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Abstract

This paper is concerned with strong convergence of a tamed theta scheme for neutral
stochastic differential delay equations with one-sided Lipschitz drift. Strong conver-
gence rate is revealed under a global one-sided Lipschitz condition, while for a local
one-sided Lipschitz condition, the tamed theta scheme is modified to ensure the well-
posedness of implicit numerical schemes, then we show the convergence of the numerical
solutions.
MSC 2010 : 65C30, 65L20
Key Words : tamed theta scheme; neutral stochastic differential delay equations; one-
sided Lipschitz; strong convergence

1 Introduction

Numerical analysis plays an important role in studying stochastic differential equations
(SDEs) because most equations can not be solved explicitly. The most commonly used
method for approximating SDEs is the explicit Euler-Maruyama (EM) method. There are a
lot of literature concerning with the explicit EM scheme for all kinds of SDEs, e.g., Hairer et
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20171BCB23046), Scientific Research Fund of Jiangxi Provincial Education Department(Nos., GJJ150444,
GJJ170320).
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al. [1], Maruyama [9], Milstein [10], and Kloeden and Platen [6]. Most of the early works on
explicit EM scheme were about the SDEs with the globally Lipschitz continuous coefficients,
since the explicit EM scheme solutions may not converge in the strong sense to the exact
solutions with one-sided Lipschitz continuous and superlinearly growing drift coefficients.
Moreover, Hutzenthaler et al. [3] pointed out that the absolute moments of the EM scheme
at a finite time could diverge to infinity. In order to cope with these difficulties, Higham et.al
[2] studied a split-step backward Euler method for nonlinear SDEs, they showed that the
implicit EM scheme converged if the drift coefficient satisfied a one-sided Lipschitz condition
and the diffusion coefficient was globally Lipschitz. Hutzenthaler et al. [4] proposed a tamed
EM scheme in which the drift term is modified to guarantee the boundness of moments.
Later, Sabanis [11, 12] studied the strong convergence of the tamed EM scheme and extend
the tamed EM scheme to SDEs with superlinearly growing drift and diffusion coefficients,
respectively. Zong et al. [16] proposed a semi-tamed Euler scheme to solve the SDEs with the
drift coefficient equipped with the Lipschitz continuous part and non-Lipschitz continuous
part. Although additional computational effort is needed for implicit analysis, the implicit
EM schemes have been showed better than the explicit EM scheme which converges strongly
to the exact solution of SDEs under non-globally Lipschitz conditions. The implicit EM
methods including the backward EM scheme, the split-step backward EM scheme and the
theta scheme have been extensively studied, for example, Mao and Szpruch [8] studied strong
convergence and almost sure stability of the backward EM scheme and the theta scheme to
SDEs with non-linear and non-Lipschitzian coefficients, to name a few.

Recently, numerical analysis for neutral stochastic differential delay equations (NSDDEs)
has also received a great deal of attention, see e.g., Lan and Yuan [7], Wu and Mao [13],
Zhou [15], Zong et al. [17], Zong and Wu [18], and the references therein. However, the
existing literature are difficult to deal with one-sided Lipschitz and superlinearly drift. To
fill the gap, in this paper, we are going to introduce a tamed theta scheme and discuss the
strong convergence of this scheme for NSDDEs in which the drift coefficients are one-sided
Lipschitz and superlinearly.

The content of our paper is organized as follows. In section 2, we consider NSDDEs with
global one-sided Lipschitz drift, the tamed theta scheme is introduced and strong convergence
is investigated. We reveal that the tamed theta solution converges to the exact solution with
order α (see (B1) below)under the global one-sided Lipschitz and the superlinearly growth
condition. In section 3, the global one-sided Lipschitiz drift is replaced by the local one-sided
Lipschitz drift, under which we show the convergence of the numerical solutions. In order
to guarantee the well-posedness of the implicit tamed scheme, we impose a modified tamed
theta scheme with a truncated skill.

2 Global One-sided Lipschitz Drift

For a fixed positive integer n, let (Rn, 〈·, ·〉, | · |) be an n-dimensional Euclidean space. Denote
Rn ⊗ Rd by the set of all n × d matrices endowed with Hilbert-Schmidt norm ‖A‖ :=√

trace(A∗A) for every A ∈ Rn⊗Rd, in which A∗ is the transpose of A. For a fixed τ ∈ (0,∞),
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which will be referred to as the delay or memory, let C = C([−τ, 0];Rn) be all continuous
functions from [−τ, 0] to Rn, equipped with the uniform norm ‖ζ‖∞ := sup−τ≤θ≤0 |ζ(θ)| for
every ζ ∈ C . By a filtered probability space, we mean a quadruple (Ω,F , {Ft}t≥0,P), where
F is a σ-algebra on the outcome space Ω, P is a probability measure on the measurable space
(Ω,F ), and {Ft}t≥0 is a filtration of sub-σ-algebra of F , where the usual conditions are
satisfied, i.e., (Ω,F ,P) is a complete probability space, and F0 contains all P-null sets of F
and Ft+ :=

⋂
s>t Fs = Ft. Let {W (t)}t≥0 be a d-dimensional Brownian motion defined on

the filtered probability space (Ω,F , {Ft}t≥0,P).
In this paper, we consider the following NSDDE

(2.1) d[X(t)−D(X(t− τ))] = b(X(t), X(t− τ))dt+ σ(X(t), X(t− τ))dW (t), t ≥ 0

with initial data

X0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ LpF0
([−τ, 0];Rn), p ≥ 2,

that is, ξ is an F0-measurable C -valued random variable such that E‖ξ‖p∞ < ∞ for p ≥ 2.
Here, D : Rn → Rn, and b : Rn × Rn → Rn, σ : Rn × Rn → Rn ⊗ Rd are continuous in
x and y. Fix T > τ > 0, assume that T and τ are rational numbers, and the step size
∆ ∈ (0, 1) be fraction of T and τ , so that there exist two positive integers M,m such that
∆ = T/M = τ/m. Throughout the paper, we shall denote C by a generic positive constant,
whose value may change from line to line. Further, for any x, y, x, y ∈ Rn, we shall assume
that:

(A1) For any s, t ∈ [−τ, 0] and q > 0, there exists a positive constant K1 such that

E‖ξ(s)− ξ(t)‖q∞ ≤ K1|s− t|q.

(A2) D(0) = 0, and there exists a positive constant κ ∈ (0, 1/2) such that

|D(x)−D(x)| ≤ κ|x− x|.

(A3) There exists a positive constant K2 such that

〈x−D(y), b(x, y)〉 ∨ ‖σ(x, y)‖2 ≤ K2(1 + |x|2 + |y|2).

(A4) There exist positive constants l, K3 and K4 such that for p ≥ 2

2〈x−D(y)− x+D(y), b(x, y)− b(x, y)〉+ (p− 1)‖σ(x, y)− σ(x, y)‖2

≤ K3(|x− x|2 + |y − y|2),

and
|b(x, y)− b(x, y)| ≤ K4(1 + |x|l + |x|l + |y|l + |y|l)(|x− x|+ |y − y|).

Remark 2.1. Due to the existence of implicitness and the neutral term, scopes of ∆ and κ
in assumption (A2) are given in order to guarantee rationality.
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Remark 2.2. If b(x, y) satisfies (A4), then, for any x, y ∈ Rn, we have

|b(x, y)| ≤ |b(x, y)− b(0, 0)|+ |b(0, 0)| ≤ K4(1 + |x|l + |y|l)(|x|+ |y|) + |b(0, 0)|
≤ C(1 + |x|+ |x|l+1 + |y|+ |y|l+1),

where C = K4 ∨ |b(0, 0)|. If the coefficients satisfy (A2) and (A4), then one has

(p− 1)‖σ(x, y)− σ(x, y)‖2

≤ K3(|x− x|2 + |y − y|2) + 2|x−D(y)− x+D(y)||b(x, y)− b(x, y)|
≤ C(1 + |x|l + |x|l + |y|l + |y|l)(|x− x|2 + |y − y|2).

