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Abstract 

 

Emotions and moods are an inevitable part of human life. Previous research 

suggests that positive and negative moods affect human performance in 

many aspects: decision making, perception, reasoning and memory. The 

influence of mood on drivers’ behaviour has been studied to a less extent 

and mainly with respect to negative emotions. The studies reported in this 

thesis are based on psychological theories regarding the differences in the 

effects of positive and negative moods on information processing and mind 

wandering. 

The thesis describes two studies: a desktop study and a driving simulator 

study, which measure drivers’ responses to the actions of other traffic, their 

observational patterns and driving behaviours in a variety of scenarios. The 

effects of neutral, happy, sad and angry moods were studied. The simulator 

study also investigated possible ways to disconnect drivers’ minds from 

mood induced mind wandering by using different types of cognitive load.  

The results suggest that mood valence and arousal have different effects on 

driving safety, with negative moods resulting in the most dangerous driving. 

In order to draw conclusions about the effect of mood, a combination of 

multiple measures (e.g. glance patterns, driving performance and drivers’ 

physiological measures) should be analysed. The results also suggest that 

some amount of cognitive load, applied while driving, can have a positive 

effect on drivers’ attention.  

Further research is needed to establish the amount and type of the cognitive 

load necessary to improve drivers’ ability to maintain their attention on the 

driving task. Studies with a larger number of participants and field studies are 

needed to validate the findings. It is suggested that the findings are used to 

improve in-car assistance systems able to both detect the harmful effects of 

a driver’s emotional state and re-direct their attention to the primary task of 

driving.    
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1. Attentional shift – the ability of a driver to switch attention from one 
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2. Baseline mood – participants’ mood prior to the experiment 

3. Baseline measurements – measurements taken before mood 

induction 

4. Car following – the situation during a drive when a drivers’ speed 

choice is restricted by the speed of the lead vehicle 

5. Disconnection – drivers’ attention disconnection from mind wandering 

6. Glance measures – measures collected using an eye tracker. These 
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width of fixation spread  

7. Emotion – has the same meaning as ‘mood’ in this thesis 

8. Free drive – the situation when drivers’ speed choice is restricted only 

by legal requirements and their hazard awareness 

9. Information processing – Drivers’ ability to perceive and process road 

related information from the surrounding environment  
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Chapter 1 Introduction 

Driving has become one of the most utilised everyday tasks. For many 

people it is difficult to imagine life without driving or just using vehicles for 

getting from A to B. Sadly, road accidents are a persistent and inevitable part 

of driving.  Moreover, road accidents are the most common cause of 

accidental death (World Health Organisation, 2017). Regardless of all the 

actions taken, in the UK alone 24,620 people were killed or seriously injured 

in the year ending June 2016, up by 2 percent compared to the previous year 

(Office for National Statistics, 2016). This highlights the importance of 

understanding every aspect that could directly or indirectly influence driving 

and road safety.   

Amongst the most important factors contributing to crash likelihood are 

drivers’ mood and attention (Dula & Ballard, 2003; He, Becic, Lee, & 

McCarley, 2011; Hu, Tian-Yi, Xie, & Li, 2013; Young, Regan, & Hammer, 

2007). Both of these factors can equally contribute to either safer driving or 

accident likelihood, depending on their momentary influence on drivers’ 

behaviours and reactions. Indeed, aggressive driving and road rage are well-

known causes of traffic accidents (Ulleberg, 2001), as well as drivers’ 

inattention (Underwood, 2007; Underwood, Chapman, Berger, & Crundall, 

2003; Wang, Knipling, & Goodman, 1996). Moreover, attention and mood 

can interact with each other in a way that can be either beneficial or 

detrimental to driving safety (Eherenfreund-Hager, Taubman–Ben-Ari, 

Toledo, & Farah, 2017; Lee, Lee, & Boyle, 2007). The effect of drivers’ mood 

and emotional state on their attention is an important characteristic, which 

requires further understanding to increase driving safety.     

1.1 Gaps in the existing knowledge 

Driving has become an inevitable part of everyday life for many people. By 

the end of March 2016, 36.7 million vehicles were licensed for use on roads 

in Great Britain (Office for National Statistics, 2016). Moreover, everyday 

services are reliant on transport for many important tasks, such as 
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commuting to and from work, shopping, entertaining and obtaining help from 

emergency services. Inevitably, transport is used regardless of drivers’ 

momentary emotional state or prolonged mood. Therefore it is important to 

understand how different emotions and moods can influence driving style, 

and whether this influence can be mediated by manipulating drivers’ 

attention.  

Emotions and moods will always be a part of human life, thus their influence 

on every social and interactive aspect is highly important. Moreover, to date, 

there is no research investigating how drivers’ mood and emotional state 

interacts with drivers’ attention. Hence, can a driver in a sad mood be 

distracted from their internal thoughts by influencing their attentional focus by 

e.g., asking them driving-related questions or general questions related to 

their habits? How does the interaction of attention and mood affect drivers’ 

performance?     

1.2 Highlights of relevant research  

1.2.1 Influence of drivers’ mood and emotions on driving safety 

Research to date has mostly focused on drivers’ trait characteristics and 

emotions caused by traffic and their effect on drivers’ behaviour. For 

instance, Abdu, Shinar, and Meiran (2012) found that angry drivers more 

often crossed amber traffic lights and tended to drive faster, and Arnett, 

Offer, and Fine (1997) report a direct relationship between trait anger and 

exceeding the speed limit. 

Positive emotions and their effect on driving safety have been investigated 

less and even so, most of these studies were not directly related to drivers’ 

emotions, but their seating comfort (De Looz, Kuijt-Evers, & Dieen, 2003) 

and roadside furniture (Cackowski & Nasar, 2003). Positive emotions 

appeared to have a positive effect as self-reported by drivers. A recent 

driving simulator study, conducted by Eherenfreund-Hager et al. (2017), 

revealed some differences in driving styles not only with regards to drivers’ 

emotional valence but also with regards to their physical arousal. They report 

that relaxing positive emotional state, which they refer to as ‘affect’, led 
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drivers to less risky driving styles as compared to arousing positive and 

negative affect conditions. 

 

1.2.2 Influence of drivers’ attention on driving safety  

Attention has been widely studied in psychological research in general and in 

driving-related research in particular. Loss of attention has been named as 

one of the main causes of car accidents (Office for National Statistics, 2016). 

Therefore, a clear understanding of factors influencing drivers’ attention is 

necessary and vital for road safety. 

Drivers’ attention is affected by various factors; experience (Crundall et al. 

2012), poor road conditions and poor visibility (Konstantopoulos, 2009) as 

well as various distractors (He et al. 2011). The ability to anticipate traffic 

behaviour increases with experience (Crundall et al. 2012), whereby more 

experienced drivers have different road search patterns permitting for more 

efficient use of attention. As attentional resources are limited, it is important 

to prioritise the more informative parts of the road from others where 

situational changes are less likely to occur (Crundall et al. 2003). 

Distractors can impair the ability to perform efficient observations (Caird, 

Simmons, Wiley, Johnston, & Horrey, 2018; Kircher & Ahlstrom, 2017; 

Ranney, Harbluk, & Noy, 2005). Avoiding these distractors is not always 

under a driver’s control. Although an activity such as talking on a mobile 

phone or tuning a radio while driving can be avoided, should a driver wish to 

do so, external-to-vehicle distractors, such as roadside advertisements, are 

not as easy to ignore (Wallace 2003). 

Therefore, the extent to which drivers can concentrate on driving and ignore 

distractors is one of the main determinants of driving safety. The ability to 

prioritise between tasks while driving makes the best use of limited 

attentional resources. However, this level of performance is not always 

possible to maintain. Although avoiding distractors, which are under drivers’ 

control, should not be a problem, ways of avoiding intruders of drivers’ 

attention in the form of mind wandering should be thoroughly investigated. 
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One of the factors that could affect drivers’ attention may well be drivers’ 

mood and emotional state. This topic of the interaction between mood and 

attention has been neglected with respect to road safety, despite a lot of 

research being devoted to understanding this relationship in other areas. 

Emotions affect individual judgment about self and the surrounding 

environment (Blanchette and Richards 2010). Anxious individuals make 

negative interpretations about ambiguous scenarios, consider levels of risk 

being higher for self than for others and anticipate worst consequences from 

negative events for self (Butler and Mathews 1983). Emotion influences how 

people estimate the likelihood of a positive or negative outcome in 

relationships (Schwarz, 2000). Participants in a positive mood estimate more 

likelihood of long-term happiness or marriage, whereas participants in a 

negative mood estimate more likelihood of separation and being victims of a 

crime (Constans and Mathews 1993). 

1.3 Novelty and original contribution 

With regards to drivers’ emotions, previous studies have mostly been 

concerned with self-reports, drivers’ trait characteristics and emotions 

caused by traffic situations. Nevertheless, individuals rarely drive in a neutral 

mood, unaffected by any emotion. Therefore, it is important to understand 

how this underlying emotion can influence driving safety. Previous research 

also did not provide support of objectivity of emotional assessment using 

physiological measurements as well as eye tracking methodologies. This 

thesis intends to address this deficiency by assessing drivers’ emotions 

using physiological measurements supplemented with self-reports. With 

regards to drivers’ emotions, previous research was focussed on the effect of 

negative emotions on driving safety (Abdu et al., 2012; Cai, Lin, & Mourant, 

2007; Stephens & Groeger, 2006; Wells-Parker et al., 2002). The influence 

of positive emotions on driving safety has not received much attention so far.    

Moreover, there is no research to date using cognitive load as a tool to 

manipulate drivers’ attention in a way that could increase driving safety. The 

simulator study is innovative therefore, the first one in investigating a types of 

cognitive load that would be able to redirect drivers’ attention to road related 
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variables. The manipulation of both aspects, drivers’ emotions and drivers’ 

attention, permits the investigation of each of these variables affects driving 

safety, as well as the relationship between them. 

1.4 Practical implications 

Understanding human mental workload in different situations, especially 

while driving, is extremely useful in designing technologies capable of fast 

and non-invasive measurement of this workload before it becomes too high 

or too low for safe driving. High emotional disruption could result in 

attentional distraction from the road (mind wandering), which lowers 

situational awareness and leads to performance decline (Borghini, Astolfi, 

Vecchiato, Mattia, & Babiloni, 2014). The assessment of drivers’ emotional 

state and identification of their functional ability could help in planning their 

work-rest times and minimise driving-related errors. Moreover, it could help 

to identify and avoid drivers’ attentional lapses causing significant mental 

underload and overload resulting in severe performance decline with 

dangerous consequences (Holm, 2010).  

Applying some amount of cognitive load while driving could potentially 

disconnect drivers from mood related mind wandering and day dreaming 

(Smallwood, Fitzgerald, Miles, & Phillips, 2009). This thesis is the first to 

investigate whether cognitive load, in the form of driving related or non-

driving related questions, asked while driving, can re-direct drivers’ attention 

to the primary task of driving.  

Automotive manufacturers are working towards the development of more 

comfortable and safer cars. Modern cars feature various driver assistance 

systems, such as cruise control, lane keeping assistance systems and 

workload managers. Workload manager systems, for example, attempts to 

assess whether the driver is overloaded or distracted and in such case can 

delay vehicle system messages. For example, can divert an incoming call to 

an answer machine in busy traffic situations, such as at junctions or sharp 

road bends (Green, 2004). Workload managers have been effective for 

drivers of different age groups and in situations with different traffic demands 
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(Teh, Jamson, & Carsten, 2018). However, they do not take into account 

drivers’ momentary emotions and, in these situations, a driver’s reaction 

could be substantially affected. Thus, combining a workload manager with an 

emotion recognition system (Kim, Bang, & Kim, 2004) could substantially 

improve driving safety.         

1.5 Thesis objectives 

This thesis focuses on the relationship between drivers’ emotion and 

cognitive load from three perspectives; hazard perception, driving behaviour 

and attentional switch. 

Objective One:  identify the relationship between drivers’ emotional state and 

their response time to hazards. 

Objective Two:  identify if and how driver’s behaviour changes in response to 

changes in their emotional state 

Objective Three: explore if any negative behavioural changes found can be 

mediated by applying different types of cognitive load and if this cognitive 

load affects the positive behavioural changes.  

Objective Four:  identify the relationships between drivers’ emotional state, 

their driving behaviour and their visual search patterns of the surrounding 

environment. 

1.6 Structure of the thesis  

Chapter One outlines the problem to be investigated by describing the 

importance of understanding influence of drivers’ emotions on road and 

traffic safety. It briefly describes previous research, establishing the 

background and motivation for this thesis and finally outlines the aims of the 

thesis.    

Chapter Two provides a literature review of emotion-related changes in 

driving behaviours. It also reviews literature considering drivers’ attention as 

a factor influencing driving safety. Finally, it provides a theoretical framework 

for understanding the psychological basis of behaviours influenced by 
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different emotions and role of attention in the manipulation of these 

behaviours.   

Chapter Three defines and justifies the dependent variables used in this 

thesis. It documents previous findings to build a framework for the present 

studies.      

Chapter Four describes the desktop study, which examines the reactions of 

drivers in various emotional states to hazardous road situations. This 

experiment uses a desktop computer to present potentially dangerous driving 

situations and uses simple measure of hazard response time. An eye tracker 

was used to measure drivers’ glance behaviours in different emotional 

states.  

Chapter Five describes the simulator study, which has two main aims. The 

first is to explore the influence of mood induced mind wandering on driving 

performance and drivers’ glance patterns. The second aim is to explore 

whether different types of cognitive load can disconnect drivers from their 

mind wandering and redirect their attention to driving. In addition, how these 

types of cognitive load affect driving performance when drivers are not 

engaged by mind wandering is explored.      

The simulator study builds on the desktop study by investigating more 

complex behaviours, such as speed, braking style, time headway, drivers’ 

glance patterns, and the relationship between these parameters and drivers’ 

mood.  

Chapter Six discusses and summarises the findings of both experiments. It 

highlights the potential practical use of the findings and suggests directions 

for further research.   



- 8 - 

Chapter 2 - Emotions, attention and driving safety 

The aim of this thesis is to establish the effects of emotions on drivers’ 

attention and their driving style, and to explore how to use interventions in 

case of negative effects. To complete this task, firstly terms, concepts and 

theories used in the thesis are defined and explained (Sections 2.1 and 2.4). 

Further, a literature review is undertaken to understand how emotions affect 

decision making, memory and other aspects of human activities (Section 

2.2). Sections 2.3, 2.5 and 2.6 investigate the influence of attention and 

mood on drivers’ behaviour and their possible effects on driving safety. 

Finally, a theoretical background for the thesis is established and 

summarised (Section 2.7).   

2.1 Emotion – definition and concept 

The concept of emotion is wide, making it difficult to provide a precise 

definition. Emotions represent a substantial part of human evolutional and 

cultural inheritance regarding adaptation and development (Carver, 2003; 

Ekman & Friesen, 1971; Hammond, 2006; Izard, 1977). The role of emotion 

has been established in many important aspects of human life: empathy and 

sympathy forming human moral behaviour (Eisenberg & Miller, 1987; 

Hoffman, 2000), facilitating creative problem solving and defining a quality of 

human experience (Fredrickson & Branigan, 2005; Isen, Daubman, & 

Nowicki, 1987), and forming human temperament and personality 

(Malatesta, 1990; Watson & Clark, 1992).  

The difficulty of defining emotion has been acknowledged by many authors 

(Kleinginna Jr & Kleinginna, 1981). Young (1975) states that the main reason 

for this difficulty is an abundance of viewpoints, making it virtually impossible 

to form a consensus, and Mandler (1980) argues that even superficially there 

is no acceptable definition of emotion. Even the term ‘emotion’ has been 

used differently by different researchers, sometimes implying emotion, 

sometimes mood or cognitive appraisal, and sometimes affect and feelings, 

without distinguishing between these concepts. 
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The difference between these concepts, however, is an important aspect of 

emotional research, hence must be clearly stated. Feelings have been 

defined as basic subjective experiences forming more complex processes 

named emotions (Izard, 1971). The concept of emotion includes physical and 

behavioural fluctuations, such as changes in breathing, surface capillaries, or 

heart rate (Critchley & Harrison, 2013). Moods are long lasting, diffuse, 

affective conditions. Emotions and moods are very similar in description but 

still, have significant differences. Emotions are short lived and easily affected 

by the environment. They are also is stronger and more extensive than 

mood, which is, instead, stable to changes but low in intensity (Davidson, 

Scherer, & Goldsmith, 2003). The concept of cognitive appraisal includes 

perceptual assessment of situational arousal and a stepwise response 

related to this action. For example, an initial appraisal of the emotional 

experience occurs when sensing an emotional stimulus, then the emotion is 

labelled, and memory is searched for preparation of control and action 

mechanisms to deal with the emotional situation (Plutchik, 1980). 

Although the concepts of ‘mood’ and ‘emotion’ are not interchangeable, they 

have been used as such in contemporary research. This is due to the 

similarity of behaviours elicited by both of these concepts (Hu et al., 2013), 

partially due to ‘emotion’ being short lived and therefore easier to use in a 

repeated measures design (Rauscher, Shaw, & Ky, 1993). In this thesis the 

terms ‘emotion’ and ‘mood’ are used throughout and interchangeably; 

therefore, it is assumed that longer lasting moods would have the same 

effects on drivers’ behaviours (Hu et al., 2013).   

Emotion has two important characteristics: valence and arousal (Balters & 

Steinert, 2015). They argue that emotional valence is a continuous array of 

feelings ranging from positive to negative.  Emotional arousal is a state of 

bodily activity in response to external stimuli, which makes an individual 

more energetic and alert. Arousal is a response to the sympathetic nervous 

system indicated by increased heart rate, breathing and sweating (Levenson, 

2014).      

In the context of this thesis, the term ‘valence’ is used to describe polar 

emotional states: positive and negative. The term ‘arousal’ however, has two 



- 10 - 

aspects here. One is related to emotion; it is either positive or negative 

emotion with high intensity. For example, a ‘happy’ emotional state is 

understood as a positive emotion with high energy, whereas ‘angry’ is related 

to a negative feeling with high energy (see Figure 1). The other use of 

‘arousal’ is related to physiological arousal caused by unexpected situations 

(e.g. hazards) or cognitive load, which is not described in relation to any 

emotional valence, but is a sign of alertness. These two forms of arousal are 

investigated in this thesis regarding their possible influence on driving 

behaviours and their interaction with each other. 

Low arousal in this thesis is investigated with reference to positive and 

negative valence. The sad mood is referred to as negative valence and low 

energy condition. The neutral mood is seen as low energy but positive mood. 

The substantial difference between the neutral and the sad moods, is the 

arousal level (Hill et al., 2013). Hill et al. (2013) argue that it is easy to 

distinguish between emotional states with high and low arousal levels, but it 

is difficult to differentiate between what they call ‘flat energy’ emotions, such 

as ‘okay’, ‘neutral’ or ‘bored’.   

 

Figure 1: Activation – Evaluation emotional space. Adapted from (Hill et al., 
2013) 
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2.2 Emotions and their role in human life  

Studies on influence of emotions on human lives date back to the 19th 

century. Darwin (1873) was the first to consider emotion as a tool for 

communication. Darwin regarded emotions as concepts in support for his 

theory of evolution. His ideas were further developed by Ekman (1992), who 

states that expressions of human emotions are universal and do not differ 

across cultures. Since first classified by Darwin, theories of emotions and 

their influence on human existence have constantly been studied, defined 

and developed.        

Massey (2002) argues that emotionality preceded rationality in evolutionary 

sequence and, only with evolution, cognition became more important in 

human interactions. However, it never replaced emotionality. Instead, 

emotionality precedes rationality in the order of perception. External stimuli 

are perceived, assessed and processed emotionally well before they are 

cognitively appraised (LeDoux, 1998). Moreover, the actions urged by 

emotionality start well before rational appraisal. Massey (2002) states that 

the perceived stimuli pass through the thalamus and before reaching the 

prefrontal cortex (where rationality is processed) they pass through the 

amygdala, responsible for emotion processing. Thus individuals react 

emotionally even before the stimuli are cognitively processed. For example, if 

an individual is walking across the road without seeing a fast approaching 

car, he/she would jump or run away before conscious assessment of the 

danger. Massey states that this is because the input stimuli are processed by 

the amygdala about a quarter of a second before they reach the prefrontal 

cortex. Moreover, even if the functionality of the prefrontal cortex had been 

disabled, the individual would still jump away from the danger (Massey, 

2002). Understanding these processes is important to be able to explain 

human behaviour, especially when humans are under the influence of their 

emotions.    

Thompson (1994) describes emotion regulation as a process of initiating, 

upholding and controlling the occurrence and extent of inner feelings. 

However, the process of emotion regulation can be difficult and at times 
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almost impossible (Muraven, Tice, & Baumeister, 1998). Moreover, not only 

are emotions difficult to control, often the form of control can be more harmful 

than the emotion itself (Muraven & Baumeister, 2000). For example Troy, 

Shallcross, and Mauss (2013) state that cognitive reappraisal, a method of 

emotion regulation, can either help or hurt, depending on the context. 

Reappraisal is beneficial when stressors are uncontrollable, but not so when 

stressors can be controlled (when the situation can be changed). The 

difficulty of emotional control and emotional prevalence in every aspect of 

human life makes understanding of its influence on human performance and 

behaviour an interesting and challenging topic. 

Emotions affect many aspects of human functioning: perception, memory, 

decision making and reasoning. Vuilleumier, Armony, Driver, and Dolan 

(2001) define perception as a filter which prioritises information processing 

based on its momentary relevance. Hansen and Hansen (1988) found that 

not all emotions have the same processing speed: participants could detect 

an angry face among neutral faces faster than a happy face among neutral 

faces. These results have been explained as the threat-superiority effect and 

replicated a number of times (Eastwood, Smilek, & Merikle, 2001; Fox & 

Damjanovic, 2006). Nevertheless, other research shows that emotionally 

charged stimuli do not necessarily facilitate processing. For example, the 

phenomenon called the emotional Stroop effect shows that it takes longer to 

name the colour of negative adjectives, such as ugly, compared with the 

colour of positive adjectives, such as pretty (Pratto & John, 1991). Phaf and 

Kan (2007) systematically analysed emotional Stroop effect related research. 

They concluded a consistent processing bias with longer processing of 

emotional stimuli, thus strong evidence for processing automaticity of 

emotional words. 

Since emotional events are vital to human survival, it makes sense that 

emotional situations are memorised stronger and in more detail. This 

statement is true for personal events during emergency situations, known as 

flashbulb memory (Brown & Kulik, 1977; Reisberg, Heuer, Mclean, & 

O’shaughnessy, 1988), as well as the emotional events when stimuli match 

the experienced mood, referred to as mood-congruent memory (Bower, 
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1981; Ellis & Moore, 1999). Bower (1981) explains this phenomenon by 

deeper processing and making more associations with mood-congruent 

events.  

Decision making is another aspect which can be influenced by emotions. 

Thagard (2008) distinguished between emotional and rational decision 

making. Emotional decision making is more intuitive and faster, but prone to 

errors as they are less accurate or possibly based on irrelevant information. 

Rational decision making, instead, takes into account possible alternatives, 

pros and cons, but as a consequence is slower. In some situations, emotions 

can facilitate rational decision making (Damasio, 1994). Moreover, 

Loewenstein, Weber, Hsee, and Welch (2001) state that emotions are not 

separate from cognition, and as a part of it, can facilitate the decision making 

process. 

Jung, Wranke, Hamburger, and Knauff (2014) argue that logical reasoning is 

affected both by participants’ emotional state and the contents of the problem 

to be solved. They found the worst performance in a negative mood 

compared to a positive mood; however participants in a neutral mood 

outperformed a positive and a negative group responders. With respect to 

emotional content Jung et al. (2014) examined how participants with different 

phobias solved problems containing these phobias. They found that spider 

phobic participants’ performance declined when problem content was related 

to spiders.  

Rolls (2000) suggests that one of the most important primary function of 

emotion is survival. On this level the interaction between cognition and 

emotion can be clearly seen. Emotions narrow reaction choice and prime 

possible responses, but the response selection and execution are left to 

controlled thought processes. For example, a fearful event can trigger a fight-

or-flight response, but dealing with this potential danger is responsibility of 

rational processing and decision making. In this way, emotions guide 

attention to the most important actions, helping to filter out distraction. The 

importance of this primary function is supported by the universality of basic 

emotions. Ekman (1992) distinguishes between 6 basic emotions: 

happiness, sadness, fear, anger, surprise and disgust. The influence of three 
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emotions on driving safety will be studied in this thesis: happiness, sadness 

and anger, as these emotions together with a neutral emotional state, 

complete two dimensions of valence: positive and negative, and two 

dimensions of arousal: high and low.  

Anger is an emotion that elicits a fighting response. Angry individuals are 

more likely to confront and act aggressively in response to the source of this 

emotion (Buss & Shackelford, 1997). Sadness and its prolonged version – 

depression disengage an individual from unattainable goals and abnegate 

ineffective efforts (Nesse, 2000). Depression and sadness encourage 

attentional focus on the problem, minimising distraction to unrelated events 

(Andrews & Thomson Jr, 2009). Happiness, in contrast to sadness, 

encourages engagement in new actions, learning new skills and forming 

relationships (Fredrickson, 2001).                                 

Negative emotions have received substantial empirical attention. Seligman 

and Csikszentmihalyi (2014) suggest this is due to the fact that negative 

emotions produce many serious problems for individuals. They argue that 

extreme manifestations of negative emotions, such as depression, suicide, 

phobias and violence have severe effects not only on the affected 

individuals. Often the affected individuals cannot cope with their problems 

and help is needed from those who care for them, or are professionally 

trained to deal with manifestations of negative emotions. Positive emotions, 

instead, are associated with danger to a less extent (e.g. sensation seeking 

from drugs) (Fredrickson, 2013). The different effects that positive and 

negative emotions have on individuals’ actions and cognition, have 

encouraged researchers to develop theories explaining these differences 

and their causalities. This thesis uses two of these theories to explain 

differences in performance and cognitive processing in different emotional 

states; ‘broaden-and-build theory’ (Fredrickson & Branigan, 2005) and 

‘coasting theory’ (Carver, 2003), explained below. 

Previous research claims that positive emotions have a positive effect on 

human performance through enhancing attentional and cognitive abilities 

(Carver, 2003; Fredrickson, 2001; Isen, 2001).  For instance, Fredrickson 

(2001) offered the ‘broaden-and-build’ model, which states that positive 
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emotions broaden human perception, attention, scope of mental imagination 

and actions. Negative emotions, by contrast, are bound with a narrow set of 

specific behavioural options, thus leaving no variety of actions. For example, 

anger creates an urge to attack, fear the urge to flee, and disgust the urge to 

expel. These actions are evolutionarily predisposed as the best outcome for 

a particular situation. For example, when fear is experienced, the human 

autonomous nervous system mobilises the appropriate internal pathways, by 

distributing a blood supply to a muscle group responsible for this action.  

Fredrickson and Branigan (2005) argue that positive emotions, unlike 

negative emotions, are not bound with such a narrow reaction tendency. The 

reason for these differences comes from human evolution and natural 

selection. Fredrickson (2013) explains these differences. Negative emotions 

mobilise resources in the event of immediate danger and as such initiate life 

and limb saving behaviours. These behaviours have to be emotion-specific 

and fast executed. Positive emotions, however, do not demand immediate 

action, permitting more time to broaden awareness about the surrounding 

environment and innovative discoveries.        

Carver (2003) suggests a different explanation for the improvement in 

performance in a positive mood. He states that this is due to the different 

nature of positive and negative emotions and a ‘regulatory system’, which 

controls the emotions. The system does not like either positive or negative 

emotions. It prefers being in a neutral state, with any deviation from it being 

an ‘error’. If a negative emotion is experienced, the system puts in every 

possible effort to minimise harm and return it to a neutral level. Such actions 

are costly and are performed at the expense of other functions, such as 

attention. Attention is reduced to only the most important and salient events. 

Positive emotions, instead, do not bring harm and as such, there is no need 

to avoid them. Therefore, the system does not take efforts to minimise the 

emotions, as these would fade out eventually. Indeed, attentional resources 

are not much deployed and can thus be used for different activities, such as 

looking out for possible new dangers. For example, in the driving 

environment, the drivers would use the freed resources for better 

observations and looking for new potential hazards. 
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Both theories: Carver’s (2003) and Fredrickson & Branigan’s (2005) are 

relevant to the study of driver behaviour. For example, according to both 

theories, drivers in a positive emotional state would investigate the 

surrounding environment more carefully and anticipate possible traffic 

outcomes. Moreover, according to Fredrickson & Branigan’s (2005), drivers 

in a negative emotional state would concentrate on the present problem 

solving, ignoring any other potential dangers. However, driving is a 

complicated task, and possibly, emotion related outcomes cannot be that 

easily explained. The next section focusses on the previous research 

investigating an influence of mood on driving safety.   

2.3 Emotions and driving 

Emotions are an inevitable part of human life. The effect of emotion on every 

aspect of human behaviour is diverse and significant. Constantly increasing 

the time that people spend driving and the great responsibility a driver has to 

take for themselves and other road users, makes it vital to understand how 

different emotions can change driving style and response to the actions of 

the others.       

The way in which different emotions affect drivers’ behaviour and driving 

safety has been a widely studied topic. Probably the most studied emotions 

in driving safety research are aggressiveness and anger. An angry driving 

style has been correlated with crash involvement (Wells-Parker et al., 2002). 

The extreme forms of it, such as physical attacks and “tailgating”, can result 

in road rage (Cai et al., 2007; James, 2000). Even milder forms of road rage: 

using the horn and offensive gestures can be harmful for both the aggressive 

driver and the recipient, and for drivers with a high predisposition to stress 

(trait stress) result in difficulties in stress coping strategies (Cai et al., 2007). 

Often, studies correlate aggressive driving with an individual’s disposition to 

aggression (Huesmann, 1998; Lajunen & Parker, 2001; Mizell, Joint, & 

Connell, 1997; Shinar, 1998). Wickens, Mann, and Wiesenthal (2013) and 

Wickens, Wiesenthal, Hall, and Roseborough (2013) described physiological 

and psychological processes that the driver is experiencing while driving 

aggressively: hands grip the steering wheel more forcefully, heart rate 
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increases, sweating increases, the mouth gets dry, neck, shoulder and arm 

muscles become tense. Critchley et al. (2005) found different heart rate and 

brain activity in response to viewing emotional face expressions. Importantly, 

heart rate correlated with the brain activity. These physiological reactions are 

similar to reactions while driving under high cognitive load conditions. For 

example Pohlmeyer and Coughlin (2008) recorded higher heart rate while 

driving and performing continuous performance task and Zhang, Lipp, and 

Hu (2017) recorded higher skin conductance level after anger provocation 

(Figure 2). 

 

Figure 2: Increase in skin conductance level across the three measurement 
points (baseline, after priming and after anger provocation) from (Zhang 
et al, 2017)   

 

One limitation of previous studies is the method of investigation. Most of 

them used self-report questionnaires and interviews, reporting links between 

anger and self-reported near accidents (Underwood et al. 1999), and 

between self-rated driving performance and anxiousness, depression or 

hostility (Groeger, 1997). Drivers also reported increased anger when they 

had to reduce speed due to various traffic events (Stephens & Groeger, 

2006). Other studies have used observational methods for the assessment of 

driving performance. For example, drivers who scored high on anger, 

depression and fatigue were less cautious (Garrity & Demick, 2001) and 

drivers who scored high on trait questionnaire, also showed greater 
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situational anger and adopted more aggressive and dangerous driving style 

(Deffenbacher, Lynch, Oetting, & Yingling, 2001). 

A driving simulator was also used to study the way emotions can influence 

driving safety. Cai et al. (2007) conducted a driving simulator study 

examining driving styles of drivers under different conditions: anger, neutral 

and excitation. They connected driving simulators in a platoon and induced 

mood using an imagery technique for the angry mood and playing racing 

video games for excitement. Neutral participants were asked to stay calm 

while driving. Heart rate and skin conductance, were higher in angry and 

exciting conditions. Neutral drivers checked mirrors more often. Cai et al. 

(2007) reported on the suitability of using a platoon of driving simulators as 

the method of measuring mood and driving situation elicited changes in 

drivers’ psychophysiological conditions and their driving performance. They 

found higher speed, shorter time-to-line crossing and larger deviation of 

steering wheel angle in anger and excitement conditions, compared to the 

neutral condition. Unfortunately, no inferential statistics were reported to 

indicate whether these changes were significant. Faster driving and crossing 

amber lights more often after anger induction were also recorded in a driving 

simulator study by Abdu et al. (2012).  

Similarly to anger, sadness is a negative emotion, but with a rather low level 

of arousal. Regardless of the fact that many people experience sadness on 

different levels, from being mildly unhappy to being depressed, its influence 

on driving safety remains an under-researched topic. Dula and Geller (2003) 

argue that sadness, similar to anger, can have a harmful effect on driving 

safety, as both of these negative emotions affect drivers’ attentional ability. 

However, these two emotions vary in the intensity of aggressive behaviours 

against other road users. Stecklov and Goldstein (2004) examined the 

influence of a terror attack on driving performance and found an increase in 

traffic accidents of 35% on the third day after attacks. They attribute this rise 

to passiveness and increased reaction time caused by sadness and 

frustration. Bulmash et al. (2006) examined the psychomotor disturbance in 

drivers diagnosed with Major Depressive Disorder (MDD). Drivers diagnosed 

with MDD had slower steering reaction times and increased number of 
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crashes, compared to controls. These results are consistent with previous 

research associating depression with reaction deficits when solving 

cognitively effortful tasks. Pêcher, Lemercier, and Cellier (2009) investigated 

the effects of different mood music on drivers’ behaviours in a driving 

simulator study. They manipulated participants’ mood using music and 

measured driving speed and lane deviation. The sad drivers were found to 

decrease speed and proportion of short ‘time to line crossing’ keeping closer 

to the centre lane, thus maintaining a “no risk” driving behaviour. The drivers 

also reported having a withdrawn attitude and orientation to personal 

emotional events.    

Pêcher et al. (2009) in the same experiment examined the influence of happy 

mood. The authors found that speed decreased significantly while listening to 

happy music and only slightly when listening sad music. Happy music also 

caused deterioration in lateral control with participants showing the tendency 

to drive closer to the hard shoulder. While driving, participants felt happy and 

joyful and tended to tap on the steering wheel with the tempo of the music.  

Pêcher and colleagues concluded that the changes seen while listening to 

the happy music were instigated to compensate for mood-related distraction. 

A recent study by Eherenfreund-Hager et al. (2017) attempted to combine 

emotional valence and arousal in a driving simulator experiment. They 

looked at the ‘effects of affect’ induction on risk-taking behaviour and links 

between self-esteem and sensation seeking on risky driving. The induced 

emotional states were relaxing positive, arousing positive, negative and 

neutral. They concluded that arousing positive and negative affects have a 

similar negative effect on driving safety, through exceeding the speed limit, 

shorter headway distance and more time travelled in the opposite lane. 

Summarising the research to date, it can be concluded that negative 

emotions have a detrimental effect on driving safety as shown by the 

evidence from all research fields: self-reports, observations and driving 

simulator studies. With regards to positive emotions, there is a gap; it is not 

clear what is most influential, emotional valence or emotional arousal. The 

only study that tried to distinguish between high and low arousal in positive 

emotional valence is Eherenfreund-Hager et al. (2017), who found a 
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performance decrease in high arousal + positive valence condition. Drivers in 

this condition, drove faster and maintained shorter time headways, similarly 

to drivers in negative emotional condition.  However, positive valence + low 

arousal seems to be under-investigated. Moreover, from the research 

conducted by Eherenfreund-Hager et al. (2017) it is not clear how relaxing 

positive and neutral affects are distinguished. Research clearly lacks more 

detailed understanding of the precise effects of emotional valence and 

emotional arousal on driving behaviour.  

2.4 Attention – definition and concept  

Attention, as an important aspect of human life, has been widely 

investigated. This thesis is interested in two aspects of the emotion-attention 

relationship: how emotions can affect drivers’ attention, and whether drivers’ 

attention can be re-directed from task-unrelated to task-related objects. In 

this section, different types of attention are defined and explained. This 

provides background information and a basis for developing interventions in 

case of attentional lapses while driving.  

The term ‘attention’ is often used to describe a wide variety of processes 

from simple sensory processing to complicated decision making. In essence, 

attention refers to the processing of some of the input stimuli while ignoring 

others. Kahneman (1973) distinguishes four types of attention; sustained, 

selective, alternating and divided. All these types of attention are used while 

driving, thus will be described below.  

Sustained attention is defined as the ability to maintain one's focus and 

concentration on something or someone for a long period, ignoring various 

distractors and inhibiting attentional shift to task unrelated objects (Ko, 

Komarov, Hairston, Jung, & Lin, 2017). This kind of attention is beneficial in 

learning and working activities. Ko et al. (2017) also state that individuals 

cannot maintain the optimal level of attention for a long time. High attentional 

demand results in mental and cognitive fatigue, which decreases the ability 

to suppress irrelevant information, increasing reaction time and number of 

errors. Mental fatigue caused attentional lapses is most likely to appear 
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during lengthy, monotonous tasks, such as driving or reviewing scientific 

papers.  

Selective attention is related to the processing of particular aspects or factors 

of some informational inputs at the expense of others. Kahneman (1973) 

argues that humans have mechanisms that control the choice of stimuli. This 

selection is maintained at a conscious or unconscious level and can be a 

result of conditioning or a result of voluntary selection. As an example of 

unconscious selection Kahneman (1973) describes an experiment conducted 

in a Russian laboratory when a dog is presented with the same sound for a 

period of time. The dog would stop reacting to that sound and perceive it as 

background noise. As soon as it is presented with a tone of a different pitch, 

the dog would react, showing that it noticed something unusual. Kahneman 

(1973) also states that processing of stimuli can be voluntarily selected, 

when an individual attends to task relevant stimuli, ignoring others. An 

example of selective attention while driving is passing through familiar roads, 

drivers would selectively attend only to changes in the surrounding 

environment and ignore the usual road signs and road furniture (Young & 

Stanton, 2002).    

Alternating attention refers to the ability to switch one's attention from one 

activity to another. Underwood, Chapman, Brocklehurst, Underwood, and 

Crundall (2003) suggest that drivers’ ability to alternate and allocate visual 

attention is one of the major causes of traffic accidents. They also distinguish 

between two main factors of optimal attention allocation: endogenous and 

exogenous. MacLean et al. (2009) refer to endogenous attention as top-

down or goal driven attention which can be engaged explicitly to select one 

thing over another. Exogenous attention is determined by external events in 

the environment which are generated externally by the physical properties of 

stimuli, such as brightness or shape. Underwood, Chapman, Brocklehurst, et 

al. (2003) argue that endogenous attentional shift deficiency is determined by 

the lack of experience when, in case of high workload,  reduced cognitive 

resources limit drivers’ hazard anticipation and variety of possible solutions 

to dangerous road situations. An exogenous attentional shift is triggered by 
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unexpected changes in the visual field, such as the appearance of another 

road user in the drivers’ visual field. These changes require the driver to 

change their focus of attention immediately, to be able to react in time. 

Moreover, the reaction time depends not only on drivers’ momentary 

reactions upon hazard detection, but on their ability to alternate attention to 

the most informative parts of the road and keep a dynamic record of the fast 

changing location of their own vehicle with reference to other traffic (Endsley, 

1995).                 

Divided attention is the ability of an individual to focus, perform or process 

more than one environmental factor, or activity at the same time, often 

referred to as multitasking. The ability of humans to perform two or more 

tasks at the same time depends on the nature of these tasks (Wickens, 

1991). Wickens (1991) states that performance of any task demands 

resources, which are limited in their availability. Therefore, when the 

combined demand of performed tasks exceeds resource availability, the 

quality of performance drops in either of these tasks depending on task 

demands. Moreover, performance decline becomes more evident if task 

demands increase. For example, conversation with ground control would 

decrease flight performance. If the flight task demand is increased by heavy 

turbulence, the conversation with ground control would be disrupted, or the 

flight performance could degrade (Wickens, 1991). 

Wickens (1991) also states that if two tasks are using the same processing 

modality (e.g. visual, auditory) or shared processing instruments (e.g. 

requirements for manual input), their processing competition and 

performance decline would be more evident. For example, listening to 

auditory commands would be more disrupted by demands to understand an 

auditory description rather than visual representation. 

Attentional demands required for task completion can be reduced by making 

some of the processing automatic (Schneider & Shiffrin, 1977). Automaticity 

has been described as fast and effortless processing, as opposed to 

controlled processing, which requires effort to be completed. Automaticity 

can be developed as a result of many repetitions and practising (Schneider 
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and Shiffrin 1977; Shiffrin and Schneider 1977). They distinguish between 

two types of information processing: automatic and controlled. Automatic 

processing does not require attentional control and occurs as an activation of 

a sequence of learned components in long-term memory. Controlled 

processing, instead, requires attentional control to execute a sequence of 

learned components. As attention is of limited capacity, this process is 

slower and usually sequential in nature. An important feature of cognitive 

processing is that it, with training and practice, becomes automatic. This 

transformation is relevant to all forms of learning: reading comprehension 

and fluency, numeracy, writing, memory and balance (Gray, 1996, 2004). 

Driving, as a learned cognitive and motor skill, follows the same pattern: first, 

learners have to think about every movement they perform, and there is not 

much attention left for the road information processing. Once mechanical 

skills are better developed, drivers can pay more attention to the road and 

react more efficiently to road hazards (Gibson & Crooks, 1938; Groeger, 

2001).  

2.5 Attention in driving    

Driving, as a complicated skill requires all four types of attention; sustained 

attention or the ability to concentrate on the road and traffic and not become 

distracted by unrelated activities, such as conversation or mind wandering 

(Edkins & Pollock, 1997). Selective attention is needed in driving to be able 

to select from many perceptual inputs in the surrounding environment, the 

most important and the most safety critical factors (Underwood, Chapman, 

Brocklehurst, et al., 2003). Alternating attention is necessary to process 

quickly the changing road environment and switch from one hazard to 

another (Crundall, Underwood, & Chapman, 2002). Divided attention is 

critical in cases when drivers have to operate in-car controls and devices and 

maintain their attention on the road at the same time (Östlund et al., 2004).      

Driving-related research is mostly focused on inattention and distraction 

rather than attention (Kircher & Ahlstrom, 2017).  They argue that attention is 

mostly defined through a relationship to these terms. For example, 

distraction is defined as a lack of attention in a particular period. Definitions 
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are often dichotomous; either a momentary loss of attention from driving-

related targets, even if the driving task is not affected, or attentional shift 

away from the driving task, but only if it is a potential risk for self or other 

road users. 

One important aspect of attention in driving is drivers’ ability to process and 

perform automatically actions, which are repeated day after day (Gibson & 

Crooks, 1938). Ranney (1994) argued that, without this skill, driving would be 

very dangerous and almost an impossible task. Hale, Stoop, and Hommels 

(1990) offer a driving learning model: when learner drivers are at the 

beginning of their learning process, a lot of attention is needed to operate the 

car controls. With skill development, all levels of basic controls as well as 

while navigating through familiar roads and familiar intersections, are 

operated automatically. However, when a situation becomes unfamiliar, 

controlled processing predominates.  

This automation of the driving process is beneficial to driving safety, as it 

reserves some processing capacity to attend other road and traffic-related 

information, instead of focusing on car controls. However, at the same time, 

automaticity can have a negative effect on driving safety. Young and Stanton 

(2002) proposed a malleable attentional resource theory, suggesting 

flexibility of attentional capacity. They performed a driving simulator study 

manipulating the level of automaticity and found a reduction of mental 

workload allied with an increase in the level of automation. They concluded 

that the attentional capacity could shrink and expand depending on the 

momentary needs. Brookhuis and De Waard (1993) suggests that a 

reduction in mental load can lead to drivers’ underload, which results in loss 

of attention. Torsvall (1987), argues that this inattention is related to under-

arousal. Smallwood and Schooler (2006) state that underload while driving is 

dangerous as it can encourage mind wandering. They argue that tasks that 

heavily rely on controlled processing are less susceptible to mind wandering 

due to working memory being occupied with the task at hand. As soon as 

cognitive load minimises, task-unrelated thoughts occur. Smallwood and 

Schooler (2006) relate this to decoupling and attentional shift away from the 

primary task since an alternative goal is triggered in the absence of primary 
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processing needs. As driving can be a boring task, due to repeating the 

same schedules day after day, this can cause a lapse of attention, which 

develops when performing tedious tasks requiring low processing intensity 

(He et al., 2011).   

Although many drivers’ actions become automatic with experience (e.g. 

operating controls), thus lowering the amount of necessary attention, a lot of 

attention to other events (e.g. monitoring road and traffic) is still necessary to 

maintain safety. This process requires drivers to sustain their attention for the 

whole period of driving. The ability to sustain attention has been investigated 

from two aspects: factors decreasing this ability and interventions capable of 

increasing it (Brice & Smith, 2001). Brice and Smith (2001) argue that one of 

the most common reasons for attentional failure is fatigue, caused by long 

working hours, sleep deprivation or cardiac factors. They also investigated 

the effects of caffeine on drivers’ ability to maintain a high level of accuracy 

and the ability to sustain attention. They found that the use of 3 mg/kg 

caffeine significantly improved steering accuracy.  De Waard and Brookhuis 

(1991) used a car-following task to examine the influence of alcohol and 

cognitive underload caused by monotonous driving on drivers’ ability to 

sustain attention. Alcohol significantly decreased drivers’ reactions to speed 

variations of the lead vehicle. Monotonous driving did not have a significant 

effect on drivers’ reactions, however, after two and a half hours of driving 

drivers significantly decreased the distance between their own car and the 

lead vehicle,       

Selective attention is another important aspect of drivers’ attention. From the 

beginning, learner drivers are trained to look at the most informative parts of 

the road; they are trained to anticipate hazards and possible situational 

outcomes (Duggan, 2018; Gibson & Crooks, 1938; Groeger, 2001). With 

experience, most of the information processing during driving occurs without 

a driver’s acknowledgement. For example, drivers with experience tend to 

direct their attention to the most important parts of a road, where hazards are 

most likely to occur (Crundall, Underwood, & Chapman, 1998). This 

tendency was especially evident on dual-carriageways, where difficult driving 

conditions prompted novice drivers to concentrate their vision towards the 
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centre of the road. These observational patterns could result in a delayed 

reaction if a hazard appeared from a side road.  

Alternating attention has also been found to depend on drivers’ experience. 

Underwood, Chapman, Brocklehurst, et al. (2003) examined differences 

between novice and experienced drivers on three road types: rural, sub-

urban and dual-carriageways. Regardless of road type, after checking 

mirrors or roadsides, drivers looked at the road far ahead. This alternation of 

visual attention was more evident among novice drivers. Underwood, 

Chapman, Brocklehurst, et al. (2003) suggested that novice drivers were 

more concerned about looking away from the road, or less using peripheral 

vision.  

The ability to monitor peripheral events while looking forward or elsewhere is 

an important skill, necessary when operating car controls while driving. The 

ability to divide attention between different tasks and the consequences of 

these actions have been widely examined in driving safety-related research 

(Ohta, 1993; Ranney et al., 2005; Strayer & Drews, 2007a, 2007b). Dual 

tasking generally has been found to affect quality of performance (Heuer, 

1996). The performance in dual-tasks heavily depends on a level of 

automaticity, the input and output modality and task difficulty (Heuer, 1996; 

Tombu & Jolicœur, 2003). Regardless of dual-tasking being dangerous and 

safety-critical while driving, it is an unavoidable process due to the 

complexity of contemporary vehicles and driving demands. This concern 

encourages researchers and vehicle manufacturers to extensively 

investigate ways of minimising the harmful effect of dual tasking and develop 

in-car assistance systems that not only make driving more pleasurable but, 

more importantly, a safer task (Östlund et al., 2004).  

If the processing demands exceed processing capacity, some of the inputs 

will be given priority, and some others will have to queue (Wickens, 1991). 

Wickens (1991) further explains that this is true for all the input modalities, 

however, it is the most evident for the inputs from the same modality. For 

example, it is very difficult or almost impossible to listen to the music and 

lecture at the same time or to watch a film and read a book simultaneously. 

Nevertheless, some tasks are impossible to complete even if they come from 
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different input modalities, such as talking while reading. Understanding these 

principles is especially important in relation to driving, with it being a 

complicated task, operating inputs from different modalities at the same time 

(e.g. vision, hearing) (Pashler, 1994).   

Drivers constantly have to observe the road ahead, junctions on approach 

and monitor the situation behind by checking mirrors: vision is the most 

important source of information. The earlier a possible obstruction is 

detected, the more time is left to deal with it. Time is an important factor in a 

fast-changing driving environment, especially with developments of new 

vehicles capable of reaching high speeds in short time intervals and 

contemporary roads, adapted for fast velocity. For example, a car traveling at 

speed 70 miles per hour covers 300 feet in 3 seconds. This also is how much 

time is needed for a car to stop in an emergency. If a driver takes his/her 

eyes off the road for these 3 seconds, for example, to tune a radio, they 

would not be able to avoid a collision, should something unexpected happen 

(Green, 2000).  

These safety issues have inspired researchers and car manufacturers to 

seek alternative ways of operating ancillary car controls and develop in-car 

assistance systems. The most researched topic in this area is the impact that 

talking on a mobile phone can have on driving safety. Caird et al. (2018) 

conducted a meta-analysis on driving safety and mobile phone use, 

examining 106 studies with a total of 4382 participants, published between 

1991 and 2015. Overall, the studies agreed that hand-held and hands-free 

devices negatively impact driving performance. Moreover, driver 

conversation with passengers showed a similar negative effect. This is only 

one example of in-car activities that are performed while driving. 

