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Abstract

Motivated by the necessity of discrete ZN symmetries in the MSSM to insure baryon stability, we

study the origin of discrete gauge symmetries from open string sector U(1)’s in orientifolds based

on rational conformal field theory. By means of an explicit construction, we find an integral basis

for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168

Gepner models, a total of 32990 distinct cases. We discuss how the presence of discrete symmetries

surviving as a subgroup of broken U(1)’s can be derived using this basis. We apply this procedure

to models with MSSM chiral spectrum, concretely to all known U(3) × U(2) × U(1) × U(1) and

U(3)× Sp(2)×U(1)× U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well

as some SU(5) GUT models. We find examples of models with Z2 (R-parity) and Z3 symmetries that

forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at

the level of a few percent of all cases.
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1 Introduction

Discrete symmetries are often used in model building in order to argue that certain

otherwise allowed terms in the effective Lagrangian are in fact absent. So far in nature

no such symmetry has been observed, apart from CPT. Furthermore, all allowed stan-

dard model interactions are indeed observed, with the exception of the QCD strong

CP violating term, whose apparent absence can however not be explained in terms of

an exact discrete symmetry.

On the other hand, it has been quite common to invoke discrete symmetries in model

building beyond the standard model, and especially supersymmetric model building.

Indeed, a generic point in the full parameter space of the supersymmetrized standard

model with soft supersymmetry breaking terms would be in disagreement with obser-

vation, most notably because of the allowed baryon and/or lepton number violating

UDD, QLD, LLE and LHu terms,1 leading to dimension four operators. These give

rise to catastrophic proton decay rates if all of them are present with coefficients of

order one, and serious constraints even if some of them are absent. The most common

solution to this problem is to postulate a discrete symmetry that forbids them, such

as R-parity [1] or Baryon-triality [2].

Even if the dimension four operators are absent, one has to worry2 about dimension

five operators originating from the superpotential terms QQQL and UUDE, which

preserve B−L and are therefore not forbidden by R-parity. This is because R-parity

may be considered as a Z2 subgroup of B − L.

In string theory one cannot simply postulate a discrete symmetry. It must be a

verifiable property of a given string realization. There are strong arguments supporting

that global symmetries (either continuous or discrete) cannot exist in theories contain-

ing quantum gravity, rather they must be gauge symmetries (see e.g. [5] for a recent

discussion, and [6, 7, 8, 9, 10, 11, 12] for earlier references). Hence, any exact dis-

crete symmetry in string theory must be gauge. In chiral models, discrete symmetries

are strongly constrained by anomaly cancellation conditions [13] (see also [14, 15]).

For MSSM spectra there is a short list of allowed possibilities [2] (see also [16] and

references therein; see also [17, 18, 19, 20, 21]).

1Here Q,U,D,L and E denote the usual MSSM superfields, with U,D and E referring to anti-

particles. The two Higgs superfields are denoted Hu and Hd, and couple to up and down quarks

respectively.
2These operators would be less problematic if proton decay rates are suppressed non-perturbatively,

as suggested recently in [3]. However, lattice computations do not show such a suppression, see e.g.

[4] and references therein.
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Abelian Zn discrete gauge symmetries can be usefully realized as discrete remnants

of U(1) gauge symmetries with BF couplings. This structure occurs frequently for

open string sector U(1)′s in orientifold models (see [22] for a study in geometric orien-

tifold compactifications). These models are obtained by starting from a closed type-II

superstring theory, modding out a world-sheet orientation reversing symmetry, and

adding an open string sector, with the open strings ending on a brane (see [23] for

review and references). The Chan-Paton group of each brane is either O(N), Sp(N)

or U(N). In the latter case there is always a U(1) gauge symmetry, which is often

anomalous. If so, the anomaly is cancelled by a Green-Schwarz mechanism involving

one of the RR axions, of which there are usually many. In this process the U(1) gauge

boson acquires a mass through a BF couplings, equivalently, by absorbing a scalar

field (henceforth dubbed ‘axion’) as its longitudinal component. Furthermore, even

non-anomalous U(1)’s can acquire a mass through this kind of BF interaction [24].

The perturbative couplings always respect charge conservation with respect to any

of these U(1)’s, anomalous or not, massive or massless. For example, in brane models

where baryon number and lepton number are embedded in these brane U(1)’s, no B

or L violating couplings are generated perturbatively. However, massive U(1)’s are in

general violated by non-perturbative effects, mediated by brane instantons coupling to

the relevant axion field. The branes supporting the instanton may be part of the brane

configuration of the model, in which case they correspond to gauge instantons, and

have strength controlled by gauge couplings, hence negligible in SM-like models. More

interestingly, the instantons can originate from different branes, and have strength

unrelated to gauge couplings, and hence can potentially induce sizable values for the

coefficients for the U(1) violating operators. Examples of such “stringy instantons”

have been discussed in many papers [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Such

instantons may in general have a surplus of zero-modes, so that they do not contribute

to the superpotential, but the violation of the symmetry arises in higher derivative

terms [35, 36, 37]. It is thus important to characterize the general set of U(1) violating

instantons in any given string model.

This is in general difficult to achieve by explicit construction. If a brane instanton

is found with suitable zero-mode structure to induce a coupling, this proves that the

latter is generated; but if no such explicit instanton can be found, it does not follow

that the coupling is not generated. This is especially true in RCFT constructions,

where a priori only a limited set of branes (boundary states) is available. This is where

discrete symmetries can play a useful rôle. It may happen that a U(1) is not broken
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completely, but that a discrete Zn symmetry remains. In that case, no instanton, and

indeed no no-perturbative effect can break it, since it is an exact symmetry of the

theory.

A second motivation to study the existence of discrete gauge symmetries is that,

apart from forbidding undesirable terms, discrete symmetries may also forbid desirable

ones, such as certain Yukawa couplings, or Majorana mass terms for right-handed

neutrinos. Hence, the study of discrete symmetries can help one to avoid the pointless

exercise of looking for instantons that cannot exist anyway, or to focus on those models

which potentially allow for them.

Finally, one may also ask a different kind of question. Rather than determining if

a given model does or does not have a certain discrete symmetry, one may ask if the

occurrence of such symmetries is a generic phenomenon in string theory, or at least in

certain subclasses. If the answer is positive, an appeal to discrete symmetries to avoid

catastrophic couplings becomes more credible, but then it becomes less convincing

that e.g. Majorana mass terms or perturbatively forbidden Yukawas will generically

be generated by instantons.

In this respect, we note that our results on the frequency of occurrence of discrete

symmetries are not directly related to other work on the occurrence of discrete R-

symmetries in the string landscape, such as [38, 39, 40]. The latter deal with closed

type-II strings (including some type-II Gepner models), without open string sectors,

whereas we study symmetries originating from Chan-Paton groups of open strings.

Also, the discrete symmetries discussed in the present paper act on all members of

supermultiplets in the same way, and are therefore not discrete R-symmetries. Never-

theless, our discussion does include R-parity, since despite its name it can be obtained

as the discrete Z2 subgroup of B−L generated by (−1)3(B−L) (physically indistinguish-

able from the Z2 R-symmetry (−1)3(B−L)+2S , since in any scattering amplitude S is

conserved modulo integers).

For all the reasons explained above it is important to be able to compute in an

efficient way and in a large classes of models if these orientifold U(1)’s are completely or

only partly broken. This is what we wish to do here for the class of Gepner orientifolds

(orientifolds of the closed type-II string theories first constructed in [41]).

Gepner orientifolds models [42, 43, 44, 45, 46, 47, 48, 49, 50, 51] provide access to an

interesting region of the landscape where open string configurations can be found that

realize the standard model. The methods used are quite different than the more familiar

ones used for orientifolds of orbifolds or Calabi-Yau models. The basic ingredients are
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not branes wrapping cycles on a manifolds, but boundary states in rational conformal

field theory. However most of the techniques available in brane descriptions can be

translated rather easily to rational CFT language. For example, it is known how to

compute massless (and even massive) spectra corresponding to brane intersections,

how to cancel disk tadpoles against crosscap tadpoles, and how to check if a U(1) is

broken by couplings to axions. Examples exist [47] where the resulting unbroken gauge

group is exactly SU(3) × SU(2) × U(1). In this example all tadpoles cancel within

the standard model sector, hence there are no “hidden sector” gauge groups, and all

superfluous continuous U(1)’s, especially the usually problematic B−L symmetry, are

broken.

In [22] it was explained how to find U(1)’s broken to discrete subgroups in the

geometric approach. We would like to translate this result to RCFT, or at least the

special case of Gepner models. Here we immediately run into a problem. In the

geometric setting, discrete symmetries can be read of from the axion-gauge boson

couplings, which in a suitable geometric basis are integers. The signature of a discrete

symmetry is a common factor of these integers. However, in a RCFT setting, the

boundary coefficients are complex numbers, and a canonical basis in which they are

integers is not readily available.

In this paper we solve this problem in an empirical way, by developing an algorithm

that does allow us to write all coefficients in terms of integers. This algorithm yields

a preferred set of boundary states that plays the same rôle as the aforementioned

geometric basis. This involves extensive numerical computations, which give the desired

result in all cases. The fact that this is possible calls for a deeper understanding, a

principle that determines the basis without extensive computations. This in its turn

may provide new insights in the geometric interpretation of all these orientifold models.

However, for our present purpose the empirically determined basis does the job. We

hope to return to the underlying structure in the future.

This paper is organized as follows. In the next section we review some basic details

of Gepner Models. In section 3 we define the problem and explain how it is solved. In

section 4 we explain the algorithm that yields the integral basis. In section 5 we give

some examples. Some conclusions are offered in section 6.
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2 Gepner orientifolds

A given Gepner model is specified by a tensor product of N=2 minimal models and a

modular invariant partition function (MIPF for short). The tensor product has total

central charge 9. There are 168 ways of tensoring minimal N=2 models so that a the

required central charge 9 is obtained. They can be denoted as (k1, . . . , kN), where

ki ≥ 1 is the level of factor i. Usually we drop the commas and the brackets, and

denote a tensor product by a numerical string built out of the ki in ascending order.

This notation turns out to be unambiguous. Each of the 168 Gepner models has a

chiral algebra X , containing the N=2 super-Virasoro algebra. This algebra has a finite

number (typically of order 103 . . . 105) of representations, labelled by a set of integers.

To get these representations, one starts with all combinations of representations of the

N tensor factors, and subjects them to a projection to impose world-sheet supersym-

metry. In addition to the N tensor factors, the four-dimensional NSR fermions are also

participating in a non-trivial way. In addition to this, one extends the chiral algebra

with a spin-1 operator which is a space-time spinor and imposes a GSO projection.

The result of these two extensions is the algebra X . Here and in the following we use

the simple current [52, 53] description of MIPFs of Gepner models presented in [54].

It has the advantage that all world-sheet and space-time supersymmetry projections

can be treated on equal footing with the construction of the MIPFs, and that explicit

details about the N=2 primaries can be omitted. All we need to know is how the simple

currents act on them.

The most general simple current MIPFs for each of the 168 Gepner models can

be built using the formalism developed in [55]. This gives rise to a total of 5392

distinct MIPFs. They are characterized by a non-negative integer multiplicity matrix

Mij indicating how often certain left-right character combinations occur in the closed

string. The labels i refer to the aforementioned set of chiral algebra representations.

