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Abstract

Materials-binding peptides offer promising routes to the production of tailored Pd

nanomaterials in aqueous media, enabling the optimization of catalytic properties.

However, the atomic-scale details needed to make these advances are relatively scarce

and challenging to obtain. Molecular simulations can provide key insights into the

structure of peptides adsorbed at the aqueous Pd interface, provided that the force-

field can appropriately capture the relevant bio-interface interactions. Here, we intro-

duce and apply a new polarizable force field, PdP-CHARMM, for the simulation of

biomolecule–Pd binding under aqueous conditions. PdP-CHARMM was parametrized

with density functional theory (DFT) calculations, using a process compatible with

similar polarizable force-fields created for Ag and Au surfaces, ultimately enabling a

direct comparison of peptide binding modes across these metal substrates. As part of

our process for developing PdP-CHARMM, we provide an extensive study of the perfor-

mance of ten different dispersion-inclusive DFT functionals in recovering biomolecule–

Pd(111) binding. We use the functional with best all-round performance to create

PdP-CHARMM. We then employ PdP-CHARMM and metadynamics simulations to

estimate the adsorption free energy for a range of amino acids at the aqueous Pd(111)

interface. Our findings suggest that only His and Met favor direct contact with the

Pd substrate, which we attribute to a remarkably robust interfacial solvation layer-

ing. Replica-exchange with solute tempering molecular dynamics simulations of two

experimentally-identified Pd-binding peptides also indicate surface contact to be chiefly

mediated by His and Met residues at aqueous Pd(111). Adsorption of these two pep-

tides was also predicted for the Au(111) interface, revealing distinct differences in both

the solvation structure and modes of peptide adsorption at the Au and Pd interfaces.

We propose that this sharp contrast in peptide binding is largely due to the differences

in interfacial solvent structuring.
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Introduction

The use of biomolecules to synthesize, assemble and activate noble metal nanomaterials

has transformative potential applicable to a wide range of fields including nanomedicine,

bio-sensing and catalysis.1–3 While recent studies have advanced our understanding of the

sequence-dependent structure/function relationships of peptide-based nanomaterials, sub-

stantial progress is still required to ensure the systematic exploitation of such materials to

realize their full potential.4,5 In particular, a deeper comprehension of how biomolecules in-

teract with different metallic surfaces is needed, especially if we wish to rationally design bi-

or multi-metallic nanomaterials with enhanced catalytic activities.6–11 While experimental

efforts to resolve the molecular-level structure of the biotic/abiotic interface are evolving, at

present molecular dynamics (MD) simulations can provide a key complementary approach

to elucidate the structure and interactions of biomolecules adsorbed at aqueous metal in-

terfaces.5,7,12–28 However, the quality of information that can be obtained from molecular

simulation is dependent on the model, including the force-field (FF); i.e., how adequately we

can capture and describe the interactions between all components of the interface.

The GolP-CHARMM FF is based on the pioneering GolP FF reported by Iori et al.,29 and

describes the interaction of biomolecules with gold surfaces.16,17 The GolP-CHARMM FF

was specifically developed to satisfy three key criteria: to be compatible with the CHARMM

family of biomolecule FFs, to capture the effects of polarization at the metal interface via

a rigid-rod dipole approach,29,30 and, to ensure the correct adsorption of species atop metal

sites via the use of virtual sites in the outermost surface layer of metal atoms in the metal

substrate. Following the same GolP-CHARMM philosophy, an analogous FF for silver in-

terfaces, AgP-CHARMM, was developed,18 which enabled a systematic comparison (on an

equal footing) of peptide adsorption features across the two metal (Au and Ag) surfaces. In

this instance we found that, even in the case of gold and silver substrates, these noble metals

gave rise to significant differences in peptide adsorption behaviors.20 Since their development,

these two FFs have enabled elucidation of valuable insights into the nature of the peptide-
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gold/silver interface, and have enabled the prediction of peptide adsorption free energies

that are consistent with available experimental data.15,23,27 Palladium has valuable catalytic

properties, which can be enhanced further by combining it with another metal (often Au) in

bi-metallic nanomaterials. Peptides offer a promising route to controlling the growth, com-

position and topology of such bi-metallic nanomaterials in aqueous media,6–10 maximizing

the catalytic activity. However, to systematically advance new peptide-mediated strategies

for the controlled synthesis of Pd-containing nanomaterials, a greater understanding of the

similarities and differences in biomolecular adsorption at the Pd and Au/Ag metal interfaces

is required. Thus, there is a need for the development of a polarizable bio-interfacial FF for

Pd surfaces that is consistent with those already developed for Au and Ag substrates.

One of the major considerations in the development of bio-interface FF parameters is to

ensure a reasonable description of the spatial and orientational structuring of liquid water

at the interface. The reason for this focus is that these traits are thought to exert a strong

influence in directing the adsorption behavior of biomolecules.23,31,32 For example, there is a

strong body of evidence (primarily drawn from molecular simulation sources) that water is

more strongly ordered at the (100) surface of noble metals than at the (111) surface, which

is reported to confer differences in the adsorption modes of (bio)molecules at the (111)

and (100) metal interfaces.16–19,23,27,33 Density functional theory (DFT) calculations have

predicted that, in vacuo, a single molecule of water adsorbs more strongly at the interface of

Pd, and Pt, than to Au and Ag.34–38 This might lead to a more strongly bound, and ordered,

first layer of liquid water molecules at the Pd(111) interface compared with the Au/Ag(111)

interface,33,39–41 which is likely to affect how (bio)molecules adsorb to these different aqueous

metal interfaces. Therefore, it is important that our FF can provide a physically reasonable

description of the Pd(111)-aqueous interface.

Moreover, the structure of the aqueous Pd(111) interface will depend not only on the

Pd-water interaction, but also the water-water interaction, meaning that the water model

used alongside the biomolecule–metal FF is a key factor in any description of the liquid/solid
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interface. Typically the CHARMM FF is used alongside a modified version of the TIP3P

water model,42,43 however, recent studies have suggested that this combination may have

scope for refinement, particularly when applied to intrinsically disordered proteins/peptides

(IDPs),44–48 a characteristic that is thought to be shared amongst many metal-binding pep-

tides. One new water model which may be promising in this respect is TIP4P-D. TIP4P-D is

a rigid-body water potential that is a re-parametrized version of the original TIP4P model,

modified to feature enhanced dispersion interactions. Biomolecule simulations using TIP4P-

D have been reported to predict more extended conformations for IDPs.47,49 Therefore, in

this work we also seek to explore how changes to the water model can affect the binding

characteristics of peptides adsorbed at the aqueous metal interface. However, we recognize

that the CHARMM family of FFs has been specifically developed in harmonization with

the modified form of the TIP3P FF. As we will elaborate herein, we understand that any

modifications to the pairing of the biomolecule FF and the water FF should be carefully

tested50 prior to use in production simulations. Therefore, the chief aims of this manuscript

are to develop a FF for the Pd(111) interface, denoted PdP-CHARMM herein, that is con-

sistent with the already existing GolP-CHARMM and AgP-CHARMM FFs, and then to

use PdP-CHARMM to reveal the similarities and differences in peptide adsorption at the

aqueous Au(111) and Pd(111) interfaces.

