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Abstract 

Polypropylene has been oriented by solid-phase deformation processing to draw ratios up 

to ~16, increasing tensile stiffness along the draw direction by factors up to 12. 

Nanoindentation of these materials showed that moduli obtained for indenter tip motion 

along the drawing direction (3) into to 1-2 plane (axial indentation) were up to 60% higher 

than for indenter tip motion along the 2 direction into the 1-3 plane (transverse indentation). 

In static tests, tensile and compressive determinations of elastic modulus gave results 

differing by factors up to ~5 for strain along the draw direction. A material model 

incorporating both orthotropic elasticity and tension/compression asymmetry was 

developed for use with Finite Element simulations. Elastic constants for the oriented 

polypropylene were obtained by combining static testing and published ultrasonic data, and 

used as input for nanoindentation simulations that were quantitatively successful. The 

significance of the tension/compression asymmetry was demonstrated by comparing these 

predictions with those obtained using tensile data only, which gave predictions of 

indentation modulus higher by up to 70%. 
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1. Introduction 

Solid-phase orientation is a very effective method of manufacturing polymers with advanced 

and tailored mechanical properties, especially in the direction of orientation. This 

improvement is caused by molecular chain alignment arising from deformation as well as 

strain-induced crystallisation, as has been shown by many investigations over the last four 

decades (Coates and Ward [1,2]; Richardson et al. [3]; Taraiya et al. [4]; Selwood et al. [5]; 
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Morath et al. [6]; Motashar et al. [7]; Ward [8]). Oriented polymers achieve higher stiffness, 

strength, creep resistance and impact strength compared to the properties of the isotropic 

polymer (Selwood et al. [9]; Taraiya and Ward [10]; Hansard et al. [11]; Ward et al. [12]; 

Mohanraj et al. [13]). Mechanical investigation via tensile and impact testing are the 

customary methods for quantifying the improvement in properties. 

Nanoindentation is now well established as a means of measuring hardness and elastic 

properties for a range of polymers (Briscoe et al. [14]; Jee and Lee [15]; Gibson [16]). Some 

studies have focussed on polypropylene (Chen et al.[17]; Lesan-Khosh et al. [18]; Zia et al. 

[19]). To investigate elastic properties, the unloading behaviour is analysed so that only 

recovery and therefore elastic behaviour is observed. Tests then yield an elastic parameter 

that is in general known as the indentation modulus. In the case of isotropic material, the 

indentation modulus is identified with the plane strain or reduced modulus, which is simply 

related to Young’s modulus and Poisson’s ratio [14, 18]. When the material’s elastic 

behaviour is anisotropic, the same measurement may be performed, but its interpretation in 

terms of elastic parameters is more complex; this is inevitable as there is then no unique 

plane strain modulus. Despite this, a number of workers have derived indentation moduli on 

anisotropic material and referred to them as reduced moduli. Thus, Beake and Leggett [20] 

have reported reduced modulus values obtained by indenting biaxially drawn, and therefore 

anisotropic, PET film. Similarly, Fasce et al. [21] have reported reduced moduli obtained by 

nanoindentation of polypropylene films, for which they also report tensile moduli which 

differ for machine and transverse directions. Norambuena-Contreras et al [22] also used the 

isotropic analysis when analysing a series of polymer fibres, which clearly displayed some 

anisotropy. In the work reported here, we shall bring clarity to the nanoindentation of 

oriented polymer by adopting an anisotropic elastic approach that expresses indentation 

modulus in terms of the appropriate elastic constants. 

In addition to elastic anisotropy, oriented polymer also exhibits tension-compression 

asymmetry (Senden et al. [23]; Duckett et al. [24]). Nanoindentation introduces a complex 

stress field that includes both tensile and compressive regions. The elastic analysis applied 

here will include this effect and use both tensile and compressive experimental stress-strain 

data to parameterize it. 

In the present work, we have produced strips of uniaxially oriented polypropylene by die-

drawing to draw ratios up to 15.9. We then performed nanoindentation experiments on both 

the isotropic and the oriented materials by indenting in all 3 axes; both along the direction 

of drawing and the two axes transverse to it, providing values for the elastic indentation 

modulus that are seen to be higher by up to 60% for axial tests in comparison with transverse 

measurements. To understand these results in terms of macroscopic elastic properties, we 

have found it essential that, for measurement along the draw direction, the large differences 

in elasticity between tensile and compressive tests be taken into account. In addition, the 

orthotropic nature of the elasticity must be included in any analysis. Elastic properties are 

generated by tensile, bend and compression testing in combination with published 

ultrasonic measurements that provide Poisson’s ratio and shear modulus data. The Poisson's 

ratio values are used directly, whereas the ultrasonic shear moduli provide a ratio that is 

assumed to be the same as for the static shear moduli; details are given in Section 4.3 below.  
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The elastic properties are used to parameterise an orthotropic elastic material model, which 

distinguishes between states of tension and compression along the material draw direction. 

This model is incorporated into Finite Element simulations of the nanoindentation for both 

axial and transverse tests and gives generally successful predictions of indentation modulus. 

In contrast, simulations for which tensile and compressive behaviour is assumed to be the 

same and defined by tensile measurements, give predictions of indentation modulus that are 

high by up to 70%. These findings have implications for all oriented polymers, and also 

potentially for all materials, including biological systems, for instance cortical bone, that 

derive their anisotropy from oriented molecules or fibrils, and so can show asymmetry with 

respect to tension and compression (Carnelli et al. [25]; Reisinger et al. [26]; Casanova [27]). 