Permutations of identical N=2 factors3 generate isomorphisms between MIPFs. These

have been removed, so that with a few exceptions all MIPFs are really distinct. There

are just a few cases where two or more supposedly distinct MIPFs yield apparently

3In the context of RCFT orientifolds, a naively possible origin of discrete symmetries is the permu-

tations of identical factors. However, many of these permutations are broken by the MIPF, orientifold

and boundary state choice. Although it is possible that cases exist where permutation symmetries

survive in the spectrum as exact discrete symmetries, we do not know any examples. In any case this

is not the subject of the present paper, which as already mentioned focuses on symmetries arising

from open string sector U(1)’s.
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identical data.

On top of this there are choices to define the orientifold quotient [58]. Taking all of

these into account brings the total number of possibilities to about 49000. However,

some of them have zero tension, which implies that no branes can be added without

violating the dilaton tadpole condition. After eliminating these cases we end up with

32990 in principle distinct orientifolds (as with the MIPFs, in practice there are always

a few “accidental” degeneracies that are apparent in the spectrum, but do not have a

very obvious fundamental origin. This is irrelevant in practice).

A simple current MIPF is characterized by a discrete group H of simple currents,

and a matrix of rational numbers X(M,J) defined on H. On Riemann surfaces with

boundaries each MIPF has a definite set of Ishibashi states and a corresponding set

of boundary states. The former are simply in one-to-one correspondence with the

elements Miic of the multiplicity matrix, where ic denotes the two-dimensional charge

conjugate of i. In a simple current MIPF these states are labelled by a label m referring

to a representation of the chiral algebra of the tensor product, and a degeneracy label

J . For each m, this degeneracy label is the simple current in H that fixes it, i.e.

Jm = m, with Mmmc 6= 0. So Ishibashi states will be denoted as (m, J).

The set of boundary states that respects all the symmetries of the original chiral

algebra is known to be equal to the number of Ishibashi states [56]. They are charac-

terized by the orbits of H on the chiral algebra representations. These orbits can be

labelled by an integer a that belongs to the set of representation labels of the full chiral

algebra. An orbit is a set of representation labels related by the action of H. For the

boundary label we choose one representative from this set. Also in this case there may

be degeneracies, which occur if the H-action has fixed points. The degeneracy labels

can be conveniently chosen as the discrete group character ψ of certain subgroup (called

the “central stabilizer”) Ca of the stabilizer Sa of a (the stabilizer is the subgroup of H
of that fixes a representation a). The boundary labels are then [a, ψa]. Note that the

set of characters depends on the boundary label. If the central stabilizer is a discrete

group with |Ca| elements, than there exists exactly |Ca| distinct characters (complex

functions on Ca that respect the group property).

Now we have two sets (m, J) and [a, ψa] of Ishibashi and boundary labels. These

can be shown to be of equal size, although this is not manifest. On this basis we now

define boundary reflection coefficients [58]

R[a,ψa](m,J) =

√

|H|
|Ca||Sa|

ψ∗
a(J)S

J
am (2.1)
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Here SJam is a matrix element of the modular transformation matrix of a certain algebra

associated with the original chiral algebra and the current J [59, 60]. If J is the identity,

SJ is equal to the modular transformation matrix of the chiral algebra X . If J is not the

identity, SJ is the modular transformation matrix of another algebra, usually, but not

always, related to some other conformal field theory. All these matrices are explicitly

known and are, in general, complex numbers. In the prefactor |H|, etc, denotes the

number of elements of the corresponding discrete group.

The boundary coefficients are independent of the orientifold choice. The latter

enters the discussion in two ways. First of all the unoriented annulus coefficients have

the form [58]

Ai[a,ψa][b,ψb]
=
∑

m,J,J ′

SimR[a,ψa](m,J)g
Ω,m
J,J ′R[b,ψb](m,J ′)

S0m
(2.2)

Here gΩ,mJ,J ′ is an orientation-dependent metric on the space of Ishibashi states; Ω

denotes the orientifold choice. In general, gΩ,mJ,J ′ is a block-diagonal matrix in the labelm,

which can act non-trivially in the degeneracy spaces for each m. One could in principle

take the square root of this metric and absorb it into the boundary coefficients, which

then become orientation dependent. However, it is both physically more appealing and

also more convenient to have orientifold-independent boundary coefficients. The final

results will not be affected by this convention.

To make the notation a bit less cumbersome we will use in the following a single

letter “a” instead of the combination [a, ψa] to denote boundaries. The fixed point

splitting of the boundary labels does not really play a rôle in what follows.

The annulus coefficients appear in the expression for the oriented annulus as

A =
∑

a,b

NaNb

∑

i

Aiab χ
i(τ/2) , (2.3)

where Na, Nb are the Chan-Paton multiplicities, and χi are the Virasoro characters of

the chiral algebra X .

The second way the orientifold choice matters is in boundary conjugation. This is

defined as follows

A0
ab =

{

1 if b = ac

0 otherwise
(2.4)

Clearly the dependence of boundary conjugation on orientation can be traced back

to the Ishibashi metric gΩ,mJ,J ′ , so that in the end all dependence on orientation can be

traced back to this quantity.
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3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete ZN gauge symmetries from open

string U(1)’s are the coefficients Ram, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms Bm

∑

a,m

Na VamBm ∧ Fa (3.1)

Here Vam = Ram−Racm, with the relative minus sign arising because the physical U(1)

gauge boson is the difference of those supported on the brane and its orientifold image.

Consider now a linear combination4
∑

a xaYa of the U(1) generators Ya of brane a.

Its BF couplings are

∑

m

(
∑

axaNaVam
)

Bm ∧ F (3.2)

It thus remains massless if and only if

∑

a

xaNa(Ram −Racm) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram −Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

φm dual to the 2-forms. With a suitable normalization, the amplitudes go like e−2πiφm ,

and the axions have an identification φm ≃ φm + 1. It is useful to introduce the dual

description of (3.2) in terms of φm. The relevant lagrangian is

∑

m

[ ∂µφm − (
∑

axaNaVam)Aµ]
2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ → Aµ + ∂µλ ; φm → φm + (
∑

axaNaVam)λ (3.5)

Instanton amplitudes transform as

e−2πiφm → e−2πiφm exp[−2πi(
∑

axaNaVam)λ] (3.6)

4It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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and this transformation is cancelled by the insertion of an operator in the charged

matter, with total charge (
∑

axaNaVam). This quantity therefore measures the amount

of U(1) violation.

Thus the condition for a discrete ZN remnant of the U(1) is therefore

∑

a

xaNa(Ram − Racm) = 0 mod N for all m. (3.7)

This ZN is an exact gauge symmetry. The result also follows from the analogy of (3.4)

with the Higgsing of the U(1) by a charge N scalar (whose phase is played by a suitable

linear combination of the RR scalars).

In other words, to find ZN discrete symmetries, we should look for zero eigenvectors

modulo N of the matrix Mam, in the convenient normalization used above. In a

geometric setting, they can be made integer by choosing a suitable basis for the axions,

in terms of basic 3-cycles on the compactification manifold (in type-IIA language), see

[22]. But this notion (and so the automatic appearance of the convenient normalization)

is not readily available for Gepner models, although in some very special cases (the

quintic Calabi-Yau) similar bases have been discussed [57]. A specialized geometric

discussion for each separate case is not likely to get us to the desired result, since we

will have to deal with all possible simple current MIPFs of the 168 Gepner models, and

all their orientifolds, a total of 32990 distinct possibilities with non-vanishing orientifold

tension.

The general formula for the boundary coefficients in such a CFT takes the form

(2.1). Here SJam is a modular transformation matrix of a conformal field theory, and ψ

is a phase, and the pre-factor is a square root of a rational number. Neither of these

factors are integers. Indeed, in general these boundary coefficients are complex. It is

not clear how to even define condition (3.7). The key towards the resolution, is to search

for a basic set of instanton branes, whose boundary coefficients thus define the axion

periodicities; this then allows to effectively move onto the convenient normalization in

which coefficients are integers, whose gcd then gives the order of the discrete symmetry.

3.2 Axions in RCFT and basis of boundary states

In this section we describe the structure of axions in RCFT orientifolds, and explain

the relevance of the above mentioned basis of boundary states in RCFT terms.

An Ishibashi state (m, J) contains an axion if the representation m contains a

massless space-time spinor. The ground state may contain NL left-handed and NR

right-handed massless spinors. In the closed string one gets the square of the character
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multiplied by the multiplicity matrix Mij . This is then subject to the Klein bottle

projection if i = j (since the Ishibashi states correspond to i = jc, the Klein bottle

projection can only affect self-conjugate Ishibashi states with NL = NR; for a more

detailed discussion see the appendix). However all these multiplicities are ignored in the

following, because they all have the same boundary coefficients. Each representation

with NL+NR > 0 is counted as one axion, regardless of the values of these numbers and

Klein bottle projected closed string multiplicity and even if the Witten index NL−NR

vanishes. Note however that each degeneracy label J is counted once as a different

axion, since the axion coefficients depend on J .

We introduce the following notation for the relevant coefficients.

Vaν ≡ Ra(m,J) −Rac(m,J) , (3.8)

where a = 1, . . . , NB, the number of complex boundary pairs. The second label ν

identifies contributing axions according to the rules stated above. We will discuss

the precise range of the label below. Charge conjugation is defined by means of the

orientifold choice. We regard these objects as a complex matrix with columns labelled

by ν and rows by a. Note that self-conjugate boundaries do not contribute, and that

each complex pair contribute one row, so that there is a one-to-one correspondence

between the rows and all possible U(1) factors in the open string spectrum.

As stated above, these coefficients Vaν are in general complex. However, since they

are coefficients of BF couplings, they should be real (morally, up to phase redefinitions

of the RR fields); in other words, they can be made real by an a-independent but

ν-dependent phase rotation (as can be shown directly in explicit models, see next

section), as we assume in the following.

Note however that, since they axion periodicities had not been fixed to unity, they

are not integers or rational numbers. However we will demonstrate in the next section

that there exists at least one choice of boundaries c(µ) such that the following relation

holds

Vaν =

NA
∑

µ=1

QaµVc(µ)ν , Qaµ ∈ Z (3.9)

Here c is a map from the set of axion labels into the set of boundary labels which assigns

a different boundary label to each axion label: c(µ) 6= c(ν) if µ 6= ν. The number of

basis vectors NA is equal to the number of independent columns of Vaν (it turns out to

be sufficient to remove vanishing and identical columns, more complicated dependencies

do not occur). Consequently, the labels ν cannot be expressed unambiguously in terms
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of the original transverse channel labels (m, J): there may be more than one (m, J)

corresponding to any given ν. More details will be given in the next section.

If (3.9) can indeed be realized, it defines a basis in the space of all complex bound-

aries such that all other boundaries can be expanded in that basis with integer co-

efficients. In this way we obtain a lattice of charges, so that each boundary state

corresponds to a point on that lattice. In general we expect that this basis is not

unique, just as the basis of a lattice is not unique. Note however that not every lattice

point is occupied. This is obvious because there is only a finite number of boundary

states and an infinite number of lattice points, but also near the origin there are in

general unoccupied sites. This implies that not every lattice basis can be realized in

terms of boundary states.

