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ABSTRACT 

The generation of distinctive cell types that form different tissues and organs requires 

precise, temporal and spatial control of gene expression. This depends on specific cis-

regulatory elements distributed in the non-coding DNA surrounding their target genes. 

Studies performed on mammalian embryonic stem cells and Drosophila embryos suggest 

that active enhancers form part of a defined chromatin landscape marked by histone H3 

lysine 4 mono-methylation (H3K4me1) and histone H3 lysine 27 acetylation (H3K27ac). 

Nevertheless, little is known about the dynamics and the potential roles of these marks 

during vertebrate embryogenesis. Here we provide genomic maps of H3K4me1/me3 and 

H3K27ac at four developmental time-points of zebrafish embryogenesis and analyze 

embryonic enhancer activity. We find that: (i) changes in H3K27ac enrichment at 

enhancers accompany the shift from pluripotency to tissue-specific gene expression; (ii) in 

early embryos, the peaks of H3K27ac enrichment are bound by pluripotent factors such as 

Nanog; (iii) the degree of evolutionary conservation is higher for enhancers that become 

marked by H3K27ac at the end of gastrulation suggesting their implication in the 

establishment of the most conserved (phylotypic) transcriptome that is known to occur later 

at the pharyngula stage.   
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INTRODUCTION 
 
During the course of embryonic development, spatio-temporal specificity in gene 

expression is achieved through the action of cis-acting regulatory DNA. By far, the most 

widely studied population of these regulatory sequences are transcriptional enhancers. They 

contain multiple binding sites for a plenitude of transcription factors that can interact with 

promoters in cis, independently of their genomic location (Tjian and Maniatis 1994; Ong 

and Corces 2011). Genomic studies performed in various model systems helped in 

identifying the chromatin environment these elements reside in. Enhancers correlate with 

the enrichment of histone H3 lysine 4 monomethylation (H3K4me1), are located within 

DNAse hypersensitive sites and are able to recruit transcriptional activators such as p300 

and CBP (Heintzman et al. 2007; Heintzman et al. 2009; Visel et al. 2009; Kim et al. 2010).  

Moreover, it has been proposed that enhancers can be divided into distinct functional 

classes based on their epigenetic makeup. So far, the best predictor of active enhancers is 

the co-enrichment of H3K4me1 and H3K27ac (Creyghton et al. 2010; Hawkins et al. 2011; 

Rada-Iglesias et al. 2011; Bonn et al. 2012) even though chromatin marks such as 

H3K4me3 and H3K36me3 have also proven useful in active enhancer annotation 

(Pekowska et al. 2011; Zentner et al. 2011). Next-generation sequencing (coupled to ChIP 

or FAIRE) has been described as the method of choice for the identification of gene 

regulatory elements during embryogenesis (Visel et al. 2009; Blow et al. 2010; Aday et al. 

2011) or within the context of human diseases (Gaulton et al. 2010; Sakabe and Nobrega 

2010). Indeed, the zebrafish model system was recently employed in an H3K4me1/me3-

based genome-wide screen to identify putative cis-regulatory features in a vertebrate 

embryo (Aday et al. 2011). Similarly, a recent study performed on Drosophila embryos 

provided substantial insights into how chromatin modifications relate to spatio-temporal 

enhancer activity (Bonn et al. 2012). Notwithstanding these considerable efforts to deduce 

the genomic cis-regulatory logic within a developmental context, not much is known on 

how many of these sequences are actually active during different stages of vertebrate 

embryogenesis and what their functions are in vivo. Using the ChIP-seq approach, we have 

generated genomic tracks of H3K4me3, H3K4me1 and H3K27ac histone modifications at 

four developmental time points of zebrafish embryogenesis. Based on these genomic 

signatures, we have identified stage-specific collections of Putative Distal Regulatory 
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Elements (PDREs). Stable transgenesis experiments demonstrate that the majority of 

PDREs act as transcriptional enhancers in vivo. Within the identified PDREs, we find sites 

displaying significant differences in H3K27ac enrichment between adjacent developmental 

stages. These differentially acetylated regions associate with genes involved in stage-

specific developmental processes and provide binding sites for pluripotency factors and 

tissue-specific transcriptional regulators during early and late embryogenesis, respectively. 

Indeed, we show that the pluripotent factor Nanog binds to sites of H3K27ac enrichment in 

the early embryo and that stage-specific H3K27 acetylation correlates with temporal 

expression intensities of nearby genes. In total, we have examined the embryonic 

epigenomes associated with early zebrafish development and generated a collection of 

stage-specific enhancer elements that modulate the embryonic transcriptome. In addition to 

expanding on the prior knowledge derived from cell culture research, this study will 

contribute to the identification of gene regulatory networks associated with early 

developmental processes.  