Remark 2.3. There are many examples such that the assumptions can be verified. For
example, let

D(y) = −ay, b(x, y) = x− x3 + ay − a3y3, σ(x, y) = x+ ay,

for x, y ∈ R, where a is a constant such that |a| < 1/2. We can check that assumptions
(A2)-(A4) are satisfied. Since (A2) and (A3) are obvious, we only check (A4) here. By
computation, we have

2〈x−D(y)− x+D(y), b(x, y)− b(x, y)〉+ (p− 1)‖σ(x, y)− σ(x, y)‖2

=2(x+ ay − x− ay)(x− x3 + ay − a3y3 − x+ x3 − ay + a3y3) + (p− 1)(x+ ay − x− ay)2

=2[x− x+ a(y − y)][(x− x)(1− x2 − x2 − xx)

+ a(y − y)(1− a2y2 − a2y2 − a2yy)] + (p− 1)[x− x+ a(y − y)]2

≤4|x− x|2 + 4a2|y − y|2 + 2(p− 1)[(x− x)2 + a2(y − y)2]

≤2(p+ 1)(|x− x|2 + |y − y|2),

and

|b(x, y)− b(x, y)| = |x− x3 + ay − a3y3 − x+ x3 − ay + a3y3|
=|(x− x)(1− x2 − x2 − xx) + a(y − y)(1− a2y2 − a2y2 − a2yy)|
≤(1 + |x|+ |x|+ |y|+ |y|)(|x− x|+ |y − y|).

Lemma 2.1. Let (A1)-(A4) hold, the NSDDE (2.1) admits a unique strong global solution
X(t), t ∈ [0, T ], and

E
(

sup
0≤t≤T

|X(t)|p
)
≤ C

for p ≥ 2. One can consult [5] for more details.

2.1 The Tamed Theta Scheme

Now we introduce a tamed theta scheme for (2.1). For k = −m, · · · , 0, set ytk = ξ(k∆); For
k = 0, 1, · · · ,M − 1, we form

ytk+1
−D(ytk+1−m) = ytk −D(ytk−m) + θb∆(ytk+1

, ytk+1−m)∆

+ (1− θ)b∆(ytk , ytk−m)∆ + σ(ytk , ytk−m)∆Wtk ,
(2.2)
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where tk = k∆, and ∆Wtk = W (tk+1) − W (tk). Here b∆ : Rn × Rn → Rn is a continu-
ous function and satisfy some conditions given below. Besides, θ ∈ [0, 1] is an additional
parameter that allows us to control the implicitness of the numerical scheme. Since it is
convenient to work with a continuous extension of a numerical method, we now define the
equivalent continuous form for (2.2). Let Y∆(t) = ξ(t), t ∈ [−τ, 0]. For t ∈ [0, T ], we define
the corresponding continuous-time tamed theta scheme by

Y∆(t) =D(Y ∆(t− τ)) + ξ(0)−D(ξ(−τ)) + θ

∫ t

0

b∆(Y ∆+(s), Y ∆+(s− τ))ds

+ (1− θ)
∫ t

0

b∆(Y ∆(s), Y ∆(s− τ))ds+

∫ t

0

σ(Y ∆(s), Y ∆(s− τ))dW (s),

here Y ∆(t) is defined by

(2.3) Y ∆(t) = ytk and Y ∆+(t) = ytk+1
for t ∈ [tk, tk+1),

thus Y ∆(t−τ) = ytk−m , and Y ∆+(t−τ) = ytk+1−m . However, this Y∆(t) is not Ft-adapted, it
does not meet the fundamental requirement in the Itô stochastic analysis. To avoid Malliavin
calculus, we use the discrete split-step theta scheme introduced by Zong et al. [17] as follows:
For k = −m, · · · ,−1, set ztk = ξ(k∆). For k = 0, 1, · · · ,M − 1, we reformulate the scheme
(2.2) as follows

(2.4)

{
ytk = D(ytk−m) + ztk −D(ztk−m) + θb∆(ytk , ytk−m)∆,

ztk+1
= D(ztk+1−m) + ztk −D(ztk−m) + b∆(ytk , ytk−m)∆ + σ(ytk , ytk−m)∆Wtk .

This scheme can also be rewritten as

ztk+1
−D(ztk+1−m) = zt0 −D(zt−m) +

k∑
i=0

b∆(yti , yti−m)∆ +
k∑
i=0

σ(yti , yti−m)∆Wti

=ξ(0)−D(ξ(−τ))− θb∆(ξ(0), ξ(−τ))∆ +
k∑
i=0

b∆(yti , yti−m)∆ +
k∑
i=0

σ(yti , yti−m)∆Wti .

In order to simplify the computation, we define the corresponding continuous-time split-
step tamed theta solution Z∆(t) as follows: For any t ∈ [−τ, 0), Z∆(t) = ξ(t), Z∆(0) =
ξ(0)− θb∆(ξ(0), ξ(−τ))∆. For any t ∈ [0, T ],

(2.5) d[Z∆(t)−D(Z∆(t− τ))] = b∆(Y ∆(t), Y ∆(t− τ))dt+ σ(Y ∆(t), Y ∆(t− τ))dW (t),

where Y ∆(t) is defined by (2.3). With the split-step tamed theta scheme (2.4), the continuous
form of the split-step tamed theta solution Z∆(t) and the tamed theta solution Y∆(t) have
the following relation:

Y∆(t)−D(Y∆(t− τ))− θb∆(Y∆(t), Y∆(t− τ))∆ = Z∆(t)−D(Z∆(t− τ)).
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Denote Ỹ∆(t) = Y∆(t)−D(Y∆(t− τ))− θb∆(Y∆(t), Y∆(t− τ))∆, we can rewrite (2.5) as

(2.6) Ỹ∆(t) = Ỹ∆(0)+

∫ t

0

b∆(Y ∆(s), Y ∆(s−τ))ds+

∫ t

0

σ(Y ∆(s), Y ∆(s−τ))dW (s), t ∈ [0, T ],

where Ỹ∆(0) = ξ(0)−D(ξ(−τ))− θb∆(ξ(0), ξ(−τ))∆. It is easy to see Ỹ∆(t) coincides with
Y ∆(t)−D(Y ∆(t− τ))− θb∆(Y ∆(t), Y ∆(t− τ))∆ at grid points t = k∆, k = 0, 1, · · · ,M − 1,
this also means that the continuous-time tamed theta solution Y∆(t) coincides with the
discrete-time tamed theta solution Y ∆(t) at grid points t = k∆, k = 0, 1, · · · ,M − 1.

We need some assumptions on b∆(x, y). We assume that there exists an α ∈ (0, 1/2] such
that for any x, y, x, y ∈ Rn, the following conditions hold:

(B1) There exist a positive constant K5 ≥ 1 such that

|b∆(x, y)| ≤ min(K5∆−α(1 + |x|+ |y|), |b(x, y)|).

(B2) There exists a positive constant K̃3 such that

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉 ≤ K̃3(|x− x|2 + |y − y|2).

(B3) There exist positive constants l, K6 such that

|b(x, y)− b∆(x, y)|p ≤ K6∆αp[1 + |x|(2l+1)p + |y|(2l+1)p].

Remark 2.4. With assumptions (B1)-(B3), (2.2) is well defined under some constraints on
time step ∆. Furthermore, by (A3) and (B2), we have

(2.7) 〈x−D(y), b∆(x, y)〉 ∨ ‖σ(x, y)‖2 ≤ K̃2(1 + |x|2 + |y|2),

where K̃2 is a positive constant.

In order to ensure the implicitness of scheme (2.2) is well defined, an additional restriction

is required on time step, i.e. θ∆K̃3 < 1, where K̃3 is defined in (B2) (see [14] for more
details). For θ ∈ (0, 1], denote ∆1 = 1

θK̃3
. Further, in order to guarantee the boundedness

of the p-th moment of numerical solutions, the step size is also required to satisfy θp∆ <
61−p(2−p − κp)/Kp

5 for p ≥ 2 where κ and K5 are defined in (A2) and (B1). Denote ∆2 =
61−p(2−p − κp)/(θpKp

5 ) for θ ∈ (0, 1]. Thus in this section, we set ∆∗ ∈ (0,∆1 ∧∆2), and let
0 < ∆ ≤ ∆∗ for θ ∈ (0, 1], while for θ = 0, we may set ∆ ∈ (0, 1).

