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A constructive proof of Simpson’s Rule

THIERRY COQUAND

BAS SPITTERS

Abstract: For most purposes, one can replace the use of Rolle’s theorem and the
mean value theorem, which are not constructively valid, by the law of bounded
change [3]. The proof of two basic results in numerical analysis, the error term
for Lagrange interpolation and Simpson’s rule, however seem to require the full
strength of the classical Rolle’s Theorem. The goal of this note is to justify these
two results constructively, using ideas going back to Ampère [1] and Genocchi [6].
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1 Introduction

Rolle’s Theorem states that iff is differentiable on a real interval [a,b] with a < b and
f (a) = f (b) = 0 then there existsc in ]a,b[ such thatf ′(c) = 0. It implies directly the
mean value theorem that iff is differentiable on a real interval [a,b] with a < b, then
there existsc in ]a,b[ such thatf (b)− f (a) = (b− a)f ′(c). This is a key result in most
text books in Analysis. It is rather direct to see that it doesnot hold constructively [2],
and is replaced in this context by an approximated form: iff is differentiable on a
real interval [a,b] with a < b then for anyǫ > 0 there existsc in ]a,b[ such that
|f (b) − f (a) − (b− a)f ′(c)| < ǫ. This more complex formulation can be thought to be
a problem of constructive mathematics.

It can be argued however [3] that most applications of the mean value theorem can be
replaced by the law of bounded change that we have|f (b) − f (a)| 6 M(b− a) if f is
uniformly derivable on [a,b] and |f ′(x)| 6 M for all x in [a,b]. The law of bounded
change is constructively valid and a presentation based on the law of bounded change [3]
appears as elegant as the classical treatment of basic analysis results. Interestingly, a
criticism of the mean value theorem, which could have been written by a constructive
mathematician, appears in DieudonnéFoundations of Modern Analysis[4]: “the trouble
with that classical formulation is that. . . it completely conceals the fact thatnothing
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is known on the numberc, except that it lies betweena andb, and for most purposes,
all one needs to know is thatf ′(c) is a number which lies between that g.l.b. and l.u.b.
of f ′ in the interval [a,b] (andnot the fact that it actually is a value off ′ ).” The goal
of this note is to analyse two results that at first seem to require the full strength of
the classical mean value theorem. The second of these results is Simpson’s rule for
approximating an integral, which is indeed proved in the exercises of [4] using Rolle’s
Theorem. We show, using some ideas going back to Ampère [1] and Genocchi [6],
how to justify these results constructively.

This note is organised as follows. We first present the two results we want to analyse:
Lagrange error formula and Simpson’s rule. We then explain Genocchi’s formula, in a
way which stresses the connection with the work of Bridger and Stolzenberg [3], and
show how it can be used instead of Rolle’s Theorem.

2 Lagrange error formula and Simpson’s rule

In this section, we present two basic results, Theorems2.2 and2.3, and explain how
they can be classically derived using the following generalization of Rolle’s Theorem.

Theorem 2.1 (Classical generalized Rolle’s theorem)Let f ben times differentiable
and haven+ 1 zeroes in an interval[a,b] . Thenf (n) has a zero in[a,b] .

Proof If f has n + 1 zeroesx0 < x1 < · · · < xn then using Rolle’s Theoremf ′

will have n zeroesy0, . . . , yn−1 with yi in ]xi , xi+1[. Hence we obtain the result by
induction onn.

We now present the Lagrange polynomial as it can be found in numerical analysis
textbooks; e.g. [5].

Theorem 2.2 (Lagrange error formula)Let f ben times differentable on an interval
[a,b] , P the polynomial of degreen− 1 which agrees withf on n valuesx0 < · · · <

xn−1 andM such that|f (n)(x)| 6 M for all x in [a,b] . Then for allx in [a,b]

|f (x) − P(x)| 6
|
∏

(x− xk)|
n!

M
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Proof This is proved using Rolle’s Theorem in the following way [4, 5]. First,
classically, we can assume thatx is not equal to one of thexi since the inequality is
clear if x = xi . We then consider the function

g(y) =

∏

(x− xk)
n!

(f (y) − P(y)) −

∏

(y− xk)
n!

(f (x) − P(x))

This function isn times differentiable and hasn + 1 zeroesx, x0, . . . , xn−1 . Using
Theorem2.1, there existsc such thatg(n)(c) = 0 which can be written

f (x) − P(x) =

∏

(x− xk)
n!

f (n)(c)

hence the result.

By a similar use of Theorem2.1, one can derive the following classical result [4, 5].

