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Abstract

Efficient uncertainty propagation schemes for dynamical systems are investigated here within 
the framework of stochastic finite element analysis. Uncertainty in the mathematical models 
arises from the incomplete knowledge or inherent variability of the various parametric and 
geometric properties of the physical system. These input uncertainties necessitate the use of 
stochastic mathematical models to accurately capture their behavior. The resolution of such 
stochastic models is computationally quite expensive. This work is concerned with develop
ment of model order reduction techniques for obtaining the dynamical response statistics of 
stochastic finite element systems. Efficient numerical methods have been proposed to propa
gate the input uncertainty of dynamical systems to the response variables.

Response statistics of randomly parametrized structural dynamic systems have been in
vestigated with a reduced spectral function approach. The frequency domain response and 
the transient evolution of the response of randomly parametrized structural dynamic systems 
have been studied with this approach. An efficient discrete representation of the input random 
field in a finite dimensional stochastic space is proposed here which has been integrated into 
the generic framework of the stochastic finite element weak formulation. This framework has 
been utilized to study the problem of random perturbation of the boundary surface of physi
cal domains. Truncated reduced order representation of the complex mathematical quantities 
which are associated with the stochastic isoparametric mapping of the random domain to a 
deterministic master domain within the stochastic Galerkin framework have been provided. 
Lastly, an a-priori model reduction scheme for the resolution of the response statistics of 
stochastic dynamical systems has also been studied here which is based on the concept of 
balanced truncation. The performance and numerical accuracy of the methods proposed in 
this work have been exemplified with numerical simulations of stochastic dynamical systems 
and the convergence behavior of various error indicators.
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Nomenclature

Notations and Symbols

C Space of complex numbers
R Space of real numbers
cov(*) Covariance of the field (•)
det | •  | Determinant of (•)
vec(*) vectorization of matrix (•)
div(m) divergence operator
colsp [•] column space of [•]
A : B double dot product, inner product of second order tensors A and B
G Belongs to
V For all
<g> tensor product
C subset
* convolution operation
(•, *)L2 inner product in an L 2 space
(•)T Matrix transpose of (•)
(•)_ 1 Matrix inverse of (•)
(•)-T Inverse transpose of (•)
(•) Derivative of (•) with respect to t
11 • 11F Frobenius matrix norm of (•)
|| •  || l2 norm of (•)
| •  | Absolute value of (•)

Abbreviations

PDE Partial differential equation
SPDE Stochastic partial differential equation 
PDF Probability density function
CDF Cumulative distribution function
DOF Degrees of freedom
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FE(M) Finite element method
SFEM Stochastic Finite element method
MCS Monte Carlo simulation
PC(E) Polynomial Chaos (Expansion)
HD Independent and identically distributed
ACF Auto-correlation function
KL Karhunen-Loeve

Definitions

.  (© , ^ , P )  space: The triple consists a measure space where © is a set and &  is the 
<T-algebra over ©. P  is a function which is a non-negative measure associated with 
This triplet is usually associated with a probability space where © is the set of possible 
outcomes, &  is a set of events and P  is the probability assigned to those events.

•  Continuous transformation: A transformation R  mapping a normed space X into 
another normed space Y is continuous if for every e > 0 there is a 8 > 0  such that 
\\x — a;0|| < S implies ||i?(x) — # (£ 0)|| < £ at eac^ point x 0 e  X .

•  Normed linear vector space: A vector space X  on which there is a real valued 
function p  which maps each element x  € X  to a real number ||x|| called the norm of x, 
i.e. p : X  —> R is the norm on X .  The space spanned by all vectors which have finite 
p-norm is termed as the LP space of vectors.

•  Cauchy sequence: A sequence x n in a normed space is a Cauchy sequence if ||xn — xm 
0 as n, m -> oo. In a  normed space every convergent sequence is a Cauchy sequence.

•  Completeness: A normed linear vector space is complete if every Cauchy sequence 
from X has a limit in X.

•  Inner Product: If two elements x\ and x 2 belongs to a linear vector space X ,  then the 
inner product, denoted as (xi, x 2), is a map X  x X  R  where R is a field of scalars. In 
the Euclidean space, the inner product is usually referred to as ‘dot product’. The inner 
product satisfies the axioms •  ( x i ,x2) =  (x2,x i)  •  (x\ + x 3, x2) =  (xi, x 2) + (x$, x 2) 
•  ( a x i , x 2) = a  ( x i ,x 2) •  ( x i , x i ) > 0

•  Hilbert Space: A linear vector space equipped with an inner product defined on H  x H  
and is complete in the norm is a Hilbert space.

•  Stochastic Hilbert space: Stochastic Hilbert space is a Hilbert space of the random 
variables. If {£l5. . . ,  £M} is a finite collection of random variables and P (£ i , . . . ,  £m) 
is their joint probability measure, then the stochastic Hilbert space consists of all such
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functions of £* where the inner product between two stochastic functions hi and hj is 
defined as (hi: hj) = Je hi, hjdP,  and the space is complete in the norm.

•  Orthogonal basis: A basis x is a subset of vector space X  over field F  which are 
linearly independent and spans X ,  i.e. any vector in X  can be expressed as a linear 
combination the elements of x. A linear vector space X  equipped with an inner product 
(•, •) has a set of orthogonal basis x if the element of x are orthogonal to each other, i.e.
(.Xi, Xj) = 0, for all i j , Xj G x.

•  Bilinear form: A bilinear form on a vector space X  over field F  is a function &  :
x X  —» F  which is linear in each argument separately. It satisfies the following 

axioms for all u, v, w G X  • &{u  +  v, w) =  w ) +  w) •  &{u, v +  w) =
v) +  w) •  £S(aiu, v) = &(u, av) = a&(u,  v).

Bilinear forms are symmetric if v) =  &(v, u).
For example, the inner product defined on a vector space X  over real numbers R is 
a bilinear map X  x X  —> R and its functional representation is a symmetric bilinear 
form.

•  Linear form: A linear form Jz? on a vector space X  over field F  is given as a function
: X  -» F  which is linear in X .  For all u ,v  G X  it satisfies •  J£(u +  v) = 

• J?(au)  =  aF?(u).

•  Krylov space: In linear algebra, given a matrix A G Mnxn and a vector b G Mn a
n-dimensional Krylov space (or subspace) b) is given as the space spanned by
the vectors {6, A6, A2b, . . . ,  An_16}. Thus JFn(A, b) =  span {6, A6, A2b, . . . , An_16}.





Chapter 1 

Introduction

1.1 Background

The mathematical models and the parameters used to model the physical system are ideal
izations of the physical process. They can not often be known for certainty and a degree of 
randomness is involved in these models. In fact, input uncertainty in the form of material pa
rameters, geometrical configuration, boundary conditions are ubiquitous and intrinsic to the 
models being analyzed. For example the randomness of a gust of wind, the characterization 
of forces in boundary and initial conditions on mechanical systems, random micro-structural 
features of engineering materials, the random fluctuations in diffusion coefficient, convection 
coefficient, all make the characterizations provided by deterministic models of mechanics 
less satisfactory with respect to their predictive capabilities. Thus instead of a particular stable 
point of operation given by a numerical model or a deterministic estimation of the evolution of 
the system response, a statistical quantification of the variability of the input-output character
istics of the system becomes more pertinent. This randomness involved in the parametrization 
and modeling of complex engineering systems has been widely recognized by industry and 
researchers.

A few motivating examples are provided here to highlight the necessity of having the 
statistical summary of response quantities rather than just having deterministic point estimate. 
Corrugated skins, which exhibit a strong anisotropic behavior, are highly sensitivity to their 
geometrical and elastic properties. Hence optimal design of these components must be robust 
with respect to random fluctuations in their design parameters. And this can be ensured with 
a stochastic analysis of the system response subject to input variability. Also, many of the 
civil engineering problems are concerned with materials that are intrinsically random (such 
as concrete and soil) and using merely the average value of the material characterizations 
would not establish their behavior with desired confidence or reliability.

Fortunately, the entire subject of uncertainty can itself be addressed in a scientific and 
mathematically precise way and their random characteristics can be addressed by computa
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tional models. Computational models can make use a set of basic input variables for math
ematical idealization of the complex mechanical systems. This would lead to the response 
variables such as displacement, stress, strain to be a stochastic quantities having statistical 
properties of their own and depending on the input variables. Hence this method involves 
dealing with differential equations with random coefficients and are collectively referred to as 
stochastic partial differential equations.

Hence future research in numerical methods, which aims to push the boundaries of com
putational mechanics by incorporating realistic models of complex engineering systems into 
their mathematical models, has to utilize the probabilistic description of the mechanical prob
lem at hand. Including stochastic features into computational models will not only provide 
realistic simulations of physical events but will also provide the analyst with specific informa
tion on the probabilities that can be assigned to predictions. Thus, using probabilistic models 
of mechanics, the analyst may determine what the distribution of a response quantities in the 
space of possible event outcomes rather than just their bounds (upper or lower limit) which 
can be expected in view of the input uncertainty to the model. In particular, the probability 
of failure of the systems being studied can be known. Hence uncertainty quantification in 
computational mechanics and efficient estimation of the response statistics, probability distri
butions of the response quantities would be an important field of study.

1.2 Uncertainty quantification

Accounting for this uncertainty in the input parameters and/or the geometrical configurations 
of the physical systems has been reported in many recent articles. A few recent review pa
pers by Nouy [2009], Charmpis et al. [2007], Stefanou [2009], Schueller [2006] gives the 
justification of considering stochastic models into the framework of the established numerical 
techniques and investigations of efficient and novel solution techniques. It is worth mention
ing here that the randomness in these input parameters of the mathematical model are different 
from the classical “stochastic differential equations”. In the latter case, the random inputs are 
in the form of idealized processes (such as Wiener process, Poisson process, to name a few) 
and the stochastic calculus used for their study is a mature subject of active research [Karatzas 
and Shreve, 1988, Kloeden and Pearson, 1977]. The present work would consider the uncer
tain inputs to be in the form of multiplicative uncertainty associated with the input elastic or 
geometrical parameters of the governing partial differential equations [Matthies, 2007].

Uncertainties present in a system model due to incomplete knowledge of system parame
ters can be reduced by carrying out exhaustive experiments or using better measuring devices 
(which are often quite expensive and laborious exercises). These are classified as epistemic 
uncertainty and has been widely studied in literature [Jakeman et al, 2010, Swiler et al., 
2009], sometimes employing interval arithmetic [Roy and Oberkampf, 2011]. On the other
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hand, aleatoric uncertainty arises in situations where it is not possible to reduce the uncer
tainty in the parameters using additional experiments or better measuring device. In fact 
some of these may be abstract approximate mathematical quantities modeling a physical sys
tem such as the porosity of poroelastic materials, which while theoretically definable may not 
be measured directly. Most of the real-life practical engineering problems involve both types 
of uncertainties. Some researchers suggest that a clear distinction be made between the two 
types [Pate-Cornell, 1996]. However others suggest that it’s often difficult to determine the 
category to which a particular uncertainty belongs [Kiureghian and Ditlevsen, 2009]. How
ever, it has been recognized that uncertainty quantification (of both types) is essential for the 
analysis of realistic physical systems [Najm, 2009, Roy and Oberkampf, 2011, Cheng and 
Sandu, 2009]. It is a necessary step in assessing the reliability of computer simulations and, 
hence is a part of model validation and verification [Roache, 1998].

We briefly discuss here some of the principal methods employed for uncertainty quantifi
cation in practical engineering problems.

• Worst-case-scenario: The method is useful when having complete information about 
the probability distribution of the input data is difficult or quite expensive [Hlavacek, 
2007]. For example, Babuska et a l  [2005a] proposed a methodology which relies on 
a finite dimensional representation of the random data around the nominal values of 
the data while preserving minimal requirements (say the coerciveness) of the stochastic 
problem. The fundamental idea relies on the understanding that the stochastic function 
of interest can be represented by a linear functional in the admissible space solution 
space.

• Probabilistic Estimation: This method provides probabilistic description of the un
certainty associated with the input parameters of the mathematical model. The random 
parameter is described in a probability space of possible outcomes (called events). The 
characterization of this input uncertainty is made with covariance functions, nature of 
the associated probability distribution functions, variability of the field and such similar 
quantities. This concept has been widely studied in literature [Puig et al., 2002, Ghanem 
and Spanos, 1991, Grigoriu, 2000, Sudret and Der-Kiureghian, 2000, Matthies, 2007].

•  Interval arithmetic: There have been works based on interval modeling of the un
certainty in model inputs. Some of the methods belonging to this category have been 
studied by Chen and Rao [1997], Zalewski et al. [2009], These methods rely on the in
terval concept to define the uncertain input parameters between deterministic upper and 
lower bounds. Based on these the interval Finite Element approach has been developed 
by Dimarogonas [1995]. However, they have been observed to give overestimation of 
the response quantities at each step of the interval algorithm. The deterministic bounds 
of the random parameter in the interval arithmetic may be subjected to uncertainties



and this has been studied in the fuzzy finite element approach proposed by Moens and 
Vandepitte [2002, 2005].

Apart from the above methods there are other approaches for approximation of the input 
uncertainty as model inputs such as evidence theory [Ferson et al,  2003], Bayesian inference 
[Wang and Zabaras, 2005, Ching and Beck, 2004] and expert opinion to mention a few.

1.2.1 Probabilistic description of input uncertainty

We take a random field a  defined on a compact region @ C R d and a probability space 
(0 , «^, P) such that the random field can be represented as a measurable mapping as a  : 
^  x 0  4  R. Here 0 e  0  is a point in the sampling space ©, &  is the complete Borel 
cr-algebra over the subsets of 0  and P  is the non-negative probability measure. The random 
field at each point in the region has a certain degree of correlation with those at the other 
points characterized by a certain representative geometrical dimension, which provides the 
necessary spatial description of the uncertain parameter. The uncertainty characterization 
of the random field can be performed using ‘Probabilistic Characterization’ which defines 
indexed finite dimensional joint distribution functions as [Adler, 1981, Oksendal, 1995]

F r i , . . . , r n (£ l>  • • • j £ n )  =  P  { ^ (* * 1) ^  V i  =  1 ,  . . .  , 77.} , ( 1 1 )

where r  j e  & E R V i = 1 , . . . ,  n

such that the random field is defined as a set of random variables a(r) := a (r, • ) : © —>• M 
where 0  is characterized by Friv..>rn( f i , . . .  ,£n). 0  can be constructed from the finite di
mensional distribution functions under weak consistency conditions [Oksendal, 1995]. Alter
natively, the random field is defined as a random variable whose elementary events 9 in the 
region ^ C R d are realized as

a(-,0) : @ where 0(r) =  a (r, 0); r G ^ ,  0 G 0  (1.2)

such that 0  C {9\9 : @ —> M}

The above definition necessitates specifying a probability measure Pa on the function space ©
with a finite dimensional probability distribution. However, for most engineering applications, 
it is not practical to specify the random field with all its finite-dimensional distributions or 
with the measures on a probability space. Hence the introduction of random fluctuations in 
the parametric model may not lead to a physically meaningful description of the random field.

We briefly discuss here the methods of modeling Gaussian and non-Gaussian random 
fields where the random fields are modeled with a degenerate set of random variables. Gaus
sian models are frequently used in the modeling of random fields since the central limit the
orem ensures their natural occurrence and they give the maximum entropy model if only
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second-order information is available. Hence the Gaussian fields are completely defined by 
their second-order statistics, i.e. their mean yua (r) and covariance function Ca (I*!, r 2) as

fj.a(r) =  E [a(r, 6)} and Ca(ru r 2) =  E [(a(ri, 6) -  /^ (ih )) (a (r2, 9) -  /xa (r2))]

Conversely, for any valid mean and covariance structure it is possible to find a Gaussian ran
dom field a (r, 6) which has these second-order statistics. The restrictions on the covariance 
kernel for which the above assumptions hold true are discussed later in this article.

For non-Gaussian random field models, we know that any random variable a(6) with 
a prescribed distribution function Fa can be non-linearly mapped onto a standard normal 
random variable £ E f f ( 0 , 1) as F ~ 1(erf(A/*(0,1))) where ‘erf’ is the Gaussian distribution 
function. Hence a non-Gaussian random field a (r, 6) with a distribution function Fa can be 
defined with a non-linear transformation

where a (r, 6) has a marginal distribution Fa(r) at any point r e ^ .  The higher order moments 
and covariance Ca (ri, r 2) are obtained as

where dF^ ri),£(r2)(0i> #2) is the joint probability density of the Gaussian random variables

of the non-Gaussian random field a , it is necessary to select 77 and the covariance of the nor-

marginal distribution and/or the target covariance may lead to inconsistencies. Some analyti
cal expressions for various marginal distributions can be found in Ogorodnikov and Prigarin 
[1996], Grigoriu [2000]. However, in general a finite dimensional representation of the ran-

later in the thesis in Sec. 2.2.1.

The input uncertainties considered in this work would be included in the mathematical 
model within the probabilistic framework, under the assumption that enough information is 
available for a complete statistical characterization of the physical system. The input data 
would be modeled with random fields with a given spatial correlation structure in a finite di
mensional stochastic space. The stochastic model response and the other quantities of interest 
derived from it are sought in the function space of the input random field. Therefore, the goal 
of the mathematical and computational analysis is the prediction of statistical moments (mean

a (r, 9) =  r/(r, £(r, 0)) :=  Fq(J.} o erf (£(r, 9)) (1.3)

v(ri,9i)r)(r2,92)dF(:{r1)£{r2)(9i,92) -  /xQ(riVQ(r2)
Je  Je

(1.4)

£(ri) and £(r2). From the above equations it can be seen that given the second-order statistics

mal random variables C$(ri, r 2). This is often a non-trivial exercise and arbitrary choices of

dom field is provided with a truncated series expansion. This would be discussed in detail



value, variance, covariance, etc.) or even the whole probability distribution of the quantities 
of physical interest, given an input distribution of the random data.

One of the significant issues involved in the numerical methods adopted to solve the prob
lems driven by random inputs is the computational cost associated with them. The solution 
of the stochastic partial differential equations is significantly more expensive than the corre
sponding deterministic case. Hence the primary focus of this work would be on the devel
opment of efficient reduced order solution techniques which can produce reliable numerical 
approximations for a wide variety of applied stochastic mechanics problems. We briefly re
view the uncertainty propagation schemes in the following section.

1.3 Review of uncertainty propagation methods

The propagation of the input uncertainty to the system response of the randomly parametrized 
systems has been tackled with various methods ranging from the non-intrusive statistical sim
ulation methods (such as the crude Monte Carlo simulation (MCS) and it’s variants) to non- 
statistical analytical methods. Solution techniques based constructing the stochastic response 
surface from the evaluation of the system response at finite number of points in the stochastic 
space are regarded as non-intrusive scheme. This is because of the fact that it is not neces
sary to modify the simulator which gives the deterministic system solution for any value of 
the input parameters. The advantage of this is obvious when dealing with complicated and 
expensive solvers (such as in CFD applications) where the latter can be treated as a black-box 
with the stochastic routines wrapped around it. However, the imminent advantage is often 
offset by the computational cost as discussed later in this chapter. On the other hand, the an
alytical methods which aims to obtain a functional representation of the stochastic response 
(and which often turn out to be computationally advantageous) necessitates the modification 
of the deterministic solver which might involve changing/rewriting significant parts of the 
code. Hence it is often classified as an ‘intrusive’ method.

1.3.1 Stochastic sampling techniques

The stochastic sampling techniques employ Monte Carlo type simulation techniques (in con
junction with advanced sampling and/or interpolation schemes) which have been analyzed 
and used in the finite element analysis of random systems [Papadrakakis and Papadopou- 
los, 1996]. It has been used in context of structural dynamics problems by Pradlwarter and 
Schueller [1997]. Non-intrusive techniques enable the use of the already existing determin
istic codes to solve the stochastic problem at carefully chosen sample points. Hence, there is 
no necessity to modify the deterministic solvers and adapt them to the stochastic case, it only 
involves constructing some post-processing routines. Also, the deterministic solvers working 
independently of each other at various sample points are trivially parallelizable.
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However, the convergence of the crude MCS is slow and the error converges as 
where N  is the number of sample points in the stochastic space where the solution is needed. 
The computational efficacy of these sample-based techniques can be substantially improved 
by reducing the problem to important random variables using principal component analysis 
[Kreinin et al,  1998] and various efficient variance reduction techniques such as importance 
sampling [Au and Beck, 1999], the multi-point estimate method, stratified sampling and Latin 
hypercube sampling [Stein, 1987, McKay et a l,  1979]. The quasi-Monte Carlo technique has 
received significant attention as an efficient sample-based solution technique where a grid 
of carefully chosen few sample points gives a good approximation of the stochastic system 
solution (see for example Sobol [1998], Caflisch [1998], Sloan et a l  [2002], Graham et al 
[2011], Kuo et al [2012]). The limitations of these techniques are dictated by the input 
stochastic space dimension. On the other hand, while the convergence rate of the Monte 
Carlo methods is slow, its computational work grows only like a polynomial with respect to 
the number of random variables present in the problem. Hence the efficient sampling based 
methods are quite efficient and well-suited when the dimension of the input stochastic space 
is relatively small.

It is important to note that the brute force MCS solution is often treated as a benchmark 
solution in numerical simulations to test the approximation accuracy of the solution statistics, 
convergence rates and computational efficacy of the proposed stochastic solvers. This is quite 
common in the stochastic computational mechanics literature (see for example Lucor et a l  
[2004]). However, given the slow convergence of the MCS technique, it is essential to ensure 
that the MCS has converged before using it as the benchmark. In this work, MCS results have 
often been utilized as the benchmark to observe the convergence of second order statistics of 
the response. It has been verified that such second order statistics computed from the MCS 
solution scheme have converged with sufficient accuracy before using them to validate the 
results. However, it must be mentioned that for some measures such as the complete pdf, 
especially near their tails, it might be necessary to have very high sample size to get a good 
approximation. While this may be speeded up with selective sampling the target domain, 
these have not been considered in this study.

1.3.2 Approximate analytical solution schemes

The non-statistical methods provides an explicit functional relationship between the input ran
dom variables and hence allows the evaluation of the functional statistics/probabilities of the 
stochastic system response. There are a host of approximation schemes which aim to repre
sent the stochastic solution with approximate lower order forms which can be a viable alter
native to the expensive sampling based schemes detailed in Section 1.3.1. These approaches 
can be based on the following schemes



• Perturbation Method: This method gives the stochastic system solution as a low order 
expansion of the system solution about its deterministic response using the Taylor series 
expansion method [Kleiber and Hien, 1992, Yimin et al, 1996, Lazarov et a l,  2012]. 
The approximate solution provided by this technique is valid only for low levels of 
input variability of the random quantity. Additionally, tracking the polynomial form of 
the solution beyond second order becomes a major difficulty.

• Neumann Series: This method relies on approximating the inverse of the stochastic 
matrix series in a Neumann type matrix series expansion about the baseline model [Ya- 
mazaki et al,  1988, Lei and Qiu, 2000]. The stochastic system solution obtained using 
this series expansion and its approximation accuracy is a guided by the spectral radius 
of the deterministic part of the system matrix compared to the same for the stochastic 
parts [Ghanem and Spanos, 1991].

• Response surface method: This method aims to fit the random data of the stochastic 
quantities obtained at certain points in the stochastic space to a polynomial function of 
the input stochastic variables. The method utilizes a least square fit of the model data to 
give a response surface of the stochastic quantities. Non-intrusive projection schemes 
have been applied to evolute the coefficient associated with the least square fit [Chen 
et al, 2004, Blatman and Sudret, 2010]. The number of random points required to 
have a good approximation of the stochastic system response increases rapidly with the 
degree and dimension associated with the input variability which limits its application 
in complex engineering problems.

All the above method basically attempts to obtain a good approximation of the stochastic sys
tem solution using lower order stochastic functions of input random variables. However, this 
method is often unsuitable for complex dynamical engineering problems in high dimensional 
stochastic space.

1.3.3 Stochastic spectral Galerkin method

One of the most generic frameworks for uncertainty propagation for randomly parametrized 
systems is the stochastic spectral Galerkin method [Ghanem and Spanos, 1991, Babuska et al., 
2004,2005b]. Here the system solution is expressed with a set of a set of finite order stochastic 
polynomials spanning the stochastic Hilbert space of the input random variables. We discuss 
this method in some detail here.

We assume that the set of M  iid input random vectors representing the input uncertainty 
to the system is denoted by the vector £ =  {£i, • • •, £m}- According to the polynomial chaos 
expansion scheme, the stochastic response Ui(6) can be represented with a mean-square con
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vergent series as

M  M  h
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where are deterministic constants to be evaluated and hr{^ix(6) , . . . , £*r (#)) are the
chaos terms. The solution is characterized by the maximum degree of polynomials used in 
the expansion and is generally termed as the order of polynomial chaos expansion. The ap
proximation accuracy is controlled by this order of chaos. When £(6) are Gaussian random 
variables the associated stochastic polynomials are Hermite polynomials which are orthogo
nal with respect to the Gaussian joint distribution function.

The same idea can be extended to non-Gaussian random variables, provided more gener
alized functional bases are used [Xiu and Kamiadakis, 2002, 2003b, Wan and Kamiadakis, 
2006] so that the orthonormality with respect to the probability density functions can be re
tained. Under such conditions, the type of independent random variables are chosen according 
to the type of random input distributions and according to Table 1.1. The Wiener-Hermite ex-

Table 1.1: Type of chaos expansion according to the type of input probability distribution 
[Xiu and Kamiadakis, 2002].

Random Input Chaos type Support
Gaussian Hermite-chaos (—0 0 , 0 0 )
Gamma Laguerre-chaos [0,0 0 )

Beta Jacobi-chaos [a, b]
Uniform Legendre-chaos [a,b]

pansions in conjunction with the finite element (FE) methods have been widely applied to
different problems such as fluid mechanics [Hou et al., 2006, Knio and Maitre, 2006, Najm,
2009], heat conductions [Xiu and Kamiadakis, 2003a, Williams, 2010], dynamic systems 
[Pettit and Beran, 2006, Maute et al., 2009] to mention a few.

The number of terms nt in the polynomial chaos expansion depends on the dimension of 
the stochastic space (M) and the order of chaos (p) according to the relation

+  j  —1)! f M  + p \  ^
" ' ■ S  « M - D I  - {  ,  )  ( l ' 6 >

It is obvious that the number of terms nt increases significantly with the value of M  and p 
and this is commonly referred to as the ‘curse of dimensionality’ in the literature. If we have



a finite element system with n degrees of freedom then the dimension of the linear system 
resulting from the spectral Galerkin approach becomes n x nt. As a result several methods 
have been developed including adaptive polynomial chaos (see for example Blatman and 
Sudret [2008, 2010]) aimed at reducing the computational cost.

Application of the spectral Galerkin approach to practical engineering problems may in
volve a fine discretization at the deterministic level (which involves a large resolution of 
the model at the deterministic level, i.e. large n) or a high dimensional representation at the 
stochastic level (large n t ). This results in the effective problem dimension to blow up rapidly 
leading to significant computational times and memory requirements. Hence the problem of 
model order reduction in the context of stochastic Galerkin methods is quite essential. This is 
discussed in more details in Sec. 1.4.

1.3.4 Stochastic collocation technique

The sparse-grid stochastic collocation methods are a computationally efficient alternative to 
direct Monte Carlo simulation technique. The collocation method relies on constructing the 
random solution using polynomial interpolation functions with a set of random responses 
evaluated at the zeros of these multidimensional stochastic interpolation functions [Nobile 
et al., 2008b, Babuska et al., 2010]. This requires resolution of the random system response 
at the sparse grid collocation points in a Monte Carlo sense and hence is non-intrusive and 
trivially parallelizable. For high-dimensional stochastic problems, adaptive sparse-grid collo
cation techniques have been proposed which aims to represent the problem with refinements 
(more grid points) along the important stochastic dimensions [Ma and Zabaras, 2009, Jake- 
man and Roberts, 2013, Nobile et al., 2008a]. The computational evidence indicates the effec
tiveness of the sparse grid stochastic collocation method compared to full tensor and Monte 
Carlo approaches. Recently a multi-element probabilistic collocation method [Foo and Kar- 
niadakis, 2010] has also been used in this context which prescribe a collocation method on 
discretized elements of the parametric space. The collocation technique has been applied to 
various domains of applied computational mechanics problems such as natural convection 
[Ganapathysubramanian and Zabaras, 2007], computational fluid dynamics [Mathelin et al,  
2005], flow through porous medium [Li and Zhang, 2007] to name a few.

Various problems, which requires probabilistic models of the input random parameters, 
are often quite complicated to the extent that obtaining the system matrices with polynomials 
of the input random variables becomes a mathematically cumbersome exercise. Hence the 
spectral Galerkin methods is not the obvious first choice under such circumstances and the 
sparse grid collocation technique is often more readily applicable where the deterministic 
problem is solved at a set of quadrature points in the input stochastic space. Hence the solution 
can be reconstructed in the M-dimensional stochastic space with polynomial basis functions
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of the random variables as

TTli-y TYliM
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is the approximation of the random field along each stochastic dimension. The above tensor 
product formula requires evaluation of the stochastic objective function at (m ix. . .  m iM) grid 
points. For very high dimensional problems, i.e. large M, the above method becomes com
putationally intensive and a sparse grid technique is implemented using Smolyak’s algorithm 
as [Barthelmann et al., 2000]

^ ( 9, M ) =  Y  ( - l ) ,_ |i | ' ® • • • ® %iM (1-8)
g-M+l<|i|<9

where srf(q, M )  are linear combinations of product formulas given in Eqn. (1.7), q > M  and 
i =  ( i i , . . . ,  iM) with |i| =  ii +  . . .  +  zm which requires fewer realizations of the stochastic 
response in order to obtain the complete response statistics. Hence to compute srf(q, M )  the 
response has to be evaluated at the sparse grid points

X { q , M )  =  u ( Xh x . . . x X iM) (1.9)
g—M+l<|i|<g

with X %k =  {V ^,. . . ,  x 1̂ . } denoting the set of points used by W lk. Here we have used the 
Smolyak formulas that are based on polynomial interpolation at the extrema of the Chebyshev 
polynomials. This gives a nested set of nodes which can be used to approximate the stochastic 
quantity. However, when dealing with problems with high stochastic dimensions and input 
variability, the stochastic collocation often fails to provide substantial computational benefits 
over the direct Monte Carlo simulation method.

1.4 Review of stochastic model reduction techniques

The additional computational overhead associated with obtaining the response statistics of 
the randomly parametrized systems have motivated researchers to look into various model 
reduction techniques for the numerical solution of SPDE [Debusschere et al., 2005]. A review 
of some of these techniques can be found in Keese [2003], Nouy [2009]. The computational 
overhead is reduced with careful choice of the stochastic space and the orthogonal chaos 
expansion spanning the space. Adapted basis functions has been used to approximate the 
stochastic functions based on piecewise polynomial basis on a partitioned stochastic space



[Maitre et al,  2004b, Wan and Kamiadakis, 2005]. Another approach utilizes polynomial 
multi-wavelets basis for the stochastic space which allows for a multi-scale representation 
of the functions in the L2 stochastic space [Maitre et al., 2004a]. A good approximation of 
the stochastic response function is guided by appropriate error estimators. This is especially 
suitable for adaptive basis building techniques.

A method belonging to this kind of model reduction approach is the Generalized Spectral 
Decomposition technique [Nouy, 2007, 2008]. It is an a-priori model reduction technique 
which gives an optimal decomposition of the solution of the stochastic problem by simulta
neously satisfying a double Galerkin orthonormality criterion in a tensor product space. The 
method has been shown to be a natural extension of the Hilbert Karhunen-Loeve decompo
sition and dedicated algorithms for the efficient resolution of the eigen problems associated 
with this method has been proposed.

The a-priori model reduction schemes in context of Galerkin spectral stochastic methods 
evaluate the stochastic basis functions for approximating the solution using well defined op
timality criterion. On the other hand there are methods belonging to the class of a-posteriori 
model reduction where the optimal basis is calculated from a primary approximation of the 
statistics of the stochastic response. A method belonging to this later class attempts to per
form a spectral (Hilbert Karhunen-Loeve) decomposition of the stochastic solution to obtain 
the set of stochastic basis functions Doostan et al. [2007]. These are Proper Orthogonal De
composition based methods where the approximation basis is constructed from several evalu
ations of deterministic problems in the stochastic sample space and then performing a singular 
value decomposition to evaluate the optimal orthogonal basis functions. Other such methods 
include a low-order Neumann expansion scheme to compute a estimation of the correlation 
structure of the response vector Matthies and Keese [2005]. Another similar a-posterior model 
reduction scheme is based on reusing the basis vectors spanning the dominant Krylov sub
space of deterministic problems and using them to obtain a low order representation of the 
stochastic sample response of the subsequent problem sets Gosselet et al. [2003]. However, 
difficulty arises in the selection of pertinent subspaces for the subsequent resolutions, in order 
to avoid a significant increase in the dimension of the approximation space.

A ‘reduced basis method’ has been proposed by Boyaval et al. [2009] for the resolution of 
the stochastic elliptic symmetric problems with Monte Carlo method which is based on rig
orous error estimation criterion. Another stochastic reduced basis method has been proposed 
for solving linear stochastic problems by Nair and Keane [2002], Sachdeva et al. [2006a] 
which relies on approximating the stochastic system response using projections of the solu
tion on the preconditioned stochastic Krylov basis functions. This method however, is good 
for low order approximations of the stochastic response and becomes quite cumbersome for 
high order approximations. Moreover, it has been shown by Nouy [2009] that the successive 
stochastic basis functions are only the preconditioned basis functions of the classical spectral
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Galerkin method for a particular choice of the preconditioner.

Recently a reduced spectral function approach has been proposed for the resolution of the 
stochastic system response static engineering systems by Adhikari [2011]. The method ap
proximates the stochastic system solution using a truncated series representation of stochastic 
functions of input random variables termed as the spectral functions. Here a hybrid analytical 
and simulation based computational approach has been utilized to obtain the moments and 
probability density function of the solution.

Metamodeling strategies have also been utilized for having a computationally efficient 
scheme to evaluate the statistics of the stochastic systems. Such a metamodeling strategy, 
known as Gaussian process emulation [O’Hagan, 2006], is based on the analysis and design 
of computer experiments [Sacks et al., 1989, Santner et al., 2003] and on the concepts of 
Bayesian statistics. The non-expensive approximation of the output is made after evaluating 
a small number of points in the input space, hence reducing the required computer processing 
time. After conditioning on these training runs and updating a prior distribution, the mean 
of the resulting posterior distribution approximates the output of the simulator at any untried 
input, whereas it reproduces the known output at each design point. Gaussian process emula
tion has been implemented in various scientific fields with encouraging results. These fields 
include structural dynamics [DiazDelaO and Adhikari, 2010], multi-scale analysis [Flores 
et al., 2012], stochastic finite elements [DiazDelaO and Adhikari, 2011], and domain decom
position [DiazDelaO and Adhikari, 2012] among many others.

1.5 Research objectives and scope

The research trend in the domain of computational mechanics clearly indicates the need for 
efficient numerical techniques to reduce the computational overhead associated with the eval
uation of the system response of large-scale engineering problems [Nouy, 2009]. The in
corporation of parametric/geometric uncertainty into the mathematical models results in a 
significant increase in the complexity of the solution methodology. This makes an optimal 
reduced order formulation for the resolution of stochastic systems highly desirable.

Although theoretical research in this domain has been encouraging and progress has been 
made in this field over the past decade, their widespread use is limited in the industry level 
engineering simulations and the wider engineering community on the whole. Additionally, 
their development within the computational mechanics community is very much ongoing. 
Generic stochastic solvers are not yet integrated with the most widely used industry standard 
commercial numerical analysis software packages. Stochastic simulation in industrial cases is 
often restricted to sample based techniques requiring solutions of large number of full system 
solutions. When using the probabilistic description of the input uncertainty, we identity a few 
important factors which needs further attention in this regard.



• A generic formulation for integrating the probabilistic description of the input uncer
tainty (parametric or geometric) with the classical finite element formulation is not well 
established.

• The added computational cost for obtaining the response statistics given an input uncer
tainty is computationally expensive. Model reduction techniques are important in this 
context to have a tractable computational overhead for an industry scale problem.

•  Model reduction techniques for deterministic physical systems are often well estab
lished within the framework of the classical numerical algorithms adopted in their 
simulation studies. Integration of these model reduction schemes with the stochastic 
formulation has substantial scope of further improvement.

• The stochastic formulation for geometric uncertainty lacks adequate formal treatment 
within the stochastic finite element formulation both in terms of description of the input 
uncertainty and propagation of this uncertainty to the stochastic system response. This 
is largely due to the complicated mathematical nature of the expressions encountered 
in the problem.

The above points are identified as areas open to further research and has been considered 
in the present work. The objective of this work is to consider the state-of-the-art numerical al
gorithms in SFEM and provide novel improvements and generalization of the computational 
schemes to deal with the description and propagation of uncertainty in the mathematical mod
els. The research broadly focuses on the development of efficient numerical methods which 
can give estimates of the response statistics of the physical system with probabilistic input 
uncertainty.

Discretization of a stochastic PDE in the spatial and stochastic dimensions within the 
SFEM framework results in a set of random algebraic equations. An approximation of the 
solution can be obtained with a low order approximation of the solution by retaining the 
dominant invariant properties of the system. The invariant subspace in which the solution 
is sought has to be chosen judiciously and has a significant impact on the accuracy and the 
computational efficacy of the numerical method. This would be the primary area of investi
gation in this work. The specific objectives of research are outlined as given in the following 
paragraphs.

1. Reduced order spectral function approach in structural dynamics
A reduced order approach for a linear structural dynamic systems with stochastic coef
ficients would be investigated with a spectral function approach. The fundamental idea 
is to solve a discretized stochastic system in the frequency domain by projecting the 
solution on a reduced subspace of eigenvectors weighted by a set of rational stochastic 
coefficients termed as spectral functions. A Galerkin projection scheme would be used
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to evaluate a set of unknown coefficients which can enhance the solution accuracy. The 
stochastic sampling necessary for the evaluation of the probability distributions of the 
response has been enhanced by hybridizing the spectral approach with a metamodeling 
technique.

2. Stochastic Reduced order modeling of transient structural dynamic systems
The spectral function approach can be extended to study the transient dynamics of ran
domly parameterized structural dynamic systems. We would aim to use time adaptive 
stochastic spectral functions as weighting functions of the deterministic orthogonal ba
sis onto which the solution is projected. The time integration required for the resolution 
of the transient stochastic response has been performed with the unconditionally stable 
single-step implicit Newmark scheme using a stochastic integration operator. The solu
tion would also be investigated with finite order polynomial chaos expansion approach 
in terms of solution accuracy and computational time. The stochastic system response is 
expected to be accurately resolved even when using low order spectral functions which 
is computationally advantageous.

3. A discretized spectral representation of the random field in SFEM
The problem of representing random fields describing the material and boundary prop
erties of the physical system at discrete points of the spatial domain would be studied in 
the context of linear stochastic finite element method. A randomly parametrized diffu
sion system with a set of iid stochastic variables is considered. The discretized paramet
ric fields would be incorporated into the weak isoparametric finite element formulation 
with multidimensional Lagrange polynomials. The treatment would potentially enable 
us to have a unified treatment of parametric uncertainty and random boundary fluctua
tions for dynamic systems. The convergence behavior of the proposed methodologies 
would be studied with numerical examples to establish the validity of the numerical 
scheme.

4. Analysis of geometric uncertainty in SFEM
The proposed discretized random field representation would be utilized to express the 
random fluctuations of the domain boundary with nodal position coordinates and a set of 
random variables. The description of the boundary perturbation would be incorporated 
into the weak stochastic finite element formulation using a stochastic isoparametric 
mapping of the random domain to a deterministic master domain. A method for ob
taining the linear system of equations under the proposed mapping using generic high 
order finite elements and the stochastic spectral Galerkin framework would be studied 
in detail.

5. Reduced order modeling of the dynamic response of a stochastic linear time in
variant state space system



A model order reduction scheme of the transient response of large-scale randomly 
parametrized linear finite element system in state space form would be investigated. 
This would be an a-priori model reduction strategy based on the balanced truncation 
method would be utilized in conjunction with the stochastic spectral Galerkin finite el
ement method. Approximation of the dominant modes of the controllable Gram matrix 
can be performed with iterative Amoldi scheme applied to Lyapunov equations. The 
reduced order representation of the randomly parametrized dynamical system would 
be obtained with Amoldi-Lyapunov vector basis using an implicit time stepping algo
rithm. The performance and the computational efficacy of the proposed scheme would 
be illustrated with numerical examples of randomly parametrized systems. The con
vergence of the proposed reduced order scheme would be investigated with a-posteriori 
error estimates.

1.6 Thesis layout

The thesis has been organized as follows:
Chapter 2 gives the theoretical development of a spectral function approach which has 

been applied to randomly parametrized structural dynamic systems which described with a 
probabilistic input uncertainty. This section contains a detailed description of the discretiza
tion of the random field to obtain a finite dimensional representation which can be used in the 
stochastic system matrix formulation. The deduced spectral function approach has been ap
plied to typical structural systems with uncertain elastic properties and analyzed with respect 
to computational efficiency and accuracy with direct MCS and finite order chaos expansion 
techniques.

Chapter 3 gives the hybridization of the spectral function approach with a Gaussian pro
cess emulation to obtain a computationally efficient stochastic solution scheme. Analysis of 
the computational complexity of the hybrid method with other standalone techniques have 
been presented here. The proposed technique has been applied to a study the frequency re
sponse of a corrugated skin. The approximation accuracy of the proposed technique has been 
analyzed with respect to the benchmark MCS solutions.

Chapter 4 gives theoretical and numerical aspects of the extension of the spectral function 
approach to analyze the transient response statistics of randomly parametrized systems. The 
time evolution of this uncertainty propagation with different solution techniques is also con
sidered herein. The objective here is to tackle the problem of the growing dimensionality of 
the classical spectral Galerkin approach for long time integration with an alternative formu
lation of the spectral function approach. The simulations have been performed for different 
degrees of variability of the input randomness and different dimensions of the input stochastic 
space and compared with the direct Monte Carlo simulations for accuracy and computational
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efficiency.
Chapter 5 deals with the discrete representation of the input random field on arbitrary 

shaped physical domains. The approximated random field at finite number of points on the 
physical domain is incorporated into the stochastic weak formulation and the approximation 
accuracy is studied with respect to various error estimates. Using this description, the problem 
of obtaining the response statistics of systems on random topologies has been tackled. The 
computational cost and accuracies have been computed with respect to benchmark solutions.

Chapter 6 is concerned with reduced order realization of large stochastic dynamical sys
tems based on the concept of balanced truncation. The theoretically overview of Lyapunov 
matrix equations for controllability Gramians have been presented and extended to the case of 
systems with random input parameters. The approximate method of evaluation the Amoldi- 
Lyapunov basis spanning the dominant eigen space of the controllability Gramian has been 
detailed here. Numerical studied have been included to demonstrate the accuracy and com
putational efficacy of the proposed scheme.





Chapter 2

Frequency response of stochastic 
structural dynamic systems using spectral 
functions

2.1 Introduction

As has been noted in the previous chapter, the mathematical model of the physical system as 
well the accurate estimation of the input parameters are crucial in the numerical simulation of 
practical engineering systems. Since neither of the latter two may be exactly known, there has 
been increasing research activity to include probabilistic description of input parameters into 
the mathematical models. Thus stochastic models have been incorporated into the framework 
of the established numerical techniques and investigations of efficient and novel solution tech
niques [Charmpis et al., 2007, Stefanou, 2009]. In this study we concentrate on the frequency 
domain response of damped structural dynamic systems with parametric uncertainty which 
is multiplicative in nature. Here we model the uncertainty with the probabilistic description, 
though other descriptions, like the concept of fuzzy random functions [Gersem et al,  2005, 
Moens and Vandepitte, 2002], are also possible. There are two broad classifications of the so
lution strategies for the stochastic systems non-intrusive simulation techniques and intrusive 
spectral Galerkin methods.

Various Monte Carlo Simulation (MCS) techniques belong to the class of non-intrusive 
methods and have been widely used in context of the structural dynamics problems [Pradl- 
warter and Schueller, 1997]. The advantage of these non-intrusive techniques, such as Monte- 
Carlo simulation, response surface method or projection methods, lies in the fact that they only 
require the use of a simple deterministic calculation code. As long as the associated deter
ministic code exists, the stochastic problems can be solved without any further developments. 
Also, they are naturally suited for parallelization. However, they require a huge number of 
deterministic calculations leading to high computational costs. In contrast to the full distribu
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tion function, some ‘hybrid’ approaches focus on the evaluation of lower-order moments of 
the response and efficient methods have been proposed to reduce the sample size with a view 
of reducing the computational burden in the stochastic space. While the convergence rate 
of the Monte Carlo methods is slow, its computational work grows only like a polynomial 
with respect to the number of random variables present in the problem. In particular cases 
their convergence can be accelerated by improved sampling techniques rather than random 
sampling. These include importance sampling, multi-point estimate method, stratified sam
pling, Latin hypercube sampling, orthogonal sampling, etc. which can be classified under the 
“variance reduction techniques” [Yamazaki and Shinozuka, 1988] and the response surface 
method or the experiment design method. The limitations of these techniques are dictated by 
the number of random variables required. Uncertain structural systems represented by few 
random variables subjected to deterministic loading can be well-suited to variance reduction 
procedures.

It is generally established that alternatives to Monte Carlo methods can provide us with 
an explicit functional relationship between the independent input random variables and hence 
can allow easy evaluation of functional statistics or probabilities. Non-statistical approaches 
are based on a perturbation method [Kleiber and Hien, 1992], or equivalently the lower-order 
Taylor approximation and the Neumann expansion method, [Yamazaki et al., 1988, Zhu et al,
1992] all of which comes down to the estimation of response surface in a parameter space. 
Through the estimated response surface, the response statistics can easily be evaluated. On 
the other hand the Galerkin-type methods [Deb et al,  2001, Babuska et a l,  2005b, Matthies 
and Keese, 2005] developed with differing choice of the approximation space, systematically 
lead to a high precision solution allowing the response to be expressed explicitly in terms 
of the basic random variables describing the uncertainties. Their principle drawback lies in 
the fact that the dimensionality of the resulting system of linear equations is huge. In addi
tion to these ad hoc Krylov-type iterative techniques have been proposed to make use of the 
sparsity of the system [Ghanem and Kruger, 1996, Keese and Matthies, 2005]. The difficulty 
to build efficient preconditioners and memory requirements induced by these techniques are 
still challenging and active areas of research. Ghanem and Spanos [Ghanem and Spanos,
1991] includes an example of a one-dimensional beam problem with a Karhunen-Loeve (KL) 
discretization of the random reaction modulus of the supporting elastic foundation and the re
sponse is evaluated using orthogonal Hermite polynomials. Polynomial chaos expansion has 
also been successfully used in dynamic aerospace applications [Pettit and Beran, 2004, Pettit 
et al,  2002]. A frequency dependent stochastic dynamic stiffness approach was developed 
in references [Manohar and Adhikari, 1998, Adhikari and Manohar, 2000] where axial and 
bending vibration of one-dimensional beam was considered.

Consider a bounded domain € Rd with piecewise Lipschitz boundary d@, where d <  3 
is the spatial dimension and t G M+ is the time. Further, consider that ( 0 ,  & , P) is a probabil-
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ity space where 9 G 0  is a sample point from the sampling space 0 , &  is the complete Borel 
cr-algebra over the subsets of 0  and P  is the probability measure. We consider here the linear 
stochastic partial differential equation (pde) along with the Dirichlet boundary conditions for 
an elastodynamic systems with parametric uncertainty

where r € t G [0,T], 9 G 0  

and w(r, t , 9) = 0; r on d@

Here aa{u(r, t , 9)) denotes the stress tensor with the associated stiffness coefficient a(r, 9) 
as a stationary, square integrable second order random field such that «  : R1 x 0  - t  t

denotes the number of damping coefficients used to represent the damping model. This form 
of the operator along with its coefficients can be utilized to represent various damping models 
like the strain rate dependent viscous damping or the velocity dependent viscous damping. 
p(r, t) denotes the deterministic excitation field for which the solution u(r, t , 6) is sought. The 
present work is concentrated on the harmonic analysis, for which Eqn. (2.1) is transformed to 
the frequency domain as Eqn. (2.1) to obtain

— uj2p(r, #)u(r, u, 6) +  iu£,Qu(r,uj, 6) +  div (crQ(u(r, c j , 9))) = p(r, c j ); w € fi (2.2)

where Q denotes the frequency space of the problem. Here the quantities p and u are used to 
represent the complex amplitudes of the harmonic input excitation and the system response re
spectively. The stress-strain relationship gives oa = E(o;) : e where E (a) is the symemtric 
positive definite elasticity tensor depending on the scalar random parameter a  and e is the 
strain tensor expressed as e = Du, where D is the strain-displacement matrix. Well estab
lished techniques of variational formulation of the displacement-based deterministic finite- 
element methods [Ghanem and Spanos, 1991, Kleiber and Hien, 1992, Matthies et al., 1997] 
gives the following bilinear form for the elastodynamic system

The operator div(oa) is taken to be a self-adjoint stochastic stiffness operator. £c is the 
damping operator containing the stochastic coefficient vector c(r, 9) : R d x © —>• R?, where <r

^ ( v ,  u; 9) = — lj2 I v p (r, 9) ud@  +  iuj j  v £ c u d ^ - |-  j (D v}TE(a) {Du} d@

so that, «^(v, u; 9) = ££(v; 9) V v G &[@\ (2.3)

where §[<&i\ is the space of admissible trial functions which have finite strain energy on the 
spatial domain and satisfying the prescribed boundary conditions. Eqn. (2.3) gives a set of



discretized linear algebraic equations in terms of the mass, damping and stiffness matrices. 
These can be expressed in a compact form as

A ( cj, 0 ) u (u; , 0) =  p ( w ) ;  V ^ e 0 ;  w e f i ;  A e  C n x n ; u ,  p  G C n (2 .4)

where A H  0) is the complex frequency dependent coefficient matrix which inherits the un
certainty of the random parameters involved in the governing pde. There are a number of 
techniques to express the randomness of the uncertain system matrices with known covari
ance matrices which allows the decomposition of the A H  0) int0 a standard mean stiffness 
matrix equivalent plus its deviatoric parts based on the expansion techniques of discretized 
random fields. The detailed description of these matrices arising for the case of structural dy
namic systems is given in Sec. 2.3.1. It is to be noted that the stochastic linear algebraic set of 
equations, given in Eqn. (2.4), is commonly encountered for the stochastic FEA for structural 
dynamics and the primary focus of the present work is to study a Galerkin projection method 
to approximate the solution vector in a reduced space.

This chapter is organized as follows. In Sec. 2.2 an overview of the aspects of SFEM is 
given here. Discussion on the finite dimensional representation of the random field is given 
here. Section 2.3 gives a complete description of the spectral function approach proposed 
for the randomly parametrized structural dynamic system. In Sec. 2.4 a reduced Galerkin 
error minimization approach is proposed. The post processing of the results to obtain the 
response moments are discussed in Sec. 2.5. Based on the theoretical results, an example 
problem is shown in Sec. 2.6 where the proposed method of reduced spectral basis is applied 
to the stochastic dynamical system of an one-dimensional Euler-Bemoulli beam and a two- 
dimensional Kirchhoff-Love thin plate. A summary of the results and major conclusions 
arising from this study are given in Sec. 2.7.

2.2 Elements of the stochastic finite element method

2.2.1 Finite dimensional spectral representation of a random field

Most of the works in stochastic finite elements which are concerned with the solution of 
randomly parametrized systems generally assume a mathematically tractable model for the 
random field which might not always be experimentally justifiable. For these applications 
the random fields are chosen to obey certain physically meaningful regularity assumptions, 
such as mean-square continuity, homogeneity, isotropy, etc. [Kolovos et al., 2004, Christakos,
1992].

To begin with, we take a stochastic parameter input to the mathematical model defined on 
a compact region ^ c l d and a probability space (0 , & , P ) as a(r, 9) : Of x 0  -> M. This
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parameter is written as a series expansion in a variable separable form as

a(r, Q) = ^ 2  =  ¥>(r ) ^  W  (2.5)
i

where the vector of random functions J*T(0) =  , ttm(0)}T are weighted by the
spatial shape functions y?(r) =  (<£i(r),. . . ,  p m{r)}. These shape functions can be chosen 
based on the type of series representation used to represent the random field. The different 
methods can be listed as a) the interpolation method [Liu et al., 1986] where ip(r) are chosen 
as the finite element interpolation functions, b) the mid-point method [Li and Kiureghian,
1993] where the shape functions are piece-wise constants within an element (assuming at the 
mid-point), c) the Expansion Optimal Linear Estimation (EOLE) method [Li and Kiureghian,
1993] which seeks to obtain an optimal spectral decomposition (optimal in the sense of us
ing minimum number of random variables used in the approximation) by minimizing the 
error variance between the continuous and approximated random fields, d) the spatial average 
method [Vanmarcke, 1983] which uses piecewise constant shape functions with the random 
functions being the spatial average of the random parameter over the discretized finite ele
ments domains e) the orthogonal expansion method which emphasizes on using elements of 
y?(r) such that they are mutually orthogonal in L 2(@) [Zhang and Ellingwood, 1994] and 
finally and perhaps most importantly f) the spectral decomposition of the stochastic process 
which relies on discretizing the latter with a finite number of spectral components of the co-
variance kernel associated with the random process. We discuss this last approach in some
detail here.

The objective of the spectral decomposition method is to express the random parameter 
with a set of denumerable number of orthogonal random variables (spanning the stochastic 
Hilbert space) and the associated spatial eigen functions. Let Ca : @ x @ —» R be a kernel 
function which admits to the following decomposition

/  Ca{Ti,r2)(pj(r1)dr1 =  Uj(pj (r2), V j  =  1, 2, . . .  (2 .6)
J®

The above is a homogeneous Fredholm integral equation of the second kind. Let us define the 
function such that

( ^ ) ( r i) =  [  Ca(r1,r2)(p(r2)dr2 ru r2 e  @ (2.7)
J®

It can be easily verified that : L 2(@) —> L 2{@) is a linear operator on a vector space and 
hence Eqn. (2.6) can be expressed as

=  l/<p (2 .8)



Non-trivial solution to the above homogeneous equation exists only for those values of v 
which makes (I  — v^a) non-invertible where I  is the identity operator. The covariance func
tions Ca commonly encountered in the study of randomly parameterized engineering systems 
are bounded and symmetric, hence the associated linear operator is compact and self- 
adjoint. Considering the fact that the solution of Eqn. (2.6) lies in some normed vector space, 
it is possible to represent the random parameter using a finite number of dominant components 
based on the eigen value problem in Eqn. (2.8).

The covariance functions Ca commonly encountered in the study of randomly parameter
ized engineering systems are bounded and symmetric when considered on a bounded domain 
Qi c  Md, hence the associated linear operator ^ ’a is compact and self-adjoint. Hence the 
solution of the eigen-value problem in (2.8) yields ordered real eigenvalues v =  ^  >
vi+i Vz and \\Ca ll^ ^ x ^ ) =  £ z  vi}  anc* mutually orthogonal eigenfunctions in L2(@). Thus 
the error in approximating the covariance function with a finite number (m ) of eigenfunctions 
results in an error which can be expressed as

oo
error ||Ca -  ^  i/?. (2.9)

i= m + l

where Cam is the covariance function approximated with m  eigenvalues. Thus it can be 
expressed as (from Mercer’s theorem)

m
Cam( r i , r 2) = ri)y>i(r2) (2.10)

i— 1

where Cam converges uniformly to Ca as m  —> oo.

The truncated Karhunen-Loeve expansion of the stochastic process a(r, 6) is thus ex
pressed using these eigen-functions as

m
am(0,r) =  E[a](r) + '^2y/i7iipi(T)€i(6) Vra € N+ (2.11)

i= 1

where E[a}(r) is the mean function, {£z(#)}™i are a set of mutually independent, uncor
related standard Gaussian random variables with zero mean (/?(£*) =  0) and unit vari
ance = 1). The eigenfunctions v?z(r) can be assumed to have sufficient smooth
ness for smooth covariance functions, and if the eigenpairs are decaying according to at least 

V"k\Wk\\L°o^) = ^ ( 1^ )  for some decay exponent 5 > 1, then ||a -  amWioo^ -)• 0, 
[Babuska et al., 2005b]. For practical engineering problems, the parametric randomness 
is modeled with a finite set of random variables £ =  (£i, £2, • • • > £m) : © —> us
ing first few largest eigenpairs in the reduced probability space where
@(m) _  Range(^) js a subset of Rm, is the associated Borel <r-algebra and P ^  is the
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image probability measure. This is facilitated by the fact that the non-negative eigenvalues 
satisfy the relation X S i  = S® Var[a\(r)dr and decay in accordance with the aforemen
tioned relation.

The model given in Eqn. (2.11) has been widely presented in literature (see for exam
ple [Deb et al., 2001, Schueller, 2006]). This form maybe used to represent the experi
mentally obtained data using a principal component analysis [Babuska et al., 2003]. If de
pendent random variables are chosen, then the random field can be expressed as <*(«•>£) =  
a (r) +  X!i=i <M r )?i(r«> 0) with 6) being the experimental measurements of the random 
parametric field at positions along with the weighting functions ^ ( r ) .  However, due to 
the absence of analytical information about the marginal distributions of the non-Gaussian 
a (r, £), ad-hoc assumptions are made regarding the distribution of the & .

However, for arbitrary random field models, the random parameter can be expressed in 
a mean-square convergent series using the Wiener-Askey chaos expansion [Xiu and Kami- 
adakis, 2002] where the stochastic process is discretized with a set of iid random variables 
f  (0) — . . . ,  using a finite order chaos-expansion from the Askey scheme such that

v
a(r,0 ) =  ^ J « ? ( |( 0 ) ) a 4(r) (2.12)

i=0

where (£(&)) are the multivariate orthogonal stochastic polynomial functions depending 
on the joint probability density function of the stochastic Hilbert space. The undetermined 
coefficients a*(r) associated with the series expansion can be evaluated as

(„ (r, » ) , « ( » » ) „ „
Uj(r) / ~ \ (2*13)

The solution methodology presented here is applicable to this kind of general decomposition 
of the random field.

2.2.2 Spectral methods and other solution techniques for structural dy
namics

The solution techniques of the stochastic linear systems consist of different methods which 
might involve the solution of the random eigenvalue problem [Scheidt and Purkert, 1983] us
ing various approaches such as polynomial chaos [Pascual and Adhikari, 2012, Ghanem and 
Ghosh, 2007], and sensitivity based approaches [Eldred, 1992]. Now Eqn. (2.4) is a system of 
coupled, complex stochastic linear algebraic equations. For real valued systems, several meth
ods have been proposed which include, low-order perturbation methods [Kleiber and Hien, 
1992, Liu et al, 1986], Neumann expansion method [Yamazaki et al, 1988] and simulation



methods [Papadrakakis and Papadopoulos, 1996]. Reduced order methods [Adhikari, 2011] 
have been utilized to approximate the stochastic system response with finite order stochas
tic weighting functions called spectral functions. The stochastic spectral Galerkin methods 
(see [Nouy, 2009] for a recent review) is a class of intrusive uncertainty propagation method 
which expresses the system response with orthogonal family finite order stochastic polyno
mials. These include the polynomial chaos (PC) expansion [Ghanem and Spanos, 1991] and 
the Wiener—Askey chaos expansion [Xiu and Kamiadakis, 2002]. For the calculation of 
frequency response function of dynamical systems, several approaches, such as meta-model 
based methods [Pichler et al, 2009], interpolation based methods [Goller et al, 2011], modal 
approaches [den Nieuwenhof and Coyette, 2003] and Approximate Principal Deformation 
Mode (APDM) approach [Falsone and Ferro, 2007] have been proposed.

It is known that the spatially discretized solution vector u(u, 0) lies in the tensor product 
space Cn ® T, where T  is an ad-hoc function space for real-valued random variables [Nouy, 
2009, Deb et a l,  2001]. Given that the stochastic system has been discretized and represented 
with a finite number of random variables £ (6) = , . . . ,  £&)} as in Sec. 2.2.1, the stochastic
subspace reduces to Tp where Tp C  T. When each random component is independent, 
then Tp is a tensor product space T 1 ® T 2 0 . . .  ®TP. Now, according to the approximate basis 
building techniques that focus on expansion of the solution vector using some polynomial 
functions, the solution vector in Eqn. (2.4) can be expressed in the form

u (uj,6) = Jtfa(uj,6)ua(u)\ ua(u) G Cn (2.14)
aEĴ p

where J4?a are the basis in Tp, ua(uj) are the set of unknown coefficients to be evaluated and 
J?p is a subset of with cardinal p. It is evident from the above steps that the approximate 
basis functions can be chosen to depend on frequency which can allow for the efficiency of 
the solution technique to be frequency adaptive and hence well suited for applications over a 
wide frequency range.

The form of the polynomial functions «^(w , 0) used in Eqn. (2.14) varies according to 
the chosen solution approach. The spectral approaches (polynomial choas, generalized chaos) 
classically use orthogonal polynomial basis J%x(9) to approximate the solution in stochastic 
space. Any random field can be spanned using the generalized functional basis from the 
Askey-chaos [Xiu and Kamiadakis, 2002] so that the orthonormality with respect to the den
sity functions can be retained. Thus the classical spectral Galerkin approximation techniques 
of solving the stochastic system using a finite number of stochastic basis can be posed as 
follows: it is necessary to find ua(u) E Cn 0  Tp such that

^  E{K Jf?J f a)ua = E(J% p)  V/3 €
OL̂Jp

(2.15)
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which leads to the set of linear algebraic equations for evaluating the unknown coefficients in
troduced in Eqn. (2.14). Frequency domain analysis of stochastic systems has been studied us
ing this method by Sarkar and Ghanem [Sarkar and Ghanem, 2002] for the medium-frequency 
structural dynamic analysis. However, the computational cost associated with the inversion 
of the coefficient matrix in Eqn. (2.15) can become prohibitive for systems with large di
mensions and near resonance frequencies even for moderate values of variability of the input 
random field. There are some Krylov-type solution techniques [Ghanem and Kruger, 1996, 
Keese and Matthies, 2005] have been established which takes advantage of the sparsity of the 
system and tries to employs a preconditioner to efficiently solve a given system. However, the 
availability of optimal pre-conditioners is limited to systems with low variance and hence for 
systems otherwise, the iterative technique results in drastic increase in computational costs.

2.3 Projection of stochastic dynamic response in the modal 
space

2.3.1 Stochastic FE modeling of structural dynamic systems

The random fields in Eqn. (2.1) can be discretized using the Karhunen-Lo&ve expansion with 
a finite number of random variables based on the decaying eigen spectrum of the covariance 
kernel of the random fields. This has been illustrated in Sec. 2.2.1. Using the discretized 
random field model, the stochastic system matrices can be derived from Eqn. (2.1) using the 
well-established standard methods found in the stochastic FEM literature [Babuska et al,  
2004, 2005b, Ghanem and Spanos, 1991, Matthies and Keese, 2005]. Following those de
velopments, the stochastic PDE along with the boundary conditions would result in a set of 
equations of the form

M(0)ii(t, 9) +  C(0)u(f, 9) +  K(0)u(*, 9) = f0(f) (2.16)

where M(0) =  M0 +  YZ=\ G Mnxn is the random mass matrix, K(0) =  Kq +
Z X i Vi(9i)Ki G Rnxn is the random stiffness matrix along with C(0) € Rnxn the ran
dom damping matrix. Here the mass and stiffness matrices have been expressed in terms 
of their deterministic components (M0 and K0) along with their random contributions (M* 
and Kj), which have been obtained from discretizing the stochastic field with a finite num
ber of random variables (pi(9i) and Vi(9i)) and their corresponding spatial basis functions. 
Hence the random mass and the stiffness matrices have been modeled with pi and p2 ran
dom variables respectively. In the present work proportional damping is considered for which 
C (9) = (jM (0)+£2K(0), where £i and £2 are deterministic scalars. For the harmonic analysis 
of the structural system considered in Eqn. (2.16), we represented it in the frequency domain



as
[-c j2M(0) +  ituC(9) +  K(0)] u(w, 9) = f 0(w) (2.17)

where u(cj,0) is the complex frequency domain system response amplitude, fo(^) is the 
amplitude of the harmonic force and uj is the frequency.

Now, if the random variables associated with the mass and stiffness matrices are grouped
as

where A0 G Cnxn and A* G Cnxn represent the complex deterministic and stochastic parts 
respectively of the mass, the stiffness and the damping matrices ensemble, and M  = pi + p 2 is 
the total number of random variables used to represent the stochastic parameters in the spatial 
domain. The choice of M  is based on the number of basis functions used to discretize the 
random parameter in the spatial domain following Eqn. (2.11). The expressions for A0 and 
A* vary according to the damping model chosen for a particular application. For the case of 
proportional damping, the matrices A0 and A* can be written as

A j (u )  =  [iu(2 +  1] K j  for j  =  p x +  l , p i  +  2 , . . .  , p 1 +  p 2

Equation (2.18) together with the above two equations completely define the discretized sys
tem considered in this study.

In Eqn. (2.18), A0(cj) and Aj(u;) G Cnxn; i = 1 , 2 , . . . ,  M  are complex symmetric fre
quency dependent matrices, u (c j , 9) G C n is the solution vector and fo (w )  G C n is the input 
vector. One of the main aims of a stochastic dynamic analysis is to obtain u (u, 9) for 9 G ©  

and for all frequency u  from Eqn. (2.18) in an efficient manner. It is emphasized that the 
proposed solution technique is applicable for the case when f*(9) are in general non-Gaussian 
and correlated random variables.

