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Abstract

An electronic vehicle immobilizer is an anti-theft device
which prevents the engine of the vehicle from starting
unless the corresponding transponder is present. Such a
transponder is a passive RFID tag which is embedded in
the car key and wirelessly authenticates to the vehicle.
It prevents a perpetrator from hot-wiring the vehicle or
starting the car by forcing the mechanical lock. Having
such an immobilizer is required by law in several coun-
tries. Hitag2, introduced in 1996, is currently the most
widely used transponder in the car immobilizer industry.
It is used by at least 34 car makes and fitted in more
than 200 different car models. Hitag2 uses a propriet-
ary stream cipher with 48-bit keys for authentication and
confidentiality. This article reveals several weaknesses
in the design of the cipher and presents three practical at-
tacks that recover the secret key using only wireless com-
munication. The most serious attack recovers the secret
key from a car in less than six minutes using ordinary
hardware. This attack allows an adversary to bypass the
cryptographic authentication, leaving only the mechan-
ical key as safeguard. This is even more sensitive on
vehicles where the physical key has been replaced by a
keyless entry system based on Hitag2. During our exper-
iments we managed to recover the secret key and start the
engine of many vehicles from various makes using our
transponder emulating device. These experiments also
revealed several implementation weaknesses in the im-
mobilizer units.

1 Introduction

In the past, most cars relied only on mechanical keys to
prevent a hijacker from stealing the vehicle. Since the
’90s most car manufacturers incorporated an electronic
car immobilizer as an extra security mechanism in their
vehicles. From 1995 it is mandatory that all cars sold in
the EU are fitted with such an immobilizer device, ac-

cording to European directive 95/56/EC. Similar regula-
tions apply to other countries like Australia, New Zeal-
and (AS/NZS 4601:1999) and Canada (CAN/ULC S338-
98). An electronic car immobilizer consists of two main
components: a small transponder chip which is embed-
ded in (the plastic part of) the car key, see Figure1; and
a reader which is located somewhere in the dashboard of
the vehicle and has an antenna coil around the ignition,
see Figure2.

Figure 1: Car keys with a Hitag2 transponder/chip

The transponder is a passive RFID tag that operates at a
low frequency wave of 125 kHz. It is powered up when
it comes in proximity range of the electronic field of the
reader. When the transponder is absent, the immobilizer
unit prevents the vehicle from starting the engine.

Figure 2: Immobilizer unit around the ignition barrel

A distinction needs to be made with remotely operated
central locking system, which opens the doors, is bat-
tery powered, operates at a ultra-high frequency (UHF)
of 433 MHz, and only activates when the user pushes a
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button on the remote key. More recent car keys are of-
ten deployed with a hybrid chip that supports the battery
powered ultra-high frequency as well as the passive low
frequency communication interface.

With the Hitag2 family of transponders, its manu-
facturer NXP Semiconductors (formerly Philips Semi-
conductors) leads the immobilizer market [34]. Fig-
ure 4 shows a list containing some of the vehicles that
are deployed with a Hitag2 transponder. Even though
NXP boosts “Unbreakable security levels using mutual
authentication, challenge-response and encrypted data
communication”1, it uses a shared key of only 48 bits.

Since 1988, the automotive industry has moved to-
wards the so-called keyless ignition or keyless entry in
their high-end vehicles [26]. In such a vehicle the mech-
anical key is no longer present and it has been replaced
by a start button like the one shown in Figure3. The only
anti-theft mechanism left in these vehicles is the immob-
ilizer. Startlingly, many keyless ignition or entry vehicles
sold nowadays are still based on the Hitag2 cipher. In
some keyless entry cars Hitag2 is also used as a backup
mechanism for opening the doors, e.g., when the battery
of the remote is depleted.

Figure 3: Keyless hybrid transponder and engine
start/stop button

Related work

A similar immobilizer transponder is produced by Texas
Instruments under the name Digital Signature Transpon-
der (DST). It is protected by a different proprietary cryp-
tographic algorithm that uses a secret key of only 40 bits.
The workings of these algorithms are reversed engin-
eered by Bono et al. in [10]. Francillon et al. demon-
strated in [18] that is possible to relay in real-time the
(encrypted) communication of several keyless entry sys-
tems. The article shows that in some cases such a com-
munication can be intercepted over a distance of at least
100 meters.