Nevertheless, besides phone conversations, drivers complete many other 

actions, such as operating windscreen wipers, tuning the radio, opening 

windows etc. The effect of other vehicle systems on driving safety has also 

been widely investigated. Östlund et al. (2004) designed a study to develop 

assessment guidelines for In-Vehicle Information Systems (IVIS). They 

compared the effects of visual and cognitive tasks in simulator and field 

studies on motorways, rural and urban roads. They found effects of both 
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tasks, with the visual task resulting in degradation of lateral control, whereas 

the cognitive task resulted in improved steering and lateral control but gaze 

concentration increased towards the middle of the road.  

Generally, research agrees that dual-tasking has a negative effect on driving 

safety. However, other studies came to conflicting conclusions. For example 

Ma and Kaber (2005) argue that reduced mental workload improves 

situational awareness and driving safety, but Smallwood et al. (2009) and 

Young and Stanton (2002) warn that mental underload can be equally 

detrimental to driving safety. Drivers underload and loss of situation 

awareness has been widely investigated in driving automation studies. It has 

been argued that situation awareness reduces with increased driving 

automation (Casner, Hutchins, & Norman, 2016; Miller & Parasuraman, 

2007). The most crucial for driving safety is transition from automatic to 

manual control (Merat, Jamson, Lai, & Carsten, 2012), thus the importance 

of keeping drivers in the loop when implementing fully automated driving is 

essential (Merat et al., 2012).  

These controversies highlight the importance of developing an in-car system 

able to monitor drivers’ mental workload. However, not only can drivers’ 

mental workload affect driving safety, drivers’ physiological conditions, such 

as fatigue, stress and mood can reduce attention to the road (Abdu et al., 

2012; Milosevic, 1997; Öz, Özkan, & Lajunen, 2010). Thus in-car assistance 

systems, that could take into account drivers’ physiological condition and 

provide the right amount of intervention, are a necessary component of 

contemporary vehicles. For successful functioning of these systems, it is 

necessary to understand the influence of mood on drivers’ behaviours. The 

first step to get this understanding is to examine how moods affect attention 

and drivers’ responses.   

2.6 The impact of positive and negative mood on attention  

The rapid information processing of the environment is a vital process for 

human survival, particularly in a fast-changing driving environment. During 

this process, mental representations of any given external object or stimulus 
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are created (Brosch, Pourtois, & Sander, 2010). However, not all of these 

representations are consciously processed.   Attention permits processing of 

only some simultaneously presented objects at the expense of others. Which 

objects are processed, depends on momentary intentions and requirements 

(Driver, 2001). Moreover, sometimes people are challenged with stimuli that 

are more directly relevant to their well-being and survival than others, for 

example, those signalling danger or death, such as hostile rivals or 

dangerous animals. Whereas other stimuli might signal potential satisfaction 

or pleasure, such as potential entertainment. Such stimuli necessitate faster 

reactions, to be able to avoid threats or to approach positive rewards. To 

achieve these rapid responses, perceptual processing of such stimuli should 

be prioritised. In line with this, research suggests that emotional stimuli are 

somehow prioritised even on the perceptual level (Winkielman, Berridge, & 

Wilbarger, 2005; Zajonc, 1980).  

Kellermann et al. (2011) argue that this prioritisation can be amended by 

external or internal factors. She states that cognitive processing is influenced 

by the emotional context of the stimuli and emotional state of an individual. 

Schachter and Singer (1962) suggest that emotional states are considered 

as a function of cognitive appraisal and emotional arousal, where cognitive 

appraisal determines the perceived emotion. In a classic experiment, they 

injected epinephrine, which induces arousal, to two groups of participants. 

The first group was entertained by an actor, who acted happily and silly. The 

actor in the second group acted angrily and bothered the participants. When 

asked to describe their feelings, the first group reported being happy, and the 

second group claimed feeling anger and irritation. Thus, regardless of both 

groups being equally aroused, they interpreted the arousal according to the 

situational context. Similarly, emotional state is influenced by cognitive 

processes regarding intensity and difficulty of information to be processed. 

For example, depression can be a reason for cognitive decline (Brown, Scott, 

Bench, & Dolan, 1994), and on the other hand, cognitive processes can be 

enhanced or inhibited, depending on an individual’s emotional valence (Gray, 

2001). Thompson (1994) argues that attention can be used as emotion 

regulatory mechanism, through the management of emotionally arousing 
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information, for example, redirection of attention, limiting knowledge about 

potentially harmful information, gaining access to coping resources or 

altering the interpretation of the emotional information.   

Emotions and attention can interact in numerous ways (Kellermann et al., 

2011). Pessoa, McKenna, Gutierrez, and Ungerleider (2002) state that 

attention captures visual stimuli fairly early. However, not all of the perceived 

stimuli are further processed (Lavie, 1995). Stimuli outside the focus of 

attention are largely ignored, and participants can even fail to remember 

large changes in scenery (Simons & Levin, 1997). Processing of emotional 

stimuli is a key exception from this principle (Vuilleumier et al., 2001). 

Vuilleumier and colleagues argue that emotional stimuli are processed 

automatically without attentional involvement. Moreover, they noted that 

sometimes emotional stimuli could be processed even without conscious 

awareness. Regarding the emotion-attention relationship concept, research 

also focused on selective processing of presented stimuli, with processing 

priority for emotional information. The emotional information is processed 

faster and is less susceptible to attentional blink (Anderson & Phelps, 2001).    

By virtue of limited attentional capacity, the ability to process information 

automatically is an important skill for successful functioning (Schneider, 

Dumais, & Shiffrin, 1982). It is generally assumed that attentional resources 

are utilised flexibly, during attention-demanding processes, according to 

momentary priorities (Pashler & Sutherland, 1998). They argue that 

attentional resources are of limited capacity, and if more attention is needed 

to complete one task, the other task would be delayed. One of the most 

important questions in emotion-attention relationship research is whether 

emotions can compete for attention. Yates, Ashwin, and Fox (2010) argue 

that this competition is evident only under low perceptual load. When high 

perceptual load is applied, all attentional resources are used to process 

these stimuli. Yates et al. (2010) also state that processing of emotional 

stimuli is dependent on general capacity limits. 

Limited capacity implies the necessity to select relevant information and 

inhibit distractors. The successful choice of relevant information depends on 

both perceptual information and higher level cognitive representations 
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(Jallais, Gabaude, & Paire-Ficout, 2014). Drivers perceptually capture road 

information, such as intersection layout or type of a road on unconscious 

level. This information is then processed, assessed and a decision is made 

on how to deal with a situation most effectively. Every time contextual effects 

of these actions are stored in memory. Jallais and colleagues called these 

effects schemata and proposed that objects stored in “schemata”, with 

practice and experience, are encountered automatically and promptly.  

General knowledge stored as schemata can be affected by mood and 

emotions (Bless et al., 1996). Positive mood leads to an increase in heuristic 

approach, whereas a negative mood encourages analytical processing and 

detailed analysis (Schwarz, 1990). However, two negative mood conditions 

can result in a different processing approach. Bodenhausen, Sheppard, and 

Kramer (1994) found that angry individuals process information more 

automatically, similarly to individuals in a positive mood, and only sad 

individuals are predisposed to analytic processing. Similarly to happy 

individuals, angry individuals rely more on their general knowledge (Gilet & 

Jallais, 2011) and employ similar driving styles to happy individuals (Pêcher 

et al., 2009). These concepts have been applied to the driving environment 

by Jallais et al. (2014). They concluded that angry drivers detect atypical 

hazards slower, and sad drivers’ attentional processing is impaired due to 

attentional self-focus.           

It has also been found that emotions have a different effect on participants’ 

peripheral attention. Some emotions attract more attention to the centre, 

some more to the periphery. For example, positive mood broadens visual 

scope and facilitates peripheral vision (Fredrickson, 2001; Wadlinger & 

Isaacowitz, 2006). Anxious individuals, instead show impaired attention to 

peripheral stimuli (Shapiro & Lim, 1989). This factor can greatly influence 

driving safety, as drivers are required to have a good understanding of the 

traffic conditions, both in front and in the periphery.  

Isen (2001) summarised research examining the effects of positive mood on 

different aspects of human cognitive function. Positive mood has been 

recorded to facilitate more efficient and systematic decision making, facilitate 

creativity and creative problem solving, lower risk-taking behaviours and 
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enable cognitive flexibility in negotiations. Cognitive flexibility permits for 

better coping with potential problems, switch perspectives and understand 

better an opposite point of view, and thus come up with feasible and practical 

solutions. Applying these conclusions to a driving environment would mean 

that drivers in a good mood would be less responsive to road rage, as they 

are better understanding the other party’s point of view and therefore less 

defensive. Cognitive flexibility, facilitated by a positive mood, would permit 

drivers to cope with stress caused by road and traffic conditions and efficient 

decision making which is crucial in a dynamic and fast-changing road 

environment.  

Attention is a necessary element of driving safety (Gibson & Crooks, 1938; 

Hale et al., 1990). Emotions represent an inevitable part of human life 

(Carver, 2003). The likelihood of their interaction while driving is therefore 

entirely predictable. This interaction varies across different emotions and has 

different implications for the attention-emotion relationship. Therefore, the 

theoretical framework of relevant theories explaining emotions, attention and 

their relationship is discussed in Chapter 3. Some of the theories have 

already been tested in the driving environment, some others have found 

support in other domains, but possibly could be applied to the same extent to 

a driving environment.       

This section has described the huge influence that emotional valence has on 

human cognitive functioning. However, driving is a complex task, requiring 

that many cognitive and motor functions act swiftly and in a timely manner, 

and, more importantly, in harmony with each other (Young et al., 2007). It 

involves multiple functionalities of a performer; permanent decision making 

(Summala, 1988), retaining information in short-term memory, and its 

retrieval when necessary (Kahneman, 1973), updating one's skills (Young & 

Stanton, 2007), automated and controlled processing (Gibson & Crooks, 

1938), to name a few. All the factors named above are related to attention in 

one or the other way. Therefore, the next sections will describe and critically 

evaluate the theories explaining behaviours caused by these factors. 
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2.7 Theoretical frameworks related to this thesis 

   

Although research suggests that one of the causes underlying road 

accidents is a lack of attention  (Klauer, Dingus, Neale, Sudweeks, & 

Ramsey, 2006) and attentional failure (Plainis, Murray, & Pallikaris, 2006), 

attention can be affected by so many variables that the influence of all of 

them is impossible to study in this thesis. This thesis therefore focuses on 

attentional lapses as defined by two psychological theories; mind wandering 

(Smallwood & Schooler, 2006) and the effect of different moods on 

information processing (Carver, 2003; Fredrickson, 2001). 

 

2.7.1 Information processing theories   

Information processing, attention and decision making are closely intertwined 

and affected by mood and momentary emotional states. The likelihood of 

positive or negative outcomes is estimated based on what an individual feels 

at any given moment.  (Izard, 1977; Schwarz, 2000). Similarly, processing 

strategy is influenced by an individuals’ affective state. Individuals in a 

positive mood adopt heuristic and individuals in a negative mood adopt 

systematic processing strategy (Schwarz, 2000). Schwarz states that 

heuristic processing adopts a top-down strategy with low attention to details 

and high reliance on the previous knowledge. On the other hand, systematic 

processing adopts a bottom-up strategy, characterised by great attention to 

the detail and little reliance on previous knowledge.  

Luce, Bettman, and Payne (1997) observed that negative emotions elicit 

more extensive processing, characterised by focusing on one aspect at a 

time. This serial out manner extends information processing time. Gasper 

(2004) noted that not only do sad individuals adopt systematic and happy 

individuals heuristic processing styles, happy individuals also adopt more 

global and less local information processing compared to sad individuals. 
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Both studies came to a similar conclusion; a more detailed and thorough 

processing style slows down processing speed. 

It has also been found that not all emotions with the same valence have the 

same outcomes. Raghunathan and Pham (1999) observed risk-taking 

behaviours in a gambling experiment. They found that anxious individuals 

are most likely to choose a low-reward instead of a high-reward if it is 

accompanied by low-risk. Sad individuals instead, choose high-risk and high-

reward options. They concluded that sadness primes a goal for reward 

replacement, and anxiety a goal of uncertainty reduction. Both these 

emotions are the same in valence but differ in arousal.  

Thus arousal is another factor that can influence information processing. The 

most notorious theory explaining a relationship between task performance 

and arousal was proposed by Yerkes and Dodson (1908a). They proposed 

that an optimal level of arousal is necessary for the most productive work; 

over-arousal and under-arousal reduces task performance. Humphreys and 

Revelle (1984) summarised research investigating influence of emotion 

valence and arousal on human performance in cognitive processing related 

tasks. Concerning arousal, the results were ambiguous. Performance in 

short-term memory related tasks declined in high arousal conditions. They 

concluded that tasks that require information holding for a short period are 

likely to show deficits associated with high arousal, whereas tasks related to 

sustained information transfer, do not show any performance decrement. 

This is caused by increased cognitive resources responsible for information 

processing, which are the result of increased arousal. Moreover, high arousal 

causes reallocation of resources from one task to another one which possibly 

has higher importance to an individual. This reallocation facilitates activation 

of resources responsible for this particular task processing. More recently 

Jamieson, Mendes, Blackstock, and Schmader (2010) examined the 

influence of arousal on examination scores and found that higher arousal 

facilitated better performance in tests. 

Kahneman (1973) explains degraded information processing under high 

arousal conditions by increased reliance on heuristics, which inhibits and 

slows down the process. However, these characteristics are evident only 
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when arousal exceeds a certain level, lower levels of arousal can facilitate 

information processing. Zajonc (1965) came to similar conclusions. He states 

that performance in simple, well-learned tasks can be facilitated by high 

arousal. In complex tasks, however, high arousal inhibits performance. 

Sinclair and Mark (1995) manipulated both emotional valence and arousal to 

examine how these variables influence cognitive processing. They concluded 

that individuals in a positive emotional state, regardless of arousal, invested 

less effort in task details, therefore creating more errors. Negative emotions, 

again regardless of arousal, led to more detailed and systematic processing, 

and resulted in fewer errors.     

Byrne and Byrne (1993) found that as much as emotions influence actions, 

actions can influence emotions. For example, frustration can be minimised 

by physical exercise. Morrow and Nolen-Hoeksema (1990) compared the 

influence of physical and cognitive distraction on neutralising participants’ 

emotions. Cognitive distraction appeared to be more effective. Morrow and 

Nolen-Hoeksema suggested that participants could still hold their negative 

thoughts while moving around, whereas cognitive tasks completely 

disconnected them from negative feelings. The effectiveness of cognitive 

load as an activity disconnecting from negative emotions was further 

explored by Van Dillen and Koole (2007). They used working memory load 

for negative mood attenuation to examine how different levels of working 

memory demands can affect mood-congruent processing. They proposed 

that this attenuation is due to a limited processing capacity in working 

memory. By occupying working memory with distracting activities, less 

capacity is left for negative thought processing. The less negative thoughts 

are processed, the more individual’s attention is drawn away from 

experienced mood towards neutral mood. 

In summary:  

Negative emotions slow down information processing, but the processing is 

detailed. Positive emotions facilitate information processing, but only for the 

whole picture - some details are lost as a consequence. Arousal can facilitate 

information processing, but only to a certain level. Over-arousal, similarly to 

under-arousal, inhibits information processing ability. The arousal level 
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facilitates performance only in simple tasks, and can inhibit performance in 

more complex tasks. In a complex driving environment, fast changing road 

information should be processed rapidly and in sufficient detail, thus 

emotional valence and arousal are important for driving safety. For example, 

a driver should perform effective observations of the surrounding 

environment, thus too high negative emotion involvement could inhibit their 

reaction to hazard appearance due to prolonged hazard assessment time. 

On the other hand, low attention to detail among happy drivers might cause a 

delay in noticing a hazard onset. These factors make the investigation of 

emotion and influence of mood on drivers’ information processing an 

important topic in contemporary research.             

  

2.7.2 Mind wandering   

The emotion-attention relationship is not limited only to a processing 

competition. Mind wandering is another aspect associated with this 

relationship. Mind wandering is defined as an attentional shift from the main 

task to task unrelated thoughts, for instance, memories (Smallwood & 

Schooler, 2006). It tends to occur when an individual is performing a task 

which does not require much attention, such as driving on familiar roads, 

reading unexciting text or other activities with low vigilance. Following these 

conditions, individuals tend not to remember adjacent surroundings, due to 

being preoccupied with their internal thoughts (Smallwood, Obonsawin, & 

Heim, 2003).  

Mind wandering has raised great interest in scientists and researchers in the 

last couple of decades. To investigate the effects and consequences of mind 

wandering, laboratory and field experiments have been conducted. It was 

found that mind wandering is a normal default mode of brain functioning. 

Evidence for these statements was obtained from both behavioural and 

physiological research. Studies using EEG have shown different brain 

activity during mind wandering and focusing on a task. Braboszcz and 

Delorme (2011) observed a decrease in alpha (9-11 Hz) and beta (15-30 Hz) 

activity and an increase in theta (4-7 Hz) and delta (2-3.5 Hz) activity in the 
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brain during mind wandering compared to task activity. Smallwood, Beach, 

Schooler, and Handy (2008) used event-related potentials to examine brain 

activity during mind wandering. They found that the P300 component for 

non-target events was reduced during mind wandering. P300 has been 

found to reliably reflect the stimulated process of decision making as well as 

being involved in stimulus assessment and classification (Kleih et al., 2011) 

Hence the reduction in P300 activity indicates effortless processes. 

Smallwood et al. (2008) collected behavioural data as well. The data 

suggested that during mind wandering there is a reduction in the profundity 

of cognitive analysis, as indicated by a higher error rate. Neuroimaging 

studies came to similar results. The human brain always has some cortical 

activity, regardless of being in both active thinking and other performance 

process or during a rest. The distinction between these processes reflects 

brain activation in different areas responsible for corresponding activity 

(Christoff, 2012).  During mind wandering the pre-frontal-cortex (PFC), 

precuneus, insula and cingulate are activated. The same brain areas are 

activated in a brain resting state. As the resting brain pulls images of an 

individual’s internal thoughts, it was concluded that mind wandering causes 

something similar to daydreaming (Christoff, 2012; Mason et al., 2007). 

Although resting brain areas are activated during mind wandering, it still 

requires some control from executive processing. Executive processing has 

been defined as a higher level cognitive function which regulates human 

thought and behavioural processes (Miyake et al., 2000). Evidence for this 

statement comes from both behavioural and neuroimaging studies. Teasdale 

et al. (1995) recorded disruption of executive processing as indexed by the 

performance of a random number generation task during mind wandering. 

This suggests some use of executive processing resources, which would 

normally be devoted to the primary task. Neuroimaging studies support these 

findings and show that mind wandering recruits not only brain default 

network but the executive network as well (Christoff, 2012; Christoff, Gordon, 

Smallwood, Smith, & Schooler, 2009).  

A notable study by Harvard psychologists Killingsworth and Gilbert (2010) 

found that individuals are engaged in mind wandering just below 50% of their 
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time. They conducted a study using a phone app, where 2250 adults from 83 

different countries were asked to answer some questions, such as ‘How are 

you feeling now?’, ‘What are you doing now?’ and ‘Are you thinking about 

something other than what you’re currently doing?” Participants were mind 

wandering regardless of what they were doing at the moment, except those 

who were making love. 

Not surprisingly, inattention caused by mind wandering has been associated 

with vehicle accidents (Galéra et al., 2012). They performed a large 

naturalistic survey, involving 955 drivers who were injured in car accidents. 

More than a half of them admitted some form of mind wandering shortly 

before the accident. The authors argue that mind wandering results in drivers 

overlooking hazards and making more driving errors due to disengagement 

from the driving task. 

Mind wandering can be experienced when an individual is affected by 

emotions. It has been long assumed that emotion and cognition are 

inextricably linked. This assumption has been strongly supported by 

neurophysiological studies. Although emotional induction activates inferior 

medial prefrontal cortex, which is distinct from dorsolateral prefrontal cortex 

activated by cognitive tasks, both activations significantly overlap (Davidson 

& Irwin, 1999; Steele & Lawrie, 2004). Mind wandering is an area where 

cognition and emotion can overlap. Smallwood et al. (2009) found that 

emotions with different valence have a different effect on participants. 

Negative mood was recorded to induce more mind wandering, less attention 

to the task as well as difficulty to re-engage in the task after an attentional 

lapse. Jonkman, Markus, Franklin, and van Dalfsen (2017) found that after 

negative mood induction participants reported more mind wandering 

compared to after positive mood induction. This mind wandering was 

reported for both task-unrelated thoughts and task-related interfering 

thoughts. Sutherland, Newman, and Rachman (1982) also argue that 

unwanted, intrusive thoughts are more difficult to remove compared to 

neutral thoughts. This shows the importance of understanding the 

relationship between emotion and attention in both of these aspects; limited 

capacity and mind wandering. 
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As mind wandering has been defined as an attentional withdrawal from the 

task at hand, the reasons for causing this withdrawal have been widely 

investigated. Mind wandering was found to be more frequent in individuals 

with lower working memory capacity in both healthy individuals and students 

diagnosed with attention deficit disorder (McVay & Kane, 2009; Shaw & 

Giambra, 1993). Apart from individual differences, a different effect of 

attentional properties on mind wandering also has been studied. Hu, He, and 

Xu (2012) found that those individuals who experienced more mind 

wandering, showed impaired orienting attention. They concluded that 

uninformative peripheral cues cause less automatic attentional shift for those 

who are less responsive to irrelevant external stimuli.  

In summary:  

Individuals are engaged in some form of mind wandering most of the time. 

Mind wandering engages executive brain function, thus interfering with the 

task at hand information processing. This processing deficit can cause car 

accidents due to drivers overlooking hazards. Mind wandering can be 

initiated by individuals’ emotional state, with negative emotions having more 

effect and being more difficult to eliminate.        

2.8 Summary and conclusions 

The way individuals process information is hugely affected by their 

momentary emotional state. Positive emotions elicit a heuristic style of 

processing, which is characterised by more surfaced and global information 

handling. Negative emotions encourage a systematic information processing 

style which is characterised by slower and more detailed information 

handling. 

Moreover, these different behavioural manifestations are predisposed by 

human evolution and development. Evolutionary positive and negative 

emotions serve different purposes, with negative emotions requiring fast 

actions with very little behavioural variety, and positive emotions stimulating 

exploration and creativity. This results in different ways of dealing with 

positive and negative emotions. Negative emotions require effort to minimise 
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their harm, so not much attention is left for anything else. Positive emotions, 

instead, do not require minimisation, leaving relatively more attention for 

additional events.           

Apart from emotional valence, emotional arousal influences individual 

information processing styles. High arousal acts similarly to positive 

emotions, adopting a heuristic processing style, whereas low arousal 

facilitates more detailed processing. An important point to bear in mind when 

explaining the influence of arousal on processing is the level of arousal. 

Optimal performance is observed from medium aroused individuals; either 

being under aroused or over aroused negatively affects individual processing 

ability.  

The human brain tends to reduce activity and minimise effort towards task 

completion if the task requires low cognitive involvement. This mind 

wandering is more evident when individuals are affected by negative 

emotions compared to positive emotions. It also has been named as a sign 

of impaired attentional shift, therefore, predicting more difficult attentional 

shift for sad individuals. As yet, the influence of arousal on mind wandering 

seems not to be empirically investigated. The study, conducted by 

Killingworth and Gilbert (2010), was the only one that widely investigated 

occasions when mind wandering would appear most likely.  

Apart from the considerable contribution that attention and emotion invest in 

information processing, they extensively interact with each other. Although 

emotionally affected individuals experience more mind wandering, adding 

cognitive load by increasing task difficulty, can minimise this effect. In 

relation to road safety – mind wandering can negatively affect drivers’ 

attention by inducing traffic unrelated thoughts. It is necessary to understand 

whether emotional valence and arousal have different effects on mind 

wandering. The effect of mind wandering, resulting from cognitive underload 

can be minimised by increasing the amount of information to be processed. 

However, this intervention should be added with caution, as too high level of 

cognitive load can result in overload and performance failure. Cognitive load 

could possibly have different effects on drivers’ behaviour dependent on their 
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mood valence and arousal. It is necessary to find the relationship between 

these variables to establish the most appropriate interventions. 

Three main conclusions can be drawn from this chapter: 

 The way in which information is processed is affected by individuals’ 

momentary emotional state, with a more global and less detailed 

processing style in positive moods, and a more detailed processing 

style in negative moods.  

 Individuals tend to reduce attention and effort if tasks require low 

cognitive involvement. 

 Mind wandering caused by low cognitive and high emotional 

involvement has a negative effect on individuals’ attention. 

The impact of these processes on human life and actions have been 

investigated in many areas, including driving. However, research is lacking in 

a number of areas: 

 The interaction of mood and attention in the driving environment. 

 How driving parameters (e.g. speed, acceleration, braking) are 

affected by drivers’ mood, and how these parameters shape drivers’ 

hazard anticipation and behaviour in hazardous situations.  

 Whether adding some amount of cognitive load can redirect drivers’ 

attention to their primary task – driving. 

The next chapter will describe the measures available to assess driving 

safety, including glance patterns, physiological measures, driving parameters 

(e.g. speed, braking) and measures of drivers’ reactions (e.g. hazard 

response time and ability to keep a consistent distance from the car ahead).      
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Chapter 3 Measures used to establish the effect of Mood and 

Cognitive Load on driving behaviour 

This chapter will describe the methods available to examine the impact of 

drivers’ emotional state and different types of cognitive loads on their visual 

search patterns, reaction times and driving performance. First, an 

introduction section will describe the importance of driving safety-related 

research and variables affecting drivers’ behaviours. Second, self-

assessment and physiological measures of drivers’ emotional state and their 

cognitive load will be described, and their advantages and disadvantages will 

be discussed. These measures act as dependent variables in cognitive load 

and assessment of emotions. However, at the same time, they are 

independent variables as well, as they have been used for experimental 

manipulations. Third, eye movement measures and their use in driving safety 

research will be discussed. Finally, measurements, directly related to driving 

performance (e.g. speed, acceleration, time headway) will be defined and 

described.    

3.1 Measures used in driving safety research 

Psychological, social and behavioural research has been studying emotions, 

attention and their interactions extensively. The findings have been applied 

to almost every aspect of human life. Predictably driving and road safety 

research has used results from these fields to explain and predict drivers’ 

behaviours. For many individuals, driving is an everyday task, and as such, it 

is performed in different emotional states and attentional ability. Much 

research has been performed to understand which drivers’ behaviours are 

safety relevant, and the causes of these behaviours (e.g. emotional state, 

attention failure) (for reviews see Young, Regan and Hammer 2007, Östlund 

et al. 2004, Lee 2008). Researchers agree that in the vast majority of 

occasions the driver is responsible for an accident (Klauer et al., 2006; 

Lajunen, Karola, & Summala, 1997; Lord & Mannering, 2010; West, French, 

Kemp, & Elander, 1993). These studies define driving performance 

measurements (e.g. speed, time headway) and discuss their effects on 
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driving safety. This information is used to critically assess which actions are 

safe to perform during a drive and which actions are to be avoided for safety 

reasons. Many different tools are used to collect this information; driving 

simulators, eye tracking systems, instrumented cars, self-assessment and 

observational methods. 

Drivers’ performance is determined by available attentional resources 

(Baddeley, 1992; Brookhuis & De Waard, 2010; Jonkman et al., 2017). If a 

task requires more attention than is available, the driver has to compensate 

either by reducing task demand (e.g. by decreasing speed) or increasing 

mental effort to maintain the level of attention (Smallwood et al., 2009; Young 

& Stanton, 2002). Measuring attention, and determining how much attention 

is necessary is difficult. Experienced drivers progress to using more 

automatic skills (Underwood, 2007), thus less attention is needed. 

Nevertheless, the freed attention is not necessarily used for reading road 

information and early hazard detection (Young et al., 2007).   Young and 

Stanton (2002) proposed the Malleable Attentional Resources Theory stating 

that the acquisition of automated driving skills does not always mean that 

more attention would be devoted to road and traffic conditions. Individuals 

tend to use only as much attention as is necessary to survive, and as much 

as they consider to be enough to be safe. This can be beneficial as drivers 

can add some more of their attentional resource, should it be needed at a 

certain point in time. Kircher and Ahlstrom (2017) introduced a minimum 

required attention theory. The theory states that drivers tend to invest in the 

driving task as much attention as it is necessary for external requirements 

and their personal motivation. If a driver maintains sufficient attention to a 

situation at hand, he/she is considered being attentive to a situation, 

regardless of whether he/she performs a secondary task while driving.      

This ‘flexible attention’ leads to difficulty in defining what drivers’ behaviours 

manifest unsafe driving. Specifically, it is challenging to establish the 

borderline between safe and unsafe, and how much additional load can be 

applied to a driver in any moment of driving and not overload their attention 

to a critical extent. One approach to defining these borderlines is based on 

individual differences (Anastasi, 1958). Generally, driving behaviours 
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resemble individual everyday behaviours. Individuals with dissociative 

personality traits, who make more errors and lack attention in everyday 

tasks, tend to possess the same qualities in driving as well (Ledesma, 

Montes, Poó, & López-Ramón, 2010). Some of the most influential individual 

differences are age, gender, education, personality, attitudes and stress 

(Lancaster & Ward, 2002).  

Sometimes there is no agreement as to particular safety margins between 

authorities and cultures. For example, safe time headway ranges from 1,8 - 3 

seconds in different countries (Vogel, 2003). Nevertheless, most researchers 

agree on a comparative explanation of driving behaviours, such as speed, 

time headway, braking and acceleration. For example, decreased speed is a 

sign of a driver compensating for a mental overload (Törnros & Bolling, 

2005), or reduced visibility (Mueller & Trick, 2012). Boyle and Mannering 

(2004) also found that drivers decrease speed in response to received in-

vehicle and out-of-vehicle messages. Nevertheless, after such speed 

reduction, drivers might compensate for the lost time by increasing speed. 

Therefore, the overall safety effect of a temporary speed reduction is 

ambiguous.   

Different measures have different sensitivity to workload, which can cause 

dissociation between these measures (Yeh & Wickens, 1988). The authors 

argue that metrics dissociate when changes in one measure do not 

correspond to changes in another measure. For example, one measure 

indicates a decrease in a workload and the other indicates an increase. 

Myrtek et al. (1994) recorded discrepancies between self-reported mental 

workload and physiological measures in train drivers. They argue that 

workload analysis cannot be done adequately using only self-reported 

ratings. Instead, physiological measures should be used to get a full picture 

of experienced stress. The following sections will look at advantages and 

disadvantages of different methods of measuring emotions, and possible 

combinations of methodologies for more detailed conclusions.    
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3.2 Methods of measuring emotions and cognitive load 

Traditionally, emotions are described from two different perspectives: 

discrete and dimensional terms. Discrete emotions are described as unique 

physiological entities, such as anger, happiness or sadness (Ekman, 1992). 

The dimensional perspective characterises emotions as entities varying in 

valence and arousal (Barrett & Russell, 1999). This thesis is mostly 

concerned with the dimensional perspective of emotions. Although the 

experimental manipulations are named as discrete emotions, this research is 

not concerned with a particular emotion, but rather with a range of valence 

and arousal of an emotion. For example, an angry emotion is seen as a 

range of angry feelings with negative valence and high arousal.  

With the development of fundamental knowledge of emotions, the concept of 

emotion as part of the human being has emerged (Izard, 1977). Emotions 

now are not considered arbitrary and unpredictable from individual to 

individual, but rather as precise and recurrent patterns directing human 

behaviour. Therefore, how human behaviours are shaped by emotions has 

been extensively researched (Chen, Epps, Ruiz, & Chen, 2011; De 

Rivecourt, Kuperus, Post, & Mulder, 2008; Nguyen & Zeng, 2014). Balters 

and Steinert (2015) highlighted two important aspects of emotion research: 

one is about understanding exactly which emotion is experienced and how it 

is expressed, and the other is understanding whether other individuals are 

experiencing emotions. Both of these concepts are used in this thesis. In 

assessment of emotions, it is important to understand which emotion is 

experienced, to be able to assign recorded behaviours to this particular 

emotion. All techniques have advantages and disadvantages. Therefore, a 

combination of different measurements can provide the best understanding 

of emotion elicited behaviours.     

Emotions are computable subjective components and measurable somatic 

responses of autonomic nervous system activation (Scherer, 2005). Various 

tools can be employed to measure emotions quantitatively; self-reported 

measures, glance measures behavioural measures and physiological 

measures. These are discussed in the following sections.   
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3.2.1 Self-reported measures 

Self-reports of emotion are recorded using questionnaires and surveys. They 

are widely used due to being relatively inexpensive (regarding time and 

cost), suitable for wide distribution among large samples and able to 

measure constructs, such as trait characteristics, which would be difficult to 

do using physiological tools. Self-assessment also can represent an 

individual’s subjective appraisal of experienced emotion. Examples of self-

assessment questionnaires used in this thesis are the Brief Mood 

Introspection Scale (BMIS) (Mayer & Gaschke, 1988) and ‘The affect grid’ 

developed by (Russell & Bullock, 1985). A description and justification of 

each of these scales is provided in the method sections of the relevant study; 

BMIS – desktop study, section 4.2.1 and ‘The affect grid’ – simulator study, 

section 5.2.1.  

Similarly, self-reported task difficulty or cognitive load can be measured by 

questionnaires developed for these purposes, such as NASA Task Load 

Index (TLX) (Hart & Staveland, 1988) or Paas Cognitive Load Scale (Paas, 

1992). Measurement scales have been found to be a useful and reliable tool 

in a load and attention assessment (Hart, 2006). However, the present 

research did not employ any of these questionnaires, as detailed attention 

and load analysis was not in scope of this thesis. Simple self-assessment 

questions were considered to provide enough information.  

Self-reports have been widely used in studies investigating driver attitudes 

and behaviours influenced by different emotions (Mauss & Robinson, 2009; 

Muckler & Seven, 1992). Muckler and Seven (1992) argue that the 

subjectivity of self-reports is their strength. They state that no one knows 

better what individuals are feeling than the individuals themselves, and this 

judgement is critical to data interpretation. Muckler and Seven (1992) argue 

that differences in measurement of feelings are hidden in objective measures 

until the breakdown self-reported information makes them obvious.   

Yet, self-reported methods have been criticised for being too susceptible to 

individual differences. For example, what one individual rates as ‘7’ out of 

‘10’, for another individual could be equal to ‘5’. Response bias is another 
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criticism of self-reports. Individuals might give an answer that they think is 

the most desirable for a researcher, or the answer that is more socially 

acceptable (Fan et al., 2006; Mauss & Robinson, 2009). One of the ways to 

overcome these disadvantages and obtain a more reliable assessment of 

drivers’ emotion state and load is by recording their physiological arousal. 

These recordings together with self-reports provide more reliable conclusions 

about drivers’ mental state than each of these tests separately.  

3.2.2 Physiological measures  

Physiological measures include measures of the autonomic nervous system 

(ANS) and central nervous system (CNS). In this thesis, only ANS 

measurements of arousal are used. ANS consists of sympathetic and 

parasympathetic nervous systems which are responsible for arousal and 

relaxation. The advantage of these measures is that they do not require an 

explicit response, e.g. most of the data can be collected continuously while a 

participant is performing another task of interest. Kramer (1991) warns about 

the disadvantages of physiological measures, as they require special 

equipment and expertise to operate. Further, the acquired data can be 

analysed only after pre-processing and checking for noise and other 

artefacts. Moreover, the individual differences need to be minimised using 

special techniques.        

There is not much argument about the validity of arousal measurements 

recorded from an individual. For example, an increase in heart rate or skin 

conductance indicates an increase in arousal (Kramer, 1991). However, 

studies attempting to distinguish discrete emotions through physiological 

measures show rather contradicting results. This is especially evident when 

measurements are used to distinguish discrete emotions. For example, 

finger temperature decreases less in anger than in fear but does not change 

for other emotions (Cacioppo, Berntson, Larsen, Poehlmann, & Ito, 2000). 

However, it is impossible to conclude whether anger or fear is experienced, 

solely from finger temperature data. Even the assumption that arousal is 

caused by emotions is arguable. Similarly, arousal can be caused by other 

factors, such as digestion, attention or effort (Stemmler, 2004). To obtain 

reliable conclusions about experienced emotion, experiments should control 
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as many extraneous variables as possible and conclude from the 

experimental context, not based on arousal itself (Mauss & Robinson, 2009). 

Moreover, physiological measurements should be used together with self-

reports to contextualise their meaning (Nacke, 2009). The most commonly 

used ANS measurements are electro dermal activity and cardiovascular 

recordings.   

3.2.2.1 Heart rate measurements 

The most common cardiovascular measure, used in driving safety research 

is heart rate (HR). This measure provides a reliable assessment of drivers’ 

emotional state and their arousal, and thus will be used in this thesis.   

HR is recorded as the number of heartbeats per minute.  A normal resting 

HR for healthy adults ranges from 60 to 100 beats per minute, with the 

possibility to be as low as 40 beats per minute for well-trained athletes 

(British Heart Fundation, 2017).   

In emotion research, an increase in HR has been associated with an 

increase in arousal. However, clear differentiation between discrete emotions 

is still problematic (Cacioppo et al., 2000). Cacioppo and colleagues in their 

meta-analysis found higher HR for anger, fear, happiness and sadness 

compared to disgust, and higher heart rate for happiness compared to 

disgust as well. HR responses also were higher in anger compared to 

happiness, fear compared to happiness and in fear compared to sadness. 

Although HR increased during negative discrete emotions compared to 

positive ones, it is difficult to conclude which emotion is experienced just 

from HR recordings (Cacioppo et al., 2000). This differentiation becomes 

almost impossible outside of an experimental context, or in the comparison 

between different studies. One cannot conclude, for example, that 120 beats 

per minute indicate anger, or happiness, or any other possible emotion. 

Heart rate measures are sensitive to changes in emotional affect, mental 

workload and physical activity (Jahn, Oehme, Krems, & Gelau, 2005). Jahn 

and colleagues (2005) attributed a decrease in HR to a decrease in emotion 

tension. However, workload was recorded to increase HR, regardless of 

emotion tension. They concluded that HR is a sensitive but not selective 
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measurement of emotion arousal and mental workload, and a proportional 

contribution of each of these variables cannot be determined.  

 

The use of heart rate measurements in driving experiments 

HR measures are very popular for assessing drivers’ arousal, stress and 

workload in driving-related experiments (Borghini et al., 2014; De Waard, 

1996; O'Donnell & Eggemeier, 1986). De Waard (1996) suggests several 

reasons for this: the measurement is well established and reliable, the 

measurement tool is easy to use and non-invasive.  

Brookhuis and De Waard (2010) state that neither low (vigilance) nor too 

high (stress) workload is beneficial for driving safety. They underline the 

importance of studying drivers’ mental workload in a driving simulator, as this 

provides an opportunity for a safe environment for experimental 

manipulations. These manipulations can be captured and analysed using 

state of the art devices for the continuous recording of drivers’ heart rate.  

Brookhuis and De Waard (2010) found a large effect of mental workload, 

with HR increase of about 5 beats per minute compared with resting in both 

conditions: driving under the influence of MDMA 

(MethyleneDioxyMethAmphetamine) and without. HR is sensitive to both low 

and high cognitive load. In relation to workload, increased HR has been 

related to increased load (Borghini et al., 2014) and decreased HR is 

evidence of low load during monotonous driving (Borghini et al., 2014; Lal & 

Craig, 2001).  

    

3.2.2.2 Electro dermal activity  

Electro dermal activity (EDA) is a measure of human skin conductivity, which 

provides information about changes in the sympathetic nervous system. 

When an individual experiences emotion activation, increased cognitive load 

or is physically active, the brain sends signals to the skin to increase the 

level of sweating (Treaty, 2004 ). It is a widely used measurement, and the 

main attractions include: simplicity of recording, sensitivity to single stimuli 
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and its non-intrusive nature (Heino, Molen, & Wilde, 1990).  EDA consists of 

long-duration measurements known as skin conductance level (SCL) and 

short duration measurements - skin conductance response (SCR) (Heino et 

al., 1990). SCL is the average level of EDA with a relatively stable character 

and slow changes dependent on long-term influence of stimulus. SCR or 

phasic arousal is a short-term increase in skin conductance in response to 

representation of novel, discrete stimuli. Both these arousal conditions can 

be studied independently to each other.    

Similarly to HR data, EDA does not provide a clear understanding of the 

exact emotion experienced by an individual. For example, a meta-analysis 

conducted by Cacioppo et al. (2000) showed that skin conductance 

increased less in happiness than in disgust. Skin resistance decreased more 

during sadness compared to fear, anger, or disgust. However, they noted 

that disgust data was no different from control levels. Cacioppo et al. (2000) 

also investigated whether autonomic responses differ for positive and 

negative discrete emotions. All the parameters which were examined, 

including HR, showed greater activation during negative discrete emotions 

compared to positive ones. Electro dermal responses, however, did not 

differentiate positive emotions from negative ones. However, skin 

conductance levels have been highly correlated with self-reported levels of 

arousal (Cacioppo, Tassinary, & Berntson, 2007; Mandryk & Atkins, 2007), 

and self-reported cognitive activity levels (Boucsein, 2012).   

EDA measures are used in both emotion and attention research. The 

continuity of EDA recordings facilitates tracking changes in skin conductance 

with changes in arousal levels. Changes in EDA have been associated with 

varying levels of emotional arousal and cognitive load, with skin conductance 

rapidly increasing immediately after load is applied (Reimer, Mehler, 

Coughlin, Godfrey, & Tan, 2009). However, Dawson, Schell, and Filion 

(2007) argue that an electro dermal response has a delay window of 1 – 3 

seconds. Hence, skin response changes within this time window, following 

stimuli presentation, are considered to be elicited by those particular stimuli 

Dawson et al (2007) also introduced methods of normalising two other 

aspects of skin conductance; large variability due to individual differences 



- 51 - 

and skin conductance habituation. Individual differences in skin conductance 

can range from very small, just above 0 conductance, to large numbers, such 

as 8 to 12. Skin conductance habituation is defined as a decline in 

conductance response with repetition of presented stimuli.  

 

 

Figure 3: Skin response latency. Adopted from Combe and Fujii (2011) 

The use of EDA in driving experiments 

According to Fowles (1980) an increase in HR indicates effort, whereas an 

increase in skin conductance is more indicative of arousal. Schmidt-Daffy 

(2012) agree with this conclusion, stating that EDA increases with driving 

speed and increased speed positively correlates with arousal. Healey and 

Picard (2005) used EDA to determine drivers’ stress in a real driving setting. 

They found a correlation between drivers’ self-reported stress levels and 

their EDA levels and developed a stress recognition algorithm, which could 

be used for automatic driver stress level calculation.   

Collet, Petit, Priez, and Dittmar (2005) studied skin conductance response as 

a function of driving performance. They asked participants to complete a 14 

minute circuit, composed of different road types including intersections. At 

the end of the drive, a car crossed the participant’s path and suddenly 

stopped. Given the speed of both cars, sudden braking was not enough to 

avoid a collision - in addition to braking, participants, had to steer. Braking 
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only was considered as an incorrect manoeuvre, because it did not prevent a 

collision. The proportion of participants who performed the incorrect 

manoeuvre was 51%, 45% did it correctly, and 4% of the participants did not 

perform any action at all. The performance of drivers manoeuvring correctly, 

was compared with the performance of those who performed the incorrect 

manoeuvre. Skin conductance level (SCL) increased in both groups 

compared to baseline. SCL measured after the collision showed that those 

who performed well had significantly higher SCL than those who collided with 

the obstacle. Collet et al. (2005) argued that the successful performance was 

due to high arousal levels, as higher arousal is necessary to deal with 

problematic situations under harsh time restrictions. 

Interestingly, a relationship has been found between the number of skin 

conductance responses, driving speed and accident rate (Taylor, 1964). 

Moreover, EDA measurements have also been used for assessing demands 

of rural road segments (Richter, Wagner, Heger, & Weise, 1998) and as a 

tool for measuring drivers’ workload (Collet, Salvia, & Petit-Boulanger, 2014). 

Collet and colleagues conducted a real-world experiment using controlled 

and emergency braking to examine whether EDA can reliably discriminate 

between different workloads. They found a linear relationship between 

workload demand, as a function of vehicle braking, and EDA, with the 

strongest braking producing the most EDA. Generally, in research, EDA 

increase is related to increased arousal, stress and workload, and has been 

found to be a reliable indicator.        

3.3 Glance behaviour measures 

Glance measures are collected using eye tracker tools. While there are many 

different types of eye trackers, generally they can be divided into two types: 

head mounted and remote. Both have their advantages and disadvantages, 

however, they work on a similar principle. Holmqvist et al. (2011) explain eye 

tracking as a principle of recording where, when and how long individuals are 

looking. The most common metrics of glance behaviour include; 
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 Gaze points and fixations - gaze point constitutes the basic unit in 

glance measurements. The eye stops moving for a period and 

fixates on a point in the visual field. Aggregated gaze points with a 

duration above a certain time are called fixations. This metric is 

used in both studies in this thesis.  

 Saccades - rapid eye movements from one gaze point to another. 

During a saccade, no visual information is recorded by a viewer, as 

the movement is too fast.    

One of the main reasons for using glance behaviour measures is that, in 

most cases they reflect visual attention (Duchowski, 2002). 

3.3.1 Visual search strategies 

Hughes and Cole (1988) argue that selective attention to relevant stimuli 

indicates the importance of the information. Wilson and Eggemeier (1991) 

relate fixation frequency to the importance of presented stimuli or fragments 

of stimuli (e.g. important places in a visual scene), and fixation durations to 

the difficulty in information extraction and processing. Fixation durations have 

also been related to an increase in workload (O'Donnell & Eggemeier, 1986) 

and visually high demanding situations (Backs & Walrath, 1992). Backs and 

Walrath (1992) also state that self-terminated tasks produce longer fixations 

as compared to exhaustive search, and explained these differences by an 

altered search strategy.  

Cognitive processes involved in task completion and action control, are 

mirrored in eye movement recordings (Land, 2006). Eye movement patterns 

change with practice and proficiency in many cognitive tasks. For instance, 

expert chess players’ search patterns are more efficient (Charness, 

Reingold, Pomplun, & Stampe, 2001), and expert radiologists can detect 

cancer in a mammogram in less than a second (Gegenfurtner, Lehtinen, & 

Säljö, 2011).   

The duration of eye fixations and number of fixations is directly related to 

information processing and comprehension. However, nowadays there is still 

some confusion over whether fixation durations are more related to 

processing speed and number of fixations to attentional shift, or if both of 
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these measures are related to both attentional shift and processing. Previous 

research was not clear in distinguishing between these concepts. Rayner 

(1998) summarised research on comprehension differences in self-paced 

reading and rapid-serial-visual-presentation (RSVP). In the RSVP, words 

were presented at a rate of 100 or 200 msec. The results showed that short 

sentences were processed without comprehension impairment, in the same 

way as normal reading. However, longer sentences resulted in cognitive 

overload and some impaired understanding ability. This tendency was 

especially evident when reading sentences containing syntactic ambiguity, 

thus indicating some delay in information processing. Processing speed has 

also been named as an individual difference. Shorter fixations are made by 

faster readers and bilingual readers in their dominant language (Altarriba, 

Kroll, Sholl, & Rayner, 1996). Longer fixations were recorded from dyslexic 

readers, beginners and overall bad readers (Hyönä & Olson, 1995; Shen et 

al., 2010).  

The difference in the number of fixations was also noted as an individual 

difference. For example, children who do not stutter made fewer fixations 

than children who stutter (Rayner, 1998). More evidence for a relationship 

between the number of fixations and information processing was obtained 

from the comparison of speed readers with normal readers. Speed readers 

were struggling to answer questions about those details in the text which 

they skimmed over without fixating. Normal readers did not struggle with the 

same details. However, they showed a higher number of fixations on these 

objects (Just & Carpenter, 1987; Just, Carpenter, & Woolley, 1982). 

Clearly, the number of fixations is linked to information processing speed. 

The evidence for this statement was obtained from examining the 

development of reading skills in children. Although researchers used different 

methodologies, the results were consistent, showing that with the 

development of reading skills, the number of fixations reduces (McConkie et 

al., 1991; Rayner, 1985; Taylor, 1965).  

The number of fixations also increases with an increase of task difficulty 

(Zelinsky & Sheinberg, 1997). They found the increase when the search 

target is similar to distractors. The number of fixations also increases when 
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observing more complex scenery. The first fixations provide the gist of a 

scene, and subsequent fixations are used to fill in details (Zangemeister, 

Sherman, & Stark, 1995). The more fixations are made on a particular object 

the more detail could be recalled afterwards, thus relating the number of 

fixations to memory (Christianson, Loftus, Hoffman, & Loftus, 1991).  

Both fixation numbers and fixation durations are strongly linked to cognitive 

processing. More complicated problem-solving results in an increased 

number and longer fixations. This was true for both the difficulty of a single 

task and dual tasking (Brysbaert, 1995; Pashler, Carrier, & Hoffman, 1993). 

Shorter fixations, instead, indicate faster information processing and hence 

faster attentional shift from subject to subject (Duchowski, 2002).  

