
1 

 

Multi-Criteria Ranking of Corporate Distress Prediction Models: Empirical 

Evaluation and Methodological Contributions 

 

Abstract: Although many modelling and prediction frameworks for corporate bankruptcy and 

distress have been proposed, the relative performance evaluation of prediction models is 

criticised due to the assessment exercise using a single measure of one criterion at a time, which 

leads to reporting conflicting results. Mousavi et al. (2015) proposed an orientation-free super-

efficiency DEA-based framework to overcome this methodological issue. However, within a 

super-efficiency DEA framework, the reference benchmark changes from one prediction model 

evaluation to another, which in some contexts might be viewed as “unfair” benchmarking. In this 

paper, we overcome this issue by proposing a slacks-based context-dependent DEA (SBM-

CDEA) framework to evaluate competing distress prediction models. In addition, we propose a 

hybrid Cross-Benchmarking-Cross-Efficiency (CBCE) framework as an alternative methodology 

for ranking DMUs that are heterogeneous. Furthermore, using data on UK firms listed on 

London Stock Exchange (LSE), we perform a comprehensive comparative analysis of the most 

popular corporate distress prediction models; namely, statistical models, under both mono 

criterion and multiple criteria frameworks considering several performance measures. Also, we 

propose new statistical models using macroeconomic indicators as drivers of distress.  
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1. Introduction 

Corporate credit and default risk drive important decisions in banking and finance. According to 

the Basel Committee on Banking Supervision (BCBS), default in credit risk refers to a failure of 

a borrower or counterparty to meet its obligations in accordance with agreed terms (Basel 

Committee on Banking Supervision, 2000, p. 1). Corporate credit studies have used the same 

parametric and non-parametric frameworks to predict business failure events such as credit 

default (e.g., Beaver, 1996), bankruptcy (e.g., Barboza et al., 2017; Ouenniche and Tone, 2017; 

Liang et al., 2016, Kim et al, 2016, Bauer and Agarwal, 2014; Tinoco and Wilson, 2013; Zhou, 

2013; Hillegeist et al., 2004; Shumway, 2001; Wilson and Sharda, 1994; Ohlson, 1980), 

financial distress (e.g., Altman et al, 2017; Li et al., 2014, 2017; Sun et al., 2017; Zhou et al., 

2015; Geng and Chen, 2015; Campbell et al., 2008; Bandyopadhyay, 2006), insolvency (e.g., 

Callejón et al, 2013; Jackson and Wood, 2013), and loan default (e.g., Jiang et al., 2017; Kou et 

al., 2014; Bhimani and Gulamhussen, 2013). Amongst the above-mentioned failure events, 

bankruptcy and distress events have been the subject of many prediction studies. Financial 

distress refers to a situation where a company cannot generate enough cash flows to fulfil its 

contractual obligations (Piesse et al., 2006, p. 478). Remaining in distress for a long time not 

only could impact adversely on the value of the company and the wealth of stockholders but also 

causes more financial and operational inefficiencies and could lead to ceasing the operation of 

the firm or bankruptcy. In general, Corporate bankruptcy causes significant losses to both the 

business community and the society as a whole - for details about the costs of bankruptcy, we 

refer the reader to Davydenko et al. (2012), Elkamhi et al. (2012), Branch (2002) and Gruber and 

Warner (1997). Therefore, early detection of a company’s deteriorating condition or distress has 

such economic advantages that motivated both academics and practitioners to develop a range of 

corporate distress prediction models.  

From a statistical point of view, a failure prediction model (FPM) is a typical classification 

problem, which uses the selected features; say accounting, market, and macroeconomic-based 

information, to classify firms into distress or non-distress categories or classes. During the last 

decades, numerous studies have employed different types of techniques from statistics, 

operational research (e.g., Li et al., 2017; Ouenniche and Tone, 2017; Avkiran and Cai, 2014; Li 

et al., 2014; Premachandra et al., 2011; Yeh et al., 2010; Premachandra et al., 2009), and 

artificial intelligence (e.g., Chen et al., 2016; Fethi and Pasiouras, 2010; Bahrammirzaee, 2010; 

https://scholar.google.co.uk/citations?user=mWwFRFQXiUoC&hl=en&oi=sra
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Charalambous et al., 2000) fields to design new failure prediction models. Initial studies on 

failure prediction use statistical techniques such as univariate discriminant analysis (e.g., Beaver, 

1966, 1968), and multivariate discriminant analysis (e.g., Altman, 1968, 1973, 1983) as 

classification techniques. Later, conditional probability models such as linear probability models 

(e.g., Meyer and Pifer, 1970; Maddala, 1986), logit models (e.g., Martin, 1977; Ohlson, 1980) 

and probit models (e.g., Zmijewski, 1984) were used to predict the probability of failure. The 

common characteristic of these models, however, is that they are time-independent (i.e., static) in 

nature and as such fail to explicitly take time-varying features of a firm into account. Dynamic 

models such as survival (hazard) models (e.g., Lane et al., 1986; Crapp and Stevenson, 1987; 

Luoma and Laitinen, 1991; Shumway, 2001; Bharath and Shumway, 2008; Chava and Jarrow, 

2004), and contingent claims models (e.g., Bharath and Shumway, 2008; Hillegeist et al., 2004) 

are the next group of models, which by design could take account of changes firms are facing or 

experiencing over time. Statistical techniques, however, are constrained by the potential severity 

of the underlying assumptions, i.e., linearity, multivariate normality, independence among 

predictor or input variables, and equal within-group variance-covariate matrices. Artificial 

intelligence and mathematical programming techniques are alternatives that overcome the 

methodological restrictions related to statistical techniques. 

Considering the massive increase in the number of failure prediction models, a stream of the 

literature has focused on answering the question: which of these models are superior in 

performance? According to Zhou (2013), failure prediction models are data-fitting based 

empirical research consisting of a series of processes including sampling, features selection, 

modelling, and performance evaluation. Obviously, the performance of models is not only 

dependent on the sample selection, modelling techniques and feature selection procedures but 

also reliant on the evaluation process and the chosen performance criteria. In practice, several 

studies have compared the performance of competing models taking into account different 

modelling frameworks – e.g., Bauer and Agarwal (2014), Mousavi et al. (2015) and Wu et al. 

(2010); alternative sampling techniques – e.g., Neves and Vieira (2006), and Zhou (2013), and 

various features – e.g., Tinoco and Wilson (2013), Trujillo-Ponce et al. (2014). Furthermore, 

several criteria, including, discriminatory power, calibration accuracy, information content and 

correctness of categorical prediction have been used for the performance evaluation of 

alternative models.  
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Our survey of the existing studies concerned with the comparison of competing statistical 

prediction models, supports Bauer and Agarwal (2014) and Mousavi et al. (2015) arguments in 

addressing three main drawbacks in the related literature. Firstly, most of the existing studies 

failed to have a comprehensive comparison between all types of statistical prediction models, i.e. 

traditional statistical models, Contingent claim analysis (CCA) models and survival analysis 

models. Secondly, the existing literature has used a restricted number of criteria to evaluate the 

performance of competing models. Thirdly, as mentioned by Mousavi et al. (2015), the nature of 

the performance evaluation of competing prediction models remains mono-criterion, as they use 

a single measure of a single criterion at a time. Therefore, under mono-criterion evaluation, the 

rankings corresponding to different criteria are mostly different, which lead to a situation where 

practitioners cannot make a well-informed decision as to which model performs best when 

taking all criteria into account (e.g., Theodossiou, 1991; Bandyopadhyay, 2006; Tinoco and 

Wilson, 2013). To overcome this methodological drawback, Mousavi et al. (2015) proposed a 

multi-criteria assessment framework; namely, an orientation-free super-efficiency data 

envelopment analysis. However, within a super-efficiency DEA framework, the reference 

benchmark changes from one efficient DMU evaluation to another, which in some contexts 

might be viewed as “unfair” benchmarking (Ouenniche et al., 2014). In this study, we overcome 

this issue by proposing a variant of the context-dependent DEA (CDEA) framework proposed by 

Seiford and Zhu (2003) which embed SBM models in the layering procedure. To be more 

specific, we propose a slacks-based context-dependent DEA (SBM-CDEA) framework for 

evaluating the relative performance of competing distress prediction models. We use the 

proposed SBM-CDEA framework to compare the relative performance of the most commonly 

used and cited statistical corporate failure prediction modelling frameworks. In addition, to 

reduce the degree of heterogeneity between static and dynamic distress prediction models, we 

implement them within a rolling horizon framework. Furthermore, we propose a new 

methodology as an alternative for ranking prediction models, which takes account of the 

heterogeneous nature of prediction models; namely, a hybrid Cross-Benchmarking-Cross-

Efficiency (CBCE) framework. 

We organised models into three categories; namely, original models, refitted models, and new 

models. Last, but not least, we use different measures of four commonly used criteria in the 
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literature; namely, calibration accuracy, information content, the correctness of categorical 

prediction, and discriminatory power, to evaluate the relative performance of models. 

The remainder of this paper is organised as follows. Section 2 provides a review of comparative 

studies related to competing statistical models. Section 3 explains the proposed context-

dependent DEA framework as a multi-criteria methodology to compare the relative performance 

of competing distress prediction models. Section 4 explains the proposed Cross-Benchmarking-

Cross-Efficiency framework for assessing corporate distress prediction models. Section 5 

presents the research methodology. Then, section 6 presents the empirical results and 

discussions. Finally, section 7 outlines the main conclusions of the paper.  

2. Existing Literature on Comparison of Competing Statistical Prediction Models 

Since the existing literature on the comparative performance of failure prediction models is 

substantial, this section provides a review of the studies, which focus on comparisons of different 

types of statistical models; i.e., traditional statistical models, contingent claim analysis (CCA) 

models, and survival analysis (SA) models.  

Panel I of Table 1 presents the comparison between traditional statistical models. From the 

introduction of univariate discriminant analysis by Beaver (1966) through the early years of the 

1980s, the multivariate discriminant analysis (MDA) was the superior method for predicting 

corporate failure. From the 1980s until 2001, the logit (introduced by Ohlson, 1980) and probit 

(introduced by Zmijewski, 1984) models dominated statistical techniques.  

Panel II of Table 1 presents the comparison between traditional statistical models and SA model. 

Shumway (2001) proposed the breakthrough discrete-time hazard (DTH) model – using a multi-

period logit framework – for failure prediction.  In theory, SA models take advantage of their 

dynamic structure, and therefore outperform traditional statistical models, which are static in 

nature. However, in practice, the results of comparative studies indicate that the type of 

information that models fed with have a significant impact on the performance of models and 

could overcome the design shortcomings of static models (Shumway, 2001); therefore, static 

models should not be discarded entirely.  

Panel III of Table 1 presents the comparison between statistical models and CCA models. 

