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Surface X-ray Diffraction Studies of the Electrode/Vacuum and 

Electrode/Electrolyte Interface - Elizabeth Cocklin – March 2017 

Abstract 

This thesis presents in situ Surface X-ray Diffraction (SXRD) studies of 

surfaces and interfaces, in both Ultra High Vacuum (UHV) and an electrochemical 

environment. Primarily Crystal Truncation Rod (CTR) measurements are utilised to 

determine a model for the atomic structure at the interface.  

A SXRD characterisation of the clean Ag(110) and Ag(111) surfaces in UHV 

were determined as a reference for the rest of the work in this thesis. Following this 

the growth conditions and structures of a silicene layer on Ag(111) were 

investigated, by Low Energy Electron Diffraction (LEED) and preliminary SRXD 

study of the interface structure is presented. 

A comprehensive study of the Ag(hkl)/alkaline interface is presented. X-ray 

Voltammetry (XRV) measurements have been performed to determine the potential 

dependence of the system. CTR measurements have been used to determine the 

structure at both the electrode and electrolyte sides of the interface. The results reveal 

large structural changes on the electrolyte side of the interface, with the response of 

relaxation of the surface layers in the metal. The presence of specifically adsorbed 

OH on the surface stabilises cations in a compact double layer through non-covalent 

interactions. The studies were extended to determine the effects of saturating the 

electrolyte gases, CO and O2 on the double layer structure. The results indicate that 

double layer structure is subtly perturbed, and hints at a change in the nature of 

bonding at the interface. 

Time resolved SXRD measurements are utilised to determine the dynamics of 

the restructuring of the electrolyte layering at the Ag(111)/Alkaline interface. In 

order to gain a comprehensive picture of the structural dynamics, two other systems 

are studied; the Au(111) reconstruction to determine the timescale of the (1 x 1) ↔ 

(𝑝 × √3) reconstruction, and the underpotential deposition of Ag on Au(111). The 

results indicate that the mass transport of ions through electrolyte is on a timescale 

comparable to the charge transfer, whereas the ordering of ions and surface metal 

atoms occurs on much longer timescales. 
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1 Introduction 

 

 

 

 

The study of surfaces and interfaces is of paramount importance to the 

development of new materials for a variety of technological areas such as 

nanotechnology, and renewable energy. The ability to understand the structure on an 

atomic level is important to be able to tailor new stable and efficient materials, and 

tune their properties. In order to do this it is important to understand simple model 

systems to determine the driving force behind structure formation and catalytic 

activity. Consequently there has been a wealth of research utilising single crystal 

electrodes; as they have well defined atomic arrangements with specific adsorption 

sites. 

  Over the years there have been a vast amount of techniques developed to 

characterise the atomic structure of single crystal surfaces, for example many early 

surface characterisation studies were carried out in Ultra High Vacuum (UHV) 
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utilising techniques such as Low Energy Electron Diffraction (LEED) and X-ray 

Photoemission Spectroscopy (XPS); which probe the electrode-gas interfaces. These 

techniques were later extended to probe the structure of electrochemical systems ex 

situ, where a sample would be transferred from an electrochemical cell to the UHV 

environment. Whilst a wealth of knowledge has been obtained from ex situ studies, 

one cannot be certain that the structural models obtained are a true representation of 

the electrochemical interface. Without potential control structures may not be stable, 

and weakly adsorbing ions in the double layer may be lost on emersion. To bridge 

the gap in the knowledge, it is essential to develop and exploit in situ structural 

techniques (where the system remains under potential control) to develop a dynamic 

picture of the electrochemical interface. Scanning Tunneling Microscopy (STM) and 

Surface X-ray Diffraction (SXRD) have been instrumental in this. The primary 

technique used in this thesis is SXRD.  The disadvantage of using SXRD is the need 

for high intensity X-rays, as scattering from surface is very weak in comparison to 

the bulk; synchrotron radiation is therefore required. 

Understanding the structure of clean surfaces is a vital starting place in which 

correlations between surface structure and adsorption can be made. When a crystal is 

terminated the properties of the atoms in the top few layers differ to that in the bulk; 

the coordination number at the surface is reduced and the electron distribution is 

modified. As a response the top atomic layers may reconstruct (in-plane symmetry is 

different to the bulk crystal lattice) or undergo relaxations (displacement from the 

bulk equilibrium position along the surface normal). In UHV only a few noble metals 

are known to reconstruct under specific preparation conditions (Pt, Au, Ir)[1], whilst 

nearly all metals experience vertical relaxations of the top metal layers [2]. The 

reconstructions and relaxations of a metal differ between the low index surfaces due 
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to the coordination number of the surface; for example for fcc metal surface the 

relaxation effect increases in the order (111)<(001)<(110) [2–4]. The addition of 

adsorbates on the surface can enhance, lift or even induce reconstruction of surfaces 

[5]. 

The majority of work presented in this thesis concerns the silver (Ag) low 

index surfaces. Silver is a noble metal which does not experience in-plane 

reconstruction without the addition of adsorbates, such as oxygen [6] or alkali metals 

[5]. Ag has been extensively studied in UHV, to determine the relaxations of the 

clean surface [7–15]. The adsorption of oxygen species on Ag surface is of particular 

interest due to the role of surface oxide in the catalytic gas phase reactions of organic 

molecules, such as; ethylene epoxidation and methanol oxidation [16]. Atomic 

resolution (STM) images of the oxygen-promoted restructuring of the Ag(111) 

surface
 
[17] have been combined with density functional theory (DFT) calculations 

[18] in an attempt to understand the function of silver as an oxidation catalyst.  

The adsorption of hydroxide and oxygen species onto metal surfaces is also 

vital to understand surface reactivity and catalytic behaviour at the electrochemical 

interface. Whilst the electrochemistry of silver has been widely studied in the oxide 

region, there have been considerably less studies in the underpotential oxide region, 

where hydroxide (OH
-
) is specifically adsorbed. This region is of particular interest 

as important electrochemical reactions occur; such as the Oxygen Reduction 

Reaction (ORR), CO oxidation, amongst others. In 2010 it was proposed that non-

specifically adsorbed cations (cations which retain their hydration shell), are 

stabilised in a compact double layer by non-covalent (van der Waal’s) interactions 

with OHads, and have been proven to play an important role in the kinetics of the 

ORR on Pt [19]. Depending upon the hydration energies of the cation the ORR can 
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be inhibited by cation-hydroxide clusters. An understanding of the electrolyte 

layering at the interface is obviously of paramount importance as the structure of the 

layering may be tuned in order to enhance or inhibit electrochemical reactions. 

Structural studies of Ag in electrochemical environments compared to other noble 

metals, such as Au and Pt, is severely lacking, which is likely due to the difficulty in 

preparing the surface and obtaining atomic-scale structural information from a 

reactive surface in the liquid environment. The majority of structural studies of Ag 

have been made ex situ, hydroxide adsorption on Ag(hkl) was investigated by 

Horswell et al. [19,20] which indicated evidence of an ordered (2 ×  6), and 

c(2 ×  2) at higher coverages on the Ag(110) surface, these structures are shown 

schematically in Figure 1.1. An early model of the Ag(111)/alkaline interface was 

proposed by Savinova [22], which identified the presence of cations in the interface 

structure. More recently Lucas et al. [23] investigated the structure of the 

 

Figure 1.1 Proposed structures for the OH- adlayer at negative potentials. White 

circles, top row Ag atoms; grey circles, second row Ag atoms; red circles, adsorbed 

OH
-
. The blue dashed rectangles indicate the unit cell of the hydroxide structure.  
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Ag(hkl)/alkaline interface by SXRD, and proposed which was consistent with 

analogous results obtained on Pt electrodes [19]; at positive potential cations are 

stabilised in a compact double layer by adsorbed OH through non-covalent 

interactions. In a similar study by Nakamura et al. [24], in 0.1 M CsBr + 0.05 M 

CsOH electrolyte, Cs
+
 cations are found to interact with adsorbed Br through non-

covalent interactions. It is essential to develop a detailed knowledge of the 

Ag(hkl)/Alkaline interface to develop a fundamental understanding of the driving 

forces behind important catalytic processes and the stability of the electrodes under 

reaction conditions. 

In addition to its properties as an electrode, silver has gained renewed interest in 

the past 5 years as the primary substrate for growth of a new two-dimensional 

material, silicene; the silicon analogue of graphene which would have the advantage 

over graphene of being compatible with the established silicon electronics industry. 

Unlike graphene, silicene is not freestanding as it cannot be exfoliated from bulk 

silicon and thus requires a substrate to grow on.  

The low tendency for alloy formation makes silver the ideal substrate, and 

consequently the majority of studies are on silver [25]. Silicon nanostructures have 

been formed on all three low index Ag surfaces. The majority of studies have 

focussed on Ag(111) with the aim to grow a honeycomb sheet of silicene. A 

preliminary SXRD investigation of silicene on Ag(111) is reported in Chapter 4 of 

this thesis. 

 

An outline of the content in this thesis is as follows; 

 

 Chapter 2 discusses theoretical principles behind the work in this thesis. The 
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chapter begins with a discussion of the electrochemical interface and the 

models which have been developed in order to describe it. Following this the 

theoretical background to SXRD, and the principle behind LEED are 

described. 

 

 Chapter 3 describes the experimental details such as sample preparation, the 

different types of electrochemical cells used and experimental setup. A 

description of the data acquisition procedure, in addition consideration of the 

necessary correction factors and data fitting procedures are provided. 

 

 

 Chapter 4 As the majority of this thesis concerns silver single crystals, it is 

important to establish the clean electrode/vacuum structure as a reference in 

order to determine the effect of electrolyte and adsorbates on the structure of 

the electrode surface. Chapter four begins with an SXRD study of the 

Ag(111) and Ag(110) surfaces in UHV. There are currently no reported 

SXRD studies of the relaxations of clean Ag(110) surface. The surface has 

predominantly been studied by LEED [7–9,26] and Rutherford Back 

Scattering (RBS) [9,10], however there are large discrepancies between 

different studies, it is therefore important to determine the structure with 

SXRD to provide a useful comparison throughout this thesis.  

 

 Chapter 5 investigates the growth and structure of a silicene layer on 

Ag(111). The growth of silicene is challenging, with the temperature of the 

crystal during deposition, and the deposition rate, being key factors. Only a 
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narrow temperature range exists in which the growth takes place, thus, 

careful control over the growth conditions is necessary. These conditions 

were successfully optimised and are described in this chapter. The growth 

conditions and structures of silicene sheets on the Ag(111) surface were 

investigated by LEED, and preliminary structural SXRD analysis is also 

presented.  

  

 Chapter 6 presents a comprehensive in situ study of the Ag(hkl)/alkaline 

interface in the underpotential oxide region, i.e. the region where OH
-
 is 

reversibly adsorbed. X-ray Voltammetry (XRV) measurements were 

performed to highlight the potential dependent structural changes at the 

interface. A model for the interface structure was determined through analysis 

of Crystal Truncation Rod (CTR) data taken at fixed potentials, 

corresponding to the regions where the surface is free of adsorbates, and 

where OH is adsorbed. The study highlights the sensitivity of the electrolyte 

layering on the atomic geometry of the surface. The studies were extended to 

effects of saturating the electrolyte gases, CO and O2 on the double layer 

structure. 

 

 Chapter 7 One of the most important aspects of electrochemistry is to 

determine the dynamics of structural rearrangement of the electrochemical 

interface. SXRD is ideally suited to probe the structural evolution of the 

interface in real time. In Chapter 7 time resolved SXRD measurements are 

utilised to determine the dynamics of the restructuring of the electrolyte 

layering at the Ag(111)/Alkaline interface. In order to gain a comprehensive 
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picture of the structural dynamics, two other systems are studied; the Au(111) 

reconstruction to determine the timescale of the (1 ×  1) ↔ (𝑝 × √3) 

reconstruction, and the underpotential deposition of Ag on Au(111). 

 

  Chapter 8 Finally a conclusion of the main results and discussion of future 

work is presented, with a consideration for the study of the Ag(111)/silicene 

system in an electrochemical environment.  
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2 Theoretical Principles 

 

 

 

 Introduction 2.1

The experiments in this thesis probe the atomic structure of both the 

electrode/vacuum interface and the electrode/electrolyte interface primarily through 

Surface X-ray Diffraction (SXRD) measurements. The scattered intensity of an X-

ray beam from the surface is far weaker, by ~10
6
 , than scattering from the bulk and 

thus synchrotron radiation is required to probe the surface (~1-10 Å).  In this chapter 

the theoretical principles behind X-ray diffraction are built up, and the principles 

behind Low Energy Electron Diffraction (LEED) are considered. 

 

 Electrochemistry 2.2

‘Electrochemistry is the study of structures and processes at the interface 

between an electronic conductor (the electrode) and an ionic conductor (the 

electrolyte) or at the interface between two electrolytes.’ 
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This definition of electrochemistry is taken from Schmickler and Santos [27]. In this 

section a basic description of the metal-electrolyte interface is presented, which will 

consider electrode reactions, and a discussion of the electrical double layer models. 

Following this cyclic voltammetry and adsorption phenomena will be considered. 

Further background can be found in the source material references [27–32]. 

 

2.2.1 Electrode Reactions 

At the electrochemical interface electrode reactions occur when there is 

charge transfer between ions and the electrode, this is known as a Faradaic reaction - 

or redox reaction. When an electron is lost this is known as oxidation, and the 

reverse process of gaining an electron is known as reduction. In an electrochemical 

cell there are two half reactions where oxidation and reduction occurs. Oxidation 

occurs at the anode, and reduction at the cathode. 

Oxidation: 

 𝑅 + 𝑛𝑒− = 𝑂 (2.1) 

Reduction: 

 𝑂 − 𝑛𝑒− = 𝑅 (2.2) 

where O is the oxidised species, R is the reduced species and n is the number of 

electrons exchanged between them. 

Energy levels 

When a metal is brought into contact with electrolyte their Fermi levels align, 

this is shown in Figure 2.1. When a potential is applied to a metal the energy of the 

Fermi level either increases or decreases, this is illustrated in Figure 2.2. When a 

metal comes into contact with a solution charge is transferred at the interface to  
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Figure 2.1 Energy levels (a) ion in solution (b) metal in solution - Fermi levels align. 

 

Figure 2.2 Effect of applied potential on the Fermi level in a metal. Applying a 

potential changes the energy of the Fermi level. 

equilibrate the Fermi levels. When a negative potential is applied the Fermi level 

increases and electrons are transferred from the electrode to species in electrolyte. 

This occurs when the energy of the Fermi level is above the lowest unoccupied 
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molecular orbital (LUMO).When a positive potential is applied the energy of the 

Fermi level decreases below the highest occupied molecular orbital (HOMO), 

resulting in oxidation – electron transfer to the electrode. 

 

We need to be able to measure and control the potential of the working 

electrode in order to control the electrochemistry at the interface. The electrode 

potential cannot be directly measured; instead it must be compared against a standard 

reference electrode. The cell potential is the sum of the standard potentials for each 

half reaction: 

 𝐸𝑐𝑒𝑙𝑙
0 =  𝐸𝑅

0 + 𝐸𝑂
0 (2.3) 

The superscript ‘0’ denotes that it is under standard conditions (i.e. T = 298 K).   

The reaction in the cell has a change in Gibbs free energy, G, which can be related to 

the cell potential. Chemical energy (G) can be converted to electrical energy (𝐸𝑐𝑒𝑙𝑙) 

by: 

 Δ𝐺 = −𝑛𝐹𝐸𝑐𝑒𝑙𝑙  (2.4) 

Where n is the number of electrons transferred, and F is the Faraday constant. 

If the reaction is under standard conditions then this becomes: 

 Δ𝐺0 = −𝑛𝐹𝐸𝑐𝑒𝑙𝑙
0  (2.5) 

When E
0
 is positive, the reaction is spontaneous and when E

o
 is negative, the 

reaction is non-spontaneous. From thermodynamics, the Gibbs energy change under 

non-standard conditions can be related to the Gibbs energy change under standard 

conditions via the following equation: 

 
Δ𝐺 = Δ𝐺0 + 𝑅𝑇 ln

[𝑂]

[R]
 

(2.6) 

Where R is the gas constant (~8.3 J K
-1

), T is the absolute temperature, [𝑂] and [R] 

are the concentration of the reductant and oxidant. 
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Substituting in for Δ𝐺 and Δ𝐺0: 

 
−𝑛𝐹𝐸 = −𝑛𝐹𝐸0 + 𝑅𝑇 ln

[𝑂]

[𝑅]
 

(2.7) 

Dividing both sides by – 𝑛𝐹 gives: 

 
∆𝐸 = ∆𝐸0 − (

𝑅𝑇

𝑛𝐹
) ln

[O]

[𝑅]
 

(2.8) 

This is known as the Nernst equation. This equation indicates that the electrical 

potential of the cell depends on the concentration of electroactive species. During a 

redox reaction the concentration of the reductant and oxidant changes, which results 

in a decrease in cell potential until the reaction is at equilibrium where Δ𝐺 = 0. In 

order to drive further reactions a potential must be applied. 

 

2.2.2 Electric double layer models 

When a metal electrode is brought into contact with electrolyte with different 

chemical potentials the charge of the surface is balanced by an excess charge in the 

electrolyte. The metal is an excellent conductor, which means its excess charge is 

restricted to a depth ~ 1 Å into the surface. Conversely, the conductivity of an 

electrolyte is several orders of magnitude less than that of a metal (it is dependent 

upon the concentration of ions), which results in an extended charge distribution over 

a larger region ~ 5 - 20 Å. The charge distribution at the interface is known as the 

electric double layer. In aqueous electrolyte the voltage drop across the interface is of 

the order of 1 V, this defines the electrochemical window. Outside the potential 

limits the solution decomposes, at positive potential oxygen evolution sets in and at 

negative potential hydrogen evolution sets in. The potential window is much wider in 

ionic liquid of the order of several volts. The following sections describe how the 

double layer region is modelled; a schematic is shown in Figure 2.3. 
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Figure 2.3 Schematic representation of electrical double layer models. 

 

The Helmholtz model 

In 1853, Helmholtz [34] proposed the first model of the electrode/electrolyte 

interface. This model assumes that there are no Faradaic processes occurring at the 

electrode surface, i.e there is no charge transfer occurring, and that the charge density 

at the electrode surface, q
m

, arising from excess or deficiency at the surface is 

equalised by the redistribution of ions in solution q
s
; maintaining charge neutrality on 

the electrode such that: 

 𝑞𝑚 = −𝑞𝑠 (2.9) 

 

In this model it is assumed that the solvation shell around the ions determines their 

closest approach, i.e. it prevents them from directly interacting with the surface.  

This is known as the Outer Helmholtz Plane (OHP). A resulting potential drop 



 

  

15 

 
 

occurs in the region between the electrode surface and the OHP, which was 

described by Helmholtz as the ‘electrical double layer’. The double layer is 

analogous to an electrical capacitor: 

 𝐶 =
𝜀

4𝜋𝑑
 (2.10) 

where ε is the electric permittivity of the medium, and d distance of the Helmholtz-

plane from the electrode surface. 

 

Gouy-Chapman model 

Gouy [35] and Chapman [36] independently proposed that the charge was 

spread over a diffuse layer as opposed to being concentrated at the OHP later 

modified the Helmholtz model. This occurs due to Brownian motion opposing the 

electrostatic attraction and repulsions of ions from the electrode, thereby dispersing 

excess charge over a diffuse layer. The capacitance is given by: 

 𝐶 = (
2𝑧2𝐹2𝜀𝑐∗

𝑅𝑇
)

1 2⁄

𝑐𝑜𝑠ℎ (
𝑧𝐹𝜙

2𝑅𝑇
) (2.11) 

where z is charge on the ion, and 𝜙 is the total potential drop across solution side of 

double layer 

 

Stern model 

In 1924 Stern [37] proposed a model, which combined the previous two. He 

assumed that there was a minimum distance of closest approach in the OHP where 

the majority of charge was concentrated, and that charge also extended into the 

diffuse layer. 

The capacitance of this model behaves like two capacitors (the Helmholtz 

and Gouy-Chapman capacitance) in series: 



 

  

16 

 
 

 
1

𝐶
=

1

𝐶𝐻

+ 
1

𝐶𝐺𝐶

 (2.12) 

Grahame model 

In 1947 Grahame [38] proposed that the ions could penetrate the OHP if they 

lost part or all of their solvation shell and come into direct contact with the electrode, 

these ions are said to be ‘specifically adsorbed’ on the surface. This closer plane of 

approach was termed the Inner Helmholtz Plane (IHP). 

 

2.2.3 Potential of zero charge 

The charge of an electrode can be controlled by an applied potential; it can be 

positively or negatively charged. Therefore, it must follow that there is some 

potential where there is zero charge. This is called the potential of zero charge, pzc. 

The pzc is a characteristic quantity which is different for all metals, and also differs 

for the different surface geometries of a metal. The pzc is related to the work 

function, Φ: 

 𝜙𝑝𝑧𝑐 = Φ + 𝐶 (2.13) 

Where C is a constant which depends on the scale on which the electrode potential is 

measured (the reference electrode). It is a useful quantity for comparing different 

surfaces.  

 

2.2.4 Cyclic voltammetry 

Cyclic voltammetry (CV) is an important technique for measuring the current 

as a function of potential. This is a simple method of characterising an 

electrochemical system. Features in the voltammogram can be attributed to 

electrochemical processes such as adsorption and desorption at the interface, and 

surface reconstruction. As cyclic voltammetry is a measure of electron transfer, 
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peaks in the voltammetry can be integrated to give the charge transfer for a particular 

process. The simplest way of measuring the current is to use a two electrode set up. 

This consists of a working electrode, where the reaction of interest is taking place, 

and a stable reference electrode that the potential at the working can be measured 

against.  The potential difference between the working electrode and reference 

electrode is given by: 

 𝐸𝑐𝑒𝑙𝑙 = (𝜙𝑚 − 𝜙𝑠) +  (𝜙𝑠 + 𝜙𝑟𝑒𝑓) + 𝑖𝑅 (2.14) 

The first term in equation (2.14) (𝜙𝑚 − 𝜙𝑠) represents a voltage drop at the 

electrode/electrolyte interface, the second (𝜙𝑠 + 𝜙𝑟𝑒𝑓) is the voltage drop at the 

reference electrode interface and the final term 𝑖𝑅 represents the potential drop 

between the two electrodes (solution resistance).  For this to work, the iR term needs 

to be negligible so that the reference electrode is in equilibrium to have its standard 

value, a large current through the reference electrode can cause it’s chemical 

composition to break down. This set up works perfectly well for measurements 

where only a small current is passed, such as for microelectrodes, however, for larger 

electrodes, as used throughout this thesis (Area = 0.79 cm
2
), a larger current is 

passed. This is avoided by using a three-electrode set up shown in Figure 2.4. In 

addition to the working and reference electrode there is a third ‘counter’ electrode; 

this is chosen to be a material that does not produce any substances that may affect 

the behaviour of the working electrode. In this configuration the voltage is measured 

between the working electrode and the reference electrode, a high input impedance 

restricts current being drawn from the reference electrode. 
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Figure 2.4 Schematic of 3 electrode electrochemical cell. W.E. working electrode, 

C.E. counter electrode, R.E. reference electrode. The potential is controlled between 

the working and reference electrodes, and the current flows between the working and 

counter electrodes. 

In this configuration the voltage is measured between the working electrode and the 

reference electrode, a high input impedance restricts current being drawn from the 

reference electrode. 

The current is measured whilst the potential of the working electrode, with 

respect to the reference electrode, is swept linearly between the cathodic (negative) 

and anodic (positive) limits, E1 and E2 respectively, at a constant sweep rate seen in 

Figure 2.5. The shape of the forward and reverse scans should be similar; however it 

depends on the reversibility of the A/B redox couple. The cycle starts from E1 and 

scans linearly at to E2, oxidising species B to species A, which is then reduced on the 

reverse negative sweep. 
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Figure 2.5 Schematic of cyclic voltammetry measurements (a) the variation of 

potential with time (b) the current response of the system. 

In Figure 2.5 (b) an increase in current corresponds to an oxidation or redox reaction, 

where: 

𝑖𝑝
𝑜𝑥 – peak current in oxidation process 

𝐸𝑝
𝑜𝑥 – electrode potential corresponding to the oxidation process 

𝑖𝑝
𝑟𝑒𝑑 – peak current for in reduction process 

𝐸𝑝
𝑟𝑒𝑑 – electrode potential corresponding to the reduction process 

 

Initially no current is passed as the potential is not great enough in order to 

drive a reaction. Once the current is sufficiently positive enough the current begins to 

increase, corresponding with the oxidation of the reduced species. The current 

increases to a peak current 𝑖𝑝
𝑜𝑥. The current gradually decreases until all of species A 

is converted to B. The shape of a CV can also be influenced by external factors such 

as scan rate, this is illustrated in Figure 2.6; features become much sharper at a 

slower scan rate, and with higher concentration of ions in electrolyte more current 

flows giving a larger CV shape. 
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Figure 2.6 Effect of increasing scan rate on CV. 

Although this is a quick method to perform in the lab, it is purely based on electron 

transfer it lacks structural information of the interface; for this we need to combine 

cyclic voltammetry with a structural technique in situ such as Scanning Tunneling 

Microscopy (STM), or SXRD. SXRD is discussed at length in section 2.4. 

 

2.2.5 Adsorption phenomena 

As discussed in the double layer models, adsorption processes can occur at the 

interface. The adsorption of ions falls into two categories: 

 

1) Chemisorption – Occurs in the IHP and involves chemical interactions 

between the adsorbate and substrate. The bonding is either covalent 

(electrons are shared) or ionic (electrons are transferred). 
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2) Physisorption – occurs in the OHP, involves weak electrostatic interactions 

mainly via van der Waals forces.  

2.2.6 Chronoamperometry 

This technique is used to measure the current response during a potential 

step. The voltage is stepped from an initial potential, E1, to a final potential E2, and 

the current is measured as a function of time, the perturbation and response is shown 

in Figure 2.7. The shape of the resulting current evolution response, transients, gives 

an indication of the process under study, for example, the mechanism of an 

adsorption/desorption process. By fitting an appropriate lineshape to the current 

transient, of exponential form, the time constant for the charge transfer processes can 

be extracted. 

  

Figure 2.7 Potential step measurements (a) the change in potential – the potential is 

stepped between two limits, resulting in a square wave form, (b) the current 

evolution response. 
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 Basic theory of diffraction  2.3

The structure of a crystal can be determined by the way in which incident 

waves interact with the sample. Diffraction occurs due to the interference effects 

produced by the phase difference between elastically scattered waves from different 

atoms in a crystal. The incident wave must have a wavelength comparable to the 

atomic spacing of a crystal for diffraction to occur, X-rays, neutrons and electrons 

satisfy this.   

 

2.3.1 Crystallographic definitions 

A crystal is a defined as a repeating basic with long-range order. The periodic 

array can be descrived by a space lattice with a group of atoms attached to each 

lattice point. The space lattice is defined by three vectors a, b and c such that any 

integer multiple of the vectors from any point in the lattice will locate a similar point. 

The unit cell is the parallelepiped defined by the sides a, b and c with 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are 

the angles between them. Figure 2.8 shows the face centred cubic (fcc) crystal 

structure, which is the structure of the single crystals used in this thesis.  

 

Figure 2.8 The face centred cubic fcc crystal structure. The (111) plane is 

highlighted. 
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The unit cell can be translated through space in all directions by: 

 

 

𝑹 = 𝑛1𝒂 + n2𝒃 + 𝑛3𝒄 

 
 (2.15) 

where ni is an integer, which builds up the crystal structure.  

2.3.2 Crystal planes and Miller indices 

There are an infinite number of 2D parallel planes in a 3D crystal structure. 

These planes have a specific arrangement of atoms and can be defined by its Miller 

indices (hkl). The Miller indices are determined by calculating the fraction of 

intercepts of the plane with the a, b and c axes and then taking the reciprocal. 

Directions are denoted [hkl] and are perpendicular to the (hkl) plane. This thesis 

focuses on the three low index fcc(hkl) surface planes which are depicted in Figure 

2.9. Each set of parallel planes has an associated atomic arrangement, coordination 

number and interplanar spacing, dhkl. 

 

Figure 2.9 schematic representation of the fcc(hkl) low index planes. 

The spacing between parallel planes is given by: 

 

 

𝑑ℎ𝑘𝑙 =
𝑎0

√𝐻2 + 𝐾2 + L2
 

 
 (2.16) 
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where 𝑎0 is the lattice constant. 

The scattering geometry from a set of parallel planes is shown in Figure 2.10, the 

planes are separated by a distance dhkl (the interplanar spacing). When two parallel 

waves scatter from parallel planes their path difference (the additional distance 

travelled by the second wave to the lower plane) is given by 2dsinθ. Constructive 

interference occurs when the path difference is some integer number, n, of 

wavelength λ. This construction gives us, Bragg’s law [39]: 

 nλ = 2dsinθ (2.17) 

 

 

Figure 2.10 Geometric representation of Bragg's law considering scattering from 

two crystal planes. 

Although Bragg’s law determines the conditions for constructive interference, it does 

not consider the scattering power from the atoms in the crystal which one needs to 

determine structural analysis.  

 

 X-ray Diffraction  2.4

The scattering cross-section of X-rays is small, so the effects of multiple 

scattering can be neglected and a kinematic approach can be taken. Scattering arises 

from the electrons in an atom, this section will build up the theory of X-ray 
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diffraction starting from scattering from a single electron, to scattering from the bulk 

and surface layers of a crystal. The addition of adlayers and electrolyte layering will 

also be considered. The derivations in this chapter follow references [39–43], which 

can be referred to for a more rigorous explanation. 

2.4.1 Momentum transfer 

The important variable in X-ray diffraction is the momentum transfer q, 

which is defined in terms of the incident and diffracted X-ray wave vectors, ki and kf 

respectively: 

 𝒒 = 𝒌𝒇 − 𝒌𝒊 

 

(2.18) 

 

Where the magnitude of   𝑘𝑖: 

 |𝒌𝒊| = |𝒌𝒇| = |𝒌| =
2π

λ
 (2.19) 

 

where 𝜆 is the X-ray wavelength. Using this Bragg's law can now be expressed in 

terms of the momentum transfer and wave vector(shown schematically in Figure 

2.11):  

 
|𝒒| = 2|𝒌|𝑠𝑖𝑛𝜃 =   𝑠𝑖𝑛 (

2𝜃

2
) 

(2.1) 

 

 

Figure 2.11 Schematic showing construction of momentum transfer q, conserved in 

in elastic scattering. 
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2.4.2 Scattering from an electron 

When a photon is incident on an electron its electric field exerts a force on 

the electron causing it to oscillate and radiate a secondary wave with the same 

wavelength as the incident wave. The amplitude of the scattered wave can be 

described classically by the Thompson scattering formula which describes the 

amplitude of a scattered wave  𝐴𝑒 from an electron at position 𝑟𝑒 as a function of the 

incident wave 𝐴𝑖: 

 

 

 𝐴𝑒𝑒−𝑖(𝒌𝒇∙𝒓𝒆) = 𝐴𝑖

𝑒2

4𝜋𝜖0𝑚𝑐2

1

𝑅0

𝑒−𝑖(𝒌𝒊∙𝒓𝒆) 

 
 (2.20) 

The 
1

𝑅0
 term arises from the spherical wave nature, and the prefactor term is the 

Thompson scattering length 𝑟0 =
𝑒2

4𝜋𝜖0𝑚𝑐2. Equation (2.20) can be rewritten in the 

form: 

 

 

 𝐴𝑒 = 𝐴𝑖

𝑟0

𝑅0

𝑒𝑖(𝒒∙𝒓𝒆) 

 
 (2.21) 

Which gives the amplitude of the scattered wave in terms of the momentum transfer 

𝒒 (where 𝒒 = 𝒌𝒇 − 𝒌𝒊). 

 

2.4.3 Scattering from a single atom 

The scattering from an atom can be built up by considering its electron 

density. Scattering from an atom arises from the constructive interference of 

spherical waves from each electron in the atom. The electron density is 𝜌(𝒓′), where 
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r’ is the position of the electron. The scattering from an atom is given by substituting 

the positon vector of the electron and summing over the all electrons in the atom.   