2. Materials and methods 

2.1. Material 

The particular polypropylene (PP) grade chosen for this study was an isotactic homopolymer 
with a melt flow index of 3gr/10min, a melting point of 165°C and molecular mass of Mw = 

405,000 (Mn = 55,100), as given by the material manufacturers (Sinopec plc).  The 

crystallinity of the as-received granules was measured to be 44.3% by Differential Scanning 

Calorimetry (TA Instruments Q20). 

Sheets of approximately 9 mm in thickness were produced by compression moulding the PP 

granules at 210°C, and then rapidly cooled at approximately 40°C/min.  Rectangular strips 

cut from the sheet, approximately 20 mm wide and 150 mm long, form the starting billets 

for the uniaxial die-drawing experiments. 

2.2. Uniaxial die-drawing 

The solid-phase die-drawing technique, in which polymer is pulled through a converging die, 

has been described extensively in past studies [1, 2, 8] and is depicted in Fig. 1. The polymer 

is die-drawn at an elevated temperature that is above its glass transition temperature, and 

below its melting temperature. An increase in axial extension ratio is induced in the polymer 

as it moves through the die-section, and also beyond the die-exit by “free-drawing”.  We 

define the true draw ratio as: 

 0
A

f

A

A
λ = , (1) 

where A0 is the initial cross-sectional area of the billet and Af  the cross-sectional area of the final 
product, which can readily be evaluated from the initial and final dimensions [3] λA is equal 

to the conventional axial extension ratio if there is no change in volume. It is convenient to 

also define the nominal draw ratio as: 

 0
N

die

A

A
λ = , (2) 
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where Adie is the cross-sectional area of the die exit (Adie = w0tdie, with w0 initial billet-width 

and tdie die exit gap). 

The die-drawing apparatus used in these experiments consists of a heating chamber and a 

converging die, of 30° full-angle, mounted on a tensile testing machine (Messphysik ME5-

88).  The die-exit gap is adjustable by inserting various thicknesses of shims between the two 
halves of the split die, allowing λN to be set. For each die-drawing experiment, a polymer 

billet is placed in the heating chamber with a small “tag” protruding from the die-exit, 

gripped by the upper-clamp of the tensile testing machine. The billet is allowed to reach 

thermal equilibrium at the required temperature of 150°C (15°C below the melt) before the 

testing machine is activated to pull the polymer through the die.  It is necessary to start the 

process off at slow speed with the die not fully tightened, and gradually increasing the 

applied draw up to the required values of λN and drawing speed v; the converging profile 

within the die is thus established without initially machining it into shape. 

In this work, we compared unoriented compression-moulded PP (for which λN = 1) with the 

following three cases of PP uniaxially die-drawn at 150°C with increasing levels of induced 

orientation: λN = 2 at v = 31mm/min, λN = 4 at v = 250mm/min, and λN = 6.7 at v = 1000 
mm/min. 

 

Fig. 1. Schematic of the die-drawing process. A billet of polymer in the solid phase is pulled 

through a converging die, reducing the cross-sectional area.  Further “free-drawing” occurs 

beyond the die (sometimes the polymer pulls away from the die walls as shown). The polymer 

cools as it moves beyond the die, eventually reaching a constant cross-section. 
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2.3. Density measurements 

The density of all samples was obtained using a multivolume pycnometer 1305 by 

Micromeritics.  The apparatus uses Helium to measure the volume difference between the 

reference and test samples to produce the density measurement. 

2.4. Differential Scanning Calorimetry (DSC)  

DSC tests were conducted in a Q20 apparatus by TA Instruments, primarily to measure 

crystallinity. The selected test type was a heat/cool/heat starting at 30°C and finishing at 

210°C at a 5°C/min heating and cooling rate. 

2.5. Surface topography 

The surfaces to be nanoindented were characterised using an Olympus LEXT OLS4000 3D 

measuring laser microscope. This instrument produced values of surface parameters such 
as roughness Ra averaged over approximately square regions of area ~ 0.01 mm2.  

2.6. Nanoindentation 

The die-drawn polymer was sufficiently thick (in the range 0.73 mm to 4 mm) to allow 

nanoindentation tests (denoted axial tests) to be conducted with indenter tip motion along 

the axis of drawing (the 3 axis) into a surface in the 1-2 plane (see Fig.2). Other (transverse) 

nanoindentation tests were conducted with indenter tip motion along the 1 axis into the 2-3 

plane, or with indenter tip motion along the 2 axis into the 1-3 plane (see Fig. 2). This work 

presents for the first time nanoindentation testing of oriented polymer along all three 

directions, along the orientation axis as well as the two transverse ones. 

Surface topography can influence nanoindentation results. Qasmi and Delobelle [28], 

operating on a range of materials using a Berkovich indenter, showed experimentally that, 

for both elastic modulus and hardness derived from nanoindentation, the standard 
deviations were directly dependent on the ratio RRMS/hcmax, where RRMS is the root-mean-
square roughness and hcmax is the maximum penetration depth; thus, the increase in standard 
deviation arising from the surface is small when this ratio is small. Similarly, modelling work on 
rubberlike materials tested with a spherical indenter (Chen and Diebels [29]) has shown that 
roughness effects are negligible when (H/hcmax)<0.1, where H is the surface asperity height. 