Hilligeist et al. (2004) proposed a Black-Scholes-Merton (BSM) based model that performs 
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better than two types of traditional statistical techniques; namely, logit and MDA. Reisz and 

Perlich (2007) compared the performance of three CCA models; namely, BSM, KMV, and 

Down-and-Out Call option (DOC) based models. Further, Agarwal and Taffler (2008) compared 

the performance of two types of market-based models; namely, Hillegeist et al. (2004) and 

Bharath and Shumway (2008) and the MDA model of Taffler (1984). The comparison results 

indicate that CCA models outperform traditional statistical models under most measures of 

performance.  

Panel IV of Table 1 shows the comparison between CCA and hazard models. Campbell et al. 

(2008) compared the performance of a CCA model; namely, KMV (Kealhofer, McQuown and 

Vasicek) and two types of hazard models; namely, Shumway (2001) and Campbell et al. (2008). 

The results indicate that their suggested hazard model outperforms both KMV and Shumway 

(2001) models.  

Panel V of Table 1 presents the comparison between CCA, hazard and traditional statistical 

models. Wu et al. (2010) compared the performance of three frameworks of traditional statistical 

models; namely, MDA model of Altman (1968), logit model of Ohlson (1980), probit model of 

Zmijewski (1984) with DTH model of Shumway (2001) and BSM-based model of Hillegeist et 

al. (2004). Bauer and Agarwal (2004) compared the performance of traditional statistical, CCA 

and DTH models. The results of both studies suggest that DTH model outperforms other models. 

However, there are conflicts in the ranking of other models regarding different measures.  

[Insert Table 1 Here] 

In the next section, we shall present our methodological choices. 

3. A Slack-based CDEA Framework for Assessing Corporate Distress Predictions 

In this research, we propose an orientation-free non-radial (slacks-based measure) context-

dependent DEA (SBM-CDEA) framework for evaluating the relative performance of competing 

corporate distress prediction models.  Hereafter, we first present the SBM-CDEA framework. 

Then, we discuss how one might adapt it to evaluate the relative performance of competing 

corporate distress prediction models.  

Data envelopment analysis (DEA), proposed by Charnes, Cooper and Rhodes (1978), is a linear 

programming techniques to assess the relative efficiency of a set of similar decision making units 
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(DMUs), where each DMU is considered as a system, which uses multiple inputs to produce a 

number of outputs. The decision variables of these linear programming models are the weights 

allocated to inputs and outputs, and these models are referred to as multiplier models. The 

objective function value of the chosen DEA model – commonly referred to as a DEA score, 

allows one to classify a DMU as being efficient or not depending on whether its DEA score is 

equal to 1 or not. In DEA terminology, the set of efficient DMUs is referred to as the efficient 

frontier and represents the empirical standard of excellence against which benchmarking is done. 

Solutions to DEA models allow one to identify the reference set or peer group to use for 

benchmarking each DMU in seeking improvements. For detailed presentations of different DEA 

models, the reader is referred to Cooper et al. (2006).  

Following the pioneering study by Mousavi et al. (2015) in using non-radial (slacks-based 

measure), non-oriented super-efficiency DEA to evaluate the performance of bankruptcy 

prediction models, we propose the non-radial (slacks-based measure), non-oriented context 

dependent DEA framework as a device for multi-criteria ranking of distress prediction models. 

We use an orientation-free evaluation because we intend to assess distress prediction models and 

thus the choice between input-oriented or output-oriented analysis is irrelevant. Further, input-

oriented and output-oriented DEA studies may result in different scores and rankings of DMUs. 

On the other hand, we use a non-radial framework because the radial DEA models may be 

infeasible for some DMUs, which could result in having ties in rankings. Furthermore, radial 

DEA models do not take account of possible excesses and shortfalls; namely, slacks, in inputs 

and outputs, respectively, which could result in over-estimating the efficiency scores due to 

ignoring mix efficiency. Finally, the reason to use context-dependent rather than super-efficiency 

scores to rank DMUs is that within the latter one, the scores are used to rank order the efficient 

DMUs; however, the efficient DMUs have different reference sets, which in some contexts could 

be considered as “unfair” benchmarking. On the other hand, within CDEA, a set of DMUs can 

be divided into different levels of efficient frontiers (evaluation context), and the attractiveness 

measure or the progress measure are used to rank those efficient DMUs belonging to the same 

specific evaluation context; that is, having the same level of efficiency or score. The proposed 

SBM-CDEA framework is summarised in the following stages: 

Stage 1 – Returns-to-Scale (RTS) Analysis: Perform RTS analysis to find out which type of 

RTS to include in DEA models; that is, constant-returns-to-scale (CRS), increasing returns-to-
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scale (IRS), decreasing return-to-scale (DRS), or variable returns-to-scale (VRS). There are 

many approaches to perform RTS analysis (e.g., Banker, 1984; Banker, Charnes and Cooper, 

1984; Fare, Grosskopf and Lovell, 1994; Banker, Cooper, Thrall and Zhu, 2004; Tone, 2001a). 

These approches are based on BCC models whether in multiplier form or envelopment form. In 

this paper, we use an approach based on SBM model for a better compatibility with the next 

stages of CDEA analysis. This approach could be summarised as follows: 

Step 1: For each 𝐷𝑀𝑈𝑘 (𝑘 = 1, … , 𝑛), solve the following SBM model of Tone (2001b) 

under CRS (i.e., without any additional constraint), under IRS (i.e., by augmenting the SBM 

model with the constraint ∑ 𝜆𝑗
𝑛
𝑗=1 ≥ 1), under DRS (i.e., by augmenting the SBM model 

with the constraint ∑ 𝜆𝑗
𝑛
𝑗=1 ≤ 1), and under VRS (i.e., by augmenting the SBM model with 

the constraint ∑ 𝜆𝑗
𝑛
𝑗=1 = 1): 

 𝑀𝑖𝑛        𝜌𝑘 = (1 −
1

𝑚
∑

𝑠𝑖,𝑘
−

𝑥𝑖,𝑘

𝑚
𝑖=1 ) (1 +

1

𝑠
∑

𝑠𝑟,𝑘
+

𝑦𝑟,𝑘

𝑠
𝑟=1 )⁄  

𝑠. 𝑡 . :      ∑ 𝜆𝑗𝑥𝑖,𝑗
𝑛
𝑗=1 + 𝑠𝑖,𝑘

− = 𝑥𝑖,𝑘; ∀𝑖 

              ∑ 𝜆𝑗𝑦𝑟,𝑗
𝑛
𝑗=1 − 𝑠𝑟,𝑘

+ = 𝑦𝑟,𝑘; ∀𝑟 

              𝜆𝑗 ≥ 0; ∀𝑗; 𝑠𝑖,𝑘
− ≥ 0, ∀𝑖; 𝑠𝑟,𝑘

+ ≥ 0, ∀𝑟 

 

where the 𝑥𝑖,𝑗  (𝑖 = 1, … , 𝑚) and 𝑦𝑟,𝑗 (𝑟 = 1, … , 𝑠) are the 𝑖𝑡ℎ input and the 𝑟𝑡ℎ output of 

𝐷𝑀𝑈𝑘 (𝑘 = 1, … , 𝑛), respectively, 𝜆𝑘 is the weight allocated to 𝐷𝑀𝑈𝑘 in constructing its 

ideal benchmark, 𝑠𝑖,𝑘
− ∈ ℝ𝑚+ and 𝑠𝑟,𝑘

+ ∈ ℝ𝑠+ denote the slacks of the first and second 

constrains; that is, input excesses and output shortfalls, and 𝜌𝑘 is the SBM efficiency score 

of 𝐷𝑀𝑈𝑘. Let 𝜌𝑘
𝐶𝑅𝑆, 𝜌𝑘

𝐼𝑅𝑆, 𝜌𝑘
𝐷𝑅𝑆 and 𝜌𝑘

𝑉𝑅𝑆 denote the efficiency scores of 𝐷𝑀𝑈𝑘 computed 

with each of the above mentioned SBM models.  

Step 2: Use the following decision rules to determine the nature of the RTS for each 𝐷𝑀𝑈𝑘 

(𝑘 = 1, … , 𝑛): 

a. 𝐷𝑀𝑈𝑘 operates on a CRS iff 𝜌𝑘
𝐶𝑅𝑆 = max{𝜌𝑘

𝐶𝑅𝑆, 𝜌𝑘
𝐼𝑅𝑆, 𝜌𝑘

𝐷𝑅𝑆, 𝜌𝑘
𝑉𝑅𝑆} 

b. 𝐷𝑀𝑈𝑘 operates on a IRS iff 𝜌𝑘
𝐼𝑅𝑆 = max{𝜌𝑘

𝐶𝑅𝑆, 𝜌𝑘
𝐼𝑅𝑆, 𝜌𝑘

𝐷𝑅𝑆, 𝜌𝑘
𝑉𝑅𝑆} 

c. 𝐷𝑀𝑈𝑘 operates on a DRS iff 𝜌𝑘
𝐷𝑅𝑆 = max{𝜌𝑘

𝐶𝑅𝑆, 𝜌𝑘
𝐼𝑅𝑆, 𝜌𝑘

𝐷𝑅𝑆, 𝜌𝑘
𝑉𝑅𝑆} 

d. 𝐷𝑀𝑈𝑘 operates on a VRS iff 𝜌𝑘
𝑉𝑅𝑆 = max{𝜌𝑘

𝐶𝑅𝑆, 𝜌𝑘
𝐼𝑅𝑆, 𝜌𝑘

𝐷𝑅𝑆, 𝜌𝑘
𝑉𝑅𝑆} 
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These decision rules were proposed by Wu and An (2013) following the method proposed by 

Kerstens and Eeckaut (1999). One of the attractive features of this SBM based approach to the 

identification of the RTS status is that the projection of an inefficient 𝐷𝑀𝑈 onto the efficient 

frontier takes account of both excesses in inputs and shortfalls in outputs.  

Note that depending on whether IRS, DRS or VRS condition prevails, one must add ∑ 𝜆𝑗 ≥𝑗∈𝐽𝜆

1, ∑ 𝜆𝑗 ≤ 1𝑗∈𝐽𝜆  or ∑ 𝜆𝑗 = 1𝑗∈𝐽𝜆 , respectively, as an additional constraint to the linear 

programming (LP) models 1, 2 and 3 below. 

Stage 2 – Classification of DMUs: Use the following algorithm to identify several levels of 

efficiency or several efficient frontiers (evaluation contexts), say 𝐿: 

Step 1: Set the performance level counter, say ℓ, equal to 1. Let Jℓ = {𝐷𝑀𝑈𝑘 , 𝑘 = 1, … , 𝑛} 

be the set of all 𝑛 DMUs at efficiency level ℓ. Evaluate the entire set of DMUs, 𝐽ℓ, by 

solving the relevant DEA model to construct the ℓ-level efficient frontier, say 𝐸ℓ, where 

𝐸ℓ = {𝑘 ∈ 𝐽ℓ|𝐷𝐸𝐴 𝑠𝑐𝑜𝑟𝑒 𝜌𝑘
ℓ = 1}. 

Step 2: Drop the current efficient DMUs; that is, 𝐸ℓ, from the next DEA analysis run; that is, 

set 𝐽ℓ+1 = 𝐽ℓ − 𝐸ℓ, and increase the counter ℓ by 1. 