The scattering from an atom is given by: 

 
𝐴𝑎 = 𝐴𝑖

𝑟0

𝑅0

∫ 𝜌(𝒓′)
+∞

−∞

𝑒−𝑖𝒒∙(𝑹𝒏+𝒓𝒋+𝒓′)𝒅𝟑𝒓′  (2.22) 

 𝐴𝑎 = 𝐴𝑖

𝑟0

𝑅0

𝜌(𝒓′)𝑒−𝑖𝒒(𝑹𝒏+𝒓𝒋)  (2.23) 

and  𝑓(𝒒) the atomic form factor, is given by: 

 
𝑓(𝑞) = ∫ 𝜌(𝒓′)

+∞

−∞

𝑒−𝑖𝒒∙𝒓′𝒅𝟑𝒓′  (2.24) 

The atomic form factor gives a q dependence to the scattering power of each atom, 

when 𝒒 =0 all electrons scatter in phase so  𝑓(𝒒)=Z, as 𝒒 increases electrons begin to 

scatter out of phase, the atomic form factors are tabulated for each element in the 

International Tables for Crystallography [45]. The form factor also needs to account 

for the resonant effect of photons at adsorption edges, the equation is modified by 

dispersion corrections 𝑓′ and 𝑓′′ which are energy dependent: 

 𝑓(𝒒, 𝐸) = 𝑓(𝒒) + 𝑓′(𝐸) + 𝑖𝑓′′(𝐸)  (2.25) 

 

2.4.4 Scattering from a unit cell 

To evaluate the scattering from a unit cell the calculation must sum over all 

the atoms in the unit cell. As the atoms in the unit cell may not be the same element, 

the corresponding form factor fj(𝒒) must be included. 𝒓𝒋 is the relative position of 

the jth atom in the unit cell: 
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𝐴𝑢 = 𝐴𝑖

𝑟𝑜

𝑅0

∑ 𝑓𝑗(𝑞)𝑒(𝑖𝒒∙(𝑹𝒏+𝒓𝒋)

𝑁

𝑗=1

 

 

(2.26) 

 

 

 

𝐴𝑢 = 𝐴𝑖

𝑟𝑜

𝑅0

𝐹(𝒒)𝑒(𝑖𝒒∙𝑹𝒏)
 

 

(2.27) 

where 𝐹(𝒒) is the structure factor, given by: 

 

 

𝐹(𝒒) = ∑ 𝑓𝑗(𝒒)𝑒𝑖(𝒒∙𝒓𝒋)

𝑁

𝑗=1

 

     

(2.28)  

The structure factor is the Fourier transform of the electron density, and dependent 

on the position of the atoms in the unit cell. 

2.4.5 Scattering from a crystal 

To determine the electron density of a crystal the atomic distribution must be 

considered. The next step is to sum the scattering over all the unit cells in the crystal, 

where the crystal is defined by N1, N2 and N3 unit cells along the crystal axes. The 

position of each unit cell is given by: 

 

 

𝑅𝑛 = 𝑛1𝒂 + 𝑛2𝒃 + n3𝒄 

 
 (2.29) 

The scattered amplitude is thus: 

 

 

𝐴𝑐 = 𝐴𝑖

𝑟𝑜

𝑅0

𝐹(𝒒) ∑ ∑ ∑ 𝑒𝑖𝑞(𝑛1𝒂+𝑛2𝒃+𝑛3𝒄)

𝑁3−1

𝑛3=0

𝑁2−1

𝑛2=0

𝑁1−1

𝑛1=0

  (2.30) 
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2.4.6 The scattered intensity 

Experimentally it is the scattered intensity which is measured, the amplitude 

is related to the scattered intensity by 𝐼(𝒒) ∝ |𝐴𝑐|2. Consider one term which is the 

sum of a geometric progression written in the form: 

 

 

𝑆𝑁1
(𝒒 ∙ 𝒂) = ∑ 𝑒𝑖𝒒∙(𝑛1𝒂) =

1 − 𝑒𝑖𝑁1𝒒∙𝒂

1 − 𝑒𝑖𝒒∙𝒂

𝑁1−1

𝑛1=0

  (2.31) 

 

Applying Euler’s formula 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃, and multiplying the equation by its 

complex conjugate, it becomes: 

 

 

|𝑆𝑁1
(𝒒 ∙ 𝒂)|

2
=

𝑠𝑖𝑛2(𝑁1𝒒 ∙ 𝒂/2)

𝑠𝑖𝑛2(𝒒 ∙ 𝒂/2)
  (2.32) 

 

This is analogous to the N-slit interference function. The interference function 

reflects the periodic array of atoms in the crystal, which gives rise to diffraction 

spots, Bragg reflections, in reciprocal space. The equations gives maxima when 

𝒒 ∙ 𝒂 = 2𝜋𝑛 where n is an integer. 

The scattered intensity is defined as: 

 

 

I(𝒒) = 𝐼𝑖 (
𝑟0

𝑅0
)

2
|𝐹(𝒒)|2

𝑠𝑖𝑛2(
1

2
𝑁1𝒒∙𝒂)

𝑠𝑖𝑛2(
1

2
𝒒∙𝒂)

𝑠𝑖𝑛2(
1

2
𝑁2𝒒∙𝒃)

𝑠𝑖𝑛2(
1

2
𝒒∙𝒃)

𝑠𝑖𝑛2(
1

2
𝑁3𝒒∙𝒄)

𝑠𝑖𝑛2(
1

2
𝒒∙𝒄)

  (2.33) 

 

were 𝐼𝑖 is the intensity of incident photon. When the following conditions are met, 

the above equation produces maxima. These are the Laue conditions for diffraction: 

𝒒 ∙ 𝒂 = 2𝜋𝐻 
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 𝒒 ∙ 𝒃 = 2𝜋𝐾  

 𝒒 ∙ 𝒄 = 2𝜋𝐿 
(2.34) 

which satisfy the vector 𝒒 = 𝐻𝒂∗ + 𝐾𝒃∗ + 𝐿𝒄∗ where the reciprocal space vectors are 

related to real-space vectors by: 

 

 

𝒂∗ = 2𝜋
𝒃 × 𝒄

𝒂 ∙ (𝒃 × 𝒄)
  (2.35) 

 𝒃∗ = 2𝜋
𝒄 × 𝒂

𝒃 ∙ (𝒄 × 𝒂)
  (2.36) 

 𝒄∗ = 2𝜋
𝒂 × 𝒃

𝒄 ∙ (𝒂 × 𝒃)
  (2.37) 

When h, k and l are integer values they form a 3D lattice satisfying the Laue 

conditions and can also be described by the Bragg condition. 

The intensity at a particular q value is given by: 

 

 

 

 

𝐼ℎ𝑘𝑙 = 𝐼𝑖 (
𝑟0

𝑅0

)
2

|𝑓(𝒒)|2𝑁1
2𝑁2

2𝑁3
2  (2.38) 

 

 Surface X-ray Diffraction 2.5

 

2.5.1 Scattering from a surface 

So far the calculations have assumed scattering from a crystal which is 

infinite in all directions. We are interested in the surface structure, and therefore we 

must modify the equations to consider scattering from the surface. When the crystal 

is terminated at the surface the Laue condition for the c direction is no longer valid, 

as the crystal is semi-infinite along the c axis. This reduces equation (2.38) to: 
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𝐼𝐶𝑇𝑅 = 𝐼0 (
𝑟0

𝑅0

)
2

|𝑓(𝒒)|2𝑁1
2𝑁2

2
1

2𝑠𝑖𝑛2(1
2⁄ 𝒒 ∙ 𝒄)

  (2.39) 

This equation produces sharp peaks in intensity for values where L is an integer, in 

equation 2.40, which corresponds to Bragg peaks due to scattering from the bulk. In 

between the Bragg peaks the intensity is modulated along the surface normal, L, 

direction Figure 2.13. These streaks of intensity have been termed as Crystal 

Truncation Rods (CTRs) by Robinson [40]. 

2.5.2 Modelling surface structure 

 The equation above assumes a perfectly terminated crystal. This is not 

usually the case. Factors such as surface roughness, 𝜎, surface relaxations, 𝜀, and 

occupation, 𝜃, modify the shape of the CTR profile.  

  

Figure 2.12 Schematic representation of the structural parameters used to model the 

surface. Side view of a crystal (a) Top metal layer undergoes an outward relaxation, 

where the layer relaxes away from the bulk (into vacuum, or electrolyte) – increasing 

the d-spacing. (b) Top metal layer undergoes an inward relaxation; where the layer 

relaxes towards the bulk – decreasing the d-spacing. (c) Change in coverage; given in 

a fractional form of the bulk-terminated surface. (d) rms roughness – average 

displacement of atoms. 
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The physical representation of these parameters is shown in Figure 2.12. The effects 

of these parameters are illustrated in Figure 2.13. When surface undergoes a 

relaxation (inwards or outwards) this causes an asymmetry around the Bragg peaks 

(Bragg peaks where intensity is a maximum). Reduced surface occupation causes a 

decrease in intensity between the Bragg peaks, which is most noticeable at the anti-

Bragg position which is half way between two Bragg peaks, the position most 

sensitive to the termination of the surface . An increased surface roughness has a 

similar effect, however, the decrease in intensity at the anti-Bragg position which 

becomes greater with increasing L. By careful modelling of the CTR data it is 

possible to extract structural information such as the coverage, surface roughness, 

and relaxations of the crystal surface and of any adsorbed structures.  

 

Figure 2.13 Demonstration of how changing different structural parameter modify 

the CTR profile. The in-plane CTR for a Ag(111) surface was simulated by a python 

program. The solid black line indicates the perfectly terminated surface.  
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The specular CTR  

The q vector is entirely along the surface normal direction. It is unique in that 

there is no momentum transfer (component of q) in the surface plane.  

 

Non-specular CTRs 

Non-specular CTRs have an additional in-plane momentum transfer, which is 

sensitive to the in-plane structure of the surface layers.  

 

Fractional Order Rods FORs 

If the termination of the surface reconstructs, or there are ordered adsorbed 

structures on the surface with a different symmetry to the bulk crystal lattice, then 

the scattering becomes separate from the bulk. The structure gives rise to additional 

rods of scattering termed fractional order rods (FORs) or superstructure rods.  

In this thesis all three fcc(hkl) low index surfaces have been studied. In following 

sections, each surface will be treated in turn to determine the layering and structure 

of the surface. 

 

2.5.3 The (111) surface  

The (111) surface is the most close packed of the three low index fcc 

surfaces. The layer stacking is ABC with layer B in the fcc hollow sites and layer C 

in the hcp hollow sites. 
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Figure 2.14 Schematic of hcp (left) and fcc (right) stacking. Atoms are arranged in a 

hexagonal pattern in layer A, the second layer, B, is shifted so that the atoms fill the 

hollow sites of layer A. In for hcp stacking the next layer lies directly above A – 

giving ABA stacking, or it is shifted with respect to both A and B, and lies in the 

hollow sites of layer B – giving ABC stacking. 

The layer stacking defines the c lattice parameter as shown in Figure 2.15 (a). The 

layer stacking defines the separation of Bragg peaks in reciprocal space, in this case 

the unit cell is repeated every 3 layers, thus the Bragg peaks are separated by 3 in L, 

as seen in Figure 2.15 (c). 

 

Figure 2.15 Schematic of fcc(111) (a) side-view real space structure (b) top view 

real space structure (c) corresponding Bragg reflections in the reciprocal space 

lattice. 
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The directions are defined such that H and K vectors, [𝐻 0 0]ℎ𝑒𝑥 and [0 𝐾 0]ℎ𝑒𝑥, lie 

in the surface plane and subtend an angle of 60° and L is defined along the surface 

normal [0 0 𝐾]ℎ𝑒𝑥 direction. The units of H, K and L are defined as: 

 

 

𝒂∗ = 𝒃∗ =
4𝜋

√3𝑎𝑁𝑁
  and 𝒄∗ =

2𝜋

√6𝑎𝑁𝑁
 

 

 (2.41) 

Where aNN is defined as the near-neighbour distance. 

The cubic unit cell is related to the surface unit cell by the following transformations: 

𝐻𝑐𝑢𝑏𝑖𝑐 =    
2

3
𝐻𝑠 −

2

3
𝐾𝑠 +

2

3
𝐿𝑠 

  

𝐾𝑐𝑢𝑏𝑖𝑐 =     
2

3
𝐻𝑠 +

4

3
𝐾𝑠 +

1

3
𝐿𝑠 

 
        𝐿𝑐𝑢𝑏𝑖𝑐 = −

4

3
𝐻𝑠 −

2

3
𝐾𝑠 +

2

3
𝐿𝑠 

 (2.42) 

 

To determine the scattering from the CTR the bulk structure factor must be 

considered first. As the crystal is semi-infinite the equation is summed from z = 0 to 

z = -∞. The phase difference between layers must be considered, as previously 

mentioned, the (111) unit cell repeats every 3 layers thus the phase difference is 

given by 𝑒2𝜋𝑖(−
𝑯

3
+

𝐾

3
+

𝐿

3
)
, the coordinates of the atoms in the first layer situated at (0, 0, 

0), 2
nd

 (-1/3, 1/3, 1/3) and 3
rd

 at (-2/3, 2/3, 2/3): 

 

 𝐹𝐵𝑢𝑙𝑘 = 𝑓(𝒒)𝑓𝐷𝑊𝐹 ∑ 𝑒2𝜋𝑖(−
𝐻
3

+
𝐾
3

+
𝐿
3

)𝑗

−∞

𝑗=0

=
𝑓(𝒒)𝑓𝐷𝑊𝐹

1 −  𝑒2𝜋𝑖(
𝐻
3

+
𝐾
3

+
𝐿
3

)
 (2.43) 
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where 𝑓(𝒒) is the atomic form factor and fDWF is the bulk Debye-Waller factor which 

accounts for the thermal disorder of the atoms in the bulk. The disorder of atoms has 

the effect of decreasing the peak diffracted intensity. The Debye-Waller factor is 

related to the root-mean-squared (rms) displacement of atoms about their equilibrium 

position 𝜎. The Bulk Debye-Waller factor is given by: 

 𝑓𝐷𝑊𝐹 =  𝑒−
1
2

𝒒2〈𝜎𝒒
2〉

 (2.44) 

 

 Where 〈𝜎𝒒
2〉 is the average atomic displacements: 

 
〈𝜎𝒒

2〉 =  
𝐵

8𝜋2
 

(2.45) 

 

Where the B-factor (units Å
2
) of an element can be found as a function of 

temperature is tabulated in the international tables of crystallography.  The units of σ 

are in angstroms. 

When a surface is terminated the properties of the surface layers differ from that of 

the bulk and this difference can extend several layers into the bulk. To account for 

the differences the surface is modelled separately from the bulk, usually only the top 

3 layers are considered in the modelling for systems concerned in the thesis. The 

structure factor of the surface layers is given by: 

 
𝐹𝑆𝑢𝑟𝑓 = ∑ 𝑓(𝒒)𝑓𝐷𝑊𝐹(𝑗)𝜃𝑗𝑒2𝜋𝑖(−

1
3

𝐻+
1
3

𝐾+(
1
3

+𝜀𝑗)𝐿)𝑗

𝑗=3

𝑗=1

 

 

(2.46) 

A number of additional terms are included in the calculation for the surface layers. 

The Debye-Waller factor of each layer is considered separately by the term 𝑓𝐷𝑊𝐹(𝑗) 

as it can differ from the bulk due to the difference in interatomic bond strengths. It is 
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usually modelled as the bulk Debye-Waller factor multiplied by an individual 

component for each layer, along the surface normal: 

 𝑓𝐷𝑊𝐹(𝑗) =  𝑒−
1
2

〈𝒒𝜎〉2
∙ 𝑒−

1
2

〈𝒒𝒛𝜎𝑗〉2
 (2.47) 

 

𝜃𝑗  is the occupation of the surface layers which is a percentage of a complete 

monolayer, and 𝜀𝑗 accounts for the displacement of the layers away from their 

equilibrium position. The effect of these parameters is discussed later in the chapter 

in section 2.5.2. 

The total scattered intensity is given by: 

 𝐼𝑇𝑜𝑡 = |𝐹𝑇𝑜𝑡|2 = |𝐹𝐵𝑢𝑙𝑘 + 𝐹𝑆𝑢𝑟𝑓|
2
    (2.48) 

 

2.5.4 The (001) surface 

The (001) surface has a square unit cell, which is more open than the (111) 

surface. It has ABAB stacking where layer B sits in the four-fold hollow sites of 

layer A. The structure is shown schematically in Figure 2.16. 

 

Figure 2.16 Schematic of fcc(001) (a) side view real-space surface structure (b) top 

view real-space surface structure (c) corresponding Bragg reflections in the 

reciprocal space lattice. 
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For SXRD experiments the (001) surface is indexed to a surface tetragonal unit cell. 

This can be related to the bulk cubic unit cell by the following transformations: 

 

 

𝐻𝑐 = 𝐻𝑠 + 𝐾𝑠    (2.49) 

 𝐾𝑐 = 𝐻𝑠 − 𝐾𝑠    (2.50) 

                                                                      𝐿𝑐 = 𝐿𝑠    (2.51) 

 

The units of H, K and L are given by: 

 

 

𝒂∗ = 𝒃∗ =
2𝜋

𝑎𝑁𝑁

  𝑎𝑛𝑑  𝒄∗ =
4𝜋

√2𝑎𝑁𝑁

 
   (2.52) 

The phase factor for the (001) surface is 𝑒2𝜋𝑖(
𝐻

2
+

𝐾

2
+

𝐿

2
)
. Similarly to the (111) the 

CTRs can be described by considering the bulk and surface layers separately. The 

bulk structure factor is given by: 

 
𝐹𝐵𝑢𝑙𝑘 =

𝑓(𝒒)𝑓𝐷𝑊𝐹

1 −  𝑒2𝜋𝑖(
𝐻
2

+
𝐾
2

+
𝐿
2

)
 

   (2.53) 

 

and the scattering from the top 3 layers is: 

 

𝐹𝑆𝑢𝑟𝑓 = ∑ 𝑓(𝒒)𝑓𝐷𝑊𝐹(𝑗)𝜃𝑗𝑒2𝜋𝑖(
1
2

𝐻+
1
2

𝐾+(
1
2

+𝜀𝑗)𝐿)𝑗

𝑗=3

𝑗=1

 

   (2.54) 

 

2.5.5 The (110) surface 

The (110) is the most open of the three low index surfaces, with a rectangular 

unit cell shown in Figure 2.17. The surface is defined such that H is along the [1 1 ̅0] 

direction, K along [0 1 0]  and L is defined along the surface normal [1 1 0] with 

ABAB layer stacking. The Bragg peaks of the (110) surface are spaced much further 

apart than the other two surfaces, this is because the layer spacing is so small.  



 

  

39 

 
 

 

Figure 2.17 Schematic of (110) (a) side view real-space surface structure (b) top 

view real-space surface structure (c) corresponding Bragg reflections in the 

reciprocal space lattice. 

 

 

𝒂∗ = 𝒃∗ =
2𝜋

𝑎𝑁𝑁

  𝑎𝑛𝑑  𝒄∗ =
4𝜋

√2𝑎𝑁𝑁

 
   (2.55) 

 

The surface cell is related to the bulk cubic unit cell by the following 

transformations: 

 

 

𝐻𝑐 = 𝐾𝑠 + 𝐿𝑠    (2.56) 

 𝐾𝑐 = −𝐻𝑠 + 𝐾𝑠    (2.57) 

 𝐿𝑐 = 𝐾𝑠     (2.58) 

 

As with the previous surfaces, the CTRs can be described by separate bulk and 

surface terms. Like the (001) surface, the (110) also has ABAB stacking, giving a 

phase difference of 𝑒2𝜋𝑖(
𝐻

2
+

𝐾

2
+

𝐿

2
)
. The scattering from the bulk is given by 

 
𝐹𝐵𝑢𝑙𝑘 =

𝑓(𝒒)𝑓𝐷𝑊𝐹

1 −  𝑒2𝜋𝑖(
𝐻
2

+
𝐾
2

+
𝐿
2

)
 (2.59) 
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with scattering from the top three surface layers. 

 
𝐹𝑆𝑢𝑟𝑓 = ∑ 𝑓(𝒒)𝑓𝐷𝑊𝐹(𝑗)𝜃𝑗𝑒2𝜋𝑖(

1
2

𝐻+
1
2

𝐾+(
1
2

+𝜀𝑗)𝐿)𝑗

𝑗=3

𝑗=1

 

 

(2.60) 

 Modelling surface structures and the electrode/electrolyte interface 2.6

Up to this point only the bulk terminated surface structure has been considered 

in the structure factor, however, it is possible to modify the equations to include 

scattering from other surface structures, ordered electrolyte layering and scattering 

from the bulk electrolyte. Adlayer structures can be commensurate, which have 

registry with the surface structure or incommensurate and the equation must be 

modified accordingly. 

The total form factor would then be: 

 

 |𝐹𝑇𝑜𝑡|2 = |𝐹𝐵𝑢𝑙𝑘 + 𝐹𝑆𝑢𝑟𝑓 + 𝐹𝐶𝑜𝑚 + 𝐹𝑖𝑛𝑐𝑜𝑚|
2
 (2.61) 

 

2.6.1 Commensurate adlayers 

Under certain conditions in UHV and in the electrochemical environment 

species can adsorb on the electrode surface. Depending upon the electrode surface, 

adsorbed species and growth conditions ordered structures can form. As the 

structures have in-plane ordering they can have a dramatic effect on the non-specular 

CTR profile, see Figure 2.18, and the therefore the structure must be considered in 

the calculation. 
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In order to model this equation (2.46) must be modified to account for the different 

element, the form factor, and the structure. For example, consider a commensurate 

Ag layer on an Au(111) electrode surface, adsorbed in the 3-fold hollow sites.  

Then equation (2.46) then becomes: 

 𝐹𝑆𝑢𝑟𝑓 = 𝑓(𝒒)𝐴𝑔𝜃𝐴𝑔𝑓𝐷𝑊𝐹(𝐴𝑔)𝜃𝑗𝑒2𝜋𝑖(−
1
3

𝐻+
1
3

𝐾+(
1
3

+𝜀𝐴𝑔)𝐿)𝐴𝑔
    (2.62) 

 

For other commensurate structures, the H,K,L positions are changed. 

 

 

Figure 2.18 CTR profiles calculated from a python program. The solid black line is 

the CTR profile for a perfectly terminated Au(111) surface, a commensurate 

monolayer of Ag (the blue dashed line), a commensurate bilayer Ag (dashed pink 

line). 

The addition of commensurate layers of an element different to the bulk causes the 

CTR profile to change dramatically, this can be seen in Figure 2.18. The addition of 

one commensurate layer causes a decrease of intensity between the Bragg peaks with 

a minimum intensity at the anti-Bragg position. The addition of a commensurate 
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bilayer manifests as an oscillation between the Bragg peaks with two minima. The 

profile of the CTR is thus dependent upon the number of commensurate layers  

 

2.6.2 Incommensurate adlayers 

An incommensurate adlayer has no in-plane registry with the underlying 

crystalline lattice, and is therefore only effects the specular CTR, for which the 

momentum transfer is entirely along the surface normal. An incommensurate layer 

can be modelled using the following equation, which is only dependent on L.  

𝐹𝑖𝑛𝑐𝑜𝑚 = 𝑓(𝒒)𝑎𝑑𝜃𝑎𝑑𝑓𝑑𝑤𝑓𝑎𝑑
𝑒2𝜋𝑖𝑙(H) 

where Had is the height of the adlayer. 

 

Figure 2.19 Specular CTR of an Au(111) surface calculated using a python program 

to simulate the structure. The effect of adlayer coverage and interlayer spacing on the 

profile of the CTR is demonstrated. In the top panel an incommensurate adlayer was 

included into the model at a height of 2.5 Å above the top metal layer. In the bottom 

panel the coverage of the adlayer is fixed at 1 ML and the height of the adlayer is 

changed.  
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Figure 2.19 shows the effect of an adlayer on the specular CTR. The top panel shows 

how increasing adlayer coverage decreases intensity at the anti-Bragg. Changing the 

height of the layer affects the asymmetry around the Bragg peaks. 

 

2.6.3 Modelling electrolyte 

At the electrode/electrolyte interface layering of water molecules, and ions 

can occur. These layers are often disordered in-plane and can be modelled as an 

incommensurate adlayer. This is usually sufficient to model the structure at the 

interface, however, there are small contributions from the bulk electrolyte which 

should be added to the model for completeness.  

An error function is used to model the bulk electrolyte, this is a smooth 

function which starts from the top surface layer and saturates at a distance where the 

composition of the electrolyte becomes that of bulk electrolyte. An alternative 

approach is to use a layered profile function. Both models are discussed in reference 

[46] and the electron density profiles are shown in Figure 2.20.  

 

Figure 2.20 Electron density profiles from the top of a crystal surface of the error 

function and a layered model. Profiles were simulated using a python program. 
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 Conventions used throughout thesis 2.7

Surface layers 

 Throughout this thesis usually the top three layers of a metal are modelled 

as the ‘surface layers’, and as such they are modelled independently of the bulk. The 

layers are defined such that layer 1 is at the vacuum/electrolyte interface and layer 3 

is closest to the bulk. The interlayer distance d12 is defined as the distance between 

layers 1 and 2, this is shown schematically in Figure 2.21  

 

Figure 2.21 Metal interface structure. Metal layer 1 is defined as the layer at the 

metal/ vacuum(or electrolyte) interface. The top 3 metal layers are modelled as the 

‘surface’, bulk metal is modelled separately.  

Adlayers 

 The height of additional adlayers, or liquid layers, are measured at a 

distance from the top metal layer, this is shown schematically in Figure 2.22.  
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Figure 2.22 Height of adlayer measured above equilibrium position of the top 

surface metal layer. 

 X-ray voltammetry 2.8

X-ray voltammetry (XRV) is a technique which combines X-ray diffraction 

with cyclic voltammetry. This is an extremely powerful technique whereby the 

structural changes can be dynamically linked to the change in potential, these can be 

correlated to the current response in the cyclic voltammetry measurements. The X-

ray intensity is measured as a function of potential at a fixed point in reciprocal 

space. The point in reciprocal space is chosen for its sensitivity to a particular surface 

property, such as relaxation of the surface, commensurate adlayer adsorption or the 

fact that new scattering arises due to the formation of a superstructure. In an 

experiment the surface is usually characterized by XRV to evaluate the potential 

ranges over which stable interface structures are formed. The system can then be 

studied in detail (CTR measurements) at the relevant applied potentials. 

 

 Low Energy Electron Diffraction, LEED 2.9

Low energy electrons have a have a short mean free path which means they 

can only probe the first few layers of a crystal, rendering them highly surface 
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sensitive. Low Energy Electron Diffraction (LEED) is dependent upon the wave 

nature of electrons. The wavelength of an electron beam is given by the non-

relativistic De Broglie relation: 

 

 

𝜆𝑖 =
ℎ

𝑚𝑣
=

ℎ

𝑝
 

 

(2.63) 

where, h is Planck’s constant, m is the mass of an electron and p is the momentum.  

A beam of electrons of a well-defined energy (usually 20-300 eV) is fired at a 

normal to the sample surface. A typical LEED setup is shown in Figure 2.23. 

Electrons are emitted from a filament and accelerated into a drift tube before hitting 

the surface. Electrons are back-scattered from the surface according to Bragg 

diffraction conditions (see equation 2.64) onto a series of grids, this is shown 

schematically in Figure 2.23. The sample must be well ordered, to give rise to a 

LEED pattern. Elastically scattered electrons are accelerated towards the fluorescent 

screen and contribute to the LEED pattern. Inelastically scattered electrons 

contribute to a bright background light across the screen. By applying a voltage to 

the other grids the inelastically scattered electrons can be suppressed, thereby 

reducing the diffuse background.  
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Figure 2.23 Schematic of (a) LEED optic (b) Schematic representation of the 

backscattered electrons from a one dimensional array of atoms with a regular lattice 

spacing, a. The wavelength of incoming electrons is represented by the green lines, 

and the path difference, d, between the scattered waves is indicated in red. 

 

Diffraction spots occur over a range of energies, dependent on whether the rod is 

within the Ewald sphere. The energy of the incident electron beam is given by: 

 

𝐸 = (
ℏ2

2𝑚
) 𝒌𝟐 

 

(2.65) 

(a) 

(b) 



 

  

48 

 
 

Where 𝒌 =
2𝜋

𝜆
. By varying the energy of the incident beam the radius of the Ewald 

sphere ki, changes. The Ewald Sphere is a geometric construction of the interference 

condition. Higher energies allow access to a larger area of reciprocal space as the 

Ewald sphere cuts more rods which manifests as an increase in the number of 

diffraction spots in the LEED pattern, this is shown schematically in Figure 2.24. 

LEED is often used to determine the cleanliness and quality of a surface. A LEED 

pattern which has sharp bright spots with a low background is considered to be a 

well ordered clean surface. However, this is not always the case, a sample which has 

a good LEED pattern can appear rough with SXRD or to imaging techniques, such as 

STM. Despite this, LEED gives a good indication as to the surface structure of the 

electrode surface; from the diffraction pattern the unit cell of the surface can be 

determined. LEED can also be used to determine the structure of adsorbed 

overlayers, and their registry to the electrode surface. 

 

Figure 2.24 Ewald sphere construction for an electron beam incident normal to the 

surface. The blue Ewald sphere has greater energy than the red, which increases the 

radius of the sphere and the diffraction spots appear closer on the screen. 
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 X-ray photoemission spectroscopy XPS 2.10

 

XPS is used to determine the cleanliness of the electrode surface. The 

working principle of XPS is based on the photoelectric effect. XPS measures the 

kinetic energy of electrons emitted after a sample is radiated with X-rays. The kinetic 

energy of the electrons can be determined from the following relationship: 

 

 
𝐸𝑘 = 𝐸𝑝 − (𝐸𝑏 + 𝜙) (3.2) 

 

 

Where Ek is the kinetic energy of the electrons, Eb is the binding energy of the 

electrons, Ep is the energy of the photons, and ϕ is the work function of the surface. 

An XPS spectrum consists of a plot of the number of counts against the binding 

energy. Peaks in the spectrum can be associated with a particular element – spectra 

for the elements are tabulated in literature [47]. XPS can be used to identify 

additional peaks that arise from contamination, such as oxygen or carbon. Once the 

XPS spectra are free from additional peaks, the sample is determined to be clean.  

 

 Why surface X-ray diffraction? 2.11

The primary technique used in this thesis is surface X-ray diffraction. As 

previously highlighted SXRD is very surface sensitive and it is also highly versatile, 

as it can be used in situ in a variety of environments – meaning it is an ideal 

technique in order to probe the solid/liquid interface. Although electrochemical STM 

has been used to probe the structure of the solid/liquid interface [48–50] there are 

limitations to this technique – the STM tip can interfere with the with the interface 

structure [51] and cannot probe electrolyte layering. These limitations can be 
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overcome by using SXRD, as the probe does not interfere with the measurement 

(although there are particular circumstances were a beam effect does come into play 

[52]).  By measuring the specular CTR, which has momentum transfer completely in 

the surface normal rendering it sensitive to changes in electron density about the 

surface normal, electrolyte layering can be probed [23,53,54]. 

Although LEED-IV is routinely performed for studies in vacuum, data analysis 

can be timely as a dynamic (multiple scattering effects must be considered) approach 

must be used. Use of SXRD can dramatically reduce the analysis time as a kinematic 

(single scattering) approach can be applied.   

There are, of course, disadvantages to SXRD such as the need for a high 

intensity X-ray beam in order to resolve small scattering signal of the interface 

structure from background scattering, and the ability to penetrate through electrolyte. 

For this a synchrotron is required. This can be a problem in itself, as there is limited 

access time to a synchrotron source. One must submit a proposal applying for 

beamtime - gaining beamtime is very competitive.  

Although there are some disadvantages of SXRD, the advantages far outweigh 

these, and confirm SXRD as a powerful, versatile technique. Access to beamtime is 

incredibly valuable and the experiments can deliver a wealth of information.  More 

recently it is has been possible to perform time resolved measurements [55–60] 

which can probe structural changes of a dynamic interface in order to determine 

structural kinetics. 
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3 Experimental methods 

 

 

 

 Introduction 3.1
 

The previous chapter built up the theoretical considerations behind SXRD 

experiments in UHV and in an electrochemical environment. The outcome of such 

experiments is crucially dependent upon the sample and environmental preparations 

prior to the measurements. This chapter outlines the methods used to prepare and 

characterise single crystals, and the electrochemical and diffraction setup. Beyond 

this there is a discussion of the synchrotron beamline; how to start an experiment 

through to how to process and analyse the data. 

