

warwick.ac.uk/lib-publications

Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/111129

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance
from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/161867312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/111129
mailto:wrap@warwick.ac.uk

A φ-Competitive Algorithm for Scheduling Packets with Deadlines

Pavel Veselý∗ Marek Chrobak† Lukasz Jeż‡ Jǐŕı Sgall§

Abstract
In the online packet scheduling problem with deadlines
(PacketScheduling, for short), the goal is to schedule trans-
missions of packets that arrive over time in a network switch
and need to be sent across a link. Each packet has a dead-
line, representing its urgency, and a non-negative weight,
that represents its priority. Only one packet can be trans-
mitted in any time slot, so, if the system is overloaded, some
packets will inevitably miss their deadlines and be dropped.
In this scenario, the natural objective is to compute a trans-
mission schedule that maximizes the total weight of pack-
ets which are successfully transmitted. The problem is in-
herently online, with the scheduling decisions made without
the knowledge of future packet arrivals. The central prob-
lem concerning PacketScheduling, that has been a subject of
intensive study since 2001, is to determine the optimal com-
petitive ratio of online algorithms, namely the worst-case
ratio between the optimum total weight of a schedule (com-
puted by an offline algorithm) and the weight of a schedule
computed by a (deterministic) online algorithm. We solve
this open problem by presenting a φ-competitive online al-
gorithm for PacketScheduling (where φ ≈ 1.618 is the golden
ratio), matching the previously established lower bound.

1 Introduction
In the online packet scheduling problem with deadlines
(PacketScheduling, for short), the goal is to schedule
transmissions of packets that arrive over time in a
network switch and need to be sent across a link. Each
packet p has a deadline dp, representing its urgency, and
a non-negative weight wp, that represents its priority.
(These priorities can be used to implement various levels
of service in networks with QoS guarantees.) Only
one packet can be transmitted in any time slot, so, if
the system is overloaded, some packets will inevitably
miss their deadlines and be dropped. In this scenario,
the natural objective is to compute a transmission
schedule that maximizes the total weight of packets

∗Charles University, Prague, Czech Republic and University of
Warwick, UK. Email: vesely@iuuk.mff.cuni.cz.
†University of California at Riverside, USA. Email:

marek@cs.ucr.edu.
‡University of Wroc law, Poland. Email: lje@cs.uni.wroc.pl.
§Charles University, Prague, Czech Republic. Email:

sgall@iuuk.mff.cuni.cz.

which are successfully transmitted. In the literature
this problem is also occasionally referred to as bounded-
delay buffer management, QoS buffering, or as a job
scheduling problem for unit-length jobs with release
times, deadlines, and weights, where the objective is
to maximize the weighted throughput.

The problem is inherently online, with the schedul-
ing decisions made without the knowledge of future
packet arrivals. The central problem concerning Pack-
etScheduling, that has been a subject of intensive study
since 2001, is to determine the optimal competitive ra-
tio of online algorithms, namely the worst-case ratio be-
tween the optimum total weight of a schedule (computed
by an offline algorithm) and the weight of a schedule
computed by a (deterministic) online algorithm.

This paper provides the solution of this open prob-
lem by establishing an upper bound of φ on the com-
petitive ratio for PacketScheduling (where φ ≈ 1.618 is
the golden ratio), matching the previously known lower
bound [16, 3, 22, 10]. Our φ-competitive algorithm
PlanM is presented in Section 4. The basic idea un-
derlying our algorithm is relatively simple. It is based
on the concept of the plan, which, at any given time t, is
the maximum-weight subset of pending packets that can
be feasibly scheduled in the future (if no other packets
arrive); we describe it in Section 3. When some packet
p from the plan is chosen to be scheduled at time t, it
will be replaced in the plan by some other packet %.
The algorithm chooses p to maximize an appropriate
linear combination of wp and w%. For technical reasons,
it also makes additional changes in the plan, adjusting
deadlines and weights of some packets. While the al-
gorithm itself is not complicated, its competitive anal-
ysis given in Section 5, is quite intricate. It relies on
showing a bound on amortized gain at each step, using
a potential function, which quantifies the advantage of
the algorithm over the adversary in future steps, and
on maintaining an invariant that allows us to control
decreases of the potential function.

Past work. The PacketScheduling problem was first in-
troduced independently by Hajek [16] and Kesselman et
al. [19], who both gave a proof that the greedy algo-
rithm (that always schedules the heaviest packet) is 2-
competitive. Hajek’s paper also contained a proof of a
lower bound of φ ≈ 1.618 on the competitive ratio. The

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited123

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

same lower bound was later discovered independently
by Andelman et al. [3, 22] and also by Chin et al. [10] in
a different, but equivalent setting. Improving over the
greedy algorithm, Chrobak et al. [11, 12] gave an online
algorithm with competitive ratio 1.939. This was subse-
quently improved to 1.854 by Li et al. [21], and to 1.828
by Englert and Westermann [14], which, prior to the
present paper, has been the best upper bound known.

Algorithms with ratio φ have been developed for
several restricted variants of PacketScheduling. Li et
al. [20] (see also [18]) gave a φ-competitive algorithm
for the case of agreeable deadlines, which consists of
instances where the deadline ordering is the same as
the ordering of release times. Another well-studied
case is that of s-bounded instances, where each packet’s
deadline is within at most s steps from its release time.
A φ-competitive algorithm for 2-bounded instances was
given by Kesselman et al. [19]. This bound was later
extended to 3-bounded instances by Chin et al. [9] and
to 4-bounded instances by Böhm et al. [8]. The work of
Bienkowski et al. [6] provides an upper bound of φ (in
a somewhat more general setting) for the case where
packet weights increase with respect to deadlines. (It
should be noted that the lower bound of φ applies to
instances that are 2-bounded, which implies agreeable-
deadlines, and have increasing weights.) In s-uniform
instances, the deadline of each packet is exactly s
steps from its release time, which also implies agreeable
deadlines. The lower bound of φ in [16, 10] does not
apply to s-uniform instances; as shown by Chrobak et
al. [12], for 2-uniform instances ratio ≈ 1.377 is optimal.

Randomized online algorithms for PacketScheduling
have been studied as well, although the gap between
the upper and lower bounds for the competitive ratio
remains quite large. The best upper bound is ≈
1.582 [4, 9, 7, 17], and it applies even to the adaptive
adversary model. For the adaptive adversary, the best
lower bound is ≈ 1.33 [7], while for the oblivious
adversary it is 1.25 [10].

Kesselman et al. [19] originally proposed the prob-
lem in the setting with integer bandwidth m ≥ 1,
which means that m packets are sent in each step.
For any m they proved that the greedy algorithm is 2-
competitive and that there is a φ-competitive algorithm
for 2-bounded instances [19]. Later, Chin et al. [9] gave
an algorithm with ratio that tends to e

e−1 ≈ 1.582 for
m → ∞. The best lower bound for any m, also due to
Chin et al. [9], equals 1.25 and holds even for random-
ized algorithms against the oblivious adversary. Ob-
serve that any upper bound for bandwidth 1 implies the
same upper bound for an arbitrary m, by simulating an
online algorithm for bandwidth 1 on an instance where
each step is subdivided into m smaller steps. Hence,

our algorithm in Section 4 is φ-competitive for any m,
which improves the current state of art for any m < 13.

There is a variety of other packet scheduling prob-
lems related to PacketScheduling. The semi-online set-
ting with lookahead was proposed in [8]. A relaxed vari-
ant of PacketScheduling in which only the ordering of
deadlines is known, but not their exact values, was stud-
ied in [5], where a lower bound higher than φ was shown.
In the FIFO model (see, for example, [2, 19]), packets do
not have deadlines, but the switch has a buffer that can
only hold B packets, and packets must be transmitted
in the first-in-first-out order. More information about
PacketScheduling and related scheduling problems can
be found in a survey paper by Goldwasser [15].

2 Preliminaries

The online PacketScheduling problem. The in-
stance of PacketScheduling is specified by a set of
packets, with each packet p represented by a triple
(rp, dp, wp), where integers rp and dp ≥ rp denote the
release time and deadline (or expiration time) of p, and
wp ≥ 0 is the weight of p. (To avoid double indexing,
we sometimes use notation w(p) to denote wp and d(p)
for dp.) Time is discrete, with time units represented
by consecutive integers that we refer to as time slots or
steps. In a feasible transmission schedule, a subset of
packets is transmitted. Only one packet can be trans-
mitted in each time step, and each packet p can only
be transmitted in one slot in the interval [rp, dp]. The
objective is to compute a schedule whose total weight of
transmitted packets (also called its profit) is maximized.

In the online variant of PacketScheduling, which is
the focus of our work, the algorithm needs to compute
the solution incrementally over time. At any time step
t, packets with release times equal to t are revealed
and added to the set of pending packets (that is,
those that are already released, but not yet expired or
transmitted). Then the algorithm needs to choose one
pending packet to transmit in slot t. As this decision is
made without the knowledge of packets to be released
in future time steps, such an online algorithm cannot, in
general, be guaranteed to compute an optimal solution.
The quality of the schedules it computes can be then
quantified using competitive analysis. We say that an
online algorithm A is c-competitive if, for each instance,
the optimal profit (computed offline) is at most c times
the profit of the schedule computed by A.

Useful assumptions. We make two assumptions
about our problem without loss of generality.
(UA1) We assume that at each step t and for each
τ ≥ t (up to a certain large enough limit), there is a
pending packet with deadline τ . This can be achieved

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited124

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

by releasing, at time t, a virtual 0-weight packet with
deadline τ , for each τ ≥ t.
(UA2) We also assume that all packets have different
weights. Any instance can be transformed into an in-
stance with distinct weights through infinitesimal per-
turbation of the weights, without affecting the compet-
itive ratio. The 0-weight packets from the previous as-
sumption thus, in fact, have an infinitesimal positive
weight. The purpose of this assumption is to facilitate
consistent tie-breaking, in particular uniqueness of plans
(to be defined shortly).

3 Plans
Consider an execution of an online algorithm A. At
any time t, A will have a set of pending packets. We
now discuss properties of these pending packets and
introduce the concept of a plan.

The set of packets pending at a time t has a natural
ordering, called the canonical ordering and denoted
≺, which orders packets in non-decreasing order of
deadlines, breaking ties in favor of heavier packets.
Formally, for two pending packets x and y, define x ≺ y
iff dx < dy or dx = dy and wx > wy. The earliest-
deadline packet in some subset X of pending packets is
the packet that is the first in the canonical ordering of
X. Similarly, the latest-deadline packet in X is the last
packet in the canonical ordering of X.

A subset X of pending packets is called feasible if
the packets in X can be scheduled in future time slots
t, t + 1, ..., meeting their deadlines. Using a standard
exchange argument, if X is feasible, then any schedule of
X can be converted into its canonical schedule, in which
the packets from X are assigned to the slots t, t + 1, ...
in the canonical order.

For each slot τ ≥ t, let X≤τ = {j ∈ X : dj ≤ τ} be
the subset of X consisting of packets with deadline at
most τ , and define

pslack(X, τ) = (τ − t+ 1)− |X≤τ |;

note that τ − t + 1 is the number of slots in [t, τ]. For
convenience, we also allow τ = t − 1 and assume that
pslack(X, t − 1) = 0. Observe that X is feasible if and
only if pslack(X, τ) ≥ 0 for each τ ≥ t: If X is feasible
then in its schedule determined by the canonical order,
for each τ ≥ t all packets in X≤τ are scheduled in [t, τ];
thus |X≤τ | ≤ τ − t + 1. And vice versa, the condition
that pslack(X, τ) ≥ 0 for each τ ≥ t implies that in the
canonical schedule all packets meet their deadlines.

The collection of feasible subsets of pending packets
forms a matroid. This implies that the maximum-
weight feasible subset of pending packets, that we call
a plan, can be found by the following greedy algorithm:
Initially, let P be an empty set. For each pending packet

j in order of decreasing weights, if pslack(P ∪{j}, τ) ≥ 0
for all τ ≥ t, then add j to P . At the end, P is the plan.

Assumption (UA2) about different weights implies
that the plan P computed above is unique. We typically
use letters P,Q, ... to denote plans. Note that in a
plan we do not assign packets to time slots, that is,
a plan is not a schedule. A plan has at least one
schedule, but in general it may have many. (In the
literature, such scheduled plans are sometimes called
optimal provisional schedules.)

1 2 3 4 5 6 7

z : 0.1
p : 2.6
q : 2.5

k : 0.6
b : 0.5
a : 1.6
f : 1.0

x : 0.4

Plan: f a b k qpz

Figure 1: An example of an instance with plan P =
{f, a, b, k, z, p, q} and its canonical schedule.

We briefly describe the structure of plan P at time
t. Slot τ ≥ t is called tight in P if pslack(P, τ) = 0.
According to our convention, we also consider t − 1 to
be a tight slot. If the tight slots of P are t0 = t − 1 <
t1 < t2 < · · · , then for each i ≥ 1 the time interval
Si = (ti−1, ti] = {ti−1 + 1, ti−1 + 2, . . . , ti} is called
a segment of P . In words, the tight slots divide the
plan into segments, each starting right after a tight slot
and ending at (and including) the next tight slot. The
significance of a segment Si is that in any schedule of P
all packets in P with deadlines in Si must be scheduled
in this segment. Thus, slightly abusing terminology, we
occasionally think of each Si as a set of packets, namely
the packets in P that must be scheduled in Si. Within
a segment, packets can be permuted, although only in
some restricted ways. In particular, the first slot of a
segment may contain any packet from that segment.

