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Abstract 

In the pharmaceutical industry, enhanced process understanding resulting in superior 

control of product attributes, has the potential to save up to 20 % of process engineering 

and product development costs during drug development. With the aim of achieving 

enhanced process understating, a novel approach for granulation of fine powders is 

presented. First, a mould with the desired particle shape and size is created using 3D 

printing followed by casting using elastomeric material. The formulation is prepared through 

wet massing and tested as a thin film on flat elastomeric membranes. The thin film itself can 

be a product but it also gives a good indication of coating performance before coating the 

patterned elastic membrane with the formulation i.e., 3D printed elastic mould granulation. 

Results show that following granulation and drying, granules of controlled size and shape 

(e.g. cubic and 500 μm), strength, friability and flowability can be formed. The method 

presented may allow for more robust process development in particle engineering. 
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1. Introduction 

Size enlargement process is defined as any process where small particles are agglomerated, 

compacted, or otherwise brought together into larger, relatively permanent masses in 

which the original particles can still be distinguished. The result is a somewhat porous and 

irregular structure of particles bonded together (Ge et al., 2018). In this study, the terms of 

size enlargement and granulation are used interchangeably. Size enlargement is often 

mechanistically modelled as three distinct rate processes  which occur simultaneously: (1) 

wetting and nucleation, (2) coalescence and growth, and (3) attrition and breakage (Litster 

and Ennis, 2004). Granulation is employed to improve the properties of a powder mixture: 

enhanced flowability, dissolution, compression and compaction characteristics, uniformity 

of drug distribution, product appearance; inhibit segregation and dusting (Shinde et al., 

2014; Cantor et al., 2008). Due to these favourable advantages, granulation is used to make 

granules in the range of 50 μm to 50 mm in food, detergents (Rahmanian et al., 2016), 

catalysts, pesticides, plastics, fertilisers, metalliferous ores, nuclear fuels, ceramics, c arbon 

black, cement kiln feeds and pharmaceuticals (Ennis et al., 2008; Capes and Darcovich, 

1997). 

Granulation is normally categories into two groups: wet and dry granulation. Wet 

granulation is conventional, at least in the pharmaceutical industry, where it is estimated to 

be used for approximately 80 % of the cases (Shinde et al. 2014). Wet granulation is defined 

as modifying particle structure and morphology through the use of liquid acting on the 

powder blend to form inter-particulate bonds which then result in granules of varying sizes 
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(Cantor et al., 2008). Wet granulation technologies include high shear, low shear (Cantor et 

al., 2008), fluidised bed (Passerini et al., 2010) and twin screw extrusion (Khorsheed et al., 

2018). The advantages of wet granulation include a versatility in formulations, reduced 

binder quantity, short processing times, ability to process highly cohesive materials, 

predictable end point determination to list a few (Cantor et al., 2008). Disadvantages 

consists of and are not limited to a significant loss of material during dispending and drying, 

labour intensive tasks, long drying times, difficulty in scale up and a lack of mechanistic 

understanding despite years of experience (Suresh et al., 2017). 

Dry granulation is an unconventional technology that can be subdivided into two categories: 

roller compaction and slugging (Guigon et al., 2007). Roller compaction is by far the most 

commonly used technique in dry granulation. It is desirable due to the absence of water 

which is attractive for drugs which are moisture/heat sensitive, its fitness for continuous 

processing, high drug loading (70-100%) and flexibility in volume of production. The 

problems with roller compaction include a lack of mechanistic understanding, susceptibility 

of dusting, loss in compactability and limited applicability (Bindhumadhavan et al., 2005). 

Alternative granulation technologies consist of: steam granulation, moisture activated dry 

granulation, pneumatic dry granulation, thermal adhesion granulation process, foamed 

binder technologies and freeze granulation technology (Shinde et al., 2014; Shanmugam, 

2015). Generally the new technologies are able to produce granules with a good 

reproducibility in shorter processing times. They can also be environmentally friendly with 

few variables to optimise and lower operating costs. However, there are some recurring 

problems such as lack of holistic process understanding, high risk exposure to potent API, 
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high capital costs and large equipment foot-print. There are also new challenges such as a 

lack of regulatory framework (Shinde et al., 2014; Shanmugam, 2015). 

Additive manufacturing, also known as 3D printing, has recently been gaining traction in 

research and development in a wide variety industries and process technologies like 

granulation (Bandyopadhyay and Bose, 2015; Chua and Leong, 2015; Ge et al., 2017,2018). 

This is because the patents recently expired in circa 2010 allowing hobbyists and the like to 

take full advantage of 3D printing’s extremely high flexibility in design e.g., unique 3D net-

shape with high strength-to-weight ratio (Thompson, 2007). Some key challenges 3D 

printing has yet to overcome include high capital cost and relatively long operating times for 

high volume manufacture (Bandyopadhyay and Bose, 2015). In this work it is used for 

prototyping, as is normally the case (Thompson, 2007), but recently 3D printing has been 

applied to granulation (Ge et al., 2017,2018) and other solid and/or liquid oral dosage forms 

(Genina et al., 2017). Ge et al. (2017,2018) were able to use 3D printing to substantially 

improve current knowledge on the third rate process, attrition and breakage. 