The transverse indentations were performed on the as-processed polymer surfaces with no 

additional surface preparation. These surfaces take their roughnesses largely from the metal 

surfaces they contact during processing, and, averaged over all draw ratios, were 
characterised by Ra = 0.54 µm and RRMS = 0.71 µm. For axial indentation, the surfaces were 

created by sawing and then smoothing the sawn surface by microtoming at room 

temperature (Leica RM2265 Rotary microtome). These surfaces were characterised by Ra = 

1.28 µm and RRMS = 1.71 µm. These figures are to be compared with the experimental value 

of hcmax of 7 µm. Qasmi and Delobelle [28] derived an empirical formula for the relative 

standard deviation (RSD) in modulus attributable to surface roughness, as: 
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 RMS

c

R
RSD

h

0.66

max

0.346
 

=  
 

 (3) 

This enables an estimate of RSD of 7% for transverse tests and 13% for axial tests. The RSDs 

observed for the measurements in Fig. 10 below are in the range 4-8% for all tests. These 

estimates are consistent with some contribution of the surface roughness to the error, which 

is itself within reasonable bounds. 

Static indentation tests were conducted, at room temperature, on a Nanoindenter Hysitron 

TI 950 (Hysitron, Minneapolis, USA), using a three-sided pyramidal Berkovich diamond 

indenter. Fig. 2 (a) shows the material coordinate system used here for the die-drawn 

polymer billet. Square samples of 10 mm by 10mm were cut from the die-drawn product (or 

the undeformed billet) and mounted in the indenter in such a way as to allow axial or 

transverse indentation. For both the axial tests and the transverse tests into the 2-3 plane, 

separate indents were executed in a 3x100 square-grid pattern placed on the 1-2 and the 2-

3 face of the sample, respectively; and for the transverse tests into the 1-3 plane, a 30x30 

grid was used. The separation between adjacent indents was 0.1 mm.  Each indent was 

performed to a peak load of 100 mN with a loading/unloading rate of 20 mN/sec and a 

holding time (at peak load) of 15 s. For transverse tests, indentation is always into an 

anisotropic plane, so there is a possibility that the orientation of the indenter with respect to 

the molecular orientation (3) axis could affect the results. A standard procedure was adopted 

so that one of the sides of the indenter’s triangular cross-section was parallel to the 3 

direction (see Fig. 2(b)). The significance of the indenter orientation is explored by modelling 

below in section 4.6. 

Following the Oliver-Pharr method (Oliver and Pharr [30]), the nanoindentation results are 

given in terms of the indentation modulus: 

 
2

s
M

A

π
=  , (4) 

where the stiffness s is given by the slope of the unloading curve s = dP/dh, with P the applied 

load and hc the indentation depth, and A = A(hc) is the projected contact area as a function hc.  

A calibration procedure was initially performed (to obtain the area of contact A at different 

values of hc) using a reference sample of polycarbonate with known stiffness s provided by 

the manufacturers. We denote the indentation modulus as M3 for axial tests, and M1 and M2 

for transverse tests, where the 1 and 2 indices correspond to the direction of motion of the 

indenter tip. 
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(a) 

 

(b) 

Fig. 2 (a) Die-drawn material coordinate system. The polymer is drawn and oriented along the 

axial direction (3), producing a transversely isotropic material, with isotropy in the 1-2 plane 

(cross-hatched). Nanoindentation tests were performed on samples cut through the thickness as 

indicated (dotted lines), with the indenter tip moving in the axial (3) and transverse (1, 2) 

directions. (b) Configuration of indenter tip for transverse tests. 
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2.7. Elastic properties 

The tensile behaviour was determined via tensile testing at room temperature. Flat dog-bone 

tensile specimens with a gauge length of 12 mm were cut through the die-drawn product 

(with the axis along the drawing direction), or the initial compression moulded sheet, using 

an ISO 527-2:1996 5B type cutter. Tests were conducted on a Messphysik ME2-233 testing 

machine using a constant cross-head speed of 7.5 mm/min (nominal strain rate of 0.01 s-1). 

A video-extensometer system (Messphysik ME46-NG) was used to accurately measure strain 

by tracking the distance between several targets marked along the gauge length of the 

sample. Engineering stress was determined from the measured force and the initial cross-

sectional area, and true stresses σ were calculated from engineering stresses on the 

assumption of incompressibility, i.e. σ = λσE, where σE is the engineering stress and λ the 

extension ratio imposed by the testing machine. From each tensile test, we also determined 

the true yield stress, true tensile strength and strain at break. 

Compressive behaviour was also of interest as it is of direct relevance to the interpretation 

of nanoindentation. For testing of oriented polymers along the direction of orientation, it has 

been observed that Young's modulus is significantly greater in tension than in compression, 

even at the relatively low levels of orientation induced in melt processing [23]. Yield stress 

is also highly asymmetrical with respect to tension and compression [24]. Direct 

compressive measurements on the die-drawn strips were not generally possible because of 

their thinness (0.73 mm for the highest draw ratio). To circumvent this problem, two 

strategies were adopted: die-drawn material in the form of rod was used for direct axial 

compression measurements; and three-point bend tests were performed on the die-drawn 

strips and the values of compressive moduli deduced, using the data for tensile moduli 

generated by the tensile testing described above. 

Compression testing was performed on die-drawn cylindrical specimens having diameters 

in the range 3.2 to 3.8 mm and 10 mm in height, with end-faces machined flat and parallel.  