For a plan P and a slot τ ≥ t, let nextts(P, τ)
be the earliest tight slot τ ′ ≥ τ (which exists by
Assumption (UA1)), and let prevts(P, τ) be the latest
tight slot τ ′ < τ (recall that t− 1 is a tight slot).

The notion that will be crucial in the design of our
φ-competitive algorithm is the minimum weight of a
packet in the plan that can be scheduled in some slot
between the current time and a slot τ . For a plan P at
time t and a slot τ ≥ t, define

minwt(P, τ) = min {w` : ` ∈ P and d` ≤ nextts(P, τ)}.

By definition, all slots τ in a segment have the same
value of minwt(P, τ). Also, for a given plan P at time

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited125

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

t, if a 6∈ P then wa < minwt(P, da), and the function
minwt(P, τ) is monotonely non-increasing for τ ≥ t.

To analyze how the plan changes over time, we
divide each step t into a sequence of events. First
we have events representing packet arrivals, with each
packet released at time t being added to the set of
pending packets. The last event represents scheduling
a packet for transmission and incrementing the current
time to t + 1. The matroid property implies that at
most one other packet in the plan changes after each
event (not counting the scheduled packet in a scheduling
event). We outline these changes below; formal proofs
will appear in the full version of this paper.
Packet arrival. Let t be the current time, P be the
current plan, and suppose that j is a new packet arriving
at time t. As j is added to the set of pending packets,
the plan needs to be updated accordingly. Define f ∈ P
to be the packet with wf = minwt(P, dj), that is the
lightest packet in P with df ≤ nextts(P, dj). If wj < wf ,
then j is not added to the plan and the plan stays the
same, while if wj > wf , then j is added to the plan and
f is forced out, i.e., the new plan is Q = P ∪ {j} \ {f}.
In the latter case, it is interesting to see how the values
of pslack() and the segments change:
• If dj ≥ df , then pslack(Q, τ) = pslack(P, τ) + 1 for
τ ∈ [df , dj). Therefore, all tight slots in [df , dj) are
no longer tight and the segments containing df and
dj and all segments in-between get merged into one
segment of Q.
• If dj < df , then df and dj are in the same

segment of P and pslack(Q, τ) = pslack(P, τ) − 1
for τ ∈ [dj , df). Thus there may be new tight slots
in [dj , df), resulting in new segments.

In both cases, the values of pslack() remain the same for
other slots. Moreover, minwt(Q, τ) ≥ minwt(P, τ) holds
for any slot τ ≥ t.
Scheduling a packet. Next, suppose that P is the
plan at time t after all packets arriving at time t are
aleady added to the set of pending packets. Suppose
that we decide to schedule a packet p ∈ P at time t.
Let Q be the new plan after p is scheduled and the
current time is incremented to t+ 1.

If p is from segment S1 of P , then Q = P \ {p}. In
this case pslack(τ) decreases by 1 for τ ∈ [t+ 1, dp) and
remains unchanged for t ≥ dp. This implies that new
tight slots may appear before dp, i.e., the first segment
may get divided into more segments. Also, minwt(τ)
does not decrease for any τ ≥ t+ 1.

The more interesting case is when p is from a later
segment than S1. Let ω be the lightest packet in S1
and let % be the heaviest pending packet not in P
that satisfies d% > prevts(P, dp). Using the matroid
property of the feasible sets of packets at time t + 1

and the structure of the plan it is possible to prove that
Q = P \ {p, ω} ∪ {%}. In this case:
• pslack(Q, τ) = pslack(P, τ) − 1 for τ ∈ [t + 1, dω).

There may be new tight slots in the interval [t +
1, dω), resulting in new segments.

• If d% ≥ dp, then pslack(Q, τ) = pslack(P, τ) + 1 for
τ ∈ [dp, d%). Here, all segments that overlap [dp, d%)
are merged into one segment of Q.

• If d% < dp, then pslack(Q, τ) = pslack(P, τ) − 1 for
τ ∈ [d%, dp). Thus new tight slots may appear in
[d%, dp), resulting in new segments.

For slots τ ≥ t + 1 not covered by the cases above, the
value of pslack(τ) does not change. Unlike for packet
arrivals, after a packet scheduling event some values of
minwt(τ) may decrease, either due to % being included
in Q or as a side-effect of segments being merged.

Let P be the plan at time t. For each j ∈ P we
define the substitute packet of j, denoted sub(P, j), as
follows. If j ∈ S1, then sub(P, j) = ω, where ω is
the lightest packet in S1. If j /∈ S1, then sub(P, j)
is the heaviest pending packet % /∈ P that satisfies
d% > prevts(P, dj) (it exists by assumption (UA1)).

By definition, all packets in a segment of P have
the same substitute packet. Also, for any j ∈ P it holds
that wj ≥ w(sub(P, j)). This is because for j ∈ S1 we
have sub(P, j) = ω and wj ≥ wω, while for j ∈ P \S1 we
have d(sub(P, j)) > prevts(P, dj); thus in this case, the
set P − {j} ∪ {sub(P, j)} is feasible and the optimality
of P implies that wj ≥ w(sub(P, j)).

4 Online Algorithm

Intuitions. For profit maximization problems, the
challenge in the online setting is to balance the im-
mediate profit against future profits. Let P be the
plan at step t. Consider the greedy algorithm for
PacketScheduling, which at time t schedules the heaviest
pending packet h (which is necessarily in P). As a re-
sult, in the next step h would be replaced in the plan by
its substitute packet %h = sub(P, h), which could be very
light, possibly w(%h) ≈ 0. Suppose that there is another
packet g in the plan with wg ≈ wh whose substitute
packet %g = sub(P, g) is quite heavy, say w(%g) ≈ wg.
Thus instead of h we can schedule g at time t, gaining
about as much as from h in step t, but with essentially
no decrease in future profit. This example indicates
that a reasonable strategy would be to choose a packet
p based both on its weight and the weight of its sub-
stitute packet. Following this intuition, our algorithm
chooses p that maximizes wp + φ · w(sub(P, p)).

As it turns out, the above strategy for choosing p
does not, by itself, guarantee φ-competitiveness. The
analysis of special cases and an example where this
simple approach fails leads to the second idea behind

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited126

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

our algorithm. The difficulty is related to how the values
of minwt(τ), for a fixed τ , vary while the current time
t increases. We were able to show φ-competitiveness of
the above strategy for certain instances where minwt(τ)
monotonely increases as t grows from 0 to τ . We
call this property slot-monotonicity. To extend it to
instances where slot monotonicity does not hold, the
idea is then to simply force it to hold by decreasing
deadlines and increasing weights of some packets in the
new plan. (These weight increases will be accounted for
appropriately in the analysis.)
Notation. To avoid ambiguity, we will index various
quantities used by the algorithm with the superscript t
that represents the current time. This includes weights
and deadlines of some packets, since, as described above,
these might change over time.
• We use notation wtp and dtp for the weight and the

deadline of packet p in step t, before a packet is
scheduled. (Our algorithm only changes weights
and deadlines when scheduling a packet, so they
are not affected by packet arrivals.) To avoid
double subscripts, we occasionally write wt(p) and
dt(p) instead of wtp and dtp. By w0

p we denote the
original weight of packet p. We may omit t in these
notations when t is implied from context.
• P t is the plan at time t after all packets j with
rj = t arrive and before a packet is scheduled. By
S1 we denote the first segment of P t.
• ω is the lightest packet in segment S1 of P t.
• We use subt(p) to denote sub(P t, p) and similarly

for minwtt(τ), nexttst(τ), and prevtst(τ).

Algorithm 1 Algorithm PlanM(t)
1: schedule p ∈ P t maximizing wtp + φ · wt(subt(p))
2: if p 6∈ S1 (first segment of P t) then . “leap step”
3: %← subt(p)
4: wt+1

% ←minwtt(dt%) . increase w%
5: γ← nexttst(dt%) and τ0← nexttst(dtp)
6: i← 0 and h0← p
7: while τi < γ do
8: i← i+ 1
9: hi← heaviest packet in P t s.t. dthi

∈ (τi−1, γ]
10: τi← nexttst(dthi

)
11: dt+1

hi
← τi−1 and wt+1

hi
← max(wthi

,minwtt(τi−1))
12: k← i . final value of i

For a pending packet j, if wt+1
j , resp. dt+1

j is not
explicitly set in the algorithm, then wt+1

j ←wtj , resp.
dt+1
j ← dtj , i.e., the weight, resp. the deadline remains

the same by default.
Let p be the packet sent by PlanM in step t. If

p is in the first segment S1 of P t, the step is called a

greedy step. Otherwise (if p 6∈ S1), the step is called a
leap step, and then % = subt(p) is the heaviest pending
packet % 6∈ P t with dt% > prevtst(dtp). We will further
consider two types of leap steps. If p and % are in the
same segment (formally, when τ0 = γ, or equivalently,
k = 0), then this leap step is called a simple leap step.
If % is in a later segment than p (that is, when γ > τ0,
which is equivalent to k > 0) then this leap step is called
an iterated leap step.

As all packets in the segment of P t containing p
have the same substitute packet subt(p), p must be the
heaviest packet in its segment. Furthermore, p is not
too light compared to the heaviest pending packet h;
specifically, we have that wp ≥ wh/φ

2, which can be
derived from the choice of p in line 1.

Slot-monotonicity. Our goal is to maintain the slot-
monotonicity property, i.e., to ensure that for any fixed
slot τ the value of minwtt(τ) does not decrease as the
current time t progresses from 0 to τ . For this reason,
we need to increase the weight of the substitute packet %
in each leap step (as wt% < minwtt(dt%)), which is done in
line 4. For the same reason, we also need to adjust the
deadlines and weights of the packets hi, which is done in
line 11. The deadlines of hi’s are decreased to make sure
that the segments between δ = prevtst(dtp) and γ do not
merge (as merging could cause a decrease of some values
of minwtt(τ)). These deadline changes can be thought
of as a sequence of substitutions, where h1 replaces p in
the segment of P ending at τ0, h2 replaces h1, etc., and
finally, % replaces hk in the segment ending at γ. We
sometimes refer to this process as a “shift” of the hi’s.
Then, if the weight of some hi is too low for its new
segment, it is increased to match the earlier minimum
of that segment, that is minwtt(τi−1).

We briefly outline changes in the plan after a leap
step; the details and formal proofs are omitted. By the
definition in line 9 and the while loop condition in line 7,
we have that wtp = wth0

> wth1
> wth2

> · · · > wthk
> wt%

and that hk’s deadline is in the segment of P ending at
γ, that is prevtst(dt%) < dthk

≤ γ.
Let P = P t and let Q be the plan after p is

scheduled, the time is incremented to t+ 1, and weights
and deadlines are changed as in the algorithm. Let
Q be the plan after p is scheduled and the time is
incremented, but before the algorithm adjusts weights
and deadlines. As discussed in Section 3, after p from a
later segment is scheduled, the plan is Q = P \ {p, ω} ∪
{%}, where % = subt(p). Observe that increasing the
weight of a packet in the plan does not change the plan.
Moreover, an analysis of the changes of pslack() values
yields that decreasing the deadlines of h1, h2, ..., hk (in
line 11) does not change the plan, so Q = P \{p, ω}∪{%}
holds even in an iterated leap step, that is Q = Q.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited127

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The decrease of the deadlines ensures that any tight
slot of P is tight in Q as well. This property, together
with the increase of the weights, allows us to prove that
minwtt(τ) does not decrease in a leap step.

Lemma 4.1. Let P be the current plan in step t just
before an event of either arrival of a new packet,
or scheduling a packet (and incrementing the current
time), and let Q be the plan after the event. Then
minwt(Q, τ) ≥ minwt(P, τ) for any τ > t and also for
τ = t in the case of packet arrival.

Hence, in the computation of Algorithm PlanM, for
any fixed τ , function minwtt(τ) is non-decreasing in t
as t grows from 0 to τ .

Comparison to previous algorithms. Our algo-
rithm shares some broad features with known algo-
rithms in the literature. Some prior algorithms used
the notion of optimal provisional schedules, which co-
incides with our concept of canonically ordered plans.
For example, the φ-competitive algorithm MG for in-
stances with agreeable deadlines by Li et al. [18] (see
also [20]) transmits packets from the plan only, either
the heaviest packet h or the earliest-deadline packet e.
The same authors [21] later designed a modified algo-
rithm called DP (using memory) that achieves compet-
itive ratio 3/φ ≈ 1.854 for arbitrary instances.

Our approach is similar to that of Englert and West-
ermann [14], who designed a 1.893-competitive memory-
less algorithm and an improved 1.828-competitive vari-
ant with memory. Both their algorithms are based on
the notion of suppressed packet supp(P, p), for a packet
p in the plan P , which, in our terminology, is the same
as the substitute packet sub(P, p) if p is not in the first
segment. However, the two concepts differ for packets p
in the first segment. The memoryless algorithm in [14]
identifies a packet m of maximum “benefit”, which is
measured by an appropriate linear combination of wm
and w(supp(P,m)), and sends eitherm or e (the earliest-
deadline packet in the plan), based on the relation be-
tween we and the benefit of m. The algorithm with
memory in [14] extends this approach by comparing m’s
benefit to e’s “boosted weight” max(we, δ(t)), where t
is the current step and δ(τ) is the maximum value of
minwt(P t′ , τ) over t′ < t.

