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Abstract

This thesis presents in situ Surface X-ray Diffraction (SXRD) studies of
surfaces and interfaces, in both Ultra High Vacuum (UHV) and an electrochemical
environment. Primarily Crystal Truncation Rod (CTR) measurements are utilised to
determine a model for the atomic structure at the interface.

A SXRD characterisation of the clean Ag(110) and Ag(111) surfaces in UHV
were determined as a reference for the rest of the work in this thesis. Following this
the growth conditions and structures of a silicene layer on Ag(111l) were
investigated, by Low Energy Electron Diffraction (LEED) and preliminary SRXD
study of the interface structure is presented.

A comprehensive study of the Ag(hkl)/alkaline interface is presented. X-ray
Voltammetry (XRV) measurements have been performed to determine the potential
dependence of the system. CTR measurements have been used to determine the
structure at both the electrode and electrolyte sides of the interface. The results reveal
large structural changes on the electrolyte side of the interface, with the response of
relaxation of the surface layers in the metal. The presence of specifically adsorbed
OH on the surface stabilises cations in a compact double layer through non-covalent
interactions. The studies were extended to determine the effects of saturating the
electrolyte gases, CO and O, on the double layer structure. The results indicate that
double layer structure is subtly perturbed, and hints at a change in the nature of
bonding at the interface.

Time resolved SXRD measurements are utilised to determine the dynamics of
the restructuring of the electrolyte layering at the Ag(111)/Alkaline interface. In
order to gain a comprehensive picture of the structural dynamics, two other systems
are studied; the Au(111) reconstruction to determine the timescale of the (1 x 1) &
(p x+/3) reconstruction, and the underpotential deposition of Ag on Au(111). The
results indicate that the mass transport of ions through electrolyte is on a timescale
comparable to the charge transfer, whereas the ordering of ions and surface metal

atoms occurs on much longer timescales.
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Figure 6.12 Ag(111) in 0.09 M NaF + 0.01 M NaF at -0.2 V in CO saturated
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Figure 6.14 XRV of Ag(110) in 0.09 M NaF + 0.01 M NaOH taken in the presence
of CO (red) and in the absence (blue) at (a) (0, 0, 1.02) on the specular CTR, (b) (1,
0, 0.2) and (c) (0, 1, 0.3) on the non-specular CTRs. The data is normalised to the
first point in each scan to display the intensity as a percentage change for
comparison. Negative sweep is indicated by the solid lines, and the positive sweep
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the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, O, L).
The CTRs measured in the presence of CO were normalised to the data measured in
N2 purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). The solid lines are the
fits to the data according to the structural model described in the text and parameters
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Figure 6.16 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface
measured at -0.2 V in N purged electrolyte (blue) and CO saturated electrolyte (red)
(@) the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, O,
L). The CTRs measured in the presence of CO and O, were normalised to the data
measured in N, purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). Solid
lines are fitS t0 the data..........ccceeieiieiiee e 144
Figure 6.17 Cyclic voltammetry of the Ag(001) surface in 0.09 M NaF + 0.01 M
NaOH in the presence of CO (red) and in the absence of CO (in N, purged
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Figure 6.18 XRV of Ag(001) on the specular CTR position (0 0 1.02) in the
presence of CO (red), in absence of CO (blue). Negative sweep is indicated by the
dashed lines and the positive sweep is indicated by the solid lines. Sweep rate 20
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Figure 6.19 Crystal truncation rod (CTR) data of Ag(001) measured at -1.0 V in N,
purged electrolyte (red squares) and CO saturated electrolyte (blue circles) (a) the
specular CTR (0, ,0 L) and (b) the non-specular CTR (1, 1, L). The CTR measured in
the presence of CO was normalised to the data measured in N, purged electrolyte (c)
(0,0, L) and (d) (1, L, L) cueereieiecieeiee ettt 149
Figure 6.20 Crystal truncation rod (CTR) data of the Ag(001)/0.09 NaF + 0.01 M
NaOH measured at -0.2 V in N, purged electrolyte (red squares) and CO saturated
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electrolyte (blue circles) (a) the specular CTR (0, 0, L) and (b) the non-specular CTR
(1, 1 L). The CTR measured in the presence of CO was normalised to the data
measured in N, purged electrolyte (c) (0, O, L) and (d) (1, 1, L). The solid lines are
the FItS 10 the ata. ......ceeieeieee s 150
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Figure 6.22 XRV on the (0 0 1.6) position in the presence of O, and in N purged
electrolyte. Negative sweep is indicated by the dashed lines and the positive sweep
by the solid lines. Measured at a sweep rate of 20 MV/s. ..., 153
Figure 6.23 Potential dependence of Ag(111) in nitrogen purged electrolyte. Red
squares (-0.7 V) and blue circles (-0.2 V) (a) specular CTR (00 L), (b) (0 1 L) non-
specular CTR (c) and (d) intensity ratios of the -0.2 V data normalised to the -0.7 V
data. Solid lines are fits t0 the data. .........cccccveieiieie i 155
Figure 6.24 Ag(111) in 0.09 M NaF + 0.01 M NaF at -0.77 V in oxygen saturated
electrolyte(red squares), and data in N2 purged electrolyte (blue circles) (a) specular
CTR (00 L), (b) (01L) non-specular CTR (c) and (d) intensity ratios of the O, data
normalised to the N, data. Solid lines are fits to the data given by the structural
model described iN the TEXL. .....coviiiiiei e 155
Figure 6.25 Ag(111) at -0.17 V Red circles, data in oxygen saturated electrolyte, and
blue circles, data in N purged electrolyte (a) specular CTR (0 0 L), (b) (0 1 L) non-
specular CTR (c) and (d) intensity ratios of the O, data normalised to the N, data.
Solid lines are fits to the data given by the structural model described in the text . 156
Figure 6.26 XRV of Ag(110) in 0.09 M NaF + 0.01 M NaOH taken in the presence
of O, (red) and in the absence (blue) at (a) (0, 0, 1.02) on the specular CTR, (b) (1, O,
0.2) and (c) (0, 1, 0.3) on the non-specular CTRs. Negative sweep is indicated by the
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Figure 6.27 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface
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Figure 6.28 Ag(110) CTR data of the Ag(110)/0.09 NaF + 0.01 M NaOH interface
measured at -0.2 V in N, purged electrolyte (blue) and O, saturated electrolyte (red)
(@) the specular CTR (0, 0, L) and the non-specular CTRs (c) (0, 1, L) and (d) (1, O,
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L). The CTRs measured in the presence of O, were normalised to the data measured
in N2 purged electrolyte (b) (0, 0, L) (e) (0, 0, L) and (f) (1, 1, L). The solid lines are
the fits to the data according to the structural model described in the text.............. 158
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Figure 6.32 Schematic representation of the Ag(hkl)/alkaline interface in CO
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Figure 7.1 Schematic of the MUSST card setup. Working mode is discussed in the
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