One of the strong points about the work by Ge et al. (2017,2018) is that the granules have 

consistent shape and properties so more conclusive conclusions can be made based on 

these features. As a 3D printing technology method, the Ge et al. (2017,2018) method 

suffers from the common challenge of high volume production. As far as the authors are 

aware, no granulation methods have been presented where prototype granules can be 

made before transferring to mature technologies like polymer injection moulding and 

extrusion where high volume manufacture can be achieved. This is because the produced 

granules are normally too complex for transfer to other process technologies. 
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Nemaura Pharma Ltd.’s (henceforth: NPL) process for granulation is very different compared 

to the other processes presented. The process is also known as 3D printed elastic mould 

granulation (3DEMG). NPL’s manufacturing method consists of the formation of a film on a 

substrate and then stretching the substrate along one or more axes to fracture the film into 

particle structures. The substrate may be moved continuously along a production line as the 

film is formed followed by stretching through acceleration. The substrate may contain 

elevated structures patterned in such a manner as to control the fracturing of the film 

(Chowdhury, 2015).  

NPLs process may be much more capable in producing granules that are within size 

specification and may be similar enough to current granules to produce on pilot or full 

industrial scale within a relatively short timescale. The aim of this work is to produce and 

control the properties of granules by producing them using 3DEMG. This is done by 

producing granules using 3DEMG followed by characterisation of critical granule properties.  

2. Experimental 

2.1 Materials 

Ibuprofen Grade 40 supplied by SI Group (Schenectady, USA) was used as the API. The bulk 

density was 0.33 g/mL. As stated in the European Medicines Agency (EMA) guidelines, 

purified water is to be used as the liquid medium (Gohlke and Doke, 2014). Aqueous 

solutions of sugars and synthetic polymers were used as the binding agents: sucrose (Fisher 

Scientific, UK), anhydrous-glucose, fructose (Acros Organics, USA), sorbitol (Calbiochem, 

USA), polyvinyl pyrrolidone K90 (PVP) (VWR, UK), polyethylene glycol 4000 (PEG) (Sigma 

Aldrich, UK). Non-ionic surfactants were also used as wetting agents: Kolliphor P 407 (BASF, 

Germany), Tween 20 (Acros Organics, USA). Silicone adhesive and silicone oil for casting 
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were both supplied by Techsil (Warks, UK). Silicone (manufactured by Silex, UK), parafilm 

(manufactured by Bermis, UK) and 3M 9776 polyethylene single sided foam medical tape 

(henceforth: pink foam) (manufactured by 3M, UK) were used as substrates. A saline 

phosphate buffer (PBS) supplied by (AppliChem, Germany) was used as the 

disintegration/dissolution medium. 

2.2 Equipment 

The manual film applicator (manufactured by Gradco, USA) uses a knife head coating 

configuration. The films are dried using a 25L vacutherm vacuum oven (manufactured by 

Thermo Scientific, UK). SolidWorks 2016 CAD software and Objet30 Prime (manufactured by 

Stratasys) were used for 3D printing. The substrates were stretched using Hoffmann type 

pinchcocks of 50 mm bandwidth (manufactured by VWR, UK). Tensometer (manufactured 

by Mecmesin, UK) was used to measure the strain energy of substrates  and for strength 

testing. The tensile tester was fitted with an upper and lower punch with outer diameters of 

13.5 mm. Tensile grips of 10 mm width were also used for strain energy measurements. 

British standard sieves (manufactured by Endecotts, UK) and an Axioskope 40 optical 

microscope equipped with an Axiocam (manufactured by Zeiss, UK) were used for granule 

characterisation. A UC152D stir-hot plate (manufactured by Stuart, UK) was used for 

disintegration/dissolution testing.  

2.3 Methodology 

3DEMG is the combination of wet agglomeration (Hapgood and Smith, 2015) with a 

modified transdermal patch manufacturing process (Ghosh et al., 1997). In this case an 

elastic substrate is used in place of a rigid substrate. In this study 3DEMG is used to fabricate 

either films for sublingual/buccal administration or discrete granules of controlled size and 
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shape for capsules/tablets. Part of the methodology involves analysis of formulation 

performance during film application because this is theorised to be linked to performance of 

3DEMG. As shown later, the formulation of the substrate is identical but surface features 

differ. Therefore, for example, a consistently strong attachment of thin-film to substrate 

after stretching is hypothesised to result in strong attachment of formed granules to the 

substrate after stretching. 

The desired granule size and shape is selected when designing the master mesh. As shown 

in Figure 3, the master mesh is designed on SolidWorks. The mesh in Figure 1 shows that the 

desired particle size and shape can be 500 μm and cubic while Figure 2 shows that the 

desired particle size and shape can be cuboid. Figure 4 shows that the mesh is then printed 

using the Objet30 Prime. Figure 5 shows that to obtain the elastic polymer membrane, 

silicone adhesive and silicone oil are casted onto the master meshes in a ratio of 10:1 

(adhesive: oil) with the maximum substrate thickness being limited by the height of the 

mesh. 

The first step of 3DEMG is to mix the API with excipients. This can be done in a batch, semi-

batch or continuous set-up. In this study the mixing was done in a batch set-up using a 

scintillation vial and spatula. The Ibuprofen was passed through a 1 mm sieve before mixing. 

