
1 
 

A comparison of logistic regression models with alternative machine 

learning methods to predict the risk of in-hospital mortality in emergency 

medical admissions via external validation. 

 

Authors 

Muhammad Faisal, Senior Research Fellow in Medical Statistics 
Faculty of Health Studies, University of Bradford, Bradford, UK 
Bradford Institute for Health Research 
E-mail: M.Faisal1@bradford.ac.uk 
 
Andy Scally, Medical Statistician 
Faculty of Health Studies, University of Bradford, Bradford, UK 
Bradford Institute for Health Research 
E-mail: A.J.Scally@Bradford.ac.uk 
 
Robin Howes, Operational Manager for Electronic Patient Records 
Department of Strategy & Planning 
Northern Lincolnshire and Goole Hospitals 
E-mail: robin.howes@nhs.net 
 
Kevin Beatson, Development Manager 
York Teaching Hospital NHS Foundation Trust  
E-mail: Kevin.Beatson@York.NHS.uk 
 
Donald Richardson, Consultant Renal Physician 
Department of Renal Medicine, York Teaching Hospital NHS Foundation Trust Hospital 

E-mail: drichardson@doctors.org.uk 

 
Mohammed A Mohammed 
Professor of Healthcare Quality & Effectiveness 
Faculty of Health Studies, University of Bradford, Bradford, UK 
Deputy Director of the Bradford Institute for Health Research 
Academic Director to the Yorkshire & Humberside Academic Health Sciences Network 
E-mail: M.A.Mohammed5@Bradford.ac.uk 
 
Correspondence to: Mohammed A Mohammed 
 

  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/161875036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:M.Faisal1@bradford.ac.uk
mailto:A.J.Scally@Bradford.ac.uk
mailto:robin.howes@nhs.net
mailto:Kevin.Beatson@York.NHS.uk
mailto:drichardson@doctors.org.uk
mailto:M.A.Mohammed5@Bradford.ac.uk


2 
 

ABSTRACT 

 

We compare the performance of logistic regression with several alternative machine learning 

methods to estimate the risk of death for patients following an emergency admission to 

hospital based on the patients’ first blood test results and physiological measurements using 

an external validation approach. We trained and tested each model using data from one 

hospital (n=24696) and compared the performance of these models in data from another 

hospital (n=13477). We used two performance measures – the calibration slope and area 

under the curve (AUC). The logistic model performed reasonably well – calibration slope 

0.90, AUC 0.847 compared to the other machine learning methods. Given the complexity of 

choosing tuning parameters of these methods, the performance of logistic regression with 

transformations for in-hospital mortality prediction was competitive with the best performing 

alternative machine learning methods with no evidence of overfitting.  

Key words:  statistical modelling, classification and prediction, computer intensive methods, 

modelling healthcare services, electronic health records, databases and data mining  

 

 



3 
 

Introduction 

 

Several predictive models are in widespread use to predict the risk of death for patients in 

hospital. Prominent examples include Acute Physiology and Chronic Health Evaluation 

(APACHE II) [1], Mortality Probability Model (MPM II) [2]  and the Physiological and 

Operative Severity Score for the enUmeration of Mortality and Morbidity (POSSUM) [3].  

The development of such risk prediction models is less than straight forward, involving a 

number of important modelling choices [4] which require consideration of candidate 

covariates (eg the patients’ age, gender, comorbidities), the linearity or otherwise of 

covariates, interaction effects and the choice of model (eg logistic regression) [5]. Model 

development is usually guided by a number of model diagnostics and performance statistics 

such as model calibration and model discrimination [6]. 

Our motivation stems from attempting to predict the risk of dying for acutely ill patients who 

are admitted to hospital as unplanned or emergency medical admissions [7]. The response 

variable is whether the patient died in hospital (yes/no) and the covariate set is based on 

previous work [8] which identified the patients’ routine blood tests (seven blood tests, see 

later) and National Early Warning Score (NEWS)[9], (see later) as appropriate predictor 

variables along with the patients age (years) and gender (male/female). 

