
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/103399

Please be advised that this information was generated on 2018-07-08 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/16187849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/103399

Size Calculus for a Higher-Order Functional
Language

Attila Gobi1?, Olha Shkaravska2, and Marko van Eekelen2,3??

1 Faculty of Informatics, Eötvös Loránd University Budapest
2 Institute for Computing and Information Sciences, Radboud University Nijmegen

3 Open University of the Netherlands, Heerlen

Abstract. The authors present a lambda-calculus that formalizes the
relations between the sizes of arguments and the sizes of the correspond-
ing results of functions in a higher-order polymorphic functional lan-
guage. On top of usual constructions two operators for finite maps: List,
that defines (higher-order) finite maps, and Shift are considered. Intu-
itively, size expressions are abstract interpretations of programs in the
natural arithmetic.
To prove normalization and diamond (modulo integer axiomatics) prop-
erty of the calculus we show that the calculus can be expressed in System
F.

1 Introduction

Size information about program expressions is important, especially in case of
resource analysis, where sized types are commonly used to build algorithms to
predict resource consumption and termination. A good size analysis is especially
important as it determines the precision of the prediction.

Correct sizes are however not easy to obtain. Introducing sized types may
lead to the need of polymorphism in the size variables. Consider the following
function written in a Haskell-like language.

f :: ([a] -> b) -> (b,b)

f g = (g [], g [1])

By extending the original type declaration of f with size variables, the result
would be (Ln(a) → b) → (b, b). Here the type is implicitly quantified at the
outer level, resulting a typing error. The reason for this is that two different list
types are applied to the function g.

A common solution is to use subtype polymorphism, where Ln(a) ≤ Ln(a) iff
n ≤ m. This approach solves the problem, but can lead to significant overesti-
mation of the sizes.

? The first author is supported by the European Union and co-financed by the Euro-
pean Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

?? The second and the third author are supported by the Artemis Joint Undertaking
in the CHARTER project, grant-nr. 100039.

Another solution is to use parametric polymorphism, leading to higher rank
types, like (∀n.Ln(a)→ b)→ (b, b). However this type is still not generic enough.
For example in the result of the expression f cons would be a pair of list of
different size, which is impossible, because the type of f suggested that the two
elements of the pair must have the same size (i.e. the result is (b, b)).

It is still possible to generalize the idea by using dependent types and by
introducing a type function to handle the return types, but for a complicated
function the type would be even more complicated. We believe that the type of
a function and the size dependencies of a function reflect different aspects and
mixing them causes unnecessary complexity.

We present a calculus that formalizes the relations between the sizes of ar-
guments and the sizes of the corresponding results of functions in a higher-order
polymorphic functional language. Informally, the calculus extends the lambda-
calculus with arithmetic operations and two operators for finite maps: List, that
defines (higher-order) finite maps, and Shift.

The verification conditions we obtain as the result of the syntax-directed
stage of type-checking, are (conditional) equations in the combination of three
theories: lambda-calculus, integer ring and finite maps.

This calculus is Turing complete so checking the equality of two size ex-
pressions cannot be decidable. When trying to check a size expression which is
not normalizable, the constraint solver would not terminate. In Section 5 we
discuss a type system for size expression which gives a sufficient condition for
normalizability.

The ultimate goal is to continue the series of work on size analysis of first-
order strict functional languages – in these works annotation inference is based
on polynomial interpolation [7]. The set of normalizable size expressions can be
seen as an extension of the type checker defined in that paper as well.

This paper is a revised version of our previous work [3]. A proof of concept
implementation has been created, and much of the paper has been rewritten to
reflect the implementation.

2 Language Syntax

Consider a higher-order strict functional language extended with size expres-
sions. Its syntax is given on Fig. 1. Every top-level binding is annotated with its
type and its size given by a size expression.

The underlying type system is System F and it has two predefined types:
Int for integers and L(τ) for lists. We do not cover the type checking of top-level
bindings, but in practice a Hindley–Milner style type inference can be used to
infer these types in a previous stage of the size checking.