The first step in the development of the FF is to obtain data against which the FF can be

parametrized. Due to the dearth of experimental data for the adsorption energies of water

(and other relevant small molecules containing different functional groups) to metal surfaces,

the GolP-CHARMM and AgP-CHARMM FFs were parametrized from data obtained from

in vacuo plane-wave DFT calculations of small organic molecules (containing the functional

groups representative of those found in amino-acids, AAs) adsorbed at the metal interfaces.

These DFT calculations were performed using the revPBE-vdW-DF functional51,52 which

uses an explicit nonlocal correlation term to approximately capture contributions to the

dispersion interaction. The adsorption energies of molecules to the Au(111) and Ag(111)
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interfaces obtained using the revPBE-vdW-DF functional were found to be reasonably con-

sistent with reported experimental data.16,53–57 However, to ensure that the DFT data used

to parametrize the PdP-CHARMM FF are reasonable, here we have tested a number of dif-

ferent dispersion-inclusive functionals and compared our findings for each functional against

each other and existing experimental data. The PdP-CHARMM FF was then parametrized

against the data obtained from the functional that provided the best overall agreement with

experimental data. The structure of liquid water at the Au(111) and Pd(111) interfaces

was then predicted from MD simulations and compared, using three water models; TIP3P,

and two alternative models. Finally, the adsorption features of biomolecules at the aqueous

Pd(111) and Au(111) interfaces were investigated; first by predicting the adsorption free

energy for a set of representative AAs, and second by predicting and characterizing the

adsorption characteristics of two experimentally-identified Pd-binding peptide sequences.

Methods

DFT Calculations

All plane-wave DFT calculations were performed using the Quantum Espresso code, version

5.2.1.58 All calculations were performed using ultrasoft pseudopotentials with cutoffs for

the plane-wave kinetic energy and electron densities of 25 and 200 Ry, respectively. The

Gaussian smearing method, with a width of 0.05 Ry, was used for Brillouin zone integration.

The SCF calculation convergence threshold was set to 1× 10−6 Ry for all calculations. For

the geometry optimizations a 0.026 eV/Å force convergence criterion was applied; during the

single point calculations the forces were checked to ensure the threshold was not exceeded.

k-point meshes of 4×4×1 and 6×8×1 were used for the geometry optimizations and single

point calculations, respectively. These cutoffs (and the convergence criteria) are consistent

with those previously used to determine the adsorption energies of a wide range of molecules

to the Au(111) and Ag(111) surfaces.16,18,57
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The Pd(111) interface was constructed from a p(4 × 3), p(4 × 4) or p(6 × 3) supercell,

depending on the size of the adsorbate (Table S1 in the Supporting Information). In all

cases the palladium slab was four atomic layers thick. All systems had periodic boundary

conditions applied in all three dimensions and were constructed such that along the z axis

(perpendicular to the slab plane) a distance of at least 10 Å separated the molecule from

the periodic image of the slab surface. For the single point energy calculations the cell

dimension perpendicular to the surface plane was increased to ensure a distance of at least

15 Å separated the molecule from the periodic image of the slab surface.

The set of 24 adsorbate molecules considered here (Table S1, Supporting Information)

was chosen to span the range of functional groups found in the set of naturally occurring

AAs, and was consistent with the set of molecules used to generate the GolP-CHARMM and

AgP-CHARMM FFs. Initial tests (made with a sub-set of nine adsorbates) compared the

results obtained using ten different functionals: revPBE-vdW-DF,51,52 PBEκ=1-vdW-DF,59

optB86b-vdW-DF,60 optB88-vdW-DF,59 vdW-DF-C09,61 vdW-DF-cx,62 vdW-DF2,63 rev-

vdW-DF2,64 vdW-DF2-C0961 and rVV10.65,66 On the basis of these tests, we excluded sev-

eral functionals due to strong under-binding or over-binding, or due to numerical instability

problems. The remainder of the functionals were then used to calculate surface adsorption

energies and separation distances for the full set of 24 molecules that were used as AA

analogues.

The adsorption energy, Eads, of the adsorbates to the Pd(111) interface was calculated

using

Eads = EPd-mol − EPd − Emol (1)

where EPd-mol is the energy of the system containing the Pd slab and the adsorbed molecule,

EPd is the energy of the Pd(111) slab alone, and Emol the energy of the molecule alone;

each contribution was calculated with the same, consistent periodic cell dimensions. All

systems were geometry-optimized with all atoms free to move, prior to the single-point

calculations used to determine the final energy. For hydrocarbon and aromatic species, the
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separation distance, dsep, of an adsorbate from the Pd(111) interface was defined as the

vertical difference in the z -axis value (i.e. normal to plane of the surface) between the top

layer of metal atoms and the average position of the adsorbates’ heavy atoms. For the

species containing a heteroatom (excluding phenol, imidazole and indole), the separation

distance was defined as the vertical distance between the top layer of metal atoms and the

heteroatom.

Fitting the Force-Field

As defined in the GolP-CHARMM16 and AgP-CHARMM18 FFs, each substrate metal atom

in the PdP-CHARMM FF possesses a rigid-rod dipole, to approximately account for the

polarizability of the surface. A full description of the details of the PdP-CHARMM FF

is given in the Section ‘Development of the PdP-CHARMM force-field’ in the Supporting

Information. The CHARMM22* FF67,68 was used to describe the amino acid analogue

molecules. To determine how well PdP-CHARMM reproduced the Eads obtained from the

DFT calculations, the set of 24 adsorbate molecules were divided into a fitting set and a

validation set (as was done previously for GolP-CHARMM and AgP-CHARMM). The pa-

rameters for PdP-CHARMM were fitted against the energies and geometries of the molecules

in the fitting set, and the FF results for the validation set were then tested against the DFT

results. Each set contained species featuring different functional groups: alkanes, aromatics,

oxygen-, nitrogen- and sulphur-containing species. In addition, where possible, the types of

molecular sites were further distinguished (i.e. hydroxyl oxygen and carbonyl oxygen) and

an example of each was placed in each set. Full details of the fitting procedure are given

in the Supporting Information. The FF gromacs files are available from the authors upon

request.
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Molecular Dynamics Simulations

All MD simulations were performed using Gromacs version 5.069 with version 2.0 of the

PLUMED plugin used for the metadynamics simulations.70 All simulations were performed

in the Canonical (NVT) ensemble, at a temperature of 300 K, controlled using the Nosé-