Extruded cylindrical billets of diameter 12.3 mm were die-drawn at 150 °C through conical 

dies, of full-angle 30° and die-exit diameter d, to give two levels of orientation (d = 6.0 mm at 

v = 3000 mm/min to produce the lowest orientation with λN = 4.2, and d = 4.7 mm at v = 500 

mm/min for a higher orientation with λN = 6.8).  The specimens were compressed between 

flat steel platens using an Instron 5568 testing machine at a cross-head speed of 1 mm/min 

(nominal strain rate of 0.016 s-1).  A universal joint was included in the loading system to 

eliminate any non-parallelism of the platens.  Strains were again measured using video 

extensometry as described above. 

Bend tests were conducted on rectangular strips and die-drawn product, so that samples had 

thicknesses that varied considerably (4.0, 1.9 and 0.73 mm for draw ratios of 2.8, 6.5 and 

15.9 respectively).  Experiments were performed in three-point bend using an Instron 5568 

testing machine.  Widths were in the range 4 - 18 mm and spans 30 - 80 mm, and testing 

speeds were such as to produce strain rates comparable with the 0.01s-1 value used in the 

tensile experiments. Both isotropic and anisotropic samples were tested using the ASTM 

D790M-93 test method. The test specimens used were approximately 21mm in width and 

8.5mm in thickness. A span length of 136mm was chosen, which corresponded to a support 

span to thickness ratio equal to 16, as proposed by the test standard. A test speed of 
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222mm/min was used in order to maintain the same strain rate of 0.01s-1 as used in all 

mechanical tests. 

2.8. Finite element modelling 

The finite element method has been used on numerous occasions for the analysis of 

indentation (for example: Bhattacharya and Nix [31]; Lichinchi et al. [32]; Dao et al. [33]; 

Huang and Pelegri [34]; Sakharova et al. [35]2009). Three-dimensional analyses of isotropic 

material have been used to investigate the effect of indenter shape [35, 36]. 

In nanoindentation, materials are generally recognised as behaving in an elastic-plastic 

manner, and the elastic behaviour is derived experimentally via the force-displacement 

curve in unloading. During unloading, stresses decrease and no further yielding is induced, 

so the drop in force is associated purely with elastic behaviour. In analysing indentation for 

the purpose of deriving elastic parameters, the complications of plasticity are avoided by 

assuming that the behaviour is purely elastic, so that the loading and unloading curves 

should ideally be identical, and the calculated slopes s in equation (4) are taken from the 

combined loading-unloading curves. Fig. 3 shows a model in the commercial code ABAQUS 

[36](ABAQUS 2016) in which a rectangular solid of orthotropic elastic material is penetrated 

at its centre by a rigid surface with the geometry of a Berkovich indenter. Eight-noded linear 

hexahedral elements are used, with ABAQUS/STANDARD (static) analysis and nonlinear 

geometry.  
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(a) 

 

(b) 

Fig. 3. Finite element model of indentation. For axial tests the 3 material direction (orientation 

direction) is along the z-axis. For transverse tests the orientation direction is along the x-axis, so 

that the indenter is oriented as in the experiments. (a) General view, with indenter inserted. (b) 

The indented area with indenter removed from the image, showing predominantly compressive 

strain along z-axis below the indenter.  

 

The vertical boundaries are free and deform negligibly, showing that the model is equivalent 

to a solid of infinite extent in the xy plane. The bottom surface is fixed in all three directions. 

The rigid surface is subject to a displacement boundary condition that moves it along the z-

direction to indent and then withdraw from the top surface of the solid. The total vertical 
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load on the rigid surface and its position are output, as is the contact area of the interface 
between the indenter and the elastic solid, at each time increment. The contact area Ac is 

available from ABAQUS as the output variable CAREA. Values of indentation modulus M1 or 

M3 are derived from the force-displacement curve using equation (4), with the projected area 

A calculated from the contact area Ac = CAREA by: 

 sincA A α= , (5) 

where α is the angle that the face of the Berkovich indenter makes with its central axis (α = 

65.27°, see Fig. 4). Equation (5) is also valid for a conical indenter, when α is the cone semi-

angle. The gradient s in equation (4) is calculated at each time increment by numerically 

differentiating the in total load-displacement relation. The (x,y,z) axes as shown in Fig. 3 are 

fixed in space. For transverse indentation along the material 2 axis the x, y and z spatial 

directions correspond respectively to the 1, 3 and 2 material axes (Fig. 2Error! Reference 

source not found.). For axial indentation along the draw direction, the x, y and z spatial 

directions correspond respectively to the 1, 2 and 3 material axes. Elastic material data in 

the form of compliance constants (Table 3) are used in the models.  The material model used 

was asymmetrical in tension and compression (see section 3.3 below). It was programmed 

as a UMAT subroutine in ABAQUS, and parameterised by compliance constants determined 

from experimental data (see section 4.3 below). 

 

Fig. 4. Berkovich indenter. The shaded area is the projected area A, the unshaded triangular faces 

form the contact area Ac and hc is the penetration depth. Maximum value of hc is ~7µm. 

 

3. Nanoindentation analysis 

In this section, the theory required to relate the elastic measurements to the nanoindentation 

results is outlined. 
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3.1. Elastic constants 

For the analysis, mechanical data are available as moduli along the draw (3) direction Et and 

Ec (Table 2). It was assumed that the drawing is uniaxial, so that E1 = E2 (see Fig. 2Error! 