Step 3: Evaluate the “globally inefficient” set of DMUs identified in the previous step; that 

is, 𝐽ℓ, by solving the relevant DEA model and set the current ℓ-level efficiency frontier to 

𝐸ℓ.  

Step 4: If 𝐽ℓ = ∅, then stop; otherwise, set ℓ = ℓ + 1 and go to step 2.  

where the relevant DEA model to determine the ℓ𝑡ℎ −level efficiency frontier is the slacks-

based measure (SBM) model of Tone (2001b): 

 
𝑀𝑖𝑛      𝜌𝑘

𝜆 = (1 −
1

𝑚
∑

𝑠𝑖,𝑘
−

𝑥𝑖,𝑘

𝑚
𝑖=1 ) (1 +

1

𝑠
∑

𝑠𝑟,𝑘
+

𝑦𝑟,𝑘

𝑠
𝑟=1 )⁄  

𝑠. 𝑡 . :      ∑ 𝜆𝑗𝑥𝑖,𝑗 + 𝑠𝑖,𝑘
−

𝑗∈𝐽𝜆 = 𝑥𝑖,𝑘; ∀𝑖 

              ∑ 𝜆𝑗𝑦𝑟,𝑗 − 𝑠𝑖,𝑘
+

𝑗∈𝐽𝜆 = 𝑦𝑟,𝑘; ∀𝑟 

              𝜆𝑖 ≥ 0; ∀𝑗∈ 𝐽𝜆; 𝑠𝑖,𝑘
− ≥ 0, ∀𝑖; 𝑠𝑟,𝑘

+ ≥ 0, ∀𝑟 

(1) 
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where 𝜌𝑘
ℓ is the SBM efficiency score of 𝐷𝑀𝑈𝑘 with respect to evaluation context ℓ. In the case 

that the optimal value of 𝜌𝑘
ℓ = 1, then 𝐷𝑀𝑈𝑘 is part of ℓ-level efficient frontier; otherwise 

𝐷𝑀𝑈𝑘 is inefficient and will be evaluated in future DEA runs. Obviously, DMUs are partitioned 

into 𝐿 efficient frontiers, which indicate different performance levels. One could rank order 

DMUs considering the 1
st
-level efficient frontier DMUs as best and the -level efficient 

frontier DMUs as worst, however, ties exist between DMUs on the same level efficient frontier 

and the next stage is designed to break those ties. 

Stage 3 – Breaking of Efficiency Ties: Perform the following steps to break the ties between 

DMUs in the same level efficient frontier: 

Step 1: Solve the LP (2) for all DMUs obtained at performance level ℓ ; that is, all 𝐷𝑀𝑈𝑘 ∈

𝐸ℓ , where ℓ = 2, 3, … , 𝐿 , to compute relative progress scores, 𝛿𝑘
1𝑠, with reference to the 

best evaluation context, 𝐸1, and rank DMUs on efficient frontier 𝐸ℓ based on the calculated 

scores:  

 
𝑀𝑖𝑛 𝛿𝑘

1 = (1 −
1

𝑚
∑

𝑡𝑖,𝑘
−

𝑥𝑖,𝑘

𝑚
𝑖=1 ) (1 +

1

𝑠
∑

𝑡𝑟,𝑘
+

𝑦𝑟,𝑘

𝑠
𝑟=1 )⁄   

𝑠. 𝑡. :    ∑ 𝜆𝑗𝑥𝑖,𝑗 ≥ 𝑥𝑖,𝑘 − 𝑡𝑖,𝑘
− ; ∀𝑖 𝑗∈𝐸1   

           ∑ 𝜆𝑗𝑦𝑟,𝑗 ≤ 𝑦𝑟,𝑘 + 𝑡𝑟,𝑘
+ ; ∀𝑟 𝑗∈𝐸1   

           𝜆𝑖 ≥ 0; ∀𝑗 ∈ 𝐸1; 𝑡𝑖,𝑘
− ≥ 0, ∀𝑖; 𝑡𝑟,𝑘

+ ≥ 0, ∀𝑟  

(2) 

where 𝑡𝑖,𝑘
−  (respectively, 𝑡𝑟,𝑘

− ) indicates the amount by which input  (respectively, output 𝑟) 

of 𝐷𝑀𝑈𝑘 should be decreased (respectively, increased) to reach the evaluation context 𝐸1.  

Step 2: Solve the LP (3) for all DMUs obtained at the best efficient frontier 𝐸1; that is, 

𝐷𝑀𝑈𝑘 ∈ 𝐸1, to compute relative attractiveness scores, 𝛾𝑘
2𝑠, with reference to the second best 

evaluation context, 𝐸2, and rank DMUs on the best efficient frontier 𝐸1, based on the 

calculated scores. 

 
𝑀𝑎𝑥        𝛾𝑘

2 = (1 −
1

𝑚
∑

𝑡𝑖,𝑘
+

𝑥𝑖,𝑘

𝑚
𝑖=1 ) (1 +

1

𝑠
∑

𝑡𝑟,𝑘
−

𝑦𝑟,𝑘

𝑠
𝑟=1 )⁄   

𝑠. 𝑡. :        ∑ 𝜆𝑗𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑘 + 𝑡𝑖,𝑘
+ ; ∀𝑖 𝑗∈𝐸2   

(3) 

thL

i
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               ∑ 𝜆𝑗𝑦𝑟,𝑗 ≥ 𝑦𝑟,𝑘 − 𝑡𝑟,𝑘
− ; ∀𝑟 𝑗∈𝐸2   

               𝜆𝑖 ≥ 0; ∀𝑗 ∈ 𝐸2; 𝑡𝑖,𝑘
− ≥ 0, ∀𝑖; 𝑡𝑟,𝑘

+ ≥ 0, ∀𝑟  

where 𝑡𝑖,𝑘
+  (respectively, 𝑡𝑟,𝑘

− ) indicates the amount by which input 𝑖 (respectively, output 𝑟) 

of 𝐷𝑀𝑈𝑘 ∈ 𝐸1 should be increased (respectively, decreased) to reach to evaluation context 

𝐸2. 

In section 5, we shall use the above-described methodology to rank order competing corporate 

distress prediction models and discuss the empirical results obtained using UK data on firms 

listed on the London Stock Exchange (LSE) for the period 2008-2014. In this paper, DMUs are 

thirty competing corporate distress prediction models – see, Appendix A for a general 

description of these models. The inputs and outputs are the performance measures of the relevant 

criteria for assessing corporate prediction models. This study considers discriminatory power, 

calibration accuracy, information content, and correctness of categorical predictions criteria and 

their measures. Further, inputs (respectively, outputs) are selected based on the rule of the less 

(respectively, the more), the better; therefore, inputs (respectively, outputs) refer to the 

performance measures to be minimised (respectively, maximised).  

To conclude this section, we would like to stress out that, from an empirical perspective, the 

proposed analysis framework could be used without any concerns as long as the relationship 

“#DMUs >= 2(#inputs + #outputs)” holds for the first performance level and the chosen 

evaluation context. In sum, the minimum sample size should satisfy the above condition for both 

the first performance level and the chosen evaluation context. 

The above proposed methodology for ranking prediction models overcomes the limitations of the 

super-efficiency framework proposed by Mousavi et al (2015). This CDEA based methodology 

could be used to rank order prediction models. However, one could argue that the above 

mentioned CDEA methodology assumes that DMUs are homogeneous and therefore is not 

appropriate for assessing the prediction models under evaluation in our comparative analysis, 

because they belong to two different classes; namely, static models and dynamic models. In the 

next section, we propose a ranking methodology, which is suitable for ranking heterogenous 

DMUs – whether prediction models, individuals, or organizations. 



12 

 

4. A Cross-Benchmarking-Cross-Efficiency Framework for Assessing Corporate Distress 

Predictions 

In this section, we propose a ranking methodology that takes account of the heterogeneous nature 

of DMUs (e.g., prediction models, individuals, organizations). To be more specific, the proposed 

methodology is a hybrid framework that makes use of cross-benchmarking and cross-efficiency 

– referred to hereafter as CBCE, and could be summarised as follows: 

Stage 1: Cross-Benchmarking Analysis 

Cross-benchmarking evaluates each 𝐷𝑀𝑈𝑘 (𝑘 = 1, … , 𝑛) against each cluster 𝐶ℓ separately 

(ℓ = 1, … , #𝐶) where #𝐶 denotes the number of clusters; in sum, as many DEA analyses as the 

number of clusters are performed each time with the reference set being a different cluster. 

Therefore, for each 𝐷𝑀𝑈𝑘 (𝑘 = 1, … , 𝑛) and cluster 𝐶ℓ (ℓ = 1, … , #𝐶), solve the following 

variant of the SBM model of Tone (2001b) under the relevant RTS scheme; that is, CRS (i.e., 

variant of SBM model without any additional constraint), IRS (i.e., by augmenting the variant of 

SBM model with the constraint ∑ 𝜆𝑗
ℓ

𝑗∈𝐶ℓ
≥ 1), DRS (i.e., by augmenting the variant of the SBM 

model with the constraint ∑ 𝜆𝑗
ℓ

𝑗∈𝐶ℓ
≤ 1), and VRS (i.e., by augmenting the variant of the SBM 

model with the constraint ∑ 𝜆𝑗
ℓ

𝑗∈𝐶ℓ
= 1): 

 𝑀𝑖𝑛        𝜌𝑘,𝑘
ℓ = (1 −

1

𝑚
∑

𝑠𝑖,𝑘
ℓ−

𝑥𝑖,𝑘

𝑚
𝑖=1 ) (1 +

1

𝑠
∑

𝑠𝑟,𝑘
ℓ+

𝑦𝑟,𝑘

𝑠
𝑟=1 )⁄  

𝑠. 𝑡 . :      ∑ 𝜆𝑗
ℓ𝑥𝑖,𝑗𝑗∈𝐶ℓ

+ 𝑠𝑖,𝑘
ℓ− = 𝑥𝑖,𝑘; ∀𝑖 

              ∑ 𝜆𝑗
ℓ𝑦𝑟,𝑗𝑗∈𝐶ℓ

− 𝑠𝑟,𝑘
ℓ+ = 𝑦𝑟,𝑘; ∀𝑟 

              𝜆𝑗
ℓ ≥ 0; ∀𝑗 ∈ 𝐶ℓ; 𝑠𝑖,𝑘

ℓ− ≥ 0, ∀𝑖; 𝑠𝑟,𝑘
ℓ+ ≥ 0, ∀𝑟 

 

where the 𝑥𝑖,𝑗 (𝑖 = 1, … , 𝑚) and 𝑦𝑟,𝑗 (𝑟 = 1, … , 𝑠) are the 𝑖𝑡ℎ input and the 𝑟𝑡ℎ output of 

𝐷𝑀𝑈𝑘 (𝑘 = 1, … , 𝑛), respectively, 𝜆𝑘
ℓ  is the weight allocated to 𝐷𝑀𝑈𝑘 in constructing its ideal 

benchmark when the reference set is 𝐶ℓ, 𝑠𝑖,𝑘
ℓ− ∈ ℝ𝑚+ and 𝑠𝑟,𝑘

ℓ+ ∈ ℝ𝑠+ denote the slacks of the first 

and second constrains; that is, input excesses and output shortfalls, and 𝜌𝑘,𝑘
ℓ  is the SBM 

efficiency score of 𝐷𝑀𝑈𝑘 when benchmarked against 𝐶ℓ - we shall refer to these scores as self-

evaluation scores. Let 𝑣𝑖,𝑘
ℓ  and 𝑢𝑟,𝑘

ℓ  denote the dual variables corresponding to the first and 



13 

 

second sets of constraints; that is, 𝑣𝑖,𝑘
ℓ  (respectively, 𝑢𝑟,𝑘

ℓ ) is the weight of input 𝑖 (respectively, 

output 𝑟) assigned by 𝐷𝑀𝑈𝑘 when benchmarked against DMUs in 𝐶ℓ.  