Hoover thermostat,71,72 with a coupling constant of τ = 0.2 ps. A time step of 1 fs was used

throughout, with the Lennard-Jones non-bonded interactions switched off between 10.0 and

11.0 Å, and a cutoff of 11.0 Å used for the particle mesh Ewald (PME) summation.73

The simulations at the Pd(111) and Au(111) interfaces were performed using a slab five

atomic layers thick and based on a p(20×24) supercell, giving the cell the lateral dimensions of

56.7×58.9 / 58.6×60.9 Å2 for Pd/Au. The cell dimension perpendicular to the metal surface

was adjusted to a value such that the density of liquid water in the central region between

the slabs was consistent with the density of the water model used at room temperature and

ambient pressure. As per our implementations of GolP-CHARMM and PdP-CHARMM,

the metal atoms in the both the Pd(111) and Au(111) slabs were fixed in space, with the

dipoles allowed to freely rotate. The AAs and peptide molecules were described using the

CHARMM22* FF,67,68 together with either the modified TIP3P,42,43 TIP4P-D47 or SPC-

Fw74 models used for water. The interactions of the water and adsorbates with the Au(111)

surface was described through the use of the GolP-CHARMM FF,16 while their interaction

with the Pd(111) surface was described via the FF derived in the present work.

Simulations of the Aqueous Interface Simulations of the aqueous Pd(111) interface

comprised the metal slab and 5562 or 5417 water molecules for the modified-TIP3P/SPC-Fw

or TIP4P-D models, respectively. Comparison simulations of the Au(111)-aqueous interface

contained 5766 or 5641 water molecules for the modified-TIP3P/SPC-Fw or TIP4P-D mod-

els, respectively. For both systems the cell dimension perpendicular to the metal slab was

60 Å. Each system was modeled using standard MD simulation for 10 ns.

9
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Metadynamics Simulations of Amino Acids The adsorption free-energy profiles of six

different AAs (Asn, Arg, HisA, Leu, Met and Ser) at the aqueous Pd(111) were determined

from multiple walker well-tempered metadynamics simulations.75–77 The AAs were capped by

acetyl and N -methyl groups at the N- and C-termini respectively, and modeled according to

the protonation state at pH∼7. Histidine was modeled in the unprotonated state only. Each

system comprised the amino acid, the Pd(111) slab, 5580 modified TIP3P water molecules,

and for Arg, a Cl− counter-ion. The potential bias in the metadynamics simulations was

applied to the position of an atom(s) in the side chain of the AA (Table S2 in the Supporting

Information provides further details), along the direction perpendicular to the Pd surface.

Four multiple walkers were used for each amino acid. Gaussians of 0.2 Å width were deposited

every 1 ps for 125 ns per walker (equivalent to a total simulation time of 500 ns). The initial

Gaussian height was set to 0.5 kJ mol−1 and a well-tempered metadynamics bias factor

of 10 was used. The free energy of adsorption, ∆Aads for each AA was calculated from

the integration of the free energy profile as described in the ‘Calculation of Free Energy of

Adsorption’ section of the Supporting Information and following the procedure developed

by O’Brien et al.78

REST Simulations of Adsorbed Peptides The surface-adsorbed structure(s) of two

experimentally identified palladium binding peptides,1,13 Pd2 (NFMSLPRLGHMH) and Pd4

(TSNAVHPTLRHL), at the aqueous Pd(111) and Au(111) interfaces, were determined using

replica exchange with solute tempering (REST) MD simulations.79,80 The peptide chains were

modeled with their termini in the zwitterionic form, corresponding with pH∼7. Likewise all

sidechain residues were modeled in a protonation state consistent with a pH∼7, and with all

His residues modelled in the unprotonated state. The initial configuration of the peptide in

each replica differed, covering a range of different secondary structure motifs, e.g. α-helix,

β-turn, PPII helix and random coil. The simulations were performed following the same as

outlined in our previous studies.15,20,81 In brief, for each system the simulation was performed
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over sixteen replicas, spanning an ‘effective temperature’ window of 300-433 K (note that the

thermal temperature of each replica was thermostatted to 300 K). The Hamiltonian scaling

values, λ, used for the sixteen replicas were 0.000, 0.057, 0.114, 0.177, 0.240, 0.310, 0.382,

0.458, 0.528, 0.597, 0.692, 0.750, 0.803, 0.855, 0.930, 1.000. These values were identified

on the basis of previous simulations of peptides at aqueous Au and Ag interfaces.15,20,81

Each replica was equilibrated at its target Hamiltonian for 0.5 ns, with no exchange moves

attempted during this period. For each of the three production REST-MD runs, the system

was simulated for 20×106 REST-MD steps with exchanges attempted between neighbouring

replicas every 1000 time-steps (i.e. every 1 ps). Coordinates were saved every 1000 steps. A

residue-surface contact analysis and a peptide backbone cluster analysis were performed for

each REST-MD simulation, as described in previous work15 and re-iterated in the ‘Analysis

of REST MD simulations’ section in the Supporting Information.

Results and Discussion

In Vacuo DFT Calculations

To identify the most appropriate functional for determining the adsorption energies for the

full set of adsorbate molecules at the Pd(111) surface, nine different dispersion inclusive

functionals were tested against a reference set of molecules, for which experimental adsorption

energies are available. By the term ”dispersion inclusive”, we refer to functionals in which

the two-body dispersion contribution is approximately captured in a modified correlation

term which is based on charge densities and is seamlessly incorporated into the functional, as

opposed to the addition of an empirical dispersion correction term. In addition to considering

adsorbates for which experimental binding data exist, we also calculated the adsorption

energy of water using all of the functionals in the set. There is no published experimental

value for the binding energy of water to the Pd(111) surface, but due to the importance

of this interaction, we considered this a necessary requirement. Calculation of adsorption
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energies using the optB88-vdW-DF functional were attempted, but it was found that this

functional was numerically unstable, as reported in a previous study of adsorbates on the

Pt(111) surface.82 The calculated and reference adsorption energies are summarized in Table

1 and Figure 1, and the separation distances of the adsorbates from the metal surface are

given in Table S3, Supporting Information.

Table 1: Adsorption energies (Eads / kJ mol−1) of molecules at the Pd(111)
interface for the test set of molecules, predicted from DFT calculations.

