

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Sailing Routes in the World of Computation

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa39885

Book chapter :

Berger, U. & Petrovska, O. (n.d). Optimized Program Extraction for Induction and Coinduction. Sailing Routes in the

World of Computation, -80). Kiel, Germany: Springer.

http://dx.doi.org/10.1007/978-3-319-94418-0_7

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/161880103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa39885
http://dx.doi.org/10.1007/978-3-319-94418-0_7
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Optimized program extraction for induction and
coinduction

Ulrich Berger and Olga Petrovska

Swansea University, Swansea, SA2 8PP, Wales, UK
{u.berger,o.petrovska}@swansea.ac.uk

Abstract. We prove soundness of an optimized realizability interpreta-
tion for a logic supporting strictly positive induction and coinduction. The
optimization concerns the special treatment of Harrop formulas which
yields simpler extracted programs. We show that wellfounded induction
is an instance of strictly positive induction and derive from this a new
computationally meaningful formulation of the Archimedean property for
real numbers. We give an example of program extraction in computable
analysis and show that Archimedean induction can be used to eliminate
countable choice.

1 Introduction

This paper studies a constructive logic for strictly positive inductive and coin-
ductive definitions with a realizability interpretation that permits the extraction
of programs from proofs in abstract mathematics. Particular attention is paid to
a special treatment of Harrop formulas (which have trivial realizers) leading to
optimized programs.

Similar work on this topic has been done in [18, 13, 2, 14, 15] and to a large
extent implemented in the Minlog system [5]. Related methods of optimized
program extraction can be found in [16] and in the systems Coq [9] and Nuprl [11].

Our main contribution is the extension of the realizability interpretation
to inductive predicates defined by Harrop operators permitting induction over
non-Harrop predicates. This enables us to exhibit wellfounded induction as a
special case of strictly positive induction.

We show the usefulness of our results by a simple example in computable
analysis, where we identify a new formulation of the Archimedean property as an
induction principle and use it to obtain a direct and computationally meaningful
proof that the inequality of approximable real numbers implies their apartness.
The proof using Archimedean induction is technically and conceptually simpler
than the usual proof using the Archimedean property, Markov’s principle and
the axiom of countable choice. The fact that Archimedean induction can be
used to eliminate countable choice makes this principle potentially interesting
for constructive mathematics, where one tries to avoid choice principles as far as
possible [10, 17].

The theoretical results are to a large extent dual for induction and coinduction.
However, our focus is on induction. For applications of coinduction see e.g. [3,

2

7, 6, 8] and for a discussion of coinduction in type-theoretic systems see [1].
The Soundness Theorem (Thm. 1) shows correctness of the extracted program
with respect to a domain-theoretic semantics. Correctness with respect to an
operational semantics ensuring, for example, termination of programs is obtained
via a Computational Adequacy Theorem which is proven in [2]. Although the
logical system and realizability interpretation in [2] is slightly different to ours
this does not affect adequacy in our context since programs and their semantics
are type free and therefore independent of the logical system.

Our system of strictly positive inductive definitions is proof-theoretically
rather strong since it permits nested and interleaved inductive definitions. The
proof-theoretic strength of a related system has been analysed in [19], a discussion
of this topic can be found in [2].

2 Intuitionistic fixed point logic (IFP)

The language of IFP consists of formulas A,B defined simultaneously with
predicates P,Q, and operators Φ, Ψ . We let X,Y, . . . range over predicate variables,
and P,Q over predicate constants, each with a fixed arity, s, t range over first-order
terms. There is a distinguished 0-ary predicate constant ⊥ for falsity which we
identify with the formula ⊥().

Formulas 3 A,B ::= P(~t) (P not an abstraction, ~t arity(P) many terms)
| A ∧B | A ∨B | A→ B | ∀x A | ∃x A

Predicates 3 P,Q ::= X | P | λ~x A | µΦ | ν Φ
(arity(λ~x A) = |~x|, arity(µΦ) = arity(νΦ) = arity(Φ))

Operators 3 Φ, Ψ ::= λX P (arity(λX P) = arity(X) = arity(P))

The application of an operator to a predicate is defined as (λX P)(Q) = P [Q/X].