Our language does not allow lambda abstraction and recursive let-expres-
sions, however recursive functions can be defined as top-level bindings. It is easy
to extend the language with recursive let, if we annotate let bindings with size
expressions. Similarly, lambda abstraction can be enabled if it has an explicit

Program variables ∈ x, y, z, f, g, h
Integer literals ∈ m,n
Type variables ∈ α
Types τ ::= Int | L(τ) | α | τ1 → τ2
Data constructors K ::= nil | cons | n
Expressions e ::= x | K | e1 e2 | let x = e1 in e2

| if e1 then e2 else e3

| match e1 with | nil⇒ e2

| cons hd tl⇒ e3

Programs prog ::= ε | f z1 . . . zk :: τ :: η = e; prog

Fig. 1. Syntax

type annotation. However these restriction does not affect the expressiveness of
the language so they are omitted for simplicity.

There is a number of reserved function names corresponding to integer con-
stants (i.e. 0-ary functions), unary and binary integer operations (unary minus,
addition, subtraction, multiplication, division and mod), and the list construc-
tors nil and cons hd tl.

2.1 Size calculus

Size expressions represent size dependencies of functions. Their grammar is given
on Fig. 2. It is a lambda calculus extended with integer arithmetic and combi-
nators to express the size dependencies of lists.

Size variables ∈ s, p
Binary operators ξ ::= + | − | ∗
Size expressions η ::= λs.η | λ̂sp.η | η1η2 | s

| List | Unsized | Shift | ⊥
| η1 ξ η2 | n

Fig. 2. Syntax of size expressions

Now a few simple examples are considered to give an idea behind the formal-
ization. Begin with an integer literal, eg. 42. We assume that it does not have
size, so the expression Unsized is assigned to it.

For arguments of functions, abstraction over size expressions are used. The
following binding declares a function which maps everything to 42. Its size ex-
pression mirrors the fact that the size of the result of the function is Unsized
regardless of the size of the argument.

const x :: α→ Int :: λsx.Unsized = 42

The size of a list is expressed by the combinator List. For instance, the size of
the list “[2]” is given by List 1 (λi.Unsized). Here the first argument of List denotes

the length of the list while the second is a lambda abstraction expressing the
sizes of the elements of the list. As the only element of this list is 2, which is
unsized, one can say that all elements of this list is unsized: λi.Unsized.

The λ-bound variable i corresponds to the position of the element in a list.
For instance, according to the expression Listn (λi. e i), the expression e (n− 1)
represents the size of the head, the expression e (n− 2) represents the size of the
element next to the head, while the expression e 0 represents the length of the
tail element4. It means the expression e can be seen as a finite map defined on
0, . . . , n− 1.

For size expressions of the form List s p, the abstraction λ̂sp is used. This
abstraction is the dual of the list constructor as it can be seen on the reduction
rules (Fig. 3). During reductions capture-avoiding substitutions are assumed, i.e.
alpha-renaming or other mechanism.

(λp.e1)(e2)→β (e1[p := e2])

(λ̂sp.e)(List e1 e2)→β (e[s := e1, p := e2])

Shift e1 s e2 →β λi.

{
e1i if i < s

e2(i− s) otherwise

Fig. 3. Reduction rules of the size calculus

In this way it is possible to present the size expression for the result of a
function in terms of the size expressions of its arguments. The following example
the function addone takes its argument l : L(Int) and returns the list (1 :: l).
The size expression of the function tells us the size of the list is incremented by
one.

addone l :: L(Int)→ L(Int) :: λ̂sp. List (s+ 1)(λi.Unsized) = cons 1 l

The combinator Shift is used to concatenate size functions. The expression
Shift e1 s e2 means a size function of the list obtained by inserting the last s
elements of e1 before e2. With the help of this function it is easy to express the
size expression of the predefined functions.

As a more complicated example, the declaration of the function concat is
shown. This function takes two list arguments and results the concatenation of

4 Note that this enumeration of list elements “opposes” the traditional in the func-
tional languages enumeration, where the head element has number 0, etc. The enu-
meration we use is more convenient in our reasoning and, for instance, simplifies
significantly the match-rule defined later.

nil : List 0 (λi.⊥) m : Unsized +,−, . . . : λx.λy.Unsized

cons : λsx. λ̂
sl
pl . List (sl + 1) (Shift pl sl λy.sx)

Fig. 4. Size expressions of the predefined functions

the lists.

concat x y :: L(α)→ L(α)→ L(α)

:: λ̂sxpx
.λ̂

sy
py . List (sx + sy) (Shift py sy px)

= match x with | nil⇒ y
| cons hd tl⇒ cons hd (concat tl y)

3 Size analysis

Our calculus can be used to check the size relations of top level bindings. The
verification consists of two steps – the first part is a verification condition gen-
eration and the second part is the verification of the generated conditions.