Ibuprofen was selected as a model compound as the crystals are needle-like exhibiting poor 

flowability (i.e. cohesive) (Qu et al., 2017), brittle fracture, dusting, segregation and a 

tendency of lumping together (Le et al., 2006). Therefore, the effectiveness of 3DEMG can 

be assessed. During the mixing, unless otherwise stated, the composition of each mixture is 

given in Table 1. A liquid content of 75% was chosen for wet massing as it was deemed an 

adequate amount for ease of application of the formulation on the substrates while 
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maintain a satisfactory drug loading of 25% API. It is important to note that when the sugar 

solutions were combined with the API to form slurries/pastes they showed characteristics 

similar to pseudoplastic fluids (Chhabra, and Richardson, 2011). 

After mixing, the formulation is then placed on the substrate followed by application or 

alternatively, application and mould filling using the film applicator left-to-right (LTR). The 

landing areas on the substrate are then cleaned off using the film applicator right-to-left 

(RTL). The formulation is dried using the vacuum oven forced convection set-up – vacuum 

pump is turned-on and the air-inlet is left slightly open. To separate the granules from the 

substrate, the substrate is stretched to 30 % elongation using Hoffmann pinchcocks and 

released instantly. As a result of the stored strain energy being released instantly, the 

granules are dislodged from the mould. The separation is conducted in a closed chamber 

fitted with a looking glass in order to contain the propelled granules. 

As implied earlier, a consistently strong attachment of thin-film to substrate after stretching 

is hypothesised to result in poor solid-solid separation of formed granules after stretching. 

Consequently, similar to what is shown in Table 2, a number of binders are tested at 

different solid concentrations and film thicknesses before selecting a binder for granulation. 

As an example, the formulations which performed well were tested up to 9 times for 

sorbitol 60% solution and 4 times for PVP 20% solution. 

2.3.1 Granule characterisation 

The granule size distribution has been characterised by sieve analysis. A series of 3 British 

Standard (BS) test sieves (200, 400, 1000μm) were stacked and vibrated manually for 5 

minutes. Granule shape was characterised by optical microscopy. The friability was 

determined using one BS standard sieve of 1 mm for granules greater than 1 mm, 0.4 mm 
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for 1.0 mm granules and 0.2 mm for 0.5 mm granules; following the method presented by 

Birch and Marziano (2013) using two minutes per cycle. Three experimental runs per 

granule size were done for sieving and a single run was done per granule size for friability. 

Flowability measurements were done using the angle of repose method of Copley Scientific 

(2016) which, with the exception of the protruding outer lip, adheres to European 

Pharmacopoeia Chapter 2.9.36 and US Pharmacopeia Chapter <1174> on Powder Flow. The 

base had a fixed diameter of 23.5 mm. Each flowability measurement was taken three 

times. 

The granule strength has been characterised by the quasi-static side crushing test method 

(Rahmanian and Ghadiri, 2013). The individual granules are compressed between two 

punches using the tensile testing machine. In order to obtain some statistics, at least 10 

granules were tested per sample. The exact procedure for this method is described by ASTM 

Standard D4179 (1982), Ryu and Saito (1991) and Couroyer et al. (2000). Typical force–

displacement data when agglomerates break have been presented by Walker et al. (1997). 

The tensometer was also used for measurement of silicone substrate strain energies. A cut 

out of 80 mm by 10 mm samples of substrates are clipped onto the tensometer. They are 

then stretched at the same set rate of 10 mm/min until 30 % elongation is reached. As 

illustrated in Equation 1 (Hamper, 2009), this produces a straight-line force-displacement 

curve that can be used to calculate the strain energy. 

The bioavailability of a drug is determined by its dissolution over time. Before dissolution of 

the drug occurs, the granule and/or tablet must undergo wetting and disintegration (Smrčka 

et al.,2016). Disintegration testing was done by placing 20 mg granules per 4g PBS solution 

of pH 7.4. Disintegration end-point of the starting material was done by visual inspection. 
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E = ½Fx = ½kx2     (1) 

Where, E is elastic strain-energy, F is force, x is displacement and k is the stiffness constant.  

3. Results and discussion 

3.1 Formulation studies 

3.1.1 Effect of binder selection 

The studied sugars included sucrose, glucose, fructose and sorbitol. As shown in Figures 6 to 

9, all sugars appear to exhibit an acceptable level of adherence to the silicone substrate 

during the application as formed films had an aspect ratio (width/length) much greater than 

1/15. The synthetic polymers included PEG and PVP. In the selection of binders health and 

safety is the vital consideration. The sugars are usually cariogenic except for sorbitol in this 

case, while the polymers are essentially non-toxic as they are not absorbed in the 

gastrointestinal tract or mucous membranes (Rowe et al.,2013; Hartwig, 2013). PEGs are 

practically not volatile so PEG 4000 formulations were not studied further (Hartwig, 2013). 

For PVP in order to adhere to the chosen substrates the binder content tends to be much 

higher than the usual and processing of such viscous solutions is cost intensive. Therefore, 

sugars are probably more suitable for the chosen process.  

Figure 6 illustrates that the films formed using fructose solutions have an aspect ratio much 

greater than 1/15 but were unable to dry in a reasonable time (less than 18 hours). Figure 7 

displays films formed using glucose which, upon drying, stuck onto the substrate strongly 

and this is unsuitable for processing. Figure 8a shows films formed using sucrose which dry 

in in less than 18 hours while undergoing crystallisation during solidification. Figure 8b 

shows that when dried, the films underwent multiples fractures but remained attached to 

the substrate so solid-solid separation becomes challenging. On the other hand, films 
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formed using sorbitol, as shown in Figure 9, are much easier to remove from the substrate. 