Functional Eads / kJ mol−1

CH4 C2H6 C3H8 C4H10 C5H12 MeOH EtOH C6H6 H2O
Expt. a -16.4b -30.3b -44.5b -56.6b -73.8b -54.8c -54.8c -130.0d -

revPBE-vdW-DF -18.5 -28.2 -38.0 -48.8 -58.0 -42.2 -49.8 -71.9 -28.6
PBEκ=1-vdW-DF -22.2 -34.4 -46.4 -58.5 -71.2 -52.6 -63.7 -94.6 -37.1
optB86b-vdW-DF -22.2 -40.7 -59.2 -76.4 -94.5 -62.2 -76.8 -188.2 -45.5

vdW-DF-cx -20.4 -38.4 -56.4 -74.1 -91.7 -61.2 -76.0 -210.8 -45.0
vdW-DF-C09 -24.7 -45.8 -67.2 -88.0 -110.2 -69.5 -86.8 -236.1 -47.9

vdW-DF2 -15.9 -26.9 -34.4 -44.8 -53.8 -44.9 -54.0 -72.6 -31.8
rev-vdW-DF2 -16.9 -33.5 -49.2 -64.2 -78.4 -55.3 -67.4 -172.3 -40.9
vdW-DF2-C09 -12.5 -27.3 -43.1 -57.3 -72.3 -51.1 -62.8 -188.1 -38.2

rVV10 -22.7 -42.3 -61.2 -79.2 -97.5 -63.5 -78.6 -146.5 -47.1
PBE+D2 -45.5c -54.3c

PBE+D3 -23.6b -40.8b -55.9b -68.8b -86.9b

a Obtained from thermal programmed desorption ; b from Ref83 ; c from Ref84,85 ; d from
Ref86

Table 2 gives the root mean square deviation (RMSD) between the experimental adsorp-

tion energies and those predicted by the different functionals. No functional was able to

accurately capture the adsorption of all of the molecules in the reference set, with all RMSD

values for the full set in excess of 13 kJ mol−1. In comparison, for a test set of molecules at

the Au(111) interface, the RMSD between the experimental energies and those calculated

using the revPBE-vdW-DF functional was 3.7 kJ mol−1. However, the large RMSD values

were in some cases a result of the fact that all functionals (except the rVV10 functional)

could not adequately capture the adsorption energy of benzene. In contrast to the other

adsorbates that physisorb to the Pd(111) surface, benzene is weakly chemisorbed and as

previously reported,53,55,87 (and similarly for Phenylalanine88) the original revPBE-vdW-DF
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Figure 1: Comparison of binding energies of adsorbate molecules in the test set (exclud-
ing benzene) at the Pd(111) surface, predicted by different DFT functionals against the
experimental values: (a) for the revPBE-vdW-DF, PBEκ=1-vdW-DF, optB86b-vdW-DF,
vdW-DF-cx and vdW-DF-C09 functionals, (b) for the vdW-DF2 rev-vdW-DF2, vdW-DF2-
C09 and rVV10 functionals
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functional is known to not adequately capture this feature, leading to an under-estimate

of the binding energy. This problem is shared by the PBEκ=1-vdW-DF and vdW-DF2

functionals. In contrast, the optB86b-vdW-DF, vdW-CF-cx, vdW-DF-C09, rev-vdW-DF

and vdW-DF-C09 functionals appear to overbind benzene on Pd(111). If we exclude ben-

zene from the set, then the RMSD values are significantly improved (except for the rVV10

functional), with the PBEκ=1-vdW-DF, rev-vdW-DF2 and vdW-DF2-C09 functionals per-

forming best. Overall, when compared against experimental data the revPBE-vdW-DF

and vdW-DF2 functionals appeared to underbind the adsorbates, while the vdW-CF-cx,

optB86b-vdW-DF, vdW-DF-C09 and rVV10 functionals were found to overbind. For com-

parison, the empirically-corrected PBE+D3 functional yields Eads values for the alkanes that

are also too large, with an RMSD across the five molecules of 9.4 kJ mol−1.

Table 2: Root mean squared deviation (RMSD) between the experimental ad-
sorption energies and the corresponding DFT values, using different density
functionals.

Functional RMSD / kJ mol−1

Full set Alkanes Alkanes and
alcohols

revPBE-vdW-DF 22.1 7.2 8.8
PBEκ=1-vdW-DF 13.2 3.0 4.6
optB86b-vdW-DF 25.3 13.0 15.7

vdW-DF-cx 31.4 11.0 13.8
vdW-DF-C09 44.2 21.2 25.0

vdW-DF2 22.5 9.7 10.4
rev-vdW-DF2 16.0 4.0 6.2
vdW-DF2-C09 20.9 2.0 3.9

rVV10 17.5 14.8 17.6

After reviewing our results for the reference set, we decided to calculate the adsorption en-

ergies of the full set of molecules using the best performing functionals, namely the PBEκ=1-

vdW-DF, rev-vdW-DF2 and vdW-DF2-C09 functionals as well as the revPBE-vdW-DF,

optB86b-vdW-DF, and vdW-DF-cx functionals, to determine the binding trends/differences

between these functionals. The adsorption energies determined for all 24 adsorbate molecules

are summarized in Figure 2, with numerical values provided in Table S4, Supporting Infor-
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mation. Figures S1 and S2 show the optimized geometries obtained using the PBEκ=1-

vdW-DF functional. Except for the aromatic species (Figure S3), no significant differences

in the optimized geometries were observed for the other functionals. In general, the trend in

binding strength of Eads followed optB86b-vdW-DF ≈ vdW-DF-cx > rev-vdW-DF2 ≥ vdW-

DF2-C09 > PBEκ=1-vdW-DF > revPBE-vdW-DF. However, the trend across the different

molecular species was consistent for all six functionals (Figure 2) with the exception of the

aromatic adsorbates, where the chemisorption/physisorption problems discussed above gave

rise to significant differences between revPBE-vdW-DF/PBEκ=1-vdW-DF and the other

four functionals. There were also some subtle differences between the optB86b-vdW-DF and

vdW-DF-cx functionals, with the former more strongly binding the alkanes than the latter,

and the reverse behavior for the heteroatomic adsorbates.
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Figure 2: The adsorption energy of molecules to the Pd(111) interface for (a) the PBEκ=1-
vdW-DF, rev-vdW-DF2 and vdW-DF2-C09 and (b) the revPBE-vdW-DF, optB86b-vdW-
DF and vdW-DF-cx functionals. Lines are a guide to the eye only. Molecule indices are
provided in the Supporting Information. Sections I, II, III, and IV correspond to hydrocar-
bons, oxygen-, nitrogen-, and sulfur-containing adsorbates, respectively.

Comparison of Eads for adsorbates on the Pd(111), Au(111) and Ag(111) surfaces with

the revPBD-vdW-DF functional (Table S5), indicated that adsorption was stronger at the

Pd(111) interface relative to that at Au/Ag(111), especially for benzene and the heteroatomic

species. This trend has been previously observed in the case of water and ethanol,37,38 but
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these results suggest that this could be a common feature for heteroatomic molecules.