Stage 2: Cross-Efficiency Analysis 

For each 𝐷𝑀𝑈𝑘 (𝑘 = 1, … , 𝑛), use the input and output weights, 𝑣𝑖,𝑗
ℓ  and 𝑢𝑟,𝑗

ℓ , determined in the 

previous stage to compute its peer-evaluation scores, say 𝜌𝑘,𝑗
ℓ , as follows:  

𝜌𝑘,𝑗
ℓ =

∑ 𝑢𝑟,𝑗
ℓ 𝑦𝑟,𝑘

𝑠
𝑟=1

∑ 𝑣𝑖,𝑗
ℓ 𝑥𝑖,𝑘

𝑚
𝑖=1

;  𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑘; ℓ = 1, … , #𝐶. 

These scores are in fact cross-efficiency scores. Then, compute a statistic, say 𝛥𝑘, that measures 

the deviation of the self-appraised scores from the peer-appraised scores as follows: 

𝛥𝑘 =
�̅�𝑘,𝑘−�̅�𝑘,𝑗

�̅�𝑘,𝑗
, where �̅�𝑘,𝑘 =

∑ 𝜌𝑘,𝑘
ℓ#𝐶

ℓ

#𝐶
 and �̅�𝑘,𝑗 =

∑ ∑ 𝜌𝑘,𝑗
ℓ

𝑗∈𝐶ℓ,𝑗≠𝑘
#𝐶
ℓ

#𝐶×(∑ #𝐶ℓ
#𝐶
ℓ −1)

. 

Finally, rank order DMUs or prediction models in ascending order of their 𝛥𝑘s. 

In the next section, we shall use this methodology to rank order competing corporate distress 

prediction models and discuss the empirical results obtained using UK data on firms listed on the 

London Stock Exchange (LSE) for the period 2008-2014 under the same setup used for CDEA. 

5. Empirical Investigation 

This section summarizes our empirical investigation related decisions. In sum, hereafter, we 

provide the details on our dataset and sampling (see, section 5.1), features selection (see, section 

5.2), model evaluation criteria and measures (see, section 5.3), and distress prediction models 

(see, section 5.4).  

5.1 Data and sampling 

We took the following steps to select our data set. First, we excluded financial and utility UK 

companies to avoid having a biased sample due to these categories firms being regulated and as 

such their financial statements would follow specific regulations. Then, we considered all the 

remaining companies listed on the London Stock Exchange (LSE) at any time during a 10-year 

period from 2005 through 2014. Second, we excluded the firms that are listed for less than two 

years on LSE, as historical information is a requirement for some modelling frameworks. Third, 

we excluded the firms with missing values for the main accounting information (e.g., sales, total 

assets) and market information (e.g., price), which are essential items for calculating many 

financial ratios (Lyandres and Zhdanov, 2013). We replaced the remaining missing values with 
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the recently observed ones for each firm (Zhou, 2013; Shumway, 2001). Fourth, for each 

variable, we winsorised the outliers by replacing the values higher (respectively, lower) than 

99th (respectively, 1st) percentile with that 99th
 
(respectively, 1st) percentile value (Shumway, 

2001).  

In this research we considered distress as failure event. With respect to the classification of firms 

into distressed and non-distressed, we followed the definition of Pindado et al. (2008) where a 

company is classified as distressed if it experiences both of the following conditions for two 

consecutive years: (1) its earnings before interest, taxes, depreciation and amortization 

(EBITDA) is lower than its interest expenses, and (2) it shows negative growth in market value. 

To be more specific, the distress variable, say 𝑦, equals 1 for financially distressed companies 

and equals 0 otherwise. 

Since our pool of distress prediction models consists of both static and dynamic models, we 

implemented them and tested their performance out-of-sample within a rolling horizon 

framework to reduce the degree of heterogeneity between static and dynamic models. In 

addition, implementing the above-mentioned models within a rolling horizon framework would 

reduce any bias due changes in macroeconomic conditions. To this end, we used 3-year firm-

year observations from year 𝑡 − 𝑛 + 1 to year 𝑡, (𝑛 = 3 and 2008 < 𝑡 < 2013), as training 

samples to fit models; that is, to estimate their coefficients. Then, we used the fitted models to 

predict distress in year 𝑡 + 1. Therefore, we considered six 3-year training samples to fit the 

models and six 1-year hold-out samples to test the models. Table 2 presents the sample sizes. 

[Insert Table 2 Here] 

5.2 Feature Selection 

To select proper features for prediction models, we applied the following steps. First, we 

reviewed the literature to select the most commonly used features in other studies (e.g., Hebb, 

2016; du Jardin, 2015; Zhou, 2014, 2013; Ravi Kumar and Ravi, 2007), where we end up with 

83 accounting-based ratios and seven market-based items. Second, we used t-tests to choose 

features which show a significant difference between the means of two groups of distressed and 

healthy firms (Shin and Lee, 2002; Huang et al., 2004; Shin et al., 2005). Third, for further 

reduction of features, we applied factor analysis, and principal component analysis with 

VARIMAX technique (Chen, 2011, Mousavi et al., 2015). To be more specific, we used factor 
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analysis to select the variables that both the absolute values of their loadings and communities 

are greater than 0.5 and 0.8, respectively. Finally, 34 variables, which presented high factor 

loadings and high communality values, were retained as input features into a stepwise procedure 

in each statistical framework.  

[Insert Table 3 Here] 

5.3 Corporate Distress Models to be Assessed 

In this paper, we organised models into three categories; namely, original models, refitted 

models and new models. In case of original models, we compare the performance of the most 

cited statistical, probability and stochastic models in the literature on distress prediction. To be 

more specific, we consider the MDA models proposed by Altman (1968), Altman (1983), Lis 

(1972), and Taffler (1984); the logit model proposed by Ohlson (1980); the probit model 

proposed by Zmijewski (1984); and the linear probability model proposed by Theodossiou 

(1991); the contingent claim analysis models proposed by Bharath and Shumway (2008), 

Hillegeist et al. (2004) and Jackson and Wood (2013); and the survival analysis model proposed 

by Shumway (2001). In the case of refitted models, we keep the explanatory variables of each 

original model and refit them with our new data set. On the other hand, in the case of new 

models, we develop new distress prediction models using different static and dynamic 

frameworks and fit them with our new data set. The static frameworks used in our study are 

MDA, logit, probit and linear probability analysis. The dynamic frameworks used in our study 

are duration-independent with (or without) time-independent baseline hazard rate, and different 

duration-dependent models, which contain a variety of time-varying baseline hazard rates.  

Note that depending on the existence and specification of baseline hazard rate in dynamic or 

duration models, one could classify them into two subcategories; namely, duration-independent 

and duration-dependent frameworks (Nam et al., 2008). The duration independent models could 

be classified into duration-independent with time-independent baseline (DIWTIB) and duration 

independent without baseline (DIWOB). The difference between these two types of models is 

that the former one contains a constant baseline hazard rate, while the latter one does not contain 

baseline hazard rate (e.g., Shumway, 2001). On the other hand, the duration-dependent 

framework contains a time-dependent baseline hazard rate, as mentioned in Beck et al. (1998), 

who use time dummies to proxy the baseline hazard rate.  
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Since the use of time dummies as an indirect proxy for the baseline rate is less efficient, we 

follow Nam et al. (2008) and Gupta et al. (2015) in using time-varying features to proxy the 

time-dependent baseline rate. Therefore, taking into account the duration dependent (DD) 

framework, the models differ based on the type of baseline hazard rates, i.e., ln (age), 1/ln(age), 

last year probability of distress (LPD), and volatility of exchange rate (VEX) – see, Appendix A 

for more details on models. In addition, considering Cox hazard model, I followed Kim and 

Partington (2014) in estimating the time-dependent baseline rate using the historical information 

of the firm. I refer to this model as duration dependent with firm’s specific baseline rate 

(DDWFSB).  

Considering 31 static and dynamic frameworks and 6 training samples, we ended up with 186 

models including original, refitted and newly developed. The original models, refitted models, 

and new models are presented in Figure 2, Figure 3, and Figure 4 with white, grey, and black 

shapes, respectively, and static and dynamic models with a circle and non-circle shapes, 

respectively – see legends of Figure 2, Figure 3, and Figure 4. Table 3 presents the list of 

features used to develop the new models. Also, Table 4 presents the new models fed with 3-year 

training sample from 2011 to 2013. See Appendix A for more details on models. 

In the next section, we shall assess the relative performance of these models implemented within 

a rolling horizon framework under both a single criterion and multiple criteria and their measures 

using the proposed DEA framework (see section 6.2). 

[Insert Table 4 Here] 

5.4 Performance Criteria and Measures 

Our objective of this study is to evaluate the relative performance of distress prediction models 

using UK data. For this, we follow Mousavi et al. (2015) to assess the performance of different 

models under four commonly used criteria; namely the discriminatory power, the calibration 

accuracy, the information content, and the correctness of categorical prediction. On the 

discriminatory power criterion, we use Receivable Operating Characteristic (ROC), 

Kolmogorov-Smirnov (KS) statistics, Gini Index (GI), and Information Value (IV) to measure 

how much a model is capable of discriminating between the distressed firms and the healthy 

ones. On the calibration accuracy criterion, we use Brier Score (BS) to measure how much a 

model is qualified in estimating the probability of distress (PD). On the information content 
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criterion, we follow Agarwal and Taffler (2008) and use a log-likelihood statistic (LL) and 

pseudo-R
2
 to measure the extent to which the output of a model (e.g., PD, scores) carries enough 

information for prediction. Finally, with respect to the correctness of categorical prediction 

criterion, we use Type I errors (T1), Type II errors (T2), misclassification rate (MR), sensitivity 

(Sen), specificity (Spe), and overall correct classification (OCC) to measure how often a model 

can predict distressed firms (respectively, healthy firms) as distressed (respectively, healthy) 

ones. Figure 1 displays the whole process of designing and assessing a prediction model. 