Remark 2.5. Under conditions (A2)-(A4), the set of sequences of functions which satisfy
(B1)-(B3) are non-empty. For example, let b(x, y), σ(x, y) : R× R→ R, define

b∆(x, y) =
b(x, y)

1 + ∆α|b(x, y)|
.
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It is easy to see |b∆(x, y)| ≤ |b(x, y)|, and on the other hand, we have

|b∆(x, y)| = ∆−α
|b(x, y)|

∆−α + |b(x, y)|
≤ ∆−α ≤ K5∆−α(1 + |x|+ |y|).

That is, (B1) is verified. We are now going to check (B2), we divide it into two cases. For
b(x, y) · b(x, y) < 0,

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉

=

〈
x−D(y)− x+D(y),

b(x, y)

1 + ∆α|b(x, y)|
− b(x, y)

1 + ∆α|b(x, y)|

〉
≤1

2
K3(|x− x|2 + |y − y|2).

For b(x, y) · b(x, y) > 0,

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉

=

〈
x−D(y)− x+D(y),

b(x, y)− b(x, y)

(1 + ∆α|b(x, y)|)(1 + ∆α|b(x, y)|)

〉
+

〈
x−D(y)− x+D(y),

∆α[b(x, y)|b(x, y)| − |b(x, y)|b(x, y)]

(1 + ∆α|b(x, y)|)(1 + ∆α|b(x, y)|)

〉
≤1

2
K3(|x− x|2 + |y − y|2).

Due to Remark 2.2, we see that

|b(x, y)− b∆(x, y)|p ≤ ∆αp|b(x, y)|2p ≤ K6∆αp
[
1 + |x|2(l+1)p + |y|2(l+1)p

]
.

That is to say, (B3) is also satisfied.

2.2 Moment Bounds

In order to prove the main results, we now give some estimates for the numerical solution
Y∆(t).

Lemma 2.2. Let (A1)-(A3) and (B1)-(B2) hold. Then it holds that for p ≥ 2,

sup
0≤t≤T

E|Y∆(t)|p ≤ C,

where the positive constant C is independent of ∆.
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Proof. For a > 0, let bac be the integer part of a. Applying the Itô formula to [1+|Ỹ∆(t)|2]
p
2 ,

we obtain

E[1 + |Ỹ∆(t)|2]
p
2 ≤E[1 + |Ỹ∆(0)|2]

p
2 +

p

2
E
∫ t

0

[1 + |Ỹ∆(s)|2]
p−2

2 2〈Ỹ∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

+
1

2
p(p− 1)E

∫ t

0

[1 + |Ỹ∆(s)|2]
p−2

2 ‖σ(Y ∆(s), Y ∆(s− τ))‖2ds

≤E[1 + |Ỹ∆(0)|2]
p
2 +

p

2
E
∫ t

0

[1 + |Ỹ∆(s)|2]
p−2

2 (p− 1)‖σ(Y ∆(s), Y ∆(s− τ))‖2ds

+
p

2
E
∫ t

0

[1 + |Ỹ∆(s)|2]
p−2

2 2〈Y ∆(s)−D(Y ∆(s− τ)), b∆(Y ∆(s), Y ∆(s− τ))〉ds

+ pE
∫ t

0

[1 + |Ỹ∆(s)|2]
p−2

2 〈Ỹ∆(s)− ~Y∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

=:E[1 + |Ỹ∆(0)|2]
p
2 + E1(t) + E2(t) + E3(t),

where ~Y∆(t) = Y ∆(t)−D(Y ∆(t− τ))− θb∆(Y ∆(t), Y ∆(t− τ))∆. With (A2), (B1) and (2.7),
we have

E1(t) + E2(t) ≤CE
∫ t

0

[1 + |Ỹ∆(s)|2]
p−2

2 (1 + |Y ∆(s)|2 + |Y ∆(s− τ)|2)ds

≤CE
∫ t

0

[[1 + |Ỹ∆(s)|2]
p
2 + |Y ∆(s)|p + |Y ∆(s− τ)|p]ds

≤CE
∫ t

0

[
|Y∆(s)|p + |Y∆(s− τ)|p + |θb∆(Y∆(s), Y∆(s− τ))∆|p

+ |Y ∆(s)|p + |Y ∆(s− τ)|p
]
ds

≤CE
∫ t

0

(|Y∆(s)|p + |Y∆(s− τ)|p + |Y ∆(s)|p + |Y ∆(s− τ)|p)ds

+ C∆(1−α)pE
∫ t

0

(1 + |Y∆(s)|p + |Y∆(s− τ)|p)ds

≤C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.

Furthermore, it is easy to observe that,

E3(t) = pE
∫ t

0

[1 + |~Y∆(s)|2]
p−2

2 〈Ỹ∆(s)− ~Y∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

+ pE
∫ t

0

{
[1 + |Ỹ∆(s)|2]

p−2
2 − [1 + |~Y∆(s)|2]

p−2
2

}
〈Ỹ∆(s)− ~Y∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

=: pE31(t) + pE32(t),

where

Ỹ∆(s)− ~Y∆(s) =

∫ s

b s
∆
c∆
b∆(Y ∆(u), Y ∆(u− τ))du+

∫ s

b s
∆
c∆
σ(Y ∆(u), Y ∆(u− τ))dW (u).
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Due to (B1) and the Young inequality,

E31(t) = E
∫ t

0

[1 + |~Y∆(s)|2]
p−2

2

〈∫ s

b s
∆
c∆
b∆(Y ∆(u), Y ∆(u− τ))du, b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

+ E
∫ t

0

[1 + |~Y∆(s)|2]
p−2

2

〈
E
∫ s

b s
∆
c∆
σ(Y ∆(u), Y ∆(u− τ))dW (u)

∣∣∣∣
Fb s

∆
c∆

, b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

≤ E
∫ t

0

[1 + |~Y∆(s)|2]
p−2

2

∫ s

b s
∆
c∆
|b∆(Y ∆(u), Y ∆(u− τ))|du|b∆(Y ∆(s), Y ∆(s− τ))|ds

≤ ∆E
∫ t

0

[1 + |~Y∆(s)|2]
p−2

2 |b∆(Y ∆(s), Y ∆(s− τ))|2ds

≤ C∆1−2αE
∫ t

0

(1 + |Y ∆(s)|p + |Y ∆(s− τ)|p)ds

+ C∆1−2α∆(1−α)pE
∫ t

0

(1 + |Y ∆(s)|p + |Y ∆(s− τ)|p)ds

≤ C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.

Applying the Itô formula again, we obtain

[1 + |Ỹ∆(s)|2]
p−2

2

≤ [1 + |Ỹ∆(0)|2]
p−2

2 + (p− 2)

∫ s

0

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), b∆(Y ∆(u), Y ∆(u− τ))〉du

+
1

2
(p− 2)(p− 3)

∫ s

0

[1 + |Ỹ∆(u)|2]
p−4

2 ‖σ(Y ∆(u), Y ∆(u− τ))‖2du

+ (p− 2)

∫ s

0

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), σ(Y ∆(u), Y ∆(u− τ))〉dW (u).