€i(9)=Hi(9) for i =  1,2, . . .  ,pi 

and (9) = Vj_Pl (9) for j  = px +  1, px +  2 , . . . ,  pi +  p2

then it follows that the linear structural system in Eqn. (2.17) can be expressed as

(2.18)

Aq(cj) — [—cj2 +  Mo +  2 +  1] K-o

and, Ai(cj) =  [—a;2 +  za;£i] M* for i = 1,2, . . .  ,pi

(2.19)

(2.20)
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2.3.2 Derivation of the frequency-dependent spectral functions

An approximation to the solution of Eqn. (2.18) can be construed as a linear combination of 
functions of random variables and deterministic vectors following the stochastic finite ele
ment method which has been studied previously in context of statical systems in [Adhikari, 
2011], The objective of an efficient scheme of resolution of the response statistics of the 
randomly parametrized system is to obtain a good approximation of it using a small number 
of basis functions. We utilize here a reduced order stochastic approximation in conjunction 
with a Galerkin approach which uses the generalized eigen modes of the baseline model to 
approximate the stochastic system response.

For the case of random system matrices, the deterministic eigen modes of the solution 
have to be weighed by some stochastic coefficients, which in turn can be approximated with 
non-linear functions of the input random variables. To begin with, the eigenvectors (pk G Mn 
of the generalized eigenvalue problem are considered such that,

Since the matrices K0 and M0 are symmetric and generally non-negative definite, the eigen
vectors <j)k for k = 1 ,2, . . .  n form a complete basis. The matrices of the eigenvalues and 
eigenvectors from Eqn. (2.21) are A0 =  diag [Ai, A2, . . . ,  An] G R nxn and <I> =  [01? </>2, . . . ,  4>n] G 
R nxn. Eigenvalues are ordered in the ascending order so that Ax < A2 < . . .  < An with or-

eigenvectors <j)k for k = 1,2, . . . n  form a complete basis, the solution of Eqn. (2.18), u ( c j ,  0) 
can be projected to on this basis for a fixed value of u.

The eigenvectors <pk G R n of the generalized eigenvalue problem of Eqn. (2.21) is con
sidered here which gives from Eqn. (2.19)

where A0 =  (—u 2 +  iuj(i) I +  (iu£2 +  1) A0 and I is the identity matrix. We also introduce 
the transformations

K0 (f)k = AfcMo <j>k\ /c =  1 , 2 , . . .  n (2 .21)

thogonal eigenvectors <I> which gives 3>TKo$ =  Aq and 3>TM03> =  I. Since the undamped

$ t A 0$  — 3?^ ([—cj2 +  icj£i]M o +  [zcj£2 +  1]K 0) 3?

or, 3>tA0<I> =  ( - cj2 +  iu;fi) 1 +  +  1) A0

from which, <£TAo<fr =  A0 and A0 =  ^ _ r A0^ _1

(2.22)

Aj =  $ TA i$  and A* =  where Ah G Cnxn; Ai G Cnxn; Vi =  1 , 2 , . . . ,  M
(2.23)

Note that A0 =  Aq is a diagonal matrix. The solution of Eqn. (2.18) is given by

M -1
(2.24)



Using Eqns. (2.22)-(2.23) one has

u (w , 0) =
M

i= 1

-1

f 0H  =  ® *

(2.25)
and the M-dimensional random vectorwhere ^  (u, ((0)) =  A0(u;) +  &(0)Ai(u)

(2.26)

The matrix A* can be written in terms of it’s diagonal and off-diagonal terms as Ai =  A* +  
A i, i =  1 ,2 , . . . ,  M. Here the diagonal matrix is Ai =  diag Ai =  diag [Afl, Ai2, . . . ,  Ain] G 

Cnxn and the matrix containing only the off-diagonal elements Ai =  Ai — Ai is such that 
Trace (Ai) =  0. Using these, from Eqn. (2.25) one has

*(W, €(*)) =
M M

A q (c j )  +  ^ 2  & ( 0 ) A i ( k ; )  +  ^ 2
i=1 t= l

A(u,,£(0)) A(w,£(<?))

(2.27)

where A (u,£(0)) G Cnxn is a diagonal matrix and A  (cj,((0))  is an off-diagonal only ma
trix. Thus ^  (cu, ((0)) =  [A (a;, ((0)) +  A  (cj, ( (0 ) ) ] '1.

We introduce the transformation of the stochastic system response to the modal coordi
nates such that u (u ;, 0) =  JT  ®ic i(cj,  0)}, where c(cj, 9) G Cn is the complex,
frequency dependent modal response vector and following from Eqns. (2.24)-(2.27) we have

[A(w, m )  +  A  (w, |(5))] c(ui, 6) =  ^ ( w )  (2.28)

such that, c(tu, 0) = [A (w, €(5)) +  A  (tu, C(5))]'x =  *  (u, £(5))

From Eqns. (2.25)-(2.27), we have an ra-th order Neumann matrix series representation of 
the modal response vector as

c(tu,5) =  *<"■> (tu ,^ ))#7?,,^) =  r (m) (<o,S(6)) (2.29)
m—1

w here *<m> (w,€(«)) =  £ ( - l ) s [A '1 (w,€(0)) A (*(0))]* A "1 (u ,((0 )) (2.30)
8 =0

where r ^ ( c j ,  ( ( 0 )) =  | r xm̂ (cj, ( ( 0 ) ) , . . . ,  £(#)) j  is the vector of complex fre
quency dependent stochastic coefficients obtained from the matrix series representation of
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(w» £W ) in Eqn. (2.30). Hence the stochastic response vector u (6) is given by

G(m)(w,0) =  £  T<m) (a;, £(<?)) </>* (2.31)
k= 1

The solution vector u(0) is projected in the space spanned by <j>k and weighted by r r  ( u , m )  
which are referred to as ra-th order ‘spectral functions’ [Adhikari, 2011]. Since 6 € 0  is ar
bitrary and the above development is not dependent on the choice of any particular joint 
distribution function of the random variables used to model the parametric uncertainty. Thus 
u (m)(cj,0) is the solution of Eqn. (2.18) for a sufficiently large value of m. However, the 
computational efficiency demands the solution to be approximated to a sufficient degree of 
accuracy even with the lower order of spectral functions.

r^m) (cu, £(0)) , k  = 1 , 2 , . . .  n  are termed as the spectral functions characterized by their 
order m  and is expressed as a function of the spectral components of the mean system ma
trices. The spectral functions used in approximation of the stochastic system response are 
highly non-linear in £(0 ) indicating that the response vector is a non-linearly filtered version 
of the random variables used to model the parametric uncertainty. For structural mechanics 
problems, Eqn. (2.31) indicates that the response of a stochastic system is a linear combi
nation of fundamental vibration modes weighted by the stochastic spectral functions IV It 
should be pointed out that the we denote the order m  of the spectral functions as m  = s +  1, 
where s is the order of expansion of the improved Neumann series.

The vector of spectral functions of order m  can be obtained by retaining m  terms in the 
series Eqn. (2.30) and can be expressed as

r ( m ) ( w ,  * ( * ) )  =  [ i n  -  r ( W , m)+» ( w ,  m f - r k  s w ) 3 • ■ ■ m^]  r < » ( W , m)
(2.32)

where In is the n-dimensional identity matrix and R is defined as

R (u,S{0)) =  [A"1 (w,{(0))][A («,*(*))] (2.33)

Here we present a theoretical analysis of the convergence of the solution with the order of 
approximation m  as a function of the spectral radius of the R(cj, £{6)) matrix.

Proposition 1. I f u m(uj, £{9)) is the approximate solution constructed with m-th order spec
tral functions and u (oj, £(0)) is the exact solution o f A u  =  fo, where A  : R n ->  Mn is 
self-adjoint, then the error in the approximate solution for each random sample is bounded 
by

k = m

(2.34)

where A =  A +  A, p(R) is the spectral radius o f R =  (A 1 A), ||-|| denotes the 2-norm and



Cfi is a deterministic, frequency independent positive constant.

Proof When the solution u m, approximated with m-th order spectral functions r m(cj, « * )) . 
is subtracted from u, we can write the difference as $  ( £ r = m ( - R)*A -1* Tfo) from Eqns. (2.31) 
and (2.33). The notion of matrix norm is an extension of the vector norm. We denote ||-|| to 
be the Frobenius norm of a matrix and note that vector norm corresponding to this is actually 
the Euclidean norm. Also, the Frobenius norm is sub-multiplicative, i.e. || Ac|| <  Mil 11*11 
where A is any square matrix and ||z|| is the Euclidean norm of vector x. Hence using the 
sub-multiplicative property and using the triangle inequality we have

u — u < ll$l (—
k = m

oo

< IIr* ( a - ' ^ o ) i$ i
k —m

We define p(R) =  max(\XR.\) to be the spectral radius of R, (XR being the eigenvalue of R)
j

and note that R is symmetric.We know from Gelfand’s formula that lim R =  p(R) and
k —>oo

from [Kozyakin, 2009] it is seen that for any general matrix sets ^(1+lnfc)//c | | R fc II ^  p ( R )  ^

R ak \ l 1 / k where 7  G (0,1). When using the 2-norm and as k increases, p(R) approaches 
||Rfc ||X/K such that we can approximate ||Rfc|| =  cpp(R)k where cp —> 1. The norm of the 
orthonormalized matrix is >Jn where n  is the dimension of the linear system. We choose 

= y/ncp which is a deterministic, frequency independent positive constant. Hence, the 
above equation can be rewritten as

k = m

A ~ l $ Tfr (2.35)

Thus the approximation error for stochastic system solution approximated with m-th order 
spectral function converges with the m-th power of the spectral radius of R. □

For p(R) < <  1 and square-integrable stochastic functions p(R)fc and ||A|| in the proba
bility space (©(M), ^ M\  p (M)), with 9 G Q(M\  the expectation of the error norm can be 
written from Proposition 1 and using Holder’s inequality, as

E [||um — u||] <  ^ « p (R )m)L2(0}) c{u) (2.36)

where c(u) = ( ca A 1̂ r fn ) <
\  ^  /  L 2(d)

C<p (|| A ||)L2(0) is a constant that changes

with the frequency step. Here O l 2(0) denotes the 2-norm in the probability space defined as
1/2

U  H2 d p W ( e ) )  ‘ or E [|-|2] 1//2. Thus the series converges rapidly as the order m  of 
the spectral functions is increased.

The above development is not restricted to any specific choice of the joint distribution 
function of the input random variables, (cj, 6) is the solution of Eqn. (2.18) for a suffi-
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ciently large value of m. The choice of the order of spectral functions m  is guided by the 
desired accuracy of the solution and the consideration of computational efficacy. Hence, the 
series in Eqn. (2.31) approaches the exact solution of the discretized linear stochastic system 
for every 0 E © ,6 t ;e £ } a s ra —»ooas shown in Proposition 1.

2.3.3 Relationship between the spectral functions and the Krylov basis

A equivalence of the proposed approach with the idea of stochastic Krylov space is relevant in 
this context and which would help to establish the relationship between the complex frequency 
dependent rational stochastic functions £(#)) and the Krylov basis functions which
are used to realize reduced order models of linear systems. Accurate approximation of the 
response vector in a reduced subspace alleviates much of the computational burden. This is 
the fundamental idea behind forming a reduced number of Krylov basis functions with which 
the solution is approximated. The dimension of this subspace is the degree of the minimal 
polynomial of the linear system A [Ipsen and Meyer, 1998].

A minimal polynomial F of A is a unique monic polynomial of minimal degree such that 
F (A) =  0. This can be constructed with the distinct eigenvalues(Aj) of A as

d d
F (A) =  (A — Xjl)mj and m  = nrij (2.37)

j=i j=i

This idea can be used to construct the inverse of a non-singular matrix A in terms of the 
powers of A as

1 m— 1
A-1 =  V  a,+iAJ (2.38)

where the coefficients a* are evaluated from the minimal polynomial given in Eqn. (2.37). 
This can be immediately utilized to recognize that the solution vector x of the equation Ax =  
b lies in the Krylov subspace of order m  as

X m (A , b) =  span{b, Ab, A2b , . . . ,  Am-1b} (2.39)

The Krylov subspace dimension is a key factor in terms of computational efficacy of a pro
posed approach.

It follows that the solution of the stochastic linear system (in Eqn. (2.18)), can be projected
or inon to a finite number of basis spanning a stochastic Krylov space [A (o;,0),foM ] 

the modal space following Eqn. (2.28) as

X m [{A(w, m )  +  A  (w, m ) }  , (2.40)

Choice of the finite number of Krylov basis depends on the eigen-spectrum of the coefficient



of the system matrix A(u, 9). A reduction in the dimension of the Krylov subspace can be 
achieved if we use a preconditioned stochastic Krylov space to arrive at a ‘richer stochastic 
subspace’. The mean of the coefficient matrix (A(w, 0)) has been used as the preconditioner 
which helped in transforming A(9) such that the probability density functions of its eigen
values show a high degree of overlap ([Nair and Keane, 2002]). It has also been shown that 
using the mean preconditioner is just equivalent to using a mean block-diagonal precondi
tioner of the linear system formed with stochastic Galerkin method using finite order chaos 
expansion [Nouy, 2009]. However, as the variability of the random field increases, it is desir
able to incorporate ‘some of the randomness’ of the system matrices into the preconditioner 
such that order of the spectral basis functions can be kept low. This is the motivation for using 
a different preconditioner for the problem.

Now, referring back to Eqn. (4.26), we use the stochastic diagonal matrix A (u,£(6)) as 
the preconditioner of the stochastic Krylov space. The diagonal dominance of the matrices 
A i(cj) is conducive to the approach being proposed here. Hence using A (uj,£(9)) as the 
preconditioner we express the stochastic system response in the modal coordinates in the m  
dimensional Krylov space as

c (ui, 9) e X m ( a -1 (oj, £(0)) [A (uj, £(0)) +  A  (w, $(0))], A -1 (u, £(0)) ^ ^ o M )

e X m ( [ /  +  A -1 (W) £(0)) A  K £(#))] , A -1 («, £(0)) ^ 0 H )  (2.41)

Utilizing the property of the Krylov subspace shift invariance ([Grimme, 1997] which states 
that JFj {aA +  / ,  h) = (A, b) for any matrix A, vector b and nonzero scalar a  we have from
Eqn. (2.41)

e ( u ,  9) € X n  ( a - 1 (w, £(0)) A  (OJ, £(0)), A -1 (u>, £(0)) ^ o )  (2.42)

which gives the Krylov subspace in which the stochastic system solution exists. The span of 
the Krylov space is then given by

X n ( A - 1A ,A ~ 1̂ 'r {0) = span{A-1<l>:rfoj (A -’AJA” 1̂ ^ ,  (A_1A )2A_1$ T?0,

. . . ,  (A-1A )ro-1A-1$ r f 0} (2.43)

It is easily seen that the terms of this Krylov bases are equivalent to the terms in the matrix 
series expansion given in Eqns. (2.29)-(2.30). This preconditioning provides substantial ad
vantage over the classical Neumann preconditioner with the deterministic part of the system 
matrices, especially near the resonance frequencies, where the radius of convergence of the 
preconditioned system becomes very small. This has been discussed in detail in the following 
section.

Thus the proposed computational scheme can be summarized in Algorithm 1 which is
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applied at every u  G Q.

A lg o r ith m  1 Stochastic FEM analysis using spectral functions 
In p u t: u  G Q

In p u t: n design points : . . . ,  |  C @(M).
In p u t: The KL modes (^(ly) as <p{(r i)  C0(ri, r2)^ i(r 2)d r2.

In p u t: Stochastic input parameter a(9, r) e  M x ©(M).
In p u t: Compute system matrices A* Vi = 0 ,1 ,2 , . . . ,  M  using the KL modes
In p u t: Solve the generalized eigenvalue problem, Ko0fc =  AfcMo0 fc for first few eigenpairs.
O u tp u t: System response u(9, cj) G Mn x 0  in the output stochastic space.

1: fo r  j = 1 to n  d o
2: Evaluate the Krylov left-preconditioner A-1 (w, £(#)).
3: Form the preconditioned linear system (A  1 A )  and b =  (A  1<hT?o)
4: for  r = 1 to m  d o
5: Evaluate the successive powers of (A -1  A ) r .
6: Construct the Krylov basis following Eqn. (2.43) using (A -1  A ) r and b.
7: en d  for
8: Create m th order spectral functions { r ^  (cj , £(#))} from series expansion in

Eqn. (2.29).
9: Reconstruct the system response u(6, cu) using Equation (2.31).

10: en d  fo r
11: g lo b a ls  n, . . . ,  £ (n)j ,  u(0,u)

2.3.4 Properties of the frequency-dependent spectral functions

The finite order spectral functions used to model the response of the randomly parameterized 
system are frequency dependent rational stochastic coefficients. The system response is given 
by a linear combination of the vibration modes the baseline model weighted by these spectral 
functions. In order to take a closer look at these spectral functions we write from the series 
expansion in Eqn. (2.30)

*  (Wl €W ) = A -1 (w, £(<?)) -  A -1 ( u , m )  A  («, m )  A -1 («,«(«)) 

+  A -1 (w, m )  A  (w, m )  A-1 («, €(0)) a  (Wl €(0)) A -1 (w, {(0)) +  . . .  (2.44)

A-1 (u, £(9)) is a diagonal matrix whose elements are stochastic in nature while A  (« .« * ))  
is a stochastic off-diagonal only matrix. The frequency dependence of these matrices ensures 
that the spectral radius is frequency adaptive in nature which is a significant advantage com
pared to the classical Neumann expansion technique. This will be demonstrated further in 
the discussions of these spectral functions and also in results of the statistical moments of the 
response vector. It is easily verified that the higher order terms in the series in Eqn. (2.44) are 
recursive in nature and hence computationally efficient. The different order so the spectral



functions are defined by the order of the truncated series in Eqn. (2.44).

In the spectral Galerkin approaches, the solution is projected onto polynomial basis func
tions spanning the stochastic subspace. The classical Neumann expansion technique [Ghanem 
and Spanos, 1991] expands the solution using an infinite series of polynomials of the random 
variables. In contrast, the series in Eqn. (2.30) is in terms of [A-1 (cj,£(0))][A (oj, £(0))], 
where both terms are random. The elements of this matrix series are not simple polynomials 
in £»(0), but are in terms of a ratio of polynomials as given in Eqn. (2.43). The convergence 
of this series depends of the spectral radius of R (cu, f  (0)). A generic term of this matrix can 
be obtained as

A  V M P A -  P A -
^  = =  -  ■ ^>=1K- ~ s (2.45)

A-  +  A0r + Z ^ & A i rr

From Eqn. (2.45) it is seen that the spectral radius of R is controlled by the diagonal domi
nance of the Ai matrices, i.e. if the diagonal terms are relatively larger than the off-diagonal 
terms, the series will converge faster even if the relative magnitude of A0r is not large. Es
pecially near the resonance frequencies, where the radius of convergence of the system in 
classical Neumann expansion becomes quite small, the latter fails to converge. Hence the di
agonal parts of the perturbation matrices has a significant role to play in this improved solution 
technique. This has been demonstrated later in the comparison of results with the classical 
Neumann expansion technique (refer to Fig. 2.11).

Recollecting the expression A0r(o;) =  (—u>2 +  iu(i )  +  (iu&  +  1) Ar , it can be seen that 
for those values of the u  where the denominator in Eqn. (2.45) becomes small (which is the 
case for resonance frequencies), the convergence of the spectral radius depends quite signif
icantly on the diagonal elements of A* matrices. This indicates that even for low damping, 
the convergence of the mean response is ensured due to the presence of the diagonal terms of 
the perturbation matrices. In general the diagonal parts of the perturbation matrices, i.e. the 
terms E ^ & A ^ , would not have any zeros near the resonance frequencies. This is due to the 
fact that the perturbation matrices do not reduce to their principal components when treated 
with the eigen functions of the generalized eigenvalue problem of the deterministic system.

A one term approximation of the series comprising the n elements of in
Eqn. (2.31) such that m  = 1 is termed as the first-order spectral functions. This gives from 
Eqn. (2.44) the first-order spectral functions as

r £ } (uj,S{6)) = ----------------------  . f c = i  n (2.46)
* A„t (a,) +  E , = i ? i W A H

Thus, r j^  (oj, £(0)) are correlated and non-Gaussian random variables, which are rational 
function of the iid random variables &(0). The response vector in terms of these spectral
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functions can be simplified to

u (1)(w, 6) = j h  ( - f  U if fo M l)  4>k (2-47)
.  .  XA k k=l o ___

The above equation shows that the response vector approximated with first order spectral 
functions does not involve the ‘interaction’ between different eigen modes, in other words, 
the response is expressed with the decoupled set of linear equations in modal coordinates 
which is normally obtained when a deterministic discretized linear FE system of equation 
is transformed to their modal coordinates using the eigen basis. However, here the modal 
coefficients (spectral functions in this case) are stochastic in nature. This is different from the 
classical Neumann expansion scheme in that, for this same order of expansion, the system 
response for the latter case is exactly equal to the deterministic case and hence fails to capture 
any effect of parametric uncertainty. It would be seen in subsequent discussions that the 
system response when captured with these first order spectral functions only and facilitated 
by the Galerkin method produces results which are agreeable with the direct MCS simulation.

A two term approximation of the series in Eqn. (2.44) gives the second-order spectral 
functions rj^(c*;, £(#)) for k = 1 ,2 , . . . ,  n. The second degree approximation of Eqn. (2.44) 
gives

* ' 2> (w, €(*)) =A ~1 (u, m )  -  A -1 (w, m )  A  («, m )  A -1 (w, m )  (2.48)

or, ®W (w, * (* ))—

(AofcM  + YiLi &(0)A»fc (<*>)) (a 0j.(w) + Yiii 
Hence the second-order spectral functions can be written in explicitly as

rf> (o>,£(0)) = --------- ------------------

-  y  --------------------      (2.50)
jpi (A°fc(w) + Y i i  1 £t(0)A*fc (u)^ ^A0,, (co) +  Y i i  1 W ) ^ i j  (w))

The second-order terms can be viewed as adding the modal coupling in the approximation of 
the system response when compared to Eqn. (2.46). The stochastic response vector can thus



be written as

u (2)(o;,<9) =  u (1)( w ,0 )  -  ^ 2  ”  6i j ) Q i j ( ^ o ( u ) ) J  <l>i (2 -5 1 )

where Qij is are the elements of the matrix Q = A -1 («, Z(0)) A  (w, €W ) A '1 (w, €(*)) 
which is the second term in Eqn. (2.48). The matrix Q is an off-diagonal only matrix and 
(1 — Sij) has been introduced to indicate this clearly. Hence from Eqn. (2.51) it is clear 
that the introduction of the second order terms helps to take into account the coupling of the 
deterministic eigen modes for the stochastic system response.

It can be noted that in general

a (m)(w,0) =  a (’7“- 1)(a;,0) +  ( - l ) m- 1^ ^ Q ^ m)(</.JfoH)J<Aj V m > 2 (2.52)

where are the elements of the matrix =  (A-1 (cu, ((0)) A  (u, £(0)))m 1 A -1 (cu, ((0)). 
The matrix is a full rank matrix and denotes the coupling of the eigen modes of the de
terministic system to represent the solution of the stochastic system.

The essential features of the proposed approach for the resolution of the frequency domain 
response of randomly parameterized systems can be summarized as follows:

• The frequency domain response of the randomly parameterized vibrating system has 
been expressed with non-linear rational functions of the basic random variables, called 
spectral functions, and a set of reduced number of eigenvectors of the vibrating system.

• These spectral functions are frequency adaptive in nature and are rational functions of 
the input random variables. This is a key difference of the proposed approach with the 
exisiting stochastic Galerkin projection schemes which approximates the soution using 
stochastic polynomials.

• The stochastic preconditioner used in the proposed methodology depends on the input 
random variables and also on the value of the frequency. Hence the convergence radius 
of these spectral functions is frequency adaptive. This ensures rapid convergence of 
the solution even near the resonance frequencies of the vibrating system as can be seen 
from the comparison with the Neumman expansion and the 4th order PC expansion in 
the numerical examples section.

• The spectral functions have been shown to comprise of linear combinations of the left- 
preconditioned Krylov basis functions. The use of the proposed stochastic precon
ditioner leads to the spectral functions being rational functions of the input random 
variables.
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• The expression for the low-order spectral functions have been obtained explicitly in 
terms of the stochastic parameters and presented in Eqns. (2.46) and (2.50). These 
equations highlight the coupling of the eigenmodes and the associated random weight
ing coefficients in expressing the stochastic system solution.

The above points distinguish the proposed approach from the existing Galerkin projection 
schemes in terms of novelty and computational efficiency. Next we discuss the aspect of 
freqeuncy dependence of the spectral functions.

2.3.5 Frequency dependence of the spectral functions

From Eqn. (2.31), it can be observed that the spectral functions are not general stochastic basis 
functions, but are specific to the stochastic system being solved and depends on the forcing 
function. The frequency content, as well as the spatial location, of the applied force therefore 
has a significant influence on the spectral functions. Here we consider the applied force to 
be uniform in the frequency domain which helps in understanding the general nature of the 
frequency dependence of the spectral functions clearly.

Figure 2.1 shows the plot of the absolute values of the first seven complex spectral func
tions obtained for a particular random sample and for 4 values of standard deviation oa of the 
underlying random field. These spectral functions have been calculated for the example of the 
bending vibration of the Euler-Bemoulli cantilever beam presented later in Sec. 2.6.1. A unit 
harmonic force applied at the free edge of the cantilever beam is considered. The frequency 
response of each spectral function shows that their peaks correspond to the frequencies of the 
fundamental eigen modes with which they are associated. Also it is observed that for higher 
values of <ra, the modal coupling increases, as is demonstrated by an increase in the spectral 
function amplitudes at other modal frequencies than those with which they are associated in
dividually. This can be explained as follows: an increases in the variability of the random field 
results in a greater contribution of the deviatoric parts of the system matrices in Eqn. (2.18). 
It is naturally expected that this modification of the system matrices would be reflected in 
an enhanced interaction between the structural modes of the beam. Mathematically it can 
be seen from Eqn. (2.43) that the preconditioner chosen for the Krylov subspace method in
corporates the diagonally dominant terms of the A » matrix along with the random variables 
used to discretize the stochastic field and this can be intuitively understood to contribute to
wards enhanced coupling between the individual modes for higher values of variability of the 
random field even for the lower order spectral functions.

Figure 2.2 shows the different orders (2, 3 and 4) of the spectral functions associated with 
the eigen modes i.e. !*">(* , £{0j)) for m = 2,3,4; k = 2 ,3 , . . . ,  7, 6j being a particular 
random sample in the probability space. An increase in the order of spectral functions would 
improve the accuracy of the stochastic response vector.
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F ig u r e  2 .1 :  T h e  a m p l i t u d e  o f  f ir s t  s e v e n  s p e c t r a l  f u n c t i o n s  o f  o r d e r  4  f o r  a  p a r t ic u la r  r a n d o m  

s a m p l e  u n d e r  a p p l i e d  f o r c e .  T h e  s p e c t r a l  f u n c t i o n s  a r e  o b t a i n e d  f o r  f o u r  d i f f e r e n t  s t a n d a r d  

d e v i a t io n  l e v e l s  o f  t h e  u n d e r l y i n g  r a n d o m  f ie ld :  a a =  { 0 . 0 5 ,  0 . 1 0 ,  0 . 1 5 ,  0 . 2 0 }  .

T h e  u s e  o f  t h e s e  k in d  o f  s p e c t r a l  f u n c t i o n s  r e s u l t s  in  c a p t u r in g  t h e  f r e q u e n c y  r e s p o n s e  o f  

t h e  s y s t e m  t o  a  b e t t e r  e x t e n t  c o m p a r e d  t o  t h e  s p e c t r a l  a p p r o a c h e s  w h i c h  t e n d  to  f o r m u l a t e  a  

s t o c h a s t i c  b a s i s  u s in g  a  g e n e r a l  p o l y n o m i a l  f o r m  o f  t h e  r a n d o m  v a r ia b le s  ( f o r  e x a m p l e ,  P le r -  

m i t e  p o l y n o m i a l s  s p a n n in g  t h e  H i lb e r t  s p a c e  o f  r a n d o m  v a r ia b le s ) ,  in  w h i c h  c a s e  t h e r e  i s  n o  

f r e q u e n c y  d e p e n d e n c e  o f  t h e  b a s i s  f u n c t i o n s .  T h i s  m a y  r e s u l t  in  t h e  r e q u ir e m e n t  o f  a  v e r y  

h i g h  n u m b e r  o f  b a s i s  f u n c t i o n s  f o r  t h e  la t t e r  m e t h o d s  in  o r d e r  t o  s a t i s f a c t o r i l y  c a p t u r e  t h e  

p h y s i c s  o f  t h e  s y s t e m  r e s p o n s e  o v e r  a  b r o a d  f r e q u e n c y  s p e c t r u m .  E s p e c i a l l y  t h e  r e s o n a n c e  

f r e q u e n c i e s  c a n  p r o v e  t o  b e  r e a l  o b s t a c l e s  t o  t h e  s u c c e s s  o f  t h o s e  m e t h o d s ,  w h ic h  c a n  b e  e a s i l y  

o v e r c o m e  u s in g  t h e  m e t h o d o l o g y  p r o p o s e d  in  t h i s  w o r k .  I t c a n  b e  v e r i f i e d  f r o m  a  c o m p a r i s o n  

o f  t h e  r e s u l t s  o f  t h e  b e a m  v ib r a t io n  p r o b l e m  w i t h  t h e  f r e q u e n c y  d e p e n d e n t  s p e c t r a l  f u n c t i o n  

a p p r o a c h  a n d  t h e  p o l y n o m i a l  c h a o s  m e t h o d  w h i c h  i s  p r e s e n t e d  la t e r  in  S e c .  2 . 6 .1 .  In  a d d i t i o n  

t o  t h i s ,  t h e  p r o p o s e d  m e t h o d  h a s  a n  a d v a n t a g e  o v e r  t h e  c l a s s i c a l  N e u m a n n  e x p a n s i o n  t e c h 

n i q u e  in  th a t  t h e  p r e c o n d i t io n e r  f o r  t h e  l in e a r  s y s t e m  i n c o r p o r a t e s  s o m e  o f  t h e  r a n d o m n e s s  o f



2.4. M odel reduction and Galerkin error m inim ization technique 45

8.10'g.io‘
10-'

600
Frequency (Hz)Frequency (Hz) Frequency (Hz)

(a) D ifferen t o rders o f  r 2 (u;, £ ( 0 ) ) .  (b) D ifferen t o rders o f  IT^u;, £ ( 0 ) ) .  (c) D ifferen t o rders o f  r 4(u;, £ (# ) ) .

6
■a

I
10"*

io“J

■g
I
■3

§

8.

1 0 '*

Frequency (Hz)Frequency (Hz)

(d) D ifferen t o rders o f ^ ( c j ,  £ (# ))•  (e) D ifferen t o rders o f  ^ ( w ,  £(& )). (f) D ifferen t o rders o f  ^ ( w ,  £ (# ) ) .

F ig u r e  2 .2 :  T h e  f r e q u e n c y  d o m a i n  s p e c t r a l  f u n c t i o n s ,  r l ?n\ u ,  ( ( 0 j ) )  o f  o r d e r s  m  =  2 , 3 , 4 .  

T h e  s p e c t r a l  f u n c t i o n s  a r e  o b t a i n e d  f o r  a  p a r t ic u la r  r a n d o m  s a m p l e  6 j  a n d  f o r  a a =  0 . 2 0 .

t h e  s y s t e m  w h i c h  r e s u l t s  in  a  b e t t e r  a p p r o x i m a t i o n  w i t h  l o w  o r d e r  e x p a n s i o n  o f  t h e  N e u m a n n  

s e r i e s .  T h i s  h e l p s  t o  r e d u c e s  t h e  c o m p u t a t i o n a l  c o s t  o f  t h e  m e t h o d .

2.4 M od el reduction  and G alerk in  error m in im ization  tech 

n ique

2.4.1 Model reduction

M o d e l  r e d u c t io n  f o r  d y n a m ic  a n a l y s i s  o f  s t r u c t u r a l  s y s t e m s  i s  a c h i e v e d  b y  u s in g  f e w e r  n u m 

b e r  o f  e i g e n p a i r s  o f  t h e  g e n e r a l i z e d  e i g e n v a l u e  p r o b l e m  ( u s u a l l y  t h o s e  a s s o c i a t e d  w i t h  t h e  

s m a l l e s t  e i g e n v a l u e s ) .  T h e  c u t - o f f  f r e q u e n c y  ( N y q u i s t  f r e q u e n c y )  f o r  d y n a m ic a l  a n a l y s i s  a n d  

h e n c e  t h e  n u m b e r  o f  e ig e n p a i r s  u s e d  t o  a p p r o x i m a t e  t h e  s o l u t i o n  i s  g u i d e d  b y  t h e  f a c t  th a t  

l o w  t o  m i d - f r e q u e n c y  d y n a m ic a l  r e s p o n s e  c a n  b e  c a p t u r e d  u s in g  t h e  f ir s t  f e w  e i g e n v e c t o r s  

a n d  t h e  h i g h e r  m o d e s  c a n  b e  n e g l e c t e d .  T h e  s p a t ia l  r e s o l u t i o n  o f  t h e  F E  m o d e l  m u s t  b e  a b l e  

t o  r e p r e s e n t  t h e  h i g h e s t  e i g e n  m o d e  w i t h  s u f f i c i e n t  s m o o t h n e s s .  T h u s  t h e  s y s t e m  r e s p o n s e  i s  

f o r m u l a t e d  w i t h  t h e  n r m o d a l  b a s i s  a s

UJ
—  < < 1 ,  f o r  j  >  n r  ( 2 . 5 3 )
LJn



where Uj is the natural frequency of the j th mode and u  E  Cl is the frequency domain. Thus, 
nr < n  results in lower computational cost for resolving the system equations.

For the stochastic system, parametric uncertainty results in the distribution of the eigen 
modes around the deterministic natural frequencies in the sample space. The choice of the 
number of reduced basis in this case is based on an a priori understanding of the dependence 
of the solution on the eigen modes within the frequency range of interest. However, the 
spectral functions weighting the eigen basis is stochastic in nature and the contribution of the 
higher modes may become significant for certain samples. From the expression of the spectral 
functions

'(!) t (Q\\  — _________

it is observed that the stochastic weighting coefficients can modify the contribution of the 
individual vibration modes based on frequency and the nature of the elements perturbation 
matrices Aik ( uj) .  For higher values of standard deviation, the effect becomes more significant.

Hence, it is suggested to go beyond the Nyquist criterion and increase the dimension of 
the modal subspace in approximating the stochastic system solution. This can help to avoid 
the errors which may arise from neglecting a significant contribution of the higher modes and 
their interactions in the response. A rigorous analysis of the spread of the stochastic natural 
frequencies of the vibrating system can definitively point to the number of essential eigen 
modes at each frequency. Also, posterior analysis of the variability of the spectral functions 
can further highlight this and can lead to the design of effective adaptive schemes to take care 
of the truncation error. However, this is beyond the scope of the present work.

Choosing a sufficient number of vibration modes, the solution can be projected onto those 
basis and the spectral functions associated with those modes can be calculated following the 
procedure detailed in previous sections. This model reduction technique can help to alleviate 
the computational cost of the problem significantly. Thus, following from Eqn. (2.31), the 
approximate solution can be represented in a reduced modal subspace of dimension (nr) as

n r

u ( w , 0 ) « £ f j [mW ( W *  (2.55)
k=1

where (u,£(6)) are m th order stochastic spectral functions obtained with system matrices 
transformed to the reduced modal coordinates and <j>k are the eigen vectors of the deterministic 
system respectively. The accuracy of this series in Eqn. (2.55) can be improved in two ways, 
(a) by increasing the dimension of the modal subspace (nr), or (b) by increasing the order m  
of the spectral functions r*m^(£(tu, 6)).

This study has made use of the eigen modes that are within three-four times the frequency 
range of interest of the problem at hand. This helps in satisfactorily capturing the deformation 
shapes of the structural system at all frequencies. Reductions based on this kind of eigenso-
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lution is of classical nature in various areas of structural mechanics and other engineering 
problems and extensive studies exist on this topic [Khalil et al., 2007, Kerfriden et al., 2011]. 
It should be noted, though, that the truncation of the series given in Eqn. (2.55) introduces 
approximation errors into the solution vector.

2.4.2 Galerkin type error minimization

In Sec. 2.3.2 we derived the spectral functions in terms of a convergent infinite series. These 
spectral functions are the coefficients of the orthonormal eigen modes which forms a com
plete basis of the solution space. The approximate solution so obtained is found to converge 
to the exact solution in probability 1 for each frequency value. First, second and higher or
der spectral functions obtained by truncating the infinite series have been derived. We have 
also showed that they capture the underlying physics of the frequency response of the sys
tem subjected to a given frequency dependent forcing. The well-established model reduction 
technique has been used to alleviate the computational burden by reducing the dimensionality 
of the linear stochastic system. However, the error introduced due to the finite order approx
imation of the spectral functions and the reduced dimension of the modal subspace induces 
error in the solution, and the idea here is to introduce a Galerkin-type orthogonalization of the
residual to the modal basis with the aim of reducing this truncation error.

We express the solution vector by the series representation

n T

v(uj,e) = Y JCk{u%{^i{8))<t>k (2-56)
1

where the functions Tk are the spectral functions of finite order (as given in Eqn. (2.55)), 
4>k E Mn are the eigenvectors introduced earlier in Eqn. (2.21) and the constants ck {oo) E C 
for a given value of the frequency has to be obtained using the Galerkin approach. Substituting 
the expansion of u (u, 0) in the governing equation Eqn. (2.18), the residual vector is given by

£ { u , d )  =

where £o — 1 is used to simplify the first summation expression. The expression in Eqn. (2.56) 
can be viewed as a projection of the solution vector on to the deterministic modal basis 
weighed by the complex frequency dependent stochastic weighting functions r* (« , €(*)). 
Thus we wish to obtain the coefficients ck{u) using the Galerkin approach so that the residual 
is made orthogonal to the eigen basis in the mean sense at each frequency step, i.e. mathe
matically

(0 j5 e(uj, 6)) = 0 V j  = 1 ,2 , . . . ,  nr (2.58)

M n r

Y  AiM£i(0) ] r C(fc(u,)ffc(a>,S(0))4>t -  f0(w) € C" (2.57)
i= 0 ,fc=l



Here (u(0), v(0)) =  / e u(0) \(6)P(d6)  defines the inner product norm. Imposing this condi
tion and using the expression of e(u;, 6) from Eqn. (2.57) one has

E
M nr

4>Tj ^ ^ c fe(cj)ffc(o;,£(0))0fcJ  -  </>f{0(u) 

Interchanging the E [•] and summation operations, this can be simplified to

nr /  M

= 0 (2.59)

£  £  E [&(w, 8 ) f k(u, £(0))] ck{UJ) =  (4>ffo(oj)) (2.60)
k=l \ i =0 /
nT /  M  \

or ^ 2  ( ) Ck {u>) = bj(uj) (2.61)
k=1 \ z=0

Defining the vector c(u) =  {ci(cd), 02(0 0 cn(uj)} , these equations can be expressed in 
a matrix form as

S(w) c(w) =  b(w) (2.62)

with

where

M

^   ̂Aijk{u}Dik{ui)\ V j, k — 1 ,2 , . . . , nr (2.63)
i= 0

A ijk(u) = <f>J Ai(u)<f)k 

A fc H  =  E [6 (0 ) r fc( o ; ,^ ) ) ]  

and bj(u) = ^ 0 j f o(^))

(2.64)

(2.65)

(2 .66)

The number of equations to be solved for the unknown coefficients in Eqn. (2.62) is nr which 
is the dimension of the reduced system in the modal coordinates represented by Eqn. (2.56). 
The complex coefficient matrix S{u) and the vector b(cj) in Eqn. (2.62) should be obtained 
numerically using the Monte Carlo simulation or other numerical integration technique for 
every value of frequency. It can be observed that the matrix S(u) is symmetric. Therefore, 
one has to determine nr(nr + l ) /2  elements of this matrix by numerical methods due to the 
necessity of evaluating the inner product of the functions in the probability space. It is possible 
to use any numerical integration scheme that is be applicable for the kind of joint probability 
density considered in the problem. For e.g. the Gauss-Hermite quadrature algorithm can 
be used effectively for the normally distributed random variables to evaluate the elements of 
Dijk(oj) in Eqn. (2.64). In this work Monte Carlo simulation has been used. The samples 
of the spectral functions T*;(a;,£(0)) can be simulated from Eqns. (2.32), (2.46), (2.50) or 
depending on the order. The numerical method proposed here therefore can be considered as
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a hybrid analytical-simulation approach.

2.5 Calculation of the dynamic response statistics

For practical application of the method developed here, the efficient computation of the re
sponse moments and pdf is important. A simulation based algorithm is proposed in this 
section. The coefficient vector c G Cnr in Eqn. (2.56) can be calculated from a reduced set of 
equations given by Eqn. (2.62). Once these coefficients are calculated, the statistical moments 
of the solution can be obtained from using the Monte Carlo simulation as given below. The 
spectral functions used to obtain the vector c itself can to be reused to obtain the statistics and 
pdf of the solution. The mean vector can be obtained as

n r

u(u) =  E[|u(fc;,0)|] =  £ > | E  r*(u;,$(0)) <f>k
k = 1

(2.67)

where |«| is the absolute value of the complex quantities. The covariance matrix of the solu
tion vector is

£ u(w) =  E ( | u ( c j , 0)| — u ( c j) )  (|u(o;,0)| — u(cu))T = ^ 2 ' ^ 2 \ c kcj \Tirkj(uj)^k(f)
k —1 j = 1

Tlf Ttf

(2 .68)

where the elements of the covariance matrix of the spectral functions are given by

Ert»  =  E [( |f* (w ,« 0 )) | -  E [|f* (w ,*(0))|]) ( | f > , £ W ) - E f(" .€ (* )) |]y
(2.69)

Considering the fact that the elements of the vector u ( uj , 6 )  are complex valued random pro
cesses, further statistical properties can also be obtained. For example one can calculate the 
two-point auto-correlation function of the absolute value as

£ u (u / i ,u ; 2 )  =  E  [ ( IU (W1>0)I “  U ( ^ l ) )  ( l u ( ^ 2 , 0 ) |  -  u ( w 2 ) ) J

Tlf Tlf
=  £ £  |c k Cj | £ r fci ( ^ i ? ^ 2  

k = 1 j —l

(2.70)

where the elements of the covariance matrix of the spectral functions are given by

£ r fci(^i,^2) — E { ^ |r f c £(0)) - E

(2.71)

Based on the results derived in this work, a hybrid reduced simulation-analytical approach 
can thus be realized in practice. The method is applicable to general structural dynamics



problems with general non-Gaussian random fields. In the following section this approach 
has been applied to two physical problems.

2.6 Illustrative examples

In this section the problem of structural vibration of a one-dimensional Euler-Bemoulli can
tilever beam and a two dimensional clamped plate are considered to demonstrate the effec
tiveness of the proposed spectral solution method for stochastic structural dynamic systems. 
The solution is obtained for a specified value of the correlation length of the parametric ran
domness and for different degrees of variability of the same. The spatially varying stochastic 
field has been discretized using a finite number of zero mean uncorrelated standard Gaussian 
variables using the Karhunen-Loeve expansion theorem. For the beam problem we have cho
sen the elastic modulus E l  as the the stochastic parameter while for the thin plate it is the 
bending stiffness D. The beam and plate problems have been solved for their dynamic steady 
state frequency domain vibration response. Direct Monte Carlo simulation (MCS) has been 
performed for these cases and is taken as the benchmark solution with respect to which the 
appropriateness of the different methods have been analyzed and the relative errors have been 
calculated. Also a comparison between the Polynomial Chaos method and the proposed spec
tral decomposition technique is presented for the beam problem. The plate problem however 
is solved only using the spectral reduced basis method and validated with the direct MCS 
results.

2.6.1 Case I: Euler-Bernoulli beam

In this section we apply the computational method to a cantilever beam clamped at one end 
(where the displacement and the rotational degree of freedom is set to zero). Figure 2.3(a) 
shows the configuration of the cantilever beam with a harmonic point load at its free end. We 
assume that the bending modulus (El)  is a stationary Gaussian random field of the form

EI(x ,  0) = E I 0(1 +  a(x, 0)) (2.72)

where x  is the coordinate along the length of the beam, E I 0 is the mean bending modulus, 
a(x , 6) is a zero mean stationary Gaussian random field. The covariance kernel of this random 
field is taken to be of the form

Ca(xu x 2) = o2ae - ^ - xM « ‘ (2.73)

where (ia is the correlation length and cra is the standard deviation. The base-line parameters 
are chosen as L =  lm, cross-section (b x h ) 3 9 x 5.93 mm2 and Young’s modulus E  = 2 x 1011
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(a) S chem atic  d iagram  o f  the beam  w ith a poin t load 
at the free end

F ig u r e  2 .3 :  S c h e m a t i c  d ia g r a m  o f  t h e  c a n t i l e v e r  b e a m  w i t h  a  h a r m o n i c  p o i n t  l o a d  a t t h e  f r e e  

e n d  a l o n g  w i t h  i t s  n a tu r a l  f r e q u e n c i e s .  T h e  n u m b e r  o f  r e d u c e d  e i g e n v e c t o r s  c h o s e n  i s  q  =  1 0  

w h i c h  c o v e r s  u p t o  t w i c e  ( 1 2 0 0  H z )  t h e  f r e q u e n c y  r a n g e  o f  in t e r e s t  ( 6 0 0  H z ) .

P a . In  s t u d y  w e  c o n s i d e r  d e f l e c t i o n  o f  t h e  t ip  o f  t h e  b e a m  u n d e r  h a r m o n i c  l o a d s  o f  a m p l i t u d e  

/ o  =  I . O N .  T h e  c o r r e l a t i o n  l e n g t h  c o n s i d e r e d  in  t h i s  n u m e r i c a l  s t u d y  i s  p a =  L / 2 .  T h e  n u m 

b e r  o f  t e r m s  u s e d  t o  r e p r e s e n t  t h e  d i s c r e t i z e d  r a n d o m  f i e ld  in  t h e  s p a t ia l  d o m a i n  i s  c h o s e n  a s  

M  =  2 .  F o r  t h e  f in i t e  e l e m e n t  d i s c r e t i z a t i o n ,  t h e  b e a m  i s  d i v i d e d  in t o  1 0 0  e l e m e n t s .  S ta n d a r d  

f o u r  d e g r e e s  o f  f r e e d o m  E u l e r - B e r n o u l l i  b e a m  m o d e l  i s  u s e d  [ P e t y t ,  1 9 9 8 ] .  A f t e r  a p p l y in g  

t h e  f i x e d  b o u n d a r y  c o n d i t i o n  a t  o n e  e d g e ,  w e  o b t a in  t h e  n u m b e r  o f  d e g r e e s  o f  f r e e d o m  o f  

t h e  m o d e l  t o  b e  n  =  2 0 0 .  I t h a s  b e e n  v e r i f i e d  t h a t  t h i s  s p a t ia l  r e s o l u t i o n  i s  s u f f i c i e n t  f o r  t h e  

f r e q u e n c y  o f  e x c i t a t i o n  c o n s i d e r e d  in  t h i s  s t u d y .

T h e  d y n a m i c  a n a l y s i s  o f  t h e  c a n t i l e v e r  b e a m  h a s  b e e n  d o n e  f o r  t h e  c a s e  o f  u n i t  a m 

p l i t u d e  h a r m o n i c  p o i n t  l o a d  a c t in g  o n  t h e  f r e e  e n d  o f  t h e  b e a m  o v e r  a  f r e q u e n c y  r a n g e  o f  

0  — 6 0 0  H z  a t  a n  in t e r v a l  o f  2  H z .  T h e  s o l u t i o n  o f  t h e  p r o p o s e d  r e d u c e d  b a s i s  s p e c t r a l  m e t h o d  

h a s  b e e n  c o m p a r e d  w i t h  t h e  d i r e c t  M C S  r e s u l t s  a n d  t h e  4 t h  o r d e r  P C  e x p a n s i o n .  T h e  s i m 

u l a t i o n s  h a v e  b e e n  p e r f o r m e d  w i t h  1 0 , 0 0 0  M C S  s a m p l e s  a n d  f o r  f o u r  d i f f e r e n t  v a l u e s  o f  

o ’a =  { 0 . 0 5 ,  0 . 1 0 , 0 . 1 5 , 0 . 2 0 } ,  w h i c h  i s  t h e  s t a n d a r d  d e v i a t io n  o f  t h e  r a n d o m  b e n d i n g  s t i f f n e s s  

o f  t h e  b e a m ,  w i t h  t h e  a im  o f  s i m u l a t i n g  d i f f e r e n t  l e v e l s  o f  u n c e r t a in t y .

F ig u r e  2 . 3 ( b )  p r e s e n t s  t h e  d i s t r ib u t io n  o f  t h e  n a tu r a l  f r e q u e n c i e s  o f  t h e  c a n t i l e v e r  b e a m ,  

w h i c h  a r e  t h e  s q u a r e  r o o t  o f  t h e  e i g e n v a l u e s  o f  t h e  g e n e r a l i z e d  e i g e n v a l u e s  ( E q n .  ( 2 . 2 1 ) )  

o f  t h e  d y n a m i c  b e a m  p r o b l e m .  T h e  r e d u c e d  b a s i s  o f  t h e  p r o b l e m  s h o u l d  b e  c h o s e n  b a s e d  o n  

t h e  f r e q u e n c y  r a n g e  o f  in t e r e s t  o f  t h i s  p a r t ic u la r  p r o b l e m ,  i . e .  a l l  t h e  e i g e n  m o d e s  th a t  c o v e r s  

u p  t o  1 2 0 0  H z  m u s t  b e  i n c lu d e d  in  t h e  f o r m u l a t io n  ( g i v e n  t h a t  t h e  m a x i m u m  f r e q u e n c y  in  

t h e  s t u d y  i s  6 0 0  H z ) .  H o w e v e r ,  b a s e d  o n  t h e  d i s c u s s i o n  g i v e n  in  S e c .  2 . 4 . 1 ,  1 0  e i g e n  m o d e s  

h a v e  b e e n  s e l e c t e d .  W e  h a v e  a p p l ie d  a  c o n s t a n t  m o d a l  d a m p in g  m a t r ix  w i t h  1 %  d a m p in g  

f a c t o r  f o r  a l l  t h e  m o d e s .  H e r e  t h e  m a s s  a n d  d a m p in g  m a t r i c e s  a r e  a s s u m e d  t o  b e  d e t e r m i n i s t i c
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(b) N atu ra l frequency  o f  the can tilever beam .
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in  n a t u r e .  H o w e v e r ,  t h e  p r o p o s e d  t h e o r e t i c a l  a p p r o a c h  i s  g e n e r a l  a n d  e q u a l l y  a p p l i c a b l e  f o r  

r a n d o m  m a s s ,  s t i f f n e s s  a n d  d a m p in g  m a t r i c e s .

(a) B eam  deflection  for a a =  0 .05. (b) B eam  deflection  for o a =  0.1.
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(c) B eam  deflection  for a a =  0 .15. (d) B eam  deflection  for a a =  0.2.
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F ig u r e  2 .4 :  T h e  m e a n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  t h e  t ip  o f  t h e  E u l e r - B e r n o u l l i  b e a m

u n d e r  u n i t  h a r m o n ic  p o i n t  l o a d  a t t h e  f r e e  e n d .  T h e  r e s p o n s e  i s  o b t a i n e d  w i t h  1 0 ,  0 0 0  r a n d o m  

s a m p l e s  a n d  f o r  a a =  { 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 } .  T h e  r e s p o n s e  f o r  d i f f e r e n t  o r d e r  o f  s p e c t r a l  

f u n c t i o n s  a r e  s h o w n .  F o r  t h i s  p r o b l e m  t h e  d e g r e e s  o f  f r e e d o m  n  =  2 0 0  a n d  t h e  n u m b e r  o f  

r a n d o m  v a r ia b le s  M  =  2 .  T h e  p r o p o s e d  G a le r k in  a p p r o a c h  n e e d s  s o l u t i o n  o f  a  1 0  x  1 0  l in e a r  

s y s t e m  o f  e q u a t i o n s  o n ly .

T h e  f r e q u e n c y  r e s p o n s e  o f  t h e  m e a n  d e f l e c t i o n  o f  t h e  t ip  o f  t h e  b e a m  i s  s h o w n  in  F i g .  2 . 4  

f o r  t h e  f o u r  v a l u e s  o f  a a a n d  f o r  u n i t  a m p l i t u d e  h a r m o n ic  p o i n t  l o a d  a t  t h e  f r e e  e n d .  T h e  

f i g u r e s  s h o w  a  c o m p a r i s o n  o f  t h e  r e d u c e d  b a s i s  s p e c t r a l  m e t h o d  r e s u l t s  w i t h  t h e  d i r e c t  M C S  

s i m u l a t i o n  a n d  t h e  4 t h  o r d e r  p o l y n o m i a l  c h a o s  s o l u t i o n .  A  p l o t  o f  t h e  d e t e r m i n i s t i c  s y s t e m  

r e s p o n s e  i s  a l s o  i n c lu d e d  f o r  r e f e r e n c e .  T h e  s p e c t r a l  s o l u t i o n  h a s  b e e n  o b t a i n e d  f o r  d i f f e r e n t  

o r d e r s  o f  t h e  s o l u t i o n  f o l l o w i n g  E q n .  ( 2 . 3 0 ) ,  w h e r e  t h e  o r d e r s  s  =  2 , 3 , 4 .  S i n c e  w e  c o n s i d e r  

t h e  f ir s t  1 0  e i g e n m o d e s  o f  t h e  s o l u t i o n ,  t h e  G a le r k in  m e t h o d  n e c e s s i t a t e s  t h e  s o l u t i o n  o f  a  

1 0  x  1 0  l in e a r  s y s t e m  o f  e q u a t i o n s  t o  o b t a in  t h e  u n d e t e r m in e d  c o e f f i c i e n t s  a s s o c i a t e d  w i t h



2.6. Illustrative examples 53

the response, as given in Eqn. (2.62). In contrast, for the PC solution technique using 4th 
order polynomial functions, it is essential to solve a 3000 x 3000 dimensional linear system 
of equations in order to obtain the undetermined coefficients associated with the Hermite 
polynomials at every frequency step.

A good agreement between the MCS simulation and the proposed spectral approach can 
be observed in Fig. 2.4. When compared with the deterministic system response, it shows 
that the uncertainty has an effect similar to that of damping at the resonance peaks. This 
can be explained by the fact that the parametric variation of the beam, results in its peak 
response for the different samples to get distributed around the resonance frequency zones 
instead of being concentrated at a particular frequency. As a results, when the subsequent 
averaging is applied, it smooths out the response peaks to a fair degree. The same explanation 
holds for the anti-resonance frequencies. It can also be observed that increased variability 
of the parametric uncertainties (as is represented by the increasing value of aa) results in an 
increase of this added ‘damping kind of effect’. It should however be pointed out that this is 
not a phenomenon of physical damping and there might still be a high amplitude deflection 
obtained for a particular random sample in practical problems. The 4th order PC solution 
shows an accurate mean response estimation at low frequencies for small variability (like for 
aa = 0.05) of the random field. However, the response tends to become inconsistent for 
higher values of variability, especially at the resonance frequencies. This can lead to serious 
practical problem as the response near the resonance frequency often the most crucial quantity 
of engineering interest.

As the response of the system is in terms of the spectral functions, it is now useful to 
understand the stochastic system response in terms of the statistical properties of these spectral 
functions. We show the plot of the first seven 4th order mean spectral functions E\Tk(u, £(#))] 
in Fig. 2.5 as function of frequency for 4 different values of variability of the random field. We 
find that the resonance peak of each spectral function is obtained at the natural frequencies of 
the vibration modes with which they are associated and denotes mean of the stochastic modal 
amplitudes of the beam. Also, the amplitude of the functions at the resonance peaks are 
found to decrease for higher values of aa which is consistent with the observation in Fig. 2.4 
that the effect of increased variability of the random field leads to an added damping kind of 
effect on the mean response. The ratio of the amplitudes of consecutive spectral functions 
at a resonance frequency increases with an increase in the value of aa. For e.g. the ratio 
of E[Tq(uj, £(0))]/£[r5(u;, €(0))] around 400 Hz is found to decrease with <r0. This shows 
that the coupling of the vibration modes tend to increase with the increasing variability of the 
random field as has also been mentioned in discussion of spectral functions in Sec. 2.3.4.

Figure 2.6 shows the standard deviation of the frequency domain response of the tip de
flection for different spectral orders of solution of the reduced basis approach and is compared 
with the direct MCS and 4th order PC for different values of oa. We find that the standard de-
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(c) M ean spectral functions fo r o a — 0 .15.
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(d) M ean spectral functions fo r a a — 0 .2 .

F ig u r e  2 .5 :  T h e  m e a n  o f  t h e  a m p l i t u d e  o f  t h e  f ir s t  s e v e n  s p e c t r a l  f u n c t i o n s  o f  o r d e r  4 .  T h e  

s p e c t r a l  f u n c t i o n s  a r e  o b t a i n e d  f o r  f r e q u e n c y  u p  t o  6 0 0  H z  w i t h  1 0 4 s a m p le  M C S  a n d  f o r

a a =  { 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 } .

v i a t io n  i s  m a x i m u m  at t h e  r e s o n a n c e  f r e q u e n c i e s  w h i c h  i s  c o n s i s t e n t  w i t h  F ig .  2 . 4 .  I t i s  a g a in  

o b s e r v e d  th a t  t h e  d i r e c t  M C S  s o l u t i o n  a n d  t h e  r e d u c e d  o r d e r  a p p r o a c h  g i v e  a l m o s t  i d e n t i c a l  

r e s u l t s ,  w h i c h  d e m o n s t r a t e  t h e  e f f e c t i v e n e s s  o f  t h e  p r o p o s e d  a p p r o a c h .  T h e  4 th  o r d e r  P C  r e 

s u l t s  h o w e v e r ,  s h o w  s i g n i f i c a n t  i n c o n s i s t e n c i e s  f o r  h i g h e r  v a l u e s  o f  <7a a n d  e s p e c i a l l y  a t  h i g h  

f r e q u e n c ie s .  B o t h  t h e s e  o b s e r v a t i o n s  s u g g e s t  th a t  t h e  P C  e x p a n s i o n  o f  a  s i m i la r  o r d e r  t o  t h i s  

p r o p o s e d  s p e c t r a l  f u n c t i o n  a p p r o a c h  m a y  n o t  b e  w e l l  s u i t e d  t o  h a n d le  t h e  d y n a m ic  p r o b l e m  

a t  h ig h  f r e q u e n c i e s  a n d  f o r  h i g h  d e g r e e s  o f  v a r ia b i l i t y  o f  t h e  r a n d o m  f i e l d  i n v o l v e d .

I t  c a n  a l s o  b e  c o n s i d e r e d  t h a t  t h e  s y s t e m  r e s p o n s e  c o n s t r u c t e d  w i t h  t h e  f ir s t  o r d e r  s p e c 

tr a l f u n c t i o n s  c o r r e s p o n d s  t o  a  z e r o t h  o r d e r  e x p a n s i o n  in  t h e  c l a s s i c a l  N e u m a n n  s c h e m e ,  i f  

o n l y  t h e  d e t e r m i n i s t i c  p a r t  o f  t h e  s y s t e m  m a t r i c e s  a r e  c h o s e n  a s  t h e  p r e - c o n d i t io n e r s .  T h u s ,  

i t  w o u l d  c o r r e s p o n d  t o  t h e  d e t e r m i n i s t i c  s y s t e m  r e s p o n s e  s h o w n  in  F i g s .  2 .4 .  I t  c a n  b e  s e e n  

th a t ,  th e  r e s p o n s e  w i t h  t h e  f ir s t  o r d e r  s p e c t r a l  f u n c t i o n s  o n  t h e  o t h e r  h a n d  g i v e s  a  b e t t e r  a p -
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(c) S tandard  deviation  o f the response fo r o a — 0 .15. (d) S tandard  dev iation  o f  the response  for o a — 0.2.
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(a) S tandard  dev iation  o f  the response  fo r a a =  0 .05.
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(b) S tandard  dev ia tion  o f  the response  for cra =  0.1.
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F ig u r e  2 .6 :  T h e  s t a n d a r d  d e v i a t io n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  t h e  t ip  o f  t h e  E u l e r - B e r n o u l l i  

b e a m  u n d e r  u n i t  h a r m o n i c  p o i n t  l o a d  a t  t h e  f r e e  e n d .  T h e  r e s p o n s e  i s  o b t a i n e d  w i t h  1 0 ,  0 0 0  

r a n d o m  s a m p l e s  a n d  f o r  cra =  { 0 . 0 5 ,  0 . 1 0 , 0 . 1 5 , 0 . 2 0 } .

p r o x i m a t io n  o f  t h e  s o l u t i o n  e v e n  a t  h i g h  v a l u e s  o f  s t a n d a r d  d e v i a t i o n  o f  t h e  r a n d o m  f i e ld .  

T h i s  i s  a  s i g n i f i c a n t  a d v a n t a g e  o f  t h e  p r o p o s e d  m e t h o d  o v e r  t h e  c l a s s i c a l  N e u m a n n  e x p a n s i o n  

t e c h n i q u e ,  a n d  t h e  r e s u l t s  o b t a i n e d  w i t h  t h e  la t t e r  i s  g i v e n  la t e r  in  t h i s  s e c t i o n .

F ig u r e  2 . 7  s h o w s  t h e  s t a n d a r d  d e v i a t io n  o f  t h e  r e s p o n s e  o f  t h e  b e a m  a t  f o u r  d i f f e r e n t  

f r e q u e n c i e s ,  5 0  H z ,  1 6 8  H z ,  2 4 6  H z  a n d  4 1 8  H z ,  a s  a  f u n c t i o n  o f  t h e  s t a n d a r d  d e v i a t io n  

o f  t h e  r a n d o m  f i e ld .  1 6 8  H z  a n d  4 1 8  H z  c o r r e s p o n d  to  t h e  r e s o n a n c e  f r e q u e n c i e s  o f  th e  

c a n t i l e v e r  b e a m ,  w h i l e  2 4 6  H z  c o r r e s p o n d s  t o  t h e  a n t i - r e s o n a n c e  f r e q u e n c y .  T h e  r e la t iv e  

s t a n d a r d  d e v i a t io n  v a l u e s  h a v e  b e e n  o b t a i n e d  f o r  a  s e t  o f  4  v a l u e s  o f  a a , w h i c h  r e p r e s e n t s  

th e  d i f f e r e n t  d e g r e e s  o f  v a r ia b i l i t y  o f  t h e  s y s t e m  p a r a m e t e r s .  T h e  r e s u l t s  o b t a i n e d  w i t h  t h e  

G a le r k in  a p p r o a c h  f o r  t h e  d i f f e r e n t  o r d e r  o f  s p e c t r a l  f u n c t i o n s  h a v e  b e e n  c o m p a r e d  w i t h  t h e  

d ir e c t  M C S ,  a n d  a  g o o d  a g r e e m e n t  i s  o b s e r v e d .  H o w e v e r ,  t h e  4 th o r d e r  P C  r e s u l t  p o i n t s  t o  

t h e  f a c t  th a t  a t  h i g h  f r e q u e n c i e s  a n d  f o r  h i g h  v a l u e s  o f  t h e  v a r ia n c e  o f  t h e  r a n d o m  f i e l d ,  t h e
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F ig u r e  2 .7 :  S t a n d a r d  d e v i a t io n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  t h e  t ip  o f  t h e  E u l e r - B e r n o u l l i  

b e a m  f o r  d i f f e r e n t  d e g r e e s  o f  p a r a m e t r ic  u n c e r t a in t y  r e p r e s e n t e d  b y  a a =  { 0 . 0 5 ,  0 . 1 0 ,  0 . 1 5 ,  

0 . 2 0 }  a t  4  d i f f e r e n t  f r e q u e n c i e s  a n d  u n d e r  u n i t  h a r m o n ic  p o i n t  l o a d  a t  th e  f r e e  e n d .  T h e  

r e s p o n s e  i s  o b t a i n e d  w i t h  1 0 ,  0 0 0  r a n d o m  s a m p le s .  N o t e  th a t  1 6 8  a n d  4 1 8  H z  c o r r e s p o n d  t o  

t h e  r e s o n a n c e  f r e q u e n c i e s  o f  t h e  b e a m .

P C  r e s u l t s  p r o v i d e  a  l e s s  a c c u r a t e  p r e d i c t i o n  o f  t h e  s o l u t i o n  m o m e n t s  f o r  t h e  s a m e  o r d e r  o f  

e x p a n s i o n  o f  t h e  p o l y n o m i a l s  o f  t h e  r a n d o m  v a r ia b le s .  It m a y  b e  p o i n t e d  o u t  th a t  t h e  s t a n d a r d  

d e v i a t io n  d e c r e a s e s  w i t h  t h e  v a l u e s  o f  o a f ° r t h e  r e s o n a n c e  f r e q u e n c y  w h i l e  it  i n c r e a s e s  f o r  t h e  

a n t i - r e s o n a n c e  f r e q u e n c i e s .  T h i s  i s  o n c e  a g a in  c o n s i s t e n t  w i t h  t h e  r e s u l t s  s h o w n  in  F ig .  2 . 4  

w h i c h  s h o w s  th a t  a n  in c r e a s e d  v a l u e  o f  t h e  v a r ia n c e  o f  t h e  r a n d o m  f i e ld  h a s  t h e  e f f e c t  o f  a n  

e n h a n c e d  s y s t e m  d a m p in g  w h e n  p l o t t i n g  t h e  m e a n  v a l u e  o f  t h e  f r e q u e n c y  r e s p o n s e .

