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Abstract

Cognitive Radio (CR) systems can benefit from the knowledge of the activity statistics
of primary channels, which can use this information to intelligently adapt their spectrum
use to the operating environment and work more efficiently and reduce interference on
primary users. Particularly relevant statistics are the minimum, mean and variance
of the on/off period durations, the channel duty cycle and the governing distribution.
The main aim of this thesis is to improve the estimation of the primary user statistics
under different environments. At the beginning of operation, the CR does not have
any information about the primary traffic statistics. Spectrum sensing is one of the
key methods to obtain this knowledge. Unfortunately, the estimation of primary traffic
statistics based on spectrum sensing suffers from some flaws, which are investigated in
detail in this thesis.

In general, two main working environments for the CRs can be identified based
on the primary signal power, namely low and high signal-to-noise ratio (SNR) at the
secondary users. For the high SNR scenario, an analytical model to link the sensing
period with the observed spectrum occupancy and quantify its impact is proposed.
Simulation results show that the proposed model captures with reasonable accuracy the
spectrum occupancy observed at the CR. Moreover, the effect of the sample size (number
of on/off periods) on the estimated accuracy is studied as well. Closed form expressions
to estimate the statistics of the primary channel to a certain desired level of accuracy
are derived to link such sample size with the accuracy of the observed primary activity
statistics. The accuracy of the obtained analytical results is validated and corroborated
with both simulation and experimental results, showing a perfect agreement.

For the low SNR scenario, both local and cooperative estimation are considered
based on the number of SUs performing the estimation. For the single estimation sce-
nario, three novel algorithms are proposed to enhance the estimation of primary user
activity statistics under imperfect spectrum sensing given the knowledge of minimum
transmission time. Simulation results show that the proposed methods enable an accu-
rate estimation for the primary user statistics. For the cooperative estimation scenario,
a new reporting mechanism is proposed in order to increase the spectrum and energy
efficiency of the cooperative network and improve resilience under Byzantine attacks.
The proposed method is compared in terms of efficiency with methods proposed in the
literature and the default periodic reporting method. Simulation results show that the
proposed scheme not only reduces significantly the signalling overhead, but with a minor
modification it can estimate the primary user distribution under Byzantine attacks with
high accuracy.

In summary, this thesis contributes a holistic set of mathematical models and novel
methods for an accurate estimation of the primary traffic statistics in CR networks based
solely on spectrum sensing.
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Chapter 1

Introduction

Over the years, wireless technologies have evolved significantly to cope with increasingly

challenging demands and trends ever since the first radio was invented by Nicola Tesla

[1], blessed with the wide range of applications for wireless communications from wireless

controlling devices to satellite systems and smart-phones. Wireless communications have

had a huge impact on human lifestyle and having an internet access at any-time and any

place has become essential. This popularity is followed by an exponential growth in the

number of wireless connected devices. For instance, the expected number of connected

devices per person by 2020 is 6.58 [2]. These devices could include smart-phones, TVs,

computers and a wider range.

The growth in the number of users, applications, and the required bandwidth of mod-

ern wireless communication systems has resulted in the Radio Frequency (RF) spectrum

becoming increasingly crowded and plagued with interference. Hence, governmental

agencies took control of RF management among transmitters [3].

Several field measurements of spectrum usage have demonstrated that the allocated

spectrum is underutilized [4–8], with variations depending on access time (day/night)

and geographical region (urban/rural), which means that the spectrum scarcity problem

is a direct result from a fixed spectrum allocation. Therefore, new spectrum manage-

ment paradigms are essential to efficiently access the radio resources. This situation

motivated the introduction of more flexible spectrum allocation policies to overcome the

shortcomings of the static allocation. As a result, the Dynamic Spectrum Access (DSA)

paradigm based on the Cognitive Radio (CR) technology [9] has gained popularity to

overcome the drawbacks and shortcomings of the currently inefficient static allocation

schemes.

1.1 Dynamic Spectrum Access

The term Cognitive Radio was first proposed by Joseph Mitola [9]. In essence, a CR

is a smart wireless device that is capable of tuning its communication parameters to

adapt to the surrounding radio-environment. The DSA principle [10–12], relying on the

CR paradigm, has been proposed to improve spectral efficiency [13]. In a CR network,

1
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Secondary Users (SU) access the Primary User (PU) spectrum that is not being utilised

(also known as spectrum holes) in an opportunistic manner to support spectrum reuse

and increase spectrum efficiency [11, 14]. DSA/CR is a promising solution for the

spectrum scarcity problem given the huge increase in the demand of wireless connected

devices and sensors. It is expected from a CR to sense the primary channel in a periodic

manner, to detect the presence of a PU. When a PU signal is detected, the SU has to

stop operating at that frequency and has to search for a new empty frequency band. It

is essential for a DSA/CR system to operate with minimal, non-harmful interference to

the PU network even though PUs may use different modulations, transmission rates and

powers, which adds more complexity to the operation of DSA/CR networks. DSA/CR

networks are required to enable SUs to:

1. Determine the PU signal availability over the licensed spectrum.

2. Select the most appropriate channel for SU transmission.

3. Coordinate the access to available (idle) primary channels between SUs.

The access of CRs to TV white space is one of the examples of DSA systems [15],

where the aim is to have CRs share the geographically unused TV bands in a non-

interfering manner. Several standards for CR systems have been designed and deployed

in TV white space including:

• The IEEE 802.22 Wireless regional area network (WRAN), which is the first cog-

nitive radio standard [16, 17]. The IEEE 802.22 targets the use of UHF/VHF TV

bands (54-862MHz) by SUs on a non-interfering basis, thus spectrum sensing is

essential. In [18], different sensing methodologies for compatibility with 802.22

standard were investigated.

• While the IEEE 802.11 standard is well known for Wireless Local Area Network

(WLAN) systems, the IEEE 802.11af standard aims to enable WLAN to operate

in TV WS in an opportunistic manner [19].

• The IEEE 802.15.4m standard aims to enable ZigBee systems (low power and

complexity devices) to operate in television WS [20]. Some example applications

include smart grid/utility, advanced sensor networks, and machine-to-machine net-

works.

• The ECMA 392 standard aims to provide access to personal devices on television

WS [21, 22]. Information on the TV channel occupancy can be obtained from

databases accumulated by spectrum sensing to ensure interference-free coexistence

with TV signal. The ECMA 392 standard fixes the available bandwidth to 6 MHz,

7 MHz, or 8 MHz, unlike IEEE 802.11af which provides flexibility on the SU

available bandwidth.
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Figure 1.1: DSA/CR network architecture [12].

Other examples include CRs access underutilised cellular network channels with

higher channel capacity and lower intercell interference [23–26]. Benefiting from the

ability to learn information on the primary network and adapt to it (by using previous

channel knowledge to select the most appropriate channel with both higher SINR and

WS) to create a cognition-inspired 5G cellular network [25]. Another example is cellular

networks accessing the WS (unlicensed WiFi spectrum) dynamically in an opportunistic

manner without causing interference or unfairness to WiFi networks as preserving fair

coexistence is a main goal for DSA systems [27, 28].

1.2 Cognitive Network Architecture

The generic architecture of a DSA/CR network is shown in Fig. 1.1. Two main network

components can be identified: the primary network and secondary network [12].

• Primary network. A primary network or a licensed network is an existing network

infrastructure which has the right to access a specific spectrum band. For instance,

cellular networks and TV broadcast are common examples of primary networks.

A primary network consists of:

– Primary user. Primary or licensed is a user with a license to operate in a

licensed band. The access to the channel is organised by the primary base

station with a minimum interference by secondary users. For example, the



Chapter 1. Introduction 4

primary user is the TV receiver in the licensed TV band or the mobile phone

in cellular networks.

– Primary base-station. Primary or licensed base station is the access point in

the fixed infrastructure of the primary network. Primary base-station may

have the capability to support both legacy and new protocols for network

access by secondary users.

• Secondary network. A secondary or unlicensed network is a network with fixed

infrastructure but without a license to operate in a spectrum band, thus accesses

the spectrum in an opportunistic manner. A secondary network consists of:

– Secondary user. A secondary or unlicensed user is a network user without

a license over the spectrum band. It can only access the spectrum in an

opportunistic manner during spectrum holes (PU idle time or vacant areas).

– Secondary base-station. A secondary or unlicensed base station is part of

the fixed infrastructure component which provides SUs with spectrum access

capabilities without a spectrum license. As for cooperative spectrum sensing,

the secondary base-station also serves as a fusion centre (FC) which gathers

information from cooperative SUs to provide a global decision on spectrum

availability.

– Spectrum broker. A spectrum broker or a scheduling server is a central net-

work node that is in-charge of allocating spectrum resources to SUs (not

necessarily from the same network).

1.3 Dynamic Spectrum Access Approaches

Hierarchical spectrum access allows the SU to access the primary spectrum under strict

interference restrictions. There are three sub-categories of this scheme as illustrated in

Fig. 1.2.

1. Interweave1. The SU is required to identify spectrum holes (when the PU channel

is idle) and utilise this time and geographical location for transmission. As a result,

the interference on the PU network would not exist since PU and SU transmissions

are orthogonal. Such sharing model is not required to follow any constraints on

transmission power. However, SUs are required to periodically monitor the PU

channel to determine the activity status (i.e., busy or idle) and vacate the channel

when PU is active [29].

2. Underlay. The SU accesses the PU channel at any time but with low transmission

power to reduce harmful interference on PU [30–32]. Such sharing model can

be utilised for short range communication devices. In this model, the tolerable

1Sometimes refereed to as overlay in the literature.
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Figure 1.2: Dynamic spectrum access techniques.

interference level at PU is defined by the interference temperature which is specified

by the Federal Communications Commission (FCC) [33].

3. Overlay. The SU also accesses the PU channel at any time but some of the

SU power is utilised to assist the transmission of PU and compensate for the

interference generated by the remaining power allocated to the SU transmission

[34].

This work focuses on the interweave approach.

1.4 Spectrum Sensing

Spectrum sensing is a key enabling technology for CR operation in interweave mode, as

it allows SUs to detect the presence/absence of PU traffic, which is essential to reduce

the interference [14, 35–39]. Spectrum sensing can also be utilised to capture PU traffic

activity for the analysis stage of spectrum characterization. Spectrum sensing can be

sub-characterised to two different techniques: non-cooperative and cooperative based

sensing.

1.4.1 Non-Cooperative Sensing

The main hypothesis here is the presence of the PU signal. Usually, the received signal

at the SU is composed of PU’s signal plus noise when the PU is active. Otherwise,

the SU receives only noise when the PU is idle. There are three main methods for PU

detection.



Chapter 1. Introduction 6

• Energy detection. Energy detection (ED) provides an optimal solution for detection

when no information on the signal is available [40]. However, the performance of

ED is highly dependent on the received signal energy and noise level [41, 42]. The

received signal energy is compared with a predefined threshold and a decision is

made stating that PU is active if the signal energy is higher than the threshold.

Otherwise, the PU is assumed to be idle. The ED proved to be the most practical

one, as most of the time spectrum sensing is performed using low cost devices in

practice and this method works regardless of the PU signal format.

• Matched filter detection. Matched filter approach provides an optimal solution for

additive noise type as it maximises the SNR, however it requires a prior knowledge

of the PU signal, for example the modulation type, the pulse shape, and the

packet format [12]. Matched filter techniques proved to deliver a good detection

performance under low SNR environment [43, 44].

• Feature detection. Feature detection targets exploiting the partial knowledge of

PU signal. For instance cyclostationary feature detection utilises the periodicity in

modulated signals (periodic for modulated signals and aperiodic for noise) [45, 46].

The autocorrelation based detection assumes a wide-sense stationary PU signal and

exploits the autocorrelation feature to identify PU signal [47].

1.4.2 Cooperative Sensing

Single based sensing faces reliability problems during the detection of weak signals (due

to fading/shadowing) at levels well below the noise floor [48, 49]. Cooperative sensing

exploits the spatial diversity of SUs to enhance spectrum sensing [50–52]. In general,

cooperative sensing can be classified into distributed cooperative sensing and centralized

cooperative sensing. In the distributed cooperative sensing, the SUs exchange their local

sensed PU states [53]. While in the centralized cooperative sensing, the SUs report their

local sensed PU states to a central server known as the fusion centre (FC) for a global

decision based on a specific fusion rule [54].

1.5 Spectrum Availability Modelling

An SU access the licensed user spectrum during idle time in an opportunistic and non-

interfering manner. Hence, the performance of an SU is highly dependent on PU activity.

Several approaches have been proposed in the literature to model PU activity pattern

[11, 55]. In this section, time-dimension models based on Markov chain approach are

discussed as it is the most popular modelling method for PU activity pattern.

1.5.1 Two State Markov Chain

At any given time instant, the primary channel may be either busy or idle (binary state).

The binary state space for PU channel may be denoted by S = {s0, s1}, where the s0
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Figure 1.3: Discrete-Time Markov chain model.

indicates an idle channel and the s1 indicates a busy channel. At any given time t, the

channel state can be either S(t) = {s0} or S(t) = {s1}. The two state Markov chain

process can be modelled as either discrete-time or continuous-time based on the time

index t. The discussion on both these models are provided below.

1.5.1.1 Discrete-Time Markov Chain

In a Discrete-Time Markov chain (DTMC), the PU channel state changes at discrete

time intervals (i.e., t = tx = xTc, where x is a non-negative integer representing the

step number and Tc the time duration between two consecutive state changes [56]. The

probability of state transition is defined as pij . Hence, if the current state is i, the

probability of state change j is defined as pij [57]. The transition matrix of probabilities

can be expressed as:

P =

[
p00 p01

p10 p11

]
=

[
1−Ψ Ψ

1−Ψ Ψ

]
, (1.1)

where Ψ is the duty cycle of the PU. pij represents the probability of system transition

between idle S0 and busy S1 states.

1.5.1.2 Continuous-Time Markov Chain

In the Continuous-Time Markov Chain (CTMC), the time index takes any continuous

value. The channel remains in one state for a random time before shifting the state. The

next transition is independent of the state history. The channel holding times (activity

time) are modelled as an exponentially distributed random variable. In the literature,

CTMC is one of the most commonly deployed models for DSA/CR [58–62].

Field measurements for real wireless communications have shown that the exponen-

tial distribution is not the most accurate model for PU holding times. Instead, the

Continuous-Time Semi-Markov Chain (CTSMC) model is used to model the occupancy

activity [63–65]. In CTSMC, the PU holding times can follow any arbitrary distribution

[11].

Other differences between the CTMC/CTSMC and DTMC models is in CTM-

C/CTSMC it is possible to control the mean, variance and minimum transmission dura-

tion of the produced occupancy periods, while this is not possible for DTMC as only the
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duty cycle is controllable. In this thesis, both the CTMC and CTSMC are considered

to model PU activity time.

1.6 Estimation of Primary Statistics

The estimation of PU traffic statistics (duration of the idle/busy periods of a channel)

is inferred from the spectrum sensing decisions. SUs sense the channel with a finite

sensing period Ts (shorter than the minimum period duration). At every sensing event,

a binary decision is made, H0 for idle and H1 for busy. When a change in the observed

state occurs, the time interval elapsed since the last is computed to make the estimation

of the original real period. The process is repeated for a sufficiently large number of

periods until enough data is available. The set of observed periods is then used by the

CR to estimate the activity statistics of the PU channel. Some examples of relevant

statistics commonly used in the DSA/CR literature are the minimum period duration,

the moments (mainly, the mean and the variance), the channel duty cycle and the

underlying distribution. The estimation of these statistics will be investigated in this

thesis.

Unfortunately, spectrum sensing suffers from practical impairments. The impair-

ments include: i) the estimation of primary statistics based on a finite sensing period,

which determines the resolution of estimation for each individual period and imposes

a fundamental limit on the accuracy of estimation of individual periods and the corre-

sponding statistics; ii) the finite number of observed periods given that the time required

to observe the channel to obtain accurate estimation of the statistics is limited; iii) the

presence of sensing errors in the estimation process. The individual estimated period

durations will be affected significantly by these practical impairments, which could lead

to either under/over estimation of statistics. The impact of all these degrading effects

will be investigated in this thesis.

1.7 Motivation and Objectives

The knowledge of the primary activity statistics such as the minimum, mean and variance

of the on/off period durations, the channel duty cycle, and the underlying distribution

can be employed to access the spectrum more effectively and improve the CR system

performance [66–68]. This can be achieved by selecting the most appropriate channel for

transmission [69], reducing the switching time delay [70, 71], adapting the parameters of

CRs’ medium access control (MAC) layer [72], selecting an appropriate threshold in case

of using energy detection [73], forecasting the primary occupancy pattern to minimise

the interference [74–76], or fight against attacks [77] for the case of cooperative spectrum

sensing and thus increase the overall spectrum efficiency.

An example on the benefits of having knowledge of the primary distribution is when

a packet needs to be transmitted. The packet size is used to estimate the approximated
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time that its transmission would require based on known operation parameters (e.g.,

channel bandwidth, modulation and coding schemes and so on). Once the estimated

transmission time required for the packet is known, the DSA/CR system selects the

primary channel with the highest probability to provide a continuous idle/off period that

is at least as long as the time required for the packet transmission. Such probability can

be obtained from the distribution of idle/off times.

This information could be obtained from spectrum sensing or other alternatives such

as databases. However, the sensing-based approach has significant advantages including

lower cost and complexity, independence of external systems and better suitability for

highly dynamic radio environments [78]. In this thesis, the problem of estimating the

PU traffic statistics based on spectrum sensing is investigated.

In the literature, several studies have considered the problem of estimating primary

activity statistics based on sensing decisions, mostly focusing on the estimation of the

channel duty cycle. In [79], the estimation of the channel occupancy rate (duty cycle)

based on different approaches was studied analytically in the presence of sensing errors.

A mathematical analysis on the estimation of the mean on/off durations, as well as the

duty cycle under DSA, was presented in [80]. In [10] several methods for the classifi-

cation of such distribution were proposed under the assumption of no sensing errors.

To overcome the degrading effect of sensing errors on the estimated primary activity

statistics, several algorithms were proposed in [81]. Nevertheless, several questions re-

main without sufficient answers such as closed form expressions for the estimation of the

distribution of busy/idle periods based on spectrum sensing, how big the sample size of

busy/idle periods should be to have an accurate estimation of the statistics, and new

methods to improve the estimation of the statics under sensing errors.

In this context, this thesis aims at filling the existing gaps by providing answers

to these questions. The objective in this line is to provide closed-form expressions

that characterise the accuracy of the estimated statistics as function of the practical

impairments such as the use of finite sensing period and/or sample size (for the PSS

case) and develop new methods to accurately estimate the PU traffic statistics in the

presence of sensing errors (for the ISS case).

Moreover, the potential benefits arising from cooperative estimation of the PU statis-

tics is investigated as well, as a means to improve the detection performance taking

advantage of the spatial diversity for multiple cooperating nodes [82, 83], it is utilised

here to provide an accurate estimation of the primary traffic under imperfect spectrum

sensing (ISS). Unfortunately, the improvement in performance achieved by cooperation

is hindered by the increase of cooperation overhead. Several studies have aimed at im-

proving energy efficiency in cooperative spectrum sensing by reducing the consumed

power at each step of the cooperative sensing operation [84]. For instance, reducing

the power consumed during the sensing stage [85, 86], or at the reporting stage [87–89]

by selecting the most useful SUs for local states reporting to the fusion centre (FC).

Another problem that has not attracted enough attention is the estimation of primary
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traffic statistics under spectrum sensing data falsification (SSDF) attacks. CR systems

are more susceptible to SSDF attacks (also known as Byzantine attacks) and to the

presence of greedy users who send false reports to gain more access to primary channels.

Multiple studies have considered the effect of attacks on the sensing process [90–92],

however their main aim is the estimation of the probability of primary signal detection

instead of the PU traffic statistics. In this thesis, another objective is to investigate the

effect of these attacks on the estimation of primary traffic statistics and develop a new

reporting mechanism with the aim of reducing the number of required transmissions

at each reporting stage while guaranteeing a secure sensing reporting and therefore an

accurate estimation of the PU traffic statistics.

1.8 Thesis Contributions

This thesis aims to address the fundamental problem of accurately estimating the pri-

mary traffic statistics under different scenarios. The main contributions can be sum-

marised as follows:

1. An analytical model is developed to link the spectrum sensing period with the

observed PU traffic statistics and quantify the effects of the spectrum sensing

period on the resulting estimation accuracy.

2. A novel approach based on a modified version of the Method of Moments (MoM)

is proposed to remove the impact of using a finite sensing period on the estimated

PU distribution and improve its accuracy.

3. An analytical model is developed to link the sample size with the observed PU

traffic statistics and quantify the effects of the observed sample size on the resulting

estimation accuracy.

4. Three novel algorithms are proposed to enhance the estimation of primary activity

statics under imperfect spectrum sensing given the knowledge of the minimum

transmission duration. Moreover, the impact of different primary distributions on

the performance is investigated as well.

5. A detailed study on the cooperative estimation of the PU activity statistics (in

particular, the distribution of the channel holding times) under both spectrum

sensing errors and SSDF attacks is carried out, which shows improvements in the

estimation accuracy. A novel algorithm to reduce both the signalling overhead and

estimation errors under SSDF attacks in the cooperative scenario is proposed and

compared to other algorithms from the literature showing performance improve-

ments.



Chapter 1. Introduction 11

1.9 Thesis Outline

The remainder of this thesis is organised as follows.

Chapter 2, investigates the impact of the sensing period on the accuracy of the

estimated primary actively statistics. Closed-form expressions for the PDF and CDF of

the periods observed at the SU as a function of the original distribution at the PU and

the sensing period employed by the SU are derived. Then, closed form expressions for the

maximum observed error as a function of the sensing period and distribution parameters

are provided as well. New methods to improve the estimation of the distribution are

proposed. Finally, the simulation and experimental results of the proposed methods are

analysed thoroughly.