Fitting of the Force-Field

Evaluating our DFT results in light of the limited experimental data, the most suitable

functionals for fitting the PdP-CHARMM FF appeared to be either the PBEκ=1-vdW-DF

and/or the vdW-DF2-C09 functionals. Ultimately we decided to fit to the Eads/dsep values

of the PBEκ=1-vdW-DF, because, as will be apparent from our results herein, we suspected

that phenyl groups may be less likely to chemisorb to Pd(111) under aqueous conditions.

Full details of the parametrization of the PdP-CHARMM FF are given in the Supporting

Information section ‘Development of the PdP-CHARMM Force-Field’. Briefly, the set of ad-

sorbate molecules was divided into a fitting set and a validation set, with each set containing

adsorbates representative of the full range of species. Parameters for the PdP-CHARMM FF

were then obtained from fitting against the Eads and dsep values of the molecules in the fitting

set, the resulting parameters were then tested against the validation set. Comparisons of

the Eads and dsep values obtained via DFT and FF calculations for the fitting and validation

sets given in Tables S6 and S7, respectively. The final parameters are summarized in Table

3, alongside corresponding parameters of the AgP-CHARMM and GolP-CHARMM FFs, for

convenience of comparison.16,18

Pd(111) Aqueous Interface

The structure of liquid water at inorganic solid surfaces is thought to exert a strong influ-

ence over how large, complex biomolecules will adsorb to the substrate.20,23,31–33,89 There-

fore, it is a fundamental requirement of our FF to provide a reasonable description of the

aqueous Pd(111) interface. The solvation structure of the aqueous Pd(111) interface that

was obtained using the modified-TIP3P water model (typically used in conjunction with

CHARMM FFs) is shown in Figure 3, with corresponding data for the aqueous Au(111)

interface provided for convenience of comparison. As a point of comparison with another
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Table 3: Lennard-Jones interaction parameters for the Pd(111) surface. Corre-
sponding parameters for Au(111) and Ag(111) taken from the GolP-CHARM16

and AgP-CHARMM FFs18 are shown for comparison (M = metal).

Pd Ag18 Au16

σ / Å ε / kJ mol−1 σ / Å ε / kJ mol−1 σ / Å ε / kJ mol−1

M-M 3.65 1.10 3.85 0.41 3.80 0.48
M-Ma (C sp2) 2.25 4.00 3.28 0.60 3.20 1.30
M-O (water) 3.00 1.50 3.10 0.90 3.10 0.70

M-O (hydroxyl) 2.90 2.00 3.10 0.90 3.10 0.70
M-O (carbonyl) 2.90 2.00 3.15 0.70 3.10 0.70

M-O (amide) 2.90 2.00 3.10 1.00 3.10 0.70
M-H (water)b 2.60 1.00 3.10 0.90 2.70 0.28

M-N (N-Terminal/Lysine) 2.70 6.25 2.85 2.60 2.90 0.90
M-N (imidazole) 2.70 4.25 2.90 1.80 2.85 1.60

M-S 2.75 7.50 2.90 2.40 2.85 3.20
a Only applies to the virtual sites not the bulk metal atoms; b Also applies to hydroxyl and

thiol hydrogens in the case of Ag(111)

metallic interface, solvent structuring at the Ag(111) interface is reported to be similar to

that of Au(111), but with a slightly enhanced degree of structuring in the first layer of liq-

uid water molecules.18 There is encouraging agreement between the classical FF data and

findings from first-principles MD (FPMD) simulations in terms of the position of the first

peak in the density profile of the water oxygen.40,41,90 This first peak is located at ∼ 2.6

Å from the surface of both metals. The FF simulations indicate that the density of the

first layer of water molecules is greater for Pd(111) relative to that of Au(111), which is

also consistent with the results of FPMD simulations.39–41,90–92 We recognize that the rela-

tively shorter time-scales and length-scales of FPMD simulations, as well as the limitations

of DFT functionals in describing bulk water,93 indicate that caution should be used when

making quantitative comparisons between FPMD and FF based simulations. Nevertheless,

FPMD simulations can provide valuable qualitative information for these interfaces. The

enhanced ordering in the first water layer at the Pd(111) interface is also seen in the two-

dimensional structuring of the solvent (Figure S4), with water molecules arranged such that

they are situated atop metal atoms, again in agreement with FPMD simulations.39–41,90,91

The hydrogen-bonding network of water molecules at the aqueous Pd(111) interface, while
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showing some differences, shares many of the features common to the aqueous Au(111) and

Ag(111)18 interfaces, with a peak in the donor density at the interface (Figures 3(c) and (d)).

Additional analyses of the orientational ordering of water molecules at the aqueous Pd(111)

and Au(111) interfaces (Figure S5) also reveal similarities between the two metals, with the

water molecules closest to the metal interface tilted slightly such that the oxygen is below the

hydrogen atoms, denoted as the ‘O-down’ orientation. However, in agreement with FPMD

simulations, we found that the first layer of water molecules at the aqueous Pd(111) interface

were more likely to be adsorbed with their dipoles parallel to the interface compared with

the Au(111) interface.40 Additionally, for the successive (i.e. second and third) interfacial

solvation layers, the Pd(111) interface appeared to feature greater (i.e. more pronounced)

definition in the ‘O-down’ profile compared with the Au(111) interface. These data provide

additional evidence to support the presence of a more structured solvation environment at

the Pd(111) interface compared with Au(111).

While the PdP-CHARMM FF produces the correct trend in terms of water being more

structured at the Pd(111) than the Au(111)/Ag(111) interfaces, the height of the first peak

in the interfacial solvent density profile is greater than might be expected. However, pre-

vious simulations reported by Schravendijk et al.94,95 indicated that a very high degree of

water structuring is possible for other metal surfaces. In this case these authors reported

that the aqueous Ni(111) interface featured a density profile with a first peak ∼50% higher

than we have reported here for Pd(111). Nevertheless, we propose this Pd(111) water struc-

turing could conceivably be attributed to the use of the modified TIP3P water model. To

investigate the influence of the water model on the aqueous Pd(111) and Au(111) interfaces,

we also performed simulations using the TIP4P-D and SPC-Fw water models. The choice

of the TIP4P-D model was motivated by recent studies that have indicated the utility of

TIP4P-D in describing the extended conformational states of IDPs, compared with tradi-

tional water models.68 Materials-binding peptides that are typically used as capping agents

in the synthesis of Pd nanoparticles are often intrinsically disordered. Therefore, it would be
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Figure 3: Profiles of water structuring at the aqueous Pd(111) ((a) and (c)) and Au(111) ((b)
and (d)) interfaces: (a) and (b) normalized density profiles, (c) and (d) hydrogen-bonding
profiles.
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informative to model the aqueous Pd(111) interface with the TIP4P-D model. In contrast,

the SPC-Fw model is a flexible water model and was chosen as an additional alternative

water model. This choice was motivated by simulation data that suggested SPC-Fw to be

inter-operable with the CHARMM FFs, providing a similar conformational ensemble to that

of the modified TIP3P model for two exemplar tripeptides.50 We note that the effect of

water potential, explored via consideration of the rigid body SPC, SPC/E, TIP3P, TIP4P

and TIP5P models, was explored by Schravendijk et al.95 in their study of water structuring

at Au(111) and Ni(111) surfaces, and in the adsorption of benzene, phenol, phenylalanine

and alanine at the aqueous Ni(111) interface.

