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Abstract

Electric vehicles (EVs) are increasingly considered as a promising solution to

tackle climate change impacts, improve air quality, and enhance growth sus-

tainability. This paper proposes a two-step approach for optimally deploying

charging points (CPs) by bringing together spatial statistics and maximal cover-

age location models. CP locations are conceptualised as a spatial point pattern,

driven by an underlying stochastic process, and are investigated by using a

Bayesian spatial log-Gaussian Cox process model. The spatial distribution of

charging demand is approximated by the predicted process intensity surface of

CP locations, upon which a maximal coverage location model is formulated and

solved to identify optimal CP locations. Drawing upon the large-scale urban

point of interest (POI) data and other data sources, the developed method is

demonstrated by exploring the deployment of CPs in London. The results show

that EV charging demand is statistically significantly associated with workplace

population density, travel flows, and densities of three POI categories (trans-

port, retail and commercial). The robustness of model estimation results is

assessed by running spatial point process models with a series of random sub-

sets of the full data. Results from a policy scenario analysis suggest that with

∗Corresponding author
Email address: jing.ma@bnu.edu.cn (Jing Ma )

Preprint submitted to Transportation Research Part D: Transport and EnvironmentNovember 27, 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/161866294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


increasing numbers of charging stations to be planned, optimal CP locations

gradually expand to the suburban areas of London and the marginal gains in

charging demand covered decrease rapidly.

Keywords: Electric vehicle charging point placement, spatial analysis, the

maximal coverage location model, log-Gaussian Cox process
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1. Introduction

Promotion of the transition from high-emission and fossil-fuelled vehicles

to low-emission electric vehicles (EVs) has been increasingly considered as a

promising solution to mitigate climate change impacts, improve air quality and

reduce health risks, and enhance sustainability (Cai et al., 2014; Ellingsen et al.,5

2016). Goals for the adoption rate of EVs have been set in many countries along

with a set of economic and policy incentives for EV promotion that have been

implemented. For instance, the UK government is committed to terminate new

sales of petrol and diesel cars by 2040 and achieve a 100% use of zero emission of

vans and cars by 2050 (Butcher et al., 2018). New EV registrations are increased10

from 3,500 in 2013 to more than 47,000 by the end of September 2017 in the

UK, with a sharp acceleration since 2014 (Butcher et al., 2018).

A continuing adoption of EVs by residents and business relies heavily on

a matched progress on the provision of charging infrastructure network as low

spatial coverage and inferior sitting of public charging infrastructure could se-15

riously hamper the uptake of EVs from prospective customers (e.g. Cai et al.,

2014; Namdeo et al., 2014). Providing an adequate and spatially optimal public

charging points (CP) network could, to a large extent, reduce “range anxiety” –

relatively short driving range of EVs, which ranks the top of consumers’ concerns

with the adoption of EVs (Chen et al., 2013). While various provision plans on20

publicly accessible CP infrastructure have been put forward in many cities and

countries, studies on developing computational and mathematical frameworks

for optimal CP sitting over space are also experiencing fast growth (e.g. Wagner

et al., 2013; Shahraki et al., 2015; Tu et al., 2016; Wei et al., 2018).

The CP location problem usually involves two steps: estimating the spatial25

distribution of charging demand in a study area and uncovering optimal CP lo-

cations by formulating a mathematical programming model (e.g. Tu et al., 2016).

The estimation and prediction of public charging demand in the first step, how-

ever, is challenging primarily due to lack of realistic and detailed data on usage

of charging stations (Cai et al., 2014). Various proxy variables for charging de-30
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mand have been proposed in previous studies, for instance road traffic density

and vehicle ownership rates (see a review in Cai et al. 2014). Considering the

fact that EVs charging is more likely to take place at a trip destination rather

than the middle of a trip (Sadeghi-Barzani et al., 2014; Shahraki et al., 2015),

travel behaviour models, calibrated based on household travel surveys, were35

used to predict origin-destination flows and approximate EV charging demand

(e.g. Chen et al., 2013; Xi et al., 2013). However, it has been argued that the

spatial distribution of public EV charging demand could differ substantively

from that of total travel demand due to the required time of EV charging and

the possibility of EVs charged at users’ residences (Namdeo et al., 2014). In40

addition, the representativeness of demand estimates based on individual travel

surveys or small samples of realistic use of EVs is also unclear (Cai et al.,

2014). In the second-stage analysis of a CP location problem, a mathemati-

cal programming model was built and solved to identify optimal CP locations

that collectively maximise (or minimise) certain objective functions, which will45

be discussed below. The objective function could vary across various research

focuses and nature of data under study (Shahraki et al., 2015; Ko et al., 2017).

