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Abstract. The model of inelastic Maxwell particles (IMP) allows onederive some exact results which show the strong
influence of inelasticity on the nonequilibrium propertiés granular gas. The aim of this work is to propose a simpldeho
kinetic equation that preserves the most relevant prasedi the Boltzmann equation (BE) for IMP and reduces to th&BG
kinetic model in the elastic limit. In the proposed kinetioae! the collision operator is replaced by a relaxatioretierm
toward a reference Maxwellian distribution plus a term espnting the action of a friction force. It contains threeapzeters
(the relaxation rate, the effective temperature of therezfee Maxwellian, and the friction coefficient) which areedeined

by imposing consistency with basic exact properties of tRefd@ IMP. As a consequence, the kinetic model reproduces the
true shear viscosity and predicts accurate expressiotisdaransport coefficients associated with the heat flux iibeel can

be exactly solved for the homogeneous cooling state, theignlexhibiting an algebraic high-energy tail with an espot in

fair agreement with the correct one.
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INTRODUCTION

The prototype model for the description of granular medishim regime of rapid flow consists of an assembly of
(smooth) inelastic hard spheres (IHS) with a constant aeffi of normal restitutiorn < 1. In the low density
limit the velocity distribution function obeys the Boltzmaequation (BE), modified to account for the inelasticity of
collisions [1]. Because of the mathematical intricacy & BE for IHS, a simpler model of inelastic Maxwell particles
(IMP) has been proposed |2,13, 4], where the collision ratsf@imed to be independent of the relative speed of the
colliding pair. Apart from its interest as a model of granmujases, the IMP model is interesting by itself since it
allows the derivation of somexactresults for any dimensionality, showing unambiguously the strong influence of
inelasticity on the nonequilibrium properties of the gas.

While the BE for IMP is considerably simpler than for IHS,ststill a formidable task to solve it in a closed form,
even in the case of the homogeneous cooling state (HCS).ifrhefahis work is to propose a simple model kinetic
equation that preserves the most relevant properties @Her IMP and reduces to the celebrated Bhatnagar—Gross—
Krook (BGK) model in the elastic limitr — 1. In the proposed kinetic model the collision operator [daeed by a
relaxation-time term toward a reference Maxwellian dittion plus a term representing the action of a dissipative
friction force. The kinetic model contains three parametarrelaxation rate modified by a fac®fa) with respect
to its elastic value, an effective reference temperaturdified by a factorf(a) with respect to the actual granular
temperature, and a friction coefficiey(tor ). The model is a hybrid of two previous models|[5, 6] origigadroposed
for IHS, reducing to them if either(a) = 0 or 6(ar) = 1, respectively. The three parametg(sr), 6(a), andy(a) are
determined by imposing consistency with basic exact ptasederived from the BE for IMP. As a consequence, the
model reproduces the true shear viscosity and predictsaecexpressions for the transport coefficients associated
with the heat flux. Moreover, it can be exactly solved for theéS the solution exhibiting an algebraic high-energy
tail with an exponent in fair agreement with the correct aspecially for high inelasticity.

THE BOLTZMANN EQUATION FOR INELASTIC MAXWELL PARTICLES

The BE for IMP [2, 3| 4] can be obtained from the BE for IHS byleing the termg- &| in the collision rate (where
g= V1 —V, is the relative velocity and is the unit vector directed along the centers of the two dinij spheres) by
anaveragevalue proportional to the thermal spe@@T/m (whereT is the granular temperature andis the mass
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of a particle). In the version of the IMP model first proposgdBmbylev et al. [2] the collision rate has the same
dependence on the scalar prodged as in the case of hard spheres. In a simpler versian [3, 4Ldtision rate is
assumed to be independentpfa. In this latter case, the corresponding BE reads

d+2 Vo(r,t)