[Insert Figure 1 Here] 

6. Empirical Results 

In this section, we organise our analyses into mono-criterion analysis (see section 6.1), multi-

criteria analysis using CDEA (see section 6.2), multi-criteria analysis using CBCE (see section 

6.3), and summarise our main findings. 

6.1 Mono-Criterion Analysis 

Figure 2 presents the mono-criterion (unidimensional) rankings of 31 models considering the 

average performance measures of models over a 7-year period from 2008 to 2014. For our data 

set, mono-criterion rankings results could be summarised as follows. First, regarding the 

performance of all competing models in our study, the new developed models outperform 

original models and refitted models. This finding suggests that the change in trend of information 

during time, as someone would expect, tend to affect the performance of corporate distress 

prediction models; therefore, out-dated original models or refitted original models with new data 

set do not seem to be as efficient as new models with respect to most of the performance 

measures.  

[Insert Figure 2 Here] 

Second, relating to the comparison of new dynamic models and new static models in our study, 

for most of the performance measures, the new dynamic models outperform static ones. To be 

more specific, on most performance measures – see, for example, T2, Spe, AUC, Gini, KS, BS, 

LL and Pseudo-R
2
, new dynamic models 27, 28 and 25 (DD_ln(age), DD_VEX and 

DIWTIB_ln(age), respectively) are superior to other models. However, considering the 

performance measures T2, MR,OCC, Spe and Stability index, new static model 23 (New PA) is 
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the best performer. In general, the density of new dynamic models amongst the top-ranking 

performers is an indicator of their superiority.  

Third, contingent claim analysis (CCA) models (models 16, 17 and 18) are not amongst the best 

performers. The only exception is model 17 (Hillegeist et al., 2004), which is ranked third under 

T2, MR, OCC, and Spe; however, model 18 (Bharath and Shumway, 2008) seems to outperform 

other CCA models for most performance measures.  

Fourth, regarding the performance of the original MDA models refitted (i.e., models 9, 10, 11 

and 12), considering different measures, the rankings of models show inconsistency. Also, 

amongst the refitted regression models (i.e., models 13, 14 and 15), for most performance 

measures, the logit model 14 (refitted Ohlson, 1990) outperforms others. In general, considering 

refitted models, the discrete-time dynamic model 16 (Shumway, 2001) and the logit model 14 

(Ohlson, 1990) outperform other refitted models, for most performance measures.  

Last, but not the least, regarding the out-of-sample performance of the original models, the 

discrete-time dynamic model 8 (Shumway, 2001) and static models 6 and 5 (Ohlson, 1990; 

Theodossiou, 1991, respectively) seem to outperform other original models.  

Much like typical outcomes in the existing literature, the rankings under mono-criterion are 

facing two main issues. Firstly, the rankings of models are different not only for measures under 

different criteria – see, for example, T1 under correctness of categorical prediction criterion and 

ROC under discriminatory power criterion, but also for measures under the same criterion; see, 

for example, OCC and MR under correctness of categorical prediction criterion or KS and ROC 

under discriminatory power criterion – as it is the case in Theodossiou (1991), Bandyopadhyay 

(2006), and Tinoco and Wilson (2013). Secondly, the models’ rankings tend to have ties 

corresponding to some measures – see, for example, measures of T1 and Sen. Consequently, 

practitioners cannot make an informed decision about the best distress prediction model. To 

overcome these issues, we propose a multi-criteria ranking framework, namely SBM-CDEA, 

which not only provides a single ranking using multiple criteria at the same time but also breaks 

the possible ties in the ranking of competing models.   
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6.2 Multi-Criteria Analysis using CDEA 

Figure 4 presents the multi-criteria (multidimensional) rankings of the above mentioned 31 

models using SBM-CDEA. Further, Table 5 provides the efficient frontiers obtained with SBM-

CDEA. Also, following Mousavi et al. (2015), we provide the rankings of models using SBM-

super efficiency DEA, see Figure 3, to compare the performance of two multi-criteria assessment 

frameworks.  

[Insert Figure 3 Here] 

[Insert Figure 4 Here] 

In our empirical investigation, RTS analysis revealed that VRS conditions hold and therefore an 

additional constraint (i.e.,∑ 𝜆𝑗 = 1𝑗∈𝐽𝜆 ) need to be added to linear programming models 1, 2 and 

3. In addition, for our data set, multi-criteria rankings under SBM-super efficiency DEA and 

SBM-CDEA show considerable consistency in the rankings of top five models, for most of 

combinations of measures; however, they do not provide a general consistency in the rankings of 

all models.  

Furthermore, under SBM-CDEA, the results could be summarised as follows. First, on the 

performance of all competing models in our study, the new developed models outperform the 

original models and the original models refitted.  

Second, on the performance of dynamic and static models in our study, for most of the 

combinations of measures, the dynamic models outperform static ones. To be more specific, 

regardless of the combinations of measures, the dynamic models 28, 30 (DD_LPD and DD_1/ln 

(age), respectively) followed by models 25 and 27 (DIWTIB_ln(age) and DD_VEX, 

respectively) are amongst the top five best performers. The exceptional performance of the 

dynamic models seems to suggest that taking account of the time-varying nature of predictors 

pays off. Also, considering T1 or OCC as measures, the new static model 23 (New PA) 

outperform other dynamic and static models. The superiority of model 23 is due to its 

exceptional performance on T2 error. Though, for most of combinations of measures, static 

models 23 and 22 (new PA and new LA, respectively) are superior to other static once.  
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Third, with respect to CCA models – which are systematically amongst the worst ranked models, 

model 17 (Hillegeist et al., 2004) outperforms model 18 (Bharath and Shumway, 2008) and 

model 19 (Jackson and Wood, 2013), for all combinations of measures. 

Forth, amongst the original MDA models refitted (i.e., models 9, 10, 11 and 12), for most of the 

combinations of measures, model 10 and 9 (refitted Lis, 1972) and refitted Altman (1968), 

respectively) outperform others. Further, amongst the refitted regression models (i.e., models 13, 

14 and 15), for most performance measures, model 14 (refitted Ohlson, 1990) outperforms 

others. Also, the logit model 14 seems to be the best performer amongst all refitted models. 

Finally, considering the performance of original models, the dynamic model 8 (Shumway, 2001) 

followed by the static models 2 and 5 (Lis, 1972 and Theodosiou, 1991, respectively) are 

amongst the best performers.  

We use four alternative measures, each represents one criterion, and several combinations of 

measures of the performance criteria to find out about the robustness of the multi-criteria 

rankings to the choice of measures. The empirical findings reveal that the multi-criteria rankings 

differ from the mono-criterion ones. The multi-criteria rankings do not show ties in the rankings 

of DPMs. The results suggest that the choice of the SBM-CDEA framework is an effective way 

to overcome inconsistency in the ranking of corporate DPMs.  

6.3 Multi-Criteria Analysis using CBCE 

With respect to the implementation of CBCE, we divided prediction models into two clusters; 

namely, the cluster of static models (𝐶1) and the cluster of dynamic models (𝐶2). Figure 5 

summarizes the multi-criteria (multidimensional) rankings of the 31 models under comparison 

using CBCE. In a nutshell, empirical findings reveal that the relative performance of some 

prediction models, as suggested by the CBCE heterogeneous methodology, is consistent with the 

one suggested by CDEA homogenous methodology, whereas the relative performance of other 

prediction models is not. This difference in the relative performance of distress prediction 

models is due to the use of fundamentally different methodologies; namely, homogenous and 

heterogenous ones. Although in most applications the outcome of the heterogeneous 

methodology would be considered by practitioners more appropriate or reliable, we argue that 

when DMUs are prediction models – as opposed to individuals or organizations – the 

homogenous methodology is more appropriate. In fact, for prediction models and regardless of 
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their design features, all that matters is their predictive ability. Therefore, our recommendation 

for both academics and practitioners is to use a homogenous methodology for ranking prediction 

models. 

7. Conclusion 

Prediction of corporate distress and bankruptcy is one of the most crucial inputs to decisions 

making processes related to financing and investing activities. During the recent decades, 

academics and practitioners have developed many distress prediction models, which raise the 

question of “which of these models perform better in predicting distress?” To answer this 

question, the unidimensional ranking of competing prediction models has been the dominant 

approach; however, it results in conflicting rankings of models once someone shifts from one 

performance criterion to another. Mousavi et al. (2015) proposed a multi-criteria evaluation 

framework; namely, an orientation free super-efficiency DEA-based framework, to evaluate the 

performance of different bankruptcy prediction models, which provides a single ranking based 

on multiple performance criteria; such a framework faces one main issue that was overcome in 

this paper. In sum, we proposed an orientation-free slack-based context dependent DEA 

framework to overcome the methodological issues of both super-efficiency DEA-based and 

unidimensional ranking. Furthermore, we performed an exhaustive comparative analysis of the 

most popular distress modelling and prediction frameworks resulting in 31 prediction models 

including our models organised into three categories; namely, original models, original models 

refitted, and new models. We used several performance measures under four commonly used 

performance criteria, which are often employed in the literature to compare the performance of 

prediction models. A UK dataset on firms listed on the London Stock Exchange has been used to 

illustrate the proposed framework. The main findings could be summarised as follows. First, 

although the rankings of distress prediction models under non-oriented SBM-super efficiency 

and non-oriented SBM-CDEA are very similar, the latter one, however, does not suffer from the 

changes of reference benchmark from one DMU or prediction model to another. Second, our 

numerical results reveal that amongst the dynamic models, which are always superior in 

performance, duration dependent models (i.e., DD_VEX and DD_1/ln(age)), that use volatility 

of exchange rate (VEX) and 1/ln(age) as time-varying baseline, respectively, followed by 

duration independent models without baseline (i.e., DIWOB) tend to be superior. Third, 

numerical results seem to suggest that amongst the static models, LPA and PA models 
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outperform others. Last, but not the least, our empirical results suggest that developing new 

models using the most recent accounting, market, and macroeconomic information enhances the 

performance of distress prediction models. 

However, one potential argument against the conventional mono-criterion and the proposed 

multi-criteria CDEA evaluation frameworks is that they assume implicitly or explicitly that 

DMUs are homogeneous whereas the prediction models under comparison are heterogeneous; 

that is, prediction models under comparison belong to difference categories characterised by 

different design features. Therefore, we proposed a new multi-criteria analysis framework that 

takes account of the heterogeneous nature of DMUs, which we refer to as CBCE, to evaluate the 

performance of competing static and dynamic distress prediction models. As expected, the 

rankings of models by CBCE are not always consistent with those provided by CDEA. While in 

many applications heterogenous benchmarking methodologies deliver “fairer” efficiency profiles 

or rankings than homogeneous ones, in this specific application (i.e., assessing the relative 

performance of distress prediction models), using a heterogeneous benchmarking methodology is 

not suitable, because what matters is the predictive ability of models regardless of their design 

features. In addition, fairness is not an issue for prediction models as compares to other DMUs 

(e.g. individuals, firms, banks, universities) – no model will argue its ranking based on the 

limitations of its design features! In sum, our recommendation is to use a homogenous 

benchmarking methodology for assessing the relative performance of prediction models. 