A definition P Def
= µΦ will also be written P µ

= Φ(P) and if Φ = λXλ~xA it may be

written P(~x)
µ
= A[P/X] (similarly for P Def

= ν Φ). We use ≡ for equivalence, i.e.,

A ≡ B
Def
= A ↔ B and P ≡ Q Def

= ∀~x (P(~x) ≡ Q(~x)). The bounded quantifiers
∀x ∈ P . . . and ∃x ∈ P . . . abbreviate ∀x (P(x)→ . . .) and ∃x (P(x) ∧ . . .).

An expression (formula, predicate, operator) is strictly positive (s.p.) in a
predicate variable X if it does not contain X free in the premise of an implication.
λY P is strictly positive if P is s.p. in Y . An expression is regular if it contains
only inductive predicates µΦ and coinductive predicates ν Φ where Φ is s.p..
Throughout the paper it is assumed that all expressions are regular and all
operators mentioned are strictly positive.

The proof rules of IFP are the usual rules of intuitionistic first-order logic
extended by the following rules for inductive and coinductive definitions:

cl
Φ(µΦ) ⊆ µΦ

Φ(P) ⊆ P
ind

µΦ ⊆ P

cocl
ν Φ ⊆ Φ(ν Φ)

P ⊆ Φ(P)
coindP ⊆ ν Φ

3

3 Intuitionistic fixed point logic for realizers (RIFP)

The Scott domain of realizers is defined by the recursive domain equation [12]

D = Nil + Lt(D) + Rt(D) + Pair(D ×D) + F(D → D)

where + denotes the separated sum, × the Cartesian product and D → D is
the continuous function space. Nil,Lt,Rt,Pair,F are mnemonic labels called
constructors. The elements of D are of the form ⊥ (the least element), Nil, Lt(d),
Rt(d) where d ∈ D, or F(f) where f is a continuous function from D to D.

Programs denote elements of D. They are defined simultaneously with function
terms (functions for short), which denote continuous functions on D.

Programs 3 p, q ::= a, b (variables) | Nil | Lt(p) | Rt(p) | Pair(p, q) | F(α)
| case(p, α, β) | proji(p) (i ∈ {0, 1}) | α p | rec(α)

Functions 3 α, β ::= f, g (variables) | λa p | app(p)

Since Scott domains and continuous functions form a Cartesian closed category
and the mapping (D → D) 3 f 7→

⊔
n f

n(⊥) ∈ D defines a continuous fixed point
operator, programs and abstractions have an obvious denotational semantics [12].

To reason formally about realizers and programs we extend IFP by a sort δ
for elements of D and a sort δ → δ for continuous functions from D to D. The
terms of sort D are the programs, the terms of sort δ → δ are the function terms.
We further add predicate variables X̃, Ỹ , . . . which admit an extra argument of
sort δ, and extend the notions of formula, predicate and operator as well as the
rules and axioms of IFP accordingly. We add the axioms:

case(Lt(a), f, g) = f a app(F(f)) a = f a

case(Rt(a), f, g) = g a (λa p) b = p[b/a] (for every prog. p)

proji(Pair(a0, a1)) = ai rec(f) = f (rec(f))

The resulting system is called Intuitionistic fixed point logic for realizers (RIFP).

4 Realizability and Soundness

An expression is Harrop if it contains no disjunction or free predicate variable at
a s.p. position, it is non-computational (nc) if it contains no disjunction or free
predicate variable at all. Hence, nc-expressions are Harrop. We assume that to
every predicate variable X there is assigned, in a one-to-one fashion, a predicate
variable X̃ with one extra argument place for realizers. We define for every
expression 2 an expression R(2) (the realizability interpretation of 2) and, if 2
is Harrop, an expression H(2) (a simplified realizability interpretation), more
precisely, for a

- formula A a predicate R(A) with one argument for realizers,
- predicate P a predicate R(P) with an extra argument for realizers,
- non-Harrop operator Φ an operator R(Φ) with an extra argument for

realizers,

4

- Harrop formula A a formula H(A),
- Harrop predicate P a predicate H(P) of the same arity,
- Harrop operator Φ an operator H(Φ) of the same arity.