The basic boundary states defines a set of ‘smallest instantons’ (at least in the RCFT

realm), whose couplings to the axions define the axion periodicities. The quantities

Qaµ thus correspond to the coefficients of the BF couplings in the desired normalization

in which the axions have unit periodicity, and can therefore be used to look for the

discrete ZN symmetry. Namely a U(1) integer linear combination Y =
∑

a xaYa (with

the conventions in footnote 4) has an unbroken ZN subgroup if it satisfies the condition

∑

a

xaNaQaµ = 0 mod N (3.10)

There is an alternative description of the physical relevance of the basis, which

instead of leaning on the axion periodicities, is based on expressing the amount of

instanton U(1) violation in terms of the basic instantons, as follows (both viewpoints

are clearly related since (3.5) links U(1) gauge transformations and axion shifts). As

described in [25, 26], the amount Ib(a) of U(1)a violation by an instanton supported

on a brane b is given by the net number of charged fermion zero modes arising from

massless open strings stretching between both boundaries. In the RCFT setup, and

accounting for orientifold images, we have a combination of the annulus coefficients

(2.3)

Ib(a) = Na

∑

i

wi(A
i
ba − Aibac) (3.11)

where wi is the Witten index in the open string sector, which effectively extracts the

net chiral contribution. Using (2.2) we have

Ib(a) = Na

∑

i

wi
∑

m,J ′,J

[

SimRb(m,J ′)g
Ω,m
J ′J

S0m

]

(Ra(m,J) −Rac(m,J)) (3.12)
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Note that these quantities are integer, and moreover can be defined for any boundary

states a, b, regardless of whether a actually realizes a U(1) symmetry in the model or

not. Decomposing the boundary coefficients using (3.9), and reconstructing back to

annulus amplitudes, we obtain

Ib(a) =
∑

µ

NaQaµIb(c(µ)) (3.13)

Here Ib(c(µ)) are formally defined as in (3.12); in physical terms, they are integers

measuring the violation by the instanton brane b of a putative U(1) carried by brane c(µ)

(which need not support an actual U(1) of the model). For a U(1) linear combination

Y =
∑

a xaYa (with the conventions in footnote 4), the charge violation by an instanton

brane b is

Ib(x) =
∑

a

xaIb(a) =
∑

µ

(

∑

a

xaNaQaµ

)

Ib(c(µ)) (3.14)

Since Ib(c(µ)) are integer, if the coefficients
∑

a xaNaQaµ have a common factor N ,

all instantons violate U(1) charge in multiples of N , so that a discrete ZN subgroup

remains unbroken. Hence we recover condition (3.10) for the existence of a discrete ZN

symmetry.

Although this derivation exploited the RCFT formulas, eq. (3.13) makes full phys-

ical sense even for non-RCFT instantons. This strongly supports that the result holds

for any instanton b, and therefore that the proposed condition (3.10) is correct in gen-

eral. Still, it is possible that the basic quantities Ib(c(µ)) already have a common factor.

If they do not, we will get a ZN discrete symmetry, as read off from the coefficients

Qaµ; otherwise, we can only get more discrete symmetries than naively expected. We

believe this possibility to be fairly unlikely. The fact that we were able to find an in-

tegral lattice of charges in all cases strongly suggests that (3.10) identifies the discrete

symmetries correctly.

4 Finding an integral basis

We will now explain a method that turns out to be very effective to find the integral

basis described above.

Our starting point is the matrix Vaν , where rows a label boundary states and

columns ν label axion fields. First we will normalize the coefficients Vaν in a convenient

way. In their raw form, these coefficients are not even relatively real. However, on
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already explained physical grounds, they can be made real with a independent phase

redefinitions, which are duly accounted in the following normalization. Consider in

each column the first non-vanishing entry, starting at the top. If there is such an entry,

divide all entries in the column by it, so that the top entry is equal to 1. If there are

any columns that are completely zero, we discard them, since they describe decoupled

axions; also, if two columns are identical, we keep only one of the two, since there is

a decoupled linear combination of axions. This procedure only eliminates vanishing

or identical columns. This is in general not sufficient to ensure that the columns are

linearly independent, although this turns out to be the case in practice in the whole

class of models. We call the dimension of this axion space NA. As expected, it turns

out that after normalizing the top entry of each column to 1, all entries in the matrix

become real numbers.

This normalization removes some convention-dependent factors in the boundary co-

efficients. For instance, as mentioned below (2.2), we could have defined the boundary

coefficients differently by absorbing the square root of gΩ,mJ,J ′ in them; this is conveniently

done by choosing a basis in degeneracy space so that gΩ,mJ,J ′ is diagonal, so it can be ab-

sorbed into the boundary coefficients by multiplying each column by a certain complex

factor. The normalization procedure discussed in the foregoing paragraph removes any

possible dependence on such conventions.

Note that this normalization procedure depends on the way the boundaries are

ordered. This ordering is not just arbitrary, because it descends from the ordering of

the representations of the chiral X , but the ordering is not in any way canonical either.

Roughly speaking, it has the property that if i > j, then S0i > S0j , but even that

ordering is not strict. However, the final result will not depend on this normalization

procedure.

In this way we now obtain a real matrix Vaµ, where a labels boundaries and µ the

reduced set of axionic Ishibashi states. Now we consider the inner product matrix

Nab =
∑

µ

VaµVbµ ≡ Va · Vb (4.1)

Upon explicit computation, it turns out that this is a rational matrix in all models,

even though the coefficients V are real, and in general not rational. Note that if

we renormalize an entire column by
√
q, q ∈ Z this does not affect the rationality.

However, it is not uncommon to encounter other irrational numbers such as p +
√
q

and sine and cosines of rational multiples of π. It is therefore far from obvious that

the rationality of V will persist if we order the boundaries differently, thus obtaining a
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different normalization prescription. However, it is an empirical fact that in all 32990

cases of different MIPFs and orientifolds all these numbers Nab come out rational, and

this will turn out to be a very fortunate outcome.

Based on the intuitions in earlier sections, the hope is to find a basis in the space

of Ishibashi states such that all coefficients Vaµ are transformed into integers, i.e. find

a real and invertible matrix R such that

Qaν =
∑

µ

VaµRµν ∈ Z (4.2)

If such a basis exists, the coefficients Vaµ can be written as

Vaν =
∑

µ

QaµR
−1
µν (4.3)

We may think of the matrix R−1
µν as a set of basis vectors B

(µ)
ν labelled by µ, and then

what we are looking for is a set of basis vectors in terms of which all vectors Vaν have

integer expansions. In other words, all vectors Vaν lie on the lattice spanned by the

basis vectors. If we express the inner products Nab in (4.1) in terms of the basis vectors

we get

Nab =
∑

µ

∑

ν

QaµQbν

∑

ρ

R−1
µρR

−1
νρ =

∑

µ

∑

ν

QaµQbν B
µ · Bν (4.4)

This tells us that if the basis vectors have integer (or rational) inner products, then

integrality (rationality) of all Nab follows automatically.

It is then natural to conjecture that the basis vectors might themselves be chosen

as a subset of the boundary vectors Vaµ. A necessary condition is that we should be

able to find NA independent vectors Vaµ. Here it is important that the NA columns

are linearly independent, as explained above. A basis of this kind is defined by a map

c(µ) from the set of axion labels to the set of boundaries, and we write

R−1
µν = B(µ)

ν = Vc(µ)ν (4.5)

After inverting this matrix we can compute the charges using (4.2). The fact that

all Nab are rational guarantees that the charges are rational. But we can do better

than that. Suppose some boundary vector W has the following expansion in terms of

the basis

Wν =
∑

µ

QµVc(µ)ν =
∑

µ

pµ
qµ
Vc(µ)ν , (4.6)

where pµ and qµ are relative prime. Now suppose there is one µ, denoted µ̂, so that

pµ̂ = 1. We may then bring the corresponding term to the left, Wν to the right and
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multiply by −qµ̂. Then we get

Vc(µ̂)ν =
∑

µ,µ6=µ̂

−pµqµ̂
qµ

Vc(µ)ν + qµ̂Wν (4.7)

Now we may remove Vc(µ̂) from the basis and replacing it by W , thus defining a new

map, ĉ(ν). The advantage is that now one of the charges has changed from 1/qµ̂ to

qµ̂. Furthermore, if qµ and qµ̂ have common factors, the remaining denominators are

reduced (in the majority of cases all denominators in (4.6) are in fact equal to qµ̂, so

that all coefficients become integer).

Now we iterate this process: compute all charges of the boundary vectors with

respect to all basis vectors, and as soon as we encounter one with charge 1/q, we

interchange the corresponding basis vector and boundary vector. Note that in every

step the the determinant of the inner product matrix of the basis vectors (which is the

square of the volume of the unit cell of the lattice) is reduced5 by a factor q2 . This

means that the procedure must end after a finite number of steps.

The only way the procedure can fail is if no charge 1/q can be found. A simple

example demonstrating such a failure is a one-axion case with just two boundary vectors

v1 = (2) and v2 = (3). There are two possible bases, and the only charges we encounter

are either 2
3
or 3

2
. This situation never occurs for any of the 32990 Gepner orientifolds.

However, it may also happen that an integer basis exists, but that the algorithm

converges to an incorrect basis. We did indeed encounter just three cases where we

ended up with a basis with respect to which all charges are either integer, or half-

integer, with values q/2, |q| ≥ 3. Then no further progress is possible. These three

cases could be handled by reordering the initial set of boundaries, so that the algorithm

converges to a different set. For all 32990 orientifolds a maximum of 19 iterations was

necessary to reach an integer basis.

Note that all charges are defined in terms of boundary vectors, as announced in

(3.9), through

Vaν =
∑

µ

QaµVc(µ)ν (4.8)

so that the original basis in which the boundary vectors are expressed is irrelevant. In

particular, the unusual normalization procedure of the columns drops out between the

5Proof: Consider the lattice spanned by the NA− 1 vectors Vc(µ), with Vc(µ̂) removed. The volume

of the full unit cell is the volume of the unit cell in this NA − 1 dimensional sub-lattice, times the

length of Vc(µ̂) times sin θ, where θ is the angle between Vc(µ̂) and the plane of the sub-lattice. The

new vector W can be decomposed in a component along Vc(µ̂) and a component in the plane of the

sub-lattice. The component of W along Vc(µ̂) has a length 1/q of Vc(µ̂), and the projection on the

sub-lattice is irrelevant for the computation of the volume. Hence the volume decreases by 1/q.

15



left- and righthand side. However, this normalization procedure lead to rational inner

products, which was a great convenience for obtaining the result.

A final comment is that, although the existence of a basis is expected on general

grounds (e.g. extrapolation from the geometric regime, or ultimately, from brane charge

quantization), it is very remarkable that in the present setup the basis is realized in

terms of RCFT boundary states. In particular, this implies that at the Gepner point all

the basis vectors are mutually supersymmetric, a very special configuration reminiscent

of fractional branes at singularities. It is possible that work along the lines of [67],

realizing rational boundary states as fractional branes in LG orbifolds, further clarifies

the nature of the above basis beyond the brute force construction.