Reference source not found.). With this degree of symmetry (i.e. transversely isotropic in 

the 1-2 plane), a total of six elastic constants are required and Hooke’s law can take the form 

[38]: 
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1 11
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33 33

13 13
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3 33
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s

ε σ
ε σ
ε σ
ε σ

ε σ

ε σ

    
    
    
    

=    
    
    
        

    

 . (6) 

The σij are the stress components, εij the strains and the sij are components of the compliance 

matrix S. Here the 3 axis is a symmetry axis and corresponds to the draw direction. For 

Young’s modulus E1 along the 1 and 2 axes, and E3 along the 3-axis, we have: 

 

11
1

3
33

1

1

s
E

s
E

=

=

 . (7) 

The off-diagonal terms in S relate to Poisson’s ratios ν21, ν31 and ν13 as: 

 

12 21 11

1

1

3 31 11

13 3 33

s s

s s

s s

ν

ν

ν

= −

= −

= −

 , (8) 

and the remaining diagonal terms: 

 

44
44

66
66

1
2

1

2

s
G

s
G

=

=

  (9) 

are simply related to shear moduli for G44 and G66 at the 1-3 and 1-2 planes respectively. For 

the form of symmetry given here isotropy of the 1-2 plane results in: 

 ( )66 11 122s s s= − ,  (10) 

and thus there are a total of five independent elastic constants sij. 
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For the same uniaxial symmetry, Hooke's law can also be expressed in a form that gives the 

stress in terms of the strain as: 
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 , (11) 

where the Cij are the stiffness constants and the square matrix C is the stiffness matrix. Once 

S is known, C can be determined as it is the inverse of S, 

 1−=C S  . (12) 

3.2. Indentation modulus 

The indentation modulus M is calculated using equation(4), and depends only on the 

stiffness s, given by the measured unloading slope, and the projected area A, given by the 

measured indentation depth. All the analysis of indentation available in the literature so far 

has used conventional elasticity theory in which elastic constants are assumed to be the same 

in tension and compression. We know this to be untrue for oriented polymer and we shall 

develop a numerical method below for analysis of the experimental results. However, the 

conventional results presented here are useful for comparison and verification purposes. 

They are arrived at by assuming axisymmetric conditions (i.e. a conical indenter). 

Simplifying further and assuming isotropic material, it is found that M is equal to the plane 

strain or reduced modulus Er defined by: 

 r 21

E
E

ν
=

−
 , (13) 

where E is Young’s modulus and ν Poisson’s ratio. For anisotropic materials, however, M is a 

more general concept and is a function of the various elastic constants. For instance, 

Delafargue and Ulm [39] have produced expressions for indentation modulus of orthotropic 

materials along principal material axes in the case of a conical indenter. For transverse 

material isotropy, where the 3-axis is the axis of material symmetry, the indentation 

modulus for indentation along the 3-axis is derived analytically by Delafargue and Ulm as: 

 
2

11 33 13

11 44 11 33 13

1

a
3

1 2
2

C C C
M

C C C C C

−
 −

= +  + 
.  (14) 

For indention normal to the draw direction analytic the indentation modulus is given by: 
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11 33

C C C
M M

C C

−
=   (15) 

Equations (14) and (15) provide indentation modulus values for materials that are linear 

elastic and symmetrical in response to tension and compression when a conical indenter is 

used. They will be used to verify the numerical method described in section 2.8. 

3.3. Asymmetry in tension-compression 

Our model of oriented polymer recognises the asymmetry in elastic modulus when loading 

in tension or compression along the draw direction. Since a hydrostatic pressure does not 

generally induce yielding or structural changes, it is assumed, as with plasticity theory that 

the deviatoric stress controls whether the response corresponds to tension or compression. 

With molecular orientation along the 3-direction, the material law takes the form of equation 

(6), with: 

 
33

3

t

c
3

0 :

0 :

σ σ

σ σ
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where 

 11 22 33

3

σ σ σ
σ

+ +
=   (17) 

is the hydrostatic stress, S is the compliance matrix of equation (6) and St and Sc are the 

compliance matrices for tensile and compressive properties respectively. 

4. Results and discussion 

4.1. Density, crystallinity and true draw ratio 

The density and λA value measured for the die-drawn material are presented in Table 1, 

together with the values for the undrawn compression moulded sheet.  The density is 
unchanged for nominal draw ratios λN of 2 and 4, but reduces by approx. 10% for the highest 

draw ratio of λN = 6.7.  We also observed an increase in “stress whitening” of the die-drawn 

sample between λN = 4 and λN = 6.7, as is evident in Fig. 5. 

Melt enthalpy measurements were made using DSC. A major melting peak was observed at 

165.9°C, corresponding to α-phase crystallinity, and there was little sign of any peak 

corresponding to β-phase. The crystallinity was therefore calculated using the heat of fusion 

for α-phase of 207.1 J/g. The crystallinities thus obtained are listed in Table 1. Crystallinity 

increases systematically with draw ratio, consistent with previous work [40]. This finding, 

when coupled with the loss of density at the highest draw ratio, suggests voiding at the 

highest draw ratio. 
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During the die-drawing process, the compressive stress-field being applied to the polymer 

within the die-section plays a significant role in preventing the creation or elongation of 
microvoids [7], leading to the constant density measured up to λN = 4.  However, for the 

highest nominal draw ratio of λN = 6.7, a large amount of free-drawing occurs beyond the 

die-exit, to produce the final true draw ratio of λA = 15.9.  The lack of compressive stress in 

free-drawing leads to voiding, as evident from the stress whitening and reduction in density 
for λN = 6.7.  

Nominal draw ratio, 
λN 

True draw ratio, λA Density, ρ  (g/cm3) Crystallinity % 

1.0 1.0 (0.909 ± 0.002) 45.6 

2.0 2.8 (0.910 ± 0.002) 51.7 

4.0 6.5 (0.909 ± 0.001) 55.0 

6.7 15.9 (0.822 ± 0.002) 65.0 

Table 1. Density values of isotropic (λN=1) and oriented polypropylene. 

