13 4.41 4.25 3.12 1.79 0.96
200 14.60 5.89 5.40 1.79 2.02 1.56
oo 14.60 5.91 5.50 1.79 2.00 1.56

Table 3.33: K 2 test statistics for Bio,c yielded from simulated Weibull data with (/?, 0) =
(3.5,100) for various n and c.
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The conclusions drawn from our large scale simulation study, is tha t asymptotic Normal­
ity assumptions on ^/?c, 9^j and functions of these estimators, such as Rio.o are implausible 
for sample sizes less than n =  1000, and then only for relatively late censoring times. As 
some compensation, if some prior information is known about items, and the true shape 
parameter is thought to be /3 > 2, then asymptotic assumptions may hold at smaller samples 
size, but these will often still be too large to become feasible for experiments.

Despite these poor approximations to the Normal distribution, precision and confidence 
intervals obtained in the simulation studies still provided good coverage of the MLEs, but 
the shape of the distribution is not well represented.

It seems appropriate, given these findings, tha t we consider alternative measures of 
precision in estimates.



Chapter 4

Properties of W eibull MLEs in 
Small Samples

Chapter 3 discussed the non-Normality in small to moderate samples of MLEs. Alternative 
approaches to asymptotic Normality are suggested by Lawless (1982), and in this section 
we will employ the relative likelihood function, mentioned in section 2.1.

4.1 Relative Likelihood

The relative likelihood function of Weibull parameters (/?, 0) is defined as

( M e )

Since the regularity conditions of maximum likelihood theory hold, then under the hypoth­
esis H q : (/3,9) = ((30,9 q), the asymptotic distribution of

A =  —21ni?(/?o,0o)

is %2- Significance tests (the likelihood ratio test) can then be carried out, with large values 
of A indicating evidence against Ho. The test is known to possess some very desirable 
properties (see Kalbfleisch & Prentice (1980)), and can be used to construct confidence 
regions for parameter estimates. We refer to Wolstenholme (1999) for further discussion 
on the uses of the likelihood ratio test in the Weibull distribution.

Lawless (1982) outlines how to obtain approximate p confidence intervals for (3 and 9 
separately, by finding the appropriate set of values for each parameter for which Ho is not 
rejected at the 1 — p level of significance. An alternative to looking at each parameter 
separately, via numerical procedures, is to consider an estimation of results by graphical 
means, using a contour map of (/?, 9).
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Kalbfleisch (1979) discussed the role of relative likelihood, including the possibility of 
censoring. The set of parameter values for which R  ((3,9) > p, can be described, or inter­
preted as a 100p% likelihood region for ((3, 9 ) . By evaluating R  (/?, 9) = p over a lattice of 
values in the (3 — 9 plane, he produces contours of constant relative likelihood in order to 
determine regions of plausible values for ((3,9). Values inside the p — 0.5 contour are quite 
plausible, while values outside the p = 0.01 contour are very implausible.

4.2 Drawing the contours

Kalbfleisch (1979) prepared his contour maps from tabulations of R((3,9), and noted that 
the use of a computer programme to solve the equation R  ((3, 9) = p leads to a more accurate 
contour map, but usually at the expense of increased programming time and complexity. 
Watkins & Leech (1989) outline one approach to producing an accurate contour map. The 
algorithm has three main stages:

1. To locate the MLE of (3 and 9. This point (j3c,9^j lies at the centre of all contours. 
Chapter 2 outlines the procedure of locating the Weibull parameter MLEs for both 
complete and censored data.

2. To search the (3 — 9 plane for a rectangular drawing area, within which the contour 
corresponding to p will lie.

3. To draw this contour by first finding, and then connecting a large number of points 
on it. This process is repeated for each contour.

4.2 .1  D efin ing th e  draw ing area

The next stage in the algorithm is to search the (3 — 9 plane about ^/?c, 9 ^ j . This search 
introduces a rescaling argument, and we consider the relative likelihood at a series of frac­
tions, and then multiples, of (3C. The maximum value of the relative likelihood for (3 can 
be computed and we can search for maximum and minimum values of (3 tha t need to be 
considered; see Figure 4.1. For any given (3, the value of 9 th a t maximises the relative 
likelihood can be found from equation (2.21).

The same idea is used for 9, a series of fractions and multiples of 9 are considered and 
the (3 which maximises the relative likelihood for each value of 9 is found. This maximum 
relative likelihood is computed, and we can search for the minimum and maximum values 
of 9 th a t need to be considered; see Figure 4.2. All searches here must be numerical, using 
the Newton-Raphson method to locate a zero of the first derivative of the log-likelihood, 
(2.19), using j3 as the initial estimate.
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4.2 .2  D raw ing th e  contours

To draw the contour, we first find an initial point, and then try  to move around the contour. 
We use (3 =  x(3c and 9 =  y6c to define new working variables x  and y, and we find it 
convenient to  define

/  (®, y) =  In R  (x fic, y§c) • (4.1)

T h e  in itia l p o in t on  th e  co n to u r

To find an initial point on a contour, we set x  = 1 and search for a value of y, such that 
the relative likelihood at (3 =  x{3 = (3 and 9 = y 9 has the required value. Expressed 
mathematically, we have the logarithm of the relative likelihood, (4.1),

M

f  (x, y) =  M  In ( x ^ j  -  Mxj3 In (yti'j +  {x$  -  1) ^  In fa )  (4.2)
i=l

- x 0  f  M  1
~{y ' e)  \ ^ y f - ( n - M ) < ? P \ - M \ n ( p ^ + m X a ( e }

M  (  M  \

“ ( ^ ~ * ) + 9~^ \ Y l yi
i=l I i=l J

and we search for y such that
f ( x , y ) - l n ( p 1) = 0 (4.3)

with x  =  1, which gives the first point on the contour R  9^ = p1 (illustrated in Figure
4.3). Equation (4.3) is solved numerically, and the Newton-Raphson method requires the 
derivative

f y  {x,y) = M xf3y~l +.x(3 (y(?j ^ - ( n - M )  cx^ |  y - 1 (4.4)

again with x  =  1. The initial estimate of a solution to (4.3) can be

9 mpi't
9 7

where 9max is the maximum value of 9 in the drawing area.

M oving  a long  th e  co n to u r

We first calculate the gradient of the tangent to the contour at this initial point, tha t is

f x ( x , y )  
f v ( * , y )

where
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6

Figure 4.3: Find the first point on the contour R  = p

f x (®,y) = M x  1 -  M(3In +  (3Se +  (y ^ j ^ (3 j,So (xfi'j In (yO) -  Si (xjty j  (4.5)

again, when x  = 1. The first estimate of the next point along the contour is now found by 
moving a distance, 8 (>  0), in the x  — y plane along this tangent

x ^ x + w h f )  (46)
and

y ^ y + (f2 +  %)  (4'7)

For these new values of x  and y, we fix x, and try  and attem pt to  find a y  th a t solves (4.3). 
This is the same method we used to find the initial point, but now we use the updated value 
of y  in (4.7) is used as an initial estimate for the Newton-Raphson procedure, and x  = 1 
in (4.4) and (4.5) no longer applies. By iterating this process, recomputing the equations 
with the updated x  and y values, we can move around the contour (Figure 4.4).

When this process approaches a turning point on the contour, we will fail to find a y 
value tha t solves equation (4.3), this is because the values of

h  and v i h f )

are small near the extreme left or right edge of the contour. In such cases, we fix the value 
of y , and attem pt to find a solution to (4.3) with a corresponding value of x ; practically, we
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Figure 4.4: Moving around the contour with the iterative process

6 N u m b e r o f p o in ts
0.005 629
0.01 312
0.05 59
0.1 29

Table 4.1: Number of points of the RL contour p =  0.05 for the ball bearings data, censored 
at c =  100 for various values of 8.

are undergoing a change in slope, or direction, in the contour. This search must be carried 
out numerically, with the most updated value of x  used as an initial estimate. The iterative 
Newton-Raphson method then uses f x (x, y) in (4.5) to improve this estimate.

O p tio n s  for th e  a lg o rith m

The contour drawing process can be done at various contour levels, R  ^/3,6̂ j — p. We can 
look at p = 0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99, with the first case yielding approxi­
mate 99% confidence regions, and so on.

We also note tha t the choice of distance 8 in equations (4.6) and (4.7), will determine 
the smoothness of the contour. Table 4.1 compares the number of points of the contour 
p =  0.05, yielded from various values of 8 choices using the ball bearings data, censored at 
c — 100. At 8 = 0.01, we have enough points for the contour to be sufficiently smooth 
without excessive computational time, and so for the purpose of the examples and work 
carried out in this chapter, we will set 8 =  0.01.
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Figure 4.5: Relative likelihood contours of for complete ball bearings data.

4 .2 .3  Exam ple: B all bearings data

We revisit the concept of interim analysis of the failure times, we can return to the ball 
bearings data  given in Table 1.2. The Watkins & Leech (1989) algorithm, outlined above, 
can construct the nine relative likelihood contours for various stopping times c. Figure 4.5 
shows the contour plots for the complete ball bearings data. The outer contour is the curve 
along which R  ^/3, = 0.01, and we highlight the next inward contour R  o'j = 0.05 (the 
thicker line); this is of particular interest as it intuitively gives a 95% confidence region for 
(j3,6^j. We see tha t as p increases the contour area gets smaller, and its shape becomes 
more elliptical.

Consideration of a censoring regime causes distinct changes in the relative likelihood 
contours. Figures 4.6, 4.7, 4.8, and 4.9 are plots of the contour maps at increasing c =  
50,75,100, and 125 respectively. We see that, at early censoring times, the shape of 
the contour extends over larger values in both the horizontal (/3) and vertical (9) axis, 
particularly for p =  0.01 and 0.05, where the contours are concave. Again, as p increases, 
the contour areas drop because the consistency rises, and the shape become more elliptical, 
reminiscent of bivariate Normality. We see that, as the c increases, the contour maps 
become similar to those obtained from the complete dataset.

The effect of c is more apparent in Figure 4.10, where for fixed p = 0.05, we have plotted 
the relative likelihood contour at various censoring levels; c =  50 being the outermost 
concave contour, and the innermost contour (dashed line) being tha t from the complete
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Figure 4.6: Relative likelihood contours of ( /3C, 6C) for ball bearings data censored at c — 50.
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Figure 4.7: Relative likelihood contours of f/?c, 0C) for ball bearings data censored at c =  75.
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Figure 4.8: Relative likelihood contours of \J3C, 0C) for ball bearings data censored at c =  
100.
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Figure 4.9: Relative likelihood contours of \J3C, 0CJ for ball bearings data censored at c =  
125.
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Figure 4.10: Relative likelihood contours, at p = 0.05, of for ball bearings data at
various censoring levels, c =  50 is the outermost contour, c = oo is the innermost contour 
(dashed line).

data. We see here tha t the contours get smaller as c increases, which we expect, because 
the more failures we observe the more information we have to estimate the parameters. The 
contours also appear to move left along the horizontal (/3) axis and shift up the vertical (9) 
axis, as more items are allowed to fail.

These contours agree with those drawn in Kalbfleisch (1979), and then in Watkins h  
Leech (1989).

4.2 .4  Exam ple: 49 failure tim es

We can repeat the above process for our second example, in which we consider the 49 failure 
times; see Table 2.2. Once again, we can produce the relative likelihood contours around 
the MLEs obtained at time c =  50,100,150,200 and then the final analysis when all items 
have failed; see Figures 4.11, 4.12, 4.13, 4.14 and 4.15.

We see similar patterns as in the ball bearings example, and note that, again, the shape 
of the contours become more elliptical, implying bivariate normality, when c increases, and 
when p is closer to 0.99. We can again look at fixed p =  0.05, and compare the contours at 
various censoring levels, Figure 4.16; c =  50 being the outermost concave contour, and the 
inner most contour (dashed line) being tha t from the complete data.

Again it is apparent that the contours become more precise as c increases, and for this 
example, as more items fail, we see a shift right along the horizontal (/?) axis, and down the
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Figure 4.11: Relative likelihood contours of lj3c,0c) for 49 failures data censored at c =  50.
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Figure 4.12: Relative likelihood contours of ( /3C, 9C) for 49 failures data censored at c =  100.
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Figure 4.13: Relative likelihood contours of f (3C, 6C J for 49 failures data censored at c =  150.
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Figure 4.14: Relative likelihood contours of ( /3C, 6C) for 49 failures data censored at c =  200.
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Figure 4.15: Relative likelihood contours of f°r complete 49 failures data.

Figure 4.16: Relative likelihood contours, at p — 0.05, of (PC,9 Ĉ  for the 49 failure times 
data at various censoring levels, c =  50 is the outermost contour, c =  oo is the innermost 
contour (dashed line).
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vertical (9) axis, opposite directions to the ball bearings example above (Figure 4.10). This 
agrees with the details given in Chapter 2, where, for the ball bearing data (Table 2.5), as 
c increases, (3C gets smaller, and 9C gets bigger; whereas for the 49 failure times data (Table 
2.6), as c increases, 0 C decreases, and 9C increases.

4.3 Comparison w ith Normal theory confidence intervals

Confidence regions based on relative likelihood methods are discussed in most reliability 
texts, see for instance Lawless (1982). Cox &; Hinkley (1974) give an explicit proof that 
Normal theory and relative likelihood confidence regions are asymptotically equivalent, and, 
despite both methods using asymptotic theory, many authors have recognised the advantages 
of likelihood based inferences, see for example, Lawless (1982) and Meeker Sz Escobar (1995).

4.3 .1  Exam ple: B all bearings data

For illustration, we will fix p =  0.05, and compare the confidence regions obtained via 
asymptotic Normality and relative likelihood theory for the ball bearings example. In 
the previous chapter, Figure 3.1 displayed the asymptotic Normal confidence ellipse for the 
MLEs of the ball bearings data at c =  100. We can now compare this region with that 
obtained using relative likelihood theory above; Figure 4.10.

Figures 4.17, 4.18, 4.19, 4.20 and 4.21 compare the confidence regions for the ball bear­
ings data, at censoring levels, c =  50,75,100,125, and the complete sample, respectively. 
We can see that there is an overlap between the two curves, and this overlap increases as 
c —> oo. There are also points where the relative likelihood contour is almost tangential to 
the ellipse. On closer inspection we notice a small distance between the curves, but this 
distance appears to decrease as c —> oo.

As already seen in Figure 4.10, as c increases, we observe the relative likelihood contour 
move towards the shrinking ellipse about ^ c, 9 ^ j.

4 .3 .2  Exam ple: 49 failure tim es data

Figures 4.22 to 4.26 confirm the same pattern in the curves for the 49 failure data as c —> oo. 
The relative likelihood contour appears to  be constrained at points to the asymptotic Normal 
confidence ellipse, and as c increases, the overlap between the curves increases, with the 
relative likelihood contour moving towards the central MLE.

Further research

There is obvious scope here to  investigate the relative size of the two confidence regions, 
as well as the extent of the overlap in general, and the proximity between curves. For the 
purpose of this thesis however, we can conclude th a t the relative likelihood contours appear 
to reflect more accurately the nature of the distribution of small samples of MLEs, as seen
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Figure 4.17: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the ball bearings data at c =  50.
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Figure 4.18: The MLE (+) together with 0.05 confidence regions based on asymptotic
Normality and relative likelihood (bold line) for the ball bearings data at c =  75.
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Figure 4.19: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the ball bearings data at c — 100.

120

110

100

90

80

70

60

50 ------------------------ .------------------------ 1------------------------ 1------------------------ 1------------------------ 1------------------------
05 1 1.5 2 25 3 3,5

Figure 4.20: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the ball bearings data at c — 125.
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Figure 4.21: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the ball bearings data at c =  oo.
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Figure 4.22: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the 49 failures data from Epstein (1960), 
at c =  50.
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Figure 4.23: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the 49 failures data  from Epstein (1960), 
at c =  100.
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Figure 4.24: The MLE (+) together with 0.05 confidence regions based on asymptotic
Normality and relative likelihood (bold line) for the 49 failures data from Epstein (1960),
at c =  150.
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Figure 4.25: The MLE (+) together with 0.05 confidence regions based on asymptotic 
Normality and relative likelihood (bold line) for the 49 failures data from Epstein (1960), 
at c =  200.
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Figure 4.26: The MLE (+) together with 0.05 confidence regions based on asymptotic
Normality and relative likelihood (bold line) for the 49 failures data from Epstein (1960),
at c =  oo.
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17.7245 26.8619 33.9372 40.0338 45.5588
50.7180 55.6346 60.3916 65.0497 69.6577
74.2572 78.8869 83.5849 88.3912 93.3502
98.5144 103.9482 109.7355 115.9900 122.8762

130.6478 139.7332 150.9559 166.2711 192.8568

Table 4.2: Idealised complete Weibull sample for n — 25

in section 3.3.1 We also point out that, due to their asymptotic equivalence, the difference 
between the two curves will disappear as n  —> oo.