(& +vy-O0)f(r,vy;t) =J[r,vy;t|f] = A 005

/da/dv (@ to t—1) f(r,vi;t)f(r,vat), (1)

wheren is the number densityy O nTY/2 is an effective collision frequency whose specific form witit be needed,
Qq =22/ (d/2) is the total solid angle id dimensions, and is the operator transforming pre-collision velocities
into post-collision ones, namelyy; 2 = v12 F (1+ a)(g- )0 /2. The Boltzmann collision operatdff] conserves
mass and momentum but not energy. The collisional momersisaaind and third degree are [7]

g/dvvz\][f]z—(p, m/dv(\/ivj—d’lvzdj)\][f]=—v,,( ~pay). —/deZVJ[f]:—qu. @)

Here,V = v — u is the peculiar velocity, whene s the flow velocityP is the pressure tensqr,=nT = d~1trP is the
hydrostatic pressure, amds the heat flux. The exact expressions for the coolingfatad the rates of changg and
vk are [7]
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In isotropic states, the collisional moment of fourth dege
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1-a?), vy=vy/vo= +{* Vi=w/vo=

n*l/'dvv‘*a[f] — VMo AV(2T /M2, M, = nfl/dvv%f, 4)
where the exact expressions for the rate of changend the coefficiemt are [7]
v; =Vo/Vo= (1+a)?(4d—7+6a—3a?)/16d+20*, A =(1+a)*(d+2)(4d—1—6a+3a?)/64 (5)

In the case of the uniform, free cooling state, the BE (1) dedavolution equations for the second- and fourth-
degree moments become

af(v)=Jv[f], AT =—IT, &My=—voMa+Avp(2T/m)2 (6)

The solution to the cooling equation 1§(t) = T(0)[1 + Z( )t/2]2 (Haff's law). If time is measured by the ac-
cumulated number of collisions per particle ) = J5dt’' vo(t') = (2/¢*)In[1 4 Z(0)t/2], Haff’s law becomes
T(1) = T(0)exp(—{*1). It is convenient to introduce theducedmomentsM; = M, /(2T /m), so thatM; = d/2
by definition, and theeduceddistribution f*(c, 7) defined by

f(v,t) =n[m/2T(1)]?f*(c, 1), c=v/\/2T(t)/m. @)
Thus, Eq.[(B) yields
0cf7(c)+({7/2)0c-ct™(c) = I*[c[f7], My = —(v; =2 )Mz + A, 8

whereJ*[c|f*] is the dimensionless version of the collision operadfwtf]. Except in the one-dimensional case, the
reduced momer; (T) converges in time to the well defined valMg () = A /(v —2{*). In general, the distribution
function reaches acaling form[g], called homogeneous cooling state (HCS), which is tlati@tary solution of
Eq. @), i.e.,f*(c,T) — f*(c,») = fi.(C). Its exact expression is not known, except in the one-diineascase,
wherefi.((c) = (23/2/m)(1+ 2c?)~2 [€]. Ford > 2, the fourth cumulant (or kurtosigy = 4M;/d(d + 2) — 1 of the
distributionf;; . is

4 A 6(1—a)?
dd+2)v;—27* = 4d-7+6a—3a2

Thereforea, > 0 for IMP, in contrast to what happens in the case of IHS witt v/2/2 [10]. It is also known that
fi. exhibits analgebraichigh-energy tail of the formi[4]

ap =

9)

fﬁcs(c) ~ C—d—s(a)7 (10)



where the exponersta) is the solution of the transcendental equation

1—a?
4d

- (11)

S=pF1[~5/2,1/2;d/2;1— (1— a)?/4] + (1+ 0’)3 M(s/2+1/2)(d/2)

2 M(s/2+d/2)[(1/2)’
oF1[a,b;c;Z] being a hypergeometric function. Equatignl(10) implies thase moment$!; with ¢ > s(a)/2 are

divergent.
Finally, the exact expressions for the transport coeffisiane [

p 1 _d+2 p 1+2a il , , d+2 p 1+3a/2
S vo v —{¥/2 K== mvo v;i —2*’ M= n(K K, K= 2 mvg v —30*/2

n (12)