Recently, urban big data and fine spatio-temporal resolution public trans-

port trajectory data in particular have been exploited to infer EV charging

demand distribution in the CP placement studies. Drawing upon a large-scale50

daily trajectory data of taxis in Beijing, Cai et al. (2014) found that collective

parking hotspots of taxis could serve as good indicators for EV charging de-

mand. Based on the revealed charging demand from taxi travel patterns and

existing gas stations (as candidate charging station locations), Shahraki et al.

(2015) built a mathematical programming model with an objective of maximis-55

ing the amount of electrified fleets to find optimal locations of CPs. Considering

the difference in daily travel patterns between electric and conventional gasoline

taxis, Tu et al. (2016) explicitly derived the spatio-temporal charging demand

dynamics by using massive trajectories of electric taxis in Shenzhen, China and

solved the optimal placement of charging stations by formulating a mathemati-60

cal model that takes into account spatio-temporal variabilities in daily charging
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demand. Real-world massive taxi trajectories undoubtedly offer great benefits

to reveal fine-granular travel patters in space and time, thus improving charging

demand estimates. Nonetheless, how and to what extent the charging demand

distribution revealed by taxis alone could approximate total charging demand65

still needs a careful validation. For instance, daily travel patterns and charg-

ing behaviours of private EV drivers and taxi drivers could differ substantially.

From an implicit charging demand point of view, Wagner et al. (2013) exploited

associations between large-scale urban points of interest (POI) data and existing

CP locations, upon which the spatial distribution of EV charging demand was70

calibrated. Point-referenced POIs characterise urban land use differentiation

(e.g. work, shopping, and recreation) at the finest spatial resolution and con-

stitute residents’ potential daily trip destinations. By associating the usage of

existing CPs to densities of various POI categories via a simple linear regression

model, specific POI categories exerting statistically significant influences on EV75

charging demand were selected to construct spatial charging demand indices

(Wagner et al., 2013).

This study presents a new approach to address the optimal CP location prob-

lem by using a combination of spatial statistics and mathematical programming

models. It innovatively considers the spatial pattern of existing CP locations80

as a spatial point process, with the latent charging demand approximated by

a spatially continuous process intensity surface. Intuitively, areas with larger

charging demands are expected to be allocated with more CPs. The same rea-

soning is seen in a spatial point process model – a stronger process intensity of

an event implies a larger number of event occurrence (Diggle, 2013). By estab-85

lishing this link, a spatial statistics model, more specifically, the log-Gaussian

Cox process model (Møller et al., 1998; Illian et al., 2012; Diggle, 2013) is em-

ployed to explore associations between the spatial pattern of CPs and densities

of POIs by types and other factors. Predictions of the spatial distribution of EV

charging demand are then estimated from the model. Subsequently, the opti-90

mal CP location problem is formulated as a standard maximal coverage location

problem (MCLP, Church and ReVelle 1974) – maximising the coverage of EV
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charging demand by locating a fixed amount of CPs. MCLP has been proven

to be a rigorous locational analysis framework for optimally placing facilities on

the landscape with constraints, being widely used in regional sciences, geogra-95

phy and environmental sciences fields (Murray, 2016; Snyder and Haight, 2016;

Wei, 2016).

Our contributions to the CP placement literature lie in several aspects. Pri-

marily, the locations of CPs are explicitly modelled as a spatial point process

for the first time in the literature, to the best of our knowledge, allowing for an100

intuitive derivation of the distribution of charging demand over space with fine

resolution. The spatial log-Gaussian Cox process model is employed to predict

the demand of EV charging and its spatial distribution. With a spatial statis-

tics modelling framework, there is great flexibility to capture potential spatial

heterogeneity and dependency in the latent spatial process intensity (or the105

clustering pattern of CP locations). Moreover, this study provides insights into

the potential spatial factors of EV charging demand, drawing upon open urban

POI, traffic and socio-demographic data and open source statistical modelling

and mathematical programming tools. With ever increasing coverage rate and

positional accuracy of POIs in cities, the proposed approach would be benefi-110

cial to city planners in terms of placing new CP infrastructure and evaluating

efficiency of existing CP configuration and making according adjustments.

The reminder of this paper is structured as follows. Section 2 describes the

proposed methodology and data. Section 3 presents findings obtained from the

spatial statistical and mathematical models, as well as results from robustness115

and policy scenario analyses. Section 4 concludes with a brief summary of

findings.

2. Methodology

In a nutshell, our method consists of two steps: (1) a spatial point pro-

cess statistical model of CP locations; (2) a mathematical maximum coverage120

location model. In Step 1, the inputs of the statistical model are the spatial
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pattern of existing CP locations as outcomes and densities of POI, population

and traffic as independent variables (detailed below). The outputs are esti-

mates on spatially continuous charging demand intensity surface in the study

area and covariate effects. In Step 2, the maximum coverage location model125

takes estimated charging demand as an input variable and produces the op-

timal deployment of CP locations as output. The schematic diagram of the

methodology is illustrated in Fig. 1.

