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Archaeomagnetic dating offers a valuable chronological tool for archaeological investigations, particu-
larly for dating fired material. The method depends on the establishment of a dated record of secular
variation of the Earth's magnetic field and this paper presents new and updated archaeomagnetic
directional data from the UK and geomagnetic secular variation curves arising from them. The data are
taken from publications from the 1950's to the present day; 422 dated entries derived from existing
archaeo and geomagnetic databases are re-evaluated and 487 new directions added, resulting in 909
entries with corresponding dates, the largest collection of dated archaeomagnetic directions from a
single country. An approach to improving the largest source of uncertainty, the independent dating, is
proposed and applied to the British Iron Age, resulting in 145 directions from currently available da-
tabases being updated with revised ages and/or uncertainties, and a large scale reassessment of age
assignments prior to inclusion into the Magnetic Moments of the Past and GEOMAGIA50 databases.
From the significantly improved dataset a new archaeomagnetic dating curve for the UK is derived
through the development of a temporally continuous geomagnetic field model, and is compared with
previous UK archaeomagnetic dating curves and global field models. The new model, ARCH-UK.1 allows
model predictions for any location in the UK with associated uncertainties. It is shown to improve
precision and accuracy in archaeomagnetic dating, and to provide new insight into past geomagnetic
field changes.
Crown Copyright © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The development of precise, robust site chronologies is a central
concern in all archaeological work and there are a range of scientific
dating methods available to address this issue. Archaeomagnetic
dating is a valuable addition to the suite of chronological tools
available to archaeologists working on both commercial and
research excavations. Its particular strengths are the applicability to
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baked clays, fired stone and ceramic materials, which survive well
in the archaeological record, and the clear relationship between the
event dated, typically the last cooling of the material, and human
activity. The method can be more precise than other techniques for
certain periods of time and for specific situations (e.g. Outram and
Batt, 2010); for example, it potentially has good precision in periods
where radiocarbon dating has large errors, such as the British Iron
Age and the Early Medieval period (Linford, 2006).

The method was first established in British archaeology by
Aitken and colleagues (Aitken, 1958, 1960; Aitken and Weaver,
1962), building on an initial investigation by Cook and Belshé
(1958). Following a period of development, the basis for its
routine use was set out by Clark et al. (1988). Since then there have
been significant developments to the method, both in the UK and

0305-4403/Crown Copyright © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/
mailto:c.m.batt@bradford.ac.uk
mailto:maxwell@hi.is
mailto:sarah-jane.clelland@manchester.ac.uk
mailto:monika@gfz-potsdam.de
mailto:monika@gfz-potsdam.de
mailto:Paul.Linford@HistoricEngland.org.uk
mailto:Zoe.Outram@HistoricEngland.org.uk
mailto:Zoe.Outram@HistoricEngland.org.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jas.2017.07.002&domain=pdf
www.sciencedirect.com/science/journal/03054403
http://www.elsevier.com/locate/jas
http://dx.doi.org/10.1016/j.jas.2017.07.002
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.jas.2017.07.002
http://dx.doi.org/10.1016/j.jas.2017.07.002

C.M. Batt et al. / Journal of Archaeological Science 85 (2017) 66—82 67

internationally (Sternberg, 2008). The aim of this paper is to pre-
sent new and re-evaluated UK archaeomagnetic data and the
geomagnetic secular variation curves arising from them. Such dis-
cussions are uniquely important in archaeomagnetic dating as the
precision and accuracy of dates provided by the method improve as
more data are used in the construction of dating curves. Archae-
omagnetic studies also have a wider significance as they provide
the most detailed record of how the geomagnetic field has changed
over recent millennia; crucial to understanding deep Earth pro-
cesses, the space environment, palaeoclimate and volcanism
(Brown et al., 2015a; Constable and Korte, 2015).

2. Context of investigation

In common with many dating methods, the development of
archaeomagnetic dating requires expertise from both natural sci-
ences and archaeology. However, in archaeomagnetic dating,
archaeological input is particularly crucial. The principles of the
method are well-established (Linford, 2006; Clark et al., 1988). The
Earth's magnetic field in the past can be recorded by fired archae-
ological materials or sediments and a date is obtained for this
geomagnetic record by comparison with a dated record of changes
in the geomagnetic field over time, known as the secular variation
(SV) record. Scientists have directly recorded changes in the Earth's
field in the UK since the 16th century CE (Malin and Bullard, 1981;
Jonkers et al., 2003); prior to this the SV record is obtained from
magnetic measurements on materials with an independent date
established using other scientific techniques (such as radiocarbon
or luminescence), documentary sources or the archaeological in-
formation (Clark et al., 1988). The SV record is only as good as the
independent dating evidence on which it is based. Hence, key to the
method's development, is a good understanding of the challenges
of archaeological chronologies and the interpretation of cultural
remains, requiring excellent communication with archaeologists in
the assessment of supporting dating evidence. The initial devel-
opment of the method is slow and laborious, as it requires large
numbers of measurements on materials of known date. It is also
important that the independent dates are re-evaluated regularly, as
more evidence becomes available and archaeological understand-
ing develops. Lanos et al. (1999) describe SV records as ‘living or-
ganisms’ which evolve with the addition of new data; this
development also extends to new archaeological approaches, new
typological sequences and new theoretical paradigms that affect
the independent dates. SV is specific to a region (c. 1000 km in
diameter) as the geomagnetic field changes spatially as well as with
time (Jackson and Finlay, 2015) and so the data need to be
considered on a regional basis.