Theorem 2.3 (Simpson’s rule [5]) If f is 4-differentiable on an interval[a,b] and
|f (4)(x)| 6 M for all x in [a,b] , then we have

∣

∣

∣

∣

∫ b

a
f (x) dx−

b− a
6

[

f (a) + 4f

(

a+ b
2

)

+ f (b)

]∣

∣

∣

∣

6
(b− a)5

2880
M.

Rolle’s theoremis constructively provable [2] provided f ′ is locally non-constant: In
every interval there arex, y such thatf ′(x) < f ′(y). We remark that whenf ′ is locally
nonzero, i.e. in every interval there is anx such thatf ′(x) > 0 or f ′(x) < 0, thenf is
locally non-constant, as is readily seen by integration. Itfollows that if f (n) is locally
nonzero, then for allk < n, f (k) is locally nonconstant. We obtain an equal conclusion
version of the generalized Rolle’s theorem: Letf be n times differentiable and have
n+ 1 zeroes in an interval [a,b]. If, moreover,f (n) is locally nonzero, thenf (n) has a
zero in [a,b].

From this equal conclusion version, we can obtain an equal hypothesis version of
Rolle’s theorem.

Proposition 2.4 Let f be n times differentiable and haven + 1 zeroes,xi , in an
interval [a,b] . Then there existsx ∈ [a,b] such that|f (n)(x)| ≤ ε.

Proof Either there existsx ∈ (a,b) such that|f (n)(x)| ≤ ε or for all x ∈ (a,b),
|f (n)(x)| > ε/2. In the former case, we are done. In the latter case,f (n) is locally
non-zero, hence by the remark above, we can follow the proof of Theorem2.1 to
conclude thatf (n) has a zero. A contradiction.
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In this way we can derive the Lagrange error formula2.2. One can argue however that
this derivation is more complex than the classical result. On page7 we give a smooth
proof of Theorems2.2 and2.3, which holds both classicallyand constructively, and
does not rely on Theorem2.1.

3 Hermite-Genocchi formula

The definition in [3] of uniform differentiability of a functionf on an intervalI = [a,b]
can be formulated as follows: there exists an uniformly continuous functionF : I2 → R

such thatf (y) − f (x) = (y − x)F(x, y) for all x, y in I . We can then definef ′(x) to
be F(x, x). The following result is a generalization of this characterisation to n-
differentiability. The proof is a simple application of thefundamental theorem of the
calculus [3].

Theorem 3.1 A function f : I → R is uniformly n-differentiable if, and only if,
there existn+ 1 uniformly continuous functionsf0(x), f1(x0, x1), . . . , fn(x0, . . . , xn)
defined respectively onI , I2, . . . , In+1 and such that

f0(x) = f (x), f0(x1) − f0(x0) = (x1 − x0)f1(x0, x1), . . . ,

fn−1(x0, . . . , xn−2, xn) − fn−1(x0, . . . , xn−2, xn−1) = (xn − xn−1)fn(x0, . . . , xn)

for all x0, . . . , xn in I .

We then have

f (n)(x) = n!fn(x, . . . , x)

and, conversely, we can define

(∗) fn(x0, . . . , xn) =
∫

Σn

f (n)(t0x0 + · · · + tnxn)dt0 . . . dtn

where1 Σn = {(t0, . . . , tn) ∈ [0,1]n+1 | t0 + · · ·+ tn = 1}.

1This integral of a uniformly continuous functiong overΣn can be defined by induction on
n in the following way: forn = 0 the integral isg(1), and forn > 0 we define

h(t0, ..., tn−1) =
∫ 1

0
g(t0, ..., tn−1u, tn−1(1− u))du

and the integral ofg overΣn is the integral ofh overΣn−1.
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Proof Assume that the divided differences are uniformly continuous onI , I2, . . . , In+1.
Since

f (y) − f (x) = (y− x)f1(x, y)

we get thatf is uniformly differentiable andf ′(x) = f1(x, x). We then have

f ′(y) − f ′(x) = f1(y, y) − f1(x, x)

= f1(y, y) − f1(y, x) + f1(y, x) − f1(x, x)

= (y− x)(f2(y, x, y) + f2(x, x, y))

and sof is uniformly 2-differentiable andf (2)(x) = 2f2(x, x, x). Proceeding in this way
we see thatf is uniformly k-differentiable and that we havek!fk(y, . . . , y) = f (k)(y) for
k = 0, . . . ,n.

Conversely, assume thatf is uniformly n-differentiable. We define

fk(x0, . . . , xk) =
∫

Σk

f (k)(t0x0 + · · · + tkxk)dt0 . . . dtk

for k = 0, . . . ,n. These functions are uniformly continuous. Furthermore, we have
f0(x) = f (x) and

f0(x) − f0(x0) = (x− x0)f1(x0, x)

since

(x− x0)f1(x, x0) =
∫ 1

0
f ′((1− t)x0 + tx)dt

holds for x apart fromx0, by the fundamental theorem of the calculus [3] and hence
for all x, x0 by continuity. It follows that we have

fk(x0, . . . , xk−1, x) − fk(x0, . . . , xk−1, xk)

=

∫

Σk−1

(f (k−1)(t0x0 + · · ·+ tk−1x) − f (k−1)(t0x0 + · · ·+ tk−1xk))dt0 . . . dtk−1

= (x− xk)
∫

Σk

f (k)(t0x0 + · · · + tk−1xk−1 + tkx)dt0 . . . dtk

= (x− xk)fk+1(x0, . . . , xk, x)

which shows that these functions satisfy the required equations.

