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Abstract. 
Edge detection is widely believed to be an important early stage in human visual processing. 

However, there have been relatively few attempts to map human edge detection filters. In this 

study, observers had to locate a randomly placed step edge in brown noise (the integral of white 

noise) with a 1/𝑓2 power spectrum. Their responses were modelled by assuming the probability the 

observer chose an edge location depended on the response of their own edge detection filter to that 

location. The observer’s edge detection filter was then estimated by maximum likelihood methods. 

The filters obtained were odd-symmetric and similar to a derivative of Gaussian, with a peak-to-

trough width of 0.1 to 0.15 degrees. These filters are compared with previous estimates of edge 

detectors in humans, and with neurophysiological receptive fields and theoretical edge detectors. 
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1. Introduction. 

Edges are an important feature of the retinal image because they indicate the position of object 

boundaries and shadows. For that reason, edge detection has long been considered a vital first step 

in visual processing. Neurons sensitive to edges are common in the visual cortex (Hubel & Wiesel, 

1962, 1968) and their receptive fields have been mapped in detail. However, less has been done to 

map the “receptive fields” or templates that underlie the detection of edges in humans. Previous 

psychophysical investigations of edge detectors have used indirect methods, such as subthreshold 

summation (Kulikowski & King-Smith, 1973; Shapley & Tolhurst, 1973); or have concentrated on 

demonstrating the existence of odd-symmetric detectors without characterizing their spatial 

properties (Burr, Morrone, & Spinelli, 1989; Stromeyer & Klein, 1974). Here I use a method based on 

classification images (Murray, 2011) to map the templates used in edge detection and localization. 

Classification images were introduced by Beard and Ahumada (1998). The idea is that when noise is 

added to a stimulus, that noise sometimes takes on the aspect of what the observer is looking for 

when they perform a psychophysical task. By correlating observer responses with the noise, it is 

possible to determine what observers are really looking for when they perform a visual task. 

Typically, the averaged noise over one response type (yes, or correct) and the averaged noise of the 

other response type (no, or incorrect) are subtracted to form an image of the points in the stimulus 

the observer uses to perform the task (Murray, Bennett, & Sekuler, 2002). This is equivalent to the 

Fisher discriminant, hence the name “classification” image (because the Fisher discriminant is a tool 

for statistical classification). Here, however, we use a more general maximum likelihood technique. 

Nonetheless, we will still refer to the estimated observer templates as classification images. 

In the experiment, observers had to detect and locate a horizontal step edge by clicking a mouse at 

its perceived location. The step edge was embedded in brown noise with frequency spectrum 

proportional to 1/𝑓2.  Brown noise was used because it is ecologically relevant (natural images have 

a 1/𝑓2 power spectrum (Burton & Moorhead, 1987; Field, 1987)), and because, unlike white noise, it 

is the kind of noise that yields localized optimal edge detectors (McIlhagga, 2011). The probability 

that the observer clicked at a particular location was assumed to be a function of the edge detector 

output at that location. Using maximum likelihood estimation, the filter that best fitted the observer 

responses was estimated. The filters that were found are like derivative of Gaussian filters, with a 

peak-to-trough width of 0.1 to 0.15 degrees. These filters are similar to those found by Shapley and 

Tolhurst (1973). 



2. Methods 

2.1 Experimental Procedure 

On each trial, observers were shown a 10 degree tall and 4.5 degree wide stimulus consisting of a 

horizontal step edge embedded in horizontal brown noise. The step edge was always dark above and 

light below, and could appear anywhere in the central vertical 5 degrees of the stimulus. The brown 

noise was generated by a cumulative sum of white noise samples with a standard deviation of 0.002 

in contrast units, where the contrast of a point with luminance 𝐿 is given by 𝐿/𝐿𝑚𝑒𝑎𝑛 − 1. That is, 

the brown noise at scan line 𝑦 is given by ∑ 𝑤𝑗𝑗<𝑦 , where 𝑤𝑗 is a sample of white Gaussian noise for 

scanline 𝑗. The brown noise was then shifted so that the mean was zero. An example stimulus is 

shown in Figure 1. 

The stimulus stayed on screen until the observer moved a mouse pointer to click where they 

believed the edge to be. If the observer clicked within 0.25 degrees of the true edge location, they 

were deemed correct. The edge contrast was controlled by a staircase. If the observer was deemed 

correct twice in a row, the edge contrast was reduced by 20%; if deemed incorrect once it was 

increased by 25%. This staircase was used to control the contrast of the edge to a point where the 

task was moderately difficult, and not for the purpose of threshold calculation. Following the 

observer’s response, there was a 1 second delay before the next stimulus was presented. 