T h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  d e f l e c t i o n  o f  t h e  t ip  o f  t h e  c a n t i l e v e r  b e a m  f o r  d i f 

f e r e n t  d e g r e e s  o f  v a r ia b i l i t y  o f  t h e  r a n d o m  f i e ld  i s  s h o w n  in  F i g .  2 .8 .  T h e  p r o b a b i l i t y  d e n s i t y  

f u n c t i o n s  h a v e  b e e n  c a l c u l a t e d  a t  t h e  f r e q u e n c y  o f  4 1 8  H z ,  w h ic h  i s  a  r e s o n a n c e  f r e q u e n c y  o f  

t h e  b e a m .  A  c l o s e  m a t c h  b e t w e e n  t h e  d i r e c t  M C S  a n d  t h e  r e d u c e d  b a s i s  s p e c t r a l  s o l u t i o n  i s
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F ig u r e  2 .8 :  T h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  t h e  t ip  o f  t h e  E u le r -  

B e r n o u l l i  b e a m  u n d e r  a  u n it  h a r m o n i c  p o i n t  l o a d  a t  t h e  f r e e  e n d  a t  4 1 8  H z .  T h e  c o r r e l a t i o n  

l e n g t h  o f  t h e  r a n d o m  f i e l d  d e s c r i b i n g  t h e  b e n d i n g  r ig i d i t y  i s  t a k e n  t o  b e  p a =  L / 2 . T h e  p d f s  

a r e  o b t a i n e d  w i t h  1 0 ,  0 0 0  r a n d o m  s a m p l e s  a n d  f o r  f o u r  v a l u e s  o f  a a .

o b t a in e d .  H o w e v e r ,  t h e  d e n s i t y  f u n c t i o n s  o b t a i n e d  w i t h  4 th  o r d e r  P C  s h o w  i n c o n s i s t e n c i e s ,  

a n d  t h e  d i s p a r i t y  i n c r e a s e s  w i t h  h i g h e r  v a l u e s  o f  a a . T h e s e  r e s u l t s  e s t a b l i s h  t h e  a p p l i c a b i l 

i t y  o f  t h i s  s p e c t r a l  r e d u c e d  b a s i s  m e t h o d  w i t h  G a le r k in  e r r o r  m i n i m i z a t i o n  t e c h n i q u e  a s  a  

s a t i s f a c t o r y  w o r k i n g  m o d e l  f o r  p r o v i d i n g  s o l u t i o n  o f  t h e  s t o c h a s t i c  d y n a m ic a l  s y s t e m s .  T h e  

m e t h o d  i s  f o u n d  to  b e  c o n s i s t e n t  w i t h  t h e  d i r e c t  M C S  a p p r o a c h ,  w h i l e  b e i n g  c o m p u t a t i o n a l l y  

e f f i c i e n t  t h a n  e i t h e r  t h e  d i r e c t  M C S  o r  P C  a p p r o a c h .  F o r  a  g i v e n  o r d e r  o f  e x p a n s i o n ,  t h e  p r o 

p o s e d  m e t h o d  a p p r o x i m a t e s  t h e  s t o c h a s t i c  s y s t e m  r e s p o n s e  b e t t e r  th a n  t h e  c l a s s i c a l  N e u m a n n  

e x p a n s i o n

It w o u l d  n o w  b e  i n t e r e s t i n g  t o  h i g h l i g h t  t h e  b e h a v i o r  o f  a n  e r r o r  n o r m  o f  t h e  s y s t e m  

r e s p o n s e  o b t a i n e d  w i t h  t h i s  s p e c t r a l  f u n c t i o n  a p p r o a c h  f o r  d i f f e r e n t  o r d e r s  o f  t h e  s p e c t r a l



functions, the application of the Galerkin technique and for different degrees of variability of 
the parametric uncertainty. Hence we consider a L2 relative error for the mean response of 
the cantilever beam. The L 2 relative error e f f  { u j )  is defined at each frequency step u j  for m th 
order spectral functions as

=
W^MCS^Wl2̂ )

^  (2.74)

where { u j )  denotes the mean of the response vector obtained with the spectral weighting 
functions of order m  and M m csM  the mean response vector calculated with the direct 
MCS simulation. Here we have studied the cases for which m  = 1, . . . ,  4 and present the 
convergence of the L 2 relative error with increasing order of the spectral functions. Now, 
errors induced in the system due to the reduced number of basis functions and finite order of 
the spectral functions induces error in the computational scheme which has been minimized 
with the Galerkin-type error orthogonalization technique as presented in Sec. 2.4.2. Hence 
we present here the mean response calculated before and after the application of the Galerkin 
technique in order to demonstrate the effectiveness of the latter in approximating the solution 
for lower orders of the spectral functions and fewer modal basis vectors. Following from 
Eqn. (2.56), it can be seen that without the application of the Galerkin technique, the constants 
C f c ( ^ )  =  1 ,  V k  =  1 , . . . ,  n r ; uj  £  Q .

Figure 2.9(a) shows the behavior of the L 2 relative error as a function of frequency for the 
2 nd orcjer spectral functions with and without the application of the Galerkin type orthogonal
ization of the residual vector to the modal basis. It can be seen that for the Galerkin method 
consistently reduces the L2 error at almost all frequencies, but performs better in the low fre
quency range. Also, the overall error tends to increase with frequency which is expected since 
the contribution of the higher order modes becomes significant at these frequencies and the 
truncation error grows. The standard deviation value has been chosen as aa = 0.20 which 
represents quite a high variability of the random field. Figure 2.9(b) shows a comparison of 
the L2 error obtained with the 1st and 4th order spectral functions for aa =  0.20 and proves 
that increasing the spectral function order improves the results quite well at low frequencies. 
However, beyond 400 Hz, it is less effective, which can be explained as follows: at high fre
quencies, the overall error level increases (as is indicated by the increasing trend of the curve) 
which implies that the modal truncation, performed in obtaining the solution in the reduced 
space, results in the elimination of the contribution of some higher order modes which may 
be significant at these frequencies.

To study the convergence behavior of the response approximated with different orders 
of the spectral functions, we look at the mean squared error of the response at particular 
frequencies as a function of the spectral function order in Fig. 2.10 for different values of
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F ig u r e  2 .9 :  ( a ) T h e  L 2 r e la t iv e  e r r o r  o f  t h e  r e s p o n s e  o b t a i n e d  w i t h  t h e  2 nd  o r d e r  s p e c t r a l

f u n c t i o n s  w i t h  a n d  w i t h o u t  t h e  G a le r k in  t y p e  e r r o r  m i n i m i z a t i o n  f o r  t h e  p a r a m e t r ic  s t a n d a r d  

d e v i a t i o n  o f  a a =  0 . 2 0  ( b )  C o m p a r i s o n  o f  t h e  L 2 e r r o r  o f  t h e  r e s p o n s e  o b t a i n e d  u s in g  I s* a n d  

4 th o r d e r  s p e c t r a l  f u n c t i o n s  in  c o n j u n c t i o n  w i t h  t h e  G a le r k in  t y p e  e r r o r  m i n i m i z a t i o n  f o r  t h e  

p a r a m e t r ic  s t a n d a r d  d e v i a t io n  o f  cra =  0 . 2 0 .

s t a n d a r d  d e v i a t io n  o f  t h e  u n d e r l y i n g  r a n d o m  p a r a m e te r .  I t  i s  f o u n d  th a t  t h e  G a le r k in  e r r o r

0.03

X  0.025

0.02

0.015

* - no-G alerkin(o=0.15)
 Galerkin(0=O .15)
► - no-Galerkin(a=0.20) 

-Galerkin(o=0.20)
~ -----------

0.055

0.05,

g  0.045

o 0.04 c

- * - no-Galerkin(o=0.15) 
 Galerkin(o=0.15)
-  ► - no-Galerkin(o=0.20) 

~~ ~ *G alukiutiE=0.207 " ~

0.035

1 2  3 4
Order of Spectral Functions

(a) L 2 erro r at 276 Hz.

0.03
2 3 4

Order of Spectral Functions

(b ) L 2 e rro r at 400 Hz.

F ig u r e  2 .1 0 :  C o n v e r g e n c e  o f  t h e  L 2 e r r o r  o f  t h e  r e s p o n s e  v e c t o r  a t  2 7 6  H z  ( r e s o n a n c e  f r e 

q u e n c y )  a n d  4 0 0  H z  w i t h  i n c r e a s i n g  o r d e r  o f  s p e c t r a l  f u n c t i o n s  f o r  t h e  r a n d o m  p a r a m e t e r  f o r  

t w o  d i f f e r e n t  v a l u e s  o f  s t a n d a r d  d e v i a t io n  o a =  { 0 . 1 5 , 0 . 2 0 } .

r e d u c t io n  i s  q u i t e  e f f e c t i v e  f o r  l o w e r  ( 1 st  a n d  2 nd ) o r d e r  o f  s p e c t r a l  f u n c t i o n s ,  h o w e v e r ,  f o r  

s o l u t i o n s  a p p r o x im a t e d  w i t h  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s ,  t h e  a p p l i c a t io n  o f  t h e  G a le r k in  

s c h e m e  h a s  n o  a p p r e c ia b le  e f f e c t  o n  t h e  r e s p o n s e .

T h e  r e l a t iv e  L 2 e r r o r  f o r  t h e  m e a n  r e s p o n s e  o b t a i n e d  w i t h  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  

d e c r e a s e s  w i t h  a n  i n c r e a s e  in  t h e  o r d e r  o f  t h e  s p e c t r a l  f u n c t i o n s ,  w h i c h  i n d ic a t e s  th a t  t h e  s p e c 

tr a l f u n c t i o n s  T £ ( 6 ) )  h a s  c o n v e r g e d  s a t i s f a c t o r i l y ,  in  t h e  m e a n  s e n s e ,  in  t h e  p r o b a b i l i t y



s p a c e  w i t h  r e s p e c t  to  t h e  j o i n t  d i s t r ib u t io n  f u n c t i o n  o f  t h e  r a n d o m  v a r ia b le s .  T h i s  s h o w s  th a t  

t h e  r e s p o n s e  h a s  b e e n  c a p t u r e d  to  h ig h  d e g r e e  o f  a c c u r a c y  e v e n  w i t h  t h e  l o w e r  o r d e r  s p e c t r a l  

f u n c t i o n s ,  s u c h  th a t  a n  i n c r e a s e  in  t h e  o r d e r  d o e s  n o t  b r in g  a b o u t  a n y  s i g n i f i c a n t  im p r o v e m e n t  

in  t e r m s  o f  t h e  s o l u t i o n  a c c u r a c y .  A l s o ,  t h e  e s t i m a t i o n  o f  t h e  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  

i s  c o m p u t a t i o n a l l y  m o r e  e x p e n s i v e  a n d  a n  o p t i m a l  o r d e r  c a n  b e  c h o s e n  b a s e d  o n  t h e  c o n v e r 

g e n c e  c r i t e r io n  r e q u ir e d  f o r  t h e  p a r t ic u la r  p r o b l e m  a t h a n d .  W e  d e m o n s t r a t e  t h i s  a s p e c t  w i t h  

a n o t h e r  s t r u c tu r a l  d y n a m ic  p r o b l e m  o f  p la t e  b e n d i n g  w i t h  p a r a m e t r ic  u n c e r t a in t y  a n d  o b s e r v e  

t h e  b e h a v i o r  o f  a n  id e n t i c a l  L 2 r e l a t iv e  e rr o r .
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(a) B eam  deflection  for a a =  0 .10 . (b) L 2 e rro r for o a =  0 .05 . (c) L 2 error fo r cra =  0.20.

F ig u r e  2 .1 1 :  ( a )  S t o c h a s t i c  s y s t e m  r e s p o n s e  c a l c u l a t e d  u s in g  d i f f e r e n t  o r d e r s  o f  N e u m a n n  

e x p a n s i o n  a n d  c o m p a r e d  t o  t h e  d i r e c t  M C S  r e s u l t s  f o r  <ja =  0 . 1 0 .  ( b )  C o m p a r i s o n  o f  t h e  L 2 

r e l a t iv e  e r r o r  o f  t h e  r e s p o n s e  v e c t o r  o b t a i n e d  w i t h  t h e  N e u m a n n  e x p a n s i o n  a n d  t h e  s p e c t r a l  

f u n c t i o n  a p p r o a c h  f o r  s t a n d a r d  d e v i a t io n  cra =  0 . 0 5  ( c )  C o m p a r i s o n  o f  t h e  L 2 r e l a t iv e  e r r o r  o f  

t h e  r e s p o n s e  v e c t o r  o b t a i n e d  w i t h  th e  N e u m a n n  e x p a n s i o n  a n d  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  

f o r  s t a n d a r d  d e v i a t io n  cra =  0 . 2 0 .

F ig u r e  2 .1 1  s h o w s  t h e  c o m p a r i s o n  o f  t h e  r e s u l t s  o b t a i n e d  w i t h  t h e  s p e c t r a l  f u n c t i o n  a p 

p r o a c h  w i t h  th a t  o f  t h e  c l a s s i c a l  N e u m a n n  e x p a n s i o n  t e c h n i q u e .  It c a n  b e  s e e n  f r o m  F ig .  2 .1 1  ( a )  

th a t  n e a r  t h e  r e s o n a n c e  f r e q u e n c i e s  t h e  N e u m a n n  e x p a n s i o n  s o l u t i o n  d o e s  n o t  c o n v e r g e ,  s i n c e  

t h e  c o n t r ib u t io n  o f  t h e  d e t e r m i n i s t i c  p a r t  o f  t h e  s y s t e m  m a t r i c e s  d e c r e a s e s  s u b s t a n t i a l l y  a n d  

h e n c e  t h e  n o r m  o f  t h e  p r e c o n d i t i o n e d  m a t r i c e s  g o e s  b e y o n d  t h e  r a d iu s  o f  c o n v e r g e n c e .  F i g 

u r e s  2 . 1 1 (b )  a n d  2 . 1 1 ( c )  s h o w s  a  c o m p a r i s o n  b e t w e e n  t h e  r e l a t iv e  L 2 e r r o r  o f  t h e  s y s t e m  

r e s p o n s e  o b t a i n e d  w i t h  t h e  4 th  o r d e r  s p e c t r a l  f u n c t i o n s  a n d  d i f f e r e n t  o r d e r s  o f  e x p a n s i o n  o f  

t h e  N e u m a n n  m e t h o d  f o r  t w o  d i f f e r e n t  v a l u e s  o f  s t a n d a r d  d e v i a t io n  o f  t h e  p a r a m e t r ic  u n c e r 

t a in t y ,  ( ja =  0 . 0 5 , 0 . 2 0 .  I t  s h o w s  th a t  w h i l e  a t n o n - r e s o n a n c e  f r e q u e n c i e s ,  t h e  e r r o r  v a l u e s  a r e  

i d e n t i c a l  t o  t h o s e  p r e d i c t e d  b y  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h ,  t h e y  d e t e r io r a t e  s i g n i f i c a n t l y  in  

t h e  n e i g h b o r h o o d  o f  t h e  r e s o n a n c e  f r e q u e n c i e s .  T h e  e f f e c t  i s  m o r e  s i g n i f i c a n t  f o r  h ig h  v a l u e s  

o f  s t a n d a r d  d e v i a t io n ,  ( l i k e  o a =  0 . 2 0 ) ,  w h e r e  t h e  s o l u t i o n  h a s  b e e n  r e n d e r e d  m e a n i n g l e s s  

o v e r  t h e  e n t i r e  f r e q u e n c y  s p e c t r u m .  I t  m u s t  b e  m e n t i o n e d  th a t  t h e  d a m p in g  v a l u e s  c h o s e n  f o r  

t h e  s i m u l a t i o n  h a s  a  s i g n i f i c a n t  i m p a c t  o n  t h e  N e u m a n n  e x p a n s i o n  t e c h n i q u e ,  a n d  t h e  r a d iu s  

o f  c o n v e r g e n c e  i n c r e a s e s  f o r  h i g h  d a m p in g .

T h u s ,  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  p r o p o s e d  h e r e  i s  f o u n d  t o  p r o v i d e  a c c u r a t e  v a l u e s  o f  

t h e  s y s t e m  r e s p o n s e  a t  l o w  c o m p u t a t i o n a l  c o s t  ( v e r i f i e d  a g a i n s t  t h e  d i r e c t  M C S  r e s u l t s )  o v e r  a
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w i d e  r a n g e  o f  f r e q u e n c i e s ,  a n d  q u i t e  h i g h  v a l u e s  o f  s t a n d a r d  d e v i a t i o n  o f  t h e  r a n d o m  p a r a m e 

te r  o f  t h e  s t o c h a s t i c  s t r u c t u r a l  s y s t e m .  E v e n  a  c o m p a r i s o n  w i t h  t h e  p o l y n o m i a l  c h a o s  m e t h o d  

s h o w s  t h a t  t h e  la t t e r  r e q u ir e s  t h e  u s e  o f  h i g h e r  o r d e r  s t o c h a s t i c  b a s i s  f u n c t i o n s  f o r  p r o v i d i n g  

a  g o o d  a p p r o x i m a t i o n  o f  t h e  s o l u t i o n  n e a r  t h e  r e s o n a n c e  f r e q u e n c i e s  a n d  e s p e c i a l l y  f o r  h ig h  

v a l u e s  o f  s t a n d a r d  d e v i a t io n  o f  t h e  r a n d o m  f i e l d  o a . H o w e v e r ,  t h e  a d d e d  c o m p u t a t i o n a l  c o s t  

a s s o c i a t e d  w i t h  t h i s  p - r e f i n e m e n t  i s  s u b s t a n t ia l .  T h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  p r o p o s e d  h e r e  

u s e s  a  r a t io n a l  f o r m  o f  t h e  p o l y n o m i a l s  o f  t h e  r a n d o m  v a r ia b le s  t o  a p p r o x i m a t e  t h e  s o l u t i o n  in  

t h e  s t o c h a s t i c  s p a c e .  T h i s  p r o v i d e s  a  b e t t e r  a p p r o x i m a t i o n  o f  t h e  s y s t e m  r e s p o n s e  e v e n  w i t h  

l o w e r  o r d e r  f u n c t i o n s .  T h e  p r o p o s e d  m e t h o d  c a n  b e  l o o k e d  u p o n  a s  a n  i m p r o v e d  N e u m a n n  

e x p a n s i o n  t e c h n i q u e  w h e r e  t h e  s t o c h a s t i c  l in e a r  s y s t e m  i s  t r e a t e d  w i t h  a  s t o c h a s t i c  p r e c o n 

d i t i o n e r  h e l p i n g  u s  t o  a r r iv e  a t  a  ‘r i c h e r ’ s t o c h a s t i c  s u b s p a c e ,  w h e r e  a  f e w  n u m b e r  o f  b a s i s  

f u n c t i o n s  i s  a b l e  t o  p r o v i d e  a  g o o d  a p p r o x i m a t i o n  o f  t h e  s o l u t i o n  f o r  l o w  v a l u e s  o f  o r d e r  o f  t h e  

s p e c t r a l  f u n c t i o n s  a n d  h a s  a  l a r g e  r a d iu s  o f  c o n v e r g e n c e  c o m p a r e d  to  t h e  c l a s s i c a l  N e u m a n n  

e x p a n s i o n .

2.6.2 Case II: Kirchhoff-Love plate

In  t h i s  s e c t i o n  w e  a p p ly  t h e  p r o p o s e d  s p e c t r a l  m e t h o d  t o  a  K i r c h h o f f - L o v e  p la t e  c la m p e d  a t  

o n e  e d g e  ( w h e r e  t h e  d i s p l a c e m e n t  a n d  th e  r o t a t io n a l  d e g r e e s  o f  f r e e d o m  a r e  s e t  t o  z e r o ) .  F o r  

t h e  p r e s e n t  c a s e  w e  h a v e  a s s u m e d  t h e  b e n d i n g  s t i f f n e s s  t o  b e  t h e  s t o c h a s t i c  p a r a m e t e r  o f  th e  

p la t e .  T h e  d a m p in g  m o d e l  c h o s e n  f o r  t h i s  c a s e  i s  th a t  o f  c o n s t a n t  m o d a l  d a m p in g ,  w i t h  1%  

d a m p in g  f a c t o r  f o r  a l l  t h e  m o d e s .  F ig u r e  2 . 1 2 ( a )  s h o w s  t h e  c o n f i g u r a t i o n  o f  t h e  r e c t a n g u la r

v-direction (width)

x-direction (length)

Mode number

(a) P late v ibration  shape at 300H z. (b) N atu ral frequency  d istribution .

F ig u r e  2 .1 2 :  ( a )  D y n a m i c  p l a t e  v ib r a t io n  s h a p e  a t  3 0 0  H z  w i t h  a  h a r m o n i c  p o i n t  f o r c e  a t o n e  

o f  t h e  f r e e  c o r n e r s .  T h e  p l a t e  i s  c l a m p e d  a t o n e  o f  i t s  e d g e s  ( x  =  — 0 . 5 ) .  T h e  p la t e  i s  l o a d e d  a t  

o n e  o f  t h e  f r e e  c o r n e r s  ( x  =  0 . 5 ,  y  =  0 . 3 ) .  ( b )  N a t u r a l  f r e q u e n c y  d i s t r i b u t i o n  o f  t h e  v ib r a t in g  

p l a t e  h i g h l i g h t i n g  t h e  f ir s t  1 5 0  n a tu r a l  f r e q u e n c i e s .

p l a t e  in  a  d e f o r m e d  c o n f i g u r a t io n  w i t h  a  h a r m o n i c  p o in t  l o a d  o n  o n e  o f  i t s  f r e e  c o r n e r s .  T h e



origin of the global coordinate system is assumed to be at the centre of the rectangular plate. 
We assume that the bending modulus is a stationary Gaussian random field of the form

D(x, y, 6) =  D0(l +  e(x, y, 6)) (2.75)

where x  and y are the coordinate direction along the length and width of the plate respectively, 
D0 is the baseline modulus of elasticity, e(x, ?/, 6) is a zero mean stationary Gaussian random 
field. The autocorrelation function of this random field is assumed to be of the form

C*(xu x2\yu V2) = (2.76)

where px and py are the correlation lengths along the x  and y coordinate axes respectively, 
and aa is the standard deviation of the elastic modulus. We use the base-line parameters as 
the length Lx =  lm, width Ly =  0.6m, thickness t  = 3mm, mass density p =  7860kg/m3, 
Poisson ratio p = 0.3 and mean elastic modulus D0 = 2 x 1011 Pa. For the finite element 
discretization, the beam is divided into 32 elements along its length (x  direction) and 18 ele
ments along its width (y direction). Standard 12 degree of freedom Kirchhoff plate elements 
[Petyt, 1998] are used for the finite element modeling. The total number of degrees of free
dom of the plate system after the application of the boundary conditions come to 1,881. The 
correlation length is taken as 1 /5th of the plate dimension along both the x  and y directions, 
thus px =  Lx/ 5 and py = Ly/ 5. The KL series expansion presented in Eqn. (2.11) is trun
cated at 4 terms along the orthogonal coordinate axes and using the tensor product of these 
eigen functions we have a total of 16 random variables to represent the discretized random 
elastic modulus in the spatial domain. Therefore, for this problem we have n = 1881 and 
M  =  16. The vibration response have been obtained for two different values of the standard 
deviation of the random field, aa = {0.05, 0.15}. The external forcing vector is taken to be 
deterministic and having a unit norm.

The dynamic vibration response of the plate under the action of a point load acting at one 
of its free comers is now presented. The response is measured at the node under loading for 
four different values of the random field variability, aa. The frequency range of interest is 
0 — 500 Hz at an interval of 5 Hz. The reduced spectral method simulation and the reduced 
basis direct MCS simulation have been performed with 10,000 random samples.

Figure 2.12(a) shows the mean deformation shape of the plate under a harmonic point 
load of unit amplitude (shown by the arrow) at one of its free ends at the frequency of 300 
Hz. Figure 2.12(b) shows the distribution of the natural frequencies of the plate calculated 
with the deterministic system matrices. The chosen reduced number of eigenvectors (150) 
for the problem is marked in the figure, which approximately covers up to 2,000 Hz, which 
is about 4 times the maximum frequency of the problem (500 Hz). This choice is in line 
with the discussion give in Sec. 2.4.1. Thus the Galerkin method requires the solution of
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a  1 5 0  x 1 5 0  s y s t e m  o f  l in e a r  e q u a t i o n s  in  o r d e r  t o  e v a lu a t e  t h e  c o n s t a n t s  a s s o c i a t e d  w i t h  

t h e  s t o c h a s t i c  b a s i s .  In  c o n t r a s t ,  f o r  t h e  P C  s o l u t i o n  t e c h n i q u e  u s in g  4 th o r d e r  p o l y n o m i a l  

f u n c t i o n s ,  c a l c u l a t i o n s  r e v e a l  th a t  it  i s  n e c e s s a r y  t o  s o l v e  a  9 1 1 3 4 4 5  x 9 1 1 3 4 4 5  d i m e n s i o n a l  

l in e a r  s y s t e m  o f  e q u a t i o n s  in  o r d e r  t o  o b t a in  t h e  u n d e t e r m i n e d  c o e f f i c i e n t s  f o r  e v e r y  f r e q u e n c y  

p o i n t ,  w h i c h  in c u r s  a  s u b s t a n t ia l  c o m p u t a t i o n a l  c o s t .  It m u s t  b e  n o t e d  t h o u g h ,  th a t  t h e  l in e a r  

s y s t e m  o b t a i n e d  a f t e r  o r t h o g o n a l i z i n g  t h e  r e s id u a l  t o  t h e  s t o c h a s t i c  s o l u t i o n  s u b s p a c e  i s  a  l a r g e  

b l o c k  s p a r s e  s y s t e m  a n d  th e  s o l u t i o n  c a n  p o t e n t i a l l y  b e  s p e e d e d  u p  w i t h  i t e r a t iv e  K r y l o v - b a s e d  

l in e a r  s o l v e r s  a n d  a p p r o p r ia t e  p r e c o n d i t io n e r s  [ S a a d ,  2 0 0 3 ] .  I f  t h e  P C  e x p a n s i o n  i s  a p p l i e d  t o  

t h e  d y n a m i c  s y s t e m  in  i t s  m o d a l  c o o r d in a t e s  w i t h  t h e  s o l u t i o n  b e i n g  p r o j e c t e d  o n  t h e  f ir s t  1 5 0  

e i g e n m o d e s ,  t h e n  it  w o u l d  b e  n e c e s s a r y  t o  s o l v e  a  b l o c k  s p a r s e  l in e a r  s y s t e m  o f  d i m e n s i o n  

7 2 6 7 5 0  x 7 2 6 7 5 0 .  H o w e v e r ,  n o w  e a c h  1 5 0  x 1 5 0  b l o c k  o f  t h e  7 2 6 7 5 0 - d i m e n s i o n a l  s p a r s e  

c o e f f i c i e n t  m a t r ix  w o u l d  b e  a  d e n s e  m a t r ix .

io'3
 MCS
 1 si order spectral

2nd order spectral
 3rd order spectral

 4th order spectral
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 1 st order spectra]
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(a) P late deflection  for a a =  0 .05. (b) P late  deflection  fo r cra =  0.1.

F ig u r e  2 .1 3 :  T h e  m e a n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  a  f r e e  c o r n e r  o f  a  K i r c h h o f f - L o v e  

t h in  p la t e  u n d e r  a  u n i t  h a r m o n ic  p o i n t  l o a d .  T h e  r e s p o n s e  i s  o b t a i n e d  w i t h  1 0 , 0 0 0  r a n d o m  

s a m p l e s  a n d  f o r  a a =  { 0 . 0 5 , 0 . 1 0 } .  T h e  r e s p o n s e  f o r  d i f f e r e n t  o r d e r  o f  s p e c t r a l  f u n c t i o n s  

a r e  s h o w n .  F o r  t h i s  p r o b l e m  t h e  d e g r e e s  o f  f r e e d o m  n  =  1 8 8 1  a n d  t h e  n u m b e r  o f  r a n d o m  

v a r ia b le s  M  =  1 6 .  T h e  p r o p o s e d  G a le r k in  a p p r o a c h  n e e d s  s o l u t i o n  o f  a  1 5 0  x 1 5 0  l in e a r  

s y s t e m  o f  e q u a t i o n s .

F ig u r e  2 . 1 3  s h o w s  t h e  f r e q u e n c y  d o m a i n  r e s p o n s e  o f  t h e  m e a n  d e f l e c t i o n  o f  t h e  K ir c h h o f f -  

L o v e  p l a t e  o b t a i n e d  w i t h  d i f f e r e n t  o r d e r s  o f  s p e c t r a l  f u n c t i o n s  ( 1 s t , 2 n d , 3 rd a n d  4 t h ) a n d  

h a s  b e e n  c o m p a r e d  w i t h  t h e  d i r e c t  M C S  r e s u l t s  a n d  t h e  d e t e r m i n i s t i c  s y s t e m  r e s p o n s e .  I t i s  

o b s e r v e d  th a t  t h e  r e s p o n s e  o b t a i n e d  w i t h  t h e  s p e c t r a l  m e t h o d  m a t c h e s  t h e  d i r e c t  M C S  r e s u l t s  

q u i t e  c l o s e l y .  F o r  h i g h e r  v a l u e s  o f  o a w e  f in d  t h e  m e a n  r e s p o n s e  t o  a t t e n u a t e  w i t h  f r e q u e n c y ,  

w h i c h  i s  s i m i la r  t o  t h e  c a s e  o f  b e a m  b e n d i n g  p r o b l e m  in  t h e  p r e v io u s  s e c t i o n .  T h i s  c a n  

b e  a t t r ib u t e d  t o  t h e  f a c t  th a t  a  h ig h  o a i m p l i e s  th a t  t h e  r e s o n a n c e  m o d e s  a r e  q u i t e  s c a t t e r e d  

a r o u n d  t h e  n e i g h b o r h o o d  o f  a  p a r t ic u la r  f r e q u e n c y  a n d  t h e  e x p e c t a t i o n  o p e r a t io n  s m o o t h s  o u t  

t h e  c u r v e .  H e n c e  a t  h i g h e r  f r e q u e n c i e s ,  s o m e  o f  t h e  r e s o n a n c e  m o d e s  w h ic h  f a l l  o u t s i d e  t h e



f r e q u e n c y  r a n g e  o f  i n t e r e s t  o t h e r w i s e ,  m a y  h a v e  s u b s t a n t ia l  c o n t r ib u t io n  in  t h e  r e s p o n s e ,  d u e  

t o  w h i c h  s i g n i f i c a n t l y  la r g e r  n u m b e r  o f  e i g e n  m o d e s  h a v e  b e e n  c h o s e n  th a n  th a t  g u i d e d  b y  t h e  

N y q u i s t  f r e q u e n c y .
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(a) S tandard  deviation  o f  the  response fo r a a =  0 .05. (b) Standard  deviation  o f  the response  for a a = 0 .1 .

F ig u r e  2 .1 4 :  T h e  s t a n d a r d  d e v i a t io n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  a  f r e e  c o r n e r  o f  a

K i r c h h o f f - L o v e  th in  p l a t e  u n d e r  a  u n i t  h a r m o n ic  p o in t  l o a d .  T h e  r e s p o n s e  i s  o b t a i n e d  w i t h  

1 0 , 0 0 0  r a n d o m  s a m p l e s  a n d  f o r  cra =  { 0 . 0 5 ,  0 . 1 0 } .

T h e  p l o t s  in  F ig .  2 . 1 4  s h o w  t h e  s t a n d a r d  d e v i a t io n  o f  th e  s t o c h a s t i c  s y s t e m  r e s p o n s e  o v e r  

t h e  f r e q u e n c y  r a n g e .  O n c e  a g a i n ,  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  p r o d u c e s  a g r e e a b l e  r e s u l t s  

w i t h  t h e  d i r e c t  M C S  s i m u l a t i o n .  T h e  a p p r o x i m a t i o n  o f  t h e  d i f f e r e n t  m o m e n t s  o f  t h e  r e s p o n s e  

w it h  v a r y in g  o r d e r s  o f  t h e  s p e c t r a l  f u n c t i o n s  i s  o f  p a r t ic u la r  in t e r e s t  to  t h i s  s t u d y  a n d  h a s  b e e n  

s t u d i e d  w i t h  t h e  L 2 r e l a t iv e  e r r o r  n o r m  d e s c r ib e d  in  E q n .  ( 2 . 7 4 ) .  T h i s  i s  p r e s e n t e d  la t e r  in  th e  

s e c t i o n .

T h e  r e s u l t s  in  F i g .  2 . 1 3  c o r r e s p o n d  t o  t h e  m e a n  o f  t h e  d i r e c t  r e c e p t a n c e  f u n c t i o n  o f  th e  

v ib r a t in g  s y s t e m  a n d  s h o w s  th a t  t h e  r e s p o n s e  i s  a  c o m b i n a t i o n  o f  a  l a r g e  n u m b e r  o f  v ib r a t io n  

m o d e s .  W e  a l s o  p r e s e n t  t h e  c r o s s - r e c e p t a n c e  r e s u l t s  o f  t h e  p la t e  s y s t e m  h e r e  w h i c h  i s  a  

p h y s i c a l l y  s i g n i f i c a n t  q u a n t i t y  a n d  i n d ic a t e s  t h e  d r iv e  p o i n t  m o b i l i t y  o f  t h e  p la t e .  F ig u r e  2 .1 5  

s h o w s  t h e  f r e q u e n c y  d o m a i n  r e s p o n s e  o f  t h e  a m p l i t u d e  o f  d e f l e c t i o n  o f  t h e  c e n t e r  n o d e  o f  th e  

p la t e  u n d e r  t h e  p o i n t  l o a d  a t  t h e  f r e e  c o r n e r  o f  th e  p la t e  a s  s h o w n  in  F ig .  2 . 1 2 ( a ) .  I t c a n  b e  

s e e n  th a t  t h e  p l o t s  s h o w  a  g o o d  a g r e e m e n t  w i t h  t h e  d i r e c t  M C S  r e s u l t s  a t  a l l  f r e q u e n c i e s  fo r  

b o t h  v a l u e s  o f  s t a n d a r d  d e v i a t io n  o f  t h e  r a n d o m  p a r a m e t e r  a a . F ig u r e  2 . 1 6  s h o w s  t h e  p lo t  

o f  t h e  s t a n d a r d  d e v i a t i o n  o f  t h e  a m p l i t u d e  o f  t h e  r e s p o n s e ,  w h i c h  i s  e x a c t l y  s i m i la r  t o  th e  

d ir e c t  M C S  r e s u l t s .  T h e  a b o v e  r e s u l t s  s h o w  th a t  t h e  s o l u t i o n s  o b t a i n e d  w i t h  t h e  p r o p o s e d  

r e d u c e d  s p e c t r a l  b a s i s  i s  w e l l - s u i t e d  f o r  o b t a i n i n g  t h e  s o l u t i o n  o f  t h e s e  u n c e r t a in  s tr u c tu r a l  

s y s t e m s .  C o m p a r e d  t o  t h e  d i r e c t  M C S  s o l u t i o n  o r  t h e  P C  t e c h n i q u e  ( s h o w n  f o r  t h e  c a n t i l e v e r  

b e a m  p r o b l e m  o n l y )  t h e  c o m p u t a t i o n a l  c o s t  i s  s u b s t a n t i a l l y  l e s s e r ,  s i n c e  o n l y  a  f e w  n u m b e r  

o f  b a s i s  f u n c t i o n s  a r e  r e q u ir e d  t o  c o m p u t e  t h e  s o l u t i o n  v e c t o r .  T h u s  t h e  d i m e n s i o n  o f  th e
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(a) P late  deflection  for a a =  0 .05. (b) P late deflection  for a a =  0.1.

F ig u r e  2 .1 5 :  T h e  f r e q u e n c y  d o m a i n  r e s p o n s e  o f  d e f l e c t i o n  a m p l i t u d e  o f  t h e  n o d e  a t  t h e  c e n t e r  

o f  t h e  K i r c h h o f f - L o v e  t h in  p la t e  u n d e r  a  h a r m o n i c  p o i n t  l o a d  o f  u n i t  a m p l i t u d e  a t  o n e  o f  t h e  

f r e e  c o r n e r s  o f  t h e  p la t e .  T h e  r e s p o n s e  i s  o b t a i n e d  w i t h  1 0 , 0 0 0  r a n d o m  s a m p l e s  a n d  f o r  

<ja =  { 0 . 0 5 ,  0 . 1 0 } .  T h e  r e s p o n s e  f o r  d i f f e r e n t  o r d e r  o f  s p e c t r a l  f u n c t i o n s  i s  s h o w n .

 direct MCS
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(a) P la te  deflection for a a — 0 .05 . (b) P late  deflection  for a a — 0 .1 .

F ig u r e  2 .1 6 :  T h e  s t a n d a r d  d e v i a t io n  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  t h e  n o d e  a t  t h e  c e n t e r  o f  

t h e  K i r c h h o f f - L o v e  t h in  p la t e  u n d e r  a  u n i t  h a r m o n i c  p o i n t  l o a d .  T h e  r e s p o n s e  i s  o b t a i n e d  w i t h  

1 0 ,  0 0 0  r a n d o m  s a m p l e s  a n d  f o r  o a =  { 0 . 0 5 ,  0 . 1 0 } .

l in e a r  s y s t e m  f o r  t h e  G a le r k in  t e c h n i q u e ,  w h i c h  i s  u s e d  f o r  t h e  e v a lu a t io n  o f  t h e  u n k n o w n  

d e t e r m i n i s t i c  c o e f f i c i e n t s ,  i s  a l s o  q u i t e  s m a l l .  I t  i s  f o u n d  th a t  t h e  e s t i m a t e d  s o l u t i o n  c l o s e l y  

m a t c h e s  t h e  d i r e c t  M C S  s o l u t i o n  a t  a l l  f r e q u e n c i e s  ( i n c l u d i n g  t h e  r e s o n a n c e  f r e q u e n c i e s )  f o r  

t h e  c o n s i d e r e d  v a l u e s  o f  v a r ia b i l i t y  o a o f  t h e  s y s t e m  p a r a m e t e r s .  H e n c e  t h e  f r e q u e n c y  a d a p t iv e  

n a t u r e  o f  t h e  s p e c t r a l  f u n c t i o n s  u s e d  t o  a p p r o x i m a t e  t h e  s o l u t i o n  in  t h i s  s t u d y  i s  f o u n d  t o  b e  

q u i t e  u s e f u l  f o r  t h e  s y s t e m s  s t u d i e d  in  t h i s  w o r k .

F ig u r e  2 . 1 7  s h o w s  t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n s  o f  t h e  d e f l e c t i o n  o f  t h e  p l a t e  n o d e  

u n d e r  l o a d i n g  a t  t h e  f r e q u e n c y  o f  3 0 0  H z ,  w h ic h  i s  a  r e s o n a n c e  f r e q u e n c y .  I t i s  o b s e r v e d  th a t
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(a) P robability  density  function  at cra — 0 .05 . (b) P robability  density  function at o a =  0 .1 .

F ig u r e  2 . 1 7 :  T h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  ( p d f )  o f  t h e  d e f l e c t i o n  a m p l i t u d e  o f  t h e  p o in t  

u n d e r  h a r m o n i c  l o a d i n g  a t  t h e  f r e q u e n c y  o f  3 0 0 H z .  T h e  c o r r e la t io n  l e n g t h  o f  t h e  r a n d o m  f i e ld  

d e s c r i b i n g  t h e  b e n d i n g  r ig i d i t y  i s  a s s u m e d  to  b e  f i a =  T / 5  a l o n g  t h e  o r t h o g o n a l  d i r e c t io n s  

o f  l e n g t h  a n d  b r e a d t h .  T h e  r e s p o n s e  i s  o b t a i n e d  u s in g  t h e  G a le r k in  a p p r o a c h  w i t h  1 0 , 0 0 0  

r a n d o m  s a m p l e s  a n d  f o r  a a =  { 0 . 0 5 ,  0 . 1 0 } .

c a n  b e  s e e n  th a t  f o r  a a =  0 . 1 0  t h e  p d f  i s  s p r e a d  o v e r  a  w i d e r  r a n g e  o f  v a l u e s  o f  t h e  d e f l e c t i o n  

w h ic h  i n d ic a t e s  a  h ig h  s t a n d a r d  d e v i a t io n  o f  t h e  s y s t e m  r e s p o n s e .

o
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(a) L 2 erro r w ith 1st o rder spectral functions. (b) L 2 e rror w ith 5 th o rder spectral functions.

F ig u r e  2 .1 8 :  T h e  r e l a t iv e  L 2 e r r o r  o f  t h e  m e a n  d e f l e c t i o n  o f  t h e  K ir c h h o f f - L o v e  t h in  p la t e  

u n d e r  a  u n it  h a r m o n i c  p o i n t  l o a d .  T h e  r e s p o n s e  h a s  b e e n  a p p r o x i m a t e d  w i t h  1 st a n d  5 th  o r d e r  

s p e c t r a l  f u n c t i o n s  a n d  t h e  e r r o r  i s  s t u d i e d  b e f o r e  a n d  a f t e r  t h e  a p p l i c a t io n  o f  t h e  G a le r k in  

s c h e m e .  S i m u l a t i o n s  h a v e  b e e n  p e r f o r m e d  w i t h  1 0 ,  0 0 0  r a n d o m  s a m p l e s  a n d  f o r  s t a n d a r d  

d e v i a t io n  o f  <ja =  0 . 1 0  o f  t h e  r a n d o m  p a r a m e te r .

N o w  w e  l o o k  in t o  t h e  r e l a t iv e  L 2 e r r o r  c h a r a c t e r i s t i c s  d e f in e d  in  E q n .  ( 2 . 7 4 )  t o  u n d e r s t a n d  

t h e  a d v a n t a g e s  o f  u s in g  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  a n d  t h e  e f f e c t  o f  G a le r k in  t y p e  e r r o r
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m i n i m iz a t i o n  o n  t h e  s o l u t i o n  s t a t i s t i c s .  F ig u r e  2 . 1 8  s h o w s  e f f e c t i v e n e s s  o f  u s in g  t h e  G a le r k in  

t e c h n i q u e  in  t e r m s  o f  i m p r o v in g  t h e  t h e  r e l a t iv e  L 2 e r r o r  o f  t h e  m e a n  d e f l e c t i o n  c a l c u l a t e d  

w it h  t h e  I st  a n d  5 th o r d e r  s p e c t r a l  f u n c t i o n s .  T h e s e  c a l c u l a t i o n s  h a v e  b e e n  d o n e  f o r  t h e  h i g h e r  

v a l u e  o f  s t a n d a r d  d e v i a t io n  v a l u e  o a — 0 . 1 0  o f  t h e  p a r a m e t r ic  r a n d o m  f i e l d .  I t  i s  s e e n  th a t  

t h e  G a le r k in  t y p e  e r r o r  m i n i m i z a t i o n  h a s  a  s i g n i f i c a n t  e f f e c t  o n  t h e  s o l u t i o n  a p p r o x i m a t e d  

w it h  t h e  1 st  o r d e r  s p e c t r a l  f u n c t i o n s  a t  a l m o s t  a l l  f r e q u e n c i e s  ( F i g .  2 . 1 8 ( a ) ) .  T h e  l s< o r d e r  

s p e c t r a l  f u n c t i o n  a p p r o x i m a t e s  t h e  r e s p o n s e  w i t h o u t  h a v i n g  a n y  m o d a l  c o u p l i n g  i n v o l v e d  in  

it , in  o t h e r  w o r d s ,  t h e  r e d u c e d  s y s t e m  m a t r i c e s  in  t h e  g e n e r a l i z e d  m o d a l  c o o r d i n a t e s  i s  o n l y  a  

d i a g o n a l  m a t r ix  ( s e e  E q n .  ( 2 . 4 6 )  f o r  m o r e  d e t a i l s ) .  T h u s ,  t h e  G a le r k in  t e c h n i q u e  t a k e s  c a r e  o f  

t h e  c o u p l i n g  c o n d i t i o n s  b y  a d j u s t in g  t h e  v a l u e s  o f  t h e  u n d e t e r m i n e d  c o e f f i c i e n t s  C fc (u ) , k  =  

1 , 2 , . . . ,  n r  w h e r e  n r  i s  t h e  d i m e n s i o n  o f  t h e  r e d u c e d  s y s t e m .  H o w e v e r ,  t h e  s o l u t i o n  o b t a i n e d  

w it h  t h e  6 th o r d e r  s p e c t r a l  f u n c t i o n s ,  g i v e n  in  F ig .  2 . 1 8 ( b ) ,  s h o w s  l i t t l e  e f f e c t  o f  t h e  a p p l i c a t io n  

o f  t h e  G a le r k in  m e t h o d .  T h i s  i n d i c a t e s  th a t  t h e  s o l u t i o n s  h a v e  a l r e a d y  b e e n  a p p r o x i m a t e d  t o  

a  s u f f i c i e n t  d e g r e e  o f  a c c u r a c y  u s in g  t h e  h i g h e r  o r d e r  t e r m s  in  t h e  s p e c t r a l  f u n c t i o n s  a n d  t h e  

m o d a l  c o u p l i n g  o f  t h e  v ib r a t in g  s y s t e m  in  a p p r o x i m a t i n g  t h e  r e s p o n s e  i s  a l r e a d y  q u i t e  h i g h .  

H e n c e  th e  G a le r k in  e r r o r  m i n i m i z a t i o n  h a s  l i t t l e  e f f e c t  in  t e r m s  o f  i m p r o v in g  t h e  s o l u t i o n  

a c c u r a c y .  A l s o ,  it  c a n  b e  s e e n  th a t  t h e  o v e r a l l  r e l a t iv e  e r r o r  l e v e l s  a r e  r e d u c e d  w h e n  w e  

u s e  t h e  6 th o r d e r  s p e c t r a l  f u n c t i o n s  t o  a p p r o x i m a t e  th e  s o l u t i o n ,  e s p e c i a l l y  b e y o n d  t h e  l o w  

f r e q u e n c y  r e g i o n  ( s a y  1 0 0  H z ) .
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(a) L 2 error fo r a a =  0 .05. (b) L 2 e rro r fo r o a =  0 .10.

F ig u r e  2 .1 9 :  T h e  r e l a t iv e  L 2 e r r o r  o f  t h e  m e a n  d e f l e c t i o n  o f  t h e  K i r c h h o f f - L o v e  th in  p l a t e  u n 

d e r  a  u n i t  h a r m o n i c  p o i n t  l o a d  o b t a i n e d  w i t h  2 nd  a n d  6 th o r d e r  s p e c t r a l  f u n c t i o n s .  S i m u l a t i o n s  

h a v e  b e e n  p e r f o r m e d  w i t h  5 , 0 0 0  r a n d o m  s a m p l e s  a n d  f o r  s t a n d a r d  d e v i a t i o n  o f  a a =  0 . 0 5  a n d  

a a =  0 . 1 0  o f  t h e  r a n d o m  p a r a m e te r .

T h e  im p r o v e m e n t  in  t h e  o v e r a l l  r e l a t iv e  L 2 e r r o r  a t  a l l  f r e q u e n c i e s  i s  d e m o n s t r a t e d  in  

F i g .  2 . 1 9 ,  w h i c h  s h o w s  t h e  e r r o r  c a l c u l a t e d  w i t h  t h e  m e a n  d e f l e c t i o n  v a l u e s  o b t a i n e d  w i t h  2 nd 

a n d  6 th o r d e r  s p e c t r a l  f u n c t i o n s  in  c o n j u n c t i o n  w i t h  t h e  G a le r k in  m e t h o d  f o r  d i f f e r e n t  v a l u e s  

o f  v a r ia b i l i t y  o f  t h e  p a r a m e t r ic  r a n d o m n e s s  ( i n d i c a t e d  b y  cra ) .  T h e r e  i s  a  g o o d  i m p r o v e m e n t



in  t h e  r e s u l t s  w i t h  t h e  5 th  o r d e r  f u n c t i o n s ,  e x c e p t  fo r  t h e  l o w  f r e q u e n c y  r e g i o n  ( b e l o w  1 0 0  

H z )  a n d  f o r  l o w  v a l u e  o f  <ja . F o r  a  h i g h e r  v a l u e  o f  s t a n d a r d  d e v i a t io n  o f  t h e  r a n d o m  f i e ld  

(<ra =  0 . 1 0 ) ,  t h e  im p r o v e m e n t  in  r e s u l t s  w i t h  t h e  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  i s  m o r e  th a n  

th a t  f o r  <j a — 0 . 0 5 .  T h u s ,  i m p l i e s  th a t  t h e  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  a r e  m o r e  u s e f u l  f o r  

h ig h  v a l u e s  o f  s t a n d a r d  d e v i a t io n  o f  t h e  r a n d o m  f ie ld .

X X

I
1

Older of Spectral Functions

10“*

Order of Spectral Functions

(a) L 2 erro r at 115 Hz. (b) L 2 e rro r at 310 Hz. (c) L 2 erro r at 480  H z.

F ig u r e  2 .2 0 :  T h e  r e la t iv e  L 2 e r r o r  o f  t h e  m e a n  d e f l e c t i o n  o f  t h e  K i r c h h o f f - L o v e  t h in  p la t e  

u n d e r  a  u n i t  h a r m o n ic  p o i n t  l o a d  w i t h  i n c r e a s i n g  o r d e r  o f  s p e c t r a l  f u n c t i o n s  a t  1 1 0 ,  3 1 5  a n d  

4 8 0  H z .  S i m u l a t i o n s  h a v e  b e e n  p e r f o r m e d  w i t h  1 0 , 0 0 0  r a n d o m  s a m p l e s  a n d  f o r  s t a n d a r d  

d e v i a t io n  o f  a a — { 0 . 0 5 , 0 . 1 0 }  o f  t h e  r a n d o m  p a r a m e te r .

F in a l ly ,  F ig .  2 . 2 0  d e m o n s t r a t e s  t h e  e f f e c t  o f  i n c r e a s i n g  t h e  o r d e r  o f  s p e c t r a l  f u n c t i o n s  o n  

t h e  L 2 r e l a t iv e  e r r o r  o f  t h e  s o l u t i o n .  T h e  b e h a v i o r  i s  s h o w n  a t  p a r t ic u la r  v a l u e s  o f  f r e q u e n c i e s ,  

t o  c l e a r l y  i d e n t i f y  t h e  s o l u t i o n  t r a it s .  T h e  f r e q u e n c i e s  a r e  c h o s e n  s u c h  th a t  t h e  u s e  o f  h i g h e r  

o r d e r  f u n c t i o n s  i m p r o v e  t h e  r e s u l t s  s i g n i f i c a n t l y  a t t h o s e  p o i n t s .  T h e  c u r v e s  s h o w  th a t  th e  

G a le r k in  m e t h o d  h a s  a  s i g n i f i c a n t  r o le  in  r e d u c in g  th e  e r r o r  o f  t h e  s o l u t i o n  o b t a i n e d  w i t h  l sf 

a n d  2 nd  o r d e r  s p e c t r a l  f u n c t i o n s ,  a n d  l i t t l e  e f f e c t  o n  t h o s e  w i t h  h i g h e r  o r d e r s .  I t i s  o b s e r v e d  

a t  a l l  t h e  f r e q u e n c i e s  th a t  a  s i g n i f i c a n t  i m p r o v e m e n t  in  t h e  r e s u l t s  i s  o b t a i n e d  a s  w e  m o v e  

f r o m  t h e  2 nd  t o  t h e  3 rd o r d e r  v a l u e s  w h e n  t h e  G a le r k in  t e c h n i q u e  i s  n o t  b e i n g  u s e d .  T h e  

a p p l i c a t io n  o f  t h e  G a le r k in  e r r o r  m i n i m i z a t i o n  t e c h n i q u e  b r in g s  d o w n  t h e  e r r o r  v a l u e s  c l o s e  

t o  t h o s e  o b t a i n e d  n o r m a l ly  ( w i t h o u t  t h e  G a le r k i n )  w i t h  t h e  h i g h e r  o r d e r  ( 4  a n d  5 )  s p e c t r a l  

f u n c t i o n s .  I t c a n  a l s o  b e  s e e n ,  e s p e c i a l l y  in  F ig .  2 . 2 0 ( c ) ,  th a t  t h e  G a le r k in  t e c h n i q u e  r e d u c e s  

t h e  1 st o r d e r  e r r o r  t o  a  l o w e r  v a l u e  th a n  th a t  w i t h  t h e  s e c o n d  o r d e r  s p e c t r a l  f u n c t i o n .  A l s o ,  

w h i l e  t h e  h i g h e r  o r d e r  f u n c t i o n s  a l m o s t  a l w a y s  p r o v i d e s  a  b e t t e r  s o l u t i o n  a c c u r a c y  y e t ,  th e  

h i g h e r  o r d e r  f u n c t i o n s  m u s t  b e  u s e d  p r u d e n t ly .  A n  i d e n t i f i a b le  t r e n d  o f  t h e  L 2 e r r o r  w i t h  

i n c r e a s i n g  s p e c t r a l  f u n c t i o n  o r d e r  h a s  n o t  b e e n  o b s e r v e d  in  t h e  r e s u l t s  p r e s e n t e d  h e r e ,  a n d  

h e n c e  t h e  e x t e n t  o f  t h i s  k in d  o f  ‘p - r e f i n e m e n t ’ ( b y  i n c r e a s i n g  t h e  o r d e r  o f  s p e c t r a l  f u n c t i o n s )  

m a y  n o t  b e  o b v i o u s .  I n v e s t ig a t i o n  in t o  s o m e  o p t i m a l i t y  c r i t e r io n  w h i c h  c a n  p r o v i d e  s o m e  

a d a p t iv i t y  in  t e r m s  o f  t h e  o p t i m u m  o r d e r  o f  t h e  s p e c t r a l  f u n c t i o n s  a n d  t h e  d i m e n s i o n  o f  th e  

r e d u c e d  m o d a l  s u b s a p c e  o f  t h e  p r o b l e m  w o u l d  b e  q u i t e  h e l p f u l  t o  m i n i m i z e  t h e  c o m p u t a t i o n a l  

c o s t  in  t h e s e  k in d  o f  p r o b l e m s .
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2.7 Summary

We have considered the stochastic partial differential equation for structural dynamic systems 
with generally non-Gaussian random fields. The stochastic system response is resolved us
ing a set of complex frequency-adaptive stochastic weighting functions, called the spectral 
functions. The spectral functions are rational functions of the input random variables and 
depends on the spectral properties of the mass and stiffness matrices. A Galerkin-type error 
minimization approach has been proposed which uses a set of frequency dependent undeter
mined coefficients to orthogonalize the residual to the reduced modal subspace. It has been 
shown that these unknown coefficients can be evaluated using a set of linear algebraic equa
tions whose dimension is much smaller than that of the full finite element system. A hybrid 
analytical-simulation approach is proposed to obtain the statistical properties of the solution 
for different frequencies.

The proposed solution technique has been used to solve two example problems:

• An Euler-Bemoulli cantilever beam with random bending modulus subjected to a har
monic point force on its free end over the frequency range of 0 — 600 Hz. The spatially 
varying random field has been discretized with two zero-mean uncorrelated standard 
Gaussian random variables. The results obtained with the spectral function approach 
is in good agreement with the direct MCS simulation at all frequencies and at all val
ues of input standard deviation oa. However, the PC based solution approach, shows 
discrepancies near the resonance frequencies, even for moderate values of the oa, and 
deteriorates further as the latter increases. The solution obtained with the classical Neu
mann approach has also been presented for the sake of completeness, and it shows that 
near the resonance frequencies, the Neumann series diverges significantly.

•  A Kirchhoff-Love thin plate, with random bending stiffness subjected to a harmonic 
point force loading over the frequency range of 0 — 500 Hz. The random bending 
stiffness has been discretized with 16 random variables and the total number of degrees 
of freedom of the system is 1,881. Once again, the results obtained with the spectral 
function approach is in good agreement with the direct MCS simulation over the entire 
frequency range.

The good agreement between the direct MCS results and the proposed spectral function ap
proach, even near the resonance frequencies and for high values of input standard deviation, 
indicates good convergence behavior of the spectral functions. An explanation of this fact has 
been provided in terms of the use of rational functions of the input random variables. Hence 
the response statistics approximated when using these are accurate even when lower-order 
spectral functions are used.

These results demonstrate the applicability and computational efficacy of the stochastic 
spectral function approach proposed in this work. The classical Neumann expansion is un



suitable for this kind of frequency domain analysis of structural systems because the method 
relies on large convergence radius of the linear system preconditioned with the deterministic 
system matrices, which is not the case for (i) near-resonance frequencies, (ii) low values of 
damping, and (iii) a high standard deviation of the underlying input random field.

In the following chapter we address the issue of improving the computational efficacy 
of the spectral function approach further by hybridizing it with a Bayesian metamodeling 
technique. This can potentially offset the cost incurred when using higher order spectral 
functions to enhance the accuracy of the approximated stochastic response.



Chapter 3

Hybridization of the spectral function 
approach with metamodeling technique

3.1 Introduction

The spectral function approach presented in the previous chapter is found to perform well 
in terms of solution accuracy and computational efficacy with respect to the benchmark so
lutions provided by the MCS technique or the finite order chaos expansion methods. The 
stochastic system response was expressed as a series expansion using the basis functions of a 
left-preconditioned stochastic Krylov space. It gave an accurate prediction of the frequency 
response especially near resonance frequencies when compared to the PCE or the classical 
Neumann expansion technique. However, it is seen in Figs. 2.9-2.10 and Figs. 2.19-2.20, 
the approximation accuracy is enhanced with an increase in the order of spectral functions. 
However, this increased accuracy comes at a computational cost. We have adopted a Bayesian 
metamodeling approach to mitigate this cost.

This metamodeling strategy, known as Gaussian process emulation [O’Hagan, 2006], is 
based on the analysis and design of computer experiments [Sacks et a l , 1989, Santner et al,  
2003] and on the concepts of Bayesian statistics. The non-expensive approximation to the 
output is made after evaluating a small number of points in the input space, hence reducing 
the required computer processing time. After conditioning on these training runs and up
dating a prior distribution, the mean of the resulting posterior distribution approximates the 
output of the simulator at any untried input, whereas it reproduces the known output at each 
design point. Gaussian process emulation has been implemented in various scientific fields 
with encouraging results. These fields include structural dynamics [DiazDelaO and Adhikari, 
2010], multi-scale analysis [Flores et a l , 2012], stochastic finite elements [DiazDelaO and

The work presented in this chapter has been done in collaboration with Dr F. A. Diaz Dela O.

71



Adhikari, 2011], and domain decomposition [DiazDelaO and Adhikari, 2012] among many 
others.

The corrugated skins are of particular importance in many aerospace applications (such as 
morphing aerospace structures) largely due to the high compliance it offers along the corruga
tion direction. For many aerospace applications, complicated structures such as these have in
herent uncertainty in their parametric variables which can not be reduced despite repeated and 
strenuous measurements or expensive simulations. Hence it is required to incorporate these 
uncertainties into the mathematical model and treat them within the framework of stochastic 
finite element analysis.

In the present study we have considered the elastic parameters (such as the bending and 
elastic stiffness) of this panel as random fields. These form the stochastic input space of the 
mathematical model. The effect of this input uncertainty on the stochastic response statistics 
have been analyzed with the spectral function approach in conjunction with the Gaussian 
process emulation. The performance of the proposed hybridized spectral and metamodeling 
approach are compared with direct Monte Carlo simulations, which have been considered as 
the benchmark solution.

3.2 Metamodeling approach

In Eqn. (2.31), it was showed that the response vector t r m' at each frequency step u  is a ap- 
proximated with a finite order rational function of the stochastic variables £(#). In this section, 
we briefly review a metamodeling strategy to cope with the computational cost of obtaining a 
statistical summary of the response. Let f i j ^ ( £ ( 0 ) ,  uj) be the k - t h  component of the response 
vector u (m) evaluated at the design point £(0). If the response vector is evaluated at n de
sign points £(1)(0), . . .  ,£ (n)(0), then a vector = ^ m)($(1) ( 0 ) , uj) , . . .  

is obtained. In order to simplify the notation, we make the dependence on 6 and cu implicit 
and re-express u*.m) as u[m) =  • • •, € Mn.

3.2.1 Bayesian emulation

For an input £ =  ( f i , . . . ,  fp) T, the k - t h  component of the global response calculated by 
Algorithm 1 is a scalar (£). The cost of running the code makes it affordable to evaluate 
only a limited number of design points , . . . ,  when using high order spectral functions. 
The uncertainty about the output that arises due to this cost can be modeled probabilistically. 
To that effect, let the vector of observed outputs be realizations of a Gaussian stochastic 
process. The model structure for a single component of the output vector is thus expressed as

4 m)( 0  =  h ( £ ) T0  +  Z(( ) (3.1)
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where h(£) is a vector of known functions and (3 is an unknown hyperparameter to be esti
mated from the data. The choice of h(£) is an active research area. Some authors such as 
Oakley and O’Hagan [2004], Vernon et a l  [2010] point out that it should be chosen to reflect 
the available information about the functional form of the output, and that whenever possible, 
it is worth investing as much effort as possible modeling this mean function. In this work 
we choose a constant mean and delegate the responsibility of capturing complex relationships 
to the function Z( ). This function is a stochastic process with mean zero and covariance 
function

C o v ( z (S ) ,Z ( £ ) )  = o lC { i , e )  (3.2)

where C(£, £') is a correlation function and is the process variance, a hyperparameter that 
can also be estimated from the data. In order to choose a valid positive-definite correlation 
function, some authors [Sacks etal., 1989] consider products of one-dimensional correlations, 
specifically functions of the form

n  2

<?(£>£ ) = IIexp{ _ bi (& - ^) } (3*3)
i= l

where bi > 0 for all i. This correlation function is infinitely differentiable, which is convenient 
to incorporate derivative information [O’Hagan, 1992]. The vector of smoothness hyperpa
rameters b =  (6i, . . . ,  bn) T quantifies the rate at which the output varies as the input varies. 
Intuitively, the less smooth the output, the more strongly will it respond to small changes in 
the input. The above prior knowledge can be summarized in a prior probability distribution 
of the form

4 m)(S) I p. <?l b  ~  M  ( h ( 0 TP, ^ C (€ , € '))  (3.4)

L e t D  =  {(£(i), 4 m)(€(i)))| * =  1. •••>«} be the set of training runs corresponding to 
the k-th component of the global finite element solution provided by Algorithm 1. Given 
this observed dataset, Bayes’ theorem is used to estimate the hyperparameters [Haylock and 
O’Hagan, 1996, Oakley, 2002]. Once this is done, the prior distribution in Eqn. (3.4) is up
dated and the mean of the resulting posterior distribution approximates the output u ^ O * )  
at any untried input £*, whereas it interpolates the observed output at the design points 

. . . ,  At the same time, the variance of the posterior distribution quantifies the un
certainty that arises from the limited availability of code evaluations [Rougier, 2007] due to 
computational cost. The resulting posterior distribution is of the form

4 m)( 0  |ufcm), (3, o \  ~  M  (ra*(£), a 2z C * ( t ,  O )  (3-5)

where the posterior mean and posterior variance are such that

=  3 +  r(£)TR  -  1(3) (3.6)



C ' &  £') = C (i,  t ' )  -  T t e y R - ' r t f )  (3.7)

In the above expressions, R  G Rnxn with [R] -̂ =  C ( £ ^ , £ ^ ) ;  r(£) G Mn such that r(£) =  
( C ( £ , £ ^ ) , . . . ,  C ' ( £ , £^ ) ) T; and 1 G Mn such that 1 =  ( l , . . . , l ) T. The posterior mean 
ra*(-) provides is a fast approximation of the output for any £ in the input domain.

Since it could be difficult to specify (3 and crf, they can be integrated out in order to obtain 
the posterior distribution of |u^m\  erf. That way, the posterior distribution becomes

4 m)(0 |u * mV z  ~  (3.8)

with

m” (0 = P + r(i)TR-1(4m) -  IP) (3-9)

C * * (£ ,0  =  + ( l  -  r(£ )TR -1l )  ( i t r - ' i ) - ^  -  r ( £ ) TR _1l ) T (3.10)

P =  ( l TR - 1l ) - 1l TR - 1u^m) (3.11)

Finally, erf can also be integrated out in order to obtain

c r ,

where

tn-l (3.12)

u ^ f R - 1 -  R - 1l ( r R - 1l) lT R - i )u i  
a 2 =  i   (3.13)

7 7 , - 2

which is a Student’s t-distribution with n — 1 degrees of freedom.

Algorithm 2 Bayesian emulation

Input: Training runs V  =  { (£^, \i — 1 , . . . , n} % {From Algorithm 1}
Output: Posterior mean m* (£) and posterior covariance C*((, ( ')

1: Obtain the hyperparameters’ posterior distribution 7̂ (13, <jf, h\V)  —

2: Update the prior in Eqn. (3.4) to obtain the posterior (£) |u]j.m\  erf in Eqn. (3.8)
3: Compute m**(£) from Eqn. (3.9) and C**(£, £ )  from Eqn. (3.10) % {Pass to Algo

rithm 3}

3.2.2 Bayesian uncertainty analysis

A finite element code, such as the one considered here, is deterministic. This means that 
if it is run repeatedly at the same input £, it will always return the same output 
However, the inputs we are interested in are physical parameters, the values of which are un
certain. The aim of uncertainty analysis is to propagate the uncertainty in the inputs through
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the code in order to characterize the distribution of the output, which is itself a random vari
able Y. The first stage of the uncertainty analysis is to quantify the uncertainty in the inputs 
by specifying a probability distribution T(£). If the code were not computationally expen
sive, the most straightforward uncertainty analysis would proceed by drawing a large sample 

• • • > } from the input distribution .F(£) and then running the code at each realisa
tion. This would result in an output sample from which any statistic or summary S ( Y )  can 
be estimated. «S(Y) could be the mean, the variance, a particular percentile, or any other 
summary.

A simple way to carry out uncertainty analysis would be to directly replace the code 
with the emulator’s posterior mean ra**(£) in Eq. (3.8). Potentially, this predictive mean 
can be evaluated a large number of times at any untried input at very low cost. However, 
this approach would not incorporate the fact that m**(£) is itself an inexact approximation 
to the output and hence it introduces additional uncertainty. To circumvent this problem, an 
approach proposed in Oakley and O’Hagan [2002], Fricker et al. [2011] is employed and the 
strategy is detailed in Algorithm 3.