 

 Sample preparation and characterisation 3.2
 

The preparation of a clean highly ordered crystal is of vital importance in both 

UHV and electrochemical environment. Changes to the surface can affect the 

interface structures and alter the electrochemical response. For this reason, a lot of 
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care and time was taken to prepare clean and atomically well-defined samples. 

Samples used for electrochemical measurements were bought from Material-

Technologie & Kristalle GmbH, Mateck, Germany,  and were circular, with 10 mm 

diameter and 3 mm thick, aligned to within <0.1° miscut. Samples for UHV 

experiments were bought from Surface Preparation Laboratory, SPL, in the 

Netherlands, aligned to within <0.1° miscut. The samples had a groove around the 

sides which was used to hold tantalum strips for mounting to a plate in UHV, see 

Figure 3.1. After receiving the crystals further preparation was required to ensure the 

crystals had a clean highly ordered surface before experiments. To do this the 

crystals were prepared and characterised in UHV.  

 

Figure 3.1 Gold and silver crystals mounted on plates in UHV. 

 

3.2.1 UHV sample preparation 

 

The samples were cleaned through several sputter and anneal cycles. The 

surface is ‘sputtered’ by bombarding with Ar
+
 ions at 10−6mbar, 1kV for 15-20 

minutes; this removes contamination from the surface. The sample is subsequently 

annealed; a current is passed through a filament, which is in thermal contact with the 

sample. Samples are usually annealed for 15-20 minutes, although sometimes it is 
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necessary to do a long anneal (1 hour) in order to improve the surface quality. 

Annealing the sample orders the surface, however, it can also bring up any impurities 

from the bulk, especially when preparing a new crystal, which is why repeat cycles 

and careful monitoring of the surface condition is required. Monitoring is done by X-

ray Photoemission Spectroscopy (XPS), and LEED. The majority of work in this 

thesis is on silver single crystals. Silver requires UHV preparation before every 

experiment. There are electrochemical methods for cleaning silver; however, they 

can roughen the surface over time. Silver samples were treated with great care; 

annealing was kept under 500 ℃ as above this temperature the surface can lose long 

range order [61] and appear cloudy by the eye. As the Ag surface can easily oxidise 

in air, the transfer to the electrochemical cell is a delicate process requiring the load 

lock of the UHV chamber to be surrounded by a glove bag filled with inert gas, such 

as Argon. The sample is then transferred out into the inert atmosphere and inserted 

into an acid cleaned beaker of ultrapure Milli-Q water. Great care must then be given 

to transfer the crystal into the electrochemical cell, keeping the surface covered with 

electrolyte at all times. 

 

 

3.2.2 Flame Annealing 

 

After preparation in UHV gold crystals can be easily reprepared through a 

flame annealing technique, which has been shown to produce highly ordered surfaces 

[2-3]. The technique involves annealing the gold crystal using a butane torch until 

the surface is glowing orange (see Figure 3.2); the surface is kept at temperature for 

several seconds before being allowed to cool slightly with the flame still circling 

close around the crystal this is repeated over several minutes. The sample is then 
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allowed to cool in air before being covered with a drop of ultra-pure water prior to 

the transfer into the electrochemical cell. Quenching of the sample with water should 

only be done once the sample has cooled sufficiently, too soon and the thermal shock 

can induce a poor surface quality and damage to the bulk [1]. The quality of the 

surface can be inferred from cyclic voltammetry, for example broad peaks can 

indicate the surface is rough, and extra peaks can be an indication as to steps on the 

surface. 

 

Figure 3.2 A gold crystal prepared by the flame annealing technique. 

 Cleaning of electrochemical equipment 3.3
 

Prior to assembling the cell all parts must be thoroughly cleaned. The cell, 

fittings, tubing and reservoir and any glassware are soaked overnight in a 

concentrated acid mix; 1:1 sulfuric H2SO4 and nitric HNO3; this removes any 

contamination. After soaking, the parts are rinsed 10 times in ultra-pure (Milli-Q) 

water and subsequently boiled and rinsed in ultrapure water 3 times. Ultra-pure water 

is defined by the level of resistivity. The resistivity of the ultra-pure water used in 

this thesis was 18.2 MΩ ∙cm. This is achieved through filtration and ionization steps. 

The system monitors the ion concentration by measuring the electrical resistivity of 
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the water. 

 Potentiostat 3.4

A potentiostat is used to control the applied potential between the working 

electrode and the reference electrode, such that the potential drop between them is 

equal to the desired voltage. The reference electrode is connected with high input 

impedance and is ideally current free. The current in the electrochemical cell is 

passed through the working electrode and the counter electrode. A schematic of a 

potentiostat is shown in Figure 3.3. The current measured is a direct measure of the 

flow of electrons at the electrochemical interface. The potentiostat used in this thesis 

is the Versastat 4 from Princeton Applied Research. For in-situ X-ray experiments 

the potentiostat was located in the experimental hutch and interfaced to GDA (DLS) 

[63] or SPEC (ESRF) [64] (software used for instrument control and data 

acquisition), which could be controlled via computer in the control room. 

 

Figure 3.3 (a) photo of the Princeton Applied Research Versastat potentiostat. (b) 

simplified schematic of a potentiostat circuit. 

 

 The X-ray electrochemical cells 3.5
 

3.5.1 The X-ray electrochemical thin layer cell 

 

This cell differs from the conventional hanging meniscus set up (discussed in 

section 2.2.4), a 'thin-layer' configuration is required for in situ use as to minimise 
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the attenuation of X-rays due to the liquid. A schematic of the thin-layer cell is 

shown in Figure 3.4 and a photo of the cell can be seen in Figure 3.5 (a).  The main 

body of the cell is constructed from Kel-F, a material that can be machined to the 

required specifications and is chemically inert. Fittings to the cell are made from 

teflon or PEEK. The crystal is held in a collet which is designed to tighten around the 

sides of the crystal when it is screwed in place; keeping the crystal in a fixed position 

at the center of rotation in the cell throughout the experiment. The collet sits slightly 

above the level of the cell, and the crystal surface is again higher above this so that it 

sits at the highest point in the cell; this is to ensure that the X-rays can access the 

whole surface and are not clipped by anything in the way. The crystal sits on top of a 

coiled wire, which forms a contact to the outside of the cell. Electrolyte inlet and 

outlet holes allow electrolyte to be exchanged during the experiment.  

 

Figure 3.4 Schematic representation of the electrochemical thin layer cell. The 

crystal is held in the centre of the cell, the cell is filled with electrolyte through the 

inlet tube and is enclosed by a polypropylene film – transparent to X-rays.  
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Figure 3.5 (a) Thin-layer electrochemical cell (b) thin-layer cell set up with the outer 

hood on the diffractometer at XMaS beamline, ESRF. 

The inlet is connected to an electrolyte reservoir by teflon tubing, and the 

outlet to a syringe, forming a closed system.  A non-permeable polypropylene film 

(12 𝜇𝑚 thick) purchased from Chemplex is used as a window on the top of the cell 

as it is transparent to X-rays, and is sealed in place by a rubber o-ring. The film traps 

a thin layer of electrolyte on top of the surface. The polypropylene films are naturally 

hydrophobic, however, exposing polypropylene to heat causes chain degradation 

[65]. Oxidation occurs forming a free radical which reacts further with oxygen, 

followed by chain scission yielding aldehydes and carboxylic acids, which are 

hydrophilic. As such, the films are boiled before use to make the films hydrophilic. 

As the SXRD measurements require long acquisition times two films are used to 

minimize beam damage, which can cause the films to split and the cell to fill with 

air; which would result in repreparing the cell (and crystal) and a loss of beam time. 

The electrochemical cell is enclosed in an outer metal frame chamber, shown in 

Figure 3.5 (b), which is sealed with a kapton window, this is filled with nitrogen to 

keep the cell protected – free from O2. 

(a) (b) 
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Au, Ag, and Pt wires for the counter and contact to the working electrode are 

dipped in the cleaning acid, rinsed in ultra-pure water and flame annealed. Silver 

wires are dipped in weak Nitric acid or Ammonia Hydroxide/ Hydrogen peroxide 

mix until shiny and rinsed thoroughly. Once the cell is assembled it is leak tested 

with the film pulled down. Once prepared, the working electrode is transferred to the 

cell with drop of ultra-pure water covering the surface, it is then tightened into place 

in the collet and the cell is filled to form a meniscus over the crystal before covering 

with the polypropelene film. Fresh electrolyte purged with N2 (or saturated with O2 

or CO depending on the experiment) is pulled through and any bubbles are removed 

from the cell. The film can be inflated, or deflated, when deflated the film traps a 

thin layer of electrolyte on the surface ~ 10𝜇𝑚 which allows the transmission of X-

rays whilst also maintaining potential control of the system. One of the constraints 

with this set up is that, unlike the conventional hanging meniscus set up, the 

voltammetry is not specifically due to the ordered surface, but also has a contribution 

from the polycrystalline sides and back of the crystal (as the whole crystal is contact 

with electrolyte). However, this is not a problem for the X-ray measurements and the 

voltammetry can be correlated to preliminary measurements with the hanging 

meniscus cell. For certain X-ray measurements, such as time resolved studies, this 

set up is not suitable and a different set up is required which is discussed in the 

following section. 

 

3.5.2 Droplet Cell 

 

In the previously discussed X-ray cell the thin layer of electrolyte has a high 

resistance, i.e. a high RC constant; which is not suitable for fast kinetic 

measurements such as the time dependent measurements discussed in chapter 6. 
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Figure 3.6 Schematic of the electrochemical X-ray droplet cell. Counter electrode 

and reference electrode are in close proximity to the working electrode; thereby 

reducing the RC constant of the cell. 

Instead, a droplet cell is used, which minimizes the electrolyte resistance by 

placing all of the electrodes in close proximity, a schematic of the cell is shown in 

Figure 3.6. The sample is held in the same way as with the thin layer cell, however, 

unlike the thin layer cell, the electrolyte is only in contact with the single crystal 

surface.  A glass or Teflon crosspiece is held above the sample, attached to a glass or 

quartz capillary, which is filled with electrolyte. A droplet of electrolyte is suspended 

from the end of the capillary making contact with the crystal. To minimize the RC 

drop, the counter electrode forms a ring around the droplet; this also acts to stabilize 

the droplet, and a long Ag/AgCl
- 
‘flex-ref’ (World Precision Instruments) is held in 

place above the working electrode in the capillary. The size of the droplet is 
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controlled with the electrolyte inlet and outlet. Similarly, with the thin layer cell, the 

cell is surrounded by an outer chamber, which can be filled with inert gas. There are 

however limitations with this geometry; the droplet is only stable when the cell is flat 

or has a very small incident angle, and it requires the use of higher energy >15 KeV 

as the X-rays are attenuated by the liquid droplet. 

 

 Synchrotrons 3.6

Synchrotrons are machines in which charged particles, electrons or positrons, 

are accelerated at relativistic speeds on a curved path, through a magnetic field, 

resulting in the emission of synchrotron radiation. Over the years the brilliance of 

synchrotron sources has drastically improved (the brilliance determines the quality of 

the beam, it is a combined measure of the flux, the beam divergence, coherence, and  

 

Figure 3.7 Schematic representation of a 3rd generation synchrotron.  
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the source size) and todays’ 3
rd

 generation synchrotrons have a many orders of 

magnitude greater than lab based rotating anode sources. This makes synchrotron 

radiation crucial for determining the structure of interfaces, where scattering due to 

surface structures is low in comparison to the bulk; it is essential to use high energy 

X-rays to resolve the weak signal and electrochemical studies require high X-ray 

energies in order to penetrate the electrolyte layer.  The first generation synchrotrons 

had a major advancement with the introduction of electron storage rings. This 

consists of a ring where the beam is continuously circulated. This development 

brought beam stability and higher fluxes of radiation. A schematic of a typical 3
rd

 

generation synchrotron is shown in Figure 3.7. Electrons are accelerated in a linear 

accelerator (LINAC) and into a booster synchrotron up to GeV energy range before 

being transferred to the storage ring. The storage ring consists of straight sections 

and bending magnets, in order to control the path of the electron beam. As the 

electron beam circulates around the storage ring it will lose energy, there are Radio 

Frequency (RF) cavities which boost the electrons to account for the energy lost.  

Tangential to the storage ring are many beamlines. Some utilise radiation from the 

bending magnets, and others use radiation from insertion devices. The insertion 

devices are situated in the straight sections of the ring and produce high intensity X-

rays. Insertion devices consist of magnets with alternating polarity which forces 

electrons to oscillate in the horizontal plane [44]. There are two types of insertion 

devices: 

 

1. Wigglers – are a series of magnets with alternating polarity. The 

electrons path through a wiggler can be considered a series of small arcs 

like a bending magnet which deflects the beam oscillating the electrons in 
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the horizontal plane causing the emission of synchrotron radiation and 

leading to enhanced intensity.  

 

2. Undulators – similar to a wiggler but the arrangement of magnets in an 

undulator cause the emitted radiation to be in phase with the rest, adding 

together constructively, which produces a highly collimated beam over a 

narrow energy range.  

 

 Beamline and Diffractometer 3.7
 

Figure 3.8 shows a schematic of the optics configuration of a beamline. In the optics 

hutch there are a series of monochromators, mirrors and slits in order to define and 

focus the beam. The energy of the beamline can range as according to the 

specifications of the beamline. Before an experiment begins a specific energy is 

defined using a monochromator. The monochromator consists of two Si(111) 

crystals which exploit Bragg’s law to give the desired beam energy. The second 

crystal is held on a translational stage, which maintains the outgoing beam at a 

constant exit height. The translational stage can be moved to change the angle to 

select the wavelength of the beam.  Mirrors are used to focus the beam size to a small 

spot on the sample. Additional slits are used to reduce the size of the beam vertically 

and horizontally. To protect the detector when aligning with the main beam and 

when scanning close to intense Bragg peaks, attenuators can be inserted. A monitor 

such as an ion chamber is usually placed after the attenuators, before the sample, 

which is used to monitor fluctuations in beam which can be normalised out of the 

data in the analysis stage. The beam then hits the sample at the centre of rotation 

which is described in the following section. To measure the diffracted intensity a 
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detector is used. The majority of experiments in this thesis used an area detector 

(Pilatus). Slits are used in front of the detector to optimise the signal to noise ratio. 

The method for data extraction for Pilatus images is discussed later on in section 3.9. 

There are several types of diffractometers that can be used. The data in chapters 4-6 

was obtained from beamline I07, Diamond Light Source, DLS. Data in chapter 7 was 

measured on beamline ID03 in ESRF, Grenoble. I07 and ID03 have a similar set up,  

 

Figure 3.8 Simplified schematic of the optics of a beamline 

 

 
 

Figure 3.9 Schematic of 2+3 Circle diffractometer in vertical mode. Laboratory 

frame of reference and sense of rotations are indicated. Figure reprinted from 

reference [66] with permission. 



 

  

64 

 
 

 

they have a Huber (2+3) diffractometer [67] which can be set up in vertical or 

horizontal scattering geometry shown in Figure 3.9. A hexapod is mounted to the 

diffractometer to allow for adjusting the height of the sample and rotation required 

for alignment. The incident angle of the sample and azimuth are given by α and ω, 

respectively, in vertical scattering mode (which was used for the experiments in 

chapters 4-6) or χ and θ in horizontal scattering mode (used in chapter 7). The 

detector arm allows movement in δ (vertical movement) and γ (horizontal 

movement); ν determines the post slit sample rotation. Experimental set up of the I07 

beamline allows for both UHV and electrochemical measurements to be made. The 

beamline houses two experimental hutches EH1 and EH2 [68], both can be seen in 

Figure 3.10. In EH1 the sample is enclosed in the electrochemical set up mounted on 

a goniometer which is attached to the hexapod stage Figure 3.10 (c). A flight tube 

can be installed in EH1 to produce a beam path into EH2. EH2 is set up for in situ 

UHV measurements; the entire UHV system is mounted on the diffractometer. The 

UHV chamber has a ‘buffer chamber’ where samples are prepared by sputter anneal 

and can be characterised by LEED and STM. The X-ray beam is focussed in the 

analysis chamber, through a Beryllium window 20 mm x 120 mm which allows 

incident angles up for 30°. A larger exit window enables the detector to access angles 

of 120° vertically by 30° horizontally. 
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Figure 3.10 Experimental hutches on I07 beamline, Diamond light source (a) EH1 - 

in situ electrochemical experiments (b) EH2 - UHV experiments and sample 

preparation. 

 Alignment procedure 3.8

Once the beamline is set up with the correct configuration, and the sample is 

mounted on the diffractometer the first step of the experiment is to align the sample. 

Initially, all angles of the diffractometer are set to zero and the sample is mounted. 

To ensure the sample is flat and in the center of rotation, the sample can be laser 

aligned; this consists of reflecting a laser beam from the sample surface on to a wall. 
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The tilts of the goniometer can be adjusted so the beam does not move with the 

rotation of omega (or phi). A similar procedure can be done with the hexapod, a 

camera is set up with a cross hair and the sample is rotated and adjusted so that the 

centre of the crosshair stays in the centre of the crystal. The first scan with the X-rays 

is to check the height of the sample, the intensity is monitored as the sample is 

moved vertically through the beam, the height is adjusted to where the sample ‘half 

cuts’ the beam. The next step is to set up a UB matrix in order to maneuver in 

reciprocal space; it relates the Miller indices of the reciprocal vector (HKL) with its’ 

real space coordinates (xyz) by: 

 

Xyz = UB HKL 

 

(3.3) 

 

The UB matrix is composed of two sub-matrices, U and B. U describes the 

orientation of the crystal axes with respect to the lab reference system, and B defines 

a set of orthogonal axes based on the crystal axes which only depends on the unit cell 

parameters. The UB matrix requires real space angles for two or more reciprocal 

space positions. The first Bragg peak to find is often the specular (0, 0, L) which is 

easiest to find as it is independent of omega. Once the peak is found in alpha it 

makes is easier to find a non-specular reflection. The position of the Bragg peak is 

optimised in gamma and delta. Usually two non-specular Bragg peaks are identified 

and one of them is swapped as the primary instead of the specular Bragg peak as it is 

dependent upon more than one angle (it is more accurate to use to calculate the UB 

matrix). Once the alignment is complete the experiment can start. The first thing to 

check is the anti-Bragg position to ensure is there is a strong signal. The anti-Bragg 

position is due to scattering from the surface, and is therefore a good indication as to 
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the quality of the surface. Subsequently an L scan is performed to determine the ‘cut-

off’ in L where total external reflection occurs giving a limit in L for the experiment. 

 

 Scans and Data extraction 3.9
 

Rocking scans 

 

The sample is rotated whilst the detector remains stationary. A rocking scan 

is used to measure points in reciprocal space along a CTR. A Lorentzian line shape is 

fit to the rocking scan, with a straight line for the background and it is the integrated 

intensity that is calculated; as it is the integrated intensity which is directly related to 

the structure factor. Rocking scans are made at positions (in L) along the CTR, or are 

measured at certain points in reciprocal space to monitor a specific structural feature. 

Stationary Scans 

If an area detector is being used, then the whole width of the CTR can be 

integrated at once. This means that there is no need to use rocking scans (unless 

measuring Fractional Order Rods where scattering is weak); which makes the data 

capture time much quicker. This method increases the counting statistics with the 

benefit of decreasing the data collection time. ‘Regions of interest’ (ROI) are set up 

to capture the signal of the CTR, and background regions an example can be seen in 

Figure 3.11. The ROIs contain the sum of the signal. Regions are set up during the  
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Figure 3.11 Detector image (cropped) of stationary scan taken on the (0, 0, L) CTR. 

ROI regions are set up to define the signal from the CTR, and background regions. 

 

experiment, and the intensity is saved in the data file. However, it is important to 

check through the images to ensure that the sample alignment is correct for the 

chosen regions of interest. This is another benefit of using a 2D detector, the regions 

of interest can be changed or defined after the experiment and it gives more 

information than a point detector can as features such as powder lines, can be seen in 

the images. 

Reciprocal space scan 

In a direct reciprocal space scan, the diffractometer scans hk along a 

diffraction  (normally at a fixed qz value) in reciprocal space. This allows structures 

with a different periodicity (such as a reconstruction) to be investigated. 

 

 Geometric Correction factors 3.10
 

Before the data can be analysed there are a number of corrections which need 

to be made to the data to account for the diffractometer geometry, sample size, 
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detector slit and beam size which all have an effect on the measured intensity. 

Corrections for the (2 + 3) diffractometer are given in [67]. 

Lorentz factor 

Accounts for the change in integration volume as it is converted from real 

space angle to reciprocal space.  

2 + 3 circle 

 
𝐿 =

1

𝑠𝑖𝑛𝛿𝑐𝑜𝑠𝛾
 

(3.4) 

 

 

Polarisation factor 

The vertical magnetic field of an undulator causes electrons to deflect 

horizontally, emitting radiation which is polarised horizontally. The polarisation 

factor accounts for changes in intensity due to the polarisation of the beam. A (2 + 3) 

geometry can move the detector in both horizontal and vertical planes, 

 
𝑃 = 𝑝ℎ𝑃ℎ𝑜𝑟 + (1 − 𝑝ℎ)𝑃𝑣𝑒𝑟  (3.5) 

 

where 

 
𝑃ℎ𝑜𝑟 = 1 − (𝑐𝑜𝑠𝛿𝑠𝑖𝑛𝛾)2 (3.6) 

 

and 

 𝑃𝑣𝑒𝑟 = 𝑝ℎ𝑃ℎ𝑜𝑟 + (1 − 𝑝ℎ)𝑃𝑣𝑒𝑟  (3.7) 

 

 

Where ph is the horizontal polarisation, Phor is the horizontal polarisation component 

and Pver is the vertical polarisation component.  
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Rod interception  

This is to account for the angle which the detector makes with the rod. For 

measurements where the angle is small the interception is almost perpendicular, for 

measurements at higher L the beam is no longer perpendicular to the rod 

 𝑅 = 𝑐𝑜𝑠𝛽𝑜𝑢𝑡 (3.8) 

 

 

Active area correction  

Accounts for the overlap of beam footprint and detector footprint with 

changing incident angle on the sample, it depends on the beam defined slits, detector 

slits and sample geometry. This correction ignores the beam footprint and sample 

size. 

 

 
𝐴 =

𝑐𝑜𝑠𝛽𝑜𝑢𝑡

𝑠𝑖𝑛𝛿
 

(3.9) 

 

 

 

 Data Analysis 3.11

Once the correction factors have been applied the CTR data can then be fit. 

The data is fit to a model as described in chapter 2 using a non-linear least squares 

algorithm, using a python program written by C. A. Lucas and developed by G. 

Harlow and Y. Gründer. The structural parameters of the top metal layers and any 

adlayers are varied to minimise the 𝜒2 value given by: 

 
𝜒2 = ∑

(𝑀 − 𝑇)2

𝜎2
 

(3.10) 

 

 

Where M is the measured value, T the theoretical value and 𝜎2 is the variance of the 

data. This is divided by the number of degrees of freedom to determine the reduced 
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𝜒2 value. The statistical error on each CTR data point is given by √𝑛. Systematic 

errors which are determined from comparing symmetry equivalent reflections, and 

are usually in the range 5-10 %.  

To obtain the best structural model to the data a systematic approach is required. 

To begin with the simplest model is considered; a clean bulk terminated surface, at 

this point only the scale factor parameter is optimised. The complexity of the model 

is increased in order to obtain the lowest reduced 𝜒2 and best structural model to the 

data, by varying structural parameters such as occupation of the metal layers (𝜃𝑛), 

relaxation (𝜀𝑛) and root mean squared (rms) roughness (σ). Usually only the top 

three metal layers are considered in the model. Similarly adlayers can be included 

into the model, depending upon the system. The exact fitting procedures are 

discussed within the results chapters.  In the case of the electrochemical data the non-

specular CTR data are usually fit first. The non-specular CTRs have in plane 

momentum transfer as well as out of plane and are used to obtain a good fit to the 

metal structure. Once a good fit has been obtained the parameters are fixed. The 

specular CTR is sensitive to vertical ordering from incommensurate adlayers and 

electrolyte layering at the interface. If the fit to the non-specular CTRs does not 

model the specular CTR data then additional adlayers or electrolyte layering is 

included in the fit. Sometimes changes between electrochemical systems are small, 

and to highlight the structural differences between them it is advantageous to 

simultaneously fit the data sets together, and a fit to the ratio of the data. This fitting 

procedure was utilised to fit the data in chapter 6. 
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4  Ag/UHV interface  

 

 

 

 Introduction      4.1

Understanding the atomic structure of an electrode surface is essential for 

determining adsorbate and reaction phenomena at an interface. When a crystal is 

terminated, the properties of its surface layers can greatly differ from the bulk. The 

termination changes the atomic coordination of atoms at the surface, and the 

conduction electron distribution, as a consequence the atoms rearrange and displaces 

to a structure which minimises the surface free energy. This is done through 

reconstruction of the surface atoms in-plane (which modifies the symmetry of the 

surface) and/or through relaxation (displacement of atomic layers in the surface 

normal) – this is discussed in section 2.5.2. Depending upon the nature of the 

electrode the forces which induce rearrangement of atoms can be felt over varying 

degrees. Semiconductors, for example, this can be felt a large distance [69] into the 
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surface, whereas for metals the effects are not as pronounced and only the top few 

layers are effected due to the nature of the bonding [2,3]. 

For surfaces that do not reconstruct, UHV studies have shown most surfaces 

undergo an inward relaxation at room temperature [26], where the layer spacing 

between the top two layers is reduced compared to the bulk spacing, whilst at higher 

temperatures the layer spacing is expanded [5,6].  

Surface relaxation can be explained by the Smoluchowski effect [60], in which 

the corrugation of the surface leads to a corrugation of electronic charge, this is 

shown in Figure 4.1. The charge gradient at the surface leads to an increase in kinetic 

energy, and as a result (in order to lower the kinetic energy) the charge undergoes 

‘smoothening’. This has the effect of relaxation of the surface layers. 

 

Figure 4.1 Schematic of the Smoluchowski smoothing effect. Charge distribution is 

shown along the Wigner-Seitz cells. 

The effect of charge smoothening is stronger the ‘rougher’ or more open a surface is. 

The resulting effect lowers the work function of the surface. 

Early theoretical work of the relaxation of surfaces only considered the effect 

of coordination number on the relaxation of the surface and predicted the spacing 

between the top two atomic layers should be expanded in relation to the bulk spacing 

[7–11]; contradictory to experimental studies. The problem was addressed by the 
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heuristic model determined by Finnis and Heine [77]. The model considers the 

redistribution of electron density caused by the truncation of the surface. The 

redistribution of charge causes an electrostatic force on the top atomic layer which 

results in an inwards relaxation of the layer as a response. The extent of the 

relaxation is dependent upon the structure of the surface, the less packed a surface is, 

the greater the surface relaxation will be. Much of the early investigations of surface 

relaxation only considered the relaxation of the top metal layer until the effect of 

multilayer relaxations was considered in an electrostatic model by Landman et al. 

[2]. The model proposed the relaxation can perturb several layers into the bulk of the 

crystal and often the response of the layers is oscillatory relaxations i.e. a change in 

sign of the relaxation of the top atomic layers which is damped with increasing  

 

Figure 4.2 Oscillatory surface layer relaxations. (a) damped oscillatory relaxations 

with increasing layer distance towards the bulk, (b) schematic representation of 

surface relaxation – alternating relaxation. Figure is reproduced from [78]. 

distance towards the bulk, this is shown in Figure 4.2. This was confirmed by LEED 

studies on Al(110) [79] and Cu(110) [14,15]. If relaxation of the electrode surface is 

not sufficient to minimise the surface free energy then the surface can reconstruct, 

this occurs with Au, Pt and Ir surfaces [1]. 
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Understanding the clean electrode surface is clearly an important preliminary 

measure for obtaining the correct model when adsorbates and electrolyte are 

introduced. The Ag(hkl) surfaces do not reconstruct unless induced by adsorbates 

such as oxygen [6] or alkali metals [82]. Early studies of the Ag(110) surface 

proposed a large inwards relaxation of the top metal layer of between 7-10% 

[7,15,71,72], although only the relaxation of the top layer was considered in 

modelling the surface. The multilayer model was applied to subsequent studies of 

Ag(110), by numerous LEED and ion scattering studies (summarised in Table 4.4.1), 

which confirmed the oscillatory model proposed by Landman et al. [2], however the 

magnitude of the relaxations varied between studies and techniques. For Ag(111) the 

relaxations of the top metal layers are determined to be very small in comparison to 

Ag(110), with either no small inwards relaxations of the top two atomic layers 

[12,13], or no relaxation at all [14]. 

The work in this thesis is primarily on Ag low index surfaces of single crystals. 

As the results in literature vary between techniques, it is therefore important to 

determine the structure of the clean Ag surfaces in UHV in order to compare them to 

systems throughout this thesis, as there are no reported SXRD studies of the clean 

Ag(110) surface. This chapter presents the structure of the clean Ag(110) and 

Ag(111) in UHV as studied by SXRD. The Ag(001) surface was not studied in UHV, 

however, the studies in literature will be discussed in comparison with the other 

surfaces. 

 

 Experimental 4.2

The silver single crystals were obtained from SPL in the Netherlands and 

oriented to within less than 0.1. Samples were prepared in UHV by several cycles of 
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Ar
+
 sputtering and annealing at 480℃. The temperature of the sample did not exceed 

500℃ degrees as above this temperature the silver surface can roughen and lose long 

range order which causes the surface to appear cloudy [85]. The quality of the 

sample was determined by LEED, repeated sputter-anneal cycles were performed 

until a sharp a (1 × 1) pattern, with low background was obtained and checked for 

contamination with XPS. The measurements were carried out at room temperature on 

the I07 beamline at the Diamond Light Source using focused incident X-rays of 

energy 20 keV. A 2+3 circle diffractometer with a PILATUS 100k (Dectris) detector 

was used to record the X-ray measurements. The Ag(110) reciprocal surface unit cell 

(H, K, L) was indexed using the LEED convention such that H is along [1 -1 0], K 

along [0 1 0] and L is along the [1 1 0] surface normal. The units for H, K and L are  

𝑎∗  = 𝑐∗ = 2𝜋/𝑎𝑁𝑁 and 𝑏 = 4𝜋/√2𝑎𝑁𝑁 where 𝑎𝑁𝑁 = 2.888 Å is the nearest-

neighbor distance in the crystal. The Ag(111) surface was indexed to a conventional 

hexagonal unit cell for fcc(111) surface that is defined such that the surface normal is 

along the (0, 0, L)hex direction and the (H, 0, 0)hex and (0, L, 0)hex vectors lie in the 

plane of the surface and subtend 60°. The units for H, K and L are a* = b* = 

4π/√3a𝑎𝑁𝑁 and c* = 2 π/√6𝑎𝑁𝑁.  

 Results and discussion 4.3

4.3.1 Ag(110)/Vacuum interface 

Due to the geometry of the Ag(110) surface, the closely spaced layers mean that the 

Bragg peaks are spaced far apart in reciprocal space. As a result, a limited range in L 

can be accessed than with (111) and (001) surfaces as the intensity falls off into the 

background, signal away from the Bragg peaks with increasing L. To obtain a  
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Figure 4.3 The measured X-ray intensity along specular CTR (a) (0, 0, L) and first 

order non-specular CTRs (b) (0, -1, L) and (c) (1, 0, L). The dashed line is the 

calculated intensity for a perfectly terminated (110) surface with no relaxation. The 

solid lines are the calculated fits to the data; the red line represents the fit to the data 

by varying only the top layer relaxation and rms roughness, and cyan is the best fit 

which incorporates relaxations of the top four atomic layers, and rms roughness of 

the top two. 
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Method 

12 

(%) 

23 

(%) 

34 

(%) Ref. 

Experimental      

SXRD -6.5 +2.0 -0.6 This work 

LEED -5.7 +2.2 - [26] 

LEED -7 +1 -2 [8] 

RBS -7.8 ± 2.5 +4.3 ± 2.2  - [10] 

RBS -9.5 ± 2.0  +6.0 ± 2.5 - [86] 

Theoretical results     

EAM -6.87 +2.19 -1.04 [4] 

EAM -5.9 +0.5 -0.3 [87] 

EAM -5 +0.3  [88] 

Tight binding -6.2 +0.7 <0.7 [89] 

Perturbation theory A -6.36 +5.03 -1.33 [71] 

Perturbation theory A -6.12 +2.73 -3.39 [71] 

Table 4.4.1 Comparison of percentage variations of the interlayer spacing with 

experimental and theoretical results. EAM is embedded atom method, RBS is 

Rutherford Back Scattering. 