Our algorithm involves several new ingredients that
are critical to establishing competitive ratio φ. First,
our analysis relies on full characterization of the evo-
lution of the plan over time, in response to packet ar-
rivals and scheduling events (briefly described in Sec-
tion 3). Two, we introduce a new objective function
wtp +φ ·wt(subt(p)) for selecting a packet p for schedul-
ing. This function is based on a definition of substitute
packets, sub(P, p), that accurately reflects the changes

in the plan following scheduling events, including the
case when p is in the first segment. Three, we introduce
the concept of slot monotonicity, and devise a way for
the algorithm to maintain it over time. This property
is very helpful in keeping track of the optimal profit.
Last but not least, we introduce a potential function,
that captures the “advantage” of the algorithm over the
adversary regarding future time steps.

5 Competitive Analysis
Let ALG be the schedule of PlanM for an instance of
PacketScheduling under consideration, and let OPT be
a fixed optimal schedule for this instance (actually, OPT
can be any schedule for this instance). Our overall goal
is to show that φ · w0(ALG) ≥ w0(OPT). (Recall that
w0
j denotes the original weight of packet j).

5.1 Adversary Schedule and Shadow Packets In
the analysis we will actually work with the adversary
schedule ADV that serves as a mechanism for keeping
track of future adversary’s gain associated with the
already-released packets from OPT. (Abusing notation,
we use ADV to also denote the set of packets in the
adversary schedule.) Roughly, at each step t, ADV is
meant to consist of the already-released packets from
OPT that have not yet been scheduled. So initially
ADV is empty, and later whenever a packet j arrives
and j ∈ OPT then we add j to ADV to the slot in which
j is in OPT. At each step t, we will also remove packet
ADV[t] from ADV (and the adversary gains its weight).

However, in addition, during the course of the
analysis we will also occasionally make modifications
to ADV by replacing some packets in ADV by lighter
or equal-weight packets, either real packets (including
those from Assumption (UA1)) or fictitious shadow
packets, described below. As a result of such changes, at
any time t, even if OPT[τ] contains a packet released at
or before time t, the packet in ADV[τ] may be different.

Shadow packets are in essence just an accounting
trick: they represent deposits of profit, to be collected
when the current time reaches their associated time slot.
When a shadow packet s is created and added to slot
τs in ADV it satisfies ws ≤ minwtt(τs). From now on
it is tied to its slot and never changes. Therefore, by
Lemma 4.1, its weight does not exceed minwtt(τs), until
it is eventually scheduled by the adversary when the
current time t reaches τs. Further, shadow packets
exist only in ADV — they are not pending for the
algorithm at any time. We thus do not need to
impose a canonical order on them or specify their
release times and deadlines. They are also exempt from
assumption (UA2). Shadow packets are introduced
in the course of the analysis to ensure that certain

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited128

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

invariants (defined below) are preserved when a new
packet arrives or when a packet is scheduled.

Replacement by real packets in ADV may occur in
an iterated leap step when, under some circumstances,
we replace a packet hi ∈ ADV by hi+1, which is always
lighter than hi. These replacements need to be done
carefully to avoid packet duplication. (As a forward
reference, we note that this replacement happens only
in Case M.ii in Section 5.5.5.)

Note that real packets in ADV have their current
weights wt and deadlines dt, i.e., the same as for the
algorithm and not necessarily equal to the original
values. (We remark that there will be no real packets
in ADV that are not pending for the algorithm.) This
implies that when the algorithm increases the weight of
a packet g which is present in ADV, the total weight
of ADV increases by the same amount. In fact, if this
happens, we replace g by another packet in ADV, as
described above, and we do not place g into another
slot of ADV in the current step. (However, g may be
readded to ADV in a later step with its new weight.)

Regarding decreasing the deadlines of hi’s in an
iterated leap step, to guarantee that no packet is in
ADV in a slot after its current deadline, we also replace
each hi either by a shadow packet or by hi+1. In the
latter case, as the new deadline of hi+1 is τi ≥ dthi

and
as hi+1 is added to the former slot of hi (which is not
after dthi

), we guarantee that hi+1 is not after its new
deadline in ADV.

The following invariant, maintained throughout the
analysis, captures properties of the packets in ADV that
will be crucial for our argument (see Figure 2):

(InvA) At each step t, ADV consists of two types of
packets:
• Packets in ADV∩P t. Each such packet g is in

ADV in a slot in [t, dtg].
• Packets in ADV \ P t. All these packets

are shadow packets, with properties described
above; in particular each shadow packet s =
ADV[τ] is not pending for the algorithm and
satisfies ws ≤ minwtt(τ).

After each event we change the adversary schedule
ADV so that invariant (InvA) is preserved. Sometimes,
it will be convenient to do the analysis in stages, in each
stage considering an interval of time slots. We say that
invariant (InvA) holds for an interval S of slots if (InvA)
holds for all packets in ADV with deadlines in S.
Amortized analysis. We bound the competitive ratio
via amortized analysis, using a combination of three
accounting techniques:
• In leap steps, when the algorithm increases weights

of some packets (the substitute packet and some

pending for PlanM

not in plan P

F

plan P

ADV

shadow

F

ADV ∩ P

Figure 2: The sets of packets in the competitive anal-
ysis. Set F and bijection F : ADV ∩ P → F are intro-
duced in Section 5.2.

hi’s), we charge it a “penalty” equal to φ times the
total weight increase.

• We use a potential function (see Section 5.3), which
quantifies the advantage of the algorithm over the
adversary in future steps.

• As mentioned earlier, in some situations we replace
packets in ADV by lighter packets. If this happens,
we add the appropriate “credit” (equal to the
weight decrease) to the adversary’s gain.
To ensure that the current plan P t and the adver-

sary schedule ADV satisfy desired structural properties,
we maintain two invariants: (InvA), defined above, and
(InvP), that will be introduced in Section 5.2 below.

5.2 Set F and Invariant (InvP) In our analysis
we maintain a set F , which is a subset of “forced-out”
pending packets, i.e., packets that were ousted from the
plan, either as a result of arrivals of other packets or in
a leap step. A useful property of F is that each packet
in F might be useful as a substitute packet.

In our analysis we will maintain the invariant that
|F| = |ADV∩P | (where P is the current plan). We also
use the following natural bijection F between ADV ∩ P
and F : Let f1, . . . , f` be all packets in F in the canonical
ordering, i.e., df1 ≤ df2 ≤ · · · ≤ df`

(breaking ties
in favor of heavier packets), and let g1, . . . , g` be all
packets in ADV ∩ P , again in the canonical ordering.
Then F (gi) = fi for all i.

For each slot τ ≥ t of the current plan, we define a
quantity that will be crucial in our analysis; its name is
explained later in this section:

(5.1) #pairs(τ) = |F≤τ | − |(ADV ∩ P)≤τ | .

(Recall that if X is a set of pending packets then
X≤τ = {x ∈ X : dtx ≤ τ}.)

Throughout the analysis, we will maintain the
following important invariant which relates the values
of pslack() and of #pairs():

(InvP) If P is a plan at time t, then for any slot τ ≥ t
it holds that pslack(P, τ) ≥ #pairs(τ).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited129

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

By expanding the definitions of pslack(P, τ) and of
#pairs(τ) and rearranging, we get that invariant (InvP)
for a slot τ can equivalently be defined as |F≤τ |+ |(P \
ADV)≤τ | ≤ τ − t + 1. Thus, intuitively, this invariant
guarantees that if we modify P by replacing any subset
of packets g ∈ ADV ∩ P by the corresponding packets
F (g), we obtain a feasible set of pending packets.

Similarly as for invariant (InvA), we make changes
in the adversary schedule ADV and set F to preserve
invariant (InvP). In some cases, we modify these sets in
stages, each stage involving modifications that affect an
interval of time slots. We will say that invariant (InvP)
holds for an interval S of time slots (e.g., a segment of
the current plan) if (InvP) holds for any τ ∈ S.

More about pairs. Next, we give an intuitive view
of bijection F and invariant (InvP) and then we state
some corollaries of this invariant. Note that bijection
F =: ADV∩P → F can equivalently be viewed as a set
of pairs (fi, gi), i = 1, . . . , `, such that fi = F (gi); we
will work with both these pairs and F .

We classify the pairs and define their d-intervals as
follows: A pair (f, g) is positive if df < dg, negative if
df > dg, and otherwise, if df = dg, the pair is neutral.
The d-interval of a pair (f, g) is [df , dg) if the pair is
positive, and [dg, df) otherwise. Note that the d-interval
of a pair is always left-closed and right-open. Moreover,
a pair contains a slot τ if its d-interval contains τ , i.e.,
if df ≤ τ < dg for a positive pair, and if dg ≤ τ < df
for a negative pair. A neutral pair does not contain any
slot as the corresponding d-interval is empty.

By the definition of F , the pairs are agreeable, i.e.,
for any two pairs (f, g) and (f ′, g′), if df < df ′ , then
dg ≤ dg′ . Indeed, if df < df ′ , then f is before f ′

in the canonical ordering of F , thus also g is before
g′ in the canonical ordering of ADV ∩ P and dg ≤ dg′

follows. Similarly, a positive pair does not overlap with
a negative pair (f ′, g′), i.e., there is no slot contained in
both pairs.

Recall that #pairs(τ) = |F≤τ | − |(ADV ∩ P)≤τ |.
Observe that #pairs(τ) equals the number of positive
pairs containing τ minus the number of negative pairs
containing τ . As positive and negative pairs do not
overlap, #pairs(τ) is either the number of positive pairs
containing τ , or minus the number of negative pairs
containing τ .

Since pslack(τ) is non-negative, an equivalent for-
mulation of invariant (InvP) is that pslack(τ) is at least
the number of positive pairs containing slot τ . From the
invariant it follows that there is no positive pair contain-
ing a tight slot, although a negative pair may contain
a tight slot. It follows that the d-interval of a positive
pair is fully contained in a single segment, while the
d-interval of a negative pair may span several segments.

The important, though simple consequences of in-
variant (InvP) are summarized in the following lemmas.
Namely, we show that each g in ADV ∩ P has a good
substitute packet. (The proof of the second lemma is
omitted.)

Lemma 5.1. Suppose that f ∈ F , g ∈ ADV ∩ P and let
f = F (g). Then:
(a) df > prevts(P, dg),
(b) w(sub(P, g)) ≥ wf , and
(c) wf < minwt(P, dg) ≤ wg.

Proof. (a) Let δ = prevts(P, dg). As δ is a tight slot,
pslack(P, δ) = 0. Applying (InvP) for τ = δ we obtain
that |F≤δ| ≤ |(ADV ∩ P)≤δ|, and then the definition of
mapping F () implies that F≤δ ⊆ F ((ADV ∩ P)≤δ). As
g /∈ (ADV ∩ P)≤δ and f = F (g), we have f /∈ F≤δ; or,
in other words, df > δ.

(b) Note that f ∈ F is pending, but not in P . If
g ∈ S1, then sub(P, g) = ω and wω ≥ wf as ω is heavier
than any pending packet not in P . Otherwise, by (a)
df > prevts(P, dg) and thus f is a candidate for the
substitute packet sub(P, g), which implies the inequality.

(c) As f is pending, but not in P and as df >
prevts(P, dg) by (a), we have wf < minwt(P, dg). The
inequality minwt(P, dg) ≤ wg follows from g ∈ P .

Lemma 5.2. In each step t, |F≤t| ≤ 1, i.e., there is at
most one packet f ∈ F with df = t.

In some cases of the analysis we have situations
when a packet g ∈ ADV ∩ P needs to be removed from
ADV or P , forcing us to also remove f = F (g) from
F . The next observation shows that this modification
preserves invariant (InvP).

Lemma 5.3. Suppose that f ∈ F , g ∈ ADV ∩ P and let
f = F (g). If we remove f from F and g from ADV∩P ,
then:
(a) The values of #pairs(τ) change as follows: If df ≤

dg, then #pairs(τ) decreases by 1 for τ ∈ [df , dg).
On the other hand, if df > dg then #pairs(τ) ≤
0 for τ ∈ [dg, df) both before and after these
removals. In both cases, for other slots the value
of #pairs(τ) stays the same.

(b) Invariant (InvP) remains to hold.

Proof. Claim (b) follows from (a), so it is sufficient to
prove (a). First, suppose df ≤ dg. Note that #pairs(τ)
remains the same for τ ≥ dg and for τ < df as both
f and g are taken into account before their removals,
or none of them, respectively. For τ ∈ [df , dg), only f
appears in (5.1), thus #pairs(τ) decreases by 1 after we
remove f .

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited130

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Next, consider the case df > dg. Similarly,
#pairs(τ) remains the same for τ ≥ df and for τ < dg.
For a slot τ ∈ [dg, df), #pairs(τ) increases by 1 as
only g was taken into account and not f . Since the
position of f in the canonical ordering of F is the
same as the position of g in the canonical ordering of
ADV ∩ P , we get that |F≤τ | < |(ADV ∩ P)≤τ |, meaning
that #pairs(τ) < 0 before the removals. It follows that
#pairs(τ) ≤ 0 after the removals.

