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Abstract  14 

Consequences of submarine landslides include both their direct impact on offshore 15 

infrastructure, such as subsea electric cables and gas/oil pipelines, and their indirect impact 16 

via the generated tsunami. The simulation of submarine landslides and their consequences 17 

has been a long-standing challenge majorly due to the strong coupling among sliding 18 

sediments, seawater and infrastructure as well as the induced extreme material deformation 19 

during the complete process. In this paper, we propose a unified finite element formulation 20 

for solid and fluid dynamics based on a generalised Hellinger-Reissner variational principle 21 

so that the coupling of fluid and solid can be achieved naturally in a monolithic fashion. In 22 

order to tackle extreme deformation problems, the resulting formulation is implemented 23 

within the framework of the particle finite element method. The correctness and robustness 24 

of the proposed unified formulation for single-phase problems (e.g. fluid dynamics problems 25 

involving Newtonian/Non-Newtonian flows and solid dynamics problems) as well as for 26 

multi-phase problems (e.g. two-phase flows) are verified against benchmarks. Comparisons 27 

are carried out against numerical and analytical solutions or experimental data that are 28 

available in the literature. Last but not least, the possibility of the proposed approach for 29 

modelling submarine landslides and their consequences is demonstrated via a numerical 30 

experiment of an underwater slope stability problem. It is shown that the failure and post-31 
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failure process of the underwater slope can be predicted in a single simulation with its direct 32 

threat to a nearby pipeline and indirect threat by generating tsunami being estimated as well.  33 

 34 
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1. Introduction 40 

Submarine landslides are geological phenomena that pose not only a direct threat to offshore 41 

infrastructure but also an indirect threat to coastal communities through the generation of 42 

tsunamis. Typical examples are the 1998 New Guinea submarine landslide off Papua [1] that 43 

caused a tsunami resulting in 2200 deaths and the submarine landslide off Taiwan [2] in 2006 44 

that broke seven out of nine undersea cables leading to a major disruption of the internet 45 

connection and general commerce between Thailand, Malaysia, Vietnam, South Korea, China 46 

and Singapore. In the past decade, submarine landslides have been receiving increasing 47 

attention which is, to a large extent, due to a boom in offshore infrastructures such as 48 

submarine gas and oil pipelines, offshore wind farm and electricity grid infrastructure, deep-49 

water oil and gas platforms etc.  50 

 51 

The timely forecast of a potential submarine landslide, as well as a realistic estimation of its 52 

post-failure behaviour and consequences, is undoubtedly of great significance for minimising 53 

the degree of destruction. Conventional geotechnical approaches, such as the limit 54 

equilibrium method, the limit analysis method and the displacement-based finite element 55 

method that are widely used for slope stability analysis normally stop at the point when 56 
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failure is triggered and do not provide information regarding the post-failure process. To 57 

forecast a submarine landslide and estimate its potential impacts, ideally the complete process 58 

of submarine landslides ranging from its failure initiation through migration to its final 59 

deposition is produced via a single simulation seamlessly. This task however is formidable 60 

due to the complex coupling mechanism involved in the process as well as the solid-fluid 61 

transitional behaviour of the evoked submarine soil mass.  62 

 63 

Figure 1 Submarine landslides and their consequences. 64 

 65 

In a submarine landslide, the sediment behaves like a solid before the slide is initiated (Figure 66 

1(a)) and after the sliding mass eventually comes to rest at a new location (Figure 1(c)), but 67 

mimics a fluid during the sliding process (Figure 1(b)). When the post-failure stage is 68 

concerned, the sliding sediment is commonly simulated based on the framework of fluid 69 

mechanics, due to its fluid-like behaviour. In the simulation, the sediment is treated as a non-70 

Newtonian flow while the seawater as a Newtonian flow, both solved according to either 71 

Navier-Stokes equations [3, 4] or simplified governing equations such as the shallow water 72 

theory [5, 6]. Despite the prevalence of this solution strategy (particularly for modelling 73 
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submarine landslide generated tsunami), it fails to capture the solid-like features of subsea 74 

sediments and thus does not perform well for the stability analysis of underwater slopes or for 75 

the analysis of their progressive failure behaviour. Recent efforts made in this regard include 76 

[7-9] in which simulations were carried out in the framework of solid (or soil) mechanics. 77 

Owing to the low permeability, material clays in these works were represented by the Tresca 78 

or Von-Mises constitutive model implying an undrained condition. The progressive 79 

development of plastic shear deformation in marine clays was reproduced via the reduction of 80 

undrained shear strength with accumulated plastic displacement or strain. Influence of 81 

seawater on the submarine landslides in [7-9] was considered by using the submerged density 82 

of the sediment. Such an approximation is only reasonable when the sliding proceeds in a 83 

quasi-static process. Otherwise, the hydraulic effects from the seawater have to be taken into 84 

account. A representative example rests with the phenomena in submarine landslides that a 85 

layer of water intrudes under the sediment and results in a lubrication effect and a decrease in 86 

the resistance between the sediment and the seabed [10, 11]. This mechanism, termed as 87 

hydroplaning, is deemed a reason for unexpectedly long travel distance of submarine 88 

landslide, and its prediction obviously necessitates a fully coupled analysis of the seawater-89 

soil interaction. Apart from that, the rheological feature of the sediment was ignored in [7-9]. 90 

A remarkable contribution in this regard lies in [12] where the Storegga Slide was simulated 91 

using a two-phase flow model. The interaction between the seawater and the sediment was 92 

coupled in the framework of Computational Fluid Dynamics (CFD) that a Newtonian flow 93 

model was applied for representing seawater and a non-Newtonian flow model for the 94 

rheological behaviour of sediments. The solid behaviour of the sediment was somewhat 95 

accounted for through deducing the threshold yield stress with plastic strains.  96 

 97 

Indeed, the seawater-soil (or fluid-solid) coupled analysis is a challenge in the simulation of 98 
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submarine landslides. According to the solution scheme, the numerical approaches for a 99 

fluid-solid interaction problem may be broadly categorised into the monolithic approach and 100 

the partitioned approach. The monolithic approach attempts to remould the entire problem 101 