Algorithm 3 Uncertainty analysis using a GPE
Input: Posterior mean and posterior covariance C**(£, £ )  % [From Algorithm 2}
Input: Large sample . . . ,  from the input distribution
Output: Summary S ( Y )  of the output distribution Y

1: <3 4— 0
2: Draw a large sample . . . ,  j  from the distribution .F(£)
3: for j = 1 to K  do
4: Draw a random function from the posterior distribution (3.8)
5: Evaluate y {j) (£(1)) , . . . ,  y {j) (£{N))
6: Obtain Sj (Y), the Monte Carlo estimate of S ( Y )
7: S < - S \ J S j { Y )
8: end for
9: Use S  to estimate any summary of the distribution of <S(Y)

For illustration of the complete process, Figure 3.1 shows ten iterations of Algorithm 3 
for a toy model, with £ uniformly distributed in the interval [—5,5]. The training runs are 
generated by a simulator using Algorithm 1, then emulation is performed by Algorithm 2 to 
compute the posterior mean and variance, and finally the uncertainty distribution is generated 
by Algorithm 3.

3.3 Algorithmic complexity

The improvement in efficiency of the proposed hybrid spectral and metamodeling technique 
over the crude Monte Carlo simulation is presented here in light of the algorithmic complexity
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F ig u r e  3 . 1 :  I l lu s t r a t io n  o f  t h e  u n c e r t a in t y  a n a l y s i s :  T h e  p o s t e r i o r  m e a n  ( d o t t e d  c u r v e )  a p p r o x 

i m a t e s  th e  t r u e  o u t p u t  ( s o l i d  c u r v e )  b a s e d  o n  a  f e w  t r a in in g  r u n s  ( c i r c l e s ) .  T h e  c o d e  in p u t s  a r e  

r a n d o m  v a r ia b le s  u n i f o r m l y  d i s t r ib u t e d  a s  £  ~  U ( — 5 ,  5 ) .  T h e  9 5 %  c r e d i b l e  i n t e r v a l s  a r e  a l s o  

s h o w n  ( s h a d e d  a r e a s ) .  N o t e  h o w  t h e  u n c e r t a in t y  in  t h e  t r a in in g  r u n s  i s  z e r o ,  s i n c e  t h e  t r u e  

o u t p u t  i s  k n o w n .  T h e  m e a n  o f  e a c h  r a n d o m  f u n c t i o n  d r a w n  f r o m  t h e  p o s t e r i o r  d i s t r ib u t io n  

r e s u l t s  in  a  r e a l i s a t i o n  o f  t h e  s a m p le  m e a n ,  t h e  d i s t r ib u t io n  o f  w h ic h  c a n  b e  a p p r o x i m a t e d  

( h i s t o g r a m )  a n d  a  s t a t i s t i c a l  s u m m a r y  e s t i m a t e d .

o f  t h e  t w o  m e t h o d s .  T h e  im p r o v e m e n t  i s  d u e  t o  t h e  u s e  o f  f in i t e  o r d e r  s p e c t r a l  f u n c t i o n s ,  a  

r e d u c e d  n u m b e r  o f  o r t h o g o n a l  b a s i s  f u n c t i o n s  in  c o n s t r u c t i n g  t h e  s t o c h a s t i c  s y s t e m  r e s p o n s e  

a n d  s o l v i n g  t h e  r a n d o m  s y s t e m  a t  o n l y  a  f e w  d e s i g n  p o i n t s  in  t h e  s t o c h a s t i c  in p u t  s p a c e .

L e t  n d o f b e  t h e  d i m e n s i o n  o f  t h e  c o m p l e t e  s t o c h a s t i c  f in i t e  e l e m e n t  l in e a r  s y s t e m  a n d  

l e t  N s b e  t h e  n u m b e r  o f  M o n t e  C a r lo  s a m p l e s .  T h e n ,  t h e  to ta l  c o m p u t a t i o n a l  c o m p l e x i t y  a t  

e a c h  f r e q u e n c y  s t e p  i s  A Ts ^ ( n ^ o f ) .  F o r  t h e  s p e c t r a l  m e t h o d ,  th e  c a l c u l a t i o n  o f  v a r io u s  o r 

d e r s  o f  s p e c t r a l  f u n c t i o n s  r e q u ir e s  t h e  e v a lu a t io n  o f  A - 1  (c j ,  £ ( 0 ) )  A (cu, £ ( 0 ) )  in  E q n .  ( 2 . 4 2 ) ,  

w h o s e  c o m p l e x i t y  i s  H e n c e ,  t h e  p th o r d e r  s p e c t r a l  f u n c t i o n  h a s  a  c o m p l e x i t y  o f

( p  — 1 ) 0 ’(n%o { ) .  S u m m i n g  u p  a l l  t h e  c o m p u t a t i o n s  r e q u ir e d  f o r  c a l c u l a t i n g  t h e  r a t h  o r d e r  

s p e c t r a l  f u n c t i o n s  ( a s  s h o w n  in  E q n .  ( 2 . 3 2 ) )  o r  t h e  m - d i m e n s i o n a l  s t o c h a s t i c  K r y l o v  b a s i s  

f u n c t i o n s  a s  in  E q n .  ( 2 . 4 3 ) ,  a n d  g i v e n  t h a t  t h e  s u c c e s s i v e  b a s i s  c a n  b e  o b t a i n e d  r e c u r s i v e l y  

f r o m  th e  p r e v io u s  b a s i s ,  t h e  c o m p u t a t i o n a l  c o m p l e x i t y  i s  7Vs r a < ^ (n ^ o f ) f o r  t h e  s o l u t i o n  o f  

s y s t e m  a t a l l  t h e  N s s a m p le s .  W e  c a n  s e e  th a t  t h e  c a l c u l a t i o n  o f  t h e  f in i t e  o r d e r  s p e c t r a l  f u n c 

t i o n s  i s  a l m o s t  o n e  o r d e r  o f  m a g n i t u d e  l e s s  th a n  th a t  o f  t h e  c r u d e  M o n t e  C a r lo .  H o w e v e r ,  

f o r  m o s t  o f  t h e  l o w  t o  m id  f r e q u e n c y  s t r u c t u r a l  d y n a m ic  p r o b le m s ,  a  g o o d  a p p r o x i m a t i o n  

o f  t h e  v ib r a t io n  r e s p o n s e  i s  o b t a i n e d  b y  c o n s i d e r i n g  o n l y  th e  f ir s t  f e w  e i g e n p a i r s .  I f  w e  

a d o p t  t h i s  r e d u c e d  s y s t e m ,  t h e n  t h e  d i m e n s i o n  o f  t h e  l in e a r  s y s t e m  i s  r e d u c e d  t o  n T w h e r e  

A 0 =  d i a g  [ Ai ,  A 2 , . . . ,  An r ] a n d  <E> =  [ c f ) 1 , 0 2 , . . . ,  0 n ] . T h e  c o m p l e x i t y  i n v o l v e d  in  t h i s  c a s e  

f o r  t h e  c a l c u l a t i o n  o f  t h e  p th  o r d e r  s p e c t r a l  f u n c t i o n  w o u l d  b e  ( p  — 1 H e n c e ,  w h e n
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Method Complexity No. Samples
Crude Monte Carlo N s

Spectral Method N sm&(rir) N s
Spectral Method + Emulation nm@{r\%) +  ^ (n 3) n

Table 3.1: Computational complexity of the proposed hybrid approach against crude Monte 
Carlo for each frequency level. The number of samples is such that n «  N s. The number 
of degrees of freedom is given by ndof. The reduced number of modes is nr. The order of the 
spectral functions, and hence the number of Krylov bases, is given by m.

constructing the system response using m-dimensional stochastic Krylov basis and a reduced 
number of orthogonal eigenmodes, the complexity is given by N sm@(nl), where nr «  ndof. 
In the worst case scenario, if very high degrees of spectral functions are considered, such that 
m  ~  nr, the complexity becomes N s&(rtf).

While the spectral approach is efficient in reducing the complexity of solving the linear 
system at the stochastic points, the metamodel is used to mitigate the cost of solving an ^ (n 3) 
complex system at each one of the N s samples. Hence, n  design points (with n «  N s) are 
chosen using a sampling plan (such as a Latin hypercube) and the stochastic system response 
is calculated to generate training runs. This results in the complexity being reduced further to 
nm@(in%). Given these n training runs, the complexity of emulating the response is ^ (n 3). 
This is due to the linear system solved in Eqn. (3.9) and Eqn. (3.10), where R  6 Rnxn. There
fore, the complexity of the hybrid approach is the sum of the complexity associated with the 
generation of the training runs with the spectral method plus the complexity of the emulator. 
The above discussion is summarized in Table 3.1. The resolution of the eigenvalue problem 
required for the spectral method is done only once in the beginning and is stored and used in 
the subsequent steps of the algorithm. Iterative Krylov subspace methods (like the Amoldi’s 
method or Lanczos algorithm) are employed for this purpose since the system matrices in 
structural dynamic systems are sparse, symmetric and positive definite. The number of it
erations required for the convergence of the required number of eigenpairs is driven by the 
condition number of the system [Saad, 2003]. Also, the determination of the first few eigen
pairs of large sparse finite element systems is amenable to efficient parallelization and has 
been implemented in libraries such as ARPACK [Lehoucq et a l , 1998]. Hence the evaluation 
of the eigenpairs do not enhance the order of computational complexity associated with the 
Spectral method given in Table 3.1.

It is worth mentioning that the cost associated with the estimation of the hyperparameters 
can become prohibitive, especially for a large n. However, if the code that is emulated is 
very expensive, only a few training runs might be available. This might render the cost of 
estimating the hyperparameters relatively negligible [Kolachalama et a l , 2007]. Addition
ally, there are parallel methods available that deal with this problem [Choudhury et al, 2002]. 
Naturally, the problem with having only few training runs undermines the predictive capabil



ity of any metamodel. It is therefore the task of the investigator to keep a balance between 
computational cost and robustness of the metamodel. If the Bayesian metamodel presented 
here becomes non-robust, a possible alternative is the linear Bayes approach [Vernon et al., 
2010]. Rather than calculate a full posterior distribution for the model output, this approach 
assesses just the posterior mean and variance. Additionally, this approach can be combined 
with implausibility measures in order to rapidly exclude areas of the input domain in which 
fits are unlikely to be found.

We give here briefly an estimation of the computational times obtained with the proposed 
method and its comparison with the MCS method. We assume that the FE linear system is of 
dimension 6630 and that the solution with the spectral function approach has been approxi
mated with 4th order spectral functions and 200 eigen modes of the baseline structural system. 
This choice is justified by the fact that the analysis is being carried out within the frequency 
bandwidth of 0-300 Hz and the chosen modes satisfactorily capture the deformation shapes 
within this frequency range. The average time taken for 10,000 sample direct MCS simulation 
at each frequency step using matrix factorization method is found to be «  2.4 x 104s while 
the same for the 4th order spectral method is 374 s (assuming that the eigen modes have been 
precomputed). When the Biconjugate Gradient method is used to take advantage of the sparse 
FE system with an incomplete LU decomposition of the system matrix as the preconditioner 
the computational time for resolving 10000 sample solutions comes down to «  5000s. It is 
to be mentioned that the Biconjugate Gradient solver is optimized to use the BLAS libraries 
for performing parallel matrix-vector operations on 8 computational cores of identical capa
bility. On the other hand, when 125 samples are solved training runs are generated to be used 
as training runs for the emulation, the cost for the 4th order spectral method comes down to 
6s and the cost of emulation is 50s. This shows that the computational efficacy of the pro
posed spectral function method with Bayesian metamodeling is significantly efficient when 
compared with brute force MCS technique with and without sparse solvers.

3.4 Application: Dynamic analysis of a corrugated panel

3.4.1 Stochastic modeling of corrugated panels

Corrugated laminates offer a plausible solution for morphing aircraft skins due to their ex
tremely anisotropic behaviour. The corrugation direction (chordwise direction) offers compli
ance and the spanwise direction (transverse to corrugation) makes the structure much stiffen 
This is particularly suitable for morphing applications which can do away with the need of 
having auxiliary components such as flaps and slats to attain necessary changes in geometry. 
The performance of this corrugated skins are studied here with respect to random fluctuations 
in their elastic properties.
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5mm _  5mm

(a) Sketch  o f  one corrugated  un it (b) M eshed  co rrugated  panel

F ig u r e  3 .2 :  M o d e l  o f  t h e  c o r r u g a t e d  p a n e l  e m p l o y e d  in  t h e  a n a l y s i s ,  ( a )  U n i t  c e l l ;  ( b )  F i n i t e  

e l e m e n t  m o d e l  o f  t h e  c o r r u g a t e d  p a n e l .  T h e  d i m e n s i o n s  a r e : 3 0 0  m m  in  l e n g t h ,  7 5  m m  in  

w i d t h ,  a n d  1 0  m m  in  h e i g h t .

W e  c o n s i d e r  t h e  p r o b l e m  o f  s t r u c t u r a l  v ib r a t io n  o f  a  c o r r u g a t e d  p a n e l  w i t h  r a n d o m  p a 

r a m e t e r s .  C o r r u g a t e d  p a n e l s  a r e  p r o n e  t o  g e o m e t r i c  u n c e r t a in t i e s  ( d u e  t o  m a n u f a c t u r i n g )  o r  

m a t e r ia l  u n c e r t a in t ie s ,  s u c h  a s  a  r a n d o m  b e n d i n g  s t i f f n e s s .  W e  c h o o s e  t h i s  l a s t  e x a m p l e  to  

d e m o n s t r a t e  t h e  e f f e c t i v e n e s s  o f  t h e  h y b r id  s p e c t r a l  a n d  m e t a m o d e l i n g  a p p r o a c h  p r o p o s e d .  

W e  a n a l y z e  a  c o m p o s i t e  c o r r u g a t e d  p a n e l  s i m i la r  t o  t h e  o n e  p r e s e n t e d  in  [ D a y y a n i  e t  a l . , 

2 0 1 2 J . F ig u r e  3 . 2 ( a )  s h o w s  a  s k e t c h  o f  t h e  u n it  c e l l  w i t h  t h e  c o r r e s p o n d i n g  g e o m e t r y .  F i g 

u r e  3 . 2 ( b )  s h o w s  t h e  m e s h e d  g e o m e t r y  o f  t h e  c o r r u g a t e d  p a n e l  th a t  h a s  b e e n  e m p l o y e d  in  t h e  

a n a l y s i s .  T h e  p a n e l ’s  Y o u n g ’s  m o d u l u s  i s  t a k e n  a s  1 6  G P a  a n d  i t s  P o i s s o n ’s  r a t io  a s  0 . 2 2 5 .  

W e  a p p l i e d  t h e  p r o p o s e d  c o m p u t a t i o n a l  a p p r o a c h  t o  t h e  c o r r u g a t e d  p a n e l ,  m o d e l i n g  it  t o  b e  

s i m p l y - s u p p o r t e d  a t  t h e  e n d s  ( p i n n e d  a t  o n e  e n d  a n d  a  r o l l e r  a t  t h e  o t h e r ) .  W e  h a v e  a p p l i e d  

p r o p o r t io n a l  R a y l e i g h  d a m p in g  f o r  t h e  p r e s e n t  a n a l y s i s .  T h e  f r e q u e n c y  r a n g e  o f  in t e r e s t  o f  

t h e  p r o b l e m  i s  0  — 3 0 0 H z .  A s  m e n t i o n e d  a b o v e ,  w e  a s s u m e d  t h e  e l a s t i c  p a r a m e t e r s  s u c h  a s  t h e  

b e n d i n g  s t i f f n e s s  a n d  t h e  a x ia l  s t i f f n e s s  o f  t h e  p l a t e  t o  b e  r a n d o m .  W e  m o d e l  t h e s e  p a r a m e t e r s  

a s  t h e  s t a t io n a r y  G a u s s i a n  r a n d o m  f i e ld

a{r , £ ( 6 ) )  =  a 0 { 1 +  e ( r , f ( 0 ) )  ( 3 . 1 4 )

w h e r e  a  i s  t h e  r a n d o m  p a r a m e t e r  o f  t h e  c o r r u g a t e d  p a n e l ,  r  i s  t h e  l e n g t h  a l o n g  t h e  p h y s i c a l  

d i m e n s i o n s  o f  t h e  c o r r u g a t e d  p a n e l  a n d  e ( r ,  £ ( $ ) )  i s  a  z e r o  m e a n  s t a t io n a r y  G a u s s i a n  r a n d o m  

f i e l d .  It m i g h t  b e  m e n t i o n e d  th a t  t h e  G a u s s i a n  r a n d o m  h e l d  m o d e l ,  s t r i c t ly  s p e a k in g ,  m i g h t  

n o t  b e  a l w a y s  p h y s i c a l l y  m e a n i n g f u l  s i n c e  t h e  e l a s t i c  p a r a m e t e r s  b e i n g  m o d e l e d  a r e  p o s i t i v e .  

H o w e v e r ,  i f  t h e  n u m b e r  o f  K L  e x p a n s i o n  t e r m s  i s  c h o s e n  c a r e f u l l y  t h e n  it  i s  p o s s i b l e  t o  s h o w  

t h a t  t h e  t r u n c a t e d  s t a t i s t i c a l  m o d e l s  a r e  s t r i c t ly  p o s i t i v e  [ P o w e l l  a n d  E l m a n ,  2 0 0 9 ] .  W e  h a v e  

c h o s e n  t h e  b a s e l i n e  i s o t r o p i c  Y o u n g ’s  m o d u l u s  t o  b e  1 6  G P a .  T h e  a u t o c o r r e la t i o n  f u n c t i o n  o f  

t h i s  r a n d o m  h e l d  h a s  b e e n  a s s u m e d  t o  b e  e x p o n e n t i a l .  T h u s  i f  r x r 2 t h e n

C e (  1*1 , r 2 ) =  cre e x p  {  — (|i* i — r 2 | ) / p r ] ( 3 . 1 5 )
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F ig u r e  3 .3 :  F o u r  d i f f e r e n t  e i g e n v e c t o r s  f r o m  t h e  K L  e x p a n s i o n  o f  t h e  r a n d o m  e l a s t i c  p a r a m 

e t e r  f o r  t h e  e x p o n e n t i a l  c o v a r i a n c e  k e r n e l  w i t h  a  c o r r e l a t i o n  l e n g t h  o f  L / 2 ,  w h e r e  L  i s  th e  

d i m e n s i o n  o f  t h e  p h y s i c a l  d o m a i n .  T h e  e i g e n f u n c t i o n s  h a v e  b e e n  p l o t t e d  a s  t h e  o u t - o f - p l a n e  

d i s p l a c e m e n t s  o f  t h e  p a n e l  t o  g r a p h i c a l l y  h i g h l i g h t  t h e ir  n a tu r e .

w h e r e  f i r  i s  t h e  c o r r e l a t i o n  l e n g t h  d e f i n e d  a l o n g  t h e  p h y s i c a l  d i m e n s i o n s  o f  t h e  p a n e l  a n d  a e 

i s  t h e  s t a n d a r d  d e v i a t io n  a s s o c i a t e d  w i t h  t h e  r a n d o m  e l a s t i c  p a r a m e t e r s .  F o r  t h e  f in i t e  e l e m e n t

* * * 1  I
(a) Sam ple 1 (b) Sam ple 2 (c) S am ple 3

(e) S am ple 5 (f) Sam ple 6 (g) Sam ple 7

F ig u r e  3 .4 :  S a m p l e s  o f  t h e  r a n d o m  e l a s t i c  p a r a m e t e r  p l o t t e d  a s  t h e  o u t - o f - p l a n e  d i s p l a c e m e n t  

o f  t h e  c o r r u g a t e d  p a n e l  t o  g r a p h i c a l l y  h i g h l i g h t  t h e ir  n a t u r e .  T h e  c o r r e l a t i o n  l e n g t h  h a s  b e e n  

c h o s e n  a s  L / 2 ,  w h e r e  L  i s  t h e  d i m e n s i o n  o f  t h e  p h y s i c a l  d o m a i n .  T h e  in p u t  s t a n d a r d  d e v i a t io n  

o f  t h e  r a n d o m  f i e l d  i s  0 .1

i
I :
■ r

(d) Sam ple 4 

(h) Sam ple 8

m o d e l ,  t h e  p a n e l  h a s  b e e n  m o d e l e d  w i t h  p la t e  e l e m e n t s  a l l o w i n g  u n i a x ia l  b e n d i n g  d e f o r 

m a t io n  a n d  i n - p l a n e  s t r e t c h i n g  d e f o r m a t i o n .  T h e  c o r r u g a t e d  p a n e l  h a s  b e e n  m e s h e d  w i t h  a  

u n i f o r m  m e s h  d e f i n e d  b y  a  m e s h  p a r a m e t e r  s i z e  o f  h  =  0 . 9 8  m m .  T h e  c o r r e l a t i o n  l e n g t h
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F ig u r e  3 .5 :  ( a )  T h e  d e c a y  o f  t h e  e i g e n v a l u e  s p e c t r u m  o f  t h e  e x p o n e n t i a l  c o v a r i a n c e  k e r n e l  o f  

th e  c o r r u g a t e d  p la t e  f o r  d i f f e r e n t  c o r r e l a t i o n  l e n g t h s  d e f i n e d  a s  t h e  L 2  n o r m , ( b )  T h e  m e a n  

a n d  s t a n d a r d  d e v i a t io n  o f  t h e  F R F  o f  th e  c e n t r e  n o d e  o f  t h e  p l a t e  c a l c u l a t e d  w i t h  t h e  d i f f e r e n t  

o r d e r s  o f  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  w i t h  1 0 , 0 0 0  s t o c h a s t i c  s a m p l e  s i m u l a t i o n s .

u s e d  in  t h e  a u t o c o r r e la t i o n  m o d e l  in  E q n .  ( 3 . 1 5 )  h a s  b e e n  c h o s e n  a s  h a l f  o f  t h e  p r in c ip a l  g e 

o m e t r i c  l e n g t h  o f  t h e  p a n e l .  F ig u r e  3 .3  s h o w s  a  f e w  c h o s e n  e i g e n v e c t o r s  a s s o c i a t e d  w i t h  t h e  

K L  e x p a n s i o n  o f  t h e  c o v a r i a n c e  k e r n e l .  N o t e  th a t  t h e  r a n d o m  e l a s t i c  p a r a m e t e r s  a n d  t h e  K L  

e i g e n m o d e s  a r e  s c a la r  q u a n t i t i e s  o v e r  t h e  s p a t ia l  d o m a i n .  In  o r d e r  t o  f a c i l i t a t e  b e t t e r  g r a p h 

ic a l  r e p r e s e n t a t io n  o f  t h e s e  q u a n t i t i e s ,  t h e y  h a v e  b e e n  p l o t t e d  a s  o u t - o f - p l a n e  ( y - d i r e c t i o n )  

d i s p l a c e m e n t s  o f  t h e  p a n e l .  I t s h o w s  th a t  t h e  h i g h e r  m o d e s  a r e  m o r e  c o m p l i c a t e d  in  s h a p e  

w h ic h  i s  s i m i la r  t o  t h e  b e h a v i o r  o f  h i g h e r  s t r u c t u r a l  v i b r a t io n a l  m o d e s .  H o w e v e r ,  it  m u s t  b e  

n o t e d  th a t  t h e s e  K L  m o d e s  a r e  n o t  t h e  s a m e  a s  t h e  v ib r a t io n a l  m o d e s  o f  t h e  s t r u c tu r a l  f in i t e  

e l e m e n t  s y s t e m .

F ig u r e  3 . 4  p r e s e n t s  t h e  s a m p le  r e a l i z a t i o n  o f  t h e  r a n d o m  f i e l d  c o n s t r u c t e d  w i t h  a  f in i t e  

d i m e n s i o n a l  e x p a n s i o n  ( 2 5  t e r m s  in  t h i s  c a s e )  o f  t h e  c o v a r i a n c e  f u n c t i o n  w i t h  a  s e t  o f  i n d e 

p e n d e n t  i d e n t i c a l l y  d i s t r ib u t e d  ( i id )  G a u s s i a n  r a n d o m  v a r ia b le s .  T h e  r a n d o m  v a r ia b le s  h a v e  

b e e n  s a m p le d  u s in g  a  L a t i n - h y p e r c u b e  d e s i g n  f r o m  t h e  in p u t  s t o c h a s t i c  s p a c e  o f  2 5  r a n d o m  

v a r ia b le s .  T h e  s t a n d a r d  d e v i a t io n  o f  t h e  r a n d o m  f i e l d  i s  t a k e n  t o  b e  0 . 1 .

In  o r d e r  t o  d e c i d e  t h e  n u m b e r  o f  t e r m s  in  t h e  K L  e x p a n s i o n ,  t h e  e i g e n s p e c t r u m  a s s o c i a t e d  

w it h  t h e  e x p o n e n t i a l  c o v a r i a n c e  f u n c t i o n  i s  s h o w n  in  F ig .  3 . 5 ( a )  f o r  t w o  d i f f e r e n t  c o r r e la t io n  

l e n g t h s  L / l  a n d  L / 2  w h e r e  L  i s  t h e  d i m e n s i o n  o f  t h e  p h y s i c a l  d o m a i n  o f  t h e  p r o b l e m .  It  

i s  s e e n  th a t  t h e  e i g e n v a l u e s  d e c a y  m o r e  r a p id ly  f o r  t h e  l a r g e r  c o r r e l a t i o n  l e n g t h s  i n d ic a t in g  

th a t  f e w e r  n u m b e r  o f  K L  m o d e s  c a n  c a p t u r e  m o s t  o f  t h e  v a r ia b i l i t y  o f  t h e  e x p o n e n t i a l  k e r n e l .  

F o r  t h e  s t o c h a s t i c  v ib r a t io n  r e s p o n s e  a n a l y s i s  in  t h e  r e m a in d e r  o f  t h i s  w o r k ,  w e  h a v e  c h o s e n  

th e  c o r r e la t io n  l e n g t h  t o  b e  L / 2  a n d  h e n c e  a p p r o x i m a t e d  t h e  r a n d o m  f i e l d  w i t h  t h e  m o s t  

d o m i n a n t  2 5  m o d e s  o f  t h e  e x p a n s i o n .  T h i s  s e t s  t h e  d i m e n s i o n  o f  th e  in p u t  s t o c h a s t i c  s p a c e  

a n d  2 5  i id  r a n d o m  v a r ia b le s  w e r e  u s e d  t o  r e p r e s e n t  t h e  d i s c r e t i z e d  r a n d o m  e l a s t i c  p a r a m e t e r s



in the spatial domain. The standard deviation of the random held was assumed to be a e =  0.1.

F ig u r e  3 .6 :  M e a n  d e f o r m a t i o n  s h a p e  o f  t h e  r a n d o m ly  p a r a m e t r i z e d  c o r r u g a t e d  p a n e l  a t  2 4  H z  

a n d  2 0 0  H z .  T h e  c o lo r m a p  o f  t h e  i n d iv id u a l  d i s p l a c e m e n t  c o m p o n e n t s  h a v e  b e e n  p l o t t e d  o n  

th e  d e f o r m e d  p a n e l  a t th a t  f r e q u e n c y .

F ig u r e  3 . 5 ( b )  s h o w s  t h e  t y p i c a l  m e a n  a n d  s t a n d a r d  d e v i a t io n  o f  t h e  f r e q u e n c y  r e s p o n s e  

f u n c t i o n  o f  t h e  c e n t e r  n o d e  o f  t h e  c o r r u g a t e d  p a n e l  s u b j e c t e d  t o  u n it  a m p l i t u d e  h a r m o n i c  

o u t - o f - p l a n e  f o r c e  a l o n g  t h e  c e n t e r l i n e  o f  t h e  p la t e  o v e r  a  f r e q u e n c y  r a n g e  o f  0 - 3 0 0  H z  in  

s t e p s  o f  2  H z .  T h e  f o r c i n g  v e c t o r  i s  t a k e n  t o  b e  d e t e r m i n i s t i c  in  n a tu r e .  T h e  p lo t  p r e s e n t s  a  

c o m p a r i s o n  o f  t h e  s e c o n d  o r d e r  s t a t i s t i c s  o f  t h e  s t o c h a s t i c  p a n e l  r e s p o n s e  c a l c u l a t e d  u s in g  t h e  

d i f f e r e n t  o r d e r s  (1 a n d  4 )  o f  s p e c t r a l  f u n c t i o n s  a n d  w i t h  t h e  d i r e c t  M C S .  A  g o o d  a g r e e m e n t  

h a s  b e e n  o b t a i n e d .  T h e s e  r e s p o n s e  s t a t i s t i c s  h a v e  b e e n  o b t a i n e d  w i t h  a  la r g e  s a m p le  s i z e  

( 1 0 , 0 0 0 )  a n d  h e n c e  is  c o m p u t a t i o n a l l y  d e m a n d in g .  T h i s  c o s t  w o u l d  in c r e a s e  fu r t h e r  i f  m o r e  

a c c u r a t e  a p p r o x i m a t i o n s  o f  t h e  s o l u t i o n  a r e  s o u g h t ,  a n d  t h u s  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  

a r e  c o n s i d e r e d .  T o  a l l e v i a t e  t h e  a d d i t io n a l  c o m p u t a t i o n a l  b u r d e n ,  w e  u s e  a  m u c h  s m a l l e r  

s a m p l e  s i z e  a n d  tr e a t  t h e m  a s  t r a in in g  r u n s  u p o n  w h ic h  a n  e m u l a t o r  o f  t h e  r e s p o n s e  i s  b u i l t .

F ig u r e  3 . 6  g i v e s  t h e  m e a n  d e f o r m a t i o n  s h a p e  o f  t h e  c o r r u g a t e d  p a n e l  a t  t w o  d i f f e r e n t  

f r e q u e n c i e s  ( 2 4  H z  a n d  2 0 0  H z )  a n d  p l o t s  t h e  c o lo r m a p  o f  t h e  i n d iv i d u a l  d i s p l a c e m e n t  c o m 

p o n e n t s  o n  t h e  d e f o r m e d  s h a p e .  T h e  h ig h  f r e q u e n c y  d e f o r m a t i o n  s h a p e  s h o w s  t h e  e f f e c t  o f  

i n c r e a s e d  c o n t r ib u t io n  o f  t h e  h i g h e r  o r d e r  s t r u c t u r a l  m o d e s  in  t h e  r e s p o n s e .

A  r ig o r o u s  c o n v e r g e n c e  b e h a v i o r  o f  t h e  r e s p o n s e  c a l c u l a t e d  w i t h  i n c r e a s i n g  o r d e r  o f  s p e c 

tra l f u n c t i o n s  i s  d e m o n s t r a t e d  in  F ig .  3 . 7  w h i c h  s h o w s  t h e  L 2 - r e l a t iv e  e r r o r  n o r m  c u r v e s  a t  

d i f f e r e n t  v a l u e s  o f  f r e q u e n c y .  T h e  L 2 r e l a t iv e  e r r o r  i s  d e f i n e d  a t e a c h  f r e q u e n c y  s t e p

u  f o r  m th  o r d e r  s p e c t r a l  f u n c t i o n s  a s
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F ig u r e  3 .7 :  C o n v e r g e n c e  t r e n d  o f  t h e  r e l a t iv e  e r r o r  d e f i n e d  w i t h  r e s p e c t  t o  t h e  d i r e c t  M C S  

c a l c u l a t i o n s  w i t h  i n c r e a s i n g  o r d e r  o f  s p e c t r a l  f u n c t i o n s  a t d i f f e r e n t  f r e q u e n c y  v a l u e s .

w h e r e  (cu) d e n o t e s  t h e  m e a n  o r  t h e  s t a n d a r d  d e v i a t io n  o f  t h e  r e s p o n s e  v e c t o r  o b t a i n e d  

w i t h  t h e  s p e c t r a l  w e i g h t i n g  f u n c t i o n s  o f  o r d e r  m  a n d  /xMC5 (u;) i s  t h e  m e a n  o r  s t a n d a r d  d e v i 

a t io n  o f  t h e  r e s p o n s e  v e c t o r  c a l c u l a t e d  w i t h  d i r e c t  M C S .  W e  h a v e  s t u d i e d  t h e  c a s e s  f o r  w h ic h  

m  —  1 , . . . ,  4 .  E a c h  o f  F ig .  3 . 7 ( a ) - 3 . 7 ( d )  s h o w s  t w o  s u b - f i g u r e s ,  t o p  a n d  b o t t o m ,  w h i c h  g i v e s ,  

r e s p e c t i v e l y ,  t h e  r e l a t iv e  e r r o r  f o r  t h e  c a l c u l a t e d  m e a n  a n d  s t a n d a r d  d e v i a t i o n  w i t h  t h e  s p e c t r a l  

f u n c t i o n  a p p r o a c h  w i t h  r e s p e c t  t o  t h e  d i r e c t  M C S .  It i s  o b s e r v e d  t h a t  t h e  s o l u t i o n  c o m p u t e d  

w i t h  t h e  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n  a p p r o a c h  p r o v i d e s  a  b e t t e r  a p p r o x i m a t i o n  o f  t h e  d i 

r e c t  M C S  s o l u t i o n .  H o w e v e r ,  t h e  c h o i c e  o f  t h e  s p e c t r a l  f u n c t i o n  o r d e r  i s  c o n s t r a i n e d  b y  t h e  

c o n s i d e r a t i o n  o f  t h e  c o m p u t a t i o n a l  c o s t  a s s o c i a t e d  w i t h  it .

3.4.2 Metamodeling

A s  s h o w n  in  F ig .  3 . 7 ,  t h e  h i g h e r  t h e  o r d e r  o f  t h e  s p e c t r a l  f u n c t i o n s ,  t h e  l o w e r  t h e  r e l a t iv e  

e r r o r  w i t h  r e s p e c t  t o  d i r e c t  M C S .  T h i s ,  h o w e v e r ,  c o m p r o m i s e s  t h e  a d v a n t a g e s  o f  t h e  s p e c t r a l  

a p p r o a c h  d u e  to  a n  i n c r e a s e  in  c o m p u t a t i o n a l  e f f o r t  d i c t a t e d  b y  E q n .  ( 2 . 3 2 )  a n d  a s  p e r  t h e  

d i s c u s s i o n  p r e s e n t e d  in  S e c .  2 . 3 .  In  o r d e r  t o  m i t ig a t e  t h i s  i n c r e a s e  in  c o m p u t a t i o n ,  w e  a v o i d
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F ig u r e  3 .8 :  C o m p a r i s o n  b e t w e e n  e m u l a t e d  a n d  s i m u l a t e d  c d f s  f o r  d i f f e r e n t  f r e q u e n c y  l e v e l s .  

9 5 %  c r e d i b l e  in t e r v a l s  ( s h a d e d  a r e a s )  a r e  s h o w n  f o r  t h e  c d f s .

r u n n in g  a  c o m p l e t e  M C S  a n a l y s i s  a n d  a p p r o x i m a t e  t h e  r e s p o n s e  u ( 9 , u )  w i t h  t h e  B a y e s i a n  

m e t a m o d e l  i n t r o d u c e d  in  S e c .  3 .2 .  G iv e n  o u r  c h o i c e  o f  c o r r e l a t i o n  l e n g t h ,  w e  f o l l o w  t h e  

s u g g e s t i o n  in  [ L o e p p k y  e t  a l . ,  2 0 0 9 ]  a n d  g e n e r a t e  a  s e t  o f  2 5 0  t r a in in g  r u n s  ( c o r r e s p o n d i n g  

t o  t h e  2 5  r a n d o m  v a r ia b le s  in  t h e  K L  e x p a n s i o n ) .  In  t e r m s  o f  A l g o r i t h m  1, f o r  e v e r y  f r e 

q u e n c y  l e v e l  u j ,  a  s a m p le  o f  d e s i g n  p o i n t s  | £ (1\  . . . ,  £ (250) j  i s  g e n e r a t e d  u s in g  a  s p a c e - f i l l i n g  

s t r a t e g y ,  s u c h  a s  a  L a t in  h y p e r c u b e .  E a c h  d e s i g n  p o in t  i s  d r a w n  f r o m  t h e  in p u t  d i s t r ib u t io n  

. T ( £ ) ,  a  m u l t iv a r ia t e  s t a n d a r d  n o r m a l  r a n d o m  v a r ia b le  in  a  2 5 - d i m e n s i o n a l  s p a c e .  T h e  d e s i g n  

p o i n t s  a r e  e v a lu a t e d  a n d  t h e  c o r r e s p o n d i n g  s y s t e m  r e s p o n s e  i s  r e c o n s t r u c t e d .  T h e  r e s u l t in g  

t r a in in g  r u n s  f o r  e a c h  f r e q u e n c y  l e v e l  a r e  o f  t h e  f o r m  u ( £ u \ u ; ) ^  f o r  i  =  1 , . . . ,  2 5 0 .  

O n c e  t h e  t r a in in g  r u n s  a r e  g e n e r a t e d ,  t h e y  a r e  p a s s e d  t o  A l g o r i t h m  2 ,  w h e r e  t h e  p o s t e r i o r  

m e a n  a n d  c o v a r i a n c e  a r e  c o m p u t e d ,  a n d  t h u s  t h e  p o s t e r i o r  d i s t r ib u t io n  in  E q n . ( 3 . 8 )  c a n  b e  

s p e c i f i e d .  A s  m e n t i o n e d  b e f o r e ,  t h e  p o s t e r i o r  m e a n  c a n  b e  u s e d  a s  a n  a p p r o x i m a t i o n  t o  t h e  

s i m u l a t o r ’s  o u t p u t .  F ig u r e  3 .8  e x e m p l i f i e s  t h e  a c c u r a c y  o f  s u c h  a n  a p p r o x i m a t i o n  f o r  s o m e  

f i x e d  f r e q u e n c y  l e v e l s .  In  p a r t ic u la r ,  it  s h o w s  a  c o m p a r i s o n  b e t w e e n  t h e  c u m u l a t i v e  d i s t r i b u 

t io n  f u n c t i o n s  ( c d f s )  g e n e r a t e d  w i t h  1 0 , 0 0 0  M o n t e  C a r lo  s i m u l a t i o n s  a n d  t h e  c d f s  o b t a i n e d  

b y  e m u l a t io n  b a s e d  o n  2 5 0  t r a in in g  r u n s .  T h e  9 5 %  c r e d i b l e  in t e r v a l s  f o r  e m u l a t e d  c d f s  a r e  

a l s o  d i s p l a y e d .  T h e  a d v a n t a g e s  o f  B a y e s i a n  e m u l a t io n  b e c o m e  a p p a r e n t :  w h i l e  e v e r y  M C S  

r u n  i s  i n d e p e n d e n t ,  B a y e s i a n  e m u l a t io n  t a k e s  a d v a n t a g e  o f  th e  in f o r m a t io n  th a t  e a c h  d e s i g n  

p o i n t  c o n t a i n s  a b o u t  t h e  n e a r e s t  d e s i g n  p o i n t s .  T h i s  i n f o r m a t io n  i s  c o n t a i n e d  in  t h e  c o v a r i 

a n c e  s t r u c t u r e  in  E q n .  ( 3 .2 ) .  I t s h o u l d  b e  m e n t i o n e d  th a t  t h e  a p p r o x i m a t i o n  o f  t h e  c d f  i s  n o t  

v e r y  a c c u r a t e  e s p e c i a l l y  n e a r  t h e  t a i l s  in  F ig s .  3 . 8 ( a )  a n d  3 . 8 ( c )  w h ic h  c o r r e s p o n d s  t o  t w o  

r e s o n a n c e  f r e q u e n c i e s  ( a s  c a n  b e  v e r i f i e d  f r o m  F ig .  3 . 5 ( b ) ) .  W h i l e  t h i s  a p p r o x i m a t e s  t h e  s e c 

o n d  o r d e r  r e s p o n s e  s t a t i s t i c s  a t  t h e s e  f r e q u e n c i e s  w i t h  s a t i s f a c t o r y  a c c u r a c y  ( a s  s e e n  la t e r  in  

F i g .  3 . 1 0 )  t h e  p r e d i c t i o n  o f  h i g h e r  o r d e r  m o m e n t s  w o u ld  b e  in a c c u r a t e .  T h i s  i n d ic a t e s  t h e  l a c k  

o f  k n o w l e d g e  d u e  t o  t h e  l im i t e d  n u m b e r  o f  t r a in in g  d a t a  a n d  m o r e  d a t a  i s  n e e d e d  t o  i m p r o v e  

t h i s  a p p r o x i m a t i o n .

O n c e  t h e  p o s t e r i o r  d i s t r ib u t io n  h a s  b e e n  c o m p u t e d  u s in g  A l g o r i t h m  2 ,  a n y  s t a t i s t i c a l  s u m 

m a r y  o f  th e  o u t p u t  d i s t r ib u t io n  c a n  b e  e s t i m a t e d  b y  A l g o r i t h m  3 . A  la r g e  s a m p le  i s  d r a w n
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f r o m  t h e  in p u t  d i s t r ib u t i i o n  . F ( £ )  a n d  s a m p l e s  g e n e r a t e d  f r o m  t h e  p o s t e r i o r  d i s t r ib u t io n  a r e  

u s e d  t o  e s t i m a t e  t h e  s u m m a r y .  T h e  p r o c e s s  is  i l lu s t r a t e d  in  F ig .  3 .9 ,  w h e r e  s a m p l e s  o f  in 

c r e a s i n g  s i z e  a r e  d r a w n  f r o m  t h e  p o s t e r i o r  d i s t r ib u t io n  in  o r d e r  t o  e s t i m a t e  t h e  m e a n  o f  t h e  

o u t p u t  d i s t r ib u t io n .  T h e  p r e d i c t i o n  i s  c o n t r a s t e d  w i t h  1 0 , 0 0 0  M o n t e  C a r lo  s a m p l e s .  I t c a n  

b e  s e e n  h o w  t h e  v a r ia n c e  o f  t h e  s a m p l e  m e a n  e s t i m a t e d  v i a  B a y e s i a n  e m u l a t io n  i s  r e d u c e d .  

N o t e  h o w e v e r  th a t  t h i s  v a r ia n c e  w i l l  a l w a y s  b e  g r e a t e r  th a n  t h e  M o n t e  C a r lo  v a r ia n c e ,  s i n c e  

t h e  e m u l a t o r  i s  b u i l t  u p o n  a  f in i t e  n u m b e r  o f  t r a in in g  r u n s ,  a n d  t h e r e  w i l l  a l w a y s  b e  a  l a c k  

o f  i n f o r m a t io n  d u e  to  t h i s  s m a l l e r  s e t  o f  s i m u l a t o r  e v a lu a t io n s .  I t i s  t h e r e f o r e  im p o r t a n t  t o  

u n d e r s t a n d  th a t  o u r  u n c e r t a in t y  a b o u t  t h e  m e a n  i s  n o t  d u e  t o  M o n t e  C a r lo  e r r o r , b u t  d u e  t o  

la c k  o f  i n f o r m a t io n  d u e  t o  t h e  c o m p u t a t i o n a l  c o s t  o f  t h e  s im u la t o r .

x 107x 107
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• E m ulated

’Sim ula ted 
•E m ulated .

5.35
x 10"* x lC f6

(a) N  =  1000 (b) N  =  5000 (c) N  =  10000

F ig u r e  3 .9 :  S i m u l a t e d  v s  e m u l a t e d  m e a n  o f  t h e  s a m p le  d i s t r ib u t io n .  A s  t h e  n u m b e r  o f  r a n d o m  

f u n c t i o n s  g e n e r a t e d  w i t h  A l g o r i t h m  3  i n c r e a s e s ,  t h e  v a r ia n c e  o f  t h e  s a m p l e  m e a n  d e c r e a s e s .  

T h i s  m e a n s  th a t  u n c e r t a in t y  a b o u t  t h e  s a m p le  m e a n  r e s u l t s  f r o m  t h e  la c k  o f  i n f o r m a t io n  d u e  

t o  t h e  c o m p u t a t i o n a l  c o s t  o f  t h e  o r ig i n a l  s im u la t o r .

T h e  a n a l y s i s  d e s c r ib e d  a b o v e  w a s  r e p e a t e d  a c r o s s  t h e  e n t i r e  f r e q u e n c y  r a n g e  o f  0 - 3 0 0 H z .  

F o r  e v e r y  f r e q u e n c y  l e v e l  uj, t h e  B a y e s i a n  u n c e r t a in t y  a n a l y s i s  w a s  p e r f o r m e d  a n d  s t a t i s t i c s  

o f  t h e  F R F  w e r e  o b t a i n e d .  F ig u r e  3 . 1 0  s h o w s  t h e  e m u l a t e d  m e a n  a n d  s t a n d a r d  d e v i a t io n  o f  

t h e  F R F .

3.5 Sum m ary

T h e  h y b r i d iz a t io n  o f  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h  w i t h  t h e  G a u s s i a n  p r o c e s s  e m u l a t io n  h a s  

b e e n  s t u d i e d  in  t h i s  c h a p t e r .  T h e  s t o c h a s t i c  s y s t e m  r e s p o n s e  h a s  b e e n  e v a lu a t e d  w i t h  a  h y b r id  

s p e c t r a l  a n d  m e t a m o d e l i n g  a p p r o a c h  w h i c h  p r o v i d e s  a  c o m p u t a t i o n a l l y  e f f i c i e n t  s c h e m e  o f  

t h e  e v a lu a t io n  o f  t h e  p r o b a b i l i t y  d i s t r i b u t i o n s  o f  t h e  r e s p o n s e  v a r ia b le s .  In  t h e  f ir s t  s t e p ,  t h e  

s y s t e m  r e s p o n s e  i s  r e s o l v e d  a t  r a n d o m  p o i n t s  in  t h e  s t o c h a s t i c  in p u t  s p a c e  u s in g  t h e  s p e c t r a l  

f u n c t i o n  a p p r o a c h  w h ic h  r e l i e s  o n  p r o j e c t i o n  o f  t h e  s o l u t i o n  o n t o  a  r e d u c e d  s p a c e  o f  s t r u c 

t u r a l  m o d e s  o f  t h e  v ib r a t in g  s y s t e m  a n d  a  s e t  o f  s t o c h a s t i c  s p e c t r a l  w e i g h t i n g  f u n c t i o n s .  T h e n  

th e  e v a lu a t e d  r e s p o n s e  a t  t h e s e  r a n d o m  s a m p l e s  p r o v i d e  t r a in in g  r u n s  w h ic h  a r e  u s e d  b y  a
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F ig u r e  3 . 1 0 :  E m u l a t i o n  a n d  s i m u l a t i o n  o f  t h e  m e a n  f r e q u e n c y  r e s p o n s e  ( a )  a n d  s t a n d a r d  d e v i 

a t io n  o f  t h e  f r e q u e n c y  r e s p o n s e  ( b ) .  T h e  s i m u l a t i o n  w a s  p e r f o r m e d  f o r  e v e r y  f r e q u e n c y  l e v e l  

in  t h e  in p u t  d o m a i n ,  b a s e d  o n  1 0 , 0 0 0  s a m p l e s .  O n l y  2 5 0  s a m p l e s  w e r e  n e c e s s a r y  t o  e m u l a t e  

t h e  s t a t i s t i c s  o f  t h e  f r e q u e n c y  r e s p o n s e  a t  a  c o m p a r a b l e  a c c u r a c y .

B a y e s i a n  m e t a m o d e l ,  w h ic h  e m u l a t e s  t h e  s y s t e m  r e s p o n s e  in  o r d e r  t o  e s t i m a t e  t h e  u n c e r 

t a in t y  d i s t r ib u t io n  a n d  d e r iv e  r e s p o n s e  s t a t i s t i c s  a c r o s s  t h e  f r e q u e n c y  r a n g e .  T h e  p r in c ip a l  

c o n t r ib u t i o n s  o f  t h e  w o r k  p r e s e n t e d  h e r e  c a n  b e  s u m m a r i z e d  a s  f o l l o w s :

•  T h e  s p e c t r a l  f u n c t i o n s  h y b r i d iz e d  w i t h  a  B a y e s i a n  m e t a m o d e l i n g  s c h e m e  g i v e s  a  m o r e  

e f f i c i e n t  s o l u t i o n  a lg o r i t h m  c o m p a r e d  t o  t h e  c r u d e  M o n t e  C a r lo  s i m u l a t i o n .

•  A  B a y e s i a n  e m u l a t o r  h a s  b e  u s e d  t o  r e d u c e  t h e  c o s t  a s s o c i a t e d  w i t h  a n  i n c r e a s i n g  o r d e r  

o f  s p e c t r a l  f u n c t i o n s  w h ic h  p r o d u c e s  a  b e t t e r  a p p r o x i m a t i o n  o f  t h e  s o l u t i o n .  S a m p l e s  

d r a w n  f r o m  t h e  p o s t e r i o r  d i s t r ib u t io n  h a s  b e e n  u s e d  t o  p e r f o r m  u n c e r t a in t y  a n a l y s i s  o f  

t h e  r e s p o n s e .

•  A  c o r r u g a t e d  p a n e l  w i t h  r a n d o m  e l a s t i c  p a r a m e t e r s  h a s  b e e n  a n a l y z e d  w i t h  t h e  p r o p o s e d  

a p p r o a c h .  T h i s  m i g h t  c o n t r ib u t e  t o  t h e  u n d e r s t a n d in g  o f  t h e  d y n a m i c  b e h a v i o r  o f  t h i s  

t y p e  o f  s t r u c t u r e  a n d  t h e ir  u s e  in  f u t u r e  a p p l i c a t io n s  o f  m o r p h i n g  a ir c r a f t .

•  T h e  s e c o n d  o r d e r  s t a t i s t i c s  o f  t h e  f r e q u e n c y  r e s p o n s e  f u n c t i o n s  o b t a i n e d  w i t h  t h e  h y b r id  

s p e c t r a l  f u n c t i o n  a n d  m e t a m o d e l i n g  a p p r o a c h  i s  in  g o o d  a g r e e m e n t  w i t h  t h e  d i r e c t  M C S  

s o l u t i o n s  e v e n  n e a r  t h e  r e s o n a n c e  f r e q u e n c i e s .

T h e s e  r e s u l t s  d e m o n s t r a t e  t h e  a p p l i c a b i l i t y  a n d  c o m p u t a t i o n a l  e f f i c a c y  a t t a in e d  w i t h  t h e  h y 

b r id  s p e c t r a l  f u n c t i o n  a p p r o a c h  in  c o n j u n c t i o n  w i t h  t h e  B a y e s i a n  e m u l a t i o n  a n d  h a s  b e e n  

d e m o n s t r a t e d  w i t h  n u m e r ic a l  e x a m p l e s .  T h i s  a p p r o a c h  i s  f o u n d  t o  b e  e s p e c i a l l y  s u i t a b l e  w h e n  

h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  a r e  u s e d  t o  a p p r o x i m a t e  t h e  s t o c h a s t i c  r e s p o n s e  q u a n t i t i e s .

U n t i l  h e r e ,  w e  h a v e  d e a l t  w i t h  a p p r o x i m a t i n g  t h e  f r e q u e n c y  d o m a i n  r e s p o n s e  o f  t h e  

s t o c h a s t i c  s t r u c t u r a l  d y n a m ic  s y s t e m s  u s in g  r e d u c e d  o r d e r  u n c e r t a in t y  p r o p a g a t i o n  m e t h o d s .
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In the following chapter we extend the concept of the spectral functions to study the transient 
response of stochastic structural dynamic systems under impulse loading. The time domain 
response of this structural system has also been compared to the polynomial chaos approach 
used in conjunction with an implicit time integration technique.





Chapter 4

Transient response of stochastic 
structural dynamic systems

ii
|

| 4.1 Introduction

The previous chapters were devoted to the frequency response of randomly parametrized 
structural dynamic systems under the action of harmonic external loads. In the present chapter 
we concentrate on obtaining the transient or unsteady response of such randomly parametrized 
systems. The concept of stochastic spectral functions developed in the previous chapters is 
extended to the case of resolution of transient response of stochastic structural dynamic sys
tems under the action of time varying forcing function. The solution is approximated in a 
stochastic subspace using spectral functions of different orders which are highly non-linear 
functions of the input random variables. The statistical properties of the response quantities 
changes with time and we investigate the time evolution of this uncertainty propagation with

\
| different solution techniques considered herein. The objective here is to tackle the problem
t of the growing dimensionality of the classical spectral Galerkin approach for long time inte-
[
| gration with an alternative formulation of the spectral function approach.

| The time integration required for the resolution of the transient stochastic response has
I been performed with the unconditionally stable single-step implicit Newmark scheme using a
[
! stochastic integration operator. A semi-statistical hybrid analytical and simulation based com-
I

putational approach has been utilized to obtain the moments and probability density functions 
j  of the solution. The simulations have been performed for different degrees of variability of
i the input randomness and different dimensions of the input stochastic space and compared
1

with the direct Monte Carlo simulations for accuracy and computational efficiency.

We begin by considering a damped structural dynamic system with stochastic parameters, 
defined on domain subjected to an externally applied force excitation p varying with time 
t. The force equilibrium condition gives the following stochastic partial differential equation

89



(SPDE)
d2u du

P~dt? +  77~dt +  d w (a<*\u)) = P on (4^ )

with the associated Dirichlet boundary condition

u = 0; on d@. (4.2)

where cra (u) is the stress related to the displacement field u = {u : u( r, t\Q) E @ x T  x 0}, p 
is the mass density, and p is the external volume force density varying with time t £ T  —>• R.

is the damping operator, with 77 as the damping parameter, and it can be used to represent 
different damping models such as the strain rate dependent viscous damping or the velocity 
dependent viscous damping. Also @ £ Rd is a bounded domain with piecewise Lipschitz 
boundary d@, where d < 3 is the spatial dimension and T  £ R+ is the time. (0 , «^, P) is 
the probability space where 6 £ 0  is a sample point from the sampling space 0 , &  is the 
associated Borel cr-algebra and P  is the image probability measure. The constitutive equations 
relating the stress field to the displacement u is given as

Ga{v) =  a(r, 6 ) : e(u)

where a  is the Hooke’s elasticity tensor and is a second order, stationary, square integrable 
random field such that a : IT* x 0 - > R .  Depending on the physical problem the random field 
a(r, 6) can be used to model different physical systems. Here p denotes the time dependent 
deterministic excitation field for which the solution u is sought in the time domain.

This chapter is organized as follows: The next section gives the details of the FE treatment 
of the SPDE in time domain with a brief description of the stochastic system matrices. Fol
lowing this the details of the solution techniques of the discretized stochastic FE system using 
the spectral function method in the stochastic subspace is given. In the section following it 
the numerical implementation of the proposed solution technique for the case of a cantilever 
Euler-Bemoulli beam under an impulse load is discussed. This section includes a compar
ison of the time domain response of the beam using different solution techniques such as 
the direct MCS, the proposed spectral function approach and the 4th order polynomial chaos 
(PC) approach, which demonstrates the accuracy and computational efficacy of the proposed 
methodology. A detailed discussion of a-posteriori error analysis and the behavior of the 
autocorrelation function has also been included. Section 4.5 lists the significant conclusions 
which can be reached from this study.
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4.2 Brief overview of SFEM for transient structural dynamic
systems

The parametric uncertainty is modeled as a random field based on the input probability dis
tribution function and a covariance function describing the variation of the random field in 
the spatial domain. A truncated representation of the random field in a finite dimensional 
stochastic space is utilized in the mathematical models. The random field is modeled with a 
finite number of random variables along the dominant spectral components of the covariance 
function as given in Sec. 2.2.1. We briefly recount that the random parameter a(r, 9) : @ x © 
in the truncated spectral representation takes the form of

m
a(r, 6) =  a0(r) +  ^  v^&(0)<p*( r), (4.3)

i = 1

where ao(r) =  E [a(r, 6)} is the mean of the stochastic parameter and &(0) are mutually un
correlated random variables with zero mean (E [&(0)] — 0) and unit variance (E [&(0)2] =  1). 
In addition, i/* and ^ ( r )  are eigenvalues and eigenfunctions satisfying the integral equation 
in (2.6). For Gaussian random fields, the &(0) are uncorrelated Gaussian random variables 
by virtue of the property of Gaussian variables.

Alternatively, when a(r, 0) is a non-Gaussian random field, it can be expressed in a mean- 
square convergent series using the Wiener-Askey chaos expansion scheme [Xiu and Kami- 
adakis, 2002, 2003b]. The formulation presented here is applicable to this kind of general 
decomposition of the random field. For the numerical implementation of the above method, 
the probabilistic content of the problem is represented using a finite set of random variables 
£ =  (£i> £2 , • • •, £m) : © -► Thus the stochastic problem can be equivalently formulated 
on the finite dimensional probability space (0^m\  where =  Range(£) is
a subset of Rm, is the associated Borel o-algebra and is the image probability
measure.

4.2.1 Finite elements for the transient response of uncertain structures

The FE treatment of the governing SPDE involves spatial discretization of the continuum 
@ E into domains with polygonal boundaries Q>h where h is the mesh space parameter. 
Also, it’s known from the Doob-Dynkin lemma [Bobrowski, 2005] that for the parametrized 
equation in Eqn. (4.1) where the input randomness is expressed in terms of a finite dimen
sional vector ((9) (as in (4.3)), the solution can be expressed entirely in terms of the same 
random variables. Thus the solution of the discretized FE system lies in the Hilbert space 

x T  x 0 ). This space can be expressed in a separable form with the Hilbert spaces 
and such that ~  ® Now, and can be chosen to have different



forms and the solution separable spaces vary accordingly. We take the FE shape functions 
to lie in L 2(@h) space. Strictly speaking, the space of these ansatz functions are governed 
by the continuity requirement of the field over the element domain; for e.g. if symmetric 
bilinear forms are obtained from applying the variational principle to elliptic differential op
erators of order 2k (and with Dirichlet boundary conditions), then these trial functions lie 
in the Hilbert space Hq c  L2(@h) and are -continuous within the element domain. The 
principle of virtual work is utilized to arrive at the discretized set of linear algebraic equations 
from Eqn. (4.1). For the virtual displacements, we choose a set of stochastic kinematically 
admissible displacement functions v(-\0) satisfying the boundary condition v(-\0)\ds = 0  

and which have finite strain energy on the spatial domain lying in E(S>) C L 2{@). Thus,
o

denoting the set of all such functions by E(@) we have

E(@) = {v(--6) : v ( - - e ) e E ( @ ) ,  and <;(•; 0)\d9 = 0}. (4.4)

Thus, from the principle of virtual work

C f d2u du ) °
J  V : \ P~dE +  ^ v~dt +  d i v (aa(u } j dr e  (4-5)

We apply the Green-Gauss theorem to the above equation and noting that the initial strain and 
that the boundary integral terms are set to zero we can define the bilinear form 38 (u, v\ 9) and 
the linear form <^(v, 9) such that

SS(u, v\ 6) =  f £(v ) : a(r>0) '■ e(u)dr + J  p(r, 0)v ■ +  J  v ■ £„(r,s) ̂ d r  (4.6)

J f ( v ; 6) = [  v p d r  (4.7)

  o o
The FE approximation of the admissible function space E(@) can be written as E{3#)n C
o
E(@) such that un =  Y l l  #)> ui £ Hence using this discrete form of un €

E(@)n in Eqns. (4.6) and (4.7) we have

38(un, vn\ 9) = & { y n-9) V vn e  E { 9 ) n. (4.8)

Denoting the nodal components of the displacement field as u(t; 9) = [u\{t\9) , . . .  ,u n(t; 9)]T e  
Rn, we have the FE system of equations from Eqn. (4.8) as
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where the Ai(9) denote the system matrices (stiffness, damping, mass for i=0,l,2 respectively) 
and u j ( t ;  9) denote the i th time derivative of the displacement field. The system matrices in
herit the randomness of the input stochastic parameters and hence the stochastic linear system 
for structural dynamics takes the form of

M(0)ii(i; 9) +  C(0)u(£; 0) +  K(0)u(t; 9) = p (t) (4.10)

where M(0), C(0) and K(0) are the random mass, damping and stiffness matrices respec
tively, u (i; 9) and its dotted variants are the system response vector and its time derivatives 
respectively, and p (t) is the deterministic forcing vector. Following from the discretized spec
tral representation of the random field in Eqn. (4.3) and the bilinear form in Eqn. (4.6), the 
system matrices can be expanded in terms of the functions of the input random variables as

pi pi
M(0) =  M 0 +  ^  € Rnxn and K(0) =  Ko +  J 2  ^ ( ^ K j  € Rnx" (4.11)

i = l  i = 1

Here the mass and stiffness matrices have been expressed in terms of their deterministic com
ponents (M0 and Kq) and the corresponding random contributions (M» and K*) obtained from 
discretizing the mass and stiffness parameters with finite number of random variables (ih(0) 
and Vi{9)). The total number of random variables utilized to represent the stochastic system 
matrices is M  = pi + p 2- For most cases the damping parameter is expressed as linear combi
nation of the mass matrix and the system stiffness matrix which is the ‘proportional damping 
model’ and this has been adopted in the present work.

4.3 Solution technique

The solution of the stochastic system response ii(£; 9) in Eqn. (4.10) is sought in the space 
L2(©; T  x Rn), which is the space of real-valued square integrable functions defined on the 
probability space (0 , P). The nature and characteristics of this function space will be
explored later in more detail in Sec. 4.3.2. A direct time integration scheme is introduced at 
first to transform the Eqn. (4.10) to a set of linear algebraic equations which is to be solved 
at each time step. The solution of this system can then be written to exist in L2 (0; Mn x t) 
where t  £  denotes the dependence of the FE solution vector on the time t.

4.3.1 Time integration technique

The time-domain response of the stochastic linear system in Eqn. (4.10) necessitates a time 
integration scheme. This is achieved using different time-stepping techniques which may be 
implicit or explicit in nature (based on how the response quantities depend on those obtained



at the previous steps). Here we employ an implicit direct integration operator and describe 
the solution methodology for the linear stochastic systems obtained with such an approach.

Let us introduce the direct integration operators A 1 and A 0 which depend on the system 
matrices but independent of the response quantities. The system equation can be generally 
written in terms of this operator as

A iu(£s+i) =  p ( t s+1) +  A 0u(*a, t a_ i , . . . )  (4.12)

where the integration operators transform the system response at the earlier time steps t s , t s- 1 , . 

to the response at t s+1. The quantities u ( t s+i)  and u ( ta, f s_ i , . . .) are defined as follows:

u ( * a+i )  =  (u (£ s + i ) ; u ( £ a+i ) ; u ( £ s+ i ) )  ( 4 . 13 )

u ( * a, t s- 1 , . . . )  =  ( { u ( f s ); u ( t8) \ i i ( t a)};  { u (ts_ i ) \ u ( t a_ i ) ;  i i ( V i ) } ; . . . )  •

For single-step schemes, the response at t 3+1 depends only on the previous time step t s. When 
the operators A i and Ao can be written in upper or lower triangular form (in the block sense), 
it becomes an explicit time-integration scheme. The stability and convergence behavior of the 
time-integration scheme is discussed later in this section.

For the case of stochastic linear systems, the system matrices inherit the parametric ran
domness and hence themselves are random in nature. This leads to the integration opera
tors A i and A 0 in to being random in nature. The integration operators are linear combi
nations of the system matrices and hence can be expressed as the polynomial series of ran
dom variables as in Eqns. (4.8) and (4.9) such that the series expansion takes the form of 
Ai(0) =  E [Ai(0)] +  (fij(xi)(Ai)i where (Ai)* denotes the perturbation components of 
the integration operator associated with the random variables Pj{xi) (see Eqn. (2.12)) which 
inherits the input randomness.

For the present case we have used the Newmark generalized acceleration operator [Bathe, 
1996, Hahn, 1991] which gives an unconditionally stable time integration scheme. Other such 
methods include the Wilson Averaging operator and the Houbolt operator [Nickel, 1971], both 
of which offers unconditional stability. The integration operators for the stochastic dynamic 
case for the Newmark method are of the following form

ooM(0) +  aiC(0) +  K(0) 0 0  ' f Ut+At P t + A t

0 1 —aj \  Ut+A* > = 0

—ao 0 1 t  Ut+At, 0

a<>M(0) +  aiC(0) a 2M (6») +  a4C(0) a3M(0) +  a5C(0)"
f U*—ao —a2 - a 3 < u t

0 1 ao
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where the integration constants a*, i =  1 ,2 , . . . ,  7 are given by

(4.15)

The parameters a  and 7  which has to be chosen is guided by the consideration of uncondi
tional stability which is ensured using the following two criterion [Bathe, 1996]: 7  > 0.50 
and a > 0.25(0.5 +  y)2. While the implicit Newmark’s method provide unconditional sta
bility under the above mentioned criterion, it is conditionally convergent [Hahn, 1991]. The 
convergence is guided by the condition [Newmark, 1959]

where T  is the natural time period of vibration of a single degree-of-freedom (d.o.f.) system. 
For multiple d.o.f. systems it is required that the T  be interpreted as the time period of the

the dimension of the linear system being solved i.e. higher the dimension of the linear system,

upper bound on the time step size At.  This can have a huge adverse effect for the spectral 
Galerkin solution technique, since the dimension of the linear system increases exponentially 
with the order of the stochastic polynomials used in the solution basis. Thus the PC method

time integration results of identical numerical accuracy compared to other techniques such as 
direct MCS which deals with the dimension of the original discretized FE system.

We rewrite Eqn. (4.14) in a more compact form following Eqn. (4.12) as

integration operators A 1(6) G R NxN, A o(0) G R NxN are as defined in Eqn. (4.14). We

ferent solution methodologies associated with stochastic dynamical systems. Following from 
the Newmark operator given in Eqn. (4.14) we can represent the equation for the displacement 
field in Eqn. (4.10) to be solved at each time step as

for a  > 0 (4.16)

highest vibration mode of the system. This results in the choice of time step to be guided by

lower is the value of T  (associated with the highest vibration mode) and hence smaller is the

would typically require a significantly lower value of the time step size A t  to produce the

A i ( 0 ) u t+ At(0)  =  Pt+At +  A o( 0 ) u t (0) (4.17)

where u t+At € R N x 0  is the ensemble of the stochastic displacement, velocity and accel
eration vector of dimension N  = 3n (n is the dimension of the discretized FE system), the

utilize this form in the subsequent sections to formulate a solution methodology using the dif-

[ooM(0) +  axC(0) +  K(0)] ut+At(0) =  p ^ At(0) (4.18)

where Pt+Atft) ls equivalent force at time t +  A t  which consists of contributions of the



system response (displacement, velocity and acceleration fields) at the previous time step. The 
‘equivalent force’ at each time step hence becomes a stochastic quantity due to the presence of 
the stochastic system matrices on the right hand side and also the system response at previous 
time steps which themselves are random quantities.