5.3 Potential Function and Overview of the
Analysis Sets F , ADV and P undergo changes in
the course of our analysis, not only when a packet is
scheduled, but also when new packets arrive. We thus
index these sets not by the current time, but by events,
introduced earlier in Section 3. Recall that an event
is either the arrival of a new packet, or scheduling a
packet in step t (together with incrementing the current
time). Events are numbered by integers, starting
from 0. Let Pσ be the plan just before event σ.
Similarly, notations Fσ and ADVσ represent set F and
the adversary schedule ADV, respectively, right before
event σ. Note that if σ is the scheduling event in step
t, then P t = Pσ.

The potential just before event σ at time t is:

(5.2) Ψσ := 1
φ

[
wt(Pσ) + wt(Fσ)− wt(ADVσ ∩ Pσ)

]
.

We remark that the potential can equivalently be de-
fined as 1

φ [wt(Pσ \ADVσ)+wt(Fσ)], but the above form
is more convenient to work with.
Initial and final state. At the beginning, we assume
that the plan is filled with virtual 0-weight packets, each
in a slot equal to its deadline, and none of them sched-
uled by the adversary. Both set F and the adversary
schedule ADV are empty, thus invariant (InvP) clearly
holds, and Ψ0 = 0. At the end, after all (non-virtual)
packets expire, the potential equals 0 as well.
Adversary gain. In each step t, the adversary gain,
denoted advgaint, is defined as the weight of packet
ADV[t] that the adversary schedules in step t plus the
credit (the difference between old and new weights)
for replacing some packets in ADV by lighter packets.
Each packet j = OPT[τ] is added to ADV[τ] upon its
arrival with its original weight, and the adversary gets
credit whenever the weight of the packet in ADV[τ] is
decreased, and also when packet ADV[τ] is scheduled
when the current time t reaches τ . This implies that
w0(OPT) =

∑
t advgaint.

Amortized analysis. At the core of our analysis are
bounds relating amortized gains of the algorithm and
the adversary at each event σ. If σ is the index of a
packet arrival event, then we will show the following

packet-arrival inequality:

(5.3) Ψσ+1 −Ψσ ≥ 0 .

If σ is the index of the scheduling event in a step t, then
we will show the following packet-scheduling inequality:

φ[wt(ALG[t])−∆tWeights] + (Ψσ+1 −Ψσ)
≥ advgaint,

(5.4)

where ALG[t] is the packet in slot t in the algorithm’s
schedule ALG, and ∆tWeights is the total amount by
which the algorithm increases the weights of its pending
packets in step t.

We prove the packet-arrival inequality in Section 5.4
and the packet-scheduling inequality in Section 5.5.
Assuming that these two inequalities hold, we now show
our main result.

Theorem 5.1. Algorithm PlanM is φ-competitive.

Proof. We show that φw0(ALG) ≥ w0(OPT), which
implies the theorem. First, note that the sum of terms
Ψσ+1 − Ψσ over all events σ equals ΨT+1 − Ψ0, where
Ψ0 = 0 is the initial potential and ΨT+1 = 0 is the
final potential after the last (scheduling) event T . So∑
σ(Ψσ+1 − Ψσ) = 0. Second, as we noted above, we

have w0(OPT) =
∑
t advgaint. Finally, observe that

(5.5)
∑
t

[wt(ALG[t])−∆tWeights] ≤ w0(ALG) .

This follows from the observation that if the weight of
ALG[τ] was increased by some value ζ > 0 at some
step t′ < τ , then ζ also contributes to ∆t′Weights, so
such contributions cancel out in (5.5). (There may be
several such ζ’s, as the weight of a packet may have been
increased multiple times.)

Hence, using these bounds, as well as (5.3) or
(5.4) for each event, yields w0(OPT) =

∑
t

advgaint ≤∑
t

φ[wt(ALG[t]) − ∆tWeights] +
∑
σ

(Ψσ+1 − Ψσ) ≤

φw0(ALG), concluding the proof.

5.4 Arrival of a Packet Let σ be the index of
the arrival event of a packet j at the current time
t. Let P = Pσ be the plan just before j arrives
and let Q = Pσ+1 be the plan just after j arrives.
Our aim is to maintain invariants (InvA) and (InvP)
using appropriate modifications of sets ADV and F .
We also show that the packet-arrival inequality (5.3)
holds for σ. The algorithm does not change the weights
and deadlines after packet arrival, so we will omit the
superscript t in the notation for weights and deadlines,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited131

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

that is wq = wtq and dq = dtq, for each packet q. There
are two cases, depending on whether or not j ∈ Q.
Case A.1: j is not added to the plan, i.e., Q = P .
This implies that wj < minwt(P, dj) = minwt(Q, dj).
If j 6∈ OPT, we do nothing. If j ∈ OPT, we add a new
shadow packet s of weight wj to the adversary schedule
ADV to the slot τj where j is in OPT. In both subcases
the packet-arrival inequality (5.3) is trivial (as none of
the sets involved in the potential change). Functions
pslack() and #pairs() do not change, so invariant (InvP)
is preserved. Invariant (InvA) is preserved, since we
either do not change ADV or we add a shadow packet s
in the slot τj for which ws ≤ minwt(P, τj).
Case A.2: j is added to the plan. Let u be the lightest
packet in P with du ≤ nextts(P, dj); by assumption
(UA1) such u exists. As mentioned in Section 3, we
have Q = P ∪ {j} \ {u} and wj > wu.

Replacing u by j in the plan can also trigger changes
in F , in cases when u is in ADV or if j is in OPT. We
divide the argument into two parts: (i) first we show
that if u ∈ ADV then we can remove it, preserving the
invariants and not decreasing the potential, and then
(ii) assuming that u /∈ ADV, we analyze the effect of the
remaining changes.

Dealing with u ∈ ADV. If u ∈ ADV, then we need
to remove it from ADV to satisfy invariant (InvA) as
u /∈ Q. We replace u in ADV by a new shadow packet
s of weight wu, which is placed in ADV in the former
slot τu of u, and we remove packet F (u) from F (note
that F (u) ∈ F is defined because u ∈ ADV ∩ P). The
choice of u implies that ws = wu ≤ minwt(Q, τu), thus
preserving invariant (InvA). Using Lemma 5.3 for u and
F (u) we get that invariant (InvP) is also preserved. As
w(F) decreases by wF (u) and w(ADV∩P) decreases by
wu, the contribution of these changes to the potential
change is 1

φ (−wF (u)+wu) > 0, by Lemma 5.1(c). Below,
when bounding Ψσ+1 − Ψσ, we will account for this
contribution without an explicit reference.

Analysis of other changes. We can now proceed
with the assumption that u /∈ ADV. There are several
cases, depending on whether or not j ∈ OPT and on the
ordering of du and dj .
Case A.2.a: j /∈ OPT. We do not further change ADV,
so invariant (InvA) holds. We have two sub-cases.

Case A.2.a.P: du ≤ dj . We do not further change F
or ADV. Thus Ψσ+1 − Ψσ ≥ 1

φ (w(Q) − w(P)) =
1
φ (wj − wu) > 0. The function #pairs() does
not change and pslack() does not decrease, so
invariant (InvP) is preserved.

Case A.2.a.N: du > dj . By the case assumption and
the definition of u, both dj and du are in the same

segment of P . As Q = P ∪ {j} \ {u}, we get that
pslack(Q, τ) = pslack(P, τ)−1 for τ ∈ [dj , du), while
for other slots pslack() is not changed.
We consider two further sub-cases. Let δ =
prevts(P, du). If there is no packet f ∈ F with
df ∈ (δ, du), then we do nothing. In this case,
inequality (5.3) holds trivially as Ψσ+1 − Ψσ ≥
1
φ (wj−wu) > 0. Invariant (InvP) is preserved, since
no pair changes and since for any τ ∈ [dj , du) ⊆
(δ, du) we have #pairs(τ) ≤ 0, whereas pslack(τ)
does not change for other τ .
The other sub-case is when there is f ∈ F with
df ∈ (δ, du). Then let f∗ ∈ F be the earliest-
deadline packet with df∗ ∈ (δ, du). We remove
f∗ from F and add u to F . As f∗ is pending
but not in P and df∗ > δ, we get that wf∗ <
minwt(P, du) ≤ wu. Since also wu < wj , we obtain
that Ψσ+1−Ψσ ≥ 1

φ (wj−wu+wu−wf∗) > 0. This
shows inequality (5.3). Also, #pairs(τ) decreases
by 1 for τ ∈ [df∗ , du), and #pairs(τ) ≤ 0 for
τ ∈ (δ, df∗), even after replacing f∗ by u in F ,
showing that invariant (InvP) holds as well.

Case A.2.b: j ∈ OPT. We add j to ADV in the same
slot as in OPT, preserving invariant (InvA), and add
u to F . We first analyze Ψσ+1 − Ψσ. The weight of
the plan increases by w(Q)−w(P) = wj−wu, the term
w(ADV∩P) increases by wj , and w(F) increases by wu.
Summing it up, Ψσ+1−Ψσ ≥ 1

φ ((wj−wu)+wu−wj) = 0.
Hence the packet-arrival inequality (5.3) holds.

We now show that (InvP) continues to hold, split-
ting the proof into two cases:

Case A.2.b.P: du ≤ dj (the positive case). In this case,
pslack(Q, τ) = pslack(P, τ)+1 for τ ∈ [du, dj), while
for other slots pslack() is not changed. As #pairs(τ)
increases by 1 for τ ∈ [du, dj) and for other slots it
stays the same, invariant (InvP) holds.

Case A.2.b.N: du > dj (the negative case). We have
that pslack(Q, τ) = pslack(P, τ)− 1 for τ ∈ [dj , du),
while for other slots pslack() is not changed. As
#pairs(τ) decreases by 1 for τ ∈ [dj , du) and for
other slots it stays the same, invariant (InvP) holds.

5.5 Scheduling a Packet After all packets with
release time equal to t arrive, the algorithm schedules
its packet p = ALG[t]. Let j = ADV[t] be the packet
scheduled in ADV at time t. Recall that j is not
necessarily equal to OPT[t], the packet scheduled in
OPT at time t; as a result of our modifications to ADV,
j might be either a real packet that replaced OPT[t] or
a shadow packet. Let P = P t be the plan just before

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited132

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

scheduling p and let Q be the plan after the algorithm
schedules p, possibly adjusts weights and deadlines, and
after the time is incremented to t+ 1.

We split the analysis of the scheduling step into
two parts, called the adversary step and the algorithm’s
step, defined as follows:

Adversary step: In the adversary step, the adver-
sary schedules j, which is removed from ADV, but the
plan P remains the same. Removing j from ADV could
trigger a change in F . We show that these changes pre-
serve both invariants (InvA) and (InvP) and we derive a
bound (inequality (5.6)) on the change of the potential
resulting from these changes. The analysis for this step
is given in Section 5.5.1.

Algorithm’s step: In the algorithm’s step, the algo-
rithm schedules p, the time is incremented to t+ 1, and
the plan changes from P to Q. The analysis of this step
assumes that the changes described in the adversary
step have already been implemented. (In particular, j
is removed from ADV.) Using the bound (5.6), invari-
ants (InvA) and (InvP), and other properties, we then
show that the packet-scheduling inequality (5.4) holds
after the sets P , ADV, and F are updated to reflect the
changes triggered by the scheduling step. We also show
that invariants (InvA) and (InvP) are preserved.

The analysis of the algorithm’s step is given in
Sections 5.5.2-5.5.6. We first analyze the greedy step in
Section 5.5.2. We then give a roadmap for the analysis
of the leap step in Section 5.5.3, followed by the details
of the analysis in Section 5.5.4, which describes the
changes in S1, and Sections 5.5.5-5.5.6 which contain
the analysis of other changes resulting from a leap step.

5.5.1 Adversary Step The adversary schedules j =
ADV[t], thus j is removed from the adversary schedule
ADV. (Then advgaint is the sum of wtj and weight
adjustments in ADV, but we will not be dealing with
advgaint right now.) As we will not make other changes
to ADV, invariant (InvA) will be preserved. If j ∈ P ,
removing j from ADV will also force us to remove a
packet from F . Here, we show that with appropriate
changes invariant (InvP) will be preserved after the
adversary step. Also, denoting by ∆ADVΨ the change
of the potential in the adversary step, we prove the
following auxiliary inequality:

(5.6) ∆ADVΨ− wtj ≥ − 1
φ2 w

t
p − 1

φ w(subt(p)) .

The proof is divided into two cases, depending on
whether or not j ∈ P . As packet weights are not
changed in the adversary step, below we omit the
superscript t in the notations for weights.
Case ADV.1: j ∈ P . As j ∈ ADV ∩ P , packet F (j) ∈ F
is defined. We remove F (j) from F . By Lemma 5.3,

invariant (InvP) is preserved. Removing j from ADV
and F (j) from F changes the potential by 1

φ (−wF (j) +
wj). By Lemma 5.1(b) we have w(subt(j)) ≥ wF (j). It
follows that

φ (∆ADVΨ− wj) = −wF (j) + wj − φwj
= − 1

φ wj − wF (j)

≥ − 1
φ wj − w(subt(j))

≥ − 1
φ wp − w(subt(p)) ,

where the last inequality follows from the choice of p in
line 1 of the algorithm’s description; here we use that
j ∈ P . This implies (5.6).
Case ADV.2: j /∈ P . In this case we do not change F ,
so invariant (InvP) is preserved. By invariant (InvA), j
is a shadow packet that satisfies wj ≤ minwtt(t) = wω
as ω is the lightest packet in the first segment. Note
that w(subt(ω)) = wω and that ∆ADVΨ = 0. Then

φ (∆ADVΨ− wj) = −φwj ≥ −φwω
= − 1

φ wω − w(subt(ω))

≥ − 1
φ wp − w(subt(p)) ,

where the last inequality holds by the choice of p again.
This completes the proof of (5.6).