1http://www.nxp.com/products/automotive/
car accessimmobilizers/immobilizer/

Make Models

Acura CSX, MDX, RDX, TL, TSX

Alfa Romeo 156, 159, 166, Brera, Giulietta, Mito, Spider

Audi A8

Bentley Continental

BMW Serie 1, 5, 6, 7, all bikes

Buick Enclave, Lucerne

Cadillac BLS, DTS, Escalade, SRX, STS, XLR

Chevrolet

Avanlache, Caprice, Captiva, Cobalt, Equinox, Express, HHR

Impala, Malibu, Montecarlo, Silverado, Suburban, Tahoe

Trailblazer, Uplander

Chrysler
300C, Aspen, Grand Voyager, Pacifica, Pt Cruiser, Sebring

Town Country, Voyager

Citroen
Berlingo, C-Crosser, C2,C3, C4, C4 Picasso,C5, C6, C8

Nemo, Saxo, Xsara, Xsara Picasso

Dacia Duster,Logan, Sandero

Daewoo Captiva, Windstorm

Dodge
Avenger, Caliber, Caravan, Charger, Dakota, Durango

Grand Caravan, Journey, Magnum, Nitro, Ram

Fiat
500, Bravo, Croma, Daily, Doblo, Fiorino, Grande Punto

Panda, Phedra, Ulysse, Scudo

GMC Acadia, Denali, Envoy, Savana, Siera, Terrain, Volt, Yukon

Honda
Accord,Civic, CR-V, Element, Fit, Insight, Stream,

Jazz, Odyssey, Pilot, Ridgeline, most bikes

Hummer H2, H3

Hyundai

130, Accent, Atos Prime, Coupe, Elantra, Excel, Getz

Grandeur,I30, Matrix, Santafe, Sonata, Terracan, Tiburon

Tucoson, Tuscanti

Isuzu D-Max

Iveco 35C11, Eurostar, New Daily, S-2000

Jeep
Commander, Compass, Grand Cherokee, Liberty, Patriot

Wrangler

Kia
Carens, Carnival, Ceed, Cerato, Magentis, Mentor, Optima

Picanto, Rio, Sephia, Sorento, Spectra, Sportage

Lancia Delta, Musa, Phedra

Mini Cooper

Mitsubishi
380, Colt, Eclipse, Endeavor, Galant, Grandis, L200

Lancer, Magna, Outlander, Outlander, Pajero, Raider

Nissan
Almera,Juke, Micra , Pathfinder, Primera, Qashqai, Interstar

Note, Xterra

Opel
Agila, Antara, Astra, Corsa, Movano, Signum, Vectra

Vivaro, Zafira

Peugeot
106, 206, 207,307, 406, 407, 607, 807, 1007, 3008, 5008

Beeper, Partner,Boxer, RCZ

Pontiac G5, G6, Pursuit, Solstice, Torrent

Porsche Cayenne

Renault
Clio, Duster,Kangoo, Laguna II , Logan, Master

Megane, Modus, Sandero,Trafic , Twingo

Saturn Aura, Outlook, Sky, Vue

Suzuki Alto, Grand Vitara, Splash, Swift, Vitara, XL-7

Volkswagen Touareg, Phaeton

Figure 4: Vehicles using Hitag2 [29] – boldface indicates
vehicles we tested

The history of the NXP Hitag2 family of transpon-
ders overlaps with that of other security products de-
signed and deployed in the late nineties, such as Kee-
loq [8, 13, 27, 28], MIFARE Classic [12, 19, 22, 35],
CryptoMemory [4, 5, 23] or iClass [20, 21]. Originally,
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information on Hitag2 transponders was limited to data
sheets with high level descriptions of the chip’s function-
ality [36], while details on the proprietary cryptographic
algorithms were kept secret by the manufacturer. This
phase, in which security was strongly based on obscur-
ity, lasted until in 2007 when the Hitag2 inner workings
were reverse engineered [47]. Similarly to its prede-
cessor Crypto1 (used in MIFARE Classic), the Hitag2
cipher consists of a 48 bit Linear Feedback Shift Register
(LFSR) and a non-linear filter function used to output
keystream. The publication of the Hitag2 cipher attrac-
ted the interest of the scientific community. Courtois et
al. [14] were the first to study the strength of the Hitag2
stream cipher to algebraic attacks by transforming the
cipher state into a system of equations and using SAT
solvers to perform key recovery attacks. Their most prac-
tical attack requires two days computation and a total of
four eavesdropped authentication attempts to extract the
secret key. A more efficient attack, requiring 16 chosen
initialization vectors (IV) and six hours of computations,
was also proposed. However, and as noted by the au-
thors themselves, chosen-IV attacks are prevented by the
Hitag2 authentication protocol (see Sect.3.5), thus mak-
ing this attack unfeasible in practice.

In [42], Soos et al. introduced a series of optimizations
on SAT solvers that made it possible to reduce the attack
time of Curtois et al. to less than 7 hours. More recently,
Štembera and Novotný [45] implemented a brute-force
attack that could be carried out in less than two hours by
using the COPACOBANA2 high-performance cluster of
FPGAs. Note however, that such attack would require
about 4 years if carried out on a standard PC. Finally,
Sun et. al [44] tested the security of the Hitag2 cipher
against cube attacks. Although according to their results
the key can be recovered in less than a minute, this attack
requires chosen initialization vectors and thus should be
regarded as strictly theoretical.

Our contribution

In this paper, we show a number of vulnerabilities in the
Hitag2 transponders that enable an adversary to retrieve
the secret key. We propose three attacks that extract the
secret key under different scenarios. We have implemen-
ted and successfully executed these attacks in practice on
more than 20 vehicles of various make and model. On all
these vehicles we were able to use an emulating device
to bypass the immobilizer and start the vehicle.

Concretely, we found the following vulnerabilities in
Hitag2.

• The transponder lacks a pseudo-random number
generator, which makes the authentication proced-

2http://www.copacobana.org

ure vulnerable to replay attacks. Moreover, the
transponder provides known data when a read com-
mand is issued on the block where the transponder’s
identity is stored, allowing to recover keystream.
Redundancy in the commands allow an adversary
to expand this keystream to arbitrary lengths. This
means that the transponder provides an arbitrary
length keystream oracle.

• With probability 1/4 the output bit of the cipher is
determined by only 34 bits of the internal state. As
a consequence, (on average) one out of four authen-
tication attempts leaks one bit of information about
the secret key.

• The 48 bit internal state of the cipher is only ran-
domized by a nonce of 32 bits. This means that 16
bits of information over the secret key are persistent
throughout different sessions.

We exploit these vulnerabilities in the following three
practical attacks.

• The first attack exploits the malleability of the
cipher and the fact that the transponder does not
have a pseudo-random number generator. It uses a
keystream shifting attack following the lines of [16].
This allows an adversary to first get an authentica-
tion attempt from the reader which can later be re-
played to the transponder. Exploiting the malleab-
ility of the cipher, this can be used to read known
plaintext (the identity of the transponder) and re-
cover keystream. In a new session the adversary can
use this keystream to read any other memory block
(with exception of the secret key when configured
correctly) within milliseconds. When the key is not
read protected, this attack can also be used to read
the secret key. This was in fact the case for most
vehicles we tested from a French car make.

• The second attack is slower but more general in
the sense that the same attack strategy can be ap-
plied to other LFSR based ciphers. The attack uses
a time/memory tradeoff as proposed in [3, 6, 7,
11, 25, 38]. Exploiting the linear properties of the
LFSR, we are able to efficiently generate the lookup
table, reducing the complexity from 248 to 237 en-
cryptions. This attack recovers the secret key re-
gardless of the read protection configuration of the
transponder. It requires 30 seconds of communica-
tion with the transponder and another 30 seconds to
perform 2000 table lookups.

• The third attack is also the most powerful, as it only
requires a few authentication attempts from the car
immobilizer to recover the secret key (assuming that
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the adversary knows a valid transponderid). This
cryptanalytic attack exploits dependencies among
different sessions and a low degree determination
of the filter function used in the cipher. In order to
execute this attack, an adversary first gathers 136
partial authentication attempts from the car. This
can be done within one minute. Then, the adversary
needs to perform 235 operations to recover the secret
key. This takes less than five minutes on an ordinary
laptop.

Furthermore, besides looking into the security aspects of
Hitag2 we also study how it is deployed and integrated
in car immobilizer systems by different manufacturers.
Our study reveals that in many vehicles the transponder
is misconfigured by having readable or default keys, and
predictable passwords, whereas the immobilizer unit em-
ploys weak pseudo-random number generators. All cars
we tested use identifier white-listing as an additional se-
curity mechanism. This means that in order to use our
third attack to hijack a car, an adversary first needs to
eavesdrop, guess or wirelessly pickpocket a legitimate
transponderid, see Section7.5.