Following from the discussion of the expansion of the system matrices in Eqn. (4.10) 
in terms of their mean and perturbation components, and expressing the structural damping 
in proportional form, C( 6)  = CiM(0) +  C2K(0), we define the matrices A0 E R nxn and 
A* E Rnxn; i = 1, 2 , . . . ,  M  as

Ao =  ®oMo +  aiCo +  Kq =  (ao +  fliCi)Mo +  (ai£ 2 +  1)Kq (4.19)a

. ( a 0 +  aiCi)Mj for z =  1 , 2 ,
A i = {  (4.19)b

(1  +  aiC2)Ki_Pl for i = pi + l ,p i  +  2 , . . .  + p 2

Hence the linear structural system in Eqn. (4.18) can be expressed as

M

Ao +  At
i = 1

A(9)

Ut+A t ( e ) = p etl vAt( m ) -  (4.20)

Here A0 and A* represent the deterministic and stochastic parts of the system matrices re
spectively. Ao and A* E Rnxn; i = 1 ,2 , . . . ,  M  are symmetric matrices, ut+At(0) E Rn is 
the solution vector and Pt+At(£W) e  is the forcing vector which comprises of the deter
ministic forcing function at each time step plus the stochastic system response at earlier time 
steps. Hence they have a non-linear functional dependence on the random variables which 
have been used to model the parametric uncertainty. The number of terms M  in Eqn. (4.20) 
can be selected based on the accuracy desired for the representation of the underlying ran
dom field. This is the specific form of the system matrices under the Newmark time stepping 
scheme. However, the general scheme of the solution technique remains the same for this 
class of implicit time-tepping techniques. The expressions for Ao and A* vary according to 
the damping model chosen for a particular application. One of the main aims of stochastic 
dynamic analysis is to obtain ut+At(0) for 6 E 0  and for all time steps t E [0, T] in an efficient 
manner, which is the primary motivation for this work.

4.3.2 Overview of the spectral Galerkin approach for structural dynam
ics

Several methods have been utilized to resolve the time-domain response of stochastic systems. 
These include the direct MCS [Shinozuka, 1972], perturbation based stochastic FEM method 
[Wall and Bucher, 1987] and Neumann expansion method [Lei and Qiu, 2000], for exam-
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pie. However, the spectral Galerkin methods have been studied with particular enthusiasm 
over the past two decades. Spectral Galerkin methods are used in conjunction with various 
time integration techniques to evaluate the time-domain response. The long time integration 
scheme has been used with Generalized Polynomial Chaos in [Gerritsma et al., 2010] which 
shows a growth of error with time. Lucor et al. [Lucor et al., 2004] implemented the tem
poral discretization of a single degree of freedom linear oscillator with the implicit Newmark 
method which shows that high polynomial degree is essential for accuracy of the computed 
results. Xiu et al considered the generalized chaos for transient response of FE thermal sys
tems [Xiu and Kamiadakis, 2003a] with random heat conductivity and capacity. However, 
the use of implicit time integration schemes for stochastic FE structural dynamic systems 
with Galerkin projection schemes remains a sparsely studied area of research. The novelty of 
the approach described here lies in the formulation of the stochastic time integration operator 
in conjunction with the spectral Galerkin approach and we present the linear algebraic system 
that results from the implementation.

Here we present the solution of the assembled system of stochastic linear algebraic equa
tions as given Eqn. (4.17). From Eqn. (4.20) we can identify the appropriate function space in 
which the solution of the stochastic problem exists. The random matrices Ai E Mnxn inherits 
the continuity and coercivity properties from the governing SPDE through the weak formu
lation. The forcing vector depends on the system response at earlier time steps, which 
in turn can be assumed to be continuous. The spatially discretized solution vector ut+&t, at 
each time step, lies in the tensor product space Rn <g> T, where T  is the space of real-valued 
random variables. Given that the stochastic system has been discretized and represented with 
a finite number of random variables £(0) =  {£i, . . . ,  £m} (as for instance in Eqn. (4.20)), 
the stochastic subspace reduces to Tm where Tm C T.  When each random component £* is 
independent, then Tm is a tensor product space <S> T ^  ® . . .  <g> T^M\  According to the 
approximate basis building techniques that focus on expansion of the solution vector using 
some polynomial functions, the solution vector can be expressed in the form

Ut =  Ut,a €  (4 .21)

where «££?*(£ (0 )) are the basis in Tm , u t>a are the set of unknown coefficients to be evaluated 
and is a subset of ^  with cardinal M.  The form of the polynomial functions Jt?a(£(6)) 
used in Eqn. (4.21) varies according to the chosen solution approach, and the well-known 
spectral approaches such as PC, gPC use orthogonal polynomial basis from the Wiener-Askey 
scheme. When £(0) is a vector of independent identically distributed Gaussian random vari
ables, the functions J$?a are finite order Hermite polynomials which are orthonormal with 
respect to the joint probability density function of the input vector £(0). The same idea can 
be extended to non-Gaussian random variables, provided more generalized functional bases



are used so that the orthonormality with respect to the probability density functions can be 
retained. Suppose the series in Eqn. (4.21) is truncated after P  terms. The value of P  depends 
on the number of basic random variables M  and the desired order of the PC expansion. Hence
there are P  number of unknown vectors of dimension n. The successive time derivatives of
the displacement field can be expressed as

* =  1 >2  <4-22>

such that the same stochastic basis is used to formulate the time derivatives of the response 
at all time steps. We introduce the inner product in Tm x (where N is the dimension 
of is the dimension of the ensemble of the displacement, velocity and acceleration vector in 
Eqn. (4.17)) as

(v, u) £  f VT ( £ ( 0 ) )u(* (0 ))  dP( = E [vr (£(0))u(£(0))] (4.23)
Je

where E [•] is the expectation operator. Thus the Galerkin formulation of Eqn. (4.17) for the 
single-step time integration scheme is

(vf+At. =  (vJ+At. Pt+At) +  (v£at> AoUt) V v (+A( £ T m  x  R n  (4.24)

where the Galerkin projection is implemented at each time step t +  At.  The vector u t is as 
defined in Eqn. (4.13) which is of the form =  (u t ; iit ; iit).

Following this, the mean-square error minimization is applied and the unknown vectors 
are solved from the resulting linear algebraic system. The linear system is given as

■̂ (O.O) * ' ’ -̂ "1(0,P) Ut+At,(l) P t+A t,(1)

■̂■1(1,0) ■̂■1(1,1) ■̂■1(1,P) U*+At,(2)
=

Pt+At,(2)

-■̂ (P.O) -̂1(P,1) * * ’ ■̂ ’1(P>P). _Ut+At,(P)_ _Pt+At,(P)_

•̂°(o,o) ■̂■0(0,1) ’ ' ’ ■̂ •0(0,P) u*,( 1)
■̂■0(1,0) ■̂■0(1,1) •̂ ■0(1,P) Ut,( 2)

(4.25)

_Ao^p0) A q(P1) * * ’ Ao(P)pj_

where A i( } is the N  x N  blocks coefficient matrix of the linear system of dimension 
N P  x N P  and u t+At,(i) and Ut,(<) are the i th components of the system response at time 
t +  A t  and t respectively. It must be noted that the coefficient matrices of the linear system 
in Eqn. (4.25) are block sparse matrices and symmetric in nature. This structure is conducive 
to the numerical Krylov based iterative techniques like the Bi-conjugate gradient stabilized
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(BiCGStab) algorithm which has been employed in this work to solve the linear systems 
resulting from the spectral Galerkin method. It should be noted that the Krylov iterative 
techniques can exploit the multicore architecture of modem day computational platforms for 
performing the large matrix-vector operations. The performance improvement obtained with 
this technique is illustrated later in this work while comparing the computation cost of the 
different methods.

However, P  increases exponentially with the order of chaos and the number of input ran
dom variables M, so the dimension N P  of the linear system obtained from Eqn. (4.24) be
comes very high. As a result several methods have been developed (see for example [Sachdeva 
et al., 2006b, Blatman and Sudret, 2010]) to reduce the computational cost. In the PC based 
solution approach, the only information used to constmct the basis is the probability density 
function of the random variables. In context of the discretized Eqn. (4.20), more informa
tion such as the matrices A*, i = 0 ,1 , 2 . . .  M  are available. Equation (4.21) also shows that 
the stochastic basis is independent of the time step and hence lacks any adaptive properties 
which would result in errors growing with the time. This becomes a significant problem for 
long time integration. This is because the non-linear effect of the input random variables on 
the stochastic system response is compounded with each time step. It may be possible to 
construct alternative stochastic basis using the invariant properties of the linear system and 
the time-step. Here we investigate such an approach, where the solution is projected on to a 
reduced eigenspace obtained from the underlying deterministic system, weighted by a set of 
highly non-linear stochastic weighting functions termed as ‘spectral functions’.

4.3.3 Transient response with spectral functions

Following the spectral stochastic FE method, an approximation to the solution of Eqn. (4.20) 
can be expressed as a linear combination of functions of random variables and deterministic 
vectors. The aim is to use small number of terms to reduce the computation without losing 
the accuracy. Here we adopt the approach of the spectral functions presented in Chapter 2 for 
the case of frequency response of the structural dynamic systems and extend it to the case of 
using stochastic long time integration for the evaluation of the unsteady response statistics of 
the randomly parametrized system.

The stochastic linear set of equations presented in Eqn. (4.20), for which a solution of 
the response vector ut+At(0 ) is sought, it follows directly from the above discussion that the 
solution at each time step t +  A t  can be projected on to a finite number of bases spanning a



stochastic Krylov space which can be defined at that time step as

M

Ao +  E e ^ A *  ,p T a< 0 £(*))
i —1

Me)

(4.26)

where £(6) is the M-dimensional random vector £{9) = {£i($), £2 (0 )? ••• >£m(0)}T- A 
choice of a finite number of Krylov bases depends on the eigen-spectrum of the coefficient of 
the system matrix A(0). Since the eigenvalues of the coefficient matrix A (6) are distributed 
over a long interval on the real axis, the required number of basis functions (m) on which the 
solution would be projected would become close to the number of degrees of freedom (n) of 
the system. This increases the computational cost substantially and hence, highly undesirable.

Thus we describe the derivation of the spectral functions for the resolution of the stochastic 
response at each step of the time stepping algorithm. The derivation is follows from the 
analysis presented in Sec. 2.3.2 for the frequency response of stochastic structural systems. 
To begin with, we again consider the eigenvectors <f>k £ Rn of the generalized eigenvalue 
problem

Ko^*. =  AfcMo0 fc; k = 1 , 2 , . . .  n. (4.27)

Since the matrices K0 and M0 are symmetric and generally non-negative definite, the eigen
vectors (fifo for k = 1 ,2 , . . .  n  form a complete basis. Note that in principle any complete 
basis can be used. This choice is selected due to the analytical simplicity as will be seen 
later. For notational convenience, the matrices of eigenvalues and eigenvectors are defined as 
A0 =  diag [Ai, A2 , . . . ,  An] £ Rnxn and =  [0 l7 </>2, . . . ,  0 J  £ Rnxn. The eigenvalues of 
structural dynamic systems can be ordered in the ascending order so that Ai < A2 < . . .  < An. 
The orthogonality property of the modal matrix can be used to write 3>t Kq3> =  Ao and 

=  I. Since the damping matrix is assumed to be proportional, the deterministic 
coefficient matrix as given in Eqns. (4.19)-(4.20) is reduced to the diagonal form if the modal 
coordinate transformation is applied. We introduce the following transformations

3>t A0<I> =  A0; 1 ~
\  and A; =  $  Ai<S> € R ; i =  0 , 1 , 2 , . . . ,  M  

so that, A0 =  A0<F J
(4.28)

Hence, it can be said that each diagonal component of A0 =  diag [A0l, A02, . . . ,  A0n] £ Rnxn, 
i.e. A0i can also be expressed as a linear function of the eigenvalue A* obtained in Eqn. (4.27). 

Suppose the solution of Eqn. (4.20) is given by ut+At(0) = A0 +  Y^iti &(#)A* V>t+At (£W)
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Using the above discussions and the introduced transformations in Eqn. (4.28) we have

Ut+At(0 ) =
M

i = 1 
T n eqv

- 1

p4T a , m )

(4.29)

where vP (£(#)) =  A 0 +  ]C £ i f*(0)A* Separating the diagonal and off-diagonal terms 

of the Ai matrices as A» = A» +  A i} i =  1 ,2, . . . ,  M  where the diagonal matrix is given 
as Ai =  diag Ai =  diag [Aix, A i2, . . . ,  A in] € Mnxn and the matrix containing only the 

off-diagonal elements Ai =  Ai — Ai is such that Trace (Ai) =  0. Using these, we can write

* ( « * ) )  =

-i - l

M M

i= 1 2 =  1

(4.30)

where A (£(#)) € 
matrix.

A(£(0)) A(£(<?))

is a diagonal matrix and A  (£(0)) E Rnxn) is an off-diagonal only

This diagonal matrix A (£(#)) is treated as the preconditioner to the stochastic Krylov 
space given in Eqn. (4.26), such that the solution can be projected onto a very few basis 
functions and yet it would be possible to predict an accurate solution of the response vector 
using this left preconditioned stochastic Krylov subspace. As mentioned before, the diagonal 
dominance of the matrices A* is conducive to the approach being proposed here. Thus we 
can write

J Q A - 1* ,  A ^ p  J At) =  span{#r A - l # p ^ ,  * rR (€(0)) A "1̂ , ,

* t R  (£ (0 ))2 A - ^ p ^ , , . . ,  * t R  ( t f * ) ) " - 1 A - 1^ , }

(4.31)

where, R(£(0)) =  (A_1(£(0))A(£(0))) (4.32)

Equation (4.31) shows that the Krylov bases are temporally adaptive stochastic basis func
tions due to the equivalent forcing term which inherit the response characteristics from 
the previous time step. The equivalent infinite Neumann series representation of the above 
equation is

oo
=  £ ( - l ) * [ R  ( € ( « ) ) ] ' A " 1 « ( 0 ) )  (4 .33)



Taking an arbitrary r-th element of u (£, 0), Eqn. (4.29) can be rearranged to have

< +a((0) =  E  M  E  «(*)) ( ^ pJTai «(«)))
fc=i V j=i

We define a vector Tt+At (£(#)) of dimension n x  la s

r (+A« m  =  ® ( m )  ( * t r T a i  («(*))) (4-35)

where I \ +a* {£(0)) is the vector of highly non-linear functions of the random variables {£*(0 ) : 
% = 1 , . . . ,  M }  and expressed in terms of the spectral properties of the system matrices. Com
bining Eqns. (4.34) and (4.35) we have

n

Ut+At(0) = E  («*)) 4 > k  (4-36)
k = 1

where T a *  (£(#)) is the kth element of the vector of stochastic functions contained in 
rt+At (£(#)) and <pk is the kth eigen mode of the deterministic structural system. Thus the 
time domain response of the structural system is projected on to the deterministic eigen modes 
of the structural system and weighted by a set of ‘spectral functions’ Tf+Af (£(9)).

We assume that the series in Eqn. (4.33) is truncated after m  terms. This is equivalent to 
taking m  terms of the minimal polynomial of the left-preconditioned stochastic Krylov space. 
The truncated function can then be expressed as
q>(m) (£(0 )) =  X ^lo(—-0s lA_1  (£W) A  (£(#))]S A - 1  (£(6)). From this, one can obtain a 
sequence for different values of m  as

= m = 1,2,3, . . .  (4.37)
k=1

Since 6 £ 0  is arbitrary, comparing Eqn. (4.20) and Eqn. (4.29) we observe that uj™At(0)
is the solution of Eqn. (4.20) for every 0 as m  —> oo. It is to be noted that the proposed
solution technique is not limited to any particular choice of the probability measure of the 
input parametric randomness and hence is applicable to almost all random fields as long as 
the solution exists.

It is seen as before that the series in Eqn. (4.33) is in terms of [A- 1  (£(#))][A (£(#))], 
where both terms are random and hence the elements of this matrix series are not simple poly
nomials in £ i { 6 ) ,  but are in terms of a ratio of  polynomials as seen in the following equations. 
The convergence of this series depends of the spectral radius of R {£(0)) in Eqn. (4.32). Note 
that A (£(6)) is a diagonal matrix, its inverse is also a diagonal matrix. Also recall that the 
diagonal of A  (£(6)) contains only zeros. Hence a generic term of this matrix can be obtained

(4.34)
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as

(a o  +  ai(i)K +  (&1C2 +  1) +  &Airr

(4.38)

where Xr is the rth eigenvalue of the deterministic system as per Eqn. (4.27) and Srs is the 
Kronecker delta. It can be seen from Eqn. (4.38) that the spectral radius of R is also controlled 
by the diagonal dominance of the A* matrices.

It was seen in Sec. 2.3.4 that the spectral radius of the matrix R is a function of the 
frequency step being considered. In contrast to that, Eqn. (4.38) shows that the spectral radius 
depends on the implicit time integration parameters (a  and 7 ) and the time-step size, At.  
When Eqn. (4.38) is expressed explicitly in terms of these parameters we have after some 
simplifications

system. Since the constants a  and 7  are positive quantities and assuming that the time step 
size chosen is generally quite small, we can write

This indicates that a smaller time-step size improves the convergence behavior of the spectral 
functions. However, smaller time steps incur higher computational cost.

The functions T^+At (£(0)), k =  1 ,2 , . . .  n  are the time adaptive stochastic spectral func
tions which are rational functions of the input random variables. They are expressed in terms 
of the spectral properties of the coefficient matrix of the discretized system equation. They 
depend on the parameters of the time integration and the time step size. These are the time 
domain counterparts of frequency dependent spectral functions considered in context of the 
frequency response of stochastic structural dynamic systems.

Truncating the series in Eqn. (4.33) up to different terms, we obtain the spectral functions 
of different order. Using the expression in Eqn. (4.35), the first-order spectral functions at 
each time-step can be explicitly obtained as

( e £ i 6 4 , . ( 1 - W )
(4.39)

We analyze the above equation for the effect of time step size on R for a given fixed structural

RrS = 0 ( A t 2) for 0  < A t  «  1 (4.40)

n

r& S ,« (« )) =  E «( *) ) )

(ao +  fliCi)<V +  (aiC2 + 1) +  E t=i £t(0)A*fc
(4.41)



Here the spectral functions are rational functions of the basic random variables and change 
at each time step due to the associated forcing function p^+At (£(#)). The vector of spectral 
functions of order m  is given as

=  [In -  Rtt(fl)) +  R ( m ) 2 -  R (£ W ) 3 • • • r & t« ( 0 )) (4.42)

where In is the n-dimensional identity matrix and R is defined in Eqn. (4.32). The availability 
of the recursive formula, makes the calculation of the higher-order spectral functions are 
expected to be less involved.

The computational complexity involved in calculating the proposed spectral function is 
presented here. If the stochastic FE system solution is projected on to its modal coordinates 
with the first nr modes (from Eqn. (4.27)) and N s is the number of stochastic samples points 
where the system is solved in the direct MCS approach then the total computational complex- 
ity is ^ t N s&(nl) where T  is the total time for which the system response is evaluated and 
A t  is the time-step size. For the spectral method, the calculation of the various orders of the 
spectral functions requires the evaluation of the quantity A - 1  ({(0)) A  (£(0)) in Eqn. (4.32), 
whose complexity is given as 0 { n 2). Hence the complete system response resolution using 
the m th order spectral functions is ^ Ns(m — l )N t^ ( n 2). Thus the computational complex
ity of the spectral function approach is found to be growing as a cube of the dimension of 
the reduced eigenspace which is approximately one order more efficient than the direct MCS 
calculations.

Statistical moments of the response vector

Given that the stochastic displacement vector is a function of the sequence of the input random 
variables, we can construct, at each time step £, the mean and the higher-order statistical 
moments of the solution u[m  ̂ : Rn x 0  —> Mn about a given point £ 0 in the stochastic space 
using the relation

Sp',m) = I  (̂ m)(€(0)) _ u(Co))Pd p w e »  p = 1 ' 2>3) • ■ ■ (4-43)
where G Mnxn denotes the pth order statistical moment of the solution about u(£0) G
Mn calculated with the m th order spectral function at time step t and P  denotes the joint 
density function of the input random variables. From the above the expressions for mean 
(p = 1 , u(£0) =  0 ) and variance (p = 2 , u(£0) — ^ i , ^ )  °f stochastic solution vector
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can be written as:

EiS"’ =  [ l t (m) (€(«))] 4>k
k= 1

. k = 1 

=

(4.44)

(4.45)

where <I> is the matrix of eigen vectors, Et is the temporal variance-covariance matrix at
time t of the vector = such that Et .. =  EI ' l l !

and E [•] is the expectation operator associated with the stochastic space. If the components 
of the random vector are uncorrelated then Et becomes a diagonal matrix. However, 
since the spectral functions considered here are correlated random variables, we obtain a 
fully populated Et matrix at every time step. Hence for this correlated nature of the spectral 
functions, integration in the stochastic space defined in Eqn. (4.43) calls for efficient sampling 
techniques or metamodeling strategies which can be used in conjunction with the solution 
methodology proposed here.

In the following section we provide some numerical examples to highlight the perfor
mance and computational accuracy of the spectral Galerkin approaches and the proposed 
spectral function approach with the implicit time integration scheme. The direct MCS re
sults have also been obtained which serve as the benchmark solution. The appropriate error 
estimates, convergence behavior and the simulation times of the solution are presented for 
effective comparison of the different solution methodologies.

Here we present Algorithm 4 which summarizes the proposed spectral function approach 
used to resolve the stochastic system response using an implicit time integration technique.

4.4 Illustrative example: Transient dynamic analysis of an 
Euler-Bernoulli beam

To demonstrate the applicability of the methods detailed in the previous sections, we consider 
here a prototype problem of the dynamic uni-planar flexural vibration of a one dimensional 
Euler-Bemoulli cantilever beam. This application is used to demonstrate the effectiveness of 
the proposed spectral solution method to this class of SPDE. The solution is obtained for a 
specified value of the correlation length and for different degrees of variability of the input 
random field. The spatially varying stochastic field has been discretized using a finite num
ber of zero mean uncorrelated standard Gaussian variables using the KL expansion theorem. 
For the beam problem we have chosen the elastic modulus E I Z as the stochastic parameter. 
The beam problem has been solved for its transient response in the time-domain under the



Algorithm 4 Transient Stochastic FEM with spectral functions
Input: Choose time-step size (At) and discretize time axis T  into N t points, N t = T / A t .  
Input: Stochastic input parameter a(0, r) G R x 0 (M) using KL modes from (4.3).
Input: Calculate the system matrices from & (un,vn;0) = Jt?(vn;0) using Eqns. (4.5)-

(4.10).
Input: Choose parameters a  and (3 , evaluate integration constants from Eqn. (4.14).
Output: System response Ut+At(0), Ut+At(0), u t+At(0) G Rn x 0  at each t G [0, T\.

1: Evaluate the first nr eigenpairs [Ao, 4>] from Eqn. (4.27).
2 : Construct R(£(0)) and its successive powers R k(£(6)) for k =  1 using

Eqn. (4.32).
3: Initialize uo(0), Uo(0), iio(0).
4: for j = 1 to Nt do
5: Calculate p̂ +At ut(0), iit(0) following Eqns. (4.14) and (4.18).
6 : for r = 1 to m  do
7: Construct the Krylov basis following Eqn. (4.31) using Rr (£ (# )) , and p*+A r

8 : Create the m th order spectral function vector r t+ i t ( £ W ) from Eqn- (4-35)-
9: end for

10: Project the system response ut+At(0) in the eigenspace using r ^A t(^(0)) from
Eqn. (4.36).

11: Evaluate u t+At(0), Ut+At(0) at t =  j  A t from Eqn. (4.14).
12: Evaluate the moments of the response using Eqns. (4.44)-(4.45).
13: Make ut(0), iit(0), ut(0) equal to ut+At(0), ut+At(0), ii<+At(0) respectively.
14: end for

action of an impulse loading. Direct MCS has been performed for these cases and is taken 
as the benchmark solution with respect to which the appropriateness of the different meth
ods have been analyzed. A comparison between the PC method and the proposed spectral 
decomposition technique is presented for the beam problem.

The cantilever beam is taken to be clamped at one end (where the displacement and the 
rotational degree of freedom is both taken to be zero). Figure 4.1(a) shows the configuration 
of the cantilever beam with an impulse load at its free end in the 2 -direction. The beam 
bending occurs in the x — z plane. We assume that the bending modulus (E I y) is a stationary 
Gaussian random field of the form

E I y(x, 6) = E I 0(1 +  a(x, 0)) (4.46)

where x  is the coordinate along the length of the beam, E I 0 is the mean bending modulus, 
a(x, 6) is a zero mean stationary Gaussian random field. It must be mentioned that though the 
Gaussian random field model is not physically meaningful in strict sense, since the physical 
quantities being model are strictly positive, yet the model has been used extensively in the 
existing stochastic FE literatures [Ghanem and Spanos, 1991, Sarkar and Ghanem, 2003]. 
However, it has been shown that when the number of KL expansion terms is chosen carefully, 
the truncated statistical models are strictly positive [Powell and Elman, 2009].
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F ig u r e  4 .1 :  S c h e m a t i c  d ia g r a m  o f  t h e  c a n t i l e v e r  b e a m  w i t h  a  p o i n t  l o a d  a t  t h e  f r e e  e n d  a l o n g  

w it h  it s  n a tu r a l  f r e q u e n c i e s .  T h e  n u m b e r  o f  r e d u c e d  e i g e n v e c t o r s  c h o s e n  i s  q  =  1 0  w h i c h  

c o v e r s  t h e  f r e q u e n c y  o f  u p  t o  1 2 0 0  H z .  T h e  f u n d a m e n t a l  f r e q u e n c y  i s  f o u n d  t o  b e  4 . 8 5  H z

T h e  a u t o c o v a r ia n c e  f u n c t i o n  o f  t h i s  r a n d o m  f i e ld  i s  a s s u m e d  t o  b e

Ca{xu x2) =  cr^e-d (447)

w h e r e  p a i s  t h e  c o r r e la t io n  l e n g t h  a n d  a a i s  t h e  s t a n d a r d  d e v i a t i o n .  W e  u s e  t h e  b a s e - l i n e  

p a r a m e t e r s  a s  t h e  l e n g t h  L  — l m ,  c r o s s - s e c t i o n  (6  x  h )  3 9  x  5 . 9 3  m m 2 a n d  Y o u n g ’s  m o d u l u s  

E  =  2  x  1 0 11 P a . In  t h i s  s t u d y  w e  c o n s i d e r  d e f l e c t i o n  o f  t h e  t ip  o f  t h e  b e a m  u n d e r  a n  i m p u l s e  

l o a d  o f I F ( t) =  l .O N - s  a t  t  =  0 .  H e r e  t h e  f o r c i n g  i s  a s s u m e d  t o  b e  d e t e r m i n i s t i c  in  n a tu r e .  T h e  

c a s e  w h e n  t h e  f o r c i n g  i s  r a n d o m  h a s  b e e n  t r e a t e d  e x t e n s i v e l y  in  l i t e r a t u r e  w i t h i n  t h e  s c o p e  o f  

‘R a n d o m  V i b r a t i o n ’ [ L in ,  1 9 6 7 ] .  F o r  e x a m p l e ,  i f  t h e  f o r c i n g  f u n c t i o n  i s  i n d e p e n d e n t  o f  th e  

p a r a m e t r ic  u n c e r t a in t y ,  t h e  p r o p o s e d  s p e c t r a l  f u n c t i o n  a p p r o a c h  c o u l d  b e  a p p l i e d  a t  c h o s e n  

p o i n t s  in  t h e  s t o c h a s t i c  s p a c e  a s s o c i a t e d  w i t h  t h e  e x c i t a t i o n  a n d  t h e  s e c o n d  o r d e r  r e s p o n s e  

s t a t i s t i c s  c a n  b e  c o n s t r u c t e d  f r o m  it . T h e  c o r r e l a t i o n  l e n g t h  c o n s i d e r e d  in  t h e  n u m e r ic a l  s t u d y  

f o r  c o m p a r i s o n  w i t h  t h e  P C  e x p a n s i o n  m e t h o d  i s  p a =  L / 2  a n d  f o r  t h i s  c a s e  t h e  n u m b e r  o f  

t e r m s  r e t a in e d  ( M )  in  t h e  K L  e x p a n s i o n  E q n .  ( 4 .3 )  i s  t w o .  T h u s  t h e  in p u t  s t o c h a s t i c  s p a c e  i s  

t w o  d i m e n s i o n a l  in  t h i s  c a s e .  F o r  t h e  F E  d i s c r e t i z a t i o n ,  t h e  b e a m  i s  d i v i d e d  in t o  1 0 0  e l e m e n t s .  

S t a n d a r d  f o u r  d e g r e e s  o f  f r e e d o m  E u l e r - B e r n o u l l i  b e a m  m o d e l  i s  u s e d .  A f t e r  a p p l y in g  t h e  

f i x e d  b o u n d a r y  c o n d i t i o n  a t  o n e  e d g e ,  w e  o b t a in  t h e  n u m b e r  o f  d e g r e e s  o f  f r e e d o m  o f  t h e  

m o d e l  t o  b e  n  =  2 0 0 .  It h a s  b e e n  v e r i f i e d  th a t  t h i s  s p a t ia l  r e s o l u t i o n  i s  s u f f i c i e n t  t o  c a p t u r e  

t h e  e x c i t a t i o n  r e s p o n s e  o f  t h e  s y s t e m  c o m p l e t e l y .

T h e  s o l u t i o n  o b t a i n e d  w i t h  t h e  p r o p o s e d  r e d u c e d  b a s i s  s p e c t r a l  f u n c t i o n  h a s  b e e n  c o m 

p a r e d  w i t h  t h e  d i r e c t  M C S  r e s u l t s  a n d  t h e  4 th o r d e r  P C  e x p a n s i o n .  T h e  M C S  in  t h e  s t o c h a s t i c  

s p a c e  i s  p e r f o r m e d  w i t h  1 0 , 0 0 0  s a m p l e s .  T h e  c a l c u l a t i o n s  h a v e  b e e n  p e r f o r m e d  f o r  f o u r  

v a l u e s  o f  in p u t  s t a n d a r d  d e v i a t io n ,  a a =  { 0 . 0 5 ,  0 . 1 0 ,  0 . 1 5 ,  0 . 2 0 } ,  w h i c h  s i m u l a t e s  i n c r e a s i n g



in p u t  u n c e r t a in t y .

F ig u r e  4 .1  ( b )  p r e s e n t s  t h e  d i s t r ib u t io n  o f  t h e  n a tu r a l  f r e q u e n c i e s  o f  t h e  c a n t i l e v e r  b e a m  

f r o m  t h e  g e n e r a l i z e d  e i g e n v a l u e  p r o b l e m  g i v e n  in  E q n . ( 4 . 2 7 ) .  T h e  r e d u c e d  b a s i s  o f  t h e  p r o b 

l e m  h a s  b e e n  c h o s e n  b a s e d  o n  t h e  t i m e - s t e p  s i z e  o r  t h e  s a m p l i n g  f r e q u e n c y  o f  t h e  p r o b l e m ,  

i .e .  a l l  t h e  e i g e n  m o d e s  th a t  c o v e r  u p  t o  1 2 0 0  H z  h a v e  b e e n  c h o s e n .  T h e  t i m e  s t e p  s i z e  f o r  th e  

n u m e r ic a l  in t e g r a t io n  s c h e m e  h a s  b e e n  c h o s e n  a s  1 / 8 0 0  s e c o n d s .  W e  h a v e  a p p l ie d  a  c o n s t a n t  

m o d a l  d a m p in g  w i t h  1 %  d a m p in g  f a c t o r  f o r  a l l  t h e  m o d e s .

F ig u r e  4 . 2  s h o w s  t h e  t i m e - d o m a i n  r e s p o n s e  o f  t h e  d e f l e c t i o n  o f  t h e  t ip  o f  t h e  c a n t i l e v e r  

b e a m  u n d e r  t h e  a c t io n  o f  a n  u n i t  i m p u l s e  a r o u n d  t i m e  t  =  0  f o r  t h e  d i f f e r e n t  in p u t  s t a n 

d a r d  d e v i a t io n  v a l u e s .  T h e  p r o p o s e d  s p e c t r a l  m e t h o d  a n d  t h e  d i r e c t  M C S  r e s u l t s  s h o w s  g o o d
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(c) M ean deflection , cra — 0 .15 . (d) M ean deflection , o a — 0.2.

F ig u r e  4 .2 :  T h e  m e a n  d e f l e c t i o n  o f  t h e  f r e e  e n d  o f  t h e  c a n t i l e v e r  b e a m  u n d e r  a n  u n it  i m p u l s e  

l o a d  a t  t i m e  t  =  0  f o r  t h e  d u r a t io n  o f  1 / 8 0 0  s e c o n d s .  T h e  r e s p o n s e  o f  t h e  r e d u c e d  o r d e r  s p e c 

tr a l f u n c t i o n  m e t h o d  i s  o b t a i n e d  w i t h  1 0 ,  0 0 0  s a m p l e s  a n d  f o r  o a =  { 0 . 0 5 , 0 . 1 0 , 0 . 1 5 ,  0 . 2 0 } .

a g r e e m e n t  a t a l l  t i m e  s t e p s .  H o w e v e r  t h e  s o l u t i o n  g e n e r a t e d  b y  P C  m e t h o d ,  w h i l e  c l o s e l y  

a p p r o x i m a t i n g  t h e  M C S  s o l u t i o n  a t  e a r l i e r  t i m e s ,  d i v e r g e s  f o r  h i g h e r  v a l u e s  o f  t .  F o r  h i g h  

in p u t  s t a n d a r d  d e v i a t io n  (<ra ) ,  t h i s  d i s c r e p a n c y  s e t s  in  e v e n  e a r l ie r .
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(c) S tandard  deviation  o f  deflection , a a =  0 .15. (d) S tandard  dev iation  o f  deflection , o a =  0.2.

F ig u r e  4 .3 :  T h e  s t a n d a r d  d e v i a t io n  o f  t h e  d e f l e c t i o n  o f  t h e  f r e e  e n d  o f  t h e  c a n t i l e v e r  b e a m  

u n d e r  u n i t  i m p u l s e  l o a d  a t  t i m e  t  =  0  f o r  t h e  d u r a t io n  o f  1 / 8 0 0  s e c o n d s .  T h e  r e s p o n s e  o f  

t h e  r e d u c e d  o r d e r  s p e c t r a l  f u n c t i o n  m e t h o d  i s  o b t a i n e d  w i t h  1 0 , 0 0 0  s a m p l e s  a n d  f o r  o a =

{ 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 } .

S i m i l a r  b e h a v i o r  i s  s e e n  in  F ig .  4 . 3  in  t h e  p l o t  f o r  s t a n d a r d  d e v i a t io n  o f  t h e  d e f l e c t i o n  o f  

t h e  f r e e  e n d  o f  t h e  b e a m .  T h e  v a l u e s  p r e d i c t e d  b y  t h e  p r o p o s e d  s p e c t r a l  f u n c t i o n  m e t h o d  i s  in  

g o o d  a g r e e m e n t  w i t h  t h e  d ir e c t  M C S  s i m u l a t i o n  r e s u l t s ,  w h i l e  t h e  4 th o r d e r  P C  r e s u l t s  s h o w  

i n c o n s i s t e n c i e s ,  e s p e c i a l l y  f o r  l o n g e r  v a l u e s  o f  t .  T h e  a c c u r a t e  p r e d i c t i o n  o f  h i g h e r  o r d e r  

m o m e n t s  u s in g  t h e  s p e c t r a l  G a le r k in  a p p r o a c h e s  r e q u ir e s  a  h i g h  o r d e r  o f  t h e  c h a o s  t o  b e  u s e d  

w i t h  t h e  s o l u t i o n .  H e n c e  it  i s  e x p e c t e d  th a t  t h e  h i g h e r  m o m e n t s  o f  t h e  r e s p o n s e  w o u l d  t e n d  t o  

d e v i a t e  s i g n i f i c a n t ly .

It c a n  a l s o  b e  n o t e d  f r o m  F ig .  4 . 2  th a t  h i g h e r  v a l u e s  o f  in p u t  s t a n d a r d  d e v i a t io n  p r o d u c e s  

a n  e f f e c t  e q u i v a l e n t  t o  th a t  o f  d a m p in g  o n  t h e  m e a n  d e f l e c t i o n  v a l u e s .  T h i s  i s  b e c a u s e  t h e  

r a n d o m n e s s  in  th e  s y s t e m  p a r a m e t e r s  t e n d  t o  d i s t r ib u t e  t h e  p e a k  r e s p o n s e  a r o u n d  a  n e i g h b o r 

h o o d  o f  t h e  r e s o n a n c e  f r e q u e n c y  o f  t h e  d e t e r m i n i s t i c  s y s t e m ,  a n d  t h e  s u b s e q u e n t  a v e r a g i n g  

s m o o t h s  o u t  o r  d a m p s  t h e  r e s p o n s e  a t  t h o s e  f r e q u e n c i e s .  T h e  r e s p o n s e  i s  l a r g e l y  c o m p r i s e d  o f



t h e  f u n d a m e n t a l  f r e q u e n c y  ( 4 . 8 5  H z )  o f  v ib r a t io n  o f  t h e  b e a m ,  s i n c e  t h e  h i g h e r  o r d e r  m o d e s  

d e c a y  o u t  r a p id ly .  W h i l e  t h e  m e a n  r e s p o n s e  f o r  h i g h e r  v a l u e s  o f  a a s h o w s  a n  a d d e d  d a m p in g -  

k in d - b e h a v i o r ,  in  r e a l i t y  a n y  r a n d o m  s a m p le  w o u l d  s t i l l  p r o d u c e  h ig h  l e v e l s  o f  v i b r a t io n  in  

t h e  r e s p o n s e .

T h e  f a c t  th a t  t h e  h i g h e r  o r d e r  m o m e n t s  a r e  n o t  p r o p e r ly  r e p r o d u c e d  b y  t h e  4 th o r d e r  P C  

m e t h o d  i s  a l s o  v e r i f i e d  f r o m  t h e  p l o t s  o f  th e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  d e f l e c t i o n  o f  

th e  f r e e  e n d  o f  t h e  b e a m  a t  t  =  0 . 1 1 9 s  a n d  t  =  0 . 1 3 4 s  a s  s h o w n  in  F ig .  4 . 4 .  It s h o w s  th a t  

w h i l e  t h e  m e a n  v a l u e  i s  c l o s e l y  a p p r o x i m a t e d  b y  th e  P C  s o l u t i o n ,  t h e  v a l u e s  o f  t h e  h i g h e r  

o r d e r  m o m e n t s  a r e  s i g n i f i c a n t l y  d i f f e r e n t  f r o m  t h o s e  o b t a i n e d  w i t h  t h e  M C S  a n d  t h e  s p e c t r a l  

m e t h o d s .  W e  f in d  a  v e r y  g o o d  a g r e e m e n t  o f  t h e  d e n s i t y  f u n c t i o n s  g i v e n  b y  t h e  la t t e r  t w o  

m e t h o d s .  T h e  e r r o r  in  t h e  d e n s i t y  f u n c t i o n  p r o d u c e d  u s in g  t h e  4 th o r d e r  P C  i s  m u c h  la r g e r
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2nd order •pectra!
- * dtk ordar mmetrul 

4ti> order VC

y j

(a) P D F  o f  deflection  at t, — 0 .119s. T he 4 sub-figures correspond  to o a =  { 0 .0 5 ,0 .1 0 ,0 .1 5 ,0 .2 0 } .

(b) PD F  o f  deflection  at t  =  0 .134s. T he 4 sub-figures co rrespond  to o a =  { 0 .0 5 ,0 .1 0 ,0 .1 5 ,0 .2 0 } .

F ig u r e  4 .4 :  T h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  d e f l e c t i o n  o f  t h e  f r e e  e n d  o f  t h e  c a n t i l e v e r  

b e a m  at t  =  0 . 1 1 9 s  a n d  t  — 0 . 1 3 4 s  u n d e r  a  u n i t  i m p u l s e  l o a d  a t  t i m e  t  =  0  f o r  a  d u r a t io n  o f  

l / 8 0 0 s .  T h e  r e s p o n s e  o f  t h e  r e d u c e d  o r d e r  s p e c t r a l  f u n c t i o n  m e t h o d  i s  o b t a i n e d  w i t h  1 0 ,  0 0 0  

s a m p le s  a n d  f o r  in p u t  s t a n d a r d  d e v i a t io n  o f  o a — { 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 }  o f  th e  p a r a m e t r ic  

r a n d o m  f i e ld .

( c o m p a r e d  to  t h e  d i r e c t  M C S  s o l u t i o n )  a t  t  — 0 . 1 3 4 s  in  F ig .  4 . 4 ( b )  th a n  a t  t  =  0 . 1 1 9 s  in  

F ig .  4 . 4 ( a ) .  T h i s  i n d ic a t e s  t h a t  a s  t h e  t i m e  i n t e g r a t io n  p r o c e e d s ,  t h e  p o l y n o m i a l  o r d e r  o f  t h e  

s o l u t i o n  n e e d s  t o  b e  e n h a n c e d  t o  a c c o u n t  f o r  t h e  c o m p o u n d e d  s t o c h a s t i c  n o n - l i n e a r i t y  o f  t h e  

t r a n s ie n t  s y s t e m .  S i m i la r  o b s e r v a t i o n s  h a v e  b e e n  r e p o r t e d  in  t h e  l i t e r a t u r e s  [ N a j m ,  2 0 0 9 ,  G e r -  

r i t s m a  e t  a l . ,  2 0 1 0 ]  f o r  l o n g  t i m e  in t e g r a t io n  w h i c h  t e n d  to  g e n e r a t e  u n a c c e p t a b l e  e r r o r  l e v e l s  

i f  h i g h e r  o r d e r  c h a o s  f u n c t i o n s  a r e  n o t  u s e d  t o  f o r  p r o j e c t io n  o f  t h e  s o l u t i o n  in  t h e  s t o c h a s t i c  

s u b s p a c e .  T h i s  h o w e v e r ,  h a s  d e t r im e n t a l  e f f e c t s  in  t e r m s  o f  t h e  c o m p u t a t i o n a l  e f f i c a c y  o f  t h e  

s o l u t i o n .  H e n c e  it  m i g h t  b e  d e s i r a b l e  t o  h a v e  s o m e  ‘t i m e - a d a p t i v i t y ’ c h a r a c t e r i s t i c s  in  th e  

s t o c h a s t i c  b a s i s  f u n c t i o n s .  T h e  a c c u r a t e  e s t i m a t i o n  o f  t h e  d e n s i t y  c u r v e  u s in g  d i f f e r e n t  o r d e r
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of spectral functions is found to be highly conducive to this effect since the stochastic spectral 
functions change with each time step.

Table 4.1: Comparison of calculation time (in seconds) of the proposed reduced order spec
tral function approach with direct MCS simulation and 4th order PC. All calculations were 
performed using a single processor core. The last entry ‘4th order PC (parallel BiCGStab)’, 
indicates the block sparse linear system solved solved with parallelized Bi-conjugate gradient 
stabilized algorithm on 8  computational cores.

Methodology Avg Time(s) Min Time(s) Max Time(s)
Direct MCS 13.589 13.506 13.798

2 nd order spectral 1.375 1.345 1.396
3rd order spectral 1.445 1.414 1.465
4th order spectral 1.500 1.481 1.523

4th order PC 5.117 4.975 5.327
4th order PC (parallel BiCGStab) 1.329 1 .2 0 1 1.477

Table 5.2 presents a comparison of the calculation time of the different methods used in 
this study to demonstrate the relative computational efficacy of the proposed method. The 
calculation times are shown for a single time step, performed on a single core of a computa
tional platform. The last entry '4th order PC (parallel BiCGStab)’, denotes the time taken in 
solving the linear block-sparse system obtained from the spectral Galerkin approach using a 
parallel implementation of the Bi-conjugate gradient stabilized algorithm on 8  computational 
cores where each core is identical to the single core used in solving the other linear systems 
mentioned in the table. It can be seen from the table that the 2nd order spectral function ap
proach is on an average 10 times more efficient than the direct MCS simulation and about 
3.5 — 4 times more efficient than the 4th order PC method. When we implement the PC with 
parallel BiCGStab, we find that the speed obtained is around that of the 2nd order method. 
It is also seen that as the order of the spectral function is increased, the computational time 
increases with it. It must be mentioned that the performance of the spectral function method 
can potentially be enhanced significantly using the efficient sampling techniques. The choice 
of the 4th order PC to compare the accuracy of the results is justified from this comparison of 
computational efficacy.

The autocorrelation function (A C F ), which is useful for identifying the relation between 
time signals separated by a finite space in time r  is defined as

ACF(t ,  r )  =  E K u t - l J- t ) ( u t + r - F t + r ) }  ( 4  4 8 )

&t+T

where ut is the system response at time t, at denotes the standard deviation of the response 
at time t and E [•] is the expectation operator defined over the sample space. The ACF gives 
important information about the harmonic components contained in the signal and also the 
stationarity of the signals. Figure 4.5 shows the autocorrelation surface of the transient re-



p o n s e  o f  t h e  f r e e  e n d  o f  t h e  c a n t i l e v e r  b e a m  u n d e r  th e  u n i t  i m p u l s e  l o a d  f o r  t w o  d i f f e r e n t  

v a l u e s  o f  s t a n d a r d  d e v i a t io n  o f  t h e  in p u t  r a n d o m n e s s ,  a a =  0 . 1 5  in  F ig .  4 . 5 ( a )  a n d  cra =  0 . 2 0  

in  F ig .  4 . 5 ( b ) .  T h e  A C F  s u r f a c e  i s  p l o t t e d  a g a i n s t  t h e  t i m e  t  a n d  t h e  p a r a m e t e r  r  f o r  t h e  l e n g t h  

o f  t h e  t i m e  d o m a i n  r e p o n s e ,  0 . 0  — 2 . 0  s e c o n d s  a s  s h o w n  in  F ig s .  4 . 2  a n d  4 . 3 .  F le n c e  t h e  A C F  

s u r f a c e  i s  t r ia n g u la r  in  s h a p e ,  i . e .  t h e  t i m e  t  a n d  t h e  p a r a m e t e r  r  v a r ie s  b e t w e e n  0 . 0  — 2 . 0  s e c 

o n d s .  T h e  d e f i n i t i o n  o f  t h e  A C F  in  E q n .  ( 4 . 4 8 )  e n s u r e s  th a t  t h e  A C F  r e p o n s e  s u r f a c e  r e m a i n s

Time (sec) T (sec) Time (sec) T(sec)

(a) ACF, a a =  0 .15. (b) ACF, a a =  0 .20.

F ig u r e  4 .5 :  T h e  a u t o c o r r e la t io n  f u n c t i o n  o f  t h e  b e a m  r e s p o n s e  u n d e r  a  u n i t  i m p u l s e  l o a d  a t  

t i m e  t  =  0  a s  a  f u n c t i o n  o f  t h e  r  a n d  t  a s  g i v e n  in  E q n . ( 4 . 4 8 ) .  T h e  A C F  s u r f a c e  h a s  b e e n  

o b t a i n e d  w i t h  d i r e c t  M C S  s i m u l a t i o n  a n d  i s  v e r y  c l o s e l y  a p p r o x im a t e d  b y  t h e  r e s u l t s  o b t a i n e d  

w it h  t h e  s p e c t r a l  f u n c t i o n  a p p r o a c h .

b e t w e e n  — 1 a n d  + 1 ,  d u e  t o  n o r m a l i z a t i o n  w i t h  t h e  s t a n d a r d  d e v i a t io n  o f  t h e  r e s p o n s e .  F o r  

v e r y  s m a l l  v a l u e s  o f  r ,  t h e  c o r r e l a t i o n  b e t w e e n  t h e  s i g n a l s  f o r  a l l  v a l u e s  o f  t  i s  a l m o s t  p e r f e c t ,  

w h i c h  l e a d s  t o  A C F  b e i n g  c l o s e  to  1 a l o n g  r  «  0 .  T h e  c o r r e la t io n  a t t e n u a t e s  w i t h  i n c r e a s e  

in  r ,  a n d  it  c a n  b e  s e e n  th a t  t h e  a t t e n u a t io n  i s  m o r e  r a p id  f o r  t h e  c a s e  o f  h i g h e r  v a r ia b i l i t y  o f  

in p u t  r a n d o m n e s s ,  i . e .  f o r  <ja =  0 . 2 0 .  T h i s  i s  e x p e c t e d  a s  a  h i g h e r  in p u t  r a n d o m n e s s  r e s u l t s  

in  t h e  l e s s  c o r r e la t e d  r e s p o n s e  w i t h  t i m e .  T h i s  a l s o  e x p l a i n s  t h e  r a p id  a t t e n u a t io n  o f  th e  m e a n  

r e s p o n s e  f o r  h i g h e r  d e g r e e  o f  v a r ia b i l i t y  o f  t h e  in p u t  r a n d o m n e s s  ( s a y  f o r  a a =  0 . 2 0 )  a s  w a s  

o b s e r v e d  in  F ig .  4 . 2 .

F ig u r e  4 . 6  s h o w s  t h e  A C F  f o r  s p e c i f i c  v a l u e s  o f  t i m e  t  a n d  t h e  p a r a m e t e r  r  a n d  f o r  t h e  

r a n d o m  f i e l d  v a r ia b i l i t y  o f  o a =  0 . 2 0  w h i c h  c o r r e s p o n d s  t o  t h e  r e s p o n s e  o n  s p e c i f i c  p l a n e s  

p l a c e d  p e r p e n d i c u l a r  t o  t h e  f - a x i s  a n d  t h e  r - a x i s  in  F ig .  4 . 5 ( b ) .  F ig u r e  4 . 6 ( a )  s h o w s  t h a t ,  t h e  

a u t o c o r r e la t io n  a t t e n u a t e s  w i t h  r  f o r  a l l  v a l u e s  o f  t  a n d  t h i s  a t t e n u a t io n  i s  m o r e  r a p id  f o r  h i g h e r  

p a r a m e t r ic  u n c e r t a in t i e s  ( a s  e s t a b l i s h e d  in  F ig .  4 . 5 ) .  It i s  a l s o  s e e n  t h a t  t h e  A C F  o b t a i n e d  w i t h  

d i f f e r e n t  o r d e r s  o f  s p e c t r a l  f u n c t i o n s  a r e  in  v e r y  g o o d  a g r e e m e n t  w i t h  t h e  d i r e c t  M C S  r e s u l t s .  

T h e  4 th o r d e r  P C  p r o d u c e s  s l o w e r  a t t e n u a t io n  o f  t h e  A C F  w i t h  i n c r e a s i n g  t  a s  c a n  b e  s e e n  

in  F ig .  4 . 6 ( a )  ( w h i c h  i s  c o n s i s t e n t  w i t h  t h e  4 th  o r d e r  P C  r e s u l t s  s e e n  in  F ig .  4 . 2 ) .  A l s o ,  f r o m  

F ig .  4 . 6 ( b )  i t  i s  f o u n d  th a t  f o r  v e r y  s m a l l  v a l u e s  o f  r ,  t h e  c o r r e la t io n  i s  q u i t e  h i g h  a n d  t h e  t i m e
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2.0 1.4
0.0026 t

(a) A C F as a function  o f  r  at specific tim e steps t  =  0 .0 0 2 5 ,0 .0 2 5 ,0 .1 2 5 ,0 .6 2 5  for o a =  0 .20.

3L020
Time 'jmt) for t

(b) A C F as a function  o f  tim e t, at specific values o f  the param eter r  =  0 .0 0 2 5 ,0 .0 2 5 ,0 .1 2 5 ,0 .6 2 5  fo r a a — 0 .20.

F ig u r e  4 .6 :  T h e  a u t o c o r r e la t i o n  f u n c t i o n  o f  t h e  c a n t i l e v e r  b e a m  r e s p o n s e  a  u n i t  i m p u l s e  l o a d  

a t t im e  t  =  0  f o r  in p u t  p a r a m e t r ic  r a n d o m n e s s  o f  o a =  0 .2 0 .

r e s p o n s e  b e c o m e s  a l m o s t  s t a t io n a r y  a s  t h e  v a l u e  o f  t  i n c r e a s e s ,  w h i c h  i n d ic a t e s  t h e  t r a n s i t i o n  

o f  t h e  t r a n s i e n t  r e s p o n s e  t o w a r d s  s t e a d y  s t a t e .  In  o t h e r  w o r d s ,  t h e  A C F  b e c o m e s  a  f u n c t i o n  

o f  t h e  p a r a m e t e r  r  o n l y  f o r  s u f f i c i e n t l y  la r g e  v a l u e s  o f  t .  T h e  4 th  o r d e r  P C  h o w e v e r ,  d o  n o t  

p r o d u c e  t h i s  t e n d e n c y  t o w a r d s  s t a t io n a r i t y  w h i c h  is  c o n t r a r y  t o  t h e  p h y s i c s  o f  t h e  s t r u c tu r a l  

d y n a m ic  s y s t e m .  T h i s  d i s c r e p a n c y  c a n  b e  a t t r ib u t e d  t o  t h e  g r o w i n g  e r r o r  a s s o c i a t e d  w i t h  

t h e  t i m e  in t e g r a t io n  s c h e m e  a n d  w o u l d  h a v e  t o  b e  a d d r e s s e d  w i t h  e n h a n c e d  o r d e r  o f  t h e  P C  

e x p a n s io n .

T h e  G a le r k in  m e t h o d  i n v o l v e d  in  a p p r o x i m a t i n g  th e  s o l u t i o n  w i t h  t h e  4 th  o r d e r  H e r m it e  

p o l y n o m i a l s  r e q u ir e s  t h e  s o l u t i o n  o f  a  l in e a r  s y s t e m  o f  e q u a t i o n  o f  s i z e  3 0 0 0  x  3 0 0 0  a t  e a c h  

t im e  s t e p  ( c o m p a r e d  t o  t h e  o r ig i n a l  d i s c r e t i z e d  F E  s y s t e m  o f  2 0 0  d . o . f . ) .  T h i s  c a n  i m p o s e  a  

s t r in g e n t  c o n d i t i o n  o n  t h e  u p p e r  b o u n d  o f  t h e  t i m e  s t e p  s i z e  A t  a n d ,  a s  e x p l a i n e d  in  c o n t e x t  

o f  E q n . ( 4 . 1 6 ) ,  c a n  r e s u l t  in  a  g r o w t h  o f  t h e  e r r o r  a s s o c i a t e d  w i t h  t h e  t i m e  in t e g r a t io n  s c h e m e .  

T h is  c a n  l e a d  t o  a  g r o w t h  o f  t h e  e r r o r  a s s o c i a t e d  w i t h  s p e c t r a l  G a le r k in  m e t h o d s  f a s t e r  th a n  

th a t  a s s o c i a t e d  w i t h  o t h e r  s a m p l i n g  b a s e d  t e c h n i q u e s  w h e r e  t h e  d i m e n s i o n  o f  t h e  l in e a r  s y s 

t e m  t o  b e  s o l v e d  r e m a i n s  t h e  s a m e  a s  t h e  o r ig i n a l  d e t e r m i n i s t i c  s y s t e m .  S i m i la r  b e h a v i o r  i s  

a l s o  o b s e r v e d  in  t h e  s t a n d a r d  d e v i a t i o n  r e s u l t s  s h o w n  in  F i g .  4 . 3  w h e r e  w e  f in d  th a t  f o r  h i g h e r  

v a l u e s  o f  v a r ia b i l i t y  o f  t h e  in p u t  r a n d o m n e s s  ( i n d i c a t e d  b y  la r g e  cra ) t h e r e  i s  a  ‘t i p p i n g  p o i n t ’ 

b e y o n d  w h i c h  t h e  d i s c r e p a n c y  o f  t h e  4 th o r d e r  P C  r e s u l t  g r o w s  a n d  t h i s  p o i n t  a r r iv e s  e a r l i e r  

f o r  h i g h e r  v a l u e s  o f  in p u t  v a r ia b i l i t y .  T h i s  c a n  b e  t a c k l e d  w i t h  i n c r e a s e d  o r d e r  P C  e x p a n s i o n ,  

h o w e v e r ,  t h e  h i g h  d i m e n s i o n  o f  t h e  r e s u l t in g  l in e a r  s y s t e m  c a n  s i g n i f i c a n t l y  i n c r e a s e  t h e  c o m 

p u t a t io n a l  c o s t  o f  t h e  t i m e  i n t e g r a t io n  s c h e m e  d u e  t o  t h e  e n h a n c e d  l im i t a t i o n  o n  t h e  m a x i m u m  

t i m e  s t e p  s i z e .

T h e  c o n v e r g e n c e  b e h a v i o r  o f  t h e  p r o p o s e d  s p e c t r a l  f u n c t i o n  a p p r o a c h  w i t h  o r d e r  o f  e x 



p a n s i o n  o f  t h e  s p e c t r a l  f u n c t i o n s  c a n  b e  s t u d i e d  w i t h  a n  e r r o r  in d ic a t o r .  W e  d e f i n e  a  r e l a t iv e  

L 2 e r r o r  f o r  t h e  s y s t e m  r e s p o n s e  ( £ ) ,  a t  e a c h  t i m e  s t e p  t  f o r  m th  o r d e r  s p e c t r a l  f u n c t i o n  a s

(m)
' S F

^  11 ^ .7  M C S  W  I

V j S F ®  -  VjMCS®
=   n — 77 ^  fo r  j  =  1 , 2  ( 4 . 4 9 )

w h e r e  ( t )  i s  t h e  m e a n  ( J  =  1 )  o r  t h e  s t a n d a r d  d e v i a t io n  ( j  — 2 )  o f  t h e  s y s t e m  r e s p o n s e  

v e c t o r ,  a n d  £ ,  M C S { t )  i s  t h e  s a m e  c a l c u l a t e d  w i t h  t h e  d i r e c t  M C S  s i m u l a t i o n  r e s u l t .  T h e  n o r m  

L 2 ( ^ )  c o v e r s  t h e  d i s c r e t i z e d  F E  s p a t ia l  d o m a i n  H e r e  w e  h a v e  s t u d i e d  t h e  c a s e s  f o r  w h i c h  

t h e  s p e c t r a l  f u n c t i o n  o r d e r  v a r ie s  a s  m  =  1 , . . .  , 8  a n d  p r e s e n t  t h e  c o n v e r g e n c e  o f  t h e  L 2 

r e l a t iv e  e r r o r  a s  f u n c t i o n s  o f  t h e  s p e c t r a l  f u n c t i o n  o r d e r .

F o r  t h e  s a k e  o f  r ig o r ,  h e r e  w e  s t u d y  a  b e a m  v ib r a t io n  p r o b le m  w h e r e  a  s h o r t e r  c o r r e l a t i o n  

l e n g t h  o f  t h e  in p u t  r a n d o m  p a r a m e t e r  ( b e n d in g  m o d u lu s )  h a s  b e e n  a s s u m e d .  T h i s  r e s u l t s  in  

a n  i n c r e a s e  in  d i m e n s i o n  o f  t h e  in p u t  s t o c h a s t i c  s p a c e  s u c h  th a t  f o r  t h e  s a m e  a p p r o x i m a t i o n  

e r r o r  w e  n e e d  t o  h a v e  a  h i g h e r  v a l u e  o f  m  w h i l e  c h o o s i n g  a  f in i t e  s p e c t r u m  f r o m  t h e  K L  

e x p a n s i o n  in  E q n .  ( 4 .3 ) .  In  t h e  p r e s e n t  c a s e ,  t h e  c o r r e la t io n  l e n g t h  i s  t a k e n  to  b e  / i a =  L / 5  in  

E q n .  ( 4 . 4 7 )  a n d  f o r  t h i s ,  t h e  r a n d o m  b e n d i n g  m o d u lu s  E I y i s  a p p r o x im a t e d  w i t h  2 0  r a n d o m  

v a r ia b le s  u s in g  t h e  K L  e x p a n s i o n .  F ig u r e  4 . 7  s h o w s  t h e  L 2 e r r o r  c a l c u l a t e d  w i t h  t h e  m e a n

Q)
E

(a) L 2 m ean error. (b) L 2 standard  deviation  error.

F ig u r e  4 .7 :  L 2 r e la t iv e  e r r o r  c a l c u l a t e d  w i t h  t h e  m e a n  ( a )  a n d  s t a n d a r d  d e v i a t io n  ( b )  o f  th e  

c a n t i l e v e r  b e a m  r e s p o n s e  f o r  d i f f e r e n t  o r d e r s  o f  e x p a n s i o n  o f  t h e  s p e c t r a l  f u n c t i o n s  f o r  a n  

in p u t  r a n d o m  f i e ld  v a r ia b i l i t y  o f  o a =  0 . 2 0 .

a n d  s t a n d a r d  d e v i a t io n  o f  t h e  r e s p o n s e  f o r  d i f f e r e n t  o r d e r s  o f  t h e  s p e c t r a l  f u n c t i o n s  w i t h  t i m e  

t  f o r  t h e  h i g h e s t  v a l u e  o f  t h e  in p u t  r a n d o m n e s s  c o n s i d e r e d  in  t h i s  s t u d y  { a a =  0 . 2 0 ) .  I t c a n  b e  

s e e n  t h a t  t h e  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  d e f i n i t e l y  p r o v i d e  a  b e t t e r  a p p r o x i m a t i o n  o f  th e  

r e s u l t s .  T h e  s a m e  b e h a v i o r  i s  h i g h l i g h t e d  a t  c e r t a in  t i m e  s t e p s ,  t  =  1 . 3 7 5 s  a n d  t  =  2 . 0 0 0 s ,  in  

F ig .  4 . 8  f o r  d i f f e r e n t  d e g r e e s  o f  v a r ia b i l i t y  o f  in p u t  r a n d o m n e s s  a a =  { 0 . 0 5 , 0 . 1 0 ,  0 . 1 5 , 0 . 2 0 } .

r spectral 
:r spectral 
t  *pe<Jtril

  1st order
3rd order

0.5 1.0 1.5
T im e (sec)

y V w y y w v

1.0 1.5 2.0
T im e (sec)

  1st order spectral
3rd order spectral

  6th order spectral
—  8th order spectral
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H o w e v e r ,  t h e  h i g h e r  o r d e r  s p e c t r a l  f u n c t i o n s  h a v e  e n h a n c e d  c o m p u t a t i o n a l  c o s t  a s s o c i a t e d  

w it h  t h e m  a n d  h e n c e  h a s  t o  b e  c h o s e n  p r u d e n t ly .  T h e  e r r o r  n o r m  c a n  b e  u s e d  t o  d e t e r m i n e  a  

d e s i r e d  o r d e r  o f  e x p a n s i o n  f o r  a p p r o x i m a t i n g  t h e  s o l u t i o n  o f  t h e  s y s t e m  a t  e a c h  t i m e  s t e p .

0.07 0.009
crQ =  0.05 
a a -  0.10 
aa -  0.15 
<ra =  0.20

aa =  0.05 
oa =  0.10 
a a =  0.15 
oa =  0.20

0.0080.06

0.007
0.05

0.006

%  0.005

fc 0.03 fe 0.004

0.003
0.02

0.002
0.01

0.001

0 . 00 . 0.0008
Spectral Function Order, t=1.375 Spectral Function Order, t= 1.375

(a) L 2 erro r (m ean). (b) L 2 erro r (s tandard  deviation).

1.4
0.006

aa =  0.05 
oa =  0.10 
oa =  0.15 
o a =  0.20

aa — 0.05 
o a —  0.10 
aa =  0.15 
oa =  0.20

0.005

£  0.004

-2 0.003
t  0.6

0.002
0.4

0.0010.2

0.0 0.000.8
Spectral Function Order, t=2.000 Spectral Function Order, t=2.000

(c) L 2 e rro r (m ean). (d) L 2 e rro r (s tandard  dev iation).

F ig u r e  4 . 8 :  L 2 r e l a t iv e  e r r o r  c a l c u l a t e d  w i t h  t h e  m e a n  ( ( a )  a n d  ( c ) )  a n d  s t a n d a r d  d e v i a t io n  

( ( b )  a n d  ( d ) )  o f  t h e  c a n t i l e v e r  b e a m  r e s p o n s e  a t  t  =  1 . 3 7 5 s  a n d  t  =  2 . 0 0 0 s  f o r  d i f f e r e n t  o r d e r s  

o f  e x p a n s i o n  o f  t h e  s p e c t r a l  f u n c t i o n s .

T h e  a b o v e  r e s u l t s  s h o w  th a t  t h e  s o l u t i o n  o b t a i n e d  u s in g  t h e  s p e c t r a l  f u n c t i o n s  a n d  a  s e t  

o f  o r t h o n o r m a l  v e c t o r  b a s i s  f u n c t i o n s  i s  w e l l - s u i t e d  f o r  o b t a i n i n g  t h e  u n s t e a d y  d y n a m ic  r e 

s p o n s e  o f  r a n d o m  s t r u c t u r a l  s y s t e m s ,  b o t h  in  t e r m s  o f  a c c u r a c y  a n d  c o m p u t a t i o n a l  e f f i c i e n c y .  