A fundamental issue is choice of model. Here we consider the more traditional approach 

(which tend to produce models which are more understandable by humans) versus more 

modern machine learning approaches:- (1) logistic regression without transformations of 

continuous covariates (LOGIT), (2) logistic regression with transformations of continuous 

covariates (LOGIT†), (3) logistic regression with multivariable fractional polynomials (MFP) 

[10], (4) logistic regression with restricted cubic splines (RCS) for continuous covariates [5], 

(5) recursive partitioning and regression trees (RPART) [11], (6) random forest (RF) [12], (7) 

generalized boosted regression modelling (GBM) [13], (8) support vector machine (SVM) 

[14], (9) neural network (NNET) [14]. 
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The rationale for investigating these alternative approaches is as follows. Logistic regression 

is widely used in medical applications and the model coefficients can be interpreted as odds 

ratios (and using a modified approach as risk ratios) which are clinically meaningful [4]. For 

the logistic model, covariates can be included on the untransformed scale, with 

transformation and with/without the aid of restricted cubic splines (RCS) (which are 

advocated for use with continuous covariates [5,15]) and MFP (which has also has been 

advocated for continuous covariates [16]). Furthermore, modern statistical machine learning 

methods have been advocated by several authors [17–25], including decision trees, boosted 

models, support vector machine, and neural networks. 

For this paper, we consider logistic regression with/without transformation as being the more 

traditional approach and the use of RCS, MFP, RF, RPART, GBM and SVM as the more 

modern computationally intensive approaches. 

Our aim is to compare the above modelling strategies and identify the model with the best 

performance statistics using external model validation to assess the performance of these 

models in terms of calibration and discrimination. The use of external validation to make 

these comparisons has become an important methodological development [6,26]. 

As prediction models inform patients and carers about prognosis, it is essential that 

predictions should be well calibrated [6]. Whilst the interest in the development and 

validation prediction models in clinical setting is growing, only a quarter of the studies 

reported prediction models with internal and external validation [27,28]. Usually internal 

validation is done by splitting the development data into training and testing sets however 

cross-validation and bootstrapping can also be used [29]. External validation aims to 

address the performance of a model in patients from a different but possibly related setting, 

and it is a key step before disseminating prediction model in clinical setting [26,30].  

For discrimination, we use the area under the receiver-operator curve (AUC) or concordance 

(c)-statistic. The AUC is the probability that the model will predict a higher risk of death for a 

randomly selected patient who died, compared to a randomly selected patient who survived. 
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Calibration is the relationship between the observed and predicted risk of death and can be 

usefully seen on a scatter plot (y-axis observed risk, x-axis predicted risk). Perfect 

predictions should be on the 45° line.  The intercept (a) and slope (b) of this line gives an 

assessment of ‘calibration-in-the-large’ [6]. At model development, 𝑎 = 0 and 𝑏 = 1, but at 

external validation, calibration-in-the-large problems are indicated if a is not 0 and if b is 

more/less than 1 as this reflects problems of under/over prediction. Specifically, for each 

modelling strategy, we determined the AUC or c-statistic, the scaled Brier score, the 

Hosmer-Lemeshow deciles of risk goodness of fit test (HL). 

 
 

 
Materials and Methods 
 
Data set 

Our cohorts of emergency admissions are from two acute hospitals which are approximately 

100 kilometres apart in the Yorkshire & Humberside region of England– the Diana, Princess 

of Wales Hospital (managed by the Northern Lincolnshire and Goole NHS Foundation Trust 

(NLAG)), and York Hospital (managed by York Teaching Hospitals NHS Foundation Trust). 

All adult (age>16 years) emergency admissions during the year 2014 (i.e., 1st January 2014 

to 31st December 2014) were included. We obtained the following information for each 

admission: the patients’ age, gender, and discharge status (alive/dead). We considered 

admissions, which had no missing data. We excluded 5137 (17%) admissions for NLAG 

Hospital and 4267 (24%) admission for York Hospital, with incomplete data (albumin and 

creatinine test results were the most frequent missing data) (Table 1). The covariates set 

was:- age (years), gender (male/female), albumin (g/L), creatinine (µmol/L), haemoglobin 

(g/dL), potassium (mmol/L), sodium (mmol/L), white cell count (109 cells/L), urea (mmol/L),  

and national early warning score (NEWS). The NEWS ranged from 0 (indicating the lowest 

severity of illness) to 19 (the maximum NEWS value possible is 20).  