 

RESULTS 

Identification of Putative Distal Regulatory Elements (PDREs) in the zebrafish 

genome 

To interrogate the genomic landscape of putative regulatory elements in zebrafish embryos, 

embryonic chromatin originating from dome, 80% epiboly, 24 hours post fertilization (hpf) 

and 48 hpf embryos (Kimmel et al. 1995) was immunoprecipitated with H3K4me1, 

H3K4me3 and H3K27ac antibodies (Fig. 1A). The reads obtained from sequencing of 

immunoprecipitated DNA were then aligned to the D. rerio genome (ENSEMBL version 

Zv8) (Supplemental Table S1). H3K4me3, as expected (Santos-Rosa et al. 2002), marked 

promoters, whereas H3K4me1 and H3K27ac besides marking promoters, displayed broader 

profiles in line with their role of open chromatin and enhancer marks (Heintzman et al. 

2007; Creyghton et al. 2010; Hawkins et al. 2011; Rada-Iglesias et al. 2011)(Fig. 1B). Both 

H3K4me1 and H3K27ac correlate well with temporal expression patterns and the identified 

enhancers of genes such as neurog1 (Blader et al. 2004) (Fig. 1B, C). Actually, the 
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enhancer mark deposition in some cases precedes transcriptional activation, determined by 

H3K4me3 enrichment (Fig. 1B). Genomic peaks of H3K4me1/me3 and H3K27ac were 

identified by the MACS algorithm (Zhang et al. 2008) and validated by ChIP-qPCR 

(Supplemental Fig. S1). In addition, the comparison of our data with previously published 

data corresponding to a single-stage zebrafish ChIP (Aday et al. 2011), revealed almost 

identical genomic patterns for H3K4me1 and H3K4me3 between the two studies 

(Supplemental Fig. S2). Using a similar approach as described previously (Creyghton et al. 

2010), a stage-specific PDRE collection was generated based on the presence of the 

H3K4me1 signature (Fig. 2A, B; Supplemental Table S2). In agreement with the genomic 

intersections (Supplemental Fig. S3), we observe a genomic colocalization of H3K4me1 

and H3K27ac marks (Fig. 2A). Keeping in mind that H3K4me1 is a constitutive enhancer 

mark whereas H3K27ac is associated with tissue-specific enhancer activation (Bonn et al. 

2012), we do not exclude the possibility that these two marks might mark different 

embryonic cell populations. When clustered together over stage-specific PDRE collections, 

H3K4me1 and H3K27ac display similar but not identical dynamics (Supplemental Fig. S4). 

The number of PDREs identified at the dome (blastula) stage is considerably (~ 10 fold) 

smaller than the number of PDREs identified at other stages, possibly because of reduced 

tissue complexity at blastula stages (Fig. 2B). Upon closer inspection of the PDREs, a 

substantial shift in PDRE size was discovered; dome-specific PDREs are more than two 

fold wider than PDREs identified at the 80% epiboly stage followed by further decrease in 

size at 24hpf and 48hpf (Fig. 2C). These temporal changes in PDRE size suggest a 

relatively open and permissive regulatory landscape in early embryos. A significant 

proportion of PDREs is conserved among other teleost species such as stickleback whereas 

this conservation is reduced, but still present in humans (Fig. 2D). To establish a link 

between identified PDREs and developmental processes, a merged collection of PDREs 

from all four examined stages was mapped to their closest genes, and the distribution of 

PDREs around genes with gene ontology related to development was compared to 

randomly selected genes (Fig. 2E). The developmental genes were significantly 

(Kolmogorov-Smirnov test, P value = 0.000) enriched for PDREs when compared to their 

random controls, supporting a role for PDREs in developmental processes.  
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Differentially H3K27-acetylated regions provide binding sites for stage-specific 

transcription factors 

Following the observation that deposition of H3K27ac is more dynamic than that of 

H3K4me1 (Creyghton et al. 2010; Rada-Iglesias et al. 2011; Bonn et al. 2012), we decided 

to identify regions displaying significant changes in H3K27ac enrichment between adjacent 

developmental stages. These Differentially Acetylated Regions (DARs) were identified 

using Fisher’s exact test (for details see methods) and visualized by k-means clustering 

(k=3) (Supplemental Fig. S5A-D; Supplemental Tables S3-S5). The first two clusters 

(Supplemental Tables S6-S8) correspond to regions either gaining or losing H3K27ac 

between two adjacent developmental stages (Fig. 3A, B; Supplemental Figs. S5, S6). The 

dome - 80 % epiboly DARs (Fig. 3A) form two clusters; the first cluster (DAR1) is highly 

enriched for H3K27ac at the dome stage followed by a loss of this mark at 80 % epiboly. 