Thus we have

[1 + |~Y∆(s)|2]
p−2

2

≤ [1 + |~Y∆(0)|2]
p−2

2 + (p− 2)

∫ b s
∆
c∆

0

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), b∆(Y ∆(u), Y ∆(u− τ))〉du

+
1

2
(p− 2)(p− 3)

∫ b s
∆
c∆

0

[1 + |Ỹ∆(u)|2]
p−4

2 ‖σ(Y ∆(u), Y ∆(u− τ))‖2du

+ (p− 2)

∫ b s
∆
c∆

0

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), σ(Y ∆(u), Y ∆(u− τ))〉dW (u).
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Hence,

E32(t) ≤(p− 2)E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), b∆(Y ∆(u), Y ∆(u− τ))〉du

× 〈Ỹ∆(s)− ~Y∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

+
1

2
(p− 2)(p− 3)E

∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 ‖σ(Y ∆(u), Y ∆(u− τ))‖2du

× 〈Ỹ∆(s)− ~Y∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

+ (p− 2)E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), σ(Y ∆(u), Y ∆(u− τ))〉dW (u)

× 〈Ỹ∆(s)− ~Y∆(s), b∆(Y ∆(s), Y ∆(s− τ))〉ds

=:(p− 2)E321 +
1

2
(p− 2)(p− 3)E322 + (p− 2)E323.

Using (A3) and (B1), the Young inequality, the Hölder inequality and the Burkholder-Davis-
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Gundy (BDG) inequality, we compute

E321(t) ≤ E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), b∆(Y ∆(u), Y ∆(u− τ))〉du

×
〈∫ s

b s
∆
c∆
b∆(Y ∆(u), Y ∆(u− τ))du, b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

+ E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), b∆(Y ∆(u), Y ∆(u− τ))〉du

×
〈∫ s

b s
∆
c∆
σ(Y ∆(u), Y ∆(u− τ))dW (u), b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

≤∆E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−3

2 |b∆(Y ∆(s), Y ∆(s− τ))|3duds

+ CE
∫ t

0

[(∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−3

2 |b∆(Y ∆(u), Y ∆(u− τ))|du|b∆(Y ∆(s), Y ∆(s− τ))|
) p

p−1

+

∣∣∣∣∣
∫ s

b s
∆
c∆
σ(Y ∆(u), Y ∆(u− τ))dW (u)

∣∣∣∣∣
p ]

ds

≤C∆2−3αE
∫ t

0

(|Y∆(s)|p + |Y∆(s− τ)|p + |Y ∆(s)|p + |Y ∆(s− τ)|p)ds

+ C∆2−3α∆(1−α)pE
∫ t

0

(|Y∆(s)|p + |Y∆(s− τ)|p)ds

+ CE
∫ t

0

(∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−3

2 |b∆(Y ∆(s), Y ∆(s− τ))|2du

) p
p−1

ds

+ CE
∫ t

0

(∫ s

b s
∆
c∆
‖σ(Y ∆(u), Y ∆(u− τ))‖2du

) p
2

ds

≤C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds+ C∆
p
2

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds

≤C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.

Using the same techniques in the way to estimate E321(t), we get

E322(t) ≤ C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.
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Furthermore, by (A3) and (B1), we have

E323(t) =E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), σ(Y ∆(u), Y ∆(u− τ))〉dW (u)

×
〈∫ s

b s
∆
c∆
b∆(Y ∆(u), Y ∆(u− τ))du, b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

+ E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), σ(Y ∆(u), Y ∆(u− τ))〉dW (u)

×
〈∫ s

b s
∆
c∆
σ(Y ∆(u), Y ∆(u− τ))dW (u), b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

=E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−4

2 〈Ỹ∆(u), σ(Y ∆(u), Y ∆(u− τ))〉dW (u)

×
〈∫ s

b s
∆
c∆
σ(Y ∆(u), Y ∆(u− τ))dW (u), b∆(Y ∆(s), Y ∆(s− τ))

〉
ds

≤E
∫ t

0

∫ s

b s
∆
c∆

[1 + |Ỹ∆(u)|2]
p−3

2 ‖σ(Y ∆(u), Y ∆(u− τ))‖2du|b∆(Y ∆(s), Y ∆(s− τ))|ds

≤C∆1−αE
∫ t

0

(|Y∆(s)|p + |Y∆(s− τ)|p + |Y ∆(s)|p + |Y ∆(s− τ)|p)ds

+ C∆1−α∆(1−α)pE
∫ t

0

(|Y∆(s)|p + |Y∆(s− τ)|p)ds

≤C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.

By sorting these equations, we conclude that

E3(t) ≤ C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.

Thus, the estimate of E1(t)− E3(t) results in

sup
0≤u≤t

E|Ỹ∆(u)|p ≤ sup
0≤u≤t

E[1 + |Ỹ∆(u)|2]
p
2 ≤ C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.(2.8)

Since |x− y|p ≥ 21−p|x|p − |y|p, we have

|Ỹ∆(t)|p ≥21−p|Y∆(t)−D(Y∆(t− τ))|p − |θb∆(Y∆(t), Y∆(t− τ))∆|p

≥21−p[21−p|Y∆(t)|p − |D(Y∆(t− τ))|p]− |θb∆(Y∆(t), Y∆(t− τ))∆|p.

This, combining with (A2) and (B1), yields that

|Ỹ∆(t)|p ≥(22−2p − C̃∆)|Y∆(t)|p − (22−pκp + C̃∆)|Y∆(t− τ)|p − C̃∆,
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where C̃∆ = θpKp
53p−1∆. Consequently,

sup
0≤u≤t

E|Y∆(u)|p ≤ (22−2p − 22−pκp − 2C̃∆)−1

[
sup

0≤u≤t
E|Ỹ∆(u)|p + C̃∆ + (22−pκp + C̃∆)E‖ξ‖p∞

]
.

This, together with (2.8), implies

sup
0≤u≤t

E|Y∆(u)|p ≤ C + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)|pds.

Finally, the desired result is obtained by the Gronwall inequality.

Lemma 2.3. Let (A1)-(A3), (B1)-(B2) hold. Then, we have, for p ≥ 2

E

[
sup

0≤k≤M−1
sup

tk≤t<tk+1

|Y∆(t)− Y∆(tk)|p
]
≤ C∆

p
2 ,

where C is a positive constant independent of ∆.

Proof. From the definition of numerical scheme (2.6), one sees that for t ∈ [tk, tk+1),

Ỹ∆(t)− Ỹ∆(tk) =

∫ t

tk

b∆(Y ∆(s), Y ∆(s− τ))ds+

∫ t

tk

σ(Y ∆(s), Y ∆(s− τ))dW (s).

By the elementary inequality |a+ b|p ≤ 2p−1(|a|p + |b|p), p ≥ 1, we compute

E

[
sup

tk≤t<tk+1

|Ỹ∆(t)− Ỹ∆(tk)|p
]
≤ 2p−1E

[
sup

tk≤t<tk+1

∣∣∣∣∫ t

tk

b∆(Y ∆(s), Y ∆(s− τ))ds

∣∣∣∣p
]

+ 2p−1E

[
sup

tk≤t<tk+1

∣∣∣∣∫ t

tk

σ(Y ∆(s), Y ∆(s− τ))dW (s)

∣∣∣∣p
]
.

With (A3), (B1), Lemma 2.2, the Hölder inequality and the BDG inequality, we derive

E

[
sup

tk≤t<tk+1

|Ỹ∆(t)− Ỹ∆(tk)|p
]
≤ 2p−1∆p−1E

∫ tk+1

tk

∣∣b∆(Y ∆(s), Y ∆(s− τ))
∣∣p ds

+ CE
[∫ tk+1

tk

∥∥σ(Y ∆(s), Y ∆(s− τ))
∥∥2

ds

] p
2

≤C∆(1−α)p + CE
[∫ tk+1

tk

(1 + |Y ∆(s)|2 + |Y ∆(s− τ)|2)ds

] p
2

≤C∆(1−α)p + C∆
p
2 ≤ C∆

p
2 .