 

structural model for the surface CTR measurements were made on the specular CTR, 

(0, 0, L) and two first order non-specular CTRs, (1, 0, L) and (0, -1, L) and were fit 

simultaneously. The CTR data and calculated fits are shown in Figure 4.3, the black 

dashed line represents the calculation of a perfectly terminated surface; with layer 

spacing of the surface layers equal to the bulk spacing (d(110) = 1.445 Å). It is 

apparent that there must be some relaxations of the surface layers as the experimental 

data deviates from the calculated perfect termination of a (110) surface – the 

intensity is reduced asymmetrically around the Bragg peaks (as discussed in section 

2.5.2). The occupation of the metal layers was fixed at unity, as the clean Ag(110) 

surface is not known to reconstruct in UHV, and the LEED pattern indicated a 

(1 ×  1) terminated surface. This is justified as varying the occupation of the top 

metal layer did not improve the fit.  As a starting point, a simple two parameter 
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model was explored. The vertical displacement, ε, and the rms roughness, σ, of the 

top metal layer were varied. The calculated fit (represented by the red line) gave an 

inwards relaxation of -0.051 ± 0.002 Å (corresponding to a reduced layer spacing of 

d12=1.393 Å, -3.5 % contraction relative to the bulk spacing 1.444 Å) and a large rms 

roughness of 0.235 ± 0.005 Å (the bulk Debye-Waller factor is 0.096 Å) this gave a 

reduced χ
2
  of 5.84 which does not give a good fit to the data. As the Ag(110) surface 

is known to undergo multilayer relaxations at the surface, the relaxations of further 

layers was considered in the model. The best fit to the data was obtained by varying 

the vertical displacement of the top 4 metal layers and the rms roughness of the top 

two which gave a reduced χ
2
 of 2.48. Including the rms roughnesss of the 3

rd
 and 4

th
 

layers did not lead to any significant improvement of the reduced χ
2
, therefore they 

were not included in the model. It is interesting to notice that there is a small 

oscillation in the specular CTR just before L=1 which the model could not replicate. 

Removing these data points did not change the fit parameters, and no unusual 

features could be seen in the individual image files. The sharpness of the feature (in  

 

Figure 4.4 Schematic representation of the Ag(110) oscillatory surface relaxations. 

L) implies that it is due to a three dimensional structure rather than the surface. At 

present we are not certain of the origin of this scattering feature. The model indicates 

the layer spacings of d12 = 1.350 Å, d23 = 1.473 Å and d34 = 1.435 Å and 1
st
 and 2

nd
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layer rms roughnesss of σ1 = 0.22 ± 0.01 Å and σ2 = 0.07 ±0.02 Å respectively. The 

surface layer rms roughnesss, was relatively large compared to the bulk thermal 

roughness of 0.096 Å. This is in agreement with the multilayer Rutherford Back 

Scattering (RBS) study by Holub-Krappe et al. [86] which identified an increased 

thermal vibration in the top two atomic layers (σ1 = 0.14 Å and σ2 = 0.09 Å). This 

large roughness in the surface layers is not unusual for fcc(110) surfaces; due to the 

geometry of the surface it is more prone to roughening and silver is sensitive to a 

roughening transition [47,48]. Comparing the interlayer distances to the bulk value 

of 1.445 Å, the relaxations correspond to an oscillatory variation of ∆12 = -6.5 %, ∆23 

= + 2.0 % and ∆34 = -0.6 % (where a positive or negative value corresponds to an 

outwards or inwards relaxation of the layer spacing, respectively). The oscillatory 

multilayer relaxations are in good agreement with all previous experimental data and 

theoretical models, which are summarised in Table 4.4.1, and consistent with the 

model that the oscillatory nature damps with increasing depth towards the bulk 

[2,3,34]. Despite agreement on the oscillatory behaviour of the surface, there are 

discrepancies between the magnitudes of the relaxations. Previous studies have 

focussed on LEED and ion scattering techniques, and this is the first reported SXRD 

study of the Ag(110) surface. The SXRD study is in remarkably close agreement 

with the theory calculations determined by the Embedded Atom Method (EAM)[4].  

The values determined by SXRD are close to the LEED study by Davis and Noonan 

[26] and Lindroos et al. [8]; although only the first two interlayer spacings were 

considered in the LEED analysis. Interestingly the Rutherford Back Scattering (RBS) 

studies indicate significantly larger first and second interlayer distances which is not 

in agreement with other experimental findings or the distances predicted by theory 

calculations. A possible explanation for the differences arising from LEED and RBS, 
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put forward by M. Lindroos et al. [8] is due to the differences in sampling 

techniques. LEED is sensitive to well-ordered areas of the crystal, in comparison to 

RBS which samples the entire geometric area the beam is incident. 

Another possible explanation for the discrepancies between studies could be 

due to the preparation of the surface. The characteristics of the Ag(110) surface are 

known to be sensitive to the history of the sample preparation [91]. Early studies by 

Zanazzi et al. [83] and Maglietta et al. [15] identified the importance of a well 

prepared Ag(110) surface for determining the surface relaxation, their differences 

between theory and LEED experimental measurements were reportedly due to a 

rough crystal, with a new freshly prepared crystal the relaxation of the surface was in 

closer agreement with their theory. The sample used in this work was oriented to 

within 0.1º of the (110) plane, which is an order of magnitude greater than the 

sample used in the LEED study by Lindroos et al. [8], (other studies do not state the 

accuracy) which could also account for the differences in magnitude of the 

relaxations. 

4.3.2 Ag(111)/vacuum interface 

To determine a structural model for the Ag(111) surface measurements of the 

specular CTR, (0, 0, L) were made and the data is presented in Figure 4.5. As a 

greater range of L can be measured (compared with the Ag(110) surface), and no in-

plane reconstruction is present, the specular CTR should be sufficient to determine 

the interlayer spacing of the Ag(111) surface. The black dashed line in Figure 4.5
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Figure 4.5 Specular CTR of the Ag(111) clean surface in UHV. Black dashed line 

represents the calculated fit for a perfectly terminated. The blue line represents the 

calculated best fit to the data using the model described in the text.  

is a calculation of the Ag(111) surface with bulk termination (without any relaxations 

or surface roughness). This does not give a good fit to the measured data. The 

measured data has a slight asymmetry around the Bragg peaks which indicates that 

there is some relaxation of the surface. The intensity is also lower at the anti- Bragg 

positions, which suggests that the surface is perhaps quite rough. The CTRs were 

measured after cleaning the surface from a previous deposition of silicon on the 

surface; it is quite possible that the surface required more cleaning cycles to obtain a 

better quality surface. The Ag(111) electrode was fit with a simple model of allowing 

the top metal layer to relax and the rms roughness to vary. This however did not 

represent the data sufficiently; varying relaxations in the 2
nd

 and 3
rd

 metal layer still 

did not represent the data. It was possible to obtain a better fit to the data by using a 

structural model in which the coverage of the top metal layer was allowed to vary; 
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this gave a reduced occupancy of Ag = 0.936 ± 0.003 monolayers, (ML). The 

reduced surface occupancy has not been noted before in UHV studies, however, the 

X-ray beam is averaging over a large part of the crystal surface (which is determined 

by the footprint of the incident beam), and hence it is not unusual to observe surface 

coverage below unity. This result has been found in an electrochemical environment 

by Lucas et al. [23] with a reduced occupancy of 0.94 ML. The top two layers have a 

small inwards relaxation of ε1 = -0.007 ± 0.001 Å and ε2 = -0.013 ± 0.001 Å and a 

top layer rms roughness of σ1 = 0.053 ± 0.004 Å, which gives a reduced χ
2 

of 1.23. 

The inclusion of a third layer relaxation did not improve the fit. The 2
nd

 layer 

relaxation is slightly larger than the first, which is unusual; normally the magnitude 

of the relaxations is damped further into the bulk. This result could be explained by 

the reduced occupancy and rms roughness accounting for the relaxation of the top 

surface layer. The results are in accordance with the Landman model which predicts 

small relaxations for fcc(111) surfaces. Experimental UHV studies of the clean 

surface yield different results for the relaxations. Some authors say there is a small 

inward relaxation in the top two metal layers [12] whilst a LEED study by Soares et 

al. [14] finds that the surface is bulk like with no surface relaxations. 

The results indicate the importance of a well prepared crystal. The Ag(111) 

surface may not be the best quality surface, however, the data was taken in between 

measurements of a silicon deposition experiment (discussed in chapter 5) which 

allows direct comparison between the two systems. 

 

 Conclusions 4.4

The results are a good indication as to the clean structure of Ag(111) and 

Ag(110) which is useful to know to compare to how the surface changes when it is in 
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contact with electrolyte or with silicon deposited. The Ag(110) surface was modelled 

by multilayer relaxations which identified an oscillatory nature of the surface 

relaxations in agreement with previous experimental data and theoretical models. 

The Ag(111) surface showed much smaller relaxations and only changes to the top 

two metal layers were required to fit the data. The Ag(001) surface was not studied in 

UHV in this thesis, however, previous studies have found that small inwards 

relaxation of the surface or no relaxations at all [11]. The strength of the relaxation is 

of the order Ag(111)<Ag(001)<Ag(110). The findings for Ag(111) and Ag(110) are 

consistent with this sequence. The relaxations of the surface increase with the 

coordination number of the surface. For an fcc metal the coordination number is 12, 

but at a surface this is reduced to 9 for (111), 8 for (001) and 7 for (110). The atoms 

try to increase their electron density by relaxing towards the bulk. The (111) surface 

is the most stable, whilst the (110) surface is much more open with the lowest 

coordination number and is more prone to relaxation to reduce surface energy 

consistent with the magnitude of the relaxations determined in this chapter.    

 

 

 

 

 

 

 

 

 

 



 

  

85 

 
 

 

 

 

 

 

 

5 Silicene Structures on 

Ag(111) 

 

 

 

 Introduction 5.1

The discovery of graphene [92] and its compelling electronic properties has 

fuelled research into other 2-dimensional materials. In particular, other group-IV 

elements have received significant attention (Si, Ge, Sn) [80,81]. 2-dimensional 

forms of Si and Ge were actually predicted in 1994 by Takeda and Shiraishi [95] 

prior to the emergence of graphene. They were predicted theoretically to exist in a 

free-standing form with a low corrugated hexagonal structure – ‘buckled 

honeycomb’ - rather than the planar structure of graphene, this is shown in Figure 

5.1. Later termed ‘silicene’ [96], the silicon based analogue of graphene is now an 
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Figure 5.1 Schematics of (a) planar lattice, where grey circles represent atoms, and 

(b) buckled honeycomb lattice, where the blue circles represent atoms in the bottom 

plane and the orange circles represent atoms in the top plane. (c) Pyramid consisting 

of four Si atoms, h is the height of the top plane above the bottom – giving a measure 

of the buckling. Image reproduced with permission from [97] Copyright (2015) 

Progress in Surface Science.  

emerging new material, and is proposed to have similar novel electronic and 

chemical properties as graphene, but with the advantage of being more easily 

integrated into the silicon based electronics industry. Unlike Graphene, silicene is 

much more difficult to produce as the hexagonal structure does not exist naturally in 

a free-standing state, and cannot be exfoliated from the bulk material as Si has a 

diamond structure. This is due to the difference in hybridisation between Si and C. 

Carbon is easily sp and sp
2
 hybridised, whereas silicon undergoes sp

3
 hybridisation 

which makes a three-dimensional tetrahedral configuration, shown in Figure 5.1 (c). 
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In its lowest energy state silicene is slightly buckled and its Si-Si bond length is 

much larger compared to the C-C bond in graphene. This prevents full sp
2
 

hybridisation of the structure, the buckling enables larger overlapping of orbitals 

forming a mixed sp
2
 and sp

3
 hybridisation [98]. Free-standing silicene is predicted 

theoretically to be a gapless semiconductor with Dirac cones at the K points of the 

Brillouin zone like graphene [93]. However, the buckled nature of silicene may allow 

potential to tune the band gap, by applying an electric field to silicene may open up 

the bandgap [99]. This introduces the potential for logic applications and topological 

insulators [100].  

The immense potential of silicene has created a surge in its research within the 

past few years and understanding the atomic structure of silicene is of vital 

importance to tune its electronic properties [101]. As silicene does not occur 

naturally, a substrate is required in order to grow it. Silicene has been reported to 

grow on ZrB2(0001) [102], Ir(111) [103] and MoS2 [104]. The most promising and, 

as a result, the most widely studied substrate is silver. Silver and silicon have a low 

tendency to alloy [91-92]. Ag/Si phase diagram shows no miscibility in the solid 

phases, and the reverse system Ag on Silicon is known to make a sharp interface 

[107] which makes it an ideal substrate to study, as, for silicene to be truly ‘free-

standing’ it must have little or no interaction with the substrate. The similar 

electronegativity of Ag and Si should lead to only a small charge transfer [108] 

however, the extent of this interaction is still under debate [51]. 

The first experimental report of silicene was on Ag(111), an STM study, by 

Lalmi et al. [109], however, the results have never been reproduced and this is now 

widely disregarded. Reports have followed of silicene structures on the Ag(110) 

surface in the form of nanoribbons [110]. In 2012 the first sheets of silicene on 
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Ag(111) were reported independently by Vogt et al. [111] and Lin et al. [112].  

The growth of silicene is extremely sensitive to the Ag substrate temperature 

and the Si deposition rate. Depending on these parameters a wealth of different 

structures can be obtained (4 × 4) [83,89,93,96–103], (√13 × √13)𝑅19.9° 

[83,94,99,102,104-105], (2√3 × 2√3)𝑅30° [95,105–107], (3.5 × 3.5)𝑅26° [115] 

and (√7 × √7)𝑅19.1° [117] structures are often found to coexist. All of the 

structures are understood to be a single silicon layer, with a honeycomb lattice 

arrangement. The amount of buckling in the layer varies between the orientations of 

the honeycomb lattice [97], as the density of the unit cell varies between structures. 

Upon further deposition of Si, beyond the monolayer, a 4 √3⁄ × 4 √3⁄  [113] 

structure is formed which is proposed to be ‘multilayer silicene’ [122].  

 Despite the wealth of silicene structures the best candidate for free-standing 

silicene is the (4 × 4) structure, which is predicted theoretically, and shown 

experimentally to have a low buckled state [94,109]. As such, the (4 × 4) structure is 

the most widely investigated structure. In order to determine the atomic structure, 

surface sensitive techniques have been utilised. STM and AFM have been used to 

identify the atomic arrangement of Si, however, information relating to the substrate 

is lacking. For this, diffraction techniques such as LEED and RHEED are required as 

they are far more powerful and reliable for the determination of atomic structure. 

There have been several models proposed for the (4 × 4) structure with 

varying densities of Si atoms in the unit cell. The model which is currently accepted 

was first proposed by Lin [112] (STM, LEED) and Vogt [111] (STM, LEED) , with 

18 Si atoms in the unit cell, 12 in the lower plane and 6 buckled in a higher plane. 

This model was later backed up more detailed investigations by LEED-IV [123] and 

Reflection High-Energy Positron Diffraction RHEPD [118], which also proposed Si 
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buckling parameters of 0.74-0.78Å and 0.8 Å respectively. The differences in models 

indicate that further investigations are still required in order to confirm the correct 

structural model for the Si/Ag(111) system. The analysis of dynamical diffraction 

based techniques, such as LEED and RHEPD, is complex due to multiple scattering 

effects. The cell coordinates of all atoms in the surface region must be determined 

simultaneously, which leads to parameter coupling. These techniques are also 

primarily sensitive to the top few atomic planes and thus the precision of the 

relaxations may be low. SXRD, however, is an ideal technique which can overcome 

these uncertainties as it is sensitive to the both the surface layers and the bulk, and a 

kinematic approximation can be applied making the analysis much simpler. 

In this chapter the growth of silicene structures on Ag(111) has been 

investigated by LEED and SXRD. A preliminary structural model of the surface 

normal structure of Ag(111)/Silicene  interface is proposed. 

 

 Experimental  5.2

SXRD experiments were carried out at I07 beamline at Diamond Light Source, 

with an X-ray beam of energy 20 KeV. Silicon was evaporated from a Si rod using an 

Omicron electron bombardment evaporator with an integrated flux monitor. This was 

used to maintain a constant deposition rate. Silicene was synthesised in UHV and 

characterised in situ through SXRD. The SXRD experiment followed standard 

procedures for the collection of structure factor data to enable structure analysis. This 

involved measurement of a large set of symmetry-independent structure factors due 

to the (4 × 4) ordered silicene phase and the CTRs from the underlying Ag(111) 

substrate. A specular CTR analysis of the interface structure is given in this chapter. 

The specular CTR offers valuable information about the coverage of the silicon layer 
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and the Ag-Si layer spacings, which can be used as a starting point for the complete 

structural analysis. A full structural analysis is currently being performed, but is 

outside the scope of this thesis. The growth parameters and LEED images presented 

in section 5.3.1 were taken in the nanomaterials characterisation laboratory in the 

Stephenson Institute for Renewable Energy in University of Liverpool by the author 

of this thesis and David Martin. The initial SXRD experiment at Diamond Light 

Source was not optimised and as a result the experiment was repeated at a later time 

by David Martin, Chris Lucas, and Nikolas Antonatos from University of Liverpool 

and Matthew Forster, and Jonathan Rawle from I07, Diamond Light Source; this 

LEED and SXRD data is presented in section 5.3.2. The SXRD data presented in this 

chapter was processed and fit by the author of this thesis.  

 

 Results and discussion 5.3

5.3.1 LEED 

For optimising the growth conditions LEED was an essential technique used 

to identify the type of silicene structure on the surface. Determining the conditions 

for silicene growth was a very difficult process of trial and error to even obtain an 

ordered structure. The growth of silicene structures depends critically on the 

temperature of the substrate and the rate of deposition. The structure of Si on 

Ag(111) was investigated at different temperatures. The temperature was measured 

with a static pyrometer, Land Infrared System 4, (emissivity 0.2), from Landmark. 

To gain a temperature reading of the surface the pyrometer was positioned next to a 

viewing port on the UHV chamber and focused on the surface of the crystal. The 

substrate spots were orders of magnitude brighter than the superstructure spots, 

which drowned out the intensity from the silicene. In order to obtain clear images of  
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Figure 5.2 LEED images obtained after depositing Si at various temperatures. 

Images were taken at energies (a) 23 e V(b) 36 eV, at 248º C taken at energies (c) 33 

eV (d)  61 eV and at temperature 260º C at energies of (e) 31 eV and (f) 46 eV. 
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Figure 5.3 Simulated LEED images using LEEDpat and reproduced for presentation. 

The Ag(111) (1 × 1) substrate spots are indicated by the open yellow circles. The 

unit cell of Ag(111) is indicated by blue line, the bases for the superstructures are 

indicated by the red lines. (a) The two rotations of the (√13 × √13)𝑅 ± 13.9° 

structure are shown - two domains are overlayed in the image on the right where 

pink circles indicate the positive rotation and purple circles indicate the negative 

rotation. (b) (4 ×  4) structure (blue circles) (c) (2√3 × 2√3)𝑅30° structure (orange 

circles) additional domains (as observed in the measured LEED pattern) cannot be 

simulated.  (d) mix of (√13 × √13)𝑅 ± 13.9° and (4 ×  4) as seen in measured 

LEED images. 

the superstructure spots, the frames per second of the image capture was changed 

between images as the substrate spots came further in view – in order to reduce the 

intensity so that the superstructure spots were still in view. As the intensity was not 

relative between the images meaningful LEED-IV curves could not be extracted, 

despite this the LEED images contained enough information to determine the 

structures using image analysis software, ImageSXM written by Dr Steve D. Barrett 

(University of Liverpool). Figure 5.2 summarises the different LEED patterns that 
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were observed, and figure Figure 5.3 gives shows a simulated LEED pattern for the 

structures – for clarity. At low temperature (200℃) the coexistence of the (4 ×

4) phase and (√13 × √13)𝑅13.9° can be observed. With increased temperature, at 

248℃ only the (2√3 × 2√3)𝑅30° phase is visible, there is no pattern from the 

(4 × 4) structure. The spot splitting that can be seen is attributed to the coexistence 

of different domains of the (2√3 × 2√3)𝑅30° phase, which is more prominent with 

higher temperature as seen in Figure 5.2 (e) and (f). These results are in agreement 

with previous publications, which have shown that at lower temperatures the (4 × 4) 

structure coexists with the (√13 × √13)𝑅13.9° structure [100,101,105]. The 

(2√3 × 2√3)𝑅30° structure is found at higher temperatures and has been found to 

occur in a single phase [121]. The structure of this phase has been of great debate 

[106,111], LEED patterns showing additional spots have also been observed by 

various groups. Arafune et al. [115], Moras et al. [119]  interpret the LEED patterns 

as a mixture of structures such as (√19 × √19)𝑅23.4° and (3.5 × 3.5)𝑅26°. More 

recently Jamgotchian et al. [120] and Rahman et al. [125] associate the extra spots to 

a large (√133 × √133)𝑅4.3° superstructure. It is obvious from the LEED images 

that this structure is a complex mix of phases. For this reason, and to limit the 

complexity of analysis, the low temperature phase of the Ag(111)/Si interface was 

probed by SXRD.  

 

5.3.2 Characterisation by Surface X-ray Diffraction 

A detailed description of the atomic structure of the Ag(111)/Silicene 

interface can be determined by SXRD. Scattering from specific silicene structures 

can be separated from the scattering due to the underlying substrate. As the (4 × 4)  
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Figure 5.4 LEED images of Ag(111) surface after 60 minute Si deposition. The 

Ag(111) substrate spots are highlighted by yellow circles, Si (4 × 4) blue circles and 

(√13 × √13)𝑅13.9° red circles taken at (a) 35 eV and (b) 55 eV. 

 
structure is the most studied surface it was the focus of the SXRD measurements in 

this section. The silicene structures were grown in situ in the UHV system on I07 at 

the Diamond light source. Si was deposited for 60 minutes at 1.5 nA flux with the 

substrate held at 360 ℃. The temperature was read by a thermocouple, between the 

sample and filament, which over reads the value of the substrate temperature. The 

actual reading is estimated as 2/3 of the measured value, this was obtained by 

measuring a sample with a well-known phase transition (this was previously 

determined by other users of the beamline). This would give an actual temperature 

reading of about 240 ℃. SXRD measurements were taken in the controlled 

atmosphere of the UHV chamber. These conditions resulted in a LEED pattern as 

seen in Figure 5.4. The LEED shows a mix of co-existing structures, (4 × 4) and 

(√13 × √13)𝑅13.9°. Although there is a mix of structures, the scattering specific to 
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the (4 × 4) structure can be isolated due to the high resolution of the diffraction 

measurements. 

 

 

In-plane structure 

The in-plane directions were scanned to identify any scattering peaks 

occurring from the silicene structures. Figure 5.5 (a) shows an in-plane scan along  

the K-direction of both the clean Ag(111) surface and Si-covered surface. The 

intensity of the diffraction peaks of the Ag(111) surface dominates the measured 

signal. Since the scattering power of Si is considerably smaller than that of Ag, any 

peaks that arise due to scattering will be relatively small. Figure 5.5 (b) shows the 

data over a limited K range to highlight the peaks that arise due to the presence of the 

silicene layer. In addition to the data shown in Figure 5.5 scans along the symmetry 

equivalent directions, (H, 0), (H, K), (-H, K), and (-H, -K) were also measured.  

 

 

Figure 5.5 In-plane scan (H=0) along the K direction of the clean Ag(111) surface 

(red) and the Ag(111)/Si surface (blue). (b) smaller scale to identify (4 x 4) structure 

peak.  Measured at L= 0.8. 

(a) (b) 
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Peaks due to scattering from the silicene layer were observed at (0.75, 0), (0, 0.75), 

and (0.75, 0.75). There are other peaks of a similar magnitude to the one at L=0.75 

which can be seen in Figure 5.5, these peaks are not present in other symmetry 

equivalent directions – indicating that they are not due to ordered structures and are 

due to power peaks which can be seen in the image files.  

 

Rocking scans 

Rocking scans were performed at the superstructure peak position. The peak 

is located at H= 0.748 which corresponds to an in-plane lattice constant of a = 3.866 

Å, this is in agreement with theory models for free-standing silicene [95]. The 

rocking scans through the (0.748, 0.748, 0.8) position are shown in Figure 5.6. The 

data were fit to a Lorentzian lineshape and gave a full width at half maximum 

(FWHM) of 0.44º respectively. The domain size can be determined by using 

 
𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 =  

2

𝒒∆𝜃
 

(5.11) 

 

  

Figure 5.6 Rocking scan through the (4 × 4) structure peak (0.748, 0.748, 0.8). 
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where q is the momentum transfer and 𝜃 is the FWHM in radians. This gives an 

ordered domain size in the range 77-78 Å. The rocking scan of the (4 × 4) 

superstructure peak was measured in a study by Curella et al. [108]  at substrate 

temperatures of 520 K and 570 K. At the lower temperature the peak 2.5 times 

broader (no values given for FWHM) and the integral was 2.4 times larger; which 

suggests that although the domains of the structure are smaller at the lower 

temperature, they cover a larger proportion of the surface.  

 

 

L dependence 

The X-ray measurements focused on the diffracted intensity from the (4 × 4) 

structure. A number of CTRs and symmetry equivalent Fractional Order Rods, 

FORs, were measured. A detailed analysis of these rods is beyond the scope of this 

thesis, however, a similar study has very recently been published (2016) by Curcella 

et al. [108], which determined the atomic structure of the (4 × 4) silicene phase 

through grazing incidence X-ray diffraction measurements (GIXRD) and DFT 

calculations data. They analysed a number of FORs arising from scattering from the 

(4 × 4) structure (calculated from rocking scans performed along the FORs), no 

CTRs were included in the analysis as they would contain information relating to 

other silicene orientations. The analysis from the GIXRD experiment indicates that 

the silicene unit cell consists of 18 atoms, with 6 atoms lying above the plane of the 

other 12 atoms, consistent with previous works [123]. Curcella et al. determine the 

distance between the two planes corresponds to a buckling of 0.76 Å and a buckling 

of the top two Ag metal layers which is consistent with a previous LEED study 

[123], the structural model determined by Curcella is shown in Figure 5.8. The form  



 

  

98 

 
 

 

Figure 5.7 L scans along the first and second order superstructure rods, (-0.746, 

0.746, L) and (-1.492, 1.492, L) respectively. 

 

 

 

Figure 5.8 Top and side view of the (4 x 4) reconstruction of silicene on Ag(111), 

showing the unit cell, the top layer Si atoms (red), bottom layer Si atoms (orange), 

top Ag metal layer (dark grey) second layer Ag (light grey). Reprinted with 

permission from Curcella et al. [108] Copyright (2016) American Physical Society.  
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of the FORs in Figure 5.7 is very similar to those presented by Curcella which 

suggests that the structure would be very similar. The structural analysis presented 

by Curcella et al. does not include the CTRs, which are important to reference the 

structure to the substrate. It is not clear whether the CTRs were initially considered 

in the analysis, and determined to be too complicated; as the CTRs will have 

contributions from the other silicene structures on the surface. 

 

Specular CTR analysis 

A simpler analysis is to focus on the structure along the surface normal by 

analysing the specular CTR. The specular CTR is not sensitive to the in-plane atomic  

 

Figure 5.9 Specular CTR data of Si on Ag(111). The dashed black line is the 

calculated perfectly terminated Ag(111) surface with no silicon. The red line is the 

calculated CTR of a perfect monolayer of Si on the Ag(111) surface (with layer 

spacing fixed at bulk Ag value d(111) = 2.36 Å). The green line is the fit with 1 

adlayer of silicon, and the blue line is the fit with two Si adlayers which gave the best 

fit to the data. 
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positions and is thus not specific to the (4 × 4) structure, but a sum over all of the 

silicene structures and the average in-plane Ag positions. The specular CTR and 

calculated fits can be seen in Figure 5.9.  The shape of the CTR is dramatically 

different from the bulk terminated Ag(111) surface, represented by the black dashed 

line. The profile of the CTR is consistent with there being one monolayer of silicon 

on the surface as the intensity has a minima at the anti-Bragg position. A calculation 

according to a model with 1 monolayer (ML) of silicon (height of layer fixed at the d 

spacing of Ag(111) d(111) = 2.36 Å) on an unrelaxed Ag(111) surface is shown in 

Figure 5.9 as a comparison (red line). This does not give a good fit to the data, 

however, the form is very similar, suggesting a monolayer of Si on the surface. To 

model the data the vertical displacement of the top two metal layers, and the rms  

roughness of the top layer was allowed to vary, the silicon was incorporated into the 

fit as an adlayer, and the coverage and height of the layer was also varied. This gave  

 

Figure 5.10 Schematic representation of the structural model of the Ag(111)/Si 

interface as determined by the model described in the text. The silver coloured balls 

represent the top 3 Ag surface metal layers. The orange circles represent the Si layer 

closest to the surface, and the red circles represent the top lying silicon atoms. 
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the poor fit represented by the green line with a reduced χ
2 

of 15.36. This indicates 

there was something missing from the model. To improve the fit to the data it was 

necessary to incorporate a second silicon layer into the model. The best fit indicated 

the silver layers undergo a small outwards relaxation; top metal layer was expanded 

by 0.033 ± 0.001 Å, and had a rms roughness of σ=0.124 ± 0.004, second atomic 

layer relaxation of 0.012 ± 0.001 Å. The first silicon layer is located at 2.307 ± 0.005 

Å above the top Ag metal layer, with coverage of 0.894 ± 0.007 ML and the second 

silicon layer is 3.50 ± 0.02 Å above the top metal layer with a coverage of 0.293 ± 

0.008 ML, the rms roughnesss of the Si layers were fixed just above the value 

determined for Ag, at 0.15 Å, as this parameter can couple with the coverage during 

the fitting procedure. This fit gave a reduced χ
2 

= 1.62, Figure 5.10 shows a 

schematic representation of the structural model. With silicon deposited, the inwards 

relaxations determined for the clean Ag(111) (in chapter 4) become an outward 

relaxations. This finding is consistent with the structural model determined by 

Curcella [108], which indicates a buckling in the top two silver layers. The specular 

CTR is not sensitive to in-plane positions and thus gives an average of the 

displacement of the layer as a whole. As the interlayer spacing between the two Si 

layers is small 1.19 ± 0.02 Å it is associated with the the buckling of the Si layer, 

rather than due to a bilayer of silicene. The buckling obtained for the Si layer is far 

greater than 0.76 Å previously determined for the (4 × 4) structure [108], however, 

it is not an unreasonable result considering the specular CTR accounts for the whole 

surface with scattering contributions from all of the silicene phases. It is possible that 

the (4 × 4) structure is not the most dominant phase on the surface. Theoretical 

models have predicted the (√13 × √13)𝑅13.9° and (2√3 × 2√3)𝑅30° are more 

strongly bucked ~1-1.2 Å [126], however; no experimental out of plane atomic  
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Figure 5.11 (a) Specular CTRs of the clean Ag(111) (green) and Si/Ag(111) (blue), 

(b) Si/Ag(111) normalised to the clean Ag(111) data (black circles) and ratio of the 

calculated fits (red line.) 

 

structure of the interface has been determined for these phases. The increased 

buckling is attributed to the increased density of the structure. 

In Figure 5.11 the data of the silicene covered Ag(111) surface is compared 

to the clean Ag(111) (which was presented in chapter 4). The ratio of the two 

datasets highlights the differences between the two systems and removes systematic 

errors. The solid line is the ratio of the two models used to fit the CTR data. The 

CTRs were modelled independently and a good fit to the ratio of the data indicates 

that any differences between the CTRs are well modelled.  Although this is a simple 

model, it is a useful starting point to determine the structure of the Ag(111)/Silicene 

interface. As the specular CTR is an average over all the structures it also gives the 
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first experimental indication to buckling in the (√13 × √13)𝑅13.9° structure. In 

order to establish the in-plane structure a comprehensive study of CTRs fractional 

order reflections is still required. This will be similar to the publication by Curcella, 

in addition, by including the CTRs in the analysis the silicene structure can be 

directly related to the bulk silver crystal. This would make for a more complex 

analysis as there would be scattering contribution from the (√13 × √13)𝑅13.9° 

structure. 

 

Deposition time 

In this section the effect of Si deposition time on the (4 × 4) structure is 

determined. Silicon was deposited with a flux of 1.60 nA and the substrate was held 

at temperature ~238º throughout the measurements. The intensity was measured 

along the H direction through the (0.75, 0, 0.8) peak, (which occurs due to scattering 

from the (4 × 4) with increasing deposition time, this is shown in Figure 5.12 (a). 