4.1 Example: The Quintic

In order to explain how the algorithm explained above works in practice, we will con-

sider here the quintic, a well studied case in the comparison between Gepner models

and Calabi-Yau compactifications. An integral basis for tadpole charges for this case

was presented in [57]. Here we need only a subset of those charges, since we are only

interested in the “imaginary” boundary combinations a − ac. However, the results of

[57] are not sufficiently explicit to make a direct comparison possible, and furthermore

there will in any case be a basis dependence.

The quintic Calabi-Yau has Hodge numbers (h11, h21) = (1, 101), and can be ob-

tained from the Gepner model (3, 3, 3, 3, 3). As a RCFT, this has 4000 boundary states.

The total number of independent axions with Ra(m,J) − Rac(m,J) couplings turns out

to 100. Of the 4000 boundary states, 32 have a Chan-Paton group SO(N), and these

do not couple to these axions. The remaining 3968 boundaries are pairwise related by

conjugation. Hence we end up with a total of 1984 vectors Vaν , with ν = 1, . . . , 100.

We normalize them in the way explained above.

In order to have the best possible chance of finding the basis we first order the 1984

vectors in a convenient way. One would naively expect the basis vectors to have the

smallest norm, so we order the 1984 Vaν according to increasing norm, respecting the

original CFT ordering in case of degeneracies. Then we select the first 100 independent

vectors out of this set. It turns out that the first 46 are independent, and then we have

to go up to number 200 to complete the set. Now we compute the charges of all 1984

vectors with respect to this basis. To do so, we start with (4.8) and contract both sides

with the would-be basis vectors Vc(µ)ν . In this way the coefficients on both sides of the

equation are related to elements of the matrix Nab, eqn (4.1), which are rational. The
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definition of the charges now becomes

Nac(ν) =
∑

µ

QaµNc(µ)c(ν) (4.9)

We now invert the rational matrix Nc(µ)c(ν). In this case it is a 100 × 100 matrix,

which can be inverted exactly on a computer using unlimited size integer numerators

and denominators. In this way we can avoid accuracy problems with real numbers.

This is essential, because in the most difficult case we have to deal with a 480 × 480

matrix. Using the inverse we now compute the charges. Obviously the charges of the

basis vectors themselves are integers by construction, Qc(ν)µ = δνµ, but this leaves 1884

non-trivial vectors to be checked, each with 100 charges. In this example, boundaries

1, . . . , 46 are in the basis, boundary 47 is not, but turns out to have integral charges,

but boundary 48 has charge 1
2
with respect to the second basis vector. So following

the algorithm explained above we now take boundary 48 as our second basis vector.

We recompute the inverse of the new matrix Nc′(µ)c′(ν), where c
′ denote the new basis

choice. In the next iteration boundary 53 turns out to have charge 1
2
with respect to

basis vector 15. So we put it in the basis and try again. Now boundary 104 turns

out to gave charge 3
2
with respect to basis vector 6, a charge that is unsuitable, but it

has charge −1
2
with respect to basis vector 7. After putting boundary 104 in the basis

instead of this vector, we find that all 1984 boundaries now have integer charges.

5 Results

In [48] 19345 distinct chiral classes of brane configurations were found that agree with

the standard model chirally.6 These spectra are distinguished by comparing them mod-

ulo non-chiral (vector-like) matter. They all contain a group SU(3) × SU(2) × U(1),

and all matter that is chiral with respect to that group must form exactly three families

of quarks and charged leptons. They are distinguished by their complete Chan-Paton

group, the chiral matter with respect to that group, and the massless vector bosons

that exists in addition to Y . These Chan-Paton chiral spectra may contain matter that

is SU(3) × SU(2) × U(1) non-chiral, such as Higgs pairs and right-handed neutrinos,

as well as less desirable vector-like particles. Individual models in each class differ in

6All spectra are available online at http://www.nikhef.nl/∼/t58/Site/String Spectra.html.

They were assigned a unique number to identify them, and to which we will refer henceforth. To

examine an explicit sample of a spectrum in one of the 19345 classes, follow the instructions given on

this webpage.
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their fully non-chiral spectra, i.e. in matter that is vector-like with respect to the full,

unbroken Chan-Paton gauge group. We can now in principle investigate all of them

for the presence of discrete symmetries. Note that in each class there are many explicit

realizations, which were collected by examining a subset of the 32990 non-zero tension

orientifolds. This subset was determined by limiting, for purely practical reasons, the

total number of boundary states to 1750.

The presence of discrete symmetries is not a property of the entire class, but must be

examined for each class member separately. In fact, according to the search philosophy

of [48] it would be natural to split these classes into subsets with definite discrete sym-

metries. At present, only the presence of additional U(1) bosons, in other words, the

constraint
∑

a naNaQaµ = 0, is used to distinguish classes. A natural refinement would

be to distinguish brane configurations on the basis of the constraint
∑

a naNaQaµ = 0

mod N .

Since this refinement was not taken into account we have to examine classes of

interest a posteriori. We did not do that for all 19345 classes, but limited ourselves to

classes with Chan-Paton groups U(3)×U(2)×U(1)×U(1) or U(3)×Sp(2)×U(1)×U(1)
(UUUU and USUU for short) with all chiral matter in bi-fundamentals, and SU(5)

GUT models with Chan-Paton group U(5)×O(1) , U(5)×U(1) , U(5)×U(1)×O(1)

or U(5)× U(1)× U(1).

5.1 UUUU and USUU spectra

The majority of the spectra in this class are of the “Madrid” type [24]. In this config-

uration all U and D antiquark open strings have one end on the U(3) brane and the

other on one of the U(1) branes (the c-brane, conventionally7), whereas the charged

leptons and neutrinos have their endpoints on the c-brane and the d-brane. There is

a more exotic, but also more problematic possibility of having some of the anti-quarks

end on the c-brane and some on the d-brane. This class was investigated in [61]. In

all but one of these models the standard model Y charge is given by

Y =
1

6
Ya −

1

2
Yc +

1

2
Yd , (5.1)

where Yx is the U(1) generator of brane x. The signs are convention dependent, and

are chosen differently in some of the literature. There is one model in the database (Nr.

13395) with a U(3)×U(2)×U(1)×U(1) Chan-Paton group and an unconventional Y

7We use boldface subscripts to refer to one of the four standard model branes.
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charge Y = −1
3
Ya +

1
2
Yb + Yd. There are just eight samples of this particular model,

and none of them had discrete symmetries, so we will not consider it here.

In table 1 we summarize all 24 models with the hypercharge embedding chosen

as in (5.1). The horizontal lines separate the USUU and the UUUU models, and

within these sets they separate the standard Madrid models (with perturbative lepton

number conservation) from the non-standard ones. In the columns labelled xy etc. we

list the chiral intersection number Ixy. If this number is negative, this implies that

both endpoint branes must be conjugated. Note that in addition there may always

be non-chiral matter, which is ignored in the definition of a chiral class. Within the

USUU class, there is only one Madrid model possible, but in the UUUU class there

are several, depending on the choice of the U(2) representation (2) or (2∗) used for the

standard model matter. Furthermore the Higgs bosons can be chiral with respect to

U(2)b, and hence contribute to U(2) anomaly cancellation. No restriction was imposed

on the number of such “chiral” Higgs bosons. Even if the number is zero, Higgs bosons

can still occur as U(2)-non-chiral particles in the spectrum.

For each model, there is a possibility of having just a single massless U(1) boson,

Y , or two, Y and B−L. The latter possibility is much more common than the second,

and for some configurations the first option was not realized at all in the set of Gepner

orientifolds explored in [48]. In models that are not strictly of the Madrid type there

is usually just a single non-anomalous U(1) and hence only Y is gauged. In models

7488 and 13015 however, there is an additional anomaly free U(1), namely Qb + 2Qc,

which is unbroken in the second class. Interestingly, the unbroken case occurred less

often than the broken case, just the other way around as for Madrid models.8 There

are several conventions one can choose to represent these spectra. One may conjugate

the b brane, which does not participate in Y . Furthermore, one can conjugate the d

brane and simultaneously interchange the assignment of right-handed neutrinos and

charged leptons, thus keeping Y unchanged. The same can be done with the c brane.

Our conventions are such that in the multiplicities of the fields are as much as possible

positive. In comparison with [22], formula (3.14), the first option corresponds to num-

bers 10551 and 1352, after conjugation of d. The second option, shown in parentheses

in [22], corresponds to 12106 and 7976.

8Since a massless U(1) requires the set of axion charges to have a null vector, one would generally

expect spectra with fewer massless U(1)’s to occur more frequently. Therefore Madrid models are

probably the exception and not the rule. Presumably this is due to the fact that in Madrid models

the a and d play a symmetric role, so that often their axion couplings are identical. This implies a

massless B−L. In particular this is true for a large subclass related to Pati-Salam models.
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Note that in non-Madrid models lepton number is not defined in terms of brane

charges, and hence there is an intrinsic confusion between L, Hd and the conjugate of

Hu. These spectra are accepted as standard-model-like on the basis of a correct count

of the net number of (1, 2,−1
2
) representations, i.e. Ibc∗ + Ib∗c∗ + Ibd∗ + Ib∗d∗ = 3.

Exactly which particles should be identified as Higgses or lepton doublets depends on

the superpotential couplings and on the direction of the Higgs vev in the space of these

fields. This requires additional assumptions. In [61] this was discussed for some models

in class 14062.

How generic are discrete symmetries in these 24 models? The total number of 24

classes splits into 18 with a unitary weak group and 6 with a symplectic one. In total,

these classes contain 962958 brane configurations. The discrete symmetries we have

encountered are Z2 and Z3 and occur only for 6 of these 24 models. We only consider

a discrete symmetry if it is not contained in the continuous symmetries. With Y of the

form (5.1), there is automatically a null-vector na of the form (1, 0,−3, 3). Reduced

modulo 3 this yields (1, 0, 0, 0), and hence there is automatically a Z3 symmetry cor-

responding to na = (1, 0, 0, 0). This is of no interest, since it is just the SU(3) color

selection rule requiring that all amplitudes be color (and hence triality) singlets. Not

surprisingly, this also follows from Y -charge conservation. Similarly, in models with a

U(2) factor there is a Z2 null vector na = (0, 1, 0, 0). This does not follow from any

continuous charge conservation, but it is equally uninteresting, since it just imposes

SU(2) duality. Both of these discrete symmetries are a direct consequence of the fac-

tors Na in (3.10). We do not include them in our count. Apart from these, the total

number of Z2 symmetries we find is 2152 (0.2% of the total) , and the total number of

Z3 symmetries 61664 (6.4% of the total).