We sometimes write a rA for R(A)(a) and rA for ∃a a rA. Set HX(P)
Def
=

(H(P[P/X]))[X/P] where P is a fresh predicate constant.

a rA = H(A) ∧ a = Nil (A Harrop)

R(P) = λ(~x, a) (H(P) ∧ a = Nil) (P Harrop)

Otherwise

a rP(~t) = R(P)(~t, a) H(P(~t)) = H(P)(~t)

c r (A ∧B) = ∃a, b (c = Pair(a, b) ∧ a rA ∧ b rB) H(A ∧B) = H(A) ∧H(B)

(neither A nor B Harrop)

a r (A ∧B) = a rA ∧H(B) (B Harrop)

b r (A ∧B) = H(A) ∧ b rB (A Harrop)

c r (A ∨B) = ∃a (c = Lt(a) ∧ a rA ∨ c = Rt(a) ∧ a rB)

c r (A→ B) = ∃f (c = F(f) ∧ ∀a (a rA→ (f a) rB)) H(A→ B) = rA→ H(B)

(neither A nor B Harrop)

b r (A→ B) = H(A) → b rB (A Harrop)

a r3xA = 3x (a rA) (3 ∈ {∀, ∃}) H(3xA) = 3xH(A)

R(X) = X̃ H(P) = P

R(3Φ) = 3R(Φ) (3 ∈ {ν, µ}) H(3Φ) = 3H(Φ)

R(λ~xA) = λ~xR(A) (= λ(~x, a) a rA) H(λ~xA) = λ~xH(A)

R(λX P) = λX̃R(P) H(λX P) = λXHX(P)

It is clear that the operations R and H preserve regularity and strict positivity,
hence realizability is well-defined. Furthermore, if A is Harrop, then H(A) ≡ rA,
and if A is nc, then H(A) = A.

The Soundness Theorem below is restricted to proofs where every instance
of induction or coinduction satisfies the condition that either Φ and P are both
Harrop or both non-Harrop or Φ is Harrop and simple (see below) and P is
non-Harrop. We call such proofs admissible. This is not a severe restriction since
in all practical applications proofs turn out to be admissible. An expression 2

is X-simple if no sub-expression of 2 of the form µΦ or ν Φ contains X free. A
(strictly positive) operator λX P is simple if P is X-simple. We conjecture that
the Soundness Theorem also holds without the admissibility assumption. From
now on we tacitly assume that all proofs are admissible.

We write p q for app(p) q, λa p for F(λa p), and p ◦ q for λa (p(q a)).

Theorem 1 (Soundness). Let Γ be a set of Harrop formulas and ∆ a set of
formulas that are not Harrop. Then, from an admissible IFP-proof of a formula
A from the assumptions Γ,∆ one can extract a program p with FV(p) ⊆ ~u such
that p rA is RIFP-provable from the assumptions H(Γ) and ~u r∆.

Proof. By induction on derivations one shows simultaneously

5

(1) If Γ,∆ `IFP A where A is not Harrop, then H(Γ), ~u r∆ `RIFP p rA for some
program p with FV(p) ⊆ ~u.

(2) If Γ,∆ `IFP A where A is Harrop, then H(Γ), ~u r∆ `RIFP H(A).

The logical rules are easy. To see that the rules for induction and coinduction are
realizable in all admissible cases one needs to do a case distinction on whether or
not the operator Φ and the predicate P are Harrop. Note that the case that Φ is
non-Harrop but P is Harrop is excluded due to the admissibility condition.

W.l.o.g. we assume that Φ is not constant; i.e., if Φ = λX Q then X does
occur freely (and hence strictly positively) in Q. We first look at induction

Φ(P) ⊆ P
µΦ ⊆ P ind

If Φ and P are both not Harrop, then the premise of induction gives us a realizer s

of Φ(P) ⊆ P , i.e., ∀b, ~x (b rΦ(P)(~x)→ (s b) rP(~x)). Using the notation g−1◦Q Def
=

λ(~x, b)Q(~x, g b) and the easily provable fact that R(Φ(P)) = R(Φ)(R(P)) if Φ
and P are both Harrop, this can be written as

(1) R(Φ)(R(P)) ⊆ s−1 ◦R(P)).