Verification of those conditions are not covered in this paper, an we assume
an external solver is used. However in our prototype implementation, a solver
with a very heuristics is able to solve all of our examples.

3.1 Constraint generation

Constraint set C ::= ε | C, D η
Condition D ::= ε | D, η = 0 | D, η >= n

C1 n C2 = {D1 ∪D2 η1η2 | D1 η1 ∈ C1, D2 η2 ∈ C2}

Fig. 5. Syntax and operations of the assumption system

First of all, an assumption system is defined in Fig. 5. The assumption system
consists of elements of the form D η, where η is a size expression and D is a
set of conditions. A D η means that the corresponding expression has size η
if all of the conditions in D hold.

Before introducing the size checking rules we need a function to generate size
expressions containing fresh variables for a given underlying type. The formal
definition of the function can be found in Fig. 6, and informally, the following
examples show what does the function do.

fresh(L(Int); ∅) = List s1 (λi.Unsized)

fresh(L(α); ∅) = List s1 (λi.s2i)

fresh(L(L(Int)); ∅) = List s1 (λi. List s2 (λj.Unsized))

fresh(L(L(α)); ∅) = List s1 (λi. List s2 (λj.s3ij))

The fresh function takes a type and a set of free size variables as arguments
and results a size expression corresponding to the given type. All free variables
in the resulting size expressions are fresh.

fresh :: τ × [η]→ η

fresh(Int, γ) = Unsized

fresh(τ1 → τ2, γ) = λβ. fresh(τ2, γ, β)

fresh(L(τ), γ) = List β (λβ′. fresh(τ, γ, β′))

fresh(α, (η :: γ)) = fresh(α, γ) η

fresh(α, []) = β

(Where β and β′ are fresh size variables.)

Fig. 6. Fresh size expression for a given type

The top level bindings are shown in Fig. 7. The judgement Γ ` e can be read
as ”in the type environment Γ the program e is well-sized”. It is assumed that
the function binding is well-typed in the underlying type system. Then the rule
creates fresh size expressions for each argument, saves it in the environment and
infers an assumption set. The assumption set is then used to create verification
conditions.

FV (Γ) = ∅
Γ ` ε Empty

`UL λz1 . . . zk.e : τ
η̄ = fresh(τ̄ , ∅) Γ, f : {∅ η′}, z̄ : {∅ η̄} ` e :C

∀D ηc ∈ C : D ηc = η′η̄
Γ, f : {∅ η′} ` prog

Γ ` f z1 . . . zk :: τ1 → . . .→ τk → τ ′ :: η′ = e, prog
Bind

Fig. 7. Top level bindings

The generation of the assumption set uses the judgement Γ ` e : C which
means ”in the type environment Γ we assume that expression e has size C”. The
rules to obtain the assumption set can be seen in Fig 8.

Γ, a : C ` a :C Var
Γ ` m :{∅ Unsized} Int

Γ ` nil :{∅ List 0 (λi.⊥)} Nil

Γ ` cons :λsx. λ̂
sl
pl . List (sl + 1) (Shift pl sl λy.sx)

Cons

Γ ` e2 :C2 Γ ` e3 :C3
if e1 then e2 else e3 : C1 ∪ C2 If

Γ ` e1 :C1 Γ ` e2 :C2
Γ ` e1e2 :C1nC2

App

Γ ` e1 :C1
Γ, x : C1 ` e2 :C2

Γ ` let x = e1 in e2 :C2
Let

Γ ` e1 :{D1 η1, . . . , Dn ηn} Γ ` e2 :C′

∀i = 1 . . . n : Γ, hd : {∅ (λ̂sp.p (s− 1))ηi},
tl : {∅ (λ̂sp. List (s− 1) p)ηi} ` e3 :Ci