The mechanism by which fired materials acquire a thermo-
remanent magnetisation (TRM) which reflects the field at the time
of last high temperature heating (over c. 580 °C) are well-
understood (e.g., Tauxe, 2002) and such materials form the ma-
jority of archaeomagnetic studies. The acquisition of remanent
magnetisation by sediments is still a subject of debate and different
mechanisms have been proposed (see reviews by Tauxe and
Yamazaki, 2007; Roberts et al., 2013). In essence, magnetic grains
align with the geomagnetic field either during or after deposition.
In some instances, remanence acquisition can be delayed and may
not represent the time of deposition. Hence, there may be difficulty
in associating depositional remanences with a specific archaeo-
logical event (Batt, 1999). Sediments are also more prone to bio-
turbation and disturbance after deposition, and such changes are
harder to detect than they would be with fired structures. For these
reasons, and because of their availability on archaeological sites,
archaeomagnetic studies are dominated by the investigation of
fired materials. However, sediments can provide a continuous

record of SV, rather than the single magnetic direction typically
available from a fired structure and studies have shown that fine
grained, undisturbed sediments in archaeological environments
can provide reliable archaeomagnetic directions (Batt, 1999; Ellis
and Brown, 1998).

Archaeomagnetic dating can be based on variations in the di-
rection (that is declination and inclination) or the intensity of the
past geomagnetic field or, ideally, both. Estimates of intensity have
the advantage that they can be obtained from fired materials that
are not in situ and require very small samples, vastly increasing the
range of materials investigated. However, intensity experiments on
fired materials are challenging, with alteration and magnetic
domain state effects potentially biasing estimates of past intensity
(Thomas, 1983; Aitken et al., 1988; Valet, 2003; Tauxe and
Yamazaki, 2007; Genevey et al., 2008; Brown et al., 2015a). In
contrast, directions are experimentally straightforward to obtain,
but require in situ material, with precise orientation during exca-
vation (Clark et al., 1988). In many regions of Europe all three
components of the magnetic field are routinely analysed and many
countries have their own SV curves (e.g. Gomez-Paccard et al.,
2006; Schnepp and Lanos, 2005; Lanos et al., 1999; Kovacheva
et al, 2009, 2014; Tema and Kondopoulou, 2011). In addition
Kostadinova-Avramova et al. (2014) have demonstrated the value of
using stratigraphic constraints alongside all three components.
Although ceramics are commonly available, intensity analyses have
yet to be widely adopted in the UK, mainly because of the experi-
mentally challenging nature of intensity determination. This leads
to limited precision available in dating using intensity, as there are
fewer data with which to build calibration curves and the data often
have large uncertainties. There have been significant developments
in the methods used to obtain estimates of intensity, which have
now been applied to archaeological materials. These include the
microwave method (e.g., Shaw et al,, 1999; Hill and Shaw, 1999;
Stark et al., 2010); the Triaxe method (Le Goff and Gallet, 2004;
Gallet et al.,, 2015); the multi-specimen method (e.g., Ertepinar
et al., 2016; Schnepp et al., 2016); modifications to the Thellier-
Thellier method, e.g., the IZZI protocol (Shaar et al., 2011) and
extended versions of the Shaw technique (e.g. Yamamoto et al.,
2015). However, so far there are only a limited number of studies
of intensities on UK samples (e.g. Casas et al., 2005; Suttie, 2010).
None of the previous UK SV curves considered intensities, so
updating these data was beyond the scope of the present work.
Common practice in many other regions argues strongly for the
routine measurement of the full magnetic vector in future UK
studies, or at least the retention of suitable samples from direc-
tional investigations to allow intensity studies in future.

3. UK archaeomagnetic data
3.1. Databases

As discussed above, the biggest limitations to archaeomagnetic
dating are the precision and accuracy of the SV curves. This can be
addressed by increasing the amount of reliable data used to
construct them, as well as improving the precision of the inde-
pendent age estimates associated with each magnetic measure-
ment. It is therefore vital to collate and evaluate all existing
archaeomagnetic data in the UK. Such a compilation also allows
regular review and can easily provide data for construction of SV
curves.

3.1.1. The Magnetic Moments in the Past database

The ‘Magnetic Moments in the Past’ project (University of
Bradford/English Heritage now Historic England) was initiated to
develop archaeomagnetic dating in the UK, partly through
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producing a flexible database of archaeomagnetic information.
Whilst several databases of archaeomagnetic and palaeomagnetic
data currently exist, such as GEOMAGIA50 (discussed below), the
IAGA archaeomagnetic directional database (http://www.ngdc.
noaa.gov/geomag/paleo.shtml), and the databases hosted by the
Magnetics Information Consortium (http://earthref.org/MAGIC/),
these are designed specifically for archaeomagnetists, palae-
omagnetists, and modellers of the geomagnetic field. The ‘Magnetic
Moments in the Past’ database differs as it also contains informa-
tion relevant to the archaeological community and was developed
in consultation with archaeologists, heritage groups and archae-
omagnetists to ensure that it contains the data required by each
group. This was seen as essential in promoting the value of the
technique and therefore increasing the number of archaeomagnetic
determinations produced.

The database was constructed using Microsoft Access, utilising a
series of relational tables that contain information about the site,
sampled deposits, the archaeomagnetic data, independent age es-
timate for a feature and the publication details. The archaeological
query form allows users to interrogate the database by location,
type and age of feature sampled. The information presented for
each study includes details of the site, sampled features and cali-
brated age ranges. The magnetic measurements include the num-
ber of samples, mean declination, inclination and og5 (measure of
the uncertainty associated with the mean direction) for each
feature after removal of unstable components (Tarling, 1983: 89),
but not the individual sample magnetic measurements as it was
concluded that this level of detail was too complex to include and
rarely available or used. An image of the sampled feature is also
provided where possible, informing sampling strategies on future
sites. The archaeomagnetic query form allows the information
required to construct a SV curve to be obtained from the database,
including site information, archaeomagnetic data and evidence
used to assign an independent age estimate to the sampled feature.
The data can be filtered based on the mode of remanence acquisi-
tion, the precision of the archaeomagnetic data (defined by the ags
and/or the precision parameter, k), and the age of the sampled
feature. The data from a specific geographic area can also be
extracted based on the minimum and maximum latitude and
longitude values. Where possible the precision associated with the
independent age estimate is given using ‘68%’ and ‘95% confidence’
check boxes. A third option is available for estimates based on
archaeological/historical evidence where the precision cannot be
statistically defined.

