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Abstract

This thesis is set out as follows: In Chapter 1, the definition of flutter is given, together 
with a brief history and a short summary of some of the well know methods used in 
modeling and formulating the components of the equations of motion that have been 
employed previously. Chapter 2 includes the formulation of the numerical equations of 
motion for different types of structure and the numerical techniques used to solve these 
system of equations to obtain the structural characteristic eigensolution. Chapter 3 
demonstrates the linear methods used in the panel method to compute the components of 
aerodynamic forces in the equations of motion, and their application in the solution of 
aeroelastic and aeroservoelastic problems. Chapter 4 shows the formulation of the 
nonlinear aerodynamic force component and its integration with the aeroelastic and 
aeroservoelastic multidiscipline. The formulation of the sensor and control systems and 
their integration are also detailed in this chapter. Chapter 5 gives the example test cases 
used for the aeroelastic and aeroservoelastic analysis. Chapter 6 is a short conclusion and 
is a summary of the study presented herein. A Matlab independent modeling of the 
aeroservoelastic integration is included in Appendix A. Appendix B and C give the 
example problem modeling data and formats.
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CHAPTER 1

A BRIEF DESCRIPTION OF AEROELASTICITY DEVELOPMENT

1.1 Definition of Aeroelasticity

The term aeroelasticty*11 is used to define phenomena that involve the interaction 

between inertial forces, aerodynamic forces and elastic forces. Aeroelasticity is 

commonly divided into static and dynamic analysis. Dynamic aeroelasticity includes 

phenomena such as flutter, gust response and limit cycle analysis while static 

aeroelasticity includes divergence, flight loads and control surface effectiveness analysis.

Static aeroelasticity includes the fundamental physics of two distinct phenomena, (1) 

'divergence' or static instability and (2) loss of aerodynamic effectiveness usually known 

as 'control surface reversal'. The particular case of an oscillation with zero frequency, in 

which the structural frame is rigid and the inertia force may be neglected, is called the 

steady-state, or static aeroelastic instability. Static aeroelasticity is an interaction between 

the fluid mechanics and solid mechanics disciplines.

A major problem occurs when small disturbances of an incidental nature induce more 

or less violent uncontrollable oscillations. This is a case of dynamic aeroelasticity termed 

'flutter' and has been known to affect, for example, airplanes and suspension bridges. 

Flutter is characterized by the interactions between aerodynamic, elastic and inertia 

forces as shown in Figure 1.1. Dynamic aeroelasticity involves external self-induced 

airloads that vary with time. Dynamic loads on the airplane structure not only produce 

translation and rotation of the structure but also tend to excite vibration of the elastic 

structure, which in turn generates new airloads. Initial excitement of the dynamic loads 

usually comes from atmospheric turbulence or gusts. Dynamic aeroelasticity is 

concerned with the physical phenomena known as 'flutter' or dynamic instability and 

dynamic response to various dynamic loads as modified by aeroelastic effects.
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IN ER TIA L FORCES 

(DYNAMICS)

AERODYNAMIC FORCES ELASTIC FORCES

(FLUID MECHANICS) (SOLID MECHANICS)

Figure 1.1 The disciplines of aeroelasticity.

Combining the vertices of the triangle in Figure 1.1 one can identify other important 

technical fields. For example,

Stability and control (flight mechanics)= dynamics (inertial forces)+ aerodynamics 

Structural vibrations= dynamics (inertial forces)+ solid mechanics (elastic forces)

1.2 Formulation of the Dynamic Equations of Motion

The theoretical model of dynamic aeroelasticity starts with the formulation of the 

theoretical dynamic model[2,3]. This model has the general form

M X +CX +KX  = Fa (1.1)

The dynamic model is represented by the left-hand side of the equation (1.1), which 

includes the inertia force ( M X ), the damping force ( C X ), and the elastic force ( K X ) 

components. The aerodynamic forces ( Fa), which are on the right hand side of the

equation, will be discussed in the next section. In the case when Fa is zero in equation

(1.1), the elastic vibration problem will be solved for the aeroelastic system and 

eigenvalues and eigenvectors will be computed from this equation. The principle of 

superposition is applied to the analysis of all linearized systems. This implies that the 

total linear deformation and angular deflection of any point is the sum of the deflections 

at the point produced by the individual forces and moments separately.
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Historically, simple formulations were developed for the deflection of a beam element 

and, gradually, these formulations were developed to provide more complicated models, 

such as a wing planform. The deformation, jc , of the beam is expressed in terms of a 

summation of a series of continuous sine and cosine functions that satisfy the boundary 

constraints and the initial conditions.

Principle o f Minimum Potential Energy: Among all possible deformation configurations 

compatible with the geometric constraints, the configuration, which satisfies the 

equations of static equilibrium, is the one that minimizes the potential energy

SUe -5 W  = S(Ug- W )  = 0 (1.2)

where 5W  is the virtual work done by the external forces and S(Je is the strain energy

resulting from a small virtual displacement of the body. This is the principle of minimum 

potential energy applied to conservative systems. This principle of minimum potential 

energy is based upon the principle of virtual displacements. The principle of virtual 

displacements, applied to deformable bodies, may be stated as follows: if a body is in 

equilibrium under the action of prescribed forces, the work (virtual work) done by these 

forces in a small additional displacement compatible with the geometric constraints 

(virtual displacement) is equal to the change in strain energy.

SUe =SW  (1.3)

d 2 xNormally, Newton’s 2nd law (F - m a -  m——) together with Hooke’s law (F  = kx) are
d t

sufficient to obtain the equations of motion of any elastic body. For a system with a large 

number of degrees of freedom, an alternative procedure based on Hamilton’s principle or 

Lagrange’s equation may be used to formulate the generalized equations of motion for an 

aeroelastic system. Energy methods are widely used in aeroelastic problems for 

determining the deformation of the structural shape under static and dynamic loads and in 

the calculation of the stiffness influence functions and coefficients.

1.2.1 Hamilton’s Principle

Hamilton’s Principle starts from Newton’s Second Law of motion1- ,̂ expressed in the 

form

^ d 2xF  -  m——■ (1.4)
d 2t

3



where F  is the force vector and x  is the displacement vector. Consider a particle with 

mass m which moves a finite small displacement of amount Sx , which is referred to as a 

small ‘virtual displacement’. We form the dot product of the forced with the 

displacement x  and integrate from t{ to t2, to give

h j 2

Urn—^  & c-F  Sx)dt = 0 (1.5)
<1 1

where the term F  Sx denotes the ‘virtual work’. The virtual work is defined as the 

work done by the actual forces being moved through the virtual displacement. Since Sx 

is zero at tl and t2, it follows that the first term of the above equation may be integrated 

by parts to give

With this result, equation (1.5) now be written as

/ / y
\ ( - ^ m S Q ~ ) - F & ) d t  = 0 (1.6)
*1
h

or \S (T  + W)dt = 0 (1.7)
'l

where ST is the ‘virtual kinetic energy’ and SfV is the ‘virtual work’. The problem has 

now been cast into a scaled energy form. Equation (1.7) is Hamilton’s Principle and it is 

equivalent to Newton’s Second Law. As this has been derived for an individual particle, 

the elastic energy is not included.

For an assembly of particles, the basic principle remains the same, with the work and 

energy expressions changed according to



SfV = Y,Fr&, (1.9)

1.2.2 Lagrange’s Equations

If the process to obtain Hamilton’s Principle is reversed, Lagrange’s1-3̂ equations may 

be obtained. The concept of generalized coordinates is introduced with this method. The 

generalized coordinates are arbitrary and independent of the other coordinates. The 

equation of motion describing the dynamical system is represented by a set of generalized 

coordinates.

The displacement of a particle, or a point in a continuous body, is given as

x = x (q 1,q 2,qi ,- - ,t)  ^  ^

thwhere q: is the i generalized coordinate. It follows that

T = T(qn q,,t) (1.11)

U' = Ue(q„qn t) (1.12)

where Ue is the potential energy of an elastic body. Noting that equation (1.7) was

derived for isolated particles, for an elastic body with internal forces connecting the 

masses, Hamilton’s Principle may be written as

[5 (T -U ')  + SWNC ]rf/ = 0 (1.13)

or

2  f dt = 0 (1.14)
dq.t dq{

where is the ith generalized force and SWNC -  y^jQiSqi and the subscript NC denotes
/

non-conservative.

Integrating (1.14) by parts, the equation may be recast in the form

d d ( T - U J  . d ( T - U ' )
+ f i Sq,dt = 0 (1.15)

dt dqt dq.x

and, since 5q{ is independent and arbitrary, it follows that the term inside the square 

brackets must be zero i.e.

5



i= l,2 ,3 ,... (1.16)

These are Lagrange’s equations.

1.2.3 Rayleigh Ritz method

Using the principle of minimum potential energy, the components of the displacement 

vector for the structure can be expressed, as functions of the generalized coordinates, as

u - u  (.x ,y ,z ,q l ,q2,...,qn)

v =v (x ,y ,z ,q ^q 2,...,qn) (1.17)

w = w (x ,y ,z ,q l,q2,...,qn)

The work done by the surface forces of an arbitrary virtual displacement may them be 

written as

5We = \(FxSu +FySv +F,&v )dS

where Q.x is the generalized force which corresponds to the generalized coordinate qr

The strain energy due to an arbitrary virtual displacement of the generalized coordinates 

may be written as

S ' .  =

and, applying these equations to the principle of minimum of potential energy of equation

(1.2), yields

This equation is the equivalent form of the principle of minimum potential energy that is

(1.19)

Since the Sq{ are independent and arbitrary, it follows that

(1.20)

6



applicable to systems in which the space can be described by a set of discretized 

generalized coordinates. When n is finite, this process is called the Rayleigh-Ritz 

approximate solution method. If n is increased without limit, it is possible for the 

equilibrium equation (1.20) to yield an exact solution.

1.3 Methods of Computing the Aerodynamic Forces

In this section, a brief summary is given of some of the well known conventional 

approximate methods that may be used to compute and linearize the aerodynamic force 

components in the aeroelastic problem [4,5]. Usually, simplifying assumptions are made 

with respect to the spatial or temporal dependence of the aerodynamic forces.

Strip Theory Approximation: Reference 3 defines this as follows “In this approximation, 

the known results for 2-dimensional flow (infinite span airfoil) are used to compute the 

aerodynamic forces on the lifting surface offinite span. The essence o f the approximation 

is to consider each spanwise station as i f  it was a portion o f an infinite span wing with 

uniform spanwise properties. From this assumption, the lift (or, generally, the chordwise 

pressure distribution) at any spanwise station depends only on the downwash at that 

station as given by two-dimensional aerodynamic theory and to be independent o f the 

downwash at any other spanwise station. ‘Strip theory ’ includes methods such as doublet 

lattice and Mach box or constant pressure method. These methods use a kernel function 

to calculate the influence coefficients in the computation o f the downwashes 

Quasi-Steady Approximation: The strip theory approximation discussed above is clear 

and its meaning is generally accepted. However, this is not the case for the quasi-steady 

approximation. The qualitative meaning is generally accepted, if the temporal memory 

effect in the aerodynamic model is ignored and it assumes the aerodynamic forces at any 

time depend only on the motion of the airfoil at the same time and are independent of the 

motion at any earlier time. The history of the motion is neglected as far as determining 

the aerodynamic forces. The piston theory aerodynamic approximation is inherently a 

quasi-steady approximation. For a high speed case (Mach number »  1), the 

aerodynamic piston theory computes, at time t, the local pressure which depends only on 

the motion at that point without dependence on the motion history of this point or any 

other point.



Slender Body or Slender (Low Aspect Ratio) Wing Approximation: Reference 3 defines 

this methodology as “Another approximation based upon spatial considerations is 

possible when the lifting surface has a low aspect ratio or one is dealing with a slender 

body. In such a case, the chordwise spatial rates o f change (derivatives) may be 

neglected compared to spanwise rates o f change and, hence, the chordwise coordinate 

effectively becomes a parameter rather than an independent coordinate. This approach 

is generally attributed to R. T. Jones. It is useful as an asymptotic check on numerical 

methods for slender bodies and low aspect ratio wings. However, it is useful for only a 

modest range o f quantitative predictions ofpractical lifting surfaces.”

1.4 Rationale for the Thesis

It is apparent, from a consideration of the history of structures in service, that the 

design of modem high speed aircraft, and slender structures, (for example, suspension 

bridges and electric power lines and even the submarine periscope) needs to consider the 

effects of elastic instability.

Their design requires a multidisciplinary approach, involving 

Structural analysis 

Aerodynamic analysis 

Control analysis

It is the purpose of this thesis to delineate and further develop the general theory for the 

aeroservoelastic discipline problem and to demonstrate the validity of the proposed 

theory by including example problems involving practical flight vehicles. Related work 

in the area of aeroelasticity and aeroservoelasticity disciplines can be found in the 

research of Batina[6], Bendiksen[7] and Farhat[8]. Farhat and company use the three-field 

formulation to represent the coupled fluid and structure. The structure is represented by a 

finite element model, while the fluid is modeled in terms of an arbitrary Lagrangian- 

Eulerian form of the Euler equations^91, to enable the modeling of the interface between 

the solid and fluid for a frequency damping aeroelastic solution of an F-16 fighter 

configuration. Batina and Farhat have undertaken extensive work on aeroelastic analysis 

using dynamic meshes. Bendiksen treated the fluid-structure as a single continuum 

dynamics problem and switched from Eulerian to Lagrangian formulations at the fluid-

8



structure boundary^10,1 Ul5\

1.5 Outline of Chapters 2—7

Chapter 2. A structural, solid mechanics numerical model using the finite element 

method is formulated for different dynamic loads. Solution techniques used in STARS 

to solve the system of equations of motion are discussed. The finite element method is 

used to discretize the structural continuum to obtain the simultaneous algebraic equations 

of equilibrium for static analysis, elastic buckling analysis, free vibration analysis of 

damped or undamped, spinning and nonspinning structures, dynamic response analysis 

and dynamic elements. Stability analysis and the determination of the dynamic response 

are vital components in ensuring the safe design of aerospace structures. The process of 

obtaining a reliable assessment of the structural natural frequency, and its associated free 

vibration mode shapes, is important in the determination of the dynamic response 

character for a structure subjected to external time dependent external forces, such as 

aerodynamic pressure. This presents an aeroelastic or aeroservoelastic type of problem. 

This chapter provides an over view of the class of structural dynamic systems that can be 

formulated and solved in the finite element STARS'-16̂ code. To be able to carry out any 

additional type of multidisciplinary analysis, it is necessary to obtain a reliable structural 

dynamic behavior and this information is contained in the natural frequencies and mode 

shapes. When the equations of motion have been formulated and assembled, this chapter 

presents some of the most useful solution processes used in STARS for these system of 

equations. These include the Sturm sequence method and the Lanczos iteration^16,171.

Chapter 3. This Chapter considers the construction of the linear model to compute the 

aerodynamics component of the equations of motion. This is the time dependent external 

excitation that has to be applied on the right hand side of the equations of motion. The 

aerodynamic forces can be determined using a linear approximation method, such as a 

panel method. Panel methods include the doublet lattice and constant pressure methods. 

The aerodynamic force can be computed using the doublet lattice method for subsonic 

cases and the central pressure method is employed for supersonic flight conditions. 

When all components of the linearized equations of motion are obtained for the

9



aeroelastic multidisciplinary problem, the stability analysis can then proceed. The K and 

PK stability solutions are most commonly used to determine the aeroelastic stability 

characteristics of a system. The methods provide the equivalent flutter speed and 

frequency for the structure at a specified flying condition. To touch upon the linear 

aeroservoelastic type of solution, the coupled aero-structure system of equations are 

converted to the Laplace (or s) domain. The generalized aerodynamic forces are curve 

fitted using Pade and least square approximations and rearranged into a state-space 

formulation. The controller, sensor and actuator systems of the structure can be 

augmented to the plant’s state-space matrices using the control module in STARS, which 

yields a aeroservoelastic state-space matrix system of equations. The plant’s state-space 

matrices can be formulated in the continuous or the discretized time domain. Automated 

steps to integrate of the control elements into the plant are built for STARS. The 

structural closed-loop stability is obtained by computing the eigenvalues of the closed 

loop structural state matrices. Frequency response is performed to obtain the necessary 

Bode plots that are also calculated from the closed loop structural state-space matrices.

Chapter 4. In this chapter, the aerodynamic components in the system of equations of 

motion are computed using a nonlinear method. The aerodynamic force is computed for 

using an Euler computational fluid dynamics code. The chapter will describe the 

nonlinear aeroelastic and nonlinear aeroservoelasticity formulations and solution 

schemes. The key ingredients for a successful nonlinear multidisciplinary analysis tool 

are a 3-D unstructured tetrahedral grid generation, with adaptive mesh capability, and an 

explicit 3-D finite element Euler computational fluid dynamics code. The 3-D Euler flow 

solver provides the aerodynamic information in place of the linear constant pressure 

panel method that was discussed previously. The structural vibration characteristics 

must be interpolated into the aerodynamics mesh for the nonlinear aeroelastic and 

nonlinear aeroservoelastic analysis. This chapter is concerned with the modification of 

the finite element based analysis STARS program to integrate the structure-aero 

(aeroelasticity) disciplines into the program’s simulation capabilities. The nonlinear 

aeroelasticity capability in STARS is based upon the implementation of the transpiration 

boundary condition method into the CFD flow solver. This approximation technique
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enables the boundary condition appropriate to the deformed structure to be applied in a 

computationally efficient manner, without changing or deforming the structure or the 

surrounding mesh.

A considerable amount of CPU time is required for a CFD based unsteady solution in 

an aeroelastic simulation analysis. This is even more pronounced when control analysis 

is coupled into the formulations. Part of the research effort has been devoted to speeding 

up the aerodynamic solution or to minimizing the CPU time required for the CFD 

analysis. To reduce the CPU time required for the aerodynamic model solution, an 

alternative unsteady analysis procedure is investigated. This procedure utilizes the 

system identificatipn technique, to obtain a mathematical modeling of the aerodynamic 

CFD system based upon a set of measured outputs and input data from the system. The 

system identification method takes a collection of time histories of input and output and 

fits the parameters of a model structure that will accurately describe the dynamic 

characteristics and behavior of the actual aerodynamic system. This fitting is undertaken 

in such a way that the error output is minimized in the process. The success of the 

system identification technique relies on the choice of the structural analysis data and the 

quality of the data used for the input signal chosen for the training process of the model. 

This choice will be discussed in this chapter.

The coupling of the control module into the aeroelastic scheme in the STARS 

program is described in Chapter 4. For a uniform sampling rate, a closed loop aeroelastic 

and aeroservoelastic state-space formulation is derived for the determination of the 

flutter stability condition, using the root locus plot or the structural response of the 

coupled aeroservoelastic analysis in STARS. Sensor mechanisms are incorporated in the 

aeroservoelastic analysis. Multisampling rates aeroservoelastic analysis capability is 

discussed in this chapter.

Chapter 5. An example is presented involving an aeroservoelastic problem of a 

cantilever wing with control surface. Summaries of all of the necessary data files are also 

provided. Results are presented for the aeroservoelastic analysis of this cantilever wing 

with a control surface. The general description of the Hyperx/X43 is shown along with 

some of the final results of the aeroelastic analysis using STARS.
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Chapter 6. Conclusion of the results obtained for the given examples problems using 

STARS aeroelastic/aeroservoelastic program is summarized in this chapter.
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CHAPTER 2

NUMERICAL TECHNIQUES FOR STRUCTURAL VIBRATION 

ANALYSIS 

2.1 Introduction

In this chapter, some of the numerical techniques used to study aeroelastic 

phenomena in the STARS computer software are introduced. These techniques largely 

relate to the solution of large-scale vibration and dynamic problems. In the following 

sections, the theoretical aspects of the structures module in the STARS code will be 

discussed in detail.

On the subject of the finite element method for free vibration analysis of structures, 

there are two distinct procedures involved in the analysis process. The first is the 

continuum discretization process using the finite element procedure, yielding 

simultaneous algebraic equations. The second is the solution process for the system of 

equations. The determination of some of the primary natural frequency and modes shapes 

plays a vital role in the evaluation of the dynamic response, and the structural stability 

characteristics, under flight conditions.

The solids module in STARS is capable of performing the analysis of static, 

stability, vibration and dynamics response problems for a wide variety engineering 

structures, including spinning and objects subjected to mechanical and thermal loading 

with general and composite material types ’•l6,18,19’20l

2.2 Structural Modeling

A general overview of structural analysis is now presented.

Static analysis

The governing equation of static analysis is of the form

Ku = P (2.1)

where

K = elastic stiffness matrix
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u = nodal displacement vector

P = mechanical load vector(s), e.g. pressure and thermal loads

This system of linear simultaneous equations is solved using standard numerical 

procedures. Back substitution is used to obtain the structural displacements.

Elastic Buckling Analysis

This analysis is performed by solving the eigenvalue problem

[K£ + ?Kg]u = 0 (2.2)

where

K £ = elastic stiffness

K G = geometric stiffness

u = nodal buckled mode shape vector

^ = buckling load multiplier

The geometric stiffness is obtained when the equation of equilibrium is written in terms 

of the deformed coordinates and may act to stiffen (add to) or weaken (subtract from) the 

elastic structural stiffness.

Free Vibration Analysis Formulation

The most general governing equation for the free vibration of a spinning structure with 

viscous and structural damping is expressed in the form

[K£(l + /*g) + K G+ K c]u + (Cc +C„)u + Mii = 0 (2.3)

where

K c = centrifugal force matrix

c . = Coriolis matrix

= viscous damping matrix

M = inertia matrix

g = structural damping parameter (g=. 02)

i = imaginary number
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From this equation, free vibration in particular cases may be represented as follows:

1. Free vibration, undamped, nonspinning system

K eu + Mii = 0 (2.4)

2. Free vibration, damped, nonspinning system

[K£(l + z'*g)]u + (C D )u + Mu = 0 (2.5)

3. Free vibration, undamped, spinning structure

[K£ + K g + K c]u + (Cc)u + Mii = 0 (2.6)

4. Free vibration, damped, spinning system

[KE{\ + i'g) + K G+ K c ]u + (Cc +C D)u + Mii = 0 (2.7)

Dynamic response analysis

The dynamic analysis is expressed by the governing differential equation

Ku + Cii + Mii = F(0 (2.8)

where F(t) is the dynamic forcing function, and K is the summation of the stiffness 

coefficients in equation (2.>7).

A homogeneous solution is obtained by setting the right hand side of the above 

equation to zero. The particular solution is then obtained by the modal superposition 

method. The structural displacements can be computed, along with the stresses for a 

system subjected to specified dynamic mechanical and thermal loading conditions.

Dynamic element analysis

The equation of motion, expressed in series form in ascending powers of natural 

frequency co, takes the form [17,21].

[K0 -G)2(M 0 - K 2)-tf>4(M2 - K 4) ---- ]q = 0 (2.9)

where q is the amplitude of the displacement u, and K0 and M0 are the static stiffness 

and mass matrices, respectively. The higher order terms K2,K 4,M 2 constitute the 

dynamic corrections. The theory of structures is based upon the fundamental assumption
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that the deflections of a deformed solid element are small and that the governing 

equilibrium equations are not affected by the deformation. If the equations of equilibrium 

are expressed in the deformation position for small displacement, the equation of 

equilibrium will have linear stiffness and mass matrices as a function of the element 

shape functions. These terms are the dynamic correction terms K 2, K 4, M 2. The 

standard vibration analysis of structures in the undeformed position usually involves the 

static matrices only and has the familiar form

[K0 -<y2M 0]q = 0 (2.10)

However, the inclusion of the higher order quadratic terms into the equation of motion is 

known to improve the root convergence. Thus equation (2.9) truncated suitably as

[A -  a 2B -  a»4C]q = 0 (2.11)

is termed the dynamic element formulation, with A = K 0, B = M 0 - K 2, and

c  = m 2 - k 4.

To effect an efficient and economical eigensolution for large scaled problems, the 

dynamic equations of motion (equation 2.11) can be rearranged as

[E-<u2I]y = 0 (2.12)

so as to exploit the matrix sparsity, where

- C  lB C_1a ' q
y  =

1 0 q_

The numerical solutions of the above eigenvalue problem are based on the classical 

Lanczos and Sturm’s sequence methods.

2.3 Numerical Solution of Eigenvalue Problems

A fast and reliable assessment of the natural frequencies and mode shapes is vital in 

the determination of the stability and dynamic response of a structure subjected to time 

dependent external excitation. The eigensolvers used in STARS are the inverse 

iteration/Sturm sequence method and the Lanczos method.
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2.3.1 Sturm Sequence Method

The Sturm sequence method is an efficient solution technique [22,23] for a certain broad 

class of eigenvalue problems that may be expressed in the form

Aq + Bq = 0 (2.13)

If q = -co2 q , substitution into the above equation produces the characteristic eigenvalue 

problem

(B-fl^A )q = 0 (2.14)

where B is regarded as symmetric, banded and positive definite; A is symmetric banded 

or diagonal; and q is the eigenvector of co. A set of nontrivial solutions to the above 

equation exists for a set of eigenvalues which can be determined from the requirement

that det(A -  /IB) = 0, where X -  -Xr .
co

Sturm’s sequence is useful for vibration analyses, defined by

det{ A -  /IB) = 0 X = CO = natural frequency
co

or structural stability analyses, defined by

det(K G - XKe) = 0 X - — fl = compressive stress factor

K G = geometrical stiffness matrix 

K E = elastic stiffness matrix 

or the analysis of vibration of stretched structures, where

det[ M -  / i(KE+ K G)] = 0 X = —!y co — natural frequency

The geometric stiffness is obtained when the equation of equilibrium is expressed in 

terms of the deformed coordinates. The Sturm sequence procedure can accurately extract 

all of the roots, or any particular root, directly from the banded A and B matrices and the 

associated mode shapes can then be computed by a simple inverse iteration technique.

The method first determines the number of roots within a specified range [Xu ,X} ]. The 

particular roots are isolated to an accuracy € by a repeated bisection technique. The
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bisection technique adopted here simultaneously determines the [Au ,A,] of all the

relevant roots at a particular step. As the bound gets smaller for the associated roots at 

each step, the root convergence rate becomes faster. The number of changes in sign of 

consecutive members of the leading principal minors f r (Ak) , starting with / 0 (A) = 1, is

equal to the number of eigenvalues of (A -  /IB) smaller than Ak in algebraic value. The 

procedure requires a modest working space for an array D of magnitude (m + l)(2m +1), 

where (2m +1) is the full bandwidth of the A and B matrices. Since A and B are 

symmetric, only the upper triangular parts of A and B are stored. It is important to note 

that the leading principal minors are obtained during the reduction procedure in which the 

(r + \)tH row is not involved until the (r)th major step. All computation work is done 

within the array D, which slides down the main diagonal after performing the reduction 

of the (m + \)th row.

Initially, the first (m +1) rows of (A -  AB) are assigned into the D array. A number of 

major operations are then carried out to reduce the subdiagonal elements of D to zero. If a 

typical element of D is denoted by d, -, then the following operations are performed for

theach value i=l ,2,...,r during any typical r major step:

1. If | drfi.il > |dy|, interchange dru j and djj

2. Replace drfijby dr+l j ( j=i,i+l,...,2m+l)
u

N  is the total number of interchanges that have occurred so far and is the 

current diagonal term of D.

The leading principal minor is given as

fr+\ C )̂ = (“  1) 1̂,1 2̂,2 3̂.3 »•••> r̂+l,r+l

for r increasing from (m +1) to (n -1) and n being the order of the associated matrices 

(A -  AB)

3. Replace the first row and move each of the next m rows up one row and to 

the left by one column.
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4. Copy the (r + \)th row from (A -  /IB) into the (m + 1)/A row of D 

d(m +1, j )  = a(r +1, j )  -  Xb(r +1, j )  ( j  = 1, • • • ,2m +1)

For i = l m ,  the following typical operations are performed:

5. If | dn-ijl > Idyl, interchange d^g and dy

d.
6. Replace d^gby dr+l j — ( j=i,i+ l,-,2m + l)

u

The leading principal minor is given as 

/ „ ia )  = ( - l ) " ^ d u d 2,2- >dr+u+1

¥i stores the values of previous first row diagonal element of D 

N is the total number of interchange occurrences so far and di,i is the 

current diagonal term of D.

The individual roots are located by the bisection method on the given upper and lower 

X ’s range

(2.15)

It is known that there are p eigenvalues existing in [Xu ,H] then

a) if p=0, repeat the procedure with Xru = H

b) if p>0 then -  H  < £ and p repeated roots occur, each equal to H in 

numerical value

c) if p>0 and \XU- H  > e , then H is the lower bound of Xi , XM, Xi+p_x

and the upper bound for Xx_{, X.t_2, • • • provided the current Xru is greater

than H. Repeating this process will give the bounds of all the isolated roots. 

Isolated roots are precisely located using the superlinear convergence technique. If the 

bounds are such that f ( X r) = de t (A -X rB) and / (Xr+l) = d e t (A -X r+lB) have opposite 

signs, then linear interpolation is carried out, giving
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f ( X r) - W „ J ( X nl) ( ■ }

where Wr+i = 2s, s ~ ^ { p - \ ) { p - 2 )  and p  is the number of times Ar has been used
(

unchanged in the process of interpolation. The new value Ar+l is the old value of Ar or 

Ar+1 such that / (Ar+2) and new f  (Ar+]) have opposite signs. The process of weighted 

interpolation is repeated between Ar+1 and Ar+1 . Once the eigenvalues are computed by 

this Sturm sequence procedure the associated eigenvectors can be computed by the 

inverse iteration scheme

(A -A rB)q'+,=B q' (2.17)

where qj.+1 tends to converge to the required eigenvector q;, where qj is assumed to be 

entirely unit elements. Improved solution efficiency can be achieved by omitting the 

partial pivoting that was described above. This procedure works reasonably well if the 

system involves positive definite matrices.

If the problem is of the form det (B -  6t)2 A) = 0 then A -  co1 and the roots obtained are 

just inverse of the other forms.

2.3.2 Lanczos Eigensolver

Originally Lanczos^24,25’261 intended his algorithm to be used as a method for extracting 

a few extreme eigenvalues, with corresponding eigenvectors, for a symmetric matrix[27l  

STARS and ANSYS[28J included this algorithm as part of their eigensolution capability. 

However, the algorithm was employed as a method for reducing a symmetric matrix to 

tridiagonal form. The Householder method is a more efficient and accurate method for 

tridiagonalizing a matrix. Since most applications only require a few eigenvalues at one 

end of the spectrum, and Lanczos algorithm has an advantage that it will isolate desired 

eigenvalues and eigenvectors at a reasonable accuracy with a low number of iterations. 

The Lanczos algorithm can be applied to the generalized large symmetric eigenproblem

(K - >lM)q = 0 where K and M are n x n  real matrices

This equation can be rewritten in the standard form
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and this equation can be rewritten in the standard form

(A -  /II) = 0 (2.18)

The Lanczos Method is a powerful algorithm that can be used to evaluate eigenvalues at 

both ends of the spectrum of the A matrix without solving a full system of equations. It 

has the great advantage to be gained by a shift and invert procedure. Using a shift factor, 

and solving for the eigenvectors of (A -  o l)-1 instead of A, yields the same eigenvalues 

and eigenvectors. The few eigenvalues, and corresponding eigenvectors, that are close to 

G  will converge rapidly. The matrices K and M must be nonsingular. To handle rigid- 

body modes, the K and M matrices in STARS must be shifted to maintain numerical 

stability of the eigenvalue problem (K -  A2M)q = 0. The shift factor G  is defined as

A2
G -

max

■ + 4.

/ 107

where K /f. and |M/(.| denote the norms of the diagonal elements and the value 10**7 

relates to the computational accuracy of the computer.

To obtain the general form of the transformation, one needs to first perform a shift from 

the origin, (K^ -  (A -  <j)M)q = 0, where = K -  o M , and then rearrange it into the
i A

standard eigenvalue problem of the form (M“ K a ->?I)q = 0. Given a pair of matrices 

Kg and M, and a starting vector r, these basic methods generate a sequence of Krylov 

vectors, {r,K ;lM r,(K ;lM)2r,---,(K ;IM )y r) for the jth iteration. The sequence converges 

to the eigenvector corresponding to the eigenvalue, □ that is closest to the shift G .

To derive the Lanczos algorithm, it will be assumed that the first j Lanczos vectors, 

{q,,q2,---,q; } have been found or assumed initially, and the construction of the j+1

vector will be described. The resulting vectors must be orthogonalized with respect to 

the mass matrix and satisfy the condition qfM qy = Sy . The algorithm contains the

following steps:

For j =0,

1. Set q 0 = 0 and r0 = random vector
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2. /?, = (ror Mr0)1/2

r
3. q, = -j -̂ mass orthogonalize the r  vector to obtain the Lanczos vector q

4. p, = Mq,

For j =1,2, 3 , repeat:

1-

2. r — t j —

3. a,  = q jM ry =q^ry

4. Tj = tj -  q ya y

5. p; = M rj

6. ^ = ( r ; M r / ‘ = ( p ; r / 2

7. If enough vectors, then terminate the loop

8- q;+1=

9- Pyi =

Ay+i

Py
^;+l

In addition to requiring the storage of the matrices K a and M, this algorithm requires 

storage of five vectors of length n; one for each of the vectors, q;_,, qy, Mr; , p y, and 

rj.  The total cost for one step of the algorithm involves a multiplication by M, the 

solution of a system of equations, with as the coefficient matrix, two inner products 

and four products of a scalar with a vector.

From the algorithm, ry can be written as a three-term relationship

rj = K;'Mqy -q,CC1 -q ,_ iyff, (2.19)

where or . = qyMK~‘Mqy and ry is normalized with respect to the mass matrix to 

obtain q;+1 with normalizing factor J3j+l = (r J Mry )1/2. After m Lanczos steps all the 

quantities obtained from the above equation can be rearranged in a global matrix form
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[K ; 'M ] [ Q J - [ Q J [ T J  = r X  (2.20)

with eTm= <0,0,...,0,1>. Here, Q m is an n □ m matrix with columns q y. , j=l,2,...,m, and 

Tm is a tridiagonal matrix of the form

T =

■ fin,

fin, a n,

(2 .21)

From the orthogonality property of the Lanczos vectors, Q^MQ„ = I , the above 

equation may be expressed as

q : m k ; 'm q „ = t „ (2.22)

The eigenvalues of the tridiagonal matrices converge to the inverses of the eigenvalues of 

K matrix. The eigenvalues of the tridiagonal matrix Tm converge closer to the 

eigenvalues of the problem (A -  M) = 0 as the total number of Lanczos vectors q 

increases and as the size of the tridiagonal Tm matrix increases.

2.4 Concluding Remarks

In this section, a detailed formulation of the dynamic equations pertaining to a number 

of commonly occurring problem types has been presented. This has been followed by 

details of two important numerical techniques for solving large scale eigenvalue 

problems. Details of a later development in this connection, involving eigensolution by a 

progressive simultaneous iteration (PSI) technique, used for analysis of the Hyper-X 

example problem presented later in this thesis, are given elsewhere 2̂9\
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CHAPTER 3

NUMERICAL TECHNIQUES FOR LINEAR AEROELASTIC AND 
AEROSERVOELASTIC ANALYSIS

3.1 Introduction

The linear aeroelastic and aeroservoelastic modules in STARS have the capability to 

predict the stability of spacecraft and flight vehicles. Using the results obtained from a 

solid vibration analysis, STARS can proceed to obtain the flutter and divergence 

characteristics and perform open- and closed-loop stability analyses for the vehicle.

Reference 30 gives a good history of the development of the linear unsteady 

aerodynamic analysis method through the years. Thirty years ago, unsteady 

aerodynamics flutter analysis tools were based mainly on the modified strip theory[31,32]. 