The problem of sample size effect on the distribution estimation accuracy is dis-

cussed in Chapter 3. First, a detailed mathematical analysis on the sample size required

to provide an arbitrarily accurate estimation of the minimum period, the mean and

variance of the observed periods, the channel duty cycle and the underlying distribu-

tion of the observed periods is provided. The obtained analytical results depend on the

real/actual parameters of the PU traffic, which are unknown to the SU; this problem

is overcome with an iterative stopping algorithm that enables an accurate estimation

of the required sample size in practical implementations. Finally, the simulation and

experimental methodology employed to validate the correctness and accuracy of the

analytical results is described along with the obtained results.

In Chapter 4, the formal description of the problem of estimating the PU activ-

ity statistics under imperfect spectrum sensing is first provided. The novel proposed

algorithms to mitigate the impact of sensing errors are explained in detail along with

other previous methods proposed in the literature. The performance of the proposed

algorithms (obtained by simulation) are analysed and compared with other algorithms

along with the discussion on the configuration of spectrum sensing based on the obtained

results. Then, different statistical distributions to model the PU activity are introduced

and the performance of the proposed algorithms is assessed through simulations under

the different considered PU traffic models.

In Chapter 5, the cooperative estimation of primary traffic statistics is considered.

First, the structure of the cooperative system is considered along with the cooperative

estimation of primary signal durations and cooperative algorithms utilised. Different

estimation methods for the cooperative estimation of the primary governing distribution

are described. The problem of increasing overhead along with an efficient reporting

mechanism are described as well and the problem of SSDF attacks and how to protect

against them are also discussed. The performance of the proposed methods is analysed

thoroughly by means of simulation and hardware experiments.

Finally, Chapter 6 highlights the main findings and conclusions of this thesis and

suggests some ideas for extension in future work.



Chapter 1. Introduction 12

1.10 List of Publications

Relevant Journal Publications
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curate estimation of primary user traffic based on periodic spectrum sensing,” 2018

IEEE Wireless Communications and Networking Conference (WCNC), Barcelona,

2018, pp. 1-6.

4. A. Al-Tahmeesschi, M. López-Beńıtez, J. Lehtomäki and K. Umebayashi, “Im-

proving primary statistics prediction under imperfect spectrum sensing,” 2018

IEEE Wireless Communications and Networking Conference (WCNC), Barcelona,

2018, pp. 1-6.
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Chapter 2

Impact of the Sensing Period

under Perfect Spectrum Sensing

2.1 Introduction

DSA/CR users can utilize spectrum sensing decisions to obtain information on PU chan-

nel activity. The PU channel is sensed periodically by DSA/CR users to decide the

channel state (busy or idle) at every sensing event based on a signal detection algorithm

[36]. These spectrum decisions can be used to estimate the durations of the idle and busy

periods. Unfortunately, the estimation of PU activity periods and statistics by means

of spectrum sensing (periodic channel observations) suffers from practical limitations,

such as finite sensing duration and limited observation time. These limitations reduce

the accuracy of PU parameters estimated by DSA/CR users as discussed in Section 1.6.

The main interest and focus of this chapter is to first analyse the impact of the spec-

trum sensing period on the accuracy of the estimated PU activity statistics in particular,

the distribution of PU busy/idle periods. A complete characterisation of the PU activity

statistics is provided. Despite being an elemental problem of crucial importance for CR

systems, this has never been considered or analysed before in the existing literature.

Second, to improve the estimation of PU activity statistics (focusing on the distribution

of PU busy/idle periods), a novel approach is proposed based on the Method of Moments

(MoM) to improve the PU distribution estimation under finite spectrum sensing. The

impact of sensing errors (i.e., false alarms and missed detections) is out of the scope of

this chapter and hence a high signal-to-noise ratio (SNR) scenario with no sensing errors

is considered. The imperfect sensing scenario will be addressed in Chapters 4 and 5.

The contributions of this chapter can be summarised as follow:

1. Analytical expressions are derived for both the Probability Density Function (PDF)

and the Cumulative Distribution Function (CDF) observed at the SU taking into

account the effect of the spectrum sensing period.

2. Analytical expressions are derived for the maximum error in the distribution taking

into account the effect of the spectrum sensing period.

15
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Figure 2.1: Considered model. Ts, T1, T̂1 represent the sensing period, original busy
period duration and estimated busy period duration, respectively. T x

e and T y
e are the

errors in period estimation.

3. The effect of the spectrum sensing period on the distribution observed at the SU

is studied.

4. A novel method to palliate the effects of spectrum sensing on the distribution

estimation is proposed. Experimental results are provided to validate the proposed

method and simulations.

2.2 System Model

A single SU is considered to detect PU activity. The SU performs spectrum sensing

decisions with periodicity Ts time units (t.u.) to detect the presence/absence of PU

signal on a specific frequency band. The results of the decisions are introduced as a

binary alternating state: busy when the PU signal is present at the SU and idle when

the PU signal is absent at the SU. The computed elapsed time (at SU) between two PU

state changes is considered as an estimation T̂i of the real period duration Ti (i = 0 for

idle periods and i = 1 for busy periods) as illustrated in Fig. 2.1, where the estimation

of the duration of a busy period is shown (idle periods can be estimated using the same

method). The estimated period durations are integer multiples of Ts (i.e., T̂i = kTs,

with k ∈ N+, where k represents the number of sensing events within the estimated

period. A similar model was considered in [81].

As discussed in Section 2.1, a high SNR scenario is assumed with no sensing errors so

that the only degrading effect considered in this study is the impact of the finite sensing

period Ts, which is the aspect of interest in this chapter. The PU activity periods Ti

can be sensed accurately in case the channel is sensed exactly at the points of PU state

change. In practice the SU is de-synchronised with the PU channel activity and the

PU channel is sensed at arbitrary time instants every Ts time units (t.u.). As a result,
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the estimated periods T̂i depend not only on the original periods Ti but also on the

employed sensing period Ts. The first main objective of this chapter is to explore the

relation between the original periods Ti and the estimated periods T̂i as a function of the

sensing period Ts. To this end, closed-form expressions are developed for the PDF/CDF

of T̂i as a function of the PDF/CDF of Ti and Ts.

2.3 Distribution of the Estimated Periods

2.3.1 Calculation of the Estimated distribution

The estimated periods T̂i can be expressed as a function of the original periods Ti as

T̂i = Ti+Te, where Te is the error component, which according to the model of Fig. 2.1 is

given by Te = T ye −T xe . As it can be appreciated from Fig. 2.1, both T xe and T ye can take

any value between 0 and Ts. Reasonable and intuitive assumptions that both of them

are independent and follow a uniform distribution (i.e., T xe and T ye ∼ U(0, Ts)). Both

assumptions can be verified from Fig. 2.2, which was obtained by simulating the sensing

of a sufficiently high number of exponentially distributed periods Ti using a sensing

period Ts = 5 t.u., recording the error components T xe and T ye , and computing their

normalized histograms (i.e., PDFs). As it can be observed, the assumptions of uniform

distribution and independences for the T xe and T ye error components are correct. In

some specific cases, this assumption might not be completely accurate, depending on

the particular value of the involved parameters. The effect, however, was observed to

be minimal, with just a small ripple in the shape of the PDF of Te which is negligible.

Moreover, the assumption of independency between T xe and T ye is necessary to make the

problem under study analytically tractable.

The PDF for the triangular distribution of Te is:

fTe(t) =



0 t < − Ts
Ts+t
T 2
s

−Ts ≤ t ≤ 0

Ts−t
T 2
s

0 ≤ t ≤ Ts
0 t > Ts.

(2.1)

This model can be verified from simulation results as shown in Fig. 2.3.

The PU state holding times (T0 and T1) are random variables assumed to be inde-

pendent and exponentially distributed [71]. The exponential distribution is the most

common model used to describe the periods of the on/off states in the literature [80, 93]

even though it is proven not to be the most accurate since other distributions provide

better fit for real scenarios such as the generalized Pareto, Gamma or even more compli-

cated distributions [64]. The exponential distribution is utilised because of its analytical

traceability. The PDF and CDF for the exponential distribution are given as [94]:
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(a) (b)

Figure 2.2: The PDF of the error components: (a) fTxe (t), (b) fTye (t).

Figure 2.3: The PDF of the combined error component fTe(t).

fTi(t) =

0 t < µi

λie
−λi(t−µi) t ≥ µi,

(2.2)

FTi(t) =

0 t < µi

1− e−λi(t−µi) t ≥ µi,
(2.3)

where λi is the distribution scale parameter and µi is the distribution location parameter

(also the smallest value for the PU activity period).

Since T̂i = Ti + Te, the PDF of the estimated periods can be obtained as [95]:
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f
T̂i

(t) = fTi(t) ∗ fTe(t) =

∫ ∞
−∞

fTi(τ) · fTe(t− τ)dτ, (2.4)

where fTi(t) and fTe(t) are given by (2.2) and (2.1) respectively. The operator ∗ refers

to the convolution operation. The resulting expression for the PDF f
T̂i

(t) is shown in

(2.5) while the CDF F
T̂i

(t) can be obtained through the direct integration of f
T̂i

(t) as

shown below:

F
T̂i

(t) =

∫ t

−∞
f
T̂i

(τ)dτ. (2.6)

The final CDF expression can be seen in (2.7).

Note that the distributions in (2.5) and (2.7) have a continuous domain, while the

actual distributions of the periods observed at a SU are discrete since the periods esti-

mated from spectrum sensing as shown in Fig. 2.1 are integer multiples of the employed

sensing period (i.e., T̂i = kTs, k = 1, 2, 3 . . .). Such discrete distribution can be obtained

by evaluating (2.5) and (2.7) at the right points of each interval/bin of the PDF and

CDF, respectively, as:

g
T̂i

(k) = f
T̂i

(kTs), (2.8)

G
T̂i

(k) = F
T̂i

((k + 1/2)Ts). (2.9)

The set of obtained expressions provide closed-form relations between the distribu-

tions of the original periods Ti resulting from the PU transmission (and its parameters

µi, λi), the distribution of the estimated periods T̂i as observed by the SU based on

spectrum sensing decisions, and the employed sensing period Ts. These mathematical

results are useful to evaluate the impact of the employed sensing period on the accuracy

of the distributions estimated by the SU and can find many practical applications such

as mathematical analysis, simulation or system design (e.g., determine the maximum

value of Ts required for a given level of estimation accuracy).

2.3.2 Error of the Estimated Distribution

To better understand the sensing period effect on the observed distribution, we utilize

the well-known Kolmogorov-Smirnov (KS) distance. This is the most commonly used

metric to quantify the error between two distributions. The KS distance is defined as

the largest absolute error between two continuous CDFs and given as follows [96]:

DKS = sup
t

∣∣∣FTi(t)− FT̂i(t)∣∣∣ . (2.10)

To find the value of t that maximises the distance (DKS), the partial derivative of

the absolute difference in the KS distance is taken and equated to zero as follows:

∂[FTi(t)− FT̂i(t)]
∂t

= 0. (2.11)
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The largest difference occurs at t = µi which is found through numerical methods.

Since FTi(µi) is zero at t = µi, the final expression for the KS distance will be:

DKS = F
T̂i

(µi)

=
1

2
− 1

λiTs
+

1− e−λiTs
(λiTs)2

.
(2.12)

Expression (2.12) provides an easy and accurate tool to mathematically calculate

the KS distance between the estimated and original CDFs as a function of the employed

sensing period. Moreover, expression (2.12) can be used to calculate the Ts required for

a given target estimation error.

2.3.3 Numerical Results

In this section, first the accuracy of the proposed model for both PDF and CDF will

be assessed, then the effect of the sensing period on the distribution estimation. For

all the considered cases the sensing period is lower than the minimum PU activity time

(Ts < µi). This is required to ensure that no activity periods are missed in the sensing

process (the shortest detectable period is Ts), which would otherwise lead to significant

estimation errors. Notice that this consideration implicitly assumes that the minimum

PU activity time µi is known to the SU so that the value of Ts can be configured not to

exceed µi. This assumption is realistic since the value of µi is available for some well-

known standardised radio technologies (e.g., the time-slot duration of GSM or LTE) or

can be obtained with other methods such as blind recognition/estimation [97] or from

PU beacon signals [98].

The simulation results are obtained by following steps listed below:

1. Generate idle/busy periods’ lengths Ti following a generalized exponential distri-

bution.

2. Perform idle/busy sensing decisions H0/H1 on the generated sequence in step 1

every Ts time units (t.u.).

3. Calculate the idle/busy lengths T̂i using H0/H1 sequence from step 2 estimated

under PSS.

4. Compute the CDF/PDF of the idle/busy lengths obtained in step 3, and compare

with the CDF/PDF of the original lengths in step 1.

On the other hand, analytical results are obtained by applying the system parameters

into the derived expressions. For example, 2.12 is used find the error in the CDF (KS

distance).

Fig. 2.4 shows the busy periods PDFs f
T̂i

(t) obtained from simulation and analytical

expression versus the original distribution fTi(t) for multiple values of sensing periods (Ts
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= 1, 3 and 5 t.u.). The discrete expression g
T̂i

(k) has not been included for clarity but

its corresponding values can be easily obtained as the values of the analytical expression

f
T̂i

(t) at kTs. It can be appreciated that the closed form analysis provides an excellent

fit with the simulation results for all the considered scenarios, which verifies the validity

of the mathematical expression obtained for the PDF. Moreover, Fig. 2.4 shows the

effect of sensing period Ts on the discrete estimated PDF g
T̂i

(k). High sensing periods

give higher estimation errors and vice versa.

Fig. 2.5 shows the busy periods CDFs obtained from simulation G
T̂i

(t) (discrete)

and analytical expression F
T̂i

(t) versus the original distribution FTi(t) for multiple values

of sensing periods (Ts = 1, 3 and 5 t.u.). The closed form analysis provides an excellent

fit with the simulation results for all the considered scenarios, which verifies the validity

of the mathematical expression obtained for the CDF. The stair shape of the observed

CDF G
T̂i

(t) represents the effect of the spectrum sensing operation and the resulting

discrete observed periods.

Fig. 2.6 shows the KS distance for the simulated and analytical CDF with respect

to the original distribution. The x-axis represents the duration of sensing period in

time units and the y-axis represents the KS distance. Since the sensed CDF is a discrete

distribution G
T̂i

(t), it is to be transformed to a continuous form for comparison purposes.

To this end, the CDF frequency polygons are utilised [99], where the mid points of the

discrete CDF are joined together and extended to include the zero frequency cases from

left of the normalised histogram and hence obtain the continuous form of the CDF. As

it can be appreciated from Fig. 2.6, the analytical expression (2.12) gives an excellent

prediction of the estimation error. High Ts values will result in larger errors in the

estimation of the PU activity pattern, however the resulting estimation error can be

reduced by decreasing Ts.

Fig. 2.7 analyses the impact of different λi values (λi = 0.15, 0.25, 0.35 and 0.45) on

the KS distance based on (2.12). Fig. 2.7 implies that not only the value of Ts has an

impact on the estimated error (KS distance) but also the value of λi (distribution scale).

The KS distance increases with higher values of λi. The analytical result in (2.12) can

be used as shown in Fig. 2.7 to determine the maximum value of Ts required for a given

level of estimation accuracy of the distribution.

2.4 Methods for Accurate Estimation of the Distribution

This section proposes new methods to overcome the impact of a finite sensing period on

the estimated distribution. To this end, it is first necessary to analyse how the sensing

period affects the estimation of the minimum period, as well as the mean and variance

of the estimated periods.
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Figure 2.4: Validation of the PDF of the estimated periods (λ1 = 0.15, µ1 =
10 t.u,E {T1} = 16.66 t.u. and Ψ = 0.5.)



Chapter 2. Impact of the Sensing period under Perfect Spectrum Sensing 24

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Figure 2.5: Validation of the CDF of the estimated periods (λ1 = 0.15, µ1 =
10 t.u,E {T1} = 16.66 t.u. and Ψ = 0.5.)
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Figure 2.6: KS distance for the observed and analytical model CDFs.
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Figure 2.7: KS distance for the observed and analytical model CDFs.



Chapter 2. Impact of the Sensing period under Perfect Spectrum Sensing 26

2.4.1 Estimation of the Minimum Period Duration

As mentioned earlier, CR systems estimate the PU activity pattern based on the discrete

observation periods τ̂i = {T̂i,n}Nn=1, where N represents the number of observed periods

(sample size of τ̂i). In order to have accurate estimations of the distribution, the sample

size N has to be sufficiently large. The minimum activity duration was simulated in

[81], nevertheless a closed form expression for the estimation of minimum PU activity

time (µ̂i) is provided with a link to the sensing period (Ts). It can be shown that the

estimated periods can also be expressed as:

T̂i =

(⌊
Ti
Ts

⌋
+ ξ

)
Ts, (2.13)

where b·c denotes the floor operator and ξ ∈ {0, 1} is a Bernoulli random variable [57],

introduced to reflect the fact that the same original period Ti can lead to two possible

estimated periods, either T̂i = kTs or T̂i = (k+1)Ts, depending on the relative (random)

position of the sensing events with respect to the beginning/end of Ti. Hence, µ̂i can be

expressed as:

µ̂i = min(τ̂i) ≈ min(T̂i) = min

[(⌊
Ti
Ts

⌋
+ ξ

)
Ts

]
=

⌊
µi
Ts

⌋
Ts,

(2.14)

note that the minimum value in (2.14) corresponds to min(Ti) = µi and min(ξ) = 0.

2.4.2 Estimation of the Mean and Variance of Period Durations

Given a set of N (discrete) estimated periods τ̂i = {T̂i,n}Nn=1, the mean E(T̂i) and

variance V(T̂i) of the provided durations can be estimated based on the corresponding

sample moments:

E(T̂i) =
1

N

N∑
n=1

T̂i,n, (2.15)

V(T̂i) =
1

N − 1

N∑
n=1

(T̂i,n − E(T̂i))
2. (2.16)

The impact of Ts on the estimated moments (first and second) can be determined as

follows:

E(T̂i) = E(Ti) + E(Te) = E(Ti), (2.17)

V(T̂i) = V(Ti) + V(Te) = V(Ti) +
T 2
s

6
, (2.18)

where Ti and Te are assumed to be mutually independent, and E(T̂e) and V(T̂e) have

been replaced with the mean and variance of the triangular distribution in (2.1). The

triangular distribution in this case has a mean value of zero (i.e., E(Te) = 0), which

means that the duration of Ts does not affect the calculation of the mean value. On
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the other hand, the calculation of the variance is affected by a factor of T 2
s /6. Based on

(2.18), the effect of Ts can be minimized by applying to (2.16) the appropriate correction

factor:

V(T̃i) = V(T̂i)−
T 2
s

6
, (2.19)

where V(T̃i) is the observed variance after correction. This approach eliminates the

impairments imposed by the sensing operation with duration of Ts in the estimated

moments and is able to provide an accurate estimation of the real moments of Ti, based

on the estimated period durations τ̂i, as long as the sample size N is sufficiently large.

Spectrum 
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Estimation of 
Period Durations

Estimation of the 
Distribution

(a)

Spectrum 
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Estimation of 
Period Durations

Estimation of the 
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Distribution
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Figure 2.8: Distribution estimation methods : (a) Direct estimation, (b) Method of
Moments (MoM), (c) Modified Metod of Moments MMoM.

2.4.3 Considered Estimation Methods

Three methods are considered to estimate the distribution.

2.4.3.1 Direct Estimation

The direct estimation method is based on the calculation of the empirical cumulative

distribution function (ecdf function in MATLAB). The ecdf function calculates the

Kaplan-Meier estimate of the provided samples [100]. The flowchart of this strategy

is illustrated in Fig. 2.8(a). The main drawback of this method is that the estimated

distribution is discrete as the values of the estimated periods are integer multiples of the
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sensing period (i.e., T̂i = kTs, k = 1, 2, 3, . . .). Moreover, it is not possible to apply any

correction factors to this estimation method, which affects its accuracy.

2.4.3.2 Estimation based on Method of Moments (MoM)

To overcome the first drawback of the direct estimation method, a solution based on

the Method of Moments (MoM) is utilised. Instead of estimating the distribution of

the PU activity periods directly from the observed periods themselves, which produces

a discrete distribution, this method computes first the moments (mean and variance of

the PU activity periods) and then estimates the parameters of the distribution based

on the MoM assuming a certain distribution model. The flowchart of this strategy is

illustrated in Fig. 2.8(b). The sample moments are equated to the distribution moments

and then by solving the resulting equations the distribution parameters are obtained.

As opposed to the previous method, the resulting distribution with this approach is

continuous instead of discrete, thus offering the possibility to minimize the impact of

sensing period.

Various methods have been proposed to estimate the distribution parameters besides

MoM such as, Maximum likelihood Estimation and Least Squares Estimation [101, 102].

In this work, we only consider MoM-based solutions. Even though other methods might

provide a better distribution parameters fit, they require the complete history of past

observed period durations while with MoM the distribution moments can be estimated

from sample moments, which can be computed recursively based on last samples. As a

result, the practical implementation of MoM-based solutions would result in significantly

lower computation and memory cost for CR devices.

Here, we assume the state holding times of PU (T0 and T1) follow a Generalized

Pareto (GP) distribution, which was proven to give best accuracy fit with a reasonable

complexity in comparison with other more complex distributions [64]. The busy and idle

durations are also assumed to be independent of each other [71]. The PDF and CDF

for the GP distribution are given, respectively, as [94]:

fTi(t) =

0 t < µi

1
λi

[
1 + αi(t−µi)

λi

]−(1/αi+1)
t ≥ µi,

(2.20)

FTi(t) =

0 t < µi

1−
[
1 + αi(t−µi)

λi

]−1/αi
t ≥ µi,

(2.21)

where αi and λi are the shape and scale of the GP distribution respectively, and µi is the

location (also the minimum PU activity duration). Moreover, Ti ≥ µi, αi ≥ 0, λi ≥ 0.

The mean and variance of the GP distribution are expressed as:

E(Ti) = µi +
λi

1− αi
, (2.22)
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V(Ti) =
λ2
i

(1− αi)2(1− 2αi)
. (2.23)

The expressions needed to estimate the parameters of the GP distribution from the

sample moments can be obtained by solving (2.22) and (2.23) for such parameters,

which yields:

µ̂i = min(T̂i), (2.24)

α̂i =
1

2

(
1− (E(T̂i)− µ̂i)2

V(T̂i)

)
, (2.25)

λ̂i =
1

2

(
1 +

(E(T̂i)− µ̂i)2

V(T̂i)

)(
E(T̂i)− µ̂i

)
, (2.26)

where λ̂i and α̂i are the estimated values of original λi and αi. Introducing the MoM es-

timates provided by (2.24), (2.25) and (2.26) into (2.20) and (2.21) provides a continuous

estimation of the distribution of PU activity periods.