Statistical Analysis 
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We started with an exploratory analysis of the NEWS and the blood test results.  

We truncated extreme observations of blood test results (very high (>99.9% centile) or very 

low (<0.1% centile) to moderate the noise of outliers in the modelling process. We have 

excluded the incomplete data as follows: 17% (5138/29834) for NLAG hospital and 24% 

(4267/17744) for York hospital. We produced scatter plots showing the relationship between 

mortality and continuous covariates (grouped into deciles). We modelled the risk of death 

using the same set of covariates:- age, gender, albumin, creatinine, haemoglobin, 

potassium, sodium, white cell count, urea, and NEWS.  

 

We used the qladder function (Stata version 13), which displays the quantiles of transformed 

variable against the quantiles of a normal distribution according to the ladder powers 

(𝑥3, 𝑥2, 𝑥1, 𝑥, √𝑥, log(𝑥) , 𝑥−1, 𝑥−2, 𝑥−3)  for each variable 𝑥. We randomly divided our 

development data (NLAG Hospital) into a training set (70%, n = 17288) and a testing set 

(30%, n = 7408) for internal model validation [4]. We further validated these models on an 

external validation dataset from York hospital. Three commonly used performance measures 

were used to assess model performance:- Hosmer–Lemeshow (HL) test, scaled Brier score, 

and area under the ROC curve (AUC) [6]. The 95% confidence interval (95%CI) for the c-

statistic was derived using DeLong’s method as implemented in the pROC library [31]. 

Discrimination relates to how well a model can separate, (or discriminate between), those 

who died and those who did not. Calibration relates to the agreement between observed 

mortality and predicted risk. Overall statistical performance was assessed using the scaled 

Brier score which incorporates both discrimination and calibration [4]. The Brier score is the 

squared difference between actual outcomes and predicted risk of death, scaled by the 

maximum Brier score such that the scaled Brier score ranges from 0–100%. Higher values 

indicate superior models.  

These analyses were undertaken in R [32]. We used default tuning parameters for MFP in R 

packages mfp [33] but RCS with three knots in R packages rms [34]. We used the caret R 
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package [35] for machine learning algorithms (RPART, RF, GBM, SVM, NNET) and 

optimised their tuning parameters using AUC as a loss function for a (five  times) repeated 

10-fold cross validation method (see supplementary material). We used a linear kernel with 

two parameters (i.e., cost and gamma) for the SVM method. 

Ethical Approval 

Although this type of study does not require ethical approval because it meets the exemption 

criteria ("Research limited to secondary use of information previously collected in the course 

of normal care (without an intention to use it for research at the time of collection), provided 

that the patients or service users are not identifiable to the research team in carrying out the 

research.[36])" we obtained ethical approval for the main research project of which this is a 

sub study from Yorkshire & The Humber - Leeds West Research Ethics Committee 

(reference number 15/YH/0348). 

Results 
 

There were 24696 emergency admissions for development data (NLAG Hospital) and 13477 

for validation data (York Hospital). We further divide the development data into training set 

(70%, n=17288) and testing set (30%, n=7408). For both hospitals, we have 12-months data 

where patient discharges were from 1st January 2014 to 31st December 2014. Descriptive 

statistics for the covariates are shown in Table 1. The risk of death in NLAG was 4.7% 

(1159/24696) compared with 6.5% (876/13477) in York hospital. Patients in NLAG hospital 

has a mean age of 63.1 years compared with 68.3 years in York hospital and a lower NEWS 

(1.9 (NLAG) compared to York hospital (2.6) 

 

Figure 1 shows box plots of each covariate with respect to patient discharge status 

(Alive/Dead) in NLAG hospital. In general, patients who died were older, had higher NEWS, 

lower albumin, higher creatinine, lower haemoglobin, higher potassium, higher urea, higher 

white cell counts and lower sodium levels. 
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Figure 2 shows that the relationship between the continuous covariates and mortality in 

NLAG hospital is generally non-linear. Using quantile-quantile (qq) plots, we arrived at the 

following transformations: (creatinine)−0.5 , log(potassium), log(sodium), 

log(white cell count), log (urea). 