Doublet-lattice, which allowed the analysis of non-planar aerodynamic surfaces with 

interference bodies[3,4,33,34], would soon follow. The most important contribution made by 

the doublet-lattice method to flutter analysis is the provision of a capability for 

accurately calculating aerodynamic influence coefficients. Rodden later replaced the 

parabolic approximation of the numerator of the kernel function by a quartic 

approximation and improved the representation of the kernel integral f35>36]. The 

complete mathematical description of the doublet-lattice method can be found in the 

reference 37. Doublet-lattice has proved to be a reliable approximation technique for the 

subsonic aerodynamic speed range. Other unsteady aerodynamic tools, which have been 

developed for the subsonic speed range, include the kernel function method I38’39*40!. This 

method requires knowledge of the pressure modes, which depend on the geometry plan 

form of the lifting surfaces. As this method has proved to be complicated to use, it is less 

favored than the doublet-lattice method.

For unsteady supersonic aerodynamic flow, the Mach Box method is the traditional 

choice for flutter analysis. In this approach, the velocity potential is utilized as the 

dependent variable [124,125,126]. The method is only applicable for Mach numbers that are 

greater than 1.414. Other tools, developed for the analysis of unsteady supersonic 

aerodynamics, include the supersonic doublet-lattice method developed by Giesing and
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Kalman [44] and the kernel function method [45,46]. Both these approaches belong to the 

family of acceleration potential methods. The potential gradient method [5,47,48] developed 

by Jones and Appa, and known as the Constant Pressure Method (CPM), is preferable. 

This approach has the ability to model without the need for assuming the pressure modes. 

Jones and Appa expressed the integral relation between the pressure and the normal 

velocity in terms of a rearrangement of the exponential term associated with the kernel of 

the potential gradient. This resulted in the use of the pressure differential as a new 

variable. The potential gradient in the stream direction is considered as an independent 

variable and is assumed to be constant over an element [47>49]. The equivalent to the 

doublet-lattice for the supersonic regime was developed by Brock and Griffin [50]. They 

employed the subsonic doublet-lattice method with a slightly modified supersonic kernel 

function, relating the pressure differential across a panel and the normal wash developed 

by Harder and Roddent51J.

In STARS, unsteady aerodynamic forces in subsonic flow are computed using the 

Doublet Lattice Method (DLM) whereas the Constant Pressure Method (CPM) is used 

for supersonic flow. The k and pk  stability solution procedures may be used.

The stiffness and mass, obtained from the solids module of STARS, are expressed in 

terms of a generalized coordinate system. The DLM or CPM generated aerodynamic 

forces are also reduced to generalized forces. For aeroservoelastic analysis, aerodynamics 

and structural data is converted into the Laplace (or s) domain and the generalized 

aerodynamic forces are then curve fitted using Pade and least squares approximations. 

These give the system of equations in the form of a state space matrix. An open-loop 

stability analysis may be performed at this point by an eigenvalue analysis, using the state 

space matrix. Such a system can also be integrated with a control system which includes 

actuators, sensors, notch or other filters, and analog or digital controllers. From the 

augmented control system, transfer function frequency response phase and gains can be 

evaluated. Closed-loop modal damping and frequencies can be computed by solving the 

eigenvalue problem of the closed-loop augmented state space dynamic matrices.

3.2 Linear Aerodynamics

The aerodynamic influence coefficients (AIC) are important, as an AIC is only a
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function of the Mach number, the reduced frequency and the plan form. Any number of 

aeroelastic analyses can be performed, at various altitudes or at different density, stiffness 

and inertia changes, without having to recompute the AIC matrix. The AICs are 

independent of aircraft vibration mode shapes and/or static deflection modes and are 

related to the oscillatory aerodynamic moment and/or forces acting at the specified AIC 

control points and to the harmonic rotation and deflections of these control points. The 

AICs may be determined using the doublet lattice method or the constant pressure 

method, which are both discussed below.

3.2.1 Doublet Lattice Method

In subsonic flow, the unsteady aerodynamic forces can be computed using the doublet 

lattice method to a high degree of accuracyt4,52]. The normalized down wash velocity of 

a vibrating structural surface is computed using the equation

w(x, y , z) = f f K(x -  £  y  -  7], z -  g, CD, M)dCpd%da (3.1)
o7t J,LS

where

K  = kernel

LS = lifting surfaces

SCP = pressure differential.

rj = span wise coordinate

£ = elevation coordinate

\  = stream wise coordinate

a  = tangential span wise coordinate

In practice, the integral of the kernel K  is approximated by a summation over discrete 

finite sized lifting elements on the surfaces. The integration of K  in the stream wise 

direction is achieved by simply lumping the effect of a loaded line to a doublet line at the 

quarter chord position of the element. The normalized dimensional downwash velocity 

may be expressed as

1 "b r
wr(x,y,z) = — Y dSCpS^ jK(x-<f;,y-Ti,z-g,CD,M)dcr (3.2)

^  Element s

where nb is the number of discrete lifting element aero boxes. The downwash w is
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known to be equal to the summation over the discrete set of structural modal amplitudes, 

with the condition of zero normal flow at the boundary applied, and SCp is the unknown

pressure component that needs to be computed with K  connecting w with SCp. The

above equation can be written, in the form of a set of linear algebraic equations, as

with s denoting the sending element, where the doublet is being generated, and r denoting 

the element that receives the influence of the doublet from s . For each element, 

the receiving point of the element normal wash boundary condition is located at the 

center span on the three-quarter chord line of the element as shown in Figure 3.1. The 

basic idea of the doublet lattice method is to curve fit the numerator of K  with a parabola 

and carry out the integration of K  over the element s.

{w}=[D]{AC,} (3.3)

where a typical component of [D] is , defined by

Element s

y

line of doublets

Downwash 
point location

x

Figure 3.1 Discretization of a wing lifting surface into aero-boxes.

The kernel has the form

K  = exp (K ,T ,/r2 + K 2T2* /r 4) (3.5)
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where is the free stream velocity and Ki and K2  are as given in Appendix A of the 

report by Giesing, Kalman and Rodden[4,38,53]. This kernel represents a semi-infinite line

doublet with a strength of the form exp(-z'(£ -  f 1/4)——) - It can be shown that, when the

receiving point is down stream of a non-planar sending point of the kernel, the flow field 

is dominantly being affected by the local strength of the semi-infinite doublet line. It may 

be noticed that the effect of the planar vortices on the receiving point has a 1 /r2 

relationship and the non-planar effect has a 1 /r4 relationship. The global and local 

coordinate systems are related according to

T = (T-^c)C0sn+(^-$'c)sinn f = 7 r - 7 s
X  —  x  —  ^

z = ( z - g c) c o s y , - ( y - 7 j J s m y s (3.6)
V = ( '7 -^ )c o s r»  + (S’- f e)s in ^

? = ( f - ? c ) cosn - ( '7 - % ) sinn

y  o = y ~ i 7
Zo = Z - f

r  = (7„2 + z 02)‘/2

where £c, rjc, £c denote the coordinates of the center of the quarter-chord vortex line of 

the sending element and ys denotes the dihedral angle of the element, as shown in Figure

3.2

Figure 3.2 The dihedral angle for an element on a lifting surface.
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The coefficients in the kernel K  of equation (3.5) are of the form[4,53]

where

T, = cos (r)

i ;  =  (* o  c o s  Y r ~  T o s in  Y r ) 0 o c o s  Y s ~  T o s i n  Y s )

Mr <T'Vl K, = / , + — [■ -]

K2 = - 3
G +  « , )2 x 1 / 2

Mr
R

(1 + « i )2^P2r\  + 2 + MrU'
R : R

~ik,u,
2x3 / 2

P  r

r = { y l+z l ) 'n

*, = —

p  =(1 -AT2)1'2 

J? = ( ^ + / ? V ) 1/2

2x3 / 2 •d/w

I 2{ux,kx)= J
2x5 / 2J \  + u2)

Equation (3.5) can be expanded to give

du

K = Tl l r 2+ Tj exp~>(x  / 4 ) f r 4

(3.7)

+ [t,KJ / r 2 +T2K 2 / r 4] 

with the last term denoting the steady term when co=0. Equation (3.4) becomes

(3.8)

D_ =DL + D i + Drs rs (3.9)

where
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and with e representing the half-element length and the superscript s denoting the steady 

state case when co-  0. The numerators of D]ra and D2rs of K  are very slowly varying 

functions of rf over the area of an element and can be fitted with a parabolic function and 

integrated over the element. The third term is integrated analytically.

T*l 2

- '(* -6 /4  ) i r  7 /  TTexp Kj - K

- '(* -6 /4  )$ -exp K2- KJ

/ r2 = A xt j 2 + B {q +CX 

/ r 4 = A 2t J 2 + B 277 + C ;
(3.10)

The normal down wash is obtained by summing a series of mode shapes that may be 

computed using the STARS solid module that was discussed in the last chapter. With w 

and D being known the aerodynamic force on the aircraft can be computed using the 

lifting pressure differential, 5CP. The normal down wash for a mode i can be derived 

from the structural mode shape as

. cosw, =— - + i---- q,
dx U

(3.12)

where s is the semi-span, and qj is the ith mode shape obtained from the structural 

vibration analysis.

3.2.2 Constant Pressure Panel Method

The supersonic kernel function relates the pressure differential and the normal velocity 

based on the potential gradient method. Following a rearrangement of the exponential 

term in the kernel of the potential gradient, the pressure differential can be derivedt5,47]. 

The constant pressure method starts with the linearized equation of fluid motion



v V  = -l-TTT- <3-13)a* D t

where <j)' is the velocity potential, a is the speed of sound and

We assume a modified velocity potential of the form

<I> = <j) exp (3.15)

where 1 denotes a reference length, X = x/1, Y = y/1, Z = z/1, and <|> = 07V1 is the non- 

dimensional velocity potential. The solution to equation (3.13) may then be expressed, 

using the modified velocity potential at a control point (X 0 ,Y0,Z0) , as

<t»(X0,Y0,Z0) = ̂ jJr(X ,Y ,Z )
dn

cos k'R

p 2*
dA (3.16)

where

R 2 = ? - / 3 2r 2 
r2 =rj2+<*2 

k = co l lV  

k'= kM/ p 1
K' = ~(j>L = modified potential doublet

d  _ . d  . d . d
dm x dx y dy z dz
<f=x0-x
/7 = Y0 - Y  
g = Z0 — Z

p 2 =Vm2-i
M = Mach number

(lx, / lz)= die direction cosines of the inward drawn normal to the surface 

The exponential of equation (3.15) may be rearranged into the product form
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exp ( i k X ^ ) -  = -exp(M tf)exp(-^-X) (3.17)
P P

and equation (3.16) can be rewritten in the form

(HX0,Y0,Z0) = ̂ JjJ^</£/)7 (3-18)
so that it may be integrated by parts, where

^  = M  + ik^  = . ACp (3.19)

P = exp{-ikg) Jexp( ikg ' /p2 )(- S~ - )d^' (3.20)
f)r K

Here ACp is the pressure difference between the upper and lower surfaces. A numerical

integration of equation (3.17) is required for a discrete number of panels with the 

assumption that ACP is a unit pressure distributed over each of the panels. The velocity 

potential of a panel element will have the form

where t j u ,?}l ,  and %L are the upper and the lower bounds of 7 7, £ in a particular 

discretized element of the lifting surface. At control point i , the normal down wash wij 

due to the influence of a unit pressure at the j th element is calculated as

( 3 -2 2 )2 x ^ * 1  dnQ\dn)

where

^  — I ^  +1 ^  +1 ^

with / , / , / being the directional cosines of the normal at the control point panel. 

The aerodynamic influence coefficient (AIC) matrix is then simply obtained as
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P>] = [*>]-' (3.23)

which may be used in the computation of the ACp according to

a c ' - [D>l3?}

Here i 1 is the kinematic non-dimensional down wash due to the nth mode. The
[DTj

generalized aerodynamic work influence coefficient in the vibration mode i due to the jth 

pressure mode, from the principle of virtual work, is equal to

D(y = q f  \\riA C pjd& T j
s

1 2
where q = — pV  is the dynamic pressure and S is the total area of the lifting surfaces.

The new kernel associated with the pressure boundary has a hyperbolic singularity 

along the forward Mach cone as R approaches zero and a dipole singularity as r 

approaches zero. The hyperbolic singularity is resolved by performing the first 

integration in the stream wise direction, which results in an analytic function on the Mach 

boundary. The dipole singularity is eliminated by using the principal value theorem. A

dPdetailed discussion of the structure of the —  term is discussed in the paper of Jones and
dn

Appat5].

3.3 Linear Aeroelasticity Numerical Solution

The matrix [D] obtained from the DLM equation (3.3) or the CPM equation (3.23) is 

the aerodynamic influence coefficient matrix in the physical coordinate system, which 

relates the downwash vectors to the pressures on discritized aerodynamic elements. It is 

of the dimension nb by nb where the nb is number of discrete aerodynamic elements 

(boxes) as shown in Figure 3.1. It is a square, non-symmetric complex matrix.

By applying the theory of Lagrangian mechanics *-54,55-*, the physical coordinates [D] 

matrix can be transformed into the generalized coordinates, which will have the 

dimension of nr by nr generalized modes. This is called a generalized influence 

coefficient matrix, [A], and is used together with the generalized inertia (mass) matrix 

[M] and generalized stiffness matrix [K]. These reduced order matrices are then
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employed, using generalized coordinates (normal modes), for the linear aeroelastic 

solution.

For a harmonic motion, the equation for the linear flutter problem has the general form

{q}=0 (3.24)

where [K] = defines the generalized elastic stiffness matrix,

[m ] = generalized inertia matrix

{q} = column of generalized nodal displacement vector, qt = q^ '0* for

mode i

[A(p)\ = unsteady aerodynamic work influence coefficients matrix

p = differential operator — (—)
v V dt

V = speed of the air flow

c = reference chord

p = free stream density

With the assumption of harmonic motion, the aerodynamic coefficients are functions of 

the reduced frequencies and the Mach number, and are not dependent on the time
j /  iOX \

derivative. This is a result of the special behavior o f -------- = icoe'0* .
dt

3.3.1 p  Method

When the aerodynamic forces can be expressed as a sufficiently simple function ofp, 

the equation of motion becomes a polynomial in p with real coefficients^561. The non 

zero q solutions to the equation of motion can be determined by setting the determinant 

formed by the matrix coefficients of the above equation to be equal to zero. At a given 

value for the airspeed V, the determinant can then be solved directly for p. This leads to 

complex conjugate roots [561

p  — y  k±i*k  (3.25)

where k -co c IV  and the rate of decay y  — (1 / 2k ) In with a. and aj+l denoting

the amplitudes of successive cycles. The rate of decay (}k) might be interpreted as a
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modal damping and, when it is plotted against the equivalent airspeed, gives rise to what 

is commonly known as the v-g plot. Flutter has occurred at the point where the damping 

first goes to zero on this plot. A plot of the modal frequencies versus airspeed, the CO -  V 

plot, is also commonly used to identify divergence cases. It should be noted that sub- 

critical damping values are not reliable for the p  or k methods.

3.3.2 A: Method

In the use of the doublet lattice approach or the supersonic Mach box method, the 

aerodynamic matrices have the following expression which is valid only for harmonic 

motion, p - i k .  The equation of flutter is now

A k — V m  k 2 - —pMi'k)
V2 c1 2

{q} = 0 (3.26)

and, substituting k = coc / V , the above equation becomes

A - k - m -
CO

EEL
2 k :

A(i’k) {q} = 0 (3.27)

At a particular reduced frequency, k, complex roots for X  =  — , XR +  i*X{ , are found 

and interpreted as

co'

XR +  C X ,  = (1 /CO2 )(1 + i 'g)  (3.28)

where g  is the structural damping that is needed to induce the harmonic motion. Note 

that V no longer appears in the equations but that p  does. The flutter equation for the k 

method is represented by the eigenproblem

•4K - (M  + ̂ j - A (/’*)) {q} = 0

or (/IK -  Dt ){q} = 0 (3.29)

where Dt = (M + . A(i'k)) .

This eigenvalue equation can be solved for each specified reduced frequency, k . For 

each k , an eigenvalue Xk will be obtained
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Xk =XR+iXj  (3.30)

where, by definition XR = —-  co =
1_

co2 11 XR

k = —  F = —  (3.31)
V  k

g  = *,tO2
CO

For each k, a modal frequency, damping and velocity for each mode are computed. The 

v-g plot can be constructed for tracing the flutter characteristic of each mode shape. This 

method occasionally produces multiple values of damping at a given velocity.

3.3.3 p-k  Method

When the flutter equation (3.26) is written in a form showing that the aerodynamic 

equation is expressed in term of both p-f^56\  the equation of motion can be written as

'{q} = 0 (3.32)[K ] +  ̂ - [ M ] p 2 - ± p V 2[ A ( f k ) ]
c 2

With an estimated value of k0, [A{i*k)\ is computed and one can solve the above 

equation for p  = ykx + Ck{. The process is repeated until the solution evaluated at k 

equals the k value of the aerodynamics matrices [A(i*k)] . In another words, for a given 

V, one can use a recursive loop to solve the above equation until a solution of p  is found 

that makes the equation equal to zero. From the definition of p , its is seen that

p -  p R+i*P[ = /}k + i*k (3.33)

and this produces the damping

*  = />« 7 = ^  = —  (334)k pj

For a constant p  and Mach number, we then check through the P s  to compute modal 

velocities, damping, and speeds of sound. If a speed of sound and p  combination lies 

on the standard atmosphere curve, a ‘match point’ is obtained. Damping values produced 

by the pk  method are considered to be reliable.
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3.4 Linear Aeroservoelasticity

Aircraft systems have become more sophisticated, due to the integration of distinct 

disciplines to achieve simultaneous objectives in the aspects of performance, control, 

flying and maneuvering techniques, and fuel efficiency for various mission design 

projects. Aeroservoelastic (ASE) dynamics includes the coupling of structural dynamics, 

aerodynamics, control dynamics, sensing and actuation. Structural dynamics can be 

accurately modeled with finite element methods and validated with ground vibration test 

data. The control dynamics are designed and verified before flying. The aerodynamics 

can be modeled using the doublet lattice approach or the supersonic constant pressure 

method.

Extensions to aeroelastic modeling capabilities may be made with control system 

augmentation of the aero-structural dynamics. The unsteady aerodynamics is curve fitted 

with Pade approximations to generate a state-space aero-structural dynamics model in 

the frequency or s domain. The inertial coordinate system for the model is transformed to 

a local body-axis coordinate system, so that the control system can be augmented into the 

aero-structural dynamics^57,58].

3.4.1 The State Space Method

The governing equation of motion for the structure that is relevant in an aeroelastic 

analysis i s ^

[M]q + [C]q + [K]q -  i  p V 2 [A(,*)]q = {P(0> (3-35)

where

V = free stream airspeed

[C] = the damping matrix

[K] = elastic stiffness matrix

[M] = mass matrix

1 2— pV  = the dynamic pressure

q = the displacement vector

P(f) = the external force function
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COC
* = reduced frequency, , c reference mean chord length

A(ik) = Aerodynamic work influence coefficient matrices calculated for a given Mach 

and set of lvalues

The mode shapes and natural frequencies are computed from the structural free vibration 

analysis, via the equation

Applying the transformation q = ®TJ to equation (3.35) and pre-multiplying both sides

with modal matrix O = [ 0 r ,<E>e, 0 <y] and generalized coordinate matrixr\ — [*lr,T]e,7]s \',

where the rigid body (r), elastic (e), and control surface (S) motions make up the 

generalized displacement vectors. The generalized aerodynamic force matrix Q(i£) can

[M]q + [K]q = 0

by O r leads to the generalized equation of motion

(3.36)

where M = O T MO

C = O TC 0  

K = O r KO

Q = $ TA(/Jt)<P

P = O rP

be approximated with Pade polynomials in terms of i k  = i (coc / 2V) = — , where the

Laplace variable is s = i* co, as

(3.37)

where pj  is the aerodynamic lag term (assume j= 1,2) and

i*k + fr k 2+fi2 k 2+ P 2
i'k k 2 i'kpj
 = -^------r  + —;--- -
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The rigid aerodynamic load coefficients take the form

A _  Q, {ky) A, A 4

K Px Pi

where kx is the smallest reduced frequency, which is a value near zero that is used to 

compute Aj for j= 0, 1, 2, 3,.... Separating the real and imaginary parts in equation

(3.37) produces 

QR(k) = QR( k ) - A 0

- k 2I

= S R(k)A

k 2+ t f  k 2 +p.
(3.38)

and

0
k 2 +Pt k 2 +P\

(3.39)

= S t (k)A

The unknown coefficients A2, A3 and A4 can be determined by substituting the previous

expressions foxA0, A, into equations (3.38) and (3.39). This procedure implies that the

resulting solution is sensitive to the choice of pj  when rigid air loads are approximated.

In order to uncouple the pj  from the elements of the aerodynamic damping matrix A },

only the known damping coefficients (the steady aerodynamic derivatives) are used to 

compute A j . In this way the solution for the rigid air loads becomes independent of the

Pi values. The coefficient A. can be estimate as A, = ^ . For a chosen number
J 1 K

(NF) of specified values of reduced frequencies k}, the real and imaginary parts of
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equation (3.38) and (3.39) can be expressed as

Q r (^2 ) ~ S r&  2)~

f i / (* 2) S , ( k 2)

Q r i^NF ) S r i^NF )

_Qi _Sj {kNF)_

(3.40)

or Q = SA

The matrix S  is not a square matrix. Pre-multiplying both sides of this equation with 

S T implies that

S t Q = [StS]A

Now S  T S  can be inverted and the coefficients A2, A3, A 4 can be obtained from

J3 = [5r5]‘'5 r e  (3.41)

Assuming simple harmonic motion, equation (3.36) can be written as

/  \2
. SC . [ SC ) . .

ArJ] +  A , — t] + A 2 —  7/ + A 3x, + A 4x 2 + ,  
0 2V \ 2 V y

= 0 (3.42)

where

ST]x . = ---------
'  T Vs + — p.

and

. T V  QXj +  PjXj =T}
c

(3.43)

Collecting like terms, this equation may be expressed as
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(K  + qA0)j] + (C + q — A,)f} + (M + <l(— ) 2 A 2 )V + qA3Xj + qA4x 2 + ... = 0

or

Klj + Cfj + Mi) + qA3x , + qA4x 2 + ... = 0 

Equation (3.43) and equation (3.44)) may be combined in the matrix form

■ 0 I 0 0
7

- k - c - q A 3 - q A 4
M n 2V a f)

I 0 I ----------0,1c
0

x/
I 7 2 . 0 I 0 2V~ — p2i

c
_X 2 _

or M'x '=K'x '

(3.44)

(3.45)

where x =[{rjr rje t)s i\r tje f)s x, x 2)] 

and x = {M)~x K x  

= Rx

Now, rearranging the state-space vector x' as

X* = [(Tlr Tie fir fie X 1 * 2)  (V* f e ) ]

= [x II]

means that equation (3.45) can be partitioned as

i R l2~ X

u A t

“1
*

u

(3.46)

(3.47)

Here, R }1 and R 2I denote the plant dynamics and the R I2 and Rn  represent the

dynamics of the control modes from the control surfaces. A general form of the state-

space equation for the plant dynamics has the expression

i  = Ax  + Bu  (3.48)

where

A  = plant dynamics matrix

B  = control surface influence matrix

x = generalized coordinates in inertial frame
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u = control surface m otion input into plaint

represent the aircraft dynamics and! forcing function terms; due to> control surface input 

motions.

TSie generalized coordinate; structural modal displacements are expressed in teim  o f tlie 

sensor motion as

= £ >  (3.49)

where C 0), defined here as [7;<j» o o  o\ , is tthe state transformation matrix and Ts is

the interpolation matrix: that; relates, the generalized displacements with tthe actual 

physical motion reading by tthe sensor. In a similar way, die sensor velocities and 

accel erations can be obtained as

' * s m  ' ' T . O  f f \

“ sen . T ,< t>  T j \

= Cj,\

t;<e> €  o o
o o to

If x is substituted into this equation, we see tlhatt

C rx = Cj A jl +■ CjBu  

= C„xH-JD,n (3.50)

The structural nodal displacements, velocity and acceleration for the sensor are obtained 

by co>mbining equation (3 ..49) with equation (3.5(0)

s<en C g '  <0 '
y  sem ^sen —

f l . . P 2 .

u
U

sten _

v =  C x + D m•J'sen C 3.51 )

whiclh signifies motion at the sensors due to body motion and control surface motions..

To integrate the control laws designed for’ body-axis motion, it is required to convert 

equation (3.48’.) from the inertial (Earth) system to the local body coordinate system. Let

T / s  to be tthe coordinate transformation matrices whiclh yield the required state-space
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equation in the body coordinate system [5?1. A transformation of the state space equation 

into the body coordinates system then gives

*b =T-l {ATx - f 3)xb +T;]Bu

x b = A x b +Bu (3.52)

y Sen = C T , X 6 + D U

in which the subscript b refers to the body coordinate system.

3.5 Augmentation of Elements and Controller to Plant

Equations (3.49) and (3.52) are the complete state-space formulation of the aircraft 

integrated structural and aeroelastic characteristics. To construct an aeroservoelastic 

analysis, the control elements such as actuators, sensors, notch filters and prefilters along 

with the controller need to be added into the system. We consider the augmentation of an 

element in series to the plant. The state-space of the element, which is denoted by the 

subscript j , has the form

Xj -  Aj x  j + Bj Uj (3.35 a)

y .  =CjXj +DjUj (3.35b)

and the state-space of the plant, which is denoted by the subscript i, has the form

(3.53c)

y ^ C ^ + D ' U ,  (3.35d)

It can be observed that the element output y } = uic, where c is the column of the u input

matrix of the plant z, and substituting the output of control elements for the plant input 

vector, the state space matrix has the form

x, = A,x, + B,u,

X . r a ,  o i X, ’ B iJ ~ j ] +
*>Cj A,_ */- BicDJ

y / - c ,  O'
+ ' DJ

y>. _D*C> c ‘- _x i_ D,eDJ

u ,

u

(3.54)

(3.55)

In the case where the element is a gain block G}, the augmentation state-space matrices 

of a gain to the plant have the form
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[* ,]-  k t , ] + k G yK

1—>
1

_ ' o '
[*,]+

1i

J i . c,_ D G. ,c j -
u

(3.56)

(3.57)

Similarly, the augmentation of a plant in series to an element will give the expression

(3.58)
r-

---
-1

I__
_

 
I

= ' A, 
BjC> Ju.

 
^

1 
1

1 
1

s* 
*

1 
1

+ ‘ B, ‘

1 
1 

1 
1

= ' c,
DjC,r

1 
1 r 

i
v* 

*
1 _ 

1

+
' D, ' 
_D,D,r

u .

u (3.59)

where Cir, D/r are the elements of the rth row of the output of the plant state-space

matrix that will be the input of the control element. In the same fashion, the 

augmentation of a plant to a block gain element will give rise to the state-space matrices

[* ,]= k l * , ] + k k

~y,~ '  c, '
[*,]+

'  o, ‘

yj. i i ?jK_ u

(3.60)

(3.61)

To consider signal summation and augmentation into plant, We assum e^.,, BjX, CjX, 

Dji and Aj2 , B j2, Cj2, Dj2 are two parallel control blocks whose signals will be 

summed and be the input of the plant with Ai , B t , C ,, Z) . The procedure requires the

block-to-plant augmentation scheme for each of the individual control blocks to use the 

same input port of the plant and sum the output rows of the plants for each of these 

blocks.

In the process of closing a control loop with feedback, the final state-space matrices 

are of the form

^  cl

~A, -  BIVDJCI 0
B , =

' B,V '
BjWC, Aj - B jVD.C, cl BjWD

(3.62)
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cc, = [fVC, - D/ WC/\ Dd = [D,v] (3.63)

where

r  = [/+z>,.i>,.]-' w  =  [i  +  D iD iY
3.5.1 Discretization of Continuous-Time State-Space Equation

Consider the continuous time state equation and output equation

x ( t )  =  A x { t )  +  B u ( t )  (3.64)

y ( t )  =  C x { t )  +  D u ( t )  (3.65)

For the invariant time case, the zero-order hold (ZOH) discrete-time representation of the 

above equation has the form1-5̂

' * ( ( *  +  1 ) T )  =  G ( T ) x ( k T )  +  H ( T ) u ( k T )  (3.66)

y ( k T )  =  C ( T ) x ( k T )  +  D ( T ) u ( k T )  (3.67)

Note here that the matrices G ( T )  and H ( T )  are dependent upon the sampling period T .  

Once the sampling period is fixed, G ( T )  and H ( T )  are constant matrices. The matrices 

G ( T )  and H { T )  can be obtained numerically using the equations

G ( T )  = elA]T = I + [ A ] T  + ̂ - T 1 + ^ - T i + . . .  (3.68)

H ( T )  =  ( e [ A V - I ) A ' B  =  ( [ / F  +  ^ - r 2 + ^ 7 - r 3  + ~ ) B  (3-69)

The augmentation of the digital blocks and plants follows the same pattern as the 

analog components. In the case of a hybrid system, the analog control blocks need to be 

augmented to the system and then the analog state-space system is converted to the 

digital domain at a given sampling rate. The remaining digital control blocks continue to 

be augmented to the plant.

3.5.2 State-Space Representation of Dynamic Systems

Consider an nth-order differential system of equation involving derivative terms in the 

forcing function [16] and expressed in the form

y (,,) +aly (a~l) + ... + an_2y + an_ly  + any  = bQu{n) +blu (n' 1) +b2u{”~2) +... + bn_]u + bnu

(3.70)
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Define a set of n variables, in terms of a set of n state variables, as 

* 1  = y - 0 o u

x2 = y - p Qu-P<u=xx- p xu

* 3  = y - P < P - P \ U - P 2U =  X  2  - P 2U

X. = A ° - P 0Uin~l) -  P ^ " -2) -  ... - P n. 2U -  P n. XU = - Pn-1«

where

A  =*o 

A ~^i A

A  ~ 2̂ ~ a\P\ ~ a2@0

& = b3 - ai A - a2P<-aifo

P n = K - a ...

With this particular choice of state variables, the uniqueness of the solution of the state 

equation is guaranteed. Notice that this is not the only choice for a set of state variables 

for the system. However, for this present choice of state variables, the equation system 

may be arranged as 

x, = x2 — J3xu 

x 2 =x2-  p 2u

(3.71)

* „ - l  = X n “ A -  1U



*. P.-u
In matrix form, the above equation and the output equation can be written as

or

/̂i-i
x . .

0

y

1

o o

0 0 
■a., —a

0
- a

= [l 0 0 . .

n—2

1

n—l

X .

+ A M

jc = Ax + Bu 

y  = Cx + Du

0 “ *1 " A  "

0 *2 A

• • + •

1 V i A-i
.  . . A .

[«] (3-72)

(3.73)

(3.74)

(3.75)

3.5.3 Transfer Function

Applying the Laplace transformation to equation (3.64) results in the expression

5,x(^) = Ax(s) + Bu(s) (3.76)

or

x(s) = [sI-AY'Bu(s)  (3.77)

Substituting this expression into equation (3.65), we obtain the open-loop frequency 

response relationship

j ( j )  = [C [ j/- ^ ] J fi + D]«(j) (3.78)

= H(s)a(s)

where H(s)  is the equivalent loop (loop gain) transfer function with the analog controller 

or the loop transfer function without the controller. From H ( s ) , the phase and gain
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property of the system can be obtained for a range of specified frequencies by 

constructing a Bode plot. From the point of view of stability, the damping and modal 

frequencies for the system may be calculated by solving the eigenvalue problem of the A 

matrix for various values and tracking the root changes. The eigenvalues of A  are 

complex conjugate pairs, - a  ± j3. Flutter is indicated by a change of sign of a  , and 

divergence occurs when the frequency f t approaches zero. The system instability can be 

assessed by studying the phase and gain margin characteristics^.

In the presence of a digital controller, a hybrid approach is adopted for the frequency 

response solution. Thus A ’ , B ' , C \  D' are the state-space matrices associated with the 

controller; the related transfer function is simply given by the expression

G(z) = [C'[z/ - A'] B '  + D'] (3.79)

and the frequency response relationship for the hybrid analog/digital system can be 

written as

y(s) = „ (J)] (3.80)

=  j y ( 5 ) '  « ( * )

where H(s)  is the transfer function for the plant and other analog elements,

\ - e l~sT
[ZOH] is the zero order hold complex expression (e'ST (----------)), where T is the time

s

delay, and H(s )* is the equivalent transfer function of the open-loop hybrid system.

For a unity feedback closed loop, the transfer function has the form

<3">

With a sensor feedback closed loop, the transfer function has the expression

(3.82)
d l  + G/(z)H(s) 

where Gj (z) is the transfer function of the feedback sensor.
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3.6 Concluding Remarks

In this chapter numerical formulations, based on linear unsteady aerodynamics, have 

been presented for both aeroelastic and aeroservoelastic analysis. Both analog and digital 

control systems can be accommodated with this formulation. For many practical 

problems this is a reasonable approximation. A more accurate methodology, employing a 

nonlinear CFD based formulation, is given in the next chapter.
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CHAPTER 4

; NUMERICAL TECHNIQUES FOR NONLINEAR

t  AEROELASTICITY AND AEROSERV OEL ASTICITYiiI

4.1 Introduction

An aeroelasticity/aeroservoelasticity (AE/ASE) analysis requires the successful 

integration of the individual disciplines of structural dynamics, unsteady aerodynamics 

and control input/output. The methodology adopted for the analysis of the disciplines 

may be different, but the components are always the same for an ASE analysis. The most 

difficult integration task is the numerical coupling to enable the analysis of the fluid- 

structure interaction.

Several methods have been developed to enable the modeling of the motion and 

deformation of the structure and fluid boundary. The most common methods are: use of a 

dynamic mesh, employing some form of remeshing, and the application of the moving 

boundary condition on a fixed mesh via the surface transpiration method.

A dynamic mesh algorithm t6,9,59,61'63] replaces the network of edges in the mesh with 

a system of springs, whose stiffness is inversely proportional to the edge length. Every 

time the body surface is deformed to conform to the applied aerodynamic load, the 

remainder of the computational domain mesh is moved by solving the static equilibrium 

equation for the spring system in the x, y  and z direction. A deformation for each node in 

the domain can be computed by an iterative predictor-corrector procedure. This predicts 

a displacement for the nodes using a linear extrapolation and corrects the predicted value 

using several Jacobian iteration of the static equilibrium equations. To prevent the 

appearance of numerical errors that are induced by the motion of the grid, the geometrical 

conservation law must be satisfied in addition to the standard requirement for 

conservation of mass, momentum and energy164,65,661. Batina[67,68] has undertaken 

extensive work on this technique, using both structured and unstructured meshes. Initial 

developments assumed that the fluid mesh moved rigidly or was sheared as the body 

deformed. This assumption limited the application of the structured dynamic mesh to
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problems involving rigid body or small amplitude motion. An alternative unstructured 

grid1-69"75] has also been employed to enable the modeling of problems involving complex 

geometries and flow fields.

The remeshing approach produces a new mesh for the complete computational 

domain at each time step, in accordance with the structural deformation. This technique 

requires detailed data keeping for the definitions of the geometry surfaces and the 

intersection points. This is the most difficult and the most expensive procedure to 

implement in a general purpose CFD code.

The surface transpiration [76,77] method is based upon the concept of modifying the 

flow boundary conditions and the definition of the normal at the boundary on the existing 

CFD grid in accordance with actual structural displacement. The concept was presented 

originally in a paper by Lighthill in 1958 [76]. With this method, no modifications or 

remeshing are made to the existing CFD grid, except for a simple change in the flow 

tangency boundary condition on an element that is subjected to the structural 

deformation. To maintain the boundary condition of no-flow normal to the surface, the 

flow solver computes a new normal direction for each surface element as the surface 

deforms. The accuracy of the method has been demonstrated through the work of 

Gupta[78],Raj & Harris[79] and Fisher & Arena[80].