5.5.2 Greedy Step Recall that in a greedy step,
the algorithm makes no changes in packet weights and
deadlines; therefore, to simplify notation, for any packet
q we will write wq = wtq and dq = dtq, omitting the
superscript t. Let β = nexttst(t) be the first tight slot
in P , that is S1 = [t, β].

We start with some simple observations. According
to the algorithm, p is the heaviest packet in S1. The
algorithm does not adjust weights, so ∆tWeights =
0. Since subt(p) = ω, inequality (5.6) gives us that
∆ADVΨ − wj ≥ −wp/φ2 − wω/φ. As mentioned in
Section 3, the new plan Q (starting at time slot t+1) is
Q = P \{p}; thus the change of the potential associated
with removing p is −wp/φ.

We have two cases, depending on whether or not
there is a packet in ADV ∩ P in the first segment.
Case G.1: There is no packet in ADV∩P with deadline
in the first segment S1. In this case, p 6∈ ADV (as
dp ∈ S1) and we do not further change sets ADV and
F . So invariant (InvA) is preserved and advgaint =
wj . Observe that there is no packet f ∈ F with
deadline in S1; indeed, if such f existed then packet
F−1(f) ∈ ADV ∩ P would have its deadline in S1,
by invariant (InvP), contradicting the case condition.
It follows that there is no f ∈ F with df = t,
which implies that no packet in F expires in this step.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited133

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Invariant (InvP) continues to hold, because #pairs(τ) ≤
0 for τ ∈ [t + 1, β], even after the step, and for τ ≥ dp
the value of pslack(τ) does not change.

The calculation showing the packet-scheduling in-
equality (5.4) is now quite simple, as we just need
to take into account bound (5.6), the adversary gain
advgaint = wj , and the contribution ∆pΨ = −wp/φ of
updating the plan:

φ [wt(ALG[t])−∆tWeights] + (Ψσ+1 −Ψσ)− advgaint

= φ [wp − 0] + [∆pΨ + ∆ADVΨ]− wj
= φwp + ∆pΨ + [∆ADVΨ− wj]

≥ φwp − 1
φ wp +

[
− 1
φ2 wp − 1

φ wω

]
= 1

φ wp −
1
φ wω ≥ 0 ,

where we use inequality wp ≥ wω in the last step, which
follows from the definition of ω.
Case G.2: There is a packet in ADV ∩ P in the first
segment S1 (possibly p ∈ ADV).

Changing sets ADV and F . Let g∗ be the latest-
deadline packet in ADV ∩ P such that dg∗ ≤ β (which
is defined by the case condition). Let f1 be the earliest-
deadline packet in F (which exists, because F 6= ∅ by
the existence of g∗); possibly df1 = t, which means that
in such a case, f1 cannot be in F in the next step.

If p ∈ ADV, let g = p; otherwise let g = g∗. We
remove f1 from F and we replace g in ADV by a new
shadow packet s of weight ws = minwtt(dp) = ω, which
is added to the slot of g in ADV. Note that now (after
removing f1), by Lemma 5.2, all packets in F have
deadlines strictly after t, so none of them expires in
this step.

Preserving the invariants. We now have p /∈ ADV
and the new shadow packet s is in a slot within the
first segment S1 of P and it satisfies ws ≤ ω, so
invariant (InvA) is preserved.

We next show that invariant (InvP) holds for any
slot τ ≥ t + 1 after the step. The value of pslack(τ)
decreases by 1 for slots τ ∈ [t + 1, dp) and for other
slots it is not changed. We analyze how the values of
#pairs(τ) change. If df1 < dg, then #pairs(τ) decreases
by 1 for τ ∈ [df1 , dg) and for other slots it remains the
same. Otherwise, df1 ≥ dg and #pairs(τ) increases by 1
for τ ∈ [dg, df1), while for other slots it does not change.

From the definitions of f1, g∗, and invariant (InvP),
we have that #pairs(τ) ≤ 0 holds for τ ∈ [t + 1, df1) ∪
[dg∗ , β], even after the step. If follows that we just need
to show that invariant (InvP) holds for τ ∈ [df1 , dg∗)
and we can assume that df1 < dg∗ . Thus, as dg∗ ≤ β
and dp ≤ β, invariant (InvP) holds for slots outside S1.

We only need to consider the case when either
#pairs(τ) increases or pslack(τ) decreases, because in

other cases the inequality pslack(τ) ≥ #pairs(τ) is
preserved. As both of these quantities change by at
most 1, it is sufficient to show that in these two cases
either (i) both quantities change in the same direction,
or (ii) #pairs(τ) ≤ 0 after the step.

The first case, when #pairs(τ) increases, is actually
already covered. Indeed, if #pairs(τ) increases, then
dg < df1 and τ ∈ [dg, df1), thus #pairs(τ) ≤ 0 as shown
above (even after the step).

The second case, when pslack(τ) decreases, happens
when τ ∈ [t+1, dp). This, combined with τ ∈ [df1 , dg∗),
implies that τ ∈ [df1 ,min(dp, dg∗)). As g ∈ {g∗, p}, it
holds that τ ∈ [df1 , dg), so #pairs(τ) decreases as well.
Therefore, invariant (InvP) holds after the greedy step.

Deriving inequality (5.4). Let ∆p,g,f1Ψ be the
change of Ψ caused by removing p from the plan,
removing f1 from F , and g from ADV ∩ P , that is,
∆p,g,f1Ψ = (−wp −wf1 +wg)/φ. The adversary gain is
advgaint = wg − ws + wj = wg − wω + wj . Note that
wf1 ≤ wω as f1 6∈ P and that wg ≤ wp as p is the
heaviest packet in S1 and dg ≤ β. We show the packet-
scheduling inequality (5.4) by summing these changes
and the adversary gain bounded in (5.6):

φ [wt(ALG[t])−∆tWeights] + (Ψσ+1 −Ψσ)− advgaint

= φ [wp − 0] + [∆p,g,f1Ψ + ∆ADVΨ]
− [wg − wω + wj]

= φwp + ∆p,g,f1Ψ− wg + wω + [∆ADVΨ− wj]
≥ φwp + 1

φ [−wp − wf1 + wg]− wg + wω

+
[
− 1
φ2 wp − 1

φ wω

]
= 1

φ wp −
1
φ wf1 − 1

φ2 wg + 1
φ2 wω

≥ 1
φ wp −

1
φ wω −

1
φ2 wp + 1

φ2 wω

= 1
φ3 (wp − wω) ≥ 0 ,

where the penultimate inequality holds by wf1 ≤ wω
and by wg ≤ wp, and the last inequality uses wp ≥ wω.
This concludes the analysis of a greedy step.

5.5.3 Leap Step: a Roadmap We now analyze the
leap step of the algorithm, when it schedules a packet
p from a segment of P t other than S1. In this case
some packet weights change, so we use notation wta
and wt+1

a (or wt(a) and wt+1(a)) for the weights of a
packet a before and after p is scheduled, respectively.
For deadlines (which may also change), we implicitly
assume that da = dta, and write dt+1

a for the deadline of
packet a after scheduling p.

Recall that the new plan (starting at time t+ 1) is
Q = P \ {p, ω} ∪ {%}, where % = subt(p). All changes in
the plan are within two intervals of the plan: the first
segment S1 and the interval [δ, γ), where δ = prevtst(dtp)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited134

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

and γ = nexttst(dt%). Namely, ω is removed in S1 and p is
replaced by % in [δ, γ). Furthermore, PlanM increases %’s
weight to µ def= minwt(P, dt%), and, if this is an iterated
leap step (i.e., k > 1 in the algorithm), it then modifies
weights and deadlines of some packets hi.

These changes in the plan may reduce some values
of pslack(τ) and may involve changes in ADV or F . For
example, if % is in F , it will have to be removed, because
F contains only pending packets that are not in the
plan. This may trigger additional adjustments in ADV
or F , in order to restore invariants (InvA) and (InvP)
after the move.

We start with two simple useful bounds. First,
using inequality (5.6) and the definition of %, we have

(5.7) ∆ADVΨ− wtj ≥ − 1
φ2 w

t
p − 1

φ w
t
%.

Also, for any τ ≥ t, we have

(5.8) 1
φ2 w

t
p + 1

φ w
t
% ≥ ωt ≥ minwtt(τ) ,

where the first inequality follows from the choice of p
in line 1 of the algorithm (specifically, because the algo-
rithm chose p over ω), and the second one follows from
ωt = minwtt(t) ≥ minwtt(τ), that is the monotonicity
of minwt() with respect to τ .

We now introduce several quantities that we will
use in our estimates and in the proof of the packet
scheduling inequality (5.4):

∆tw%
def= µ − wt% : The increase of the weight of % in

line 4 of the algorithm.
∆p,ω,%w(P) : The change of the weight of the plan

resulting from removing p, removing ω, and adding
% (with modified weight). Thus:

∆p,ω,%w(P) = −wtp − wtω + µ

≥ −(1 + 1
φ2)wtp − 1

φ w
t
% + µ ,

(5.9)

where the inequality follows from (5.8).
∆tw(H) : The total increase of the weights of packets

H = {h1, . . . , hk} in line 11 in the algorithm. In
case of a simple leap step (for k = 0), we set H = ∅
and ∆tw(H) = 0.

∆tWeights = ∆tw% + ∆tw(H) : As already defined
earlier, this is the total increase of the weights in
step t.

∆S1Ψ : The change of the potential due to modifica-
tions in ADV and F triggered by (but not includ-
ing) the removal of ω from S1. (See below for more
details.)

∆(δ,γ]Ψ : The change of the potential due to modifica-
tions in ADV and F triggered by (but not including)
the replacement of p by % in (δ, γ].

advgaint(δ,γ] : The credit for the adversary for replacing
packets in ADV with deadlines in (δ, γ] by lighter
packets; it is equal to the total decrease of packet
weights in ADV.

Two key inequalities. We will derive the proof
of the packet-scheduling inequality (5.4) from the two
key inequalities below, that bound the changes of the
potential in intervals S1 and (δ, γ]:

∆S1Ψ ≥ 0(5.10)
∆(δ,γ]Ψ− φ∆tw(H)− advgaint(δ,γ]

≥ − 1
φ2 w

t
p − 1

φ w
t
% + µ

(5.11)

Note that the quantity− 1
φ2 w

t
p− 1

φ w
t
%+µ is non-positive,

by (5.8); thus if we change nothing while processing
segments in (δ, γ] and if the weights of hi’s do not
change, (5.11) will hold.
Deriving the packet-scheduling inequality. As-
suming that (5.10) and (5.11) hold, we now prove the
packet-scheduling inequality (5.4). The total potential
change in this step is

Ψσ+1−Ψσ = ∆ADVΨ+ 1
φ ∆p,ω,%w(P)+∆S1Ψ+∆(δ,γ]Ψ ,

because all changes in the plan and in sets ADV and
F are accounted for (uniquely) in the terms on the
right-hand side. (This will follow by examining changes
detailed in Sections 5.5.1, 5.5.4 and 5.5.6). The total
adversary gain is the sum of the gain from scheduling j
and the credits for decreasing weights in ADV, so

advgaint = wtj + advgaint(δ,γ] ,

as the changes in S1 will not involve any weight de-
creases for the adversary. Combining it all together, we
have

φ [wt(ALG[t])−∆tWeights] + (Ψσ+1 −Ψσ)− advgaint

= φ [wtp −∆tw% −∆tw(H)]
+ [∆ADVΨ + 1

φ ∆p,ω,%w(P) + ∆S1Ψ + ∆(δ,γ]Ψ]

− [wtj + advgaint(δ,γ]]
= φwtp − φ (∆tw%) + 1

φ ∆p,ω,%w(P) + [∆ADVΨ− wtj]

+ ∆S1Ψ + [∆(δ,γ]Ψ− φ∆tw(H)− advgaint(δ,γ]]

≥ φwtp − φ(µ− wt%) + 1
φ

[
−(1 + 1

φ2)wtp − 1
φ w

t
% + µ

]
+
[
− 1
φ2 w

t
p − 1

φ w
t
%

]
+ 0 +

[
− 1
φ2 w

t
p − 1

φ w
t
% + µ

]
=
(
φ− 1

φ −
1
φ3 − 1

φ2 − 1
φ2

)
wtp

+
(
φ− 1

φ2 − 1
φ −

1
φ

)
wt% +

(
−φ+ 1

φ + 1
)
µ

= 0 ,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited135

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

where in the inequality in the third step we use, in this
order, inequalities (5.9), (5.7), (5.10), and (5.11), and
in the last step we repeatedly use the definition of φ.

Therefore, to complete the analysis, it is now suf-
ficient to show that the two key inequalities (5.10)
and (5.11) hold, and that invariants (InvA) and (InvP)
are preserved after the step. We divide the proof into
several parts, with the two main parts being:

Processing S1: In this part, described in Sec-
tion 5.5.4 below, we assume that the changes de-
scribed in the adversary step have already been imple-
mented. We describe changes in ADV and F triggered
by the removal of ω from the plan. We then prove in-
equality (5.10) and that these changes preserve invari-
ants (InvA) and (InvP). More precisely, we show that
the invariants hold (with respect to packets) in S1 and
that they are not violated outside S1, namely that for
any τ /∈ S1, the value of #pairs(τ) does not increase or
#pairs(τ) ≤ 0 after these changes.