By recursion on the build-up of Φ one can define a closed term map realizing
the formula X ⊆ Y → Φ(X) ⊆ Φ(Y). Using the notation above, this means that
for all g, X̃, Ỹ , we have X̃ ⊆ g−1 ◦ Ỹ → R(Φ)(X̃) ⊆ (map g)−1 ◦R(Φ)(Ỹ), in

particular for X̃
Def
= g−1 ◦ Ỹ one has

(2) R(Φ)(g−1 ◦ Ỹ) ⊆ (map g)−1 ◦R(Φ)(Ỹ).

We need a realizer of µΦ ⊆ P . Since µΦ is not Harrop, the realizer f must satisfy
∀~x ∀b (µR(Φ))(~x, b)→ (f b) rP(~x)), i.e., µR(Φ) ⊆ f−1 ◦R(P). We attempt to
prove this by induction (with a yet unknown f). Therefore, we try to show
R(Φ)(f−1 ◦R(P)) ⊆ f−1 ◦R(P).

Using (1) and (2) with g
Def
= f and Ỹ

Def
= R(P) we obtain

R(Φ)(f−1 ◦R(P)) ⊆ (map f)−1 ◦R(Φ)(R(P))

⊆ (map f)−1 ◦ (s−1 ◦R(P))

≡ (s ◦map f)−1 ◦R(P)

Hence if we define f recursively by f = s ◦map f we are done.
The case that Φ and P are both Harrop is easy, since then premise and

conclusion of the induction rule are Harrop and therefore the realizability in-
terpretation of the premise is H(Φ(P)) ⊆ H(P) and that of the conclusion
µH(Φ) ⊆ H(P). Since one can prove by structural induction that H(Φ(P)) is
the same as H(Φ)(H(P)) and H(Φ) inherits strict positivity from Φ, we obtain
an instance of the induction rule for the H(Φ) and the H(P).

The last case to consider is that Φ is Harrop and simple, and P is not Harrop.
The premise of induction gives us a realizer s of Φ(P) ⊆ P i.e., since Φ(P) is not

6

Harrop, ∀b, ~x (b rΦ(P)(~x)→ (s b) rP(~x)). Using the notation Pa
Def
= λ~x (a rP(~x))

this can be written as ∀b (Φ(P)b ⊆ Ps b). We need a realizer a of µΦ ⊆ P. Since
µΦ is Harrop, this means that a must satisfy ∀~x (µH(Φ))(~x) → a rP(~x)), i.e.,
µH(Φ) ⊆ Pa. We attempt to prove this by induction (with a yet unknown a).
Therefore, we show H(Φ)(Pa) ⊆ Pa. By recursion on the build-up of Φ one
can construct a closed (recursion-free) term ψ such that H(Φ)(Pb) ⊆ Φ(P)ψ(b)
for all b. It follows that H(Φ)(Pa) ⊆ Φ(P)ψ(a) ⊆ Ps ψ(a). Hence, if a is defined
recursively as a = sψ(a), we are done.

For coinduction the proof is completely dual in the first two cases (Φ,P both
non-Harrop or both Harrop) and similar to induction in the third case (Φ Harrop,
P non-Harrop).

5 Wellfounded induction

In the following we let upper-case Roman letters range over arbitrary predicates.
The usual formulation of induction over a wellfounded relation < is

Prog<(P)

∀xP (x)
WfI(<)

where Prog<(P)
Def
= ∀x (∀y (y < x→ P (y))→ P (x)). In order to be computa-

tionally meaningful we formulate this principle in a relativized form where we
require the relation < to be wellfounded only on a given predicate A (which is
typically non-Harrop). This is expressed by the condition that A is contained in
the wellfounded (or accessible) part of <. Hence Wellfounded induction is the
principle

A ⊆ Acc< Prog<,A(P)

A ⊆ P WfI(<,A)

where Acc<(x)
µ
= ∀y < xAcc<(y)

Prog<,A(P)
Def
= ∀x ∈ A (∀y ∈ A (y < x→ P (y))→ P (x))

Proposition 1. Wellfounded induction follows from admissible s.p. induction.
If P is not Harrop, then the extracted program is the least fixed point operator;
i.e., if f realizes Prog<,A(P), then the least fixed point of f realizes A ⊆ P .