In STARS, a finite element technique is used to discretize the solid and the fluid 

continua. Steady and unsteady aerodynamic solutions are performed by an Euler solver 

with the additional application of a transpiration boundary method for the unsteady case. 

As the finite element technique is used in both the solid and fluid regions, the accurate 

modeling of the interaction between disciplines is achieved. Figure 4.1 shows the number 

of disciplines that are involved in the multidisciplinary modeling simulation of nonlinear 

flutter analysis. Some relevant details of finite element formulations, adopted for 

computational fluid dynamics (CFD) and nonlinear-stability analysis used in the current 

application, are presented next [17l  An alternative aerodynamic forces computation 

method implemented into STARS that also utilizes as a perturbation to an already exiting 

mean steady state flow solution is the Piston Perturbation Method [81] by Arena et al. 

Piston method [82,83] is a simple technique to use for supersonic flow (Mach » 1 ) .  The 

method computes the pressure on any surface point based on the outward normal vector
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of the given surface definition [83,84l

In this thesis, a closed loop ASE state-space equation expression will be derived for 

the systems with uniform sampling rate. The sensor mechanism that computes the 

physical inputs needed by the control system such as pitch, pitch rate, roll rate, etc. is 

incorporated into the nonlinear aeroservoelastic analysis. As the control system 

sometimes is in the body fixed coordinate instead of inertial fixed frame coordinate, the 

equation of motion from an inertial frame is converted to body fixed reference frame. 

The aeroservoelasticity can be run for multi sampling rate problems in which the control 

system has a different sampling rate in comparison to the aeroelastic system.

4.2 Finite Element Computational Fluid Dynamics

The CFD analysis requires two major fundamental solution capabilities. Effective 

generation of unstructured and solution adaptive domain meshes and finite element 

analysis techniques for the relevant flow problem. The development of related numerical 

tools is also necessary for the efficient solution of complex practical problems. These 

solution capabilities have been appropriately incorporated into the STARS program.

4.2.1 Mesh Generation

The advancing front technique^851 is employed for the automatic generation of 

unstructured meshes and is suitable for the discretization of complex domains. The 

algorithm was initially developed for arbitrary, multiconnected, planar domains in which 

the interior nodes are generated first, then suitably linked to yield the best possible 

triangulation.

During this process, the mesh generation front is continually updated after each new 

element is constructed. The technique, initially developed for 2D grids, was further 

improved and extended for 3D meshes [86,87]. Nodes and triangles then are formed 

simultaneously for all boundary surfaces. This is done by the generation of tetrahedra by 

the advancing front approach to fill the entire solution domain. Background grids are 

used to specify mesh parameters defining node spacing, a stretching parameter and 

stretching directions. The procedure proves to be flexible with regard to the specification 

of arbitrary shapes and varying grid density throughout the domain and enables the 

adaptive mesh generation in accordance with the form of a computed solution.
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This 3D automatic unstructured mesh generation scheme has proved to be versatile 

for modeling practical CFD solution domains around complicated geometrical objects, 

such as complete aircraft. However, because the advancing front technique involves an 

extensive search for nodes and faces on the front, the grid generation time tends to be 

long for complex configurations. A simple modification of the procedure, implemented 

during the current thesis work, has proven to be efficient and economical. In this method, 

the technique is first used to generate a coarse grid, whose cells have linear dimensions 

approximately twice the desired size and then each cell is reduced locally to its desired 

size t88l

4.2.2 Finite Element Computational Fluid Dynamics Analysis

For a viscous, heat conducting, compressible fluid obeying the laws of conservation 

of mass, momentum and energy, the dynamic equation of flow can be expressed by the 

set of partial differential equations,

dV dE-
i r + ^ r = f b ’i = 1 ’2 ’3 (4-1)

where the column vectors, representing the unknowns, the fluxes and the body forces, 

and the viscous stress tensor are defined as

V = \ p  pUjPE ]  (4.2)

Fi = | /» i  pa ,u j  + p 8 SI + u, (pE  + p) + (4.3)

=  ip V . f J  (4 -4 )

(4.5)
/

c  =  LL ~ 5  - + LL
,J 3 'y + dx, J

Here, p, p, and E are the density, average pressure intensity and total energy of the fluid 

respectively; is the Kronecker delta; Uj is the velocity component in the direction Xj of a 

Cartesian coordinate system; jll is the viscosity; k is the thermal conductivity and f h are 

the body forces. These equations are supplemented by the state equations
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P= (v ~ 1)p[e  --^UjUjj
(4.6)

and T = r j  1E  U  :U;
2

(4.7)

to complete the equation set, where y  is the ratio of specific heats and cv is the specific 

heat at constant volume. This formulation is valid for a perfect gas.

A solution of the inviscid form of equation (4.1) is achieved by first obtaining a 

Taylor series expansion of V in the time domain. The spatial domain, £2, is then 

discretized by unstructured meshes of 3D tetrahedral elements. Using linear finite 

element approximations, V = aV,V being the nodal variable values, and employing a 

Galerkin weighted residual procedure, a time dependent form of the governing equations 

can be obtained as[16]:

M<5V = - a [c v J+ R (4.8)

where R includes all artificial viscosity effects that are essential for capturing shocks and 

C includes a set of symmetric and lumped (diagonal) mass matrices formulated for the 

artificial dissipation. The solution of equation (4.8) is achieved by advancing this time 

dependent form until steady conditions are obtained. In the STARS program, this is 

achieved using an explicit time stepping iterative scheme [86̂ or an alternative quasi- 

implicit solution scheme. An accelerated solution procedure, based on the Aitken 

acceleration technique, has recently been implemented *-88,89] and leads to considerable 

improvement in the solution convergence rate.

4.3 Nonlinear, Computational Fluid Dynamics Based Aeroelastic and 

Aeroservoelastic Analysis (STARS-CFDASE)

The nonlinear aeroelasticity analysis capability is based on the implementation of the 

transpiration boundary condition method in the CFD flow solver.

The CPU time required for a CFD based unsteady solution in an aeroelastic 

simulation can be significant. One research effort of Arena et al. aims to speed up the 

aerodynamic solution, with the objective of minimizing the CPU time required for the

54



CFD analysis. For the purpose of accelerating the aerodynamic model solution, an 

alternative auto regressive moving average model (ARMA) £90*951 based unsteady analysis 

procedure has been developed. This requires that the nonlinear Euler based CFD analysis 

is carried out only once at a particular density. The procedure utilizes the system 

identification technique to obtain a mathematical model of the aerodynamic CFD system, 

based on a set of measured output and input data from the system. The system 

identification method uses a collection of time histories of input and output and fits the 

parameters of a model structure that will accurately describe the dynamic characteristics 

and behavior of the actual aerodynamic system, such that its error output is minimized in 

the process. For its success, the system identification technique relies on the choice of 

the order of the model structure and the quality of the data used for the input signal 

chosen for the training process of the model. This process will be discussed in more detail 

in the next section. The system identification method provides the aerodynamic 

characteristic of the problem in a state-space formulation which is convenient in the 

derivation of the closed form expression for the aeroservoelastic analysis of uniform 

sampling rate cases.

4.3.1 Aeroelastic and Aeroservoelastic Analysis

The aeroelastic and aeroservoelastic analysis process, see Figure 4.1, starts with the 

finite element structural modeling and subsequently computes the natural frequencies, co 

and modes, <D , that consist of rigid body, elastic and control surface motions, by 

solving

Mii + Ku = 0 (4.9)

In this equation, M and K are the inertial and stiffness matrices respectively and u is the 

displacement vector. This solution is achieved by the use of either a computationally 

efficient PSI ^^(Progressive Simultaneous Iteration) technique or a block Lanczos 

procedure that fully exploits matrix sparsity. Next, a steady state Euler solution is 

computed, in which optimum solution convergence is achieved through an explicit or 

alternative quasi implicit local time stepping solution procedure, that also employs a 

residual smoothing strategy. The resulting generalized equation of motion for the vehicle 

may be written as
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M$ + Kf + Cj + / s(f) + / ,( f )  = 0

where the generalized matrices and vectors are defined as

(4.10)

M = generalized inertia matrix (= O rM O )

K, C = generalized stiffness (= <E>r K<E>) and damping (= O r C O ) matrices

q = generalized displacement vector (= O T u )

q = generalized velocity vector (= O 7 u )

q = generalized acceleration vector (= 3>7 i t )

u = structural displacement vector

f a (0  = generalized aerodynamic (CFD) load vector (=<bTap A ), where p is the Euler 

pressure, A is the appropriate surface area, and <I> a is the general

displacement modal vector pertaining to the aerodynamic grid points 

interpolated from relevant general displacement modal structural nodes

f i  (0  = generalized impulse force vector (Figure 4.2) which used to excite the vibrating 

structure.
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Figure 4.1. Nonlinear flutter analysis methodology.
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Figure 4.2 The generalized impulse force vector (k ) .
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Equation (4.10) may be formulated next in the state space matrix equation form

* ,(0  = A ,* ,(0  + B ,/( f )  (4.11)

y s(t) = c sx s(t) + iDsf ( t )

where

C A  X-(t) -
q(t). 

= y,(t)

(4.12)

0 I 0
—

- M _1K - M _1C B , = - M -1

c  =[i] D, = [fl]

The state-space equations in time domain can then be converted to the discrete time 

equivalent at the k th step using the zero-order-hold (ZOH) as discussed in Chapter 3 give 

the following expression

x s(k + \) = G sx s(k) + H J ( k )  (4.13)

y M  = CsXs(k) + Dsm  (4.14)

in which

G , = e A  . A / H „  = f  eKMdX -ll

(4.15)

where At = tn+l - t n and C , and remain unaltered from equation (4.11). Figure 4.3 

depicts a structural model of this form. Data consisting of the q and q vectors is then 

stored for later processing of aeroelastic damping and frequency estimates. To start the 

unsteady analysis, an impulse signal of magnitude illustrated in Figure 4.2 is input to the 

f j  (t) vector for a few At steps. / 7 (t) is the user input that contains a number nr of 

modes of interest for a particular problem.
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Figure 4.3. Coupled aeroelastic (AE) model

In aeroservoelastic (ASE) analysis, assuming a control law has been designed based 

upon the linear characteristics of the control derivatives, the control law can be interfaced 

with the CFD based analysis procedure. Thus, the input to the control law will consist of 

state variables of the aeroelastic model. Based on the input, the flight control derives the 

necessary control surface deflections to alleviate the aircraft response.

The desired control surface motion, such as pitch angle to stabilize the structure, can 

be calculated by using the aeroelastic state output vector as

*c(0 = Acxc(0 + Bciic (4.16)

tc(0 = c c* c(0 + d cw£ (4.17)

where «c is the generalized control input signal vector, defined as

uc =Kys(t) = KCsx s(t) (4.18)

in which typically

nc -\Ty c =[Sl, ] (4.19)

Here, nc is the control surfaces indicator; and the constant transition matrix is defined by
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K =
.neb uncb

2NR

\,ncb
*2NR

(4.20)

assuming neb columns in the Bc matrix and with the structural state vector

■*S ( 0  =  [?15 Q nE ’ ^1’ ^ N C  » #1’ ^1 > ^2»*"» (4*21)

AE and M7 denote the number of elastic and control modes respectively. The deflection 
of a typical i th control surface can be obtained from the respective Ac, Bc, Cc, and

De control state space matrices. For a uniform sampling rate, equation (4.16) is now

discretized, to the sampling rate A tCFD = TCFD of the k th CFD time step, to give

xc( i t  + 1) =  eAcA/crox e( i t )  + A-cl[eA'*CF° - I]BC«C

o r

xc(k + \) = G cxc(k) + ̂ c (4 -22)
yc(k) = Ccx c{k) + Dcuc 

and the current value of y c can be computed from equation (4.22) and added to the 

original aeroelastic state vector defined by equation (4.21) in the appropriate modal 

control location 8 } . This new state space vector is then used for calculating the real

nodal displacement u and velocity u vectors at every aerodynamic grid point on the 

deformed structure. Applying the boundary transpiration method, the aerodynamic flow 

field around the vibrating structure is adjusted accordingly to match the actual 

deformations on the structure. These aerodynamic flow components are needed for the 

next Euler solution iteration step, see Figure 4.1. The AtCFD = TCFD should always be

less than 1/20 of the highest structural frequency. This mean that in the highest structural 

mode there is at least 20 sampling points per cycle.

For the case of multisampling rate aeroservoelastic analysis, in which the vehicle’s 

control law system is discretized at Atcontrol a different sampling rate than the AtCFD of

the aeroelastic system, then the control outputs signal y c in equation (4.22) is only 

being computed and feedback to the aeroelastic state vector equation (4.21) at only every 

A*control I™6 steps. The closed loop aeroelastic and other components, such as sensor and
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actuator which might be analog, analyses are running at every AtCFD time step, and will 

receive a control signal from the control law at every Atcontrol time step. Because of the 

timing of the feedback signal to the aeroelastic loop, it is necessary to set the AtCFD in 

such a way that Atcontrol is a multiple of AtCFD .

This type of an analysis, at a specific Mach number, may then be repeated for a 

number of altitudes, involving various dynamic pressure values and the instability 

altitude, signified by a zero damping value, may then be extracted using simple 

interpolation of each desired state variable. An alternative faster procedure based on a 

system identification technique, which also provides aerodynamic state space matrices 

vital in the design of control law is described in the following sections.

4.3.2 Aeroelastic and Aeroservoelastic Analysis With Sensor Mechanism

In the present of sensors, the generalized state space equation of motion (4.11) has the 

following expression,

xAt) = A x ( t )  + B J ( t )  (4.23)

?.(*)=

9  s I  0

9s 0 I

"sen . - T,a> o

"sen 0 T,<D

."sen, T ^ - M ^ K )  T ^ - M -ii

....
 .

...
...

.i
t* +

0
0
0

l^W J 0
m

or

usen ̂ sen ^  sen310 the physical sensor’s displacement, velocity and acceleration

vectors that were mention previously in Equation (3.51). T5 is the interpolation matrix

that relates the generalized motion to the actual physical sensors motions.

In order to incorporate the control laws to body fixed frame coordinate system, it is 

necessary to transfer the equation of motion (4.23) from an inertial frame to a body fixed. 

The above equation will have the following transformation as mentioned in chapter 3
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i J(0 = T2-'(A,TI - T 3)* ,(0  + T2- 7 ( 0  (4.24)

_M0 = C jf,* ,(7) + D „ /(0  

T /  s are the coordinate transformation matrices which tranform the required state-space 

equation in the body coordinate system, which is defined in the Reference 57. The 

Equation (4.24) is discretized to AtCFD using ZOH to obtain

x,(k  + l) = G sx s(k) + H J ( k )

».(*)
?.(*)

«w.W > =

I
o

T ,*
0

0
I
0

0
0
0
0

■ T ^M -'

m  (3.25)

TsO>(-MlK) TJ® (-M ’IQ_

The sensor signals are input to the control system and the control output will be fed back 

at the appropriate time to complete the aeroservoelastic analysis loop.

4.3.3 ARMA Model in Aeroelastic and Aeroservoelastic Analysis

The model structure used in the system identification technique is the auto regressive 

moving average model (ARMA) [90’95]. The technique describes the modal response force 

at time k  of a system as a summation of scaled previous outputs and scaled values of 

modal displacement input to the system, as shown in equation (4.26). The ARMA model 

makes the assumptions that most aeroelastic systems can be treated as dynamically 

linear117,971 i.e. the aerodynamics responds linearly for small perturbations about a 

potential nonlinear steady state mean flow.

The basic autoregressive moving average (ARMA) model of Figure 4.4, at time k , 

may be written as
nb-\

fa (k) = £  [A, ] / .  ( k -  0  + £  lBm M k ~ m) (4.26)
;=1 m=0

in which the A-'s and B ' s  are unknowns to be determined from excitation of theI ftx

structure through a prescribed motion containing the spectrum of calculated structural 

eigenmodes. In addition, na and nb are the orders of the coefficients A / s  and B m's that 

are used to approximate the generalized aerodynamic forces. It may be noted that the
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generalized forces can be scaled by the training density, p  , and that further scaling the 

generalized forces on the right hand side results in the scaled f a aerodynamic force 

vector,

i nb—1

f .  (*) = = I M ,  ] / , ( * -  0  + -  Z  [Bm }q(k -  m) (4.27)
^  i=l P m=0

q(k) A R M A  M o d e l

Figure 4.4. Aerodynamic model.

Next, a state vector, x a, is defined for the scaled aerodynamic system which contains 

a total of (na+nb-l)nr states, as

x a{k) = f a(k -na )
<l{k)

q(k — nb + 1)

(4.28)

The state space form for the scaled aerodynamic model can now be written as

*„(* + l) = G„*„(*).+ H„*(*) (4.29)

f M  = Cax J k )  + X)aq(k) + h  (4-30)

in which
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~A A Aa-l na j A •• 4-j? A 9p no—2 1 Dp nb-\ U b  1p 0
i 0 0 0 0 0 0 0 0
0 i •• 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0 0
0 0 ••• 0 0 0 0 0 0 H fl =

I
0 0 ••• 0 o'. I 0 0 0 0
0 0 •• 0 0 0 I 0 0 0

_0 0 ••• 0 0 0 0 • I 0 0

A A ^na-\ n̂ana j A j A  - ■ 4* B l *p no-2 Da =

(4.31)

| It should be noted that the output equation for the scaled aerodynamic model may include

I a known vector of static offsets, f 0 = f 0! p .  The static offsets are subtracted from the
|
| time history data in the derivation of the aerodynamic model, since the ARMA model

structure only models the dynamics of the system. The generalized force vector
I
[ f a -  f a x P *s then fed back into the structural state space matrix equations (4.13) and

(4.14) in the next solution iteration, as shown in Figure 4.5.

fiflO m Structural
dynamics

Aerodynam ics 
ARMA model

L

Figure 4.5. Coupled ARMA aeroelastic (AE) model.

For the coupled aeroelastic model, a combined structural and aerodynamic state 

space matrix formulation is derived which enables depiction of aeroelastic root locus 

plots. These assist in the control law design, as shown in Figure 4.6. As the density 

increases, the roots become unstable and flutter occurs.
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Figure 4.6 An example of the root locus plot.

Thus the input to the aerodynamic state space equation can be expressed in terms of the 

structural output as

x a(k + X) = G ax a(k) + B aCsX,(k) (4.32)

f .  (*) = pC'X.  (k) + f iD'C.x, (k) + pf„ (4.33)

From Figure 4.4, /  can be obtained as

/ (* )  = / ,(* )  + /„(*) (4.34)

in which / ,  (k) is the user’s input generalized impulse force vector. Substituting 

equations (4.33) and (4.34) into equations (4.13) and (4.14) gives

*,(* + l) = (G, +H,pO.C,)x ,(k)  + R ,p C llx a + B J ,  + H  J 0 (4.35)

(4.36)
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and the combined aeroelastic state space matrix may be written as

x s(k + \) 
x J k  + X) (4.37)

(4.38)

or

*„ (* + !) = G mx m (*) + H (k) + H „ 2 (4.39)

The relevant root locus plot, derived from the G M matrix, shows the location of the roots 

as a function of density, which is analogous to the plotting of q and q contained in xs , 

equation (4.12). This matrix G „ can be used in a control law design process to obtain 

the control state space matrices.

Thus, once the control law is designed, we may obtain the aeroservoelastic response 

for the system with a uniform sampling rate, as shown in Figure 4.7. Starting with the

assumption that q(£)is zero, the vector f a(k) is calculated from equation (4.27), so that

is computed first, equation (4.15), and y s is calculated using equation (4.14) and saved 

in the file xn.dat. Using the calculated structural output y s9 the control surface 

motion, S'c, is computed from equation (4.17) for the NC control surfaces. The control 

surface deflections vector y c is then summed with the feedback structural y s signal to 

obtain the q(&), equation (4.20), and the analysis continues with the next time step.

f a (k ) is simply obtained as f a (k ) = p inf x f a (k) . Then, for each succeeding step, / (k)
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Figure 4.7. Coupled ARMA aeroservoelastic (ASE) model.

A closed form of the coupled aeroservoelastic model consisting of the structural, 

aerodynamic and control state space matrix formulations can also be derived. This 

enables depiction of aeroservoelastic root locus plots, which assist in the control law 

design[96]. The control module will have the state space equation

Jcc( i  + 1) = G CJCC(*) + H(.«t (4.40)

y c(k) = Ccx c(k) + Dcuc (4.41)

with

uc =Ky,(k) = KC,xs(k) (4.42)

* c(fc + l) = G cx c(*) + H elC ,* ,(* )  (4-43)

y c(k) = Ccx c(k) + -DcKCt x,(k)  (4.44)

Figure 4.7 shows that the feedback q(k) signal is the summation of components as

q(k) = qa (k) + y c (k) + y s (k) 45^

in which qa (k ) is the pilot/external input. Substituting equations (4.14), (4.44) and 

(4.45) into equations (4.29) and (4.30), it can be seen that the aerodynamic equation can 

be written as
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x a(k + l) = G axa(k) + n * ‘l A k )  + naC'Xc(k) + l I aDcKC1x,(k) + R aCsx,(k)  (4.46)

f a{k) = pCax a(k) + pD.iC, +DcKC!)xs(k) + fiDaC cx c(k) + pDaqs (k) + fifa (4.47)

Figure 4.6 shows that the signal / ( k ) can be obtained from

f ( k ) - f , ( k )  + f j k )  (4.48)

Substituting equation (4.47) and equation (4.48) into equation (4.13) and (4.14) will give 

the structural state space matrices with the form

x t (k + l) = HspC„x,, +(G, + H,/®„(C, + DcKC,))x,(k) + R ,p D aCcx c(k)

+ H ,pDaqs  (k) + H , / / „  + H , f ,  (4.49)

y,(k) = C,x,(k)  (4.50)

The state space matrix equation of the aeroservoelastic analysis with a uniform sampling

rate may be written as

' x s(k +1) G, + H J/?D0(CJ +D cKCJ) H spC'  HspDaCc x , ( k j
x a{k + \) ► = H ,(C ,+ D cKC,) G a H„Cc *.(*) •
x c(k +1) HcKC, 0 G c x J.k ).

X ' X / * ; X / £ "
0 f i  (k) + <fa (k) + 0
0 0 0

(4.51)

q{k)
q{k)

= [CS 0 0} (4.52)

or
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xJ„(*  + l) = G J„x^(A:) + H s a c \ f I (k) + H saclq^{k.) + H mc3

y saAk) = CsacXsac(k )
(4.53)

The relevant root locus plot, derived from the G sac matrix, shows the location of roots as 

a function of density, which is analog to the plotting of q and q contained in y s ,

equation (4.12). For a uniform sampling rate closed loop control feedback system, the 

response can be computed using equations (4.51) and (4.52).

4.3.3.1 Model Identification

As discussed in the previous section, the aerodynamic model is based on the ARMA 

[90-95,97] s t r u c tu r e  0 f  eqUation (4.23). This model structure describes the dynamic response 

of any multi input multi output (MIMO) system as a linear combination of scaled outputs 

and scaled inputs for the system. The discrete time model procedure utilizes this model 

structure to develop a simple algebraic model, which is equivalent to the unsteady CFD 

solution for a given Mach number and structural geometry. The procedure for 

determining the unknown coefficient matrices in the ARMA model, A and B ., 

involves three p,teps:

1. Prescribe a known displacement time history, or input signal, through the unsteady 

CFD solution and record the aerodynamic response, or output signal.

2. Select a model size, na and nb in equation (4.24) and identify the ARMA 

coefficients which match the input output data recorded in step 1.

3. Implement the computed aerodynamic model, equations (4.29) and (4.30) from step 2 

for the input signal used in step 1, and compare the model output to the actual system 

output.

The system identification procedure described above is an iterative procedure. If the 

comparison in step 3 shows that the model does not match the actual CFD solution, step 2 

is repeated for a different choice of na and nb . The coefficient identification mentioned 

in step 2 is accomplished by minimizing the error between the model output and the 

unsteady CFD output, using a least squares fit. Since this will result in an over 

determined system of equations, STARS uses an implementation of singular value 

decomposition (SVD) to extract the ARMA coefficient matrices from a matrix of system
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equations assembled from the training data.

The success of this identification procedure is highly dependent on the amount and 

quality of training data available in step 2. Hence an “optimum” input signal should be 

used in step 1, which will excite a broad response spectrum in the unsteady CFD solution. 

Once an accurate model is identified, it can then be used in place of the CFD solution in 

the coupled aeroelastic or aero simulation, Figure 4.5.

4.3.3.2 Input Optimization

The input of the ARMA[97] model for the unsteady CFD solver is the generalized 

displacement of the structure in the flow field. However, the Euler CFD solver in the 

STARS program also requires the velocity of the structure to satisfy its boundary 

condition requirements. Therefore, any prescribed input signal for structural displacement 

must be uniquely differentiable in order to obtain the physical velocity of the structure for 

input to the CFD solver. Alternatively, a velocity may be specified, which can then be 

integrated to obtain the consistent structural displacement. In either case, the input must 

be selected which excites a wide range of dynamic frequencies in the flow field in order 

identify a practically useful model.
Jt

In the STARS program, a 753211 variable amplitude multistep input, see Figure 4.8, 

is implemented on the velocity boundary condition for the training process of the system. 

The 753211 variable multistep input is widely used by the flight test community because 

of its ease of implementation and excellent frequency content. A velocity signal 753211, 

with the magnitude as shown in Figure 4.8, is input in sequence for each of the q modes. 

The aerodynamics output computed for the particular modal displacement and velocity is 

collected for future model training. Once the 753211 signal input to the q} mode is about 

to finish, a 2nd 753211 signal input to the q2 mode will start and this will continue for nr 

modes. The purpose of inputting the signal one mode at a time is to study its influence 

on the coupling behavior of the structure’s generalized aerodynamic forces. As 

mentioned previously, the prescribed velocity function is then integrated numerically to 

compute the displacement boundary condition, which also becomes the training input for 

the ARMA model.
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Figure 4.8. 573211 variable amplitude multistep velocity input signal for several 

modes.

Most aeroelastic problems are formulated with multiple structural modes and, hence, 

will require a separate multistep input signal for each mode. Intuitively, it is obvious that 

all modes may not be run simultaneously or the ARMA model will fail to discriminate 

between the effects of the different mode shapes. Furthermore, it will take a large amount 

of computational effort if the input signal for each mode is run independently. In order to 

save time, and still guarantee a unique solution, the multistep input signal for each mode 

is applied in a staggered fashion, such that they slightly overlap but are still out of phase, 

as shown in Figure 4.8.
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4.4 Concluding Remarks

In this section a description of the CFD solution technique has been given. This has 

been followed by a detailed formulation for CFD based aeroelastic and aeroservoelastic 

analysis. A closed form expression of the aeroelastic and aeroservoelastic analyses were 

incorporated into STARS for the uniform sampling rate case along with the sensor 

mechanism. The ARMA procedure has also been explained along with the 

implementation of control laws.

I

!
|
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[
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CHAPTER 5

NUMERICAL EXAMPLE (STARS-CFDASE)

5.1 Introduction

A large number of CFD-based aeroelastic analyses has been performed in support of 

NASA projects such as Pegasus®, the SR-71 airplane, SR-71/Hypersonic Launch 

Vehicle, High Speed Civil Transport (HSCT), National Aerospace Plane (NASP), and 

Generic Hypersonic Vehicle (GHV) projects, among others. Some analysis results have 

been correlated with those obtained from flight testing. In the area of aeroelasticity, the 

associated solution module has been checked out by comparing results with those 

obtained from tests as well as other analysis methods. The aeroelastic analysis for the 

X43 Hyper-X was performed. The results are shown in the following section. This is a 

typical example problem of a detailed, CFD-based, aeroelastic and aeroservoelastic 

analysis.

Figure 5.1 shows the global analysis flow chart for nonlinear AE and ASE analyses 

using the usual Euler or the ARMA approach. This module is activated by typing the 

command 'cfdaserun'. Thus, a steady-state solution of the flow is first implemented that 

requires input datat98’88! for two-dimensional surface and three-dimensional volume 

generation involving triangular and tetrahedral elements, respectively. For surface and 

volume grid generation, two input files having background (job.bac) and surface (job.sur) 

definitions are generated; plots of these surfaces are produced by the GLPLOT program. 

The input data filet98], job.bco, is used to set up boundary conditions, and the file 

job.cons is the required input file for steady-state flow analysis. An alternative procedure 

for steady-state flow analysis only can also be performed in double precision by using the 

STEADYDP solution module Figure 5.1.
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The data files needed for subsequent CFD-based aeroelastic analysis relate to 

structural vibration analysis. The data files solids.dat, (the term 'solids' is a generic 

identifier that can be set to any name).

job.scalars. The unsteady parameter input data file, job.conu, contains parameters that 

dictate the pattern of solution convergence. In all these data sets, the term 'job' is generic 

and signifies the problem under consideration. Additional comment lines may be 

inserted at appropriate places with 'c' or 'C' in the first column.

Detailed, color graphic plots of solution results are conveniently obtained by using 

the POSTPLOTF submodule of the STARS program. The unsteady generalized 

displacements can also be plotted by employing the QUICKPLOT program (activated by 

typing !qp'), and black-and-white contour plots of solution results are achieved by the
[981

XPLT program, which is part of POSTPLOTF.

5.2 Cantilever Wing Nonlinear Aeroelastic Analysis

A cantilever wing with a NACA 0012 airfoil was use to demonstrate the integration 

of the control discipline in with the aero elasticity analysis capability. The results for the 

aeroelastic analysis and aeroservoelastic analysis for the cantilever wing will be shown. . 

Figure 5.2 shows the form of the background mesh that was employed in the 3-D 

meshing of the computational solution domain surrounding the cantilever wing. Figure 

5.3 shows a cantilever wing, with a NACA 0012 airfoil cross section, and the solution 

domain. The figure also shows the edges and surfaces, marked appropriately for the 

description of the CFD model.

The basic input data parameters were:

[98]
For subsequent unsteady flow analysis, related input data is represented by the file

Wing span 

Wing chord length 

Mach number 

Angle of attack 

Speed of sound at infinity

2.0178 m

1.0089 m

2.0

0°

340.29 m/s2
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job.bac job.sur

job.fro
Legend

job.bac
User data 

input
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job.bco Results
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 ̂ f job.fro job.gri job.fro

job.plt
- « ■ job.cons job.bac

job.sur
job.fro

(job.unk)job.geo job.consdp

job.geodp i f

job.plt
job.cons
job.bco
Qob.unk)

job.unl

steadydp.outsolids.dat

job.geodp  ̂ f job.fro' '  solids.out;2 XPLT
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B/W screen 

displaygenm ass.out

job.fro

i f job.phia

job.fro

(job.unk) ' f  job.arrays 
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Arrays
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Figure 5.1. Flowchart for CFD-based aeroelastic analysis.
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Structural data’

Young’s modulus = 6.8947E+10

Poisson’s ratio = 0.3

Density = 2764.925 kg/m3

The meshes employed for the analysis were such that

Number of fluid nodes = 65,745

Number of fluid elements = 351,932

Number of structural nodes = 486

Number of structural elements = 1,549

Detailed data such as the finite element structural model, CFD model and control modul 

files are documented in the Appendix A, Appendix B and Appendix C.

6

32

Figure 5.2. Background domain for aeroelastic analysis.
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5.2.1 Analysis Results

Figure 5.4(a) shows the view of the surface grid on the wing and a detail of the grid 

on the symmetry plane for the aerodynamic analysis. A view of the surface grid on the 

wing for the structural analysis is shown in Figure 5.4(b). Figure 5.5 shows the 

distribution of Mach number and pressure on the wing at a converged steady-state. The 

first eight structural vibration modes are illustrated in Figure 5.6. The first bending, first 

torsion and control surface mode (mode number 7) are used for this aeroelastic and 

aeroservoelastic example study. For this particular example the first bending and first 

torsion modes will couple with each other to cause flutter. For the stability analysis, a 

series of aeroelastic analyses were run for a range of densities and at each density the 

damping values was calculated from the generalized displacements such as the one 

obtained in Figure 5.7(a), which was run for the density at .97-^. The generalized

displacement in Figure 5.7(a) showed that at this density or altitude the wing 

displacement would grow and flutter. Figure 5.7(b) shows the open-loop aeroelasticity 

root locus plot of all the eigen roots motion computed for a range of densities. Whenever 

any of the roots has crossed outside the unit circle the wing has become unstable and 

flutters. According to Figure 5.7(b), the wing flutter occurs at a density equal to .955-^-.ffl

Figure 5.8 plots the calculated generalized displacement response damping verses density 

at which the runs were made for a number of densities. As density increases the damping 

value decreases, and at the point where damping is less than zero then flutter occurs. The 

zero damping value is located at a density equal to 0.955^  in Figure 5.8. The

augmented stable solution, with application of control surface motion applied at time = 1 

second for an unstable aeroelastic solution at density = 1.3709-^-, is displayed in Figure
m

5.9.
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(a) mesh employed for the aerodynamics (b) mesh employed for structural mechanics

Figure 5.4. View o f meshes employed for the analysis o f  the cantilever wing.

I . 1 3 7 E  a

1. BBBBE B

1. bbitE  B

1. 4!D S  B

1. LHTIE B

B. Ga-tBE-i

7. U i E - i

4. i B7SE-i

B. 77JHE-+

3. 4B33E a

4. 8348= B

4. 3Bb4E B 

3. 03TBE B 

2 . IQ B jE  B

I. 748bE » 

S.1BS1E B 

i .  b43BE B 

i. BB4E B

5. 4bS7E-l

(a) Mach distribution. (b) Pressure distribution.

Figure 5.5. Cantilever wing steady-state  M ach number and pressure distributions.
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(a) mode 1? 3.521 Hz.

J m
M

(b) mode 2, 14.819 Hz.

(c) mode 3, 18.819 Hz. (d) mode 4, 38.026 Hz.

(e) mode 5, 41.408 Hz. (f) mode 6, 48.636 Hz.

(g) mode 7, 59.797 Hz. (h) mode 8, 64.958 Hz.

Figure 5.6. Illustration o f the structural modes o f  the cantilever wing.
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(a) Generalized displacement response plots for the cantilever wing at density = 0.97 kg/m3
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(b) Open-loop root locus plots of the cantilever wing, flutter at density = 0.955kg/m 

Figure 5.7 Stability response analysis of the cantilever wing.
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Figure 5.8. Aeroelastic stability plot for cantilever wing.
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Figure 5.9 Generalized displacem ent o f the cantilever wing, with and without control 

application, at time 1 sec, for density =1.3709 kg/m 3.
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5.3 HyperX X-43 Nonlinear Aeroelastic Analysis

Hyper-X is an experimental flight research vehicle that is used to demonstrate 

airframe-integrated, scramjet powered engine (supersonic-combustion ramjet) 

technologies that are capable of hypersonic speed (faster than Mach 5) and reusable space 

launchers. Scramjets are ramjet engines in which the airflow through the engine remains 

supersonic. This experimental research vehicle should be capable of expanding the speed 

boundaries of air breathing propulsion. Figure 5.10 provides a view of the geometry of 

the NASA HyperX vehicle and gives details of the flight trajectory. The Hyper-X[" ’100] 

launch vehicle stack is carried under the wing of NASA’s B-52 up to the altitude of

19,000 ft over the Pacific Ocean. The X-43 A (free-flyer) vehicle, the adapter and the 

booster rocket Pegasus is called the Hyper-X launch vehicle stack. Once separated from 

the B-52, the research vehicle will be powered by the Pegasus solid rocket booster to the 

scramjet engine test points condition and separation will occur at approximately 95,000 ft 

altitude. At the designated altitude, the X-43A vehicle will separate from the booster 

launch vehicle to a safe distance where the Hyper-X launch vehicle’s scramjet propulsion 

engine test will be conducted at Mach 7.0. In this study the aeroelastic analysis is carried 

out for the free-flyer at Mach 7.0 case.