The peak intensity increases with increasing deposition time until it levels off at 70 

minutes (no LEED pattern was taken at this point – although LEED images were 

taken at 65 mins, Figure 5.4, and 75 mins, Figure 5.13). The increase in intensity at 

this position is attributed to the increasing coverage of the (4 × 4) structure. The 

point where the intensity levels off indicates the completion of a silicene monolayer. 

Figure 5.12 (b) shows the change in peak intensity with increasing deposition time 

and indicates a linear uptake of Si on the surface.  
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Figure 5.12 (a) Scans measured through the (H, 0, 0.8) direction for increasing 

deposition time of Si, (b) Intensity of the (0.76, 0, 0.8) peak with increasing 

deposition time of Si. 

As the intensity saturated at 1 ML and took approximately 70 minutes the deposition 

rate could be calculated; 0.014 ML/min. The linear deposition rate is consistent with 

the study by Vogt et al. [111] which found slow deposition rates produce a better 

quality silicene structure. The deposition rate used by Vogt et al. was 0.016 ML/min 

and yielded a (4 × 4) LEED pattern, with no indication of other structures present on 

the surface. Although the structure presented in this chapter was grown at a similar 

deposition rate, a single (4 × 4) structure could not be obtained; this shows the 

difficulty and sensitivity of the growth of silicene. This is consistent with the LEED 

images, Figure 5.13, taken after 75 minutes of Si deposition. The LEED pattern is 

similar to that taken for 60 minutes; however, there is an appearance of extra spots 

which can be attributed to the (4/√3 × 4/√3) which is consistent with studies in the 

high coverage regime where this structure appears [127]. The structure appears as 

part of a halo structure in the LEED images, which indicates that there are various 

rotational domains. The (4/√3 × 4/√3) structure has been attributed to a bilayer of 

silicene by Arafune et al [127]. Padova et al. [128] have suggested that the structure 

is multilayer silicene, formed by islands of the (4/√3 × 4/√3) structure.  

(a) (b) 



 

  

105 

 
 

 

Figure 5.13 LEED images after 75 minute Si deposition Ag(111) substrate spots 

indicated by yellow circles, (4 × 4) blue circles and (√13 × √13)𝑅13.9°, green 

(4/√3 × 4/√3)  taken at (a) 31 eV and (b) 48eV. 

 
 

Figure 5.14 Simulated (4/√3 × 4/√3) LEED pattern by LEEDpat and reproduced 

for presentation. The Ag(111) (1 x 1) substrate spots are indicated by the yellow 

circles, spots arising from the silicene structures are indicated by the green circles. 

The unit cell of Ag(111) is indicated by blue line, the bases for the (4/√3 × 4/√3)  

are indicated by the red lines. 
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The model of this structure is still under debate as a structure similar to the Si (111) 

(√3 × √3) –Ag structure has been also been proposed [122]. 

A set of CTR and FOR measurements were taken after 75 minutes 

deposition. In Figure 5.15 the specular CTR is compared with the data from the 60 

minute deposition and the clean Ag(111) surface. A model to this data has not yet 

been determined due to time constraints. As the interface structure is complex, it has 

proven difficult and time consuming to reproduce at fit to the data. However the 

form on the CTR is still of importance to and supports conclusions drawn from 

analysis of the LEED images. 

 

Figure 5.15 Specular CTR data of the clean Ag(111) surface, red, 60 minute Si 

deposition, blue, 75 minute Si deposition, cyan. 

 

The shape of the 75 minute deposition is similar to that of the 60 minute 

deposition; however there are oscillations along the profile. The oscillations indicate 

that there are areas of several layers of silicene on the surface. From the LEED and 



 

  

107 

 
 

specular CTR measurements it is possible to assume that there are islands of 

(4/√3 × 4/√3) multilayer silicene coexisting with patches of monolayer silicene, as 

the (4 × 4) and (√13 × √13)𝑅13.9° structures are still visible in the LEED pattern. 

Full CTR analysis would vital to help elucidate this structure. 

 

 

 Summary and conclusions 5.4

Silicene structures were successfully grown on the Ag(111) substrate. The 

Si/Ag(111) forms an exotic mix of structures and it is has proven difficult to form a 

single phase on the surface. SXRD is therefore the ideal technique in order to probe 

individual structures as the scattering from these structures can be separated in 

reciprocal space and a detailed analysis can be obtained.  

   The first specular CTR study of the interface structure has been presented, 

from this the average structure of the Si/Ag(111) interface has been determined. The 

analysis indicates interesting differences to the study by Curcella et al. [108], which 

only considered scattering from the FORs for the (4 × 4) silicene structure. The 

overall buckling of the surface was much greater than the value determined for the 

(4 × 4) structure indicating that this may not have been the most dominant structure 

on the surface under study. The specular CTR will have a contribution from the 

(√13 × √13)𝑅13.9° structure as it is not sensitive to in-plane ordering. The result is 

interesting as it hints at a larger buckling, likely due to the (√13 × √13)𝑅13.9° – 

which has only been theoretically predicted. 

  It is clear, that in order to obtain a complete analysis of the Ag(111)/Silicene 

interface the structure of the other silicene orientations needs to be addressed. The 

deposition of Si undoubtedly has an effect on the surface Ag(111) surface as it 
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undergoes small, but non-negligible changes which results in the expansion of the 

top two surface metal layers. The interaction of Si with the Ag(111) surface could be 

probed further by resonant surface X-ray diffraction which could determine the 

charge transfer at the interface [129]. 
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6 Ag(hkl)/Alkaline electrolyte 

interface  

 

 

 Introduction 6.1

The development of new materials for clean energy conversion and storage is 

of vital importance towards the advancement of renewable energy technologies. A 

fundamental understanding of the structure at the electrochemical interface is central 

to this. Both the nature of the electrode material and the structure of the 

electrochemical double layer (as discussed in chapter 2) govern the mechanisms of 

important electrochemical processes, such as the Oxygen Reduction Reaction, 

(ORR), Hydrogen Oxidation Reaction, (HOR) and CO oxidation amongst others. 

Despite this, the focus of studies is predominantly on the metal side of the interface, 

and information about the double layer is severely lacking. Knowledge of the double 
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layer structure and how its architecture affects the kinetics of reactions allows for 

specific tailoring of the electrochemical interface.    

Two types of interaction at the electrochemical interface have typically been 

considered: 

1) Direct covalent bonding between adsorbates and the substrate - 

chemisorption. This occurs in the inner Helmholtz plane (IHP) where ions 

lose their solvation shell and become specifically adsorbed on the electrode 

surface. 

2) Weak electrostatic, van der Waals, forces. This occurs in the outer 

Helmholtz plane (OHP) and affects ions near to the electrode surface, but 

does not involve any direct bonding – ions retain their solvation shell.  

There have been a vast amount of studies of the structure of adsorbed species in the 

IHP, but an understanding of the OHP is lacking due to the limitations of in situ 

structural techniques. In recent years there has been a growing number of studies 

focussing on the structure of the electrolyte side of the interface where there is no 

specific adsorption [19, 51,131–138] most of these studies use SXRD. SXRD is the 

ideal technique to probe the structures in the electrolyte as X-rays do not interfere 

with the interface structure, unlike STM [138]. By combining specular crystal 

truncation rod (CTR) measurements (where the momentum transfer, Q, is entirely 

along the surface normal direction) with non-specular CTR results (where Q has an 

additional in-plane component) it is possible to probe both the surface metal layers 

and ordering above the interface, i.e. in the electric double layer, where the species 

are usually incommensurate with the underlying crystal lattice. Toney et al. [53] 

have used this technique to probe the structure of water molecules at the 

Ag(111)/alkaline interface. A non-adsorbing electrolyte of 0.1 M NaF was used in 
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order to solely observe the effect of the water molecules. They proposed a dense ice-

like water structure at the interface, and the flipping of water molecules dependent 

upon the applied potential. 

 Strmcnik et al. [139] indicated cations are not specifically adsorbed on the 

electrode surface, but are located within the double layer and have a significant 

influence on the electrocatalytic trends in the ORR, HOR and oxidation of methanol 

on platinum.  This was subsequently confirmed through SXRD results [132] which 

proposed at positive potentials adsorbed OH
-
 stabilised partially hydrated cations 

through non-covalent electrostatic forces. The non-covalent interactions between the 

cations and the adsorbed OH were found to increase in accordance with the 

hydration energies of the cations (Li
+
>> Na

+
>K

+
>Cs

+
) which also corresponded to 

the coverage of clusters on the surface. These trends were found to be inversely 

proportional to the activities of the ORR and HOR. It was deduced that the coverage 

of spectator species (such as cations) has a major effect on the ORR in alkaline 

electrolytes as the presence of OH-cation clusters in the double layer blocks 

adsorption sites for reactants and therefore it is vitally important to understand their 

structure. Interestingly, Strmcnik et al. [132] compared the results to those obtained 

on nanoparticle systems which indicated an exact correlation. This stresses the 

importance of studies of model single crystal systems.  

The studies have been extended by other groups to investigate silver single 

crystal surfaces. Nakamura et al. [24, 134] studied the Ag(001)/alkaline electrolyte 

interface in which hydrated Cs-water clusters were located above a c(2 x 2)-Br 

structure on the Ag(001) surface. The coverage and distance of Cs
+
 layer within the 

OHP varied with potential. The Ag(111)/0.1 M KOH interface was investigated by 

Lucas et al. [23], it was proposed that at negative potential there is no adsorbed 
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species, but there is a presence of a hydrated cation at 4.1 Å,  above the surface 

stabilised in the OHP by an electrostatic field effect (induced by the applied 

potential). At positive potential specifically adsorbed OH stabilises the hydrated 

cations at a distance of 3.6 Å above the surface through non-covalent (van der 

Waal’s) interaction forming a compact double layer. 

There have been numerous studies of surface oxidation of silver due to the 

role that the oxide plays in the catalytic gas phase reactions of ethylene epoxidation 

and methanol oxidation [16]. Despite this, a detailed knowledge of the Ag/alkaline 

interface, and a fundamental understanding of the electrocatalytic properties is 

lacking. There has been considerably less study of the underpotential region of 

oxidation, despite the fact that this is the potential region of the oxygen and hydrogen 

peroxide reduction reaction. This is mainly due to the difficulty in obtaining atomic-

scale structural information from a reactive surface in the liquid environment.  This 

chapter aims to give a comprehensive study of the structure of the Ag(hkl)/alkaline 

interface in the underpotential oxide region. Potentiodynamic X-ray Voltammetry 

(XRV) measurements, which involves monitoring the X-ray intensity of a structural 

feature as the potential is cycled, have been performed to determine the potential 

dependent structural changes at the interface. In addition to this the surface structure 

has been characterized at fixed potentials of interest by CTR analysis to resolve any 

changes highlighted by the XRV data. These studies have been extended to 

investigate the effects of the ORR and CO adsorption and oxidation on the double 

layer structure. 
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Cyclic voltammetry of the Ag(hkl) surfaces 

The adsorption of oxygen and hydroxide species onto metal surfaces is key to 

understanding surface reactivity and catalytic behaviour both in the high pressure gas 

environment and at the electrochemical interface Figure 6.1 represents the cyclic 

voltammetry (CV) of the three low index Ag(hkl) surfaces in 0.09 M NaF + 0.01 M 

NaOH electrolyte over the potential region for OH
- 

adsorption [140]. In this 

electrolyte fluoride (F
-
) and hydroxide (OH

-
) are known to coadsorb, the extent to 

which they adsorb is dependent upon the pH of the electrolyte. There is a crossover 

between OH- dominated (highly alkaline solutions) to F- dominated adsorption 

(neutral and acidic solutions). For the purpose of this work, an alkaline pH was used 

to favour OH- adsorption. In Figure 6.1 (a) all CV datasets have two sets of broad 

anodic and cathodic current peaks, which are found to be pH-dependent [140]. The 

first peak is attributed to the specific adsorption o hydroxide (OHads). The second set 

of peaks at more positive potential is attributed to the discharge of OH followed by 

the formation of a submonolayer surface oxide, Ag2O. In Figure 6.1 (b) the CVs of 

the three faces are compared using the potential of zero charge (pzc) scale. 

Comparing the faces indicates that the onset of both sets of peaks occur at the same 

potential relative to the pzc. This indicates that the difference in peak positions is due 

to the work function of the surface.  

Over this electrochemical potential region the processes are reversible; 

indicated by the symmetry of the CV around the x-axis. Previous studies have found 

the adsorption of OH
-
 is a precursor to irreversible oxide formation on Ag surfaces at 

more positive potentials [132–134] The formation of a  Ag2O surface oxide phase 

changes the structure of the metal surfaces irreversibly, which affects the  
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Figure 6.1 Ag(hkl) Cyclic voltammetry of Ag(111) (dotted line), Ag(110) (solid 

line), and Ag(100) (dashed line) in contact with 0.09 M NaF + 0.01 M NaOH: (a) 

potential referred to Hg/HgO/0.1 M NaOH; (b) potential referred to the respective 

pzc’s. Reprinted with permission from [140] Copyright (2004) American Chemical 

Society.  

electrochemical response. For the CTR measurements presented in this chapter the 

electrochemical window was restricted to within -1.0 V and -0.2 V (vs Ag/AgCl) - 

the region for reversible adsorption – in order to study the changes in the electric 

double layer structure.Ag(hkl) in 0.1 M NaOH + 0.09 M NaF: Potential effects 

6.1.1 Ag(111) 

To characterise the system, XRV measurements were performed at several 

structure-sensitive positions along the CTRs seen in Figure 6.2 at (a) (0, 0, 1.6) an 

anti-Bragg position on the specular which is sensitive to any layered electrolyte 

ordering at the interface (b) (1, 0, 3.7) a position on the (1, 0, L) CTR which is  
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Figure 6.2 X-ray voltammetry (XRV) measured at (a) (0, 0, 1.6), (b) (1, 0, 3.7) and 

(d) (0, 1, 0.51). Sweep rate 20 mV/s. 

sensitive to surface relaxation. (c) (0, 1, 0.52) an anti-Bragg position on the (0, 1, L) 

CTR sensitive to atomic positions which are commensurate with the Ag surface. The 

reversibility of all XRVs between these potential limits indicates that the processes 

occurring are fully reversible. The changes to the non-specular CTR positions are 

very small which indicate that there are only subtle effects occurring to the metal 

side of the interface; the intensity is proportional to the change in relaxation at the (1, 

0, 3.7) position. Conversely, the changes at the specular CTR, are relatively large 

(~50% change in scattered intensity as seen in Figure 6.2). As there are only small 

surface relaxations in the metal, and there is no reconstruction, changes to the 
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specular CTR can be attributed primarily to the electrolyte side of the interface; the 

large change in intensity indicates the electrolyte must undergo significant 

restructuring between the potential limits. The change in scattered intensity at the (0, 

0, 1.6) position is linked with the adsorption of OH
-
, the increasing coverage of 

OHads on the positive scan causes a decrease in scattered intensity, and an increase on 

the negative sweep corresponding to the desorption of OH
-
. The XRVs are used to 

evaluate the potential ranges over which stable interface structures are formed.  

The system can then be studied in detail (via CTR measurements) at the 

relevant applied potentials to identify a structural model for the system. The CTR 

data was measured at E= -1.0 V, the negative potential limit corresponding to a 

region where there is no specific adsorption, and at E= -0.2 V, the positive potential 

limit corresponding to the region where OH is specifically adsorbed on the electrode 

surface. By modelling the CTR data a structural model for the system can be 

determined. To begin with the non-specular CTRs are fit separately to model the 

structure of the metal. Once a good fit is obtained the parameters are fixed, and the 

specular CTR is included in the fit to model any ordering in the electrolyte. After a 

good fit to the specular is obtained, then the parameters from non-specular CTRs and 

specular CTR are varied together in order to optimise the fit. In addition to this data 

taken at two different potentials can be fit simultaneously by modelling the ratio of 

the data sets. The ratio of the datasets highlights the changes between the systems, by 

modelling the ratio the systematic error is removed and a good fit to the ratio 

indicates differences between the datasets have been well modelled. The CTR fits or  
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Figure 6.3 Crystal Truncation Rod (CTR) data of the Ag(111)/0.09 M NaF + 0.01 M 

NaOH interface measured at −1.0 V (red), and −0.2 V (blue) versus Ag/AgCl (a) the 

specular CTR, (0, 0, L) and (b) (c) the non-specular CTRs, (0, 1, L) and (1, 0, L) 

respectively. The CTR data measured at −0.2 V was normalized to the data measured 

at −1.0 V (d) (0, 0, L), (e) (0, 1, L) and (f) (1, 0, L). The solid lines are fits to the data 

according to the structural model described in the text. The dashed line in (a) is a 

calculation of the specular CTR without inclusion of any ordering in the electrolyte. 

ratio fits can be weighted in the program. This method is especially important for 

fitting data where there are only small changes between datasets. Unless stated 

otherwise, this fitting method was used for the rest of the data in this chapter. The 

data and calculated fits can be seen in Figure 6.3 and parameters are summarised in 

Table 6.1. Parameters without an associated error were not varied. This is justified as 

many of the parameters are coupled, and varying them all together does not always 

give sensible values, or errors, for some parameters. The best fit was obtained by 

varying the vertical displacement of the top surface layer, 𝜀, and the  root-mean-

squared (rms) surface roughness (𝜎𝐴𝑔). The occupation (θ) of the layer was fixed at 

1, varying the parameter did not indicate reduced occupancy and did not improve the  
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        parameter -1.0 V -0.2 V 

Metal layer 

ε1(Å) -0.021(1) -0.0417(1) 

σAg1 (Å) 0.124(2) 0.117(2) 

Oxygen    

layer 

θ 0.22(3) 0.78(2) 

dAg-O (Å) 2.74(8) 2.51(2) 

σO (Å) 0.15 0.15 

 θ 0.42(2) 0.14(2) 

Na
+ 

layer dAg-Na (Å) 4.06(1) 3.57(2) 

 σNa (Å) 0.15 0.15 

 Reduced χ
2
 1.75 1.40 

Table 6.1 Parameters giving the best fits to the data. The metal layers and adlayer 

parameters were varied simultaneously to obtain the final fit to the data. 

fit. The best fit to the non-specular CTRs indicates that the top surface layer 

undergoes a small inward relaxation ~ 0.9 % of the Ag(111) layer spacing 

(d=2.36 Å), this is consistent with a previous study of Ag(111) in an alkaline 

electrochemical environment where a 0.7 % contraction of the top metal layer is 

determined, and consistent with UHV studies which identify a small inward 

relaxation of the clean surface at room temperature. Although this model gives a 

good fit to the (1, 0, L) and (0, 1, L) CTRs, it does not give a good fit to the specular 

CTR. As the specular CTR is sensitive to scattering from the electrolyte side of the 

interface, it was important to include electrolyte layering into the model; which was 

modelled by incommensurate adlayers. The rms roughness of adlayers was fixed at 

𝜎 =0.15, slightly above the value determined for the top metal layer. The best fit to 

the data gave two adlayers located at 2.74 Å and 4.06 Å. As there is no specific 
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adsorption at negative potential the adlayer at 4.06 Å is attributed to a layer of Na
+
 

cations in the outer part of the double layer. This is appropriate as although the ionic 

radius of Na
+
 is 0.95 Å, Na

+
 is expected to be hydrated and the hydration radius of 

Na
+
 is large much larger 1.8 Å indicating that the distance to the Na

+
 cations should 

be relatively large This is consistent with the K
+
 cation layer in the study by Lucas et 

al. [23] where it is situated 4.1 Å above the electrode surface. The adlayer closer to 

the surface is attributed to an ordered water layer above the electrode surface in the 

IHP, which was modelled as an oxygen layer with coverage θ = 0.22 ± 0.03 ML. 

This differs slightly from the model by Lucas et al. [23] which was fit with only a K
+
 

layer, however, water molecules are known to order at an electrode surface when a 

charge is applied to the electrode[53], [54] as the electric field at the interface 

orientates the water molecules near to the surface.  

Scanning the potential to -0.2 V dramatically changes the specular CTR. The 

ratio of the -0.2 V and -1.0 V data are seen in Figure 6.3. The ratio highlights the 

systematic differences between the two data sets which are consistent with the 

changes seen in the XRV. The best fit to the non-specular data indicated that the 

inward expansion of the top layer increased to 1.7 % at positive potential. The 

increase in relaxation is induced by the specific adsorption of OH
-
 and is again 

consistent with the study by Lucas et al. To obtain the best fit to the specular data, 

the inclusion of two adlayers was necessary. The distance of both adlayers to the 

metal surface significantly decreases from negative potential to dAg-O=2.51 Å  and 

dAg-Na=3.57 Å. As OH
-
 adsorption is known to occur at this potential the first adlayer 

is attributed to specifically adsorbed OH. The Ag-O layer spacing is much larger 

than that determined 2.2 Å by Lucas et al.. The difference between the bond length 
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could be due to the interaction of different cations in solution. As the scattering 

factor from H is small, OH was modelled as an oxygen layer. The second layer is 

assigned to a Na
+
 cation layer which is in close proximity to the electrode surface. 

The spacing between the Na
+
 cation adlayer and the Ag(111) surface is consistent 

with previous similar studies of K
+
 adsorbed on Ag(111) [23] and Ba

2+
 cations 

adsorbed on Pt(111) [132], the metal-solvated cation spacings found were 3.6 Å and 

3.4  Å respectively. As the non-hydrated ionic radius of Na
+
 is 0.9 Å, the cation 

cannot be specifically adsorbed as the layer spacing is too large, which suggests that 

the Na
+
 cations are hydrated. Strmcnik et al. [132] proposed that Ba

2+
 cations 

become partially hydrated whilst non-covalently interacting with the OHads. The 

model is plausible for this system, however, it is not certain and further 

investigations would be needed in order to determine any partial charge transfer at 

the interface. 

6.1.2 Ag(110) 

Although there have been a few in situ studies of the Ag(111) underpotential 

oxidation, there have been no structural studies of the Ag(110) electrode surface in 

an electrochemical environment. There have, however, been ex-situ LEED/RHEED 

measurements reported. Horswell et al. [21], [140] studied hydroxide adsorption on 

Ag(110) in alkaline electrolyte. The sample was emersed at a range of potentials and 

studied with LEED. The results indicated that the structure of OH was potential 

dependent; at low coverage of OHads a c(2 x 6) LEED pattern was observed, at more 

positive potentials OH fills in the troughs and forms a c(2 x 2) pattern. With the 

onset of surface oxide formation the observed LEED pattern was (1 x 1), however, 

the pattern had faint spots with a high background, which could be due to a 

disordered adlayer or due to electrolyte deposition as a result of wet emersion.   
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The potential dependent structure was monitored by XRV measurements. 

These were made at three structurally sensitive positions in shown in Figure 6.4 (a) 

(0, 0, 1.02), an anti-Bragg position on the specular CTR sensitive to any layered 

ordering at the interface, (b) (1, 0, 0.2) an anti-Bragg position on the (1, 0, L) non 

specular CTR sensitive to relaxation (c) (0, 1, 0.3) an anti-Bragg on the (0, 1, L) non-

specular CTR sensitive to relaxation. The (0.5, 1.5, 0.2) fractional order position was 

also monitored which is sensitive to the (2 x 2) structure, however, no scattering 

above the background level was observed at any applied potential which indicated 

that there was no in-plane ordering which could be identified. As the potential is 

cycled from -1.0 V to -0.2 V there is a decrease in the intensity is observed at (1, 0, 

0.2) which is consistent with a change in the relaxation of the Ag surface. The 

 

Figure 6.4 X-ray voltammetry (XRV) measured at (a) (0, 0, 1.02), (b) (1, 0, 0.2) and 

(c) (0, 1, 0.3).  
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onset of the decrease in intensity coincides with the adsorption of OH (as determined 

by voltammetry measurements [21,23]). 

The changes to the intensity at the specular CTR position are relatively large 

(~50% change in scattered intensity), and is attributed to the increased OH
-
 coverage. 

To derive a structural model, of the surface CTR data was taken at fixed potentials (-

1.0 V and -0.2 V), the specular CTR, which is sensitive to ordering in the surface 

normal including ordering in the electrolyte, and two non-specular CTRs (0, 1, L) 

and the (1, 0, L) sensitive to changes in the metal. If indeed there are ordered 

structures on the surface then scattering from them will make a contribution to the 

non-specular CTRs and must therefore be included in the model. The data and 

calculated fits are shown in Figure 6.5, and the corresponding structural parameters 

are summarised in Table 6.2. The calculated bulk terminated surface is indicated by 

the dashed lines in Figure 6.5, at both potentials and there are large differences in the  

 

Figure 6.5 CTR data at -1.0 V (red) and -0.2 V, black dashed line indicates the 

calculated bulk terminated surface (a) Specular CTR data (b) ratio -0.2V/-1 V (c) (d) 

non specular CTRs (0, 1, L) and (1, 0, L) respectively (e)(f) ratio -0.2 V/-1.0V. Solid 

lines are fits to the data. 
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 Parameter -1.0 V -0.2 V 

 ε3 (Å) 0.007(2) 0.020(5) 

 σAg3 (Å) 0.122(7) 0 

Metal layers ε2(Å) -0.023(2) -0.038(5) 

 σAg2 (Å) 0.193(7) 0.13(1) 

 ε1(Å) -0.023(1) 0.086(2) 

 σAg1 (Å) 0.328(4) 0.464(8) 

 θ0 0.60(5) 0.81(6) 

Oxygen layer dAg-O (Å) 2.87(4) 2.20(4) 

 σO (Å) 0.15 0.15 

 θ0 - 0.58(6) 

Oxygen layer dAg-O (Å) - 3.29(7) 

 σO (Å) - 0.15 

Error Function 

σE 0.5 0.5 

dE 5.00(9) 5.15(1) 

 Reduced χ
2
 1.60 1.98 

 

Table 6.2 Parameters giving the best fits to the Ag(110) CTR data at -1.0 V and -0.2 

V. The metal layers and adlayer parameters were varied simultaneously to obtain the 

final fit to the data. 

measured data. It was possible to obtain a reasonable fit to the first order non-

specular CTRs (0, 1, L) and (1, 0, L) by varying the structural parameters of just the 

top metal layer. However, as was found with the UHV data in chapter 4, a good fit to 
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all of the CTR data could not be obtained without considering multilayer relaxations 

of the surface.  

In order to obtain a good fit to the data, all 3 CTRs were fit simultaneously. 

At negative potential, -1.0 V, the first and second metal layers are both relaxed 

inward and the third layer has a small outward relaxation, resulting in an overall 

surface relaxation ∆13 = -2.08 %. Surface relaxations were not sufficient to fit the 

specular CTR, which is sensitive to ordering in the surface normal from surface 

metal layers and any ordered electrolyte layering. To obtain a good fit to the data the 

rms roughness of all 3 metal layers was included in the fit. The rms roughness of the 

top metal layer was relatively large 0.328 ± 0.004 Å indicating that the surface is 

quite rough in an electrochemical environment compared with 0.22 Å determined for 

a clean surface in UHV (chapter 4). The specular CTR data has an oscillation 

occurring at ~ L=1, which cannot be modelled by the fit to the data without inclusion 

of any electrolyte ordering in the structural model. The best fit to the data was 

obtained by modelling the electrolyte with an adlayer and an error function. An error 

function (as discussed in chapter 2) models the scattering contribution from the bulk 

electrolyte, it is modelled from zero to infinity in the surface normal direction and 

saturates at the bulk density of water.  The best fit was obtained with an adlayer at a 

height of 2.8 Å above the surface and an error function saturating at around dE = 5 Å. 

There is no OHads, thus the adlayer is attributed to a Na
+ 

layer. This distance seems 

relatively close to the surface in comparison to the Ag(111) surface, where the Na
+
 

layer was located at 4.06 Å, however, it is perfectly reasonable if the geometry of the 

surface is considered. As the Ag(110) surface is much more open than the Ag(111) 

surface then the Na
+
 layer could be located closer to the surface. The distance of 

closest approach of the Na
+
 cation can be calculated using the hard sphere model, 
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given the metallic radius of silver (1.45 Å) and the hydrated radius of Na
+
 (taken to 

be 1.8 Å) then the height above the surface is 2.2 Å for the hollow sites.  

At positive potential, -0.2 V, there are changes to the non-specular CTRs, 

indicating a change in surface relaxations which is consistent with the XRV in Figure 

6.4. The metal was modelled by varying the displacements of the top three metal 

layers and the roughness. The best fit to the data indicated that the top metal layer 

has a large outward relaxation 0.086 Å; ~6 % of the interatomic layer spacing (1.444 

Å), accompanied by a large rms roughness of 0.464 Å. The magnitude of the 

relaxations in the 2
nd

 and 3
rd 

layers is also greater at positive potential. The 

relaxations result in a larger layer spacing between layers 1 and 2 ∆12= +8.53 % and 

a reduced layer spacing between layers 2 and 3 ∆23= -4.0%. At this potential there is 

a dramatic change to the shape of the specular CTR where there is a large 

aysmmetric dip in intensity between L = 0.75 and L = 1.2. To obtain a good fit to the 

data the electrolyte was modelled with two adlayers and an error function. The layer 

closest to the surface is attributed to specifically adsorbed OH, without this layer the 

dip in intensity on the specular CTR cannot be replicated by the model. The Ag-OH 

layer spacing of 2.2 Å would suggest that OH is adsorbed on atop sites, from hard 

sphere model calculations. The cation moves away from the surface to allow OH
-
 

adsorption but are stabilised by the OHads at a distance of 3.29 Å from the metal 

surface. The distribution of adlayers in this system is very similar to the structure 

found for the Ag(111) interface. The Na
+
 cation layer is in close proximity to the 

OHad on the surface, suggesting the cation is stabilised by non-covalent interactions 

with OHads.  
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In contrast to the Ag(111) surface the Ag(110) surface undergoes a large 

outward expansion with the adsorption of OH
-
, this is consistent with UHV studies 

where a large expansion (~7%) of the Ag(110) surface layer has been reported which 

is induced by the adsorption of oxygen on the surface [6]. In contrast to UHV where 

the surface undergoes a (2 x 1) reconstruction with oxygen adsorption, the surface 

does not appear to reconstruct with OH adsorption, but induces a further roughness 

to the surface. 

Although the ratios of the fits indicate there is perhaps something missing 

from the structural model, including specific adsorption sites for the adlayers into the 

model did not improve the fit and there was no sign of ordering in the in-plane scans. 

It is likely that the OH
-
 occupies a mix of adsorption sites. It is possible that there 

could be buckling of the surface metal layers which could be considered to improve 

the fit of the non-specular CTR data. 

6.1.3 Ag(001) 

Hydroxide adsorption on Ag(001) in UHV has been reported to show a c(2 x 

2) LEED pattern [144] and theoretical calculations determine the most favourable 

OH
-
 adsorption site is the 4-fold hollow [145].  Ex situ studies [140] only indicate a 

hint of ordering in Reflection High-Energy Electron Diffraction (RHEED) where 

there are streaks corresponding to a c(2 x 2) structure, however, the streaks are very 

faint and the c(2 x 2) was not observed with LEED which was possibly due to the 

lower coverage of OH in an electrochemical environment or due to the presence of 

coadsorbed anions (F
-
) and cations (Na

+
). To determine the potential dependence of 

the surface, XRV were measured at two reciprocal lattice positions, (0, 0, 1.02), as 

shown in Figure 6.6 an anti-Bragg position on the specular CTR, and (1, 1, 2.7) a  
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Figure 6.6 X-ray voltammetry (XRV) of Ag(001) measured at (a) (0, 0, 1.02) and (b) 

(1, 1, 2.7). The sweep rate for the XRV measurements was 20 mV/s. 

position on the non-specular (1, 1, L) CTR sensitive to changes in relaxation of the 

metal surface. Differences in the XRV at both positions are observed as the applied 

potential is varied and OH
-
 is adsorbed. The change in the specular CTR is consistent 

with increasing OH
-
 adsorption. The intensity at the (1 1 2.7) increases with positive 

potential, indicating a relaxation of the metal layers. To determine a structural model, 

CTR data was measured at -0.8 V (corresponding to no adsorbed species) and -0.2 V 

(corresponding to OH adsorption). The non-specular CTRs were modelled 

independently of the specular CTR to determine the structure of the metal side of the 

interface. At -0.8 V varying the metal layer displacement (ε) and rms roughness (σ) 

was insufficient to fit the data which indicated that there could be some in-plane 

ordering which would need to be included into the model. To identify the layer 

spacing the specular CTR was modelled, which is not sensitive to in-plane ordering, 

and an adlayer was included to  
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Figure 6.7 CTR data of the Ag(001) surface at -0.8 V (red) and -0.2 V (blue). (a) 

specular CTR (0, 0, L), (b) non-specular CTR (1, 1, L). Data measured at -0.2 V is 

normalised to data measured at -0.8 V and shown in (c) and (d). Solid lines are the 

fits to the data described by structural models in the text. 