(e.g. fluids and solids) into a single system equation that can be resolved via a unified 102 

algorithm [13, 14]. The fluid and the solid in such a manner are thus coupled implicitly with 103 

the interfacial conditions being fulfilled naturally within the solution procedure. Although 104 

better accuracy for multidisciplinary problems can be achieved via this coupling strategy, 105 

unifying multidisciplinary problems is never a trivial task and requires more expertise. For 106 

the submarine landslides concerned, the difficulty of unification will be further enhanced 107 

since more sophisticated soil models are required, aiming to capture the complex behaviour 108 

of sediments. The partitioned approach [15, 16], on the other hand, solves the fluid dynamics 109 

and the solid mechanics separately. Communications in between is achieved through explicit 110 

enforcement of interfacial conditions to each solution with convergence being expected via 111 

iteration loops. An apparent advantage of the partitioned approach is its capability of 112 

handling multidisciplinary problems of complicated physics; nevertheless, tracking the 113 

varying interface dividing the fluid and solid domains, which is not known a priori, is 114 

burdensome. 115 

 116 

In this paper, we propose a computational framework that couples fluids and solids 117 

monolithically and is capable of modelling submarine landslides and their consequences. In 118 

the framework, the formulations for solids and fluids are unified based on a mixed variational 119 

principle – the generalised Hellinger-Reissner variational principle. The relevant finite 120 

element equations for solids and fluids are reformulated into an equivalent optimisation 121 

problem, for example the second-order cone programming (SOCP) problem. The resulting 122 

optimisation problems for fluids and solids are exactly of the same form and possess the same 123 
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basic variables. Thus, they can be solved by a unique solution algorithm regardless of 124 

whether the concerned problems are Newtonian/Non-Newtonian flows or 125 

elastic/elastoviscoplastc solids. This makes the coupling of nonlinear solids with fluids 126 

realised naturally which is in contrast to the available monolithic fluid/solid solvers that 127 

usually the interaction between fluids and elastic solids/structures is concerned [17-20]. 128 

Additionally, the resulting finite element problem is solved in mathematical programming 129 

(MP) using a standard optimisation algorithm (e.g. the primal-dual interior point method), 130 

which differs from the available monolithic fluid/solid solvers that adopt the nested solution 131 

algorithm based on the traditional Newton-Raphson iteration [17-20]. An apparent advantage 132 

of this solution strategy rests with the fact that its convergence property can be discussed and 133 

analysed mathematically. For instance, the strong global and local convergence properties of 134 

the primal-dual interior point method (which is used in this study) for nonlinear programming 135 

have been proven in [21]. Mathematical analysis of the stability and convergence rates of the 136 

primal-dual interior point method for semidefinite programming, to which the SOCP can be 137 

converted, have also been conducted [22]. Another advantage of the proposed MP-based 138 

finite element solution scheme is the straightforward treatment of singularities in some yield 139 

criteria, for example, the Mohr-Coulomb model for a solid and the Bingham model for a 140 

fluid. Indeed, the Mohr-Coulomb model and the Bingham model have to be rounded in the 141 

nested finite element method [23, 24], whereas they are expressed as standard cone 142 

constraints [25, 26] and treated naturally in the SOCP. Furthermore, the extension from 143 

single-surface plasticity to multi-surface plasticity in the SOCP causes no problems and no 144 

additional computational effort which has been shown in [25]. To tackle issues resulting from 145 

extreme deformation such as mesh distortion and free-surface evolution, the final 146 

monolithically coupled formulation is merged into the Particle Finite Element Method. The 147 

proposed approach is verified against numerous benchmarks and its possibility for modelling 148 
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the entire process of a submarine landslide from failure triggering through transportation to 149 

deposition in a single seamless simulation is demonstrated. Its capability in the evaluation of 150 

the direct impact of a submarine landslide on offshore infrastructure such as gas pipelines and 151 

the indirect impact via generating a tsunami is also shown.  152 

 153 

The paper is organized as follows. Section 2 presents the standard formulation for the second-154 

order cone programming (SOCP) problem that the finite element formulation for solids/fluids 155 

will be remoulded into. The procedures for the reformulation of the discretised governing 156 

equations for fluids and solids into an optimisation problem are then presented in Sections 3 157 

and 4, respectively. Section 5 details the scheme for coupling the solid and the fluid using the 158 

mixed finite element and and Section 6 briefly introduces the particle finite element method. 159 

Numerical examples are given in Section 7 for demonstrating the correctness and robustness 160 

of the proposed approach before conclusions are drawn in Section 8.   161 

 162 

2. Second-order Cone Programming 163 

 164 

Second-order cone programming (SOCP), also referred as conic quadratic optimisation, is a 165 

generalisation of linear and quadratic programming that allows the variables to be constrained 166 

inside second-order cones. When there are no linear inequality constraints, a standard SOCP 167 

program involves an optimisation problem of the form  168 

Tmin

subject to

x
c x

Ax b

x

                                                              (1) 169 

where 
T

1 2 m, , ,x x xx  is the vector consisting of the field variables and  is a tensorial 170 

product of second-order cones such that 1 2 ... s . The cones may be of the 171 

following two types:  172 



8 
 

 the quadratic: 173 

m 2 2
1 2 m|q x x x x                                               (2) 174 

or 175 

 the rotated quadratic: 176 

m 2 2
1 2 3 m 1 2|2 , , 0r x x x x x x x                           (3) 177 

 178 

Numerous problems in solid mechanics have so far been remoulded as a SOCP problem. 179 

Typical examples include computational limit analysis of solids and plates [27-29], 180 

static/dynamic analysis of elastoplastic/elastoviscoplastic frames and solids [25, 30, 31], 181 

deformation and consolidation analysis of porous media [32], particle dynamic simulations 182 

(e.g. discrete element method or granular contact dynamics) [33-35], and fracture in brittle 183 

rocks [36] and jointed rock [37] among others.  184 

 185 

Comparing to the contributions in the solid realm, mathematical programming solution 186 

techniques for fluids are much fewer. Most efforts were devoted to the so-called augmented 187 

Lagrangian approach [38, 39] and its accelerated variant [40] for non-Newtonian flows. They 188 

are developed based on the variational inequalities [41] and serves as an alternative to the 189 

regularized model (e.g. the Herschel-Bulkley model which replaces the non-smooth 190 

viscoplastic constitutive law by a smooth purely viscous mode) to solve viscoplastic fluid 191 

flows. Recently, Bleyer et al. [26, 42] reformulated the governing equations for steady yield 192 

flows as an equivalent SOCP problem which was then resolved using the primal-dual interior 193 

point method. It was shown in [26, 42] that the SOCP programming is much more efficient 194 

and the issue related to the singularity in the non-Newtonian flow is circumvented.  195 

 196 
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This paper first reformulates the non-steady Newtonian/Non-Newtonian flow as a SOCP 197 

problem. Rather than adopting the minimum principle as in [26, 42], this study makes use of 198 

the generalised Hellinger-Reissner variational principle for the reformulation so that the 199 

resulting optimisation problems for fluids and solids are unified. It will be shown later that 200 

the final optimisation problems for fluids and solids not only are of the same form but also 201 

possess the same basic variables, which makes their monolithic coupling fulfilled smoothly. 202 

