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Abstract. Unsupervised learning of finite Gaussian mixture model (FGMM) is 

used to learn the distribution of population data. This paper proposes the use of 

the wild bootstrapping to create the variability of the imputed data in single miss-

ing data imputation. We compare the performance and accuracy of the proposed 

method in single imputation and multiple imputation from the R-package Amelia 

II using RMSE, R-squared, MAE and MAPE. The proposed method shows better 

performance when compared with the multiple imputation (MI) which is indeed 

known as the golden method of missing data imputation techniques. 
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1 Introduction 

Missing data can occur in data records for various reasons, such as: data entry errors, 

system failures, or respondents who avoid answering questions within a survey. Vari-

ous methods have been proposed to deal with the missing data problem. The standard 

technique is discarding observations or variables that contain missing values. The de-

letion method is inappropriate when the missing proportions are high, resulting in inef-

ficient parameter estimates, and estimated results tend to be underestimated. To deal 

with these issues, imputation methods can be used to substitute missing values with 

plausible values. For example, the single mean imputation consists of replacing the 

missing values with the mean, median or mode value. However, this simple approach 

produces biased analysis results. The multiple imputation method introduced in [1] is a 

complex approach where missing data are filled-in by drawing multiple sets of com-

plete data that contain different plausible values. This method is complicated and com-

putationally expensive [2], especially for large data sets because execution processes 

are implemented through three phases in several iterations. The improved version of 

the single imputation technique such as conditional mean imputation, which incorpo-

rates the statistical and machine learning methods with multivariate Gaussian mixture 

models (GMM)[3] have gained interest in many years[4]. 

The conditional mean imputation (also known as ordinary least square, OLS) or re-

gression imputation can preserve the data distribution, according to Di Zio [5]. The 
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     implementation requires the use of random 

error i  which can be obtained in two ways [6]: 1) draw a random error with underlying 

assumption that it is independent and identically distributed, that follows a Gaussian 

distribution with zero mean and finite variance; 2) draw a random error with replace-

ment from the empirical distribution of the estimated residuals ˆ
i i iy y   [7]. Problems 

can occur in the random error and residual i  in method (1) that will create the sparsity 

problem whereas the random i  generation will be either too large or too small although 

the normality distribution assumption is met. The sparsity of data in method (2) will be 

inconsistent if the data distribution has different clusterings and each cluster consists of 

a different density. The sparsity of data creates some problems such as increases in the 

variance between the imputed and original data. 

The conditional mean imputation proposed in [5] does not consider adding the re-

siduals. Although this method may preserve the data distribution, it will underestimate 

the variability, introduce the bias on imputed data and the result of imputed data will 

be highly inaccurate. The additional steps are required to improve data sparsity in the 

random error i  generated in the OLS to obtain a better predicted missing value. 

The main objective of this study is to investigate the random error and employ the 

wild bootstrap [8] [9] on the missing data prediction using regression imputation on the 

Gaussian mixture model. The wild bootstrap is used to improve the variance in hetero-

scedasticity issue when the data variance is not homoscedastic [8][9]. Further details 

about the wild bootstrap approach are discussed in the next section that introduces the 

modelling framework. 

In this paper, we employ the wild bootstrap to the single imputation technique in 

missing value prediction, since the GMM framework is flexible to learn multimodal 

data distribution. We combine the GMM model with the proposed missing data predic-

tion method. We also employ the wild bootstrap to investigate the effect of the sparsity 

of imputed data in a different mixture data distribution case. Thus, we would like to 

show that the performance of single imputation may perform well, and as good as the 

implementation of MI. We assume that the data is missing data at random (MAR). 

This paper is organized as follows: in Section 2, we present the Gaussian mixture 

model framework and the proposed regression imputation with wild bootstrap tech-

nique. In Section 3 we discuss the experimental evaluation and experimental results. 

Section 4 concludes the paper and identifies further directions for research and study. 