We start with calculation of the binding energy of a single water molecule on both the

Au(111) and Pd(111) vacuum interfaces using each of the three water models, and compare

these with the corresponding DFT data. For all three water models, this adsorption energy

of a single water molecule was within 1.3 kJ mol−1 of the corresponding DFT value (Table

S8), However, bearing in mind that the differences in Eads for the different water models are

less than kBT at room temperature, the trend in binding strength at both interfaces follows

TIP4P-D > modified TIP3P > SPC-Fw. We next modeled the structuring of liquid water at

the two metal interfaces using all three water models. The density profiles predicted for these

different water models (provided in Figure S6) reveal that a high degree of similarity, across

both metal surfaces, for the modified TIP3P and SPC-Fw models. This result is consistent

with the findings of Schravendijk et al.,95 who compared interfacial solvent structuring of

liquid water at the Ni(111) and Au(111) interfaces using different rigid body water models.

These authors similarly reported little difference in their density profiles, albeit using a

featureless (non-atomistic) description of the metal surface. However, the density profiles for

the TIP4P-D model showed some minor differences, notably in the peak heights. Specifically,

relative to the other two water models, the height of the first peak in the oxygen profile was

somewhat diminished, while that of the second peak was a little amplified in the TIP4P-D

profiles. Moreover, the average number of water molecules in the first solvation layer per
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surface metal atom was lower (Table S9) for TIP4P-D than that calculated for the interfaces

described with the TIP3P and SPC-Fw models. This suggests that for the interface described

with the TIP4P-D model, the first solvation layer of water molecules are not bound quite

so tightly compared with the interface described with the two other models. The shape

of the hydrogen bonding profiles (Figure S7) were similar for all three models, noting that

SPC-Fw supported different bulk water behavior to the other two models. However, the

orientation profile (Figure S8) of TIP4P-D also differed from that of TIP3P and SPC-Fw,

with greater definition in the ‘2H-down’ profile, and less definition in the ‘1H-down’ profile.

Minor differences aside, all three of the water models reproduced the same broad trends in

water structuring with respect to Pd(111) and Au(111).

Overall, the solvation structure of these aqueous metal interfaces predicted by the GolP-

CHARMM, AgP-CHARMM and PdP-CHARMM FFs, and by FPMD simulations, are con-

sistent regarding two key pieces of evidence. First, the the position of the first peak in

the interfacial density profile, and second, that the degree of water structuring (strength

of layering) follows the trend Pd(111) >> Ag(111) > Au(111). The use of the TIP4P-D

or SPC-Fw water models did not radically alter the solvation structure of these aqueous

metal interfaces, suggesting that either model may be suitable for use with GolP/AgP/PdP-

CHARMM in future studies, subject to other considerations (such as e.g., the balance of the

peptide–water interactions).

Biomolecule Adsorption

To further test the PdP-CHARMM FF, we calculated the adsorption free energy at the

aqueous Pd(111) interface for six exemplar AAs; Asn, Arg, Leu, Met, His and Ser. These

specific AAs were chosen because they are common to both the Pd2 (NFMSLPRLGHMH)

and Pd4 (TSNAVHPTLRHL) peptide sequences that have been experimentally identified as

Pd binders.1,13 Moreover, these AAs also cover a range of different side-chain chemistries.

We used metadynamics simulations to determine the change in free energy as a function of
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distance from the aqueous Pd(111) interface. Evidence of equilibration of the metadynamics

simulations is provided in Figure S9.

The effect of the strongly-bound first solvation layer in liquid water is evident from the

free-energy profiles for the AAs at the Pd(111) interface (Figure 4). Notably, only His

and Met supported a free energy minimum corresponding with a directly bound interfacial

state. The remaining AAs typically adsorbed in a solvent-separated interfacial state, where

the adsorbate was located at a vertical distance from the surface that approximately corre-

sponded with the second solvation layer. This can be seen from representative configurations

of each of the AAs at the position of the global free-energy minimum in each of their re-

spective free energy profiles, provided in Figure 5. Even for those AAs that supported a

stable directly-adsorbed binding state, namely Met and His, a substantial energy barrier

(with a barrier height >> than kBT at room temperature) was predicted to lie between

the directly-bound state and the solvated-separated state. Moreover, for both His and Met,

the well-depths of the directly-bound and solvent-separated states were both very similar

and relatively shallow. This combination of a high barrier with similarly-shallow minima

confers a rugged free energy landscape regarding interfacial adsorption. This rugged land-

scape indicates that persistent direct-contact binding for Met and His could be attributed

to kinetic trapping (i.e. metastable binding), and cannot be explained by thermodynamic

factors, Table 4. The barrier to escape the shallow direct-contact state is >> kBT at room

temperature for both Met and His. These findings are not without precedent. Due to the

presence of the remarkably strong interfacial solvent structuring predicted by Schravendijk

et al.94,95 for the aqueous Ni(111) interface, these authors also reported that benzene and

phenol faced barriers of ∼60 and ∼24 kJ mol−1 to adsorption/desorption at the surface. We

note that the solvent structuring predicted for Ni(111) was around 50% greater than what

we have predicted for Pd(111). The differing character of our adsorbates (compared with

Schravendijk et al.) notwithstanding, our predicted barriers to adsorption/desorption are

certainly consistent with this earlier result.
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The remaining AAs supported free energy profiles with shallow, distant minima, without

the presence of substantial intervening energy barriers. These free energy profiles differed

markedly from those calculated for the adsorption of AAs at the Au(111) and Ag(111)

interfaces, where all AA species have a minimum at a distance of ∼ 2.5 Å, from the surface.20

The current Pd(111) data (particularly the Ser profile) share some similarities with those

obtained for AA adsorption at the aqueous Au(100) interface, which also features a strongly

bound first layer of water molecules.27

We also examined the influence of the water model on AA adsorption. The adsorption

free energies of HisA and Ser at the Pd(111) interface were also calculated for the TIP4P-D

water model, with no significant differences from the values predicted for the modified TIP3P

water model. The free energy profiles were found to be similar across the two water models

(Figure S10), although the more extended water layering of TIP4P-D gave rise to a larger

peak at ∼ 7.5 Å. Schravendijk et al. similarly found that the choice of rigid body water

model did not significantly modify the (large) barriers to adsorption/desorption for benzene

and phenol at the aqueous Ni(111) interface, although these models lacked an atomistic-level

description of the metal surface.