Five observers A, C, H, T, and W participated in the experiment (W is the author). All were aware of 

the purpose of the experiment. Observers C, H, and W also collected data using white noise instead 

of brown noise (observers A and T were unavailable for the white noise experiment). A full set of 

data was collected over a few days, in 12 experimental blocks consisting of 150 trials. At the 

beginning of each block, observers were shown a high contrast step edge without noise, so they 

knew what they were looking for. The first 10 trials in each block were discarded prior to analysis. 

The experiment complied with University of Bradford Ethics Procedures and was conducted in 

accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). 

2.2 Calibration & Apparatus. 

Stimuli were displayed on a Sony Multiscan E450 CRT monitor driven by a Bits++ device in Colour++ 

mode (Cambridge Research Systems Ltd. Kent, UK). In Colour++ mode, adjacent 8-bit pixels in the 

frame buffer are paired to yield 16 bits per pixel for each electron gun, and the 14 most significant 

bits are passed to a D/A converter. Stimuli were calculated and displayed by Matlab (MATLAB 

Release 2007b, The MathWorks, Inc., Natick, Massachusetts, United States), using the Psychophysics 

Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). The gamma of the monitor was 



measured using a ColorCal meter (Cambridge Research Systems, Kent, UK) and linearized with a 

lookup table. Display resolution was 1024 by 768 pixels, and the monitor was viewed at a distance of 

1 metre.  Angular resolution was 50.86 pixels per degree. 

 

Figure 1: Example stimulus. The stimulus was 10 degrees tall and 4.5 degrees wide. A 

step edge (marked here by the arrow) could appear anywhere in the central vertical 5 

degrees. 

2.3 Data Analysis 

Observer responses were analysed by assuming that they first convolved the stimulus with an edge 

detection filter 𝑓𝑥 to yield a response  

𝑟𝑥
(𝑖)

= 𝑠𝑥
(𝑖)

∗ 𝑓𝑥 

Here 𝑟𝑥
(𝑖)

 is the filter response at position 𝑥 on trial 𝑖, ∗ indicates convolution, and 𝑠𝑥
(𝑖)

 is the stimulus 

contrast at position 𝑥 in that trial. This is diagrammed in Figure 2 (a) and (b).  



 

Figure 2: The edge detection model. Panel A (top) shows the contrast of a step edge 

embedded in brown noise as a function of position. This is the contrast profile of the 

stimulus in Figure 1. This contrast profile is convolved with an edge detection filter to yield 

a filter response shown in Panel B (middle). The filter response is transformed into a 

probability that the observer locates the edge by applying a softmax function (panel C, 

bottom). The true edge location is at -2 degrees, and this is the most likely response for 

this filter, but a response at about 1.2 degrees is also possible. 

The most likely location for the edge is the point where the response 𝑟𝑥
(𝑖)

 is maximized. However, 

the filter response in Figure 2(b) has several local maxima, and it is possible that the observer might 

instead choose a local maximum instead of the global one. Thus, rather than being entirely 

deterministic, it is assumed that chosen location is selected randomly, based on the filter response.  

If the observer chose location 𝑒(𝑖) on trial 𝑖, we assumed that the probability of this is given by the 

“softmax” transformation of filter outputs  



𝑝𝑖 = 𝑝𝑟(observer chose location 𝑒(𝑖) on trial 𝑖) =
exp (𝑟𝑒

(𝑖)
)

∑ exp (𝑟𝑥
(𝑖)

) 𝑥

 

The softmax function, on the right hand side of this equation, is a generalization of the logistic 

function typically used when there is a multinomial response(McCullagh & Nelder, 1989), as is the 

case here, because the observer response is one out of a possible 510 pixel locations. The 

probabilities are shown in Figure 2(c) based on the responses in Figure 2(b). The true edge location is 

the most likely choice, but there is an alternative location with nearly the same probability. Note 

that the probabilities for each location are small, because there are so many possible locations, but 

the overall probability for a click in the region of −2 degrees in Figure 2(c) is 0.42.  

The log-likelihood of the observer’s responses over the entire set of trials is given by 

ℒ =  ∑ log 𝑝𝑖

𝑖

 

Since this log-likelihood is a function of the filter values 𝑓𝑥, we can estimate the filter by maximizing 

this log-likelihood (or equivalently minimizing the negative log-likelihood). The maximum likelihood 

estimate of the filter 𝑓𝑥 will sometimes be referred to as the classification image. 