 203 

3. Mathematical programming formulation of Newtonian/Non-Newtonian fluids 204 

This section aims to reformulate the governing equations of Newtonian or Non-Newtonian 205 

fluids, after time distretisation, into a standard optimisation problem.  206 

 207 

3.1 Governing equations 208 

We herein first consider the Bingham flow which is a typical non-Newtonian model. In case 209 

of incompressibility, the governing equations for a Bingham flow (with Einstein’s notations) 210 

are as follows according to [26]: 211 

 
,ij j i ib u                                                                                   (4) 212 

   
, 0i iu                                                                                             (5) 213 

, ,

1
( )

2
ij i j j iu u                                                                             (6) 214 

1

02

1

0 02

0 if

2μ if in
| |

ij ij ij

ij

ij ij ij ij

ij

s s

s s s

 


  



  



   


                       (7) 215 
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where 
ij  is the stress tensor, 

ij  is the strain rate tensor, ib  is the volume body force,   is 216 

the density of the fluid, iu  is the displacement with a superposed dot representing 217 

differentiation with respect to time, 
1

3
( )ij ij ij kk ijs dev        is the deviatoric stress tensor. 218 

Equations in (7) is the constitutive model for a Bingham flow distinguishing a rigid region 219 

from a yield one where μ  is a constant viscosity efficiency, 0  is the threshold stress for 220 

yielding and 1

2
| |ij ij ij

   . It is obvious that the above governing equations degrade to those 221 

for a standard Newtonian flow when 0 0  .  222 

 223 

In order to recast the formulation using the Hellinger-Reissner variational principle, the 224 

constitutive equations are rewritten as a more general form (similar to those in solid 225 

mechanics) 226 

2μij ij ij                                                                   (8) 227 

 
( )ij

ij

ij

F 
 






                                                                 (9) 228 

( ) 0; 0 ; ( ) 0ij ijF F                                                    (10) 229 

where   is the rate of the non-negative plastic multiplier, F  in this case is the Von Mises 230 

yield function (e.g. 1
02

( ) s sij ij ij
F    ), 

ij  is the stress lying on the boundary of F  (e.g. 231 

( ) 0ijF   ) and the quantity 
ij ij   is called the overstress which is null when ( ) 0ijF   . 232 

 233 

To prove the equivalence between the set of constraints (8)-(10) and the constitutive model in 234 

(7), condition (9) is first expressed as  235 

       
0

( )

2

ij

ij

dev 
 


                                                           (11) 236 

via the substitution of the following relations   237 
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1

02
( ) ( ) ( ) 0ij ij ijF dev dev                                          (12) 238 

 
( ) ( )

2 ( ) ( )

ij ij

ij ij ij

F dev

dev dev

 

  




                                                  (13) 239 

For the von Mises criterion, the incompressible condition 0kk   always holds and 240 

meanwhile Eq. (8) may be rewritten as  241 

2μ ( )ij ij ijs dev                                                         (14) 242 

The deviatoric part of 
ij  is proportional to the rate of shear strain tensor 

ij , namely 243 

( )

| ( ) | | |

ij ij

ij ij

dev

dev

 

 
                                                       (15) 244 

Because 
ij  is located on the yield surface that ( ) 0ijF   , we have

0| ( ) |ijdev   . Thus, Eq. 245 

(15) can then be expressed as  246 

   0( ) if ( ) 0
| |

ij

ij ij

ij

dev F


  


                                       (16) 247 

Substituting Eq. (16) into Eq. (14) renders  248 

02μ if ( ) 0
| |

ij

ij ij ij

ij

s F


  


                                        (17) 249 

which is the second constraint in (7). When ( ) 0ijF    is fulfilled (which also means250 

( ) 0ijF    since 
ij ij  in this case), constraints in (10) indicate a null plastic strain, that is 251 

also the total strain in this case, which is in line with the first constraint in (7). Thus the set of 252 

equations (8)-(10) is equivalent to the constitutive model in (7). Using vector-matrix 253 

notations, the governing equations for a Bingham flow can now be expressed in a more 254 

general form of 255 

T  σ b u                                                         (18) 256 

Tε u                                                (19) 257 
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2μ σ τ ε                                                   (20) 258 

 
( )

; ( ) 0; 0; ( ) 0
F

F F  



   

τ
ε τ τ

τ                                     (21) 259 

supplemented by boundary conditions 260 

uon u u                                                          (22) 261 

  T

ton N σ t                                                         (23) 262 

where u  and t  are the prescribed displacements and external tractions, N  consists of 263 

components of the outward normal to the boundary t  and T  is the transposed gradient 264 

operator. Notably, the incompressible condition in Eq. (5) does not need to be included 265 

explicitly since the utilisation of Von Mises model implies null volumetric change.  266 

 267 

3.2 Time discretisation 268 

Since a direct-time integration approach will be used for dynamic analysis, the governing 269 

equations (18)-(23) have to be discretised before the equivalent variational principle is 270 

proposed. Using the standard  -method, the momentum conservation equation (18) and the 271 

natural boundary condition (23)  is discretized in time as:  272 

 
n+1 nT

1 n+1 1 n[ (1 ) ] =
t

  


  


v v
σ σ b                         (24)                        273 

 
n+1 n

2 n+1 2 n(1 ) =
t

 


 


u u
v v                         (25) 274 

T
1 n+1 1 n n+1 t( (1 ) ) = on   N σ σ t                                   (26)           275 

where v  are velocities, 1  and 2  are parameters taking values in [0, 1], the subscripts n  and 276 

n+1  refer to the known and new, unknown states, and n+1 n=t t t   is the time step. 277 

Rearranging the above equations leads to  278 

 
1T T

n+1 n 2
1

1
=

t






 
 



u
σ σ b                                  (27)                                                                             279 
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 n+1 2 n

2

1
= (1 )

t




 
   

u
v v                                  (28)        280 

    
1T

n+1 n t

1

1
( ) = on






 N σ σ t    with n+1

1

1
=


t t                               (29)                      281 

where n+1 n= u u u  are the displacement increments and  282 

 
n

1

1
=

t







v
b b   with   

1 2

=



 

                                     (30)                                           283 

The essential boundary condition is  284 

n+1 n+1 uon u u                                              (31) 285 

The constitutive equations of the Bingham model can also be discretised by introducing a 286 

parameter  3 0,  1  : 287 

n 3 n 3 n n

3 3

1 μ
( ) ( ) μ ( ) ( )

t t
 

 


            

 