The Z2 only occurred in the class U(3) × Sp(2) × U(1) × U(1) with a massive

B−L boson, as a subgroup of B−L. This is just conventional R-parity. However, the
complete set is dominated by models with a massless B−L boson, class 2751. Here the

standard Z2 R-parity symmetry is already contained in B−L. If we were to exclude

all classes with unbroken B−L, there are just 46990 left. In this set, about 4.6% of

the models have a non-trivial Z2 discrete symmetry (not including U(2)b duality). But

even then, we must conclude that in these models discrete symmetries are a fairly rare

phenomenon, occurring in only a few percent of the cases. The other conclusion is that

Z3 discrete symmetries are about as common as Z2 discrete symmetries, at least in this

region in the landscape. In table 1 we list for all 24 classes how many samples there

are in the database of [48], and how many of these have discrete symmetries.
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We will now describe each of these cases in a bit more detail. Note that the num-

bers in table 1 specify the number of distinct brane label combinations (a,b, c,d)

that yield a given chiral spectrum. Those spectra are in principle non-chirally dis-

tinct (although in practice there are often huge degeneracies), and also the precise

axion couplings may be different. But the differences are small, and hence it suf-

fices to present just one example per class. In order to make the results repro-

ducible, we specify for each example the tensor product, MIPF and orientifold, and

the brane labels for which they occur. However, it is difficult to present this infor-

mation in a basis-independent way. Instead we give labels as used and recognized by

the computer program kac used to produce these spectra, and which is publicly avail-

able. Instructions for exactly reproducing these spectra can be found on the webpage

http://www.nikhef.nl/∼/t58/Site/String Spectra.html.

5.1.1 Examples: USUU and UUUU models

We now turn to several illustrative examples, and their discrete symmetries, which are

classified according to the notation in [2]. To help identify these examples we specify

the Hodge numbers of the corresponding Calabi-Yau manifold, by comparing the closed

string spectrum to a type-IIA compactification. In addition, we specify how the h11

N = 2 hyper multiplets split into chiral multiplets and vector multiplets. Precise

definitions of all these quantities in terms of the partition function are given in the

appendix. In each case we indicate which couplings of phenomenological interest are

perturbatively allowed, which ones are forbidden by the discrete symmetry, and which

ones are non-perturbatively allowed. Couplings in the latter category are not forbidden

by any discrete symmetry, and hence can in principle be generated by instantons.

However, we are not claiming that those instantons actually exist in a given model.

Example 1: Z2 in U(3)× Sp(2)× U(1)× U(1) with broken B−L (class 7506)

An example was found for tensor product 241446, MIPF 10, Orientifold 2, boundary

states (630, 41, 1070, 631). The Hodge numbers of the corresponding Calabi-Yau man-

ifold are h21 = 28, h11 = 40, and in the orientifold h+11 = 35 (leading to 35 Kahler

moduli) and h−11 = 5 (5 RR vector bosons). In this class all Yukawa couplings are

perturbatively allowed, as is the µ-term. This is generally true in USUU -type Madrid

models. The Z2 is a a subgroup of the broken B−L, and this is standard R-parity. All

dimension-4 baryon and lepton violating couplings are forbidden, including LHu, but

the couplings QQQL and UUDE are non-perturbatively allowed. On the other hand
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Majorana neutrino masses, as well as the Weinberg operator LLHuHu which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)× Sp(2)× U(1)× U(1) with broken B−L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+11 = 64 and

h−11 = 3. The Z3 nul vector is (0,1,1), as one can read off from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L
2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper differs by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L
2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LHu, QQQL, and UUDE, confirming

that it indeed corresponds to R3L
2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)× Sp(2)× U(1)× U(1) with unbroken B−L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+11 = 40 and h−11 = 3. All B−L
violating couplings are forbidden by the unbroken B−L, and the operators QQQL and
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UUDE are forbidden by the discrete symmetry. All Majorana neutrino mass contri-

butions are also forbidden by B−L. The µ-term and all Yukawas are perturbatively

allowed. The axion couplings in this example are:

a: 9 0 0 0 0

c: 0 0 0 0 0

d: 3 0 0 0 0

(5.4)

This obviously has an L3 discrete symmetry: lepton number can only be violated in

units of three. Since B−L is conserved the same is then automatically true for baryon

number as well. Note that Y conservation forces the a-brane couplings to be three

times those of the d. The resulting factor 9 incorporates both SU(3) triality and the

B3 discrete symmetry.

Example 4: Z3 in U(3)× U(2)× U(1)× U(1) with unbroken B−L (class 1352)

An example of this kind occurs for tensor 2101010; MIPF 59; Orientifold 0, bound-

aries (932, 650, 881, 1302). The Hodge numbers are h21 = 19, h31 = 59, h+11 = 29 and

h−11 = 2. The axion couplings are:

a: 0 0 0 9 0 0 0 9 0 0 9 0 0 0 9 9 9

b: 2 2 2 4 4 2 0 0 4 0 2 0 2 2 0 0 0

c: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d: 0 0 0 3 0 0 0 3 0 0 3 0 0 0 3 3 3

(5.5)

from which we can read off that there is indeed a massless Y and B−L, and that fur-

thermore there is a Z2 null vector (0, 1, 0, 0) and a Z3 null vector (0, 0, 0, 1). The former

just imposes SU(2) duality, and the second corresponds to an L3 discrete symmetry,

as in example 3. In this class of models, two of the three quark masses (for up as well

as down quarks) must be generated non-perturbatively, but the discrete symmetries do

not forbid that. All lepton Yukawas are perturbatively allowed. We are assuming here,

as in the USUU examples, that the Higgs comes from the non-chiral spectrum, from

bi-fundamentals between the b and c branes. The B−L forbids the usual dimension-4

terms as well as Majorana neutrino masses, while QQQL and UUDE are forbidden

by the Z3 symmetry. A µ-term can in principle be generated non-perturbatively, and

is not forbidden by the Z3.
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Example 5: Z3 in U(3)× U(2)× U(1)× U(1) with unbroken B−L (class 7976)

This example occurs for tensor 242222; MIPF 16; orientifold 2 and boundaries

(343, 6, 610, 436), Hodge numbers h21 = 21, h11 = 69, h+11 = 52 and h−11 = 17. The

axion couplings are

a: 0 0 18 0 0 0 0 9 9 -18 0 0 -9 9 9

b: 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0

c: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d: 0 0 -6 0 0 0 0 -3 -3 6 0 0 3 -3 -3

(5.6)

The rest of the discussion is similar for example 4. There is a massless B−L forbidding

the usual couplings, as above. However, in this case the Higgs pair comes out auto-

matically within the chiral spectrum. Perturbative Yukawa couplings appear for two

of the up and down-quarks and one of the leptons, and the missing ones are in prin-

ciple allowed non-perturbatively. Also a µ-term may be generated non-perturbatively.

However all QQQL and UUDE terms are forbidden by the discrete symmetries.

Example 6: Z3 in U(3)× U(2)× U(1)× U(1) with unbroken B−L (class 14792)

The next example also has a Z3 symmetry, but it is a bit different from the foregoing

two. It occurs for tensor 242222; MIPF 16; orientifold 2, boundaries (284, 343, 700, 335),

Hodge numbers h21 = 21, h11 = 69 , h+11 = 52 and h−17 = 2 (as in the previous example).

a: -3 -3 27 3 9 -6 -6 18 21 -33 0 6 -9 0 3

b: 0 0 12 0 0 0 0 6 6 -12 0 0 -6 6 6

c: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d: -1 -1 9 1 3 -2 -2 6 7 -11 0 2 -3 0 1

(5.7)

In this example, the b-brane couplings have a Z6 symmetry. The Z2 subgroup is the

usual uninteresting SU(2) duality. However, the Z6 symmetry forbids any operator

built out of two or four U(2) doublets with the same U(1) charge, such as QQQL. On

the other hand, it does not forbid the operator UUDE. The dimension-4 operators are

forbidden by the unbroken B−L. This discrete symmetry is not explicitly mentioned in

[22] because these authors allowed at most one U(2)-chiral Higgs pair, and this model

has six. This discrete Z6 symmetry is anomaly free as long as the number of families

is a multiple of three, and the number of Higgs doublets a multiple of six, which is

the case here (if it were not the case a Z6 symmetry could not have appeared). We

assume that one of these six Higgs candidates plays the rôle of the Higgs boson. Then
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all quark and lepton Yukawa couplings are perturbatively allowed. A µ-term however

cannot be generated even non-perturbatively because of the discrete symmetry.

Example 7: Z3 in U(3)× U(2)× U(1)× U(1) (exotic) (class 7488)

This is an example of discrete symmetries occurring for a non-Madrid model. It was

found for tensor 441010; MIPF 21; Orientifold 1, Hodge numbers h21 = 28, h11 = 10,

h+11 = 10 and h−11 = 0

a: -3 -6 -3 3 0 0

b: -4 -2 6 0 -4 2

c: 1 -1 -1 1 -1 -1

d: 2 1 0 0 -1 -1

(5.8)

The only massless U(1) is Y . Furthermore, we find the usual SU(2)-duality Z2, but also

a Z3 null vector is (0, 1, 0, 2). Note that the d-brane cannot be associated with lepton

number, since this is not a Madrid model. Furthermore there is no family universality

for the up and down quarks. This has the consequence that there is no universal

rule for the dimension 4 couplings: some of the UDD couplings are non-perturbatively

allowed, and some are forbidden by discrete symmetries; some of the QDL couplings are

perturbatively allowed, others are non-perturbatively allowed, and some are forbidden

by the discrete Z3 symmetry. All LLE coupling are non-perturbatively allowed. Some

of the QQQL and UUDE couplings are non-perturbatively allowed, and some are

forbidden by the Z3 symmetry. We cannot discuss Higgs couplings in general, because

none of the particles in the Chan-Paton chiral spectra can play the rôle of the Higgs.

The three particles in the bc intersection must be interpreted as lepton doublets.

Clearly the Higgs must come from the non-chiral spectrum, and could come from any

strings ending on the b brane en with the other end on the c or d brane. Since

lepton number is undefined, there is no obvious way of deciding this. The precise

phenomenological fate of this type of model is hard to assess, because of the family-

dependent presence of baryon and lepton number violating couplings, and the fact that

there is no obvious Higgs candidate.

5.2 GUT spectra

Orientifold spectra with an SU(5) GUT spectrum have been studied in many papers

[68, 69, 70, 71, 50, 51]. In [22] the possible presence of discrete symmetries in models

was discussed. There are two important issues here, one in which discrete symmetries
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would be catastrophic, and another where they would be beneficial. The first concerns

the up-quark Yukawa couplings9 which in these models are forbidden perturbatively,

but may be generated by instantons [30, 33]. A discrete symmetry might forbid the

existence of these instantons. On the other hand, discrete symmetries to forbid the

usual dimension four B and/or L violating couplings would be very welcome. For

SU(5) GUT models baryon number violating MSSM couplings are a priori even more

threatening , because the same instantons that generate the Yukawa couplings also

tend to generate the QQQL term [50]. Here discrete symmetries are less obviously

useful, because they would tend to forbid the up-quark Yukawas as well. However,

in [51] it was pointed out that specially chose brane realizations can help solving this

problem.

Here we examine the presence of discrete symmetries for certain Gepner model

GUT realizations, namely all the two-stack models where the second stack is either

U(1) or O(1), and a subset of the three-stack models.