The next section will investigate the use of relative likelihood contours in the general 
sampling distribution of (j3c, 9 ^ j , with the usual combinations of varying n  and c.

4.4 Expected W eibull Contours

So far we have used the relative likelihood function to obtain confidence regions based on a 
single set of example data. We now adapt the approach used to provide confidence regions 
for the sampling distribution of (̂ Pc,9 ^ j. This involves identifying, for any (/3,9), sample 
size and censoring regime, an idealised sample, which can be produced via the corresponding 
order statistics as data values. We can then use the above algorithm with this idealised 
sample to calculate and plot the expected relative likelihood contours. For the Weibull 
distribution, David & Nagaraja (2003) gives the following formula for the expected order 
statistics

=  <n m i C1( r a - * ) ! ( * - l ) !  \  k

for 1 <  i < n. Using the Mathematica code below, we can produce these expected order 
statistics on which the idealised sample is based:

Ezip[n_,t_,b_,p_,i_] : =  ,*tp*

E (-1) B inom ia l[i-l ,k]*Gamma[(p/b)+l] 
( n - k ) ^ * 1k=0

tE z ip [ n _ , t_ ,b _ ,p _ ] : = T a b le [N [E z ip [n ,t ,b ,p ,i]  ,10] , { i , l , n } ]

Block[{$M axExtraPrecision=300000}, tE z ip [2 5 ,1 0 0 ,2 ,1 ]] .

To illustrate, Table 4.2, shows the idealised sample for /? =  2, 9 =  100, and n  =  25.
We can then apply a censoring regime (as discussed in section 1.1) to produce our 

idealised sample under this regime. For example, the idealised sample in Table 4.2 with 
censoring time of c =  100, becomes that shown in Table 4.3.
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17.7245 26.8619 33.9372 40.0338 45.5588
50.7180 55.6346 60.3916 65.0497 69.6577
74.2572 78.8869 83.5849 88.3912 93.3502
98.5144 100* 100* 100* 100*

100* 100* 100* 100* 100*

Table 4.3: Idealised Weibull sample for n = 25, censored at c =  100 

We define

Pei

as the MLEs obtained from this idealised sample, and can produce the expected relative 
likelihood contours around (j3e, Qe'j. We recall tha t bivariate Normality implies tha t the 
scatter plot of ((3,0) will be elliptical. However, investigations in Chapter 3 showed that 
this is not the case, particularly for small sample sizes or early censoring levels. We now 
evaluate the suitability of the relative likelihood contours as replacement confidence regions 
to the Normal theory intervals.

4.4 .1  Sm all to  m oderate sam ples

For illustration, we assume p =  0.05, and show the contour maps for some ideal samples for 
various c and n; this yields the approximate 95% confidence regions for ((3,9). If we look 
specifically at data simulated from a Weibull distribution with (3 = 2 and 9 =  100, then we 
see for n = 50, we can superimpose the expected contour over the scatter plot of the 10,000 
paired estimates (j3c, 0^j obtained.

Figure 4.27 shows that the upward and rightward stretching strongly suggests non- 
Normality in /̂3C, 9 ^ j , which was confirmed in Chapter 3. Although Normality does not 
hold, the relative likelihood contour captures the shape of scatter plot very well.

We see in Figures 4.28 and 4.29 that the contours become more elliptical as c increases, 
while still maintaining to effectively portray the shape of the scatter plot. Intuitively, we 
can validate the measure of precision using the relative likelihood, by counting the number 
of MLEs included within each contour; this is considered below.

4.4 .2  Large sam ples

Keeping p  = 2 and 9 = 100, but changing the sample size to n  =  1000, Figures 4.30, 4.31, 
and 4.32 show that, as expected, the shape of the relative likelihood contours mirrors the 
shape of the scatter plot, becoming more elliptical with increasing n and c.
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Figure 4.27: Relative likelihood contour superimposed over MLE scatterplot, for (3 = 2, 
6 =  100, n  =  50, c =  50; with (/?e,0e)  =  (2.24,92.90).
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Figure 4.28: Relative likelihood contour superimposed over MLE scatterplot, for (3 =  2,
0 =  100, n — 50, c =  100; with (j3e,0e  ̂ =  (2.11,98.96).
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Figure 4.29: Relative likelihood contour superimposed over MLE scatterplot, for (3 = 2, 
9 =  100, n  =  50, c =  oo; with =  (2.07, 200.18).
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Figure 4.30: Relative likelihood contour superimposed over MLE scatterplot, for (3 =  2,
Q =  100, n =  1000, c =  50; with (j3e10e) =  (2.02,99.48).
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Figure 4.31: Relative likelihood contour superimposed over MLE scatterplot, for /? =  2, 
0 = 100, n  =  1000, c =  100; with (/?e,0e)  =  (2.01,99.98).
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Figure 4.32: Relative likelihood contour superimposed over MLE scatterplot, for (3 =  2,
9 =  100, n =  1000, c =  oo; with (j3e,0e  ̂ =  (2.01,100.02).
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c n
25 50 100 300 500 1000

50 89.47 91.61 91.94 92.99 93.29 94.16
100 88.46 91.97 92.27 93.60 93.50 94.43
150 89.84 91.64 92.89 93.56 94.48 94.69
200 89.98 92.16 93.18 94.05 94.07 94.48
oo 88.93 91.91 92.79 94.03 94.32 94.34

Table 4.4: Percentage of ^/?c, d^j covered by relative likelihood contour for simulated Weibull 
data with (/3,0) =  (0.9,100)

4.5 Contour Validation

By definition, a simulated pair of MLEs, /̂3C, O^j, will be inside the relative likelihood 
contour if

/ „  ^  \  L {po @c)R((3„ec) = - j r _ i . < 0 . 0 5
L [pel

or equivalently, if we take the natural logarithm

r (pc, 0e) = In R  (pc, 0c) = I {pc, 8c) ~ I (&, *e) < In 0.05. (4.8)

For various sample sizes and censoring levels, we can now simulate data values from a 
Weibull distribution, and obtaining the corresponding r (p c,9<?j, (4.8), determine whether

or not the expected relative likelihood contour contains the yielded /̂3C, 0 ^ j. We repeat this 
procedure 10,000 times, and anticipate tha t 95% of the simulated MLEs to  be within the 
expected contour area. As usual, we are concerned with the effect of the shape parameter, 
and so in our simulation studies, fix 9 =  100, but vary /?, including some values with f3 < 1 
(a decreasing hazard function), (3 =  1 (constant hazard function), and (3 > 1 (increasing 
hazard function).

The results of each combination of (3, n, and c replicated are shown in Tables 4.4, 4.5, 
4.6, 4.7, and 4.8. The results compare favorably with expected values, and we see the 
agreement improves, approaching 95% as n and c increase. We also see tha t the results are 
reasonably consistent across the various values of the shape parameter considered here.

4.6 Summary

In this chapter we have proposed relative likelihood as an alternative method to asymptotic 
Normality to measure the precision of the Weibull MLEs. We have shown tha t in small 
samples, the relative likelihood and its contour plots best capture the behaviour of the Type 
I censored MLEs, where large sample Normal theory fails. We have also found that the 
relative likelihood results provide an accurate measure of precision, and on investigating the
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c n
25 50 100 300 500 1000

50 87.44 91.69 92.12 93.06 93.79 94.19
100 88.91 92.46 92.80 93.73 93.97 94.09
150 90.93 91.87 92.46 94.06 94.41 94.10
200 89.32 92.36 93.21 94.71 94.31 94.50
oo 89.33 91.95 93.16 94.21 94.47 94.45

Table 4.5: Percentage of \J3C, 9CJ covered by relative likelihood contour for simulated Weibull 
data with ((3,9) =  (1,100)

c n
25 50 100 300 500 1000

50
100
150
200
oo

90.45
89.65
89.70
90.36
89.59

92.72
92.98
92.74
92.20
92.33

91.74
92.60
92.51
92.83
93.00

92.66
93.82
93.51
93.88
93.91

93.74
94.30
94.41
94.70
94.50

94.05
94.29
94.54
94.22
94.33

Table 4.6: Percentage of \J3C, 9CJ covered by relative likelihood contour for simulated Weibull 
data with ((3,9) =  (1.1,100)

c n
25 50 100 300 500 1000

50
100
150
200
00

92.26
91.75
92.13
90.49
91.39

91.26 
91.55
92.26 
92.35 
92.43

92.10
93.52
92.99
93.45
93.38

93.76
93.76
94.12
94.13 
94.28

94.29
94.11
94.35
94.34
94.24

93.55 
94.49 
94.94 
94.46
94.55

Table 4.7: Percentage of (j3c, 9cj  covered by relative likelihood contour for simulated Weibull 
data with (/3, 9) =  (2,100)

c n
25 50 100 300 500 1000

50 93.95 93.95 93.95 93.20 93.00 94.19
100 91.34 92.92 93.63 93.76 94.42 94.89
150 90.40 92.91 93.69 94.22 94.26 94.61
200 91.31 92.86 93.57 94.16 94.13 94.48
oo 91.31 92.86 93.57 94.16 94.13 94.49

Table 4.8: Percentage of (J3C, 9cj  covered by relative likelihood contour for simulated Weibull 
data with (f3,9) = (3.5,100)
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expected Weibull contours in section 4.4, we see that the MLEs lying outside of the contour 
are fairly informally spread around the contour.

Despite there being more complicated computations involved in the relative likelihood 
approach to approximating confidence regions, with the use of the algorithm described, and 
the computational capabilities available today, we recommend the use of relative likelihood 
contours as an alternative measure of precision in small to moderate samples, where the 
asymptotic Normality assumption is implausible, as discussed in Chapter 3.

It is possible to repeat the process of finding and validating expected Weibull contours 
for the various p discussed earlier, such as 90%, or 99% confidence regions. There is also 
scope to extend this theory to other censoring regimes; for instance, Chua et al. (2007) 
outline the basic theory for ideal samples tha t have undergone Type II censoring.



Chapter 5

The Reliability Analyses of  
Censored Reliability D ata

5.1 Introduction

In practice it may be possible to repeat the analysis described in Chapter 2 at each of a 
sequence Ci,C2,... of times, until (at a sufficiently large value of c) all items have failed, 
and the data set is complete. In this chapter we will extend some results presented by 
Finselbach h  Watkins (2006), which link the statistical analyses of reliability data arising 
from a sample of items at two or more points in time. For example, in the 49 failures data, 
we see in Table 2.6 tha t under Weibull analysis, the parameter MLEs at c =  100 are

K  =  122.4351, =  0.8709

but how useful is this in predicting the complete estimates

0 =  106.0505, fr =  1.0300

which are obtained if all items were left to fail? Intuitively, it is more informative to re- 
analyse the data at c =  150, when more items have failed, but it remains to quantify the 
increase in precision.

In practical terms, we are interested in gauging the earliest point c at which the ex­
periment can be reasonably term inated while still yielding a close or reliable guide to the 
complete MLE, which in turn leads to  a percentiles of item life. Or, we may be interested in 
studying the effects of an early censoring time, ci, C2, ..., <  c, in comparison with censoring 
at c, as discussed in Peng & MacKenzie (2007).

For simplicity, we set (3 =  1, and consider the theory required for the negative exponential 
distribution, with pdf

1 - exp (-1) >
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which follows immediately from (1.25), with (3= 1.

5.2 N egative exponential distribution

We assume that the lifetimes of individual items follow the negative exponential distribution 
with mean 0, th a t a set of n  items are put on test simultaneously, and tha t continual 
monitoring of these items is possible. Throughout this thesis, we require tha t there will be 
at least one failure, tha t is M  > 0, and therefore, the discussion is conditional on this. The 
likelihood method for this distribution is well documented, for example Kalbfleisch (1979), 
and we can obtain estimates at consecutive censoring times, and then a final complete 
analysis when all items have failed.

5.2 .1  L ikelihood T h eory

We stop the experiment at c, and have a random number M  failures and n — M  values 
censored to time c. In notation previously introduced, we have

M

S m , o =
1= 1

and, from our discussion of the Weibull distribution in Chapter 2, with (3 = 1, we obtain 
the likelihood

L c =  0~M exp { - 0 -1 [5m,o +  (n -  M )c]} .

On taking logarithms, we obtain

lc =  —M lnO  — 0~l [5m,o +  (n — M )c] ,

and

J  +  i  ^ , 0  +  (n -  M )c] , (5.1)

as the log-likelihood and the score function respectively. Equating (5.1) to zero, it is now 
straightforward to  obtain the MLE

9C =  M -1 [5m,o + (n — M )c].

We note here tha t (5.1) can now be written as

dir M  1
dO 9 + 02

MO
M
0

Or. 0 (5.2)

We now introduce some examples of negative exponential data, and obtain the MLE of
0 at various censoring levels, c. We will return to these examples throughout the chapter,
in order to illustrate our theoretical work.
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c M 0c
25 12 88.0333
75 23 114.9696
125 30 124.4600
175 39 114.0667
225 44 108.6773
275 46 107.9217
325 47 108.3723
00 49 104.8898

Table 5.1: 9C for various c for the n  =  49 failure times, used in Epstein (1960)

4 5 8 11 20
29 35 40 66 70

Table 5.2: The failure times of 10 electronic components assumed to follow the negative 
exponential distribution, taken from Kalbfleisch (1979)

Example: 49 failures data

We return to the 49 failure times example, shown in Table 2.2. Using the above analysis, 
we can find 9C successively until all items fail when we find the complete estimate. These 
are shown in Table 5.1, and we see that the estimate appears to  level off at c =  225. We 
need to know whether much more information about the complete estimate is gained by 
continuing the experiment after this time.

Example: Electronic components

A second example of data  following the negative exponential distribution is the lifetimes of 
10 electronic components, used by Kalbfleisch (1979). The data is given in Table 5.2.

We can find the MLE for the complete data set, and those for censoring times of c =  
15,30 and 45. These are shown in Table 5.3. W ith such a small sample, it is logical to ask 
whether any censoring will enable a good approximation to the complete estimate?

c M 0C
14 4 28
28 5 37.6
42 8 29.5
56 8 33
00 10 28.8

Table 5.3: 9C for various c for the n =  10 electrical component failure times
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0.75 1.7 20.8 28.5 54.9
126 175 236 274 290
363 458 776 828 871
970 1278 1311 1661 1787

Table 5.4: 20 lifetimes of pressure vessels assumed to follow the negative exponential distri­
bution, Ansell &; Phillips (1994).

c M Oc
100 5 321.3300
500 12 502.3875
1000 16 592.1031
1500 18 614.5917
oo 20 575.5325

Table 5.5: 9C for various c for the n =  20 presure vessels failure times 

E xam ple : P re s su re  vessels

Another example of negative exponential data we will use is the n  =  20 times to failure (in 
hours) for pressure vessels, as discussed in Ansell h  Phillips (1994). The data  is reproduced 
in Table 5.4 and we look at the MLE calculated for the complete data set, and for the 
censored times of c =  100,500,1000 and 1500. The estimates obtained, including for the 
complete sample, are shown in Table 5.5. It is now unclear whether censoring at c =  1000 
would in fact give a better guide to the complete estimate than censoring at c =  1500.

Prom each example discussed above, it is clear tha t we need to consider the relationship 
between the estimate 9C, obtained at time c, and 9, obtained when all items have failed. 
The next sections show how we can use properties of 9C and the asymptotic relationships 
involved in the likelihood theory to gain a theoretical result for Corr 9 ^ j .

5.3 Link between 6 and 0C

The discussion in chapter 2, noted that M  is binomial with parameters n, qc, where qc is 
now simplified, with (3 = 1, to

qc =  1 -  exp .