Notice that the location parameter µi can be estimated as shown in (2.24) since it

corresponds to the minimum period duration. However, such estimation will be affected

by the employed sensing period Ts. In many cases SU may be able to have a per-

fect knowledge of this parameter, for example in the case of primary systems that use

some form of regional beacon signals with real-time information [98] or when the radio

technology of the primary system is standardised and known (e.g., the slot duration of

GSM).

2.4.3.3 Estimation based on Modified Method of Moments (MMoM)

The MoM solution discussed in the previous section solves the problem of the estimation

error introduced by the discrete distribution resulting from the direct estimation method.

However, as shown in the analysis of Section 2.4.2, the estimated moments may have

an error component resulting from the use of a finite sensing period Ts. This motivates

the introduction of a Modified Method of Moments (MMoM) solution. The flowchart of

this proposed strategy is illustrated in Fig. 2.8(c). The main difference with respect to

the MoM method is the correction of the estimated moments, which is shaded in Fig.

2.8(c)

Based on (2.19), the new distribution parameters can be estimated as follows:

α̃i =
1

2

(
1− (E(T̂i)− µ̂i)2

V(T̃i)

)
, (2.27)

λ̃i =
1

2

(
1 +

(E(T̂i)− µ̂i)2

V(T̃i)

)(
E(T̂i)− µ̂i

)
. (2.28)

Notice that (2.27) and (2.28) are similar to their counterparts in (2.25) and (2.26),

respectively, but are based on a corrected version of the moments. In particular, the
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Figure 2.9: Block diagram of the PECAS prototype employed for hardware experi-
ments [103].

corrected variance V(T̃i) is used instead of the sample variance V(T̂i), while the sample

mean does not need correction as inferred from (2.17).

2.4.4 Numerical and Experimental results

This study assumes that the sensing period is lower than or equal to the minimum PU

activity time (Ts ≤ µi). This is required to ensure that no PU activity periods are missed

in the sensing process (the shortest detectable period is Ts), which would otherwise lead

to significant estimation errors. Notice that this consideration implicitly assumes that

the minimum activity time of the PU, µi, is known to the SU so that the value of Ts

can be configured not to exceed µi.

The simulation results are obtained by following steps listed below:

1. Generate idle/busy periods’ lengths Ti following a generalized Pareto distribution,

which has been proven to provide the best fit to empirical spectrum data [64].

2. Perform idle/busy sensing decisions H0/H1 on the generated sequence in step 1

every Ts time units (t.u.).

3. Calculate the idle/busy lengths T̂i using H0/H1 sequence from step 2 estimated

under PSS.

4. Process the sequence of period lengths resulting from step 3 to reconstruct the

original distribution by using one of the three methods considered in this chapter.

5. Compute the CDF of the idle/busy lengths obtained in steps 3 & 4, and compare

with the CDF of the original lengths in step 1.

The analytical results are obtained by applying the system parameters into the derived

expressions.

The hardware experiments were conducted with a Prototype for the Estimation

of Channel Activity Statistics (PECAS) [103]. This prototype is implemented with

common low-cost components with an approximated total cost of £60/$80. The aim to

reproduce a realistic scenario with inexpensive DSA/CR devices and introduce typical
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(a)

(b)

Figure 2.10: PECAS hardware implementation [103]: (a) Transmitter, (b) Receiver.

hardware sources of error and inaccuracies. The prototype is based on free open source

code 1.

The hardware experiments are conducted following the same principle as the simu-

lations but by utilising a real transmitter and a real receiver (i.e., PECAS). The block

diagram of PECAS is shown in Fig. 2.9. The transmitter (primary user) sends a se-

quence of GP-distributed idle/busy periods utilising a 433 MHz ON-OFF Keying (OOK)

modulator with an output power of 2 dBm (controlled from a C program based on the

wiringPi library). The receiver (secondary DSA/CR user), placed 1 metre apart, uses a

Software-Defined Radio (SDR) with a gain of 20 dB to monitor the transmitter activity

(idle/busy) at 433 MHz every Ts seconds. Fig. 2.10 shows the hardware implementation

of the transmitter and receiver parts of PECAS.

1Available at: www.lopezbenitez.es/misc/PECAS.zip

www.lopezbenitez.es/misc/PECAS.zip
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Figure 2.11: Relative error of the estimated minimum period µ̂i.

At every sensing event, signal samples are captured at a sample rate of 106 samples

per second, which are processed to decide the instantaneous channel state (idle/busy)

using energy detection. The outcomes of the energy detection decisions are used to

estimate the durations of the observed idle/busy periods as shown in Fig. 2.1 and

compute the primary activity statistics. While transmitter and receiver are controlled

by C programs running on the same Raspberry Pi 3 microcomputer. Both programs

(For transmission and reception at the same Raspberry Pi 3) run independently without

synchronisation (as it would be the case of primary/secondary users in a real scenario).

Real-time operation is achieved by a patched version of the Linux kernel and running

the programs with real-time priority. More details on PECAS can be found in [103].

First, the effect of desynchronized spectrum sensing on the observed minimum period

will be discussed. In order to quantify this effect, the relative error (Re) metric is utilized

and calculated as Re = (|µ̂i − µi|) /µi. Fig. 2.11 shows the relative error between the

minimum sensed period µ̂i versus the original minimum µi as a function of the sensing

period. As it can be appreciated from Fig. 2.11, the analytical expression provides a

perfect agreement with the simulation results. The estimated value of µ̂i depends on

Ts and the relative error shows an oscillating pattern with zeros at Ts values that are

integer sub-multiples of the original µi.

Fig. 2.12 shows the relative error of the calculated variance with (2.16) and (2.19).

As appreciated, the variance estimated using (2.16) is accurate only for low values of the

sensing period Ts, while the estimation obtained using (2.19) is accurate regardless of

the value of Ts, which proves that the correction factor in (2.19) can reduce significantly

the estimation error of the variance.
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Figure 2.12: Relative error of the calculated variance using (2.16) and (2.19).

Fig. 2.13 shows the KS distance as a function of the sensing period for the considered

distribution estimation methods. Two cases are shown for the MoM and MMoM meth-

ods, one where the value of the location parameter is estimated from spectrum sensing

observations as indicated in (2.24) (labelled as ’with µ̂i’) and another where the true

value of the location parameter is assumed to be known by the SU (labelled as ’with

µi’).

First thing to notice in Fig. 2.13 is that the direct estimation method results in

a significantly higher estimation error than the MoM and MMoM methods. In fact,

the direct estimation method can provide an accurate estimation of the distribution of

PU activity periods only if the employed sensing period is very short. The MoM and

MMoM methods can provide in general more accurate estimations over the whole range

of Ts values. The results obtained for the MoM and MMoM methods indicate that the

estimation error is zero when the employed sensing period Ts is an integer sub-multiple

of the true minimum PU activity time µi. Notice that the same behaviour is observed

for the relative error of the estimated minimum µ̂i in Fig. 2.11, which suggests that an

accurate estimation (or perfect knowledge) of the value of µi can improve significantly

the accuracy of the estimated distribution. To corroborate this observation, the accuracy

of the MoM and MMoM methods is shown in Fig. 2.13 for the cases where the minimum

PU activity time is known by the SU (’with µi’), and when it is estimated as indicated

in (2.24) and is therefore not perfectly accurate (’with µ̂i’). As it can be observed,

the distribution can be estimated more accurately when the minimum PU activity time

µi is known accurately. However, for the MoM method this is not enough to provide a

sufficient level of accuracy as seen in Fig. 2.13 since the effect of the finite sensing period

Ts has not been removed. Only the MMoM method, which corrects and overcomes the
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Figure 2.13: The KS distance using direct estimation, MoM and MMoM.

impact of the finite sensing period Ts on the estimation of the moments (in particular,

the variance) can provide a nearly zero estimation error. These results demonstrate

that only the proposed MMoM method can provide a nearly perfect estimation of the

distribution of PU activity periods from spectrum sensing observations under realistic

operation conditions.

Table 2.1 shows the KS distance as a function of the sensing period for the con-

sidered distribution estimation methods from simulations, versus the experimental KS

distance from PECAS. The first point to note is that the experimental results match

the ones obtained through simulations. The results shown in Table 2.1 prove that the

proposed methods are accurate for CR systems. Moreover, these results have a signif-

icant importance for practical CR system design since they indicate that the proposed

estimation methods allow an accurate estimation of primary traffic statics even with

low-cost hardware devices as it the case of the PECAS prototype.

Next, the effect of sample size (i.e., number of idle/busy periods used to estimate the

moments and subsequently the distribution) on the estimation accuracy of both MoM

and MMoM methods is analysed. Fig. 2.14 shows the maximum KS distance for both

methods versus the sample size for Ts = 0.2 t.u. and an accurate knowledge of the min-

imum PU activity time (this is the case that provides the best possible accuracy). As

it can be observed, the MMoM method requires a lower sample size. For example, for

a target KS distance of DKS = 0.1, the MoM method requires the observation of 900

periods approximately while the MMoM method only requires around 300 period sam-

ples. Moreover, the MMoM estimation error decreases monotonically with the sample

size, meaning that it can provide an arbitrarily accurate estimation of the distribution

provided that a sufficiently large sample size is available, while the MoM method shows
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Figure 2.14: KS distance for MoM and MMoM versus the sample size, both of the
methods assumed with perfect µ1 knowledge.

a lower bound below which it is impossible to reduce the estimation error no matter

how large the sample size is. The impact of the sample size will be analysed in detail in

Chapter 3.

2.5 Summary

CR utilizes spectrum sensing to periodically monitor PU channel activity states. A

CR benefits from this knowledge to improve the general system/device performance.

However spectrum sensing uses a finite sensing period which imposes limitations on the

measured durations of busy/idle periods and hence the time resolution to which the

resulting distribution for PU activity can be estimated.

This chapter has focused on two aspects. First, the analytical perspective of how

this limitation affects the estimation of PU distribution. Closed form expressions are

derived to show the relationship between the employed sensing period and the resulting

estimated distribution under finite sensing periods, as well as the corresponding estima-

tion error in terms of the KS distance. The analytical results showed a good agreement

with simulation results and can be used in the design and analysis of CR systems. Sec-

ond, methods have been proposed to enable SU to obtain an accurate estimation of the

distribution of PU activity periods, which plays a crucial role in improving the perfor-

mance of CR systems and reducing the interference to primary networks. A modified

version of the Method of Moments has been proposed to improve the primary distribu-

tion estimation. Simulation results have shown that the proposed method outperforms

the conventional approach based on the direct estimation by means of empirical CDF

calculation as well as the approach based on the standard Method of Moments. It has
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been found out that an accurate estimation or knowledge of the minimum PU activity

time is essential to achieve an accurate estimation of the distribution of PU activity pe-

riods. Provided that the minimum PU activity time is known or can be estimated to a

sufficient degree of accuracy, the proposed MMoM method constitutes an ideal solution

to provide an accurate (nearly perfect) estimation of the PU activity statistics based on

spectrum sensing observations.





Chapter 3

Impact of the Sample Size under

Perfect Spectrum Sensing

3.1 Introduction

As discussed earlier, information on primary traffic statistics can be employed to access

the spectrum more effectively and reduce harmful interference on primary network.

Even though PU traffic information could be obtained from other alternatives such as

databases. However, the sensing-based approach has significant advantages including

lower cost and complexity, independence of external systems and better suitability for

highly dynamic radio environments [78].

In Chapter 3, closed form expressions to model the impact of spectrum sensing

duration on the estimated primary distribution along with algorithm to improve the

estimation were presented. In this context, an important practical question is how

many busy/idle (on/off) periods need to be observed by a DSA/CR system (i.e., the

observation sample size) in order to estimate the primary channel activity statistics (in

this chapter: minimum, mean and variance of on/off times, channel duty cycle and

the underlying distribution) to a certain desired level of accuracy. The only work that

has considered this problem is the study presented in [104], where only the channel

duty cycle is considered (estimated based on individual on/off sensing decisions) and

the required number of individual sensing events is analysed. On the other hand, this

chapter considers a more general approach where primary statistics are estimated based

on a set of observed busy/idle time durations (instead of individual sensing decisions),

which can be used to estimate a broader range of primary activity parameters (not only

the channel duty cycle).

This chapter presents a comprehensive analytical study on the estimation of primary

channel statistics based on spectrum sensing decisions and determines the relation be-

tween the number of observed on/off periods and the accuracy of the resulting primary

activity statistics. To the best of author’s knowledge, this problem has not received

a rigorous treatment before in the literature. The accuracy of the derived closed-form

39
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expressions is validated and corroborated with simulation results as well as experimental

results from a hardware prototype developed to this end.

The main contributions of this chapter are outlined as follows:

1. Closed-form expressions are derived for the maximum error of the minimum, mean

and variance of the estimated on/off periods, the channel duty cycle and the distri-

bution as a function of the observation sample size (and other relevant parameters

such as the sensing period). These analytical results are useful to determine the

number of observed periods/samples required to guarantee a desired maximum

error in the estimated statistics. Expressions for the required observation sample

sizes are derived as well.

2. Practical validation of the obtained analytical results, not only with simulations

but also with experiments, is provided using a hardware prototype specifically de-

signed to replicate inexpensive low-end DSA/CR devices. This scenario is closer to

real-life DSA/CR scenarios than using advanced and costly laboratory equipment.

3. A comprehensive study about the effect of the observation sample size on the esti-

mation of primary activity statistics is carried out considering a practical primary

activity model based on the Generalised Pareto distribution, which is proven to be

a more accurate model compared to the commonly used exponential distribution

models [64].

3.2 System Model and Problem Formulation

Following the same system model proposed in Section 2.2 which is shown in Fig. 2.1,

the SU estimates a set {T̂i,n}Nn=1 of N observed periods of the same type, which is

used to calculate the primary activity statistics of interest. A wide range of statistics is

considered in this chapter, including the minimum, mean and variance of the observed

periods T̂i, the PU channel duty cycle, and the underlying distribution (this includes

the activity statistics most commonly used in the DSA/CR literature).

The main objective of this chapter is to explore the relation between the number

of observed periods N (the observation sample size) and the accuracy of the estimated

primary activity statistics mentioned above. To this end, explicit closed-form expressions

are derived for the estimation error of each primary activity statistic as a function of

the sample size N (and other involved parameters). This is essential to enable DSA/CR

systems determine whether the estimated statistics of the primary user activity are

sufficiently accurate, or more observations are required instead.

3.3 Estimation of the Minimum Period

The estimation of the minimum primary activity time (both busy/on and idle/off times)

has a great deal of importance when it comes to spectrum sensing and DSA/CR in
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general [105, 106], as it determines the minimum amount of time that a DSA/CR will

have to wait before the primary channel is available (minimum busy time) and the

minimum amount of time it will be available for transmission (minimum idle time).

In some cases, the true minimum period is known, for example in the case of primary

systems that use some form of regional beacon signals with real-time information [78] or

when the radio technology of the primary system is standardised (e.g., the slot duration

of GSM). Otherwise, it needs to be estimated.

Based on a set {T̂i,n}Nn=1 of N observed periods T̂i estimated as shown in Fig. 2.1,

the minimum period duration or minimum primary (in)activity time, denoted as µ̂i, can

be obtained as:

µ̂i = min
n

(
{T̂i,n}Nn=1

)
. (3.1)

Note that the periods T̂i estimated as shown in Fig. 2.1 are integer multiples of

the sensing period Ts, however the same original period Ti can lead to two possible

estimated periods, either T̂i = bTi/TscTs = kTs, k ∈ N+ (where b·c is the floor operator)

or T̂i = dTi/TseTs = (k + 1)Ts, k ∈ N+ (where d·e is the ceil operator). The actual

estimated period depends on the relative (random) position of the sensing events with

respect to the beginning/end of the original period Ti. Based on this observation, the

estimated periods can be modelled as:

T̂i =

(⌊
Ti
Ts

⌋
+ ξ

)
Ts, (3.2)

where ξ ∈ {0, 1} is a Bernoulli random variable. Introducing (3.2) into (5.3), and noting

that min(Ti) = µi and min(ξ) = 0, it can be seen that the estimated minimum period is

given by:

µ̂i = min(T̂i) = min

[(⌊
Ti
Ts

⌋
+ ξ

)
Ts

]
=

⌊
µi
Ts

⌋
Ts. (3.3)

The main question that this chapter aims to answer is how many primary periods

N need to be observed in order to estimate each primary activity statistic to a certain

degree of accuracy. From (3.3) it can be observed that, in the particular case of the

estimation of the minimum period duration, the estimation error is mainly given by

the employed sensing period Ts and increasing the sample size N will not improve the

accuracy of the estimated minimum µ̂i. However, if the observation sample size N is not

sufficiently large, a longer period T̂i > µ̂i = bµi/TscTs might be selected as the minimum

observed period, thus potentially leading to a less accurate estimation. Therefore, in

the particular case of this section, the relevant question is how many primary periods N

need to be observed to ensure that the estimated minimum period is the most accurate

possible estimation, in other words, ensure that at least one instance of the period

µ̂i = bµi/TscTs is observed in the set {T̂i,n}Nn=1.

To answer this question, let first determine the probability that an observed period

T̂i is equal to the best possible estimation of the minimum period given by (3.3), i.e.,

µ̂i = bµi/TscTs. A period with duration T̂i = µ̂i = bµi/TscTs will be observed if
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Ti ∈ [bµi/TscTs, dµi/TseTs] and ξ = 0, therefore the probability to observe one instance

of µ̂i can be obtained as:

P
(
T̂i= µ̂i

)
=P

(⌊
µi
Ts

⌋
Ts≤Ti≤

⌈
µi
Ts

⌉
Ts

)
E (P (ξ=0))

= P

(
µi ≤ Ti ≤

⌈
µi
Ts

⌉
Ts

)
E (P (ξ = 0))χ0

=

[
FTi

(⌈
µi
Ts

⌉
Ts

)
− FTi (µi)

]
E (P (ξ = 0))χ0

= FTi

(⌈
µi
Ts

⌉
Ts

)
E (P (ξ = 0))χ0 , (3.4)

where FTi(·) is the CDF of the original periods Ti and FTi(µi) = 0, P (ξ = 0) is the

probability that ξ = 0 in the model of (3.2) which can be calculated as:

P (ξ = 0) = P

(
T̂i =

⌊
Ti
Ts

⌋
Ts

)
=

⌈
Ti
Ts

⌉
Ts − Ti
Ts

=

⌈
Ti
Ts

⌉
− Ti
Ts
, (3.5)

the expected value of which is given by:

E (P (ξ = 0)) =

∫
T
P (ξ = 0) fTi(T ) dT

=
∞∑
m=0

(m+ 1) [FTi((m+ 1)Ts)− FTi(mTs)]−
E(Ti)
Ts

, (3.6)

where fTi(·) is the PDF of the original periods Ti, and χ0 is a correction factor for

P (ξ = 0) given by:

χ0 =

⌈
µi
Ts

⌉
Ts − µi
Ts

=

⌈
µi
Ts

⌉
− µi
Ts
. (3.7)

Notice that for any arbitrary period Ti, the width of the interval [bTi/TscTs, dTi/TseTs]
is Ts. However, around the minimum period µi it holds that Ti ∈ [µi, dµi/TseTs] (since

Ti ≥ µi ≥ bµi/TscTs) and the width of such interval is dµi/TseTs − µi instead of Ts.

Therefore, a scaling coefficient χ0 is required for the probability P (ξ = 0) as shown in

(3.7).

The probability to observe at least one instance of µ̂i in the N observed periods can

be related to the binomial distribution:

P µ̂iobs = 1−
[
1− P

(
T̂i = µ̂i

)]N
. (3.8)

Finally, by specifying a probability of occurrence of the minimum, P µ̂iobs, the minimum

number of periods required to ensure the observation of the minimum period µ̂i is:

Nµ̂i =
log
(

1− P µ̂iobs

)
log
(

1− P
(
T̂i = µ̂i

)) . (3.9)



Chapter 3. Impact of the Sample Size under Perfect Spectrum Sensing 43

Notice that increasing the sample size will not improve the accuracy of the estimated

minimum µ̂i itself, but the probability that a period µ̂i is observed (otherwise a longer

period T̂i > µ̂i might be selected as the minimum period, thus potentially leading to a

more inaccurate estimation).

3.4 Estimation of the Mean and Variance

Given a set of N observed periods {T̂i,n}Nn=1, the mean E(T̂i) and variance V(T̂i) of the

provided durations can be estimated directly from the (unbiased) sample moments:

E(T̂i) ≈ m̂i =
1

N

N∑
n=1

T̂i,n, (3.10)

V(T̂i) ≈ v̂i =
1

N − 1

N∑
n=1

(
T̂i,n − m̂i

)2
. (3.11)

Since the estimated periods {T̂i,n}Nn=1 are integer multiples of the sensing period Ts

as discussed in Section 3.3, the sample moments obtained as shown in (3.10) and (3.11)

will be affected by an error associated with the employed finite sensing period Ts. For

the purposes of the analysis carried out in this section, the estimated periods can be

modelled as T̂i = Ti + Te, where Te represents the above mentioned estimation error.

Such error can be represented by the sum of two error components T xe and T ye shown

in Fig. 2.1 (i.e., Te = T ye − T xe ). Both error components can take values within the

interval [0, Ts] and can be assumed to be uniformly distributed (i.e., T xe , T
y
e ∼ U(0, Ts));

the analysis of simulation results indicated that this assumption is valid. The impact

on the estimated moments can thus be modelled as:

E(T̂i) = E(Ti) + E(Te)

= E(Ti) + E(T ye )− E(T xe ) = E(Ti), (3.12)

V(T̂i) = V(Ti) + V(Te)

= V(Ti) + V(T ye ) + V(T xe ) = V(Ti) +
T 2
s

6
, (3.13)

where E(T ye )−E(T xe ) = 0 since T xe and T ye are identically distributed, V(Te) = V(T ye ) +

V(T xe ) assuming that T xe and T ye are independent and V(T xe ) = V(T ye ) = T 2
s /12 is the

variance of the uniform distribution U(0, Ts) of T xe and T ye . As appreciated in (3.12),

the estimated sample mean m̂i is not affected by the employed sensing period. On the

other hand, as observed in (3.13), the estimated sample variance v̂i is affected by an

error factor of T 2
s /6, which is constant and known. Based on (3.13), the effect of Ts can

be removed by applying to (3.11) the appropriate correction factor:

ṽi = v̂i −
T 2
s

6
, (3.14)
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where ṽi is the observed variance after correction (i.e., the corrected sample variance).