Denoting by D̃(t, tk) := D(Y∆(t − τ)) − D(Y∆(tk − τ)), and b̃∆(t, tk) := b∆(Y∆(t), Y∆(t −
τ))− b∆(Y∆(tk), Y∆(tk − τ)), with (A2), we arrive at,

|Ỹ∆(t)− Ỹ∆(tk)|p ≥ 21−p|Y∆(t)− Y∆(tk)− D̃(t, tk)|p − θp∆p |̃b∆(t, tk)|p

≥22−2p|Y∆(t)− Y∆(tk)|p − 21−pκp|Y∆(t− τ)− Y∆(tk − τ)|p − θp∆p |̃b∆(t, tk)|p.
(2.9)
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Obviously, for 0 ≤ t < t1 = ∆, we have t − τ < t1 − τ < 0, then we see from (2.9) and
Lemma 2.2 that

E
[

sup
0≤t<t1

|Y∆(t)− Y∆(t0)|p
]
≤CE

[
sup

0≤t<t1
|Ỹ∆(t)− Ỹ∆(t0)|p

]
+ C∆(1−α)p ≤ C∆

p
2 .

For t1 ≤ t < t2, (2.9) and Lemma 2.2 lead to

E
[

sup
t1≤t<t2

|Y∆(t)− Y∆(t1)|p
]
≤CE

[
sup

t1≤t<t2
|Ỹ∆(t)− Ỹ∆(t1)|p

]
+ E

[
sup

0≤t<(t2−m)∨0

|Y∆(t)− Y∆(t1−m)|p
]

+ C∆(1−α)p

≤C∆
p
2 .

Consequently, the induction method yields,

E

[
sup

tk≤t<tk+1

|Y∆(t)− Y∆(tk)|p
]
≤CE

[
sup

tk≤t<tk+1

|Ỹ∆(t)− Ỹ∆(tk)|p
]

+ C∆(1−α)p

≤C∆
p
2 .

The proof is therefore complete.

2.3 Strong Convergence Rate

The following theorem reveals that the continuous form Y∆(t) of the tamed theta scheme
(2.2) converges strongly to the exact solution X(t).

Theorem 2.4. Let (A1)-(A4) and (B1)-(B3) hold, then it holds that for p ≥ 2,

E sup
0≤t≤T

|X(t)− Y∆(t)|p ≤ C∆αp,

where α is defined in (B1) and C is a positive constant independent of ∆. That is, the strong
convergence rate of the tamed theta scheme (2.2) is α.

Proof. Denote I(t) = Y∆(t)−D(Y∆(t− τ))− θb∆(Y∆(t), Y∆(t− τ))∆−X(t) +D(X(t− τ)),
then

I(t) =I(0) +

∫ t

0

[b∆(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))]ds

+

∫ t

0

[σ(Y ∆(s), Y ∆(s− τ))− σ(X(s), X(s− τ))]dW (s),
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where I(0) = −θb∆(ξ(0), ξ(−τ))∆. An application of the Itô formula yields,

|I(t)|p ≤|I(0)|p + p

∫ t

0

|I(s)|p−2〈I(s), b∆(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))〉ds

+
1

2
p(p− 1)

∫ t

0

|I(s)|p−2‖σ(Y ∆(s), Y ∆(s− τ))− σ(X(s), X(s− τ))‖2ds

+ p

∫ t

0

|I(s)|p−2〈I(s), σ(Y ∆(s), Y ∆(s− τ))− σ(X(s), X(s− τ))〉dW (s)

≤|I(0)|p +
6∑
i=1

Hi(t),

where

H1(t) := p

∫ t

0

|I(s)|p−2〈I(s), b∆(Y ∆(s), Y ∆(s− τ))− b(Y ∆(s), Y ∆(s− τ))〉ds,

H2(t) := p

∫ t

0

|I(s)|p−2〈I(s), b(Y ∆(s), Y ∆(s− τ))− b(Y∆(s), Y∆(s− τ))〉ds,

H3(t) := p

∫ t

0

|I(s)|p−2〈I(s), b(Y∆(s), Y∆(s− τ))− b(X(s), X(s− τ))〉ds,

H4(t) := p(p− 1)

∫ t

0

|I(s)|p−2‖σ(Y ∆(s), Y ∆(s− τ))− σ(Y∆(s), Y∆(s− τ))‖2ds,

H5(t) := p(p− 1)

∫ t

0

|I(s)|p−2‖σ(Y∆(s), Y∆(s− τ))− σ(X(s), X(s− τ))‖2ds,

H6(t) := p

∫ t

0

|I(s)|p−2〈I(s), σ(Y ∆(s), Y ∆(s− τ))− σ(X(s), X(s− τ))〉dW (s).

By (A2), (B1), (B3), Lemma 2.2, and the Hölder inequality,

sup
0≤u≤t

EH1(u) ≤ CE
∫ t

0

|I(s)|pds+ CE
∫ t

0

|b∆(Y ∆(s), Y ∆(s− τ))− b(Y ∆(s), Y ∆(s− τ))|pds

≤ CE
∫ t

0

[|Y∆(s)−X(s)|p + |Y∆(s− τ)−X(s− τ)|p + θp∆p|b∆(Y∆(s), Y∆(s− τ))|p]ds

+ C∆αpE
∫ t

0

(1 + |Y ∆(s)|2(l+1)p + |Y ∆(s− τ)|2(l+1)p)ds

≤ C

∫ t

0

sup
0≤u≤s

E|Y∆(u)−X(u)|pds+ C∆(1−α)p + C∆αp.
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By (A2), (A4), (B1), Lemmas 2.2-2.3, and the Hölder inequality,

sup
0≤u≤t

EH2(u) ≤ CE
∫ t

0

|I(s)|pds+ CE
∫ t

0

|b(Y ∆(s), Y ∆(s− τ))− b(Y∆(s), Y∆(s− τ))|pds

≤CE
∫ t

0

[|Y∆(s)−X(s)|p + |Y∆(s− τ)−X(s− τ)|p + θp∆p|b∆(Y∆(s), Y∆(s− τ))|p]ds

+ CE
∫ t

0

(1 + |Y ∆(s)|l + |Y ∆(s− τ)|l + |Y∆(s)|l + |Y∆(s− τ)|l)p

× (|Y ∆(s)− Y∆(s)|+ |Y ∆(s− τ)− Y∆(s− τ)|)pds

≤CE
∫ t

0

(|Y∆(s)−X(s)|p + |Y∆(s− τ)−X(s− τ)|p)ds+ C∆(1−α)p

+ C

∫ t

0

[E(1 + |Y ∆(s)|l + |Y ∆(s− τ)|l + |Y∆(s)|l + |Y∆(s− τ)|l)2p]
1
2

× [E(|Y ∆(s)− Y∆(s)|+ |Y ∆(s− τ)− Y∆(s− τ)|)2p]
1
2 ds

≤C
∫ t

0

sup
0≤u≤s

E|Y∆(u)−X(u)|pds+ C∆(1−α)p + C∆
p
2 .

Due to (A2), (B1), (2.7), Lemma 2.2, and the Hölder inequality,

sup
0≤u≤t

EH3(u) + sup
0≤u≤t

EH5(u)

≤CE
∫ t

0

|I(s)|p−2[|Y∆(s)−X(s)|2 + |Y∆(s− τ)−X(s− τ)|2]ds

+ CE
∫ t

0

|I(s)|p−2|θb∆(Y∆(s), Y∆(s− τ))∆||b(Y∆(s), Y∆(s− τ))− b(X(s), X(s− τ))|ds

≤CE
∫ t

0

[|Y∆(s)−X(s)|p + θp∆p|b∆(Y∆(s), Y∆(s− τ))|p]ds

+ C∆1−αE
∫ t

0

|I(s)|p−2(1 + |Y∆(s)|+ |Y∆(s− τ)|)×

(1 + |Y∆(s)|l + |Y∆(s− τ)|l + |X(s)|l + |X(s− τ)|l)×
(|Y∆(s)−X(s)|+ |Y∆(s− τ)−X(s− τ)|)ds

≤C
∫ t

0

sup
0≤u≤s

E|Y∆(u)−X(u)|pds+ C∆(1−α)p.

In the same way as the estimate of H1(t) and H2(t), we arrive at

sup
0≤u≤t

EH4(u) ≤ C

∫ t

0

sup
0≤u≤s

E|Y∆(u)−X(u)|pds+ C∆(1−α)p + C∆
p
2 .