H3K4me1 also follows this pattern, however, with a noticeable delay. Cluster 2 

corresponds to DARs that gain both H3K27ac and H3K4me1 at 80% epiboly and remain 

enriched for both marks during early development (DAR2). The 80% epiboly - 24 hpf 

DARs (DAR3 and DAR4) (Fig. 3A) are marked in a similar fashion. In both clusters the 

H3K4me1 mark follows the dynamics of H3K27ac, and even precedes H3K27ac at 80% 

epiboly (Supplemental Fig. S6D). The differential enrichment of H3K27ac has been 

confirmed in a series of independent ChIP experiments and validated by qPCR 

(Supplemental Fig. S7). In addition, only a small number of DARs was identified for 24hpf 

and 48 hpf stages (Supplemental Fig. S5D; Supplemental Table S8). This observation is not 

surprising since in 24-48 hpf embryos most tissues are already formed and enhancer 

activity is likely localized to reduced areas of gene expression, making changes in enhancer 

makeup more difficult to detect in whole embryos. To identify genes potentially regulated 

by DARs, genomic locations of each cluster were mapped to their nearest genes and a gene 

ontology (GO) analysis was performed (Supplemental Fig. S8; Supplemental Tables S9-

S12). DARs enriched for H3K27ac at dome but not later were not associated to any specific 

GO category (Supplemental Table S9). However, DARs that become marked by H3K27ac 

at 80% epiboly as well as DARs that lose or gain H3K27ac at 24 hpf were highly enriched 

for developmental processes (Supplemental Fig. S8). Interestingly, DARs that lose 

H3K27ac at 24 hpf represent fairly specific GO categories associated with developmental 
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processes operating mainly during epiboly stages.  

To test how differential H3K27ac acetylation of putative enhancers influences the 

expression status of neighboring genes, our H3K27ac data was integrated with previously 

published expression (RNA-seq) profiles of similar zebrafish developmental stages (Pauli 

et al. 2012) (Fig. 3C). The number of RNAseq reads was determined for all genes 

(ENSEMBL models) that reside in the vicinity of H3K27ac DARs. Indeed, the temporal 

profiles of H3K27ac display a noticeable positive correlation with gene expression data 

throughout the early development; the regions marked with H3K27ac at the dome stage 

(DAR1) associate with genes that are more highly expressed at that stage than other stages 

where the putative elements are deacetylated (Fig.  3C). A similar positive correlation was 

observed for other DARs. We next wanted to determine whether the identified DARs differ 

in the composition of transcription factor binding sites. Sequences corresponding to each 

cluster were analyzed for the presence of known vertebrate transcription factor signatures 

(Sandelin et al. 2004). Strikingly, DARs acetylated at dome and 80% epiboly stages but not 

later (DARs 1 and 3) were found significantly enriched for pluripotency factor motifs such 

as Pou5f1 and Sox2 as opposed to regions that acquire H3K27ac at 80% epiboly or 24 hpf 

that were enriched for tissue-specific transcription factor motifs (Fig. 3D; Supplemental 

Tables S13-S16). Furthermore, we wanted to establish whether DARs display differences 

in sequence conservation. To that end, we have calculated average conservation scores 

(PhastCons) (Siepel et al. 2005) for each DAR present in each cluster and plotted their 

cumulative frequencies (Fig. 3E). Whereas the PhastCons scores of earliest DARs 

acetylated in dome fall within the range of values observed for randomly chosen genomic 

regions, DARs that become acetylated at 80% epiboly and stay marked through the early 

development, are by far the most conserved ones. The other two groups marked at 80% 

epiboly and 24hpf display conservation scores similar to the ones calculated for random 

genomic DNA. It has been recently described that the most conserved (oldest) zebrafish 

transcriptomes are the ones expressed during segmentation/pharyngula stages (Domazet-

Loso and Tautz 2010). Our results indicate that the cis-regulatory state needed for the 

expression of such conserved transcriptomes is possibly established at the epiboly stage, 

prior to segmentation. Altogether, these findings suggest that H3K27ac marks the transition 

from pluripotency to cell specification and that regions differentially marked by H3K27ac 
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can be divided into distinct classes based on their evolutionary conservation scores and in 

line with their developmental function.   

 

Nanog binds to putative early enhancers that are deacetylated during gastrulation  

As discussed above, DARs acetylated at dome and 80% epiboly (DARs 1 and 3) but not 

later, were found significantly enriched for pluripotency factor Pou5f1 and Sox2 binding 

sites. A recent ChIP-seq study of a Nanog-like homolog in zebrafish (Xu et al. 2012) 

enabled us to further explore this finding and provide more substantial proof that early 

DARs might be involved in the regulation of pluripotency. In mammals, the Nanog gene 

codes for a homeobox transcription factor implicated in self-renewal of embryonic stem 

cells (Chambers et al. 2007). As predicted, we indeed observe an enrichment of the Nanog-

like protein in DARs that are acetylated early on (DAR1 and DAR3) and potentially 

associated with other pluripotent factors (Supplemental Fig. S9A).  Furthermore, we 

observe a direct link between the Nanog-like protein and early H3K27-acetylated enhancers 

found in the vicinity of pluripotent genes such as pou5f1 (Supplemental Fig. S9B). To 

reconcile our observations and provide a better insight into the dynamics of enhancer 

makeup during early development, we have clustered the genomic profiles of Nanog-like 

protein, H3K27ac and H3K27me3 (Pauli et al. 2012), another mark proposed to label 

poised and inactive enhancers (Rada-Iglesias et al. 2011; Bonn et al. 2012) (Fig. 4A; 

Supplemental Fig. S10). The clustering was performed over PDREs enriched for H3K4me1 

and depleted of H3K27ac at 80% epiboly, as these regions would enable us to detect the 

proportion of active (H3K27-acetylated) and inactive (H3K27-deacetylated) enhancers 

before and after this stage. In total, four clusters can be identified. First cluster (1) 

corresponds to PDREs marked with H3K27me3 at the shield stage (between dome and 80% 

epiboly). These PDREs are deacetylated and show no particular Nanog-like enrichment. 

