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Summary

A simulation methodology to model contact and non-contact microscopy measurements 
has been developed within a 3-D finite element commercial device simulator by Silvaco. The 
tip-sample system is modelled self-consistently including tip-induced band bending and 
realistic tip shapes. When modelling scanning tunnelling microscopy, the resulting spectra 
from III-V semiconductors show good agreement with experimental results and a model 
based on the Bardeen tunnelling approach. We have found that the image force induced 
barrier lowering increases the tunnelling current by three orders o f magnitude when 
tunnelling in to the sample valence band, and by six orders o f  magnitude when tunnelling in 
to the sample conduction band. We have shown that other models which use a single 
weighting factor to account for image force in the conduction and valence bands are likely to 
underestimate the valence band current by three orders o f magnitude.

The role o f  probe shank oxide formed at the tip in air has been examined by carrying 
out contact and non-contact current-voltage simulations o f GaAs when the probe oxide has 
been controllably reduced. For both contact and non-contact simulations, the contact 
resistance change due to oxide is dependent on polarity and as confirmed experimentally.

An electrostatic tip apex interaction with an 1 ^ 0 3  thin film transistor under operation is 
studied using a combination o f  experimental electrostatic force microscopy measurements 
and simulations. An error in the surface potential near the drain electrode is observed in 
simulations due to the tip induced band bending.

Two point probe measurements on ZnO nanowires and 3-D transport simulations reveal 
the change in the electrical behaviour o f nanoscale contacts from Schottky-like to Ohmic-like 
when the size o f Au catalyst particles is changed at the ends o f free-standing ZnO nanowires 
in relation to the nanowire cross-section. In addition, a geometry dependent current crowding 
effect was analysed in the combination with self-heating calculations.

Finally, we have investigated carrier confinement at the ZnO/GaZnO interface due to 
band offset and polarization effects. We have found that this material system is a good 
candidate for polarization heterostructure field effect transistors.



Definitions or Acronyms

SPM - scanning probe microscopy
STM - scanning tunnelling microscopy
STS - scanning tunnelling spectroscopy

EFM - electronic force microscopy
4PP - four point probe

TEM - transmission electron microscopy
KPFM - Kelvin probe force microscopy
HFET - heterostructure field effect transistor

FET - field effect transistor
TFT - thin film transistor

HEMT - high electron mobility transistor
2DEG - two-dimensional electron gas
WKB - Wentzel-Kramers-Brillouin
DFT - density functional theory

TIBB - tip induced band bending
BL - barrier lowering

UST - universal Schottky tunnelling
GZO - GaZnO
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Chapter 1 Theory

Scanning probe microscopy (SPM) is a technique that can be used to make surface 

electronic, morphological, optical, chemical and magnetic measurements down to the atomic 

scale [1]. All scanning probe methods use a conducting probe to scan different surfaces and 

obtain with atomic resolution physical properties o f these surfaces. The basic principles o f  

some o f  the SPM methods used in this thesis like scanning tunnelling microscopy (STM), 

scanning tunnelling spectroscopy (STS), four point probe microscopy (4PP) and electrostatic 

force microscopy (EFM) are discussed in Chapter 1.1.

SPM allows characterisation o f samples and devices with a nanoscale spatial resolution, 

including devices under operation [2]-[5]. In this thesis semiconductor devices in the 

presence o f scanning probe are o f  interest and detailed explanation o f the device principles 

for ZnO/MgZnO heterostructure field effect transistor (HFET) and In203  thin film transistor 

(TFT) are given in Chapter 1.2.

The main limitation o f the method is that with all SPM techniques the probe can 

interact electrostatically and physically with the sample, changing the measured properties o f  

the device under test [6 ]. Modelling the electrostatic probe interaction can be used to quantify 

the measurement error, to match experimental results to device properties, or potentially to 

remove the effects o f probe interaction [7]—[11]. In this thesis, modelling o f  the 

semiconductor plain surfaces, heterostructures and devices is performed using the simulation 

tool ATLAS by Silvaco. In Chapter 1.3, an overview o f  the Silvaco toolbox is presented.
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1.1 Scanning probe methods

1.1.1 Scanning tunnelling microscopy

The idea o f scanning tunnelling microscopy (STM) was first introduced by G. Binnig,

H. Rohrer, Ch. Gerber, and E. Weibel in 1981 by showing a successful tunnelling experiment 

with an externally and reproducibly adjustable vacuum gap which demonstrated the 

exponential dependence o f  the tunnelling current on the width o f  the gap [12], [13].

When a probe is brought to the sample on small distance z  (smaller then few  

nanometres) and voltage V is applied on a probe, the electrons will tunnel through the 

vacuum barrier as seen in Figure 1.1.1. The tunnelling current I  is then exponentially 

dependant on the barrier width (tip-sample separation):

( 1.1)

where m0 is an effective mass, ^,and <f>s are tip and sample Fermi levels.

CO
b Sample

20
Distance (nm)

Figure 1.1.1. Schematic representation o f the scanning tunnelling microscopy method when 

voltage is applied on a tip, electrons will tunnel through the vacuum barrier between the tip and

sample.
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There are two methods to obtain surface topography o f  the sample with atomic 

resolution: constant height mode measurements and constant current mode measurements. In 

constant current mode the current between tip and sample is kept constant while tip is 

mapping sample in x-y directions. Depending on a change o f  the surface topography a change 

in the tip lift height is recorded. In constant height mode a change in topography is obtained 

from the change in the recorded values o f  current. Because current is exponentially dependant 

on z, STM gives a good depth resolution.

The resulting topography image from STM is not only influenced by the sample’s 

actual topography, but also it is influenced by the electronic structure o f the sample surface 

because surface charge density is probed by this method [14]. That is why another application 

o f STM is scanning tunnelling spectroscopy (STS) which directly measures surface density o f  

states o f  the sample.

1.1.2 Scanning tunnelling spectroscopy

A detailed spectrum o f  the material surface can be obtained by STS. The spectrum 

contains information about conduction and valence band edges and various features o f the 

surface states. The bulk bandgap can be obtained for the material like GaAs because 

dangling-bond states on the surface do not appear in the gap [17]. As well as in STM, the 

main limitation o f this method is a systematic measurement error due to tip-induced band 

bending which can be small for highly doped samples [15], [16].

Like in STM, there are two STS measurement modes to obtain the spectra: using 

variable tip-sample separation and using constant tip-sample separation [18], [19]. In 

-principle, identical results should be achieved using both methods. The variable separation 

method can be more preferable because with this method a conductance at the low voltages 

can be obtained with better accuracy [17]. As the voltage reduces, the separation is reduced in 

order to keep the current above the noise floor and maintain sufficient signal to noise ratio to 

measure within the band gap. Thus variable separation method will give a better quality data 

due to the better signal-to noise ratio than constant separation method.
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Spectra analysis is performed in two steps. First the tip is held above the sample surface 

and current I-V  is measured for the range o f  the applied biases. Measured data then needs to 

be transformed to the constant tip-sample separation using Eq. (1.1) if  the variable separation 

mode was used. In the experiment values o f  k can be obtained by measuring current 

dependence on the separation and are estimated to be in the range 0.7-1.1 A '1 for III-V 

semiconductors [17]. The conductance dl/dV  is then defined as a partial derivative o f  the 

current with respect to voltage for a fixed value o f  tip-sample separation. After measurement 

o f current I  and conductance dl/dV , the normalised differential conductance to the total 

conductance (dI/dV)/(I/V) is analysed on the linear scale to reveal features o f the spectra.

1.1.3 Four point probe microscopy

The four point probe method o f the scanning probe microscopy is generally used for 

measurements o f surface conductivity (resistivity) and sheet resistance [20]-[22]. In Figure

1.1.2(a) current /  is flowing through two current probes 1 and 4 and voltage drop V across the 

sample during the current flow is measured using two voltage probes 2 and 3. The first 

formulism for the collinear four point probe with an equal probe spacing s  was introduced by 

Valdes [20] in 1954 and the equation for the resistivity p when probes are placed on a semi

infinite volume o f semiconductor material is the following:

p= 2^-y/j (i.2)

To obtain results for other probe geometrical configurations and spacing between 

probes correction factors are used [23]. The most common probe setup is the collinear mode 

as shown in Figure 1.1.2 [24]-[26] where probe 1 and 4 are current sensing probes and probe 

2 and 3 are voltage sensing probes.

In the four point probe system shown in Figure 1.1.2, each probe has a probe resistance 

Rp, a contact resistance RcP at the probe-sample contact, a spreading resistance Rsp due to the 

current flowing from the tip through sample, and semiconductor itself has a sheet resistance 

Rs which needs to be measured. Ideally, contact resistance, probe (lead) resistance, and
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spreading resistance (RcP, Rp, and Rsp) should not contribute to the measurement o f the sheet 

resistance Rs measurements.

In the collinear four point probe (4PP) method, the inner two probes will drive 

negligible current due to high impedance o f  the voltmeter used in the measurements. This 

will result in a very low current through the inner voltage probes 2 and 3 making l2« I i  and 

I3« l 4. That is why, unlike in a two point probe [22], the contact type (Schottky or Ohmic) o f  

the voltage probes in 4PP does not play a significant role [20]. Due to negligible current I2 

and I3, the voltage V measured by the voltmeter will correspond to the potential drop across 

sample Vs making: V =  Vs. Also, when current on the voltage probes is negligible, current 

through the probes 1 and 4 becomes: Ii= Is= I4 as seen in Figure 1.1.2(b). Then measured 

resistance in the four point probe would be:

Despite the wide use o f  4PP methods, there exists disagreement in the literature about 

whether the contact type o f the four probes is important. Many authors claim that the contact 

type o f  current probes (probes 1 and 4 in Figure 1.1.2(a)) does not influence 4PP 

measurements too, irrespective o f  whether the probe contacts are Ohmic or Schottky-type 

[25]-[28]. Some authors cite Smits work [23] from 1958 to confirm the assumption even 

though this work does not include a study o f  the probe contact type.
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a

b

sp3cp3

p2 cp2 sp2
AAA------ W v---W VL-6

p1 cp1

AAA-------W v---W V
sp1

Test current
Figure 1.1.2. Four point probe measurements o f  semiconductor resistance, (a) The outer 

two probes 1 and 4 are used for current sensing and inner two probes 2 and 3 are used fo r  

voltage sensing. Each probe has a probe resistance R/>, at the probe-sam ple contact there is a 

contact resistance Rcp, spreading resistance Rsp, and semiconductor itself has a sheet resistance 

Rs. (b) Current from  the voltage probes 2 and 3 is negligible when a voltmeter has high 

impedance: /? < < //, h < < F, f  = f  = F- ■Then voltage sensed by voltmeter (V) w ill be equal to

voltage drop across the sample: V=VS. The measured resistance becomes: Rs =  ^ / j 1 =  /  •



1.1 Scanning probe methods 7

The assumption o f rectifying contacts used in 4PP was introduces earlier by Valdes 

[20] in 1954 to study the surface resistivity o f germanium. Valdes derived the formulism to 

improve the existing measurements methods, the new four point probe method was claimed 

to account for the rectifying nature o f the germanium semiconductor when a contact with 

metal is formed [20]. Excess concentrations o f minority carriers were known to affect the 

potential o f  contacts and it was claimed to modulate the resistance o f  the material [2 0 ]. 

Nowadays it is widely accepted that resistance (resistivity) is the intrinsic property o f  the 

material independent from a measurement method [29] and it cannot be modulated by the 

properties o f  the contact, instead the contact resistance can introduce an error in 

measurements o f semiconductor resistivity. The formulism did not account for the separate 

impact o f contact resistance and material resistivity, and a semiconductor sample was 

considered to be a semi-infinite volume o f  uniform resistivity material [2 0 ].

Valdes in Ref. [20] is referencing work by Bardeen [30] which demonstrates non-linear 

current-voltage behaviour o f  the germanium point contacts. Nowadays it is known that in 

Schottky contacts there are five basic transport processes (Figure 1.1.3) [29], [31]—[33]: 

(1) emission o f electrons over the potential barrier, (2) diffusion o f electrons, (3) quantum- 

mechanical tunnelling through the barrier (important for heavily doped semiconductors), (4) 

recombination in the space-charge region, and (5) holes injected from the metal into the

Figure 1.1.3 Schematic band diagram showing transport processes: (1) emission o f electrons 

over the potential barrier, (2) diffusion o f electrons, (3) quantum-mechanical tunnelling, (4) 

recombination, and (5) holes injected from the metal.
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semiconductor. Current due to each transport process is taking place at different bias range 

and it is non-linearly dependant on the applied bias. This means that in Schottky contacts 

when Schottky diode behaviour is present at the metal-semiconductor interface the current in 

to the electrode and out o f the electrode will have significantly different magnitude. If we 

consider that current probes 1 and 4 in Figure 1.1.2(a) have the same material parameters and 

both probes are forming Schottky contact with the sample, then for the current directions 

indicated in Figure 1.1.2(a) the forward bias current Ii and corresponding reverse bias current 

I4 are non-equal (Ii^L*) and form contact resistances: R cpi<<: RcP4 - This would violate one o f  

the main principles o f  4PP theory: current-carrying electrodes carry currents o f equal 

magnitude but in opposite directions [20]. A rise o f  the contact resistance RcPi or Rq* will 

result in non-negligible current through the voltage probes I2 and I3, measured voltage 

becomes V Vs, which then results in the measurement errors as seen in 2PP.

Experimental data demonstrated by Chandra [21] indicated that for the wide band gap 

semiconductor SiC 4PP measurement are not suitable, even though it is routinely used for Si 

and other semiconductors. One probe measurement on the SiC surface revealed the non

linear current-voltage characteristic o f  SiC. Extremely high contact resistances between tip 

and sample o f  the probe-SiC contacts was estimated using 4PP [21]. This was due to the high 

currents through voltage probes (probe 2 and 3 Figure 1.1.2(a)) in comparison to currents at 

the current probes (probe 1 and 4 in Figure 1.1.2(a)) making four-point probe sheet resistance 

measurements on SIC surface with non-linear I-V characteristic fraught [21]. These 

measurements demonstrate that in case o f  non-linear Ohmic contacts a violation o f one o f  

principles o f 4PP formalism is present: the current on the voltage probes become non- 

negligible in comparison to the current through current probes.

It is recommended by the 4PP production companies to make one probe measurements 

to test the contact linear current-voltage behaviour before the measurement including testing , 

and successful 4PP measurements demonstrated in literature were performed with Ohmic tip- 

sample contacts [22], [25], [34]—[39].

Oxide coatings can have an effect on the contact type formed, and so four point probe 

measurements should be taken with probes that are oxide free using methods such as direct



1.1 Scanning probe methods 9

current annealing [36,69]. Li and Ba state that the probes used for four point probe 

measurement need to be regularly cleaned to avoid the effect o f probe surface oxidation 

and/or contamination, but as o f 2 0 1 2  they report that no work has been done to examine the 

effects o f probe oxide [24]. With the need for Ohmic contacts established, even for 4PP, in 

Chapter 3.8 we investigate whether oxide coatings on local probes can modify the contact 

behaviour using a combination o f  experimental and simulation techniques. The work 

presented in this section and in Chapter 3.8 was included in a submitted publication.

1.1.4 Electrostatic force microscopy

Electronic force microscopy (EFM) is one o f the non-contact methods o f  atomic force 

microscopy that allows measurement o f  long-range electrostatic forces and capacitance with 

a resolution around 100 nm, first introduced by Martin in 1988 [40].

Second scan

First scan

Surface 
topography

4 \

Figure 1.1.4 Schematic illustration o f the electronic force microscopy double pass method. 

During the first scan topography o f the sample is obtained in a “tapping mode ” with a tip-sample 

separation hj. During the second scan tip is lifted on the distance H above the sample and it is 

scanning with vibration the amplitude h2. During the second scan a constant DC voltage is applied on

the tip.
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A double pass EFM method allows mapping the surface potential. It is performed in 

two stages and is shown in Figure 1.1.4. At the first scan a cantilever vibration amplitude hi 

is kept constant to obtain the morphology o f  the sample in a “tapping mode” [41]. To obtain 

the surface potential in the second scan the tip is retracted at the constant lift height H and it 

follows the topography obtained in the first scan with the amplitude h2, where h2< hi. During 

the second scan a constant voltage is applied to the tip and the electrostatic forces due to the 

tip-sample potential offset are measured [42], [43].

The frequency shift kf{co) in the cantilever vibration will be proportion to the 

gradient o f the force:

ltf(fi>)ccgradDCF = - ^ - ^ { y DC-V cp̂ f ^  sin((u0 (1.4)
2 oz

where the force F  depends on the applied voltages V dc ~ DC potential applied between tip 

and sample, Vas - AC potential on the cantilever, V q p d  - contact potential difference between 

tip and sample and capacitance C [44].

For the quantitative determination o f the surface potential the correct tip-sample 

capacitance is needed. This involves determining the tip-sample separation and the exact 

geometry o f the tip.

One o f the drawbacks o f the method is a contribution o f the tip cone and cantilever 

which introduce an error in force gradient measurements due to the averaging o f  the contact 

potential over a large area [45], [46]. Error is present during the ‘height measurement’ at the 

first scan when sample topography is obtained, which then adds an error when the potential is 

measured in the second scan.
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1.2 Semiconductor device theory

1.2.1 ZnO/MgZnO heterostructure field effect transistor

The operation o f the high electron mobility transistor (HEMT) is based on the effect o f  

the creation o f two-dimensional electron gas (2DEG), first described by Khan et al. [47]. 

When the energy states in the triangular potential well are formed, no electron can be placed 

below the energy level corresponding to a half-wavelength o f  the electron (first energy sub 

band) [29]. Electrons at these states cannot move in the direction o f  the potential well 

formation but can freely move in the other two directions. These electrons that can move only 

in two dimensions are referred to as the 2DEG. The inability o f electrons to move in one o f  

three directions will eliminate scattering mechanisms in this direction, consequently 

increasing the electron mobility in the 2DEG channel. This makes HEMTs important for the 

high-frequency and low noise applications.

ZnO has good high-field transport properties and a high melting temperature o f 2248 K 

which makes this material suitable for high-temperature device applications [48]. Resulting 

MgxZni.xO semiconductor material has a wider bandgap then ZnO, and it has a Wurtzite 

structure for the Mg content up to x=0.5 [50]. This suggests a carrier confinement in the 

ZnO/MgxZni-xO material system (Figure 1.2.1(a)) similar to GaAs/AlGaAs and GaN/AlGaN 

making ZnO/MgxZni.xO a good candidate for HEMT applications [29], [47]. Similar to the 

case o f GaN/AlGaN, crystallographic polarity along the c-axis direction is expected in 

ZnO/MgxZni-xO due to non-centrosymmetric atomic arrangement in the Wurtzite structure. 

The undoped ZnO/MgZnO structure will have a 2DEG formed in the ZnO channel layer due 

to the interplay between spontaneous and piezoelectric polarizations in the heterostructure

[48].

The sheet carrier density in the ZnO channel will depend on the electron density from 

the native donors and o f  accumulated electrons due to polarization-induced interface charges 

which depends on the Mg content in MgxZni.xO layer. The spontaneous polarization 

increases with Mg content x  in MgxZni_xO due to the deviation o f  the material crystal 

structure from ideal Wurtzite: PSP =  —(0.057 +  0.066%) C/m2 [50]. Polarization charges
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when the electron density is larger than 1 0 11 cm '2 can also act as an additional source o f  

scattering leading to the degradation o f the mobility [51].

In the ZnO/MgZnO structures with thin well width less than 4.6 nm and low Mg 

composition x< 0 .2  the cancellation o f the sum o f spontaneous and piezoelectric polarization 

is present which will result in a negligible internal field effect and 2DEG will not be formed

[49], [52].

The first n-channel depletion mode ZnO/MgojZnovO heterostructure field effect 

transistor (HFET) was suggested by Koike et al. in 2005 [53]. A typical HFET structure is

iS o u r c e

MgZnO

a

Gate

Insulator

MgZnO 1.5-2 nm

ZnO 10-20 nm

MgZnO 200-400 nm

Substrate

2DEG

Figure 1.2.1. (a) Formation o f the 2DEG at ZnO/MgZnO interface, (b) Schematic o f ZnO/MgZnO 
HFET: an insulator layer o f 50 nm can be formed using one of the following materials: MgO f537,

A1203 [48] or Hf02 [54]-[56].
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demonstrated in Figure 1.2.1(b). At the heterostructure interface band edge discontinuities 

were estimated to be -0 .7  eV for the conduction band and -0 .08  eV for the valence band 

suggesting the formation o f a deep potential well for electrons and the creation o f  a 2DEG.
19 9

The electron sheet density in a single quantum well was estimated to be - 6 - 1 0  cm' , field- 

effect mobility 140  cm /V -s. This very high mobility was nearly two orders o f  magnitude 

larger than in ZnO thin film transistors with polycristalline ZnO channel [53]. A maximum 

transconductance at V gs= ~ 4 .6  V  was estimated to be 0 .7  mS/mm. Also the device showed 

light-sensitive properties, the source-drain current increase with the increase in the light 

power was observed.

The main problem o f the first device was a leakage current through the bottom 

Mgo.3Zno.7O barrier which resulted in a low on/off ratio. To solve the problem o f leakage 

current, Sasa et al. suggested a depletion mode ZnO/Mgo 4Zno.6 0  HFET structure with a thin 

2 nm Mgo.4Zno.6O cap layer and 50 nm AI2O3 layer to form a gate dielectric [48]. This device 

showed FET operation with an effective mobility o f 62 cm /V*s, threshold voltage o f -7 .2  V
• • 19 9and transconductance o f 28 mS/mm. The estimated charge density was 2T 0 cm' . As well 

as the previous HFET structure, this device showed light-sensitive behaviour which resulted 

in a shift o f  the output characteristic o f  -0 .6  V to -0 .7  V o f gate bias. Due to the presence o f  

the mobile charge in the dielectric layer an output characteristic o f the device showed a 

hysteresis o f  about 2 V.

To significantly reduce hysteresis up to 0.1 V a new ZnO/Mgo.3Zno.70  device structure 

was suggested where AI2O3 dielectric was replaced with HfC>2 [54]. The estimated mobile 

charge density changed to 1.4-10 11 cm '2 and use o f  HfC>2 improved the stability and 

performance o f  the transistor.

A study o f the high frequency performance o f  ZnO/Mgo jZno^O HFET demonstrated a 

current gain cut-off frequency o f  1.75 GHz and unilateral power gain o f  2.45GHz 

demonstrating a high-speed capability o f  these transistors [55]. Also, radiation hardness was 

found to be better than in GaAs HEMTs demonstrating the good radiation-proof 

characteristics o f new HFETS [56].
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1.2.2 ln20 3 thin film transistor

ln2 0 3  is a wide bandgap material with a cubic crystal structure [57], [58]. When used in 

thin films it has a high transparency in the visible range (>90%), high electrical conductivity, 

large-area uniformity making In2 0 3  thin films important for the device application like liquid 

crystal displays and solar cells [59]—[61 ]. The excess indium atoms or oxygen vacancies 

serve as donors and make In2 0 3  an n-type semiconductor [60], [62]. The electron affinity was 

estimated from experimental data to be 3.7 eV (3.3-4.45 eV) [59], with a direct bandgap 

around 3.6 eV (2.93-4.0 eV) [58]-[60],  [62] and an effective mass o f  0.3m [58]. The electron 

mobility in In2C>3 thin films was estimated to be 36-52 cmVV-s for n-type doping levels o f  

2.2* 1019-7-10 19 cm '3 [59], [63] and 11-55 cm 2/V-s for n-type doping o f  1.5* 10 18-7.5* 10 18 cm '3 

[60]. Additional doping o f  the film can increase the mobility up to -1 3 0  cmVV-s [63]. It was 

demonstrated in the literature that conductivity o f  the In2C>3 thin film is also dependant on the 

thickness o f  the film [62]. Experimental investigation o f  the high-quality single-crystalline 

thin films show accumulation o f  electrons on the (001) surface introducing surface band 

bending o f  -0 .4-0 .5  eV resulting in the unoccupied donor surface states charge density o f  

—1.3* 10 13 cm '2 [58], [60].

Source Drain

In203 active layer

Si02 dielectric

Si++ substrate

Gate

Channel

Figure 1.2.2 Typical structure ofn-channel ln20 2 TFT operating under Vg>0 and Vd>0.
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In203  thin film transistor (TFT) structures were suggested for high resolution displays 

where it is preferable to have large on-currents to drive pixels and low off-currents for low  

power consumption. A typical structure o f  In203  TFT is demonstrated in Figure 1.2.2 [64]—

[67]. In203  TFTs on S i02/S i substrate demonstrated in the literature are typically bottom 

gate, normally-on n-channel transistors [6 8 ]. These devices show mobility o f  0.44-

23.03 cm2/V-s and on-off ratios o f ~105-106 are demonstrated [61], [6 8 ]. The increase in the 

mobility was related to the increase in the annealing temperature which resulted in different 

crystallisation o f the In20 3  films [61]. It was also demonstrated that 1 ^ 0 3  TFTs show 

semiconducting behaviour for annealing temperatures only up to 300 ° [61].

In2C>3 TFT devices show typical FET behaviour. In the on state a linear regime in the 

output characteristic indicates good Ohmic contact between the Al electrodes and the channel 

layer. The saturation regime is observed in the output characteristics indicating that the 

channel is depleted o f  free carriers. When the drain bias is further increased a decrease in the 

drain current is present due to the charge-trapping effects in the channel layer [6 8 ].

A good interface between the 1 ^ 0 3  channel and dielectric material is necessary to

reduce scattering at the interface and enhance device performance. The maximum density o f
11 0

surface states at the insulator-channel was estimated to be 3.9x10 cm" [6 8 ].

Typically an enhancement mode operation o f  FET is more preferable as no voltage 

needs to be applied to turn o ff the device. This can be achieved when amorphous TFTs 

are used [6 8 ].

1.3 Silvaco device simulation toolbox

Physically-based simulations are becoming widely used because they can provide 

information which is difficult or impossible to measure. These simulations are often quicker 

and cheaper than performing experiments. The effective use o f the physically-based device 

simulator is possible when all relevant physics models are incorporated in the simulator and 

effective numerical algorithms are used to obtain the solutions. More details on physical 

models and numerical algorithms will be given in Chapter 2.
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Figure 1.3.1. Simulation procedure, input and output setup using Silvaco interface tools Atlas,

DeckBuild, Tonyplot and Devedit.

Silvaco software com bines interface tools like Atlas, DeckBuild, Tonyplot, DevEdit for 

physically-based 2D and 3D simulations o f  the semiconductor devices (Figure 1.3.1). Atlas is 

a platform that combines a set o f  physical models for modelling electrical and thermal 

behaviour o f  semiconductor devices. When the problem is simulated in Atlas first the 

physical structure and mesh are defined, then the physical models and the bias conditions at 

which the physical models will be applied to the structure geometry are specified. The Atlas 

models are defined using com m ands and can run in the interactive run-time environment 

DeckBuild. The results o f  the run can be traced in the DeckBuild runtime output and 

graphically presented in Tonyplot. Tonyplot tool allows graphical visualisation o f  2D and 3D 

structures and simulation data analysis. The Tonyplot package also provides the analytical 

tools for the inspection o f  the physical quantities calculated for the structure and allows 

multiple plots to be compared by overlay. The device structure and device mesh can also be 

defined in a structure and mesh editor called DevEdit. Structure created in DevEdit can be 

used in DeckBuild and Atlas physical models can be applied to simulate the structure 

behaviour.