2 Modelling Framework 

GMM is a powerful probabilistic model used in predicting specifically in data cluster-

ing [5]. This model is flexible to learn from different data distributions by fitting the 

probability density function (PDF) to represent different clusters [3]. The well-known 
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strategy for finding the Maximum Likelihood (ML) parameter estimation uses the Ex-

pectation-Maximization (EM) algorithm [10]. GMM applications to missing data prob-

lems have been studied extensively for example in [4][5][11]. 

2.1 Definitions 

Suppose the data set X  having N units of independent and identically distributed (i.i.d) 

data points with p -column vectors can be written as follows: 

 
Observa-

tion (index) 1X  2X  .. 
lX  .. 

pX  

1 
11

Ox  12

Ox  .. 
1

O

lx  .. 
1

O

px  

.. : : .. .. .. : 

1n  
11

O

nx  
1 2

O

nx  .. 
1

O

n lx  .. 
1

O

n px  

1 1n   
1( 1)1

M

nx   
1( 1)2

M

nx   .. NA  .. 
1( 1)

M

n px   

: : : ..  .. : 

N 
1

M

Nx  2

M

Nx  .. NA  .. M

Npx  

Figure 1: A sample data set with missing values 

 

Figure 1 illustrates a data set that contains missing values (highlighted with NA in 

the relevant cells). Let  1 2, ,..., pX X XX  be the random variable of the N p data 

matrix. In the imputation process, Rao and Shao [12] suggested to create a set of re-

spondents 
O

X  and a set of non-respondents 
M

X separately. The variable
O

X denotes 

the 1n p matrix where 1n is the size of observed data while 
M

X denote the 0n p

matrix where 0 1n N n  is the number of missing values that occur in
lx . Let 

lx of  

size 1 1n  vector contain observed data and 
0n be the size of missing values in

lx . 

2.2 Multivariate Gaussian Mixture Model 

The Maximum Likelihood (ML) is an approach to estimate the parameters of the dis-

tribution from multivariate GMM using the Expectation-Maximization EM algorithm 

[10]. The data in GMM are distributed by different k  Gaussian components and esti-

mated as follows: 
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where ( | )kf x   is the density of p-variate Gaussian distribution with the k compo-

nent. The vector  contains the full set of parameters in the mixture model

1 1( ,..., ; ,..., )K K    , where k is the vector of unknown parameters of mean vec-

tor k and covariance matrix k . 

The mixing coefficients (or weights) k for the 
thk component must satisfy the con-

ditions 0 1,k   and 
1

1
K

kk



 . The GMM is a dynamic model where it is not 

required to specify any column vector to be an input or output particularly. 

2.3 The General EM Algorithm 

The EM algorithm is a statistical tool to find the maximum likelihood estimates of the 

set parameters such as mean, variances, covariances and regression coefficients of a 

model. The optimisation algorithm introduced by Dempster, Laird, and Rubin [10] 

starts with an initial estimate of  and iteratively executes the process until it satisfies 

the convergence criteria. The iterative process has two steps known as the E-step and 

the M-step. The E-step computes the probability membership ik for all data points ix

of mixture component k . The M-step will update the value of the parameter with 

respect to the k Gaussian component. Let denote q  as an iteration counter, the expected 

values of the posterior distribution are computed by: 
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(2) 

 

In the M-step, we use the expected values in the posterior distribution (2) to re-esti-

mate the means, covariances and mixing coefficients.  The new set of parameters 
( 1)q  are updated as follows: 

( 1)ˆ q k

k

N

N
    for k=1,…,K, (3) 

𝜇̂𝑘
(𝑞+1)

=
1

𝑁𝑘

∑𝜏𝑖𝑘𝐱̂𝑖𝑘

𝑁

𝑖=1

 (4) 

( 1)

1

1ˆ ˆˆ ˆ[( )( ) ]
N

q T MM

k ik ik k ik k ik

ikN




    x x     (5) 

The algorithm then iterates the E-step and M-step until convergence is achieved. 
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2.4 The Least Square Method 

The conditional mean imputation is also known as regression imputation [13]. The im-

puted values are regressed from independent variables pX . Let consider the following 

linear regression model: 