In practice, analysts could make use of many aspects of this research. First, instead of using a 

mono-criterion methodology to guide their choice of the prediction model or models to 

implement in actual applications, they could use the proposed multi-criteria CDEA framework, 

which is a more appropriate methodological choice both conceptually and in real-life decision 

environments and applications. As to the application; that is, corporate distress prediction, the 

high performance of the new models suggests that the more the relevant information categories 

these prediction models are fed with, the better is their predictive performance. 
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Figure 1: The Process of Designing and Assessing Distress Prediction Models 
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Figure 2: Mono-Criterion Rankings of Corporate Distress Prediction Models 
This table presents the mono-criterion rankings of 31 competing corporate distress models, where models are ranked from best to worst using a single 

measure of a single criterion at a time. T1 (type I error), T2 (type II error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and OCC 

(overall correct classification) are used as measures of correctness of categorical prediction; ROC (area under receiver operating character), Gini 

coefficient, KS (Kolmogorov Smirnov) and IV (information value) are used as measures of discriminatory power; BS (Brier score) is used as a measure of 

calibration accuracy; and log-likelihood (LL) and Pseudo-R
2
 (R

2
) are used as measures of information content. Circle shapes represent static models, 

namely Multivariate Discriminant Analysis (MDA), Linear Probability (LPA), Logit Analysis (LA), and Probit Analysis (PA). Non-circle shapes 

represent dynamic models, namely duration models, and Contingent Claim Analysis (CCA) models. White, grey, and black coloured shapes represent the 

original models, the original models refitted, and the new models, respectively. 

 Measure Rank from the Best to Worst 

T1; Sen  

T2; MR; OCC; Spe  

AUC; Gini  

KS  

IV  
BS  

LL, Pseudo-R2  

Stability index  
1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age); 31DDWFSB 
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120 16 6324 175 8 97 4  1011 121314 15181921 2223 2526 27 2830 2931



30 

 

  Figure 3: SBM-Super Efficiency DEA-based Multi-Criteria Rankings of Corporate Distress Prediction Models 

This table presents the multi-criteria rankings of 31 competing corporate distress models using a DEA ranking framework, where models are ranked from 

best to worst using SBM-super efficiency scores. A multi-criteria ranking is produced for each combination of a variety of metrics of the performance 

criteria under consideration, where inputs (resp. outputs) are chosen according to the principle of the less (resp. more) the better. T1 (type I error), T2 (type 

II error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and OCC (overall correct classification) are used as measures of correctness of 

categorical prediction; ROC (area under receiver operating character), Gini coefficient, KS (Kolmogorov Smirnov) and IV (information value) are used as 

measures of discriminatory power; BS (Brier score) is used as a measure of calibration accuracy; and log-likelihood (LL) and Pseudo-R
2
 (R

2
) are used as 

measures of information content. Circle shapes represent static models, namely Multivariate Discriminant Analysis (MDA), Linear Probability (LPA), 

Logit Analysis (LA), and Probit Analysis (PA). Non-circle shapes represent dynamic models, namely duration models, and Contingent Claim Analysis 

(CCA) models. White, grey, and black coloured shapes represent the original models, the original models refitted, and the new models, respectively. 

Inputs Outputs Rank from the Best to Worst 

T1; BS; LL ROC  

T2; BS; LL ROC  

BS; LL ROC; OCC  

T1; BS; LL KS  

T2; BS; LL KS  

T1; BS ROC; R
2
  

T2; BS ROC; R
2
  

BS ROC; OCC; R
2
  

T1; BS KS; R
2
  

T2; BS KS; R
2
  

1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age); 31DDWFSB 
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12016 6324 1758 9 7 4 10 11 121314 15 18 19212223 25 262728 3029 31

12016 6 324 1758 9 74  10 11 121314 15 18 192122 2325 26272830 29 31

12016 6 324 1758 9 74  10 11 121314 15 18 19212223 25 262728 3029 31

12016 6 324 1758 9 7 4  1011 121314 1518 192122 2325 26272830 29 31
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Figure 4: SBM-Context Dependent DEA-based Multi-Criteria Rankings of Corporate Distress Prediction Models 

This table presents the multi-criteria rankings of 31 competing corporate distress models using a DEA ranking framework, where models are ranked from 

best to worst using SBM-CDEA scores. A multi-criteria ranking is produced for each combination of a variety of metrics of the performance criteria under 

consideration, where inputs (resp. outputs) are chosen according to the principle of the less (resp. more) the better. T1 (type I error), T2 (type II error), MR 

(misclassification rate), Sen (sensitivity), Spe (specificity) and OCC (overall correct classification) are used as measures of correctness of categorical 

prediction; ROC (area under receiver operating character), Gini coefficient, KS (Kolmogorov Smirnov) and IV (information value) are used as measures of 

discriminatory power; BS (Brier score) is used as a measure of calibration accuracy; and log-likelihood (LL) and Pseudo-R
2
 (R

2
) are used as measures of 

information content. Circle and non-circle shapes indicate static and dynamic frameworks, respectively. Black, grey and white shapes represent new 

models, BSM-based models, and original models refitted, respectively.  

 
Inputs Outputs Rank from the Best to Worst 

T1; BS; LL ROC  

T2; BS; LL ROC  

BS; LL ROC; OCC  

T1; BS; LL KS  

T2; BS; LL KS  

T1; BS ROC; R2  

T2; BS ROC; R2  

BS ROC; OCC; R2 
 

T1; BS KS; R2  

T2; BS KS; R2  
1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age); 31DDWFSB 
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1,9 Altman (1968); 2,10 Lis (1972); 3,11 Altman (1983); 4,12 Taffler (1984); 5,13 Theodossiou (1991); 6,14 Ohlson (1990); 7,15 Zmijewski (1984); 8,16 Shumway (2001); 
17 Hillegeist et al. (2004); 18 Bharath and Shumway (2008); 19 Jackson and Wood (2013); 20 New MDA; 21 New LPA; 22 New LA; 23 New PA; 24 DIWOB;   
25 DIWTIB_ln(age); 26 DD_ln(age); 27 DD_VEX; 28 DD_LPD; 29 DIWTIB_1/ln(age); 30 DD_1/ln(age); 31DDWFSB 

Figure 5: CBCE Multi-Criteria Rankings of Corporate Distress Prediction Models 

This table presents the multi-criteria rankings of 31competing corporate distress models using the proposed CBCE ranking framework, where models are 

ranked from best to worst using CDEA scores. A multi-criteria ranking is produced for each combination of a variety of metrics of the performance criteria 

under consideration, where inputs (resp. outputs) are chosen according to the principle of the less (resp. more) the better. T1 (type I error), T2 (type II 

error), MR (misclassification rate), Sen (sensitivity), Spe (specificity) and OCC (overall correct classification) are used as measures of correctness of 

categorical prediction; ROC (area under receiver operating character), Gini coefficient, KS (Kolmogorov Smirnov) and IV (information value) are used as 

measures of discriminatory power; BS (Brier score) is used as a measure of calibration accuracy; and log-likelihood (LL) and Pseudo-R
2
 (R

2
) are used as 

measures of information content. Circle and non-circle shapes indicate static and dynamic frameworks, respectively. Black, grey and white shapes 

represent new models, BSM-based models, and original models refitted, respectively.  
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Table 1: Literature on Comparative Studies of Failure Prediction Models 

The table present the studies that compared the performance of competing statistical failure (i.e. distress or bankruptcy) prediction models. All comparative 

studies used a mono-criterion framework, i.e. one measure of a criterion is applied at a time, to evaluate the performance of competing models. Then, the 

conflict in final rankings are seen in most of studies. 

Author Models Criteria (Measure) Result 

Panel I: Comparison between traditional statistical models 

Press and Wilson 

(1976) 

LA and MDA models Correctness of categorical prediction (T1 

and T2 errors) 

Two models unlikely will give significantly 

different results.  

Collins and Green 

(1982) 

LPA, MDA, and LA models Correctness of categorical prediction (OCC, 

T1 and T2) 

The models produce identical, uniformly results. 

Lo (1986) MDA and LA models Power of models  There are no differences between models.  

Theodossiou (1991) 

 

LPA, LA, and PA models Correctness of categorical prediction (T1 

and T2 errors), Calibration (BS), 

Information content (pseudo-R
2
) 

logit model outperforms others; conflict in the 

ranking of others on different measures 

 

Lennox (1999) LA, PA, and MDA models Correctness of categorical prediction (T1 

and T2) 

A well-specified non-linear PA and LA are 

superior over DA   

Bandyopadhyay 

(2006) 

 

MDA models and logit models 

 

Correctness of categorical prediction (OCC, 

T1 and T2) 

Discriminatory power (ROC), Information 

content (pseudo-R
2
, LL) 

Conflict in rankings using different criteria and 

measures 

 

Tinoco and Wilson 

(2013) 

logit models taking to account 

different categories of features 

Discriminatory power (ROC, Gini, KS), 

Calibration accuracy (HL) 

Conflict in rankings using different criteria and 

measures 

Panel II: Comparison between traditional statistical models and survival analysis models  

Luoma and Laitinen 

(1991) 

Cox-hazard, MDA and LA 

models 

Correctness of categorical prediction (T1 

and T2) 

SA model is inferior to MDA and LA models 

Shumway (2001) Discrete-time SA model, 

MDA, LA and PA 

Correctness of categorical prediction (OCC) Conflict in results. SA model which 

encompasses both accounting and market 

information (respectively, only accounting 

information) outperforms (respectively, 

underperforms) other statistical techniques. 

 

Panel III: Comparison between statistical models and contingent claim analysis (CCA) models 
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Hilligeist et al. (2004) BSM-based, LA and MDA models Information content (LL and 

Pseudo-R
2
) 

BSM-based model outperforms both original 

and refitting version of LA and MDA models  

Reisz and Perlich 

(2007) 

BSM-based, KMV, DOC and MDA 

models 

Discriminatory power (AUROC)  DOC and MDA outperforms others for 3-, 5- 

and 10-year ahead; MDA outperforms others for 

1-year ahead distress prediction 

Agarwal and Taffler 

(2008) 

Contingent claim based models 

[HKCL (2004) and BHSH (2008)] 

and MDA model of Taffler (1984) 

Discriminatory power (ROC), 

Information content (pseudo-R
2
, 

LL), Correctness of categorical 

prediction (EV for different cost of 

misclassification) 

MDA model outperforms HKCL (2004) on 

ROC and pseudo-R
2
. Conversely, HKCL (2004) 

outperforms BHSH (2008) and MDA model on 

LL.  

Panel IV: Comparison between CCA models and survival analysis models 

Campbell et al. (2008) A new duration dependent SA 

without time-variant baseline, SA 

model [Shumway (2001)] and 

KMV (Kealhofer, McQuown and 

Vasicek) model 

Information content (pseudo-R
2
, 

LL)  

 

The suggested new SA model outperforms both 

Shumway (2001) and KMV models.  