Here,n is the shear viscosity is the thermal conductivityk’ is a modified thermal conductivity, andis a coefficient
relatingg andCn. As can be seen fronlll(3);; > {*/2 andvy > 3¢*/2, so thatn andk’ are well defined for albr.
On the other hands andu are not positive definite iv;; < 2¢*, i.e., ifa < a, = (4—d)/3d. Therefore, ifd < 4 and
a < ap, there is no hydrodynamic behavior since the heat flux doesetex to a Fourier-law form.

MODEL KINETIC EQUATION

Although the BE for IMP is more manageable than for IHS andedanportant properties are accessible in an exact
way, its explicit solution is not known, even for the HCS dtthen natural to wonder whether a simple generalization
of the well-known BGK model kinetic equation to the case offlldan be proposed. The model considered in this
paper is constructed by the replacement

J[r,v;t|f] = J[r,v;t|f] = —B(a)vo(r,t) [f(r,v;t) — fo(r,v;t)]+ y(a)vo(r,t)dy - V(r,v;t), (13)

where
fo(r,v;t) = n(r,t) [m/2m8(a)T(r,t)] 2exp[—mV2/26(a) T (r,1)] (14)

is a local equilibrium distribution parameterized by theperatured(a)T. The effect of the inelastic collisions in the
original BE is played in the moddI{lL3) by a relaxation termvdeod the distributiorfy at an effective temperatur,
plus an external friction term. The model contains three frarameters: the factfa) > 0 modifying the relaxation
rate with respect to its elastic value, the facldo) < 1 modifying the granular temperature in the reference state
fo, and the friction coefficieny(a) > 0. These three parameters will be chosen in the next sediopttimize the
agreement with the most important properties of the BE foP.IM one particularizes tg(a) = 0, the model[[T3)
reduces to the one proposed by Brey, Moreno, and Dufty (BMR)vhile the choicef(a) = 1 yields a simplified
version of the model proposed by Brey, Dufty, and Santos (HEJS From that point of view, the modd[{lL3) can be
seen as a hybrid of the BMD and BDS models. Although the twerahodels were originally proposed for IHS, Eq.
(@I3) is proposed here as a model for IMP, not IHS. In fact, $bxeen showrl [1 1, 12] that the BMD model shares more
features with the BE for IMP than for IHS. B

Let us now obtain the basic physical properties of the mogelatord. First, it is straightforward to check that
it conserves mass and momentum. However, stheé 1 andy # 0, energy is not conserved by collisions. More
specifically, the cooling rate and the rates of change defigezgly. [2) are given (in reduced units) by

{* () = Bla)[1—B(a)] +2y(a), V()= pla)8(a)+{"(a), V;*(a):%‘”[se(a)—lwg?(a), (15)

where henceforth a tilde means that the corresponding iyidrts been evaluated with the model operator
Moreover,

l
ntyy,t / w2 J[f] = — (B +20y)M, + B r(re(z/dz/)z) <2fnT) . (16)

In particular, setting = 2 we reobtain Eq[{4) with

V5 (a) = B(a)[20(a) — 1] +20*(a), A(a)=B(a)8%(a)d(d+2)/4. (17)



Let us now consider the free cooling problem. As shown by By .the necessary and sufficient condition to reach

a scaling solution (HCS) with a finite fourth-degree velpaitoment isv; > 2*, i.e.,0 > 1/2. In that case, the first
equality of Eq.[[®) implies that the fourth cumulant of thalstg solution is

Bo(a) = [1- 6(a)?/ [26(ar) — 1. (18)