Proof. Set Φ
Def
= λX λx ∀y < xX(y) which is a simple Harrop operator. Then

Acc< = µΦ and the assumed progressivity, Prog<,A(P), is equivalent to Φ(A⇒
P) ⊆ (A⇒ P), where A⇒ P

Def
= λx (A(x)→ P (x)). Hence µΦ ⊆ (A⇒ P), and

therefore, by the assumption A ⊆ Acc<, A ⊆ (A⇒ P). It follows A ⊆ P .
Now let P be non-Harrop and let f realize Prog<,A(P). By the proof of the

Soundness Theorem, a defined recursively as a = f ψ(a) realizes Acc< ⊆ (A⇒ P)
where ψ satisfies H(Φ)(Qb) ⊆ Φ(Q)ψ(b). Unfolding this formula one sees that ψ
is the identity. Therefore, the least fixed point of f realizes Acc< ⊆ (A ⇒ P)
and therefore, as can be easily seen, also A ⊆ P .

7

6 Archimedean induction

We give an application of wellfounded induction and hence inductive definitions
in computable analysis. We let the variables x, y, . . . range over abstract reals.
We assume that the basic arithmetic operations (0, 1,+, ∗, | · |, . . .) and relations
(=, <,≤, . . .) are given as function and predicate symbols and we will freely use
any true arithmetic nc-properties of them. Hence x = y, x < y, x ≤ y are atomic
formulas. We write x 6= y as a shorthand for ¬(x = y), i.e. x = y → ⊥. All these
formulas are nc.

Natural numbers are inductively defined as a subset of the real numbers by

N(x)
µ
= (x = 0 ∨N(x− 1))

(i.e. N
Def
= µ (λX λx (x = 0 ∨X(x− 1)))). The formula N(x) is not Harrop since

it contains a disjunction at a strictly positive position. Integers (Z) and rational
numbers (Q) are defined from the natural numbers in the usual way.

Cauchy reals are represented as real numbers satisfying the predicate

A(x)
Def
= ∀n ∈ N ∃q ∈ Q |x− q| ≤ 2−n

The realizability interpretation of the predicate N is

a rN(x)
µ
= a = Lt(Nil) ∧ x = 0 ∨ ∃b (a = Rt(b) ∧ b rN(x− 1))

Hence realizers of the elements of N are numerals Rtn(Lt(Nil)). We write 0 for
Lt(Nil) and S(a) for Rt(a).3 A realizer of A(x) is a function f such that

∀n, a (a rN(n)→ ∃q ∈ Q (f(a) rQ(q) ∧ |x− q| ≤ 2−n))

Hence, essentially, f is a sequence of (representations of) rational numbers
converging quickly to x. To work in the model of Cauchy reals one simply
relativizes all quantifiers to A. However, we refrain from doing so since there are
principles (such as Archimedean induction below) which are valid without such
relativization.

The usual apartness relation between real numbers is defined by

x 6 6= y
Def
= ∃k ∈ N |x− y| ≥ 2−k

Clearly, x 6 6= 0 implies x 6= 0 but the converse implication only holds with
extra assumption on x, for example x ∈ A. We are interested in a proof of the
converse implication that permits the extraction of a program, possibly admitting
classically true assumptions as long as they are Harrop or realizable and therefore
do not spoil program extraction.

We first prove the implication x 6= y → x 6 6= y relativized to x, y ∈ A with the
help of a Harrop formulation of the Archimedean property, Markov’s principle
and the countable axiom of choice:
3 The binary representation of natural numbers is obtained by defining the (same) set

of natural numbers as N(x)
µ
= ∃y ((y = 0 ∨ y > 0 ∧N(y)) ∧ ∃i ∈ {0, 1}(x = 2y + i)).

8

Archimedean property (AP): (∀n ∈ N |x| < 2−n)→ x = 0.
Markov’s principle (MP):

∀n ∈ N (A(n) ∨ ¬A(n))→ ¬¬∃n ∈ NA(n)→ ∃n ∈ NA(n)
Axiom of countable choice (ACC):

∀n ∈ N ∃xA(n, x)→ ∃f ∀n ∈ NA(m, f(n)).

Note that AP is a Harrop formula which is equivalent to H(AP). MP is realized
by an unbounded search operator which can be easily defined by recursion. ACC
quantifies over functions, hence requires an extension of IFP, and is realized by
the identity.

Proposition 2 (AP,MP,ACC). ∀x ∈ A (x 6= 0→ x 6 6= 0).