Figure 5.11 presents a view of the finite element mesh used for the structural 

vibration analysis model. The structural vibration frequencies computed by STARS are 

compared in Table 5.1 with the values computed by NASTRAN and with the results of 

ground vibration tests performed on the Hyper-X vehicle. Figure 5.12 illustrates the 

surface mesh employed for the aerodynamics simulation model used in the aeroelastic 

stability analysis. A view of the computational domain employed for the aerodynamics 

simulation of the HyperX/X-43^101,1021 is given in Figure 5.13. Figure 5.14 shows the top 

and bottom views of the steady state Mach distribution of the Hyper-X free flyer at free 

stream Mach 7.0. The flutter results, obtained using STARS ARMA-CFD analysis 

modules, for a free stream Mach number of 7.0 is shown in Figure 5.15. In Figure 5.15, 

the flutter points were collected for ARMA-pertubation Piston, perturbation Piston and 

ARMA-Euler aeroelastic solution analysis. The perturbation Piston and ARMA- 

perturbation Piston show flutter is occuring at approximately at 28,500 ft altitude, and the
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ARMA-Euler solution shows that the flutter point is at 34,000 ft altitude. Figure 5.16

depicts the predicted conservative flutter point of the ARMA-Euler solution for the free

flyer at Mach 7.0, which means that at Mach 7.0 the flyer is stable at any altitude above

34,000 ft. A summary of the CPU requirements for different aeroelastic analysis schemes 

is given in Table 5.2.

For the solid mechanics,

NN = number of structural nodes = 11686 (70,116 dof)

NEL = number of structural elements = 11,245

Element types : line, shell, solids

Material types : Isotropic, orthotropic

NR = number of roots = 30

CPU = 3 min (IBM 6000-370 / PC 1G HZ)

For the finite element ARMA -CFD model:

Mach =7.0

NN = number of nodes = 229,149 

NEL = number of elements = 1,243,804

5.4 Concluding Remarks

In this chapter a number of numerical examples are presented that pertain to practical 

problems of current interest. In particular it has been demonstrated that suitable control 

law design will effect suppression of flutter for the cantilever wing example with uniform 

sampling rate. The sensor and multisampling rate formulations are being run for a 

current project, however I do not have permission to release the data at this point. Also, 

it has been emphasized that PC’s may be used to solve real world problems such as the 

X-43, using an ARMA technique.
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Figure 5.10 Hyper-X research vehicle, showing the geometry and the 

proposed trajectory.
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Figure 5.11. Structural representation o f  the HyperX Free-Flyer 

Table 5.1 STARS modal analysis o f  the X-43 Free-Flyer.

Mode STARS GVT NASTRAN Mode Shape

# Frequency (Hz)Frequencv (Hz) Frequency (Hz)_______________

1-6 0.0 0.0 0.0 Rigid Body

8 39.81 40.03 37.54 HT pitch -  S

9 40.98 41.90 38.54 HT pitch -  A

10 45.65 46.62 44.14 Fuselage 1st bend -  S, HT pitch

11 82.76 76.87 HT yaw -  A

12 88.82 79.22 HT yaw -  S

13 89.15 77.29 82.45 Fuselage 1st torsion -  A, HT bend

14 98.02 95.64 92.54 Fuselage 2nd bend -  S. some HT bend/pitch

15 110.51 107.91 105.07 Fuselage 1st bend -  A, rudder pitch

16 117.40 108.94 Rudder pitch -  S, some outward bend

17 120.71 113.24 Rudder pitch -  A, some fuse 1st bend -  A

18 141.34 148.63 Fuselage 2nd torsion -  A. rudder pitch, HT

19 146.87 119.36 HT bend -  S, some F2B, some panel motion

20 148.44 146.82 Upper mid panel -  S

21 153.16 151.30 Upper & lower forward/mid panel -  S

22 160.67 159.13 Upper rear inbd panel - S
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Figure 5.12 Surface mesh for the aerodynamic analysis o f the HyperX Free-Flyer

Figure 5.13 Computational dom ain for the analysis o f the HyperX Free-Flyer



(a) Mach distribution on upper surfaces.

(b) Mach distribution on lower surfaces 

Figure 5.14. X-43 CFD steady-state solution results for M ach 7.0.
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Figure 5.15 ARMA-CFD aeroelastic flutter prediction for the HyperX/X-43 vehicle at 

Mach 7.0.

Table 5.2 ARMA Solution CPU time (PC 600M HZ) for the HyperX analysis at Mach7.0

Step 1 Step 1A Step 2 Step 3 Step 4 Step 5 Total

time

ARMA-Euler 128 hr. 89 hr. 40 hr. 10 sec. 10 sec. 2 min 260 hr.

ARMA-Piston

Perturbation

128 hr. 1 min 40 sec. 10 sec. 10 sec. 2 min 128 hr.

Piston

Perturbation

128 hr. 15 min. 128hr.

—A" Piston 
- a  ARMA Piston 

ARMA frJ«r

0 20 40
Altitude (ft)

Flle«flutter_damplng.dat Signal Sufflx-[nonel; Data-(nona|
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Figure 5.16 Predicted flutter point and M ach 7.0 flight trajectory o f the X-43.
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CHAPTER 6

CONCLUSION

6.1 Summary

The integration of the control disciplines into the multidisciplinary aeroelastic 

computer program STARS in a generalized form has been described in this thesis work. 

The adoption of the finite element procedure for both the structural and fluid discretization 

ensures accurate modeling of the interaction between the two disciplines of solid and fluid 

mechanics. In addition, use of CFD modeling of the fluid ensures accurate flow simulation 

around complex geometries.

A study of alternative methods of computing the aerodynamic components has been 

demonstrated by the implementation of both Euler methods and the Piston Perturbation 

technique within the CFD code. A more efficient use of CPU time was ensured, by 

employing the method of system identification to approximate the aerodynamics, within a 

state-space matrix formulation called ARMA. With the ARMA formulation, the 

aerodynamic forces can be computed at a faster rate than can be achieved by employing 

traditional CFD methods. The ARMA model has proven its inherent efficiency in the 

overall ASE analysis including the control design integration task. With ARMA, the 

aerodynamic characteristics of the structure are expressed in terms of state-space matrices 

and the control engineer can utilize these aeroelastic matrices to design an appropriate 

control law for the structure, to prevent undesirable flutter. General flutter stability 

characteristics can be determined within a shorter time period for aeroservoelastic 

analysis, compared to the time required when an Euler based CFD approach is adopted. A 

closed loop state-space expression for the full nonlinear aeroservoelastic control has been 

formulated for STARS.
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The integration of the control laws into the aeroelastic system has been verified by 

utilizing the MATLAB fj control toolbox to simulate the aeroservoelastic running 

scheme. The signal result output was found to be the same for both the STARS and the 

MATLAB simulations. This validates the aeroservoelasticity numerical integration 

methodology that is employed.

The example of a cantilever wing with a control surface, that has been included in this 

thesis, demonstrates both the aeroelastic and aeroservoelastic analysis capability of 

STARS. The results obtained demonstrated that the ARMA Piston perturbation is as 

accurate as the pure Euler and Piston perturbation methods. It was shown how the 

integrated control law helped to stablise the wing at a density at which it would normally 

be expected to flutter. In related work, which is not included here, a model of the BACT 

wing from NASA Langley has been analysed using the aeroelastic and aeroservoelastic 

capabilities of STARS that have been developed in this thesis. The results obtained have 

been compared to those produced by Stephens t96L When the control loop is not closed, 

STARS will give the aeroelastic results and when it is closed then the full aeroservoelastic 

analysis can be carried out.

The application of the procedures that have been developed to the aeroelastic analysis of 

flight vehicles HyperX/X-43 has also been included. Again, the calculations demonstrated 

that results obtained using the ARMA Piston perturbation are as accurate as those 

produced when pure Euler and Piston perturbation methods are employed. The flutter 

point for the HyperX/X-43 at a Mach number of 7 was determined. Boeing has produced 

results of a flutter analysis for this vehicle using the panel method. However, their 

solution was not a match point type of solution, so that their results cannot correctly be 

compared with the match point solutions of STARS. Both solutions do, however, indicate 

that the vehicle is over designed and very stable. From experience the flutter point 

obtained from the panel method, or linear aeroelasticity analysis, has a safety margin of 

about 20 percent. The flutter point obtained from nonlinear aeroelasticity has a much 

smaller safety margin. For a supersonic flow, panel approximations do not have the 

capability of the CFD approach to compute the shock wave that is present in the real
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physical flow solution. This is the primary motivation for research in the field of nonlinear 

aeroservoelasticity. Much recent emphasis has been placed on modeling of 

multiphysics^103’104̂ phenomenon that includes a variety of topics such as aeroelasticity.

The results that have been computed for this thesis have been obtained using a single 

CPU machine. The flutter solution time, for the Mach 7.0 analysis for the HyperX/X-43 

using the ARMA model, was around 225 hours of CPU time on a 1 GHz PC.

Work on the STARS program is continuing and the capabilities of the program are 

currently being enhanced in areas such as combustion chemistry and a nonlinear control 

laws integration.

6.2 Concluding Remarks

The development and implementation work that has been described in this thesis has 

demonstrated that the techniques that have been employed can be routinely used for 

solution of large complex, practical problems.
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APPENDIX A

Control Law Data Verification of STARS

Matlab model of the aeroservoelastic problem of the wing in can.m file.

gc = [ 1.4554 -0.6082 -0.3573 -0.0816 -0.1207
1. 0 0 0 0
0 0 0.5179 0.4651 -0.2160
0 0 -0.4492 0.8606 0.0859
0 0 -0.2170 -0.0726 0.6776];

he = [ 0 0 0
0 0 0
0.6303 -0.3140 -0.0427

-0.1496 0.1331 0.0058
0.1913 -0.1502 -0.0148];

cc = [ 0 0 0 0 0
0 0 0 0 0
0.1688 0.1429 0 0 0] ;

dc = [ 0 0 0
0 0 0
0 0 0] ;

aero_wing
soli_wing

nstep = 900; 
dt = .268570E-02;
fo= [ .204124E+03; .544244E+02; -.110690E+02]/.122500E+01;
rho. = 1.3709;

% Assume that you have (gc,he,cc,dc) 
GM = pck(gc,hc,cc,dc);

% Assume that you have (gs,hs,cs,ds) 
SD = pck(gs,hs,cs,ds);

% Assume that you have (ga,ha,ca,da) 
AD = pek(ga,ha,ca,da);

% Assume that you have F0

95



FO = fo ;

% Assume that you have rho 
rho = 1.37 09*eye(3);

systemnames = 'GM SD AD rho F O 1; 
inputvar = ' [fi(3);fo] '; 
outputvar = 1[SD]'; 
input_to_AD = '[SD+GM]’; 
input_to_SD = '[fi+rho]'; 
input_to_GM = '[SD]'; 
input_to_F0 = '[fo]'; 
input_to_rho = '[AD+FO]'; 
sysoutname = ' P ' ; 
sysic;

fi = zeros(nstep,3); 
f i ( 3 , : )  = [10 10 10 ] ;

fo = ones(nstep,1);

input = [fi fo] ;
input = vpck(input,[dt:d t :dt*nstep]); 
input = v t p (input);

output = dtrsp(P,input,dt,dt*nstep);

ql = sel(output,1,1); 
q2 = sel(output,2,1); 
q3 = sel (output, 3 ,1) ,-

%vplot(ql);

xnc_lp3709;
TIME = x n (:,1);
Ql = x n (:,2);
Q = vpck(Ql,TIME);

vplot(ql,Q,'r'); 
legend('new','old');

This is the aerodynamic state-space matrices in aero_wing.m file

g a = [ -.991061E+00 .000000E+00 .OOOOOOE+OO -.205194E+06 -.262871E+06
944439E+04 - 
.000000E+00 

782857E+04 
.OOOOOOE+OO 

1-34413E+04 
.OOOOOOE+OO 

000000E+00 
.000000E+00 

000000E+00

986498E+03 - 
-.926970E+00 
150087E+04 
.000000E+00 

297272E+03 
.OOOOOOE+OO 

OOOOOOE+OO 
.000000E+00 

OOOOOOE+OO

235387E+04 - 
.OOOOOOE+OO 

274492E+04 
-.858700E-01 
171144E+03 
.OOOOOOE+OO 

OOOOOOE+OO 
.OOOOOOE+OO 

OOOOOOE+OO

.159922E+04 
-.282305E+05 
.118194E+04 
-.101491E+04 
. 446051E+03 

.OOOOOOE+OO 
.000000E+00 

.OOOOOOE+OO 
.000000E+00

.557178E+05 

. 319707E+03 

.000000E+00 

.000000E+00
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.OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .OOOOOOE+OO 

.OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .OOOOOOE+OO 

.OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .OOOOOOE+OO 

.OOOOOOE+OO .OOOOOOE+OO 
.lOOOOOE+Ol .OOOOOOE+OO 
ha=[ .247315E+06 -.215598E+06 -.112413E+05 

.295572E+05 .448691E+05 .114084E+05
3 56820E+03 
OOOOOOE+OO 
lOOOOOE+Ol 
OOOOOOE+OO 
OOOOOOE+OO 
OOOOOOE+OO 
OOOOOOE+OO

.OOOOOOE+OO .OOOOOOE+OO .OOOOOOE+OO
OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .lOOOOOE+Ol .OOOOOOE+OO

OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .OOOOOOE+OO .lOOOOOE+Ol

OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .OOOOOOE+OO .OOOOOOE+OO

OOOOOOE+OO .OOOOOOE+OO]

.778613E+03 

.lOOOOOE+Ol 

.OOOOOOE+OO 

.OOOOOOE+OO 

.OOOOOOE+OO 

.OOOOOOE+OO 

.OOOOOOE+OO

. 298628E+04 

.OOOOOOE+OO 

.OOOOOOE+OO 

.lOOOOOE+Ol 

.OOOOOOE+OO 

.OOOOOOE+OO 

.OOOOOOE+OO]
ca=[ -.991061E+00 .OOOOOOE+OO .OOOOOOE+OO -.205194E+06 -.262871E+06 
.944439E+04 -.986498E+03 -.235387E+04 -.159922E+04

.OOOOOOE+OO -.926970E+00 .OOOOOOE+OO -.282305E+05 -.557178E+05 
.782857E+04 • .150087E+04 .274492E+04 .118194E+04

.OOOOOOE+OO .OOOOOOE+OO -.858700E-01 -.101491E+04 -.319707E+03 - 
.134413E+04 .297272E+03 .171144E+03 .446051E+03]
da=[ .247315E+06 -.215598E+06 -.112413E+05 

.295572E+05 .448691E+05 .114084E+05 

.778613E+03 .356820E+03 .298628E+04]
Ga=ga;
Ha=ha 
Ca=ca 
Da=da

This is the structural state-space matrices in the soli_wing.m file

gs=[ .995864E+00 .690952E-12 -.401843E-10 -.131238E+01 .513219E-09
.27733 5E-07

.282288E-11 .959155E+00 -.384297E-10 .208874E-08 -.229246E+02 -
.263249E-07
-.537 965E-08 -.125927E-08 .505652E+00 -.363673E-05 -.848386E-06 - 
.311618E+03

.268093E-02 .620569E-15 -.373766E-13 .998236E+00 .693263E-12 -
.407459E-10

.253533E-14 .264455E-02 -.358470E-13 .282512E-11 .969003E+00 -
.389683E-10
-.50037 6E-11 -.117464E-11 .220780E-02 -.538408E-08 -.126365E-08 
.53 882 6E+00]
hs= [-.111115E-03 -.105072E-15 .207388E-12
-.105072E-15 -.447799E-03 .198901E-12
.207388E-12 .198901E-12 -.122502E-01

-.149314E-06 -.706645E-19 .141946E-15
-.706645E-19 -.605490E-06 .136333E-15
.141946E-15 .136333E-15 -.181295E-04]

cs=[ 0 0 0 1 0 0 
O O O O I O  
0 0 0 0 0 1] 

ds=[ .OOOOOOE+OO .OOOOOOE+OO .OOOOOOE+OO 
.OOOOOOE+OO .OOOOOOE+OO .OOOOOOE+OO
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.OOOOOOE+OO .OOOOOOE+OO .OOOOOOE+OO] 
Gs=gs;
Hs=hs;
CS=CS;
Ds=ds;
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APPENDIX B

DATA INPUT PROCEDURE 

(ST ARS-CFD ASE) 

B.l Introduction

Section B.2 thru B.10 provide description of data files Figure 5 .1 needed for a CFD- 

based AE and ASE analysis; Sections B.l 1 and B.12 depict the respective run streams for 

usual Euler and ARMA solutions, respectively.

B.2 Input Data for Background Grid (job.bac)

B.2.1 $ Title for Background Grid File

Format (FREE)

1. Description: Title card for the background grid file.

2. Note:

A maximum of 80 characters on one line of data.

B.2.2 NPBG, NEBG, NPS, NLS, NTS

Format (FREE)

1. Description: Basic data parameters.

2. Notes:

NPBG = number of points in the background grid
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NEPG = number of tetrahedral elements in the background grid

NPS = number of point sources

NLS = number of line sources

NTS = number of triangular plane sources

B.2.3 JP, XP, YP, ZP

Format (FREE)

B.2.4 (DBG(1,1), DBG(I, 2), DBG(I, 3), DBG(I, 4», 1=1, 3)

Format (FREE)

1. Description: NPBG sets of background grid nodal data.

2. Notes:

JP = index defining the point number

XP = X coordinate of the point

YP = Y coordinate of the point

ZP = Z coordinate of the point

DBG(I, 1) = x local-global coordinate 

DBG(I, 2) = y local-global coordinate 

DBG(I, 3) = z local-global coordinate
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DBG(I, 4) = scale factor; a unit length along this axis is subdivided into 

approximately 1.0/DBG(I,4) divisions, with finer divisions 

being made near point I.

B.2.5 (JE, KEL(I), 1=1,4)

Format (FREE)

1. Description: NEBG sets of background grid element data.

2. Notes:

JE = index defining the element number

KEL(I) = node defining a vertex of the tetrahedral element

The background grid is required to completely enclose the computational 

domain as defined in the surface data file. The fineness of the generated grid 

is controlled mainly by the parameter DBG(I,4). The smaller this value is, the 

larger the number of elements there are.

B.2.6 $ Point Sources Data

Format (FREE)

B.2.6.1 $ Text

Format (FREE)

B.2.6.2 X, Y, Z, S, R, D

Format (FREE)

1. Description: Localized background weighting caused by point sources.

2. Notes:
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X, Y, Z = Cartesian coordinates at the point sources

S = weight at the point source

R = radius of the sphere with a constant weight, S

D = distance from the source at which the spacing is 2 DS

Data for sections B.2.6.1 and B.2.6.2 are repeated NPS times.

B.2.7 $ Line Sources Data

Format (FREE)

B.2.7.1 $ Text

Format (FREE)

B.2.7.2 XI, Y l, Z l, SI, R l, D1 

Format (FREE)

B.2.7.3 X2, Y2, Z2, S2, R2, D2

Format (FREE)

1. Description: Localized background weighting caused by line sources.

2. Note:

Data for sections B.2.7.1 through B.2.7.3 are repeated NLS times; definition 

as above pertains to two points defining the line source.

B.2.8 $ Plane Triangular Sources Data

Format (FREE)

B.2.8.1 $ Text

Format (FREE)

B.2.8.2 XI, Y l, Z l, SI, R l, D1
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Format (FREE)

B.2.8.3 X2, Y2, Z2, S2, R2, D2

Format (FREE)

B.2.8.4 X3, Y3, Z3, S3, R3, D3

Format (FREE)

1. Description: Localized background weighting caused by triangular surface

sources.

2. Note:

Data for sections B.2.8.1 through B.2.8.4 are repeated NTS times; definition 

as above pertains to three points defining the triangular plane source.

B.3 Input Data for Surface Grid (job.sur)

B.3.1 $ Title for Surface Definition File

Format (FREE)

1. Description: Title card for the surface definition file.

2. Note:

A maximum of 80 characters on one line of data.

B.3.1.1 NIS, NSF

Format (FREE)

1. Description: Basic data parameters.

2. Notes:

NIS = number of boundary edges for defining normals

NSF = number of support surfaces defining normals
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Multiple surfaces can be defined in each support surface region.

B.3.2 $ Boundary-Edge Definitions

Format (FREE)

B .3.2.1 JS, ITIS

Format (FREE)

B.3.2.2 NIP

Format (FREE)

B.3.2.3 ((CIP(I, J), J=l, 3), 1=1, NIP)

Format (FREE)

1. Description: NIS sets of boundary-edge definition data.

2. Notes:

JS = index defining the boundary edge

ITIS = index defining the type of boundary edge

= 1, normal generation (Ferguson)

NIP = number of points on the boundary edge

CIP(I, 1) = X coordinate of a point defining the boundary edge

CEP(I, 2) = Y coordinate of a point defining the boundary edge

CIP(I, 3) = Z coordinate of a point defining the boundary edge

B.3.3 $ Support-Surface Definitions and Orientation

Format (FREE)

B.3.3.1 ISS, ITSF,

Format (FREE)

B.3.3.2 NU, NY

Format (FREE)

B.3.3.3 ((CSP(I, J), J=l, 3), 1=1, NU*NV)

Format (FREE)

1. Description: NSF sets of support-surface definition data.
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z . Notes:

ISS = index defining the support surface

ITSF = index defining support-surface type

= 1, composite surfaces, curved (Ferguson)

NU = number of points in the U parametric direction

NV = number of points in the V parametric direction

CSP(I, 1) = X coordinate of a point defining the support surface

CSP(I, 2) = Y coordinate of a point defining the support surface

CSP(I, 3) = Z coordinate of a point^defining the support surface

For NV > 1, the first set of NU is read, then the second, and so forth. The

normal for a plane determined by these points should point into the

computational domain. For a composite surface, the u axis is along the first

input line, and the v axis is along the line connecting the first node on each

line.

B.3.4 $ Curved-Edge Definition

Format (FREE)

B.3.4.1 NSG, NRG 
Format (FREE)

1. Description: Number of surface-region data sets.

2. Notes:

NSG = number of curved segments

NRG = number of surfaces regions

These data define the regions of interest on each support surface; see section 

B.3.1.1.

B.3.4.2 $ Text

Format (FREE)
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B.3.4.3 ISG IDCV ITSG 

Format (FREE)

1. Description: NSG sets of curved-segment data

2. Notes:

ISG = index defining the curved segment

IDCV = index defining the boundary edge from section 5.3.1.1

ITSG = index defining the generation type

=  1

B.3.5 $ Support-Region Definition by Boundary Edges

Format (FREE)

B.3.5.1 IRG, IDSF, ITRG 

Format (FREE)

B.3.5.2 NN

Format (FREE)

( ISBS(I), 1=1, N N )

Format (FREE)

1. Description: NRG sets of surface-region data.

2. Notes:

IRG = index defining the surface number

IDSF = index defining the support-surface from section B.3.1.1

ITRG = index defining the generation type

=  1

NN = number of curved segments

ISBS(I) = indices of curved segments along the mesh region

The edges should be listed in such a manner that the direction of the normal

points into the computational domain, and the edges are traversed in the

opposite sense of their above definition when given a negative sign.

3. Additional notes:

This data file contains the geometrical definition of the boundary of the 

computational domain. The general data contains the number of boundary
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edges and the number of support surfaces. First, each support surface is 

defined as a plane, composite, or degenerate surface. Secondly, each support 

surface is defined by traveling about it, along the boundary edges, to obtain 

the direction normal to the surface points into the computational domain for 

all of the surfaces (using the right-hand rule). The normals in sections B.3.3.1 

and B.3.5.1 should be consistent. If one is traveling along a boundary edge in 

the opposite sense of its original definition, its index is given a negative value.

B.4 Input Data for Boundary Conditions (job.bco)

B.4.1 $ Title for Boundary-Condition File

Format (FREE)

1. Description: Title card for the boundary-condition file.

2. Note:

A maximum of 80 characters on one line of data.

B.4.2 NRG, NSG, NIDEA

Format (FREE)

1. Description: Number of data sets.

2. Notes:

NRG = number of boundary surfaces

NSG = number of boundary segments

NIDEA = 0, grid generated by CFDASERUN ( no normal calculation)

1, grid generated by IDEA (need normal calculation)

These numbers should match those in section 5.3.4.1.

B.4.3 $ Surface-Region Boundary-Condition Definitions

Format (FREE)

B.4.4 IRG, IBCO

Format (FREE)

1. Description: NRG sets of surface-region boundary-condition data.

2. Notes:

IRG = index defining the surface number
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IB CO = index defining the surface boundary condition

= 1, wall 

= 2, symmetry 

= 3 and 4, far field 

= 5 and 6, engine inlet 

= 7 and 8, engine outlet

B.4.5 $ Curve-Segment Boundary-Condition Definitions

Format (FREE)

B.4.6 JS, ICBCO

Format (FREE)

1. Description: NSG sets of curved-segment boundary-condition data.

2. Notes:

JS = index defining the curved segment

IBCO = index defining the curved-segments boundary-condition 

= 0, no singularity

-= 1, all are singular

= 2, singular point at first and last

= 3, singular point at first only

= 4, singular point at last only

B.5 Input Data of Control File for Steady-State Computational Fluid 

Dynamics (Euler) Solution (job.cons)

1. Description: Parameters for a name list control file used in the steady-state Euler

solution.

2. Notes:

Each name parameter must begin with “&control” and end with “/”. These 

parameters are on their own lines. Each parameter must be separated with a 

comma, even if each appears on a separate line. If the parameters are not

specified by the user, they will be automatically set to their default values,

which are listed in parentheses after each definition.
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& control

nstep

nstou

nstage

cfl

dissl

diss2

relax

mach

alpha

beta

restart

nlimit

lg
niteO

nitel

nite2

ncycl

ncyci

tlr

debug

= total number of solution time steps (1)

= number of time substeps for writing the unknowns file job.unl 

(ncycl substeps for each time step) (5) 

writing also occurs after each solution time step 

if nstou > ncycl, writing occurs once every solution time step 

= number of stages in the Runge-Kutta time integration, to a 

maximum of 5 (5)

= value of the CFL (Courant-Friederich-Lax) number (2.8)

= first dissipation constant (1.0)

= second dissipation constant (1.0)

= boundary-condition relaxation factor (1.0)

= free stream Mach number (0.6)

= free-stream angle of attack (0.0)

= free-stream angle of sideslip (0.0)

= index defining restart option (.false.)

= .true., restart run 

= .false., initial run 

= limiter function type (1)

= 1, minmod 

= 2, Thomas 

= multigrid cycle (1)

= presmoothing iterations (1)

= smoothing iterations (1)

= postsmoothing iterations (1)

= number of substeps for each time step (1000)

= ncycl (1000)

= stopping tolerance (0.0)

= debugging option (.false.)

= .true., debug 

= .false., do not debug
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meshc = coarsest mesh (mmesh from the file *.geo)

meshf = starting mesh (1)

cbt(l), cbt(2), cbt(3), cbt(4),

cbt(5) = betal, beta2, beta3, beta4, beta5 (1.0, 0.5, 0.0,0.0, 0.0)

bulkvis = index for computing bulk viscosity (.false.)

= .true., compute bulk viscosity 

= .false., do not compute bulk viscosity 

for Mach > 2.5, set bulkvis = .true.

disx, xcl, xc2,

xc3, xc4 = parameters defining the bulk viscosity (6.0, -1.2, -0.2, 0.014,

0.0714)

nsmth = number of residual smoothing iterations (0)

smofc = residual smoothing coefficient (0.25)

low = order of solution (.false.)

= .true., low-order solution 

= .false., high-order solution 

trans = index for defining transient analysis (.false.)

= .true., transient analysis 

= .false., no transient analysis 

for steady flow, set to .false, 

gamma = ratio of specific heats (1.4)

epslm = harten fix constant, (0.05)

/ = end file

B.6 STARS-AEROS-GENMASS Data (genmass.dat)

Purpose: Prepare genmass.dat data file.

Description: Computes a generalized mass matrix.

B .6.1  $ Job Description 

Format (FREE)

B .6 .2  ISTMN, NLVN, GR
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Format (215, E10.4)

1. Description: Generalized mass-matrix generation data.

2. Notes:

ISTMN = integer specifying the starting mode number

NLVN = number of laterally vibrating aerodynamic interpolation node

points (0)

GR = gravitational constant( =1)

B.7 Input Data for Control (job.control)

B.7.1 $ Size of A matrix and column of the B matrix of the controller, starting

step

Format (FREE)

B.7.2 NCRA, NCCB, NCRC, GAINR, GAINC, NSTAR, NAND

Format (FREE)

1. Description: Number of roots for the damping solution.

2. Note:

NCRA = size of the controller A matrix

NCCB = number of column of the controller B matrix

NCRC = number of row of the controller C matrix

GAINR = number of row of the K gain matrix

GAINC = number of column of the K matrix

NSTAR = step to where controller is turned on

NAND = 1, controller matrices are analog

2, controller matrices are digitized

B.7.3 $ The controller Ac matrix

Format (FREE)

B.7.4 ((AC (I, J), J=1 ,N CRA), 1=1,NCRA)

Format (FREE)

1. Description: The state-space matrix of the controller.

2. Note:
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AC = the controller A matrix

B.7.5 $ The controller Bc matrix

Format (FREE)

B.7.6 ((BC(I,J),J=1,NCCB), 1=1,NCRA

Format (FREE)

1. Description: the state space matrix of the controller.

2. Note:

BC = the controller B matrix.

B.7.7 $ The controller Cc matrix

Format (FREE)

B.7.8 ((C C (I, J), J=1 ,N CRA), 1=1,NCRC

Format (FREE)

1. Description: the state space matrix of the controller.

2. Note:

CC = the controller C matrix.

B.7.9 $ The controller Dc matrix

Format (FREE)

B.7.10 ((DC(I,J),J=1,NCCB), 1=1,NCRC

Format (FREE)

1. Description: the state space matrix of the controller.

2. Note:

DC = the controller D matrix.

B.7.11 $ The gain matrix 

Format (FREE)

B.7.12 ((GM(I, J), J=l, GAINC),1=1,GAINR)

Format (FREE)

1. Description: vector to direct the output of the controller back into the aeroelastic

state vector.

2. Note:

GM(I, J) = the components for the gain matrix.
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B.7.13 $ The matrix correlate the output of control with structure output 

Format (FREE)

B.7.14 (G(I), J=l, 2NR)

Format (FREE)

1. Description: vector to direct the output of the controller back into the aeroelastic

state vector.

2. Note:

GM(I, J) = the components for the gain matrix.

B.8 Input Data for Unsteady Flow (job.scalars)

B.8.1 $ Title for Scalars File

Format (FREE)

1. Description: Title card for the scalars file.

2. Note:

A maximum of 80 characters on one line of data.

B.8.2 $ Basic Parameters

Format (FREE)

B.8.3 NR, IBCX, RBCX,ISIZE

Format (FREE)

1. Description: Basic data parameters.

2. Notes:

NR = number of mode shapes used in the unsteady analysis

IBCX = index defining ARMA control parameters

= 0, structure is free to move due aerodynamic forces 

(Euler/ARMA)

= 1, displacement is set to the RBCX value (Euler ) structure is 

clamped, all generalized displacement are zero(ARMA)

= 2, aeroservoelastic analysis (Euler/ARMA, Piston/ARMA)

= 3, displacement is set to RBCX plus velocity (Euler)
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= 4, apply multistep 3211 training signal to each generalized 

input signal(ARMA)

RBCX = mode-shape multiplication factor (Euler)

a floating point magnitude for the multistep 3211 (ARMA) 

ISIZE = an integer scaling factor for the multistep 3211 size(ARMA)

B.8.4 NNR, (NS(I), 1=1, NNR)

Format (FREE)

1. Description: Boundary-condition modification data.

2. Notes:

NNR = number of surfaces upon which the boundary condition needs

to be modified 

NS = index defining the surface number

B.8.5 $ I/O Parameters

Format (FREE)

B.8.6 IRFORM, IPFORM

Format (FREE)

1. Description: Indices to set data input and output formats.

2. Notes:

IRFORM = index defining the input read format 

= 1, free format, ASCII file 

= 2, binary file 

IPRINT = index defining the output print format 

= 0, no print out

= 2, print out k, m, and c generalized matrices 

B.8.7 $ Dimensional Parameters

Format (FREE)

B.8.8 MACHI, RHOI, AI, GAMMA, PINF

Format (FREE)

1. Description: Dimensional parameters at infinity.

2. Notes:
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MACHI = Mach number at infinity

RHOI = density at infinity

AI = speed of sound at infinity

GAMMA = gamma constant, cv/cp

PINF = air pressure at infinity

B.8.9 $ Shift Factor and Gravitational Constant

Format (FREE)

B.8.10 SCF, GR

Format (FREE)

1. Description: Basic constants.

2. Notes:

SCF = scaling factor, as defined in section 9.7.4

GR = gravity constant, as defined in section 6.1.2

B.8.11 $ Impulse-Force Data

Format (FREE)

B.8.12 IFLAG, FFI, NS/XS, NE/XE 

Format (FREE)

1. Description: Data for specifying the impulse force.

2. Notes:

IFLAG = index defining the generalized impulse-force input mode

= 1, applied from times XS to XE (real time)

= 2, applied from steps NS to NE step 

FFI = magnitude of the generalized impulse force

NS/XS = starting step or time

NE/XE = ending step or time

B.8.13 $ Force Activation Parameters

Format (FREE)

B.8.14 ICFA, ICFI
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Format (FREE)

1. Description: Parameters to activate aerodynamic and applied generalized forces.

2. Notes:

ICFA = index defining the activation of aerodynamic force

= 0, do not activate 

= 1, activate

ICFI = index defining the activation of applied generalized force

= 0, do not activate 

= 1, activate 

B.8.15 $ Transition Matrix Parameters

Format (FREE)

B.8.16 NTERMS, NSTEPS 

Format (FREE)

1. Description: Parameters used in calculating the transition matrix, e ***.

2. Notes:

NTERMS = number of terms used in the calculation of .

NSTEPS = option to calculate the transition matrix e** at specified 

intervals

B.8.17 $ Input for ARMA Option: NA, NB

Format (FREE)

2. Notes:

NA = order of the As coefficients, in ARMA equation (4.24)

NB = order of the B m coefficients, in ARMA equation (4.24)

B.9 Input Data of Control File for Unsteady Computational Fluid 

Dynamics (Euler) Solution (job.conu)

1. Description: Parameters for a name list control file used in the unsteady Euler

solution.

2. Notes:
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The data below are to be augmented with the data in section B.5; nstou from 

section B.5 is replaced by nout. See section B.5 for other details regarding 

using the name list.

&control

nout

restart

freq 

nstpe 

xO, yO ,z0 

wux, wuy, 

wyz 

phase

amplitude 

iflow sol

number of time steps for writing the unknowns file job.uni (1) 

index defining the restart option (1)

0, start from a far-field boundary condition

1, start from the steady-state solution/unsteady f a 

convergence check solution

2, restart from the last unsteady solution

size adjustment of the time step for a transient analysis (0.0) 

size adjustment of the time step of the transient analysis (1) 

center of rotation (0.0, 0.0, 0.0)

axis of rotation (0.0, 0.0, 0.0)

angle, phi, used to switch an input signal from a sine to a 

cosine wave,

A x sin(At+ phi), in the pitching problem (0.0) 

magnitude, A, of the input signal (0.0) 

index for solution type

1, use the CFD unsteady Euler solver (also for ARMA steps 1 

and 2)

2, use the alternative piston and modified Newtonian impact 

theory

3, ARMA, Euler or piston 

end file

B.10 Input Data of Control File for STEADYDP (job.consdp)

B.10.1 NLINES
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Format (FREE)

1. Description: Specifies the number of the following comment lines.

2. Note:

NLINES = number of comment lines to follow 

B.10.1.1 $ Comment Lines

Format (FREE)

1. Description: NLINES sets of comment lines.

2. Note:

A maximum of 80 characters for each line of comments.