               Parameter -0.8 V -0.2 V 

 ε2(c.u.) - 0.001(2) 

 σAg2 (Å) - 0.040(6) 

 ε1(Å) -0.019(1) -0.03(2) 

 σAg1 (Å) 0.111(4) 0.13(1) 

 θ 0.26(2) 0.83(6) 

Adlayer d(Å) 3.08(7) 1.65(3) 

 σ(Å) 0.2 0.32(5) 

 Reduced χ
2
 1.76 1.82 

Table 6.3 Best fit parameters to the Ag(001) CTR data at -0.8 V and -0.2 V. 
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model the electrolyte structure. The adlayer was positioned at ~ 3 Å above the metal 

layer. The coverage and vertical distance of the adlayer to the metal layer was fixed, 

and the layer was modelled in a range of specific adsorption sites; atop, bridge, 4-

fold hollow. The best fit obtained was consistent with the on-top model. The 

displacement parameters and coverage were allowed to vary to obtain the best fit 

parameters for this model. At negative potential there is no OH
- 
adsorption, this layer 

is attributed to an ordered Na
+ 

layer at the interface including the scattering factor for 

Na
+
 the coverage of the layer was θNa = 0.28 ML at a height of 3.08 Å above the top 

metal layer, the parameters are summarised in Table 6.3. As the Na
+
 cations are not 

specifically adsorbed on the surface, i.e. the cation retains its solvation shell; its 

structure cannot be determined through ex situ measurements as the structure would 

likely be lost on emersion from the electrolyte. This study has demonstrated the 

importance of in situ structural techniques which can probe the double layer 

structure.  

Clear systematic changes between the data measured at -0.8 V and 0.2 V can 

be seen in the ratio of the data sets.  There is a small change in the non-specular 

CTR, indicating a change to the relaxation of the metal surface which is consistent 

with the XRV data. In addition, there is a large change in the specular CTR which 

suggests that there is a structural rearrangement within the electrolyte side of the 

interface. A fit to the non-specular data was obtained by varying the displacement of 

the top metal layer and the rms roughness, this did not give a good fit to the data. At 

-0.2 V the best fit to the non-specular data was given by varying the displacement 

and roughness of the top 2 metal layers. The best fit to the specular data was 

obtained by the inclusion of an adlayer, which is assigned to a specifically adsorbed 

OH layer. The Ag-OH layer spacing determined by the fit (1.65 Å) suggests that OH 
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is specifically adsorbed on bridge site from hard sphere model calculations. This is in 

contrast to the studies in UHV, where OH is adsorbed in the hollow sites. The 

difference in adsorption site could be explained by the presence of the cations in 

solution. The adsorption of OH induces a further inward relaxation of the top metal 

layer, and the second metal layer responds with an outward relaxation, reducing the 

interlayer spacing d12 by 1.5 %. The inclusion of a further adlayer did not improve 

the fit, which suggests that the cations are not ordered at the interface, or perhaps the 

coverage is too small to make a significant contribution to the scattering. 

6.1.4 Discussion 

The structure of the Ag(hkl)/alkaline interface shows a large potential 

dependence, with the effects felt on both sides of the metal/electrolyte interface. The 

main points to consider from the study are 

1) Strong electrolyte layering effect on all three surfaces  

2) Non-covalent interactions on Ag(111) and Ag(110) 

3) Metal response – metal layer relaxations 

A schematic representation of the interface structures are shown in Figure 6.8 and a 

summary of the parameters on all three surfaces is presented in Table 6.4. The 

changes to the interface are most prominent at the electrolyte side of the interface. At 

both potentials the ions redistribute to equalise the charge on the electrode. At 

negative potential this is done through a field effect; the positively charged cations 

are attracted to the negatively charged electrode, and equalise the charge forming an 

ordered layer (out of plane) in the outer part of the double layer. At this potential the 
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Figure 6.8 Schematic representation of the Ag(hkl)/Alkaline interface, highlighting 

the structural differences between the two potential limits. At negative potential the 

double layer structure is governed by a field effect attraction; positively charged Na
+
 

cations redistribute at the interface to maintain electroneutrality at the interface. At 

positive potential OH is adsorbed on the surface, maintaining a negative charge, the 

Na
+
 are stabilised through non-covalent interactions forming a compact double layer 

at the Ag(111) and Ag(110) interface. At the Ag(001) interface, OH is adsorbed, but 

no evidence of Na
+
 ordering was identified by the structural model. 

Na
+
 cations are not known to adsorb on the surface i.e. lose their solvation shell, as 

cations have much larger and stronger solvation shells than anions, they are much 

less likely to break up. This model is true for all 3 surfaces, and the height of the Na
+
 

layer above the electrode surface decreases, with decreasing coordination number, in 

the order (111)>(001)>(110). In the case of the Ag(111) surface, the best fit was  
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  Ag(111) Ag(110) Ag(001) 

Parameter -1.0 V -0.2 V -1.0 V -0.2 V -0.8 V -0.2 V 

M
et

al
 l

ay
er

s 
ε34 (Å)   0.007(2) 0.020(5)   

ε23 (Å)   -0.023(2) -0.038(5) 0 0.001(2) 

ε12 (Å) -0.021(1) -0.0417(2) -0.023(1) 0.086(2) -0.019(1) -0.03(2) 

σ3  (Å)   0.122(7)    

σ2 (Å)   0.193(7) 0.13(1) 0 0.040(6) 

σ1 (Å) 0.124(2) 0.117(2) 0.328(4) 0.464(8) 0.111(4) 0.13(1) 

O 

θ (ML) 0.22(3) 0.78(2)  0.81(6)  0.83(6) 

d(Å) 2.74(8) 2.51(2)  2.20(4)  1.65(3) 

σ (Å) 0.15 0.15  0.15  0.32(5) 

Na
+
 

θ (ML) 0.42(2) 0.14(2) 0.60(5) 0.58(6) 0.26(2)  

d (Å) 4.06(1) 3.57(2) 2.87(4) 3.29(7) 3.08(7)  

σ (Å) 0.15 0.15 0.15 0.15 0.2  

Err. 

func 
dE (Å)   5.00(9) 5.15(1)   

 Red χ
2
 1.75 1.40 1.60 1.98 1.76 1.82 

Table 6.4 Summary of best fit parameters to the measured data on all three low-

index Ag(hkl) surfaces in N2 purged 0.01 M NaOH + 0.09 M NaF electrolyte. 

obtained with a water layer between the cation layer and the surface. At positive 

potential OH adsorbs on the surface. OH has been proven to retain its negative 

charge on adsorption on Ag [22,133,134], as it is proposed to behave as an electron 

accepter acquiring negative charge [148]. To maintain electroneutrality at the 

interface Na
+
 cations redistribute at the interface and are drawn into closer proximity 

through a non-covalent (van der Waal’s) interaction and are stabilised by the OHads 

to form a compact double layer. The presence of Na
+
 at both potentials is supported 

by an ex situ study of the Ag(111)/Alkaline double layer by Savinova et al. [22] 

where XPS measurements of an emersed electrode identified the presence of Na
+ 

both positive and negative of the Epzc. This was the case for both the Ag(111) and the 

Ag(110) at negative potential, and is in agreement with a previous study on Ag(111) 

[23] and Pt(111) [139]. Strmcnik et al. [139] proposed a controversial model for the 

Pt(111)/Alkaline interface, from SXRD analysis, in which the cation is partially 
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hydrated forming a complex with the OHads, based on the interlayer spacings. Whilst 

it is a possible explanation for the interface structure further it is difficult to directly 

determine this without further investigation using other methods.  

Whilst the model for the Ag(001)/alkaline interface does not include ordering 

from a Na
+
 layer, scattering contribution to the specular CTR would only arise from 

an ordered layer and the presence of disordered Na
+
 in the double layer cannot be 

ruled out. This is in contrast to a study on Ag(001) [133] in which Cs
+ 

forms an 

ordered layer on an adsorbed 𝑐(2 × 2)-Br, stabilised by non-covalent interactions. 

This could be due to the difference in electrolyte used, and the Br structure adsorbed 

on the surface which would change the nature of bonding at the interface.  

Although the main structural changes which occur with potential dependence 

are seen in the electrolyte side of the interface, the metal side of the interface does 

not go unaffected. All three surfaces undergo surface layer relaxations at both 

potentials. At negative potential the relaxations are not too dissimilar to those found 

on clean surfaces in UHV; all surfaces undergo an inward relaxation at this potential. 

The top metal layer of the Ag(111) surface undergoes small relaxation at negative 

potential, which increases at positive potential and the same is true for Ag(001). The 

Ag(110) surface is a more interesting case, in UHV the top metal layers have an 

oscillatory relaxation (as discussed in chapter 4) which is typically predicted (and 

observed) for metal surfaces. The structure in the electrochemical environment is 

quite different due to the presence of electrolyte and surface the top two layers are 

relaxed inward and the third layer is relaxed outward. The difference in relaxation is 

due to the electronic charge and screening effect of the electrolyte [149]. At positive 

potential, the top layer has an outward relaxation, the second layer is relaxed inward 



 

  

134 

 
 

and the third layer is relaxed outward. The adsorption of OH forms new metal-

adsorbate bonds which weakens the internal metal-metal bonds and causes 

relaxation. The relaxations of the top layer are usually inwards, but this is not the 

case for Ag(110). The large expansion is consistent with oxygen adsorption of 

Ag(110) in UHV, however, in UHV the surface reconstructs [6], which is not in 

agreement with the analysis from this study. A reconstructed surface was considered 

in the model, however, it did not produce a good fit to the data. 

 

 

 Effects of Gases  6.2

Understanding the underpotential oxide region is important for electrocatalytic 

reactions such as the oxygen reduction reaction, ORR, and CO oxidation, which are 

dependent on the adsorbed oxygen species. There are two ways in which to increase 

the catalytic activity: 

1) Development of the electrode material. 

2) Selectively designing the electrochemical double layer. 

In the following sections experiments are described in which the Ag(hkl) 

electrodes were  investigated in the presence of different gases in the electrolyte, in 

order to probe effect of the saturating gas on the structure at the interface.  A detailed 

knowledge of the interaction of these species with the surface of the near-interface 

ordering in the electrolyte is essential to develop a fundamental understanding of the 

driving forces behind important catalytic processes and stability of the electrodes 

under reaction conditions.  
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6.2.1 Experimental details 

The measurements described in the following sections used the same alkaline 

electrolyte (0.01 M NaOH + 0.09 M NaF) used for the measurements presented in 

section 0. The electrolyte was saturated for 20 minutes with either O2 or CO (BIP 

grade) in the electrolyte reservoir which was then pulled through to the X-ray 

electrochemical cell using a syringe. The polypropylene films on the cell were non-

permeable, trapping the gas inside of the cell. The cyclic voltammetry data presented 

in this chapter was taken using the droplet cell setup. Unfortunately the droplet cell 

was not optimised, instead of using a longer flexi-ref reference electrode a shorter 

‘no-leak’ solid reference electrode was used to minimise chloride contamination, and 

there was also an issue with keeping the cell gas tight. As a result of these issues, the 

cyclic voltammetry measured is not ideal, the reversible peaks in the CVs are not 

symmetrical over the potential axis due to the large iR drop caused by the large 

distance between the reference electrode to the counter and working electrodes. 

Despite this, the CVs still indicate some interesting features. 

6.2.2 CO adsorption and electrooxidation 

The oxidation of carbon monoxide, CO, to carbon dioxide, CO2, is an 

important process in pollution control and fuel cell electrocatalysis. The removal of 

CO from exhaust fumes is done through catalytic converters. The oxidation of CO is 

also of paramount importance in fuel cells, where the CO from H2 feed gas must be 

removed as alkaline fuel cells cannot tolerate CO and Proton Exchange Membrane 

(PEM) fuel cells can only cope with small amounts [150]. It is therefore essential to 

develop catalysts which are stable with a high efficiency. There have been many 

studies on CO oxidation on platinum and it has been shown that CO adsorption can 

promote electro-oxidation reactions on Au surfaces although the promotion is limited 
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to Au surfaces that exhibit reconstruction phenomena [138,139]. Study of Ag(hkl) 

surfaces that do not reconstruct may give some insight into the driving force for these 

surprising results.  

There have been numerous experimental and theoretical studies of CO on Ag 

single crystal surfaces in the gas phase. DFT studies have shown that CO weakly 

adsorbs on silver, with adsorption energy -0.28 eV (Ag(111)) [153] and is most 

stable at atop sites for Ag(111) and Ag(001) [154]. Studies indicate some evidence of 

ordering on the Ag(111) surface;  LEED indicates well-ordered incommensurate 

layers [155] and a low temperature study reports of islands of (√31 × √31)𝑅9° 

[156] above 17 K. Conversely, other reports do not find any evidence for ordering 

[153]. 

To date there are no studies reported in the literature for CO adsorption and 

oxidation on single crystal silver electrodes in an electrochemical environment, and 

only scarce studies on polycrystalline Ag. Infrared spectroscopy indicates relatively 

weak binding, similar to that observed on Au electrodes [157].  Marinkovic et al. 

[158] investigated CO oxidation on a Ag monolayer deposited on a Pt(111) electrode 

in acidic electrolyte of 0.05 M H2SO4 + 1 mM Ag
+
 after investigations on Ag(111) 

electrodes revealed CO oxidation on a Ag(111) electrode 0.05 M H2SO4 could not be 

achieved due to the dissolution of the electrode at potentials negative of CO 

oxidation. In fact, subtractively normalised interfacial Fourier transform infrared 

spectroscopy (SNIFTIRS) spectra of the Ag(111) electrode showed no signs of CO 

adsorption or oxidation. However, for the Ag monolayer on Pt(111), a peak was 

observed in the CV which could be attributed to CO oxidation. 
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A study on polycrystalline silver investigated the effect of pH on the 

adsorption and oxidation of CO on silver [159] through CV measurements and 

Fourier Transform Infrared Spectroscopy (FTIRS) CO was found to adsorb over the 

pH range 0.3-13. The FTIRS measurements indicated bands corresponding to 

linearly chemisorbed CO and CO in the bridge position in the pH range 7-13, after 

holding the potential negative (corresponding to the region of CO adsorption) and 

exchanging the electrolyte for CO-free there was still a evidence of adsorbed CO in 

the CV and FTIRS. This indicates that at very alkaline pH CO is strongly adsorbed 

on the surface.  

The mechanism for CO oxidation is described by the Langmuir-Hinshelwood 

mechanism in which CO continuously removes OH from the surface: 

𝐶𝑂 + 𝑂𝐻 = 𝐶𝑂2 + 𝐻+ + 𝑒− 

Therefore it is important to understand the effect of CO in the double layer in the 

underpotential region for OH adsorption. The following sections presents the first 

reported cyclic voltammetry for CO adsorption and oxidation on the Ag(hkl) 

surfaces. The potential dependence of each surface were determined by XRV and a 

structural model is proposed from CTR analysis. 

6.2.2.1 Ag(111) 

 

Figure 6.9 shows the cyclic voltammogram of CO oxidation on Ag(111). In 

the anodic scan the there is a large increase in current in the CV measured in CO 

saturated electrolyte. This is due to the onset of CO oxidation, and is similar to that 

observed on polycrystalline silver [159]. The appearance of this peak tells us that CO 

must be adsorbed on the surface. Unfortunately there were no complete cycle XRV 

measured for the Ag(111) surface in the presence of CO during this experiment.  
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Figure 6.9 Cyclic voltammetry of Ag(111) in 0.09 M NaF + 0.01 M NaOH recorded 

at a sweep rate of 50 mVs
-1

 (a) region of hydroxide adsorption (b) extended potential 

region into oxidation. 

There is a scan from -1.0 V to 0.2 V, shown in Figure 6.10, on the anti-Bragg 

position of the specular CTR (0, 0, 1.52), which gives some information about the 

potential dependence of the double layer. The XRV appears to be very similar to the 

one in section 6.1.1, in the absence of CO, with ~50 % change in scattered intensity, 

which suggests that the structure on the electrolyte side of the interface is very 

similar. The CTRs were taken at several potentials to obtain a structural model for 

this system. Measurements were taken at -1.0 V which should correspond to the 

region where CO is adsorbed, and -0.2 V which is in the region of CO oxidation. The 

data and calculated fits are shown in Figure 6.11 and Figure 6.12, and parameters are 

summarised in Table 6.5. 



 

  

139 

 
 

 

Figure 6.10 XRV at (0, 0, 1.52) in CO saturated electrolyte. Only the positive scan is 

shown. 

 

 

Figure 6.11 Ag(111) in 0.09 M NaF + 0.01 M NaF at -1.0 V in CO saturated 

electrolyte (red), and data in N2 purged electrolyte (blue) (a) specular CTR (0, 0, L), 

(b) (0, 1, L) non-specular CTR (c) and (d) intensity ratios of the CO data normalised 

to the N2 data. Solid lines are fits to the data given by the structural model described 

in the text. 

(0 0 1.52) 
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Figure 6.12 Ag(111) in 0.09 M NaF + 0.01 M NaF at -0.2 V in CO saturated 

electrolyte (red), and data in N2 purged electrolyte (blue) (a) specular CTR (0, 0, L), 

(b) (0, 1, L) non-specular CTR (c) and (d) intensity ratios of the CO data normalised 

to the N2 data. Solid lines are fits to the data given by the structural model described 

in the text. 

Parameter -1.0 V -0.2 V 

Metal 

layer 

ε1(Å) -0.019(1) -0.037(1) 

σAg1 (Å) 0.117(2) 0.147(2) 

Oxygen    

layer 

θ 0.23(3) 0.65(3) 

dAg-O (Å) 2.75(7) 2.27(3) 

σO (Å) 0.15 0.15 

 θ 0.39(2) 0.36(2) 

Na
+ 

layer dAg-Na (Å) 4.08(2) 3.09(3) 

 σNa (Å) 0.15 0.15 

 Reduced χ
2
 1.79 1.71 

Table 6.5 Best fit parameters to the structural model for CTR measurements of the 

Ag(111)/0.09 M NaF + 0.01 M NaOH interface in the presence of CO at -1.0 V, and 

-0.2 V.  
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The differences between the structure in the presence of CO and in the 

absence are highlighted by the ratios in Figure 6.11 and Figure 6.12. The CO data is 

normalised to the data in N2 purged electrolyte. Within error, the structure at 

negative potential in the presence of CO is the same as the structure without CO, this 

is consistent with the ratio of the datasets which is essentially a flat line. This 

indicates that the addition of CO in the electrolyte has no effect on the metal and 

double layer structure at this potential, despite the fact that CO should be adsorbed at 

this potential. This could suggest that CO is only weakly adsorbed as it does not 

seem to affect the metal.  

The ratios at positive potential, -0.2 V, indicate some small changes. The non-

specular CTRs were best modelled by an increase in the rms roughness, (σAg). This 

implies that the electrooxidation, the removal of OH from the surface by CO, induces 

a slight roughening to the surface. The inwards relaxation of the metal layer is 

slightly less in the presence of CO 1.57 ± 0.04 % with CO, and 1.76 ± 0.04 % 

without CO, (a percentage of layer spacing d(111) = 2.36 Å), the difference in surface 

roughness is more significant 0.147 ± 0.002 Å, with CO, and 0.117 ± 0.002 Å 

without CO. The changes in electrolyte layering are more prominent. The first layer 

was modelled as an oxygen layer, although it is likely to be a mix of OH and CO. 

The layer has a reduced coverage of  θ = 0.66 ± 0.03 (θ = 0.78 ± 0.02 without CO), 

which could be explained by the removal of OH from the surface by CO.  It is closer 

to the surface at a height of 2.27 ± 0.03 Å (2.51 ± 0.02 Å in the absence of CO). The 

coverage of the Na
+ 

is greater in the presence of CO and in closer proximity to the 

electrode surface. A possible explanation of this is that the presence of CO changes 
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the nature of the bonding. Or if in fact, there cation is partially hydrated. The 

mechanism behind this is currently unknown.  

6.2.2.2 Ag(110) 

 

Figure 6.13 shows the voltammetry of the Ag(110) surface in 0.09 M NaF + 

0.01 M NaOH  in the presence and absence of CO. Unfortunately over the smaller 

potential range the voltammetry in CO saturated solution was not of sufficient 

quality to give any meaningful information. However, there are interesting features 

over the extended potential range into the region of oxidation. With the addition of  
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Figure 6.13 Cyclic voltammetery of Ag(110) in 0.09 M NaF + 0.01 M NaOH 

recorded at a sweep rate of 50mVs
-1

 in the presence of CO (red) and in the absence 

in N2 purged electrolyte (blue).   

 

CO in electrolyte the oxidation of silver is suppressed; onset of the anodic oxidation 

peak is shifted positive by approximately 0.1 V, which implies that CO must be 

adsorbed on the surface as it seems to protect the surface from oxidation. 



 

  

143 

 
 

To characterise the structural potential dependence of the Ag(110) surface in 

the presence of CO, XRV was measured at the anti-Bragg position on the specular 

CTR, and two non-specular CTRs (1, 0, 0.2) and (0, 1, 0.3) shown in Figure 6.14. 

The XRV is consistent with the those measured in the absence of CO, the intensity at 

the anti-Bragg position decreases which increased adsorption of OH during the 

anodic scan and increases with the desorption of OH during the cathodic scan. There 

are no obvious changes, to determine any structural differences in the electrolyte. 

There are some subtle changes observed in the XRVs at the two non-specular CTRs 

 

Figure 6.14 XRV of Ag(110) in 0.09 M NaF + 0.01 M NaOH taken in the presence 

of CO (red) and in the absence (blue) at (a) (0, 0, 1.02) on the specular  CTR, (b) (1, 

0, 0.2) and (c) (0, 1, 0.3) on the non-specular CTRs. The data is normalised to the 

first point in each scan to display the intensity as a percentage change for 

comparison. Negative sweep is indicated by the solid lines, and the positive sweep 

by the dashed lines. 
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Figure 6.15 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface 

measured at -1.0 V in N2 purged electrolyte (blue), CO saturated electrolyte (red) (a) 

the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, 0, L). 

The CTRs measured in the presence of CO were normalised to the data measured in 

N2 purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). The solid lines are the 

fits to the data according to the structural model described in the text and parameters 

given in Table 6.6. 

 

Figure 6.16 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface 

measured at -0.2 V in N2 purged electrolyte (blue) and CO saturated electrolyte (red) 

(a) the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, 0, 

L). The CTRs measured in the presence of CO and O2 were normalised to the data 

measured in N2 purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). Solid 

lines are fits to the data. 
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Parameter -1.0 V -0.2 V 

 ε3 (Å) 0.006(3) 0.020(5) 

 σAg3 (Å) 0.08(7) 0 

Metal layers ε2(Å) -0.014(2) -0.037(6) 

 σAg2 (Å) 0.17(1) 0 

 ε1(Å) -0.043(2) 0.075 (5) 

 σAg1 (Å) 0.312(5) 0.423(8) 

 θ01 0.49(5) 0.76(6) 

Oxygen 

layer 

dAg-O1 (Å) 2.86(4) 2.17 (4) 

 σO1 (Å) 0.15 0.15 

 θ02 - 0.50(6) 

Oxygen 

layer 

dAg-O2 (Å) - 3.16(9) 

 σO2 (Å) - 0.15 

Error 

Function 

σE 0.5 0.5 

dE 5.0(1) 5.1(2) 

 Reduced χ
2
 1.60 2.30 

 

Table 6.6 Best fit parameters to the structural model for CTR measurements of the 

Ag(110)/0.09 M NaF + 0.01 M NaOH interface in the presence of CO at -1.0 V, and 

-0.2 V. Numbers without errors correspond to parameters that were fixed during the 

fitting procedure. 
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indicating that the presence of CO in solution induces some structural changes in the 

metal side of the interface. 

CTR measurements were taken at -1.0 V and -0.2 V to obtain a structural 

model for this system. The data and corresponding fits are shown in Figure 6.15 and 

Figure 6.16. The parameters for the structural model are summarised in Table 6.6. 

The data was fit using the same procedure outlined in section 6.1.2. At -1.0 V there 

are small differences in the structure of the metal compared to the data taken in the 

absence of CO. The inwards relaxation of the top metal layer increases, and 

theinwards relaxation of the 2
nd

 layer decreases which results in a 2 % decrease in 

layer spacing d12. In the electrolyte side of the interface there is very little difference 

between the structure with and without CO. In both cases the data was fit with an 

incommensurate adlayer at 2.86 Å above the surface. The difference in coverage of 

the adlayers is only marginal within error, with CO 𝜃 = 0.49 ± 0.05 ML, and without 

CO 𝜃 = 0.60 ± 0.05 ML. Although there is very little difference to the electrolyte 

side of the interface. It is possible that the presence of adsorbed CO in solution is 

responsible for the change in Ag surface relaxation. At positive potential (E = -0.2 V) 

potential there are only subtle differences between the CO and N2. There is a very 

small decrease of the outward relaxation of the top metal layer with the presence of 

CO Δ12 = + 7.75 % compared to Δ12 = + 8.53 % in the absence of CO. On the 

electrolyte side of the interface, the biggest difference between the two datasets is the 

height of the 2
nd

 adlayer above the top metal layer, in the presence of CO the height 

was determined to be 3.16 ± 0.04 Å, compared with 3.29 ± 0.07 Å. This is very 

similar to the results found on Ag(111), the presence of CO in electrolyte has an 

effect on the height on the cation layer – it seems to decrease the layer spacing, 

possibly through changing the nature of the bonding.   
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6.2.2.3 Ag(001) 

 

Figure 6.17 shows the CV of CO oxidation on Ag(001). In the anodic scan 

there is a broad peak in the current at around 0 V in the CV measured in CO-

saturated electrolyte. This is due to CO oxidation. The peak is much less pronounced 

than in the case of Ag(111), it is not visible over the extended potential range, which 

could suggest either CO is more strongly adsorbed on Ag(001), and therefore less 

prone to electrooxidation, or that the coverage is much less on Ag(001). The XRV  
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Figure 6.17 Cyclic voltammetry of the Ag(001) surface in 0.09 M NaF + 0.01 M 

NaOH in the presence of CO (red) and in the absence of CO (in N2 purged 

electrolyte) (blue). (a) Over the potential range for OH adsorption and CO oxidation 

and (b) over the extended range into oxidation. Sweep rate 50 mVs
-1

. 

taken at (0 0 1.02) is shown in Figure 6.18. The shape of the XRV is very similar to 

the XRV measured in the absence of CO, implying that the addition of CO only 

causes subtle changes to the double layer structure. To obtain a structural model for 

the system CTR measurements were taken at E= -1.0 V and E= -0.2 V. There are 

noticeable differences in the data measured in the presence of CO and in the absence  
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Figure 6.18 XRV of Ag(001) on the specular CTR position (0 0 1.02) in the 

presence of CO (red), in absence of CO (blue). Negative sweep is indicated by the 

dashed lines and the positive sweep is indicated by the solid lines. Sweep rate 20 

mV/s. 

 

of CO. At negative potential the effect is subtle; the electrolyte structure is similar to 

in N2. The best fit was obtained when Na
+
 cations were modelled in atop sites at a 

distance of 2.93 Å from the electrode surface with a coverage of θNa+ = 0.21. At 

negative potential CO should be adsorbed on the surface although the inclusion of an 

additional adlayer to account for CO did not improve the fit suggesting that CO is 

not ordered on the surface. 

  At positive potential, -0.2 V, the changes between the data sets are more 

noticeable. Here the outward relaxation of the second layer is much larger ~0.8 % 

than in the absence of CO where it is ~0.04 %, and the top layer inward relaxation is 

reduced from 1.5 % in the absence of CO to 0.23 % in the presence of CO. The 

structure of the electrolyte is also significantly different. The ‘oxygen’ adlayer is 

much closer to the surface at 1.48 Å, than in the absence of CO where it is 1.65 Å. 

The coverage of the adlayer in the presence of CO is 1 ML compared with 0.8 ML in 

the absence of CO. The fits to the ratio of the data indicates that the specular CTR is 
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well represented by the structural model. However, the model does not give a good 

fit to the non-specular CTR data taken in the presence of CO at positive potential. 

This indicates something is missing from the model of the metal side of the interface. 

Modelling the adlayer in different adsorption sites, atop, bridge and hollow did not 

improve the fit. Further analysis is required in order to improve the structural model. 

The cyclic voltammetry indicates that -0.2 V is just at the onset of CO 

electrooxidation (onset of the oxidation peak) which suggests what the adlayer at this 

potential could be a mix of coadsorbed CO and OH.  

 

 

 Figure 6.19 Crystal truncation rod (CTR) data of Ag(001) measured at -1.0 V in N2 

purged electrolyte (red squares) and CO saturated electrolyte (blue circles) (a) the 

specular CTR (0, ,0 L) and (b) the non-specular CTR (1, 1, L). The CTR measured in 

the presence of CO was normalised to the data measured in N2 purged electrolyte (c) 

(0, 0, L) and (d) (1, 1, L).  
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Figure 6.20 Crystal truncation rod (CTR) data of the Ag(001)/0.09 NaF + 0.01 M 

NaOH measured at -0.2 V in N2 purged electrolyte (red squares) and CO saturated 

electrolyte (blue circles) (a) the specular CTR (0, 0, L) and (b) the non-specular CTR 

(1, 1 L). The CTR measured in the presence of CO was normalised to the data 

measured in N2 purged electrolyte (c) (0, 0, L) and (d) (1, 1, L). The solid lines are 

the fits to the data. 

Parameter -1.0 V -0.2 V 

 ε2(Å.) - 0.016(1) 

 σAg2 (Å) - 0 

Metal layers ε1(Å) -0.019(1) -0.006(1) 

 σAg1 (Å) 0.118(2) 0.123(4) 

 θ 0.21(5) 1.0(1) 

Adlayer d(Å) 2.939 (1) 1.48(3) 

 σ(Å) 0.219(7) 0.3 

 Reduced χ
2
 2.02 1.82 

 

Table 6.7 Best fit parameters to the structural model for CTR measurements of the 

Ag(001)/0.09 M NaF + 0.01 M NaOH interface in the presence of CO at -1.0 V and -

0.2 V.  
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The layer spacing is very similar to a study by Lucas et al. [160] on Pt(001), where a 

platinum-carbon spacing is proposed to be dPt-C = 1.4 ± 0.4 Å. The decrease of the 

Ag-OH interlayer spacing suggests an increase in bond strength or the OH could be 

located in a different site, although the mechanism for this is not currently 

determined. 

6.2.3 Oxygen 

The oxygen reduction reaction (ORR) is one of the most important reactions 

in electrochemistry. Understanding its mechanism is central to be able to tailor 

materials which can either catalyse it for use in energy conversion systems, or inhibit 

it, for corrosion resistant materials. Platinum is the best catalyst for the ORR due to 

its stability and high catalytic activity. For this reason it is the most widely studied 

catalyst. The first report by Zwetanova et al. [161] proposed that the ORR is not 

structure sensitive. In contrast, subsequent studies find that the kinetics of ORR is 

governed by the structure of the electrode and adsorbed species.  Blizanac et al. 

[162] were the first to report the origin of the structure sensitivity. They determined 

the kinetics of the ORR to increase in the order (100) ≤ (111) ≤ (110). They found 

the kinetics were dependent upon a balance between the potential dependent 

adsorption of spectator ions (OH
-
), and the variation in activation energies which are 

determined by the O2 adsorption on Ag(hkl) surfaces covered by oxygenated species. 

More recently, studies have focussed on the double layer effects and role of cations 

on the ORR, these studies are again focussed on Pt, Au and Ir electrode. The studies 

reveal that the activity of the ORR can be inhibited by cation-OHads clusters in the 

compact double layer (as discussed in the previous section). It is therefore important 

to understand the structure of the double layer under reaction conditions. 
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Mechanism for ORR 

There are many reaction pathways which have been proposed for the mechanism for 

the ORR. The one which is considered most appropriate for Ag is presented: 

 

Figure 6.21Serial pathway of oxygen reduction. 

From this there are three possible reaction pathways. Blizanac et al. [162]  proposed 

the reaction pathway on all Ag(hkl) is the direct four-electron O2 reduction to water. 