Throughout, we denote the moments of M a s  follows

m i =  E[M\ = nqc

m 2  =  E [M 2] =  nq2rc -f n2q2 (5.3)
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where we have defined r c, (2.38), as the odds ratio of survival beyond c, to failure before c, 
in (2.38). This leads to the variance

V ar(M ) = nq^rc.

5.3 .1  E xp ecta tion s involv ing failed item s

Chapter 2 required expectations of a transformed variable Z, see (2.26); we know tha t X  is 
equivalent to the Weibuil distribution when (3 = 1 , and therefore, we can express negative 
exponentially distributed lifetimes as

X  = 9Z.

It is now straightforward to obtain moments of the right truncated random variable Xf ,  
with pdf

(~ j )
%  ’

for 0 <  y < c. Thus, for lifetimes of items failed before c, from (2.40), it follows that

E [ X f ] = 9 ( l - z crc)

where, for (3 = 1,
c

Thus,
E[ Xf ]  = 9 - c r c.

Similarly we will need the second moment of the right truncated distribution, and, from 
(2.41) we can write this as

E[ Xj ] =  02 (2 -  2zcrc -  4 r c)
=  202'— 2 0crc — c2rc.

We note that as c —> oo, and therefore qc —► 1, the above expectations reach their complete 
counterparts E  [X] = 9 and E  [.X 2] =  292.

5.3 .2  P rop erties o f  9C

We can now proceed as the complete case, and obtain expressions for the expectations that 
will be needed for the analysis. Firstly, we note that, from the conditionality argument 
described in (2.39), that

E  [5m,o] =  E[M ]E [Xf ] = nqcE  [Xf ] ,
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hence, we can show

E

=  E [X f ] + E
n c

.M . 
c

-  E
M e
M

= (6 -  crc) H c
Qc

=  9 -  crc +  crc 

=  9.

From (5.1), the expectation of the score is 

E die = E
d9 ~ T  +  ¥ [Suf i  + { n ~  M)c]

(5.4)

nqc itqc i  r . i
=  — J -  +  - J -  +  ^ 2  [ ~ n Qcr cC +  nqcrcc]

=  0 .

We also know the asymptotic result between Var  and the expected Fisher infor­
mation, given below, holds

Var{0c) ~  - E
(Pi,
dB4

as specified in Lawless (1982). This is the Cramer-Rao lower bound of the variance of 
the maximum likelihood estimator. We can now use this approximation to find V a r(9). 
Following from (5.2), we have

cPlc
d92

M  2 M 9C 
02 03

and so

—E
[ d 2U 'm  2 M 9r'1 

<M■X3 =  —E ------1
>

CO

1|<M

1

E[M \
92

2 E
+

M 9,

nqc 2 nqc9
92 0s 

nqc 2 nqc
92 +  92

nqc
92
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Therefore

Var(0c) ~  —E
'S l A _1 92

nqc
(5.5)

5.3.3 A sy m p to tic  resu lts

From the above properties, it is possible to consider the usual asymptotic relationship be­
tween the MLE, the expected Fisher information and the score function, and from

dlc nqc
d0 -  e2 v c ) ’

we may write,

c] .

Since this relationship also covers the case c —► oo (when it becomes exact), we can now 
approximate

by

where

Corr (e ,0 c)  =  Corr ( ^ J ^ -  ($c -  ^  (6 -  9 ^ j

Corr ( ^ { - J  +  72So} ’ ^ { - T  +  T2 ^ + (" - M >

^  ( { - ? + £ * }  \ - x + ¥  +<" -  M )  -

n

s 0 =
i=i

as defined in (2.3).
We can now use regularity conditions to write this correlation in terms of expectations, 

and hence obtain

riy/q'c

02 
nyjqc

7 _ M  l_
A 6 +  e2[Sm ,o + { n - M ) c ]  \  x {“?+Ĵ 0}.

^  -  %So -  £  [Sm,0 +  (n -  M)  c]
+ikSoSM,o +  (n~ ^ )c50

(5.6)

as our approximation to Corr 9̂, 6^j.
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21000
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Figure 5.1: Scatter plot of M  versus S m ,o for simulated data with 9 =  100, c =  75, n =  1000, 
and 10,000 replications.

5.3 .4  Som e sta tistica l considerations

Terms in the expectation (5.6) involving So will be complicated, due to the inter-relationship 
between

M , S m ,0) and So.

Figure 5.1 shows, using simulated data with 9 =  100, c = 75, and n =  1000, tha t there is 
strong positive correlation between M  and Sm ,o~ intuitively, large M  leads to  large S m ,o> 
as the more items that fail, the more lifetimes there are to sum in S m ,o- Figure 5.2 shows 
strong negative correlation between M  and So- Large M  will lead to small So, as more 
items failing before c =  75 indicates tha t more early failures are occurring, and therefore 
the lifetimes contributing to So are small in general. For the same reason, Figure 5.3 shows 
moderate negative correlation between So and S m ,o-

So, some expectations needed in (5.6) require some care, but can be obtained using

n

So =  Sm,  o + Xi
i= A f+ l

in which the lifetimes X m +i, •••, X n of the survivors censored at c follow the left truncated
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Figure 5.2: Scatter plot of M  versus 5*0 for simulated data with 9 =  100, c =  75, n =  1000, 
and 10,000 replications.
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Figure 5.3: Scatter plot of So versus Sm,o for simulated data with 9 =  100, c =  75, n =  1000,
and 10,000 replications.
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negative exponential distribution , with pdf

exp

e
The mean lifetimes of these surviving items can be found using the fact tha t E  [X] =  9 for 
the complete sample, and this must reflect both censored and surviving items. We have

gcE [ X f ] + ( l - q c) E [ X c} = e,

where X c is the left truncated random variable (lifetime of surviving items), and, from which 
we find the mean lifetime of the survivors,

E [ X c] =
e - q cE[ Xf]

(1 “  Qc)
9 -  qc(9 -  crc)

(1 -  Qc)
9 ( 1 -  qc) cqcrc
(1 -  qc) (1 -  qc) 

9 + c.

(5.7)

5.3 .5  E xp ecta tion s required

Looking at the terms of the expectation (5.6) individually gives us

n M '
E

92

which cancels with 

E —73 {S m ,0 + ( n -  M ) c}

n 2qc 
92 ’

n
—f t  {m i E  [Xf] +  (n -  m i) c}

n
-~ 3  {nqc(9 -  crc) +  nqcrcc}

u
n

— f t

n2gc

We are then left with 

E
M
9

=  - - ~ E [ M S 0]

=  — ~ E M(5m,o+ Y, Xi
\  i = M + l

= - ^ { i m2E [ X f } + E [ M ( n - M ) } E { X c]}.
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This can be simplified to 

E
M
¥ So

 1_ f (™£rc +  n 2q2) {9 -  crc)

03 I  +  {n2(&rc ~  n fa c )  (c +  9)

= {n 2qc9 -  nqcrcc}

nqcrcc n 2qc
9C 9-

We also have to simplify 

1
E 4 SqSm,0 \ E  94

04

S m ,o I SM, o +  ^
V i = M + l

m iE X 2 + E [M  (M  -  1)] E  [Xf f

+ E  [M (n -  M)\ E  [Xf ] E  [Xc]

This becomes

E - ^ S qS m ,o
1

— 7 X
94

f nqc (292 -  29crc -  c2rc) +  (n2g2 -  nq2) (02 -  29crc +  c2r 2' 
\  (n2qlrc -  nq lrc) {Q2 + 9 c -  9crc -  c2^ )

^4 {ngc02 -  nqcrc9c -  nqcrc<c2 +  n 2gc02 -  n 2gcr c0c}

ngc _  nqcrcc _  nqcrcc2 n 2qc _  n 2qcrcc
92 ~  03 94 02 03

Finally we are left to simplify the remaining expectation

(n — M ) c
E

94
So ^ { £ > S o ] - £ [ M ,S o ] }

which from (5.8) can be written as

(n — M ) c
E

94 So =  74 {n20 -  (n2qc9 -  nqcrcc)}
04 
c

0
n2qcrcc t nqcrcc2

I

4 {r?qcrc0 +  nqcrcc}

(5.8)
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c n y/Qc
50 100 300 500 1000

25 0.4027 0.4696 0.4734 0.4687 0.4769 0.4703
50 0.5966 0.6201 0.6305 0.6241 0.6325 0.6273
100 0.7784 0.7906 0.7931 0.7946 0.8016 0.7951
150 0.8714 0.8758 0.8808 0.8789 0.8849 0.8814
200 0.9238 0.9252 0.9312 0.9277 0.9320 0.9299
250 0.9537 0.9555 0.9582 0.9572 0.9592 0.9581
300 0.9724 0.9732 0.9747 0.9740 0.9757 0.9748

Table 5.6: Corr ^0, 0^j for negative exponential data generated with 0 = 100 and various 
c. Figures are based on 10,000 replications

It is clear that most of these terms in the expectation will cancel, as shown below

nqcrcc _  n2qc nqc _  nqcrcc _  nqcrcc2 n 2qc
QZ 02 02 03 04 02

n 2qcrcc n2qcrcc nqcrccP
e3 + e3 0A

_ nqc
~  e 2 '

On substituting this into (5.6), we obtain the approximate correlation of

- ^ { 7 }  m
=  QC 

y/Qc
= y/qc

This approximate correlation does not depend on n, and therefore holds across all sample 
sizes.

Checks for finite samples

Since the approximation (5.9) is asymptotically derived, we need to assess its agreement 
for finite samples. We do this for fixed 9 =  100, at a range of censoring times, c =  
25,50,100,150,200,250, and 300. Results of our simulation tests are given in Table 5.6; as 
always, our statistical summaries are based on 10,000 replications. We see tha t agreement 
between simulated correlations and the theoretical result improves as the sample size, n, 
and censoring level, c, increases.
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5 .3 .6  C o v a r ia n c e  p r o p e r t i e s

One consequence of (5.9) is tha t the covariance of the complete and censored MLE is equal 
to the variance of the complete MLE, tha t is,

C m  (e ,0 C) = V ar ( s ) . (5.10)

We will algebraically show tha t this is true, and, in the next chapter, prove that this result 
generalises to the Weibull distribution. From (5.9) we have

Cov ^0,0C) =  \fT c \Jva r  ( 0) ^ V a r  (dc ĵ 

and from (5.5), this can be expressed as

C m ( e X )  = nqc

n
= V ar  . (5.11)

Hence the covariance does not depend on the censoring MLE (and therefore the censoring 
level) at all. This result can be used to simplify expressions in the following section, where 
we discuss the use of 0C as an estimate of 0, and therefore 0.

5.4 W hat can 0C tell us about 0 ?

While most literature concerning MLE theory constructs confidence intervals as a measure 
of the precision of the estimate compared to the true parameter value, here, we are more 
interested in gauging the precision in 0C as an estimate of 0, and hence of 0. In other words, 
we want to know how reliable the censored MLE is as a guide to the complete MLE, since 
this will influence any decision on the worth of continuing the experiment.

We use
A =  0 -  0C

and now assume tha t the MLEs follow the Normal distribution, and tha t we are dealing with 
unbiased estimators. Although Chapter 3 shows tha t Normality is not achieved in small 
to moderate samples of MLEs, we recall tha t asymptotic assumptions used for theoretical 
variance and EFI gave good approximations to simulation results in finite samples; see 
Tables 2.14 and 2.15.

We then have
E  [A] =  E  [0] -  E  \ec] ~ 9 - 9 ~  0



5.4. W H A T  C A N  9C TELL US A B O U T  0? 143

and
Var  (A) =  Var (o -  0C) =  Var  +  Var  (0C) -  2Cov(0,0C), 

and from (5.11), we can write this as

Var [ec)

02 e2
nqc n
02 (
n  Vqc
02r c

n

Therefore, the asymptotic distribution of A is

N  0 ,
02r,

n

and from this, we have

P r { -1 .96  <  - A =  < 1.96 > =  0.95,
/ 0 2 7 V

V n

which yields the 95% confidence interval for 9, based on 9C, as

0 =  0C ±  1.960

In practice, at censoring time c, we would estimate the true value of 0 by the MLE 0C, so 
we would have

0 =  0C ±  1.960c\ / —, (5.12)
V n

where
l  - q c 

rc =  — —  
qc

and

&=expK
5.4.1 Lessons for experim en ta l design

It is clear tha t the structure of the variance, and therefore the width of the interval obtained 
in (5.12) depends on the rate at which
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c M
A

Oc 95% C l for 9
25 12 88.0333 (45.0207,131.0460)
75 23 114.9696 (81.4084,148.5308)
125 30 124.4600 (97.9657,150.9543)
175 39 114.0667 (97.3207,130.8127)
225 44 108.6773 (97.1160,120.2385)
275 46 107.9217 (99.1187,116.7248)
325 47 108.3723 (101.4226,115.3221)
375 49 104.8898

Table 5.7: Confidence limits of 9 at each successive censoring level, c for the 49 failure times 
data

c M
A

Oc 95% C l for 9
14 4 28 (6.4531,49.5469)
28 5 37.6 (15.4379,59.7621)
42 8 29.5 (19.2022,39.7978)
56 8 33 (23.3121,42.6879)
oo 10 28.8

Table 5.8: Confidence limits of 9 at each successive censoring level, c for the electrical 
component data

and so the width of the confidence interval can be established during the design process of 
an experiment. A smaller interval, and therefore a more precise estimate to the complete 
MLE will be obtained if the number of items tested, n, increases, or if the number of items 
allowed to fail increases, by extending the censoring time, c. Either option to tighten 
the confidence interval will add expense to the experiment, and so the importance of the 
precision in the interval must be weighed up against the costs involved. We will now test 
this using published examples of negative exponential distributed data.

E xam ple : 49 fa ilu re  tim es

Using (5.12) we can then find the confidence limits corresponding to each censoring level. 
These are shown in Table 5.7 and displayed in Figure 5.4. There is a clear improvement 
in the precision of the estimate as c increases, but even at late censoring, c =  225, when 
almost 90% of items have failed, we have a large interval, approximately ±12 around 9C, 
and, if possible, it is now better to  wait until the last failure occurs.

E xam ple : E lec tro n ic  com p o n en ts

Table 5.8 shows the MLEs obtained at each censoring level, and also the confidence interval 
found via 5.12. Figure 5.5 shows these limits. Again, from a practical perspective, it . 
appears that the intervals obtained may be too large to have any certainty regarding the 
final estimates, and the best option is to wait until all items have failed.
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Figure 5.4: 95% confidence interval for 9 at successive censoring levels for the 49 failure 
times data.
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Figure 5.5: 95% confidence interval of 9 at successive censoring levels for the electronic 
components data.
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c M e c 95% C l for 9
100
500
1000
1500

5
12
16
18

321.3300
502.3875
592.1031
614.5917

(88.2508,554.4092)
(333.7837,670.9913)
(468.5803,715.6259)
(531.3889,697.7945)

oo 20 575.5325

Table 5.9: Confidence limits of 9 at each successive censoring level, c for the pressure vessels 
data
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Figure 5.6: 95% confidence interval of 9 at successive censoring levels for the pressure vessel 
failure times data.

Example: Pressure vessels

The results are shown in Table 5.9, and the 95% confidence interval limits can be seen in 
Figure 5.6. We see that, at the early censoring level c =  100, the limits do not contain 
the complete estimate. As c increases we see the confidence limits narrow, but as for the 
other examples, the width is too large to provide any reasonable guide to the final estimate, 
even with only 2 items left to fail. We note that, although the intervals are quite large, the 
estimates do "flatten" off.

The outcome of these examples seem rather disappointing, in tha t there is no indication 
of a optimum level of censoring to  stop an experiment which would provide an adequate 
guide to the complete estimate. We can conclude however tha t increasing the sample size of 
items being tested is likely to help identify a plateau in the estimates obtained at successive 
c, at which time it seems reasonable to stop the experiment, providing the precision of the
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n
c 50 100 300 500 1000
25 95.25 95.24 95.59 94.77 95.10
50 95.22 94.99 95.84 94.87 95.10
100 94.76 94.75 95.31 95.19 95.28
150 94.51 94.79 95.04 95.09 95.01
200 94.52 94.36 95.37 94.88 94.95
250 94.50 94.48 95.48 94.86 95.00
300 94.30 94.54 95.31 94.90 95.44

Table 5.10: negative exponential data, with 9 =  100. 

estimate is satisfactory.