Therefore, we havé@, > 0, regardless of the precise values of the paramgier8, and y of the model. As a
consequence, the modEI]13) can never capture the negativesvexhibited by, in the case of IHS foor > v/2/2.
From Eq.[[(Ib) it is easy to obtain the time-dependence oféHaaged velocity moments in the free cooling problem:

o’ r(¢+d/2)
1-¢(1-6) TI(d/2

M; (1) = e PL-(2- 0t (0) o {1 g Pl--0Ir} (19)
Since, on physical ground8,< 1, it turns out that the reduced momeMs$(1) divergein time if £ > (1— 0)~1. This
implies that the scaling solution presents a high-eneiiggfithe form {I0) with the exponent

S(a)=2[1—6(a)] L. (20)

Finally, the transport coefficients of the model are given{®}), except for the obvious replacemegts— *,
v,’; — U,’;, Vi — Vi, anday — ap.

The main advantage of a kinetic model lies in the possildlitybtaining the explicit form of the velocity distribution
function. Let us illustrate this in the free cooling casecéiding to the mode[{13), the first equation[df (8) becomes

{B Y0 +1+[(1—6)/2]d;-c} f*(c) = (m0) V?exp(—c?/0). (21)

Itis interesting to note that the parameyatoes not intervene explicitly in Eq{R1), so that it is fotmaquivalent to
the equation obtained from the BMD model [5]. Given an aauitrinitial conditionf*(c,0), the exact solution to Eq.

@) is [12]18]

Bt
f*(c,1) = e PI1+d(1-0)/2T ¢~ (e’ml*e)r/zc, O) + (ne)*d/z/ dyexp{—[1+ d(1- 6)/2]y—cze*<1’9>y/6}.
0

(22)
The HCS is obtained taking the limit— oo with the resultl[5} 12, 13]

fres(€) = (m9)%(1— 0)"}(8/c) /210 [T (d/2+1/(1-0))-T (d/2+1/(1-6),c%/8)],  (23)

where the change of variable= c?exp—(1— 0)y]/8 has been made aridz a) = [; dxx* e * is the incomplete
gamma function. Note that the whole dependencd;gf on inelasticity appears through the parametesnly. In
the high-energy limit (actually, i€? > 6), I (d/2+1/(1— 6),02/6) — 0, so that we recover the tall[{[10) with the
exponentl[20). The transient from the initial distributiti{c, 0) to the asymptotic distributiofy;.((c) is described by
Eq. (22), which can be rewritten in a simpler form by intromhgcthe deviationd f*(c, 1) = f*(c, 1) — i (c). The
results ford f* and its moment$M; with ¢ < (1—6) ! are

5*(c, 1) = e BlLHd1-0)/ 215+ (e*f*(l*@)T/?c, o) . OM; (1) = e PL-1-0T 5\ (). (24)

While f*(c,1) relaxes uniformly tof;.(c) at fixedc with a relaxation ratg8[1+ d(1— 68)/2], the momentV; (1)
relaxes to its HCS value with a shorter relaxation &g — ¢(1 — )] which goes to zero asapproaches the threshold
value(1— 8)~ from below. This paradoxical property [13] is a consequesfdbe non-commutability of the limits
c— o andt — « in Eq. [Z4). To analyze this with more detail, let us suppds the initial distributionf*(c,0)
has a high-energy tail much weaker than thaf/pf(c), so thats f*(c,0) ~ —f;'.{(c) ~ —Ac 9-2/(1-6) in the region
¢ > 0, where the amplitudé is known from Eq.[[2B). In that case, at fixedone has

53t (c,1) ~ —Ac 9210 ~ _f* (), 2> P10, (25)

This means that, at any fixed tintethere always exists an infinite range of large spe€ds; 0ef(1-9)T where the
deviation of the velocity distribution function from itsyamsptotic HCS value is of 100%. This region is eventually
responsible for the divergence of moments with (1 —6) 1.
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FIGURE 1. Transport coefficientg (o), k’(a), andu(a) for d = 3.
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FIGURE 2. Left panel: High-energy expones(a) for d = 3. Middle panel: Time evolution of the ratid'(c, T)/ fji.(c), starting
from an initial equilibrium distribution, foor = 0.5 andd = 3. Right panel: Plot of};.(c) for d = 3 anda =0, 0.5, 0.7, and 09.

