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Abstract. Investigation of the environmental/economic optimal operation management of a microgrid (MG) as a case study for 

applying a novel modified multi-objective grey wolf optimizer (MMOGWO) algorithm is presented in this paper. MGs can be 

considered as a fundamental solution in order for distributed generators’ (DGs) management in future smart grids. In the multi-

objective problems, since the objective functions are conflict, the best compromised solution should be extracted through an 

efficient approach. Accordingly, a proper method is applied for exploring the best compromised solution. Additionally, a novel 

distance-based method is proposed to control the size of the repository within an aimed limit which leads to a fast and precise 

convergence along with a well-distributed Pareto optimal front. The proposed method is implemented in a typical grid-

connected MG with non-dispatchable units including renewable energy sources (RESs), along with a hybrid power source 

(micro-turbine, fuel-cell and battery) as dispatchable units, to accumulate excess energy or to equalize power mismatch, by 

optimal scheduling of DGs and the power exchange between the utility grid and storage system. The efficiency of the suggest-

ed algorithm in satisfying the load and optimizing the objective functions is validated through comparison with different meth-

ods, including PSO and the original GWO.  

Keywords: Multi objective optimal operation management, Pareto optimal solution, Modified grey wolf optimizer, Micro-grid, 

Renewable energy sources 
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1.  Introduction 

Recent increases in energy prices and environmen-

tal concerns have led to the penetration of renewable 

distribution generators (DGs) in distribution systems 

[1]. Microgrid (MG) is a concept resulted from the 

need of reliable power systems with clean energy 

sources which can make it easy to have a satisfactory 

communication and optimal energy management of 

the power system [2]. A review of modelling, plan-

ning and energy management of an MG is presented 

in [3]. Since control and operation management of 

MGs are midway through improvement, diverse 

techniques are proposed in order for optimization of 

these networks. Consequently, more precise energy 

source scheduling in MGs considering different ob-

jectives seems to be required. Various researches 

have been conducted dealing with optimal operation 

scheduling considering different constraints and ob-

jectives [4-12]. 

The choice of optimization technique depends on 

several different factors; therefore, different methods 

such as mathematical programming based optimiza-

tion approaches and meta-heuristic algorithms can be 
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proposed to solve problems [13, 14]. The lambda 

iterative method, gradient projection method, line-

ar/non-linear programming interior point methods, 

dynamic programming, etc. can be named as exam-

ples of mathematical programming based methods. 

On the other hand, meta-heuristic algorithms are 

proper alternatives to mathematical programming. In 

the case of solving multi-objective optimization 

problems, the major motivation of employing meta-

heuristic algorithms instead of mathematical pro-

gramming approaches is the ability of meta-heuristics 

in finding different solutions in the Pareto optimal 

front in just one execution of the algorithm, while the 

mathematical programming methods apply a se-

quence of independent executions. Furthermore, me-

ta-heuristic algorithms are not sensitive to the conti-

nuity and formation of the Pareto front [13]. 

In the MGs’ environmental\economic management 

a certain number of DG units are supposed to supply 

the load while minimum levels of cost and emission 

are satisfied under considered constraints [12]. When 

minimization of both environmental pollutants’ emis-

sion and energy cost comprise the objectives, the 

problem will be multi-objective, since these objective 

functions are conflicting. Multi-objective optimiza-

tion approaches are developed for the sake of achiev-

ing Pareto optimal solutions of the conflicting objec-

tives such that the operator is capable of making a 

trade-off among the set of optimal solutions. Some 

papers are devoted to the multi-objective econom-

ic\emission optimal operation of MGs, applying dif-

ferent meta-heuristic algorithms [5], [15-19]. A krill 

herd (KH) algorithm is suggested in [5] for stochastic 

optimal operation management of a grid-connected 

MG. In [15] optimization of the environmental eco-

nomic problem in MG is considered and multi-

objective mesh adaptive direct search is presented to 

minimize the total cost. A multi-objective bi-level 

optimal operation model for distribution network and 

MGs is suggested in [16] and the problem is solved 

using a self-adaptive genetic algorithm and nonlinear 

programming. In [17] a  -PSO algorithm is applied 

to deal with the MG’s energy management problem. 

Authors in [18] proposed a -krill herd algorithm. A 

multi-objective PSO is used in [19] in order to opti-

mize MG’s short-term performance. The superiority 

of an optimization algorithm in solving multi-

objective problems is revealed from its robustness 

and fast convergence to a well-distributed Pareto-

optimal front over the course of time. In comparison 

with other meta-heuristic algorithms, the grey wolf 

optimizer (GWO) algorithm, introduced by Mirjalili 

et al, manifests approximately proper search speed 

and convergence in solving some optimization prob-

lems [20]. In this paper, in order to investigate the 

multi-objective optimal operation management 

(MOOM) problem, a modified multi-objective GWO 

(MMOGWO) algorithm is proposed. Most of algo-

rithms are needy to onerous tuning process of control 

parameters which is not required in MMOGWO that 

makes it superior among all other algorithms. Ac-

cordingly, the following objectives are met in the 

paper: 

(i) A novel algorithm is proposed comprising three 

modifications. The first modification is in the size of 

population which leads to a variable population. 