Following the principle of responsible disclosure, we
have contacted the manufacturer NXP and informed
them of our findings six months ahead of publication.
We have also provided our assistance in compiling a doc-
ument to inform their customers about these vulnerabil-
ities. The communication with NXP has been friendly
and constructive. NXP encourages the automotive in-
dustry for years to migrate to more secure products that
incorporate strong and community-reviewed ciphers like
AES [15]. It is surprising that the automotive industry
is reluctant to migrate to secure products given the cost
difference of a better chip (≤ 1 USD) in relation to the
prices of high-end car models (≥ 50,000 USD).

2 Hardware setup

Before diving into details about Hitag2, this section in-
troduces the experimental platform we have developed
in order to carry out attacks in real-life deployments of
car immobilizer systems. In particular, we have built
a portable and highly flexible setup allowing us to i)
eavesdrop communications between Hitag2 readers and
transponders, ii) emulate a Hitag2 reader, and iii) emu-
late a Hitag2 transponder. Figure5 depicts our setup in
the setting of eavesdropping communications between a
reader and a transponder.

The central element of our experimental platform
is the Proxmark III board3, originally developed by
Jonathan Westhues4, and designed to work with RFID

3http://www.proxmark.org
4http://cq.cx/proxmark3.pl

Figure 5: Experimental setup for eavesdropping

transponders ranging from low frequency (125 kHz) to
high frequency (13.56 MHz). The Proxmark III board
cost around 200 USD and comes equipped with a FPGA
and an ARM microcontroller. Low-level RF operations
such as modulation/demodulation are carried out by the
FPGA, whereas high-level operations such as encod-
ing/decoding of frames are performed in the microcon-
troller.

Hitag2 tags are low frequency transponders used in
proximity area RFID applications [36]. Communication
from reader to transponder is encoded using Binary Pulse
Length Modulation (BPLM), whereas from transponder
to reader it can be encoded using either Manchester or
Biphase coding. In order to eavesdrop, generate, and
read communications from reader to transponder, we ad-
ded support for encoding/decoding BPLM signals, see
Figure6.

Figure 6: Reader modulation of areadcommand

For the transponder side, we have also added the func-
tionalities to support the Manchester coding scheme as
shown in Figure7.

Figure 7: Communication from transponder to reader
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3 Hitag2

This section describes Hitag2 in detail. Most of this in-
formation is in the public domain. We first describe the
Hitag2 functionality, memory structure, and communic-
ation protocols, this comes mostly from the product data
sheet [36]. Then we describe the cipher and the authen-
tication protocol which was previously reverse engin-
eered in [47]. In Section3.7 we show that it is possible
to run the cipher backwards which we use in our attacks.

We first need to introduce some notation. LetF2 =
{0,1} the field of two elements (or the set of Booleans).
The symbol⊕ denotes exclusive-or (XOR) and 0n de-
notes a bitstring ofn zero-bits. Given two bitstringsx and
y, xy denotes their concatenation.x denotes the bitwise
complement ofx. We writeyi to denote thei-th bit of y.
For example, given the bitstringy= 0x03, y0 = y1 = 0
andy6 = y7 = 1. We denote encryptions by{−}.

3.1 Functionality

Access to the Hitag2 memory contents is determined by
pre-configured security policies. Hitag2 transponders of-
fer up to three different modes of operation:

1. In public modethe contents of the user data pages
are simply broadcast by the transponder once it is
powered up.

2. In password modereader and transponder authen-
ticate each other by interchanging their passwords.
Communication is carried out in the clear, therefore
this authentication procedure is vulnerable to replay
attacks.

3. In crypto modethe reader and the transponder per-
form a mutual authentication by means of a 48-bit
shared key. Communication between reader and
transponder is encrypted using a proprietary stream
cipher. This mode is used in car immobilizer sys-
tems and will be the focus of this paper.

3.2 Memory

Hitag2 transponders have a total of 256 bits of non-
volatile memory (EEPROM) organized in 8 blocks of
4 bytes each. Figure8 illustrates the memory contents
of a transponder configured in crypto mode. Block 0
stores the read-only transponder identifier; the secret key
is stored in blocks 1 and 2; the password and configur-
ation bits in block 3; blocks 4 till 7 store user defined
memory. Access to any of the memory blocks in crypto
mode is only granted to a reader after a successful mutual
authentication.

Block Contents

0 transponder identifierid

1 secret key lowk0 . . .k31

2 secret key highk32. . .k47 — reserved

3 configuration — password

4−7 user defined memory

Figure 8: Hitag2 memory map in crypto mode [36]

3.3 Communication

The communication protocol between the reader and
transponder is based on the master-slave principle. The
reader sends a command to the transponder, which then
responds after a predefined period of time. There are five
different commands:authenticate, read, read, write and
halt. As shown in Figure9, theauthenticatecommand
has a fixed length of 5 bits, whereas the others have a
length of at least 10 bits. Optionally, these 10 bits can
be extended with a redundancy message of size multiple
of 5 bits. A redundancy message is composed by the
bit-complement of the last five bits of the command. Ac-
cording to the datasheet [36] this feature is introduced to
“achieve a higher confidence level”.

In crypto mode the transponder starts in a halted state
and is activated by theauthenticatecommand. After a
successful authentication, the transponder enters the act-
ive state in which it only accepts active commands which
are encrypted. Every encrypted bit that is transferred
consists of a plaintext bit XOR-ed with one bit of the
keystream. The active commands have a 3-bit argument
n which represents the offset (block number) in memory.
From this point we address Hitag2 active commands by
referring tocommandsand explicitly mention authentic-
ation otherwise.

Command Bits State

authenticate 11000 halted

read 11n0n1n200n0n1n2 . . . active

read 01n0n1n210n0n1n2 . . . active

write 10n0n1n201n0n1n2 . . . active

halt 00n0n1n211n0n1n2 . . . active

Figure 9: Hitag2 commands using block numbern

Next we define the functioncmd which constructs a
bit string that represents a commandc on blockn with r
redundancy messages.

Definition 3.1. Let c be the first2-bit command as
defined in Figure9, n be a3-bit memory block number
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and r be the number of redundancy messages. Then, the

function cmd: F2
2×F

3
2×N→ F

(10+5r)
2 is defined by

cmd(c,n,0) = cncn

cmd(c,n, r +1) =

{

cmd(c,n, r)cn, r is odd;

cmd(c,n, r)cn, otherwise.

For example, the command to read block 0 with two re-
dundancy messages results in the following bit string.

cmd(11,0,2) = 11000 00111 11000 00111
The encrypted messages between reader and transponder
are transmitted without any parity bits. The transponder
response always starts with a prefix of five ones, see Fig-
ure10. In the remainder of this paper we will omit this
prefix. A typical forward and backwards communication
takes about 12 ms.