Fig 1. The schematic diagram of the proposed methodology.

2.1. A spatial log-Gaussian Cox process model of CP locations

A Cox process model assumes the realisation or presence of a spatial point130

pattern (e.g. the pattern of existing CP locations) to be driven by a latent

non-negative stochastic process intensity surface, and that given the intensity

field, the point pattern follows a Poisson process, i.e. a random number of

points (CPs in this study) are located independently and uniformly in an area

(Møller et al., 1998; Law et al., 2009; Diggle, 2013). Denote a study area as135

S ⊂ R2 with space indexed by s, and the intensity surface as λ(s). The number

of CPs in S′ ⊂ S, NS′ , follows a Poisson distribution with an expected value of

Λ(S′) =
∫
S′ λ(s)ds. Given a spatial pattern P and intensity surface λ(s), the

data likelihood is expressed as (Simpson et al., 2016),

l(P |λ) = exp
{
|S| −

∫
S

λ(s)ds
} ∏
sk∈P

λ(sk), (1)

7



where |S| is the area of P . The log-Gaussian process model is a special class of a140

Cox model, in which the log-intensity surface, log{λ(s)}, is a Gaussian process

or random field, say η(s) (Møller and Waagepetersen, 2007; Diggle, 2013). There

is great flexibility to include into η(s) any relevant covariate effects and spatial

effects such as spatial heterogeneity and dependency if desired (Taylor et al.,

2015).145

For the log-Gaussian Cox process model to be practically implemented, a

study area is usually approximated by a fine-resolution grid geography (Illian

et al., 2012; Taylor et al., 2015) – a discrete representation of space. In this

study, we delineate the study area into a set of spatial grids with a resolution of

1 km×1 km, which will serve as our basic analysis units. The choice of such a150

spatial resolution is pragmatic. On one hand, adopting spatial grids with much

finer resolution (say 100 metres) will substantially increase the sample size to

a magnitude (∼ 170, 000) that would make the computation of a log-Gaussian

Cox process model intractable. On the other hand, a spatial resolution of 1 km

implies a service radius of 1km for charging stations, which is similar to the 1.6155

km range suggested by Cai et al. (2014). As there are only a small proportions

of households with off-street parking facilities in London (Namdeo et al., 2014),

we adopt a relatively smaller service range. However, we acknowledge that a

reliable estimate on the service range of charging stations, ideally learned from

data on long-term daily use of charging stations, shall be one priority in the160

future CP deployment studies. With the grid topology, s indexes each grid and

λ(s) presents the grid-level intensity process. Let Ns be the number of CPs in

grid s, the spatial log-Gaussian Cox process model in this study is defined as

follows:

Ns ∼ Poisson(λ(s)) (2)

log{λ(s)} = η(s) = X(s)β + ψ(s) + ε(s),

where X(s) contains a vector of independent variable values at grid s, includ-165

ing POI densities, population density, traffic flows, and an intercept term. β
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is the associated covariate effect vector to estimate. The sum of ψ(s) and ε(s)

describes the intensity process unexplained by the included covariate effects.

More specifically, ψ(s) is a spatially structured random effect, which captures

potential spatial dependency or smoothness in the intensity process or cluster-170

ing pattern of CP locations. In this study, spatial dependence or correlation

refers to that process intensity values of nearby grids tend to be more similar

than that of distant grids. Ignoring such correlation effects would lead to unreli-

able statistical inferences on covariate effects (e.g. Congdon, 2014). An intrinsic

conditional autoregressive (CAR) model (e.g. Lee, 2011; Congdon, 2014; Dong175

et al., 2016) is specified for ψ(s), resulting in the distribution of ψ (over grids)

being a multivariate Normal, p(ψ) ∼ MVN(0, (DW − W )−1σ2
ψ) where W is

the neighbourhood structure matrix with element w(si, sj) = 1 if grids sj and

si share an edge, and w(si, sj) = 0 otherwise. DW is a diagonal matrix with

elements being the number of neighbouring grids for each grid or the row-wise180

sums of W . σ2
ψ is a variance parameter measuring the variation of ψ. An

independent random effect ε(s) is specified to capture potential spatial hetero-

geneity in the process intensity surface and the well-known over-dispersion effect

often found when applying Poisson models to spatial count data (e.g. Congdon,

2014). It is assumed to follow a Normal distribution, ψ ∼ N(0, σ2
ψ). The spatial185

heterogeneity effect could be understood as an unobserved place-specific (i.e.

grid-specific) effect on point process intensities, leading to potential local dis-

continuities on the intensity surface. The specification of two additive sets of

random effect (ψ(s) and ε(s)) is equivalent to the well-studied BYM model in

the spatial statistics literature (Besag et al., 1991).190

The stochastic intensity surface driving the spatial pattern of CP locations

is intuitively linked to the spatial distribution of charging demand of EVs in

the study area. A higher intensity value at a grid implies a larger demand of

EV charging, and thus a greater amount of CPs expected to be placed there.