The database is available from the Magnetic Moments in the
Past website (http://www.bradford.ac.uk/archaeomagnetism) as a
Microsoft Access database or as Microsoft Excel files. In addition, a
simplified version of the query form designed for archaeologists is
available as a web-searchable database on the Archaeological Data
Service website (http://archaeologydataservice.ac.uk/archives/
view/magmoments_ahrc_2010/).

The database also allows archaeomagnetists to identify where
further work is required and to initiate sampling programmes
accordingly. For example, sites dating to a particular period of time
or from a specific region of the country can be targeted to address
the uneven temporal and spatial distribution of archaeomagnetic
studies. The database contains 939 directional pairs from 440 lo-
cations; however, a small number do not have ages, as discussed in
Section 3.4.

3.1.2. GEOMAGIA50

In addition to being made available in the Magnetic Moments in
the Past database, updated and new UK directional data have been
added to the GEOMAGIA50 database (Korhonen et al., 2008; Brown
etal,, 2015a). GEOMAGIASO is an online database (http://geomagia.

gfz-potsdam.de/) of palaesomagnetic and chronological data from
archaeological materials, volcanic rocks and sediments spanning
the past 50 ka.

The most recent version of the database (GEOMAGIA50.v3) was
published in May 2015 and contained 448 directional entries (pairs
of declination and inclination) from the UK. As part of this study we
reassessed all UK entries in GEOMAGIA50.v3. This involved cross-
checking every entry with the Magnetic Moments of the Past
database and updating any revised ages (see section 3.3). Inclina-
tion, declination, ags, k, dating methods, age, age uncertainties, site
coordinates, site names, site horizons, sample identifiers and ma-
terial types were all checked and amended if necessary. Updates or
corrections were made to 145 ages and/or their uncertainties, 207
latitudes and/or longitudes, 29 declinations, 60 inclinations and 18
values of ags. Of the age revisions 65% resulted in a difference in the
mean age of 100 years or less; however, nearly 10% of assigned ages
were revised by 500—3000 years. Eleven directions from Gentles
(1989), which had been uploaded as relocated to Meriden, were
corrected by recalculating site mean directions using the specimen
level data given in Gentles (1989). New site and context informa-
tion was added for the majority of entries.

Twenty six entries were removed from GEOMAGIA50.v3 (leav-
ing 422 remaining entries). They were duplicates, had an origin that
could not be confirmed by the Magnetic Moments of the Past
database, or were relocated to Meriden (and lacked specimen data
in the original publication to confidently allow site mean directions
to be recalculated, as discussed in Section 4.1).

In addition, 487 directions from the Magnetic Moments in the
Past database, not previously included in GEOMAGIA50.v3, have
now been uploaded. This totals 909 UK directional entries from 432
locations (presented below). This differs from the 939 entries in the
Magnetic Moments in the Past database, as all GEOMAGIA50 en-
tries require age and not all entries in the Magnetic Moments in the
Past database have been assigned an age, for the reasons discussed
in Section 3.4.

3.2. Data sources

The archaeomagnetic data collated includes the early UK pub-
lications (e.g. Cook and Belshé, 1958; Aitken, 1958, 1960; Aitken and
Weaver, 1962), summarised in the first major compilation made by
Clark et al. (1988). It also includes the data collated within the
Plymouth archaeomagnetic directional database established by
Tarling (http://www.ngdc.noaa.gov/geomag/paleo.shtml) as well as
the work of Zananiri et al. (2007). A number of additional studies
were located during the course of the ‘Magnetic Moments in the
Past’ project and by Clelland (2011), including archaeomagnetic
dating reports, theses, site monographs, grey literature and per-
sonal communications with UK archaeomagnetic laboratories.

3.3. New approaches to interpreting independent archaeological
dates

As discussed in section 2, construction of the SV curve requires
independent dates for measured magnetic directions. These may be
provided by another scientific dating technique, documentary
sources or archaeological information. By the 1970's a substantial
body of archaeomagnetic data had been collected worldwide and it
was becoming apparent that the dating errors were limiting at-
tempts to estimate past secular variation, regardless of the type of
archive utilised, whether archaeological, marine, volcanic or sedi-
mentary records (e.g. Cong and Wei, 1989). This problem has been
acknowledged by all workers since the 1980's (for example Barton,
1982; Bucur, 1994; Donadini et al., 2009; Marton, 2003) but it is
often underestimated. There are two key issues that require
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consideration; whether the independent date reflects current
archaeological knowledge, and whether it dates the archae-
omagnetic event.

As early as 1960, Aitken recognised that the age estimates pro-
vided by archaeologists during archaeomagnetic sampling were
often preliminary and required revision after post-excavation
analysis, when the archaeological and scientific chronological evi-
dence are synthesised into a holistic and objective model. The in-
formation recorded within archaeomagnetic databases usually
relies on the data available at the time of sampling and therefore
may not represent the best data available. Even the final archaeo-
logical site report represents the theories and interpretations
prevalent when the report was produced. Approximately 20% of the
studies included in the UK database were conducted in the 1950s
and 1960s, before scientific dating was routinely used on archae-
ological sites. The discipline of archaeology has changed dramati-
cally since this time, including methodological developments,
improvements to scientific dating such as radiocarbon calibration,
changes to theoretical paradigms, more cautious approaches to the
relationship between artefacts and features of interest, de-
velopments in artefact typologies, and a greater awareness of
archaeological formation processes (Trigger, 2007; Hodder, 1992;
Renfrew, 1973; Schiffer, 1987). It is not acceptable for a SV curve
to be based on out-dated ideas or theories and so the data must be
regularly reassessed (Lanos et al., 1999:378).