Proof. Assume A(x) and x 6= 0. By ACC there exists an infinite sequence of
rational numbers qk (k ∈ N) such that |x − qk| ≤ 2−k for all k ∈ N. It is
impossible that |qk+1| ≤ 2−k for all k ∈ N since this would clearly imply that
|x| ≤ 2−k for all k ∈ N and therefore x = 0, by AP. Since |qk+1| ≤ 2−k is a
decidable property of k, by MP we can find some k ∈ N with |qk+1| > 2−k. It
follows that |x| ≥ 2−(k+1).

We now introduce an alternative formulation of the Archimedean property in
the form of an induction principle. This will allow us to prove the implication
x 6= 0→ x 6 6= 0 for x ∈ A without using Markov’s principle or countable choice
and will directly yield a simple extracted program.

Archimedean induction is the rule

∀x 6= 0 ((|x| ≤ 3→ P (2x))→ P (x))

∀x 6= 0P (x)
AI

Of course, the number 3 can be replaced by any positive rational number and
the number 2 by any rational number > 1.

Proposition 3. AI follows classically from AP and wellfounded induction. If P
is not Harrop, then AI is realized by rec.

Proof. By the Archimedean property, for each x 6= 0, the sequence |x|, |2x|, |4x|, . . .
is unbounded, hence will eventually exceed 3. Therefore, A ⊆ Acc≺ holds, where

A(x)
Def
= x 6= 0 and y ≺ x Def

= |x| ≤ 3∧ y = 2x. The premise of AI is Prog≺,A(P),
hence A ⊆ P , by WfI(≺, A). By Prop. 1 the extracted realizer is rec.

A useful variant of Archimedean induction is its relativization to A:

∀x ∈ A \ {0} ((|x| ≤ 3→ P (2x))→ P (x))

∀x ∈ A \ {0}P (x)
AIC

Proposition 4. AIC follows from AI and hence is realizable.

Proof. Apply AI to the predicate A⇒ P
Def
= λx (A(x)→ P (x)) and use the fact

that A is closed under doubling.

9

If s realizes the premise of AIC, then a realizer of the conclusion of AIC is extracted
as the recursively defined function χ g = s g (χ (d g)) where d = λg λn 2∗(g(S(n)))
is the realizer extracted from the easy proof of A(x)→ A(2x) and 2∗ implements
doubling of (unary representations of) natural numbers.

Proposition 5 (AIC). ∀x ∈ A (x 6= 0→ x 6 6= 0).

Proof. We show ∀x ∈ A \ {0}x 6 6= 0 using AIC. Let x ∈ A \ {0} and assume, as
induction hypothesis, |x| ≤ 3→ 2x 6 6= 0. Since x ∈ A there is q ∈ Q such that
|x− q| ≤ 1. If |q| > 2, then |x| ≥ 1 and we are done. If |q| ≤ 2, then |x| ≤ 3 so
we can apply the induction hypothesis to obtain 2x 6 6= 0, which implies x 6 6= 0.

Program extraction for Prop. 5: The program extracted from above proof is

ϕf = if |f 0| > 2 then1 elseS(ϕ (λn2 ∗ f(S(n))))

where | · | and > implement the absolute value function and > relation on (repre-
sentations of) rational numbers and if t then p else q stands for case(t, λa p, λa q)
assuming that the Booleans are encoded as Lt(Nil) and Rt(Nil).

7 Conclusion

We presented a constructive theory of strictly positive inductive and coinductive
definitions that permits (co)induction over a Harrop operator to be applied to non-
Harrop predicates. This allowed us to exhibit wellfounded induction as a special
case of strictly positive induction and, in turn, to give a new presentation of the
Archimedean property for real numbers as a computationally meaningful induction
principle. A simple example in computable analysis reveals that Archimedean
induction is able to provide a new computationally meaningful proof (Prop. 5)
of a result that would normally be proven using countable choice plus Markov’s
principle (Prop. 2). Hence Archimedean induction allowed us to eliminate these
constructively questionable principles. We leave it as an open question whether
for this particular example (approximable non-zero reals are apart from 0) a
computationally meaningful proof using the Archimedean property and Markov’s
principle alone could be given, but we conjecture that this is not the case.
Archimedean induction (even with Markov’s principle) is weaker than countable
choice since the computable reals validate the former while, classically, they
do not validate the latter. Regarding the constructive status of Archimedean
induction it must be noted that its reduction to wellfounded induction (Prop. 3)
uses classical logic but no choice. Hence this achieves only classical elimination
of choice. However, there might be an independent constructive justification
of Archimedean induction. At least computationally this principle is justified
through its realizability interpretation.