The following three types o f  output provide information about the semiconductor 

structure analysis (Figure 1.3.1): runtime output gives the information about the code 

execution progress, possible errors and warning messages, “ .log” files provide all electrode 

voltages and currents in the structure and “ .str” provides 2D and 3D visualisation o f  the 

physical quantities on the device mesh at the selected bias point. More details about 

simulation setup and physical models used are given in Chapter 2.
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1.4 Summary

The basic principles o f some o f  the SPM methods used in this thesis like scanning 

tunnelling microscopy, scanning tunnelling spectroscopy, four point probe microscopy and 

electrostatic force microscopy are discussed in Chapter 1.1. STM is used to obtain surface 

topography o f  the sample with atomic resolution. The resulting topography image from STM 

is not only influenced by the sample’s actual topography, but also it is influenced by the 

electronic structure o f the sample surface because the surface charge density is probed by this 

method. STS directly measures surface density o f states o f the sample. An electrostatic 

interaction o f  probe with sample which results in a tip induced band bending. In Chapter 3 a 

simulation methodology to reproduce the STS and STM process will be shown and compared 

against experimental data and other models.

Collinear four point probe is used to measure nanoscale surface conductivity and 

employs two outer probes to pass a current through the sample while two inner high 

impedance sense probes measure the potential difference induced by the outer probes. The 

method relies on at least two current sensing o f the probes forming the same barrier to the 

sample with low resistivity non-rectifying contacts. The presence o f oxide on the shank o f  

probes can change contact properties. Change in the conductivity due to presence o f  oxide on 

the probe will be investigated experimentally and in simulations in Chapter 3.8. Two point 

probe measurements o f electrical properties o f  ZnO nanowires with metal contacts are 

considered in detail using simulations in Chapter 4.

Electrostatic force microscopy (EFM) is one o f  the non-contact methods o f  atomic 

force microscopy that allows measurement o f  long-range electrostatic forces and capacitance 

with a resolution around 100 nm. One o f  the drawbacks o f  the method is a contribution o f  the 

tip cone and cantilever which introduce an error in force gradient measurements due to the 

averaging o f  the contact potential over a large area. Error is present during the ‘height 

measurement’ at the first scan when sample topography is obtained, which then adds an error 

in the potential measurement during the second scan. EFM is widely used for surface 

potential measurements o f  devices in operation, for example, In203  thin film transistors.
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I112O3 thin films are important for device applications including liquid crystal displays 

and solar cells. In203  TFTs on S i02/S i substrate demonstrated in the literature are typically 

bottom gate, normally-on n-channel transistors. In Chapter 5.1, an error in the surface 

potential profiles obtained on the In203  TFTs under operation using the EFM method due to 

the tip induced band banding is analysed using a combination o f experimental and simulation 

techniques.

Carrier confinement in the ZnO/MgxZni_xO material system makes it a good candidate 

for HEMT applications. The undoped ZnO/MgxZni_xO structure will have a 2DEG formed in 

the ZnO channel layer due to the interplay between spontaneous and piezoelectric 

polarizations in the heterostructure [48]. The first n-channel depletion mode 

ZnO/Mgo.3Zno.7 0  heterostructure field effect transistor (HFET) was suggested by Koike et al. 

in 2005 [53]. In Chapter 5.2, a concept o f ZnO/GaZnO HFET similar to ZnO/MgxZni_xO 

HFET will be presented.

All listed simulations in this thesis are performed using Silvaco Atlas. Silvaco Atlas is a 

physically-based device simulator with an effective numerical algorithms used to obtain the 

solutions. Silvaco allows electrostatic and transport simulations o f  metal-semiconductor 

structures and semiconductor devices. More details about simulation setup and physical 

models used will be seen in Chapter 2.
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Chapter 2 Simulation methodology

2.1 Device simulations using Silvaco

Silvaco software combines interface tools like Atlas, DeckBuild, Tonyplot, and Devedit 

for physically-based 2D and 3D simulations o f  semiconductor devices [1], as explained in 

Chapter 1. In this chapter the details o f the device modelling using the Silvaco Toolbox are 

given.

Physical models for simulations o f semiconductor devices can be presented as a system 

o f discrete non-linear problems that only approximate the behaviour o f  the continuous model. 

This approximation is performed using a discretisation method. Therefore, any solution for a 

device system will be presented as a non-linear algebraic problem which consists of: 1) non

linear partial differential equations which will be solved on the 2) structure mesh using 3) a 

discretisation method.

The calculation o f the discrete non-linear problem starts with the initial guess solution. 

The solution is then obtained iteratively. The iteration is finished when the convergence 

criteria are achieved: the corrections between iterations are smaller than the specified 

tolerance. In addition, a maximum number o f  iterations is often defined. If the convergence 

was not achieved in the maximum allowed number then a different numerical technique 

should be used or a structure mesh needs to be reconsidered. Corrections between the 

iterations are obtained by linearization o f  the problem. The convergence criteria are an 

important aspect as it defines i f  the solution will be obtained, the accuracy o f  the 

approximation in the solution, time needed to obtain the solution (efficiency), and if  the 

method can be applied to the wide range o f the solutions (robustness).

Atlas supports several boundary conditions: Ohmic contacts, Schottky contacts, 

insulated contacts, and Neumann (reflective) boundaries.
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Figure 2.1.1. Example o f  2D mesh for (a) rectangular structure o f  the ln20 3 thin film transistor 

demonstrated in Chapter 5 created using Atlas commands, (b) arbitrary tip-sample structure shape 

used in Chapter 3.7 created using DevEdit command. Circular 3D mesh fo r  the (c) tip structure in 

Chapter 3.3, (d) ZnO nanowire structure used in Chapter 4 created using Atlas commands.
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2.1.1 Mesh considerations

For accurate modelling o f the device geometry Atlas allows the specification o f a 

rectangular triangular finite element mesh for 2D geometries (the structure is specified using 

X and Y coordinates) and 3D geometries (the structure is specified using X, Y and Z 

coordinates). Triangular mesh has two triangular elements in each rectangular pixel as seen in 

Figure 2.1.1(a) and (b). A circular mesh specification is also available. For the circular mesh, 

radial mesh spacing and angular mesh spacing should be defined as seen in Figure 2.1.1(d). 

For a 3D circular mesh, Z spacing should be specified additionally.

The CPU time required to obtain the solution for a mesh with N  nodes is proportional 

to N a, where values o f  a~2-3 [1]. Having a fine mesh in the structure is critical because it will 

affect the accuracy o f  the solution. The number o f nodes used should not also be in excess as 

this might affect the numerical efficiency. That is why the mesh is normally optimised 

depending on the region importance and change in quantities in this region.

It is important to have a refined mesh in the following regions: at the electrode and 

channel junctions with the high electric field (as seen in Figure 2.1.1(a) for In2C>3 thin film 

transistor channel), insulator layer through which tunnelling is allowed (as seen in Figure 

2 .1 .1(b) for tip-sample structure), heterojunctions which form the channel in high electron 

mobility transistors (HEMTs) (as will be used for HEMT structure in Chapter 5.2). The 

number o f  obtuse triangles (long and thin triangles) should be minimised to avoid poor 

accuracy, convergence and robustness.

Figure 2.1.1 demonstrates different mesh types created using Atlas and the DevEdit 

toolbox. The rectangular triangular mesh is good for representation o f  the rectangular 

structures, and as seen in Figure 2.1.1 (a) for In203  thin film transistor there are no obtuse 

triangles in the structure (total grid points in the structure: 7979, obtuse triangles: 0 (0 %)). 

This structure o f In203  thin film transistor in Figure 2.1.1 (a) will be used in Chapter 5.1. For 

an arbitrary structure shape the mesh should be created using the DevEdit environment. 

Figure 2.1.1(b) demonstrates the mesh for the tip covered in oxide in contact with the GaAs 

sample as will be seen in Chapter 3.7 created using the DevEdit toolbox. Due to the non- 

rectangular shape o f  this structure an approximation with a rectangular triangular mesh will
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produce a small amount o f the obtuse triangles (total number o f grid points: 23596, number 

o f  obtuse triangles: 15 (0.0321523 %)). An example o f the 3D circular mesh created using 

Atlas syntax is presented in Figure 2.1.1(c) (will be seen in Chapter 3.4) and Figure 2.1.1(d) 

(will be seen in Chapter 4). For the circular structures the mesh spacing is defined for the 

radial component and angular component.

An example to demonstrate the mesh refinement effect on the final result o f  the 

calculations is shown in Figure 2.1.2. For circular tip structure as seen in Figure 2.1.1(b) and
18 i

Alo.3Gao.7As sample with n-type doping concentration o f  N d = 10  cm test simulations were 

performed for 1 nm tip-sample separation. Differential conductance (dl/dV)/j 1/V| in Figure 

2.1.2(b) was obtained for tree different mesh geometry shown in Figure 2.1.2(a). In Figure 

2.1.2(a) the mesh was gradually refined at 10 nm around the tip apex for “Mesh 1” and 

“Mesh 2” because the tunnelling probability is the highest at this region. For “Mesh 3” the 

mesh density away from the tip apex was also increased. Results o f  the calculations o f  

differential conductance (dl/dV)/|I/V| in Figure 2.1.2(b) shows that the mesh density o f  

“Mesh 1” is not sufficient enough and result diverges from other more precise solutions with 

higher mesh densities. Calculation results for “Mesh 2” and “Mesh 3” are in good agreement 

that is why “Mesh 2” can be selected for further simulations because it requires a smaller 

computational time than “Mesh 3”.

2.1.2 Numerical methods

When the regions are specified and the mesh is defined at every region o f the device the 

structure will be created. The solution o f  the physical models can be found.

Discretisation processes will define variables at each mesh point. The error o f  the 

discretisation between two mesh points varies proportionally to the square o f the separation 

between two nodes; the second order discretisation is used in Atlas. For the discretisation a 

box integration method is used [1]. The discretisation o f the current densities and energy 

fluxes is performed using the Scharfetter and Gummel method [2].
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sample, (c) Results o f  calculation fo r  various bias step.
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After discretisation o f the problem on a mesh Atlas allows the following non-linear 

iteration solution methods: the Gummel decoupled method 1, or the fully coupled Newton and 

Block method [1]. The choice o f  the non-linear iteration technique will define the iteration 

and convergence criteria.

The Newton algorithm [3] is default for most transport models including the drift- 

diffusion model. It solves a linearised complex problem for all variables making each 

iteration time-consuming. However, this method will have a quick convergence only with a 

good initial guess. The Gummel method [4] will divide a complex non-linear problem into a 

sequence o f  the linear sub-problems. The solution o f  a sub-problem will be found for the 

primary variable while other variables remain constant according to their recently computed 

values. Each step o f the Gummel iteration is looking for the solution o f  each independent 

variable. This method will tolerate a poor initial guess but it requires more time to converge 

in comparison to Newton algorithm. The Gummel and Newton algorithms can be combined. 

Because Gummel method allows a poor initial guess, the initial guess can be refined using 

Gummel algorithm and the final result can be found with Newton algorithm which will give 

better convergence.

The Block algorithm is used when the lattice heating model is activated and also for the 

energy balance equation transport model (a hydrodynamic model). This method gives a 

solution for the sub-groups o f  equations. In Atlas this division o f the complex problem into 

sub-groups was done based on the numerical experiments [1]. This method will not be used 

in this work because it is not available for 3D models and we consider self-heating only in 3D 

structures. In the present work a combination o f Gummel and Newton algorithms is used.

If there are x  variables in the problem and y  mesh nodes then for the whole system there 

are x xy  unknowns. Each Newton iteration solves a matrix with (x *y)2 elements and Gummel 

methods solves matrix with n2 elements. The size o f the problem will define the algorithm 

according to which linear sub-problems are solved. There are two methods for solving linear 

sub-problems available: the direct method and the iterative method [1]. For large linear 

systems, the iterative method will require less memory and time for calculations. The solution 

is found by making corrections to the initial guess. Atlas 2D uses the direct method to solve
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sparse matrices in which variables at each node are connected only to the neighbouring 

nodes.

Stable convergence can be also achieved by reducing the calculation step. An example 

to demonstrate the effect o f  bias step on the final result o f the calculations is shown in Figure 

2.1.2(c). The differential conductance (dl/dV)/| 1/V| was calculated with various bias steps: 

0.5 V, 0.05 V and 0.005 V. Bias step o f 0.5 V is not sufficient enough and result diverges 

from other more precise solutions with smaller calculation steps. Calculation results for bias 

steps o f 0.05 V and 0.005 V are in good agreement that is why bias step o f  0.05 V can be 

selected for further simulations because it requires a smaller computational time than bias 

step o f 0.005 V.

Detailed explanations o f the physical models that are solved on the structure mesh are 

found in the following chapters.

2.2 Modelling transport across metal-semiconductor junction

Metal-semiconductor contacts can be separated into two different types according 

their typical behaviour: Ohmic contacts with linear current-voltage characteristics and 

Schottky (rectifying) contacts which have asymmetric current-voltage characteristics. 

However, in reality, Ohmic contacts are just Schottky contacts with low resistivity [5]. The 

Schottky contact is formed when there is a potential barrier between carriers in the metal and 

carriers in the semiconductor - the Schottky potential barrier [6 ].

In this chapter the theory for the simulation o f the Schottky metal-semiconductor 

contacts is presented in detail. The described in this Chapter models for metal-semiconductor 

contact including barrier lowering, thermionic emission and tunnelling current will be used to 

simulate metal probe in contact with sample surface in Chapter 3.8, ZnO nanowires with Au 

particle deposited on top or in contact with tungsten probe in Chapter 4, and device modelling 

in Chapter 5.
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2.2.1 Formation of the Schottky contact

The first theory on the formation o f  the Schottky barrier was introduced by Walter 

Schottky [7] and also Sir Neville Mott [8 ], and was further corrected and developed by Hans 

Bethe [9].

When a metal and semiconductor are not in contact the vacuum level o f  both regions 

are aligned (Figure 2.2.1 (a)). The vacuum level represents the energy o f  the free electron in 1 

space. The metal work function (f)m represents the position o f the Fermi level EF with respect

to the vacuum level. The semiconductor affinity % expresses the position o f  the lowest 

conduction band energy with respect to the vacuum level. The metal work function represents 

the lowest energy needed to remove an electron from the metal. The semiconductor affinity 

represents the lowest energy needed to remove an electron from the bottom o f the conduction 

band.

(a) Vacuum level (b)

X

Figure 2.2.1 (a) n-type semiconductor and metal in separation, (b) n-type semiconductor and

metal in contact.
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When metal and semiconductor are brought in to intimate contact (Figure 2.2.1 (b)) the 

thermal equilibrium in a single system is established. This is due to the alignment o f the 

Fermi levels in the semiconductor and metal which results in charge movement from the 

semiconductor to the metal. The negative electric charge will build up at the metal interface 

and an equal positive charge will build up at the semiconductor surface. Due to charge 

movement a depletion region o f  width W  will be created at the semiconductor surface. The 

potential difference at the metal-semiconductor interface due to the energy band offset will be 

equal to the initial difference in the Fermi levels. For an «-type semiconductor a created 

barrier height (j)b will be calculated from the standard expression o f  the Schottky-Mott theory 

[6]:

qfa = qWm -  x )  (2 .1)

The barrier height for the p-type semiconductor is given by:

<lh=Et-qWm-X) (2.2)

The surface potential y/s changes with the applied voltage V as described by the 

expression:

Figure 2.2.2 Schematic band diagram showing the carrier transport due to (a) thermionic 

emission, (b) carrier diffusion, (c) tunnelling and (d) recombination.
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E, kT . ( Nc \  ,
In - r f  -<I>»,+X + V (2.3)

2  q 2  q

where Eg is the band gap, r = 3 0 0 K  is the ambient temperature, and NC,N V are the 

conduction and valence band density o f  states, respectively.

As demonstrated in Figure 2.2.2, depending on the barrier shape (barrier height (j>b and

barrier width W) carrier transport can be due to (a) thermionic emission o f carriers from the 

metal to semiconductor over the potential barrier (see Chapter 2.2.3), (b) carrier diffusion 

from the semiconductor to the metal over the potential barrier, (c) carrier tunnelling through 

the potential barrier (see Chapter 2.2.4), and (d) recombination in the space-charge region.

2.2.2 Barrier lowering

The barrier height at the metal-semiconductor interface can be different from the ideal 

value described in Equations (2.1) and (2.2) due to the (a) presence o f  the interface states, 

(b) barrier lowering due to the image force, and (c) dipole effects [ 10].

Image force is a bias dependent effect which results in barrier lowering in the presence 

o f  an electric field [11]. At the metal-vacuum interface when the electric field is applied at 

the metal the electron will escape from the metal side. This electron will create a positive 

charge at the metal surface (a negative charge at the vacuum side). This positive charge at the 

metal side is called image charge. The image charge will induce the Coloumb attractive force 

called the image force, which tends to return the electron back to the metal side. When an 

electric field is applied the effect o f  the image force at the metal-vacuum interface will result 

in a lowering o f  the metal work function [12 ].
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The effect o f  the image force barrier lowering is also observed at the metal- 

semiconductor interface even when no bias is applied due to the presence o f the depletion 

region which will create a non-zero electric field (E) at the metal-semiconductor junction. 

The field dependent barrier lowering due to the image force A</>jm is calculated as follows 

[1 1 ]:

( 2 ' 4 )

The image force effect at the metal-semiconductor interface is demonstrated in Figure 

2.2.3. It is bias dependent, s due to image force barrier lowering A<j>im being directly

proportional to EI/2. In Figure 2.2.3 (a) the electric field without barrier lowering has a 

maximum value close to x=0  and decreases to zero at x=W . This will result in a rounding o ff  

o f the comers o f  the barrier only close to the metal-semiconductor interface and a reduction 

o f the barrier height by the value o f  A0jm as seen in Figure 2.2.3 (b).

The barrier lowering due to dipole layer effects A<f>d is calculated as follows [11]:

(a) t

x=W x

Figure 2.2.3 Schematic diagram showing the electic field (a) and image force barrier lowering 

(b) at the metal-semiconductor interface.
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A (f)d — a -  E (2.5)

where E is an electric field, a  is a linear coefficient [13].

2.2.3 Thermionic emission

Generally, the thermionic emission is the emission o f electrons from a hot metal surface

[11]. In the case o f  metal-semiconductor contacts the thermionic emission current flow from 

the semiconductor to the metal is defined as the concentration o f electrons which have a 

minimum kinetic energy sufficient to overcome the potential barrier: m u 2l2>q(j)b + E Fn,

where m is the electron effective mass and v  is a carrier velocity. In general form the 

thermionic emission current can be written as follows:

The thermionic emission current depends solely on the barrier height at forward bias

oo

(2 .6)
q<f>b+EFr,

conditions. When incorporating the thermionic emission model, the surface thermal velocities 

for electrons VSN and holes Vsp were calculated as follows [1]:

(2.7)

(2 .8)

where Am  and are effective Richardson constants for electrons and holes. Values Am  

and Agp account for quantum mechanical reflection and tunnelling, respectively.
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The electron J thN and hole J thp currents at the surface due to thermionic emission were

calculated for every triangle o f the mesh structure using the value o f the electric field for each 

triangle, taking into account the barrier lowering terms A<pb =<f>b -  (A0im + A ^ ,) :[5]

where ns and p s are the surface concentration o f electrons and holes.

The thermionic emission current will be calculated through the device structure 

geometry at every grid point o f the mesh.

2.2.4 Universal Schottky tunnelling model

The wave-like nature o f the electrons will allow carriers to penetrate through the 

potential barrier when the barrier width is smaller than the tail o f  the electron wave 

function [11]. This carrier movement is called the tunnelling current, and a probability o f  the 

electron to pass through the potential barrier is called tunnelling probability.

The universal Schottky tunnelling model [14], [15] is used to calculate the tunnelling 

current -/^ b etw een  the semiconductor and metal as follows:

where A is the effective Richardson’s coefficient, T (£ ) tunnelling probability, f Zn0(E ) and 

f M (E ) are Maxwell-Boltzmann distribution functions in the ZnO semiconductor and Au.

J thN=<lv sN(ns ~«)e?q)(A<j>b/k T ) (2 .10)

Jlhp = qVSP(ps -p)ew{^<i>blkT) (2 .11)

tunn (2 .12)

The tunnelling probability is calculated using the Wentzel-Kramers-Brillouin (WKB) 

method [17] assuming a linear variation o f the potential between two mesh points:
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f - 4 ^
r (x )  = e*p — * m y l{-q< /> m + qA -Ec(x)) (2 .13)

The calculation o f  the tunnelling current is done for both electrons and holes. In the 

present simulations the tunnelling current model will allow current calculations at a fixed 

distance away from the metal-semiconductor interface (typically 0 .01  pm).

2.3 Modelling transport across thin barrier

Tunnelling through an insulating layer was first investigated by Fowler and Nordheim

[18], [19]. Comparison between experimental data and theoretical calculations using the 

Fowler-Nordheim model for ultra-thin insulators (below 3 nm) resulted in calculated currents 

which were far too low and a new concept o f  direct tunnelling model was suggested instead

[22]—[25]. Because the theory in this Chapter will be applied to investigation o f the scanning 

tunnelling microscopy (Chapter 3) in where typical values o f the air/vacuum gap are below  

2  nm [26]-[28] the direct quantum tunnelling model will be used in the calculations.

2.3.1 Direct tunnelling through ultrathin insulator

Tunnelling current calculations within the direct quantum tunnelling model [1] take 

place along parallel slices through the gap. The model is based on a formula for elastic 

tunnelling proposed by Tsu and Esaki [29], and further developed by Price and Radcliffe

[30]. The current density J through a potential barrier is obtained according to the number o f  

generated carriers using the following formula [23]:

2 + 32ft Tl
jT (E )x  In

1 + exp (EFsamp -  E) I kT

l + exp(EFtip- E ) / k T
dE (2.14)

where T{E ) is the transmission probability, E is the charge carrier energy, m* =  J m xm y 

(where m x and m y  are carrier effective masses in the lateral directions), EFtip is the tip quasi-
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Fermi level and EFsamp is the sample quasi-Fermi level. The integration term is determined 

with respect to the band edge position for every bias point. In equilibrium, EFsamp =  EFtip and 

the term J is equal to zero.

The transmission probability T(E~), defined as the ratio o f transmitted and incident 

currents, is calculated by solving Schrodinger's equation in the effective mass approximation

[31]. It was demonstrated in the past that these approximations are very accurate to describe 

the sample-tip system in STS [32] because electrons do not tunnel in to or from one specific 

energy level, instead using a broad band o f energies decaying away exponentially from the 

Fermi level. The transmission probability T(E ) is obtained using Gundlach formula [33]:

where m m, m s and m t are effective electron masses in metal, semiconductor and insulator 

respectively, km and ks are the wavevectors in metal and semiconductor, respectively, 

X0 =  ftOj/qFi, and At and Bt are the Airy functions defined as following:

(2.15)

with

(2.16)

(2.17)

Aid = Ai
"p  B+ q E id - E ' (2.18)

where hQ, =  3J q 2h 2Fi2/2 m i, <PB is the barrier height for electrons or holes, Et is electric 

field in insulator, and d  is the insulator thickness [1], [23]. This approach was found to be
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more accurate than the com m only used WKB approximation for the case o f  thin barriers for 

all energies due to the rapid change in the potential in the transport direction in ultrathin 

dielectrics [23], [34].

The tip-sample system is described by a 2D model such that electrostatics and current 

continuity equations are solved fully in 2D real space. In self-consistent calculations, the 

current continuity equations including tunnelling process are solved iteratively until 

convergence is achieved to obtain the terminal currents. The tunnelling current can also be 

obtained non self-consistently (in a post processing) for comparison. In practice, the non-self- 

consistent solution for a bulk semiconductor will be very close to the self-consistent solution 

o f  the current continuity equations as shown later.

To match experimental data to the theoretical calculations using tunnelling model the 

following free parameters are typically used in the literature: tip-sample separation, tip apex

Metal

CD
s—
CD
C

LLI

Air

0

Semiconductor (a)

distance jc

(b)

E f
distance

Figure 2.3.1 (a) Point charge q in the system o f  three media: metal, air/vacuum and  

semiconductor, (b) Rounding o ff the corners o f  the band profile in air/vacuum region in the presence

o f  free charge carriers.
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radius, tip work function, tunnelling area under the tip for 2D calculations, electron and hole 

effective tunnelling mass, 3 orders o f magnitude correction to the current to account for the 

image force effect.

2.3.2 Image force barrier lowering model

The tunnelling model by Schenk for ultrathin insulator [23] layers accounts for the 

image force effects using a pseudobarrier method which calculates the transmission 

probability coefficient T(E~) (Equation (2.15)) o f the modified trapezoidal potential barrier 

(Figure 2.3.1). To evaluate the effective barrier height (potential at the centre o f the 

air/vacuum region in Figure 2.3.1(b)) as a function o f electron incident energy, the image 

force potential is calculated according to the formula by Kleefstra and Herman [35]:

and e the relative dielectric permittivity o f insulator (fj) and semiconductor ( fs) regions, d  is 

the insulator thickness, and x  is the position through the barrier.

The image force potential is added to the trapezoidal barrier potential. The model 

assumes the simple parabolic approximation o f  the barrier shape due to the fact that for a very

where the reflection coefficients at metal and semiconductor regions are:

£> -  £ s
E, +  £

(2 .20)
S

thin potential barrier the error is negligible [36]. The barrier height is evaluated at three 

different energy levels as follows [1]:

0>(£) = <£(£,) +
<E(£3) -  0 ( 5 )

(e - e X e 2 - e )~ (2 .21)
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o (£l )_ o ( ^ ( X

(E2 - E j E 2 - E 3) K

The Schenk tunnelling current model was implemented both self-consistently and in 

post processing calculations [1],

2.3.3 Material parameters of III-V semiconductors

The material parameters used in simulations can be found in Table 2.3.1 and Table 

2.3.2, where m c is an effective mass in the conduction band, m hhis a heavy hole effective 

mass, mifi is a light hole effective mass and Eg is a band gap.

Table 2.3.1 The material parameters used in simulations [1J.

M aterial m c, [x  m 0] ™hh> [ x  m 0] ™ih> [ x  m o\ Ea , [eV] A ffin ity , [eV]
G aA s 0.067 0.49 0.16 1.42 4.07

InP 0.0759 0.56 0.12 1.35 4.4
G aP 0.13 0.79 0.14 2.75 4.4

Alo.3Gao.7As 0.092 0.571 0.157 1.8 3.75
Ino.53Gao.47As 0.045 0.532 0.088 0.734 4.67

Table 2.3.2 Band gap defaults used in simulations and in literature.