5.2.1 Two-stack models

The simplest realizations of SU(5) GUT consist of one stack of five branes producing

a U(5) Chan-Paton group, and a second stack which does not couple to any of the

standard model gauge interactions. The chiral matter consists of three (10)’s of SU(5),

plus three bi-fundamentals from open strings stretched between the two stacks that are

in the (5∗) of SU(5). In addition there may be a number of (5) + (5∗) pairs that play

the rôle of Higgs bosons. In the database of [48] there are five distinct types of such

models with an U(1) or O(1) second stack. These were discussed in some detail in

[50]. There also exist two-stack models where the second stack is U(3) or O(3), with

the multiplicity of the (5∗) originating from the extra brane group, but this leads to

additional complications, and we will not consider them here. The chiral spectrum of

the five classes is shown in table (2).

We have examined this entire class for the presence of discrete symmetries, and

found only a few examples for one of the U(5)× U(1) classes, namely nr. 345 (In [50]

the models were numbered by frequency, and this class was referred to as nr. 2753, with

a total of 1136 samples in the database). The discrete symmetry is a Z2 embedded in

the two U(1) factors. However, the chiral matter is in antisymmetric tensors of U(5),

bi-fundamentals and symmetric tensors of U(1) which are all uncharged with respect

to this Z2. Hence there is no chance of forbidding any couplings. This implies on

9In flipped SU(5) models these remarks apply to the down-quark Yukawa couplings
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the one hand that there is no obstacle to generating the perturbatively forbidden up-

quark Yukawa couplings, but on the other hand that there is no chance of forbidding

dangerous B and/or L violating operators. Examples of instantons generating these

Yukawas were indeed found in [50], but only in six case tadpole canceling hidden sectors

could be added, and only by allowing chiral observable-hidden matter (which becomes

vector-like when reduced to the standard model).

5.2.2 Three-stack models

If we allow two additional stacks instead of one the number of possibilities becomes

much larger. There are 257 classes with a Chan-Paton group U(5) × U(1) × U(1)

and 168 with a group U(5) × U(1) × O(1). If we allow higher multiplicities for the

extra branes there are even more possibilities. Here we will only consider the subclass

studied in [51], in which the up-quark Yukawa couplings can be generated by instantons

without generating QQQL couplings. This class consists of seven chiral types, listed

in table 2. All models in the class considered here have natural Higgs candidates in

the chiral spectrum coming from a∗b∗ and ac bi-fundamentals. There are always three

Higgs pairs. Here we chose to assign the a∗b bi-fundamentals to the (5∗) of SU(5)

containing the lepton doublet and the anti-down quarks. Note that there are always

three mirror pairs of particles with the quantum numbers of down quarks which form an

SU(5) multiplet together with the three Higgs pairs. This is the usual doublet-triplet

splitting problem. In analyzing couplings, we have to make sure to take the down

quarks from the a∗b bi-fundamentals, and assume that the others pair off into massive

particles. Matter from the bc sector is neutral, and could play the rôle of neutrinos,

although there are either six or eight such states. In addition, in model 4325 there is a

symmetric tensor, which is another neutrino candidate. Note that the anti–symmetric

tensors on the b and c branes listed in table 2 correspond to string sectors without

massless states. They are merely listed here because there do exist massive states in

these sectors, and because they contribute to anomaly cancellation.

5.2.3 Examples: GUT models

Here we present for each distinct class of discrete symmetries one example in some

detail. The model numbers (“class”) refer to table 2. Note that the discrete symme-

tries in the only two-stack example in table 2, model 345, do not forbid anything, as

explained above. So we do not present that example in more detail.
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Example 8: Z2 in U(5)× U(1)× O(1) (class 57)

This was found for tensor 1102222; MIPF 18; orientifold 0 with boundaries numbers

(566, 566, 1308, 990). The Hodge numbers are h21 = 13, h11 = 109, h+11 = 98 and

h−11 = 11. Note that the first two boundary labels are here for the standard model

U(3) and U(2) stacks. The fact that they are identical implies that we have U(5). In

the following examples we will always combine these two groups to U(5) when writing

axion couplings. Then a denotes the U(5) stack, b the first U(1), and c the second

U(1) (if any). The axion couplings are

a: 5 0 -10 0 5 -10 -5 5 -20 0

b: 0 -2 -2 0 0 0 0 0 0 0
(5.9)

There is a surviving Z2 symmetry associated with the U(1) brane. This symmetry

forbids the LHu term, the µ-term, as well as all QQQL and UUDE terms. Down quark

and lepton Yukawa couplings are perturbatively allowed, and up-quark Yukawas are

non-perturbatively allowed. But on the other hand, UDD, QDL and LLE terms are

non-perturbatively allowed as well, although they are generated by different instantons

then the Yukawa couplings, and hence could have a different strength. Since the µ term

is perturbatively forbidden, it follows from SU(5) symmetry that also a mass term for

the color triplet partners of the Higgses is forbidden. So here the discrete symmetry

has a negative effect. In the down quark sector we get 6(d∗) + 3(d), and all options for

pairing off the vector-like d-quarks are forbidden by the discrete symmetry.

Example 9: Z3 in U(5)× U(1)× U(1) (class 4004)

This was found for tensor 1102222; MIPF 28, orientifold 0 and boundaries numbers

(816, 816, 1309, 917). The Hodge numbers are h21 = 13, h11 = 37, h+11 = 34 and h−11 = 3.

The axion couplings are

a: 0 5 -10 -5 0 5 5 -10 0 -5

b: 0 0 0 0 0 0 0 0 0 0

c: 0 1 1 -1 0 1 1 -2 0 -1

(5.10)

Note that the vector boson coupling to Yb remains massless. This forbids many super-

potential terms. There is a surviving Z3 symmetry embedded in the combination of the

U(1)-generator of the a stack and the one of the c stack. This symmetry forbids masses

for the neutrino candidates from the b-c intersection. Majorana masses for these six

states are already forbidden by the masses Yb, but the discrete symmetry also prevents

them from pairing off into a Dirac mass term. Nothing else of any interest is forbidden
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by the discrete symmetry. Yukawa couplings are perturbatively or non-perturbatively

allowed, as in the previous case.

Example 10: Z2 in U(5)× U(1)× U(1) (class 4316)

It was found for tensor 1102222; MIPF 18, orientifold 0, and boundary numbers

(523, 523, 1307, 566), Hodge numbers h21 = 13, h11 = 109, h+11 = 98 and h−11 = 11. The

axion couplings are:

a: 5 0 -10 0 5 -10 -5 5 -20 0

b: 0 2 2 0 0 0 0 0 0 0

c: 1 0 -2 0 1 -2 -1 1 -4 0

(5.11)

This case is similar to the foregoing one, except that Ya − 5Yc rather than Yb remains

massless. There is a surviving Z2 symmetry in Yb, but no couplings are forbidden by

it that are not already forbidden by the extra U(1). Interestingly, all fourth order

superpotential terms are absent in this class of models, as well as all first and second

order terms. The absence of second order terms implies in particular that mass terms

for the vector-like down quarks from the Higgs multiplets are forbidden. These features

are a property of the entire class, irrespective of discrete symmetries. The problem is

that there are (5∗)’s from a∗b and a∗b∗ and a (5) from ac. The first two have charge

−1 w.r.t. Ya − 5Yc, but the latter has charge −4. This forbids any Dirac mass term.

Therefore to make this kind of spectrum viable we first have to break the additional

U(1) symmetry, either by a Higgs mechanism, or by axion mixing directly in string

theory. There are indeed example in the database where the latter occurs. This is class

4324, which will be discussed below.

Example 11: Z3 in U(5)× U(1)× U(1) (class 4316)

This example was found for tensor 441010; MIPF 71; orientifold 0 and boundary

states (485, 485, 525, 581), Hodge numbers h21 = 20, h11 = 14, h+11 = 14 and h−11 = 0.

The axion couplings are

a: -5 -10 -5 -10 5 0 5 20 -10 -10

b: 0 0 -3 0 0 0 0 0 0 0

c: -1 -2 -1 -2 1 0 1 4 -2 -2

(5.12)

This is similar to the previous example, except that the discrete symmetry that is

embedded in U(1)b is Z3. As before, the superpotential only contains terms of order

three, or five and higher, as a consequence of the extra U(1). Hence we have the same

problem with lifting the vector-like down quark pair. The discrete symmetry forbids
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the terms UDD, QDL and LLE, provided that for D we use the field that is not in

the Higgs multiplet. There are even perturbatively allowed baryon number violating

couplings involving the vector-like down quark pair. Up-quark Yukawa couplings are

non-perturbatively allowed, down quark Yukawas are perturbatively allowed, as are

charged lepton Yukawas, and neutrino Yukawa couplings are forbidden by the discrete

symmetry.

Example 12: Z2 in U(5)× U(1)× U(1) (class 4324)

This was found for tensor 1102222; MIPF 27; Orientifold 0 and boundary states

(365, 365, 1393, 572) with Hodge numbers h21 = 12, h11 = 96, h+11 = 90 and h−11 = 6.

This class is similar to 4316 discussed above, except that there are no extra U(1) gauge

bosons, and consequently many more couplings are allowed. In particular this includes

the vector-like down-quark pair. Since in model 4316 this mass was forbidden by the

extra U(1), it follows that in class 4324 it may in principle be generated by instantons.

However, that cannot happen in the eight cases with extra discrete symmetries we are

discussing here. In this particular example the axion couplings are:

a: 0 5 -5 -10 -5 0 -10 0 5

b: 2 0 0 0 0 0 0 0 0

c: 0 0 -1 -2 -1 0 -2 0 1

(5.13)

From which we read off a discrete symmetry Z2 associated with brane b. This symmetry

forbids the mass terms needed to lift the vector-like down-quark. It also forbids a µ-

term, and all QQQL and UUDE terms. The up-quark Yukawas are non-perturbatively

allowed, and the down quark and charged lepton Yukawas are perturbatively allowed.

Note that all three-stack models we consider here satisfy a criterium discussed in [51],

namely that up-quark Yukawas can be generated without automatically generating

QQQL and UUDE term of similar strength. This is generically a problem in U(5)

orientifold models [50]. In the three-stack classes discussed here this problem can be

solved because the up-quark Yukawas and the QQQL and UUDE terms are generated

by instantons with different charges. Hence it is at least possible in principle that

they contribute with different strengths. Here we see an even better solution to this

particular problem. Precisely because these terms violate a different set of charges, it is

possible for discrete symmetries to forbid one and not the other. That is exactly what

is happening here. So we see here an example where discrete symmetries are playing

a very useful rôle, but this is overshadowed by at least two serious problems. The first

is that there are no discrete symmetries forbidding the UDD, QDL and LLE terms.
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These are perturbatively forbidden, but may be generated by instantons. The second

is the forbidden vector-like down-quark mass (i.e. the down quark triplets in the Higgs

multiplets). The brane charge violation of the latter terms is precisely the sum of the

charge violations of the up-quark Yukawas and the QQQL or UUDE terms. Hence

any discrete symmetries that forbid the latter but not the former will automatically

forbid the lifting of the down quark mirror pair. This is just a manifestation of the

doublet-triplet splitting problem in SU(5) models.

Example 13: Z2 in U(5)× U(1)× U(1) (class 4325)

This was found for tensor 1102222; MIPF 27; Orientifold 0 and boundary states

(365, 365, 1506, 818), with Hodge numbers h21 = 12, h11 = 96, h+11 = 90 and h−11 = 6.