This approach eliminates the impairments imposed by the use of a finite sensing period

Ts in the estimated moments and is able to provide an accurate estimation of the real

moments of Ti based on the estimated period durations {T̂i,n}Nn=1, provided that a

sufficiently large number of periods N is captured.

Notice that the estimation error Te resulting from the use of a finite sensing period Ts

cannot be reduced by increasing the observation sample size N , therefore it is necessary

to first correct the sample moments (in this case, the sample variance) as discussed

above in order to remove such error. Once the sample moments have been corrected, the

resulting estimations can then be made arbitrarily close to the true population moments

of the original periods Ti by taking a sufficiently large number of period observations N .

Thus, the question to answer in this section is how large does the set {T̂i,n}Nn=1 need to

be (i.e., what is the required value of N) so that the sample mean m̂i and the corrected

sample variance ṽi of the set {T̂i,n}Nn=1 are as close as desired to the original population

moments, i.e., m̂i ≈ E(Ti) and ṽi ≈ V(Ti).

Since the estimators m̂i in (3.10) and ṽi in (3.14) are unbiased (i.e., E(m̂i) = E(Ti)

and E(ṽi) = V(Ti)), the sample size required for a certain estimation error can be

determined based on the standard errors of the estimators, which are related to their

variances [107, p.229] as:

V(m̂i) =
V(T̂i)

N
, (3.15)

V(ṽi) = V(v̂i) =
1

N

(
M4(T̂i)− [V(T̂i)]

2N − 3

N − 1

)
, (3.16)

where M4(T̂i) is the fourth central moment of T̂i, given by:

M4(T̂i) = E
(
[T̂i − E(T̂i)]

4
)

= E
(
[Ti − E(Ti) + Te − E(Te)]

4
)

= M4(Ti) + 6V(Ti)V(Te) + M4(Te)

= M4(Ti) + V(Ti)T
2
s +

T 4
s

15
, (3.17)

where V(Te) = V(T xe )+V(T ye ) = T 2
s /6 and M4(Te) = M4(T xe )+6V(T xe )V(T ye )+M4(T ye ) =

T 4
s /15, since V(T xe ) = V(T ye ) = T 2

s /12 and M4(T xe ) = M4(T ye ) = T 4
s /80.

Given an estimator ω, it is possible to define a confidence interval of κ standard

deviations around the expected value of the estimator such that the estimated values

are within that interval with a minimum probability ρ (confidence level):

P
(
|ω − E(ω)| ≤ κ

√
V(ω)

)
≥ ρ. (3.18)

If the estimator ω is unbiased, its relative error can then be bounded by εωr,max ≈
κ
√
V(ω)/E(ω). Based on this, the relative errors of the estimators m̂i in (3.10) and ṽi
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in (3.14), which are unbiased (i.e., E(m̂i) = E(Ti), E(ṽi) = V(Ti)) are:

εm̂ir,max ≈
κ

E(Ti)

[
1

N

(
V(Ti) +

T 2
s

6

)] 1
2

, (3.19)

εṽir,max ≈
κ

V(Ti)

[
1

N

(
M4(Ti)−

N − 3

N − 1
[V(Ti)]

2+

+
2N

3(N − 1)
T 2
sV(Ti) +

7N + 3

180(N − 1)
T 4
s

)] 1
2

, (3.20)

which relates the maximum relative error of the estimators m̂i and ṽi to the observation

sample size N (as well as the sensing period Ts and the moments of the original periods

Ti).

The value of κ for a certain confidence level ρ can be derived from concentration

inequalities (some examples are shown in Table 3.1). However, this approach usually

leads to loose upper bounds on the maximum relative error as it will be shown in Section

3.8. A much tighter result can be found by noting that m̂i and ṽi can be assumed to

be normally distributed by the central limit theorem. The inequality in (3.18) can be

rewritten for a normal distribution as follows:

P
(
εωabs ≤ εωabs,max

)
= P

(
|ω − E(ω)| ≤ κ

√
V(ω)

)

=

∫ E(ω)+κ
√

V(ω)

E(ω)−κ
√

V(ω)

e
− 1

2

(
ω−E(ω)√

V(ω)

)2

√
2πV(ω)

dω

= erf

(
κ√
2

)
≥ ρ. (3.21)

Solving (3.21) for κ yields the relation κ ≥
√

2 erf−1(ρ). It is worth noting that the

approach employed to determine the relation between κ and ρ has a significant impact

on the accuracy of (3.19) and (3.20) as well as the mathematical results derived later

on for other PU activity statistics. The relations shown in Table 3.1 are concentration

inequalities and therefore provide bounds on the true value of the maximum estimation

error, while the relation κ ≥
√

2 erf−1(ρ) obtained from (3.21) is an approximation to

the true value of the maximum estimation error. As such, the latter can be expected to

be more accurate. This will be shown and discussed in detail in Section 3.8.

The observation sample size required to guarantee a predefined maximum relative

error follows from (3.19) and (3.20):

Nm̂i ≈

(
κ

E(Ti) ε
m̂i
r,max

)2(
V(Ti) +

T 2
s

6

)
, (3.22)

Nṽi ≈

(
κ

V(Ti) ε
ṽi
r,max

)2 (
M4(Ti)− [V(Ti)]

2 + 2T 2
s V(Ti)

3 + 7T 4
s

180

)
, (3.23)
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Table 3.1: Relation between κ and ρ for various concentration inequalities [108].

Inequality Relation

Chebyshev κ ≥ 1/
√

1− ρ

Cantelli κ ≥
√
ρ/(1− ρ)

Vysochanskij-Petunin κ ≥ 2/3
√

1− ρ

Sobolevev κ ≥
√
−4 ln((1− ρ)/2)

Bernstein κ ≥
√
−2 ln(1− ρ)

where N � 3 has been assumed in (3.20). This assumption is reasonable as a relatively

large observation sample size is usually required for an accurate estimation.

It is worth noting that the required sample size for the estimation of moments (sam-

ple mean m̂i and corrected sample variance ṽi) may in some cases be relatively high,

depending on the desired level of estimation accuracy, the statistics of the original pe-

riods Ti and the employed sensing period Ts. In DSA/CR devices with limited memory

capabilities, this problem can be overcome by computing the sample moments based on

recurrence formulae [109] instead of storing the complete history of the N past observed

period durations.

3.5 Estimation of the Duty Cycle

The duty cycle is an important statistic commonly used to characterise the level of

occupancy of a primary channel or frequency band (defined as the probability that the

primary channel is busy, i.e., occupied by a PU signal).

The duty cycle can be estimated based on individual spectrum sensing decisions as

the ratio of the number of sensing events with a busy/on (H1) decision to the total

number of sensing events. The work reported in [104] provides an analytical study on

the sample size (understood in this case as the number of individual sensing events)

required for an arbitrarily accurate estimation of the duty cycle based on this approach.

However, taking into account that the duty cycle, denoted as Ψ, can be related to the

mean value of idle and busy periods as follows:

Ψ =
E(T1)

E(T0) + E(T1)
, (3.24)

an estimation thereof, denoted as Ψ̂, can also be obtained based on the sample mean

estimator m̂i in (3.10) as shown below:

Ψ̂ =
m̂1

m̂0 + m̂1
, (3.25)

where m̂0 and m̂1 represent the sample mean of idle/off and busy/on periods, respec-

tively. This section provides an analytical study on the observation sample size N (i.e.,
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number of periods in the observed set {T̂i,n}Nn=1) required for an arbitrarily accurate

estimation of the duty cycle based on (3.25).

The standard error (i.e., the standard deviation, or equivalently the variance) of the

estimated sample mean can be propagated through (3.24)–(3.25) to obtain the standard

error (or variance) of the estimated duty cycle [110, 111]:

V(Ψ̂) =

(
∂Ψ̂

∂m̂0

)2

V(m̂0) +

(
∂Ψ̂

∂m̂1

)2

V(m̂1). (3.26)

Based on (3.18), the relative error of the duty cycle estimated from (3.25) is obtained

as:

εΨ̂
r,max ≈

κ

E(Ψ̂)

√
V(Ψ̂)

=
κ

Ψ

[
1

N [E(T0) + E(T1)]4

{
[E(T1)]2

(
V(T0) +

T 2
s

6

)
+

+ [E(T0)]2
(
V(T1) +

T 2
s

6

)}] 1
2

, (3.27)

where E(Ψ̂) = Ψ and V(Ψ̂) is obtained by introducing (3.13) and (3.15) into (3.26) and

solving the derivatives.

The observation sample size required to guarantee a given maximum relative error

follows from solving (3.27) for N :

N
Ψ̂
≈

(
κ

Ψ εΨ̂
r,max

)2 Ψ2
[
V(T0) + T 2

s
6

]
+ (1−Ψ)2

[
V(T1) + T 2

s
6

]
[E(T0) + E(T1)]2

, (3.28)

where κ can be obtained from concentration inequalities (Table 3.1) or the normal

approximation as described in Section 3.4.

3.6 Estimation of the Distribution

The distribution of the busy/on and idle/off times provides a complete characterisation

of the PU activity statistics and its accurate estimation is therefore of great importance

in the context of DSA/CR systems. Several methods can be used to estimate the

distribution of the PU busy/idle times based on a finite set {T̂i,n}Nn=1 of N observed

periods T̂i. The most commonly used method is the direct calculation of the empirical

CDF of the set {T̂i,n}Nn=1. The main drawback of this method is that the estimated

distribution has a discrete domain (even though the original distribution is in general

continuous) since the periods T̂i estimated as shown in Fig. 2.1 are integer multiples

of the sensing period Ts. This leads to an irreducible estimation error that depends on

the employed sensing period Ts and cannot be improved by increasing the sample size

N [105]. This limitation can be overcome by the method of moments proposed in [106],
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where the parameters of the primary distribution are estimated based on the sample

moments of the set {T̂i,n}Nn=1. This alternative method relies on the assumption of a

particular model for the PU distribution.

A common assumption frequently employed in the literature is that idle/busy periods

follow an exponential distribution [80, 112–114], which simplifies analytical studies. Field

measurements, however, have shown that this model is unrealistic [115–117]. A more

realistic model over a broad range of frequency bands is the Generalised Pareto (GP)

distribution [64]. According to this model, the CDF of the original periods Ti is given

by [118, ch. 20]:

FTi(T ) = 1−
[
1 +

αi(T − µi)
λi

]−1/αi

T ≥ µi, (3.29)

where µi > 0, λi > 0, αi ∈ R are the location, scale and shape parameters, respectively.

Based on (3.29), the method proposed in [106] provides an estimated distribution:

F
T̂i

(T ) = 1−
[
1 +

α̂i(T − µ̂i)
λ̂i

]−1/α̂i

T ≥ µ̂i. (3.30)

Parameter µ̂i represents the estimated minimum period and its value is assumed to be

known to a reasonable level of accuracy (µ̂i ≈ µi). According to the method of moments,

the scale and shape parameters are estimated as [118, ch. 20]: .

λ̂i =
1

2

(
1 +

(m̂i − µ̂i)2

ṽi

)
(m̂i − µ̂i) , (3.31a)

α̂i =
1

2

(
1− (m̂i − µ̂i)2

ṽi

)
, (3.31b)

where the sample mean m̂i and the corrected sample variance ṽi are obtained as shown

in (3.10) and (3.14), respectively, and µ̂i ≈ µi. Introducing the MoM estimates provided

by (3.31) into (3.30) provides a continuous estimation of the distribution of PU on/off

times. Such estimation can be made arbitrarily close to the true distribution in (3.29)

by increasing the number of periods N used to calculate m̂i and ṽi.

To determine the observation sample size N required for an arbitrarily accurate

estimation, it is necessary to express the error in the estimated distribution as a function

of N . This can be achieved by propagating the standard error of m̂i and ṽi, V(m̂i) and

V(ṽi) in (3.15) and (3.16) respectively, through (3.31):

V
(
λ̂i
)

=

(
∂λ̂i
∂m̂i

)2

V(m̂i) +

(
∂λ̂i
∂ṽi

)2

V(ṽi) + 2
∂λ̂i
∂m̂i

∂λ̂i
∂ṽi

C(m̂i, ṽi), (3.32a)

V
(
α̂i
)

=

(
∂α̂i
∂m̂i

)2

V(m̂i) +

(
∂α̂i
∂ṽi

)2

V(ṽi) + 2
∂α̂i
∂m̂i

∂α̂i
∂ṽi

C(m̂i, ṽi). (3.32b)
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Since the sample mean and sample variance are not independent, the covariance between

both, denoted as C(m̂i, ṽi), needs to be included in (3.32). Such covariance is given by

C(m̂i, ṽi) = M3(Ti)/N [119] where M3(Ti) is the third central moment of the population

distribution.

The standard errors obtained from (3.32) can be further propagated through (3.30)

to obtain (assuming µ̂i ≈ µi):

V
(
F
T̂i

(T )
)

=

(
∂F

T̂i
(T )

∂λ̂i

)2

V
(
λ̂i
)

+

(
∂F

T̂i
(T )

∂α̂i

)2

V
(
α̂i
)
, (3.33)

and the absolute error of the estimated distribution can then be written as:∣∣∣FTi(T )− F
T̂i

(T )
∣∣∣ = κ

√
V
(
F
T̂i

(T )
)
. (3.34)

A common metric typically employed to quantify the difference between two CDFs

is the Kolmogorov-Smirnov (KS) distance, which is defined as [96]:

DKS = sup
T

∣∣∣FTi(T )− F
T̂i

(T )
∣∣∣ , (3.35)

and can be obtained from (3.34) by solving:

∂

∂T

∣∣∣FTi(T )− F
T̂i

(T )
∣∣∣ =

∂

∂T

[
κ
√
V
(
F
T̂i

(T )
)]

= 0. (3.36)

Unfortunately (3.36) cannot be solved in closed form. However, it can be shown that

the value of (3.33) is mainly dominated (and can be approximated) by its first term. As

a result, an approximated result to (3.36) can be obtained by solving:

∂

∂T

∣∣∣FTi(T )− F
T̂i

(T )
∣∣∣ ≈ ∂

∂T

κ
√√√√(∂FT̂i(T )

∂λ̂i

)2

V
(
λ̂i
) = 0, (3.37)

which is maximised for T = µ̂i + λ̂i.

Combining (3.30)–(3.35) and evaluating the resulting expression in T = µ̂i+λ̂i yields

the final expression for DKS :

DKS = κ (1 + αi)
− 1
αi
−1
[

1

λ2
i

V
(
λ̂i
)

+
[(1 + αi) ln(1 + αi)− αi]2

α4
i

V
(
α̂i
)] 1

2

, (3.38)



Chapter 3. Impact of the Sample Size under Perfect Spectrum Sensing 50

where V
(
λ̂i
)

and V
(
α̂i
)

are obtained from (3.32) and given by (3.44). The relevant

moments in (3.44) for the GP distribution are:

E(Ti) = µi +
λi

1− αi
, (3.39)

V(Ti) =
λ2
i

(1− αi)2(1− 2αi)
, (3.40)

M3(Ti) =
2λ3

i (αi + 1)

(1− αi)3(1− 2αi)(1− 3αi)
, (3.41)

M4(Ti) =
3λ4

i (2α
2
i + αi + 3)

(1− αi)4(1− 2αi)(1− 3αi)(1− 4αi)
. (3.42)

The result in (3.38) provides a closed-form relation between the observation sample

size, N , and the error of the estimated CDF, F
T̂i

(T ), in terms of the KS distance

with respect to the true distribution FTi(T ). The observation sample size required to

guarantee a given KS distance follows from solving (3.38) for N :

NF
T̂i

(T ) =

(
κ

DKS

)2

(1 + αi)
− 2
αi
−2
[

1

λ2
i

Ω(Ti) +
[(1 + αi) ln(1 + αi)− αi]2

α4
i

Υ(Ti)

]
,

(3.43)

where Ω(Ti) and Υ(Ti) are obtained from (3.44), assuming N � 3 and therefore (N −
3)/(N − 1) ≈ 1, and are given by (3.45).

3.7 Iterative Stopping Algorithm

The analytical results obtained in previous sections provide closed-form expressions for

the required observation sample size as a function of the desired estimation error for

the minimum period (3.9), mean (3.22), variance (3.23), duty cycle (3.28) and distri-

bution (3.43). Notice that such expressions depend not only on the desired estimation

error but also on the real moments and/or distribution parameters of the PU traffic,

which are unknown to the SU (and indeed the parameters to be estimated). As a re-

sult, such expressions cannot be used in a real implementation directly, without further

considerations.

To overcome this problem, an iterative stopping algorithm is here proposed. The

proposed algorithm is composed of three steps that are executed every time a new

idle/busy period is observed (i.e., every time a new sample becomes available)1:

1. Update the calculated sample moments (mean, variance, third/fourth central mo-

ments) based on appropriate recurrence equations [109] and apply any required

correction factors as appropriate (see the appendix).

1As discussed in Section 3.3, the estimated minimum period cannot be made arbitrarily accurate by
increasing the sample size. Therefore the algorithm proposed in this section is applicable to the rest of
PU activity statistics (i.e., mean/variance of the estimated periods, channel duty cycle and distribution.)
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2. Evaluate the expression for the estimation error – i.e., (3.19) for the mean, (3.20)

for the variance, (3.27) for the duty cycle, and (3.38) for the distribution – based

on most recent the sample estimates of the moments obtained in previous step

(instead of the true moments as shown in such expressions) and the current sample

size (number of observed periods).

3. If the value obtained in previous step is lower than the desired estimation error

then stop, otherwise continue.

An example of how this algorithm would be implemented in a real system for the

estimation of the mean period is shown in Algorithm 1 (the algorithm would need to

be adapted to other PU activity statistics according to the different obtained analyt-

ical results but the operation principle would be the same). The key idea is that the

theoretical error expressions are calculated by replacing the true moments (unknown to

the DSA/CR system) with their last (known) sample estimates. In the shown example,

(3.19) is evaluated by replacing E(Ti) and V(Ti) with their corresponding sample esti-

mates m̂i and ṽi, respectively. It can be verified that the estimation error calculated

in Step 2 decreases as the number of observed periods used to calculate the sample

estimates increases. When such value is lower that the target/desired estimation error,

the algorithm will indicate that the number of observed periods is sufficient to estimate

the PU activity statistic of interest with the desired level of accuracy. The SU receiver

can then use the set of observed periods to produce an accurate estimation, after which

the value of N can be reset to zero in order to start capturing a new set of samples for

the next estimation (notice that when the proposed algorithm is executed in real-time

the value of N at which it will stop may not necessarily be identical in every execution,

even though it will be similar). Notice that all the required input information would be

known in a real implementation (desired estimation accuracy in terms of the target error

εm̂ir,max and confidence interval ρ along with the employed sensing period Ts). Therefore,

this iterative stopping algorithm enables the practical implementation of the theoretical

results obtained in this work in a practical context.

3.8 Simulation and Experimental Results

In this section, a comprehensive analysis of the obtained analytical results as well as

their validation with simulation and experimental results are presented. Simulations

were performed in MATLAB by generating several sequences with a sufficiently large

number of interleaved on/busy and off/idle periods from a GP distribution with pre-

defined location (µi), scale (λi) and shape (αi) parameters. The generated periods Ti

were sensed with a specified sensing period Ts in order to calculate the corresponding

sequence of estimated periods T̂i that would be observed by a DSA/CR receiver fol-

lowing the principle shown in Fig. 2.1. The set of observed periods, {T̂i,n}Nn=1, was

used to estimate the primary activity statistics as described in previous sections and

compared to the original true statistics as a function of the observation sample size
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Algorithm 1: Iterative stopping algorithm (for the mean period)

Input : εm̂ir,max, ρ, Ts
Output: N

1 continue = true, N = 1
2 while continue == true do

3 Sense PU channel until a set {T̂i,n}Nn=1 is available

4 Calculate m̂i = 1
N

∑N
n=1 T̂i,n from (3.10)

5 Calculate ṽi =

[
1

N−1

∑N
n=1

(
T̂i,n − m̂i

)2
]
− T 2

s
6 from (3.14)

6 Calculate εm̂ir,new =
√

2 erf−1(ρ)
m̂i

[
1
N

(
ṽi + T 2

s
6

)] 1
2

from (3.19)

7 if εm̂ir,new ≤ εm̂ir,max then

8 continue = false

9 else
10 N = N + 1
11 end

12 end

N . Hardware experiments were conducted using the same PECAS platform described

in Section 2.4.4.The value considered for each parameter is shown in the title of each

figure in terms of generic time units (t.u.). In the case of experimental results, where a

particular time unit needs to be selected according to the real-time capabilities of the

employed hardware platform, the reference unit is the second (i.e., 1 t.u. = 1 second).

Fig. 3.1 shows the required observation sample size for the estimation of the mini-

mum period as a function of the sensing period based on (3.9). As it can be observed,

the required sample size increases with the desired probability of observation P µ̂iobs. It is

worth noting that local minima are observed for Ts values that are integer submultiples

of the true minimum (i.e., for Ts = µi/k with k ∈ N+). This can be explained by the

fact that for such values of Ts it is possible to provide an exact estimation of the true

minimum [81]. However for slightly higher values the required sample size tends to in-

finity, since in such a case χ0 ≈ 0, P
(
T̂i = µ̂i

)
≈ 0, and the denominator of (3.9) tends

to zero as well. It is worth noting that the analytical result in (3.9) provides a perfect

match with both simulation and experimental results.