Material Ref. Eg(300),
[eV]

Er,
[eV] El, [eV]

Ex,
[eV]

Erl Erx Exl

InAs [1] 0.35 0.417 1.133 1.433 0.716 1.016 0.3
[38] 0.354 0.35 1.08 1.37 0.73 1.02 0.29

InSb [1] 0.174 0.235 0.93 0.63 0.695 0.395 0.3
[38] 0.17 0.17 0.68 1.0 0.51 0.83 0.32

InP [1] 1.35 1.4236 2.014 2.3840 0.5904 0.9604 0.37
[38] 1.344 1.34 1.93 2.19 0.59 0.85 0.26

GaAs [1] 1.42 1.519 1.815 1.981 0.296 0.462 0.166
[38] 1.424 1.42 1.71 1.90 0.29 0.48 0.19

GaSb [1] 0.81 0.812 0.875 1.141 0.063 0.329 0.266
[38] 0.726 0.726 0.81 1.03 0.084 0.31 0.22
[1] 3.42-3.507

[381 3.2-3.503 3.2 4.8-5.1 4.6
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On the flat defect free (110) surface o f  III-V materials there are no surface state 

distributions centred in the bandgap and the surface can be modelled as bulk [37]. 

Nevertheless, the developed methodology allows a full treatment o f  surface states very 

straightforwardly and can be included in a wide range o f  ways from i) uniform distribution o f  

defect states, via ii) realistic distribution either defined by iia) analytical functions (Gaussian, 

exponential) or even iib) a realistic distribution o f surface states obtained experimentally, to 

introducing iii) interface traps.

2.4 Modelling thermal effects

In the present work, a thermal model considers carrier transport o f electrons and holes 

self-consistently coupled with thermal flow [39], Since the transport parameters depend on 

the lattice temperature, lattice heating and cooling due to the carrier generation and 

recombination, Joule heating and Peltier-Thomson effects are also included [39]. The thermal 

modelling considers temperature dependent thermal conductivity model [40] and heat 

capacity model [41] for ZnO.

The effective density o f states for electrons and holes, mobility and electron and hole 

current densities (J„, Jp) are calculated as a function o f  the local lattice temperature Tl [1],

[39].-

J „  = - q p j W t n  -  p y T L )> J p  = - q M p P t y t p  + p p v t l ) (2 .22)

where (f>n and <f)p are electron and hole quasi-Fermi levels, p n and p p electron and hole

mobilities, n and p  are the electron and hole concentrations, Pn and Pp are electron and hole 

thermionic powers. The thermopower is calculated based on the following components: 

temperature dependent Fermi potential, carrier scattering and phonon drag contribution (it is 

not significant for the high doped ZnO used in the present work).

The heat flow equation [39] is used in the simulation:
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r\rp

C —  ̂= V(kVTL) + H  (2.23)
dt

The heat generation rate H  is calculated taking into account Joule heating Hj, generation and 

recombination heating, and cooling H qr and Thompson-Peltier effects H tp as follows:

H  =  H j  +  H gr +  H tp (2.24)

where

Hj = jWn* + 'WvP (2.25)

—> —T
j n and J p are the electron and hole current densities.

» gr = ? (*  -  G)%Pp ~ P. Y l + ~ fa ) (2.26)

G and R are the carrier generation and recombination rates, Pp and P„ are the thermoelectric 

powers o f  electrons and holes, <f>n and <j)p are the quasi-Fermi levels o f electrons and holes.

The Thompson-Peltier effects are given by the expression:

HTp — TL̂ JnVPn + Jp VPp j  (2.27)

In the numerical solution o f  the model an air region around structure and insulator 

layers are used as a heat sink layers to simplify the solution because no current continuity 

equations are solved in insulator regions. The bottom contact is defined as a thermal 

boundary condition and it is kept at the constant temperature Tc. The thermal boundary 

condition is defined as [1]:

■ *) = <?l ~ (2.28)

where J tot is a total energy flux, s  is a unit normal to the boundary and o  is equal to 1 or 0. 

When o= 0  then Tl=Tc and the Dirichlet boundary condition is specified.
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The thermal boundary condition with the fixed temperature o f  300 K is specified at the 

bottom contact o f the structure, and the air region around the structure is used as a heat sink 

layer in the calculations.

2.4.1 ZnO thermal material parameters

In the model, the temperature dependent heat capacitance model is used. The heat 

capacitance C in J/cm /K  for ZnO was approximated from experimental data widely excepted 

in the literature [41] as a function o f  the lattice temperature as follows:

C = 3.22 + 4.68 • 10" TL - 1.31 • 10"* 7? -  4.74 ■ 104 T[2 (2.29)
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Figure 2.4.1 Comparison of the thermal conductivity models approximation with the 

experimental values o f thermal conductivity for ZnO obtained by Olorunyolemi et al.[42]
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The thermal conductivity k in W/cm-K for ZnO can be approximated from experimental 

data [42] using lattice temperature-dependent models. In Silvaco Atlas approximation using 

three following thermal conductivity models is available: i) simple model assuming k(T\J to 

be constant, ii) the power model:

k(TL) = 03 l/{T L /300)153 (2.30)

and iii) the polynomial model:

k(TL) = 1/(2 • 10"5T2 -9 .9 -10"3^  + 5.0926) (2.31)

The comparison between three models and the model agreement with the experimental 

data can be found in Figure 2.4.1.

Previous work on the thermal behaviour o f ZnO nanowires under bias conditions [43],

[44] used a constant value o f the thermal conductivity. Figure 2.4.2 demonstrates the current 

and lattice temperature calculations for the different models o f  thermal conductivity: when
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Figure 2.4.2. (a)Current calculations and (b) the highest lattice temperature value in the device 

for ZnO nanowire structure presented in detail in Chapter 4.
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one uses a constant value o f &=30 W/cm-K as in Refs. [43], [44], the polynomial model 

(Equation (2.8)) or the power model (Equation (2.7)). The data was generated for the 60 nm 

diameter ZnO nanowire and a full geometry o f  structure and simulation parameters can be 

found in Chapter 4.7. The polynomial and power models give relatively good agreement, but 

using a constant value o f  thermal conductivity would not model correctly the current 

degradation effect with temperature due to underestimating a lattice self-heating effect in the 

structure. For the simulations in this work a power thermal conductivity model was selected 

due to the better convergence at very high biases.

2.5 Modelling polarization effects in Wurtzite ZnO

For the present simulations a polarization model for Wurtzite materials was used, where 

the polarization effect is included as a fixed charge. The total polarization charge will be 

calculated as a sum o f spontaneous P  and piezoelectric polarization/Ugz0 as:

P,otal = PsP+Ppie2o (2.32)

The spontaneous polarization in Wurtzite material is present at zero strain due to the 

lack o f  the lattice symmetry and deviation o f the unit cells from the ideal Wurtzite geometry. 

Spontaneous polarisation/^ is given in the polarization material parameters Table 2.5.1 for

ZnO [40], [45].

Table 2.5.1 Polarization material parameters for ZnO
Parameter Value Units
Spontaneous polarization, P  

Piezoelectric const. (Z), E33 

Piezoelectric const. (X,Y), E3]

-0.057 C /n7

0.89 C/m2

-0.51 C/m2

T

By default positive fixed charge will be placed at the top o f  the layer and negative fixed 

charge will be placed at the bottom o f  the layer. The model allows a scaling factor from -1 to 

1 in order to modify the magnitude and a sign o f  the polarization charge.
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The piezoelectric polarization is present when two materials are in contact due to the 

difference o f the lattice constants. The piezoelectric polarization Ppjez0 will be calculated as 

follows:

(  n  \
p  — 0 —__—

piezo
a —an „ C,

a
E -  ~ 13 E31 33

V 33 y

(2.33)

where £"3, and E33 are piezoelectric constants, C]3 and C33are the elastic constants, a0 is a 

lattice constant, as is the average value o f  the lattice constant o f the layer directly above and 

below.

Electronic band-structure parameters and lattice parameters for ZnO are provided in 

Table 2.5.2 [40], [45].

Parameter Value Units
Electron effective mass (z) 0.23 m0
Electron effective mass (t) 0.21 m0
Hole effective mass param., A1 -3.78
Hole effective mass param., A2 -0.44
Hole effective mass param., A3 3.45
Hole effective mass param., A4 -1.63
Hole effective mass param., A5 1 .68
Hole effective mass param., A 6 -2.23
Direct band gap (300K) 3.37 eV
Spin-orbit split energy 0.016 eV
Crystal-fleld split energy 0.043 eV
Lattice constant, a0 3.250 A

Elastic constant, C33 210.9 GPa

Elastic constant, C13 105.1 GPa
Shear deform, potential, D1 3.9 eV
Shear deform, potential, D2 4.13 eV
Shear deform, potential, D3 1.15 eV
Shear deform, potential, D4 - 1.22 eV

In the present work the spontaneous polarization ZnO-GaZnO (GZO) will be 

modelled. The material parameters for GZO used in the modelling [46], [47] are presented in 

Table 2.5.3.
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Parameter Value Units
Direct band gap (300K) 4.7 eV
Affinity 3.67 eV
Low field electron 13 cm2 A/s
mobility

The electron mobility in ZnO was modelled using Curve Fit Velocity Saturation 

Mobility Model. The model is based on Monte Carlo simulations o f  electron mobility change 

with the applied electric field and can be used in Silvaco Atlas using the following command: 

“ozgur.n”. The model is based on the Monte Carlo mobility calculations for electrons in ZnO

[40], [48], [1]. The mobility parameters used for the transport simulations in ZnO field effect 

transistors are presented in Table 2.5.4.

Table 2.5.4 Mobility model parameters for ZnO
Parameter Value Units Reference

Low field electron mobility 155 cm2/Vs [40], [49]
Saturation velocity for electrons 1.9e7 cm/s [1], [40],
Electric field 256e3 V/cm [48]
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2.6 Summary

Silvaco Atlas is a physically based device simulator that allows 2D and 3D analysis o f  

electrical and thermal performance o f the semiconductor based technologies. The material 

parameters and doping profiles are incorporated in the device structure created using the 

Atlas command language or the DevEdit toolbox. The simulator uses a rectangular triangular 

mesh. Accurate results and stable convergence are provided by the numerical methods o f  

solving a non-linear algebraic problem and algorithm for the selection o f the initial solution.

To model the transport across a metal-semiconductor interface the barrier height and 

potential distribution are calculated. The barrier lowering term due to the image force and 

dipole effects is included in the model. When calculating the thermionic emission current a 

surface thermal velocity is taken into account. The tunnelling current across the barrier is 

calculated using universal Schottky tunnelling model which is based on the calculation o f the 

local tunnelling rates.

Transport across ultrathin insulator layer is accounted for using direct tunnelling model. 

The transmission probability o f  the tunnelling is calculated using Gundlach formula and the 

Schenk model for the image force barrier lowering term in the insulator layer. The image 

force potential is calculated based on the Kleefstra and Herman formula. The model assumes 

a parabolic approximation for the barrier as this approximation is accurate for ultrathin 

insulator layers.

Lattice self-heating effects can be included in the calculations. A thermal model 

considers carrier transport o f electrons and holes self-consistently coupled with thermal flow. 

Since the transport parameters depend on the lattice temperature, lattice heating and cooling 

due to the carrier generation and recombination, Joule heating and Peltier-Thomson effects 

are also included. The thermal modelling considers temperature dependent thermal 

conductivity model and heat capacity model for ZnO because using a constant value o f the 

thermal conductivity and thermal capacity will result in underestimation o f the lattice 

temperature.
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Finally, a polarization model for Wurtzite materials was used, where the polarization 

effect is included as a fixed charge. The total polarization charge will be calculated as a sum 

o f spontaneous and piezoelectric polarization.
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Chapter 3 Results of scanning probe microscopy 

modelling

3.1 Introduction

As the active regions o f  electronic materials and devices reduce in size to the nanoscale, 

the analysis tools applied to them need to be able to characterise with a spatial resolution at 

the same length scale. Scanning probe microscopy (SPM) is one such technique and can be 

used to make surface electronic, morphological, optical, chemical and magnetic 

measurements down to the atomic scale [1]. Unlike most electron microscopy techniques, 

SPM can be applied to biased devices under operation [2]-[5]. The main limitation o f the 

method is that with all SPM techniques the probe can interact electrostatically and physically 

with the sample, changing the measured properties o f the device under test [6]. Modelling the 

electrostatic probe interaction can be used to quantify the measurement error, to match 

experimental results to device properties, or potentially to remove the effects o f  probe 

interaction [7 ]-[l 1].

In general, a number o f  approaches and computational techniques exists to estimate 

quantitatively the tip induced band bending on semiconductor surfaces by solving Poisson's 

equation in ID [12]—[15], 2D [16] and 3D [17]. First-principles calculations such as density 

functional theory (DFT) [18]—[20] are often used to calculate band structure o f  the 

semiconductor surfaces, as measured using STS. However, DFT can be used to model only 

small system o f  atoms, and is therefore not suitable for tasks where the whole device 

structure needs to be included in the calculations. In addition to the limitation to a small 

number o f  atoms, the DFT is based on a single electron approximation [21], [22] and the 

assumption that there is a link between density and the exact ground state energy. 

Consequently, the calculation o f excited states is cumbersome and computationally expensive
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when a flexible basis is needed to simultaneously describe the ground and excited states. DFT 

can accurately model atomic scale band structure o f single material but also has difficulty 

when considering two different types o f materials like semiconductor and metal. Our 

approach, based on the 3-dimensional multi-physics device simulations, combing physical 

models o f various complexities, is a more computationally suitable technique for the study o f  

10-100 nm scale systems o f  various materials (metals, semiconductors, dielectrics) as typical 

for studying device surfaces, where atomic level perturbations are self-averaged. For devices, 

long-rage Coulomb interactions at the surface (the electrostatics) have to be taken into 

account. Therefore, Coulomb interactions are included within a model o f  the whole device 

structure and with simultaneous tip-sample tunnelling [23], [24]. In addition, the effect o f  

barrier lowering due to the image force is o f  the many body nature o f  the tip-sample 

structure. The effect can be included in DFT via an exchange-correlation potential [18], but 

only approximately at large computational costs. The computation o f  the tunnelling current is 

often based on the transfer-Hamiltonian formalism [25], [26] and is used for quantitative and 

qualitative tunnelling current evaluation [27]-[30].

In this chapter a simulation methodology to reproduce the scanning tunnelling 

spectroscopy (STS) and microscopy (STM) process using the simulation tool ATLAS by 

Silvaco [31] is presented. The developed methodology also allows realistic tip geometries as 

shown in Chapter 3.2. It allows correct modelling o f the band gap for the variety o f  

semiconductor materials as demonstrated in Chapter 3.3 and includes the effect o f  tip induced 

band bending (TIBB) as studied in Chapter 3.4. It can recover STM affected data enabling 

the study o f a range o f semiconductor devices including quantum well lasers [32], 

photovoltaic devices [33], resonant tunnelling diodes [34] and semiconductor sensors [35]. 

The simulation o f the quantum tunnelling between the metal probe and the surface o f  the 

semiconductor is performed self-consistently, i.e., the electrostatic potential is obtained in an 

iterative process in which the solution o f Poisson's equation follows the calculation o f  the 

tunnelling current until convergence is achieved.

The developed simulation methodology for modelling STS in this work uses a direct 

quantum tunnelling model based on Price and Radcliffe's formalism [36]. A detailed 

explanation o f the model was given in Chapter 2. To estimate the validity o f the results o f  the
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2D finite element solution, Chapter 3.5 compares the computational results for p -GaAs with 

the experimental data and the model implemented by Feenstra [30]. Note that the model by 

Feenstra has a good agreement with experimental data and is widely accepted and used by 

other researchers [2], [37].

The methodology presented here also includes the effect o f barrier lowering due to 

image force on the tunnelling o f electrons and holes. The effect o f  the image force on the STS 

spectra is studied in Chapter 3.6. In the past, approximate approaches to compensate for the 

image force induced barrier lowering were applied equally to the conduction and valence 

band [30], [38], [39]. Following work by Schenk [40], we include a complete calculation o f  

the image force effect in our model, which will later show that equal barrier height lowering 

in both the conduction and valence band is not appropriate and can miscalculate the 

tunnelling current by orders o f magnitude.

T h e stud y in C hapter 3.7 a lso  fo c u se s  on  te c h n o lo g ic a lly  re levan t III-V m ateria ls  

in c lu d in g  G aA s, InP , Alo.3Gao.7As, Ino.53Gao.47As and G aP.

The work presented in Chapters 3.2-3.7 has led to the following publication: 

O. Kryvchenkova, R. J. Cobley, and K. Kalna, “Self-consistent modelling o f  tunnelling 

spectroscopy on III-V semiconductors,” Appl. Surf. Sci., vol. 295, pp. 173-179, Mar. 2014. 

The work was also presented at the conference UK Semiconductors, July 2013, Sheffield UK, 

O. Kryvchenkova, K. Kalna, R. J. Cobley, “Modelling Scanning Probe Interactions using a 

Finite Element Device Simulator”.

In Chapter 3.8, the effects o f surface oxide layers on the probe-sample contact type is 

examined by taking contact and non-contact measurements with the probe oxide in place and 

then with the probe where the oxide is removed in a well-controlled way. The use o f  both 

contact and non-contact simulations allows an understanding o f the modification o f  both 

tunnelling and thermionic emission due to contact type changes caused by the presence o f  

oxide probe contamination, which both play a role in contact measurements.

For STS, previous experimental work [41] observed that leaving a metal tip to degrade 

in ultra-high vacuum changed the spectrum o f a sample from Ohmic to Schottky suggesting
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carbon or oxygen contamination o f the tip [42]—[44]. In Chapter 3.8.1 a combination o f  

experimental and simulations work gives a detailed explanation to the nature o f  changes in 

the STS spectra. Simulated structures were prepared and measured by other researchers.

A four-point probe ( 4PP) approach o f  SPM employs two outer probes to pass a current 

through the sample while two inner sense probes measure the potential difference o f  the 

sample [45]. Local probe methods can be used to measure nanoscale surface conductivity, but 

some techniques including nanoscale 4PP rely on at least two o f  the probes forming the same 

barrier to the sample with low resistivity non-rectifying contacts (see Chapter 1.1 for 

explanation). Schottky contacts, or non-equal contacts between the central voltage sense 

probes, would produce different contact resistances for the forward and reverse bias, which 

violate the assumptions made in the technique. Oxide coatings, which can occur on the 

surface o f  the 4PPs, can have an effect on the contact type formed, and so 4PP measurements 

should be taken with probes that are oxide free. In Chapter 3.8.2, the role o f probe shank 

oxide has been examined by carrying out contact and non-contact current-voltage 

measurements on GaAs when the probe oxide has been controllable reduced, both 

experimentally and in simulation.
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3.2 Probe shape

The tip-sample structure (including air surrounding the metal tip) is 2.5 pm wide with 

the bulk semiconductor layer 0.9 pm deep. An example o f the 2D circular tip structure with a 

regular triangular mesh is given in Figure 1(e), where the projection o f  the cylindrical tip into 

2D assumes that the tip is uniform in the z-direction. We have checked, by numerical 

experiments, that a sufficient number o f grid points is used in the tip-sample separating 

region in the direction o f the current flow. Homogeneous (reflecting) Neumann boundary 

conditions are used at all simulation cell boundaries except contacts where the Dirichlet 

boundary conditions are used. The metal tip is assumed to be a contact. An additional contact 

is added at the bottom o f the semiconductor to allow for current to flow. The current flow  

from the semiconductor through the insulator/air is via a tunnelling process only.

To test the importance o f the probe shape, several tip geometries were simulated, as 

shown in Figure 3.2.1. The discretised geometry o f  the finite element model allows any 

realistic tip shape. The triangular tip shape Figure 3.2.1 (b) results in a slow convergence o f  

calculations o f  tunnelling current at high voltages for the low doped sample, while Figure 

3.2.1 (c) and Figure 3.2.1 (d) give similar results, as seen in Figure 3.2.1 (f). The main 

difference in the results arises from the change in the electrostatic interaction o f tip and 

sample. Due to the low doping o f  the sample a dopant screening effect will be low and tip 

induced band bending will be high for all tip shapes giving similar results o f  the conductivity 

calculation in Figure 3.2.1 (f). A circular tip shape (Figure 3.2.1 (c)) with a 70 nm tip radius, 

1 nm tip-sample separation and a tip work function o f  5 eV is used for the results presented 

here to reduce computational time.
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3.3 Band gap simulations for GaAs

Tunnelling spectra for «-type GaAs («-GaAs) with a doping concentration o f  ND =  

1018 cm'3 and ND =  1012 cm'3 are shown in Figure 3.3.2. For the «-GaAs with ND =  

1012 cm'3, the vertical solid lines at sample voltages o f +1.5 V and -1.1 V indicate the onset 

o f higher tunnelling outside o f the band gap region. Similarly, for the «-GaAs with the 

Nd =  1018 cm'3, the lines at sample voltages o f  +0.65 V and -0.78 V indicate the band gap by 

the onset o f larger tunnelling.

The change o f the apparent band gap with doping concentration in Figure 3.3.2 

demonstrates the effect o f tip-induced band bending. For the higher doped case, the onset o f
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Figure 3.3.1 Energy band structure o f the n-GaAs, ND =  1018 cm'3, obtained at sample 

voltages o f +1.5 V (a) and -1.1 V (b).
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larger current corresponds to the tip crossing the valence and conduction band edges. In the 

case o f low doping, the origin o f  the observed gap is not so straightforward. Therefore, the 

energy band alignment is shown in detail in Figure 3.3.1 for the onset voltages o f +1.5 and 

-1.1 V. In Figure 3.3.1 (a), the applied tip voltage has induced depletion and inverted the 

surface to make it appear p -type. The tip applied bias has to be beyond +1.5 V before a 

significant tip-to-sample tunnelling can take place.

In Figure 3.3.1 (b), the sample surface is in accumulation appearing more «-type than 

the bulk. The induced surface accumulation region has filled states in the conduction band 

(see Figure 3.3.1 (b) inset) from which sample-to-tip tunnelling can take place before the tip 

crosses the valence band edge. This effect is described by Koenraad as Type I accumulation

[13]. For Nd =  1018 cm'3 w-GaAs, a band gap o f 1.43 eV is obtained from simulations, 

0.01 eV larger than the true band gap o f 1.42 eV, which would be within the systematic error 

o f experimental data [46]. The screening effect o f the high doping reduces the amount o f  tip-
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Figure 3.3.2 Tunnelling current spectra for the n-GaAs with a doping concentration o f 

Nd =  1018 cm-3 (blue solid line corresponds to the left scale) and ND =  1012 cm-3 (red dashed line 

corresponds to the right scale). The onsets o f higher tunnelling in the CB and VB are marked with

vertical lines.
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induced band bending. For «-GaAs with a doping o f  ND =  1012 cm'3, tip-induced band 

bending increases the observed band gap to 2.60 eV. An onset in the tunnelling current 

spectra is visible in the conduction band around +2 V in the highly doped w-type GaAs 

marked by an arrow in Figure 3.3.2.

Figure 3.3.3 shows the band edge in detail before and after the onset o f  the tunnelling 

current at +1.9 eV and +2.5 eV. At +2.5 eV, the surface inversion has bent the valence band 

above the sample Fermi level, allowing electrons to also tunnel from the tip to these empty 

inversion states. This is described by Koenraad as Type II inversion [13]. This induced 

depletion region is spatially localised under the tip. In Figure 3.3.3 (c) and (d), the tunnelling 

current contributions from the valence and conduction bands are shown as a function o f  

distance, with the tip at the origin, for the corresponding case shown in Figure 3.3.2. At 

+2.5 V, the valence band tunnelling increases in magnitude beyond the conduction band 

tunnelling. In all cases, the tunnelling current is larger under the tip and reduces almost 

exponentially as a function o f the tip-surface distance.



3.4 Tip induced band bending simulations 65

3.4 Tip induced band bending simulations

Tip-induced band bending (TIBB) is the effect which originates from the probe-sample 

interaction and will change the properties o f  the sample surface under study introducing a 

measurement error. The amount o f  a TIBB depends on the several factors: tip work function, 

tip-sample separation, tip radius and a doping level o f  the sample. While tip-sample 

separation, tip radius and a doping level o f  the sample change the observed am ount o f  TIBB, 

a change in the tip work function shifts the voltage at which different regimes o f  TIBB occur.

To test the validity o f  the model, simulation o f  TIBB was performed for high doped and
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Figure 3.3.3 Energy band structure profiles at sample voltages o f +1.9 V (a) and +2.5 V (b). 

Corresponding tunnelling current density from the conduction (blue stars) and valence (red open 

circles) bands at sample voltages o f +1.9 V (c) and +2.5 V (d).
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low doped semiconductors o f «-type and p - type. In the simulation, a 3D approximation o f the 

tip is used (Figure 3.4.1(a)). The tip was approximated using 30 sublayers. The coordinates o f  

the tip structure were generated using M atlab code (see Appendix C) and the geometry 

simulation was performed using Silvaco Atlas 3D, where each coordinate (xn, yn) o f the layer 

edge shown in Figure 3.4.1(b) was found as follows:

= (3.1)

y'(o=-J*2~M ( 3 -2 )

where R is the radius o f the tip.

In the simulation, a 30 nm tip radius and 1 nm tip-sample separation were used. The 

calculation o f TIBB was performed for different doping types and concentrations. High 

doped (1018 cm'3) and low doped (1016 cm'3) p-type and GaAs with a metal tip work function 

o f 4.026 eV, and high doped (1018 cm'3) and low doped (1016 cm'3) w-type and GaAs with a 

tip work function o f 4.3 eV.

Figure 3.3.3 demonstrates a bias-dependent effect o f TIBB for different sample doping. 

In accumulation (positive bias for /?-type GaAs, negative bias for «-type GaAs), the amount 

o f the TIBB remains low. This is due to the doping screening effect. In the depletion and 

inversion regime, the TIBB is strongly dependant on the applied bias. For both samples o f  p -  

type and «-type, the decrease in the doping concentration will result in the increase o f the 

TIBB at both negative and positive biases.
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Figure 3.4.1. (a) 3D representation o f  the SPM  tip. (b) Geometry approximation o f  the tip 

using 30 sublayers, (c) 2D outline through the final structure o f  the tip-sample system.
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Figure 3.4.2. Tip induced band bending (TIBB) for low doped (1016 cm'3) and high doped (1018 

cm’3) GaAs with 30 nm tip radius and 1 nm tip-sample separation.