This class is very similar to 4324. It has some additional neutral chiral matter, but as

in class 4324 there is no additional massless U(1). The axion couplings are

a: 0 5 -5 -10 -5 0 -10 0 5

b: 1 0 0 0 0 0 0 0 0

c: -1 1 -3 -2 -1 0 -2 0 1

(5.14)

The discrete symmetry is Z2. The corresponding null vector is (1, 1, 1). This implies

that all matter is uncharged with respect to it, because all matter is either in rank two

tensors or bi-fundamentals. Hence no couplings are affected by this symmetry. One

point worth noting is that if there are hidden sectors, any observable-hidden matter is

necessarily odd under the Z2. Hence this symmetry is like an exotic (i.e observable-

hidden) matter parity.10 All exotic matter can only be created in pairs, and there will

be a lightest exotic state that cannot decay into standard model particles, and hence,

if neutral, could be a dark matter candidate. Note that in the U(5) class observable-

hidden matter has integral electric charge (whereas in Madrid type models they have

half-integer charge), and hence this conserved exotic matter parity is not a trivial

consequence of charge conservation, nor is it in disagreement with the fact that no

fractional electric charge has ever been observed. This mechanism could in principle

work equally well in non-supersymmetric models (provided examples can be found) and

hence this provides an alternative to the rôle of R-parity in solving the dark matter

problem. Furthermore the general category to which this model belongs (the “x = 0”

category of [48]) includes plenty of examples where instead of a U(5) stack there are

separate U(3) and U(2) stacks, so that there is no SU(5) relation among the couplings

10The same remark applies to the Z2 symmetry we found in the two-stack models in class 345, but

which was not presented in detail.
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(which would be a problem without low energy supersymmetry). However, unlike

R-parity, the existence of this exotic matter parity is lacking a convincing motivation.

5.3 Tadpole Cancellation

All models we have considered so far are brane configurations, which in most cases have

uncancelled tadpoles. For all cases where non-trivial discrete symmetries were found

(i.e. those listed in the last columns of table 1 and 2) we have attempted to find hidden

sectors that cancel all tadpoles, allowing at most four additional stacks. Furthermore

we have allowed massless matter in the observable-hidden sector, provided that it is

non-chiral with respect to the full Chan-Paton gauge group, so that in principle it can

acquire a mass by moving into moduli space, without breaking any gauge symmetries.

These are essentially the same criteria used in [45] and [48], except that in those searches

the number of additional branes was only limited by practical considerations.11 Among

the non-Madrid models, only classes 14062 and 7488 contain at least one model allowing

a tadpole-cancelling hidden sector.

Based on previous experiences with solving tadpole conditions in RCFT orientifolds,

we expected only a relatively small success rate, around one percent or even less.

Surprisingly however, the overall success rate for the models in table 1 was much higher,

around 65%. We found a total of 41456 cases with tadpole-cancelling hidden sectors,

for a total of 63728 configurations with discrete symmetries. On the other hand, in

the class of SU(5) models, we did not find a single case with tadpole cancellation and

discrete symmetries.

One might be tempted to conclude, although discrete symmetries are rare within

the set of standard model configurations, they are more common in the physically

relevant class of fully consistent open string models. There is indeed a reason why

that could be true. Both tadpole cancellation and discrete symmetry conditions are

more easily satisfied if there are fewer Ishibashi states reps. axions, which correlates

with smaller values of h12. Hence it is quite easily imaginable that after imposing the

requirement of having discrete symmetries, we are left with precisely those cases where

the tadpole conditions are more easy to satisfy as well.

On the other hand, it turns out that especially in the set of 59808 spectra there

11In all these cases cancellation of K-theory charges was checked [72] after the results [45] were

published, which is the reason why there are a few minor discrepancies between the numbers quoted

here and those listed in [45]. All brane configurations in the database of [48] satisfy all K-theory

constraints that can be obtained using RCFT probe branes [73].
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are huge degeneracies. As already observed in [45], in many cases different boundary

state combinations in the same orientifold yield the same spectrum, also for non-chiral

states. The origin of these degeneracies is not understood. In the case of MIPFs and

orientifolds, permutation degeneracies were removed, and this is usually enough to be

left with a set of truly distinct ones. We did not attempt to remove permutation degen-

eracies for boundary states, but in any case that would not be enough to understand

the remaining apparent degeneracies. Furthermore we do no know if the apparent

degeneracies are genuine. For example, it is possible that there are slight differences

in the set of available instanton branes and their zero-modes, which altogether pro-

vides a huge number of parameters that could be compared. But in any case, it is

an empirical fact that the number of tadpole free spectra for a given orientifold can

exceed the number of distinct tadpole free spectra by a factor of one hundred or more.

Furthermore, even non-degenerate spectra often have only minor differences in their

vector-like states, suggesting that they are nearby points in the open string moduli

space. In particular, if one of them satisfies the tadpole conditions for some hidden

sector, usually its close relatives have the same property. Even if these degeneracies

were fully understood, it is not obvious how to take them into account properly in

comparing frequencies of certain features of interest. Therefore statements about this

should only be taken as a rough indication.

It turns out that of the 41136 tadpole-free spectra, 31016 come from just one ori-

entifold, and another 9792 from another one. This strongly suggests that two sets of

near-degenerate cases dominate the entire sample. We are unable to decide whether

this is accidental or whether this should be seen as support for the idea that the pres-

ence of discrete symmetries enhances the chance of satisfying the tadpole conditions.

Furthermore, we did not attempt to solve the tadpole conditions in those cases where

we did not find discrete symmetries. For these reasons, we cannot give a reliable

estimate of the likelihood of having both tadpole cancellation and discrete symmetries.

6 Conclusions

In this paper we have studied the appearance of discrete ZN gauge symmetries within

a large class of RCFT Type II 4d orientifolds with a MSSM-like spectrum. Although

interesting for its own sake, our study is motivated by the fact that such discrete

symmetries like R-parity or other ZN generalizations are necessary to avoid large baryon

and/or lepton number violation in the MSSM. Their presence also dictates the possible
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signatures of low energy SUSY at the LHC. Thus e.g. if the lightest SUSY particle is

not stable and its decay violates lepton number , the search for squarks and gluinos at

LHC through R-parity violation channels leads to much weaker mass limits compared

to those preserving R-parity.

So a first question is whether indeed such discrete gauge symmetries arise naturally

in string compactifications. We have done a systematic search for such symmetries

in one of the largest sets available of 4d compactifications with three generations and

a MSSM-like structure. These are RCFT Type II orientifold models with modular

invariant partition functions based on Gepner models.

One of our most important results is that we have explicitly constructed, for all

Gepner orientifolds that can be obtained with simple current MIPFs and all orientifold

projections of [58], an integral basis for couplings of axions with all complex branes.

This allows us to investigate, under a plausible assumption, whether the U(1)’s in a

given model are broken completely, or broken to a discrete subgroup. This analysis

can easily be performed for any Gepner orientifold, and all discrete subgroups of the

full set of U(1)’s can be determined in this manner. The integral basis itself may give

insight in the geometrical structure underlying to these RCFT models, but we will not

explore this issue here.

In this large class of MSSM-like models we did indeed find cases with the appropriate

discrete gauge symmetries. The only non-trivial ones were Z2 (which turned out to be

standard MSSM R-parity) and some other Z3 symmetries, not including baryon triality.

In models with an additional U(1)B−L there appear symmetries forbidding dimension 5

baryon number violating operators. The finding of these discrete symmetries in string

compactifications is, in one hand, good news for theories of low energy SUSY like the

MSSM. It shows that symmetries like R-parity, which are imposed in the MSSM in a

totally ad-hoc fashion can find a more fundamental origin as discrete remnants U(1)

symmetries.

The examples discussed in detail in the previous section display a wide range of

positive and negative effects discrete symmetries may have. Basically any effect that

was foreseen does indeed occur, with good or bad consequences for dimension four

or five B and/or L violating couplings, Yukawa couplings, neutrino masses or the µ-

term. In addition one example showed an unexpected feature, namely a discrete Z2

symmetry under which fields with both visible and hidden sector quantum numbers

are odd. Neutral fields of this kind could provide for new candidates for dark matter.

On the other hand the presence of such symmetries does not seem generic, at least
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within the studied class of compactifications, they only appear at a few percent level for

MSSM-like configurations. However, it is worthwhile to point out his relative frequency

is sizably above what would be obtained from complete randomness, i.e. by considering

the axion coupling coefficients as random variables, and computing the probability of

them having a given common factor (for instance, for say 10 active axions, the random

probability of a Z3 can be estimated as (1/3)10 ∼ 10−5). A final remark is that the

fraction of RCFT models with discrete symmetries could be enhanced after imposing

additional theoretical constraints; for instance we indeed find some indications that the

percentage goes up if one considers tadpole-free models. It would certainly be worth

studying how often the required discrete symmetries appear in other large classes of

string compactifications.
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A Hodge numbers

In order to help identifying the orientifolds used in the examples, in comparison with

geometric data, we specify for each model the Hodge numbers of the corresponding

type-II theory as well as their orientifold projection. In this appendix we explain

precisely how these number are computed from the RCFT data.

The standard way of computing the spectrum of a Gepner model is by diagonally

combining all minimal model and NSR characters. This leads to an N = 2 spectrum

with certain numbers of hyper multiplets and vector multiplets. These spectra can

often be identified with those of ten-dimensional strings compactified on Calabi-Yau

manifolds, a statement that can be made precise using the Landau-Ginzburg corre-

spondence [62, 63, 64, 65].

Characters of the chiral algebra (including space-time and word-sheet supersymme-

try extensions) of Gepner models that have massless ground states can be expanded

as

χi(q) = ni,s(s) + ni,c(c) + singlets + higher order in q (A.1)

In most cases (ni,s, ni,c) = (1, 0) or (0, 1). In the diagonal MIPF these produce spinor-

spinor tensor products, leading to N = 2 vector multiplets. For example, the tensor

product (3, 3, 3, 3, 3) has 4000 characters, of which 202 are relevant for the massless

sector: the identity character, 100 characters with ns = 1, nc = 0, their conjugates,

with ns = 0, nc = 1 and one character with ns = nc = 1, which is self-conjugate.

When diagonally combined with itself, a character with ns 6= 0 and nc 6= 0 yields

spinor-anti-spinor products, which lead to N = 2 hyper multiplets. For any MIPF,

there is an additional hyper multiplet originating from the gravity sector, the square

of the identity characters. But characters with both spinors and anti-spinors are rare,

and therefore in the diagonal MIPF the number of vector multiplets is usually much

larger than the number of hyper multiplets. For example, for the diagonal MIPF of

the tensor product (3, 3, 3, 3, 3) we get 101 vector multiplets and 1+1 hyper multiplet.