Consequently, trapping in local optima is avoided 

and the algorithm’s convergence speed is increased. 

Two other modifications are imposed in the muta-

tions as is described in Section 4.3, which lead to the 

increase of the accuracy and convergence capability 

of the algorithm. 

(ii) A novel method for controlling the size of reposi-

tory is applied such that the algorithm’s speed im-

proved while the search space becomes immense 

which leads to finding the optimum global (best 

compromised) solution faster and more precisely. 

(iii) Since the ON/OFF states of DGs are taken in to 

account, a mixed-integer problem is solved in the 

article. Two different objective functions are as-

sumed. An exquisite Pareto front of optimal solutions 

is achieved while the computational time is very low. 

The effectiveness of the proposed approach is af-

firmed by applying it on the typical MG of [12]. Ad-

ditionally, the robustness of the algorithm, as its oth-

er outstanding feature, is highlighted through the 

simulation results. 

2.  Problem formulation 

In the considered MOOM problem, optimal alloca-

tion of power generation set points besides proper 

On\Off states of DG units are defined such that the 

objective functions, namely the operating cost and 

emission of the MG, are minimized while several 

constraints are satisfied [12].  

2.1.  Cost and emission minimization 

In order to consider total operation cost as the first 

objective function the following should be satisfied: 
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in which X


is the vector of design variables, and n is 

the number of design variables. T is the total number 

of hours. The total number of dispatchable genera-

tions and storage units (battery) along with the num-

ber of RESs are NDG, NBatt and NRES, respectively. t
iu is 

applied to imply the ON/OFF states of i
th

 dispatcha-

ble DG during each hour of the day. t
DGi

P , 

t
RES r

P and t
sBatt

P
,  represent the real output powers 

(kWh) of the i
th

 DG, r
th

 RES and s
th

 storage at time t, 

respectively. The active power which is bought (sold) 

from (to) the utility at time t is demonstrated 

by t
Grid

P . t
DGi

B , t
RES r

B , t
sBattB , and t

Grid
B are respectively 

bids of dispatchable DGs, RESs, storage devices and 

the utility grid at hour t (€/kWh). DGiSUC  and DGiSDC  

are the start-up and shut-down cost for i
th

 dispatcha-

ble DG. ).( t
DGi

t
DGi

BP , ).( t
Batt

t
Batt ss

BP  

and ).( t
Grid

t
Grid

BP represent operational cost of dis-

patchable DGs, battery and cost of power exchange 

between the MG and utility (€), respectively. It 

should be mentioned that DG demonstrates the dis-

patchable units including fuel cell (FC) and micro-

turbine (MT), while Grid and Batt are abbreviated 

forms of the utility grid and the battery, respectively. 

The WT and PV are shown with RES. 

Note that the utility has to buy all electrical power 

produced by RES units, consequently RESs’ output 

powers ( t
rRES

P
, ) are not included in the design varia-

bles’ vector.  

As the second objective, the environmental pollu-

tants should be minimized as the following [12]: 
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(3) 

where t
Batt

t
DGi

s
EE , and t

Grid
E  are the amount of pollu-

tants emission (kg/kWh) for each generator, storage 

device and utility at hour t, respectively. These varia-

bles are described as follows [12-19]: 
t
x
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where 
t

iDG
CO

2 , 
t

iDG
SO

2 and 
t
x

iDG
NO  are the amounts of 

CO2, SO2 and NOx emission from i
th

 DG source at 

hour t; t

sBatt
CO

,2
, t

sBatt
SO

,2
and t

x sBatt
NO

,

are the amounts 

of CO2, SO2 and NOx emission from the s
th

 storage 

unit at hour t of the day, and t

Grid
CO

2
, t

Grid
SO

2
and 

t
xGrid

NO are the amounts of CO2, SO2 and NOx emis-

sion from the utility at hour t, respectively. 

 

2.2. Constraints  

 

- Power balance 

One of the most important requirements in MG 

management is the balance of electricity demand and 

supply, hence [12]: 
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(5) 

where t
LDP  is the total MG load at hour t. 