ε
σ σ τ τ σ τ σ τ ε      (32)    288 

T

n+1( ) ( )F     τε u τ                                            (33)                                             289 

n+1 n+1( ) 0; 0; ( ) 0F F     τ τ                                    (34)                                       290 

In summary, the governing equations for incremental analysis of Bingham flows consist of 291 

conditions in (27), (29), and (31)-(34). The velocity at the end of each incremental analysis 292 

can be updated according to Eq. (28) explicitly. The Newtonian flow is recovered by setting 293 

the threshold stress 0 0  . 294 

 295 

3.3 Generalised Hellinger-Reissner variational principle 296 

 297 
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A generalized Hellinger-Reissner (HR) variational principle is established in this section for 298 

the increment analysis of the reformulated Bingham flow problem. In HR principle, both 299 

displacements and stresses are master fields, which is in contrast to the principle of minimum 300 

potential energy in which displacements are the only master filed. More specifically, the 301 

generalised HR variational principle is in the form of a min-max program: 302 

n+1

t

T T T T1
n+1 n

( , , )
1

2
T T

n+1 n+1 n+1

T T3
n n

T T T

n n

n+1

1
min  max  ( )d ( )d

1
d d

2

1
( ) ( )d ( )d

2 μ μ

( ) d d d
μ

subject to ( ) 0

t

t t

t

F









 


 

 

  

 

 

 

  


     


   

 
        


       



u σ τ r
σ u σ u

r r r u

σ τ σ τ σ σ τ

σ τ τ b u t u

τ

             (35) 303 

where u , σ , τ ,  and r  are master fields. The physical meaning of the new variable r  is 304 

the dynamic force that will be shown shortly.  305 

 306 

The optimal solution of the principle (35) in fact is the solution of the discretised governing 307 

equations (e.g. (27), (29), and (31)-(34).), which can be proven as follows. Following the 308 

interior-point methodology [43], principle (35) is solved by first introducing a positively-309 

restricted variable n+1s  so that the inequality constraint is transferred into a equality constraint 310 

n+1

t

T T T T1
n+1 n

( , , )
1

2
T T

n+1 n+1 n+1

T T3
n n

T T T

n n n+1

n+

1
min  max  ( )d ( )d

1
d d

2

1
( ) ( )d ( )d

2 μ μ

( ) d d d ln d
μ

subject to (

t

t t

t
s

F











 


 

 

   

 

 

 

   


     


   

 
        


         

u σ τ r
σ u σ u

r r r u

σ τ σ τ σ σ τ

σ τ τ b u t u

τ 1 n+1) 0s 

 (36) 311 
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where   is an arbitrarily small positive constant. The penalty term n+1ln s  in the objective 312 

function imposes the non-negativity requirement on n+1s , and is known as a logarithmic 313 

barrier function. 314 

 315 

The Lagrangian associated with the optimisation problem (36) now can be expressed as 316 

t

n+1 n+1 n+1 n+1

2
T T T T T T1
n+1 n n+1 n+1 n+1

1

T T T3
n n n n

T T

n+1
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   (37) 

317 

The first-order necessary and sufficient Karush-Kuhn-Tucher (KKT) optimality conditions 318 

associated with (36) can be derived by the variation of the above Lagrangian with respect to 319 

the design variables. Specifically, the associated KKT conditions are:  320 
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                                     (38) 321 
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1

n+1 n+1
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0 in
f

s s
s

   

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                                             (43) 326 

According to (41), the newly introduced variable is n+1 2t






u
r  that can be interpreted as the 327 

dynamic force.  Because of the non-negative nature of the penalty multiplier  , the last two 328 

KKT conditions (e.g. (42) and (43)) recover the yield condition and the complementarity 329 

condition shown in (34) when 0  . The rest of the KKT conditions (e.g. Eqs. (38)-(41)) 330 

are apparently the discretised governing equations presented in section 3.2 (e.g. Eqs. (27), 331 

(29), (32) and (33)). In other words, the first-order necessary and sufficient Karush-Kuhn-332 

Tucher (KKT) optimality conditions associated with the principle (36) is equivalent to the 333 

discretised governing equations for Bingham flows; and thus the principle (36) is valid for 334 

Bingham flows. This also implies the validity of the principle (35) for Bingham flows since 335 

the principle (36) is approaching (35) when 0  .  336 

 337 

4. Mathematical programming formulation of solid dynamics 338 

 339 

Since the governing equations for the non-Newtonian flow are expressed in a general form, 340 

the extension of the relevant optimisation problem to the one for an elastoviscoplastic solid is 341 

forthright. The governing equations for the dynamics of an elastoviscoplastic solid are the 342 

same as those for fluid dynamics except for the differences in the constitutive equations. The 343 

constitutive equations for an elastoviscoplastic solid are   344 

vp2μ σ τ ε                                                                  (44) 345 

T e vp  ε u ε ε                                                     (45) 346 

e ε σ                                                                           (46) 347 
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; ( ) 0; 0

F
F  




  

τ
ε τ

τ
                                      (47) 348 
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which, along with the momentum balance equation (18) and the boundary conditions (22) and 349 

(23), compose the complete governing equations for the relevant dynamic analysis. Again, 350 

the constitutive equations are similar to those for Bingham flows except that, according to 351 

(45), the rate of the total strain rate ε  is divided into an elastic part e
ε , that is related to the 352 

stress via the Hooke’s law (46) with  being elastic compliance matrix, and a viscoplastic 353 

part vp
ε  calculated using the rule of plastic flow (47). This is in contrast to the case in section 354 

3 that any strain induced refers to unrecoverable ‘plastic strain’. Thus the min-max problem 355 

(35) only needs to further include the elastic part for incremental elastoviscoplastic analysis 356 

of a solid which is 357 
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       (48) 358 

The associated Lagrangian, after the transition of the inequality constraint into an equality 359 

one as carried out in the last section, is expressed as 360 

T
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2
s fs       u σ τ r σ σ                 (49) 361 

whose variation with respect to  n+1σ  and  n+1τ  gives 362 
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Substitution of Eq. (51) into (50) results in the addition decomposition of the total strain rate 365 

as in Eq. (45). The variation of s  with respect to other variables (e.g. u , n+1r ,  , and n+1s366 

) results in Eqs. (38), (41)-(43), which verifies the equivalence between the optimisation 367 

problem (48) and the discretised governing equations for dynamic analysis of an 368 

elastoviscoplastic solid.  369 

 370 

Material hardening/softening behaviour can also be accounted for in the principle according 371 

to [31]. Suppose that a yield criterion function with strain hardening/softening is in the form 372 

of ( , ) 0F  τ  where ( )vpH  ε  is a set of internal variables relating to the viscoplastic 373 

strain. The associated principle according to [31] thus is  374 
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    (52) 376 

where the underlined terms are newly introduced due to the hardening/softening and 
t
is 377 

constitutive modulus that reads 378 
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The inclusion of material hardening/softening in the principle have been detailed in [31] and 380 

thus is not further discussed in this paper.  381 
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 382 