Ensuring that the independent information dates the archae-
omagnetic event is also complex, as it requires an understanding of
how independent dates have been obtained, how archaeologists
use this information and how this is related to the event recording
the geomagnetic field. For example, the archaeomagnetic direction
obtained from a hearth relates to last use of the feature, which may
be interpreted as the abandonment of that structure, or at least the
end of a particular phase of activity. Of UK archaeomagnetic studies
approximately 85% rely on archaeological and/or historical evi-
dence to assign this age estimate, usually because scientific dates
were too expensive or there was a lack of suitable material. Dating
strategies employed on most archaeological excavations focus on
developing a narrative for the entire site, but archaeomagnetic
studies require an estimation of the point in time an individual
feature went out of use. A re-evaluation of this requires an under-
standing of the relationship between the physical processes being
exploited for dating purposes and archaeological formation pro-
cesses, to improve the accuracy of the age estimates applied to
archaeomagnetic data. There has been no systematic review of the
independent dating evidence for archaeomagnetic directions in
Britain since their initial publications, so an investigation is timely.

In order to demonstrate the impact that reviewing the age es-
timates can have on the SV curve, the first millennium BCE section
of the UK database was targeted (Clelland, 2011), specifically the
Iron Age period of British prehistory. There is evidence from across
Europe that the Earth's magnetic field experienced rapid changes in
direction during this time (Frank et al., 2002; Gallet et al., 2002;
Hervé et al.,, 2013; Nourgaliev et al., 2005; Ojala and Saarinen,
2002; Ojala and Tiljander, 2003; Snowball and Sandgren, 2002;
Snowhball et al., 2007; Stockhausen, 1998), suggesting that archae-
omagnetism could potentially enable high-resolution dating of
British Iron Age archaeology. Furthermore, many of the magnetic
directions from prehistoric sites in the previously published British
databases (Clark et al., 1988; Zananiri et al., 2007) had been given
the generic date range 700BCE- 43CE as they had been defined as
“pre-Roman Iron Age”. Therefore it was likely that a review of the
dates would give increased precision and accuracy.

Over 230 directions from 98 prehistoric sites were evaluated
using an adapted version of the approach suggested by Armit
(1991), where the potential dating methods were placed into a

hierarchy reflecting the reliability of each of the methods (Clelland,
2011). As with all dating methods, the challenge was associating the
event dated by each method to the actual archaeological event of
interest (Taylor, 1987: 15). For example, radiocarbon de-
terminations were only considered if they could be closely related
to the event that caused the geomagnetic field to be recorded (e.g.
from a charred grain within a hearth rather than unidentified
charcoal which might be old at the point of deposition) or when
there was a stratigraphic relationship between the radiocarbon
determination and the context sampled for archaeomagnetic
studies, in which case Bayesian methods of analysis using Oxcal
(Bronk Ramsey, 2009) were employed (Fig. 1a). Throughout this
process the main concern was to ensure that the date range allo-
cated to each of the magnetic directions provided the most accurate
reflection of the associated archaeology based on the available in-
formation from the archaeologist, even if this reduced the precision
of the independent date. The stratigraphic record was used to
combine all the available chronological indicators to answer a
single question: when did the feature sampled acquire its
magnetisation?

In most instances, it was found that small adjustments could be
made by considering the site chronology and understanding how
the event dated by archaeomagnetism fits the overall site narrative
(Clelland, 2011). In some cases major reinterpretation was possible.
For example, at the site of Little Bay on the Isles of Scilly, first
exposed during storms in 1891 and excavated in 1952—53,1974 and
1980 (Neal, 1983), excavations revealed four buildings and
archaeomagnetic samples were taken from a burnt feature in
Building 2, a stone built roundhouse. This magnetic direction is
included in the first British archaeomagnetic dataset (Clark et al.,
1988) with an independent date of ‘probably Iron Age’, which
became 700BCE-43CE in subsequent databases (Zananiri et al.,
2007). However, three stratigraphically related radiocarbon de-
terminations were subsequently obtained (Jordan et al., 1994).
Bayesian analysis of this sequence (Fig. 1b) demonstrates that the
dating evidence matches their stratigraphic positions, and indicates
that the context sampled for archaeomagnetism actually dates to
1695BCE-1265calBCE. The wide age range arises because of the
imprecision of radiocarbon dating at the time and the nature of the
samples, but it is clear that the feature is much earlier than the
previous accepted age range, which has implications for the models
obtained. This is supported by more recent interpretations of the
archaeological evidence of the structures and ceramic assemblage
as being Late Bronze Age (Neal, 1983; Clelland, 2011). More precise
results would be obtained if modern radiocarbon dates on short
lived samples were available.

This approach has led to significant improvements to the British
archaeomagnetic dataset as the age estimates examined now
represent a more accurate indication of the associated archaeology
and over a third are more precise. In some cases the age ranges have
increased as discussed in section 3.4.

3.4. Data evaluation

The exhaustive data collection has resulted in a significant in-
crease in the total number of archaeomagnetic determinations
from 92 determinations (Clark et al., 1988) and 620 in Zananiri et al.
(2007) to 939 collected from 440 locations in this compilation
(Fig. 2). Of the 620 entries in Zananiri et al. (2007), 571 entries had
an associated age or site coordinates. Of the 939 in our new
compilation 909 have been assigned an age. Some data are included
in the Magnetic Moments in the Past database with no associated
age estimate, usually because excavation or post-excavation work
are still going on and this information needs adding at a later stage.
This is the largest collection of independently dated
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a)

Event C: wall collapse
Event B: last use of hearth
Event A: floor surface
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Fig. 1. Example of use of archaeological and Bayesian re-evaluation to improve independent dating. a) A sequence of archaeological events, A B and C, constrained within a
structural unit. The archaeological evidence indicates that event A (floor surface) is earlier than B (last use of the hearth) and both A and B happened before event C (collapse of
structure). If a date can be estimated for events A and C, for example via radiocarbon dating, then it is possible to calculate the most probable age range for event B, the event of
archaeomagnetic interest. b) Radiocarbon dates on charcoal from Little Bay within a stratified sequence (HAR-1726 overlies HAR-1715 which overlies HAR-4324). HAR-1715 was
obtained from the same context as the archaeomagnetic study. Bayesian analysis of the sequence allows a constrained date to be obtained for the context of interest (Clelland, 2011;
Bronk Ramsey, 2009).
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Fig. 2. Spatial distribution of archaeological locations within (a) the compilations of (red) Clark et al. (1988) and (blue) Zananiri et al. (2007) and (b) the Magnetic Moments in the
Past (MM-DB) database (orange; this study). n/N is the number of entries and the number of locations. Differences between latitudes and longitudes of some archaeological sites in
(a) and (b) arise from corrections made in the compilation of the Magnetic Moments in the Past database. Black star is the location of Meriden, traditionally used as the central
location for UK data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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archaeomagnetic directions reported from a single country. The
number of data in the Magnetic Moments in the Past database and
GEOMAGIAS50 differ as not all directions in Magnetic Moments in
the Past have an associated age, some entries from that database
have been combined into single entries in GEOMAGIA50 and some
entries in GEOMAGIA50 do not appear in Magnetic Moments in the
Past as they lack the necessary contextual metadata.