  

3.3.2 Eye movements and visual attention in driving 

In a driving environment, visual attention deficiencies, such as 

underdeveloped visual search strategies, are responsible for a large 

proportion of traffic accidents (Konstantopoulos, 2009; Sabey & Taylor, 1980; 

Strayer, Drews, & Johnston, 2003). Thus, the way drivers search the road 

scene plays a crucial role in accident avoidance. The awareness of a hazard 

is reliant on drivers’ gaze behaviour. Lee (2008), in his review of 50 years of 

driving safety research, argued that insufficient road observation would 

inevitably result in a collision. Gaze measures are used to evaluate changes 

in drivers’ visual attention (Velichkovsky et al., 2003). Eye movement 

research commonly agrees that gazes are typically directed on the most 

informative parts of a road scene (Chapman & Underwood, 1998a; Rayner, 

1998). Pollatsek, Narayanaan, Pradhan, and Fisher (2006) stressed the 

importance of observational patterns facilitating hazard awareness, as more 

attention is needed in places where hazards are more likely to appear. They 

emphasised the importance of experience in developing hazard awareness 

and argued that drivers with experience start fixating more on the areas 

where hazards are most likely to appear.             

Similar to chess players, experienced drivers’ visual search patterns differ 

greatly from novice drivers (Crundall et al., 1998), with a greater number of 
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fixations produced by experienced drivers. This was named as a reason for 

novice drivers to be more often involved in accidents. Moreover, search 

patterns of police drivers differ not only from novice drivers, but from 

experienced drivers as well, with the police drivers having significantly wider 

horizontal search spread (Crundall, Chapman, Phelps, & Underwood, 2003). 

Differences in scene processing for both novice and experienced drivers also 

were recorded, with fewer and longer fixations in rural areas and more but 

shorter fixations in urban areas. Chapman and Underwood (1998b) argue 

that an increase in fixation duration is due to more complex and busy 

scenery in an urban area. Shorter fixations in an urban area are needed, as 

for a driver it is more important to be able to switch attention from subject to 

subject. 

The idea that an increase in the number of fixations together with a decrease 

in fixation duration is caused by the need and ability to switch drivers’ 

attention from subject to subject was first proposed by Shinar, McDowell, and 

Rockwell (1977). They noted that drivers fixated more often on road curves 

than on a straight road. Zwahlen (1993) obtained similar results examining 

drivers’ glance behaviours on curvy roads. He related these results to the 

American Automobile Association’s advice of using a ‘brief glance technique’ 

during driving. The technique advises drivers to keep glances on the road for 

a shorter time to avoid attention capture. These findings are contradictory to 

those documented in the research literature. Clearly, curve negotiation 

requires more processing. Nevertheless, driving on road curves did not 

increase fixation durations.  Crundall, Underwood, and Chapman 1998) 

argue that this is due to the necessity of attentional shift in more difficult road 

conditions. Rahimi, Briggs, and Thom (1990) support the idea of the 

relationship between the increases in the number of fixations together with 

the decrease in fixation durations as a consequence of cognitive demand 

caused by the road layout. In a naturalistic road study, they found this 

relationship when comparing glances on busy and quite road intersections. 

Similar effects are caused by traffic density, overtaking and narrower roads 

(Hella, Laya, & Neboit, 1996; Miura, 1979).  
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Underwood, Crundall, and Chapman (1998) compared fixation durations 

when a hazard was present with mean fixation durations during the rest of 

the drive. They concluded that longer fixations in the event of a hazard are 

determined by longer processing time needed to fully apprehend a possibility 

of a potential hazard to develop into a real one. These results somehow 

contradict those discussed above. However, Underwood et al. (1998) noted 

that mean fixation durations still changed as a function of road complexity. 

Hence, increase in fixation durations at hazard appearance is due to the 

localisation of attention on an unexpected stimulus and proximity to potential 

danger.         

Drivers typically concentrate their gazes on the visual field straight in front of 

their car, where objects appear stationary, and only occasionally look at the 

road edge and the road furniture (Chapman & Underwood, 1998a). 

Chapman and Underwood called this point a ‘focus of expansion’. The 

reason for these observational patterns is that this is the place that provides 

references for movement direction for the driver and is the place where 

potential future hazards are most likely to appear. These observational 

patterns develop with experience; inexperienced drivers do not distinguish 

between different road types, such as rural roads or urban roads, 

experienced drivers, instead, fixate more often while driving through busy 

urban roads (Chapman & Underwood, 1998b). Chapman and Underwood 

concluded that novice drivers still have not developed their optimal search 

patterns. This conclusion is supported by Norman and Shallice (1986) 

schemata development theory; the better schemata are developed in 

response to a particular action, the less time participants need to complete 

this action. Consequently, drivers’ search patterns should correlate with 

drivers’ hazard response times.    

Crundall, Underwood, and Chapman (1999) examined the relationship 

between driver experience and the visual field of view. They compared 

participants’ ability to detect a small light that would randomly appear on the 

edges of the screen. Experienced drivers outperformed novices and non-

drivers, and novices outperformed non-drivers in the stimulus detection. 

Crundall and colleagues concluded that experience is an important factor 
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determining drivers’ ability to detect peripheral hazards. Kountouriotis and 

Merat (2016) examined changes in visual search patterns while performing 

visual and cognitive secondary tasks. They found a reduced visual field of 

view, as indicated by SD yaw angle, in the presence of a simultaneously 

presented cognitive task. Kountouriotis and Merat (2016) argue that reduced 

visual angle, especially when coupled with improved lane keeping, could be 

caused by additional attentional resources involved, and could result in 

impaired peripheral hazard detection. Thus, research provides a lot of 

evidence that eye movements and visual attention are closely related 

(Velichkovsky et al., 2003).     

The duration of gazes is an important determinant of viewers’ attention. 

Typically, shorter gazes are associated with increased visual scene 

complexity (e.g. busy roads) (Chapman & Underwood, 1998a; Robinson, 

Erickson, Thurston, & Clark, 1972). Similarly, emotional parts of the scenery 

attract more attention and as such more gazes, leaving little attention to non-

emotional fragments (Kensinger, 2009). Furthermore, viewers’ moods were 

found to affect fixation durations similarly, resulting in longer fixations and 

shorter saccades when negatively primed. On the other hand, positive 

priming did not affect fixation durations, but however showed shorter 

saccades (Kaspar et al., 2013). 

These search behaviours have been researched in the driving environment 

and found to result in similar patterns. Chapman and Underwood (1998a) 

highlight the importance of a good balance between fixation durations on 

different parts of the road. Too short fixations are unable to provide a driver 

with the necessary information and will most likely result in missing important 

parts of a whole scene. Too long fixations incur difficulties in the attentional 

switch from one object to another, and as a result a possibility of missing the 

appearance of another hazard, or prolonged reaction to this hazard. 

Konstantopoulos (2009) also argues that longer fixations indicate difficulties 

in attentional switch and longer information processing times. They collected 

evidence examining drivers’ scene processing ability in low visibility 

conditions. Drivers fixated significantly longer during night driving and driving 

in the rain.  
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Nevertheless, researchers agree that glance measures well represent 

drivers’ attention, and their visual and cognitive processing demands. These 

measures can be used to monitor changes in drivers’ behaviour and in 

driving safety assessment.    

3.4 Driving behaviour measures 

3.4.1 Time headway 

Time headway (TH) is defined as the time (measured in seconds) between 

the front bumpers of two vehicles travelling in the same direction at a 

constant speed (Evans, 1991). Based on TH data, several measurements 

can be calculated: minimum TH – which reflects the minimum following 

distance to a lead vehicle, and mean TH – which reflects a drivers’ 

perception of a safety margin, and a drivers’ ability to concentrate on a car 

following task (Saad et al., 2005 ). If TH is too short there is a risk that the 

following driver would not be able to react quickly enough should the lead 

vehicle stop (Knipling et al., 1993). For example in the UK, close car 

following has been associated with 7023 accidents in 2015, 469 of which 

were fatal or serious (Department for Transport, 2015). To address this, an 

upper limit of safe interaction, measured as TH has been proposed. This 

time varies from 1.5-3.5 seconds in good road and traffic conditions 

(Pasanen & Salmivaara, 1993; Piao & McDonald, 2003; Vogel, 2003; 

Wasielewski, 1979).    

Maintaining a safe headway requires active interpretation of visual cues and 

rapid decision making (Brookhuis, Waard, & Mulder, 1994). The choice of TH 

can vary depending on different factors, such as risk tolerance, age, gender, 

perceived task difficulty and emotional involvement (Ranney, 1999; Y. Zhang 

& Kaber, 2013). Strong emotions provoked by these factors, such as 

frustration or anxiety could easily lead to dangerous behaviours (H. 

Summala, 2007). Summala also noted that the choice of TH is not always 

based on the law, it is directed by social norms as well. For example, in 

dense traffic conditions, many drivers are uncomfortable in following the legal 

TH due to this distance being outside the accustomed social norm. On the 
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other hand, Brackstone and McDonald (1999) argued that drivers are 

inconsistent in their choice of TH, on day to day basis and even within a day. 

The choice of TH can also vary within individuals as a function of motivation 

or mood change (Y. Zhang & Kaber, 2013). They found that situations of 

urgency resulted in more aggressive driving with shorter TH and faster 

speeds. On an individual level, drivers modify TH to accommodate their 

performance ability, which in turn depend on task difficulty and driving skills, 

such as braking ability (Winsum & Heino, 1996). They argue that because of 

individual driving ability, preferred TH should remain consistent for individual 

drivers and vary only between individuals. On the other hand, there is 

considerable variability within individual performance, related to different 

individual emotion states.  For example, Tasca (2000) found that aggressive 

drivers are more likely to ‘tailgate’, and Green (2000) found that drivers’ 

stopping distance increases under cognitive load. The interaction between 

mood and load and their effect on following behaviour has been under-

researched. Emotions may affect drivers by changing their of safety margins.           

An increase in TH is a compensatory behaviour which occurs when drivers’ 

cognitive load increases, for example, when interacting with other in-car 

devices (Jamson, Westerman, Hockey, & Carsten, 2004; Young et al., 2007). 

Some drivers prefer to sacrifice success in car following and allocate their 

attentional resources to in-car activities (Ranney, 1999). Nevertheless, this 

TH increase is not always enough to avoid a collision or accident (Jamson et 

al., 2004). Young et al. (2007) argue that this driving performance 

modification results from either too much attention allocated to a secondary 

task or inadequate attention to the primary task. Nevertheless, it is an 

indicator of an attentional deficit required to maintain safety. 

TH also depends on drivers’ trait characteristics and their momentary 

emotion (Garrity & Demick, 2001; Stephens & Groeger, 2011). Angry drivers 

are more likely to tailgate and drive close to a lead car (Stephens & Groeger, 

2011). Garrity and Demick (2001) state that aggressive personality traits 

have a negative impact on driving behaviour. For example, hostility has been 

found highly correlate with traffic crashes, and high driver aggression was 

correlated with minor accident involvement. Furthermore, thrill-seeking 
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correlates with risky driving behaviour, including close following distance 

(Jessor, 1987).  

   

3.4.2 Speed and acceleration 

Speed is a well-known factor associated with high accident risk. Societies 

enforce speed limits on roads to decrease the number of fatalities on the 

roads (Lajunen et al., 1997). Lajunen and colleagues report that the year 

following speed restriction introduction, the number of fatalities dropped by 

25%. They also estimated that reduction of speed by 5 km/h could reduce 

the number of accidents involving injuries by 30%. Therefore speed choice is 

an important factor in driving safety. Too high speed can result in too long 

braking distance and not enough time to react to potential hazards. Speed 

limits are imposed to lower accident risk and consequences of accidents 

(Lajunen et al., 1997). 

Speed measures, such as mean speed, speed variation and maximum 

speed are often used in driving safety research. Changes in mean speed 

have been recorded as a consequence of drivers’ distraction. Patten, 

Kircher, Östlund, and Nilsson (2004) recorded speed reduction as a result of 

visual distraction. They argue that this decrease is a compensation for a 

reduced visual input. Similarly, Saad et al. (2005 ) explain speed reduction 

by necessity to gain more time for the road information processing in case of 

reduced visual road information. Speed decrease as a compensatory 

strategy for slower decision making was reported for elderly drivers (Brouwer 

& Ponds, 1994). Cognitive load, on the other hand, has been found to 

influence speed inconsistently, from having no effect on speed (Östlund et 

al., 2004), to speed increase while speaking on the hands-free mobile phone 

(Patten et al., 2004). Driving at higher speeds requires more attention, due to 

less time left to deal with unexpected situations.  Drivers tend to compensate 

for this extra attention requirement by reducing speed if they have to perform 

additional tasks, such as talking on a mobile phone (Rakauskas, Gugerty, & 

Ward, 2004) or entering the destination in a navigator (Chiang, Brooks, & 

Weir, 2001). 
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Speed determines the time available for action in case a hazard occurs, as 

well as the severity of accident consequences (Rothengatter, 1988). 

However, although speed is a volitional drivers’ choice, there are some 

problems in using it as a safety measure. First, drivers’ speed choice is 

limited by speed restrictions and societal demands. For example, someone 

who prefers slow driving sometimes is forced to drive faster by pressure from 

other road users, or someone who likes fast driving is restricted by speed 

limits and busy traffic (Lajunen et al., 1997). Consequently, most of the time, 

drivers have to adapt a socially desirable driving speed. This makes it 

difficult, and under some circumstances almost impossible, to use mean or 

maximum speed to determine an influence of external factors on drivers’ 

speed choice.  

In experimental conditions, when drivers’ speed choices are restricted, speed 

measures are not representative of driving performance (Saad et al., 2005 ). 

Acceleration, instead, is not restricted by traffic rules and regulations and can 

be freely chosen by drivers and adjusted according to their momentary 

wishes. Especially, this is evident at intersections; drivers can drive fast to 

the approach of the intersection and apply sharp braking just before it. After 

the intersection, drivers can accelerate to reach to the speed limit very fast. 

Therefore, the acceleration can be more representative of driving style than 

driving speed. Robertson, Winnett, and Herrod (1992) suggested using 

acceleration to characterise drivers’ driving styles. They also argued that with 

experience drivers change their acceleration style, as gained experience 

helps in reading the road ahead and planning speed on the approach of 

obstacles. Thus, acceleration can be used as a measure of drivers’ 

anticipation skills.  

Lajunen et al. (1997) distinguish between lateral and longitudinal 

acceleration. Lateral acceleration is speed on road curves, where too high 

speed can result in activation of centrifugal forces and loss of control. It also 

can reflect lack of drivers’ anticipation skills and experience. Longitudinal 

acceleration refers to drivers’ style of acceleration and braking, and can 

reflect a drivers’ thrill for fun and sensation seeking (Lajunen et al., 1997). 

Strong centrifugal forces can result in running off the road (Summala & 
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Merisalo, 1980), and strong longitudinal acceleration can result in rear-end 

collisions (West, 1993). 

In driving related research, acceleration data has been used to predict fuel 

consumption (Murphey, Milton, & Kiliaris, 2009), determine ecological driving 

patterns (Ericsson, 2000), assess the likelihood of drivers being involved in 

accidents (Lajunen et al., 1997), and detecting drivers under the influence of 

alcohol (Bagdadi & Várhelyi, 2011). 

Ericsson (2000) found that individual differences are one of the most 

influential factors capable of predicting driving style. Males accelerated 

harder at intersections as compared to females, as well as had a greater 

proportion of time in higher acceleration classes. Acceleration style has been 

used to detect drivers’ vigilance and sleepiness (Desai & Haque, 2006), as 

well as classify driving styles (Di Lecce & Calabrese, 2008) and detect drunk 

drivers (Bagdadi & Várhelyi, 2011). Bagdadi and Várhelyi (2011) assumed 

that rapid acceleration and deceleration, as well as jerky stops, are good 

indicators of drivers having difficulties in maintaining a lane position and 

speed control, thus being evidence of driving under the influence of alcohol.     

Murphey et al. (2009) state that the way drivers accelerate and brake 

determine fuel consumption and emissions. They define driving style as 

drivers’ dynamic behaviour on the road. Sometimes drivers are calm, 

sometimes aggressive; these emotions determine driving style. They 

distinguished three driving styles;  

 Calm – is the most fuel-efficient style, when a driver anticipates other 

road users and avoids hard acceleration. 

 Normal – is when a driver adapts the moderate style of acceleration 

and braking. 

 Aggressive- style assumes hard and abrupt acceleration and braking. 

This style is less fuel efficient. 

This classification is based on a jerk profile. Murphey et al. (2009) define a 

jerk as the change in rate in acceleration and deceleration. 
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In summary:  

Although driving speed and speed variation can be used as reliable 

measures to assess driving safety, they are not always representative of the 

real situation. In cases where drivers’ choice of speed is restricted by speed 

limits, road layout (e.g. busy road with a lot of parked cars), or slow moving 

traffic, their acceleration style can determine their driving style. Driving style 

not only indicates driver’s ability to maintain a lane position and speed 

control, but also can be an indicator of dangerous driving (e.g. aggressive 

style utilising abrupt braking).   

 

3.4.3 Braking 

There are a number of different brake metrics. Brake reaction time (BRT) is 

the time measured from the onset of a lead car’s brake lights until the 

moment the brake pedal of the following vehicle is pressed (Winsum & 

Heino, 1996). BRT is the most commonly used driving performance 

measurement (Saad et al., 2005 ). BRT varies as a function of event 

expectancy. Shorter BRT was recorded for expected events compared to 

unexpected events (Johansson & Rumar, 1971) and for shorter headways 

compared to longer headways (Brookhuis et al., 1994; Schweitzer, Apter, 

Ben-David, Liebermann, & Parush, 1995). Green (2000) argues that fully 

alerted and ready drivers can react as fast as 0.7 – 0.75 seconds after 

spotting a brake light. Response to common but unexpected brake lights 

takes about 1.25 seconds, and response to unexpected signals takes 1.5 

seconds. Green (2000) also states that these times are not an absolute value 

and depend on factors such as drivers’ cognitive load, age and gender, as 

well as the urgency of a situation. 

Brake reaction time components 

To understand and interpret BRT, it is important to recognise that there are a 

number of components. Green (2000) offers a breakdown of BRT as follows; 

 Mental processing time – the time needed to recognise that an action 

is needed. For example, a pedestrian steps into the road ahead. The 
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driver should assess the situation and decide that braking is needed 

to avoid an accident. This component can be decomposed into three 

smaller units; 

o Sensation – object detection time (“There is an obstacle in the 

road.”) 

o Perception – the time it takes to recognise the meaning of an 

obstacle (“This is a human”.) 

o Response selection and programming – the time it takes to 

decide which action (if any) is the most appropriate and to plan 

the action (“If I brake, I would avoid a collision.”)    

 Movement time – the time needed to perform a pre-planned 

movement. For example, move the foot from the accelerator to the 

brake pedal. Green (2000) argues that for more complex actions 

longer time is needed to respond. He also states that the movement 

time is dependent on the arousal level and the amount of practice. 

 Device response time – the time it takes for a mechanical response of 

the involved device to complete its response. For example, it could be 

the time for a car to stop after a brake pedal is pressed.  

Green (2000) also states that reaction time (RT) should be referred to only 

as the first component – mental processing time. However, due to 

inconsistent use of terminology in the previous research, this term has been 

used as mental processing on its own and sometimes mixed with other 

components. In the desktop study of the present research the term ‘response 

time’ is used in relation to hazard response times. In this case, the term 

includes only the first component – mental processing. In the simulator study, 

for braking responses, all the components are included in the term BRT, as 

the measurements are taken from a hazard trigger time until a participant 

presses the brake pedal.  

Research examining drivers’ reaction has used different signals to induce 

braking: brake lights of the lead vehicle, traffic signals, the unexpected 

incursion of another car or pedestrian, auditory signals and slowing of a lead 

car without operating brake lights (Green, 2000). He concluded that the RTs 



- 66 - 

are faster when hazards are present in foveal vision as compared to the 

peripheral presentation. 

Braking time calculation  

Another important aspect when analysing BRT is to determine how the 

pressure applied to the brake pedal is conceptualised and calculated. Many 

authors record only the time at which the brake pedal was first pressed (see 

Green 2000 for review). This metric can be considered as purely drivers’ 

reaction time, as it calculates the time from the hazard onset until the drivers’ 

first reaction. The disadvantage of such a measurement is that it does not 

take into account drivers’ attitude to the presented stimuli. For example, as it 

was pointed out by Winsum and Heino (1996), individual differences, such as 

experience, age or gender, determine braking style. More experienced 

drivers and those who are more confident in their braking skills, engage in 

later braking and shorter headways. Consequently, the individual difference 

can be a determinant of brake initiation, and it is difficult to be sure whether 

these drivers have noticed an obstacle later, or they are just more confident 

in their braking skills. Other studies calculate braking time from an initial 

brake pedal press until its complete depression (McGehee, Mazzae, & 

Baldwin, 2000; Van Winsum & Brouwer, 1997). Barrett, Kobayashi, and Fox 

(1968) found individual differences in brake pedal using; drivers who reacted 

slower to stimulus appearance, were also slower in fully pressing the brake 

pedal (about 1 second), or the brake pedal was never fully pressed. Faster 

responders, instead, slammed on the brake pedal, so the pedal was fully 

pressed in about 0.5 seconds.  

Expected, unexpected and surprise conditions 

Green (2000) distinguishes between three types of studies examining 

braking times: expected, unexpected and surprising. Expected braking is 

when drivers are explicitly told that they would have to respond to a signal, 

which possibly would require deceleration or braking. These studies often 

report fast braking responses, from 0.5 to 0.75 seconds. He explains such 

fast responses by the application of ideal conditions; drivers knew what to 

look for, although some element of abruptness was applied. 
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Unexpected braking is considered to be more natural and described as 

drivers’ reactions to unexpected events (Green, 2000). The reaction time in 

these studies varies from 0.13 to 1.35 seconds. Finally, he classifies the 

most unexpected braking as a surprise, where braking probability was very 

low. In such studies, objects suddenly moving into the drivers’ path from a 

side road, were used as a stimulus. Most of these studies found very long 

braking times, 1.5 – 1.8 seconds, although they were dependent on time to 

collision (Hankey, 1997; Summala & Koivisto, 1990). Green concluded that 

surprised drivers take more time to brake, roughly twice as long. He 

explained this by drivers having to spend more time on all three mental-

processing stages; detection – slower due to use of peripheral vision instead 

of foveal, perception – slower due to unusual nature of an obstacle and 

therefore, more time required to interpret it, and response is slower as a 

choice between braking and steering has to be made.  

Other factors influencing brake reaction times 

Brake reaction times are found to be influenced by many other factors 

besides expectancy (see Green, 2000 for review);  

 Age has generally been found as a slowing factor for braking. 

 Gender does not show consistent results, with males sometimes 

being faster and sometimes showing no difference. None of the 

studies found females to be faster. 

 Urgency, defined as shorter time-to-collision has been found to 

facilitate braking times to some extent. Green explains this facilitation 

by higher arousal level in the cases of urgency. He also applies 

Yerkes and Dodson’s law to this phenomenon, as urgency improves 

BRT only until certain extent; when conditions become too 

demanding, the performance does not improve. 

 

Cognitive load is a robust predictor of prolonged braking times (Alm & 

Nilsson, 1994; Korteling, 1990). Attention is of limited capacity. Thus any 

factors requiring attentional resources would inevitably distract drivers from 

detecting sources of danger (Wickens, 1991). One of the most researched 
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subjects in this area is the use of a mobile phone while driving. Simulator and 

on-road studies came to the same conclusion; mobile phone use decreases 

reaction times by about 0.5 seconds (Brookhuis et al., 1994; Green, 2000; 

Lamble, Kauranen, Laakso, & Summala, 1999), explaining their findings by 

drivers’ overload during a phone conversation. In contrast to these findings, 

Alm and Nilsson (1994) found that drivers’ reaction time could decrease 

under tricky road conditions, regardless of having a phone conversation at 

the same time. One explanation of these findings could be a malleable 

attentional resource theory (Young & Stanton, 2002). Drivers may have been 

mindful of their risky behaviour, so became more focused on the road.         

Another source of cognitive distraction is the use of in-car devices 

(Summala, Lamble, & Laakso, 1998). However, operating in-car devices 

presumes looking at in-car objects, thus redirecting visual attention away 

from the road. Besides cognitive load, peripheral vision is used to detect 

sources of danger, which can determine slower reactions. Therefore it can 

be expected that emotions and cognitive load that take away the majority of 

drivers’ attentional resources, would affect brake reaction time the most. 

3.5 Hazard awareness 

Drivers permanently have to update visual information during a drive by 

identifying relevant information in a fast-changing environment. This 

information includes anticipating hazards, judging their development and 

predicting the trajectory of this development (Wetton et al., 2010). Drivers’ 

ability to anticipate dangerous road situations has been defined as hazard 

awareness (Horswill & McKenna, 1998).      

Hazard awareness is a skill associated with the risk of car accidents in a 

number of studies (Darby, Murray, & Raeside, 2009; McKenna & Horswill, 

1999; Wells, Tong, Grayson, & Jones, 2008). The idea of measuring drivers’ 

hazard awareness ability was initiated by Pelz and Krupat (1974) and several 

times further developed (McKenna & Crick, 1991; Watts & Quimby, 1979). 

The introduction of the hazard perception test in the UK in the year 2002, 

resulted in a non-low-speed road crash rate reduction of 11.3% in the year 
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following novice driver’s test (Horswill & McKenna, 1998). Moreover, a 

correlation between hazard perception skills and the crash rate has been 

recorded (McKenna & Horswill, 1999; Pelz & Krupat, 1974; Wells et al., 

2008). Those who scored higher on hazard perception tests had lower crash 

rates.      

The ability to detect and evaluate potentially dangerous road situations has 

been used as a measure of driver’s hazard perception and incorporated in 

the new driver assessment test in the UK. This test is a simplified version of 

driving reality, with hazards presented on a computer screen as videotaped 

scenes from a drivers’ perspective. Participants are required to watch these 

videos and imagine they are the driver of the car. Each video contains at 

least one potential hazard, which later develops into a critical situation 

requiring immediate action. The potential hazards vary and can include 

pedestrians stepping into the road, cars merging unexpectedly, cars braking 

suddenly or too rapidly, or road users violating traffic rules.  As soon as a 

driver spots a potential hazard, he/she is required to indicate a response by 

pressing a button. Hazard perception skills are evaluated by computing the 

hazard response time (HRT) measured from the first indication of the hazard 

until the button is pressed (Chapman & Underwood, 1998a). The average 

time of responses is calculated and used as a measure to assess the driver’s 

hazard perception skills. 

Hazard perception is an awareness of what can happen and action taken to 

be prepared for possible negative outcomes. Endsley (1995) proposed a 

theory of ‘situation awareness’ underlining three necessary abilities for 

situational awareness, which could be applied to hazard awareness: 

perception – hazard detection at an early stage of hazard development, 

comprehension – recognising that situation is a potential hazard and 

projection – prediction of possible situational development. The last stage, 

prediction, is based on the knowledge stored in declarative memory and 

ability to relate memory elements to the present situation (e.g. predict the 

driving trajectory of a possible hazard vehicle based on its speed and 

position in the scene). 
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For successful information processing, some mental effort is required 

(Shiffrin & Schneider, 1977). The authors state that, with experience and 

practice, controlled processing develops into automatic processing, which is 

less prone to errors and does not require mental effort (see section 2.4 for 

more information). Norman and Shallice (1986) introduced a concept of 

schemata, which is a mental representation of a sequence of well-learned 

actions. Each schemata consists of many schema (singular of schemata in 

Greek) representing a single action of possible choices of actions. Similarly 

in driving, when a driver is approaching a traffic light, which have been green 

for a while, the schemata for braking is activated and prepares the driver for 

performing a sequence of possible actions (Vlakveld, 2011). Although this 

process suggests some automaticity in this processing with experience, 

Vlakveld (2011) argues that some controlled processing is still required, as 

the action can have several possible outcomes and there is a need to decide 

when is the best time to intervene. This moment of decision making can 

compete for available attentional resources with drivers’ other mental 

processes, such as mind wandering or efforts of the ‘regulatory system’ 

(Carver, 2003) to minimise the harm caused by negative emotions. 

Consequently, the process of hazard perception would be delayed in 

circumstances when the driver is disposed to negative emotions.                

Hazard perception tests are widely used not only for the assessment of 

novice drivers, but also in a broad range of psychological research, and have 

been found to be a reliable measure of safety behaviour (Chapman, 

Underwood, & Roberts, 2002; Grayson & Sexton, 2002; McKenna & Horswill, 

1999; Pradhan, Pollatsek, Knodler, & Fisher, 2009; Vlakveld, 2014). 

Therefore, hazard awareness can be used to determine the impact that 

emotions have on drivers’ attention. 

3.6 Coherence task 

The coherence task was developed at the University of Groningen and is 

suitable for both field and simulator experiments (Brookhuis et al., 1994). 

Drivers are required to follow a car ahead keeping a constant distance from 

the lead car. The speed of the lead car fluctuates with an amplitude between 
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15 to 30 seconds, depending on task design (Brookhuis et al., 1994; De 

Waard, 1996; Rakauskas et al., 2008). Participants are asked to follow the 

lead car and adjust their car’s speed, to keep a safe, close and constant 

distance from the lead car. Three metrics are derived from analysis;  

 Coherence: a measure of squared correlation between the speeds 

of the participant’s car and the lead car. Its value is similar to R2, 

ranging from 0 to 1, with 1 being a perfect match between the two 

signals. If the correlation is < 0.3, car following has failed and 

further metrics (phase shift, modulus) should not be interpreted 

(Brookhuis et al., 1994). 

 Modulus: is an amplification factor of the participant’s speed with 

respect to the lead car. Modulus < 1 is interpreted as undershoot, 

and modulus > 1 is interpreted as an overshoot. 

 Phase shift: also called a delay of a participants’ response to the 

change of the lead car’s speed.  

Brookhuis et al. (1994) observed considerable delays in reaction when the 

participants were influenced by drugs or alcohol, and when they were talking 

on a phone. They calculate that a delay of 600 ms at 90 km/h requires 15 m 

extra braking distance should a car in front come to a stop. Therefore, 

depending on speed, 600 ms reaction delay could be an additional accident 

risk. They argue that being able to assess drivers’ reaction delay is a reliable 

measurement tool to predict risk increase under certain conditions. Ward, 

Manser, De Waard, Kuge, and Boer (2003) manipulated driving task difficulty 

and driver’s cognitive load in a driving simulator. They found that driving task 

difficulty increases coherence but decreases modulus, whereas cognitive 

load decreases both coherence and modulus. Phase shift was not affected. 

Heart rate significantly increased during both manipulation conditions, 

showing evidence of increased effort. The authors concluded that both tasks 

with low and high cognitive load, showed reduced performance as 

demonstrated by the decrease in modulus. The decrease in modulus was 

assigned to resource limitation which cannot be controlled.  However, 

increase in coherence in a more difficult driving task somehow indicates 

performance improvement. Ward et al. (2003) concluded that when driving 
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becomes more difficult, drivers invest more effort, whereas low demand is 

not motivating for investing resources in task performance. 

3.7 Relating driving behaviour measures to theoretical 

framework   

Negative and positive moods have different impacts on many types of 

behaviours. This thesis is particularly interested in the influence of mood on 

individuals’ driving styles and their ability to respond in a safe and timely 

manner to the actions of other drivers. This section will summarise Chapter 3 

with respect to drivers’ ability to process traffic related information in different 

moods and the influence of mood on drivers’ mind wandering, highlighted in 

Chapter 2. This section will also look at possible ways to minimise the 

negative effect of mood. 

In a fast changing road environment the ability to update road related 

information and anticipate traffic behaviour are vitally important (Crundall et 

al., 2012). Understanding the factors influencing information processing can 

be a step towards predicting driving behaviour and developing interventions 

able to correct those behaviours were measured.  

Positive moods broaden the scope of attention (Fredrickson & Branigan, 

2005), free attentional resources (Carver, 2003) and encourage heuristic 

information processing (Schwarz, 2000). Negative moods, in contrast, 

requires a lot of energy to deal with, thus lowering attention to other things 

(Carver, 2003), and encourage systematic information processing style with 

attention to detail (Schwarz, 2000). It is important to understand how these 

theories can be implemented in a driving environment. A positive mood 

should facilitate drivers’ hazard perception due to freed attentional resources 

and broader road side observation. Drivers in a positive mood should 

anticipate possible changes in the surrounding traffic and react in good time 

to avoid dangerous situations. A negative mood should facilitate focusing on 

one thing at a time, thus causing a delay in hazard perception and reacting to 

actions of other traffic (Luce et al., 1997). High arousal increases the amount 

of available cognitive resources (Humphreys & Revelle, 1984; Jamieson et 

al., 2010), thus should facilitate drivers’ performance. Nevertheless, anger 
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has been reported as having a negative impact on driving safety, for 

example, an angry driving style has been correlated with crash involvement 

(Wells-Parker et al., 2002). Happy moods (positive valence and high arousal) 

have not received much attention so far. In general researchers agree that 

happy drivers act similarly to those in negative mood valence and high 

arousal (e.g. angry) (Eherenfreund-Hager et al., 2017; Pêcher et al., 2009). 

However, these studies did not investigate drivers’ hazard perception ability.  

Another aspect, associated with drivers’ distraction from the main task, is 

mind wandering. Mind wandering is a consequence of underload and mood 

related day dreaming (Smallwood et al., 2009; Smallwood & Schooler, 2006). 

He et al. (2011) found less speed variation and smaller horizontal dispersion 

of gazes while mind wandering compared to attentive driving. They 

associated these results with drivers’ failure to scan and monitor the 

surroundings, thus increasing crash likelihood. Similarly, Yanko and Spalek 

(2013) found longer brake reaction times and higher speeds while mind 

wandering. Robertson et al. (1992) add that mind wandering negatively 

affects drivers’ anticipation skills, resulting in jerkier driving styles, with higher 

acceleration and harder braking. Mood valence has a different impact on 

individuals, with deeper mind wandering and more difficult reengagement 

with the main task in a negative mood. However, the effects of mood induced 

mind wandering on drivers’ attention and behaviour have not been 

investigated so far. Drivers in all moods should be affected by mind 

wandering, except drivers in the neutral mood. The positive valence of the 

neutral mood would not improve the performance, as according to Diener 

and Diener (1996), individuals by default feel more positive than negative.  

This effect should be evident through longer information processing times 

and attentional shift as indicated by duration of fixations and numbers of 

fixations. This effect should also be evident through driving performance 

related metrics, e.g. speed and braking (see hypothesis in section 3.8).        

As mind wandering is not only a consequence of mood induced intrusive 

thoughts, but also a consequence of underload, adding some cognitive load 

should correct this problem, e.g. reduce underload and mind wandering. The 

influence of cognitive load on driving performance has been widely 
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investigated, however, mainly with a purpose to learn the negative impact of 

additional load on driving performance (Engström, Markkula, Victor, & Merat, 

2017). Young and Stanton (2002) argue that underload and overload both 

have a negative effect on driving safety. As underload is one of the main 

causes of mind wandering, adding some amount of cognitive load could fix 

this problem.    

Cognitive load in the simulator study, reported in Section 5.4, was used to 

disconnect drivers’ mind wandering and bring drivers’ cognitive resources 

back to the driving task. Olivers and Nieuwenhuis (2006) observed that 

experimental manipulations facilitating divided attention, can be useful in 

activating attentional resources. An easy additional task not only does not 

disrupt performance in the main task, but can improve this performance 

(Olivers & Nieuwenhuis, 2006). Taking into account that executive function is 

involved in the information updating process, such as monitoring and 

evaluating current stimulus inputs of the task at hand (Baddeley 1992; Cohen 

et al. 1997), disruption from mind wandering should enhance the main task, 

thus improving driving performance. Two types of cognitive load were used 

in the simulator study: driving related load (DRL) and non-driving related load 

(NDRL). NDRL aims to disconnect drivers from mind wandering. DRL has a 

wider function: apart from disconnecting the drivers from their internal 

thoughts, it will direct drivers’ attention to the road, thus enhancing driving 

performance, ability to switch attention, and road information processing. In 

addition a no-load (NONE) condition was added as the baseline to examine 

the effects of moods when no load is applied.    

3.8 Hypotheses 

3.8.1 The desktop study 

The desktop study examined the influence of moods on drivers’ ability to 

anticipate hazardous road situations. It was designed as a desktop 

experiment and measured participants’ ‘hazard response times’ (HRT) to 

potentially dangerous situations. Based on previous research it was 

hypothesised that: 
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Hypothesis 1 – The sad drivers will have the longest HRT, fixation durations 

and the narrowest dispersion of fixations, 

Hypothesis 2 – The happy drivers will have the shortest HRT and fixation 

durations and the widest dispersions of fixations. 

3.8.2 The simulator study  

The simulator study examined the influence of different moods on 

participants’ ability to sustain attention for a period of time, their driving styles 

and how these driving styles affect driving safety. It also examined whether 

adding cognitive load, in the form of different types of questions, can 

disengage drivers’ from mood-related intrusive thoughts. 

Hypothesis 3 – neutral mood; 

The driving related metrics, physiological measures and gaze measures in 

the neutral mood will not differ from the measures during the corresponding 

baseline drive.  

Hypothesis 4 – physiological measures; 

High arousal in the happy and the angry moods will be evident in higher 

heart rate and skin conductance. Cognitive load will not affect HR and EDA.   

Hypothesis 5 – glance behaviour measures; 

Mind wandering, as induced by mood, will prolong road related information 

processing as indicated by fixation durations (less in number and longer). 

Negative mood valence will result in longer processing as compared to 

positive mood valence due to the systematic mode of processing. The sad 

mood, being the most internal state with attentional self-focus of mind and 

passive attitude to surroundings, will result in a slower attentional shift as 

indicated by less but longer fixations. The high arousal in the angry mood will 

minimise the destructive effect of the negative valence. However, information 

processing will still be deteriorated, in comparison with the baseline, due to 

the influence of task unrelated, intrusive thoughts.    

High arousal in the happy mood will affect drivers similarly to the angry mood 

with deterioration in performance in comparison to the baseline and will be 

inferior to the neutral mood.   
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With regards to the width of drivers’ visual field of view, it is hypothesised 

that participants will concentrate their gaze more towards the road centre to 

compensate for mind wandering. In other words, drivers’ visual field will be 

narrower while driving under the influence of mood, except the neutral mood.   

Hypothesis 6 – car following; 

Drivers in a positive mood will outperform drivers in a negative mood 

showing better attention and reaction to speed changes in the lead vehicle. 

The angry mood will facilitate overshooting similarly as it facilitates 

aggressive driving and tailgating. The tendency to tailgate will be 

represented by closer following distances. If the choice of TH is accounted 

for by arousal level, the happy drivers will prefer TH similar to the angry 

drivers. The sad drivers will show the slowest reactions as indicated by larger 

responses to the speed change of the lead vehicle. They also will 

compensate their attentional deficit by increasing TH.    

Hypothesis 7 – hazard perception and anticipation of hazardous situations; 

The propensity of the angry drivers to speed violation will be evident when 

the drivers’ choice of speed is not restricted by the car following situation. 

They also will show less hazard anticipation and forward planning, which will 

be evident in higher acceleration and harder braking.     

The happy drivers will employ similar driving styles, but the effect of arousal 

will be less evident due to a positive mood valence. Positive mood valence 

encourages exploration of the surrounding environment, thus wider visual 

field and better attentional shift will encourage better hazard perception and 

more proactive driving.  

The most impaired hazard perception and anticipation is expected in the sad 

mood, with it being the most self-focused. This results in less interest in 

observing the surrounding environment and the biggest influence of mind 

wandering. There is no evidence for sad drivers violating the speed limits, or 

instead, driving too slowly. However, a self-centered character of the sad 

mood permits prediction that the sad drivers will drive slower and accelerate 

and brake smoother than the happy and the angry drivers. Nevertheless, if 



- 77 - 

their visual fields are very narrow, they might have to brake sharper, due to 

the late reaction to appearing hazards.  

Hypothesis 8 – the influence of cognitive load  

It is hypothesised that non-driving related load will either disconnect the 

drivers from mind wandering, in which case driving performance will be the 

same as in the neutral mood, or add additional processing load, in which 

case the performance will deteriorate. Driving related load, on the other 

hand, will improve driving performance, as its function is to disconnect from 

mind wandering and direct drivers’ attention towards road-related 

information. These changes will be indicated by both glance patterns and 

behavioural measures.  

No-load condition will be the most representative of the mood influence on 

driving behaviour and glance patterns.          
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Chapter 4 – A desktop study to examine the effects of mood 

on glance behaviour and hazard response times 

4.1 Background and justification of the study 

Drivers’ attention is an important component of road safety (Chapman et al., 

2002; Crundall et al., 2002; Underwood, Chapman, Berger, et al., 2003). 

Attentional failure has been named as one of the most common factors 

causing accidents and near misses (Klauer et al., 2006; Lord & Mannering, 

2010; Wang et al., 1996). Therefore, factors influencing drivers’ attentional 

ability, or causing attentional lapses and failures, are widely investigated 

(Young et al., 2007). Drivers’ mood is one of the factors that greatly 

influences drivers’ behaviours (Dahlen, Martin, Ragan, & Kuhlman, 2005; 

Deffenbacher, Lynch, Filetti, Dahlen, & Oetting, 2003; Jallais et al., 2014; 

Pêcher et al., 2009). Emotions, feelings and moods are powerful and unique 

in their ability to capture and retain human minds, to overtake non-related 

information processing and influence human behaviours (Izard, 2002). 

Emotions can facilitate processing speed (Öhman, Flykt, & Esteves, 2001) 

and processing likelihood (Anderson, Christoff, Panitz, De Rosa, & Gabrieli, 

2003) and, as such, facilitate safe driving. In contemporary society, driving 

becomes a usual everyday task. The Office for National Statistics (2016) 

reports a constant increase in a number of drivers and vehicles licensed 

every year. Cars are used for commuting to work, travelling, delivering 

goods, domestic, pleasure and many more. Such a wide and frequent use 

assumes that drivers have to operate cars in different moods and emotional 

states. These factors assume that influence of drivers’ emotions on drivers’ 

behaviours have an important impact on driving safety. Indeed, drivers with 

higher levels of sensation seeking, anxiety and aggression were more likely 

to adapt risky driving styles (Ulleberg, 2001), drive faster (Abdu et al., 2012), 

and even exceed speed limits (Arnett et al., 1997).  

Ranney (1994) argues that individual predictors are less reliable than 

situation-specific factors in building drivers motivational models and 

identifying accident predictors. He named selective attention as one of the 
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most consistent crash predictors. Rapidly switching attention from one 

subject to another is a required and necessary factor in complex task 

performance (Kahneman, 1973). For example, situational anger caused by 

road-rage can provoke different emotional responses, such as fear and 

anger (Britt & Garrity, 2006; Underwood, Chapman, Wright, & Crundall, 

1999). These reactions divert attention towards a source of irritation and 

away from a primary task (Frijda, 1986).     

Ellis and Moore (1999) argue that the emotional state influences attentional 

capacity by allocating some of the attentional resources to task-irrelevant 

emotion processing. The authors argue that negative emotions, such as 

sadness and depression are the most powerful in persuading mind 

wandering and attentional capture.  

Influence of negative emotions on driving safety has been extensively 

investigated. They were found to affect lateral control, to influence on 

violating speed limits and red lights and processing too hard on gas or brake 

pedal (Jeon & Zhang, 2013). Positive emotions in relation to driving safety 

were investigated to a less extent. Research has merely reported that ‘happy 

drivers are better drivers’ (Eyben et al., 2010; Grimm et al., 2007) as they are 

less likely to be involved in accidents (James, 2000). Cognitive research is 

consistent in prioritising positive emotions in relation to various processes 

and performances (Carver, 2003; Fredrickson, 2001). Fredrickson states that 

positive emotions broaden attentional scope and Carver argues that 

attentional resources are merely used while experiencing happy emotions. 

Both of these qualities should sufficiently improve driving safety when 

possessed by drivers. 

If positive emotions have a similar impact on drivers’ attention as it was 

recorded in other areas such as decision-making and information processing, 

happy drivers should be able to spot hazards earlier and be quicker in 

calculating possible situational outcomes. One way of assessing drivers’ 

ability to predict situational development is by checking their hazard 

perception skills. The traditional way of hazard assessment is done by using 

a computer: hazards are present on a computer screen, and the participant 

has to press a button as soon as a hazard is detected. The time from the first 
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hazard appearance until the button press is recorded and called ‘reaction 

time’. Unfortunately, reaction time is a complex measurement including many 

segments (Green, 2013a). He decomposed the total reaction time into 

sequences of components (explained in more detail in chapter 3.4.5); 

 Mental processing time – sensation, perception, situational awareness 

and response selection 

 Movement time  

 Device response time  

As a result, one cannot be sure on what stage the response delay occurred. 

One way to overcome this ambiguity is by using an additional method to 

assess the influence of experimental variables on drivers’ reaction time.  

Borowsky, Shinar, and Oron-Gilad (2010) argue that using an eye tracker 

device to record drivers’ eye movements enriches the information about 

drivers’ ability to anticipate possible hazardous situations. Velichkovsky, 

Rothert, Kopf, Dornhöfer, and Joos (2002) argue that visual fixations are 

better predictors of hazard detection, as they do not involve the mechanical 

response factor, which could be a phase of delay in response time.  

Hazard perception refers to the identification of traffic situations where 

possible danger can arise. Failure to identify such situations accurately and 

timely causes more than 50% of all collisions (Nagayama, 1978). For this 

purpose, time windows of 3 seconds were created around the experimental 

hazardous situations. The beginning of the time window was the trigger point 

of a hazard, which was set to 2.5 seconds to Time to Collision. This was 

done so drivers’ behaviours could be measured on the approach of the 

hazards as well as their reaction after the hazards were dealt with. This 

method was used to analyse four driving related hazards; ‘Single parked car’, 

‘Parked car in group’, ‘Car merging from right’ and ‘Car merging from left’.  

The hypotheses are outlined in Section 3.8. 
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4.2 Method    

4.2.1 Mood induction and assessment 

To date researchers have used a variety of mood induction techniques: 

Imagination, Film/Story, Music, Feedback and combinations of these. 

Westermann, Spies, Stahl, and Hesse (1996) reviewed the effectiveness of 

these techniques and suggested that combined methods are more effective 

for a mood induction than using single mood induction techniques. Therefore 

in the present study music was used in combination with corresponding 

pictures. The happy music was combined with coloured pictures containing 

images of weddings, running horses, smiling children and puppies. The 

neutral music was combined with images of peaceful nature, and the sad 

music was combined with images of natural disasters (Westermann, Stahl, & 

Hesse, 1996). Music used for the mood induction is represented in Table 1.  

Table 1: Music used for mood induction 

Mood Music 

Happy Bach’s Brandenberg Concerto No. 3, Allegro (played by 

Hubert Laws) 

Neutral 1) Chopin’s Waltz No. 11 in G flat 

2) Chopin Waltz No. 12 in F minor 

Sad Prokofiev’s Alexander Nevsky: Russia under the 

Mongolian Yoke 

     

The choice of music was from Green, Sedikides, Saltzberg, Wood, and 

Forzano (2003) and Rowe, Hirsh, and Anderson (2007), with the difference 

that sad music was played at normal speed, unlike Row, Green and 

colleagues, who played the music at half speed.  

It has been mentioned in Section 2.1 that, in the present research the terms 

‘mood’ and ‘emotion’ are used interchangeably. Emotions are easier to 

manipulate due to their short lived nature: 10-15 minutes (Rauscher et al., 

1993). This is an important feature, as in this study a repeated measures 

design was employed, requiring each participant to take part in all of the 



- 82 - 

experimental conditions. All conditions were counterbalanced between the 

participants.  

For mood assessment, the Brief Mood Introspection Scale (BMIS) was used 

(Mayer & Gaschke, 1988). This scale contains 16 mood adjectives and a 10-

point subscale for overall mood assessment. The aim of Study 1 was to 

assess participant’s mood valence. Therefore, only the pleasant-unpleasant 

subscale of the BMIS was used (Larsen & Ketelaar, 1991; Muraven et al., 

1998). The mood assessment was completed four times: before each 

experiment, to assess baseline mood, and after each of the condition. 

4.2.2 Hazard perception videos 

The recording camera was fixed on the inside of the windscreen of the 

vehicle to record the forward view. The videos were recorded during one 

month in all weather conditions and on dual track roads and dual carriage 

ways in urban and suburban environments in the United Kingdom. All videos 

were screened for potential hazards, and very busy and empty roads were 

excluded. Videos twenty seconds in length were then created and divided 

into those with and those without hazards. All the initial screenings were 

carried out by a professional driving instructor. The videos were evaluated 

against the following criteria for inclusion: (1) the image was of acceptable 

quality, (2) the hazard was not in temporal proximity to other potential traffic 

hazards (i.e. before and after each hazardous situation there was a conflict-

free driving), (3) there was evidence of action taken by the ‘camera car’ to 

avoid a collision.  

Three driving instructors then rated the hazards regarding the amount of 

danger they could pose via a three-point scale: very dangerous, dangerous, 

and not very dangerous. This assessment was guided by the UK driving 

instructor training programme. The videos containing the most dangerous 

situations were selected for the experiment, with minimal repetition of the 

same hazards. The videos that did not include hazards were randomly 

selected from those available. These videos contained moderately busy 

traffic similar to the videos containing hazards. All videos were 20 seconds 

long. Ten videos with hazards and fifteen videos with no hazards were thus 
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produced. The same videos were used for all conditions, only the order of 

presentation was changed. The no-hazard videos were different in all 

conditions. Each hazard had a starting point of development. These starting 

points were defined using Be-gaze software frame-by-frame technique from 

the moment when hazard started to develop. Two videos were excluded from 

the analysis, as many participants reported misunderstanding of the hazard 

onset time (HOT). Table 2 describes the remaining eight videos.  