Fig. 3.2 shows the maximum relative error of the estimated mean, εm̂ir,max, observed

at the 95% percentile (ρ = 0.95) as a function of the sample size when the channel duty

cycle is Ψ = 0.5 (i.e., idle and busy periods have the same average duration). As it can

be appreciated, when κ is determined based on concentration inequalities as the ones

shown in Table 3.1 the result in (3.19) represents a loose upper bound to the true relative

error. On the other hand, if κ is calculated assuming that the sample mean estimates

are normally distributed as shown in (3.21), then the result in (3.19) represents a very

accurate expression for the relative error of the estimated mean (as corroborated by both

simulation and experimental results), which can then be used to precisely determine the

observation sample size required for an accurate estimation as indicated in (3.22). The



Chapter 3. Impact of the Sample Size under Perfect Spectrum Sensing 54

0 0.02 0.04 0.06 0.08 0.1
101

102

103

104

105

Figure 3.1: Required observation sample size for the estimation of the minimum
period as a function of the sensing period (duty cycle Ψ = 0.5).

counterpart results for the estimated variance are shown in Fig. 3.3. In this case,

the analytical result in (3.20) does not follow the simulation and experimental results

when the observation sample is low, even if the normal approximation is considered for

the calculation of κ. This can be explained by the fact that the assumption of normally

distributed values of the sample variance (based on the central limit theorem) considered

in (3.21) is valid only for a sufficiently large number of samples. As a result, if the sample

size is not sufficiently large (for the particular evaluation conditions considered in the

example of Fig. 3.3 this corresponds approximately to N < 2000) then the expression

in (3.20) differs slightly from the true relative error. However, for a sufficiently large

observation sample size (approximately N > 2000 in the example of Fig. 3.3) the result

in (3.20) provides a very tight approximation for the true relative error, as shown by the

perfect agreement with simulation and experimental results in this region of the figure.

Since an accurate estimation of primary activity statistics will in general require a large

sample size, the result in (3.20) is in practice accurate where it needs to be, and the

observation sample size required for an accurate estimation of the variance can therefore

be determined precisely based on (3.23).

Fig. 3.4 shows the maximum relative error of the estimated duty cycle observed at

the 95% percentile (ρ = 0.95) as a function of the sample size when the channel duty

cycle is Ψ = 0.5. Since the duty cycle is calculated based on the estimated mean value

of idle and busy periods as shown in (3.25), the observed results and the accuracy of

(3.27) and (3.28) can be explained based on the same arguments as those for Fig. 3.2.

Fig. 3.5 shows the maximum KS distance of the estimated distribution at the 95%

percentile (ρ = 0.95) as a function of the sample size when the channel duty cycle is

Ψ = 0.5. The normal approximation for the calculation of κ is depicted when the value
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Figure 3.2: Maximum relative error of the estimated mean observed at the 95%
percentile (ρ = 0.95) as a function of the sample size (duty cycle Ψ = 0.5).
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Figure 3.3: Maximum relative error of the estimated variance observed at the 95%
percentile (ρ = 0.95) as a function of the sample size (duty cycle Ψ = 0.5).

of T that maximises (3.35) is calculated by numerical evaluation of (3.36) (numeric

optimum) and analytically based on the approximation considered in (3.37) (analytic

optimum). As it can be appreciated, the approximation considered in (3.37) leads to

very accurate results. The results observed in Fig. 3.5 show that the analytical result in

(3.38) provides a very accurate evaluation of the KS distance for sufficiently large sample

sizes (approximately N > 2000), similar to the trend observed in Fig. 3.3. Following the

same argument, it can be stated that the analytical result in (3.43) provides in practice
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Figure 3.4: Maximum relative error of the estimated duty cycle at the 95% percentile
(ρ = 0.95) as a function of the sample size (duty cycle Ψ = 0.5).
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Figure 3.5: KS distance of the estimated distribution at the 95% percentile (ρ = 0.95)
as a function of the sample size (duty cycle Ψ = 0.5).

a close prediction of the observation sample size required for an accurate estimation of

the distribution.

Fig. 3.6 compares the analytical predictions of the required sample size as a function

of the desired estimation error for the mean (3.22), variance (3.23), duty cycle (3.28)

and distribution (3.43) with the estimations provided by the algorithm of Section 3.7

(based on simulations and experiments). As appreciated, the execution of the algorithm



Chapter 3. Impact of the Sample Size under Perfect Spectrum Sensing 57

0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

2.5

3
104

(a)

0.02 0.04 0.06 0.08 0.1

1

2

3

4

5

6
105

(b)

0.02 0.04 0.06 0.08 0.1

5000

10000

15000

(c)

0.02 0.04 0.06 0.08 0.1

5000

10000

15000

(d)

Figure 3.6: Required sample size as a function of the desired estimation error for: (a)
mean, (b) variance, (c) channel duty cycle, and (d) distribution (µi = 0.1 t.u., λi = 0.3

t.u., αi = 0.05, Ts = 0.01 t.u., Ψ = 0.5, ρ = 0.95).

terminates at values of N very close to the analytical predictions. Therefore the pro-

posed algorithm can be used by real SU devices to determine in real-time how many

samples (observed periods) are required to accurately estimate the activity statistics of

an unknown PU channel.

3.9 Discussion of practical aspects

This section discusses several important aspects related with the practical application

of the analytical results obtained in this work in a real context.

An important practical aspect is the degree to which the accuracy of the estimated

primary activity statistics can affect the performance of DSA/CR systems. To illustrate

this, let us consider as a practical example the problem of channel selection, which is one

of the cases where primary activity statistics can be useful. A simple channel selection

approach is to select the channel that provides the highest expected opportunistic bit-

rate (R̂b) which can be expressed as a function of the estimated duty cycle (Ψ̂) as

R̂b = (1 − Ψ̂)Wbη, where Wb is the primary channel bandwidth and η is the spectrum
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Figure 3.7: Estimated available data rate as a function of the estimated duty cycle.

efficiency associated to the modulation and coding schemes used by the DSA/CR system.

Fig. 3.7 shows the estimated available bit-rate (with Wb = 20 MHz and η = 2 bit/s/Hz)

as a function of the estimated channel duty cycle for three cases: N = 100 (insufficient

sample size), N = 2000 (sufficiently large sample size) and N → ∞ (infinite sample

size and therefore perfect duty cycle estimation). The lines shown represent the worst-

case upper and lower bounds corresponding to Ψ̂ = Ψ (1± εΨ̂
r,max), with εΨ̂

r,max given by

(3.27). As it can be appreciated in this example, an insufficient sample size (N = 100)

can lead to estimation errors of up to ±5 Mbit/s in the expected data rate, which for

Ψ = 0.5 (where the true available data rate is 20 Mbit/s) represents an error of 25%.

On the other hand, with a sufficiently large sample size (N = 2000), the estimation

error is less than 1 Mbit/s (5% error for Ψ = 0.5), which can be made arbitrarily low

by further increasing the sample size. This simple numerical example illustrates the

potential impact that inaccurate primary activity statistics can have in the performance

of DSA/CR systems and highlights the practical importance of the analytical results

obtained in this work to determine the sample size required for an accurate estimation

of the primary activity statistics.

Another aspect of practical interest is for how long (in absolute time units) the

DSA/CR system needs to observe a PU channel before an accurate estimation of the

PU statistics is available, and how this compares to the operation time scale of the

DSA/CR system. All mathematical results for the considered PU activity statistics

are provided in terms of the number of periods that need to be observed (N), which

can be easily tracked by the DSA/CR system in a practical implementation (increasing

a counter every time a new PU period is observed until the required sample size is

reached). The total observation time in absolute time units, if it needs to be known, can
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Figure 3.8: Required observation time for different PU activity statistics as a function
of the average PU period duration (target estimation error of 0.05).

be readily obtained as N ·E(Ti), where E(Ti) is the average PU period duration (which

would also need to be estimated as described in Section 3.4). Notice that the required

observation time for a particular PU channel depends on the PU channel itself and its

specific PU occupancy, quantified through E(Ti). This is illustrated in Fig. 3.8, which

shows the required observation time for different PU activity statistics as a function

of the average PU period duration. In most practical cases, the required observation

time can be expected to be greater than the typical operation time scale of the DSA/CR

network as a result of the need to observe hundreds/thousands of periods for an accurate

estimation (as illustrated in the results obtained in Section 3.8). This is compatible with

the notion that the estimated PU activity statistics will normally be exploited in the

long term and once they are estimated for the first time they only need to be updated

sporadically, which can be done while the DSA/CR system is in normal operation.

It is also worth mentioning that an accurate estimation of the PU activity statistics

requires a careful consideration not only of the sample size N , which is the aspect of

interest investigated in this work, but also the sensing period Ts. In the estimation

of the moments and related metrics (mean, variance, duty cycle) the impact of the

sensing period can be removed by introducing appropriate correction factors as discussed

in Section 3.4. In the estimation of the distribution the problem is more challenging

since the accuracy of the estimated distribution depends directly on the accuracy of

the estimated minimum period (as shown in detail in [22]), which in turn can only be

estimated accurately if the sensing period is an integer submultiple of the true (and

often unknown) minimum period. To enable a fair evaluation of the individual impact

of the sample size, which is the aspect of interest in this work, on the accuracy of the
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estimated statistics (in particular, the distribution), the sensing period has been selected

as an integer submultiple of the true minimum period. In a practical implementation it

may be necessary to use more sophisticated methods for an accurate estimation of the

minimum period such as those proposed in [120].

3.10 Summary

DSA/CR systems can benefit from the knowledge of the primary traffic statistics, which

can be exploited by DSA/CR users to achieve a more efficient utilisation of the free pri-

mary spectrum. This information can be obtained from spectrum sensing by estimating

the duration of individual idle/busy periods (from the sequence of spectrum sensing

decisions) and then processing a sufficiently large number of observed periods (referred

to in this chapter as the observation sample size) to calculate relevant statistics on the

primary activity such as the minimum period duration, the mean and variance of the

observed periods, the channel duty cycle or the underlying distribution. An important

practical question is how many periods need to be observed in order to guarantee that

the estimated statistics will meet a predefined level of accuracy. In this context, this

chapter has performed a detailed mathematical analysis on the observation sample size

required for an accurate estimation of each of the above mentioned primary activity

statistics, and provided closed-form expressions for the estimation error as a function

of the sample size as well as the required sample size as a function of the desired esti-

mation error. The obtained analytical results have been compared to both simulation

and experimental results, showing an excellent agreement in all cases. The expressions

provided in this chapter can be used in practical DSA/CR systems to guarantee that PU

activity statistics are estimated to the desired level of accuracy. Moreover, an iterative

stopping algorithm has been proposed to enable SU perform a real-time calculation of

the required sample size, which has been shown to be very accurate.

Appendix: Correction of Sample Moments

As discussed in Section 3.4, the sample mean needs no correction and the sample variance

needs to be corrected as shown in (3.14). A similar analysis can be carried out for the

third and fourth central moments.

For the third central moment of the estimated periods:

M3(T̂i) = E([T̂i − E(T̂i)]
3) = E([Ti − E(Ti) + Te − E(Te)]

3)

= E([Ti − E(Ti)]
3) + E([Te − E(Te)]

3)

= M3(Ti) + M3(Te) (3.46)

Thus the third sample central moment needs no correction since M3(Te) = 0 for a

symmetric triangular distribution.
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For the fourth central moment of the estimated periods:

M4(T̂i) = E([T̂i − E(T̂i)]
4) = E([Ti − E(Ti) + Te − E(Te)]

4)

= E([Ti − E(Ti)]
4) + 6E([Ti − E(Ti)]

2) ·

· E([Te − E(Te)]
2) + E([Te − E(Te)]

4)

= M4(Ti) + 6V(Ti)V(Te) + M4(Te) (3.47)

where V(Te) = T 2
s /6 and M4(Te) = T 4

s /15 for a symmetric triangular distribution.

Solving (3.47) for M4(Ti) it can be shown that a sample estimate ĉ4,i of the fourth

central moment needs to be corrected as c̃4,i = ĉ4,i − ṽiT 2
s − T 4

s /15.





Chapter 4

Estimation of Primary Activity

Statistics under Imperfect

Spectrum Sensing

4.1 Introduction

CR systems can benefit from accurate the knowledge of the PU statistics to increase

spectrum efficiency as discussed in previous chapters. CRs utilise spectrum sensing

techniques to estimate the PU statistical information. Unfortunately, spectrum sensing

is imperfect resulting in an inaccurate estimation of PU statistics, in particular under

low SNR conditions when sensing errors may occur. Chapter 3 considered the problem

of studying and overcoming the impact of finite spectrum sensing period and proposed

methods to improve the estimation of PU statistics. On the other hand, Chapter 4, was

concerned with the effect of a limited number of period observations and the resulting

PU statistics. Another source of imperfection for spectrum sensing is sensing errors.

Sensing errors have a significant impact on the performance of communication systems

(both PU and SU). In the case of a false alarm, the SU transmitter will be silent when

it should be transmitting, leading to a low CR transmission rate. In the case of a

missed detection, interference with the PU signal will occur. Inaccurate detection leads

to inaccurate estimation for PU activity statistics as well.

Multiple methods in the literature have been proposed to increase the estimation

accuracy of PU activity statistics and reduce the effect of imperfect spectrum sensing

(ISS) such as [10, 80, 81, 121]. In this chapter sensing errors and their effects on the

estimated PU distribution are investigated. New algorithms to correctly estimate the

imperfectly sensed periods are proposed. The methods in [81] are the closest ones to the

proposed methods and the obtained results will be compared to them. Computational

cost/complexity analysis for all the considered methods is provided as well.

Moreover, the PU activity distribution is affected by multiple factors including for

example the time when the PU channels are observed (e.g., patterns may be different

63
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during day and night times [122]), the location (indoor/outdoor and rural/urban areas),

application type (e.g., voice data is modeled differently from regular internet data) [123]

and sensing duration [64]. This results in multiple characterisations for PU statistics of

idle/busy periods. Results have shown that the generalised Pareto distribution provides

the most accurate fit for low time resolution observations (i.e., long sensing periods)

while for high time resolution (i.e., short sensing periods) the best distribution fit varies

depending on the PU radio technology [8]. Even though in the literature multiple

methods to improve the estimation of PU statistics have been proposed, their accuracy

for different PU distributions has not been assessed (typically exponential distribution is

considered to model busy/idle periods or the study is limited to a single PU distribution

only). The accuracy of estimation for best performing methods is tested under different

PU distributions. The mathematical analysis of the low SNR scenario with sensing

errors requires a significantly more complex study and it is feasibility is unclear, thus

left as future work.

This chapter considers the problem of accurate estimation of the primary activity

distribution in the presence of spectrum sensing errors (false alarms and missed detec-

tions). This problem is different from the detection problem. The probability of false

alarms and missed detections are performance metrics for spectrum sensing. Using dif-

ferent detection methods is irrelevant to this work as it only changes the values of false

alarms and missed detections and would not affect the functionality of the proposed

methods.

The main contributions of this chapter are outlined as follows:

1. Three novel algorithms are proposed to palliate the effects of sensing errors on the

estimation of the primary traffic distribution.

2. The impact of different PU occupancy models is investigated under both PSS and

ISS. The aim is to determine whether algorithms that have been designed and

evaluated for a particular PU distribution can still achieve a high accuracy in

statistics prediction when the PU pattern follows a different distribution.

4.2 System Model

A CR senses the channel at a finite rate with duration Ts as shown in Fig. 4.1. In

every sensing event (Ts), a binary decision is made to result in either idle (H0) or busy

(H1) state of the channel. A perfect spectrum sensing (PSS) performance is obtained

when a CR receiver operates in a high PU transmission power. However under low

SNR imperfect spectrum sensing (ISS) may occur with two types of errors: false alarm

(H̆ = H1|H0) where the signal is not present but announced as present because of the

high noise level, and missed detection (H̆ = H0|H1) where the signal is present but with

power lower than the energy detection threshold.

There are multiple factors that affect the estimation of the PU activity pattern,

including the probability of false alarm (Pfa), the probability of missed detection (Pmd)
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Figure 4.1: Estimation of period durations from spectrum sensing decisions: (a) under

perfect spectrum sensing, (b) under imperfect spectrum sensing [81]. T̂i represents the
estimated period under perfect spectrum sensing and T̆i represents the estimated period

under imperfect spectrum sensing.

and how the errors are distributed. Note that the sensing errors will affect the lengths of

periods depending on their location as it can be appreciated from Fig. 4.2 where three

types of errors can be identified: missed detection, false alarm and originally correct

periods but with missed detection/false alarm that occurs at its beginning, middle or

end, which results in making its length shorter than the minimum PU activity time µi

and therefore detectable if the value of µi is known. According to this, multiple errors

could occur in a long period dividing it into multiple short periods which would have a

significant effect on the calculation of PU statistics. The objective of this chapter is to

develop appropriate methods to overcome the impact of these errors on the estimated

PU statistics.

4.3 Methods Proposed to Overcome the Effect of Spec-

trum Sensing Errors on the Estimated Statistics

As described above, in some cases CR requires to work at low SNR (close to the noise

floor) and this will introduce sensing errors. The presence of errors makes the calculation

of PU activity statistics inaccurate. In order to improve the estimated statistics, three

methods aimed at reconstructing the original periods are presented. These methods

require some knowledge of the PU signal. In this chapter, it is assumed that the PU
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Figure 4.2: Sensing errors according to their location: (a) Original period, (b) Sin-
gle detectable incorrect period, (c) Two detectable incorrect periods, (d) Multiple de-

tectable incorrect periods.

minimum activity time µi is known at the CR receiver. There are three methods to

obtain the minimum activity duration:

1. Regional beacon signals with real-time information about minimum activity time

for PU present in the geographical area. The main drawback of this method is the

requirement to modify the primary network [98].
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Figure 4.3: PMF of the number of consecutive sensing events affected by sensing
errors (duty cycle (Ψ) = 0.8, µi = 10 time unit (t.u.), E{Ti} = 50 t.u.).

2. Offline method as in [97], where the SU utilize blind estimation methods in order

to determine the minimum PU activity time.

3. Offline methods with prior knowledge on the operating standards. These methods

can be applied in slotted systems where the frame duration is known (e.g., GSM

[124]).

Based on the knowledge of µi, three novel algorithms are proposed to palliate the

effects of spectrum sensing errors.

4.3.1 Method 1

Fig. 4.3 shows the probability mass function (PMF) of the number of consecutive

sensing events (Ts) affected by sensing errors (obtained from simulations). As it can

be appreciated, in most cases sensing errors occur in individual isolated sensing events;

only when the probability of error (Pfa/Pmd) is higher (bottom of Fig. 4.3) bursts of

two or more consecutive erroneous sensing events can occur. This observation can be

exploited to identify the occurrence of sensing errors and reconstruct the original periods

as follows. First, a threshold βTs (with β ∈ N+) is defined, which can be tuned based on

Fig. 4.3. Starting from an initial estimated period T̆i,n which has a duration less than

the threshold and the minimum (T̆i,n < βTs and T̆i,n < µi), where n ∈ N+ represents the
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Algorithm 2: Method 1

1 for each T̆i,n < µi and T̆i,n < βTs do
2 W = 1

3 while T̆1−i,n+W < βTs do
4 W=W+1
5 end

6 T̃i,n = T̆i,n + . . .+ T̆i,n+W−1

7 end

8 for each T̃i,n do

9 if T̃i,n < µi then

10 discard T̃i,n
11 else

12 keep T̃i,n
13 end

14 end

index in the sequence of observed periods, the durations of all subsequent periods (both

busy and idle) are checked until a period of the opposite type with a duration greater than

βTs (i.e., T̆1−i,n+W > βTs) is found. A reconstructed period of the same type (idle/busy)

as T̆i,n is then estimated by adding the durations T̃i,n = T̆i,n + . . . + T̆i,n+W−1 where

T̃i,n is the new reconstructed period of the original. The period T̆1−i,n+W (which is of

different type than the previously reconstructed period) is then taken as the starting

point for a new reconstruction based on the same principle. This process is repeated

over the sequence of estimated periods so that all periods shorter than βTs (which based

on Fig. 4.3 can be assumed to be short periods resulting from sensing errors) will be

added in an attempt to reconstruct the original sequence of busy/idle periods. After

applying the method above, some of the reconstructed periods were observed to be

shorter than µi, thus indicating the presence of a few incorrectly reconstructed periods.

Therefore a second step is performed after the reconstruction process above where all

the reconstructed periods T̃i,n shorter than µi are discarded and not included in the

computation of the PU activity statistics.

4.3.2 Method 2

In this method, whenever a period shorter than the minimum PU activity time is ob-

served (i.e., T̆i,n < µi), a window ofK sensing events with a total durationKTs (K ∈ N+)

is defined centred around that period. The sensing events within the window that are

observed in busy (idle) state are given a weight of +1 (−1) respectively. The weights

are then added and the original period is reconstructed as follows:

• If the sign of the sum is different from the sign of the weight associated with

T̆i,n, then the state (idle/busy) of T̆i,n is reversed and a reconstructed period is

estimated by adding the durations T̃i,n = T̆i,n−1 + T̆i,n + T̆i,n+1.
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Algorithm 3: Method 2

1 for each T̆i,n < µi do

2 Define a window of size KTs centered at T̆i,n
3 Give weight of +1 to busy sensing events in window
4 Give weight of −1 to idle sensing events in window
5 Calculate the sum S of the weights in window

6 if sign(S) == sign(weight of T̆i,n) then

7 T̃i,n = T̆i,n + T̆i,n+1

8 else

9 T̃i,n = T̆i,n−1 + T̆i,n + T̆i,n+1

10 end

11 end

• If the sign of the sum is the same as the sign of the weight associated with T̆i,n,

then the state of T̆i,n+1 is reversed and added to its preceding period T̆i,n to

produce a reconstructed period of the same type (idle/busy) as T̆i,n with duration

T̃i,n = T̆i,n + T̆i,n+1.

Note that when a period shorter than µi is found, a majority rule is used to determine

the most likely state of the channel around that period and determine how the original

period should be reconstructed according to that most likely case. This is the main idea

this method is based on.