The geographical distribution of the sites sampled for archae-
omagnetic dating is skewed, with the majority of studies being
located in southern England: only 10% of the sampled sites are
above 55° latitude (Fig. 2). This distribution may affect the accurate
development of SV curves due to the way in which the Earth's
magnetic field varies both temporally and spatially, as a result of the
behaviour of the non-dipole field. It is generally accepted that
ideally data for the SV curve should be gathered from approxi-
mately 1000 km around the site under investigation (Shuey et al.,
1970; Tarling, 1989; Noel and Batt, 1990); but it is clear that some
of the northern and western areas of the UK have little data in close
proximity. Further studies are required to investigate the signifi-
cance and impact that this may have on the application of
archaeomagnetic dating in these areas.

The data are also unevenly distributed through time (Fig. 3a).
The database is dominated by features sampled from Medieval
(1066CE-1540CE), Roman (43CE-410CE) and Iron Age (800BCE-
43CE) sites, which reflects activity in the past, the nature of recent
archaeological investigations and preservation of features (defini-
tions of dates used throughout are taken from Forum on
Information Standards in Heritage, 2016). This distribution is also
influenced by whether excavators consider archaeomagnetic
studies worthwhile, and therefore whether they make features
available for sampling; a factor that is particularly influential in
early periods (for example only ~2% of directions have assigned
ages before 1000BCE). Although the temporal distribution of data
has improved, the early Iron Age (c. 800BCE-300BCE) is still poorly
represented, probably a true reflection of the British archaeological
record. Many Iron Age sites show continuity of use from the late
Bronze Age through to the late Iron Age or early Roman period
(Serensen and Thomas, 1989), meaning that later occupation in the
same location has destroyed earlier remains. Therefore, as archae-
omagnetism provides a date for the last use of a feature, the early
Iron Age will be poorly represented. This situation is further com-
pounded by the difficulty of identifying late Bronze Age/early Iron
Age transition sites and the under-use of archaeomagnetism on
prehistoric sites. Concerted efforts are needed to collect more data
from these periods.

The age uncertainty of the data (Fig. 3b) has largely improved
following re-evaluation. Although for the majority (65%) of data in
GEOMAGIA50 the modifications are smaller than 100 years, they
range between 100 and 500 years for 26% of the revised data and
are larger than that in about 9% of the cases. However, some of the
independent dates derived from older studies were based on an
over-reliance of the precision of typological dates for pottery and
the age ranges have had to be revised upwards. Whilst 43% of the
date ranges span less than 200 years, other periods would benefit
from similar re-evaluation to the Iron Age focus described above.
76% of directions have ags values of less than 5° (Fig. 3c), commonly
considered to be the maximum appropriate for dating (Linford,
2006), but less precise data have been included as sometimes
they are the only data available for a period or region. Sixteen di-
rections were published without ag5 values (Fig. 3c).

Analysis of the types of features investigated (Fig. 3d) shows that
the vast majority (~70%) are ovens, hearths and kilns which reflects
their use in the past, survival and ease of identification on
archaeological sites. The range of materials amenable to archae-
omagnetic studies is demonstrated by ‘Other’ which includes

hypocausts, burnt pits and iron-smelting furnaces.

Site inclinations range from 30° to 86°, with a Fisher mean
inclination of 65° (Fig. 3e). At two standard deviations, site in-
clinations lie between 52° and 78°. Although site declinations have
a large range (Fig. 3g), between 289° and 82°, at two standard
deviations the range is reduced, with site declinations between
338° and 30° and Fisher mean declination of 3.9°. It is common
practice in UK archaeomagnetic studies to relocate magnetic di-
rections to Meriden (52.43°N; 1.62° W), taken to be the centre of
England, using the tilted dipole reduction method in order to
reduce errors arising from spatial magnetic field variation (Noel
and Batt, 1990; Tarling and Dobson, 1995). This correction results
in only a small change to the Fisher mean directions and the shape
of the inclination and declination distributions (Fig. 3f, h). This is
unsurprising as the majority of data are from southern England and
the Midlands, resulting in only minor changes in direction on
relocation. The relocated Fisher mean inclination of 64.5° for all
samples is slightly shallower than the geocentric axial dipole (GAD)
value of 68.9° expected for Meriden.

Although Clark's hand-drawn SV curves (Clark et al., 1988) were
informed by the SV recorded in British lakes (Turner and
Thompson, 1981, 1982), the lake sediment values are not included
in this British dataset due to the lack of precision of the associated
radiocarbon dates, issues arising generally with dating sediment
sequences from unvarved sediments (Nourgaliev et al., 2005), and
obscuring of the signal through the sampling procedure (Katari and
Bloxham, 2001; Tauxe et al., 2006). The directions obtained from
lake sediments are available in GEOMAGIA50 (Brown et al., 2015b).
However there are 18 examples of magnetic directions that origi-
nate from depositional recording process within the UK database
(2%), largely from short sediment sequences or single event
deposits.