However, these regions display an increase in H3K27ac at 24hpf and 48hpf stages. The 

second cluster (2) are potential poised enhancers, marked only by H3K4me1. The third 

cluster (3) corresponds to PDREs, H3K27-acetylated at the dome stage but not later. These 

regions are highly enriched in the Nanog-like factor at the dome stage as predicted by the 

genomic intersections (Supplemental Fig. S9A). Cluster four (4) consists of regions that 
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become acetylated after gastrulation, displaying the highest H3K27ac enrichment at 48hpf. 

We next wanted to explore whether the nearby genes of the described PDREs are enriched 

in certain GO categories (Fig. 2B). Indeed, we find PDREs from the first cluster linked to 

genes enriched in neural development. The genes belonging to the second cluster display 

enrichment for processes related to brain development, known to occur in later stage 

embryos. The third and the fourth cluster are enriched in processes corresponding to early 

embryos (developmental process, multicellular organismal process) or late embryos 

(regulation of cell differentiation), respectively. To demonstrate a link between differential 

PDRE makeup and gene expression, we have obtained expression intensities (Pauli et al. 

2012) of nearby genes at corresponding developmental stages (Fig. 4C). We again observe 

a positive correlation of H3K27ac and gene expression. Accordingly, the genes associated 

with PDREs marked only by H3K4me1 (cluster 2), displayed lower expression intensities 

than those marked by both H3K4me1 and H3K27ac. Altogether, we find that only a small 

proportion of PDREs are marked by H3K27me3, in line with previous observations in 

human ESCs (Rada-Iglesias et al. 2011; Hawkins et al. 2011). These regions appear to gain 

H3K27ac during later stages; probably the PDREs marked by H3K27me3 remain marked 

in that fashion whereas the ones that gain H3K27ac belong to different nucleosomal 

populations. Finally, we observe a strong co-enrichment of H3K27ac and the Nanog-like 

protein on early developmental enhancers thereby supporting the notion of early DARs 

playing a role in pluripotency networks.    

 

Most PDREs functional as enhancers in stable transgenic assays 

We next aimed to validate the enhancer activity of identified PDREs. We therefore 

examined the genomic region encompassing zic3 and fgf13a genes. This region was chosen 

for the following reasons: a) the zic3 and fgf13a genes are evolutionary linked in all 

vertebrates (Keller and Chitnis 2007); b) this genomic region contains a large number of 

PDREs with different degrees of evolutionary conservation that could control the 

expression of zic3,  fgf13a or both genes; c) both zic3 and fgf13a play essential roles during 

development. The zinc finger transcription factor encoded by the zic3 gene is associated 

with pluripotency, heterotaxy and cardiac and neural tube defects in humans (Grinberg et 
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al. 2004; Ware et al. 2004; Ware et al. 2006; Lim et al. 2007), whereas fgf13 that encodes 

an intracellular FGF molecule is required for processes such as neuronal differentiation and 

cardiac conductivity (Nishimoto and Nishida 2007; Wang et al. 2011). We have selected 18 

PDREs distributed along 600 kb harboring the zic3 and fgf13a genes (Fig. 5A; 

Supplemental Table S17) and tested them using the Zebrafish Enhancer Detection (ZED) 

vector (Bessa et al. 2009)  for enhancer activity in stable transgenic assays (Fig. 5B-M). 

This vector has been specifically designed for enhancer assays and as such contains a 

positive control for transgenesis efficiency (Bessa et al. 2009). Whereas most of these 

PDREs (12 of 18, 67%) displayed enhancer activity, 33% of them were negative in our 

enhancer assay (Supplemental Table S16), indicating that either not all H3K4me1 and 

H3K27ac-marked regions behave as functional enhancers or that the tested enhancers act in 

concert with other sequences not included in these assays. Most of these PDREs reside 

within the 300kb surrounding the zic3 locus suggesting that they are likely regulating this 

gene. Accordingly, in stable transgenic embryos, these PDREs activated reporter gene 

expression in tissues that are more reminiscent to the domains expressing zic3 and not 

fgf13a (Fig. 5N, O) (Sprague et al. 2006). Enhancer activity was independent of the degree 

of sequence conservation of these PDREs (Fig. 5A). These data support previous 

observations that H3K4me1/H3K27ac-marked regions contain active enhancers and that 

such activity can be reproduced in vivo. In addition we demonstrate that enhancers 

associated with a certain genomic locus can by and large reproduce the expression pattern 

of the nearby gene. 