Like sucrose films, they also dry in less than 18 hours and undergo multiple fractures. In the 

light of these results, sorbitol formulations were used for the study. 

3.1.2 Effect of binder concentration 

The binder concentration affects the process performance in a number of ways. A generally 

high binder content leads to creating a more cohesive network of all ingredients (see Figures 

10a, 11a and 12a) (Cantor et al., 2008). Low binder concentrations appear to be undesirable 

where binders are the only excipient. For PVP, it is clear from Figure 10b that during film 

application the formulation displays a poor adherence to the foam substrate. Figure 14 

shows a low binder concentrations of a sugar (40 %wt sucrose) which lead to a significant 

increase in drying times greater than 18 hours. Figures 12b,c and 13a show high binder 

concentrations (30 %wt PVP) also appear to be undesirable as inconsistent films are more 

likely to be produced.  

Figure 8b (60 %wt sucrose) and Figure 11b (20 %wt PVP) show that there seems to be an 

optimum binder concentration where suitable adherence to substrate, consistent film 

thickness and acceptable drying times are observed. As an increased binder concentration 

leads to enhanced binding it was important to study whether disintegration of the films was 

still possible. In the case of PVP, this was not a concern as it is usually used to enhance the 

dissolution of poorly soluble drugs (Rowe et al., 2013). As highlighted in Table 6, it was 

determined that the disintegration generally occurs in less than 5 minutes. Maintaining a 

short disintegration time of less than 5 minutes for high binder concentrations, is desirable 

as it may lead to high strength granules and tablets that are able to disintegrate/dissolve a s 

wanted. 
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3.1.3 Effect of surfactant addition 

Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, and 

dispersants (Porter and Porter, 1991). In this case non-ionic surfactants were used as 

wetting agents so that a lower concentration of binder may be used. As shown in Figures 15 

and 16 the adherence to substrate was modified by the use of Tween 20 but drying of the 

films did not occur in less than 18 hours. Tween 20 is liquid in standard conditions so this is 

to be expected. When the poloxamer P 407 was used foaming of the formulation occurred 

which is unwanted for film application i.e., poor control of film and probably granule 

properties. 

3.1.4 Effect of silicone casting composition 

Two formulations were tested. One with high silicone oil content (10:1 of silicone adhesive: 

silicone oil) and one with low silicone oil content (20:1 of silicone adhesive: silicone oil). It 

was found that high silicone oil content led to a more rigid material so this meant that for a 

given strain, more strain energy is stored for separation of the granules from the substrate.  

In addition, silicone moulds made using the 20:1 ratio are able to remain rigid during the 

mould filling process, maintaining the desired structure of the formulation being casted. 

However, Figure 20 and Equation 1 support the decision of selecting the 10:1 ratio as the 

elastic mould becomes stiffer with increasing thickness . Therefore a thick substrate with 

20:1 silicone adhesive-to-oil ratio may be too stiff to stretch to 30 % elongation. 

3.2 Process studies 

3.2.1 Effect of substrate material properties 

Both of the materials used for this study, silicone and parafilm, are hydrophobic. Parafilm is 

especially hydrophobic having a contact angle of 103°±11° with water and a RMS roughness 
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of ~ 60 (50 x 50 μm2) as presented by Yamaguchi et al. (2016) and Ping et al. (2009). In the 

case of silicone (polysiloxane), it is generally hydrophobic having a high contact angle with 

water. However, silicone can undergo surface treatment/hydrophilisation to increase its 

wettability with water (Roth et al., 2008). In this study the silicone did not undergo chemical 

treatment. 

When stretched, parafilm does not return to its original length while silicone quickly returns 

to its original after release. This means that the energy is dissipated during elongation for 

parafilm while it is mainly stored as strain energy for silicone. Therefore, parafilm would be 

unsuitable for a continuous manufacturing process. Furthermore, as shown in Figures 11b 

and 17, due to parafilms surface properties the ability of a formulation to adhere on the 

substrate homogeneously is poorer than with silicone. While the film of the same 

formulation contracts inwardly for parafilm (see Figure 17), it effectively coats silicone (see 

Figure 11b). 

As shown in Figures 10b and 12c there are cases where pink foam was coated with silicone 

to create a substrate with the combination of two elastic constants. This was to prevent the 

applied formulation from leaking through the pink foam. Solid-solid separation would 

probably be different as the strain energy storage and dissipation would probably be 

different for pink foam-silicone as compared with the pure silicone. Further studies are 

required to investigate this in the future. 

3.2.2 Effect of film thickness and substrate thickness 

The film thickness of the PVP formulation is 500 μm in Figure 11 and 200 μm in Figure 18. In 

Figure 11, when it is stretched to 30% elongation, the film is delaminated from the substrate 

while multiple fractures occur in Figure 18. The same phenomena occurred with the sorbitol 
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formulation. Figure 19 shows that at a thickness of 300 μm it delaminated while Figure 9c 

shows that at a film thickness of 100 μm multiple fractures occurred. Hence, there may be a 

critical film thickness/range of film thickness values for which either multiple fractures or 

delamination occurs. The distinction between multiple fractures and delamination is 

probably also a function of solid-liquid content. 

The parafilm membrane thickness was always 127 μm as it was purchased from the vendor 

(Bermis, UK). On the other hand, the silicone was casted in house so the thickness of the 

polymer membrane could be varied. As expected, Figure 20 shows an increase in the 

thickness of a silicone membrane appears to result in a stiffness constant. The smallest 

thickness casted was 300 μm while the largest thickness was 6.0 mm. 