RESULTS AND COMPARISON WITH THE BOLTZMANN EQUATION

So far, all the properties of the kinetic modell(13) desdtiinethe preceding section are valid with independence of the
specific expressions for the paramet@(s), 8(a), andy(a). Now we fix them by requiring the model to reproduce
the basic properties of the original BE. The most charastietonsequence of inelasticity is the cooling rate, sbaha

obvious requirement ig§* = {*. The next requirement could be the agreement with eithenellagation rate/;; or v.

We cannot enforce both since that would imply= d/(d + 2), which yields an unphysical model in the elastic limit.
This impossibility of satisfying the shear viscosity ané thermal conductivity simultaneously, which also happens
with the conventional BGK model, is remedied by a more sdfgasited modell[12]. In the case of the kinetic model
(@3), letus takey, = V,’f, as a second condition. Finally, given the important rolggthby the kurtosisy of the HCS,

the third condition adopted hereas = a,. These three requirements yield

1+a)? d+2 1+a)?
Bla)= %, y(a) = 8—+d(1— a®)— % [0 (a)—1], 6(a)=1+ag(a)—a(a)[1+ax(a)],
(26)

whereay(a) is given by Eq.[[D).

By construction, the model reproduces the exact shearsitgap but not the transport coefficients associated with
the heat flux. However, as Figl 1 shows, the model capturssnebly well the rapid increase efa), «’(a), and
u (o) with the inelasticity, the agreement being especially ndsaale in the case gfi(a). The model also predicts
the existence of a threshold valag below which hydrodynamics no longer holds. The valuergfs the solution of
a quartic equation which fat = 3 yieldsay ~ 0.114, in excellent agreement with the exact resyl=1/9~0.111.

As Fig.[2 shows, the model underestimates the exact expsfenbut the agreement improves as the inelasticity
increases. The time evolution of the distribution functiorhe free cooling state, as well as the asymptotic scaling
solution are also shown in Figl 2 for a few representativesas



CONCLUDING REMARKS

The model of IMP shares with the more realistic model of IHSdlscription of the important influence of inelasticity
on the dynamical properties of a granular gas. However,ittilatence is magnified by the IMP model, giving rise
to stronger departures from the Maxwellian distribution &ven to the absence of hydrodynamics for sufficiently
inelastic systems. Nonetheless, the fact that non-tr@satt results can be derived from the BE for IMP justifies its
study in order to gain a broader perspective on the pecul@grties of dissipative gases. From that point of view,
the model[(IB) proposed here can be useful to have accesashal a semi-quantitative way, to relevant information
(such as the velocity distribution function itself) notetitly available from the BE for IMP.

The key ingredient of the kinetic moddl{13), also presenthe BMD model [5], is the effective temperature
6(a)T < T in the reference distributiofy. Its existence leads to a non-trivial HCS solution with aifpges definite
kurtosis and an algebraic high-energy tail. The additigmasence of the friction term relieves the effective teraper
ture of fully accounting for the cooling rate, so that a closentact with the BE for IMP is possible.

The analysis presented in this paper can be extended alomglaen of routes. The explicit solution of the kinetic
model to other problems, such as the simple shear flow, igbktfarward. Moreover, the flexibility of the model
allows one to choose its parameters by a fit to other quasititiech as the effective collision frequengy{a) and/or
the exponerng(a), different from the ones considered in this paper. The Ganssnetic model proposed in Ref.[12],
which is able to reproduce, (a) andv, (a) simultaneously, can be extended by the inclusion of a énicterm, thus
providing an extra parametg(a). It s also possible to generalize the mode] (13) to mixtufese [14].
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