Since EH6(t) = 0, by sorting H1(t)−H6(t) together, we derive

sup
0≤u≤t

E|I(u)|p ≤ C

∫ t

0

sup
0≤u≤s

E|Y∆(u)−X(u)|pds+ C∆αp.
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By the definition of I(t), we have

|I(t)|p ≥21−p|Y∆(t)−X(t)−D(Y∆(t− τ)) +D(X(t− τ))|p − |θb∆(Y∆(t), Y∆(t− τ))∆|p

≥21−p[21−p|Y∆(t)−X(t)|p − |D(Y∆(t− τ))−D(X(t− τ))|p]− |θb∆(Y∆(t), Y∆(t− τ))∆|p,

this, together with (A2), leads to

|I(t)|p ≥22−2p|Y∆(t)−X(t)|p − 21−pκp|Y∆(t− τ)−X(t− τ)|p − |θb∆(Y∆(t), Y∆(t− τ))∆|p.

Taking (B1) and Lemma 2.2 into consideration yields

sup
0≤u≤t

E|Y∆(u)−X(u)|p ≤C sup
0≤u≤t

E|I(u)|p + C∆(1−α)p

≤C∆αp + C

∫ t

0

sup
0≤u≤s

E|Y∆(u)−X(u)|pds.

The desired result follows from the Gronwall inequality.

Remark 2.6. If we replace (A3) by the following (A3’):

(A3’) There exists a positive constant K2 such that

2〈x−D(y), b(x, y)〉+ (p− 1)‖σ(x, y)‖2 ≤ K2(1 + |x|2 + |y|2),

and add another assumption (B4):

(B4) There exists a positive constant K̃2 such that

2〈x−D(y), b∆(x, y)〉+ (p− 1)‖σ(x, y)‖2 ≤ K̃2(1 + |x|2 + |y|2),

we can also show that under assumptions (A1)-(A2), (A3’), (A4), (B1)-(B4), the tamed
theta scheme Y∆(t) converges strongly to the exact solution X(t) with order α.

3 Local One-sided Lipschitz Drift

In this section, instead of the global one-sided Lipschitz condition (A4), we impose the
following local one-sided Lipschitz condition:

(A5) For every R > 0, there exists a positive constant LR such that

〈x−D(y)− x+D(y), b(x, y)− b(x, y)〉 ∨ ‖σ(x, y)− σ(x, y)‖2

≤ LR(|x− x|2 + |y − y|2)

for all |x| ∨ |y| ∨ |x| ∨ |y| ≤ R.
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Remark 3.1. The local one-sided Lipschitiz condition is a weaker than the classical local
Lipschitz condition, since if b satisfies the local Lipschitz condition such that,

|b(x, y)− b(x, y)|2 ≤ LR(|x− x|2 + |y − y|2), |x| ∨ |x| ∨ |y| ∨ |y| ≤ R,

we then have

〈x− x, b(x, y)− b(x, y)〉 ≤ 1

2
|x− x|2 +

1

2
|b(x, y)− b(x, y)|2

≤ 1

2
|x− x|2 +

1

2
LR(|x− x|2 + |y − y|2) ≤ L̃R(|x− x|2 + |y − y|2),

where L̃R = max(1
2
, 1

2
LR). This implies that the local one-sided Lipschitz condition holds.

On the other hand, if b satisfies the local one-sided Lipschitiz condition, it need not
satisfy the classical local Lipschitz condition. For example, let b(x, y) = x3−x 1

3 +y, because

of x
1
3 , b does not satisfy the classical local Lipschitz condition. However, noting that

(x− x)(x
1
3 − x

1
3 ) ≥ 0 for all x, x,

we see that

〈x− x, x3 −
√
x+ y − x3 +

√
x− y〉

≤|x− x|2(x2 + xx+ x2) +
1

2
(|x− x|2 + |y − y|2)− (x− x)(x

1
3 − x

1
3 )

≤|x− x|2(x2 + xx+ x2) +
1

2
(|x− x|2 + |y − y|2)

≤L̂R(|x− x|2 + |y − y|2), |x| ∨ |x| ∨ |y| ∨ |y| ≤ R,

where L̂R = max(1
2
, 3R2). This means that b satisfies the local one-sided Lipschitiz condition.

Remark 3.2. Due to the continuity of b(x, y), for every R > 0, there exists a positive
constant LR such that

sup
|x|∨|y|≤R

|b(x, y)| ≤ LR.

Remark 3.3. There are many examples such that the assumptions can be verified. For
example, if we set

D(y) =
1

4
cos y, b(x, y) = x− x3 + cos y, σ(x, y) = y sinx+ x sin y,

then assumptions (A2)-(A3) and (A5) hold.

Consider the following tamed theta scheme imposed in Section 2:

ytk+1
−D(ytk+1−m) = ytk −D(ytk−m) + θb∆(ytk+1

, ytk+1−m)∆

+ (1− θ)b∆(ytk , ytk−m)∆ + σ(ytk , ytk−m)∆Wtk .
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Generally speaking, for a given ytk , to guarantee a unique solution ytk+1
is to assume that

there exists a positive constant L such that

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉 ≤ L(|x− x|2 + |y − y|2)

as in Section 2. Moreover, as shown in Mao and Szpruch [8], this condition is somehow hard
to relax. While in our assumption (A5), the drift coefficient b is local one-sided Lipschitz,
thus in this case, the tamed drift b∆ is hardly to be global one-sided Lipschitz. That is, we
do not know if the tamed theta scheme (2.2) is well defined under assumptions (A2)-(A3)
and (A5). In the following, we will provide an improved tamed theta scheme to ensure the
well-posedness of implicit equations.

3.1 The Improved Tamed Theta Scheme

For any R > 0, define a smooth, non-negative function such that

ζR(x, y) =

{
1, for |x|, |y| ≤ R,
0, for |x| or |y| > R + 1,

and ζR(x, y) ≤ 1 for all x, y ∈ Rn. It is obvious that ζR(x, y) is Lipschitz with some constant
Cζ . Now we introduce the improved tamed theta scheme for (2.1). For k = −m, · · · , 0, set
ytk = ξ(k∆); For k = 0, 1, · · · ,M − 1, we form

ytk+1
−D(ytk+1−m) = ytk −D(ytk−m) + θb∆(ytk+1

, ytk+1−m)ζR(ytk+1
, ytk+1−m)∆

+ (1− θ)b∆(ytk , ytk−m)ζR(ytk , ytk−m)∆ + σ(ytk , ytk−m)∆Wtk ,
(3.1)

where tk = k∆, and ∆Wtk = W (tk+1) − W (tk). Here b∆ : Rn × Rn → Rn is a continu-
ous function. Besides, θ ∈ [0, 1] is an additional parameter that allows us to control the
implicitness of the numerical scheme. Denote

b̃∆(x, y) = b∆(x, y)ζR(x, y),

then, (3.1) can be rewritten as

ytk+1
−D(ytk+1−m) = ytk −D(ytk−m) + θb̃∆(ytk+1

, ytk+1−m)∆

+ (1− θ)̃b∆(ytk , ytk−m)∆ + σ(ytk , ytk−m)∆Wtk ,
(3.2)

which is exactly the form of (2.2). According to (3.2) we define Y ∆(t), Y∆(t), Ỹ∆(t), Z∆(t)

by using the same notation as in Section 2. Instead of constraints on b̃∆(x, y), we impose
some assumptions on b∆(x, y). Assume that there exists an α ∈ (0, 1/2] such that for any
x, y, x, y ∈ Rn, the following conditions hold:

(C1) There exists a positive constant K5 ≥ 1 such that

|b∆(x, y)| ≤ min(K5∆−α(1 + |x|+ |y|), |b(x, y)|).
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(C2) There exists a positive constant K̃2 such that

〈x−D(y), b∆(x, y)〉 ≤ K̃2(1 + |x|2 + |y|2).

(C3) For any R > 0, there exists a positive constant MR such that

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉 ≤MR(|x− x|2 + |y − y|2).

for all |x| ∨ |y| ∨ |x| ∨ |y| ≤ R.