3.5 Comparison with experimental data and other models

Figure 3.5.1 compares the experimental data obtained from the STM measurements 

performed on p -type GaAs [30] with the simulated results from our approach and from the 

latest version o f  software Semitip 6 [47]. The Semitip model [48] is based on the Bardeen 

formalism using the Tersoff and Hamann approximation [49]. The Bardeen 

model [25] assumes that the tunnelling current can be obtained from the difference in electron 

scattering rates o f the tip and the semiconductor sample, which is equal to the number o f  

sample or tip states weighted by their occupation probabilities, multiplied by their 

charge [50]. However, this model does not account for the effect o f the image force, which is 

known to reduce the potential barrier for tunnelling and thus increase the current. Therefore, 

the tunnelling current obtained directly from the Semitip simulations was multiplied by three
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orders o f magnitude to obtain an agreement with the experiment [30], [38], [39]. We 

investigate the effect o f image force on conduction and valence bands in detail in Section 3.6.

A comparison with experimental results has been carried out using the following 

parameters taken from the Ref. [30] in order to have the same conditions: a tip radius 

R=30 nm, a tip-sample separation 5=0 .9  nm, a contact potential A<p=-1.4eV, and 

0.7 nm area o f the tunnel junction [30]. Figure 3.5.1 compares the current spectra as a 

function o f applied tip bias for the latest version o f  Semitip 6 software and our model created
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o Present work 2D, 1*103 

Semitip 6 2D, l*103 
 Experimental data

Figure 3.5.1 Simulation results from Semitip 6 model and present work compared against 

experimental spectra for p-GaAs with a doping concentration o/NA =  1018 cm-3 [30]. Simulations 

were made with the same set o f parameters to study the difference in the models. The current was 

increased by three orders of magnitude following procedure from Semitip 6 to account for the image 

charge induced barrier lowering. Both models can be fitted exactly to the experimental data with 

another set o f the parameters for the o f contact potential and tip-sample separation.
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with the same set o f  free parameters to explain the differences in the models.

One o f  the differences between the 2D models arises in the calculation o f  the 

m agnitude o f  the tip-induced band bending. The surface potential energy directly under the 

tip apex was compared with the potential energy far inside the semiconductor for voltages 

from -2 V to +2 V as illustrated in Figure 3.5.2 for both Semitip 6  and our model in 2D and 

3D. Both reproduce a large tip-induced band bending when the semiconductor is in depletion 

(negative sample voltage for /?-type material) and a small band bending due to the screening 

effect o f  the surface charge density when the semiconductor is in accumulation (positive 

sam ple voltage for p -type material). The difference in the potential computation for the 

valence band is one o f  the sources o f  the mismatch in the 2D models in Figure 3.5.1. This is 

due to the fact that a 2D model used by Atlas assumes that a 2D tip shape is extended in the 

3rd direction, while Semitip 6  2D model uses an azimuthal symmetry in cylindrical 

coordinates. When a full 3D model is used than the tip-induced band bending agrees with that 

o f  Semitip 6  model calculations as shown in Figure 3.5.2.
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Figure 3.5.2 Comparison o f  tip-induced band bending models for present work and the 

Semitip 6 model, (b) Potential distribution directly under the tip apex when no bias voltage is applied,

contours are displaced by 0.1 V.
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The material parameters used in our simulations differ from those used by Feenstra. In 

Semitip 6 , heavy hole effective mass m hh=0.643m o, light hole effective mass 7n^=0.081m o, 

and split-off effective mass m so=0.172?no. The material parameters for GaAs used in the 

present work are summarized in Table 2.3.1. However, when the parameters from Table 2.3.1 

were used in Semitip 6 , we have found no significant difference in results for the TIBB.

3.6 Image force simulations

The image force alternates the shape and lowers an ideal trapezoidal tunnelling barrier
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Figure 3.6.1. d l/d V  spectra obtained when no image force correction is included in the model 

and when the image force correction is included for (a) rectangular tip shape and (b) circular tip 

shape. The insets show the difference in the currents when the image force correction is included or

excluded.
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and thus increases the tunnelling current. One approximation to avoid performing 

computations o f this complex, image force affected barrier shape is to introduce a constant 

magnitude scaling factor for the tunnelling current which mimics the lowering o f the height 

o f triangular barrier, as it was used for Semitip 6 in previous section [30], [38], [39]. In case 

o f  the ultra-thin gate dielectrics in metal-oxide-semiconductor structures the common 

approximation o f the image force [51], [52] brakes as shown by Schenk [40]. Because the 

distance between the tip and the semiconductor surface is less than 1 nanometre and 

vacuum/air can be considered as a special type o f  dielectric, we use the Schenk tunnelling 

model which includes image force in the case o f  STM in vacuum/air.

Figure 3.6.1 shows spectra with and without the image force correction for a 

rectangular tip shape, similar to Figure 3.2.1(a) but with a width o f 0.7 nm. Figure 3.2.1(b) 

presents the same result but for simplified circular tip shape with a radius o f 30 nm, similar to 

Figure 3.2.1 (c). In the both cases, the tip is separated by 0.9 nm from the /?-GaAs surface 

with a doping concentration NA =  1018 cm'3. There is a consistent four orders o f magnitude 

increase in tunnelling current when the correction is included for the rectangular tip shape 

(see Figure 3.6.1 (a)). Alternation o f the tunnelling current through the conduction band (CB) 

due to the effect o f image force is well known [38] so the Semitip 6  model used a constant 

scaling factor for the tunnelling current considering the correction for CB only. We include 

the image force correction also for valence band (VB). This results in a very different impact 

on the CB and VB tunnelling currents for every bias point. With the same model applied to a 

circular tip, conduction band tunnelling current is found to be three orders o f magnitude 

larger and the valence band tunnelling current six orders larger (see Figure 3.6.1 (b)). The 

magnitude difference will change with the different structure parameters, tip shape, and 

semiconductor materials. The difference observed in the image force correction for circular 

and rectangular tip shapes might have a serious implication on the tunnelling current 

magnitude for models where a circular tip shape is approximated by a staircase, which is 

commonly used in the modelling o f atomic force microscopy and Kelvin probe microscopy 

measurements [7], [8].
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3.7 Band gap simulations for InP, AlGaAs, InGaAs and GaP

The simulation methodology was applied to Alo.3Gao.7As, Ino.53Gao.47As and GaP, all 

with a doping concentration o f  ND =  1016 cm"3. All material parameters used in the 

simulations can be found in Table 2.3.1 and 2.3.2. These simulations used a 70 nm tip radius, 

1 nm tip-sample separation and a tip work function o f 4.7 eV. For this intermediate «-type 

doping, Figure 3.7.1 shows that modelled band gaps are 2.6 eV for Alo.3Gao.7As compared to 

the experimental value o f 1.8 eV, and 1.4 eV instead o f 0.734 eV for Ino.53Gao.47As, both due 

to tip-induced band bending delaying the onset o f increased current. For GaP, the apparent 

band gap was 1.7 eV instead o f  2.75 eV due to Type I accumulation as seen earlier. A kink

like feature is also seen in the spectrum o f  GaP at +3 V, when Type II depletion shifts to 

Type II inversion [13], and tunnelling in to the valence band dominates over tunnelling in to 

the conduction band.

To demonstrate the modelling for a p -type material, p -type InP with a doping 

concentration o f NA =  1012 cm '3 is shown in Figure 3.7.2 using the same tip-sample structure 

parameters and a tip work function o f  5 eV. The observed band gap o f  2.85 eV is larger than 

the experimental band gap o f 1.42 eV due to a large amount o f the tip-induced band bending 

in the low doped material, when the screening effect o f the doping is weak.
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3.8  Role of  the oxide in SP M  measurements

Scanning probe microscopes offer sub-nanometre measurements and induce local 

modification o f  materials and devices. However, probe oxide coatings have been observed to 

modify the electrical interaction o f  the probe with the sample. To compare with the 

simulation results, contact and non-contact spectroscopic measurements o f  GaAs (110) were 

performed using scanning tunnelling microscopy. Here, the effects o f  surface oxide layers on 

the probe-sample contact type is examined by taking contact and non-contact simulations 

with the probe oxide in place and controllably changed. The use o f  both contact and non- 

contact simulations allows an understanding o f  the modification o f  both tunnelling and 

thermionic emission due to contact type changes caused by the presence o f  oxide probe
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Figure 3.8.1. (a) Tip geometry approximation using an overlay o f a scanning electron 

microscope image o f clean tip and tip with oxide layer, (b) Physical model o f the tip, with an 

exposed metal apex and oxide coated shaft.
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contamination, which both play a role in contact measurements.

Simulated structures were prepared and measured by other researchers. Tips were 

electrochemically etched from 0.25 mm diameter polycrystalline W wire in 2M KOH in a 

method similar to Ibe [53]. The tungsten to oxygen ratio (W :0) was measured to verify the 

controllable reduction o f surface oxide by calibrated direct current annealing using an Hitachi 

S-4800 field emission scanning electron microscope (SEM) with an Oxford Instruments X-
I n  o

Max 50 analyzer to carry out EDX [54]. N-type GaAs doped 9.2x10 cm with Zn were 

cleaved in UHV to expose an atomically flat (110) surface [2].

WO3, the oxide layer formed on the tip, is a wide band gap semiconductor. For un

cleaned tips, if  tunnelling was taking place through the oxide at the tip apex, the WO3 band 

structure would convolve with the sample band structure to produce spectra with a much 

wider apparent band gap. This is the opposite o f what we observe experimentally. The 

simulations show that the tip apex behaves predominantly as a metal. An overlay o f SEM 

images o f  the tip before and after annealing illustrated in Figure 3.8.1(a) gives an estimate o f  

50 nm layer o f the oxide at the tip apex. This would make the tunnelling process at the bias 

range o f  ±2 V impossible. Therefore, we find that during the initial tip approach the probe 

moves close enough to the sample surface to mechanically remove the oxide coating before 

tunnelling initiates through the exposed metal tip apex. The tip was cleaned o f the WO3 layer 

by using a direct current annealing at 1714 K which is high enough to sublimate the oxide 

and is low enough to prevent blunting o f the tip. However, a residual oxide layer remains

[54]. In line with this, and our SEM and EDX results, we construct a model o f  a 32 nm 

diameter tip with a 1 nm WO3 layer around the shank o f the probe. After annealing, the tip 

shaft oxide is reduced to 0.3 nm with the tip apex exposed for both. This structure used for all 

simulations is shown in Figure 3.8.1(b).

The effect o f the different oxide geometry is demonstrated in Figure 3.8.2. In the
10 1

simulation n-type GaAs sample with doping concentration o f  10 cm' is considered. Metal 

tip is kept above the sample surface at a constant height o f 1.5 nm. Three different tip 

geometries were simulated: tip without oxide, tip with 1 nm oxide coated shaft and tip 

completely coated in 1 nm oxide including a tip apex (Figure 3.8.2(a)). The difference in the 

differential conductance in Figure 3.8.2(b) for the tip without oxide and with oxide coated
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shaft will be explained in the later chapters. Tip with oxide coated apex will be more 

conductive because W O 3 wide band gap semiconductor layer around the apex o f  the probe 

allows an additional tunnelling current through the conducting layer. This will result in the 

change o f  simulated differential conductance o f  the tip with oxide coated apex in comparison 

to the tip with oxide coated shaft.

3.8.1 Role of the oxide on a probe in non-contact measurements

Results for non-contact measurements were found to be dependent on doping 

concentration. We used GaAs doped to 9.2><1017 cm ’ and 1 .7x10 16 cm *’ with Zn. For the 

high doped sample, measurement results in Figure 3.8.3 (a) demonstrate the shift o f  the 

conduction band profile at the positive gap voltages after probe shank oxide removal. The
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Figure 3.8.2 (a) Simulated tip geometries without oxide, with oxide coated tip shaft and when 

tip is completely coated in oxide including a tip apex, (b) Simulated differential conductance

(dI/dV)/\I/V\ fo r  three tip structures.
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same behaviour is observed in the simulations shown in Figure 3.8.3 (b). Note that no shift is 

observed in the valence band (negative gap voltages).

Band diagrams for the non-contact case are shown in Figure 3.8.4. Simulations find 

that the probe field is high enough to induce localised surface depletion (Figure 3.8.4 (a, b)) 

at high positive voltages. The tip Fermi level will not cross the conduction band profile up 

until 1.8 V (Figure 3.8.4(b)), but the significant amount o f  current is observed already at the 

voltages below 1.8 V. This is due to the transport o f carriers through the valence band as seen 

in Figure 3.8.4(a), which becomes significant for both 1 nm oxide and 0.3 nm oxide 

structures at 1.4 V.

At the high positive gap voltages, a tip-induced quantum dot-like potential will be 

created with empty discrete states in the VB above the Fermi level. An example is shown in 

Figure 3.8.5, where at +1.8 V for the highly doped sample, localised band bending is larger 

with the thicker probe oxide before annealing. This leads to discrete states above the Fermi 

level for the thicker oxide seen in Figure 3.8.5 (b) although these states have not yet come in 

to play for tunnelling, see Figure 3.8.5 (c). As the gap voltage increases, the discrete states 

are used for tunnelling in the annealed probe but the onset o f higher current has already occur 

for the thicker oxide at a lower gap voltage. The divergence in the formation o f  the quantum 

dot-like potential for the 1 nm oxide structure and the 0.3 nm oxide structure explains a shift 

o f the normalised conductivity at the high positive voltages in Figure 3.8.3.
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Figure 3.8.3 Normalized conductivity plots with a denominator offset constant c = 0.02 and a 
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Similar tip-induced quantum dot-like potential is also formed at negative gap voltages 

but the increase in conduction band states is not significant enough to introduce the difference 

in the tunnelling for both oxide structures.

The normalised conductivity in Figure 3.8.3 indicates the valence band edge at 

— 0.9 V. The band diagram for the -0 .8  V and -1  V in Figure 3.8.4(c) and (d) shows that this 

increase in the tunnelling current at — 0.9 V is due to the allowed transport o f electrons from 

the conduction band to the tip. The tip Fermi level will cross the valence band at the higher 

negative voltages.
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Figure 3.8.5 (a) VB profile under the tip before and after annealing obtained From simulations 

with the VB profile orthogonal to z-direction directly under the centre o f the tip with discrete states 

for highly doped GaAs at a gap voltage o f+1.8 V, (b) before tip annealing, and (c) after annealing.
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With negative gap voltage, the sample is in accumulation and the screening effects o f  

the dopants reduce the electrostatic tip-induced band bending. The band diagram in Figure 

3.8.4(c) and (d) indicates no change in the accumulation layer with the change in the oxide 

thickness. This will result in no apparent shift in the tunnelling current at the negative gap

voltages shown in normalised conductivity plot in Figure 3.8.3.

For low doped GaAs (Figure 3.8.6), there is a little difference between a tip that has 

been annealed and a tip that has been not. The reduction in screening in the low doped 

material gives rise to a long range electrostatic interaction and a high tip-induced band 

bending for all cases. The only exception is a shoulder centred around 1 V caused but the on

set o f  the quantum dot-like potential, which appears earlier when the tip oxide has not been 

reduced as shown in both experiment and simulations.

A shift in the spectra observed by Shen and Clemens may be due to a similar effect as

that observed here [43], [44]. In their case, the oxide layer deposited on the InGaAs sample 

reduces the effect o f the electric field and reduces the tip induced band bending which causes 

the CB edge to shift towards the Fermi level.
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Figure 3.8.6 Normalized conductivity plots with a denominator offset constant c = 0.02 and a 

rolling average o f six for non-contact measurements on low doped GaAs comparing s(a) experiment

and (b) simulation.



84 Results o f scanning probe microscopy modelling

3.8.2 Role of the oxide on a probe in contact measurements

For contact measurements, the feedback loop was disabled at the 0.5 nA set point and 

the probe approached incrementally by a distance o f  dz = 0.1 nm until the spectroscopy was 

observed to change from tunnelling dominated to contact dominated. This occurred at dz = 

-0 .5  nm and was used for all contact measurements.

Normalized conductivity is an invariant quantity that indicates features o f surface state 

distributions and is calculated using following equation [55]:

where I  is current, V is voltage and c is a small offset to prevent divergence as the 

denominator goes towards zero. Normalized conductivity results for both experimental and 

simulation are shown in Figure 3.8.7, where a denominator offset constant o f 0.02 was used 

[55]. The conductivity, both the experimental and in the simulation, increases after the probe 

shank oxide is reduced. The shift in the conduction band is narrowing the apparent band gap 

when the oxide is removed and no change in the valence band is observed.

Simulations find that the creation o f a near-intimate contact between the tip and the 

sample forms a Schottky contact with a fixed barrier height for both, as seen in Figure 3.8.8. 

However, the different oxide profile alters the electrostatic interaction with the sample, 

changing the shape and the width o f the barrier, giving rise to the altered transport shown. At 

the positive gap voltage o f +1 V, the barrier is narrowed when the oxide layer is reduced 

(Figure 3.8.8(b)). That is why a rapid increased in the tunnelling current for the 0.3 nm oxide 

structure at the forward bias in Figure 3.8.7 occurs due to the exponential dependence o f the 

tunnelling current on the width o f the potential barrier. At the negative gap voltage o f -1  V 

((Figure 3.8.8(a)), the band profiles for the 0.3 nm oxide and the 1 nm oxide will match due 

to the dopant screening effect, as seen for the non-contact case in Chapter 3.8.1. At the 

negative gap voltage, the dominant transport mechanism is electron diffusion from the 

semiconductor to the metal side, which will not be affected by the change in the oxide layer 

as seen in Figure 3.8.7. The change in the current behaviour in the forward and the reverse
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biases, when tip is in contact with the semiconductor surface, confirms that the barrier for 

current through the centre two voltage probes in four point probe technique would be non

equal ly affected by the probe shank oxide.
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Figure 3.8.7 Normalised conductivity plots with a denominator offset constant c = 0.02 and a 

rolling average o f six for contact measurements on GaAs comparing (a) experimental and (b)

simulation results.
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3.9 Summary

An STM and STS simulation methodology based on the Price and Radcliffe tunnelling 

formalism using image force correction has been developed using Silvaco ATLAS. This 2D 

finite element model was applied to several semiconductor materials to verify its accuracy, 

with the origin o f features in the spectra examined in detail. The simulations confirmed that, 

at larger doping concentrations, the screening effect o f the semiconductor reduces the tip- 

induced band bending. The tip induced band bending was also tested using a 3D tip 

geometry.

For w-type GaAs, the modelled spectra band gap deviates from the bulk value by only 

0.1 eV or 0.7 % which is within the experimental systematic error [46]. At low «-type doping 

concentrations, the screening is weak, and tip-induced band bending causes the apparent band 

gap to either increase or reduce depending on the tunnelling mechanism. These phenomena 

well justify the need for STM and STS modelling to accompany the experimental 

measurements. Our 2D model, which uses a self-consistent Poisson-Schrodinger solution, 

predicts a larger tip-induced band bending when a sample is in depletion (resulting in a shift 

o f the band onset in the spectra) than that from Semitip 6 2D model, and the same amount o f  

tip-induced band bending when a full 3D model is used.

The image force correction gives a conduction band tunnelling current increase o f three 

orders o f magnitude and a valence band tunnelling current increase o f  six orders when 

compared to the 'artificial' uniform increase o f three orders o f  magnitude used in Ref. [30]. 

However, the magnitude change is different for different tip shapes and sample materials.

The work presented in Chapters 3.2-3.7 has led to the following publication: 

O. Kryvchenkova, R. J. Cobley, and K. Kalna, “Self-consistent modelling o f  tunnelling 

spectroscopy on III-V semiconductors,” Appl. Surf. Sci., vol. 295, pp. 173-179, Mar. 2014. 

The work was also presented on the conference: UK Semiconductors, July 2013, Sheffield 

UK, O. Kryvchenkova, K. Kalna, R. J. Cobley, “Modelling Scanning Probe Interactions 

using a Finite Element Device Simulator”.
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The presence o f the oxide on the shank o f the probe alters the contact behaviour in 

contact and non-contact measurements. This has implications for all nanoscale surface probe 

measurements, and macroscopic 4PP, both in air and vacuum. The work presented in Chapter 

3.8 is in preparation for a publication: C. J. Barnett, O. Kryvchenkova, L. S. J. Wilson, T. G. 

G. Maffeis, K. Kalna and R. J. Cobley, “The role o f probe oxide in local surface conductivity 

measurements” aimed for Physical Review B.

' Finally, our STM model developed within a commercial simulation tool offers several

advantages over other STM models. These advantages include i) the ability to use any

! realistic tip shape, ii) to include full device transport models for SPM on devices, and iii) to
!

model spectra from SPM on powered devices. The model can also account for surface states,
i
I and can readily be extended to other SPM techniques.



3.10 Bibliography 89

3.10 Bibliography

[1] E. Meyer, “Scanning probe microscopy and related methods.,” Beilstein J. 
Nanotechnol., vol. 1, pp. 155-7, Jan. 2010.

[2] R. J. Cobley, K. S. Teng, M. R. Brown, P. Rees, and S. P. Wilks, “Surface defects in 
semiconductor lasers studied with cross-sectional scanning tunneling microscopy,” 
Appl. Surf. Sci., vol. 256, no. 19, pp. 5736-5739, Jul. 2010.

[3] S. Saraf and Y. Rosenwaks, “Local measurement o f  semiconductor band bending and
surface charge using Kelvin probe force microscopy,” Surf. Sci., vol. 574, no. 2 -3 , pp. 
L35-L39, Jan. 2005.

[4] R. J. Cobley, P. Rees, K. S. Teng, and S. P. Wilks, “Analyzing real-time surface 
modification o f operating semiconductor laser diodes using cross-sectional scanning 
tunneling microscopy,” J. Appl. Phys., vol. 107, no. 9, p. 094507, 2010.

[5] A. Lochthofen, W. Mertin, G. Bacher, L. Hoeppel, S. Bader, J. Off, and B. Hahn,
“Electrical investigation o f  V-defects in GaN using Kelvin probe and conductive 
atomic force microscopy,” Appl. Phys. Lett., vol. 93, no. 2, p. 22107, 2008.

[6] L. Koenders and A. Yacoot, “Tip Geometry and Tip-Sample Interactions in Scanning 
Probe Microscopy (SPM),” in Fringe 2005, W. Osten, Ed. Springer Berlin Heidelberg, 
2006, pp. 456-463.

[7] S. Sadewasser, T. Glatzel, R. Shikler, Y. Rosenwaks, and M. C. Lux-Steiner, 
“Resolution o f  Kelvin probe force microscopy in ultrahigh vacuum: comparison o f  
experiment and simulation,” Appl. Phys. Lett., vol. 210, no. 1-2, pp. 32-36, Mar. 2003.

[8] E. Koren, N. Berkovitch, O. Azriel, A. Boag, Y. Rosenwaks, E. R. Hemesath, and L. J. 
Lauhon, “Direct measurement o f nanowire Schottky junction depletion region,” Appl. 
Phys. Lett., vol. 99, no. 22, p. 223511, 2011.

[9] D. Ziegler, P. Gava, J. Guttinger, F. Molitor, L. Wirtz M. Lazzeri, A. M. Saitta, A. 
Stemmer F. Mauri, and C. Stampfer, “Variations in the work function o f doped single- 
and few-layer graphene assessed by Kelvin probe force microscopy and density 
functional theory,” Phys. Rev. B, vol. 83, no. 23, p. 235434, Jun. 2011.

[10] S. Fremy, S. Kawai, R. Pawlak, T. Glatzel, A. Baratoff, and E. Meyer, “Three- 
dimensional dynamic force spectroscopy measurements on KBr(001): atomic 
deformations at small tip-sample separations,” vol. 23, no. 5, p. 55401, 2012.

[11] ITRS Reports. 2012. Http://www.itrs.net/reports.html.



90 Results o f  scanning probe microscopy modelling

[12] R. M. Feenstra and J. A. Stroscio, “Tunneling spectroscopy o f  the GaAs(l 10) surface,” 
J. Vac. Sci. Technol. B. Microelectron. Nanom. Struct., vol. 5, no. 4, pp. 923-929, 
1987.

[13] G. J. de Raad, D. Bruls, P. Koenraad, and J. Wolter, “Interplay between tip-induced 
band bending and voltage-dependent surface corrugation on GaAs(llO) surfaces,” 
Phys. Rev. B, vol. 66, no. 19, pp. 1-14, Nov. 2002.

[14] S. Loth, M. Wenderoth, R. Ulbrich, S. Malzer, and G. Dohler, “Connection o f  
anisotropic conductivity to tip-induced space-charge layers in scanning tunneling 
spectroscopy o f p-doped GaAs,” Phys. Rev. B, vol. 76, no. 23, pp. 1-10, Dec. 2007.

[15] M. Hirayama, J. Nakamura, and A. Natori, “Band-bending effects on scanning 
tunneling microscope images o f subsurface dopants: First-principles calculations,” J. 
Appl. Phys., vol. 105, no. 8, p. 083720, 2009.

[16] R. Feenstra, “Electrostatic potential for a hyperbolic probe tip near a semiconductor,” 
J. Vac. Sci. Technol. B ..., vol. 2080, pp. 1-17, 2003.

[17] R. Feenstra, J. Lee, M. Kang, G. Meyer, and K. Rieder, “Band gap o f  the Ge (111) c 
(2x 8) surface by scanning tunneling spectroscopy,” Phys. Rev. B, vol. 035310, pp. 1 -  
29, 2006.

[18] Vienna Ab-initio Simulation Package U ser’s Manual. 2013.

[19] ACCELRYS U ser’s Manual. 2013.

[20] A TOMISTIX User's Manual. 2013.

[21] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 
3B, pp. B864-B871, Nov. 1964.

[22] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and 
Correlation Effects,” Phys. Rev., vol. 140, no. 4A, pp. A 1133-A 1138, Nov. 1965.

[23] M. V Fischetti and S. E. Laux, “Monte Carlo study o f electron transport in silicon 
inversion layers,” Phys. Rev. B, vol. 48, no. 4, pp. 2244-2274, Jul. 1993.

[24] V. A. Ukraintsev, “Data evaluation technique for electron-tunneling spectroscopy,” 
Phys. Rev. B, vol. 53, no. 16, pp. 11176-11185, Apr. 1996.

[25] J. Bardeen, “Tunnelling from a many-particle point o f  view,” Phys. Rev. Lett., vol. 6, 
no. 2, pp. 6-8 , 1961.

[26] G. D. Mahan, Many-Particle Physics, 2nd ed. Plenum Press, 1983.



3.10 Bibliography 91

[27] N. Isshiki, K. Kobayashi, and M. Tsukada, “First-principle simulation o f scanning 
tunneling microscopy/spectroscopy with cluster models o f  W, Pt, TiC, and impurity 
adsorbed tips,” in Proceedings o f  the Fifth International Conference on Scanning 
Tunneling M icroscopy/Spectroscopy, 1991, vol. 9, no. 2, pp. 475—478.

[28] J. M. Bass and C. C. Matthai, “Scanning-tunneling-microscopy and spectroscopy 
simulation o f the G aAs(llO) surface,” Phys. Rev. B, vol. 52, no. 7, pp. 4712—4715, 
Aug. 1995.

[29] B. W. Hoogenboom, C. Berthod, M. Peter, and 0 .  Fischer, “Modeling scanning 
tunneling spectra o f Bi2Sr2CaCu208W’ Phys. Rev. B , vol. 67, no. 22, pp. 1-7, Jun. 
2003.