After implementing the log-Gaussian Cox process model displayed in Eq 2, the195

fitted or predicted intensity surface is conceptualised as the latent EV charging

demand and serves as a key input in the maximal coverage location model
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(detailed below).

Fitting log-Gaussian Cox process models is typically based on the Bayesian

Markov chain Monte Carlo (MCMC) simulation approach due to the intractable200

data likelihoods of Eqs 1 and 2 (Taylor et al., 2015; Simpson et al., 2016). Instead

of the computationally expensive MCMC method, we resort to a recently devel-

oped approximate Bayesian inference approach, the integrated nested Laplace

approximations (INLA, Rue et al. 2009), for model estimation and comparison.

The INLA approach has been made conveniently accessible via an open source205

INLA software package (Rue et al., 2009; Martins et al., 2013) in R (R Core

Team, 2017). Fitting specifically the log-Gaussian Cox process models with

INLA is discussed in Illian et al. (2012, 2013), among others.

2.2. The maximal coverage location model

Before formulating the MCLP model we introduce relevant notations follow-210

ing Wagner et al. (2013) and He et al. (2016):

S = the set of grids, indexed by i , i = 1, . . . , G

S′ = the set of potential CP locations (grids), indexed by j , j = 1, . . . , G

Ni = {j|wij = 1}, the set of CP locations that covers the charging demand of grid i

P = the number of CP to be deployed

yj =

1, if grid j is selected to place CP

0, otherwise

zi =

1, if the demand at grid i is met

0, otherwise

We note that Ni entails the i-th grid itself and the neighbouring grids as defined

by the neighbourhood structure matrix W in the log-Gaussian Cox process

model. It is equivalent to a 1 km service radius for each CP. yj is the key

decision variable, indicating whether grid j is selected to locate a CP or not. zi215

is another decision variable implying whether the charging demand at grid i is
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met, which depends on the values of y at grid i and neighbouring grids. The

MCLP is formulated as follows:

Maximise
∑
i

λ̂izi (3)

Subject to
∑
j∈Ni

yj − zi ≥ 0, ∀i ∈ S (4)

∑
j∈S′

yj = P (5)

∑
j∈Ni

yj ≤ k̄, ∀i ∈ S (6)

yj ∈ {0, 1}, zi ∈ {0, 1}, ∀i ∈ S,∀j ∈ S′ (7)

Eq 3 is the objective function maximising the total EV charging demand

coverage as in Wagner et al. (2013) and He et al. (2016). Constraint 4 determines220

whether the demand at grid i is covered. If the demand of grid i is served, i.e.,

zi = 1, then at least one CP has to be placed in the neighbourhood Ni and thus∑
j∈Ni

yj ≥ 1. In contrast, if the demand of grid i is unmet, i.e., zi = 0, there

should be no CPs deployed in Ni, and thus
∑
j∈Ni

yj = zi = 0. Constraint 5

defines that P CPs are to be deployed. Constraint 6 is to avoid spatial clustering225

of CP location by limiting the number of CPs capable of serving the demand

of grid i (∀i ∈ S) to k̄, which is set to three in the study. Substantively, this

constrain is to reduce excess supply and extend the geographical coverage of CP

locations. Similar idea was discussed in Wagner et al. (2013) but addressed by

using a computationally expensive iterative MCLP approach. Lastly, constraint230

7 ensures both decision variables to be binary integers. It is useful to note

that the estimated charging demand λ̂ represents an approximation for current

charging demand but not necessarily the potential demand because an implicit

assumption here is that all CPs are equally used. Such a restrictive assumption

is imposed due to lack of data on actual usage of individual charging stations.235

The MCLP formulated above is a standard mixed integer linear programming

model. It is solved by using an open source R library, OMPR (Optimization
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Modelling Package, Schumacher 2017).

2.3. Data and Variables

This study focuses on London, one of the nine regions in England, with a240

population of more than eight million according to the 2011 census data. The

number of EVs in London has grown significantly to over 10,000 as of 2017,

experiencing much faster growth than other regions or the nation as a whole.

1 Associated with the tremendous increase in the EVs is a vast amount of

investment to improving the CP infrastructure. However, how and where new245

CPs are to deploy remain unclear.