5.4 .2  S im ulations

Using SAS we simulate MLEs from a negative exponential distribution at different censoring 
levels, for a number of different sample sizes. We then use (5.12) to find the proposed 95% 
confidence interval from each censored MLE generated, and then we can find the percentage 
of these intervals from the 10,000 repetitions that actually contain the corresponding com­
plete MLE, 6. Table 5.10 gives the results for various sample sizes, n  =  50,100,300,500 and 
n  =  1000; in all cases, samples were censored successively at c =  25,50,100,150,200,250 
and 300.

There is good agreement between theory and practice, even for small sample sizes and 
early censoring, where the correlation approximations were less accurate; see Table 5.6. 
These simulation experiments again confirm that, despite the lack of Normality in MLEs 
bases on data in samples with n  smaller than 1000, the approximations obtained from 
asymptotic Normal theory still leads to reliable inference for small to moderate sample 
sizes.

5.5 Summary

We have detailed an approach summarised in Finselbach & Watkins (2006), which considers 
interim analysis of negative exponential data, and uses these to obtain confidence intervals 
for 9, the estimate yielded at the final analysis, when all items have failed. We note that 
the single parameter 9 can easily be interpreted as a quantile, using a linear function of 9, 
see (1.24).

The negative exponential distribution however is not the most versatile reliability distri­
bution, and we next extend these results to the popular Weibull distribution in the chapter 
6. This analysis not only has the complications of an extra parameter, but also requires a 
more careful consideration of the quantile function B iq.



Chapter 6

Interim Analysis o f W eibull 
Reliability D ata

We can now show how the results for the negative exponential distribution, in Chapter 5, 
generalise to the Weibull distribution. As discussed in Chapter 2, the likelihood theory now 
involves two parameters, and the algebra becomes much more involved than tha t discussed 
in the previous chapter. We will use the same asymptotic relationships as discussed for the 
negative exponential distribution, and use the interim analysis, based on Type I censored 
information, to determine the precision with which we can make statements on final esti­
mates, based on these interim estimates. We exploit the notation used in Chapter 2, and 
will use the same examples therein to illustrate any theoretical results developed.

6.1 A sym ptotic relationships o f MLEs

It is straightforward to show tha t the asymptotic relationship between the MLEs, the EFI 
and the score function is

We refer to (2.48) for the elements of the EFI for a Type I censored sample, but can express 
the above in general as



6.1. A SY M P T O T IC  R ELATIO NSH IPS OF MLES 149

~  Corr
+

Since this relationship also covers the case c —* oo , we now have, for example

Corr0, fic) =  Corr j  (/? -  , (pc -  /j) }

V“r ( p ) § + \  (  V a r ( 0 c) %

C o v [ M ) §  J ’ \ C o v ( 0 j c)

Initially we can consider the covariance, and it follows that,

di
C o v0 ,j3 c) ~  Cov

! +V ar ( f ) ) §

C o v ( p ,e ) §  J ’l  Cov(fjcX )

and due to regularity conditions, this can be written in terms of expectations

V a r  1 0 c ) % +

9Um

Cov0,f3c) =* E
{ V a r ( p \ %  + C o v { 0 ; e ) % )  

( V a r ( p ^  + C o v ( f > J c) !$ s )

Var (fi) Var (fa ) Cov

+ V a r { p ) C o v ( 0 j c ) C o v ( ^ , ^

+C ov(0 ,9)V ar(pc) C o v ( f g, g |

di di
+Cov (/?,0s) Cov (/?c, 0 c ) C o v ( - , - ^ j .

Similarly we obtain

C o v 0 ,9 C) = Var Cov (j3c1 0C) Cov (J^ , 

+ Var (J^J Var (dc ĵ Cov f
dl_ die 
d p  d0

-\-Cov (j3,9^j Cov (j3c, 9^j Cov  ̂ ^  

+Cov (ft, 9^ Var Cov

d9' d p  
d l  die 
d0 ’ d0

(6 .1)

(6 .2)

Cov(9,ec) = C o u {p ,e )C o v {p J c) C o o ( ^ , ^  

+ C o v ( M ) v a r ( e c) C o v ( J ± , ^

+Var (dc'j Cov (fic,0C) Cov ( |^ ,

dl dlc-War ( 9) Var ( 0C) Cov(»•) d0’ de
(6.3)



6.2. FAILURE TIM ES A N D  EX PEC TA T IO N S INVOLVED 150

and

Cov(0,0C) =  Cov ( p , V a r  (p c ĵ Cov ( j - ,dl_ die 
3 0 '8 0

+Cov ( 0 , 6 s) Cov (p ci0C) Cov
dp

+Var  ( 0) Var  ( p c ) Cov [
81 dlc 

*>K' O° ' d O ' d 0

W a r  ( fy  Cov (/?c, 0C) Cov . (6.4)

6 .1 .1  D e ta i ls  o f  t h e  s c o re  fu n c tio n s

We write the score functions in terms of the transformed variable Z, see (2.26), which
follows the standard negative exponential distribution. It follows from (2.4), (2.5), (2.19)
and (2.20) that

r)l f  71 n 'j
—  = 0 - l U  + Y j \ a Z i - Y j Z i \ r iZ i \  (6.5)

j - n  + f > j  (6.6)

Q l (  M  M  ^

^ r l l M  + Y ^ \ n Z i - Y J Z i \n Z i - { n - M ) z cln zc \  (6.7)
V. z = l  i = l  )

and
die
89

= 0 6 - 1 \ - M  +  Y ^ Z , +  { n -  M)zc\  . (6.8)

6.2 Failure tim es and expectations involved

It is clear from the above tha t we require expectations of the form

E [ Z \ ,  E  [InZ ] , and E  [Z ln Z ].

As in the preceding chapter, we know tha t the items that fail before c follow the right 
truncated negative exponential distribution; see (2.34). We recall from Chapter 2 tha t the 
expectations required from this distribution are given in equations (2.40) to (2.47).

We also need some expectations of the surviving items, i.e. the lifetimes of those items 
that have survived past the censored time c. To do this we can use the expectations for 
the complete sample and draw on the fact that this must reflect both the censored items 
and the survivors, as done for the negative exponential distribution, see (5.7). So we have, 
for Zc following the left truncated negative exponential distribution,

E[ZC] — /x107
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say. Therefore 

and so from (2.28),

Qcf îo +  (1 — qc) Aio —

Mio —
1 ~  gcMio 
(1 ~ Qc)

l - q c ( l -  zcrc)
rcqc

1 ~  qc +  zcrcqc
rcqc

l  +  2c- (6.9)

We will also need

say, where, from (2.29)

This leads us to evaluate

E [ \ n Z c] — JIq i ,

9cfM>i + (! ~ 9 c )  jj-o i = -7-

- ~ (7  + 9crt)i) - ( 7  + 7(1) (Mc)) . .
-  (1 -  qc) -  ^  • (6'10)

Finally we want
E \Z c \n Z c] =  An

say, where, from (2.30), we know

qcn n  +  (1 -  gc) An =  1 — 7,

and so

- _  (1 -  7 -  9cP n)
U (1 -  9 c )

_  1 -  7  -  (7 W (1, zc) + qc - z c In zcrcqc)

(1 -  9 c )

= 1 +  ZclnZc_ I ± 2 ^ f e ) .  (6.H)
rcqc

6.2.1 E xp ecta tion s involved

Our calculations of the covariance of the score functions, in (6.1) to (6.4), will require the 
following expectations, which we provide in terms of the incomplete gamma function, see
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(1.8), and recall the moments of M , m i and m 2, given in (5.3).

/  M  n

E i = E M
i = 1

= E M  X 4 +  Y  *
\ i = l  t = M + l

=  m 2/z10 +  (nmi -  m 2) A10

=  n*gc -  nzcrcqc

E 2 = E
n M

y ^ y *
_i= l i= 1

= E
' M  n \  M

Y Zi+ Y  z‘ ) Y zi
I  \ i = l  i = M + 1 /  i = l

=  (nm i -  m 2) M10Aio +  m i m c +  (m 2 ~  m i) n \Q 

= n  (n + 1) qc (1 -  zcrc) -  n z2rcqc

E 3 = E
n  M

Y ZiY lnZi
, i= l  i = l

= E
f M  n  \  M

X > +  Y
 ̂i = l  i = M + 1 /  i = 1

=  ^ lM n  +  (m2 -  miJ/xjo^o! +  (nm i -  m 2) A10M01 

=  n 27 ^) (1, zc) +  ngc -  nzc In zcrcqc

E t = E
n  M  “I r /  M  n  \  M

y ^ Z i ^ Z i l n Z i  = E  z i ) ^ 2 z i ^ z i
1=1 i = 1 J L \ t = l  i = M + 1 /  i = l

=  m i / i 21 +  ( m 2 -  m i ) /x 10^ n  +  ( n m i  -  m 2) A10M11

=  n (n +  1) 7 ^  (1, zc) +  n2qc +  2nqc -  nzcrcqc -  n  (n +  1 +  zc) zc In zcrcqc 

Regarding the left truncated random variable Zc, these first four expectations only involve

Y  *>
i = M + l

and therefore use /i10, (6.9). The remaining expectations, below, will involve
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and thus require the expectations Aon (6.10), and Am (6.11), respectively.

/  M  n  N

Zi

i=  1
= E M  In Zi

\ i = l  i = M + 1

=  m 2fi01 +  ( n m i  -  m 2) Aoi 

=  n 7 (1) ( 1 , z c ) -  n  (n  -  1) qc7

E q = E M  Y 2  zi
2 = 1

= E
M

M  I ^ 2  Zi Zi +  5 3  Zi ^  Zi
i = M + 17=1

=  m 2/ i n  +  ( n m i  -  rn2) A11

=  n7 ^  (1, zc) +  n2gc (1 -  7 ) +  nqc7  -  nzc In z<rcgc 

We note tha t the algebra becomes considerably lengthy for these more complex expectations.

n M

E j = E E lnz‘E
7 = 1  i = i

Zi = E
M  n  \  M

E lnz<+ E  E *
i = 1 i = M + 1 /  2=1

=  m i ^ n  +  ( m 2 -  m i )  //10M01 +  (n m i  -  m 2) M10A01

=  (1, zc) +  nqc -  nzc In zcrcqc -  n  (n -  1) qc (1 -  zcrc) 7

E q = E
M

^ 2  z i In Zi ^>2 Zi 
. 2= 1  2= 1

= E
M  n  \  M

Y  Zi  In Zi +  Y  zi ln  Zj  ) Y zi
i = M + l  )  2=17=1

=  rniii2i +  (m2 -  m i) /.icfin  +  (nmi -  m 2) ^ cAn 

=  2n7 ^^ (1, zc) +  n 2qc (1 -  zcrc) +  2nqc -  2nzc In zcrcqc 

- n z2 In zcrcqc - n ( n - l ) q c ( l -  zcrc) 7

E q = E
M

53 ̂  Zi 53 ̂  Zi
7=1 2=1

= E
' M  n  \  M

In Zi +  Y  Zi ) 5 3  ̂  Zi
7=1 2=M+1 /  2=1

=  rni/z02 +  (m2 -  m i) ^01 +  (nmi ~  m 2) M01A01 

=  n7 ^  (1, zc) — n  (n — 1) 7 ^  (1, zc) 7

E10 = E
M

E ln* E  z* In 
. 2 = 1  2= 1

' /  M  n \  M

= E  I 3̂ In zi +  53 Inzi 5 3 z i ln z i
. \ 2=1 2=M+1 )  2=1

=  mi/x^ +  (m2 -  mi) M01M11 +  (nmi -  m 2) /xnAoi 

=  n7^  (l,z c) +  2n7(1) ( l,z c) -  n(n -  1) 7 ^  (1, :zrc) 7 — nzc (In zc)2 rcqc 

- n  (n -  1) qc7 +  n2zc In zcrcgc7
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E x p e c ta tio n T h eo re tic a l S im u la ted
E l 6284.42 6289.61
E2 2632.05 2635.82
£ 3 -7902.78 -7906.24
£ 4 -1634.81 -1635.91
£ 5 -3691.87 -3690.36
£ 6 2629.33 2638.17
£ 7 -1526.44 -1526.62
£ 8 1099.53 1104.17
£ 9 4730.36 4727.66

£10 958.83 958.33
£11 -3315.30 -3324.67
£12 -683.49 -685.59

Table 6.1: Numerical checks of expectations E l to E12

E n  =  £ Zj In Zj In Zj
M  -] \  (  M  n  \  M

=  £  I Zi  In Z{ +  ^ 2  z i l n z i  ) 
i = l  i = l  J L \ i = l  i = M + 1 /  i = l

m in 12 +  (m2 -  m i) /i0iMn +  (nmi ~  m 2) MoiAn

n7 (2) (1, zc) +  n in  +  1) 7 ^  (1, zc) -  n  (n -  1) 7 ^  (1, zc) 7  -  nzp (In zc)2 rcqc

E\2 — E T J Zi In Zi ^ 2  Zi In Zi
M  1 V / M  n  \  M

— E  I ' y  Zi In Zi +  2̂2 Zi Zi ) Zi In Zi 
, i= l  i = 1 J _ \ i = l  z = M + l /  z= l

=  rniV-2 2  +  (m2 -  m i) /^ii +  (nm i -  m 2) AfriAn

=  2r r / 2) (1, zc) +  n 27 ^  (1, zc) +  5n7 ^  (1, zc) +  n  (n +  1) qc -  n (n +  1) zc* In zcrcqc 

- n  (2 +  zc) zc (In zc)2 rcqc -  n  (n -  1) (7 ^  (1, zc) + qc -  zc In zcrcq2j 7

We can use M athematica to compute these expectations and compare these to their corre­
sponding simulated values. Table 6.1 shows this comparison for (3 = 2, 9 =  100, c = 100, 
and n =  100. We see good agreement between the theoretical and simulated values.