 

DISCUSSION 

In the present study we set out to investigate the regulatory landscapes associated with early 

vertebrate development. Recent reports have addressed the dynamics of chromatin marks 

associated with enhancer elements during stem cell differentiation (Creyghton et al. 2010; 

Hawkins et al. 2011; Rada-Iglesias et al. 2011). However, it is still unclear how the 

identification of stem cell enhancers can be extrapolated to mammalian/vertebrate 

development. Even though such studies provide valuable insights into the mechanisms of 

cis regulation, their in vivo significance remains to be determined. For example, ES cells 
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are derived from the Inner Cell Mass (ICM) which is one of the two products of the first 

lineage differentiation event in mammals. This event is accompanied by the asymmetric 

deposition of the H3K27me3 mark (Dahl et al. 2010). In addition, it has been demonstrated 

that the very process of ESC derivation causes robust changes in both H3K4me3 and 

H3K27me3 methylation (Dahl et al. 2010). Similarly, differences in transcriptional 

programs between ES cells and ICM outgrowths have also been detected by RNA-seq 

profiling (Guo et al. 2010; Tang et al. 2010). Taken together, these findings suggest that ES 

cells and the embryonic tissues they are derived from differ in their modes of 

transcriptional regulation as well as in their intrinsic pluripotency. Studies performed on 

early vertebrate embryos such as those of zebrafish (Danio rerio), might therefore provide 

less biased insights into the mechanisms of transcriptional regulation associated with early 

development. 

Our genome-wide analysis of H3K4me1 and H3K27ac at four different stages allowed us 

to identify ~ 50,000 potential cis-regulatory elements operating during the first 48 hours of 

zebrafish development. This number is similar to the total number of enhancers found in 

nine different cell types in humans (Ernst et al. 2011). In contrast to the relatively high 

number of potential cis-regulatory elements found in gastrula (24,600), 24 hpf (24,000) and 

48 hpf (15,000) embryos, we identify only 2,000 regions at the blastula stage. This 

demonstrates that the high complexity of gene expression associated with the transition 

from blastula to gastrula, necessary to generate multiple cellular types, is driven by a robust 

increase in cis-regulatory activity. Interestingly, we also find that the most conserved cis-

regulatory elements are those that are turned on during the transition from blastula to 

gastrula. Our results correlate well with the degree of trans-vertebrate transcriptome 

conservation during development (Domazet-Loso and Tautz 2010; Irie and Kuratani 2011); 

transcriptome conservation is higher during vertebrate segmentation and minimal at the 

blastula stages, supporting the “hourglass” model of developmental evolution, which states 

that maximum morphological similarity between vertebrates occurs at the phylotypic stage. 

Our results suggest that the regulatory state necessary to achieve such a conserved 

transcriptome at the phylotypic stage can be detected somewhat earlier, during late 

gastrulation, by means of the most evolutionary conserved sets of potential cis-regulatory 

elements.  
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We hereby provide a powerful resource that will allow for the dissection of gene regulatory 

networks in which genes that operate during different embryonic stages, are immersed in. 

Our stable zebrafish transgenics demonstrate that most of the regions displaying H3K4me1 

and H3K27ac histone marks are associated with enhancers. Nevertheless, one third of the 

H3K4me1/H3K27ac-marked regions assayed, exhibited no signs of enhancer activity. 

These sequences could be promoter-specific enhancers or enhancers that act in concert with 

other sequences not tested in our transgenic assays. Alternatively, H3K4me1/H3K27ac may 

also be associated with other types of cis-regulatory regions. Furthermore, we observe that 

H3K4me1 and H3K27ac largely overlap but that their dynamics of deposition and removal 

are somewhat different. Thus, as previously reported in mammalian stem cells and 

Drosophila embryos (Creyghton et al. 2010; Hawkins et al. 2011; Rada-Iglesias et al. 2011; 

Bonn et al. 2012), H3K4me1 deposition precedes that of H3K27ac at many sites. These 

regions likely correspond to poised enhancers, as proposed for mammalian stem cells 

(Creyghton et al. 2010; Hawkins et al. 2011; Rada-Iglesias et al. 2011). However, these 

studies have shown contradictory results on whether H3K27me3 is a mark of poised or 

inactive enhancers (Hawkins et al. 2011; Rada-Iglesias et al. 2011; Bonn et al. 2012). Here, 

we demonstrate that H3K27me3 can only be found in a small fraction of H3K4me1 

positive/H3K27ac negative regions. These regions seem to acquire H3K27ac along the 

developmental period examined, in line with their proposed role for poised enhancers. 