The existing CP data is from the National Charge Point Registry (NCPR),

which is a government initiative set up in 2011 to provide a credible database of

publicly-funded charge points, in support of government’s objectives to promote

EV adoption in the UK (NCPR, 2017). Based on the address information250

of each CP, those located in London were selected and geo-referenced, giving

about 400 public CPs used in the following analyses. POIs are recognised as

specific point locations of places that residents may find useful or interesting,

e.g. public transport facilities, schools, restaurants and offices. POI data used

in this study is from the Ordnance Survey Points of Interest product, which255

contains unique locations of four million different geographic features in a 3-tier

hierarchy (9 groups, 52 categories and 616 classes) (Ordanace Survey, 2015). For

simplicity and practical computational concerns, we categorised POIs at the

group level, which includes accommodation, eating and drinking; commercial

services; attractions; sport and entertainment; education and health; public260

infrastructure; manufacturing and production; retail; and transport. A detailed

description of the classification system is provided in the user manual of the

product.

Except for the POI data, we also include in our model population character-

1CV figures are from the vehicle licensing statistics from the Department of Transport of

the UK
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istics and traffic flow variables that are potentially related to the EV charging265

demand (Chen et al., 2013; He et al., 2016). More specifically, night-time and

workplace population counts, obtained from the 2011 UK census, are associ-

ated to the spatial pattern of CPs. Both workplace and night-time population

are measured at the LSOA (Lower Layer Super Output Areas) scale, a fine-

resolution census geography usually accommodating 1,000 to 3,000 residents270

according to the Office for National Statistics of the UK. There are 4,835 LSOAs

in London in 2011. In addition, traffic flows on the major road network in the

UK, measured by the annual average daily flows for each junction-to-junction

link from 2015 to 2016, have been made publicly available by the Department

for Transport of the UK and included in our analyses. As LSOAs and grids are275

not compatible geographies, a standard GIS areal weighting approach was used

to transfer population counts available for LSOAs onto the 1 km × 1 km grids.

We refer to Lloyd et al. (2017) and references therein for a detailed description

of areal weighting and potential issues associated with it. The traffic flow of a

grid is obtained by finding the highest traffic value of a major road segment that280

intersects the grid, or if no lines intersect the grid, by using the traffic value of

the nearest road segment.

The counts or densities of POIs by category over grids are obtained by over-

laying POI point layers with the grid layer. Fig. 2 shows spatial distributions

of workplace population and POI density at the spatial grid scale. All the285

independent variables are log-transformed to reduce the potential influence of

heteroskedasticity on model estimation. To evaluate possible impacts of multi-

collinearity on model estimation results, we conduct a robustness analysis by

implementing a series of spatial point process models with randomly drawn

subsets of the full data. Moreover, only predictor variables with statistically290

significant impacts on the spatial pattern of CPs are used for charging demand

prediction in our preferred model (detailed below). The descriptions and sum-

mary statistics for the variables used in the study are provided in Table 1.
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Fig 2. The spatial distributions of existing charging points and densities of workplace

population and POIs in London.
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Table 1. Descriptive statistics for variables used in the study.

Name Description
Mean/

Std.Dev

CP counts The number of charging points per grid cell 0.16 (0.65)

Independent variables

Night-time population Log of night-time population per grid in 2011 7.81 (1.50)

Workplace population Log of workplace population per grid in 2011 6.98 (1.31)

Traffic Log of annual average daily follows per grid in 2015 10.04 (0.68)

Point of interest (POI) data as of 2017

Accommodation
Log of the number of POIs of accommodation,

eating and drinking
0.20 (0.34)

Attractions Log of the number of POIs of attractions 0.81 (0.39)

Commercial Log of the number of POIs of commercial services 1.34 (0.50)

Education Log of the number of POIs of education and health 0.98 (0.51)

Manufacturing
Log of the number of POIs of manufacturing

and production
0.89 (0.48)

Public Log of the number of POIs of public infrastructure 1.26 (0.37)

Retail Log of the number of POIs of retail 0.97 (0.57)

Sports Log of the number of POIs of sports and entertainment 0.82 (0.44)

Transport Log of the number of POIs of transport 1.15 (0.39)
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3. Results

3.1. Spatial point process model estimation results295

Four specific log-Gaussian Cox process models were fitted for the spatial pat-

tern of existing CP locations to understand the potential drivers of EV charging

demand. Models 1 and 2 are standard Poisson regression models without con-

siderations to spatial heterogeneity and dependency effects. Model 3 takes into

account spatial heterogeneity by the inclusion of a set of independent random300

effect, ε(s). Model 4 further accounts for possible spatial dependency effect.

Deviance Information Criterion (DIC, Spiegelhalter et al. 2002), a commonly

used model fit index in Bayesian inference, has been used for model comparison.

A better model specification is indicated by a smaller DIC value.