0 1il i ix x     ,     1, 2,...,i n  (6) 

 

where the response variable ilx  is predicted from regression coefficients 0 and 1

with random error εi~N(0,σ
2) i.i.d. and uncorrelated. The matrix development of equa-

tion (6) is presented as follows: 
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In general, 
lx is an 1N  vector of the dependent variable contains missing values, 

X is a N p matrix of observed variables,  is a 1p  vector of the regression coeffi-

cients and   is a 1N  vector of random errors. The general least square estimator of 

  based on observed values is: 

 
1ˆ O T T

l



 X X X X  (7) 

 

In the presence of missing data, the imputed values are obtained by the conditional 

mean imputation technique which corresponds to imputed values generated from a set 

of regression equation calculated in (7) as discussed in [14][13]. There are two ways to 

generate the random error component i . The random error component i  can be gen-

erated either with εi~N(0,σ
2) or residual. 

2.5 Fundamentals of the Bootstrap Method 

The bootstrap non-parametric resampling technique was proposed by Efron [15] for 

estimating a standard error , confidence interval in various types of distributions. This 

method was extended in [16] and [17] to generate the random error i in the regression 

model. Let  
11 2, ,..., nX x x x is a random sample from p-variate normal distribution 

K where 
1n refers to the size of observed data O

X as shown in Figure 1. Let 
( )kb

X denote 

the bootstrap resampled data generated by sampling with replacement from the original 

dataset 
kX  where b indicates the counter 1,...,b B  of drawing samples of bootstrap 

and k  refers to the current Gaussian component. In this study, the resampling and pa-

rameter estimation are implemented on the observed data O

kX  where the superscript O 

refers to observed data. 
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2.6 The Wild Bootstrap 

Wu [8] introduced the wild bootstrap to deal with the heteroscedasticity issue. Later, a 

better approximation of the wild bootstrap was proposed by Liu [9].  The wild bootstrap 

is based on the modification of the bootstrap residual approach of the least square esti-

mation. Wu [8] improved the resampling residual with replacement in bootstrap by 

drawing a value of *

it  that follow a standard normal distribution with zero mean and 

unit variance: 

*
ˆˆ

1

b T i

il i i

i

x x t
w


 


 (8) 

 where ( )T T

i i iw x x X X . However, the error variance  * ˆ
i it   are inconsistent. There-

fore, authors in [18] proposed to compute *

it by drawing a sample 
ia with replacement: 

 

1

*

1 2

1 1

ˆ ˆ

ˆ ˆ( )
k

i i

i i
n

k ii

t a

n

 

 




 


 (9) 

where 
11

1 1
ˆ ˆkn

k ii
n 


  .  

The second wild bootstrap technique employed in this study is the Liu’s bootstrap 

[9]. Liu [9] proposed *

it  in Wu [8] by resampling a set of central residual with zero 

mean and unit variance that has third central moments equal to one. Liu proposed two 

procedures to draw random numbers *

it . However, we consider the second procedure 

as it is appropriate for normal distribution. Liu’s bootstrap is conducted by drawing 

random numbers: 

1 2 1 2( ) ( )it D D E D E D   (10) 

 

where 1D and 2D are random i.i.d that follows normal distribution with means 

0.5*( 17 / 6 1/ 6)  and 0.5*( 17 / 6 1/ 6) respectively, and variance 0.5. 

2.7 The Non-Parametric Wild Bootstrap Applied in Missing Data Imputation 

The bootstrap procedure based on the resample approach in the GMM is described in 

the following steps: 

 

1. Initiate the set of parameters  with K-means algorithm. 

2. Compute the residual for each Gaussian component: 

a. Fit Gaussian mixture model using the parameter values from the step 1. 

b. Compute the residual: 𝜀𝑘̂ = 𝐗𝑙𝑘𝛃̂𝑘 where k is the Gaussian component k 

= 1,..,K. 