B.10.2 $ Problem Dimension

Format (FREE)

1. Note:

Comment line. Not included in NLINES.

B.10.2.1 NDIM

Format (FREE)

1. Description: Problem dimension size.

2. Note:

NDIM = number of dimensions in the problem

= 3

B.10.3 $ Problem Size Parameters

Format (FREE)

B.10.3.1 NELEM, NPOIN, NBOUN 

Format (FREE)

1. Description: Basic data parameters.

2. Notes:

NELEM = number of tetrahedral elements

NPOIN = number of points

NBOUN = number of boundary elements

B.10.4 $ Solution Acceleration Parameters

Format (FREE)
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B.10.4.1 KACCEL, NACCEL 

Format (FREE)

1. Description: Parameters to accelerate the solution.

2. Notes:

KACCEL = number of iterations between acceleration

NACCEL = index defining the starting acceleration time step

If no acceleration is desired, set NACCEL to significantly exceed the expected

value of NTIME+ITIN, as defined in sections 9.10.10.1 and 9.10.18.1,

respectively.

B.10.5 $ General Parameters

Format (FREE)

B.10.5.1 GAMMA, Cl, IDIFF, EPS, IYISC, WBR 

Format (FREE)

1. Description: Basic fluid data parameters.

2. Notes:

GAMMA = gas constant

= 1.4, for air 

Cl = pressure switch coefficient

= 0.3, recommended for completely subsonic 

= 0.5-0.8, recommended for transonic 

= 1.0, recommended for transonic to hypersonic 

IDIFF = index defining the smoothing type for artificial dissipation

= 0, metric weighted, acting on the sides 

= 1, area weighted, acting on the sides (old code)

= 2, area weighted, acting at the element level (new code)

= 3, new diffusion scheme with side eigenvalues 

EPS = pressure switch tolerance; it must be set to a small number or

0.0

= 0.1, normally

If EPS = 0.0, a pressure switch of the type (Mc-M l)p/(Mc-M l ) is evaluated; 

otherwise, the pressure switch is evaluated as psw = ^  (Pi~Pj) /]T (| P{—Pj |)

119



, and EPS is used to avoid division by zero. Because of the way that the 

division by zero has been avoided, if EPS = 1, the pressure switch is evaluated

as (Pi—Pj) /PMEAN, where PMEAN is the mean value in the surrounding

elements.

IVISC = viscous flow indicator

= 0, for Euler

WBR = wall boundary relaxation parameter, to be used when strong

boundary conditions are applied (pointwise velocity projection 

at wall)

WBR normalizes wall boundary conditions at each step to avoid big jumps. At 

each step, 0.2 would normalize by 20 percent. Even 1.0 will normally work. 

Hypersonically, problems may exist. For unsteady flow, set WBR to 1.0 to be 

time accurate.

B.10.6 $ Far-Field Boundary Condition Parameter

Format (FREE)

B.10.6.1 NFFBC

Format (FREE)

1. Description: Number of far-field boundary conditions.

2. Note:

NFFBC = number of far-field boundary conditions 

B.10.7 $ Far-Field Boundary Condition Data

Format (FREE)

B.10.7.1 ROINF, UXINF, UYINF, UZINF, PINF, MACHINF 

Format (FREE)

1. Description: NFFBC sets of far-field boundary-condition data.

2. Notes:

ROINF = density at infinity

UXINF = velocity in X at infinity

UYINF = velocity in Y at infinity

UZINF = velocity in Z at infinity
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PINF = pressure at infinity

= R0INF/(GAMMA*MACHINF**2)

MACHINF = Mach number at infinity 

B.10.8 $ Engine Intake/Outlet Boundary-Condition Parameter

Format (FREE)

B.10.8.1 NENBC

Format (FREE)

1. Description: Number of engine inlet/exit boundary conditions.

2. Note:

NENBC = number of engine inlet/exit boundary conditions 

B.10.9 $ Engine Boundary-Condition Data (Required if NENBC ^ 0)

Format (FREE)

B.10.9.1 ROENG, UXENG, UYENG, UZENG, PENG, MACHENG

(Required if NENBC ± 0)

Format (FREE)

1. Description: NENBC sets of far-field boundary-condition data.

2. Notes:

ROENG = specified density

UXENG = velocity in X

UYENG = velocity in Y

UZENG = velocity in Z

PENG = specified pressure

MACHENG = specified Mach number 

B.10.10 $ Iteration Parameters

Format (FREE)

B.10.10.1 NTIME, NITER, ILOT 

Format (FREE)

1. Description: Parameters to set the number of solution time steps.

2. Notes:
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NTIME = maximum number of iterations

NITER = number of mass-consistent iterations

= 1, mass-lumped solution used (steady state)

= 2, mass-consistent solution used (transient)

ILOTS = time-stepping indicator

= 0, global time stepping (steady or transient)

= 1, local time stepping (steady, faster than 0)

B.10.11 $ General Convergence Parameters

Format (FREE)

B.10.11.1 CSAFE, IFCT, NQUAN, (IDO(I), i  = i ,  NQUAN), CLIMAX 

Format (FREE)

1. Description: Data to specify solution convergence.

2. Notes:

= Taylor-Galerkin safety factor; usually, 0.0 < CSAFE < 1.0 

= 0.7, a reasonable value 

= FCT routine switch 

= 0, no FCT 

= 1, FCT

= -1, low order only (not generally used)

NQUAN = number of FCT quantities to limit; set to 1, 2, or 3

CSAFE

IFCT

IDO(I) = variable to be limited for FCT 

= 1, density 

= 2, energy 

= 3, pressure

CLIMAX = maximum limiter allowed; usually 0.00 to 0.95

The FCT should decrease “smearing” near a strong shock but does not always

work and increases the solution time. Normally, this option would not be

used.
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B.10.12 $ File Formats and I/O Direction

Format (FREE)

B.10.12.1 INFOG, INFOU, OUFO, NIOUT 

Format (FREE)

1. Description: Indices to specify input and output.

2. Notes:

INFOG = index defining the geometry file format specification 

= 0, input file is formatted in ASCII 

= -1, input file is unformatted 

INFOU = index defining the restart initial values file format specification

= 0, input file is formatted in ASCII 

= -1, input file is unformatted

= -2, input file is not required, initial values are generated from 

far-field specifications 

OUFO = index defining the output file specification

= 3, unformatted output on channel 15 (graphics)

= 2, formatted output to channel 4; five unknowns at each point

in mesh

= 1, unformatted output to the front end (VAX)

= 0, formatted output to the front end

= -1, formatted output to a Cray computer with the name FILE3

and overwriting 

= -2, no output file written

= -3, unformatted output to a Cray computer with the name 

FILE3 and overwriting 

= -4, formatted output to a Cray computer with a new file 

generated every NIOUT iteration with the name FILE3iter 

= -5, unformatted output to a Cray computer with a new file 

generated every NIOUT iteration with the name FILE3iter 

NIOUT = number of iterations between outputs

= 0, output written only at the end of the job
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WARNING: If OUFO = 0 or 1, (for example, a result file sent to the front 

end), an unformatted copy of the file (named FILE3) is also sent to the Cray 

computer.

Note: For INFOU set to 0 or -1, use the previous output file for FILE4 in 

section 5.10.19.1 for the initial values. Remember to update ITIN in section 

5.10.18.1 as well.

B.10.13 $ Residuals Smoothing Parameters

Format (FREE)

B.10.13.1 CSMOO, NSMOO 

Format (FREE)

1. Description: Data for defining residuals smoothing.

2. Notes:

CSMOO = residual smoothing coefficient 

= 0.25 for Jamesons’s method 

NSMOO = number of smoothing iterations 

= 2 for Jamesons’s method 

B.10.14 $ Enthalpy Damping Coefficient

Format (FREE)

B.10.14.1 ALPHA

Format (FREE)

1. Description: Enthalpy damping coefficient.

2. Notes:

ALPHA = enthalpy damping coefficient to enforce constant enthalpy; 

does not always work 

= 1.0, normally 

B.10.15 $ Residuals and Lift Parameters

Format (FREE)

B.10.15.1 IRPR, IRLOG, ILPR, ILLOG, AXIS(I, I = 1, 3), RCHORD 

Format (FREE)

1. Description: Data for residuals and lift.

2. Notes:
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IRPR = number of iterations between evaluations of diffusive fluxes for

a Taylor-Galerkin scheme 

IRLOG = type of logging for residuals

= 0, print to log file only 

= 1, print to RESID, and print to log file 

= 2, print to RESID 

ILPR = number of iterations between outputs of lift, drag, and moment

coefficients; uses the centroids of the elements with a boundary 

condition of 2 

= 0, no output for lift 

ILLOG = type of logging for lift

= 0, print to log file 

= 1, print to LIFT, and print to log file 

= 2, print to LIFT

AXIS(I) = end points of a position vector, in x, y, and z, parallel to which 

the lift acts

RCHORD = reference chord for use in lift and moment calculations 

B.10.16 $ Residual Smoothing Iteration Parameters

Format (FREE)

B.10.16.1 IRFR, IRFS

Format (FREE)

1. Description: Data for defining residuals smoothing iterations.

2. Notes:

IRFR = number of iterations between smoothing residuals, starting 

from iteration N; this parameter is a tradeoff with the CSAFE 

parameter 

= 1, if CSAFE = 1.2 

= 3, if CSAFE ~ 0.9

IRFS = number of initial iterations before an alternate evaluation of 

diffusive fluxes
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For Taylor-Galerkin schemes, irrespective of IRFR, the diffusive fluxes are 

evaluated at every time step for the first IRFS iterations. This option is not 

presently used.

B.10.17 $ Boundary-Condition Types and Geometry Checking

Format (FREE)

B.10.17.1 ISTRON, ICHECK 

Format (FREE)

1. Description: Specifies boundary-condition types.

2. Notes:

ISTRON = boundary-condition type

= 0, weak boundary conditions; flux is corrected on the outer 

bounds

= 1, strong boundary conditions with velocity projection at the 

sides included into the right-side boundary integral 

= 2, strong boundary conditions with full boundary integral 

evaluation

ICHECK = geometry consistency-checking parameter 

= 0, no checking 

= 1, checking done 

B.10.18 $ Initial Time and Iterations

Format (FREE)

B.10.18.1 TIMEIN, ITIN 

Format (FREE)

1. Description: Parameters to control starting times.

2. Notes:

TIMEIN = initial time (only for transient)

ITIN = initial iteration number; the iteration counter starts at (ITIN+1)

3. Additional notes:

This code does not check itself for convergence and stop automatically. 

Convergence is generally said to have occurred when a drop of 4 to 5 orders
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of magnitude has occurred in the average of the residuals. The lower the Mach 

number is, the slower the convergence is.

B.10.19 $ File Names

Format (FREE)

B.10.19.1 FILE3, FILE2, FILE4 

Format (FREE)

1. Description: Listing of files for input and output control.

2. Notes:

FILE3 = output file for the results

FILE2 = input geometry file

FILE4 = restart the input file with initial values

Each file name can have a maximum of 16 characters. Only the prefix is

required.

B.10.20 $ CPU Parameters

Format (FREE)

B.10.20.1 NCPU

Format (FREE)

1. Description: Number of central processing units (CPUs) to be used in the

solution.

2. Notes:

NCPU = Number of CPUs requested

Set to 0 or 1 for a nonmultitasked version.

B .ll CFD-Based Aeroelastic and Aeroservoelastic Analysis

Three solution options are available (A) Euler CFD-based ( B) Euler CFD-based with piston 

perturbation( unsteady piston calculation using steady Euler solution) and (C) piston, 

respectively (Table B.l).
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Table B.l. Time-marched aeroelastic and aeroservoelastic solution option.

Solution

step

CFD-based

(A)

Piston Perturbation 

(B)

Piston

(C)

1 Euler steady Euler steady None

2 Euler unsteady Piston unsteady Piston unsteady

( iflow_sol= 1 ,restart= 1) (iflow_sol=2,restart= 1) (iflow_sol=2,restart=0)

$ cfdaserun

> 1 ‘surface’ - job.sur, j ob .bac [ job . f ro] ,  is the output file

> 2 ‘volume’ - job.bac, [job.fro] [job.gri]

> 4 ‘setbnd2’ - job.bco, [job.fro, job.gri] [job.geo, job.plt ]

> 6 ‘steady’ - job.cons, [job.geo] -> [job.unl; change to job.unk for restart

or to run unsteady]

> 7 ‘Interface’

> 7-2 ‘srun’ - solids.dat -> [solids.out.l&2, fort.46, fort.*]

> 7-3 ‘genmass’ - genmass.dat, [fort.46] [genmass.out (freq., M , i f ,  Z)),

genmass.binary]

> 7-4 ‘intpolsf - [solids.out.2, job.fro], vibrating surface numbers ->

[job.phia, fort.21,...,fort(nr+20)]

> 7-5 ‘arrays’ - [job.fro, genmass.out, job.phia], specify mode #’s [job.arrays]

> 8 ‘unsteady’ - job.conu, job.scalars, job.control, [job.geo, job.unk, job.arrays,

job.fro] -> [job.uni, xn.dat]

Plot xn.dat (generalized displacements q ’s, velocities q ’s, and forces f a ’s) and calculate 

damping for the altitude.
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$ xp

read xn.dat 

select 1 

plot xl

sel 4 

plot x4

repeat for other modes.

(plots q2, q„r>q\} # 2 ’ ’*’» )

B.12 CFD-Based ARMA Aeroelastic and Aeroservoelastic Analysis

Three solution options are available (A) Euler CFD-based ( B) Euler CFD-based with piston 

perturbation (unsteady piston calculation using steady Euler solution) and (C) piston, 

respectively (Table B.2).

Table B.2. State space ARMA aeroelastic and aeroservoelastic solution options.

Solution

step

CFD-based

(A)

Piston Perturbation 

(B)

Piston

(C)

1 Euler steady Euler steady None

la Euler unsteady 

( iflow_sol= 1 ,restart= 1)

Piston unsteady 

(iflow_sol=2,restart= 1)

None

2 Training ARMA 

( iflow_sol= 1,restarts 1)

Training ARMA 

(iflow_sol=2,restarts 1)

Training the ARMA 

(iflow_sol=2,restart=0)

3 Least Square curve fit 

for the ARMA model

Least Square curve fit 

for the ARMA model

Least Square curve fit 

for the ARMA model
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4 Evaluate AMA model Evaluate ARMA model Evaluate ARMA model

5 ARMA solution ARMA solution ARMA solution

(iflow_sol =3) (iflow_sol =3) (iflow_sol =3)

Solution Steps:

Step 1. Steady solution and input data preparation for unsteady analysis 

$ cfdaserun

> 1 ‘surface’ - job.sur, job.bac -> [job.fro], is the output file

> 2 ‘volume’ - job.bac, [job.fro] -> [job.gri]

> 3 ‘setbnd2’ - job.bco, [job.fro, job.gri] -> [job.geo, job.plt ]

> 6 ‘steady’ - job.cons, [job.geo] -> [job.unl; change to job.unk for restart

or to run unsteady]

> 7 ‘Interface’

> 7-2 ‘srun’ - solids.dat [solids.out.l&2, fort.46, fort.*]

> 7-3 ‘genmass’ - genmass.dat, [fort.46] -> [genmass.out (freq., M , K , D),

genmass.binary]

> 7-4 ‘intpolsf - [solids.out.2, job.fro], vibrating surface numbers ->

[job.phia, fort.21,...,fort(nr+20)]

> 7-5 ‘arrays’ - [job.fro, genmass.out, job.phia], specify mode #’s -> [job.arrays]

Step la. ‘Unsteady’ solution convergence study of the clamped structure.

Modify:

job.scalars: ibcx=l (structure clamped, generalized displacement zero)

job.conu: iflow_sol=l (1-euler, 2-piston, 3-ARMA)

restart=l (from job.unk of step 1 steady run)
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nstep =100 or so ( enough for f a's to converge to a flat line)

$ cfdaserun

> 8 ‘unsteady’ -> [xn.dat, generalized displacements q ' s , and q ' s ,

and generalized force f a's]

To check convergence of generalized forces ( to be a straight line without 

oscillation), plot the xn.dat.

$ xp

read xn.dt 

sel 1 

plot fl 

sel 2 

plot f2

If f a 's did not converge restart and run step la  again for more solution steps.

Step 2. Training the ARMA - ARMA multistep “unsteady’ solution for 3-2-1 -1 input

signal -  nstep or so for a Mach number 

Modify:

job.scalars: ibex = 4 (input 3211 signals)

= 5 (variable amplitude multistep input signal) 

isize = an integer scaling factor for the multistep size 

rho-inf = a specified training altitude density 

job.conu: iflow_sol=l (1-euler, 2-piston, 3-ARMA)

nstep = 5 + isize*( 4*nr + 3 ) for ibex =4 

= 5 + isize*( 16*nr + 3 ) for ibex = 5 

restart=l (from job.unk of step la)

$ cfdaserun

> 8 ‘unsteady’ -> [xn.dat, renamed multi.dat]

Step 3. Least squares curve fitting for the ARMA model

Modify:

job.scalars: ibcx=4 (input 3211 signals)

na = # number
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nb = # number

rho-inf = same free stream density used in step 2 

job.conu: iflow_sol=l (1-euler, 2-piston, 3-ARMA)

restart= ignored in this step

nstep = same number of steps used in step 2

$ cfdaserun

> 9 ‘arma_utility’

> 9 - 1  cfdmdl-> [job.mdl ( coefficients for state space G a, H a, Ca, Da matrices)]

Note: For Piston solution (restart =0) the range for na and nb are

na =0 and nb=3 or 4

For Piston-perturbation (restart=l) solution range for na and nb are 

na = 1 and nb= 3 or 4 ( due to nonlinearities in the mean flow job.unk file) 

For Euler solution the range for na and nb 

0 < na < 5 and 0< nb <15

The training input signal needs to be at least 1/2 of a highest frequency cycle 

length.

Step 4. Evaluate the ARMA model ( G a, H a, Ca , Da)

Modify:

job.scalars: ibcx=4 (input 3211 signals)

na = # number same as step 3 

nb = # number same as step 3 

rho-inf = same free stream density used in step 2 

job.conu: iflow_sol=3 (1-euler, 2-piston, 3-ARMA)

restart^ ignored in this step 

nstep = same number of steps used in step 2

$ cfdaserun

> 8 ‘unsteady’ -> [xn.dat, using G a, H a, Ca , Da; Copy to xn.nanb]

Plot xn.dat and multi.dat to ensure that the signal f a's of the xn.dat match up with

the f a's of the multi.dat signal.

$ xp
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read multi.dat 

read xn.dat 1 

plot f l f l . l  

plot £2 £2.1

(do this for nr f a, all the f a need to match up real good.)

If f a in xn.dat does not match with the multi.dat’s f a then change the na and nb 

parameters and rerun step 3 and step 4 again until the f a’s for xn.dat matches with 

multi.dat.

S cfdaserun

> 9 ‘ARMA utility’

> 9-2 ‘asemdl’ -> - [job.amtx ( G a, H a, C a , Da),job.smtx 

( G JS H, ,  C„  D JJob.eig]

> 9-3 ‘gleigplt’ -> plots root locus from job.eig; if unstable obtain a control law

design employing the state-space matrices, yielding the gain 

matrix (job.control)

Step 5. ARMA solution 

Modify:

job.scalars: ibcx= 0 for aeroelastic analysis

ibcx= 2 for aeroservoelastic analysis ( need job.control file) 

na = # number same as step3 

nb = # number same as step 3 

rho-inf = any altitude 

job.conu: iflow_sol=3 (1-euler, 2-piston, 3-ARMA)

restart= ignored in this step

nstep = any number of steps enough to compute damping

$ cfdaserun

> 8 ‘unsteady’ - job.conu, job.scalars, job.control, [ job.geo, job.unk, job.arrays,

job.fro] -> [xn.dat, using Ga, Ha, Ca, Da; copy xn.dat to 

xn.density]

Plot xn.dat and compute damping of the signal for this density.
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$ xp

read xn. density

sel 1

plot xl

sel 2

plot x2

sel 3

plot x3

sel 4

plot x4 ( and so on)

Repeat solution for other relevant densities for the same Mach number.
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APPENDIX C

Input Data For ASE Analysis of Cantilever Wing

The following input data follows the sequence as in the Figure 6.1. Data for the 

surface file, wing.sur, are given first.

STARS-CFDASE input data:

$ STARS 5 . 3 . 1  w i n g . s u r  q u a s i-2 D  n a c a0 0 1 2  
C STARS 5 . 3 . 1 . 1  N IS , NSF 

36 16
$ STARS 5 . 3 .2  B o u n d a ry -e d g e  d e f i n i t i o n s  
C STARS 5 . 3 . 2 . 1  J S ,  IT IS  1 1
C STARS 5 . 3 . 2 . 2  NIP Num ber o f  p o i n t  on  th e  b o u n d a ry  ed g e  

41
C STARS 5 . 3 . 2 . 3  ( ( C I P ( I .P ) ,. :=

2
41

0 .1 0 0 8 9 E + 0 1  
0 . 10069E+01 
0 .1 0 0 1 3 E + 0 1  
0 . 99239E+00 
0 . 98043E+00 
0 .9 6 5 5 5 E + 0 0  
0 .9 4 7 9 2 E + 0 0  
0 . 92771E+00 
0 . 90508E+00 
0 .8 8 0 1 9 E + 0 0  
0 .8 5 3 2 3 E + 0 0  
0 .8 2 4 3 6 E + 0 0  
0 .7 9 3 7 5 E + 0 0  
0 .7 6 1 6 0 E + 0 0  
0 . 72808E+00 
O .69336E+Q0 
0 . 65765E+00 
0 . 62111E+00 
0 . 58394E+00 
0 . 54633E+00 
0 . 50846E+00 
0 .4 7 0 5 3 E + 0 0  
0 . 43273E+00 
0 .3 9 5 2 6 E + 0 0  
0 . 35831E+00 
0 .3 2 2 0 8 E + 0 0  
0 .2 8 6 7 7 E + 0 0  
0 .2 5 2 5 9 E + 0 0  
0 .2 1 9 7 3 E + 0 0  
0 . 18841E+00 
0 .1 5 8 8 2 E + 0 0  
0 . 13117E+00 
0 . 10564E+00 
0 . 82 4 2 8 E -0 1  
0 .6 1 7 1 7 E -0 1  
0 . 4 3 6 8 4 E -0 1  
0 . 2 8 5 0 1 E -0 1  
0 . 16 3 3 7 E -0 1  
0 .7 3 7 5 0 E -0 2  
0 .1 8 4 8 0 E -0 2  
0 . OOOOOE+OO 
1

0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0

1 ,3 )  ,1 = 1 ,NIP) 
0 . OOOOOE+OO 

-0 .2 8 9 0 0 E -0 3  
-0 .1 0 8 1 0 E -0 2  
-0 .2 3 2 2 0 E -0 2  
- 0 . 39740E -02 
- 0 . 59930E -02 
- 0 . 83390E -02 
- 0 . 10971E -01  
-0 .1 3 8 4 3 E -0 1  
- 0 . 16915E -01 
-0 .2 0 1 4 6 E -0 1  
- 0 . 23494E -01  
- 0 . 26920E -01  
-0 .3 0 3 8 6 E -0 1  
- 0 . 33853E -01  
- 0 .3 7 2 8 1 E - 0 1  
- 0 .4 0 6 3 2 E -0 1  
- 0 .4 3 8 6 3 E -0 1  
- 0 .4 6 9 3 1 E -0 1  
-0 .4 9 7 9 1 E -0 1  
- 0 . 52398E -01 
- 0 . 54701E -01 
-0 .5 6 6 5 3 E -0 1  
- 0 . 58203E -01  
- 0 . 59303E -01  
- 0 . 59908E -01  
-0 .5 9 9 7 8 E -0 1  
-0 .5 9 4 7 5 E -0 1  
-0 .5 8 3 7 4 E -0 1  
- 0 . 56655E -01  
-0 .5 4 3 1 0 E -0 1  
-0 .5 1 3 3 9 E -0 1  
- 0 . 47753E -01  
- 0 . 43572E -01  
-0 .3 8 8 2 5 E -0 1  
- 0 . 33541E -01  
-0 .2 7 7 5 2 E -0 1  
-0 .2 1 4 7 9 E -0 1  
-0 .1 4 7 3 0 E -0 1  
-0 .7 5 1 7 0 E -0 2  

0 . OOOOOE+OO

0 . OOOOOE+OO 0 .0 0 . 00000E+00
0 . 18 4 8 0 E -0 2 0 .0 0 . 75170E -02
0 . 7 3 7 5 0 E -0 2 0 .0 0 . 14730E -01
0 . 1 6 3 3 8 E -0 1 0 .0 0 . 21479E -01
0 .2 8 5 0 1 E -0 1 0 .0 0 . 27752E -01
0 . 4 3 6 8 4 E -0 1 0 .0 0 . 3 3 5 4 1E -01
0 . 61 7 1 6 E -0 1 0 .0 0 . 3 8 8 2 5E -01
0 .8 2 4 2 8 E -0 1 0 .0 0 . 43572E -01
0 . 10564E+00 0 .0 0 . 47753E -01
0 . 13117E+00 0 .0 0 . 51339E -01
0 .1 5 8 8 2 E + 0 0 0 .0 0 . 54310E -01
0 .1 8 8 4 1 E + 0 0 0 .0 0 . 56656E -01
0 . 21973E+00 0 .0 0 . 58374E -01
0 . 25259E+00 0 .0 0 . 59476E -01
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0 . 28677E+00 
0 . 32208E+00 
0 . 35831E+00 
0 . 39526E+00 
0 . 43273E+00 
0 . 47054E+00 
0 . 50846E+00 
0 .‘54633E+00 
0 . 58394E+00 
0 . 62111E+00 
0 . 657S5E+00 
0 .69 3 3 6 E + 0 0  
0 . 72808E+00 
0 .76 1 6 0 E + 0 0  
0 . 79375E+00 
0 .8 2 4 3  6E+00 
0 . 85323E+00 
0 . 88019E+00 
0 . 90508E+00 
0 . 92771E+00 
0 . 94792E+00 
0 . 96555E+00 
0 . 98043E+00 
0 . 99239E+00 
0 . 10013E+01 
0 . 10069E+01 
0 . 10089E+01 

3 1
41

0 .1 0 0 8 9 E + 0 1  
0 . 10069E+01 
0 . 10013E+01 
0 . 99239E+00 
0 .98 0 4 3 E + 0 0  
0 . 96555E+00 
0 . 94792E+00 
0 . 92771E+00 
0 . 90508E+00 
0 .88 0 1 9 E + 0 0  
0 .85 3 2 3 E + 0 0  
0 . 82436E+00 
0 .79 3 7 5 E + 0 0  
0 . 76160E+00 
0 .72 8 0 8 E + 0 0  
0 . 69336E+00 
0 . 65765E+00 
0 .62 1 1 1 E + 0 0  
0 . 58394E+00 
0 . 54633E+00 
0 . 50846E+00 
0 . 47053E+00 
0 . 43273E+00 
0 . 39526E+00 
0 .3 5 8 3 1 E + 0 0  
0 . 32208E+00 
0 . 28677E+00 
0 .2 5 2 5 9 E + 0 0  
0 .2 1 9 7 3 E + 0 0  
0 . 18841E+00 
0 . 15882E+00 
0 . 13117E+00 
0 .1 0 5 6 4 E + 0 0  
0 . 8 2 4 2 8E -01  
0 . 61717E -01  
0 . 4 3 6 8 4E -01  
0 . 28 5 0 1 E -0 1  
0 .1 6 3 3 7 E -0 1  
0 .7 3 7 5 0 E -0 2  
0 . 18480E -02  
0 . OOOOOE+OO 
4 1

41
0 . OOOOOE+OO 
0 . 18480E -02  
0 . 7 3 7 50E -02  
0 . 1 6 3 38E -01  
0 . 2 8 5 0 1 E -0 1  
0 . 4 3 6 84E -01  
0 . 6 1 7 1 6E -01  
0 .8 2 4 2 8 E -0 1  
0 . 10564E+00 
0 . 13117E+00 
0 . 15882E+00 
0 . 18841E+00 
0 .2 1 9 7 3 E + 0 0  
0 . 25259E+00 
0 . 28677E+00 
0 . 32208E+00 
0 . 35831E+00 
0 .3 9 5 2 6 E + 0 0  
0 .4 3 2 7 3 E + 0 0  
0 . 47054E+00 
0 . 50846E+00 
0 . 54633E+00 
0 . 58394E+00

0 .0  0 .5 9 9 7 8 E -0 1
0 .0  0 . 5 9 9 09E -01
0 .0  0 .5 9 3 0 4 E -0 1
0 .0  0 . 5 8 2 03E -01
0 .0  0 .5 6 6 5 3 E -0 1
0 .0  0 .5 4 7 0 2 E -0 1
0 .0  0 . 52 3 9 8 E -0 1
0 .0  0 . 4 9 7 9 2E -01
0 .0  0 . 4 6 9 3 1E -01
0 .0  0 .4 3 8 6 3 E -0 1
0 .0  0 .4 0 6 3 2 E -0 1
0 .0  0 . 37 2 8 2 E -0 1
0 .0  0 . 3 3 8 5 3 E -0 1
0 .0  0 . 30 3 8 7 E -0 1
0 .0  0 . 26 9 2 0 E -0 1
0 .0  0 .2 3 4 9 4 E -0 1
0 .0  0 . 20 1 4 6 E -0 1
0 .0  0 . 1 6 9 1 5E -01
0 .0  0 . 1 3 8 4 3E -01
0 .0  0 .1 0 9 7 1 E -0 1
0 .0  0 . 83390E -02
0 .0  0 . 59930E -02
0 .0  0 . 3 9 7 40E -02
0 .0  0 . 2 3 2 20E -02
0 .0  0 .1 0 8 1 0 E -0 2
0 .0  0 . 28900E -03
0 .0  0 . OOOOOE+OO

2 .0 1 7 8  0 . OOOOOE+OO
2 .0 1 7 8  - 0 . 2 8 9 0 0E -03
2 .0 1 7 8  - 0 . 1 0 8 10E -02
2 .0 1 7 8  - 0 .2 3 2 2 0 E -0 2
2 .0 1 7 8  - 0 .3 9 7 4 0 E -0 2
2 .0 1 7 8  - 0 .5 9 9 3 0 E -0 2
2 .0 1 7 8  - 0 . 8 3 3 90E -02
2 .0 1 7 8  - 0 . 10 9 7 1 E -0 1
2 .0 1 7 8  - 0 . 13 8 4 3 E -0 1
2 .0 1 7 8  - 0 . 16 9 1 5 E -0 1
2 .0 1 7 8  - 0 .2 0 1 4 6 E -0 1
2 .0 1 7 8  - 0 . 2 3 4 9 4 E -0 1
2 .0 1 7 8  - 0 . 2 6 9 2 0 E -0 1
2 .0 1 7 8  - 0 .3 0 3 8 6 E -0 1
2 .0 1 7 8  - 0 . 33 8 5 3 E -0 1
2 .0 1 7 8  - 0 . 3 7 2 8 1 E -0 1
2 .0 1 7 8  - 0 . 40 6 3 2 E -0 1
2 .0 1 7 8  - 0 . 4 3 8 6 3 E -0 1
2 .0 1 7 8  - 0 .4 6 9 3 1 E -0 1
2 .0 1 7 8  - 0 .4 9 7 9 1 E -0 1
2 .0 1 7 8  - 0 . 52 3 9 8 E -0 1
2 .0 1 7 8  - 0 .5 4 7 0 1 E -0 1
2 .0 1 7 8  - 0 .5 6 6 5 3 E -0 1
2 .0 1 7 8  - 0 .5 8 2 0 3 E -0 1
2 .0 1 7 8  - 0 .5 9 3 0 3 E -0 1
2 .0 1 7 8  - 0 .5 9 9 0 8 E -0 1
2 .0 1 7 8  - 0 . 59 9 7 8 E -0 1
2 .0 1 7 8  - 0 .5 9 4 7 5 E -0 1
2 .0 1 7 8  - 0 . 58 3 7 4 E -0 1
2 .0 1 7 8  - 0 . 56 6 5 5 E -0 1
2 .0 1 7 8  - 0 . 54 3 1 0 E -0 1
2 .0 1 7 8  - 0 . 51 3 3 9 E -0 1
2 .0 1 7 8  -0 .4 7 7 5 3 E -0 1
2 .0 1 7 8  - 0 . 4 3 5 7 2 E -0 1
2 .0 1 7 8  - 0 . 3 8 8 2 5 E -0 1
2 .0 1 7 8  - 0 . 3 3 5 4 1 E -0 1
2 .0 1 7 8  - 0 . 2 7 7 5 2 E -0 1
2 .0 1 7 8  - 0 . 2 1 4 7 9 E -0 1
2 .0 1 7 8  -0 .1 4 7 3 0 E -0 1
2 .0 1 7 8  -0 .7 5 1 7 0 E -0 2
2 .0 1 7 8  0 . OOOOOE+OO

2 .0 1 7 8  0 . OOOOOE+OO
2 .0 1 7 8  0 .7 5 1 7 0 E -0 2
2 .0 1 7 8  0 .1 4 7 3 0 E -0 1
2 .0 1 7 8  0 . 2 1 4 79E -01
2 .0 1 7 8  0 .2 7 7 5 2 E -0 1
2 .0 1 7 8  0 . 33 5 4 1 E -0 1
2 .0 1 7 8  0 . 38 8 2 5 E -0 1
2 .0 1 7 8  0 . 4 3 5 7 2 E -0 1
2 .0 1 7 8  0 . 47 7 5 3 E -0 1
2 .0 1 7 8  0 . 51339E -01
2 .0 1 7 8  0 . 5 4 3 1 0E -01
2 .0 1 7 8  0 . 56 6 5 6 E -0 1
2 .0 1 7 8  0 . 5 8 3 74E -01
2 .0 1 7 8  0 . 59 4 7 6 E -0 1
2 .0 1 7 8  0 . 5 9 9 78E -01
2 .0 1 7 8  0 . 5 9 9 09E -01
2 .0 1 7 8  0 . 5 9 3 04E -01
2 .0 1 7 8  0 . S8203E -01
2 .0 1 7 8  0 . S6653E -01
2 .0 1 7 8  0 . 5 4 7 02E -01
2 .0 1 7 8  0 . 52 3 9 8 E -0 1
2 .0 1 7 8  0 . 49 7 9 2 E -0 1
2 .0 1 7 8  0 . 46 9 3 1 E -0 1
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0 . 62111E+00 2
0 . 65765E+00 2
0 . 69336E+00 2
0 . 72808E+00 2
0 . 76160E+00 2
0 . 79375E +00 2
0 .8 2 4 3 6 E + 0 0  2
0 . 85323E+00 2
0 . 88019E+00 2
0 . 90508E+00 2
0 . 92771E+00 2
0 . 94792E+00 2
0 . 96555E+00 2
0 . 98043E+00 2
0 . 99239E+00 2
0 . 10013E+01 2
0 . 10069E+01 2
0 . 10089E+01 2

5 1 
2

0 .  I
0 .

6 1 
2

1 .0 0 8 9
1 .0 0 8 9

7 1 
2

- 1 5 .
0 .

8 1 
2

1 .0 0 8 9
1 5 .