6.2 .2  C ovariances o f  th e  score functions

Using the above expectations, and from (6.5) to (6.8), we can obtain the covariance of 
the score functions for all combinations of the censored and complete MLEs. Some of 
the algebra and cancellation of terms is very detailed, and so have been omitted. We 
use Mathematica to calculate numerical values of the following expressions; we set (3 = 2, 
6 = 100, c = 100, and n = 100.
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C o v ( § , § )

. dl dlc .
C m ^ W d o 1 =  B

= E

d i  die
do x de

d l

dl
= —n(3Q~l E de

i = l

+  E

de
n

p r 1 ] [ >  x

and since E  \ ^ \  =  0, we have

. dlc
C o v ^ T r T e

=  £

i = l

M

die
de

pe 1 < E  r ) x I ^  1 + E  + (n -

=  /?20"2E

i= i
n

i = l
n M

z= l i = l  t = l  i = l

=  /?20-2 [E2 -  E i  (1 +  zc) +  n 2zcqc\

=  p 2e~2nqc

We refer back to (2.52) for the relevant Mathematica code for our required functions, 
and obtain the following output

r . beta*beta .In 111 :=Covttl=----------- * n* qc]theta*theta
Out [1] :=0.0252848 

This compares favorably with our simulated value

c<wS ’§ )=ao256>
which (throughout) is based on 10,000 replications.
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Cov (m  diz\ 
\d 9>  d(3 )

Cov m  d k  
39' d(3

E

E

m  die 
de X 9/3

dL
^ “ M - n + E 2* h a |

i= 1

=  E
(39- X

C M  M
(3~l < M  +  InZi -  ^2 Zilnzi -  (n -  M )zc In2,

I i= i i= i
n n  M  n  M

- M  J 2  zi +  J 2  zi J 2  In Zi -  Zi J 2  Zi In Zi
i= l i= l i= l i= l i= l

n
- ( n  -  M )z c In zc £  Zi

i= l

9~l [El (1 +  zc In zc) +  Ez -  E± -  n2zc In zc\

= 9~XE

=  —n9 1 (gc +  7 (1) (M e)) 

T his leads to  th e  theoretical value

-nIn[l] :=Covtbl= * (qc+gl)]theta
Out [1] :=0.164479

and sim ulated value
dl die
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Cov (  dl dlz\ 
\d(3' dd )

. dl dlc
C o v { W m

= E  

= E

= E

dl_ die 
d(3 x d9

d l
(3 1  ̂n +  $Z l11̂  ”  Zi In Zi  ̂ x

i—1

x(39

(  n 
H E

U=1

1 = 1
n

ln^i -  X) Zilnzi
M

i = l

=  q~1e

M  + 'z 2 z i + ( n -  M )zc
i= 1

n  n  M  n
- M  ^2 In Zi  +  2  In Zi z i +  ( n  -  M )zc J2 ln z i

i = 1 i = l  i = 1 i = l
n n  M  n

+ M  J 2  Zi  In Zi -  Zi In Z i J 2 z i - ( n -  M )zc J 2  z i In Zi
t = l  i = l  i = l  t = l

=  9 1 [(E6 -  E g) (1 +  zc) +  E 7 -  E 8 -  n 2zc\

= - n 9 ~ l (qc +  7 (1) (1, 2C))

We note tha t this is equal to Cov , and our simulated figure, given below, is suitably
close to  (6.12),

MS'
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Cov (  d l  d l A  
\ d 0 ’ 6(3)

= E

d l d lc

d l
@ 1 { n +  Y 2 lllZi

z=1

= E

i—1
n

(3 < Y , \ n z i -  Y  z{\nz,
U=i i=i

M  M
}

=  p ~2e

= &- 2

x(3 1 i M  +  Y  ln z i ~  S  z i ln  z i ~  (n  -  M )zc In z(
I i = i  »=i

n n  M  n  M

MY^Zi + Jl Iĥz Y  In̂i _ J2 n̂zi J2 ̂ z Inz 
1 = 1  1 = 1  1 = 1  1 = 1  1= 1  

n  n
- ( n  -  M )zc In 2C Y  In z% ~  M  Y  zi zi 

1 = 1  1 = 1
n  M  n M

-  Y  z i ln  z i  Z )  In z i  +  Y  z i ln  z i z i  ln  z %
i = l  i = l  i = l  i = l

n
+ (n  -  M ) zc In zc Y  z i z%

1 = 1

(Eb — Eq) (1 +  zc ln zc) +  Eg — Eio — E \\  +  E \ 2  

+n2zc ln zc

= n(3 2 7̂ (2) (1, zc) + 2 7 (1) (1, zc) +  gc) 

Using Mathematica, this gives

In[l] :=Covbbl= 
Out [1] :=20.5337

-n
beta*beta (g2+2*gl+qc)]

which agrees well with the corresponding simulated value

c w ( | ' S ) = 20-5834-

6.2 .3  S im plification  o f  th e  covariances

We can now use the results above to simplify the covariances of the complete and censored 
MLEs. We know that (2.25) and (2.33) are symmetrical matrices, and so we can write
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Cov (/3,/3c) =  Var (/?) Var Cov

+Var (j3  ̂Cov (j3c, 9^j Cov

+ C o v ( M ) v a r ( 0 c) C o v l - , g l

dl_ dk  
d p  dO 

dl dL

dl die 
dQ+Cov (j3,(Pj Cov (pc, K ) Cov , 

6n~2n~2 |gc7 (2) (M e) -  { t (1) (M e)}
- l

/32p 2qc {n(3~2 (yW  (1, zc) +  27W (1, zc) +  qc) } 
~(329 {qc +  7(1) (1, zc) } {nQ~l (qc +  7(1) (1, zc)) } 

- 6  (1 -  7) (32qc {n lT 1 (qc +  7W (1, zc)) }
+9 (1 -  7) 6 {qc +  7 (1) (1, zc)} {p 2e~2nqc}

=  6 n 7r- 2 _ - 2 qc7 (2) (1, 2c) -  | 7 (1) (1,2c)} 1 X

n(32qc (7(2) (1, zc) +  27(1) (1, zc) +  qc) 
-n /32 {gc +  7 (1) (1 ,^c)}2 

-n(32qc (1 -  7 ) {qc +  7 (1) (1, z c ) }  

+n(32qc (1 -  7 ) {qc +  7 (1) (1 ,zc)}

q d {2) (M e) -  {7 (1) (M e)}

™/?2 j W 2)( M c ) - { 7 (1)(M c)}  | J

6n-17r-2/?2 

Var (j3j

=  6 n  7r- 2 - 2
- 1

x

The same process of simplification leads to

(6.13)
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Cov(P,9c) = V a r ( p ) C o v ( p J ^ C o v ( ^ ,
dl d lA  

d p )

+ V a r ( p ) V a r ( e c) c m ( §
dp'

+Cov ( p , 0)  Cov (p c,e^j Cov 

+C 0v ( M ) v a r ( e c) C o v ( ^ , ^ j

= 6n~2ir~2 |gc7 (2) (1 ,zc) -  { t (1) (M e)} J X

P20 {qc +  7 (1) (1, zc)} {nP~2 ( l {2) (1, zc) +  2'yW (1, zc) +  qc) } 
- P 2P~292 {7 W (1, zc) +  27^) (1, zc) +  qc} {n0~l (qc +  7 W (1, zc) ) } 

- 9  ( I - 7 )9  {qc +  7 (1) (1, zc)} {n9~l (qc +  7 W (1, zc) ) }
+9 (1 -  7) P~292 {7 (2) (1, zc) +  27^) (1, zc) +  qc} {p 29~2nqc}

= 6n 27r 2 9c7(2) (1 , z c )  ~  { 7 (1)(M c)}
-1

n9 (1 — 7) <il +  7 (2) (M e) 9c +  27(1) (1, zc) 9c -  9c 
- 2 7 (1) ( l , z c ) 9 c - { 7 (1)( l^ c )} 2

= 6n J7r 20(1 — 7) 

= Cod (p,(>\ (6.14)



6.2. FAILURE TIM ES A N D  EX PEC TA T IO N S INVOLVED 161

Cov(0,j3c) = Cov Var (j3^J Cov dl_ die 
d p 'd p

-\-Cov (j3,0) Cov 0C) Cov ^ ^

+ V a r ( 0 ) v a r ( 0 c) C c v ( ^ e , ^

dl dl

- 2 - 2

+ V a r ( e ) C a u ( 0 j c) C o v ( ^ - e , ^  

qĉ 2) (1,2C) - { 7 (1) ( l ,z c)}= 6n 7r
- 1

0 (1 - 7 ) /?2gc {n/3 2 (7 ^) (1, 2C) +  27^) (1, zc) +  qc) } 
+0  (1 -  7 ) 0 {qc +  7 W (1, zc) } { —n0-1 (gc +  7 W (1, zc)) }

+/?—202 [ ^  +  (7 -  I)2] P \ c  { - n O - 1 (qc +  7 (1) (M e))}  

+ / r 202 [ £  +  (7 -  l )2 0 (<?C +  7 (1) (1, Zc)) (320 - 2nqc

6n~27r~2 gc7 (2) (1,zc) -  | 7 (1) ( l ,z c) j  j x 

720 (1 — 7 )
g2 +  7 ^  (1, zc) qc +  27^) (1, zc) qc -  g2 

- 27^) ( l ,z c) qc -  {7 ^) ( l ,z c)}2

672 17T 20 (1 — 7 ) 

Cov (6 ,0 ) (6.15)

and
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f  dl dlc
Cov(9,0c) = C o v (0 ,d )C o v ( j3 c,0e)C o v

\ d p ’ dp  

+ C o » ( M )  Var (9e)  Cov

dl dlc
+ Var Cov (/?C,0C) Cov . 

+ V a r ( e ) V a r  (8e) Co* ( J *  , « £

9c7(2) 0 - > z c )  —  | t (1) ( M e ) }— 6 n  2 7r 2

-1

+

+

0 (1 -  7 ) 0 {qc +  7 (1) (1, zc) } n(3~2 x 

(7(2) (1, Zc) +  27M (1, zc) +  ^c)
0 (1 -  7 ) p 20~2 (7 ^) (1, *c) +  2 7 ^) (1, *c) +  9C) x 

{ - n 0 ~ l (9c +  7 (1) (1, 2rc) ) }
- 2/)2p~*B ¥  +  ( 7 - 1 ) ' (3 2020 (9c +  7 ^) (1 ,2C)) x

{ -n 0  1 (9c +  7(1) (M c))}

+
- 2/)2/T^0 ¥  +  ( 7 - 1 ) '

_ p  202 (7(2) (1,2c) +  2 7 ^) (1, Zc) +  9c) /320 2^9c .

=  6 n  2 7r 2 

?-2/)2nf3~ 6

=  6n- 17r- 2/?- 202 

=  Var (9).

9c7(2) ( M e )  -  {7 (1) ( M e ) }  ]  x

+  (7 “  1 ) 2 J  ^9c7(2) ( M e )  -  {7 (1) ( M e ) }  ^

7T
T  +  ( 7 - D ‘

(6.16)

We therefore have the general result,

/Cov(p,~0c) Cov0,9c)\ =A_!
\  Cov(0, Pc) Cov(0 , 0C) /

which we note is an extension of the relationship found for the one parameter negative 
exponential distribution, (5.10). The relationship is probably a consequence of the lack-of- 
memory property, and we assume therefore tha t it only holds for the negative exponential 
and Weibull distributions. Further research is needed to prove this result holds for data 
following these distributions under alternative censoring regimes. We use this result to 
simplify the calculation of the corresponding correlations, given below.
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6.3 Correlations of censored and com plete MLEs

The covariance of the score functions are then used to find the required covariances, see for 
example (6.1). This in turn  yields the correlation between censored and complete MLEs, 
since, for example,

Corr ( M e )  =
Cov ( M e )

 ̂j v a r  (/?) Var (K )

Var (/?)

J v a r  ( f i j  Var  (/3C)

\
Var (*)
Var

6 n “-17t~2(32

n - 1 ^ 7 (2) ( 1, 2C)  - - {7 ^) (M e ) } 2

1 
1 to tp

67T- 2 g c 7 (2) ( l , « c ) -  { 7 ( 1) ( M c ) } 2

Qc

again, with similar expressions obtained for Corr (j3,6^j , Corr  (#, (3^J , and Corr 0C) .

Cov (ft, 0C)
Corr (/M e) =

Var  (/?) Var  (#c)

Cov #)

Var  (/?) Var  (#c)

6n~17r~29 (1 — 7)

6 n 2/k  2 

\  (32f3~20
<Zc7̂  (M e) -  {7(1) ( 1 , 2 c ) } 2 

2 {tfc +  7(2) (1, 2C) +  27W (1 ,  2;

-1
X

c)}

67T- 2  (1  -  7)2 9c7^2) ( 1 , 2 c) - { 7 ( 1) (M e)}2

\ {qc +  t (2) (Mc) + 2 7 W (i,2c)}
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Corr ( M e )
Cov ( e J c )

Var 0) Var

Cov

Var (0) Var

6n 17r 20 (1 — 7 )

- 2 - r - 26n~2 7r
-1

q<s(V){l,zc) -  {7(1) (M c)} (3 202 ^  +  ( 7 - 1 )  P2Qc

67r~2 (1 — 7)2 <7c7̂ 2) (M e) -- {7W (M e)}2

f  +  (7 — I)2 f t

Corr ( e X )  =

Cov (Me)
J v a r  (# ) Var  ( s c)

Var 6

J v a r  (§) Var  (£c)

\
Kar(0

Var (»•)
6n- 17r-2 /3 202 ^  +  ( 7 - I ) 2

72—1 ( M c ) - { 7 (1) ( M c ) } 2 {ft +  7 (2) (Me) +  27W (M e)}

67T-2

{ft +  7 (2) (

ĉ7(2) (1,^c) — {7(1) (M c)}‘

, ĉ) -f- 27c1) (M e)}

As for the negative exponential case, these approximate correlations do not depend on 
n, and therefore hold across all sample sizes.

6.3.1 F in ite  sam ple checks o f  W eibull M LE correlations

Tables 6.2, 6.3, and 6.4, compare the theoretical and simulated correlations for varying 
censoring levels and n = 1000. We do this for three values of /?; (3 =  0.8, which represents 
a decreasing hazard function, (3 = 1, a constant hazard function, and (3 =  2, an increasing 
hazard function. By checking each value, we hope to assess whether the theory holds for all 
types of Weibull failure data. We see tha t there is strong agreement between the theoretical 
and simulated results. These can now be used to obtain confidence intervals for (3 and 0



6.4. T H E  R E L IA BILITY  OF C E N SO R E D  MLES 165

c Corr (p , P^j Corr (P , 0C) Corr (0,/?c) Corr ^0,0C)
50 0.5499

0.5570
0.1820
0.1787

0.1722
0.1701

0.5814
0.5859

100 0.6880
0.6904

0.2552
0.2461

0.2154
0.2118

0.8150
0.8134

150 0.7715
0.7681

0.2852
0.2818

0.2415
0.2344

0.9109
0.9087

200 0.8283
0.8259

0.2983
0.2998

0.2593
0.2552

0.9529
0.9524

Table 6.2: Theoretical (above) and simulated (below) correlation of complete and censored 
MLEs obtained from a generated Weibull distribution with P = 0.8 and 0 =  100.

c Corr (/? ,& ) Corr  0C) Corr  ( 9,PC) Corr  ^0,0C]
50 0.5179

0.5220
0.1634
0.1613

0.1621
0.1667

0.5219
0.5214

100 0.6880
0.6868

0.2552
0.2554

0.2154
0.2285

0.8150
0.8066

150 0.7919
0.7929

0.2905
0.2894

0.2479
0.2603

0.9280
0.9253

200 0.8603
0.8601

0.3035
0.3042

0.2693
0.2779

0.9695
0.9683

Table 6.3: Theoretical (above) and simulated (below) correlation of complete and censored 
MLEs obtained from a generated Weibull distribution with (3 — 1 and 0 — 100.

based on their censored counterparts, and are also needed to extend this analysis to the 
quantile function B \ q. These tables show good agreement between theory and practice for 
all values of (3 considered, even at early censoring levels.

6.4 The reliability of censored MLEs

Following the same methodology as in the negative exponential case in Section 5.4, we can 
now measure the effectiveness of (3C and 0C as estimates of (3 and 9. We use

Ap =  P -  Pc

and assume that the MLEs follow the normal distribution, and tha t we are dealing with 
unbiased estimators. We then have the mean,

E [ A p ] = E

and variance

P - E Pc

Vp = Var  (A/0 =  Var  ( ?  -  f t.) ~  Var  (§ )  +  Var  (f t.)  -  2Ccw(ft ft.) (6.17)
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c Corr [p, Corr [p,9Pj Corr Corr (d,
50 0.3778

0.3865
0.0898
0.0799

0.1183
0.1076

0.2869
0.2979

100 0.6880
0.6921

0.2552
0.2420

0.2154
0.2135

0.8150
0.8110

150 0.8855
0.8895

0.3067
0.2980

0.2772
0.2778

0.9795
0.9796

200 0.9728
0.9736

0.3125
0.3064

0.3045
0.2966

0.9983
0.9982

Table 6.4: Theoretical (above) and simulated (below) correlation of complete and censored 
MLEs obtained from a generated Weibull distribution with (3 = 2 and 9 = 100.

and from (6.13) this becomes

Vp ~  Var (j3j +  Var  — 2 Var (pfj 

~  Var (jlc'j — Var (j3j

where both variances are given earlier, in (2.32) and (2.48), respectively. Under the same 
assumptions, we can obtain similar expressions for the expectations and variance of

Ao = 9 -  0C.

Thus we have

and

So we have

Ap ~  N  (0, Vp) , 

A 9 ~ N ( Q , V o) .

Pr J -1 .96  <  -=£= < 1.96 I =  0.95, 
\  V %  I

from which we can obtain the 95% confidence interval for /3, based on (3C, as

0  = p c ±  1.960

In practice we would then estimate the true value of (3 with the MLE (3C calculated at 
censoring time c, so we would have

0  = 0 c ± i . m ^ J % .

where Vp is the variance of Ap  calculated at (3 = (3C. We have omitted the lengthy 
expressions of these variances, and instead kept the notation simple for ease of reading.
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c M
A

Pc
A

0c 95% C l for 13 95%  C l for 0
50 7 3.0866 69.4707 (1.1268,5.0467) (47.1535,91.7855)
75 15 2.7634 72.8142 (1.8879,3.6392) (65.5866,80.0416)
100 18 2.2398 80.3151 (1.7288,2.7512) (70.8859,85.7459)
125 20 2.0731 82.4301 (1.7461,2.4006) (79.2384,85.6246)
150 22 2.1268 81.5604 (1.9388,2.3149) (80.3327,87.7889)
oo 23 2.1021 81.8783

Table 6.5: Confidence Interval of ft and 9 for the Ball Bearings data

The same process can be followed to obtain confidence intervals for 6, based on 9C. We can 
now move on to  look at some published examples and the perform some validation checks on 
the numerous asymptotic approximations, to discover the suitability of using such inference 
in finite samples.