4.2.3 Apparatus 

All music was converted to MP3 format and played using an HP laptop with 

Beats audio. The music was played through Beats by Dr. Dre Executive 

Over-Ear Headphones (MH6W2ZM-A). The videos were developed using an 

in-car camera (1080P full HD, high-definition, light source frequency 50 

Hz/60 Hz) with the visual angle of the recording 130 degrees. The videos 

and the pictures were presented on a 3200 Samsung TV screen. Eye 

tracking data were recorded using SMI eye tracking glasses; 30 Hz binocular 

resolution, and 60 degrees horizontal and 46 degrees vertical field of view. 

4.2.4 Participants 

Twenty participants were recruited for the study (9 females and 11 males, 

age range 27–52 years). The inclusion criteria were driving experience of 

more than five years, more than 5000 miles driven each year, and normal or 

corrected to normal vision. The experiment received approval from the 

Faculties ethics committee (review reference AREA13-156) and accordingly 

participants gave informed consent to take part in the research.  

 

4.2.5 Experimental design 

For mood assessment and response time analysis, a repeated measures 

design was employed, with Mood as the main factor with three levels: 

neutral, happy and sad. 

Gaze data were analysed using a mixed design with Mood as within-subject 

factor in three levels (neutral, happy, sad) and Hazard as a between-subject 

factor (with hazard and without hazard).  
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Table 2: Description of hazards from (Zimasa, Jamson, & Henson, 2017) 

Hazard 

number 

Hazard description 

1 A ball suddenly appears from the side of the road, and a child 

appears after the ball. The HOT is set from the time the ball 

appears. 

2 A car has stopped on the left side of the road and then moves 

off in front of the participants’ car. The HOT is set from the 

moment the car starts moving. 

3 A motorbike suddenly appears from behind parked vehicles. The 

HOT is set from the moment of its appearance. 

4 A car was moving in the right hand lane and then, after indicating, 

moves into the left lane. It then suddenly brakes and turns left 

into a side road. The HOT is set from the moment the car started 

moving into participant’s lane. 

5 The same situation as in video two, but a car was stopped on 

the right side. The HOT is set from the moment the car starts 

moving. 

6 When travelling towards a green traffic light, a pedestrian steps 

out from the right and causes the participant to brake. The HOT 

is set from the moment the pedestrian lifts their leg. 

7 On turning left at a green traffic light, a cyclist crosses the road 

on the red traffic lights without giving way. The HOT is set from 

the moment when the cyclist starts moving across the road. 

8 A car ahead moves into the central refuge area from the right, 

stops to give way and then suddenly accelerates to cut in front 

of the participant’s car. The HOT was set from the moment the 

merging car accelerates. 
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4.2.6 Procedure 

Participants were seated 70 cm from the screen and asked to complete a 

mood assessment questionnaire (referred to as baseline mood). They were 

given the opportunity to familiarise themselves with the hazard detection 

task. They were presented with 10 videos used only for practice runs and 

asked to press the space bar on the keyboard in response to a hazard.  

The eye tracker glasses were then calibrated using three point calibration. 

The calibration was checked after each condition, in total three times for 

each participant. The first mood induction music was then played, 

accompanied by the mood relevant pictures for a total of 7 min. Participants 

were asked to adjust the volume of the music using volume adjuster on the 

lap-top, so it was loud but not harmful or disturbing. Immediately following 

the end of the music and pictures, participants were required to watch fifteen 

videos (ten with hazards and five without) and respond by pressing the 

space bar when they considered a hazard to be present. As soon as they 

pressed the space bar (or the end of the video was reached) the next video 

automatically commenced. When the fifteen videos had been played the 

participant was asked to complete a mood assessment questionnaire. After 

that, the same procedure was applied twice more for the remaining two 

mood induction conditions. The order of the three mood conditions was 

counterbalanced across participants, and the whole experiment took 

approximately 40–45 min and participants were then debriefed and paid £5 

for their time. 

4.3 Results 

Repeated measures analysis of variance were performed on the data, after 

checking for normality and homogeneity of variance. Where the assumption 

of sphericity was violated, the degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity. Main and interaction effects are 

reported, along with post hoc tests where appropriate. Bonferroni correction 

was used in all post hoc tests. 
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4.3.1 Mood assessment 

Average scores were calculated for each of the four conditions (three moods 

plus baseline). The baseline and the neutral mood data were normally 

distributed. The data from the sad and the happy conditions were skewed. 

Multilevel analysis of repeated measures with four levels (baseline, happy, 

neutral and sad) was performed to accommodate the skewed data. The 

analysis showed that the type of music played in combination with pictures 

presented had a significant effect on the participants’ mood F (3, 57) = 23.49, p 

< 0.001, ηp 2 = 0.41. Post hoc tests showed that the participants felt 

significantly more pleasant before the experiment (baseline) as well as in the 

happy and neutral moods compared to the sad mood (p < 0.001). There 

were no significant differences between any other moods (Figure 4). 

 

 

 

 

 

 

 

 

Figure 4: Mean mood scores from self-reported questionnaire 

4.3.2 Hazard response times 

Two of the ten videos containing hazards were excluded from the analysis as 

more that 50% of the hazard response times (HRT) were either less than 200 

ms or exceeded 2000 ms, as this exceeded chance accuracy (Ratcliff, 1993; 

Swensson, 1972). Erroneous responses included late button presses and 

non-responses. The responses faster than 200 ms are considered to be 

faster than stimulus ‘detection times’, and responses longer than 2000 ms 
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are associated with something unrelated to the particular stimulus.  The 

response times were calculated from the hazard onset time till the button 

press. A 3 × 8 repeated-measures ANOVA with three levels of Mood 

(neutral, happy and sad) and eight Videos was conducted. There was a 

significant main effect of Mood on HRT, F (2, 36) = 62.5, p < 0.01, ηp 2 = 

0.78. Post hoc tests showed significant differences between all pairs (p < 

0.05), with the sad mood producing the longest HRTs and the neutral mood 

the shortest (Figure 5).  

 

 

Figure 5: Hazard response times by Mood 

 

There also was a significant main effect of Video on HRTs, F (4.27, 76.86) = 

102.13, p < 0.01, ηp 2  = 0.85 and post hoc tests showed that the HRTs for 

videos 3, 5, 7 (means 824.23, 1063.96 and 1082 ms) were significantly faster 

than the others (mean range 1342.41–3287.39 ms, p < 0.05). Given that the 

mean HRT for video 4 was far in excess of 2 s (and thus considered an 

erroneous response) further examination of those data were carried out. It 

was found that in this video the behaviour of the ‘hazard vehicle’ was 

ambiguous. However, as the response times were consistent across the 

participants, the video remained in the data analysis. 

A significant Mood × Video interaction was also found F (6.86, 123.48) = 3.29, p < 

0.01, ηp 2 = 0.15. Pairwise comparisons showed that the sad mood affected 

the HRTs in all videos. Moreover, videos 1, 3, 6, 7 and 8 were differentially 
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affected by all three moods. Closer analysis of these videos showed that 

these videos featured vulnerable road users; video 1 contains a ball 

emerging from the side, which could be followed by children; video 3 

contains a motorbike rapidly moving from behind a parked van; video 6 

contains pedestrians stepping into the road; and video 7 contains cyclists 

crossing the road. Only video 8 contained a car. However, this scenario was 

filmed on a dual carriageway with a central refuge area, where the hazard 

car stopped and then proceeded. This double movement (from the side road 

to the central reservation and then further into the main road) could have 

caused a decision delay (Green, 2013b). These five videos were processed 

significantly longer in the sad mood than in the other moods, and significantly 

longer in the happy mood than in the neutral mood (p < 0.05)  

Figure 6). 

 

 

Figure 6: Mean HRTs (ms) in each video by Mood  

 

4.3.3 Glance behaviour 

The data from three participants were not recorded due to calibration 

difficulties. Fixation durations of eye movements were analysed using 
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analyses, factorial repeated measures design was used, with three levels of 

Mood (neutral, happy and sad), and two types of Video (with and without 

hazards). 

There was a significant main effect of Mood on fixation duration, F (1.26, 20.14) = 

11.28, p < 0.05, ηp 2 = 0.41. Within-subject contrasts showed that participants 

fixated longer in the sad mood compared to the happy mood F (1, 16) = 12.73, 

p < 0.05, ηp 2 = 0.44 and the neutral mood F (1, 16) = 11.54, p < 0.05, = 0.41. 

There was no significant difference between the happy and the neutral 

moods. A significant main effect of Video was found, F (1, 16) = 14.36, p < 

0.05, ηp 2   = 0.47 with significantly longer fixations in the videos not 

containing hazards. No significant Mood by Video interaction was found 

(Figure 7). 

 

Figure 7: Fixation durations, by Mood and Video 

Horizontal and vertical spread of fixations 

No effect of mood on the spread of fixations was recorded, although, the 

dispersion was the widest in the neutral mood. Therefore, the results were in 

the predicted direction, but either there was not enough power due to the 

number of participants, or the difference could not be recorded due to small 

screen size. 
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4.4 Discussion 

The desktop study was designed to investigate the relationship between 

drivers’ mood and attention, via hazard perception. It was hypothesised that 

the happy drivers would have the shortest HRTs and fixation durations than 

the neutral and the sad drivers. Additionally, it was hypothesised that the sad 

mood would result in the longest HRTs and fixation durations compared to 

the neutral and the happy moods. 

Carver (2003) proposed that individuals in the happy mood have additional 

attention resources available, which could be used to deal with problems or 

be attentive to sources of danger. The results of this study are partially in line 

with this model. Participants in the happy and the neutral moods reacted 

significantly faster to hazards than in the sad mood. This could be due to the 

different visual search patterns. According to Carver (2003) being in a sad 

mood does not encourage exploration of the environment; instead attentional 

resources are devoted to diminishing the cause of the sadness by producing 

a type of ‘tunnel vision’.  

However, the responses to the hazards were significantly faster in the neutral 

mood than the sad and the happy moods. The HRTs showed an inverted U 

shape. This does not fully support Carver’s ‘coasting’ (gradual slowing 

caused by inertia, with no effort) prediction. Coasting would result in faster 

reactions in the happy mood than in the neutral mood. In addition, Carver 

(2003) proposed that ‘the system’ likes neither a sad nor a happy state; 

instead, it prefers a neutral state. In this case, the neutral mood (as the 

preferred one) and the happy mood (as the coasting) should have an 

advantage over the sad mood, but no difference between themselves, as 

they both represent an energy saving positive affect. However, HRTs were 

significantly different between the neutral and the happy moods and it is still 

not clear if and how the two positive conditions can significantly differ with 

regards to hazard response times.  

This leads to the conclusion that, apart from mood valence, there is another 

aspect that could influence performance - mood arousal. A happy mood is 

considered to be a high-arousal physiological state (Gilet & Jallais, 2011; 
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Jefferies, Smilek, Eich, & Enns, 2008; Masmoudi, Dai, & Naceur, 2012). The 

level of arousal is an important characteristic of performance, first explained 

Yerkes and Dodson (1908b). The Yerkes-Dodson law states that arousal 

improves performance, but only up to a certain level. When arousal exceeds 

this level, performance deteriorates, creating an inverted U - shaped 

function, with the lowest performance at the edges. The hazard response 

data supports this model, the sad mood has the lowest arousal and the 

happy the highest, which caused performance deterioration in these 

conditions. 

The questionnaire data in this study supports this model. There was no 

significant difference between the baseline, the happy and the neutral 

moods. Moreover, the participants reported feeling more positive at the 

beginning (mean 5.8 on a 10-point scale) compared to the neutral mood 

(mean 5.65). Although these numbers did not differ significantly, they 

represent a tendency in predicted direction, indicating that people are 

generally in a positive mood, as proposed by Diener and Diener (1996), 

which suggests that, by default, we feel a little bit better than neutral for the 

vast majority of time. Therefore, the neutral and the happy moods might be 

both considered as positive moods. However, it is still not clear how the two 

positive conditions can significantly differ with regards to hazard response 

times. According to the Broaden-and-Build theory (Fredrickson & Branigan, 

2005) low (i.e. contentment) and high (i.e. excitement) emotional states 

broaden attentional scope by inducing different urges. For example, joy 

creates an urge to play, and contentment integrates the present life 

circumstances into new attitudes and representations. These different 

emotions are products of different arousal and result in different thought-

action tendencies. The present research shows that the Yerkes–Dodson law 

can be applied to the mood-attention relationship in the driving environment. 

Consequently, these concepts permit us to refer to the neutral mood as a 

positive mood with low arousal and the happy mood as a positive mood with 

high arousal, although the present study did not find a significant difference 

between the happy and the neutral moods, which could be due to the 

questionnaire being not sensitive to arousal measurements. Therefore, when 
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one conducts research investigating the impact of emotions on attention and 

performance, the level of arousal should also be taken into account. 

Alternatively (Kahneman, 1973) suggests that attentional changes in high 

and low arousal depend on available cues. He states that in a low arousal 

condition there are many cues available to solve a problem. When arousal 

increases, the number of available cues diminishes. The more cues 

available, the longer the time required for processing and selecting the 

relevant ones, resulting in longer processing times in a low arousal state. 

However, a high arousal state implies more selectivity between relevant 

stimuli and concentration on fewer of them; this results in missing some of 

the important cues that could speed up the problem-solving process. 

Therefore, the most superior processing is observed in the midpoint of the 

arousal scale, resulting in an inverted U-shape. If access to the cues is 

restricted due to arousal, the limited available cues will slow down the 

processing times. In other words, positive affect with low arousal is the most 

optimal state of mind for driving. In this condition, drivers can spot hazards 

significantly earlier than in both negative affect and positive affect with high 

arousal. In other words, drivers’ emotional involvement does not benefit 

drivers’ attention and road safety, instead as less emotional involvement as 

possible encourages safe driving. This statement is also supported by 

Brodsky and Slor (2013) who found that elevated mood resulted in severely 

deficient driving behaviour.  

The analysis also revealed that a number of videos were associated with 

significantly shorter HRTs. These videos contained ‘unexpected hazards’, 

which needed less time to process than ‘expected hazards’. Unexpected 

hazards are those that appear suddenly; for example, a motorcycle moving 

out from behind a parked van. On the other hand, expected hazards are 

potential hazards that can be seen for a while and could or could not develop 

into real hazards. For example, when a car waiting to merge into the main 

road and giving way to oncoming traffic suddenly cuts in front of the 

participants car (Fig. 5). The reduced length of time required to process 

unexpected hazards implies a more automatic process as compared to 

expected hazards. The latter possibly required assessment and handling 
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(Shiffrin & Schneider, 1977). This leads to the conclusion that automatic and 

controlled processes are both affected by a participant’s mood.  

A significant interaction between Mood and Videos was found, with some 

videos showing faster responses. There is no definitive explanation for these 

results; however it could be speculatively assumed that the shorter 

responses were due to the presence of vulnerable road users in the videos. 

Yet, it equally could be that the ‘time frame’ (time needed for a hazard to 

develop into a critical event) was shorter for these videos. However, the sad 

mood resulted in longer response times to all the videos. This suggests that 

the introvert character of the sad mood prioritises personal emotions, 

therefore prolonging the reactions in this condition (Pêcher et al., 2009).  

The current study presents both gaze data and the HRT measurement data, 

thus providing a possibility to investigate whether HRT could be related to 

longer processing, as indicated by the fixation durations. As for the glance 

measures, the findings are in line with previous research with the longest 

fixations in the sad mood (Kaspar et al., 2013). Driving safety research 

claims that fixation durations depend on driver experience with novice drivers 

fixating longer (Chapman & Underwood, 1998a), as well as road type with 

roads richer in road furniture generating shorter fixations (Chapman & 

Underwood, 1998b; Robinson et al., 1972) and driving conditions with low 

visibility resulting in longer fixations (Konstantopoulos, 2009). These studies 

relate longer fixations to longer cognitive processing time and failure to 

refocus attention (Underwood, Chapman, Brocklehurst, et al., 2003). 

Furthermore, (Huestegge, Skottke, Anders, Müsseler, & Debus, 2010) claim 

that these differences are due to faster processing among the experienced 

drivers. From the present study it can be concluded that the sad mood 

produces somehow similar outcomes. The sad drivers appear to need more 

time to switch their attention to different objects or they need more time for 

information processing.  

Hazard response times, using computer-based tests, measuring the time 

from a hazard appearance till a button press, have been associated with 

road safety (Chou & Chuang, 2013). Well skilled drivers, with good ability of 
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predicting the road ahead, detected more hazards and were quicker in 

responding to hazard detection tasks. The current study presents both 

glance behaviour measures and the computer-based data collection, thus 

providing evidence that HRTs could be related to the longer processing times 

as indicated by the fixation durations. However, the present research did not 

find a significant difference between fixation durations in the happy and the 

neutral moods, but did find a significant difference in the response latencies. 

  

Expected Hazards Unexpected Hazards 

 

 

 

 

Figure 8: Examples of expected and unexpected hazards from Zimasa et al. 
(2017)   

 

Another aspect that has been related to longer fixations is a reduced ability 

to refocus attention. For example, Mack and Rock (1998) referred to 

‘inattentional blindness’ as a failure to recognise unexpected stimuli due to 

attention being focused on other aspects of the visual field. The present 

research brings combined evidence for both of these statements; longer eye 

fixations are mirrored in the longer HRTs. Both these factors are caused by 

reduced ability to switch attentional focus (Konstantopoulos, 2009). In this 

study longer fixations in the sad mood were accompanied by longer hazard 

response times, providing evidence that the reduced ability to refocus 
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attention results in response delay. Longer fixations in videos without 

hazards were also found, which simply could be because the videos with 

hazards were interrupted by a button press after a hazard was detected. 

Videos without hazards, instead, required higher effort to search for hazards 

and, as a consequence, resulted in longer fixation durations. Nevertheless, 

positive conditions did not show the same effect. The reason for this is not 

clear- it could be that there was not enough power to pinpoint the differences 

in eye fixations, or that positive affect can influence only response latencies 

but not fixation durations. However, to be able to conclude with confidence 

which factor is the most influential, (attentional refocusing or prolonged 

processing time) one would need to manipulate attentional refocusing 

explicitly. For now it can be only taken as a preliminary result and a 

suggestion for further research. 

4.5 Conclusions and implications for the next study 

This study has found that the induced sad mood has a much stronger 

influence on HRT and drivers’ attention, indicating that negative emotions 

have potentially greater effect on driving related skills compared to positive 

emotions. These findings are in line with the literature: showing that dealing 

with negative emotions is more costly in terms of demanding for more 

attentional resources. This study showed that sad drivers’ hazard perception 

skills are impaired, as indicated by HRT and glance behaviours. 

In driving safety research, the time taken to identify hazards and manually 

respond to them corresponds to a safety margin available to a driver. In this 

study, longer fixation durations are coupled with longer response times. Both 

these parameters are indicators of extensive processing potentially resulting 

in a higher likelihood of accidents and near misses. Thus, it can be 

concluded that sad drivers possess a reduced safety margin, and as a 

consequence higher accident involvement probability. 

However, not all positive emotions lead to an improvement in performance. 

Simply dividing emotions into positive and negative affect is not sufficient. 
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Emotional arousal can act in a similar way as negative emotions, forcing the 

‘system’ to make an effort towards emotional normalisation. 

The results of this study indicate the importance of drivers’ mood for driving 

safety. However, clear evidence was provided only for differences between 

positive and negative mood valence. The differences between neutral and 

happy moods were also recorded, with drivers in a neutral mood reacting 

significantly faster to potential traffic hazards. The most obvious explanation 

for this is the difference in arousal between these two positive moods 

(Fredrickson, 2001). However, arousal was not explicitly manipulated and 

measured in this study. Therefore, it could only be assumed. With respect to 

emotional involvement, the next study should account for this shortcoming by 

employing a full design: positive and negative mood valence and high and 

low arousal.  

Mood assessment: In addition, a self – report scale, capable of capturing 

drivers’ arousal should be used. Although self-report questionnaires have 

been proved to be a valuable and reliable measurement tool they 

demonstrate some substantial shortcomings (Section 3.2.1). For example, in 

this study it was difficult to distinguish between neutral and happy emotional 

states. It could be that the participants found it difficult to draw a borderline 

between neutral and happy emotions, with both of them being positive 

emotions. The use of physiological measurement together with self-reports 

could add to the emotional assessment reliability (Section 3.2.2). Moreover, 

physiological measurements should be collected, to support drivers’ self - 

reports of their mood valence and arousal.   

Experimental setting: This study was a desktop experiment, having both 

advantages and disadvantages. This methodology permits the precise 

measurement of response times. However, desktop experiments permit only 

for data collection of a single metric, in this case – hazard response time, 

whereas driving is a complex task involving many sub – tasks and requiring 

simultaneous performance of all of them. For example, operating a vehicle, 

observing a road ahead, hazard perception and assessment (e.g. permanent 

hazards or developing hazards) (Driving test success, 2018). In real life, very 
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rarely there is a situation when a driver is facing one hazard at a time. The 

fast changing road environment requires permanent concentration and 

situational updates. These conditions are difficult to implement in a desktop 

experiment, and a lot of useful information is missing. For example, whether 

drivers tend to drive faster or brake harder in a particular mood. These 

questions could be addressed by moving from low level behaviour to more 

complex level when many actions should be performed at the same time 

(e.g. operating car and observing environment). Hence the influence of 

drivers’ emotions on driving behaviour and observational patterns was 

examined in the next study in a high – fidelity driving simulator.      

Possible ways of reducing the negative impact of mood arousal and valence: 

Once such an impact is established, the next step is to minimise its harm and 

possible consequences. A methodology proficient in fulfilling this criterion 

should be developed. One of the solutions to this problem could be to add 

some cognitive load, to disconnect drivers from emotion induced mind 

wandering (see Section 2.7) This was done in the next study, in which not 

only was mood investigated, but so was cognitive load, in a form of a 

distractor task.   
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Chapter 5 – The simulator study to establish the effect of 

drivers’ mood and cognitive load on driving performance 

5.1 Background and justification of the study 

The desktop study examined whether positive mood theories can be equally 

applied to a driving environment. The results confirm that, at least with 

respect to hazard perception, a positive mood is superior for driving safety as 

compared to negative mood. The desktop experiment has shown that hazard 

perception and response times to hazardous events are dependent on 

drivers’ emotional valence. However, as Brookhuis et al. (1994) have argued, 

desktop laboratory tests have limited ecological validity. Besides, the 

relevance of such a delay in response to driving safety is difficult to establish. 

Similarly, it is not clear how conclusions drawn from the desktop study can 

apply to driving metrics, such as speed, following distance or braking 

metrics. Although the desktop study has shown some influence of emotion 

on response delay, this delay might be compensated for by increasing 

following distance or decreasing speed (Ranney et al., 2005). On the other 

hand, the response delay might be so minimal that it would have a little effect 

on drivers’ performance during a driving task. 

Moreover, the results of the desktop study indicated that apart from 

emotional valence, some other variables affect performance. It is assumed 

that one of these variables could be arousal. Therefore, the simulator study 

was designed to control both aspects of emotion: valence and arousal. It was 

decided that negative valence would be represented by sad and angry 

emotions and positive valence would be represented by neutral and happy 

emotions. The emotions were the same as in the desktop study; only the 

angry emotion was added as a high arousal negative valence emotion to 

insure representation of all the bipolar dimensions.   

One of the main aims of investigating the effects of external factors on 

driving safety is to establish the likelihood of accident involvement. Therefore 

the methodology should be maximally representative of real road situations 

(Brookhuis et al., 1994). Driving an instrumented vehicle in a field experiment 
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provides richer information about the possible experimental outcomes. 

However this approach has two main disadvantages: lack of perceived risk 

and simulator sickness (De Winter, Van Leuween, & Happee, 2012). 

Nevertheless, the authors also named some advantages of using a driving 

simulator over field experiments, such as, experimental control, repetition, 

controlled interaction with other road users, possibility to design specific 

tasks (e.g. gap acceptance, car following), control of critical situations and 

advanced measurements. Often, lower risk perception is a less important 

factor than the possibility to control for the above named factors (De Winter 

et al., 2012). Similarly, a simulator experiment is more appropriate for 

addressing the research questions in this study.  

Having found in the desktop study that drivers’ emotional state affects their 

ability to react to expected hazards, the next step was to establish if these 

findings are replicated in traditional driving metrics, such as speed, 

acceleration, deceleration, lateral and longitudinal position, to name a few. 

These parameters are used to assess driving performance in research 

investigating the influence of various distracting factors on driving safety 

(Brookhuis et al., 1994; Greenberg et al., 2003; Jamson et al., 2004; 

Kountouriotis & Merat, 2016). These studies agree that the amount of 

information that drivers have to deal with at the same time cannot be wholly 

processed. Only some of the presented information receives attention and 

further processing. Drivers have to have enough attentional resources to 

deal with a fast-changing driving environment. If task demands exceed the 

available attentional resources, task performance is affected (Young et al., 

2007). During driving, attention can be distracted away from the main task 

(driving) by such things as talking on a mobile phone (Organization, 2011), 

interaction with passengers (Heck & Carlos, 2008) or using in-car devices (K. 

Young, M. Regan, & M. Hammer, 2007).  

The nature of these distractors implies that even hands-free tasks can 

significantly increase drivers’ subjective workload (Matthews, Legg, & 

Charlton, 2003). Consequently, even when drivers’ eyes are looking on the 

road, driver’s mind can be occupied by driving unrelated thoughts. As 

demonstrated by Smallwood and Schooler (2006), often these lapses of 
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attention are unrelated to driving, so-called mind wandering. Mind wandering 

is a default state of the human brain emerging during boring tasks with low 

processing demand (Forster & Lavie, 2009; Mason et al., 2007), which shifts 

attention away from the main task towards context irrelevant thoughts 

(Smallwood & Schooler, 2006).                   

This decreased attention may result in delays in registering the manoeuvres 

of other road users: cars, cyclists, pedestrians (Zimasa et al., 2017). This 

delay can be detrimental to road safety, for example, if travelling speed is too 

high to slow down or stop safely (Brookhuis et al., 1994). This could result in 

hasty braking or even too late braking, causing an accident (Young et al., 

2007).             

Apart from facing immobile and developing or expected hazards, one of the 

tasks that drivers have to perform every day is car following. In contemporary 

high volume traffic conditions, drivers have to possess skills permitting fast 

adaptation to the changes in speed or other manoeuvring of the traffic 

ahead. RTA Assistance Limited (2016) reported that each year in the UK 

approximately 400,000 rear-end bumps are registered, and for example, in 

the year 2010, 27% of all accident claims involved one car hitting another 

from behind. One way of measuring drivers’ ability to respond to changes in 

lead vehicle’s behaviour is a coherence task (see Section 3.6).  

It is suggested by the developers of the coherence task (Brookhuis et al., 

1994) that the distance that drivers keep between them and the lead vehicle 

is of major importance not only to avoid a crash; the outcome measurements 

of the coherence task are dependent on the following distance, chosen by 

the participating drivers. This dependency is caused by a driver's perception 

of the alteration of the lead car’s speed which depends on the following 

distance (Janssen, Michon, & Harvey, 1976). However, Brookhuis and 

colleagues found that instructing the following distance to participants could 

lead to problems with the task validity. Indeed, this could lead to discomfort 

caused by unnatural, unusual and uncomfortable following distance. In the 

first experiments they tried to train the participants to keep a constant 

distance, but later decided in favour of drivers choosing their own following 

distances. One of the disadvantages of the latter is the variability in drivers’ 
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chosen distances in different conditions and the likelihood of this distance 

being different from the baseline. 

A shorter TH leaves less time to respond to a potential hazard. This 

response is dependent on drivers’ emotions, cognitive load and their ability to 

switch attention from object to object (Crundall et al., 2003; Lee et al., 2007; 

Zimasa et al., 2017). For example, Tasca (2000) found that aggressive 

drivers are more likely to tailgate, and Green (2000) found that under 

cognitive load drivers’ stopping distance increases. However, the interaction 

between mood and load and their effect on the following behaviour has been 

under-researched. 

Eye movement measures are reliable indicators of attentional shift 

(Underwood, Chapman, Berger, et al., 2003; Velichkovsky et al., 2003). The 

desktop study has shown that sad drivers are slower in attentional shift than 

happy and neutral drivers as indicated by longer hazard response times and 

eye fixation durations (Zimasa et al., 2017). However, the impacts of positive 

and negative mood valence and high and low arousal impacts on TH choice 

are not known.  

The simulator study addresses both shortcomings: the validity issues 

resulting from controlled TH and the issues related to unnatural and 

uncomfortable following time. It is done by comparing changes in TH from 

baseline, as a reference point of a normal or usual driving style, to the driving 

style which occurs as a result of changes in drivers’ mood. It was 

hypothesised that the higher arousal moods would result in shorter THs. The 

lower arousal moods would elicit different behaviours: sad mood would result 

in slower attentional shift expressed by longer fixation durations and longer 

TH. The neutral mood should not bring any changes in TH and eye fixation 

durations.    

Attention, as an important and necessary component of human life, has 

received extensive interest in many aspects of research (Driver, 2001), and 

in driving particularly (Trick, Enns, Mills, & Vavrik, 2004) (Sections 2.4 and 

2.5). Trick and colleagues especially stressed the importance of visual and 

selective attention in a driving environment. Eye movement analysis helps to 
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understand the practical application of visual and selective attention. The 

coherence task is largely based on drivers’ ability to sustain their visual 

attention on a lead vehicle, mentally calculating, assessing and adjusting 

their following distance. Crundall, Shenton, and Underwood (2004) asked 

participants to drive through a simulated city with and without having to follow 

a lead vehicle. In the vehicle following condition participants fixated longer, 

and their fixations were less spread horizontally, they neglected pedestrians 

more and violated traffic rules. Crundall and colleagues concluded that car 

following has a negative impact on driving safety by narrowing drivers’ 

attention. They attributed this deficit to inattentional blindness, a 

phenomenon occurring when the concentration on one of the aspects results 

in missing important information from other sources (Mack & Rock, 1998).            

Chapman and Underwood (1998a) noted differences in the glance patterns 

of novice and experienced drivers. Experienced drivers’ horizontal spread of 

visual search was much wider compared to novice drivers. However, the 

desktop study did not detect differences in the horizontal and vertical spread 

of fixations. The desktop study used a PC monitor to present drivers with 

video clips containing hazards. This could be one of the reasons why these 

differences were not detected. Hazard detection in a simulated driving differs 

from hazard detection on a desktop PC. Although Underwood, Crundall, and 

Chapman (2011) found similar outcomes on hazard perception experiments 

from desktop, naturalistic driving and driving simulator studies, simulator 

provides richer information. 

Based on this literature review 6 hypotheses were proposed. The 

hypotheses are outlined in Section 3.8.  

5.2 Method 

5.2.1 The University of Leeds Driving Simulator 

This study was performed at the University of Leeds Driving Simulator 

(UoLDS). The use of the simulator permitted examination of active driving 

behaviours in hazardous road situations. UoLDS is a motion-based 

simulator, therefore, driving scenarios could be tested in a more realistic 
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environment. In addition, the car following task was performed, permitting 

examination of emotion-related changes in driving behaviours while following 

the lead vehicle. Rimini-Döring et al. (2005) describe this type of simulator as 

a highly immersive advanced system with dynamic motion and high levels of 

fidelity. It is based on a 2005 Jaguar S-type vehicle, equipped with fully 

operational controls, rear view and side mirrors, real steering wheel with 

force feedback and pedals. The vehicle is placed inside a dome (Figure 9). A 

spherical screen projection area provides the road environment at 60 Hz and 

a resolution of 3x1920x1200 to the front and 1024x768 in the peripheral and 

rear views. The field of view of the rear and side mirrors is 42°. The view is 

displayed on the mirrors. During the drives, a participant perceives braking 

and cornering forces as well as rough patches on roads and road bumps. An 

immersive sound system with a speaker mimics the sound of the vehicle’s 

engine and other road noise. The dome is attached to a hexapod plus X-Y 

table motion platform with eight degrees-of-freedom. Within the Cartesian 

frame, the motion system can move the dome in six orthogonal degrees-of-

freedom (3 linear, 3 rotational). Additionally, for a better simulation, rails 

permit for a further 5 m of movement to the front and side in the longitudinal 

and lateral directions. The vehicle’s software assumes an engine model from 

a 2002 Jaguar X-type and braking data from a Ford Mondeo. The simulator 

records data at 60 Hz from the driver’s inputs, the vehicle movement and 

position, as well as data related to other vehicles on the simulated road.  

The road layout for this study comprised rural and urban road sectors 

forming a single section for a 17.5 minutes’ drive. The road setup comprised 

one lane in each direction and was appropriate for scenarios involving 

hazardous situations and a coherence task. 
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Figure 9: The University of Leeds Driving Simulator (University of Leeds, 
2013) 

 

5.2.2 Materials and Apparatus 

5.2.2.1 Empatika E 4 wristband  

Empatika E4 is a wearable wireless multi-sensor device used to collect 

physiological measurements during the experiment (Figure 10). This is a 

non-invasive, small (4cm x 4cm) and lightweight (25 grams) watch-like 

device for accurate real-time monitoring and recording physiological 
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measurements for later analysis, using its internal flash memory. 

Measurements are taken using 4 sensors efficiently combined into a 

wristband:  

1. Photoplethysmography sensor, which measures Blood Volume 

Pulse (BVP) from which Heart Rate Variability (HRV) and other 

measures can be calculated,  

2. 3-axis Accelerometer, which captures motion-based activity,  

3. Electro dermal activity sensor (EDA), which is used to measure 

sympathetic nervous system arousal,  

4. Infrared Thermopile, which reads peripheral skin temperature.   

  

 
 

 

Figure 10: Empatika E4 wristband. Front view on the left and sensors view 
on the right side 

 

5.2.2.2 Glance behaviour measures 

Eye movements were recorded using a Seeing Machines face LAB v5 eye-

tracker fixed on a front panel in the driving simulator, enabling recording of 

drivers’ gazes in real time with an accuracy of ±1° and frequency at 60 Hz.   
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5.2.2.3 Questionnaires 

Demographic information 

A questionnaire, collecting demographic information, was completed by 

participants before the experiment. The questionnaire included country of 

origin, years of driving experience in general and particularly in the UK and 

yearly mileage (see appendix 1). 

Mood assessment 

Each participant was asked to fill in two mood assessment grids (Russell, 

Weiss, & Mendelsohn, 1989) (Figure 11): one before the experiment, to 

assess the baseline mood valence and arousal, and the other at the end of 

the study, to assess their mood during the experiment. The participants had 

to mark one square for both valence and arousal. For example, Figure 11 

shows a mark that indicates 7 for mood valence and 7 for arousal, both on 

scale from 1 to 9.   

In addition, the participants were asked to answer some questions related 

their perception of task difficulty and whether cognitive load had an impact on 

their ability to concentrate on the driving task. The participants were asked to 

circle a number from 1 to 5 on Likert scale, with 1 meaning ‘not at all’ and 5 

‘totally apply’ (see Table 3 for example questions and Appendix 1). 

 

Figure 11: Mood - assessment grid (Russell et al., 1989) 
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  Table 3: Mood - assessment questions  

After experiment questions 

1: ‘Did you feel calm (happy, sad, angry) during the drive? 

2: ‘Was it difficult to concentrate on driving while feeling like this?’ 

3: ‘Did you feel distracted when asked driving-related questions?’ 

4: ‘Did you feel distracted when asked general questions?’ 

 

5.2.3 Experimental design 

A (3x4) mixed design was employed with Load as the within-subject factor (3 

levels – No-load (NONE), Non-driving related load (NDRL) and Driving 

related load (DRL)), and Mood as the between-subject factor (4 levels – 

Neutral, Happy, Sad and Angry).  

The baseline measures were taken before each Mood induction and 

comprised of a normal drive, with the instruction ‘Drive as you would 

normally’. This condition was needed to establish participants’ normal driving 

style and to check whether there were individual differences between groups. 

Within every Mood condition, participants performed three drives: NONE 

(when no-load was applied), NDRL and DRL. Each drive consisted of all the 

hazards, catch events and coherence task. The hazards and catch events 

where counterbalanced using pseudo counterbalancing. In each drive there 

were 8 scenarios: 3 catch events, 4 hazardous events and 1 coherence task. 

The coherence task, number 8, was always in the middle after the 4th event. 

Altogether there were 4 orders of hazard representation, and within each 

order, the hazards were represented in a different sequence. For an example 

of the experimental structure see Table 4 and Figure 12. 

 

 

Figure 12: Example of the experimental run 
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Table 4: Hazard order numbers and hazard sequences within these orders, 8 
indicates coherence task  

Order Scenario number 

1 3, 5, 7, 4,  8,   2, 6, 1 

2 1, 3, 2, 7,  8,  5, 6, 4 

3 6, 1, 2, 5,  8,  4, 7, 3,  

4 2, 7, 4, 6,  8,  1, 3, 5,  

  

5.2.4 Driving scenarios 

The experimental roads were 42.56 miles long, which provided for 

approximately 64 minutes of driving (16 minutes each driving). The road 

comprised one lane in each direction, leading through an urban area for the 

hazardous events and rural area for the coherence task. There was no traffic 

in the participant’s lane, except in the coherence scenario and when cars 

merged into the lane in the hazardous events. The posted speed limits were 

40 mph (64 km/h) for hazard scenarios and 60 mph (97 km/h) for the 

coherence task.  

To assess the effects of different Mood and Load conditions on drivers’ 

behaviour in dangerous situations, 4 hazardous events were developed. The 

coherence task permitted the evaluation of a driver’s ability to follow a car. 

See (Figure 13, Figure 14, Figure 15, Table 5) for description. 

Three catch scenarios were designed to prevent hazard anticipation on 

approach to each junction. In these scenarios, a vehicle passed across the 

junction, without merging in participant’s path. In these scenarios participants 

could drive across the junctions without slowing down.  
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Table 5: Description of driving scenarios 

Scenario Scenario description 

1) Parked car 

in group of 

cars hazard 

A parked car moving off from the left side of the 

road without having signalled when time to 

collision (TTC) of the participant’s vehicle with 

the moving off vehicle was 2.5 seconds. The car 

was fourth in a row of cars. The participant had 

the choice to either brake or try to overtake it. 

The merging vehicle accelerated away and 

cleared the road by the next junction. TTC = 2.5 

seconds.   

2) Single 

parked car 

hazard 

A similar scenario to scenario 1, the difference 

being that the merging vehicle was the only one 

that was parked on the roadside. 

3) Car 

merging from 

left side 

junction 

hazard 

A car merging from a side road on the left when 

TTC of the participant’s vehicle with the stop 

line of the junction was 2.5 seconds. The 

merging car could be seen on approach, and 

the reaction of the participant would depend on 

how early it was perceived.  

4) Car 

merging from 

right side 

junction 

hazard 

A similar scenario to scenario 3, with the 

difference being that the merging vehicle came 

from the right side of the road. 

5) Catch 

scenario – 

car from right 

junction 

The participant’s vehicle is approaching a 

junction when a vehicle crosses the road on the 

junction from the right side. The vehicle is not 

merging but just crossing it. TTC is 3 seconds, 
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however, the participant could proceed without 

the braking.   

6) Catch 

scenario – 

car from left 

junction 

A similar scenario as scenario 6, with the 

difference that the merging vehicle crosses the 

road from the left. 

7) Catch 

scenario – 

cars from two 

sides 

A similar scenario as scenario 6, with the 

difference that there are two crossing vehicles 

from the left and the right side.  

8) Coherence 

task 

The participant follows a lead car that varies 

speed between 50 and 60 mph in an 

approximate sinusoidal cycle with a frequency 

of about 0.03 Hz (this means that the lead car 

reaches its minimum/maximum speed of 50/60 

mph every 33.3 seconds and oscillates between 

them. The scenario was 2 minutes long.  
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Road layout – ‘Coherence task’ 

a) Beginning of ‘Coherence task’ 

The participant’s vehicle is approaching a crossroad while driving on a 

single carriageway (main road). The scenario begins 5 seconds from 

the junction. There are no traffic lights.  

 

 

b) The task 

The participant is following a lead vehicle, trying to match own car 

speed with the lead car speed.  

 

 

 

c) End of ‘Coherence task’ 

The lead car turns left at the junction.  

 

Figure 13: Road layout for the coherence task; a) beginning of the task, b) 

the task, c) end of the task (  - participant’s car, - lead car, - 
speed limit)  
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Figure 14: Examples of road layout of scenarios 

 

 

 

 

   

   

 Speed limit Participants car 
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Figure 15: Hazardous event – car from the right 

 

5.2.5 Independent variables 

5.2.5.1 Mood  

Four moods were induced: neutral, happy, sad and angry. Similarly to the 

desktop study, this study used a mixed method for mood induction. The 

driving simulator does not have suitable facilities for the presentation of 

pictures, thus the music with corresponding pictures was changed for music 

with mental imagery (Table 6). Also, if pictures had been presented on a 

head-up display this might cause a visual distraction. The music excerpts 

were played continuously throughout the drives.  
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Table 6: Music used for mood induction  

Mood Music 

Neutral 1) Chopin Waltz No. 12 in F minor, Op. 70, No.2 

2) Chopin Waltz No. 11 in G flat, Op. posth, 70 No. 1 

Happy 1) Delibs (1870), Mazurka from Coppelia 

2) Bach (1721). Brandenburg Concerto #2  

Sad 1) Chopin (1839). Opus 28,#6, from Preludes, Played by 

Alessandra Ammara, piano 

2) Prokofiev (1938). Russia Under Mongolian Yoke from 

Alexander Nevsky  

Angry 1) Mussorgsky (1867) – Night on Bald Mountain, played by 

symphonic orchestra. 

2) Holst (1918). – The Planets – Mars, the Bringer of War 

 

5.2.5.2 Cognitive Load 

Three types of load were applied: no-load (NONE), non-driving related load 

(NDRL) and driving related load (DRL). Cognitive load was added as a 

disconnector from mood induced mind wandering, as Lavie (2010) suggests 

that internal forms of distraction, such as mind wandering, can be overcome 

by increasing perceptual or cognitive load. The purpose of the cognitive load 

in the present study was not to distract from the driving task but to redirect 

drivers’ attention from the induced mood, and therefore acted as an 

intervention. In order for load not to interfere with driving, the questions were 

asked 2 seconds before a hazardous event occurred.  

In NONE condition, when no questions were asked, drivers were the most 

affected by the mood induced mind wandering. NDRL was created by asking 

general questions. Whilst, DRL was created by asking questions about 

driving and road safety (Table 7).  

All questions mainly required short, one or two word verbal answers. The 

participants were told that their answers would not be assessed, but they still 

have to vocalise the answers, as this would confirm that they were following 

the instructions. The experimenter observed the participants from the control 
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room through monitors to ensure that the participants were answering. All the 

participants were asked the same questions at the same place. Some of the 

questions were repeated during the coherence task. For example, the 

question ‘what is the speed limit on this road?’ was repeated twice, before 

one of the hazardous events and during the coherence task. The nature of 

the questions implied that a participant might or might not be visually 

distracted from the point that they were looking at the moment of a question. 

For example, if the question was ‘what does it say on the road sign on your 

left’, this would direct a driver’s attention to that road sign. If the question 

was, ‘what is an appropriate speed limit for this particular road’, the driver 

would not have to look in any particular direction but would be able to answer 

based on existing knowledge. The questions were only mildly loading so as 

not to require too much processing that might distract drivers’ attention and 

demand compensatory mechanisms, such as speed reduction.  

5.2.6 Dependent variables 

The data collected in this study included:  

 Questionnaire data, including mood self - report (valence and arousal) 

before and during the experiment, self - report on questions 

determining participants’ evaluation of cognitive load, induced moods 

and how much these factors interfered with their driving. 

  Physiological measurements (EDA and HR), collected using 

Empatika E4 wristband, were used to assess participants’ arousal in 

different Mood and Load conditions.  

 Glance behaviour data – number of fixations, fixation durations and 

spread of fixations were measured.   

 The driving related measures, collected in driving simulator included: 

speed, brake force, time on the brake, acceleration. A separate 

analysis was performed on each hazardous event and on the 

coherence task. The coherence task also included an analysis of 

correlation, phase shift, modulus and time headway.  
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Table 7: Questions asked during the drives  

Driving-related load Non-driving related load 

What is the speed limit on this road? What did you have for breakfast 

today? 

Do you think it would be safe to 

drive faster on this type of road? 

Are you hungry now? 

What does it say on the road sign 

on your left? 

Would you like to be on a sunny 

beach now? 

Is it safe to overtake these parked 

cars? 

Do you have a dog? 

What if a car emerges from a side 

road? 

Do you like this music? 

Are parked cars always hazards? Do you consider yourself fit and 

active?  

Could there be a hazard after a road 

bend? 

Do you like cycling? 

Could traffic lights suddenly 

change? 

What is your name? 

What is appropriate speed for this 

road bend? 

Can you hear this question clearly? 

Is it safe to overtake the car ahead? Is my voice too loud in this 

question? 

  

 

5.2.7 Participants 

The participants were recruited using the University of Leeds simulator 

participant pool as well as personal contacts. The individuals who 

participated in the desktop study did not take part in the simulator study. The 

inclusion criteria were driving experience no less than 3 years and driving no 

less than 5000 miles per a year. As a gesture of appreciation, all participants 

were given £20. 
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Table 8: Participant demographic information 

Mean age SD Maximum 

age 

Minimum 

age 

Male Female 

38.48 12.29 70 22 26 14 

 

5.2.8 Procedure 

After completing the consent forms and a standard safety briefing, 

participants were asked to complete a pre-study questionnaire. Then, the 

wristband for physiological measures was put on participant’s wrist. After 

this, they were asked to perform a familiarisation drive with an experimenter 

present in the simulator. The hazard scenarios involved in the experiment 

were not used in the practice drive to prevent participants from expecting 

them.  

After the practice drive and a short break, the participants were left in the 

simulator on their own. The first drive was completed without music and 

questions. This was to establish participants’ normal driving style, to be able 

to measure changes induced by the experimental conditions. The 

participants were instructed to drive as they would normally, handle 

hazardous situations in their normal style and for the coherence scenario 

they were instructed as follows: “During the ‘coherence task,’ you have to 

follow the lead vehicle at a distance which you consider to be the safest and 

convenient. The speed of the lead vehicle will fluctuate. You have to try and 

keep this distance constant and try to do it smoothly, without rapidly braking 

and accelerating.”  The first drive lasted about 16 minutes, and is referred to 

as the baseline drive.   

The baseline measurements for physiological arousal were then taken after a 

short break, after the baseline drive. This was done to insure that pre-study 

excitement or worries did not affect the measurements. The participants 

were asked to close their eyes sit calmly and relax, thinking about something 

that would keep them calm and as emotionless as possible for four minutes. 

Fishel, Muth and Hastrup (1986) suggest that approximately 3 minutes are 

needed to establish individual physiological baseline measures and another 

1-2 minutes for adaptation before the measures are recorded. The 
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adaptation time depends on experimental design. In the present study, 1 

minute of adaptation was chosen, as participants already had been given 

time to accommodate to the experimental setting (e.g. practice drive and 

break).     

After this, participants were asked to listen to one of the musical excerpts 

and think about events in their life that corresponded to the music. For 

example, when ‘happy’ music was played, they were asked to think about 

something very happy that happened to them previously and made them 

happy. The music was played through the simulator car speakers with a 

volume of 80dB, but the participants could ask to lower this if they felt 

uncomfortable. The music was continously played during the drives, but the 

volume was turned down to about 60dB, the volume of normal conversation.  

Next, participants had to perform 3 more drives, approximately 16 minutes 

each, under different cognitive loads. These were: drive with no questions 

asked (NONE), drive when driving-related questions were asked (DRL) and 

drive when general questions were asked (NDRL). The order of the drives 

was counterbalanced. The questions were asked through the hands-free 

communication system in the vehicle at a volume of 65dB, so it was not too 

loud, but could be heard regardless of the music. The volume was measured 

using SPLnFFT Noise Meter. The participants were instructed to answer 

every question using one or two words maximum, and not thinking a lot. 

They were told that they would not be assessed on their answers and that 

the answers are needed to make sure that the participant engaged with the 

task. 

Participants were offered short, 2 – 5 minutes breaks between the drives. 

During the breaks they could leave the simulator for should they need to do 

so. After the experiment, participants were seated in the room next to the 

simulator and asked to complete the last part of the questionnaire. This 

included: their mood assessment during the experiment and some questions 

that could help to assess the influence of mood and load on their driving 

(Table 3). Finally, participants were debriefed and their right to withdraw was 

repeated.        
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5.3. Data analysis 

5.3.1 Overall approach 

The data collected from the participants who withdrew from the study without 

fully completing it was excluded from the analysis. In cases when glance 

data were not possible to collect (e.g. calibration failure), the driving 

behaviour data was included in the analysis. For the coherence task there 

was missing data in the no-load neutral mood and NDRL in the happy mood. 

Multiple imputations were used to compensate for the missing data. Glance 

behaviour data analysis was not performed for the hazardous events due to 

a lot of missing data. 

In the coherence task the driving behaviour data was missing for 2 

participants in the angry and 1 participant in the happy mood. The data was 

missing due to participants overtaking the lead vehicle. The analysis was 

therefore performed on 37 participants. There was no behavioural data 

missing for the hazardous events. 

EDA and HR data from 36 participants was used with four participants’ data 

been lost due to a technical fault.      

The driving related raw data collected in the driving simulator was processed 

in Matlab, and the data collected from the eye tracker was processed in R. 