4.3.3 Method 3

As observed in Fig. 4.2, the occurrence of multiple sensing errors can lead to a pattern

where two periods that are longer than µi (and therefore can be assumed to be observed

in their original idle/busy state) contain a number of other periods shorter than µi (which

cannot be classified as either correct or incorrect idle/busy observations). This method

aims at reconstructing the original period by adding the durations of all the periods

T̆i,n+ . . .+ T̆i,n+W between two consecutive periods longer than or equal to the minimum

PU transmission time (i.e, T̆i,n−1 ≥ µi, T̆i,n+W+1 ≥ µi and T̆i,n, . . . , T̆i,n+W < µi) to the

next or previous period depending on the period types.

If the starting period T̆i,n−1 and ending period T̆i,n+W+1 are of the same type (busy/i-

dle), then the reconstructed period will be of that same type. However, if T̆i,n−1 and

T̆i,n+W+1 are of different types, then it is not possible to determine unambiguously the

original period type since it depends on the particular order in which sensing errors

occurred and it is not possible to determine which of the periods shorter than µi are

correct/incorrect idle/busy observations. In this other case, the period type is randomly

decided as busy with probability Ψ̂ and idle with probability 1−Ψ̂, where Ψ̂ is an estima-

tion of the PU channel duty cycle Ψ obtained from past spectrum sensing observations.

If the instantaneous average busy duration is E
{
T̂1

}
N

and the average instantaneous
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Figure 4.4: Estimated PU channel duty cycle Ψ̂ as a function of the number of periods
used in the estimation (Ψ = 0.8, µi = 10 t.u., E{Ti} = 50 t.u.).

idle time is E
{
T̂0

}
N

, then the instantaneous duty cycle (Ψ̃N ) can be estimated as:

Ψ̂N =
E
{
T̂1

}
N

E
{
T̂1

}
N

+ E
{
T̂0

}
N

, (4.1)

where N is the sample size. The instantaneous average period duration is found as

E
{
T̂i

}
N

= 1
N

∑N
n=1

{
T̂i,n

}
. Fig. 4.4 shows the estimated duty cycle Ψ̂N quickly con-

verges to the real value Ψ, meaning that the algorithm needs a short transition time

before it can operate correctly.

Method 3 is different from method 2 in terms how they aim to reconstruct the

observed to the original. Method 2 is based on MAJORITY rule. This method centres

a window of KTs sensed events around the period that is shorter than the minimum T̆i,n.

If the majority of periods are of the same type of T̆i,n then T̆i,n+1 type is changed to the

same type of T̆i,n. If the majority of periods are of different type of T̆i,n then T̆i,n type

is changed to the same of the majority. While method 3 takes all short periods between

two long periods. In case the two long periods are of the same type (i.e., busy-busy

or idle-idle) then all short perids are selected to be of the same type of the two long

periods. In case the two long periods are of different type (i.e., busy-idle or idle-busy)

then based on the instantaneous duty cycle the short periods types are selected.

4.3.4 Other related Methods

The proposed three methods will be compared with the ones presented in [81], which are

the closest ones to this research. The methods proposed in [81] are summarised below:
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Algorithm 4: Method 3

1 for each T̆i,n < µi do
2 W = 0

3 while T̆i,n+W+1 < µi do
4 W=W+1
5 end

6 if type of T̆i,n−1 == type of T̆i,n+W+1 then

7 T̃i,n−1 = T̆i,n−1 + T̆i,n + . . .+ T̆i,n+W + T̆i,n+W+1

8 else

9 Estimate duty cycle Ψ̂ based on equation (3.24)
10 Generate uniform random number ζ ∈ (0, 1)

11 if ζ ≤ Ψ̂ then

12 if T̃i,n−1 busy and T̃i,n+W+1 idle then

13 T̃i,n−1 = T̆i,n−1+. . .+T̆i,n+W

14 else

15 T̃i,n= T̆i,n+. . .+T̆i,n+W+1

16 end

17 else

18 if T̃i,n−1 idle and T̂i,n+W+1 busy then

19 T̃i,n−1 = T̆i,n−1+. . .+T̆i,n+W

20 else

21 T̃i,n= T̆i,n+. . .+T̆i,n+W+1

22 end

23 end

24 end

25 end

• Method 4: Every observed period with a length shorter than the minimum period

is discarded.

• Method 5: Every observed period with a length shorter than the minimum period

is discarded along with the preceding and succeeding periods.

• Method 6: For every observed period with a length shorter than the minimum a

reconstruction attempt is made by adding it with the preceding and succeeding

periods.

4.4 Simulation Results

The performance of the six methods considered in this chapter is evaluated by means of

simulations, which can be summarized as follows:

1. Generate idle/busy periods’ lengths Ti following a generalized Pareto distribution,

which has been proven to provide the best fit to empirical spectrum data [64].
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2. Perform idle/busy sensing decisions H0/H1 on the generated sequence in step 1

every Ts time units (t.u.).

3. Add random errors (with Pfa > 0 and Pmd > 0) in the sequence resulting from

step 2.

4. Using the new H0/H1 sequence from step 3, calculate the period lengths T̆i that

would be estimated under ISS.

5. Process the sequence of period lengths resulting from step 4 in order to reconstruct

the original periods by making use of one of the six methods considered in this

chapter.

6. Compute the cumulative distribution function (CDF) of the idle/busy lengths

obtained in steps 4 & 5, and compare with the CDF of the original lengths in step

1.

The comparison of step 6 quantifies the accuracy of the PU statistics estimated

with and without the proposed methods and therefore determines whether accuracy

improvements can be obtained with the proposed methods. The comparison between the

estimated and original distributions is performed using the classic Kolmogorov-Smirnov

(KS) distance [96].

DKS = sup
Ti

∣∣∣FTi(Ti)− FT̆i(Ti)∣∣∣ . (4.2)

Note that the sequence of idle/busy lengths Ti generated in step 1 contains real positive

values and its CDF FTi(Ti) has a continuous domain, while the sequences resulting from

steps 4 and 5 contain values T̆i that are integer multiples of the sensing period (T̆i = NTs,

N ∈ N+) and their CDFs FT̆i(T̆i) have a discrete domain. Since it is not possible to

compare continuous and discrete sets, the discrete set FT̆i(T̆i) is interpolated to produce

FT̆i(Ti), which is compared in (4.2) with the distribution of the original lengths FTi(Ti).

Fig. 4.5, Fig. 4.6, Fig. 4.7, show the accuracy of the estimated CDF of PU idle

periods in terms of the KS distance (with respect to the original periods of step 1) as a

function of the sensing period, when no reconstruction method is used (i.e., after step

4) and when a reconstruction method is used (i.e., after step 5). Results are shown for

method 1 (Fig. 4.5), method 2 (Fig. 4.6) and method 3 (Fig. 4.7), for Pfa = Pmd = 0.01

(top row) and Pfa = Pmd = 0.1 (bottom row). Simulations were performed for duty

cycle values of Ψ = 0.8 (heavy PU channel load).

As it can be appreciated from Fig. 4.5, Fig. 4.6, Fig. 4.7, the accuracy in all

cases is noticeably better when the probability of error is lower (top row). However,

all the methods proposed in this work can provide significant accuracy improvements

with respect to the case where no reconstruction is performed (i.e., the PU statistics

are computed based on the raw period lengths observed under ISS). In some particular

cases the estimation is nearly perfect (i.e., DKS ≈ 0).
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Figure 4.5: Performance of method 1.
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Figure 4.6: Performance of method 2.
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For method 1 (Fig. 4.5), there is a wide range of (low) values of the sensing period

Ts that can provide a nearly perfect estimation (DKS ≈ 0). When the probability of

sensing errors is lower (Pfa = Pmd = 0.01), this is true for all the considered values of the

parameter β. However when the probability of sensing errors is higher (Pfa = Pmd = 0.1)

this may not be true for low values of β (e.g., for the case β = 2 in Fig. 4.5(b)). This

can be explained based on Fig. 4.3: when the probability of sensing errors is lower,

most sensing errors occur in individual isolated sensing events and values of β as low as

β = 2 are sufficient to correctly reconstruct the original period lengths; however when

the probability of sensing errors is higher, there are some cases where two or a few

more consecutive sensing events can be affected by sensing errors and the value of the

threshold β needs to be increased (e.g., β = 3 or β = 4) in order to reconstruct the

original period lengths. In any case, with an adequate configuration of the β parameter

and the employed sensing period Ts, method 1 can provide a nearly perfect estimation

of the PU statistics.

Method 2 (Fig. 4.6), can provide levels of accuracy comparable to those of method 1.

However in this case the best accuracy seems to be attained when the sensing period is

approximately half of the minimum PU transmission time (i.e., Ts ≈ µi/2). Moreover,

the accuracy obtained in that region is very sensitive to the selection of the value of

Ts (i.e., small variations of the value of Ts around the optimum point can result in a

noticeable degradation of the estimation accuracy), which makes the configuration of

this method more complex than method 1. As observed in Fig. 4.6, a window size of

K = 10 sensing events tends to provide the best accuracy but there are no significant

differences for other values of the parameter K.

Method 3 can also provide an equally significant accuracy improvement as shown in

Fig. 4.7. Notice that there is no significant difference in the level of accuracy obtained

when the method’s decisions are based on the real-time duty cycle estimated from past

sensing observations (Ψ̂) or the true long-term PU channel duty cycle (Ψ). This means

that the method is implementable in practice since the true PU channel duty cycle

does not need to be known beforehand and the estimation obtained from past sensing

observations is accurate and converges quickly to the correct value (see Fig. 4.4). As

observed in Fig. 4.7, method 3 tends to provide the best estimation accuracy when the

sensing period Ts is similar to the minimum PU transmission time µi (notice that Ts

should not be greater than µi since some short idle/busy periods would then be missed).

Finally, Fig. 4.8 compares the methods proposed in this chapter (methods 1-3) with

the methods proposed in [81] (methods 4-6). The proposed methods are capable to

attain (with an adequate configuration of their parameters) a nearly perfect estimation

(DKS ≈ 0) of the PU channel activity statistics, which cannot be achieved by methods

4-6. It is worth noting that the performance results shown in Figs. 7 and 8 of [81] for

methods 4-6 show that there are some values of the sensing period Ts for which the KS

distance DKS is very close to zero. However, this is due to the fact that KS distance in

[81] was computed by comparing the statistics estimated under ISS with those estimated
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Table 4.1: Computational cost (complexity) analysis for the considered methods (Ψ =
0.8, µi = 10 t.u., Ts = 9.9 t.u., Pfa = Pmd = 0.01).

Method Average computation time (s)

Method 1 (β = 3) 0.0662

Method 2 (K = 10) 0.1252

Method 3 (real-time est. Ψ̂ = 0.8 ) 0.3811

Method 4 0.0004

Method 5 0.0011

Method 6 0.0008

under PSS, instead of comparing with the original period lengths as it is done in this

chapter. This second type comparison, which provides a more realistic evaluation of

the estimation accuracy, shows that the proposed methods can attain a significantly

improved accuracy in the estimated PU channel activity statistics as shown in Fig. 4.8.

Table 4.1 shows the computational cost (complexity) of the considered methods

when applied to 10,000 pairs of periods (with 20 repetitions) based on a workstation

with an Intel Xeon processor (E5-1620v3 @ 3.50GHz). Methods 4-6 provide simplicity

and fast execution at the expense of accuracy, while methods 1-3 are slower but provide a

nearly perfect estimation. It is worth mentioning that method 3 is the most demanding

algorithm as it requires to compute real-time estimated DC (Ψ̂ = 0.8) which adds a

significant calculation burden.

4.5 Configuration of the Proposed Methods

A relevant practical aspect of the proposed methods is how the parameters should be

configured to ensure an optimum operation point that can provide a (nearly) perfect

estimation of the PU channel activity statistics.

The system designer can essentially control two parameters, namely the operating

point of the employed spectrum sensing method and the employed sensing period Ts. The

operating point of the employed spectrum sensing method determines its performance

(i.e., the values of Pfa and Pmd) and can be tuned by modifying the parameters of the

sensing algorithm; for example, in the case of energy detection the main design parameter

is the detection/decision threshold. As suggested by the results of Fig. 4.5, Fig. 4.6, Fig.

4.7, the sensing algorithm should ideally be configured to operate in a point where Pfa

and Pmd are as low as possible since for lower values of Pfa and Pmd there is a relatively

wider range of values of the sensing period Ts where the error is zero or very close to

zero, which makes it relatively easy to provide a (nearly) perfect estimation of the PU

activity statistics (i.e., DKS ≈ 0). If the operating point of the sensing algorithm cannot

be modified (e.g., it is configured to provide specific performance targets required by a

particular service) and the resulting Pfa and Pmd are high, the proposed methods can

still provide a (nearly) perfect estimation of the PU activity statistics, however in this

case the value of the sensing period Ts should be selected carefully. In particular, Fig.
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Figure 4.7: Performance of method 3.
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Figure 4.8: Performance comparison of the methods considered in this chapter.

4.5 shows that for method 1 it should take low values (ideally close to zero, Ts ≈ 0), for

method 2 it should be Ts ≈ µi/2, and for method 3 it should take high values (ideally

close to the minimum PU transmission time, Ts ≈ µi). Moreover, if the operating point

of the sensing method and the sensing period are both constrained, the only degree of

freedom for the system designer would be the selection of one of the three proposed

methods. In such a case, the decision could be based on which method provides the best

accuracy for the employed sensing period Ts (e.g., method 1 when Ts ≈ 0, method 2

when Ts ≈ µi/2, and method 3 when Ts ≈ µi). In any case, the set of methods proposed

in this work can provide a very accurate (nearly perfect) estimation of the PU activity

statistics under imperfect sensing, even with a high probability of sensing errors, over a

wide range of operating conditions.

4.6 Impact of the Primary User Activity Pattern

In the previous section, the PU is assumed to follow a GP distribution. Nevertheless, the

modelling of PU occupancy depends on multiple factors including the radio technology

(e.g., amateur systems, paging systems and cellular mobile communication systems) and

the time scale resolution of sensing device (the duration required to perform spectrum

sensing, Ts) as long time scales would result in different distribution patterns than short

time scales, which in turn depends on the sensed radio technology.

It is interesting to note that most researches assume an exponential distribution

to model the binary PU holding states (idle/busy) for both large/small Ts. This can

be related to the mathematical simplicity of exponential distribution. In this section,

the impact of the PU activity pattern/distribution on the performance of the proposed
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methods is investigated. The considered distributions are: exponential [125], generalised

exponential [126], Pareto [127], generalised Pareto [128], gamma [125] and Weibull [125].

Table 4.2 shows the cumulative distribution function (CDF) for the considered models

of PU binary occupancy patterns. In order to maintain a fair comparison between the

different distributions, their parameters (λi and αi) are configured as shown in Table 4.3

to provide the same mean period duration (E {Ti} = 50 t.u.) with the same minimum

activity time (µi = 10 t.u.). The same parameters are considered for both busy and idle

periods, which leads to a channel duty cycle (DC) of 50% (Ψ = 0.5).

Fig 4.9 shows the CDFs of the considered distributions for original generated periods

(Ti). As it can be appreciated, some distributions show similar trends. In particular,

three different groups of distributions can be distinguished. The first group is generalised

Pareto and exponential distributions, the second group contains gamma, generalised

exponential and Weibull distributions, while the last group contains only the Pareto

distribution which behaves differently from other distributions. This observation will

serve to explain later on the differences and similarities observed in the obtained results.

Fig. 4.10 shows the performance of PSS in comparison with the original periods.

In this case, the only source of error is the use of a finite sensing period Ts, which

results in all the observed periods being integer multiples of Ts (i.e., T̂i = kTs, k ∈ N+).

As appreciated, the estimation error can be decreased by reducing Ts (i.e., increasing

the time resolution improves the accuracy). Moreover it can also be noted that there

are some differences in the accuracy obtained for different distributions, however these

are mainly minor differences, except for the Pareto distribution, which shows a slightly

different trend as Ts increases (note in Fig. 4.9 that the CDF of the Pareto distribution

behaves differently from all other distributions).

Fig. 4.11, Fig. 4.12 and Fig. 4.13 show the estimation accuracy for the CDF of

the PU busy/idle periods under ISS in terms of the KS distance (with respect to the

original periods Ti obtained from of step 1) as a function of the sensing period. The

results are shown for the following cases: no reconstruction methods are used and the PU

statistics are estimated from the periods T̆i observed under ISS (Fig. 4.11), the periods

T̆i are processed according to reconstruction method 4 (Fig. 4.12), and the periods T̆i

are processed according to reconstruction method 1 (Fig. 4.13). The top row for Fig.

4.11, Fig. 4.12 and Fig. 4.13 shows the results obtained for Pfa = Pmd = 0.01 while the

bottom row show the results obtained for Pfa = Pmd = 0.1. Simulations are performed

for Ψ = 0.5 (medium load).

As it can be appreciated from Fig. 4.11, Fig. 4.12 and Fig. 4.13, the accuracy is

in general better when having a lower probability of error. Nevertheless, the considered

reconstruction methods can provide better accuracy compared to the case where no

reconstruction is considered (i.e., when the PU statistics are computed straight from

the periods observed under ISS). As opposed to the PSS case shown in Fig. 4.10, the

accuracy under ISS degrades as the sensing period Ts decreases. This is due to the

fact that reducing Ts increases the number of sensing events per PU idle/busy period
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Table 4.3: Distribution parameters.

Distribution Shape (αi) Scale (λi)

E - 0.025

GE 29.179 0.0993

P 2.001 25.355

GP 0.25 30

G 9.499 4.215

W 3.167 44.7721
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Figure 4.9: CDF of idle/busy periods (µi = 10 t.u., E{Ti} = 50 t.u., Ψ = 0.5).

and therefore the probability of having sensing errors within each of the PU idle/busy

periods.

For the case where no reconstruction methods are applied 4.11, the accuracy of the

estimated PU statistics depends on the considered distributions. Notice that similar

distributions lead to similar levels of accuracy. Both generalised Pareto and exponential

distributions, which are similar as shown in Fig. 4.9, lead to the highest accuracy and

immunity against sensing errors. On the other hand, the generalised exponential, gamma

and Weibull distributions, which are also similar among them, provide relatively similar

estimation accuracies, while the Pareto distribution results in the lowest accuracy (this

observation holds for both cases of sensing errors, i.e., low Pfa = Pmd = 0.01 and high

Pfa = Pmd = 0.1 probabilities).

For method 4 ([81]) Fig. 4.12, similar comments as above can be made. However, in

this case some improvement in the accuracy of the estimated PU statistics is obtained

for all the distributions as a result of the reconstruction operation performed by this

method. It is interesting to note that for the case of low probability of sensing errors

(Pfa = Pmd = 0.01) there are some cases where the accuracy of the estimated statistics
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Figure 4.10: Estimation accuracy for the considered distributions under PSS.

is nearly perfect (DKS ≈ 0). As shown in Fig. 4.12, this occurs for the generalised

Pareto and exponential distributions when the sensing period is close to the minimum

PU activity time (Ts ≈ µi) but not for any other distributions. This may incorrectly lead

to the conclusion that certain methods can provide a nearly perfect estimation of the

PU statistics when this actually depends on the particular PU distribution considered

(i.e., it may be true for some PU systems but not for some others and the efficacy of a

certain method may actually depend on the PU system over which it is applied).

For method 1 (proposed method) Fig. 4.13, the threshold is set to β = 3 as it

provided the best results as can be seen from Fig. 4.5. Note that this method is more

complex than method 4 and the level of improvement is notably higher. Notice that in

this case there is a wide range of (low) values of the sensing period Ts that can provide

a nearly perfect estimation (DKS ≈ 0). When the probability of sensing errors is low

(Pfa = Pmd = 0.01) this observation holds for all the distributions (even though for

the Pareto distribution the range is slightly shorter). However for higher probability of

sensing errors (Pfa = Pmd = 0.1) this observation only holds for the generalised Pareto

and exponential distributions, where both can achieve nearly perfect accuracy over a

wide range (for other distributions there is a lower bound below which the error cannot

decrease). In contrast with method 4, the results for method 1 are not so sensitive to

the particular PU occupancy pattern (distribution).

Finally, as it can be appreciated from Fig. 4.11, Fig. 4.12 and Fig. 4.13, the efficiency

of the considered methods may depend to different extents on the PU activity statistics

(i.e., some methods may be more effective for certain PU distributions than for others

while some other methods may be less sensitive to the particular PU distribution). If this
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Figure 4.11: Estimation accuracy with no reconstruction under ISS.
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Figure 4.12: Estimation accuracy with method 4 under ISS.
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Figure 4.13: Estimation accuracy with method 1 under ISS.
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is not adequately considered then the performance of a real system design could be under

or overestimated, thus leading to unexpected behaviours/performances. This important

observation should be carefully taken into account in future studies on DSA/CR systems,

where traditionally only one distribution model is considered for the PU idle/busy period

durations (typically the exponential distribution).

4.7 Summary

CR systems can benefit from the knowledge of the PU spectrum activity statistics. The

estimation of such statistics, however, can be very inaccurate when based on sensing

observations due to the practical limitations of spectrum sensing and the presence of

sensing errors.

In this chapter, two problems have been addressed. First, the problem of accurately

estimating the PU activity statistics under ISS by proposing three simple but effective

methods to overcome the degrading effects of spectrum sensing errors on the estimated

statistics. The performance has been evaluated by means of computer simulations and

compared to other methods previously proposed in the literature. The obtained results

show that the methods proposed in this work are able not only to provide significant

accuracy improvements with respect to the existing methods but also, and more im-

portantly, an accurate estimation of the PU activity statistics. This chapter has also

discussed how the proposed methods should be configured in a practical system design

in order to achieve the best attainable accuracy.

Second, multiple models to imitate PU occupancy pattern have been considered and

their impact on the accuracy of methods to estimate the PU activity statistics has been

investigated by means of simulations under both PSS and ISS. The obtained results have

demonstrated that the efficiency of different methods may depend on the particular PU

activity statistics. As a matter of fact, some methods may be less sensitive than others to

the particular PU distribution and exhibit more similar or dissimilar levels of accuracy

under different operating conditions. Future studies on DSA/CR systems in general,

and on methods for the estimation of PU activity statistics in particular, should not

be constrained to a single model for the distribution of PU idle/busy periods (as it has

usually been the case in the past) but consider a sufficiently broad range of models for

a more accurate and comprehensive performance evaluation.