{11000001111100000111}
−−−−−−−−−−−−−−−−−−−→

11111{id0 . . . id31}
←−−−−−−−−−−−−−−−−−−−

Figure 10: Message flow for reading memory block 0

3.4 Cipher

In crypto mode, the communication between transponder
and reader (after a sucessful authentication) is encrypted
with the Hitag2 stream cipher. This cipher has been re-
verse engineered in [47]. The cipher consists of a 48-bit
linear feedback shift register (LFSR) and a non-linear fil-
ter function f . Each clock tick, twenty bits of the LFSR
are put through the filter function, generating one bit of
keystream. Then the LFSR shifts one bit to the left, us-
ing the generating polynomial to generate a new bit on
the right. See Figure11for a schematic representation.

Definition 3.2. The feedback function L: F48
2 → F2 is

defined by L(x0 . . .x47) := x0⊕ x2⊕ x3⊕ x6⊕ x7⊕ x8⊕
x16⊕ x22⊕ x23⊕ x26⊕ x30⊕ x41⊕ x42⊕ x43⊕ x46⊕ x47.

The filter function f consists of three different circuits
fa, fb and fc which output one bit each. The circuitsfa
and fb are employed more than once, using a total of
twenty input bits from the LFSR. Their resulting bits are
used as input forfc. The circuits are represented by three
boolean tables that contain the resulting bit for each in-
put.

Definition 3.3 (Filter function). The filter function
f : F48

2 → F2 is defined by
f (x0 . . .x47) = fc( fa(x2x3x5x6), fb(x8x12x14x15),

fb(x17x21x23x26), fb(x28x29x31x33),

fa(x34x43x44x46)),

where fa, fb : F4
2→ F2 and fc : F5

2→ F2 are
fa(i) = (0xA63C)i

fb(i) = (0xA770)i

fc(i) = (0xD949CBB0)i .

For future reference, note that each of the building blocks
of f (and hencef itself) has the property that it outputs
zero for half of the possible inputs (respectively one).

Remark 3.4 (Cipher schematic). Figure 11 is different
from the schematic that was introduced by [47] and later
used by [14, 19, 44, 45]. The input bits of the filter func-
tion in Figure11are shifted by one with respect to those
of [47]. The filter function in the old schematic repres-
ents a keystream bit at the previous state f(xi−1 . . .xi+46),
while the one in Figure11 represents a keystream bit of
the current state f(xi . . .xi+47). Furthermore, we have
adapted the boolean tables to be consistent with our
notation.

3.5 Authentication protocol

The authentication protocol used in Hitag2 in crypto
mode, reversed engineered and published online in
2007 [47], is depicted in Figure12. The reader starts the
communication by sending an authenticate command,
to which the transponder answers by sending its identi-
fier id. From this point on, communication is encryp-
ted, i.e., XOR-ed with the keystream. The reader re-
sponds with its encrypted challengenR and the answer
aR = 0xFFFFFFFF also encrypted to prove knowledge
of the key; the transponder finishes with its encrypted
answeraT (corresponding to block 3 in Fig.8) to the
challenge of the reader.

authenticate
−−−−−−−−−−−−−−−−−−−→

id
←−−−−−−−−−−−−−−−−−−−

{nR}{aR}
−−−−−−−−−−−−−−−−−−−→

{aT}
←−−−−−−−−−−−−−−−−−−−

Figure 12: Hitag2 authentication protocol

During the authentication protocol, the internal state
of the stream cipher is initialized. The initial state con-
sists of the 32-bits identifier concatenated with the first
16 bits of the key. Then reader noncenR XORed with the
last 32 bits of the key is shifted in. During initialization,
the LFSR feedback is disabled. Since communication is
encrypted fromnR onwards, the encryption of the later
bits of nR are influenced by its earlier bits. Authentica-
tion is achieved by reaching the same internal state of the
cipher after shifting innR.
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Figure 11: Structure of the Hitag2 stream cipher, based on [47]

3.6 Cipher Initialization

The following precisely defines the initialization of the
cipher and the generation of the LFSR-streama0a1 . . .
and the keystreamb0b1 . . . .

Definition 3.5. Given a key k= k0 . . .k47 ∈ F
48
2 , an

identifier id = id0 . . . id31 ∈ F
32
2 , a reader nonce nR =

nR0 . . .nR31 ∈ F
32
2 , a reader answer aR = aR0 . . .aR31 ∈

F
32
2 , and a transponder answer aT = aT0 . . .aT31 ∈ F

32
2 ,

the internal state of the cipher at time i isαi :=
ai . . .a47+i ∈ F

48
2 . Here the ai ∈ F2 are given by

ai := idi ∀i ∈ [0,31]

a32+i := ki ∀i ∈ [0,15]

a48+i := k16+i⊕nRi ∀i ∈ [0,31]

a80+i := L(a32+i . . .a79+i) ∀i ∈ N .

Furthermore, we define the keystream bit bi ∈ F2 at time
i by

bi := f (ai . . .a47+i) ∀i ∈ N .

Define{nR},{aR}i ,{aT}i ∈ F2 by

{nR}i := nRi ⊕bi ∀i ∈ [0,31]

{aR}i := aRi ⊕b32+i ∀i ∈ [0,31]

{aT}i := aTi ⊕b64+i ∀i ∈ [0,31].
Note that the ai , αi , bi , {nR}i , {aR}i , and{aT}i are form-
ally functions of k, id, and nR. Instead of making this ex-
plicit by writing, e.g., ai(k, id,nR), we just write ai where
k, id, and nR are clear from the context.

3.7 Rollback

To recover the key it is sufficient to learn the internal state
of the cipherαi at any pointi in time. Since an attacker
knowsid and{nR}, the LFSR can then be rolled back to
time zero.

Definition 3.6. The rollback function R: F48
2 → F2 is

defined by R(x1 . . .x48) := x2⊕ x3⊕ x6⊕ x7⊕ x8⊕ x16⊕
x22⊕ x23⊕ x26⊕ x30⊕ x41⊕ x42⊕ x43⊕ x46⊕ x47⊕ x48.

If one first shifts the LFSR left usingL to generate a
new bit on the right, thenR recovers the bit that dropped
out on the left, i.e.,

R(x1 . . .x47 L(x0 . . .x47)) = x0 . (1)

Theorem 3.7. In the situation from Definition3.5, we
have

a32+i = R(a33+i . . .a80+i) ∀i ∈ N

ai = idi ∀i ∈ [0,31] .