4. Secular variation curves and models
4.1. Previous UK secular variation curves

As discussed in the introduction, in order to use the data
collected for dating it is necessary to infer from them patterns of
geomagnetic change in the past. Early studies (Aitken, 1958, 1960;
Aitken and Weaver, 1962) initially presented the data as declina-
tion vs time and inclination vs time, as the data were sparse and
widely distributed over time. Where sufficient data were available
secular variation was interpolated. The first comprehensive SV
curve for the UK was produced by Clark et al. (1988); constructed
using 238 direct observations of the geomagnetic field and
archaeomagnetic directional data from 92 features, covering
1000BCE to the present day. It was presented as a Bauer plot
(declination vs inclination, Bauer, 1896), with magnetic directions
corrected to Meriden. The Clark et al. (1988) SV curve remained the
principal method of calibrating archaeomagnetic dates in the UK
for 20 years, although a number of shortcomings were identified
(Batt, 1997, 1998; Tarling and Dobson, 1995). The main limitations
were that the curve was drawn by hand through the data points,
errors in the magnetic measurements and the independent dates
were not represented or assessed, and some periods (particularly
the 1st millennium BCE) were based on limited archaeomagnetic
measurements and relied heavily on data from British lake sedi-
ment sequences.

The SV curve developed by Zananiri et al. (2007) increased the
number of available archaeomagnetic data points to 620 and
extended the curve back to 2000BCE. The SV curve was derived
statistically utilising a Bayesian approach through the use of the
RenCurve software developed by Lanos (Lanos, 2004; Lanos et al.,
2005), which resulted in a robust and more objective SV curve.
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n = number of data.

This approach created a Bayesian hierarchical model of the exper-
imental errors (Lanos, 2004), allowed the presence of any system-
atic errors due to sampling or measurement protocols to be
identified, and made concessions to the quality of the magnetic
data by weighting the analysis towards the more reliable magnetic

data (Donadini et al, 2009; Lanos, 2004; Lanos et al.,, 1999),
removing the need to reject data from an already limited dataset.
RenCurve computes the directional curve using declination and
inclination together but the record of SV was presented as two
individual curves, inclination and declination vs. time, as there
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were now too many data to be clearly presented on a Bauer plot. An
assessment of the error assigned to data included in the curve was
presented as a 95% confidence envelope around each curve. Despite
the improvements made, some periods of time were still not well
defined, due to either a lack of data points, or a lack of precision
associated with the independent age estimates assigned to each
archaeomagnetic date, prompting the current study.

4.2. New UK geomagnetic field model and dating curve

The archaeomagnetic mean declination and inclinations of the
updated and new data are presented in Fig. 4. In order to consider
the data for future archaeomagnetic dating purposes, we derived a
temporally continuous geomagnetic field and SV model for the UK.
Such a model can provide curves of geomagnetic field variation for
any location, in particular, new reference curves of declination,
inclination and intensity for Meriden.

This UK model is based on a global model following the method
used for the CALSxk and ARCHxk series of models, which are
described in detail by, e.g. Korte et al. (2009), and similar to the
method used by Lodge and Holme (2009). The model is obtained by
an inversion using spherical harmonic functions in space and cubic
B-splines in time. Spatial and temporal regularization constraints
trade-off fit to the data against smoothness of the model, aiming at
the simplest model that explains the observations within their
uncertainties and avoiding spurious variations caused by too
closely fitting erroneous data. Choosing the strength of these reg-
ularizations based on comparisons with the geomagnetic main
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field and secular variation power spectra provides models with the
highest physically reasonable amounts of variability that can be
inferred from the available data (Lodge and Holme, 2009; Korte
et al., 2009).

We aim to obtain the best possible description of the surface
geomagnetic field in a limited region by a model that is physically
compatible with sources of secular variation deep in Earth's core, in
order to avoid unrealistically fast or small-scale variations that
might otherwise result from fitting some of the data too closely.
Lodge and Holme (2009) used an existing global model as back-
ground with new European data with this same goal. In contrast,
we use a global dataset and derived a new global model, while
aiming for highest accuracy in the UK region. The global dataset is
the same as used for ARCH10k.1 (Constable et al., 2016), i.e. all
archaeomagnetic and volcanic data available from GEOMAGIA50.v3
(Brown et al., 2015a) up to 30™ April, 2015. However, we removed
all UK directional data from this data set and replaced them by the
updated and new data described above. Our aim is the highest
possible accuracy for the UK. Therefore we have down-weighted
data from other regions by weighting all UK data four times more
strongly than non-UK data; the factor of four was determined
empirically through an assessment of misfit of model to data for
different weighting factors. Each datum is weighted by its magnetic
uncertainty estimate. Values of ags = 3.4° and 5 pT, respectively,
were used if no uncertainties were given. We do not have a good
method to take age uncertainties into account directly. Therefore
we discarded data with age uncertainties >750 yrs. In general the
solution of our inverse problem is non-unique, therefore we
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colour in this figure legend, the reader is referred to the web version of this article.)
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obtained an ensemble of 2000 models. Each model is based on a
different data set where the archaeomagnetic data and their ages
were varied randomly within their uncertainty estimates. The in-
fluence of the inhomogeneous data distribution was evaluated by
bootstrap selections from the full data set (see Korte et al., 2009 for
details). As with ARCH10k.1, our global models span the time in-
terval 10 000BCE to 1990CE. Based upon the higher weighting of
the UK data and their temporal coverage, we limited the validity of
the model to the spatial range of 49° N to 61° N and 11° W to 2° E,
and the time to 5000BCE to 1990CE. The recent part of the model is
constrained to fit the gufml model (Jackson et al., 2000) as
described by Korte et al. (2009). gufm1 describes the global field
based on historical and recent direct magnetic field observations
for 1590CE to 1990CE and provides the most accurate description of
the geomagnetic field currently available for this time interval.

Our new ensemble average model is named ARCH-UK.1. Un-
certainty estimates for component predictions can be obtained in
two ways: from the standard deviation in the spherical harmonic
coefficients of the ensemble or as the standard deviation of the
individual components as predicted from all models. The first
method gives somewhat larger and more uniform estimates, often
more realistic in cases of sparse data coverage, but likely to be too
pessimistic for times and areas with good data coverage. In general
both methods might underestimate the uncertainties in large areas
with insufficient data coverage (Korte et al., 2009).