However, the diagonal MIPF is not the one we use for building orientifolds. The

simple current methods we use [58] to compute boundary and crosscap coefficients can

only be used for symmetric MIPFs that are obtained by taking a simple current MIPF

and multiplying it with the charge conjugation matrix C. In the following we denote

a generic MIPF as Z, and a simple current MIPF as ZS. Multiplication by C does

not affect the symmetry of a modular matrix ((ZC)T = CTZT = CZ = ZC if Z

is symmetric, because Z and C commute). There is no general orientifold formalism

to deal with Z itself, not even for the special case Z = 1. This originates from the
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fact that Cardy’s work [66], on which the entire formalism is based, dealt with the

case Z = C, where the Isihibashi states are in one-to-one correspondence with the

RCFT primaries. Multiplying the torus partition functions Z with C has the effect

of conjugating the space-time spinors in one chiral sector. In the closed string sector

this has the effect of interchanging the rôle of vector and hyper-multiplets. The MIPF

defined by C itself therefore yields usually a large number of N = 2 hyper multiplets

and few vector multiplets. For (3, 3, 3, 3, 3), using the MIPF C, one gets 101+1 hyper

multiplets and 1 vector multiplet.

Compactification of a ten-dimensional type-II string on a Calabi-Yau manifold with

Hodge numbers (h11, h21) yields h21 + 1 hyper- and h11 vector multiplets for type IIA,

and h21 vector multiplets and h11+1 hyper multiplets for type IIB. Hence if we compare

the spectra of the (3, 3, 3, 3, 3) with compactifications on the quintic Calabi-Yau, with

(h11, h21) = (1, 101), then the diagonal MIPF matches a compactification of type-IIB

on the quintic, while the charge conjugation MIPF matches compactification of type-

IIA on the quintic. Since the charge conjugation MIPF is the one to which we apply

the orientifold projection, it is natural to use type-IIA language henceforth. The Hodge

numbers specified below are therefore obtained in the follow way. From the number

of N = 2 vector multiplets we get the Hodge number h11, while the number of N = 2

hyper multiplets, subtracting one universal one from the gravity sector, gives us the

Hodge number h21. We denote the corresponding Calabi-Yau manifold as X .

Note that in ten dimensions Z and ZC are identical (because the spinors are real),

and since only symmetric Z can be subject to an RCFT orientifold projection, this

implies that only type-IIB strings can be orientifold-projected. In four dimensions, Z

and ZC are distinct, and since both are symmetric, both can be orientifold-projected.

However, a general formula for boundary and cross caps is only available for ZSC.

Geometrically, the partition function Z can be interpreted either as type-IIB com-

pactified on a manifold X or type-IIA on the mirror of X, while ZC corresponds either

to type-IIB on the mirror of X or type-IIA on X . However, in the case of Gepner mod-

els the limitation to ZC does not imply that we miss half of the possibilities. It turns

out that the set of Gepner simple current MIPFs is closed under mirror symmetry, so

that for any hodge pair (h11, h12) = (p, q) there is a MIPF that yields (h11, h12) = (q, p).

In the orientifold theory the diagonal terms in the partition function are subject to

a Klein bottle projection. The full partition function has the form

1

2

(

∑

ij

Zijχi(τ)χj(τ̄ ) +
∑

i

Kiχi(2τ)

)

(A.2)
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where Z = ZSC.

The Klein bottle projection works on the states with i = j. We can write these as

1

2
[Ziiχi(τ)χi(τ) +Kiχi(2τ)] =

[Zii +Ki)]×
[

1

2
(χi(τ)χi(τ) + χi(2τ)

]

+ [Zii −Ki)]×
[

1

2
(χi(τ)χi(τ)− χi(2τ)

]

Now we can expand this in ground state spinors

1

2
(χiχi ± χi) =

(ni,sni,s ± ni,s)(s⊗ s)S + (ni,sni,s ∓ ni,s)(s⊗ s)A

+ (ni,cni,c ± ni,c)(c⊗ c)S + (ni,cni,c ∓ ni,c)(c⊗ c)A

+ ni,cni,s s⊗ c

Here “S” means Symmetric and “A” anti-symmetric, and this refers to the sign of the

projection obtained from the Klein bottle signs. For fermions, there is an additional

spin statistics sign flipping the projection. Therefore the symmetric projection (Ki =

+1) of an N = 2 vector superfield yields an N = 1 chiral multiplet, and the anti-

symmetric projection (Ki = −1) yields and N = 2 vector field, even though group-

theoretically the vector is contained in the symmetric part of the lightcone spinor-

spinor tensor product. We denote the corresponding components of h11 as h
+
11 and h

−
11,

where the subscript denote the sign of Ki. Hence by h−11 we mean the anti-symmetric

Klein bottle projection, yielding the symmetric light-cone spinor-spinor product, which

produces a vector boson. Then h−11 is identified with the number of vector bosons in

the closed string spectrum, and h+11 with the number of chiral multiplets. Here we

are following the conventions chosen in [45]. In the literature these superscripts are

sometimes flipped, so it is better to directly compare the number of vector bosons.

Note that h21 will get contributions from (Zii +Ki) and from (Zii −Ki), so one could

split h21 into plus and minus contributions, if one wishes to do so. However, both

projections of h21 yield chiral multiplets, and so we do not make the distinction. In

addition to the projected diagonal contributions there are off-diagonal terms which

may contribute to both h21 and h11. The latter can be split into equal numbers of

symmetric and anti-symmetric contributions (N = 1 chiral and vector multiplets).

The vector multiplets arising from diagonal and off-diagonal terms are added, and this

then defines the quantity h−11. This is subtracted from h11 to obtain h+11.
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Applying this to the example of the quintic, we get the following. The formalism

of [58] allows only one Klein bottle projection in this case, which is always symmetric.

Therefore the single N = 2 vector boson of the type-IIA theory yields a single chiral

multiplet and no vector multiplets. The 101+1 N = 2 hyper multiplets yield 101+1

chiral multiplets. Each N = 2 hyper multiplet contains two N = 1 chiral multiplets,

but there is also an overall factor 1
2
in the projection.

The states that can propagate in the transverse channel of the annulus, Moebius

strip or Klein bottle (“Ishibashi states”) originate from the terms Ziic 6= 0 in the

partition function. If i represents a massless character, the ground state contains a

massless spinor, and then Ziic contributes to h12. Massless Ishibashi states give rise

to axions and and also to tadpole conditions. Hence the smaller h21 is, the smaller

the number of tadpole conditions, and the smaller the number of axions (note however

that there are in general also contributions to h12 from terms Zij, j 6= ic, as well as

non-trivial multiplicities ni,s > 1, ni,c > 1, which do not give rise to additional axions

or tadpole equations). The number of axions determines first of all the likelihood of

solving the constraint that Y remains massless. Indeed, in [48] it was observed that

standard model configurations are most frequently found for compactifications with

small h21, whereas in [47, 45] it was observed that most tadpole solution are found for

small h21.
12
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Nr U/S U(1) ab ab
∗

a
∗
c a

∗
c
∗

a
∗
d a

∗
d
∗

bd
∗

b
∗
d
∗

c
∗
d cd bc bc

∗ Total Z2 Z3 Tadp.

Q Q Uc Dc Dc Uc L L Ec Nc Hd/L Hu

7506 S 1 3 − 3 3 0 0 3 − 3 3 0 0 40590 2152 16 320 (Z2)

2751 S 2 3 − 3 3 0 0 3 − 3 3 0 0 869428 0 59808 41136

14704 S 1 3 − 1 2 1 2 0 − 3 0 3 0 380 0 0 0

14062 S 1 3 − 2 2 1 1 2 − 3 1 1 0 304 0 0 0

8745 S 1 3 − 3 2 1 0 4 − 3 2 0 1 92 0 0 0

11196 S 1 3 − 3 4 -1 0 2 − 3 4 1 0 40 0 0 0

10551 U 1 1 2 3 3 0 0 3 0 3 3 0 0 116 0 0 0

1352 U 2 1 2 3 3 0 0 3 0 3 3 0 0 20176 0 1472 0

13058 U 1 1 2 3 3 0 0 1 2 3 3 2 2 68 0 0 0

7573 U 2 1 2 3 3 0 0 1 2 3 3 2 2 14744 0 0 0

16074 U 1 0 3 3 3 0 0 3 0 3 3 3 3 128 0 0 0

7967 U 2 0 3 3 3 0 0 3 0 3 3 3 3 5856 0 0 0

12106 U 1 1 2 3 3 0 0 2 1 3 3 1 1 32 0 0 0

7976 U 2 1 2 3 3 0 0 2 1 3 3 1 1 5764 0 192 0

13844 U 2 1 2 3 3 0 0 0 3 3 3 3 3 1096 0 0 0

14793 U 2 2 1 3 3 0 0 4 -1 3 3 -1 -1 400 0 0 0

13762 U 2 0 3 3 3 0 0 6 -3 3 3 0 0 320 0 0 0

14850 U 2 0 3 3 3 0 0 4 -1 3 3 2 2 96 0 0 0

14792 U 2 0 3 3 3 0 0 0 3 3 3 6 6 32 0 32 0

7488 U 1 1 2 1 2 1 2 0 0 3 0 3 0 2864 0 144 0

13015 U 2 1 2 1 2 1 2 0 0 3 0 3 0 352 0 0 0

18086 U 1 2 1 2 4 -1 1 0 0 3 3 3 0 68 0 0 0

13644 U 1 0 3 1 3 0 2 1 -2 3 1 5 1 8 0 0 0

653 U 1 0 3 0 3 0 3 0 -3 3 0 6 0 4 0 0 0

Table 1: Chiral Spectra of the 24 classes of models. Column 1 specifies the number assigned to the spectrum class in the database, column 2

indicates if the b-brane is unitary or symplectic, column 3 lists the number of massless U(1)’s, including Y , and the subsequent columns list

the chiral brane intersections. The last three columns indicate the total number of spectra in each class that is present in the database, and

the total number with a certain discrete symmetry. The last column indicates in how many cases there was also a solution to the tadpole

conditions.
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Nr Type U(1) Aa a∗b a∗b∗ ac bc bc∗ A2 S2 A3 S3 Total Z2 Z3 Tadp.

7 UO 1 3 3 − − − − − − − − 16845 0 0 0

218 UU 2 3 3 0 − − − 0 -3 − − 1049 0 0 0

345 UU 1 3 3 0 − − − 0 -3 − − 1136 18 0 0

742 UU 1 3 2 1 − − − 0 -1 − − 146 0 0 0

18371 UU 1 3 6 -3 − − − 0 -9 − − 12 0 0 0

57 UUO 1 3 3 3 3 0 0 0 0 − − 13402 552 0 0

998 UUO 2 3 3 3 3 0 0 0 0 − − 18890 0 0 0

1000 UUU 3 3 3 3 3 -3 3 0 0 3 0 7276 0 0 0

4004 UUU 2 3 3 3 3 -3 3 0 0 3 0 1706 4 0 0

4316 UUU 2 3 3 3 3 -3 3 0 0 3 0 5236 180 120 0

4324 UUU 1 3 3 3 3 -3 3 0 0 3 0 1278 8 0 0

4325 UUU 1 3 3 3 3 -4 4 0 0 4 1 96 48 0 0

Table 2: Chiral Spectra of the SU(5) GUT models considered here. Here a denotes the U(5) brane, and b and c the additional branes.

Column 2 specifies the brane types, and column 3 the number of massless U(1)’s including Y (which is embedded entirely in SU(5). The

difference between 4004 and 4316 is the embedding of the additional U(1), which is Yb in nr. 4004 and Ya − 5Yc in nr. 4316.
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