 

-Battery limits 



In order to consider the limitation on charge and 

discharge rates of the storage devices during each 

time intervals,  along with limits on the state of 

charge (SOC) of each storage device the following 

equation and constraints are mentioned for a typical 

battery [21]: 

max,min, ss Batts
t
BattBatt WWW    (6) 

 



where s
t
BattW is the SOC of the s

th
 storage at the end 

of one-hour interval which is associated to the time t 

as the following: 

tPtPWW disch
d

chc
t
Batt

t
Batt

  .
1

.1


  

 

;max,ch
t
ch

PP   (7) 

max,disch
t
disch

PP    

in which t
BattW and 1t

BattW are the amounts of energy 

stored inside the battery at hours t and t-1, respective-

ly. During a definite period of time ( t ), Pch (Pdisch) 

is the permitted rate of charge (discharge), while 

)( dc   is the efficiency of the battery during charge 

(discharge) process. The lower and upper limits of 

amounts of energy storage inside the battery are 

min,sBattW and
max,sBattW , and Pch,max (Pdisch,max) is the 

maximum rate of battery charge (discharge) during 

each time interval t . 

- Real power constraint 

Power generations for each dispatchable DG are 

limited as: 
t
DG

t
i

t
DG

t
DG

t
i

iii
PuPPu

max,min,
..    (8) 

The power exchange with utility grid is con-

strained as follows: 
t
Grid

t
Grid

t
Grid

PPP
max,min,

                               (9) 

Constraints on the rate of charge and discharge of 

the battery during an hour are considered as the fol-

lowing: 
t
Batt

t
Batt

t
Batt sss

PPP
max,min,

                 (10) 

3. Fundamentals of multi-objective optimization 

3.1. Characterization of multi-objective optimization 

In a typical multi-objective problem, a number of 

objective functions are simultaneously optimized.  In 

most of the situations, these objective functions are 

conflict which is a barrier to select an optimum solu-

tion for all the objective functions. In most cases, 

multi-objective problems have more than one optimal 

solution, which are called the non-dominated solu-

tions. Within the whole search space, the non-

dominated solutions are expressed as Pareto-optimal 

which establish the Pareto-optimal set or Pareto-

optimal front. Considering a multi-objective minimi-

zation problem, while meeting a number of equality 

and inequality constraints, a solution X1 dominates X2 

if the following conditions are satisfied [13, 14]: 
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where fi(X) is the i
th

 objective function, X is the vec-

tor of the optimization variables, and n is the number 

of objective functions [13, 14]. In order to assess the 

suitable particles to be stored in the repository of 

non-dominated solutions, the concept of Pareto-

optimal is employed [13, 14]. 

3.2. Controlling the size of repository 

Since the size of repository is limited, a finite 

number of solutions can be accumulated. In this pa-

per, repository size is controlled through a novel dis-

tance-based method. 

When the number of non-dominated solutions in 

the repository exceeds a predefined value, namely NL, 

they are sorted ascending according to one of the 

objective functions, and the first and the last of the 

sorted non-dominated solutions are assumed as A and 

B, respectively. The pseudo-code of the proposed 

method for controlling the size of repository is as 

shown in Table 1. In this table Nnon-dom is the number 

of non-dominated solutions, fi is the objective func-

tion and M is the number of objective functions. 
Table 1 

The pseudo-code of the proposed method for controlling the size 
of repository. 
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End 

 l= 1 

For LNtoi 1  

 =find((i-1)*epsilon<distance and distance <i*epsilon) 

If length  ~=0 

Y= (end) 

 l=l+1 

End 

End 



3.3. Selecting the best compromised solution 

As was mentioned, the Pareto front should be scat-

tered uniformly. Additionally, considering each ob-

jective function to be minimized independently, the 

best solution of each should be obtained. In order to 

achieve these goals, particles should be refrained to 

accumulate in populated domains. Hence, the pro-

posed method of [21] is applied to improve the prop-

erties of Pareto optimal front and to select the global 

best compromised solution. In this technique, objec-

tive functions are normalized such that relatively 

equal significance is provided to the both objectives 

as follows: 

































































minmax

min

minmax

min

22

1

22

2

11

1

11

1

ff

ff

ff

ff

Min

domnon

i

domnon

i

N

i

N

iM   

 

 

 

 

(12) 

where f1 and f2 are objective functions cost and emis-

sion, respectively. Initial guess for 1 and 2 is equal 

to 0.5. 

4. Modified GWO algorithm 

4.1.  A brief overview on original GWO algorithm 

A swarm-intelligence algorithm impressed by the 

hierarchical hunting manner of grey wolves, namely 

GWO, is presented by Mirjalili et al. [20]. The social 

hierarchy of grey wolves is classified in four groups 

including the group leader, alpha (α), as the first lev-

el, beta (β) as the second level who cooperates alpha 

in decision making, while the third best solution is 

called delta (δ) which comes after alpha and beta but 

leads the fourth hierarchy, omega (ω), which should 

defer to other three dominant levels. The hunting 

mechanism of grey wolves is as follows [20]: 

(i) Tracking, chasing, and approaching the prey. 