 

Statistical Modelling Results 

We predicted the risk of in-hospital mortality using the following modelling approaches – 

LOGIT (no transformations), LOGIT† (with transformations), MFP, RCS, RPART, RF, GBM, 

SVM, NNET. The model performance statistics are shown in Table 2 and plotted in Figure 3. 

In the training phase the AUC ranged from 0.87 to 1. RF had a perfect AUC (1) which is a 

reflection of the overfitting that usually occurs when RF trees are grown to the maximum size 

in training datasets using the default (and recommended) settings. GBM had the highest 

AUC (0.905). RPART had the lowest AUC (0.869). The other five methods (LOGIT, LOGIT†, 

MFP, NNET, SVM) had AUCs that ranged from 0.883 to 0.884. In the training phase RF had 

the highest Brier score (0.884 which is also due to over fitting) followed by GBM and RPART 

(0.244, 0.261). The remaining six methods (LOGIT, LOGIT†, RCS, MFP, SVM, NNET) had 

Brier scores that ranged from 0.158 to 0.164. 

In the testing phase all methods had a reduction in their AUC (range: 0.814 to 0.872) and 

Brier scores (range: 0.025 to 0.164). RPART now had the lowest AUC (0.814) followed by 

RF (0.857). The remaining seven methods (LOGIT, LOGIT†, RCS, MFP, RF, NNET, GBM, 

SVM) had very similar AUC that ranged from 0.871 to 0.872. In the testing phase, RPART 

had the lowest Brier score (0.025) followed by RCS (0.080). The highest Brier Score was 

seen in RF (0.164). The remaining six methods (LOGIT, LOGIT†, MFP, GBM, NNET, SVM) 

had Brier scores that ranged from 0.111 to 0.131. 

In the external validation phase all methods had a reduction in their AUC (range: 0.785 to 

0.851) and Brier Scores (0.048 to 0.149). The highest AUC (0.851) and Brier Score (0.149) 
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was seen in the LOGIT† model. The lowest AUC was seen in RPART (0.785) followed by 

RF (0.804). The remaining models (LOGIT, RCS, MFP, GBM, SVM, NNET) had AUC that 

ranged from 0.847 to 0.851. The lowest Brier Score was seen in RPART (0.048) followed by 

RF (0.119), whilst the remaining methods (LOGIT, LOGIT†, RCS, MFP, GBM, NNET, SVM) 

had Brier Scores which ranged from 0.135 to 0.149.  

The external validation calibration slope (Figure 3, lower panel) ranged from 0.70 to 0.99, 

with RPART having the lowest value which showed considerable over-fitting (slope<1). 

Three methods (RCS, LOGIT† and GBM) had a 95%CI which included 1. GBM had an 

external validation slope nearest to one, 0.99. 

The LOGIT model without transformations performed reasonably well in the external 

validation phase – AUC (0.847), Brier Score (0.139) and Slope (0.90). The LOGIT† also 

performed well – AUC (0.847), Brier Score (0.149) and Slope (0.92). The RCS and MFP 

models also had similar AUC (0.85) and Brier Scores (0.138 and 0.148 respectively). The 

RCS slope was higher 0.93 with a wider 95%CI that included one, whilst MFP had a slope of 

0.91 and a narrower 95%CI which did not include one. As the sample size is the same for all 

methods, the source of variability in the width of the confidence intervals is linear predictors 

from each method and identifies RCS as having the widest confidence intervals for their 

estimates of the external validation slope. 
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Discussion 

Using a high quality electronically collected data set with large sample sizes and non-linear 

relationships between covariates and mortality, we examined the performance of nine 

methods for predicting the risk of in hospital mortality by developing the model in one 

hospital and externally validating it in another hospital. This approach to model testing is 

infrequent [27,28] but methodologically more rigorous than simply considering internal 

validation [26]. 

We did not find any consistent evidence to suggest that modern machine learning 

approaches (RPART, RF, GBM, SVM, NNET) were superior to more conventional statistical 

modelling methods based on the logistic regression model. Whilst there was no clear overall 

winner, GBM and LOGIT† exhibited the best overall performance. However, we did find that 

several methods (RPART, RF) exhibited sufficiently poor performance in the external 

validation phase to undermine their use. Furthermore, given the complexity of choosing 

tuning parameters of the alternative machine learning methods the logistic regression with 

transformations has good performance characteristics and is relatively less complex.  