Chapter 5

Cooperative Estimation of

Primary Activity Statistics under

Imperfect Spectrum Sensing

5.1 Introduction

As discussed earlier, spectrum sensing is a key enabling technology for CR operation, as

it allows SUs to detect the presence/absence of PU traffic which is essential to reduce the

interference [11, 14]. An essential requirement for SU is to work in a fast and accurate

manner while identifying empty slots in the primary channel.

While the cooperative estimation improves the operation of spectrum sensing by

taking advantage of spatial diversity at every receiving SU. The improvement in perfor-

mance is hindered by both the increase of cooperation overhead (as every SU is required

to report local sensing decision to FC) and security issues (The CR network can is pen-

etrated by MUs) with MUs sending false reports to FC. This chapter provides solutions

to these problems by providing a power efficient and secure reporting mechanisms. The

main contributions of this chapter can be summarised as follows:

1. Study the cooperative estimation of PU traffic statistics under both sensing errors

and finite sensing period with experimental validation.

2. Propose a new reporting mechanism (differential reporting) to reduce the overhead

in the reporting channel and increase the spectrum and energy efficiency.

3. Study the estimation of primary distribution under both sensing errors and SSDF

attacks and propose a new algorithm to counter the effect of such attacks on

the estimation of PU traffic statistics. While both aspects have received some

attention in the literature separately, they have not been considered simultaneously

along with their combined effects on the cooperative estimation of primary traffic

statistics.
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Figure 5.1: System model for cooperative primary traffic estimation with malicious
users.

5.2 System Model and Problem Formulation

In this chapter, a single PU channel is considered for the sake of simplicity. The PU state

holding times (T0 for idle periods and T1 for busy periods) are random variables assumed

to be independent and exponentially distributed. The exponential distribution is the

most common model used to describe the periods of the on/off states in the literature

[71, 80, 112–114] even though it has been proven not to be the most accurate since other

distributions provide better fit for real scenarios such as the generalized Pareto, Gamma

or even more complicated distributions [64]. We use the exponential distribution because

it is a special case of the generalized Pareto distribution with a simpler mathematical

form. As for cooperative network side, K SUs with a specialised FC are considered along

with MUs. The FC is in charge of making the final decision of PU channel state through

one of the decision rules (only hard decision rules are considered, soft decision is out of

the scope for this chapter) and then exploit the sequence of reported idle/busy channel

states to estimate the durations of the channel holding times T0/T1 and the statistics

(i.e., distribution). The considered system model is shown in in Fig. 5.1.

The cooperative estimation can be sub-characterised into four indispensable stages.

Starting with the sensing stage, every SU performs spectrum sensing on a regular basis

to estimate the primary channel availability. Second stage is the local hard decision,

every SU utilises a detection algorithm to generate the binary channel state decisions

(0 for idle/absence of PU and 1 for busy/presence of PU). The decisions of all SUs are

assumed to be independent. The third stage is the reporting phase, where the local

decisions of every SU are reported to the central FC through a dedicated reporting

channel for the final global decision, where the FC (CR base station) is in charge of
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the final global decisions while the SUs function as cooperative sensing nodes. At every

sensing event (performed with a sensing period of Ts time units), the FC makes the global

decisions regarding the presence/busy (H1) or absence/idle (H0) of a PU. The decision

rules considered in this chapter are the most popular ones (AND, OR, MAJORITY)

[130].

1. AND-rule: The FC decides that a PU is present only if all cooperative SUs report

with PU present (i.e., all SUs report with 1).

2. OR-rule: The FC decides that a PU is present when at least one cooperative SU

reports with PU present (i.e., at least one SU reports with 1).

3. MAJORITY-rule: The FC decides that a PU is present when half or more of the

cooperative SUs decide the presence of a PU (i.e., K/2 or more SUs report with

1).

Based on one of these three hard decision rules the FC makes a decision on the PU

channel state and then exploits the sequence of reported idle/busy channel states to

estimate the durations of the channel holding times T̃i (i = 0 for idle periods, i = 1

for busy periods) of the original primary busy/idle periods Ti. Note that the estimated

periods are integer multiples of the employed sensing period (i.e., T̃i = mTs, m ∈ N+)

and as a result the estimated periods will differ from the true original periods, which

can in general be assumed to have a continuous domain (i.e., Ti ∈ R+).

In practise, SUs can work under both low and high SNR conditions. Under low

SNR, SUs suffer from sensing errors (on local decisions, as every SU contributes in the

final decision). ISS occurs in two types of errors: false alarm (H̃ = H1|H0) which

is characterised by the probability of false alarm (Pfa), where the PU signal is not

present but announced as present because of the high noise level present at SU’s receiver,

and missed detection (H̃ = H0|H1) which is characterised by the probability of missed

detection (Pmd), where the PU signal is present but with power lower than the receiver’s

threshold because of fading and shadowing.

Sensing errors have a significant impact on the performance of cognitive network

systems (both PUs and SUs) and on the estimation of PU traffic statistical information as

well. Inaccurate detection leads to inaccurate estimation for PU traffic activity statistics

as the estimated durations can be longer or shorter than the original values. Another

source of error is MUs who report with fake channel states to confuse the FC and lead

it to announce wrong global decisions, thus missing the opportunity of transmission and

leading to inaccurate PU traffic estimations.

The main objective of this chapter is to study the cooperative estimation of the

primary statistics (distribution of period durations) under spectrum sensing errors and

SSDF attacks, and propose methods that can provide an accurate estimation of the PU

traffic statistics under such challenging conditions.
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5.3 Cooperative Estimation of the Distribution of Primary

Channel Holding Times

Two methods are considered in this chapter for the estimation of the distribution of

primary idle/busy periods, the Direct Estimation Method (DEM) and the Method of

Moments (MoM).

5.3.1 Direct Estimation Method (DEM)

The direct estimation of the distribution is based on the empirical cumulative distri-

bution function (ecdf in MATLAB), where the Kaplan-Meier estimation is obtained

utilising the ecdf function for the given samples. The main advantage of this method is

that it requires no prior knowledge about the primary distribution. The main drawback

of this method is that the estimated distribution is a discrete version of the original

continuous distribution as the estimated periods are discrete (integer) multiples of the

sensing period Ts. Moreover, this method can not achieve high accuracy for all sensing

periods, which can not be improved even by increasing the number of SUs as it will be

seen in the results section. This motivates the consideration of the following method.

5.3.2 Method of Moments (MoM)

To overcome the limitations of the DEM, a solution based on the MoM is considered.

For the MoM, the distribution of the primary periods has to be known or assumed to

be known. The distribution parameters are then estimated from the sample moments.

The probability density function (PDF) and cumulative density function (CDF) for the

exponential distribution are given by [94]:

fTi(t) =

0 t < µi

λie
−λi(t−µi) t ≥ µi,

(5.1)

FTi(t) =

0 t < µi

1− e−λi(t−µi) t ≥ µi,
(5.2)

where λi ≥ 0 is the scale parameter of the distribution and µi > 0 is the location

parameter (also the smallest value for the PU activity period. i.e., Ti ≥ µi) .

The distribution parameters can be estimated following three approaches:

5.3.2.1 Direct estimation of minimum

The minimum period µ̃demi can be estimated as:

µ̃demi = min
(
{T̃i}Nn=1

)
= Ts, (5.3)
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where {T̃i,n}Nn=1 is a set of N observed periods and its minimum value under ISS is given

by Ts as discussed in [81]. The value of λi can be inferred from:

Ṽ(Ti) =
1

λ2
i

≈ 1

N − 1

N∑
n=1

[
T̃i,n − E(T̃i)

]2
, (5.4)

where Ṽ(Ti) is the variance of the observed PU periods and E(T̃i) is the mean which is

given by (5.5).

5.3.2.2 Minimum based on MoM

In general, the higher the number of SUs for the cooperative estimation of mean and

variance, the higher the accuracy of the estimation. This observation can be utilised to

estimate µi as follows:

E(T̃i) = µ̃i +
1

λi

≈ 1

N

N∑
n=1

T̃i,n, (5.5)

µ̃i = E(T̃i)−
√

Ṽ(Ti), (5.6)

where E(T̃i) is the mean of the observed PU periods.

5.3.2.3 Minimum based on modified MoM

A similar procedure as above is utilised, but with a correction factor to reduce the effects

of finite spectrum sensing period. The estimation of Ṽ(Ti) is given by:

Ṽ(Ti) =
1

λ2
i

− T 2
s

6

≈ 1

N − 1

N∑
n=1

[
T̃i,n − E(T̃i)

]2
− T 2

s

6
, (5.7)

where T 2
s /6 is the correction factor introduced in Chapter 2 to remove the effect of the

finite sensing period Ts.

5.4 Local State Reporting methods and Overhead

Cooperation can improve the estimation of both the instantaneous channel state and the

primary traffic statistics, however the cooperative process introduces signalling overhead,

which reduces the spectrum and energy efficiencies. Reporting in every sensing event
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Algorithm 5: Periodic reporting

Input : λ ∈ R+ . Energy decision threshold
Ns ∈ N+ . Number of signal samples

Output: Rch,i ∈ {0, 1} . Channel state report
1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 SU sends Rch,i to FC

9 end

is in general necessary in the case of cooperative spectrum sensing but is not essential

in the case of cooperative PU traffic estimation considered in this chapter. A possible

increase in spectrum and energy efficiency can be achieved by reducing the amount of

channel reports required at each sensing stage. In this section, first the original reporting

mechanism is described followed by the On/Off reporting method proposed in [131], then

a new method (differential reporting) is proposed. Fig. 5.2 shows the required number

of reports for each reporting mechanism.

5.4.1 Periodic Reporting Mechanism

In the default periodic reporting mechanism, every SU transmits a report containing the

local decision (at every sensing event) during the reporting stage to the central FC. Each

report is sent through a dedicated report channel for every SU. The periodic reporting

is summarised in Algorithm 5. The main drawback with periodic reporting is the high

number of reports as every SU sends reports to the FC with local decisions via its own

dedicated reporting channel in every single sensing event.

5.4.2 On/Off Reporting Mechanism

In this method, which is proposed in [131], all SUs report the local states back to the FC

only during busy periods and remain silent during idle periods. This way the reporting

overhead would be reduced from the periodic reporting, especially at low channel usage

(i.e., low duty cycle). An alternative approach is to report the local states back to the FC

only during idle periods and remain silent otherwise. This way the reporting overhead

would be reduced from the periodic reporting under high channel usage (i.e., high duty

cycle). The reporting option that provides the lowest number of reports depends on

whether the duty cycle is lower than 0.5 (reporting during every busy periods) or greater

(reporting during every idle periods). If the primary channel duty cycle is around 0.5,

then both options are equivalent. In practice, SUs target primary channels with limited

primary usage. As a result, only the first case for the On/Off reporting mechanism



Chapter 5. Cooperative Estimation of Primary Activity Statistics under ISS 93

H0H1 H1H0 H1H0· · · · H1H0

Ts T0 T1

H0H0H0 H0H0H1H1H1

(a)

RchRch Rch RchRch RchRch RchRch RchRchRchRch RchRch Rch
RchRch

(b)

Rch Rch RchRch RchRch RchRch
RchRch

(c)

RchRch Rch Rch Rch Rch Rch

(d)

Figure 5.2: The operation for the considered reporting mechanisms. (a) The sensing
stage at SU (it shows the required number of sensing events per SU. (b) Periodic
reporting mechanism. (c) On/Off reporting mechanism (report for busy periods case).

(d) Differential reporting mechanism.

(i.e., reporting during busy periods) will be considered for comparison purposes in this

chapter. The considered On/Off reporting is summarised in Algorithm 6.

5.4.3 Proposed Differential Reporting Mechanism

A differential reporting method is proposed where in contrast to periodic reporting, SUs

report their local decisions only when there is a change in the locally detected PU state

(i.e., bit 1 is sent when the local decision goes from idle to busy and bit 0 is sent when
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Algorithm 6: On/Off reporting

Input : λ ∈ R+ . Energy decision threshold
Ns ∈ N+ . Number of signal samples

Output: Rch,i ∈ {0, 1} . Channel state report
1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 SU sends Rch,i to FC

6 else
7 Rch,i ← 0 . Flag channel as idle
8 SU remains silent

9 end

10 end

Algorithm 7: Differential reporting

Input : λ ∈ R+ . Energy decision threshold
Ns ∈ N+ . Number of signal samples

Output: Rch,i ∈ {0, 1} . Channel state report
1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 SU remains silent

10 else
11 SU sends Rch,i to FC
12 end

13 end

the local decision goes from busy to idle). When SUs remain silent, the FC assumes that

the new detected state is the same as the last reported state. The differential reporting

mechanism is summarised in Algorithm 7. For differential reporting, the FC needs to

keep a copy of every SU last state (for comparison with new sensed states) to estimate

the PU period durations.

The differential reporting mechanism is expected to have a significant impact on

reporting overhead by reducing the amount of required reports and therefore increase

the total system efficiency. This will be discussed in detail in Section 5.7.

5.4.4 Analysis of the Required Number of Reports

Closed form expressions for the expected number of reports for the periodic, On/Off

and differential reporting mechanisms are derived for two scenarios: first, under perfect
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spectrum sensing (Pfa = Pmd = 0), second, under imperfect spectrum sensing (Pfa,

Pmd > 0).

First, the expected number of reports np for the periodic reporting mechanism, at

both high SNRs (Perfect Spectrum Sensing, PSS) and low SNRs (Imperfect Spectrum

Sensing, ISS) scenarios, is given by:

E{np} =
E{T1}
Ts

N

2
+
E{T0}
Ts

N

2
, (5.8)

where N ∈ N+ is the total number of idle and busy periods in the observed set {T̃i,n}Nn=1,

E{T0} and E{T1} are the expected durations of idle and busy periods, respectively, and

Ts is the sensing period. Notice that Pfa and Pmd do not affect the total amount of

reports since in the periodic reporting case a report is always sent in every sensing event.

Second, for the On/Off reporting mechanism, the expected number of reports nof

under PSS is given by:

E{nof} =
E{T1}
Ts

N

2
, (5.9)

while it can be easily seen that for ISS the expected number of reports is given by:

E{nof} =
E{T1}
Ts

N

2
(1− Pmd) +

E{T0}
Ts

N

2
Pfa. (5.10)

Lastly, for the differential reporting mechanism, the expected number of reports nd

under PSS is given by:

E{nd} = N, (5.11)

since under high SNR, the total number of reports sent to the FC is the same as the total

number of periods, as one report is sent for every new observed period. On the other

hand, the upper bound for the expected number of reports for differential reporting

under ISS is found as follows:

E{nd} = N +N

[
E{T1}
Ts

Pmd +
E{T0}
Ts

Pfa

]
, (5.12)

notice that one error (either false alarm or missed detection) will result in two reports.

The upper bound in (5.12) is loose and can be approximated by taking into consideration

the effect of the sensing error position within the period. For instance, consecutive

sensing errors within the same period or sensing errors occurring at beginning or ending

of the period result in a single report, then the following expression is obtained:
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E{nd} =N +N

[
E{T1}
Ts

Pmd +
E{T0}
Ts

Pfa

]
− (5.13)

−NPmd −
bE{T1}/Tsc∑

k=2

N

2

E{T1}
Ts

P kmd−

−NPfa −
bE{T0}/Tsc∑

k=2

N

2

E{T0}
Ts

P kfa.

The previous analytical results are for a single CR and can be easily scaled up by

multiplying by the number of cooperative SUs K.

5.5 Spectrum Sensing Data Falsification

In previous sections, all cooperative users are assumed to be honest. Unfortunately,

given the openness nature of wireless communications, cognitive networks and advances

in software defined radios have made the system vulnerable to data falsification attacks

carried out by malicious or greedy nodes disguised [132]. MUs will send falsified reports.

This type of attack is known as SSDF [133]. MUs have two main objectives for attacks

[134]: first is to interfere with the primary system by having MUs report with idle

states at busy primary channels, second is to report with busy states when local sensing

decisions provide an idle state and as a result, the FC falsely declares the primary channel

as busy so that legitimate SUs have to wait for another sensing event. Meanwhile, MUs

can access the idle channel exclusively. This attack strategy is typically utilised by

greedy MUs to maximise their data rate. In this chapter, the main focus is on the later

scenario.

5.5.1 Spectrum Sensing Data Falsification Attacks

In this chapter, the considered SSDF attacks are similar to the ones described in [135–

137], in which the MUs attack with a predefined attack strategy. Intelligent attacks such

as those described in [138], where MUs are capable altering their attacks adaptively

(based on the CR network) to maximise their own utilities are out of scope of this

chapter and hence is left to future work. The considered SSDF attacks are:

1. Blind attack: The attackers report with busy state in every sensing event [133].

2. Random attack: The MUs attack (i.e., report an idle channel as busy) with a given

probability of attack Pa < 1 [139].

The blind attack would have a devastating effect on the resulting global detection

if it succeeds, however its detection is straightforward. Notice that under periodic and

On/Off reporting, the MU would report a busy PU channel in 100% of the submitted

reports, while under differential reporting the MU would indicate the channel as busy
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in the initial report and then would not report anymore, implying that the channel still

remains busy. These extreme cases would be very easy to detect by the FC by simply

counting the number of reports and states sent by each user and comparing with the

rest of users (taking into account the employed reporting mechanism). As a result, a

modified version of the pure blind attack is here considered (see Algorithm 8), which is

more sophisticated and therefore increases the chances of this type of attack to succeed.

Notice that this modified blind attack requires MUs to sense the PU channel before

sending a report to the FC, while the pure blind attack would not require any sensing at

all. The random attack (Algorithm 9) also requires MUs to sense the PU channel before

sending a report (regardless of the reporting mechanism employed) since the actual

states of the PU channel need to be known in order to meet the desired probability of

attack (Pa). Therefore, in both types of attack (blind and random) MUs need to sense

the channel before sending the report to the FC.

For the case of differential reporting, in order to be able to apply SSDF attacks

successfully, MUs need to follow the reporting rules imposed by the FC. Not following the

reporting rules would lead to anomalous sequences of reports, with much higher/lower

number of reports than the average, which would make the attack process susceptible

of being detected by the FC. Thus, it is essential for MUs to follow the same reporting

procedure imposed by the FC.

Finally, it is also worth mentioning that MUs may attack not only during the idle

periods of the PU channel (by sending a busy report), but also during the busy peri-

ods of the PU channel (by sending an idle report), or a combination of both. While

attacks during PU busy periods may be possible, in this case the MU does not obtain

an individual benefit from leading the FC to believe that the channel is idle when it is

actually busy and therefore the MU does not have a strong incentive to carry out such

attack. On the other hand, leading the FC to believe that the channel is busy when it

is actually free allows the MU to prevent other SUs from transmitting and hence use

the PU channel idle times for its own transmissions. Therefore the MU does have a

strong incentive to attack during idle periods (by sending a busy report), which is not

the case during busy periods. Notice that the algorithms and analyses presented in this

chapter can be readily adapted to the either type of attack by simply reverting idle/busy

periods (both in the algorithms and analysis of results). However, in order to simplify

the subsequent analysis and discussion, we restrict ourselves, without loss of generality,

to the case where MUs attack during idle periods only.

5.5.2 Proposed Algorithm

To eliminate the effects of SSDF attacks, a secure and efficient data fusion is essential,

which in turn requires a reliable defence reference to identify MUs [136]. However in

practical scenarios, a reliable reference is not always available. Eventually honest reports

are mixed with malicious ones. In this context, we propose a novel algorithm to identify

contrived MUs reports without the requirement of a previous reference. The key idea



Chapter 5. Cooperative Estimation of Primary Activity Statistics under ISS 98

Algorithm 8: Modified blind attack (with differential reporting)

Input : λ ∈ R+ . Energy decision threshold
Ns ∈ N+ . Number of signal samples

Output: Rch,i ∈ {0, 1} . Channel state report
1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 MU remains silent

10 else
11 MU sends Rch,i = 1 to FC
12 end

13 end

Algorithm 9: Random attack (with differential reporting)

Input : λ ∈ R+ . Energy decision threshold
Ns ∈ N+ . Number of signal samples

Output: Rch,i ∈ {0, 1} . Channel state report
1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 MU remains silent

10 else
11 MU generates a radom number Z ∼ U(0,1)
12 if Z < Pa then
13 MU sends Rch,i = 1 to FC
14 else
15 MU sends Rch,i to FC
16 end

17 end

18 end

of Algorithm 10 is based on the differential reporting mechanism. Whenever a report is

available at the FC from a specific SU, a comparison is made with the previous report

from the same SU. If the report contains information of same state as the previous

report, then the report is discarded and the decision rule is applied based on the reports

from the other K − 1 SUs. Furthermore, the proposed algorithm can almost function in

real-time without the need for a comparison with statistical characteristics for sensors as
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Algorithm 10: Defence against attackers (with differential reporting)

Input : Reports from sensing nodes
Output: Decision

1 for each report Rk,i from SUk in sensing event i do
2 if Rk,i = Rk,i−1 then
3 Rk,i is discarded
4 Apply MAJORITY rule to K − 1 SUs

5 else
6 Apply MAJORITY rule to K SUs
7 end

8 end

the operation of obtaining accurate statistical information requires a significant sample

size [140]. The proposed algorithm differs from the literature in that it is much simpler

and does not require any pre-defined trusted nodes nor sophisticated rules at the FC.

5.6 Simulation and Experimental Methodology

The performance of the considered methods was evaluated both with simulations and

hardware experiments. Simulations were performed in MATLAB by generating several

sequences with a sufficiently large number of interleaved on/busy and off/idle periods

from an exponential distribution. The simulation procedure can be summarised as

follows:

1. Generate idle/busy periods’ lengths Ti following an exponential distribution with

predefined location (µi) and scale (λi) parameters.

2. Perform idle/busy sensing decisions H0/H1 on the generated sequence in step 1

every Ts time units (t.u.).

3. Calculate the idle/busy lengths estimated under PSS.

4. Add random errors (with Pfa > 0 and Pmd > 0) in the sequence resulting from

step 2.

5. Using the new H0/H1 sequence from step 4, calculate the period lengths T̃i that

would be estimated under ISS.