C′′ = ∪ni=1

((
Di, (λ̂

s
p.s)ηi >= 1 Ci

)
∪
(
Di, (λ̂

s
p.s)ηi = 0 C′

))
Γ ` match e1 with | nil⇒ e2

| cons hd tl⇒ e3

:C′′
Match

Fig. 8. Rules for expressions

4 Examples

concat

concat x y :: L(α)→ L(α)→ L(α)

:: λ̂sxpx
.λ̂

sy
py . List (sx + sy) (Shift py sy px)

= match x with | nil⇒ y
| cons hd tl⇒ cons hd (concat tl y)

Here x and y are of type L(α). According to the Bind rule, we are creating fresh
size expressions for the arguments by using the function fresh. Assuming that
the fresh size expressions are List sx (λi.px i) and List sy (λj.py j) for x and y,

respectively, we need to prove the following entailment:

{
concat : {∅ λ̂sxpx

.λ̂
sy
py . List (sx + sy) (Shift py sy px)},

x : {∅ List sx (λi.px i)}, y : {∅ List sy (λj.py j)}
}
` match x with | nil⇒ y

| cons hd tl⇒ cons hd (concat tl y)
: C′′

Next we can calculate the assumed size of the nil branch and the condition using
the Var rule:

Γ ` y :{∅ List sy (λj.py j)} Γ ` x :{∅ List sx (λi.px i)}

It is not necessary, but possible to reduce the size expressions during the in-
ference. To save space we will do it so. Using the App and Var rules multiple
times, we can infer the following:

{
concat : {∅ λ̂sxpx

.λ̂
sy
py . List (sx + sy) (Shift py sy px)},

x : {∅ List sx (λi.px i)}, y : {∅ List sy (λj.py j)}
hd : {∅ px (sx − 1)}, tl : {∅ List (sx − 1) (λi.px i)}
}
` (concat tl y) : {∅ List (sx − 1 + sy)(Shift py sy px)}

. . .

{. . .}
` cons hd (concat tl y) : {∅

List (sx − 1 + sy + 1) (Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1))))
}

Calculating (λ̂sp.s)η1 which can be reduced to sx, we can finish the inference of
the assumption set:

C′′ = {
{sx = 0} List sy (λj.py j)
{sx >= 1} List (sx − 1 + sy + 1)

(Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1))))
}

Finally, the verification conditions from the Bind rule:

sx = 0 List sy (λj.py j) = List (sx + sy) (Shift py sy px)
sx >= 1 List (sx − 1 + sy + 1)

(Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1)))) =
List (sx + sy) (Shift py sy px)

Now, using the rules of the verification conditions:

sx = 0 sy = sx + sy (1)

sx = 0, si < sx − 1 + sy + 1 py si = Shift py sy px si (2)

sx >= 1 sx − 1 + sy + 1 = sx + sy (3)

sx >= 1, si < sx − 1 + sy + 1

Shift (Shift py sy px) (sx − 1 + sy) (λi. (px(s− 1)))

= Shift py sy px (4)

Here, (1) and (3) is true, and (2) can be reduced as follows.

sx = 0, si < sx − 1 + sy + 1, si < sy py si = py si (5)

sx = 0, si < sx − 1 + sy + 1, si >= sy py si = px (si − sy) (6)

Where (5) is true and in the conditions of (6) is not satisfiable. Equation (4)
can be resolved similarly.

t3 The most interesting question is how can the size expressions handle such a
polymorphism when an argument can be a list and even a function. To demon-
strate this case we define the following function:

t3 f x :: (α→ α)→ α→ α :: λs.λp.s(s(sp)) = f(f(f x))

It is easy to check the type of this function so it is left for the reader. The
interesting part is when we use this function in different kinds of expressions:

t x :: L(α)→ L(α) :: η = (t3 t3) addonex

In this example the assumed size for t3 t3 is

{∅
(
λf.λx.f(f(fx))

)(
λf.λx.f(f(fx))

)
} →∗

{∅ λf.λx. f(f(f . . . (fx) . . .)︸ ︷︷ ︸
27 applications of f

}

We want to prove that the size of t is λ̂sf . List(s+ 27)(λx.Unsized), using the

fact that addone has size {∅ f1:} where f1: = λ̂sf . List (s+ 1) (λx.Unsized). To
continue with our example we apply fresh variables (eg. List a (λy.Unsized)) to
η and also apply the rules to finish the calculation of the assumed sized:

(λx. f1:(f1: . . . (f1:x) . . .)︸ ︷︷ ︸
27 applications of f1:

)(List a (λy.Unsized))→

→ f1:

(
f1: . . .