Although a few studies have used external validation as a benchmark for machine learning 

and logistic regression methods in following areas: detecting prostate cancer [37,38], on 

simulated data [39], predicting mortality risk after acute ischemic stroke  [40] and predicting 

mortality risk after brain injury [23,41], we predicted the risk of in-hospital mortality in acutely 

ill medical admissions. Our findings are consistent with recently published study on 

predicting the risk of mortality after traumatic brain injury [41]. As they found logistic 

regression performs just as well as modern machine learning methods. A key reason for this 

may be that nonlinear and non-additive signals are not strong enough to make modern 

machine learning methods advantageous. 

Whilst the extent to which our findings are generalisable is not clear, we suggest that 

candidate models should include a simple logistic model as a benchmark for comparison 

with other more sophisticated models and that external validation (not internal validation) be 
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used to compare and contrast model performance. Furthermore, the use of the AUC alone 

as a summary performance measure is limited and not necessarily a good discriminator 

between models. The Brier score, which combines calibration and discrimination and the 

external calibration slope are also useful performance characteristics which merit 

consideration when comparing models. 

 

Conclusion: Given the complexity of choosing tuning parameters of the modern machine 

learning methods considered above, the performance of logistic regression with 

transformations for in-hospital mortality prediction was competitive with the best performing 

alternative machine learning methods with no evidence of overfitting. The use of RPART and 

RF in our data is not supported. Our models were developed (using training and testing 

datasets) in one hospital and validated in a second (different) hospital within the region 

which increases the likelihood of generalisability to other hospitals. Having established the 

validity of the logistic regression modelling approach, we plan to evaluate its use in routine 

clinical practice to see if it can support clinical decision making to enhance the quality of 

care. 
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Table 1 Characteristics of the emergency admissions in the two hospitals 

 

Characteristic 
Development data 

(NLAG Hospital) 
Validation data 
(York Hospital) 

N 24696  13477 

Died 1159 (4.7%) 876 (6.5%) 

Male 11571 (46.9%) 6413 (47.6%) 

Mean Age [years] (SD) 63.1 (21.1) 68.3 (19.2) 

Mean NEWS [1-19] (SD) 1.9 (2.1) 2.6 (2.6) 

Mean Albumin [g/L] (SD) 34 (6.2) 38 (5.8) 

Mean Creatinine [umol/L] (SD) 100.1 (75.2) 104 (93.7) 

Mean Haemoglobin [g/dL] (SD) 128.8 (21.7) 125.1 (22.1) 

Mean Potassium [mmol/L] (SD) 4.1 (0.6) 4.3 (0.6) 

Mean Sodium [mmol/L] (SD) 137 (4.7) 136.7 (4.7) 

Mean White cell count [10^9 cells/L] (SD) 9.8 (5.1) 10.3 (7.2) 

Mean Urea [mmol/L] (SD) 7.3 (5.7) 8.2 (6.1) 
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Table 2: Model performance statistics using regression methods for all models (LOGIT, 
LOGIT†, MFP, RCS, RPART, RF, GBM, SVM, NNET). 

  

Model Split 
HL Chi-
squared 

(df=8) 
HL.p Brier AUC [95% CI] Slope [95% CI] 

LOGIT Training 28.0 0.000 0.160 0.8832 [0.8736 – 0.8928] – 

LOGIT Testing 15.3 0.053 0.111 0.8712 [0.8557– 0.8868] – 

LOGIT Validation 16.7 0.033 0.139 0.8470 [0.8351– 0.8589] 0.90 [0.85 – 0.96] 

LOGIT† Training 20.1 0.010 0.162 0.8835 [0.8739 – 0.8931] – 

LOGIT† Testing 14.9 0.061 0.118 0.8714 [0.8558 – 0.8871] – 

LOGIT† Validation 11.9 0.155 0.149 0.8491 [0.8372 – 0.8610] 0.92 [0.84 – 1.00] 

RCS Training 19.0 0.015 0.169 0.8882 [0.8757 – 0.8947] – 

RCS Testing 17.5 0.026 0.080 0.8715 [0.8560 – 0.8871] – 

RCS Validation 27.3 0.001 0.138 0.8476 [0.8356 – 0.8596] 0.93 [0.85 – 1.02] 