We used the data’s original site coordinates for the modelling,
but for an easier comparison with the model, and as frequently
done in previous archaeomagnetic studies (e.g. Clark et al., 1988;
Zananiri et al., 2007), we show all data and model curves reduced
to the location of Meriden (Fig. 5).

The model uncertainty estimates have been calculated as the
standard deviation of all ensemble model predictions. Uncertainty
estimates in declination and inclination are clearly small when data
coverage is dense and larger for earlier periods where data are
sparse. For intensity, where data coverage is extremely sparse, the
uncertainty estimates are likely to be too optimistic. Several data
fall outside the uncertainty estimates of the model in all compo-
nents. Although in some cases this may result from the limited
temporal variability of the model, which is not fully accounted for
by its uncertainty estimates, for most periods there is no systematic
under- or overestimation by the model predictions. Exceptions are
intensity values younger than 1000CE, many of which are lower
than the model predictions; a future study is need to evaluate these
data in detail. The small number of UK intensity data (Fig. 5) clearly
does not have a strong effect on the model, which is dominated by
the much larger numbers of intensity values from France and other
parts of Europe.

Part of the scatter of data around the model prediction for
Meriden may result from variations in the non-dipole field that are
not taken into account in the reduction to Meriden. The UK model
allows the influence of the non-dipole field to be evaluated. Fig. 6
displays the geomagnetic field morphology over the UK and
Ireland for two epochs, 500BCE and 1000CE, and Fig. 7a shows
model predictions for the four outer corners of the same area. In
Fig. 7b these curves have all been reduced to Meriden by the tilted
dipole field assumption. Regional differences over this area are in
the range of 10° in declination and inclination and 7 pT in intensity.
In inclination and intensity most of the latitudinal differences result
from a dipole field geometry. Changes in the contour line patterns
between 500BCE (Fig. 6a) and 1000CE (Fig. 6b) illustrate variations
in the non-dipole field over time. This is most clearly seen in
declination, where the pattern of larger angles of declination in the
west and smaller angles in the east in 500BCE is reversed in
1000CE. In inclination and intensity the latitudinal difference of the
dipole field dominates. There is a nearly constant difference

between northern and southern curves in Fig. 7a. Weaker non-
dipole variations are indicated by slight differences in contour
density between Fig. 6a and b, and by small variations in the pre-
dictions from the model area's four corners after reduction to
Meriden (Fig. 7b). However, most of the time all four Meriden
curves fall well within either of the bootstrap uncertainty estimates
of the ARCH-UK.1 prediction for Meriden.

An important application of our new UK model is that individual
dating curves, i.e. model predictions, can be generated for any
location within the UK and Ireland. The reduction of archae-
omagnetic data to a central location for dating is no longer neces-
sary. However, for an area the size of the UK, a central dating curve
can be used as reasonable approximation, if the data are corrected
for the effect of dipole field geometry.

4.3. Comparison to previously published global geomagnetic field
models and reference curves

We now investigate the improvements of ARCH-UK.1 in
describing the geomagnetic field evolution over the UK and Ireland
and its performance as a dating tool through comparisons with
previously published archaeomagnetic field models and reference
curves.

Recently published global models have been constructed from
similar archaeomagnetic and volcanic datasets to those used in our
UK model; however, these models include the old UK data and
different strategies were used in the modelling. We compare our
UK model with A_FM (Licht et al., 2013) spanning the past 3000
years; SHA_DIF.14k (Pavon-Carrasco et al., 2014) covering the past
14 000 years; and ARCH10k.1 (Constable et al., 2016) covering the
past 10 000 years (Fig. 8a). All models at Meriden in general agree
well, but the updated and new UK data revise the amplitudes of
declination and inclination maxima around 1000CE and 800CE
respectively, as a consequence of the scatter in the data set. Clear
discrepancies existed among previous models between 1200BCE
and 500BCE. Several new and updated directional data from these
periods (see Fig. 5) lend credibility to our new model for this time
interval. Prior to 1200BCE only slight differences are seen between
ARCH-UK.1 and ARCH10k.1. These models are constructed in a
similar way and there are only sparse data for this time (Fig. 5).
ARCH-UK.1 is in slightly better agreement with the few existing and
updated data from this time. The higher temporal variability of
SHA.DIF.14k, particularly for times BCE, is not supported by our
updated UK dataset. For most epochs the intensity variations pre-
dicted by all models agree within their uncertainty estimates (not
shown in the figure). This is not surprising as data for the UK are
scarce and were not reassessed as part of this study.

In Fig. 8b the two UK reference curves designed for archae-
omagnetic dating by Clark et al. (1988) and Zananiri et al. (2007) are
shown with ARCH-UK.1 predictions at Meriden. Also included are
predictions from the GMADE2K.1 model (Lodge and Holme, 2009),
which covers 1CE to 1900CE. GMADE2K.1is a global model, but was
derived for Europe. It was constructed using European reference
curves, including Zananiri et al. (2007), rather than individual data.
Whilst there are broad similarities, differences among these curves
underline the importance of plentiful data to obtain reliable refer-
ence curves. As discussed above Clark et al. (1988), nearly 30 years
ago, had significantly less data to construct their curve. All more
recent results suggest that some of the very strong variations seen
in Clark's curve are spurious, due to too closely fitting uncertain
data. However, it should be noted that any method that infers a
smooth curve not constrained to pass through every data point will
smooth out extrema, damping large variations even if genuine
(Lengyel and Eighmy, 2002). We note that the scatter in our data set
is relatively large, and the French secular variation curve (Gallet
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Fig. 6. Declination (left), inclination (middle) and field intensity (right) distribution over the UK and Ireland in (a) 500BCE and (b) 1000CE. Directions are in degrees, intensity in uT.