Processing interval (δ, γ]: In this part, we as-
sume that the changes described in the adversary step
and in the processing of S1 have already been imple-
mented. We describe changes in ADV and F triggered
by the replacement of p by % and (for an iterated leap
step) by modifications of packets hi. We prove in-
equality (5.11) and that these changes preserve invari-
ants (InvA) and (InvP). The proof will be divided into
two cases, depending on whether it is a simple or an
iterated leap step (see Sections 5.5.5 and 5.5.6, respec-
tively). The proof for an iterated leap step is further
divided into a number of smaller steps.

5.5.4 Leap Step: Processing S1 The change of
the potential reflecting the removal of ω from P has
already been accounted for in ∆p,ω,%w(P). However,
after removing ω from P we may also need to make
changes in sets ADV and F , in order to preserve the
invariants in S1. We refer to this process as “processing
S1”, even though we do not actually change the plan; in
fact, some modifications may involve pending packets
(not in the plan) with deadlines after S1. As explained
earlier in Section 5.5.3, we assume that the changes in
sets ADV and F described in Section 5.5.1 have already
been implemented.

Dealing with the case ω ∈ ADV. We now consider
the case when ω ∈ ADV. Since ω ∈ ADV ∩ P , packet
F (ω) is defined. We remove F (ω) from F and replace
ω in ADV by a shadow packet of the same weight wtω,
which is placed in the same time slot. This preserves
invariant (InvA) in S1. Removing ω from ADV ∩ P
and F (ω) from F causes the potential to change by
1
φ (wtω − wtF (ω)) > 0, where the inequality follows from
Lemma 5.1(c). Since the contribution of this change to

∆S1Ψ is positive, we can ignore it. Also, by Lemma 5.3,
these removals preserve invariant (InvP) in all segments.

Maintaining invariant (InvP) in S1. Since the value
of pslackt(τ) decreases by 1 for τ ∈ [t + 1, dω), we may
need to decrease #pairs(τ) for such τ , if #pairs(τ) > 0.
Denoting by f1 the earliest-deadline packet in F , we
consider two cases.

If df1 ≥ dω, then we do not make any further
changes. Inequality 5.10 holds trivially. Since in this
case #pairs(τ) ≤ 0 for τ ∈ [t + 1, dω) (even after the
step), invariant (InvP) is maintained.

Otherwise, we have df1 < dω. In this case we
replace f1 by ω in F , which changes the potential by
1
φ (wtω − wtf1

) > 0 (where the inequality follows from
f1 /∈ P), implying (5.10). To show that (InvP) is
preserved, note that after replacing f1 by ω in F , the
value of #pairs(τ) decreases by 1 for τ ∈ [df1 , dω)
and for other slots it remains the same; in particular,
we have #pairs(τ) ≤ 0 for τ ∈ [t + 1, df1). Hence,
invariant (InvP) is preserved after processing S1.

No packet from F expires. We claim that after
processing S1, there is no packet in F that expires in
the current step. This holds by Lemma 5.2 if df1 < dω,
as in this case we removed f1 from F . Consider the
other case, when df1 ≥ dω. Then the claim trivially
holds if df1 > t. Suppose for a contradiction that
df1 = dω = t. Thus S1 consists of just a single slot t; in
other words, pslack(P, t) = 0. Using invariant (InvP) we
get that packet g1 = F−1(f1) ∈ ADV ∩ P also satisfies
dg1 = t. This leads to a contradiction, because after
the adversary step there is no packet in ADV ∩ P with
deadline equal to t (see Section 5.5.1).

5.5.5 Processing (δ, γ] in a Simple Leap Step
(Case L1) We now analyze the effects of replacing p by
% in P , in the case of a simple leap step, namely when
k = 0 in the algorithm. Recall that the contribution
of this change in the plan to the potential is already
accounted for in ∆p,ω,%w(P), but these changes may
trigger modifications in ADV and F , in order to restore
the invariants. We assume that the changes in sets ADV
and F described in Section 5.5.1 and in Section 5.5.4
have already been implemented. (We note that these
changes might have involved some packets considered
in this section; for example % might have been removed
from F when processing S1, if we earlier had % = F (ω).)

In the simple leap step d% and dp are in the same
segment (δ, γ], that is nexttst(d%) = nexttst(dp) = γ. We
have H = ∅ and ∆tw(H) = 0. There are two subcases,
depending on whether some changes are needed or not.

Case L.1.A: % 6∈ F and there is no packet in ADV ∩ P
with deadline in (δ, γ]; in particular p 6∈ ADV∩P . Then

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited136

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

we do not further change the set F or ADV. We have
∆(δ,γ]Ψ = 0, advgaint(δ,γ] = 0, and the left-hand side of
(5.11) is zero. As the right-hand side is non-positive,
(5.11) holds.

Invariant (InvP) implies that #pairs(γ) ≤ 0; so
using the case assumption we get that #pairs(τ) ≤ 0
for all τ ∈ (δ, γ], implying that invariant (InvP) is
preserved after the step. As % /∈ ADV and p /∈ ADV,
invariant (InvA) holds as well.
Case L.1.B: % ∈ F or there is a packet in ADV ∩ P
with deadline in (δ, γ]. In this case, ADV and F will be
changed to maintain invariants (InvP) and (InvA).

Changes in Case L.1.B. Let g∗ be the latest-
deadline packet in ADV∩P with dg∗ ≤ γ. We note that
g∗ is well defined. This is trivially true if the second
condition of the case is satisfied. If % ∈ F then F−1(%)
is a candidate, because d% ≤ γ, and thus dF−1(%) ≤ γ as
well, by invariant (InvP). (It is possible that dg∗ ≤ δ in
this case.)

Similarly, let f∗ be the earliest-deadline packet in
F with df∗ > δ. This f∗ is also well-defined, because
either % ∈ F , in which case % is a candidate, or
dg∗ ∈ (δ, γ], in which case F (g∗) is a candidate by
Lemma 5.1(a). (It is possible that df∗ > γ.)

We now define packets g and f , and we modify F
and ADV as follows. If p ∈ ADV, let g = p; otherwise
let g = g∗. If % ∈ F , let f = %; otherwise let f = f∗.
We remove f from F and we replace g in ADV by a
new shadow packet s of weight µ = minwtt(dp), added
to the slot of g in ADV. It follows that g is no longer in
ADV ∩ P .

Calculation in Case L.1.B. Note that wtf ≤ wt% as
df > δ and as % is the heaviest pending packet not
in P with deadline after δ. Furthermore, wtg ≤ wtp as
w(sub(P, g)) ≥ wt% and thus if wtg > wtp, the algorithm
would schedule g instead of p. Thus the changes
described above give us that

∆(δ,γ]Ψ− advgaint(δ,γ] = 1
φ (−wtf + wtg)− (wtg − µ)

= − 1
φ w

t
f − 1

φ2 w
t
g + µ

≥ − 1
φ w

t
% − 1

φ2 w
t
p + µ ,

which shows (5.11).
Invariants in Case L.1.B. Since after the changes it

holds % /∈ ADV and p /∈ ADV and since ws = minwtt(dp),
invariant (InvA) is maintained. We now show that
invariant (InvP) is preserved after we remove f from
F and g from ADV.

The value of pslack(τ) increases by 1 for τ ∈ [dp, d%)
if dp < d%, and decreases by 1 for τ ∈ [d%, dp) if d% < dp,
while for other slots in (δ, γ] it remains the same. If

df < dg, then #pairs(τ) decreases by 1 for τ ∈ [df , dg).
Otherwise, df ≥ dg and #pairs(τ) increases by 1 for
τ ∈ [dg, df). For other slots, #pairs(τ) remains the
same.

From the definitions of f∗, g∗, and invariant (InvP),
we have that #pairs(τ) ≤ 0 holds for τ ∈ (δ, df∗) ∪
[dg∗ , γ], even after the step. Thus (InvP) holds in this
range, which includes slots outside (δ, γ] if df∗ > γ or if
dg∗ ≤ δ (note that either of the two conditions implies
df∗ > dg∗). So for the rest of the proof we can assume
that δ < df∗ < dg∗ ≤ γ and that τ /∈ (δ, df∗) ∪ [dg∗ , γ].

Moreover, as df∗ , dg∗ ∈ (δ, γ] (by the assumption
above) and d%, dp ∈ (δ, γ], we have that the values of
pslack(τ) and #pairs(τ) remain unchanged for all slots
τ 6∈ (δ, γ], preserving invariant (InvP) for these slots.

Thus now it only remains to show that invari-
ant (InvP) is preserved for slots τ ∈ [df∗ , dg∗) ⊂ (δ, γ].
Further, since the values of #pairs(τ) and pslack(τ)
change by at most 1, it is sufficient to show that each
τ ∈ [df∗ , dg∗) satisfies the following two conditions: (i)
if #pairs(τ) increases then so does pslack(τ), and (ii) if
pslack(τ) decreases then so does #pairs(τ).

To show (i), suppose that #pairs(τ) increases. This
happens only when dg < df and τ ∈ [dg, df). Since
also τ ∈ [df∗ , dg∗), we get that g 6= g∗ and f 6= f∗.
Therefore g = p and f = %, which means that pslack(τ)
also increases.

To show (ii), suppose that pslack(τ) decreases,
which happens only when d% < dp and τ ∈ [d%, dp).
This, combined with τ ∈ [df∗ , dg∗), implies that τ ∈
[max(d%, df∗),min(dp, dg∗)). As f ∈ {f∗, %} and g ∈
{g∗, p}, it follows that τ ∈ [df , dg), so #pairs(τ)
decreases as well.

5.5.6 Processing (δ, γ] in an Iterated Leap Step
(Case L2) Here we address the last (and most in-
volved) part of our argument, that is the analysis of
an iterated leap step, namely when k ≥ 1 in the al-
gorithm. As in the previous section, we assume that
ADV and F have already been modified, as described in
Sections 5.5.1 (the adversary step) and 5.5.4 (process-
ing S1). We now need to estimate the potential change
due to the changes triggered by the replacement of p
by % and by the “shifting” of hi’s, prove key inequal-
ity (5.11), and that invariants (InvA) and (InvP) hold
after the step.

As before, δ = prevtst(dp) and γ = nexttst(d%).
Recall that in an iterated leap step we have d% >
nexttst(dp), so the interval (δ, γ] is a union of two or
more consecutive segments of P . Let h0 = p, h1, . . . , hk
be the packets from Algorithm PlanM (line 9) and let
hk+1 = %. All packets hi, i = 0, . . . , k, are in different
segments of P , not necessarily consecutive. As in the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited137

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

algorithm, let τi = nexttst(dthi
), i = 0, . . . , k; note that

τk = γ. To simplify notation, let µi = minwtt(τi); we
have µk = minwtt(dt%) = µ.

We now prove a useful bound of the increase of the
weights of a subset of packets hi.

Lemma 5.4. For any a′, b′ satisfying 1 ≤ a′ ≤ b′ ≤ k,
let ∆tw(ha′ , . . . , hb′) be the total amount by which the
algorithm increases the weights of packets ha′ , . . . , hb′ .
Suppose that there exists i ∈ [a′, b′] such that wthi

<
µi−1, i.e., the algorithm increases the weight of hi.
Then ∆tw(ha′ , . . . , hb′) ≤ µa′−1 − wthb′

.

Proof. Let c ∈ [a′, b′] be the maximum index such that
wthc

< µc−1; such c exists by the assumption of the
lemma. We show the claim as follows:

∆tw(ha′ , . . . , hb′) =
c∑

i=a′
(max(µi−1, w

t
hi

)− wthi
)

=
c∑

i=a′
max(µi−1 − wthi

, 0)

≤
c−1∑
i=a′

max(µi−1 − µi, 0)

+ max(µc−1 − wthc
, 0)

(5.12)

=
c−1∑
i=a′

(µi−1 − µi) + µc−1 − wthc
(5.13)

= µa′−1 − wthc

≤ µa′−1 − wthb′
.(5.14)

where inequality (5.12) follows from wthi
≥ µi, equal-

ity (5.13) from µi−1 ≥ µi and from µc−1 > wthc
(by the

choice of c), and inequality (5.14) from wthc
≥ wthb′

as
c ≤ b′.

Similarly as in Section 5.5.5 we have two cases.
Case L.2.A: % 6∈ F and there is no packet in ADV ∩ P
with deadline in (δ, γ]. Then we do not make any
changes in ADV and F . From the case condition, no hi,
for i = 0, . . . , k, is in ADV, because each hi is in P and
its deadline is in (δ, γ]. According to invariant (InvP)
we have that #pairs(γ) ≤ 0, and then the second part
of the case condition implies that in fact #pairs(τ) ≤ 0
for all τ ∈ (δ, γ], implying that invariant (InvP) holds
after the step. Also, invariant (InvA) continues to hold
as p /∈ ADV and we do not change ADV.

It remains to show (5.11). Since we have not
changed ADV, we have advgaint(δ,γ] = 0. Next, we claim
that ∆tw(H) ≤ µ0−µk. If there is no i ∈ [1, k] such that
wthi

< µi−1, then ∆tw(H) = 0 ≤ µ0 − µk as µ0 ≥ µk.
Otherwise, we use Lemma 5.4 with a′ = 1 and b′ = k

to get ∆tw(H) ≤ µ0 − wthk
≤ µ0 − µk, with the last

inequality following from wthk
≥ µk.