MFP Training 19.1 0.014 0.164 0.8850 [0.8756 – 0.8945] – 

MFP Testing 11.5 0.173 0.115 0.8714 [0.8559 – 0.8870] – 

MFP Validation 16.1 0.041 0.145 0.8506 [0.8389 – 0.8624] 0.91 [0.86 – 0.97] 

RPART Training 0.0 1.000 0.261 0.8694 [0.8557 – 0.8830] – 

RPART Testing 47.4 0.000 0.025 0.8137 [0.7898 – 0.8377] – 

RPART Validation 65.7 0.000 0.048 0.7854 [0.7700 – 0.8007] 0.70 [0.65 – 0.75] 

RF Training – – 0.884 1.0000 [1.0000 – 1.0000] – 

RF Testing – – 0.164 0.8569 [0.8397 – 0.8741] – 

RF Validation 27.9 0.001 0.119 0.8044 [0.7899 – 0.8189] 0.93 [0.86 – 0.99] 

GBM Training 59.3 0.000 0.244 0.9058 [0.8968 – 0.9148] – 

GBM Testing 30.0 0.000 0.116 0.8719 [0.8563 – 0.8875] – 

GBM Validation 47.3 0.000 0.142 0.8483 [0.8365 – 0.8601] 0.99 [0.93 – 1.04] 

SVM Training 28.6 0.000 0.158 0.8840 [0.8744 – 0.8936] – 

SVM Testing 15.9 0.041 0.131 0.8724 [0.8569 – 0.8880] – 

SVM Validation 113.5 0.000 0.135 0.8470 [0.8351 – 0.8590] 0.89 [0.83 – 0.94] 

NNET Training 11.4 0.182 0.159 0.8842 [0.8747 – 0.8938] – 

NNET Testing 14.8 0.064 0.123 0.8722 [0.8566 – 0.8877] – 

NNET Validation 38.3 0.000 0.143 0.8475 [0.8357 – 0.8594] 0.86 [0.80 – 0.91] 

†Covariates set is transformed using qladder function as follows: (creatinine)
-1/2

  , log(potassium), log(sodium), 

log(white cell count), log(urea). 
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Figure 1: Boxplot without outliers for continuous covariates with respect to patient’s 

discharge status (Alive/Dead) in NLAG hospital 
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Figure 2: Scatter plots showing the observed risk of death with continuous covariates 
in NLAG hospital 
NB: y-axis range changes in each plot. 
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Figure 3: Model performance statistics using regression methods for all models (LOGIT, 

LOGIT†, MFP, RCS, RPART, RF, GBM, SVM, NNET).  
†Covariates set is transformed using qladder function as follows: (creatinine)

-1/2
  , log(potassium), log(sodium), 

log(white cell count), log(urea). 
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Supplementary Material: 

 

Table: Selection of tuning parameters using AUC as loss function in (five times) repeated 

10-fold cross validation 

  

Method Parameter 1 Parameter 2 Parameter 3 Parameter 4 

LOGIT Default - - - 

LOGIT
†
 Default - - - 

RCS Degree=3 - - - 

MFP Degree=4 - - - 

RPART Cp=0.0001 
0 to 0.01 step by 

0.0001 

- - - 

RF TuneLength=10 n.trees=1000 - - 

GBM n.trees=900 
(100 to 2000 step by 

100) 

Interaction.depth=5 (1,3,5,7) Shrinkage=0.01 
(0.001,0.01,0.1) 

 

n.minobsinnode=16 
(1,6,11,16) 

SVM Cost=6 
(0.1,0.5,1,2,4,6,8,10) 

Gamma=0.1 
(0.01,0.05 0.1,0.2,0.5,1) 

- - 

NNET Decay=0.102 
(0 to 0.2  

step by 0.004) 

Size =1 
(1,3,5) 

- - 
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R code: 

############################ 
# Modelling - LOGIT 
############################ 
 
modFormula <- paste("died.train~male +age + NEWS + ALB + CRE + HB  + POT + SOD + WBC + URE ") 
modFormula <- as.formula(modFormula) 
 
model_logit = glm(modFormula, data = training, family = "binomial", x=TRUE, y=TRUE) 
  