However, it is not clear whether H3K27ac deposition occurs in the same cells where these 

regions were previously marked by H3K27me3. It is therefore still plausible that 

H3K27me3-marked regions may correspond to inactive enhancers, as previously reported 

in Drosophila (Bonn et al. 2012). Nevertheless, we were not able to detect the H3K27me3 

mark on early active enhancers (H3K27ac/Nanog) during later stages, even though these 

regions lost H3K27ac. One explanation could be that the H3K27me3 deposition requires 

more time. If so, the H3K27me3-marked subgroup of enhancers could represent very early 

enhancers that are already silenced at the gastrula stage. Our results also indicate that 

H3K4me1 precedes H3K27ac and that the removal of H3K4me1 is somewhat delayed 

when compared to the removal of H3K27ac. These data could be compatible with a 

temporal scenario in which poised enhancers marked by H3K4me1 acquire H3K27ac when 

activated and lose this mark when inactivated. Some of these enhancers could be further 
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inactivated in a more permanent way by the Polycomb complex causing the deposition of 

H3K27me3. However, the confirmation of this scenario will require further studies. 

The unbiased analysis of our data precisely identifies cis-regulatory elements, and their 

potential target genes, associated with the transition from a pluripotent state, at the blastula 

stage, to more committed states during gastrulation and organogenesis. Enhancers that lose 

H3K27ac at blastula and gastrula stages are enriched for pluripotent factor binding sites and 

the majority of them actually overlap with genomic peaks of the Nanog-like factor (Xu et 

al. 2012) at blastula stages. This strongly suggests that Nanog and other pluripotent factors 

regulate these regions during pluripotency stages and that these enhancers probably need to 

be inactivated in order to facilitate developmental progression. Indeed, these early 

enhancers flank pluripotent genes and genes involved in early developmental processes 

such as germ layer formation, in which some degree of pluripotency is still maintained. On 

the contrary, the enhancers that incorporate H3K27ac at gastrula stages or later are 

associated with genes that control pattern formation. Moreover, these enhancers display a 

significant enrichment in tissue-specific transcription factor signatures and are likely 

participating in the acquisition of more differentiated states. We therefore expect that the 

coordination between processes that lead to the deposition of H3K27ac at some enhancers 

and the removal of that mark in other enhancers, constitute an essential mechanism for the 

transition of pluripotency to cell differentiation.  

 

METHODS 

ChIP-seq 

Chromatin immunoprecipitation (ChIP) was performed following the protocol described in 

(Wardle et al. 2006) with minor modifications. For dome, 80% epiboly and 24hpf stages, 

we used 5000, 3000 and 1000 embryos respectively. The samples were sonicated using the 

Diagenode Bioruptor device with the following cycling conditions: 15min high - 30 sec on, 

30 sec off; 15 min on ice; 15min high -30 sec on, 30 sec off. The size of sonicated DNA 

was in the range of 100 - 500 bp. The anti-H3K4me1 (CS-037-100) and anti-H3K4me3 

(pAB-033-050) antibodies were obtained from Diagenode. The anti-H3K27ac (ab4729) 
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antibody was purchased from Abcam. Immunoprecipitated DNA was purified with 

QIAquick columns (Qiagen). The DNA ends were repaired, and the adaptors ligated. The 

size selected (300 bp) library was then amplified in a PCR reaction and sequenced using the 

Genome Analyzer (Illumina). The sequenced reads were mapped to the reference zebrafish 

genome (ENSEMBL version Zv8 or Zv9) with the ELAND (v.2) software.  

 

Peak analysis 

Highly enriched regions (peaks) of histone methylation and acetylation were obtained by 

the MACS (v.1.3.3) algorithm (Zhang et al. 2008) using standard settings with one 

modification (mfold = 20). The genomic intersections of H3K4me1/me3 and H3K27ac 

peaks were performed using the Galaxy platform with minimum (1bp) overlap 

(Blankenberg et al. 2007; Taylor et al. 2007). Randomly selected peaks were verified by Q-

PCR and compared to their random controls. The PCRs were performed on 1:50 dilutions 

of the ChIP samples using the C1000 Thermal Cycler (BioRad). The genomic distribution 

of H3K4me1/me3 and H3K27ac peaks was calculated using the PinkThing tool 

(http://pinkthing.cmbi.ru.nl).  

 

Analysis of Putative Distal Regulatory elements - PDREs 

The PDREs were identified using an approach similar to the one described previously 

(Creyghton et al. 2010). Essentially, H3K4me1 peaks were filtered for H3K4me3 enriched 

regions and TSS sites (-1kb/+1kb) belonging to RefSeq and ENSEMBL models. The heat 

maps were generated by the seqMINER program (Ye et al. 2011) using standard settings. 

The sequenced reads were mapped to a region spanning -5kb/+5kb from the PDRE center. 

Boxplots were generated in R using default settings. To generate average profiles of PDREs 

over developmental and random genes, our merged collection of PDREs was mapped to -

1Mb/+1Mb surrounding the transcription start site. The bin size was 10 kb. The 

developmental genes were selected based on the GOA description entry "embryo 

development" (http://www.biomart.org). To compare distributions of PDREs over 
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developmental and random genes the Kolmogorov-Smirnov test was used. This test is non-

parametric and it makes no assumption on the distribution of the data analyzed. The results 

were highly significant (D = 0.5400, P = 0.000). The PDREs corresponding to the Zv9 

genome assembly (Supplemental Tables S19-S22) have been generated by converting Zv8 

PDRE locations with the UCSC “liftOver” tool (http://genome.ucsc.edu/cgi-

bin/hgLiftOver). 