 

 

Fig. 5. Change of opacity with increasing true draw ratio λA. 

 

4.2. Elastic properties 

The tensile tests are readily interpreted and the tensile properties are listed in Table 2.  With 

increasing draw ratio, there is a large increase in tensile and compressive modulus, and 

simultaneously a large increase in yield and fracture stress.  This large property 

enhancement on solid-phase processing of polymer has been known for some time [12]. 
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The compression moduli derived from compression testing on die-drawn cylinders 

correspond to different draw ratios and are plotted together with the other measured moduli 

in Fig. 8. This shows the consistently lower values in compression for all draw ratios. 

The bend tests on the same material provide data for compressive modulus. These tests 

show linear elastic behaviour, but if interpreted in the conventional way they provide 

modulus values that are much lower than the tensile values. We analyse the tests on the 

assumption that compressive moduli can differ from the tensile moduli. 

 

 

Fig. 6. Bend test on material with differing tensile and compressive moduli. 

 

An analysis of three-point bend where the material has moduli that differ for tensile and 

compressive stress has been given by Chamis [41] in the framework of elementary bending 

theory. In this case the neutral axis of bending does not pass through the centroid of the 

section, as it would for a constant modulus. For a rectangular section, the distances of the 
neutral axis from the tensile and compressive surfaces, dt and dc (see Fig. 6) are related to 

the moduli Ec in compression and Et in tension by: 

 

1
2

t c

c t

d E

d E

 
=  
 

 . (18) 

The analogue of the section modulus "EI" in conventional bending theory is D, given by: 

 ( )3 3

3 c c t t

b
D E d E d= +  , (19) 

where b is the specimen’s width.  The central force F and central deflection δ are related to 

the moduli via: 

 
3 3

3

16 ( )c c t tb E d E dF

Lδ
+

=  . (20) 
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Given that Et is known from the tensile experiments, equations (18) and (20) give sufficient 

information to derive Ec from the observed gradients F/δ in the bend experiments.  The 

values derived from this essentially one-dimensional analysis provide a guide to the values 

required for the input into three-dimensional, orthotropic analyses of the bend test that 

provide results taking account of finite dimensions and anisotropic effects. These were 

carried out using quarter models in ABAQUS [37] for each geometry used using trial-and-
error to finalise the value of compressive modulus. In this procedure the modulus Et is 

maintained at its measured static value and other elastic constants derived using the 

methods described Section 4.3. The use of finite element simulation ensures that the values 

obtained are not influenced by deviations from slenderness, as would be the case when using 

beam theory. Also, the sensitivity of the calculations to the values of the shear compliance 

s44, estimated using the ratio of the ultrasonically measured shear compliances, has been 

explored by halving its value and re-running the bend simulations at each draw ratio. This 

had the effect of increasing the specimen stiffnesses (force/deflection) by respectively 3.8%, 

1.7% and 2.1% for the draw ratios 2.8, 6.5 and 15.9. This suggests an insignificant effect upon 

the calculation of Ec. An example of a bending simulation for the draw ratio 15.9 is shown in 

Fig. 7. The compressive moduli of the die-drawn samples derived in this way are included in 

Table 2, together with the bend modulus measurement for isotropic strip at draw ratio 1. 

 

True draw 

ratio λA 

Tensile 

modulus, 

Et (GPa) 

Compressive 

modulus (bend 

tests), Ec (GPa) 

True tensile 

yield stress 

(MPa) 

True 

fracture 

stress (MPa) 

Strain at 

break (%) 

1 (1.8 ± 0.1) 1.8 ± 0.1 (39 ± 2) (46 ± 3) (60 ± 20) 

2.8 (4.9 ± 0.8) 1.8± 0.2 (62 ± 4) (160 ± 10) (53 ± 5) 

6.5 (10 ± 1) 2.9± 0.5 (64 ± 4) (230 ± 30) (6 ± 3) 

15.9 (23 ± 1) 3.85± 0.5 (74 ± 4) (300 ± 40) (3 ± 1) 

Table 2. Results from mechanical testing of the die-drawn strip and undrawn material. 
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Fig. 7. Quarter model of bend specimen with the centre of the section at the right and central axial 

plane at the front. The front vertical face is a symmetry boundary. Contours of axial stress are 

shown with negative values black, showing neutral surface in the bottom half of beam. Elastic 

properties are for draw ratio 15.9. 

 

 

 

Fig. 8. Modulus along the drawing axis in tension and compression. 

 

4.3. Model parameterisation 

The Finite Element simulations used an orthotropic elastic material model which 

distinguishes between states of tension and compression in the material draw (3) direction.  
The model is parameterised by specifying the elements Cij of the stiffness matrix C in 

equation (11) using the above experimental measurements and published ultrasonic data. 