 
############################ 
# Modelling – LOGIT† 
############################ 
 
modFormulat <- paste("died.train~male +age + NEWS + ALB + sqrt_CRE + HB  + log_POT + SOD + log_WBC + 
log_URE") 
modFormulat <- as.formula(modFormulat) 
 
model_logit_trans = glm(modFormulat, data = training, family = "binomial", x=TRUE, y=TRUE) 
 
############################ 
# Modelling - RCS 
############################ 
 
modFormularcs <- paste("died.train~male +rcs(age,3) + NEWS + rcs(ALB,3) + rcs(CRE,3) + rcs(HB,3)  + 
rcs(POT,3) + rcs(SOD,3) + rcs(WBC,3) + rcs(URE,3)") 
modFormularcs <- as.formula(modFormularcs) 
 
 
model_rcs = glm(modFormularcs,family = "binomial",data = training, x=TRUE, y=TRUE) 
 
summary(model_rcs) 
 
############################ 
# Modelling - MFP 
############################ 
 
modFormulamfp <- paste("died.train~male +fp(age) + NEWS + fp(ALB) + fp(CRE) + fp(HB)  + fp(POT) + 
fp(SOD) + fp(WBC) + fp(URE)") 
modFormulamfp <- as.formula(modFormulamfp) 
 
model_mfp = mfp(modFormulamfp,family = "binomial",data = training, x=TRUE, y=TRUE) 
 
############################ 
# Modelling - RPART 
############################ 
#RPART 
set.seed(669) 
 
ctrl <- trainControl(method = "repeatedcv",repeats = 5,number = 10,classProbs = T,summaryFunction = 
twoClassSummary) 
 
 
rpartModel <- train(modFormula,  
                    data = training,  
                    method = "rpart",  
                    tuneGrid =expand.grid(.cp=seq(0,0.01,length=100)),  
                    metric="ROC", 
                    trControl = ctrl 
) 
 
############################ 
# Modelling - RF 
############################ 
#rf 
set.seed(669) 
rfModel <- train(modFormula,  
                 data = training,  
                 method = "rf",  
                 tuneLength = 10,  
                 ntrees = 1000,  



22 
 

                 importance = TRUE,  
                 metric="ROC", 
                 trControl = ctrl 
                 ) 
 
############################ 
# Modelling - GBM 
############################ 
#gbm 
gbmGrid <- expand.grid(.interaction.depth = seq(1,7,by=2), .n.trees = seq(100, 2000, by = 
100),.shrinkage = c(0.001,0.01, 0.1),.n.minobsinnode=seq(1,20,by=5)) 
 
set.seed(669) 
gbmModel <- train(modFormula,  
                  data = training,  
                  method = "gbm",  
                  tuneGrid = gbmGrid,  
                  verbose = FALSE,  
                  metric="ROC", 
                  trControl = ctrl 
                  ) 
 
 
 
############################ 
# Modelling – SVM 
############################ 
#SVM 
ctrl <- trainControl(method = "repeatedcv",repeats = 5,number = 10,classProbs = T,summaryFunction = 
twoClassSummary) 
 
set.seed(669) 
#creation of weights - also fast for very big datasets 
weights <- as.numeric(died.train)-1 
 
for(val in unique(weights)) {weights[weights==val]=1/sum(weights==val)*length(weights)/2} # normalized 
to sum to length(samples) 
 
svmModel <- train(modFormula,method = 'svmLinear',  
                  maximize = T, 
                  weights=weights, 
                  tuneGrid=expand.grid(.C=c(0.1,0.5,1,2,4,6,8,10),.sigma=c(0.01,0.05,0.1,0.2,0.5,1)),    
                  preProcess = c('center', 'scale'), 
    maxit=10000, 
                  data=training, 
                  metric="ROC", 
                  trControl = ctrl 
) 
 
 
############################ 
# Modelling - NNET 
############################ 
#NNET 
nnetGrid <- expand.grid(.decay = seq(0,0.2,length=50), .size =c(1,3,5)) 
 
set.seed(669) 
nnetModel <- train(modFormula,  
                   data = training,  
                   method = "nnet",   
                   tuneGrid = nnetGrid, 
                   preProc = c("center", "scale"), 
                   maxit=10000, 
                   trace=F, 
                   metric="ROC", 
                   trControl = ctrl 
) 
 

 

 

 