2.4 Computational Considerations. 

Efficient optimization of a function like ℒ requires the gradient 𝜕ℒ/𝜕𝑓𝑥 of ℒ with respect to the 

elements of the filter 𝑓𝑥. In the absence of the gradient, the optimization will be extremely slow, 

perhaps prohibitively so. Unfortunately, the gradient of ℒ in this case is very difficult to derive, either 

algebraically or symbolically.  

However, automatic differentiation libraries allow us to compute the gradient of ℒ precisely and 

efficiently. I used the autograd library (Maclaurin, Duvenaud, & Adams, 2015) for Python. With this 

library, you simply write the likelihood function in Python, and the library creates a new function 

which computes the gradient of the likelihood. The likelihood function and the automatically 

computed gradient can be used with the SciPy optimization library (Jones, Oliphant, Peterson, & 

others, 2001) to efficiently optimize the log likelihood ℒ with respect to the filter values 𝑓𝑥. Each 

optimization took only a few minutes on a Microsoft Azure Notebook.  

The full optimization code and the Azure “library”, including all data, can be found at  

https://notebooks.azure.com/william-mc/libraries/edge-detection.  This can be “cloned” if you have 

a free Azure Notebooks account. The code is in the file named “edge_templates.ipynb” in the library. 

https://notebooks.azure.com/william-mc/libraries/edge-detection


Optimization  of ℒ yielded reasonably smooth filter estimates for observers H, T, and W, but the 

filters for observers A and C were more jagged and difficult to interpret. Accordingly, a smoothness 

penalty (Hastie & Tibshirani, 1986), given by 

𝜋 =
∑ (𝑓𝑥−1 − 2𝑓𝑥 + 𝑓𝑥+1)2

𝑥

∑ 𝑓𝑥
2

𝑥

 

was imposed on observer A and C. The numerator of this penalty is the sum of squares of the second 

derivative of the filter. The smoothness is modified by dividing by the power of the filter to ensure 

that the penalty is unchanged when multiplying the filter values by a constant.  

Filter values 𝑓𝑥 were selected to maximize the penalized likelihood ℒ − 25𝜋. Different penalty 

weights were tried and produced essentially the same results. For consistency, the same smoothness 

penalty was applied to observers H, T and W, although it made little difference to their filters. 

3. Results. 

Figure 3 plots the accuracy of observer clicks as a function of step edge contrast. Accuracy 

(measured by the median deviation of the mouse click from the true edge location) improves with 

contrast. This is most likely because the deviations come from a mixture of two distributions: a single 

atom at a deviation of zero, when the observer sees the edge and clicks on it, and a triangular 

distribution of deviations when the observer misses the true edge and picks a ‘false’ edge (a 

triangular distribution is the difference between a uniformly distributed edge location and a 

uniformly distributed incorrect mouse click). The atom and triangular distributions are mixed by the 

probability of seeing the true edge. At very low contrast, where the probability of seeing the edge is 

low, the distribution of deviations is mostly triangular. At high contrast, where the probability of 

seeing the edge is near 100%, the distribution of deviations is concentrated at zero. The distribution 

of deviations is further blurred by motor error in placing the mouse on screen. At very high 

contrasts, the observer almost always saw the true edge location, so the median deviation is mostly 

motor error. 



 

Figure 3: The median deviation between the observer’s click location and the true edge 

location as a function of step edge contrast. The factor of 1.48 converts the median 

deviation into a standard deviation when the clicks are distributed normally.  

Figure 4 plots the estimated edge detection filters 𝑓𝑥 for the five observers used in the brown noise 

condition.  The estimation algorithm requires one to select a filter size a priori and will estimate the 

best-fitting filter once that is given. Different filter sizes were tried but filters larger than 48 pixels 

wide simply contained larger flanking areas of noisy near-zero values. Thus, only the results for 48 

pixel filters (about 0.94 degrees wide) are shown in Figure 4. All the filters in Figure 4 have a similar 

shape, roughly a derivative of Gaussian, with peak-to-trough widths of about 0.1 degrees (H, T and 

W) and 0.17 degrees (A and C). The heights of the filters, which are different for the different 

observers, depend on how well the filter accounts for observer responses, since higher filters yield a 

larger response and hence a more sharply peaked probability distribution of mouse clicks following 

the softmax transformation.  