In this section the structure of the Ag(hkl)/0.01 M NaOH and 0.09 M NaF interface 

was probed in the presence of O2, and compared with the models determined in 

section 6.1 the absence of O2 (i.e. N2 purged electrolyte). 

6.2.3.1 Ag(111) 

 

XRV measured at the anti-Bragg position, (0, 0, 1.6), on the specular CTR is 

shown in Figure 6.22. The data was normalised to the first point of each scan, so that 

the percentage change in intensity of both systems could be compared. The figure 

highlights subtle differences between the two systems. The shape of the XRVs is 

very similar and the decrease in intensity on the positive sweep is consistent with OH 

adsorption. The change in intensity over the whole potential range is slightly greater  
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Figure 6.22 XRV on the (0 0 1.6) position in the presence of O2 and in N2 purged 

electrolyte. Negative sweep is indicated by the dashed lines and the positive sweep 

by the solid lines. Measured at a sweep rate of 20 mV/s. 

in the presence of O2, which suggests that there some differences in the electrolyte 

side of the interface. The data in the presence of O2 was taken during a different 

experiment to the data previously discussed in N2 and CO and it was also taken at 

slightly different potentials. For this reason, the results have been normalised to a N2 

dataset taken during the same experiment and at the same potential. These results are 

summarised in Table 6.8 and the CTR data and calculated fits are presented in Figure 

6.23-Figure 6.25. To fit the data at -0.7 V the relaxation of the top metal layer (𝜀), 

rms roughness (𝜎) and an inclusion of a commensurate Na
+
 layer, in atop positions, 

gave a good fit to the data which is the same model used for both N2 and CO. No 

additional oxygen layer was required to obtain a good fit to the data, in comparison 

to the data presented in section 6.1.1. This could be due to the slight difference in 

negative potential limit; the water layer could be disordered. There are only subtle 

differences between the data in the presence of O2 and in the absence of O2 which 

implies that there are no pronounced effects on the structure at the interface. 
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 N2 O2 

Parameter -0.7 V -0.1 V -0.7 V -0.1 V 

Metal 

layer 

ε1(Å) -0.001(3) -0.038(3) 0.00 -0.039(4) 

σAg1 (Å) 0.128(5) 0.100(5) 0.114(4) 0.088(6) 

Oxygen    

layer 

θ - 0.88(6) - 0.9(1) 

dAg-O (Å) - 2.54(4) - 2.45(7) 

σO (Å) - 0.15 - 0.15 

 θ 0.38(3) 0.12(4) 0.35(3) 0.14(2) 

Na
+ 

layer dAg-Na 

(Å) 
3.32(4) 3.3(2) 3.33(4) 3.16(2) 

 σNa (Å) 0.15 0.15 0.15 0.15 

 Reduced 

χ
2
 

1.97 1.64 2.1 1.65 

 

Table 6.8 Best fit parameters to the structural model for CTR measurements of the 

Ag(111)/0.09 M NaF + 0.01 M NaOH interface in the presence and absence of O2 at 

-0.7 V and -0.1 V. 

There is small 0.4 % inward relaxation of the top metal layer in the absence 

of O2, however, in the presence of O2 there is no relaxation of the layer, a small rms 

roughness was sufficient to fit the data. At positive potential there is no change to the 

metal layers in the presence of O2. However there are some small changes to the 

electrolyte layering. The height of the OH
-
 layer above the metal surface is slightly 

reduced 2.45 Å (compared to 2.54 ± 0.04 Å in the absence of O2). The Na
+
 layer is 

also closer at 3.16 (compared to 3.3 ± 0.2 Å), albeit within error they are not 

significant. 
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Figure 6.23 Potential dependence of Ag(111) in nitrogen purged electrolyte. Red 

squares (-0.7 V) and blue circles (-0.2 V) (a) specular CTR (0 0 L), (b) (0 1 L) non-

specular CTR (c) and (d) intensity ratios of the -0.2 V data normalised to the -0.7 V 

data. Solid lines are fits to the data.   

 

Figure 6.24 Ag(111) in 0.09 M NaF + 0.01 M NaF at -0.77 V in oxygen saturated 

electrolyte(red squares), and data in N2 purged electrolyte (blue circles) (a) specular 

CTR (0 0 L), (b) (0 1 L) non-specular CTR (c) and (d) intensity ratios of the O2 data 

normalised to the N2 data. Solid lines are fits to the data given by the structural 

model described in the text. 
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Figure 6.25 Ag(111) at -0.17 V Red circles, data in oxygen saturated electrolyte, and 

blue circles, data in N2 purged electrolyte (a) specular CTR (0 0 L), (b) (0 1 L) non-

specular CTR (c) and (d) intensity ratios of the O2 data normalised to the N2 data. 

Solid lines are fits to the data given by the structural model described in the text . 

6.2.3.2 Ag(110)  

 

The potential dependence of the Ag(110) surface in 0.09 M NaF + 0.01 M 

NaOH electrolyte measured in the presence of oxygen by XRV on the anti-Bragg 

position on the specular CTR as shown in Figure 6.26. The potential dependence is 

very similar to that found in the absence of O2 (in N2 purged electrolyte). With 

increasing potential the intensity decreases, which is attributed to the increased 

deposition of OH. On the reverse sweep, the intensity increases with the desorption 

of OH. CTR measurements were taken at -1.0 V, corresponding to the potential 

region where there is no adsorbed species, and -0.2 V the potential region for ORR. 

The data and corresponding fits are shown in Figure 6.27 and Figure 6.28. The 

parameters for the structural model are summarised in Table 6.9. The data was fit 

using the same procedure outlined in section 6.1.2. There are no significant changes  
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Figure 6.26 XRV of Ag(110) in 0.09 M NaF + 0.01 M NaOH taken in the presence 

of O2 (red) and in the absence (blue) at (a) (0, 0, 1.02) on the specular CTR, (b) (1, 0, 

0.2) and (c) (0, 1, 0.3) on the non-specular CTRs. Negative sweep is indicated by the 

solid lines, and the positive sweep by the dashed lines. 

 

Figure 6.27 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface 

measured at -1.0 V in N2 purged electrolyte (blue), O2 saturated electrolyte (red) (a) 

the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, 0, L). 

The CTRs measured in the presence of O2 were normalised to the data measured in 

N2 purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). The solid lines are the 

fits to the data according to the structural model described in the text. 
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Figure 6.28 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface 

measured at -0.2 V in N2 purged electrolyte (blue) and O2 saturated electrolyte (red) 

(a) the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, 0, 

L). The CTRs measured in the presence of O2 were normalised to the data measured 

in N2 purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). The solid lines are 

the fits to the data according to the structural model described in the text. 

 

between the structure with and without O2 at this potential, which is not surprising as 

there is no adsorption at this potential. At positive potential the interface was 

modelled in the same way as in the absence of O2. The data was best fit with 2 

incommensurate adlayers and an error function. The structure of the electrolyte is 

very similar to the structure in the absence of O2 within error. The main difference 

occurs in the metal side of the interface. The addition of O2 changes effects the 

relaxation of the metal layers; the extent of the outwards relaxation of the first layer 

and the inwards relaxation of the second layer are both reduced. This decreases the 

change in layer spacing Δ12 = + 7.27 % from Δ12 = + 8.53 % in the absence of O2. 

 

 



 

  

159 

 
 

Parameter -1.0 V -0.2 V 

 ε3 (Å) 0.009(2) 0.021(3) 

 σAg3 (Å) 0.145(5) 0 

Metal layers ε2(Å) - 0.025(2) -0.025(3) 

 σAg2 (Å) 0.209 0 

 ε1(Å) -0.029(2) 0.080(2) 

 σAg1 (Å) 0.33 0.481(7) 

 θ01 0.66(5) 0.87(6) 

Oxygen layer dAg-O1 (Å) 2.89(4) 2.25(3) 

 σO1 (Å) 0.15 0.15 

 θ02 - 0.60(5) 

Oxygen layer dAg-O2 (Å) - 3.29(6) 

 σO2 (Å) - 0.15 

Error 

Function 

σE 0.5 0.5 

dE 5.04(9) 5.23(1) 

 Reduced χ
2
 1.89 1.75 

 

Table 6.9 Best fit parameters to the structural model for CTR measurements of the 

Ag(110)/0.09 M NaF + 0.01 M NaOH interface in the presence of CO and O2 at -1.0 

V, and -0.2 V. Numbers without errors correspond to parameters that were fixed 

during the fitting procedure. 
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6.3.3.3  Ag(001)  

 

The XRV shown in Figure 6.29 indicates there is little difference between the 

data measured with and without O2. To obtain a clearer picture of the differences  

 

Figure 6.29 XRV of Ag(001) on the specular CTR position (0, 0, 1.02) in the 

presence of O2 (red), in absence of O2 (blue). Negative sweep is indicated by the 

dashed lines and the positive sweep is indicated by the solid lines. 

 

Figure 6.30 Crystal truncation rod (CTR) data Ag(001) measured at -0.8 V  in N2 

purged electrolyte (red squares) and O2 saturated electrolyte (blue circles) (a) the 

specular CTR (0, 0, L) and (b) the non-specular CTR (1, 1, L). The CTR measured in 

O2 saturated electrolyte was normalised to the data measured in N2 purged electrolyte 

(c) (0, 0, L) and (d) (1, 1, L). The solid lines are the fits to the data according to the 

structural model described in the text. 
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Figure 6.31 Crystal truncation rod (CTR) data of the Ag(001) measured at -0.2 V in 

N2 purged electrolyte (red squares) and O2 saturated electrolyte (blue circles) (a) the 

specular CTR (0, 0, L) and (b) the non-specular CTR (1, 1, L). The CTR measured in 

O2 saturated electrolyte was normalised to the data measured in N2 purged 

electrolyte (c) (0, 0, L) and (d) (1, 1, L). The solid lines are the fits to the data. 

between the two systems, CTR measurements of the specular CTR, (0, 0, L) and the 

first order non-specular CTR (1, 1, L) which are shown in Figure 6.30 and Figure 

6.31 and best fit parameters are summarised in Table 6.10. At negative potential 

there is virtually no difference between the data measured with and without O2. The 

inward relaxation of the metal layer in both cases was 0.9 % of the layer spacing. It 

was necessary to include in-plane ordering of the adlayer in order to model the non-

specular CTR. The best fit indicated a Na
+
 layer in atop sites, similarly to that found 

in the absence of O2 and in the presence of CO. There are some subtle differences in 

the coverage of the adlayer with and without O2, however, they are marginal. At 

positive potential there are some small differences in the data; the inward relaxation 

of the top metal layer is smaller in the presence of O2 1.22 ± 0.05 % of the layer 

spacing compared to 1.5 ± 0.9 % without O2. Within error there is no difference in 

the coverage of the oxygen layer, although the height of the adlayer is reduced in the  
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Parameter -0.8 V -0.2 V 

 ε2(Å) - 0.001(1) 

 σAg2 (Å) - 0.051(5) 

 ε1 (Å) -0.019(2) -0.025(1) 

 σAg1 (Å) 0.092(3) 0.14(1) 

 θ 0.32(3) 0.87(5) 

Adlayer d (Å) 3.02(1) 1.53(3) 

 Σ (Å) 0.2 0.3 

 Reduced χ
2
 1.9 1.88 

 

Table 6.10 Best fit parameters to the structural model for CTR measurements of the 

Ag(001)/0.09 M NaF + 0.01 M NaOH interface in the presence of O2 at -0.8   V and 

-0.2 V. Numbers without errors correspond to parameters that were fixed during the 

fitting procedure. 

presence of O2, 0.07 Å closer to the surface. Overall the presence of O2 in electrolyte 

only slightly perturbs the double layer, which is not surprising considering the 

kinetics of the ORR are lowest on the Ag(001) [162].  

6.2.4 Discussion 

CO effect 

Although there is no direct indication from the CTR modelling that CO is 

adsorbed on the surface, the presence of CO can be inferred from: 

1) Voltammetry – there is clear evidence of CO adsorption on Ag(hkl) as 

there are peaks observed in the CV  on Ag(111) and Ag(001) which must 
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be due to CO electroxidation, and CO appears to suppress oxidation on 

Ag(110). 

2) Changes to the electrolyte structure. 

3) Changes to the Ag(001) and Ag(110) metal layer relaxations. 

From the cyclic voltammetry it is clear that CO must be adsorbed on the surface, as 

there are oxidation peaks observed in the CV measured on Ag(111) and Ag(001). On 

Ag(110) the oxidation peak is not visible over the extended potential range, despite 

this there is strong evidence for CO on the surface as the oxidation of the surface is 

suppressed. This implies that CO is strongly adsorbed on the Ag(110) surface as it 

seems to protect the surface from oxidation, and indicates that CO oxidation occurs 

at more positive potential which would result in a mix of current  from both 

oxidation processes in the peak between 0.4-0.45 V, as the two charge transfer 

processes occur over the same potential region. This is supported by similar 

behaviour which has previously been reported [159] for polycrystalline silver where 

the electrooxidation of silver is inhibited by CO by 0.13 V.  Orozco et al. report this 

is due to chemisorption of CO poisoning the Ag surface, which is supported by 

previous studies by Cuesta et al. on a number of other electrodes for Fe [157], Co 

[163] and Ni [164].  The effect of suppressing Ag oxidation was only observed for 

pH 13 indicating that the underpotential oxide formation (adsorption of OH
-
) is key 

to the electrooxidation of CO. Unfortunately, due to the cell arrangement, we were 

unable to hold the electrode at negative potential whilst switching the CO-free 

electrolyte, and do not have the stripping voltammetry so we are unable to determine 

whether CO was still absorbed.  
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Figure 6.32 Schematic representation of the Ag(hkl)/alkaline interface in CO 

saturated solution, highlighting the structural differences between the two potential 

limits. At both potentials there is no evidence of any ordered CO structures – 

however the presence is inferred from changes to the interface structure. At negative 

potential CO is adsorbed on the surface. At positive potential CO oxidation occurs on 

Ag(111) and Ag(001), however on Ag(110) it is proposed that CO is still adsorbed 

on the surface – poisoning the surface from oxidation. 

 

In a study by Oda et al. [165] on Ag(polycrystalline) and Ag layers on Pt(110), the 

coverage of CO on the surface could not be determined, suggesting that the coverage 

of adsorbed CO is very low. A low coverage of CO could be the reason why no 

ordered structure was determined in the CTR analysis. The effect of CO in 

electrolyte can be indirectly determined through changes to the relaxation of the  
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  Ag(111) Ag(110) Ag(001) 

Parameter -1.0 V -0.2 V -1.0 V -0.2 V -1.0 V -0.2 V 

M
et

al
 l

ay
er

s 

ε34 (Å)   0.006(3) 0.02(5)   

ε23 (Å)   -0.014(2) -0.037(6)  0.016(1) 

ε12 (Å) -0.019(1) -0.037(1) -0.043(2) 0.075(5) -0.019 -1.912 

σ3  (Å)   0.08(7)    

σ2 (Å)   0.17(1)   0.016(1) 

σ1 (Å) 0.117(2) 0.147(2) 0.312(5) 0.423(8) 0.118(2) 0.123(4) 

O 

θ (ML) 0.23(3) 0.65(3)  0.76(6)  1.0(1) 

d(Å) 2.75(7) 2.27(3)  2.17(4)  1.48(3) 

σ (Å) 0.15 0.15  0.15  0.3 

Na
+
 

θ (ML) 0.39(2) 0.36(2) 0.49(5) 0.50(6) 0.21(5)  

d (Å) 4.08(2) 3.09(3) 2.86(4) 3.16(9) 2.939(1)  

σ (Å) 0.15 0.15 0.15 0.15 0.219(7)  

Error 

func 
dE (Å)   5.0(1) 5.1(2)   

 Red χ
2
 1.79 1.71 1.60 2.30 2.02 1.82 

Table 6.11 Summary of best fit parameters to data on all three low-index Ag(hkl) 

surfaces in CO saturated 0.01 M NaOH + 0.09 M NaF electrolyte. 

metal layers and of the electrolyte layering. A schematic representation of the 

interface structures is show in Figure 6.32 and a summary of the fit parameters is 

given in Table 6.11. The presence of CO has a significant effect on the relaxation of 

the metal layers on Ag(110). In comparison to the data in the absence of CO on 

Ag(110), at negative potential the presence of adsorbed CO induces a larger inward 

relaxation of the top metal layer, and at positive potential the outwards relaxation is 

slightly reduced. There are also small changes to the relaxation of the Ag(001) metal 

layers. The change in relaxation is due to the adsorption of CO at negative potential 

and at positive potential the difference in relaxation arises from the difference in the 

adsorbate metal bonding. A similar effect is reported on platinum surfaces, where the 

adsorption of CO on Pt(110) is inferred from the changes to the metal [166]. On 

Ag(111) there is no observed effect on the relaxation of the metal layers, although 

the roughness of the surface increases as the potential is scanned positive. CO seems 
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to have to have a larger effect on the electrolyte structure of Ag(111) and Ag(001) 

surfaces at positive potential. The most significant difference is the height of the 

adlayers at positive potential; in both cases the adlayers are much closer to the 

surface suggesting that CO is still adsorbed on the surface at this potential and has an 

effect on the nature of the bonding.  

 

Oxygen  

  

The effect of oxygen on the Ag(hkl)/alkaline interface was very subtle. At 

negative potentials on all three surfaces there was no effect due to the presence of 

oxygen. This is not surprising considering there is no adsorption of oxygen species at 

the negative limit. A schematic representation of the interface structures is presente 

in Figure 6.33 and a summary of the fit parameters to the structural models are given 

in Table 6.12. At positive potential there are some subtle changes to the interface 

structure. On Ag(001) and Ag(111) there are some changes to the electrolyte 

layering; the Ag-OH/O layer height is reduced and the cation layer is closer to the 

surface; although the relative distance between the OH and Na
+
 layers remain the 

same. This implies that the OH
-
/O layer is more strongly bound to the surface or that 

the adsorption sites are different. On Ag(110) there is almost no change to the 

electrolyte layering, only a slight increase in the OH
-
/O layer which can be correlated 

to the bigger dip in intensity on the specular CTR. The presence of oxygen induces 

some small changes to the metal side of the interface on both Ag(001) and (110), 

small changes to the relaxation of the metal layers are observed, the relaxations of  
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Figure 6.33 Schematic representation of the Ag(hkl)/alkaline interface in oxygen 

saturated solution, highlighting the structural differences between the two potential 

limits. At negative potential the double layer structure is governed by a field effect 

attraction; positively charged Na
+
 cations redistribute at the interface to maintain 

electroneutrality at the interface. At positive potential OH is adsorbed on the surface, 

maintaining a negative charge, the Na
+
 are stabilised through non-covalent 

interactions forming a compact double layer at the Ag(111) and Ag(110) interface. 

At the Ag(001) interface, OH is adsorbed, but no evidence of Na
+
 ordering was 

identified by the structural model. 

the top metal layers are reduced on both surfaces. On Ag(111) there is no disturbance 

to the metal, which is similar to the effect of CO. This is perhaps due to the close 

packed nature of the Ag(111) surface. Blizanac et al. find the kinetics of the ORR to 

increase in the order (001) ≤ (111) ≤ (110) [162], correlating this to the results 

presented in this chapter the presence of oxygen perturbs the (001) interface the 

most, both the metal and electrolyte layering, only the electrolyte layering changes in  



 

  

168 

 
 

Parameter 

Ag(111) Ag(110) Ag(001) 

-0.7 V -0.1 V -1.0 V -0.2 V -0.8 V -0.2 V 

M
et

al
 l

ay
er

s 
ε34 (Å)   0.009(2) 0.021(3)   

ε23 (Å)   -0.025(2) -0.025(3) -0.019(2) 0.001(1) 

ε12 (Å) 0.00 -0.039(4) -0.029(2) 0.08(2) -0.931 -0.025(1) 

σ3  (Å)   0.145(5) 0.00   

σ2 (Å)   0.209(2) 0.00  0.051(5) 

σ1 (Å) 0.114(4) 0.088(6) 0.33 0.48 0.092(3) 0.14(1) 

O 

θ (ML)  0.9(1)  0.87(6)  0.87(5) 

d(Å)  2.45(7)  2.25(3)  1.53(3) 

σ (Å)  0.15  0.15  0.3 

Na
+
 

θ  (ML) 0.35(3) 0.14(2) 0.66(5) 0.60(5) 0.32(3)  

d (Å) 3.33(4) 3.16(2) 2.89(4) 3.29(6) 3.02(1)  

σ (Å) 0.15 0.15 0.15 0.15 0.2  

Error 

func 
dE (Å)   5.04(9) 5.29(1)   

 Red χ
2
 2.1 1.65 1.89 1.75 1.9 1.88 

Table 6.12 Summary of best fit parameters to data on all three low-index Ag(hkl) 

surfaces in O2 saturated 0.01 M NaOH + 0.09 M NaF electrolyte. 

 

the case of Ag(111) and on Ag(110) the changes are marginal. The largest effect of 

O2 in solution corresponds to the surface with the least ORR activity, and 

interestingly the role of the cation does not appear to be significant in the structure of 

the Ag(001)/alkaline interface.This seemingly goes against the mechanism proposed 

by Stmcnik et al. [117] that the non-covalent interaction between cation and 

hydroxide leads to blocking of ORR active sites. 

 

 Conclusions 6.3

The double layer structure of the Ag(hkl) surfaces in alkaline electrolyte, in the 

underpotential oxide region, has been examined using SXRD measurements. The 

analysis has shown the layering in the electrolyte has a strong potential dependence; 

on all three surfaces there is a decrease in intensity on the specular CTR at potentials 
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where OH adsorption occurs. The effect is most pronounced on the Ag(110) surface 

where the specular CTR has a prominent oscillation. It is clear that scattering from 

electrolyte layering significant and it is necessary to include in the modelling of these 

systems in order to obtain a good fit and structural model. The results indicate that 

there is evidence of non-covalent bonding at the electrode/electrolyte interface on the 

Ag(111) and Ag(110) surfaces. This was not the case on the Ag(001) surface, the 

data was fit with one adlayer at both potentials indicating that the cations are not 

stabilised on this surface at positive potential, or the coverage is so small that the 

contribution to the scattering is negligible. Interestingly at negative potential on 

Ag(001) there is evidence of some in-plane ordering in the double layer which has 

not previously been observed, this shows the importance of in situ structural studies 

and in particular surface X-ray diffraction which does not disturb the double layer 

structure during measurements. 

As the underpotential oxide region is where the ORR, CO adsorption and 

oxidation occur the study was extended to consider the effects of CO and O2 on the 

interface structure. Although the effects of these gases were very subtle on all 

surfaces, especially in the presence of O2, there were some interesting results to 

consider. Mainly, the presence of CO and O2 in electrolyte affects the layering at the 

interface, and perturbs the relaxations of the metal surfaces. CO is adsorbed on all 

three (hkl) surfaces, although the only surface to exhibit the suppression of 

electrooxidation of Ag is the Ag(110) surface, indicates that adsorption of CO is also 

dependent upon the geometry of the surface and highlights the need for single 

crystals to determine the origin of this process. 
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To gain a thorough understanding of the interface it would be advantageous 

to apply other techniques which have a chemical sensitivity to give greater 

confidence to the models, and determine the nature of the changes identified by the 

structural models. For example, spectroscopic techniques such as FTIRS which could 

determine the element and the type of bond present at the interface. It would also be 

advantageous to repeat the CV measurements in a specially designed cell. 

  



 

  

171 

 
 

 

 

 

 

7  Dynamics of potential-driven 

structural changes at the 

electrochemical interface 

 

 

 

 Introduction 7.1

 

The dynamics of processes at the electrochemical interface are vitally 

important to a number of technologies such as energy conversion devices - fuel cells 

and batteries, and electrodeposition for nanotechnology and corrosion. 

Understanding the dynamics of an electrochemical system on a fundamental level 

allows for predictions scaling up to industrial applications. Single crystal electrodes, 

which have a well-defined atomic arrangement and specific adsorption sites, are 

ideal candidates for fundamental studies and the field of electrochemistry has greatly 
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profited from their study. Despite this progression the dynamics of potential-induced 

structural rearrangement are still not well understood. 

The development of modern electrochemical methods to obtain a dynamic 

picture of events at the solid/liquid interface represents one of the most important 

contemporary frontiers of research in electrochemistry; in situ structural techniques 

must be employed to correlate electrochemical processes with structural changes at 

the electrochemical interface. In situ STM has been used to determine the kinetics of 

the Au surface reconstructions [150–153], electrodeposition
 
[169], and desorption 

processes [50]. However STM is time resolution limited by the scan rate of the tip, 

and mass transport limited due to shielding effects from the tip which can affect the 

local growth rates in the scan area [51]. The problem of time resolution can be 

overcome by using high speed STM [170], however the interference of the tip is an 

integral problem with STM. These issues can be overcome by using SXRD 

techniques, as the probe does not interfere with the measurements – in this case 

(although for some systems the X-rays have been shown to interfere, such as in 

reference [52]). In the last few decades the improved brilliance of synchrotron 

sources has enabled such work and several time resolved studies of electrochemical 

systems have been reported [158-168]. In this technique the scattered intensity is 

monitored, at a specific reciprocal lattice point, as a function of time during a 

potential step measurement whilst simultaneously measuring the current response 

(current transients). The point in reciprocal space is chosen for its sensitivity to a 

particular surface property, such as relaxation of the surface, commensurate adlayer 

adsorption or the fact that new scattering arises due to the formation of a 

superstructure. From the change in intensity, so called ‘intensity transients’, the 

kinetics of specific structural changes can be determined. These can then be linked 
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with electrochemical processes determined from the current response. Initial studies 

which utilised this technique were carried out in the conventional X-ray 

electrochemical cell, which was later found to be limited due to the thin layer 

configuration which was rate limiting due to the RC drop [60]. Development of a 

‘droplet cell’, in which all three electrodes are in close proximity, allowed greater 

potential response of 50 s [57]. The focus of the studies has been metal deposition 

[161,165,166] and dissolution [13,163], and the results have demonstrated that the 

charge transfer process is much faster than the development of long range crystalline 

order.  

Although the metal electrode side of the interface has been the focus of 

attention, recently there has been progress in understanding the electrolyte side of the 

interface
 
[23,24,117,119,170], as discussed in chapter 6. Nakamura et al. [58] 

presented the first time resolved X-ray diffraction study to focus on the electrolyte 

side of the interface. The study determined the structural dynamics of the double 

layer during capacitive charging and discharging of Cs
+
 at the Ag(001)/c(2x2)-Br 

interface. The double layer charging is specifically due to changes in the 

reorganisation of ionic species and reorientation of water molecules at the interface, 

i.e. no electron transfer between the electrode and electrolyte. The capacitive 

charging/discharging processes occurred on a millisecond timescale comparable to 

the complementary current transients.   

SXRD measurements in chapter 6 showed sensitivity to the ordering in the 

electrolyte layers at the Ag(hkl)/0.01 M NaOH + 0.09 M NaF interface and 

confirmed the cation participation in the so-called ‘double layer’ structure, which is 

consistent with the study by Lucas et al. in 0.1 M KOH.  In this chapter time 

dependent studies of the electrolyte layering process are presented, complimented by 
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metal reconstruction and metal deposition systems as a comparison of timescales for 

different structural processes. The Ag(111) electrode in alkaline electrolyte system 

offers a unique insight into the electrochemical interface as there is no significant 

restructuring of the metal surface (i.e. reconstruction), only a small inward 

relaxation, thus it is possible to separate structural changes in the metal from those 

that occur in the electrolyte. The Au(111) surface does, however, reconstruct; and so 

the kinetics of mass transport of the surface atoms and the subsequent structural 

ordering can be probed. In contrast to this, studying the underpotential deposition 

(UPD) process of Ag on Au(111) enables us to study the mass transport of ions 

through the electrolyte to the surface. 

 

 Experimental 7.2

The Ag(111), and Au(111) crystals (99.999%) obtained from Mateck (miscut 

< 0.1º) were prepared by Ar
+
 sputtering and thermal annealing cycles in UHV until a 

sharp LEED pattern was obtained, Ag(111)-(1 × 1) and Au(111)-(𝑝 × √3). The 

Ag(111) sample was transferred from UHV to the electrochemical cell in a glove bag 

under inert atmosphere to protect the surface from oxidising. After UHV preparation, 

the Au(111) crystal was flame annealed prior to transfer to the electrochemical 

droplet cell. The electrochemical cell consists of a Teflon cross-piece and quartz 

capillary, a droplet of electrolyte is suspended from the capillary forming a droplet 

covering the sample surface (setup is discussed in detail in chapter 3). Platinum wire 

is used as the counter electrode for Ag(111) and Au wire for Au(111), which formed 

a ring around the droplet, this additionally acted to stabilise the droplet. The outer 

chamber was continuously purged with nitrogen to keep the electrolyte drop 
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deoxygenised and to protect the sample surface from oxidizing. The reference 

electrode is Ag/AgCl, to which all potentials are referenced. X-ray measurements 

were performed on the ID03 beamline at the European Synchrotron Radiation 

Facility, ESRF. Incident X-ray beam energy of 24 KeV was required to penetrate the 

electrolyte droplet. The Ag(111), and Au(111) surfaces were indexed to a 

conventional hexagonal unit cell for fcc(111) surface that is defined such that the 

surface normal is along the (0, 0, L)hex direction and the (H, 0, 0)hex and (0, K, 0)hex 

vectors lie in the plane of the surface and subtend 60°. The units for H, K and L are 

a* = b* = 4π/√3aAg and c* = 2 π/√6a, where a is the nearest-neighbour distance. 

 

MuSSTcard set up 

Time dependent measurements were taken using a lock-in amplifier which is 

used to extract small signals from background to probe the structural ordering as a 

function of the frequency of the potential changes. The scattered X-ray beam is 

detected by a photodiode, working in photo-voltaic mode. The very small current 

produced by the diode is then amplified by a current to voltage amplifier and also 

filtered before being fed into the input of the lock-in amplifier. A signal generator 

provides the reference frequency for the lock-in amplifier and also controls the 

modulation of the surface, via the potentiostat. The output of both the potentiostat, 

and the lock-in can be fed into a Multipurpose Unit for Synchronisation Sequencing 

and Triggering (MUSST) card. The card can be integrated by SPEC [26], the 

beamline control system at the ESRF. A schematic of the set-up is shown in Figure 

7.1. 
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Figure 7.1 Schematic of the MUSST card setup. Working mode is discussed in the 

text. 

 

Time-dependent measurements 

The potential was stepped between limits at a reference frequency for 

numerous cycles. The intensity was monitored at a specific point in reciprocal space 

whilst simultaneously measuring the current response; this is shown schematically in 

Figure 7.2. After the experiment the first point of each potential step cycle was set to 

time t=0, and the cycles were binned and averaged for both potentials to improve the 

signal to noise ratio. This resulted in an intensity transient, and current transient of 

exponential forms for each potential. Appropriate exponential line shapes were fit to 

the data to obtain the time constants for the structural and electrochemical processes. 

Errors on the X-ray intensity data points were taken as √𝑁. Exponential curves were 

fit using a Levenberg–Marquardt algorithm. 

MUSST Card 
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Figure 7.2  Applied voltage signal (shown in the lower section of the figure) to the 

electrode/electrolyte interface is stepped between two potential limits at a reference 

frequency. The change in scattered X-ray intensity, at some reciprocal lattice point, 

and change in current are measured simultaneously. The cycles are averaged to give 

better statistics for the resulting intensity and current transients. 

 

 Results and discussion 7.3

7.3.1 Ag(111) 

The current model of Ag(111) in 0.1 M KOH electrolyte from SXRD, 

determined by Lucas et al. [23], indicates that at negative potential there is a 

presence of a hydrated K
+
 cation layer located at a distance of 4.1 Å from the Ag 

surface. The applied potential induces a strong electric field at the interface which 

pulls the positively charged cations in close proximity to the surface to equalise the 

charge at the electrode at the OHP. At positive potential OH
-
 adsorbs on the surface 

and stabilises the hydrated K
+
 cations through a non-covalent (van der Waals)  
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Figure 7.3  Structural changes in the electrochemical double layer at the Ag(111) 

electrode surface in 0.1 M KOH electrolyte. A hydrated K
+
 cation layer at the 

negatively charged surface, and hydrated K
+
 cations stabilised by OHads at positive 

potential. 

interaction forming a compact double layer structure in which the Ag-K
+
 distance is 

reduced to 3.6 Å, this is shown schematically in Figure 7.3. At the metal side of the 

interface, the top atomic layer has a small inwards relaxation at both potentials. At 

negative potential (E=-1.0 V) the relaxation is 0.7 % of the interatomic layer spacing 

(d(111) = 2.36 Å), which increases to 1.1 % at positive potential due to the adsorption 

of OH. The model indicates that scattering from electrolyte layering can be separated 

from the metal as there are no changes in the surface electron density of the metal; 

only a small inward relaxation of the top metal layer was needed to fit the data, 

indicating that the changes at the specular CTR position can be attributed primarily 

to ordering in the electrolyte. Any changes in the non-specular position are due to the 

response of the metal to changes in the electrolyte, such as relaxation of the surface 

atoms. 