Table 2 reports estimation results from Models 1 and 2. When interpreting305

estimates on covariate effects, we use the intensity of the distribution of CPs

and latent EV charging demand interchangeably for simplicity. From Model 1,

we see that workplace population and traffic flows are statistically significantly

and positively related to the sitting of CPs, everything else equal. Of the nine

POI categories, three exert statistically significant influences on the location of310

CPs. Transport and retail POI densities influence the location of CPs posi-

tively. Putting the magnitude of these effects in perspective, a one unit increase

in transport and retail POI densities on the log scale elevates the underlying

charging demand by 182% and 61%, respectively. These results are in line with

the observation that current CPs are often located in public car parks and ser-315

vice stations (e.g. Chen et al., 2013; Cai et al., 2014). Public car parks, large

transport hubs and retail centres tend to offer required spaces for sitting charg-

ing stations. Meanwhile they attract residential and business activities taking

place there and nearby places. Commercial POI density is negatively related to

locations of CPs, everything else equal. A plausible explanation is that although320

commercial POIs potentially attract population flows, their physical space con-

ditions for charging station deployment might not be ideal. Urban POIs as

a whole serve as places where residential and business routine activities take
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place, generating traffic flows, but they seem to have differentiating impacts on

charging demand.325

In Model 2, only variables with statistically significant associations with

EV charging demand are included. This leads to a concise model specification

and alleviates the issue of multi-collinearity. The DIC values also have a slight

decrease from Model 1 to Model 2, implying there is not any loss in model fit

by adopting a simpler model specification. The estimates on covariate effects330

are similar in both models. Model 3 considers potential spatial heterogeneity in

the underlying intensity surface of CP locations. A substantial improvement in

model fit is achieved, as indicated by a large decrease of 386 in DIC values from

Model 2 to Model 3. Estimates on variable coefficients in Model 3 also differ from

that in Model 2, especially for workplace population and traffic flow densities.335

A significant spatial heterogeneity effect signifies place-specific influences, often

difficult to be quantified and thus impossible to be included in the model, on

charging demand (e.g. spatially varied physical conditions for placing charging

stations).

Model 4 further incorporates a spatially structured random effect (ψ(s) in340

Equation 2 to deal with potential spatial dependencies in the distribution of

charging demand. However, the decrease in DIC is only marginal (about 3.7)

from Model 3 to Model 4, which implies that the inclusion of spatial dependency

effect does not improve model fit significantly. The reason is that the marginal

variance of ψ, calculated as the empirical variance of posterior estimates on345

ψ(s) (Blangiardo and Cameletti, 2015), only accounts for a small proportion of

the total variance of the latent intensity surface, net of the included covariate

effects. In this study, spatial heterogeneity (i.e. independent spatial variations)

dominates the spatial distributions of charging demand surface controlling for

covariate effects. Thus, Model 3 was used to predicted the latent EV charging350

demand for each grid, i.e. λ(s). We note that fitted values of λ(s) from Model

3 and Model 4 are highly correlated with a Pearson coefficient of about 0.98.
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Table 2. Estimation results from two Poisson regression models.

Model 1 Model 2

Variables Median 2.5% 97.5% Median 2.5% 97.5%

Intercept -9.606* -12.26 -6.992 -9.037* -10.98 -7.084

Nighttime population -0.076 -0.257 0.115

Workplace population 0.381* 0.119 0.635 0.32* 0.126 0.507

Traffic 0.254* 0.061 0.444 0.231* 0.043 0.415

Point of interest variables

Accommodation -0.104 -0.307 0.09

Attractions -0.145 -0.307 0.017

Commercial -0.617* -0.958 -0.265 -0.529* -0.797 -0.249

Education 0.103 -0.192 0.407

Manufacturing -0.155 -0.341 0.031

Public 0.398 -0.059 0.860

Retail 0.475* 0.267 0.682 0.5* 0.298 0.701

Sports 0.027 -0.205 0.260

Transport 1.04* 0.731 1.355 1.08* 0.781 1.385

DIC 1475.9 1472.3

PD 12.87 5.986

Note: * represents statistical significance at the 95% credible interval; DIC represents deviance

information criterion; PD represents the effective number of parameters.
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Table 3. Estimation results from Poisson regression models accounting for spatial

heterogeneity and dependency effects.

Model 3 Model 4

Variables Median 2.5% 97.5% Median 2.5% 97.5%

Intercept -13.02* -16.27 -9.982 -13.04* -16.29 -9.993

Workplace population 0.55* 0.256 0.848 0.552* 0.258 0.852

Traffic 0.351* 0.075 0.628 0.351* 0.075 0.628

Point of interest variables

Commercial -0.511* -0.920 -0.087 -0.511* -0.920 -0.087

Retail 0.49* 0.187 0.801 0.489* 0.186 0.800

Transport 0.999* 0.576 1.441 1.0* 0.576 1.441

σ2
ε 2.186 1.629 2.968 2.196 1.603 3.815

σ2
ψ 0.006 0.005 0.008

DIC 1086.4 1082.7

PD 223.3 221.0

Note: * represents statistical significance at the 95% credible interval.