 

Figure 4: Estimated edge detection filters for all observers. Black lines give the filters 

estimated from all trials, and grey lines the filters estimated from just the wrong trials. 

Note different y axis scales in the three panels.  

The edge detection filters are estimated from both correct and incorrect responses. Since the 

observers were often quite accurate, it is conceivable that the filters simply reflect what any 

reasonably performant system would do to detect edges, rather than specifically the human visual 

system. To check this, the analysis was redone using only the incorrect responses (that is, where the 

observer chose some location more than 0.25 degrees from the true edge location). The filters 

estimated from incorrect responses only (using the same smoothness penalty) are also shown in 



Figure 4, as grey lines. For observers H, T and W, the incorrect-response filters are very similar to the 

all-response filters. For observers A and C, the incorrect filters are somewhat different. This may be 

due to more inconsistency in these observers, because some of their incorrect responses are difficult 

to understand on reviewing the stimulus. 

An edge detector is explicitly a spatial filter whose purpose is to detect a spatially localized feature in 

an image. However, human spatial channels are often characterized in terms of their spatial 

frequency. To aid comparison with previous work, the amplitude spectra of the filters from Figure 4 

are shown in Figure 5. In the Fourier domain, these filters are bandpass with a full width at half 

height around 3 cycles/degree, and a peak at 2-3 cycles/degree. 

 

Figure 5: Fourier amplitude of the edge detection filters from Figure 4. 

3.1 White Noise. 
Although brown noise is the appropriate noise to use when trying to map localized edge detectors, 

for reasons given earlier, it is interesting to compare the template for brown noise with that found 

using white noise, and previously it has been shown that changes in noise correlation structure 

yields changes in classification images (Abbey & Eckstein, 2000). Only observers C, H, and W 

collected data using white noise. The accuracy of their responses is shown in Figure 6 (corresponding 

to Figure 3). Their filters estimated in white noise are shown in Figure 7, with brown noise filters 

included for comparison. 



 

Figure 6: Observer accuracy in white noise (c.f.  Figure 3). 

The filter shapes shown in Figure 7 are blurred DISEF filters (McIlhagga, 2011; Shen & Castan, 1992). 

A DISEF filter (Derivative of the Infinite Symmetric Exponential Function) is a given by 

𝐷𝐼𝑆𝐸𝐹(𝑥) ∝  −sign(𝑥) exp (−
|𝑥|

𝑠
) 

which is sharply discontinuous at 𝑥 = 0. The filters in Figure 7 are not, so to fit them, the DISEF filter 

was blurred with a Gaussian function. The best fit blurred DISEF filters are shown by the dotted lines 

in Figure 7. 

The DISEF filter is the optimal edge detection filter in a mixture of brown and white noise 

(McIlhagga, 2011). The scale factor 𝑠 depends on the ratio of the white and brown noise power in 

the image, or more generally, the extent to which the image has a flat power spectrum or a 1/𝑓2 

power spectrum. A small value for 𝑠 indicates more brown than white noise, while a large value 

indicates the opposite. In the limit of zero brown noise, 𝑠 =  ∞ and the DISEF filter becomes a step 

edge, which is the unconstrained optimal edge detector found by Canny (1986).  

The DISEF filters in Figure 7 suggest that the observers are acting as if there is some component of 

image power with a 1/𝑓2 profile. They are not completely wrong in this – the step edge they are 

trying to detect has a 1/𝑓2 power spectrum. However, observer W has a smaller value for the DISEF 

scale 𝑠 than the other two observers, so shape of the DISEF filter may be more influenced by an 

individual a priori bias towards assuming the presence of 1/𝑓2 noise or power in images. 

The blurring of the DISEF filter must be, in part at least, due to motor error. The best fitting values 

for the Gaussian blur standard deviation in the filters was 0.061o, 0.036 o, and 0.039 o for observers C, 



T, and W respectively. This is consistent with, but about 0.7 times smaller than, the median errors of 

0.087o, 0.058 o, and 0.058 o given in Figure 6 at the highest contrasts. 

 

Figure 7: The edge detection filter in white noise (solid line) compared to the edge 

detection filter in brown noise (thin line) for observers C, H, and W replotted from Figure 

4. The replotted brown noise filters are scaled for easy comparison. The dotted line shows 

the best-fit blurred DISEF filter, which is described in the text. 