In brief, variational principle (52) thus is a general optimisation problem for 383 

elastoviscoplastic analysis which degrades to principle (35)  384 
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 385 

for the incremental analysis of Newtonian/Non-Newtonian flows when the parts relevant to 386 

the elasticity and material hardening/softening are erased. When the Von Mises yield 387 

criterion is used, the above problem is for analysing the standard Bingham flow. While the 388 

threshold stress is null, it recovers the Newtonian flow.  389 

 390 

Moreover, principle (52) degrades to cover the rate-independent elastoplastic dynamic 391 

analysis by erasing the terms related to viscosity that is  392 
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      (54) 393 

and to cover the elastoplastic static analysis [25] by further erasing the dynamic terms that is  394 
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The upper bound limit analysis [25, 44] is also recovered by removing the elastic part and 396 

hardening/softening part, which is  397 
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where   is a new introduced variable representing the factor of the imposed traction force. 399 

Notably, all the above problems refer to total stress analysis. This is because the marine clay 400 

is commonly simulated in undrained conditions [7, 9] according to its low permeability. 401 

Nevertheless, the analysis of saturated porous media can also be cast into the same form 402 

which has been discussed in [32] where the effective stress and pore water pressure instead of 403 

the total stress should be the master fields.  404 

 405 

5. Monolithic coupling and solution technique 406 

The min-max problem (52) is first discretised using the standard finite element shape 407 

function owing to its generalised feature, and then the coupling between the fluid and the 408 

solid is discussed. As both the displacement-like and stress-like fields are master fields in the 409 

generalised HR variational principle, they have to be interpolated by shape functions 410 

independently such as 411 
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                                     (57) 412 

where σ̂ , e
σ̂ , τ̂ , r̂ , û , and κ̂  are vectors containing the values of the corresponding field 413 
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variables at interpolation points, N  is a matrix consisting of shape functions, and 
T

u u B N414 

. Since the mixed variational principle is used, the field variables shown in (57) are all 415 

independent variables. The mixed isoparametric triangular element shown in Figure 2 is used 416 

for the approximation of both the solid and the fluid. The master fields of displacement û  417 

and dynamic force r̂  are interpolated based on the vertex and the mid-side nodes of the 418 

triangle (e.g. the circles in Figure 2), whereas the master fields of stress-like states σ̂ , e
σ̂ , τ̂ , 419 

κ̂  are interpolated based on the internal points (e.g. the squares in Figure 2) with the area 420 

coordinates j  being 1 1

1 4 1
( , , ) ( , , )

6 6 6
j j j     , 1, 2, 3j  . In other words, the master fields of 421 

the displacement and the dynamic force use the same quadratic shape function, and master 422 

fields of the stress-like states use the same linear shape function. We refer the reader to [25] 423 

for more details of mixed elements of this kind where their property and performance were 424 

discussed.  425 

     426 

Figure 2 The mixed isoparametric triangular element in use and the corresponding 427 

interpolation points for different master fields 428 

 429 

By substituting Eq. (57), the principle (e.g. (52)) discretised in space reads  430 
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                (58) 431 

where an intermediate variable  e  σ σ τ  termed the overstress is introduced, GN  is the 432 

total number of integration points for instance Gauss points, and  433 
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                           (59) 434 

The minimisation part of principle (58) with respect to the incremental displacement ˆu can 435 

be resolved analytically resulting in a maximisation problem which can also be expressed as a 436 

minimisation problem with an opposite sign  437 
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                                 (60) 438 

The finite element discretised principle for Newtonian/Non-Newtotnian flow can also be 439 

derived following the same way which is  440 
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                               (61) 441 

It is apparent that the principle (61) (for fluids) is the degradation of the principle (60) (for 442 

solids).  443 

 444 

For the sake of convenience, the principle (60) is the one solved for both fluids and solids. 445 

When the element represents a fluid, the elastic compliance matrix C , the constitutive 446 

modulus matrix H  and the internal variable for softening/hardening κ̂  in principle (60) are 447 

set to be null at the corresponding elements. Such an operation simplifies the monolithic 448 

coupling of the fluid and the solid.  449 

 450 

The transformation of the optimisation problem (60) into a standard second-order cone 451 

programming problem in the form of (1) is detailed in Appendix, and the optimisation engine 452 

MOSEK, in which the primal-dual interior point method is available, is adopted as the solver.  453 

 454 

6. The particle finite element method (PFEM) 455 

The unified formulation presented in the previous section is for the incremental finite element 456 

analysis at each single time step. When a large deformation problem is concerned, the 457 

proposed formulation encounters the issues such as mesh distortion and severe free-surface 458 

evolution due to its Lagrangian feature. To overcome the issues resulting from large change 459 

in geometry, the proposed formulation is implemented into the framework of the  Particle 460 

Finite Element Method (PFEM) [45]. Consequently, it is capable of modelling submarine 461 

landslides and their consequences in which extreme material deformation is inevitable.  462 
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 463 

The PFEM makes use of the Lagrangian finite element approach (in our cases the proposed 464 

unified formulation) to solve the discretised governing equations on meshes. At the time 465 

point that meshes have a certain degree of distortion, mesh topologies are erased leaving 466 

behind mesh nodes treated as free particles. A new computational domain is then identified 467 

using the so-called α-shape method [46] on the basis of the position of free particles followed 468 

by the remeshing of the identified domain. State variables, including those at both mesh 469 

nodes and Gauss points, are then mapped from old meshes to new meshes followed by a new 470 

incremental finite element analysis.  471 

 472 

The variable mapping is performed using the unique element method (UEM) [47] in this 473 

study which is composed of three basic steps as follows: (i) update the old mesh according to 474 

the cumulative displacement; (ii) find which old finite element the new Gauss point (or the 475 

new mesh node) lies in; and (iii) interpolate the variable states at the new Gauss points (or the 476 

new mesh node) on the basis of the corresponding state variables at the detected old element. 477 

The accuracy of the UEM has been estimated in detail in [47] showing that the fluctuation 478 

induced in the load-displacement curve using the UEM for bearing capacity problem is within 479 

6% even when rather coarse meshes are used. The fluctuation can be further reduced by 480 

adopting finer meshes. It is remarkable that, in the PFEM, meshes of sufficiently small size 481 

have to be used for correct boundary identification. Previous studies [31, 48] showed that the 482 

mesh of the size performs well for correct boundary identification in the PFEM also 483 

guarantees the accuracy of the UEM for variable mapping. Thus influence of variable 484 

mapping is very limited in the PFEM and converged solutions can be obtained.  485 