Leung and Choy [42] have published full sets of stiffness constants Cij, determined by an 

ultrasonic method, for uniaxially oriented polypropylene at room temperature and for a 

range of draw ratios between 1 and 20. Their values are summarised in Fig. 9. Stiffnesses 

measured ultrasonically cannot in general be equated with static values, as the rates of strain 

are much higher for ultrasonic testing and polymers are viscoelastic and therefore strain-
rate dependent. The room temperature data of Leung and Choy do, however, show that C11 
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does not vary strongly with extension ratio, and so we assume that for our PP the value of E1 

at all draw ratios is equal to that measured in static conditions for the undrawn material. It 
was also assumed that the Poisson's ratios v21 and v31, as derived from the ultrasonic stiffness 

by inversion of C to give an ultrasonic compliance matrix S, and subsequent use of equation 

(8), also apply for static conditions. Then, static values for the components of the left upper 

3×3 part of the matrix in equation (6) are derived using equations (7) and (8). At this point 
the values used for modulus E1 and E3 are the static values of Table 2, with E3 = Et for tensile 

conditions and E3 = Ec for compressive conditions (the precise definitions of tensile and 

compressive conditions are given in section 3.3). The remaining compliance terms are s66 

and s44. s66 is defined by equation (10). Finally, the value of s44 is established by assuming that 

the ratio s44/s66 is equal to the ratio of the ultrasonic values. 

 

Fig. 9. Ultrasonic stiffness values from Leung and Choy [42]. 

 

For each of the experimental draw ratios λA of 2.8, 6.5 and 15.9, a set of compliances is 

interpolated from the data of Fig. . Then, the procedures outlined in the paragraph above are 

applied to generate compliance matrices for static conditions. At each draw ratio, two 
compliance matrices are derived, one for s33 = 1/Et and one for s33 = 1/Ec. The compliance 

constants are summarised in Table 3. 
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Isotropic 

 s11 = s22 = s33 s12 =s13 =s23 s44=s55=s66 

 0.556 -0.192 1.496 

Tensile St 

Draw 

ratio 
t t
11 22s s=

 
t
12s

 
t t
23 13s s=

 
t
33s

 
t t
44 55s s=

 
t
66s

 

2.8 0.556 -0.219 -0.146 0.204 1.142 1.549 

6.5 0.556 -0.298 -0.055 0.103 1.021 1.707 

15.9 0.556 -0.310 -0.043 0.044 0.924 1.731 

Compressive Sc 

Draw 

ratio 
c c
11 22s s=

 
c
12s

 
c c
23 13s s=

 
c
33s

 
c c
44 55s s=

 
c
66s

 

2.8 0.556 -0.219 -0.146 0.556 1.142 1.549 

6.5 0.556 -0.298 -0.556 0.263 1.021 1.707 

15.9 0.556 -0.310 -0.043 0.120 0.924 1.731 

Table 3. Compliance constants, S (GPa-1). 

 

4.4. Nanoindentation experiments 

Experimental results for the indentation modulus against indentation depth hc measured 

both in the axial and transverse directions, M3, M1 and M2 respectively. The tests from the 
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two transverse directions gave indistinguishable modulus values. The reason for conducting 

them was to validate our choice of a transverse isotropic model in order to describe our 

oriented materials, and calculate their elastic parameters, which we used in Finite Element 

Analysis modelling. Hence, only a comparison between results from M3 and M1 direction are 

shown in Fig. 10. 

In all cases, an increase in M with decreasing hc was observed, which is indicative of 

viscoelastic polymers when tested using a Berkovitch indenter. This has been investigated 

thoroughly by Alisafaei and Han [43] as well as Han et al. [44] and it is out of this paper’s 

scope. Similarly, Beake and Leggett [20] have also reported similar behaviour in uniaxially 

and biaxially oriented PET films.   

A clear and significant increase in the axial indentation modulus M3 is observed with 

increasing draw ratio.  This is in line with the increase in larger-scale moduli measured along 
the drawing axis (see Fig. 8).  The indentation modulus in the transverse direction M1 shows 

a much lower dependence on the draw ratio away from the isotropic value. 
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(a) 

 

(b) 

Fig. 10. Indentation modulus as a function of contact depth for nanoindentation tests performed 
(a) axially along the draw direction and (b) transverse to it, for the different draw ratios λA.  
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4.5. Nanoidentation modelling 

4.5.1. Isotropic material 

 

 

Fig. 11. Plot of stiffness according to equation (4) to give a gradient equal to the indentation 

modulus M. 

 

According to equation (4), a plot of s against 2√(A/π) should be linear with gradient M. This 

method is used to derive M values from the finite element results. Fig. 11 shows the plot for 

the indentation model of a Berkovich indenter into isotropic material (for the finite element 

model shown in Fig. 3). The material corresponds to an undrawn polymer with modulus 1.8 

GPa and Poisson's ratio 0.346, corresponding to the compliance values for isotropic material 

given in Table 3.  The M value of 2.20 GPa from the indentation analysis compares with that 

calculated for Er in equation (13) of 2.04 GPa. Sakharova et al. [35] have noticed a similar 

discrepancy between finite element results and input parameters, and have introduced a 
factor β equivalent to 

 
r

M

E
β =  . (21) 
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For our analysis, we obtain the value β = 1.076. This is to be compared with that of Sakharova 

et al. of 1.074 for finite element analysis of Berkovich indentation of isotropic material. The 
same authors have produced a value β = 1.029 for simulations with a conical indenter of 

semi-angle 70.3°.  We have used a conical indenter with the same angle in an analysis that is 
otherwise identical to the model of Fig. 3, to give a value β = 1.036. Dao et al. [33] have 

derived values of β of 1.096 and 1.06 for Berkovich and conical indenters respectively. β 

increases as the indenter shape deviates more from the cone; intermediate values are 

reported for the four-faced Vickers indenter [35, 36]. The large β value for the Berkovich 

indenter reflects a genuine physical effect of the difference between its geometry and that of 
a conical indenter. The smaller β values for the conical indenter arise, according to Hay et al. 