3.2. Optimal CP locations

The estimated EV charging demand intensity is shown in the top panel of

Fig. 3 with breaking points being quintiles of the distribution. EV charging355

demand is highly concentrated around the city centre and becomes dispersed

when moving towards suburban areas. As there are 161 grids containing CPs

as of 2017 in London, the number of grids to deploy CPs (P in Eq 5) is set to

161 in our MCLP model. The optimal CP locations are shown in the bottom

panel of Fig. 3. The spatial distribution of optimal CP locations is not highly360

clustered than would be predicted if the sitting of CPs was purely based on

ranks of charging demand, a finding similar to Wagner et al. (2013).

Current CP locations were superimposed on the optimal CP locations in the

bottom panel of Fig. 3. There seems to be a fair overlap between the grids with

existing CPs and optimal grids selected to locate CPs, which is not surprising365

as the distribution of latent charging demand is learnt from the spatial pattern
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of existing CPs. Differences in patterns of the current and optimal CP locations

are also clear. In the central areas of London, the spatial concentration level of

current CP locations is much higher than that of the optimal CP locations. It

might be in relation to a lack of strategic spatial planning of charging infras-370

tructure with an aim to maximise charging demand from residents and business

(Transport for London, 2018). With respect to the proportion of total charg-

ing demand that are accounted for in the study area, it is about 70% for the

spatially optimised charging stations and 60% for the current stations

As a demonstration of our approach to be a tool that could be useful for375

strategic charging infrastructure planning, a simple experiment is conducted.

Imagine that the charging demands of grids currently sitting in the lowest decile

of the demand distribution are increased to the median demand level (Fig. 4),

where should the new CPs be placed? The increase in charging demand could be

due to new urban (re)generation programs. Intuitively, new CPs are expected380

be deployed in a subset of grids whose charging demands have yet to be met,

and the selected locations should maximise charging demand coverage.2 Fig. 4

shows the optimal 50 locations for deploying new CPs in line with the above

criteria. Of course, city planners have the flexibility to decide the number of new

CPs (other than 50) to be deployed. We note that new CPs do not have to be385

located in grids where charging demand elevates as the objective in the MCLP

model is to maximise the overall demand coverage for grids whose demands have

not been met.

2An alternative and simple way to explore new CP locations associated with demand shocks

would be maximising total demand coverage only conditioning on the existing CP locations.

This is achieved by setting the decision variable yj at the existing CP locations to 1.
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Fig 3. Estimated demand intensity and spatially optimal charging point locations.
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Fig 4. The spatially optimal charging point locations in the presence of sudden

changes in charging demand

3.3. A robustness analysis

The optimal CP locations calibrated from the MCLP model rely on the es-390

timate of latent changing demand (λ̂) from the spatial point process model. To

assess the robustness of estimates on the distribution of charging demand and

covariate effects, we implemented a series of log-Gaussian Cox process models

with random subsets of the full data. Each subset contains observations ran-

domly drawn from the full data with certain probability (ranging from 0.6 to395

0.99), leading to 40 subsets in total. Models implemented with subsets of the

full data are referred to comparison models for simplicity. Estimates on covari-

ate effects and λ from each model were stored and compared to that from the

preferred model (Model 3 in Table 3). With respect to covariate effects, three

metrics were calculated for each predictor: the variability – squared differences400

in coefficient estimates between comparison models and Model 3, presented as

percentages of estimates from Model 3; the percentage of estimates from com-

parison models having the same coefficient sign (positive or negative) as the

estimates from Model 3 (Column “Coef sign” of Table 4); and the percentage of

coefficients that are statistically significant (Column 4 of Table 4). In terms of405

estimated charging demand, we calculated the Pearson correlation coefficients
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Table 4. Robustness check of model estimation results.

Variables Variability Coef sign Statistical significance

Intercept -0.98 100 100

Workplace population 0.20 100 100

Traffic 0.14 100 87.5

Commercial -0.01 100 97.5

Retail 0.18 100 100

Transport 0.02 100 100

ˆλ(s) 0.991[0.987, 0.994]a

Note: a indicate the mean, lower and upper quantiles of the Pearson correlation coefficients

between ˆλ(s) from comparison models implemented with subsets of the full data and that

from the preferred Model 3. All the other numbers are presented as percentages.

between λ̂ from comparison models and from Model 3. The robustness analysis

results are reported in Table 4. It is clearly seen that variabilities in coefficient

estimates for all predictors are small and less than 1%, and that coefficient

signs of a predictor from comparison models are identical to that from Model410

3. In terms of statistical inferences, coefficients of traffic and commercial POI

densities are statistically significant in 35 and 39 trials out of 40 while other

covariate effects are statistically significant in all models. The distribution of

calculated Pearson coefficients has a mean of 0.991 with an interquartile range of

[0.987, 0.994], indicating high consistence in estimated charging demand across415

models. In short, the above results suggest that the estimated covariate effects

and latent charging demand are relatively robust and not particular sensitive to

sampling variability.