It is straightforward to extend our results to generally positive inductive
and coinductive definitions. There is even a possibility of extending this to a
system of higher-order logic and monotone inductive and coinductive definition
as presented in [4].

10

Acknowledgments. This work was supported by the Marie Curie Interna-
tional Research Staff Exchange Schemes Computable Analysis (PIRSES-GA-2011-
294962) and Correctness by Construction (FP7-PEOPLE-2013-IRSES-612638)
as well as the Marie Curie RISE project Computing with Infinite Data (H2020-
MSCA-RISE-2016-731143) and the EPSRC Doctoral Training Grant No. 1818640.

References

1. A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming
infinite structures by observations. In 40th ACM SIGPLAN-SIGACT Symposium
on Principles of Prog. Languages (POPL’13), pages 27–38, 2013.

2. U. Berger. Realisability for induction and coinduction with applications to con-
structive analysis. Jour. Universal Comp. Sci., 16(18):2535–2555, 2010.

3. U. Berger. From coinductive proofs to exact real arithmetic: theory and applications.
Logical Methods in Comp. Sci., 7(1):1–24, 2011. Paper 8, Pub. 24.03.2011.

4. U. Berger and T. Hou. A realizability interpretation of Church’s simple theory of
types. Math. Structures in Comp. Sci., pages 1–22, 2016.

5. U. Berger, K. Miyamoto, H. Schwichtenberg, and M. Seisenberger. Minlog - a tool
for program extraction for supporting algebra and coalgebra. In CALCO-Tools,
volume 6859 of LNCS, pages 393–399. Springer, 2011.

6. U. Berger, K. Miyamoto, H. Schwichtenberg, and H. Tsuiki. Logic for Gray-code
computation. In Concepts of Proof in Math., Phil., & Comp. Sci. de Gruyter, 2016.

7. U. Berger and M. Seisenberger. Proofs, programs, processes. Theory of Computing
Systems, 51(3):213–329, 2012.

8. U. Berger and D. Spreen. A coinductive approach to computing with compact sets.
Journal of Logic and Analysis, 8, 2016.

9. Y. Bertot and P. Castéran. Interactive theorem proving and program development:
Coq’Art: the Calculus of Inductive Constructions. Springer, 2004.

10. D. Bridges, F. Richman, and P. Schuster. Linear independence without choice.
Annals of Pure and Applied Logic, 101(1):95–102, 1999.

11. R. Constable. Implementing Mathematics with the Nuprl Proof Development System.
Prentice–Hall, New Jersey, 1986.

12. G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott. Continuous
Lattices and Domains. Encyclop. of Math. and its Applications. CUP 93, 2003.

13. F. Miranda-Perea. Realizability for monotone clausular (co)inductive definitions.
Electr. Notes in Theoret. Comp. Sci., 123:179–193, 2005.

14. K. Miyamoto. Program Extraction from Coinductive Proofs and its Application to
Exact Real Arithmetic. PhD thesis, Mathematisches Institut LMU, Munich, 1993.

15. K. Miyamoto, F. Forsberg, and H. Schwichtenberg. Program Extraction from
Nested Definitions. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Proc.
of the 4th ITP Conf., number 7988 in LNCS, pages 370–385. Springer, 2013.

16. M. Parigot. Recursive programming with proofs. Theoretical Comp. Sci., 94(2):335–
356, 1992.

17. F. Richman. The fundamental theorem of algebra: a constructive development
without choice. Pacific Journal of Math., 196(1):213–230, 2000.

18. M. Tatsuta. Realizability of monotone coinductive definitions and its application
to program synthesis. In R. Parikh, editor, Math. of Prog. Const., volume 1422 of
Lecture Notes in Math., pages 338–364. Springer, 1998.

19. S. Tupailo. On the intuitionistic strength of monotone inductive definitions. The
Journal of Symbolic Logic, 69(3):790–798, 2004.