For the baseline measures of behavioural and eye movement data, one-way 

ANOVAs were performed where the data were normally distributed and 

Kruskal–Wallis tests were used when the distribution was violated.  

The eye tracking data and the simulator data were analysed in two ways. 

First, a comparison of differences between the four Mood and three Load 

conditions were assessed. This established whether the experimental 

manipulations had a significant impact on participants’ driving behaviours 

and glance patterns. Second, the baseline data were subtracted from the 

data collected during driving under the corresponding experimental 

manipulations. For example, the data collected from the happy condition was 

subtracted from the corresponding baseline. The corresponding baseline 



- 120 - 

was the baseline that relates to a particular mood for a particular participant, 

as mood was a between-subjects factor. This established changes in drivers’ 

usual driving and glance behaviours as a result of mood induction. It 

permitted the assessment of whether the changes in Mood and Load 

conditions were due to an increase in one condition or decrease in the other. 

For example, if a significant difference in speed was found, it is not clear 

whether that difference is due to the significant increase in speed in the 

angry mood or a significant decrease in speed in the sad mood. Another 

example is when there are no significant differences in speed between the 

conditions, but analysis of changes shows that there is a significant 

difference in speed changes because of speed decrease in the sad mood 

and increase in the angry mood. This method permits the monitoring of 

mood-related changes in more detail and the drawing of more robust 

conclusions.     

Repeated measures ANOVA was used to compare the differences between 

the conditions and the changes from baseline, with the within-subject factor 

Load (3 levels: NONE, NDRL and DRL) and the between-subject factor 

Mood (4 levels: neutral, happy, sad and angry). For the within-subject effect, 

Greenhouse-Geisser correction was used, if the assumption of sphericity 

was violated. In the following sections, the specific data analysis techniques 

are described. 

Mixed ANOVA was used to determine whether significant differences 

between any of the variables can be merely explained by the main effects, or 

some of the findings should be attributed to the interaction between these 

variables (Stefan & Mats, 2016). To understand the meaning of these 

interactions, simple effects of post hoc tests were conducted. This frequently 

used procedure has two main weaknesses: it is ineffective in extracting the 

effects of central interest from the factorial ANOVA, and it is sensitive to an 

effect of sphericity (Boik, 1981). He argues that even small deviations from 

sphericity result in considerable biases in F-tests. Therefore f- tests should 

be avoided in repeated measures design. 

Contrast analysis can be performed to overcome these weaknesses. 

Rosenthal, Rosnow, and Rubin (2000) define contrast analysis as an 
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approach of comparing one set of means with another set of means. They 

state that asking focused research questions permits for a greater 

conceptual precision and greater statistical power in statistical analysis, 

hence, discovering an effect if it truly exists. 

However, performing several statistical tests on the same data increases the 

probability of Type I error (e.g. accepting an alternative hypothesis when 

there is no experimental effect) (Abdi & Williams, 2010). There are several 

ways of controlling for this shortcoming, which can be divided into pre-study 

procedures and post-study procedures. For the post study procedures, post 

hoc tests with Bonferroni correction were used. The pre-study procedures, or 

planned comparisons, also were used as an alternative to post hoc 

procedures and to control for Type I errors (Stefan & Mats, 2016).  

Thompson (1990) distinguishes between orthogonal and non-orthogonal 

contrasts. Orthogonal contrasts are statistically independent, meaning that 

the results of one contrast do not reveal information about the other contrast. 

Keppel (1982) states that the value of conclusions drawn from orthogonal 

contrasts is based on the independence of interferences in a way that any 

decision regarding the null hypothesis of a comparison is not influenced by 

the decisions regarding any other comparisons. However, besides all the 

advantages of orthogonal comparisons, there is one substantial shortcoming, 

that is a necessity for a balanced design or an equal number of data points in 

each condition (Winer, Brown, & Michels, 1971). However, Winer and 

colleagues argue that orthogonality is not an absolute must for planned 

comparisons. They state that comparisons should be constructed to have an 

experimental meaning, rather than be constrained by orthogonality. 

Interesting questions should be asked without worrying about redundancy. 

Similarly, Miller Jr (1977) states that there is no easy and straightforward way 

for deciding on contrasts. Researchers should be guided by their judgment 

and experimental design. Large experiments, with complicated mixed 

designs, cannot simply be treated as one ‘family’, as this can lead to a loss of 

sensitivity and poor explanation of the experimental results. Minium and 

Clarke (1982) also add that the protection of Type I error is too conservative, 

hence lowering the power of the tests. Overall, many researchers agree that 
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planned comparisons should be performed even if F-tests are not significant 

(Kirk, 1982; Rosenthal et al., 2000; Stefan & Mats, 2016; Thompson, 1990; 

Winer et al., 1971).   

The results of the desktop study provided some prior knowledge about the 

effects of drivers’ mood on drivers’ attention, thus permitting for more 

detailed hypothesis and consequently, for planned comparisons. Therefore 

both factorial ANOVA and planned comparisons are used to analyse the 

results of this study, permitting for deeper analysis and more detailed 

explanations.  

Orthogonal tests could not be used in this study due to unequal participant 

numbers in each condition (Winer et al., 1971), thus non-orthogonal 

contrasts should be used instead. There are three types of non-orthogonal 

contrasts: repeated, simple and deviation. Repeated contrasts are usually 

used to analyse data which has a meaningful order, such as repeated 

measures after every month: month 1, month 2, month 3, or increased dose 

of medicine: 10 mg, 15 mg, 20 mg (Field, 2009). Therefore they could not be 

used to analyse discrete conditions. Simple contrasts are useful when there 

is a baseline condition. It compares the mean of each condition to the mean 

of the reference group. The first or the last group can be chosen as a 

reference (Field, 2009). This method would suit to this study to some extent. 

The load conditions had baseline level, which was the level when no load 

was applied. However, the Mood conditions did not have a true baseline 

level. Even the neutral mood is determined by low arousal and positive 

valence. Therefore, it cannot be considered a true baseline, and simple 

contrasts could not be used to analyse the Mood conditions. Deviation 

contrasts compare the mean of each condition (except the reference level) to 

the average of means of all the other levels (grand mean) (Field, 2009). This 

method is appropriate for the present study and permits for valuable 

statistical inferences about the effects of each mood on drivers’ behaviour. 

In summary:  

Factorial ANOVA was used to assess main and interaction effects in the 

experiment, and post hoc tests with Bonferroni correction. SPSS software 
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was used for the analysis. Deviation contrasts were used to obtain a more 

detailed picture of these effects and to establish whether there were any 

trends in the data. JASP software was used for the contrast analysis. 

General linear model (GLM) regression tables (parameter estimates) were 

used to predict changes in dependent variables. For parameter estimates t – 

values, p – values and hp
2 – partial eta squared are reported. The neutral 

mood is always the reference condition (redundant variable or intercept), it is 

calculated with all other variables held constant. The other parameters are 

calculated with reference to the neutral mood.     

 

5.3.2 Glance behaviour patterns  

In visual search activities, the human eyes move two to five times per second 

(Rayner, 1998). This process brings environmental information into a foveal 

information processing region. The point between eye movements, when an 

eye is still, and a fovea is directed to an information processing point, is 

called a fixation. For the present study, the ‘Dispersion-Based-Algorithm’ was 

used to identify the eye fixations (Salvucci & Goldberg, 2000). This method 

utilises the fact that fixation points tend to cluster closely together. There is 

no agreement in the literature about the length of a fixation needed to be 

able to process information. The time dispersion is wide – between 100 to 

300 milliseconds (Salthouse & Ellis, 1980). Moreover, Duchowski (2002) 

suggests an even bigger interval 150ms – 600ms.  Some research claims 

that to detect an object only a few milliseconds are needed and other 250 

milliseconds are needed to process this information (Holmqvist et al., 2011). 

Nevertheless, others state that for simple processing only 100 milliseconds 

are needed (Rayner, 1998).  Salthouse and Ellis (1980) also concluded that 

the time needed for a stimulus identification is 80-100 milliseconds; however, 

normally fixation durations are 250 milliseconds while processing 

information. A temporal threshold of 200 milliseconds is considered to be a 

standard in studies of normal and psychiatric groups (Manor & Gordon, 

2003) and therefore was adapted as a suitable measure for the present 

study. Widdel (1984) also stated that a 200 milliseconds threshold permits 
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capturing a minimum pose of an eye without much stimulus processing, 

which is an important component in driving for early detection. 

5.3.3 Questionnaires 

For the analysis of the questionnaires and grids, one-way independent 

ANOVAs were used where the data were normally distributed, and the 

Kruskal-Wallis non-parametric equivalent to ANOVA was used if the data 

were not normally distributed. For follow up studies Dunn-Bonferroni 

corrections were applied.   

 

5.3.4 Physiological measurements     

Physiological data measurements were assessed separately for mood 

induction and during the driving. For mood induction the physiological 

measurements were assessed by subtracting the data obtained during the 

mood induction from the data obtained during the rest (baseline). This was 

done to eliminate any individual differences in the measurements (Boucsein, 

2012). To calculate tonic EDA and HR during the drives, the data collected 

during a drive under a particular mood was subtracted from the data 

recorded during the drive without mood induction for the same individual. 

This method permitted the calculation of only mood induced changes in 

individuals’ skin conductance and heart rate. The results of mood induction 

were analysed using between-groups ANOVA for the parametric data and 

Kruskal–Wallis test if the data were not normally distributed. The results 

gained from recordings during the drives were analysed using mixed 

ANOVA, with Greenhouse-Geisser correction, if the assumption of sphericity 

was violated. 

The effect of Mood and Load on EDA and HR during the coherence task was 

investigated similarly. The data collected during the experimental drives was 

subtracted from the baseline drives, to account for individual differences. As 

the baseline was always the first drive, it was expected that EDA and HR 

would be higher during the baselines, due to task novelty. They were 
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expected to decrease as the drivers became more familiarised during 

subsequent drives.  

5.3.5 Coherence task 

The coherence task included 2 cycles, 1 minute each. Each of the cycles 

was analysed separately, as the second cycle could induce some repetition 

effect. Driving performance assessed using several metrics: 

 Coherence, phase shift, modulus (Brookhuis et al., 1994). The 

description of these parameters are provided in Section 3.6 

 Time headway (TH)  

First, any THs longer than 6 seconds were excluded from the analysis, as 

they were considered to be too long to be following (Vogel, 2002). Then, all 

THs less than 6 seconds were divided into 6 one second intervals: 0-1, 1-2, 

2-3, 3-4, 4-5, and 5-6
1
. For each time segment, the proportion of time 

participants drove in each time segment as a proportion of all time spent 

following was calculated and compared across conditions. These times were 

calculated separately for each Mood and each Load. 

In addition, physiological and glance metrics were analysed during the 

coherence task.  

5.3.6 Hazardous events 

For this analysis, time windows of 3 seconds were created around the 

hazardous situations. The beginning of the time window was a trigger point 

of a hazard, which was set to 2.5 seconds to time to collision (TTC) between 

the participant’s car and the hazard. The 2.5 seconds trigger point forced the 

drivers to actively react to the hazards in a way that the reaction would 

depend on the drivers’ observational patterns and driving parameters (speed, 

acceleration, brake) on the approach to the hazard (Lee, 1976). The 3 

seconds window was chosen so the drivers’ behaviours could be measured 

                                            

1 The times are calculated from 0 to less than 1 (1 not included), from 1 to less than 2 (2 not 
included), and so on.  
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on the approach to the hazards as well as their reaction after the hazards 

were dealt with. This method was used to analyse four hazardous events: 

‘Single parked car’, ‘Parked car in group’, ‘Car merging from right’ (CFR) and 

‘Car merging from left’ (CFL). The hazards were designed so ‘expected 

hazards’ and ‘unexpected hazards’ would be included. The desktop 

experiment found that drivers reacted differently to expected and unexpected 

hazards. These differences were further explored in the simulator study. CFL 

hazard was classified as unexpected hazard, as it could not be seen on 

approach to the junction, and merged unexpectedly straight in front of the 

participants’ car. CFR was seen on approach to the junction, thus permitting 

more time for assessment and action. Parked cars could be seen on 

approach and thus could be anticipated as hazards.  

For all hazardous events several measures were recorded and compared: 

mean speed, speed variation, acceleration and deceleration, time actively 

braking, braking force and maximum brake. The time actively braking 

included all time when a driver actively pressed the brake pedal during the 

hazardous event. Braking force is the power with which a driver presses the 

brake pedal (measured in Newtons).  

For the braking data analysis, all the data containing braking information was 

extracted from the data files, and all the data that did not represent active 

braking (zeros in the data files) were excluded from the analysis. Braking 

force was calculated as the average of all braking force during the hazardous 

event. For braking time, the number of rows was divided by 60 (60 Hz data 

collection). This enabled the comparisson of the time actively braking in each 

condition.  

 ANOVAS, post hoc tests and contrasts were performed the same as for the 

car following task. 

5.4 Results  

5.4.1 Self-reported emotions 

The analysis of the pre-study questionnaires showed that there were no 

significant differences in mood valence between the participants assigned to 
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the different conditions (mean-6.63, standard deviation SD-0.42 on a 9-point 

scale). There also was no significant difference in arousal levels between the 

groups prior the experiment (mean-6.13, SD-0.19 on a 9-point scale). This 

indicates that the participants in each group were in approximately the same 

positive mood and similarly aroused prior to the experiment. 

The analysis of the post-study questionnaires revealed significant differences 

in the participants’ mood valence between the four groups, F (3, 35) = 7.43, p < 

0.05, η² = 0.39 (Figure 16). Pairwise comparisons showed higher scores in 

valence in the happy mood compared to the sad mood, t = -2.85, p < 0.05, 

and compared to the angry mood, t = 3.5, p < 0.05, and higher scores in the 

neutral mood compared to the sad mood, t = -3.11, p < 0.05, and. There 

were no differences between the sad and the angry moods and between the 

happy and the neutral moods, both p > 0.05.  

There also were significant differences in arousal between the groups, F (3, 35) 

= 7.04, p < 0.05, η² = 0.38. Pairwise comparisons showed higher arousal in 

the angry mood compared to the sad mood, t = -3.61, p < 0.05, and 

compared to the neutral mood, t = -3.68, p < 0.05, and the happy and the 

neutral moods, p < 0.05. There were no differences between the sad and the 

happy, the sad and the neutral, and the happy and the angry moods, all p > 

0.05. 

These results indicate that the participants rated their mood as more positive 

after the positive valence conditions as compared to the negative valence 

conditions. The participants also considered their arousal being significantly 

higher after the high arousal conditions (happy, angry) as compared to the 

low arousal conditions (sad, neutral). However, it must be noted that the 

difference between the sad (low arousal) and the happy (high arousal) 

moods was only marginally significant p = 0.053.  

Means and standard deviations for post study self-reported valence and 

arousal are displayed in Table 1 of Appendix 2. 

Changes in the mood valence and arousal from the baseline: 

The changes in mood valence and arousal from the baseline to the 

corresponding Mood condition were also analysed (Figure 16). There was a 
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significant difference in the changes of the reported mood valence between 

the pre and post-test study questionnaires, χ2 (3) = 15.82, p < 0.001, η² = 

0.42, with a mean rank score of 28.2 for the sad, 12.7 for the happy, 12.67 

for the neutral and 25.7 for the angry moods. The results show that the most 

mood valence changes have occurred in the sad and the angry moods. This 

result was expected, as prior to the study participants mostly scored high on 

mood valence, indicating that they were in a positive mood prior to the study. 

There also was a significant difference in the changes of the reported pre 

and post-study arousal, χ2 (3) = 14.87, p < 0.001, η² = 0.24, with a mean 

rank score of 27.7 for the sad, 14.15 for the happy, 26.39 for the neutral and 

12.4 for the angry moods. The results show that the most changes in arousal 

occurred in the sad and the neutral moods. This result was expected, as 

prior to the study the participants mostly scored high on arousal, indicating 

that they were energetic and aroused prior to the study. The sad and the 

neutral mood inductions appear to have a calming effect on the participants.   

In summary: 

 The valence and arousal assessment grid reliably distinguished between the 

induced moods, with high arousal moods showing an increase in arousal 

from the baseline and low arousal moods not inducing a significant change. 

The participants assigned to the happy group even indicated lower arousal 

level compared to their baseline arousal. This could be due to the 

participants feeling more tired after the study. 

Participants assigned to the negative valence groups indicated a significant 

change in their mood valence after the experiment. Whereas participants in 

the positive valence groups did not report mood changes. 
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Figure 16: Mood valence and arousal - post-study assessment
2
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Valence 

 

Arousal 

 

Figure 17: Changes in mood valence and arousal between the pre and post-
study self-reports  

 

5.4.2 Post-study questionnaire 

5.4.2.1 Driving related load   

There was a significant difference in the self-rated difficulty in concentrating 

on driving when DRL was applied, χ2 (3) = 8.97, p < 0.01, η² = 0.24, with a 

mean rank load score of 22.45 for the sad, 23.85 for the happy, 10.44 for the 

neutral and 22.30 for the angry moods. Pairwise comparisons showed the 

happy drivers perceived DRL as more disturbing than the neutral drivers, U = 

13.41, p < 0.05. The participants did not feel that responding to the driving-

related questions in the neutral mood would significantly disturb them from 

driving (Figure 18). 
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Figure 18: Perceived difficulty in concentrating on driving while answering 

driving-related questions
3
 

 

5.4.2.2 Non-driving related load 

There was no significant difference in the perceived load between the 

different Moods, χ2 (3) = 4.55, p = 0.21, with a mean rank score of 23.06 for 

the sad, 20.6 for the happy, 13.17 for the neutral and 20.9 for the angry 

moods. The results show that the participants perceived NDRL similarly 

distracting in all the moods. The perceived load was scored lower in the 

neutral mood. However, this value did not reach significance (Figure 19).  

 

Figure 19: Perceived difficulty in concentrating on driving while answering 
non-driving related questions 
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5.4.2.3 Perceived ability to concentrate on driving  

There was a significant difference in perceived ability to concentrate on 

driving while in different Moods, χ2 (3) = 8.94, p < 0.03, η² = 0.24 with the 

mean rank score of 20.85 for the sad, 22.6 for the happy, 10.78 for the 

neutral and 24.85 for the angry moods (Figure 20). Pairwise comparisons 

showed the angry drivers experienced more difficulties in concentrating on 

driving than the neutral drivers, U = 13.41, p < 0.05.   

 

Figure 20: Perceived difficulty in concentrating on driving while in a particular 

mood 

 

In summary: 

It was hypothesised [H8] that driving related and non-driving related 

questions would disconnect participants from their mind wandering. The 

results showed that the participants considered NDRL as not distracting from 

the driving task, thus perceived as easy secondary task. DRL, on the other 

hand, have been distracting in all moods, except the neutral, indicating that it 

had an influence on drivers’ attention. However, it is not clear whether the 

attention was directed to the road. These results can be explained by the 

mind wandering theory. Participants, after mood induction, were engaged in 

mind wandering, without fully acknowledging it. When questions were asked, 

it disconnected them from mind wandering, and this disconnection was as 

disturbing from driving. However, non-driving related questions were too 

easy and did not have this disconnection effect. The results also show that 

the participants’ perceived significantly less difficulty in concentrating on 
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driving in the neutral mood compared to the other moods. The participants 

felt that their concentration on driving in the neutral mood was not disrupted 

by their emotions.  

5.4.3 Physiological measures 

5.4.3.1 Effects of mood induction on physiological measures 

There was a significant difference in EDA between the Mood conditions χ2 

(3) = 21.76, p < 0.001, η² = 41.3, with mean ranks of 29.55 for the sad, 12 for 

the happy, 25.83 for the neutral and 10.5 for the angry moods ( 

Table 9, Figure 21, Table 2 in Appendix 2). Pairwise comparisons showed 

the significant differences between the low (neutral, sad) and the high 

(happy, angry) arousal conditions. 

There was a significant difference in HR between the Mood conditions χ2 (3) 

= 23.2, p < 0.001, η² = 37.5, with mean ranks of 24 for the sad, 12.9 for the 

happy, 29.63 for the neutral and 7.5 for the angry moods. Pairwise 

comparisons showed the significant differences between the low (neutral, 

sad) and the high (happy, angry) arousal conditions (Table 10, Figure 22). 

 

Table 9: Test statistics and p values for follow up comparisons of EDA 

Mood comparison U- test Significance 

Angry  v  Happy 0.46 1 

Angry  v  Neutral 11.82 0.004** 

Angry  v  Sad 12.8 0.002** 

Happy  v  Neutral 10.89 0.006** 

Happy  v  Sad 9.02 0.02* 

Neutral  v  Sad 4.34 0.22 

  *Significant at 0.05 level 

  **Significant at 0.01 level 
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Figure 21: Changes in EDA between pre and post Mood induction 

 

Figure 22: Changes in HR between pre and post Mood induction 

 

Table 10: Test statistics and p values (adjusted) for post- comparisons of HR 
data 

Mood comparison U - test Significance 

Angry  v  Happy 5.4 1 

Angry  v  Neutral 22.13 0.00** 

Angry  v  Sad 16.5 0.006** 

Happy  v  Neutral -16.73 0.005** 

Happy  v  Sad 11.1 0.11 

Neutral  v  Sad -5.63 1 

  *Significant at 0.05 level 

  **Significant at 0.01 level 
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In summary: 

The analysis of EDA and HR showed the increase in HR and EDA in the high 

arousal conditions (happy, angry) and the decrease in the low arousal 

conditions (neutral, sad). The results showed that EDA and HR are sensitive 

to changes in participants’ arousal initiated by mood induction. EDA and HR 

of the angry and the happy individuals increased after the mood induction, 

the sad and the neutral individuals’ EDA and HR showed lower levels of 

arousal.  

5.4.3.2 Effects of mood induction on the coherence task 

Heart rate 

There was a main effect of Mood, F (3, 31) = 3.72, p < 0.05, ηp 2 = 0.23 (Figure 

23). Post hoc tests showed that the drivers in the angry mood had higher HR 

compared to the drivers in the sad mood, t = -2.88, p < 0.05 and higher than 

the drivers in the neutral mood, t = -2.88, p < 0.05.  

There was no main effect of Load and no interactions. 

In summary: 

HR measures can be used to differentiate the effort caused by the angry 

mood.  

 

 

Figure 23: Heart rate by Mood and Load  

Electro dermal activity 

There were no main effects of Mood and Load and no interactions in EDA, 

although EDA showed the lowest habituation effect in the angry moos, with 
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conductance close to the baseline, and hjighest habituation effect in the 

neutral mood (Figure 24, Table 3 in Appendix 2).   

 

 

Figure 24: Electro dermal activity by Mood and Load  

In summary: 

EDA did not have enough power to reliably distinguish between drivers’ 

emotion. 

5.4.3.3 Effects of mood induction on unexpected and expected hazards 

Electro dermal activity 

The data from 5 participants had to be discarded due to weak signal.  

Heart rate  

There were no main effects of Mood and Load and no interaction in HR 

(Figure 25).  

Car from left 

 

There was a significant main effect of Mood, F (3, 31) = 4.23, p = 0.013, ηp 2 = 

0.3 (Table 19 in Appendix 2). Post hoc tests showed that the angry drivers’ 

EDA was higher than the neutral drivers’ EDA, t = -2.81, p = .05, the happy 

drivers’ EDA higher than the neutral drivers’ EDA, t = 2.96, p = .03, and the 

neutral drivers EDA lower than the sad drivers EDA, t = -3.13, p = .02 pairs.  
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Deviation contrasts showed that EDA in the neutral mood was lower, t = 2.8, 

p = 0.009.  

Parameter estimates showed that the neutral mood is a significant predictor 

of EDA regardless of Load, and other moods often are predictors of EDA in 

relation to neutral mood (see Table 11).  

 

PS PG 

 

 

 

CFL CFR  

  

Figure 25: Heart rate by Mood and Load for four hazards 
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Figure 26: Electro dermal activity on approach to CFL hazard 

 

Table 11: Parameter estimates for electro dermal activity during CFL hazard  

Load Conditions t p ηp 2 

NONE Intercept -3.31 .002** 0.27 

 Angry 2.08 .046* 0.13 

 Happy 1.4 .17 0.06 

 Sad 2.84 .008** 0.21 

 Neutral - - - 

NDRL Intercept -4.42 .001*** 0.39 

 Angry 2.99 .006** 0.23 

 Happy 2.93 .007** 0.22 

 Sad 3.02 .005** 0.23 

 Neutral - - - 

DRL Intercept -2.37 .02* 0.16 

 Angry 1.79 .08 0.09 

 Happy 2.44 .02* 0.17 

 Sad 1.89 .06 0.11 

 Neutral - - - 
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There was no significant main effect of Load and no interaction in EDA on 

approach to CFL hazard.  

Car from right 

There was a significant main effect of Mood, F (3, 31) = 3.16, p < 0.05, ηp 2 = 

0.23 (Error! Reference source not found., Table 20 in Appendix 2). Post 

hoc tests showed that the happy drivers’ EDA was higher than the neutral 

drivers’ EDA, t = 3.02, p < 0.05. Deviation contrasts did not reveal significant 

differences (Table 12).  

 

Table 12: Parameter estimates for electro dermal activity during CFR hazard  

Load Conditions t p ηp 2 

NONE Intercept -3.6 .001** 0.29 

 Angry 0.98 .33 0.03 

 Happy 1.56 .13 0.07 

 Sad 1.04 .31 0.03 

 Neutral - - - 

NDRL Intercept -4.43 .001*** 0.39 

 Angry 2.24 .03* 0.14 

 Happy 3.24 .003** 0.25 

 Sad 2.42 .02* 0.16 

 Neutral - - - 

DRL Intercept -2.77 .009** 0.2 

 Angry 1.17 .25 0.04 

 Happy 2.64 .01* 0.18 

 Sad 1.3 .2 0.05 

 Neutral - - - 
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Parameter estimates showed that the neutral mood is a significant 

predictor of EDA regardless of the type of load. Other moods are 

predictors of EDA only when a load is applied (see Error! 

Reference source not found. 

Figure 27: Electro dermal activity on approach to CFR hazard 

 

There was no main effect of EDA in Load and no interaction during CFR 

hazard.  

Combined data for single parked car and parked car in group 

 

There were no significant differences between Mood and Load conditions 

and no interactions in EDA during PS and PG (Figure 28, Table 21 in 

Appendix 2). However, the data had a clear trend, so, to improve the 

statistical power the events were combined.  

There was a significant main effect of Mood in combined data, F (3, 66) = 3.16, 

p < 0.05, ηp 2 = 0.12 (Figure 29). Post hoc tests showed that the happy 

drivers’ EDA was higher compared to the neutral drivers’ EDA, t = 2.94, p < 

0.05. Deviation contrasts revealed no differences.  

Parameter estimates showed that the neutral mood is a significant predictor 

of EDA regardless of Load: NONE - t = -2.77, p < 0.01, ηp 2 = 0.1, NDRL - t = 

-4.03, p < 0.001, ηp 2 = 0.2, and DRL - t = -2.62, p < 0.01, ηp 2 = 0.1. The 

happy mood is a significant predictor of EDA only if some kind of Load is 

applied, NDRL - t = 3.28, p < 0.01, ηp 2 = 0.14, and DRL - t = 2.96, p < 0.01, 

ηp 2 = 0.12.  
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        PS       PG 

  

Figure 28: EDA while passing parked car hazards 

 

 

 

Figure 29: Combined EDA while passing parked car hazards 

  There was no main effect of Load and no interaction in combined data. 

 

5.4.5 Coherence task 

5.4.5.1 Coherence 

There were no main effects of Mood and Load on coherence and no 

interaction effect between the conditions and no significant changes from the 

baseline to the corresponding condition. This was true for both cycles. 

Minimum and maximum correlations are displayed in Table 13 along with 

means and medians. The minimum correlation was higher than 0.3 indicating 

that the car following was successful throughout the task, thus phase shift 

and modulus could be reliably analysed.  
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Table 13: Correlation means, minimums, maximums and medians for both 
cycles  

Period Mean Minimum Maximum Median 

Cycle 1 0.7 0.35 0.9 0.68 

Cycle 2 0.83 0.67 0.92 0.88 

 

    

5.4.5.2 Phase shift 

Cycle 1 

Comparison between conditions: 

There was a significant main effect of Mood on phase shift, F (3, 33) = 8.31, p < 

0.01, η² = 0.43. Deviation contrasts showed that the differences were in the 

happy mood, t = -3.41, p < 0.01, and the sad mood, t = -4.59, p < 0.01 

(Figure 30, Table 6 in Appendix 2). 

There was no main effect of Load and no interactions in phase shift in cycle 

1. 

 

Figure 30: Phase shift in cycle 1 

 

Parameter estimates show that the neutral mood is a significant predictor of 

phase shift, regardless of Load. The sad mood is a significant predictor of 

phase shift only when no load is applied (Table 14).  
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Changes from the baseline to the corresponding condition: 

There was a significant main effect of Mood, F (3, 33) = 3.4, p < 0.05, η² = 0.24 

(Figure 31). Deviation contrasts showed that the sad mood initiated the 

biggest changes in phase shift from the baseline, t = 3.09, p < 0.05. 

Parameter estimates did not show any significant predictions in phase shift 

changes from the baseline to the corresponding Mood condition.   

There was no main effect of Load and no interactions in changes in phase 

shift from the baseline to the condition. 

Table 14: Parameter estimates for phase shift by Mood and Load   

Load Mood t p hp
2 

NONE Intercept 4.97 0.001*** 0.43 

 Angry -0.45 0.65 0.006 

 Happy 1.83 0.08 0.1 

 Sad 2.45 0.02* 0.16 

 Neutral - - - 

NDRL Intercept 6.66 0.001*** 0.58 

 Angry 0.52 0.6 0.008 

 Happy 0.32 0.75 0.003 

 Sad 1.34 0.19 0.05 

 Neutral - - - 

DRL Intercept 4.48 0.001*** 0.39 

 Angry -1.75 0.09 0.09 

 Happy 0.54 0.59 0.009 

 Sad 0.7 0.49 0.02 

 Neutral  - - 
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Cycle 2 

There were no main effects of Mood and Load and no interactions in cycle 2 

neither between the conditions nor in the changes from the baseline to the 

corresponding condition. 

 

 

Figure 31: Changes in phase shift from the baseline to the corresponding 
condition in cycle 1 

 

5.4.5.3 Modulus  

Cycle 1 

Comparison between conditions: 

There was a significant main effect of Mood, F (3, 33) = 3.25, p < 0.05, η² = 

0.23 (Figure 32, Table 7 in Appendix 2). Post hoc tests showed that the 

difference was between the happy and the sad moods, t = -3.02, p < 0.05. 

Deviation contrast showed that this difference was due to the happy mood 

being different to all the other moods, t = 2.01, p < 0.05.  

There was no main effect of Load and no interactions. 
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 Figure 32: Modulus in cycle 1 

 

Parameter estimates showed that the neutral mood is a significant predictor 

of modulus, regardless of Load. NONE and NDRL did not interact with any of 

the moods. DRL, however, significantly affected modulus in the sad and the 

happy moods (Table 15).   

Table 15: Parameter estimates for modulus by Mood and Load  

Load Mood t p hp
2 

NONE Intercept 
4.11 0.001*** 0.34 

 Angry 0.83 0.41 0.02 

 Happy -0.60 0.55 0.01 

 Sad 1.43 0.16 0.06 

 Neutral - - - 

NDRL Intercept 
4.83 0.001*** 0.41 

 Angry 0.51 0.61 0.01 

 Happy -1.14 0.26 0.04 

 Sad 1.17 0.25 0.04 

 Neutral - - - 

DRL Intercept 
9.94 

0.001*** 
0.75 

 Angry 0.56 0.58 0.01 
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 Happy -2.04 0.049* 0.11 

 Sad 2.05 0.049* 0.11 

 Neutral - - - 

 

Changes from the baseline to the corresponding condition: 

There was a significant main effect of Mood, F (3, 33) = 3.63, p < 0.05, η² = 

0.25. Post hoc tests showed that the difference was between the happy and 

the sad moods, t = -3.3, p < 0.01 (Figure 33). Deviation contrasts did not 

reveal any significant differences.  

There was no main effect of Load and no interaction.  

 

Figure 33: Changes in modulus from the baseline to the corresponding 
condition in cycle 1 

 

Parameter estimates showed that DRL in the happy mood is a significant 

predictor of modulus changes from baseline driving, t = -2.14, p < 0.05 

(Table 16).  

Cycle 2 

Comparison between conditions: 

There was a marginally significant main effect of Mood, F (3, 32) = 2.64, p = 
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-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Neutral Happy Sad Angry

M
o
d
u
lu

s
 c

h
a
n
g
e

NONE NDRL DRL



- 147 - 

was a significant difference between the sad and all the other moods, t = -

2.51, p < 0.01.   

There was no main effect of Load and no interaction in changes from the 

baseline to the corresponding condition in cycle 2. 

Table 16: Parameter estimates for changes in modulus from the baseline to 
the corresponding conditions 

Load Mood t p hp
2 

NONE Intercept 
-0.02 0.98 0.00 

 Angry 0.33 0.75 0.003 

 Happy -0.78 0.44 0.02 

 Sad 1.35 0.19 0.05 

 Neutral - - - 

NDRL Intercept 
0.5 0.62 0.01 

 Angry -0.02 0.99 0.00 

 Happy -1.66 0.11 0.08 

 Sad 1.43 0.16 0.06 

 Neutral - - - 

DRL Intercept 
0.79 

0.43 
0.02 

 Angry -0.45 0.65 0.01 

 Happy -2.14 0.04* 0.12 

 Sad 1.31 0.2 0.05 

 Neutral - - - 

 

5.4.5.4 Time headway (TH)  

Comparison between conditions: 

 

There were no significant differences in the TH segments of 0-1, 2-3, 4-5 and 

5-6 in any of the conditions.  
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There was a main effect of Mood on TH in the 1-2 seconds time segment, F 

(3, 35) = 3.72, p < 0.05, η² = 0.24 (Figure 34, Table 9 in Appendix 2). Post hoc 

tests showed that this difference was between the sad and the angry moods, 

with the sad drivers spending significantly less time in this TH, t = -3.09, p < 

0.05. Deviation contrasts showed that the difference was between the sad 

and all the other moods, t = 2.13, p < 0.05, demonstrating that, regardless of 

Load, the happy, the neutral and the angry drivers preferred travelling at this 

time headway significantly more compared to the sad drivers. 

In the time segment of 3-4 seconds, there was a significant main effect of 

Mood, F (3, 35) = 3.22, p < 0.05, η² = 0.21. Post hoc tests showed that this 

difference was between the sad and the angry moods, t = 3.08, p < 0.05, 

with the sad drivers spending significantly more time in this TH.  

There also was a significant main effect of Load, F (1.59, 55.48) = 3.5, p < 

0.05, η² = 0.1. Post hoc tests showed that in the NDRL condition drivers 

preferred to spend less time in 3-4 seconds time segment compared to the 

NONE condition, t = 2.66, p < 0.05. Deviation contrasts showed NDRL was 

different from other Load conditions,  t = 2.62, p < 0.05, indicating that 

regardless of Mood when asked non-driving related questions, drivers 

preferred to spend less time at this TH. 

There were no significant interactions between Mood and Load in 3-4 

seconds segment (Figure 34). 
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TH 1 second 

 

TH between 1 and 2 seconds 

 

TH between 2 and 3 seconds 
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TH between 3 and 4 seconds 

 

TH between 4 and 5 seconds 

 

TH between 5 and 6 seconds 

 

Figure 34: Percent time spent at different time headways by Mood and Load 
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Comparison of changes from the baseline to the corresponding condition: 

There were no significant differences in the TH changes from the baseline in 

the time segments 0-1 second, 1-2 seconds and 2-3 seconds. Figure 35 

shows that the sad drivers reduced the time spent in 0-1, 1-2 and 2-3 time 

segments, and increased time spent in the 3-4 segment. The drivers in the 

neutral mood remained similar to their baseline TH, and only decreased it for 

2-3 seconds TH. The happy drivers did not show meaningful changes and 

kept their THs close to the baseline.  The angry drivers decreased time in the 

time segments more than 2 seconds, thus increasing time in closer than 2 

seconds THs. However, not all of these changes reached a significance 

level.  

There was a significant main effect of Mood, F (3, 36) = 3.2, p < 0.05, η² = 0.21 

(Figure 35, Table 10 in Appendix 2). Post hoc tests showed that  that this 

effect was due to the angry drivers reducing time in this time segment more 

compared to the sad drivers, t = 2.8, p < 0.05. Deviation contrasts showed 

the difference between the angry and all other drivers, t = 2.46, p < 0.05, 

indicating that drivers in the angry mood spent significantly less time in this 

time segment compared to their driving when not affected by angry mood. 

(Figure 35). 

There was a significant main effect of Load in the 3-4 seconds time segment, 

F (1.59, 57.27) = 3.95, p < 0.05, η² = 0.1. Post hoc tests showed that in the 

NONE condition drivers spent significantly more time in this time segment 

compared to the NDRL condition, t = 2.81, p < 0.05. Deviation contrasts 

showed that different was NDRL condition, t = 2.74, p < 0.05, indicating that 

regardless of Mood, drivers’ reduced the time spent in this segment in the 

NDRL condition (mean = -0.02, SE = 0.03) compared to the DRL (mean = 

0.31, SE = 0.03) and NONE (mean = 0.06, SE = 0.06) conditions.  

There were no significant interactions.  
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Time headway 1 second 

 

Time headway between 1 and 2 seconds 

 

Time headway between 2 and 3 seconds 
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Time headway between 3 and 4 seconds 

 

Time headway between 4 and 5 seconds 

 

Time headway between 5 and 6 seconds 

 

Figure 35: Changes in percent time spent at different time headways 
between the baseline and the corresponding condition 
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5.4.5.3 Glance behaviour 

Glance data were analysed with respect to number of fixations, fixation 

durations and spread of fixations.  

5.4.5.3.1 Number of fixations 

Means and standard deviations for all glance behaviour measures are 

displayed in Tables 4 and 5 in Appendix 2.  

Comparison between Mood and Load conditions. There were no significant 

main effects of Mood and Load on the number of fixations. However, there 

was a significant interaction, F (6, 72) = 2.5, p < 0.05, ηp 2 = 0.17. Within-

subject contrasts showed that this difference was between the NDRL and 

DRL in the sad mood, p < 0.01 (Figure 36).  

 

Figure 36: Number of fixations by Mood and Load  

 

Comparison of changes from the baseline to the corresponding condition. 

There was a significant main effect of Mood in the change in number of 

fixations from the baseline, F (3, 36) = 3.2, p < 0.05, ηp 2 = 0.21, the difference 

being between the neutral and all other conditions, t = 2.74, p < 0.05 with a 

significant increase in the number of fixations in the neutral mood.  There 

also was a significant interaction between the Mood and Load, F (6, 72) = 2.5, 

p < 0.05, ηp 2 = 0.17, with difference being between the NDRL and DRL in 

the sad mood, p < 0.01 (Figure 37).  
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Figure 37: Changes in number of fixations between the baseline and the 
corresponding condition 

 

5.4.5.3.2 Duration of fixations 

 

Comparison between conditions. There was a marginally significant main 

effect of Mood, F (3, 36) = 2.84, p = 0.05, ηp 2 = 0.19 (Figure 38). Post hoc 

tests showed longer fixation durations in the sad mood compared to the 

neutral mood, t = 2.86, p < 0.05. Deviation contrasts showed that the sad 

mood was different from other conditions, t = 2.55, p < 0.05.  

There was a significant main effect of Load, F (1.71, 61.52) = 9.23, p < 0.001, ηp 

2 = 0.20. Post hoc tests showed that fixation durations were significantly 

longer in the NONE compared to the NDRL condition, t = 4.13, p < 0.01, and 

in the DRL being significantly longer compared to the NDRL condition, t = -

3.1, p < 0.01. There also was a significant interaction, F (5.13, 61.52) = 3.86, p < 

0.01, ηp 2 = 0.24. Within subjects contrast showed that fixation durations were 

significantly longer in NONE compared to NDRL in the sad mood, p < 0.01; 

and marginally longer in DRL compared to NDRL in the sad mood, p = 0.08. 
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Figure 38: Fixation durations by Mood and Load 

Comparison of changes from the baseline to the corresponding condition. 

There was a significant main effect of Mood, F (3, 36) = 4.75, p < 0.01 ηp 2 = 

0.28 (Figure 39). Post hoc tests showed longer fixations in the sad mood 

compared to the happy mood, t = -2.98, p = 0.05, and compared to the 

neutral mood, t = -3.34, p = 0.01. Deviation contrasts showed that the 

difference was between the neutral mood and all other moods, t = -4.13, p < 

0.001.  

There was a significant main effect of Load on the changes in duration of 

fixations from the baseline, F (1.71, 61.52) = 9.23, p < 0.001 ηp 2 = 0.16. Post hoc 

tests showed longer fixation duration of fixations in the NONE compared to 

the NDRL conditions, t = -3.42, p < 0.001 and in the NDRL significantly more 

than the DRL condition, t = 3.1, p < 0.01. Deviation contrasts showed longer 

fixations in the NDRL compared to other conditions, t = 2.98, p < 0.001.   

There also was a significant interaction, F (5.13, 61.52) = 3.86, p < 0.01, ηp 2 = 

0.24. Within subjects contrast showed that the difference was between 

NONE (mean -0.08 sec) and NDRL (mean 0.03 sec) in the sad mood. 

Between NDRL (mean 0.14 sec) and DRL (0.03 sec) in the happy mood 

there was a marginally significant effect p = 0.08. 
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Figure 39: Changes in fixation durations between the baseline and the 
corresponding condition 

 

5.4.5.3.3 Horizontal spread of fixations 

Comparison between conditions.  

 

There was a significant main effect of Mood, F (3, 36) = 6.3, p < 0.01, ηp 2 = 

0.34 (Figure 40). Post hoc tests showed that the neutral mood resulted in 

wider spread of fixations compared to the angry mood, t = -3.7, p < 0.01, and 

the happy mood, t = -3.18, p < 0.05, and neutral – sad, t = 3.67, p < 0.01 

moods. Deviation contrasts showed that the neutral mood was different from 

all the other moods, t = -3.7, p < 0.001. Parameter estimates showed that the 

neutral mood is a significant predictor of fixation spread Table 17. All other 

Mood are significant predictors of fixation spread with the reference to the 

neutral mood in every Load condition, except NDRL in the happy and the sad 

mood. 

 

-0.3

-0.2

-0.2

-0.1

-0.1

0.0

0.1

0.1

0.2

Neutral Happy Sad Angry

C
h
a
n
g
e
s
 i
n
 f

ix
a
ti
o
n
 d

u
ra

ti
o
n
s
 

(s
e
c
)

NONE NDRL DRL



- 158 - 

 

Figure 40: Horizontal spread of fixations by Mood and Load  

 

Table 17: Parameter estimates for spread of fixations by Mood and Load 

Load Conditions t p ηp 2 

NONE Intercept 11.01 .001*** 0.77 

 Angry -3.06 .004** 0.21 

 Happy -2.36 .024* 0.13 

 Sad -2.79 .008** 0.18 

 Neutral -   

NDRL Intercept 11.39 .001*** 0.78 

 Angry -2.43 .03* 0.12 

 Happy -1.86 .07 0.09 

 Sad -2.14 .39 0.11 

 Neutral -   

DRL Intercept 11.75 .001*** 0.079 

 Angry -2.12 .04* 0.11 

 Happy -2.26 .03* 0.12 

 Sad 2.5-2.52 0.2* 0.15 

 Neutral - - - 
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There was no significant main effect of Load and no interactions in the 

horizontal spread of fixations 

 

Comparison of changes from the baseline to the corresponding condition. 

 

There was a marginally significant effect of Mood, F (3, 36) = 2.52, p = 0.07, ηp 

2 = 0.17 (Figure 41). Deviation contrasts showed that the difference was 

between neutral mood and all the other moods, t = -2.09, p < 0.05. 

Parameter estimates showed that the neutral mood is a significant predictor 

of spread of fixations only when no questions are asked, t = 2.51, p < 0.05. 

The angry mood is a significant predictor changes in spread of fixations  only 

when no questions are asked, t = -2.14, p < 0.05, ηp 2 = 0.11, and the sad 

mood, when no questions are asked, t = -2.55, p < 0.05, ηp 2 = 0.15 and 

when driving related questions are asked, t = -2.34, p < 0.05, ηp 2 = 0.13.    

There was no significant main effect of Load and no interactions in changes 

from the baseline to the corresponding Load conditions. 

 

 

Figure 41: Changes in spread of fixations from the baseline to the 
corresponding condition 
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5.4.6 Unexpected hazard, car from the left side junction 

There were no main effects of Mood and Load and no interactions between 

the conditions and on changes from the baseline to the corresponding 

condition in average speed, acceleration and deceleration. 

 5.4.6.1 Speed variation      

Comparison between conditions: 

There were no main effects of Mood and Load and no interactions in mean 

speed on approach to CFL hazard between conditions, and no differences in 

changes from the baseline to the corresponding condition.  

There was a significant main effect of Mood on the speed variation, F (3, 36) = 

3.2, p < 0.05, ηp 2 = 0.21, with significantly higher variation in the happy mood 

compared to the sad mood, t = 2.61, p < 0.05, and higher in the happy mood 

compared to the neutral moods, t = 2.72, p < 0.05 (Figure 42, Table 11 in 

Appendix 2). Deviation contrasts showed that the neutral mood has lower 

speed deviation, compared to other moods, t = 2.28, p < 0.05. 

Parameter estimates for CFL showed that the neutral mood is a significant 

predictor of speed variation (intercept): NONE - t = 3.01, p < 0.01, NDRL - t = 

3.01, p = 0.059, DRL - t = 3.54, p < 0.01. The happy mood is a significant 

predictor only when NDRL is applied, t = 2.84, p < 0.01. 

Figure 42: Speed variation by Mood and Load  

 

There was no significant main effect of Load and no interactions in speed 

variation.  
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Comparison of changes from the baseline to the corresponding mood: 

There was a significant main effect of Mood on speed variation in changes 

from the baseline to the corresponding mood, F (3, 36) = 3.02, p < 0.05, ηp 2 = 

0.2, with significantly higher speed variation increase after the angry mood 

induction compared to the neutral mood, t = 2.64, p < 0.05 (Figure 43, Table 

11 in Appendix 2). Deviation contrasts showed that the sad drivers 

decreased speed variation the most, compared to the drivers in other moods, 

t = 2.06, p < 0.05, and the drivers in the neutral mood decreased speed 

variation the most, compared to other moods, t = 2.38, p < 0.05. 

Parameter estimates for CFL showed that the neutral mood is a significant 

predictor of speed variation: NONE - t = 3.01, p < 0.01, NDRL - t = 3.01, p = 

0.059, DRL - t = 3.54, p < 0.01. The happy mood is a significant predictor 

only when NDRL is applied, t = 2.84, p < 0.01.  

There were no significant main effect of Load and no interactions in speed 

variation.   

 

Figure 43: Changes in speed variation from the baseline to the 
corresponding condition  
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0.21 (Figure 44, Table 14 in Appendix 2). Deviation contrast showed that the 
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participants in the neutral mood braking milder, t = 2.25, p < 0.05. Parameter 

estimates showed that the neutral mood is a significant predictor of milder 

brake force applied regardless of cognitive load: NONE – t = 4.24, p < 0.001, 

NDRL – t = 3.56, p < 0.001, DRL – t = 4.32, p < 0.001. The angry mood is a 

significant predictor of more braking force applied if no questions are asked 

and when driving related questions are asked: NONE - t = -2.085, p < 0.05, 

DRL – t = -2.13, p < 0.05. 

There was no main effect of Load and no interactions in braking force during 

CFL hazardous event. 

 

Figure 44: Braking force by Mood and Load 

 

Comparison of changes from the baseline to the corresponding mood: 

There were no significant main effects of Mood and Load and no interaction 

in braking force in changes from the baseline to the corresponding 

conditions. Deviation contrasts showed that the braking force in the happy 

mood is significantly higher than in the other moods, t = 2.21, p = 0.03 

(Figure 45). Parameter estimates showed that none of the moods can be a 

significant predictor of braking force.  
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Figure 45: Changes in braking force from the baseline to the corresponding 
condition 

5.4.6.3 Maximum braking 

There were no significant differences in the maximum braking force between 

Mood and Load conditions and no interaction for CFL hazard. There also 

were no significant differences in changes in maximum braking force from 

the baseline to the corresponding conditions and no interactions. All the 

drivers, except the angry drivers and happy drivers, tend to brake more 

gently in the experimental drives compared to the baseline. However, these 

differences did not reach significance level (Figure 46).  

 

Figure 46: Changes in maximum braking force from the baseline to the 
corresponding condition  

 

-30

-20

-10

0

10

20

30

40

50

60

Neutral Happy Sad Angry

B
ra

k
in

g
 f

o
rc

e
 (

N
e
w

to
n
s
) 

NONE NDRL DRL

-80

-60

-40

-20

0

20

40

60

80

100

120

Neutral Happy Sad Angry

M
a
x
 b

ra
k
 (

N
e
w

to
n
s
) 

NONE NDRL DRL



- 164 - 

5.4.7 Expected hazards 

5.4.7.1 Car from the right side junction 

There were no main effects of Mood and Load and no interactions between 

the conditions and on the changes from the baseline to the corresponding 

condition in average speed and acceleration. In deceleration, there were no 

main effects of Mood and Load and no interactions between the conditions, 

but was a main effect of Mood on the changes from the baseline to the 

condition. 

5.4.7.1.1 Speed variation 

Comparison between conditions: 

There were no main effects of Mood and Load and no interactions in average 

speed on approach to CFR hazard between conditions, and differences in 

changes from the baseline to the corresponding condition.  