9 1
2

- 1 5 .
- 1 5 .

10 1 
2

15 .
1 5 .

11 1 
2

- 1 5 .
- 1 5 .

12 1 
2

1 5 .
1 5 .

13 1 
2

- 1 5 .
15 .

14 1 
2

- 1 5 .
1 5 .

15 1 
2

- 1 5 .
1 5 .

16 1 
2

- 1 5 .
1 5 .

17 1 
2

- 1 5 .
- 1 5 .

18 1 
2

- 1 5 .
- 1 5 .

19 1 
2

- 1 5 .
- 1 5 .

20 1 
2

1 5 .
1 5 .

21 1 
2

1 5 .
1 5 .

22 1 
2

1 5 .
1 5 .

23 1
29

0 . OOOOOE+OO 
0 .1 8 4 8 0 E -0 2  
0 . 7 3 7 5 0 E -0 2

0178 0 . 4 3 8 6 3E -01
0178 0 . 4 0 6 3 2 E -0 1
0178 0 .3 7 2 8 2 E -0 1
0178 0 . 33 8 5 3 E -0 1
0178 0 . 30 3 8 7 E -0 1
0178 0 .2 6 9 2 0 E -0 1
0178 0 .2 3 4 9 4 E -0 1
0178 0 . 20 1 4 6 E -0 1
0178 0 . 1 6 9 1 5E -01
0178 0 . 1 3 8 4 3E -01
0178 0 . 10 9 7 1 E -0 1
0178 0 . 83390E -02
0178 0 . 59930E -02
0178 0 . 3 9 7 4 0E -02
0178 0 .2 3 2 2 0 E -0 2
0178 0 . 1 0 8 1 0E -02
0178 0 . 2 8 9 00E -03
0178 0 . OOOOOE+OO

I. 0 .
9 0 7 4  0 .

0 0 .
9 0 7 4  0 .

0. 0.
0 . 0 .

0. 0.
0 . 0 .

0 . 0 .
0 . 1 0 .

0 .  0 .
0 . 1 0 .

0 . - 1 0 .
0 . 0 .

0 . -1 0.
0. 0.

0 . - 1 0 .
0 . -1 0 .

0 . 1 0 .
0 . 1 0.

1 0 . 1 0 .
1 0 . 1 0 .

1 0 . - 1 0 .

1 0 . - 1 0 .

0 . 1 0 .
1 0 . 1 0 .

1 0 . 1 0 .
1 0 . -1 0 .

0 . - 1 0 .
1 0 . -1 0 .

0 . 1 0 .
1 0 . 1 0 .

1 0 . 1 0 .
1 0 . - 1 0 .

0 . -1 0 .
1 0 . -1 0 .

. 9 0 7 4  0 .  OOOOOE+OO

. 9 0 7 4  0 . 7 5 1 7 0 E - 0 2

. 9 0 7 4  0 . 1 4 7 3 0 E - 0 1



0 . 1 6 3 38E -01  .9 0 7 4
0 .2 8 5 0 1 E -0 1  .9 0 7 4
0 . 4 3 6 8 4 E -0 1  .9 0 7 4
0 . 61 7 1 6 E -0 1  .9 0 7 4
0 .8 2 4 2 8 E -0 1  .9 0 7 4
0 . 10564E+00 .9 0 7 4
0 . 13117E+00 .9 0 7 4
0 . 15882E+00 .9 0 7 4
0 .1 8 8 4 1 E + 0 0  .9 0 7 4
0 . 21973E+00 .9 0 7 4
0 . 25259E+00 .9 0 7 4
0 . 28677E+00 .9 0 7 4
0 . 32208E+00 .9 0 7 4
0 . 35831E+00 .9 0 7 4
0 . 39526E+00 .9 0 7 4
0 . 43273E+00 .9 0 7 4
0 . 47054E+00 .9 0 7 4
0 . 50846E+00 .9 0 7 4
0 . 54633E+00 .9 0 7 4
0 . 58394E+00 .9 0 7 4
0 . 62111E+00 .9 0 7 4
0 . 65765E+00 .9 0 7 4
0 . 69336E+00 .9 0 7 4
0 . 72808E+00 .9 0 7 4
0 .7 6 1 6 0 E + 0 0  .9 0 7 4
0 . 79375E+0Q .9 0 7 4

24 1
13

0 . 79375E+00 .9 0 7 4
0 .8 2 4 3 6 E + 0 0  .9 0 7 4
0 . 85323E+00 .9 0 7 4
0 . 88019E+00 .9 0 7 4
0 . 90508E+00 .9 0 7 4
0 . 92771E+00 .9 0 7 4
0 . 94792E+00 .9 0 7 4
0 . 96555E+00 .9 0 7 4
0 . 98043E+00 .9 0 7 4
0 . 99239E+00 .9 0 7 4
0 . 10013E+01 .9 0 7 4
0 . 10069E+01 .9 0 7 4
0 . 10089E+01 .9 0 7 4

25 1
13

0 . 10089E+01 .9 0 7 4
0 . 10069E+01 .9 0 7 4
0 . 10013E+01 .9 0 7 4
0 . 99239E+00 .9 0 7 4
0 . 98043E+00 .9 0 7 4
0 . 96555E+00 .9 0 7 4
0 . 94792E+00 .9 0 7 4
0 . 92771E+00 .9 0 7 4
0 . 90508E+00 .9 0 7 4
0 . 88019E+00 .9 0 7 4
0 . 85323E+0Q .9 0 7 4
0 .8 2 4 3 6 E + 0 0  .9 0 7 4
0 . 79375E+00 .9 0 7 4

26 1 
29

0 . 79375E+00 .9 0 7 4
0 . 76160E+00 .9 0 7 4
0 . 72808E+00 .9 0 7 4
0 . 69336E+00 .9 0 7 4
0 . 65765E+00 .9 0 7 4
0 . 62111E+00 .9 0 7 4
0 . 58394E+00 .9 0 7 4
0 . 54633E+00 .9 0 7 4
0 . 50846E+00 .9 0 7 4
0 . 47053E+00 .9 0 7 4
0 . 43273E+00 .9 0 7 4
0 . 39526E+00 .9 0 7 4
0 . 35831E+00 .9 0 7 4
0 .3 2 2 0 8 E + 0 0  .9 0 7 4
0 . 28677E+00 .9 0 7 4
0 . 25259E+00 .9 0 7 4
0 .2 1 9 7 3 E + 0 0  .9 0 7 4
0 . 18841E+00 .9 0 7 4
0 .1 5 8 8 2 E + 0 0  .9 0 7 4
0 . 13117E+00 .9 0 7 4
0 . 10564E+00 .9 0 7 4
0 .8 2 4 2 8 E -0 1  .9 0 7 4
0 .6 1 7 1 7 E -0 1  .9 0 7 4
0 .4 3 6 8 4 E -0 1  .9 0 7 4
0 .2 8 5 0 1 E -0 1  .9 0 7 4
0 . 1 6 3 3 7 E -0 1  .9 0 7 4
0 . 73 7 5 0 E -0 2  .9 0 7 4
0 .1 8 4 8 0 E -0 2  .9 0 7 4
0 . OOOOOE+OO .9 0 7 4

27 1
29

0 . OOOOOE+OO 1 .5 1 3 1 2
0 .1 8 4 8 0 E -0 2  1 .5 1 3 1 2
0 . 7 3 7 5 0 E -0 2  1 .5 1 3 1 2
0 . 1 6 3 38E -01  1 .5 1 3 1 2
0 . 2 8 5 0 1 E -0 1  1 .5 1 3 1 2
0 .4 3 6 8 4 E -0 1  1 .5 1 3 1 2

0 .2 1 4 7 9 E -0 1  
0 .2 7 7 5 2 E -0 1  
0 .3 3 5 4 1 E -0 1  
0 . 3 8 8 25E -01  
0 . 4 3 5 72E -01  
0 . 4 7 7 53E -01  
0 . 51339E -01  
0 . 54310E -01  
0 . 56656E -01  
0 . 58374E -01  
0 . 59476E -01  
0 . 59978E -01  
0 . 59909E -01  
0 . 5 9 3 0 4E -01  
0 . 58203E -01  
0 . 56653E -01  
0 . 54702E -01  
0 . 52398E -01  
0 . 49792E -01  
0 . 4 6 9 3 1E -01  
0 . 4 3 8 6 3E -01  
0 . 4 0 6 3 2E -01  
0 . 3 7 2 82E -01  
0 . 3 3 8 53E -01  
0 .3 0 3 8 7 E -0 1  
0 .2 6 9 2 0 E -0 1

0 . 2 6 9 20E -01  
0 .2 3 4 9 4 E -0 1  
0 . 20146E -01  
0 . 16915E -01  
0 . 13843E -01  
0 .1 0 9 7 1 E -0 1  
0 . 83390E -02  
0 . 59930E -02  
0 . 39740E -02  
0 .2 3 2 2 0 E -0 2  
0 . 10810E -02  
0 . 28900E -03  
0 .  OOOOOE+OO

0 . OOOOOE+OO 
- 0 . 2 8 9 0 0E -03  
-0 .1 0 8 1 0 E -0 2  
-0 .2 3 2 2 0 E -0 2  
-0 .3 9 7 4 0 E -0 2  
- 0 . 5 9 9 30E -02  
- 0 . 83 3 9 0 E -0 2  
-0 .1 0 9 7 1 E -0 1  
- 0 . 1 3 8 43E -01  
- 0 . 16 9 1 5 E -0 1  
-0 .2 0 1 4 6 E -0 1  
-0 .2 3 4 9 4 E -0 1  
- 0 . 26 9 2 0 E -0 1

-0 .2 6 9 2 0 E -0 1  
-0 .3 0 3 8 6 E -0 1  
-0 .3 3 8 5 3 E -0 1  
- 0 .3 7 2 8 1 E -0 1  
- 0 . 4 0 6 3 2 E -0 1  
-0 .4 3 8 6 3 E -0 1  
-0 .4 6 9 3 1 E -0 1  
- 0 . 49 7 9 1 E -0 1  
-0 .5 2 3 9 8 E -0 1  
- 0 . 5 4 7 0 1 E -0 1  
- 0 . 56 6 5 3 E -0 1  
-0 .5 8 2 0 3 E -0 1  
- 0 . 59 3 0 3 E -0 1  
-0 .5 9 9 0 8 E -0 1  
-0 .5 9 9 7 B E -0 1  
-0 .5 9 4 7 5 E -0 1  
-0 .5 8 3 7 4 E -0 1  
-0 .5 6 6 5 5 E -0 1  
-0 .5 4 3 1 0 E -0 1  
-0 .5 1 3 3 9 E -0 1  
-0 .4 7 7 5 3 E -0 1  
-0 .4 3 5 7 2 E -0 1  
-0 .3 8 8 2 5 E -0 1  
-0 .3 3 5 4 1 E -0 1  
- 0 . 2 77 5 2 E -0 1  
-0 .2 1 4 7 9 E -0 1  
-0 .1 4 7 3 0 E -0 1  
-0 .7 5 1 7 0 E -0 2  

0 . OOOOOE+OO

0 . OOOOOE+OO 
0 .7 5 1 7 0 E -0 2  
0 . 14 7 3 0 E -0 1  
0 . 2 1 4 7 9 E -0 1  
0 .2 7 7 5 2 E -0 1  
0 .3 3 5 4 1 E -0 1
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0 . 6 1 7 16E -01 1 .5 1 3 1 2 0 . 38825E -01
0 . 8 2 4 28E -01 1 .5 1 3 1 2 0 . 43572E -01
0 . 10564E+00 1 .5 1 3 1 2 0 .4 7 7 5 3 E -0 1
0 . 13117E+00 1 .5 1 3 1 2 0 . 51339E -01
0 . 15882E+00 1 .5 1 3 1 2 0 .5 4 3 1 0 E -0 1
0 . 18841E+00 1 .5 1 3 1 2 0 . 56656E -01
0 . 21973E+00 1 .5 1 3 1 2 0 .5 8 3 7 4 E -0 1
0 . 25259E+00 1 .5 1 3 1 2 0 . 59476E -01
0 .2 8 6 7 7 E + 0 0 1 .5 1 3 1 2 0 . 59978E -01
0 . 32208E+00 1 .5 1 3 1 2 0 . 59909E -01
0 . 35831E+00 1 .5 1 3 1 2 0 . 59304E -01
0 . 39526E+00 1 .5 1 3 1 2 0 . 58203E -01
0 . 43273E+00 1 .5 1 3 1 2 0 . 56653E -01
0 . 47054E+00 1 .5 1 3 1 2 0 . 54702E -01
0 . 50846E+00 1 .5 1 3 1 2 0 . 52398E -01
0 . 54633E+00 1 .5 1 3 1 2 0 .4 9 7 9 2 E -0 1
0 . 58394E+00 1 .5 1 3 1 2 0 . 46931E -01
0 . 62111E+00 1 .5 1 3 1 2 0 . 43863E -01
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0 . 99239E+00 2 .0 1 7 8 - 0 . 2 3 2 2 0 E -0 2
0 . 99239E+00 2 .0 1 7 8 0 .2 3 2 2 0 E -0 2
0 . 10013E+01 2 .0 1 7 8 - 0 . 10 8 1 0 E -0 2
0 . 10013E+01 2 .0 1 7 8 0 . 1 0 8 1 0 E -0 2
0 .1 0 0 6 9 E + 0 1 2 .0 1 7 8 - 0 .2 8 9 0 0 E -0 3
0 . 10069E+01 2 .0 1 7 8 0 . 2 8 9 0 0 E -0 3
0 . 10089E+01 2 .0 1 7 8 0 . OOOOOE+OO
0 . 10089E+01 
1

2 .0 1 7 8 0 . OOOOOE+OO

2
- 1 5 . 10. 10 .

1 5 . 10 . 10 .
- 1 5 . 0 . 10 .

1 5 .
1

0 . 10 .

2
- 1 5 . 10 . - 1 0 .

1 5 . 10. - 1 0 .
- 1 5 . 10 . 10 .

1 5 . 10. 10 .6 1 2 2
- 1 5 .  0 .  -1 0 .

1 5 . 0 .  -1 0 .
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-1 5 . 10. - 1 0 .
1 5 .

1
10. -1 0 .

2
- 1 5 . 0 . -1 0 .
- 1 5 . 10. -1 0 .
-1 5 . 0. 10.
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1
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2
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1 5 . 10. 10 .
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1
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2
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1

0. 0 .

2
-1 5 0 . 0 .

15 . 0 . 0 .
- 1 5 . 0 . ■10.

1 5 .
1

0 . •10.

2
0 .7 9 3 7 5 E + 0 0 .9 0 7 4 - 0 .2 6 9 2 0 E -0 1
0 .7 6 1 6 0 E + 0 0 .9 0 7 4 - 0 . 3 0 3 8 6 E -0 1
0 . 72808E+00 .9 0 7 4 - 0 . 3 3 8 5 3 E -0 1
0 . 69336E+00 .9 0 7 4 -0 .3 7 2 8 1 E -0 1
0 .65 7 6 5 E + 0 0 .9 0 7 4 - 0 . 4 0 6 3 2 E -0 1
0 . 62111E+00 .9 0 7 4 - 0 . 4 3 8 6 3 E -0 1
0 . 58394E+00 .9 0 7 4 - 0 . 4 6 9 3 1 E -0 1
0 . 54633E+00 .9 0 7 4 - 0 . 4 9 7 9 1 E -0 1
0 . 50846E+00 .9 0 7 4 - 0 . 5 2 3 9 8 E -0 1
0 .4 7 0 5 3 E + 0 0 .9 0 7 4 - 0 . 5 4 7 0 1 E -0 1
0 . 43273E+00 .9 0 7 4 - 0 . 56 6 5 3 E -0 1
0 . 39526E+00 .9 0 7 4 - 0 . 5 8 2 0 3 E -0 1
0 . 35831E+00 .9 0 7 4 - 0 . 59 3 0 3 E -0 1
0 . 32208E+00 .9 0 7 4 - 0 . 5 9 9 0 8 E -0 1
0.28 6 7 7 E + 0 0 .9 0 7 4 - 0 . 5 9 9 7 8 E -0 1
0 . 25259E+00 .9 0 7 4 - 0 .5 9 4 7 5 E -0 1
0.21 9 7 3 E + 0 0 .9 0 7 4 -0 .5 8 3 7 4 E -0 1
0 . 18841E+00 .9 0 7 4 - 0 . 5 6 6 5 5 E -0 1
0 . 15882E+00 .9 0 7 4 - 0 . 5 4 3 1 0 E -0 1
0 .1 3117E + 00 .9 0 7 4 -0 .5 1 3 3 9 E -0 1
0.10 5 6 4 E + 0 0 .9 0 7 4 - 0 .4 7 7 5 3 E -0 1
0 . 82428E -01 .9 0 7 4 - 0 . 4 3 5 7 2 E -0 1
0 . 61717E -01 .9 0 7 4 -0 .3 8 8 2 5 E -0 1
0 . 4 3 6 8 4E -01 .9 0 7 4 -0 .3 3 5 4 1 E -0 1
0 . 2 8 5 01E -01 .9 0 7 4 - 0 .2 7 7 5 2 E -0 1
0 . 16337E-Q1 .9 0 7 4 - 0 .2 1 4 7 9 E -0 1
0 . 7 3 7 50E -02 .9 0 7 4 - 0 . 1 4 7 3 0 E -0 1
0 . 18480E -02 .9 0 7 4 -0 .7 5 1 7 0 E -0 2
0 . OOOOOE+OO .9 0 7 4 0 . OOOOOE+OO
0 . 79375E+00 1 .5 1 3 1 2 - 0 . 2 6 9 2 0 E -0 1
0 . 76160E+00 1 .5 1 3 1 2 - 0 . 3 0 3 8 6 E -0 1
0 . 72808E+00 1 .5 1 3 1 2 - 0 . 3 3 8 5 3 E -0 1
0 . 69336E+00 1 .5 1 3 1 2 -0 .3 7 2 8 1 E -0 1
0 . 65765E+00 1 .5 1 3 1 2 - 0 . 4 0 6 3 2 E -0 1
0 . 62111E+00 1 .5 1 3 1 2 - 0 . 4 3 8 6 3 E -0 1
0 . 58394E+00 1 .5 1 3 1 2 - 0 . 4 6 9 3 1 E -0 1
0 . 54633E+00 1 .5 1 3 1 2 - 0 .4 9 7 9 1 E -0 1
0 . 5084SE+00 1 .5 1 3 1 2 - 0 . 5 2 3 9 8 E -0 1
0 . 47053E+00 1 .5 1 3 1 2 - 0 . 5 4 7 0 1 E -0 1
0 . 43273E+00 1 .5 1 3 1 2 - 0 . 5 6 6 5 3 E -0 1
0 . 39526E+00 1 .5 1 3 1 2 - 0 . 5 8 2 0 3 E -0 1
0 . 35831E+00 1 .5 1 3 1 2 -0 .5 9 3 0 3 E -0 1
0 . 32208E+00 1 .5 1 3 1 2 - 0 . 5 9 9 0 8 E -0 1
0 . 28677E+00 1 .5 1 3 1 2 - 0 . 5 9 9 7 8 E -0 1
0 . 25259E+00 1 .5 1 3 1 2 - 0 . 5 9 4 7 5 E -0 1
0 . 21973E+00 1 .5 1 3 1 2 - 0 . 5 8 3 7 4 E -0 1
0 . 18841E+00 1 .5 1 3 1 2 -0 .5 6 6 5 5 E -0 1
0 . 15882E+00 1 .5 1 3 1 2 - 0 . 5 4 3 1 0 E -0 1
0 . 13117E+00 1 .5 1 3 1 2 - 0 . 5 1 3 3 9 E -0 1
0 . 10564E+00 1 .5 1 3 1 2 -0 .4 7 7 5 3 E -0 1
0 . 82428E -01 1 .5 1 3 1 2 - 0 . 4 3 5 7 2 E -0 1
0 . 6 1 7 17E -01 1 .5 1 3 1 2 - 0 . 3 8 8 2 5 E -0 1
0 . 4 3 6 84E -01 1 .5 1 3 1 2 -0 .3 3 5 4 1 E -0 1
0 . 28 5 0 1 E -0 1 1 .5 1 3 1 2 -0 .2 7 7 5 2 E -0 1
0 . 16337E -01 1 .5 1 3 1 2 - 0 . 2 1 4 7 9 E -0 1
0 . 73 7 5 0 E -0 2 1 .5 1 3 1 2 - 0 . 1 4 7 3 0 E -0 1
0 . 1 8 4 80E -02 1 .5 1 3 1 2 - 0 . 7 5 1 7 0 E -0 2
0 . OOOOOE+OO 1 .5 1 3 1 2 0 . OOOOOE+OO

12 1 
13 2

0 . 10089E+01 .9 0 7 4 0 . OOOOOE+OO
0 . 10069E+01 .9 0 7 4 -0 .2 8 9 0 0 E -0 3
0 . 10013E+01 .9 0 7 4 - 0 . 10 8 1 0 E -0 2
0 . 99239E+00 .9 0 7 4 - 0 .2 3 2 2 0 E -0 2
0 . 98043E+00 .9 0 7 4 - 0 . 39 7 4 0 E -0 2
0 . 96555E+00 .9 0 7 4 - 0 . 5 9 9 3 0 E -0 2
0 . 94792E+00 .9 0 7 4 - 0 . 83 3 9 0 E -0 2
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0 .9 2 7 7 1 E + 0 0  .9 0 7 4
0 . 90508E+00 .9 0 7 4
0 . 88019E+00 .9 0 7 4
0 . 85323E+00 .9 0 7 4
0 . 82436E+00 .90 7 4
0 . 79375E+00 .90 7 4
0 . 10089E+01 1 .5 1 3 1 2
0 .1 0 0 6 9 E + 0 1  1 .5 1 3 1 2
0 . 10013E+01 1 .5 1 3 1 2
0 . 99239E+00 1 .5 1 3 1 2
0 . 98043E+00 1 .5 1 3 1 2
0 . 96555E+00 1 .5 1 3 1 2
0 . 94792E+00 1 .5 1 3 1 2
0 . 92771E+00 1 .5 1 3 1 2
0 . 90508E+00 1 .5 1 3 1 2
0 . 88019E+00 1 .5 1 3 1 2
0 . 85323E+00 1 .5 1 3 1 2
0 .8 2 4 3 6 E + 0 0  1 .5 1 3 1 2
0 . 79375E+00 1 .5 1 3 1 2
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29 2

0 . OOOOOE+OO .9 0 7 4  
0 . 18480E -02  .90 7 4
0 .7 3 7 5 0 E -0 2  .90 7 4
0 . 1 6 3 38E -01  .90 7 4
0 . 28501E -01  .90 7 4
0 . 43684E -01  .90 7 4
0 .6 1 7 1 6 E -0 1  .90 7 4
0 . 8 2 4 28E -01  .90 7 4
0 . 10564E+00 .90 7 4
0 . 13117E+00 .9 0 7 4
0 . 15882E+00 .90 7 4
0 . 18841E+00 .9 0 7 4
0 . 21973E+00 .9 0 7 4
0 . 25259E+00 .9 0 7 4
0 . 28677E+00 .9 0 7 4
0 . 32208E+00 .9 0 7 4
0 . 35831E+00 .9 0 7 4
0 . 39526E+00 .9 0 7 4
0.43 2 7 3 E + 0 0  .9 0 7 4
0 . 47054E+00 .9 0 7 4
0 . 50846E+00 .9 0 7 4
0.54 6 3 3 E + 0 0  .9 0 7 4
0 . 58394E+00 .9 0 7 4
0 . 62111E+00 .9 0 7 4
0.65 7 6 5 E + 0 0  .9 0 7 4
0 . 69336E+00 .9 0 7 4
0 . 72808E+00 .9 0 7 4
0 . 76160E+00 .9 0 7 4
0.79 3 7 5 E + 0 0  .9 0 7 4
0 . OOOOOE+OO 1 .5 1 3 1 2
0 .1 8 4 8 0 E -0 2  1 .5 1 3 1 2
0 . 7 3 7 50E -02  1 .5 1 3 1 2
0 . 1 6 3 3 8E -01  1 .5 1 3 1 2
0 . 28 5 0 1 E -0 1  1 .5 1 3 1 2
0 .4 3 6 8 4 E -0 1  1 .5 1 3 1 2
0 . 61716E -01  1 .5 1 3 1 2
0 .B 2 4 2 8 E -0 1  1 .5 1 3 1 2
0 . 10564E+00 1 .5 1 3 1 2
0 . 13117E+00 1 .5 1 3 1 2
0 . 15882E+00 1 .5 1 3 1 2
0 . 18841E+00 1 .5 1 3 1 2
0 . 21973E+00 1 .5 1 3 1 2
0 . 25259E+00 1 .5 1 3 1 2
0 . 28677E+00 1 .5 1 3 1 2
0 . 32208E+00 1 .5 1 3 1 2
0 . 35831E+00 1 .5 1 3 1 2
0 . 39526E+00 1 .5 1 3 1 2
0 . 43273E+00 1 .5 1 3 1 2
0 . 47054E+00 1 .5 1 3 1 2
0 . 50846E+00 1 .5 1 3 1 2
0 . 54633E+00 1 .5 1 3 1 2
0 . 58394E+00 1 .5 1 3 1 2
0 . 62111E+00 1 .5 1 3 1 2
0 . 65765E+00 1 .5 1 3 1 2
0 . 69336E+00 1 .5 1 3 1 2
0 . 72808E+00 1 .5 1 3 1 2
0 . 76160E+00 1 .5 1 3 1 2
0 . 79375E+00 1 .5 1 3 1 2

14 1
13 2

0 . 79375E+00 .90 7 4
0 .8 2 4 3 6 E + 0 0  .90 7 4
0 .8 5 3 2 3 E + 0 0  .90 7 4
0 . 88019E+00 .90 7 4
0 . 90508E+00 .90 7 4
0 . 92771E+00 .90 7 4
0 . 94792E+00 .9 0 7 4
0 . 96555E+00 .90 7 4
0 . 98043E+00 .90 7 4
0 . 99239E+00 .90 7 4
0 . 10013E+01 .90 7 4
0 . 10069E+01 .9074
0 . 10089E+01 .9 0 7 4
0 . 79375E+00 1 .5 1 3 1 2

-0 .1 0 9 7 1 E -0 1  
- 0 . 1 3 8 4 3 E -0 1  
- 0 . 1 6 9 1 5 E -0 1  
- 0 . 2 0 1 4 6 E -0 1  
-0 .2 3 4 9 4 E -0 1  
- 0 . 2 6 9 2 0 E -0 1  

0 . OOOOOE+OO 
-0 .2 8 9 0 0 E -0 3  
- 0 .1 0 8 1 0 E -0 2  
- 0 .2 3 2 2 0 E -0 2  
- 0 . 3 9 7 4 0 E -0 2  
- 0 . 5 9 9 3 0 E -0 2  
- 0 . 8 3 3 9 0 E -0 2  
-0 .1 0 9 7 1 E -0 1  
- 0 . 1 3 8 4 3 E -0 1  
- 0 . 1 6 9 1 5 E -0 1  
- 0 . 2 0 1 4 6 E -0 1  
-0 .2 3 4 9 4 E -0 1  
-0 .2 6 9 2 0 E -0 1

0 . OOOOOE+OO 
0 .7 5 1 7 0 E -0 2  
0 . 14 7 3 0 E -0 1  
0 . 2 1 4 7 9 E -0 1  
0 .2 7 7 5 2 E -0 1  
0 . 3 3 5 4 1 E -0 1  
0 .3 8 8 2 5 E -0 1  
0 .4 3 5 7 2 E -0 1  
0 . 4 7 7 5 3 E -0 1  
0 . 51 3 3 9 E -0 1  
0 . 5 4 3 1 0 E -0 1  
0 . 56 6 5 6 E -0 1  
0 . 58 3 7 4 E -0 1  
0 . 59 4 7 6 E -0 1  
0 .5 9 9 7 8 E -0 1  
0 . 59 9 0 9 E -0 1  
0 . 59 3 0 4 E -0 1  
0 . 58 2 0 3 E -0 1  
0 . 56 6 5 3 E -0 1  
0 . 54 7 0 2 E -0 1  
0 .5 2 3 9 8 E -0 1  
0 . 4 9 7 9 2 E -0 1  
0 .4 6 9 3 1 E -0 1  
0 .4 3 8 6 3 E -0 1  
0 .4 0 6 3 2 E -0 1  
0 .3 7 2 8 2 E -0 1  
0 .3 3 8 5 3 E -0 1  
0 .3 0 3 8 7 E -0 1  
0 .2 6 9 2 0 E -0 1  
0 . OOOOOE+OO 
0 .7 5 1 7 0 E -0 2  
0 . 14 7 3 0 E -0 1  
0 .2 1 4 7 9 E -0 1  
0 .2 7 7 5 2 E -0 1  
0 .3 3 5 4 1 E -0 1  
0 . 38 8 2 5 E -0 1  
0 .4 3 5 7 2 E -0 1  
0 .4 7 7 5 3 E -0 1  
0 . 51 3 3 9 E -0 1  
0 . 5 4 3 1 0 E -0 1  
0 . 56 6 5 6 E -0 1  
0 . 58 3 7 4 E -0 1  
0 . 5 9 4 7 6E -01  
0 .5 9 9 7 8 E -0 1  
0 . 59 9 0 9 E -0 1  
0 .5 9 3 0 4 E -0 1  
0 .5 8 2 0 3 E -0 1  
0 . 56 6 5 3 E -0 1  
0 . 5 4 7 0 2 E -0 1  
0 . 5 2 3 9 8 E -0 1  
0 . 4 9 7 9 2 E -0 1  
0 . 4 6 9 3 1 E -0 1  
0 .4 3 8 6 3 E -0 1  
0 .4 0 6 3 2 E -0 1  
0 .3 7 2 8 2 E -0 1  
0 .3 3 8 5 3 E -0 1  
0 .3 0 3 8 7 E -0 1  
0 .2 6 9 2 0 E -0 1

0 .2 6 9 2 0 E -0 1  
0 . 2 3 4 9 4 E -0 1  
0 .2 0 1 4 6 E -0 1  
0 . 1 6 9 1 5 E -0 1  
0 .1 3 8 4 3 E -0 1  
0 . 1 0 9 7 1 E -0 1  
0 . 83 3 9 0 E -0 2  
0 .5 9 9 3 0 E -0 2  
0 . 39 7 4 0 E -0 2  
0 .2 3 2 2 0 E -0 2  
0 . 10 8 1 0 E -0 2  
0 .2 8 9 0 0 E -0 3  
0 . OOOOOE+OO 
0 .2 6 9 2 0 E -0 1
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0 .8 2 4 3  6E+00 1 .5 1 3 1 2 0 .2 3 4 9 4 E -0 1
0 .8 5 3 2 3 E + 0 0 1 .5 1 3 1 2 0 .2 0 1 4 6 E -0 1
0 . 88019E+00 1 .5 1 3 1 2 0 . 1 6 9 15E -01
0 . 90508E+00 1 .5 1 3 1 2 0 . 13843E -01
0 . 92771E+00 1 .5 1 3 1 2 0 . 10971E -01
0 . 94792E+00 1 .5 1 3 1 2 0 . 83390E -02
0 . 96555E+00 1 .5 1 3 1 2 0 . 59930E -02
0 . 98043E+00 1 .5 1 3 1 2 0 .3 9 7 4 0 E -0 2
0 . 99239E+00 1 .5 1 3 1 2 0 . 2 3 2 20E -02
0 . 10013E+01 1 .5 1 3 1 2 0 .1 0 8 1 0 E -0 2
0 . 10069E+01 1 .5 1 3 1 2 0 . 28900E -03
0 . 10089E+01 1 .5 1 3 1 2 0 . OOOOOE+OO12
0 . 10089E+01 1 .5 1 3 1 2 0 . OOOOOE+OO
0 . 10069E+01 1 .5 1 3 1 2 - 0 . 28 9 0 0 E -0 3
0 . 10013E +01 1 .5 1 3 1 2 - 0 . 1 0 8 10E -02
0 . 99239E +00 1 .5 1 3 1 2 - 0 . 23 2 2 0 E -0 2
0 . 98043E+00 1 .5 1 3 1 2 - 0 . 3 9 7 4 0 E -0 2
0 . 96555E+00 1 .5 1 3 1 2 - 0 . 59 9 3 0 E -0 2
0 .9 4 7 9 2 E + 0 0 1 .5 1 3 1 2 - 0 . 83 3 9 0 E -0 2
0 . 92771E+00 1 .5 1 3 1 2 -0 .1 0 9 7 1 E -0 1
0 . 90508E +00 1 .5 1 3 1 2 -0 .1 3 8 4 3 E -0 1
0 . 88019E +00 1 .5 1 3 1 2 - 0 . 16 9 1 5 E -0 1
0 . 85323E +00 1 .5 1 3 1 2 -0 .2 0 1 4 6 E -0 1
0 . 82436E +00 1 .5 1 3 1 2 - 0 . 2 3 4 9 4 E -0 1
0 . 79375E +00 1 .5 1 3 1 2 - 0 . 2 6 9 2 0 E -0 1
0 . 76160E +00 1 .5 1 3 1 2 - 0 . 3 0 3 8 6 E -0 1
0 .7 2 8 0 8 E + 0 0 1 .5 1 3 1 2 - 0 . 3 3 8 5 3 E -0 1
0 .6 9 3 3  6E+00 1 .5 1 3 1 2 - 0 .3 7 2 8 1 E -0 1
0 . 65765E +00 1 .5 1 3 1 2 - 0 .4 0 6 3 2 E -0 1
0 . 62111E +00 1 .5 1 3 1 2 - 0 . 4 3 8 6 3 E -0 1
0 . 58394E +00 1 .5 1 3 1 2 - 0 . 4 6 9 3 1 E -0 1
0 .5 4 6 3 3 E + 0 0 1 .5 1 3 1 2 - 0 .4 9 7 9 1 E -0 1
0 . 50846E +00 1 .5 1 3 1 2 - 0 . 5 2 3 9 8 E -0 1
0 .4 7 0 5 3 E + 0 0 1 .5 1 3 1 2 - 0 . 54 7 0 1 E -0 1
0 . 43273E +00 1 .5 1 3 1 2 -0 .5 6 6 5 3 E -0 1
0 . 39526E +00 1 .5 1 3 1 2 - 0 . 58 2 0 3 E -0 1
0 . 35831E +00 1 .5 1 3 1 2 - 0 . 59 3 0 3 E -0 1
0 . 32208E +00 1 .5 1 3 1 2 - 0 . 59 9 0 8 E -0 1
0 . 28677E +00 1 .5 1 3 1 2 -0 .5 9 9 7 8 E -0 1
0 . 25259E + 00 1 .5 1 3 1 2 -0 .5 9 4 7 5 E -0 1
0 .2 1 9 7 3 E + 0 0 1 .5 1 3 1 2 -0 .5 8 3 7 4 E -0 1
0 . 18841E +00 1 .5 1 3 1 2 - 0 . 56 6 5 5 E -0 1
0 .1 5 8 8 2 E + 0 0 1 .5 1 3 1 2 -0 .5 4 3 1 0 E -0 1
0 .1 3 1 1 7 E + 0 0 1 .5 1 3 1 2 - 0 . 5 1 3 3 9 E -0 1
0 . 10564E +00 1 .5 1 3 1 2 - 0 .4 7 7 5 3 E -0 1
0 .8 2 4 2 8 E -0 1 1 .5 1 3 1 2 -0 .4 3 5 7 2 E -0 1
0 .6 1 7 1 7 E -0 1 1 .5 1 3 1 2 -0 .3 8 8 2 5 E -0 1
0 . 4 3 6 8 4 E -0 1 1 .5 1 3 1 2 - 0 . 3 3 5 4 1 E -0 1
0 . 2 8 5 0 1 E -0 1 1 .5 1 3 1 2 - 0 . 2 7 7 5 2 E -0 1
0 .1 6 3 3 7 E -0 1 1 .5 1 3 1 2 -0 .2 1 4 7 9 E -0 1
0 .7 3 7 5 0 E -0 2 1 .5 1 3 1 2 -0 .1 4 7 3 0 E -0 1
0 .1 8 4 8 0 E -0 2 1 .5 1 3 1 2 - 0 . 7 5 1 7 0 E -0 2
0 . OOOOOE+OO 1 .5 1 3 1 2 0 .  OOOOOE+OO
0 .1 0 0 8 9 E + 0 1 2 .0 1 7 8 0 .  OOOOOE+OO
0 . 10069E +01 2 .0 1 7 8 -0 .2 8 9 0 0 E -0 3
0 . 10013E +01 2 .0 1 7 8 - 0 . 10 8 1 0 E -0 2
0 . 99239E +00 2 .0 1 7 8 -0 .2 3 2 2 0 E -0 2
0 .9 8 0 4 3 E + 0 0 2 .0 1 7 8 - 0 . 39 7 4 0 E -0 2
0 . 96555E+00 2 .0 1 7 8 - 0 . 5 9 9 3 0 E -0 2
0 . 94792E+00 2 .0 1 7 8 - 0 . 83 3 9 0 E -0 2
0 . 92771E + 00 2 .0 1 7 8 - 0 . 10 9 7 1 E -0 1
0 . 90508E +00 2 .0 1 7 8 - 0 . 13 8 4 3 E -0 1
0 . 88019E +00 2 .0 1 7 8 - 0 . 16 9 1 5 E -0 1
0 .8 5 3 2 3 E + 0 0 2 .0 1 7 8 - 0 .2 0 1 4 6 E -0 1
0 .8 2 4 3 6 E + 0 0 2 .0 1 7 8 - 0 .2 3 4 9 4 E -0 1
0 . 79375E + 00 2 .0 1 7 8 - 0 .2 6 9 2 0 E -0 1
0 . 76160E + 00 2 .0 1 7 8 - 0 . 3 0 3 8 6 E -0 1
0 .7 2 8 0 8 E + 0 0 2 .0 1 7 8 . - 0 . 3 3 8 5 3 E -0 1
0 . 69336E +00 2 .0 1 7 8 - 0 .3 7 2 8 1 E -0 1
0 . 65765E +00 2 .0 1 7 8 - 0 . 4 0 6 3 2 E -0 1
0 .6 2 1 1 1 E + 0 0 2 .0 1 7 8 - 0 . 4 3 8 6 3 E -0 1
0 . 58394E+00 2 .0 1 7 8 - 0 . 4 6 9 3 1 E -0 1
0 . 54633E +00 2 .0 1 7 8 - 0 . 4 9 7 9 1 E -0 1
0 . 50846E +00 2 .0 1 7 8 -0 .S 2 3 9 8 E -0 1
0 .4 7 0 5 3 E + 0 0 2 .0 1 7 8 - 0 . 54 7 0 1 E -0 1
0 . 43273E+00 2 .0 1 7 8 - 0 . 5 6 6 5 3 E -0 1
0 . 39526E+00 2 .0 1 7 8 - 0 .5 8 2 0 3 E -0 1
0 . 35831E + 00 2 .0 1 7 8 - 0 .5 9 3 0 3 E -0 1
0 .32208E+Q 0 2 .0 1 7 8 - 0 . 59 9 0 8 E -0 1
0 .2 8 6 7 7 E + 0 0 2 .0 1 7 8 - 0 . 5 9 9 7 8 E -0 1
0 . 25259E + 00 2 .0 1 7 8 - 0 . 5 9 4 7 5 E -0 1
0 . 21973E + 00 2 .0 1 7 8 - 0 .5 8 3 7 4 E -0 1
0 . 18841E +00 2 .017B - 0 .5 6 6 5 5 E -0 1
0 . 15882E + 00 2 .0 1 7 8 - 0 . 5 4 3 1 0 E -0 1
0 . 13117E + 00 2 .0 1 7 8 - 0 . 5 1 3 3 9 E -0 1
0 . 10564E+00 2 .0 1 7 8 - 0 . 4 7 7 5 3 E -0 1
0 .8 2 4 2 8 E -0 1 2 .0 1 7 8 -0 .4 3 5 7 2 E -0 1
0 .6 1 7 1 7 E -0 1 2 .0 1 7 8 -0 .3 8 8 2 5 E -0 1
0 .4 3 6 8 4 E -0 1 2 .0 1 7 8 - 0 . 3 3 5 4 1 E -0 1
0 .2 8 5 0 1 E -0 1 2 .0 1 7 8 - 0 .2 7 7 5 2 E -0 1
0 . 1 6 3 3 7 E -0 1 2 .0 1 7 8 - 0 .2 1 4 7 9 E -0 1
0 .7 3 7 5 0 E -0 2 2 .0 1 7 8 - 0 .1 4 7 3 0 E -0 1
0 .1 8 4 8 0 E -0 2 2 .0 1 7 8 - 0 . 7 5 1 7 0 E -0 2
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41