6.4 .1  E xam ple: B all bearings d ata

Applying the theoretical confidence intervals for (3 and 0 to the censored ball bearings data 
MLEs, we obtain the numerical limits shown in Table 6.5. We notice that, as we increase 
the stopping time, and more items are allowed to fail, these confidence limits get smaller. As 
expected, the precision of the censored estimates increase as more information is collected.

Plotting these intervals with the MLEs, see Figure 6.1 for (3 and Figure 6.2 for 9, we 
clearly see the effect of extending the censoring time. There is much benefit to be gained 
from increasing c, but even at c =  125, when all but three items have failed, the confidence 
limits are still quite wide. We also point out that when censoring at c =  75, the confidence 
interval around 9C does not contain the complete estimate, and so does not provide a reliable 
guide to  the estimate yielded at the end of the experiment.

6.4 .2  E xam ple: 49 failure tim es

Repeating the process for the 49 failure times data in Table 2.2, leads to the following 95% 
confidence intervals for ft (Figure 6.3) and 0 (Figure 6.4). We again see the same pattern 
of very wide intervals, even when 90% of the items have failed. We note tha t ft — 1, and 
so the analysis in Chapter 5 is still useful.

6.4 .3  Sim ulation: C onfidence intervals for ft and 9

We have made checks throughout the theory development in the chapter, to ensure tha t the 
asymptotic theory is a good enough approximation to what we obtain in finite samples. Now 
we can validate the resulting confidence intervals using our simulation experiment set up. 
Again we simulate 10,000 MLEs yielded from failures following the Weibull distribution, 
with various n  and c. We fix the scale parameter 9 = 100, but vary the shape parameter 
/?, as we have already discussed the influence this has on the nature of the data. We count
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Figure 6.1: j3c and 95% confidence limits for for various c for the ball bearings failure 
data (x).
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Figure 6.2: 6C and 95% confidence limits for 9 for various c for the ball bearings failure data
( X ) .
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Figure 6.3: j3c and 95% confidence limits for (3 for various c for the 49 failure times data
( X ) .
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Figure 6.4: 9C and 95% confidence limits for 9 for various c for the 49 failure times data
( X ) .
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c n
50 100 300 500 1000

50 (3
0

92.89
90.67

93.98
92.49

93.80
93.80

94.62
93.98

95.10
94.82

100 (3
0

93.92
91.73

94.35
92.88

94.30
93.91

94.99
94.67

94.91
94.75

150 (3
0

94.17
91.64

94.51
93.20

94.92
94.07

94.95
94.45

94.82
94.63

200 (3
0

94.77
91.97

95.12
93.09

95.18
94.35

95.26
94.90

94.65
94.35

Table 6.6: Percentage of j3 (top line), and 6 (bottom line) covered by Confidence Interval 
for simulated Weibull data with (3 =  0.9 and 6 = 100

c n
50 100 300 500 1000

50 0
0

92.49
90.88

94.04
92.71

94.52
93.81

94.57
94.52

94.40
94.34

100 (3
0

93.77
91.31

94.55
93.19

94.66
93.83

94.67
94.22

94.86
94.65

150 (3
0

94.69
91.87

94.68
93.04

94.75
94.15

95.14
94.65

94.32
94.47

200 (3
0

95.34
92.13

94.93
93.30

94.76
94.05

94.99
94.55

94.67
94.46

Table 6.7: Percentage of covered by Confidence Interval for simulated Weibull data with 
/3 = 1  and 6 = 100

the number of complete MLEs are within the confidence intervals tha t have been fitted to 
our corresponding 10,000 censored estimates.

Tables 6.6 to 6.9 display these results in percentages at (3 — 0.9,1,1.1, and 2. This 
again covers a wide range of failure rates, and ensures that the changing hazard function 
around (3 = 1 does not have a detrimental effect on the coverage power of the confidence 
interval. We see tha t the results agree well with theory, particularly for increasing n and c.

6.5 Correlation of lifetim e quantile estim ates

We can also assess the correlation between MLEs of linear relationships of and 6, by 
computing the theoretical correlation between the complete and censored lifetime quantiles. 
For a simulation we know tha t the true value of Bio is

#io,o — (6.18)
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c n
50 100 300 500 1000

50 :/? 92.63 94.07 94.72 94.51 95.38
:9 90.92 91.79 94.20 94.60 94.72

100 : /? 93.97 94.59 94.79 94.42 95.40
:9 91.61 92.91 94.24 94.42 94.84

150:/? 94.50 95.00 94.79 94.90 95.44
:9 91.93 93.17 94.22 94.32 95.01

200:/? 95.22 95.26 94.75 94.98 95.19
: 9 91.90 93.15 93.98 94.46 95.13

Table 6.8: Percentage of /? covered by Confidence Interval for simulated Weibull data with 
(3 =  1.1 and 9 =  100

c n
50 100 300 500 1000

50 :/? 90.56 92.27 94.18 94.59 94.58
:9 91.01 92.19 94.20 94.27 94.35

100:/? 93.76 93.98 94.71 95.27 94.82
: 9 93.04 93.68 94.43 94.61 94.55

150 : (3 95.16 94.95 95.34 95.10 94.98
:9 92.37 93.36 94.37 94.72 94.90

200:/? 96.55 95.74 95.59 95.38 95.01
:9 91.94 92.48 94.48 94.33 94.52

Table 6.9: Percentage of (3 covered by Confidence Interval for simulated Weibull data with 
(3 = 2 and 9 = 100
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where A =  — ln (0.9), as in (2.53). Via a Taylor Series expansion we have

d B 10\ (h  -X0B1O,-QQ- \p=(3Q,9=eo +  (P -  Po)

=f Bio,o +  ( q — Oq Ĵ — Pq2B 1 0 ,0  (InA) (j3 — @P)

Bio =  B 10,o +  (d -  0o) \p=0o,9=Oo +  ( p -  Po) \p=P0,o=9o

and using (6.18), this becomes

Bio =  Bio,o [l +  0o1 (« -  «o) -  (In A) /3„2 (& -y30) ]  .

This approximation agrees with simulations, and we can also assume the following for the 
censored estimate,

Bio,c =f -Bio.o 1 +  0o1 {pc ~  0o) ~  (InA)Pq2 (p c -  /30)]

which also agrees with simulations, but the strength of the approximation appears to de­
crease with early censoring times.

Prom this we can obtain the covariance between the complete and censored MLEs of 
Bio,

/ -  - \  o I 0~2C o v (o ,e c) + { ln \ ) 2p -* C o v (p ,P c)  ,
Cov ( Bio,Bio,c) =  B 10 < K \  / -  - \ i  } (6.19)

'  '  ■ -  (ln A) 6 1fi [Cov [6 ,/?CJ +  Cov \J3,6CJ

-  [ ( - ' ' ■ .........................n ^ l (lnA) - 2 ( l n A ) ( l - 7 ) + | T  +  ( 7 - l ) '

69'

m t 2 p '
(InA) — 2 (ln A) (1 — 7 ) +

7TT  + (7-l)'

and from (2.54) and (2.55), it is straightforward to establish

Cov ( £ 10, Bio,c) =  Var  ( ^ 10) • 

Prom this we can obtain the correlation using

Cov ^Bio,Bio,c)
Corr (B io, B io.c)  =

y V  ar ( § 1 0 )̂ V ar  (B i0)C)

Var (b 10)
Var (BlO,c) '

where the variances are given in (2.54) and (2.55). We can then compare this theoretical 
correlation with a simulated counterpart with varying c and n. We see from Table 6.10
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c (3
0.8 1 2

50 0.8671
0.8683

0.8632
0.8636

0.8585
0.8613

100 0.8952
0.8950

0.8952
0.8948

0.8952
0.8965

150 0.9186
0.9170

0.9248
0.9249

0.9558
0.9572

200 0.9364
0.9357

0.9471
0.9469

0.9883
0.9883

Table 6.10: Theoretical (above) and Simulated (below) correlation of complete and censored 
estimates of B\o obtained from a generated Weibull distribution with various (3, 9 =  100, 
and n  =  1000.

tha t the theoretical and simulated results are in good agreement.

6.6 The Reliability of B \^ c

Statistical and reliability literature provides numerous methods and opinions on calculating 
confidence intervals of distribution parameters, see for example Meeker k  Nelson (1977), or 
Thoman et al. (1969). We however, wish to obtain a confidence interval of the estimated 
lifetime percentile, B\$ of a complete sample, given tha t we know the value of censored B \q,c 
at time c. We use

A j3io =  -Bio -  -Bio.c

and assume both Normality and that we are dealing with unbiased estimators.
We then have

and

E  [Abio] =  E -Bio - E Bio,c ~  B iq -  Bio -  0

Vbio =  V a r (-Bio - Bio,c)

=  V ar  (Bio) +  V ar (Bio,c^ -  2Cov(Bi0, Bi0)C) 

=  V ar  (.Bio.c) -  V ar (B i0)

which are given in (2.54). Therefore, under the above assumptions we have A ~  N  (0, Vbio) 
So we have the probability

Pr 1 -1 .9 6  <  - < 1.961 =  0.95
10
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c I te m s  failed Bio,c 95% C onfidence In te rv a l
50 7 33.5100 (30.3951,36.6249)
75 15 32.2525 (29.6285,34.8766)
100 18 29.4100 (26.9381,31.8819)
125 20 27.8427 (25.9415,29.7440)
150 22 28.3120 (27.1735,29.4504)
oo 23 28.0694

Table 6.11: Confidence Interval of Bio for Ball Bearings data

From which we can obtain the 95% confidence interval for Bio below

Bio = Bio,c ±  1.96\/Vhio (6.20)

As for f3 and 0, in practice we would then estimate the variance of A#io using the MLEs in 
place of the true parameter values.

6 .6 .1  E x a m p le : B a ll  b e a r in g s  d a t a

We recall the Ball Bearing example, lifetimes given in Table 1.2, and censored MLEs given 
in Table 2.5. Using a SAS program we calculate the 95% confidence interval, (6.20), of Bio 
at censoring times c =  50,100,150, and 200. Table 6.11 displays the results, and we can 
observe the confidence interval in Figure 6.5.

We see a different message here compared to the intervals for (3 and 0 discussed in the 
previous section. The interval width does not change as much when c increases, and in fact, 
there appears to little more benefit waiting until time c =  125, compared to the precision 
obtained at c =  50. This may have a positive impact on the experimental design process, 
depending on what level of precision is acceptable. The best option would be to allow 
all items to fail, but if this was not feasible, then early, censoring would possibly provide a 
reasonable guide to the final analysis estimate.

6 .6 .2  E x a m p le : 49  fa i lu re  t im e s

Fitting the confidence intervals to the 49 failure times data leads to the confidence interval 
for Bio in Figure 6.6. Again we do not see vast improvement in the precision of the estimate 
as the censoring level increases from c =  50 to c = 200.

6 .6 .3  S im u la tio n s

We use our generated MLEs calculated from a Weibull distribution, with various shape 
parameters (3,6 = 100, again at different censoring levels, and for a number of different 
sample sizes. We then use equation (6.20), given above, to find the proposed 95% confidence 
interval from each censored Bio,c generated, and then the percentage of these intervals 
from the 10,000 repetitions tha t actually contain the corresponding complete MLE, Bio is
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♦  33.5100

30
•  20.4100

♦  28.3120 ♦  28.0694♦  27.8427
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Figure 6.5: Bio c and 95% confidence limits for B i o  for various c for the ball bearings data
( X ) .

Figure 6.6: Bio,c and 95% confidence limits for Bio for various c for the 49 failure times 
data (x ).
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c n
50 100 300 500 1000

50
100
150
200

92.90
93.05
93.08
93.68

93.83
93.69
93.53
94.15

94.45
94.43
94.51
94.92

94.87
94.85
94.89
94.93

94.97
94.84
94.67
94.67

Table 6.12: Percentage of Bio covered by Confidence Interval for simulated Weibull data 
with P =  0.9 and 0 — 100

c n
50 100 300 500 1000

50
100
150
200

93.54
93.32
93.66
94.28

94.30
94.28
94.10
94.42

94.48 
94.62 
94.73
94.49

94.57
94.92
94.95
94.80

94.61
94.79
94.42
94.60

Table 6.13: Percentage of Bio covered by Confidence Interval for simulated Weibull data 
with j3 = 1 and 0 =  100

calculated. Tables 6.12 to 6.15 summarises these percentages, and we see the simulations 
agree with our theoretical 95% confidence interval of Bio obtained using the Rio)C estimate 
for all combinations of ft, c, and n  tried.

6.7 Summary

We have obtained general expressions for the correlations between the two sets of maximum 
likelihood estimates of Weibull parameters f3 and 0, and the percentile Bio. These, in turn, 
yield approximate 95% confidence limits for the final estimate given the interim estimate. 
Our formulae are relatively straightforward and computationally tractable. The correlations 
follow immediately from the EFI matrix, presented in Chapter 2. We have also shown that 
these asymptotic results agree with the behavior observed in simulation experiments for 
various combinations of censoring time c and (finite) sample size n.

In practical terms, we have established a link between censored and complete estimates, 
and have provided a method for a data user, or experiment manager, to quickly analyse

c n
50 100 300 500 1000

50
100
150
200

94.37
94.11
94.03
94.51

94.38
94.32
94.59
94.64

94.95
94.82
94.78
94.61

94.79 
94.58
94.79 
95.15

95.58
95.42
95.36
95.14

Table 6.14: Percentage of Bio covered by Confidence Interval for simulated Weibull data 
with (3 =  1.1 and 0 = 100
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c n
50 100 300 500 1000

50
100
150
200

93.89
95.68
96.03
96.63

94.99
95.55
95.38
95.88

94.95
94.93
94.79
95.50

95.22
95.02
95.42
95.65

95.19
95.15
95.64
95.37

Table 6.15: Percentage of covered by Confidence Interval for simulated Weibull data 
with (3 = 2 and 9 = 100

interim experiment results, and decide using a measure of precision if th a t interim estimate 
is sufficient to  provide inference from, or whether the experiment should continue and allow 
more items to fail. Clearly there will have to be some loss in precision of the parameter 
estimates in order to cap experimental costs, but now these are more quantifiable and easier 
to compare.



Chapter 7

Practiced Im plications and  
Conclusions

In this final chapter, we discuss the work completed in previous chapters, outline the prac­
tical implications of our work, and consider further areas of investigation.

7.1 Discussion

The aim of this thesis is to develop the theory already used in reliability analysis. The 
requirement for sound methods in reliability is essential, and as discussed in chapter one, 
reliability analysis is used to provide inference, and address problems in a variety of dis­
ciplines; for example, engineering, biology, and economics. The specific areas of research 
considered throughout this thesis are of a more practical nature, and we have provided more 
detailed information and solutions for the methods and techniques tha t are most often used 
in practice, rather than develop more sophisticated theory, tha t consequently would rarely 
be used by practitioners.

The main focus of this thesis has been on the effect censoring has on the properties 
and precision of the Weibull MLEs, and to establish some guidelines on an optimal time 
to stop an experiment, which maximises the practical benefits while minimising the loss of 
statistical information. The decision to concentrate on Weibull MLEs was made early, and 
was based both on their widespread use in practice, and favorable theoretical properties.

The Weibull distribution is the most commonly used lifetime distribution in practice, 
due to the flexibility it has in modelling a variety of life characteristics, achieved via the 
shape parameter. There are a number of estimation methods available to obtain parameter 
estimates for lifetime models, and as discussed in chapter one, we chose ML (maximum like­
lihood) , which have desirable asymptotic properties. We concentrate on Type I censoring, 
as a fixed experiment time means tha t it may often be easier to plan, and therefore it is 
more regularly implemented in practice.