[30] R. M. Feenstra, Y. Dong, M. P. Semtsiv, and W. T. Masselink, “Influence o f tip-
induced band bending on tunnelling spectra o f semiconductor surfaces,”
Nanotechnology, vol. 18, no. 4, p. 44015, Jan. 2007.

[31 ] Atlas U ser’s Manual. 2007.

[32] R. J. Cobley, K. S. Teng, M. R. Brown, S. P. Wilks, and P. Rees, “Direct real-time 
observation o f catastrophic optical degradation in operating semiconductor lasers using 
scanning tunneling microscopy,” Appl. Phys. Lett., vol. 91, no. 8, p. 81119, 2007.

[33] T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and
tandem axial p-i-n nanowire photovoltaic devices.,” Nano Lett., vol. 8, no. 10, pp. 
3456-60, Oct. 2008.

[34] W. Wu, S. L. Skala, J. R. Tucker, J. W. Lyding, A. Seabaugh, E. A. Beam, and D. 
Jovanovic, “Interface characterization o f an InP/InGaAs resonant tunneling diode by 
scanning tunneling microscopy,” J. Vac. Sci. Technol., A, vol. 13, no. 3, pp. 602-606, 
May 1995.

[35] A. Gurlo and M. Ivanovskaya, “Grain size control in nanocrystalline In 2 O 3 
semiconductor gas sensors,” Sensors and Actuators B: Chemical, vol. 44, no. 2, pp. 
327-333, 1997.

[36] P. Price and J. Radcliffe, “Esaki tunneling,” IBMJ. Res. Dev., no. October, 1959.

[37] C.K. Egan, A. Choubey, and A. W. Brinkman, “Scanning tunneling microscopy and 
spectroscopy o f  the semi-insulating CdZnTe(llO) surface,” Surf. Sci., vol. 604, pp. 
1825-1831,2010.

[38] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar 
Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., vol. 34, no. 6, p. 1793, 
1963.



92 Results o f scanning probe microscopy modelling

[39] G. Binnig, N. Garcia, H. Rohrer, J. M. Soler, and F. Flores, “Electron-metal-surface 
interaction potential with vacuum tunneling: Observation o f the image force,” Phys. 
Rev. B, vol. 30, no. 8, pp. 4816-4818, Oct. 1984.

[40] A. Schenk and G. Heiser, “Modeling and simulation o f tunneling through ultra-thin 
gate dielectrics,” J. Appl. Phys., vol. 81, no. 12, pp. 7900-7908, 1997.

[41] J. Gimzewski and R. Moller, “Transition from the tunneling regime to point contact 
studied using scanning tunneling microscopy,” Phys. Rev. B, 1987.

[42] L. Bartels, G. Meyer, and K.-H. Rieder, “Atomic hop-scotch: different manipulation 
modes o f single Cu atoms on C u ( l l l ) ,” Chem. Phys. Lett., vol. 285, no. 3-4 , pp. 2 8 4 -  
287, Mar. 1998.

[43] J. Shen, E. A. Chagarov, D. L. Feldwinn, W. Melitz, N. M. Santagata, A. C. Kummel, 
R. Droopad, and M. Passlack, “Scanning tunneling microscopy/spectroscopy study o f  
atomic and electronic structures o f In20 on InAs and In0.53Ga0.47As(001)-(4><2) 
surfaces.,” J. Chem. Phys., vol. 133, no. 16, p. 164704, Oct. 2010.

[44] J. B. Clemens, E. A. Chagarov, M. Holland, R. Droopad, J. Shen, and A. C. Kummel, 
“Atomic imaging o f the monolayer nucleation and unpinning o f a compound 
semiconductor surface during atomic layer deposition.,” J. Chem. Phys., vol. 133, no. 
15, p. 154704, Oct. 2010.

[45] F. M. F. Smits, “Measurement o f Sheet Resistivities with the Four-Point Probe,” Bell 
Syst. Tech. J., vol. 37, no. 3, pp. 711-718, May 1958.

[46] R. Feenstra, “Tunneling spectroscopy o f  the (110) surface o f direct-gap III-V 
semiconductors,” Phys. Rev. B, vol. 50, no. 7, 1994.

[47] N. Ishida, K. Sueoka, and R. Feenstra, “Influence o f surface states on tunneling spectra 
o f  n-type GaAs(l 10) surfaces,” Phys. Rev. B, vol. 80, no. 7, pp. 1-8, Aug. 2009.

[48] R. Feenstra and S. Gaan, “Quantitative Determination o f Nanoscale Electronic 
Properties o f  Semiconductor Surfaces by Scanning Tunnelling Spectroscopy,” J. Phys. 
Conf. Ser., vol. 326, p. 012009, Nov. 2011.

[49] J. Tersoff and D. R. Hamann, “Theory o f the scanning tunneling microscope,” Phys. 
Rev. B, vol. 31, no. 2, pp. 805-813, Jan. 1985.

[50] A. D. Gottlieb and L. Wesoloski, “Bardeen’s tunnelling theory as applied to scanning 
tunnelling microscopy: a technical guide to the traditional interpretation,” 
Nanotechnology, vol. 17, no. 8, p. R57, 2006.



3.10 Bibliography 93

[51] A. Hartstein and Z. A. Weinberg, “On the nature o f  the image force in quantum 
mechanics with application to photon assisted tunnelling and photoemission,” J. Phys. 
C Solid State Phys., vol. 11, no. 11, p. L469, 1978.

[52] A. Hartstein and Z. A. Weinberg, “Unified theory o f internal photoemission and 
photon-assisted tunneling,” Phys. Rev. B, vol. 20, no. 4, pp. 1335-1338, Aug. 1979.

[53] J. P. Ibe, “On the electrochemical etching o f tips for scanning tunneling microscopy,” 
J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 8, no. 4, p. 3570, Jul. 1990.

[54] R. J. Cobley, R. A. Brown, C. J. Barnett, T. G. G. Maffeis, and M. W. Penny, 
“Quantitative analysis o f annealed scanning probe tips using energy dispersive x-ray 
spectroscopy,” Appl. Phys. Lett., vol. 102, no. 2, p. 023111, 2013.

[55] P. Guaino, A. A. Cafolla, O. McDonald, D. Carty, G. Sheerin, and G. Hughes, 
“Scanning tunnelling spectroscopy o f low pentacene coverage on the A g/Si(l 11)-(3 x3) 
surface,” J. Phys. Condens. M atter, vol. 15, no. 38, pp. S2693-S2698, Oct. 2003.



Chapter 4 Results of modelling of ZnO nanowires

4.1 Introduction

In any metal-semiconductor contact, the electrical conductivity is determined by the 

intrinsic properties o f the constituents and, more importantly, the interface they form [1]. At 

the micro-scale, the size o f  the contact (or interface area) has little effect on the transport 

mechanisms, whilst at the nanoscale, dipole-like electrostatic fields replace uniform parallel 

fields, leading to electrical behaviour that is poorly understood [2]. Indeed, some prototype 

devices such as lasers [3] and nanogenerators [4] have been demonstrated in laboratories, but 

selecting Ohmic- or Schottky-like behaviour is challenging for repetitive manufacture^].

Some experimental evidence demonstrates a size-dependant Schottky- or Ohmic-like 

behaviour in the metal-semiconductor nanostructures [6]—[8]. Other works, extended to more 

challenging interfaces at the tips o f free standing semiconductor nano wires, have shown 

promising results for different metal contacts deposited onto ZnO nanowires [9], [10] 

providing a range o f rectifying and Ohmic behaviour. In addition, the contact formatted from 

Au catalyst particles, used to grow a range o f  nanowires, have demonstrated Ohmic 

behaviour [11] for InAs and InP nanowires, yet rectifying behaviour on Ge nanowires [12]. It 

is clear that a range o f electrical behaviour is possible for nanoscale metal contacts. However, 

there is no generalized understanding o f  how to actively control the interface barrier and how 

the transport properties are related to the size o f the metal or nanowire [8], [12]—[14]. In the 

present chapter this problem is analysed using a full 3D simulation and verified against the 

experimental results. The findings reveal a mechanism to control the conductivity o f metal- 

nano wire interfaces.

The current-voltage (I-V) measurements in Chapter 4.2 reveal size dependent properties 

that can be used to create a spectrum o f electrical behaviour from Schottky to Ohmic, without
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the need o f any sample processing, nanowire samples were prepared and measured by other 

researchers. To explain the change in the transport properties, full 3D numerical simulations 

were necessary to reveal the features o f the depletion region that allowed enhanced current 

for the nanoscale contacts, as demonstrated in Chapter 4.3. In this Chapter the simulations 

demonstrate that neglecting one o f  the dimensions in calculations, like when using a 2D 

model, will give a different effect, while the contact phenomena cannot be studied using a ID 

modelling. In Chapter 4.4 the complex geometry-dependant behaviour o f  ZnO nanowires is 

demonstrated. The important conclusion from the work is that the conductivity is not just 

determined by contact size as demonstrated in Chapter 4.5, but also by the size o f  the 

interface in relation to the nanowire diameter below a critical dimensional ratio as seen in 

Chapter 4.6. This study has implications for all nanodevices where the semiconductor width 

approaches the size o f the metal interface. This work was prepared for the following 

publication: Alex M. Lord, Thierry G. Maffeis, Olga Kryvchenkova, Richard J. Cobley, 

Karol Kalna, Despoina M. Kepaptsoglou, Quentin M. Ramasse, Alex S. Walton, Michael B. 

Ward, Jurgen Koble, Steve P. Wilks, “Controlling the electrical transport properties o f  

nanocontacts to nanowires” submitted to Nano Letters.

In Chapter 4.7 describes an essential role o f  current crowding in ZnO NW s which 

increases parasitic resistance at the edge o f the downscaled contacts. The current crowding 

effect was reported earlier in side-bonded nanostructures like carbon nanotubes [15], [16], 

ZnO, GaN and Si nanowires [17], and graphene-metal contacts [18]. Current crowding is 

known to result in a local temperature rise at the metal-semiconductor interface which can 

lead to device failure [18],[19]. The work was presented at ANM 2014, Fifth International 

Conference on Advanced Nanomaterials, July 2014, Aveiro, Portugal and was accepted for 

the publication in the Materials Today Proceedings entitled O. Kryvchenkova, K. Kalna, R. 

J. Cobley, “The Current Crowding Effect in ZnO Nanowires with an End-Bonded Metal 

Contact”. It was also presented on the UK Semiconductors 2014, July 2014, Sheffield UK 

entitled O. Kryvchenkova, K. Kalna, R. J. Cobley, “Modelling Current Crowding Effect in 

the ZnO Nanowires“.

Using a ID electrothermal model, LeBlanc et al [17] demonstrated that for ZnO NWs 

with side-bonded Ohmic contacts, the peak o f  the temperature rise will occur at the metal-
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nanowire interface. Post-measurement images o f the ZnO NW with side-bonded Ti/Ag 

contacts indicated melting o f  the metal electrode, limiting the operational range o f these 

devices. Leonard et al. [20] reported the temperature distribution through the NW length with 

a fixed contact temperature. This simulation predicted heat loss to the environment due to the 

high surface to volume ratio o f  the NWs.

In Chapter 4.8, we study the effect o f current crowding on the temperature profile along 

the nanowire and around the metal contact for the end-bonded ZnO NWs with Schottky 

contacts. A full 3D simulation model considers carrier transport o f  electrons and holes self- 

consistently coupled with thermal flow [21]. Since the transport parameters depend on the 

lattice temperature, lattice heating and cooling due to the carrier generation and 

recombination, Joule heating and Peltier-Thomson effects are also included [21]. Finally, 

unlike in previous works [17], [20], the thermal modelling considers temperature dependent 

thermal conductivity model [22] and heat capacity model [23] for ZnO. This work was 

presented on ASDAM 2014, The Tenth International Conference on Advanced 

Semiconductor Devices and Microsystems, October, 2014, Smolenice, Slovakia and accepted 

for the publication in the conference proceeding entitled Kryvchenkova, O., Kalna, K., 

Cobley, R.J., "Modelling heating effects due to current crowding in ZnO nanowires with end- 

bonded metal contacts," Advanced Semiconductor Devices & M icrosystems (ASDAM), 2014 

10th International Conference on , vol., no., pp. 1,4, 20-22 Oct. 2014.

In Chapter 4.9 the effect o f the surface charge on the electrical properties o f ZnO 

nanowires was studied in detail. The measurement data was obtained from the 

hydrothermally grown ZnO nanowires [24], [25]. The electrical measurement performed 

using two metal probes demonstrated a change in the surface conductivity after the argon ion 

bombardment [26] o f the surface was performed. The full 3D model o f  the tip on the 

nanowire surface is used to explain the change in the electrical behaviour due to the presence 

o f the surface charge.

The work in this chapter was also presented by the author at an invited talk in the 

National Physical Laboratory, NPL, London, October 2014.
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4.2 Experimental measurement of the current

ZnO nanowires o f diameters ranging from 15 to 80 nm were fabricated by chemical 

vapour deposition using Au catalyst particles to initiate their vertical growth on (X-AI2O3 

substrate [27]. This particular fabrication method can lead to contamination o f  the nanowire 

by the catalyst atoms [28]—[30]. Such contamination can subsequently produce variability in 

electrical behaviour [1], [31]. However, this can be discounted as the Au catalysed growth o f  

ZnO exhibits no such alloying due to the low solubility o f  the solid catalyst material in the 

nanowire during and after growth [32]-[34]. However, the structural and chemical integrity 

o f  the metal-nanowire interface are also known to play a key role in perturbing the resultant 

transport properties [1], [31], [35], [36].

Samples in this work were prepared and measured by other researchers. After growth, 

close inspection o f the nanowires (Figure 4.2.1(a) and (b)) using scanning backscattered 

electron (BSE) imaging and transmission (TEM) electron microscopy showed that for similar 

size nanowires, a variation in metal particle size, and hence interface size, was evident. An 

interface image (Figure 4.2.1(c)) and corresponding line profile (Figure 4.2.1(d)) were 

recorded using an aberration-corrected Nion UltraSTEM microscope with a probe size o f  

0.8A and high angle annular dark field (HAADF) detector. This revealed the period atomic 

columns and the abruptness o f  the junction as indicated by the clear discontinuity in contrast 

on either side o f the junction. Importantly, no Au atoms were detected in the nanowire 

material near the interface. Hence, it can be stated that the Au-ZnO nanowire interface is 

clean, ordered and intimate, an ideal test bed for understanding the intrinsic electrical 

properties o f particle-nanowire contacts.
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Figure 4.2.1. Electron microscopy images o f  ZnO nanowires with the Au catalyst particle 

interface, (a) Backscattered electron image showing as-grown nanowire with Au catalyst particle 

clearly visible at the nanowire tip, scale 200 nm. The red arrow indicates the 59 nm contact measured 

with the local multi-probe technique, (b) TEM image o f several ZnO nanowires with a variation in Au 

catalyst particle size that is independent o f nanowire diameter, scale 30 nm. (c) Unprocessed 

aberration-corrected HAADF image o f the Au-ZnO nanowire interface with the beam aligned along 

the [0110] ZnO zone axis showing the abrupt interface, scale 1 nm. (d) Line profde o f the interface, 

corresponding to the blue line in (c) showing the expected equal intensity ofZn columns with the 

sudden intensity increase indicating an abrupt interface and no interfacial layer. The first Au column 

appears less intense due to the Au particle curvature as presented in Ref. [10].

Accurately measuring the electrical properties o f  contacts to individual nanowires 

requires the use o f  more than one probe [10], [37] overcoming the limitations o f  single probe 

techniques such as AFM and STM. Here the same technique is employed based on two 

scanning probes, one forming an Ohmic contact to the side o f  the nanowire whilst the other 

probe was placed in contact with the Au particle. This enabled a single A u-ZnO contact to be 

isolated in the as-grown configuration, providing a measurement o f  the metal-nanowire 

interface, free from any extraneous affects associated with the substrate or nanowire substrate 

junction which is essential to ensure accurate measurement [37].
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Figure 4.2.2 (a) A schematic diagram o f the experimental setup for the two-probe I-V  

measurements o f Au catalysed ZnO nanowires. The measurements (b) correspond to nanowires with a 

diameter o f 72 nm (blue, 0), 70 nm (yellow, n), 73 nm (red, o), 73 nm (green, x) and 79 nm (purple, 

A) with Au particles with a diameter o f 59 nm, 50 nm, 47 nm, 40 nm and 36 nm, respectively. The 

measurement data is scaled to the value o f current at +1 Vfor the nanowire with the 59 nm Au 

particle to account for the variation in series resistance and resistivity between nanowires.

I-V measurements were recorded for nanowires having a variety o f  contact sizes as 

depicted in Figure 4.2.2. The voltage triangulation, -1  V to 1 V and 1 V to -1  V, showed no 

hysteresis for each measurement indicating that the interfaces were stable and unaffected by 

the high current densities. The results clearly showed the transition from rectifying to Ohmic

behaviour as the Au particle diameter decreases (59, 50, 47, 40 and 36 nm on wires with a

diameter in the range o f  70-79 nm). The measurement data is scaled to the value o f  the

current at +1 V for the nanowire with the 59 nm Au particle to highlight the change in I-V

shape as the particle size changes. The absolute current magnitude varies between different 

nanowires because the spatial separation between the two probes is different, leading to 

different series resistances. Additionally, it was shown previously that the apparent resistivity 

o f  similar size ZnO nanowires from the same growth batch can vary by as much as 2 orders 

o f  magnitude, depending on the surface coverage o f  ionized oxygen species [33].
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Figure 4.2.3. The Au contact shape approximated in the simulations, (a) TEM image o f  the ZnO 

nanowires aligned on the [1210] zone axis with a catalyst particle at the end. (b) 3D model 

structure o f the nanowire and Au particle, (c) Schematic diagram o f the geometry used to 

approximate the Au metal contact and interface geometry, (d) Outline through the 3D model 

structure o f Au particle, (e) Extraction o f the nanowire geometry from TEM image.
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4.3 Geometry approximation

The Au catalyst particle at the nanowire tip had a distinct shape as shown in Figure 

4.2.3(a) which was approximated by a hemisphere o f  radius R but with a high degree o f  

curvature near the interface producing a small overhang as observed experimentally as in 

Figure 4.2.3(e) resulting in the full 3D structure in Figure 4.2.3 (b). As demonstrated in 

Figure 4.2.3(e), sever nanowire structures were analysed to extract the Au particle diameter, 

nanowire diameter and a curvature near the interface.

Using MATLAB (see Appendix A), the co-ordinates o f the structure are generated 

according to the geometry approximation shown in Figure 4.5.2(c) for the DeckBuild and 

Atlas simulation tools. A gold contact particle radius Rc is approximated using Ni=4 large 

cylindrical layers. The height o f  each layer is R/N /. The coordinates o f the «/ large sub-layer 

(xny„) can be found as follows:

(4-D

y (4.2)

For the complex gold shape near metal-semiconductor interface a change in the particle 

radius by A=80% at the base o f the contact was approximated using Ns=3 cylindrical sub

layers. The coordinates o f the ns-th small sub-layer (x„,yn) can be found as follows:

x„=Rc( \ - n/ N { \ -  A)) (4.3)

y " = R‘ " /N 'N , (4 -4)

The height o f each small sub-layer is Rc/NiNs.

An example o f  the 3D structure mesh o f  the obtained simulation geometry is shown in 

Figure 2.1.1(d). The mesh was defined using 3D cylindrical coordinates. The highest mesh
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density was implemented directly at ZnO-Au interface to account for the high tunnelling rates 

in this region. Because the nanowire length o f 900 nm is much higher than nanowire width o f  

73 nm the mesh density was reduced at the centre o f the nanowire length to avoid high 

computational times.

The importance o f  the complex approximation o f the gold particle is demonstrated in 

Figure 4.3.1. For the three geometries o f the similar size (Rc=30 nm, RzncT^0 nm), 2D  

approximation with a simple rectangular presentation o f gold particle (Figure 4.3.1(a)), 

complex 2D contact shape (Figure 4.3.1(b)) and a full 3D approximation (Figure 4.3.1(c)) 

was investigated. Current density with respect to the applied bias (J-V characteristics) in 

Figure 4.3.1(d) for all structures show the difference o f  two orders o f magnitude at the 

reverse bias, and a smaller current change at the forward bias. This is due to the geometry- 

dependent current behaviour which will be discussed in details in the next chapter. A big 

difference in the current calculations indicates the importance o f  using a full 3D solution with 

a good approximation o f the gold particle shape.
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Figure 4.3.1 Comparison o f the simple 2D solution (a), 2D solution with a complex particle 

approximation (b) and 3D geometry approximation, (d) Simulated current density versus applied bias 

(J-V) characteristics for 2D and 3D geometries in (a), (b) and (c).
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4.4 Current mechanism

The model considers a ZnO nanowire o f length 900nm, having an electron affinity o f  

4.5eV and n-type doping o f 1018cm'3. At the end o f the nanowire, Au contacts were 

considered with a work function o f 5.1eV. In the simulation, the second contact, defined as 

Ohmic, was assumed to be at the base o f the nanowire. Both thermionic emission and 

tunnelling across the Schottky barrier at the metal-nanowire interface were included in the 

simulation. The thermionic emission current was calculated taking into account the surface 

recombination velocity, static dipole effects, and a field dependent barrier lowering which 

originated from the image force. Tunnelling was considered for both electrons and holes, 

where localized tunnelling rates were calculated through the structure o f the semiconductor 

close to the interface with the universal Schottky tunnelling model [38] (see Chapter 2 for the 

details on the model). The impact o f each transport mechanism will be studied in detail in this 

chapter.

T+UST
T+UST+BL

r  3

1 -0.5 0 0.5 1
Bias (V)

Figure 4.4.1. The transport current at the 

forward and reverse bias due to thermionic emission 

and electron diffusion (T), and including universal 

Schottky tunnelling (UST) and barrier lowering (BL).

The following material parameters 

were used for ZnO semiconductor: 

bandgap 3.37 eV, electron affinity 

4.5 eV, conduction band density o f  

states at temperature 300 K 

2.2x10 18 cm'3, valence band density o f  

states at temperature 300 K o f  

1 .8 x l0 19 cm'3, effective Richardson 

constants for electrons and holes are

23.7 A/cm2/K2 and 96.3 A/cm2/K2 

respectively [39]. Using a work function 

o f 5.1 eV for the Au presents a potential 

barrier at the interface o f 0.6 eV.

Figure 4.4.1 demonstrates 

different contributions from the
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different current components: tunnelling o f  carriers through the potential barrier (UST) and 

thermionic emission or diffusion o f  carriers over the potential barrier (T). The additional 

current increase due to the barrier lowering (BL) is also presented in Figure 4.4.1.

At the forward biases up to 0.6 V, the tunnelling o f  electrons is a dominant carrier 

transport mechanism through the potential barrier. This is because at the low forward biases 

there is a depletion region at the interface introducing a potential barrier. As the bias is 

further increased, the depletion region at the interface will reduce allowing carrier diffusion 

from the ZnO NW  to the Au contact. This can be seen in Figure 4.4.1, as the bias is reaching 

+ 1 V the current com ponent from the carrier diffusion over the potential barrier becomes 

commensurable with the carrier tunnelling through the depletion region. At the reverse bias 

up to -1  V, the only carrier transport mechanism allowed is tunnelling. This is due to a very
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Figure 4.4.2. (a) Spatial distribution o f the potential at -  I V bias, (b) Outline through the 

centre and at the edge o f  the contact representing a band profde at a bias o f -1  V.
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high potential barrier at the interface, and the magnitude o f  the current at the reverse bias will 

depend solely on the barrier width. The potential distribution demonstrating depletion region 

depth and band diagram for -1  V are shown in Figure 4.4.2.

Including the barrier lowering term in the calculations will result in an additional 

increase o f  the current as seen in Figure 4.4.2. Preliminary work showed tunnelling through 

the air gap between the metal curvature and semiconductor surface is negligible (at least 8 

orders o f  magnitude smaller o f  the total current) and it was neglected in the final simulation.

Unlike in micro-scale metal-semiconductor, the Au-ZnO nanowire nano-contact 

behaviour and distribution o f  the current density through the contact will be influenced by the 

geometry o f  the structure. Figure 4.4.2(a) demonstrates the spatial distribution o f  the potential 

at -1  V for the 60 nm nanowire diameter with a 30 nm gold particle diameter. Due to the
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Figure 4.4.3 Current density distribution directly under the contact edge at +1 Vfor the 

structure described in Chapters 4.6 and 4.7.
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complex shape o f  the metal particle, the local narrowing o f the potential barrier near contacts 

edge is present. The depletion region is the biggest at the contact centre and it is narrowing to 

the edge o f the contact. This effect can be confirmed using a band diagrams for the centre 

x=0 nm and edge x= -12  nm o f the contact (Figure 4.4.2(b)). At the edge o f the contact, the 

barrier is thinner which will result in the increased carrier tunnelling through the narrow 

region at contact edge at the reverse bias. The same effect takes place at the forward bias.

The current density plot in Figure 4.4.3 confirms the effect o f  the edge depletion region 

narrowing for the forward bias. The highest current density is concentrated around the contact 

edge (represented with red colour on the colour scale in Figure 4.4.3) and it reduces by 

roughly one order o f magnitude to the contact centre. As expected, the lowest current density 

is observed away from the contact near the surface o f the ZnO nanowire.

Figure 4.4.4 is a simplified representation o f the distribution o f  the current density 

which allows analysis o f the change though the whole bias range. At the forward bias, the 

barrier thinning and the reduction in the barrier height is significant with the increasing 

applied bias. Due to the exponential dependence o f  the tunnelling current on the barrier width 

and thermionic emission current on the barrier height, the increase in the current density for 

every bias point in Figure 4.4.4(a) is quite pronounced through the whole contact length and 

at the edge o f  the contact. A change in seven orders o f  magnitude is observed at the contact 

centre for the bias change from 0.1 V to I V . It should be noted that all profiles in Figure 

4.4.4(a) demonstrate the current density increase around one order o f magnitude at the 

contact edge as it was shown in Figure 4.4.3.

At the reverse bias up to -1  V, a major carrier transport mechanism is tunnelling 

though the contact edge. That is why, unlike at the forward bias, the current density at the 

contact centre is low and has little change at the whole range o f the reverse biases -0 .2  - 

-1  V as shown in Figure 4.4.4(b). The current density at the centre o f  the contact at +1 V and 

-1  V will have at least 8 orders o f  magnitude difference. The increase in the current density 

at the contact edge is observed at the both reverse and forward biases. The edge current 

density at the reverse bias will have a small bias dependence as seen in Figure 4.4.4(b).
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4.5 Effect o f  the contact size

To explain the experimental results in Chapter 4.2 where the transition from rectifying 

to Ohmic behaviour was observed as the Au particle diameter decreases, the following 

transport mechanisms are considered in the simulation: thermionic emission, tunnelling and 

recombination [1], [40]. The model considers a ZnO nanowire o f  a diameter 73 nm and a
1 O T

length o f  900 nm, having an ^-type doping concentration [41] o f  10 cm' . At the end o f  the 

nanowire, Au contacts with diameters o f  59 nm, 47 nm and 37 nm were considered. In the 

model for this chapter, interface charge on the nanowire surface or at the contact junction was

59 nm

47 nm

37 nm

Simulation
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Figure 4.5.1 Comparison o f the simulation results with the experimental measurements, (a) 

Simulated I-V characteristics for contacts with a diameter of37nm  (green, x), 47 nm (red, o) and 59 

nm (blue, 9). (b) The experimental I-V characteristics for the same sized contacts on a 73 nm diameter 

nanowire (The experimental values o f the current are scaled to the current value o f the 59 nm 

diameter contact at +1 V to account for the external resistance).
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neglected, in addition to series resistance effects.