(ii) Pursuing, encircling, and harassing the prey until 

it stops moving. 

(iii) Attacking the prey 

In the optimization process  s randomly update 

their positions around the prey according to the esti-

mated position of the prey by α, β and δ. The encir-

cling is then performed as follows: 

kkp XXCD  ,.  (13) 

DAXX kpk .,1   (14) 

k indicates the current iteration, kpX ,  is the position 

vector of the prey, Xk is the position vector of a grey 

wolf, D is the distance between Xp,k and Xk, while A 

and C represent the discrimination weight coefficient 

of search agent, and random mutation coefficients, 

respectively and are calculated as following: 
arA )12( 1   (15) 

22rC   (16) 

where r1 and r2 are random vectors in [0, 1], a is line-

arly decreased from 2 to 0 over the course of iteration. 

Hunting the prey as the last step of the procedure 

is guided by α, while β and δ participate in this step. 

α, β and δ have better knowledge about the potential 

position of the prey. The position of each grey wolf is 

updated as follows: 

kk XXCD  ,1.   (17a) 

kk XXCD  ,2.   (17b) 

kk XXCD  ,3.   (17c) 

).(),.(),.( 332211  DAXXDAXXDAXX   (18) 

)(
3

1
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where A1, A2 and A3 are respectively decisive weight 

coefficients of α, β and δ, values of which decrease 

progressively.  

4.2.  Multi-objective GWO (MGWO) 

In this paper in order to investigate a bi-objective 

problem to optimize both the total cost and emission 

simultaneously, a multi-objective GWO (MOGWO) 

should be applied. Accordingly, X , X and X are 

not fixed for each member and are selected randomly 

from the repository as is described. If the number of 

non-dominated solutions in the repository is more 

than three, after being sorted according to one of the 

objective functions the repository is divided into 

three equal sections. X is selected randomly from 

the first section which is from the first non-

dominated solution in the repository up to the 
3

LN th
, 

X is selected from ( 1
3

LN
)

th
 non-dominated solu-

tion up to 
3

2 LN th
 non-dominated solution, and X is 

chosen from the last section which is from the 

( 1
3

2
LN

)
th 

non-dominated solution to the last one. 



 This procedure leads to an intelligent selection 

of X , X and X where all three sections of the re-

pository take part in the output Pareto front and con-

sequently the actual Pareto optimal set is obtained. 

4.3. Modified multi-objective GWO algorthim 

(MMOGWO) 

In order to achieve a real Pareto optimal front in 

the MOOM problem, the original GWO should be 

enhanced. Consequently, three modifications, one in 

the size of population and the two others in the muta-

tions, are augmented to improve the convergence 

ability and the accuracy of the approach. 

- Modification I 

To increase the convergence speed of the algo-

rithm, the size of population is considered variable 

and changes as follows: 

)
)(

( min
max

minmax N
iter

iterationNN
roundN 


  

 

(20) 

where Nmin and Nmax are the minimum and maximum 

populations respectively, and itermax is the maximum 

number of iteration. A prominent feature of the pro-

posed modification is that the selection of a variable 

population size leads to the increase of the population 

in each iteration, therefore, the population size is not 

fixed which helps to avoid trapping in local optima. 

As a result, the accuracy and convergence capability 

of the algorithm will improve. 

-Modification II 

In addition to the described modification in the 

previous section, the second modification is applied 

to improve the accuracy of the proposed approach. 

Five constants 54321 kkkkk  , unequal to i, 

are chosen randomly from the population, while three 

constants 321 kkk  are selected from the reposito-

ry as follows: If the number of non-dominated solu-

tions in the repository is more than three, after being 

sorted according to one of the objective functions the 

repository is divided into three sections. 1k  is selected 

randomly from the first section which is from the 

first non-dominated solution in the repository to 

the
3

LN th
, 2k  is selected from ( 1

3
LN

)
th

 non-

dominated solution up to 
3

2 LN th
 non-dominated solu-

tion, and 3k  is chosen from the last section which is 

from the ( 1
3

2
LN

)
th 

non-dominated solution to the 

last one. Four mutations ( 4,3,2,1, lX
lmut


) are defined 

as: 

)((.)1
3211 kkkmut XXrandXX


  (21a) 

)((.)212 worstbestmutmut XXrandXX


  (21b) 

)((.)3
543 kbestkmut XXrandXX


  (21c) 

)((.)4
3214 kkkmut XXrandXX  


 (21d) 

where after sorting the repository, the first non-

dominated solution is selected as Xbest and in each 

iteration the best non-dominated solutions are select-

ed in turn as Xbest such that all repository members 

take part in the population generation, while Xworst is 

the most dominated solution in the population. 