3.4. Scenarios with different number of CP locations

To help with city charging infrastructure planning and management, we420

conducted a set of computational experiments to examine the changes in spatial

patterns of charging stations and demand coverage associated with varying total

numbers of CP locations (i.e. P = 40, 60, . . . , 400 in Eq 5). The underlying

distribution of charging demand is assumed to be λ̂ from Model 3 for simplicity.
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A MCLP model was implemented to find optimal locations for placing charging425

stations under each scenario. Spatial non-parametric kernel estimation was

employed to depict the continuous distributions of process intensities associated

with each set of optimal CP locations (Baddeley et al., 2015). A subset of

estimated density maps for optimal CP locations under different scenarios are

shown in Fig. 5. As a comparison, the kernel density maps for existing CP430

locations and the optimal CP locations discussed above (P = 161) are also

included in Fig. 5. Again, it clearly shows a much higher level of concentration

in the spatial pattern of existing CPs than in the spatial pattern of optimal CPs.

For optimised locations of charging stations in different scenarios, although high

density are still observed at the inner London areas, it gradually expands to the435

suburban areas. The percentages of charging demand covered by optimal CP

locations under each scenario and the marginal increases in demand covered by

deploying more CPs are calculated and presented in Fig. 6. In general, the

marginal gains of placing more numbers of CPs tend to be decreasing. The

policy implication of decreasing marginal gains in demand covered on charging440

infrastructure planning and management is that an optimal number of charging

stations could be found if the cost of deploying a new charging station is known.
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Fig 5. Kernel density maps of the optimal charging stations under each scenario.

Fig 6. Percentages of total charging demand covered under each scenario.

3.5. Limitations and future work

A spatial point process model is proposed to derive the spatial distribution

of charging demand in this study. While it is flexible in terms of allowing for445
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relevant covariate effects and spatial effects on charging demand to be modelled,

a key assumption of equal usage of charging stations is made. Nonetheless, due

to charging capacity (e.g. the amount and types of facilities) variations across

charging stations, such an assumption may not hold. An important avenue for

future work on accurate charging demand estimates is to simultaneously model450

the location and usage of charging stations with a complex marked spatial point

process model (Diggle, 2013; Illian et al., 2013), by collaborating with public

and commercial providers of charging stations.

Based on the charging demand derived from a spatial point process model,

the second-stage MCLP model identifies optimal locations for deploying charg-455

ing stations, presented as grid cells with a 1 km × 1 km resolution rather than

precise sites. While a straightforward extension would be adopting a grid topol-

ogy with a much finer spatial resolution (e.g. 100 metres), it is not feasible due

to the huge increase in computational burden of implementing the spatial point

process model. An alternative is to identify potential sites for charging stations460

in a city by selecting the locations of a subset of POIs that can be matched with

the current site types of CPs. These potential sites can then serve as the can-

didate locations for CPs in the MCLP model. This approach shall be explored

in our future research. Additionally, the usage of EVs from the perspective of

consumers (residents or taxi drivers) and its temporal characteristics (Tu et al.,465

2016) are not captured in the proposed methodology. Future studies to as-

sess how a further consideration of potential temporal fluctuations in charging

demand would affect the optimal deployment of CPs will be needed.

4. Conclusions

This study develops an approach for the EV charging point placement opti-470

misation that brings together spatial statistics and maximal coverage location

models. The CP locations are conceptualised as a spatial point pattern driven

by an underlying process intensity surface and investigated naturally by using a

Bayesian spatial log-Gaussian Cox process model. The model offers great flexi-

26



bility of capturing potential spatial heterogeneity and dependency effects when475

identifying potential drivers of the CP locations. Based on the charging de-

mand, estimated as the predicted process intensity surface of CP locations, the

optimum placement of CP infrastructure is naturally formulated as a MCLP

model with an objective to maximise demand coverage. The methodology is

demonstrated by exploring the deployment of CP infrastructure in London.480

The results show that workplace population and traffic flows are significantly

associated with EV charging demand. The densities of transport, retail and

commercial POI categories are also statistically significantly linked to the dis-

tribution of charging demand in London. Given charging demand estimates from

a spatial point process model, optimal locations of new charging stations could485

be explored timely through a MCLP model, which could be of great benefit to

the planning and management of CP infrastructure in a city.
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