C o m p a r e d  t o  t h e  d i r e c t  M C S  s o l u t i o n  m e t h o d  o r  t h e  s p e c t r a l  G a le r k in  t e c h n i q u e s ,  t h e  c o m p u 

t a t i o n a l  c o s t  i s  f a v o r a b l e  d u e  t o  t h e  r e d u c e d  o r d e r  o f  t h e  s y s t e m  a n d  f i n i t e  o r d e r  a p p r o x i m a t i o n  

o f  t h e  s o l u t i o n  in  t h e  s t o c h a s t i c  s p a c e .  I t i s  f o u n d  th a t  t h e  e s t i m a t e d  s o l u t i o n  c l o s e l y  m a t c h e s  

t h e  d i r e c t  M C S  s o l u t i o n  a t  a l l  t i m e  s t e p s  f o r  a l l  v a l u e s  o f  v a r ia b i l i t y  o f  t h e  s y s t e m  p a r a m e t e r s .  

F o r  t h e  P C  m e t h o d ,  t h e  g r o w t h  in  t h e  e r r o r s  o n  t i m e  i n t e g r a t io n  h a s  t o  b e  e l i m i n a t e d  w i t h  

e n h a n c e d  o r d e r  e x p a n s i o n  o f  t h e  s t o c h a s t i c  b a s i s  w h i c h  in c u r s  a  h e a v y  c o m p u t a t i o n a l  c o s t .  

T h e  p o s s i b i l i t y  o f  u s in g  t h e  p a r a l le l  i m p l e m e n t a t i o n s  o f  t h e  i t e r a t iv e  l in e a r  s y s t e m  s o l v e r s  to



address the issue of computational cost is highly promising.

4.5 Summary

Two distinct solution strategies for the resolution of the transient response of stochastic dy
namic systems have been proposed. In the classical spectral stochastic finite element ap
proach, the solution is projected on to a finite set of orthonormal basis functions spanning a 
reduced stochastic space using a finite order of the chaos functions from the Wiener-Askey 
scheme. Secondly, we have proposed an efficient reduced order left-preconditioned Krylov 
subspace projection of the stochastic solution on to a finite set of deterministic eigen basis 
which are weighted by dynamic stochastic coefficient functions known as spectral functions. 
A single-step implicit unconditionally-stable time integration scheme has been utilized here 
with the integration operators being stochastic in nature. Hence the approach utilizes stochas
tic temporally adaptive Krylov bases.

The results obtained with the spectral function approach demonstrate good agreement 
with the direct MCS at all time steps and for different values of input standard deviation cra. 
The 4th order PC, on the other hand, shows a rapid growth of error for long time integra
tion and for higher order moments of the solution, which has to be addressed with higher 
order chaos expansions which incurs higher computational cost (as found in Table 5.2). Also, 
the high dimension of the linear algebraic system encountered in the PC expansion restricts 
the time-step size A t  of the time-integration scheme which further enhances the associated 
computational cost. This demonstrates the applicability and computational efficacy of the 
spectral function approach proposed in this work in context of unsteady dynamical response 
of stochastic structural systems.

The following chapter is devoted to the development of a generic stochastic finite ele
ment framework within which we can provide the description of the input random field on 
arbitrary shaped physical domains for any given correlation description and facilitate its easy 
integration with the isoparametric finite element weak formulation. This framework would be 
utilized to study the problem of random fluctuations of the boundary of the physical domain 
or the geometric uncertainties associated with it.



Chapter 5

Parametric and boundary uncertainty in 
diffusion systems

The preceding chapters of the thesis were devoted to the discussion of the propagation of 
parametric uncertainty in structural dynamic systems using a reduced spectral function ap
proach. The input uncertainty in these structural systems was modeled with the established 
numerical techniques available for spectral decomposition of random fields. The physical do
mains in these problems were discretized with regular finite element mesh. However, many 
practical engineering problems are described on complicated geometries which require the 
use of unstructured mesh. Under this condition, a generic framework for representing the 
random field at discrete points in the arbitrarily shaped domains has been considered here. 
Moreover the integration of this discrete random field description into the weak formulation 
of the stochastic finite elements is addressed in this chapter.

Next, the above discretized random field representation would be utilized to express the 
random fluctuations of the domain boundary with nodal position coordinates and a set of 
random variables. The description of the boundary perturbation would be incorporated into 
the weak stochastic finite element formulation using a stochastic isoparametric mapping of the 
random domain to a deterministic master domain. A method for obtaining the linear system 
of equations under the proposed mapping using generic finite element weak formulation and 
the stochastic spectral Galerkin framework would be studied here.

5.1 Introduction

Accounting for surface roughness in the mathematical models is an important consideration 
for systems where random perturbations of domain topologies can have considerable impact 
on the accuracy of the numerical results. This phenomenon can be widely observed in nano
scale designs, high-speed flow problems, aerodynamic systems, thermal systems with bound
ary flux, corrosion, to mention a few. The uncertainty stems from the inability to control the
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geometrical profiles of the individual components in large engineering designs or not having 
a accurate measurement (which might not be feasible physically/economically or due to er
rors) or, they can be aleatoric or epistemic in nature. Hence the problem can be conceived to 
be defined on a domain which has random boundaries. The boundary fluctuations have been 
tackled with a number of methods ranging from parametrization of surface inhomogeneities 
to using fractals. In the present study we resort to the probabilistic description to account 
for the random perturbations in the topology of the boundary surface. The framework for the 
solution of problems on random domains and their error bounds has been presented for Neu
mann [Babuska and Chleboun, 2002] and Dirichlet [Babuska and Chleboun, 2003] boundary 
value problems. Natural convection with sparse-grid collocation technique [Ganapathysub- 
ramanian and Zabaras, 2007], transport in rough walled tubes [Tartakovsky and Xiu, 2006], 
acoustic scattering from rough surfaces [Xiu e t  a l ,  2007] inspired from the transformation to 
obtain boundary perturbations [Nicholls and Shen, 2006]. Also, random domains have been 
represented with fractals and studied with the MCS technique [Blyth and Pozrikidis, 2003] 
which turned out to be computationally expensive.

A novel framework for tackling the random boundary problems with stochastic mapping 
has been studied in [Xiu and Tartakovsky, 2006], where the concept of boundary conforming 
coordinate system [Thompson e t  a l ,  1985] has been used to represent a parametrized bound
ary fluctuation. The approach relies on Laplace equation to represent the stochastic map
ping from a baseline deterministic model (which maybe the mean model or the upper/lower 
bounds) to the random domain. The solution of these Laplace equations would consist of 
harmonic functions with a stochastic component. In contrast to this, the present work utilizes 
the idea of stochastic mapping onto a deterministic domain but utilizes a discrete stochastic 
isoparametric mapping to transform the variational weak form of the equation on the random 
domain onto a deterministic master domain. The method relies on mapping the perturbed 
realizations of the random boundary surface (or a volume adjacent to the boundary) using 
a finite set of iid random variables to a master element using the concept of isoparametric 
mapping. Thus the proposed method can be regarded as a stochastic isoparametric mapping 
of the perturbed elemental domains on to deterministic parent domains using a tensor product 
of the piecewise Lagrange polynomial functions as the spatial FE shape functions and a set of 
orthogonal stochastic functions. The details of the implementation and a discussion about the 
comparison of proposed method with that of [Xiu and Tartakovsky, 2006] has been discussed 
later in the manuscript.

The focus of the current work is the consideration of parametric and geometrical uncer
tainties in computational mechanics within the framework of the stochastic finite element 
method. The first part is concerned with the stochastic discretization of the random field with 
a finite set of random variables. The random field model is characterized by a covariance 
function which describes the statistical dependence of the random field across the spatial do
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main. The Karhunen-Loeve (KL) expansion of the covariance function is performed using 
numerical methods applicable for the resolution of Fredholm integral equations of the second 
kind. These methods include analytical solution of the covariance function to using Galerkin 
type orthogonalization schemes of the error to the test function space in each element of the 
finite element mesh of the spatial domain [Ghanem and Spanos, 1991]. An alternative discrete 
KL expansion is investigated in this study where the principal spectral components of the co- 
variance kernel is obtained by solving a simple eigenvalue problem of the covariance matrix 
constructed at the discrete set of points on the spatial domain. The resulting discrete for
mulation is interpolated inside the element domain at the quadrature integration points using 
finite element shape functions. The error analysis shows satisfactory convergence behavior 
for varying mesh sizes and correlation lengths of the random field.

The chapter is organized as follows. In Sec. 5.2 we discuss the random field model used 
to describe the uncertain parameter along with the methods of expressing the random field 
using various series expansion techniques with a set of random variables. Following this we 
present the motivation and the methodology to use numerical methods for the resolution of 
the covariance function in Sec. 5.3. Subsequently we present a discussion of the Galerkin 
type spectral decomposition technique of the covariance function using the finite element 
shape functions. This is followed by a small discussion on discretizing the lognormal field 
with closed form expressions of the coefficients of the stochastic terms. Section 5.4 gives the 
method to incorporate the discrete representation of the random field into the weak form of 
the SPDE for a steady state diffusion problem and the stochastic spectral Galerkin method 
of solving the system. Section 5.5 presents the description of the boundary roughness and 
the stochastic isoparametric mapping of the weak formulation from the random domain to 
the deterministic parent domain. Following this the solution methodology is discussed. Sec
tion 6.4 demonstrates the proposed techniques for the spectral decomposition of the random 
field with numerical examples and error analysis. This is followed by the numerical examples 
to demonstrate the random boundary problem for transient stochastic systems. Section 5.8 
lists the principal conclusions that can be drawn from this work and the direction of future 
research.

5.2 Finite dimensional random field representation

The probabilistic description of the random field has been discussed in detail in Sec. 1.2.1 
and the methods used for a finite dimensional representation of this random field is given in 
Sec. 2.2.1. In the following section we discuss the numerical methods employed to represent 
the random field on the finite element mesh in a generic manner on arbitrary shaped spatial 
domains.



5.3 N um erical m ethod s for spectral decom position  o f  the  

covariance function

T h e  K L  e x p a n s i o n  p r e s e n t e d  in  E q n .  ( 2 . 1 1 )  r e p r e s e n t s  th e  r a n d o m  p a r a m e t e r  w i t h  a  f in i t e  

n u m b e r  o f  r a n d o m  v a r ia b le s  w e i g h t e d  b y  t h e  s p a t ia l  e i g e n - b a s i s  w h i c h  a r e  e v a lu a t e d  f r o m  t h e  

d e c o m p o s i t i o n  o f  t h e  c o v a r i a n c e  k e r n e l .  H o w e v e r ,  e x a c t  s o l u t i o n s  o f  t h e  F r e d h o lm  in t e g r a l  

e q u a t i o n s  o f  t h e  s e c o n d  t y p e ,  E q n .  ( 2 . 6 ) ,  a r e  a v a i la b le  f o r  a  f e w  s p e c i f i c  t y p e s  o f  c o v a r i a n c e  

k e r n e l s  a n d  a  f e w  s p e c i a l  g e o m e t r i e s .  A  n u m b e r  o f  s o l u t i o n s  o f  t h e  d e c o m p o s i t i o n  o f  t h e  c o -  

v a r ia n c e  k e r n e l  f o r  o n e - d i m e n s i o n a l  d o m a i n s  h a v e  b e e n  g i v e n  in  [ G h a n e m ,  1 9 8 9 ] .  H o w e v e r ,  

a n a l y t i c a l  m e t h o d s  o f  d e c o m p o s i t i o n  o f  t h e  k e r n e l  f u n c t i o n  i s  n o t  a v a i la b le  f o r  c o m p l i c a t e d  

g e n e r a l i z e d  s p a t ia l  d o m a i n s  a n d  n u m e r ic a l  m e t h o d s  h a v e  t o  b e  e m p l o y e d  t o  t a c k l e  s u c h  p r o b 

l e m s .  H e n c e  w e  p r e s e n t  h e r e  a  s o l u t i o n  t e c h n i q u e  w h ic h  s o l v e s  t h e  s p e c t r a l  d e c o m p o s i t i o n  o f  

t h e  c o v a r i a n c e  k e r n e l  a t  d i s c r e t e  s e t  o f  p o i n t s  o n  t h e  p h y s i c a l  d o m a i n .

5.3.1 Discrete Karhunen-Loeve expansion

I f  w e  c o n s i d e r  t h e  v a r io u s  g e o m e t r i c a l  c o n f i g u r a t io n s  s h o w n  in  F ig .  5 . 1 ,  w e  s e e  t h a t  t h e r e  

a r e  a  n u m b e r  o f  p o s s i b l e  d e f i n i t i o n s  o f  t h e  c o r r e l a t i o n  l e n g t h  a s s o c i a t e d  w i t h  t h e  c o v a r i a n c e  

k e r n e l  d e s c r ip t io n .  F o r  e x a m p l e  th e  ‘r e d ’ c o l o r e d  l in e s  d e n o t e  th e  L 2 l e n g t h  b e t w e e n  p o i n t s  

P i  a n d  P 2 w h i l e  t h e  ‘b l u e ’ l i n e s  d e n o t e  a  l e n g t h  d e f i n e d  a l o n g  th e  g e o m e t r y  w h ic h  w o u l d  b e  

c o n s i d e r e d  a s  a n  L 1 n o r m . T h e  r e s o lu t io n  o f  t h e  K L  e x p a n s io n  f o r  s u c h  v a r ie d  k in d s  o f  g e o m 

e t r y  m i g h t  r e s u l t  in  d i s c o n t i n u o u s  e i g e n f u n c t i o n s  w h ic h  c a n n o t  b e  d e s c r ib e d  w i t h  c l o s e d  f o r m  

a n a l y t i c a l  f u n c t i o n s .  A d d i t i o n a l l y ,  w e  s h o u l d  a l s o  t a k e  in t o  a c c o u n t  t h e  d i s c r e t e  in d e x  b a s e d  

c o r r e l a t i o n  o f  t h e  v a r io u s  p a r a m e t e r s  ( s u c h  a s  a n g l e s ,  w i d t h s  a n d  h e i g h t s  o f  c o r r u g a t io n  in  

F ig .  5 . 1 ( c )  a c r o s s  t h e  l e n g t h  o f  t h e  p a n e l )  a n d  in c lu d e  t h e m  w i t h in  t h e  c o v a r i a n c e  d e s c r ip t io n  

o f  t h e  r a n d o m  f i e ld .

X

(a) C onfiguration  1 (b) C onfiguration  2

F ig u r e  5 .1 :  D i f f e r e n t  g e o m e t r i c a l  c o n f i g u r a t io n s  h i g h l i g h t i n g  t h e  v a r io u s  p o s s i b l e  d e f i n i t i o n s  

o f  t h e  c o r r e l a t i o n  l e n g t h  o f  t h e  r a n d o m  f i e ld .
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Recalling the discussion presented in Sec. 2.2.1, the covariance function defined as =  
(%¥>)(rx) =  Ca(ri, r2)^(r2)dr2 ri, r2 e @  is seen to be linear operator : L 2( @ )  ->> 
L 2( @ )  on a vector space. Hence the integral equation in Eqn. (2.6) can be written as

<tfaV =  v(p (5.1)

Non-trivial solutions of the above homogeneous equation exists only for those values of v  

which makes ( /  — v'tff) non-invertible, I  being the identity operator. It is possible to represent 
the random field using a finite number of dominant components based on the eigen spectrum 
of the kernel in Eqn. (5.1).

Here we start by discretizing the spatial domain on which the solution of the integral 
equation is sought. Commonly, the spatial domain is discretized with the finite element nodes 
and hence the random parameter can be expressed on them with the vector a p )  : ^ x 0 ^ M n 
where n  is the number of FE nodes. The covariance matrix is hence defined as

C * = E (a ( 6 )  -  ao) (a(0) -  ao) where Ca 6 Rnxn (5.2)

Here Ca is a Hermitian matrix with identical diagonal terms.

For stationary random fields and a uniformly  s p a c e d  f in i te  e l e m e n t  m e s h  over a one di
mensional spatial domain, it is easy to see that the discrete covariance matrix Ca is a Toepli tz  

m a tr ix  where the entries are constant along the diagonals parallel to the main diagonal. This 
property can be used efficiently to improve the memory requirement to store a dense covari
ance matrix, where the entire covariance matrix can be stored with as few as 2 n  +  1 elements 
(compared to the n ( n  +  l) /2  elements required for just symmetric matrices) and a set of 
‘forward shift’ and ‘backward shift’ matrices which are matrices with all elements of the 
super-diagonal and sub-diagonal set to 1 respectively and zeros everywhere else. The case of 
evaluating the spectral components of a 2D discrete covariance matrix has been investigated 
in [Graham e t  al . , 2011] where lexicographic ordering of points has been used in the 2D case 
and an FFT method is utilized to obtain the eigen components.

However, the spatial domains ^ e l " ,  where n  >  1, with a non-uniform mesh would not 
lead to a Toeplitz matrix of spatially discretized covariance matrices. Hence the eigenvalue 
problem in Eqn. (5.1) becomes more expensive. We apply Lanczos iterative techniques to 
solve for the largest eigenvalues, and write the expression for the rank-ra approximation of 
the covariance operator as

where $  € R "xm and A =  diag [Aj,. . . ,  Am] (5.3)

where <0 is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. The 
above equation holds true for any positive continuous semidefinite kernel on a finite interval



due to Mercer’s theorem. Only the first few largest eigen components are utilized in (5.3), 
where Ai > . . .  > Am. This suggests that the covariance kernel is approximated with the 
desired accuracy using the eigen functions obtained from Eqn. (5.3). When the correlation 
length of the random field on the spatial domain is small, higher eigen modes have to be 
incorporated into the random field approximation. These modes have complex shapes which 
implies the necessity of higher mesh resolution to capture their behavior. Also, Kolmogorov’s 
theorem [Adler, 1981] implies that the realizations of the random fields a ( r ,  9) are Holder 
continuous with respect to r (with Holder exponent a  < 1/2) with probability 1. Hence 
the random vectors can be quite irregular. The choice of the discrete points in the spatial 
domain is crucial in this discussion, since the computational cost of resolving the eigenvalue 
problem of Eqn. (5.1) directly depends on the size of the covariance matrix while the accuracy 
requirements may necessitate a high mesh resolution. When the finite element nodes are 
chosen as the discrete points in space, the random field is obtained as a (6) G M.nh where nh  

is the dimension of the linear system based on the finite element mesh parameter size h. The 
random parameter vector at discrete points in the spatial domain is thus represented as

diag(£(#)) is a diagonal matrix of independent random variables £ =  {£i,. . . ,  £m }« It might 
be mentioned that the covariance matrix may be chosen to be on the quadrature integration 
points in the spatial domain which are employed in the weak formulation. This will be dis
cussed in more detail in the next section.

5.3.2 Spectral decomposition of the covariance kernel with Galerkin 
formulation

In this section, we present the solution methodology of the Fredholm integral equation of the 
second type with a Galerkin error orthogonalization technique. The solution methodology 
presented in Sec. 5.3.1 is quite efficient and straight forward in terms of the numerical imple
mentation. The resulting coefficient matrix is a fully populated symmetric matrix. However, 
if higher order isoparametric elements are used on a coarse finite element mesh, the error 
accumulated in the formation of the discrete KL eigenvectors might increase. This might 
be undesirable in applications which require highly accurate models of the random system 
matrices. Hence we discuss here an alternative, where the spatial interpolation functions in 
the element geometry are utilized to solve the KL expansion and which was forwarded in 
[Ghanem and Spanos, 1991]. We point out though, that while the method results in an en
hanced accuracy of the approximate solution at the cost of additional numerical complexity

M

(5.4)

where a0 is the vector of the deterministic parametric field over the spatial domain while
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to form the linear systems required for the eigenvalue problem, it offers no benefits in terms 
of the memory requirement or using an efficient algorithm to resolve the dominant eigen 
modes of the covariance functions. This would be obvious in the discussions presented in the 
subsequent paragraphs.

The objective here is to obtain the solution of the Fredholm integral equation using the 
finite element mesh as well as the spatial interpolation functions employed to construct the 
system matrices. If we define the collection of the set of elements as $  =  {A ( @ ) h  • h  is the 
mesh parameter size} then the integral equation in Eqn. (2.6) can be rewritten as

X )  /  C'a(rlt ,r 2)^ (r 1Jd rlfc =  i/j^ (r2); ru e  Q ek, r2 e  &  V j  =  1,2, . . .  (5.5)
k e S ’m fc

where the integration has been split up into integrations over each elemental domain and 
(om is the cardinality of the set <§. Here each of the integrations can be carried out separately 
and finally the system can be assembled to obtain the realization of (j>(r) over the entire do
main. This is the general framework within which the FE system is resolved to obtain the 
solution vector at the nodal points. We approximate the eigenfunctions f ( r )  in each element 
domain as <j>(r) =  =  [ ^ ( r )]T{^} where [ ^ ( r ) ]  is the vector of the FE shape
functions of a chosen degree based on the order of the elements and {</>} is a vector of the 
functional values of f  at the discrete finite element node points.

Thus Eqn. (5.5) can be rewritten in terms of the residual e  as

£(r2 ) = ] L  [  c ^ k > r2)[-^(rik)]TW}kdrik - (5.6)
ke£m fc

A Galerkin error orthogonalization is hence applied where the residual in the above equation 
is made orthogonal to the interpolation/shape functions [j V] i.e. e  _L «/f£, V i on every 
element A ( @ ) h. This gives,

f  [  i ^ ( r % ) ] c * ( T U ’ r % ) [ ^ ( r i k ) ] T W i ‘d r i t d T *r  =
keSm n P n k

Vj [  [ ^ ( r 2p) ] [ ^ ( r 2p)]T{^}pdr2p Vp € S m (5.7)
Jn%

The above integral equation would gives a linear system from which the principal eigen modes 
of the covariance function can be determined. A closer look reveals that in contrast to the finite 
element system assembly, this method produces element matrices which, during the assembly 
process, occupy square sub-blocks along a particular row block of the FE linear system. For 
example, for a given value of p  in the above equation, if we look at the element matrix ae for 
the element k  which has n e nodes, then the linear system A is assembled as



row block

such that, A[ix_(nPk, npk)] <— a1

p*
column 
block <

pk pk

The above graphical representation of course assumes that the nodes of the k -th element are 
numbered consecutively. It has been used to highlight the assembling procedure where the 
individual element level matrices obtained from successive calculations for a particular value 
of p  using Eqn. (5.7) are placed across the columns of the pth row sub-block. Thus we have 
a fully populated coefficient matrix. Thus there is no benefit in terms of the memory require
ment associated with this method when compared to the discrete KL expansion presented in 
Sec. 5.3.1.

Another method to evaluate the above integral may be to approximate the covariance 
kernel inside the element domain with the spatial shape functions. Let C*pk G R neXne be the 
covariance function constructed between the elements p  and k. The approximation of this 
function within these elemental domains is given as

Cer‘ (ru , r 2p) =  ® ^ { r 2p)\ : =  [ ^ ( r 2p)}TC e( r ik, r j p ) { J f { r lk)} (5.8)

where C ( r l , Tj) is the discrete covariance matrix of the random parameter constructed at the 
nodal points. The above equation can be incorporated into the Galerkin framework from 
which we would obtain the nature of the element level sub-blocks as

a ePk = [  [  [ ^ ( r 2p ) ] [ ^ ( I '2p ) ] T C e ( r i k , r j v ) [ ^ ( r ik)]p K ( r i t ) ] T d r i k d T 2 p

f  2p ] C e ( r i k , r j p ) (  f  [ ^ ( r 1J ] [ ^ ( r 1J ] r d r1)i ] (5.9)
/  \  J n i  /

M!
”~v'“
Ml

where the integration of the shape functions with the above form leads to element mass ma
trices (with unit mass density). Hence the element matrix can be written as

(5.10)

Thus the global system matrix can be constructed with the elements of the mass matrix. It is 
to be noted however that the global stiffness operator is not of the simple form A =  MC M, 
rather it is a ‘dyadic’ combination of the ‘vector’ of block element mass matrices like Mv =  
[M®, M ^,. . . ,  M®m]T where n m is the number of elements in the mesh. The global linear 
system is a fully populated symmetric matrix, as is the case with the method proposed in 
Sec. 5.3.1.
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The right side of Eqn. (5.7) is however just the mass matrix M which is sparse and sym
metric in nature. Taking these expressions together we have the linear system of the form

which is a generalized eigenvalue problem and would give a set of n  eigen pairs where n  is 
the total number of degrees of freedom of the system. The rate of decay of the eigenvalues 
depends on the chosen correlation length of the random field and the description of the random

level matrices requires the evaluation of the elemental mass matrices, all of the classical FE 
formulation (such as the isoparametric formulation for arbitrary element shape and geometry) 
are applicable here. The eigenvalue problem in Eqn. (5.11) involves a dense matrix A which 
maybe quite expensive for large systems. Lanczos type iterative techniques can be applied

context of the discrete KL expansion in Sec. 5.3.1.

Discrete representation of the lognormal field model

The Gaussian random field models, while offering an easier scheme for computational imple
mentation, is often unsuitable for modeling the uncertainty for those physical systems where 
the parametric variation has to be considered strictly positive to make any practical sense. 
Under such circumstances, the lognormal field is generally the favored distribution and has 
been adopted in the present work. The discrete KL expansion framework laid out in the pre
vious sections can easily be extended to incorporate this kind of random field distributions. A 
lognormal field of the discretized random field &i(6) G Mn x  @(m) is expressed as the expo
nential of the corresponding Gaussian field model a(0). Following from the discretized KL 
expansion in Eqn. (5.4)

where £ =  {£ i,. . . ,  £m } is the vector of iid Gaussian random variables. To make the above 
expression computationally favorable, the lognormal field is often expressed as a finite order 
multivariate expansion of the basic iid random variables from the Wiener-Askey scheme.

(5.11)

field which is studied in detail in the subsequent sections. Since the formation of the element

here to evaluate the largest eigen modes of the system quite similar to the one discussed in

(5.12)

When the basic iid random fields are Gaussian in nature, the polynomial expansion of the 
lognormal field is

a i =  w h e r e  a i

m < a i ( < M ( e ( 0 ) > L 2 (© <**>,d P € )

( £  ( 0 )  )  L 2 (© (M ) )

where are the multivariate Hermite polynomials spanning the stochastic space 6  G

@(M) and (*, )L2 (@(m) d P idenotes the inner product in the same space. The value of m  is



guided by the dimension of the input polynomial space M  and the chosen order of expansion 
( M  +  p \

p  as m  =  I . The L 2 norm of the Hermite polynomials are easily available gener-V p  J
ally pre-computed and fed into the solver. The inner products essential for the evaluation of 
the numerator in Eqn. (5.13) can be computed using the analytical expression applicable for 
Gaussian fields as

M
j g f d ( a l  . , 3 m )  ( 5 J 4 )aj =  exp (ao) TT exp (a,2)

where J ^ hd ( a i , . . . ,  &m ) denotes the highest order term associated with the i th Hermite poly
nomial and the arguments are replaced by the coefficients of the random variables (which are 
the eigen modes obtained from the discretized KL expansion) instead of the random vector 
f  =  {£ i,. . . ,  £m} itself. The proof of this has been provided in Appendix A.I. This provides 
an efficient analytical way to compute the undetermined coefficients associated with the log
normal random field given in Eqn. (5.13) instead of a multi-dimensional integration in the 
stochastic subspace for each coefficient.

5.4 Stochastic weak formulation with discrete random pa
rameter

Here we consider the finite element spaces associated with the spatial and stochastic dimen
sions of the randomly parametrized system laid out in the previous sections. The spatial set 

E  Rd and the set of random outcomes modeled in the finite dimensional stochastic space 
0 (M) C 0  will be used to define the tensor product space @  x 0 (M) where the solution to the 
stochastic weak formulation is sought.

5.4.1 Finite element spaces

The spaces involved in the construction of the stochastic finite element method (SFEM) for 
the stochastic weak formulation is presented in [Babuska e t  a l ,  2005b] which gives two 
paradigms in which the solution of the above problem is sought: a) the k  x h -SFEM ver
sion and the b) the p  x h -SFEM version. We consider these in detail here: let the spatial 
domain Q) be meshed as A (^ )  such that mesh parameter size is given by h ( A ( @ ) ) .  The 
finite dimensional stochastic domain may be partitioned with a finite number of disjoint 
boxes having finite intervals along each dimension and we denote this rectangular mesh as
A ( 0 ( M ) )  =  A ( 0 1 ) x . . .  x A (0m ) with the mesh parameter size k  defined as the maximum 
interval size along a stochastic dimension. Thus the mesh on the tensor product space is de
noted as A (^ , 0 (M)) and the elements as r (A (^ ,  0^M )̂) =  r (A (^ ))  x r(A (0^M^)). The
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approximating functions on this tensor product space is given by the set

v ( r ,f )  G W|i>(r,£)lr(A( ,̂©(M))) is a polynomial of degree p  in

where W \ v ( r , £ ) \ @ t e w )

S p,q( @ ,  0 (M)) =  |v ( r ,£ )  G W|i>(r,£)|T(A(0 ,©(M))) is a polynomial of degree p  in r,

V f  G 9 and of degree q in f , Vr G ^  > , (5.15)

is the space of polynomials which converge in the L 2 sense. The definition
of the L 2 norm depends on the physical problem at hand (for example, when we have an 

elliptic stochastic differential operator, \ \ v ( r ,  £ ) I I l 2(0 )  =  Ia(s>)  a ( r > l ^ r v ( r > 0 | 2 ^ r )' T h e  

assumptions on the chosen random parameter a(r, 6) and its joint probability distribution 
renders W  a Hilbert space. For the standard deterministic finite elements, the weak form of 
the governing partial differential equations is stated as: 6(u(r),i;(r)) =  l ( v ( r)) V v  G L 2( @ )  

where u  is the solution that is sought, v  consists of the test functions in the admissible L 2 

space and b and I are the continuous bilinear and linear forms respectively on the spatial 
domain r  G Qi. Thus the bilinear and linear forms associated with the weak stochastic FE 
formulation is written as

The basic finite element theory ensures the existence and uniqueness of the solution u s p ,q G 
S p,q( @ ,  0 (M)) and the convergence to the actual solution as

The above equations stand for the convergence of the h-  version and the p -  version of the SFEM 
respectively. The p  x h -SFEM seeks the solution in tensor product space 0 (M)>9 0  A ( @ h) and 
produces exponential convergence of the solution with p  [Babuska e t  a l ., 2004]. We consider 
here this latter version of the weak formulation where the input stochastic space has been 
discretized with a finite set of independent identically distributed random variables and the 
solution at the nodal points in the discretized spatial domain is expressed with a finite p- th  

order polynomial function of the random variables.

(5.16)

b ( u ( r , e ) , v ( r , e y , 0 ) d p i (ey,

l ( v ( r , 0 ) - , 8 ) d P ( (6) (5.17)

so that, & ( u ,  v ) =  A f ( v )

| | l i  — Usp,q Hw(^,©(M)) 0  as  ^ ( A ( i ^ ) )  J f c ( A ( 0 ^ ) ) )  —> 0

and ||it -  W5p.«Hw(^,©(")) 0 as P, 9 -> oo



5.4.2 Description of the stochastic steady-state diffusion problem

Let us consider here steady-state diffusion problem on an arbitrary-shaped domain in the three 
dimensional space and the diffusion coefficient K  is assumed to be uncertain. If we consider 
the heat transport problem then K  becomes the thermal diffusivity. The governing partial 
differential equation of the steady state diffusion problem along with the Dirichlet boundary 
conditions may be written as

V ( K ( r ;  0 ) V u )  =  Q ( r )  and u  =  0 on (5.18)

where Q  is the source/sink term in the domain. When formulating the weak form of the above
system at a particular point in the stochastic sample space 6, we have

b ( u , v ; 6 )  =  l ( v \ Q )  where (5.19)

b ( u , v ; 0 )  =  [  K ( r \ 6 ) ( V v )  • { V u ) d ® \  and l ( v \ 9 )  =  f  v Q d 9
J 9  Js>

Here K (r, 6) is modeled with a finite set of random variables following the discrete KL- 
expansion (detailed in section 5.3.1) of the covariance kernel associated with the random field 
on the domain such that

m
K { 0) =  K 0 +  K 0, K j  e  R"xn (5.20)

3 = 1

is expressed by its mean K 0 and perturbation components K j  in the series expansion form.
The spatial discretization of the random parameter may be performed using the same mesh
that is used for the resolution of the response of the finite element system, i.e. A (^ ), and
the vector K ( Q )  are the parameter values at the finite element nodes. Here we introduce the
following finite element discretization spaces: i) X q(Q^M>>) c  L 2( Q ^ )  such that X q(6i) C
L 2(6i) consists of up to q-th order polynomials in L 2(6i) and X q( Q ^ )  =  -^2(ft)
where X 2(6i) consists of all square integrable functions in 6i with 0 (M) =  n £ i  ft C Mm
and the probability density support P(£) =  n £ i  e  ft ^  an(  ̂&) H l ( X { S > h))  consists

1/2
of all functions which vanishes on the boundary with the norm ||v|| =  | |  Vw|2 d r |  . 

Thus the approximation space of the test functions v e in x which is meshless
in 0 (M>, for the weak foim is given as

X q( S M )  ® H l { A ( % ) )  =  { v e =  v e ( r , Z )  € i 2(0 (M) x A ( 2 > h))  :

v e € span ( y T ( r h) j r ( £ ( 9 ) )  : ^  €  X q) }  (5.21)

where A ( ^ )  denotes the mesh with the mesh parameter size h. This corresponds to the
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p  x  h -SFEM version. We expand the solution in each discretized element <g> A ( ^ )  as

ne

u e ( r h, 8 )  =  ' £ i u f M ( 0 ) N ? ( r hy, r h e  r(A (® )), 0 e  (5.22)
i=1

where p  and q denote the order of the polynomials of the spatial and stochastic basis functions 
respectively, M  is the dimension of the input stochastic space, h  is the mesh size parameter 
and A f [ ( r h) are the multidimensional Lagrange basis functions of order p  on r^. For the p x h -

SFEM we have the vector of random coefficients u q,M(6) =  {uf  , . . . ,  expressed with 
polynomial functions of the input iid random variables. Here u f M G Mne where n e

is the number of nodes associated with each element of the FE mesh.

The vector of the random parameter values at the nodal points is interpolated inside the 
spatial domain of the elements using the deterministic finite element shape functions which 
are the basis functions for the expansion of the stochastic system response in the spatial do
main i.e. A/f (r^). The random parameter has already been expressed in the stochastic domain 
with the global stochastic polynomial basis as per Eqn. (5 .4 ) . Then the stochastic bilinear op
erator associated with the weak form on each individual spatial element of the finite element 
mesh A ( @ )  and the global stochastic function space ©(M) may be written as (following from 
Eqns. (5 .1 7 )  and (5 .1 9 ))

^ e < * o ..® A (s w ( « . . « e ) =  f  f  [Afp(rh)]T[Ke(9)](Vve) ■ ( y u e)d2>dP( (6) (5 .2 3 )
y0(M) j/s{9h)

where [Afp] =  { A / J , . . . ,  A/p} is the vector of the spatial basis functions (of order p )  and 
[ K e (6)] is the vector of the random parameter at the nodal points belonging to the element 
r ( A ( @ h ) ) .  The linear form accordingly becomes

j£?©(M) , g 0 A ( <2 h)(ve) =  f  [  VeQ(Th)d@dP(:(0) (5 .2 4 )
J e ( M )  J A ( ® h)

The element level equations take the following form

^ © ( m).9® A (^) (t^e> Ve) =  “̂ © (Af)>9<g)A(î l)(^e ) (5 .2 5 )

The perturbation matrices of the finite element system are then given as

A ,(e) =  E  I  m r i o m . i ]i=1 J  A ( 0 h)

[saak)! ravp(rft)]
dj]i dm

T

d @  (5.26)

where d  denotes the dimension of the Euclidean space in which the physical domain of the 
problem exists, i.e. @  C Rd, rji is the i th coordinate axes in the same Euclidean space, and 
K e,i is the i th term in the series expansion of the random parameter following Eqn. (5.4).



Equation (5.26) can be extended to include the linear or isoparametric mapping for a 
spatial domain meshed with non-uniform elements. For example, if we consider the mapping 
of the Cartesian coordinate axes 77* to the parameter space, we have

Vi =  Q i  fai ,  • • • > Vd) Vz =  1 , . . . ,  d\ and A ( @ h) =  Q (A(D)) (5.27)

where rj =  { r j i , . . . ,  rjd}  are the set of parent axes with A(D) being the parent hypercube onto 
which the elements A (f^ ) are mapped using the transformation Q. The system matrices can 
then be written in terms of the isoparametric integration as

A *e) =  E I  nf l f  J  a (D)

d A f p (rj)'

drji drji

i  T

(5.28)

where Jy (77) =  ^  Vi, j  E [1, . . . ,  d] 
o r \j

i.e. \J(rj) | is the determinant of the Jacobian matrix and d  D =  drj1.. .  drjd . The above integral 
is usually evaluated with a finite order Gauss-Legendre quadrature. The order is guided by 
the degree of polynomial involved in the integration. When the integration is performed with 
n  points, Gauss-Legendre quadrature produces exact integrals for all polynomials of order 
up to 2n  — 1. The interpolating shape functions used to express the KL eigenmodes within 
the element domain increases the polynomial order, and hence more Gauss points are neces
sary to compute the perturbation parts of the diffusion matrix, compared to its deterministic 
counterpart AqG\  Let us denote the grid of n d Gauss points ^  and weights in the parent 
hypercube in as

%  =  {flm : f}m =  xh ...jd V ji,. . .  J d e  {1 ,. . . ,  n }  and m =  1 ,. . . ,  n d )

%  =  { w m : w m =  Wh  . . .  w jd V ji,. . .  J d e  {1, . . . ,  n }  and m  =  1 , . . . ,  nd|

where Wi is the weights associated with the Gauss points along the zth axis of the hypercube. 
The expression for the integral in terms of the Gauss points is

ASe) = E  E  w-
i - 1 m 6/(% )

[ K e A
t j —Vm dr)i f j—V m d r ) i

m \
'Tj—1?m

1J—'Hm

(5.29)

where J ^ ( ^ )  is the cardinality of the set The derivative of the shape functions J\fp with 
respect to the global coordinates rj has to go through a coordinate transformation which is 
written in terms of the inverse of the Jacobian matrix denoted by [J(tt) ] — 1 which is well- 
established in the isoparametric finite element literature [Porter and Stirling, 1990]. From 
Eqn. (5.29) it is seen that we are trying to evaluate the random parameter K e at the quadrature
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integration points within the element domain. Hence, a better approximation of the random 
field would be obtained if the discrete spectral decomposition of the covariance function in 
Eqn. (5.3) is performed such that the eigenvector <f> represents the eigenmodes at the quadra
ture integration points. However, the additional computation cost has to be justified by the 
significance of the improvement in accuracy of the obtained solution. The next section deals 
with the solution methodology applied to the above discretized system to propagate the input 
parametric uncertainty to the system response and the evaluation of the second order response 
statistics.

5.4.3 Solution methodology

Here we present the solution methodology adopted in this study to solve the stochastic diffu
sion problem of the finite element discretized system. We present the setting for the Galerkin 
method with Polynomial Chaos Expansion (PCE) which can be used to represent the steady 
state diffusion equation with a finite order chaos expansion [Pettit and Beran, 2006, Ghanem 
and Spanos, 1991]. As has been discussed in the literature (e.g. [Keese, 2003]), the dimen
sionality of the linear system increases significantly with the order of chaos chosen and the 
dimension of the input stochastic space.

The assembly of the above element matrices to form the stochastic global system can be 
written as A ( 6 )  =  [U ee^^i^ r̂om (^-29) where A ^  is the element
level (e) matrix associated with the z-th KL mode of the random field, and <§ is the set of all 
elements of the finite element mesh on the spatial domain and 34?{£(0 ) )  are the stochastic 
basis functions which expresses the random field with iid random variables £(6 ). Hence the 
Galerkin formulation at the stochastic level gives

E
(5.30)

where A : ©(M) IT*"; Vv«'M e  R" x L 2 ( 0 (M), d P ()

where E [•] is the expectation operator on the probability space, u q,M is an assembly of the 
element block vectors u f M given in Eqn. (5.22) and \ q,M is the stochastic trial vector basis. 
Eqn. (5.30) leads to the following set of equations

£  E [ A ( 0 ) ^ ( 0 ) ^ ( 0 ) K '"  =  E [ ^ Q ]  (5.31)
Ol£JP2,M

If we denote U =  {u^,M : a  G ^ ,m } , we have

A U =  Q (5.32)

where A is the block-sparse system coefficient matrix and Q is the right hand block vec-



tor. The block-sparse nature of the coefficient matrix is due to the fact that the Galerkin 
orthogonalization of the residual to the stochastic basis functions involve an integration in the 
stochastic space with the terms H a / ? 7  =  E The H a q1 is zero for most
combinations of {a,/3 ,7 }. A particularly efficient way of tackling the expansion might be 
the use of double orthogonal polynomials for the random field in which case the coefficient 
matrix would be block-diagonal and the stochastic problem would be decoupled [Babuska 
e t  a l ., 2005b]. Detailed discussion on the efficient solution of the linear system in Eqn. (5.32) 
is beyond the scope of the current work and hence the reader is referred to a review of the 
important literatures in this domain [Nouy, 2008, Schueller, 2001].

5.5 Random boundary roughness

The randomness in the boundary surface is prevalent in many practical engineering applica
tions and can be considered as one of the major source of uncertainty. Surface roughness 
has been accounted for by using various methods ranging from simple parameterization of 
surface inhomogeneities [Taylor, 1971, Richardson, 1971] to using fractals to represent the 
perturbations in the domain [Blyth and Pozrikidis, 2003]. An alternative approach is to as
sume that the detailed boundary topology is uncertain and to use random fields to model it. 
This description has been used in a number of studies which are briefly discussed here. So
lution of PDEs on random domains was investigated in [Xiu and Tartakovsky, 2006] using 
a stochastic mapping of the body-fitted curvilinear coordinates. The extended finite element 
method (X-FEM) method has been extended to PDEs on random domain [Nouy e t  a l ,  2008] 
and for tackling random heterogeneous material interfaces [Nouy and Clement, 2010]. This 
concept utilizes level set technique to implicitly represent the random geometry and then uses 
the classical spectral SFEM to solve the problem on a fixed finite element mesh. The method 
relies on representing the geometry and its randomness implicitly with random level-set func
tions. However, incorporating the randomness into the complex geometries with stochastic 
parametrization of random level set functions is not always a trivial exercise. Moreover, 
the random boundary may be realized with a random field model rather than just using ran
dom variables to model the stochastic level set functions. The method proposed in this work 
can potentially overcome these difficulties. Natural convection with random boundary topol
ogy has been tackled with a sparse-grid collocation technique [Ganapathysubramanian and 
Zabaras, 2007] where deterministic realizations of the stochastic problem have been solved 
at random sample points. Investigation of the transport phenomenon in rough walled tubes 
has been studied in [Tartakovsky and Xiu, 2006]. However integrating the treatment of these 
uncertainties in a generic manner within the stochastic spectral FE literature still remains a 
challenge. This is due to the fact that the stochastic mappings involved in these cases are 
particularly cumbersome to incorporate within the stochastic spectral Galerkin framework.
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5.5.1 Problem definition in the random domain

A diffusion problem is considered here on a domain with random boundary perturbations such 
that C where 9 signifies the randomness component. Hence

V(KVu)  — Q  on %

u  =  G c on T°d (5.33)

n.Vu =  qc on r j  and n.Vu =  0 on

where r j ,  T 2e belongs to a part of the boundary d@ o  which is random and Tj n  T 2e =  . Here ni 
and n2 are the outward normals to the random boundary Tj and T 2d respectively. The Dirichlet 
and the Neumann boundary conditions specified in the above equations are true for every 
sample realization of the random boundary, which put in another way states that G c and qc is 
constant for each random sample.

The weak formulation of the problem in Eqn. (5.33) expressed on the finite element mesh 
A ( @ e )  is such that the solution is sought in =  { v e ( x 6) =  ^ ( x 6) y e] € Rn} where
c/K(x0) consists of spatial basis functions. For the sake of simplicity, if we consider I \  to be 
a zero Neumann boundary for now, the following bilinear and linear forms are obtained

i@e)(ue,ve) =  [  K e (Vxe ^ y )  • (Vx*«>Ku) d %

< and J?A(@e)(ve) =  [  { J Y \ ) Q d %  5̂-34^
J  A(@$)

such that, & A ( % ) ( u e , v e) =  -^A (^){Ve)

In the classical isoparametric FE formulation of the above integrals, the element domain is 
transformed to a master domain (for e.g. the domain A " B " C " D "  is transformed to A B C D  

as in Fig. 5.2). Thus the integration is transformed to the master domain which can map 
any order of arbitrary shaped elements to the same order of a regular-shaped parent element. 
This facilitates easy implementation of a numerical quadrature scheme. It involves evaluating 
a Jacobian matrix Jg which transforms the differential volume d @ e  in each realization of 
the random domain to its master domain as d@o =  J ed$>M- Also, the differential operator 
undergoes a transformation as V xe =  J^  1V 7?. In the isoparametric FE formulation [Reddy, 
1993], the degree p  of the shape functions used to approximate the response field is the same 
as that used for the map of a given domain to its master domain. Hence Eqn. (5.34) can be



written as

(»,)(««, «e) =  /  Ke (J« 1 V ^ t ^ v )  ■ ( j ^ V ^ ^ u )  JW ^ M
J  A ( @ m )

' ( 9 » ) ( V e ) =  f  ( ^ P ( V ) y ) Q h d & M  ( 5 3 5 )

s u c h  th a t ,  @ A ( & 9) ( u e , We) =  ^ A ( ^ ) ( w e )

H e r e  t h e  J a c o b ia n  J #  i s  s p e c i f i c  t o  e a c h  r e a l i z a t i o n  o f  t h e  r a n d o m  b o u n d a r y  a n d  h a s  t o  b e  

c a l c u l a t e d  f o r  t h e  r e s o lu t io n  o f  t h e  s y s t e m  a t e a c h  p o i n t  in  t h e  s t o c h a s t i c  s p a c e .  T h e  J a c o b ia n  

t a k e s  t h e  f o r m  o f  =  d \ d / d r j  w h e r e  x °  =  { x ? >  • • • » X d }  d e n o t e s  t h e  v e c t o r  o f  c o o r d in a t e  

d i r e c t io n s  f o r  e a c h  r e a l i z a t i o n  o f  t h e  r a n d o m  d o m a i n  a n d  r j  =  { 771, . . . ,  r j d )  i s  th e  s a m e  in  t h e  

m a s t e r  d o m a i n .

T h e  a b o v e  e q u a t i o n  c a n  b e  s o l v e d  in  t h i s  f o r m  u s in g  s a m p l i n g  t e c h n i q u e s  w h ic h  s o l v e s  t h e  

s y s t e m  f o r  v a r io u s  r e a l i z a t i o n s  o f  t h e  r a n d o m  b o u n d a r y .  S i n c e  t h e  b o u n d a r y  p e r t u r b a t io n  h a s  

b e e n  m o d e l e d  w i t h  a  d e n u m e r a b l e  s e t  o f  r a n d o m  v a r ia b le s ,  it  i s  p o s s i b l e  t o  o b t a in  v a r io u s  r e 

a l i z a t i o n s  o f  t h e  r a n d o m  f i e ld  a t c h o s e n  p o i n t s  in  t h e  s t o c h a s t i c  s p a c e .  H e n c e  w e  c a n  c h o o s e  to  

s o l v e  t h i s  s t o c h a s t i c  p r o b l e m  w i t h  v a r io u s  M o n t e  C a r lo  s i m u l a t i o n s ,  r e s p o n s e  s u r f a c e  m e t h o d 

o l o g i e s  o r  s p a r s e  g r id  c o l l o c a t i o n  t e c h n i q u e s  [ G a n a p a t h y s u b r a m a n ia n  a n d  Z a b a r a s ,  2 0 0 7 ] ,

A n  a l t e r n a t iv e  t o  t h i s  a p p r o a c h  i s  t o  s o l v e  t h e  s y s t e m  u s in g  a  u n i f i e d  a p p r o a c h  w h e r e  th e  

s o l u t i o n  c a n  b e  e x p a n d e d  w i t h  a  t e n s o r  p r o d u c t  o f  t h e  s e t  o f  s h a p e  f u n c t i o n s  in  th e  s p a t ia l  

d o m a i n  a n d  s t o c h a s t i c  f u n c t i o n s  s p a n n in g  th e  s t o c h a s t i c  s p a c e .  T h i s  i s  t h e  f r a m e w o r k  o f  t h e  

s t o c h a s t i c  G a le r k in  m e t h o d s  w h i c h  i s  a d o p t e d  in  t h e  f o l l o w i n g  d i s c u s s i o n .

5.5.2 Boundary roughness quantification

M o d i f i c a t i o n  o f  t h e  b o u n d a r y  o f  a  p h y s i c a l  d o m a i n  c a n  r e s u l t  in  t h e  e i t h e r  o f  t h e  f o l l o w i n g  

t w o  s c e n a r io s :  i )  t h e  e l e m e n t s  in  c o n t a c t  w i t h  t h e  b o u n d a r y  s u r f a c e  ( h a v i n g  o n e  o r  m o r e  n o d e s  

o n  t h e  b o u n d a r y )  c a n  h a v e  t h e i r  e d g e s  m o d i f i e d  f o l l o w i n g  t h e  m o v e m e n t  o f  t h e  n o d e s ,  o r  i i )  a  

s e t  o f  e l e m e n t s  m a y  b e  m o v e d  a l o n g  w i t h  t h e  b o u n d a r y  in  a d d i t i o n  t o  a  m o d i f i c a t i o n  in  s h a p e .  

T h e  s c e n a r io  o f  p e r t u r b a t io n  o f  o n e  p a r t ic u la r  e l e m e n t  in  t h e  d o m a i n  i s  g r a p h i c a l l y  d e p i c t e d  in

c

B

F ig u r e  5 .2 :  A  q u a d r a n g u la r  e l e m e n t  f r o m  t h e  f in i t e  e l e m e n t  u n s t r u c t u r e d  m e s h  in  i t s  p e r t u r b e d  

c o n f i g u r a t io n  ( m a r k e d  in  r e d ) .  T h e  l e f t m o s t  f ig u r e  d e n o t e s  t h e  m a s t e r  e l e m e n t  a n d  t h e  m i d d l e  

f ig u r e  d e n o t e s  t h e  d e t e r m i n i s t i c  e l e m e n t .
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Fig. 5.2 while Fig. 5.3 illustrates the realizations of a perturbed boundary region of a physical 
domain. Let us denote the d e te rm in is t i c  domain within the ’red’ box in Fig. 5.3 as c C @  

and the set of elements of the baseline model lying within this by the set A(^t>c). We then 
specify the stochastic set A ( ^ )  consisting of the random realizations of the elements in 
A (^bC). Figure 5.2 shows a sample realization of the configuration of an element in A ( ^ ) .  
A generic spatial domain meshed with quadrangular elements has been considered here. The 
mesh is assumed to be unstructured and hence the formulation can be trivially extended to 
the case of uniform mesh. The coordinate transformation from the deterministic to the master 
element is as given in Eqn. (5.27). The deterministic element in turn is transformed to the 
perturbed element A " B " C " D "  via the transformation

Xi{ 6)  =  Q di (rh , - - - , ' n d ' , 0 )  V i = l , . . . , d ;  and A ( @ e ) =  Q e ( A ( ^ bc)) (5.36)

where x  =  {xi> • • • > X d }  is the set of independent coordinate directions specifying the points 
in the perturbed element and 77 =  {7 7 1 , . . . ,  77^} denotes the same in the deterministic element 
domain.

The roughness of the boundary surface can be quantified with the correlation of the po
sitional coordinates of the FE nodes of the elements in A (f^ ). The theoretical development 
of the discrete KL expansion, presented in Sec. 5.3.1, can be utilized in this context to rep
resent this boundary randomness using a denumerable set of random variables. Here we use 
a covariance function C (ri, r 2) description of the input random field with the position coor
dinates (ri, r 2 on ^ c) of the nodes of the element in the baseline deterministic domain ^ c. 
Following this a discrete spectral decomposition of C  gives

P M

C<pi  =  Ai(j>i w ith  r  =  </>i<^i(£), r  €  (5.37)
i=0

where r  is the vector of the position coordinates of the nodes lying on the random boundary 
(or in the boundary region c) approximated with M  random variables with p M -th order 
chaos expansion.

The parametrization of the element coordinates in the perturbed element in terms of the 
random variables (£ =  {£1 , . . .  ,£m}) used to model the boundary roughness would lead to 
the transformed coordinate vector x  being expressed as x  — (x) +  X  where ( x )  is the 
deterministic component while x  ure the zero mean perturbation components. The objective 
here is to obtain a mapping between the coordinates of the master element 77 and the samples 
of the perturbed configuration x-

Thus we do not consider remeshing the domain for each random realization of its bound
ary. Only the perturbation of the coordinates of the nodes lying on the boundary region are 
incorporated into the formulation with a set of random variables. This is illustrated in Fig. 5.3



(b) U ndeform ed m esh (c) D eform ed m esh 1

(a) O rig inal configuration

(d) D eform ed m esh 2 (e) D eform ed m esh 3

F ig u r e  5 .3 :  T h e  o r ig i n a l  m e s h e d  c o n f i g u r a t io n  o f  a  p la t e  w i t h  a  h o l e  a t  t h e  c e n t e r  ( ( a )  a n d  

t h e  r e a l i z a t i o n s  o f  t h e  r a n d o m  g e o m e t r i c a l  d e f o r m a t i o n  o f  t h e  c e n t e r  h o l e .  T h e  r e f in e d  m e s h  

a d j a c e n t  t o  th e  h o l e  a r e  s h o w n  b e f o r e  a n d  a f t e r  t h e  r a n d o m  p e r t u r b a t io n .  T h e  c o a r s e  m e s h  

o u t s i d e  t h e  m a r k e d  r e c t a n g u la r  r e g i o n  r e m a i n s  u n c h a n g e d .

w h i c h  s h o w s  a  t y p i c a l  g e o m e t r i c a l  c o n f i g u r a t io n  o f  a  p la t e  w i t h  a  h o l e  a t  t h e  c e n t e r .  H e r e  

t h e  n o d e s  l y i n g  i n s i d e  t h e  m a r k e d  r e g i o n  a r e  m o d e l e d  w i t h  a  s e t  o f  r a n d o m  v a r ia b le s  f o r  t h e  

r e a l i z a t i o n  o f  t h e  p e r t u r b e d  c o n f i g u r a t io n s  w h i l e  t h o s e  o u t s i d e  it  r e m a i n s  u n c h a n g e d .  H e n c e  

a l l  t h e  n o d e s  in  t h e  r e g i o n  a d j a c e n t  t o  t h e  c i r c l e  a t  t h e  c e n t e r  o f  t h e  p l a t e  a r e  m o v e d  a l o n g  w i t h  

t h e  b o u n d a r y .  T h e  p e r t u r b a t io n  o f  t h e s e  n o d e s  c a n  b e  m o d e l e d  w i t h  t h e  m a p p in g  d e s c r ib e d  

in  S e c .  5 . 5 .3 .  I t m i g h t  b e  m e n t i o n e d  h e r e  th a t  t h e  c h o i c e  o f  t h e  d e p t h  o f  t h e  b o u n d a r y  r e g i o n  

^ b c  f r o m  t h e  r a n d o m  b o u n d a r y  d e s i g n a t e d  in  t h e  b a s e l i n e  m o d e l  i s  g o v e r n e d  b y  t h e  d e g r e e  

o f  b o u n d a r y  p e r t u r b a t io n  c o n s i d e r e d  f o r  a  p a r t ic u la r  m e s h e d  d o m a i n .  I f  t h e  b o u n d a r y  p e r t u r 

b a t i o n  i s  s m a l l  s u c h  th a t  t h e  r a n d o m  r e a l i z a t i o n s  o f  t h e  b o u n d a r y  c a n  b e  c a p t u r e d  w h o l l y  b y  

t h e  e l e m e n t s  l y i n g  o n  t h e  b o u n d a r y  s u c h  th a t  o n l y  t h e  n o d e s  l y i n g  o n  t h e  b o u n d a r y  h a s  t o  b e  

m o d i f i e d ,  t h e n  it  i s  s u f f i c i e n t  t o  c o n s i d e r  ^ c t o  b e  t h e  b o u n d a r y  d @  o f  t h e  b a s e l i n e  m o d e l .

5.5.3 Mapping the random domain to the master domain

W e  d e n o t e  t h e  n o d a l  c o o r d in a t e s  o f  t h e  d e t e r m i n i s t i c  e l e m e n t  a s  t h e  v e c t o r  7]i j  =  {r; i l , . . . ,  rjin e }  Vz =  

1 , . . . ,  d .  F o r  t h e  d e t e r m i n i s t i c  c a s e ,  t h e  m a p p in g  o f  t h e  m a s t e r  e l e m e n t  ( w h ic h  w e  d e n o t e  b y  

s a y )  t o  t h e  d e t e r m i n i s t i c  e l e m e n t  i s  g i v e n  a s  rji =  Y l k = o  ^  =  1 , . . .

w h e r e  j V p  — . . .  , ^ p }  a r e  t h e  p - th  o r d e r  s h a p e  m u l t i d i m e n s i o n a l  L a g r a n g e  b a s i s

f u n c t i o n s  ( n e b e i n g  t h e  n u m b e r  o f  n o d e s  p e r  e l e m e n t ) .  H e n c e ,  f o l l o w i n g  E q n .  ( 5 . 3 6 )  w e  w r i t e
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that

Vi  =  Q f ( v i, ■ ■ ■ , V d )  Vz =  1 , . . . ,  d; such that, A (^ )  =  Q M(A (^ M)) (5.38)

which gives the mapping from the deterministic to the master element. Combining the above 
two equations we have

A(0») =  Q e (Q M (A (0 m))) (5.39)

Thus the mapping from the master element to the perturbed element now involves a spatial 
as well as a stochastic transformation. Hence x°^ which denoted the coordinate directions for 
each sample realization of the random domain, is now be expressed as a function of a denu- 
merable set of random variables used to model the boundary perturbations and the coordinate 

directions of the master element, i.e. x (V i  £W ) — { X i i V i  £($))> • • • > Xd(v> £(0))}* As a result 
the interpolation of the spatial coordinates within the random element is given as a tensor 
double dot product

Xi %  0  =  [ ^ ( v ) < 8 >  ^ ( 0 )  : { x f  } = R { V , 6 )  '■Zi V z =  1, . . . ,  d (5.40)

where x  is a second order tensor of the field Xi at the nodal points in the tensor product 

space A ( @ )  0  0 (M). If the matrix x { k is of dimension n e x M, where n e is the number of 
FE nodes associated with the element, then it suggests that the coefficient associated with a 
particular node has M  perturbation components. This suggests that the perturbed element 
can be described uniquely in a d-dimensional spatial domain and M-dimensional stochastic 
domain.

It is obvious from Eqn. (5.40) the tensor shape function N  is stochastic in nature. To 
keep things simple, we consider the boundary roughness as the only source of uncertainty in 
the present case and ignore any effect of parametric or forcing randomness. The Jacobian 
J# presented in context of the discussion of Eqns. (5.34)-(5.35) can now be expressed as a 
function of the input random variables as ^(^)) =  d x ( v >  ^ W ) / d r j .  The differential 
volume A ( ^ )  in the random boundary can be transformed to the master element as

QXi
d @ e =  d x i . •. d x d  where d x i  = o r)

following which, d { x }  — [JrjiVi #)] d { r f }

Hence d @ o  =  d e t \J r j \d r j i . . .  drjd =  de t \J r j \ d@ M  (5.41)

The differential operator Vx<? in Eqn. (5.34) is transformed under the coordinate mapping as

V x* =  [ J f (5. 42)



where denotes the differential operator along the coordinate directions of the master ele
ment. For the implementation of the spectral Galerkin method it is essential to have a repre
sentation of the stochastic quantities in terms of polynomials of the input random variables. 
This allows efficient computation of the expectation of these stochastic polynomial functions. 
To this end, the expression for the elements of the Jacobian matrices are presented here as

d ^ ( r j )  A / .r . 
w '

d r ] .

Taking jVeQ =  1, the above Jacobian matrix can be expressed as

X . (5-43)

M  q  ' j y  / —\

J 77 =  h o  +  ^ z ( £ ) J i 7i  w h e r e  ( j  m ) m n  =  V )  ( x  )  ( 5 . 4 4 )
z z '  U'Hn 171'  kii = l

It can be easily identified that J^0 is the Jacobian associated with the transformation of the 
deterministic element to the parent element.

The inverse of the Jacobian matrix can be expressed with polynomial functions of the 
random variables using the Neuamnn type series expansion as

[J(5?.SW)]'1 =  J *  E ( - l ) fc ( Jio1 E =  E (5.45)
k=0 V i J  k=0

where is the stochastic polynomial function which is obtained from combining the stochas
tic polynomials in the above equation. Of course =  1 and 3% are the corresponding prod
uct of the Jacobian matices. The Neumann type series expansion has been performed under 
the assumption that the spectral radius of the matrix J^0 is quite large when compared to the 
Jf^ components. This assumption is valid considering the fact that the major change in the 
elemental volume is captured in the transformation of the deterministic element to the master 
element (which is A ' B ' C ' D '  —> A B C D  in Fig. 5.2) while transformation from the determin
istic to the stochastic element is small under the assumption of small random perturbation 
of boundary topology. Taking this into account, we can capture the transformation with a 
moderately low degree of Neumann expansion. In that case it is easy to track the polynomial 
of the random variables while implementing the finite order chaos expansion for the spectral 
Galerkin method.

In case, when the assumption regarding the spectral radius of J^0 (which enables us to 
approximate the inverse with a truncated Neumann series) does not hold, the inverse has to 
be evaluated from the solution of the equation J ^ J -1 =  I. We assume that the inverse of the 
Jacobian matrix can be expressed as a matrix series such that J - 1 =  Y X = o  where
3rjk are the undetermined matrix coefficients and J%k{Q) are the multidimensional orthogo
nal polynomials spanning the stochastic Hilbert space. These can be evaluated if we apply
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a Galerkin orthogonalization of the residual with respect to the orthogonal stochastic basis 
functions as

L2(© (m ))Kk—0

from which, —b
[3??o] I

*0

0

(5.46)

(5.47)

-=b
where is the coefficient matrix composed of blocks of the Jacobian matrix series from
Eqn. (5.44). The i, j  block of this matrix is obtained as [J~[^j =  J j j ( 0 )^ (0 ) ) l2(©(m))
and (•, -)L2 (©( )̂) denotes the inner product in the L 2 stochastic Hilbert space. Hence we have 
to solve for the block matrices Zrjk fr°m Eqn. (5.47) for each element which are included 
within the perturbed boundary region. It might be noted that the solution of the above ma
trix equation is trivially parallelizable since the column vectors of all the Zrjk can be solved 
in parallel. This method is more expensive than the Neumann expansion method given in 
Eqn. (5.45), but it guarantees a good approximation of the inverse Jacobian under all con
ditions. Thus, in the present development we would consider that the inverse Jacobian ma
trix is approximated as a matrix series J - 1 =  where 3% where are
the stochastic polynomials obtained from the Neumann expansion or the stochastic Galerkin 
method and Zr)k arc the corresponding matrix coefficients.

Recalling Eqn. (5.42), the transformation of the differential operator can be rewritten as

V x„ =  £ j « ( 0 ) 3 i k  V i (5.48)
Kk = 0

following from Eqn. (5.45). We note that the Jacobian matrix is expressed as a sum of Ja
cobian matrices weighted with stochastic polynomials as in Eqn. (5.44). The evaluation of 
the determinant of this random Jacobian matrix, as required in Eqn. (5.41), can be written 
explicitly in terms of a set of polynomial random functions as

det|J^| =  ^  J # f et (fl)det | J~. | with (5.49)

where J ^ et is the stochastic polynomial associated with the Jacobian J^. These polynomials 
are obtained by solving the determinant of a full rank Jacobian matrix and det | J~ | is the com
bination of the Jacobian matrix with appropriate rearrangement of rows as per the coefficient 
random polynomial function. The detailed derivation to explicitly express the determinant of 
the sum of the series of the form det|J0 +  a i$i\ with polynomial functions of the scalar 
coefficient a* is provided in Appendix A.2. The maximum degree of the polynomial in a* is



governed by the rank of the matrices J*.

The expression of the element level system matrices which are perturbed by random 
boundary fluctuations would involve products of random polynomial functions M i { 9 )  and 
J % det(d)  obtained from Eqns. (5.45) and (5.49). Introducing the notation J4?ks {0) =  

where k  is the cardinality of the set which consists of an ordered set of the stochastic 
product functions — {<%?k {6) =  V i , j , /}

We discuss the relationship of the proposed methodology to the stochastic mapping tech
nique implemented using the concept of boundary-conforming coordinate system introduced 
in [Xiu and Tartakovsky, 2006]. The latter utilizes the solution of Laplace equations to ob
tain the stochastic mapping of the random element boundaries to the deterministic domain. 
This concept relies on the assumption that the random boundary is realized with stochastic 
mapping of the structured body-fitted curvilinear coordinates. Thus the regularity require
ments on the boundary applies to this case and in general the random mapping. In contrast, 
the proposed method is applicable to different types of physical domains @  £ Rd where 
the information of the positional coordinates of the set of finite element nodes lying on the 
boundary or a region adjacent to the boundary of the baseline model (usually the determin
istic ideal domain) is the input to the stochastic model along with a covariance function de
scribing the correlation of the nodal coordinates across the boundary region. For e.g. if the 
fluctuation of a portion of the domain boundary is described with body-fitted curvilinear co
ordinates r  £ Rd, then it is a simple exercise to obtain the coordinate transformation matrix 
T (and its inverse) such that x =  T r where x is the global Cartesian axes. The covariance 
function described with Ca( r i , f 2) =  f ( A r / L fc) is transformed to the Cartesian system as 
Ca(x i,x2) =  /(A { T -1x}/LXc) where LXc is the transformed correlation lengths along the 
Cartesian axes. The proposed method relies on the assumption that the boundary perturba
tions and in general, changes to the topology of the physical domain can be captured with 
perturbation of the elemental domains as shown in Fig. 5.3. However, this method would 
not be computationally meaningful in case of significant changes in the shape of the physical 
domain since the solution accuracy that would be obtained by transforming the mesh of the 
original domain may be unacceptable. Remeshing the domain, in such cases, would receive 
serious consideration. We have analyzed the accuracy of the solution obtained with the pro
posed method with respect to a benchmark brute force Monte Carlo simulation, for a given 
degree of input perturbation, in the results section later in this article.