0 . OOOOOE+OO 2 .0 1 7 8 0 . OOOOOE+OO

0 . OOOOOE+OO 1 .5 1 3 1 2 0 . OOOOOE+OO
0 . 1 8 4 8 0 E -0 2 1 .5 1 3 1 2 0 . 7 5 1 70E -02
0 .7 3 7 5 0 E -0 2 1 .5 1 3 1 2 0 . 1 4 7 3 0E -01
0 . 1 6 3 3 8 E -0 1 1 .5 1 3 1 2 0 . 21 4 7 9 E -0 1
0 . 2 8 5 0 1 E -0 1 1 .5 1 3 1 2 0 .2 7 7 5 2 E -0 1
0 .4 3 6 8 4 E -0 1 1 .5 1 3 1 2 0 .3 3 5 4 1 E -0 1
0 . 6 1 7 1 6 E -0 1 1 .5 1 3 1 2 0 . 38 8 2 5 E -0 1
0 . 8 2 4 2 8 E -0 1 1 .5 1 3 1 2 0 . 43 5 7 2 E -0 1
0 . 10564E+00 1 .5 1 3 1 2 0 . 47 7 5 3 E -0 1
0 . 13117E+00 1 .5 1 3 1 2 0 . 51 3 3 9 E -0 1
0 . 15882E+00 1 .5 1 3 1 2 0 . 5 4 3 1 0E -01
0 . 18841E +00 1 .5 1 3 1 2 0 . 5 6 6 5 6E -01
0 . 21973E +00 1 .5 1 3 1 2 0 . 58 3 7 4 E -0 1
0 .2 5 2 5 9 E + 0 0 1 .5 1 3 1 2 0 .5 9 4 7 6 E -0 1
0 . 28677E+00 1 .5 1 3 1 2 0 . 5 9 9 78E -01
0 . 32208E+00 1 .5 1 3 1 2 0 . 5 9 9 09E -01
0 : 35831E +00 1 .5 1 3 1 2 0 .5 9 3 0 4 E -0 1
0 . 39526E+00 1 .5 1 3 1 2 0 .5 8 2 0 3 E -0 1
0 . 43273E+00 1 .5 1 3 1 2 0 .5 6 6 5 3 E -0 1
0 . 47054E+00 1 .5 1 3 1 2 0 . 54 7 0 2 E -0 1
0 . 50846E +00 1 .5 1 3 1 2 0 . 5 2 3 98E -01
0 . 54633E +00 1 .5 1 3 1 2 0 .4 9 7 9 2 E -0 1
0 . 58394E+00 1 .5 1 3 1 2 0 . 46 9 3 1 E -0 1
0 .6 2 1 1 1 E + 0 0 1 .5 1 3 1 2 0 . 43 8 6 3 E -0 1
0 . 65765E+00 1 .5 1 3 1 2 0 . 40 6 3 2 E -0 1
0 . 69336E+00 1 .5 1 3 1 2 0 . 37 2 8 2 E -0 1
0 . 72808E + 00 1 .5 1 3 1 2 0 . 3 3 8 5 3 E -0 1
0 . 76160E +00 1 .5 1 3 1 2 0 . 3 0 3 8 7 E -0 1
0 . 79375E +00 1 .5 1 3 1 2 0 . 26 9 2 0 E -0 1
0 . 82436E+00 1 .5 1 3 1 2 0 . 23 4 9 4 E -0 1
0 . 85323E+00 1 .5 1 3 1 2 0 .2 0 1 4 6 E -0 1
0 . 88019E+00 1 .5 1 3 1 2 0 . 16915E -01
0 . 90508E+00 1 .5 1 3 1 2 0 . 13843E -01
0 .9 2 7 7 1 E + 0 0 1 .5 1 3 1 2 0 . 10971E -01
0 . 94792E+00 1 .5 1 3 1 2 0 . 8 3 3 9 0E -02
0 . 96555E+00 1 .5 1 3 1 2 0 . 59930E -02
0 . 98043E +00 1 .5 1 3 1 2 0 . 3 9 7 40E -02
0 . 99239E +00 1 .5 1 3 1 2 0 .2 3 2 2 0 E -0 2
0 . 10013E+01 1 .5 1 3 1 2 0 .1 0 8 1 0 E -0 2
0 .1 0 0 6 9 E + 0 1 1 .5 1 3 1 2 0 .2 8 9 0 0 E -0 3
0 . 10089E+01 1 .5 1 3 1 2 0 . OOOOOE+OO
0 . OOOOOE+OO 2 .0 1 7 8 0 . 00000E+00
0 .1 8 4 8 0 E -0 2 2 .0 1 7 8 0 . 75 1 7 0 E -0 2
0 .7 3 7 5 0 E -0 2 2 .0 1 7 8 0 . 14 7 3 0 E -0 1
0 . 1 6 3 3 8 E -0 1 2 .0 1 7 8 0 .2 1 4 7 9 E -0 1
0 .2 8 5 0 1 E -0 1 2 .0 1 7 8 0 . 2 7 7 52E -01
0 .4 3 6 8 4 E -0 1 2 .0 1 7 8 0 . 33 5 4 1 E -0 1
0 . 6 1 7 1 6 E -0 1 2 .0 1 7 8 0 .3 8 8 2 5 E -0 1
0 . 8 2 4 2 8 E -0 1 2 .0 1 7 8 0 . 4 3 5 72E -01
0 . 10564E+00 2 .0 1 7 8 0 . 4 7 7 5 3 E -0 1
0 . 13117E +00 2 .0 1 7 8 0 . 5 1 3 39E -01
0 . 15882E+00 2 .0 1 7 8 0 .5 4 3 1 0 E -0 1
0 . 18841E +00 2 .0 1 7 8 0 . 56 6 5 6 E -0 1
0 .2 1 9 7 3 E + 0 0 2 .0 1 7 8 0 . 58374E -01
0 . 25259E + 00 2 .0 1 7 8 0 .5 9 4 7  6E -01
0 . 28677E + 00 2 .0 1 7 8 0 .5 9 9 7 8 E -0 1
0 . 32208E +00 2 .0 1 7 8 0 . 59 9 0 9 E -0 1
0 . 3S831E+00 2 .0 1 7 8 0 . 5 9 3 04E -01
0 . 39526E + 00 2 .0 1 7 8 0 . 5 8 2 0 3E -01
0 . 43273E + 00 2 .0 1 7 8 0 .5 6 6 5 3 E -0 1
0 . 47054E +00 2 .0 1 7 8 0 . 5 4 7 0 2E -01
0 . 50846E +00 2 .0 1 7 8 0 . 5 2 3 9 8E -01
0 . 54633E + 00 2 .0 1 7 8 0 . 49 7 9 2 E -0 1
0 . 58394E+00 2 .0 1 7 8 0 .4 6 9 3  IE -0 1
0 . 62111E+00 2 .0 1 7 8 0 . 43 8 6 3 E -0 1
0 . 65765E+00 2 .0 1 7 8 0 . 40 6 3 2 E -0 1
0 . 69336E+00 2 .0 1 7 8 0 . 37 2 8 2 E -0 1
0 . 72808E +00 2 .0 1 7 8 0 .3 3 8 5 3 E -0 1
0 . 76160E +00 2 .0 1 7 8 0 .3 0 3 8 7 E -0 1
0 . 79375E + 00 2 .0 1 7 8 0 . 26 9 2 0 E -0 1
0 .8 2 4 3 6 E + 0 0 2 .0 1 7 8 0 . 2 3 4 94E -01
0 .8 5 3 2 3 E + 0 0 2 .0 1 7 8 0 . 2 0 1 4 6 E -0 1
0 . 88019E+00 2 .0 1 7 8 0 . 16 9 1 5 E -0 1
0 . 90508E+00 2 .0 1 7 8 0 . 13 8 4 3 E -0 1
0 . 92771E+00 2 .0 1 7 8 0 .1 0 9 7 1 E -0 1
0 . 94792E+00 2 .0 1 7 8 0 .8 3 3 9 0 E -0 2
0 . 96555E +00 2 .0 1 7 8 0 .5 9 9 3 0 E -0 2
0 . 98043E + 00 2 .0 1 7 8 0 .3 9 7 4 0 E -0 2
0 . 99239E + 00 2 .0 1 7 8 0 .2 3 2 2 0 E -0 2
0 . 10013E + 01 2 .0 1 7 8 0 . 1 0 8 10E -02
0 . 10069E + 01 2 .0 1 7 8 0 .2 8 9 0 0 E -0 3
0 . 10089E + 01 2 .0 1 7 8 0 . OOOOOE+OO
5 . 3 .4  C u rv e d -E d g e  D e f i n i t i o n  
5 . 3 . 4 . 1  NSG, NRG

36 16
$ STARS 5, 
C STARS 5,

3 . 4 . 2  S e g m en ts  r e f e r e n c e
3 . 4 . 3  XSG, 1DCV, ITSG
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6 6 11 1 1  
8 8 1
9 9 1

10 10 1
11 11 1
12 12 1
13 13 1
14 14 1
15 15 1
16 16 1
17 17 1
18 18 1
19 19 1
20 20 1
21 21  1
22 22 1
23 23 1
24 24 1
25 25 1
26 26 1
27 27 1
28 28 1
29 29 1
30 30 1
31 31 1
32 32 1
33 33 1
34 34 1
35 35 1
36 36 1

$ STARS 5 . 3 .5  S u p p o r t - R e g io n  D e f i n i t i o n  b y  B o u n d a ry  E dges 
C STARS 5 . 3 . 5 . 1  IRG, IDSF, ITRG 

1 1 1  
C STARS 5 . 3 . 5 . 2  NN 

5
C STARS 5 . 3 .  5 . 2 ( ISBS ( X) , 1= 1, NN)

5 --26 -2 5  - 6  1
2 2 1
5

2 6 -2 4  -2 3  -5
3 3 1
2

4 3
4 4 1
4

- 20 -1 4  17 15
5 5 1
4

18 16 -2 1  -1 5
6 6 1
4

13 22 -1 6  -1 9
7 7 1
5

-1 8 -1 7  -9  -1 1  19
8 8 1
5

20 21 -2 2  12 10
9 9 1
6

14 -1 0  -8  -2  -7
10 10 1
6

7 -1  8 -1 2  -1 3
11 11 1

4
35 -3 0 -3 2  26
12 12 1
4
32 -2 9 -3 3  25
13 13 1

4
23 31 -2 7  -3 5
14 14 1

4
24 33 -2 8  -3 1
15 15 1

5
36 -3 -3 4  29 30
16 16 1
5
-3 6 27 28 34 -4

Data for the background grid file, wing.bac, are given below.

STARS-CFDASE input data:

$ STARS 5 . 2 .1  w in g .b a c  -  B a c k g ro u n d  m esh  . . .  q u a s i - 2 D  NACA0012 
C STARS 5 . 2 .2  B a s i c  d a t a  p a r m e t e r s : NPBG NEBG NPS NLS NTS 

8 6 0 4 4
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STARS 5 . 2 .3  N ode, n o d a l  c o o r d i n a t e s
1 . 10000E+06 - . 10000E+06 - . 10000E+06

STARS 5 . 2 . 4  x , y , z  l o c a l - g l o b a l  c o o r d i n a t e s ,  s c a l e s  f a c t o r s
1 .0 0 .0 0  .0 0 3 .0 0 0

.0 0 1 .0 0  .0 0 3 .0 0 0

.0 0 .0 0  1 .0 0 3 .0 0 0
2 . 10000E+06 . 10000E+06 - . 10000E+06

1 .0 0 .0 0  .0 0 3 .0 0 0
.0 0 1 .0 0  .0 0 3 .0 0 0
.0 0 .0 0  1 .0 0 3 .0 0 0
3 - . 10000E+06 . 10000E+06 - . 10000E+06

1 .0 0 .0 0  .0 0 3 .0 0 0
.0 0 1 .0 0  .0 0 3 .0 0 0
.0 0 .0 0  1 .0 0 3 .0 0 0

4 - .  10000E+06 - . 10000E+06 - . 10000E+06
1 .0 0 .0 0  .0 0 3 .0 0 0

.0 0 1 .0 0  .0 0 3 .0 0 0

.0 0 .0 0  1 .0 0 3 .0 0 0
5 . 10000E+06 - . 10000e+ 06 . 10000E+06

1 .0 0 .0 0  .0 0 3 .0 0 0
.0 0 1 .0 0  .0 0 3 .0 0 0
.0 0 .0 0  1 .0 0 3 .0 0 0

6 . 10000E+06 . 10000E+06 . 10000E+06
1 .0 0 .0 0  .0 0 3 .0 0 0

.0 0 1 .0 0  .0 0 3 .0 0 0

.0 0 .0 0  1 .0 0 3 .0 0 0
7 - . 10000E+06 . 10000E+06 . 10000E+06

1 .0 0 .0 0  .0 0 3 .0 0 0
.0 0 1 .0 0  .0 0 3 .0 0 0
.0 0 .0 0  1 .0 0 3 .0 0 0

8 - . 10000E+06 - . 10000E+06 . 10000E+06
1 .0 0 .0 0  .0 0 3 .0 0 0

.0 0 1 .0 0  .0 0 3 .0 0 0

.0 0 .0 0  1 .0 0 3 .0 0 0
STARS 5 . 2 .5  E le m e n t n u m b er, t e t r a h e d r a l  c o n n e c t i v i t y  f o r  b a c k g ro u n d

1 2 1 8 4
2 2 8 7 4
3 2 3 4 7
4 2 8 1 6
5 2 7 8 6
6 1 6 8 5

$ STARS 5 . 2 .6  P o in t  S o u r c e s  1D a ta
$ STARS 5 . 2 .7  L in e s  S o u r c e s  1D a ta
$ STARS 5 . 2 . 7 . 1  1 . -  l e a d i n g  e d g e
C STARS 5 . 2 . 7 . 2  P o i n t  c o o r d i n a t e s :  x l , y l , z l , s i , r l , d l

.OOOOOE+OO .OOOOOE+OO .00000E + 00 .0 1 5 .0 5 0 .0 8 9
C STARS 5 . 2 . 7 . 3  P o i n t  c o o r d i n a t e s :  X 2 , y 2 , z 2 , s 2 , r 2 ,d 2

.OOOOOE+OO . 21000E+01 .OOOOOE+Ol .0 1 5 .0 5 0 .0 8 9
2 . -  l e a d i n g  e d g e

.OOOOOE+OO .OOOOOE+OO .OOOOOE+OO .0 4 0 .1 0 0 .3 0 8

.0 0 0 0 0 E + 0 0  . 21000E+01 . OOOOE+Ol .0 4 0 .1 0 0 .3 0 8
3 . -  t r a i l i n g  e d g e

. 1007E+01 .00000E + 00 .OOOOOE+OO .0 2 5 .0 5 0 .1 7 9

. 1007E+Q1 . 21000E+01 .OOOOOE+OO .0 2 5 .0 5 0 .1 7 9
4 . -  t r a i l i n g  e d g e

. 1007E+01 .OOOOOE+OO .OOOOOE+OO .0 4 0 .1 0 0 .3 7 7

. 1007E +01 . 21000E+01 .00000E + 00 .0 4 0 .1 0 0 .3 7 7
$ STARS 5 . 2 . 8  P la n e  T r i a n g u l a r  S o u r c e s  D a ta
$ STARS 5 . 2 . 8 . 1  1 . -  w in g
C STARS 5 . 2 . 8 . 2  P o i n t  c o o r d i n a t e s :  x l . y l , z l , s i , r l , d l

- .1 0 0 0 0 E + 0 0  .OOOOOOE+OO . OOOOOE+OO .0 4 .1 6 0 .5 0 0
C STARS 5 . 2 . 8 . 3  P o i n t  c o o r d i n a t e s :  x 2 , y 2 , z 2 , s 2 , r 2 , d 2

- . 10000E+00 . 210000E +01 .OOOOOE+OO .0 4 .1 6 0 .5 0 0
C STARS 5 . 2 . 8 . 4  P o i n t  c o o r d i n a t e s :  x 3 ,y 3 , z 3 , s 3 , r 3 , d3

. 101E+01 . 210000E+01 ■OOOOOE+OO .0 4 .1 6 0 .5 0 0
2 . -  w in g

. 101E +01 . 21000E+01 00000E+00 .0 4 .1 6 0 .5 0 0

.10 1 E + 0 1  .00000E + 00 OOOOOE+OO .0 4 .1 6 0 .5 0 0
- .1 0 0 0 0 E + 0 0  .OOOOOE+OO .OOOOOE+OO .0 4 .1 6 0 .5 0

3 . -  c o n t r o l  s u r f a c e
.7 8 5  .8 9  0 .0 1 .0 2 05
.7 8 5  1 .5 5  0 .0 1 .0 2 05
1 .0 1  1 .5 5  0 0 .0 1 .0 2 05

4 . - c o n t r o l  s u r f a c e
1 .0 1  1 .5 5  0 0 .0 1 .0 2 05
1 .0 1  .8 9  0 .0 1 .0 2 05
.7 8 5  .8 9 0 . .0 1 .0 2 05

Data for the boundary-condition file, wing.bco, are given below.

STARS-CFDASE input data:

$ STARS 5 . 4 . 1  w in g .b c o  B o u n d a ry  C o n d i t i o n  F la g s  
C STARS 5 . 4 .2  NRG, NSG 

1 6, 3 6 , 0
$ STARS 5 . 4 .3  S u r f a c e  R e g io n s  B o u n d a r y - c o n d i t i o n  D e f i n i t i o n s  
C STARS 5 . 4 .4  IRG, IBCO 1 1
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2 1
3 1
4 3
5 3
6 3
7 3
8 3
9 2 

10  2 
11 1 
12 1
13 1
14 1
15 1
16 1

$ STARS 5 . 4 . 5  C u rv e d  S eg m en ts  B o u n d a r y - c o n d i t i o n  D e f i n i t i o n s  
C STARS 5 . 4 . 6  J S ,  ICBCO 

1 0
2 0
3 3
4 4
5 0
6 1
7 0
8 0
9 0

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 4
25 3
26 0
27 0
28 4
29 3
30 0
31 0
32 0
33 1
34 1
35 0
36 0

Data for the steady CFD solution control file, wing.cons, are given below. 

STARS-CFDASE input data:

f c c o n t r o l
: STARS 5 .5 w in g . c o n s

n s t e p = 7 0 0 ,
n s to u = 20 0 ,
n s t a g e = 4 ,
c f l = 1 .0 ,
d i s s l = 1 .0 ,
d i s s 2 = 1 .0 ,
r e l a x = 1 .0 ,
m ach = 2 .0 ,
a lp h a = 0 .0 ,
b e t a = 0 .0 ,
r e s t a r t = . f a l s e . ,
n l i m i t = 2 ,
i g = 1,
n i te O = 1,
n i t e l = 1 ,
n i t e 2 = 0,
n c y c l = 2 5 ,
n c y c i = 2 5 ,
t l r = 0 .0 0 0 1 ,
d e b u g = . f a l s e . ,
m esh c = 1 ,
m e s h f = 1 ,

c b t ( l ) = 1 .0 ,
c b t (2) = 0 .5 ,
c b t (3) = 0 .0 ,
c b t (4) a 0 .0 ,
t r a n s = . f a l s e . ,

f i l e ,  s t e a d y  s t a t e  s o l u t i o n  c o n t r o l  p a r a m e te r s
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Data for the solids file, wing.dat, are given below. 

STARS-SOLIDS input data:

$ w in g  s o l i d  m o d el f o r  s t r u c t u r a l  a n a l y s i s .  w in g .d a t  f ro m  p r e p r o c e s s
4 8 6 , 15 4 9 , 2 , 4 , 1, 2 , 0 , 0 , 0, 0

0 , 0, 0 , 1, 0 , 0, 0 , 0 , 0, 0 , 0 , 0
1 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0, 2
2 , 0 , 2 , 0 , 1, 0, 0 , 1 , 1, 0
1 , 10, 0 , 6 0 0 .0 , 0 .0 ,  0 .0 , 0 .0

$ NODAL DATA
1 .0 0 0 0 .00 0 0 .00 0 0 1 1 1 1 1 0 0
2 .0 0 0 0 .10 0 0 .00 0 0 0 0 0

21 .0 0 0 0 2 .0 1 7 8 .00 0 0 0 0 0
22 .0 0 7 4 .0000 .01 4 7 1 1 1 1 1 0 0
23 .0 0 7 4 .1 0 0 0 .01 4 7 0 0 0
42 .0 0 7 4 2 .0 1 7 8 .01 4 7 0 0 0
43 .0 2 8 5 .0000 .02 7 7 1 1 1 1 1 0 0
44 .0 2 8 5 .1 0 0 0 .02 7 7 0 0 0
63 .0 2 8 5 2 .0 1 7 8 .0 2 7 7 0 0 0
64 .1 0 5 6 .0 0 0 0 .0 4 7 8 1 1 1 1 1 0 0
65 .1 0 5 6 .1 0 0 0 .0 4 7 8 0 0 0
84 .1 0 5 6 2 .0 1 7 8 .0 4 7 8 0 0 0
85 .2 1 9 7 .0 0 0 0 .0 5 8 4 1 1 1 1 1 0 0
86 .2 1 9 7 .1 0 0 0 .0 5 8 4 0 0 0

105 .2 1 9 7 2 .0 1 7 8 .0 5 8 4 0 0 0
106 .3 5 8 3 .0 0 0 0 .0593 1 1 1 1 1 0 0
107 .3 5 8 3 .1 0 0 0 .0593 0 0 0
126 .3 5 8 3 2 .0 1 7 8 .0593 0 0 0
127 .5 0 8 5 .0 0 0 0 .0 5 2 4 1 1 1 1 1 0 0
128 .5 0 8 5 .1 0 0 0 .0 5 2 4 0 0 0
147 .5 0 8 5 2 .0 1 7 8 .0 5 2 4 0 0 0
148 .6 5 7 6 .0 0 0 0 .0406 1 1 1 1 1 0 0
149 .6 5 7 6 .1 0 0 0 .04 0 6 0 0 0
168 . 6576 2 .0 1 7 8 .04 0 6 0 0 0
169 .7 9 3 7 .0 0 0 0 .02 6 9 1 1 1 1 1 0 0
170 .7 9 3 7 .1000 .02 6 9 0 0 0
189 .7 9 3 7 2 .0 1 7 8 .02 6 9 0 0 0
190 .9 0 5 1 .0000 .0138 1 1 1 1 1 0 0
191 .9 0 5 1 .1000 .0138 0 0 0
210 .9 0 5 1 2 .0 1 7 8 .0 1 3 8 0 0 0
211 .9 8 0 4 .0000 .00 4 0 1 1 1 1 1 0 0
212 .9 8 0 4 .1000 .00 4 0 0 0 0
231 .9 8 0 4 2 .0 1 7 8 .00 4 0 0 0 0
232 1 .0 0 8 9 .0000 .00 0 0 1 1 1 1 1 0 0
233 1 .0 0 8 9 .1000 .0 0 0 0 0 0 0
252 1 .0 0 8 9 2 .0 1 7 8 .0 0 0 0 0 0 0
253 .0 0 7 4 .0000 - .0 1 4 7 1 1 1 1 1 0 0
254 .0 0 7 4 .1000 - .0 1 4 7 0 0 0
273 .0 0 7 4 2 .0 1 7 8 - .0 1 4 7 0 0 0
274 .0 2 8 5 .0000 - .0 2 7 7 1 1 1 1 1 0 0
275 .0 2 8 5 .10 0 0 - .0 2 7 7 0 0 0
294 .0 2 8 5 2 .0 1 7 8 - .0 2 7 7 0 0 0
295 .1 0 5 6 .0000 - .0 4 7 8 1 1 1 1 1 0 0
296 .1 0 5 6 .10 0 0 - .0 4 7 8 0 0 0
315 .1 0 5 6 2 .0 1 7 8 - .0 4 7 8 0 0 0
316 .2 1 9 7 .0 0 0 0 - .0 5 8 4 1 1 1 1 1 0 0
317 .2 1 9 7 .1000 - .0 5 8 4 0 0 0
336 .2 1 9 7 2 .0 1 7 8 - .0 5 8 4 0 0 0
337 .3 5 8 3 .0 0 0 0 - .0 5 9 3 1 1 1 1 1 0 0
338 .3 5 8 3 .1 0 0 0 - .0 5 9 3 0 0 0
357 .3 5 8 3 2 .0 1 7 8 ' - .0 5 9 3 0 0 0
358 .5 0 8 5 .0 0 0 0 - .0 5 2 4 1 1 1 1 1 0 0
359 .5 0 8 5 .1 0 0 0 - .0 5 2 4 0 0 0
378 .5 0 8 5 2 .0 1 7 8 - .0 5 2 4 0 0 0
379 .6 5 7 6 .0000 - .0 4 0 6 1 1 1 1 1 0 0
380 .6 5 7 6 .1 0 0 0 - .0 4 0 6 0 0 0
399 .6 5 7 6 2 .0 1 7 8 - .0 4 0 6 0 0 0
400 .7 9 3 7 .0 0 0 0 - .0 2 6 9 1 1 1 1 1 0 0
401 .7 9 3 7 .1 0 0 0 - .0 2 6 9 0 0 0
420 .7 9 3 7 2 .0 1 7 8 - .0 2 6 9 0 0 0
421 .9 0 5 1 .0 0 0 0 - .0 1 3 8 1 1 1 1 1 0 0
422 .9 0 5 1 .1 0 0 0 - .0 1 3 8 0 0 0
441 .9 0 5 1 2 .0 1 7 8 - .0 1 3 8 0 0 0
442 .9 8 0 4 .0 0 0 0 - .0 0 4 0 1 1 1 1 1 0 0
443 .9 8 0 4 .1 0 0 0 - .0 0 4 0 0 0 0 0 0 0 0 0
462 .9 8 0 4 2 .0 1 7 8 - .0 0 4 0 0 0 0 0 0 0 0 0
463 1 .0 0 8 9 .9 1 7 5 .00 0 0 0 0 0 0 0 0 0 0
464 1 .0 0 8 9 1 .5 0 3 1 .00 0 0 0 0 0 0 0 0 0 0
465 .8 2 4 4 .9 1 7 5 .0235 0 0 0 0 0 0 0 0
471 .8 2 4 4 1 .5 0 3 1 .0235 0 0 0 0 0 0 0 0
472 .9 0 5 1 .9 1 7 5 .01 3 8 0 0 0 0 0 0 0 0
473 .9 0 5 1 1 .5 0 3 1 .0138 0 0 0 0 0 0 0 0
474 .9 8 0 4 .9 1 7 5 .00 4 0 0 0 0 0 0 0 0 0
475 .9 8 0 4 1 .5 0 3 1 .00 4 0 0 0 0 0 0 0 0 0
476 .8 2 4 4 .9 1 7 5 - .0 2 3 5 0 0 0 0 0 0 0 0
482 .8 2 4 4 1 .5 0 3 1 - .0 2 3 5 0 0 0 0 0 0 0 0
483 .9 0 5 1 .9 1 7 5 - .0 1 3 8 0 0 0 0 0 0 0 0

00

00010000010
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484 9051 1. 5031 0138
485 9804 9175 0040
486 9804 1. 5031 0040
ELEMENT CONNECTIVITY CONDITIONS

3 1 1 2 23 0 0
3 20 20 21 42 0 0
3 21 23 22 1 0 0
3 40 42 41 20 0 0
3 41 22 23 44 0 0
3 60 41 42 63 0 0
3 61 44 43 22 0 0
3 80 63 62 41 0 0
3 81 43 44 65 0 0
3 100 62 63 84 0 0
3 101 65 64 43 0 0
3 120 84 83 62 0 0
3 121 64 65 86 0 0
3 140 83 84 105 0 0
3 141 86 85 64 0 0
3 160 105 104 83 0 0
3 161 85 86 107 0 0
3 180 104 105 126 0 0
3 181 107 106 85 0 0
3 200 126 125 104 0 0
3 201 106 107 128 0 0
3 220 125 126 147 0 0
3 221 128 127 106 0 0
3 240 147 146 125 0 0
3 241 127 128 149 0 0
3 260 146 147 168 0 0
3 261 149 148 127 0 0
3 280 168 167 146 0 0
3 281 148 149 170 0 0
3 300 167 168 189 0 0
3 301 170 169 148 0 0
3 320 189 188 167 0 0
3 321 169 170 191 0 0
3 329 177 178 199 0 0
3 330 465 466 200 0 0
3 334 469 470 204 0 0
3 335 470 471 473 0 0
3 336 184 185 206 0 0
3 340 188 189 210 0 0
3 341 191 190 169 0 0
3 349 199 198 177 0 0
3 350 200 472 465 0 0
3 351 201 200 466 0 0
3 35-* 204 203 469 0 0
3 355 473 204 470 0 0
3 356 206 205 184 0 0
3 360 210 209 188 0 0
3 361 190 191 212 0 0
3 369 198 199 220 0 0
3 370 472 200 221 0 0
3 371 200 201 222 0 0
3 374 203 204 225 0 0
3 375 204 473 475 0 0
3 376 205 206 227 0 0
3 380 209 210 231 0 0
3 381 212 211 190 0 0
3 389 220 219 198 0 0
3 390 221 474 472 0 0
3 391 222 221 200 0 0
3 394 225 224 203 0 0
3 395 475 225 204 0 0
3 396 227 226 205 0 0
3 400 231 230 209 0 0
3 401 211 212 233 0 0
3 409 219 220 241 0 0
3 410 474 221 242 0 0
3 411 221 222 243 0 0
3 414 224 225 246 0 0
3 415 225 475 464 0 0
3 416 226 227 248 0 0
3 420 230 231 252 0 0
3 421 233 232 211 0 0
3 429 241 240 219 0 0
3 430 242 463 474 0 0
3 431 243 242 221 0 0
3 434 246 245 224 0 0
3 435 464 246 225 0 0
3 436 248 247 226 0 0
3 -440 252 251 230 0 0
3 441 2 1 253 0 0
3 460 21 20 272 0 0
3 461 253 254 2 0 0
3 480 272 273 21 0 0
3 481 254 253 274 0 0
3 500 273 272 293 0 0
3 501 274 275 254 0 0
3 520 293 294 273 0 0
3 521 275 274 295 0 0
3 540 294 293 314 0 0
3 541 295 296 275 0 0
3 560 314 315 294 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 1