 486 
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To date, the PFEM has tackled numerous challenging problems such as the modelling of 487 

multi-phase flows [49], fluid-structure interactions [50, 51], granular flows [48, 52-54], flow 488 

of fresh cement suspensions [55], penetration problems [54, 56, 57], landslides [58, 59] and 489 

the generated waves [60], among others. 490 

 491 

7. Numerical Examples 492 

The correctness and robustness of the proposed unified solid/fluid finite element 493 

formulation (60) is verified via simulating numerous benchmarks. First, single-phase 494 

problems such as the water dam break, the annular viscometer problem, and the collapse of 495 

aluminum bars are simulated in order to verify it for modelling Newtonian flows, Non-496 

Newtonian flows, and solid dynamics, respectively. Comparisons of our simulation results 497 

against experimental data, analytical solutions, and also results using other numerical 498 

approaches available in the literature are carried out. The efficiency of the proposed 499 

monolithic coupling for simulating multi-phase problems is then tested against an 500 

experimental test concerning the underwater granular collapse and the induced waves. Last 501 

but not least, the possibility of the approach for modelling submarine landslides and their 502 

consequences is shown by considering a model test in which the failure and the post-failure 503 

processes of an underwater slope are predicted via a single simulation with both the direct 504 

impact on infrastructure such as pipelines and the indirect impact via the generated-tsunami 505 

being estimated. In all simulations, the parameters for time discretisation are 1 2 1    and 506 

1
3

2
  , and the high-performance optimisation engine MOSEK [61] is used for solutions. 507 

The default values for error tolerances in MOSEK are used including the parameter   508 

shown in section 3.3.  509 

 510 
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7.1 Single-phase problems 511 

7.1.1 Newtonian flow 512 

The first example concerned is the water dam break. The dam is initially 10 cm wide and 20 513 

cm high as shown in Figure 3, and the water of density  = 1×103 kg/m3 is incompressible. 514 

The gravitational acceleration is g=-9.8 m/s2. The lift up of the gate leads to the spreading 515 

of the water dam. As it is modelled as a Newtonian flow, the Von-Mises model is used with 516 

the cohesion (or called threshold stress in the field of fluid dynamics) being null. The 517 

domain is discretised using 3,879 triangular elements with typical element size h = 0.4 cm 518 

(e.g. the length of element edges). The time step utilised is 31 10 st    .  519 

 520 

Figure 3 Schematic illustration of water dam break. 521 

 522 

The configurations of the dam-break wave at four different time instants are plotted in 523 

Figure 4 with the distribution of water pressure being shown. Simulation results from [62] 524 

and [63], in which the Smooth Particle Hydrodynamics approach was used, are also 525 

illustrated for comparison purposes in Figure 4. It is shown that the results agree with each 526 

other very well which verifies the proposed unified formulation for Newtonian flows. 527 
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 528 

Figure 4 Configurations of the dam-break wave with the distribution of water pressure (unit: 529 

kPa) at time instances (a) t = 0.05 s, (b) t=0.10 s, (c) t=0.15 s, and (d) t=0.18 s, respectively.  530 

Circles (o) represent the free surface obtained in [62], and crosses (+) refer to that obtained in 531 
[63]. 532 

 533 

 534 

Figure 5 Configurations of the dam-break wave at t = 0.18 s from the PFEM simulation with 535 
boundary identification and variable mapping conducted per 1 step (180 times), per 3 steps 536 

(60 times), and per 6 steps (30 times). 537 

 538 

Furthermore, the problem is simulated using the PFEM with boundary identification being 539 

carried out per 1 step, per 3 steps and per 6 steps. This is to estimate the influence of the 540 

operation of the variable mapping on the simulation results since variable mapping has to be 541 

carried out when boundary identification is performed. As seen in Figure 5 that the 542 

simulation results agree well with each other. Indeed, the mesh size that is small enough to 543 
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identify boundaries usually guarantees the accuracy of the UEM for variable mapping 544 

whose influence is thus very limited. 545 

 546 

 547 
It is notable that the simulation does not suffers from volumetric locking because of the 548 

used mixed elements that the displacement field is interpolated using quadratic shape 549 

functions and the stress field is approximated linearly.   550 

 551 

7.1.2 Non-Newtonian flow 552 

The Bingham flow in an annular viscometer is investigated in order to validate the unified 553 

formulation for modelling Non-Newtonian flows in this section. The annular viscometer is 554 

made of two coaxial cylinders as shown in Figure 6. The outer cylinder is fixed whereas the 555 

inner cylinder rotates at a constant angular velocity  . Supposing the fluid is stick to the 556 

apparatus boundaries, analytical solutions are available which depend on the rheological 557 

properties of the fluid. For the considered Bingham fluid, a transition radius tR  exists that 558 

distinguishes the sheared fluids that are close to the inner cylinder from those located in an 559 

un-yield/rigid zone. According to [64], the transition radius tR  is the solution of  560 

2
t t

i i 0

2 2μ
2ln 1 0

R R

R R





    
              

 561 

and, in the sheared zone, the tangential velocity of the fluid is  562 

2
0 t t2

( ) 2ln 1
μ

R R
u r r

r r


     
           

. 563 
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  564 

Figure 6 A schematic illustration of an annular viscometer. 565 

 566 

In this work, the radii of the outer and inner cylinders are  o 100R   cm and i 50R   cm, 567 

respectively. The viscosity fluid is μ 1Pa s   and the threshold stress 0 10 Pa  . The density 568 

is 31000 kg/m  .  The inner cylinder rotates at an angular speed of 1rad/s  . The domain 569 

is discretised using meshes with a characteristic size h = 3.5 cm, and the time step for the 570 

simulation is 31 10 st    .  571 

 572 

                             573 

Figure 7 Distribution of the tangential speed at the steady state (Unit: m/s). 574 

 575 
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 576 

Figure 8 Curves of the tangential speed against the radial position. 577 

 578 

Figure 7 shows the distribution of the speed at the steady state from our simulations. As 579 

expected, the tangential speed decreases with the radial position. Note that, although this is 580 

a fluid dynamics problem in a fixed domain, issues related to sever mesh distortion still 581 

exist because the Lagrangian description/mesh is used. The corresponding tangential speed 582 

at the steady state is plotted in Figure 8. It is shown that the transition radius obtained from 583 

the simulation is around 0.7 m which coincides with the analytical solution. Furthermore, 584 

the overall tangential speed at the steady state from the simulation agrees well with the 585 

analytical solution, indicating the correctness of the proposed unified formulation for Non-586 