(
(λ̂sf . List (l + 1) (λx.Unsized))(List a (λy.Unsized))

)
. . .
)

︸ ︷︷ ︸
27 applications of f1:

→

→ f1:

(
f1: . . .

(
List (a+ 1) (λx.Unsized)

)
. . .
)

︸ ︷︷ ︸
26 applications of f1:

→∗ List (a+ 27) (λx.Unsized)

The following two expressions can be checked similarly:

t x :: L(α)→ L(α) :: λ̂sf . List (s+ 9)λy.Unsized = t3 (t3 addone) x

t x :: Int→ Int :: λx.Unsized = t3 succ x

5 Normalizability

Being an extended lambda calculus, our size expressions are certainly Turing
complete. It means with the help of some tricky constructs any function of the
language can be translated directly into size expression. On one hand it is good,
because it proves that our language is able to express the size dependencies of
any function. On the other hand it makes the size analysis undecidable.

However sometimes there is no better way to describe the size dependencies
of a function, but with itself. One example is t3 which is detailed in section 4.

Size expressions can be seen as a simplification of the function capturing
only the necessary information, it is especially important for a recursive func-
tion. For a recursive function it is not possible to write a recursive size ex-
pression, but recursion can be expressed by the fixed point combinator (Y =
(λf.(λx.f(xx))(λx.f(xx))). For example:

fix f :: (α→ α)→ α :: λs.Y s = f (fix f)

Of course the checker is not able to prove this, as the size expression is not
normalizable. To ensure the normalizability property of a size expression, and
thus ensure the termination of the size checking, we use a type system. Our choice
of type system is System F. We assume the usual Bool, Nat, Unit and product
types with the usual operations defined. The following type is also predefined:

La := Nat× (Nat→ a)

This type expresses the fact that a size of a list is a tuple of the length of the
list and a map holding the sizes of the elements of the list.

5.1 Types of size operators

The Unsized can be easily represented by the Unit type:

Unsized = unit : Unit

List corresponds to the data constructor of a pair:

List = ΛA.λsNat.λfNat→A. <s, f>
: ∀A.Nat→ (Nat→ A)→ LA

If λ̂sf .e is seen as a syntactic sugar for Unlist AB (λsf.e), where A and B are

types. Now it is easy to describe λ̂sf . with the help of the usual projections π1
and π2:

Unlist = ΛA.ΛB.λfNat→(Nat→A)→B .λtLA .f (π1t) (π2t)
: ∀A.∀B.(Nat→ (Nat→ A)→ B)→ LA → B

The last thing to do is to define the Shift function:

Shift = ΛA.λfNat→A.λnNat.λgNat→A.λxNat.IFA (x < n) (f x) (g (x− n))
: ∀(A.Nat→ A)→ Nat→ (Nat→ A)→ Nat→ A

Because type inference for System F is not decidable we can use HMF [6] or
MLF [5] for inference if we can tell the type of the size expression. These types
can be obtained from the underlying type using the following function:

SizeType(∀α.a) = ∀α.SizeType(a)

SizeType(a→ b) = SizeType(a)→ SizeType(b)

SizeType(L(a)) = La

SizeType(τ) = τ if τ is a type variable

SizeType(τ) = Unit otherwise

The following table gives some examples:

Nat→ Nat U → U
L(Nat)→ L(Nat) LU → LU

L(a)→ L(a) ∀a.La → La

(a→ b)→ L(a)→ L(b) ∀a b.(a→ b)→ La → Lb

L(a)→ L(L(a)) ∀a.La → LLa

6 Semantics and soundness of the sizing rules

In the presented work soundness of the sizing rules means the following. If the
size-checking procedure accepts the size annotation of a program expression then
this annotation correctly reflects the output-on-input size dependency of the
program expression. For instance, the annotation λ̂sp. List (s+ 1)(λi.Unsized) for
the function addone must guarantee that if an input list has the length s then
the corresponding output list has the length s+ 1. Moreover, it guarantees that
output-list elements are unsized, i.e. they are integer numbers.