-Modification III 

In order to increase the convergence speed of the 

algorithm the third modification is augmented ac-

cording to the pseudo code of Table 2. 

5. Application of the proposed method 

In order to apply the proposed algorithm on the 

MOOM problem in an MG, the following steps 

should be taken. 

Step 1: Initialize population size, number of design 

variables and termination criterion. Problem infor-

mation including MG properties, beside bids and 

power information of DGs, storages and utility, hour-

ly wind-turbine (WT) and photovoltaic (PV) power 

forecasts, emission coefficients are specified. The 

initial charge of the battery is also defined in this step. 

Step 2: Since a mixed integer problem is considered 

in this paper, two types of variables, binary and con-

tinuous, are assumed. For states of generators as bi-

nary variables, Ui s according to Eq. (2) are generated 

as follows: 

))((.)(
min,min,max,

t
i

t
i

t
i

t
i uuurandroundu   (22) 

However, in order to consider the states of all 

units, t
iU  should satisfy the following condition for 

all hours: 
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(23) 

If Eq. (23) is satisfied, a random population for con-

tinuous variables based on the achieved Ui s and ac-

cording to Eq. (2) must be generated as Eq. (24). 



Table 2 

The pseudo-code of modification III. 

iter=1 

While maxiteriter   

For i=1 to N 

If max
3

1
1 iteriter   

Select one of the mutations of Eq. (21) randomly  and apply it to the ith 

member 

If 1newX dominates iteriX , , or non dominates each other 

Save 1newX  in the repository 

Set iteriX , = 1newX  

End 

Else if maxmax
3

2
1

3

1
iteriteriter   

Select two of the mutations of Eq. (21) randomly and apply them to the 

ith member 

Determine the non-dominated solution among 1newX and 2newX and 

iteriX ,  

Save the non-dominated solution in the repository 

If 1newX and 2newX are the non-dominated solutions 

Choose one of them based on Eq. (12) and update iteriX ,   

Else if 1newX or 2newX is the non-dominated solution 

Set iteriX , = jnewX ,  (j=1 or 2) 

End 

Else if maxmax 1
3

2
iteriteriter   

Apply all four mutations  

Determine the non-dominated solution among 

1newX , 2newX , 3newX , 4newX ,and iteriX ,  

Save the non-dominate solution in the repository 

If the number of non-dominated solutions among 

1newX , 2newX , 3newX , 4newX is more than one 

Choose one of them based on Eq. (12) and update iteriX ,  

Else if one of jnewX , (j=1 to 4), is the non-dominated solution 

Set iteriX , = jnewX ,  (j=1or 2 or 3 or 4) 

End 

End 

End 

iter=iter+1 

End 
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while the power constraints in Eqs. (8-10) should be 

satisfied. 

Since in the considered problem some limitations, 

such as battery constraints, depend on previous and 

future hours, constraints change in different hours of 

the day as follows: 
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The limitation of the released energy in the dis-

charging mode and the stored energy in charging 

mode are mentioned in Eqs. (25) and (26), respec-

tively, while Eq. (28) demonstrates the power dis-

charged by the battery in the discharge mode, and the 

power charged by the grid in the charging mode. Us-

ing Eqs. (28) and (29), the maximum and minimum 

rates of charging and discharging mode can be calcu-

lated [22]. 

Step 3: Check the power balance violation for each 

particle. In order to meet the equality constraint, fol-

lowing steps should be carried out: 

Step 3.1: t=1 

Step 3.2: Calculate power balance violation: 






dBattDG N

d

t
LD

t
Grid

N

s

t
Batt

N

i

t
DGi

t
i

t
VLTD

PPPPuP

111

)][].[(  

 

 

(30) 

Step 3.3: If 0t
VLTDP and Tt  then set t=t+1 

and go to Step 3.2; otherwise 

If 0t
VLTDP and t=T, go to Step 4; otherwise 

If 0t
VLTDP select a generated unit randomly (bat-

tery, DGs or grid). 

Step 3.4: Add t
VLTDP to the power of the selected 

generated unit. 

Step 3.5: Check the result with upper and lower 

limits of the units’ powers, if it violates the upper 

limit, fix it to the upper limit and if it violates the 

lower limit, fix it to the lower limit. Go to Step 3.2. 

Step 4: Calculate the objective functions for the ini-

tial population. 

Step 5: Determine the non-dominated solutions in the 

population and store them in the repository. 

Step 6: Choose ‘Xbest’ and ‘Xworst’ as described in Sec-

tion 4.3.  

Step 7: Initialize the size of population based on Eq. 

(20). 

Step 8: Select i
th

 individual from population. 

Step 9: Apply GWO according to Eqs. (13-19). 



Step 10: Apply mutations as described in Section 4.3. 

Step 11: If all members are selected, go to Step 13, 

otherwise set i=i+1 and got to Step 9. 