3.2.3 Effect of patterned surfaces 

By patterning an elastomer via moulding one can obtain granules of desired size and shape. 

In this study two types of surface/moulding patterns were explored: cuboid and cubic. In 

addition to the cubic granules, cuboid moulds were made to illustrate the versatility in size 

and shape control with elastic mould granulation. Figures 21 and 23c show cuboid granules 

of 0.5 mm, 1.0 mm and 5.0 mm width while, Figures 22, 23, 25 show cubic granules of 0.5 

mm, 1.0 mm, 2.0 mm and 4.0 mm size. Figure 23 shows that if the landing areas on the 

surface of the substrates are not cleaned-off effectively, agglomeration of the granules may 

occur due to formation of solid bridges (Okeyo et al., 2017). It is postulated that off-

specification size is owing to incomplete mould filling (Kalpakjian and Schmid, 2006) and/or 

agglomeration of granules during drying (Litster, 2016) due to incomplete land area 

cleaning. 
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Figures 24 and 25 show that optical microscopy and sieving have been used to check that 

the granules produced are very similar to the size and shape of the elastic mould. The cubic 

shape was selected as it is easy to mould and it exhibits good flowability (Carr, 1965) using 

the categories from the US Pharmacopeia (see Table 3) (Hoag and Lim, 2016; Pharmacopeia, 

2005). Brittle fracture is the most common failure mode for pharmaceutical granules but, 

for the tested sorbitol formulation, strength testing revealed that the granules appear to 

undergo relatively slow irreversible deformation. Figure 26 and 27 display trends similar to a 

force-displacement curve at the onset of plastic deformation as presented by Zhou and Qiu 

(2010). Plastic deformation is desirable as it leads to high strength tablets (see Table 4) 

(Shiraishi et al., 1994, 1995). However, it is important to note that the cuboid granules 

exhibit multiple fractures on the long axis (see Figure 21c) and slow irreversible deformation 

on compression. 

Assuming perfect mixing, the granules are 36 %wt Ibuprofen and 64 %wt sorbitol. Ibuprofen 

is susceptible to brittle fracture but as it is not the majority of the formulation, the granules 

are more characteristic of sorbitol (Shariare, 2012). Li et al. (2013) show that sorbitol 

deforms plastically so it is safe to assume that this is why the granules are deforming slowly 

and irreversibly during compression. Figure 28 displays data from friability tests which show 

that in some cases a less than 1 %wt of material is lost and this is desirable for inhibiting 

dust formation (see Table 5). The low Agglomerate Brittleness Index (ABI) values also 

indicate the granules are hard (Birch and Marziano, 2013). Disintegration tests displayed in 

Table 6 also showed that granules are able to disintegrate in less than 5 minutes despite 

their high strength. 
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Another detail worth mentioning is that the drying time of patterned substrates is 

significantly longer than the drying time of thin films. This is most likely to due to the mass 

transfer limitations introduced by reduction in effective surface area in contact with air, and 

increase in thickness of the formulation. Succinctly, the drying step is currently the rate 

limiting step. Preliminary studies have shown that one may be able to significantly reduce 

the drying time by reducing the liquid content and increase the binder concentration of the 

formulation. 

3.2.4 Effect of stretching 

Stretching the substrate resulted in either fracture or delamination of thin films. However, 

in the case of patterned surfaces, it only separated the surface of the granules from the 

surface of the polymer membrane. For the granules to be fully separated from the substrate 

the stretched membrane had to be released instantly to propel the granules out of the 

substrate i.e., strain energy solid-solid separation. The effect of strain energy on solid-solid 

separation is presented in Figure 29. Excluding the anomalous point at 66 mJ of strain 

energy, there appears to be a positive correlation between strain energy and solid-solid 

separation. This was hypothesised to be the case. Similar to Figure 20, a wider range or 

more data point measurements of strain energy would have to be made before statistical 

regression is undertaken.  

4. Conclusion 

A novel approach for the formation of API loaded films and granules is presented in order to 

attend to much needed solutions to some of the existing problems in formulation 

engineering: structural control, process understanding and continuous processing. NPL’s 

process offers a platform for small scale experiments, ease of scale-up and smaller 
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equipment footprint owing to continuous processing, as well as particulate structural 

control to produce granules of controlled size, shape, strength, friability and flowability. It is 

also important to note that NPL’s process is not a solution to all the problems as it is 

unsuitable for moisture sensitive APIs. Overall NPL’s process has the potential to either 

replace traditional technologies or compete as an alternative. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

References 

A.S.T.M. Standard D4179.1982, Single Pellet Crush Strength of Formed Catalyst Shapes. 

American Society for Testing Materials. 

Bandyopadhyay, A. and Bose, S., 2015. Additive manufacturing. CRC Press. 

Bindhumadhavan, G., Seville, J.P.K., Adams, M.J., Greenwood, R.W. and Fitzpatrick, S., 2005. 

Roll compaction of a pharmaceutical excipient: Experimental validation of rolling theory for 

granular solids. Chemical Engineering Science, 60(14), pp.3891-3897. 

Birch, M. and Marziano, I., 2013. Understanding and avoidance of agglomeration during 

drying processes: A case study. Organic Process Research & Development, 17(10), pp.1359-

1366. 