[45], from inaccuracy in the analysis of the cone indentation of Sneddon [46] that lies behind 

the assumed relation M = Er  (see equations (4) and (13)). Hay et al. [45] found that the lateral 

displacements at the surface of the indentation do not exactly coincide with the surface of a 

cone except for incompressible material with Poisson's ratio value of 1/2. They have derived 
β values that depend on Poisson's ratio, such that for Poisson's ratio 0.35, β ≈ 1.04 for a cone 

semi-angle 70.3°. Our finite element mesh and analysis procedures are consistent with the 

established findings for isotropic material. 

4.5.2. Orthotropic material 

For our analyses of orthotropic material, we seek verification from equations (14) and (15) 

of Delafargue and Ulm [39]. Their linear elastic analysis is based on material with identical 

responses in tension and compression, and to make the comparison, we use the tensile 

elastic properties of Table 3. The analytical and finite element derived indentation moduli 

are compared in Table 4. Values of β ( 1 1/ aM M  and 3 3/ a
M M ) are greater than unity except for 

1 1/ aM M  at the draw ratios 6.5 and 15.9 when they are very close to it. Overall, 0.996 < β < 

1.024, a similar level for the isotropic case. The results signify that the finite element meshes 

and associated analysis are fit for purpose for orthotropic polymer indentation. 

 

Draw ratio, λΑ 
a
1M  (GPa) M1 (FE) (GPa) 

a
3M (GPa) M3 (FE) (GPa) 

2.8 2.38 2.42 4.32 4.35 

6.5 2.33 2.32 5.74 5.79 

15.9 2.48 2.47 9.76 9.99 

Table 4. Analytical and finite element-derived indentation moduli for a conical indenter. 
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4.5.3. Orthotropic material with tensile-compressive asymmetry 

We now proceed to apply this method Berkovich indentation of oriented polymer, using a 

stress-strain law that recognises the asymmetry in elastic modulus when loading in tension 

or compression along the draw direction (section 3.3).  The model predictions are derived 

using the finite element models of Fig. 3, with input data given in Table 4. The predicted 

indentation modus for the same draw ratios as tested are presented in Fig. 12 and discussed 

in section 4.6. 

4.6. Comparison of model with experiment 

 

 

Fig. 12. Comparison of observed and predicted indentation moduli as a function of axial draw 

ratio. 

 

The measured indentation moduli for nanoindentation along the axial M3 and transverse 

M1 directions are compared with the finite element model predictions in Fig. 12.  In most 

cases the prediction is within the experimental error bars.  The greatest discrepancy is the 
axial indentation modulus M3 at the highest draw ratio.  As noted in section 4.1 above, this 

is the only draw ratio for which voiding is observed, via visible stress-whitening and 

density measurement.  We would expect indentation into voids to give low modulus values, 
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and also more experimental variation as the polymer is inhomogeneous at a scale 

detectable from nanoindentation. 

On comparing the values in Fig. 12 with those obtained using only tensile properties in 

Table 4, it becomes clear that the latter values for M3 are very much higher than both the 

experimental observations and the finite element predictions using the method developed 

here; the inclusion of both compressive and tensile Young’s moduli decreases the 
calculated value of M3 from ~ 10 GPa to ~ 6 GPa at draw ratio 15.9, and from 5.7 GPa to 4.2 

for draw ratio 6.5. The effects on M1 are also significant. 

For the transverse tests and simulations that give the values of M1, the indented material 

plane is anisotropic, and so it was expected that the orientation of the Berkovich indenter 

with respect to the principal axes of orthotropy would have some influence on the results. 

This effect has been explored with the simulations, by rotating the indenter about its 

central axis by 15 and 30°.  The latter rotation puts one of the sides of the indenter’s 

triangular section normal to the stiff material 3 axis, as opposed to being parallel to it as in 

the unrotated (0°) test shown in Fig. 2(b). The 0° and 30° models thus represent the 

extreme orientations of the indenter.  Simulations at a range of rotation angles have shown 
that the 0° orientation gives the maximum M1 and the 30° gives the minimum, and that they 

differ in the range 1.1 - 1.6%. This suggests that the indenter orientation has no significant 

effect experimentally. 

5. Conclusions 

When measuring elastic behaviour, the interpretation of nanoindentation tests for 

elastically anisotropic material is more complex than for isotropic material, as the  ‘reduced 

modulus’ of isotropic elasticity must be generalised. The more general parameter, the 

indentation modulus, is a function of nine elastic constants for a generally orthotropic 

material. In the case of uniaxially oriented polymer, which is transversely isotropic, it 

depends on six independent elastic constants. In the present work on die-drawn 

polypropylene, the constants were evaluated for three draw ratios using a combination of 

static and ultrasonic mechanical data. 

A further complication was that the static testing showed that the elastic moduli were 

different in tension from in compression. Values of Young’s modulus obtained in 

compression were lower than those obtained in tension, by a factor of ~ 5 at the highest 

draw ratio of 16. 

From these considerations it follows that, to interpret nanoindentation in oriented 

polymer, a material model is required that combines orthotropic elasticity with tension-

compression asymmetry. Three-dimensional finite element analyses of nanoindentation 

were conducted that incorporated such a model as a user-defined subroutine. Using the 

elastic constants derived from static and ultrasonic tests as input data, predictions of 

nanoindention modulus were obtained for indentation in directions both along and normal 

to the direction of orientation. The predictions obtained were at a good level of accuracy 

except at the highest orientations when the material is voided material. They confirmed the 
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observation of higher values of indentation modulus along the axis of orientation as 

opposed to normal to it. 
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