A calculated current as a function o f  applied bias (I-V characteristics) at biases o f  

+  1V, following the experimental regime, are displayed in Figure 4.5.1(a) for contact 

diameters o f 59 nm, 47 nm and 37 nm. The figure illustrates the effect that the contact size 

has on the electrical properties. The simulated I-V characteristics showed that the reverse bias 

current density increases when the contact size is decreased changing contact behaviour from 

Schottky to more Ohmic-like. For comparison, the experimental results are shown in

Previously, Smit et al. [13] predicted that when a metal contact to a semiconductor is 

reduced in size, spanning the micro-scale to the nanoscale, a significant reduction in 

depletion width will be observed. The reduction in the Au particle size from 59 nm to 37 nm 

is not significant enough to bring about an appreciable change in the depletion width at the 

centre o f the contact as shown by the simulation results in Figure 4.5.2(a). Figure 4.5.2(c) 

shows that nearly all o f  the current will be concentrated at the periphery o f  the interface area 

due to depletion region narrowing at the edge o f the contact in comparison to the centre o f the 

contact. Current transport occurs almost exclusively through a narrow region at the edge o f  

the contact (refer to the Chapter 4.4). Importantly, the narrowing o f the depletion region at 

the edge is more pronounced for nanowire contacts due to the complex curved shape o f the 

Au particle near the interface. The diminishing size o f the contact from 59 nm to 37 nm will 

produce a depletion region that will narrow near the contact edge as the contact size is 

reduced, as shown in Figure 4.5.2 (b). Although the difference in the reduction o f  depletion 

region width with reduction in the contacts size appears small, this has a profound effect on 

the tunnelling current due to exponential dependence on a barrier thickness. Increase in the 

tunnelling through the contact edge with decrease in the Au contact size can be confirmed by 

the I-V characteristics in Figure 4.5.1 showing an increased conductance at reverse bias for 

the 37 nm contact.
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To confirm this characteristic, the simulation predicts that for a simple cylindrical metal 

contact covering the entire end o f  the nanowire, similar to those used by Smit et al.[ 13] and 

Leonard et a l.[2], the barrier narrowing at the edge will not be significant. If the barrier 

narrowing is small, the large tunnelling current is limited leading to Schottky-like contact 

behaviour. It should be noted that 2D calculations do not capture the effect o f  shape as 

demonstrated in Chapter 4.3 thus overestimating the contact area and thermionic emission 

components, whilst underestimating the influence o f  the edge region on the tunnelling 

current. Therefore, the intricacies o f  the nanowire contact geometry and size provide a means
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Figure 4.5.2 (a) The position o f the constant 0.4 eV conduction band potential contour. The 

inset indicates the plane o f the cross-section used, (b) Conduction band profde along the z-axis, down 

in to the nanowire at the contact edge for the 37 nm, 47 nm and 59 nm diameter contacts, an arrow 

indicates 0.4 eV conduction band potential shown in (a), (c) Conduction band profile along the z axis 

at the contact centre, x=0, and contact edge, x=0.8R.
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through which quantum effects control the transport properties.

4.6 Effect o f the nanowire diam eter

The change in the electrical behaviour is investigated using the rectification ratio. The 

rectification ratio is defined as the ratio o f the forward bias current to the reverse bias current. 

Figure 4.6.1 shows rectification ratio (ratio between current at +1 V and -1  V) as a function 

o f the interface and nanowire diameter ratio for the experimental data. Experimental points 

marked with diamond symbols are for ZnO NW with no Au particle, in these measurements 

tungsten tip was used as a metal contact. The error bars account for the diameter variation o f  

the hexagonal nanowire and for the ±2 nm measurement error o f the Au diameter. Simulation
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Figure 4.6.1. The rectification ratio at ±1 V as a function o f the contact (DAu) and nanowire 

(Dzno) diameter ratio (the error bars account for the diameter variation o f the hexagonal nanowire 

and for the ±2 nm measurement error o f the Au diameter) for the experimental data. Experimental 

points marked with diamond symbols are for ZnO NW with no Au particle, tungsten tip used as a 

metal contact. Simulation data was createdfor 37 nmAu particle diameter and a range o f ZnO

diameters.
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data was obtained for 37 nm Au particle diameter and various ZnO diameters to create a 

range o f Dau /  Dzno ratios. The agreement between the two curves is evident, showing 

correlating trends for rectification ratios measured at + /-1 .

Figure 4.5.1 illustrate that the electrical behaviour o f the contacts depends on the Au 

contact size. The rectification ratio decreases towards 1 (which defines pure Ohmic 

behaviour) when the ratio between the diameters o f Au contact and ZnO NW  (D Au/D Zno )  

decreases towards 0.0. The qualitative change o f the rectification ratio observed at about the 

D Au/D zno ratio o f 0.6 for both the experimental and simulated data. Contacts with the 

D Au/D Zno  ratios above 0.6 become markedly more Schottky-like. This is because the size o f  

the Au contact becomes so small in comparison with the size o f the ZnO NW that it does not 

play a role in the transport across the interface. Instead, the effect o f the nanowire diameter 

on the carrier transport through the metal-semiconductor interface becomes a dominant 

factor.

To explain the effect o f the nanowire diameter on the electrical properties o f the Au- 

ZnO contacts, two particular structures are studied. Figure 4.6.2 (c) and (d) illustrate such 

structures with different ZnO NW diameters for a fixed gold particle diameter o f  30 nm. In 

the structure shown in Figure 4.6.2 (c), the ZnO NW diameter is equal to the metal- 

semiconductor interface diameter o f 24 nm (Rzno= 12nm ) and DAu/Dzno= l-25. In the 

structure in Figure 4.6.2 (d), a ZnO NW has a diameter o f 60 nm (RznO=30 nm) and 

DAu/Dzno=0.5. Here, the nanowire diameter is significantly larger than the metal- 

semiconductor interface area with the interface-to-nanowire diameter ratio is 0.5. The NW  

length o f 900 nm was assumed in all the simulations.

The result o f the current calculations is shown in Figure 4.6.2 (a). A geometrical effect 

of the change in the NW radius results in a transformation o f Ohmic to Schottky behaviour in 

the current when the NW radius is reduced. At a high forward bias, the current originates 

predominantly from the thermionic emission. Due to a high doping o f the NW, the metal 

Fermi level will go above the conduction band resulting in a significant increase in the 

current for both structure variations. At the reverse bias and small biases than 0.6 V, the 

current will be dominated by tunnelling as explained in Chapter 4.4.
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Figure 4.6.2 (a) Current density versus applied bias (J-V) characteristic for the ZnO 

nanowires with 24 nm(blue) and 60 nm (red) diameters, (b) Band diagram at -1 Vfor the nanowires 

with 24 nmfblue) and 60 nm (red) diameters. Potential distribution at -1  V in ZnO nanowires o f (c) 

24 nm diameter with DAl/D z„o=l .25, and (d) 60 nm ZnO diameter with DAl/D ZnO=0.5. Gold particle

diameter o f 30 nm used in simulations.
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The current density calculations in Figure 4.6.2 (a) demonstrates a difference in 6 

orders o f  magnitude in reverse bias current when the nanowire diameter is increased from 

24 nm to 60 nm (from Rzno= 12 nm to Rzno= 30 nm). This change can be explained using a 

band diagram at -1  V in Figure 4.6.2 (b). The band diagram shows an increase in the 

potential barrier width when the nanowire diameter is reduced. The increase in the barrier 

width will result in the reduced magnitude o f  the tunnelling current due to the exponential 

dependence o f  the tunnelling current on the barrier width.

The microscale contact scaling will result in a reduced depletion width [31]. Leonard et 

al. [12] have shown that in the case o f  nanocontacts with the contact covering the entire end 

o f  Ge NWs, the depletion region width will be increased as the NW  radius is scaled down. 

The depth o f  the depletion region for the ZnO N W with a diameter o f  24 nm is larger than in 

60 nm NW (Figure 4.6.2 (c)), which confirms that nanoscale contacts will have a complex 

behaviour different from the behaviour o f  microscale contacts. The effect o f  the increase o f  

depletion region width in N W s with contact covering the entire end o f  the N W  will introduce 

a large potential barrier for the tunnelling current in the case o f  the structure in Figure 4.6.2 

(c) and will result in 6 orders o f  magnitude difference in the tunnelling currents at reverse 

bias (Figure 4.6.2 (a)), making the contact with DAu/DznO= l -25 more Schottky in comparison 

to contact with D Au/Dzno=0-5.

Figure 4.6.3 3D simulations o f  ZnO NWs with Au particle (RAu=15 nm) deposited on the top 

and forming the contact radii Rc=12 nm with (a) RZno=l2 nm and (b) Rz„o=30 radii o f ZnO NWs. 

The top ~ 70 nm o f the structure is shown here.
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4.7 Effect o f  current crowding

The current crowding effect, which leads to the non-uniform distribution o f  the current 

density near the edge o f  the metal contact, was reported earlier for nanostructures like silicon 

M OSFETs [19], carbon-nanotubes with side contacts [16], graphene sheets [18], and other 

side-bonded contacts and structures lying flat on the substrate. In the present chapter, we 

focus on the size-dependent effect o f  current crowding in end-bonded contacts for the ZnO 

N W  structure. We examine the effect for two geometry configurations demonstrated in in the 

previous chapter (see Figure 4.6.3).

In Figure 4.6.2 and Figure 4.7.2, the spatial current density distribution at the bias o f  

-1  V and + 1 V presents the regions o f  the highest current density.
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Figure 4.7.1. Current density distribution at ~1 Vfor ZnO NWs with A u particle (RAu=15 nm) 

deposited on the top o f the ZnO NW (a) Rzno=Rc=l 2 nm and (b) RZnO=60 nm, Rc=12 nm.
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When the N W  is reverse biased at -1  V (Figure 4.7.1 (a) and (b)), the largest current 

density for the smaller N W  radius o f  Rzno= 12 nm is at least 5 orders o f  magnitude smaller 

than the largest current density for a radius o f  Rzno= 30 nm. Local current crowding outside o f  

the contact will occur when the area o f  the Au-ZnO interface is much smaller than the N W  

cross-sectional area. This area which is supplying electrons has electrons concentrated at the
c 2

edge region to maintain a constant flux. The area o f  high density current ( -1 0  A/cnT ) will 

not contribute to the current transport through the contact due to a large potential barrier in 

the depletion region as seen in Figure 4.6.2 (c) and (d). The current density at the metal- 

semiconductor interface will remain as low as -1 0 ~ 4 A/cm 2 (Figure 4.4.4(b)) but the current
 2 9

density at the contact edge will be increased by 2 orders o f  magnitude to - 1 0  A/citT due to 

the large tunnelling into the area o f  the local barrier thinning (see Chapter 4.4).
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Figure 4.7.2 The spatial distribution o f  the current density fo r  1 V (a, b) indicates a 

size-dependent current crowding effect. Au particle (Rau=15 nm) deposited on the top o f  the 

ZnO N W  (a) Rzno =Rc=l  2 nm and (b) RznO=60 nm, Rc=12 nm.
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At the forward bias o f +1 V, a completely different electrical behaviour is observed 

(Figure 4.7.2 (a) and (b)). At voltages higher than 0.6 V, the thermionic emission overtakes 

the tunnelling current (see Chapter 4.4). This results in a more uniform distribution o f the 

current through the NW structure and under the interface. The current density plot under the 

interface in Figure 4.7.2 (b) indicates a relatively higher current at the edge o f the metal- 

semiconductor contacts where a high electric field is present but the current density remains 

at the same order o f magnitude through the rest o f  the interface. This effect is confirmed in 

Figure 4.4.4 (a).

The schematic plot o f the current vectors indicates the direction o f current at -1  V 

(Figure 4.7.3 (b)) and +1 V (Figure 4.7.3 (d)). The highest current density area is indicated 

with longer vectors. When a forward bias is applied, the highest current density will be 

passing directly through the contact (Figure 4.7.3 (c)). It can be seen from the plot that, in 

reverse bias, the current is crowding at ~3 nm away from the contact in the direction towards 

the contact but only a very small current is passing directly through the contacts (Figure 4.7.3 

(a)). This current crowding effect may lead to Joule heating which is known to result in 

heating or cooling near the contact area depending on the direction o f the current flow [18]. It 

has been demonstrated that a large NW surface-to-volume ratio will lead to heat lost due to 

Joule heating o f the semiconductor [20]. This self-heating effect will be discussed in the next 

chapter.

For the small nanowire radius o f  12 nm at -1  V bias, the total current vectors are shown 

in Figure 4.7.4 (c). It indicates that the dominant component o f  the current is z- component. 

The current density is reduced near-metal semiconductor interface where the depletion width 

and barrier width for the tunnelling current is the highest. This is observed in Figure 4.7.4 (c) 

as well showing that the current density at the interface is at least 3 orders o f magnitude 

smaller than through the nanowire body. There is also x- and y-  component o f the current 

present. Figure 4.7.4(b) demonstrates the current density component in jc- direction. A 

complex radial component o f  the current is present in a contacted ZnO nano wire with a 

radius o f  Rzno= 12 nm, indicating a vortex behaviour [42] o f the current in x- and ^-directions 

at the forward and reverse biases. However, this radial current component will not
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significantly contribute to the total current density due to its low density as shown in Figure 

4.7.4 (d).
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Figure 4.7.3 Current density distribution directly under the contact interface at ~1 V on 

a logarithmic scale (a) and at +1 V on a linear scale (c). The direction o f  the current flow  

near the contact is marked using vectors for —1 V (b) and +1 V (d). The regions o f  a larger 

current density are marked with the longer arrows.
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4.8 Heating effects

Thermal behaviour o f metal contacts to nanostructures due to current flow has been 

investigated earlier in side-bonded nanostructures like graphene-metal contacts [18], ZnO, 

GaN [17] and SiGe [20] nanowires (NWs). These nanoscale contacts induce a current 

crowding effect [18] due to parasitic resistance at the edge o f the downscaled contacts. 

Current crowding is known to result in a local temperature rise at the metal-semiconductor 

interface which can lead to device failure [18].

The thermal properties o f  the nanostructures during the current flow were studied 

earlier in the literature. Leonard et al. [20] reported the temperature distribution through the
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Figure 4.8.1 Simulated I-V characteristics (solid line) and a highest lattice temperature 

(dashed line) o f the metal-semiconductor interface at the forward bias.
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NW  body with a fixed contact temperature. LeBlanc et al. [17] studied the heat generation 

along ZnO NW s and near electrical contacts using a ID model for the Ohmic contacts for the 

side-bonded ZnO NWs.

In the present chapter, we study the effect o f  current crowding on the temperature 

profile along the nanowire and around the metal contact for the end-bonded ZnO NW s with 

Schottky contacts. A full 3D geometry, as seen in Chapters 4.6 and 4.7, is employed in order 

to accurately model the geometry at the nanoscale. This 3D model considers carrier transport 

o f electrons and holes self-consistently coupled with thermal flow [21] The carrier transport 

includes both thermionic emission and tunnelling current with static dipole effects and a field 

dependent barrier lowering due to image force [43]. Since the transport parameters depend on 

the lattice temperature, lattice heating and cooling due to the carrier generation and 

recombination, Joule heating and Peltier-Thomson effects are also included [21]. Finally, the 

thermal modelling considers temperature dependent thermal conductivity model [22] and heat 

capacity model [23] for ZnO (see Chapter 2).

The simulation results in Figure 4.8.1 demonstrate the current decrease at around 5 V 

due to a high generation o f Joule heating near the contact. As the device temperature is 

further increased with the increase in voltage until ~8.5 V, the Au contact melting 

temperature is reached which can lead to device failure. At the forward bias, the effect is very 

similar for both nano wire geometries.

At the reverse bias (Figure 4.8.2), the difference in the Au-ZnO nanowire geometry will 

results in difference in the reverse bias current magnitude (see Chapter 4.7). For the 60 nm 

diameter nanowire, the current degradation due to the Joule heat will be observed at — 7 V  

(Figure 4.8.2(a)). The self-heating o f 60 nm structure will result in the device failure due to 

the Au contact melting at — 8 V (Figure 4.8.2(b)). The smaller nanowire structure with 

30 nm diameter will have a current breakdown at the much higher voltages. The observed 

effect demonstrates that in case o f the nanoscale devices a change to the nanostructure 

geometry will substantially affect the electrical behaviour and reliability o f  the device without 

any change to the material parameters o f the system.
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The heating o f the Au-ZnO nano wire structure will be highest directly at the metal- 

semiconductor interface. Figure 4.8.3(a) and (c) demonstrate the current vectors at the 

forward and reverse bias o f 8 V and - 8  V, respectively. The current vectors indicate the 

increased current density at the edge o f  the contact. Due to the local narrowing o f  the 

potential barrier at the comers o f the Au contact (see Chapter 4.4), the current transport will 

mostly occur through the narrow region at the contact edge and will result in the local current 

crowding effect. The increased current density will lead to the high Joule heat generation at 

the edge o f the contact as shown in Figure 4.8.3 (b) and (d). It should be noted that, at the 

reverse bias o f - 8  V, the high current density area does not contribute to the carrier transport 

through the metal-semiconductor interface as seen in Figure 4.8.3 (d). This will lead to the 

Joule heat generation at two locations: directly at the metal-semiconductor interface and a 

1 nm away from the interface. As a result the spatial distribution o f temperature at a bias o f  

- 8  V in Figure 4.8.4 indicates higher local temperature around the NW contact up to nearly 

1330 K.
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Figure 4.8.4 Spatial distribution o f  the lattice temperature at - 8  V (only the top o f  ~40 nm o f

the nanowire length is shown).

4.9 Influence of surface charge on transport in ZnO  

nanowires

4.9.1 Surface charge in hydrothermally grown nanowires

To study the influence o f  surface charge on the electrical properties o f  ZnO NW , 

hydrothermally grown nanowires were used to experimentally confirm simulation results 

[24], [25]. These nanowires do not have metal contact deposited on the surface like in ZnO 

N W  structure studied earlier in Chapter 4.1-4.7, instead metal probe placed on the nanowire 

surface is used to perform current measurements. The measured current before and after the 

argon ion bombardment in Figure 4.9.2 (a) and (b) demonstrate the reduction in the current 

magnitude and deviation from the linear shape o f  the I-V characteristic. This is due to the 

change in the surface properties o f  the nanowire. The m easurem ent results demonstrate a
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1 o 2
surface defect density o f  states o f  10 cm which has a non-uniform nature decreasing to the 

centre o f  the nanowire.

In the simulation, a full 3D approximation o f  the tip-nanowire structure was used as 

shown in Figure 4.9.1. The nanowire has a 330 nm diameter; the tip structure is approximated 

using cylindrical shape with a 5 nm diameter. /7-type doping with a concentration o f
1 7  ^ • • • •  • •

N d=10 cm ' is assumed in the nanowire with a barrier height o f  cpe=0.27 eV at the metal- 

nanowire interface.

Figure 4.9.2 (d) shows I-V simulation results without interface charge. When the
1 T  J

surface charge o f  10 cm is introduced in to the simulations (Figure 4.9.2(c)), the increase 

in the current magnitude and a change in the current slope to linear is observed.

Figure 4.9.3 (a) shows a charge distribution at the nanowire surface. It can be seen that 

the charge density at the metal-nanowire surface is not changing. When there is no charge at 

the nanowire surface, the bands at the nanowire-air interface will be flat as seen in Figure 

4.9.3 (b). Presence o f  the positive charge at the surface (negative charge at the nanowire) will 

result in the band bending down and electron accumulation near the surface. The 

accumulation layer will be increased with the increase in the charge as expected. At the

Figure 4.9.1. 3D approximation o f  the ZnO nanowire with a diameter o f 330 nm (yellow) and a 

metal tip with a diameter o f  5 nm (blue) at the top and at the bottom o f  the structure.
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metal-nanowire interface, the barrier height will be determined by the work functions o f the 

metal and nanowire and will be always fixed to 0.27 eV. The charge accumulation at the 

surface will alter the barrier width as seen in Figure 4.9.3 (c). The accumulation will act as 

the additional doping at the surface introducing the screening effect. As described in 

Chapter 4.4, the main current transport mechanism takes place through the narrow region at 

the contact edge. The additional barrier narrowing at the metal-nanowire interface will 

introduce the increase in tunnelling due to the exponential dependence o f  the tunnelling 

current on the barrier width. This will result in the change o f  the current magnitude and a 

slope o f the I-V characteristic as seen in Figure 4.9.2.
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4.9.2 Surface charge in end-bonded Au-ZnO nanowires

Vapour phase catalytic ZnO NWs are known to adsorb ions o f O2 and OH-  hydroxyls 

on the surface when exposed to the air. Surface states will be induced on the surface o f  the 

NWs acting as electron traps and pushing electrons away from the surface to the bulk [33].

To investigate the effect o f surface charge in end-bonded Au-ZnO nanowires the NW  

structure with 73 nm diameter and Au particle o f 47 nm diameter as seen in Chapter 4.4 is 

used. A range o f charge densities were included on the nanowire side: negative charge 

deficiency (acceptor type states), for negative charge abundance (donor type states), no 

charge was included on the top nanowire face.

Deficiency o f the surface charge leads to a depletion layer while abundance leads to
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Figure 4.9.4 (a) The simulated I-V for ZnO NW diameter 73 nm, Au diameter 47 nm. The 

occupied acceptor type surface charge density is: no charge (blue <>), 1 *1010 cm 2 (purple A),
1 j  j  7 / 7  7 7 7

1x10 cm' (green *), 5x10 cm (orange a), 1x10 cm (redo), (b) Schematic representation o f  

the acceptor type surface charge on the NW side surface.
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surface accumulation. Accumulation on the nanowire side faces has minimal effect over the 

case o f  no charge. Therefore, we examine only the depletion region formed at the nanowire 

side surface. Figure 4.9.4(a) shows the nanowire transport behaviour becomes more 

Schottky-like as the surface acceptor states (Figure 4.9.4(b))increase in density leading to a 

greater depletion o f the nanowire side faces creating a narrow conduction channel. This effect 

is effectively the same as reducing the nanowire diameter as seen in Chapter 4.6. As a result 

the rectification ratio will be increased with the increase o f  NW diameter making contact 

more Schottky. As the acceptor charge density increases the size o f the conducting channel is 

decreased resulting in decreased current magnitude at the forward bias.

The nanowire top face around the Au contact is the sloping with {1101} faces that
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Figure 4.9.5 (a) The simulated I-Vfor ZnO NW diameter 73 nm, Au diameter 47 nm. 

Original I-V characteristic without surface charge is marked with blue (9). All other simulation 

data was created for the occupied acceptor type charge density o f 1*1012 cm'2 at the side o f the 

NW surface. Occupied donor type surface charge density on the top face used in the simulation: 

no top charge (orange a), 1 x1012 cm'2 (red o), and 1 *1013 cm'2 (green x). (b) Schematic 

representation o f the acceptor type surface charge on the NW side surface and donor type 

surface charge density on the top face o f the NW.



134 Results o f  modelling o f  ZnO nanowires

extend from the nanowire {0110} side facets to join the Au contact interface and (0001) 

nano wire top facet. The defective nature o f the sloping faces {1101} results in increased deep 

donor oxygen vacancies and shallow donor zinc interstitials which are expected to act in 

accumulation, although it is difficult to accurately estimate an accumulation density [45]. To 

study this further we examine accumulation charge densities (donor type states) on the 

nanowire top face around the contact with simulations.

Figure 4.9.5(b) schematically shows that in simulation charge accumulation is 

introduced around the contact edge at the top surface o f  the NW. On the side surface o f  the 

NW charge depletion is present. Charge accumulation will result in more pronounced edge 

tunnelling effect (as seen in Chapter 4.9.1) even when a depletion region is present on the 

nanowire side. Current-voltage characteristics in Figure 4.9.5(a) demonstrate a transition 

between Schottky to linear Ohmic behaviour.
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4.10 Summary

The simulations o f  nano-contacts in this work extend beyond previous works 

necessitating a full 3D finite-element analysis and allowing quantifiable results to be 

calculated and complex geometries to be taken into account. The results here provide a 

fundamental understanding o f  the transport processes surrounding metal contacts to 

nanowires and also a practical method to fabricate Schottky or Ohmic contacts to nanowires 

where the interface is abrupt.

The work has demonstrated that the experimental transition between Ohmic and 

Schottky behaviour is related to the ratio o f the interface area to the nanowire cross-sectional 

area using full 3D simulations. A clear transition occurs at a contact-to-nanowire area ratio o f  

0.6 that is heavily influenced by geometric effects and enhanced tunnelling at the contact 

periphery. When the contact-to-nanowire area ratio is smaller than 0.6 then the contact size 

will influence the electrical properties o f the structure with the Schottky contacts forming for 

the bigger contact diameters and Ohmic contacts forming for the smaller contact diameters. 

The work in this Chapter has been included into publication: Alex M. Lord, Thierry G. 

Maffeis, Olga Kryvchenkova, Richard J. Cobley, Karol Kalna, Despoina M. Kepaptsoglou, 

Quentin M. Ramasse, Alex S. Walton, Michael B. Ward, Jurgen Koble, Steve P. Wilks, 

“Controlling the electrical transport properties o f  nanocontacts to nanowires” submitted to 

Nano Letters.

Simulation predicts that due to the complex geometry o f the end-bonded ZnO NWs the 

effect o f  the current crowding will happen around the metal contact at the edge o f the contact. 

For the Schottky contacts, the increase in the NW diameter will lead to a parasitic effect o f  

current crowding at reverse bias occurring at the edge o f the contact away from the contact 

interface. Current crowding at forward bias will occur directly at the metal-semiconductor 

interface. This explains experimentally observed phenomena o f  metal contact melting in side- 

bonded Ohmic contacts o f ZnO nanowires [17]. The work was presented on ANM 2014, 

Fifth International Conference on Advanced Nanomaterials, July 2014, Aveiro, Portugal, and 

was accepted for the publication in the Materials Today Proceedings entitled O. 

Kryvchenkova, K. Kalna, R. J. Cobley, “The Current Crowding Effect in ZnO Nanowires
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with an End-Bonded Metal Contact”. It was also presented on the UK Semiconductors 2G14, 

July 2014, Sheffield UK entitled O. Kryvchenkova, K. Kalna, R. J. Cobley, “Modelling 

Current Crowding Effect in the ZnO Nanowires“.