Notice that the functionsfk(x0, . . . , xk) are symmetric inx0, . . . , xk and that we can
then writef (x) as the sum

f0(x0) + (x− x0)f1(x0, x1) + · · ·+ (x− x0) . . . (x− xn−1)fn(x0, . . . , xn−1, x)
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The equation (*) of Theorem3.1known as Hermite-Genocchi formula. Genocchi found
these formulae by analysing the notion of “fonctions interpolaires” due to Amp̀ere [1]2.

A direct consequence of Theorem3.1 is the following result.

Corollary 3.2 Given a functionf : I → R and n + 1 distinct elementsx0, . . . , xn

in I let P(x0, . . . , xn, x) be the interpolation polynomialan−1(x0, . . . , xn)xn−1 + · · · +

a0(x0, . . . , xn) of f at x0, . . . , xn . Then P(x0, . . . , xn, x), seen as a function of the
parametersx0, . . . , xn, can be extended to an uniformly continuous function onIn+1

(that is, each functionai(x0, . . . , xn) can be extended to an uniformly continuous
function onIn+1) if, and only if, f is uniformly n-differentiable.

4 Applications

We explain now how to derive Theorem2.2 from Theorem3.1. We assume that
f : I → R is uniformly n-differentiable. Given anyn elementsx0, . . . , xn−1 in I we
associate theNewton polynomialof degreen− 1:

P(x) := f0(x0)+ f1(x0, x1)(x−x0)+ · · ·+ fn−1(x0, ..., xn−1)(x−x0)(x−x1) · · · (x−xn−2).

We have

f (x) − P(x) = (x− x0) . . . (x− xn−1)fn(x0, . . . , xn−1, x)

On the other hand, we also haveP(xi) = f (xi ) for i = 0, . . . ,n − 1. Theorem2.2
follows then from the fact, direct from Theorem3.1, that

|fn(x0, . . . , xn−1, x)| 6
M
n!

if we have|f (n)(u)| 6 M for all u in I .

Notice that the Newton polynomialP(x) is defined for anyx0, . . . , xn−1 without re-
quiring them to be distinct. We haveP(l−1)(xi) = f (l−1)(xi) if xi is duplicatedl times
in this list.

Theorems3.1 is also valid forf : I → E, whereE is a Banach space. Theorem2.2 is
also valid forf : I → F , whereF is a normed space.

2In the case wheref is a monic polynomial, the functionsf1(x0, x1), . . . , fn(x0, . . . , xn−1)
are also polynomial and they form withf a Gr̈obner basis of the universal decomposition
algebra of the polynomialf ; see e.g. [7].
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4.1 A constructive proof of Simpson’s rule

As explained above, the typical proofs of Simpson’s rule2.3, see e.g. [5, 8], use Rolle’s
theorem, and so are not constructively valid. We adapt the proof in [8] which uses
Rolle’s theorem three times on triple zero at 0 and the simplezero at 1 of the function
H below.

DefineF(t) := f (a+b
2 +

b−a
2 t). This reduces the problem to showing that

|

∫ 1

−1
F(τ )dτ −

1
3

(F(−1)+ 4F(0)+ F(1))| 6 N/90,

whereN := ‖F(4)‖.

Define

G(t) =
∫ t

−t
F(τ )dτ −

t
3

(F(−t) + 4F(0)+ F(t))

We need to prove that 90G(1) 6 N. To do so, defineH(t) := G(t) − t5G(1). Then

H(0) = H(1) = H′(0) = H′′(0) = 0.

Hence,H3(0,0,0,1) = −(H2(0,0,0)−H2(0,0,1) = 0+ (−H1(0,0)+H1(0,1)) = 0.
(This line replaces three uses of Rolle’s theorem.)

Moreover,

H(3)(t) = −
t
3

(F(3)(t) − F(3)(−t)) − 60t2G(1) = −
t
3

(
∫ t

−t
F(4)) − 60t2G(1).

This shows that

0 = H(0,0,0,1) =

∫ 1

0
H(3)

=

∫ 1

0
−

t
3

(
∫ t

−t
F(4)) − 60t2G(1)

>

∫ 1

0
−

t
3

2 tN−60t2G(1)

= −
2
3

(N + 90G(1))
∫ 1

0
t2

= −
2
3

(N + 90G(1))
1
3
.

Hence,N > −90G(1). Similarly, 06 −2
9(−N + 90G(1)). Consequently, 90G(1) 6

N. We conclude that|90G(1)| 6 N.

A similar argument works to justify e.g. Romberg’s integration method [8] which
generalizes Simpson rule.
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