Newtonian flows.  587 

 588 

7.1.3 Solid mechanics problem 589 

The third example for the single-phase problem is an experiment test of a collapse problem 590 

conducted in [65] which is similar to the water break problem. The column of the size  591 

200×100 mm however was composed of small aluminium bars of diameters 1 and 1.5 mm 592 

and length 50 mm. This example was used to verify the SPH approach for simulating 593 

elastoplastic problems in plane strain conditions in geomechanics in [65]. 594 
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 595 

In our simulations, the Mohr-Coulomb model is used to represent the material with 596 

parameters being the same as those from [65]: Young’s Modulus 0.84 MPaE  , Poisson’s 597 

ratio 0.3  , friction angle 19.8   , dilation angle ψ 0   and cohesion 0c  . The density 598 

of the material is 3 31.8 10 kg/m   . The viscosity of the material is neglected in this case. 599 

Simulations are carried out using a time step 31 10 st    .  600 

 601 

Figure 9 Snapshots of profiles at different time instances. The sliding surface and the profile 602 

surface are experimental data from  [65]. 603 

 604 
Snapshots of configurations of the column at different time instances from our simulations 605 

are shown in Figure 9. The particles shown in the figure are mesh nodes marked in different 606 

colours. The lifting of the gate leads to an immediate collapse of the column. The top 607 

surface of the column is being eroded continuously throughout the collapse process whereas 608 

an undisturbed zone exists at the bottom left. The final profile as well as the surface of the 609 

undisturbed zone from our simulations are compared to the experimental date [65]. As seen, 610 
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a great agreement is achieved verifying the proposed unified model for solid dynamics.   611 

 612 

7.2 Multi-phase problem 613 

The fourth example considered is a model test of submarine landslides and their hydraulic 614 

effects carried out by Rzadkiewicz et al. [66]. The setup is illustrated in Figure 10. As shown, 615 

the model test consists of a triangular mass of sands (0.65 m × 0.65 m) that slide along an 616 

inclined surface of 45° in a water channel. The sand mass is initially positioned 0.1 m below 617 

the water surface and its width is the same as that of the channel. The problem thus can be 618 

regarded plane-strain. This problem is commonly used for the validity of numerical 619 

approaches for multi-phase flows. In this study, it is used to verify the monolithic coupling of 620 

the proposed unified formulation for simulating multi-phase problem, in particular in terms 621 

of the water wave generated by submarine landslides.  622 

 623 

 624 

Figure 10 A schematic illustration of the experimental test for underwater granular flows 625 

(Unite of length: m). 626 

 627 

In our simulation, the sand mass is approximated as a non-Newtonian fluid (e.g. Bingham 628 

flow) according to [66]. The material parameters used in our simulations are exactly the 629 

same as those for the case in [66] (e.g. the case with rheology but without artificial 630 

diffusivity). Specifically, the water has a density of 1000 kg/m3 with both viscosity and 631 

yield stress being null. The mean density of saturated sands is 1985 kg/m3 and the threshold 632 
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stress is 200 Pa. The viscosity of saturated sands is null according to [66]. The characteristic 633 

mesh size used is h = 0.015 m and the time step is 31 10 st    . 634 

 635 

 636 

Figure 11 Snapshots of configurations of the sand mass and the induced water wave at time 637 

instance (a) t = 0.4 s and (b) t = 0.8 s. Circles are computed results from [66]. 638 

 639 

Figure 11 shows the snapshots of configurations of the sliding sand as well as the induced 640 

water wave at time instances of t = 0.4 s and 0.8 s, in which the corresponding shapes of 641 

deformed sand mass from the simulations in [66] are also shown for comparison. As shown, 642 

our simulated results agree well with those computed from [66]. It is also notable that, at t = 643 

0.8 s, a part of sands separate from the major sliding mass (see the zoom-in image in Figure 644 

11(b)) and is surrounded by water, which has been captured successfully by the proposed 645 

method. Figure 12 shows the quantitative comparison between the elevations of the free 646 

surface among our present simulation results, the computed results and the experimental 647 

data provided in [66] at those two time instances. Again, our simulations results coincide 648 
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with the computed results from [66], both of which are close to the experimental data [66]. 649 

Such agreements verify the monolithic coupling of the proposed unified formulation for 650 

multi-phase problems. 651 

 652 

 653 

 654 

Figure 12 Comparison of the elevations of the free surface at times (a) t = 0.4 s and (b) t = 0.8 655 
s. 656 

 657 

7.3 Submarine landslides 658 

Last but not least, the possibility of the proposed unified formulation for modelling 659 

submarine landslides is presented via analysing an underwater slope failure and its 660 

consequence. As shown in Figure 13, a marine clay slope of height 5 m and length 5 m is 3 m 661 
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under the water surface.  A half-buried pipeline of diameter 1.6 m is located 5 m in front of 662 

the slope toe. It is supposed that permeability of marine clays is very low so that the slope can 663 

be simulated under undrained conditions. The marine clays are represented by the Tresca 664 

model with viscosity. The corresponding material parameters for the clay are as follows: 665 

Young’s modulus 73 10E    Pa, Poisson’s ratio 0.49  , density 3

c 1.75 10    kg/m3, 666 

undrained shear strength 
u 6c   kPa and viscosity coefficient 50  Pa s . The density of 667 

seawater is 3

w 1 10    kg/m3 and the viscosity coefficient is 0.001  Pa s . The 668 

gravitational acceleration is 9.8g    m/s2. The surfaces of the seabed and the pipeline are 669 

assumed to be rough. 670 

 671 

Figure 13 Schematic illustration of an underwater slope near a subsea pipeline (Unit of length: 672 
meter). 673 

 674 

The slope was stable owing to the heading load which is then removed representing toe 675 

erosion. The factor of safety of the resulting slope is 0.90 implying unstability. The problem 676 

is simulated using the proposed approach. The characteristic mesh size is 0.02 m leading to a 677 

total of 19,452 elements (39,303 element nodes) for discretising the domains of marine clays 678 

and seawater. The time step used in the simulation is 35 10 st    , and the simulation 679 

proceeds until the final deposit is obtained. As shown in Figure 14, the failure of the slope is 680 

triggered due to the removing of the heading load. The mass in the front slides along a failure 681 
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surface but at a relatively low speed in this case (Figure 14(a1)). After a very limited 682 

deformation, the slope turns to be stable at a new position (Figure 14(a2)). Figure 14(b1) and 683 

(b2) indicate the corresponding layers of seawater and marine clays for comparison. 684 