3. For b = 1,.., B 

a. Draw a vector 𝜀𝑘̂of 1kn i.i.d sample with a simple random sampling with 

replacement. The vector 𝜀𝑘̂ is generated from step 2b with respect to the 
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option of the Wu’s [8] or Liu’s[9] bootstrap procedure as discussed in 

the Section 2.6. 

b. Fit Gaussian mixture model using the parameter values from the step 1. 

c. In the E-step,  

i. Compute the posterior probabilities vector ik in equation (2) on the 

observed data. 

d. In the M-step, 

i. Impute the missing values of size 
0n k

 using a linear regression model 

(6) based on OLS estimator 
( )ˆ kO

  in (12): 

      
( ) ( ) *

0 1
ˆ ˆ ˆ / 1k kO O

il i i i ix x t w       

where the residual *

it taken from the step 3a. 

ii. Update the new parameter  for each component in GMM as shown 

in (3), (4) and (5). 

 

3 Experiments and Discussion of Results 

In this section, the numerical results are presented on real and simulated datasets. 

3.1 The Non-Parametric Wild Bootstrap Applied in Missing Data Imputation 

Dataset: We applied various evaluation criteria on one real dataset and one artificial 

dataset with two variables and two Gaussian classes. The first case study is the Old 

Faithful Geyser dataset [19]. This dataset contains 272 records on the waiting time be-

tween geyser eruptions (waiting) and the duration of eruptions (eruptions) in Yellow-

stone National Park, USA.  

For the artificial case study, the values are randomly sampled with 1000 observations 

of two Gaussian classes with different position mean values and positive-negative cor-

relation. Data are drawn with normal distribution using the following parameters: 

1 0.5  , 2 0.5   

'

1 (4, 2)  , '

2 ( 2,6)    

1

1 0.7

0.7 1

 
  

 
,

1

3 0.9

0.9 3

 
  

 
 

Software: the proposed method in these experiments were conducted using Matlab 

version 2017a. The proposed method is compared with multiple imputation available 

in the R-package Amelia II. The comparisons are conducted based on the artificial 

missing data generated with different missing data percentages (MDP): 5%, 10%, 15% 

and 20%. 

Imputation implementation: the missing data are imputed based on the regression 

imputation. Prior to the imputation process, the K-means algorithm is used to determine 
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initial parameter values of mixing proportion k , mean k and covariance matrix k  

in GMM. The stopping criteria is based on a selected threshold where the different 

iterations were less than 
610
. 

Evaluation criteria: These experiments are designed to measure the performance and 

prediction accuracy between predicted and actual values. RMSE computes the devia-

tion between predicted and actual values that employed by most missing data imputa-

tion studies. The greater the deviation means the greater variance between them. There-

fore, the lower value shows better performance: 

 

2

1
ˆ( )

N

i ii
y y

RMSE
N







 (11) 

MAPE was used to measure the average relative error of the imputation accuracy: 

 

1

ˆ100 N i i

i
i

y y
MAPE

N y


   (12) 

MAE was used to measure the average error of each different in imputation: 

1

1
ˆ

N

i ii
MAE y y

N 
    (13) 

R-squared values were used to describe the variance in goodness-of-fit for the re-

gression models between observed data and the expected values of the dependent vari-

able. The range of R-squared is between 0 and 1: 

2

2 1

2

1

ˆ( )

( )

n

i ii

n

ii

y y
R

y y













 (14) 

3.2 Experimental results 

In this study, we compare the imputation accuracy using MAPE and MAE whilst meas-

uring the performance using RMSE and R-Squared of three methods: single regression 

imputation combined with Wu’s and Liu’s wild bootstrap and MI. The better results are 

highlighted in bold font.  