Chapter two was concerned with fitting the Weibull distribution to data sets via ML, and
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we illustrated our techniques on the ball bearings data, and the 49 failure times data from 
Epstein (1960). We began by fitting the Weibull distribution to complete data, then moved 
on to Type I censored data. Simulation studies investigated factors such as the sample 
size, and true shape parameter value /?, in addition to censoring time, tha t may affect the 
bias and precision of MLEs and the quantile B \q. We then considered the theoretical EFI 
matrix for complete and censored data, which leads to asymptotically valid variances and 
covariance of the Weibull parameters and quantile function.

Throughout it has been our intention to assess the extent to which asymptotic results 
held for small to moderate samples, particularly when considering the role of censoring. 
Numerous simulation studies were carried out, and, in addition, theoretical values were 
obtained. For various sample sizes, we were then able to observe the agreement between 
the asymptotic results and practical (simulated) results. This check on moments was done 
for various values of the shape parameters, covering decreasing, increasing and constant 
hazard functions.

We found generally good agreement between simulated and theoretical results, and this 
improved as the sample size and censoring time increased. For the estimates of (3 and 9, 
large sample sizes will generally yield more precise estimates, but, when using a censoring 
regime, gains can be made in the precision of our estimates if we reduce the sample size, 
as long as the censoring time is then increased. For example, the estimates obtained at 
n  =  500 and c =  100, are more precise than those at n = 1000 and c =  50. However, this 
is not the case for I?io, where the sample size is the main factor affecting the precision of 
the estimates. Thus, it may be more beneficial to increase the sample size being tested, 
but reduce the censoring time, as this would generally yield a more precise estimate of B \q. 
In circumstances where the cost of the items being tested are not excessively greater than 
the cost of running the experiment, this would also help to reduce the total cost of an 
experiment. We now review the three main problems regarding ML estimation under a 
type I censoring regime th a t this thesis considered.

7.1.1 T ests for A sy m p to tic  N orm ality  o f M LEs

The general property of asymptotic Normality of MLEs is widely known, and is used in 
practice to obtain approximate confidence regions around parameters. We investigated 
the distribution of the MLEs, with particular emphasis on the rate at which the MLEs 
approach Normality, for increasing n. We also demonstrated the effect Type I censoring has 
on the progress towards Normality. Using numerical simulations, we have also ascertained 
the extent to which large sample Normality theory applies to smaller sample sizes. Similar 
studies have been carried out previously by researchers, but their result were commonly 
based on as few as 500 simulations, and complicated calculations were often done by hand. 
This thesis updates such research, using the computational resources tha t are available 
today.

Despite chapter two showing strong agreement between practical and asymptotic vari-
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ances of Weibull MLEs, formal tests showed tha t Normality was not reached until samples 
were very large, and censoring only impaired this progress. Univariate tests on estimates 
for the two distributional parameters showed that both (3C and 0C were skewed to the right, 
but 9C reached Normality quicker than (3C. The rate at which Normality is approached by 
increasing sample size depends on the true shape parameter, /?, and this seems to affect the 
distribution of (3C and 0C differently, with the distribution of 9C reaching Normality much 
faster than f3c, particularly when the true shape parameter (3 > 2. Formal tests of Normal­
ity on the simulated Bio)C MLEs showed tha t the assumption of Normality is implausible in 
sample sizes less than n  =  1000.

Despite these poor approximations to the Normal distribution, precision and confidence 
intervals obtained in the simulation studies still provided good coverage of the MLEs, but the 
shape of the distribution of (j3c, 0^j is not well represented, particularly for early censoring. 
This resulted in the investigation of an alternative method to measure precision.

7.1.2 A n  A ltern ative  M easure o f  P recision  - R ela tive  L ikelihood

Chapter 4 considered an alternative method for quantifying the precision in the estimates of 
Weibull parameters. We investigated factors affecting the precision of MLEs, such as sample 
size and censoring levels, using relative likelihood theory. Relative likelihood methods are 
discussed in most reliability text books, but, due to the computational burden involved, is 
used less often in practice.

We outlined an algorithm to compute contours at various levels of relative likelihood, 
and displayed these for the ball bearings and Epstein’s failure times examples. As we would 
expect, the contours generally tend to become smaller when the censoring time increases, 
and became more elliptical implying bivariate Normality when the value of the contour 
increases. When comparing with Normal theory confidence regions, we have shown that 
the two curves overlap, and as the censoring time c increases, the overlap increases, with 
the relative likelihood contour moving towards the asymptotic Normal ellipse. For large 
samples the two confidence regions would be quite similar, as the methods are asymptotically 
equivalent.

We then extended this to the general sampling distribution of ^/?c, 9 ^ j , with the usual 
investigation of various n  and c. We then used the expected order statistics as data values 
for an idealised Weibull sample, and on applying a type I censoring regime to this sample, 
obtained relative likelihood contours for tha t sample. These gave much better representative 
to the multivariate distribution of the Weibull MLEs.

Despite the more complicated computations involved in the relative likelihood approach 
to approximating confidence regions, with the computational capabilities available today, 
we can reasonably recommend the use of relative likelihood contours as an alternative mea­
sure of precision in small to moderate samples, as discussed above, where the asymptotic 
Normality assumption is not valid.
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7 .1 .3  In terim  A n alysis - T he R eliab ility  o f  C ensored R eliab ility  A nalyses

Finally, we investigate the problem of identifying an optimum time to censor. We started by 
setting (3= 1 , and therefore simplifying to the negative exponential distribution, and using 
the usual asymptotic relationship between the MLE, the expected Fisher information and the 
score function, we calculated the correlation between the censored and complete estimate. 
This approximate correlation does not depend on n, and therefore holds across all sample 
sizes. This correlation then provided a measure of precision of the censored estimate 0C, 
as an estimate of 6. Confidence intervals were presented for published examples, and some 
practical issues of experimental design were identified. A smaller interval, and therefore a 
more precise estimate to the complete MLE, will be obtained if the number of items tested, 
n, increases, or if the number of items allowed to fail increases, by extending the censoring 
time, c. Either option to tighten the confidence interval will add expense to the experiment, 
and so the importance of the precision in the interval must be weighed against the costs 
involved.

Such confidence intervals were validated using simulation studies, and, again, this was 
undertaken for various sample sizes, censoring levels and shape parameters. The simulation 
experiments again confirmed that, despite the lack of Normality in MLEs based on data  in 
samples with n smaller than 1000, the approximations obtained from asymptotic Normal 
theory still leads to reliable inference for small to moderate sample sizes.

Next, we generalised the results from the negative exponential distribution to the Weibull 
distribution. The analysis proved to be more detailed, but the same concepts held, and 
the corresponding relationships between censored and complete estimates were found. The 
correlations followed immediately from the EFI matrix, with the theory presented in Chapter 
2. We also showed tha t these asymptotic results agree with the behaviour observed in 
simulation experiments for various combinations of censoring time c and sample size n.

By exploiting the asymptotic relationships between the MLEs, transforming a Weibull 
random variable to a negative exponential random variable thereby simplifying the calcu­
lations, and using the truncated negative exponential distributions to handle complicated 
relationships between the number of failures and expectations involving failure and survivor 
times, this thesis has used a novel approach, which has contributed some new knowledge to 
the field of reliability. We have established a fink between censored and complete Weibull 
MLEs, thus providing a method for a data user, or experimental manager, to analyse interim 
experiment results, and decide, using a measure of precision, whether tha t interim estimate 
is sufficient to provide inference from, or whether the experiment should continue and allow 
more items to fail.

7.2 Areas for Future Research

As discussed in section 1.6, the algorithms, simulations and numerical calculations were 
developed in SAS or Mathematica. We could consider other available packages such as R,
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which, due to its wide availability and extensibility, is a popular choice for many statisticians 
today. We refer to Chambers (2007) for further details on programming in R.

Throughout our work, we have generally considered the Weibull distribution, and, nat­
urally, it would be of interest to extend this research to alternative reliability distributions, 
such as the Burr XII distribution mentioned in chapter 1. We considered Type I censoring 
to speed up the running time of experiments, but alternative censoring regimes, such as 
Type II censoring could also be investigated. Though it has been shown tha t the Fisher 
information matrices for Type I and Type II censored data are asymptotically equivalent, 
see, for example, Escobar k  Meeker (2001), it would be of some interest to compare the two 
regimes, and see how the results differ in finite sample sizes.

An alternative, or additional, approach to the efficient testing of experimental items is 
the use of accelerated life testing (ALT). In this process, we would exert an item to one or 
more external stresses - such as temperature, current or humidity - above and beyond those 
found in normal operating conditions, in an attem pt to  induce early failure. Nelson (1990) 
provides practical details on ALT, which could initiate further research to the analysis of 
Weibull reliability data.

Chapter 3 gave an in-depth investigation into the suitability of assumption of Normality 
of MLEs, generated from small to moderate samples of failure data. Tests were chosen on 
the basis of their power properties and ease in computation, but there are other tests for 
Normality, or transformations to Normality, that we could have used and displayed, if space 
and time had allowed. We refer to Thode (2002) for details on such alternative tests.

In chapter 4 we considered the overlap between the confidence regions obtained from 
Normal theory and relative likelihood, but the extent to  which they agree, and how they 
differ could be examined in much further detail. To investigate the use of relative likelihood 
contours for the general sampling distribution of /̂3C, 9^j we used the expected order sta­
tistics of the Weibull distribution to  obtain our idealised sample. Alternative methods of 
creating such a Weibull sample are available, and would be worthy of further investigation.

In our study of interim analysis, we proved a general relationship between the covariances 
of complete and censored MLEs 0 ,  /3C, 0, and 0C), and the complete EFI matrix. The 
relationship seems to be a consequence of the lack-of-memory property, and we should not 
assume tha t it holds more generally. Thus, further research is needed to generalise our 
work for data following other distributions, using a conditioning argument on M  (random 
in Type I censored experiments), as well as data under alternative censoring regimes.

Finally, in several places, we have mentioned the objective of exploiting finite resources 
in an optimal way, and, in this regard, the evaluation of a cost model to provide structured 
information for a data user or experimental manager, weighing up the financial cost versus 
the loss in precision, would be of great practical use.
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A ppendix A  : SAS Code: F itting  
W eibull MLEs to  Ball Bearing  
data

proc iml;

start weibmle2; 
n=nrow(wdata); 
m*sum(ind); 
c=n-m;
cdata*(ind#wdata); 
maxc=max(cdata); 
lnx=log(wdata); 
lncx=(ind#lnx); 
lncx2=lncx#lncx; 
se=sum(lncx); 
v=log(t) - se/m; 
beta=l/(v*(l-m/(2*n)));
♦print n t m c v beta maxc; 
do iter = 1 to 10; 

lnt=log(t);
sO=sum(ind#(exp(beta*lncx))); 
sl=sum(ind#(lncx#exp(beta*lncx))); 
s2=sum (ind# (lncx2#exp (bet a*lncx))) ; 
fl=s0 + (c*(t**beta)); 
f2=sl + (c*(t**beta)*lnt); 
f3=s2 + (c*(t**beta)*lnt*lnt); 
ratio=f2/f1;
pl= m * log(beta) - m * log(fl) + m*(log(m)) + (beta-1)*se - m;
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plb= m/beta - m*(ratio) + se;
plbb= -m/(beta**2) - m * (f3/fl) + m * (ratio**2); 
beta = beta - plb/plbb;
♦print beta plb plbb;

end;
theta=exp((log(f1/m))/beta); 
lw=m*log(m*beta/sO) + (beta-1)*se -m; 
blO=theta*((-log(0.9))**(1/beta)); 
print t beta theta blO sO lw; 

finish weibmle2; 
do;

data={ 17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.48, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40}; 

wdata=data;
t=50;
ind=wdata<t; 

run weibmle2;
end;
do;

data={ 17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.48, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40}; 

wdata=data;
t=max(wdata)+0.001; 
ind=wdata<t;

run weibmle2;
end; 
quit;



A ppendix B : SAS Code: 
Drawing R elative Likelihood  
Contours for Ball Bearing data

proc iml;
/♦locate MLEs+/ 

start weibmle2; 
n=nrow(wdata); 
m=sum(ind); 
c=n-m;

cdata*(ind#wdata); 
lnx=log(wdata); 
lncx=(ind#lnx); 
lncx2=lncx#lncx; 
se=sum(lncx); 
v=log(max(cdata)) - se/m; 
beta=l;
print n t m v se beta; 
do iter = 1 to 15; 

lnt=log(t);
sO=sum(ind#(exp(beta+lncx))); 
sl=sum(ind#(lncx#exp(beta+lncx))); 
s2=sum(ind#(lncx2#exp(beta+lncx))); 
fl=sO + (c+(t++beta)); 
f2=sl + (c+(t++beta)+lnt); 
f3=s2 + (c+(t^beta)+lnt^lnt) ; 
ratio=f2/f1;
pl= m ♦ log(beta) - m ♦ log(fl) + m+(log(m)) + (beta-1)^se - 
plb= m/beta - (ratio) + se;.



A PPEN D IX  B : SAS Code: Drawing Relative Likelihood Contours for Ball
Bearing data 190

plbb= -m/(beta**2) - m * (f3/fl) + m * (ratio**2); 
beta = beta - plb/plbb;
♦print beta;

end;
theta=exp((log(f1/m))/beta); 
maxl=m+log(m+beta/f1) + (beta-1)^se -m; 
maxlike=exp(maxl); 
blO=theta+((-log(0.9))♦♦(1/beta)); 
print beta theta blO maxi; 

finish weibmle2; 
do;

data={ 17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.48, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40}; 

wdata=data; 
t=75;
lnt=log(t); 
ind=wdata<t;

run weibmle2;
end;
/♦end of locating MLEs+/

/♦defining the drawing a r e a .* /  

do i=l to 100; 
j=i+0.05; 
minb=beta+(1-j);
s0minb=sum((exp(minb+lncx)))+(c+(t+^minb)); 
minbtheta=(sOminb/m)++(l/minb); 
lminb=m+log(m+minb/sOminb) + (minb-l)+se ^m; 
likeminb=exp(lminb); 
relminb=likeminb/maxlike; 
print i minb likeminb relminb; 
if relminb < 0.01 then stop;
♦print minb; 
end;
do i=l to 100; 
k=i+0.05; 
maxb=beta+(l+k);
s0maxb=sum((exp(maxb+lncx)))+(c+(t+^maxb));
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maxbtheta=exp( (log(sOmaxb/m)) /maxb) ; 
lmaxb=m*log(m*maxb/sOinaxb) + (maxb-l)*se -m; 
likemaxb=exp(lmaxb); 
relmaxb=likemaxb/maxlike; 
print i maxb likemaxb relmaxb; 
if relmaxb < 0.01 then stop;
♦print maxb; 
end;
do i=l to 100; 
j=i^0.01; 
mint=theta+(l-j); 
mintbeta=beta; 
do iter=l to 50;

s0mint=sum( (exp(mintbeta+lncx)))+(c+ (t♦♦mintbeta)) ; 
slmint=sum((lncx#exp(mintbet a+lncx))) + (c♦(t♦♦mintbet a)+lnt); 
s2mint=sum((lncx#lncx#exp(mintbeta^lncx)))+(c+(t++mintbeta)♦lnt+lnt); 
lnmint=log(mint);

dl* - m ♦lnmint + m/mintbeta + se +((mint♦♦(-mintbeta))♦
((sOmint^lnmint)-slmint)); 

d2= (-m/(mintbeta++2))-((mint^(-mintbeta))♦((s0mint+(lnmint^+2)) 
-(2+slmint+lnmint)+s2mint)); 

mintbeta = mintbeta - dl/d2;
/♦print mintbeta;♦/

end;
mintl*(-m+mintbeta^lnmint)+(m+log(mintbeta))+((mintbeta-1)^se)

-((mint++(-mintbeta))♦sOmint); 
mint1ike=exp(mint1); 
relmint=mintlike/maxlike; 
print i mint mintlike relmint; 
if relmint < 0.01 then stop;
♦print mint; 
end;
do i*l to 100; 
k=i+0.01; 
maxt=theta+(l+k); 
maxtbeta=beta; 
do iter=l to 50;

s0maxt=sum( (exp(maxtbeta+lncx)) ) + (<:♦ (t++maxtbeta) ) ; 
slmaxt=sum((lncx#exp(maxtbeta+lncx))) + ((:♦(t♦♦maxtbeta)+lnt); 
s2maxt=sum((lncx#lncx#exp(maxtbeta+lncx))) + (c+(t^maxtbeta)+lnt+lnt);
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lnmaxt=log(maxt);
dll= - m ♦lnmaxt + m/maxtbeta + se +((maxt♦♦(-maxtbeta)) 