6. MUs will fake H0 to H1 with a given attack probability of Pa > 0.

7. FC computes the CDF of the idle/busy lengths obtained in steps 5 & 6 by applying

a hard decision rule and compares with the CDF of the original periods.

The hardware experiments were conducted using the same PECAS platform de-

scribed in Section 2.4.4. In general, the energy detection threshold can be selected

through one of the following criteria:
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• To meet a specific probability of false alarm (Pfa). This method requires knowledge

of the SU noise power. In practice, this can be achieved by keeping the receiver

function on an empty frequency channel for a sufficient time (several minutes in

PECAS [103]) then setting the threshold to maintain the desired Pfa [141].

• To meet a specific probability of missed detection. This method requires knowledge

of the received primary SNR in addition to the device noise power [142].

• To minimise the combined error from Pfa and Pmd. This method also requires the

knowledge of both the device noise power and primary signal SNR [143].

A more detailed description of these methods can be found in [144]. Since it is

difficult to set accurately the energy detection threshold to result in a specific Pfa and

Pmd with the RTL-SDR [103], the errors are introduced through emulations to the on/off

periods received by the RTL-SDR.

Even though the original PECAS is designed for a single CR scenario, the exper-

iments are repeated for the required number of SUs to produce different streams for

every SU and emulate a cooperative estimation scenario.

5.7 Simulation and Experimental Results

In this section, the analysis and validation of the proposed methods are provided. The

value considered for each parameter is shown in the title of each figure in terms of generic

time units (t.u.). In the case of experimental results, where a particular time unit needs

to be selected according to the real-time capabilities of the employed hardware platform,

the reference unit is the second (i.e., 1 t.u. = 1 second). First, different decision rules will

be assessed, followed by different methods to assess the estimated primary distribution

accuracy. The comparison between the estimated and original distributions is performed

using the classic Kolmogorov-Smirnov (KS) distance [96], defined as:

DKS = sup
Ti

∣∣∣FTi(Ti)− FT̃i(Ti)∣∣∣ , (5.14)

where FTi(Ti) and F
T̃i

(Ti) represent the CDFs of the original and estimated periods,

respectively.

Fig. 5.3 compares the estimation accuracy of the considered hard decision rules

(AND, OR, MAJORITY) when the cooperative SUs use periodic reporting and the FC

uses the DEM to estimate the CDF of busy periods. For comparison purposes, the

case of single SU is also included in Fig. 5.3. The duty cycle is set to 0.5 (Ψ = 0.5),

where both busy and idle periods will have similar parameters. The MAJORITY rule

outperforms the other rules in the estimation of the primary statistics (4 cooperative SUs

can estimate accurately the primary statistics under Pfa = Pmd = 0.01, while 12 SUs

are required to estimate the primary statistics under Pfa = Pmd = 0.1). As for the AND

and the OR rules, both of them fail to provide an accurate estimation of the primary



Chapter 5. Cooperative Estimation of Primary Activity Statistics under ISS 101

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Figure 5.3: Accuracy of the estimated distribution for different fusion rules and
periodic reporting under sensing errors.

distribution (low KS distance value) for both scenarios of high and low sensing error

probabilities. For the OR rule, the obtained results can be explained as any CR reports

with a busy period will result in the FC announcing the channel as busy and as the

number of cooperative SUs increases the probability of having false alarms increases as

well. It is interesting to notice that the direct estimation of the CDF (i.e., DEM, which is

considered in all cases in Fig. 5.3) never reaches a perfect accuracy (DKS = 0) regardless

of the number of SUs and the fusion rule. This is a result of the finite sensing period

Ts. Based on these results, further numerical results will only consider the MAJORITY

fusion rule.

Fig. 5.4 shows the accuracy of the considered methods to estimate the distribution of

the primary traffic for different sensing periods. Experimental results are considered only

here due to the significant amount of time required to run experiments for cooperative SU

scenarios using a single SU hardware platform. As it can be observed, the experimental

results (with PECAS) provide a perfect fit with simulations. For small sensing periods

(Fig. 5.4(a)), the DEM performs better than the MoM and its modified version in

Section 5.3.2.3 (MMoM), but for high number of SUs, MoM and MMoM can provide a

more accurate estimation. For higher sensing durations (Fig. 5.4(b) and Fig. 5.4(c))

MoM and MMoM provide better accuracy in the estimation of the primary traffic over

the whole range of the number of cooperative SUs. The minimum period obtained from

MMoM gives better estimation than the minimum obtained through the original MoM,

except for the case where Ts has a small duration (i.e., multiple sensing events occur

in a single period) where both minimums provide a similar KS distance. The direct

estimated minimum with MoM provides results with significant inaccuracy regardless of
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Figure 5.4: Different methods to estimate the distribution under periodic reporting:
(a) Ts = 0.01 t.u., (b) Ts = 0.05 t.u., (c) Ts = 0.09 t.u.
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Figure 5.5: Accuracy of the estimated distribution for different reporting mechanisms.

the sensing period or the number of cooperative SUs. Since the MMoM performs better

than the rest of methods, it will be the only method considered in the remainder of this

section.

The performance of the periodic reporting, On/Off reporting and the proposed dif-

ferential reporting mechanisms for cooperative estimation will be discussed based on the

MAJORITY fusion rule with MMoM distribution estimation. As it can be appreciated

in Fig. 5.5, the three considered methods have a similar performance under sensing er-

rors, however the differential reporting mechanism provides higher efficiency and security

advantages in comparison with the other methods as discussed below.

Fig. 5.6 shows the required number of channel reports for 20,000 periods for the

three considered reporting mechanisms (periodic, On/Off and differential) under differ-

ent primary loads (high Ψ = 0.75, moderate Ψ = 0.5 and low Ψ = 0.25). As it can be

appreciated, the derived analytical expressions provide a perfect match for the periodic

and On/Off reporting methods, while the result of (5.13) provides a tight upper bound

for the required number of reports in the case of the differential reporting mechanism.

The reduction in the amount of reports transmitted using the On/Off and differential re-

porting mechanisms with respect to the periodic reporting mechanism can be quantified,

respectively, as:

Bof =
E{nof}
E{np}

, (5.15)

Bd =
E{nd}
E{np}

, (5.16)
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Figure 5.6: Required number of reports under sensing errors (Pfa = Pmd = 0.1) for:
(a) Periodic reporting, (b) On/Off reporting, (c) Differential reporting.
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Figure 5.7: Reduction in the number of reports under PSS (Pfa = Pmd = 0).

where Bof and Bd are the reduction in the amount of reports for On/Off and differ-

ential reporting mechanisms respectively. The smaller the value of Bof/Bd , the lower

the amount of reporting overhead required for feedback and therefore the higher the

efficiency. Figs. 5.7 and 5.8 show the reduction in the amount of reports for On/Off

and differential reporting mechanisms with respect to the periodic reporting mechanism

under perfect and imperfect spectrum sensing scenarios, respectively. The scenario of

perfect spectrum sensing is considered to give an idea on the reduction in the case of

high primary signal power present at the SU. As it can be concluded from both figures,

the differential reporting mechanism outperforms the On/Off in nearly every channel

load, except for small duty cycles (Ψ = 0.25) and large sensing periods (Ts >
µi
2 ) as

at low duty cycles the SUs will remain idle for most of the time due to the absence of

PU traffic. As it can be observed, the best estimation accuracy obtained for smaller

sensing periods. In practice, the duty cycle of PU is unknown and the differential re-

porting mechanism provides higher efficiency. As it can be appreciated, the proposed

mechanism reduces significantly the amount of required reports for all scenarios.

The accuracy of the estimation of primary traffic statistics under random attacks

with different fusion rules is shown in Fig. 5.9. As it can be appreciated, the MA-

JORITY rule outperforms the AND/OR rules in the presence of attacks. The OR rule

is ineffective against attacks because only one busy report is required to declare the

channel as busy, therefore a single MU would be able to prevent the whole SU network

from transmitting. The AND rule would be effective in an ideal case of perfect spectrum

sensing, since a single honest SU who reports an idle channel as idle would be enough

to make any attack fail, regardless of the number of MUs; however, in a realistic ISS

scenario, the presence of sensing errors means that an idle channel may be reported as
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Figure 5.9: Accuracy of the estimated distribution for different fusion rules under
both ISS (Pfa = Pmd = 0.01) and random attacks (MUs = K/4, Pa = 0.75).

busy (false alarm) and vice versa (missed detection) even by honest SUs. Overall, the

MAJORITY rule provides the best balance between malicious and erroneous reports,

and therefore leads to the best estimation accuracy as observed in Fig. 5.9. By in-

creasing the number of SUs, the MAJORITY rule enables an accurate estimation even

under SSDF attacks. Comparing Figs. 5.3 and 5.9, it can be observed that the pres-

ence of MUs (Fig. 5.9) increases the total number of required SUs in order to achieve
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an accurate estimation of the distribution with the MAJORITY rule with respect to

the case of no MUs (Fig. 5.3), however the MAJORITY rule still provides the best

estimation accuracy. Similar conclusions are obtained in the case of blind attacks (not

shown here for brevity). Therefore, the MAJORITY rule provides the best estimation

accuracy, even in the presence of SSDF attacks. The subsequent performance analysis

under SSDF attacks will consider the MAJORITY fusion rule only.

The accuracy of the estimation of primary traffic statistics under blind and random

attacks is shown in Figs. 5.10 and 5.11 respectively. As it can be appreciated, the blind

attack has the same level of degradation on the estimation of the PU distribution for

the three reporting mechanisms (periodic, On/Off and differential). Moreover, when

the population of attackers becomes half of the SUs (Fig. 5.10(a)), the FC will be

overwhelmed with wrong reports and produce false global decisions regardless of the

probability of missed detection and false alarm. For smaller MUs population (Fig.

5.10(c)), a large number of SUs is required to produce an accurate estimation of the

primary statistics. The random attack has less severe effects on the estimation of the

statistics in comparison with the blind attack. In fact, the blind attack is a special case of

the random attack with attack probability Pa = 1. In general, the differential reporting

mechanism performs better than the periodic and On/Off counterparts regardless of the

Pa value. Nevertheless, all methods fail to provide an accurate estimation of the PU

statistics except for small Pa (Fig. 5.11(a)), where a high number of SUs are essential to

have a relatively acceptable estimation (SUs > 20). As it can be appreciated from Fig.

5.12, the proposed defense algorithm can significantly improve the estimation of primary

statistics while mitigating the effects of MUs by discarding the contrived reports and

keeping the correct ones for the cooperative estimation. Moreover, the proposed method

provides accurate results regardless of the attack type or the population of MUs.

5.8 Summary

CR systems can benefit from the knowledge of PU activity statistics, which can be

exploited to prevent interference and access the spectrum more efficiently. This infor-

mation can be obtained individually by each CR user based on its local spectrum sensing

observations, however a cooperative estimation approach can provide significant bene-

fits both in terms of accuracy (overcoming the degrading effects of sensing errors) and

reliability (overcoming the degrading effects of malicious users). In this context, this

chapter has provided a detailed study on the cooperative estimation of the PU activ-

ity statistics (in particular, the distribution of the channel holding times) under both

spectrum sensing errors and SSDF attacks. This chapter has evaluated the impact on

the accuracy of the estimated statistics that several aspects may have, such as the hard

decision rule used for cooperative sensing-based estimation (the MAJORITY rule was

observed to provide the best performance) and the method employed to estimate the

distribution (the MMoM approach proposed in this work has been proven to provide the
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Figure 5.10: Accuracy of the estimated distribution under blind attacks: (a) MUs =
K/2, (b) MUs = K/3, (c) MUs = K/4.
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Figure 5.11: Accuracy of the estimated distribution under smart attacks: (a) MUs
= K/2 and Pa = 0.25, (b) MUs = K/2 and Pa = 0.5, (c) MUs = K/2 and Pa = 0.75.
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Figure 5.12: Accuracy of the estimated distribution under SSDF attacks with the
proposed defence method: (a) MUs = K/2 and Pa = 1 (Blind attack), (b) MUs = K/3

and Pa = 1 (Blind attack), (c) MUs = K/2 and Pa = 0.5 (Smart attack).
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most accurate estimation). While cooperative estimation can improve the estimation

accuracy, it also increases the amount of signalling in the system (associated with the

reporting overhead) and introduces security threads (from MUs deliberately sending in-

correct reports). Both issues have been successfully addressed in this work by proposing

a differential reporting mechanism that can decrease significantly the signalling over-

head as well as a defence mechanism that can effectively remove both blind and random

SSDF attacks. The obtained simulation and experimental results demonstrate that the

methods proposed in this chapter enable a more accurate estimation of the PU activity

statistics with a reduced level of signalling overhead and a high level of security against

SSDF attacks.





Chapter 6

Conclusions and Future Work

The advances and growing demands for wireless networks and devices, lead to the prob-

lem of spectrum scarcity. Novel solutions to enhance the efficiency of wireless spec-

trum utilization are essential to solve the scarcity of available transmission bandwidth.

DSA/CR is a promising solution to increase spectrum efficiency by accessing white spec-

trum holes in an opportunistic and non-interfering manner. The opportunistic access

type to the PU channel implies that the DSA/CR system depends on their functionality

on the PU activity time. Having accurate knowledge of PU traffic statistics can greatly

enhance the performance of the CR network.

6.1 Conclusions

Spectrum sensing is one of the enabling techniques to detect PU channel availability

and estimate traffic statistics. Unfortunately, spectrum sensing is hindered by several

practical limitations when utilised to estimate PU statistics (such as the minimum trans-

mission time, mean, variance, duty cycle, and distribution). The main objective of this

thesis is to investigate the problem of improving the estimation of primary user traffic

statistics under spectrum sensing. In this context, the main conclusions of the thesis

are:

1. Chapter 2. The problem of finite sensing period is considered, which imposes

limitations on the measured duration of busy/idle periods and hence the time

resolution to which the resulting distribution for PU activity can be estimated.

First, the analytical perspective of how this limitation affects the estimation of

PU distribution under finite sensing periods is considered. Second, methods have

been proposed to enable SU to obtain an accurate estimation of the distribution

of PU activity periods. A solution is proposed based on the method of moments

namely a modified version of the Method of Moments to improve the primary

distribution estimation. Simulation results have shown that the proposed method

outperforms the conventional approach based on the direct estimation by means of

empirical CDF calculation as well as the approach based on the standard Method

113
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of Moments. It has been found out that an accurate estimation or knowledge of

the minimum PU activity time is essential to achieve an accurate estimation of

the distribution of PU activity periods. Provided that the minimum PU activity

time is known or can be estimated to a sufficient degree of accuracy, the proposed

MMoM method constitutes an ideal solution to provide an accurate (nearly perfect)

estimation of the PU activity statistics based on spectrum sensing observations.

2. Chapter 3. This chapter aims to answer the question of how many periods

need to be observed in order to guarantee that the estimated statistics will meet

a predefined level of accuracy for SNR scenarios. Closed form expressions are

provided for the required sample size to attain the desired estimation error (for the

minimum, mean, variance, duty cycle and distribution). The obtained analytical

results have been compared to both simulation and experimental results, showing

an excellent agreement in all cases. Moreover, an iterative stopping algorithm has

been proposed to enable SU to perform a real-time calculation of the required

sample size, which has been shown to be very accurate.

3. Chapter 4. In this chapter, two problems have been addressed. First, the problem

of accurately estimating the PU activity statistics under ISS (low SNR scenario)

three methods are proposed to overcome the degrading effects of spectrum sensing

errors on the estimated statistics. The performance has been evaluated by means

of computer simulations and compared to other methods previously proposed in

the literature. The obtained results showed that the proposed methods outper-

formed the literature methods and provided an accurate estimation of the PU

activity statistics. Moreover, multiple PU occupancy distributions have been con-

sidered and their impact on the accuracy of methods to estimate the PU activity

statistics has been investigated by means of simulations under both PSS and ISS.

The obtained results have demonstrated that the efficiency of different methods

may depend on the particular PU activity statistics.

4. Chapter 5. Cooperative estimation of the PU activity statistics (in particular,

the distribution of the channel holding times) under spectrum sensing errors and

SSDF attacks is studied in detail. A novel reporting mechanism is proposed to both

reduce the reporting overhead and the effects of SSDF attacks on the distribution

estimation. This part of the thesis has evaluated the impact on the accuracy of

the estimated statistics. While cooperative estimation can improve the estimation

accuracy, it also increases the amount of signalling in the system (associated with

the reporting overhead) and introduces security threads (from MUs deliberately

sending incorrect reports). Both issues have been successfully addressed in this

chapter by proposing a differential reporting mechanism that can decrease signifi-

cantly the signalling overhead as well as a defence mechanism that can effectively

remove both blind and random SSDF attacks. The obtained simulation and ex-

perimental results demonstrate that the methods proposed in this chapter enable
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a more accurate estimation of the PU activity statistics with a reduced level of

signalling overhead and a high level of security against SSDF attacks.

6.2 Future Work

This work has briefly discussed the estimation of primary traffic statistics. Future work

for improving the estimation of primary user in cognitive radios could include the fol-

lowing issues. Some of them are already being addressed by the author. Nevertheless,

extensions to this work can be pursued, including but not limited to:

1. Closed form expressions to characterise the expected primary user traf-

fic statistics under imperfect spectrum sensing

The work reported in Chapters 2 and 3 model the estimation of the primary statis-

tics under both finite sensing length and a limited number of observations for SUs

with high SNR (high power received at SU receiver from the PU transmitter) sce-

narios and for single SU. It would be both interesting and important to provide

closed-form expressions to for the PU statistics in case of low SNR environment

(sensing errors). In this case, several points are needed to be taken into account

including the probabilities of errors (both Pfa and Pmd). Also, more complex as-

pects such as the (random) number of errors and their (random) relative locations

within each PU period, since this determines how the original PU periods would

be split into shorter periods. Moreover, for the case of cooperative estimation, the

number of SUs is needed to be taken into account. These expressions are essential

for the design and deployment for cognitive radio systems.

2. The design and implementation of an affordable test-bed for the coop-

erative estimation of the PU activity statistics

It might be interesting to provide a cooperative system test-bed for the cooperative

PU traffic estimation followed by their limitations and constraints, which can pro-

vide a functional tool for proof-of-concept, validation, optimisation of algorithms

and designs. The current work in this thesis is based on a single SU prototype and

repeated multiple times to simulate the problem of cooperative estimation.

3. Other approaches for the sample size analysis

The sample size analysis carried out in this work is based on intuitive and simple

estimation methods for the considered activity statistics, the investigation of other

estimation approaches based on more complex techniques that might potentially

lead to accurate estimations with lower sample sizes would be a plausible extension

to this work as well. In this context, machine learning techniques [145–150] have

already demonstrated their potential benefits in other areas of wireless networks

and their application to the problem here considered is also suggested as further

future work.
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4. Differential reporting under intelligent attacks

Chapter 5 presented MUs performing SSDF attacks with defence algorithm based

on differential reporting to minimise the attacks effects on the estimation of PU

statistics in real-time. Future extension to the presented in Chapter 5, is to pair

the differential reporting mechanism with other defence algorithms to tackle more

sophisticated and intelligent attacks performed by MUs.
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[64] M. López-Beńıtez and F. Casadevall, “Time-dimension models of spectrum us-

age for the analysis, design, and simulation of cognitive radio networks,” IEEE

Transactions on Vehicular Technology, vol. 62, no. 5, pp. 2091–2104, Jun 2013.

[65] S. Geirhofer, L. Tong, and B. M. Sadler, “Cognitive radios for dynamic spectrum

access - dynamic spectrum access in the time domain: Modeling and exploiting

white space,” IEEE Communications Magazine, vol. 45, no. 5, pp. 66–72, May

2007.

[66] M. Wellens, A. D. Baynast, and P. Mahonen, “Performance of dynamic spectrum

access based on spectrum occupancy statistics,” IET Communications, vol. 2,

no. 6, pp. 772–782, July 2008.

https://books.google.co.uk/books?id=bcHaAAAAMAAJ
https://books.google.co.uk/books?id=bcHaAAAAMAAJ
https://hal.inria.fr/inria-00630230
http://doi.acm.org/10.1145/1234388.1234402


Bibliography 123

[67] K. Umebayashi, Y. Suzuki, and J. J. Lehtomäki, “Dynamic selection of CWmin
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[98] M. López-Beńıtez, “Cognitive radio,” in Heterogeneous cellular networks: Theory,

simulation and deployment. Cambridge University Press, 2013, ch. 13.

[99] K. A. Stroud and D. J. Booth, Engineering mathematics. Basingstoke : Palgrave

Macmillan, 2013., 2013.

[100] MATLAB, version 7.10.0 (R2016b). Natick, Massachusetts: The MathWorks

Inc., 2016.



Bibliography 126

[101] D. Ruppert, Statistics and Data Analysis for Financial Engineering (Springer Texts

in Statistics), 1st ed. Springer, Berlin, 2010. [Online]. Available: http://www.

amazon.de/Statistics-Analysis-Financial-Engineering-Springer/dp/1441977864

[102] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.

Prentice Hall, 1997.
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“PECAS: A low-cost prototype for the estimation of channel activity statistics

in cognitive radio,” in Proc. 2017 IEEE Wireless Comms. & Networking Conf.

(WCNC), March 2017, pp. 1–6.
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[122] M. López-Beńıtez and F. Casadevall, “Empirical time-dimension model of spec-

trum use based on a discrete-time markov chain with deterministic and stochastic

duty cycle models,” IEEE Transactions on Vehicular Technology, vol. 60, no. 6,

pp. 2519–2533, July 2011.

[123] K. Sithamparanathan and A. Giorgetti, Cognitive radio techniques. Artech House,

2012.

[124] K. Cafe, “Gsm timeslot and frequency specifications - rf cafe,” 2016. [Online].

Available: http://www.rfcafe.com/references/electrical/gsm-specs.htm

[125] J. F. Lawless, Statistical models and methods for lifetime data. Wiley, 1982.

http://www.rfcafe.com/references/electrical/gsm-specs.htm


Bibliography 128

[126] R. D. Gupta and D. Kundu, “Generalized exponential distributions,” Australian

and New Zealand Journal of Statistics, vol. 41, no. 2, pp. 173–188, Jun. 1999.

[127] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engi-

neers, 3rd ed. John Wiley & Sons, 2003.
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