Cantor, S.L., Augsburger, L.L., Hoag, S.W. and Gerhardt, A., 2008. Pharmaceutical 

granulation processes, mechanism and the use of binders. Pharmaceutical dosage forms: 

tablets, 1, pp.261-302. 

Capes, C.E. and Darcovich, K., 1997. Size enlargement. John Wiley & Sons, Inc. 

Carr, R.L., 1965. Evaluating flow properties of solids. Chem. Eng., 72, pp.163-168. 

Chhabra, R.P. and Richardson, J.F., 2011. Non-Newtonian flow and applied rheology: 

engineering applications. Butterworth-Heinemann. 

Chowdhury, D. F. H., 2015. Formation of Particle Structures. United States Patent and 

Trademark Office (USPTO) Patent number 20150359741.  

Chua, C.K. and Leong, K.F., 2015. 3D PRINTING AND ADDITIVE MANUFACTURING: Principles 

and Applications. 5th edn. World Scientific Publishing Co Inc. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Copley Scientific, 2016. Quality Solutions for the Testing of Pharmaceuticals. [Brochure]. 

Ennis, B.J., Witt, W., Weinekötter, R., Sphar, D., Gommeran, E., Snow, R. H., Allen, T., 

Raymus, G. J., Litster, J. D., 2008. ‘Solid-Solid Operations and Processing’ in Perry's Chemical 

Engineers Handbook. McGraw-Hill Professional Publishing. 

Ge, R., Ghadiri, M., Bonakdar, T. and Hapgood, K., 2017. 3D printed agglomerates for 

granule breakage tests. Powder Technology, 306, pp.103-112. 

Ge, R., Ghadiri, M., Bonakdar, T., Zhou, Z., Larson, I. and Hapgood, K., 2018. Experimental 

study of the deformation and breakage of 3D printed agglomerates: Effects of packing 

density and inter-particle bond strength. Powder Technology, 340, pp.299-310. 

Genina, N., Boetker, J., Löbmann, K., Rades, T., and Rantanen, J., 2017. ‘Additive 

Manufacturing of Multicompartmental Pharmaceutical Products’ in 8th International 

Granulation Conference. University of Sheffield, 28-30 June 2017. [Online] Available at 

https://www.sheffield.ac.uk/polopoly_fs/1.709452!/file/Oraltime.pdf (Accessed: 29 

November 2017). 

Ghosh, T.K., Pfister, W.R. and Yum, S.I., 1997. Transdermal and topical drug delivery 

systems. Informa Health Care. 

Gohlke, J.M. and Doke, D., 2014. Encyclopedia of toxicology. Elsevier. 

Guigon, P., Simon, O., Saleh, K., Bindhumadhavan, G., Adams, M.J. and Seville, J.P., 2007. 

Roll pressing. Handbook of Powder Technology, 11, pp.255-288. 

Hamper, C., 2009. Pearson Baccalaureate: Higher Level Physics for the IB Diploma (Pearson 

International Baccalaureate Diploma: International Edition. Pearson Education 

ACCEPTED MANUSCRIPT

https://www.sheffield.ac.uk/polopoly_fs/1.709452!/file/Oraltime.pdf


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Hapgood, K.P. and Smith, R.M., 2015. Wet Granulation and Mixing. Pharmaceutical Blending 

and Mixing, p.153. 

Hartwig, A. ed., 2013. The MAK-collection for occupational health and safety(Vol. 27). John 

Wiley & Sons. 

Hoag, S. and Lim, H.P., 2016. Particle and powder bed properties. Pharmaceutical Dosage 

Forms: Tablets. Unit Operations and Mechanical Properties, 1, pp.17-73. 

Kalpakjian, S. and Schmid, S.R., 2006. Manufacturing engineering and technology. 5th edn. 

Jurong, Singapore: Pearson. 

Khorsheed, B., Gabbott, I., Reynolds, G.K., Taylor, S.C., Roberts, R.J. and Salman, A.D., 2018. 

Twin-screw granulation: Understanding the mechanical properties from powder to 

tablets. Powder Technology. 

Le, V.N.P., Leterme, P., Gayot, A. and Flament, M.P., 2006. Influence of granulation and 

compaction on the particle size of ibuprofen—development of a size analysis 

method. International journal of pharmaceutics, 321(1), pp.72-77. 

Li, X.H., Zhao, L.J., Ruan, K.P., Feng, Y. and Ruan, K.F., 2013. The application of factor analysis 

to evaluate deforming behaviors of directly compressed powders. Powder technology, 247, 

pp.47-54. 

Litster, J. and Ennis, B., 2004. The science and engineering of granulation processes. 

Dordrecht: Kluwer Academic Publishers. 

Litster, J., 2016. Design and Processing of Particulate Products. Cambridge University Press. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Okeyo, C., Mallet, F., Rahmanian, N. and Schäfer, F., 2017. ‘Scale Down of Agitated Filter 

Drying of Active Pharmaceutical Ingredients’ in 8th International Granulation Conference. 

University of Sheffield, 28-30 June, Paper 56. 

Passerini, N., Calogerà, G., Albertini, B. and Rodriguez, L., 2010. Melt granulation of 

pharmaceutical powders: a comparison of high-shear mixer and fluidised bed 

processes. International journal of pharmaceutics, 391(1), pp.177-186. 

Pharmacopeia, U.S., 2005. USP 29–NF 24. Rockville, MD: USP. 