000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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3 561 296 295 316 0
3 580 315 314 335 0
3 581 316 317 296 0
3 600 335 336 315 0
3 601 317 316 337 0
3 620 336 335 356 0
3 621 337 338 317 0
3 640 356 357 336 0
3 641 338 337 358 0
3 660 357 356 377 0
3 661 358 359 338 0
3 680 377 378 357 0
3 681 359 358 379 0
3 700 378 377 398 0
3 701 379 380 359 0
3 720 398 399 378 0
3 721 380 379 400 0
3 740 399 398 419 0
3 741 400 401 380 0
3 760 419 420 399 . 0
3 761 401 400 421 0
3 769 409 408 429 0
3 770 477 476 483 0
3 771 478 477 431 0
3 775 482 481 435 0
3 776 416 415 436 0
3 780 420 419 440 0
3 781 421 422 401 0
3 789 429 430 409 0
3 790 483 431 477 0
3 791 431 432 478 0
3 794 434 435 481 0
3 795 435 484 482 0
3 796 436 437 416 0
3 800 440 441 420 0
3 801 422 421 442 0
3 809 430 429 450 0
3 810 431 483 485 0
3 811 432 431 452 0
3 814 435 434 455 0
3 815 484 435 456 0
3 816 437 436 457 0
3 820 441 440 461 0
3 821 442 443 422 0
3 829 450 451 430 0
3 830 485 452 431 0
3 831 452 453 432 0
3 834 455 456 435 0
3 835 456 486 484 0
3 836 457 458 437 0
3 840 461 462 441 0
3 841 443 442 232 0
3 849 451 450 240 0
3 850 452 485 463 0
3 851 453 452 242 0
3 854 456 455 245 0
3 855 486 456 246 0
3 856 458 457 247 0
3 860 462 461 251 0
3 861 232 233 443 0
3 869 240 241 451 0
3 870 463 242 452 0
3 871 242 243 453 0
3 874 245 246 456 0
3 875 246 464 486 0
3 876 247 248 458 0
3 880 251 252 462 0
3 881 21 42 273 0
3 882 42 63 273 0
3 883 294 273 63 0
3 884 63 84 315 0
3 885 315 294 63 0
3 886 84 105 315 0
3 887 336 315 105 0
3 888 105 126 357 0
3 889 357 336 105 0
3 890 126 147 357 0
3 891 378 357 147 0
3 892 147 168 399 0
3 893 399 378 147 0
3 894 168 189 399 0
3 895 420 399 189 0
3 896 189 210 441 0
3 897 441 420 189 0
3 898 210 231 441 0
3 899 462 441 231 0
3 900 231 252 462 0
3 901 17 38 269 0
3 902 38 59 269 0
3 903 290 269 59 0
3 904 59 80 311 0
3 905 311 290 59 0
3 906 80 101 311 0
3 907 332 311 101 0
3 908 101 122 353 0

0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
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3 909 353 332 101 0
3 910 122 143 353 0
3 911 374 353 143 0
3 912 143 164 395 0
3 913 395 374 143 0
3 914 164 185 395 0
3 915 416 395 185 0
3 916 185 206 437 0
3 917 437 416 185 0
3 918 206 227 437 0
3 919 458 437 227 0
3 920 227 248 458 0
3 921 13 34 265 0
3 922 34 55 265 0
3 923 286 265 55 0
3 924 55 76 307 0
3 925 307 286 55 0
3 926 76 97 307 0
3 927 328 307 97 0
3 928 97 118 349 0
3 929 349 328 97 0
3 930 118 139 349 0
3 931 370 349 139 0
3 932 139 160 391 0
3 933 391 370 139 0
3 934 160 181 391 0
3 935 412 391 181 0
3 941 9 30 261 0
3 942 30 51 261 0
3 943 282 261 51 0
3 944 51 72 303 0
3 945 303 282 51 0
3 946 72 93 303 0
3 947 324 303 93 0
3 948 93 114 345 0
3 949 345 324 93 0
3 950 114 135 345 0
3 951 366 345 135 0
3 952 135 156 387 0
3 953 387 366 . 135 0
3 954 156 177 387 0
3 955 408 387 177 0
3 956 177 198 429 0
3 957 429 408 177 0
3 958 198 219 429 0
3 959 450 429 219 0
3 960 219 240 450 0
3 961 5 26 257 0
3 962 26 47 257 0
3 963 278 257 47 0
3 964 47 68 299 0
3 965 299 278 47 0
3 966 68 89 299 0
3 967 320 299 89 0
3 968 89 110 341 0
3 969 341 320 89 0
3 970 110 131 341 0
3 971 362 341 131 0
3 972 131 152 383 0
3 973 383 362 131 0
3 974 152 173 383 0
3 975 404 383 173 0
3 976 173 194 425 0
3 977 425 404 173 0
3 978 194 215 425 0
3 979 446 425 215 0
3 980 215 236 446 0
3 1499 485 463 474 0
3 1500 483 485 474 0
3 1501 474 472 483 0
3 1502 476 483 472 0
3 1503 472 465 476 0
3 1504 465 476 477 0
3 1509 470 481 482 0
3 1510 477 466 465 0
3 1515 482 471 470 0
3 1516 484 482 471 0
3 1517 471 473 484 0
3 1518 486 484 473 0
3 1519 473 475 486 0
3 1520 464 486 475 0
1 981 1 22 23 0
1 991 211 232 233 0
1 992 253 274 275 0
1 1000 421 442 443 0
1 1001 2 23 24 0
1 1011 212 233 234 0
1 1012 254 275 276 0
1 1020 422 443 444 0
1 1021 3 24 25 0
1 1031 213 234 235 0
1 1032 255 276 277 0
1 1040 423 444 445 0
1 1041 4 25 26 0
1 1051 214 235 236 0

0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 21

0000000000000000000000000000000000000000000000000000000000000000000000000a000000000000000000000
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1052 256 277 278 0 0 0
1060 424 445 446 0 0 0
1061 5 26 27 0 0 0
1071 215 236 237 0 0 0
1072 257 278 279 0 0 0
1080 425 446 447 0 0 0
1081 6 27 28 0 0 0
1091 216 237 238 0 0 0
1092 258 279 280 0 0 0
1100 426 447 448 0 0 0
1101 7 28 29 0 0 0
1111 217 238 239 0 0 0
1112 259 280 281 0 0 0
1120 427 448 449 0 0 0
1121 8 29 30 0 0 0
1131 218 239 240 0 0 0
1132 260 281 282 0 0 0
1140 428 449 450 0 0 0
1141 9 30 31 0 0 0
1151 219 240 241 0 0 0
1152 261 282 283 0 0 0
1160 429 450 451 0 0 0
1161 10 31 32 0 0 0
1171 220 241 242 0 0 0
1172 262 283 284 0 0 0
1180 430 451 452 0 0 0
1181 11 32 33 0 0 0
1188 158 179 180 0 0 0
1189 466 200 201 0 0 0
1190 200 221 222 0 0 0
1191 221 242 243 0 0 0
1192 263 284 285 0 0 0
1198 389 410 411 0 0 0
1199 477 431 432 0 0 0
1200 431 452 453 0 0 0
1201 12 33 34 0 0 0
1208 159 180 181 0 0 0
1209 467 201 202 0 0 0
1210 201 222 223 0 0 0
1211 222 243 244 0 0 0
1212 264 285 286 0 0 0
1218 390 411 412 0 0 0
1219 478 432 433 0 0 0
1220 432 453 454 0 0 0
1221 13 34 35 0 0 0
1228 160 181 182 0 0 0
1229 468 202 203 0 0 0
1230 202 223 224 0 0 0
1231 223 244 245 0 0 0
1232 265 286 287 0 0 0
1238 391 412 413 0 0 0
1239 479 433 434 0 0 0
1240 433 454 455 0 0 0
1241 14 35 36 0 0 0
1248 161 182 183 0 0 0
1249 469 203 204 0 0 0
1250 203 224 225 0 0 0
1251 224 245 246 0 0 0
1252 266 287 288 0 0 0
1258 392 413 414 0 0 0
1259 480 434 435 0 0 0
1260 434 455 456 0 0 0
1261 15 36 37 0 0 0
1268 162 183 184 0 0 0
1269 470 204 205 0 0 0
1270 204 225 226 0 0 0
1271 225 246 247 0 0 0
1272 267 288 289 0 0 0
1278 393 414 415 0 0 0
1279 481 435 436 0 0 0
1280 435 456 457 0 0 0
1281 16 37 38 0 0 0
1291 226 247 248 0 0 0
1292 268 289 290 0 0 0
1300 436 457 458 0 0 0
1301 17 38 39 0 0 0
1311 227 24B 249 0 0 0
1312 269 290 291 0 0 0
1320 437 458 459 0 0 0
1321 18 39 40 0 0 0
1331 228 249 250 0 0 0
1332 270 291 292 0 0 0
1340 438 459 460 0 0 0
1341 19 40 41 0 0 0
1351 229 250 251 0 0 0
1352 271 292 293 0 0 0
1360 439 460 461 0 0 0
136 1 20 41 42 0 0 0
1371 230 251 252 0 0 0
1372 272 293 294 0 0 0
1380 440 461 462 0 0 0
1381 21 42 43 0 0 0
1391 231 252 251 0 0 0
1392 273 294 295 0 0 0
1400 441 462 461 0 0 0

0 1 1 0 0 0 0
0 1 1 o 0 0 21
0 1 1 o 0 0 0
0 1 1 o 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21
0 1 1 0 0 0 0
0 1 1 0 0 0 21

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
0000
0
0
0
0
0
0
00
0
0
0
0
0
0
0
0
0
0
00
0
0
0
0
0
00
0
0
00
0
0
0
0
0
0
0
0
0
0
0
0
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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1 1401 1 253 254 0 0 0 0 0 1 1 0 0 0 0
1 1420 20 272 273 0 0 0 0 0 1 1 1
1 1421 21 273 272 0 0 0 0 0 1 1 0 0 0 0
1 1422 232 442 443 0 0 0 0 0 1 1 0 0 0 0
1 1441 251 461 462 1 1 1
1 1442 252 462 461 0 0 0 0 0 1 1 0 0 0 0
1 1443 1 3 252 0 0 0 0 0 1 1 0 0 0 0
1 1452 19 21 252 0 0 0 0 0 1 1 0 0 0 2
1 1453 232 234 1 0 0 0 0 0 1 1 0 0 0 0
1 1456 238 240 1 0 0 0 0 0 1 1 0 0 0 2
1 1457 248 250 1 0 0 0 0 0 1 1 0 0 0 0
1 1458 250 252 1 0 0 0 0 0 1 1 0 0 0 0
3 1459 241 4S1 220 0 0 0 0 0 1 1 0 0 0 0
3 1460 247 226 457 0 0 0 0 0 1 1 0 0 0 0
2 1461 451 430 199 220 0 0 0 0 1 1 0 0 0 0
2 1462 430 409 178 199 0 0 0 0 1 1 0 0 0 0
2 1463 178 409 410 179 0 0 0 0 1 1 0 0 0 0
2 1468 183 414 415 184 0 0 0 0 1 1 0 0 0 1
2 1469 43 6 205 184 415 0 0 0 0 1 1 0 0 0 0
2 1470 457 226 205 436 0 0 0 0 1 1 0 0 0 0
1 152 1 466 467 180 0 0 0 0 0 1 1 0 0 0 0
1 1523 470 471 184 0 0 0 0 0 1 1 0 0 0 2
1 1524 477 478 411 0 0 0 0 0 1 1 0 0 0 0
1 1526 481 482 415 0 0 0 0 0 1 1 0 0 0 2
1 1600 463 242 221 1 1
1 1527 242 243 11 0 0 0 0 0 1 1 0 0 0 0
1 1601 243 244 11 1 1
1 1528 244 245 11 0 0 0 0 0 1 1 0 0 0 0
1 1602 245 246 11 1 1 0
1 1529 246 464 16 0 0 0 0 0 1 1 0 0 0 0
1 1530 240 241 220 0 0 0 0 0 1 1 0 0 0 0
1 1531 247 248 227 0 0 0 0 0 1 1 0 0 0 0
1 1532 465 472 200 0 0 0 0 0 1 1 0 0 0 0
1 1533 472 474 221 0 0 0 0 0 1 1 0 0 0 0
1 1534 474 463 242 0 0 0 0 0 1 1 0 0 0 0
1 1535 463 485 452 0 0 0 0 0 1 1 0 0 0 0
1 1536 485 483 431 0 0 0 0 0 1 1 0 0 0 0
1 1537 483 476 477 0 0 0 0 0 1 1 0 0 0 0
1 1538 471 473 204 0 0 0 0 0 1 1 0 0 0 0
1 1539 473 475 225 0 0 0 0 0 1 1 0 0 0 0
1 1540 475 464 246 0 0 0 0 0 1 1 0 0 0 0
1 154 1 464 486 456 0 0 0 0 0 1 1 0 0 0 0
1 1542 4B6 484 435 0 0 0 0 0 1 1 0 0 0 0
1 1543 4B4 482 481 0 0 0 0 0 1 1 0 0 0 0
1 1544 465 476 477 0 0 0 0 0 1 1 0 0 0 0
1 1549 470 481 482 o ‘ 0 0 0 0 1 1 0 0 0 1
1 1550 471 4B2 481 0 0 0 0 0 1 1 0 0 0 0
1 1551 466 179 467 0 0 0 0 0 2 1 0 0 0 0
1 1555 470 183 471 0 0 0 0 0 2 1 0 0 0 0
1 1556 477 410 411 0 0 0 0 0 2 1 0 0 0 0
1 1560 481 414 415 0 0 0 0 0 2 1 0 0 0 0
1 1471 178 179 157 0 0 0 0 0 1 1 0 0 0 0
1 1472 179 180 163 0 0 0 0 0 1 1 0 0 0 0
1 1476 183 184 163 0 0 0 0 0 1 1 0 0 0 1
1 1477 409 410 389 0 0 0 0 0 1 1 0 0 0 0
1 1478 410 411 394 0 0 0 0 0 1 1 0 0 0 0
1 1482 414 415 394 0 0 0 0 0 1 1 0 0 0 1
1 1483 178 409 185 0 0 0 0 0 1 1 0 0 0 0
1 1489 184 415 185 0 0 0 0 0 1 1 0 0 0 1
1 1561 465 466 200 1 1
1 1563 469 470 204 1 1 2
1 1564 476 477 431 1 1
1 1566 480 481 435 1 1 2

$ LINE ELEMENT BASIC PROPERTIES
1 . 6 4 5 2 E -0 3  . 6 9 3 7 E -0 7  .3 4 6 9 E -0 7  . 3469E -07  .0000E + 00  .OOOOE+OO 

$ SHELL ELEMENT THICKNESSES
1 . 1 0 0 0 E -0 3  . 1 0 0 0 E -0 3  . 1000E-03
2 . 1 0 0 0 E -0 3  . 1 0 0 0 E -0 3  .1 0 0 0 E -0 3  

$ MATERIAL PROPERTIES
1 1

. 6895E+11 . 3000E+00 .OOOOE+OO .2765E+04 .OOOOE+OO .OOOOE+OO 
2 1

. 2105E+09 . 3000E+00 .OOOOE+OO .7765E+02 .OOOOE+OO .OOOOE+OO 
1 . 1 0 0 0 E -0 3  . 1 0 0 0 E -0 3  .1 0 0 0 E -0 3

Data for the aeroelastic scalars file, wing.scalars, are given below.

STARS-CFD ASE input data:

$ STARS 5 . 8 .1 w i n g . s c a l a r s  f i l e ,  E u le r  u n s te a d y  r u n .
$ STARS 5 . 8 .2 NR, IBCX, RBCX, IS IZ E  B a s ic  p a r a m e te r s

3 ,  0 , 1 .0 , 4
c STARS 5 . 8 .4 NNR, (N S (I) ,I= 1 ,N N R ) B o u n d a r y - c o n d i t i o n  m o d i f i c a t i o n  d a t a

1 2 , 1 , 2 , 3 , 4 , 5 , 6 ,  11 , 12 , 13 , 1 4 , 15 , 16
$ STARS 5 . 8 .5 I /O  p a r a m e te r
c STARS 5 . 8 .6 IRFORM, IPRINT

2, 1
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$ STARS 5 . 8 .7  c
c STARS 5 . 8 .8  r

2 .0
$ STARS 5 . 8 .9  i
c STARS 5 .8 .1 0

6102 .0 1 5 5 4 '
$ STARS 5 .8 .1 1
c STARS 5 .8 .1 2

2, 10 . ,
$ STARS 5 .8 .1 3
c STARS 5 . 8 .1 4

1 , 1
$ STARS 5 .8 .1 5
c STARS 5 .8 .1 6

2 0 ,
$ STARS 5 .8 .1 7

d im e n s io n a l  p a ra m e te r s
m a c h - in f ,  r h o - i n f ( k g / m * * 3 ) , a - i n f ( m / s e c ) , gamma, p i n f  

0 .9 1 5  3 4 0 .2 9  1 .4  0 .0
s h i f t  f a c t o r  a n d  g r a v i t y  c o n s t a n t  

SCF, GR 
752 1 .

I m p u ls e - F o r c e  D a ta  
I  FLAG, F F I , MS, NE 

3 , 5

NTERMS, NSTEPS 
2

7 , 9

Data for the unsteady CFD solution control file, wing.conu, are given below. 
STARS-CFDASE input data:

t c o n t r o l
: STARS 5. 9 ■- w in g . c

n s t e p = 54 0 1 ,
n o u t = 50,
n s t a g e = 3,
c f l = .7 0 ,
m ach = 2 . ,
a lp h a = 0 .0 ,
b e t a = 0 .0 ,
r e s t a r t = 1,
n c y c l = 4 0 ,
n c y c i = 4 0 ,
t l r = 0 . 01 ,
d e b u g = . f a l s e .
m esh c = 1,
m e s h f = 1,
c b t (1) = 1. .
c b t (2) = 0 .5 ,
c b t (3) = 0 . ,

c b t (4) = 0 . ,
n sm th = 2,
sm o fc = 0 .2 ,
lo w = . f a l s e .
t r a n s = • t r u e . ,
f r e q = 0 .0 1 2 5 ,
n s t p e = 27 5 ,
xO = 0 .0 ,yo = 0 .0 ,
zO = 0 .0 ,
wux = 0 .0 ,
wuy = 0 .0 ,
wuz = 1 .0 ,
p h a s e = 0 .0 ,
i f l o w _ s o l = 1,
a m p l i tu d e s .1 ,

f i l e  f o r  E u le r  u n s te a d y  r u n .

/
Data for the alternate steady CFD solution control file, wing.consdp, are given 

below.
ST ARS-CFD ASE input data:

4 ( l i n e s  o f  t i t l e )
$ VERSION USING FILES FROM SURFACE, VOLUME, AND ' CFDASERUN' ROUTINE, JUNE 1990 
5 c a n t i l e v e r  w ing  
$ m ach=0.,5  a lp h a = 0  
$
$ PROBLEM DIMENSION 

3
$ NELEM, NPOIN, NBOUN

2 9 7 7 0 0 , 5 4 7 5 9 , 12594
$ KACCEL, NACCEL 

1 0 0 , 25000
$ GAMMA, C l ,  ID IF F , EPS, IV ISC, WBR

1 . 4 ,  1 .0 ,  2 , 0 .1 ,  0, 0 .2
S NFFBC 1
$ ROINF, UXINF, UYINF, UZINF, PINF, MACHINF

1 .0 ,  1 . 0 ,  0 .0 ,  0 .0 ,  .1 7 8 5 7 1 4 2 9 , 2 .
$ NENBC 0
$ NTIME, NITER, ILOT
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2 0 0 0 , 1 , 1
$ CSAFE, IFCT, NQUAN, ID O (l) ,  ID O (2 ), CLIMAX

0 . 7 ,  0 , 2 , 3, 1 , 0 .9 0
$ INFOG, INFOCJ, OUFO, NIOUT 

- 1 ,  - 2 ,  3 , 500
$ CSMOO, NSMOO 

. 2 , 0 
$ ENTHALPY DAMPING COEFFICIENT 

1 . 0
$ IRPR , IRLOG, ILPR, ILLOG, A X (1), A X (2), A X (3), RCHORD

1, 1 , 1 , 1, 1 .0 ,  0 .0 ,  0 .0 ,  2 .5
$ IRFR , IRFS 

3 , 5500 
$ ISTRON, ICHECK 

2 1 
, S TIM EIN, ITIM  

0 . 0 , 0
$ F IL E 3 , F IL E 2 , FILE4 ( O u tp u t  f i l e  name -  g e o  f i l e  name -  i n p u t  f i l e  name ) 
f o r t . 1 5 _ d p  
m a n u a l . g e o d p  
IN
$ NCPU 

1

The following section is concentrated on the ARMA modeling technique. Data for the 

aeroelastic scalars file for step la in the ARMA procedures, wing.scalars, are given 

below.

STARS-CFDASE input data:

$ STARS 5 . 8 .1 w i n g . s c a l a r s l f i l e ,  ARMA u n s te a d y  r u n  s t e p  l a .
5 STARS 5 . 8 .2 NR, IBCX, RBCX, i s i z e  B a s ic  p a r a m e te r s

3 , 1 , 1 .0 , 4
C STARS 5 . 8 .4 NNR, (N S (I) ,I= 1 ,N N R ) B o u n d a r y - c o n d i t i o n  m o d i f i c a t i o n  <

1 2 , 1 , 2 , 3 , 4 , 5 , 6, 1 1 , 12 , 13, 1 4 , 15 , 16
$ STARS 5 . 8 .5 I /O  p a r a m e te r
C STARS

2 ,
5 . 8 .6

1
IRFORM, IPRINT

$ STARS 5 . 8 .7 d im e n s io n a l  p a ra m e te r s
C STARS 5 . 8 .8 m a c h - in f ,  r h o - i n f ( k g / m " * 3 ) , a - i n f ( m / s e c ) , gamma, p i n f

2: .0 1 .2 2 5  3 4 0 .2 9  1 .4  0 .0
$ STARS 5 . 8 .9 s h i f t  f a c t o r  an d  g r a v i t y  c o n s t a n t
C STARS 5 .8 .1 0 SCF, GR

6102:.0 1 5 5 4 7 5 2  1.
$ STARS 5 .8 .1 1 I m p u ls e - F o r c e  D a ta
C STARS 5 .8 .1 2 IFLAG, F F I , NS, NE

2 , 1 0 . , 3 , 5
$ STARS 5 .8 .1 3 F o rc e  a c t i v a t i o n  P a r a m e te r s
c STARS

1 ,
5 .8 .1 4

1
ICFA, IC F I

$ STARS 5 .8 .1 5 T r a n s i t i o n  M a tr ix  P a r a m e te r s
c STARS 5 . 8 .1 6 NTERMS, NSTEPS

2 0 , 2
$ STARS 5 . 8 .1 7 NA, NB o r d e r  o f  t h e  ARMA m odel

7 , 9

Data for the unsteady CFD solution control file, wing.conu, are given below. 

STARS-CFDASE input data:

t c o n t r o l
C STARS 5 . 9 -- w i n g .<

n s t e p = 54 0 1 ,
n o u t = 50 ,
n s t a g e = 3 ,
c f l = .7 0 ,
m ach = 2 .  ,
a lp h a = 0 .0 ,
b e t a = 0 .0 ,
r e s t a r t = 1 ,
n c y c l = 4 0 ,
n c y c i = 4 0 ,
t l r = 0 .0 1 ,
d e b u g = . f a l s e
m esh c = 1,
m e sh f = 1,
c b t [1 ) = 1 . ,
c b t (2 ) = 0 .5 ,

ARMA u n s te a d y  r u n  s t e p  l a .
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c b t (3) = 0 . ,
c b t (4) = 0 . ,
n sm th = 2,
sm o fc = 0 .2 ,
low = . f a l s e .
t ra in s = . t r u e . ,
f r e q = 0 .0 1 2 5 ,
n s t p e = 2 7 5 ,
xO = 0 .0 ,
yO = 0 .0 ,
zO = 0 .0 ,
wux = 0 .0 ,
wuy = 0 .0 ,
wuz = 1 .0 ,
p h a s e = 0 .0 ,
i f l o w _ s o l  = 1,
a m p l i tu d e * .1 ,

/

Data for the aeroelastic scalars file for step 2 in the ARMA procedures, wing.scalars, are 

given below.

STARS-CFDASE input data:

$ STARS 5 . 8 .1 w i n g . s c a l a r s 2  file,A R M A  u n s te a d y  f lo w  STEP 2 ,
$ STARS 5 . 8 .2 NR, IBCX, RBCX, IS IZ E  B a s ic  p a ra m e te r s

3 , 5, 1 .0 , 4
C STARS 5 . 8 .4 NNR, ( N S ( I ) ,1 = 1 ,NNR) B o u n d a r y -c o n d i t io n  m o d i f i c a t i o n  d a t a

12 , 1 , 2 , 3 , 4 , 5 , 6, 11 , 12, 13 , 14 , 15 , 16
$ STARS 5 . 8 .5 I /O  p a r a m e te r
c STARS

2 ,
5 . 8 .6

1
IRFORM, IPRINT

$ STARS 5 . 8 . 7 d i m e n s io n a l  p a r a m e te r s
c STARS 5 . 8 .8 m a c h - in f ,  r h o - i n f  ( lcg /m **3), a - i n f  ( m / s e c ) , gam na, p i n f

21.0 1 .2 2 5  3 4 0 .2 9  1 .4  0 .0
$ STARS 5 . 8 .9 s h i f t  f a c t o r  an d  g r a v i t y  c o n s t a n t
c STARS 5 .8 .1 0 SCF, GR

6102:.0 1 5 5 4 7 5 2  1 .
$ STARS 5 . 8 .1 1 I m p u ls e - F o r c e  D a ta
c STARS 5 . 8 .1 2 IFLAG, F F I , NS, NE

2 , 1 0 . , 3 , 5
$ STARS 5 .8 .1 3 F o r c e  a c t i v a t i o n  P a r a m e te r s
c STARS

1 ,
5 . 8 .1 4

1
IC F A ,IC F I

s STARS 5 .8 .1 5 T r a n s i t io n  M a tr ix  p aram aters
c STARS 5 .8 .1 6 NTERMS, NSTEPS

2 0 , 2
$ STARS 5 . 8 .1 7 n a , NB o r d e r  o f  t h e  ARMA m odel

1 , 3

Data for the unsteady CFD solution control file, wing.conu, are given below. 

STARS-CFDASE input data:
s c o n t r o l

C STARS 5 .9  -  w in g .c o n u 2  f i l e  f o r  s t e p  2 i n  ARMA m o d e lin g  p r o c e d u r e  
n s t e p  = 4 0 1 ,
n o u t  = 5 0 ,
n s t a g e  = 3 ,
c f l  = .7 0 ,
m ach  = 2 . ,
a lp h a  = 0 .0 ,
b e t a  = 0 .0 ,
r e s t a r t  = 1 ,
n c y c l  = 4 0 ,
n c y c i  = 4 0 ,
t l r  = 0 . 0 1 ,
d e b u g  = . f a l s e . ,
m esh c  = 1 ,
m e s h f  = 1 ,
c b t ( l )  = 1 . ,
c b t (2) = 0 .5 ,
c b t (3) = 0 . ,
c b t (4) = 0 . ,
n s m th  .  2 ,
sm o fc  = 0 .2 ,
lo w  = . f a l s e . ,
t r a n s  = . t r u e . ,
f r e q  = 0 .0 1 2 5 ,
n s t p e  = 27 5 ,
xO = 0 . 0 ,
yO = 0 . 0 ,
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z0 = 0 .0 ,
wux = 0 .0 ,
wuy = 0 .0 ,
wuz = 1 .0 ,
p h a s e  = 0 .0 ,
i f l o w _ s o l = 1,
a m p l i tu d e ^ .1 ,

Data for the aeroelastic scalars file for step 3 and 4 in the ARMA procedures, 

wing.scalars, are given below.
STARS-CFDASE input data:

$ STARS 5 . 8 .1  w i n g . s c a l a r s 4  f i l e ,  ARMA u n s te a d y  f lo w , STEP 4
$ STARS 5 . 8 .2  NR, IBCX, RBCX, IS IZ E  B a s ic  p a ra m e te r s

3 , 5 , 1 .0 ,  4
C STARS 5 . 8 .4  NNR, ( N S ( I ) ,1 = 1 ,NNR) B o u n d a r y -c o n d i t io n  m o d i f i c a t i o n  d a t a  

1 2 , 1 , 2 , 3 , 4 , 5 , 6 , 1 1 , 12 , 13, 14 , 15, 16
$ STARS 5 . 8 .5  I /O  p a r a m e te r  
C STARS 5 . 8 .6  IRFORM, IPRINT 

2 , 1
$ STARS 5 . 8 .7  d im e n s io n a l  p a r a m e te r s
C STARS 5 . 8 .8  m a c h - in f ,  r h o - in f ( k g /m * * 3 ) ,  a - i n f ( m / s e c ) , gamma, p i n f

2 .0  1 .2 2 5  3 4 0 .2 9  1 .4  0 .0
$ STARS 5 . 8 .9  s h i f t  f a c t o r  an d  g r a v i t y  c o n s t a n t  
C STARS 5 . 8 .1 0  SCF, GR 

6 1 0 2 .0 1 5 5 4 7 5 2  1 .
$ STARS 5 . 8 .1 1  I m p u ls e - F o r c e  D a ta  
C STARS 5 .8 .1 2  IFLAG, F F I , NS, NE 

2 , 1 0 . ,  3 , 5
$ STARS 5 .8 .1 3  F o rc e  a c t i v a t i o n  P a r a m e te r s  
C STARS 5 . 8 .1 4  IC F A ,IC F I 1, 1
$ STARS 5 .8 .1 5  T r a n s i t i o n  M a tr ix  P a r a m e te r s  
C STARS 5 .8 .1 6  NTERMS, NSTEPS 

2 0 , 2
$ STARS 5 .8 .1 7  NA, NB o r d e r  o f  t h e  ARMA m odel 

7 , 9

Data for the unsteady CFD solution control file, wing.conu, are given below.

STARS-CFDASE input data:

A c o n t r o l
) STARS 5 . 9 -  w in g .c

n s t e p = 401 ,
n o u t = 50,
n s t a g e = 3,
c f l = .7 0 ,
m ach = 2 . ,
a l p h a - 0 .0 ,
b e t a = 0 .0 ,
r e s t a r t = 1,
n c y c l = 40,
n c y c i = 40,
t l r = 0 .0 1 ,
d e b u g = . f a l s e . ,
m esh c = 1,
m e s h f = 1,
c b t ( l ) = 1 . ,
c b t (2 ) = 0 .5 ,
c b t (3) = 0 . ,
c b t (4) = 0 . ,
n sm th = 2,
sm o fc = 0 .2 ,
lo w = . f a l s e . ,
t r a n s = . t r u e . ,
f r e q = 0 .0 1 2 5 ,
n s t p e = 2 7 5 ,
xO = 0 .0 ,
yO = 0 .0 ,
zO = 0 .0 ,
wux = 0 .0 ,
wuy = 0 .0 ,
wuz = 1 .0 ,
p h a s e = 0 .0 ,
i f l o w _ s o l = 3,
a m p l i tu d e s .1 ,

4 i n  ARMA m o d e lin g  p r o c e d u r e
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Data for the aeroelastic scalars file for step 5 in the ARMA. procedures, wing.scalars, are 

given below.

STARS-CFDASE input data:
$ STARS 5 . 8 .1  w i n g . s c a l a r s S  f i l e ,  ARMA u n s te a d y  f lo w , STEP 5
$ STARS 5 . 8 .2  NR, IBCX, RBCX, IS IZ E  B a s ic  p a r a m e te r s

3 , 0, 1 .0 ,  4
c STARS 5 . 8 . 4  NNR, (NS( I ) ,1 = 1 ,NNR) B o u n d a r y - c o n d i t i o n  m o d i f i c a t i o n  <

1 2 , 1, 2 , 3 , 4 , 5 , 6 , 11 , 12 , 13 , 14 , 15, 16
$ STARS 5 . 8 .5  I /O  p a r a m e te r
c STARS 5 . 8 .6  IRFORM, IPRINT

2 , 1
$ STARS 5 . 8 .7  d im e n s io n a l  p a ra m e te r s
c STARS 5 . 8 .8  m a c h - in f , r h o - i n f ( k g / m * * 3 ) , a - i n f ( m / s e c ) , gamma, p i n f

2 .0  0 .9 9 5  3 4 0 .2 9  1 .4  0 .0
$ STARS 5 . 8 .9  s h i f t  f a c t o r  an d  g r a v i t y  c o n s t a n t
c STARS 5 .8 .1 0  SCF, GR

6102 .0 1 5 5 4 7 5 2  1 .
$ STARS 5 .8 .1 1  I m p u ls e - F o r c e  D ata
c STARS 5 .8 .1 2  IFLAG, F F I , NS, NE

2 , 1 0 . ,  3 , 5
$ STARS 5 .8 .1 3  F o rc e  a c t i v a t i o n  P a r a m e te r s
c STARS 5 .8 .1 4  IC F A ,IC F I

1 , 1
$ STARS 5 .8 .1 5  T r a n s i t i o n  M a tr ix  P a r a m e te r s
c STARS 5 .8 .1 6  NTERMS, NSTEPS

2 0 , 2
$ STARS 5 . 8 .1 7  n a , NB o r d e r  o f  t h e  ARMA m o d el

7 , 9

Data for the unsteady CFD solution control file, wing.conu, are given below. 

STARS-CFDASE input data:
^ c o n t r o l

C STARS 5 .9  -  w in g .c o n u S  f i l e  f o r  s t e p  5 i n  ARMA m o d e lin g  p r o c e d u r e
n s t e p 2401 ,
n o u t = 5000,
n s t a g e = 3,
c f l = .7 0 ,
m ach 3 2 . ,
a lp h a 3 0 ,0 ,
b e t a 3 0 .0 ,
r e s t a r t 3 1,
n c y c l = 40,
n c y c i = 40,
t l r 3 0 .0 1 ,
d e b u g 3 . f a l s e .
m esh c 3 1,
m e s h f 3 1,
c b t (1) 3 1 . ,
c b t (2) 3 0 .5 ,
c b t (3) 3 0 . ,
c b t (4) 3 0 . ,
n sm th 3 2 ,
sm o fc 3 0 .2 ,
low 3 . f a l s e .
t r a n s = . t r u e . ,
f r e q 3 0 .0 1 2 5 ,
n s t p e 3 2 7 5 ,
xO 3 0 .0 ,
yO = 0 .0 ,
zO 3 0 .0 ,
wux 3 0 .0 ,
wuy 3 0 .0 ,
wuz 3 1 .0 ,
p h a s e 3 0 .0 ,
i f l o w _ s o l = 3,
a m p l i tu d e s .1 ,

/
Data for the unsteady CFD solution control file, wing.control, are given below. 

STARS-CFDASE input data:

$ STARS 5 .7  -  w i n g . c o n t r o l  f i l e
$ n a  nb  nc  g a i n r  g a in c  n c s t a r s  a n a l / d i g i t  ( 1 /2 )

5 3 1 3 6 0 2
$ a m a t r i x
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1 .4 5 5 4  - 0 .6 0 8 2  - 0 .3 5 7 3
1 .0 0 0 0  0 0

0 0 0 .5 1 7 9
0 0 - 0 .4 4 9 2
0 0 - 0 .2 1 7 0

$ b m a t r ix
0 0 0
0 0 0

0 .6 3 0 3  - 0 .3 1 4 0  - 0 .0 4 2 7
- 0 .1 4 9 6  0 .1 3 3 1  0 .0 0 5 8

0 .1 9 1 3  - 0 .1 5 0 2  - 0 .0 1 4 8
$ c m a t r i x  

0 .1 6 8 8  0 .1 4 2 9  0
$ d m a t r ix  

0 0 0 
$ T r a n s f o r m a t io n  m a t r i x  

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

$ c o n t r o l l e r  o u t p u t  t o  xn  
0 0 1 0 0 0

-0 .0 8 1 60
0 .4 6 5 1
0 .8 6 0 6

- 0 .0 7 2 6

- 0 .1 2 0 70
- 0 .2 1 6 0

0 .0 8 5 9
0 .6 7 7 6
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