The full 3D model was implemented for the thermal calculation o f the free-standing 

ZnO nanowires with the end bonded contacts. The current crowding will lead to a significant 

heat generation with a rise o f  the local temperature up to 1337 K which will result in device 

failure due to the contact melting. This identifies the need to engineer the contacts to reduce 

the barrier narrowing near the contact edges or use a method to allow generated heat to flow 

away from the interface more efficiently. This work was presented at ASDAM  2014, The 

Tenth International Conference on Advanced Semiconductor Devices and Microsystems, 

October, 2014, Smolenice, Slovakia, and submitted for the publication in the conference 

proceeding entitled Kryvchenkova, O.; Kalna, K.; Cobley, R.J., "Modelling heating effects 

due to current crowding in ZnO nanowires with end-bonded metal contacts," Advanced 

Semiconductor Devices & M icrosystems (ASDAM), 2014 10th International Conference on , 

vol., no., pp. 1,4, 20-22 Oct. 2014

The combination o f the measurement and simulation results demonstrates that the 

electrical properties o f the ZnO nanowires with a metal contact can be manipulated by the 

surface charge. The positive charge density at the surface (donor type states) will result in 

electron accumulation in the nanowire near the surface. This will lead to the reduction in the 

barrier width at the metal-nanowire interface and increase in the tunnelling current making 

the contact Ohmic. The negative charge at the NW surface (acceptor type states) w ill result in 

the narrower conduction channel making the contact Schottky. This work is in the preparation 

for publication.

The work in this chapter was also presented as an invited talk in National Physical 

Laboratory, NPL, London, October 2014.
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Chapter 5 Results of semiconductor device 

modelling

5.1 ln20 3 thin film transistor in the presence of scanning probe

Electrostatic force microscopy (EFM) and scanning Kelvin probe force microscopy 

(KPFM) are contactless methods which allow investigation o f electronic properties o f a 

material surface like work function o f  metals, band bending o f  semiconductors, and electrical 

polarization o f surface due to presence o f surface charge [1]. The obtained surface potential 

provides a map o f local energy distributions and surface states [2]. Potential mapping of 

transistors under operation using EFM or KPFM can be performed with a resolution o f  about 

100 nm [1]. The detailed explanation o f EFM measurement procedure is given in 

Chapter 1.1.

Measurements o f  the surface potential on transistors under operation can be intricate 

because during device operation charges are continuously created and transported across the 

device [2]. Measurement result will include not only intrinsic electrical properties o f the 

sample but also measurement artefacts due to presence o f a tip: surface potential signal is 

averaged over a finite area o f  the sample surface and includes interaction with the tip. A 

measurement result was found to depend on the tip-sample distance and AC potential applied 

on the tip [2], tip apex radius [3], cone-pyramid lateral surface o f the tip and cantilever shape

[4].

The force contribution o f  the tip apex at the various tip-sample separations was found 

to be the smallest and this contribution will further reduce as the tip-sample separation is 

increased. Cantilever shape has the largest force contribution which increases as the tip- 

sample separation is increased [4]. When measurements o f  the surface potential between



142 Results o f semiconductor device modelling

source and drain side o f the transistor is performed, the measured potential was also found to 

depend on the tip orientation (parallel or orthogonal) relative to the channel [1]. As a result, 

the following measurement artefacts are typically found in the measured surface potential: (i) 

potential is not constant over metal electrode areas, (ii) the channel edge cannot be 

determined precisely because the highest curvature in the surface potential is not 

corresponding to the channel edge, (iii) full bias applied to the drain electrode is not visible 

[1], [5]-[8].

Uncoupled non-simultaneous simulations o f KPFM surface potential profile obtained 

after scanning a semiconductor heterostructure was performed by Robin et al. [10] using 

Silvaco Atlas [9]. No tip structure was included in the simulation. The potential profiles were 

obtained as a convolution o f  simulated surface potential and measured tip transfer function 

[10], [11].

Simulations o f  EFM and KPFM surface potential profile with full tip and cantilever 

structure were demonstrated in the literature. In these simulations, the tip induced band 

banding was considered negligible [2], [6]. When investigating semiconductor surfaces, the 

electrostatic force between the tip and sample is nullified by setting the contact potential 

difference (V cp d ) between the tip and sample to be equal to the applied constant voltage 

(V d c )  on the tip. Also, when V cp d =  V d c  tip induced band bending at the sample surface is 

zero [6]. This approach to nullify the electrostatic force between the tip and sample was 

shown to be valid for metal-metal infinite plates. However, it is not always valid for metal- 

semiconductor material system because when experiment is performed with n-type silicon 

tips or on semiconductor sample surface the charges are distributed inside the semiconductor 

over a distance near the surface and a charge distribution will depend on the tip-sample 

separation [1], [12].

In this Chapter, an electrostatic tip apex interaction with the In2C>3 thin film transistor 

(TFT) under operation is considered using a combination o f experimental technique and 

simulation in Silvaco Atlas 2D [9] for a different doping level o f In203  channel layer.
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Figure 5.1.1 (a) Simulated In20 3 TFT structure with channel length L=40 gm. Only 100 gm o f  

the structure length is shown, (b) Simulated tip structure with mesh for the tip radius o f  100 nm.

30 nm tip-sample separation is used in the simulation.



144 Results o f semiconductor device modelling

5.1.1 Geometry approximation of ln20 3 TFT and scanning tip

In2C>3 TFT is a bottom gate transistor. The main principle o f  In2C>3 TFT operation is 

described in Chapter 1. Experimental data was obtained for the number o f  transistors with 

channel length L o f  30-40 pm and device width W o f 200-1500 pm. Figure 5.1.1(a) shows 

In2C>3 TFT structure used in the simulation. The structure was created in Silvaco Atlas [9]. 

For the simulation L=40 pm channel length was selected. The aluminium source and drain 

electrodes are 70 pm in length parallel to the channel as found in the fabricated In2(>3 TFTs. 

In the simulation the following geometry used: 50 nm n-type In203  conducting channel layer 

with doping concentration o f 3 .5xlO17 cm'3, 100 nm SiC>2 insulator layer and 300 nm n-type
1R ‘J

Si substrate layer with doping concentration o f  10 cm' followed by the bottom A1 gate.

To investigate the surface potential in the presence o f a scanning tip apex, a Si tip with 

100 nm radius was created using DevEdit toolbox and placed 30 nm above the transistor 

surface (Figure 5.1.1(b)). The tip was then moved above the surface with a changing step size 

with more positions considered at the drain side as seen in Figure 5.1.1(a). In total 33 

different tip positions above the transistor structure are used in simulation but each simulation 

will be performed for a single tip position. To implement the tip movement 33 different 

DevEdit structures are needed. To make the process o f  creating an Atlas input script 

automated, a Matlab script (see Appendix) was created to vary the tip position and create a 

set o f DevEdit coordinates for 33 structures. The tip radius, the tip-sample separation, the tip 

position and applied biases are used as free input parameters in the Matlab script.

Other material parameters used in the simulation are: In20 3  permittivity o f 8.9 [13], 

bandgap o f 4 eV, affinity o f 4.45 eV [14], field-effect mobility 2 cm2/V><s, electron effective 

mass 0.3mo (mo been the electron mass in vacuum) [15]. The tip work function was 

considered to be 4.6 eV. An Ohmic contact between A1 source, drain and gate electrodes is 

assumed which are calibrated to give a negative threshold voltage o f -3 .8  V as seen in 

measurements.



5.1 In203 thin film transistor in the presence o f  scanning probe 145

8

7 —  3.5e17 cm-3
-  2.5e17 cm-3 
- -  1.5e17 cm-36

><D U

C<1)+j
o  3Q_

2

1

0
5 0 5 10 15 20 25 30 35 40 45

Distance (um)

Figure 5.1.2 Simulated surface potential profiles at VGS=0 V, Vos = 7 V for different doping 

concentrations of ln20$ channel layer: 1.5 xlO17 cm3, 2.5 x l0 }7 cm'3 and 3.5 x10! 7 cm'3.

5.1.2 Effect of doping concentration in ln20 3 channel layer

The intrinsic doping level in solution-processed metal oxides like In203  is estimated to 

be in the range o f 2x10 17 to 6 x l0 17 cm'3.

Simulation results in Figure 5.1.2 shows surface potential profiles with no tip structure 

included in the simulation when doping concentration o f In2C>3 layer changes from 

1 .5 x l0 17 cm'3 to 3 .5 x l0 17 cm'3. For the higher doping levels, the profile is closer to linear. It 

was suggested earlier in the literature that for organic field-effect transistors a lower surface 

potential through the channel indicates lower mobility o f the device [16].

Figure 5.1.3 demonstrates measured EFM surface potential profiles with grounded 

source and gate and varying drain bias (V ds) between 0 and 8 V  for h^Ch (double-spin) TFT 

width W = 200 pm and 1 ^ 0 3  (single-spin) TFT width W = 1500 pm, both transistors have 

channel length L = 40 pm. It can be seen from the profiles that a double-spin TFT in Figure 

5.1.3(a) has a higher potential at the centre o f the channel in comparison to single-spin TFT in 

Figure 5.1.3(b) indicating a higher mobility in double-spin device suggested earlier from the 

simulation. Indeed, there is 2 orders o f  magnitude difference in the drain current o f two
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devices in the saturation regime: the double-spin TFT has a drain current o f 3.35* 10'8 A/pm  

(Figure 5.1.3(c)) and the single-spin TFT has a drain current o f  5.66x 10'10 A/pm (Figure 

5.1.3(d)) at VGS =10 V and VDS =16 V.
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Figure 5.1.3 In (a) and (b) EFM profiles with grounded source and gate, varying VDS between 0 

and 8V. Profiles obtained for (a) ln20 3 (double-spin) TFT, device width W = 200 pm and channel 

length L = 40 pm. Profiles obtainedfor (b) ln20 3 (single-spin) TFT, device width W = 1500 pm and 

channel length L = 40 pm. (c) Output characteristic o f the device in (a), (d) Output characteristic o f

the device in (b).
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Figure 5.1.4 (a) Schematic o f the simulated tip movement, 33 tip positions are used in total. 

Surface potential acquired at one point under tip apex for each tip position ((i), (ii) and (Hi)) and used 

to reconstruct surface potential profile in (h). (b) Simulated surface potential for grounded source, 

gate and tip and varying drain bias from 0.1 V to 7 V. Profiles without tip (dashed line) and with tip 

o f 100 nm radius and tip-sample separation o f  30 nm (solid line).

Both experimental and simulation data demonstrate that in the In2 0 3  TFTs a surface 

potential through the length o f  the channel is increasing with the increasing doping.

Additional experimental data for L = 40 pm and L = 30 pm can be found in Appendix.

5.1.3 Surface potential in the presence of a tip apex

Potential profiles in Figure 5.1.3(a) and (b) have the following typical measurement 

artefacts: (i) potential is not constant over metal electrode areas and it is varying by ~0.3 V,

(ii) for both devices with L=40 pm the channel edge cannot be determined precisely and the 

channel length appears as 35.85 pm in the double-spin device in Figure 5.1.3(a) and 28.6 pm 

in the single-spin device in Figure 5.1.3(b), indicating an error o f  28.5% and 10.3%, 

respectively, in the measurement o f  the channel length. In the double-spin device with higher
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mobility this error is lower due to a larger screening effect o f dopants in the channel, (iii) Full 

bias applied to the drain electrode is not visible at the high drain biases: in Figure 5.1.3(a) a 

potential scan above the drain electrode when V d s  =8 V is applied measure the applied V d s  

bias o f 7.57-7.79 V.

All listed above errors are related to the known effects o f  the cantilever broadening 

discussed earlier in this chapter. The non-linearity at the drain side is present for both TFTs 

resulting in flattening o f the potential at the drain side on the profiles in Figure 5.1.3(a) and 

(b). We relate this effect to the electrostatic interaction with the tip apex which will be 

demonstrated in this chapter.

To simulate the effect o f  the tip apex on the resulting potential profile, an In2C>3 TFT
17 3with n-type channel layer and a doping concentration o f 3.5x10 cm' is used. When the tip 

structure is included in the simulation tip is considered at 33 different tip positions and every 

simulation is performed for a single selected tip position as explained earlier (Figure 

5.1.1(a)). For each tip position, the value o f the potential will be extracted at the point directly

Vg=0 V 
Vg=5 V

75 85 95 105
Distance (um)

115

Vg=ov

V=2.0

V =6.0

v=7.0

V=10.0

20 30
Position um

a b
Figure 5.1.5 (a) Simulated surface potential for grounded source and tip and varying drain bias 

from 0.1 V to 7 V at gate biases ofOV (solid line) and 5 V (dashed line) is applied, (b) Measured 

surface potential for the double-spin ln2Oi TFT with grounded source, drain bias o f 8 V  and varying

gate bias from 0 V to 10 V.
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under the tip apex at a surface o f the transistor for a range o f applied drain, gate and tip biases 

(Figure 5.1.4(a)). Then, using Matlab script (see Appendix), values o f surface potential from 

33 tip positions is combined and a potential profile is reconstructed for each setup o f the 

applied biases as shown in Figure 5.1.4(b).

Figure 5.1.4(b) shows simulated surface potential for a grounded source, gate and tip 

and varying drain bias from 0.1 V to 7 V without a tip and with a tip o f  a radius o f  100 nm 

and a tip-sample separation o f  30 nm. Just like in the measurement data in Figure 5.1.3(a) and 

(b), a deviation from the linear profile and flattening o f  the potential near a drain electrode is 

seen in the simulation. This effect is more pronounced at the higher drain biases. The 

flattening occurs due to the tip induced band banding which becomes higher at the drain side 

when the drain electrode is biased. The effect o f  the tip is depleting electrons from the 

transistor surface. Resulting measured potential is reduced by electrostatic interaction with a 

tip creating a flat region on the potential scan near the drain electrode. The simulation 

demonstrates that this error will be higher for lower doping levels due to the lower dopant 

screening effect.
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Figure 5.1.6 Simulated surface potential for grounded source and gate when drain bias o f 7 V  

is appliedfor the different applied tip biases: - 2  V, 0 V and 2 V. Simulated surface profile without tip

is also given for the reference.
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Figure 5.1.5(a) shows simulated surface potential for grounded source and tip and 

varying drain bias from 0.1 V to 7 V at gate biases o f  0 V and 5 V. A high gate bias will 

increase a surface potential through the channel making the profile more linear. This is due to 

the increase in carrier concentration and mobility in the channel when a high gate bias is 

applied. Similar effect is observed in measured potential profiles in Figure 5.1.5(b) performed 

for the double-spin TFT with grounded source, drain bias o f  8 V and varying gate bias 

from 0 V to 10 V. Measured profiles become more linear and potential at the centre o f  the 

channel increases as a gate bias is increased.

Simulation in Figure 5.1.5(a) also demonstrates that a higher carrier concentration in the 

channel at the applied Vgs =5 V will also lead to a higher screening effect from the tip which 

results in a smaller deformation in the potential profile at the drain side. An error due to the 

electrostatic interaction with a tip apex can be reduced by applying gate bias which will 

increase the screening effect o f  electrons in the channel.

It is known that an amount o f  the tip induced band bending can be manipulated by the 

applied tip bias [6]. As seen in Figure 5.1.6, an applied tip bias o f - 2  V can further increase an 

error due to the potential profile flattening at the drain side and a tip bias o f 2 V can reduce an

error by reducing an electrostatic influence o f the tip on the sample. A tip bias has to be

further increased beyond 2 V to fully compensate the tip apex influence on the measured

surface potential profiles in TFTs.
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5.2 ZnO/GZO polarization heterostructure field effect 

transistor

Field effect transistors with the operation based on the effect o f the creation o f two- 

dimensional electron gas (2DEG) [19] which provides a higher carrier mobility in the channel 

due to reduced scattering were demonstrated earlier in the literature for the materials like 

GaAs/AlGaAs and GaN/AlGaN [19], [20]. A carrier confinement in ZnO/MgxZni_xO material 

system is similar to GaAs/AlGaAs and GaN/AlGaN material systems making 

ZnO/MgxZni-xO a good candidate for transistor applications [19], [20]. The first structure o f
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Figure 5.2.1. Geometry approximation, doping concentrations and contact work functions of 

simulated GaZnO/ZnO polarization HFET.
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n-channel depletion mode ZnO/Mgo.3Zno.70  heterostructure field effect transistor (HFET) 

was suggested by Koike et al. in 2005 [21]. More details on the operation o f  

ZnO/MgojZno 7O HFET are provided in Chapter 1.2.

Ga doped ZnO (GZO) thin films have polycrystalline nature [22]. GZO is an n-type 

material, and its doping concentration observed in the experiment varies from 5x 1 0 19 to

1.96x10 cm [17], [22], [23]. An increase in the carrier concentration in highly doped n- 

type materials due to Burstein-Moss effect will block the lowest states in the conduction band 

by excess electrons and enlarge the bandgap [22], [24]. Indeed, the band gap o f  GZO depends 

on the doping concentration and it was measured to be 3.16-4.9 eV [17], [22], [23]. In 

addition, there is a stress and strain in the as deposited GZO thin films due to a lattice 

disorder caused by defects and presence o f Ga atoms [22]. That is why ZnO/GZO

heterostructure will have a band gap shift and a formation o f  2DEG at the ZnO/GZO

interface is possible [25] due to polarization difference. This makes this material system a 

good candidate for HFET application [26]. In this chapter, a theoretical structure o f  

ZnO/GZO HFET is suggested using 2D modelling in Silvaco Atlas [9].

The investigated ZnO polarisation field effect transistor (FET) is based on a 

GaZnO/ZnO heterostructure assuming a metal gate and the source/drain in direct contact with 

a channel at the heterointerface. Device structure is outlined in Figure 5.2.1. The simulated 

device has a gate length o f 1.5 pm assuming a 0.5 pm source and drain width deposited in 

parallel to the 8 pm long channel. In the simulated HFET, the channel is formed between a

7 nm GZO layer and a 0.293 pm n-type ZnO layer. A 1.2 pm p-type ZnO layer is used as an

insulating substrate. To increase the reliability o f the device, a 0.5 pm thickness nitride layer 

is added at the surface o f  the device to passivate it. This layer will prevent possible chemical 

reactions between the GZO layer and air in order to reduce a degradation o f the device. A 

ground contact is placed at the bottom o f the device. The source and drain contacts have a 

work function o f 3.67 eV and are assumed to form an Ohmic contact with GZO layer; gate 

has a work function o f  5.2 eV.
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Figure 5.2.2 (a) Simulated electron concentration distribution at grounded source and applied 

gate bias o f  VGS =5 V and drain bias o f  VDS =3 V. The highest electron concentration is at the 

ZnO/GZO interface where the channel is formed, (b) Band profde and electron concentration at 

V(;s=5 V and VDS =3 V plotted through the centre o f the structure in y  direction. Fermi level EF is

marked with a blue dashed line.
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Due to the presence o f the intrinsic defects ZnO is a naturally n-type material. The 

doping concentration o f the n-type ZnO varies from 1016 to 1021 cm'3. For the present 

simulations, we use a doping concentration o f 10 cm' [18]. We introduce a p-type ZnO 

layer with a doping concentration o f 1017 cm'3 in the structure to confine electrons in the 

channel and to prevent a leakage current. In experiments, the p-type doping concentration o f  

5 .0 x l0 16 - 7 .3 x l0 17 cm-3 was achieved in ZnO by using nitrogen-ion implantation [27]. An n-
1 0___ _o

type GZO layer has a doping concentration o f 10 cm . However, a very high doping 

concentration in the GZO layer will lead to the formation o f the additional channel inside the 

layer and make a device operation impossible. Other material parameters used for the GZO 

layer are: a bandgap o f 4.5 eV, a mobility 13.51 cm2/Vxs, [22], [28] an affinity o f  4.5 eV. No 

traps or surface charge affecting the surface potential are considered in this work.

Polarization charge will be calculated at the ZnO/GZO interface as a sum of  

spontaneous and piezoelectric polarizations. The detailed explanation o f the polarization 

model and polarization material parameters used in the simulation for ZnO is given in 

Chapter 2.5.

The result o f  calculation o f  the polarization charges observed at the ZnO/GZO 

interfaces is given in Table 5.2.1.

Table 5.2.1. Calculated polarization sheet charge per cm2 at the ZnO/GZO interface.

Region Spontaneous Piezoelectric Total

GZO -1 .0 9 8 x l0 l3cm"2 -1 .120*1013 cm-2 -2 .2 1 9 x 1013 cm-2

ZnO -2.846* 1013 cm-2 0 cm-2 -2 .8 4 6 x l0 13 cm '2

Figure 5.2.2 (a) shows simulated spatial distribution o f electron concentration when a 

gate bias o f  Vgs=5 V and a drain bias o f  V d s= 3 V are applied. The highest electron 

concentration is found at the ZnO/GZO interface where the channel is formed. This is due to 

the formation o f a potential well at the ZnO/GZO interface as seen on a band diagram in 

Figure 5.2.2 (b) at a gate bias o f V gs= 5 V and a drain bias o f  V d s= 3 V. In the formed
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potential well, electrons cannot move in the direction o f the potential well but can freely 

move in two other directions. The highest electron concentration in the structure is in the
j  i   <3

channel (Figure 5 .2 .2  (b)) and reaches 10 cm .

Transfer characteristic on a linear scale o f the simulated device is shown in Figure 5 .2 .3

(a) at V d s = 0 .5  V , 1.5 V  and 3 V . The simulated ZnO/GZO is a depletion mode device like 

most o f ZnO/Mgo 4Zno 60 HFET [48]. Device has a negative threshold voltage o f  

Vth= - 0 .2 5  V  which means that a negative gate bias needs to be applied to switch the device 

off. Sub-threshold behaviour o f the device is shown in Figure 5 .2 .3  (b) using a transfer 

characteristics at indicated drain biases on a logarithmic scale. The leakage current is as small 

as 10_I3-1CF14 A. Output characteristic on a linear scale is plotted in Figure 5 .2 .3  (c) for V g s =  

0 V , 2  V , 4 V  and 6 V .
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Figure 5.2.3 (a) Transfer characteristics at drain biases o f 0.5 V, 1.5 Vand 3 Von a linear 
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logarithmic scale for the drain current to see the sub-threshold behaviour, (c) Output characteristics 
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5.3 Sum m ary

Electrostatic tip apex interaction with the In203  thin film transistor (TFT) under 

operation was studied using a combination o f experimental technique and simulation by 

Silvaco Atlas 2D [9] for a different doping concentration o f In2C>3 channel layer. A higher 

doping concentration o f In2(>3 channel layer leads to a linear surface potential profile and a 

higher surface potential through the channel indicates higher mobility o f  the device.

Experimental potential profiles o f the In203  TFT obtained using EFM method contain 

the following typical measurement artefacts due to the cantilever broadening: (i) potential is 

not constant over metal electrode areas and it is varying by ~0.3 V, (ii) for both devices with 

L=40 pm, the channel edge cannot be determined precisely and the channel length appears as 

35.85 pm in the double-spin device and as 28.6 pm in the single-spin device indicating an 

error o f  28.5% and 10.3%, respectively, in the measurement o f  channel length. In the double

spin device, a higher surface potential indicates a higher doping concentration and as the 

result a smaller error o f  10.3% due to a higher screening effect o f dopants in the channel, (iii) 

Full bias applied to the drain electrode is not visible on the EFM surface potential profile: a 

potential scan above the drain electrode when V d s  = 8 V is applied measure the applied V ds 

bias o f 7.57-7.79 V.

Experimental potential profiles o f the In2C>3 TFT contain non-linearity at the drain side 

resulting in flattening o f the potential. Simulation demonstrates that this non-linearity is 

related to the effect o f the tip apex and it is more pronounced at the higher drain biases. The 

effect o f  the tip apex is depleting electrons from the transistor surface. Resulting measured 

potential is reduced by the electrostatic interaction with the tip apex creating a flat region on 

the potential scan near the drain electrode. The simulation demonstrates that this error will be 

higher for lower doping levels due to the lower dopant screening effect.

The simulation also demonstrates that when a gate bias o f  5 V is applied a carrier 

concentration in the In203  channel increases which leads to the higher screening effect from 

the tip. When the gate bias is applied, the deformation o f the potential profile at the drain side 

is smaller.
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An applied tip bias o f - 2  V can further increase an error due to electrostatic interaction 

with the tip apex at the drain side but the tip bias o f 2 V can reduce an error by reducing an 

electrostatic influence o f the tip on the sample. A tip bias has to be further increased beyond 

2 V to fully compensate the tip apex influence on the measured surface potential profiles in 

In2C>3 TFTs. The work on In203  TFT in the presence o f scanning probe is currently under 

preparation for the publication.

A theoretical structure o f  the ZnO/GZO HFET is suggested using 2D modelling by 

Silvaco Atlas [9]. Total polarization charge at the ZnO/GZO were calculated to be 

—2.219x 10 13 cm-2 in the GZO layer and -2 .846x10 13 cm-2 in the ZnO layer. A band offset 

and a presence o f the polarization charge at the ZnO/GZO interface results in a formation o f  

the potential well and the creation o f  a 2DEG at the ZnO/GZO interface. That is why the 

highest electron concentration is at the ZnO/GZO interface where the channel is formed and 

2DEG prevents leakage to the gate or ground electrodes. Simulated device has a negative 

threshold voltage o f  -0 .25  V which means the device would be normally on (a depletion 

mode transistor). An n-type GZO layer with a doping concentration o f 1019 cm-3 was used in 

the simulation. At higher doping concentrations o f the GZO layer, an additional channel 

appears which would make the device operation impossible.
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Chapter 6 Summary

Chapter 3 demonstrates an STM and STS simulation methodology based on the Price 

and Radcliffe tunnelling formalism using image force correction which was developed using 

Silvaco ATLAS. Arbitrary tip shapes can be used in the simulations including a tip with the 

oxide, as seen in Chapter 3.2. A 2D finite element model was applied to several 

semiconductor materials to verify its accuracy, with the origin o f features in the spectra 

examined in detail. The simulations confirmed that, at larger doping concentrations, the 

screening effect o f the semiconductor reduces the tip-induced band bending.

Chapter 3.3 demonstrates that for «-type GaAs, the modelled spectra band gap deviates 

from the bulk value by only 0.1 eV or 0.7 % which is within the experimental systematic 

error. At low «-type doping concentrations, the screening is weak, and tip-induced band 

bending causes the apparent band gap to either increase or reduce depending on the 

tunnelling mechanism. These phenomena well justify the need for STM and STS modelling 

to accompany the experimental measurements. Our 2D model, which uses a self-consistent 

Poisson-Schrodinger solution, predicts a larger tip-induced band bending when a sample is in 

depletion (resulting in a shift o f the band onset in the spectra) than that from Semitip 6 2D  

model, and the same amount o f tip-induced band bending when a full 3D model is used 

(Chapter 3.4). As demonstrated in Chapter 3.5 and Chapter 3.7 the simulation model used in 

this thesis is in a good agreement with a model based on the Bardeen tunnelling approach and 

experimental data.