Ping, C.C.W., Ivanova, N.A., Starov, V.M., Hilal, N. and Johnson, D., 2009. Spreading 

behaviour of aqueous trisiloxane solutions over hydrophobic polymer substrates. Colloid 

journal, 71(3), pp.391-396. 

Porter, M.R. and Porter, M., 1991. Handbook of Surfactants. Published by Blackie & Son 

(Glasgow and London), pp.116-178. 

Qu, L., Stewart, P.J., Hapgood, K.P., Lakio, S., Morton, D.A. and Zhou, Q.T., 2017. Single-step 

coprocessing of cohesive powder via mechanical dry coating for direct tablet 

compression. Journal of pharmaceutical sciences, 106(1), pp.159-167. 

Rahmanian N., Halmi M. H., Kong C. C., Patel R., Yusup S., Mujtaba I. M. (2016) An 

experimental investigation on seeded granulation of detergent powders. Chemical 

Engineering Transactions, 52, pp.1297-1302 

Rahmanian, N. and Ghadiri, M., 2013. Strength and structure of granules produced in 

continuous granulators. Powder technology, 233, pp.227-233. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Roth, J., Albrecht, V., Nitschke, M., Bellmann, C., Simon, F., Zschoche, S., Michel, S., 

Luhmann, C., Grundke, K. and Voit, B., 2008. Surface functionalization of silicone rubber for 

permanent adhesion improvement. Langmuir, 24(21), pp.12603-12611. 

Rowe, R.C., Sheskey, P.J. and Quinn, M.E., 2013. Handbook of pharmaceutical excipients –

7th edition. Pharm. Dev. Technol., 18, p.544. 

Shanmugam, S., 2015. Granulation techniques and technologies: recent 

progresses. BioImpacts: BI, 5(1), p.55. 

Shariare, M.H., 2012. The rational design of drug crystals to facilitate particle size reduction. 

Investigation of crystallisation conditions and crystal properties to enable optimised particle 

processing and comminution (Doctoral dissertation, University of Bradford). 

Shinde, N., Aloorkar, N., Kulkarni, A., Bangar, B., Sulake, S. and Kumbhar, P., 2014. Recent 

Advances in Granulation Techniques. Asian Journal of Research in Pharmaceutical 

Science, 4(1), pp.38-47. 

Shiraishi, T., Kondo, S., Yuasa, H. And Kanaya, Y., 1994. Studies on the granulation process of 

granules for tableting with a high speed mixer. I. Physical properties of granules for 

tableting. Chemical and pharmaceutical bulletin, 42(4), pp.932-936. 

Shiraishi, T., Sano, A., Kondo, S., Yuasa, H. And Kanaya, Y., 1995. Studies on the granulation 

process of granules for tableting with a high speed mixer. II. Influence of particle size of 

active substance on granulation. Chemical and pharmaceutical bulletin, 43(4), pp.654-659. 

Smrčka, D., Dohnal, J. and Štěpánek, F., 2016. Dissolution and disintegration kinetics of high-

active pharmaceutical granules produced at laboratory and manufacturing scale.  European 

Journal of Pharmaceutics and Biopharmaceutics, 106, pp.107-116. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Suresh, P., Sreedhar, I., Vaidhiswaran, R. and Venugopal, A., 2017. A comprehensive review 

on process and engineering aspects of pharmaceutical wet granulation. Chemical 

Engineering Journal, 328, pp.785-815. 

Thompson, R., 2007. Manufacturing processes for design professionals. Thames & Hudson. 

University of Birmingham, 2017. EPSRC Centre for Doctoral Training in Formulation 

Engineering. Available at: http://www.birmingham.ac.uk/schools/chemical-

engineering/postgraduate/eng-d/index.aspx (Accessed: 07 August 2017).  

Walker, G.M., Magee, T.R.A., Holland, C.R., Ahmad, M.N., Fox, N. and Moffatt, N.A., 1997. 

Compression testing of granular NPK fertilizers. Nutrient Cycling in Agroecosystems, 48(3), 

pp.231-234. 

Yamaguchi, M., Aoyama, T., Yamada, N. and Chibana, H., 2016. Quantitative measurement 

of hydrophilicity/hydrophobicity of the plasma-polymerized naphthalene film (Super 

Support Film) and other support films and grids in electron microscopy. Microscopy, 65(5), 

pp.444-450. 

York, D., 2017. ‘Engineering Formulated Products’ in ChemEngDayUK2017. University of 

Birmingham, 27-28 March 2017. [Online] Available at https://static1.squarespace.com 

Accessed: 05 August 2017. 

Zhou, D. and Qiu, Y., 2010. Understanding material properties in pharmaceutical product 

development and manufacturing: Powder flow and mechanical properties. Journal of 

Validation Technology, 16(2), p.65. 

  

ACCEPTED MANUSCRIPT

http://www.birmingham.ac.uk/schools/chemical-engineering/postgraduate/eng-d/index.aspx
http://www.birmingham.ac.uk/schools/chemical-engineering/postgraduate/eng-d/index.aspx
https://static1.squarespace.com/


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Figure 1. Cubic desired particle design and size with (A) 500 μm to 5000 μm length (B) 500 

μm to 5000 μm length (C) 500 μm to 5000 μm length and (D) 1.5 mm to 15 mm. 

Figure 2. Cuboid desired particle design and size with (A) 500 μm to 5000 μm length and (B) 

500 μm to 5000 μm length. 