In this case, the potential change ∆(δ,γ]Ψ only
reflects the increase of the weights of hi’s, since all hi’s
are in Q and we do not make other changes in the
plan (besides removing p and ω and adding %, which
are already accounted for in ∆p,ω,%w(P)). Then (5.11)
follows from the above bound on ∆tw(H) and an easy
calculation:

∆(δ,γ]Ψ− φ∆tw(H)− advgaint(δ,γ]

= 1
φ ∆tw(H)− φ∆tw(H)− 0

= −∆tw(H)
≥ −µ0 + µk

≥ − 1
φ2 w

t
p − 1

φ w
t
% + µk ,

where the last inequality follows from µ0 ≤ 1
φ2 w

t
p+ 1

φ w
t
%,

which is (5.8) with τ = dp (as µ0 = minwtt(dp)).
Case L.2.B: % ∈ F or there is a packet in ADV ∩ P
with deadline in (δ, γ]. In this case sets ADV and F will
be changed. We focus on the segments which contain
the packets h0 = p, h1, ..., hk that are modified by the
algorithm. Specifically, for i = 0, . . . , k, let S′i be the
segment of P that ends at τi = nexttst(dthi

), that is
the segment containing dthi

. Recall that prevtst(p) = δ,
τk = γ, and that we defined hk+1 = %.

We start by defining a packet g ∈ ADV ∩ P . Let g∗
be the latest-deadline packet in ADV ∩ P with dg∗ ≤
γ. Observe that packet g∗ is well defined. This is
trivially true if the second part of the case condition
holds. Otherwise, we have % ∈ F , in which case packet
F−1(%) ∈ ADV ∩ P is a candidate for g∗, because
prevtst(dF−1(%)) < d% ≤ γ, by Lemma 5.1(a). (It is
possible that dg∗ ≤ δ.) We now define g as follows: If
dtg∗ is in a segment S′i for some i and hi ∈ ADV, then let
g = hi; otherwise, let g = g∗. Observe that if hk ∈ ADV,
then g = hk.

We will process segments S′i in groups, where each
group is specified by some non-empty interval of indices
[a, b] ⊆ {0, . . . , k} of segments S′i. Roughly, we have a
group for each hi ∈ ADV (that needs to be replaced in
ADV because its deadline was decreased), a special last
group, and possibly a special group at the beginning.
Let i1 < i2 < · · · < i` be the indices of those
packets h0 = p, h1, ..., hk that are in ADV. Note that
dtg ∈ [dt(hi`), γ], because hi` ∈ ADV is a candidate
for g∗. In particular, since g ∈ ADV, we have that
g /∈ {h0, ..., hk} − {hi`}; that is, among all packets
h0, ..., hk, g may be possibly equal only to hi` . The
definition of these groups depends on whether ` > 0 or
` = 0 (that is, when none of packets hi is in ADV):

Case ` > 0: For each a = 1, . . . , ` − 1 (if ` > 1), the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited138

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

interval [ia, ia+1 − 1] is a middle group. If i1 > 0,
i.e., if h0 = p 6∈ ADV, then there is a special initial
group [0, i1−1]. This group does not exist if i1 = 0.
Next, we assign the indices in [i`, k] to one or two
groups. If g = hi` (in particular, if i` = k), then
[i`, k] is the terminal group. Otherwise, if g 6= hi` ,
let α be the smallest index in 0, ..., k for which
τα ≥ dtg. The assumption that g 6= hi` implies
that α > i`. Then [α, k] is the terminal group and
[i`, α − 1] is a new middle group. See Figure 3 for
an illustration.

Case ` = 0: We create at most two groups only. There
is the terminal group [α, k], where α is again the
smallest index in 0, ..., k with τα ≥ dtg, and if α > 0,
we also have the initial group [0, α− 1] .

Note that in almost every group [a, b] packet ha is in
ADV; the only two possible exceptions are (i) the initial
group, and (ii) the terminal group in case when ` = 0
or g 6= hi` . On the other hand, packets ha+1, . . . , hb are
never in ADV.

P tp = h0 h1 h2 h3

S′0 γδ S′1

h4 h5 h6 h7g∗
S′2 S′3 S′4 S′5 S′6 S′7

Figure 3: In this example with k = 7, tight slots
are depicted by vertical line segments and the circled
packets are in ADV. Thus [0, 1] is the initial group, [2, 2],
[3, 3], [4, 5], and [6, 6] are the middle groups, and [7, 7]
is the terminal group.

To show (5.11), we split the potential changes
and the adversary credit for replacing packets in ADV
among groups in a natural way. Namely, for a group
[a, b], let ∆[a,b]Ψ be the total change of the potential
due to changes done when processing group [a, b], let
advgaint[a,b] be the adversary credit for the changes of
ADV when processing group [a, b] (that is for replacing
ha or g by a lighter packet), and let ∆tw(ha+1, . . . , hb+1)
be the total amount by which the algorithm increases
the weights of ha+1, . . . , hb+1. Our goal is to prove that
for each middle group [a, b] and for the possible initial
group [a, b] (which has a = 0) it holds

∆[a,b]Ψ− φ∆tw(ha+1, . . . , hb+1)− advgaint[a,b]
≥ − 1

φ2 w
t
ha

+ 1
φ2 w

t
hb+1

.
(5.15)

Similarly, for the terminal group [a, k], which is defined
in all cases, we show

∆[a,k]Ψ− φ∆tw(ha+1, . . . , hk)− advgaint[a,k]

≥ − 1
φ2 w

t
ha
− 1

φ w
t
% + µk .

(5.16)

(Note that the right-hand side of (5.16) may be posi-
tive.) The sum of (5.15) over all middle groups and the
possible initial group plus (5.16) gives us exactly the key
inequality (5.11). This is because all terms 1

φ2 w
t
hb+1

on
the right-hand side of inequality (5.15) will cancel as
they appear in the inequality for the next group with a
negative sign, so the right-hand sides of all the inequal-
ities for all groups add up to − 1

φ2 w
t
h0
− 1

φ w
t
% + µk =

− 1
φ2 w

t
p − 1

φ w
t
% + µ.

We process the groups in the reverse order of time,
i.e., from the last one, which is always the terminal
group, to the first one, which may be of any type. We
maintain the property that after processing each group
[a, b] packet ha will not be in ADV (even though it may
have been in ADV earlier).

Regarding invariant (InvP) the value of pslack()
may change only for slots τ ∈ S1 ∪ S′0 ∪ · · · ∪ S′k. We
have already shown how to maintain invariant (InvP) in
S1. For the remaining slots, we analyze the changes of
pslack() and #pairs() in (δ, γ] when we derive inequali-
ties (5.15) and (5.16) for each group [a, b] of segments.
When processing a group [a, b] we will show how to pre-
serve invariant (InvP) for slots τ in segments S′a, . . . , S′b,
and that invariant (InvP) is not affected for slots τ out-
side these segments, that is for such τ we will have that
either #pairs(τ) does not increase or #pairs(τ) ≤ 0 af-
ter processing the group. In a similar way we show that
invariant (InvA) holds after the step.

Processing the terminal group. Let [a, k] be the
interval of indices representing the terminal group of
segments.

Let f∗ be the earliest-deadline packet in F with
df∗ > δ. The assumption of Case L.2.B implies that
f∗ is well defined. Indeed, this is trivial if % ∈ F . If
% /∈ F then there exists a packet g′ ∈ ADV ∩ P with
dg′ ∈ (δ, γ] and then the packet F (g′) is a candidate for
f∗, because dF (g′) > prevtst(dtg′) ≥ δ by Lemma 5.1(a).
(It may happen that df∗ > γ.)

We now define a packet f ∈ F and modify sets ADV
and F as follows. If % ∈ F , let f = %; otherwise, let
f = f∗. By the choice of f ∈ {%, f∗} and the definition
of % we have that wtf ≤ wt%. We remove f from F and
in ADV we replace packet g by a new shadow packet s
of weight minwtt(dtg), placed in the same slot as g. This
preserves invariant (InvA) in segments S′a, . . . , S′k.

Calculation showing (5.16) for the terminal group.
Apart from the changes in the paragraph above, we need
to take into account the possible change of weights of
packets ha+1, . . . , hk, which also increases the weight of
the plan, because all packets h1, ..., hk remain in the new
plan Q. (Increasing the weight of % = hk+1 has already
been accounted for in ∆p,ω,%w(P).)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited139

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

We claim that ∆tw(ha+1, . . . , hk) ≤ µa−µk. There
are two simple cases. If there is no i ∈ [a+1, k] such that
wthi

< µi−1, then ∆tw(ha+1, . . . , hk) = 0 ≤ µa − µk as
µa ≥ µk. Otherwise, we use Lemma 5.4 with a′ = a+ 1
and b′ = k to get ∆tw(ha+1, . . . , hk) ≤ µa − wthk

≤
µa−µk, where the last inequality follows from wthk

≥ µk.
The claim is thus proved.

The second claim is that in this case we have
wtg ≤ wtha

. This is trivial if g = hi` and thus a = i`.
Otherwise, recall that, by the definition of the terminal
group, a = α is the smallest index α with τα ≥ dtg,
that a > i`, and that ha is the heaviest packet in plan
P with dha

∈ (τa−1, γ]. As g was in ADV ∩ P and as
dtg ∈ (τa−1, γ] by the definition of a = α, we get that
wtg ≤ wtha

.
Using the two claims shown above, we derive in-

equality (5.16) as follows:

∆[a,k]Ψ− φ∆tw(ha+1, . . . , hk)− advgaint[a,k]

= 1
φ

(
∆tw(ha+1, . . . , hk)− wtf + wtg

)
− φ∆tw(ha+1, . . . , hk)− (wtg −minwtt(dtg))

= − 1
φ2 w

t
g − 1

φ w
t
f −∆tw(ha+1, . . . , hk) + minwtt(dtg)

≥ − 1
φ2 w

t
ha
− 1

φ w
t
% − (µa − µk) + µa

= − 1
φ2 w

t
ha
− 1

φ w
t
% + µk ,

where the last inequality follows from the claims above,
wtf ≤ wt% (as explained earlier), and minwtt(dtg) ≥ µa,
that follows from τa ≥ dtg.

Invariant (InvP) after processing the terminal
group. We claim that after we process the termi-
nal group, invariant (InvP) holds for slots in segments
S′a, S

′
a+1, . . . , S

′
k and invariant (InvP) is not affected

for another slot. (The proof is similar to the one in
Case L.1.B.)

Recall that the value of pslack(τ) increases by 1 for
τ ∈ [dthi

, τi), i = a, . . . , k−1. Moreover, if dthk
< d%, the

value of pslack(τ) increases by 1 for τ ∈ [dthk
, d%), and

otherwise, it decreases by 1 for τ ∈ [d%, dthk
). For other

slots in (τa−1, γ] (where for a = 0 we let τ−1 = δ), the
value of pslack(τ) remains the same. (We will argue that
invariant (InvP) is also preserved for slots τ ∈ (δ, τa−1)
when we process the group of segments that contains
τ .)

From the definitions of f∗, g∗, and invariant (InvP),
we have that #pairs(τ) ≤ 0 holds for τ ∈ (δ, df∗) ∪
[dg∗ , γ], even after the step. Thus the claim holds in
this range, which includes slots outside (δ, γ] if df∗ > γ
or if dg∗ ≤ δ (note that either of the two conditions
implies df∗ > dg∗). So for the rest of the proof we can
assume that δ < df∗ < dg∗ ≤ γ and that τ ∈ [df∗ , dg∗).

Since the values of #pairs(τ) and pslack(τ) change
by at most 1, it is sufficient to show that each τ ∈ (δ, γ]

satisfies the following two conditions: (i) if #pairs(τ)
increases then so does pslack(τ), and (ii) if pslack(τ)
decreases then so does #pairs(τ).

To show (i), note that the case when #pairs(τ)
increases happens when dg < df and τ ∈ [dg, df). Since
also τ ∈ [df∗ , dg∗), this gives us that g 6= g∗ and f 6= f∗.
Therefore g = ha and f = %. If a = k, then pslack(τ)
also increases. Otherwise, a < k and dg∗ ≤ τa by g = ha
and by the definitions of g∗, g, and a. Since τ < dg∗ ,
we get that τ ∈ [dtha

, τa), which implies that pslack(τ)
increases as well.

To show (ii), suppose that pslack(τ) decreases.
This happens only when when d% < dthk

and τ ∈
[d%, dhk

). Since also τ ∈ [df∗ , dg∗), we get τ ∈
[max(d%, df∗),min(dthk

, dg∗)). Thus we only need to
consider the case when dg∗ is in segment S′k (that
contains both d% and dthk

), which implies a = k and
g = hk. As f ∈ {f∗, %}, we have that τ ∈ [df , dg), so
#pairs(τ) decreases as well.
Processing a middle group. Let [a, b] be a middle
group; recall that ha ∈ ADV. We have two subcases.
Case M.i: There is i ∈ [a, b] such that wthi+1

< µi, i.e.,
the algorithm increases the weight of hi+1. Let F (ha)
be the packet that is in a pair with ha. We remove
F (ha) from F and replace ha in ADV by a new shadow
packet s of weight µa = minwtt(τa), added to the slot
of ha in ADV.