Proof. Straightforward, using Definition3.5 and Equa-
tion (1).

If an attacker manages to recover the internal state of
the LFSRαi = aiai+1 . . .ai+47 at some timei, then she
can repeatedly apply Theorem3.7to recovera0a1 . . .a79

and, consequently, the keystreamb0b1b2 . . .. By having
eavesdropped{nR} from the authentication protocol, the
adversary can further calculate

nRi = {nR}i ⊕bi ∀i ∈ [0,31] .
Finally, the adversary can compute the secret key as fol-
lows

ki = a32+i ∀i ∈ [0,15]

k16+i = a48+i⊕nRi ∀i ∈ [0,31] .

4 Hitag2 weaknesses

This section describes three weaknesses in the design of
Hitag2. The first one is a protocol flaw while the last two
concern the cipher’s design. These weaknesses will later
be exploited in Section5.

4.1 Arbitrary length keystream oracle

This weakness describes that without knowledge of the
secret key, but by having only one authentication at-
tempt, it is possible to gather an arbitrary length of key-
stream bits from the transponder. Section3.3 describes
the reader commands that can modify or halt a Hitag2
transponder. As mentioned in Definition3.1 it is pos-
sible to extend the length of such a command with a
multiple of five bits. A 10-bit command can have an op-
tional number of redundancy messagesr so that the total
bit count of the message is 10+ 5r bits. Due to power
and memory constraints, Hitag2 seems to be designed
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to communicate without a send/receive buffer. There-
fore, all cipher operations are performed directly at ar-
rival or transmission of bits. Experiments show that a
Hitag2 transponder successfully accepts encrypted com-
mands from the reader which are sent with 1000 redund-
ancy messages. The size of such a command consists of
10+5×1000= 5010 bits.

Since there is no challenge from the transponder it
is possible to replay any valid{nR}{aR} pair to the
transponder to achieve a successful authentication. After
receivingaT , the internal state of the transponder is ini-
tialized and waits for an encrypted command from the
reader as defined in Figure9. Without knowledge of the
keystream bitsb96b97. . . and onwards, all possible com-
binations need to be evaluated. A command consist of
at least 10 bits, therefore there are 210 possibilities. Each
command requires a 3-bit parameter containing the block
number. Bothread andread receive a 32-bit response,
while the write and halt have a different response length.
Hence, when searching for 10-bit encrypted commands
that get a 32-bit response there are exactly 16 out of the
210 values that match. On average the firstread com-
mand is found after 32 attempts, the complement of this
readand its parameters are a linear difference and there-
fore take only 15 attempts more.

cmd(11,0,0)⊕b96. . .b105
−−−−−−−−−−−−−−−−−−−→

id⊕b106. . .b137
←−−−−−−−−−−−−−−−−−−−

Figure 13: Readid without redundancy messages

One of the 16 guesses represents the encrypted bits of
the read command on the first memory block. This block
contains theid which is known plaintext since it is trans-
mitted in the clear during the authentication. Therefore,
there is a guess such that the communicated bits are equal
to the messages in Figure13.

With the correct guess, 40 keystream bits can be re-
covered. This keystream is then used to encrypt a slightly
modified read command on block 0 with six redundancy
messages, as explained in Section3.3. The transpon-
der responds with the next 32-bit of keystream which
are used to encrypt the identifier as shown in Figure
14. Hence the next 30 keystream bits were retrieved us-
ing previously recovered keystream and by extending the
readcommand.

This operation can be repeated many times. For ex-
ample, using the recovered keystream bitsb96. . .b167 it
is possible to construct a 70-bitread command with 12
redundancy messages etc. In practice it takes less than 30
seconds to recover 2048 bits of contiguous keystream.

cmd(11,6,0)⊕b96. . .b135
−−−−−−−−−−−−−−−−−−−→

id⊕b136. . .b167
←−−−−−−−−−−−−−−−−−−−

Figure 14: Readid using 6 redundancy messages

4.2 Dependencies between sessions

Section3.6 shows that at cipher stateα79 the cipher is
fully initialized and from there on the cipher only pro-
duces keystream. This shows that the 48-bit internal state
of the cipher is randomized by a reader noncenR of only
32 bits. Consequently, at stateα79, only LFSR bits 16
to 47 are affected by the reader nonce. Therefore LFSR
bits 0 to 15 remain constant throughout different session
which gives a strong dependency between them. These
16 session persistent bits correspond to bitsk0 . . .k15 of
the secret key.

4.3 Low degree determination of the filter
function

The filter function f : F48
2 → F2 consists of three build-

ing blocks fa, fb and fc arranged in a two layer structure,
see Figure11. Due to this particular structure, input bits
a34. . .a47 only affect the rightmost input bit offc. Fur-
thermore, simple inspection offc shows that in 8 out of
32 configurations of the input bits, the rightmost input
bit has no influence on the output offc. In those cases
the output offc is determined by its 4-leftmost input bits.
Furthermore, this means that with probability 1/4 the fil-
ter function f is determined by the 34-leftmost bits of
the internal state. The following theorem states this pre-
cisely.

Theorem 4.1. Let X be a uniformly distributed variable
overF34

2 . Then

P[∀Y,Y′ ∈ F
14
2 : f (XY) = f (XY′)] = 1/4.

Proof. By inspection.

Definition 4.2. The function that checks for this property
P: F48

2 → F2 is defined by
P(x0 . . .x47) = (0x84D7)i

where

i = fa(x2x3x5x6) fb(x8x12x14x15)

fb(x17x21x23x26) fb(x28x29x31x33).

Because P(x0 . . .x47) only depends on x0 . . .x33 we shall
overload notation and see P(·) as a functionF34

2 → F2,
writing P(x0 . . .x47) as P(x0 . . .x33014).
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5 Attacks

This section describes three attacks against Hitag2. The
first attack is straightforward and grants an adversary
read and write access to the memory of the transponder.
The cryptanalysis described in the second attack recovers
the secret key after briefly communicating with the car
and the transponder. This attack uses a general technique
that can be applied to other LFSR-like stream ciphers.
The third attack describes a custom cryptanalysis of the
Hitag2 cipher. It only requires a few authentication at-
tempts from the car and allows an adversary to recover
the secret key with a computational complexity of 235 op-
erations. The last two attacks allow a trade-off between
time/memory/data and time/traces respectively. For the
sake of simplicity we describe these attacks with con-
crete values that are either optimal or what we consider
‘sensible’ in view of currently available hardware.