(C4) For any R > 0, there exists a positive constant NR such that

sup
|x|∨|y|≤R

|b(x, y)− b∆(x, y)|p ≤ NR∆αp → 0 as ∆→ 0.

Lemma 3.1. Let (A2), (C1)-(C4) hold, then b̃∆ satisfies (C1), (C2), (C4) and the following
(C3’):

(C3’) There exists an MR0 such that for all x, y, x, y ∈ Rn

〈x−D(y)− x+D(y), b̃∆(x, y)− b̃∆(x, y)〉 ≤MR0(|x− x|2 + |y − y|2),

where MR0 = MR0 + 2CζLR0 .

Proof. By the relationship between b̃∆ and b∆, (C1) and (C2) can be verified easily. Noting
that for |x| ∨ |y| ≤ R, ζR(x, y) = 1, thus we get

sup
|x|∨|y|≤R

[
|b(x, y)− b̃∆(x, y)|p

]
= sup
|x|∨|y|≤R

[
|b(x, y)− b∆(x, y)ζ∆(x, y)|p

]
= sup
|x|∨|y|≤R

[
|b(x, y)− b∆(x, y)|p

]
≤ NR∆αp → 0, as ∆→ 0,

then (C4) holds for b̃∆(x, y). Now we are going to check (C3’). Divide it into four cases.
Case a: None of |x|, |y|, |x|, |y| bigger than R+1. In this case, we see 0 ≤ ζR(x, y), ζR(x, y) ≤
1. Rewrite b̃∆ with b∆, we have

〈x−D(y)− x+D(y), b̃∆(x, y)− b̃∆(x, y)〉
=〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉ζR(x, y)

+ 〈x−D(y)− x+D(y), (ζR(x, y)− ζR(x, y))b∆(x, y)〉
=:q1 + q2.

Since 0 ≤ ζR(x, y) ≤ 1, thus by (C3),

q1 ≤MR+1(|x− x|2 + |y − y|2).
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Further, noting that ζR is Lipschitz with constant Cζ and for |x| ∨ |y| ≤ R+ 1, we see from
(C1) and Remark 3.2 that |b∆(x, y)| ≤ |b(x, y)| ≤ LR+1, then (A2) leads to

q2 ≤ 2CζLR+1(|x− x|2 + |y − y|2).

Combining the estimation of q1 and q2, we get

〈x−D(y)− x+D(y), b̃∆(x, y)− b̃∆(x, y)〉 ≤ (MR+1 + 2CζLR+1)(|x− x|2 + |y − y|2).

Case b: One of |x|, |y|, |x|, |y| bigger than R+1. Assume |x| > R+1 and |y|, |x|, |y| ≤ R+1.
In this case, we have ζR(x, y) = 0 and 0 ≤ ζR(x, y) ≤ 1. Similar to Case a, we have

〈x−D(y)− x+D(y), b̃∆(x, y)− b̃∆(x, y)〉 ≤ 2CζLR+1(|x− x|2 + |y − y|2).

Case c: Two of |x|, |y|, |x|, |y| bigger than R + 1. We divide it into two cases.
i): Both |x|, |y| bigger than R+1 or both |x|, |y| bigger than R+1. Consider one of the case
|x|, |y| > R + 1 while |x|, |y| ≤ R + 1. It is obvious that ζR(x, y) = 0 and 0 ≤ ζR(x, y) ≤ 1.
By taking similar steps as Case a, we can get

〈x−D(y)− x+D(y), b̃∆(x, y)− b̃∆(x, y)〉 ≤ 2CζLR+1(|x− x|2 + |y − y|2).

ii): One of |x|, |y| bigger than R + 1 and one of |x|, |y| bigger than R + 1. Consider the
case of |x| > R + 1, |y| ≤ R + 1, |x| > R + 1, |y| ≤ R + 1. Then ζR(x, y) = ζR(x, y) = 0 and

〈x−D(y)− x+D(y), b̃∆(x, y)− b̃∆(x, y)〉 = 0.
Case d: Three or four of |x|, |y|, |x|, |y| bigger than R + 1. Since we have ζR(x, y) =
ζR(x, y) = 0, the result is obvious.
Taking Cases a-d into consideration, there exists an MR0 such that (C3’) satisfies for all
x, y, x, y ∈ Rn.

Remark 3.4. Lemma 3.1 shows that with assumptions (C1)-(C3), (3.2) is well defined under
some constraints on time step ∆. It is worth mentioning that (C3) and (C3’) are merely
used to guarantee the uniqueness of numerical solutions.

Remark 3.5. Under assumptions (A2)-(A3), (A5), we now give an example such that the
set of sequences of functions satisfy (C1)-(C4). Let b(x, y), σ(x, y) be one-dimensional and
define

b∆(x, y) =
1

1 + ∆α|b(x, y)|+ ∆α/2‖σ(x, y)‖
b(x, y)

for any x, y ∈ R. It is easy to see |b∆(x, y)| ≤ |b(x, y)|, and on the other hand, we have

|b∆(x, y)| = ∆−α|b(x, y)|
∆−α + |b(x, y)|+ ∆−α/2‖σ(x, y)‖

≤ K5∆−α ≤ K5∆−α(1 + |x|+ |y|).

Furthermore, due to (A3),

〈x−D(y), b∆(x, y)〉 =
〈x−D(y), b(x, y)〉

1 + ∆α|b(x, y)|+ ∆α/2‖σ(x, y)‖
≤ K2(1 + |x|2 + |y|2).
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That is to say, (C2) is satisfied. In order to show (C3), we have to divide it into several
cases. Denote by Γ(x, y) = 1 + ∆α|b(x, y)|+ ∆α/2‖σ(x, y)‖.
Case a: b(x, y) · b(x, y) < 0. We divide this into four classes.
i): For b(x, y) > 0, b(x, y) < 0 and x−D(y)− x+D(y) ≥ 0,

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉 =

〈
x−D(y)− x+D(y),

b(x, y)

Γ(x, y)
− b(x, y)

Γ(x, y)

〉
≤〈x−D(y)− x+D(y), b(x, y)− b(x, y)〉 ≤ LR(|x− x|2 + |y − y|2).

ii): For b(x, y) > 0, b(x, y) < 0 and x−D(y)− x+D(y) < 0, the result is obvious.
iii): For b(x, y) < 0, b(x, y) > 0 and x−D(y)− x+D(y) < 0,

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉
≤〈x−D(y)− x+D(y), b(x, y)− b(x, y)〉 ≤ LR(|x− x|2 + |y − y|2).

iv): For b(x, y) < 0, b(x, y) > 0 and x−D(y)− x+D(y) ≥ 0, the result is also obvious.
Case b: b(x, y) · b(x, y) > 0. We compute

〈x−D(y)− x+D(y), b∆(x, y)− b∆(x, y)〉 =

〈
x−D(y)− x+D(y),

b(x, y)− b(x, y)

Γ(x, y)Γ(x, y)

〉
+

〈
x−D(y)− x+D(y),

∆α[b(x, y)|b(x, y)| − b(x, y)|b(x, y)|]
Γ(x, y)Γ(x, y)

〉
+

〈
x−D(y)− x+D(y),

∆α/2‖σ(x, y)‖[b(x, y)− b(x, y)]

Γ(x, y)Γ(x, y)

〉
+

〈
x−D(y)− x+D(y),

∆α/2b(x, y)[‖σ(x, y)‖ − ‖σ(x, y)‖]
Γ(x, y)Γ(x, y)

〉
:=q1 + q2 + q3 + q4.

Obviously, q2 = 0. Noticing that Γ(x, y) ≥ 1,Γ(x, y) ≥ 1 and 0 < ∆α/2‖σ(x,y)‖
Γ(x,y)

≤ 1, we then

derive from (A2), (A5) and Remark 3.2 that

q1 + q3 ≤ 2LR(|x− x|2 + |y − y|2),

and

q4 ≤
1

2
|x−D(y)− x+D(y)|2 +

∆α|b(x, y)|2[‖σ(x, y)‖ − ‖σ(x, y)‖]2

2Γ2(x, y)Γ2(x, y)

≤|x− x|2 + |y − y|2 + |b(x, y)|‖σ(x, y)− σ(x, y)‖2

≤(1 + LRLR)(|x− x|2 + |y − y|2).