Panel V: Comparison between CCA, survival analysis and traditional statistical models 

Wu et al. (2010) MDA [Altman (1968)], Logit 

model [Ohlson (1980)], probit 

model [Zmijewski (1984)] hazard 

model [Shumway (2001)] and 

BSM- model [HKCL (2004)]  

 

Information content (pseudo-R
2
, 

LL)  

Correctness of categorical 

prediction (OCC), Discriminatory 

power (ROC) 

Conflict in rankings. Shumway (2001) 

outperforms others on LL and Pseudo-R2. Logit 

model performs better that others on OCC. 

 

Bauer and Agarwal 

(2014) 

Traditional model, contingent claim 

based model and hazard model 

Discriminatory power (ROC), 

Information content (LL, R
2
) and 

Correctness of categorical 

prediction (OCC, T1, T2) 

Hazard model outperforms others; Conflict in 

ranking of others on different measures 
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Table 2: The Proportion of Distress Firms (𝑫) in Training and Holdout Samples 

This table presents the yearly proportion of distress in training and hold-out samples. The percentage of distress is 

presented based on the definition of distress (𝐷). 

Hold-out Sample Training Sample  

Year 
# 

Healthy 

# 

Distress 
Total D% Period 

#  

Healthy 

#  

Distress 
Total D% 

2008 1,704 106 1,810 5.86% 2005-2007 5,423 175 5,598 3.13% 

2009 1,456 165 1,621 10.18% 2006-2008 5,367 245 5,612 4.37% 

2010 1,409 61 1,470 4.15% 2007-2009 4,986 352 5,338 6.59% 

2011 1,354 27 1,381 1.96% 2008-2010 4,569 332 4,901 6.77% 

2012 1,255 69 1,324 5.21% 2009-2011 4,219 253 4,472 5.66% 

2013 1,143 101 1,244 8.12% 2010-2012 4,018 157 4,175 3.76% 

2014 1,120 66 1,186 5.56% 2011-2013 3,752 197 3,949 4.99% 

Total    5.66%
*
      5.03% 

*
 

       * The number is the average.  
  

  



36 

 

Table 3: List of financial ratios 

Category Ratio or item Category Ratio or item 

Profitability 

(9)  

Net income to total liabilities 

EBIT to total assets 

Return on assets  

Operating income after depreciation to 

total assets 

Retained earnings to total assets 

Expected return on assets 

Total liabilities exceed total assets 

Changes in net income in two 

consecutive years  

Negative net income for last two years 

Liquidity (9) Current asset turnover 

Current assets to total liabilities 

Current liabilities to current assets 

Inventory to current assets 

Inventory turnover 

Inventory to total assets 

Profit before tax to current 

liabilities 

Quick asset to total assets 

Quick asset to inventory  

Asset 

utilisation (2) 

Asset turnover ratio 

Quick assets to sales 

Solvency (3) Current liabilities to liabilities 

Equity to capital 

Long term and current 

liabilities to total assets 

Cash flow (2) Operating cash flow to liabilities 

Funds provided by operations to 

total liabilities 

 

Market 

information (5) 

Lag of excess return 

Lag sigma 

Ln (price)  

Real size 

Failure rate in last year 

Mixed (2)  GDP × Sales 

Interest rate × Income   

Firm 

characteristics (2) 

Ln(age) 

Log (total assets to GNP price 

level index) 
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Table 4: New Designed Models 

The table presents the features and coefficients of the new models (models 20 to 31 in our rankings), namely MDA (20), LPA (21), LA (22), PA (23), DIWOB (24), 

DIWTIB_ln(age) (25), DIWTIB_1/ln(age) (26), DDWTD_ln(age) (27), DDWTD_VEX (28), DDWTD_LPD (29), DDWTD_1/ln(age) (30) and DDWFSB (31). *** and ** 

refer to 1% and 5% significance level, respectively. 

Models 
Model 20 Model 21 Model 22 Model23 Model 24 Model 25* Model 26* Model 27 Model 28 Model 29  Model 30 Model 31 

Explanatory variables 

Intercept -2.94 0.073 -3.44 -3.24 -1.53 
-1.53 

+𝑙𝑛(𝑎𝑔𝑒)𝑖 

-1.53  

 +1/𝑙𝑛(𝑎𝑔𝑒)𝑖 
-1.9749 -0.2996 -2.171 -0.591  

Current Assets to Total Liabilities -0.002 -0.0001*           

Net income to long term funding -0.014 -0.0006***          0.0022 

Current Assets to Sales -.0002 -0.0001***           

Total liabilities to Total Assets 0.066 0.0028***          -0.0079 

Cash and equivalent to Sales 0.006 0.0002***          0.0003 

Inventory to Assets            -0.9997 

Equity to Sales -0.0003 -0.0001***           

Lag of Excess Return -1.289 -0.059*** -0.832*** -0.9322*** -0.987*** -0.987*** -0.987*** -1.001*** -1.041*** -1.033*** -1.016*** -0.985*** 

Lag of Sigma  2.865 0.117***           

Ln (price) -3.842 -0.015*** -0.281*** -0.211*** -0.217*** -0.217*** -0.217*** -0.218*** -0.209*** -0.213*** -0.214*** -0.226*** 

Equity to Capital  0.003 0.045 0.0204         

Current Liabilities to Total Assets  0.0067 0.038 0.032         

Real size   -0.2562*** -0.1524**        -0.111 

Ohlson size      -0.197*** -0.197*** -0.197*** -0.201*** -0.193*** -0.193*** -0.207***  

Interest rate × Net Income -0.0001 3.23 -0.0006*** -0.00006*** -0.00007*** -0.00007*** -0.00007*** -0.00007*** -0.00006*** -0.00006*** -0.00007*** -0.00004*** 

GDP × Sales -0.0001 -3.34 -0.0004*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** 

Ln (age)        0.185     

1/ ln (age)           -2.124***  

Volatility of Exchange Rate (VEX)         -0.711***    

Last year distress rate           15.319***   

* Note that in models 25 and 29, the ln(age) and 1/ln(age) of firm 𝑖 is added to intercept as the baseline hazard rate.   
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Appendix A: Statistical Models of Corporate Distress Prediction 

Framework Model Explanation 

Multiple discriminant 

analysis (MDA) 

Altman (1968) 

𝑍 =  1.2 𝑊𝐶𝑇𝐴 +  1.4 𝑅𝐸𝑇𝐴 +  3.3 𝐸𝐵𝐼𝑇𝑇𝐴 +  0.6 𝑀𝑉𝑇𝐿 
+  0.999 𝑆𝑇𝐴 

WCTA: Working capital / Total Assets; RETA: Retained Earnings / Total 

Assets; EBITTA: Earnings before interest and taxes / Total assets; 

METL: Market value of equity / Total Liabilities; STA: Sales / Total 

assets 

Assuming there are 𝑛 groups, the generic form of DA model for group 

𝑘 is: 

 𝑧𝑘 = 𝑓 (∑ 𝛽𝑘𝑗𝑥𝑗

𝑝

𝑗=1

)  

where 𝑥𝑗  is discriminant feature 𝑗, 𝛽𝑘𝑗  is the discriminant coefficient of 

feature 𝑗 in group 𝑘, 𝑧𝑘 represents the score of group 𝑘, and 𝑓 is the 

linear or non-linear classifier that maps the scores, say 𝛽𝑡𝑥, onto a set 

of real numbers. To compare DA models to other statistical models, we 

need to estimate the probability of failure, which is used as an input for 

estimating many measures of performance. For this, we follow 

Hillegeist et al. (2004) in using a logit link to calculate the probability 

of failure for companies: 

𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠)𝑖 =
𝑒𝑧

1 + 𝑒𝑧 

Multiple discriminant 

analysis (MDA) 

Altman (1983) 

𝑍 = 0.717 𝑊𝐶𝑇𝐴 + 0.847 𝑅𝐸𝑇𝐴 + 3.107 𝐸𝐵𝐼𝑇𝑇𝐴 + 0.42 𝐵𝑉𝑇𝐿
+  0.998 𝑆𝑇𝐴 

WCTA: Working capital / Total Assets; RETA: Retained Earnings / Total 

Assets; EBITTA: Earnings before interest and taxes / Total assets; 

BVETL: Book value of equity / Total Liabilities; STA: Sales / Total 

assets 

Multiple discriminant 

analysis (MDA) 

Lis (1972) 

𝑍 = 0.063 𝑊𝐶𝑇𝐴 + 0.092 𝑅𝐸𝑇𝐴 +  0.057 𝐸𝐵𝐼𝑇𝑇𝐴 + 0.0014 𝑁𝑊𝑇𝐿 

𝑊𝐶𝑇𝐴: Working capital/ Total assets; 𝐸𝐵𝐼𝑇𝐼𝐴: Earnings before interest 

and taxes/ Total assets; 𝑀𝐸𝑇𝐿: Market value of equity /Total liabilities; 

𝑁𝑊𝑇𝐴: Net wealth / Total assets 

Multiple discriminant 

analysis (MDA) 

Taffler (1984) 

𝑍 =  3.2 +  2.5 𝐶𝐴𝑇𝐿 +  12.18 𝑃𝐵𝑇𝐶𝐿 +  0.029 𝑁𝐶𝐼 −  10.68 𝐶𝐿𝑇𝐴 

𝐶𝐿𝑇𝐴: Current liabilities/ Total assets; 𝑃𝐵𝑇𝐶𝐿: Profit before tax/ Current 

liabilities; 𝑁𝐶𝐼: Number of credit intervals as (quick assets - current 

liabilities) / ((sales - PBT - depreciation)/365); 𝐶𝐴𝑇𝐿: Current assets / 

Total liabilities 

Linear probability 

model (LPA) 

Theodossiou (1991) 

𝑍 = −0.075 + 0.51 𝑊𝐶𝑇𝐴 − 0.21 𝑇𝐷𝑇𝐴 + 0.449 𝑁𝐼𝑇𝐴
+ 0.663 𝑅𝐸𝑇𝐴 –  0.446 𝐿𝑇𝐷𝑇𝐴 

𝑊𝐶𝑇𝐴: Working capital/Total assets; 𝑇𝐷𝑇𝐴= Total debt/Total assets; 

𝑁𝐼𝑇𝐴: Net income/Total assets; 𝑅𝐸𝑇𝐴= Retained earnings/ Total assets; 

𝐿𝑇𝐷𝑇𝐴= Long term debt/Total assets 

The generic linear probability model (LPA) is a particular case of OLS 

regression and results in an estimate of probability of distress, the 

formula for which is as follows; 

𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠)𝑖 = 𝛽o + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 

Logit analysis (LA) Ohlson (1980) 