Calculation showing (5.15) in Case (M.i). We
take into account the possible change of weights of
ha+1, . . . , hb+1. By the case condition, there is i ∈ [a, b]
such that wthi+1

< µi, we thus use Lemma 5.4 with
a′ = a+ 1 and b′ = b+ 1 to get ∆tw(ha+1, . . . , hb+1) ≤
µa − wthb+1

.
Next, observe that wtF (ha) ≤ wthb+1

. Indeed, F (ha)
is not in P and it was in a pair with ha, thus dtF (ha) >

prevtst(dtha
) ≥ δ by Lemma 5.1(a). We get that

wtF (ha) ≤ wt% as % is the heaviest pending packet not
in P with deadline after δ. Finally, wt% ≤ wthb+1

implies
wtF (ha) ≤ w

t
hb+1

.
Then we prove (5.15) as follows:

∆[a,b]Ψ− φ∆tw(ha+1, . . . , hb+1)− advgaint[a,b]
= 1

φ

(
∆tw(ha+1, . . . , hb+1)− wtF (ha) + wtha

)
− φ∆tw(ha+1, . . . , hb+1)− (wtha

− µa)
= − 1

φ w
t
F (ha) − 1

φ2 w
t
ha
−∆tw(ha+1, . . . , hb+1) + µa

≥ − 1
φ w

t
hb+1
− 1

φ2 w
t
ha
− (µa − wthb+1

) + µa

= − 1
φ2 w

t
ha

+ 1
φ2 w

t
hb+1

,

where the last inequality follows from the aforemen-
tioned bounds.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited140

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Invariant (InvP) in Case (M.i). We claim that after
we process the middle group, invariant (InvP) holds for
slots in segments S′a, S′a+1, . . . , S

′
b and it is not affected

for another slot. Note that as b < k, the value of pslack()
remains the same or increases for slots in segments
S′a, S

′
a+1, . . . , S

′
b (recall that changes of pslack() values in

another segment are taken into account when we process
the group containing that segment). We use Lemma 5.3
to analyze how the values of #pairs change. If dtF (ha) ≤
dtha

, then #pairs(τ) decreases by 1 for τ ∈ [dtF (ha), d
t
ha

).
Otherwise, dtF (ha) > dtha

and #pairs(τ) ≤ 0 for τ ∈
[dtha

, dtF (ha)). For other slots, #pairs(τ) remains the
same. Hence, the claim holds.
Case M.ii: For all i ∈ [a, b] we have wthi+1

≥ µi. Then
the algorithm does not increase the weight of hi+1 for
any i ∈ [a, b], i.e., ∆tw(ha+1, . . . , hb+1) = 0. We replace
ha in ADV by ha+1, i.e., we put ha+1 on the slot of ha
in ADV. Note that the new deadline of ha+1 is τa and
the new slot of ha+1 in ADV is not after τa.

We claim that ha+1 is not in ADV before the
replacement, therefore it is not twice in ADV after
the replacement. This is trivial if b > a, since then
packets ha+1, . . . , hb are not in ADV before processing
the groups. Otherwise, we have a = b. Recall that
we are processing groups from the last one to the
first one, thus the group containing index a + 1 is
already processed. Furthermore, we enforce that after
processing a group [a′, b′], packet ha′ is not in ADV,
which shows the claim.

Calculation showing (5.15) in Case M.ii. We bound
the cost of changes in the middle group [a, b] by

∆[a,b]Ψ− φ∆tw(ha+1, . . . , hb+1)− advgaint[a,b]
= 1

φ

(
wtha
− wtha+1

)
− φ · 0− (wtha

− wtha+1
)

= − 1
φ2 w

t
ha

+ 1
φ2 w

t
ha+1

≥ − 1
φ2 w

t
ha

+ 1
φ2 w

t
hb+1

,

where that last inequality follows from wtha+1
≥ wthb+1

as a ≤ b. This shows (5.15).
Invariant (InvP) in Case M.ii. We show that after

we process the middle group, invariant (InvP) holds for
slots in segments S′a, S′a+1, . . . , S

′
b and it is not affected

for another slot. Note that #pairs(τ) increases by 1 for
τ ∈ [dtha

, τa) as dt+1
ha+1

= τa and we replaced ha by ha+1.
The value of pslack(τ) increases by 1 for τ ∈ [dtha

, τa),
thus invariant (InvP) holds for such τ . For other slots,
the value of #pairs() stays the same and the value of
pslack() remains the same or increases.
Processing the initial group. If i1 > 0 or if ` = 0
and α > 0, then there is the initial group [0, b]. Note

that for any i ∈ [0, b], hi 6∈ ADV. We do not change ADV
or set F , thus advgaint[0,b] = 0 and #pairs(τ) remains the
same for any slot τ . Invariant (InvP) holds for a slot
τ ∈ S′0 ∪ · · · ∪ S′b as b < k and as the value of pslack()
does not decrease.

We need to estimate the change of the weights of
packets h1, . . . , hb+1, denoted ∆tw(h1, . . . , hb+1). First,
suppose that the algorithm increases the weight of at
least one of the packets h1, . . . , hb+1, i.e., there is i ∈
[0, b] such that wthi+1

< µi. By Lemma 5.4 with a′ = 1
and b′ = b+ 1 we have ∆tw(h1, . . . , hb+1) ≤ µ0−wthb+1

.
Then the calculation showing (5.15) is simple:

∆[0,b]Ψ− φ∆tw(h1, . . . , hb+1)− advgaint[0,b]
= 1

φ ∆tw(h1, . . . , hb+1)− φ∆tw(h1, . . . , hb+1)− 0

= −∆tw(h1, . . . , hb+1)
≥ −µ0 + wthb+1

≥ − 1
φ2 w

t
p − 1

φ w
t
% + wthb+1

≥ − 1
φ2 w

t
p + 1

φ2 w
t
hb+1

,

where the penultimate inequality follows from µ0 ≤
1
φ2 w

t
p+ 1

φ w
t
% by (5.8) and the last one from wt% ≤ wthb+1

.
Otherwise, ∆tw(h1, . . . , hb+1) = 0 and (5.15) holds,

since its left-hand side is zero and the right-hand side is
at most zero. This concludes the proof that the packet-
scheduling inequality (5.4) holds in a leap step and also
the proof of φ-competitiveness of Algorithm PlanM.

6 Final Comments
Our result establishes a tight bound of φ on the com-
petitive ratio of PacketScheduling in the deterministic
case, settling a long-standing open problem.

Among the remaining open problems in this area,
the most prominent one is to establish tight bounds for
randomized algorithms for PacketScheduling. The best
know upper bound to date is e/(e− 1) ≈ 1.582 [4, 9, 7,
17]. This ratio is achieved by a memoryless algorithm
and it holds even against an adaptive adversary. No bet-
ter upper bound for the oblivious adversary is known.
(In fact, against the oblivious adversary the same ratio
can be attained for a more general problem of online
vertex-weighted bipartite matching [1, 13].) The best
lower bounds are 4/3 ≈ 1.333 [7] against the adaptive
adversary and 1.25 [10] against the oblivious one.

The determination of the packet to transmit needs
to be made at speed matching the link’s rate, so the
running time and simplicity of the scheduling algorithm
are important factors. This motivates the study of
memoryless algorithms for PacketScheduling, as those
algorithms tend to be easy to implement and fast.
All known upper bounds for competitive randomized

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited141

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

algorithms we are aware of are achieved by memoryless
algorithms (see [15]). For deterministic memoryless
algorithms, the only one that beats ratio 2 is the 1.893-
competitive algorithm in [14]. The main question here is
whether the ratio of φ can be achieved by a memoryless
algorithm.

Acknowledgements This work was supported
by GA ČR project 17-09142S, GAUK project
634217, NSF grant CCF-1536026, and NCN grants
2016/21/D/ST6/02402 and 2016/22/E/ST6/00499.
We are grateful to Martin Böhm for useful discussions.

References

[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande,
and Aranyak Mehta. Online vertex-weighted bipartite
matching and single-bid budgeted allocations. In
Proc. of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’11), pages 1253–1264,
2011.

[2] William A. Aiello, Yishay Mansour, S. Rajagopolan,
and Adi Rosén. Competitive queue policies for differ-
entiated services. J. Algorithms, 55(2):113–141, 2005.

[3] Nir Andelman, Yishay Mansour, and An Zhu. Com-
petitive queueing policies for QoS switches. In Proc. of
the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’03), pages 761–770, 2003.

[4] Yair Bartal, Francis Y. L. Chin, Marek Chrobak, Stan-
ley P. Y. Fung, Wojciech Jawor, Ron Lavi, Jǐŕı Sgall,
and Tomáš Tichý. Online competitive algorithms for
maximizing weighted throughput of unit jobs. In Proc.
of the 21 st Symposium on Theoretical Aspects of Com-
puter Science (STACS ’04), volume 2996 of LNCS,
pages 187–198. Springer Berlin Heidelberg, 2004.

[5] Marcin Bienkowski, Marek Chrobak, Christoph Dürr,
Mathilde Hurand, Artur Jeż, Lukasz Jeż, and Grzegorz
Stachowiak. Collecting weighted items from a dynamic
queue. Algorithmica, 65(1):60–94, 2013.

[6] Marcin Bienkowski, Marek Chrobak, Christoph Dürr,
Mathilde Hurand, Artur Jeż, Lukasz Jeż, and Grzegorz
Stachowiak. A φ-competitive algorithm for collecting
items with increasing weights from a dynamic queue.
Theoretical Computer Science, 475:92 – 102, 2013.

[7] Marcin Bienkowski, Marek Chrobak, and Lukasz Jeż.
Randomized competitive algorithms for online buffer
management in the adaptive adversary model. Theo-
retical Computer Science, 412(39):5121–5131, 2011.

[8] Martin Böhm, Marek Chrobak, Lukasz Jeż, Fei Li,
Jǐŕı Sgall, and Pavel Veselý. Online packet schedul-
ing with bounded delay and lookahead. In Proc. of
the 27th International Symposium on Algorithms and
Computation (ISAAC ’16), volume 64 of LIPIcs, pages
21:1–21:13. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2016.

[9] Francis Y. L. Chin, Marek Chrobak, Stanley P. Y.
Fung, Wojciech Jawor, Jǐŕı Sgall, and Tomáš

Tichý. Online competitive algorithms for maximizing
weighted throughput of unit jobs. J. of Discrete Algo-
rithms, 4(2):255–276, 2006.

[10] Francis Y. L. Chin and Stanley P. Y. Fung. Online
scheduling with partial job values: Does timesharing
or randomization help? Algorithmica, 37(3):149–164,
2003.

[11] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš
Tichý. Improved online algorithms for buffer manage-
ment in QoS switches. In Proc. of the 12th Annual Eu-
ropean Symposium on Algorithms (ESA ’04), volume
3221 of LNCS, pages 204–215, 2004.

[12] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš
Tichý. Improved online algorithms for buffer manage-
ment in QoS switches. ACM Trans. Algorithms, 3(4),
2007.

[13] Nikhil R. Devanur, Kamal Jain, and Robert D. Klein-
berg. Randomized primal-dual analysis of RANKING
for online bipartite matching. In Proc. of the 24th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’13), pages 101–107, 2013.

[14] Matthias Englert and Matthias Westermann. Consid-
ering suppressed packets improves buffer management
in quality of service switches. SIAM Journal on Com-
puting, 41(5):1166–1192, 2012.

[15] Michael H. Goldwasser. A survey of buffer manage-
ment policies for packet switches. SIGACT News,
41(1):100–128, 2010.

[16] Bruce Hajek. On the competitiveness of on-line
scheduling of unit-length packets with hard deadlines
in slotted time. In Proc. of the 35th Conference on In-
formation Sciences and Systems, pages 434–438, 2001.

[17] Lukasz Jeż. A universal randomized packet scheduling
algorithm. Algorithmica, 67(4):498–515, 2013.

[18] Lukasz Jeż, Fei Li, Jay Sethuraman, and Clifford Stein.
Online scheduling of packets with agreeable deadlines.
ACM Trans. Algorithms, 9(1):5:1–5:11, 2012.

[19] Alexander Kesselman, Zvi Lotker, Yishay Mansour,
Boaz Patt-Shamir, Baruch Schieber, and Maxim Sviri-
denko. Buffer overflow management in QoS switches.
SIAM Journal on Computing, 33(3):563–583, 2004.

[20] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal
online algorithm for packet scheduling with agreeable
deadlines. In Proc. of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’05), pages
801–802, 2005.

[21] Fei Li, Jay Sethuraman, and Clifford Stein. Better
online buffer management. In Proc. of the 18th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’07), pages 199–208, 2007.

[22] An Zhu. Analysis of queueing policies in QoS switches.
J. Algorithms, 53(2):137–168, 2004.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited142

D
ow

nl
oa

de
d

09
/1

7/
19

 to
 1

37
.2

05
.2

02
.5

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Preliminaries
	Plans
	Online Algorithm
	Competitive Analysis
	Adversary Schedule and Shadow Packets
	Set F and Invariant (InvP)
	Potential Function and Overview of the Analysis
	Arrival of a Packet
	Scheduling a Packet
	Adversary Step
	Greedy Step
	Leap Step: a Roadmap
	Leap Step: Processing S1
	Processing (,] in a Simple Leap Step (Case L1)
	Processing (,] in an Iterated Leap Step (Case L2)

	Final Comments

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 19
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryList_V1
 qi2base