5.1 Malleability attack

This attack exploits the arbitrary length keystream or-
acle weakness described in Section4.1, and the fact that
during the authentication algorithm the transponder does
not provide any challenge to the reader. This notorious
weaknesses allow an adversary to first acquire keystream
and then use it to read or write any block on the card with
constant communication and computational complexity.
After the recovery of the keystream bitsb96. . .b137 as
shown in Figure13an adversary can dump the complete
memory of the transponder which includes its password.
Recovery of the keystream and creating a memory dump
from the transponder takes in total less than one second
and requires only to be in proximity distance of the vic-
tim. This shows a similar scenario to [22] where Garcia
et al. show how to wirelessly pickpocket a MIFARE
Classic card from the victim.

The memory blocks where the cryptographic key is
stored have an extra optional protection mechanism.
There is a one time programable configuration bit which
determines whether these blocks are readable or not.
If the reader tries to read a protected block, then the
transponder does not respond. In that case the adversary
can still use the attacks presented in Section5.2and Sec-
tion 5.3. If the transponder is not correctly configured,
it enables an adversary to read all necessary data to start
the car.

5.2 Time/memory tradeoff attack

This attack is very general and it can be applied to any
LFSR-based stream cipher as long as enough contigu-
ous keystream is available. This is in fact the case with
Hitag2 due to the weakness described in Section4.1. It

extends the methods of similar time/memory tradeoffs
articles published over the last decades [3, 6, 7, 11, 25,
38]. This attack requires communication with the reader
and the transponder. The next proposition introduces a
small trick that makes it possible to quickly performn
cipher steps at once. Intuitively, this proposition states
that the linear difference between a states and itsn-th
successor is a combination of the linear differences gen-
erated by each bit. This will be later used in the attack.

Proposition 5.1. Let s be an LFSR state and n∈N. Fur-
thermore, let di = sucn(2i) i.e., the LFSR state that res-
ults from running the cipher n steps from the state2i.
Then

sucn(s) =
47
⊕

i=0

(di ·si) .

To perform the attack the adversaryA proceeds as fol-
lows:

1. Only once,A builds a table containing 237 entries.
Each entry in the table is of the form〈ks,s〉 where
s∈ F

48
2 is an LFSR state andks∈ F

48
2 are 48 bits

of keystream produced by the cipher when running
from s. Starting from some state wheres 6= 0,
the adversary generates 48 bits of keystream and
stores it. Then it uses Theorem5.1 to quickly
jump n = 211 cipher states to the next entry in the
table. This reduces the computational complexity
of building the table from 248 to 48× 237 = 242.5

cipher ticks. Moreover, in order to improve lookup
time the table is sorted onks and divided into
224 sub-tables encoded in the directory structure
like /ks_byte1/ks_byte2/ks_byte3.bin
where eachks_byte3.bin file has only 8 KB.
The total size of this table amounts 1.2 TB.

2. A emulates a transponder and runs an authentication
attempt with the target car. Following the authen-
tication protocol, the car answers with a message
{nR}{aR}.

3. Next, the attacker wirelessly replays this message
to the legitimate transponder and uses the weakness
described in Section4.1to obtain 256 bytes of key-
streamks0 . . .ks2048. Note that this might be done
while the key is in the victim’s bag or pocket.

4. The adversary setsi = 0.

5. Then it looks up (in logarithmic time) the keystream
ksi . . .ksi+47 in the table from step1.

6. If the keystream is not in the table then it increments
i and goes back to step5. If there is a match, then
the corresponding state is a candidate internal state.
A uses the rest of the keystream to confirm is this is
the internal state of the cipher.
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7. Finally, the adversary uses Theorem3.7 to rollback
the cipher state and recover the secret key.

Complexity and time. In step 1 the adversary needs to
pre-compute a 1.2 TB table which requires 242.5 cipher
ticks, which is equal to 237 encryptions. During gener-
ation, each entry is stored directly in the corresponding
.bin file as mentioned before. Each of these 8 KB files
also needs to be sorted but it only takes a few minutes
to sort them all. Computing and sorting the whole table
takes less than one day on a standard laptop. Steps 2-3
take about 30 seconds to gather the 256 bytes of key-
stream from the transponder. Steps 4-6 require (in worst
case) 2000 table lookups which take less than 30 seconds
on a standard laptop. This adds to a total of one minute
to execute the attack from begin to end.

5.3 Cryptanalytic attack

A combination of the weaknesses described in Section
4.2 and4.3 enable an attacker to recover the secret key
after gathering a few authentication attempts from a car.
In case that identifier white-listing is used as a second-
ary security measure, which is in fact the case for all the
cars we tested, the adversary first needs to obtain a valid
transponderid, see Section7.5.

The intuition behind the attack is simple. Suppose that
an adversary has a guess for the first 34 bits of the key.
One out of four traces is expected to have the property
from Theorem4.1 which enables the adversary to per-
form a test on the first bit of{aR}. The dependencies
between sessions described in Section4.2 allow the at-
tacker to perform this test many times decreasing drastic-
ally the amount of candidate (partial) keys. If an attacker
gathers 136 traces this allows her (on average) to perform
136/4= 34 bit tests, i.e. just as much as key bits were
guessed. For the small amount of candidate keys that
pass these tests (typically 2 or 3), the adversary performs
an exhaustive search for the remaining 14 bits of the key.
A precise description of this attack follows.

1. The attacker uses a transponder emulator (like the
Proxmark III) to initiate 136 authentication attempts
with the car using a fixed transponderid. In this
way the attacker gathers 136 traces of the form
{nR}{aR}. Next the attacker starts searching for
the secret key. For this we split the keyk in three
partsk= ~kk̂~k where ~k= k0 . . .k15, k̂= k16. . .k33, and
~k= k34. . .k47.

2. for each ~k = k0 . . .k15 ∈ F
16
2 the attacker builds a

tableT ~k containing entries

〈y⊕b0 . . .b17,b32, ~ky〉

for all y∈ F18
2 such thatP( ~ky014) = 1. Note that the

expected size of this table is 218×1/4= 216 which
easily fits in memory.

3. For each k̂ = k16. . .k33 ∈ F
18
2 and for each

trace {nR}{aR}, the attacker setsz := k̂ ⊕
{nR}0 . . .{nR}17. If there is an entry inT ~k for which
y⊕ b0 . . .b17 equalsz but b32 6= {aR}0 then the at-
tacker learns that̂k is a bad guess, so he tries the
next one. Otherwise, ifb32 = {aR}0 then k̂ is still
a viable guess and therefore the adversary tries the
next trace.