5.5.4 Solution in tensor product space

The test functions for the weak formulation of the diffusion problem defined on a random 
domain would consist of all those functions which exist in the tensor product approxima
tion space of the spatial basis functions and the stochastic polynomials. The solution is thus
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approximated within the element domain as

u e =  \ j r v ( rf) <g> W ' M (e)} : u =  N „(i},6)  : u =  ^  " > ) « «  (5.50)
i —1

where ^ V p (rJ) denotes the p-th order spatial basis functions in the master domain and 
are the q-th order orthogonal stochastic polynomials spanning the M  dimensional input stochas
tic space and u is a second order tensor of the unknown stochastic response quantities to be 
solved.

Thus the weak form of the diffusion equation defined on an element subjected to random 
boundary perturbations can be expressed on the tensor product space { A ( @ M ) ® } with
stochastic polynomial coefficient functions using Eqns. (5.48)-(5.50) as

@ { u e , v e) =  [  V  (0) /  /sre (354V5N H : v ) ( 3 %V9N „ :u )d e t|4 |d )7 < iP f(e )
J e w  J a ^ m )

f  £•*%(*) [  ( N h  :u)<3(rfc)det|JIe | < ^ ( 0 )  (5.51)

where dP^ (9 )  is the joint probability measure of the vector of random variables £. The term 
J4?ks (6) is a compact notation of the product of stochastic polynomial functions as =  

The bilinear operator in the previous equation necessitates the evaluation of

k i j Theseexpectation of polynomials of random variables of the form E 
are pre-calculated and plugged into the finite element code during the assembly of the large 
finite element system matrices. Alternatively, quadrature based integration schemes (such as 
the Gauss-Hermite quadrature) can be used to numerically evaluate the integrations in the 
stochastic space. However, for high dimensional stochastic problems this integration can 
have significant computational overhead. In such cases, the integral can be evaluated on a 
sparse grid of points in the stochastic space (for example using the Clenshaw-Curtis points). 
This can be made more efficient by using anisotropic grids in the stochastic space based 
on the important stochastic dimensions and implementing dimension adaptivity with nested 
quadrature schemes.

Equation (5.51) leads to a system of linear equations AU =  F of dimension npc x ridof 
where npc is the number of terms of the PC expansion given by the formula npc =  ( ^ 9) 
where M  is the number of random variables and q is the order of chaos expansion. Each



element level matrix which is assembled to obtain the global system matrix A is obtained as

L J J a ^  9=1 \A = 1

E(3a)<*v * ^  J detu i  W W  (5.52)
J = 1  /

We present here an analysis of the computational complexity for the evaluation of the 
terms of the system matrix A. If we assume that a u q q  point Gauss-Legendre quadrature is 
utilized to perform the integration in the spatial domain and that the evaluation of the terms 
of the matrix in Eqn. (5.52) is given by n s, then the evaluation of the system at each point 
in the stochastic space is given by Uq q Us where d  is the number of dimensions in the spatial 
domain. If n pe noded elements are used then the total cost of evaluating an element level ma
trix at one specific point in the stochastic space is given by ripen Q Q ns . If the random field is 
approximated with n k stochastic functions i.e. J%?ks  has terms, and if the expectation terms
associated with each system level term is pre-calculated then each block of the matrix A eK  L 

in Eqn. (5.52) is calculated with nkripen Q Q n s operations. However, if a quadrature scheme is 
implemented in order to evaluate the stochastic integration operations during the evaluation 
of the system matrices, then the cost can be calculated as follows. If we assume that a n q point 
quadrature scheme is chosen as per the weighting functions (i.e. Gauss-Hermite quadrature 
for Gaussian random variables or Gauss-Legendre quadrature for uniform random variables) 
then the cost is given as (npen Q Q ns) , where M  is the number of random variables. As 
a result, pre-computing the expectation operators is going to be advantageous in most cases 
since n™ would almost always be greater than n^. The value of n is governed by the chosen 
chaos order and the dimension of the approximating stochastic functions. Hence to evalu
ate the system matrix with 1 element using a qth order chaos expansion in M  dimensional 
stochastic space we have npCn ^  (r^enQqns). Thus the order of computational complexity 
grows as ^(ripCn ^ )  with the stochastic dimension. Now a q point quadrature rule exactly 
integrates a function of order <  2q  — 1. Hence the number of quadrature points must increase 
with the order of chaos expansion.

Table 5.1 which gives the computational time to evaluate the element level system ma
trix using the Gauss-Hermite quadrature points as presented in the preceding paragraph. The 
calculations have been performed on 8 computational cores of identical capability with m u l 

t i th r e a d e d  FORTRAN 90 subroutines using gfortran compilers. It has been seen that we 
require at least 1 more quadrature point than the order of chaos expansion to obtain a good ap
proximation of the stochastic integration (hence the boxes corresponding to high order chaos 
expansion with fewer quadrature points in Table 5.1 have been left blank). We see that the 
calculations approximately match the computational complexity orders calculated in the pre
vious paragraph.
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Table 5.1: Computational time (in secs) to obtain the system matrix A with multidimen
sional Gauss-Hermite quadrature points for the integration in stochastic space. The random 
boundary fluctuation has been represented with 4 independent Gaussian random variables in 
all the cases. The number of the Gauss-Hermite quadrature points used along each stochastic 
dimension is shown in the leftmost column and it is seen that the computational time increase 
exponentially with the order and number of quadrature points.

No. of quad points PC order 2 PC order 4 PC order 6 PC order 8 PC order 10
5 0.4 7
6 0.7 13
8 2.2 41 374
10 5.1 103 867 4319
12 11 216 1817 9301 36797

The above discussion presents the general form of incorporating the description of ran
dom boundary perturbations, modeled with a set of independent identically distributed ran
dom variables, into the finite element formulation. Recalling the classification of parameter- 
based approximation of the field variable and the element geometry in finite element analysis 
[Zienkiewicz and Taylor, 1991], the isoparametric formulation is one in which the degree of 
interpolation (p) functions used to approximate the element geometry ( G p) and the unknown 
field (Fp) is the same, i.e. G p =  Fp . In the present formulation the element is approxi
mated in the tensor product space of the spatial and stochastic domain. The approximation 
of the unknown quantity u  q̂ M has been obtained in the spatial domain with p th order spatial 
functions which is identical to that for the spatial geometrical approximation. However, the 
order of stochastic approximation q would be generally larger (or at best equal in few cases) 
to that used to approximate the random boundary. This implies that this is a s u b p a r a m e t r i c  

formulation with respect to the stochastic approximation.

The transformation of the boundary integral terms for the Neumann part of the boundary 
Tl  where a non-zero flux is imposed (as given in Eqn. (5.33)) is discussed here. This term is 
written as a boundary integral on the element (which lies on the perturbed geometry) as

[  (p n • Vu N  i idQ.gdP^O') =  f  <p qcNudClQ d P ^ { 6 \
J q (M) J d A ^ e )  dQe y©(M) J d A { % )

=  [  <f qcN H (rj\dn , Q J dn 0d Q d P ( : ( 6 )  (5.53)
J e w )  J d a (s>m )

In the above equation J q^9 denotes the stochastic Jacobian transformation of the stochas
tic elemental boundary dQ e  to the master boundary d Q ,  N H(r/|5^ , £) is the stochastic shape 
functions (introduced in Eqn. (5.50)) defined on the boundary surface and qc is the bound
ary flux given in Eqn. (5.33). All the earlier discussions on the Jacobian matrix for the 
transformation of the elemental random volume to its parent domain is also applicable here. 
The boundary flux term is imposed strictly on every stochastic sample realization and hence



any functional dependence of the flux on the boundary coordinates are transformed to the 
master domain using the isoparametric transformation introduced in Eqn. (5.40). Similarly, 
the Dirichlet boundary condition is imposed in the strict sense where u  =  G c on for all 
0 G Thus, with the isoparametric form, the implementation of the boundary condition
follows from the previous theoretical development without additional mathematical complex
ity.

The proposed methodology enables the resolution of stochastic pde-s defined on do
mains with random boundary topology within the framework of stochastic spectral Galerkin 
methods. The solutions expressed with orthogonal polynomials from the finite dimensional 
stochastic Hilbert space requires the solution of large block sparse linear systems. This can 
be done with iterative Krylov solvers, as discussed in the following sections.

5.6 Unified treatment of parametric and boundary random
ness

Here we present a unified treatment of the parametric and boundary uncertainty of the random 
field using the methodologies presented in Secs. 5.4 and 5.5. Assume that the parameter K  in 
Eqn. (5.33) is random such that K  =  K ( ^ ( 6 ) )  where 0 e  0 Ml is an Mi dimensional stochas
tic space for the parametric randomness. We utilize the boundary uncertainty description 
presented in the previous section where the solution is approximated in an M2-dimensional 
stochastic space ©M2. We assume that the random fields are stationary and square-integrable. 
This gives the bilinear and linear form on which is used as a starting point for the stochastic 
weak formulation on the domain with random boundary.

BS{ue , v e) =  [  Y ] J t f  f  ( y  0 9lV?N H : y ) -
•/ e < * ) J * ^ \ k £ S , 2 ,M2 J

f o  VjjNH : u )  de t\J l\< G jdP (Mid P (M2

=  I  E • # * ( * )  I  (N h : I ) |d n d P i U i d P (M2 (5.54)J@(M) ^  K’ Ja (»M) 1

where N H()?, ?Mi,£m2) : U =  \ ^ p ( v )  0  , £m2)

In the above equation, N h ® , £m i , £m 2) is  the tensor product of the spatial and stochastic ba
sis functions, {£m1, € m 2) are the orthogonal polynomials constructed in the stochastic
tensor product space 0 (Ml) x 0 (M2) whose dimension is Mi U M2. Since the samples from
0 ( M O  a n d  0 ( M 2 ) are taken to be independent of each other, the joint distribution is given by 
dP^MidP^M2. The bilinear and linear forms in Eqn. (5.54) is defined on A ( @ M ) <8> 0 ^ .  The 
order of chaos expansion is chosen to be Q  which is chosen based on the sensitivity of the
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response to each stochastic dimension. Normally, dimensionally adaptive stochastic functions 
can produce optimal convergence of the stochastic solution with fewer basis functions. [Li 
and Ghanem, 1998, Blatman and Sudret, 2010].

The expression of the system matrix from Eqn. (5.54) can be written as

( A k i ) u  =  £  E  [ { ^ s ^ q2'M 2 ) k [  K 2  W
kej?H g = i \ h = i

( d e t \ J l \ d r i d P i M i d P (l

where is the cardinality of the set H  =  for all i  G / , ]iMl and j  € '-^(2,m2 )•
This leads to the linear system of equations of the form AU =  F where the dimension of sys
tem depends on the total number of random variables M  and the order of chaos expansion Q  

chosen for the solution. The expectations E [•] of the stochastic polynomials has to be precom
puted and plugged in the solver for the efficient evaluation of the linear system. This gives 
a unified framework within which the diffusion problem with parametric uncertainty can be 
tackled on a domain which has random boundary fluctuations.

5.7 Results

We present the numerical experiments performed with the methodologies presented in the 
previous sections to demonstrate their applicability in practical cases. The results for the 
spectral decomposition of the covariance kernel using the discrete representation of the co- 
variance kernel at the nodal points in the spatial domain is presented in Sec. 5.7.1. Also, a 
comparison of this method with the FE type solution of the covariance kernel, as presented 
in Sec. 5.3.2, is also given in Sec. 5.7.1 which demonstrates the accuracy of the proposed 
method. Following this, the steady state diffusion system with parametric uncertainty has 
been analyzed in Sec. 5.7.2 where FE shape functions have been utilized to interpolate the 
discrete random field within each element domain. Following this the unsteady response of a 
dynamic diffusion system on a domain with random boundary fluctuations and its comparison 
with direct MCS solution has been given.

5.7.1 Discrete random field representation

In this section we present the results pertaining to the discretization of the random field with 
the ‘discrete KL expansion’ as presented in Sec. 5.3.1. We have seen that the discrete covari
ance matrix can be constructed with the finite element mesh and the principal eigen modes 
can be identified from this matrix. The random field is hence expressed as a sum of the eigen



components evaluated at the nodal points. Following this the random field is interpolated 
inside the element using FE shape functions.

Here we consider a lognormal random field which has been approximated in the spatial 
domain with finite order Hermite polynomials constructed with a set of Gaussian iid random 
variables. The convergence of the lognormal field with various parameters such as the input 
stochastic dimension, order of Hermite polynomials and mesh parameter size has been studied 
here. An error metric has been constructed for this purpose which is defined as

||£^exact   C approx||
£ s. ^ — a ----- ^  (5.56)

II / TOVQ/'t II ' '

If| |C exact|

where C®xact is an accurate description of the covariance kernel constructed over the spatial 
domain at all the Gauss integration points of the elements. This C®xact is the original covari
ance function used to describe the random field. The approximated covariance kernel C * pprox 

has been synthesized from the discrete random field at the Gauss points and the relative er
ror has been studied. Thus e  denotes the accuracy of the approximate covariance function to 
the target kernel and has been used to ascertain the accuracy of simulated stochastic fields 
[Sakamoto and Ghanem, 2002]. Also, e  can be an estimate of the norm of the approxima
tion error on the entire domain when considering the full covariance matrix or as cell values 
computed within each element of the finite element mesh if, for example, we consider the 
covariance matrix to be constructed at the quadrature integration points within each element.
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(a) Convergence of the error with input stochastic (b) Convergence of the error with chaos order, 
space dimension.

Figure 5.4: Convergence of the Frobenius error norm of the covariance matrix with the order 
of Chaos expansion and the input stochastic dimension. The values of standard deviation are 
{0.10,0.20} (low and high respectively).

Here the exact covariance function has been synthesized in two different ways to high
light the convergence of the approximate random field with respect to various approximating 
parameters. One method uses the exact covariance matrix from the original description of the 
covariance function over the entire physical domain at the discrete nodal locations. We have
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used an exponential covariance function for this purpose as C®xact =  exp(— ||ri — r 2|| /L r ) 
where Lr is the correlation length of the underlying Gaussian random field. Using this de
scription, the behavior of the error norm in Eqn. (5.56) is presented in Fig. 5.4. The figure 
shows the error with increasing number of random variables used to model the stochastic log
normal field and different order of chaos functions used to express the lognormal field with 
multidimensional Hermite polynomials of a set of independent Gaussian random variables. 
Figure 5.4(a) highlights the improvement in accuracy obtained with increasing dimension 
of the input stochastic field and also shows the effect of the order of chaos expansion on 
the stochastic field. Figure 5.4(b) shows the effect of increasing the variability of the input 
stochastic field, and demonstrates that just increasing the order of the chaos expansion do not 
give great improvements in the accuracy of the approximate random field. Hence optimal 
convergence of the approximate random field is obtained by simultaneously controlling the 
dimension and the order of chaos such that the highest gradient of the error curve is obtained.

It is desirable however to obtain an understanding of the improvement in random field 
approximation with the increasing order of chaos expansion when a particular dimension of 
the input random field has been specified. Hence we now construct C ^ ’exact which is the exact 
covariance kernel of the lognormal random field represented with M  iid Gaussian random 
variables i.e. the covariance matrix

exp |^ao +  Y 2  J “  Mexp |  |e x p  ^ao +  ^  6a* ] -  //exp

where /zexp =  E exp ^a0 +  Y i t i  *s the mean of the exponential field. Using simple
algebraic manipulations and simplifying these expressions for each (p,  q )-th element of the
matrix C0*,exact we havea

[C M ,e x a c t ] ^  =  e x p  + exp
( M \  / M

( 5Z 2̂ * + M*)2 J “ exp (51 2̂ 2 + M
(5.57)

Here [ao]p and [a jp denotes the p -th component of the deterministic and perturbation parts of 
the random field vector. The value of M  is fixed at the specific input stochastic dimension. 
Hence the error constructed with this synthesized ’exact’ covariance matrix using Eqn. (5.56) 
would highlight the approximation accuracy obtained with successive p-refinements of the 
stochastic space. Figure 5.5(a) gives the convergence of the lognormal random field with 
respect to the chaos order which shows an exponential convergence of the error. The three 
different curves correspond to the different dimensions (4,6,8) of the input stochastic space. 
Figure 5.5(b) shows the same convergence behavior but for different input variability of the 
random field. It shows that higher order chaos functions have to be utilized to get desired 
accuracy levels for higher input standard deviation.
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Figure 5.5: Convergence of the Frobenius error norm of the covariance matrix with respect 
to the chaos order, input stochastic dimension and variability of the random field. The values 
of standard deviation are {0.10, 0.20} (low and high respectively).
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Figure 5.6: The spatial distribution of the L2 error in approximating the input random field 
with two different stochastic space dimensions 4 and 200 (’rv’ in the figure captions, denotes 
random variables) for a fixed value of correlation length and three different mesh resolutions 
in ascending order =  6.6, 2.9,1.9

We have presented in Fig. 5.6 the error in the covariance kernel in each element of the FE 
mesh on the spatial domain for different dimensions of the input stochastic space and mesh 
parameter sizes. The exact and the synthesized covariance kernels have been obtained at the 
Gauss quadrature points inside each element and the Frobenius norm of these matrices gives

Error
M 0J2»
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the approximation error inside each elemental domain. The figures show that as the mesh 
is refined (or as h min is reduced) the order of accuracy improves appreciably. Also, since 
the mesh has been deliberately taken to be unstructured, the particular elements in the mesh 
which are larger and more skewed have a higher value of error. Also, the improvement in the 
accuracy of the error as the stochastic dimension is increased (from 4 in Figs. 5.6(a)-5.6(c), 
to 200 in Figs. 5.6(d)-5.6(f)) is highlighted. This colormap shows that as the mesh is refined 
the ‘blue’ patches increases, which indicate an improved approximation of the covariance 
function.
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(a) Error convergence with mesh parameter size (b) Error convergence with the input stochastic
space dimension

Figure 5.7: Error in the discretization of the covariance kernel for different mesh parameter 
size { h min) and dimension of the input stochastic space.

Figure 5.7 shows the convergence trend of the error in the covariance kernel with decreas
ing mesh parameter h min and increase in dimension of the stochastic space. The plotted error 
is a weighted average of the errors { e e) shown as cell values in the colormap in Fig. 5.6, so that 
it can be written as ||error|| =  (]T^ A \ e\ ) /  ( ^ -  A f ). It shows that exponential convergence is 
achieved with h min and the slope is steepest for the highest input stochastic dimension. Simi
lar behavior is observed for the study of convergence of error with increasing input stochastic 
dimension for a fixed mesh parameter h min which shows that higher accuracy is obtained for 
fine mesh.

Figure 5.8 shows some realizations of the lognormal random diffusion coefficient ob
tained with different number of terms retained in the discrete KL expansion of the covariance 
function. Here we have chosen the decreasing correlation lengths for the random fields ap
proximated with 4 and 20 random variables. The plots in the first row, Fig. 5.8(a), gives the 
stochastic field modeled with 4 random variables while those on the second row, Fig. 5.8(b), 
gives the stochastic field constmcted with 20 random variables. The latter shows a greater 
degree of variation in the random field realizations than the former.

Figure 5.9 shows the eigenmodes of the spectral decomposition of an exponential covari
ance kernel ( C e x p ) ,  ((a)-(g)) and the modes for a triangular covariance kernel ( C t r i )  ((h)-(n))
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(b) Lognormal random field modeled with 20 random variables

Figure 5.8: The spatial distribution of the sample realizations of the lognormal stochastic dif
fusion coefficient modeled with (a) 4 and (b) 20 independent identically distributed Gaussian 
random variables for exponential covariance kernel with different (decreasing) correlation 
length. The lognormal field is expressed with with 4th order Hermite polynomials. The col- 
orbar limits are 2.5 exp(+05) (minimum) and 3.5 exp(+05) (maximum) for each subfigure.
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Figure 5.9: The orthonormalized eigenmodes associated with the discrete Karhunen-Loeve 
expansion of the exponential covariance kernel, (a)-(g) are the eigenmodes for an exponential 
covariance kernel while (h)-(n) are the eigenmodes for a triangular covariance kernel. The 
correlation length has been taken as [lr/ 4, lcj 8] in both the cases where lr and lc are the radial 
and circumferential characteristic lengths associated with the annular circular arc.

evaluated with the discrete KL expansion method where

Cexp =  exp(— III*! -  r 21| /L r ) and Gtri =  1 -  -  r 2|| /L r

The correlation length has been chosen to be Lr =  [lr/ 4, lcj 8] where the components of 
Lr gives the correlation length along the radial and circumferential directions of the annular 
circular arc respectively and ||-|| denotes the L2 norm.

While in the above example the description of the random fields was provided with the L2 
norm of the distance between the points on the physical domain, the proposed method of ob-

(f) Mode 10 (g) Mode 14
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taining the eigenfunctions at discrete points on the spatial domain (as presented in Sec. 5.3.1) 
can handle a variety of covariance descriptions of the random field on any arbitrary shaped 
geometry. We present here a comparison of a random field model on a corrugated panel which 
has been described with two different covariance functions. The L l norm is utilized to define 

the distance between two points of the panel along the corrugation (like the ‘blue’ curve if 
Fig. 5.1(c)) in contrast to the L 2 norm or the Euclidean length (indicated by the ‘red’ curve). 
The models utilize these norms in the covariance function definition on the corrugated ge
ometry. Figure 5.10(a) shows a typical meshed corrugated panel over which a paramter is 
assumed to be randomly distributed. Figures 5 .10(b)-5.10(c) show the top view of the plots 
of the random elastic stiffness over the entire domain. The shaded grey area of the plot is the 
top view of the original undeformed corrugated panel on top of which a deformed colormap 
of the panel has been superimposed. The deformed colormap has been constructed such that

(a) A typical meshed corrugated 
panel with C° continuity of ge
ometrical parameters across the 
corrugated edges.

(b) Modes: {2, 3, 4, 5} for L 1 norm of the correlation length

■  I

(c) Modes: {2, 3, 4, 5} for L 2 norm of the correlation length

Figure 5.10: The various normalized eigen modes associated with the covariance function 
description of the random field over the spatial domain of a corrugated panel. The plots in (b) 
is for the case of L l norm of the length used in the covariance function while those in (c) is 
for L2 norm. The latter set of curves is smoother at the edges than the former set.

the various eigen functions associated with the discrete KL expansion are plotted as sideways 
displacements of the nodal values of the eigenfunctions of the covariance function. The plots 
in Fig. 5.10(b), correspond to the L l norm of lengths used in the covariance function, while 
those in Fig. 5.10(c) are for the L2 norm of length. For the covariance function defined with 
the L2 norm, the eigen functions are smoother at the edges of the corrugation (which is C° 
continuous) compared to the eigenfunctions obtained for the case of L l norm.

Figure 5.11 gives a comparison of the eigenvalues of the spectral decomposition of the 
covariance function of the input random field over the spatial domain. The integral equation 
in Eqn. (2.6) has been decomposed using the discrete representation of the covariance kernel
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Figure 5.11: Comparison of the descending eigenvalue sepctrum associated with the expo
nential covariance kernel with 2 different mesh resolutions of the random parametric held 
obtained with the discrete KL expansion method (marked as ’Discrete Cov’) and the FE type 
solution technique (marked as ’FE Cov’). Two different correlation lengths L /4 and L / 20 
have been considered here which corresponds to the ’large lc’ and ’small lc’ respectively. The 
input standard deviation is aa =  0.5

given in Sec. 5.3.1 and using the Galerkin method as in Sec. 5.3.2. The eigenvalue spectrum 
shows that the eigenvalue approximations are in good agreement at least up to the first few 
hundred indices and the approximation is imporved as the mesh resolution is improved. Also, 
for small correlation lengths and coarse meshes (as seen in Fig. 5.11), the deviation is more 
pronounced. This suggests that for a low-order approximation of the random field with the 
KL eigen-functions, the ‘discrete KL expansion’ performs quite well.

Figure 5.12 shows the error in resolving the Fredholm integral equation using the methods 
of KL expansion at discrete points in the spatial domain and the FE type solution techniques. 

The spectral decomposition has been performed on the domain with two different mesh res
olutions which corresponds to the curves shown in Fig. 5.11. The relative error has been 
estimated with respect to an exact covariance matrix formed for the Gaussian quadrature inte
gration points within each element and comparing the results with an approximate covariance 

matrices constructed with the random field representation obtained using the discrete type KL 
and the Galerkin type KL resolution methods. This is as per Eqn. (5.56). Here we consider 

two different mesh resolutions, a coarse mesh and a refined one as shown in the figures. The 
results indicate that good levels of approximation is obtained with both methods and the level 
of accuracy is comparable. Of course, the level of error decreases as the mesh is refined. It is 
seen that overall the FE method performs slightly better in certain elements than the discrete 
KL, however the level of error is generally acceptable.
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L2 Error

(a) Discrete KL, coarse (b) Discrete KL, coarse (c) Discrete KL, fine (d) Discrete KL, fine 
mesh, c l= L /4  mesh, cl= L /20  mesh, c l= L /4  mesh, cl= L /20

(e) Galerkin KL, coarse (f) Galerkin KL,, coarse (g) Galerkin KL, fine (h) Galerkin KL, fine 
mesh, cl= L /4  mesh, cl= L /2 0  mesh, c l= L /4  mesh, cl= L /20

Figure 5.12: Comparison of the L2 error of the covariance matrices constructed with the ran
dom field obtained from the KL eigenfunctions. The KL eigenfunctions have been resolved 
with the proposed ’Discrete’ spectral decomposition and the FE-type ’Galerkin’ method. Two 
different mesh resolutions have been considered here as indicated by the ’coarse’ and the ’fine’ 
mesh, ‘c l ’ denotes the correlation length of the input parametric random field and two distinct 
values have been used, L /4 and L /20 where L is the characteristic length of the domain.

5.7.2 System response

We present here numerical examples to demonstrate the applicability of the methods proposed 
in Secs. 5.4 and 5.5 for handling parametric uncertainty with discrete representation of the 
random field and for tackling the diffusion equation on a domain with random boundary 
fluctuations. The results for the steady state diffusion equation with parametric uncertainty 
is presented next. Following this, the case of unsteady diffusion on a domain with a random 
boundary has been studied.

Steady State System Response

We present here the results obtained for a steady state diffusion problem with random log
normal diffusivity coefficient. The covariance function is assumed to be exponential with the 

correlation length, ‘cl’, defined as the L2 norm of the difference in position coordinates of FE 
nodes, where cl=L/20.

Figure 5.13(a) is a schematic diagram of the steady state physical system with the source 
and sink terms denoting the input flux to the system and the dissipation from the system 
respectively. Figure 5.13(b) shows the various sample realizations of the steady state system 
response with random diffusion coefficient. The configuration of the deterministic system is



Source

(a) Configuration of the (5) Sample realizations of the steady state response of the randomly
steady state physical sys- parametrized system
tern

Figure 5.13: The configuration of the steady state physical system with the boundary condi
tions implemented at the displayed locations. The various sample realizations of the steady 
state response for a lognormal input random parameter approximated with 20 random vari
ables is been shown in (b).

such that the response is symmetrical in the angular direction. However, due to the random 
diffusion coefficient we obtain different non-symmetrical distributions of the response over 
the spatial domain.

Figure 5.14 shows the statistics of the response over the spatial domain. Figure 5.14(a) 
shows the contour plot of the deterministic response and compares it to the mean and standard 
deviation of the response given in Figs. 5.14(b) and 5.14(c) respectively. The results show that
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Figure 5.14: The spatial distribution of the steady state response field.

the mean response is symmetric in the angular direction. Also for the lognormal distribution 
of the random field the mean response shows that more energy is concentrated near the source 
flux. This signifies that the dissipation of energy is not as efficient as in the deterministic case. 
The plot for the standard deviation also shows the highest variability of the response near the 
source.
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U nsteady response on random domain

We take an example of an unsteady diffusion system in this study to demonstrate the method
ology proposed in Sec. 5.5 for handling random boundary roughness within the finite element 
framework. Following from Eqn. (5.18), we write the unsteady diffusion equation on the 
random domain as

' C T { t )  +  V (A 'V T(f)) =  Q ( t )  on t E [0, T]

T ( t )  = Gc oil

< n i - \ 7 T { t )  =  q i ( t )  on T] (5.58)

n2 • V T (t) =  q2{t) on V2e 

and T { t  = 0) = T 0 on <3)q

where Tj is the ‘red’ part of the boundary in Fig. 5.16(a) which supplies the input flux to the 
system and T2e denotes the ‘green’ portion of the boundary which dissipates energy. Gc is 
the prescribed value of the Dirichlet boundary condition and qi and q2 are the boundary flux 
terms. T0 is the initial condition. The above equation indicates that the initial and boundary 
conditions are prescribed on the boundary for every sample realization of the random bound
ary. The time integration is carried out using the Euler’s central difference scheme which is 
an implicit time stepping algorithm with a fixed time step size. The upper bound on the step 
size is governed by the dynamic characteristics of the transient system and has been chosen 
to be sufficiently small to ensure stability and convergence.

i
(a) Sample 1 (b) Sample 2

I

(c) Perturbed configurations of an element

Figure 5.15: (a)-(b) Sample realization of the domain with random boundary. The boundary 
fluctuations have been modeled as Gaussian random field with an exponential covariance 
which incorporates the correlation of the position coordinates of the nodes of the element 
lying on the boundary. The input standard deviation is aa = 0.5. (c) shows the various 
sample realizations of the perturbations of an element lying on the boundary of the domain 
shown in (a)- (b). The ’blue’ colored element constitutes the baseline model while the ’red’ 
colored ones are the various perturbed configurations.

Figure 5.15 shows two sample realizations of domains with random boundary. The bound
ary fluctuation has been modeled as a Gaussian random field and described with an exponen
tial covariance function between the coordinates of the nodes of the element lying on the



boundary. The correlation length has been chosen as L /4 where L is the characteristic length 

of the domain. The discretized model of the random field has been represented with 20 ran
dom variables.

(a) Configuration of (b) Mean Response

500

(c) Standard Deviation
the transient system

Figure 5.16: (a) Configuration of the unsteady diffusion system (b) & (c) Time history of the 
mean and standard deviation a of the response at arbitrarily chosen points in the domain, (d) 
Mean with ±3 x aa envelope around it. The input standard deviation is oa = 0.5

The plot in Fig. 5.16(a) shows the configuration of the transient dynamic system on a 
random domain (the sample realizations of which has been shown in Fig. 5.15) with the ‘red’ 
arrows indicating the region of input energy while the ‘green’ arrows indicate the boundary 
from which energy is dissipated. The profile of the input energy can be written as qx — 
Q0exp(—ctt) where Q0 is the flux at t = 0 and ct > 0 is a constant signifying the exponential 
rate of decay of the input flux with time t. Here ct has been chosen to be 0.3. Also, the 
output flux is given by q2{t) = C^(T — Ta) where Ch is a positive constant with T  being the 
response field and Ta = 278 is a fixed constant. Thus the rate of dissipation of energy is given 
by the difference T  — Ta. The initial conditions has been chosen as T(t  = 0) =  278. The 
time integration has been carried out over the interval t = [0, 500] seconds. The mean and 
standard deviation of the response has been plotted in Figs. 5.16(b) and 5.16(c) which gives 
the time histories of the above response statistics at arbitrarily chosen points in the domain. 
Figure 5.16(d) gives the mean plotted with ±3  x a envelope around it. Given the initial and 
boundary conditions, it is expected that the response would first increase with the input flux 

and then gradually decay and tend towards a uniform value over the entire domain.
Figure 5.17 gives the snapshots of the statistics of unsteady response plotted in the mean  

random domain at time intervals shown in the figure. Figure 5 .17(a) shows that the response 
first grows with time at the positions of input flux and slowly decays with the time as the 

input flux decreases. The standard deviation plots in Figs. 5.17(b) when compared with the 
plot in Fig. 5 .16(c) shows that evolution of the standard deviation of the response field follows 
the mean response pattern closely. However, it can be observed that as the response decays, 
the highest standard deviation is concentrated in the regions of the input flux along the radial 
direction of the circular arc. This is expected since the randomness in the boundary edges 
propagated to the response and evolving in time would be concentrated along the dominant 
directions of the spatial gradient of the solution (which is the radial direction in this case).

Source
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1 ^  1^*
(a) Mean response at t — {125,175, 225,275,325, 375,450} seconds

(b) Standard deviation of the response at t =  {125,175,225, 275, 325, 375,450} seconds

Figure 5.17: Transient response of the mean and standard deviation (oT) of the stochastic field 
on a domain with random boundary under the action of external input flux. The boundary 
fluctuations have been modeled as Gaussian random field with an exponential covariance 
which incorporates the correlation of the position coordinates of the nodes of the element 
lying on the boundary. 20 iid Gaussian random variables have been used to model the random 
boundary. The input standard deviation is aa = 0.5

The convergence property of the linear system to be solved at each time step is studied 
here with regards to the number of iterations required for the solution to converge to a desired 
accuracy. Since the dimension of the linear system resulting from the finite order chaos expan
sion of the dynamical response grows exponentially with the stochastic space dimension and 
the order of chaos, implementation of sparse matrix factorization algorithms for the solution 
of the linear system becomes memory intensive and thus quite expensive. The Krylov itera
tive solvers, on the other hand, has the advantage of speeding up the linear system solution 
by projecting the solution in a finite dimensional Krylov subspace using orthogonal vectors. 
The conjugate gradient (CG) algorithm has been used here in conjunction with block diago
nal preconditioners [Pellissetti and Ghanem, 2000] for the linear system solution at each time 
step. Additionally it offers the advantage of using the solution obtained at the previous time 
step as a starting guess for the solution at the current time step. This is usually very efficient 
especially when the time step size is small such that the change in the solution vector from the 

previous time step to the current one is not very large. Here we present the calculations that 
have been performed with different orders of expansion of the solution with the orthogonal 
Hermite polynomials and different values of input standard deviation of the random field.

Figure 5.18 shows the plots of the residuals given in Table 5.2 for two different value of 
input standard deviation of the random field. It shows that more iterations are necessary when 

the order chaos expansion of the solution is increased and also for an increase in the input 
variability of the random field. It also shows the efficacy of the preconditioning technique 

which enables rapid convergence to the solution even for cases of high standard deviation and 
input variability where the cost for the case of ‘Without Preconditioned becomes prohibitively 
high. This demonstrates the applicability of the preconditioning technique for the proposed 
formulation to solve problems on domains with arbitrary perturbations.

Table 5.3 shows a comparison of the L2 relative error of the mean and standard devia-



Table 5.2: Convergence behaviour of the Conjugate Gradient Method with and without block- 
diagonal preconditioners for solving the linear system obtained from the block sparse coeffi
cient matrix for the diffusion operator on a domain with random boundary

Without Preconditioner
PC Std Dev 0.25 Std Dev 0.50 Std Dev 0.25 Std Dev 0.50

order Residual Iter. Residual Iter. Residual Iter. Residual Iter.
2 7.91 x 10-6 34 8.85 x l t r 6 41 9.73 xlCT6 5 4.45 xlO “ b 9
4 9.62 x 10-6 99 6.62 x 10~6 144 4.76 x 10“6 7 5.42 x lO ^6 25
6 8.99 xlCT6 366 3.26 x 10-2 500 6.95 xlO -6 10 7.19 x 10-6 68
8 5.87 x 10~4 500 7.47 x 10-1 500 6.77 x lO -6 14 7.12 xlO -6 184

With Preconditioner
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Figure 5.18: Convergence of the solution using iterative conjugate gradient (CG) scheme 
with and without the use of preconditioners (block-diagonal) for different orders of expansion 
of the solution in the stochastic Hilbert space and for two different values of input standard 
deviation of the random field, oa — {0.25, 0.50}.

Table 5.3: Convergence of the relative L2 error of the mean and variance of the response with 
respect to the direct Monte Carlo simulation results and its relation with the residual error of 
the linear system for various orders of chaos expansion of the response of the diffusion system 
on a domain with random boundary.

PC Input Standard Deviation 0.25 Input Standard Deviation 0.50
order Residual Err (Mean) Err (Variance) Residual Err (Mean) Err (Variance)

2 7.91 x l0 ~ 6 9.87 x lO -5 3.51 x lO -5 8.85 x lO "6 4.99 x lO ’ 4 1.64 x lO -2
4 8.62 x 10-6 2.53 x lO -5 3.30 x lO -3 6.62 x lO -6 1.33 x lO ’ 4 1.03 x lO -2
6 9.39 x lO -6 2.56 x lO "5 3.30 x lO "3 4.62 x lO -4 9.4 x lO -5 3.4 x lO '3
8 5.13 x lO '6 2.55 x lO -5 3.30 x lO -3 3.09 x lO -2 6.96 x lO '5 4.0 x lO -3
10 9.77 xlO -6 2.57 x lO '5 3.30 x lO -3 1.19 7.39 x lO '4 2.54 x lO -2

tion of the response on the domain with random boundary obtained with various orders of 
chaos expansion of the solution. The direct MCS with 10,000 samples has been taken as the 
benchmark solution here with respect to which the L2 relative error has been constructed. 
The comparison of the various levels of residual of the linear system with the L2 relative
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error highlights the important aspect of convergence of the solution with the order of chaos 
expansion. It can be seen from the table that for an input standard deviation of a a =  0.25 
and for residuals of the order of «  10-6, the relative error gives a satisfactory level of conver
gence of the mean and standard deviation of the solution from the 4th order chaos. However, 
for the case of a a — 0.50 it is seen that for low order chaos and for residuals of «  10-6 
(which is rapidly reached since the dimension of the linear system is quite small for low or
der chaos), the levels of relative error are larger than its higher order counterparts. For the 
higher order chaos, it is seen that relatively high levels of residuals produces accuracy levels 
of «  10-4 — 10-5 and «  10~2 — 10-3 for the mean and standard deviation respectively.

5.8 Summary

The numerical method proposed here is an unified approach to solve the partial differential 
equations with random parameters on spatial domains having random boundary. The paramet
ric field has been modeled with a finite set of random variables and a set of eigenvectors ob
tained from a discrete spectral decomposition of a covariance matrix. The random parametric 
field has been approximated on the nodes of an unstructured finite element mesh and has been 
interpolated at the quadrature points using the finite element shape functions. The parametric 
uncertainty has been modeled with random variables within the probabilistic framework and 
has been integrated with the isoparametric finite element formulation using stochastic map
ping of the perturbed elements to the corresponding master element. The salient features of 
the present work can be summarized as:

•  A discrete spectral decomposition of the covariance matrix to obtain the Karhunen- 
Loeve expansion of the random field has been proposed here which evaluates the ran
dom field at the discrete finite element nodes of an unstructured mesh. The accuracy of 
this expansion for different mesh resolutions and orders of chaos expansion has been 
studied with a measure of the relative error and has been compared with a Galerkin type 
solution of the covariance kernel. The proposed method is not restricted to the case of 
uniform mesh and covers the various descriptions of the covariance function on general 
geometrical domains.

•  The random field is approximated with the same order of spatial basis functions as the 
response quantity and its value at the quadrature integration points within the element 
are interpolated explicitly. While this increases the number of quadrature points re
quired for integration over the spatial domain, this allows the proposed description of 
the random field to be utilized when using higher-order finite element basis functions.

•  The explicit expressions for the coefficients of the lognormal random field have been 
derived in the Appendix A.I. This enables rapid evaluation of the coefficients of the



lognormal field with Hermite polynomials of independent identically distributed Gaus
sian random variables.

Partial differential equation on domains with random boundary has been studied within 
the probabilistic framework where the boundary has been parametrized with a denu- 
merable set of independent identically distributed random variables in conjunction with 
the discrete spectral components of the input covariance function. A stochastic isopara
metric mapping has been proposed which maps the perturbed elements of the unstruc
tured mesh to the corresponding master element. Tensors of stochastic shape functions 
have been utilized to approximate the solution within the stochastic spectral Galerkin 
method. The mapping of the differential operators and the associated Jacobian matri
ces have been expressed explicitly with random polynomials in order to facilitate prior 
computation of the expectations of stochastic polynomials.

The computational complexity associated with the evaluation of the integrals in the 
weak formulation using the full stochastic tensor quadrature grows exponentially with 
the dimension and order of chaos expansion of the random field. Calculations in Ta
ble 5.1 and Sec. 5.5.4 illustrates this fact. Thus while this may be applicable for low 
dimensional stochastic problems with low input variability, precomputing the tensor 
inner products is essential even for moderate orders of chaos expansion.

The determinant of a matrix series with stochastic coefficients has been calculated ex
plicitly in terms of random polynomials in Sec. A.2 which enables us to pre-calculate 
the expectations of the stochastic polynomials.

The statistics of the unsteady time domain response of a diffusion problem on a domain 
with random boundary has been solved with the proposed methodology in conjunction 
with the implicit central difference time stepping algorithm. The input randomness 
has been modeled as Gaussian random field with 20 random variables. This shows the 
applicability of the proposed methodology to efficiently use the stochastic isoparametric 
mapping to solve complex linear systems.

The accuracy of the response statistics obtained with the proposed method for solving 
problems on random domain has been studied with respect to brute force Monte Carlo 
simulations (which serves as the benchmark solution) for various order of chaos expan
sions, number of quadrature integration points and the corresponding computational 
cost.

The convergence of the solution of the symmetric positive definite linear system, re
sulting from the weak formulation of the partial differential equation on a domain with 
random boundary, is shown in Table 5.3. This demonstrates the efficiency of the Krylov
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type iterative solvers in context of solving the large block sparse linear systems obtained 
for the random boundary problem in conjunction with block diagonal preconditioning 
techniques.

Thus results and the above discussions demonstrate the applicability and numerical accu
racy of the proposed methodology to resolve the response of randomly parametrized linear 
systems on spatial domains with random boundary. The discrete spectral resolution of the co- 
variance matrix gives an accurate representation of the random field, which allows us to com
pute the KL eigenmodes for all practical descriptions of the covariance functions of the ran
dom field on all geometrical domains. For the case of domains with random topology, using 
the deformation of the meshed region adjacent to the boundary surface, it is possible to cap
ture the boundary deformation without remeshing each random realization of the domain. For 
low order chaos expansion and small input stochastic space dimensions, quadrature schemes 
may be implemented with the stochastic Galerkin scheme. However, for moderate/high di
mensional stochastic problems with comparable order of chaos expansion, precomputing the 
statistics of the stochastic polynomials is the computationally feasible approach. This has 
been discussed in detail in Sec. 5.5.

The curse of dimensionality associated with the stochastic spectral Galerkin methods is 
still a major concern and would be addressed in the following chapter in context of resolution 
of the unsteady response of dynamical systems where it becomes particularly significant. This 
is so because when using any time integration technique to obtain the time evolution of the 
stochastic response, it becomes necessary to solve a large dimensional system at every time 
step. Hence we have approximated the dominant subspace in which the solution exists with 
a set of precomputed stochastic basis functions. This has been discussed in detail in the next 
chapter.





Chapter 6

Transient response analysis of randomly 
parametrized finite element systems 
based on approximate balanced reduction

6.1 Introduction

While the previous chapter was concerned with the development of a generic method to in
corporate the input uncertainty on arbitrarily shaped domains into the weak SFEM formula
tion, the concern for the curse of dimensionality arising from the spectral Galerkin method 
applied to these problems is still a cause for concern. Hence we develop a model order re
duction method applicable for the resolution of unsteady response of uncertain systems with 
the stochastic spectral Galerkin method. This chapter is concerned with the resolution of the 
large-scale randomly parametrized linear time-invariant (LTI) systems using efficient reduced 
order modeling techniques. We recount that the Galerkin-type methods [Ghanem and Spanos, 
1991, Xiu and Kamiadakis, 2002, Matthies and Keese, 2005] developed with differing choices 
of the approximation basis, systematically gives good accuracy of the approximate solution 
statistics and allows the response to be expressed explicitly in terms of the basic input random 
variables. Their principle drawback lies in the fact that the dimension of the resulting sys
tem of linear equations is huge. The difficulty to build efficient preconditioners and memory 
requirements associated with these techniques still pose a challenge and is an active area of 
research.

As has been discussed in context of model order reduction for large stochastic linear sys
tems in Sec. 1.4, the additional computational overhead associated with obtaining the response 
statistics of the randomly parametrized systems have motivated researchers to look into var
ious model reduction techniques for the numerical solution of SPDE. A review of some of 
these techniques can be found in [Nouy, 2009, Keese, 2003]. Some of these techniques at
tempt to perform a spectral (Hilbert Karhunen-Loeve) decomposition of the stochastic solu
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tion to obtain the set of basis functions [Doostan e t  a l , 2007] or use a low-order Neumann 
expansion scheme to compute a estimation of the correlation structure of the response vec
tor [Matthies and Keese, 2005]. These belong to the class of a -p o s t e r i o r i  model reduction 
since the optimal basis is calculated from a primary approximation of the statistics of the 
stochastic response. On the other hand the a - p r i o r i  model reduction schemes in context of 
Galerkin spectral stochastic methods evaluate the stochastic basis functions for approximating 
the solution using well defined optimality criterion. Methods belonging to this category are 
Generalized Spectral Decomposition [Nouy, 2008] and the so called Reduced Basis methods 
[Boyaval e t  a l ,  2009].

On the other hand, the problem of reduced order modeling for linear time invariant sys
tems (LTI) has been studied widely within the scope of control literature [Antoulas e t  a l ,  

2001, Gugercin and Antoulas, 2004]. The foundation for the minimal realization of LTI sys
tems using balanced truncation has been laid in [Moore, 1981] which is a principal compo
nents analysis of the LTI system using the concept of observability and controllability Grami- 
ans. Among the vast range of other model reduction techniques for LTI systems we refer to the 
singular value decomposition based approaches [van der Veen e t  a l ,  1993], the classical mo
ment matching techniques [Grimme, 1997] and singular perturbation technique [Kokotovic 
e t  a l ,  1976] for the attention they have received. Model reduction for systems with random 
inputs modeled as stochastic processes have been studied in [Benner and Damm, 2011, Beck 
e t  a l ,  1996].

The objective of this study is to approach model reduction from a systems perspective 
where the complete information of the LTI system is available in the form of a finite ele
ment model obtained from applying the stochastic spectral Galerkin method to a randomly 
parametrized stochastic partial differential equation. These systems typically have very large 
dimension and it is a challenge to realize their transient response statistics with an appropriate 
reduced order model. This has remained a sparsely studied topic in the model reduction liter
ature for large dynamical systems and forms the focus of the present work. This belongs to a 
class of an a - p r i o r i  model reduction technique. The motivation of the work is provided by the 
fact that the statistics of the dynamical response of the randomly parametrized LTI system can 
be approximated by retaining only the dominant dynamical coupling characteristics between 
the specified input and desired outputs of the system.

For this we have looked at the dominant eigen components of the symmetric, positive 
definite controllability Gramian of the randomly parametrized system. Under the assumption 
that we are dealing with a stable LTI system, the dominant eigen modes of the stochastic 
controllability Gramian can provide a reduced subspace in which the dynamic response can 
be approximated with good accuracy. The extension of the idea of dominant modes of the 
controllability Gramian to the spectral stochastic Galerkin framework classically employed 
for the propagation of the input parametric uncertainty to the system response would give
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the justification of using the method for large-scale randomly parametrized FE systems. The 
matrix Lyapunov equations involved in resolving the stochastic controllability Gramian can 
be quite expensive and hence alternative numerical schemes for approximate solutions of 
these equations have to be investigated.

This chapter is organized as follows. In Sec. 6.2 we introduce the model reduction prob
lem for the resolution of the time domain response of LTI systems and give an overview of 
some model reduction strategies. Section 6.3 gives the model reduction for technique for 
stochastic dynamical systems. It discusses the idea of the minimal realization of the dynami
cal system based on the principal modes of the controllability Gramian and discusses the nu
merical methods for evaluating the principal components of this Gramian based on Amoldi’s 
algorithm. Section 6.4 demonstrates the proposed method with numerical examples of a tran
sient advection-diffusion-reaction system and a pure diffusion problem. Section 6.5 gives the 
summary and the principal contributions of this work.

6.2 Background of model order reduction for dynamical sys
tems

We consider a dynamical system in the state space form obtained from the finite element 
model of a physical LTI system as

CX(t) =  AX(t) +  Bt(t) (6.1)

where X(t) G Mn is the vector of the state variables, A, C G Mnxn are the system matrices 
and B G R nxp is the matrix associated with the locations of a finite number p  of inputs 
f(t) =  { /i(t), •••,/?(£)}• It is assumed here that the system matrices A and C are large 
and sparse in nature, which is the case for finite element implementation with finite order 
piecewise polynomials. The objective of most model reduction techniques is to obtain a good 
low order approximation of the solution of Eqn. (6.1) by identifying a dominant subspace in 
which the time varying response of the system exists.

Model reductions in context of state space systems have been widely studied for many 
decades [Gugercin and Antoulas, 2004]. Classical control theory literature relies on two key 
concepts for a low order realization of the plant mode. These are the principal component 
analysis and the singular value decomposition. If we consider a set of outputs of an unsteady 
state space system at discrete points in time as X =  (X (fi), X(i2), • • •, X(tm)} where X G 

Rnxm then using the concept of principal component analysis it is possible to construct a 
alternative set of basis vectors U  =  { t/ i , . . . ,  Uq}  such that U  G M.nxq where q «  n. The 
response vector can be expressed in these bases as x  =  Y2 i= i  U%x i and its time derivative as



x =  Yli=i UiXi. Using this, we can transform the equation in this reduced basis as

UTC U x ( t )  =  Ut A Ux(£) +  UTBf(£) (6.2)

where x =  { x i , . . . ,  x q}  G R9 are the undetermined coefficients associated with the reduced 
basis. However, the solution vectors at discrete points in time are not known a-priori and 
hence it is not possible to ascertain the bases of a minimal order model directly. As a result 
we resort to the information available to us in the form from the mathematical model for of 
the dynamical characteristics of the LTI state space system.

6.2.1 Overview of the model reduction strategies

Model reduction schemes for large large LTI systems based on balancing [Beck e t  a l ,  1996] 
aims to preserve invariant properties of the strong input-output dynamical coupling of the LTI 
system. This approach is of particular relevance in the present context and we briefly discuss 
the method here. We consider an LTI system as

X =  AX +  Bf
(6.3)

Y =  EX

with A G Rnxn, B G Rnxp, E G Rmxn where p  and m  are the number of inputs and outputs 
respectively. The system is subjected to a sequence of p  inputs in f ( t )  — e^(f), 1 ^  i  > p  

such that 5 ( t )  are unit impulse functions and e* is the i-th column of the p  x p  identity matrix. 
We consider a set of such sequence of p  inputs. If an impulse response matrix of the state 
space system is considered which consists of k  response vectors denoted by X ( t )  G Rnx/c, we 
can construct a Gramian of the state response as

P^= f  2 X ( t ) X T { t )dt  (6.4)
Jti

Here P2 is a real symmetric matrix which is termed as the controllability Gramian for state 
space systems in the control literature [Moore, 1981]. It has been shown that the system is 
controllable if and only if the matrix P2 is a full rank matrix. Controllability in this context 
is defined as the ability to take the system from some initial state X(f0) to a final state X ( t i )  

with an input signal. For controllable systems, P2 is a positive semi-definite matrix. An eigen 
decomposition of this Gramian P2 gives

P2 =  $ A 2$ t ; $ G R nxn, A2 =  diag {A2, . . . ,  A2 } (6.5)

where Af ^  Xl  >  . . .  >  >  0 is a non-negative definite sequence of eigenvalues and
<*> =  , 4>n }  is a matrix of mutually orthogonal eigenvectors such that =  I. If
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we denote the class of all piecewise continuous input functions in f(t) =  { / i ( t ) , . . . ,  f P( t ) }  

within a unit circle such that ^JQT | |/ i( f ) ||2dt' j ^  1, Vz and the set of state responses to 
these functions denoted as U then

u =  x e : X f  r)B f(r)d r 
Jo

(6 .6)

where r )  is the state-transition matrix from r  to t .  Referring back to Eqn. (6.4) it can 
be shown that U E Mn is an ellipsoid whose principal axes lengths are the singular values A* 
of the controllability Gramian P2. For state space systems (as given in Eqn. (6.1)), it can be 
seen that the state-transition matrix is given as ^(f, r )  =  exp {A( t  — r)}. For stable systems 
where the eigenvalues of the system matrix A lies in the left half plane, P2 converges to a 
steady state matrix as t  —> oo, i.e. the controllability Gramian is given as

poo
P2 =  / exp {A t }  BBTexp { A T t } d t  

Jo
(6.7)

where P2 is a stable matrix. The Gramian P2 contains the strong coupling characteristics 
between the input and the output of the state space system. Hence the principal components 
of the matrix Gramian P2 would give a dominant subspace in which the solution of the state 
space system lies. And this idea can potentially be used for the model order reduction of the 
large transient dynamic systems.

Usually two Gramians of the state space system is considered while implementing the 
idea of balanced truncation. These are the controllability Gramian P2 and the observability 
Gramian Q2. These Gramians determine the observable and controllable characteristics of the 
system which are mathematical duals. For the continuous time LTI systems these Gramians 
can be resolved from the solution of the coupled L y a p u n o v  equations as

AP2 +  P2At =  -B B t 

AtQ2 +  Q2A =  - E t E
(6 .8)

Under the assumption of A  being stable, the Gramians P2 and Q2 are positive semi-definite 
amenable to the factorization P2 — P^PC and Q2 =  Q jQ 0 (which are referred to as the 
Cholesky factors of the Gramians). The H a n k e l  s i n g u l a r  v a l u e s  of the system are defined as

PcQo =
r -| S i o ' rv r i
Ui u 2 1

nn
0 s 2_ V T_ 2 _

(6.9)

where the diagonal matrices £ i and £ 2  consists of descending order of singular values <jj > 
Of+i of the matrices PCQ^. If the number of Hankel singular values chosen to represent the 
reduced order system is restricted to r  then the reduced order model can be realized with r



components of the vectors Ur and VjT. This consists the idea of balanced truncation where the 
least controllable and observable states are rejected via a similarity transformation which bal
ances the system. In other words, a state-space realization is sought so that the controllability 
and observability Gramians are diagonalized and equal to the Hankel singular values. The 
balanced truncation approach leads to a model reduction approach which captures the tran
sient behavior of the system satisfactorily but fails to capture the steady state response with 
sufficient accuracy. To overcome this, the method of singular perturbation approximation ex
pands the solution to have zero error under steady state condition [Liu and Anderson, 1989, 
Kokotovic e t  a l ,  1987]. But this approach is computationally expensive since it involves the 
solution of the matrix Lyapunov equations which involve a computational cost of ^ (n 3).

Another significant model reduction approach which has been the subject of rigorous re
search is based on the Krylov subspace approximation of the transfer functions of the state- 
space systems [Grimme, 1997, Bai, 2002]. The primary aim of these model reduction schemes 
is to obtain a good approximation of the dynamical characteristics (transfer function) of the 
system over a wide frequency range of the problem. This is achieved by expanding the mo
ments of the transfer function with respect to the Laplace variable (or the shifted Laplace 
variable) and matching at least the low order the moments this expansion. If we consider 
an LTI state space system in Eqn. (6.3), its frequency domain input-output relationship is 
captured by the relationship Y(s) =  H(s)F(s) where the transfer function H(s) is given by

H(s) =  E (si — A)-1 B s e C .  (6.10)

Here H(s) is a rational function of the Laplace variable s. It is assumed that the pencil (s i—A) 
is regular [Freund, 2000]. The transfer function is expanded as moments of s  (or multipoint 
expansions about (s — s*)) and the objective is to match the first q moments using a projection 
V  =  UWT G Rnxn with U, W G R nxq being biorthogonal matrices such that WTU =  I. The 
reduced order model is hence obtained as the projection of the solution on U and the residual 
being orthogonal to the space spanned by W as

f WTUx =  WTAUx +  WTBf 
{ (6 .11) 
{  Y =  EUx

where the solution is given by X =  Ux. The block Krylov subspace projection technique is 
utilized to evaluate U and W such that the first few moments of the solution are approximated 
accurately

colsp [U] spans K q (A, B) 

colsp[W] spans K q (At ,E t )

The general proof of the moment matching properties of U  and W  has been provided in
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[Grimme, 1997]. Asymptotic Waveform Evaluation (AWE) [Pillage and Rohrer, 1990], Amoldi 
based algorithm [Freund, 1999], Lanczos method [Bai, 2002], Pade viaLanczos (PVL) [Feld- 
mann and Freund, 1995] can perform single input single output system (SISO) reduction by 
matching the first few moments of the rational transfer function.

6.3 Randomly parametrized linear time invariant system

We consider a bounded domain G Rd with piecewise Lipschitz boundary d@, where d <  3
is the spatial dimension and t  G M+ is the time. We consider here a linear stochastic dynamical 
system with parametric uncertainty as

9 x ^ ' e )  =  v  (fc( r, 9 ) Vz(r, t; 9) )  +  / ( r, t )  r 6 ® , i =  [0, T]  (6.13)

where the fc(r, 0) : R d x  6 —> R is a square integrable random field in the probability space 
( © ,^ \  P )  and / ( r ,  t )  G R is the deterministic time varying external forcing function. The 
objective is to solve for the stochastic transient system response x(r, t \ 0) which exists in the 
tensor product Hilbert space H ( @  x  © x  T ) .  A finite element discretization of the spatial 
domain results in the set of elements S e =  ( A ( ^ )  : |J  A ( ^ )  =  <2>} where h  is the mesh 
parameter size. We assume that the discretized stochastic field is expressed at the n e nodal 
points within each element of the FE mesh as ke (0) G Mne and is interpolated inside the 
element domain with the spatial basis function as

Pk
k ‘ (r, 9) =  [7V(r)]T ke (9) =  [ N (  r)]T £  (9)  (6.14)

i=0

where k \  G R Ue Vz =  1, . . .  , p k, [2V(r)] is the vector of FE shape functions belonging to the 
Sobolev space S k'2 C L2( A ( ^ ) )  which are C k-continuous within the element domain, k  ^
1. Also, J i ? ( ( ( 0 ) )  =  k g  the orthogonal stochastic polynomials
which model the input parametric uncertainty in the finite dimensional stochastic space. This 
leads to the stochastic finite element linear system as

CX(t; 6) =  K(0)X(t; 0)  +  Bf(f) (6.15)

or, X(t; 6) =  A(0)X(t; 0) +  Bf( t )  (6.16)

To keep the discussions simple, it is assumed that the forcing function f ( t )  is deterministic 
in nature. Here K($) or A (6) are the system matrices for each stochastic sample realization
0  g 0 (M). It can be seen from the above equation that we have changed the descriptor
form of the linear system in Eqn. (6.15) to the standard form in Eqn. (6.16) where A ( 0 )  =  

C ~ 1K ( 0 )  and B =  C_1B. Doing this has its disadvantages which might seriously affect the



efficiency of the solver. However, we have used the standard form of Eqn. (6.16) for the time 
being to facilitate ease of theoretical discussion without making the notation too complicated.
We would include in the subsequent section the methods to deal with the descriptor systems 
within a completely generic framework (given in Sec. 6.3.4). Here B is the input distribution 
array and hence B G R nxp is associated with the p  inputs to the system. The inputs are 
modeled via f ( t )  =  { f i ( t ) , . . . ,  f p ( t ) }  G Rp. The stochastic matrix and K ( 0 )  are expressed 
in the series expansion form as

Pk
K(<?) =  Ko +  (6.17)

i=i

where K 0  G Rnxn is the matrix belonging to the baseline model (with the associated stochas
tic functions being equal to 1) while K* are the perturbation matrices associated with the 
stochastic functions in J 0 ? ( ( ( 0 ) ) .  The input parametric uncertainty is modeled within the 
probabilistic framework with iid random variables ( ( 0 )  G RM. Hence the global input 
stochastic space is a M  dimensional hyperspace c  0 .

6.3.1 Minimal realization of the randomly parametrized dynamical sys
tem

The state transition matrix H/(t , r ; 0) of the stochastic LTI system would incorporate the input 
parametric uncertainty in ( ( 0 )  G RM. Hence ' P ( t , r ; 0 )  : X ( t ; 0 ) i-> X ( t ; 0 )  for each 6 G 
0 (M) The controllability Gramian of this system P 2 (0) G Rnxn can be realized for each point 
in the M  dimensional stochastic input space 0^M .̂ Our aim here is to obtain the dominant 
stochastic modes of the controllability Gramian and the solution of the stochastic system 
would be projected on to these basis functions.

The stochastic controllability Gramian for the randomly parametrized LTI system in Eqn. (6.16) 
obeys the Lyapunov equation for each sample 6 as

A(0)P2 ( 0 )+ P 2 (0)At (0 )+ B B t  =  O; where P 2 (0) € Rnxn V 0 6  ©(M) (6.18)

where the stochastic coefficient matrix A (6) can be written in the series expandable form as 

A (0) =  ^**^(£(0)) e  ^ nXn Vi- Hence the dominant modes of P 2 (0) would
be obtained in Rn for every random sample realization in Here we take X(t; 0) G Rn to 
denote the stochastic system solution for every random sample 6 G 0 (M) at all points in time 
t  G [0, T \ .  If we use a separable representation of this space in the form H ( T )  <S> H ( Rn x 
@(M)), the stochastic system response X(t, 6) G Rn at time t  can be represented as

nr

X(t; 0) =  ^ 2  ai(t)Ui(6); such that Ui(9) : Kn x 6 -»• Rn, a 4 : T  -> R Vi (6.19)
i—0



6.3. Randomly parametrized linear time invariant system 171

where U(0) =  { U o , . . . ,  UUr}  are the n r stochastic reduced basis of the linear system and 
a  =  { « ! , . . . ,  a Ur}  is the map of the time dependent stochastic coefficients to n r undeter
mined coefficients. The identification of the principle modes U can be performed from the 
spectral decomposition of the stochastic Gramian P2 (6) using methods such as stochastic 
sampling. The simplest sampling based technique is the Monte Carlo method where the prin
cipal modes of P2 (6)  for each stochastic sample 9 of an ensemble of N  random samples in 
0 (M) Soived to obtain U# E ]^nxn  ̂ for each random realization 9. Assuming that these 
modes are associated with the most dominant spectral components, we can expand them with 
orthogonal polynomials spanning the stochastic Hilbert space as U i( 0 )  — Y 7j= o U i j d £ j ( € ( 9 ) )  

such that
(*^5(£(0))i U i(0) )  m q i m ))

Ui* =  i w v t m w  ; u «  6 R (6'20)\ s \ y ) ) / L2(©(M))

However, this method is not favorable since obtaining ensemble of Ui(9) for every random 
realization 9 is computationally quite expensive. It is possible to use efficient stochastic sam
pling based techniques or other surrogate modeling to improve the evaluation of these bases 
functions [Ma and Zabaras, 2009].

A closer look into the problem of identification of the dominant modes of the stochastic 
transient system reveals that it is necessary to evaluate a vector basis Ur — [U{ , . . . ,  U l ]  such 
that it captures the solution of the stochastic finite element system within the time interval t  =  

[0, T \  with sufficient accuracy. Hence, if we start with a generic framework of decomposition 
of the tensor product Hilbert space in which the stochastic transient solution exists (considered 
in the context of Eqn. (6.19)) with a set of basis functions, we can write

XM )  =  E  E  (6.21)
i e s a j e S j e

where U[j E Rn are the reduced basis functions on which the solution is projected, J?a and 
are the cardinality of the sets consisting of the undetermined coefficients a  and the or

thogonal stochastic functions M j { 9 )  respectively. The residual R(£; 9) E Mn, V# E ©(M) 
associated with the stochastic transient FE linear system (given in Eqn. (6.15)) is given as

R ( t ; 9) =  C X ( t ; 9) +  K(0)X(f; 9) -  Bf( t )  (6.22)

Here we apply the stochastic Galerkin method where the residual is made orthogonal to the 
basis U r in Rn and the finite order orthogonal basis functions J%?(9) spanning the stochastic 
subspace ©(M). This can be written as

{ j T i { 6 ) U j , R (i,0 ))Rnx t 2 (0 (M)) =  o Vi e  S j e ,  Vj e  J a , and Vt G [O.T] (6.23)

where R ( t ,  9) : Rn x ©(M) —> Rn is the residual of the linear system given in Eqn. (6.22).



The identification of the dominant basis U r has to be determined which is the focus of the 
following sections.