There was a significant main effect of Mood on speed variation, F (3, 36) = 

5.16, p < 0.01, ηp 2 = 0.3, with significantly higher variation in the happy mood 

compared to the sad mood, t = 3.52, p < 0.01 (Figure 47). Deviation 

contrasts showed that the happy mood has higher speed variation compared 

to other moods, t = -1.97, p < 0.05. 

Parameter estimates for CFR showed that the neutral mood is a significant 

predictor of speed variation when no-load is applied: NONE - t = 2.46, p < 

0.05. The happy mood is a significant predictor against neutral mood only 

when NDRL is applied, t = 4.29, p < 0.001. 

There was no significant main effect of Load and no interactions in speed 

variation.   
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Figure 47: Speed variation by Mood and Load 

 

Comparison of changes from the baseline to the corresponding mood: 

There were no significant main effects of Mood, Load and no interactions 

(Figure 48).  

 

Figure 48: Changes in speed variation from the baseline to the 
corresponding condition  
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3.3, p < 0.05, ηp 2 = 0.22 (Figure 49, Table 12 in Appendix 2). Post hoc tests 

showed that the angry drivers decelerated less after the mood induction. This 

difference was significant compared to the neutral drivers, who increased the 

amount of deceleration after the mood induction, t = -2.99, p < 0.05. 

Deviation contrasts showed that the happy drivers decelerated significantly 

less after the mood induction compared to all other drivers, t = 2.17, p < 0.05.  

Parameter estimates showed that when no-questions are asked, the neutral 

mood is a significant predictor of deceleration, t = 2.08, p < 0.05. It also 

showed that, the happy mood is a significant predictor when no-questions 

are asked, t = -3.34, p < 0.01, and when non-driving related questions are 

asked, t = -2.74, p < 0.01.  

 

Figure 49: Changes in deceleration from the baseline to the corresponding 
condition  

5.4.7.1.3 Time actively braking 

There were no main effects in Mood and Load and no interactions in the time 

actively braking between different conditions and between changes from the 

baseline to the corresponding condition in CFR hazard.  

Deviation contrasts showed that the happy drivers during CFR hazardous 

event spent significantly more time actively braking compared to the drivers 

in other conditions, t = 2.06, p < 0.05 (Figure 50, Table 13 in Appendix 2).  

Parameter estimates for CFR hazardous event showed that, when no 

questions are asked, the happy mood is a significant predictor of time spent 

actively braking, t = 2.03, p < 0.05.  
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Figure 50: Changes in time actively braking from the baseline to the 
corresponding condition 

 

5.4.7.1.4 Braking force and maximum braking 

There were no significant main effects of Mood and Load and no interaction 

in braking force during CFR hazardous event and in the changes from the 

baseline to the corresponding Mood and Load conditions. 

However, the angry drivers tend to brake harder compared to the baseline 

(Figure 51). 

 

 Figure 51: Changes in maximum braking force from the baseline to the 
corresponding condition 
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5.4.7.2 Single parked car suddenly moving off 

There were no main effects of Mood and Load and no interactions between 

the conditions and on the changes from the baseline to the corresponding 

condition in speed variation, acceleration, deceleration and time actively 

braking.  

5.4.7.2.1 Average speed 

Comparison between conditions: 

There was a significant main effect of Mood, F (3, 36) = 15.16, p < 0.001, ηp 2 = 

0.99, with significantly higher speed in the high arousal conditions compared 

to low arousal conditions (Table 18, Figure 52, Table 15 in Appendix 2). 

Deviation contrasts showed that this difference was due to the speed being 

slower in the low arousal conditions compared to all other conditions: neutral, 

t = 5.58, p < 0.001, sad, t = 4.36, p < 0.001.   

Table 18: Post hoc tests for average speed  

Moods t - value P - value 

Angry  v  Neutral 5.58 .001*** 

Angry  v  Sad 4.36 .001*** 

Happy  v  Neutral 4.99 .001*** 

Happy  v  Sad 3.8 .01** 

 

 

Parameter estimates for PS hazard showed that drivers’ mood is a significant 

predictor of drivers’ speed choice when driving on not busy roads, with 

occasionally parked cars, regardless of cognitive load, except the sad mood 

with the reference to the neutral mood (Table 19).    
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Table 19: Parameter estimates for average speed  

Load Mood t p 

NONE Neutral (intercept) 30.73 .001*** 

 Angry  4.96 .001*** 

 Happy 4.01 .001*** 

NDRL Neutral (intercept) 27.65 .001*** 

 Angry  3.13 .01** 

 Happy 3.12 .01** 

DRL Neutral (intercept) 28.72 .001*** 

 Angry  5.12 .001*** 

 Happy 4.59 .001*** 

 

There was no main effect of Load and no interactions in mean speed in PS 

hazardous event. 

 

Figure 52: Average speed by Mood and Load 

 

There was no significant main effect of Load and no interaction in speed 

during PS hazard.  

Comparison of changes from the baseline to the corresponding condition: 

0

5

10

15

20

25

30

35

40

45

Neutral Happy Sad Angry

M
e
a
n
 s

p
e
e
d
 (

m
p
h
)

NONE NDRL DRL



- 170 - 

There was a significant main effect of Mood, F (3, 36) = 4.77, p < 0.01, ηp 2 = 

0.29, with significantly lower speed in the neutral mood compared to the 

happy mood, t = 2.82, p < 0.05, and significantly lower speed in the sad 

mood compared to the happy mood, t = 2.91, p < 0.05 (Figure 53). However, 

deviation contrasts showed that this difference was due to the speed being 

slower in the low arousal conditions compared to all other conditions: neutral, 

t = 5.58, p < 0.001, sad, t = 4.36, p < 0.001. Deviation contrasts showed that 

the neutral mood was different from all the other conditions, t = 2.42, p < 

0.05, and the sad mood was different from all the others, t = 2.51, p < 0.05.  

Parameter estimates show that the neutral mood is significant predictor of 

speed regardless of cognitive load, and the happy and the angry moods are 

significant predictors of speed against the neutral mood regardless of 

cognitive load, except the angry mood, which is not significant predictor 

when NDRL questions are asked (Table 20). The sad mood is not a predictor 

of the speed changes with the references to the neutral mood, regardless of 

the type of load.    

Table 20: Parameter estimates for changes in speed from the baselines to 
the corresponding condition  

Load Mood t p 

NONE Neutral (intercept) -3.61 .001*** 

 Angry  2.74 .01** 

 Happy 2.76 .01** 

NDRL Neutral (intercept) -2.57 .01** 

 Happy 2.09 .05* 

DRL Neutral (intercept) -3.38 .002** 

 Angry  2.44 .02** 

 Happy 2.71 .02** 

 

There was no main effect of Load and no interactions in mean speed 

changes from the baseline to the corresponding condition in PS hazardous 

event. 
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Figure 53: Changes in average speed from the baseline to the corresponding 
condition  

5.4.7.2.2 Braking force 

Comparison between conditions: 

There was a significant main effect of Mood in braking force, F (3, 36) = 3.78, p 

< 0.05, ηp 2 = 0.24 (Figure 54, Table 17 in Appendix 2). Post hoc tests 

showed that the angry drivers applied significantly more braking force 

compared to the sad drivers, t = 2.9, p < 0.05. Deviation contrasts showed 

that both low arousal conditions were different, neutral, t = 2.62, p < 0.01, 

and sad, t = 2.9, p < 0.01. Parameter estimates showed that angry mood is a 

significant predictor of braking force in NONE, t = 2.94, p < 0.01, and NDRL, 

t = 2.51, p < 0.05 Load conditions. 

 

Figure 54: Mean braking force by Mood and Load  
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There was no significant main effect of Load and no interactions in braking 

force in PS hazard.  

Comparison of changes from the baseline to the corresponding condition: 

There was a significant main effect of Mood in braking force changes from 

the baseline to the corresponding Mood, F (3, 36) = 5.17, p = 0.01, ηp 2 = 0.30 

(Figure 55, Table 17 in Appendix 2). Post hoc tests showed that the angry 

drivers pressed the brake pedal significantly harder than the happy drivers, t 

= 3.5, p < 0.001, the drivers in the neutral mood, t = 2.84, p < 0.05 and the 

sad drivers, t = 3.17, p < 0.05. Deviation contrasts showed that the happy, 

the neutral and the sad moods differed from the grand mean (Table 21).   

Parameter estimates showed that angry mood is a significant predictor of 

braking force in NONE, t = 3.19, p < 0.01, and NDRL, t = 3.01, p < 0.01 Load 

conditions.  

Table 21: Deviation contrasts for changes in braking force from the baseline 
to the corresponding condition 

Moods t value P value 

Happy – Angry, Happy, Neutral, Sad 3.5 .001*** 

Neutral – Angry, Happy, Neutral, Sad 2.84 .007** 

Sad – Angry, Happy, Neutral, Sad 3.17 .003** 

 

 

Figure 55: Changes in mean braking force from the baseline to the 

corresponding condition 
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There was no significant main effect of Load and no interactions in braking 

force changes from the baseline to the corresponding Load condition in PS 

hazardous event.  

5.4.7.2.3 Maximum braking 

Comparison between conditions: 

 There was a marginally significant main effect of Mood, F (3, 36) = 2.78, p = 

0.055, ηp 2 = 0.19 (Figure 56, Table 18 in Appendix 2). Deviation contrasts 

showed that the difference was between neutral and other means, t = 2.5, p 

< 0.05, and sad and grand mean, t = 2.25, p < 0.05.  

Parameter estimates showed significant prediction only in the angry mood 

when no questions were asked, t = 2.51, p < 0.05. 

 

 

Figure 56: Maximum braking force by Mood and Load  

 

There were no significant differences in Load and no interaction in maximum 

braking force in PS hazard. 

Comparison of changes from the baseline to the corresponding condition: 
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drivers in the neutral mood, t = 3.09, p < 0.05. Deviation contrasts showed 

that different were the neutral mood, t = 3.09, p < 0.01, and the sad mood, t 

= 2.39, p < 0.05.  

Parameter estimates showed that the angry mood, regardless of cognitive 

load, significantly predicts maximum braking force: NONE - t = 2.99, p < 

0.01, NDRL - t = 2.38, p < 0.05, DRL - t = 2.49, p < 0.05. 

 

Figure 57: Changes in maximum braking force from the baseline to the 
corresponding condition 

 

There were no significant differences in changes from the baselines to the 

corresponding conditions in maximum braking force in Load and no 

interaction. 
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mood compared to the neutral mood, t = 3.14, p < 0.05 (Figure 58, Table 15 

in Appendix 2). Deviation contrasts showed that the differences were 

between the neutral mood and all other moods, t = 2.98, p < 0.01, and 

between the sad mood and all other moods, t = 2.41, p < 0.05. 

Parameter estimates for PG hazard showed that the neutral mood is a 

significant predictor of speed regardless of cognitive load: NONE, t = 24.53, 

p < 0.001, NDRL, t = 28.62, p < 0.001, DRL, t = 25.31, p < 0.001. The angry 

mood is a significant predictor of speed in relation to the neutral mood only 

when no questions are asked, t = 2.33, p < 0.05, and the happy mood is a 

significant predictor of speed when no questions are asked, t = 2.16, p < 

0.05, and when driving related questions are asked, t = 3.2, p < 0.01.  

There was no main effect of Load and no interactions in mean speed 

between the conditions during PG hazardous event. 

 

 

Figure 58: Mean speed by Mood and Load 

 

Changes from the baseline to the corresponding mood: 

There was a significant main effect of Mood, F (3, 36) = 4.25, p < 0.01, ηp 2 = 

0.26, with significantly higher changes in speed in the happy mood compared 

to the neutral mood, t = 3.08, p < 0.05 (Figure 59). Deviation contrasts 

showed that the speed increase in the happy mood was significantly higher 

than in all other moods, t = -2.02, p < 0.05. 
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Parameter estimates for changes in speed when approaching PG hazard 

showed, the neutral mood is a significant predictor of speed only when 

driving related load is applied, t = -2.05, p < 0.05. The happy mood is a 

significant predictor of speed changes in relation to the neutral mood when 

no questions are asked, t = 2.67, p < 0.01, and when driving-related 

questions are asked, t = 3.41, p < 0.01.  

There was no main effect of Load and no interactions in mean speed 

changes from the baseline to the corresponding condition in PG hazardous 

event. 

 

Figure 59: Changes in mean speed from the baseline to the corresponding 
condition  

 

5.4.7.3.2 Time actively braking 

Comparison between conditions: 

There was a marginally significant main effect of Mood in time actively 

braking, F (3, 36) = 2.36, p = 0.08, ηp 2 = 0.16 (Figure 60, Table 16 in Appendix 

2). Deviation contrasts showed that the angry drivers actively pressed the 

brake pedal for significantly shorter period of time compared to the other 

conditions, t = 1.93, p < 0.05. Parameter estimates showed that the neutral 

mood is a significant predictor of the less time spent actively braking in 

NDRL load condition, t = 2.97, p < 0.01 and DRL load conditions, t = 2.92, p 

< 0.01.   
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In the PG event there was no significant main effect of Load and no 

interaction between changes from the baselines to the corresponding Mood 

and Load conditions.  

 

Figure 60: Time actively braking by Mood and Load 

Comparison of changes from the baseline to the corresponding condition: 

There were no main effects of Mood and Load and no interaction in changes 

from the baseline to the corresponding conditions, although Figure 61 and 

Table 16 in Appendix 2 show that the time actively braking decreased in all 

the conditions except the neutral mood condition when NONE or DRL was 

applied.  

 

Figure 61: Changes in time actively braking from the baseline to the 
corresponding condition 
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5.5 Discussion 

5.5.1 Self-reported evaluation of arousal and mood  

The valence and arousal assessment grid reliably distinguished between the 

induced moods, with high arousal moods showing an increase in arousal 

from baseline and low arousal moods not inducing a significant change. The 

participants assigned to the happy group even indicated lower arousal level 

compared to their baseline arousal. This could be due to the participants 

feeling more tired after the experiment. 

Participants assigned to the negative valence moods indicated a significant 

change in their mood valence after the experiment. Whereas participants in 

positive valence moods did not indicate that their mood would change.  

5.5.2 Physiological measures  

5.5.2.1 Mood induction 

It was hypothesised that higher EDA and HR would reflect high arousal 

conditions [H4]. Both measures EDA and HR showed high sensitivity to 

changes in participants’ arousal during mood induction. However, the results 

were dissimilar for the car following task and hazardous events.     

5.5.2.2 Adaptation effect 

EDA and HR data were calculated by subtracting the baseline measures 

from the corresponding conditions. EDA data showed the expected results, 

lower conductance in all conditions compared to baseline and an ‘adaptation 

effect’. Dawson et al. (2007) argue that when the same stimuli are presented 

repeatedly, they lose the effect of novelty. EDA includes reaction to the 

stimuli peculiarity and novelty. Adaptation effect is the loss of the novelty 

effect.  

5.5.2.3 Coherence task 

Participants’ EDA in the angry mood showed the lowest adaptation effect 

and in the neutral mood the highest adaptation effect. Dawson et al. (2007) 

argue that normally the adaptation effect is similar for every individual, 

therefore, the difference in the adaptation effect can be explained by some 
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EDA response to the angry mood. This difference did not reach a 

significance level, but however, showed a trend – angry mood elicits higher 

skin conductance, which does not fade over time.  

There were changes in HR for those in the angry mood compared to the 

baseline, showing an enlarged effort of the angry drivers. Interestingly the 

increase in heart rate with the angry emotion induction (about 15 beats per 

minute) is similar to the increase in heart rate while driving affected by 

MethyleneDioxyMethAmphetamine (MDMA), as found by Brookhuis and De 

Waard (2010). Ward et al. (2003) also found an increase in heart rate with 

the addition of a secondary cognitive task, however to a lesser extent (3 

beats per minute), indicating that the angry emotion influences heart rate 

more than the secondary cognitive task. Other moods appear not to have an 

effect on HR. A substantial effort is known to cause fatigue in many areas, 

including driving (Belmont, Agar, & Azouvi, 2009; Borghini et al., 2012), and 

drivers’ fatigue has been named as one of the major causes of traffic 

accidents (Lal & Craig, 2001). Moreover, Matthews and Desmond (2002) 

argue that drivers’ performance declines as a function of drivers’ fatigue. 

Therefore, an increase in HR caused by angry emotions for a longer period 

of time can lead to a safety decline.     

Cognitive load appears not to influence drivers’ physiological measures, 

mainly due to the fact that the tasks were not designed to increase drivers’ 

cognitive load to a level that could influence their processing effort, but only 

lower mind wandering induced by moods. Although drivers reported more 

effort in concentrating on the driving task while driving related questions were 

asked, this comparison was linked to the different nature of questions 

between NDRL and DRL. Therefore, whilst drivers reported more difficulty in 

concentrating while in the DRL condition compared to NDRL, this did not 

reach a level to affect their physiology. 

5.5.2.4 Physiological measures during hazardous events 

 

Although some changes were recorded with regards to HR, in the present 

research the HR measures are not representative of drivers’ arousal level 
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during hazardous events, neither with regards to drivers’ mood nor their 

cognitive load. This could be due to limited sampling frequency available for 

the analysis. Empatika records heart rate with a frequency of 1 Hz. As 

hazardous event analysis was based on 3 seconds recording, there was not 

enough information for reliable analysis. The second reason could be huge 

variability, as Mood was a between groups variable, individual differences 

were too strong in the present study. 

However, EDA data were collected with different frequency, 4 times in a 

second. This permitted for more power in statistical analysis. EDA increased 

as a result of physiological and emotional arousal (Treaty, 2004 ). However, 

the adaptation effect was recorded similarly as in the car following task. 

Interestingly, the biggest and significant decline was recorded in the neutral 

mood. This permits assuming that other moods had some arousing influence 

on participating drivers.  

Alternatively, the highest habituation effect, recorded in the neutral mood, 

could be because these drivers were more aware of possible hazards on the 

approach to junctions, thus less surprised. Whereas, stress caused by 

disconnection from mind wandering, resulted in some increase in skin 

response (Smallwood et al., 2009).      

5.5.3 Coherence metrics: coherence, phase shift and modulus 

It was hypothesised [H6, H8], that a driver’s ability to follow a lead vehicle, 

keeping the distance from it safe and constant, would be impaired as a 

function of their mood and cognitive load. Sad drivers would be affected the 

most, and the negative valence of angry mood would be compensated by 

high arousal. High arousal in the happy mood instead, would have a negative 

effect on driving performance. Non-driving related load (NDRL) would 

disengage drivers from their mood-related internal thoughts but still, compete 

for by attention. As a consequence NDRL would lower performance. Driving-

related load (DRL) instead, apart from disengaging drivers’ attention from 

emotional involvement, would direct drivers’ attention towards road and 

traffic-related procedures. As a consequence, this would improve driving 

performance. Car following performance was assessed using three metrics 
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suggested by Brookhuis and colleagues in 1994: coherence, phase shift and 

modulus.      

Coherence is an important metric as it shows whether drivers complied with 

the task (Ward et al., 2003). The study did not reveal any significant 

differences in coherence between conditions in either of the two cycles. The 

study has shown that also the drivers needed some more time to adjust to 

the lead vehicle’s speed in the first cycle, their compliance with the task was 

very high, with a minimum value of 0.35 in the sad mood with no cognitive 

load. The results suggest a good coherence throughout a drive. Therefore all 

the metrics are good representatives of drivers’ ability for car following under 

different conditions (De Waard, 1996). In previous research sad mood 

showed to be the most self-centered condition with the slowest response 

times (Pêcher et al., 2009; Zimasa et al., 2017). When no questions were 

asked, the sad drivers were not distracted from their internal thoughts and 

mind wandering and showed the lowest coherence. However, the correlation 

value was still above the minimum value (0.3) set by Ward et al. (2003). 

Thus all the following metrics could be counted as valid. In cycle 2, drivers 

performed better in all the conditions, thus showing some habituation effect. 

Drivers’ mood and cognitive load do not significantly affect coherence in the 

car following task.         

Phase shift is a measure of drivers’ reaction to a lead vehicle’s speed 

variation, also called - delay. Phase shift was affected only in the first cycle, 

suggesting some habituation effect of Mood and Load on drivers’ attention. 

In the first cycle, drivers’ reaction times were significantly affected by their 

mood. The highest mean reaction delay showed sad and happy drivers, 

suggesting that these moods affect drivers’ attention the most. Interestingly, 

the sad drivers had a similar reaction delay (5.27 seconds) to drivers solving 

secondary task while driving in Ward et al. (2003) study (5.17 seconds). This 

suggests that mind wandering affects the sad drivers similarly to additional 

cognitive load. The parameter estimates permit the examination of how the 

interaction between different Moods and Loads can predict changes in 

drivers’ attentional delay. The results showed that neutral mood is a 

significant predictor of phase shift regardless of cognitive load. DRL affected 
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only sad drivers, thus supporting the prediction [H8] of the possibility to direct 

drivers’ attention only in this mood. Consequently, some load is beneficial for 

driving safety as a factor that can interrupt from mind wandering (De Waard 

& Brookhuis, 1991). However, not all moods can be affected by this type of 

cognitive load. 

Changes in phase shift from baseline to the corresponding condition were 

significantly affected by drivers’ mood, with sad drivers having significantly 

higher increase and all the other drivers decrease in reaction delay. These 

results resemble conclusions drawn by Smallwood and Schooler (2006), 

which state that low vigilance tasks can result in decoupling from external 

information in favour to internal information. It could be said that this finding 

contradicts the previous statement, saying that the sad and the happy moods 

are the most detrimental to driving safety. The analysis of changes shows 

that the happy mood, in fact, improves drivers’ reactions. However, this 

improvement is still not big enough to be able to affect reaction time to the 

same extent as the neutral and the angry moods do. Parameter estimates 

show that neither Mood nor Load is a significant predictor of drivers’ 

reactions.  

 Modulus metrics follow similar patterns to the phase shift metrics, being 

significantly affected by moods only during cycle 1. This difference was 

between the happy and the sad mood, with the sad mood having a 

significant overshoot and the happy mood provoking undershoot. Modulus 

reflects the following driver’s reactions at the highest values of the lead car’s 

speed. Modulus values in the sad mood (>1) reflect drivers’ potentially 

aggressive overcorrection (Ranney et al., 2005). This overcorrection appears 

as a result of a large following distance. Happy drivers instead, showed 

some under-correction, which is another sign of inadequate following 

distance (Ranney et al., 2005). Parameter estimates show that positive 

moods and low arousal are significant predictors of good response to a lead 

vehicle’s speed, regardless of cognitive load. No-load and NDRL did not 

appear being significant predictors to modulus changes in any mood 

condition with reference to neutral mood. Driving-related load instead is a 

significant predictor of changes in reaction times of the happy and sad 
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drivers. In other words, DRL makes sad and happy drivers overshoot 

significantly more compared to the drivers in neutral mood. 

Changes in modulus from the baseline to the corresponding mood condition 

showed that moods are significant predictors of drivers’ reaction changes, 

with most changes appearing from the baseline to either the happy or the 

sad mood. The drivers in the neutral mood and the angry drivers did not alter 

modulus considerably after the mood induction, showing just a small 

increase. The sad drivers also increased modulus after the mood induction. 

This increase was significant compared to the modulus change in happy 

mood, which was the only mood with modulus decrease.  Parameter 

estimates also showed that the changes from baseline to the happy mood 

are significant predictors for the decrease in drivers’ attention. 

In summary:  

Regardless of drivers’ mood and cognitive load they are disposed to some 

habituation effect. This effect is not recorded with reference to drivers’ mood 

or cognitive load, but with reference to task repetition. In other words, when 

adapting to the task conditions, drivers did not increase their mind wandering 

or attentional failure, instead, they improved the driving performance to some 

extent.  

Drivers’ reactions to changes in speed of the lead vehicle are the most 

affected by the sad mood and the happy mood. The difference between 

these two effects is that the sad mood provokes a reaction delay, whereas 

the happy mood improves drivers’ reactions on some parameters (e.g. phase 

shift). However, this improvement is still considerably lower compared to 

neutral state of mind. The neutral mood is a significant predictor of phase 

shift if all the other variables are held constant, drivers in the neutral mood 

improve their reaction sensitivity to a speed change in the lead vehicle.  

Cognitive load does not induce considerable changes in drivers’ attention. 

Only modulus in the happy and the sad moods were significant predictors of 

changes with reference to the neutral mood: with predicted overshooting in 

the sad mood and undershooting in the happy mood.     
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5.5.4 Time headway during the coherence task 

The present research has investigated how different moods and cognitive 

load affect car following behaviours, as expressed by time headway. It was 

hypothesised [H6, H8] that the angry drivers would choose shorter following 

times (Tasca, 2000). It was also hypothesised that if following time can be 

accounted for by arousal, happy drivers following distance should be similar 

to that of the angry drivers. Sad drivers instead would increase the car 

following distance due to compensatory mechanisms and the internal nature 

of the sad mood (Zimasa et al., 2017). The drivers in the neutral mood 

should not be affected by the arousal, and due to no changes in the mood 

valence, their car following distance should not change from the baseline.  

The time headway results partially support the hypotheses. The angry drivers 

increased their following time in the 0-1 and 1-2 segments, which are the 

most safety-critical, and in some countries (e.g. Sweden), not acceptable TH 

(Vogel, 2003). The happy drivers were not so consistent in their safety 

preferences. Some increase in the less safe 1-2 seconds segment was 

recorded along with an increase in the safer 3-4 seconds segment. This 

shows that there are some differences in choosing a safe distance between 

high arousal moods. A positive valence, in this case, moderates a negative 

effect of arousal. The significant decrease of time spent in the 3-4 seconds 

segment and increase in under 3 seconds segments for the angry drivers 

show that they are less concerned with possible consequences of driving too 

close to the car in front.    

The sad drivers preferred travelling at 3-4 seconds headway significantly 

more often than the angry drivers and at 1-2 seconds headway significantly 

less than drivers in all the other moods, thereby increasing their safety gap. 

However, the increase in their eye fixation durations shows that the positive 

effect of this change reduces due to a slower switch of their attention and 

therefore less efficient road monitoring (Underwood, Chapman, Berger, et 

al., 2003; Zimasa et al., 2017). The biggest changes in time headway for low 

arousal moods were observed in the 2-3 seconds segment, indicating the 

importance of drivers’ arousal in their perception of a safe following distance. 
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However, the changes in low arousal were mediated by the positive valence 

and affected only the sad drivers.     

The type of the cognitive load also had a significant effect on the drivers’ 

chosen following distances. When non-driving related questions were asked, 

drivers found it more difficult to maintain their chosen safety gap, showing 

time increase for about 20% in less than 2 seconds TH segment, and a 

significant decrease in safer 3-4 seconds segment. This change appears to 

have a negative effect on driving safety, as it encourages drivers to come 

closer to the car ahead.  

5.5.5 Glance behaviour 

It was hypothesised [H5, H8] that longer information processing and impaired 

attentional shift would be indicated by fixations larger in number and longer 

in duration, and mind wandering would be indicated by gaze concentration 

towards the road centre. It also was hypothesised that the most affected 

would be the drivers in the sad mood.   

5.5.5.1 Fixation durations     

Fixation durations are associated with difficulties in information extraction 

and processing (Wilson & Eggemeier, 1991) and increase in workload 

(O'Donnell & Eggemeier, 1986). In the present study Load was a significant 

factor influencing fixation durations, with no load having the shortest fixations 

and DRL – the longest. Therefore, DRL interferes the most with drivers’ 

ability to switch their attention from subject to subject and their information 

processing speed.  

These results reflect drivers’ self-reports, where drivers acknowledged 

experiencing more disturbance when DRL questions were asked. It was 

hypothesised that DRL would disconnect drivers from mind wandering and 

bring their attention back to the road. Longer fixations in this condition 

indicate that drivers were processing information more extensively. Together 

with their statement that it was more difficult to concentrate when DRL 

questions were asked, it can be concluded that drivers experienced some 

amount of cognitive load in these conditions. However, the influence of this 
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load on participants’ driving ability is not clear before the driving-related data 

is analysed.         

There was a significant main effect of Mood. Pairwise comparisons showed 

that the sad drivers processed information significantly slower compared to 

the drivers in the neutral and happy moods and drivers in the neutral mood 

marginally faster compared to the drivers in the angry mood. The results 

show that low arousal is not beneficial to drivers’ information processing 

ability. Moreover, low arousal and negative valence is the worst mood for 

driving safety.   

The significant interaction showed that the type of Load applied does not 

have the same effect on each Mood. The sad drivers were the most affected 

by the type of Load.  When there was no load applied, drivers processed 

information faster, as compared to NDRL, and marginally faster when DRL 

was applied. This suggests that some amount of distraction is useful at 

times, as it prevents sinking deeply into a sad mood, which could be harmful 

to driving safety.  

The change in fixation durations from baseline to the corresponding Mood 

condition is an important indicator of how Mood affects the ability to process 

information. There were significant main effects of Mood and Load, as well 

as a significant interaction. Post hoc tests showed significant differences 

between all the pairs, except Neutral-Happy and Sad-Angry pairs. The most 

affected conditions were the NDRL condition in the sad mood (the highest 

increase in the fixation durations) and the NDRL condition in the happy 

mood. This suggests that if the sad drivers are not distracted by any 

questions, their ability to process information is highly disrupted.  Highly 

affected are also the happy drivers when asked non-driving related 

questions, but in a different direction. In this condition drivers’ ability to 

process information increases the most as compared to baseline.  

The comparison of overall Load conditions shows that when no questions 

are asked, the drivers are the most affected by their mood. The DRL 

condition, instead, is the less affected by the drivers’ mood, thus showing the 

highest ability to disconnect from mind wandering.   
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Fixation durations in the present study are rather large. The drivers in the 

neutral emotional state fixated similarly as experienced drivers in Crundall et 

al. (1998), 340-380 milliseconds, but slightly longer than experts in non-

driving professional fields Gegenfurtner et al. (2011), 325 milliseconds. Other 

emotions elicited longer fixation durations, 400-600 milliseconds, indicating 

longer information processing. Recarte and Nunes (2000) found longer 

fixations while driving and performing mental imagery task (450 milliseconds) 

and Salthouse and Ellis (1980) found fixations duration increase up to 600 

milliseconds in cases when more time was needed to process complex 

stimulus. The present research shows that more processing time is also 

needed for individuals influenced by sad, happy and angry emotions, with the 

sad individuals requiring the most processing time.   

5.5.5.2 Number of fixations 

Number of fixations is strongly correlated with information processing effort 

and ability to switch attention; more fixations indicate more intensive visual 

search (Chapman & Underwood, 1998a). Christianson et al. (1991) state that 

the more fixations are made, the more scenery details are processed. 

Consequently drivers’ moods producing more fixations are beneficial to road 

safety.  

However, there were no significant differences in number of fixations 

between the Mood and Load conditions, suggesting that neither Mood nor 

Load significantly affected the drivers’ attentional search patterns. However, 

there was a significant interaction between these two conditions, showing 

that the type of Load applied has an effect on the driver’s attention in the sad 

mood, with a higher number of fixations in DRL condition. This suggests that 

the sad drivers’ attentional search patterns can be improved by distracting 

them from their internal state of mind caused by the sad mood.  

Changes in the number of fixations from baseline have confirmed this 

statement, the smallest decrease of fixations in the sad mood was in DRL 

condition. The significant interaction between Mood and Load indicates that 

the type of Load applied has different effects, depending on drivers’ mood. 

The sad drivers fixate more often when asked driving-related questions, 
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compared to when not asked questions at all. This suggests that this type of 

intervention has a positive effect on driving safety.  The happy, the angry and 

the neutral drivers seem not to be that much affected by the type of Load 

applied.  

The changes also showed that the type of Load applied does not significantly 

change drivers’ usual search patterns, unlike drivers’ mood. The biggest 

increase in the number of fixations occurred in the neutral mood, showing 

that when the drivers’ mood involvement is minimised, they are more prone 

to road exploration. The biggest decrease in the number of fixations occurred 

in the sad mood, suggesting that the sad drivers concentrate more on their 

internal feelings and are less interested in the surrounding environment.  A 

similar effect occurred when the happy mood was induced. The number of 

fixations significantly decreased when drivers’ mood changes to the happy. 

Overall only the neutral drivers increased their attentional search patterns, 

the sad, the happy and the angry drivers tend to search road less than 

before the mood induction.   

5.5.5.3 Horizontal spread of fixations 

It was hypothesised [H5] that participants’ visual field of view (VF) would be 

narrowed under the influence of mood, due to mind wandering, but it would 

normalise once drivers are disrupted from mind wandering by some amount 

of cognitive load. Partially the hypotheses were supported, VF was affected 

by all the moods. The spread of fixations was similar to Recarte and Nunes 

(2000) who found the highest spread of fixations when driving without a task 

(10.5 degrees) compared to an imagery task (4.5 - 6 degrees). The drivers in 

the neutral emotional state had the widest visual field (7 - 8 degrees) 

compared to the drivers affected by emotions (5 - 6 degrees). These findings 

provide evidence that mind wandering can affect drivers’ visual field similarly 

to additional mental imagery task applied while driving. However, neither 

type of cognitive load was able to change the width of the VF. With regards 

to mind wandering, previous research found that it is more affected by 

negative mood; Jonkman et al. (2017) found more mind wandering after the 

negative mood induction compared to the positive mood in self-reports and 
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Smallwood et al. (2009) came to similar conclusions using Response Times 

and self-reports. The present study does not fully support these statements.  

The results suggest two possible explanations: mind wandering during 

driving somehow differs from mind wandering under other circumstances, 

and VF angle measure cannot distinguish between mind wandering in 

different moods. Certainly, the drivers mostly concentrate their attention on 

the road ahead, with some amount of attention devoted to dashboard and 

mirrors (Chapman et al., 2002). These observational patterns do not imply 

much variety. When drivers’ thoughts are reflecting on emotional fragments, 

their interest in the car controls is probably also reduced, regardless of 

experienced emotions.           

These observational lapses can seriously affect driving safety. For example, 

Galéra et al. (2012) argued that mind wandering has been allied with likely 

vehicle accidents. Indeed, VF narrowing can cause latency in recognising 

potential danger, thus reducing the time available for preparation and action.  

The present study also examined possible ways of disengaging drivers from 

their internal thoughts, by applying some additional cognitive load in the form 

of questions. This additional load potentially could activate drivers’ unused 

attentional resources (Young & Stanton, 2002). However, neither driving-

related questions, nor non-driving related questions affected the width of the 

drivers’ visual field. One possible explanation is that the applied cognitive 

load added to processing load caused by mind wandering, thus even if some 

kind of disengagement occurred, it would not be evident through measuring 

VF. Second, possibly VF narrowing, caused by mind wandering, reached a 

ceiling effect and there was no possibility for more reduction. Yet, questions 

asked while driving had a purpose of disengaging from mind wandering. 

Thus, some movement towards wider VF was expected. The results did not 

show any tendency towards this prediction, thus showing the ineffectiveness 

of cognitive load in visual search pattern improvement. 

Interesting information was obtained by comparing changes in fixation 

spread from the baselines to the corresponding conditions. First, VF angle 

did not change much with mood induction in the happy and the angry moods. 
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This indicates that the happy and the angry drivers’ visual patterns do not 

differ from their baseline (not affected by emotions) visual patterns. Drivers in 

the sad mood, instead, after mood induction narrowed their visual search 

patterns, and the visual field of drivers in the neutral mood became wider 

compared to their baseline driving. Although only changes in the neutral 

mood were significantly different, this analysis shows a change tendencies 

induced by other moods. Parameter estimates showed that if all the other 

variables are held constant, the neutral mood is a significant predictor of 

enlarging visual field only if no additional load is applied. This indicates that 

cognitive load had some influence on the drivers’ search patterns when they 

were not emotionally affected. Similarly, the angry and the sad moods have 

more effect on VF narrowing when no questions were asked, indicating more 

mind wandering without distraction.  

5.5.6 Cars merging from the side junctions 

The results of the hazardous events showed more similarities between the 

driving patterns on approach to junctions (CFL and CFR), and between the 

driving patterns passing parked car hazards (PS and PG), rather than 

between expected and unexpected hazards. Therefore, ‘cars merging from 

the side junctions’ hazards are discussed together in this section, and 

‘parked cars suddenly moving off’ hazards are discussed together in Section 

5.5.7.      

It was hypothesised [H3] that the drivers’ performance in a neutral state of 

mind would not differ from their baseline performance. This prediction was 

not supported. The results showed performance improvements on some of 

the parameters after the neutral mood induction. After neutral mood 

induction, there was less speed variation. The amount of acceleration also 

decreased, however, not significantly. However, this performance change 

cannot be addressed by the improved performance while in the neutral 

mood, some improvement could be due to the stimulus repetition, as the 

baseline drive always was the first.       
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5.5.6.1 Speed, acceleration and deceleration approaching hazardous 

events at junctions 

It also was hypothesised [H7] that a high arousal would initiate higher 

speeds. This prediction was not supported, as there were no differences in 

mean and maximum speed between different conditions. However, drivers in 

the neutral and the sad moods drove smoother in both events, and the happy 

drivers had higher speed variations in CFR event. Analysis of changes from 

baselines to the corresponding condition showed similar patterns: speed 

variation of the drivers in the sad and the neutral moods was lower than in 

the baseline and the happy and the angry drivers increased their speed 

variation. There were also no differences in acceleration between the 

conditions and no changes from the baseline, indicating that speed variation 

was not due to the participants accelerating harder in any of the conditions.  

Investigation of deceleration style showed no differences on approach to 

CFL hazard between any of the Mood or Load conditions. This means that 

the difference in speed variation in CFL hazard was not caused by harder 

acceleration or deceleration. In CFR hazard, the happy participants 

decelerated significantly less than participants in other moods. This smaller 

deceleration together with no differences in acceleration implies that the 

changes in speed variation in CFR were also not caused by these actions.     

The results also showed that, regardless of the cognitive load, the neutral 

mood predicts smoother driving. The happy mood, on the other hand, 

encourages more jerky driving only when non-driving related questions are 

asked, and only when a car is approaching from a right side junction. The 

sad mood changes drivers’ normal driving style only when driving-related 

questions are asked. Therefore, the [H8] is partially supported with the 

respect to the happy and the sad moods.       

Previous research has consistently concluded that drivers drop speed in 

response to cognitive load and distraction (Brouwer & Ponds, 1994; Chiang 

et al., 2001; Patten et al., 2004; Saad et al., 2005 ). The present speed 

analysis did not detect significances in driving speed on the approach to 

junctions between the conditions, which could be due to the participants 
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being experienced drivers, anticipating hazards on the approach to junctions. 

However, Lajunen et al. (1997) argue that speed choice is restricted by traffic 

regulations and social acceptance, thus is not very good representative of 

driving performance. Speed variation, instead, can tell more about drivers’ 

choice of driving style. The present findings show that non-emotionally 

affected drivers can cope with some amount of cognitive load and still 

maintain smooth driving. Moreover, a neutral mood is a significant predictor 

of less speed variance only when some amount of load is applied, thus 

supporting the statement that mental underload can be detrimental for driving 

safety (Young & Stanton, 2002).   

Another aspect of the present investigation is mood induced mind wandering. 

Mind wandering has been found to occupy some of the processing capacity 

(Smallwood & Schooler, 2006), with negative emotions having a more 

powerful effect (Smallwood et al., 2009). Although the sad drivers in the 

present research did not drive less jerkily than the happy and the angry 

drivers, driving-related questions asked while driving, disrupted them from 

mind wandering and made their driving smoother. These findings support 

Pêcher et al. (2009), who found that the sad drivers prefer to drive slower, 

and are in contrast to Eherenfreund-Hager et al. (2017), who found speed 

increase in negative affect condition. However, it must be noted that 

Eherenfreund-Hager et al. (2017) did not distinguish between high and low 

arousal of negative valence. For mood induction, they used negative priming 

without specifying how much arousing were stimuli. 

Two of the predictions were not supported by the present results [H7]: first, 

there was no sharper acceleration in high arousal conditions. It appears that 

jerky driving in high arousal conditions was caused by sharper braking. 

Second, the happy drivers did not adapt a smoother braking style, instead, 

their braking was sharper. The reason for this behaviour is not clear from 

acceleration and braking data only. It also was hypothesised [H5] that the 

happy drivers would adapt different visual search patterns, which affect their 

driving style, thus adding these results would provide a clearer 

understanding of braking behaviour.     
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5.5.6.2 Braking approaching hazardous events at junctions 

The analysis showed that neither acceleration nor deceleration caused jerky 

driving in a happy mood. Instead for CFR hazard, there was less 

deceleration in the happy mood. Three braking metrics were analysed to 

understand how this difference was caused: time braking, braking force and 

maximum braking. Time actively braking showed that the happy participants 

pressed brake pedal significantly longer than participants in all the other 

conditions. Moreover, when no load was applied, the happy mood was a 

significant predictor of longer braking [H8]. There were no other braking 

differences found for CFR hazard, neither in braking force nor in maximum 

braking. This indicates that the happy drivers tend to change from 

accelerator to brake, and prefer gentler active braking, but for a longer time 

on approach to hazards from a right side junction.  

The results of the braking force during the CFL event showed that the neutral 

mood resulted in significantly milder braking than all the other moods. The 

neutral mood was also a significant predictor of milder braking regardless of 

cognitive load, indicating that when drivers are not affected by mood induced 

thoughts, a certain amount of an additional load does not have a negative 

impact on driving safety. The happy drivers instead adapted a significantly 

harder braking style compared to their usual braking.  

Although there were no significant differences in maximum braking force 

between the conditions, most of the drivers, tended to brake more gently in 

mood conditions compared to their usual driving. The happy drivers in CFL 

event and the angry drivers in CFR event instead, increased their maximum 

braking force compared to their usual driving styles. As the baseline was 

always the first drive, some habituation effect was expected, as drivers 

collected some experience during the first drive. Therefore, the increase in 

maximum brake could be due to higher arousal in these conditions.      

An interesting finding here is the differences in the braking style recorded 

between CFL and CFR. When a car is approaching from the left side, drivers 

tend to adapt sharper braking style with less time decelerating and actively 

braking, but pressing the brake pedal harder instead. In contrast, when a car 
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is approaching from the right side of the junction, drivers tend to press brake 

pedal not as hard, but for a longer time, making braking less hazardous. The 

reason for this behaviour could be the different time needed to reach the 

junction: when approaching from the left, a car becomes visible later and 

cuts straight into the participants’ lane; when approaching from the right, the 

car appears earlier, thus leaving more time for reaction. In the case where 

driving style is affected by emotions, the sudden appearance of a hazard is 

more likely to result in rear-end collision due to mind wandering (McGehee, 

Dingus, & Horowitz, 1992; McGehee et al., 2000).  

Brake reaction time (BRT) was defined as a time from the onset of lead car’s 

brake lights until the moment the brake pedal of the following vehicle is 

pressed (Winsum & Heino, 1996). Most often researchers use the exact time 

to calculate the impact of experimental variables on drivers BRT. However, 

the present experiment does not consider great time precision but focuses 

more on the aspect influencing drivers’ reactions. In the current experimental 

setting, driving hazards were used to initiate drivers’ decision to brake. It was 

expected that this decision would depend on their current emotional state as 

well as other factors. For example, Green (2000) argues that fully alerted 

drivers’ road information processing is significantly faster compared to 

relaxed drivers. He also states that expected signals are responded to faster, 

compared to unexpected signals, and response time also depends on 

cognitive load, age and urgency of the situation. It is possible to apply 

Green’s findings to the present study: fully alerted drivers, or those who were 

not distracted by mood induced mind wandering, adapted smoother driving 

styles with less speed variation and more even braking style. CFL appeared 

more unexpectedly, thus causing sharper braking, so cognitive load at times 

helped in maintaining alertness to unexpected road events. For example, 

DRL applied to the sad drivers mediates their mood and brings their speed 

variance to the same level as drivers in the neutral mood. Whereas, an angry 

mood encourages sharper braking when no questions are asked.     

It also could be argued that higher arousal provoked more self-confidence 

(Wrisberg, 1994), thus raising drivers’ confidence in their braking skills and 

prolonging their braking initiation time (Winsum & Heino, 1996).   
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5.5.7 Parked cars suddenly moving off  

5.5.7.1 Speed, acceleration and deceleration while passing ‘cars 

moving off’ hazards 

Drivers’ speed control patterns while passing suddenly moving off cars were 

different from those on the approach to the junctions. Participants’ speed 

choice was not affected by their emotional state when approaching junctions, 

in contrary to [H7], unlike their speed driving along roads. This shows that 

moving off cars were less anticipated than hazards at junctions. It was 

hypothesised that high arousal would encourage higher speed, thus sharper 

braking, and more jerky driving. On the approach to junctions, high arousal 

resulted in jerky driving, indicating that, for drivers in high arousal moods, 

their mood influences their decision of the most appropriate time to brake, 

and they keep changing from brake to accelerator, thus maintaining similar 

speed average, but higher speed variation. Instead, when driving along the 

road, drivers under influence of a high arousal drove faster, but there was no 

speed variation, they drove with the same smoothness, as drivers under a 

low load condition.  

However, mood valence in the high arousal conditions did not have the 

predicted effect on drivers’ speed and acceleration. Analysis of changes in 

speed between the baselines and the corresponding conditions showed that 

these differences were due to speed decrease in the low arousal conditions, 

rather than speed increase in the high arousal conditions. This could be due 

to speed in all conditions being already high during the baseline drives: thus, 

increasing speed in the high arousal condition would result in driving well 

above the speed limit, set for that road. However, all the participants in all the 

moods already had experience with parked cars suddenly moving off, but 

only drivers in the low load condition took into account this fact. The angry 

and the happy drivers preferred to drive with the same speed, without 

slowing down. This shows higher self-confidence in the high arousal 

conditions (Woodman & Hardy, 2003). Moreover, the happy participants 

always drove faster, regardless cognitive load, and even increased their 

speed compared to the baseline. Whereas the angry participants did not 
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increase their speed that much, and in cognitive load conditions even drove 

slower than in the baseline, thus indicating that some amount of cognitive 

load can disrupt from the influence of mood. These results partially support 

the prediction [H8], showing that the cognitive load not always can redirect 

drivers’ attention to the driving task.  

According to Gasper (2004), the happy individuals adapt heuristic 

information processing styles, with more global information processing, this 

could cause some lapses in hazard perception. Although this style speeds up 

information processing, it leaves some details unattended. In the present 

study, the happy participants drove faster ignoring the potential risk caused 

by suddenly moving off cars. 

Participants’ speed in low arousal conditions did not differ between the sad 

and the neutral moods and was slower compared to their corresponding 

baselines in both cases. However, it cannot be concluded that driving in the 

sad mood is equally safe as driving in the neutral mood. The slower speed in 

the sad mood could be simply compensation for additional task difficulty 

caused by mind wandering (Smallwood et al., 2009). Thus using only the 

speed parameter makes it difficult to understand the influence of the sad 

mood on driving safety. 

Although differences in speed between passing PS and PG hazards were 

not statistically assessed, speed patterns were visually very similar, with 

some higher speed increase in PG hazard during happy mood, and some 

higher speed decrease in PS hazard in the neutral and the sad moods.      

5.5.7.2 Braking while passing parked cars  

Braking was assessed using three metrics: time actively braking (total time 

driver was pressing the brake pedal, measured in seconds), braking force 

(force applied to the braking pedal, measured in Newtons) and maximum 

braking force. It was hypothesised [H7] that participants in low arousal 

conditions would brake smoother, thus pressing the brake pedal longer but 

with less intensity, compared to the participants in the high arousal 

conditions.  These metrics were different for PS and PG, hazards. For the PS 

hazard, the time actively braking did not differ between the moods, indicating 
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that the participants preferred a different method of reducing speed. Although 

the ANOVA test for PG hazard was only marginally significant, deviation 

contrasts showed that time actively braking in the angry mood was 

significantly lower compared to all the other moods.  

When passing PS hazard the participants preferred to reduce their speed by 

pressing the brake pedal harder, with the angry mood resulting in 

significantly harder brake presses compared to all the other moods. 

Interestingly, these differences were due to the braking force increase while 

angry, as there was not much change from the baselines to all the other 

moods in braking force. Only angry drivers significantly increased brake 

pressure compared to their normal driving, thus showing a significant 

influence of this emotion on braking habits.    

The combination of the braking results with the speed results shows that 

participants employ different speed reduction techniques when passing PS 

and PG hazards. For slowing down during PG hazard, participants prefer to 

press brake longer but lighter, PS hazard instead, encourages shorter and 

harder braking. One of the reasons for these alterations could be the 

differences in the hazard perception times. If PG hazard is spotted later, 

there is less time left for slowing down, which requires sharper braking. 

According to Smallwood et al. (2009), negative moods result in greater mind 

wandering, compared to positive moods, thus, a greater attentional shift 

away from the main driving task. Angry mood fully supported Smallwood’s 

argument, sad mood, instead, did not result in the same braking patterns as 

angry mood, yet being also negative valence. However, sad participants 

drove slower, thus had more time to deal with the hazards compared to 

angry drivers. 