Soundness is to be proven w.r.t. some reasonable semantic model, where e.g.
the term List 25(λi.Unsized) is interpreted as the set of all the lists of integers of
length 25. One can follow two approaches. The first one would be to consider a
denotational semantics a-la the denotational semantics of Haskell, which uses the
fixed point semantics for recursive definitions. It allows to make total-correctness
statements about sizings: if a program passes type-checking then it terminates.

For the time being it is decided to follow the second approach: to consider
a state-based semantics, where a program expression in general changes a state
which stores semantic values in locations named by program variables. This
semantic allows to consider less challenging partial-correctness statements: the
annotation of a program represents the correct output-on-input size dependency
only on inputs, on which the program terminates. Values are integers, and fi-
nite vectors and (higher-order) functions over values, and states are maps from
program variables to values:

Val := Z|Val∗|Val × . . .×Val → Val
State : ExpVar → Val

A function f : Val × . . .× Val → Val is understood as an (infinite) table where
for each input v̄, on which f is defined, there is a corresponding row that gives
f(v̄). If f is defined algorithmically, it is written as a lambda-term. For instance,
adding two integers λ x y. x+ y represents the table with three columns, where
the first two columns list all possible pairs (x, y), and the third one gives the
corresponding sum.

Semantics is defined in two steps. First, the total-evaluation semantics Sem :
Expr → State → Val and, second, partial evaluation semantics SemPart is
defined via Sem. Total-evaluation Sem is defined inductively on program ex-
pressions and states:

Sem x s = s(x), where x ∈ dom(s)
Sem nil s = ()
Sem(cons e1 e2) s = (Sem e1 s) :: (Sem e2 s)
Sem n s = ()
Sem(e1 e2) s = (Sem e1 s)(Sem e2 s), if e1 /∈ FName

Sem(f e1 . . . en) s = Sem ef [xi := vi]
n
i=1,

where vi = (Sem ei s)

and ef is the body of f
Sem (let x = e1 in e2) s = Sem e2 s[x := (Sem e1 s)]

Sem (if e1 then e2 else e3) s =

{
Sem e2 s, if (Sem e1 s) > 0
Sem e3 s, otherwise

Sem (match e1 with | nil⇒ e2

| cons hd tl⇒ e3

) s =

Sem e2 s, if (Sem e1 s) = ()
Sem e3 s[hd := vhd, tl := vtl]

if (Sem e1 s) = vhd :: vtl

The partial evaluation SemPart : Expr → State → Val is given by

SemPart e s := λ v1 . . . vn. (Sem e s[xi := vi]
n
i=1)

where [xi := vi]
n
i=1 = FV (e) \ dom(s).

Now, to make soundness statement, introduce a semantic size M on values:

M m = ()
M (m1, . . . ,mn) = n
M (v1, . . . , vn) = (M v1, . . . ,M vn)
M f = {(M v̄) 7→

(
M f(v̄)

)
}v̄∈dom(()f)

The last row implies that semantic functions f must be shapely: that is two
values v̄1 and v̄2 of the same size must be mapped onto values of the same size:
M f(v̄1) = M f(v̄2).

As expected, the soundness theorem states that if a well-typed program ex-
pression is evaluated on a state s, that maps any variable onto a value of the size

according to a sizing context Γ , then the evaluated value has the size represented
by the output sizing term. Formally, if Γ ` e :: τ :: η, then

∀ s.
((
∀ x ∈ dom(s). M s(x) = Γ (x)

)
∧ SemPart e s = v

)
=⇒ (M v = η)

Recall, that a term List t1
(
λi.t2(i)

)
represents a finite map defined on {0, . . . , t1}

that sends i to t2(i). The theorem is to be proven by induction on the structure
of expression e.

7 Related work

The structure of size expressions in our research is close to the approach of A.
Abel [1], who has applied sized types for termination analysis of higher-order
functional programs. For instance, in his notation sized lists of type A of length
ı are defined as λ ıA.µı.1+A×X and size expressions are higher-order arithmetic
expressions with λ-abstraction as well. The difference is that in that work one
uses linear arithmetic over ordinals, where ordinals represent zero-order sizes.
Moreover, in that research size information is not a stand-alone formalism, but
a part of a dependent-type system.