4. Discussion 

We have shown that detection of step edges in human vision can be modelled by a linear filter, 

roughly the same shape as a derivative of Gaussian, with a peak-to-trough width of 0.1 to 0.17 

degrees. How does this compare with previous studies? 

4.1 Previous Psychophysical Estimates of Edge Detectors. 

Previous psychophysical estimates of edge detection filters in humans have relied on indirect 

approaches. Shapley and Tolhurst (1973), in one of a series of experiments, measured edge 



detection thresholds in the region of a subthreshold line. They found an asymmetrical map of edge 

sensitivity which can be interpreted as an edge detection filter with a peak to trough width in the 

region of 0.04 degrees. Figure 7 shows the line sensitivity profile (digitized from Shapley and Tolhurst 

(1973) Figure 3) with edge detectors of observers H, T and W scaled for comparison. The profile in 

Shapley and Tolhurst (1973) is narrower than the filters found here.  

 

Figure 8: Comparison of the edge detection filters found in this study for observers H, T, 

and W (who had the narrowest filters) with the profile from Shapley & Tolhurst (1973). 

The Shapley and Tolhurst profile is given by the solid line labelled “S & T”; the observer 

filters by dashed and dotted lines. The edge detection filters were scaled to the height of 

the Shapley & Tolhurst profile for ease of comparison. 

Kulikowski and King-Smith (1973) also used a subthreshold summation approach. In one experiment 

they measured edge detection thresholds in the presence of a subthreshold grating and obtained a 

grating sensitivity profile for the edge detector (their Figure 6). This peaked at 3 cycles/degree, the 

same as found here (my Figure 5). They also replicated Shapley and Tolhurst (1973), measuring the 

threshold of an edge in the presence of a subthreshold line. This gave them an edge detector profile 

with a peak to trough width of approx. 0.1 degrees (their Figure 7). 

For a derivative of Gaussian filter with scale 𝜎𝑓, the peak-to-trough width is 2𝜎𝑓. Thus the filter 

found by Shapley and Tolhurst (1973) has a standard deviation of about 0.02 degrees, and that 

found by Kulikowski and King-Smith (1973) has a standard deviation of about 0.05 degrees. The 

peak-to-trough widths of the filters in Figure 4 are 0.18, 0.18, 0.14, 0.10, and 0.12 degrees, for 

observers A, C, H, T, and W respectively. However, these are contaminated by the motor error 

shown in Figure 3. If we assume that the motor error is Gaussian, with standard deviation 𝜎𝑚, then a 



Gaussian derivative filter with scale 𝜎𝑓 will appear to have a scale of (𝜎𝑓
2 + 𝜎𝑚

2 )
1/2

, and a peak-to-

trough width twice that. The motor errors from the highest contrast in Figure 3 are 𝜎𝑚 = 0.058, 

0.087, 0.058, 0.029, and 0.029 degrees respectively. From this, we can infer that the edge detection 

filter scales 𝜎𝑓  are 0.066, 0.013, 0.036, 0.039, 0.051 respectively. The average of these is 0.041 

degrees. This accords well with Kulikowski and King-Smith but is about twice as large as Shapley and 

Tolhursts’s result. 

Stromeyer and Klein (1974) used subthreshold summation of gratings at different phases to show 

that odd-symmetric filters were involved in detecting the gratings, but no sizes for these filters were 

given. Tolhurst and Dealy (1975) suggested edge (and bar) detectors were needed to detect their 

stimuli, but also did not give any filter sizes. Burr, Morrone, and Spinelli (1989) found evidence for 

even and odd symmetric filters in phase discrimination tasks, but again gave no filter sizes. 

Elder and Sachs (2004) measured detection efficiency for edges of different width and aspect ratio in 

white noise. They found that a specific kind of multiscale edge detector model, using derivative of 

Gaussian filters with hyperbolic scaling of length and width, fitted their data best. The range of filter 

scales needed was from 𝜎𝑥 = 7 to 15 arc min. For derivative of Gaussian filters, the peak-to-trough 

widths are double the scale, or 14 to 30 arc min (0.23 to 0.5 degrees). These filter widths are larger 

than found here. This may be because they used white noise, as white noise yields wider filters, as 

shown in Figure 7, whereas brown noise will favour filters matched to the edge scale (McIlhagga, 

2011). 

McIlhagga and May (2012) derived classification images for blur discrimination of edges in white 

noise. The classification images looked like derivative of Gaussians, but were much narrower than 

found here, with filter scales of 𝜎𝑓 = 0.018, 0.047, and 0.026 degrees, for observers KAM, TS, and 

WHM respectively. These are smaller than the filter widths inferred earlier, but the task is different. 