 

Analysis of H3K27 Differentially Acetylated Regions - DARs 

The differentially acetylated regions were identified using Fisher's exact test (q value cut-

off = 0.05). For each PDRE a 2 x 2 contingency table was constructed. The number of 

reads mapped to a PDRE and the number of total sequenced reads were compared between 

two adjacent developmental stages.  These DARs were then filtered for regions with greater 

than four-fold differences in read counts.  K-means clustering (k = 3) was performed by the 

seqMINER program (Ye et al. 2011) using standard settings. The sequenced reads were 

mapped to a region spanning -5kb/+5kb from the DAR center. Entries belonging to clusters 

containing DARs with low read counts (cluster 3) were eliminated from further analysis 

whereas the clusters with both significant and abundant changes (clusters 1 and 2) were 

analyzed further. The selected DARs were then mapped to their nearest genes using the 

PinkThing tool (http://pinkthing.cmbi.ru.nl). Gene ontology (GO) analysis was performed 

using the Ontologizer program (Bauer et al. 2008). For the GO analysis, the Parent-Child 

union method was used in combination with the Benjamini-Hochberg multiple testing 

correction and a corrected P value threshold was set at 0.01. The motifs were obtained from 

the JASPAR vertebrate motif database (Sandelin et al. 2004). For the motif analysis, motifs 

enriched in every cluster were compared to the entire collection of PDREs by a 

hypergeometric test, followed by a Benjamini-Hochberg multiple testing correction (P 

value cut-off = 0.05).  Hierarchical clustering of motifs significantly enriched in at least one 

cluster was performed in R. For the evolutionary analysis of DARs, the vertebrate 

PhastCons track was obtained from the UCSC repository. The values ranging from: 0 = non 

conserved to 1 = highly conserved, were assigned to each nucleotide in each DAR and the 

mean PhastCons value was calculated. Different DARs were validated by qPCR. The PCRs 
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were performed on 1:10 dilutions of ChIP samples using the C1000 Thermal Cycler 

(BioRad). For primers, see Supplemental Table S18. The DARs corresponding to the Zv9 

genome assembly (Supplemental Tables S23-S25) have been generated by converting Zv8 

DAR locations with the UCSC “liftOver” tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). 

 

Integration of ChIP-seq and RNA-seq data 

To integrate H3K27ac and H3K4me1 ChIP-seq data with previously published RNA-seq 

profiles (Pauli et al. 2012), genomic locations corresponding to clusters of differentially 

acetylated regions (DARs) or putative distal regulatory elements (PDREs) were converted 

from the zebrafish Zv8 to Zv9 assembly using the UCSC “liftOver” tool 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). The RNA-seq reads were then mapped to the 

nearest gene corresponding to each genomic location. The y axis represents the number of 

mapped RNA-seq reads divided by gene length (kb).  

 

Zebrafish transgenesis  

All PDREs were amplified by PCR from the zebrafish genome (Supplemental Table S17). 

The PCR fragments were subcloned in the PCR8/GW/TOPO vector and, using Gateway 

technology, transferred to the corresponding ZED vector (Bessa et al. 2009). Zebrafish 

transgenic embryos were generated using the Tol2 transposon/transposase method 

(Kawakami 2004) with minor modifications. One-cell embryos were injected with: 2 nl of 

25 ng/µl of transposase mRNA, 20 ng/µl of phenol/chloroform - purified ZED constructs 

and 0.05% phenol red solution. Three or more independent stable transgenic lines were 

generated for each construct.  

 

Zebrafish in situ hybridization  

Antisense RNA probes were prepared from cDNA using digoxigenin or fluorescein 

(Boehringer Mannheim) as labels. Zebrafish specimens were prepared, hybridized and 
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stained as described before (Jowett and Lettice 1994). 

 

STATEMENT ON ANIMAL USE 

All animal experiments were conducted following the guidelines established and approved 

by the Local Government and the Institutional Animal Care and Use Committee, always in 

accordance with best practices outlined by the European Union. 
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FIGURE LEGENDS 

 

Figure 1. Genomic locations of H3K27ac, H3K4me1 and H3K4me3. (A) A schematic 

representation of zebrafish early development. H3K4me1/me3 and H3K27ac were 

immunoprecipitated at the described stages. (B) UCSC genome browser view of H3K27ac, 

H3K4me1, and H3K4me3 tracks obtained for four zebrafish developmental stages: dome, 

80% epiboly, 24hpf, 48hpf. The red asterisks mark previously described neurog1 

enhancers. (C) Endogenous expression pattern of neurog1 at 80% epiboly, 24 hpf and 48 

hpf zebrafish embryos driven by H3K4me1/H3K27ac-marked transcriptional enhancers. 