This shows that (C3) is satisfied. Thanks to (A3) and Remark 3.2, we see that

sup
|x|∨|y|≤R

|b(x, y)− b∆(x, y)|p ≤ ∆αp sup
|x|∨|y|≤R

(|b(x, y)|+ ‖σ(x, y)‖2)p|b(x, y)|p

(1 + ∆α|b(x, y)|+ ∆α‖σ(x, y)‖2)p
≤ C∆αp → 0,

Thus, (C4) is shown.
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Condition (C3’) shows that b̃∆ is global one-sided Lipschitz. According to the monotone
operator, the implicit scheme (3.2) is well defined with θMR0∆ < 1. Define ∆3 = 1

θMR0

for

θ ∈ (0, 1]. Thus in the following section, we set ∆? ∈ (0,∆3 ∧∆2), and let 0 < ∆ ≤ ∆? for
θ ∈ (0, 1] while for θ = 0, we set ∆ ∈ (0, 1).

3.2 Convergence of the Numerical Solutions

We need the following lemma.

Lemma 3.2. Let (A1)-(A3) and (A5) hold, then it holds that

sup
0≤t≤T

E|X(t)|p ∨ sup
0≤t≤T

E|Y∆(t)|p ≤ C,

for p ≥ 2.

Remark 3.6. Through the derivation process of Lemmas 2.2 and 2.3, we see that what
we really used are assumptions (A1)-(A3), (B1) and (2.7) in Lemmas 2.2 and 2.3. In this

section, b∆ and σ satisfy (C1)-(C2), which implies that the corresponding b̃∆ and σ also
satisfy (B1) and (2.7). Thus, Lemmas 2.2 and 2.3 proposed in Section 2 still hold in this
section.

We now state the main result in this Section.

Theorem 3.3. Let (A1)-(A3), (A5) and (C1)-(C4) hold, then the continuous form Y∆(t) of
the tamed theta scheme (3.2) converges strongly to the exact solution X(t) of (2.1), that is,

lim
∆→0

sup
0≤t≤T

E|X(t)− Y∆(t)|2 = 0.

Proof. Denote e(t) = Y∆(t)−X(t), and for any R > 0 define the following stopping time

τR = inf{t ≥ 0 : |Y∆(t)| ≥ R}, ρR = inf{t ≥ 0 : |X(t)| ≥ R}, νR = τR ∧ ρR.

For any η > 0, by the Young inequality,

sup
0≤u≤T

E|e(u)|2 = sup
0≤u≤T

E(|e(u)|2I{τR>T,ρR>T}) + sup
0≤u≤T

E(|e(u)|2I{τR≤T or ρR≤T})

≤ sup
0≤u≤T

E(|e(u ∧ νR)|2I{νR>T}) +
2η

p
sup

0≤u≤T
E|e(u)|p

+
p− 2

pη
2
p−2

P(τR ≤ T or ρR ≤ T ).

(3.3)

Due to Lemma 2.2,

P(τR ≤ T ) = E
(
I{τR≤T}

|Y∆(τR)|p

Rp

)
≤ 1

Rp
sup

0≤u≤T
E|Y∆(u)|p ≤ C

Rp
,
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where here and in the following, we emphasize that C is a positive constant independent of
∆, R and ε, while CR will be a positive constant depending on R. Similarly, we derive from
Lemma 3.2 that

P(τR ≤ T or ρR ≤ T ) ≤ P(τR ≤ T ) + P(ρR ≤ T ) ≤ 2C

Rp
.(3.4)

On the other hand, Lemma 2.2 and Lemma 3.2 yield

sup
0≤u≤T

E|e(u)|p ≤ 2p−1 sup
0≤u≤T

E(|Y∆(u)|p + |X(u)|p) ≤ C.(3.5)

Denote by I(t) = Y∆(t) − D(Y∆(t − τ)) − θb̃∆(Y∆(t), Y∆(t − τ))∆ − X(t) + D(X(t − τ)).
Applying the Itô formula,

E|I(T ∧ νR)|2 = |I(0)|2 + 2E
∫ T∧νR

0

〈I(s), b̃∆(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))〉ds

+ E
∫ T∧νR

0

‖σ(Y ∆(s), Y ∆(s− τ))− σ(X(s), X(s− τ))‖2ds

≤|I(0)|2 + 2E
∫ T∧νR

0

〈Y ∆(s)−D(Y ∆(s− τ))−X(s) +D(X(s− τ)),

b(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))〉ds

+ 2E
∫ T∧νR

0

〈Y ∆(s)−D(Y ∆(s− τ))−X(s) +D(X(s− τ)),

b̃∆(Y ∆(s), Y ∆(s− τ))− b(Y ∆(s), Y ∆(s− τ))〉ds

+ 2E
∫ T∧νR

0

〈Y∆(s)−D(Y∆(s− τ))− Y ∆(s) +D(Y ∆(s− τ)),

b̃∆(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))〉ds

− 2θ∆E
∫ T∧νR

0

〈̃b∆(Y∆(s), Y∆(s− τ)), b̃∆(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))〉ds

+ 2E
∫ T∧νR

0

‖σ(Y ∆(s), Y ∆(s− τ))− σ(X(s), X(s− τ))‖2ds

≤|I(0)|2 +
5∑
i=1

Ii(T ),

where I(0) = −θb∆(ξ(0), ξ(−τ))∆. By assumption (A5) and Lemma 2.3,

sup
0≤u≤T

(|I1(u) + I5(u)|) ≤CR
∫ T∧νR

0

[|Y ∆(s)−X(s)|2 + |Y ∆(s− τ)−X(s− τ)|2]ds

≤CR∆ +

∫ t

0

sup
0≤u≤s

E|e(u ∧ νR)|2ds.

(3.6)
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Obviously, due to (C4), Lemma 2.1 and Lemma 2.2,

sup
0≤u≤T

|I2(u)| ≤ CR∆α + CR∆2α.(3.7)

By (A2) and Lemma 2.3, we obtain,

sup
0≤u≤T

|I3(u)| ≤C
∫ T∧νR

0

(
E[|Y∆(s)− Y ∆(s)|2 + |Y∆(s− τ)− Y ∆(s− τ)|2]

) 1
2

(
E|̃b∆(Y ∆(s), Y ∆(s− τ))− b(X(s), X(s− τ))|2

) 1
2

ds ≤ CR∆
1
2 .

(3.8)

Furthermore, by Remark 3.2 and (C1)

sup
0≤u≤T

|I4(u)| ≤ CR∆.(3.9)

Due to (3.6)-(3.9), we see

sup
0≤u≤T

E|I(u ∧ νR)|2 ≤ CR

∫ T

0

sup
0≤u≤s

E|e(u ∧ νR)|2ds+ CR∆α.(3.10)

With assumption (A2), one has

sup
0≤u≤T

E|e(u ∧ νR)|2 ≤ C sup
0≤u≤T

E|I(u ∧ νR)|2 + κ sup
0≤u≤T

E|e(u ∧ νR − τ)|2 + CR∆2.

This implies

sup
0≤u≤T

E|e(u ∧ νR)|2 ≤ C sup
0≤u≤T

E|I(u ∧ νR)|2 + CR∆2.(3.11)

Applying the Gronwall inequality, we derive from (3.10) and (3.11) that

sup
0≤u≤T

E|e(u ∧ νR)|2 ≤ CR∆α.(3.12)

Thus, combining (3.4), (3.5) and (3.12), we see from (3.3) that for any given ε > 0, one can
choose η small enough such that

2η

p
C <

ε

3
,

and then R big enough such that
p− 2

pη
2
p−2

2C

Rp
<
ε

3
,

finally ∆ small enough to satisfy

CR∆α <
ε

3
.

Therefore, we arrive at

sup
0≤u≤T

E|Y∆(u)−X(u)|2 → 0 as ∆→ 0,

as required.
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