In McIlhagga and May (2012), observers had to distinguish the blur of two super-threshold edges. 

The resultant classification images in McIlhagga and May are, to a first approximation, a difference 

of two derivative of Gaussian functions at the same location but with different scales (both KAM and 

WHM show sidelobes which could occur from that differencing). The peak-to-trough width of such a 

difference would be smaller than the peak-to-trough width of the narrower Gaussian. However, this 

would also not be enough to explain the difference between their results and the current 

experiment; thus, it is likely there are even finer scales of edge detector than 𝜎𝑓 = 0.05 degrees, 

which simply do not appear in (or cannot be reliably estimated from) the present data. 

Neri (2011) looked at global context effects on the shape of edge detectors using a classification 

image approach. In this study, the edges were embedded in a white noise patch which was inserted 



into a manipulated natural image. The edge detectors that were inferred had a peak-to-trough width 

of about 0.3 degrees, two or three times larger than the filters plotted in Figure 4, but perhaps a 

similar size to the white noise filters shown in Figure 7. The task used by Neri is somewhat different 

to a straight detection task, however; observers had to decide whether the orientation of the edge 

probe was the same or different to the orientation of the surrounding image context. In addition, 

the edge patches in Neri’s study were presented somewhat peripherally. In the current study, 

observers could move their eyes over the entire stimulus, and accurately clicking on the edge 

location requires foveation of the edge. Regardless, Neri (2011) found powerful effects on edge 

detector shape that cannot be measured using the methods in the present study. 

4.2 Comparison with Cortical Receptive Fields. 

There is of course no necessary relationship between the filters found in this study and individual V1 

or V2 receptive fields (Neri & Levi, 2006). Some electrophysiology studies have shown that the 

receptive fields of many simple cells are more complicated than just a linear filter, so a 

straightforward comparison with these sorts of simple cells is impossible. Nonetheless, it is 

interesting to compare the filters found here with receptive field in primate V1. 

Hubel & Weisel (1962, 1968) of course, started the idea that neurons in V1 could be thought of as 

edge detectors. However, they did not provide any quantitative measurements of receptive field 

size. Foster, Gaska, Nagler, & Pollen (1985) found the most common peak spatial frequency 

sensitivity of V1 parafoveal neurons in monkey was around 3 cycles/degree, and the receptive fields 

were usually 1.5 -  2 cycles wide. The peak accords with the amplitude spectrum in Figure 5, but the 

filters found here don’t have any sidebands, and are only about 1 cycle wide. 

Hawken & Parker (1987) modelled V1 receptive fields of simple cells by separated difference of 

Gaussians. The separation between the Gaussians is roughly equivalent to the peak-to-trough width 

of the filter. They found separations in the range 2 – 12 arc min (0.03 to 0.2 degrees) which 

encompasses the filter widths found here. 

4.3 Computational Theories. 

A number of models of edge detection have been proposed for human vision (Morgan, 2011; Watt & 

Morgan, 1985) most notably the N1 and N3+ models of Georgeson and colleagues (Georgeson, 

1994; Georgeson & Freeman, 1997; Georgeson, May, Freeman, & Hesse, 2007; Hesse & Georgeson, 

2005). These models suggest that humans analyse the image with a set of multiscale filters. The sizes 

of the individual filters aren’t very important, so long as they cover the scales of edges in natural 

images. This study only finds a single filter, but that is because observers only had to look for a step 



edge which has a single scale. Possibly a different experimental design might enable us to find filters 

at different scales. 

5. Conclusion. 

This study has provided direct evidence for edge detection filters in human vision using a 

classification-image or reverse-correlation methodology. The filters found are consistent with edge 

detection filters found previously using indirect methods, and with receptive field sizes in macaque 

V1. The width of the filters is slightly larger than the filters found in some previous studies 

(McIlhagga & May, 2012; Shapley & Tolhurst, 1973) but consistent with others (Kulikowski & King-

Smith, 1973). This could be because our measure of motor error is simply not accurate enough to 

reveal the smallest scales, because the task recruited larger scale filters as well as small scale ones 

(perhaps because observers were not required to maintain fixation), or because the smallest scale 

filters have a poorer sensitivity than slightly larger ones, and so are not picked up by the estimation 

process.  

This study has also shown that with the appropriate software, complex models of human vision are 

very easy to fit to data. 
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