Importantly, the reasons causing different reactions to PS and PG hazards 

are not clear. Possibly a single car attracts less alertness compared to the 

group of cars or is perceived as less hazardous or easier to deal with. The 

present study cannot answer this question.    
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Chapter 6 Discussion and conclusions 

6.1 Overview 

This thesis has focused on understanding of the effects of mood and 

cognitive load on driving safety. Mood is considered as a distractor from the 

primary task and cognitive load as an intervention to reconnect the driver to 

traffic related information. In the desktop study, reported in Chapter 4, the 

influence of drivers’ mood on glance behaviours and hazard response times 

(HRT) were examined, using a comparison of neutral, happy and sad 

emotions. The study was expanded in the simulator study, reported in 

Chapter 5, by adding angry mood condition, to have both dimensions of 

valence, positive and negative, and both dimensions of arousal, low and 

high. The addition of two types of cognitive load were also added in the 

simulator study: driving related load and non-driving related load. The 

simulator study permitted the continuous tracking of Mood and Load induced 

changes in drivers’ behaviours, their glance patterns and their responses to 

hazardous traffic situations. In this chapter, the results will be discussed with 

reference to their utility for driving safety assessment. Hypotheses about 

drivers’ Mood and Load are summarised below.   

Mood 

Based on information processing and mind wandering hypotheses (sections 

2.7.1 and 2.7.2), it was predicted that induced emotions would affect with 

driving performance by causing daydreaming and mind wandering. These 

processes would prolong road related information processing as indicated by 

slower responses to hazardous situations and jerkier driving. It was 

hypothesised that a negative mood valence should result in longer 

information processing as compared to a positive mood valence due to the 

systematic mode of processing (Schwarz, 2000). The sad mood, being the 

most internal state with attentional self-focus of mind and passive attitude to 

surroundings (Bulmash et al., 2006; Pêcher et al., 2009), should result in 

longer response times. The angry mood should mediate decrease of 

processing speed usually observed in a negative valence, being a high 

arousal and energetic physiological state. A positive mood valence, on the 
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other hand, affects drivers differently in both high and low arousal conditions. 

High arousal in the happy mood would not mediate a decrease of processing 

speed compared to a low arousal in a positive valence. This is due to arousal 

in the neutral mood not being sufficiently low to be detrimental for task 

performance.  

It was also hypothesised that high arousal would encourage riskier driving, 

with drivers choosing shorter following distances and higher speeds. Higher 

speeds would result in a more jerky style of driving.    

Load 

Cognitive load in this study was used to disconnect drivers from mind 

wandering and bring their cognitive resources back to the driving task. 

Olivers and Nieuwenhuis (2006) observed that tasks involving divided 

attention can be useful in activating attentional resources. An easy additional 

task not only does not deteriorate performance in the main task but can 

actually improve this performance. Taking into account that the executive 

function is involved in updating information process, such as monitoring and 

evaluating current stimulus inputs to the task on hand (Baddeley, 1992; 

Cohen et al., 1997), the disruption of mind wandering was hypothesised to 

enhance the performance in the main task, in this case driving. Two types of 

cognitive load were applied in the simulator study: driving related load (DRL) 

and non-driving related load (NDRL). NDRL was intended to disconnect 

drivers from mind wandering. However, the attention would be directed to 

non-driving related issues, which would decrease the driving performance. 

DRL, apart from disconnecting drivers from internal thoughts, would direct 

drivers’ attention to the road, thus enhancing driving performance, the ability 

to switch attention and processing of road information.   

6.2 Induction and assessment of mood valence and arousal 

Two different methods were used to both induce and assess participants’ 

emotional involvement. In the desktop study, mood was induced using a 

mixed method whereby participants listened to mood music and watched 

corresponding pictures. To assess mood, participants were then asked to 
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rate their mood on a 10 point subscale of the Brief Mood Introspection Scale 

(BMIS). This subscale distinguished well between negative and positive 

valence moods but did not include the assessment of arousal, thus did not 

distinguish between the two positive moods, happy and neutral. 

In the simulator study the affect grid by Russell et al. (1989) was used for 

participants’ self-reports instead of BMIS. This enabled the assessment of 

both mood arousal and valence. In addition mood corresponding pictures 

were replaced by a mental imagery technique. In addition to self-reports, 

participants’ physiological arousal was recorded, to differentiate between low 

and high arousal emotional states. This method enabled the assessment of 

participants’ mood valence and arousal while driving. Moreover, this 

combined method distinguished between the two high arousal conditions. 

For example, the happy and the angry moods are both high arousal moods 

(happy and angry). Although physiological measures can reliably detect high 

arousal, it would be difficult to confirm whether the participant was happy or 

angry at that time (Stemmler, 2004). 

In the simulator study, it was hypothesised that HR and EDA would be higher 

in the high arousal conditions (angry and happy) than in the low arousal 

conditions (sad and neutral). This hypothesis was partially supported. EDA 

and HR were sensitive to changes in participants’ arousal during the mood 

induction. The HR was significantly different between all the mood pairs 

except angry-happy and neutral-sad, showing an increase of HR in the high 

arousal moods. EDA data showed similar results, except that skin 

conductance was not different between the happy and the sad moods, 

perhaps due to lack of power.   

In summary:   

Both mixed methods, music with pictures and music with mental imagery, 

have been successful in mood induction. The affect grid by Russell et al. 

(1989) enabled the assessment of participants’ arousal in addition to their 

mood valence. During the mood induction, EDA and HR were able to 

distinguish between high and low arousal conditions. Both methods 

physiological measures and self-reports complimented each other.         
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6.3 Drivers’ response times  

Drivers’ reactions and responses to hazardous events are important 

components of driving safety. Depending on how early a driver recognises a 

road situation as being dangerous and makes the right decision about 

actions to take to avoid or minimise risk, the consequences can change from 

being simply “alarming” to a “near miss” or even a “fatal accident”. Section 

3.4.3 explains in detail what constitutes ‘brake reaction time’ (Green, 2000). 

Reaction time was measured in both studies: in the desktop study, as 

‘hazard response time’ and in the simulator study as ‘reaction to speed 

change’ of the lead vehicle. Hazard response time provides a measure of a 

drivers’ ability to recognise a driving situation as being hazardous in a time 

that permits a timely reaction. Reaction time, measured during the coherence 

task, reflects a driver’s ability to sustain their attention for a longer period of 

time. Therefore, the influence of drivers’ moods on their reactions is an 

important factor that has to be studied to understand the best ways of 

intervention and the best ways to minimise the harmful effect of mood.       

As indicated by Wetton et al. (2010), hazard awareness is one of the most 

important skills in a fast-changing driving environment. This statement leads 

to two actions: first, driving style and drivers’ behaviours that can affect 

hazard awareness should be determined and second, factors affecting those 

behaviours should be identified. These actions are necessary for 

development, preparation and implementation of interventions.  

To present stimuli and collect the response time data in the desktop study, a 

computer was used. Three different emotions were induced: neutral, happy 

and sad. Participants pressed a button as soon as they spotted a hazard. 

This method has several advantages: data collection is not as expensive as 

using a simulator, and the delay, related to mechanical responses, is minimal 

(Green, 2000; Ising, Droll, Kroeker, D’Addario, & Goulet, 2012). It was 

predicted that the happy drivers would notice hazards earlier due to better 

peripheral observational patterns (Carver, 2003). Consequently, they would 

react faster, showing shorter reaction times. Contrary to prediction, the 

neutral mood resulted in faster responses and faster attentional switch. The 

results showed that drivers’ reactions depend on their emotional state, with 
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the sad participants affected the most and participants in the neutral mood 

being the quickest to react. The results are in line with the previous research 

(Pêcher et al., 2009) in relation to the sad mood. In their study, the drivers 

reported thinking about personal lives and feeling sad. They also reported 

that their attention was caught by the rhythm and lyrics of the sad music and 

directed to internal feelings.  Pêcher et al. also reported more disturbance 

while driving in the happy mood compared to the neutral mood. The mean 

speed in the happy condition dropped while driving with music, and they 

positioned the car closer to the hard shoulder which, according to Summala 

(2000), is evidence of compensating for the mental load. 

Interestingly, the results of the desktop study contradict those reviewed by 

Green (2000). Green states that the reaction times for surprise events are 

always longer than for expected events as they need more time at all three 

stages of mental processing: detection, perception and response. The 

desktop study, reported in Chapter 4, has shown that unexpected hazards 

take less time to react to. This reaction difference was explain by the fact that 

unexpected hazards do not leave much time for the driver to decide how 

dangerous the situation is, and they have to react immediately. It also has to 

be noted that the desktop study did not include some stages of the response 

components, such as movement time and device response time. However, 

all the mental-processing stages were still present: drivers still had to detect 

a suspicious object (sensation), recognise it as a possible danger 

(perception), and select a response. The most ambiguous stage here seems 

to be the response selection, as in the desktop study there was not much 

variety available, and the participant had to decide whether to press the 

button or not. This stage seem to be the one that makes the difference to 

response times. As soon as an obstacle was recognised, the participant had 

to press the button if he/she thought that the obstacle could develop into a 

real hazard. Surprise events in this case likely work as a facilitator for a 

reaction, whereas in simulator and naturalistic experiments, the surprise is 

an inhibitor for drivers’ reaction. This finding is important regarding the 

validation of hazard perception tests. In hazard perception tests, surprise 
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obstacles are classified the same as expected obstacles, whereas in real life 

it takes much longer to react to the surprise obstacles.      

However, desktop experiments do have several disadvantages compared to 

simulator experiments. While response time measures are valuable and 

reliable predictors of driving safety, many more factors are relevant. For 

example, hazard response times measured on a computer only indicate that 

the participant has registered a hazard. Their driving style prior to the hazard, 

and their behaviour reaction to the hazard, are still unknown. Another 

important aspect in measuring drivers’ response times is the assessment of 

their ability to sustain attention for a period of time, and not only for a single 

reaction to a hazardous event. Sustained attention is needed to be able to 

follow a lead car keeping a constant distance. Thus this task has been 

named as a good indicator of drivers’ attention.  

The simulator study used the coherence task developed by Brookhuis et al. 

(1994) to evaluate the impact of drivers’ mood and cognitive load on their 

ability to sustain attention. Previous research has found that coherence is 

impaired by mental effort (Ranney et al., 2005). On the other hand, Ünal, de 

Waard, Epstude, and Steg (2013) showed that performance in a monotonous 

task, such as coherence, could be improved by mild arousal. Similarly to the 

desktop study, the sad drivers’ (low arousal) reactions were slower, as 

indicated by increase in phase shift and modulus. The increase in the phase 

shift is evidence of slower reactions and the increase in modulus can be 

interpreted as compensation for slower reactions. In the simulator study 

there were two main findings with regards to modulus. The sad drivers 

tended to overreact (significant). This tendency was also evident in changes 

from the baseline to the corresponding mood. The happy drivers, in contrary 

to the sad drivers, tended to under-react. These reactions are easie to 

explain when analysed together with time headway. The sad drivers’ 

preference for longer THs, was possibly caused by their internal thoughts 

occupying their attention, thus making them feel more comfortable when 

further away from the lead vehicle. When the lead vehicle increased speed, 

the slower reactions of the sad drivers did not permit them to respond in a 

timely and promptly manner. This caused an overreaction in distance 
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correction This overreaction was permitted by a larger distance between the 

two vehicles. 

The happy drivers, on the other hand, selected a shorter following time, thus 

not leaving much space for speed variation. When occupied with internal 

thoughts, the happy drivers found it difficult to synchronise their speed with 

the lead vehicle’s speed, which caused under correction. The angry drivers 

and drivers in the neutral mood also overreacted. This overreaction was very 

minimal and similar to their baseline modulus. However, it cannot be 

assumed that both these conditions did not influence drivers’ response times. 

The TH results show that drivers in the neutral mood preferred driving at 2 – 

4 seconds TH from the lead vehicle. This distance is considered to be the 

most optimal (Pasanen & Salmivaara, 1993; Piao & McDonald, 2003; Vogel, 

2003), with lower speed initiating larger time gaps in real traffic situations 

(Piao & McDonald, 2003). The angry drivers, instead, choose closer 

distances, under 2 seconds, which is a sign of aggressive driving and 

tailgating (Tasca, 2000; Y. Zhang & Kaber, 2013). Therefore, the drivers in 

the neutral mood had sufficient time to react to the lead vehicle’s speed 

changes, without investing additional effort to maintain constant TH. The 

angry drivers, instead, had to use additional attentional resources, to 

maintain a close and constant distance from the lead vehicle (Young & 

Stanton, 2002). Interestingly, DRL affected only the happy and the sad 

drivers. The modulus of these two conditions improved when driving-related 

questions were asked, thus providing evidence that some additional load can 

disconnect drivers from mood-related invasive thoughts.   

Similarly, the phase shift analysis showed that this parameter was 

significantly larger for the happy and the sad drivers. Phase shift reflects a 

delay in drivers’ response to the lead vehicle’s speed change, confirming the 

biggest influence of mood on drivers’ reaction time in these conditions.  

Parameter estimates showed that the neutral mood is a significant predictor 

of phase shift regardless of cognitive load, indicating that the cognitive load 

used in the simulator study did not have enough power to influence drivers’ 

reactions when they are not emotionally affected. Parameter estimates also 

showed that the sad mood was a significant predictor of drivers’ reaction 
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delay in relation to the neutral mood, but only when no load was applied, 

again confirming that the cognitive load can distract from the non-task related 

thoughts.  

The important additional information here is provided by analysing mood 

induced changes from the corresponding baselines. This analysis showed 

that phase shift increased only after the sad mood induction. After the neutral 

mood induction, drivers’ reactions become faster compared to their baseline 

reactions. Now the predictions from parameter estimates look differently; the 

neutral mood is a significant predictor of better reactions, and the sad mood 

is a significant predictor of reaction delays. In light of this finding, the 

influence of cognitive load should be interpreted differently. In the neutral 

mood, drivers are not affected by the distracting effect of mind wandering. 

Thus, they can dedicate all their attention to the road and traffic. In this 

situation, cognitive load would act as a distractor from the primary task, 

driving. In contrast, the sad drivers’ reaction time was highly influenced by 

mind wandering, causing reduced attention to the primary task of driving. In 

this situation, cognitive load disconnected drivers from mind wandering, 

bringing their attention back to the road (Unsworth, Redick, Lakey, & Young, 

2010). In this context, the previous statement, that the sad mood is a 

significant predictor of reaction delay only when no-load is applied, looks 

logical: without distraction, drivers are the most affected by their internal 

emotional state.  

The analysis of changes from the baseline to the corresponding mood 

showed that the happy drivers’ reactions were similar to the reactions of 

drivers in the neutral mood (better reactions after mood induction). The 

happy drivers also reacted faster to the speed changes of the lead vehicle 

compared to the sad drivers. However, this improvement did not reach 

significance. Moreover, the glance measurement analysis showed a 

decrease in information processing and some difficulties in an attentional 

shift. This leads to the conclusion that the happy drivers were successful in 

the coherence task due to high concentration, but used all the available 

attentional resources to complete the task. This finding contradicts Luce et 

al. (1997) and Schwarz (2000) stating that individuals in a positive mood 
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adapt more heuristic processing styles with less attention to detail and a high 

reliance on previous knowledge. This is true at least for the coherence task, 

when happy individuals concentrate on the car ahead (one thing at a time) 

regardless of other possible dangers (previous knowledge). However, these 

conclusions could be influenced by the experimental setting. Possibly, 

participants felt that they had to concentrate on the main task, and did not 

expect other hazards to be present. The same method, but applied in the 

natural driving environment, might reveal different results. 

The angry drivers’ reactions were similar to the neutral and the happy 

drivers’ reactions, showing improvement in car following ability.  Averill 

(1983) differentiates anger from other emotions. He states that anger is often 

expressed by aggression and that the aggression is not necessarily directed 

towards the source of the feeling. Often individuals target unrelated 

inanimate objects or strangers. Abrams (2010) concluded that anger could 

increase concentration and facilitate achievements in sport. Possibly, drivers 

in the simulator study, directed their angry feelings to the car ahead and task 

completion, thus decreasing their reaction times. Similar to the happy drivers, 

the angry drivers showed decreased peripheral vision and information 

processing. Consequently, attentional improvements diminish due to their 

concentration to a particular place. 

In relation to drivers’ reaction times, the simulator study did not find a 

negative effect of cognitive load on drivers’ ability to sustain attention on the 

car following. For the neutral, the happy and the angry moods there was no 

effect of cognitive load. The sad drivers, however, improved their task 

performance when driving related questions were asked. This finding 

supports the conclusion of Pêcher et al. (2009) that a sad mood encourages 

a withdrawn attitude and attentional focus towards internal thoughts and 

feelings, and Smallwood et al. (2009)  stating that low arousal and negative 

valence encourages more mind wandering and more difficulties to re-engage 

with the task on hand.     

The glance measures can be seen as another predictor of drivers’ response 

to hazards, as it has been named as an indicator of attentional shift 

(Chapman & Underwood, 1998b; Underwood, Chapman, Brocklehurst, et al., 
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2003). In the simulator study, the glance measures showed the different 

effect of NDRL and DRL on drivers’ attention. The attentional shift was 

affected only in the sad mood without cognitive load, NDRL did not have 

much effect on mood induced attentional decline, whereas DRL maintained 

drivers’ attention at the pre-mood induction level. Similar results were 

obtained from fixation duration analysis. When no cognitive load was applied, 

the sad drivers were the most affected by mood. It was the only mood when 

fixation durations increased considerably showing evidence for the tendency 

to self-focus and longer information processing times (Bulmash et al., 2006; 

Pêcher et al., 2009). Interestingly, the ability to process information was the 

most impaired when no load was applied. NDRL improved drivers’ attention 

by minimising the negative effect of mood, and DRL further minimised this 

effect.       

In summary:    

The present research showed that drivers modify their TH not only to 

accommodate their performance ability (Winsum & Heino, 1996) but also 

with respect to their current emotional state, as longer THs permit for more 

time to react. RTs were found to depend on drivers’ moods, as indicated by 

both hazard awareness and car following ability. Sad drivers tended to 

respond later to appearing hazards, thus shortening the time available for 

safe braking, should it be needed. To compensate for this deficit, sad drivers 

seemingly increase their TH. This influence of mood can be overridden by 

applying some cognitive load while driving.  The angry drivers compensate 

for mind wandering by dedicating additional attention to task completion, and 

the drivers in the neutral mood can cope with some additional cognitive load 

without a decline in primary task performance.     

6.4 Choice of time headway 

It was hypothesised [H6, H8] that the higher arousal moods would result in 

the shorter THs, whilst the lower arousal moods would elicit different 

behaviours; the sad mood would result in larger THs to compensate for mind 

wandering, and the neutral mood should not differ from the baseline. The 

current research sees TH analysis differently from how it was most often 
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used in analising driver behaviour in car following situations. Most often, TH 

in coherence tasks is used to measure drivers’ ability to sustain attention for 

a period of time. For this, a variation of TH is calculated, and inferences are 

drawn from the results: the higher variation, the less successful was the 

driver in maintaining attention on the car in front. The interest within this 

simulator study is the choice of TH that drivers in different moods would 

prefer for the most comfortable driving. This method permits to examine 

influence of the drivers’ mood on their choice of time headway when they feel 

easier to focus on the car ahead. The drivers were instructed to follow the 

lead vehicle keeping the constant distance, which they felt is safe and 

convenient. During the experiment drivers’ perception of a safe and 

convenient distance changed as a function of their emotional state and 

cognitive load. To calculate these changes, the following time was divided 

into six 1 second segments, and a separate analysis was performed for each 

time segment. This permitted the tracking of mood induced changes in 

preferred TH, which is impossible in TH variance analysis, as it does not 

indicate how long the driver was following with a TH of 1 second, or 2 

seconds, or 5 seconds.    

The results show overall larger THs compared to previous research: the 

average of accepted minimum TH  0.66 s (Taieb-Maimon & Shinar, 2001), 

and the average of comfortable TH 0.98 s (Taieb-Maimon & Shinar, 2001), 

around 1 s (Chen, 1996; Winsum & Heino, 1996), and 1.4 s (Ota, 1994). 

Although average TH was not a factor of interest in the present research, it is 

useful to investigate the reasons for a shorter or larger THs. Harms (1968) 

explains shorter TH by constantly increasing traffic density. Ohta (1993) 

supports this statement and adds that drivers do not feel comfortable with 

large headways because they are perceived outside the social norms. Mizell 

et al. (1997) argue that headways are getting shorter as drivers become 

more aggressive. This statement is in line with the present findings, as the 

angry drivers preferred much shorter THs, regardless of additional cognitive 

load, aimed to disconnect them from mind wandering.   

Abdu et al. (2012) found that the angry drivers adapted riskier driving styles, 

such as faster speed and shorter headways. Surprisingly, this aggressive 
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driving style was not correlated to the number of accidents. It has already 

been suggested in section 6.3 that the angry drivers can afford shorter THs 

due to them involving additional attentional resources. This could be the 

reason for shorter THs not correlating with accident involvement. However, 

the more attentional resources are involved, the faster drivers get tired, and 

the less are left in case of an emergency (Young & Stanton, 2002); thus the 

involvement of additional resources can have only a short-term benefit. 

However, it would be useful to investigate the degree to which the angry 

drivers can expand their attentional resources.  

Ranney et al. (2005) found that drivers compensate for the additional 

cognitive load by increasing car following distance. Similarly, the present 

results show that cognitive load can bring some changes in preferred TH: 

when non-driving related questions were asked, drivers reduced following 

time in the 3-4 seconds TH segment. Figure 35 shows that these changes 

were mostly caused by the angry drivers reducing the proportion of time 

spent in this segment. As it also can be seen from Figure 35, the angry 

drivers did not increase driving in longer THs. Instead, an increase in time 

was evident only under 2 seconds TH. This shows that overall, drivers come 

closer to the car ahead if their mood changed to angry.      

Cognitive load affected the choice of TH only in the 3-4 seconds segment. 

The analysis of changes from baseline showed that NDRL did not change in 

the neutral, the happy and the sad moods, but reduced in the angry mood. 

No-load and DRL increased in the neutral, the happy and the sad moods and 

decreased in the angry mood as well. This shows that the angry drivers’ 

choice of TH was not affected by cognitive load, whereas the neutral, the 

happy and the sad drivers increased their presence in this time segment 

when no-load and DRL was applied.  

In summary: 

The present research showed that the effect of emotions on chosen TH is 

more complicated than being simply an influence of mind wandering. 

Similarly to Tasca (2000) and Y. Zhang and Kaber (2013), the angry drivers 

employed a more aggressive driving style and tended to drive closer to the 
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lead vehicle. They also engaged additional attentional resources in the 

completion of the primary task, which permitted them to feel more 

comfortable with short THs. However, this could have negative 

consequences if practised for a longer period of time or in the event of an 

additional hazard as it does not permit for any extra attentional stretch. The 

sad drivers are shown to be the most affected by mind wandering and thus 

had to compensate for the attentional decline by increasing following 

distance. Cognitive load had a different effect depending on mood: the angry 

drivers were not affected by cognitive load, whereas the neutral, the happy 

and the sad drivers tended to drive less in the safe 3-4 seconds TH when no 

questions were asked and when driving-related questions were asked. NDRL 

did not change drivers’ behaviours in these moods.  

6.5 Hazard perception and anticipation 

Hazard perception and anticipation depends on drivers’ observational 

patterns (Chapman & Underwood, 1998b; Sabey & Taylor, 1980) and risk 

misperception, leading to riskier driving styles (Ferguson, 2003). Both of 

these factors were studied, regarding their vulnerability to drivers’ emotional 

state, and found support in the present research. The desktop study 

investigated how mood-related changes in observational patterns can affect 

drivers’ hazard response times [H1, H2]. The desktop study found 

contradicting results: there were no significant differences in the spread of 

eye fixations among drivers in different mood conditions. This finding is in 

conflict with Carver’s (2003) theory stating that individuals in a positive mood 

are more prone to explore a surrounding environment and look for new 

sources of danger. Yet, individuals in the positive moods responded quicker 

to appearing hazards, by a button press. This mismatch could be due to the 

study being performed on a desktop PC, thus not permitting for the more 

precise distinction between the deviations in drivers’ eye fixations. 

Nevertheless, drivers’ fixation durations indicated that the sad drivers 

required longer time to decide on response. Moreover, drivers’ hazard 

response times indicate their faster responses in a positive mood compared 

to a negative mood, thus providing evidence for Carver’s statement of 
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additional attentional resources available to the individuals in a positive 

mood. 

Although Carver (2003) does not distinguish between arousal levels, the 

desktop study showed some response impairment of the happy individuals 

compared to the individuals in the neutral mood, which could be caused by 

different levels of arousal in both of these positive moods. Indeed, the 

simulator study confirms this assumption by establishing differences in 

driving behaviours between low and high aroused drivers. The way of 

assessing hazard awareness was different in the desktop and the simulator 

studies. In the simulator study participants’ attention was not explicitly 

directed to the hazard identification. This permitted, instead of measuring the 

response times, the evaluation of their driving style in different conditions, 

and how this driving style affects driving safety while facing hazardous 

situations. Hazard awareness was assessed separately for ‘car moving off’ 

hazards and ‘junction hazards’. Measures of speed, acceleration and braking 

were calculated to understand how these parameters vary with different 

moods and cognitive loads, as well as how they interact with each other. The 

driving parameters are discussed in Sections 6.7 and 6.8 of this chapter.  

In summary:  

The sad drivers are the slowest in hazard response. This response delay can 

be caused by longer information processing as reflected by longer fixation 

durations. The happy drivers are also inferior to the neutral drivers, thus 

showing that road safety does not benefit from emotional involvement  

6.6 Glance behaviour  

The number of eye fixations, fixation durations and spread of fixations were 

hypothesised to reflect drivers’ information processing speed and their ability 

to switch attention from task-unrelated thoughts to task-related thoughts. 

Different moods and types of cognitive load were hypothesised [H5, H8] to 

have a different effect on these ability. 

Glance behaviour measures, were able to differentiate between different 

moods and cognitive loads. The sad drivers in both studies had the longest 

fixations, providing strong evidence of having less ability to switch attention 
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to the most important road events. The simulator study also found a 

significant drop in the number of fixations after the sad mood was induced, 

as well as a significant drop in fixation durations. This showed both more 

difficulties in information extraction and processing (fixation duration) (Wilson 

& Eggemeier, 1991) and less effort invested in this processing (number of 

fixations) (Chapman & Underwood, 1998b). Moreover, only the sad drivers 

narrowed their visual field, thus making more probable a delayed in the 

reaction in case of an unexpected hazard.   

Some types of cognitive load were able to disengage the sad drivers from 

their internal state of mind. The sad mood slowed down drivers’ processing 

speed, as evidenced by longer fixation durations, the most when no load was 

applied. NDRL and DRL significantly improved processing time. This shows 

that mind wandering, initiated by the sad mood, can be interrupted by some 

amount of additional load.  

The additional load has a similar effect on drivers’ information processing 

effort. The significant interaction between Mood and Load showed that the 

sad “undisrupted” drivers invested less attention in the road processing 

compared to when they were asked general questions, and the biggest 

improvement in invested effort appeared when the sad drivers’ attention is 

directed towards road safety.  

A reduction in the horizontal spread of fixations has been related to an 

increase in mental load (Li, Markkula, Li, & Merat, 2018; Recarte & Nunes, 

2000). A similar effect was found in the simulator study. Interestingly, 

‘reduction in horizontal fixation spread’ is not a precise description of the 

changes in the spread of fixations, as a noticeable reduction was recorded 

only in the sad mood. A more precise statement would be ‘increase in 

horizontal spread of fixations’ in the neutral mood, as this is what the 

analysis of changes from the baseline to the corresponding conditions has 

shown. This finding, to some extent, supports Carver’s (2003) theory on 

differences in information processing between positively and negatively 

affected individuals. Indeed, the neutral state of mind is an emotion with 

positive valence and low arousal. The ‘regulatory system’ does not need to 

invest any effort in minimising the effect of positive emotions, as there is no 
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harm associated with them. This saves attentional resources, which can then 

be used for environmental exploration. The above-mentioned effect was not 

found in the desktop study. Therefore some interruption caused by arousal 

was assumed (Zimasa et al., 2017). This assumption was supported in the 

simulator study.  

Changes in the number of fixations from the baseline to the corresponding 

mood also support this statement. Fixations increased in number with the 

neutral mood induction and decreased with the sad mood induction. This 

difference was significant, thus confirming increased exploration and 

information processing effort in the positive mood.  

High arousal did not affect the spread of drivers’ fixations, showing only a 

slight decrease after the happy and the angry mood induction. Similarly, 

fixation durations were only slightly shorter after the angry and the happy 

mood induction, indicating that high arousal improved the drivers’ information 

processing ability regardless of the valence, but not significantly. Changes in 

the number of fixations in the high arousal conditions showed that the 

drivers’ effort invested in information processing in the high arousal was 

similar to their effort during the baseline drives. This finding is in line with 

(Smallwood et al., 2009) and (Jonkman et al., 2017), who found more mind 

wandering and less intention to reengage in a task after mind wandering in 

negative moods compared to positive moods.          

In summary: 

Glance measurements are valuable indicators of drivers’ search patterns and 

indicators of mood induced mind wandering. None of the glance behaviour 

measures analysed in the two studies, distinguished between high and low 

arousals. Moreover, all the moods negatively affect drivers’ search patterns. 

Cognitive load, applied while driving, can disengage drivers from the mood 

induced mind wandering and improve drivers’ search patterns. The sad 

mood has the most detrimental effect on driving safety. Possibly this is the 

reason why it is the most affected by cognitive load.  
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6.7 Speed 

Drivers’ speed behaviour was different when on approach to junctions and 

when facing cars suddenly moving off. On approach to junctions, drivers’ 

mean speed was not affected by their mood or cognitive load, whereas while 

passing parked cars drivers’ speed choice was affected by their mood. 

Interestingly, this change was not a speed increase in high arousal 

conditions, as predicted. Instead, the neutral and the sad drivers slowed 

down when passing parked vehicles. The speed decrease was nearly 4 

miles per hour. This slowing down could be caused by the necessity of 

moving into the opposite lane on the approach to the parked cars, to prepare 

for passing (Figure 62). The consequences of this passing manoeuvre and 

high speed could be differently assessed by drivers in different moods. 

Regardless of the displayed speed limit of 40 mph, drivers in low arousal 

conditions preferred to drive slower. High arousal is known to cause 

overestimation of personal ability (Fuller, 2005) and lower risk perception 

(Jonah, 1986), which could cause the speed increase. For valence and 

arousal grid see Figure 1. Similarly, in this simulator study, the happy and the 

angry drivers did not reduce speed when passing close to the parked 

vehicles.  

 

Figure 62: Participant approaching a row of parked cars. 
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Alternatively, passing can be seen as an additional task during driving. 

Completion of this task requires concentration and extra effort. Humphreys 

and Revelle (1984) found that high arousal increases the amount of cognitive 

resources available for information processing. Additionally, these resources 

are reallocated to the task of higher interest for the individual, thus facilitating 

the performance in this particular task. In relation to this simulator study, it 

can be concluded that drivers in higher arousal moods concentrated on the 

passing of parked cars, which permitted them to complete this manoeuvre 

without slowing down.  

On the approach to junctions, mood valence and arousal did not impact 

drivers’ mean speed. However, there was a significant difference in speed 

variation, with less variation in low arousal conditions. This variation indicates 

that high arousal interferes with the driver’s judgement of distance to the 

junction and their speed on the approach to it, causing a jerky driving style 

(Robertson et al., 1992). Jerky driving can be a better determinant of driving 

style than speed, as acceleration and deceleration, unlike speed, are not 

restricted by traffic regulations and are entirely the drivers’ choice. This 

driving style is especially evident on the approach to junctions, when drivers 

reduce speed later, thus using sharper and more dangerous braking styles 

(Saad et al., 2005 ). The analysis of changes in speed variation from the 

baseline to the corresponding mood condition showed that differences in 

speed variation were caused by the neutral and the sad drivers decreasing 

their speed variation, similarly as when passing the parked cars.  

Cognitive load did not affect high arousal conditions with regards to mean 

speed and speed variation but had a positive effect on low arousal conditions 

by increasing the already smoother driving style in these conditions. It could 

be argued that the changes in speed are caused by drivers’ distraction 

(Patten et al., 2004; Saad et al., 2005 ). Thus emotion induced mind 

wandering being more influential in the neutral and the sad moods. 

Rakauskas et al. (2004) argue that higher speeds require more attention and 

drivers compensate for these extra requirements by slowing down. If these 

results were the same in this simulator study, it would mean that the neutral 

and the sad moods affect drivers more than the happy and the angry moods. 
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However, the happy and the angry moods are both influenced by a higher 

arousal, which is known to involve additional cognitive resources, facilitate 

performance and account for attentional underload (Humphreys & Revelle, 

1984; Young & Stanton, 2002).  

In summary: 

Drivers in different moods behave differently when passing parked cars and 

on approach to junctions. In busy road conditions with speed restrictions the 

angry and the happy drivers do not tend to increase their speed and speed 

variability. The sad drivers and the drivers in the neutral mood, on the other 

hand, tend to drive slower when approaching hazards. The happy and the 

angry drivers employ additional cognitive resources when facing the usual 

driving sub-tasks (e.g. on approach to junction). These additional resources 

account for the extra burden imposed by the questions asked while driving.    

6.8 Braking 

As mentioned in Section 6.7, speed variation was significantly different 

depending on mood. However, contrary to the prediction [H7], high arousal 

did not cause higher acceleration; drivers in all the conditions were 

accelerating equally smoothly. Instead, speed variation was caused by 

deceleration style. Drivers can employ two methods to decrease their speed: 

either release the accelerator pedal, thus using engine power to slow down, 

or actively pressing the brake pedal. Releasing the accelerator pedal results 

in a smooth and gradual slowing down and is evidence of a well-planned 

action. On the contrary, pressing the brake can be viewed as a more 

aggressive driving style, depending on the pressure applied and the total 

time needed to fully stop (Wells & Stacey, 2013). Consequently, learner 

drivers are taught forward planning and gradual engine braking (slowing 

down by easing off the accelerator pedal) instead of having to slam on the 

brake due to late hazard recognition. 

Traditionally, research examining drivers’ braking style explores at drivers’ 

brake reaction times and variables that can affect drivers’ reactions (Alm & 

Nilsson, 1994; Green, 2000; Lamble et al., 1999; Van Winsum & Brouwer, 
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1997), Green (2000) has also described what constitutes brake reaction 

times. These reaction times vary considerably, from less than 1 second when 

the driver is alerted to the possible situation involving braking, to more than 2 

seconds for surprise events (Lee, 1976). Lee (1976) also states that brake 

lights are an essential attribute, shortening brake times.  

However so far research has not focused on braking style, and variables 

influencing them. Braking time is not always representative of safe driving. 

Instead, a short braking time can result in a rear-end collision, because it 

leaves less manoeuvring space for the vehicles behind (Wells & Stacey, 

2013). When assessing hazard perception, it is important to adopt a complex 

approach to analysis, including the way in which drivers increase and 

decrease speed. With relation to speed decrease, several actions can be 

performed: deceleration via releasing the accelerator pedal, smooth and long 

brake pedal press, or sharper and quicker slamming on the brake pedal. 

These braking methods can have different consequences for the drivers 

following behind, as they require different times for the following drivers to 

react. It is important to understand why drivers chose a particular style of 

braking, how much individual preferences are involved and whether these 

individual preferences are affected by extraneous variables.  

This thesis focuses on the influence of mood on drivers’ reactions and 

hazard perception, and the way moods change driving style. To this end, 

drivers’ braking styles were compared on approach to hazards. Drivers’ 

braking styles were different while passing parked cars compared to on 

approach to junctions in different moods. When passing parked cars, drivers 

did not use engine power to slow down in any of the conditions; the speed 

changes were attained by actively braking. However, as the sad and the 

neutral drivers reduced their speed when passing parked cars, they did not 

have to apply hard braking. More gentle brake pedal press for a longer time 

reduced their speed to the appropriate level. On the approach to junctions, 

on the other hand, some engine braking was involved, mainly by the neutral 

drivers. This indicates that hazard appearance on the approach to junctions 

was anticipated more than the possibility that a parked car would suddenly 

move off, thus the drivers prepared by disengaging the accelerator pedal. 
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However, the happy drivers still had to apply significantly more brake force, 

especially when unexpected hazard appeared, showing some lack of forward 

planning.  

Interestingly, regardless of the type of hazard, participants either used 

engine power and pressed the brake pedal longer (smoother slowing down), 

or pressed the brake pedal with more force (harder braking). The drivers’ 

mood had an impact on their braking style in all the hazards. Some of these 

changes were also affected by the type of the cognitive load applied while 

driving. Drivers in the neutral mood showed better hazard anticipation and 

they preferred to slow down using engine power and longer and smoother 

braking as the second option. On approach to junctions, drivers in the neutral 

mood decelerated, and when passing parked cars, pressed the brake pedal 

longer, but more gently. Participants in the other low arousal condition, the 

sad mood, showed less hazard anticipation and did not decelerate on 

approach. This indicates some attentional disengagement and mind 

wandering towards task-unrelated thoughts. Nevertheless, the sad drivers’ 

braking times and braking forces also decreased after mood induction, 

compared to the corresponding baseline. These results might look strange, 

as they do not explain the preferred braking style for the sad drivers. 

However, the results also showed the speed reduction after the sad mood 

induction. These parameters did not reach significance level, but the 

tendency can be clearly seen (Figure 58).  

On the other hand, high arousal conditions initiated a different braking style, 

with a tendency towards shorter and harder pressure of the brake pedal. 

These differences did not reach significance for the happy drivers, but did so 

for the angry drivers. The effect of hard braking on road safety depends on 

many factors, such as driver, weather, tyres etc. Braking distances have 

been mathematically calculated for different road surfaces and checked by 

car manufacturers. Green (2000) argued that harder braking leaves less time 

for the following drivers to react. If this driving style is coupled with other risk 

factors, such as shorter time headways, attentional deficits, a speed 

violation, the risk of collision may rise. 
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Interestingly, the type of cognitive load affected drivers’ braking styles 

differently in different mood states. Cognitive load did not have any effect on 

the drivers in the neutral mood. This is not surprising, as the cognitive load 

was designed to disengage drivers from the mood-related mind wandering 

and bring their attention back to the primary task of driving. When there was 

no mind wandering present, cognitive load was not a distracting factor 

affecting driving safety. However, when drivers’ attention was interrupted by 

intrusive thoughts, cognitive load tended to redirect their attention and 

improve their driving safety by making them more aware about the 

surrounding environment and anticipating possible hazardous situations.            

In summary: 

Engine braking, employed by drivers in the neutral mood on the approach to 

hazards, indicates drivers’ awareness and readiness for possible dangers. 

The results also indicate that a positive mood valence can mediate an 

aggressive braking style induced by high arousal. Mood-related intrusive 

thoughts affect drivers’ braking style differently in different moods. The sad 

drivers still tended to adapt a smoother braking style; however, it could be 

caused by a slower speed prior to the braking. The angry drivers adapted the 

most dangerous braking style, which can add to other unsafe behaviours 

causing higher probability of accidents. Some simple questions asked while 

driving, did not affect drivers in the neutral mood, but can minimise the 

harmful effect of the angry mood.        

6.9 Physiological measures 

It was hypothesised [H4] that the level of arousal would be reflected in HR 

and EDA, with higher rates for drivers in high arousal conditions, e.g. happy 

and angry (Cai et al., 2007), as well as while driving under cognitive load 

(Stemmler, 2004). The hypothesis was partially supported, mainly with 

respect to the mood-related arousal using EDA and HR measurements. 

Contrary to prediction, there were no systematic changes recorded in HR 

and EDA during the NDRL and the DRL conditions. This suggests that the 

cognitive load applied in this simulator study did not have enough power to 
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influence the level of the drivers’ arousal (Steinberger, Schroeter, & Watling, 

2017). Alternatively, it could be argued that the mood-related arousal has 

reached a ceiling level and adding more load could not affect it further. 

However, if this had been the case, it would be evident as an interaction 

between the Mood and the Load in the neutral mood condition, but such an 

interaction was not recorded. This assumption is supported by the executive 

control theory (Baddeley, 1992). The theory states that processing is 

designed as input (information gathered from the senses) - processing 

(information stored and processed by the brain) and output (stored 

information execution and behavioural response). Research is also in 

agreement that executive control can process only a certain amount of 

information at any given time. This makes informational inputs to compete for 

processing. Thus when additional load is applied, drivers disengage from 

mind wandering, but this disengagement does not affect their arousal level, 

as a mood-related arousal has been replaced by a cognitive load related 

arousal. Therefore, the amount of attention devoted to driving should be 

balanced for the safe driving to be maintained. When accumulated driving 

experience permits for mind wandering, an intervention should take place to 

prevent attentional drift to non-driving related thoughts. To achieve this, one 

should have a clear understanding of the necessary cognitive load, being not 

too high to occupy too much of essential attention and not too low to permit 

for mind wandering. Importantly, this assumption should be viewed as a 

direction for further research, as more evidence is needed to add support to 

this conclusion.     

With regards to the drivers’ mood, physiological measures provide different 

results for the coherence task and when facing hazards. This dissimilarity 

could be caused by the nature of the tasks. The coherence task is designed 

to assess the influence of different variables on drivers’ reactions to the 

speed change of the lead vehicle. It requires permanent maintenance of 

attention. Thus HR and EDA changes during the task are mostly related to 

the permanent influence of the experimental variables. The current study has 

shown that when sustained attention is needed, HR is more sensitive to 

changes in drivers’ arousal, with angry emotions affecting drivers the most. 
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EDA shows similar results; however, less sensitivity does not permit for 

statistical inferences. HR and EDA measures were also associated with 

different behavioural attributes: HR is recognised as an indicator of invested 

effort, whereas EDA increases in the response to arousal (Fowles, 1980; 

Healey & Picard, 2005; Schmidt-Daffy, 2012). Thus it can be concluded that 

different moods do not differ in the arousal levels when sustained attention is 

needed, yet, the angry drivers put in more effort for this task completion. 

Moreover, this conclusion is supported by the drivers’ choice of time 

headway: the angry drivers chose much closer following distances, thus 

have to invest more effort in the driving task.         

On the other hand, the sudden appearance of a hazard does not require 

steady and permanent investment of effort, but rather a quick one-off action, 

making the HR response less representative of drivers’ physiological 

condition. A sudden increase in arousal level, instead, would be predicted in 

the case of an unexpected appearance of a hazard (Collet et al., 2005).  If 

drivers’ minds are occupied by task-unrelated thoughts, this abrupt change 

can affect their arousal level (Steinberger et al., 2017). To this end, HR 

appears to be a less reliable indicator of drivers’ arousal. EDA, instead, 

shows a stable and significant trend, with all the emotions eliciting similar 

arousal levels, and a clear habituation effect in the neutral mood condition 

(Dawson et al., 2007). 

Nevertheless, strong changes in the EDA level were recorded only on 

approach to junctions. The EDA changes while passing parked car hazards 

did not reach significance when each hazard was analysed separately. 

Having a clear trend in the arousal level permitted the combination of the 

EDA data for these two hazards and build an argument based on these 

results. Still, there must be a reason for this statistical weakness. Steinberger 

et al. (2017) argue that unexpected events provoke more arousal compared 

to anticipated events. In relation to the current study, it can be concluded that 

the parked car hazards were more associated with possible danger 

compared to the junction hazards. 

Another important aspect to account for is a habituation effect (Dawson et 

al., 2007). Following mood induction, EDA and HR were collected 
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continuously during the experiments and demonstrated different sensitivity 

depending on whether participants were driving with a speed restrictions 

(coherence task) or in a free speed choice situation (hazardous events).   

During the coherence task, no significant differences were found in EDA 

between the mood conditions. Observation of the data showed that EDA in 

all the conditions displayed a habituation effect. In other words, EDA, 

collected while driving affected by a mood, was lower than EDA collected 

during the corresponding baseline drive (Dawson et al., 2007). Although this 

effect was evident in all mood conditions, it was very small in the angry mood 

(mean -0.47) and large in the neutral mood (mean -2.33). This means that 

the angry mood initiates EDA more extensively; however, not enough to 

reach significance level. HR, instead, showed a significant effect of Mood, 

with the angry mood initiating significantly higher HR than the low arousal 

moods (sad and neutral). Thereby the angry drivers had to invest more effort 

to complete the coherence task. One of the reasons for this could be the 

shorter time headways chosen by the angry drivers, as short following leaves 

less time for the assessment of speed changes of the lead vehicle.  

During hazardous events, HR showed a similar pattern to the coherence task 

with a higher rate only in the angry mood. However, none of the results 

reached significance level. For the majority of the Mood and Load conditions, 

HR was lower during the conditions, as compared to the corresponding 

baselines, except the angry mood. The baseline drives were always the first 

drives, therefore stimulating physiological arousal due to task novelty. During 

the subsequent drives (after the mood induction), participants were more 

familiar with the roads and the tasks. Therefore, the increase in HR in the 

angry mood could be associated with arousal related to the driver’s mood. 

EDA results were similar to the coherence task recordings, with a high 

habituation effect for the drivers in the neutral mood. During the hazardous 

events the neutral mood was a significant predictor of lower EDA levels in all 

hazards: PS, PG, CFL and CFR.  

In summary:   

During the mood induction, EDA and HR were able to distinguish between 

high and low arousal conditions. However, during the drives, the results were 
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not straightforward, with different results during the coherence task and the 

hazardous events. While following the car, HR was a better indicator of 

arousal than EDA. However, EDA data showed clear patterns, with the 

highest habituation effect in the neutral mood. During hazardous events, 

EDA was a better indicator of drivers’ arousal than HR. HR data did not show 

any patterns.   

In line with the previous research, EDA was always lower in the neutral 

mood, indicating that emotional involvement results in some physiological 

arousal (Cacioppo et al., 2000; Jahn et al., 2005). Most of the time EDA was 

higher in the baseline compared to the subsequent drives. This habituation 

effect could be overcome by eliminating stimulus repetition. One of the 

solutions to this problem could be field studies.       

Physiological measures did not differ between cognitive loads; possibly 

because Load conditions did not add enough arousal. Similarly, Ward et al. 

(2003) found increased HR during the coherence task only when a difficult 

secondary task was added: neither an easy secondary task nor driving 

without performance of a secondary task, significantly increased HR.          

6.10 The effects of mood on driving performance – a 

justification for the use of multiple measures 

Many driving behaviours are claimed to be potentially dangerous and 

detrimental to safety: speeding (Lajunen et al., 1997), acceleration 

(Robertson et al., 1992), time headway (Saad et al., 2005 ; Vogel, 2003), 

visual search patterns (Chapman et al., 2002), reaction to hazards 

(Velichkovsky et al., 2002) and braking style (Green, 2000; Saad et al., 2005 

; Winsum & Heino, 1996). However, each of these parameters taken 

individually provides little information about a task as complex as driving. For 

example, it is clear that high speeds are dangerous due to various reasons: 

less time for braking in a case of an emergency (Green, 2000), less time for 

situational assessment (Saad et al., 2005 ) and high speeds result in more 

severe accidents (Lajunen et al., 1997). Therefore, it could be concluded that 

speed reduction is a good behaviour to compensate, for example, for 

additional load (Chiang et al., 2001; Rakauskas et al., 2004). The difficulty 
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here is to determine how much attention is still required and whether the 

speed reduction is sufficient to maintain safe driving. Another concern is that 

speed reduction can have negative consequences, such as increased traffic 

volume and emissions due to traffic concentration (Soriguera, Martínez, 

Sala, & Menéndez, 2017). Moreover, driving under the speed limit for a 

particular road can cause annoyance and stress for other road users 

(Lajunen & Parker, 2001).  

Understanding the relationship between driving performance and accident 

risk is the most important and most difficult task in contemporary driving 

safety research. This difficulty is due to the variety of behavioural measures 

involved in safety assessment and the variety of variables influencing these 

measures (Hirsch, 1997). Hirsch (1997) also underlines the importance of 

distinguishing between the terms ‘legal’ and ‘safe’ driving, as these can 

create confusion. He states that legal driving is simply defined by ‘the letter 

of the law’, whereas safe driving is defined as an absence of actions that 

potentially can lead to accidents and near misses, thus increasing the risk of 

collisions. Moreover, he argues that legal driving is not always safe driving as 

well as safe driving not always being legal. For example, speed limit violation 

is not always unsafe, as speed limits are set with reference to traffic and 

weather conditions.   

Saad et al. (2005 ) argue that a decline in performance in one of the 

parameters cannot reliably predict accident increase. For example, an 

increase in mental workload can be compensated for by a speed decrease. 

They argue that for an accident to take place the risk factor should exceed 

the compensatory factor by a critical level. For example, a drunk driver can 

underestimate a braking distance on a slippery road. As a result, a speed 

reduction could exceed the safe stopping distance in an emergency situation. 

De Waard (2002) suggests that although extra effort can help maintain 

necessary attention while driving, it can be only a short-term solution. Over a 

longer period, the mental effort can activate a cardiovascular defence 

response, which can lead to hypertension and performance decline.     

One of the difficulties in generalising experimental results to a wider 

population is the variety of individual differences. With respect to driving 
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safety, these individual differences can be defined by different aspects, such 

as proneness to risk-taking or attentional ability. Willingness to take risk has 

been the subject of controversy. For example, Wilde (1982) proposed a 

theory of risk-homeostasis, stating that an individual, at any given time, tends 

to preserve a constant personal risk level. Summala (1988), in contrast, 

states that individuals prefer risk levels close to zero, and Fuller (2005) 

argues that individuals are mostly guided by threat avoidance rather than a 

risk-taking. Nevertheless, personal risk level is different for every individual 

and therefore varies considerably between individuals. For example, Taieb-

Maimon and Shinar (2001) found that drivers choice of minimum and 

comfortable headways were significantly correlated with drivers’ age, with 

younger drivers keeping shorter headways. Evans and Wasielewski (1983) 

came to a similar conclusion: shorter headways were maintained by young 

drivers, drivers who had accidents and traffic violation history and those who 

did not wear a seatbelt. They included these drivers in a risky driver group. In 

addition, Evans and Wasielewski (1983) found gender differences in 

maintaining safe headway, with male drivers choosing shorter headways. 