𝑙𝑜𝑔 [
𝑃𝑖

1 − 𝑃𝑖
] =  − 1.32 −  1.43 𝑊𝐶𝑇𝐴 +  6.03 𝑇𝐿𝑇𝐴 

−  2.37 𝑁𝐼𝑇𝐴 –  0.407 𝑂𝑆𝐼𝑍𝐸 –  1.83 𝐹𝑈𝑇𝐿 
+  0.0757 𝐶𝐿𝐶𝐴
+  0.285 𝐼𝑁𝑇𝑊𝑂 –  1.72 𝑂𝐸𝑁𝐸𝐺 –  0.521𝐶𝐻𝐼𝑁 

𝑊𝐶𝑇𝐴: Working capital/Total assets; 𝑇𝐿𝑇𝐴: Total liabilities/ Total 

assets; 𝑁𝐼𝑇𝐴: Net income/ Total assets; 𝑂𝑆𝐼𝑍𝐸 = log (Total assets/GNP 

price-level index); 𝐹𝑈𝑇𝐿: Funds from operations (operating income 

The generic model for binary variables could be stated as follows: 

 {
𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠)𝑖 = 𝑃(𝑌 = 1)

𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠)𝑖 = 𝐺(𝛽, 𝑋)    
  

where 𝑌 denotes the binary response variable, 𝑋 denotes the vector of 

features, 𝛽 denotes the vector of coefficients of 𝑋 in the model, and 

𝐺(. ) is a link function that maps a score 𝛽𝑡𝑥 onto a probability. In 

practice, depending on the choice of link function, the type of 

probability model is determined. For example, the logit model 
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minus depreciation) / Total liabilities;  𝐶𝐿𝐶𝐴: Current liabilities/ Current 

assets; 𝐼𝑁𝑇𝑊𝑂= 1 if net income has been negative for the last 2 years, 0 

otherwise; 𝑂𝐸𝑁𝐸𝐺 = 0 if total liabilities exceed total assets, 1 otherwise; 

𝐶𝐻𝐼𝑁 = (𝑁𝐼𝑡 − 𝑁𝐼𝑡−1)/(|𝑁𝐼𝑡| + |𝑁𝐼𝑡−1|) , where 𝑁𝐼𝑡 is the net income 

for the last period. The variable is thus a proxy for the relative change in 

net income. 

(respectively, probit model) assumes that the link function is the 

cumulative logistic distribution, say 𝛩 (respectively, cumulative 

standard normal distribution, say 𝑁) function.  

 

Probit analysis (PA) Zmijewski (1984) 

log [Pt/(1 − Pt)] =  4.336 −  5.769 𝑇𝐿𝑇𝐴 
+  4.513 𝑁𝐼𝑇𝐴 –  0.004 𝐶𝐴𝐶𝐿  

𝑁𝐼𝑇𝐴 : Net income/ Total assets; 𝑇𝐿𝑇𝐴: total liabilities/ Total assets; 

𝐶𝐴𝐶𝐿: Current assets/ Current liabilities 

Contingent claim 

analysis (CAA): Black-

Scholes-Merton (BSM) 

Based Models 

Hillegeist et al. (2004), Bharath and Shumway (2008) 

 

𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑖) = 𝑁 (−
ln(

𝑉𝑎
𝐿

)+(𝜇−𝛿−0.5𝜎𝑎
2)×𝑇

𝜎𝑎√𝑇
)  

 
𝑁(. ): the cumulative normal distribution function,𝑉𝑎:the value of the 

company’s assets; 𝐿: total liabilities; 𝜇: the expected return of the firm;  

𝜎𝑎 : volatility of the company’s asset; 𝛿 is the divided rate; which is 

estimated by the ratio of dividends to the sum of 𝐿  and 𝑉𝑒 (market value 

of common equity); 𝑇 is time to maturity for both of call option and 

liabilities.  

 

The probability of failure is extracted as the probability that call option 

expires worthless at the end of maturity data - i.e. the value of the 

company's assets (𝑉𝑎) be less than the face value of its debt liabilities 

(𝐿) at the end of the holding period [𝑃(𝑉𝑎 <  𝐿)]. 

In Hillegeist et al. (2004), 𝑉𝑎 and 𝜎𝑎 are estimated by solving a system 

of equations; i.e. the call option equation (1) and the optimal hedge 

equation (2). 

{

𝑉𝑒 = 𝑉𝑎𝑒−𝛿𝑇𝑁(𝑑1) − 𝐿𝑒−𝑟𝑇𝑁(𝑑2) + (1 − 𝑒𝛿𝑇)𝑁(𝑑1)𝑉𝑎     (1)

𝜎𝑒 =
𝑉𝑎𝑒−𝛿𝑇𝑁(𝑑1)𝜎𝑎

𝑉𝑒
                                                                   (2)

 

where 𝑉e is the market value of common equity at the time of 

estimation, 𝜎e is the annualized standard deviation of daily stock 

returns over 12 months prior to estimation, 𝑟 is the risk-free interest 

rate, and 𝑑1 and 𝑑2 are calculated as follows; 

𝑑1 =
ln(

𝑉𝑎
𝐿

)+(𝑟−𝛿−
1

2
.𝜎𝑒

2)×𝑇

𝜎𝑒√𝑇
; 𝑑2 = 𝑑1 − 𝜎𝑒√𝑇 

Where 𝑉𝑎,𝑡 is the value of the company’s assets in year 𝑡 and 𝑉𝑎,𝑡−1 is 

the value of the company’s assets in year 𝑡 − 1.  

 

Bharath and Shumway (2008) proposed a naïve approach to estimate 𝑉𝑎 

and 𝜎𝑎 as follows;  

𝑉𝑎 = 𝑉𝑒 + 𝐷 ; 𝜎 =
𝑉𝑒

𝑉𝑎
𝜎𝑒 +

𝐷

𝑉𝑎
𝜎𝑑 

where 𝜎𝑑 = 0.05 + 0.25𝜎𝑒. Further, the firm’s expected return 𝜇 is 

peroxided by the risk-free rate, 𝑟 or the stock return of previous year 

restricted to be between 𝑟 and 100%. 

Contingent claim 

analysis (CAA):  Down-

and-Out Call (DOC) 

Barrier Option Model 

Jackson and Wood (2013) 

 

A naïve DOC barrier option as an extension of BSM model, which 

assumes that debt holder's position in the firm is like holding a 

portfolio of risk-free debt and a DOC option with a strike price (or 

Barrier) equal to total liabilities (L). The model rests on the 

assumptions of no dividends, zero rebate, costless failure proceedings, 

and set return on asset equal to the risk-free rate. 
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𝑃(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠)𝑖 = 𝑁 [
𝑙𝑛 (

𝐿
𝑉𝑎

) − (𝜇 −
1
2

𝜎𝑒
2) 𝑇

𝜎𝑒√𝑇
]

+ (
𝐿

𝑉𝑎
)

2(𝜇)

𝜎𝑒
2  −1 

𝑁 [
𝑙𝑛 (

𝐿
𝑉𝑎

) − (𝜇 −
1
2

𝜎𝑒
2) 𝑇

𝜎𝑒√𝑇
] 

Discrete time hazard 

model  

(Duration dependent 

hazard model)   

Shumway (2001) 

𝑙𝑜𝑔 [𝑝𝑖,𝑡/(1 − 𝑃𝑖,𝑡)]

= −13.303 −  1.983 𝑁𝐼𝑇𝐴 +  3.593 𝑇𝐿𝑇𝐴 
−  0.467 𝑅. 𝑠𝑖𝑧𝑒 −  1.809 𝐿𝐴𝐺𝐸𝑋𝑅𝐸𝑇 
+  5.791 𝑆𝐼𝐺𝑀𝐴 

𝑁𝐼𝑇𝐴: Net income /Total assets; 𝑇𝐿𝑇𝐴: Total liabilities / Total assets; 

𝑅𝑆𝐼𝑍𝐸: Relative size; 𝐿𝐴𝐺𝐸𝑋𝑅𝐸𝑇: Lag of excess return (𝑟𝑖𝑡−1 − 𝑟𝑚𝑡−1) 

Shumway proposed a discrete time hazard model using an estimation 

procedure like the one used for estimating the parameters of a multi-

period logit model. 

𝑃(𝑦𝑖,𝑡 = 1|𝑥𝑖,𝑡) = ℎ(𝑡|𝑥𝑖,𝑡) =
exp𝛼(𝑡)+𝑋𝑖,𝑡𝛽

1 + exp𝛼(𝑡)+𝑋𝑖,𝑡𝛽
 

where ℎ(𝑡|𝑥𝑖,𝑡) represent the individual hazard rate of firm 𝑖 at time 𝑡, 

𝑋𝑖,𝑡 is the vector of covariates of each firm 𝑖 at time 𝑡. 

Shumway employed a constant time invariant term, say 𝑙𝑛 (𝑎𝑔𝑒), as a 

proxy of the baseline rate. 

Duration-independent 

hazard model 
ℎ(𝑡|𝑥𝑖,𝑡) = ℎ0. 𝑒𝑥𝑖,𝑡.𝛽 

𝑝(𝑦𝑖,𝑡 = 1) =
1

1 + 𝑒−𝑥𝑖,𝑡.𝛽
 

where, 𝛼𝑡 is the time-varying baseline hazard function related, which 

could be relate to firm, e.g. ln(age) or related to macroeconomic 

variables, e.g. foreign exchange rate.  

Duration-dependent 

hazard model 
ℎ(𝑡|𝑥𝑖,𝑡) = ℎ0(𝑡). 𝑒𝑥𝑖,𝑡.𝛽 

𝑝(𝑦𝑖,𝑡 = 1) =
1

1 + 𝑒−(𝛼𝑡+𝑥𝑖,𝑡.𝛽)
 

Cox hazard framework 

𝑃𝐿 (𝛽) = ∏ [
𝑒𝑥𝑝(∑ 𝛽𝑗𝑥𝑗

𝑖(𝑡)
𝑝
𝑗=1 )

∑ 𝑒𝑥𝑝 (∑ 𝛽𝑗𝑥𝑗
𝑘(𝑡)

𝑝
𝑗=1 )𝑘∈𝑅𝑡(𝑡)

]

𝑚

𝑖=1

 

where 𝑖 is the firm in distress, 𝑘 is the firm in the risk set at time 𝑡, and  𝑝 

is the number of features. 

A partial likelihood function on the training sample is used to estimate 

the coefficients 𝛽. This equation estimates 𝛽 without considering the 

baseline hazard rate (Hosmer and Lemesho, 1999). However, to use the 

developed model for estimation of distress probabilities, the baseline 

hazard rate is required. We follow Chen et al. (2005) in estimating the 

integrated baseline hazard function with time-varying covariates based 

on Anderson (1992) as follow: 

 
�̂�0(𝑡) = ∑

𝐷𝑖

∑ exp (�̂�′. 𝑥𝑗(𝑇�̌�))𝑗∈(�̌�𝑖)𝑇𝑖≤�̌�

 
 

where 𝐷𝑖 is a dummy variable representing whether firm 𝑖 faces 

distress or not, i.e. 𝐷𝑖 = 0 for non-distress and 𝐷𝑖 = 1 for distress; �̂�𝑖 is 

the distress time for the 𝑖th firm; �̂� is the vector of estimated 

coefficients; and �̌�𝑖 is the distress time for the 𝑖th firm. Using 

Equations (4-29) and (4-30), we estimate the probability of distress for 

individual firms in Equation 
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