Chapter 3.6 demonstrates that the image force correction gives a conduction band 

tunnelling current increase o f three orders o f magnitude and a valence band tunnelling current 

increase o f six orders when compared to the ’artificial' uniform increase o f three orders o f  

magnitude used in the literature. However, the magnitude change is different for different tip 

shapes and sample materials.
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Chapter 3.8 demonstrates that the presence o f the oxide on the shank o f the probe alters 

the contact behaviour in contact and non-contact measurements. For contact measurements 

the presence o f oxide on the shank o f the probe alters the contact behaviour with the resulting 

current transport dependent on the voltage polarity. When injecting electrons into the 

sample, the presence o f shank oxide causes a widening o f the Schottky barrier compared to 

removing electrons from the sample. This results in non-equal resistivity in and out for the 

sample when carrying out contact measurements when the shank oxide is present. This also 

means that the increased size o f the Schottky barrier increases the resistance o f  the contact 

when the probe oxide is present. Both o f  these results confirm that the assumption that 

contact type is irrelevant in 4pp measurements is violated. When in the non-contact regime, 

the main shifts in the spectra occur when the sample is in depletion, where a tip-induced 

quantum dot is created in the sample below the probe. The shape and size o f  the induced 

quantum dot is altered by the electrostatic field from the tip, which is governed by the oxide 

coating.

Finally, our STM model developed in Chapter 3 within a commercial simulation tool 

offers several advantages over other STM models. These advantages include i) the ability to 

use any realistic tip shape, ii) to include full device transport models for SPM on devices, and 

iii) to model spectra from SPM on powered devices. The model can also account for surface 

states, and can readily be extended to other SPM techniques.

Chapter 4 explains a geometry and size dependant electrical behaviour o f ZnO 

nanowires with Au particle deposited on top or when the metal probe is forming a contact 

with the sample.

Experimental transition between Ohmic and Schottky behaviour (Chapter 4.2) was 

related to the ratio o f  the interface area to the nanowire cross-sectional area using full 3D 

simulations with a complex approximation o f  the metal contact geometry (Chapter 4.3). The 

main current transport in the structure is due to the enhanced tunnelling at the contact 

periphery (Chapter 4.4). When the contact-to-nanowire area ratio is smaller than 0.6 then the 

contact size will influence the electrical properties o f the structure with the Schottky contacts 

forming for the bigger contact diameters and Ohmic contacts forming for the smaller contact
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diameters (Chapter 4.5). When the contact-to-nanowire area ratio is larger than 0.6 the 

nanowire diameter will influence the electrical properties o f the structure with the Schottky 

contacts forming nanowire diameter is approaching contact diameter (Chapter 4.6).

Simulations in Chapter 4.7 predict that due to the complex geometry o f the end-bonded 

ZnO NW s the current crowding will occur around the metal contact at the edge o f the 

contact. For Schottky contacts, the increase in the NW  diameter will lead to a parasitic effect 

o f  current crowding at reverse bias occurring at the edge o f  the contact away from the contact 

interface. Current crowding at forward bias will occur directly at the metal-semiconductor 

interface. This explains the experimental phenomena observed by others o f metal contact 

melting in side-bonded Ohmic contacts o f ZnO nanowires (Ref. [17] in Chapter 4).

The full 3D model was implemented in Chapter 4.8 for the thermal calculation o f the 

free-standing ZnO nanowires with the end bonded contacts. The thermal modelling considers 

temperature dependent thermal conductivity model and heat capacity model for ZnO because 

simulations in Cheater 2.4 show that using a constant value o f the thermal conductivity and 

thermal capacity will result in underestimation o f the lattice temperature. Current crowding 

will lead to significant heat generation with a rise o f  the local temperature up to 1337 K 

which predicts device failure due to the contact melting. This identifies the need to engineer 

the contacts to reduce the barrier narrowing near the contact edges or use a method to allow 

generated heat to flow away from the interface more efficiently.

In Chapter 4.9 the combination o f the measurement and simulation results demonstrates 

that the electrical properties o f the ZnO nanowires with a metal contact can be manipulated 

by the surface charge. The positive charge density at the surface (donor type states) will result 

in electron accumulation in the nanowire near the surface. This will lead to the reduction in 

the barrier width at the metal-nanowire interface and increase in the tunnelling current 

making the contact Ohmic. The negative charge at the NW surface (acceptor type states) will 

result in the narrower conduction channel making the contact Schottky.

In Chapter 5 results o f semiconductor device modelling using Silvaco Atlas are 

presented including EFM probe interaction with the device under operation.
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Electrostatic tip apex interaction with the In203  thin film transistor (TFT) under 

operation was studied using a combination o f experimental technique and simulation by 

Silvaco Atlas 2D in Chapter 5.1 for a different doping concentration o f In203  channel layer. 

A higher doping concentration o f In203  channel layer leads to a linear surface potential profile 

and a higher surface potential through the channel indicates higher mobility o f  the device. 

Experimental potential profiles o f  the E12O3 TFT contain non-linearity at the drain side 

resulting in flattening o f the potential. Simulation demonstrates that this non-linearity is 

related to the effect o f the tip apex and it is more pronounced at the higher drain biases. The 

effect o f the tip apex is depleting electrons from the transistor surface. Resulting measured 

potential is reduced by the electrostatic interaction with the tip apex creating a flat region on 

the potential scan near the drain electrode. The simulation demonstrates that this error will be 

higher for lower doping levels due to the lower dopant screening effect. The simulation also 

demonstrates that when the gate bias is applied, the deformation o f  the potential profile at the 

drain side is smaller.

An applied tip bias o f - 2  V can further increase an error due to electrostatic interaction 

with the tip apex at the drain side but the tip bias o f 2 V can reduce an error by reducing an 

electrostatic influence o f the tip on the sample.

In Chapter 5.2 a theoretical structure o f the ZnO/GZO HFET is suggested using 2D  

modelling by Silvaco Atlas. A band offset and a presence o f  the polarization charge at the 

ZnO/GZO interface results in a formation o f the potential well and the creation o f a 2DEG at 

the ZnO/GZO interface. Total polarization charge at the ZnO/GZO were calculated to be 

-2 .219x10 ’3 cm-2 in the GZO layer and -2 .8 4 6 x l0 13 cm-2 in the ZnO layer. That is why the 

highest electron concentration is at the ZnO/GZO interface where the channel is formed and 

2DEG prevents leakage to the gate or ground electrodes. Simulated device has a negative 

threshold voltage o f  -0 .25  V which means the device would be normally on (a depletion
1 Q_______O

mode transistor). An n-type GZO layer with a doping concentration o f  10 cm was used in 

the simulation because at higher doping concentrations o f the GZO layer an additional 

channel appears which makes the device operation impossible.
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Appendix A. Geometry approximation of 

Zno/Au structures

Matlab script allows automated creation o f  the Silvaco Atlas script with geometry 

approximation o f  free standing ZnO nanowires with Au particle deposited on top. Nanowire 

length, radius o f Au particle, number o f layer used to approximate Au particle shape, radius 

o f  the ZnO-Au interface are used as an input parameters.

clc
% 4 Wire depth;
W _Depth=0.9;

% HGo/d radius:
G _R =0.015/2;
% if Nanowire radius:
N _R = 0 .073/2;
% Number o f  slices:
N um =5;
% HSlice length relative to radius 0.2R 20%R:
S_L=1/Num;
% 4 Radius o f  a g a te  bottom structure:
B_R=0.2*G _R ;
% U ndoped surfce layer:
Surf_L=0.002;
%Number o f  Bottom layers:
B ottom =6; 
disp('go atlas')
disp(sprintf('ii  =  =  =  =  =  THIS IS A %2. I f  N M  STRUCTURE, bottom layer % 2 . 0 f p e r c e n t ^ G _ R * 2 * l e 3 ,

B_R *10 0 /G R ))  
d isp fm esh  cylindrical three, d )
% %  lU D JU SM E SH  
disp  ( ’r. mesh I 0.0 spacing  -  0 .001 )  
d is p f  ngate reg ion :) 
fo r  l= (N u m -l): - l: l

l= sqrt(G _R A2-(I*S_L)A2 *G_RA2); 
disp(sprintf('r.mesh 1= % 6.4 f spacing=0.001', I)) 

end  
%%

disp('if bottom gate layer, x%  sm aller:)  
fo r  i =Bottom: -1:1

disp(sprintf('r.mesh  /  =  % 6.4f spacing= 0.0 0 1 G_R-i*B_R/Bottom)) 
end

%%
d isp ('4 lin doped  ZnO region:)
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disp(sprintf('r.mesh 1= % 6.4f spacing=0.01', N_R-Surf_L)) 
dispfUZnO region:)

disp(sprintf('r.mesh I- % 6.4f spacing 0.0001', N  R))
%%
dispf'U - )
disp('a.m 1=0 sp a c= 4 5 )  
disp fa . m 1=360 spac= 4 5 )
% %  Z COORDINA TE MESH 
d is p f  U= = = =  = = ') 
d is p f  UZnO region:)  
z l= - W  Depth;
disp(sprintffz.m esh l= % 6 .4 f spacing=0.0001', z l ) )  
z2 a = - W _D epth+0.001; 
z2 b = W  D epth /10;
disp(sprintf('z.mesh /= % t6.4fspacing=% 6.4f, z2a, z2b)) 
disp(sprintf('z.mesh l=-O.OI spacing 0 .002)) 
disp(sprintf('z.mesh l= -% 6 .4 f spacing=O.OOOV, S u rf L)) 
disp(sprintf('z.mesh 1=0 spacing=O.OOI))
%%
dispfU G ate region 10% sm a ller .)  
fo r  i= l:  Bottom

disp(sprintf('z. mesh l=%)6.4f  spacing 0 .0 0 1 i*S_L*G_R/Bottom)) 
end
%,%
dispfU G ate region:)  

fo r  i=2:Num  
a=i*S_L*G_R;
disp(sprintf('z. mesh I -% 6.4fspacin g= 0.002 \a)) 

end
%%,
d isp fU = = =  = = = = )  
dispfU Region definition:')
disp(sprintf('region num= 1 material=ZnO  z.m in = -% 6.4 f z.m ax=0.0  r.m ax=% 6.4f, W Depth, N  R)) 

d is p f  4 Vacuuni'air region around gate 10%> smaller:')
%>%

fo r  i=0: Bottom -1
disp(sprintj('region num = % l.O f m aterial=air z .m in = % 6.4 f z .m ax= % 6.4f r.m in=% 6.4f, i+2,
i*S_L*G_R/Bottom, (i+1)*S_L*GJRJBottom, G R-(Bottom-i) *B_R/Bottom))
end
%%
d is p f  # Vacuum'air region around g a te :') 

fo r  p=2:N um
zm in = (p -l) *S_L *G_R; 
zm ax =p *S_L *G_R;
rm in=sqrt(G _R A2-((p -l) *S_L)A2 *G_RA2);
disp(sprintf('region num =%g m aterial=air z .m in = % 6.4f z.m ax= % 6.4f r .m in = % 6 .4 f,i+ p + l, zmin, zmax, 

rmin)) 
end
%%

disp(' U Gate region 10% smaller:') 
fo r  i=0:B ottom -l
disp(sprintf('electrode nam e=gate m ateria l=gold  z .m in = % 6.4 f z.m ax= % 6.4f r.m ax=% 6.4f,
i*S_L*G_R/Bottom, (i+1)*S_L*G_R/Bottom, G_R-(Bottom-i)*B_R/Bottom))
end
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%%
d is p f  it Gate region:)  
fo r  m=2:Num

zm in= (m -l) *S_L *G_R; 
zm ax=m  *S_L *G_R;
rm ax=sqrt(G _RA2-((m -1 )  *S_L)A2 *G_RA2);
disp(sprintf('electrode name = gate m ateria l= go!dz.m in = % 6.4f z  max ~% 6.4f r.m ax=% 6.4f, zmin, zmax, 

rmax)) 
end
z. m ax=- W _D epth+0.0003;
disp(sprin tffelectrode nam e=groundm aterial=goldz.m in=-% 6.4fz.m ax=% >6.4f r.m ax=% 6.4f, W Depth, z.max 
,N R ) )
%%

disp(sprintffD O PIN G  uniform N. TYPE CON C I.D el8 R .M 4X = % 6.4fz .m in = -% 6.4 f z.max-- % 6.4f,N _R - 
S u rf L, W Depth, -Surf L ))
disp(sprintffD O PIN G  uniform N.TYPE CONC l.O elS  R MAX % 6.4fz.m in % 6.4fz.m ax %>6.4f, G R-B R, - 
S u rf L, 0))
d isp (sprin tff m ethod newton h icgst)



Appendix B. Geometry approximation of ln20 3 

TFT in presence of scanning probe

Matlab script allows automatically creates Silvaco Atlas script with I112O3 TFT structure 
and scanning probe approximation. To reconstruct the surface potential profile a multiple tip 
positions needed. Script uses tip position coordinates, tip radius, tip-sample separation, 
number o f points for circular tip approximation and applied electrode biases as an input 
parameters.

clc
points=6; 
alpha=180/points;
Radius=0.08;
Separat=0.075;
Y_cent=-(Radius+Separ at);
Vg=l;
Tip Move=[110; 100; 99.9; 99.5; 99; 98; 97; 96; 95; 93; 91; 89; 87; 84; 81; 78; 75; 72; 70; 65]; 
p=length(Tip_Move);
% = = = = = = = = = = = = = = = = = = = = = = = = =

%>% Creating the Atlas code 
for tm=l:p

X_cent=Tip_Move(tm); 
for i = 1:points+1

XY(i,:) = [(X_cent-(Radius *cosd(alpha *(i-l)))), (Y_cent+ (Radius *sind(alpha *(i-l))))];
X(i) =[(X_cent-(Radius *cosd(alpha *(i-l))))];

Y(i) = [(Y_cent+ (Radius *sind(alpha *(i-l))))]; 
end

%X=X'
%Y=Y'
%XY

display(sprintfCgo DevEdit \n work.areaxl^Oyl=0 x2=0y2=0 \n region reg=l mat^Air 
color=0xfefefepattern=OxlO \\))

% Writing a string with coordinates for the Air region 
display (sprintfC \t polygon="170, %6.4f 170,0 0,0 0, % 6.4f', Ycent, Ycent)) 

for i=l:points+l
display( sprintf('\b %6.4f %6.4f,X(i), Y(i))) 

end
display (sprintf('\h "))

display (sprintfC constr. mesh regional default \n \n region reg=2 name=emitter maWSilicon 
elec.id=4 work.func=0 color=0xfecb00 pattern^0x4 \\))

% Writing a string with coordinates of Tip 
display(sprintf(' \tpolygon= "))
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for i=l:points+l
display(  sprintf('\b %6.4f %6.4f,X(i), Y(i))) 

end
display (sprintf(’\b'”)) 

typeftransistor. in)
%Different gate biases: 

for k=Vg
display (sprintfC method gummel newton itlim=20 trap max1rap=6 vsatmod.inc=0.01 

carriers=1 elect \n output con. band val.band ))
display (sprintfC solve vgate=%6.2f\n log outf=%g_yg=%6.2flog', k, X cent, k))
display(sprintfCprobe name=tip-P x=% dy~0 POTENTIAL',X_cent))
type(',IdVd.in)
display (sprintf('log off\n'))
end

end

%o%) Process the result: Select Vg?
Vg=l;

for y = l : lengthfTipJAove)
X_cent=Tip_Move(y);
LogFileID=sprintf('%g_vg:=%g.log',X_cent, Vg); %introducing result file names to mat lab 
A = importdata(LogFileID,' ',21); 
a ̂ length(A. data); 

for k = l:a
Mat(k,:)=[A.data(k, 4), A.data(k, 7), A.data(k, 13), X  cent]; 

end
OutFilelD=sprintf('%)g_vg=%gjjrocessed. csv \X_cent, Vg); %In this file values are: Vd Vg 

Potential X(um) 
save (OutFilelD, 'Mat', ’-ascii)
%type (OutFilelD) 

end
%unites all data in one file for processing with excel later:
FinalMat=[] %introduce initial empty matrix to which all results will be added one by one 

for j= l :  lengthfTipMove)
X_cent=Tip_Move(j);

LogFileID2 =sprintf('%g_vg=%gj>rocessed. csv ',X_cent, Vg)
B = dlmread(LogFileID2);
FinalMat=[FinalMat;B];

end
FinalMatSort=sortrows(FinalMat, 1) 
saveCFinalResult.txt', 'FinalMatSort', -ascii)
%ploting results: select Vd? 3 7 is number of gate biases used 
hold off 
for p= l:37

PlotPotFinal-ff;
PlotPot=[];
Vd=FinalMat(p, 1) 

for t=l:length(FinalMatSort) 
if  FinalMatSort(t, l)==Vd  

PlotPot(t,:) =FinalMatSort(t, :);
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end
end
PlotPot
PlotPotFinal=sortrows(PlotPot, 4)

plot(PlotPotFinal(:,4), PlotPotFinalf,3), '-’,[65,70],[1.37, 1.37], ’r-*’, [100,105],[9.37527, 
9.37527], '?■-*’) 
xlabel('Distance (urn)) 
y  label ('Potential)  
xlim([65 105]) 
ylim([1.3710]) 

hold on 
end 
%%

Content of ’transistor.in*

constr.mesh region=2 default
region reg=3 mat=ZnO color=0xcb9326pattern=0x2 \ 

polygon="0,0 70,0 100,0 1 70,0 1 70,0.05 0,0.05” 
impurity id= l region.id=3 imp=Donors \

peak.value=3.5e+17 ref.value=1000000000000 comb.func=Multiply 
constr.mesh region^3 default 
region reg=4 mat=Si02 color=Oxfe pattern=0x2 \ 

polygon="0,0.05 1 70,0.05 1 70,0.15 0,0.15” 
constr.mesh region=4 default
region reg=5 mat=Silicon color=0xfecb00 pattern=0x4 \ 

polygon="0,0.15 170,0.15 170,0.45 0,0.45” 
impurity id= l region.id=5 imp=Donors \

peak.value=le+18 ref.value=1000000000000 comb.func^Multiply 
constr.mesh region^5 default
region reg=6 name=source mat=Aluminum elec.id=l work.func=0 color=0xfec7c7pattern=0x7 \ 

line=”70,0 0,0” 
constr.mesh region=6 default
region reg=7 name=drain mat=Aluminum elec.id=2 work.func=0 color=0xfec7c7pattern=0x7 \ 

line="170,0 100,0” 
constr.mesh region=7 default
region reg=8 name=gate mat=Aluminum elec.id=3 work.fmc=0 color=0xfec7c7pattern=0x7 \ 

line="170,0.45 0,0.45” 
constr.mesh region=8 default 
# Set Meshing Parameters 
base.mesh height=0.02 width=7
bound.cond Iapply max.slope=100 max.ratio=300 rnd.unit=0.0001 line.straightening^ 1 align.points 
when=automatic 
imp.refine min.spacing=0.02
constr.mesh max.angle=90 max.ratio=300 max.height=1000 \ 

max.width=1000 min.height=0.0001 min.width=0.0001 
constr.mesh type ̂ Semiconductor default 
constr.mesh type=Insulator default 
constr.mesh type=Metal default 
constr.mesh type=Other default
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constr.mesh regional default 
constr.mesh region=2 default 
constr.mesh region=3 default 
constr.mesh region=4 default 
constr.mesh region=5 default 
constr.mesh region=6 default 
constr.mesh region=7 default 
constr.mesh region=8 default
constr.mesh id=l x l= 6 9 y l= 0  x2=101 y2=0.05 default max.height=0.002 max.width=l 
constr.mesh id=2 xl=69yl= -0 .03  x2=101 y2=0 default max.height=0.002 max.width=l 
Mesh Mode=MeshBuild 
base, mesh height=0.02 width=7
bound.cond lapply max.slope=100 max.ratio=300 rnd.unit=0.0001 line.straightening^ 1 align.Points 
when=automatic
# = = = = = = = = = = = = = = = = = = =

go atlas
material mat erial=ZnO permittivity=8.9 semiconduc eg300=3.6 affinity=3.3 
contact name=emitter workfun=4.6 
#contact name=source workfun-4 
#contact name=drain workfun=4 
model print 
save outf=structure.str 
model fldmob srh 
#
# SECTION 4: Id- Vd calculation

Content of ‘IdVd.in’

solve vdrain=0.05 
solve vdrain=0.10 
solve vdrain=0.125 
solve vdrain=0.15 
solve vdrain=0.20 
solve vdrain=0.30
#
method newton trap itlim=35 maxtrap=6 carriers=l elect 
solve vdrain=0.50 vstep=0.25 name=drain vfinal=8



Appendix C. Results of ln20 3 TFT 

measurements

Summary of electrical characteristics for ln20 3 transistors

W/L M-sat

Cm2/V.S
vth
Volt

Von
Volt

lon/Ioff

200pm/40pm  
Double spin

0.845±0.11 -0.20V -4.45V 105

1000pm/30 pm 
Double spin

1.143±0.13 -6.65V -8.2V 104

1000pm/20 pm 
Double spin

1.25±0.081 -15.8V > -19V 10°

1000 pm/3 0pm 
Single spin

0.24±0.069 -0.5V -1.85V 10 5

1000 pm /20 pm  
Single spin

0.215±0.07 -4.5V -5.9 V \&

1500 pm /40 pm  
Single spin

0.153±0.09 9.3V 8.6V 10*

C-l Sample 1: ln20 3 double-spin TFT
Device has a width of W = 200 pm and a channel length of L = 40 pm. 
Output and transfer characteristics:
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Figure 5.4.1: (a) Output characteristic at Vg=l, 2, ....10Vwith step IV. (b) Transfer 
characteristics in saturation regime Vd=10V and sweeping gate bias between 0 and 16V. 

V,= -0.20V, Von= -4.45V, psat= 0.845±0.11 Cm2/ V s l J l off =105

Potential profiles as a function of source-drain voltage (source & gate grounded):
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Figure 5.4.2: (a) EFM profile with grounded source and gate, varying V& between 0 and 8V. 
The lower measured potential in the channel between electrodes is the contact potential difference 

between ln20 3 and Al. (b) The same profile after subtraction o f the Vd, = 0 profile to correct for the 
CPD. There is a slight discontinuity at the electrode, (c) The AFM image o f the electrodes and

channel.

Potential profiles as a function of source-drain voltage at fixed gate voltage (+5V).
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Figure 5.4.3: As for figure 2 with a fixed gate bias ofVg = +5 V. For low bias the potential is 
approximately linear. For V& in the range 2-5 V, approaching saturation, the potential profile shows 
curvature consistent with the carrier concentration decreasing gradually along the channel. For V& 

> 6V, the profile close to the drain electrode is linear, consistent with a depletion region.

Potential profiles as a function of gate bias at fixed drain voltage (Yds = +8V)
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Figure 5.4.4: Effect o f gate voltage for fixed Vd=8V. In the saturated regime, most o f the 
potential is dropped across the depleted region as expected. In the linear regime, the profile is 
roughly symmetric as expected for a relatively uniform conducting channel. In the intermediate 

region, there is curvature as the channel becomes more resistive on approaching the drain electrode.

For this first sample, the behaviour is well-behaved and agrees broadly with what we would 
expect. However, it is the only sample out of seven samples we tested that behaves exactly this way. 
There is one other sample that shows some resemblance. Sample 2 is broadly typical of the remaining 
samples.

C-2 Sample 2: ln20 3 single-spin
Device has the following geometry: W = 1000 pm; L = 30 pm.
This sample is typical of several. We have selected it for direct comparison with sample 1 since 

the threshold values are similar, easing comparison.
Output and transfer characteristics:

10-*

a
1
2

Vsd vott

Figure 5.4.5: (a) Output characteristic at Vg=l, 2, ....lOVwith step IV. (b) Transfer 
characteristics in saturation regime Vd=10Vand sweeping gate bias between 0 and 16V.

Potential profiles as a function of source-drain voltage (source & gate grounded):
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Figure 5.4.6: (a) EFMprofile with grounded source and gate, varying Vds between 0 and 8 V. 
(b) The same profile after subtraction o f  the Vds =  0 profile to correct fo r  the CPD. (Corresponds 

directly to Figure 2). Dashed lines indicate drain electrode position.

Potential profiles as a function o f source-drain voltage at fixed gate voltage (+5V).

Vg = 0V
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Figure 5.4.7: As fo r  figure 5 with a fixed  gate bias o fV g = +5 V (corresponds directly to Figure 
3). For low bias the potential is approximately linear.

In both Figure 5.4.6 and Figure 5.4.7, a less steep gradient o f  the potential (i.e. apparently lower 
electric field) in the depletion region close to the drain electrode is observed. This appears to be 
inconsistent with the highly resistive nature o f  this region.



5.4 Bibliography C-5

10
V g=0V
V =2
V =4
V =6
V =8
V = 1 0

>

20
Position um

35 40

Figure 5.4.8: Effect o f gate voltage for fixed Vd=9V.

C-3 Sample 3: ln20 3 double-spin
Device has the following geometry: W = 1000 pm; L = 30 pm.
This sample has identical dimensions to Sample 2, except that it has been spin-coated twice. It 

is included as comparison of the effect of the second spin-coating.
Output and transfer characteristics:

Saturation region
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Figure 5.4.9: (a) Output characteristic at Vg=l, 2, ....lOVwith step IV. (b) Transfer 
characteristics in saturation regime Vd=10Vand sweeping gate bias between 0 and 16V.

The threshold voltage has shifted to a more negative bias with the second spin-coating. 
Potential profiles as a function of source-drain voltage (source & gate grounded):



C-6

>

I
>

Position um

Figure 5.4.10: we observe this flat profile close to the electrode in the saturated regime.
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Figure 5.4.11: Potential profiles as a function of gate bias at fixed drain voltage (Vjs = +5V)
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Figure 5.4.12: Potential profiles as a function of gate bias at fixed drain voltage (Vds = +8V). 
There is very weak dependence on the gate bias, with no change in the region close to the drain

electrode.

C-4 Sample 4: ln20 3 single-spin
Device geometry: W = 1500 |im; L = 40 pm
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Figure 5.4.13: The output and transfer characteristic o f Indium oxide transistor with dimension 
W/L= 1500pm/40p.m. The output characteristic shows curves at Vg= 1, 2, 3,5,6,7,8,9,10V. The 

transfer characteristic is at saturation regime with Vd=10V. The output curves show some reduction 
of drain currents at high Vg and Vd. Saturation mobility psat= 0.153±0.081 Cm2/V.s, Vo=8.6V, Vt= 

9.3 V and Ion/  I0ff = 104 Note large threshold voltage

Potential profiles as a function of source-drain voltage (source & gate grounded):
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Figure 5.4.14: The potential profiles o f transistor as a function of drain voltage after grounding 
both source and gate. The figure on right shows profiles after subtraction ofVd=0 V from all other

profiles.

Potential profiles as a function of gate bias at fixed drain voltage
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Figure 5.4.15: First graph indicates profiles ofVd=Vg=0 V in addition to profiles for 
Vd=9.5 V and Vg= 6 to 26 V with step 4 V. The second one presents profiles after subtraction o f

Vg=Vd=0 V.