Table 4: Free energy of adsorption (∆Aads/kJ mol−1) for amino acids at the
Pd(111) interface.

Amino acid ∆Aads / kJ mol−1

Pd(111) Pd(111) Au(111)
TIP3P TIP4P-D TIP3P

Arg 0.0± 0.5
Asn 0.4± 0.4
HisA −0.3± 0.7 −0.4± 0.6 −10.7± 0.8a

Leu 0.8± 0.3
Met −4.0± 1.9
Ser 0.2± 0.4 0.6± 0.3 −2.5± 1.0a

a Adapted from Ref27

After considering the adsorption behavior of individual AAs, we then performed REST

MD simulations to determine the conformational ensemble of both the Pd2 and Pd4 peptides

adsorbed at the aqueous Pd(111) interface. We accomplished this using both the modified
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Figure 4: Profiles of the adsorption free energy calculated for (a) Arg, Asn and HisA and
(b) Leu, Met and Ser at the aqueous Pd(111) interface.
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Arg Asn His

Leu Met Ser

Figure 5: Representative snapshots of the conformations of the AAs at the position of the
global minimum in the free energy profile when adsorbed at the aqueous Pd(111) interface.
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TIP3P and TIP4P-D water models. While the choice of water model was shown to not

appreciably modify the interfacial water structuring or the binding free energies of amino

acids at Pd(111), the choice of water model may exert a more profound influence on the

conformational ensemble of a peptide when adsorbed at the Pd(111) interface. Furthermore,

we also performed REST MD simulations of Pd2 and Pd4 adsorbed at the Au(111) interface.

Representative snapshots of the adsorbed peptides at the two interfaces are provided in

Figures 6 and S11. In addition, analysis of the degree of residue-surface contact (in this

instance, direct contact with the metal surface) is summarized in Figure 7 and Table S10.

These data reveal that, as found for the AAs, the relatively tightly bound first layer of water

molecules at the aqueous Pd(111) interface (compared with the Au(111) interface) resulted in

remarkably different adsorbed conformations of the peptides at the two metal interfaces. At

the Au(111) interface, most residues (in both peptides) showed at least some degree of direct

contact with the surface. Consequently, both peptides were predicted to lie relatively flat on

the Au surface, with the peptide backbone positioned close to the metal interface. In contrast,

at the Pd(111) interface both peptides featured relatively few residues in direct contact with

the metal surface (predominantly His and Met). The remaining residues, including the

hydrophobic residues Leu and Pro, but also Arg, Gly and Thr, exhibited little or no contact

with the metal surface. The lack of surface contact for the hydrophobic residues can be

explained from the largely repulsive free energy profile determined for Leu, and the weakly-

adsorbed profile predicted for Arg (Figure 4). Moreover, the closest position of the peptide

backbone with respect to the Pd(111) surface was typically more distant than that predicted

for the Au(111) interface, corresponding with the second solvation layer at the Pd interface.

This adsorption mode is reminiscent of those reported for peptides adsorbed at the aqueous

TiO2 rutile (110) interface.96 We propose that if the backbone-surface distance is a general

feature of Pd-adsorbed peptides, this limits the type of residues that could (in principle)

make direct contact with the Pd(111) interface to those with side-chains of sufficient length

to reach the surface. We also compared the residue-surface contact determined from REST-
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MD simulations using both the TIP3P and TIP4P-D water models. The overall pattern of

residue-surface contact at the Pd(111) interface was broadly consistent across both of these

water models.

Our findings are consistent with available experimental evidence. Both the Pd2 and

Pd4 peptide sequences feature His and Met, which we predict to both be strong-binding

residues at the aqueous Pd(111) interface. Moreover, the importance of the His residues in

the adsorption of the peptides is consistent with the findings of previous studies where the

mutation of His residues to Ala in Pd4 reduced the binding propensity of the peptide.97

Overall, while further data are certainly needed, our initial binding data indicate that there

may be limited prospects for devising peptide sequences that are truly selective for binding

to Pd(111) in preference Au(111). However, in contrast, our findings suggest that a sequence

rich in Arg and lacking in Met and His may provide sufficient binding selectivity to confer

binding discrimination for Au(111) over Pd(111).

We also analyzed and compared the backbone conformational similarities for both of

these sequences and both metal interfaces. At the Au(111) interface, the number of distinct

conformations and the distribution of the relative populations of these distinct conformations

is similar for Pd2 and Pd4 (data provided in Table S11 and Figure S12 in the Supporting

Information). Each sequence adsorbed at Au(111) supported a large number of distinct

conformations. Furthermore, even the most populated distinct conformation on Au(111)

accounted for less than 20% of the total ensemble population, as has been typically reported

for dodecapeptides adsorbed at aqueous noble metal interfaces.15,20,81 A similar distribution

of conformational populations was also predicted for Pd4 adsorbed at the Pd(111) interface.

However, Pd2 adsorbed on Pd(111) featured a remarkably different population distribution,

with its most populated distinct conformation accounting for ≈ 40% of the total ensemble

population. This suggests that Pd2 supports a distinct preferred binding conformation when

adsorbed at the aqueous Pd(111) interface. This is an atypical trait compared with most

other materials-binding peptides. We also investigated the degree of backbone conforma-
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(a) (b)

(c) (d)

Figure 6: Representative snapshots of the peptide chains adsorbed at the aqueous Pd(111)
and Au(111) interfaces, determined from replica exchange with solute tempering molecular
dynamics simulations; (a) Pd2 on Pd(111), (b) Pd2 on Au(111), (c) Pd4 on Pd(111) and (d)
Pd4 on Au(111).
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Figure 7: Degree of residue-surface direct contact determined from replica exchange with
solute tempering molecular dynamics simulations for (a) Pd2 and (b) Pd4 peptides adsorbed
at the aqueous Pd(111) and Au(111) interfaces.
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tional similarity between the two peptides when adsorbed at the Pd and Au interfaces. To

accomplish this, we determined the number of matched conformations (defined as a RMSD

in backbone atom positions < 2 Å, explained in the Supporting Information) representative

of the top ten most populated distinct structures, across the Pd/Au interfaces. This compar-

ison allows an estimation of the similarity of the peptide conformational ensembles between

the two interfaces. This cross-ensemble analysis (Table S12) revealed very few matches for

either peptide across the two metal interfaces, confirming that each peptide featured different

conformational ensembles when adsorbed at the Pd and Au surfaces.

The influence of the water model used in our REST-MD simulations was also probed.

The use of the TIP4P-D water model was found to somewhat alter the distribution of the

conformational ensemble of the peptides. However, the differences observed between the two

peptide sequences were consistent across the two water models, with both the total number

of distinct conformations and the estimates of the conformational entropic contribution (ex-

plained in the Supporting Information) reduced. Notably, the representative conformation

of the most populated distinct conformation of Pd2, which accounted for more than 40% of

the population, was a match for both water models. This indicates that both water models

favored the same, most likely binding conformation. Likewise, the large number of matched

distinct conformations of Pd4 across the two water models suggested that, despite the change

in water model, the conformational ensemble of the adsorbed peptide had persisted to a sig-

nificant degree. The main effect of the TIP4P-D water model appeared to be a curtailment

of conformations from the long low-population ‘tail’ of the population distribution.