In the paper [8] the authors go beyond linear arithmetic. For a given higher-
order functional program, they obtain a set of first-order arithmetic constraints
over unknown cost functions f . Solving these constraints w.r.t. f gives the de-
sired costs of the program. The underlying arithmetic is the arithmetic over
naturals, extended with undefined ε and unbounded ω values, equipped with
a natural linear order. Size expressions admit addition +, multiplication ∗ and
subtraction of a constant −n, thus such expressions are monotonic. Function
types are annotated with natural numbers (latencies), e.g. α →l β, so it may be
conveniently interpreted as an increment in cost consumption, like l clock ticks if
the resource of interest is time. Our approach is different in a sense that we aim
at expressing size dependencies directly in terms of sizes of inputs, bypassing
latencies.

In paper [2] the authors approach to complexity analysis of an imperative
language, which is a version of Gödel’s T. It is done via abstract interpretation
of programs in a semiring of matrices. Informally, matrices represent data flow
along program variables. The authors give an upper bound for the return values
in terms of initial values. However, this is a conjecture and no proof is given.
Similarly the conjecture about the existence of an abstract interpretation is not
proven.

In recent paper [4] the authors develop amortized cost analysis for a higher-
order functional language Shopenhauer. The analysis is generic, that is it is
applicable to different sorts of resources: heap usage, stack size and the number
of function calls. Type-derivation procedure generates linear constraints, solving
of which gives desirable upper bounds. The analysis always succeeds, if bounds
are linear. So far, the methodology does not support polymorphic recursion.

8 Conclusion and future plans

We have presented a size analysis for higher order functions for a higher-order
polymorphic functional language. The calculus is based upon the lambda-calculus
extending it with arithmetic operations and special operators for finite maps rep-
resenting sizes of the elements of lists.

A calculus is introduced which can be used to implement an algorithm to
generate verification conditions. The size expressions are generally not normal-
izable, but we have shown a sufficient condition to ensure normalizability. Nor-
malizability is required to ensure the termination of the verification condition
solver.

We are investigating the possibility to use polynomial interpolation [7] to
infer size expressions for higher-order functions as well.

References

1. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D.
thesis, Ludwig-Maximilians University, Munich (2006)

2. Avery, J., Kristiansen, L., Moyen, J.Y.: Static complexity analysis of higher order
programs. In: van Eekelen, M., Shkaravska, O. (eds.) Proceedings of the First inter-
national conference on FOundational and Practical Aspects of Resource Analysis
(FOPARA). LNCS, vol. 6324, pp. 84–99. Springer-Verlag, Berlin, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1886124.1886130

3. Góbi, A., Shkaravska, O., van Eekelen, M.: Size analysis of higher-order functions. In:
Peña, R., van Eekelen, M. (eds.) Proceedings of the 12th International Symposium
on Trends in Functional Programming (TFP2011). pp. 77–91. No. Tech. Rep. SIC-
07/11, Madrid, Spain (may 2011)

4. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static determination of quantita-
tive resource usage for higher-order programs. SIGPLAN Not. 45, 223–236 (January
2010), http://doi.acm.org/10.1145/1707801.1706327

5. Le Botlan, D., Rémy, D.: MLF: raising ml to the power of system f. In: Proceedings
of the eighth ACM SIGPLAN international conference on Functional programming.
pp. 27–38. ICFP ’03, ACM, New York, NY, USA (2003), http://doi.acm.org/10.
1145/944705.944709

6. Leijen, D.: HMF: simple type inference for first-class polymorphism. In: Proceeding
of the 13th ACM SIGPLAN international conference on Functional programming.
pp. 283–294. ICFP ’08, ACM, New York, NY, USA (2008), http://doi.acm.org/
10.1145/1411204.1411245

7. Shkaravska, O., van Eekelen, M.C.J.D., van Kesteren, R.: Polynomial size analysis
of first-order shapely functions. Logical Methods in Computer Science 5(2) (2009)

8. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymor-
phic and higher-order functional programs. In: Trinder, P., Michaelson, G., Peña, R.
(eds.) Revised selected papers of the 15th international symposium on Implemen-
tation of Functional Languages (IFL’03). LNCS, vol. 3145, pp. 86–101. Springer-
Verlag, Edinburgh, UK, September 8-11, 2003 (2004)