4. Each ~kk̂ that passed the test for all traces is a partial
candidate key. For each such candidate (typically 2
or 3), the adversary performs an exhaustive search
for the remaining key bits~k = k34. . .k47. For each
full candidate key, the adversary decrypts two traces
and checks whether both{aR} decrypt to all ones as
specified in the authentication protocol. If a candid-
ate passes this test then it is the secret key. If none
of them passes then the adversary goes back to Step
2 and tries the next ~k.

Complexity and time. In step 1, the adversary needs to
gather 136 partial authentication traces. This can be done
within 1 minute using the Proxmark III. In steps 2 and 3,
the adversary needs to build 216 tables. For each of these
tables the adversary needs to compute 218 encryptions
plus 218 table lookups. Step 4 has negligible complex-
ity thus we ignore it. This adds to a total complexity of
216× (218+ 218) = 235 encryptions/lookups. Note that
it is straightforward to split up the search space of~k in
as many processes as you wish. On an standard quad-
core laptop this computation takes less than five minutes.
Therefore, the whole attack can be performed in less than
360 seconds which explains the title of the paper.

This attack is faster than other practical attacks pro-
posed in [14, 45]. The following table shows a com-
parison between this attack and other attacks from the
literature.

Attack Description Practical Computation Traces Time

[45] brute-force yes 2102400 min 2 4 years

[14] sat-solver yes 2880 min 4 2 days

[42] sat-solver no1 386 min N/A N/A

[44] cube no2 1 min 500 N/A

Our cryptanalytic yes 5 min 136 6 min

1Soos et al. require 50 bits of contiguous keystream.
2Sun et al. require control over the encrypted reader nonce{nR}

Figure 15: Comparison of attack times and requirements
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Figure 16: Left: Authentication failure message
Right: Successful authentication using a Proxmark III

6 Starting a car

In order to elaborate on the practicality of our attacks,
this section describes our experience with one concrete
vehicle. For this we have chosen a German car, mainly
due to the fact that it has keyless ignition. Instead of
the typical mechanical key, this car has a hybrid re-
mote control which contains a Hitag2 transponder. In
the dashboard of the car there is a slot to insert the re-
mote and a button to start the engine. When a piece
of plastic of suitable size is inserted in this slot the car
repeatedly attempts to authenticate the transponder (and
fails). This car uses an identifier white-list as described
in Section7.5. The same section explains how to wire-
lessly pickpocket a valid identifier from the victim’s re-
mote. As soon as the car receives a valid identifier, the
dashboard lights up and the LCD screen pops-up display-
ing the message shown in Figure16-Left. Note also the
sign on the dashboard. At this point we used the Prox-
mark to quickly gather enough traces and execute the at-
tack from Section5.3 to recover the secret key. This car
is one of the few that we tested that does not have a pre-
dictable password so we wirelessly read it from the vic-
tim’s remote. Then we use the Proxmark to emulate the
transponder. Figure16-Right shows that the car accepts
the Proxmark as if it was the legitimate transponder. The
same picture shows (by looking at the tachometer) that at
this stage it is possible to start the engine.

7 Implementation weaknesses

To verify the practicality of our attacks, we have tested
all three of them on at least 20 different car models
from various makes. During our experiments we found
that, besides the weaknesses in cipher and protocol, the
transponder is often misconfigured and poorly integrated
in the cars. Most of the cars we tested use a default

or predictable transponder password. Some generate
nonces with a very low entropy. Most car keys have
vehicle-dependant information stored in the user defined
memory of the transponder, but none of the tested cars
actually check this data. Some cars use Hitag2 for key-
less ignition systems, which are more vulnerable because
they lack a physical key. This section summarizes some
of the weaknesses we found during our practical experi-
ments. Especially, Section7.4shows the implications of
the attack described in Section5.3when the transponder
uses a predictable password. Section7.5 describes how
to circumvent identifier white-listing. This is an addi-
tional security mechanism which is often used in vehicle
immobilizers.

7.1 Weak random number generators

From the cars we tested, most pseudo-random number
generators (PRNG) use the time as a seed. The time in-
tervals do not have enough precision. Multiple authen-
tication attempts within a time frame of one second get
the same random number. Even worse, we came across
two cars which have a PRNG with dangerously low en-
tropy. The first one, a French car (A), produces nonces
with only 8 bits of entropy, by setting 24 of the 32 bits
always to zero as shown in Figure17.

Origin Message Description

CAR 18 authenticate

TAG 39 0F 20 10 id

CAR 0A 00 00 00 23 71 90 14 {nR}{aR}

TAG 27 23 F8 AF {aT}

CAR 18 authenticate

TAG 39 0F 20 10 id

CAR 56 00 00 00 85 CA 95 BA {nR}{aR}

TAG 38 07 50 C5 {aT}

Figure 17: Random numbers generated by car A
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Another French car (B), produced random looking
nonces, but in fact, the last nibble of each byte was de-
termined by the last nibble of the first byte. A subset of
these nonces are shown shown in Figure18.

{nR} {aR}

20 D1 0B 08 56 36 F3 66

70 61 1B 58 1B 18 F3 38

B0 A1 5B 98 1E 94 62 3A

D0 41 FB B8 01 3B 54 10

25 1A 3C AD 15 88 5E 19

05 7A 9C 8D F7 4D F7 70

C5 3A 5C 4D 30 B1 4A D4

E5 DA FC 6D D8 BD 79 C3

Figure 18: Random numbers generated by car B

7.2 Low entropy keys

Some cars have repetitive patterns in their keys which
makes them vulnerable to dictionary attacks. Recent
models of a Korean car (C) use the key with the lowest
entropy we came across. It tries to access the transpon-
der in password mode as well as in crypto mode. For this
it uses the default passwordMIKR and a key of the form
0xFFFF∗ ∗ ∗ ∗ ∗∗FF as shown in Figure19.

Origin Message Description

CAR 18 authenticate

TAG E4 13 05 1A id

CAR 4D 49 4B 52 password =MIKR

CAR 18 authenticate

TAG E4 13 05 1A id

CAR DA 63 3D 24 A7 19 07 12 {nR}{aR}

TAG EC 2A 4B 58 {aT}

Figure 19: Car C authenticates using the default pass-
word and secret key0xFFFF814632FF

7.3 Readable keys

Section5.1 shows how to recover the memory dump
of a Hitag2 transponder. Almost all makes protect the
secret key against read operations by setting the bits of
the configuration in such a way that block one and two
are not readable. Although there are some exceptions.
For example, experiments show that most cars from a
French manufacturer havenotset this protection bit. This
enables an attacker to recover the secret key in an in-
stant. Even more worrying, many of these cars have
the optional feature to use a remote key-less entry sys-
tem which have a much wider range and are therefore
more vulnerable to wireless attacks. The combination

of a transponder that is wirelessly accessible over a dis-
tance of several meters and a non protected readable key
is most worrying.