6.3.2 Vectorization of stochastic Lyapunov matrix equations

To obtain the reduced basis as discussed in Eqn. (6.21) we focus on the stochastic controlla
bility Gramian considered in Eqn. (6.18). The stochastic realizations of the Gramian of the 
stochastic time varying linear system satisfies Eqn. (6.18). The random quantity P2(0) can be 
expressed as a series expansion of finite order chaos expansion in the stochastic Hilbert space 
with orthogonal polynomials as

p 2w  =  E p i - m w ) )  (6.24)

The Lyapunov equation involving this stochastic controllability Gramian P2(0) can be solved 
with the Galerkin method using this expansion. Applying the Galerkin orthogonalization of 
the residual to the orthogonal stochastic basis we have

{ W i m i  (A(0)P2(0) -  P 2(0)Ar (0) +  BBT) ) t2(9(M)) =  0 ; V i  e  J f *  (6.25)

In order to facilitate the matrix equation (such as the one given in Eqn. (6.18)) to be 
expressed as a set of linear equations, we use to the linear map v e c ( - )  which describes a one 
to one mapping a set of k  column vectors in the n  x fc-dimensional matrix to a vector in 

the nfc-dimensional space and is expressed as v e c { W nXk) — W i \ ,  • • • , Kii, • • •, ^ 1  V n k \-  

Using this linear map and the associated identities i.e. 'uec(AXB) =  (BT ® A)vec(X), we can 
write Eqn. (6.18) as

v e c  (A((9)P2(6>) +  P2(0)At (6>) +  BBT) =  0 

or, [I ® A(0) +  A(0) ® I] vec (P2(0)) =  - v e c  (BBt ) (6.26)

where I G Rnxn is the identity matrix. Using this we can transform the expansion of the 
stochastic Gramian in Eqn. (6.24) to

v e c ( V 2{ 0 ) )  =  E v e c ( V i ) J % ( m )  (6-27)

This vector form of the equation is utilized in the Galerkin framework in an identical manner
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as shown in Eqn. (6.25) which can be written as

A n A 12 ' A - lp / Pi \ / - b b t “ \

A 21 A 22 •
v e c

: =  v e c
0

A p i A V p*. / V 0 /

(•* ?(« « )), ( A(fl) Y ,  « ec(P i)^ (€W ) ) )  =  -  { m m ) , v e c { BBr ))t2(, (M))
\  \  /  /  ip.(#(M))

V i G / j f  (6.28) 

where A(0) =  [I <g> A(0) +  A(0) 0 1]. This gives a linear system of the form

(6.29)

where the matrix blocks Ay =  ( ^ (£ ( 0 ) ) ^ (£ ( 0 ) ) ,  [I <g A(0) +  A(0) <g> I])l2(0(m)) involve 
inner product of the set of stochastic polynomials in P; are block matrices as given
in Eqn. (6.24) and the right hand side of the equation has only its first block as nonzero, 
while the rest are zero since E [JtfftO)] =  0 Vi ^  0. The above system of linear matrix 
equations can be solved using solvers based on matrix factorization or Krylov based methods. 
For example, the Bartels-Stewart method [Bartels and Stewart, 1972] or the Hammarling 
method [Hammarling, 1982] involves reducing the coefficient matrix to a real Schur form 
which involves a computational cost of 0 ( N 3) where N  is the dimension of the linear system. 
In the vectorized form, as shown in Eqns. (6.26) and (6.29), the dimension of the linear system 
to be solved is given as TV =  n 2n p where n p is given by the dimension of the stochastic system 
M  and order of chaos expansion chosen p  as n p =  ( ^ ) . After solving for the vectorized 
Lyapunov Gramian, the Gram matrix P2 (6) can be reconstructed using the inverse mapping 
of the linear map used in Eqn. (6.27). Hence solving the full vectorized Lyapunov equation 
can become extremely expensive even for moderate dimensions of input stochastic space.

6.3.3 Approximating the stochastic Gramian of the random system re
sponse

A closer look at the stochastic Gram matrix P2(0) reveals that for every random sample 9 it 
can be written in t  =  [0, oo) as

ro o

P2{ 0 ) — /  exp{A(0) £}BBTexp {Ar (0) t }  d t  (6.30)
Jo

Since the exponential term could be represented in a series expandable form with stochastic 
coefficients, a general representation of this stochastic Gramian can be written as P(0) =  
£ £ o the expression in Eqn. (6.24). It is seen that that the time domain solution



of the randomly parametrized system in Eqn. (6.16) exists in the tensor product space S n,e 
given by

S n’e : = R n <g)L2 (0 m) (6.31)

where Mn contains the solution at the n finite element nodes and L2(©(M)) is a function 
space of the M-dimensional stochastic space defined by the iid random variables used to 
model the input uncertainty. Assuming that we choose na stochastic basis functions span
ning an na dimensional subspace of the stochastic functions space L2( © ^ )  as =
{J^o(£(#)), •. •, ^ n a(£W )}’ we can express the solution vector at time t  as

n na

X(t, ^) — Zi3%j(£(9))xi j where e» G Mn
U  ’ (6.32)

or, X(*,0) =  X (f)jT(£(0))

where X  G Rnxna is a second order tensor associated with the canonical bases e» of the 
Euclidean space R n and is the basis of the stochastic subspace spanned by the
polynomial function elements of it. Now we apply the stochastic Galerkin method where the 
residual of the linear system is made orthogonal to the stochastic basis functions. Thus from 
Eqn. (6.16) we write

{ m m ) ,  {x(i)JT(€(*)) -  a ( 6 ) x ( t ) ^ m )  + Bf(t)} ) LHe) = o

which gives, X (t) = A X (t)  +  B T ft)

where A  G R NaXNa is a block sparse finite element system obtained with the finite order chaos 
expansion with stochastic Galerkin method. The objective of the model reduction scheme is 
to identify a dominant basis for the second order tensor X  with which the solution can be 
accurately approximated with lesser computational effort.

If the second order tensor X  is vectorized as Xvec =  vecQC) G R Na (where N a = n.na),
 2

then it is possible to construct a squared Gram matrix W for the solution approximated in 
the tensor product space S n,d as

w 2 = f  {Xvec.1 (i),..., x yec,p(t)} {XveCil(t),..., Xvec,p(t)}T dt (6.34) 
Jo

where W 2 G R NaXNa is a Gramian of the system in the tensor product space spanned by 

{ei , . . . ,  en} g) and {Xvec,iM, • • •, Xvec,p(0 } is a collection of p vectors each of
dimension N a which represent solutions at time t. From this discussion it is clear that the

 2
stochastic Gramian W  in Eqn. (6.36) is exact for the chosen order of chaos in expressing the 
solution of the randomly parametrized system in the tensor product space denoted by S n,d in
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 2
Eqn. (6.31). It is readily seen that the Gramian W satisfies the Lyapunov equation

.AW2 +  w V  =  B B t  (6.35)

The above is a matrix equation of dimension Na x Na which is significantly larger than the size 
of the baseline finite element system. The dimension increases exponentially with the order of 
chaos and the dimension of the input stochastic space. The solution of this matrix equations 
can be performed with the available Lyapunov equation solver [Penzl, 1998]. However, these 
solvers are computationally expensive and do not take advantage of the sparsity of the system 
matrices which is always obtained for large FE systems.

 2
Once the matrix equation has been solved to obtain the Gramian W , the spectral de

composition of the latter gives the dominant eigenmodes of the Gramain. These eigenmodes 
form the basis functions of the reduced subspace in which the solution is sought [Laub et al.,
1987]. The stochastic system solution with a finite order chaos expansion in t = [0, T\ can be

 2
approximated with the dominant modes obtained from the eigen decomposition of W such 
that

w 2 =  5 a 5 T (6.36)

Here <I>p =  l<f>i : =  StJ, fa G Rw“ V i, j  =  1 , . . . ,  n r j  where nr denotes the reduced
 2

number of eigen modes chosen from the eigenvalue decomposition of W . The eigenvectors 
(f)i E M.N<* can be transformed via the inverse vectorization operator to the matrix 4>ijTla £
Knxn” a s f a ^  = vec-1 (fa) V l > t H  such that fa = [&,i •• •&,„„] where ^  G
Rn V j  = 1 , . . . ,  na. These, when used as the basis in Rnxn x @(M) on which the solution 
X( t ; 6) is projected, give

Tlr
x M )  =  y > f( t ) y ]  fajjoKm) <6-37)

i = l  j = l

Here the coefficients a* capture the time varying component of the solution. A careful obser
vation shows that the reduced order model of the system response is based on identifying the 
principal modes on which the solution can be projected in the tensor product space S n,d (as 
given in Eqn. (6.31)). Increasing the order of the minimal realization, i.e. using a higher num
ber of basis functions 4>i ria from the spectral decomposition of W 2 does not increase the order
of chaos functions used in approximating the solution. It only provides a better approximation

 2
of the solution in the stochastic space in which the Gramian W  has been conceived.

Now solving the eigenvalue problem to identify the principal modes of the solution can 
become quite expensive when dealing with large finite element systems and even a moderate 
dimensional stochastic space. The primary obstacle is the solution of the matrix Lyapunov 
equations followed by the solving for the dominant eigenmodes of the Gramian. This serves as 
the motivation to look for alternate techniques to identify the principal modes of the Gramian



of the stochastic state space system [Li and White, 2002].
 2It might be noted here that we do not actually require the estimate of the Gramian W ,

rather it is only necessary to obtain the principal modes of this Gramian. This motivates us
 2  2  2to seek a low-rank approximation W* of the Gramian such that W — W* is minimized

F
where ||-||F denotes the Frobenius matrix norm. This has been looked at in the following 
section.

6.3.4 Amoldi’s method for decomposition of Gram matrix
 2

An eigenvalue decomposition of the matrix W is given in Eqn. (6.36) where the eigenvalues 
in the diagonal matrix A is assumed to be ordered as | A11 ^  . . .  ^  |AjvJ. If we choose only 
the first nr modes from this set then the approximate Gramian is given as w j  =  T»nr Anr$ nr. 
If we choose a basis Unr G RiVaXnr on which the Gramain W 2 is projected, we can write the 
Lyapunov equation in Eqn. (6.35) as

V l A V nrW  +  WU%rA TUnr =  - V l rBBTV nr (6.38)

 2 on

Using this, the approximate Gramian is given by W* =  U„rWU„r . The accuracy of the solu
tion is governed by the selection of the basis Unr which should span the same nr dimensional 
subspace as that spanned by the vectors in <£nr.

This motivates us to identify the subspace associated with the dominant modes of the 
stochastic system matrices present in the Lyapunov equations. We start with the ra-dimensional 
Krylov subspace associated with the system matrices obtained after applying the stochastic 
Galerkin method as

K m {A , B} =  span {B, AB , A 2B , A m~lB}  (6.39)

For B  e  RnX5 with q inputs, the block Krylov method would be considered where the di- 
mension of the Krylov space would become m x q .  The block Amodli algorithm [Wilkinson,
1988] is used to calculate the orthonormal basis Q spanning the m  dimensional dominant 
eigen space. This consists of the following steps

Estimation o f the Amoldi-Lyapunov bases for reduced order modeling o f stochastic system

1. Initialize Q = [Qx] such that Q : G Mnxq with an orthogonal basis spanning the column 
space o f B.

2. Calculate the orthogonal bases spanning the dimensional block Krylov space given 
by

Knk(A, B) = span {B, AB, A 2B , A ^ B )
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using a Gram-Schmidt process or a modified Gram-Schmidt process to get the set o f 
orthogonal vector basis Q =  {Qi, Q2 , • • •, Qnfc} where Q. g ITX* Mi =  1 , . . . ,  n*;.

3. To use an error indicator as a stopping criterion, use the following steps

(a) Calculate the block upper Hessenberg matrix A qnk G M.qnkXqnk such that A qnk = 
Qt AQ. Denoting the residual o f the Lyapunov equation as 7£(W*) =  «4(QW*QT)+ 
(q w :q t )a t  +  BBT we apply a Galerkin type orthogonalization o f the residual 
to the Krylov space JCnk (A, B) to obtain the problem statement

find W* such that QT7£(W*)Q =  0

— 2
This gives an estimate o f the reduced Lyapunov solution vector W*

(b) I f  the residual norm W.) > e, increase the value o f and include more
F

Krylov bases from step 2 and repeat the previous steps.

 2 rT)4. Obtain the reduced order Lyapunov solution as QW*Q .

It has been shown in [Jaimoukha and Kasenally, 1994] that the Galerkin type orthogonal-
ization of the residual to the orthogonal basis Q as QT1Z(Xqnk)Q = 0 is satisfied if and only

 2
if W* satisfies the reduced Lyapunov equation

A q„kw I  +  W X *  +  B^ n k = 0 (6.40)

where Bqnk =  QTB. The orthogonal basis Q G Rnxqnk spanning the Krylov subspace ap-
 2

proximates the Gram matrix W as

W2 =  Q W 2Qt  (6.41)

We can use these orthogonal basis functions to approximate the solution of the linear system 
in Eqn. (6.33). Approximating X(t )  = QXqnk(t) and X(t )  = QXqnk(t) we have the linear 
system as

Xqnk{t) ~  A qnk Xqnk (t) + Bqn„(t) (6.42)

The above system can be resolved with any time integration scheme such as the explicit 
Runge-Kutta type methods or the implicit time stepping schemes (such as Euler’s method).

The error estimation procedure which is used as a stopping criterion to restrict the Krylov 
space dimension to an optimum value is a computationally expensive procedure which has a 
computational complexity of &((qrik)3). Hence in the above discussed Amoldi algorithm, 
the error estimation step is included not after every step of the block Krylov basis evaluation 
but only after certain manually chosen intervals to enhance the computational efficiency of 
the method.



For descriptor systems of the form given in Eqn. (6.15) it is not always computationally 
advantageous to take the inverse of the C matrix and take the equation in standard form as 
given in Eqn. (6.16). This makes the system lose its sparsity pattern and hence the storage 
requirement for the matrix A in Eqn. (6.33) becomes huge. This is especially disadvantageous 
when solving the randomly parametrized system with the stochastic Galerkin method which 
results in a block sparse coefficient matrix composed of the individual blocks of the system 
matrix. Hence the descriptor form is more suitable especially for FE linear systems. The 
Lyapunov theory for descriptor systems is available [Takaba et al., 1995, Ishihara and Terra, 
2003], but it requires extensive matrix-matrix products which destroys the desired sparsity 
of the system once again. Noting that the parametric uncertainty in the system is present in 
the form of the random diffusion coefficient only, it is readily seen that using the spectral 
Galerkin method we get a matrix C which is block diagonal in nature. The product of a 
block-diagonal matrix and another block-sparse matrix preserves the block sparse nature of 
the latter matrix. Thus storing the inverse of the matrix essentially requires the storing of 
just the deterministic baseline matrix as C-1 and the block diagonal inverse of the matrix C 
is given as [C-1]^ =  (1/ ( ^ ) 2) C-1 where [C-1]^ is the i-th diagonal block of C-1. This is 
an advantageous situation for the implementation of the Krylov based methods. Hence the 
Krylov space can be formed such that the C matrix is used as a preconditioner, i.e.

Knk (C - 'K 'C - 'B )  =  span i c ~ l B, {C~l K) C ^B ,  (C~lK )2 C~l B , ( C ^ K ) ^  CT1*?}
(6.43)

The modified Gram-Schmidt orthogonalization applied to these basis vectors would create 
an orthonormal basis Qd which gives the upper Hessenberg matrix A qnk = Qd (C_1/C) Qd . 
Thus the descriptor system, when solved with this vector basis gives

CqnkXqnk = ^qnkAqnk(t) +  Bqnk(t) where Cqnk = QdCQd ; K qnk = Qd!CQd (6.44)

The original solution is obtained using the transformation X ( t )  = Qd Xq n k{t)'  In the fol
lowing section we discuss the method for updating the dominant subspace which involves a 
recalculation of the basis functions using a restarted Amoldi algortihm.

6.3.5 Implicit restarting of Arnoldi-Lyapunov basis evaluation

The Amoldi vectors derived using the Amodi-Lyapunov algorithm relies on the system so
lution of the LTI finite element system with a finite order chaos expansion using a time in
tegration technique. An implicit time marching algorithm, such as Euler’s central difference 
scheme relies on evaluating the forcing terms and the response quantities at the center of each 
time step. Let us consider a transient LTI diffusion system (in the descriptor form) with a ran
dom diffusion coefficient (given in Eqn. (6.15)) expressed with finite order chaos expansion
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of the input random variables as

CX{t)  +  JCX{t) = BT{t) (6.45)

Solving this system with Euler’s central difference scheme, we choose to divide the time 
domain of interest into a finite number of divisions. The time step size is governed by the 
dynamics of the system and is chosen such that it is within the characteristic time length of 
the dynamic system. The linear system giving the solution at t = Tn+ 1  is

(Vl + W y j  = Fn+1 (T (Tn+1),T {T n) ,X n,C,IC,B) (6.46)

where the forcing at the step Tn+ 1  is given by a combination of the forcing at steps Tn+i and 
Tn along with the response at previous step n  given by Xn. The Amoldi-Lyapunov algorithm 
given in Sec. 6.3.4 starts with the matrices C, 1C and B  to evaluate the dominant basis with 
which the LTI system solution can be approximated. However, as the time marching algorithm 
tries to capture long time integration response, it might occur for rapidly changing systems 
that the basis functions fail to capture the response with sufficient accuracy or the solution 
might diverge altogether. A recalculation of the Amoldi bases under such conditions would 
avoid a breakdown of the proposed scheme in Sec. 6.3.4.

To implement this, we consider the right hand side of the linear system in Eqn. (6.46) 
obtained with Euler’s central difference scheme. Thus

([£] +  W y )  Xn+1 = B ( L « 1 ± I A  +  where X„ =  ([C] +  Xn

(6.47)
The Amoldi-Lyapunov algorithm is initialized to evaluate the basis functions of the dom
inant Krylov subspace JCnk (C~lK,C~lB). But additional information on the right side of 
Eqn. (6.47) is available in the form of the vector Xn. This can be incorporated into the Amoldi 
basis calculation to obtain a better estimate of reduced subspace in which the solution exists.

For the sake of simplicity, first we refer to the baseline LTI system in Eqn. (6.3), in 
which, the state transition matrix, given as t/>(t , r) , takes the form of exp {A(t — t)} . This 
is utilized to get the response of the system at time t subject to an initial condition X0 as 
X(t)  =  VKt , t0)X0 with t0 = 0. Hence the response of the LTI system at every t G [0, oo) to 
the initial condition specified by X(t0) and the forcing Bf(t) is given as

X(t) = t0)X0 +  [  ip(t, r)B f(r)d r (6.48)
Jo

In absence of a forcing term, i.e. if f(r) =  0, and with a prescribed initial condition X0, 
the response X(t) would only consist of X(t) = X0exp{A£}. Here we note the identity 
(G * 6) = G for any bounded function G and unit impulse (or delta) function S, where V



denotes the convolution operation. Using this the response X(t) in the above equation can be 
written as

X(i) =  </>(*, t ) * ( X 0 S ( t )  +  B f(r)) =  r )  * [X0 B] [6( r )  f(r)]T (6.49)

where 6(t) is the delta distribution, [X0 B] G Mnx^+1) js the matrix combining the vector 
X0 G Mn and matrix B G R nxq, while [<5(r) f(r)] G R q+1 is the combined vector of the delta 
function and the q input functions. Assuming that the system is stable under the action of all 
piecewise continuous bounded functions in [0,T], we can identify a modified Gram matrix 
which satisfies the Lyapunov equations

a w ’ +  W ^Ar +  B*B* =  o (6.50)

where Bx = [X0 B] G Rnx(9+1). This form is particularly conducive for constructing (or 
restarting) the Amoldi-Lyapunov algorithm discussed in Sec. 6.3.4. We can now incorporate 
the vector of the initial condition to the force locator matrix B which would be taken into 
account while constructing the block Krylov bases with the force locator matrix Bx.

Extension of the above discussion to the randomly parametrized LTI system in Eqn. (6.33) 
is straightforward. It is seen that the modified block Krylov algorithm restarted at an arbitrary 
time step t r + 1 where the solution Xr =  X (t = tr) at the step tr is available would consider 
the matrix Bx =  [Xr B] and form the Krylov bases as

K7nk (.4, Bx) = span {Bx, A B X, A 2BX, .4n t- 1Bx} (6.51)

Additionally, when we start the Krylov basis evaluation with initial condition set to zero, the 
above Krylov space is equivalent to the one obtained with K r (*4, Bx) as given in Sec. 6.3.4.

Thus the scheme of restarting the Amoldi-Lyapunov vector estimation implicitly after 
finite intervals of time consists of the following steps

Implicit restarting o f Amoldi-Lyapunov basis evaluation for time integration

1. Initialize the global error indicator eg, the Amoldi-Lyapunov convergence criterion 
6al> implement the prescribed initial condition Xr =  X0, initialize r = 0.

2. Set up the LTI system using the central difference the time marching algorithm (as per 
Eqn. (6.46)) and implement the initial and boundary conditions. Begin evaluation o f 
the Amoldi vectors on which the solution would be projected as follows:

(a) Set Q — Qi such that Q x are the orthogonal basis spanning the column space o f

Bx =  [Xr B\ € R "x<9+1). (6.52)
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(b) Initialize rik and calculate the orthogonal bases spanning the dimensional 
block Krylov space given by

JCnk(A, Bx) = span {Bx, A B X, A 2BX, . . . ,  A nk~lBx )

using a modified Gram-Schmidt process to get the set o f orthogonal vector basis 

Q =  {Qi i Q 2? • • • , Q n J  Where Qi G Mnx<7Vz =  1 . ,n fc.

(c) The error indicator to evalaute the optional Krylov space dimension is determined 
as

i. Evaluate block upper Hessenberg matrix A qnk = Q? AQ\ A qnk G M.qnkXqnk 
along with the Lyapunov residual 7£(W*) — -4(QW*Q t ) +  (Q W 'q t ) ^ t +  
BBT.

ii. Apply Galerkin type orthogonalization o f the residual to the Krylov space
ICn t(A ,B ):

find W I such that Qr K (W j)Q  =  0

2This gives an estimate o f the reduced Lyapunov solution vector W

iii. I f  the residual norm 7£(W 
more Krylov bases from step c

> €al> increase the value o f and include
F
and repeat the previous steps.

(d) Project the solution on the Amoldi-Lyapunov vectors as X( t )  = QXqnk(t) and 
solve the LTI system using the central difference scheme at subsequent time steps 
as

Qt m  +  [ K ] ^ J  QA^+i =  QTFn+l (T (T n+1),T (T n),Q X n,C ,K ,B )

(6.53)
with the solution at discrete time steps given by Xn+i = QXn+i.

(e) Calculate the L2 norm o f the residual vector o f the LTI system at time step Tn+1 

given by

n n +1 = m  +  M y )  Xn+1 ~  Fn+1 (T{Tn+1),T {T n),Q X n,C ,K ,B )  (6.54)

as \\nn+l\\2.

if) V  ll^n+llb ^  e9 then go to step 2 o f the algorithm and restart the calculation of 
the Amoldi-Lyapunov basis evaluation with Xr =  Xn. Otherwise if  ||7^n+i | | 2 ^  
eg, goto step (d) and carry on with the time marching algorithm.

3. The solution vector at the discrete time steps i = 1,2 , . . .  , n  is given given by the vectors 
Xi.



The above algorithm ensures that the accuracy of the solution of the randomly parametrized 
LTI system obtained at all time steps do not fall below the prescribed value e g . The check for 
the residual of the linear system for the implicit restarting can be performed after every few 
time steps as governed by the accuracy requirement of the problem and also the consideration 
for the additional cost associated with the residual evaluation. It might be pointed out the 
choice of the number of Amoldi-Lyapounov basis functions and the frequency of restart are 
interrelated for stable time evolving systems. Choosing a large number of Amoldi-Lyapunov 
bases can ensure good approximation accuracy of the solution over a long time integration, 
however, an additional cost is associated with it. On the other hand, evaluation of a revised 
set of Amoldi-Lyapunov vectors also increases the computational overhead of the solver. 
Hence the choice of the number of Amoldi-Lyapunov vector basis (i.e. the reduced subspace 
dimension) and the interval after which the Amoldi-Lyapunov basis estimation is restarted 
are complimentary aspects of the numerical algorithm and has to be judiciously chosen to 
optimize the efficiency of the solver.

6.4 Numerical results

In this section we present the results obtained from the numerical simulation of the transient 
response of various randomly parametrized LTI dynamical systems whose solution has been 
obtained with the proposed reduced Amoldi-Lyapunov basis vectors spanning a dominant 
subspace of the solution.

6.4.1 Advection-diffusion-reaction system

Here consider the finite element simulation of a large advection-diffusion-reaction system to
demonstrate the applicability of the proposed Amoldi-Lyapunov reduced basis for the reso
lution of its time domain response. We consider the geometrical properties of the advection- 
diffusion-reaction system as described in [Pares et a i, 2008] such that the physical domain 

G M2 is a square contained in [0,1] x [0,1] and the time domain of interest is t = [0,0.03]. 
The coordinate axes are denoted by (r, s). The governing equation is given as

x  — V (k(0)Vx)  +  c • \7x +  ox = f

x = 0 on dQ) x t  (6.55)

x = 0  on Q) x {0 }

where the diffusion coefficient has been modeled as a lognormal random field with mean 
value of 1.0 and standard deviation of 0.5. The constant c is chosen to be spatially varying as 
c =  250 (s — \  — r) and / ( r ,  s ,  t) = 100 on the square sub-domain [0.7,0.8] x [0.7,0.8].
This emulates a velocity field which rotates in the clockwise direction with its centre at ( | ,  | ) .
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The physical domain has been meshed with isoparametric quadrangular elements of order 2 
and the time range of interest t — [0, 0.03] has been divided into 100 uniform intervals.

The random held k{6) is characterized with an exponential covariance kernel. The finite 
dimensional representation of the random held is given with 4 iid random variables £(0) =  

{£i> • • • ,£4 } with Hermite chaos. The hnite element treatment of the stochastic dynamical 
system given in Eqn. (6.55) results in system matrices of the form

CX(t ; 6) +  K(0)X(*; 6) = B f ( t ) (6.56)

where K(0) =  YI 1L0  K ? ^ (£ (0 ))  is the series representation of the system matrix with a ran
dom diffusion coefhcient. A stochastic Galerkin projection of the solution on the orthogonal 

basis functions = {^o(£(0)), • • • ,^> (£ (0 ))}  leads to a block sparse system of
equations as

^ f(€ (0 )) , C X (M ) +  K(0)X(*,0) -  B
L 2 (6)

=  0 ;  Vz =  0, . . . , p

which gives CX(t)  4- JCX(t) = Bf ( t ) (6.57)

where C is a block diagonal matrix, with /C being a block sparse matrix and X(t)  is a n x p 
vector denoting the stochastic system response, where n  is the number of degrees of freedom 
associated with the hnite element system. It can be seen from the above equations that the 
system given in Eqn. (6.55) gives rise to an unsymmetrical coefhcient matrix K(0) and hence 
K. Here we have chosen 4-th order stochastic Hermite polynomials basis with which the 
solution has been approximated.

(a) t = lTto,/5 (b) t = 2Ttot/5  (c) t =  3Ttot/5  (d) t =  4Ttot/5  (e) t =  5Ttot/5

Figure 6.1: Reference solution of the deterministic model of the advection-diffusion-reaction 
problem on a square domain.

Figure 6.1 shows the response of the baseline (deterministic) dynamic advection-diffusion- 

reaction system subjected to deterministic externel forcing as described in context of Eqn. (6.55) 
at 5 discrete points in time. The time domain response has been resolved with the central dif
ference scheme.

Figures 6.2 and 6.3 shows the response statistics, i.e. the mean and the standard deviation 
respectively, of the response of the randomly parametrized system resolved with polynomial



(a) t = lT tot/5  (b) t =  2Ttot/5  (c) t = 3Ttot/5  (d) t = 4Ttot/5  (e) t = 5Ttot/5

Figure 6.2: Mean response of the stochastic model problem with a lognormal random diffu
sion coefficient using a 4-th order Polynomial Chaos expansion.

(a) t = lT tot/5  (b) t =  2Ttot/5  (c) t = 3Ttot/5  (d) t = 4Ttot/5

Figure 6.3: Standard deviation of the response of the stochastic model problem with a log
normal random diffusion coefficient using a 4-th order Polynomial Chaos expansion.

chaos expansion under the action of the deterministic external forcing. We have used 4-th 
order Hermite chaos for a 4 dimensional input stochastic space represented with 4 independent 
identically distributed random variables.

*
(b) Mode 2 (e) Mode 5 (f) Mode 6(a) Mode 1 (c) Mode 3 (d) Mode 4

(g) Mode 8 (h) Mode 10 (i) Mode 19 (j) Mode 21 (k) Mode 26 (1) Mode 31

Figure 6.4: Various eigenmodes of the complete Gramian of the response of the baseline 
(deterministic) advection-diffusion-reaction system.

Figure 6.4 gives the first few eigenmodes of the controllability Gramian W  of the de
terministic dynamical system. Here the estimation of the eigenvectors associated with the 
largest eigenvalues is exact since the Gramian has been calculated first following which we 
have performed an eigenvalue analysis of the deterministic Gramian. It can be seen that the

(e) t =  5Ttot/5
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first eigenmode almost replicate the solution at the very early time steps. Gradually the modes 

become more complex and exhibit an anticlockwise rotation pattern. All the modes presented 
in this figure are orthogonal to each other and have been normalized.

(a) Mode 1 (b) Mode 3 (c) Mode 8 (d) Mode 10 (e) Mode 13 (f) Mode 21

(g) Mode 61 (h) Mode 100 (i) Mode 201 (j) Mode 231 (k) Mode 302 (1) Mode 401

Figure 6.5: Plots of the mean of the various basis functions spanning the dominant subspace 
of the stochastic controllability Gramian of the randomly parametrized linear system calcu
lated with an iterative Krylov method implemented within the scope of Arnoldi’s algorithm.

We give the mean Arnoldi-Lypaunov basis vectors of the randomly parametrized dynami
cal system in Fig. 6.5 which have been calculated using the algorithm presented in Sec. 6.3.3. 
The basis vectors span the dominant eigen space of the stochastic controllability Gramian. 
These vectors are orthonormalized and are used to model the reduced order response of the 
dynamical system. It is seen that these modes are significantly different from the ones pre
sented in Fig. 6.4. However, it is still apparent that a clockwise rotation pattern is exhibited as 
the mode number increases. The solution to the randomly parametrized advection-diffusion- 
reaction system is approximated with a subset of Arnoldi-Lyapunov basis vectors and the 
accuracy of the solution has been compared with respect to the dimension of the reduced 
space in which the solution is sought.

Figure 6.6 gives the mean response of the stochastic LTI system calculated with the 4- 
th order chaos expansion of the input iid random variables. The mean response has been 
evaluated with an increasing subset of Arnoldi-Lyapunov basis vectors and have been stud
ied for their accuracy. Here the mean response with 4-th order chaos has been approximated 

successively with 150,300,400 and 600 basis functions and Figs. 6.6(a)-6.6(d) shows the 
improved accuracy of the solution as the number of Arnoldi-Lyapunov basis vectors are in

creased. These have been compared to the full system solution without a reduced subspace 
projection which has been shown in Fig. 6.6(e). The plots indicate that with fewer basis vec
tors, the solutions at early time steps are accurate but the time evolution of the solution stops 
altogether after a finite interval of time. For example the mean response calculated with 150 
modes stops evolving in time from t = 2Ttot/5  onwards. When using a higher number of



J )

(a) Mean calculated with 150 PC basis

(b) Mean calculated with 300 PC basis

(c) Mean calculated with 400 PC basis

(d) Mean calculated with 600 PC basis

(e) Mean of the full system PC solution

Figure 6.6: Approximate mean response calculated with various reduced number of Arnoldi- 
Lyapunov basis vectors spanning the dominant subspace associated with the stochastic 
Gramian of the randomly parametrized linear system. The basis functions were calculated 
with an iterative Krylov method implemented within the scope of Arnoldi’s algorithm. The 
responses are shown at different instances of time t =  iTtot/ 5 with i = 1 , . . . ,  5 along each 
row.

modes, say 300 the solution grows until t = 3Tlot/5  after which it becomes stagnant, while 
the response with 600 modes captures almost the entire time varying solution.

To quantify the approximation error in obtaining the transient response of the LTI sys
tem with a reduced number of Arnoldi-Lyapunov basis vectors, we construct a relative error
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(a) L 2 error, deterministic system (b) L 2 error, stochastic system

Figure 6.7: Plots of the L2 error of the reduced basis transient solution vector with re
spect to the complete solution obtained with a time marching algorithm for two different 
cases: deterministic system (a) without considering any parametric uncertainty and randomly 
parametrized system (b) with finite order chaos expansion of the solution vector.

indicator which is defined as follows

where T^u11 is the full system solution at time step n, A^ed,m is the approximate solution 
at time step n computed with m  Arnoldi-Lyapunov vectors and ||-||2 denotes the L2 vector 
norm. Hence the relative error norm is a function of the dimension of the reduced subspace 
in which the solution is sought and varies with time.

Figure 6.7 shows the plot of this relative error norm e™ on the time range of interest 
t = [0, 0.03]s with different orders of approximation of the response vector. Fig. 6.7(a) shows 
the error in approximating the deterministic solution with the Gramian of the deterministic 
transient response while Fig. 6.7(b) gives the same for the randomly parametrized system 
with the stochastic Gramian. Of course in the latter case the dimension of the linear system is 
significantly larger and hence a higher number of basis vectors are required to satisfactorily 
capture the system response over the entire time range. Additionally, it is seen that the ap

proximation error obtained for the deterministic transient system is many orders of magnitude 
lower than that for the stochastic system. This is expected since the dimension of the stochas

tic linear system is much higher than the deterministic one. Hence the approximation error 
is comprised of the error in the tensor product of the finite dimensional stochastic subspace 
spanned by the orthogonal polynomial chaos functions and the vector space associated with 
the FE discretization. From Fig. 6.6 it is seen that the maximum approximation accuracy (of 
the order of 10-15) is obtained at all time steps with approximately 400 modes while for the 
stochastic system the maximum approximation accuracy (of the order of 10-7 ) is obtained 
with approximately 700 modes. This leads to a significant improvement in the computa

(6.58)



tional efficacy of the time stepping algorithm since a good approximation of the stochastic 
response expressed with the finite order chaos expansion is obtained with only a few basis 
functions. For example, the finite element discretization of the advection-diffusion-reaction 
problem leads to a linear system of dimension «  2000. With 4-th order chaos expansion in 4 
dimensional stochastic space, we have to solve a «  1.4 x 105 dimensional block sparse linear 
system at each time step. In contrast, it is seen that 700 Amoldi-Lyapunov vectors provide us 
with a solution of accuracy 1 0 ~ 7 at all time steps.

Figure 6 .8  gives the standard deviation of the response of the stochastic LTI system cal
culated with the 4-th order chaos expansion of the input iid random variables. The response 
standard deviation has been evaluated with an increasing subset of Amoldi-Lyapunov basis 
vectors (such as 150,300,400 and 600) and have been studied for their accuracy as given 
in Figs. 6 .8 (a)-6 .8 (d). These show the improved accuracy of the solution as the number of 
basis vectors are increased. These have been compared to the full system solution without 
a reduced subspace projection which has been shown in Fig. 6 .8 (e). The plots indicate that 
with fewer basis functions, the solutions at early time steps are accurate but the time evolu
tion of the solution stops altogether after a finite interval of time. This behavior is consistent 
and similar to that obtained for the mean response given in Fig. 6 .6 . For example the stan
dard deviation of the response calculated with 150 modes is found to become stagnant from 
t = 2Ttot/5  onwards which is similar to the behavior of the mean response of the system as 
shown in Fig. 6 .6 . Again, using a higher number of modes, say 300, the solution grows till 
t = 3Ttot/5  after which it becomes stagnant, while the response with 600 modes captures 
almost the entire time varying solution.

The results demonstrate the applicability of the proposed method for the reduced order 
realization of the stochastic system response using the principal Amoldi-Lyapunov modes 
associated with the stochastic controllability Gramian. It should also be noted that the system 
being solved here (i.e. the linear system given in Eqn. (6.57)) is unsymmetrical due to the 
presence of the non self-adjoint advection term. The numerical results of the approximation 
of the stochastic response with the reduced number of modes indicates that the method is not 
limited to symmetric systems but is also effective for unsymmetrical cases which are generally 
more complicated to handle.

6.4.2 Pure diffusion with boundary terms

We study another example problem here which consists of a randomly parametrized unsteady 
diffusion system to demonstrate the applicability of the model reduction technique that has 
been proposed here. The physical configuration of the problem is defined on a circular arc
like domain which is shown in Fig. 6.9(a). The governing equation for this unsteady diffusion
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(a) Standard deviation calculated with 150 PC basis

(b) Standard deviation calculated with 300 PC basis

(c) Standard deviation calculated with 400 PC basis

(d) Standard deviation calculated with 600 PC basis

(e) Standard deviation of the full system PC solution

Figure 6.8: Approximation of the standard deviation of the response calculated with various 
reduced number of Arnoldi-Lyapunov basis vectors spanning the dominant subspace asso
ciated with the stochastic Gramian of the randomly parametrized linear system. The basis 
functions were calculated with an iterative Krylov method implemented within the scope of 
Amoldi’s algorithm. The responses are shown at different instances of time t — iTtot/ 5 with 
i =  1 , . . . ,  5 along each row.

equation is given as

cx(t; 0) -  V (fc(0) V z(i; 0)) =  0 on ^  V t € [0, T]

0) =  f i ( t )  on T1 and n2.V x (f;0) =  / 2 (f) on T2 V 0 E ©  (6.59) 

and x(t = 0; 6) — xq on V 6 £ 0



where T1 is the ‘red’ part of the boundary in Fig. 6.9(a) which supplies the input flux to the 
system and T2 denotes the ‘green’ portion of the boundary which dissipates energy. Thus 
this is a mixed boundary condition problem with the T1 having a Neumann boundary while 
T2 consists of Robin boundary conditions. The above equation indicates that the initial and 
boundary conditions are prescribed on the boundary for every sample realization of the ran
domly parametrized system. The time integration is carried out using the implicit Euler’s cen
tral difference scheme with a time step size whose upper bound is governed by the dynamic 
characteristics of the transient system and has been chosen to be sufficiently small to ensure 

stability and convergence. The time range of interest for this problem is t = [0, 500]s. The 
boundary source term consists of an exponentially decaying flux modeled as f\{t) = f i e~Cdt 
where is a positive constant while the dissipation boundary term has been modeled as 

/ 2 W — / 2 (^(f; 0) — Xqo) where x ^  is a constant. We have chosen the constants xq (the initial 
condition) and Xoo to be equal to 273. This results in the linear system of equations

CX(f; 6) +  K(0)X(f; 6) +  HX(£; 0) =  Bf(£) (6.60)

where B £ Mnx2 is the locator matrix associated with the forcing vector f(t) = { f 2(t)} 
and H is a boundary contribution matrix obtained from the finite element method applied to 
the boundary term f 2(x(t/,6)) depending on the field value x[t , \ 6) at the boundary. Hence 
the block Krylov method (as detailed in Sec. 6.3.4) of order nk would consist of 2 vectors 
of length n where the latter is the number of degrees of freedom obtained from the FE dis
cretization. After applying the stochastic Galerkin method with finite order chaos expansion 
of the stochastic solution vector we obtain

CX(t)  +  KX{t)  +  HX( t )  = BT( t )  (6.61)

where C and W. are block diagonal matrices, while /C is a block sparse matrix. It might be 
noted here that the system matrices obtained are symmetric, which was not the case in the 
advection-diffusion-reaction problem given in Sec. 6.4.1.

Source -2*

(a) Configuration of (b) Solution at five different instance of time t = iTtot/ 5 where i =  1 , . . . ,  5. 
the transient system

Figure 6.9: Configuration of the LTI system under the action of external forcing functions 
along with the reference solution of the baseline (deterministic) model for the trasient diffu
sion problem.
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Figure 6.9 gives the reference solution of the baseline (deterministic) model (schematic 

diaGram shown in Fig. 6.9(a)) at 5 different instants of time which shows the energy input to 
the system at the two locations of the inner circumference gradually being dissipated via the 
outer circumferential edge. The various eigenmodes associated with the largest eigenvalues of

(a) Mode 03 (c) Mode 20 (d) Mode 23 (e) Mode 28

Figure 6.10: Various eigenmodes of the complete controllability Gramian of the baseline 
(deterministic) diffusion system with boundary forcing terms.

the controllability Gramian of this deterministic model are shown in Fig. 6.10 which has been 
computed after the controllability Gramian matrix has been solved from the Lyapunov equa
tion. Hence this method is extremely expensive and hence the dominant Arnoldi-Lyapunov

(a) Mode 03 (b) Mode 40 (c) Mode 65 (d) Mode 69 (e) Mode 80

Figure 6.11: Various Amoldi-Lyapunov eigenmodes of the controllability Gramian obtained 
with a block Krylov method applied to the baseline (deterministic) diffusion system with 
boundary forcing terms.

eigenvectors have been calculated from the block Krylov space using the algorithm detailed 

in Sec. 6.3.4. It can be seen that the block Krylov modes are generally not close to the eigen
modes of the controllability Gramian, but a closer scrutiny reveals that the Arnoldi-Lyapunov 

modes are seen to be associated with the impulse response of the block forcing imposed on 
the system via the matrix B.

Now, for the randomly parametrized diffusion system calculating the controllability Gramian 
becomes prohibitively expensive and hence the dominant Arnoldi-Lyapunov vectors are cal
culated using the Arnoldi’s algorithm for the Lyapunov matrix equations in the tensor product 
space of the vector of hnite element nodal degrees of freedom and the hnite order chaos ex
pansion of the stochastic space. The mean of these eigenvectors are shown in Fig. 6.12 which 
again exhibits a similar patter with respect to the forcing imposed at the boundary to those 
shown in Figs. 6.10-6.11.

\



(a) M ode 05 (b) M ode 12 (c) M ode 24 (d) M ode 46 (e) M ode 60 (f) M ode 70

Figure 6.12: Plots of the mean of the various Arnoldi-Lyapunov eigenmodes of the stochas
tic controllability Gramian approximated with finite order chaos expansion of the randomly 
parametrized diffusion system with boundary forcing terms.

'N'N'N'N'N N> H
(a) Mean response, 100 modes. (f) Standard deviation of response, 100 modes.

(b) Mean response, 200 modes. (g) Standard deviation of response, 200 modes.

(c) Mean response, 400 modes. (h) Standard deviation of response, 400 modes.

V % A  %  ^
(d) Mean response, 500 modes. (i) Standard deviation of response, 500 modes.

(e) Mean response of the full system solution shown 
at five different instances of time t =  iT tot/ 5 where 
i = 1 , . . . , 5 .

(j) Standard deviation of the response of the full sys
tem solution shown at five different instances of time
t =  iTtot/5  where i = 1 , . . . ,  5.

Figure 6.13: Plots of the mean (left column) and standard deviation (right column) of the 
response to the randomly parametrized diffusion system under the action of the boundary 
forcing terms. The statistics of the response obtained with various reduced order models 
(realized with the Arnoldi-Lyapunov eigenmodes) of the system are shown here. The bottom 
most row gives the mean and standard deviation of full system response which is treated as 
the benchmark solution. The stochastic solutions in all these cases have been approximated 
with a 4-th order chaos expansion for a 4-dimensional input space.

The statistics of the solution of the transient diffusion system under the action of time 
varying boundary forcing terms is shown in Fig. 6.13 which compares the accuracy of the
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solution obtained with increasing the dimension of the reduced subspace in which the solution 
is sought, i.e. as the number of Arnoldi-Lyapunov basis vectors are increased. It can be seen 
that for low order approximations with only 100 eigenmodes, the solution fails to give any 
reasonable response statistics, while as more basis functions are included to construct the 
approximate solution the accuracy of the response increases. It can also be noted that as 
the higher order statistics of the solution are sought, it becomes necessary to incorporate 
additional modes into the reduced order model. It should however, be noted that increasing 
the number of Arnoldi-Lyapunov basis functions does not mean an increase in the degree of 
the stochastic chaos functions used to approximate the solution vector. It can be seen that even 
the low order approximations of the solution with the Arnoldi-Lyapunov basis vectors gives 
the solution with the 4-th order chaos expansion. However, the higher order statistics of the 
response necessitates additional terms associated with the 4-th degree stochastic polynomial 
terms in order to obtain a good approximation of the response.

5.0 sec

100.0 sec
250.0 sec
400.0 sec

200 300 400
N um ber of A rnoldi-Lyapunov modes

500 600100 
N um ber

10°

200 modes 
- - - 400 inodes

500 modes 
  550 modes

100 200 300 400
Time (sec)

(a) L 2 norm of the error of the stochastic solution (b) L 2 norm of the error of the stochastic solution 
vector specific values of t for increasing number of vector at all t.
Arnoldi-Lyapunov modes.

Figure 6.14: Plots of the L2 errors of the stochastic solution vector for various dimension of 
the reduced subspace in which the solution is approximated. The reduced subspace dimension 
is determined by the number of Amoldi-Lyapunov basis functions used to approximate the 
controllability Gramian with finite order chaos expansion.

Figure 6.14 gives the L2 error of the approximate solution vector with respect to the full 
system solution (as described by Eqn. (6.58)) when using a 4-th order chaos expansion with 
different reduced order models of the randomly parametrized diffusion system. We present 
the convergence rate of the solution with the number of approximating Arnoldi-Lyapunov 

vectors at various instances in time (such as t = [5,50,100, 250,400] seconds) in Fig. 6.14(a) 
which shows a nearly exponential convergence. The L2 error norm at all instances of time is 
shown in Fig. 6 .14(b) which shows that the error increases slightly as the value of t increases. 
Thus, increasing the number of Arnoldi-Lyapunov modes leads to a rapid improvement in the 
solution accuracy.



6.5 Summary

A computationally efficient scheme of resolution of the transient response of numerical mod
els of large scale randomly parametrized dynamical systems has been proposed. The method
ology relies on obtaining a minimal order realization of the linear time invariant system based 
on the idea of preserving the strong dynamical coupling of the specified input-output charac
teristics of the system. The uncertainty associated with the random input parameters is propa
gated to the system response using the established framework of stochastic spectral Galerkin 
method. The resulting linear system due to the application of this method is orders of mag
nitude larger than the baseline FE linear systems and model reduction techniques are very 
important in this context. The transient response of the randomly parametrized linear system 
has been approximated with a denumerable set of dominant dynamical modes obtained from 
the spectral decomposition of the stochastic controllability Gramian.

The controllability Gramian satisfies the stochastic Lyapunov equation which requires the 
resolution of a matrix equation of significant dimension. Different methods of resolution 
of this stochastic matrix equation using a stochastic sampling based technique to the series 
expansion of the stochastic Gram matrix with orthogonal stochastic polynomials and apply
ing the ‘uec’ transformation have been discussed. However, the computational cost associ
ated with these methods becomes prohibitively large even for moderate dimensional systems. 
Hence an alternative method of approximating the stochastic controllability Gramian with a 
reduced number of Amoldi-Lyapunov vector bases has been proposed. This approach avoids 
the full solution of the stochastic Lyapunov equation and approximates the dominant invari
ant subspace associated with spectral components of the stochastic controllability Gramian. 
The algorithm approximating the transient stochastic response with the Amoldi-Lyapunov 
basis vectors in conjuction with an implicit time stepping scheme has been detailed. Addi
tionally, to enhance the stability and convergence properties of the time integration scheme 
further, especially for long time integration problems, a restarted Amoldi-Lyapunov basis vec
tor estimation has been proposed. The latter relies on reinitializing the reduced-order basis 
evaluation after finite intervals of time based on the solution of the dynamic system obtained 
at that time step. The theoretical justification for the implicit restarting of the basis evalu
ation has been discussed. Finally the steps of the algorithm have been detailed in an item
ized algorithm. The proposed reduced order modeling of the randomly parametrized system 
with Amoldi-Lyapunov vectors basis has been demonstrated with examples of an advection- 
diffusion-reaction problem on a regular square domain and a pure diffusion problem with 
boundary forcing terms on a circular arc-shaped domain.

The salient features of the work presented here are

• A randomly parametrized large-scale linear time invariant finite element system has 
been considered and a computationally efficient minimal realization scheme to obtain
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the transient response of this system has been studied.

• The minimal realization of the LTI system has been obtained from the dominant spectral 
components of the stochastic controllability Gramian.

•  The theoretical and implementational aspects of different methods of resolution of the 
principal modes of the stochastic controllability Gramian has been provided and ana
lyzed for their computational overhead.

•  To mitigate the cost associated with the solution of the large dimensional matrix equa
tions, the Amoldi-Lyapunov basis spanning the dominant space associated with the 
spectral components of the stochastic controllability Gramian has been investigated.

•  The computationally efficient methodology to resolve the transient response of the LTI 
system with an Amoldi-Lyapunov vector basis has been highlighted in an algorithm.

•  An implicit scheme of restarting the determination of the Amoldi-Lyapunov vector ba
sis has been proposed and the theoretical justification for this has been detailed.

• The minimal realization of the dynamic characteristics of the randomly parametrized 
system has been illustrated with two stochastic finite element problems in conjunction 
with a spectral Galerkin approach which demonstrates; the applicability of the reduced 
order evaluation of the transient response of large computational models.

Thus the numerical results demonstrate the applicability of the proposed methodology 
to large scale randomly parametrized finite element systems subjected to transient external 
forcing.
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Chapter 7 

Conclusion

7.1 Summary of contributions made

A detailed analysis of efficient uncertainty propagation methods within the framework of 
stochastic finite element framework has been presented in the previous chapters. The meth
ods utilized to obtain the response statistics of the randomly parameterized systems have been 
compared in terms of their accuracy and computational efficiency with benchmark solutions 
and have been demonstrated with numerical examples. A summary of the principal contribu
tions of this dissertation is categorically listed here under the following subheadings :

• Stochastic structural dynamics using reduced order spectral functions
The frequency response of a stochastic structural dynamic system has been investigated 
by projecting the solution on a reduced subspace of eigenvectors of the determinis
tic operator weighted by a set of frequency dependent stochastic spectral functions. 
These spectral functions are rational functions of the underlying random variables and 
a study of the different orders of spectral functions are presented. A set of undetermined 
Galerkin coefficients are utilized to orthogonalize the residual to the reduced eigenvec
tor space in the mean sense. The complex system response is represented explicitly 
with these Galerkin coefficients in conjunction with the modal basis and the associated 
stochastic spectral functions. This is a computationally efficient stochastic solution 
technique which gives good approximation of the statistics of the response (verified by 
the values of the relative error norm) even at resonance frequencies where finite order 
PCE or the classical Neumann expansion becomes quite expensive and/or fails to per
form satisfactorily. Two examples involving a beam and a plate with stochastic parame
ters subjected to harmonic excitations have been studied. The results are compared with 
the direct Monte-Carlo simulation, the classical Neumann expansion technique and the 
polynomial chaos method for different orders stochastic functions and varying degrees 
of variability of input randomness.
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Hybridization of the spectral function approach with metamodeling technique
The spectral function approach developed in the context of determining the frequency 
response statistics of randomly parameterized system has been combined with Gaus
sian process emulation to produce a computationally efficient solution algorithm. It is 
motivated by the fact that higher order spectral functions improves solution accuracy 
but has an added computational cost associated with it. This cost is mitigated by using 
a metamodeling technique where the samples drawn from the posterior distribution can 
be used to perform uncertainty analysis of the response. The proposed hybrid approach 
is used to the analyze the stochastic vibration response of a corrugated panel with ran
dom elastic parameters. Here the direct MCS is considered to provide a benchmark 
solution. The response curves obtained with the spectral function and the direct MCS 
method are in good agreement even near the resonance frequencies. The analysis of 
computational complexity demonstrates that spectral function approach in conjunction 
with the Gaussian process emulation is computationally favorable when compared to 
direct MCS or spectral method alone. Also, the relative error plots show an increase in 
the accuracy of the approximated solution when using higher order spectral functions.

Transient response with stochastic time adaptive spectral functions
The time domain response of randomly parameterized structural dynamic system was 
investigated with polynomial chaos expansion approach and a stochastic spectral func
tion approach in conjunction with an unconditionally stable single-step implicit New- 
mark scheme using a stochastic integration operator. The spectral function approach 
uses time adaptive stochastic spectral functions as weighting functions of the determin
istic orthogonal basis onto which the solution is projected. The simulations have been 
performed for different degrees of variability of the input randomness and different di
mensions of the input stochastic space for structural dynamic systems and the results 
have been compared with the finite order PCE and the direct MCS in terms of accu
racy and computational cost. It is seen that accurate estimation of the statistics of the 
stochastic system response is obtained even with the low order spectral functions which 
is computationally advantageous. Additionally, the spectral functions utilized here de
pends on the time-step size and the integration constants chosen for the problem. This 
results in the convergence being a function of the integration parameters. Hence these 
parameters can be fine tuned to obtain optimal convergence.

Discrete representation of the random field on complicated domains
The problem of representing random fields describing the material and boundary prop
erties of the physical system at discrete points of the spatial domain is studied in the con
text of linear stochastic finite element method. The random field has been approximated 
on the nodes of an unstructured finite element mesh using a discrete Karhunen-Loeve
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(KL) expansion. The approximated random field exhibits good level of accuracy with 
respect to various synthesized error indicators. The approximated random field has been 
interpolated at the quadrature points using the multidimensional Lagrange polynomials 
(FE finite element shape functions). The parametric uncertainty has been modeled with 
random variables within the probabilistic framework and has been integrated with the 
isoparametric finite element formulation using stochastic mapping of the perturbed el
ements to the corresponding master element. Additionally, the explicit expressions for 
the coefficients of the lognormal random field have been derived in the Appendix A. 1. 
This enables rapid evaluation of the coefficients of the lognormal field with Hermite 
polynomials of independent identically distributed Gaussian random variables.

•  Stochastic problems on domain with random boundary fluctuations
The discretized random field representation has been utilized to express the random 
fluctuations of the domain boundary with nodal position coordinates and a set of iid 
random variables. The description of the boundary perturbation has been incorporated 
into the weak stochastic finite element formulation using a stochastic isoparametric 
mapping of the random domain to a deterministic master domain. A method for ob
taining the linear system of equations under the proposed mapping using generic high 
order finite elements and the stochastic spectral Galerkin framework is studied in detail, 
The mapping of the differential operators and the associated Jacobian matrices and the 
determinant of a matrix series have been expressed explicitly with random polynomials 
in order facilitate prior computation of the expectations of stochastic polynomials. The 
treatment presents a unified way of handling the parametric uncertainty and random 
boundary fluctuations for dynamic systems. The convergence behavior of the proposed 
methodologies has been demonstrated with numerical examples where the accuracy of 
the response statistics obtained with the proposed method has been compared with re
spect to brute force MCS (which serves as the benchmark solution) for various order 
of chaos expansions, number of quadrature integration points and the corresponding 
computational cost.

•  Model order reduction based on balanced truncation
A model order reduction scheme of the transient response of large-scale randomly 
parametrized linear finite element system in state space form has been studied. An 
a-priori model reduction strategy based on the balanced truncation method has been 
proposed in conjunction with the stochastic spectral Galerkin finite element method. 
Approximation of the dominant modes of the observable Gram matrix has been per
formed with iterative Amoldi scheme applied to Lyapunov equations. The reduced 
order representation of the randomly parametrized dynamical system has been obtained 
with Amoldi-Lyapunov vector basis using an implicit time stepping algorithm. An im-



plicit scheme of restarting the determination of the Amoldi-Lyapunov vector basis has 
been proposed with theoretical justifications which can further enhance the computa
tional efficacy for long time integration problems. The accuracy of the minimal real
ization of the dynamic characteristics of the randomly parametrized system has been 
illustrated with two stochastic finite element problems using relative error estimates 
which demonstrates their applicability in large computational mechanics problems.

7.2 Future research

The work carried out in this dissertation can be used to pursue further research in the following 
directions.

•  The underlying idea of stochastic spectral functions can potentially be extended to an
alyze the response statistics of a class of non-linear stochastic dynamic problems. For 
example, the proposed spectral approach can be used for every linearization step or ev
ery time step. The choice of the optimum order of spectral functions and the number of 
the reduced vector basis is not obvious from the error analysis results obtained with the 
spectral function approach and there is a scope for making it adaptive, based on some 
optimization criterion, which would be interesting to investigate.

•  The random field has been represented by the KL expansion or expansions that exploits 
the covariance structure of the input random field. This can be expanded to the case 
where such a description is not available. For example there are cases when complete 
information about the variability of an input random field is not available. Hence it 
is possible to to address general random fields without resorting to the KL expansion 
(such as the hierarchal matrix based approaches Allaix and Carbone [2013]). The ap
plicability of the proposed random field discretization technique and its integration with 
the SFEM method would be interesting.

•  Also, comparison of the computational efficacy of high dimensional stochastic prob
lems where the stochastic integration is performed with dimension adaptive sparse grid 
algorithms would be another important aspect of future study for. Lastly, the appli
cability of various emulation methods, such as the Gaussian process emulator, can be 
investigated for their potential application in the study of stochastic partial differential 
equations on random domains. Future work in this domain would look at extending 
the proposed stochastic isoparametric mapping to study non-linear problems on ran
dom domains where arbitrarily small perturbation of the domain boundary may result 
in a significant modification of the response field. In such cases, the modification and 
dependence of the non-linear parameters and/or the element geometry on the stochastic
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boundary at each step of the iterative non-linear solver, within the proposed stochastic 
isoparametric mapping framework would be a challenging problem.

•  The reduced order modeling approach with Amoldi-Lyapunov vectors can be extended 
to study the transient response of structural dynamic systems with input parametric 
uncertainty in state-space form. Additionally, the theoretical development which can 
provide an a-priori knowledge of the accuracy of the transient response of the randomly 
parametrized system as a function of the number of Amoldi-Lyapunov basis would 
be quite useful for the computational scheme presented here. This might lead to a 
unique global error indicator combining the residuals of the Lyapunov equation and 
the stochastic LTI system which can be used to decide the implicit restart points of the 
Amoldi-Lyapunov basis evaluation algorithm. Lastly, investigation into the possibility 
of using efficient preconditioners for the Amoldi-Lyapunov algorithm, which can give 
better convergence of the solution with fewer number of basis functions, would be 
important in context of this study.
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Appendix A

Mathematical derivations

A.1 Derivation of closed form expressions for the finite or
der chaos representation of lognormal random fields

The derivation of the analytical expressions for the undetermined coefficients associated with 
the stochastic polynomial expansion of the lognormal field is presented here. We assume 
a lognormal random field sti(0) =  exp ^a0 +  ]C £ i 6  a discretized spatial domain
such that 2li{9) G Mn . For the sake of computational convenience we express this random field 
as a series expansion of finite order multivariate Hermite polynomials (€(&)) spanning the 
M-dimensional stochastic hyperspace © W  as

a, =  £ a \ ^ ( m )  where a' =   ̂ ' I  2 * (A-D
1 = 0  L2(©(^),dP€)

The aim is to express the undetermined coefficients as a closed form analytical expression in 
terms of the Gaussian iid random variables £ =  { f i , . . . ,  £ m } -

Theorem 1. I f  a lognormal random field a 1(6 ) is expanded as a series o f multivariate orthogo
nal Hermite polynomials spanning the stochastic Hilbert space o f the input Gaussian random 
variables, then the undetermined coefficients associated with the individual polynomial terms 
are given by

i -  \ TT (  ̂ (a i> • • • 5Dm) /a
< « >

where J%fld ( a i , . . . ,  a ^ )  is the vector o f the highest order term associated with the i-th Her
mite polynomial and ( a i , . . . ,  slm) being the M  discrete eigenvectors o f the spectral decom
position o f the covariance kernel o f the input random field.

Proof We begin by noting that the pth order multivariate Hermite polynomials are obtained
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using the generating function

(  1 M  \  f)P l f)PM  (  1 M

• • •, £7 ) =  ( - 1 )P1+- +PM exp — exp f?

where p =  pi +  . . .  +  p M  (A.3)

where p i , . . . ,  Pm  are the degree of the random variables f i , . . . ,  respectively. Hence the 
expression for a- from Eqn. (A.l) can be written after some simplification as the integration 
in stochastic space as

, ( - 1 ) p ( 2 7 t ) - ¥  '-+0°  ',+ °° '  M/
T O O  p + O O  /

. . .  exp ao +  ^ 2  f*a»
-CO J —CO \  1

a
I - I -  I -  A \  ~  ■

*=1
M

,d,P(.) J - o o

(  d P l d PM (  1  \  i

/+OO /*+00 opi f  /  1 \  1

(A.4)

( - l ) P (27T)-f 
where, -------------exp (an)

For the evaluation of the integral in Eqn. (A.4) we apply integration by parts with variable £i 
(whose order is pi) and consider only a portion of the above integral as

(a0 i  =  J  exP (£is 0  | exP ( - 5 ^2)  }

=  (« p( € A ) ^ t{« p ( - ^ ) } )

C A {exp (65i)} !p (exp (" )̂)d?1 (A‘5)
It is easy to see for the first term that

exp (frai) ^  t |e x p  |  0  as ?i + °°  or> fi

since the exponential function is C°° continuous and all the terms appearing in its suc
cessive derivatives would involve exp (—§fi)- Hence the terms tend to 0 identically as 
£i —> —oo, + 0 0 . Thus applying this procedure of integration by parts pi times and putting

+ oo
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the leading terms to 0 (as in Eqn. (A.5)) we have

(aDi = (-1)P1 J  {exP (&si)} jexP (_̂ i) } d&
=  J  exp (A.6 )

The Gaussian functions integral identity gives f*™  a0exp (—axx2 +  a2x  +  a3) =  

aoy/n/aiexp  +  a3^ for a\ > 0 following which we write Eqn. (A.6 ) as

(aDi =  ( - l^ a J 'v ^ T re x p  Q a J ^  (A.7)

The above equation can be combined with Eqn. (A.4) to obtain

/ + o o  r + o o  M  op2 f)PM  f  (  1 \  )

o o  "  J - o o  «>* II«p(6-) agi • • • W ( " a  J K  • •
(A.8 )

Applying the same procedure as in Eqns. (A.5)-(A.7) to the successive random variables from 
£2 to we would have the integral evaluated as

=  (A.9)

or, aj = ---- -—^  ---------exp (§o) ( ( —l)pia^1'/27rexp ( j^a2)  )  . . .
m m ) U e < * KdPi) V  V2 lJ )

(_ l)pMgPMv^ :exp 

— -—^   exp(§o) ( ( —l)p(27r)¥a^1.. . a ^  TT exp ( ^5j

(A. 10)

where in the last step we have substituted back the value of ^  from Eqn. (A.4) and used the 
relation p = pi +  . . .  +  pM. Hence the ith coefficient of the lognormal field is expressed in 
closed form as

1 \  0 P 1  -XPM
1 ~ 2  \ a l • • • a M

t -  ^ ( a i, • • • ? &m)  11X

where (ai5. . . ,  a M) =  a f1. . .  a 1M

i.e. 3 ? ^  ( a i , . . . ,  a^f) denotes the term of highest degree (i.e. the term of degree p i , . . .  ,Pm



in random variables £1, . . . ,  £m respectively) of the ith multivariate Hermite polynomial of 
degree p associated with the M  Gaussian iid random variables. □

A.2 Expression for the determinant of a matrix series with 
stochastic coefficients

We derive the determinant of a matrix series with scalar coefficients of the form

m
A =  OjAi where A, A ] , . . .  Am € M"x"; a t G R Vi (A.12)

i= 1
m

with det|A| =  d e t |^ ^  c*iAi| =  f  ( a i , . . . ,  a m)
i= l

where m  can be greater than, equal to or less than n, the dimension of the square matrices in 
the series. It is can be deduced from observation that the determinant in the above equation 
would be a degree n homogeneous function of the coefficients a Let us define a set 
which consists of all powers (from 1 to n) of the scalars a * as

{^ 1} • • • 5 • • • > ^ r n \  (A.13)

and M  is the set of all the elements derived from M  which satisfies the following condition

r r

M  =  {oii : ai =  with pj = n , for all 1 <  r < m )  (A. 14)
j = i j = i

and let y M be the cardinality of this set. In other words, the elements of M  are such that the 
total sum of their powers is always equal to n. The determinant of A can be expressed as

det|A| =  a .i  ( det|A j| j (A.15)
iG M m  \ j ( z - ^ n  /

where the A j  matrices are generated from combining the rows of the matrices Aj (from 
Eqn. (A. 13)) associated with the scalar a*-s (in the coefficient 5*) according to their pow
ers in ai. For example, if the coefficient associated with the scalar term 5; =  o f . .  .oP™ is 
sought then we define

S  = {x : x = Permutation of pi number of ji, P2 number of j2, - - -, pm number of jm}

Ci — £ d e t |A , |  V x £ S  (A.16)
j
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where A x denotes matrix constructed from taking all permutations of p i  rows taken from A;i 
matrix, p 2 rows taken from AJ2 matrix and so on up to p m rows taken from A Jrn matrix. It 
should be noted that the dimension of A x is n  x n  so that p i  +  . . .  + p m =  n.  To illustrate 
the point we provide a numerical example of a matrix series of 3 x 3 matrix A expressed 
as A =  a iA i  +  a 2A 2 +  a 3A 3. The determinant of A is expressed with polynomials of 
ai, i =  1 , 2 , 3  as

det|A | =  a*det|AJUlJ1| +  a 32det\A j2j2j2\ +  a;*det|AJ3J-3J-3| +  a f r 2det|A J-1j1J-2|+

oqo^det] A j 1j 1j31 +  a 2a id e t | A j2j 2:?11 -f- Q<2Q;3d e t |A j2j2j 3| +  G igQ idetlA jgj^  | +

a 3a 2det|A j3j3j2| +  a 'ia 2a 3det|A ju-2j-3| (A. 17)

where detjAj^^j | =  det | Ai |;

1r—i 
<1 -  (Ai)i - -  (A2)i -

letlAjyijJ = det -  (Ai)2 - +  det — (a 2)2 — +  det -  (Ai)2 -
-  (a 2)3 — -  (Ai)3 - -  (Ai)3 -

-  (Ai)i - -  (Ai)i - -  (A2)i -
det|Ajlj2j3| = det — (A2)2 — +  det — (A3)2 — +  det -  (Ai)2 -

- ~ (a 3)3 — 1 > to 00 1 — (a 3)3 —

-  (A2)i - -  (A3)i - -  (A3)i -
+det — (a 3)2 — +  det -  (Ai)2 - +  det — (a 2)2 —

-  (Ai)3 - -  (a 2)3 — -  (Ai)3 -

In the above expressions (Ai)j denotes the j th row of the Ai matrix from the series represen
tation in Eqn. (A. 12). Hence, while forming the combination of matrix rows to evaluate the 
determinant associated with a particular scalar term (say Yl{ o f ) ,  the number of rows chosen 
from each coefficient matrix (say A*) is equal to the power of the scalar term (i.e. p ^  present 
in that coefficient. The chosen columns are permuted to give all possible combination of the 
coefficient matrices. Since Pi = n, the resulting individual matrices would always be 
square matrices.
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