Table 1 summarizes the performance and prediction accuracy of the three methods 

on the Old Faithful Geyser dataset while Table 2 shows the result estimation on the 

random data generation. The result of the proposed methods in RMSE shows better 

performance and significantly different between the MI with the proposed Wu’s and 

Liu’s method in all MDP proportions. This is shown in the 5% MDP, Wu and Liu 

method yielded 7.8225 and 7.8879 respectively while MI gained 9.8719. It is also found 

in 10%, 15% and 20% MDP where the Wu's and Liu's method have outperformed the 

MI where the result of Wu's shows 7.0955, 6.6819 and 6.7349 while Liu shows 7.8746, 

7.0150 and 7.2354 in RMSE. In contrast, the MI obtained 8.4187, 8.7004 and 8.9103 

higher than Wu's and Liu's method in 10%, 15% and 20% MDP respectively. 
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The R-squared values are used to quantify the overall model performance of variance 

in response variable explained by the independent variables. The larger the R-squared 

means the more variability is explained by the linear regression model. The result of R-

squared presented in Table 1 showed that the proposed method gives the best perfor-

mance with 0.6338% for 5% of MDP proportion followed by 0.6836, 0.7683 and 

0.7127 for Wu, while Liu’s obtained 0.6894, 0.6869 and 0.7050 for the 10%, 15% and 

20% of MDP respectively on the Faithful data set. The R-squared obtained by the pro-

posed method in the random generation data in the Table 2 showed less than 0.6% for 

all MDP percentages. In contrast, the MI in Amelia gives a lower variance than the 

proposed method in all MDP proportions with R-squared ranging from 0.03 to 0.2.  

The imputation accuracy is measured based on the average relative error between 

predicted missing data and the original data using mean absolute percentage error 

(MAPE) and mean absolute error (MAE).   

The result of MAE in the Table 1 showed that the Wu’s and Liu’s methods are con-

sistently outperformed the MI method on the Old Faithful Geyser dataset. In contrast, 

in the Table 2, the Liu’s method offered consistent and better accuracy than MI method. 

Meanwhile the Wu’s method showed inconsistent improvement in the measure of av-

erage error magnitude to MI method on the random data generation. 

As can be observed from the MAPE values obtained in Table 1, the proposed method 

of Wu’s and Liu’s performed better imputation on the Old Faithful Geyser data set.  

Meanwhile, by observing the MAPE values gained in the Table 2, Liu’ method showed 

consistent to defeat the MI method compared to Wu’s method. 

     A plot of the result shown in Figure 1 compare the outcome between multiple im-

putation technique in r-package Amelia II and the proposed methods.  
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Table 1. The MAPE, MAE, R-square and RMSE estimates on the Old Faithful Geyser dataset 

 
MAPE MAE 

R 
square RMSE 

 
5% 

Amelia 0.6220 6.5928 0.4960 9.8719 

Wu 0.2758 2.6453 0.6338 7.8225 

Liu 0.1713 1.7281 0.4212 7.8879 
 

 
10% 

Amelia 0.0827 1.5636 0.6450 8.4187 

Wu 0.0379 0.6959 0.6836 7.0955 

Liu 0.0190 0.3594 0.6894 7.8746 
 

 
15% 

Amelia 0.0346 1.0379 0.5184 8.7004 

Wu 0.0012 0.0342 0.7683 6.6819 

Liu 0.0167 0.5018 0.6869 7.0150 
 

 
20% 

Amelia 0.0432 1.6841 0.4959 8.9103 

Wu 0.0054 0.2144 0.7127 6.7349 

Liu 0.0104 0.3994 0.7050 7.2354 

Table 2. The MAPE, MAE, R-square and RMSE estimates on the randomly generated data 

 
MAPE MAE 

R 
square RMSE 

 
5% 

Amelia 1.5798 0.7748 0.2439 2.0230 

Wu 0.0469 0.1055 0.2593 1.8642 

Liu 0.0721 0.1604 0.3754 1.8066 
 

 
10% 

Amelia 0.1259 0.1477 0.2206 2.2926 

Wu 0.1344 0.5811 0.3977 2.1557 

Liu 0.0089 0.0377 0.5803 1.6889 
 

 
15% 

Amelia 0.1674 0.3105 0.0272 2.2817 

Wu 0.0272 0.1812 0.1316 2.3463 

Liu 0.0203 0.1282 0.5197 1.7214 
 

 
20% 

Amelia 0.0501 0.1159 0.1206 2.7461 

Wu 0.0435 0.3528 0.1954 2.1858 

Liu 0.0127 0.1070 0.4586 1.8340 
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The Old Faithful Geyser dataset 
Amelia II Wu Bootstrap Liu Bootstrap 

   
The randomly generated data 

Amelia II Wu Bootstrap Liu Bootstrap 

   
Fig. 1. The scatter plot of two datasets using R Amelia II and the proposed methods 

4 Conclusions 

In this paper, we proposed a method for single imputation that incorporates wild boot-

strap in order to create the variability of imputed data as for example Multiple Imputa-

tion (MI) does. The MI is indeed known to be the preferred method in handling missing 

data problems over the years compared to the single imputation methods. 