Step 12: Update the number of population according 

to Eq. (20). 

Step 13: Determine the non-dominated solutions in 

the new population. 

Step 14: Update the repository based on new and old 

non-dominated solutions.  

Step 15: If the number of non-dominated solutions is 

more than a predefined value, NL, control the size of 

repository as mentioned in Section 3.2. 

Step16: Control the termination criterion, if it is satis-

fied, terminate the algorithm, otherwise, set itera-

tion=iteration+1 and turn to Step 6. 

Step 17: Report the best compromised solution which 

is achieved using the technique proposed in Section 

3.3.  

The flowchart of the proposed algorithm is illus-

trated in Figure 1. 

6. Simulation results 

The effectiveness of the proposed MMOGWO al-

gorithm is verified in this section where two cases are 

investigated. The MG of Figure 2 is considered as the 

test system. A 24-hour scheduling scheme is assumed 

for the analysis of the simulated system in order to 

clarify the performance of each power unit. Besides, 

the unity power factor is considered for all DGs, thus 

they just produce active power. The decision about 

power exchange between the MG and the utility, 

which is allowed at any hour in a day in order to 

more profitably exploit the market, is taken by MG 

central controller (MGCC). The data for the hourly 

active power of PV and WT, forecasted load demand 

and the utility power production bid, besides the en-

tire bid data for all DGs along with the power market 

are available in [12]. PV and WT units do not con-

sume any fuel at the times they produce electrical 

power during the day, consequently, the utility has to 

buy all electrical power produced by these units [12]. 

A Pareto-optimal set is attained for the two incom-

patible objectives (cost and emission) in each case. It 

is worth mentioning that applying the proposed ap-

proach for controlling the size of repository leads to 

the extraordinary fast convergence of the proposed 

MMOGWO that makes it superior among all other 

existing algorithms. The proposed method was im-

plemented in MATLAB 8.1 and solved in a laptop 

with Core i5 CPU and 4GB RAM. The number of 

population and maximum iteration are both consid-

ered 100. 

 

START

Input data of all sources including DGs, storage and utility

Generate the initial population

Are the constraints 

satisfied?

Initialize a, A and C according to ()

Evaluate the objective functions

Calculate the best value of objective functions

                       XXX ,,Set

iter=1

 XXX ,,Update 

Update a, A and C using ()

NO

YES

Are the constraints 

satisfied?

NO

Evaluate the objective functions

YES

Update  XXX ,,

iter=iter+1

iter=iter max
NO Store the objective 

functions

YES

END

 
Fig. 1. Flowchart of the proposed algorithm. 

6.1. First case 

In this section, it is assumed that PV and WT (as 

non-dispatchable units) are in service at all hours 

during the day and are accepted to exploit at their 

maximum available output powers. This is while the 

ON\OFF states of dispatchable DGs (i.e. FC and MT) 

are considered. Therefore, in the algorithm process, 

the solutions for dispatchable units are compared 

with their minimum limit powers and if lower, the 

power will be put to zero. In this case no limits on the 

battery’s initial charge is considered. The Pareto op-

timal front of this case is revealed in Figure 3, and 

results for three algorithms, including original 



 

Fig 2. A typical MG test system [12].  

GWO, PSO, and the proposed MMOGWO, are com-

pared. The best compromised solution along with the 

values of the points where cost and emission are min-

imum are depicted. It is observed that in solving the 

MOOM problem, in addition to fast convergence, the 

proposed MMOGWO algorithm is able to properly 

find the points where the objective functions are in 

their minimum values, and the Pareto optimal front 

maintains between these points, while one deficiency 

of the two other algorithms in dealing with the con-

sidered MG energy management problem is the inca-

pability to detect these points. Evidently, when the 

cost function is at its minimum value, 281.3 €, the 

emission is 862.8 kg. Besides, when emission de-

creases to 455.9 kg, cost equals 857.2 €. The best 

compromised solution is calculated according to the 

procedure described in section 3.3 where the cost and 

emission objective functions are 373.4 € and 566 kg, 

respectively.  

In order to justify the robustness and effective-

ness of the proposed MMOGWO algorithm, the pro-

gram is executed four times and results of these four 

different executions in the first case are revealed in 

Figure 4. Obviously, the achieved Pareto optimal sets 

in all four runs are approximately similar. It can be 

concluded that since the numbers of non-dominated 

solutions saved in the repository in different runs of 

the program, which are 150, 150, 147 and 149 re-

spectively for the first, second, third and fourth runs, 

are very close, the proposed algorithm is robust. 

Thereupon, not only can the proposed algorithm in-

crease the convergence speed but also it decreases 

quiescence which results in getting away from local 

optimums. Consequently, the proposed MMOGWO 

proposes more robust and qualified solutions.  