Figure 3.SolidWorks CAD model of (a) 500 x 500 x 500 μm cubic pattern (b) 1 x 1 x 80 mm 

cuboid pattern both (a) and (b) are on 50 x 80 mm master meshes. 

Figure 4. 3D print of master meshes from Figure 1a (left) and 1b (right). 

Figure 5. Silicone moulds of master meshes from Figure 1a (left) and 1b (right). 

Figure 6. Ibuprofen-fructose 70% solution. 

Figure 7. Ibuprofen-glucose 40% solution (a) applied (b) stretched. 

Figure 8. Ibuprofen-sucrose 60% solution (a) optical microscopy (b) applied (c) stretched. 

Figure 9. Ibuprofen-sorbitol 60% (a) optical microscopy (b) applied (c) stretched. 

Figure 10. Ibuprofen-PVP 10% solution (a) optical microscopy (b) applied. 

Figure 11. Ibuprofen-PVP 20% solution (a) optical microscopy (b) applied (c) stretched. 

Figure 12. Ibuprofen-PVP 30% solution. 

Figure 13. Ibuprofen-sucrose 80% solution (a) applied (b) stretched. 

Figure 14. Ibuprofen-sucrose 40% solution. 

Figure 15. Ibuprofen (20.8 % wt)-PVP 2% (62.5% wt)-Tween 20 (16.7 % wt). 
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Figure 16. Ibuprofen (19.2 % wt)-PVP 10% (57.7 % wt)-Tween 20 (23.1 % wt). 

Figure 17. Ibuprofen-PVP 20% solution on flat parafilm (a) light coating (b) heavy coating. 

Figure 18. Ibuprofen-PVP 20% solution (200 μm) (a) applied film (b) subsequently stretched 

membrane and fractured film. 

Figure 19. Ibuprofen-Sorbitol 60% Solution (300 μm) 

Figure 20. Graph of effect of substrate thickness on strain energy. 

Figure 21. Cuboid granules (a) 0.5 mm (b) 1 mm (c) 5.0 mm. 

Figure 22. Cubic granules 0.5 mm, 1.0 mm, 2.0 mm, 4.0 mm LTR. 

Figure 23. Effect of cleaning (a), (b) without surface cleaning (c), (d) with surface cleaning.  

Figure 24. Size distribution of cubic granules (a) 1000 μm (b) 500 μm. 

Figure 25. Optical microscopy of cubic granules (a) 1000 μm (b) 500 μm. 

Figure 26. Force-displacement graphs for ten 1000 μm cubic granules of ibuprofen-sorbitol 

60 % solution. 

Figure 27. Force-displacement graphs for ten 500 μm cubic granules of ibuprofen-sorbitol 

60% solution. 

Figure 28. Friability testing. 

Figure 29: Effect of strain energy on solid-solid separation. 
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Table 1. Formulation composition for mixing. 

Compound Mass (g) % Weight Comments 
Ibuprofen 0.5 25  

Binder Solution 1.5 75 See Table 2 

Total 2.0 100  
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Table 2. Formulation composition for preparation of binder solutions (example). 

Compound Mass (g) % Weight Comments 
Sorbitol Binder 6.0  60 Heat up to 80°C and 

hold for 30 min while 
agitating at 3/9 

Purified water 4.0 40 

Total 10.0 100 
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Table 3. Effect of 3DEMG on flowability of granules. 

Compound Angle of Repose (°) Comments 
Ibuprofen Grade 40 63 ± 1 Very Poor Flowability 

1000 μm Cubic Granules 31 ± 4 Good Flowability 

500 μm Cubic Granules 42 ± 4 Passable – may hang up 
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Table 4. Maximum normal stress experienced by granules. 

Compound Normal Stress (MPa) Equation 
500 μm Cubic Granules 160 Normal Stress = Force/Area 

1000 μm Cubic Granules 40 

5000 μm Cubic Granules 1.6 
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Table 5. Friability risk categories. (Birch and Marziano, 2013) 

Extent of Structural Integrity Classification Recommendation 

<10 % Mass Loss Low Acceptable formulation 

10 %< Mass Loss <20% Intermediate Slight or no modification 
Mass Loss >20 % High Change formulation 

Agglomerate Brittleness Index Classification Recommendation 
< 0.1 ABI or ABI= 0 Low Acceptable formulation 

0.1< ABI < 1.0 Intermediate Slight or no modification 
ABI > 1.0 High Increase binder content 

ABI  >> 1* Very high Change formulation 

*ABI >> 1 when no granules on sieve and ABI = 0 when there is zero dust formation 
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Table 6. Disintegration time results and categorical responses. 

Compound 
Time to 

Disintegrate (min) 

Categorical 

Response 
Remarks 

Ibuprofen Grade 40 30 More than 5 min Dispersion of lumps 

Ibuprofen-PVP 25 % sol. 5 Less than 5 min Film disintegration 
Ibuprofen-sorbitol 60 % sol. 5 Less than 5 min Granule disintegration 
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Highlights 

 A novel approach for structural control of particulates is presented. 

 Effectiveness of process for granulation was evaluated. 

 Exceptionally narrow granule size distribution is achieved. 

 Granules exhibit slow irreversible deformation, low friability, good flowability and 

ease of disintegration. 

 

Graphical abstract 

From CAD model (a) to 3D Print (b), silicone mould (c), granulation (d), and characterisation (e)  
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