7.4 Predictable transponder passwords

The transponder password is encrypted and sent in the
transponder answeraT of the authentication protocol.
This is an additional security mechanism of the Hitag2
protocol apart from the cryptographic algorithm. Be-
sides the fact that the transponder proves knowledge of
the secret key, it sends its password encrypted. In general
it is good to have some fall back scenario and counter-
measure if the used cryptosystem gets broken. Section
5.3 demonstrates how to recover the secret key from a
vehicle. But to start the engine, it is necessary to know
the transponder password as well. Experiments show
that at least half of the cars we tested on use default or
predictable passwords.

7.5 Identifier pickpocketing

The first generation of vehicle immobilizers were
not able to compute any cryptographic operations.
These transponders were simply transmitting a constant
(unique) identifier over the RF channel. Legitimate
transponder identifiers were white-listed by the vehicle
and only those transponders in the white-list would en-
able the engine to start. Most immobilizer units in cars
still use such white-listing mechanism, which is actually
encouraged by NXP. These cars would only attempt to
authenticate transponders in their white-list. This is an
extra obstacle for an attacker, namely recovering a genu-
ine identifier from the victim before being able to execute
any attack. There are (at least) two ways for an adversary
to wirelessly pickpocket a Hitag2 identifier:

• One option is to use the low-frequency (LF) inter-
face to wirelessly pickpocket the identifier from the
victim’s key. This can be done within proximity
distance and takes only a few milliseconds. Accord-
ing to the Hitag2 datasheet [36], the communication
range of a transponder is up to one meter. Although,
Hitag2 transponders embedded into car keys are op-
timized for size and do not achieve such a commu-
nication distance. However, an adversary can use
tuned equipment with big antennas that ignore ra-
diation regulations (e.g., [17]) in order to reach a
larger reading distance. Many examples in the lit-
erature show the simplicity and low-cost of such a
setup [24, 30, 31, 43].

• Another option is to use the wide range ultra-high
frequency (UHF) interface. For this an adversary
needs to eavesdrop the transmission of a hybrid
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Hitag2 transponder [39] when the victim presses a
button on the remote (e.g. to close the doors). Most
keyless entry transponders broadcast their identifier
in the clear on request (see for example [39]).

With respect to the LF interface, the UHF interface has
a much wider transmission range. As shown in [18] it
is not hard to eavesdrop such a transmission from a dis-
tance of 100 meters. From a security perspective, the first
generation Hitag2 transponders have a physical advant-
age over the hybrid transponders since they only support
the LF interface.

8 Mitigation

This section briefly discusses a simple but effective au-
thentication protocol for car immobilizers and it also de-
scribes a number of mitigating measures for the attacks
proposed in Section5. For more details we refer the
reader to [1, 9].

First of all we emphasize that it is important for the
automotive industry to migrate from weak proprietary
ciphers to a peer-reviewed one such as AES [15], used
in cipher block chaining mode (CBC). A straightfor-
ward mutual authentication protocol is sketched in Fig-
ure 20. The random noncesnR, nT , secret keyk and
transponder password PWDT should be at least 128 bits
long. Comparable schemes are proposed in the literat-
ure [32, 33, 46, 48, 49].

authenticate
−−−−−−−−−−−−−−−−−−−→

id,nT
←−−−−−−−−−−−−−−−−−−−

{nR,nT}k
−−−−−−−−−−−−−−−−−−−→

{nR,PWDT}k
←−−−−−−−−−−−−−−−−−−−

Figure 20: Immobilizer authentication protocol using
AES

There are already in the market immobilizer transpon-
ders which implement AES like the ATA5795[2] from
Atmel and the Hitag AES / Pro[37] from NXP. It should
be noted that, although they use a peer-reviewed encryp-
tion algorithm, their authentication protocol is still pro-
prietary and therefore lacks public and academic scru-
tiny.

In order to reduce the applicability of our crypto-
graphic attack, the automotive industry could consider
the following measures. This attack is the most sensitive
as it does not require access to the car key. These coun-
termeasures should be interpreted as palliating (but not a
solution) before migrating to a more secure and openly
designed product.

• Extend the transponder password
The transponder password is an important part of
the authentication protocol but grievously it has
only an entropy of 24 bits. Such a password is
easy to find via exhaustive search. Furthermore,
as we mentioned in Section7.4, manufacturers of-
ten deployed their cars with predictable transpon-
der passwords. As shown in Figure8, there are
four pages available of user defined memory in a
Hitag2 transponder. These could be used to extend
the transponder password with 128 bits of random
data to increase its entropy. This implies that an
adversary needs to get access to the transponder’s
memory before being able to steal a car.

• Delay authentication after failure
The cryptographic car-only attack explained in Sec-
tion 5.3 requires several authentication attempts to
reduce the computational complexity. Extending
the time an adversary needs to gather these traces
increases the risk of being caught. To achieve
this, the immobilizer introduces a pause before re-
authenticating that grows incrementally or exponen-
tially with the number of sequential incorrect au-
thentications. An interesting technique to imple-
ment such a countermeasure is proposed in [40].
The robustness, availability and usability of the
product is affected by this delay, but it increases the
attack time considerably and therefore reduces the
risk of car theft.

Besides these measures, it is important to improve the
pseudo-random number generator in the vehicles which
is used to generate reader nonces. Needless to say, the
same applies to cryptographic keys and transponder pass-
words. NIST has proposed a statistical test suite which
can be used to verify the quality of a pseudo-random
number generator [41].

9 Conclusions

We have found many serious vulnerabilities in the Hitag2
and its usage in the automotive industry. In particular,
Hitag2 allows replaying reader data to the transponder;
provides an unlimited keystream oracle and uses only
one low-entropy nonce to randomize a session. These
weaknesses allow an adversary to recover the secret key
within seconds when wireless access to the car and key
is available. When only communication with the car is
possible, the adversary needs less than six minutes to
recover the secret key. The cars we tested use identi-
fier white-listing. To circumvent this, the adversary first
needs to obtain a valid transponderid by other means
e.g., eavesdrop it when the victim locks the doors. This
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UHF transmission can be intercepted from a distance of
100 meters [18]. We have executed all our attacks (from
Section5) in practice within the claimed attack times.
We have experimented with more than 20 vehicles of
various makes and models and found also several imple-
mentation weaknesses.

In line with the principle of responsible disclosure, we
have notified the manufacturer NXP six months before
disclosure. We have constructively collaborated with
NXP, discussing mitigating measures and giving them
feedback to help improve the security of their products.
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