The power dispatch in the best compromised so-

lution obtained using MMOGWO in this case is pre-

sented in Tables 3 in details. From these results, it is 

concluded that all equality and inequality constraints 

are satisfied. In the dispatch of the battery, when the 

battery is charging the values of power are negative, 

while during the discharging hours the values of 

power are positive. However, for the utility the nega-

tive values are representative of delivering energy to 

the upstream network, while the positive values are 

related to the times when energy is purchased from 

the upstream network. According to Table 3, since 

there is no limit on the battery charge, and the bid of 

the battery is less than other units, it sells power up to 

its maximum value in all hours of the day. Addition-

ally, since the price of FC is less than MT, the pur-

chased power from FC in different hours of the day is 



more. The MT power is limited on its permissible 

minimum value in most of hours because of the high 

price of power in comparison with other units. 

As is expected, it is evidently obvious from Table 

4 that when cost is the only considered objective 

function, it is significantly lower (which is equal to 

269.85 €) in comparison with the case that the 

ON/OFF states of dispatchable units is not consid-

ered where it is 278.25 €. According to Table 4, in 

the first 8 hours of the day, it is more economical 

when MT is in OFF mode. 

 

 
 

Fig. 3. Comparison of the objective functions Pareto optimal 

fronts of MMOGWO, original GWO and PSO algorithms for the 
first case. 
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Fig. 4. Four different executions of MMOGWO algorithm (first 

case). 

6.2. Second case 

In the second scenario the battery initial charge is 

expected to be zero. The Pareto optimal solutions for 

this case are illustrated in Figure 5, where the best 

compromised solution along with the points where 

the two objective functions are minimum for the 

proposed MMOGWO are revealed, besides a com-

parison between three algorithms, original GWO, 

PSO, and MMOGWO, is performed. The minimum 

cost is equal to 484 €, while emission is 1114 kg; in 

Emission-minimum, the emission is reduced to 950.9 

kg, while cost equals 944.4 €. The conflict of the two 

objectives can be concluded from these obtained val-

ues. Consequently, the detailed dispatch of the best 

compromised solution for the second case is tabulat-

ed in Table 3. In this case, the best compromised 

solution is when the cost and emission objective 

functions are 643.7 € and 1026 kg, respectively. It is 

obvious from Table 3 that in the first 7 hours of the 

day, the local load is supplied by purchasing from the 

utility grid and even from MT, while the energy sur-

plus is stored in the battery. At hour 8, the battery 

starts to discharge for the load being supplied, where 

in this case, the energy surplus is sold to the upstream 

network. At hour 13 energy is purchased from the 

upstream network since the market price is low and 

as the market price is at maximum value at hour 14 

this stored energy is sold to the utility at the next 

hour. Then, at hour 16 the battery is completely dis-

charged. From hour 17 to 24 during which the market 

price is approximately low, the power is purchased 

from the upstream network and the battery is not 

charged nor discharged. Since the price of FC is less 

than other units, it sells power up to its maximum 

value in all hours of the day.  
Table 3 

MMOGWO best compromised solution of the first and second 

cases. 

Power 

(kWh) 

First case Second case 

MT FC Battery Utility MT FC Battery Utility 

hour         

1 6.027 13.825 30 0.364 30 30 -10.2 0.5 

2 6 12.232 30 -0.017 29.8 30 -12.3 0.7 

3 6.184 12.8 30 -0.769 29.8 30 -16.1 4.6 

4 6 13.22 30 -0.005 29.8 30 -21.6 11 

5 6 18.205 29.997 0.013 29.8 29.7 -20.8 15.6 

6 6.258 26.024 30 -0.197 30 30 -15.6 17.7 

7 9.398 29.184 30 -0.366 29.8 29.9 -0.4 8.9 

8 13.513 30 30 -0.018 29.5 30 13.1 0.9 

9 10.708 29.995 29.931 -0.169 30 30 10.4 0.1 

10 30 30 30 -20.62 30 30 30 -20.6 

11 28.776 30 29.999 -30 30 30 -0.5 -0.7 

12 21.64 30 30 -30 30 29.9 20.4 -28.7 

13 6 29.951 29.954 -21.72 29.8 30 -15.5 -0.1 

14 18.58 30 30 -30 30 30 18.6 -30 

15 29.974 30 30 -23.63 29.9 30 6.3 0.1 

16 29.996 29.991 29.999 -15.52 30 30 14.1 0.4 

17 22.678 29.999 29.987 0.0004 29.9 30 0 22.7 

18 26.628 30 30 -0.413 30 30 0 26.2 

19 28.648 29.999 29.99 0.0601 30 30 0 28.7 

20 26.174 29.882 29.928 -0.768 30 30 0 25.2 

21 16.699 30 30 0 30 30 0 16.7 

22 9.706 30 30 -0.007 30 30 0 9.7 

23 6 28.094 29.999 -0.008 29.9 30 0 4.2 

24 6.046 19.381 29.974 -0.016 25.6 29.8 0 -0.1 



 
Fig. 5. Comparison of the objective functions Pareto optimal 

fronts of MMOGWO, original GWO and PSO algorithms for the 

second case. 
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Fig. 6. Four different executions of MMOGWO algorithm 

(second case). 