*((sOmaxt*lnmaxt)-slmaxt)); 
dl2= (-m/ (maxtbeta**2)) - ((maxt** (-maxtbeta) ) * ( (sOmaxt* (lnmaxt**2)) 

-(2+slmaxt+lnmaxt)+s2maxt)); 
maxtbeta = maxtbeta - dll/dl2;
/♦print maxtbeta;♦/

end;
maxt 1= (-m+maxt bet a+lnmaxt ) + (m+log (maxtbet a)) + ((maxtbet a-1) ̂ se)

- ( (maxt++(-maxtbeta) ) ♦sOmaxt) ; 
maxt1ike=exp(maxt1); 
relmaxt=maxtlike/maxlike; 
print i maxt maxtlike relmaxt; 
if relmaxt < 0.01 then stop;
♦print maxt; 
end;
/♦Area defined with min & max beta and theta^/

/♦Define p and distance moved^/ 
p=0.99; 
delta=0.01;

/♦find initial point on contour^/
x=l;
y=maxt/theta;

do until (abs(fxy)<0.0000009) ;
sO^sum(ind#(exp(beta+lncx)))+(c+(t++beta)); 
sl=sum(ind#(lncx#exp(beta+lncx)))+(c^(t++beta)+lnt); 
s2=sum(ind#(lncx#lncx#exp(beta+lncx)) ) + ( c * (t++beta)♦lnt+lnt); 

s0xb=sum(ind#(exp(x+beta+lncx)))+(c+(t++(x+beta))); 
slxb=sum(ind#(lncx#exp(x+beta+lncx)))+(c+(t++(x+beta))+lnt);

. s2xb=sum(ind#(lncx#lncx#exp(x+beta+lncx)))
+ (<:♦(t++(x+beta))♦lnt^lnt); 

fxy=(-m+x+beta+log(y+theta))+(m+log(x^beta))+(((x+beta)-1)^se)
-(((y+theta)♦♦(-(x+beta)))♦sOxb)+(m+beta^log(theta))- 
(m+log(beta))-((beta-1)+se)+((theta++(-beta))^sO)-log(p); 

fxyy=((-m+x+beta)/y)+((x+beta^((y+theta)♦♦(-(x+beta)))♦sOxb)/y); 
y=y-(fxy/fxyy); 
end; 

betap=x+beta; 
thetap=y+theta;
fxyx=(-m+beta+log(y+theta))+(m/x)+(beta+se)+(((y+theta)♦♦(-(x+beta)))
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♦beta*((sOxb*log(y*theta))-slxb)); 
xnew= x + ((delta*fxyy)/SQRT((fxyx**2)+(fxyy**2))); 
ynew= y - ((delta*fxyx)/SQRT((fxyx**2)+(fxyy**2))); 
xl=xl//x; yl=yl//y; xnewl=xnewl//xnew; ynewl=ynewl//ynew; 
betapl=betapl//betap; thetapl=thetapl//thetap;
xll=xl[1:nrow(xl)]; yll=yl[1:nrow(yl)]; xnewll=xnewl[1:nrow(xnewl)]; 
ynewll=ynewl[1:nrow(ynewl)];
betapll=betapl[1:nrow(betapl)]; thetapll=thetapl[1:nrow(tbetapl)];
matrixp=xll | |xnewll | |betapll| |yll| |ynewll | |thetapl1;
varnames= *x1//7xnew */ / * betap *//*y *//*ynew *//’thetap’;
create filecontourl from matrixp[colname=varnames];
append from matrixp;
close filecontourl;

/♦moving along contour*/
/♦down and left-anticlockwise*/
do i*l to 3000;
x=xnew;
y=ynew;

do until (abs(fxy)<0.0000009);
s0*sum(ind#(exp(beta*lncx)))+(c*(t**beta)); 
sl=sum(ind#(lncx#exp(beta*lncx)))+(c*(t**beta)*lnt); 
s2=sum(ind#(lncx#lncx#exp(beta*lncx)))+(c*(t**beta)*lnt*lnt); 

sOxb=sum(ind#(exp(x*beta*lncx)))+(c*(t**(x*beta))); 
slxb=sum(ind#(lncx#exp(x*beta*lncx)))+(c*(t**(x*beta))*lnt); 
s2xb=sum(ind#(lncx#lncx#exp(x*beta*lncx)))+(c*(t**(x*beta)) 

*lnt*lnt);
fxy=(-m*x*beta*log(y*theta))+(m*log(x*beta))+(((x*beta)-1)*se)

-(((y*theta)**(-(x*beta)))*s0xb)+(m*beta*log(theta))- 
(m*log(beta))-((beta-1)*se)+((theta**(-beta))*s0)-log(p); 

fxyy=((-m*x*beta)/y)+((x*beta*((y*theta)**(-(x*beta)))*s0xb)/y); 
y=y-(fxy/fxyy); 
end; 

betap=x*beta; 
thetap=y*theta;
fxyx=(-m*beta*log(y*theta))+(m/x)+(beta*se)+(((y*theta)**(-(x*beta)))

♦beta*((s0xb*log(y*theta))-slxb)); 
xnew= x + ((delta*fxyy)/SQRT((fxyx**2)+(fxyy**2))); 
ynew= y - ((delta*fxyx)/SQRT((fxyx**2)+(fxyy**2))); 
xl=xl//x; y l - y l / / y i  xnewl=xnewl//xnew; ynewl=ynewl//ynew; 
betapl=betapl//betap; thetapl=thetapl//thetap;
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xll=xl[1:nrow(xl)]; yll=yl [1 :nrow(yl)] ; xnewll=xnewl [1 :nrow(xnewl)] ; 
ynewll=ynewl[1:nrow(ynewl)];
betapll=betapl[1:nrow(betapl)]; thetapll=thetapl[1:nrow(thetapl)];
matrixp=xl11 |xnewl11 |betapl11 |y111 |ynewl111 thetapl1;
varnames=yx ’/ / 1xnew’/ / * betap * / / ’y * //* ynew*/ / , thetap *;
create filecontour2 from matrixp[colname=varnames];
append from matrixp;
close filecontour2;
end;
/♦down and right*/ 
do i=l to 3000; 
x=xnew; 
y=ynew;

do until (abs(fxy)<0.00001) ;
s0=sum(ind#(exp(beta*lncx)))+(c*(t**beta)); 
sl=sum(ind#(lncx#exp(beta*lncx)))+(c*(t**beta)*lnt); 
s2=sum(ind#(lncx#lncx#exp(beta*lncx)))+(c*(t**beta)*lnt*lnt); 

s0xb=sum(ind#(exp(x*beta*lncx)))+(c*(t**(x*beta))); 
slxb“sum(ind#(lncx#exp(x*beta*lncx)))+(c*(t**(x*beta))*lnt); 
s2xb*sum(ind#(lncx#lncx#exp(x*beta*lncx)))+(c*(t**(x*beta)) 

*lnt*lnt);
fxy=(-m*x*beta*log(y*theta))+(m*log(x*beta))+(((x*beta)-1)*se)

-(((y*theta)**(-(x*beta)))*s0xb)+(m*beta*log(theta))- 
(m*log(beta))-((beta-1)*se)+((theta**(-beta))*s0)-log(p); 

fxyx=(-m*beta*log(y*theta))+(m/x)+(beta*se)+(((y*theta)**(-(x*beta))) 
♦beta*((s0xb*log(y*theta))-slxb));

x=x-(fxy/fxyx); 
end; 

betap=x*beta; 
thetap=y*theta;
fxyy=((-m*x*beta)/y)+((x*beta*((y*theta)**(-(x*beta)))*s0xb)/y); 
xnew= x + ((delta*fxyy)/SQRT((fxyx**2)+(fxyy**2))); 
ynew= y - ((delta*fxyx)/SQRT((fxyx**2)+(fxyy**2))); 
xl=xl//x; yl=yl//y; xnewl=xnewl//xnew; ynewl=3mewl//ynew; 
betapl=betapl//betap; thetapl=thetapl//thetap;
xll=xl[l:nrow(xl)]; yll=yl[1:nrow(yl)]; xnewll=xnewl[1:nrow(xnewl)]; 
3mewll=ynewl[1:nrow(ynewl)];
betapll=betapl[1:nrow(betapl)]; thetapll=thetapl[1:nrow(thetapl)]; 
matrixp=xl11 jxnewl11 |betapl11 |y111 |ynewl111 thetapl1;
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varnames=,x,//,xnew,//,betap,//,y,//,ynew,//,thetap,. 
create filecontour3 from matrixp[colname=varnames]; 
append from matrixp; 
close filecontour3; 
end;
/♦up and right*/ 
do i=l to 3000; 
x=xnew; 
y=ynew;

do until (abs(fxy)<0.00001) ;
s0=sum(ind#(exp(beta*lncx)))+(c*(t**beta)); 
sl=sum(ind#(lncx#exp(beta*lncx)))+(c*(t**beta)*lnt); 
s2=sum(ind#(lncx#lncx#exp(beta*lncx)))+(c*(t**beta)*lnt*lnt); 

s0xb=sum(ind#(exp(x*beta*lncx)))+(c*(t**(x*beta))); 
slxb=sum(ind#(lncx#exp(x*beta*lncx)))+ (c*(t**(x*beta))*lnt); 
s2xb=sum(ind#(lncx#lncx#exp(x*beta*lncx)))+(c*(t**(x*beta)) 

*lnt*lnt);
fxy=(-m*x*beta*log(y*theta))+(m*log(x*beta))+(((x*beta)-1)*se)

-(((y*theta)**(-(x*beta)))*s0xb)+(m*beta*log(theta))- 
(m*log(beta))-((beta-1)*se)+((theta**(-beta))*s0)-log(p); 

fxyy=((-m*x*beta)/y)+((x*beta*((y*theta)**(-(x*beta)))*s0xb)/y); 
y=y-(fxy/fxyy); 
end; 

betap=x*beta; 
thetap=y*theta;
fxyx=(-m*beta*log(y*theta))+(m/x)+(beta*se)+(((y*theta)**(-(x*beta)))

♦beta*((s0xb*log(y*theta))-slxb)); 
xnew= x + ((delta*fxyy)/SQRT((fxyx**2)+(fxyy**2))); 
ynew= y - ((delta*fxyx)/SQRT((fxyx**2)+(fxyy**2))); 
xl=xl//x; yl=yl//y; xnewl*xnewl//xnew; ynewl=ynewl//ynew; 
betapl=betapl//betap; thetapl=thetapl//thetap;
xll=xl[1:nrow(xl)]; yll=yl[1:nrow(yl)]; xnewll=xnewl[1rnrow(xnewl)]; 
ynewll=ynewl[1:nrow(ynewl)];
betapll=betapl[1:nrow(betapl)]; thetapll=thetapl[1:nrow(thetapl)];
matrixp=xl11 |xnewl11 |betapl11 |y111 |ynewl11 |thetapl1;
varnames= *x *//’xnew3/ / 1 betap *//3y *//*ynew’//’thetap3;
create filecontour4 from matrixp[colname=varnames];
append from matrixp;
close filecontour4;
end;
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/*up and left*/ 
do i=l to 3000; 
x=xnew; 
y=ynew;

do until (abs(fxy)<0.00001);
s0=sum(ind#(exp(beta*lncx)))+(c*(t**beta)); 
sl=sum(ind#(lncx#exp(beta*lncx)))+(c*(t**beta)*lnt); 
s2=sum(ind#(lncx#lncx#exp(beta*lncx))) + (c*(t**beta)*lnt*lnt); 

s0xb=sum(ind#(exp(x*beta*lncx)))+(c*(t**(x*beta))); 
slxb=sum(ind#(lncx#exp(x*beta*lncx)))+(c*(t**(x*beta))*lnt); 
s2xb=sum(ind#(lncx#lncx#exp(x*beta*lncx)))+(c*(t**(x*beta)) 

*lnt*lnt);
fxy=(-m*x*beta*log(y*theta))+(m*log(x*beta))+(((x*beta)-1)*se)

-(((y*tbeta)**(-(x*beta)))*s0xb)+(m*beta*log(theta))- 
(m*log(beta))-((beta-1)*se)+((theta**(-beta))*s0)-log(p); 

fxyx=(-m*beta*log(y*theta))+(m/x)+(beta*se)+(((y*theta)**(-(x*beta))) 
♦beta*((s0xb*log(y*theta))-slxb));

x=x-(fxy/fxyx); 
end; 

betap=x*beta; 
thetap=y*theta;
fxyy=((-m*x*beta)/y)+((x*beta*((y*theta)**(-(x*beta)))*s0xb)/y); 
xnew= x + ((delta*fxyy)/SQRT((fxyx**2)+(fxyy**2))); 
ynew= y - ((delta*fxyx)/SQRT((fxyx**2)+(fxyy**2))); 
xl*xl//x; yl=yl//y; xnewl^xnewlZ/xnew; ynewl=ynewl//ynew; 
betapl=betapl//betap; thetapl^thetapl/Athetap;
xll^xl[1:nrow(xl)]; yll=yl[1:nrow(yl)]; xnewll=xnewl[1:nrow(xnewl)]; 
ynewll=ynewl[1:nrow(ynewl)];
betapll=betapl[1:nrow(betapl)]; thetapll=thetapl[1:nrow(thetapl)];
matrixp=xl11 |xnewl11 |betapl11 |y111 |ynewl111 thetapl1;
v2Lmames= ’ x * / / 3 xnew ’ // * betap3 / / 3y 3/ / 3 ynew3 // * thet ap *;
create filecontour5 from matrixp[colname=varnames];
append from matrixp;
close filecontour5;
end;
/♦last*/ 
do i=l to 3000; 
x=xnew; 
y=ynew;
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do until (abs (fxy)<0.00001) ;
s0=sum(ind#(exp(beta*lncx)))+(c*(t**beta)); 
sl=sum(ind#(lncx#exp(beta*lncx)))+(c*(t**beta)*lnt); 
s2=sum(ind#(lncx#lncx#exp(beta*lncx)))+(c*(t**beta)

*lnt*lnt);
sOxb=sum(ind#(exp(x*beta*lncx)))+(c*(t**(x*beta))); 
slxb=sum(ind#(lncx#exp(x*beta*lncx)))+(c*(t**(x*beta))*lnt); 
s2xb=sum(ind#(lncx#lncx#exp(x*beta*lncx)))+(c*(t**(x*beta)) 

*lnt*lnt);
fxy=(-m*x*beta*log(y*theta))+(xn*log(x*beta))+(((x*beta)-1)*se)

-(((y*theta)**(-(x*beta)))*s0xb)+(m*beta*log(theta))- 
(m*log(beta))-((beta-1)*se)+((theta**(-beta))*s0)-log(p); 

f xyy=((-m*x*beta)/y)+((x*beta*((y*theta)**(-(x*beta)))*s0xb)/y); 
y*y-(fxy/fxyy); 
end; 

betap*x*beta; 
thetap=y*theta;
fxyx=(-m*beta*log(y*theta))+(m/x)+(beta*se)+(((y*theta)**(-(x*beta)))

♦beta*((sOxb*log(y*theta))-slxb)); 
xnew= x + ((delta*fxyy)/SQRT((fxyx**2)+(fxyy**2))); 
ynew= y - ((delta*fxyx)/SQRT((fxyx**2)+(fxyy**2))); 
x l - x l / / x ;  y l ^ y l / Z y ; xnewl*xnewl//xnew; ynewl*ynewl//ynew; 
betapl=betapl//betap; thetapl*thetapl//thetap;
xll=xl[1:nrow(xl)]; yll=yl[1:nrow(yl)]; xnewll=xnewl[1:nrow(xnewl)]; 
ynewll=ynewl[1:nrow(ynewl)];
betapll=betapl[1:nrow(betapl)]; thetapll=thetapl[1:nrow(thetapl)];
matrixp=xl11 |xnewl11 |betapl11 |y111 |ynewl111 thetapl1;
varnames**x’//3xnew*//3betap3/ ! 3y 3/ ! 3ynew’//’thetap3;
create filecontour6 from matrixp[colname=varnames];
append from matrixp;
close filecontour6;
end;
quit;