Overall, our REST MD simulations suggested very different binding characteristics for

peptides adsorbed at the Pd(111) and Au(111) aqueous interfaces. We attributed these

differences primarily to the presence of the relatively strongly-bound first solvation layer

of water molecules at the aqueous Pd(111) interface. Consistent with the experimentally

proposed hypothesis regarding Pd4 binding, the results of our simulations indicated the

His residues as key binding residues of the Pd2 and Pd4 sequences. Finally, while the use
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the TIP4P-D water model, rather than the modified TIP3P water model, does result in

some differences in residue-surface contact and conformational population distributions of

the adsorbed peptides, the overall binding characteristics of the adsorbed peptides predicted

using the two water models was broadly consistent.

Conclusions

In summary, we have devised a new polarizable force-field, PdP-CHARMM, for describing

biomolecule interactions at the aqueous Pd(111) interface. To do this, we parametrized

our model using density functional theory (DFT) calculations of biomolecule/Pd(111) ad-

sorption using the PBEκ=1-vdW-DF functional. This choice was based on our extensive

survey of DFT functionals performed for a wide range of small biomolecules. Molecular

dynamics (MD) simulations using this force-field predicted a strongly-bound first interfacial

water layer at the aqueous Pd(111) interface. Our force-field was then used to determine

the binding free energy for a range of representative amino acids adsorbed at the aqueous

Pd(111) interface, revealing a strong preference for His and Met residues, while other residues

showed weak binding. We then used replica exchange with solute tempering MD simula-

tions to predict and contrast the conformational ensemble of two known Pd-binding peptide

sequences, adsorbed at both the aqueous Pd(111) and Au(111) interfaces. Our simulations

indicated remarkable differences in the binding characteristics of these peptides at the two

metal interfaces. Specifically, the Pd interface supported a greater degree of relatively three-

dimensional conformations mediated by Met and His surface contact, compared with the

relatively flat peptide adsorption modes at the Au interface. Our peptide-surface contact

data were consistent with experimental findings that suggest the importance of His residues.

We suggest that differences in the peptide binding features at the aqueous Pd(111) interface

can be largely attributed to the strongly-bound first interfacial solvation layer. The PdP-

CHARMM force-field and current findings will contribute to new directions in exploring and
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designing peptide sequences with binding selectivity between Au and Pd surfaces.
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(25) Monti, S.; Carravetta, V.; Ågren, H. Simulation of gold functionalization with cysteine

by reactive molecular dynamics. J. Phys. Chem. Lett. 2016, 7, 272–276.

(26) Bellucci, L.; Bussi, G.; Di Felice, R.; Corni, S. Fibrillation-prone conformations of the

amyloid-β-42 peptide at the gold/water interface. Nanoscale 2017, 9, 2279–2290.

(27) Hughes, Z. E.; Kochandra, R.; Walsh, T. R. Facet-specific adsorption of tripeptides

at aqueous Au interfaces: open questions in reconciling experiment and simulation.

Langmuir 2017, 33, 3742–3754.

(28) Gupta, M.; Khan, T. S.; Agarwal, M.; Haider, M. A. Understanding the nature of

amino acid interactions with Pd(111) or Pd–Au bimetallic catalysts in the aqueous

phase. Langmuir 2018, 34, 1300–1310.

(29) Iori, F.; Di Felice, R.; Molinari, E.; Corni, S. GolP: An atomistic force-field to describe

the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem. 2009,

30, 1465–1476.

(30) Iori, F.; Corni, S. Including image charge effects in the molecular dynamics simulations

of molecules on metal surfaces. J. Comput. Chem. 2008, 29, 1656–1666.

(31) Skelton, A. A.; Liang, T.; Walsh, T. R. Interplay of sequence, conformation, and binding

at the peptide-titania interface as mediated by water. ACS Appl. Mater. Interfaces

2009, 1, 1482–1491.

(32) Schneider, J.; Colombi Ciacchi, L. Specific material recognition by small peptides me-

diated by the interfacial solvent structure. J. Am. Chem. Soc. 2012, 134, 2407–2413.

(33) Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Hydration of metal surfaces

can be dynamically heterogeneous and hydrophobic. Proc. Natl. Acad. Sci. U.S.A 2013,

110, 4200–4205.

37

Page 37 of 46

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(34) Michaelides, A.; Ranea, V.; de Andres, P.; King, D. General model for water monomer

adsorption on close-packed transition and noble metal surfaces. Phys. Rev. Lett. 2003,

90, 216102.

(35) Michaelides, A.; Alavi, A.; King, D. Insight into H2O-ice adsorption and dissociation

on metal surfaces from first-principles simulations. Phys. Rev. B 2004, 69, 113404.

(36) Carrasco, J.; Michaelides, A.; Scheffler, M. Insight from first principles into the nature

of the bonding between water molecules and 4d metal surfaces. J. Chem. Phys. 2009,

130, 184707.

(37) Tereshchuk, P.; Da Silva, J. L. F. Ethanol and water adsorption on close-packed 3d,

4d, and 5d transition-metal surfaces: a density functional theory investigation with van

der Waals correction. J. Phys. Chem. C 2012, 116, 24695–24705.
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(49) Henriques, J.; Skepö, M. Molecular dynamics simulations of intrinsically disordered

proteins: on the accuracy of the TIP4P-D water model and the representativeness of

protein disorder models. J. Chem. Theory Comput. 2016, 12, 3407–3415.

(50) Desmond, J. L.; Rodger, P. M.; Walsh, T. R. Testing the inter-operability of the

CHARMM and SPC/Fw force fields for conformational sampling. Mol. Simul. 2013,

40, 912–921.

39

Page 39 of 46

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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(63) Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy

van der Waals density functional. Phys. Rev. B 2010, 82, 081101.

(64) Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 2014, 89,

121103(R).

(65) Vydrov, O. A.; Van Voorhis, T. Dispersion interactions from a local polarizability

model. Phys. Rev., A 2010, 81, 062708.

(66) Sabatini, R.; Gorni, T.; De Gironcoli, S. Nonlocal van der Waals density functional

made simple and efficient. Phys. Rev. B 2013, 87, 041108(R).

(67) MacKerell, A. D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr; Evanseck, J. D.;

Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. All-atom empirical potential for

molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102,

3586–3616.

(68) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. How robust are protein folding simulations

with respect to force field parameterization? Biophys. J. 2011, 100, L47–L49.

41

Page 41 of 46

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(69) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.
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