The transcript is localized along the central nervous system (forebrain, midbrain, hindbrain 

and spinal cord).  

 

Figure 2. Characteristics of identified Putative Distal Regulatory Elements - PDREs. (A) 

Heat maps showing the distribution of H3K4me1/me3 and H3K27ac tags -5kb/+kb relative 

to the PDRE center at four developmental stages. (B) The number of PDREs identified at 

dome (blastula) stage is considerably lower than the number of PDREs identified at 80% 

epiboly or 24/48 hpf, in line with reduced tissue complexity of blastula embryos. (C) Box-

plots showing the distribution of PDRE length at four examined developmental stages. The 

PDREs identified at dome stage are considerably larger than the ones identified at 

subsequent stages, possibly due to a more relaxed chromatin conformation present during 

early embryogenesis. (D) Conservation of identified PDREs as judged by genomic overlaps 

with regions conserved to teleosts (stickleback) and humans. ~40% and ~20% of PDREs 

overlap with regions conserved in stickleback and humans, respectively. (E) The identified 

PDREs are significantly enriched (Kolmogorov-Smirnov test, P value < 0.00001) for 

developmental genes, indicative of a role these sequences might play in early development.  
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Figure 3. H3K27 Differentially Acetylated Regions (DARs). (A) K means clustering (k = 

2) of regions differentially acetylated between adjacent developmental stages. The 

H3K4me1 mark follows the dynamics of H3K27ac, however, it disappears after H3K27ac 

has already disappeared (DAR1) (left panel). Similarly to regions differentially acetylated 

between dome and 80% epiboly, in later DARs the H3K4me1 mark follows H3K27ac and 

even precedes H3K27ac on certain genomic locations (DAR4). (B) A schematic 

representation of different DARs; terms “acetylated” and “deacetylated” correspond to 

genomic locations identified by Fisher’s exact test as differentially enriched for H3K27ac 

between two adjacent stages. (C) Distribution of gene expression intensities (RNA-seq 

reads normalized for gene length)  displays an overall positive correlation with H3K27ac 

deposition on enhancer elements at all stages. The H3K27 acetylated DARs are found in 

the vicinity of highly expressed genes. (D) Hierarchical clustering of motif occurrence in 

differentially acetylated regions. The frequency of all JASPAR vertebrate motifs in the four 

DAR clusters was compared to the frequency in all PDREs. All motifs significantly 

overrepresented (P < 0.05, hypergeometric test in combination with Benjamini-Hochberg 

correction) in at least one DAR cluster were combined and clustered. Overrepresentation 

compared to all PDREs is indicated in yellow, blue indicates underrepresentation. (E) 

Cumulative frequency (Cf) of DARs was plotted against average PhastCons (PC) 

conservation scores that were calculated for each DAR. Each point on the graph represents 

the frequency of DARs with that or a lower PC score. The frequency of dome (-) 80% epi 

(+) DARs with a PC score 0 is 0.43 whereas that number is considerably higher (0.59) for 

dome (+) 80% epi (-) DARs, making them, therefore, less conserved. The black dotted lines 

correspond to the range of conservation of random DNA. 

 

Figure 4. Clustering of H3K27ac, H3K27me3 and Nanog over poised (only H3K4me1-

marked) enhancers at 80% epiboly. (A) K-means clustering (k=4) identifies four groups of 

regulatory elements. The first group are enhancers marked by H3K27me3 that gain 

H3K27ac as the development proceeds. The second group corresponds to elements that 

remain poised during early development. The third and the fourth group correspond to 

elements that gain or lose H3K27ac, respectively. Zebrafish Nanog-like factor displays 

 Cold Spring Harbor Laboratory Press on July 18, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


strong enrichment over early active (H3K27ac) enhancers. (B) GO analysis of nearest 

neighbor genes associated to each cluster. Only the four entries displaying highest 

enrichments are shown (P value cut-off = 0.01). (C) Distribution of gene expression 

intensities (RNA-seq reads normalized for gene length) associated with each cluster. As 

previously shown, an overall positive correlation exists between expression intensity and 

enhancer H3K27ac levels. 

 

Figure 5. Enhancer activity of PDREs analyzed in stable (F1) zebrafish transgenic lines. 

(A) Distribution of H3K4me3, H3K4me1 and H3K27ac tracks along 500 kb spanning the 

zic3 locus at 24hpf. Shaded in grey are 18 PDREs assayed for enhancer activity in zebrafish 

transgenic embryos. These PDREs show different degrees of evolutionary conservation as 

indicated by the conservation tracks below. Out of 18 tested regions, 6 regions did not 

exhibit enhancer activity (red numbers). (B-O) Lateral views of 24hpf zebrafish embryos. 

(B-M) GFP expression driven by the PDREs indicated in the lower right corner of each 

panel. (N-O) Expression patterns of zic3 and fgf13a  genes at the same stage. Abbreviations 

are forebrain (f); midbrain (m); hindbrain (h); otic vesicle (ov); spinal cord (sc), notochord 

(n) and somites (s). 
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