et al., 2002; Hervé et al., 2013) from further south shows a decli-
nation maximum of similar amplitude as the Clark et al. (1988)
curve. The prominent declination swing to ~40°E in the Clark
et al. (1988) curve arises from its reliance on palaeomagnetic data
from the lake sediments (Turner and Thompson, 1981). This
declination swing may therefore be a prominent feature of the field
in northwestern Europe between 500 and 1000 BCE; however, it is
one that our purely archaeomagnetic model fails to resolve and is a
current limitation to the dating curve. Further archaeomagnetic
data from the UK for this time, concentrating on reducing archae-
omagnetic and dating uncertainties, would be required to confirm
this declination swing. In addition, a re-examination of sediment
palaeomagnetic data from UK lakes would also bring further insight

into the timing and character of this possible declination swing.
The difference between GMADE2K.1 and the Zananiri et al.
(2007) reference curve in inclination might seem surprising, but
Lodge and Holme (2009) noticed that the European reference
curves they used as input data were not always mutually consistent
in the frame of a physically reasonable geomagnetic field model.
Moreover, Lodge and Holme (2009) used a very smooth and by now
outdated background model (Korte and Constable, 2005). They
concluded that instead of using smoothed curves, it is preferable to
use individual input data, as we have done in ARCH-UK.1. The dif-
ference between the ARCH-UK.1 and the Zananiri et al. (2007)
reference curves is small. The curves mostly fall within each
other's uncertainty limits (not shown in the figure). However, the
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Table 1
Archaeomagnetic data for Context 4700 Structure 14 at Old Scatness Broch, Shetland.

79

Feature description Fired clay in primary hearth

Sample number AM61: Bradford

No. of samples taken/used in mean 22/[22
Mean characteristic declination at Meriden —3.1°
Mean characteristic inclination at Meriden 67.2°
a5 of characteristic remanent magnetisation 2.4°

k, Fisher precision estimate 154.7

Archaeological Date based on radiocarbon from 310BCE-50BCE
stratigraphically related deposits
Archaeomagnetic date using Zananiri et al., 2007 520BCE-126CE
410CE—650CE
1599CE-1698CE
266BCE-129CE

469CE-543CE

Archaeomagnetic date using ARCH-UK.1 and Matlab

period where we have concentrated on improving the archaeo-
logical date ranges, 1000BCE-1BCE shows the most differences,
which demonstrates the value of re-evaluating existing data. There
are also significant differences in the historical times after 1600CE.
These arise because ARCH-UK.1 is indirectly constrained by much
more data in this time interval and might show higher temporal
variability as it is forced to agree with the gufm1 model (Jackson
et al., 2000) while the Zananiri et al. (2007) curve is constrained
by only few data in that time interval. The difference in the time
interval 1000BCE—1BCE is comparable to the difference that is seen
in the time interval where ARCH-UK.1 is indirectly constrained by
additional historical data. Improvements from the updated and

new data are noted at similar times as already observed in com-
parison to previous global models. Moreover, ARCH-UK.1 has
slightly higher temporal resolution in addition to spanning a longer
time interval and including all three vector components in a
physically consistent way.

In order to use ARCH-UK.1 for archaeomagnetic dating, it can be
incorporated into the Matlab programme developed by Pavon-
Carrasco et al. (2011), which allows comparison between a
measured archaeomagnetic direction and the new model (Appendix
1). The effects of the revisions made are illustrated by considering
the example of an archaeomagnetic direction obtained from fired
clay in the primary hearth in Structure 14 (Table 1, Fig. 9) excavated
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at Old Scatness Broch, Shetland (latitude 59.87°N, longitude 1.3°W:
Outram and Batt, 2015; Outram, 2006). The previous reference curve
(Zananiri et al., 2007) produces three possible date ranges. ARCH-
UK.1 produces two possible ranges. The date range that is consis-
tent with the archaeological information is 250 years more precise
and closer to the date obtained from radiocarbon measurements,
highlighting the impact of reassessment of the dataset.

5. Conclusions and further work

This research has collated and updated the largest collection of
dated archaeomagnetic directions from a single country, resulting
in a marked increase in the quantity and quality of archae-
omagnetic data available for the UK. The data are now easily
available to other workers for archaeological, archaeomagnetic and
geomagnetic research, allowing regular review of the UK SV curves
and highlighting aspects that need to be targeted to improve the
method. In addition, the database demonstrates the effectiveness of
archaeomagnetism in different situations, and therefore increases
awareness of the technique to a wider audience.

A strategy for the re-evaluation of the independent dating evi-
dence has been suggested and, when applied in the 1st millennium
BCE, has demonstrated that the existing data can be improved
significantly. Clearly reassessment of the dating evidence for other
periods would further improve the precision of SV curves. Such
reassessment requires collaboration between archaeologists (pot-
tery specialists, period specialists, technology specialists) and
archaeomagnetists to ensure that SV curves represent current
archaeological understanding.

The data have been used to produce a detailed record of secular
variation of the geomagnetic field in the UK, which has added
considerable detail to previous studies. In particular, archae-
omagnetic calibration curves have been produced that can be used
for dating material from the UK from the present to 5000BCE. In
order to further improve the SV curve we require more high quality
archaeomagnetic data, ideally with a targeted sampling campaign
to improve the precision in key periods, as well as investigating
sites located in the northern and western extremes of the UK and
Ireland. The analysis has specifically demonstrated the need for
more data to be collected from before 500BCE and between 400CE
and 800CE. Even if the material has no independent date at present,
it is worth collecting as it may be datable in the future. Archaeo-
logical situations which allow the sampling of a number of strati-
graphically related horizons, with associated independent dates
would be particularly valuable.

It is not possible to state a generally expected precision for an
archaeomagnetic date; in periods where geomagnetic change was
rapid it will be possible to produce a more precise age range than
for periods where changes were slower. However, it is possible to
use the SV curves to check the likely precision before sampling, if
the expected date is broadly known.

Many of the recent developments reported in this paper have
been reliant on dialogue with archaeologists; to improve commu-
nication a website has been established (Outram, 2011) to provide
clear, accessible, up-to-date information which addresses the
questions raised by archaeologists. A better understanding of what
archaeomagnetic analysis can offer leads to increased access to
features for archaeomagnetic sampling; more data improve both
precision and accuracy of the SV record and therefore improve the
dating method itself and the data available for geomagnetic
modelling.
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