Throughout the process, no obvious tsunami is generated.  685 

 686 

Figure 14 Snapshots of the collapse process of the submarine landslide at different time 687 

instances from simulations without strain softening. Colors on the left figures are 688 
proportional to velocity (m/s) and figures on the right show the layers of the materials with 689 

blue and red colors representing seawater and marine clays, respectively. (Unit of speed: m/s) 690 
 691 

 692 

Figure 15 Variation of the undrained shear strength uc  with equivalent deviatoric plastic 693 

strain represented by parameter  . 694 

 695 
Notably, marine clay is normally sensitive which means its undrained strength decreases 696 

from a peak value upc  to a residual one urc  when the clay undergoes plastic deformation (see 697 

Figure 15). It is reported in [8] that the sensitivity of marine clays, defined as 
up

t

ur

c
S

c
 , is 698 

normally moderate. Herein the problem is re-analysed with the strain-softening feature being 699 

taken into account. The peak undrained strength is up 6 kPac   and the residual one is 700 
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ur 1.5 kPac  , implying a moderate sensitivity ( t 4S  ). The reference equivalent deviatoric 701 

plastic strain  , which controls the rate of the decrease of the undrained strain is set to be 0.6. 702 

The complete process of the submarine landslides from the simulation is illustrated in Figure 703 

16. The distribution of the sliding speed is shown in Figure 16(a) in which the white curves 704 

are the interface between the seawater and the clay drawn according to Figure 16(b) where 705 

particles (mesh nodes) representing different materials are plotted. The same to the previous 706 

case, the removing of the heading load triggers the failure of the slope as shown in Figure 707 

16(a1) in which a shear band is expected along the failure surface. The clay evoked slides 708 

along the failure surface and towards the pipeline (Figure 16(a2) and (b2)). At 6.0 st  , the 709 

pipeline is impacted by the sliding mass (Figure 16(a3) and (b3)). When the evoked mass is 710 

far enough from the newly generated back scarp of the slope, a second failure occurs as 711 

shown in (Figure 16(a4) and (b4)). This feature is very typical for slope failure in sensitive 712 

clays and is usually termed retrogressively progressive failure [67]. Eventually, the landslide 713 

reaches its final deposition as shown in Figure 16(a5) and (b5). The failure of the underwater 714 

slope in this case generates a clear tsunami in the process (Figure 16).  715 

 716 

The effect of sensitivity of marine clays on the failure of a submarine slope is also 717 

investigated by using different St. Figure 17 shows the final deposition of the landslides from 718 

the simulation with St equal to 1, 2, 3, and 4, respectively. As shown, the slope is more prone 719 

to fail when the sensitivity is large. Additionally, the sliding mass involved in each 720 

retrogressive collapse is much easier to be further decomposed when sensitivity is higher.  721 
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 722 

Figure 16  Snapshots of the collapse process of the submarine landslide at different time 723 
instances from simulations with strain softening (St=4). Colors on the left figures are 724 

proportional to velocity (m/s) and figures on the right show the layers of the materials with 725 
blue and red colors representing seawater and marine clays, respectively.(Unit of speed: m/s) 726 
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 727 

Figure 17 Snapshots of final depositions of the submarine landslide from simulations with 728 
sensitivity of marine clays (a) St =1, (b) St=2, (c) St=3, and (d) St=4. Colors are proportional 729 

to equivalent deviatoric plastic strain. 730 
 731 

8. Conclusions 732 

This paper recasts the finite element formulation for fluid dynamics and solid mechanics into 733 

a unified elastoviscoplastic formulation. This is achieved by employing the generalised 734 

Hellinger-Reissner variational principle. The governing equations for both the fluid dynamics 735 

and the solid mechanics are reformulated into a standard optimisation problem, namely a 736 

min-max program, which then can be transformed into a second-order cone programming 737 
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problem and solved via advanced modern optimisation algorithm. In such a way, the coupling 738 

between the solid and the fluid can be completed in a monolithic fashion which is particularly 739 

important for modelling submarine landslides. The resulting formulation is implemented in 740 

the framework of the particle finite element method so that extreme deformation problems 741 

can be simulated without any mesh distortion issue. A number of benchmarks of both single-742 

phase problems, involving Newtonian/Non-Newtonian flows or solids, and multi-phase 743 

problems, such as the model test on submarine landslide generated tsunamis, are simulated 744 

using the proposed approach. Comparisons between the simulation results with available data 745 

and analytical solutions are conducted where great agreements have been attained which 746 

verifies the proposed method. Last but not least, a model test is considered to illustrate the 747 

possibility of the proposed approach for modelling the consequences of submarine landslides 748 

including their direct threat to offshore infrastructure such as pipelines and their indirect 749 

threat via generating tsunamis. Sensitivity of the marine clays is also considered in this 750 

example with its effect on the failure of underwater slope being shown.  751 
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 756 

Appendix 757 

In this study, the discretised principle (60) is transferred into the standard SOCP problem, 758 

namely the optimisation problem (1). The principle (60) is in a general form of  759 

T Tmin

subject to

( ) 0F

x
x Qx c x

Ax b

x

                                                      (A1) 760 
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and the relevant transformation is straightforward. Introducing an auxiliary variable 761 

Tw x Qx  and intermediate variables 
1

2ξ Q x  , problem (A1) can be re-written as  762 

1

2
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subject to 2
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w y
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x ξ
c x
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ξ Q x
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                                             (A2)   763 

It is clear that optimisation problem (A2) is of a linear objective function subject to linear 764 

equations, an inequality constraint (the first inequality) of a type of a rotated quadratic cone 765 

(3), and an inequality for yielding ( ) 0F x . Following this procedure, the principle (60) can 766 

be transferred as a standard SOCP problem  767 
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Note that numerous yield criterion functions have been expressed as cone constraints 769 

successfully including the Mohr-Coulomb/Tresca model, the Drucker-Prager/von Mises 770 

model, the CamClay model etc. We refer the reader to [32, 68, 69] for more details. As a 771 

standard SOCP problem, the optimisation problem (A3) can be solved using the primal-dual 772 

interior point method which is a standard approach. We refer the reader to [61] for more 773 
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detail of this solution algorithm. The efficiency of the primal-dual interior point method for 774 

the SOCP problem has been discussed in [26, 42, 61]. Moreover, the convergence property 775 

of the primal-dual interior point method and its variant for the SOCP problem has also been 776 

analysed mathematically [21, 70]. It has been proven via mathematical analysis in [21] that 777 

the primal-dual interior point method possesses strong global and local convergence 778 

property for the SOCP problem. In this study, the high-performance optimisation engine 779 

MOSEK [61] which supports the primal-dual interior point method with parallel computing 780 

is adopted for solutions.  781 
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