In this chapter, through time dependent measurements, the structural 

dynamics of the restructuring of the double layer at the Ag(111)/0.1 M KOH 

interface are determined. Intensity and current transients were measured 
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simultaneously by applying a square wave potential to the system, in which the 

potential is stepped between two limits (E=-0.2 V and E=-1.0 V) at a reference 

frequency of 0.05 Hz. The step to -0.2 V is associated with the adsorption of OH
-
 and 

non-covalent interaction between OHads and the K
+
 cations. And the reverse step to -

1.0 V is attributed to desorption of OH
-
, and stabilisation of K

+
 cations in the OHP. 

The intensity transients were measured at several reciprocal lattice points which are 

sensitive to specific structural features; these can be seen in Figure 7.4. The anti-

Bragg position on the specular CTR, (0, 0, 1.5), which is sensitive to any layered 

ordering in the electrolyte and changes in electron density of the electrode surface, 

and the (0, 1, 0.5) a position on the non-specular (0, 1, L) CTR sensitive to adsorbed 

species commensurate with the crystal lattice, and (1, 0, 3.7) a position on the non-

specular (1, 0, L) CTR sensitive to changes in the relaxation of the surface. Time 

constants obtained from the intensity transients and current are summarised in Table 

7.1 and Table 7.2 respectively. 

 At (0, 0, 1.5) both of the intensity transients at -0.2 V and -1.0 V in figure 2 

can be described by a simple first order exponential function given by equation (7.1): 

 𝑓(𝑥) = 𝑦0 + 𝐴𝑒(
−𝑡−𝑡0

𝜏
)
 (7.1) 

    

where y0 is the background, A is the amplitude and 𝜏 is the time constant.  
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Figure 7.4 Intensity and current transients of the Ag(111)/0.1 M KOH interface 

measured after the step to -0.2 V (blue) -1.0 V (Red) (a) (b) Intensity transient at (0, 

0, 1.5) position on the specular CTR. Only the first ~0.5 seconds at each potential is 

shown so that the growth and decay of intensity are clearly visible (c) (d) Intensity 

transients at the (0, 1, 0.5) position on the non-specular (0, 1, L) CTR. (e) and (f) (1, 

0 3.7) (g) and (h) current transients. 
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On stepping to -0.2 V the time constant is 0.05 seconds for the structural changes. 

This is quite different to the time constants determined for the current transients. A 

two term exponential function, of the form 

 𝐼(𝑡) = 𝑦0 + 𝐴1𝑒
(

−𝑡−𝑡0
𝜏1

)
+ 𝐴2𝑒

(
−𝑡−𝑡0

𝜏2
)
 (7.2) 

where y0 is the background, A1,2 are the amplitudes and τ1,2 are time constants. 

gave the best fit to the current transient of the step to -0.2 V, a which requires two 

time constants where 𝜏1=0.008 s and 𝜏2=0.19 s. This suggests that the step to positive 

potential is a two-step process in terms of the charge transfer. This result indicates 

that there is an initial charge transfer at the interface which is quite fast, occurring on 

the millisecond time scale. This process can be attributed to the adsorption of OH on 

the surface. The second time constant is much slower, which can be assigned to the 

transfer of K
+
 to the compact double layer in a non-covalent interaction with the OH. 

Interestingly though, the structural rearrangement of the electrolyte layer occurs on a 

much quicker timescale (𝜏=0.05 s) than for the current transients which suggest the 

slow kinetics of a charge transfer process at the interface. This could be explained by 

the cation-OH complexes formed at the interface. There appears to be no distinction 

between the adsorption of OH and the movement of cations through the double layer 

from the intensity transients, a two term exponential does not fit the data which 

implies that the structural kinetics is dominated by the mass transport of ions (the 

rate at which ions move from the bulk electrolyte to area near to the electrode) the 

surface.  
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Reciprocal lattice 

position 
Potential 

(V) 

𝜏1  

(s) 

𝜏2   

(s) 

(0, 0, 1.5) 
-0.2 V 0.05 ± 0.01  

-1.0 V 0.18 ± 0.02  

(0, 1, 0.5) 
-0.2 V 0.009 ± 0.008 0.24 ± 0.04 

-1.0 V 0.37 ± 0.02  

(1, 0, 3.7)1 
-0.2 V 0.24 ± 0.05  

-0.7 V 0.19 ± 0.03  

Table 7.1 Time constants for different reciprocal lattice points at -0.2 V and -1.0 V. 

 

Potential (V) 
𝜏1 (s)  𝜏2 (s) 

-0.2 0.008 ± 0.001 0.19 

-1.0 0.004 ± 0.001 - 

Table 7.2 Current transient time constants at steps to -0.2 V and -1.0 V 

 

The intensity time constant determined for the reverse process, the step to -1.0 V, is 

0.18 s which is in contrast to the current transient which occurs on a much shorter 

timescale of 4 ms. The current response is related to the desorption of OH, which is 

of a similar timescale to the discharging of the interface determined by Nakamura et 

al. [58] whereas the intensity transients are probing the restructuring of the double 

                                                      
 
 
1
 *There was an issue with data measured at (1, 0, 3.7) between the potential limits -0.2 V and -1.0 V, 

instead the data presented here is between -0.2 V and -0.7 V. The XRVs suggest there are no 

structural differences between -1.0 V and -0.7 V at this reciprocal lattice position. 
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layer.  This shows that the kinetics of the structural ordering of the layers is slower 

than the charge transfer process at this potential. The intensity time constant is much 

slower than the positive step. This implies that once the interaction between OH and 

K
+
 is formed, it is more difficult to reverse the process i.e. transfer of the cation to 

the outer part of the double layer. This could be explained in terms of the driving 

forces of the double layer reconstruction at the interface; at negative potential the 

restructuring is driven by a field effect at the interface, whereas at positive potential 

there is an adsorption process and the cations are stabilised by non-covalent 

interactions. 

The intensity transients at (0, 1, 0.5) and (1, 0, 3.7) are associated with the 

response of the metal. The XRVs at these positions in chapter 5, and reference [23] 

for the Ag(111)/alkaline interface indicate that the changes are very small, which 

was confirmed through the CTR models. The time constants at both -0.2 V and -0.7 

V for the (1, 0, 3.7) position occur on a very similar time scale (~0.2 s). The change 

in intensity at this position is directly related to the relaxation of the surface. The 

kinetics of the relaxation appear to be unaffected by the direction of the potential 

step. The data at (0, 1, 0.5) is a bit more ambiguous.  The scattered intensity at this 

position is primarily sensitive to commensurate ordering from adlayers; although 

there was no evidence of in-plane ordering of OHads, and it was not required in the 

model to obtain a good fit to the data. This does not completely rule out the 

possibility of ordering, as scattering from OH is relatively weak and would only have 

a small contribution to the in-plane scattering. The intensity change could instead be 

due to relaxations in the metal; however, it is difficult to say for certain. 

Interestingly, the best fit to the data at -0.2 V was using a two-term exponential 

where τ1 is on the same time scale as  τ1 for the current transient at this potential and 
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the second term has the same time constant (τ = 0.24 s) as the one determined for (1, 

0, 3.7) . This implies that the first structural process identified could be due to 

adsorption of OH on the surface, and the second is due to the metal response i.e. 

relaxation of metal layers.    

The response of the electrolyte layering is faster at both potentials than it is 

for the changes in the metal; indicating that the movement of metal atoms is a much 

slower process than structural rearrangement of the electrolyte. The study by 

Nakamura et al. [58], which investigates the movement of Cs
+
 cations at the 

Ag(001)/c(2 × 2)-Br interface, indicates that the charging and discharging of the 

double layer occurs on very short timescales, milliseconds. Our study highlights the 

differences in kinetics with the introduction of adsorption processes as the 

electrochemical kinetics of the double layer at the Ag(111) interface are much slower 

than the Ag(001)/Alkaline system. The two time constants determined for the 

Ag(001)/Alkaline interface are related to the reorientation of water in the double 

layer and the movement of Cs
+
 in the double layer. The transfer of Cs

+
 is determined 

to be a slow kinetic process which is in agreement with our interpretation of the 

current transients.  

7.3.2 Au(111) 

The Au(111) surface is known to reconstruct in ultra-high vacuum under 

certain preparation conditions. The reconstruction survives transfer to the 

electrochemical environment, and can be controlled by the applied potential; the 

reconstruction can be lifted at positive potential or induced at negative potential. 

During the reconstruction process, the surface undergoes a uniaxial compression of 

the top layer of gold atoms which causes a lateral rearrangement of atoms to a  
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Figure 7.5 Schematic of the (23 × √3) reconstruction of the Au(111) surface 

reprinted from reference [66] with permission. 

 

 

Figure 7.6 Schematic of in-plane diffraction pattern for the (23 × √3) 

reconstruction. The solid circles correspond to the scattering from the bulk Au(111). 

The open symbols arise due to scattering from the (23 × √3) reconstructed phase 

with three rotationally equivalent domains. 

reconstructed (𝑝 × √3) unit cell, shown schematically in Figure 7.5, such that every 

pth atom is in registry with an underlying bulk Au atom.  This is characterised by 

additional diffraction spots in the surface plane of reciprocal space, in hexagonal 

arrangement around the CTR. This is shown schematically in Figure 7.6. Figure 7.7 

shows the scattered intensity measured along the [1 1 0] direction through the (0, 1,  
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Figure 7.7 In-plane X-ray diffraction from the reconstructed Au (111) surface. The 

blue data corresponds to the unreconstructed (1x1) phase at 0.2 V. The red data is 

from the reconstructed surface, an additional peak is seen at (0.02, 1.02, 0.5). 

0.15) reciprocal lattice position (the direction of the scan is indicated by the blue 

arrow in Figure 7.6. The blue data was taken at 0.2 V, only one peak is visible at 

H=0, K=1, this indicates that the surface structure is (1 x 1), the same symmetry as 

the bulk. At -0.6 V the peak at (0, 1, 0.5) is much smaller and there is an additional 

peak at H=0.02, this is consistent with the formation of the (𝑝 × √3) surface at 

negative potential. The stripe separation, p, can be determined from the in-plane 

diffraction scans by p=1/(2Δ𝐻) where ΔH is separation between the CTR peak at 

H=0 to the position of the reconstruction peak. In N2 purged 0.1 M LiOH p=25.0 at -

0.6 V. The correlation length can be determined by fitting a double Lorentzian 

lineshape to the curves. 

To characterise the system the potential dependence of the reconstruction was 

determined by X-ray voltammetry shown in Figure 7.8. XRVs were taken at (0, 1, 

0.5) an anti-Bragg position on the (0, 1, L) CTR which is sensitive to the in-plane  
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Figure 7.8 X-ray voltammetry at the non-specular CTR (0, 1, 0.5) and the 

reconstruction peak (0.02, 1.02, 0.5). 

ordering of the (1 × 1) termination of the surface, and at (0.02, 1.02, 0.5) a position 

which is sensitive to scattering from the reconstruction. At (0, 1, 0.5) when the 

potential is scanned cathodically there is a decrease in scattered intensity at ~0 V 

which is due to the loss of the (1 × 1) structure and coincides with an increase in 

intensity at the reconstruction position at this potential, which is the potential where 

the reconstruction begins to form. When the potential is scanned anodically the 

lifting of the reconstruction does not occur until 0.1 V, where there is a sharp rise in 

intensity. The dip in intensity before this point was attributed to increased surface 

disorder during the phase transition by Wang et al. [174].  The measurement at (0.02, 

1.02, 0.5) shows that at ~0 V the intensity begins to increase corresponding to the 
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formation of the reconstructed phase. This steadily increases until -0.6 V. On the 

reverse sweep, the reconstruction is stable until ~ 0 V where there is a sharp decrease 

in intensity corresponding to the lifting of the reconstruction. Between 0.2 V and 0 V 

the intensity at the reconstruction position is level, whereas the intensity is already 

decreasing at the (0, 1, 0.5) position, this is attributed to the initial nucleation, before 

the reconstruction begins to order. The XRVs have a large hysteresis indicating that 

the kinetics of the phase transformations are slow.  

In order to determine the dynamics of the (1 × 1) ↔ (𝑝 × √3) phase 

transition intensity and current transients were measured at several reciprocal lattice 

positions, shown in Figure 7.9. The reconstruction position (0.02, 1.02, 0.5) and (0, 

1, 0.5) to determine the time constant for the ordering and lifting of the 

reconstruction and at the anti-Bragg on the specular (0, 0, 1.5), which is sensitive to 

changes in surface density along the surface normal. The changes in intensity at the 

two non-specular positions are correlated to the ordering of the two phases. The 

potential was modulated at a reference frequency of 5 mHz, between 0.2 V, 

corresponding to the (1 × 1) unreconstructed surface and -0.6 V where the surface is 

reconstructed.  

The intensity, and current, was recorded simultaneously every 0.02 seconds 

over 8 cycles. The time constants from the intensity and current transients are 

summarised in Table 7.3 and Table 7.4, respectively. The step to positive potential, 

which corresponds to the lifting of the reconstruction, the intensity transients decay 

exponentially with time and were all fit with a first order exponential function in 

equation 7.1. The step to positive potential is faster than the reverse step at all three 

reciprocal lattice positions.   
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Figure 7.9 Intensity and current transients of Au(111) phase transition. Potential is 

stepped from 0.2 V (1 ×  1) phase (blue), to -0.6 V reconstructed phase (red). (a) (b) 

(0, 0, 1.5) (c) (d) reconstruction position (0.02, 1.02, 0.15) (e) (f) (0, 1, 0.5) on the 

non-specular CTR sensitive to the bulk termination of the surface, (g) (h) current 

transients. 
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Reciprocal lattice 

position 

Potential (V) 𝜏1 (s) 𝜏2(s) 

(0, 0, 1.5) 

 0.2 V 0.58 ± 0.11 - 

-0.6 V 0.81  ± 0.11 - 

(0.02, 1.02, 0.15) 

 0.2 V 0.64 ± 0.06 - 

-0.6 V 2.61 ± 0.32 39.59 ± 5.54 

(0, 1, 0.5) 

 0.2 V 1.67 ± 0.09 - 

-0.6 V 3.75 ± 0.38 43.38 ± 4.26 

Table 7.3 Time constants for different reciprocal lattice positions at 0.2 V and -0.6 

V. 

Potential (V) τ1 (s) 

 

τ2 (s) 

 

0.2 0.07 ± 0.01 0.86 ± 0.04 

-0.6 1.2 ± 0.03 11.3 ± 0.4 

 

Table 7.4 Time constants determined by current transient. Steps to 0.2 V and -0.6 V. 

 

The (0, 0, 1.5) position is sensitive to changes in surface density. The time 

constants at this point give the kinetics for the mass transport of excess surface gold 

atoms into the top surface layer, and is independent of ordering. The time constants 

are the same order of magnitude at both potentials, however, the time constant at 0.2 

V is slightly faster indicating the kinetics of the mass transport of Au atoms out of 

the surface are faster than the reverse process. The time constant at (0.02, 1.02, 0.5) 

at 0.2 V describes the timescale that the (𝑝 × √3) ordered surface is lost, which is 
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consistent with the time constant for (0, 0, 1.5); which is a measure of mass 

transport. This indicates that the reconstruction is lost with the mass transport of the 

surface atoms out of the plane. The time constant, 0.64 s, is much faster than found  

in previous thin-layer cell measurements [174] of 2-3seconds, which proves the time 

limitation of the thin-layer cell configuration. The time constant at (0, 1, 0.5), 

sensitive to the (1 × 1) terminated surface, is slightly longer at 1.7s which means 

that although the reconstruction is lost, the surface requires an extended time to 

reorder into the (1 × 1) phase. The X-ray transients for the negative step to -0.6 V 

are more complicated requiring a second order exponential fit, of the form of 

equation (7.2), to the data which uses two time constants with the exception of the 

specular position which was fit by equation (7.1). This indicates that the 

reconstruction forms by a two-step process. The time constants determined for the 

first process at the two non-specular positions are between 2-4 seconds, which is 

much longer than the mass transport kinetics for the specular position. This is 

explained by the atoms organising into nucleation points. The nucleation of gold 

atoms is followed by a much slower ordering to the (𝑝 × √3)  occurring on the 

timescale of ~ 40 seconds. The intensity continues to change beyond this and does 

not reach saturation during the time of the measurement. This is consistent with 

previous measurements which find the reconstruction can take up to 120 seconds to 

complete [174]. 

The current transient for the negative step was also fit with equation (7.2), 

however the time constants are on a much shorter time sale τ1=1.2 and τ2=11 seconds 

than those determined from the intensity transients. The current transient at 0.2 V is 

of a similar order of magnitude to the kinetics of the mass transport. The results show 
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that although the charge transfer process is relatively fast, the structural 

rearrangement and ordering of the Au atoms requires a much longer timescale. 

It would be interesting to compare the time constants in the presence of CO 

as it has been found to change the dynamics of the reconstruction [178]. Upon 

adsorption of CO there is found to be a partial lifting and a change in the lateral 

compression of the reconstructed surface. 

7.3.3 Ag UPD on Au(111) 

The deposition and dissolution of a metal on a foreign metal surface is 

important for many industrial applications such as manufacture of thin films, 

corrosion and electroplating. The control of deposition techniques is important for 

designing electrodes for integrated circuits and core-shell nanoparticles. 

Underpotential deposition, (UPD), provides a way in which deposition of a 

metal can be finely controlled. UPD is a specific type of adsorption phenomena 

whereby a monolayer of a metal (M) is deposited on a foreign metal substrate (S) at 

potentials positive of the Nernst potential for bulk metal deposition. The violation of 

the Nernst equation 2.8 (the Nernst equation is discussed in section 2.2.1 Electrode 

Reactions) is permitted when the M-S interactions are stronger than the S-S bonds; 

which make the UPD process favourable [179]. The UPD process is self-limiting; 

once a monolayer has been formed deposition is terminated. However, there are 

some systems where M-S interactions are sufficiently strong enough to allow the 

formation of a bilayer at potentials positive of the onset of bulk deposition [180]. The 

UPD phenomena is of great interest as it allows precise control over the coverage 

and structure of a metal layer, and it is a fully reversible process. Understanding 
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these low growth rates is of vital importance for understanding the growth 

mechanisms and structure of the metal layer.  

The processes involved in the formation of a UPD layer are represented by 

the schematic diagram shown in Figure 7.10. Solvated 𝑀𝑆𝑜𝑙
𝑛+ ions move from the bulk 

electrolyte to the double layer region where they lose their solvation shell and there 

is electron transfer from the substrate to the metal ions forming a S-M bond. UPD 

atoms form a strong bond i.e. adsorbed atoms are fully discharged. The UPD process 

is visible in CVs by characteristic deposition peaks in the cathodic scan, and 

corresponding stripping peaks in the reverse scan. The charge transfer during 

adsorption can be directly determined from integrating the area of the peak from 

which the coverage can be determined.  

Apart from M-S interactions the structure and kinetics of the UPD layer is 

also dependent upon other factors such as coadsorbing anions, and the geometry of 

the metal surface. A more in depth discussion and theoretical considerations can be 

found in references [23–25]. 

Silver UPD on Au(111) is one of the few systems where the M-S interaction 

is strong enough to allow the deposition of up to a bilayer. It is a well-defined system 

and there have been several studies [174,176], the deposition of Ag can be finely 

tuned with potential control with regimes of monolayer, bilayer and bulk deposition 

[180]. The UPD process is fully reversible over the monolayer/bilayer range This 

ability to control the coverage provides a model system for fundamental studies of 

the UPD process; to investigate deposition and desorption dynamics. The system also 

has importance for Au-Ag core-shell nanoparticles [184]–[187]. The nanoparticles 

have shown enhanced antibacterial activity [183], and improved catalytic activity 
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Figure 7.10 schematic representation of the UPD of a metal M
n+

 on to a foreign 

substrate. Figure is adapted from [181]. Water molecules are represented by the blue 

circles labelled ‘W’. 

[184] compared with mono-metal surfaces any alloy nanoparticles. 

 Figure 7.11 shows the cyclic voltammetry of the Au(111) electrode in 0.05 

M H2SO4 + 1 mM Ag2SO4 at a sweep rate of 5mV/s. X-ray voltammetry was 

measured at 3 reciprocal lattice positions at (b) the anti-Bragg on the specular CTR 

(0, 0, 1.5), a position sensitive to any layered ordering at the interface (c) (1, 0, 3.7) a 

positionon the (1, 0, L) non-specular CTR which is sensitive to relaxation at the 

interface and (d) (0, 1, 0.5) an anti-Bragg position on the (0, 1, L) CTR sensitive to 

adsorbed structures commensurate with the Au(111) surface. 

There are three cathodic peaks C1, C2 and C3 which are due to the deposition 

of Ag. These peaks can be related to structural changes highlighted by changes to the 

XRV. C1 is attributed to the deposition of a partial monolayer which corresponds to 

a decrease in intensity at all three reciprocal lattice positions. C2 is assigned to the 

further deposition of Ag, this is complemented by a further decrease in intensity on  



 

  

195 

 
 

 

Figure 7.11 (a) Cyclic voltammetry of Au(111) in 0.05 M H2SO4 + 1 mM Ag2SO4 

recorded at a sweep rate of 5 mV/s. X-ray voltammetry (XRV) measured at (b) (0, 0, 

1.5), (c) (1, 0, 3.7), and (d) (0, 1, 0.5) at a sweep rate of 2 mV/s. All data is plotted vs 

a Ag/AgCl reference. Reprinted with permission from [182] Copyright (2016) 

American Chemical Society. 

the (0, 1, 0.5). The intensity decreases until the completion of the monolayer just 

before C3. At this point the intensity begins to increase as the silver bilayer begins to 

form. This is consistent with changes to the CTR profile for a monolayer and bilayer 

as discussed in chapter 2 section 2.6.1. In this section the dynamics of the 

deposition/dissolution process of silver are studied in the sub-monolayer region. The 

potential was stepped between 1.05 V and 0.7 V. At 1.05 V the Au(111) surface  
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Figure 7.12 Ag UPD on Au(111) Intensity transients at (a) (0, 1, 0.5) at 1 V, (b) (0, 

1, 0.5) at 0.7 V, (c) current transients at 1.05 V  and (b)  0.7 V. 

 

Transient Potential (V) τ1 (s) τ2(s) 

Intensity  

(0, 1, 0.5)  

 1.05  0.007 ± 0.002 - 

 0.7  0.004  ± 0.004 0.12 ± 0.01 

Current 
1.05  0.0108 ± 0.0002 - 

 0.7  0.0045 ± 0.0004 0.073 ± 0.09 

Table 7.5 Time constants for intensity and current transients. 

should be free of Ag atoms, 0.7 V corresponds to a partial monolayer of Ag. As this 

study is concerned with the deposition of the partial monolayer of silver the scattered 
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intensity measured during the potential step was monitored at (0, 1, 0.5), a position 

which is particularly sensitive to deposition of Ag. The intensity and current 

transients can be seen in Figure 7.12 and the time constants are summarised in Table 

7.5. After the step to 1.05 V the intensity increases exponentially, and the reverse 

step to, 0.7 V, the intensity decreases with the deposition of Ag, this is consistent 

with the changes in scattered intensity observed in the XRV at (0, 1, 0.5) for 

monolayer deposition. The intensity transient of the step to 1.05 V was fit well with a 

one-term exponential equation (7.1) giving a time constant of 0.007 s which is 

similar to the current transient (τ=0.0108 s) which indicates that the charge transfer 

process occurs on the same timescale as the movement of Ag atoms from the 

Au(111) surface.  

A good fit to the intensity transient following the step to 0.7 V could be 

obtained by a two-term exponential equation (7.2), and similarly with the current 

transient.  The first term in the current transient is much quicker than the second term 

is associated with the transfer of metal ions to the double layer, and the second term 

is due to the charge transfer at the interface when the metal ion is adsorbed. The time 

constants for the intensity transients occur on very similar timescales the fast first 

term is attributed to the adsorption of Ag on the surface, and the second term is 

attributed to the ordering process.   

A recent study by Nakamura et al. investigated the UPD process of different 

metal ions in real time through similar time-resolved surface X-ray diffraction 

(TRSXRD) and time resolved infrared spectroscopy (TRIRS). The dynamics of UPD 

of Ag on Au(111) was probed at (0, 0, 1.4) a position on the specular CTR which is 
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sensitive to changes in electron density. The time constant obtained was 9.6 ms 

which is of the same magnitude as the first time constant obtained  

The formation of the Ag layer is relatively slow in comparison with the UPD 

of a (2 x 2)-Bi structure on Au(111) which occurs on the millisecond timescale [57], 

although the formation of a high coverage incommensurate Bi layer is 3 orders of 

magnitude slower. This suggests that the kinetics of the Ag/Au(111) system are slow 

due to the ordering process, and due to the coverage, although this cannot be said for 

sure as the coverage at 0.7 V was not determined.  

 Conclusion 7.4

In this chapter the study of three electrochemical systems were presented in 

order to separate the time-scales for different structural processes and link the 

structure to the charge transfer processes. The fastest process was the desorption of 

Ag atoms from the Au(111) surface which occurred over the millisecond timescale, 

and occurs on the same timescale as the charge transfer processes. The driving force 

for mass transport of metal ions through electrolyte is much stronger than the 

rearrangement of the electrochemical double layer, where the timescales are orders 

of magnitude slower. The time constant for the restructuring of the double layer in 

the negative step was an order of magnitude larger than the adsorption process, 

indicating a slower movement of the cations through electrolyte to form an ordered 

layer in the OHP. The mass transport of surface atoms is much slower than any 

movement of ions through electrolyte 

The most sluggish of all of the systems is the kinetics of the in-plane 

reconstruction of Au(111), where it can take ~40 seconds to develop long-range 
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order. In contrast to this the relaxation of surface layers, out of plane, is a much 

faster structural process ~0.2 seconds. In terms of the current response, the charge 

transfer appears to be much faster than the structural rearrangements which is expect. 
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8  Conclusions and future work 

 

 

 

 

 

Surface X-ray diffraction has been the principle technique in this thesis and has 

proved a powerful technique in determining the atomic structure of surfaces and 

interfaces in both UHV and an electrochemical environment.  

The structure of the clean Ag(111) and Ag(110) surfaces were determined by 

SXRD. The oscillatory relaxation model of the Ag(110) surface was in agreement 

with previous experimental and theoretical works. The Ag(111) surface had much 

smaller surface relaxations, which is in agreement with theoretical models [2]; the 

more close packed a surface is surface is then the lesser extent the relaxations are 

felt. Both surfaces show an overall inwards relaxation of the surface layers. Studying 

the Ag(001) surface with SXRD would make for a complete set of the low index 

surfaces, given the model it is likely that the relaxation effect at the surface should be 

in between the Ag(110) and Ag(111) surfaces. 
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The growth conditions of silicene on Ag(111) were successfully optimised. 

Although a monolayer of silicene was formed, it exists as an exotic mix of structures, 

and it is has proven difficult to form a single phase on the surface. The average 

structure of the surface has been determined through analysis of the surface normal 

structure with the specular CTR, and shows interesting differences to the study by 

Curcella et al. [108], which only considered scattering from the FORs for the 

(4 ×  4) silicene structure. The overall buckling of the surface determined by 

analysis of the specular CTR was 1.19 ± 0.02 Å, which was much greater than the 

value determined for the (4 ×  4) structure by Curcella, 0.76 Å. This indicates that 

the (4 ×  4) may not have been the most dominant structure on the surface under 

study. It is clear, that in order to obtain a complete analysis of the Ag(111)/Silicene 

interface the structure of the other silicene orientations needs to be addressed. The 

deposition of Si undoubtedly has an effect on the Ag(111) surface as it undergoes 

small, but non-negligible changes which results in the expansion of the top two 

surface metal layers. The interaction of Si with the Ag(111) surface could be probed 

further by resonant surface X-ray diffraction which could determine the charge 

transfer at the interface [129]. 

  XRV and CTR measurements were used to build up a comprehensive picture 

of the Ag(hkl)/alkaline interface. CTR measurements have been used to determine 

the structure at both the electrode and electrolyte sides of the interface. The results 

reveal large structural changes on the electrolyte side of the interface on all three 

surfaces, with the response of relaxation of the surface layers in the metal. There was 

some evidence of in-plane ordering at the Ag(001) surface.  Negative of the Epzc the 

driving force behind the restructuring of the double layer is due to a Field effect. 

Cations are attracted from the bulk electrolyte to form a layer near the surface in 
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order to maintain electroneutrality at the interface. At potentials positive of the pzc, 

OH adsorbs on the surface, maintaining its negative charge. The OHads stabilises 

cations in a compact double layer through non-covalent interactions. These studies 

were extended to determine the effects of saturating the electrolyte gases, CO and O2 

on the double layer structure. The results indicate that double layer structure is subtly 

perturbed, and hints at a change in the nature of bonding at the interface. The 

mechanism behind this is currently unknown and additional experimental techniques 

with chemical sensitivity would be beneficial to elucidate this. It would be necessary 

to repeat the cyclic voltammetry measurements (presented chapter 6) in a specifically 

designed cell, to obtain data over the smaller potential region (before oxidation of the 

surface) in order to identify peaks corresponding to CO oxidation. 

  Time resolved SXRD measurements were utilised to determine the dynamics 

of the restructuring of the electrolyte layering at the Ag(111)/Alkaline interface. In 

order to gain a comprehensive picture of the structural dynamics, two other systems 

were also studied; the Au(111) reconstruction to determine the timescale of the 

(4 ×  4) ↔ (𝑝 × √3) phase transition, and the underpotential deposition of Ag on 

Au(111). The results indicate that the mass transport of ions through electrolyte is on 

a timescale comparable to the charge transfer, whereas the ordering of ions and 

surface metal atoms occurs on much longer timescales. The kinetics of the 

restructuring of the double layer were slow in comparison with the work by 

Nakamura et al. [58], which is explained by the additional adsorption processes 

occurring at the interface. It would be interesting to extend the studies on Ag(111) to 

determine the how and if the kinetics change in the presence of CO and O2; this 

would fit in well with the work done in chapter 6. 
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A natural progression of this work, would be to bring together the work in 

chapters 5 and 6 to study the Ag(111)/Silicene interface in an electrochemical 

environment. There has been extensive studies of the electrochemistry of graphene 

and its derivatives [185], in particular it’s use in energy storage systems – such as 

lithium ion batteries [186], and for sensing and biosensing systems [181–183]. More 

recently there has been interest into silicene as a prospective anode material for Na-

ion [190] and Li-ion batteries [191]; theoretical investigations propose that silicene 

has a greater potential as an anode material than graphene due to better storage 

capability and greater energy density. As only theoretical studies exist, the stability 

of the silicene layer is unknown in an electrochemical environment making it an 

exciting new area to study. Growing the silicene in UHV on Ag(111) and 

transferring the sample into alkaline electrolyte of 0.01 M NaOH + 0.09 M NaF 

would allow direct comparison to the results in chapter 6 of this thesis. The 

electrochemical response of the system could be probed through XRV measurements 

with the possibility to extend the measurements to probe the surface behaviour 

during gas reactions, such as the ORR. Detailed structural analysis could be obtained 

from CTR measurements. Additionally, studying the system in an acidic electrolyte 

with halide anions would allow the study of adsorption and ordering. This would 

gain a good understanding of the surface structure in a fundamental range of 

electrochemical systems, providing the silicene layer is stable outside of UHV and in 

an electrochemical environment. 

If the silicene is not stable on transfer to an electrochemical cell, an 

alternative method would be to electrochemically deposit silicon. Although is not 

possible to deposit silicon from aqueous electrolyte, as the potential window is only 

1 V and the solution would break down before the potential for silicon deposition, it 
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is possible to deposit silicon from ionic liquids which have a much larger potential 

window of several volts. At present there are no reports of electrochemical 

deposition of silicene from ionic liquids, only amorphous structures have been 

formed [176–178]. 
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