 

Table 4 
MMOGWO optimal solution achieved in the first case where 

the cost is reduced to 269.85 €. 

In Figure 6 a comparison between four executions 

of the algorithm in the second case is shown. Obvi-

ously, the achieved Pareto optimal sets in all four 

runs are approximately similar. As is obvious from 

Figure 6, the numbers of non-dominated solutions 

saved in the repository in different runs of the pro-

gram, which are 180, 178, 179 and 177 respectively 

for the first, second, third and fourth runs, are very 

close. Consequently, the robustness of the proposed 

MMOGWO algorithm in the second case can be jus-

tified through the results of Figure 6. 

When the initial charge of the battery is zero, a 

strict restriction on the battery charge and discharge 

is put on. Consequently, the most adjustable scenario 

is when the battery has initial charge. Because of the 

more realistic performance of the battery in the sec-

ond case, more power is purchased from MT, com-

paratively. In both cases, in most hours a large 

amount of power is bought from FC since it is less 

expensive. In first hours of the day where the market 

price is lower, the system operator purchases power 

from the utility. This power can be utilized in order 

to supply local loads or can be stored in the storage 

device. However, in peak hours, the stored power can 

be sold to the utility in a much higher price. 

The superiority of an optimization algorithm in 

solving multi-objective problems is concluded from 

the appropriate and fast convergence, while attaining 

exact Pareto front. Moreover, the robustness of an 

optimization algorithm can be another criterion in 

order to prove the effectiveness of the method. Con-

sequently, as is concluded from the obtained results 

and by comparing the Pareto optimal sets of three 

algorithms in solving the MOOM problem, the pri-

ority of the proposed MMOGWO algorithm along 

with its robustness and accuracy is justified. Accord-

ingly, it is proved that the proposed MMOGWO has 

successfully fulfilled these assumed criteria, and it 

can significantly achieve the exceptional solution in 

comparison with other methods in solving MOOM 

problem of an MG.0 

7. Conclusions 

The new MMOGWO algorithm was proposed in 

order to deal with the multi-objective optimal opera-

tion management in a typical MG. Three modifica-

tions were added to the original GWO which result in 

more accurate and faster performance of the suggest-

ed approach. The variable population size resulted 

from the first modification avoids trapping in local 

Power 

(kWh) 

 

MT FC Battery Utility 

hour     

1 0 20.171 0.0445 30 

2 0 17.924 0.2911 30 

3 0 18.145 0.0699 30 

4 0 19.129 0.1158 29.9706 

5 0 24.159 0.0881 29.9679 

6 0 29.906 2.1815 29.9976 

7 0 29.992 8.3458 29.8773 

8 0 30 18.6006 24.8944 

9 29.991 29.999 30 -19.5251 

10 30 30 30 -20.615 

11 28.817 30 29.9576 -30 

12 21.787 29.856 29.9964 -29.9997 

13 14.186 29.999 30 -29.9992 

14 18.729 29.855 29.9959 -29.9997 

15 29.993 30 30 -23.6533 

16 30 30 29.9995 -15.5295 

17 30 30 30 -7.335 

18 0 30 30 26.215 

19 0 30 28.7922 29.9058 

20 26.429 30 30 -1.2142 

21 30 30 30 -13.3005 

22 29.905 29.942 29.9868 -20.1343 

23 0 30 4.085 30 

24 0 25.188 0.2147 29.982 



optima, while the two other modifications were aug-

mented to the mutation procedure in order to increase 

the convergence speed and robustness of the algo-

rithm. Additionally, a novel method was applied for 

controlling the size of repository which generates a 

well-distributed Pareto front in a very low computa-

tional time. As a result, the accuracy and speed of the 

algorithm will improve. It is obvious from the results 

that an exceptional Pareto optimal set was achieved 

while applying the presented method comparing with 

original GWO and PSO algorithms. Two different 

scenarios were considered in order to justify the ef-

fectiveness of MMOGWO. Simulation results mani-

fest that the proposed method is able to deal with 

mixed-integer problems. Future works can include 

the following: 

1. Investigating the stochastic MG optimal oper-

ation management while considering the un-

certainties of renewable resources using the 

proposed algorithm. 

2. Studying the effects of elements of the future 

smart grid, such as electric vehicles, in the 

considered MG energy management. 
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