Jonah (1997) reviewed studies looking at relationships between personality 

factors, such as sensation seeking and risky driving, and concluded that 

sensation-seeking motivates risky driving.   

The willingness to adapt a risky driving style can be conditioned not only by 

individual differences but can fluctuate within an individual as well (Vaa, 

2007). Vaa states that drivers’ emotional states are largely responsible for 

risk acceptance or refusal and can vary within an individual. Both studies in 

this thesis have provided evidence in support of this statement. Moreover, 

this thesis provides evidence for the need of complex assessment of driving 

safety that takes into account a variety of measurements. Similarly to 

Robertson et al. (1992), the simulator study found that mean speed is not a 

representative measure when assessing driver behaviour on the approach to 

junctions. The results show that in these situations ‘jerky driving’ is more 

representative of dangerous driving style. Speed variation was higher in high 

arousal moods: happy and angry. The important task now is to determine the 

cause of the jerkiness. The logical conclusion is – acceleration and braking 
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style. Table 22 shows that drivers in a neutral mood decreased speed 

variance. This decrease was due to less braking force and more 

deceleration. The sad drivers decreased speed variation by pressing the 

brake pedal for a longer time. Both of these moods did not facilitate harder 

braking, which could be potentially dangerous. The speed variance in the 

happy and the angry moods increased, but for different reasons: the happy 

drivers preferred to press the brake pedal for longer, but not as hard, the 

angry drivers preferred shorter and harder braking, thus adapting the most 

dangerous driving style. The numbers are calculated as averages by Mood 

ignoring Load from CFR and CFL hazards. The          symbol indicates non-

systematic and non-significant changes. 

Figure 63 represents examples of neutral and angry driving styles on the 

approach to junctions. It shows that the drivers in the neutral mood tend not 

to accelerate on the approach to junctions, which could be the reason for not 

applying the brake. The angry drivers, instead, prefer to press the 

accelerator until very close to the junction, which necessitate hard braking 

when a hazard appears. These parameters support the conclusion that 

drivers in an angry mood are less proactive and less planning of their speed 

on the approach to junctions.  

Table 22: Speeding and braking behaviour by Mood  

Mood Speed 

variance 

Acceleration Deceleration Braking 

time 

Braking 

force 

Neutral      

Happy      

Sad      

Angry      
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Figure 63: Relationship between acceleration and braking force in the angry 
and the neutral moods. Time points represent simulator sampling 
frequency, 60 Hz 

 

Drivers’ behaviours while passing parked car hazards differed from their 

behaviours on approach to junctions. Possibly when passing the parked 

cars, the drivers did not expect the car to pull out without indicating, but on 

the approach to junctions drivers were more aware of the possible dangers. 

A parked car should indicate before commencing a manoeuvre, however, in 

reality this does not always happen. In every day driving, unexpected 

hazards can occur, for example, a pedestrian suddenly running across the 

road. Thus it is important to understand drivers’ behaviours when facing 

unexpected hazards while affected by different emotions.      

In the simulator study the speed changes from the corresponding baseline 

varied by mood, with high arousal moods resulting in a speed increase and 
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low arousal moods resulting in a speed decrease (Table 23). The numbers 

are calculated as average by Mood ignoring Load from PS and PG hazards. 

The          symbol indicates non-systematic and non-significant changes. Due 

to the unexpected nature of these hazards, participants tended to brake 

harder instead of slowing down using just engine power. However, the brake 

pressure they applied varied by mood. The angry and the happy participants 

increased brake force compared to the baseline. Participants in the neutral 

mood pressed the brake pedal longer and more gently. Probably they did not 

need to apply the same brake pressure to slow down due to the lower speed. 

The sad participants had a similar braking pattern, except without much 

increase in the braking time, which again could be due to the slower speed 

on the approach to these hazards.  

Interestingly, there was no difference in speed between the low arousal 

moods (neutral and sad), regardless of the evidence of mind wandering in 

the sad mood, gained from other measures, such as longer fixation 

durations. This could be due to several reasons. First, driving speed in the 

low arousal moods was not high enough to require rapid braking. Second, 

the impact of mind wandering on the sad drivers’ performance was not 

strong enough to make impact on their ability to notice the hazard. This result 

shows that speed reduction can appear not only as a compensation for 

additional load (the sad drivers) (Patten et al., 2004; Saad et al., 2005 ) but 

also as awareness of a current road situation (the drivers in the neutral 

mood). SWOV (2012) report shows that drivers tend to violate speed limits if 

the speed limits are not credible. This is true in both directions: when driving 

faster than the speed limit and when driving slower than the speed limit. The 

neutral mood encourages responsible driving and hazard anticipation, 

making drivers analyse the road situation instead of blindly following speed 

limit signs. Figure 64 represents speed, acceleration and braking in the 

neutral and the happy moods. The example is for one participant only, but it 

is representative of the trend in these moods. It shows that when a slower 

speed is employed, the brake pressure is lower and with a higher speed the 

brake is pressed harder.      
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Table 23: Speeding and braking behaviour by Mood  

Mood Mean speed Acceleration Deceleration Braking 

time 

Braking 

force 

Neutral      

Happy      

Sad      

Angry      

 

 

 

Figure 64: Relationship between speed and braking force in the happy and 
the neutral moods. Time points represent simulator sampling frequency, 
60 Hz 

6.11 Discussion summary  

Drivers’ mood valence and arousal have a significant effect on driving safety. 

This influence also differs as a function of traffic scenarios. The present 
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studies found different behaviours for: the car following event, when drivers’ 

speed choice is restricted by the lead car’s speed and the driving when 

drivers’ speed choice is restricted only by their hazard awareness and traffic 

conditions. The mood induced mind wandering affects driving safety in 

various ways. The effects of the neutral, the angry and the sad moods are 

the most consistent. The happy mood shows contradictory results. The 

reason for this contradiction requires further investigation.  

6.11.1 Driving performance in situations requiring sustained 

attention 

The best performance in driving requiring sustained attention was in the 

neutral mood. In comparison to the baseline, the drivers showed improved 

information processing and the ability to shift attention, the wider visual field 

of view, and similar to the baseline responses to the actions of the lead 

vehicle. Participants were calm, with similar to the baseline HR and lower 

EDA. Parameter estimates showed that the driving performance is not 

affected by the type of cognitive load applied while driving. The participants 

also reported that both types of the cognitive load did not distract them from 

the driving task. None of the measurements showed a decline in 

performance compared to the baseline. Conclusions – drivers not affected 

by emotions show safe driving and can cope with some amount of additional 

load without the performance decline.  

The sad mood is also an emotional state with low arousal, but a negative 

valence. In comparison to the baseline, drivers’ attention and information 

processing ability as well as the width of peripheral road scanning, declined. 

This caused an increase in time headway (TH) as a “compensation” for the 

loss of attention. However, large headways resulted in reaction delay and 

overshooting, which could cause confusion in the following vehicles. The 

analyses showed that the sad drivers could be diverted from their internal 

feelings by applying some amount of additional load. In other words, asking 

some driving-related questions improve their attentional shift, information 

processing and reactions to the speed changes in the lead vehicle. The sad 

mood also is the most harmful when no cognitive distraction is applied. The 

sad drivers’ HR and EDA was lower than in the baseline, but only minimally, 
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showing low arousal level. Conclusions – larger following distance is not 

always a safety advantage. When other measurements are evaluated, 

enhanced results are found. Larger TH might occur as a compensation for 

attentional lapses and reaction delay. Consequently, the sad mood is 

detrimental to driving safety and some amount of cognitive distraction 

improves the drivers’ road awareness. 

The angry mood is another mood with a negative valence, but with a high 

arousal. Angry drivers’ EDA did not change much from the baseline, but HR 

showed a significant increase. This shows that HR is a more sensitive 

measure of drivers’ arousal level during a task that requires sustained 

attention. In comparison to the baseline drivers’ attentional shift, information 

processing and peripheral vision did not change much, showing that a high 

arousal can compensate for the harmful effect of a negative valence. The 

drivers preferred THs close to the lead vehicle, thus leaving no much time for 

another emergency, should it occur. The high attentional effort permitted 

them not only for the closer following distance but also for fast reactions and 

swift adjustments to the speed change of the lead vehicle. When no cognitive 

load was applied, the angry drivers mostly concentrated on the car ahead, 

thus narrowing their horizontal VF. Conclusions – the angry drivers might 

seem to employ all the safety behaviours: high attention, fast reactions and 

wide visual field. These features permit them for a minimal distance from the 

lead vehicle. However, this driving style has two possible dangers: first, the 

drivers leave too little space and time for actions in case of additional hazard 

(e.g. the need for emergency stop), and second - fatigue, which can occur 

without drivers’ conscious awareness and unexpectedly slow drivers’ 

reactions. Therefore, driving in the angry mood is harmful to driving safety, 

some amount of cognitive load can lower their concentration on the car 

ahead, thus increasing hazard awareness from a side road.  

The happy mood is another emotional state with a high arousal, but a 

positive valence. Attention, information processing and peripheral vision did 

not change much after the happy mood induction, similarly as in the angry 

mood. However, the happy drivers preferred following distance further away 

from the lead car, compared to the angry drivers. Their reactions to the 
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speed change of the lead vehicle also improved. HR and EDA were similar to 

the baseline measurements, showing that arousal level was not high enough 

to overcome attenuation effect of repetitive events. Applying some additional 

load improved drivers’ visual field and reactions to lead vehicle’s speed 

changes. Conclusions – driving in the happy mood does not cause a 

performance decline during car following. Cognitive load can disconnect 

drivers from internal thoughts and improve driving safety.  

Overall some cognitive load does not affect drivers in the neutral mood and 

improve the safety of other drivers. 

   

6.11.2 Driving without speed restriction by the car ahead 

 

Driving when the speed choice is not restricted by the car in front differs from 

the coherence task. In this instance, drivers can choose how to adjust their 

speed in accordance with road and traffic conditions, as well as legal speed 

limits and social pressure. In this situation, the effects of drivers’ behaviours 

on their ability to deal with hazards is examined. Although drivers behaved 

differently on the approach to junctions (JH) and when passing a car 

suddenly moving off (CH) hazard, the influence of mood on drivers’ 

behaviour was evident in all hazardous situations. 

Drivers in the neutral mood showed the most responsible and safe driving 

style. On approach to JH, they anticipated a possible hazard from the side 

road, dropping speed in advance and preferring milder and longer braking 

with engine brake involved, instead of rapid and sharp press of the brake 

pedal. While passing CH, drivers in the neutral mood preferred to drop their 

speed on the approach of the parked cars. Slower speed permitted for milder 

braking on hazard onset time. These parameters showed an improvement in 

comparison with the baseline driving. HR and EDA showed that drivers in the 

neutral mood did not feel stressed when hazard appeared, providing 

additional evidence for hazard anticipation. Cognitive load did not affect 

drivers’ speed and speed variation. The only parameter affected by cognitive 

load was deceleration, when drivers came off the accelerator pedal later if 
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distracted by questions. However, when compared to the baseline, it 

appeared that, distracted drivers still anticipated hazards better than while 

driving in their usual style. Conclusions – the neutral mood is beneficial for 

driving safety with some parameters improving compared to the baseline. 

Drivers also can cope with the additional load without performance 

deterioration. 

The drivers in the sad mood adapted driving style similar to the drivers in the 

neutral mood, with slower speed on the approach of CH and less speed 

variation on the approach of JH. However, the sad drivers’ braking was 

sharper with more braking force involved. This is explained by poor hazard 

anticipation due to mind wandering. This statement is also supported by the 

slower hazard response times and longer information processing in the 

desktop study. Cognitive load lowered drivers’ speed variation on the 

approach of the junctions. Physiological measurements did not show 

systematic arousal changes during these hazardous events. Conclusions – 

the sad drivers had to brake harder regardless of slower driving, showing 

some impact of mind wandering. Cognitive load had a positive effect on the 

speed variation. 

On approach to the junctions the angry drivers’ speed variation did not 

change significantly from the baseline. On the approach to junctions, they 

preferred braking style applying harder pressure to the brake pedal. When 

passing CH, the angry drivers preferred fast driving, close to the speed limits. 

This was not a consequence of the speed increase in the angry mood; the 

speed was similar to the baseline. However, as the baseline was always the 

first drive, some hazard anticipation was expected in the subsequent drives. 

The angry drivers either did not anticipate that parked car could move off, or 

felt confident passing them. The angry drivers also differed in their braking 

style. Similarly like during JH, they preferred sharper and shorter braking. HR 

increase during these four hazards indicate higher arousal when angry 

compared to the baseline. EDA, however, did not change significantly from 

the baseline. When no cognitive load was applied, the angry drivers tend to 

press the brake pedal harder on the approach to junctions and when passing 

the car moving off from the group of parked cars. They also preferred fast 
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driving regardless of the cognitive load when passing CH. Conclusions – 

high speed and rapid braking characterise the angry drivers as being less 

predictable for the other road users, thus, adapting more dangerous driving 

style. The type of questions, asked while driving, did not change their driving 

styles, only had some influence on approach of the junctions. The angry 

mood was not included in the desktop study. Thus data regarding hazard 

response times and attentional ability are missing from the analysis.  

The mean speed when passing parked cars and the speed variation on 

approach to the junctions increased after the happy mood induction showing 

that the happy drivers adapt faster and jerkier driving styles. Analysis of 

braking style revealed that this was due to the sharper braking for most of 

the hazards. However, the happy drivers were inconsistent in their braking 

habits, for some hazards showing longer braking times, for others sharper 

braking. Similarly, inconsistent was HR and EDA data. Moreover, sometimes 

cognitive load had a positive effect on speed and braking, sometimes the 

other way round. For example, the happy drivers pressed the brake pedal 

longer on approach to the junctions when no load was applied and increased 

the speed passing the parked cars when no questions were asked and when 

DRL was applied. Longer brake pedal press was a positive effect of mood as 

it resulted in less braking force, the speed increase is a negative impact as it 

resulted in harder braking. However, these changes were significant in 

comparison to the neutral mood. This makes conclusions being dependent 

on both moods. The analysis did not show the clear effect of cognitive load 

on the happy drivers. Conclusions – the happy drivers are inconsistent in 

their driving habits. This inconsistency is mirrored in their HR and EDA. 

However, from the present data, it is difficult to conclude whether these 

contradictions were due to the individual differences, or the happy mood 

inconsistently affecting driving styles. 
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6.12 Limitations and suggestions for further research  

The studies, reported in this thesis, have improved the understanding of 

effects of mood on driving performance and established possible direction for 

minimising its negative effect. This thesis comprises two studies: the desktop 

study and the simulator study. Both of them have advantages and 

disadvantages which are outlined in Chapters 4 and 5. The studies also have 

several limitations. First, the conclusions would be more detailed and the 

directions for further research would benefit from a field study, investigating 

the effects of drivers’ mood and cognitive load on their driving performance in 

real road situations.  

Second, the study as big as this simulator study, would benefit from the 

larger number of participants. The larger number of participants would 

provide with more power in statistical analysis and more clarity in the cases 

when marginally significant results or trends in the predicted directions were 

recorded. 

Third, this thesis have investigated two dimensions of mood valence (positive 

and negative) and two dimensions of arousal (low and high). However, 

valence and arousal are not discrete metrics in real life. Thus, more detailed 

research is needed to determine the threshold when valence and arousal 

become detrimental to driving safety.      

Forth, the simulator study could be viewed as comprising of two studies. One 

investigating the effects of drivers’ mood on driving performance, and the 

other investigating possible interventions, in case of performance decline. 

The implementation of the cognitive load in this study should be viewed 

differently from the usual use of cognitive load in driving related research. 

Typically, cognitive load during driving is applied as a distractor from the 

main task, driving, and the impacts of this distraction on driving safety is 

investigated. In this simulator study, cognitive load was used as a 

disconnector from the mood induced mind wandering. Because, to the best 

of the author’s knowledge, this is the novel approach in utilising cognitive 

load, the exact amount of distraction was difficult to determine. Two types of 

cognitive load were applied: DRL and NDRL. The results showed that the 
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most sensitive to these interventions were glance behaviour measures. 

Cognitive load did not show much effect on driving styles and did not show 

any effect on physiological measures. Nevertheless, this first step in 

developing a method that would permit for drivers’ attention direction to the 

road environment, is promising. The type of load was not too high to affect 

physiological measures, as the previous research shows that increased HR 

and EDA is associated with drivers’ workload which is detrimental to driving 

safety. However, the precise amount of cognitive load, able to reallocate 

drivers’ attention without deteriorating driving performance, is still to be 

determined.  

Future research could benefit from separately investigating methods of 

disengaging drivers from mind wandering and redirecting their attention to 

the road. This would permit for more detailed choice of cognitive distractors 

and optimisation of application methods.       

6.13 Contributions to existing knowledge   

This thesis presents research that extends on understanding of the effects of 

mood and cognitive load on driving safety in the following ways:                 

 It has demonstrated that the effects of mood on time headway is more 

nuanced than previously thought. 

 It is the first to use a driving simulator to investigate the effect of 

moods on driving accelerating. 

 It adds to the existing knowledge of the relationship between drivers’ 

mood, their driving style, hazard perception and anticipation and their 

ability to act safely in case of an unexpected road event.  

 behaviour, such as braking styles, proneness to speeding or  

 It is the first to assess driving safety using many components of safety 

indicators not only from the perspective when they complement each 

other, but when they seem to contradict each other.   

 It established the possibility to interfere with mood related intrusive 

thoughts and mind wandering, and offered a possible method to 

implement this interference.  
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 The knowledge of effects of mood and cognitive load can help to 

develop in car devices and support tools able to detect and interfere 

with drivers’ attentional lapses. 

6.14 Concluding remarks 

This thesis has contributed to the existing knowledge of possible 

consequence of drivers’ mood and emotional state on driving behaviours 

and, as a consequence, driving safety. The findings have a high value for 

practical implications, described in Section 1.4. The construction of devices, 

capable of completing this type of assessment of drivers’ mental and 

physical condition, might seem too complicated at present. However, with 

development of non-invasive methodologies for assessment of physiological 

arousal and emotional state, along with tools capable of measuring drivers’ 

attention using their glance patterns, it all becomes practical and easy to 

implement. This makes it important to accurately identify drivers’ emotional 

state by using multiple measures, such as eye tracking and physiological 

measures along with driving related measures, such as speed and braking 

patterns.    

This complex assessment is the first step in developing such “assessment 

systems”. The next step is to develop possible interventions. This thesis is 

the first step in understanding of what type of intervention is the most useful 

in re-engaging drivers to the driving task.  
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Appendix 1: Questionnaire  

Demographical information 

 

Could you please provide the following information about yourself? 

 

1. Your name ……………………………….. 

 

2. Your age ………………………………………. 

 
3. Your country of origin …………………………………….. 

 
4. How long have you lived in the UK ………………………………… 

 
5. Do you like western classical music ……………………………………. 

(please circle a number from 1 to 5, with 1 not at all and 5 really love it) 

 

1……………2…………3…………4…………5 

 

Could you please assess your present mood using a grid below?  

 

Self-assessment grid (pre study) 
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Self-assessment grid (post study)           

 

 

Rate on a scale from 1 to 5 how much of the following questions apply to 

you. With 1 not at all and 5 totally apply. Please circle the number.  

 

1. Did you feel calm/happy/sad/angry (only 1 option was available) 

during the drive? 

1.................2……………3…………….4…………..5  

 

2. Did you find it difficult to concentrate on driving while feeling this 

emotion? 

 

1……………2……………3……………4……………5 

 

3. Have you noticed that some of the questions where driving related 

and some were about general life event?  

Yes                               No 

4. Did you feel distracted when asked driving related questions? 

 

1……………2…………….3……………4…….………5 

 

5. Did you feel distracted when asked general questions? 

1…………….2……………3………….…4……….……5 
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Appendix 2: Means and standard deviations (in brackets) for 

measurements collected in the simulator study 

Table 1: Post-study self-reported mood valence and arousal
4
 

 

Mood Valence Arousal 

Neutral 6.7(2.4) 3.89(1.17) 

Happy 6.4(1.65) 5.7(1.64) 

Sad 4.2(1.14) 4(1.5) 

Angry 3.7(1.57) 6.3(1.34) 

 

Table 2: Changes from the baseline in EDA (micro-Siemens) and HR (beats 
per minute) by Mood and Load 

Mood EDA (μS) HR (BPM) 

Neutral -0.74(1.52) -9.75(7.63) 

Happy 0.45(0.75) 4.86(4.91) 

Sad -0.81(0.85) -3.5(6.49) 

Angry 0.3(0.36) 14.22(11.24) 

 

Table 3: EDA (micro-Siemens) and HR (beats per minute) by Mood and 
Load during the car following task 

 

 Load Neutral Happy Sad Angry 

EDA NONE -2.81 (5.35) -0.23 (0.52) -1.16 (1.28) -0.64 (0.64) 

 NDRL -2.34 (4.32 -0.23 (0.45) -1.24 (1.24) -0.23 (0.38) 

 DRL -1.85 (3.345) -0.9 (1.82) -1.19 (1.54) -0.55 (1.16) 

HR NONE -0.6 (13.06) 0.74 (6.96) -6.98 (5.18) 14.2 (27.96) 

 NDRL 4.53 (7.86) 3.47 (7.73) -7.3 (16.36) 19.8 (33.9) 

 NONE -6.62 (9.26) -1.87 (4.76) -3.62 (8.16) 11.28 (26.99) 

                                            

4 Self-rated on an assessment-grid from 1-not at all to 9-felt a lot  
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Table 4: Number of fixations, fixation durations (measured in seconds) and 
changes in number of fixations and fixation durations from the baseline 
by Mood and Load during car following task  

 

 Mood 

Load 

 

Neutral 

 

Happy 

 

Sad 

 

Angry 

Number of 

fixations 

NONE 190.1(20.83) 144.4(24.67) 182.1(21.97) 187.8(27.51) 

NDRL 190.6(20.58) 156.5(16.14) 172.7(20.72) 185.8(28.5) 

DRL 186.9(20.61) 154.5(27.11) 206.4(18.02) 176.8(26.98) 

Changes in 

number of 

fixations 

NONE 12.7(16.22) -31.3(12.04) -30.9(12.92) -4.6(5.89) 

NDRL 13.2(14.5) -19.2(6.99) -40.3(12.61) -6.6(5.76) 

DRL 9.5(16.01) -21.2(8.39) -6.6(8.37) -15.6(7.5) 

Fixation 

durations 

NONE 0.39(0.03) 0.52(0.04) 0.66(0.07) 0.47(0.05) 

NDRL 0.39(0.03) 0.42(0.03) 0.55(0.07) 0.46(0.04) 

DRL 0.42(0.03) 0.53(0.05) 0.57(0.08) 0.46(0.04) 

Changes in 

fixation 

durations 

NONE -0.09(0.03) -0.03(0.02) 0.08(0.03) -0.02(0.02) 

NDRL -0.09(0.04) -0.104(0.05) -0.02(0.01) -0.03(0.01) 

DRL -0.06(0.02) -0.03(0.02) -0.01(0.01) -0.02(0.01) 
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Table 5: Horizontal spread of fixations and changes in spread of fixations 
from the baseline by Mood and Load during car following task, 
measured in degrees 

 

 Mood 

 

Load 

 

Neutral 

 

Happy 

 

Sad 

 

Angry 

Spread of 

fixations 

NONE 8.29 (3.39) 5.78 (2.53) 5.32 (2.53) 5.03 (1.49) 

NDRL 7.38 (2.73) 5.68 (1.88) 5.42 (1.32) 5.32 (2.02) 

DRL 6.99 (2.73) 5.09 (1.26) 4.87 (1.57) 5.21 (1.63) 

Changes in 

spread of 

fixations 

NONE 2.39 (3.79) 0.096 (2.85) -1.03 (2.7) -0.48 (2.5) 

NDRL 1.48 (3.73) -0.02 (3.14) -0.93 (2.35) -0.19 (2.44) 

DRL 1.09 (2.33) -0.6 (2.76) -1.48 (2.17) -0.31 (2.5) 

 

Table 6: Phase shift and changes in phase shift from the baseline by Mood 
and Load in the cycle 1, measured in seconds 

 

 Mood 

Load 

Neutral Happy Sad Angry 

Condition 

comparison 

NONE 3.68 (3.21) 5.2 (1.22) 5.74 (0.47) 2.96 (2.27) 

NDRL 3.78 (2.5) 4.34 (1.48) 5.19 (1.49) 4.53 (1.73) 

DRL 4.06 (2.23) 4.71 (1.94) 4.88 (3.54) 1.74 (2.51) 

Changes from 

baselines 

NONE -1.11 (4.1) -0.09 (2.05) 1.02 (2.21) -1.88 (1.64) 

NDRL -1.01 (3.63) -1.47 (4.12) 1.16 (1.43) -2.23 (3.59) 

DRL -0.73 (4.06) -1.14 (2.96) 0.69 (1.69) -2.01 (1.82) 
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Table 7: Modulus and changes in modulus from the baseline by Mood and 
Load in cycle 1 

 

 Mood 

Load 

Neutral Happy Sad Angry 

Condition 

comparison 

NONE 0.76 (0.29) 0.6 (0.21) 1.13 (1.02) 0.99 (0.34) 

NDRL 0.84 (0.51) 0.55 (0.3) 1.13 (0.86) 0.98 ()0.24) 

DRL 0.84 (0.2) 0.59 (0.3) 1.09 (0.29) 0.91 (0.27) 

Changes from 

baseline 

NONE -0.003 (0.44) -0.22 (0.42) 0.36 (0.89) 0.09 (0.43) 

NDRL 0.08 (0.5) -0.31 (0.41) 0.41 (0.72) 0.08 (0.3) 

DRL 0.08 (0.33) -0.23 (0.35) 0.26 (0.31) 0.01 (0.24) 

 

 

 

Table 8: Modulus and changes in modulus from the baseline by Mood and 
Load in cycle 2 

 Mood 

Load 

Neutral Happy Sad Angry 

Condition 

comparison 

NONE 0.75 (0.32) 0.76 (0.37) 1.01 (0.57) 0.58 (0.32) 

NDRL 0.85 (0.33) 0.61 (0.33) 1.14 (0.76) 0.72 (0.26) 

DRL 1.09 (0.73) 0.78 (0.37) 0.85 (0.27) 0.54 (0.34) 

Changes from 

baseline 

NONE -0.02 (0.42) -0.04 (0.34) 0.15 (0.84) -0.04 (0.47) 

NDRL 0.08 (0.24) -0.2 (0.53) 0.27 (0.36) 0.1 (0.24) 

DRL 0.31 (0.57) -0.03 (0.8) -0.01 (0.56) -0.08 (0.35) 
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Table 9: TH by Mood and Load, measured in seconds 

 

 

 

 

 

 

 

 

 

 

 

 

Mood/Load Time 

(Sec) 

Neutral Happy Sad Angry 

NONE 1 0.1 (0.22) 0.13(0.31) 0.01(0.19) 0.26(0.42) 

 1-2 0.26(0.21) 0.24(0.19) 0.05(0.09) 0.26(0.24) 

 2-3 0.24(0.16) 0.25(0.15) 0.36(0.25) 0.21(0.2) 

 3-4 0.26(0.21) 0.29(0.22) 0.33(0.18) 0.14(0.16) 

 4-5 0.07(0.09) 0.04(0.06) 0.13(0.11) 0.1(0.15) 

 5-6 0.06(0.15) 0.002(0.007) 0.13(0.16) 0.04(0.08) 

NDRL 1 0.16(0.29) 0.12(0.29) 0.01(0.13) 0.12(0.25) 

 1-2 0.25(0.21) 0.3(0.29) 0.1(0.14) 0.41(0.29) 

 2-3 0.29(0.2) 0.24(0.14) 0.42(0.24) 0.25(0.19) 

 3-4 0.19(0.17) 0.18(0.19) 0.25(0.14) 0.11(0.13) 

 4-5 0.06(0.06) 0.09(0.13) 0.13(0.16) 0.07(0.11) 

 5-6 0.02(0.04) 0.05(0.12) 0.09(0.11) 0.04(0.12) 

DRL 1 0.07(0.12) 0.14(0.29) 0.01(0.02) 0.17(0.32) 

 1-2 0.32(0.25) 0.19(0.28) 0.04(0.05) 0.3(0.29) 

 2-3 0.33(0.23) 0.28(0.26) 0.29(0.14) 0.23(0.2) 

 3-4 0.19(0.19) 0.18(0.19) 0.4(0.16) 0.14(0.14) 

 4-5 0.03(0.05) 0.1(0.16) 0.2(0.1) 0.12(0.19) 

 5-6 0.003(0.14) 0.03(0.06) 0.07(0.11) 0.05(0.14) 
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Table 10: Changes in TH from the baseline by Mood and Load, measured in 
seconds 

 

 

 

 

 

 

 

 

Mood/Load Time 

(Sec) 

Neutral Happy Sad Angry 

NONE 1 0.02(0.05) 0.05(0.12) -0.25(0.08) 0.25(0.43) 

 1-2 0.03(0.21) -0.07(0.24) -0.19(0.22) 0.0002(0.34) 

 2-3 -0.23(0.2) -0.05(0.19) 0.01(0.24) -0.11(0.2) 

 3-4 0.09(0.17) 0.14(0.15) 0.09(0.23) -0.08(0.16) 

 4-5 0.03(0.09) -0.05(0.15) 0.05(0.19) -0.02(0.17) 

 5-6 0.05(0.15) -0.01(0.02) 0.08(0.22) -0.04(0.1) 

NDRL 1 0.12(0.26) 0.001(0.04) -0.03(0.08) 0.1(0.25) 

 1-2 0.02(0.25) -0.06(0.34) -0.14(0.25) 0.14(0.37) 

 2-3 -0.17(0.24) -0.09(0.2) 0.07(0.31) -0.06(0.17) 

 3-4 0.01(0.12) 0.02(0.1) 0.11(022) -0.11(0.22) 

 4-5 0.01(0.07) -0.006(0.05) 0.05(0.23) -0.04(0.16) 

 5-6 0.01(0.02) 0.04(0.12) 0.04(0.2) -0.03(0.06) 

DRL 1 0.04(0.29) 0.09(0.23) -0.03(0.08) 0.15(0.23) 

 1-2 0.09(0.18) -0.12(0.34) -0.2(0.22) 0.03(0.3) 

 2-3 -0.13(0.32) -0.01(0.26) -0.06(0.28) -0.08(0.16) 

 3-4 0.02(0.14) 0.03(0.14) 0.16(0.24) -0.08(0.15) 

 4-5 -0.01(0.06) 0.004(0.12) 0.11(0.18) 0.0003(0.2) 

 5-6 -0.01(0.02) 0.01(0.07) 0.01(0.21) -0.02(0.05) 
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Table 11: Speed variation and changes in speed variation from the baseline 
during CFL and CFR hazard by Mood and Load, measured in miles per 
hour  

 

  Mood/Load Neutral Happy Sad Angry 

CFL Conditions NONE 0.56 (0.63) 1.05 (1.18) 0.45 (0.51) 0.75 (0.63) 

  NDRL 0.16 (0.1) 1.06 (0.97) 0.42 (0.48) 0.35 (0.29) 

  DRL 0.37 (0.38) 0.99 (1.04) 0.3 (0.27) 0.91 (1.17) 

 Changes  

 

NONE -0.53 (0.89) 0.21 (1.24) -0.53 (1.46) 0.36 (0.77) 

  NDRL -0.93 (1.1) 0.22 (1.23) -0.56 (0.94) -0.04 (0.45) 

  DRL -0.72 (1.02) 0.15 (1.16) -0.68 (1.29) 0.52 (0.78) 

CFR Conditions NONE 1.12 (0.95) 1.29 (1.2) 0.44 (0.52) 0.68 (0.65) 

  NDRL 0.35 (0.29) 1.21 (0.93) 0.42 (0.47) 0.16 (0.11) 

  DRL 0.84 (1.03) 1.25 (1.11) 0.3 (0.27) 0.52 (0.52) 

 Changes NONE 0.3 (0.66) 0.35 (1.54) -0.54 (1.1) 0.74 (1.15) 

  NDRL -0.21 (0.39) 0.24 (1.19) -0.07) (0.44) -0.03 (0.45) 

  DRL 0.15 (0.67) 0.32 (1.54) -0.19 (0.92) 0.45 (0.59) 

 

Table 12: Changes in deceleration from the baseline by Mood and Load 
during CFR hazard 

 

Mood/Load Neutral Happy Sad Angry 

NONE 0.63 (0.9) 0.13 (0.73) 0.05 (0.51) -0.49 (0.68) 

NDRL 0.65 (0.83) -0.45 (0.75) -0.03 (0.7) -0.25 (0.65) 

DRL 0.34 (1.05) 0.12 (0.51) -0.25 (0.55) -0.13 (0.68) 
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Table 13: Changes in time actively braking (measured in seconds) from the 
baseline by Mood and Load during for CFL and CFR hazards 

 

 Mood/Load Neutral Happy Sad Angry 

CFL NONE 0.31 (0.43)  0.25 (0.74) 0.34 (0.95) 0.02 (0.53) 

 NDRL 0.42 (0.49)  0.09 (0.92) 0.62 (1.51) -0.35 (1.51) 

 DRL 0.24 (0.71)  -0.07 (0.47) -0.16 (0.55) -0.41 (1.48) 

CFR NONE 0.21 (1.22) -0.85 (1.29) 0.15 (0.72) 0.12 (0.89) 

 NDRL 0.32 (1.13) -0.78 (1.69) 0.2 (1.03) -0.03 (0.3) 

 DRL 0.13 (0.87) -0.28 (1.19) 0.35 (0.72) -0.17 (0.45) 

 

 

Table 14: Braking force and changes in braking force from the baseline by 
Mood and Load during CFL and CFR hazards, measured in Newtons 

 

  Mood/ 

Load 

Neutral Happy Sad Angry 

CFL Conditions 

 

 

tions 

NONE 26.91 (34.07) 44.05 (60.6) 18 (16.98) 58.58 (50.22) 

  NDRL 17.95 (31.74) 54.28 (56.14) 15.56 (18.02) 42.69 (35.59) 

  DRL 22.89 (28.79) 43.46 (48.1) 15.07 (16.47) 49.53 (42.95) 

 Changes NONE -5.67 (12.24) -21.8 (52.6) 14.73 (38.9) -2.93 (29.96) 

  NDRL -11.58 (28.53) -32.43 (56.81) 10.71 (38.08) 3.92 (41.47) 

  DRL -8.6 (24.28) -22.21 (65.42) 10.28 (33.05) -11.98 (21.4) 

CFR Conditions NONE 16.41 (31.03) 18.55 (15.66) 37.11 (34.58) 15.13 (12.94) 

  NDRL 43.9 (88.83) 28.3 (24.39) 38.85 (30.92) 18.97 (32.32) 

  DRL 26.9 (53.51) 38.1 (44.99) 28.36 (26.22) 41.49 (57.6) 

 Changes NONE -9.93 (33.19) 4.58 (28.4) -23.41 (24.35) 24.96 (88.84) 

  NDRL -37.42 (90.77) -5.17 (44.39) -25.15 (29.23) 21.12 (90.78) 

  DRL -23.13 (54.96) -14.97 (55.16) -14.66 (25.45) -1.4 (32.09) 

 

 



- 275 - 

Table 15: Average speed and changes in average speed from the baseline 
by Mood and Load for ‘parked car’ hazards, measured in miles per 
hour. 

 

  Mood/ 

Load 

Neutral Happy Sad Angry 

PS Conditions NONE 33.77 (3.5) 39.99 (4.48) 36.66 (2.68) 41.48 (2.98) 

  NDRL 34.53 (3.89) 40.2 (4.04) 35.12 (3.77) 40.06 (4.08) 

  DRL 32.83 (3.55) 40.38 (3.89) 34 (4.21) 41.24 (2.92) 

 Changes NONE -4.95 (4.18) 

. 

0.41 (5.99) -3.78 (3.75) 0.36 (2.79) 

  NDRL -4.18 (5.46) 0.62 (6.05) -5.32 (4) -1.06 (4.81) 

  DRL -5.88 (6.31) 0.8 (6.09) -6.44 (5.62) 0.13 (3.57) 

PG Conditions NONE 35.62 (6.22) 40.05 (3.63) 37.61 (4.28) 40.4 (3.73) 

  NDRL 37.85 (4.09) 39.31 (4.55) 37.11 (3.99) 40.79 (4.06) 

  DRL 35.19 (6.04) 41.46 (3.51) 36.14 (3.69) 38.9 (3.85) 

 Changes NONE -3.33 (7.87) 3.68 (5.74) -2.01 (6.09) -0.03 (2.58) 

  NDRL -1.1 (6.45) 2.95 (6.13) -2.51 (5.93) 0.36 (4.81) 

  DRL -3.76 (7.83) 5.1 (4.87) -3.48 (5.36) -1.53 (4.62) 

 

 

Table 16: Time actively braking and changes in time actively braking from 
the baseline by Mood and Load for PG hazard, measured in seconds 

 

 Mood/Load Neutral Happy Sad Angry 

PG NONE 0.78 (0.6) 0.82 (0.51) 0.88 (0.67) 0.31 (0.32) 

 NDRL 0.47 (0.57) 0.84 (0.56) 1.05 (0.68) 0.55 (0.55) 

 DRL 0.4 (0.4) 0.82 (0.67) 0.69 (0.41) 0.46 (0.48) 

Changes NONE -0.27 (0.48) -0.42 (1.15) -0.66 (0.72) -0.21 (0.35) 

 NDRL 0.04 (0.45) -0.45 (0.98) -0.83 (0.79) -0.46 (0.59) 

 DRL 0.11 (0.44) -0.43 (1.4) -0.47 (0.46) -0.37 (0.37) 
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Table 17: Braking force and changes in braking force from the baseline by 

Mood and Load during PS hazard, measured in Newtons 

 

 Mood/Load Neutral Happy Sad Angry 

Conditions NONE 10.92 (17.19) 45.49 (44.99) 16.82 (19.49) 67.09 (67.89) 

 NDRL 14.44 (17.09) 27.41 (27.55) 9.22 (8.68) 48.18 (49.74) 

 DRL 20.06 (23.99) 31.52 (35.54) 9.01 (13.77) 27.09 (27.55) 

Changes NONE 7.73 (21.36) 2.87 (29.61) 9.28 (29.28) 65.12 (65.56) 

 NDRL 4.2 (24.31) -7.39 (27.26) 1.67 (15.18) 46.21 (48.28) 

 DRL 13.35 (19.61) 4.22 (31.32) 1.46 (22.21) 25.11 (46.82) 

 

Table 18: Maximum braking force and changes in maximum braking force 
from the baseline by Mood and Load, measured in Newtons 

 Mood/Load Neutral Happy Sad Angry 

Conditions NONE 18.89 (29.89) 54.75 (46.89) 44.41 (39.09) 106.69 (140.61) 

 NDRL 29.7 (29.22) 84.51 (85.92) 28.73 (29.22) 78.72 (90.65) 

 DRL 27.39 (41.19) 60.88 (62.87) 21.96 (33.15) 81.42 (96.83) 

Changes NONE -12.73 (52.67) 26.77 (62.73) 26.78 (62.73) 101.37 (134.35) 

 NDRL -1.92 (44.15) 56.53 (89.5) 11.1 (51.81) 73.4 (85.94) 

 DRL -4.22 (51.47) 32.89 (71.96) 4.32 (56.45) 76.1 (99.33) 

 

Table 19:  EDA during CFL hazard, measured in micro-Siemens 

 Load Neutral Happy Sad Angry 

EDA NONE -1.3 (1.17) -0.51 (0.59) 0.32 (1.56) -0.11 (1.09) 

 NDRL -1.89 (2.04) -0.13 (0.44) -0.01 (0.78) -0.03 (1.15) 

 DRL -1.68 (1.75) 0.77 (3.53) 0.28 (0.92) 0.17 (0.78) 
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Table 20: EDA during CFR hazard, measured in micro-Siemens 

 Load Neutral Happy Sad Angry 

EDA NONE -0.89 (1.06) -0.33 (0.44) -0.51 (0.68) -0.53 (0.78) 

 NDRL -1.53 (1.73) 0.09 (0.65) -0.28 (0.59) -0.37 (0.78) 

 DRL -1.23 (1.38) 0.47 (2.04) -0.37 (0.49) -0.45 (1.15) 

 

Table 21: EDA during parked car hazards and for combined data for both of 
these hazards, measured in micro-Siemens 

 

Hazard Load Neutral Happy Sad Angry 

PS NONE -1.03 (1.34) -0.28 (0.62) -0.25 (2.85) -0.29 (0.58) 

 NDRL -1.46 (1.46) 0.58 (2.14) -0.32 (2.38) -0.37 (0.59) 

 DRL -1.32 (1.39) 0.97 (4.38) -0.41 (1.51) -0.33 (1.02) 

PG NONE -0.74 (1.16) -0.18 (0.76) -0.33 (2.28) -0.46 (0.58) 

 NDRL -1.38 (1.36) -0.06 (0.92) -0.05 (2.36) -0.53 (0.55) 

 DRL -1.44 (1.41) 0.79 (4) -0.32 (1.73) -0.44 (0.73) 

PS & PG NONE -0.88 (1.23) -0.23 (0.68) -0.29 (2.49) -0.37 (0.57) 

 NDRL -1.42 (1.37) 0.26 (1.63) -0.19 (2.3) -0.45 (0.56) 

 DRL -1.38 (1.37) 0.88 (4.07) -0.37 (1.57) -0.39 (0.86) 

 

Appendix 3: Participant Information Sheet 

 
 

 

Participant Information Sheet 
 

Research on Drivers Mood, Cognitive Load and Driving Safety. 
Tatjana Zimasa, supervised by Dr Samantha Jamson and Dr Brian Henson 

 

Contact information for Tatjana Zimasa 
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Email: tstz@leeds.ac.uk 

Contact information for Samantha Jamson 

Email:  s.l.jamson@its.leeds.ac.uk  
Contact information for Dr Brian Henson 

Email: b.henson@leeds.ac.uk 

 

Please read the following information carefully as it is important that you understand 

the purpose of this study and what the experiment will involve. Please do not hesitate 

to contact Tatjana Zimasa the organiser of this study, if you have any questions or 

concerns. 

 

Please proceed only if you agree with the following statements: 

o I am not on any type of medication that could affect my  reactions 

 (please         consult with the researcher if you think you 

are ),  
o I have held full driving license for the period of time no less than 

three years,  
o I drive at least 5000 miles per year,  
o I do not wear glasses when driving (contact lenses are accepted). 

 

 

1) What is the purpose of the study? 

The aim of this study is to investigate how listening to music affects drivers’ 

performance.  You will drive in the University of Leeds Driving Simulator on roads 

containing potential and developing driving hazards. You will have to press a pad on 

the steering wheel when you think that the situation may become hazardous such that 

you would need to brake or steer to avoid a collision. The time from the beginning of 

the hazard till the button press will be measured as well as the pattern of your eye 

movements. At the same time some driving related measurements will be taken as well 

(i.e. average speed, brake pressure).    

 

2) Why are you asking me to take part? 

We are looking for 60 participants aged between 20 and 50 with normal/corrected to 

normal (contact lenses) vision. 

 

3) What will happen if I agree to take part? 

Once you have agreed to take part, we will arrange a mutually convenient date and 

time for your experiment. You will read the Participant information form and fill in 

the Consent form before the day of the experiment. 

 

You must not return any of these forms to us by email as they contain your personal 

information and email does not protect your privacy. 

 

4) Do I have to take part? 

No, you should only take part if you wish to do so. Even if you agree to take part, you 

may change your mind at any time without giving a reason.  

 

5) What will happen on the day of the experiment? 

 

On the pre-arranged date you will need to go to the University of Leeds Driving 

mailto:s.l.jamson@its.leeds.ac.uk
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Simulator building main entrance, where I will meet you and go through your consent 

forms. 

 

During the experiment you will drive as you would normally do in your everyday life 

and will be required to press a pad on a steering wheel when you think that a situation 

on the road may become potentially hazardous and cause you to brake or steer. You 

will receive training and instructions immediately before the experiment. 

 

The total duration of the experiment will be approximately 60 minutes. This will allow 

for pre-experimental training, briefing, safety checks and the experiment itself.  

You will be free to stop the experiment at any time. 

 

6) What are the possible disadvantages and risks of taking part? 

 

1. General eye tracker safety  

Experiments using eye trackers are safe and non-invasive, as long as proper procedures 

and protocols are followed. We will do our best to minimise any sources of discomfort 

or stress you may experience during the experiment. Of course, you are free to stop 

the experiment at any time. 

2. Biopac safety 

For the recording of your heart beat rate and skin conductance a tool kit 

called Biopac will be used. Biopac measures are safe and non-invasive. . 

BioPac is a non-invasive measurement tool, which includes attaching 

electrodes to non-working hand’s index and middle fingers for skin 

response measurements. Two electrodes will be attached to your chest for 

hart beat rate measurements. There will be minimum of discomfort 

experienced during the experiment, as the car used in the driving simulator 

is automatically driven and do not require gear change. 

3. Allergy advice 

Non allergic gel will be used to collect the data from skin response. 

However, if you think that you might have any allergy as a consequence of 

using the gel, please ask the experimenter to make a probe on your skin 

response before the experiment.   

 

 

7) What if something goes wrong? 

If you are concerned about any aspect of the study please contact Tatjana Zimasa, 

Samantha Jamson or Brian Henson (contact details are provided above), who will do 

their best to answer your question. 

 

8) Who is organising and funding the study? 

Tatjana Zimasa is a PhD student. Dr Samantha Jamson is in The Institute for Transport 

Studies and is main supervisor of the project; Dr Brian Henson is a Senior lecturer in 

School of Mechanical Engineering and is co-supervising the project. This study is 

being jointly funded by the Engineering and Physical Science Research Council 

(EPSRC) and Jaguar Land Rover (JLR). 

 

9) Can you assure me of confidentiality? 

Yes, the University of Leeds staff adheres to the Data Protection Act 1998. Any 

information that you give us and any data that we collect from you will remain 



- 280 - 

confidential. We will store personal information in locked filing cabinets and store the 

data in anonymous computer files under password protection. We will store names 

and addresses separately from other data. Only authorised staff will have access to 

your personal information. 

 

If the results of this study are published, data and images will be anonymised. No 

individual person will be identified in any way without the person’s prior written 

consent. Other researchers may access the data for use in research and teaching, but 

these researchers will require the approval of the Research Ethics & Governance 

Committee of the University of Leeds, they and will be allowed access to your data in 

anonymous form only.  

 

 

10) What if I have any concerns? 

Please do not hesitate to contact us if you have any questions or concerns. Contact 

information is provided at the start of this document. 

 

11) Who has reviewed this study? 

This study was approved by the Research Ethics and Governance Committee of the 

University of Leeds. 

 

12)   Will my identity be disclosed? 

All information disclosed within the experiment will be kept confidential, except 

where legal obligations would necessitate disclosure by the researchers to appropriate 

personnel. 

 

13) What will happen to the information? 

All information collected from you during this research will be kept secure and any 

identifying material, such as names, will be removed in order to ensure anonymity.  It 

is anticipated that the research may, at some point, be published in a journal or report.  

However, should this happen, your anonymity will be ensured, although it may be 

necessary to use your words in the presentation of the findings and your permission 

for this is included in the consent form. You can withdraw you data at any time up to 

point of analysis. After the data has been analysed the withdrawal will not be accepted. 

If you wish to do so, you will need to provide the number that identifies you, as written 

on your consent form. 

 

 

Thank you for reading this document. 
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Appendix 4: Consent form 

                                                                                                                       

 

 

 

Research on Drivers Mood and Driving Safety. 

 

Participants should complete items 1 to 9 themselves        

Please circle either     YES or NO 

 

1. I have read the information sheet entitled ‘Research on Drivers Mood and Driving 

Safety’. 

                     YES/NO                                                                                                                                                                                                                                           

      2. I have had the chance to discuss the study and to ask questions   

   YES / NO 

     3. I have had satisfactory answers to all my questions     

              YES / NO 

     4. Who has explained the study to you? 

 Prof/Dr/Mr/Mrs/Ms………………………………… 

     5. I understand that I am free to withdraw from the study: 

 At any time         

  YES / NO 

 Without having to give a reason       

  YES / NO 

       6. Do you agree to take part in the study?      

                YES / NO 

      7. I understand that I can discuss the research with a researcher at any time, if I wish. 

               YES / NO 

       8. I know that the research information will be kept strictly confidential. When the 

results are published no individual person will be identified in any way without the person’s 

written agreement. 

                           YES/NO 

CONSENT FORM FOR ADULT PARTICIPANTS 
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9. If I have any questions or concerns about the research, I know I can contact Tatjana 

Zimasa by email tstz@leeds.ac.uk or Samantha Jamson by email: s.l.jamson@its.leeds.ac.uk 

                    YES/NO 

**************************************************************************

**************** 

11. PARTICIPANT 

 

Signature of Participant……………………………… 

……………………….…………Date…………………….. 

 

Name (BLOCK 

LETTERS)……………………………………………………………………………………

……. 

 

**************************************************************************

**************** 

12. INVESTIGATOR 

I have explained the study to the above participant and he/she has indicated his/her 

willingness to take part. 

 

Signature of 

Investigator…………………………………………………………………Date……………

……….. 

 

Name (BLOCK 

LETTERS)………………………………..……………………………………………………

…. 

**************************************************************************

**************** 
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