The imputation process in MI involves several steps while single imputation has 

simpler implementation compared to MI. The missing data in MI are imputed for M 

times with different plausible values and combine appropriately in the analysis stage. 

The sparsity of imputed data is a matter of concern because it will reflect the variance 

and measurement error between predicted and original data.  Thus, the main purpose of 

this comparison is to show that the performance of single imputation in the Gaussian 

mixture model may perform well and as good as the implementation of MI.  

The performance of this method is measured by the RMSE, R-squared, MAE, and 

MAPE. Based on the results, we summarize that the single missing data imputation 

combined with the wild bootstrap is preferrable over the MI technique for the data con-

taining several Gaussian distributions. Furthermore, the imputation process on the 

Gaussian mixture model could be relevant to preserve the originality of data distribu-

tion.  

Since this study is implemented on bivariate data with two Gaussian components, in 

the future work we will focus on multivariate data with multiple Gaussian components. 
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Appendix A: The notation list. 

 

X  An entire random sample of size N and p-column.  

O
X  The observed values of random vector X  

M
X  The p-feature vectors X contains missing values oc-

cur in  lX  

1n  The number of observed data in O
X  

0n  The number of missing data in M
X  

K  Total number Gaussian of components 

k  Parameter theta that consists of parameter mean 

vector k and covariance matrix k  

k  The mean vector  

k  The covariance matrix  

  Mixing proportion of the current Gaussian compo-
nent 

0 1,k 
 

The probability of mixing coefficient must be be-
tween 0 and 1. 

1
1

K

kk



  The sum of mixing coefficient of each component 

must be equal to one 

1 1( ,..., ; ,..., )K K      The vector   containing the set of parameters K  

and K  

 ;f x  The mixture density containing all the parameters of 
mixture model 

( | )kf x  The mixture of density function of vector X  condi-
tioned on parameter estimation theta. 

 
1

; ( | )
K

k k

k

f f 


 x x  
The probability density function governed by the set 
of parameters mixing coefficient and theta with K-
component mixture density  

ik  The posterior probability or responsibility for each 

data point that belongs to the thk  component 

0  Beta 0 is represented as the intercept of regression 
coefficient  

     1  Beta 1 is represented as the slope of regression coef-
ficient  
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0 1il i ix x      The ordinary leas square model (OLS) 

 
1ˆ O T T

l



 X X X X  The least square estimator of  ˆ O  

εi~N(0,σ
2) The random error component follows he normal dis-

tribution with mean 0 and variance  

( )kb
X  The sample data after bootstrapping 

O

kX  The observed data based on the k current Gaussian 
component 

1,...,b B  b  is a counter value for bootstrap iterative process 

until B times 
*

it  The non-parametric bootstrap resampled residual 

ˆ ˆ
i il ilx x    

( )T T

i i iw x x X X  The leverage is the 
thi diagonal element of Hat Ma-

trix  

11 2

1 1

ˆ ˆ

ˆ ˆ( )
k

i i
i

n

k ii

a

n

 

 







 

The non-parametric bootstrap resampled residual 
proposed to improve the random draw of  Wu’s algo-
rithm 

1D and 2D  The i.i.d that follows normal distribution 

1k

O

nX  The observed data of 1n size and k Gaussian compo-

nent 
𝜀𝑖̂ = 𝑥𝑖𝑙 − 𝑥̂𝑖𝑙 The estimated residual fitted by OLS model 

q A counter in EM algorithm iteration 

 


